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Abstract 

In recent years, there has been a growing incentive towards production and application 

of environmentally benign materials with properties similar to those obtained from 

irreplaceable resources or exhibiting harmful effects on the environment. In this respect, 

bioplastics have gained attention in quest of materials that can be used in place of 

conventional petro-chemical plastics. Biocompatibility, biodegradability and 

compostability of bioplastics are among the most favourable characteristics of the 

materials mostly derived from biological systems.  

Polyhydroxybutyrate (PHB) is a fully biodegradable bioplastic with similar physical 

properties to polyethylene and promising applications in various commercial fields 

including automation, aviation, medication, nutrition, fuel, packaging and many more. 

PHB production with Mixed Microbial Cultures (MMC) has recently gained attention as 

a cost effective production strategy by using bacteria that adapt with complex substrates 

presented in inexpensive waste materials.  

The initial research motivation was to enhance PHB production operation by means of 

the solutions obtained from sophisticated mathematical algorithms used for process 

optimisation. For this aim, a computer-based program simulating PHB batch process 

with MMC which was successfully validated with experimental data was available. 

Since mechanistic models of the simulation program could not be applied in 

optimisation algorithms, accurate empirical models were required. In the quest for 

reliable and accurate empirical models that can predict product concentration at the final 

stage of a batch operation, a methodology was developed in this study for classification 

of the batch operational regions based on the PHB critical process attributes.  

In the core of this research work, an innovative systematic methodology improves 

process understanding towards advanced process monitoring and control. This method 

enables operational scrutiny for generation of process knowledge regarding PHB 

process using MMC. The qualitative info-illustrations produced in the course of the 

classification method provide a sound platform for generation of considerably more 

accurate (quantitative) empirical models. These empirical models will be used in 

process optimisation studies.  
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In this research, PHB production occurs in a process type known as “feast and famine” 

or as “aerobic dynamic feeding” which is a well-known strategy applied for bacterial 

production with MMC. The “feast and famine” operations take place in Sequential 

Batch Reactors (SBR) in order to assure occurrence of the “feast” and the “famine” 

phases intermittently in each operational cycle. While PHB formation occurs during the 

“feast” phase, a “famine” phase should be followed to cause a cell physiological 

adaptation to maintain PHB production capability of bacteria.  

Establishment of the analytical methodology developed in direction of process 

empirical modelling realisation enables prediction of “feast” and “famine” phase 

occurrences based on the batch initial state documented for the first time in this work. 

This mathematical equation (“Phase Differentiating Equation”) plays a significant role 

in development of a novel SBR recipe for production of PHB with MMC. Execution of 

the recipe by the PHB process simulation program demonstrates high reliability of the 

proposed recipe. Application of the “Phase Differentiating Equation” in the SBR recipe 

assures favourable occurrence of the “feast” and “famine” phases in the majority of 

operational cycles. Reduction of operational failure rate reduces PHB production cost to 

improve its market position. 

The SBR recipe structure consists of six-stage cycles including (1) “feast” phase 

preparation stage, (2) “feast” phase operation, (3) operational quiescence, (4) product 

exploitation, (5) “famine” phase preparation stage and (6) “famine” phase operation. 

Operational reliability is investigated along with load disturbance rejection embedded in 

the SBR recipe. At the end, Sequential Quadratic Programming (SQP) is applied 

successfully as an optimisation algorithm to maximise PHB production under 

operational constrains. 
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Nomenclatures 

Symbol Description Units 

     intracellular PHB content C-mol PHB/C-mol X 

       
 maximum intracellular PHB content C-mol PHB/C-mol X 

   kinetic constant for PHB degradation hr
-1

 

   acetate half-saturation constant C-mmol/L 

   efficiency constant mol ATP/mol       

    ammonia half saturation constant in acetate uptake N-mmol/L 

     intracellular PHB content half saturation constants C-mmol/L 

      ammonia half saturation constant in PHB 

consumption 

N-mmol/L 

      acetate half saturation constant in PHB 

consumption 

C-mmol/L 

     specific ATP consumption by maintenance 

process 

mol ATP/(C-mol.hr) 

   maintenance coefficient on acetate C-mol/(C-mol.hr) 

     maintenance coefficient on PHB C-mol/(C-mol.hr) 

     
 maximum maintenance coefficient on acetate C-mol/(C-mol.hr) 

  ammonia concentration in the medium N-mmol/L 

  
  specific acetate consumption rate for cell growth C-mol/(C-mol.hr) 

  
    specific acetate consumption rate for PHB 

formation 

C-mol/(C-mol.hr) 

     

  maximum specific acetate consumption rate for 

biomass growth 

C-mol/(C-mol.hr) 

     specific PHB storage rate C-mol/(C-mol.hr) 

       
 maximum specific PHB storage rate C-mol/(C-mol.hr) 

  acetate concentration in the medium  C-mmol/L 

  the culture time  hr 

  active biomass concentration C-mmol/L 
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Symbol Description Units 

  PHB production saturation order 1 

     yield of ammonia on biomass N-mol/C-mol 

       yield of PHB on acetate C-mol/C-mol 

     yield of biomass on acetate C-mol/C-mol 

       yield of PHB on biomass C-mol/C-mol 

  efficiency of oxidative phosphorylation mol ATP/mol NADH2 

   specific growth rate on acetate C-mol/(C-mol.hr) 

     specific growth rate on PHB C-mol/(C-mol.hr) 

       
 maximum specific growth rate on PHB C-mol/(C-mol.hr) 
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Abbreviations and Acronyms 

 Description  

ANN Artificial Neural Networks  

BLS Batch Least Squares  

CCRD Central Composite Rotatable Design  

CDW Cell Dry Weight  

CV Code Vector  

DLS Damped Least Squares  

DNA Deoxyribonucleic acid  

DOE Design of Experiment  

EuBP European Bioplastics  

FANN Feedforward Artificial Neural Net  

GAO Glycogen Accumulating Organism  

HAME Hydroxyalkanote Methyl Ester  

HNN Hidden Neuron Number  

LMA Levenberg Marquardt Algorithm  

MIP Molecularly Imprinted Polymers  

MLR Multiple Linear Regression  

MMC Mixed Microbial Culture  

NN Neural Networks  

ODE Ordinary Differential Equation  

PA Polyamide  

PAO Polyphosphate Accumulating Organism  

PBAT Polybutyrate  

PBS Polybutylene succinate  

PCL Polycaprolactone  

PE Polyethylene  

PET Polyethylene Terephthalate  

PHA Polyhydroxyalkanoates  

PHB Polyhydroxybutyrate  

PHO Polyhydroxy Octanoate  

PLA Polylactic acis  

PP Polypropylene  
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Abbreviations and Acronyms 

 Description  

PS Polystyrene  

PVC Polyvinyl Chloride  

RCV Registered Code Vector  

RMSE Root Mean Squared Errors  

RSM Response Surface Methodology  

RT Regime Type  

SQP Sequential Quadratic Programming  

SSE Sum of Squared Errors  

STD Standard Deviation  

TOA Taguchi Orthogonal Array  

VFA Volatile Fatty Acids  
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Chapter 1 

Research Motivations and Thesis Outline 

1.1  The philanthropic incentive behind the research project 

The industrial revolution initiated in the 18
th

 and 19
th

 centuries was supported by 

developments in the mining industry and application of steam power for transportation. 

The application of the internal combustion engine was boosted when the commercial 

drilling and production of petroleum began in the mid-1850s (Oliver et al., 2008). 

Following the industrial revolution, global economy flourished with a linear pattern of 

production and consumption for the past 160 years and successfully increased human 

welfare in many different aspects. However, this pattern is doomed to be eradicated if 

mankind intends to live in its cradle “the mother earth”. Earth has reached its limits as 

great pressure has been put by men on its resources.  

The increasing rate of municipal solid waste accumulation is a significant contributor to 

greenhouse gas emissions and imposes disquieting threat to the earth’s ecology. The 

majority of these emissions are produced as a result of landfilling, which is the primary 

waste disposal strategy internationally. As the changing global climate has been one of 

the major environmental challenges facing the world today, there is an increasing need 

to alter waste composition or the disposal method to re-use the waste (Lou and Nair, 

2009).  

At the moment, the most sophisticated application of crude oil is plastic production. 

Around 8% of the world oil production is used to make plastics and over one third of 

the plastics is used to make packaging items (Thompson et al., 2009). This item consists 

of around 10% of the municipal waste stream by weight (Barnes et al., 2009). 

Unfortunately, plastic is one of the current major harmful contributors to the landfill due 

to its low rate of decomposition. Moreover, its presence in the landfill reduces decay 

rate of the biodegradable materials since they block access of microorganisms, air and 

water to the landfill bulk.  

In the modern (sanitary) landfills, a large hole is dug in the ground and lined with a 

thick plastic and a layer of clay to prevent soil contamination and the refuse is covered 

with a layer of earth to reduce odour intermittently. With little access to air, water and 

sunlight, even the readily degradable waste objects such as paper and food accumulate 

intact for many decades (Qasim and Chiang, 1994). In addition to the terrestrial 

landfills, the harmful effect of fragments of plastics and glass contaminating in the 



Chapter 1  Research Motivations and Thesis Outline 

2 

streams, rivers and ultimately the sea is another point of serious concern when plastic 

production issues are addressed (Thompson et al., 2005). Since plastics are buoyant in 

water and resistant to degradation, they comprise a considerable portion (50% to 80%) 

of shoreline debris (Barnes et al., 2009). Therefore, the dominant approach towards 

plastic disposal and linear use of hydrocarbons for short-lived applications such as 

packaging are far from sustainable.  

In a circular economy, resources are continuously re-used or recycled in order to return 

materials and energy in other productive parts of the economy with the aim of 

maintaining sustainable growth. In a high level, the concept of circular economy is easy 

to understand. The natural resources such as fossil based hydrocarbons, minerals and 

forest products are reclaimed back to the economy instead of being disposed into the 

environment or forming emissions that contribute to pollution (Jones, 2013). Plastic 

recycling or incineration are two main approaches taken to re-use the plastics with the 

later producing considerable amount of CO2 emissions which contributes to greenhouse 

effect (Wollny et al., 2001). However, studies suggest that greenhouse gas emissions 

from waste decomposition are considerably higher for landfills than composting 

(purposeful biodegradation of organic matters such as yard and food waste) (Lou and 

Nair, 2009).  

An alternative approach has been taken to replace non-degradable petrochemical 

plastics with bioplastics that degrade readily to return harmless materials back to the 

environment. In addition to being environmentally benign, widespread application of 

bio-based plastics reduces consumption of fossil fuels as the feedstock of conventional 

plastics. Considerable amount of research work has been dedicated to extend the 

knowledge towards production cost reduction and find novel applications for bioplastics 

(Shah et al., 2008; Accinelli et al., 2012). Considering the life cycle assessment of 

plastics and bioplastics, some argued that environmentally friendliness of bioplastics 

depends also on the energy supply method used to produce the materials. For example, 

when coal-fire was used to maintain the energy for bio-bags, the environmental impact 

was five times higher than the case of the conventional plastics. However, the bio-bags 

are reported to be 80% more environmentally friendly than plastic bags when clean and 

renewable energy is used throughout its life cycle production stages (Khoo and Tan, 

2010).  

The focus of this study is on production of polyhydroxybutyrate (PHB), a common type 

of polyhydroxyalkanoates (PHA) that is bio-derived and biodegradable and exhibits 
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similar physical properties comparable to polypropylene (Pachekoski et al., 2009). The 

substrate used in the PHB production unit in this study is inexpensive municipal 

activated sludge which is associated with environmental and financial benefits (Gurieff, 

2007). In the next chapter, a review on the subject of bioplastics is given.  

1.2  Introduction to data intensive computing and data visualisation  

The era we live in is analogous to the time when printing was invented. It took about a 

thousand years to develop and evolve a mechanism that can store data on papers. Using 

computers, it was a matter of decades to be able to store, analyse and generate 

knowledge in electronic format. Data is a lucrative source to form new insights for 

inception of niche ideas. Moreover, data management has eased data accessibility and 

analysis of the curated data. These new set of tools provide a platform for knowledge 

generation and establishment of new theories. Looking briefly at the history of science, 

for a thousand years knowledge was acquired by observing and describing the natural 

phenomena by conducting experiments (Empirical stage). For the past few hundred 

years models and generalisations enabled creation of hypothetical constructs 

(Theoretical stage). In the last few decades, the theoretical models grew too complicated 

to be solved analytically. With the advent of computers, development of simulation for 

complex phenomena escalated and increased data generation. A combination of 

simulation and experimental data has become the new force to extend the science 

boundaries (Computational stage). Extended publication and sharing of data and results 

between researchers in electronic knowledge networks is the latest link in this chain 

(eScience stage) (Hey et al., 2009).  

In the latest stage of science development history, knowledge is obtained through 

analysis and process of data using information discovery applications rather than solely 

simulating and generating process data and dynamically determine which data sets to 

process. In search for homologous structures, data-intensive applications that require the 

manipulation of terabytes of data aggregated across hundreds of files from comparison 

of numerical simulation output are used. The application may use local or remote input 

data sets, data stored in distributed repositories, or in archival storage systems. With 

increasing computational bandwidth, data-intensive computing can be coupled with the 

external data sets as well as the data from local sources (Moore et al., 1999). 

Development of novel techniques that can be executed as an analytical application for 

mega data is one of the incentives considered in this research study.  
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Application of computer-based simulators can provide large amount of valuable data. It 

can be said that “simulation data is the new soil” to the science and engineering fields. 

Modern people are exposed to a world of figures, diagrams and infographics with 

dormant desire to observe visual aspects of high information significance. Facing a 

simple and descriptive graphic or a data visualisation is like coming across a clearing in 

a dense information jungle.  

Presentation of the high volume of information obtained from the data glut is a 

challenge that can be resolved by expanding the observation capability. Novel 

techniques are required to visualise connections and patterns in simple illustrations in 

order to facilitate generation of a narrative to the overall picture. The inexpensive 

simulation source material can act as a fertile medium that feeds data visualisation like 

its blooming flower. Visualising information is also a form of knowledge compression. 

It is a way of squeezing an enormous amount of information and understanding into a 

small illustration.  

In the core of this study, data visualisation enables pattern recognition, information 

encapsulation and generation of deeper insight to the chemical process being analysed.  

1.3  Thesis summary  

1.3.1  Thesis structure  

This report concentrates on operational enhancement of polyhydroxybutyrate (PHB) 

production by mixed microbial cultures (MMC) with the focus on process cost 

reduction. Figure 1.1 shows an illustration of the thesis structure comprising of the 

chapter numbers and the rational linkage author made between the chapters.  

The research motivation in Chapter 1 is the main driving force of the research study 

carried out to reduce PHB production cost. In Chapter 2 and Chapter 3 the foundations 

are constructed using a concise review on the literature and PHB batch process 

simulator respectively. These two chapters form the required frame work of the research 

project by other research groups and author has no claim on the results nor their level of 

accuracy reported in the published literatures.  

  



Chapter 1  Research Motivations and Thesis Outline 

5 

 

 

Figure 1.1 Thesis outline 
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The characterisation analytical method developed by the author is in the core of the 

research solutions addressing the complications associated with cost effective 

production of PHB using MMC. The “Characterisation Method” is an innovative 

approach developed and applied by the author to generate useful information about the 

process. The information obtained using the “Characterisation Method” is reported for 

the first time in this study and no similar results can be found in other research works. 

The “Characterisation Method” is developed, explained and discussed in Chapter 4. 

Application of the method results into generation of Chapter 5, Chapter 6 and Chapter 7 

with some recommendations for extension of the method usage in Chapter 9.  

In Chapter 5, mathematical representation of a border curve separating two process 

operational phase regimes is found using the batch simulator and the “Characterisation 

Method”. This mathematical model plays an important role in the analysis carried out in 

Chapter 6 and Chapter 7. In Chapter 6, empirical models are developed for the critical 

attributes of the process. The analytical tools developed in Chapter 4, Chapter 5 and 

Chapter 6 are used in Chapter 7 to generate operational recipe for mass production of 

PHB using MMC in Sequential Batch Reactors (SBR). Ultimately, a mathematical 

procedure to optimise a SBR process targeting maximum PHB production along with 

operational sustainability is discussed in Chapter 8. At the end, the research outcomes 

are discussed and some recommendations are given in Chapter 9 for future research 

works. 

1.3.2 Brief description of the thesis chapters 

In the current chapter, an introductory to the research project is given in addition to the 

motivations generating the main driving force for the research endeavour. In Chapter 2, 

an extended literature review is presented comprising a brief history of plastics, a 

thorough definition of bioplastics along with their chemical structures and physical 

properties. Additionally, some of the main manufacturing companies engaged in 

production of Polyhydroxyalkanoates (PHA) monomers as a dominant bioplastic with 

interesting physical and chemical properties is given.  

PHA is mostly known for its application in packaging industry; however, it will be 

shown that packaging is not the most sophisticated approach to use the biopolymer. 

PHA biodegradability makes it a good candidate in search for environmentally benign 

replacement for the petrochemical plastics. Application of PHA in medical implant 

materials, cosmetics and skin care productions are mentioned in detail in Chapter 2. 

These materials can also be used as Nano-composite materials for textile dye 
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wastewater treatment, materials with therapeutic effects, drug delivery and neural tissue 

engineering, biofuels, production of fine chemicals, bio-surfactant and bacterial agent, 

carriers in agroindustry and augmentation of industrial micro-organisms survival ability 

which are encountered in Chapter 2. Additionally, a brief review of different PHA 

production and extraction methods is mentioned. The review also includes optimisation 

of PHB productions consisting of numerous attempts to optimise operational cultures, 

fermentation feeding rate and batch process duration. At the end, Sequential Quadratic 

Programming (SQP), the optimisation algorithm applied to find the optimal operational 

conditions based on the non-linear models will be formulated in Section 2.5.3. In the 

final sections of Chapter 2, a review of the mathematical modelling techniques 

including Multiple Linear Regression (MLR) and Artificial Neural Networks (ANN) as 

the most dominant linear and non-linear modelling methods is given respectively in 

Section 2.6.2 and Section 2.6.3 to be applied for optimisation purpose and production 

recipe generation.  

In Chapter 3, mathematical equations and models reported by Dias et al. (2005) to 

envisage PHB productivity on the bases of acetate and ammonia feeding strategies are 

introduced. The mechanistic models are used to develop a simulation program in 

direction of the aims of this study. Moreover, the three divisions of the simulation 

program developed in MATLAB codes are encountered with experimental results 

published in direction of the process model development and model validations. At the 

end of Chapter 3, description of a typical simulation run is given with the aim of 

providing an overall vision about the PHB production process using Mixed Microbial 

Culture cultivation.  

In Chapter 4, a process classification method is developed to analyse data obtained from 

the PHB process simulations based on results obtained from analysis of the feeding and 

product concentration profiles. The method will be used to generate a qualitative tool 

that enhances data visualisation using the PHB batch process data derived from 

simulation studies. With the application of the method and the visual representation of 

the overall behaviour of the system, general operational pathways will be identified and 

classified. The qualitative representations provided using the technique can be applied 

to predict batch process regimen along with the concentration profiles of the most 

important elements of the operation using process information from the batch initial 

state. The analytical method developed in Chapter 4 will be used in Chapter 5, Chapter 

6 and Chapter 7.  
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In Chapter 5, a cluster of characterisation plots will be generated using the analytical 

tool developed in Chapter 4. Since operational pathways can be identified on each 

characterisation plot, a systematic method can be developed to formulate mathematical 

equations capable of differentiating operational pathways based on the batch initial 

state. By means of the PHB process simulator and the high rate of computations 

provided by computer machines, different operational case scenarios will be 

investigated to obtain co-ordination of the points forming the boundary curve that 

separates two dominant regions of different regime types in a characterisation plot. At 

the end of the chapter, the “Phase Differentiating Equation” developed in chapter 5 will 

be validated against a wide range of batch processes comprising different 

characterisation plots. This equation will be applied in Chapter 6 and Chapter 7 to 

segregate two most dominant operational phases for empirical modelling data 

generation and design of production recipes.  

In Chapter 6, mathematical tools are developed to produce quantitative representations 

of the most significant elements of the PHB process. The empirical models can be 

developed using process data without the need of complex mathematical equations 

presenting various operational behaviour of the process. Identification of the most 

appropriate modelling technique and selection of the best modelling structure for 

prediction of the most important elements of the process will be addressed in chapter 6. 

Using the “Phase Differentiating Equation” developed in Chapter 5 empirical models 

will be built and validated to demonstrate enhanced modelling for targeted operational 

data sub-sets.  

It will be demonstrated that accurate prediction of product concentration is not 

achievable if process data classification is not applied prior to model development. At 

first, linear MLR modelling technique will be used on the segregated data sub-sets for 

prediction of the most important elements of the process applying only the initial batch 

state condition. Furthermore, more sophisticated non-linear neural network modelling 

technique will be applied on the same data sets. The satisfactory non-linear models will 

be aggregated using bootstrapping method in quest of more accurate and more reliable 

models. Each model will be validated and recommendations will be made for the most 

effective modelling method and modelling structures for prediction of the critical 

process attributes. Additionally, some of the empirical models developed in Chapter 6 

will be used in Chapter 7 for generation of PHB production recipe under the SBR 

approach.  
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In Chapter 7, a production recipe structure is established using the batch process 

simulator introduced in Chapter 3 for PHB production. This recipe is based on SBR 

approach to impose occurrence of the two major biological phases in each sequence of 

the operational process for sustainable production of PHB. The “Phase Differentiating 

Equation” developed in Chapter 5 will play a crucial role in the SBR recipe structure by 

assignment of feeding concentration to the system in different stages of the process. 

One SBR recipe will be designed based on the given structure and application of some 

of the empirical models developed in Chapter 6. The empirical models will be used to 

assign appropriate figures to the SBR recipe parameters.  

The operability and reliability of the generated SBR recipe will be tested using the 

process simulator. The analytical method developed in Chapter 4 provides a sound 

platform to identify the types of regimen occurring during a course of simulated SBR 

run. Classification of the operational regimen in Chapter 4 facilitates capsulation of 

analytical results by associating the batch operations to a specific class of regime type 

operation.  

