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Abstract 

The ability of a cell to regulate its cell cycle in response to external stimuli, such as 

oxidative stress, is important to maintain viability by preventing damage and allowing 

time for repair.  However, the underlying sensing and signalling mechanisms behind cell 

cycle regulation in response to oxidative stress remain largely unclear.  Ubiquitin and 

ubiquitin-like (Ubl) proteins are a family of highly conserved protein modifiers with a 

role in many cellular processes including cell cycle regulation.  The use of catalytic 

cysteine residues in the conjugation pathways of ubiquitin and Ubls suggest a 

mechanism by which these modifiers can be redox-regulated.  Thus the aim of this 

project was to investigate the regulation of the cell division cycle by ubiquitin and Ubls in 

response to two conditions previously observed to lead to G1 phase cell cycle arrest in S. 

cerevisiae, treatment with the oxidising agent diamide and glutathione depletion.  We 

find that in response to diamide the ubiquitin E2, Cdc34 is particularly sensitive to 

oxidation compared to the other E2s examined.  Oxidation of Cdc34 was shown to lead 

to an increase in the stability of the Cdc34 substrate Sic1, coincident with G1 phase 

arrest.  We also find that the Rub1 Ubl modifier is essential for regulation of the cell 

cycle in response to diamide.  Interestingly, we find that Rub1 is also required to prevent 

budding in response to glutathione depletion.  Importantly, here we reveal that SIC1 is 

essential to maintain viability by preventing replication-induced DNA damage following 

glutathione depletion.  Our studies demonstrate that G1 phase cell cycle arrest in 

response to diamide and glutathione depletion is multifaceted, involving many of the 

same proteins but that these proteins are regulated differently in response to the two 

conditions.        
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Chapter 1: Introduction 

 

1.1 Ubiquitin and Ubls 

Post-translational modification of proteins can alter the physical and chemical properties 

of the target protein thus allowing it to respond appropriately to changes in the cellular 

environment.  Most post-translational modifications such as methylation, 

phosphorylation and acetylation, involve the addition of a small group to a protein.  

However, the addition of a whole protein can greatly increase the functional diversity of 

the target protein and provides greater scope for changes in protein conformation and 

interactions. The classical example of the addition of a whole protein as a modification is 

ubiquitin.  Ubiquitin is highly conserved among eukaryotes although missing from 

bacteria and archaea, and is best known for its role in targeting proteins for degradation 

by the 26S proteasome.  Since the initial discovery of ubiquitin a number of ubiquitin-

like (Ubl) modifiers have been identified.  While not necessarily sharing high levels of 

homology at the level of their primary sequence these Ubls share a common three-

dimensional β-grasp fold structure and their conjugation pathways display similar 

features.  The attachment of these modifiers to substrates has been implicated in a wide 

range of cellular processes and the dysregulation of these modifiers has been shown in a 

number of disease states.  Indeed ubiquitin and Ubls are essential in many organisms 

demonstrating their importance in a wide range of vital cellular processes.   

1.1.1 Conjugation  

In general ubiquitin and Ubls share a common mechanism of conjugation involving E1, 

E2 and E3 enzymes (Figure 1.1).  Ubiquitin and Ubls are initially inactive and must first be 

processed by specific proteases to expose a C-terminal glycine carboxylate.  The 

processed ubiquitin /Ubl is then activated by the activating E1 enzyme which adenylates 

ubiquitin/Ubl forming a high energy Ubiquitin/Ubl-AMP intermediate.  The intermediate 

is then attacked by the catalytic cysteine of the E1 leading to the formation of a 

thioester bond between ubiquitin/Ubl and this cysteine residue of the E1.  In the next 

step, ubiquitin/Ubl is transferred to the active site cysteine of the E2 conjugating 

enzyme.  In the final step, ubiquitin/Ubl is transferred to the target lysine residue of the  
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substrate forming an isopeptide bond.  This final step often, but not always, requires an 

E3 ligase enzyme thought to aid the reaction either through stabilising the interaction 

between the E2 and the substrate or by binding to ubiquitin/Ubl itself before 

transferring it to the substrate lysine (Hochstrasser, 2000). 

Protein modification by ubiquitin/Ubls is not irreversible.  The modifier can be removed 

by deconjugating enzymes allowing for reversibility of the modification and the creation 

of a free pool of ubiquitin/Ubl that can rapidly be conjugated to other substrates.  

1.1.2 Substrate specificity 

Substrate specificity for ubiquitin/Ubls is achieved in a number of ways dependent on 

the conjugation pathway.  The ubiquitin conjugation pathway for example contains 

many different E2 and E3 enzymes that direct substrate specificity (Figure 1.2).   

Substrate specificity is primarily directed by E3 enzymes using domains distinct from 

their catalytic domain to recognise substrates with or without the aid of a binding 

partner.  Recognition can also occur through degron elements located within the 

substrates themselves which can aid the interactions between the substrate and the E3 

enzyme (Mattiroli and Sixma, 2014).   

The specificity of the target lysine for modification varies depending on the substrate 

and the role of the conjugated ubiquitin/Ubl.  Non-selective lysine modification by 

ubiquitin often occurs on substrates that undergo polyubiquitination signalling their 

degradation by the proteasome (Mattiroli and Sixma, 2014).  For these substrates it is 

the polyubiquitin chain that acts as the signal and thus the specificity of the lysine is not 

important.  However, specific lysines are modified in some substrates such as PCNA 

(Hoege et al., 2002). PCNA has a role in several S-phase processes such as DNA 

replication and DNA repair and has been shown to undergo modification by both SUMO 

and ubiquitin on lysine 164 (lys164).  A mutation of the lys 164 of PCNA in S. cerevisiae 

that prevents its modification by SUMO and ubiquitin leads to cells that are highly 

sensitive to the DNA damaging agents MMS and UV light.  Modification of PCNA lys 164 

by SUMO occurs during S-phase and inhibits the role of PCNA in DNA repair suggesting a 

role for PCNA in DNA replication.  Ubiquitin modification of PCNA is induced after 

exposure to DNA damaging agents and has been linked with DNA repair. 
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Unlike the ubiquitin conjugation pathway which has many E2 enzymes (12 in S. 

cerevisiae) to direct specificity of the modifier, the SUMO conjugation pathway has only 

one identified E2.  A consensus motif of ψ-K-X-D/E (where ψ is a hydrophobic residue, K 

is the lysine that undergoes SUMO modification, X is any amino acid, D/E represents an 

acidic amino acid) has been identified in many SUMO substrates (Bernier-Villamor et al., 

2002).  Although E3 enzymes are thought to ease the interactions between Ubc9 and the 

substrate, E3s are dispensable in SUMO conjugation pathways and SUMO conjugation 

has been shown to occur in vitro with only the E1 (Uba2), E2 (Ubc9), mature SUMO and 

ATP.  Thus, it is the E2, Ubc9 that is able to recognise and interact with the consensus 

motif in the substrate directing the conjugation of the modifier to the target lysine.      

1.1.3 Roles and regulation of ubiquitin and Ubls 

Many Ubls have been identified which have roles in diverse cellular processes.  

Discussion of all of these modifiers is beyond the scope of this introduction however 

many reviews are available on this subject (van der Veen and Ploegh, 2012).  The 

remainder of this section will focus on the roles and regulation of the ubiquitin, SUMO, 

Rub1/Nedd8 and Urm1 conjugation pathways.   

1.1.3.1 Urm1 

The β-grasp fold and carboxy-terminal glycine found in ubiquitin/Ubl proteins are also 

found in the prokaryotic sulphur carrier proteins suggesting an evolutionary relationship 

between these pathways (Figure 1.3).  Indeed, the Ubl modifier, Urm1 was originally 

identified through its similarity to the prokaryotic sulphur carrier proteins MoaD and 

ThiS rather than previously identified Ubls and has dual functions as a sulphur donor in 

tRNA thiolation and as a protein modifier (Furukawa et al., 2000).   

1.1.3.1.1 Urm1 conjugation and deconjugation  

In contrast to other ubiquitin/Ubl pathways, the mechanism underlying Urm1 

conjugation is still largely uncharacterised.  An E1 enzyme has been identified in both 

mammalian cells (MOCS3) and S. cerevisiae (Uba4) however no E2, E3 or deconjugating 

enzymes have been discovered to date.  Furthermore, the basis of substrate specificity is 

not understood.  The Urm1 conjugation pathway shows similarity to both the ubiquitin 

pathway and the prokaryotic sulphur carrier proteins MoaD and ThiS which act as 



6 
 

sulphur donors in the synthesis of molybdopterin and thiamine respectively (Figure 1.3) 

(Wang et al., 2011).  The MoaD/ThiS, ubiquitin and Urm1 pathways all share a common 

first step in their conjugation pathway where the modifier undergoes activation of its C-

terminal glycine residue by an E1-like enzyme.  However, in contrast to ubiquitin which 

forms a thioester bond with its E1 enzyme, Urm1 forms an acyl-disulphide with Uba4 

and becomes thiocarboxylated similar to MoaD/ThiS.  Thiocarboxylation of Urm1 

provides sulphur which can be used by Urm1 in its sulphur carrier role however, 

thiocarboxylation of Urm1 is also required for its role as a protein modifier (Van der 

Veen et al., 2011).  To date no E2 or E3 enzymes have been identified for Urm1 

conjugation, however it has been suggested that a thioester intermediate is required for 

Urm1 conjugation to occur.  In common with ubiquitin, Urm1 is conjugated to lysine 

residues on its target substrate by an isopeptide bond.       

1.1.3.1.2 Targets and functions of Urmylation 

Urm1 was originally identified as a sulphur donor in the thiocarboxylation of tRNA 

(Huang et al., 2008a).  Codon families are made up of codons which encode the same  

but differ in their third nucleotide (Fonseca et al., 2012).  Typically there is only one 

tRNA for each codon family therefore tRNA must form a wobble base (non Watson-Crick 

base pairing) with at least one of the nucleotides to recognise all family members.  Post-

translational modifications, for example the wobble base modification of uridine, are 

able to stabilise the interaction between the tRNA and mRNA at these bases.  The 

wobble base modification of uridine is a two-step process.  In the first step, the oxygen 

at position 2 in uridine is replaced by sulphur donated by Urm1 and in the second step, 

position 5 of uridine is modified to methoxy-carbonyl-methyl by the elongator protein 

complex (Wang et al., 2011).        

In addition to its role as a sulphur donor, Urm1 modification has been implicated in a 

number of cellular processes.  Loss of either the URM1 or UBA4 gene in S. cerevisiae 

renders cells sensitive to rapamycin and unable to invade agar under starvation 

conditions, suggesting a role for Urm1 in nutrient sensing and survival in response to 

nutrient deprivation (Goehring et al., 2003).  Loss of URM1 in S. cerevisiae also leads to 

loss of the nitrogen-dependent regulation of GAP1 and CIT2 which are regulated by the  
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transcription factors Gln3 and Nil1 (Rubio-Texeira, 2007). Gln3 and Nil1 in turn are 

regulated both in response to the nitrogen source the cells are grown in and their 

nuclear localisation.  For example, in the presence of glutamine, Gln3 is repressed by a 

physical interaction with Ure2 which sequesters the transcription factor in the cytosol 

(Kulkarni et al., 2001).  In the absence of URM1, cells lose the nitrogen-dependent 

control of the intracellular localisation of Gln3 and Nil1 (Rubio-Texeira, 2007).  However, 

the mechanism behind the Urm1-dependent regulation of Gln3 and Nil1 remains 

unknown as Urm1 does not immunoprecipitate with either of these proteins suggesting 

they are not directly targeted by the modifier.       

In mammalian cells no Urm1 conjugates are observed under steady state conditions 

while in S. cerevisiae there is a low level of Urm1 conjugates present under these 

conditions (Van der Veen et al., 2011).  However, in response to H2O2 and diamide, 

global Urm1 conjugation increases in both mammalian and S. cerevisiae cells.  

Interestingly, global Urm1 conjugates do not increase in response to other cellular 

stresses such as heat, ER stress or DNA damage suggesting a specific role for Urm1 in 

oxidative stress responses. Indeed, deletion of either URM1 or UBA4 causes an 

increased sensitivity to the thiol oxidising agent diamide and the first identified target of 

Urm1 modification was Ahp1, a peroxiredoxin involved in cellular antioxidant defences 

(Goehring et al., 2003) (see Section 1.3.4.2.3).  Removal of reactive oxygen species (ROS) 

by peroxiredoxins such as Ahp1 involves oxidation of their catalytic cysteine which must 

be reduced by thioredoxin (Trx) in order to restore enzymatic activity (Morano et al., 

2012).  Urm1 modification of Ahp1 has been suggested to either decrease or abolish its 

activity by affecting its reduction by Trx (Lian et al., 2012).  Other substrates of Urm1 

modification identified in mammalian cells following oxidative stress suggest a diverse 

role for Urm1 modification in a range of processes, for example, nuclear transport and 

RNA processing although how Urm1 modification affects these targets remains unclear 

(Van der Veen et al., 2011).       

1.1.3.2 Ubiquitin 

Ubiquitin is best known for its role in targeting proteins for degradation by the 

proteasome.  Ubiquitin itself contains seven lysine residues which can themselves be 
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ubiquitinated leading to the formation of different types of ubiquitin chains e.g. K6, K11, 

K27, K29, K33, K48, K63 which can alter the fate of the substrate.   

1.1.3.2.1 Ubiquitin conjugation and deconjugation 

The human genome encodes two ubiquitin E1 enzymes, 38 E2 enzymes and more than 

600 E3 ubiquitin ligase enzymes.  In S. cerevisiae, a single E1 Uba1 has been identified 

which along with twelve E2 enzymes (Table 1.1) and 60-100 E3 ligases catalyse the 

addition of ubiquitin to its target.   

E2 conjugating enzymes are central in ubiquitin conjugation as they interact with both 

the E1 and E3 enzymes.  Interestingly, studies have revealed that several mechanisms 

are in place to ensure that ubiquitin flows only one way through the pathway.  In 

particular, the ubiquitin E1 enzyme shows a higher binding affinity for free, 

unconjugated E2 enzymes while E3 enzymes have a higher affinity to ubiquitin-bound E2 

enzymes.  In addition to these relative binding affinities, both the E1 and E3 enzymes 

share a binding site on the E2 ensuring unidirectional flow of ubiquitin through the 

pathway (Finley et al., 2012).  Interestingly, of the E2, conjugating enzymes identified in 

S. cerevisiae only the CDC34 gene is essential for viability.  Temperature sensitive cdc34 

mutants arrest at G1/S phase due to their inability to degrade the cyclin-dependent 

kinase inhibitor (CKI) Sic1 (Schwob et al., 1994).  Other ubiquitin E2 enzymes have been 

demonstrated to have roles in distinct processes in S. cerevisiae (Table 1.1).  For 

example, Ubc4 and Ubc5 are functionally redundant in the cellular response to heat 

shock.  Double ubc4ubc5 mutants are inviable at elevated temperatures and their 

expression is induced in response to heat where their gene products are required for the 

degradation of abnormal cytosolic proteins (Seufert and Jentsch, 1990).  Three other 

ubiquitin pathway E2 enzymes, Ubc1, Ubc6 and Ubc7 are required for degrading 

misfolded proteins from the ER in S. cerevisiae (Finley et al., 2012).   Several other E2 

enzymes have also been demonstrated to work together in the polyubiquitination of a 

single substrate.  For example, Ubc1 and Ubc4 act together, sequentially to ubiquitinate 

the anaphase promoting complex (APC/C) (Finley et al., 2012).  In this example, 

monoubiquitination of the APC/C is catalysed by Ubc4 while ubiquitin chain synthesis 

requires Ubc1. 
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E2 Examples of biological processes linked to the E2 

Ubc1 Vesicle biogenesis, ERAD, E2 for APC/C 

Ubc2/Rad6 DNA repair 

Cdc34 Cell cycle, E2 for SCF ligases 

Ubc4 Protein quality control outside the nucleus, E2 for 

APC/C 

Ubc5 Functionally redundant with Ubc4 

Ubc6 ERAD, K11-chain synthesis 

Ubc7 ERAD 

Ubc8 Regulation of gluconeogenesis 

Ubc10/Pex4 Peroxisomal E2 import for peroxisome biogenesis 

Ubc11 Unknown 

Ubc13 DNA repair, dimerises with Mms2 for K63 chains  

Mms2 DNA repair, dimerises with Ubc13 for K63 chains 

Table 1.1 E2 enzymes identified in S. cerevisiae and their biological functions.  Table 

adapted from (Finley et al., 2012). 

E3 ligase enzymes bind both the E2 and the substrate and convey substrate specificity to 

the modification.  E3 enzymes fall into two main categories, those containing the really 

interesting new gene (RING) domain and those containing a HECT domain.  HECT domain 

E3 ligases contain a cysteine residue at the active site which forms a thioester bond with 

ubiquitin prior to transferring the modifier to its substrate (Scheffner et al., 1995).  In 

contrast the RING domain E3s do not directly bind ubiquitin but facilitate transfer of 
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ubiquitin through conformational changes in the E2 stimulating the release of ubiquitin 

from the E2 (Ozkan et al., 2005).  Another group of E3 enzymes have been identified 

named the RING-in-between-RING (RBR) proteins, which appear to act as RING/HECT 

hybrids.  RBR proteins bind to E2s with one RING domain and transfer ubiquitin to a 

conserved cysteine in the other RING domain leading to an E3~ubiquitin thioester.  Two 

RBR proteins, Hel1 and Itt1 have been identified in S. cerevisiae (Finley et al., 2012).   

Substrate recognition for RING domain E3 ligases is achieved either through a domain 

within the same polypeptide in the case of single subunit RING domain ligases or 

through a substrate recognition domain in multi-subunit RING ligases.  Specific multi-

subunit E3 enzymes such as cullin-RING-ligases (CRLs) and their substrate recognition 

will be discussed in greater depth later (see Section 1.2.4).   

Ubiquitin can be removed from target substrates by deubiquitinating enzymes (DUBs) 

which catalyse the hydrolysis of the isopeptide bond between ubiquitin and the lysine 

residue on the target protein substrate.  Over 80 DUBs have been identified in humans 

and these have been classified into five groups.  Four of the DUB families are cysteine 

proteases which are dependent on an active site cysteine residue for their activity while 

the fifth family are metalloproteases.  The catalytic domains of many of the cysteine 

protease DUBs contain a triad of amino acids which lower the pKa of the catalytic 

cysteine.  This enables a nucleophilic attack on the isopeptide linkage between ubiquitin 

and the target lysine and subsequent deconjugation of the modifier (Komander et al., 

2009; Lee et al., 2013).   Twenty DUBs have been identified in S. cerevisiae which belong 

to 4 families.  The majority of DUBs in S. cerevisiae belong to the Usp family of which 

there are 16 members.  With the exception of 1 DUB all S. cerevisiae DUBs are thiol 

proteases and are involved in both removing ubiquitin from its substrates and also in 

activating ubiquitin precursors to ensure a pool of free ubiquitin.  DUBs are functionally 

diverse in S. cerevisiae and vary in their subcellular localisation and substrate specificity.  

For example two S. cerevisiae DUBs, Ubp6 and Rpn11 are associated with the 

proteasome and are important for the removal of ubiquitin before proteins are 

degraded (Guterman and Glickman, 2004).  Removal of ubiquitin in this way is important 

for maintaining a pool of free ubiquitin.  Indeed, deletion of UBP6 leads to increased 

sensitivity of S. cerevisiae cells to a range of drugs including translation inhibitors such as 

cycloheximide due to a decrease in the pool of free ubiquitin (Chernova et al., 2003).  
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The action of Ubp6 leads to the release of unanchored free ubiquitin chains which are 

broken down through the actions of another DUB Ubp14 (Amerik AYu et al., 1997).           

1.1.3.2.2 Targets and functions of ubiquitination 

The major role for ubiquitin is in directing proteins for degradation and thus the 

modification is important for a wide range of cellular processes beyond the scope of this 

introduction.  The presence of seven lysine residues in ubiquitin itself (K6, K11, K27, K29, 

K33, K48, K63) allows ubiquitin to form several different types of chain on proteins 

which can lead to diverse effects.  All ubiquitin linkages except K63 are thought to target 

proteins for degradation.  K48 polyubiquitin chains are the classic signal for protein 

degradation and are recognised by receptors on the proteasome such as Rpn13 in S. 

cerevisiae leading to the subsequent degradation of the targeted protein (Husnjak et al., 

2008).  K63 chains however have been linked to non-proteolytic signalling functions 

particularly as part of the immune response in mammals (Rieser et al., 2013) and the 

response to oxidative stress in S. cerevisiae (Silva et al., 2015).     

1.1.3.3 SUMO 

Small ubiquitin-like modifier (SUMO) is involved in a diverse range of processes including 

transcription, replication and DNA repair (Johnson, 2004).  A single SUMO-encoding 

gene is present in S. cerevisiae (SMT3) and S. pombe (pmt3+) while the human genome 

encodes four SUMO isoforms (SUMO-1-4).  SUMO-2 and SUMO-3 share 97% identity and 

are described as SUMO-2/3 as antibodies cannot distinguish between the two isoforms 

(Saitoh and Hinchey, 2000).  SUMO-1 and SUMO-2/3 are conjugated to different 

substrates and differ in their ability to form chains.  While SUMO-1 and SUMO-2/3 

expression is widely distributed, SUMO-4 has been shown to have tissue specific 

distribution with high levels found in the immune tissues, kidney and the pancreatic islet 

cells (Wang and She, 2008).  Interestingly, SUMO-4 has been identified as a susceptibility 

gene for Type 1 diabetes mellitus.  SUMO-2/3 and the SUMO modifiers of S. cerevisiae 

and S. pombe are able to form chains due to the presence of lysine residues in their N-

terminal region (Golebiowski et al., 2009).  SUMO chains have been shown to form in 

response to heat shock and other stresses and act in signalling in the cellular defence to 

heat shock. 
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1.1.3.3.1 SUMO conjugation and deconjugation 

In contrast to the ubiquitin conjugation pathway, SUMO is conjugated to target 

substrates using a single heterodimer E1 enzyme (Uba2/Aos1) and a single E2 enzyme 

(Ubc9).  Interestingly, the E2 enzyme of the SUMO conjugation pathway is able to 

specifically recognise some target substrates and transfer SUMO without the aid of an 

E3 enzyme (Bernier-Villamor et al., 2002).  However, E3 enzymes increase the efficiency 

of the process.  A number of E3 enzymes have been identified for the SUMO conjugation 

pathway.  Siz1 and Siz2 identified in S. cerevisiae contain a SP-RING domain comparable 

to the RING finger domain found in ubiquitin E3 ligases.  Deletion of both the SIZ1 and 

SIZ2 genes in S. cerevisiae leads to elimination of most but not all SUMO conjugates 

demonstrating the importance of these enzymes for SUMO conjugation (Johnson and 

Gupta, 2001).  RanBP2 has also been shown to act as a SUMO E3 ligase in mammalian 

cells although its mechanism is different to either RING or HECT domain containing 

ligases (Pichler et al., 2004).  Mammalian RanBP2 has two repeated sequences 

designated IR1 and IR2 separated by a short spacer region (M).  IR1 binds directly to 

Ubc9 and mutations in Ubc9 that prevent it binding to IR1 lead to a loss of the RanBP2 

E3 SUMO ligase activity.  Interestingly, SUMO-2/3 conjugation via RanBP2 requires a 

strong E2/E3 binding whereas SUMO-1 conjugation does not (Pichler et al., 2004).  The 

difference in the E2/E3 binding for different SUMO isoforms can be explained by the 

presence of a SUMO-1 binding site in the IR2 region of RanBP2 which binds only to 

SUMO-1, while the IR1 region of RanBP2 strongly interacts with Ubc9 (Tatham et al., 

2005).  RanBP2 does not interact directly with substrates but is proposed to accelerate 

the transfer of SUMO from Ubc9 to the substrate (Pichler et al., 2004; Tatham et al., 

2005).    

SUMO-specific proteases (SENPs) are a group of cysteine proteases necessary both for 

SUMO activation and removal of SUMO from target substrates.  Six SENPs have been 

identified in mammalian cells and two in S. cerevisiae (Ulp1 and Ulp2).  Significantly, all 

SENPs in S. cerevisiae share a conserved C-terminal domain (Mukhopadhyay and Dasso, 

2007).  ULP1 is an essential gene in S. cerevisiae and ulp1 temperature sensitive mutants 

arrest in G2/M phase prior to anaphase at the non-permissive temperature (Li and 

Hochstrasser, 1999).  In contrast, the ULP2 gene is not essential for growth but ulp2Δ 

cells display increased sensitivity to temperature and a range of DNA damaging agents 
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and have defects in spindle/microtubule assembly.  Ulp1 and Ulp2 have specific targets 

for SUMO deconjugation as demonstrated by the distinct patterns in the global high 

molecular weight SUMO conjugates detected in ulp1 temperature sensitive and ulp2Δ 

strains.                          

1.1.3.3.2 Targets and functions of SUMOylation 

Although the gene encoding SUMO (SMT3) is essential for viability in S. cerevisiae the 

equivalent genes (pmt3+ and SMT3) are not essential in the distantly related 

Schizosaccharomyces pombe and the human fungal pathogen Candida albicans 

respectively (Tanaka et al., 1999; Leach et al., 2011).   However loss of SUMO in S. 

pombe and C. albicans does lead to multiple phenotypes.  For example, S. pombe cells 

lacking pmt3+ display slow growth and increased sensitivity to a range of DNA damaging 

agents suggesting a role for SUMOylation in the DNA damage response (Tanaka et al., 

1999).  Moreover, pmt3Δ cells display faulty chromosome segregation and elongated 

telomeres suggesting that SUMOylation plays a role in a wide range of nuclear events.  

Interestingly, similar phenotypes were also observed in C. albicans lacking SMT3.  For 

example, smt3/smt3 mutants display defects in nuclear segregation, slow growth and 

have elongated buds suggesting a role for SUMO in cell cycle regulation (Leach et al., 

2011).  In contrast to S. pombe and C. albicans, S. cerevisiae cells lacking SMT3 (or UBC9 

encoding the E2) arrest in G2/M phase of the cell cycle (Li and Hochstrasser, 1999).  

During anaphase the ubiquitin ligase APC/C is required for the degradation of cohesion 

between sister chromatids, allowing their separation and exit from mitosis (see Section 

1.2.4.2).  ubc9Δ and smt3Δ cells arrest with high levels of two APC/C target substrates 

Pds1 and Cdc5 suggesting that SUMOylation is required for a fully functioning APC/C in 

S. cerevisiae.  Importantly, SUMO was shown not to be required for proteolysis in 

general as non-APC/C targeted proteins were efficiently degraded in the absence of 

UBC9 or SMT3 (Dieckhoff et al., 2004).  The involvement of SUMO for efficient APC/C 

activity demonstrates overlap between the ubiquitin and SUMO pathways with activity 

of an ubiquitin E3 ligase being dependent on the SUMO pathway.  

SUMOylation has also been linked to the regulation of protein localisation.  The small 

GTPase Ran regulates nuclear transport through conformational changes induced in the 

protein by GTP binding.  RanGAP1 is the GTPase activating protein for Ran and is the 
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most abundant SUMO-1 conjugated protein in vertebrates (Mahajan et al., 1997).  

SUMOylation of RanGAP1 on Lys 256 directs the protein from the cytoplasm to the 

nuclear pore complex (Matunis et al., 1996; Mahajan et al., 1997).  Interestingly, 

SUMOylation has been linked to the premature ageing disease Hutchinson-Gilford 

progeria syndrome (HGPS).  HGPS is caused predominantly by a mutation in lamin A 

which causes the ‘progerin’ form of lamin A to remain tethered to the nuclear 

membrane where it disrupts the structure of the nuclear lamina (Kelley et al., 2011).  

Cells from HGPS patients display a decrease in nuclear SUMO-2/3 conjugates and a 

disrupted Ran gradient.  However, despite being a SUMO target RanGAP1 SUMOylation 

and localisation is not affected in these mutant cells.  Interestingly, the SUMO pathway 

E2, Ubc9 is mis-localised to the cytoplasm in HGPS cells and directing Ubc9 into the 

nucleus restores the Ran gradient in these cells.  Together, these observations suggest 

that correct localisation of Ubc9, SUMOylation and Ran-dependent transport play 

important roles in HGPS.  SUMOylation has also been linked to protein localisation in S. 

cerevisiae.  In particular, SUMOylation of the yeast importin Kap114 on Lys909 has been 

found to be required for its localisation and function as an importin (Rothenbusch et al., 

2012).  Cells expressing Kap114 where Lys909 has been substituted to an arginine 

residue, which prevents SUMOylation, and cells lacking the SUMO conjugation 

machinery display nuclear accumulation of Kap114 and simultaneous cytoplasmic 

localisation of Kap114 cargo proteins.  Moreover, SUMOylation of Kap114 has been 

demonstrated to be important for the efficient dissociation of Kap114 from its cargo.  

1.1.3.4 Rub1 

In S. cerevisiae Rub1 (Nedd8 in mammals) is the most similar of the Ubls to ubiquitin, 

sharing 76% sequence similarity.  However, the targets of Rub1 conjugation are distinct 

from ubiquitin.  Nedd8/RUB1 is essential for viability in most model organisms, with the 

notable exception being S. cerevisiae where deletion of the RUB1 gene leads to no 

discernible phenotypes (Lammer et al., 1998).  Interestingly, in humans deregulation of 

the Nedd8 pathway has been associated with disease phenotypes including cancer and 

an inhibitor of the Nedd8 pathway E1, is currently undergoing clinical trials as an anti-

cancer therapeutic.        
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1.1.3.4.1 Rub1 conjugation and deconjugation 

Similar to ubiquitin and other Ubls, Rub1 is initially produced as an inactive precursor in 

S. cerevisiae which is processed by Yuh1 (Linghu et al., 2002).  Although the ubiquitin C-

terminal hydrolase UCH-L3 is able to process Nedd8 in mammals, deletion of UCH-L3 in 

mice does not cause a loss in viability suggesting the presence of other Nedd8 

processing enzymes (Kurihara et al., 2000).  Indeed the Nedd8 processing enzyme 

NEDP1 has been identified that is conserved in S. pombe and mammals (although 

missing from S. cerevisiae) (Gan-Erdene et al., 2003).  The E1 and E2 enzymes of the 

Nedd8 conjugation pathway are highly conserved.  The E1 is a heterodimer of Uba3 and 

Ula1 (APPB1 in humans) and a single E2 enzyme, Ubc12 has been identified.  As 

described above, Nedd8 and ubiquitin share a high level of sequence similarity which 

has the potential to result in cross-talk between the conjugation pathways.  However, 

the Nedd8 pathway employs a number of tools to prevent accidental ubiquitin charging.  

The residue at position 72 in the C-terminal tail region of ubiquitin and Nedd8 is the only 

difference between these proteins in this region and importantly this residue conveys 

specificity for the modifier.  Position 72 is occupied by an arginine or an alanine in 

ubiquitin and Nedd8 respectively.  Uba3 contains a conserved arginine residue at 

position 190 that clashes with Arg72 of ubiquitin but not with Ala72 of Nedd8 ensuring 

that Uba3 is charged only with Nedd8 (Souphron et al., 2008).  The interaction between 

the E1 and E2 enzymes of the Nedd8 pathway requires a unique N-terminal extension on 

Ubc12 that also prevents mischarging of Ubc12 with ubiquitin (Huang et al., 2008b).   

Several potential E3 enzymes have been identified for different Rub1/Nedd8 substrates.  

For example, in S. cerevisiae, Dcn1 has been identified as a potential E3 in the 

Neddylation of the cullin Cdc53 (Kurz et al., 2005).  Deletion of DCN1 leads to 

accumulation of unmodified Cdc53 indicating a role for Dcn1 in the conjugation of Rub1 

to Cdc53.  Furthermore, Dcn1 directly interacts with both Cdc53 and Ubc12 to enhance 

Rub1 conjugation, possibly by positioning the charged E2 and the substrate in a 

favourable position (Kurz et al., 2008).   