Application of the “Phase Differentiating Equation” within the structure of the SBR 

recipe will also have significant effect on process disturbance rejection capability. In 

Chapter 7, investigations will be carried out to examine SBR process ability in 

mitigation of load and operational disturbances imposed to the production system. The 

SBR recipe designed in Chapter 7 will be used as the basis for optimisation studies 

carried out in Chapter 8. 

In Chapter 8, the batch process simulator introduced in Chapter 3 will be used to 

generate process data for production of PHB using the SBR recipe designed in  

Chapter 7. Critical recipe parameters in a SBR process will be identified to enable 

quantification of process parameters attributed to maximum product release in a 

sustainable continuous operation. These SBR process elements will be modelled using 

the empirical modelling techniques mentioned in Chapter 2. Reliable models will be 

applied in an appropriate optimisation algorithm to find the optimal operational 

condition for a given objective function. The aim is to introduce a procedure for 

optimisation of real production SBR process using process data, empirical models and 

mathematical optimisation tools. In Chapter 8, reliability of the optimisation procedure 

proposed to find the optimal SBR operational recipe parameters will be investigated and 

discussed.  
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In Chapter 9, a summary of the main conclusions in this study is given along with 

recommendations for future research work on the subject and applications of the 

analytical method developed in this research study. 

1.3.3  Research contributions 

The main research contributions by the author can be divided into two divisions. In the 

core of the first part, an analytical method capable of classifying operational state of 

PHB process is developed. Application of the method enabled segregation of different 

operational regimen and development of a mathematical tool to estimate occurrence of 

the critical process attributes based on initial state of the process. Different modelling 

structures are investigated to suggest the most appropriate empirical models targeting 

each operational regimen. The classification tool developed in this study enables 

prediction of operational phase regimen using the process information from the initial 

state of the process.  

In the core of the second section of contributions, a novel operational procedure is 

developed by the author to address the most important process requirements for 

effective and sustainable production of PHB using a cluster of microbial cultures in 

activated sludge. In addition to the general recipe structure, a procedure is developed for 

assignment of appropriate recipe parameters. Stability of the proposed recipe will be 

examined using the PHB batch simulator. Operational variations are also studied to 

confirm reliability of the proposed production recipe under severe operational 

misconduct.  

In the course of the research study, analytical results are also generated with interesting 

interpretations which can be used to provide significant insights into the PHB 

production process. Proposition of operational criterions for identification of the optimal 

batch termination points for different batch operational phase are among the research 

contributions made available in this study. The research outcomes are published in: 

Ganjian, A., Zhang, J., Dias, J. M., & Oliveira, R. (2013). Modelling of a Sequencing 

Batch Reactor for Producing Polyhydroxybutyrate with Mixed Microbial Culture 

Cultivation Process Using Neural Networks and Operation Regime 

Classification. CHEMICAL ENGINEERING, 32. 

Ganjian, A. Zhang, J & Oliveira, R (2014). Optimisation of a Sequencing Batch 

Reactor for Production of Polyhydroxybutyrate Using Process Characterisation Method 

and Neural Netwok Modelling. ESCAPE 24, 733-738 
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2.1  Bioplastics 

2.1.1  Definition of bioplastics 

Bioplastics are polymers which meet the criteria defined for the biodegradability, 

biocompatibility or compostability characteristics. Bioplastics are produced either from 

renewable biological sources or made in chemical plants and can be designated as 

bioplastics based on the criteria defined by EU regulation EN 13432 and EN 14995 for 

biodegradability and compostability respectively. 

While degradation is caused by enzymatic processes, chemical dissolution of materials 

by biological means is known as biodegradation. In general terms, a biodegradable 

material can be consumed by microorganisms and degraded back into water, dioxide 

carbon, biomass or compounds naturally found in the environment. On the other side, 

compostability is known as chemical degradation in compost pile forms either in 

presence of oxygen (aerobically) or without oxygen (anaerobically). According to the 

European bioplastics (EuBP), materials can be labelled as industrially compostable 

when they biodegrade under conditions and within a timeframe defined by the  

EN 13432 norm. 

Chemical structure of the polymers is the key factor concerning its biodegradability 

rather than the origin of the materials used for their production. While most of the bio-

based polymers are biodegradable, this is not an inherent characteristic of bioplastics 

(the term bio-based describes the part of a material or product that stems from biomass) 

(EuBA, 2014). Some class of bioplastic monomers lose their biodegradability through 

chemical reformation. Polylactic acid (PLA) and polybutylene succinate (PBS) are 

examples of compounds produced from renewable resources that cannot be fully 

biodegraded.  

The majority of the conventional plastics are produced in the petrochemical industries 

that present minimal or none biodegradability nor compostability. For instance, 

polyolefins such as polypropylene (PP), polyethylene (PE), polystyrene (PS), polyvinyl 

chloride (PVC) and polyethylene terephthalate (PET) are the most dominant plastics 

produced in chemical industries.  

In many cases, a combination of bio-based and chemically synthesized monomers are 

blended together to improve physical properties of the materials. Although the carbon 

feedstock is provided from renewable biological sources, chemical additives are not. In 
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Figure 2.1, bioplastic’s material coordination system is depicted to differentiate 

conventional plastics from bioplastics. The majority of the bio-plastics available in 

market today are composed of different combination of bio-based and chemically 

synthesized materials such as polybutyrate (PBAT), polycaprolactone (PCL) and 

biobased polyamide (PA). Since some of the fossil-based plastics can also be degraded 

by bio-enzymes, they can be classified as bioplastics although they are not bio-derived. 

Among the bioplastics, polyhydroxyalkanoates (PHA) are derived from renewable 

sources and fully biodegradable (European bioplastics, 2014).  

 

 

Figure 2.1 Bioplastics’ material coordinate system (adopted from EuBA 2014) 

2.1.2  Economic and environmental incentives 

Plastics are now so commonplace in the modern life of mankind that their presence has 

become an inevitable factor for its life style development. Plastics come in all sizes and 

shapes. Production of artificial bioplastics has been known to mankind for over 150 

years. The first artificial thermoplastic “celluloid” was versatile and highly inflammable 

material which was made of cellulose to be used in production of early films and also 

jewellery. Since then, numerous new compounds such as ethylene, casein, Shellac and 

plastics derived from soy proteins have been produced (Fiebach and Grimm, 2000; 

Stevens, 2002).  
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The early experimental production of plastics in the 1930s and 1940s remained in the 

laboratory phase and never made it to the commercial production. By the discovery of 

the low-priced crude oil in 1950s and its large scale industrial application, further 

investment in the field was stagnated. Production of plastics from non-petrochemical 

feedstock gained attention for the second time when oil price shocks took place in the 

1970s. However, economic incentives towards bioplastics remained low until public 

attention was drawn to the increasingly amounts of waste and limited landfill capacities 

in the 1990s. In 2012, the share of bioplastics in the plastic market was about 1.4 

million tonnes compared to the total 290 million tonnes of total plastics worldwide. 

Although bioplastic production is well below 1% of the total plastic production, its 

market growth is experiencing high growth rate between 20% and 100% annually in 

different divisions. The global production capacity for bioplastics increased from 1 

million tonnes in 2010 to 1.4 million tonnes in 2012 and is expected to reach 6.1 million 

tonnes in 2017 in annual production (European bioplastics, 2014). 

There are a number of incentives encouraging the growth of the bioplastic industries 

both within the sector and imposed by the external market. Advanced production means 

and methods offer cost reduction through mass production. Additionally, augmented 

social concerns about climate change and high acceptance of the green products by the 

consumers are the factors encouraging investment in the field. Moreover, political 

instability in the oil production contraries especially in the Middle East presents high 

potential for sudden increase in the price of fossil resources which favours investment in 

the replacing industries using bio-based resources.  

Market penetration of the bioplastics is just beginning. Some leaders in the automotive 

market such as Toyota, Volkswagen, Ford and Mercedes have already launched or 

integrated bioplastics into their products. Bioplastics have gained attention for food and 

drug packaging by some of the big brand names including Danone, Coca-Cola, 

PepsiCo, Heinz, Tetra Pak and L’occitane (European bioplastics, 2014). 

Figure 2.2 illustrates an idealised life cycle of a bioplastic product that can be either 

recycled or converted into natural elements and extracted to obtain bio-polymer 

structures (European bioplastics, 2014).  
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Figure 2.2 Life cycle of bioplastics (adopted from European bioplastics, 2014). 

The bioplastic products used in a circular economy follow one of the two main 

pathways for energy/organic recovery or recycling. In the former pathway, used 

products are degraded to compost, CO2 and water that form the feedstock to fecundate 

plats or living organisms. The biopolymers are produced and processed to obtain 

bioplastics with a physical properties required for specific applications. The raw 

bioplastics are converted to usable products and released to markets. Bioplastic 

recycling is the second pathway that requires development of logistics and infrastructure 

to collect, separate, process and return of the waste bio-based products.  

2.2  Polyhydroxyalkanoates (PHAs): a promising group of green plastics 

2.2.1  PHA chemical structure 

PHA is a family of diverse biopolyesters (Hazer and Steinbüchel, 2007) with similar 

mechanical properties to those of polypropylene. The advantage of PHA is related to its 

biodegradability, biocompatibility and production from renewable resources (Serafim et 

al., 2004). Discovery of the first PHA dates back to the 1920s with identification of 

poly(3-hydroxybutyrate) or PHB at the Pasteur Institute (Lemoigne, 1926). Since then, 
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more than 300 bacteria species have been identified to produce over 150 different types 

of hydroxyalkanoates (Steinbüchel and Valentin, 1995). 

Bioplastics in the form of PHA are stored as granules in the cytoplasm of almost all 

genera of the bacteria kingdom under stress conditions imposed by lack of nutrient, 

electron donor or acceptor (Valentin et al., 1999; Reddy et al., 2003). These polymers 

are in fact intracellular carbon and energy reserves for the bacteria that can take up to 

90% CDW (cell dry weight) (Madison and Huisman, 1999). PHA in the form of 

Poly(3HB) that is produced in the cytoplasmic membrane and cytoplasm of Escherichia 

coli is reported to be a non-storage part of the cell that can be found in yeasts, plants and 

animals (Dawes and Senior, 1973).  

The generic formula for PHAs is shown in Figure 2.3. The members of the PHA family 

vary by the structure of the side chains of parent compounds. The short chain length 

monomers consist of three to five carbon atoms while the long chain length monomers 

have more than fourteen carbon atoms. The medium chain length monomers are 

classified in between those two groups. The most common types of PHA are tabulated 

in Table 2.1 (Lee, 1996b; Liu et al., 2011). 

Table 2.1 The most common PHA based on formula given in Figure 2.3 

X R Chemical name PHA full name 

1 hydrogen poly(3-hydroxypropionate) P(3HP) 

1 methyl poly(3-hydroxybutyrate) P(3HB) 

1 ethyl poly(3-hydroxyvalerate) P(3HV) 

1 propyl poly(3-hydroxyhexanoate) P(3HHx) 

1 pentyl poly(3-hydroxyoctanoate) P(3HO) 

1 nonyl poly(3-hydroxydodecanoate) P(3HDD) 

2 hydrogen poly(4-hydroxybutyrate) P(4HB) 

2 methyl poly(4-hydroxyvalerate) P(4HV) 

3 hydrogen poly(5-hydroxyvalerate) P(5HV) 

3 methyl poly(5-hydroxyhexanoate) P(5HHx) 

4 hexyl poly(6-hydroxydodecanoate) P(6HDD) 
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Figure 2.3 PHA molecule formula 

The average number of repeating units (n) can alter in between 100 to 30,000 times 

(Lee, 1996b). Other arrangements of monomers exist in copolymers of PHAs. For 

example, poly(3-hydroxybutyrate-co-3-hydroxyvalerate), P(3HB-co-3HV), is a medium 

chain length produced by Bacillus circulans from cheap carbon sources like dextrose. 

This PHA consists of a random arrangement of methyl and ethyl monomers (Phukon et 

al., 2012). The copolymer poly(3-hydroxybutyrate-co-3-hydroxyhexanoate), P(3HB-co-

3HHx), is made up of methyl and propyl monomers and can be produced by 

recombinant bacterium Cupriavidus necator harbouring plasmid DNA (Anis et al., 

2012). High purity of the latter copolymer has biomedical applications (Anis et al., 

2013).  

2.2.2  PHA properties  

The composition of the monomers, their microstructure and their molecular weights 

have dominant role on the PHA properties. Some of the general properties are listed in 

Table 2.2 for three PHAs, PLA as other type of bioplastic and fossil based plastics for 

comparison. Since the focus of this research project is on industrial production of 

P(3HB) (or as commonly referred to as PHB), further information is provided with 

focus on the PHB properties.  

The molecular weight of PHB produced from wild type bacteria is usually in the range 

of 1×10
4
 - 3×10

6
 g/mol with a polydispersity of around two (Doi, 1990). The glass 

transition temperature is around 4˚C while the melting temperature is about 180˚C. The 

densities of crystalline and amorphous PHB are 1.26 and 1.18 g/cm
3
 respectively. PHB 

is reported to be a stiffer and more brittle plastic material when compared to 

polypropylene. PHB is water insoluble and relatively resistant to hydrolytic degradation 

(Sudesh et al., 2000).  

Crystallisation kinetics, morphology of melt and solution crystallised PHB, the variation 

of lamellar thickness with crystallisation temperature, and the assessment of some 



Chapter 2  Literature Review 

18 

thermodynamic quantities are reported in (Barham et al., 1984). Films of PHB show gas 

barrier properties comparable to PVC and PET (Avella and Martuscelli, 1988). Pure 

PHB bioplastic suffers from a very narrow window of processability and low impact 

resistance. For this reason, different polymers are mixed with PHB to obtain new PHB-

based materials with improved processability and impact resistance (Avella and 

Martuscelli, 1988). The crystalline structure of PHB is also very well studied in (Sudesh 

et al., 2000). 

There are a number of different species of bacteria and fungi recognised that can 

degrade PHA into components naturally found in nature, both aerobically and 

anaerobically. For instance for biodegradation of PHA, Comamonas testosterone and 

Pseudomonas stutzeri are two types of bacteria found in the sea water sources, 

Acidovorax faecalis, Aspergillus fumigatus, Pseudomonas lemoigne, and Variovorax 

paradoxus are found in the soil, and Alcaligenes faecalis, Pseudomonas sp., and 

Illyobacter delafieldi are found in the anaerobic sludge (Tokiwa et al., 2009; Banerjee et 

al., 2014). 

2.2.3  PHA production companies 

Commercial production of PHA has been exploited for four short chain length 

structures known as poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-

hydroxyvalerate), poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-

hydroxybutyrate-co-3-hydroxyhexanoate) with short names PHB, PHBV, P3HB4HB 

and PHBHHx respectively (Chen, 2009).  

By 2010, more than 14 active research and producing companies were reported to 

engage in PHA production as tabulated in Table 2.3. About 50% of these companies 

were established after the gold rush of oil price increase to over $100 USD per barrel in 

2003. The majority of the companies initiated large scale production of PHA but did not 

manage to endure the competitive market of late 1990s with low oil price. Chemie Linz 

AG Austria was the first company to commercialise PHB production in 1980s to the 

scale of 60 tons per year. The company produced PHB in a 15 m
3
 fermentor using 

Alcaligenens latus strain. The bioplastics produced in this unit was used to make sample 

bottles, cups and syringes (Hrabak, 1992). The technology was later bought by Biomer 

in Germany for production of PHB for making of combs, pens and plastic bullets (Chen, 

2010).  



 

 

Table 2.2 Properties of some bio-polymers and fossil based polymers (adapted from (Albuquerque, 2009)). 

 

Physical 

properties 

 

Relevance for 

plastic applications 

 

PHA 

Other biobased 

plastic 

 

Fossil based polyolefins 

 

P(3HB)1,2,3,4 

 

P(HB-co-HV)4,5 

 

P(HB-co-HHx)6 

 

PLA2 

 

HDPE2,7 

 

LDPE2,7 

 

PS2,7 

 

PP2,7 

 

PET2,7 

 

PVC2,7 

Molecular 

weight, 

Mw 

Strength, 

Processability 

 

104 – 3 × 106 

 

104 – 3 × 106  

 

104 – 3 × 106 

 

105 – 3 × 105 

 

105 – 5 × 105 

 

9 × 104 

    

Melt flow rate 

(g/10 min) 

Processability  

5 – 25 

 

15 – 25 

 

0.1 – 100 

 

3 – 6 

 

0.1 – 3.5 

 

0.2 – 3.5 

    

Density (g/cm3)   

1.20 – 1.26 

 

1.20 – 1.40 

 

1.07 – 1.25 

 

1.25 

 

0.94 – 0.97 

 

0.92 – 0.93 

 

1.05 

 

0.95 

 

1.37 – 1.46 

 

1.39 

Crystallinity (%) Transparency 

Stiffness 
Brittleness 

 

55 – 80 

 

40 – 50 

 

< 55 

Often 

amorphous 

 

Semi-
crystalline 

     

Mechanical properties           

Tensile strength 

at yield (MPa) 

Resistance to 

permanent 
deformation 

 

15 – 45 

 

25 – 30 

 

10 – 20 

 

53 – 70 

 

25 – 32 

 

15 – 20 

 

42 – 60 

 

12 – 43 

 

55 – 75 

 

50 – 80 

Elongation to 

break (%) 

Flexibility  

2 – 10 

 

20 – 30 

 

10 – 25 

 

0.1 – 2.4 

 

600 – 900 

 

600 

 

2 – 4 

 

150 – 

400 

 

50 – 150 

 

20 – 40 

Young’s modulus 

(GPa) 

Elasticity/ 

Stiffness 

 

0.9 – 3.5 

 

1.2 – 3.2 

  

0.35 – 3.6 

 

0.7 – 1.2 

 

0.15 – 0.45 

 

3 – 3.5 

 

0.6 – 1.2 

 

2.8 – 3.1 

 

2.9 – 3.3 

Thermal properties           

Melting 
temperature 

Tm (˚C) 

 
Processability 

 
175 – 185 

 
155 – 170 

 
< 175 

 
85 – 170 

 
120 – 130 

 
105 – 115 

 
240 

 
170 

 
265 

 
100 – 

260 

Glass transition 

temperature 

Tg (˚C) 

Temperature below 

which presents rigid 
structure 

 

4 

 

< 4 

 

< 4 

 

55 – 65 

  

-30 

 

95 

 

0 

 

69 – 75 

 

82 

In use 

temperature 

range (˚C) 

  

-30 – 120 

 

-30 – 120 

 

-30 – 120 

 

< 60 

 

0 – 100 

     

Other properties    

Water resistance Yes No Yes 

O2 permeability Very low  High Low 

 

Water vapour permeability 

Lower than other bio-based plastics  

but higher than most polyolefins 

 

High 

 

Low 

Biodegradability Yes No No 
1
(Lee, 1996b), 

2
(Crank and Patel, 2005), 

3
(www.biomer.com), 

4
(www.biocycle.com.br), 

5
(www.bio-plastics.org), 

6
(www.pg.com), 

7
(Brandrup et al., 1999) 

1
9
 

http://www.biomer.com/
http://www.biocycle.com.br/
http://www.bio-plastics.org/
http://www.pg.com/
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Imperial Chemical Industries (ICI) was a UK company that initiated mass production of 

PHBV to the scale of 300 tons per year during the 1980s and 1990s. The PHA 

copolymer PHBHHx was produced by Procter & Gamble (P&G) from 1980s to 2005 

based on manufacture contracts (Chen, 2010).  

Table 2.3 Worldwide PHA producing and researching companies 

Company PHA type Production scale 

(tons/year) 

Production 

initiation 

Biomers, Germany PHB Unknown 1990s 

Metabolix, USA Several PHA Unknown 1990s 

Tepha, USA Several PHA Pilot scale 1990s 

ADM, USA Several PHA 50,000 2005 

Meredian, USA Several PHA 10,000 2007 

Kaneka, Japan Several PHA Unknown 1990s 

Biocycles, Brazil PHB 100 1990s 

Bio-On, Italy Unclear 10,000 2008 

Zhejiang TianAn, China PHBV 2,000 1990s 

Yikeman, Shandong, China Unclear 3,000 2008 

Jiangsu Nan Tian, China PHB Pilot scale 1990s 

Shenzhen O’Bioer, China Several PHA Unknown 2004 

Tianjin Green Bioscence, China P3HB4HB 10,000 2004 

Shandong Lukang, China Several PHA Pilot scale 2005 

 

The Brazilian sugar mill, Copersucar, built a pilot plant for PHB production using 

biomass as the energy supplier in 1995. The advantage of the production technique was 

that the polymer could be produced at low cost. Prospect of future development is 

promising considering the annual production of sugar and ethanol is considerably high 

in the south and central region of Brazil (Chen, 2010). Production cost could be 

significantly decreased when large scale production under sugarcane is accomplished 

(Nonato et al., 2001). 

The European section of Metabolix, a bioscience engineering company, has recently 

launched a new PHA production program with more than thirty platforms allocated for 

production of novel materials. PHB production is maximised by the multi-gene 

expression technique using different carbon sources such as switchgrass (Panicum 

virgatum), camelica and sugarcane (Bernard, 2014).  
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In China, NingBo TianAn developed a high efficiency PHBV model unit in 

collaboration with the Chinese Institute of Microbiology. This pilot plant was able to 

grow Ralstonia eutropha in glucose medium with density of 160 g/L CDW within 48 

hours (Chen, 2010). PHBV has also been identified as a biodegradable and 

biocompatible polymer that can be used for drug delivery (Vilos and Velasquez, 2012).  

Copolymers of P3HB4HB with various thermal and mechanical properties are produced 

by Tianjin Green Bioscience, China, and Metabolix, USA, using recombinant E.coli and 

R. eutropha (Chen, 2010; Metabolix, 2014; TianjinGreenBio, 2014). Chen reported that 

the Chinese and the American companies were developing sites to increase P3HB4HB 

production to the capacity of 10 kilotons and 50 kilotons per year respectively by 2010 

(Chen, 2010). In addition to the general characteristics exhibited by the PHA family, 

P3HB4HB can be designed to demonstrate different mechanical properties by varying 

the ratio of 4HB and 3HB (Li et al., 2010). P3HB4HB can be used for composite 

fabrication with enhanced thermal and dynamic mechanical properties (Chen et al., 

2014). 