Removal of Rub1/Nedd8 from cullins is catalysed by the conserved, multi-subunit COP9 

signalosome (CSN).  The Csn5 subunit is responsible for the catalytic activity of the CSN 
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due the metalloisopeptidase activity of its JAMM domain (Rabut and Peter, 2008).  

NEDP1 has also been demonstrated to act as a specific Nedd8 isopeptidase although 

unlike the CSN, NEDP1 is inefficient at deNeddylating cullins but can remove Nedd8 from 

other substrates.  Deletion of the nep1+ gene that encodes the NEDP1 homologue in S. 

pombe leads to an increase in Nedd8 conjugates, although the Neddylation status of the 

cullins remained the same as wild type suggesting Nep1 does not deNeddylate these 

proteins (Zhou and Watts, 2005).    

1.1.3.4.2 Targets and functions of Neddylation 

Until recently the only identified targets of Neddylation were cullins.  Cullins act as 

scaffold proteins in the formation of the multi-subunit, ubiquitin E3, cullin-RING ligases 

(CRLs).  The mammalian genome encodes 8 cullins while S. cerevisiae contains 3, 

Cul1/Cdc53, Cul3 and Cul4/Rtt101.  The activity of CRLs is regulated by a number of 

mechanisms.  In mammals, CAND1 (Lag2 in S. cerevisiae) binds to unmodified CRLs at 

both the N-terminus, where is competes with the Skp1 for binding, and at the C-

terminus where it masks the Neddylation site.  CAND1 was originally described as an 

inhibitor of CRL activity but more recently it has been demonstrated that CAND1 

regulates the activity of CRLs by releasing Skp1 and the F-box proteins during 

inactivation allowing cells to alter their SCF complexes in response to a change in stimuli 

(Zemla et al., 2013). 

Neddylation of cullins activates CRLs by promoting the recruitment of the ubiquitin E2 to 

the complex (Kawakami et al., 2001) and by inducing a conformational change which 

eliminates the CAND1 binding site and promotes ubiquitin ligase activity of the CRL 

(Duda et al., 2008).  The role of Neddylation in activation of CRLs is not simple and cycles 

of Neddylation and deNeddylation of cullins are important for the activity of CRLs.  In 

Caenorhabditis elegans Cul3 is required for the degradation of MEI-1 at the mitosis to 

meiosis transition (Pintard et al., 2003).  Reducing the function of either the Nedd8 

(NED-8) pathway or inactivation of the CSN pathway leads to a similar impairment of 

microtubule function likely caused by the presence of MEI-1 in both of these mutants, 

suggesting that cycles of Neddylation/deNeddylation of Cul3 are required for the 

ubiquitination and degradation of MEI-1.  In S. cerevisiae the importance of Rub1 cycling 

is apparent as deletion of either RUB1 or CSN5 together with temperature sensitive 



18 
 

mutants of components of the SCF complex leads to exacerbation of the phenotypes 

associated with the individual temperature sensitive mutations (Lammer et al., 1998; 

Cope et al., 2002).     

A number of tumour suppressor and oncoproteins have recently been identified as 

Neddylated substrates in mammalian cells.  The tumour suppressor p53 is a 

transcription factor which upon activation is able to induce a pro-apoptotic, anti-

proliferative programme and thus is considered as ‘the guardian of the cell’.  p53 is 

ubiquitinated through direct interaction with the oncoprotein Mdm2 leading to its 

degradation.   Interestingly, both Mdm2 and p53 have been identified as substrates of 

Neddylation with Mdm2 acting as an E3 to promote the Neddylation of p53 leading to 

an inhibition of p53 transcriptional activity (Xirodimas et al., 2004).  The identification of 

these and other tumour suppressor and oncoproteins as Nedd8 substrates has linked 

Neddylation with cancer and, furthermore, deregulation of Nedd8 conjugation has been 

demonstrated in a number of cancers (Reviewed in (Watson et al., 2011)).     

As has been described above, ubiquitin/Ubls are involved in the regulation of many 

different cellular processes.  Ubiquitin in particular, plays an important role in regulating 

a number of steps of the cell division cycle.   
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1.2 Regulation of the cell cycle 

The eukaryotic cell division cycle is a highly organised, sequential process which must be 

tightly regulated to ensure correct segregation of genetic material.  Mis-regulation of 

the cell cycle can lead to genetic instability and is the route of genetic diseases such as 

cancer.  Studies in S. cerevisiae have been a valuable tool in providing insight into the 

mechanisms underlying cell cycle control and will be described below.      

In eukaryotes, the cell division cycle is a process whereby DNA replication, mitosis and 

cytokinesis occur to produce two daughter cells from a single mother cell.  In general, a 

single cell cycle is divided into four different stages: Gap phase 1 (G1), S-phase, Gap 

phase 2 (G2) and mitosis.  A major regulatory stage of the cell cycle of S. cerevisiae 

occurs during G1 phase when cells must sense and interpret many signals including 

environmental and size cues and decide whether to commit to a cell cycle, mate with a 

cell of the opposite mating type or enter a stationary phase (G0) until conditions become 

favourable.  In S. cerevisiae the decision of a cell to enter the cell cycle occurs at the end 

of G1 at Start (Forsburg and Nurse, 1991).  Significantly, Start is the equivalent of the 

mammalian restriction point and is considered as the point where the cell commits to 

entering the cell cycle in these different organisms.   

After commitment to the cell cycle at Start DNA replication, spindle pole body 

duplication and budding occurs as S. cerevisiae cells enter S-phase.  Between S-phase 

and M-phase a second gap phase (G2) ensures that DNA replication has been fully 

completed before mitosis is initiated.  During M-phase the chromosomes condense 

(prophase) and align on the metaphase plate (metaphase) through the attachment of 

spindle fibres to the spindle pole body at one end of the cell and to the kinetochore 

proteins located on the centromere of each chromosome.  During anaphase the paired 

chromosomes are separated at the kinetochores and move to the opposite ends of the 

cell.  Nuclear division occurs during telophase followed by cytokinesis where S. 

cerevisiae divides asymmetrically to produce two new daughter cells of different sizes.   

The cell division cycle is highly regulated by a variety of mechanisms including 

transcriptional regulation, protein stability and protein modifications.  A basic overview 

of these mechanisms in S. cerevisiae will be outlined below.   
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1.2.1 Cyclin-dependent kinases  

Cyclin-dependent kinases (CDKs), as their name suggests, are a group of conserved 

serine/threonine kinases that depend upon the binding of a cyclin for their activity.  In S. 

cerevisiae five CDKs have been identified, Cdc28, Kin28, Ssn3, Ctk1 and Pho85 which 

together with their activating cyclins have roles in processes such as transcription (Kin28, 

Ssn3 and Ctk1) and regulation of phosphate and glycogen metabolism (Pho85).  Pho85 

and Cdc28 both play key roles in cell cycle regulation and are described in more detail 

below. 

1.2.1.1 Pho85 

The non-essential CDK Pho85 has been demonstrated to play a role in both phosphate 

sensing and cell cycle regulation.  Pho85 is activated by 10 different cyclins which direct 

the kinase to different substrates.  The best characterised substrate of Pho85 is the 

transcription factor Pho4 which activates the expression of genes involved in phosphate 

metabolism and vacuole formation.  Recently a link between the role of Pho85 in 

phosphate metabolism and cell cycle regulation has been identified (Menoyo et al., 

2013).  Pho80 is the main cyclin that activates Pho85 in its phosphate sensing role while 

Pho81 acts as a CDK inhibitor (Schneider et al., 1994).  Under conditions where 

phosphate is limited Pho85/Pho80 are inhibited by Pho81 leading to the 

dephosphorylation and nuclear localisation of Pho4 and the subsequent transcription of 

genes involved in phosphate metabolism (Springer et al., 2003).  It has also been 

proposed that Pho85 can regulate Cln3, a Cdc28 cyclin that acts upstream of Start, in 

response to changes in cellular phosphate.  In replete phosphate conditions Pho85-

Pho80 phosphorylates Cln3 stabilising the cyclin, potentially by blocking its degradation.  

However, when phosphate levels fall, a decrease in Pho85-directed Cln3 

phosphorylation leads to Cln3 degradation and a G1 phase cell cycle arrest (Menoyo et 

al., 2013).   

1.2.1.2 Cdc28 

Cdc28 is the major coordinator of cell cycle events in S. cerevisiae.  CDC28 is an essential 

gene in S. cerevisiae and so its function in regulating the cell division cycle at many 

different stages has been established using temperature sensitive cdc28 mutants 

(Mendenhall and Hodge, 1998).  Original cdc28 temperature sensitive mutants arrested 
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in G1 phase when moved to the non-permissive temperature, suggesting that Cdc28 was 

required for cell cycle progression through Start (Hartwell, 1974).  However, further 

studies showed that cdc28 temperature sensitive mutants moved to the restrictive 

temperature shortly after Start arrested mainly in G2 phase demonstrating a role for 

Cdc28 later in the cell cycle (Reed and Wittenberg, 1990).  Cdc28 is a stable protein and 

its expression does not alter during the cell cycle (Betting and Seufert, 1996).  Cdc28 is 

therefore regulated to act at different stages of the cell cycle by multiple mechanisms 

including phosphorylation, association with stage specific cyclins and cyclin-dependent 

kinase inhibitors.     

The activity of Cdc28 is regulated during the cell cycle through both activating and 

inhibitory phosphorylation events.  For full activation Cdc28 must first be 

phosphorylated by the CDK-activating kinase, Cak1, on Thr169 before binding to a cyclin.  

In fact a large pool of phosphorylated Cdc28 is found in the cell throughout the cell cycle 

available for quick activation by association with the appropriate cyclin (Ross et al., 

2000).  Cdc28 has been shown to be phosphorylated on Tyr19 after UV or HU treatment 

suggesting a role for this modification in the DNA damage response.  Phosphorylation of 

Tyr19 has indeed been shown to inactivate Cdc28 leading to a subsequent delay in entry 

into S-phase.   

1.2.2 Cyclins 

Cdc28 is activated by the association of different cyclins during the cell cycle which 

directs its activity towards specific substrates at specific cell cycle stages (Figure 1.4).  

The differential expression, stability and the overlapping functions of some cyclins offers 

flexibility to cell cycle regulation.  In S. cerevisiae, Cdc28 interacts with 3 G1 cyclins (Cln1-

3) which are responsible for G1 to S phase progression, bud emergence, spindle pole 

body duplication and activation of the Cdc28-interacting B-type cyclins (Clb1-6) which 

then regulate further DNA replication and control entry into mitosis.  Simultaneous 

deletion of the three CLN genes leads to G1 phase arrest however the presence of any 

one of the CLN genes is able to complement the arrest phenotype of the triple mutant 

demonstrating redundancy among the cyclins (Richardson et al., 1989).   

 The specificity of an individual cyclin is achieved by several mechanisms including 

regulation of transcription, localisation and sensitivity to inhibitors.  For example, in  
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S. cerevisiae, each cyclin gene is expressed at different times during the cell cycle except 

the CLN3 gene, a key upstream activator of cell cycle initiation, which is expressed 

throughout the cell cycle but whose levels peak during late M-early G1 phase (Tyers et 

al., 1993).  Cln3-Cdc28 is responsible for initiating the transcription of the other G1 cyclin 

encoding genes CLN1 and CLN2 through the phosphorylation of the transcriptional 

repressor Whi5 and the subsequent activation of the SBF transcription factor (Costanzo 

et al., 2004; de Bruin et al., 2004).  The expression of the B-type cyclins occurs 

sequentially in the cell cycle, CLB5/6 expression occurs in late G1/S phase followed by 

CLB3/4 and finally CLB1/2.  Cln1, Cln2 and Clb5-Cdc28 complexes are also able to 

phosphorylate Whi5 providing a potential feedback loop regulating their own expression 

(Figure 1.7).     

Cyclin expression is also controlled by ubiquitin-mediated degradation by the 26S 

proteasome.  Ubiquitination of the G1 cyclins, Cln1 and Cln2 is mediated by the Skp1-

Cullin-F-box complex (SCF) ubiquitin ligase SCFGrr1 (see Section 1.2.4.1.2).  In contrast, the 

Clb6 B-type cyclin is targeted for ubiquitination by the ubiquitin ligase SCFCdc4 (see 

Section 1.2.4.1.1), while the other B-type cyclins are targeted for degradation by the 

anaphase promoting complex (APC) ubiquitin ligase (see Section 1.2.4.2) (Bloom and 

Cross, 2007).  Regulation of cyclins by ubiquitin-mediated proteasomal degradation will 

be discussed further in Section 1.2.4. 

1.2.3 Cyclin-dependent kinase inhibitors 

Cyclin-dependent kinase activity can also be directly inhibited by cyclin-dependent 

kinase inhibitors (CKIs).  Two CKIs Sic1 and Far1 have been identified in S. cerevisiae 

which bind to and inhibit Cdc28-Clb and Cdc28-Cln kinases respectively.     

1.2.3.1 Sic1 

The CKI, Sic1, is able to bind tightly to Cdc28-Clb kinases but not Cdc28-Cln kinases 

blocking their activity until late G1/S phase.  The inhibitory action of Sic1 is alleviated 

through its phosphorylation by Cdc28-Cln kinases which target it for degradation by the 

ubiquitin-proteasome system (see Section 1.2.4).  Indeed, in the absence of CLN1 and 

CLN2, DNA replication is delayed until cells reach a larger size, consistent with the 
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phosphorylation and degradation of Sic1 being vital for the appropriate timing of DNA 

replication (Schneider et al., 1996; Verma et al., 1997).  Sic1 must be phosphorylated on 

six of the nine available phosphorylation sites before degradation is triggered (Nash et 

al., 2001).  Multi-site phosphorylation has been proposed to act as a mechanism to 

protect Sic1 from fluctuations in Cln levels providing a switch to trigger Sic1 degradation 

only at the appropriate time.  Indeed a strain that expresses Sic1 containing a single 

optimal phosphorylation site is able to inhibit Cdc28-Clb complexes but undergoes DNA 

replication prematurely leading to genomic instability.       

Sic1 must be degraded for Cdc28-Clb activation and DNA replication to occur.  Early 

studies demonstrated that strains containing temperature sensitive mutations in 

components of the SCFCdc4 ubiquitin ligase (Cdc34, Cdc4, Cdc53 and Skp1) display a G1 

phase arrest phenotype together with high levels of Sic1 and low levels of Clb activity 

suggesting that the SCFCdc4 complex was involved in the degradation of Sic1 (Schwob et 

al., 1994).  Indeed, the F-box protein, Cdc4 has been shown to bind to phosphorylated 

Sic1 leading to its degradation by the ubiquitin-proteasome pathway (Verma et al., 

1997) (Section 1.2.4.1.1).   

Sic1 has also been shown to be phosphorylated in vivo by the CDK Pho85 and the 

protein is stabilised in pho85Δ cells (Nishizawa et al., 1998).  Pho85 phosphorylation of 

Sic1 is especially important for cell cycle re-entry in G1/S after DNA damage (Wysocki et 

al., 2006).  DNA damage caused for example, by ionising radiation leads to the activation 

of the effector kinase Rad53 (see section 1.2.5.3) and one downstream outcome of this 

is to prevent cyclin accumulation in G1 phase and to increase the stability of Sic1.  Pho85 

phosphorylation of Sic1 when Cdc28-Cln levels are decreased after DNA damage has 

been proposed to allow timely re-entry into the cell cycle by targeting Sic1 for 

degradation and activating Cdc28. 

1.2.3.2 Far1 

A second CKI, Far1, has been shown to inhibit the Cdc28-Cln kinases in S. cerevisiae 

particularly in response to mating pheromone.  In response to a and α mating 

pheromones, S. cerevisiae cells of the opposite mating type undergo alterations in gene 

transcription and cell morphology and arrest their cell cycle in G1 phase to allow mating 

(Chang and Herskowitz, 1990).  Far1 is necessary for the G1 phase arrest in response to 
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pheromone and far1Δ cells are unable to arrest in response to α-factor.  Deletion of 

CLN2 but not CLN1 or CLN3 in far1Δ cells restores the G1 phase arrest in response to α-

factor and Far1 directly inhibits Cdc28-Cln1 and Cln2 (Peter and Herskowitz, 1994).   

Far1 mRNA levels have been shown to fluctuate during the cell cycle, peaking in G1 

phase.  In response to α-factor Far1 protein levels increase by several fold (McKinney et 

al., 1993).  Similar to the regulation of Sic1, temperature sensitive mutations in 

components of the SCFCdc4 complex are sensitive to the levels of Far1 suggesting a role 

for SCFCdc4 in the degradation of Far1.  Indeed, further studies demonstrated that Far1 is 

phosphorylated on Ser87 by Cdc28-Cln kinases triggering its degradation via SCFCdc4 

mediated ubiquitination (Henchoz et al., 1997).     

1.2.4 Ubiquitin and cell cycle regulation 

As previously discussed (see Section 1.1), conjugation of ubiquitin to substrate proteins 

requires an enzymatic pathway containing E1, E2 and E3 enzymes.  Furthermore, 

substrate specificity is achieved through different combinations of E2 and E3 enzymes.  

As described above key regulators of the cell cycle are degraded by the ubiquitin-

proteasome system to ensure proper and timely transition through the cell cycle.  

Ubiquitination of these cell cycle regulators is directed by two different types of 

ubiquitin E3 ligases, SCF and APC, which target specific substrates to ensure cell cycle 

progression.   

1.2.4.1 SCF 

In S. cerevisiae, the conserved, multi-component SCF ubiquitin ligases consist of 4 

subunits, Skp1, Cdc53 (Cul1 in mammals), a RING protein (Hrt1) and an F-box protein, 

which form a complex with the ubiquitin E2, Cdc34 to direct ubiquitin conjugation to 

specific target substrates.  The importance of SCF complexes for the degradation of cell 

cycle regulators is demonstrated in temperature sensitive mutants of cdc34, cdc4, cdc53 

and hrt1 in S. cerevisiae, which arrest at the non-permissive temperature with multiple, 

elongated buds and which are unable to undergo DNA replication due to their inability 

to degrade the CKI, Sic1 (Schwob et al., 1994; Seol et al., 1999).  The stability of the 

cyclin Cln2 also increases in cdc34 and cdc53 mutants suggesting that an SCF complex is 

also necessary for Cln2 degradation (Willems et al., 1996).   



26 
 

The crystal structure of the mammalian SCF complex has enabled the role of each of the 

SCF components in the complex to be studied (Zheng et al., 2002).  Cul1 is an elongated, 

scaffold protein which positions the other subunits and allows docking of the ubiquitin 

E2.  Binding of Hrt1 to the C-terminus of Cul1 recruits ubiquitin while Skp1 binding to the 

N-terminus of Cul1 leads to F-box recruitment.  

SCF complexes are activated by Rub1/Nedd8 modification of Cdc53/Cul1 which has been 

proposed to enhance the binding of Cdc34 to the SCF complex (Saha and Deshaies, 

2008).  Negative regulators of SCF complexes have also been identified.  Cand1 in 

mammals and Lag2 in S. cerevisiae bind preferentially to unmodified Cul1/Cdc53 

inhibiting the actions of the SCF complex (Siergiejuk et al., 2009).  In the case of Cand1, 

binding to Cul1 inhibits Skp1 association with the SCF complex thus preventing 

formation of a complete SCF.  Lag2 binding to Cdc53 on the other hand appears to 

prevent the ubiquitination activity of the SCF complex either by binding to Cdc34 directly 

or by eliciting a conformational change that prevents Cdc34 accessing the E3 ligase (Liu 

et al., 2009).  These studies demonstrate the multiple levels of regulation that governs 

the activity of SCF complexes.   

Substrate specificity of the SCF complex is governed by association with different F-box 

proteins of which 21 have been identified in S. cerevisiae.  Below, 3 of the F-box proteins 

that have been linked to cell cycle regulation in S. cerevisiae will be discussed.         

1.2.4.1.1 SCFCdc4 

As described earlier, SCFCdc4 is responsible for directing the ubiquitination and 

subsequent degradation of the CKIs Sic1 and Far1.  Interestingly, SCFCdc4 also directs the 

ubiquitination of two other important cell cycle regulators, the DNA replication protein 

Cdc6 and the Gcn4 transcription factor.    

In S. cerevisiae, Cdc6 is essential for the formation of prereplicative complexes (pre-RCs) 

at replication origins during late G1 phase.  To ensure that replication origins fire just 

once per cycle, pre-RCs are disassembled after origin firing and, importantly, this 

requires the degradation of Cdc6.  Although strains expressing temperature sensitive 

mutations of cdc34, cdc4 and cdc53 are unable to degrade Cdc6 at the non-permissive 

temperature (Drury et al., 1997), Cdc6 degradation is more complex than these 

observations imply (Drury et al., 2000).  Prior to G1 phase, Cdc6 is degraded in a SCFCdc4-
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independent manner.  However, in late G1/S phase Cdc6 is phosphorylated by Cdc28-Cln 

and rapidly degraded via the SCFCdc4-mediated ubiquitination pathway. 

Gcn4 is a transcriptional activator whose translation and stability is increased in 

response to amino acid starvation and governs the transcription of amino acid 

biosynthetic genes (Hope and Struhl, 1985).  Again, analyses of cdc34, cdc4, cdc53 and 

skp1 temperature sensitive mutants implicated SCFCdc4 in the degradation of Gcn4 

(Meimoun et al., 2000).  Prior to SCFCdc4-directed ubiquitination, Sic1, Far1 and Cdc6 first 

undergo phosphorylation by Cdc28.  In contrast, Gcn4 phosphorylation is directed by 

Pho85, which phosphorylates Gcn4 on Thr165 prior to its ubiquitination by SCFCdc4.       

1.2.4.1.2 SCFGrr1 

The observation that the G1 cyclins Cln1 and Cln2 were more stable in grr1 mutants 

suggested that Grr1, a protein previously identified as being required for glucose 

repression, was also involved in targeting the G1 cyclins for degradation (Barral et al., 

1995).  Grr1 was subsequently shown to be an F-box protein, able to form complexes 

with Skp1 and Cdc53 (Skowyra et al., 1997) and to recognise substrates through 12 

leucine rich repeats located within the protein (Flick and Johnston, 1991).    

1.2.4.1.3 SCFMet30     

Met30 was originally identified for its role as a component in the methionine 

biosynthesis pathway in S. cerevisiae however, the observation that temperature 

sensitive met30 mutants arrest predominantly in G1 phase at the non-permissive 

temperature suggested a further role for Met30 in cell cycle regulation (Patton et al., 

2000).  Interestingly, deletion of MET4, a transcriptional activator, is able to overcome 

the requirement for Met30 in S. cerevisiae and importantly Met30 was shown to act as 

an F-box protein directing the ubiquitination of Met4.  Met4 is required to induce genes 

involved in the synthesis of sulphur metabolites such as cysteine, methionine and S-

adenosylmethionine and is also important for the cellular response to heavy metal stress 

induced by cadmium (Kaiser et al., 2006).  Unusually, ubiquitination of Met4 by SCFMet30 

does not trigger its degradation but maintains a pool of inactive protein ready to 

respond to changes in the environment.  Full activation of Met4 leads to cell cycle arrest 

at several positions and as such Met4 must be kept inactive to prevent cell cycle arrest 

(Patton et al., 2000).  For example, in response to cadmium or decreases in the levels of 
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sulphur containing compounds, rapid deubiquitination leads to activation of Met4 and 

cell cycle arrest (Kaiser et al., 2000). 

In addition to its essential role in Met4 inactivation, Met30 may also play a role in 

regulating the expression of the G1 cyclins, Cln1 and Cln2.  In particular, met30 

temperature sensitive mutants are unable to initiate S-phase and have decreased 

expression of the G1 cyclins CLN1 and CLN2 (Patton et al., 2000).  However, the basis of 

the G1 phase arrest is still unknown as overexpression of CLN1 and CLN2 is insufficient 

to drive met30 mutants into S-phase (Su et al., 2005).    

1.2.4.2 APC/C 

The APC/C is a multi-subunit cullin RING ligase (CRL), ubiquitin E3 ligase.  Substrate 

specificity for the APC/C in S. cerevisiae is achieved through association of one of two 

activator subunits, Cdc20 and Cdh1, which recognise substrates through C-terminal 

WD40 domains (Visintin et al., 1997).  During early mitosis, phosphorylation of several 

subunits of the APC/C by Cdc28-Clb leads to its association with Cdc20 (APC/CCdc20).  A 

key target of APC/CCdc20 is Pds1.  Pds1 is an inhibitor of anaphase, and cells lacking Cdc20 

arrest in metaphase, unable to pass through to anaphase due to their inability to 

degrade Pds1 .  Cohesion between sister-chromatids depends on the cohesin complex 

consisting of 4 subunits, Scc1, Scc3, Smc1 and Smc3.  At the metaphase to anaphase 

transition, when chromatids are aligned on the metaphase plate, ubiquitination of Pds1 

by APC/CCdc20 activates separase, a protease that promotes chromosome segregation, 

mediating the dissociation of the cohesin subunit Scc1 from the cohesin complex 

allowing separation of chromatids (Cohen-Fix et al., 1996; Uhlmann et al., 1999).  

APC/CCdc20 is also responsible for the degradation of the B-type cyclins, Clb2 and Clb5 

allowing cells to exit mitosis (Shirayama et al., 1999; Wasch and Cross, 2002). 

In contrast to Cdc20, Cdh1 is present throughout the cell cycle but is only bound to the 

APC/C during G1 phase.  At the G1-S phase transition, Cdh1 is inactivated by 

phosphorylation directed by the S-phase CDKs, particularly Cdc28-Clb5.  During late 

mitosis the decrease in Cdc28 activity due to APC/CCdc20 and the activation of the Cdc14 

phosphatase leads to the dephosphorylation and subsequent activation of Cdh1.  

Interestingly, although deletion of the CDH1 gene has little effect on cell viability or cell 

cycle progression cdh1Δ cells have high levels of the cyclin Clb2 and the spindle 
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component Ase1 consistent with Cdh1 being necessary for mitotic exit (Visintin et al., 

1997).             

1.2.5 Cell division cycle checkpoints 

The cell cycle must be coordinated to ensure that each stage is complete before the next 

is started.  For example, it is essential that DNA replication is complete before mitosis 

occurs to ensure that the mother and daughter cell each receive the correct compliment 

of genetic material.  To ensure cell cycle fidelity there are a number of cell cycle 

checkpoints in place.  A checkpoint is defined as a point where progression of the cell 

cycle arrests until certain minimum requirements have been met.  Several cell cycle 

checkpoints have been identified in S. cerevisiae and these will be discussed below. 

1.2.5.1 Morphology checkpoint 

The morphology checkpoint operates between G2 and M phases and is activated by 

perturbations in bud morphology, the actin cytoskeleton or cell wall synthesis.  The 

morphology checkpoint couples the nuclear cell cycle to bud formation and acts to 

prevent the cell from undergoing multiple DNA replication events in the absence of 

budding.    

The Swe1 kinase in S. cerevisiae is the homologue of Wee1 in S. pombe.  Swe1 

accumulates in G1 and S phases and its degradation occurs at the end of G2 to ensure 

the cell moves from G2 to M phase.  Exposure of cells to stresses such as heat or osmotic 

shock has been shown to cause actin depolarisation and delayed bud formation (Delley 

and Hall, 1999).  Swe1 accumulates in response to the stresses which delay bud 

formation suggesting that Swe1 levels are involved in triggering the morphology 

checkpoint (Sia et al., 1996).      

 Swe1 phosphorylation of Cdc28 on Tyr19 decreases Cdc28 kinase activity leading to a 

delay in mitosis (Booher et al., 1993).  Swe1 activity in turn is regulated by its 

localisation.  At G2/M phases, Swe1 translocates from the nucleus to the bud neck 

where it is hyper-phosphorylated and subsequently undergoes degradation mediated by 

SCFMet30 (Kaiser et al., 1998).  Hyper-phosphorylation of Swe1 has been shown to be vital 

for entry into mitosis.  After Swe1 is degraded, Tyr19 phosphorylation of Cdc28 is 
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removed by Mih1 phosphatase leading to active Cdc28-Clb2 and entry into mitosis 

(Booher et al., 1993).   

1.2.5.2 Spindle Checkpoint 

The spindle checkpoint ensures correct chromosome segregation by delaying anaphase 

until all sister chromatids have achieved bipolar attachment.  Checkpoint activation 

occurs in response to unattached kinetochores or kinetochores lacking in tension and 

leads to inhibition of the APC/C activator Cdc20.  The majority of spindle checkpoint 

genes were identified in two genetic screens in S. cerevisiae, one that identified the 

mitotic arrest deficient (MAD) genes required for mitotic exit dependent on completion 

of spindle assembly (Li and Murray, 1991) and another that identified the budding 

uninhibited by benzimidazole (BUB) genes required for cell cycle arrest in response to 

loss of microtubule function (Hoyt et al., 1991).  The checkpoint genes identified in these 

screens: MPS1, MAD1, MAD2, MAD3 (BUBR1), BUB1 and BUB3 are highly conserved 

and, although mutants display chromosome segregation defects, all but MPS1 are non-

essential in S. cerevisiae (Li and Murray, 1991).   

During a normal cell cycle there is no delay before anaphase to complete biorientation 

which may explain the non-essential nature of many of the genes whose products are 

required for the spindle checkpoint.  The most upstream signal for spindle checkpoint 

activation appears to be phosphorylation of the mitotic spindle protein, Spc105 by the 

kinase Mps1 leading to the recruitment of downstream checkpoint components to the 

kinetochore (London et al., 2012).  While Bub1 and Bub3 always localise to the 

kinetochore during mitosis, Mad1 and Mad2 only localise to unattached kinetochores.  

Mad1 is stably bound to kinetochores while Mad2 exists in two pools (De Antoni et al., 

2005).  One pool of Mad2 is stably bound to Mad1 at the kinetochore and another pool 

of Mad2 rapidly cycles on and off the kinetochore.  Binding of Mad2 to Mad1 induces a 

closed form of Mad2 which remains bound to Mad1 at the kinetochore.  The second 

pool of soluble ‘open’ Mad2 is able to bind to the Mad1/Mad2 complex at the 

kinetochore where it is converted to the closed form.  Closed Mad2 binding to Cdc20 as 

part of the mitotic checkpoint complex (Mad2, Mad3, Bub3, Cdc20) is a powerful 

inhibitor of the APC/C (Biggins, 2013).  Silencing of the checkpoint is determined by PP1-
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dependent dephosphorylation of the Mps1-mediated phosphorylation of Spc105 

(London et al., 2012). 

1.2.5.3 DNA damage checkpoint 

Faithful replication of DNA is crucial to maintain genomic integrity and cell viability 

therefore damage to DNA must be repaired.  DNA damage must first be detected by 

damage sensors which are able to activate the checkpoint leading to a delay in cell cycle 

progression until the damage has been repaired.  Many forms of DNA damage are 

processed to form single-stranded DNA (ssDNA) and it is the binding of the RPA protein 

to this ssDNA that often leads to checkpoint activation (Branzei and Foiani, 2006).  In S. 

cerevisiae, checkpoint activation leads to the recruitment of the checkpoint clamp 

(Ddc1, Rad17 and Mec3) and Mec1 kinase to the site of the damage.  Activated Mec1 

then phosphorylates a large number of proteins and its activity is highly regulated.  Two 

targets of Mec1 are the effector kinases Rad53 and Chk1.  After initial activation, Rad53 

and Chk1 undergo further phosphorylation stimulated by Rad9 leading to the 

phosphorylation of key downstream targets including those important for cell cycle 

arrest (Sweeney et al., 2005).   