A collaborated work by P&G, KAIST and Jiangmen led to production of PHBHHx in a 

20 m
3
 fermentor by Aeromonas hydrophila (Chen et al., 2001). The crucial process that 

increased the cost of production was the application of ethyl acetate and hexane in the 

extraction. The product was exploited in China to be applied in films, binders, flexible 

packaging, coated paper, coating systems and medical devices (Chen, 2010). 

The main drawback has always been the PHA production cost which was about five to 

ten times more than their equivalent petroleum based polymers (Suriyamongkol et al., 

2007). This is the case even though the prices of several degradable polymers have 

decreased greatly as a result of recent efforts to develop the manufacturing technology; 

for instance, the price of PHB was more than $25 USD per pound in 2008 but is now 

around $4 USD per pound when purchased in massive quantities (Biby, 2013). In order 

to sustain economically beneficial PHB products, target markets should be aimed for 

large scale production with a realistic production scenario. When PHB is available in 

large amounts, more specialised companies and research groups are expected to increase 

investment on projects related to the bioplastics. This is an interdisciplinary field 

comprising joint efforts of microbiologists, geneticists, botanists, chemists, polymer 

scientists, chemical engineers, biotechnologists and medical scientists.  
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2.2.4  PHA applications  

The initial application of PHA was production of everyday articles such as shampoo 

bottles or shopping bags. It has also been used as paper coatings, carpets, containers and 

disposable items such as razors, utensils, diapers and feminine hygiene products (Chen, 

2009). PHA in the form of PHB is bacterial energy storage compound and is postulated 

as animal feed or feed additives with nutritional value (Boon et al., 2013). PHA has also 

been reported to have applications in printing and photographic materials (Chen, 2009). 

Additionally, some forms of PHA can be used as heat sensitive adhesives, or smart gels 

with biodegradable and biocompatible properties (Chen, 2009).  

 Food packaging 

The most frequently used materials for food packaging applications are polypropylene 

(PP), polyethylene terephthalate (PET) and polystyrene (PS). In the quest of 

biodegradable alternatives to mitigate the plastic waste disposal problems, biopolymers 

are being investigated. Apart from the economic barriers, one of the main challenges of 

biopolymers is to adapt their oxygen and water permeability to the food product 

requirements (Fabra et al., 2014). In a recent study, physical properties of PHBV 

polymers were enhanced to reach permeability levels similar to those of PET by adding 

a zein interlayer. The use of PHA based compounds for food packaging applications has 

also been documented (Fabra et al., 2013b). Starch and PLA polymers are also two 

families of biopolymers that present interesting properties for food packaging 

applications. They are commercially made available in large scale by companies such as 

Novamont (www.novamont.com) and Natureworks (www.natureworksllc.com) 

respectively (Fabra et al., 2013a).  

 Medical implant materials 

It has been documented that different monomers of PHA can be used for various 

medical applications with various physiological functionalities. Toxicity of PHB, 

P4HB, PHBV, PHO and their degradation products are refuted and even some 

therapeutical or nutritional benefits are counted for these PHAs (Reusch, 1995; 

Williams and Martin, 2003; Chen, 2009). The first successful demonstration of a tri-

leaflet heart valve was performed in a sheep model using poly(4-hydroxybutyrate) 

(P4HB) (Martin and Williams, 2003). Application of implanted PHB patches on the 

defected cranium of adult male rats confirmed good biocompatibility and 

http://www.novamont.com/
http://www.natureworksllc.com/
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osteoconductive character of the implants (Gredes et al., 2014). PHA including PHB, 

PHBV, P4HB, P3HB4HB are frequently investigated for various medical applications 

such as wound dressings, tendon repair devices, orthopaedic pins, slings, sutures (Chen, 

2009).  

 Cosmetics and skin care 

Three copolymers of P(3HB), P(3HB3HV) and P(3HB3HHx) exhibit suitable level of 

oil absorbability, retention and oil-indication as potential facial oil blotting material. All 

three films revealed similar effects for sebum absorption (Sudesh et al., 2007). The 

premium advantage of PHB components over other materials is that no lipophilic 

additive is required for sebum absorption while commercial facial oil usually add zinc 

stearate to enhance absorption level. The PHA films provided effective oil absorption 

even after being washed with detergent; whereas, the commercial counterparts loss their 

ability to absorb oil upon washing with detergents (Sudesh et al., 2011).  

 Nanocomposite materials for textile dye wastewater treatment 

Novel applications of PHA films for absorption of oily substances were encountered 

based on their hydrophobic properties discovered for cosmetic applications. Solvent-

cast P(3HB) films were able to remove over 35% of colour from textile dye wastewater. 

The film was enhanced to form electrospun P(3HB) - 50 CDW% TiO2 which also can 

be used as an intelligent packaging material with self-cleaning properties to ensure the 

safety and quality of food products (Sudesh, 2013).  

 Therapeutic effect 

Evidence has been accumulated for ketone bodies including 3-hydroxybutyrate (3-HB) 

(most common degradation product of PHB) to have therapeutic role in treatment of 

neural diseases. It has be shown that 3-hydroxybutyrate methyl ester (3-HBME) 

improves intracellular communication between neurons that enhance learning and 

memory capabilities (Zou et al., 2009). Additionally, application of other 

hydroxybutyrate ketones (especially β-hydroxybutyrate, β-OHB) for neural protection 

against Alzheimer and Parkinson diseases has been confirmed (Kashiwaya et al., 2000; 

Dedkova and Blatter, 2014).  
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 Drug delivery and neural tissue engineering 

Application of non-toxic, biodegradable and biocompatible PHA has recently gained 

enormous attention by the researchers. The low cost of PHA production make it a good 

candidate to replace some of the conventional compounds for controlled drug delivery 

in future. Controlled release of antibiotic and paclitaxel for effective treatment of 

periodontal diseases and ovarian cancer respectively has been reported (Sendil et al., 

1999; Vilos et al., 2013a; Vilos et al., 2013b).  

PHBV has also exhibited properties to have important benefits for neural tissue 

engineering (Chen and Tong, 2012). In regeneration therapies, scaffolds are essential for 

cell viability (Hutmacher, 2000). PHBV is an established drug delivery system 

providing a sustained and controlled release (Chen and Davis, 2002). Moreover, its 

biodegradable and can disappear from implant site to leave space for the regenerated 

tissue (Hankermeyer and Tjeerdema, 1999). Drugs can be entrapped or 

microencapsulated in an engineered PHA structures (film, porous, matric, microcapsule, 

microsphere and nanoparticle) (Shrivastav et al., 2013). PHA in the form of poly(3-

hydroxybutyrate-co-3-hydroxyvalerate) (PHB-HV) has distinctive thermoplasticity and 

piezoelectricity properties presenting a suitable nominee for regeneration of injured 

spinal cord. Studies showed that PHB-HV scaffolds are well tolerated by the host tissue 

and do not have negative impact on the recovery procedure (Samy et al., 2013).  

Among natural and synthetic biodegradable polymers, PHB is found to be remarkable 

for its application in drug delivery (Tian et al., 2008). Application of PHB for drug 

delivery is a recent innovation with further investigations on polymeric capsule 

formation (Mora-Huertas et al., 2010).  

 Biofuels 

Development of renewable fuels including bioethanol, biomethanol, biodiesel, biogas, 

bio-oil and biochar has attracted attention of many research centres (Demirbas, 2008). 

Conversion of some short and medium chain length PHA led to production of 

hydroxyalkanote methyl ester (3HAME) by acid catalysed hydrolysis (Zhang et al., 

2009). One of the most important criteria used to evaluate the quality of a fuel is its 

combustion heat. The combustion heat of 3HAME is 30 kJ/g which is 3 kJ/g higher than 

that of ethanol. Although the quality of this biofuel is considerably lower than the 0
#
 

diesel and 90
#
 gasoline (50 kJ/g and 52 kJ/g respectively), its application is 
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environmentally friendly which is produced from common biomass sources (Zhang et 

al., 2009).  

 Fine chemical industry 

Pure (R)-3-hydroxyalkanoic acids are conveniently prepared by depolymerizing the 

biosynthesized PHA (Seebach et al., 1992). The RHA monomers have two functional 

groups (-OH and –COOH) that can be modified. Additionally, the chiral center 

available in the structure of the RHA monomer provide flexibility to perform as 

synthons and to act as starting material for the synthesis of fine chemicals such as 

pheromones, aromatics, vitamins and antibiotics (Ruth et al., 2007).  

 Increasing survival ability of industrial microorganisms 

Physiological functionalities of PHA have proved to be beneficial for extending survival 

threshold of bacteria and their stress tolerance under adverse conditions such as 

starvation, desiccation, radiation and high pressure. This effect can also be observed in 

competitive environmental settings where carbon or energy sources may be limited (as 

observed in “feast” and “famine” cycles in activated sludge waste water treatment 

systems (Kadouri et al., 2005; Goh et al., 2014)). 

 Bio-surfactant and bacterial agent 

The term surfactant refers to “surface active agents” (Clint, 1975). Bio-surfactants are 

compounds synthesized by some microorganisms with hydrophilic and hydrophobic 

ends (Makkar and Cameotra, 2002; Marchant and Banat, 2012). Application of bio-

surfactants has recently gain attention in food (Nitschke and Costa, 2007), beverage, 

pharmaceutical (Gharaei-Fathabad, 2011), cosmetics, detergents (Bafghi and 

Fazaelipoor, 2012), oil and mining exploitations (Shubhrasekhar et al., 2013). In 

addition to biodegradability and production from renewable resources (Müller et al., 

2012), bio-surfactants consist of a very promising and interesting substance class that 

can play the role of emulsifiers, demulsifiers, wetting agent, penetrant and bubble 

agents (Rosen and Kunjappu, 2012).  

 Carriers in agroindustry  

For many years, application of different chemicals to eliminate pests, weeds, and 

pathogens from cultivated plant species have been known as one of the most important 

factors effecting both the agriculture industry and ecology of the environment. 
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Unfortunately, large scale application of these chemicals has resulted into significant 

accumulation of these mostly toxic materials in the biosphere while plant protection 

could not be assured. Pesticides exhibiting mutagenic and carcinogenic effects are 

ingested by humans with food and thus they pose threats on human health. To resolve 

this issue, researches have been carried out in direction of replacing uncontrolled 

distribution of xenobiotics in the environment with controlled delivery of pesticides and 

nutrients to plants. Application of ethyl cellulose (Pérez‐Martínez et al., 2001), 

polyurethane (Shukla et al., 2002), sodium alginate (Kulkarni et al., 2000), and 

molecularly imprinted polymers (MIPs) (Piletska et al., 2005) are examples of materials 

reported for delivery of a number of weed and pest killer chemicals. (Voinova et al., 

2009) 

The key property of PHA materials for application in delivery systems is their 

biodegradability in relatively prolonged time period that is important for pesticides 

formulation design. The copolymer of PHB-PHV has been reported as an appropriate 

candidate for embedding pesticides to be released on a controlled manner. The rate of 

pesticide release to the soil can be regulated by varying the polymer-pesticide ratio. 

(Sudesh et al., 2000; Voinova et al., 2009).  

In this review, numerous applications were encountered for PHA in different formation. 

Mass production of new products requires appropriate facilities enabling utilisation of 

the product in an efficient and economic manner. Currently, there is a huge 

insufficiency in utilisation of facilities, even though bioplastics have already come into 

the market (Bernard, 2014).  

2.3  PHA production methods 

Industrial production of PHA is a two-step process: formation and accumulation of 

PHA followed by its extraction (Snell and Peoples, 2009). With over 300 bacteria 

producing PHA naturally, there is a wide range of options to start from. The most 

interesting case is fermentation using microbial aerobic sourced from cellulosic 

material, sugar, or even vegetable oil. Transgenic plants can also accumulate PHA in 

their leaves or seeds in very efficient manner (Bernard, 2014). In this section, PHA 

production methods are introduced briefly. 
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2.3.1  PHA production by plants 

As early as 1930, one third of industrial organic chemicals were derived from plants. 

With the advent of petroleum industries, low cost materials were made available with 

properties that could not be duplicated by abundantly available natural materials. 

Production of high value technical materials in crop plants have recently gain attention 

using genetically engineered plants. This approach serves the widely held social goal of 

developing more sustainable and environmentally benign methods of maintaining 

market needs. The idea remains a research project until economic incentives justify 

execution of the plant mass production projects (Somerville and Bonetta, 2001).  

PHA can also be produced by genetically engineered plants. Since fermentation process 

is avoided, the overall production cost of PHA product is expected to reduce 

significantly. The transgenic plants require fixed CO2, water and soil nutrients to 

produce biopolymers through photosynthesis which can degrade back to CO2 and water 

again after disposal. Three forms of PHA synthesis mechanisms are reported by 

Suriyamongkol et al. (2007).  

In one of the earliest attempts, PHB was produced using Arabidopsis thaliana, a model 

plant with a relatively small genome and short life cycle that could be easily 

transformed with Agrobacterium tumefaciens (Poirier et al., 1992). Other PHA 

polymers were also produced in plant leaves containing saturated and unsaturated  

3-hydroxyalkanoic acids ranging from 6 to 16 carbons with 41% monomers being  

3-hydroxyoctanoic acid and 3-hydroxyoctenoic acid (Mittendorf et al., 1998). Later, it 

was demonstrated that PHB formation in the oilseeds of Brassica napus is more 

efficient with 7.7% CDW accumulated PHA content, yet commercial production require 

twice the amount of PHA accumulation achieved (Houmiel et al., 1999). Plants 

containing up to 3.72% CDW of PHB in leaf tissues and 1.23% CDW of PHB in whole 

tillers is reported for Panicum vigatum (Somleva et al., 2008). Recently, accumulation 

of 14% CDW of PHA is reported for Arabidopsis thaliana (NewsRX, 2013). 

Application of agricultural systems to produce bioplastics in sustainable and 

economically beneficial plants has a promising prospect not only to replace non-

degradable petrochemical plastics, but to sequester CO2.  

2.3.2  PHA production by pure microbial cultures 

PHA accumulation has been reported for many bacteria, but only a few of them have the 

capacity of producing these polymers in high volumetric productivity (Steinbüchel, 



Chapter 2  Literature Review 

28 

1992). On the other side, the lactic acid bacteria or the methanogenic bacteria were 

classified as the bacteria groups with no PHA synthesis. PHA accumulation with 

Pseudomonas (Escapa et al., 2012; Acuña et al., 2014), Cupriavidus necator (former 

Ralstonia europha) (Passanha et al., 2013), Methylobacterium organophilum (Zuñiga et 

al., 2013), recombinant Esherichia coli (Wang et al., 2012b; Salamanca-Cardona et al., 

2014), and Alcaligenes latus (Wang et al., 2013) has been reported more than other 

bacterium species. High PHA production (more than 80% CDW) was achieved using 

mutant species under nutrient limitation of essential elements such as carbon, nitrogen, 

phosphor, sulphur, oxygen or manganese (Anderson and Dawes, 1990; Lee, 1996a; 

Steinbüchel and Füchtenbusch, 1998).  

The optimal operation systems were identified with growth limitation to drive more 

carbon for PHB storage in the case of Cupriavidus necator and Alcaligenes; whereas, 

PHB formation is associated with cell growth when recombinant Escherichia coli and 

Alcaligenes latus is considered. The enzymes identified for PHB synthesis and 

degradation can also be associated with the substrate and the bacteria used in the 

production process (Sudesh et al., 2000).  

2.3.3  PHA production by Mixed Microbial Cultures 

In order to escalate market penetration, volumetric production capacity of fermentor 

systems should be capitalised to decrease cost price of PHA products. With the aim of 

reducing production cost, one option is to use inexpensive, low quality substrate which 

accounts for one of the main cost factors (Kim, 2000). Additionally, mixed substrates 

can be utilised to harvest mixed microbial cultures in an open environment. The mixed 

population is able to adapt continuously with the changes in substrate conditions (Van 

Loosdrecht et al., 1997). Moreover, the production cost is reduced using sterile-free 

fermentations (Reis et al., 2003). The combination of these factors allow saving 

equipment costs, minimises the need for enhanced process control and energy saving 

(Serafim et al., 2008). However, the mixed culture PHA production process requires 

optimisation in direction of providing cultures with higher intracellular PHA contents so 

that they can compete with pure culture production processes.  

In wastewater treatment, when organic load rate is not significant the biomass is not 

very active, meaning that the PHA storage rate is low (Dircks et al., 2001). In order to 

produce PHA at high rate, activated sludge is enriched with microorganisms that 
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produce and store more PHA in the presence of excessive organic load rate (Dionisi et 

al., 2004).  

PHA formation can occur in two metabolism pathways based on the type of the 

operating systems. In the first type, electron donor (reducing agent) and electron 

acceptor (oxidizing agent) availability are separated with anaerobic/aerobic dynamics. 

In the second type, microorganisms are subjected to periodic substrate availability 

(dynamic feeding) (Reis et al., 2003). The polyphosphate accumulating organisms 

(PAOs) and glycogen accumulating organisms (GAOs) are the two groups of bacteria 

operating mainly under anaerobic/aerobic dynamics. In the both groups (PAO and 

GAO), PHA synthesis plays a crucial role in their metabolism (Serafim et al., 2008). In 

the literature, comprehensive studies on different aspects of PAO-GAO operations are 

available. Metabolic analysis for acetate uptake (Yagci et al., 2003), the effects of 

carbon source, pH and temperature on PAO-GAO competition (Lopez-Vazquez et al., 

2009), and the salinity of the medium on the organisms (Welles et al., 2014). The 

amount of PHA accumulated by these groups of microorganisms is generally less than 

20% CDW (Satoh et al., 1996). In different attempts, productivity on PHA storage was 

enhanced to up to 62% CDW; however, experimental results were not reliably 

repeatable. Comparing operational outcome with the pure cultures producing PHA for 

more than 88% CDW, utilisation of mixed cultures can be justified in the favour of an 

enhanced economy, an improved use of waste, a simpler process control and a 

monoseptic free production process (Salehizadeh and Van Loosdrecht, 2004).  

2.3.4  PHA production by MMC in Sequential Batch Reactors 

PHA production by mixed microbial cultures (MMC) is most commonly operated in 

sequential batch reactor (SBR) configuration (Dionisi et al., 2005; Albuquerque et al., 

2007). The SBR is a batch (as opposed to continuous) operation generally performed on 

biological waste treatment plants. An SBR system may be composed of one or many 

reactors (tanks) to execute periodic operations. For a standard SBR operation, each 

cycle or sequence of operation has five modes or periods, each of which is named 

according to its primary function. The periods are fill (the receiving of raw material), 

react (the occurrence of desired reactions), settle (the separation of operational phases), 

draw (the discharge of reacted effluent) and idle (the period between discharge and 

recharge of the reactor) (Irvine and Busch, 1979).  
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In the dynamic feed system, a two-step process consisting of (1) a culture replication 

and growth step with presence of the carbon substrate (“feast” phase) and (2) a PHA 

consumption step in absence of the carbon substrate (“famine” phase) is considered. In a 

“feast”-“famine” system, PHA storing bacteria normally outcompete other bacteria 

since they can maintain their metabolic balance throughout the feeding alteration 

conditions and also they have very high substrate uptake rate (Reis et al., 2003). An 

stable PHA production of about 70% CDW was achieved with carbon limitation in a 

fed-batch SBR system under dynamic feeding (Reis et al., 2003). This is a very 

promising result considering the economic and environmental merits offered in 

production under mixed microbial cultures.  

By definition, an operation in nutrition shortage state is said to run in the “famine” 

phase and “feast” phase occurs when nutrition abundance results in cell replication and 

intracellular growth. As mentioned, PHB production in SBR operations by mixed 

cultures consists of both “feast” and “famine” phases. Although PHB is formed only 

under “feast” phase, occurrence of “famine” phase is very important for the process 

feasibility. The cell physiological adaptation to nutrient limitation results in higher PHB 

formation rates once nutrition is in excess (Dias et al., 2005). It is proposed in the 

literature that the best operating strategy consists of three consecutive phases with (1) a 

cell growth phase with acetate and ammonia excess, (2) followed by a “famine” phase 

with carbon limitation and (3) PHB production with acetate excess in absence of 

ammonia supply (Dias et al., 2005). In Chapter 7, a different approach to SBR operation 

is constructed to assure occurrence of both “feast” and “famine” phase in each sequence 

of SBR process. 

Presence and relative properties of the type of PHA stored in the process depend on the 

type of carbon substrate, limiting factors and the microorganism producing the PHA. 

The most common form of PHA occurrence is PHB structure; however, other PHA co-

polymers have also been reported to be produced by a mixture of microbial cultures 

(Reis et al., 2003; Lemos et al., 2006).  

2.4  PHA extraction methods 

Extraction and purification of PHA produced in various production units is essential. In 

addition to fermentation, extraction is one of the most costly production stages in PHA 

manufacturing. Development of novel inexpensive extraction processes that can purify 
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PHA with minimal or none harmful effect on the environment is always highly 

favourable.  

In the case of PHA production by plants, there are some other useful byproducts that 

should be harvested from the transgenic plants along with the PHA components. On the 

laboratory scale, solvent extraction is applied using methanol and chloroform to purify 

PHA. However, this method is not suitable for mass production of PHA since 

chloroform is highly toxic and it demolishes other useful byproducts in the crops. There 

are some other extraction methods based on the solvent and non-solvent procedures; 

however, no scientific publication is found for large scale PHA extraction (Poirier, 

2001).  

There are two common protocols used for PHA extraction from bacteria. In the 

conventional method, the lipophilic components in the cells are removed in hot 

methanol. Since PHA is insoluble in methanol, the lipid phase separates from the PHA 

product. On the other side, PHA solves in chloroform and highly purified PHA can be 

recovered by solvent evaporation and precipitation of the PHA by methanol. This 

method is not suitable for PHA mass production due to utilisation of large amount of 

hazardous solvents and their harmful effect on the environment (Byrom, 1987; 

Suriyamongkol et al., 2007). In the second method, a cocktail of harmless enzymes 

(including proteases, nucleases and lysozymes) and detergents are used to extract PHA 

from the proteins, nucleic acids and other components in the cell (Byrom, 1987; 

Bernard, 2014). Similar to non-solvent PHA extraction from bacteria, the use of a 

cocktail of enzymes has been suggested for extraction of PHA from plant tissue. 