1.2.5.4 Start 

Start is the equivalent of the restriction point in mammalian cells where cells commit to 

cell division regardless of changes in upstream signals.  Cells must reach a critical size 

before they commit to Start (Dungrawala et al., 2012).  Alongside external factors such 

as nutrient availability, a number of genes have been identified that play a role in cell 

size regulation.  A screen of small size mutants found that regulators of Start and 

ribosome biogenesis were necessary for size control suggesting a link between cell 

growth and division (Jorgensen et al., 2002).  A major upstream regulator of Start is the 

cyclin Cln3.  Cln3 is a low abundant and unstable protein whose expression unlike other 

cyclins does not vary much during the cell cycle (Tyers et al., 1993).  However, Cln3 is 

regulated at the post-transcriptional level.  For example, during early G1 phase Cdc28-

Cln3 complexes are sequestered at the ER by an association with the Hsp70 chaperone 

protein Ssa1 (Vergés et al., 2007).  In late G1 phase Cdc28-Cln3 binding to Ssa1 is 

displaced by Ydj1, a DNAJ-related co-chaperone allowing Cdc28-Cln3 to move to the 

nucleus and initiate Start.  During G2/M phases Ssa1 undergoes phosphorylation on  
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Thr36 by the CDKs Cdc28 or Pho85 disrupting the interaction between Ssa1 and Ydj1 and 

freeing Ssa1 to interact with Cln3 again (Truman et al., 2012)(Figure 1.5). 

As the upstream activator of Start, Cln3 has been shown to be sensitive to nutritional 

changes (Gallego et al., 1997) and cellular growth rate (Tyers et al., 1993).  Both Cln3 

and Ydj1 are rate limiting for cell cycle entry and over expression of either leads to the 

cells entering the cell cycle at a smaller size (Ferrezuelo et al., 2012).  Activated Cdc28-

Cln3 enters the nucleus and activates the transcription factors SBF (consisting of Swi6-

Swi4) and MBF (consisting of Swi6-Mbp1) through the inhibition of Whi5 as described in 

section 1.2.2.  The activation of SBF and MBF leads to the transcription of nearly 200 cell 

cycle related genes encoding proteins involved in the three major processes that are 

initiated at Start: initiation of DNA replication, spindle pole body duplication and bud 

formation.  The expression of the cyclins Cln1 and Cln2 is regulated by SBF and MBF.  

Cln1 and Cln2 themselves have been shown to act in a positive feedback loop to activate 

their own expression to ensure irreversible Start initiation (Skotheim et al., 2008).  A key 

target of Cdc28-Cln1/2 is Sic1 which inhibits Cdc28-Clb kinases (see Section 1.2.3.1).  

Phosphorylation of Sic1 is directed by Cdc28-Cln1/2 and leads to its degradation by the 

ubiquitin-proteasome system.  Ubiquitination of Sic1 lifts its inhibitory action on Cdc28-

Clb leading to the initiation of S-phase (Figure 1.6).                          

 1.2.6 Aspects of the cell cycle conserved between S. cerevisiae and mammalian cells 

Given the high level of conservation between S. cerevisiae and mammalian cells in many 

aspects of cell cycle regulation S. cerevisiae is a powerful genetic model for studying the 

mechanisms underlying this regulation.   

In both yeast and human cells, the cell cycle is driven by the actions of CDKs.  As 

discussed earlier, a single CDK, Cdc28 pairs with a number of cyclins during the cell cycle 

to determine proper cell cycle progression in S. cerevisiae.  The mammalian cell cycle is 

regulated by more CDKs that, together with activating cyclins, control progression 

through each stage of the cell cycle demonstrating the increase in complexity of the cell 

cycle in higher eukaryotic cells.  Progression through S phase in mammalian cells is 

promoted by the Cdk2-cyclinA complex whose activity is inhibited by the CKI p27KIP1 

(Figure 1.7).  Interestingly, although Sic1 shares a low level of sequence homology with 

p27KIP1 and another mammalian CKI p21CIP1, the three CKIs have been shown to share  
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structural similarity in their inhibitory domain (Barberis et al., 2005).  Moreover, Sic1 is 

able to bind to and inhibit the activity of Cdk2-cyclinA in vitro while KIP1 over expression 

in a sic1Δ mutant was shown to rescue the cell cycle defects associated with loss of Sic1.  

Together these results demonstrate that Sic1 and p27KIP1 can be considered as structural 

and functional homologues. 

High levels of p27KIP1 are found in quiescent cells which decrease after growth 

stimulation as the cells enter S-phase (Pagano et al., 1995).  Both Sic1 and p27KIP1 

undergo ubiquitin-mediated degradation following CDK-dependent phosphorylation.  As 

in yeast, ubiquitination of p27KIP1 is directed by an SCF ubiquitin ligase with the F-box 

protein Skp2 (Carrano et al., 1999).  Skp2 binds phosphorylated p27KIP1 more 

predominantly in S-phase than G1 phase consistent with its identified role in allowing S-

phase entry through p27KIP1 degradation.   

The human homologue of CDC34 is able to complement a temperature sensitive cdc34 

strain at the non-permissive temperature (Plon et al., 1993).  Furthermore the 

ubiquitination of p27KIP1 has been shown to be mediated through Cdc34 (Block et al., 

2005).    

Both the cell cycle and the ubiquitin/Ubl conjugation pathways are regulated by and in 

response to ROS.  How these ROS are produced and how the cell responds to these 

species are focused upon in the next section.   
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1.3 Oxidative Stress 

Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) and the superoxide 

anion (O2
.-) arise as a result of normal cellular metabolism and also from the exposure of 

cells to external stimuli such as heavy metals and UV radiation.  Oxidative stress occurs if 

the levels of ROS exceed cellular antioxidant capabilities and can lead to damage of 

cellular macromolecules such as proteins, lipids and DNA.  This damage has been linked 

to diseases such as cancer.  To limit the detrimental effects of high levels of ROS the cell 

employs a number of defence mechanisms including antioxidant pathways and cell cycle 

delay.  However, while the detrimental effects of ROS have long been established, ROS 

have also been shown to play key roles in cellular signalling.  To use a potentially 

cytotoxic molecule in signalling the cell must tightly regulate its generation, transduction 

and removal.  How the cell detects the level of ROS and mounts the appropriate 

downstream response is one of the main focuses of this study.     

1.3.1 Types and sources of ROS 

There are many types of ROS that can be either non-radical such as hydrogen peroxide 

(H2O2) or free radicals such as the superoxide anion (O2
.-) and the hydroxyl radical (OH.).  

Free radicals are defined as ‘any species capable of independent existence that contains 

one or more unpaired electron’ and can thus act as powerful oxidants (Halliwell and 

Gutteridge, 2007).   

While relatively stable, O2
.- is the precursor of other types of ROS.  Dismutation of O2

.- 

either spontaneously, or through the action of superoxide dismutase enzymes (SODs), 

leads to the production of H2O2.  H2O2 itself is only a weak oxidising agent but reactions 

between H2O2 and metal ions can lead to the formation of the highly reactive OH., which 

accounts for most if not all of the damage to DNA in H2O2-treated cells (Spencer et al., 

1995).    

Leakage of electrons from the mitochondrial electron transport chain produces the 

largest pool of intracellular ROS and it has been suggested that between 1% and 3% of 

oxygen reduced in the mitochondria may form O2
.- although the true percentage may be 

less (Halliwell and Gutteridge, 2007).  The transition metals that are central to the 

activity of many enzymes are also endogenous sources of ROS.  The ability of transition 

metals to accept or donate electrons and their reaction with H2O2 can lead to the 
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formation of OH..  ROS can also arise from environmental sources such as UV light and 

xenobiotics. 

1.3.1.1 The electron transport chain 

Cellular energy in the form of ATP is produced predominantly in the mitochondria by the 

electron transport chain.  Free energy from the oxidation of glucose and the citric acid 

cycle are stored as NADH and FADH2.  During respiration electrons are released from 

NADH and FADH2 and transferred to O2 via four complexes (complex I-IV) to form H2O.  

Simultaneously protons are pumped against their concentration gradient from the inner 

membrane space to the outer membrane increasing the pH of the mitochondrial matrix.  

The energy harnessed through this proton motive force drives protons back through ATP 

synthase in the inner mitochondrial membrane leading to the formation of ATP from 

ADP and phosphate (Brand et al., 2004).   

Leakage of electrons from the mitochondrial electron transport chain is a major cause of 

cellular ROS.  Complexes I and III have been identified as the major sites of superoxide 

generation in the mitochondria of higher eukaryotes.  S. cerevisiae does not have a 

complex I but instead has three rotenone insensitive NADH dehydrogenases located at 

the mitochondrial inner membrane space (Herrero et al., 2008).  Two of the NADH 

dehydrogenases have their active sites facing the mitochondrial intermembrane space 

rather than the mitochondrial matrix and these ‘external’ NADH dehydrogenases 

account for approximately half of the mitochondrial ROS production in yeast (Fang and 

Beattie, 2003).  Similar to higher eukaryotes, the other 50% of ROS produced by the 

electron transport chain in S. cerevisiae arises from the cytochrome bc1 complex 

(complex III).  Mitochondria are thought to consume more than 90% of oxygen used by 

the cell.  Donation of electrons by the electron carriers of the electron transport chain to 

molecular oxygen can lead to the formation of O2
.- which can be dismutated to H2O2.  

Subsequent reactions of H2O2 with transition metals can lead to the formation of highly 

reactive OH..        

1.3.1.2 Transition metals 

Most transition metals exist with unpaired electrons and thus can be thought of as 

radicals.  Transition metals act as co-factors for many proteins and are essential for a 

large number of critical cellular functions.  Iron for example is required for iron sulphur 
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(Fe-S) clusters which are involved in electron transfer, catalysis and many regulatory 

processes (Lill, 2009).  Many of the biological roles of transition metals arise from their 

ability to accept or donate electrons (Halliwell and Gutteridge, 2007).  This ability can 

also have detrimental effects in the cell as oxidation of oxygen by transition metals can 

produce ROS.  In the Fenton reaction, unpaired iron (Fe(II)) reacts with H2O2 to form the 

highly reactive OH..  Superoxide is also able to react with ferric iron (Fe(III)) in the Haber 

Weiss reaction producing Fe(II) in a redox cycling reaction (Figure 1.8).  The interaction 

of transition metals with cellular components such as DNA, proteins and lipids can 

therefore lead to oxidative damage of these molecules under oxidising conditions.    

            

1.3.1.3 The immune system 

ROS can also have beneficial roles in the producing organism for example, the first line 

of immune defence against pathogens is their engulfment by the phagocytic cells of the 

immune system which produce ROS to kill them.  Upon phagocytosis the level of ROS 

produced in the phagosome increases due to the conversion of O2 to O2
.- by the NADPH 

oxidase (Nox) and its subsequent dismutation to H2O2.  The phagocytic Nox consists of 2 

integral membrane proteins and several cytosolic proteins which remain separate under 

resting conditions.  Cell stimulation in response to a pathogen leads to assembly of the 

Nox enzyme and the formation of O2
.-  (Dupre-Crochet et al., 2013).  It is unclear how this 

‘respiratory burst’ kills the pathogen but its importance is demonstrated in patients with 
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chronic granulomatous disease, where a mutation results in the absence or dysfunction 

of the proteins that form the phagocytic Nox and is characterised by recurrent bouts of 

infection.     

1.3.1.4 UV and ionising radiation 

Direct exposure of skin cells to UV radiation can cause damage to the skin.  Although a 

fairly weak oxidising agent, UVA light is able to cause damage to DNA by stimulating the 

production of, for example, thymine dimers through indirect ROS production by 

photosensitisers (Marrot and Meunier, 2008).  In contrast, ionising radiation are high in 

energy and are able to displace electrons from molecules.  For example, ionising 

radiation passing through water can form H. and OH.  (Halliwell and Gutteridge, 2007). 

1.3.2 Intracellular damage by ROS 

ROS are able to react with cellular macromolecules such as proteins, lipids and DNA.  

Consequences of oxidative damage to these cellular molecules will be discussed below.  

1.3.2.1 Proteins 

Oxidative damage to proteins can be either reversible or irreversible.  For example, OH. 

can cause cleavage of the protein backbone or oxidise the side chains of amino acids to 

aldehydes or ketones resulting in protein carbonyls (Moller et al., 2011).  Significantly, 

protein carbonylation is an irreversible protein oxidation event which cannot be 

reversed by the antioxidant systems.  Protein carbonyl groups accumulate within cells 

and are a useful tool for measuring oxidative damage in cells (Costa et al., 2002).  A 

correlation between the level of oxidised proteins within the cell and ageing has been 

identified with older cells displaying higher levels of oxidised proteins compared to 

younger cells (Cabiscol et al., 2014).  Interestingly, specific groups of proteins such as 

heat shock proteins and those involved in amino acid metabolism have been shown to 

be particularly prone to carbonylation suggesting functions that may particularly be 

affected in ageing cells. 

The thiol groups of methionine and cysteine are particularly susceptible to oxidation.  

Oxidation of cysteine residues can lead to the formation of reversible disulphide bridges 

or sulphenic acid groups (Figure 1.9).  Sulphenic acid groups can be oxidised to sulphinic 

or oxidised further to irreversible sulphonic groups.  Cysteine residues with a low pKa 
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are particularly susceptible to oxidation.  Interestingly, few cysteine residues exist with a 

low pKa within the cell and thus these can be specifically targeted in redox cellular 

signalling pathways and will be discussed later (See Section 1.3.5).     

1.3.2.2 Lipids 

Lipids along with proteins make up a large proportion of cellular membranes.  Initiation 

of lipid peroxidation occurs when a hydrogen atom is abstracted from a methylene (-

CH2-) group by several ROS species including OH., resulting in a carbon radical (Halliwell 

and Gutteridge, 2007).  Polyunsaturated fatty acids are particularly susceptible to 

hydrogen abstraction due to the presence of a carbon double bond which weakens the 

C-H on the carbon atom surrounding the double bond.  The initiation reaction forms a 

lipid radical which is able to react with O2 to form the peroxyl radical.  Propagation 

occurs as the peroxyl radical itself is able to abstract hydrogen from an adjacent fatty 

acid side chain (Catala, 2010).  Lipid peroxidation can have a variety of effects on the 

lipid bilayer that makes up cell and organelle membranes, for example, decreasing their 

fluidity and potentially damaging membrane proteins.   

1.3.2.3 DNA 

The frequency of oxidative DNA damage has been estimated at 104 lesions/cell/day in 

humans and thus is potentially a major source of DNA mutation (Halliwell and 

Gutteridge, 2007).  ROS are able to attack DNA either by targeting the deoxyribose sugar 

or by modifying individual bases which can lead to several different products.  For 

example, reaction of guanine with OH. can lead to the formation of 8-hydroxyguanine (8-

OHdG), an abundant base mutation in mammalian cells.  8-OHdG is able to base pair 

with either cytosine or adenine during DNA replication and, if left unrepaired, the 

GC→AT transversion becomes a permanent mutation in the DNA (Cheng et al., 1992).  8-

OHdG is repaired by the base excision repair pathway which uses DNA-glycosylases to 

remove the modified bases (Lu et al., 2001). 

1.3.3 Implications in disease and ageing 

As described above, the oxidation of DNA, lipids and proteins has potential to damage 

these essential macromolecules and thus affect their function.  As a consequence it is 

not surprising that oxidative stress has been linked with a range of disease pathologies 
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and ageing.  The brain is particularly sensitive to oxidative damage due to its high 

requirement for oxygen together with the presence of high levels of fatty acids and iron.  

Indeed, high levels of protein carbonyls and 8-OHdG, two markers of oxidative damage 

to protein and DNA have been found in the brains of patients with Alzheimer’s disease 

(Butterfield et al., 2001).      

The relationship between ROS and cancer appears complex.  For example, one of the 

hallmarks of cancer is an oxidative switch whereby cancer cells survive with a much 

higher level of cellular ROS due to changes in cellular metabolism and aberrant 

antioxidant levels.  Furthermore, although a number of solid tumours have been shown 

to have an increased level of 8-OHdG it is currently unknown whether ROS play a role in 

cancer initiation (Foksinski et al., 2000; Sanchez et al., 2006).  Production of ROS is 

associated with the inflammatory response and increases in ROS are associated with a 

number of pathologies.  For example, ROS regulate numerous stages in angiogenesis and 

dysregulation of ROS signalling pathways in cancer cells leads to an abnormal vascular 

pattern (Kim and Byzova, 2014).  Thus, while ROS are implicated in cancer and in fact 

many diseases, it is important to establish whether ROS are the cause or a secondary 

consequence of the disease.  This is particularly important as many disease pathologies 

are linked with inflammation which is associated with an increase in ROS.   

ROS have been linked to longevity/the ageing process.  For example, the oxygen theory 

of ageing states that ageing is a result of the deleterious effects of oxidative damage on 

cellular constituents (Harman, 1956).  A large body of research at least partly supports 

this theory. For example, old S. cerevisiae mother cells display an increase in intracellular 

ROS even in the absence of extracellular sources (Laun et al., 2001).  Furthermore, the 

levels of protein carbonyls have been shown to increase exponentially in the last third of 

the lifespan in a number of different human cell types as well as in C. elegans, rat liver 

and house flies (Levine, 2002).  Mutations in antioxidant pathways also suggest an 

involvement of ROS in ageing.  For example, deletion of the mitochondrial superoxide 

dismutase (MnSOD) in S. cerevisiae leads to a loss of viability proposed to be due to the 

build-up of mitochondria-produced ROS inhibiting specific respiratory enzymes (Longo et 

al., 1999).  Consistent with the yeast studies overexpression of MnSOD in Drosophila has 

been shown to increase lifespan (Sun et al., 2002).  However, experiments exploring the 

effects of dietary antioxidants on the lifespan of a range of organisms have been 
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inconclusive.  These data along with the increased prevalence of neurodegenerative 

diseases and cancer in the older population implicate ROS, at least in part, in the ageing 

process.         

1.3.4 Defences against ROS 

Cells have a number of antioxidant mechanisms in place to prevent ROS-induced cellular 

damage.  These antioxidant pathways work together with other mechanisms such as 

repair pathways and cell cycle regulation to prevent cellular damage.  Below, the 

antioxidant defences of S. cerevisiae and the regulatory mechanisms underlying their 

expression will be discussed.  

1.3.4.1 Transcriptional regulation in the defence against ROS 

Yap1 is an AP-1 like transcription factor that induces the expression of a number of 

antioxidant genes including TRX1, TSA1 and GSH1 encoding thioredoxin, thioredoxin 

peroxidase and γ-glutamylcysteine respectively.  Yap1 binds specifically to Yap1 

recognition elements (YREs) found in many gene promoters although some Yap1 targets 

do not contain YREs suggesting additional recognition sites (Lee et al., 1999).  In non-

stressed conditions, Yap1 is localised to the cytoplasm.  However, in response to 

oxidative stress Yap1 accumulates in the nucleus and this nuclear localisation is linked to 

changes in the redox status of two cysteine rich domains that prevent its association 

with the nuclear export factor Crm1 (Yan et al., 1998; Delaunay et al., 2000).  

Interestingly, while exposure to either H2O2 or the thiol oxidising agent diamide leads to 

Yap1 nuclear localisation the regulation of Yap1 in response to these two agents differs 

(Delaunay et al., 2000; Kuge et al., 2001). In response to diamide, Yap1 forms an intra-

molecular disulphide bond between closely located cysteine residues in the C-terminal 

while H2O2 stimulates the formation of an intra-molecular disulphide bond between 

specific cysteine residues in the N and C-terminal regions of Yap1.  Yap1 regulation in 

response to H2O2 also requires either Gpx3 or Ybp1 (Delaunay et al., 2002; Veal et al., 

2003).  Gpx3 promotes the activation of Yap1 through the formation of a transient inter-

molecular disulphide bond between itself and Yap1 followed by a thiol exchange 

reaction leading to the intra-molecular Yap1 disulphide described above and recycling of 

Gpx3 (Delaunay et al., 2002).  Ybp1 has also been demonstrated to be important for the 

efficient nuclear accumulation of Yap1 in response to H2O2 (Veal et al., 2003).  



44 
 

Significantly, a ybp1Δgpx3Δ mutant is no more sensitive to H2O2 than either the ybp1 or 

gpx3 single mutant suggesting that Ybp1 and Gpx3 act through the same pathway to 

regulate Yap1.   

Approximately half of the proteins induced by oxidative stress are dependent on Yap1 

while the other half are dependent on both Yap1 and another transcription factor Skn7 

(Mulford and Fassler, 2011).  Unlike Yap1, Skn7 is predominantly localised to the nucleus 

in both stressed and unstressed conditions (Raitt et al., 2000).  In addition to the 

oxidative stress response Skn7 has also been implicated in the regulation of cell wall 

synthesis and the cell cycle (Herrero et al., 2008).         

The Msn2/4 transcription factors are associated with the general response to 

environmental stresses not just oxidative stress.  The Msn2/4 transcription factors bind 

to and activate genes containing the stress response element in response to a range of 

environmental signals including H2O2, osmotic and heat stresses (Hasan et al., 2002).  

Msn2/4 control the expression of 27 proteins upregulated in response to H2O2, 7 of 

these are also Yap1 targets while 1 is also a Yap1/Skn7 target.   

Met4 is a bZip transcriptional activator that regulates the expression of genes involved in 

the synthesis of the sulphur containing amino acids cysteine and methionine.  Met4 

lacks a DNA binding domain and hence is localised to the promoters of its target genes in 

a complex with either Met28 and Cbf1 (Kuras et al., 1997) or Met28 and Met31 or 

Met32 (Blaiseau et al., 1997) depending on the Met4-regulated gene.  In response to 

cadmium-induced ROS, Met4 induces the expression of GSH1 which encodes γ-

glutamylcysteine synthetase which catalyses the first, rate limiting step in the 

production of glutathione (see Section 1.3.4.3.1) (Dormer et al., 2000).  However, in 

response to oxidative stress induced by H2O2 and glutathione depletion GSH1 expression 

is regulated by Yap1 instead of Met4 (Dormer et al., 2002; Wheeler et al., 2003).  These 

studies suggest that the expression of GSH1 is co-regulated by Yap1 and Met4 

depending on the source of the ROS.                 

1.3.4.2 Enzymatic defences against ROS 

A number of enzymatic antioxidant defence mechanisms exist in S. cerevisiae which 

directly detoxify ROS and these will be discussed below.   
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1.3.4.2.1 Superoxide dismutases 

Superoxide dismutases (SODs) catalyse O2
- to H2O2 and O2 and their activity requires 

redox metal ions.  S. cerevisiae expresses 2 SODs that differ in their reactive metal ion 

and their cellular localisation.  The Cu/Zn-dependent Sod1 represents approximately 

90% of the total SOD in the cell.  The activity of Sod1 is dependent upon the chaperone 

Ccs1 which delivers copper to Sod1 and is also required for the formation of a disulphide 

bond, essential for Sod1 activity (Furukawa et al., 2004).  Sod1 is localised predominantly 

to the cytosol although a proportion of the enzyme also localises, together with Ccs1, to 

the mitochondrial intermembrane space where it offers protection against 

mitochondrial ROS-induced oxidative damage (Sturtz et al., 2001).  In contrast to Sod1, 

Sod2 is manganese-dependent and localises mainly to the mitochondrial intermembrane 

space. 

Analyses of SOD mutants in S. cerevisiae, has offered clues to the function of each 

enzyme.  In particular, sod1 mutants display poor growth under respiratory conditions, a 

loss of viability in stationary phase, and increased sensitivity to external superoxide-

generating oxidants such as paraquat and menadione (Longo et al., 1996; Herrero et al., 

2008).  sod2 mutants are unable to grow under respiratory conditions and are 

hypersensitive to hyperoxia demonstrating that SOD2 is essential for the defence against 

superoxide generated by the mitochondrial transport chain (van Loon et al., 1986; 

Herrero et al., 2008).   

1.3.4.2.2 Catalases 

S. cerevisiae contains 2 catalases, Cta1 and Ctt1, and both enzymes utilise the redox 

properties of a haem group to reduce H2O2 to H2O and O2.  Cta1 is localised to the 

peroxisome where it is proposed to be involved in the detoxification of H2O2 produced 

during fatty acid oxidation in peroxisomes.  In contrast, Ctt1 is cytoplasmic and its role 

remains unclear (Herrero et al., 2008).  Interestingly, in the absence of stress, cells 

deficient in either ctt1, cta1 or both ctt1 and cta1 grow at the same rate as wild type 

cells suggesting that unlike SODs, catalase is not required for scavenging of endogenous 

ROS (Izawa et al., 1996) .  However, cta1ctt1 double mutants display an increased 

sensitivity to H2O2 in stationary phase when compared to wild type or single catalase 
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mutant cells.  These results suggest that catalase enzymes are necessary for stationary 

cells to tolerate oxidative stress but are dispensable under normal growth conditions. 

1.3.4.2.3 Peroxidases 

Peroxidase enzymes use electron donors to reduce H2O2 to H2O using catalytic cysteine 

thiols.  There are two classes of peroxidase enzymes named after their electron donor: 

glutathione peroxidases (Gpx) which use glutathione and thioredoxin peroxidases 

(peroxiredoxins (Prxs)) which utilise thioredoxin reductase.   

Prxs were originally divided into two groups: 1-Cys and 2-Cys Prxs based on the number 

of cysteine residues used in catalysis.  The 2-Cys Prxs have now been further subdivided 

into typical and a-typical Prxs.  The typical 2-Cys Prxs have two cysteine residues at their 

active site, named the peroxidatic and resolving cysteine.  The first step in the catalytic 

reduction of H2O2 by Prxs is the oxidation of the peroxidatic cysteine to a sulphenic acid 

(SOH).  The oxidised peroxidatic cysteine of typical 2-Cys Prxs then forms a disulphide 

with the resolving cysteine of another Prx protecting the peroxidatic cysteine from 

further oxidation (Figure 1.9).  The mechanism for atypical 2-Cys Prxs is the same as 

typical 2-Cys Prxs except that both the peroxidatic and its corresponding resolving 

cysteine residues are within the same protein and an intermolecular disulphide is 

formed during substrate reduction (Wood et al., 2003).  On the other hand, 1-Cys Prxs 

have only a peroxidatic cysteine and are therefore unable to form a disulphide.  All Prxs 

require an electron donor to complete their catalytic cycle and restore enzyme activity.  

In the case of the S. cerevisiae mitochondrial 1-Cys Prx, Prx1, oxidised Prx1 is thought to 

be recycled first by glutathionylation which is then reduced by the thioredoxin reductase 

Trr2 (Greetham and Grant, 2009) or by the glutaredoxin, Grx2 (Pedrajas et al., 2010).  

There are five Prxs in S. cerevisiae, Tsa1, Tsa2, Dot5, Ahp1 and Prx1 which differ in their 

target substrates and subcellular localisation (Park et al., 2000).  For example Tsa1 and 

Tsa2 are two highly homologous, cytoplasmic Prxs which are required for cellular 

resistance to exogenous H2O2 (Garrido and Grant, 2002; Wong et al., 2002).  

Interestingly, tsa1Δ cells are more resistant to peroxide stress than tsa2Δ cells but a 

double tsa1Δtsa2Δ is more sensitive to these stresses than either of the single mutants 

suggesting that the two Prxs work together in the cellular resistance to peroxide stress 
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(Wong et al., 2002).  Dot5 is a nuclear Prx and has been demonstrated to be particularly 

important for cellular viability during stationary phase (Cha et al., 2003). 

Glutathione peroxidases (Gpxs) are thought to be the major enzymatic contributors to 

the cellular defence against peroxide stress (Morano et al., 2012).  Gpx detoxify ROS by 

catalysing the reduction of H2O2 and organic hydroperoxides to water and the 

corresponding alcohol.  Higher eukaryotes encode 2 main types of Gpx, classical Gpx 

(cGpx) which only use glutathione as an electron donor and phospholipid hydroperoxide 

Gpxs (PHGPx) which may use other reducing partners such as thioredoxin instead of 

glutathione (Avery et al., 2004).  In contrast to higher eukaryotes where cGpxs are the 

most ubiquitous Gpx, the S. cerevisiae genome encodes 3 Gpxs (Gpx1-3) all of which are 

PHGPxs (Avery and Avery, 2001).  The Gpx enzymes of S. cerevisiae can be considered as 

atypical 2-Cys Prxs as they form intermolecular bonds during catalysis which are reduced 

by thioredoxin (Delaunay et al., 2002; Ohdate et al., 2010).                  

1.3.4.3 Non-enzymatic defences against ROS 

A number of small molecules have been identified with non-enzymatic antioxidant 

properties in S. cerevisiae.  For example, addition of ascorbate (vitamin C) to the media 

of sod1 mutant cells has been demonstrated to increase both the mean and maximal 

lifespan of these normally short lived mutants (Krzepilko et al., 2004).  Furthermore, 

ascorbate has been shown to act as a reductant for oxidised 1-Cys Prxs (Monteiro et al., 

2007).   

The glutaredoxin (Grx) and thioredoxin (Trx) pathways in S. cerevisiae utilise NADPH 

from the pentose phosphate pathway and either thioredoxin reductase or glutathione 

and glutathione reductase to reduce oxidised proteins.  The Grx and Trx pathways 

together with glutathione make up the major non-enzymatic cellular antioxidant 

defence mechanisms in S. cerevisiae and will be discussed below.   

  



48 
 

  



49 
 

1.3.4.3.1 Glutathione 

Glutathione is a highly abundant, low molecular weight peptide present in millimolar 

concentrations in the cytosol.  Glutathione is synthesised in two ATP-dependent steps 

(Figure 1.10).  In the first, rate-limiting step, γ-glutamyl-L-cysteine is formed from 

glutamic acid and cysteine catalysed by γ-glutamylcysteine synthetase encoded by GSH1 

in S. cerevisiae.  In the second step, glutathione synthetase encoded by GSH2, catalyses 

the ligation of glycine with γ-glutamyl-L-cysteine forming glutathione.   

 

In unstressed S. cerevisiae cells glutathione predominantly exists in its reduced form 

(GSH).  However, upon exposure to H2O2, the levels of GSH are reduced and an increase 

in oxidised glutathione (GSSG) and protein-bound glutathione are observed (Grant et al., 

1998).  These results demonstrate the different modes through which glutathione 

functions as an antioxidant.  Oxidation of the active site cysteine of glutathione enables 

glutathione to act as a ROS scavenger and GSSG can be reduced through a NADPH-

dependent reaction catalysed by glutathione reductase to regenerate GSH.  Binding of 

glutathione to oxidised sulphydryls in proteins (protein S-thiolation) is a protective 

mechanism to prevent further, irreversible oxidation.  S-thiolation is a reversible process 

and reduction of these protective disulphides can occur directly via GSH or via 

glutaredoxins and thioredoxins (Grant, 2001).      
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Glutathione is essential in S. cerevisiae and cells lacking GSH1 are unable to grow in the 

absence of exogenous glutathione and arrest their cell cycle after approximately seven 

generations (Spector et al., 2001).  Interestingly, the glutathione auxotrophy of the 

gsh1Δ mutant cannot be rescued by thiol reducing agents such as DTT nor by growth 

under anaerobic conditions suggesting that the essential nature of glutathione is not 

through its role as an antioxidant.    

1.3.4.3.2 Glutaredoxins 

Glutaredoxins (Grxs) are small, oxidoreductase proteins responsible for the reduction of 

GSH-protein mixed disulphides and protein disulphides.  Grxs can be classified into two 

different groups: monothiol and dithiol depending on the number of active site cysteine 

residues they contain.  S. cerevisiae expresses 2 dithiol Grxs, Grx1 and Grx2 which differ 

in their sensitivity to different oxidising agents (Luikenhuis et al., 1998).  Grx1 can 

protect cells from the superoxide anion while Grx2 is required for resistance to H2O2.  

There are three monothiol GRXs expressed in S. cerevisiae which play a role in iron 

homeostasis (Herrero et al., 2008).  Grx3 and Grx4 are localised to the nucleus where 

they are redundantly involved in the regulation of the Aft1 transcription factor (Pujol-

Carrion et al., 2006).  Aft1 responds to iron depletion by moving from the cytoplasm to 

the nucleus where it regulates a group of genes involved in iron uptake.  However, in a 

grx3grx4 double mutant Aft1 is nuclear leading to accumulation of cellular iron.  As 

previously described (see Section 1.3.1.2) iron is able to cause oxidative stress through 

the Fenton reaction and hence grx3grx4 cells are highly sensitive to H2O2 and t-BOOH 

presumably due to activation of the Fenton reaction in these cells.  Together, these 

results support an oxidative stress role for Grx3 and Grx4 by preventing accumulation of 

Aft1 in the nucleus thus preventing iron accumulation and subsequent oxidative stress 

due to activation of the Fenton reaction.  In contrast to Grx3 and Grx4, the third 

monothiol Grx, Grx5 localises to the mitochondrial matrix (Herrero et al., 2008).  

Deletion of GRX5 leads to increased sensitivity to H2O2 and menadione, an increase in 

oxidative protein damage and an inability to grow when glycerol is the only carbon 

source (Rodriguez-Manzaneque et al., 1999).  Furthermore, Grx5 is involved in the 

biogenesis of Fe-S clusters and its absence causes inactivation of Fe-S cluster containing 

proteins (Rodriguez-Manzaneque et al., 2002).     
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1.3.4.3.3 Thioredoxins 

Thioredoxins (Trxs) are small, cysteine-containing oxidoreductase proteins (Morano et 

al., 2012).  The two conserved cysteine residues of Trxs participate in the reduction of 

enzymes that form a disulphide bond as part of their catalytic cycle.  Oxidised Trxs are 

reduced back to their active form by Trx reductase.   

S. cerevisiae has two cytosolic (Trx1, Trx2) and one mitochondrial (Trx3) Trxs.  The 

cytosolic Trxs, particularly Trx2, have been shown to be important for the cellular 

response to externally added oxidants.  Although the expression of TRX2 increases in 

response to a range of oxidative stress agents, trx2 mutants have an increased sensitivity 

only to H2O2 and t-BOOH but not to diamide (Kuge and Jones, 1994; Garrido and Grant, 

2002).  Trxs have also been shown to be important in maintaining viability in stationary 

phase cells.  The presence of either TRX1 or TRX2 maintains viability of S. cerevisiae cells 

in stationary phase but loss of both results in a rapid loss of viability (Garrido and Grant, 

2002).  The essential role of Trxs in stationary phase is by acting as reductants for Prxs.              

1.3.5 ROS in signalling 

While the detrimental effects of ROS have long been established ROS, especially H2O2 

have been shown to be important regulators of eukaryotic cell signalling (Figure 1.11).  

To act successfully as a signalling molecule H2O2 must have certain characteristics 

(Hancock, 2009): 

1. It must be able to be produced rapidly and close to the site of action. 

2. It must be detected and the appropriate response triggered. 

3. It must be removed rapidly to attenuate the signal.     

While H2O2 can arise from a number of endogenous sources, the formation of a localised 

pool of H2O2 for signalling is produced by a family of NADPH oxidases (Nox).  Similar to 

those found in phagocytic cells (see Section 1.3.1.3) the non-immune Nox family 

produce O2
.- by transferring electrons from NADPH to O2.  Dismutation of O2

.-  produces 

H2O2 which is longer lasting than O2
.- and able to diffuse through cell membranes 

(Lassegue and Griendling, 2010). 

H2O2 elicits different responses in cells depending on its concentration and the cell type.  

For example, the concentration of H2O2 that causes mammalian cell apoptosis can vary  
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20-fold depending on the cell type (Chen et al., 2005).  To elicit the correct response, 

H2O2 must first be sensed by H2O2-sensitive sensor proteins.  As discussed earlier (see 

Section 1.3.2.1) cysteine residues with a low pKa are particularly sensitive to oxidation.  

The existence of a small number of deprotonated cysteine containing proteins thus 

allows specific targeting of these proteins, triggering defined affects within cells.  Some 

examples of these redox-sensitive proteins are discussed below.   

A number of mechanisms exist to attenuate the signal.  As previously discussed, cells 

contain numerous antioxidant pathways that are able to eliminate H2O2 thus removing 

the signalling molecule itself.  A major consequence of H2O2 signalling is the oxidation of 

cysteine residues and these must be reduced in order to attenuate the signal once the 

appropriate response has occurred.  Reduction of these oxidised cysteine thiols is 

carried out by the Trxs and Grxs as described previously (Hancock, 2009).   

A diverse range of pathways have been shown to involve ROS sensing and signalling to 

elicit numerous effects and several notable examples will be discussed below.   

1.3.5.1 Protein tyrosine phosphatases  

Protein tyrosine phosphatases (PTPs) are a large family of proteins with important roles 

in signal transduction in response to many stimuli.  PTPs are defined by a cysteine-

containing signature motif at their catalytic site.  Interestingly, the catalytic cysteine of 

this motif exists with a low pKa due to the surrounding chemical environment, which 

both enhances the role of the cysteine as a nucleophile in catalysis and also increases its 

susceptibility to oxidation (Tonks, 2005).   

Oxidation of the active site cysteine inhibits the nucleophilic activity of the PTP and thus 

inhibits its activity.  However, for the oxidation of PTPs to act in signalling, further, 

irreversible oxidation must be prevented.  In the case of the PTP PTP1B, following 

oxidation a cyclic sulphonamide is formed, inducing a structural change in the active site 

and preventing further oxidation (Salmeen et al., 2003; van Montfort et al., 2003).  

Alterations in the active site have been demonstrated to both protect the catalytic 

cysteine from irreversible oxidation and also to expose the oxidised cysteine to reducing 

agents which enables reduction of the enzyme back to its active form.  However, other 

PTPs, for example the cell cycle regulator Cdc25, contain a second cysteine residue 

(Buhrman et al., 2005).  In response to oxidation, Cdc25 forms an intra-molecular 
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disulphide bond between the catalytic cysteine and this second cysteine which protects 

the catalytic cysteine residue from further, irreversible oxidation.     

1.3.5.2 OxyR 

The OxyR transcriptional regulator of Salmonella typhimurium and Escherichia coli 

activates the expression of specific genes in response to H2O2  (Marinho et al., 2014).  

Interestingly, OxyR itself undergoes direct oxidation by H2O2 and thus acts as both a H2O2 

sensor and signal transducer.  OxyR is able to bind to DNA in both its oxidised and 

reduced form but only activates transcription in its oxidised form (Storz et al., 1990).  

Oxidation of OxyR alters the contact between the transcriptional regulator and DNA 

leading to the activation of OxyR target genes including several that encode 

antioxidants.  

1.3.5.3 Ubiquitin and Ubls 

The common and widespread use of catalytic cysteine residues in ubiquitin/Ubl 

conjugation and deconjugation pathways provides a potential route by which these 

protein modifiers could be redox-regulated (Figure 1.12).  Indeed the global levels of 

SUMO (Saitoh and Hinchey, 2000; Zhou et al., 2004), Nedd8 , ubiquitin (Bossis and 

Melchior, 2006) and Urm1 (Van der Veen et al., 2011) modification increase in response 

to oxidative stress conditions suggesting a role for these modifiers in stress responses.  

However, at lower concentrations of ROS a signalling role for the mammalian SUMO and 

Nedd8 and the S. cerevisiae ubiquitin pathways have been identified.  In the case of the 

mammalian SUMO pathway, while high concentrations of H2O2 (100 mM) increased the 

global levels of SUMO conjugation, at lower concentrations (1 mM) SUMO conjugation is 

inhibited (Bossis and Melchior, 2006).  At low and high levels of H2O2 the E1 and E2 

enzymes of the SUMO pathway form an inhibitory disulphide that prevents SUMO 

conjugation.  However, SUMO conjugates accumulate at high but not lower levels of 

H2O2 because the deconjugation machinery is also inhibited at high levels of H2O2.  

Chemotherapeutic drugs used in the treatment of acute myeloid leukaemia (AML) have 

been shown to induce ROS production which may be part of their mechanism for 

inducing cell death (Bossis et al., 2014).  Treatment of AML cells in culture with these 

chemotherapeutic drugs stimulates the formation of the SUMO E1-E2 disulphide.  

Interestingly, AML cells which are chemoresistant are unable to  
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form the E1-E2 disulphide and display reduced levels of ROS.  Together, these results 

suggest that the formation of the E1-E2 disulphide and the consequent SUMO 

deSUMOylation is important for drug-induced apoptosis in AML cells.   

Redox-regulation of the Nedd8 pathway has also been demonstrated to affect specific 

targets in mammalian cells.  Upon exposure to bacteria, the epithelia in the gut rapidly 

generate ROS.  The Nedd8 pathway E2, Ubc12 has been shown to form a high molecular 

weight (HMW) complex in these cells suggesting that, similar to the SUMO pathway, the 

Nedd8 pathway is also redox-regulated in mammalian cells (Kumar et al., 2007).  

However, in contrast to the SUMO pathway, Ubc12 does not complex with the E1 of the 

Nedd8 conjugation pathway.  Analysis of Cul1, a component of the SCFβ-TrCP E3 ubiquitin 

ligase, revealed that Neddylation of Cul1 is abolished upon oxidation of Ubc12.  This loss 

of Cul1 Neddylation has been proposed to inactivate SCFβ-TrCP and in cells treated with 

concentrations of H2O2 that result in oxidation of Ubc12 the immunoregulatory NFκB 

pathway was attenuated by inhibition of IκB-α a normal target for SCFβ-TrCP.    

1.3.6 ROS and regulation of the cell cycle 

Evidence from both mammalian cells and yeast has suggested that ROS can have a dual 

role in cell cycle regulation.  In response to high levels of ROS, cells arrest their cell cycle 

to prevent and repair oxidative damage.  However, in mammalian cells low levels of ROS 

can trigger cell proliferation.  As ROS can have opposing effects on cell proliferation, the 

redox state of the cell must be tightly regulated.  In fact one of the hallmarks of cancer is 

redox imbalance due to the increased metabolism and the aberrant levels of 

antioxidants in cancer cells (Glasauer and Chandel, 2014).  Below, redox control of cell 

proliferation in both mammalian cells and yeast will be discussed.   

1.3.6.1 ROS in normal cell cycling 

In response to oxidative stress, cells arrest their cell cycle to prevent and repair oxidative 

damage.  In multicellular organisms, ROS can be produced in response to a range of 

factors including growth factors and cytokines which can lead to the stimulation of 

cellular proliferation (Chiu and Dawes, 2012).  For example, a transient increase in H2O2 

has been detected in a rat vascular smooth muscle cell line after stimulation with 

platelet derived growth factor or a human cancer cell line in response to epidermal 

growth factor (Sundaresan et al., 1995; Bae et al., 1997).  In both mammalian cells and S. 
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cerevisiae the existence of a redox cycle alongside the cell division cycle has become 

apparent.  For example, experiments in mouse embryonic fibroblasts demonstrated an 

increase in pro-oxidants from early G1 phase (Menon et al., 2003).  Importantly, 

treatment of cells with the antioxidant N-acetyl cysteine prevented the cells entering G1 

phase suggesting that this increase in oxidation is required for transition from G1 to S 

phase of the cell cycle.  The existence of an oxidative shift has also been observed in a 

human cell line (Goswami et al., 2000).  Using a pro-oxidant fluorescent probe, HeLa 

cells were shown to have maximal ROS in late S, G2 and M phases compared to lower 

levels in G1 phase.  In S. cerevisiae, the cell division cycle is synchronised to a metabolic 

cycle where the cell division cycle is initiated late in the oxidative phase and DNA 

synthesis and mitosis occurs in the reductive phase (Tu et al., 2005).  This study found 

that very few cells replicate their DNA or divide during the oxidative phase of the 

metabolic cycle suggesting the synchrony of the cell division and metabolic cycles may 

act as a mechanism to protect DNA from oxidative damage.   

1.3.6.2 Oxidative stress and the cell cycle in S. cerevisiae 

As described above, the normal cell cycle of both mammalian cells and S. cerevisiae is 

tightly linked to the cellular redox status.  However, high levels of ROS have the potential 

to damage DNA.  The cell must therefore be able to sense the level of ROS and employ 

mechanisms to both detoxify the ROS and to trigger checkpoints that lead to cell cycle 

arrest.  

A number of antioxidant mechanisms have been linked to cell cycle regulation in S. 

cerevisiae.  For example, sod1Δ cells show an extended G1 phase when grown in air (Lee 

et al., 1996).  Interestingly, switching sod1Δ cells from growth in N2 to growth in 100 % 

O2 led to a permanent G1 phase arrest and sod1Δ cells lost viability after 3 hours of 

growth under these conditions.  Deletion of GSH1 which encodes the first, rate-limiting 

step in glutathione synthesis (Figure 1.10) has also been demonstrated to lead to G1 

phase arrest when cells are grown in the absence of glutathione for approximately 7 

generations however the mechanisms behind this arrest remain unknown (Spector et 

al., 2001).     

In S. cerevisiae, different oxidising agents have been shown to arrest the cell cycle at 

different points and by different mechanisms. For example, menadione and paraquat, 
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which both generate superoxide, arrest the cell cycle in G1 phase in a manner that is 

independent of the DNA damage checkpoint protein Rad9, while H2O2 leads to a Rad9-

dependent cell cycle arrest in G2 phase (Nunes and Siede, 1996; Flattery-O'Brien and 

Dawes, 1998).  Work from our lab has also shown that H2O2 and diamide induce a G1 

phase arrest in synchronised cells (Doris et al., 2012).  Linoleic acid hydroperoxide 

(LoaOOH) is a toxic metabolite of lipid peroxidation which causes a Rad9-independent 

G1 phase cell cycle arrest (Chiu and Dawes, 2012).  The mechanism behind the LoaOOH-

dependent G1 phase arrest has now been elucidated by the observation that Swi6, a 

component of the MBF and SBF transcription factors is directly oxidised upon exposure 

to LoaOOH (Chiu et al., 2011).  Furthermore, oxidation of Swi6 prevents the expression 

of G1 cyclins leading to G1 phase arrest.          
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1.4 Aims and Objectives 

It is vital for cells to detect and respond to oxidative stress to prevent damage to cellular 

macromolecules such as DNA but also to allow the cell to repair damage to prevent it 

being passed on to future generations.  However, how the cell detects oxidative stress 

and responds appropriately remains largely unclear.  Modification of proteins by 

ubiquitin and Ubl modifiers affects a diverse range of processes including cell division.  

Moreover, the use of catalytic cysteine residues in their conjugation pathways opens up 

the possibility that these pathways may be regulated by ROS.  Thus in this thesis we will 

use S. cerevisiae as a model to study potential regulators of the cell cycle in this model 

organism in response to oxidative stress.   

  To achieve this aim the specific objectives for this project are: 

1. To investigate the relative sensitivities of ubiquitin/Ubl conjugation pathways to 

oxidation. 

2. To investigate the potential roles of identified G1/S phase regulators in oxidative 

stress-dependent cell cycle control. 

3. To identify the pathways involved in the G1 phase arrest in response to 

glutathione depletion.   
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Chapter 2: Materials and Methods 

2.1 Yeast strains 

The S. cerevisiae strains used in this study are derived from W303-1a (MATa ade2-1 

can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1) or BY4741 (MATa his3∆1 leu2∆0 met15∆0 

ura3∆0).  

S. pombe strains in this study are derived from CHP428 (h+ ade6-M216 his7-366 leu1-32 

ura4-D18).   

 All strains used in this study are listed in Tables 2.1 and 2.2.   

2.2 Yeast techniques 

2.2.1 Growth conditions 

S. cerevisiae strains were grown in either rich YPD media (1% w/v Bacto-yeast extract, 2 

% w/v Bacto-peptone, 2% w/v glucose, -/+ 2 % w/v agar) or minimal SD media (0.67% 

w/v Bacto-yeast nitrogen base without amino acids, 2% w/v glucose, -/+ 2% w/v agar).  

For selective growth, SD was supplemented with adenine sulphate (20 mg/ml), L-

histidine hydrochloride (10 mg/l), L-leucine (20 mg/l), L-tryptophan (10 mg/l), uracil (8 

mg/l) and L-methionine (10 mg/l) (all supplied by Sigma), as required.  For glutathione 

depletion experiments cells were grown in SD media supplemented with 1 mM L-

glutathione reduced (Sigma) prior to glutathione removal.  Unless otherwise stated, 

strains were grown at 30°C. 

S. pombe strains used in this study were grown in rich YE5S media (0.5 % w/v yeast 

extract, 3 % w/v glucose and 225 mg/L adenine, histidine, leucine, uracil and lysine 

hydrochloride) or when selection was required in minimal media (EMM) (3 g/L 

potassium hydrogen phallate, 2.2 g/L Na2HPO4, 5 g/L NH4Cl, 2% w/v glucose, 20 ml/L 

salts (52.5 g/L MgCl2.6H2O, 0.735 g/L CaCl2.2H2O, 50 g/L KCl and 2 g/L NaSO4), 1 ml/L 

vitamins (1 g/L pantothenic acid, 10 g/L nicotinic acid, 10 g/L inositol and 10 mg/L 

biotin), 0.1 ml/L minerals (5 g/L boric acid, 4 g/L MnSO4, 4 g/L ZnSO4.7H2O, 2 g/L 

FeCl2.6H2O, 0.4 g/L molybdic acid, 1 g/L KI, 0.4 g/L CuSO4.5H2O and 10 g/L citric acid) 

plus the required amino acid supplements as outlined previously (Moreno et al., 1991).   
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Strain Genotype Source 

BY4741 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 Gift from David Lydall 

ELR5 * MATa UBA1-TAP Ghemmaghami et al (2003) 

ELR6 * MATa UBA2-TAP Ghemmaghami et al (2003) 

ELR7 * MATa UBA3-TAP Ghemmaghami et al (2003) 

ELR8 * MATa UBA4-TAP Ghemmaghami et al (2003) 

ELR10 * MATa UBC1-TAP Ghemmaghami et al (2003) 

ELR11 * MATa UBC2-TAP Ghemmaghami et al (2003) 

ELR12 * MATa CDC34-TAP Ghemmaghami et al (2003) 

ELR13 * MATa UBC4-TAP Ghemmaghami et al (2003) 

ELR14 * MATa UBC5-TAP Ghemmaghami et al (2003) 

ELR15 * MATa UBC6-TAP Ghemmaghami et al (2003) 

ELR16 * MATa UBC7-TAP Ghemmaghami et al (2003) 

ELR17 * MATa UBC8-TAP Ghemmaghami et al (2003) 

ELR18 * MATa UBC10-TAP Ghemmaghami et al (2003) 

ELR19 * MATa UBC13-TAP Ghemmaghami et al (2003) 

ELR20 * MATa MMS2-TAP Ghemmaghami et al (2003) 
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ELR21 * MATa UBC9-TAP Ghemmaghami et al (2003) 

CLC9 * his3-DAmP Gift from David Lydall 

CLC27 * cdc34-DAmP Gift from David Lydall 

CLC30 * uba1-DAmP Gift from David Lydall 

KD66  

(W303-1a)  

MATa ade2-1 can1-100 his3-11,15 leu2-

3, 112 trp1-1 ura3-1 

Thomas and Rothstein 

(1989) 

KD65  

(W303-1a) 

MATα ade2-1 can1-100 his3-11,15 leu2-

3, 112 trp1-1 ura3-1 

Thomas and Rothstein 

(1989) 

ELR49 # MATa rub1::LEU2 This study 

ELR52 # MATa far1::HIS3 This study 

ELR58 # MATα gsh1::LEU2 far1::HIS3 This study 

ELR60 # MATa gsh1::LEU2 rub1::LEU2 This study 

ELR61 # MATa csn5::HIS3 This study 

ELR71 # MATa gsh1::LEU2 YDJ1-3HA::kanMX6 This study 

ELR72 # MATa gsh1::LEU2 csn5::HIS3 This study 

ELR75 # MATa FAR1-13Myc::TRP1 This study 

ELR76 # MATa gsh1::LEU2 far1::HIS3 sic1::URA3 This study 

ELR77 # MATa gsh1::LEU2 FAR1-13Myc::TRP1 This study 
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ELR102 # MATa gsh1::LEU2 MET4-18Myc::TRP1 This study 

ELR120 # MATa rub1::LEU2 Sic1-13Myc::kanMX6 This study 

KD19 # MATa sic1::URA3 Lab stock 

KD79 #  MATa CDC34-13Myc::kanMX6 Lab stock  

KD117 # MATa met4::TRP1 Lab stock 

KD118 # MATα gsh1::LEU2 met4::TRP1 Lab stock 

KD125 # MATa gsh1::LEU2 sic1::URA3 Lab stock 

KD183 # MATa gsh1::LEU2 SIC1 T173A-

13Myc::kanMX6 CDC34-13Myc::kanMX6 

Lab stock 

KD192 # MATa gsh1::LEU2 hog1::LEU2 SIC1-

13Myc::kanMX6 

Lab stock 

KD225 # MATa YDJ1-3HA::kanMX6  Lab stock 

KD231 # MATa YDJ1-3HA::kanMX6-PGAL1 Lab stock 

KD233 # MATa gsh1::LEU2 YDJ1-3HA::kanMX6-

PGAL1 

Lab stock 

KD257 # MATa CDC34-13Myc::kanMX6 SIC1-

13Myc::kanMX6 

Lab stock 

KD294 # MATa gsh1::LEU2 CDC34-

13Myc::kanMX6 SIC1-13Myc::kanMX6 

Lab stock 
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KD484# MATa MET4-18Myc::TRP1 Lab stock 

KD502 # MATa gsh1::LEU2 Lab stock 

  

Table 2.1. S. cerevisiae strains used in this study.  Strains marked with an * are derived 
from the BY4741 background while those marked with # are derived from W303-1a.    

 

 

Strain Genotype Source 

CHP428 h+ ade6-M216 his7-366 leu1-32 ura4-D18 Lab stock 

ER1 h+ ade6-M216 his7-366 leu1-32 ura4-D18 

ubc9-3PK::ura4+ 

This study 

 

Table 2.2. S. pombe strains used in this study. 
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2.2.2 Yeast transformations 

2.2.2.1 S. cerevisiae transformations  

DNA was introduced into S. cerevisiae cells using a protocol based on the high efficiency 

lithium acetate method (Schiestl and Gietz, 1989).  Briefly, 50 ml of mid-log phase 

growing (~4 x 106 cells/ml) were pelleted (3000 x g, 2minutes), washed in sterile water 

and resuspended in 1 ml LiAc/TE solution (0.1 M LiAc, 10 mM Tris-HCl [pH 7.4], 1 mM 

EDTA [pH8]).  200 μl of cells were added to 50 μg of boiled salmon sperm DNA (Ambion) 

and 0.1-10 μg DNA.  1 ml of LiAc/TE/PEG solution (0.1 M LiAc, 10 mM Tris-HCl [pH 7.4], 1 

mM EDTA [pH8], 40% w/v PEG 2000) was added to the transformation mix which was 

incubated with agitation at 30°C for 30 minutes, followed by a heat shock at 42°C for 15 

minutes.  Cells were pelleted (7000 x g, 30 seconds), resuspended in sterile water and 

plated onto appropriate selective media.  Selection plates were incubated at 30°C for at 

least 2 days or until colonies appeared.   

2.2.2.2 S. pombe transformations 

DNA was introduced into S. pombe using the lithium acetate method previously 

described (Moreno et al., 1991).  100 ml of mid-log phase growing cells were pelleted 

(3000 x g, 3 minutes), washed in 1 ml sterile water and resuspended in 1 ml LiAc/TE (0.1 

M LiAc [pH 7.5], 10 mM Tris-HCl [pH 7.5], 1 mM EDTA).  100 μl of cells and 20 μg sheared 

salmon sperm DNA (Ambion) were added to the transforming DNA (~ 1 μg), mixed 

gently and incubated at room temperature for 10 minutes.  260 μl of LiAc/TE/PEG (0.1 M 

LiAc [pH 7.5], 1 mM EDTA and 50% v/v PEG 4000) were added following incubation and 

gently mixed before incubation at 30˚C for 30-60 minutes.  43 μl of DMSO were added 

and the cells incubated at 42˚C for 5 minutes.  Cells were pelleted, washed in 1 ml sterile 

water and then resuspended in 150 μl sterile water.  Cells were plated on EMM agar 

plates with the required supplements and incubated at 30˚C until colonies were visible.   

2.2.3 Strain constructions 

2.2.3.1 Gene tagging S. cerevisiae 

Expression of Far1 tagged at the C-terminus with 13 Myc epitopes from the normal 

chromosomal locus was achieved by integration of a PCR-amplified cassette created 

using the primers Far1TagF (Primer 1) and Far1TagR (Primer 2) (Table 2.3) with the  
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plasmid pFA6a-13Myc-TRP1 as a template as described by (Longtine et al., 1998) using 

the strategy shown in Figure 2.1.  Positive transformants were selected by their ability to 

grow on media lacking tryptophan and integration of the epitope-tag at the correct 

chromosomal locus was confirmed by PCR using the primers Far1TagChkF and 

Far1TagChkR (Primers 3 and 4 respectively) which flank the region.   

2.2.3.2 Gene tagging S. pombe  

Expression of Ubc9 tagged at the C-terminus with 3 PK epitopes, from the normal 

chromosomal locus was achieved using the strategy shown in Figure 2.2.  Briefly, a PCR 

fragment encoding the C-terminus of ubc9+ with restriction sites for BamH1 and Pst1 

was amplified from CHP428 using the primers Ubc9 Forward and Ubc9 Reverse (Table 

2.3).  The vector pRIP42-Ubc9 was constructed by digestion of the ubc9+ PCR fragment 

with BamH1 and Pst1 and ligation of the fragment with BamH1/Pst1 digested pRIP42.  

To promote homologous recombination into the yeast genome, pRIP42-Ubc9 was 

linearised using the restriction enzyme BspM1 prior to transformation.  Positive 

transformants were obtained and correct integration confirmed using Ubc9 Check and 

Nmtend oligonucleotide primers (Table 2.3 and Figure 2.2)    

2.2.3.3 Gene deletion 

Genes were substituted with a selectable marker in the genome of S. cerevisiae using 

the one-step homologous recombination method previously described by (Rothstein, 

1991) and shown in Figure 2.3.  The specific gene was replaced in W303-1a using the 

appropriate oligonucleotide primers 1 and 2 (Table 2.3) and either YDp-L, YDp-H or YDp-

U plasmid as a template (Berben et al., 1991).  Primer 1 contains 90 nucleotides 

homologous to the region located directly upstream of the ATG of the target gene and 

20 nucleotides homologous to the region directly upstream to the 5’ end of the 

selectable marker gene in the YDp plasmid.  Primer 2 contains 90 nucleotides 

homologous to the DNA sequence located immediately downstream of the stop codon 

of the target gene and 20 nucleotides homologous to the 3’ end of the selectable marker 

gene.  PCR fragments were then introduced into the relevant strain and successful 

transformants were selected by growth on media lacking either leucine, histidine or 

uracil respectively.   
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Correct gene replacement was confirmed by PCR using the respective primer 3 and 4 

check oligonucleotide primers designed to flank the specific gene locus.   

2.2.4 Mating, meiosis induction and tetrad dissection 

S. cerevisiae strains of opposite mating types were crossed on YPD agar and the resulting 

diploids were sporulated on sporulation media (1% w/v potassium acetate, 0.1 % w/v 

yeast extract, 0.05 % w/v glucose) by incubation at 30°C for 2-3 days.  Cells were then 

resuspended in 50 μl 5% v/v glusulase solution (PerkinElmer) and incubated at 30°C for 

20-30 minutes.  The cell suspension was gently mixed with 300 μl YPD and 20 μl were 

pipetted linearly onto a YPD plate.  Spores were separated using a tetrad dissector 

(Singer Instruments) and plates were incubated at 30°C for 2-3 days. 

2.2.5 Stress sensitivity and viability assays 

For stress sensitivity assays 10-fold serial dilutions of mid-log phase growing S. cerevisiae 

cells were spotted, using a 48-pronged replica plater instrument (Sigma) onto YPD plates 

containing the indicated oxidising agents. 

For viability assays 10-fold serial dilutions of mid-log phase growing S. cerevisiae cells or 

cells grown for the indicated period of time in media lacking GSH (SD –GSH) were 

spotted onto SD media supplemented with 1 mM GSH (SD +GSH). 

Plates were incubated for 2-3 days at 30°C unless otherwise stated.   

2.2.6 Cell cycle synchronisation 

S. cerevisiae cells were grown in either YPD or SD +GSH until mid-log phase and blocked 

in late G1 phase by the addition of 15 μg/ml α-factor (CRUK) for 1 hour followed by a 

second addition of 5 μg/ml α-factor for a further hour.  To release the cells from the cell 

cycle arrest the culture was filtered using the vacuum filtration rapid Filtermax system 

(TPP) and washed with four times the initial culture volume of pre-warmed 

YPD/SD+GSH.  At each time point the percentage of budded cells were counted and cells 

were collected for DNA content analysis (1 ml) and protein extraction (2 ml) respectively, 

as indicated.   
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2.2.7 S. cerevisiae genomic DNA extraction 

DNA was extracted from cells using a protocol based on that previously described by 

(Hoffman and Winston, 1987).  5 ml of overnight S. cerevisiae culture were pelleted by 

centrifugation (3000 x g, 2 minutes), washed in 1 ml of sterile water and resuspended in 

200 μl STET solution (2% v/v Triton X-100, 1% w/v SDS, 100 mM NaCl, 10 mM Tris-HCl 

[pH8]).  200 μl of phenol/chloroform/isoamyl alcohol (25:24:1, pH8) were added and the 

cells lysed with glass beads using a Mini Beadbeater (Biospec Products).  200 μl of TE 

solution (10 mM Tris-HCl [pH7.4], 1 mM EDTA [pH8] were added prior to centrifugation 

(13000 x g, 5 minutes).  The upper aqueous phase was added to a fresh Eppendorf tube 

and 1 ml 100% ethanol added to precipitate the DNA (13000 x g, 2 minutes).  The DNA 

pellet was resuspended in TE solution containing 75 μg/ml RNase (Sigma) and incubated 

at 37°C for 5 minutes.  10μl of 4 M ammonium sulphate and 1 ml 100% ethanol were 

added and the DNA precipitated (13000 x g, 2 minutes).  The DNA pellet was finally 

resuspended in 50 μl TE and stored at -20°C. 

2.2.8 S. pombe genomic DNA extraction 

10 ml of overnight S. pombe culture were pelleted by centrifugation (2000 x g, 3 

minutes), washed in 1 ml of sterile water and resuspended in 200 μl chromosomal 

breakage buffer (10 mM Tris HCl [pH8], 1 mM EDTA, 100 mM NaCl, 1% w/v SDS, 2% v/v 

Triton X-100).  200 μl of phenol/chloroform/isoamyl alcohol (25:24:1, pH8) were added 

and the cells lysed with glass beads using a Mini Beadbeater (Biospec Products).  500 μl 

of chromosomal breakage buffer were added prior to centrifugation (9000 x g, 5 

minutes).  The aqueous phase was transferred to a fresh Eppendorf and 50 μl of 3M 

sodium acetate and 1 ml 100% ethanol were added and the DNA precipitated at -20°C 

for 30 minutes.  DNA was pelleted by centrifugation (13000 x g, 15 minutes), washed in 

400 μl 70% ethanol and pelleted by centrifugation (13000 x g, 5 minutes).  The DNA 

pellet was air dried before being resuspended in 100μl nH2O and stored at -20°C. 

2.2.9 RNA extraction 

50 ml of mid-log phase growing, or glutathione depleted, S. cerevisiae cells were 

pelleted by centrifugation (3000 x g, 2 minutes), washed in 1 ml sterile water, pelleted 

again (3000 x g, 2 minutes) and the pellet snap frozen in liquid nitrogen.  Pellets were 

thawed on ice and resuspended in 750 μl TES solution (10 mM Tris-HCl [pH7.5], 10 mM 
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EDTA [pH8], 0.5 % w/v SDS) with 750 μl acidic phenol: chloroform 5:1 (Sigma).  Samples 

were incubated at 65˚C for 1 hour with a 10 second vortex step every 10 minutes.  

Samples were incubated on ice for 1 minute, vortexed for 20 seconds and pelleted by 

centrifugation for 15 minutes (1300 x g, 4˚C).  The aqueous phase was then transferred 

to a heavy phase lock tube (Eppendorf) containing 700 μl acidic phenol 5:1 (Sigma), 

mixed by inversion and centrifuged for 5 minutes (13000 x g, 4˚C).  700 μl of the aqueous 

layer were then transferred to a light phase lock tube (Eppendorf) containing 700 μl of 

phenol:chloroform:isoamyl alcohol 25:24:1 (Sigma), mixed by inversion and centrifuged 

for a further 5 minutes (13000 x g, 4˚C).  500 μl of the aqueous layer were then 

transferred to tubes containing 1.5 ml 100% ethanol and 50 μl of 3M NaAc [pH 5.2].  