However, it is not clear if this protocol is realistic and cost effective for industrial scale 

PHA production (Macdonald, 1997; Yu and Chen, 2006; Furrer et al., 2007; Bernard, 

2014).  

In this study, process optimisation will be carried out in direction of sustainable 

production of PHB using a cost effective manufacturing approach in Chapter 8. In the 

next section a brief review on the optimisation concept and the optimisation method 

applied in this study is presented.  
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2.5     Process optimisation 

2.5.1 Introduction  

In chemical processes, optimisation is the use of specific tools to determine the most 

efficient approach to design a process by means of qualitative methods. Through 

optimisation, many industrial decisions are made in direction of profit increase with 

maximising the use of resources with minimum effort or cost. While a typical chemical 

engineering design problem has many solutions, the optimised solution is concerned 

with the best solution among the entire set of possible outcomes. Numerous 

mathematical methods and techniques are made available today for specific 

optimisation problems and application fields in the format of computer-based packages 

or associated software (Sahinidis, 1996; Gill et al., 2002; Lofberg, 2004; Pintér et al., 

2006; Grötschel and Mathematiker-Vereinigung, 2012; Masood et al., 2012; Mason, 

2013; Vaezipour et al., 2013; Carriglio et al., 2014). However, they all require  

(1) critical analysis of the process or design, (2) insight about the appropriate 

performance objectives and (3) sufficient knowledge and experience about the process 

in order to obtain useful information using optimisation tools (Edgar et al., 2001).  

Optimisation problems can be found in many levels in a company, ranging from 

complex combination of plants, units, individual pieces of equipment, subsystems in a 

piece of equipment, or even smaller entities. The areas in which optimisation are 

broadly applicable can be segregated in three levels comprising of (1) management,  

(2) process design and equipment specification, and (3) plant operations.  

In the management level, high level decisions concerning the time and place of plants 

construction, project evaluation, corporate budget, product selection, and investment 

approaches are made. In the second level, decisions are made to specify the size and the 

type of process and its nominal operating conditions. For instance, the number of 

production units and their arrangements to yield maximum operating efficiency, or 

selection of specific heat exchangers from more than ten different types are the sort of 

questions addressed in the process design and equipment specification. Once decisions 

are made and implemented in these two levels, further modifications are usually very 

costly and time demanding. On the other side, considering the third constituency 

employing optimisation, modification of operating conditions can be a monthly, weekly, 

daily, hourly, or at the extreme, every minute task. Change of the feedstock, temperature 

or pressure of the ambiance may have influence on the optimised setpoint values of the 
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operating control systems. An optimal solution is a set of values of the variables that 

satisfy problem constrains while providing proper solution to the objective function 

(Edgar et al., 2001). 

2.5.2 Optimisation of the PHB fermentation process 

A review of fermentation modelling methods for pure and mixed cultures producing 

PHB is written by Patnaik (2005). Three types of mechanistic, cybernetic and empirical 

modelling approaches were encountered either as unstructured or structured models. 

Mechanistic models are built on chemical kinetics derived from postulated mechanism 

in each metabolic step. Cybernetic models are employed to provide a more natural 

description of cellular behaviour. It has been pointed out that internal regulatory 

controls in metabolic processes have influential effect on biological behaviour of PHB 

fermentation. In cybernetic methodology, biological manner is formalised with 

evolutionary concept to improve the chance of survival based on cells past experiences. 

Empirical modelling of process data provides faithful representation of specific 

observations. Therefore, hybrid models consisting of a combination of mechanistic, 

cybernetic and neural networks offers powerful tools to capture process representations 

(Patnaik, 2005).  

In a different study, optimisation of the culture conditions for production of PHB using 

Bacillus megaterium SW1-2 isolated from activated sewage sludge has been conducted 

using Box-Behnken design. The four parameters including ammonium sulphate, 

glucose, KH2PO4 and Na2HPO4 concentrations were optimised using an appropriate 

mathematical tool and validated experimentally to reveal maximum PHB production of  

1.8-folds the basal medium (Berekaa and Al Thawadi, 2012).  

Khanna and Srivastava (2005) applied statistical media optimisation to design a cheap 

growth medium for production of Ralstonia europha reserving PHB as granule. 

Ammonium sulphate was substituted by ammonium nitrate, urea and ammonium 

chloride as cheaper alternatives. Additionally, yeast extract were replaced by corn steep 

liquor as a cheaper source of minerals and vitamins. The experimental results 

demonstrated a better and cheaper production of PHB using the alternative approach as 

a successful case of medium optimisation study (Khanna and Srivastava, 2005).  

More recently, sucrose and urea were found to produce maximum biomass and PHB by 

bacterial strain Azohydromonas lata MTCC 2311 among three carbon source candidates 

of sucrose, fructose and glucose and four nitrogen source candidates of (NH4)2SO4, 
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NH4Cl, urea and NH4NO3. Response surface methodology (RSM) and artificial neural 

network models (ANN) were applied to navigate the optimal combination of sucrose, 

urea and TE solution concentrations. Simulation results were validated with shake flask 

experiments with less than 4% prediction errors (Zafar et al., 2012).  

In PHB production using mixed culture, optimisation of eight important medium factors 

including iron, glucose, volatile fatty acids (VFA), nitrogen, phosphorus concentrations, 

VFA composition, pH, and microenviroment on the bioplastic production were 

investigated. Design of experiment (DOE) methodology using Taguchi orthogonal array 

(TOA) was applied to navigate influence of microenvironment, pH and glucose 

concentration with contributing percentage of 81, 11 and 2.5 respectively. Validation 

experiments demonstrated performance improvement with optimum conditions 

(Venkata Mohan and Venkateswar Reddy, 2013).  

Three physical process variables; pH, temperature and agitation speed were optimised in 

batch production of PHB using Alcaligenes sp. Central composite rotatable design 

(CCRD) was the optimisation technique employed to obtain the optimal values. The 

shake flask experiments represented 98% resemblance with the predicted percentage 

yield. The scale up study on bioreactor also demonstrated higher productivity and PHB 

yield than previous reports under similar conditions (Tripathi et al., 2013).  

Shahhosseini (2004) employed dynamic optimisation program to determine optimal 

feeding rates for carbon and nitrogen sources in a fed-batch culture of Ralstonia 

eutropha producting PHB. The optimised feeding rates obtained from simulation were 

applied experimentally to present PHB productivity increase of around 100% compared 

with the results of other fed-batch culture experiments using bioreactor engineering to 

determine feeding rates.  

For the case of mixed microbial cultures operating under sequencing batch reactor for 

PHB production, the influence of carbon and nitrogen concentration on the PHB 

accumulation yield was investigated in a range of 15 to 180 C-mmol/L for acetate and 0 

to 2.8 N-mmol/L for ammonia. Maximum PHB content was achieved with induction of 

180 C-mmol/L acetate into the operational system. Since injection of 180 C-mmol/L 

acetate in one shot impose substrate inhibition, two feeding strategies of two pulses of 

90 C-mmol/L or three pulses of 60 C-mmol/L acetate were compared experimentally. 

The PHB content obtained were reported to be 56.2% and 78.5% respectively. The PHB 

content of above 70% CDW is similar to that obtained by pure cultures and never had 

been reported for mixed cultures (Serafim et al., 2004).  
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The upstream process time has also been the focus of research studies for a two-stage 

batch and fed-batch fermentations with Alcaligenes latus ATCC 29714 for PHB 

production. In this study, nitrogen limited media (“famine” phase) was imposed at 

different operational time in the batch and fed-batch modes. The optimal points for 

switching to nitrogen limited media and returning to nitrogen abundance were obtained 

and experimented. This optimal strategy improved PHB production by approximately 

7% CDW comparing with the best results reported prior to this study (Wang et al., 

2012a).  

As mentioned, research studies have been carried out in order to optimise production of 

PHB using various production approaches. In this study, PHB production process will 

be optimised in Chapter 8 using a novel production recipe developed in Chapter 7. The 

optimisation algorithm applied in this study will be described in the next section as 

formulated in Love (2007).  

2.5.3 Optimisation tool (Sequential Quadratic Programming)  

Application of Sequential Quadratic Programming (SQP) in complex optimisation 

problems is common especially for non-linear objective functions. Let the cost function 

be 𝑓(x). The optimisation is cast in the form: 

          𝑓( ) (2.1) 

               ( )    (2.2) 

where   1, 2, . . . ,   

        ( )    (2.3) 

where    + 1, . . . , 𝑝 and   [ 1  2…  𝑛]
𝑇. In these equations,   is the dimension 

of the optimisation problem (decision variables),   is the number of equality constrains 

and 𝑝 is the number of equality constraints plus the number of inequalities that are at 

their constrains. The solution of the optimisation problem is based on the assumption 

that any function may be adequately approximated by a quadratic function on a local 

basis. Therefore, a merit function Φ(△ x) is defined on a recursive basis for Taylor’s 

series expansion of the cost function introducing the 𝛻 notation (𝛻     ⁄ ) 

Φ(△ x)  
1

2
.△ x𝑇 . 𝛻2𝑓 (x(𝑘)) .△ x +△ x𝑇 . 𝛻𝑓 (x(𝑘))  (2.4) 
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where 

△ x  [

△ x1
△ x2
⋮

△ x𝑛

]  [

 1(𝑘 + 1) −  1(𝑘)

 2(𝑘 + 1) −  2(𝑘)
⋮

 𝑛(𝑘 + 1) −  𝑛(𝑘)

]  

(2.5) 

Defining the search direction  (𝑘)  △ x gives: 

Φ( (𝑘))  
1

2
.  (𝑘)𝑇 . 𝛻2𝑓 (x(𝑘)) .  (𝑘) +  (𝑘)𝑇 . 𝛻𝑓 (x(𝑘))  (2.6) 

The  (𝑘) is a step in the search direction towards the minimum of the cost equation. 

The minimisation problem finds the following recursive formation: 

          Φ ( (𝑘)) (2.7) 

               ( (𝑘))    (2.8) 

where   1, 2, . . . ,   

        ( (𝑘))    (2.9) 

where    + 1, . . . , 𝑝. The Lagrangian of the optimisation problem is formed by 

combination of the cost function and constraints to be minimised. The Lagrangian 

function of the optimisation problem is formed and differentiated with respect to s(k) in 

order to obtain the gradient of the Lagrangian. It can be shown that the cost function is 

minimised when gradient of the Lagrangian is set to zero. The following equation 

should be satisfied for a minimum: 

 𝛻2𝑓 (x(𝑘)) .  (𝑘) +  𝛻𝑓 (x(𝑘)) + 𝐺(𝑘). 𝜆(𝑘)     
(2.10) 

The set of positive x(k) and λ(k) which satisfies the aforementioned criteria 

corresponds to the solution of the quadratic approximation provided that the Hessian 

∇2f (x(k)) is positive. In Figure 2.4, general SQP recursion method is depicted. 

As shown in this depiction, the merit function Φ(s) which is a quadratic approximation 

of the problem for the slope f(x) in a local interval is calculated in the fourth stage. In 

the iteration loop, the position of the x(k) in the search space is taken in the direction of 

s(k) such that quadratic approximation is minimised. The step size taken towards the 

local minimum is determined by the factor α. The position x(k + 1) is the initial 

position of the consecutive iteration where the merit function Φ(s) is redefined. The 
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criteria for iteration termination is depicted in the sixth stage of the SQP algorithm in 

which position alteration of the x in two consecutive iterations is less than the value 

specified by factor ε.  

 

Figure 2.4 Recursive search using sequential quadratic programming 

MATLAB optimisation function fmincon applies the SQP algorithm to solve 

optimisation problems. In order to optimise SBR recipe parameters, empirical models 

are developed and appropriate cost functions of the optimisation problems are 

established in Chapter 8.  

Since optimisation methods and algorithms employ mathematical features, optimisation 

problem must be presented in form of mathematical expressions (models). An 

optimisation problem consists of at least one objective function to be optimised under a 

set of equality and/or inequality constraints imposed by the process or equipment 

limitations. In the next section, two of the most dominant linear and non-linear 

mathematical modelling techniques are reviewed.  
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2.6     Mathematical modelling 

2.6.1 Introduction  

A mathematical model is a representation of a particular part or feature of the world 

which is easier to understand, define, quantify, visualise or simulate than the original 

phenomena. Different types of models are formulated for different aims; for instance, 

the conceptual models developed to provide insight about a particular phenomenon, 

mathematical models to quantify the input output relationship and graphical models to 

improve visualisation of subjects. Modelling has always been an essential and 

inseparable part of humane scientific activities and many scientific fields have their own 

idea and specific types of modelling (Hacking, 1983). A mathematical model seeks to 

represent empirical objects, phenomena and physical processes in a logical and 

objective manner. An empirical object is known to be a source of knowledge acquired 

by means of observation or experimentation (Bird, 2004). Developing and validating 

empirical models is fundamental to the analysis carried out in direction of generating 

production recipe in Chapter 7. Although it is impossible to build a complete and true 

representation of a real phenomenon, the aim is to construct a sound system that 

produces the most accurate interpretation of the reality.  

Amplification of thought processes and knowledge in models enable scientists to 

perform enhanced analysis on the phenomena being modelled (Ulrich, 1988). Scientific 

models can also be characterised based on the model origins. (1) In vivo models are 

living organisms such as laboratory rats, (2) in vitro models are developed in laboratory 

glassware such as tissue culture and (3) in silico models are mathematical structures 

rendered in computer-based software. In the field of cellular biology, simulation of 

biological systems (in silico models) to be paired with experiments are being 

successfully and routinely used by computational biologists. These models can be used 

as complementary tools to unravel the principles and operation of complex biological 

systems (Di Ventura et al., 2006).  

In this study, mechanistic and empirical modelling approaches are considered for PHB 

process analysis. In terms of the mechanistic methods, it is believed that deterministic 

mathematical equations based on established scientific laws are capable of describing 

physical systems at least to an acceptable extent. The mechanistic models are in fact 

extensions to the understanding of a real phenomenon rather than an accurate 

representation of the phenomenon. Although mathematical representations of a 
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phenomenon provide valuable insight about the phenomenon itself, prediction 

precession is frequently dismissed due to uncertainties or lack of knowledge associated 

with the real phenomenon. On the other side, empirical models are trained based on 

actual observations rather than theoretical statements. Uncertainties embedded within 

the mechanistic models are overcome using data-based empirical models. Since an 

empirical model has a general structure consisting of model parameters trained for a 

specific phenomenon, it lacks valuable mathematical representation of the phenomenon 

(Yamashita and Hashida, 2003).  

In case of availability of complex accurate mechanistic models describing a 

phenomenon, development of empirical models is justified in light of the simplicity and 

straightforward calculations to provide predictions. This is one of the most important 

advantages of empirical models over mechanistic ones when model predictions are 

embedded within mathematical optimisation algorithms in particular. Additionally, 

empirical models are known to be less effort demanding in the development stage; and 

hence, they are inexpensive in comparison with the mechanistic counterparts. When the 

phenomenon under investigation is scientifically established and there is a lack of 

experimental data for empirical modelling, development of mechanistic models is the 

rational solution. In general, training an empirical model requires considerably more 

experimental data in comparison with a mechanistic counterpart (Leonidou and 

Katsikeas, 1996). 

The mechanistic models developed by Dias et al. (2005) for PHB batch production will 

be explained in detail in Chapter 3. In this study, application of different empirical 

modelling strategies is investigated for prediction of PHB critical process attributes in 

Chapter 6. Additionally, operational data obtained from simulation runs of a novel 

production recipe developed in Chapter 7 will be used in Chapter 8 for empirical 

modelling to be used in optimisation algorithms.  

The empirical modelling techniques applied in this study include multiple linear 

regression (MLR) and artificial neural network (ANN) commonly used for linear and 

non-linear data sets respectively. The mathematical methods described in Love (2007) 

are applied in this study to develop MLR and ANN models. A more sophisticated 

version of the latter approach is the bootstrapping aggregated neural network (BANN) 

in which a number of individual neural network models are aggregated for overall 

prediction improvement (Zhang, 1999). In this section, MLR, ANN and BANN applied 

in this study are described in detail. 
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2.6.2 MLR modelling method 

Since several independent variables are involved in prediction of the dependant 

variable, multiple linear regression (MLR) is applied to fit linear equation to a set of 

observed data. In this study, “least squares” approach is applied to minimise the error 

involved in curve fitting. For 𝑝 number of independent variables, the following equation 

is considered. 

    +  1.  1 +  2.  2 + +   .   +   (2.11) 

where   is the dependant variable, model output or response,    are the independent 

variables, model inputs, regressor or predictor,    are the coefficient values and   is the 

error value between the measured data and the model prediction. The regression 

analysis results    coefficients for which   sets of experimental data are best fitted to 

the fitting curve. This data can be collated in matrix form as follows: 
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which is of the general form: 
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(2.12) 

where   and   are (n   1) vectors,   is an (n   (𝑝 + 1)) matrix and   is a ((𝑝 + 1)   1) 

vector. The sum of the squared errors is formulated as: 

  ∑  
2   𝑇 .  

𝑛

  1

 

 ( −  . )𝑇 . ( −  .  ) 

  𝑇 −  𝑇 𝑇 −  𝑇  +  𝑇 𝑇   

(2.13) 

Noting that ( 𝑇 𝑇 )𝑇   𝑇   and that both  𝑇 𝑇  and  𝑇   are scalar quantities: 

   𝑇 − 2 𝑇 𝑇 +  𝑇 𝑇    

The regression equation that best fits the data corresponds to the vector   that 

minimises  . The derivative of   with respect to   is given by: 
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 −2 𝑇 + 2 𝑇   

(2.14) 

 

Setting the derivative to zero yields the optimal estimation of the vector  ̂: 

−2 𝑇 + 2 𝑇  ̂    (2.15) 

Therefore the so-called batch least squares (BLS) solution is obtained as: 

 ̂  ( 𝑇 ) 1 𝑇  (2.16) 

The solution exists provided that the independent variables are linearly independent of 

each other or in other words; no column of the   is a linear combination of the other 

columns. Vector  ̂ contains coefficients of the multiple linear equation best fitting to 

the curve with minimal residual to the measured data (Love, 2007). 

2.6.3 Artificial Neural Network modelling method 

Artificial neural networks are often referred to as Neural Nets (NN), is essentially a 

means of prediction inspired from the human process of thought and reasoning. 

Application of this method is mostly significant when no mathematical structure can be 

identified to establish relationships between the variables. This is a very powerful and 

sophisticated tool to capture non-linearity in rapport development between variables of 

interest. This technique should not be used in the case of linear problems since 

regression methods are more appropriate and simpler to be applied.  

 

Figure 2.5 A multi-layer feedforward neural network with two hidden layers 
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In 1990s, with emergence of the powerful computational tools, application of NN 

gained enormous attention in different scientific and especially engineering fields. The 

NN technique is based on a structure known as Multi-Layer Perceptron (MLP) where 

each independent and dependant variable is referred to as a neuron. These neurons are 

connected and these connections are referred to as synapses. The prediction properties 

of the NN can be improved by introducing additional intermediary neurons in between 

the independent and dependent variables as referred to the hidden neurons. The 

independent, dependant and hidden neurons form input, output and hidden layers 

respectively when considering the overall structure of a NN. Depending on the number 

of hidden neurons considered in between the input and output layers, the number of 

hidden layers is defined. In Figure 2.5, an illustration of a neural network structure with 

two hidden layers is depicted. As shown, each of the neurons is connected to every 

neuron in the subsequent layer.  

 

Figure 2.6 Notation specified for inputs, neurons, synapses and the output 

The neural network shown in this figure relates two dependant variables in the output 

layer to three independent variables in the input layer via nine hidden neurons in the two 

hidden layers. It is normal practice to include one bias neuron in each input and hidden 

layers in order to improve network’s prediction capability as shown in the illustration. 

This structure is referred to as a back propagation net or as a feedforward artificial 
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neural net (FANN) and it is the dominant form of neural network due to its simplicity 

and effectiveness. 

The structure of the neural network developed in this study consists of a single hidden 

layer with 𝑝 inputs neurons (  1  𝑝),   neurons in the hidden layer (𝑘  1   ) and 

a single output neuron. The model tuning parameters are the weightings associated with 

each synapses connecting the neurons. In Figure 2.6, notations applied for weighting 

synapses is shown. The objective is to predict the output by any valid combination of 

the inputs. 

The weightings   are identified by three subscripts for a network with single hidden 

layer. The first subscript denotes the target layer of the synapse. If synapse ends at the 

output layer, the first subscript is 0 and if it ends at the hidden layer, the subscript is 1. 

The second subscript indicates the neuron in the layer from which the synapse 

originates. And the third subscript indicates the neuron in the layer to which the synapse 

is directed. For the second and the third subscripts, 0 indicates the bias node.  

The first set of operations is taken to calculate the magnitude of the hidden layer 

neurons by the summation of the input neurons multiplied to their synapses weightings. 

For 𝑝 number of inputs with magnitude of    , the hidden layer neuron    is calculated 

using the following equation. 

    1  +∑ 1  

 

  1

.    
(2.17) 

The hidden layer neurons are transformed using a function which has bounded 

derivative. This function is referred to as an activated function or a squashing function. 

The two most commonly implemented functions are the sigmoid and hyperbolic 

tangent. In this study, the sigmoid function is used as the activated function to handle 

non-linearities by squashing the summation between limits of 0 and 1. The following 

equation is used to calculate the output from the k
th

 neuron in the hidden layer. 

   𝑓(  )  
1

1 +     
 

(2.18) 

The prediction output is the summation of the   weighted outputs from the hidden layer 

and the bias as given by the following equation. 
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 ̂     1 +∑   1

 

  1

.    

(2.19) 

With the overall structure designed, training of the model can be carried out using   sets 

of input data of process variables for each of which the correct value of the output is 

known. A back propagation algorithm is applied to minimise a quadratic error function 

by adjusting the model parameters (weighting values). The prediction error is defined as 

the difference between the true and predicted values of the output as follows: 

  ∑(  −  ̂ )
2

𝑛

  1

 
(2.20) 

Figure 2.7 provides a schematic depiction of the back propagation algorithm used in NN 

model training by adjusting the weightings assigned to the synapses. The algorithm 

starts with assigning initial weights as small random values. Additionally, some 

completion criterion must be specified to be used as an evaluation measure applied in 

the procedure. In the NN training procedure applied in this study, one fifth of the 

training data is used to test model performance. The sum of the squared errors (SSE) for 

the testing data is the evaluation measure implemented in the coding program applied in 

this study.  

 

Figure 2.7 Procedure of the back propagation training algorithm 

As shown in Figure 2.7, the back propagation training method is an iterative procedure 

in which the model parameters ( ) are replaced by a new estimate with the aim of 

minimising the error function. Each iteration of the procedure is referred to as an epoch. 



Chapter 2  Literature Review 

45 

One of the model training termination criterion used in this study is the occurrence of 

SSE increments for testing data set in ten consecutive iteration loops. In Figure 2.8, an 

illustration is shown to describe two of the criterions used to identify the optimal epoch 

in which model weightings are the most appropriate to be established in the model 

structure.  

 

Figure 2.8 Identification of network weights using the NN training termination 

criterion 

In the first few epochs, model accuracy improves as SSEs obtained for the testing data 

decreases when appropriate NN weighting adjustment technique is applied. The 

minimal SSE value is identified when a number of consecutive SSE values (10, in this 

case) increases with epoch number increment. Another criterion used for weighting 

adjustment iteration termination is achievement of the target SSE value. This target 

value is low enough to assure appropriate prediction performance of the NN model with 

the established weightings. In addition to these two criterions, other measuring tools can 

be used to avoid open-ended iteration procedure such as limiting the total permissible 

number of epochs.  

In the core of the back propagation training algorithm a mathematical algorithm is 

considered to change NN model weightings in the direction of prediction improvement. 

The weighting adjustment procedure used in this study is the well-known Levenberg-

Marquardt algorithm (LMA) which is also referred to as the damped least squares 

(DLS) method. This numeric minimisation algorithm is used in iteration loops as a least 

squares curve fitting solver for non-linear problems. The objective function has already 

been defined by Equation (2.20) where  ̂ is a function of model inputs and NN 

weightings. Therefore, the minimisation problem can be defined as: 
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  ∑(  − 𝑓(  ,  ))

2

 

  1

 
(2.21) 

where   is the number of training data (testing data excluded) available for weight 

adjustment procedure. The model parameter vector ( ) is replaced by a new estimate 

( +  ) in each iteration step. In LMA method, a linear approximation of the function 

representing the model is applied to determine weighting alteration vector ( ).  

𝑓(  ,  +  )  𝑓(  ,  ) +   .   (2.22) 

where   is the row-vector gradient of 𝑓 with respect to   as follows: 

   
 𝑓(  ,  )

  
 

(2.23) 

The minimisation problem takes the following formation when model function is 

replaced by its linear approximation. 

   
 
  ∑(  − 𝑓(  ,  ) −   .  )

2

 

  1

 
(2.24) 

At the extremum, gradient of   with respect to   should be infinitesimal; therefore, the 

first derivative of the Equation (2.24) with respect to   is set to zero with the aim of 

specifying the weighting alteration vector ( ) that optimises  . In vector notation 

Equation (2.24) takes the following formation: 

  ‖ − f( ) −  .  ‖2 (2.25) 

where   is the Jacobian matrix whose r
th

 row equals   , f and   are vectors with r
th

 

component of 𝑓(  ,  ) and    respectively. The first derivative of the aforementioned 

equation with respect to   is: 

  

  
 −2 𝑇 . ( − f( ) −  .  ) 

(2.26) 

Setting the derivative function to zero gives: 

 𝑇 .    𝑇 . ( − f( )) (2.27) 

In order to solve the linear equations obtained to determine the elements of   vector, 

Levenberg replaced the equation by a “damped version”. 

( 𝑇 + λ ).    𝑇 . ( − f( )) (2.28) 

or 
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  ( 𝑇 + λ ) 1.  𝑇 . ( − f( )) (2.29) 

where   is the identity matrix and λ is a non-negative damping factor also referred to as 

the regularisation parameter. For a large value of the damping factor, the Levenberg’s 

“damped term” ( 𝑇 + λ ) paralyses the algorithm in   solution. Marquardt contribution 

is in replacement of the identity matrix with a diagonal matrix consisting of the diagonal 

elements of   𝑇 , resulting in the Levenberg-Marquardt algorithm: 

  ( 𝑇 + λ.     ( 𝑇 )) 1.  𝑇 . ( − f( )) (2.30) 

Marquardt recommended starting the iteration procedure with an initial damping factor 

λ  and modification of the factor with a tuning factor ( ) in the consecutive iterations. 

Model residual is obtained using the testing data and damping factor is modified 

accordingly if the residual deteriorates. It is common to modify the damping factor by 

the following equation  

𝜆  𝜆   
  (2.31) 

where   is specified depending on the iteration number ( ).  

For one specific set of data, appropriate tuning parameters should be identified to 

present the most accurate prediction of a neural network model (Love, 2007). In this 

study the aforementioned technique was implemented to build NN models. 

2.6.4 Bootstrapping Aggregated Neural Networks 

A neural network model is developed for a set of train-test data under a certain initial 

constants randomly assigned to the model weightings. These limitations impose a 

deficiency in model generalisation when unseen data is engaged in model validation. 

Among a number of techniques developed to improve neural network generalisation 

capability, combining multiple networks is the method applied in this study. In this 

approach, the same principle of neural network modelling is applied to build a number 

of networks using various train-test data organisation and initial weighting values in 

model development procedure. Each individual NN model may consist of a different 

hidden layer structure; and most definitely, different weighting values when compared 

to the other networks. Figure 2.9 shows a diagram of a bootstrap aggregated neural 

network (BANN) implementing individual NNs with different structures modelling the 

same relationship.  
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Figure 2.9 A BANN model based on three individual neural network structures 

It is a documented practice that network aggregation improves both accuracy and 

robustness of the model prediction capability (Zhang, 1999). Among a number of 

aggregation methods, the most straight forward approach is to obtain the average of the 

individual neural network outputs which is implemented in this study. This can be 

represented as: 

 ̂  
1

 
∑ ̂ 

 

  1

 

(2.32) 

where   is the number of individual neural networks. Another advantage in application 

of a series of networks is that model prediction confidence bounds are calculated using 

the residual obtained from each individual model. The standard error of the predicted 

value is estimated as 

   {
1

 − 1
∑[ ̂ −  ̂ ]

2

 

  1

}

 . 

 

(2.33) 

The 95% prediction confidence bounds can be calculated as  

     ̂ + 1.      (2.34) 

     ̂ − 1.      (2.35) 
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where     and     are upper and lower confidence bounds respectively assuming that 

residuals are normally distributed (Mukherjee and Zhang, 2008). A narrow confidence 

bound associates with more reliable prediction capability for the model. 

2.7 Summary 

In the quest of sustainable alternatives for petrochemical plastics, PHA has been 

nominated as an appropriate candidate with a number of promising current and potential 

applications in different monomer combinations. PHB production process by mixed 

microbial cultures has recently gained attention due to cost effective high yield of PHB 

production. PHB production by means of SBR is expected to be comprising of a “feast” 

and a “famine” phase operation occurring intermittently in each production sequence. 

The literature survey demonstrates significance of operational phase identification and 

the capability of manipulating process pathway towards “feast” and “famine” phase 

operations. Based on these studies, an analytical module is developed in Chapter 4 for 

classification of PHB operational regimens. The analytical outcome generated in 

Chapter 4 plays an essential role for differentiation of “feast” and “famine” phases using 

batch initial conditions in Chapter 5. Additionally, an SBR production recipe structure 

is constructed in Chapter 7 to increase possibility of “feast” and “famine” phase 

operation occurrence in each sequence of the process.  

A series of optimisation studies were carried out to improve PHB production procedure 

by different research groups which were partially reviewed in this Chapter. Sequential 

Quadratic Programing was introduced as a mathematical optimisation tool applied in 

direction of identification of optimal process conditions. Empirical modelling 

techniques such as linear Multiple Linear Regression and non-linear Bootstrapping 

Aggregated Neural Networks were introduced as mathematical adjunct to quantitative 

analysis of the PHB process and optimisation studies. Empirical models are developed 

in Chapter 6 and Chapter 8 as quantitative representations of PHB production processes 

and mathematical adjunct to the optimisation endeavours. The SBR recipe developed in 

this study will also be optimised by Sequential Quadratic Programing in Chapter 8.  
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3.1  Introduction 

Mathematical modelling of bio-processes with mixed cultures has been subject of many 

research studies. Activated Sludge Model No.3 (ASM3) has become a reference in 

activated sludge processes analysis (Gujer et al., 1999). This model attempts to describe 

storage of organic substrates, sludge production, nitrification and denitrification 

processes for heterotrophic (that cannot synthesize their own food) and autotrophic (that 

synthesize their own food from inorganic substances) organisms (Gujer et al., 1999). 

The ASM3 was later modified to enhance description of heterotrophic conversion, 

enabling simultaneous adaptation of cell growth and PHB formation (Carucci et al., 

2001). This change increased the accuracy of the process description significantly by 

modifications implied in the process kinetics and stoichiometry.  

Other more complex metabolic models were developed to describe intracellular PHB 

production by activated sludge. However, most of these works lack adequate 

experimental validation. Among those, Beun et al. (2002) investigated calculation of 

theoretical yields and maintenance coefficients using a model based on seven metabolic 

reactions adapted from the previous work of Van Aalst et al. (1997). In another attempt, 

a model of six metabolic reactions is considered with a focus on the effect of dissolved 

oxygen on PHB accumulation (Third et al., 2003).  

In Dias et al. (2005), a process model is developed to envisage PHB productivity on the 

bases of acetate and ammonia feeding strategies. The main objective of developing this 

model was to support model-based optimisation studies aiming to enhance both 

volumetric productivity and PHB formation ratio over biomass. This model was an 

adaptation of Beun et al. (2002) to describe process states i.e. concentrations of acetate, 

ammonia, active biomass and intracellular PHB (Beun et al., 2002). Validation of the 

model with experimental results confirms its accuracy and reliability for optimisation 

applications. The experimental validation tests were performed similar to the 

description reported by Serafim et al. (2004) in optimisation of PHB production by 

mixed cultures under aerobic dynamic feeding conditions (Serafim et al., 2004).  

A simulation programme based on this model was developed in MATLAB and is used 

as a case study in this research. This chapter presents the model and simulation 

programme developed by Dias et al. (2005) and author has no claim on model 

development, its accuracy nor its validation method. 
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This chapter is organised as follows. Section 3.2 presents the mechanistic model of PHB 

production in a sequencing batch reactor. Section 3.3 describes the software program 

developed to simulate the process. In Section 3.4, a report of experimental validation of 

the PHB simulator is given. At the end, a typical simulation run is described in  

Section 3.5.  

3.2  Mechanistic models  

3.2.1  Modelling assumptions 

The complex nature of a mixed culture with different types of microorganisms 

competing for the nutrients in the medium requires a level of simplification in order to 

facilitate process description by mathematical expressions. In Dias et al. (2005), a 

number of assumptions were made:  

1. The active microorganisms are those requiring organic compounds of carbon 

and nitrogen for nourishment. In other words, organisms in the operating system 

are all heterotrophic.  

2. The metabolic behaviour of the microorganisms does not change in time and 

their PHB storage capacity remains the same. In Serafim et al. (2004) it is 

shown that the PHB storage capacity remained stable in a SBR operated in 

period of 2 years of the study (Serafim et al., 2004). 

3. Dominant PHB storage process is aerobic acetate storage while dissolved 

oxygen is always in excess.  

4. Perfect mixing was assumed throughout the process with no formation of flocs 

and therefore, negligible external or internal mass transfer resistance is assumed. 

5. Other than acetate and ammonia, all nutrients are in excess in the medium. 

Therefore, these two are the only limiting substrates that can be used for process 

control.  

6. The mass of cells is divided between the active biomass and the stored PHB and 

no further intracellular structure is considered. 

3.2.2  Material balance equations 

With the assumptions mentioned, the following mass balance equations are considered 

for acetate and ammonia uptake, biomass growth and intracellular PHB formations. 
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Acetate uptake: 

  

  
  (  

    
      )   

(3.1) 

where   is acetate concentration in the medium (C-mmol/L),   is the culture time (hr),   

is the active biomass concentration (C-mmol/L),   
  is the specific acetate consumption 

rate for cell growth (C-mol/(C-mol.hr)),   
    is the specific acetate consumption rate 

for PHB formation (C-mol/(C-mol.hr)) and    is the maintenance coefficient on acetate  

(C-mol/(C-mol.hr)).  

Ammonia uptake: 

  

  
       (       )   

(3.2) 

where   is ammonia concentration in the medium (N-mmol/L),      is the yield of 

ammonia on biomass (N-mol/C-mol),    is the specific growth rate on acetate  

(C-mol/(C-mol.hr)) and      is the specific growth rate on PHB (C-mol/(C-mol.hr)). 

Biomass growth: 

  

  
 (       )   

(3.3) 

In the presence of both acetate and ammonia in the medium, dominant biomass growth 

is under acetate consumption rate (   ) . On the other side, intracellular PHB is 

consumed to supply carbon for growth when acetate is absent (    ).  

PHB formation: 

The material balance for intracellular PHB content is based on the      value which is 

defined by the ratio of PHB concentration per active biomass. 

 (      )

  
 (                     )   

(3.4) 

where      is the specific PHB storage rate (C-mol/(C-mol.hr)),        is the yield of 

PHB on biomass (C-mol/C-mol) and      is the maintenance coefficient on PHB  

(C-mol/(C-mol.hr)). The active biomass factor can be taken from this equation by 

decomposing the derivative term of the equation and implementation of Equation (3.3). 

 (    )

  
 (                     )  (       )      

(3.5) 
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3.2.3  Postulation of the kinetic model 

Kinetic model equations are used to specify parameters defined in the material balance 

equations. In the acetate uptake Equation (3.1), three terms are considered for 

consumption of acetate in biomass growth (  
 ), PHB formation (  

   ) and to maintane 

carbon source for metabolic activities of cells (  ). The latter is limited by acetate 

concentration in the medium and is calculated from the following equation. 

         
 

    
 

(3.6) 

 

where       is the maximum maintenance coefficient on acetate (C-mol/(C-mol.hr)) 

and    is the acetate half-saturation constant (C-mmol/L). The metabolic model 

reported in (Beun et al., 2002) allows derivation of expressions for theoretical yields 

and maintenance coefficients in Van Aalst-van Leeuwen et al. (1997). Table 3.1 

contains metabolic model reactions for biomass empirical formula.  

Table 3.1 Metabolic model reactions for mixed cultures (adapted from van Aalst-

van Leeuwen et al. (1997)) 

Acetate uptake 

                                         

Biomass precursors synthesis 

                                                                                 

Biomass precursors polymerization 

                (    
    

 
)      

 

 
 (             )      

Respiration 

                                                     

Oxidative phosphorylation 

                                                            

Aerobic PHB storage 

                                                               

Aerobic PHB consumption 

                                                 

 

Dias et al. (2005) formulated the following equations for calculation of yields and 

maintenance coefficients based on the metabolic reactions. 
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(3.7) 

       
     

     
 

(3.8) 

       
        

         
 

(3.9) 

      
    
     

 (3.10) 

     
    

         
 (3.11) 

where      is the yield of biomass on acetate (C-mol/C-mol),   is the efficiency of 

oxidative phosphorylation (mol ATP/mol NADH2) and      is the specific ATP 

consumption by maintenance process (mol ATP/(C-mol.hr)). According to Beun et al. 

(2002) for mixed cultures under aerobic conditions, δ is 2 (mol ATP/mol NADH2) and 

     is 0.02 (mol ATP/(C-mol.hr)) (Dias et al., 2005).  

The flux of acetate consumption for cell growth in Equation (3.1) is mainly limited by 

acetate and ammonia concentrations (Van Aalst-van Leeuwen et al., 1997; Gujer et al., 

1999; Serafim et al., 2004). Therefore, this term is defined as 

  
       

  
 

    
 

 

     
 

(3.12) 

where      
  is the maximum specific acetate consumption rate for biomass growth  

(C-mol/(C-mol.hr)) and     is the ammonia half saturation constant in acetate uptake 

(N-mmol/L). The specific growth rate on acetate is defined as 

          
  (3.13) 

thus 

                
  (3.14) 

and Equation (3.12) take the following form  

  
  

     
    

 
 

    
 

 

     
 

(3.15) 

By definition specific acetate consumption rate for PHB formation is 

  
    

    
      

 (3.16) 
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where        is the yield of PHB on acetate (C-mol/C-mol). It was observed that      

is limited by the acetate concentration and the intracellular PHB content. Therefore, the 

following equation is adapted from (Katoh et al., 1999), (vanLoosdrecht and Heijnen, 

2002) and (Third et al., 2003) with a power coefficient modification from (Katoh et al., 

1999). 

             
 

    
[  (

    
       

)

 

] 
(3.17) 

where         is the maximum specific PHB storage rate (C-mol/(C-mol.hr)),      is 

the intracellular PHB content (C-mol PHB/C-mol X),         is the maximum 

intracellular PHB content (C-mol PHB/C-mol X) and   is a dimensionless constant 

describing PHB production saturation order. These values are determined by 

experimental results carried out by Dias et al. (2005). Based on this information, 

material balance for acetate uptake given in Equation (3.1) can be established. 

The ammonia uptake rate is directly proportional to the rate of biomass growth in the 

“feast” phase operation as described in Equation (3.2). Therefore, the specific biomass 

growth rate on acetate (  ) and the specific biomass growth rate on PHB (    ) are 

used in the ammonia uptake material balance. In order to identify the specific biomass 

growth rate, Equation (3.13) and Equation (3.15) are used to form the following 

equation. 

         
 

    
 

 

     
 

(3.18) 

(  ) is the dominant term when biomass growth is under “feast” phase operation in 

abundance of both acetate and ammonia. The following equation defines the dominant 

term of biomass growth in the “famine” phase operation in absence of acetate.  

             
    

         
 

 

       
 

(3.19) 

where         is the maximum specific growth rate on PHB (C-mol/(C-mol.hr)),      

is the intracellular PHB content half saturation constants (C-mmol/L), and       is the 

ammonia half saturation constant in PHB consumption (N-mmol/L). 

When ammonia material balance is identified, it is possible to model biomass 

concentration based on Equation (3.3) since all terms have already been calculated. 

Intracellular PHB content defined in material balance Equation (3.5) can be calculated 



Chapter 3  PHB Process Simulator 

57 

with     ,   ,      and      from Equation (3.17), Equation (3.18), Equation (3.19) 

and the following equation respectively: 

            
  (3.20) 

where    is the kinetic constant for PHB degradation (/hr). The maintenance on PHB 

(    ) was shown to follow first order kinetics on PHB intracellular content 

(Murnleitner et al., 1997; Carta et al., 2001; Beun et al., 2002; Third et al., 2003; 

Serafim et al., 2004). A kinetic order of “ ” was adopted by (Beun et al., 2000) and 

(Dircks et al., 2001) yielding more accurate results. An adaptation of Equation (3.7), 

Equation (3.19) and Equation (3.20) are used in the simulation program to produce 

more accurate results by (Dias et al., 2005).  

     
     

              
 

(3.21) 

             
    

         
 

 

       
 
     

       
 

(3.22) 

            
  

     
       

 
(3.23) 

where    is the efficiency constant (mol ATP/mol      ) and       is the acetate half 

saturation constant in PHB consumption (C-mmol/L). 

3.2.4  Kinetic parameter estimation  

(Dias et al., 2005) specified kinetic parameters by applying simultaneous parameter 

estimation strategy to minimise the sum of squared errors (SSE) employing the 

Levenberg-Marquardt algorithm. The simulation program implements the material 

balance and the postulated kinetic equations in MATLAB using a 4
th

/5
th

 order Runge-

Kutta solver. Table 3.2 contains simulation parameters as reported in (Dias et al., 2005) 

and applied in the simulation program to provide the best prediction results.  
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Table 3.2 Kinetic model constants (adapted from Dias et al. (2005)) 

Constants Values Constants Values 

          (        )             (                ) 

           (        )                   (               )) 

           (        )                  (      (        )) 

             (        )                (      (       )) 

           (        )               (      (       )) 

       (                )             (           ) 

         (  )           (        (       ) ) 

              

 

In the next section, the structure of the simulation program is described.  

3.3  Introduction to the simulation program 

The simulation program developed by Dias et al. (2005) is called (BIOSIM) which 

consists of three main divisions. In the first division, initial process parameters are 

defined to be implemented in the second division which contains kinetic parameters and 

material balance equations. An ordinary differential equation is solved to obtain 

simulation results for the given initial values. These results are stored in an organised 

manner for further data analysis applications in the third division of the program.  

3.3.1  First division: simulation elements 

In the first division, process parameters and process initial values are defined to be 

applied in the mechanistic model. These include mathematical description of the 

bacteria and the operational medium which set up the building block of the program that 

simulates PHB production under mixed microbial culture of 32 different genotypes. The 

PHB simulation model constants are assigned based on experimental results carried out 

using a mixed microbial culture of 32 genotypes as reported in Dias et al. (2005). For 

each genotype, one specific value is associated for their efficiency of oxidation 

phosphorylation ( ), maximum intracellular PHB content (       ), maximum specific 

PHB storage rate (       ) and maximum specific growth rate on acetate (     ). 

Additionally, process parameters describing the initial state of the process such as initial 

biomass concentration “BIOM0” and initial PHB content “fPHB0” is specified in this 

division for each population.  
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In the simulation runs reported in this study, an assumption is taken to facilitate 

description of PHB content within the population of cells. Based on this assumption, the 

ratio of initial PHB content of different population to their maximum PHB content 

capacity is considered to be the same ratio. Equation (3.24) shows how initial PHB 

content of different population is defined in the simulation.  