Following incubation -80˚C for 30 minutes, the precipitated RNA was pelleted by 

centrifugation (10 minutes, 13000 x g), the supernatant removed and 500 μl 70% 

ethanol added.  Following centrifugation (1 minute, 13000 x g), the supernatant was 

removed and the pellet air-dried for 5 minutes at room temperature.  The pellet was 

dissolved in 100 μl of RNase free water and stored at -80˚C. 

2.2.10 S. cerevisiae protein extraction 

50 ml of mid-log phase growing S. cerevisiae cells were pelleted by centrifugation (3000 

x g, 2 minutes) and the pellet snap frozen in liquid nitrogen.  The pellet was thawed at 

room temperature and then resuspended in 150 μl ice-cold protein lysis solution (20 

mM HEPES [pH 7.3], 350 mM NaCl, 10% v/v glycerol, 0.1% v/v Tween-20), containing 

protease inhibitors (0.097 trypsin inhibitor units/ml aprotinin, 2 μg/ml leupeptin, 2μg/ml 

pepstatin A, 105 μg/ml PMSF) and phosphatase inhibitors (1 mM NaF, 2 mM Na3VO4), 

and then added to 1 ml of ice-cold glass beads (0.5 mm, BioSpec Products).  Cells were 

lysed using a Mini Beadbeater (Biospec Products) and the protein clarified by 

centrifugation (13000 x g, 10 minutes, 4°C).  Protein concentrations were estimated by 

Bradford assay (Pierce). 

For experiments to investigate protein oxidation the trichloroacetic acid (TCA) protein 

extraction method was used.  Mid-log phase growing cells were collected into an equal 

volume of 20% w/v TCA, pelleted by centrifugation (3000 x g, 2 minutes) and the pellet 

snap frozen in liquid nitrogen.  Pellets were thawed on ice, resuspended in 200 μl ice 

cold 10% w/v TCA and cells lysed with ice-cold glass beads using a Mini Beadbeater 
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(Biospec Products).  The insoluble pellet was washed three times in 200 μl acetone, 

solubilised in 200 μl of resuspension buffer (100 mM Tris-HCl [pH8], 1% w/v SDS, 1 mM 

EDTA) and the protein concentration estimated using the BCA protein assay kit (Thermo 

Scientific).  

2.2.11 S. pombe protein extraction  

100 ml of mid-log phase growing S. pombe cells were pelleted by centrifugation (2000 x 

g, 3 minutes), washed in 1 ml of sterile water and the pellet snap frozen in liquid 

nitrogen.  The pellet was thawed at room temperature and resuspended in 200 μl of ice-

cold lysis buffer (50 mM Tris HCl [pH 7.5], 150 mM NaCl, 0.5 % w/v Nonidet P-40, 10 mM 

Imidazole) containing protease and phosphatase inhibitors as described in 2.2.10 before 

being added to 1 ml of ice-cold glass beads (0.5 mm, BioSpec Products).  Cells were lysed 

using a Mini Beadbeater (BioSpec Products) before addition of a further 300 μl of lysis 

buffer.  Protein was clarified by centrifugation (13000 x g, 10 minutes, 4°C) and protein 

concentrations estimated by Bradford assay (Pierce).          

2.2.12 DNA content analysis 

 Approximately 5 x 106 cells were pelleted by centrifugation (2 minutes, 3000 x g), 

washed in 1 ml of sterile water, pelleted again (2 minutes, 3000 x g) and fixed in 1 ml of 

70% ethanol overnight at 4˚C.  Fixed cells were sonicated for 5 seconds to break up 

clumps and then pelleted by centrifugation (1 minute, 13000 x g).  Cells were washed in 

800 μl 50 mM sodium citrate [pH 7.2], pelleted again, resuspended in 500 μl RNase A 

solution (50 mM sodium citrate [pH 7.2], 0.25 mg/ml RnaseA (Thermo Scientific) and 

incubated at 37˚C overnight.  50 μl of proteinase K (20 mg/ml) (Roche) were added and 

the cells were incubated for 1-2 hours at 50˚C.  Cell were sonicated again for 5 seconds 

to break up clumps and incubated with 500 μl of Sytox Green solution (50 mM sodium 

citrate [pH 7.2], 4 μM Sytox Green (LifeTechnologies)) for 1 hour in the dark at room 

temperature.  A BD FACSCanto™ II (BD Biosciences) flow cytometer was used to measure 

DNA content and FACSDiva™ (BD Biosciences) software used in data analysis.    
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2.3 Molecular Biology and Bacterial Techniques 

2.3.1 PCR 

PCR reactions in this study were carried out using either the Expand™ High Fidelity PCR 

system (Roche) or Phusion® High-Fidelity DNA Polymerase (NEB).  The DNA sequence of 

oligonucleotide primers used in this study are listed in Table 2.3.     

2.3.1.1 Expand™ High-Fidelity PCR system 

Each PCR reaction contained: 0.5 μl Expand™ High Fidelity Enzyme (3.5 units/μl), 1 μl 

template DNA, 10 μl 10 x High Fidelity Buffer, 85.5 μl water, 1 μl Forward/ Reverse 

Primer (100 pmol/μl), 1 μl dNTPs (10 mM).  PCR was performed using the following 

parameters in a T3000 Thermocycler (Biometra): 

Step 1 94˚C, 2 minutes 

Step 2 94˚C, 20 seconds 

Step 3 54˚C, 30 seconds x 35 cycles 

Step 4 72˚C, 1 minute/Kb 

Step 5 72˚C, 10 minutes 

2.3.1.2 Phusion® High-Fidelity DNA Polymerase system 

Each PCR reaction contained:  0.5 μl Phusion® High-Fidelity DNA polymerase (2000 

units/ml), 1 μl template DNA, 0.5 μl Forward/reverse primer (100 pmol/μl), 1.5 μl MgCl2 

(1.5 mM), 10 μl 5 x Phusion GC buffer, 1 μl DMSO (2 % w/v), 0.5 μl dNTPs (10 mM), 34.5 

μl water.  PCR was performed using the following parameters in a T3000 Thermocycler 

(Biometra): 

Step1 94˚C, 2 minutes 

Step2 94˚C, 30 seconds 

Step 3 54˚C, 1 minutes  x 35 cycles 

Step 4 72˚C, 1 minute/kb 

Step 5 72˚C, 10 minutes 
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Primer name  Sequence 5’ 3’ 

Ubc9 

Forward 

AACTGCAGAACCAATGCATTGGCCTTCTGGCACCGTTTGTCTC 

Ubc9 Reverse CGGGATCCCGTTGGAGCATTTTCACGAGCC 

Ubc9 Check CAGGTAGGTTTACTCCACCG 

Nmtend GCAGCTTGAATGGGCTTCC 

Gsh1KO ChkF GGCAACACCAGCTTCTCC 

Gsh1KO ChkR CCCAAATACAACAAGAACGG 

Far1KOF TCTATTTACTTTTATATTTCTTGACCATCCTTTACACAAAGTCTATAGATCCACTGGA

AAGCTTCGTGGGCGTAAGAAGGCAATCTATTAGAATTCCCGGGGTCCGG 

Far1KOR TCAGTCATTGCGTAGTATAGACGTGGAGAAACGAAAAAAAAAAAAGGAAAAGCA

AAAGCCTCGAAATACGGGCCTCGATTCCCGAACTAGCTTGGCTGCAGGTCGACGG 

 

Far1KOChkF TCACAGTATATAATATATTCA 

 

Far1KOChkR GATTTAATTATCGCCAATAGGT 

 

Far1TagF GGTAAAGCAGCAAAGAATTCATCAGACCCTGGAAGTTCCCAACCTCCGGATCCCC

GGGTTAATTAA 

 

Far1TagR GAAAAGCAAAAGCCTCGAAATACGGGCCTCGATTCCCGAACTAGAATTCGAGCTC

GTTTAAAC 

 

Far1TagChkF ACTGGAAAGCTTCGTGGGCG 
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Far1TagChkR GATTTAATTATCGCCAATAGGT 

Rub1KOF AGCTGAAAAACCAAAATTCTGTTATTCAAATGAAGTATTCCGACAGAGGAATAAA

TAAAGGAAGGTAATTAACTTCCTTACAGCCGTAACCGGAATTCCCGGGGATCCGG 

Rub1KOR AGCCTTCCAAAGTCCAAGTGAACTTATGTTCGTTTTGTCTTCTTTTCTAATGAACAC

CTTCGATAAAATTCCATAAATGACGGAAAATGGTTGCTTGGCTGCAGGTCGACGG 

Rub1KOChkF ATTCCGATGGCGTCTTCGGGAAG 

Rub1KOChkR ACGGATAATTTGATAGATAC 

Csn5koF ACGCAGGAAGCGCTCTTATTAAAGGGTTTTTCAAATAAACTAAAAATGAATAACA

ACGATCGAAAATCAATAAAAACTGCAGGAGGCAGCGAATTCCCGGGGATCCGG 

 

Csn5KOR GATATACTTATAGAGATTCAAGAAGGAATAACTATTAAAAGTACGTTGCAGATAA

ACATAAGCTATTGCAGCGTCATTGGAGCAACGTTAGGAATGCTTGGCTGCAGGTC

GACGG 

 

Csn5KOChkF GAAACTTTAGGAAAGGCGCG 

 

Csn5KOChkR TATCAAATTGTCACCCGG 

 

F2 Chk AACCCGGGGATCCGTCGACC 

Uba1TAP TTCATCGAAACTGCTGATCG 

Uba2TAP TCCACAGGATATTTCGCTCC 

Uba3TAP TAGATGGTGGAACAGAGGGG 

Uba4TAP ATTCAGGTTTCCCACAGCAG 
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Ubc1TAP TAAAAGGCACATTTTTGGGC 

Ubc2TAP CCCCACCGGGTGTATCTGC 

Cdc34TAP AACGTTTACAGGGATGGCAG 

Ubc4TAP AGCCGGTCCAGTCGGCGATGATC 

Ubc5TAP CCGAAGAGATCCTCCTGCTTC 

Ubc6TAP AACCACCGGCTATCAGAATG 

Ubc7TAP CCACCTGGTATAGTGGCTGGTCC 

Ubc8TAP TACGAAAATGGGGTTTGGAG 

Ubc10TAP ACGTCTGATACATGTATGTCG 

Ubc13TAP TTGTCCAGTTTGTAGCAGCG 

Mms2TAP CAACGTAGAAGAAAGCAGCG 

Ubc9TAP TACACAATTTCATCCAGCGG 

 

Table 2.3. The DNA sequence of the oligonucleotide primers used in this study.   

 

 

Primer name Sequence 5’  3’ 

ARN2F TGACCTACGCAATGAACTCG 

ARN2R CAGCAGCATACCTCTGGACA 

Cdc34F CACTTCTGAATCGGCGTACA 

Cdc34R TGGTTGTTTCCATCGTCGTA 

Ydj1F CTGGTGGTGAATTTGCATTG 
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Ydj1R GGACAATTCTTGGAGGCAAA 

Cdc53F CATTATGTCGTGGCGAATTG 

Cdc53R GTTAAGCTCGTGCCCTCTTG 

Act1F GCCTTCTACGTTTCCATCCA 

Act1R GGCCAAATCGATTCTCAAAA 

 

Table 2.4.  The DNA sequence of the oligonucleotide primers used for qRT-PCR in this 

study. 
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2.3.2 qRT-PCR RNA clean up and DNase digestion 

RNA was extracted as described in 2.2.9 and purified using an RNeasy Mini kit (Qiagen) 

according to the manufacturer’s protocol.  3 μg of purified RNA were subjected to DNase 

digestion to remove gDNA contamination using a Precision DNase kit (Primer Design) 

according to the manufacturer’s protocol.   

2.3.3 qRT-PCR conditions 

qRT-PCRs in this study were performed using a Precision One-Step qRT-PCR mastermix 

with SYBR Green (Primer Design) using the following volumes: 10 μl qRT-PCR mastermix 

with SYBR Green, 2 μl RNA (typically 3 μg), 7 μl water, 1 μl primer mix (5 mMol).  The 

DNA sequence of the oligonucleotide primers used for qRT-PCR in this study are listed in 

Table 2.4. 

SYBR Green detection was recorded using a lightcycler (Corbett 6000) with the following 

settings: 

Step 1 (Reverse Transcription)  10 minutes at 55˚C 

Step 2 (Enzyme activation – Hotstart)  8 minutes at 95˚C 

Step 3 (Denaturation)    10 seconds at 95˚C 

Step 4 (Data Collection)    60 seconds at 60˚C. 

Steps 3-4 were repeated 50 times, and at the finish a melt curve was generated to help 

confirm primer specificity. 

 

2.3.4 Escherichia coli transformation and plasmid isolation 

Plasmids were propagated by introducing them into E. coli SURE competent cells (e14-

(mcrA-) Δ(mcrCB-hsdSMR-mrr)171 endA1 supE44 thi-1 gyrA96 relA1 lac recB recJ sbcC 

umuC::Tn5 (Kanr) uvrC[F’proAB lacQZΔm15 Tn10 (Tetr) (Stratagene) using the standard 

calcium chloride method (Maniatis et al., 1982).  E. coli SURE cells transformed with 

plasmids containing the ampicillin resistance gene were grown in LB media (2 % w/v 

Bacto tryptone, 1 % w/v Bacto yeast extract, 1 % w/v NaCl [pH7.2]) containing 0.1 mg/ml 

ampicillin (Sigma).  A GenElute Plasmid Miniprep kit (Sigma) was used to isolate plasmid 

DNA, according to manufacturer’s instructions. 
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2.3.5 Restriction endonuclease digestion and DNA ligation 

PCR products and plasmids were digested using the relevant restriction enzymes and 

buffers according to the manufacturer’s instructions (Fermentas).  Digested plasmids 

and PCR fragments were purified (see Section 2.3.6).  DNA was ligated using DNA ligase 

(Fermentas) according to manufacturer’s instructions. 

2.3.6 Agarose gel electrophoresis and DNA purification 

PCR products and plasmids were separated by electrophoresis using 1 % w/v agarose 

gels using TAE buffer (40 mM Tris acetate, 1 mM EDTA [pH8]) and containing 5 μg/ml 

ethidium bromide, visualised using a transilluminator (Ultra-Violet Products).  Where 

required, DNA was excised from the gel and purified using a QIAquick Gel Extraction Kit 

(Qiagen), according to manufacturer’s instructions.   

2.3.7 Western Blotting 

In this study, proteins were separated on either 10% w/v or 13% w/v SDS polyacrylamide 

gels.  The gel recipes were based on the SDS (denaturing)-discontinuous buffer system of 

Laemmli (1970).  5 μl of PageRuler Prestained Protein Ladder (Thermo Scientific) were 

included to allow estimation of molecular weight.  Separated proteins were transferred 

onto Protran® nitrocellulose membrane (GE Healthcare Life Sciences) using a Bio-Rad 

mini transfer apparatus, according to the manufacturer’s instructions.  The membrane 

was blocked in 10% w/v BSA for 30 minutes and incubated with the appropriate primary 

antibody (Table 2.5) diluted in 5% w/v BSA overnight at 4˚C with agitation.  The 

membrane was then washed with TBST solution (10 mM Tris-HCl [pH 8.0], 150 mM NaCl, 

0.05% v/v Tween®20) (3 x 5 minutes) prior to incubation for 1 hour at room temperature 

with the relevant secondary antibody (either anti-mouse HRP, anti-rabbit HRP or anti-

goat HRP) diluted 1:2000 in 5% w/v BSA.  The membrane was washed in TBST (3 x 10 

minutes) and protein visualised using either the ECL detection system (Amersham 

Pharmacia Biotech) or ECL plus (Thermo Scientific).   

To re-probe with a different antibody, nitrocellulose membranes were stripped by 

incubating at 50˚C for 30 minutes in stripping solution (2% w/v SDS, 62.5 mM Tris-HCl 

[pH 6.7], 100 mM β-mercaptoethanol).  The membrane was then washed in TBST (3 x 10 
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minutes) and blocked in 10% w/v BSA before being incubated with the relevant primary 

and secondary antibodies as described above.   
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Antibody name Working dilution in 5% w/v 

BSA 

Supplier 

Rad53 (yC-19) 1:1000 Santa Cruz Biotechnology 

Cdc53 (yN-18) 1:1000 Santa Cruz Biotechnology 

CBP 1:1000 Source Bioscience 

LifeSciences 

HA 1:1000 Thermo Scientific 

Myc 9E10 1:1000 SigmaAldrich 

Anti-V5 tag (PK) 1:1000 Bio-Rad 

Anti-Hog1 (y218) 1:1000 Santa Cruz Biotechnology 

Anti-Donkey anti-goat 

IgG HRP 

1:2000 Santa Cruz Biotechnology 

Anti-Mouse IgG (whole 

molecule) 

1:2000 SigmaAldrich 

Anti-Rabbit IgG (whole 

molecule) 

1:2000 SigmaAldrich 

 

Table 2.5. Antibodies used in this study. 
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Chapter 3: Analysis of the relative sensitivities of yeast Ub/Ubl 

conjugation pathways to ROS 

3.1 Background 

The ability to detect environmental stress and initiate an appropriate response is key to 

cellular survival.  Several signalling pathways have been identified in eukaryotes that are 

able to respond to ROS via reversible oxidation of cysteine residues in signalling proteins 

for example the protein tyrosine phosphatases (PTPs) which are inactivated by oxidation 

of their active site cysteine.  The use of catalytic cysteine residues in their conjugation 

pathways raises the possibility that ubiquitin and Ubl conjugation may also be regulated 

by oxidation. 

Global patterns of SUMO (Saitoh and Hinchey, 2000), Nedd8  and Urm1 (Van der Veen et 

al., 2011) conjugation have been shown to increase in response to H2O2 in both yeast 

and mammalian cells suggesting a conserved role for a number of Ubl pathways in the 

cellular response to oxidative stress.  However, in contrast to the above observations, 

lower concentrations of H2O2 have been shown to inhibit the mammalian SUMO 

conjugation pathway through the formation of a disulphide bond between the E1, Uba2 

and the E2, Ubc9 blocking downstream SUMOylation (Bossis and Melchior, 2006).  A 

similar mechanism has also been demonstrated for the mammalian Nedd8 (Rub1 in S. 

cerevisiae) conjugation pathway, whereby the E2, Ubc12 has been shown to form a 

disulphide with an unidentified partner after exposure to H2O2 produced by commensal 

bacteria in the gut, leading to inhibition of Nedd8 conjugation to the downstream 

substrate Cul-1 (Kumar et al., 2007).  These studies demonstrate a mechanism by which 

two Ubls may be involved in stress signalling. 

Previous work from our lab had shown that in response to specific oxidising agents e.g. 

diamide and menadione cells arrest their cell cycle in G1 phase (O'Callaghan, 2004; 

Doris, 2008).  Interestingly, the observed cell cycle arrest coincided with an increase in 

the stability of the CKI Sic1.  As previously described (Section 1.2.4), Sic1 is ubiquitinated 

by a pathway involving the E1 Uba1 and the E2 Cdc34.  It was predicted that the 

formation of an inhibitory disulphide bond between these enzymes as is seen in the 

mammalian SUMO pathway (Bossis and Melchior, 2006) could lead to an increase in the 

stability of Sic1.  A high molecular weight (HMW) disulphide complex was indeed seen to 
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form between the catalytic cysteine residues of Uba1 and Cdc34 after treatment with 

specific oxidising agents.  Importantly, the formation of the Uba1-Cdc34 complex 

occurred at the same time as the observed increase in Sic1 stability (Doris, 2008).   

While Cdc34 was shown to be sensitive to a number of oxidising agents (Doris, 2008), S. 

cerevisiae has a number of ubiquitin and Ubl pathway enzymes and their relative 

sensitivities to diamide have yet to be explored.  In this chapter we will investigate the 

sensitivity of a number of ubiquitin and Ubl pathway enzymes to the oxidising agents 

diamide and H2O2.          

3.2 Cdc34 forms a HMW complex in response to oxidising agents independent of strain 

background or epitope tag 

Previous work in our lab had shown that myc epitope-tagged Cdc34 forms a HMW 

complex with the ubiquitin pathway E1 Uba1 in response to both H2O2 and diamide in 

cells from the W303 background.  However, the potential effects of the tag, strain 

background or the general specificity of this E1/E2 sensitivity to oxidation were not fully 

explored.  To begin to address these questions, cells expressing tandem affinity 

purification (TAP) epitope-tagged Cdc34 from the normal chromosomal locus were 

obtained in the BY strain background (Ghaemmaghami et al., 2003).  This strain 

background has previously been shown to display both different sensitivities to oxidative 

stress compared with W303 and to utilise different signalling mechanisms to detect and 

respond to oxidative stress (Veal et al., 2003).  W303 cells expressing Cdc34-13Myc and 

BY cells expressing Cdc34-TAP were treated with 5 mM diamide and proteins analysed 

by western blotting (Figure 3.1).  Significantly, in cells from both strain backgrounds, 

epitope-tagged Cdc34 was found to form a HMW complex after 30 minutes treatment 

with 5 mM diamide consistent with oxidation of Cdc34 (Figure 3.1).  Thus, these data 

strongly suggest that the Cdc34-Uba1 disulphide complex is induced by oxidative stress 

in both a strain background and epitope tag independent manner.  

3.3 E1s of the ubiquitin, SUMO, Rub1 and Urm1 conjugation pathways show differing 

sensitivities to oxidation 

Having established that TAP-tagged Cdc34 forms a HMW complex in response to 

oxidative stress we next took advantage of the availability of many TAP-tagged E1/E2s in 

Ub/Ubl pathways in the BY strain background (Ghaemmaghami et al., 2003) to  
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explore the relative sensitivities of the different E1/E2 enzymes to oxidation.  S. 

cerevisiae contains a number of E1/E2 enzymes in at least 10 Ubl conjugation pathways.  

Our data demonstrate that Uba1 in the ubiquitin pathway is sensitive to oxidation 

(Doris, 2008).  Interestingly work in other systems has shown that the E1 of the 

mammalian SUMO pathway also displays an increased sensitivity to oxidation (Bossis 

and Melchior, 2006) however this has not been explored in S. cerevisiae.  There is very 

little known about the Urm1 Ubl pathway but it has been linked with oxidative stress 

responses in both yeast and humans (Van der Veen et al., 2011).  Analysis of the 

available Ubl TAP-tagged genome library showed that strains potentially expressing the 

TAP-tagged E1s Uba1 (ubiquitin), Uba2 (SUMO), Uba3 (Rub1) and Uba4 (Urm1) were 

present.  To confirm the identity of these strains, a PCR strategy was performed to 

demonstrate the localisation of the TAP-tagged cassette at the 3’end of each gene.  PCR 

was performed using an E1-specific forward primer and a common reverse primer (F2 

check) located in the TAP tag cassette (Figure 3.2 A).  If correctly TAP-tagged, PCR for 

each gene product should amplify a product of approximately 500-600 bp.  Significantly, 

this PCR strategy confirmed that the UBA1, UBA2, UBA3 and UBA4 genes have the TAP-

tag cassette located at their 3’ends (Figure 3.2 A).  Next, to ensure that each TAP-tagged 

protein was expressed, protein was extracted from Uba1-TAP, Uba2-TAP, Uba3-TAP and 

Uba4-TAP cells and analysed by western blotting.  Specific bands corresponding to the 

approximate predicated size of TAP epitope-tagged Uba1, Uba2 and Uba4 were 

detected suggesting that these E1s were correctly TAP-tagged and expressed (Figure 3.2 

B).  The Uba3-TAP ran at a larger size than was expected however due to the lack of non-

specific bands in this lane it was predicted that this band was Uba3-TAP (Figure 3.2 B). 

Having established that Uba1-TAP, Uba2-TAP, Uba3-TAP and Uba4-TAP could be 

detected the relative sensitivities of these proteins to 5 mM diamide were explored.  As 

with Cdc34-TAP (Figure 3.1), Uba1-TAP was shown to form a HMW complex following 

treatment with 5 mM diamide independent of strain background or epitope tag (Figure 

3.3).  Furthermore, the relative abundance of this HMW complex matched that of the 

HA epitope-tagged Uba1 expressed in the W303 strain background (Doris, 2008). 

Previous studies in mammalian cells had demonstrated that Uba2 forms a HMW 

complex in response to H2O2 (Bossis and Melchior, 2006).  Interestingly, in contrast to 

Uba1, no Uba2-TAP containing complex was detected in cells treated with 5 mM  
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diamide (Figure 3.3). Furthermore, no changes in Uba4 were detected in response to 

diamide.  Unexpectedly, Uba3-TAP was found to form a HMW complex in response to 

diamide (Figure 3.3).  Previous work in mammalian cells had shown that the E2 but not 

the E1 of the Neddylation pathway forms a HMW complex in response to ROS (Kumar et 

al., 2007).  Hence, this is the first identification of such a HMW complex involving the 

Rub1 pathway E1 in eukaryotic cells.  The identities of the components of this complex 

are unclear and require further investigation. 

3.4 Oxidation of the SUMO pathway E1 and E2 enzymes is not conserved in either S. 

cerevisiae or S. pombe 

Previous studies in mammalian cells demonstrated that the SUMO pathway E1/E2 

enzymes specifically form a disulphide complex in response to H2O2.  The initial study 

presented here of the equivalent E1 enzyme in the SUMO pathway in S. cerevisiae did 

not reveal any detectable sensitivity to oxidation by diamide.  However, diamide and 

H2O2 are different oxidising agents with different effects and responses in cells (Flattery-

O'Brien and Dawes, 1998; O'Callaghan, 2004) and hence it could be possible that the 

Uba2 and Ubc9 enzymes of the S. cerevisiae SUMO pathway could be more sensitive to 

H2O2 than diamide.  To test this possibility, cells expressing Uba2-TAP were treated with 

a range of H2O2 concentrations and protein extracts analysed by western blot.  

Consistent with the results obtained using diamide, no HMW Uba2-TAP complex was 

detected when cells were treated with H2O2 (Figure 3.4 A).  Hence, in contrast to 

mammalian cells Uba2 is not sensitive to the oxidising agents H2O2 or diamide.            

It was possible that the E2 enzyme Ubc9 in S. cerevisiae is more sensitive to oxidation by 

diamide and/or H2O2 than Uba2, perhaps forming a different HMW complex than that 

observed in mammalian cells.  To explore this possibility a strain expressing TAP-tagged 

Ubc9 from the normal chromosomal locus was obtained from the large scale TAP-tagged 

library (Ghaemmaghami et al., 2003).  Correct integration of the TAP-tagged cassette at 

the 3’end of the UBC9 gene was confirmed by PCR and protein expression were analysed 

as previously described.  Consistent with the analysis of Uba2-TAP, Ubc9-TAP did not 

form any detectable complexes when cells were treated with H2O2 (Figure 3.4 B).  

Differences observed in the ratio of Ubc9 and the Ubc9~SUMO thioester (Figure 3.4 B) 

were not repeated.   
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As described above, analysis of Uba2 and Ubc9 suggested that these enzymes are much 

less sensitive to oxidation by oxidising agents in S. cerevisiae than in mammalian cells.  In 

addition neither Uba2 nor Ubc9 formed a disulphide complex at levels of H2O2 shown to 

oxidise Uba2 and Ubc9 in mammalian cells (Figure 3.4 A and B, (Bossis and Melchior, 

2006)).  It was possible that this lack of sensitivity was specific to S. cerevisiae and not 

generally to eukaryotic cells.  To investigate this specificity, the potential oxidation of the 

SUMO conjugation enzymes was examined in the evolutionarily distantly related S. 

pombe.  Interestingly, in contrast to S. cerevisiae, the gene encoding the SUMO modifier 

is not essential in S. pombe (Tanaka et al., 1999) suggesting that the SUMO pathways of 

the two yeasts could be regulated differently.  Hence to test the oxidation of Ubc9 in S. 

pombe, a strain expressing Ubc9 tagged at the C-terminus with 3PK epitopes from the 

normal chromosomal locus was treated with concentrations of diamide that lead to the 

formation of the Cdc34 containing HMW complex and with concentrations of H2O2 which 

stimulate the formation of the Uba2~Ubc9 complex in mammalian cells (Bossis and 

Melchior, 2006).  Significantly, there was no evidence that a HMW complex containing 

Ubc9 forms after exposure to these levels of ROS in S. pombe (Figure 3.4 C). 

Taken together these results suggest that in contrast to mammalian cells, Uba2 and 

Ubc9 do not form disulphide complexes following H2O2 or diamide treatment in these 

widely divergent eukaryotic cells.  Thus, the increased sensitivity to oxidation of Uba2 

and Ubc9 may be confined to mammalian/higher eukaryotic cells.       

3.5 Of the Ubiquitin pathway enzymes, Cdc34 is more sensitive to oxidation by 

diamide 

As previously described, work in our lab had shown that the ubiquitin E2, Cdc34 was 

sensitive to oxidation.  However, the previous study had only investigated Cdc34 and S. 

cerevisiae has at least twelve ubiquitin pathway E2 enzymes that help achieve substrate 

specificity.  Here we extended the initial study to investigate the relative sensitivities of 

the ubiquitin pathway E2 enzymes.  

Twelve known E2 enzymes were identified of which eleven were available in the large 

scale TAP epitope-tagged library (Ghaemmaghami et al., 2003).  To confirm the position 

of the TAP-tagging cassette at the 3’end of each gene, PCR was performed using a 

common reverse  
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primer (F2 check) and a specific forward primer as previously described (Figure 3.2 [A]).  

PCR analysis of all the E2 enzyme encoding genes except UBC7 amplified a band product 

of approximately 500-600 bp as predicted (Figure 3.5 A).  Next, protein extracts were 

obtained from each TAP epitope-tagged E2 expressing strain and western blot analyses 

performed to confirm visualisation of the TAP epitope-tagged protein (Figure 3.5 B).  Of 

the eleven E2 enzymes, the more abundant proteins, Ubc1, Ubc2, Cdc34, Ubc4, Ubc6 

and Ubc13 were detected by western blotting (Figure 3.5 B).  Having identified five 

further E2 enzymes that could be detected by western blot we next investigated their 

sensitivity to diamide in comparison to Cdc34. 

Cells expressing each of the identified TAP-tagged E2 enzymes were treated with 5 mM 

diamide for 30 minutes and protein extracts examined on non-reducing gels (Figure 3.6).  

Excitingly, Cdc34 alone was seen to form a HMW complex after treatment with 5 mM 

diamide (Figure 3.6).  Thus taken together with the analysis of other Ubl pathways in S. 

cerevisiae these data indicate that Cdc34 is specifically sensitive to specific oxidising 

agents.    

3.6 Strains with a decrease in CDC34 or UBA1 transcript levels show resistance to 

diamide 

Previous data from our lab indicated that oxidation of Uba1/Cdc34 is specifically linked 

to regulation of the cell cycle and Sic1 (Doris, 2008).  However we had not been able to 

provide evidence that the formation of the Uba1-Cdc34 HMW complex, the increased 

stability of Sic1 and the subsequent cell cycle delay that was observed after diamide 

treatment were directly linked.  Previous attempts to make strains which expressed 

Cdc34/Uba1 that were more or less sensitive to oxidation had proven difficult due to the 

essential nature of both genes.  However, a commercially available ‘Decreased 

Abundance by mRNA Perturbation’ (DAmP) strain collection has been constructed 

whereby the 3’UTR of many essential genes has been disrupted by the integration of a 

kanamycin cassette leading to a subsequent destabilisation of the transcript (Breslow et 

al., 2008).  This reduction in transcript levels provides a useful tool for studying essential 

genes and thus whether Cdc34-Uba1 HMW complex formation acts as protective 

mechanism for the cell in response to ROS. 
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It is possible that insertion of the kanamycin cassette does not lower the levels of 

specific transcripts.  Therefore, to test whether CDC34 or UBA1 transcript levels were 

reduced in the relevant DAmP strains qRT-PCR was performed.  Importantly, the 

transcript levels for both CDC34 and UBA1 were found to be reduced (Figure 3.7 A).  