                     (3.24) 

where         is a vector containing maximum intracellular PHB content values  

(C-mol PHB/C-mol X) and        is a decimal number between 0 and 1 which 

specifies PHB content ratio from no PHB content (        ) to PHB saturation 

(        ). Each batch operation is divided into a number of process time units 

where feed injections and product exploitation may occur. The number of these time 

units is specified by “CycleTimes” and the duration of batch operation within each time 

unit is specified by “Tcycle”. In simulations, each time unit is divided into a number of 

segments to indicate time step size when solving the Ordinary Differential Equation 

(ODE). The number of divisions is specified by “Time_intervals” in the beginning of 

the simulation program.  

Injections of feeding materials are specified by “ADDHA” and “ADDN” for acetate 

augmentation concentration and ammonia augmentation concentration respectively. 

Figure 3.1 shows general structure of the program with the eight process parameters 

illustrated in the left hand side of the box.  

3.3.2  Second division: ODE solver  

In the second division of the simulation program, ODE parameters are identified based 

on the process values specified in the first division of the program, kinetic and material 

balance equations mentioned in the previous section. MATLAB finds the solution of the 

ODE for the independent step size dictated by “Time_intervals” using 4
th

/5
th

 order 

Runge-Kutta (ode45). In order to simulate a complete batch, simulation program 

calculates ODE solutions for all batch unit times specified by “CycleTimes” in an 

iteration loop. In Figure 3.1, second division of the batch simulation program is shown 

in the middle of the box. 
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3.3.3  Third division: data repository 

Solution of the material balance differential equation provides simulation data for 

material concentrations over the course of the simulated batch. In this case, 

concentration profiles of activated biomass, PHB content that yields to the PHB 

product, acetate and ammonia are available at the end of the simulation. In the third 

division of the program, in line with the operational time, concentration profiles are 

stored in an organised manner to enable further analysis of data. In Figure 3.1, third 

division of the simulation program is shown in the right side of the box.  

“BIOSIM” is a MATLAB code developed by Dias et al. (2005) to simulate PHB 

production under MMC using two sub-programs called “MatBal” and Kinetics. In the 

BIOSIM, MATLAB random generator assigns random values to the kinetic parameters 

for the 32 populations in their pre-specified range. The aim is to capture natural 

alteration of bacterial behaviour which may alter from one batch to another batch. 

 

Figure 3.1 Simulation program structure 

Since biological processes are carried out by living organisms, their behaviour 

characteristics may vary despite maintaining same process conditions. Dias et al. (2005) 

altered biological behaviour of the populations by associating random values to the 

efficiency of oxidation phosphorylation (  ), maximum intracellular PHB content 

(       ), maximum specific PHB storage rate (       ) and maximum specific 

growth rate on acetate (     ) for each genotypes. 
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Although introduction of random behaviour biological simulations increases the 

analogy between the experimental and the simulation results, this is unfavourable when 

repeatable simulation results is addressed to carry out studies based on comparisons. 

Therefore, in a modified version of the BIOSIM program, biological randomness 

behaviour is cancelled out by assigning constant values to  ,         ,         and 

      simulation parameters. This facilitates analysis of the batch process when 

simulations are repeated with the same initial process parameters. The modified version 

of the simulation program is referred to as the “deterministic behaviour process 

simulator” in this study. In the next section, experimental data used for model 

development and validation conducted by Dias et al. (2005) are reported.  

3.4 Validation of the PHB simulator program by experimental data 

The mathematical modelling of a mixed culture cultivation process for the production of 

PHB formulated by Dias et al. (2005) has also been validated with data of batch 

experiments performed in reactors with volume of 600 mL. The validation tests were 

carried out by varying the amount of acetate and ammonia injected to the reactor. Eight 

experiments are designed with acetate and ammonia fed pulse wise and tabulated in 

Table 3.3 for estimation of modelling parameters and validation of the process 

simulator.  

Table 3.3 Acetate and ammonia concentrations in the medium after pulse feed 

addition in C-mmol/L and N-mmol/L respectively(adapted from Dias et al. (2005)). 

Substrates Experiments 1
st
 pulse 2

nd
 pulse 3

rd
 pulse 4

th
 pulse 

Acetate I 30 --- --- --- 

Ammonia  --- 1.29 --- --- 

Acetate II 60 --- --- --- 

Ammonia  0.73 --- --- --- 

Acetate III 61 61 69 --- 

Ammonia  0.61 --- --- --- 

Acetate IV 58 64 64 --- 

Ammonia  0.7 --- --- --- 

Acetate V 60 62 63 63 

Ammonia  0.68 --- --- --- 

Acetate VI 30 --- --- --- 

Ammonia  0.76 --- --- --- 

Acetate VII 24 --- --- --- 

Ammonia  1.1 --- --- --- 

Acetate VIII 63 61 63 --- 

Ammonia  0.66 --- --- --- 
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Figure 3.2 Validation results. Symbols represent measured data ( -intracellular 

PHB content; - acetate concentration; - ammonia concentration; -active 

biomass) full lines represent model predictions (adapted from Dias et al. (2005)). 
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Figure 3.2 shows model simulations and measured data for the experiments used for 

parameter estimation (the first five experiments) and model validation (the last three 

experiments). Model predictions and experimental data show an excellent agreement in 

most cases. The reported average absolute error was 6.20 C-mmol/L, 0.059 N-mmol/L, 

0.30 C-mmol/L and 0.12 C-mmol/L for acetate, ammonia, active biomass and 

intracellular PHB content respectively for model estimation experiments. The average 

absolute error obtained was 5.81 C-mmol/L, 0.13 N-mmol/L, 0.65 C-mmol/L and 0.080 

C-mmol/L for acetate, ammonia, active biomass and intracellular PHB content 

respectively for validation experiments. The accuracy of the predictions is promising 

and it strengthens the generalisation potential of the model for model-based 

optimisation studies (Dias et al., 2005).  

In the next section, a typical simulation run is described to provide a general view about 

the PHB production process by the MATLAB simulator program.  

3.5  Description of simulation results 

In the a simulation run, a batch process initiating with total activated biomass 

concentration of 13 C-mmol/L which is normally distributed between the 32 

populations is considered. The initial PHB content is considered to be only 10% of the 

maximum PHB capacity of populations (          ). The batch duration of 30 hours 

is simulated in three time units of 10 hours with acetate augmentation of 60 C-mmol/L, 

20 C-mmol/L and 50 C-mmol/L and ammonia augmentation of 0.6 N-mmol/L,  

1 N-mmol/L and 0.2 N-mmol/L respectively in the beginning of each batch time unit. 

Figure 3.3 shows code parameters specified to simulate the aforementioned batch 

process in MATLAB code program. 

 

Figure 3.3 Programing code parameters for batch simulation in MATLAB 

In Figure 3.4, simulation results are shown for acetate, ammonia, active biomass and 

intracellular PHB profiles in three 10-hour operational segments. In Figure 3.4.a, acetate 

profile is depicted to demonstrate acetate consumption from its initial point of  

60 C-mmol/L to 4 C-mmol/L in the first 10 hours of batch operation. The second 
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injection of feed substrate to the system increases acetate concentration by 20 units to 

reach to 24 C-mmol/L in the second segment of the batch operation. In the second batch 

segment, acetate is completely exhausted. Acetate augmentation of 50 C-mmol/L at  

20 hours of batch operation time, maintains carbon source in the medium during the 

third segment of the batch operation time. At the end, acetate concentration is about  

20 C-mmol/L in the medium. 

Similar to acetate profile, ammonia concentration subplot shown in Figure 3.4.b 

illustrates complete exhaustion of ammonia in each batch time segment after 

introduction of the substrate at the beginning of each segment. In Figure 3.4.c and 

Figure 3.4.d, biomass concentration profiles are depicted for each 32 active populations 

and the total biomass respectively. Gradual biomass growth can be observed in presence 

of acetate and ammonia in the system.  

In Figure 3.4.e, Figure 3.4.f and Figure 3.4.g, fPHB and PHB profiles are depicted. In 

the first 10 hours of the batch operation, intracellular PHB content increases along with 

biomass growth in presence of both acetate and ammonia in the medium. Figure 3.4.e 

shows two drops in fPHB profile during the batch operation. The first fPHB drop occurs 

when feed substrates are added to the system at the beginning of the second batch time 

segment. At this point, PHB saturated cells are exposed to a nutrient rich medium where 

they start to grow in a significant rate. Therefore, fPHB drops in reflection of higher 

biomass growth rate as oppose to the lower PHB formation rate. Since PHB 

concentration is maintained during this period, no PHB drop is observed in the PHB 

profiles at this point of operation. However, in the second fPHB drop observed at about 

15 hours of batch operation, PHB profile drops as well. This occurs when acetate 

completely exhausts during the operation and bacteria change their pathway from PHB 

reservation to PHB consumption in order to provide their metabolic activates in absence 

of carbon source of the medium. Deduction of PHB concentration continues until 

acetate injection takes place at the 20 hours of batch operation time. In presence of both 

acetate and ammonia in the third 10 hours of the batch operation, PHB storage takes 

place to retain PHB consecration at about 58 C-mmol/L by the end of the process.  
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a.    b.  

c.    d.  

e.    f.  

g.  

Figure 3.4 Results for the batch simulation run   
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3.6  Summary  

In this chapter, mechanistic model assumptions, material balances and kinetic 

parameters implemented by Dias et al. (2005) to simulate PHB batch production with 

mixed microbial cultures are given. The model is developed under a main simplifying 

hypothesis that organisms presented in the medium are heterotrophic with a metabolism 

that does not change significantly in time. The model was successfully validated with 

promising accuracy to conclude that a two-compartment model is able to describe the 

state variables.  

The simulation model introduced in this chapter is applied in the consecutive chapters 

as process data generator for PHB batch production with mixed microbial cultures.  
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4.1 Introduction  

Nowadays with the advent of advanced computational tools, application of analytical 

methods has become an essential adjunct to the experimental techniques developed with 

the aim of operational enhancement of complex behaviour systems. The analytical 

method developed in this chapter will be referred to as the “Characterisation Method” 

which occurs in a module code called “CharMeth” added on to the main process 

simulation program. Simulated process results are evaluated with a series of analytical 

modules to generate analytical results for each simulated batch process prior to storing 

simulation and analytical data. Figure 4.1 shows the structure of the simulation program 

when the analytical module code is placed in the process simulator depicted in  

Figure 3.1.  

 

Figure 4.1 Simulation program structure with the supplement of 

“Characterisation Method” (CharMeth) module 

The “Characterisation Method” procedure is followed to generate characterisation plots 

for the simulation program. This method is divided into 7 divisions, each  

providing useful information about the PHB batch process behaviour. In the first 

division (Section 4.2), PHB process is analysed to find the most significant elements of 

the process. In the second division (Section 4.3), the identified process profiles are 

investigated to create analysis modules to be applied on process profiles. In the third 

division (Section 4.4), process profiles are visualised along with the analysis results 

obtained from the modules. In the fourth division (Section 4.5), code values are defined 

to be associated with significant process occurrences. In the fifth division (Section 4.6), 

a bank of code vectors is created by screening various operational scenarios. The code 
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vectors will be classified in the sixth division (Section 4.7) and characterisation plots 

are drawn using the classified code vectors (Section 4.8). At the end, the capability of 

the developed procedure to differentiate major process regimen will be investigated. 

4.2 Acquire process knowledge and selection of process significant 

elements (Critical Process Attributes) 

Good process understanding is crucial in process control and optimisation. The first step 

to gain knowledge about a particular unknown process is associated with measuring 

process variables (e. g. measurement of temperature, pressure, concentration of various 

dilutes, spectroscopic data and etc.). In a particular chemical process, a number of 

correlated and uncorrelated variables are measured to map relationships between 

different process elements and to provide mathematical representations of these 

relationships. The “Characterisation Method” developed in this study makes use of the 

process variables with the most dominant effect on the process element of high 

importance (normally the amount of process product). The observations associated with 

each process variable are generated using computer-based simulations. However, the 

role of variables remains the same in simulations with high level of accuracy. Therefore, 

initial step in the “Characterisation Method” is to identify the most important process 

variables. 

The simulation program discussed in Chapter 3 is applied in this chapter for 

“Characterisation Method” development targeting PHB production process with mixed 

microbial cultures. As mentioned in Chapter 3, two feeding substrates of acetate and 

ammonia play dominant role on PHB formation rate. Process profiles comprising of the 

feeding substrates and product concentration are scrutinised in the “Characterisation 

Method”.   

4.3 Process profile analysis 

In this step of the “Characterisation Method”, the two main process profiles (acetate and 

ammonia concentration) are scrutinised along with the process product profile. A fair 

understanding of the nature of the process facilitates identification of the high 

significance profile occurrences.  

A combination of mathematical and logical algorithms coded in adjunct to the 

simulation program enables detection of this type of significant occurrences in the 

process profiles. For a specific simulated process, a specified code is required to be 



Chapter 4  Characterisation Analytical Method 

70 

develop and tuned to detect these operational points in a profile. The three profiles of 

acetate, ammonia and total PHB concentrations are considered for analysis in this stage. 

The analytical modules developed for each of these three profiles are discussed in the 

following sections. These modules are developed and established by the author.  

4.3.1 CharMeth’s first module: Ammonia profile analysis 

The first process profile analysed in the “CharMeth” module code is the ammonia 

profile for a simulated batch process. The most significant occurrence in the ammonia 

profile is when its concentration stabilises at a curtain point with either a zero or a 

positive value. In order to develop a code module to detect such point in the ammonia 

profile, a vector called “AmmoniaFactor” is defined as a factor of the first order 

derivative values of progressive ammonia concentrations in respect to the operational 

time. This vector is defined when a complete ammonia concentration profile is available 

for one batch process. One of the first few values in the “AmmoniaFactor” vector 

(which can be associated with the initial process point in the analytical batch) is stored 

in the “AmmoniaCons” and is used as the basis for identification of the ammonia 

critical point during a batch process. The “AmmoniaFactor” values are compared with 

the “AmmoniaCons” constant value in an iteration loop. Since absolute value stored as 

“AmmoniaCons” is much larger than the absolute values stored in the 

“AmmoniaFactor” vector, a tuning factor, “F1”, is multiplied to the “AmmoniaCons” 

value so that comparisons can be made between the absolute value of “AmmoniaCons” 

and the absolute values in the “AmmoniaFactor” vector. As it is shown in Figure 4.2, 

the ammonia critical point is identified when absolute value of “AmmoniaFactor” is 

bigger than the multiplication of “F1” and the absolute value of “AmminaCons”.  

 

Figure 4.2 Identification of critical ammonia point within a batch operation period 
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The tuning parameter is assigned to have a value of (0.05) for the case of critical 

ammonia module in this particular process. This value was assigned using trial and 

error. If “F1” is altered to a larger value, the critical ammonia point is identified in an 

operational time earlier than the one assigned with the current setting. In an iteration 

loop considered in the module program, the values of “AmmoniaFactor” vector are 

compared with the multiplication of “F1” and “AmmoniaCons” in an ascending order of 

batch process operational time in order to find the operational time in which ammonia 

critical point is identified. This operational time is one of the simulation observations 

specified as the “time_intervals” and stored in “IK001”. Figure 4.3 shows an illustration 

of the MATLAB coding embedded in the “CharMeth” module in which ammonia 

critical point is identified.  

 

Figure 4.3 Descriptive depiction of “CharMeth” ammonia module 

Figure 4.4 shows analytical results obtained from the “CharMeth” module for four 

arbitrary ammonia test profiles in four different batch operations. In this figure, the 

ammonia critical point on each profile is depicted by ( ) sign indicators. 

 

 

Figure 4.4 “CharMeth” analytical results on different ammonia profiles 
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As shown in the four profiles, the algorithm designed to identify the critical point of 

ammonia concentration profile is capable of producing reliable and accurate 

estimations.  

In the next section, description of a similar procedure is given to identify the acetate 

concentration critical point within a batch of PHB production using MMC.  

4.3.2 CharMeth’s second module: Acetate profile analysis 

In the second section of the “CharMeth” module, a profile of acetate concentration for 

one process batch is considered. Like the ammonia concentration profile, the most 

significant occurrence in the acetate profile is acetate stability point. Therefore, the 

structure of the module code in this section is similar to that of ammonia section with a 

small modification.  

The vector containing the first order derivative values of the acetate concentrations in 

respect to the batch operational time is called “AcetateFactor”. Similar to the previous 

algorithm, one of the first few values in the “AcetatetFactor” is stored in “AcetateCons” 

as the constant for comparison in the iteration loop. The tuning parameter for acetate 

critical point identification,”F2”, is assigned to be equal to 0.035 by trial and error. In 

addition to the simple structure of the iteration loop, an update procedure is considered 

for “AcetateCons” within the comparison practice. The purpose of this supplement is to 

assign the steepest gradient as the basis for comparison in the algorithm. An illustration 

of the acetate concentration profile in which the supplement algorithm plays an effective 

role is given in Figure 4.5.  

 

Figure 4.5 Identification of critical acetate point within a batch operation period 
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In Figure 4.6, a descriptive demonstration of the acetate analysis module is depicted 

including the constant updating algorithm.  

 

Figure 4.6 Descriptive depiction of “CharMeth” acetate module  

The analysis outcome is stored as “IK002” which is the observation number 

(time_intervals) of the critical point detected within the acetate profile of a batch 

process. Figure 4.7 shows analytical test results obtained from the “CharMeth” module 

for four arbitrary acetate profiles obtained from four different batch processes. In this 

figure, the acetate critical point on each profile is depicted by ( ) sign indicators. 

 

 

Figure 4.7 “CharMeth” analytical results on different acetate profiles 
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acetate critical point is capable of making accurate estimations. In the third section of 

the “CharMeth” module, total PHB concentration profile is considered.  

4.3.3 CharMeth’s third module:Total PHB profile analysis 

In the third section of the “CharMeth” module, analysis of the process product profile 

(total PHB concentration) is carried out. Investigations on the total PHB concentration 

profile show that a number of different case scenarios may exist representing beneficial 

or detrimental product profile for lucrative or a sustainable production system. For this 

reason, a relatively more complex strategy is considered in comparison to the two 

previous profile analysis procedures in order to differentiate various batch PHB profiles. 

This procedure consists of two additional test points on the PHB profile at a certain 

operational point after detection of profile critical point. First, the algorithm for 

detection of the PHB critical point is described and then the role of these two test points 

will be explained.  

 

Figure 4.8 Descriptive depiction of “CharMeth” PHB module 

In addition to the total PHB stability point in the profile, any sudden change in the 

profile curvature is required to be detected by the main analytical algorithm. Similar to 
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the previous algorithms, a vector of absolute first order total PHB values in respect to 

the operational time is defined as “PHBfactor” and its first value for the initial point of 

the simulation process is stored in “PHBcons”. The major modification in this algorithm 

is in definition of the multiplication factor,”F3”, in the structure of the iteration loop 

comparing derivative values. This factor is assigned to be 0.3, 0.03 and 0.003 times the 

“PHBcons” value when “PHBcons” is less than 10 C-mmol/L, between 10 C-mmol/L 

and 100 C-mmol/L and more than 100 C-mmol/L respectively. These coefficients are 

specified based on trial and error tests to tune the factor value for the scale of PHB 

profile when investigating best algorithm for detection of the PHB profile critical point. 

Figure 4.8 shows a depiction of the analytical algorithm embedded in the “CharMeth” 

module for detection of the critical point in the total PHB concentration profile.  

At the end of the PHB profile analysis by the “CharMeth” module, the critical 

observation point is detected and stored in “IK003” as shown in Figure 4.8. Four 

different PHB profiles for four different batch operations are shown in Figure 4.9 along 

with their critical points illustrated with ( ) sign indicators. These plots show that the 

proposed algorithm is able to detect both stability and curvature alteration in the total 

PHB concentration profiles.  

 

 

Figure 4.9 “CharMeth” analytical results on different PHB profiles (before 

activating the two additional analytical points) 
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The second additional analytical point is the last simulated operational data from a batch 

process. This test point is embedded in the algorithm to check the status of the final total 

PHB concentration in comparison with the total PHB concentration at the detected 

critical point. Figure 4.10 shows four different PHB profiles for four different batch 

operations with the addition of the first analytical point shown by ( ) sign indicators 

when total PHB concentration does not drop within the 10% time period of detection of 

the critical point. It can also be noted that PHB concentration drops in three out of the 

four cases after detection of the critical point at the end of batch process.  

 

 

Figure 4.10 “CharMeth” analytical results on different PHB profiles (after 

activating the two additional analytical points) 

The three analytical sections of the “CharMeth” module would store useful information 

about the three process profiles. In the following section of the study, the information 

obtained from this module will be combined and used to form acetate-ammonia-PHB 

plots for PHB production process under mixed microbial cultures. 

4.4 Visualisation of process profiles 

In this stage, acetate-ammonia-PHB plots are generated to provide better insight about 

process variables and their effect on the PHB profile. Figure 4.11 shows two acetate-

ammonia-PHB plots for two typical PHB production batch runs. The acetate and 

ammonia detected critical points are also noted in the PHB profiles in order to provide 

better insight about the effect of these two critical points on the PHB profile.  

As shown, in the two batch operations acetate, ammonia and PHB critical points in their 

profiles are correctly detected and noted. In the batch operation shown in Figure 4.11.a, 

ammonia depletion occurs prior to acetate stability point; whereas, in Figure 4.11.b, 

acetate depletion detected prior to ammonia exhaustion. These different feeding profiles 

have different effect on the PHB profiles that results into continues augmentation of 
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PHB for the first batch (Figure 4.11.a) and a PHB increase followed by a PHB drop in 

the second batch operation (Figure 4.11.b).  

The “CharMeth” module contains the three analytical segments described in this section 

to detect ammonia, acetate and PHB profiles significant occurrences. With generation of 

the acetate-ammonia-PHB plot graphs, foundations are available to assign code values 

in code vectors as will be discussed in the next section. 

a.  b.  