Next the sensitivity of these strains to diamide was examined.  Interestingly, despite a 

decrease in the levels of CDC34 and UBA1 expression each strain grew well in the 

absence of stress in comparison with a control strain where the 3’UTR of the HIS3 gene 

has been disrupted by the DAmP cassette (HIS3 DAmP) (Figure 3.7 B).  Excitingly, both 

the CDC34 and UBA1 DAmP strains showed an increased resistance to diamide 

compared to the HIS3 DAmP strain.  These results demonstrate that weakening of the 

Uba1/Cdc34 pathway is necessary for cellular survival in response to diamide.        

3.7 Discussion 

While the detrimental effects of high levels of ROS have long been recognised, the 

importance of lower levels of ROS, such as H2O2 in cellular signalling has now become 

apparent.  Significantly, a number of redox-sensitive proteins have now been identified, 

which are regulated through reversible oxidation of their catalytic cysteine residue.  

Significantly, the ubiquitin and Ubl family of protein modifiers use catalytic cysteine 

residues in their conjugation pathways and studies in mammalian cells and S. cerevisiae 

have shown that the conjugation pathways of the Nedd8, SUMO and ubiquitin pathways 

are sensitive to oxidising agents.  Here, studies of the SUMO conjugation pathway in two 

evolutionary divergent yeast, S. cerevisiae and S. pombe have shown no evidence that 

the E1-E2 disulphide observed in mammalian cells in response to H2O2 is conserved.  

However, we show that the E1 of the Rub1 pathway does form a HMW complex in 

response to diamide, although the other components of this complex are currently 

unknown.  In this chapter we have extended previous studies from our lab that showed 

that Uba1 and Cdc34 form a HMW complex in response to diamide to demonstrate that 

this Uba1-Cdc34 complex is formed regardless of strain background or epitope-tag.  

Importantly, here we have demonstrated that Cdc34 is specifically more sensitive to 

diamide than the other ubiquitin pathway E2 enzymes tested.  While previous studies 

had shown that the formation of the Uba1-Cdc34 HMW complex coincided with an 

increase in the stability of the CKI Sic1 and cell cycle delay, we had been unable to  
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directly link these events.  Here we have shown that cells that have a decreased 

expression of CDC34 or UBA1 are resistant to diamide providing direct evidence 

between the formation of the Uba1-Cdc34 disulphide and cell viability in response to 

diamide.         

3.7.1 Redox regulation of the SUMO pathway 

While there is evidence for the regulation of the mammalian SUMO pathway E1 and E2 

enzymes by H2O2, the conservation of this sensitivity to oxidation has not been explored 

in the S. pombe or S. cerevisiae model systems.  Significantly, we find that that the E1-E2 

disulphide that forms in response to low levels of H2O2 in mammalian cells could not be 

detected in either S. cerevisiae or S. pombe treated with either diamide or H2O2 (Figure 

3.4).  

In mammalian cells, treatment with high concentrations of H2O2 (100 mM) leads to an 

increase in the global levels of SUMO conjugation while at lower concentrations of H2O2 

(1 mM) SUMO conjugation is inhibited by the formation of an E1-E2 disulphide (Bossis 

and Melchior, 2006).  The regulation of SUMO conjugation at different H2O2 

concentrations appears to be due to the specific sensitivities of the conjugating and 

deconjugating enzymes.  Indeed, the SENP cysteine proteases that remove SUMO from 

its targets are also sensitive to oxidation.  Exposure of SENPs to H2O2 can lead to the 

oxidation of their catalytic cysteine residue to the irreversible Cys-SO2 or Cys-SO3 forms 

and a loss of enzyme activity (Xu et al., 2008).  The activity of the mammalian SENP1 has 

been shown to be abolished in response to H2O2.  Reversible oxidation of the SENP1 

active site cysteine residue leads to the formation of a protective disulphide with 

another protease and a subsequent loss of activity.  Interestingly, another mammalian 

SENP, SENP2 does not form a disulphide under the same conditions providing a 

mechanism whereby specific SUMO targets could be affected in response to H2O2 .  The 

human SENP3 has also been shown to be regulated under conditions of mild oxidative 

stress.  Usually kept at a low basal level by ubiquitin-mediated degradation, in response 

to mild oxidative stress SENP3 is oxidised at two cysteine residues and binds to HSP90 

which prevents its ubiquitination and subsequent degradation (Yan et al., 2010). 

In S. cerevisiae, as with mammalian cells the global level of SUMO conjugation increases 

after exposure to high levels of oxidative stress (Zhou et al., 2004).  Interestingly, in 
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contrast to mammalian cells, treatment of S. cerevisiae with 1 mM H2O2 leads to an 

increase in global SUMO conjugates.  One of the S. cerevisiae SENP enzymes, Ulp1 has 

been shown to be particularly sensitive to oxidation even at low concentrations of H2O2, 

leading to the formation of a dimer (Xu et al., 2008).  Taken together, these studies 

alongside our data suggest that in response to H2O2 and diamide the SUMO pathway in 

S. cerevisiae may be regulated through the deconjugating machinery rather than the 

conjugating enzymes.   

3.7.2 Redox regulation of the Rub1/Nedd8 pathway 

The E2 of the mammalian Nedd8 pathway conjugation pathway, Ubc12 has been shown 

to form a HMW complex in response to H2O2 leading to the inhibition of Nedd8 

conjugation to Cul-1 (Kumar et al., 2007).  Here, we have shown that the Rub1 pathway 

E1 (Uba3) of S. cerevisiae forms a HMW complex in response to diamide treatment 

(Figure 3.3).  Further work is required to establish the components of the HMW complex 

in S. cerevisiae however the size of the complex suggests that it may not be a simple E1-

E2 complex.  It will however be interesting to investigate the components of this 

complex as this may provide clues to the regulation of the Rub1 pathway in response to 

oxidative stress.   

The best established targets for Nedd8 modification are the cullins, a group of proteins 

which act as a scaffold for the formation of the multi-subunit, cullin-RING E3 ubiquitin 

ligases such as the SCF complexes.  Addition of Nedd8 to cullins increases their ubiquitin 

E3 activity possibly by facilitating contact between the E2 and the modifier (Saha and 

Deshaies, 2008).  The activation of CRLs by Nedd8 modification demonstrates cross-talk 

between the two pathways and thus a mechanism whereby oxidation events that affect 

the Nedd8/Rub1 pathway can also affect ubiquitination of certain substrates.  This has 

been shown to be the case for the lung Epithelial Sodium Channel (ENaC) whose 

expression at the surface of epithelial cells increases in response to ROS.  Increased 

ENaC under oxidative conditions is believed to arise as a result of inhibition of the Nedd8 

conjugation pathway by oxidation of Ubc12 and subsequent inactivation of the CRL-E3 

ubiquitin ligase responsible for the ubiquitin-mediated degradation of ENaC (Downs et 

al., 2013).  Furthermore, cross talk between the Nedd8 and ubiquitin pathways under 

oxidative stress conditions has been demonstrated.  Similar to SUMOylation, the levels 
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of Nedd8 conjugation increase upon exposure to oxidative stress.  Interestingly, 

however, the conjugation of Nedd8 is directed through the ubiquitin E1 enzyme and not 

the Nedd8 E1 leading to mixed ubiquitin and Nedd8 chains on substrates .  The purpose 

behind this response to oxidative stress is currently unknown but cross-talk between the 

pathways in response to stress has the potential to expand the substrates targeted by 

these two pathways.   

Nedd8/Rub1 is removed from its substrates by a highly conserved complex called the 

COP9 signalosome (CSN).  Unlike the SUMO pathways isopeptidases, which use catalytic 

cysteine residues to hydrolyse the isopeptide bond between SUMO and its target 

substrate, the CSN is a metalloprotease (Cope et al., 2002) and has currently not been 

shown to be redox-regulated.     

3.7.3 Redox regulation of the ubiquitin pathway 

We had previously established that Uba1 and Cdc34 are oxidised, forming a HMW 

complex in response to specific oxidising agents.  However, the specificity of the 

oxidation of Cdc34 had not previously been explored.  Excitingly, in this chapter we have 

shown that Cdc34 displays increased sensitivity to diamide relative to many other 

ubiquitin pathway E2 enzymes examined (Figure 3.6).  Importantly, we show that the 

Uba1-Cdc34 HMW complex forms independent of strain background or epitope tag. 

The BY and W303 strain backgrounds have different sensitivities to oxidising agents.  

Cells from the W303 background carry a mutation in the YBP1 gene which abolishes its 

function.  Ybp1 regulates the cellular response to oxidative stress by forming a stress-

induced complex with the transcription factor Yap1 stimulating Yap1 oxidation, 

localisation to the nucleus and thus its activity as a transcription factor (Veal et al., 

2003).  Interestingly cells lacking YBP1 show an increased sensitivity to H2O2 and tBOOH 

but not to diamide.  Cells from the BY strain background differ from W303 in their Yap1 

dependent gene expression specifically they rely on Gpx3 while W303 cells are 

dependent on Tsa1 but not Gpx3 for Yap-dependent gene expression (Okazaki et al., 

2005).  Although W303 and BY strains show differences in their stress responses, the 

Cdc34 HMW complex was formed independent of strain background in this study (Figure 

3.1).     
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While we had previously shown that the formation of the Uba1-Cdc34 complex 

coincides with an increase in Sic1 stability and cell cycle delay in response to diamide we 

had been unable to show direct evidence to link these events.  The formation of the 

Uba1-Cdc34 complex weakens the Cdc34 pathway and thus we proposed that the Cdc34 

pathway must be weakened for diamide-induced cell cycle arrest and to maintain 

viability in response to this oxidising agent.  Previous attempts to make Cdc34 mutants 

that were more or less sensitive to oxidation have been hampered by the essential 

nature of this gene however, here we have been able to utilise a commercially available 

DAmP strain collection to artificially weaken the Cdc34 pathway.   Importantly, we have 

shown that cells with a decreased expression of either CDC34 or UBA1 show an 

increased resistance to diamide (Figure 3.7).  These results suggest weakening of the 

Cdc34 pathway is essential for cell cycle arrest and to maintain viability after treatment 

with diamide.  To further these studies it would be interesting to monitor how the ratio 

of overall Cdc34 to Cdc34 in the HMW complex differs between wild type cells and the 

CDC34 DAmP strain.     

The specific sensitivity of Cdc34 over the other ubiquitin pathway E2s to diamide is 

advantageous as it allows the targeting of specific Cdc34 targets such as Sic1.  The basis 

of the increased Cdc34 sensitivity is unknown.  Proteins which contain cysteine residues 

with a low pKa are particularly sensitive to oxidation.  Interestingly, the active site 

cysteine residue of three ubiquitin E2s, mammalian UbcH10 and Ubc2 and Ubc13 from S. 

cerevisiae have been shown to exist with a high pKa (Tolbert et al., 2005).  Sequence 

alignment has shown that the residues that increase the pKa of the catalytic cysteine 

residue of these E2s are not conserved, however, acidic and basic residues are found in 

all three sequences that could modulate the pKa of the active site. Interestingly, the pKa 

of the active site must be lowered for the E2 to accept and transfer ubiquitin and it is 

thought that the E1 or ubiquitin itself must be able to lower the pKa of the active site 

cysteine of the E2 to allow ubiquitin to move through the pathway.  The high pKa of the 

active site cysteine of E2 enzymes may act as a protective mechanism against unwanted 

reactions such as oxidation.  It would thus be interesting to investigate the kinetics of 

the active site cysteine of Cdc34 to see whether it exists with a lower pKa than other 

E2s, underlying its increased susceptibility to oxidation.   
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As only a small proportion of Cdc34 is involved in the Uba1-Cdc34 complex it could be 

that only Cdc34 in a specific localisation is oxidised.  In the case of the mammalian 

SUMO pathway, the E1-E2 disulphide that forms in activated macrophages after the 

oxidative burst was shown to involve only a fraction of both enzymes.  Importantly, the 

E1-E2 disulphide was shown to form specifically in the cytoplasm although the majority 

of Uba2 and Ubc9 was nuclear (Bossis and Melchior, 2006).  Although Cdc34 shares a 

similar cellular localisation to other ubiquitin E2s it could be possible that a small 

proportion of specifically localised Cdc34 is oxidised.   

Similar to the SENP enzymes, several mammalian deubiquitinase enzymes (DUBs) have 

been shown to be redox regulated.  Importantly, oxidative inactivation of the DUB USP1 

was shown to trigger the DNA damage tolerance response after oxidative DNA damage 

(Cotto-Rios et al., 2012; Lee et al., 2013).  Preliminary work from our lab has also 

suggested that specific DUBs in S. cerevisiae may show sensitivity to diamide (data not 

shown) offering another mechanism by which the ubiquitin pathways may be redox-

regulated.          

In this chapter we have established that Cdc34 is specifically more sensitive to oxidation 

by diamide than other ubiquitin pathway E2s that were investigated.  These findings 

were published as part of a paper that identified Cdc34 as a stress-sensing mechanism to 

respond to oxidative stress (Doris et al., 2012).  Having established that Cdc34 oxidation 

was important in cell cycle regulation the next objective was to investigate other 

pathways that may be involved in regulation of the cell cycle in response to diamide.     
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Chapter 4: Regulation of the cell cycle in response to oxidative stress 

 

4.1 Background 

In S. cerevisiae exposure to different oxidising agents has been shown to lead to arrest at 

specific points in the cell cycle dependent on the oxidant.  For example a G1 phase arrest 

occurs in response to menadione, H2O2 (Flattery-O'Brien and Dawes, 1998) and diamide 

(Doris et al., 2012) while a G2/M phase arrest occurs in response to menadione 

(O'Callaghan, 2004), arsenite and H2O2.  However, despite these studies the mechanisms 

underlying the various cell cycle responses are largely unknown.  Recent work from our 

lab revealed that the ubiquitin pathway E2, Cdc34 is specifically sensitive to oxidation by 

diamide and H2O2, forming an inhibitory disulphide bond and leading to an increase in 

the stability of Sic1 and a subsequent G1 phase arrest (Doris et al., 2012)(Figure 4.1).  

Only a proportion of Cdc34 and Uba1 is oxidised and sequestered in the HMW 

disulphide and it could be that this is enough to maintain cell viability in response to 

oxidative stress while maintaining some Cdc34 activity.  Indeed by decreasing but not 

abolishing the expression of CDC34 or UBA1 cells show an increased resistance to 

diamide (Figure 3.7). 

Multiple factors are involved in controlling cell cycle commitment.  Interestingly, recent 

work studying the pheromone-dependent G1 phase arrest demonstrated that multiple 

and distinct pathways including transcriptional repressors and CKIs all contribute to a 

robust G1 phase arrest under these conditions (Pope and Pryciak, 2013).  Hence, it was 

possible that Cdc34 oxidation and increased Sic1 stability were only one aspect of the 

arrest and that there were multiple pathways involved.  Indeed, deletion of SIC1 does 

not completely abolish the G1 phase delay in response to diamide suggesting that a 

further Sic1-independent mechanism may be required for diamide-induced G1 phase 

arrest (Doris et al., 2012).  Thus, in this chapter the potential contribution of other G1 to 

S phase regulatory pathways in oxidative stress-dependent cell cycle control will be 

investigated.           
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4.2 Rad53 is not activated by diamide 

Activation of the DNA damage checkpoint can lead to cell cycle arrest at different points 

in the cell cycle including G1 phase (Allen et al., 1994).  Oxidising agents differ in their 

ability to activate the DNA damage checkpoint through Rad9, for example H2O2 has been 

shown to lead to a G2 phase Rad9-dependent cell cycle arrest while menadione leads to 

a G1 phase, Rad9-independent cell cycle arrest (Flattery-O'Brien and Dawes, 1998).  The 

effector kinase Rad53 is phosphorylated upon checkpoint activation (Segurado and 

Tercero, 2009) for example in response to the DNA damaging agent hydroxyurea (HU) 

(Figure 4.2 A) and thus detection of phosphorylated Rad53 is used as an indicator of DNA 

damage checkpoint activation.  Thus we analysed Rad53 phosphorylation during the cell 

cycle in diamide-treated and untreated cells.  Cells were synchronised in G1 phase with 

α-factor and released into media in the presence or absence of diamide.  Budding 

analysis confirmed that at the point of release the majority of cells were unbudded 

suggesting a successful G1 phase arrest (Figure 4.2 B).  Western blot analysis using a 

Rad53 specific antibody showed no evidence of Rad53 phosphorylation during the cell 

cycle in either diamide-treated or untreated cells (Figure 4.2 C).  These analyses suggest 

that the cause of the DNA damage checkpoint is not activated in response to diamide 

and is not involved in the G1 phase arrest observed under these conditions.     

4.3 Met4 plays a role in G1 regulation in diamide-treated and untreated cells 

Given that Sic1 is an inhibitor of G1 phase progression next the roles of two other 

inhibitors of G1 progression, the CKI Far1 and the transcription factor Met4 were 

investigated.  Furthermore, Far1 and Met4 are also regulated by Cdc34 thus it was 

possible that the formation of the Uba1-Cdc34 HMW complex in response to diamide 

could also alter the stability/modification of these cell cycle regulators.   

The Met4 transcription factor is kept inactive through ubiquitination mediated by Cdc34 

and SCFMet30 but is deubiquitinated (Kaiser et al., 2000) and activated in response to 

heavy metal stresses such as cadmium and arsenite (Yen et al., 2005).  Activation of 

Met4 leads to a Met4-dependent G1 phase cell cycle arrest although the mechanisms 

behind the Met4-dependent cell cycle arrest remain largely unknown.  Deletion of MET4 

is able to supress the inviability of met30 mutants suggesting that the essential role of 

SCFMet30 is to keep Met4 inactive (Patton et al., 2000).   
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The role of Met4 in cell cycle regulation was first investigated in met4Δ cells.  met4Δ 

cells were arrested in G1 phase with α-factor and released into media with or without 

diamide.  A small proportion of budded cells and cells with greater than 1C DNA content 

were observed at the release from α-factor suggesting that met4Δ cells were not fully  

arrested in G1 phase (Figure 4.3 A and B).  In MET4 cells the population of budded cells 

increased rapidly between 15 and 30 minutes which coincided with a shift in the 

population of cells from 1C DNA content to 2C DNA content (Figure 4.3 A and B, MET4).  

In contrast, large proportions of met4Δ cells remained unbudded and with 1C DNA 

content after release from the α-factor block (Figure 4.3 A and B, met4Δ).  Although 

preliminary, these analyses show that met4Δ cells release from the G1 phase, α-factor 

induced cell cycle arrest much slower than MET4 cells suggesting that Met4 plays a role 

in G1 phase in unstressed conditions.   

After release from the G1 phase arrest into diamide-containing media, MET4 cells have 

an approximately 15 minute delay before the appearance of budded cells and 

movement from 1C to 2C DNA content (Figure 4.3 A and B, MET4).  In contrast, a large 

proportion of met4Δ cells treated with diamide remained unbudded and with a 1C DNA 

content an hour after release from the α-factor arrest (Figure 4.3 A and B met4Δ).  Taken 

together these data suggest that Met4 plays a role in the G1 phase arrest in both 

unstressed and stressed conditions.  However, in contrast to sic1Δ cells which have a 

shorter G1 phase in response to diamide, met4Δ cells have a prolonged G1 phase arrest 

under these conditions.   

As described previously, changes in Met4 ubiquitination regulate Met4 activity.  Met4 

has also been shown to exist in a phosphorylated form in the absence of MET30 (Kaiser 

et al., 2000) and in response to cadmium and arsenite-induced heavy metal stress (Yen 

et al., 2005).  Thus we next investigated whether Met4 modification is altered during the 

cell cycle in diamide treated and untreated cells.  Cells expressing Met4-18Myc from the 

normal chromosomal locus were arrested in G1 phase with α-factor and released in to 

media with or without diamide.  Budding and DNA content analysis revealed that Met4-

18Myc cells arrested similar to wild type cells in response to α-factor (Figure 4.4 A and 

B).  High molecular weight Met4 containing bands were observed throughout the cell 

cycle in both diamide-treated and untreated cells (Figure 4.4 C).  Importantly, in 

agreement with previous studies (Kaiser et al., 2000) no change in the modification  
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pattern of Met4 was observed in untreated cells during the cell cycle (Figure 4.4 C).  

These results also show that Met4 modification is not detectably affected by diamide 

treatment (Figure 4.4 C).  These analyses show no obvious change in Met4 modification 

during the cell cycle in either diamide-treated or untreated cells suggesting that 

activation of Met4 is not involved in the G1 phase arrest observed in response to 

diamide treatment. 

4.4 The G1 phase diamide-induced delay does not lead to an increase in Far1 stability 

Initial studies suggested that the role of Far1 in G1 phase arrest was through the 

inhibition of Cln2 in response to α-factor (Chang and Herskowitz, 1990).  However, Far1 

degradation has more recently been shown to be required for normal cell cycle 

progression (Fu et al., 2003).  FAR1 is required for the G1 phase arrest in response to α-

factor, thus we were unable to investigate the requirement of FAR1 for the diamide-

induced cell cycle delay using a far1Δ strain.   As a downstream target of Cdc34, we 

investigated whether similar to Sic1, Far1 levels are also stabilised in response to 

diamide.  A strain was successfully constructed which expressed FAR1 from the normal 

chromosomal locus with the addition of 13 Myc epitopes.  To ensure that the addition of 

13 Myc epitopes to Far1 did not affect protein function, we first looked at the sensitivity 

of the Far1-13Myc strain to α-factor using halo tests (Figure 4.5 A).  As expected, wild 

type MATa cells had their growth inhibited by α-factor, while MATα cells did not show 

any detectable sensitivity to α-factor.  MATa far1Δ cells also did not show any 

detectable sensitivity to α-factor consistent with the essential role of Far1 for G1 phase 

arrest in response to the mating pheromone.  In contrast, MATa Far1-13Myc cells, 

similar to wild type MATa cells, showed a clear zone of inhibition around the α-factor, 

suggesting that the addition of 13Myc epitopes to Far1 does not affect the function of 

the protein in its response to α-factor.   

Having established that the addition of an epitope tag did not appear to affect the 

function of Far1 we used this strain to investigate the stability of Far1 during the cell 

cycle in the presence and absence of diamide.  Cells were arrested in G1 phase using α-

factor and released in to media with or without diamide.  As expected, Far1 levels were 

highest at the arrest point (time 0) in both diamide-treated and untreated samples 
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(Figure 4.5 D).  Far1 levels remained high 15 minutes after release in both samples but 

decreased between 15 and 30 minutes consistent with the DNA content analysis which 

shows the shift from a 1C DNA content population to a 2C population during this time 

(Figure 4.5 C).  The cells treated with diamide show a proportion of cells remaining with 

1C DNA content at the 30 minute time point (Figure 4.5 C) consistent with a diamide-

induced G1 phase cell cycle delay.  However, no increase in Far1 stability is observed in 

these cells (Figure 4.5 D).  Interestingly, Far1 levels were shown to cycle throughout the 

cell cycle in both stressed and unstressed conditions (Figure 4.5 D), appearing in 1C DNA 

content populations (e.g. Figure 4.5 D, -diamide, 75 minutes) and decreasing in 2C 

populations. These results suggest that unlike Sic1, Far1 stability is not affected by the 

formation of the Uba1-Cdc34 HMW complex.  This data supports previous work that 

Far1 has a role in the regulation of the normal cell cycle.  

4.5 Ydj1 levels remain stable during the cell cycle in diamide-treated or untreated cells 

Having explored two negative cell cycle regulators, next we explored Ydj1 a master 

upstream regulator of Start.  Ydj1 is a DnaJ-related co-chaperone involved in the 

regulation of Cln3, the most upstream cyclin involved in the initiation of start (Figure 

1.5).  Cln3 is sequestered in the ER in early G1 through binding to the Hsp70 protein 

Ssa1.  In late G1, Cln3 binding to Ssa1 is displaced by Ydj1 allowing the movement of 

Cln3 to the nucleus to initiate Start (Vergés et al., 2007).  Interestingly, Ssa1 has recently 

been found to be sensitive to oxidative stress (Wang et al., 2012).  Further preliminary 

analysis of Ydj1 in S. cerevisiae had revealed that similar to Cdc34, Ydj1 forms a HMW 

disulphide in response to diamide (Figure 4.6 A).  Due to its role in Start initiation and its 

potential redox regulation, it was possible that Ydj1 levels/modification were altered 

during the normal cell cycle and following oxidative stress.  Unfortunately, ydj1Δ cells 

are inviable in liquid media (Caplan and Douglas, 1991) and thus we were unable to use 

this strain for further analyses of the role of Ydj1 in the cell cycle.  Therefore to test our 

hypothesis, cells expressing Ydj1-3HA from the normal chromosomal locus were 

arrested in G1 phase by α-factor and released into media in the presence or absence of  
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diamide.  Budding and DNA content analysis confirmed that Ydj1-3HA cells arrested in 

response to α-factor treatment (Figure 4.6 B and C).  Interestingly, despite the 

importance of Ydj1 in the regulation of Start, no differences were observed in the levels 

of Ydj during the cell cycle in diamide-treated or untreated cells (Figure 4.6 D).  

Furthermore, Ydj1 was not shown to form a HMW complex in diamide-treated cells 

under these conditions (Figure 4.6 D).  The absence of a HMW complex in these cells 

may reflect a specific response of Ydj1 to different concentrations of diamide as cells 

were treated with 2 mM diamide in the cell cycle experiments (Figure 4.6 D) and 5 mM 

diamide in the preliminary experiments (Figure 4.6 A).  Overall we see no obvious 

modification of Ydj1 or effect on Ydj1 protein stability during the cell cycle in diamide-

treated or untreated cells   

4.6 Rub1 is essential for cell cycle regulation in response to diamide 

Previous studies have demonstrated a genetic linkage between SCFCdc4 and the Rub1 

pathway (Lammer et al., 1998; Cope et al., 2002).  These studies have shown that RUB1 

and CSN5 are critical in conditions where SCFCdc4 is compromised.  As we have 

demonstrated in Chapter 3, in response to diamide a proportion of Cdc34 is sequestered 

in a HMW complex and it could be that this is enough to compromise SCFCdc4.  

Furthermore, in Chapter 3 we showed evidence of the Rub1 pathway E1, Uba3 forming a 

HMW complex in response to diamide which may affect the movement of Rub1 through 

the conjugation pathway.  Therefore the roles of the Rub1 pathway in the diamide-

induced G1 phase arrest were explored. 

As a dynamic modification, Rub1 is added and removed therefore we constructed two 

Rub1 pathway mutants, one where the gene encoding the modifier is deleted (rub1Δ) 

and one where Rub1 cannot be removed from its target substrate (csn5Δ).  To confirm 

that these strains were correct we obtained a commercially available antibody directed 

towards Cdc53, a well-established Rub1 substrate and part of the SCFCdc4 complex.  

Western blot analysis of Cdc53 in wild type cells showed the presence of two forms of 

Cdc53 (Figure 4.7 A).  The two forms of Cdc53 were confirmed to be the modified and 

unmodified forms of Cdc53, as rub1Δ cells contained only the lower, unmodified form of 

Cdc53 while in csn5Δ cells Cdc53 was present only in the modified form (Figure 4.7 A).  

  



117 
 

 

  



118 
 

Importantly, in agreement with previous studies (Wee et al., 2002), the majority of 

Cdc53 was present in the Rub1 modified form in wild type cells.      

Having established that the antibody and strains were behaving as expected we next 

investigated the pattern of Rub1 modification to Cdc53 during the cell cycle in diamide-

treated and untreated cells.  Rub1 modification of Cdc53 is predicted to regulate its 

activity (Lammer et al., 1998).  Therefore it could be that Cdc53 modification by Rub1 is 

regulated during the cell cycle.  Furthermore, as Cdc53 is part of the SCFCdc4 complex 

along with Cdc34, it could be that under conditions when Cdc34 is weakened e.g. after 

diamide treatment that Cdc53 regulation may be affected.  Thus we explored Cdc53 

modification in diamide-treated and untreated cells.  Wild type cells were synchronised 

in G1 phase using α-factor and released into media with or without diamide.  G1 phase 

synchrony was confirmed by bud and DNA content analysis (Figure 4.7 B and C).  At the 

G1 phase block, as in mid-log phase cells, Cdc53 was predominantly in the Rub1 

modified form (Figure 4.7 D).  Interestingly, there was no obvious change in Rub1 

modification during the cell cycle in diamide-treated or untreated cells. 

Deletion of RUB1 or CSN5 has been shown to have no discernible growth phenotypes 

unless the SCFCdc4 is compromised (Lammer et al., 1998; Cope et al., 2002).  Although no 

obvious differences were observed in Cdc53 Neddylation during the cell cycle it was 

possible that the Rub1 pathway was still playing an important role in cell cycle 

regulation.  rub1Δ cells were synchronised in G1 phase using α-factor and released into 

media in the presence or absence of diamide.  Budding and DNA content analysis 

confirmed that rub1Δ cells were able to arrest fully in G1 phase in response to α-factor 

(Figure 4.8 A and B rub1Δ).  In the absence of diamide, rub1Δ cells released from the G1 

phase block and commenced budding and DNA replication similar to RUB1 cells (Figure 

4.8 A and B compare RUB1 and rub1Δ).  The budding and DNA content analysis of rub1Δ 

cells also coincided with a decrease in Sic1 levels.  Unexpectedly, budding and DNA 

content analysis revealed that rub1Δ cells displayed a prolonged G1 phase arrest 

following diamide treatment.  In contrast to RUB1 and untreated rub1Δ cells, a 

significant number of unbudded cells persisted when rub1Δ cells were treated with 

diamide (Figure 4.8 A).  Furthermore, in agreement with these data, the proportion of 

rub1Δ cells with 1C DNA content at 30 minutes was much higher in rub1Δ cells   
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compared to RUB1 cells after diamide treatment (Figure 4.8 B compare RUB1 and rub1Δ 

diamide).  Western blot analysis also showed an increase in Sic1 stability at 30 minutes 

in diamide-treated rub1Δ cells compared to untreated rub1Δ cells (Figure 4.8 C).  

Moreover, a high population of diamide-treated rub1Δ cells had 2C DNA content from 

45 minutes until the end of the experiment consistent with the also cells arresting in G2 

phase.  

Having established that in the absence of RUB1, cells are able to traverse the cell cycle 

under unstressed conditions but arrest their cell cycle in both G1 and G2 phase in 

response to diamide treatment we next explored regulation of the cell cycle in the 

absence of CSN5.   

csn5Δ cells were synchronised in G1 phase using α-factor and were released into media 

in the presence or absence of diamide.  Budding and DNA content analysis confirmed 

that csn5Δ cells were arrested in G1 phase in response to α-factor (Figure 4.9 A and B).  

Interestingly, untreated csn5Δ cells released from the G1 phase arrest marginally faster 

than CSN5 cells as demonstrated by a higher proportion of cells with 2C DNA content 15 

minutes after α-factor release (Figure 4.9 B, CSN5 compared to csn5Δ).  In contrast to 

rub1Δ cells, budding and DNA content analysis revealed that diamide-treated csn5Δ cells 

released from the G1 phase arrest quicker than CSN5 cells (Figure 4.9 A and B).  The 

increased proportion of csn5Δ, diamide-treated cells with 1C DNA content at 90 minutes 

also revealed that in contrast to rub1Δ cells, csn5Δ cells enter a second cell cycle.  These 

data suggest that csn5Δ cells respond to diamide in a similar manner to CSN5 cells.  