Figure 4.11 Acetate-ammonia-PHB plot for two typical simulation runs of the PHB 

process 

4.5 Creation of code vectors: association of the significant process 

occurrences to the code values 

With robust and reliable algorithms to detect significant occurrence points of the 

process profiles, the aim is to assign code values to each type of the significant 

occurrences. These code values will be used in the classification step in the subsequent 

stages. At the end of this step, a code vector is generated containing code values that 

enable qualitative interpretation of the acetate-ammonia-PHB plot obtained from 

process simulations. In fact, a certain set of code values can provide a rapport between 

process profiles that present similar qualitative characteristics. This property of identical 

code vectors builds up the foundation of the “Characterisation Method” in order to find 

clusters of process profiles with the same qualitative descriptions. These clusters will be 

used in direction of characterisation plot generation.  

0 5 10 15 20
0

50

100

150

TIME (hr)

A
c
e

ta
te

(C
-m

m
o

l/
L

)

BIOM0: 25  C-mmol/L

PePHB0: 10%

ADDHA: 131  C-mmol/L

ADDN: 0.60  N-mmol/L

0 5 10 15 20
-0.2

0

0.2

0.4

0.6

TIME (hr)

A
m

m
o

n
ia

(N
-m

m
o

l/
L

)

0 5 10 15 20
0

20

40

60

80

TIME (hr)

P
H

B
(C

-m
m

o
l/
L

)

0 5 10 15 20
-100

0

100

200

300

TIME (hr)

A
c
e

ta
te

(C
-m

m
o

l/
L

)

BIOM0: 125  C-mmol/L

PePHB0: 25%

ADDHA: 290  C-mmol/L

ADDN: 25.30  N-mmol/L

0 5 10 15 20
-10

0

10

20

30

TIME (hr)

A
m

m
o

n
ia

(N
-m

m
o

l/
L

)

0 5 10 15 20
50

100

150

200

250

TIME (hr)

P
H

B
(C

-m
m

o
l/
L

)



Chapter 4  Characterisation Analytical Method 

78 

The code values are defined to reflect the analytical results obtained from the third step 

of the procedure. These code values are stored in an organized arrangement to form a 

Code Vector (CV) at the end of this stage. It is evident that both code values and their 

positions in the CV should be carefully considered to avoid any misinterpretation or 

information lost in deciphering stage.  

In the case of the PHB production process, a series of acetate-ammonia-PHB plots were 

generated and scrutinised with the aim of generating appropriate coding mechanism that 

fits to the process specifications. Table 4.1 associates code values in the specified code 

vector (CV) with qualitative descriptions that can be obtained by analysing various 

acetate-ammonia-PHB plots.  

Table 4.1 Definition of code values and their position in the code vectors  

CV 
position 

Assigned 
value 

Description 

CV(1) 1 Acetate and ammonia are both present in the system at the initial point 

CV(1) 0 Acetate or ammonia is absent in the system at the initial point 

CV(2) 1 Stability of ammonia profile is detected  

CV(2) 0 Stability of ammonia profile is not detected 

CV(3) 1 Stability of acetate profile is detected 

CV(3) 0 Stability of acetate profile is not detected 

CV(4) 1 Acetate complete depletion is detected 

CV(4) 0 Acetate is present at the end of the process 

CV(5) 2 Acetate depletion is detected prior to ammonia depletion 

CV(5) 1 Ammonia depletion detected prior to acetate stability point/depletion 

CV(5) 0 Acetate or ammonia stability point is not detected or both occur simultaneously 

CV(6) 3 PHB growth rate decreases before PHB drop  

CV(6) 2 PHB grows to its saturation point 

CV(6) 1 PHB drop detected with no prior PHB stability detection 

CV(6) 0 Immature augmentation of PHB  

CV(7) 1 PHB profile maintains its saturated concentration at least up to the first additional 

analytical point  

CV(7) 0 PHB profile does not maintain its saturated concentration 

 

This table is formed based on a series of observations carried out on acetate-ammonia-

PHB plots of different batch operations. It should be mentioned that the setting defined 

in this study is not unalterable and different arrangement of coding can be considered to 

map PHB batch process behaviour. The code vector consists of seven elements with the 

first five focusing on the two feeding concentration profiles of acetate and ammonia and 

the last two elements comprising information about the PHB profile.  

In the first position, existence or absence of acetate and ammonia in the medium at the 

initial point of the process is investigated. In the second code vector position, the focus 

is on the ammonia profile independent of any other process profiles. Two code values 
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are considered to demonstrate detection or concealment of ammonia stability point in 

the profile. Due to the nature of the PHB batch process, biomass replication continuous 

until nitrogen source (ammonia) is completely exhausted in presence of the carbon 

sources (acetate or PHB). Since carbon is available in either the PHB form or acetate, 

and no limitation is considered for biomass growth, ammonia is completely consumed 

in the majority of mature production batches.  

The acetate profile analysis determines code values for the third and the fourth vector 

positions independent of the other two profiles (ammonia and PHB). In the third vector 

position, detection of acetate stability point is coded while in the fourth vector position 

existence or complete exhaustion of acetate by the end of the batch profile is recorded.  

The fifth element of the code vector is mainly associated with the order of significant 

sequences in the acetate and ammonia profiles. Absence of either acetate or ammonia 

stability point detection or occurrence of both points at the same time is assigned with 

code value 0 while code values 1 and 2 are assigned to demonstrate sequence of 

appearance of the acetate and ammonia stability points.  

In the sixth vector position, a code value is assigned based on the PHB profile analysis 

independent of the feeding profiles. Four examples of PHB profiles for four different 

batch simulation runs are shown for each of the code values assigned to the sixth vector 

position in Figure 4.12.a, Figure 4.12.b, Figure 4.12.c, and Figure 4.12.d for the code 

values 0, 1, 2 and 3 respectively. In this figure, ammonia, acetate, PHB stability points 

are indicated along with the first additional analytical point with ( ), ( ), ( ), and ( ) 

sign indicators respectively.  

a.   b.  

c.   d.  

Figure 4.12 Definition of code values for the sixth code vector position 
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In the seventh vector position, maintenance of the PHB saturation concentration is 

coded considering the first additional analytical point defined in the “CharMeth” third 

module in Section  4.3.3.  

By the end of this stage, foundations are prepared in order to assign appropriate code 

vectors to a simulated PHB batch process. In the next step of the “Characterisation 

Method” development procedure, a bank of code vectors is created to form the basis of 

the analysis in the subsequent steps of the method. 

4.6 Creation of the bank of code vectors 

4.6.1 Application of “CharMath” module for code vector bank generation 

With the advent of high speed computation machines, it is possible to perform several 

hundreds of simulated processes with varying initial parameters in a relatively short 

period of time. The “Characterisation Method” takes good advantage of the computer-

based simulators in high speed process screening with the aim of generating a list of 

major code vectors appearing in simulations. 

Assuming that a robust and reliable algorithm to detect points of significant occurrences 

in the process profile is available and that a structure has successfully developed to 

assign appropriate code values to the code vectors. In this step, the code vectors 

containing code values that represent a particular batch profile are identified and stored 

as the bank of code vectors. In other words, code vector bank consists of the code 

vectors that appear in process simulations in the case of different combinations of 

process variables.  

In this stage, code vectors that appear in simulated batch operations are first numerated 

and then stored in an organised manner. Figure 4.13 shows general description of the 

fourth division of “CharMeth” module designed by the author to assign a code number 

to new code vectors or report the code number of the code vector previously registered 

in the code vector repository.  
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Figure 4.13 Code vector numerating procedure and development of the bank of 

code vectors  

As shown in Figure 4.13, in the first three segments of the module, ammonia, acetate 

and PHB process profiles are analysed by the algorithm previously mentioned. The 

appropriate code values are assigned to the code vector associated with a batch process 

in the “CharMeth” module. This code vector is then compared with a set of code vectors 

previously stored in the code vector repository. If no match could be found for the 

generated code vector, an identical code number is assigned to this code vector and they 

are stored in the bank of code vectors. If an identical pair of the code vector exists in the 

bank, the code number of the code vector in the bank is reported for the batch process 

being analysed. There are numerous possibilities for the code vectors. However, only a 

few numbers of these possible cases occurs when codes are assigned to the actual 

process profiles in simulated batches. The bank of code vectors contains code vectors 

appeared in the analysis of different process profiles and therefore it is limited to the 

combinations occurred in simulations for code values.  

4.6.2 Screening process 

With the aim of identifying the possible code vector combinations, batch profiles are 

generated using the simulation program introduced in Chapter 3 and then analysed by 

the “CharMeth” analytical tool. The practice of assigning different feeding 

concentration pairs to the simulator is carried out in an organised manner in order to 

screen possible profile occurrences on different pairs of acetate and ammonia 
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introduced into batch operations. The screening process applied in this section initiates 

with minimal feeding concentration values and finishes on maximum values of the pair 

by covering the acetate range initially and then augmenting ammonia concentrations 

subsequently. In each screening procedure, process parameters such as initial total 

biomass concentration, initial PHB content of the bacteria cells and batch operational 

duration are recorded as the operational variables.  

A screening plot for a specific process is a two dimensional graph illustrating the code 

vector number of the process profiles for each pairing of the two process variables 

forming the graph axes. A screening plot can provide a general insight to the process 

behaviour regarding the two dominant variables effacing the process. Visualisation of 

the process qualitative behaviour can potentially lead to obtaining valuable information 

about the process and can open a window to improve the process monitoring and 

control scheme. 

In this report, first few screening runs are described in this section and the results for the 

remaining screening plots are given in Appendix-A. In the beginning, no code vector is 

recognised and the bank of code vectors is empty. Therefore, all the code vectors 

generated in the first screening process are unknown to the analytical module. The first 

screening parameters are 5 C-mmol/L for initial biomass concentration, cells contain 

10% of their maximum PHB content and batch operation continues for 2 hours. After 

the first screening execution, five code vectors are identified and registered in the code 

vector bank repository.  

As the result of the first screening process, five new code vectors are identified and 

numerated. Table 4.2 tabulates the seven code values assigned to each of the five code 

vectors generated by “CharMeth” module in the first screening run process. These code 

vectors are stored in the bank of code vectors with an identical number. For instant, 

vectors  and  are labelled by CV1 

and CV2, respectively.  

Table 4.2 Identified five code vectors in the first run of the screening process 

 CV(1) CV(2) CV(3) CV(4) CV(5) CV(6) CV(7) 

CV1 1 0 1 1 0 3 0 

CV2 1 0 0 0 0 0 0 

CV3 1 0 1 1 0 1 0 

CV4 1 0 0 0 0 2 0 

CV5 1 0 1 1 0 3 1 
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Figure 4.14 shows the screening plot generated when the five code vectors are defined 

in the “CharMath” module after execution of the first screening run. In this figure, code 

vector numbers are depicted for 25 × 25 batch operations initiating with different 

combinations of ammonia and acetate concentrations. On the X-axis, acetate 

concentration range is from around 0 to about 250 C-mmol/L and on the Y-axis 

ammonia range is from 0 to 5 N-mmol/L. The operational parameters are assigned 

based on the experimental results carried out to validate the batch simulator with the 

real experimental outcomes and other practical ranges given in the literatures (Serafim 

et al., 2004; Dias et al., 2005; Dias et al., 2006).  

In Figure 4.14, the five classified code vectors are depicted by “ ”,” ”,” ”, “ ”, 

and “ ” iconic symbols to demonstrate occurrence of the first (CV1), the second 

(CV2), the third (CV3), the fourth (CV4) and the fifth (CV5) code vectors respectively. 

In addition to the iconic symbols, code vector numbers are also shown in black boxes 

for the bottom, middle, top iconic rows and the right edge of the screening plot.  

 
Figure 4.14 Illustration of code vector numbers for the first screening run on a 

screening plot after updating the bank of code vectors  

In the second run of the screening process, batch operation duration is increased from 2 

hours to 10 hours when other settings remained the same as the first screening process.  

Figure 4.15.a shows the screening plot for the screening outcome. As shown, only code 

vector number 1 (CV1) and code vector number 3 (CV3) were recognised by the 

“CharMeth” module and the rest of the generated code vectors were unidentified. Some 

of the unidentified code vectors are noted with negative figures in the black boxes in the 

same subplot. In the second screening process, 11 new code vectors were identified, 

numerated and then stored in the “CharMeth” module. The content of these code vectors 

and their identical numbers are tabulated in Table 4.3.  
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a.  b.  

Figure 4.15 Illustration of code vector numbers for the second screening run on a 

screening plot before updating the bank of code vectors (a) and after updating the 

bank of code vectors (b) 

When screening process is re-run with an updated “CharMeth” module, the screening 

plot of Figure 4.15.b is generated with the iconic symbols to demonstrate occurrence of 

different code vectors in different batches.  

Table 4.3 Identified four code vectors in the second run of screening process 

 CV(1) CV(2) CV(3) CV(4) CV(5) CV(6) CV(7) 

CV6 1 1 1 1 2 3 1 

CV7 1 1 1 0 1 2 1 

CV8 1 1 1 1 2 1 0 

CV9 1 1 1 1 1 3 1 

CV10 1 1 0 0 0 2 1 

CV11 1 1 1 1 2 3 0 

CV12 1 1 1 1 1 3 0 

CV13 1 1 0 0 0 2 0 

CV14 1 1 1 0 1 3 0 

CV15 1 1 0 0 0 0 0 

CV16 1 1 1 1 0 3 0 

 

The procedure mentioned in this section will be applied to execute various screening 

processes in order to develop a code vector bank containing the majority of the code 

vectors that can potentially occur during batch process analysis in the next section.  

4.6.3 Expansion of the code vector bank by the screening process 

In this section, in addition to the two screening runs mentioned in the previous section, a 

report of 32 screening runs for the purpose of developing a code vector bank that can 

represent majority of the batch operation profiles are tabulated in two tables. In  

Table 4.4, information obtained from 16 screening runs including the two screening 

runs mentioned in the previous section is tabulated. At the end of the 16 runs, total of 24 

different code vectors are identified and stored in the “CharMeth” module as Registered 
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Code Vectors (RCVs). The screening plots related to this section can be found in 

Appendix A.  

Table 4.4 Simulation parameters and the number of identified code vectors in each 

screening process (realistic parameter values) 

 Simulation parameters  

Screening 

run 

number 

BIOM0 

(C-mmol/L) 

PePHB0 

(%) 

Tcycle 

(hr) 

ADDHA range 

(C-mmol/L) 

ADDN range 

(N-mmol/L) 

Number of 

new CVs 

identified 

Total 

number of 

RCVs 

1 5 10 2 0.1-5 0.1-250 5 5 

2 5 10 10 0.1-5 0.1-250 11 16 

3 5 10 20 0.1-5 0.1-250 0 16 

4 5 10 100 0.1-5 0.1-250 2 18 

5 5 90 2 0.1-5 0.1-250 1 19 

6 5 90 10 0.1-5 0.1-250 0 19 

7 5 90 20 0.1-5 0.1-250 0 19 

8 5 90 100 0.1-5 0.1-250 2 21 

9 70 10 2 0.1-5 0.1-250 1 22 

10 70 10 10 0.1-5 0.1-250 0 22 

11 70 10 20 0.1-5 0.1-250 0 22 

12 70 10 100 0.1-5 0.1-250 0 22 

13 70 90 2 0.1-5 0.1-250 1 23 

14 70 90 10 0.1-5 0.1-250 0 23 

15 70 90 20 0.1-5 0.1-250 1 24 

16 70 90 100 0.1-5 0.1-250 0 24 

 

In order to provide a more comprehensive set of RCVs in the code vector bank, 16 

screening runs are executed with unrealistic extended simulation parameters. The 

screening plots obtained from this process provide a wider insight about general 

behaviour of the batch operation. Table 4.5 tabulates a summary of the simulation 

parameters and the number of code vectors identified in each screening process.  
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Table 4.5 Simulation parameters and the number of identified code vectors in each 

screening process (extended unrealistic parameter values) 

 Simulation parameters  

Screening 

run 

number 

BIOM0 

(C-mmol/L) 

PePHB0 

(%) 

Tcycle 

(hr) 

ADDHA range 

(C-mmol/L) 

ADDN range 

(N-mmol/L) 

Number of 

new CVs 

identified 

Total 

number of 

RCVs 

17 150 0.1 2 0.1-10 0.1-500 0 24 

18 150 0.1 10 0.1-10 0.1-500 0 24 

19 150 0.1 20 0.1-10 0.1-500 0 24 

20 150 0.1 100 0.1-10 0.1-500 0 24 

21 150 0.9 2 0.1-10 0.1-500 0 24 

22 150 0.9 10 0.1-10 0.1-500 0 24 

23 150 0.9 20 0.1-10 0.1-500 0 24 

24 150 0.9 100 0.1-10 0.1-500 0 24 

25 1,000 0.1 2 0.1-3,000 0.1-70,000 0 24 

26 1,000 0.1 10 0.1-3,000 0.1-70,000 1 25 

27 1,000 0.1 20 0.1-3,000 0.1-70,000 0 25 

28 1,000 0.1 100 0.1-3,000 0.1-70,000 0 25 

29 1,000 0.9 2 0.1-3,000 0.1-70,000 0 25 

30 1,000 0.9 10 0.1-3,000 0.1-70,000 0 25 

31 1,000 0.9 20 0.1-3,000 0.1-70,000 0 25 

32 1,000 0.9 100 0.1-3,000 0.1-70,000 0 25 

 

It should be noted that only one more code vector was identified in the overall 16 

screening process runs. This result demonstrates that the code vector bank comprising 

of the 25 registered code vectors capable of representing the general behaviour of the 

PHB operational batches. A complete set of the 25 code vectors registered in the code 

vector bank is tabulated in Table 4.6.  
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Table 4.6 Identified 25 code vectors in the 32 screening processes 

 CV(1) CV(2) CV(3) CV(4) CV(5) CV(6) CV(7) 

CV1 1 0 1 1 0 3 0 

CV2 1 0 0 0 0 0 0 

CV3 1 0 1 1 0 1 0 

CV4 1 0 0 0 0 2 0 

CV5 1 0 1 1 0 3 1 

CV6 1 1 1 1 2 3 1 

CV7 1 1 1 0 1 2 1 

CV8 1 1 1 1 2 1 0 

CV9 1 1 1 1 1 3 1 

CV10 1 1 0 0 0 2 1 

CV11 1 1 1 1 2 3 0 

CV12 1 1 1 1 1 3 0 

CV13 1 1 0 0 0 2 0 

CV14 1 1 1 0 1 3 0 

CV15 1 1 0 0 0 0 0 

CV16 1 1 1 1 0 3 0 

CV17 1 1 1 0 1 2 0 

CV18 1 1 1 0 1 3 1 

CV19 1 0 0 1 0 3 0 

CV20 1 1 1 1 1 1 0 

CV21 1 1 1 1 0 1 0 

CV22 1 1 1 1 0 3 1 

CV23 1 1 0 1 0 3 0 

CV24 1 1 1 0 1 1 0 

CV25 1 1 1 0 1 0 0 

 

It is clear that the dominant code vectors with frequent presence in the screening 

procedure should gain more attention as they represent the more dominant process 

behaviour. On the other side, the less frequent code vectors exhibit combinations of 

code values that appear only in simulation runs. This is due to high precision and 

sensitivity of the mathematical calculations carried out in the simulation program. In 

any case, each code vector and their position on the screening graph should be closely 

studied to gain insight about the process operational behaviour. In this regard, code 

vector classification will be carried out in the next section.  

4.7 Classification of the registered code vectors 

The registered code vectors should be studied in line with the batch profiles with the 

aim of detecting similarities and dissimilarities between batch profiles of different set of 

code vectors. Since process data generation and execution of the “Characterisation 

Method” are both carried out by mathematical computations, the precision of the 

calculations is considerably high. The high precision imposes non-necessary complexity 

to the code vector analysis when different code vectors are assigned to batch profiles 

which are inherently alike. Additionally, some different combinations of the code values 
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in the code vectors might refer to the same type of process profile with an identical 

qualitative description. Hence, investigations should be carried out to classify code 

vectors based on their qualitative descriptions. The code vectors that present similar 

batch profiles should be classified as a group with identical qualitative description.  

For this purpose, both the acetate-ammonia-PHB plot of the batch profiles and the 

screening plots demonstrating the code vectors obtained from the screening process 

should be utilised. The acetate-ammonia-PHB plots of process profiles are highly 

valuable especially when recognition of similarities and dissimilarities between 

different sets of code vectors is favourable. Figure 4.16, acetate-ammonia-PHB plots are 

shown for a batch process initiating with 5 C-mmol/L biomass (BIOM0), 10% initial 

PHB content (PePHB0), 0.1 C-mmol/L acetate (ADDHA), 0.1 N-mmol/L ammonia 

(ADDN) for duration of 2 hours (Tcycle). The analytical result obtained by the 

“CharMeth” module represents the code values as  which 

indicates occurrence of the 1
st
 code vector (CV1). In this figure, illustrative indicators 

are also depicted on each of the acetate-ammonia-PHB plots when required.  

 

Figure 4.16 Demonstration of an acetate-ammonia-PHB plot for the 1
st
 code vector 

In a rare situation, the algorithm designed to identify a significant occurrence by means 

of the “CharMeth” module fails to operate correctly. For instance, in the 18
th

 code 

vector acetate-ammonia-PHB plot shown in Figure 4.17, the code value assigned to the 

fourth code vector position is 0 which indicates existence of acetate at the end point of 

the batch process. However, looking at the PHB profile, it is evident that PHB 
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concentration drops at about 96 hours from the batch initial operation point due to 

acetate complete exhaustion. This failure is compensated by the “CharMeth” PHB sub-

module which indicates PHB drop at the late stage of the batch process with the sixth 

code position assigned to 3. Therefore, a reflection of the acetate exhaustion can be 

observed in the set of code values assigned by the “CharMeth” module which results 

into identification of correct regime type at the end of the analytical process. These rare 

occurrences do not reduce the reliability of the method especially when their registered 

code vectors are captured for a specific regime type number as explained in 

Section ‎4.7.2. 