Taken together, these analyses show that Cdc53 exists predominantly in its modified 

form throughout the cell cycle in both diamide-treated and untreated conditions.  In 

agreement with these observations, csn5Δ cells where Cdc53 exists only in its modified 

form, display a similar cell cycle response to diamide to CSN5 cells and may actually 

release from the G1 phase arrest faster than CSN5 cells.  In contrast, rub1Δ cells where 

Cdc53 remains unmodified show a prolonged G1 and G2 phase arrest in response to 

diamide compared to RUB1 cells.  These results suggest that Cdc53 modification is 

essential for cell cycle regulation in response to diamide.    
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4.7 Discussion 

Previous work from our lab had shown that formation of the Uba1-Cdc34 HMW complex 

coincided with an increase in the stability of Sic1.  However, deletion of SIC1 did not 

completely alleviate the diamide-induced cell cycle arrest suggesting the involvement of 

other, Sic1-independent pathways in the G1 phase arrest.  In this chapter we have 

investigated a number of Cdc34-dependent and independent pathways that may play a 

role in the diamide-induced G1 phase arrest.  Importantly, we have identified that the 

Rub1 pathway is essential for the cellular response to diamide.  In the absence of RUB1, 

cells were shown to arrest in both G1 and G2 phase of the cell cycle in response to 

diamide.  Interestingly, here we show that Cdc53 a key target of Rub1 modification and 

an important cell cycle regulator exists predominantly in the Rub1 modified form 

throughout the cell cycle in both diamide-treated and untreated cells and that cells 

which have Cdc53 only its Rub1 modified form (csn5Δ) are able to release from the G1 

phase diamide-induced arrest similar to CSN5 cells and traverse the cell cycle.  These 

results suggest that Rub1 modification of Cdc53 is important for the cellular response to 

diamide.  The involvement of two Cdc34-dependent G1 phase regulators, Far1 and Met4 

in the diamide-induced G1 phase arrest were also investigated.  Here, we show that 

although Met4 ubiquitination patterns do not change during the cell cycle or in response 

to diamide treatment, Met4 plays a role in normal cell cycle regulation and in the 

regulation of the cell cycle in response to oxidative stress.       

Cdc34 oxidation is coincident with an increase in Sic1 stability however deletion of SIC1 

does not lead to a complete release from the diamide-induced cell cycle arrest.  

Alongside Sic1, two other cell cycle inhibitors Far1 and Met4 are also regulated by 

Cdc34.  As with Sic1, the CKI Far1 is also targeted for degradation by Cdc34 and SCFCdc4.  

The role of Far1 has traditionally been thought of as solely in response to mating 

pheromone where Far1 inhibits Cdc28-Cln complexes to bring about a G1 phase arrest 

prior to mating (Chang and Herskowitz, 1990).  Far1 has also been linked to cell cycle 

regulation in the mitotic cell cycle (Fu et al., 2003) and in agreement we have shown that 

Far1 accumulates at G1 in response to α-factor and during the subsequent G1 phases 

after release from pheromone block (Figure 4.5 D, 75 minutes – diamide).  Far1 is 

essential for the cellular response to α-factor (Figure 4.5 A) therefore we were unable to 

investigate the G1 phase arrest in response to α-factor in far1Δ cells.  However, using 



125 
 

cells expressing Far1-13Myc we saw no evidence of an increase in Far1 stability after 

diamide treatment (Figure 4.5 D).  As both Sic1 and Far1 are ubiquitinated by SCFCdc4 

these data imply the involvement of another regulatory mechanism.  As discussed in 

Chapter 3 only a small proportion of Cdc34 is oxidised which could reflect that only 

Cdc34 in a specific location is oxidised.  Specific localisation of Cdc34, Sic1 or Far1 could 

explain the increased stability of Sic1 but not Far1 although both are targeted for 

ubiquitination through SCFCdc4.  Interestingly, Far1 degradation has also been shown to 

be regulated by the AAA ATPase, Cdc48 (Fu et al., 2003).  Cdc48 has been shown to 

participate in many cellular activities including the recognition and transport of 

polyubiquitinated proteins to the 26S proteasome and the gene encoding Cdc48 is 

essential in S. cerevisiae.  A study using a strain whereby Cdc48 was degraded in a 

temperature-dependent manner was used to study the relationship between Cdc48 and 

Far1.  This study found that after Cdc48 had been degraded cells were unable to 

overcome α-factor-induced G1 phase arrest due to an inability to degrade Far1.  This 

study demonstrates a way that Far1 may be regulated differently to Sic1 which may 

contribute to the differences in their stability in response to diamide. 

The Met4 transcription factor is ubiquitinated through Cdc34 and SCFMet30 which keeps it 

in an inactive state.  In conditions such as a drop in cellular methionine or in response to 

heavy metal stress, Met4 ubiquitination is inhibited and deubiquitination of Met4 

converts it to an active transcription factor.  Full activation of Met4 leads to the 

expression of genes required for synthesis of sulphur-containing amino acids (Lee et al., 

2010) and a cell cycle arrest (Yen et al., 2005).  Here, although no changes in Met4 

modification were observed (Figure 4.4 C) we show a role for Met4 in cell cycle 

regulation in both diamide-treated and untreated cells (Figure 4.3). 

The 70 kDa heat shock proteins (Hsp70s) are a family of highly conserved molecular 

chaperones, essential for viability whose activity is regulated by the Hsp40 chaperones 

(Walsh et al., 2004).  In S. cerevisiae, the upstream cyclin/Cdk complex, Cdc28-Cln3 is 

sequestered at the ER until late G1 phase by binding to the Hsp70 chaperone Ssa1.  In 

late G1, a surplus of the Hsp40 protein Ydj1 leads to it displacing Cln3 in binding to Ssa1 

allowing Cln3 to move to the nucleus and initiate Start (Figure 1.5) (Vergés et al., 2007).  

Interestingly, Ssa1 has been shown to contain two redox-sensitive cysteine residues 

which are hypersensitive to thiol-reactive compounds.  Inactivation of Ssa1 by oxidation 
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was shown to lead to activation of the heat shock response by alleviating the repression 

of Ssa1 on Hsf1, a transcription factor that mediates the heat shock response (Wang et 

al., 2012).  Our preliminary data had suggested that Ydj1 itself was also susceptible to 

oxidation by diamide, forming a HMW complex (Figure 4.6 A).  It was therefore possible 

that this upstream cell cycle regulator was involved in the cellular response to diamide.  

Due to the inviability of ydj1Δ cells in liquid media (Caplan and Douglas, 1991) the 

importance of Ydj1 for the diamide-induced cell cycle arrest could not be investigated.  

However, the stability and modification of Ydj1 during the cell cycle in diamide-treated 

and untreated cells were analysed using a strain expressing Ydj1-3HA.  Interestingly, in 

contrast to mid-log cells, no HMW complex was seen in α-factor arrested cells in 

response to diamide (Figure 4.6 D).  The lack of HMW complex in α-factor synchronised 

cells could be due to the lower concentration of diamide used in these experiments, 

suggesting the HMW complex formation is dose-dependent.  Furthermore, the 

preliminary Ydj1 results were performed on Yjd1-3HA cells in mid-log phase that were 

exposed to the higher concentration of diamide for 30 minutes before cell pellets were 

collected.  Therefore, the difference in the two results could be due to diamide 

concentration, length of time that the cells were treated with diamide and/or the point 

in the cell cycle when diamide was added to the culture.  Interestingly, despite being a 

major regulator of Start, no changes in the protein levels of Ydj1 were observed during 

the cell cycle in either diamide-treated or untreated cells suggesting that Start is not 

regulated directly through Ydj1 availability.  Another cell cycle activator, the 

transcription factor Swi6, has been shown to be sensitive to oxidation.  Swi6 forms part 

of the MBF and SBF transcription factors which control the expression of genes involved 

in morphogenesis (SBF) and DNA replication (MBF).  Swi6 was shown to be oxidised on 

Cys404 in after exposure of cells to lipid hydroperoxide leading to a G1 phase cell cycle 

delay and down regulation of G1 cyclin expression (Chiu et al., 2011).  These results 

demonstrate another pathway upstream of Cdc34/Sic1 that may regulate the G1 phase 

diamide-induced cell cycle arrest.     

In many eukaryotes Neddylation has been shown to play important roles in the cell cycle 

and to be linked to G1 phase regulation.  However, in contrast to many other eukaryotes 

the Rub1 pathway is not essential in S. cerevisiae but has previously been genetically 

linked to G1 phase regulation.  Deletion of RUB1 or CSN5 alongside temperature 
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sensitive mutations in components of the SCFCdc4 complex exacerbates the phenotypes 

associated with the single temperature sensitive mutants (Lammer et al., 1998; Cope et 

al., 2002).  The necessity for the Rub1 pathway when the SCFCdc4 complex is 

compromised is thought to be due to the inability of the cell to cycle Rub1 on and off 

Cdc53 as cdc53 and cdc34 temperature sensitive mutants display synthetic lethality.  

Cdc53 is a cullin which acts as a scaffold in the SCF E3 ubiquitin ligase complex and Rub1 

modification of Cdc53 is thought to positively regulate the activity of the SCF ligases 

(Liakopoulos et al., 1998).  Here, we have shown that the Rub1 pathway is essential for 

cell cycle regulation in response to diamide.  In the absence of RUB1, cells were shown 

to have a prolonged G1 phase arrest after diamide treatment followed by a G2 phase 

arrest (Figure 4.8 B).  Interestingly, in contrast to rub1Δ, cells lacking CSN5 showed a 

similar cell cycle arrest and release profile to wild type cells after diamide treatment 

(Figure 4.9).  The role of Neddylation in the diamide-induced cell cycle arrest remains 

unclear as modification of Cdc53 appeared to be unaffected after diamide treatment.  

However, as Cdc53 is predominantly in the Rub1 modified form during the cell cycle in 

both diamide-treated and untreated cells, similar to the constantly modified Cdc53 that 

is found in csn5Δ cells it could be speculated that Cdc53 must be Neddylated for cell 

cycle progression in response to diamide.  The Rub1 pathway has recently been shown 

to regulate the cell cycle in response to DNA damage (Guenole et al., 2013).  rub1Δ or 

ubc12Δ cells treated with the DNA damaging agent camptothecin arrested in G2/M 

phase with a similar DNA content to rub1Δ cells after exposure to diamide.  

Here we have identified several new contributors and/or regulators of the cell cycle in 

response to diamide.  It would be interesting to further investigate whether the 

pathways identified in this study are also involved in the regulation of the cell cycle in 

response to other oxidising agents and whether they are conserved in other organisms.  

Interestingly, diamide is mainly cleared by the glutathione rather than the thioredoxin 

system (Muller, 1996).  Furthermore, loss of GSH1 leads to a G1 phase cell cycle arrest 

by unknown mechanisms (Spector et al., 2001).  Hence, we next investigated the role of 

the regulatory pathways identified here in the cellular response to glutathione 

depletion.          
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Chapter 5: Glutathione and the cell cycle 

 

5.1 Background 

Glutathione is a highly conserved, abundant antioxidant which is essential for normal 

growth in eukaryotes.  Deletion of GSH1, encoding the rate-limiting step in glutathione 

synthesis leads to glutathione auxotrophy which can be fully rescued by the addition of 

reduced or oxidised glutathione to the media.  Glutathione auxotrophy can also be 

partially rescued by addition of the reducing agent DTT (Spector et al., 2001) suggesting 

that the cellular requirement for glutathione is at least in part due to its role as an 

antioxidant.  Indeed, this conclusion is further supported by the increased sensitivity of 

gsh1Δ cells to certain oxidising agents (Grant et al., 1996).   

Interestingly, the essential role of Gsh1 has also been linked to cell cycle progression.  In 

particular depletion of glutathione from gsh1Δ cells leads to cell cycle arrest, 

predominantly in G1 phase, after approximately 7 generations and a loss of viability 

after 3-4 days (Spector et al., 2001).  However, the mechanisms behind how and why 

gsh1Δ cells arrest in G1 phase in response to glutathione depletion have not been 

investigated.  In Chapter 4 we investigated the role of a number of Cdc34-dependent 

and independent pathways in the diamide-induced G1 phase delay.  Here, we will 

examine whether these same pathways are also involved in the G1 phase arrest 

observed after glutathione depletion.   

5.2 Glutathione depletion leads to cell cycle arrest 

It had previously been shown that gsh1Δ cells in the BY strain background arrest in G1 

phase of the cell cycle after approximately 7 generations of growth in glutathione 

depleted media (Spector et al., 2001).  To confirm that gsh1Δ cells displayed the same 

G1 phase arrest in the W303 strain background, gsh1Δ cells were grown to mid-log 

phase in minimal media containing 1 mM glutathione (SD +GSH), washed twice in sterile 

water, resuspended in minimal media lacking glutathione (SD –GSH) and were grown 

continuously in mid-log for 16 hours (approximately 7 generations).  DNA content 

analysis confirmed that after 16 hours of growth in media lacking glutathione, gsh1Δ 

cells had arrested with 1C DNA content consistent with the cells being arrested in G1  
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phase (Figure 5.1 A).  We hypothesised that the G1 phase arrest of gsh1Δ cells following 

glutathione depletion may be important for cell viability under these conditions at least 

in the short term.  gsh1Δ cells grown for 24 and 48 hours in SD –GSH showed no loss of 

viability when grown on SD +GSH (Figure 5.1 B).  These results suggest that the G1 phase 

arrest observed following glutathione depletion may indeed allow these cells to 

maintain viability.  Having confirmed that our assay mirrored previous results and that 

the loss of GSH1 results in similar cell cycle arrest profiles in different strain backgrounds 

we next investigated the mechanisms underlying the G1 phase arrest.  

5.3 Rad53 is not activated in response to the glutathione depletion-induced cell cycle 

arrest 

The G1 phase cell cycle arrest of glutathione-depleted cells suggested that glutathione 

may be essential for completion of DNA replication.  The DNA damage checkpoint is 

activated when DNA damage causes replication forks to stall.  Rad53 acts as an effector 

kinase in the DNA damage checkpoint and becomes phosphorylated when the 

checkpoint is activated (Segurado and Tercero, 2009).  For example, treatment of cells 

with hydroxyurea (HU) which blocks initiation of DNA replication leads to 

phosphorylation of Rad53 and activation of the DNA damage checkpoint (Figure 5.2 and 

(Segurado and Tercero, 2009).  Given that cells arrest in G1 phase in response to 

glutathione depletion it was possible that Rad53 was also activated under these 

conditions leading to cell cycle arrest.  However, in contrast to HU treatment, Rad53 was 

not phosphorylated in gsh1Δ cells following either 16 hours or 24 hours of glutathione 

depletion (Figure 5.2).  Hence, these results suggest that the DNA damage checkpoint is 

not required for glutathione depletion-induced G1 phase cell cycle arrest.   

5.4 Met4 is not essential for the glutathione depletion-induced G1 phase cell cycle 

arrest 

 Met4 is a transcription factor which regulates the transcription of genes involved in the 

synthesis of sulphur containing molecules such as methionine and cysteine and is 

essential for the regulation of GSH1 gene expression in response to glutathione 

depletion (Wheeler et al., 2002).  Significantly, Met4 has been linked to the regulation of 

G1 phase progression suggesting a potential role in the glutathione depletion-induced 

cell cycle arrest (Patton et al., 2000).   
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Previous studies have shown that ubiquitination of Met4 directed by SCFMet30 retains 

Met4 in an inactive form.  However, under conditions known to activate Met4, for 

example, heavy metal stress, a reduction of ubiquitination is observed corresponding to 

activation of the transcription factor (Yen et al., 2005).  Hence, to investigate the 

relationship between the regulation of Met4 and glutathione depletion, a gsh1Δ strain 

expressing Met4-18Myc was created.  Glutathione was depleted from gsh1ΔMet4-

18Myc cells using the protocol described in Figure 5.1 and protein extracts obtained.  

Significantly, western blot analysis showed a loss of the slower motility forms of Met4-

18Myc consistent with activation of the transcription factor (Figure 5.3 A).   

To assess the potential role of Met4 in the glutathione depletion-induced cell cycle 

arrest, the percentage of budded cells in gsh1Δ and gsh1Δmet4Δ cultures grown in 

media lacking glutathione was examined.  Significantly, this analysis revealed that both 

gsh1Δ and gsh1Δmet4Δ cultures had mainly unbudded cells suggesting that the cells had 

arrested in G1 phase (Figure 5.3 B).  However, to confirm this conclusion DNA content 

analysis was performed on the arrested cells to examine whether DNA replication had 

occurred.  This analysis revealed that following glutathione depletion gsh1Δmet4Δ 

cultures have a predominantly 1C DNA peak, confirming that these cells had indeed 

arrested in G1 phase (Figure 5.3 C).  Furthermore, consistent with these data gsh1Δ and 

gsh1Δmet4Δ cells displayed no loss of viability after 24 and 48 hours of growth in media 

lacking glutathione (Figure 5.3 D).  These data therefore suggest that whilst Met4 may 

be activated in gsh1Δ cells in an attempt to restore glutathione levels, Met4 appears to 

have no major role in the glutathione depletion-induced cell cycle arrest.   

5.5 The CKI Sic1 and not Far1 is essential for G1 phase arrest following glutathione 

depletion 

Interestingly, both Sic1 and Far1 are targeted for degradation by ubiquitination through 

the E2 Cdc34 and the ubiquitin ligase (E3) SCFCdc4.  Given the relationship between 

oxidation of Cdc34, increased Sic1 stability and the regulation of the cell cycle by 

oxidative stress (Chapter 3, (Doris, 2008)) it was possible that Sic1 and/or Far1 may be 

required for the glutathione depletion-induced G1 phase arrest.  To examine this 

possibility gsh1Δfar1Δ and gsh1Δsic1Δ cells were grown in the absence of glutathione 
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 and the budding analysed.  As observed in gsh1Δmet4Δ, the percentage of unbudded 

gsh1Δfar1Δ and gsh1Δ were similar (Figure 5.4 A).  Furthermore, DNA content analysis 

of these cells showed that both gsh1Δ and gsh1Δfar1Δ cells arrested with similar levels 

of 1C DNA (Figure 5.4 B).  However, in contrast, similar analysis of gsh1Δsic1Δ revealed a 

much higher percentage of budded cells (Figure 5.4 A) and consistent with these data a 

much higher proportion of cells with a greater that 1C DNA content (Figure 5.4 B).  It was 

possible that SIC1 compensates for the loss of FAR1 in gsh1Δfar1Δ cells.  To test this 

hypothesis, a triple gsh1Δsic1Δfar1Δ strain was constructed and analysed in glutathione-

depleted conditions as described in Figure 5.1.  As can be seen, gsh1Δsic1Δ and 

gsh1Δsic1Δfar1Δ budding and DNA content analysis were very similar (Figure 5.4 A and 

B).  Taken together, and in agreement with previous, similar studies (Doris, 2008), these 

results suggest that Sic1, not Far1 or Met4 is essential for glutathione depletion-induced 

G1 phase arrest. 

The data above suggests that Sic1 is required for the G1 phase arrest associated with 

glutathione depletion.  During G1 phase, the role of Sic1 is to block the activity of the G1 

cyclins Clb5/6, preventing entry into S phase.  Furthermore, Sic1 is stabilised in response 

to oxidative stress and this is linked to G1 phase cell cycle delay (Chapter 3).  Hence to 

examine the relative roles of Sic1 and Far1 stability in response to glutathione depletion 

a gsh1Δ strain was constructed expressing either Sic1-13Myc or Far1-13Myc from their 

normal chromosomal locus and western blot analysis was performed on these cultures 

after glutathione depletion.  Consistent with the genetic analysis of SIC1 and FAR1 in the 

G1 phase arrest associated with loss of GSH1 function, Sic1-13Myc levels but not Far1-

13Myc levels were found to be increased in response to glutathione depletion (Figure 

5.4 C).         

As we had previously shown that gsh1Δ cells do not lose viability following glutathione 

depletion (Figure 5.1 B) we proposed that the glutathione depletion-induced G1 phase 

arrest is a protective mechanism to maintain viability.  Hence the viability of gsh1Δsic1Δ, 

gsh1Δfar1Δ and gsh1Δsic1Δfar1Δ cells was investigated following growth for 24 and 48 

hours in media lacking glutathione.  Consistent with our hypothesis, gsh1Δsic1Δ and 

gsh1Δsic1Δfar1Δ but not gsh1Δ or gsh1Δfar1Δ displayed a similar loss of viability after 

24 and 48 hours of growth in media lacking glutathione (Figure 5.4 D, upper panel).   
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Importantly, the loss of viability did not occur in GSH1sic1Δ cells, indicating that the 

phenotype is associated with glutathione depletion (Figure 5.4 D, lower panel).        

These results show that Sic1 but not Met4 or Far1 is required for the glutathione 

depletion-induced G1 phase cell cycle arrest and, moreover, that this G1 phase arrest is 

essential to maintain viability.   

5.6 The MAPK Hog1 is important for the response of cells to glutathione but through a 

mechanism that does not involve Sic1 

Previous studies have shown that the Hog1 MAPK is required for the cellular response to 

high osmolarity and a range of other stresses including H2O2 (Haghnazari and Heyer, 

2004).  Moreover, Sic1 is required for G1 phase cell cycle arrest in response to osmotic 

stress and Hog1 phosphorylation of Sic1 on threonine 173 has been directly linked to 

this G1 phase arrest (Escoté et al., 2004).  The results above revealed the importance of 

Sic1, but not Far1 in the response of the cell to glutathione depletion.  Hence, given that 

both these CKIs are targeted by Cdc34/SCFCdc4 it was possible that Sic1 was regulated by 

glutathione depletion via a Hog1-dependent, Cdc34-independent mechanism.  To 

investigate the role of Hog1 in the glutathione depletion-induced G1 phase arrest a 

gsh1Δhog1Δ strain was obtained and the budding analysed.  Interestingly, in contrast to 

gsh1Δ cells, gsh1Δhog1Δ cells displayed a significant increase in budded cells following 

glutathione depletion (Figure 5.5 A).  Furthermore, consistent with the increase in 

budding, a small but reproducible increase in the number of cells with greater than 1C 

DNA content was also detected (Figure 5.5 B).  The increased population of gsh1Δhog1Δ 

cells with buds or with greater than 1C DNA content were however not as high as those 

detected in gsh1Δsic1Δ cell populations (compare Figure 5.5 A and B with Figure 5.4 A 

and B).  Nevertheless, these data raised the possibility that a component of Sic1 

regulation by glutathione depletion may involve Hog1-dependent phosphorylation of 

Sic1 on threonine 173.  Indeed, gsh1Δhog1Δ cells display a lesser but detectable 

decrease in viability compared with gsh1Δsic1Δ in glutathione depleted conditions 

(Figure 5.5 C) raising the possibility that Sic1 stability was being affected.  To test the 

potential role of threonine 173 phosphorylation, a gsh1Δ strain expressing Sic1 with a 

substitution of threonine to alanine (Sic1T173A) from its normal chromosomal locus was  
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obtained.  This mutation prevents Sic1 phosphorylation at this site and had previously 

been shown to prevent the osmotic stress-induced G1 phase cell cycle delay (Escoté et 

al., 2004).  In contrast to gsh1Δhog1Δ cells, bud and DNA content analysis following 

glutathione depletion revealed that gsh1ΔSic1T173A cells behaved similar to gsh1Δ cells 

(Figure 5.5 A and B).  Moreover, consistent with these observations, in contrast to 

gsh1Δhog1Δ and gsh1Δsic1Δ, gsh1ΔSic1T173A cells displayed similar viability to gsh1Δ 

cells following glutathione depletion (Figure 5.5 C).   

Although there is no evidence that Hog1-dependent phosphorylation of threonine 173 

of Sic1 is important for glutathione depletion-induced G1 phase arrest it was possible 

that Sic1 stability may be targeted by Hog1 via another mechanism.  To test whether 

Hog1 is required for the increase in Sic1 stability following glutathione depletion, 

gsh1Δhog1Δ cells expressing Sic1-13Myc from the normal chromosomal locus were 

obtained.  Significantly, western blot analysis of gsh1ΔSic1-13Myc and gsh1Δhog1ΔSic1-

13Myc cells following glutathione depletion revealed no detectable drop in Sic1-Myc 

levels in cells lacking HOG1 (Figure 5.5 D).   

Hence taken together these results suggest that in contrast to osmotic stress, Sic1 is 

regulated in a Hog1-independent manner in cells depleted of glutathione.  However, 

Hog1 does appear to be required for proper cell cycle arrest and retention of viability 

after glutathione depletion by an unknown mechanism(s).   

5.7 Cdc34 protein levels decrease in response to glutathione depletion 

Our studies above reveal the importance of Sic1 in glutathione depletion-induced G1 

phase arrest and furthermore, that the mechanism of regulation is independent of Hog1.  

As we described in Chapter 3, the ubiquitin pathway E2, Cdc34 is specifically sensitive to 

oxidation by diamide, a drug that oxidises glutathione.  In addition, treatment of cells 

with the drug buthionine sulfoximine (BSO) which specifically inhibits Gsh1 also 

stimulates oxidation of Cdc34 (Doris et al., 2012) suggesting that glutathione levels are 

coupled to Cdc34 activity.  Hence, it was possible that glutathione depletion triggers 

oxidation of Cdc34, preventing degradation of Sic1, leading to G1 phase arrest.  To test 

this hypothesis gsh1Δ cells expressing Cdc34-13Myc and Sic1-13Myc from their normal 

chromosomal locus were depleted of glutathione.  Interestingly, after 2 hours of growth 

in media lacking glutathione, Cdc34 did indeed form a HMW, β-mercaptoethanol 
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sensitive complex (Figure 5.6 A*).  Although the amount of Cdc34 involved in this 

disulphide was far less than observed when cells are exposed to diamide the timing of 

the appearance of this band and its selective abundance more closely mimics the effects 

of BSO treatment (Doris et al., 2012).  However, unexpectedly, the overall levels of 

Cdc34 decreased significantly after 24 hours of growth in media lacking glutathione 

(Figure 5.6 A).  Furthermore, this decrease in the level of Cdc34-13Myc was coincident 

with the increased levels of Sic1, suggesting the two events are linked (Figure 5.6 A).  

Interestingly this reduction in Cdc34 levels is rapidly reversed upon addition of reduced 

glutathione to the media and, importantly, coincides with a reduction in Sic1 protein 

levels (Figure 5.6 A).  To demonstrate that the reduction in Cdc34 protein levels was a 

specific response to the lack of glutathione and not due to the arrest of the cells in G1 

phase, gsh1ΔCdc34-13Myc Sic1-13Myc cells were synchronised in G1 phase by α-factor 

and Cdc34-13Myc and Sic1-13Myc protein levels analysed by western blotting (Figure 

5.6 B).  Despite detecting an increase in the levels of Sic1-13Myc, no decrease in the 

levels of Cdc34-13Myc were observed in α-factor arrested cells suggesting that the 

regulation of Cdc34 protein levels after glutathione depletion is indeed a specific 

response.  Next, to establish whether the reduction in Cdc34 protein levels was due to a 

decrease in CDC34 transcript levels, CDC34 mRNA levels in mid-log phase gsh1Δ cells 

growing in glutathione replete media were compared with the levels of CDC34 mRNA in 

gsh1Δ cells growing in media lacking glutathione for 16 hours by qRT-PCR (Figure 5.6 C).  

ARN2 transcript levels were used as a positive control as the expression of this gene has 

been shown to be upregulated in response to glutathione depletion (Ayer et al., 2010). 

Significantly, mRNA analysis revealed that there was no decrease in CDC34 transcript 

levels after glutathione depletion while ARN2 transcript levels increased as predicted 

(Figure 5.6 C).  Thus, this data suggests that the decrease in Cdc34 protein levels is 

regulated via a protein translation and/or stability mechanism(s).  Collectively, these 

results have revealed a new mechanism of Cdc34 regulation that is specifically linked to 

glutathione depletion and not oxidative stress responses or cell cycle regulation.   

5.8 Budding is inhibited by the Rub1 pathway following glutathione depletion 

 Our data above revealed that Cdc34 protein levels are reduced following glutathione 

depletion.  Cdc34 normally acts with different E3 complexes consisting of different F-box 

proteins e.g. Cdc4 and Grr1 and scaffold proteins such as Cdc53 and Rbx1.  Hence it was  
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possible that the levels of proteins such as Cdc53 may also be reduced following 

glutathione depletion.  To examine this possibility, Cdc53 protein levels were examined 

by western blot analysis following glutathione depletion (Figure 5.7 A).  In contrast to 

Cdc34 no significant decrease in Cdc53 protein levels were detected after glutathione 

depletion.  Hence, the effect of glutathione depletion on Cdc34 protein levels appears to 

be specific to this enzyme.  Interestingly, however, the pattern of Rub1 modification of 

Cdc53 (Neddylation) was changed.  In particular, whilst Cdc53 was predominantly Rub1 

modified in mid-log cells, a proportion of Cdc53 was in the unmodified form in 

glutathione-depleted cells (Figure 5.7 A).  To explore the potential role of the Rub1 

pathway further, gsh1Δrub1Δ and gsh1Δcsn5Δ strains which prevent or stimulate Rub1 

modification of Cdc53 (Chapter 4) were constructed.  Interestingly, deletion of RUB1 and 

CSN5 both led to a significant increase in the number of budded cells after glutathione 

depletion (Figure 5.7 B).  Moreover, consistent with the previous result that the 

deNeddylation of Cdc53 is important for the G1 phase arrest, loss of CSN5 had a bigger 

effect on budding (Figure 5.7 B).  In contrast to gsh1Δsic1Δ cells, neither loss of RUB1 or 

CSN5 had any major effect on the numbers of cells with a greater than 1C DNA content 

(Figure 5.7 C), suggesting that the major regulatory role of the Rub1 pathway in 

glutathione-depleted cells is to prevent budding and not DNA replication.  The role of 

the Rub1 pathway was also examined using viability assays.  These data revealed that 

whilst gsh1Δsic1Δ cells lose viability after 24 hours of glutathione depletion, gsh1Δrub1Δ 

and gsh1Δcsn5Δ cells do not show the same loss of viability even after 48 hours.  

Although the data reveal that deNeddylation of Cdc53 occurs in glutathione-depleted 

cells and the importance of deNeddylation in prevention of budding under these 

conditions, it was possible that Neddylation was regulating budding independent of 

Cdc53.  However, in our attempts to construct a gsh1Δ strain expressing epitope-tagged 

Cdc53 we found that ~20% of cells remained budded after 16 hours of growth in 

glutathione depleted media.  Thus, these data suggest that Cdc53 Neddylation patterns 

are linked to regulation of budding following glutathione depletion.    
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Taken together these results indicate that Cdc53 protein levels are not reduced 

following glutathione depletion indicating a specific regulation of Cdc34.  However, 

Neddylation is also affected by glutathione depletion and this is linked to prevention of 

budding.  Given the specific role of Neddylation in budding rather than DNA replication, 

comparison of the viability data for gsh1Δsic1Δ, gsh1Δhog1Δ, gsh1Δrub1Δ and 

gsh1Δcsn5Δ suggests that inhibition of DNA replication in glutathione-depleted cells is 

the important action to prevent cell death. 

5.9 Regulation of Ydj1 is important for the response of cells to glutathione depletion 

Our preliminary analyses had revealed that Ydj1 forms a HMW, β-mercaptoethanol-

sensitive complex when treated with 5 mM diamide (Figure 4.6).  These data suggested 

that the Ssa1/Ydj1/Cln3 pathway is also regulated by oxidative stress.  Hence the 

regulation of Ydj1 was explored under conditions of glutathione depletion.  First a gsh1Δ 

strain expressing Ydj1-3HA from the normal chromosomal locus was constructed and 

western blot analysis performed on gsh1ΔYdj1-3HA following glutathione depletion 

(Figure 5.8 A).  In contrast to diamide treatment, no HMW Ydj1 complex was observed 

after glutathione depletion, however, similar to Cdc34, Ydj1 protein levels significantly 

decreased 24 hours after glutathione depletion.  Indeed, consistent with the effect on 

Cdc34, no decrease in the protein levels of Ydj1 were observed in α-factor blocked cells 

(Figure 5.8 B).  Furthermore, similar to CDC34, YDJ1 transcript levels were not reduced in 

glutathione depletion arrested cells (Figure 5.8 C).  These results suggest that the 

regulation of Ydj1 is important for the response of cells to glutathione depletion.  

To further investigate the role of Ydj1 regulation in the response of cells to glutathione 

depletion, a gsh1Δ strain where Ydj1 was tagged at the N-terminus with 3HA epitopes 

and expressed from the normal chromosomal locus but from the strong GAL promoter 

rather than its normal promoter was obtained (Ydj1-3HA GAL).  Comparison of Ydj1-3HA 

levels expressed from the normal chromosomal locus from its own promoter 

(gsh1ΔYdj1-3HA) or the GAL1 promoter (gsh1ΔYdj1-3HA GAL) in cells grown in 

galactose-containing media revealed that the GAL1 regulated protein was present at 

higher levels (Figure 5.9 A, compare the two mid-log SD +GSH lanes).  Furthermore, 

growth of these cells in glutathione-depleted media showed that as expected, protein 

levels of Ydj1-3HA expressed from its normal promoter decreased after 16 and 24 hours  
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while Ydj1-3HA under the control of the GAL1 promoter did not show the same decrease 

in protein levels (Figure 5.9 A).  Having established that GAL1-dependent expression of 

Ydj1 maintains higher levels of the protein in glutathione-depleted conditions we next 

investigated the potential effects of such expression on budding, DNA content and 

viability.  Budding and DNA content analysis indicated that gsh1Δ cells displayed similar 

profiles when grown in galactose containing media (SD +GAL) versus glucose containing 

media (SD) (Compare Figure 5.9 B and C and 5.5 A and B).  Interestingly, similar analysis 

of gsh1Δ cells expressing Ydj1-3HA from the GAL1 promoter revealed high levels of 

budded cells and cells with greater than 1C DNA content (Figure 5.9 B and C).   

Next the effect of Ydj1 overexpression and lack of G1 phase arrest on viability following 

glutathione depletion was investigated.  The viability of gsh1Δ, gsh1Δsic1Δ and 

gsh1ΔYdj1-3HA GAL that had been grown in galactose-containing media lacking 

glutathione for 24 and 48 hours was examined by plate assays (Figure 5.9 D).  

Interestingly, comparison of growth of mid-log phase gsh1Δ and gsh1ΔYdj1-3HA GAL 

cells plated on to glucose-containing media (represses GAL1-dependent expression) 

revealed that cells expressing YDJ1 from the GAL1 promoter show a loss of viability 

compared to cells expressing YDJ1 from its normal promoter (Figure 5.9 D, mid-log SD 

GAL +GSH).  Interestingly, the difference in growth was rescued by exposure of both 

strains to glutathione-depleted conditions (Figure 5.9 D).  This further supports the 

hypothesis that Ydj1 function is inhibited under these conditions and is important for the 

cellular response to glutathione depletion.  Unfortunately, attempts to assess the effect 

of overexpression of Ydj1 on the response of cells to glutathione depletion were 

hampered by the poor growth of gsh1Δ cells in galactose-containing media.  

Nevertheless, these viability assays provide some evidence that inhibition of Ydj1 has an 

important role in the response of cells to glutathione depletion.   

Taken together these data suggest that Ydj1 and Cdc34 may be regulated by similar 

mechanisms in oxidative stress and glutathione-depleted conditions.  In particular, both 

proteins form HMW disulphide complexes following specific oxidative stress and the 

translation/stability of both proteins is downregulated in response to glutathione 

depletion.   
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5.10 Rad53 is activated in glutathione-depleted gsh1Δsic1Δ cells 

The results described above suggest that increased DNA content, possibly signifying DNA 

replication, rather than budding is important for the loss of viability observed in 

gsh1Δsic1Δ cells following glutathione depletion.  An obvious hypothesis to explain 

these observations is that DNA damage/aberrant DNA replication occurs in gsh1Δsic1Δ 

cells that cannot arrest DNA replication after glutathione depletion.  To test this 

hypothesis the activation of the DNA damage checkpoint was assessed in gsh1Δsic1Δ 

cells following glutathione depletion.  As described above, gsh1Δ cells do not show 

activation of Rad53 following glutathione depletion (Figure 5.2).  Significantly, some 

Rad53 activation was observed in gsh1Δsic1Δ cells in glutathione-depleted conditions, 

suggesting that DNA damage was occurring in these cells (Figure 5.10).  The observed 

activation of Rad53 is not as great as seen in HU-treated cells but nevertheless is 

consistent with the model that Sic1 is required to prevent DNA replication and DNA 

damage in glutathione-depleted conditions.            

5.11 Discussion 

Glutathione has long been recognised for its role as a highly abundant cellular 

antioxidant essential for viability in all eukaryotes studied.  In S. cerevisiae, gsh1Δ cells 

grown in the absence of exogenous glutathione arrest their cell cycle in G1 phase by a 

previously unknown mechanism (Spector et al., 2001).  In this chapter we have shown 

that the glutathione depletion-induced G1 phase arrest is regulated by a number of 

different pathways.  Importantly, Sic1 was found to play an essential role in the cell cycle 

arrest in response to glutathione depletion, likely by preventing DNA replication-induced 

DNA damage.  Indeed inhibition of DNA replication appeared to be vital to maintain 

viability in the absence of glutathione.  Cdc34 is a regulator of Sic1 stability and 

significantly Cdc34 protein levels decrease in the absence of glutathione.  Furthermore, 

an important regulator of Start, Ydj1, was also found to display a decrease in its protein 

levels after glutathione depletion.  The mechanism behind the regulation of Cdc34 and 

Ydj1 protein levels is not clear but appears to be due to changes in translation and/or 

protein stability.  The Hog1 MAPK is an important regulator of the cell cycle in response 

to osmotic stress, targeting Sic1 by direct phosphorylation (Escoté et al., 2004).  

However, although Hog1 was shown to be important for the response of cells to  
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glutathione depletion, this mechanism appears to be Sic1-independent.  Finally, the Ubl 

Rub1 has poorly defined roles in S. cerevisiae but the studies presented here revealed 

that altered Rub1 modification of Cdc53 is linked to prevention of budding in glutathione 

depletion-induced cell cycle arrest.   

Previous studies revealed that different oxidising agents affect cell cycle progression by 

different mechanisms and at different points in the cell cycle.  For example, H2O2 leads 

to a G2/M phase, Rad9-dependent arrest (Flattery-O'Brien and Dawes, 1998) while 

menadione leads to a G1 phase, Rad9-independent arrest (Nunes and Siede, 1996).  

Here, in agreement with a recent study (Hatem et al., 2014) we have shown that 

glutathione depletion does not lead to activation of Rad53 indicating that the associated 

G1 phase arrest is not due to activation of the DNA damage checkpoint.   

In response to decreased levels of glutathione, GSH1 gene expression is induced by the 

transcription factor Met4 (Wheeler et al., 2002).  Regulation of Met4 has also been 

shown to be important for the transition of G1 to S phase of the cell cycle (Patton et al., 

2000).  Thus we thought that Met4 might be important for the G1 phase arrest observed 

following glutathione depletion.  However, as we have shown here although the pattern 

of Met4 ubiquitination does alter after glutathione depletion consistent with its 

activation, in the absence of MET4, gsh1Δ cells are still able to arrest in G1 phase.   

Previous work from our lab had shown that Sic1 plays an important role in the cellular 

response to oxidative stress.  Indeed, in the absence of SIC1, cells were shown to be 

unable to arrest in G1 phase in response to diamide (Doris et al., 2012).  Here we have 

shown that Sic1 is essential for G1 phase arrest in response to glutathione depletion.  

Moreover, here we have shown that Sic1 is necessary for viability and the inhibition of 

both budding and DNA replication under conditions of glutathione depletion. 

Sic1 is regulated differently in response to specific cell cycle stresses.  For example, in 

response to osmotic stress Sic1 was shown to be phosphorylated directly by Hog1, and 

this phosphorylation was required for G1 phase arrest in response to osmotic stress 

(Escoté et al., 2004).  In this study although we find that Hog1 is important for the G1 

phase arrest in response to glutathione depletion we find no evidence that the role of 

Hog1 under these conditions is the direct phosphorylation of Sic1. 
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In Chapter 3, we showed that in response to diamide, Cdc34 and Uba1 form a HMW 

complex.  Here, although we detect a HMW Cdc34 containing complex early after 

glutathione depletion our key observation is that the levels of Cdc34 protein drop after 

24 hours growth in glutathione depleted media.  Interestingly, the drop in Cdc34 protein 

levels coincides with an increase in the stability of Sic1.  While the mechanisms behind 

the observed decrease in Cdc34 protein levels are unclear here we have shown that 

Ydj1, another major regulator of Start is also regulated in a similar manner.  Importantly, 

proper regulation of Ydj1 was shown to be important following glutathione depletion as 

overexpression of Ydj1 drives both budding and DNA replication although not to the 

same extent as observed in gsh1Δsic1Δ cells.   

A decrease in protein levels can arise by a number of different mechanisms.  For 

example, a decrease in transcription or translation or a change in protein stability or 

degradation can all lead to a decrease in the levels of a protein.  We have shown that 

the decrease seen in Cdc34 and Ydj1 protein levels does not coincide with a decrease in 

their transcript levels which is in agreement with data from a global microarray of gsh1Δ 

cells after glutathione depletion (Ayer et al., 2010).  Unfortunately time constraints have 

prevented us from establishing whether the decrease in Cdc34 and Ydj1 protein levels is 

at the level of translation or protein stability.  Translation is highly regulated in S. 

cerevisiae in response to H2O2.  For example in response to H2O2 the number of 

ribosomes located at upstream open reading frames (uORFs) increases (Gerashchenko et 

al., 2012).  uORFs are located immediately upstream of the main gene sequence and are 

known to modulate gene expression.  One consequence of translation from a uORF is 

the addition of an N-terminal extension to the translated protein, which can act as a 

signal peptide directing a fraction of the protein to another cellular compartment.  

Interestingly, Ydj1 was shown to have an N-terminal extension after H2O2 treatment and 

has been predicted to exist in more than one cellular compartment. In our study, the 

construction of the gsh1Δ Ydj1-3HA GAL strain is likely to have disrupted any uORFs and 

thus could prevent Ydj1 localisation to another cellular compartment in response to 

glutathione depletion.  It would therefore be interesting to investigate whether the 

localisation of Ydj1 is important for its regulation and for its role in the cellular response 

to glutathione depletion.  Furthermore, a study looking at the role of glutathione in the 

cellular response to oxidative stress showed that while wild type cells and to a lesser 
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extent gsh1Δ cells grown in glutathione replete media abolish their translational activity 

after H2O2 treatment the levels of translation did not alter between gsh1Δ grown with 

exogenous glutathione and gsh1Δ depleted for glutathione in a manner similar to the 

present study (Hatem et al., 2014).    These results suggest that the decrease in Cdc34 

and Ydj1 protein levels observed in this study may therefore be due to changes in 

protein stability after glutathione depletion rather than problems with transcription or 

translation.    

The Neddylation pathway has been linked to oxidative stress in mammalian cells but its 

role is unclear in S. cerevisiae (Kumar et al., 2007).  Genetic studies have demonstrated a 

link between Rub1 and SCFCdc4 (Lammer et al., 1998) however, the function of Rub1 has 

remained largely unclear.  Here we have shown that Rub1 modification of Cdc53 

changes with glutathione depletion suggesting that deNeddylation is important for the 

G1 phase arrest.  Indeed the absence of CSN5 shows a bigger effect on budding than the 

absence of RUB1.  Interestingly, although a significant increase in the number of budded 

cells is observed in a gsh1Δcsn5Δ culture there is not a corresponding increase in DNA 

replication or a loss of cell viability.  Thus these results suggest that DNA replication and 

not budding is linked to cell viability.  The specific Rub1 target under these conditions is 

unclear however the fact that an epitope-tagged version of Cdc53 prevents budding 

inhibition suggests that Cdc53 is the target.  It is not known whether glutathione 

depletion blocks the Rub1 E1/E2 or whether deNeddylation is upregulated or both but it 

would be interesting to investigate whether the levels of the Rub1 pathway E2, Ubc12 

are affected as is seen with Cdc34.   

Recently, the essential role of glutathione in S. cerevisiae has been linked to its role in 

the synthesis of iron-sulphur (Fe-S) clusters rather than as an antioxidant (Kumar et al., 

2011).  A number of observations suggested that the major role of glutathione was not 

the maintenance of the cellular redox status.  In S. cerevisiae the inactivation of either 

the thioredoxin pathway through deletion of both cytoplasmic thioredoxins (Muller, 

1991) or the glutathione pathway through deletion of both glutaredoxins (Luikenhuis et 

al., 1998) results in viable cells while inactivation of both pathways simultaneously 

causes cell death (Muller, 1996), suggesting a functional overlap between the two 

pathways.  However, as shown here and in other studies, deletion of GSH1 alone is 

inviable in the absence of exogenous glutathione and this loss of viability is not rescued 
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by anaerobic conditions suggesting that its role in reducing disulphide bonds is not the 

sole explanation for why GSH1 is essential (Spector et al., 2001).  Indeed glutathione has 

been shown to be necessary for the maturation of cytosolic Fe-S clusters (Sipos et al., 

2002).  Fe-S clusters are essential to sustain viability and are found in a large and 

functionally diverse range of proteins and enzymes and have been shown to be involved 

in processes such as electron transport, gene expression (Johnson et al., 2005) and DNA 

replication (Netz et al., 2012).  The inclusion of Fe-S clusters in DNA replication proteins 

makes it tempting to speculate a connection between the role of glutathione in Fe-S 

cluster maturation and the activation of Rad53 that is observed in gsh1Δsic1Δ cells 

following glutathione depletion.  The thioredoxin pathway has also been shown to play a 

role in DNA replication through the reduction of ribonucleotide reductase (RNR).  RNR 

plays an important role in DNA replication and repair by controlling the pool of 

deoxyribonucleoside triphosphates (dNTPs).  In fact trx1Δtrx2Δ cells display a prolonged 

S-phase that is thought to be due to the impaired reduction of RNR in these cells (Camier 

et al., 2007).  Thus both the glutathione and thioredoxin antioxidant pathways have 

been linked to DNA replication.       

It is not clear whether the G1 phase arrest seen in response to glutathione depletion is 

due to the redox role of glutathione or its role in Fe-S cluster maturation but we have 

shown evidence here that a successful arrest of the cell cycle and particularly DNA 

replication is vital for cells to survive in the absence of exogenous glutathione.    
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Chapter 6: Final Discussion 

Regulation of the cell cycle in response to oxidative stress prevents damage to DNA and 

other cellular components.  Many oxidising agents have been identified that arrest the 

cell cycle at different stages however, the mechanisms behind the cell cycle arrest 

observed under these conditions have remained largely unclear.  Ubiquitin and the Ubl 

proteins are a highly conserved family of protein modifiers that play roles in a wide 

range of processes. The use of catalytic cysteine residues by enzymes in their 

conjugation and deconjugation pathways raised the possibility that modification of 

proteins by ubiquitin and Ubls are regulated by redox conditions.  Thus the overall aim 

of this project was to investigate the role of the ubiquitin and the Ubl proteins in the 

regulation of the cell cycle in response to oxidative stress.   

6.1 Summary of Results 

Previous studies from our group had demonstrated that in S. cerevisiae, the ubiquitin 

conjugation pathway E1 (Uba1) and E2 (Cdc34) enzymes form a HMW disulphide 

complex in response to specific oxidising agents (Doris, 2008).  Furthermore, this 

oxidation was found to be coincident with an increase in the stability of the CKI Sic1 and 

oxidative stress-induced G1 phase cell cycle arrest.  However, the specificity of this 

redox-regulation of Cdc34 had not been explored.  Here, we have expanded this initial 

study to show that Cdc34 is specifically more sensitive to diamide than many other 

ubiquitin pathway E2 enzymes examined and, moreover, forms a HMW complex 

independent of both strain background or epitope tag.  Hence, Cdc34 is specifically more 

sensitive to oxidation than other ubiquitin pathway E2 enzymes.  Furthermore, the 

importance of Cdc34 in the response of cells to oxidative stress was demonstrated from 

our analysis of a DAmP allele of CDC34 which weakens the expression of CDC34 and 

showed resistance to diamide.    

Previous studies had demonstrated that diamide-induced G1 phase cell cycle arrest was 

not completely abolished in a sic1Δ mutant suggesting the involvement of other 

pathways in the cell cycle arrest (Doris, 2008).  Here, we have expanded the 

investigation to examine the role of a number of Cdc34-dependent and independent 

pathways in oxidative stress-induced G1 phase arrest.  Excitingly, our preliminary data 

shows that met4Δ mutants are slower to release from α-factor-induced G1 phase cell 
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cycle arrest and have a prolonged G1 phase arrest after treatment with diamide.  These 

results, while preliminary, suggest a requirement for Met4 in both normal cell cycle 

progression and in the cell cycle arrest in response to diamide. 

While several Rub1 substrates have been identified in S. cerevisiae the apparent lack of 

phenotypes observed in a rub1Δ mutant has meant that very little is known about what 

the Rub1 pathway does in this model organism.  Here, we have uncovered a novel role 

for the Rub1 pathway in regulating cell cycle progression in response to diamide.  In 

particular, our initial results suggest that the cycling of Rub1 modification on Cdc53 is 

important for cells to re-enter and traverse the cell cycle following diamide treatment. 

Although previous work has demonstrated that S. cerevisiae cells arrest their cell cycle in 

G1 phase in response to glutathione depletion the mechanisms underlying this 

regulation of the cell cycle were largely unknown.  Work described in this thesis has 

provided insight into the glutathione depletion-induced cell cycle arrest and has 

revealed that cell cycle arrest in response to glutathione depletion is multifaceted.  For 

example, we have shown that Sic1 is essential for the G1 phase arrest following 

glutathione depletion and that in the absence of Sic1, cells show a loss of viability.  

These results demonstrated that G1 phase cell cycle arrest in response to glutathione 

depletion is required to maintain viability however the reasons behind the loss in 

viability were unknown.  We find that in gsh1Δsic1Δ cells, which are unable to arrest the 

cell cycle following glutathione depletion, the DNA damage checkpoint kinase, Rad53 is 

activated.  In contrast, in gsh1Δ cells which do arrest, Rad53 is not phosphorylated.  Our 

results therefore demonstrate that cell cycle arrest in response to glutathione depletion 

is required to prevent DNA-replication-induced DNA damage. 

Similar to observations following diamide treatment, Cdc34 was demonstrated to form a 

HMW complex in cells depleted of glutathione.  However, the amount of Cdc34 involved 

in the HMW complex was much smaller in response to glutathione depletion compared 

to that observed after diamide treatment.  Excitingly, in contrast to oxidative stress-

induced cell cycle arrest, the protein levels of Cdc34 were shown to decrease in 

response to glutathione depletion suggesting a different regulatory mechanism of 

Cdc34.  Interestingly, the protein levels of Cdc53, which is part of the Cdc34-Ubiquitin 

conjugation pathway do not drop suggesting that this regulation is specific to Cdc34.  
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The levels of Ydj1 have previously been shown to play an important role in regulation of 

G1 phase of the normal cell cycle.  Here, we have shown that Ydj1 levels were also 

decreased in response to glutathione depletion suggesting a link between Ydj1 and cell 

cycle regulation under these conditions.  While the mechanisms underlying the observed 

decrease in Cdc34 and Ydj1 protein levels remain unknown, CDC34 and YDJ1 transcript 

levels are maintained in glutathione-depleted cells suggesting that Cdc34 and Ydj1 are 

regulated at the level of translation and/or stability.   

Here, we have identified novel roles for the Rub1 pathway in both the diamide and 

glutathione depletion-induced G1 phase cell cycle arrests in S. cerevisiae.  Interestingly, 

the role and regulation of the Rub1 pathway in the cell cycle arrest in response to these 

two different environments differ.  In response to glutathione depletion, the proportion 

of unmodified Cdc53 increased suggesting that removal of Rub1 was important under 

these conditions.  Indeed, while gsh1Δrub1Δ and gsh1Δcsn5Δ cells both had a higher 

proportion of budded cells after glutathione depletion than gsh1Δ cells, gsh1Δcsn5Δ 

cells, which are unable to remove the Rub1 modification of Cdc53, had a higher 

proportion of budded cells than rub1Δ cells.  Although gsh1Δrub1Δ and gsh1Δcsn5Δ 

continued to bud after glutathione depletion, viability was maintained and DNA 

replication did not occur suggesting that the Rub1 pathway is involved in the inhibition 

of budding after glutathione depletion.  In contrast to glutathione depletion, diamide 

treatment led to no obvious differences in the Cdc53 Neddylation pattern.  However, 

rub1Δ cells displayed a prolonged G1 phase arrest and a G2 phase delay while csn5Δ 

cells were able to traverse the cell cycle similar to wild type cells.     

In conclusion this thesis has addressed several aspects of cell cycle regulation in 

response to oxidative stress and glutathione depletion.  We find that similar proteins are 

involved in the G1 phase cell cycle arrest in response to both diamide and glutathione 

depletion however, these proteins are regulated differently and by different 

mechanisms under these two conditions.   

6.2 Implications for mammalian cells 

Many of the regulatory proteins and pathways that we have identified as playing a role 

in the regulation of the cell cycle in S. cerevisiae in response to oxidative stress, and 
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glutathione depletion are conserved in mammalian cells.  Thus these studies have 

potential implications for understanding cell cycle regulation in mammalian cells.           

6.2.1 p27 

p27Kip1 is the mammalian functional homologue of Sic1.  Similar to Sic1, p27Kip1 acts as a 

CKI and negatively regulates CDK2 which is required for progression from G1 to S phase 

of the cell cycle.  The levels of p27Kip1 protein are high in quiescent cells and rapidly 

decrease upon mitogenic stimulation (Polyak et al., 1994).  Interestingly, like Sic1, p27Kip1 

is degraded by the proteasome following ubiquitination mediated by the mammalian 

homologue of Cdc34 and SCFSkp2.  Nuclear export of p27Kip1 precedes its degradation by 

the 26S proteasome and requires CSN5 (Tomoda et al., 2002).  CSN5 contains a nuclear 

export sequence and is therefore able to act as an adaptor between p27Kip1 and the 

export factor CRM1.  In cells expressing a form of CSN5 lacking the nuclear export 

sequence an increase in nuclear p27Kip1 levels and a decrease in cell proliferation was 

observed, suggesting that CSN5-dependent nuclear export of p27Kip1 is necessary for cell 

cycle progression from G1 phase.  Given the important role of p27Kip1 as a negative cell 

cycle regulator it is not surprising that p27Kip1 is downregulated in many cancers and is 

associated with poor prognosis in several different types of cancer (Catzavelos et al., 

1997).     

p27Kip1 transcription is regulated by the forkhead transcription factor Foxo3a (Medema 

et al., 2000).  In response to oxidative stress Foxo3a enters the nucleus and upregulates 

genes required for antioxidant responses and cell cycle arrest including p27Kip1.  

Deacetylation of Foxo3a in response to oxidative stress enhances the induction of p27Kip1 

leading to a G1 phase cell cycle arrest (Wang et al., 2007).  Interestingly, scavenging of 

ROS can also lead to a G1 phase arrest in mammalian cells (Ibanez et al., 2011).  In 

particular, cells treated with catalase arrest in G1 phase and this is coincident with an 

increase in the levels of p27Kip1 and a switch from cytoplasmic to nuclear localisation of 

p27Kip1.  Although the localisation of Sic1 in response to oxidative stress and/or 

glutathione depletion was not studied in this thesis, it would be interesting to explore 

whether the cellular localisation of Sic1 contributes to the regulation of G1 phase 

progression. 
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6.2.2 CDC34   

The degradation of many cell cycle regulators by the ubiquitin-proteasome pathway has 

created great interest in targeting this pathway in anti-cancer drug therapy (Harper and 

King, 2011).  Indeed a drug that specifically inhibits the human Cdc34 homologue 

(CDC34), has been identified as a potential therapeutic (Ceccarelli et al., 2011). Levels of 

the CDC34 protein have been shown to be 3-4 times higher in T-cell lymphoblastic 

leukaemia than in normal T cells suggesting a direct role for CDC34 in this cancer 

(Eliseeva et al., 2001).  However, the most significant role of CDC34 in cancer 

progression is likely to be in its role, along with the CRLs, in the ubiquitination and 

subsequent degradation of cell cycle regulators such as p27Kip1.  The E2 and E3 enzymes 

of the ubiquitin pathway are responsible for target specificity, therefore by blocking E2 

enzymes it is hoped that only specific pathways could be blocked.  Indeed, specific 

inhibition of CDC34 was associated with a decrease in cell proliferation and the 

accumulation of p27Kip1 (Ceccarelli et al., 2011). 

Unfortunately, mammalian studies were beyond the scope of this thesis.  However, 

given the specificity of the oxidation of Cdc34 observed in S. cerevisiae it will be 

important to investigate the relative sensitivity of CDC34 in mammalian cells.  In addition 

Cdc34 regulates both Sic1 and p27Kip1 raising the possibility that cell cycle regulation 

through Cdc34 oxidation/protein levels is a conserved mechanism for responding to 

cellular conditions.  If found to be conserved, the increased sensitivity of Cdc34 to 

oxidation may also be a route for specifically targeting Cdc34 as part of drug therapies 

(see Section 6.3).    

6.2.3 DNJ3 

As previously discussed, Ydj1 is a critical cell cycle regulator in S. cerevisiae and the levels 

of Ydj1 ensure correct cell size at Start.  Indeed, overexpression of Ydj1 in S. cerevisiae 

leads to cells entering the cell cycle at a smaller size (Ferrezuelo et al., 2012). A 

homologue of Ydj1, DNJ3 has been identified in mammalian cells (Edwards et al., 1997).  

DNJ3 shares 42% sequence identity with Ydj1 and is able to rescue the temperature 

sensitivity of ydj1Δ S. cerevisiae cells.  It is of particular interest that DNJ3 was originally 

identified in a genetic screen performed in S. cerevisiae to identify human cDNAs which, 

when overexpressed, were able to confer resistance to α-factor arrest.  These results 
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suggests that DNJ3 may act to regulate the cell cycle in mammalian cells.  Although the 

roles of DNJ3 have not been widely explored in mammalian cells DNJ3 has also been 

described as a negative regulator of tumour growth in a specific breast cancer model 

(Ohlsson et al., 2001).  In particular, in a breast cancer model where oestrogen inhibits 

cell growth, DNJ3 expression, along with one other gene was shown to increase after 

oestradiol treatment suggesting that DNJ3 had an anti-proliferative effect in these cells.  

These studies, although apparently contradictory, provide evidence that the human 

homologue of Ydj1 may act to regulate of cell cycle progression.     

6.2.4 Nedd8 pathway 

A number of studies have identified important roles for Nedd8 modification in cell cycle 

regulation in higher eukaryotes and furthermore an increase in Nedd8 conjugation has 

been observed in oral squamous cell carcinoma (Chairatvit and Ngamkitidechakul, 2007).  

CSN5/Jab1 and Uba3 deletion is embryonic lethal in mice (Tateishi et al., 2001; Tomoda 

et al., 2004) and CSN5/Jab1 heterozygote mice have impaired cell proliferation related 

to upregulated p27KIP1 (Tomoda et al., 2004).  The role of Nedd8 conjugation in the 

degradation of proteins involved in cell cycle progression has led to the generation of a 

novel anti-cancer drug, MLN4924 that specifically inhibits the Nedd8 E1 preventing 

movement of Nedd8 through the conjugation pathway.  Interestingly, one of the ways 

that MLN4924 induces cellular apoptosis is through an increase in ROS production and 

treatment with N-acetylcysteine has been demonstrated to decrease the effectiveness 

of MLN4924 treatment in cultured cells (Swords et al., 2010).     

6.3 Implications for drug therapies 

One common change observed in cancer cells is an increase in the production of cellular 

ROS compared to non-transformed cells.  This difference in ROS levels between 

cancerous and non-cancerous cells is beginning to be explored as a potential therapeutic 

strategy to specifically target malignant cells.  It has been predicted that the high levels 

of ROS detected in cancer cells renders them more susceptible than normal cells to 

further increases in cellular ROS thus triggering apoptosis.  A number of screens have 

been performed to identify small molecules that increase ROS as potential low toxicity 

therapeutic agents (Trachootham et al., 2006; Raj et al., 2011).  Piperlongumine and β-

phenylethyl isothiocyanate (PEITC) were both identified as compounds that lead to 
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specific accumulation of ROS in cancer cells.  Interestingly, both of these compounds 

lead to the accumulation of ROS by affecting the glutathione pathway.  Piperlongumine 

interacts directly with glutathione-S transferase inhibiting its activity and also decreases 

the levels of GSH (Raj et al., 2011).  PEITC inhibits Gpx enzyme activity and promotes the 

export of GSH thus reducing its level within the cell (Trachootham et al., 2006).  Other 

studies have identified compounds that increase cellular ROS but do not lead to cell 

death unless cells are also treated with sub-lethal doses of the glutathione synthesis 

inhibitor BSO (Adams et al., 2013).  Together these studies demonstrate that approaches 

to selectively kill cancer cells based on their redox status may be particularly productive 

by specifically targeting cellular glutathione levels.    

6.4 Outstanding questions based on this work 

While this study has increased our knowledge of aspects of cell cycle regulation in 

response to diamide and glutathione depletion there are many outstanding questions 

that remain to be addressed. 

The study described in this thesis has demonstrated that Cdc34 is specifically sensitive to 

oxidation compared to several other ubiquitin pathway E2s.  However, the mechanism 

that underlies the increased sensitivity of Cdc34 to oxidation remains unknown.  It 

would therefore be interesting to extend these studies using cell fractionation 

techniques to investigate whether a specific pool of Cdc34, in a particular cellular 

location undergoes oxidation.  Cdc34 is the E2 enzyme for a number of different E3 

enzymes and it may be that oxidation of a pool of Cdc34 localised in a particular cellular 

location may allow for inhibition of the ubiquitination of a set of Cdc34 substrates while 

maintaining the activity of others.  The basis of the increases sensitivity of Cdc34 to 

oxidation compared to other E2 enzymes could also be investigated by creating strains 

containing point mutations of Cdc34 and analysing their oxidation.  Ubiquitin is a 

reversible modification and its removal is catalysed by the DUB enzymes.  To get a more 

complete picture of the regulation of the ubiquitin pathway in response to ROS further 

analyses on the DUB enzymes should be carried out to determine whether these 

enzymes also display differential sensitivity to oxidation.   

This study has demonstrated two novel roles for the Rub1 pathway in cell cycle recovery 

following diamide treatment and in the prevention of budding in response to 
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glutathione depletion.  Our results suggest that Cdc53 is the key substrate of Rub1 after 

glutathione depletion or treatment with diamide.  However, an in depth analysis of the 

effect of the above conditions is required to fully understand how the Rub1 conjugation 

and deconjugation pathways are effected by diamide and glutathione depletion and the 

role of the Rub1 modifier in the observed G1 phase cell cycle arrests.  

Results obtained during this study demonstrated that the cell cycle of S. cerevisiae is 

regulated by different mechanisms in response to diamide, a drug that oxidises 

glutathione, and following depletion of cellular glutathione.  These results suggest that 

the cell cycle arrest observed in response to glutathione depletion is not simply due to 

an increase in the cellular ROS caused by the absence of this major antioxidant.  Our 

results strongly suggest that the G1 phase cell cycle arrest observed following depletion 

of glutathione is required to prevent DNA damage.  The essential role of glutathione has 

been predicted to be in its role in the maturation of Fe-S clusters not as a cellular 

antioxidant (Sipos et al., 2002).  Due to time constraints our study has been unable to 

establish whether the cell cycle arrest observed in response to glutathione depletion is 

due to the cells inability to synthesis Fe-S clusters or an indirect mechanism whereby Fe-

S clusters are required for fully functioning DNA replication proteins.   

6.5 Concluding remarks 

While some preliminary investigations presented here and in mammalian cells have 

shown that the conjugation pathways of certain ubiquitin and Ubl modifiers undergo 

oxidation there has been no large scale investigation into the oxidation of these 

pathways.  Given the roles of ubiquitin and Ubls in lots of cellular processes and their 

links with important human diseases such as cancer there is a need to investigate the 

oxidation of all components of ubiquitin and Ubl conjugation and deconjugation 

pathways under a range of different oxidative conditions and concentrations.  This goes 

hand in hand with studies to identify all ubiquitin and Ubl targets in cells and the 

substrates of specific deconjugation pathways.  Such studies are essential to build a full 

picture of what is going on in particular conditions of both oxidising agent and 

concentration.  These studies are vital in understanding the linkage between ROS, 

ubiquitin/Ubls and their roles in specific processes and may potentially lead to the 
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identification of novel therapeutic targets that can specifically be targeted by their 

sensitivity to different ROS.   
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