 

Figure 4.17 Demonstration of the acetate-ammonia-PHB plot for the 18
th

 code 

vector 

A series of acetate-ammonia-PHB plots are given in Appendix B as typical examples of 

batch profiles for each combination of the 25 registered code vectors. Moreover, the 

screening plots generated in the screening process provide general insight about PHB 

process operational progression using the code vectors. This enables the process 

investigator to observe the sequence of code vector appearance in an operating batch 

process. In the following section, application of the screening plots for extended 

unrealistic biomass concentrations is discussed.  
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4.7.1 Application of the screening plots in code vector classification  

In order to observe general behaviour of the batch operations, amplified concentration 

of acetate, ammonia and biomass is considered in batch simulations. These simulation 

parameters are chosen to be extremely high (practically unrealistic) so that small 

fluctuations of variables have insignificant effect on the screening plots. In Figure 4.18, 

six screening plots show operational progression batch simulations for 2, 7, 12, 18, 23 

and 300 hours after process initiation. In these plots, the colour bars associate the 

registered code vector numbers with the areas on the screening plots that represent 

batches with the same code vector number. The dominant code vector areas are also 

numerated on each plot.  

a.  b.  

c.  d.  

e.  f.  

Figure 4.18 Screening plots for extended unrealistic biomass concentrations 
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After 2 hours of process operation, the majority of batch operations with initial biomass 

concentration of 1,000 C-mmol/L, PePHB0 of 10% and various combinations of 

feeding acetate and ammonia concentrations present code vector number 2 as a 

qualitative profile representation in Figure 4.18.a. Further progression of these batch 

processes up to 7 hours of process operation led to code vector presentation depicted in 

Figure 4.18.b with emergence of code vector numbers 3 and 15. Additional progression 

of the batch processes shown in the plots of Figure 4.18.c, Figure 4.18.d, Figure 4.18.e, 

and Figure 4.18.f demonstrate appearance of CV8, CV15, CV17, CV18, CV20 and 

CV25 in addition to CV2, CV3 and CV15.  

CV2 is the code vector that represents the batch operation at its initial stage. As shown 

in Figure 4.18.b, CV2 is altered to either CV3 or CV15. The batch operations under 

CV3 eventually terminated in CV8 to form the first operational pathway. The batch 

operations under CV15 grew into either CV20 or CV25 as shown in Figure 4.18.c and 

Figure 4.18.d. The batches labelled with CV25 grew into CV17, CV7 and eventually 

CV18 as shown in Figure 4.18.e and Figure 4.18.f.  

Looking at the six plots in Figure 4.18 three operational pathways can be observed for a 

batch process to grow into. These three pathways are depicted in Figure 4.19 with the 

first pathway consisting of CV2-CV3-CV8, the second pathway comprising  

CV2-CV15-CV20 and the third pathway residing on CV2-CV15-CV25-CV17-CV7-

CV18.  

 

Figure 4.19 Code vector representation for operational progression 

These nine registered code vectors will be used to define operational regime types in the 

next section.  

4.7.2 Definition and initial classification of Regime Types 

Regime Types (RTs) consist of one or a number of CVs that represent inherently similar 

batch profiles. Since nine dominant code vectors were identified in the previous section, 

nine regime type groups are defined for the PHB production process. In order to 
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numerate these nine regime type groups, the structure of Figure 4.19 is applied.  

Figure 4.20 shows the nine RTs numerated in the ascending order.  

 

Figure 4.20 Numeration of regime types based on the structure of Figure 4.19 

It is clear that the suggested arrangement is not the only manner of setting the numbers 

to the classification groups; however, it facilitates application of RT numbers. The 

arrangement showed in Figure 4.20 will be used throughout this study.  

Up to this point, each RT group contains one CV member as obtained from the 

representations of the screening plots for unrealistically extended simulation process 

parameters shown in Figure 4.18. The first CV members in RT groups are tabulated in 

Table 4.7. 

Table 4.7 Representation of the first CV members in RT groups 

RT1 RT2 RT3 RT4 RT5 RT6 RT7 RT8 RT9 

CV2 CV3 CV8 CV15 CV20 CV25 CV17 CV7 CV18 

 

In order to classify other CVs into the nine RT groups, qualitative presentation of these 

nine regime types are given in the next subsection.  

4.7.3 Qualitative description of the RTs 

The qualitative acetate-ammonia-PHB plots representing each one of these nine regime 

types are shown in Figure 4.21. These plots were obtained using the acetate-ammonia-

PHB plots of CVs associated with the regime types. This figure can be used as a 

reference tool for classification of other CVs in the RT groups. In this figure, ammonia, 

acetate, PHB stability points are indicated along with the first additional analytical point 

with ( ), ( ), ( ), and ( ) sign indicators respectively.  

  



Chapter 4  Characterisation Analytical Method 

93 

 

  

  

   

Figure 4.21 Qualitative acetate-ammonia-PHB representations for the nine 

dominant regime types 
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Qualitative description of the nine regime types are as follow:  

RT1. The two feeding substrates of acetate and ammonia are continuously 

consumed throughout the operation resulting in continues biomass growth and PHB 

formation inside the cells. 

RT2. Acetate complete exhaustion occurs within the operational time resulting 

in total PHB drop. After acetate scarcity, cells change their metabolic pathway from 

storing to consuming PHB as a carbon source inside them. In presence of ammonia and 

consumption of the carbon source in the PHB, biomass growth continues throughout 

this regime type operation. 

RT3. Ammonia complete exhaustion follows acetate complete depletion within 

the operational time. Biomass growth halts with ammonia scarcity when PHB 

consumption rate decreases in reflection of biomass inactivity. RT2 is always followed 

by RT3 as depicted in Figure 4.20 (when enough operational time is allocated to 

complete the batch under analysis).  

RT4. The main occurrence in this regime type is detection of ammonia complete 

depletion during the course of batch operation. After ammonia scarcity, PHB formation 

continues with acetate consumption; however, biomass replication is negligible.  

RT5. Acetate complete exhaustion occurs after ammonia depletion during the 

batch operation resulting in total PHB drop. RT5 appears after RT4 in an operational 

batch process and terminates the second operational pathway with its appearance.  

RT6. Acetate stability point is detected after ammonia depletion during the 

batch operation. The major differentiating factor between this regime type and RT5 is 

that acetate is present in the medium throughout an operation under RT6 whereas it 

completely exhausts in the case of RT5.  

RT7. Similar to RT6, acetate stabilises with ammonia depletion. PHB stability 

point is also detected suggesting saturation of the product in the batch operation. From 

an operational viewpoint, RT7 represents the optimal operation time to terminate a 

production batch. Further progression of RT7 is associated with additional running cost 

while no significant improvement is made in PHB production.  

RT8. At the initial point of the batch, both acetate and ammonia are present in 

the medium. Similar to RT6 and RT7, acetate stability point is detected with ammonia 

complete depletion. In addition to detection of the PHB saturation point, PHB profile 
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maintains its saturated concentration for at least 10% of the operational time (as defined 

for the seventh element of the code vectors in Table 4.1) after detection of the PHB 

stability point. In this regime type, batch operation runs longer than it is required but it 

is still acceptable when PHB production is addressed. 

RT9. Similar to RT6, RT7 and RT8, acetate stability along with ammonia 

depletion is followed by detection of PHB saturation point in addition to its 

maintenance after 10% of the total batch operation. The main characteristic of this 

regime type is occurrence of a PHB drop after a period of PHB stabilisation due to 

acetate scarcity. This regime type appears when PHB production batch operates for a 

prolonged period. This regime type operation is not favourable when PHB production is 

the aim of the batch process.  

From the regime type descriptions provided for RT6, RT7 and RT8 it can be noted that 

the process profiles are qualitatively similar and the single characterisation difference 

between them is the operational time factor. In case of RT6, PHB production is 

immature. In RT7, production batch is in its optimal point for termination. For the case 

of RT8, production process has stayed operational longer than it is required but not too 

long to fail the “feast” phase operation as in RT9. 

The qualitative descriptions given above and the acetate-ammonia-PHB plot references 

provided in Figure 4.21 are used as the basis for classification of code vectors.  

4.7.4 Classification of the code vectors in regime type groups 

Up to this point, registered code vectors 2, 3, 8, 15, 20, 25, 17, 7 and 18 are assigned to 

regime types 1 to 9 respectively. In this section, the remaining registered code vectors 

found in the screening process are classified in the RT groups. In order to draw a 

rapport between each of the remained code vectors to a RT group, a combination of the 

process profiles and descriptive comparison analysis should be made. In effect, 

screening plots obtained in the code vector identification process can be very useful in 

code vector classification as well.  

For instance, one of the screening plots in Appendix A (Run No.26) is shown in  

Figure 4.22.  
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Figure 4.22 Demonstration of a typical screening plot 

As mentioned before, the numbers in the boxes represent the code vector number of the 

batch process depicted with iconic symbols on the plot. In this case, iconic symbols  

“ ”, “ ”, “ ”, “ ”, “ ”, “ ”, and “ ” represent code vector numbers 7, 8, 17, 

20, 21, 24, and 25 respectively. For the batches shown on the top row of the plot, CV21 

is a rare occurrence placed in between CV8 and CV20. Since CV8 and CV20 are 

classified as RT3 and RT5 respectively (Table 4.7), CV21 should be classified as either 

one of the two regime types. Looking at the code values for CV21 in Appendix-A, it 

can be seen that the fifth element in its code vector which differentiates RT3 from RT5 

has zero value stating that both feed stability points are detected for the same 

operational time. Therefore, CV21 can be classified as either of the two regime types by 

definition. However, since RT5 occurrence is less favourable than RT3 as will be 

explained in Chapter 6, CV21 is classified as RT5 to increase confidence bounds of 

RT3 estimation using the mathematical models predicting the regime types in  

Chapter 5.  

In similar manner, each acetate-ammonia-PHB plot of the code vectors that is not 

classified in RT groups are investigated along with its code values in order to assign 

each registered code vector to an identical regime type group. In Table 4.8 all 25 

registered code vectors are tabulated in the nine RT groups so that the members of the 

same group represent similar characterisations in their process profiles. 
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Table 4.8 Classified code vectors in the RT groups  

RT1 RT2 RT3 RT4 RT5 RT6 RT7 RT8 RT9 

CV2 CV1 CV6 CV15 CV9 CV25 CV13 CV7 CV14 

 CV3 CV8 CV23 CV12  CV17 CV10 CV18 

CV4 CV11  CV16    

CV5  CV20 

CV19 CV21 

 CV22 

CV24 

 

Based on regime type classifications, the representative acetate-ammonia-PHB plots 

depicted for registered code vectors in Appendix B are assigned to their regime type 

classes and illustrated in Figure 4.23.  

The bank of registered code vectors have 25 members with the simulation runs carried 

out in this chapter. However, this number may increase if unrecognised code vectors are 

found. Since screening plots generated in this chapter includes wide range of process 

variability, it can be claimed that majority of the possible cases has been captured in the 

current set of RCVs. When a new code vector is identified and registered, the same 

procedure can be applied to classify the new RCV in a RT group. 
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Figure 4.23 Typical representations of acetate-ammonia-PHB plots from RT1 to 

RT9 classes (continued) 
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Figure 4.23 Typical representations of acetate-ammonia-PHB plots from RT1 to 

RT9 classes (continued)  
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Figure 4.23 Typical representations of acetate-ammonia-PHB plots from RT1 to 

RT9 classes  
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With the proper classification of the code vectors, foundations are established to 

generate characterisation plots in the next division of the “Characterisation Method” 

development procedure. 

4.8 Generation of characterisation plots 

Based on the simulation studies, a characterisation plot for PHB production process is a 

two dimensional graph illustrating the regime types for each pairing of the acetate and 

ammonia variables. These plots are generated applying the same procedure mentioned 

in formation of the screening plots. However, in the case of characterisation plots, the 

classified RT numbers are used in place of the CV numbers in the illustrations.  

Figure 4.24 shows a progressive presentation of the screening plots along with their 

equivalent characterisation plots for a PHB batch process initiating with 90 C-mmol/L 

of biomass concentration containing intracellular PHB in the level of 15% of cells 

maximum PHB storage capacity. The progressive plots are depicted for 1, 2, 5, 9, 10, 

15, 25 and150 hours of batch operation from its initial operational point.  

In Figure 4.24, CV numbers are depicted in the boxes of the screening plots; whereas, 

RT group numbers are given in the boxes shown on the characterisation plots. For the 

nine RT groups, iconic symbols “ ”,” ”,” ”,” ”,” ”,” ”,” ”,” ” and “ ” are used 

to demonstrate RT1 to RT9 respectively.  

Comparing the screening plots with the characterisation plots shown on the left and 

right sides of the Figure 4.24 demonstrates one of the advantages gained from 

classification of code vectors into regime types. As shown, a characterisation plot is a 

neat version of a screening plot with more apparent regimen region boundaries. 

Additionally, Figure 4.24 confirms validity of the procedural steps taken for 

classification of the code vectors by observing the results of the amplified simulation 

results (using extended unrealistically large parameter values) prior to the analysis of 

the simulation results under its practical range of the simulation variables. The initial 

biomass concentration applied in generation of Figure 4.18 was 1,000 C-mmol/L 

whereas in generation of Figure 4.24, this value is decreased to 90 C-mmol/L which is 

within the practical range of the variable (Serafim et al., 2004; Dias et al., 2005; Dias et 

al., 2006). Despite the significant change in the scale of simulations, validity of the 

general operational pathways depicted in Figure 4.20 can be confirmed by the results 

obtained from the characterisation plots shown in Figure 4.24.  
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Figure 4.24 Progressive presentation of the screening and characterisation plots 

(continued) 
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Figure 4.24 Progressive presentation of the screening and characterisation plots 
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In the next chapter, characterisation plots developed using the procedure mentioned in 

this chapter will be used to navigate different operational regions.  

4.9 Conclusions  

An analytical technique called “Characterisation Method” was developed by the author 

in this chapter. This technique is the main achievement of the research work in terms of 

novelty and originality. It plays a crucial role in generation of a mathematical model for 

prediction of a batch operational pathway based on process initial state in Chapter 5. 

Combination of the research outcomes in this chapter and Chapter 5 results into 

generation of a novel operational recipe for PHB production using MMC.  

For the first time, prediction of classification of process regimens and batch operational 

pathways are made possible by the application of the “Characterisation Method” 

developed in this work which is a significant contribution to the field. 

Complex biological behaviour of the process leading to PHB production with mixed 

microbial cultures acquires detailed analytical method for classification of various 

operational routes. Based on the observations obtained from the simulated PHB process, 

the feeding rate of acetate and ammonia demonstrated major effect on PHB formation. 

Therefore, batch profiles associated with the feeding and product concentrations were 

studied to create mathematical algorithm capable of identifying occurrences of high 

significance in the profiles. Successful release of the algorithms enabled systematic 

examination of various operational scenarios with the aim of generating meaningful 

codes enabling classification of operational regimen. The classified regimes were 

arranged in three operational pathways to exhibit process progression course from a 

batch initial state to its maturity point. The analytical results present a more vibrant 

demonstration of operational progression.  

In the next chapter, application of the “Characterisation Method” for navigation of 

different operational regimen will be investigated. The mathematical equation obtained 

in the next chapter enables prediction of the operational phase in its maturity point using 

process data at the initial point of a batch.  
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5.1  Introduction  

In Chapter 4, a module code capable of analysing acetate, ammonia and PHB profiles 

was established for generation of code vectors associated with specific batch profiles for 

production of PHB under mixed microbial culture cultivation. These code vectors were 

classified into nine regime type groups with the aim of presenting more clear 

demonstration of operational progression and identification of operational regions 

associated with a specific regimen on characterisation plots.  

In this chapter, analysis is carried out on the characterisation plots generated by the 

analytical module to identify operational regimen in characterisation plots generated for 

mature batch operations. Additionally, mathematical equations are developed to 

estimate the border curve separating the two most important operational regimens.  

5.2  Definition of the operational phase border curve 

Looking at the characterisation plots for progressive operational time depicted in  

Figure 4.24, a general pattern can be observed. Considering progressive characterisation 

plots, all batch operations initiate with RT1 and develop into either RT2 (case of 

primary acetate scarcity) or RT4 (case of primary ammonia scarcity) on the vicinity of 

the ammonia or acetate concentration axes respectively. RT2 grows into RT3 with total 

PHB concentration drop which indicates a “famine” phase operation. A batch process 

under “famine” phase undergoes total PHB reduction due to shortage of at least one 

element required for growth or replication of cells.  

The fourth regime type (RT4) grows into either RT5 which also represents another 

“famine” phase regime type or it grows to RT6 when process is under continues PHB 

augmentation with a “feast” phase operation. In a “feast” phase batch, all elements for 

growth or maintenance of the total PHB content is available. As mentioned before, RT7 

and RT8 appear following identification of RT6 in the vicinity of the acetate axis. 

Formation of RT9 occurs in the vicinity of RT5 and within the region already covered 

by RT8 when acetate scarcity leads to PHB consumption.  

Figure 5.1 is drawn to show general pattern in progressive characterisation plots for the 

case of PHB production process. In this figure, ∆tx is defined as (tx - t0) where t0 is the 

time for batch process initiation and tx represent the analytical time period of the 

process. Considering the process simulator as a representation of the PHB batch 

process, ∆t1 is around 2 to 5 hours, ∆t2 is around 4 to 10 hours, ∆t3 is around 8 to 25 

hours and ∆t4 is about 100 hours or longer. It should be mentioned that t4 is 



Chapter 5  Phase Differentiating Equation 

107 

considerably greater than t3 to emphasise prolonged duration of the operation for 

formation of RT9.  

a.  b.

c.  d.  

Figure 5.1 Progressive characterisation plot pattern in the case of PHB production 

process (operational time wise) 

As depicted in Figure 5.1, operational regions can be separated by different border 

curves on a characterisation plot at a certain stage of the process progression. For a 

mature batch operation in which required time is allocated to a batch process,  

Figure 5.1.c shows an illustration associated to its characterisation plot. Figure 5.1.a and 

Figure 5.1.b depict characterisation plots of batch operations in their initial 

underdeveloped stages while Figure 5.1.d shows the plot for batches operated for 

prolonged duration which is unfavourable. Looking at Figure 5.1.c, three dominant 

regime types can be identified with one border curve separating RT3 region from RT5 

region and the second border curve separating RT5 region from RT8. The later border 

curve appears identical in Figure 5.1.b and Figure 5.1.d as well to demonstrate that this 

curve remains unchanged as soon as regime phases are established. The initial, “feast” 

phase, and “famine” phase regimes are indicated separately in the three groups shown in 
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Figure 5.2. RT9 is an unfavourable regime type occurring in “feast” phase regimens 

since undesirable PHB concentration drop occurs at the late stage of the batch operation.  

 

Figure 5.2 Classification of operational regimes based on their operational 

pathway 

Looking at Figure 5.1 and Figure 5.2 it can be deduced that the border curve separating 

RT5 operational region from the operational regions of RT6, RT7, RT8 and RT9 plays a 

crucial role when distinction of the two major process behavioural patterns is required 

to be addressed. Therefore in this context, the border curve refers to the highly 

significant border separating RT5 from RT6, RT7, RT8 and RT9. As shown in the 

depiction of Figure 5.1 and the characterisation plots generated by simulation results 

given in Figure 4.24, the border curve appears as soon as RT5 or RT6 regime appear 

and it retains its coordination in all the other characterisation plots generated for that 

process with longer operational duration. 

In the next section, simulation results are used to develop mathematical equations 

capable of estimating coordination of the border curve.  

5.3  Identification of the “Border Line” on characterisation plots 

With the aim of finding mathematical representations of the border curve, a simplifying 

assumption is made to facilitate implementation of mathematical equations into the 

simulated data. Based on this assumption, mathematical representation of the border 

curve is a linear equation (a straight line) with its coordination depending on the initial 

biomass concentration and the percentage of its PHB content. The validity of this 

assumption are confirmed by observing simulation results at the end of this chapter.  

Figure 5.3 shows two characterisation plots for batch simulations initiating with 

extensive unrealistic biomass concentration of 1,000 C-mmo/L containing different 

initial PHB factor of 0% (Figure 5.3.a) and 100% (Figure 5.3.b). Since RT6 appears on 
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both plots, it is possible to draw the “Border Line” separating RT5 from the “feast” 

phase operational regime types (RT6, RT7, RT8 or RT9). For this purpose, two points 

are denoted by the “ ” mark with their co-ordination on each characterisation plot.  

a.  b.  

Figure 5.3 Characterisation plots with the border curves  

(BIOM0=1000 C-mmol/L) 

Similar to the previous chapter, for the nine RT groups, iconic symbols “ ”,” ”,” ”, 

” ”,” ”,” ”,” ”,” ” and “ ” are used to demonstrate appearance of RT1 to RT9 

respectively. In addition to the iconic symbols, RT numbers are also shown in black 

boxes for the bottom, middle, top iconic rows and the right edge of the characterisation 

plot.  

The first point (referred to as Point1) specifies the batch simulation result for which 

initial acetate concentration is the lowest when a “feast” phase regime type appears for 

the minimum value of initial ammonia concentration on the characterisation plot. For 

example, In Figure 5.3.a, Point1 has co-ordination of (6100, 10). Likewise, the second 

point (referred to as Point2) shows the coordination of the simulation result for which 

initial acetate concentration is the lowest when a “feast” phase regime type appears for 

the maximum value of initial ammonia concentration on the characterisation plot. For 

instance in Figure 5.3.a, Point2 has co-ordination of (64900, 2410). The co-ordinations 

of these two points are depicted on the plots along with a straight line connecting the 

two points.  

Looking at Figure 5.3 it can be deduced that a straight line is an appropriate 

approximation for the border curve. In addition to this outcome, mathematical equation 

of this line is a function of initial intracellular PHB content of cells (PePHB0 value). 

The initial comparison of the two plots in Figure 5.3 suggests that coordination of the 

“Border Line” moves towards the ammonia axis when PePHB0 is increased from 0% to 

100%.  
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Similar plots are also generated for initial biomass concentration of 100 C-mmol/L in 

Figure 5.4. Approximation of a straight line in place of the border curve is not as 

accurate as the case shown in Figure 5.3; however, it provides satisfactory estimation 

especially when the “feast” phase operational region is addressed. Similar to the case of 

Figure 5.3, the “Border Line” move towards the ammonia axis when PePHB0 is 

increased. The coordination difference between the results depicted in Figure 5.3 and 

Figure 5.4 confirms dependency of the “Border Line” equation on the initial biomass 

concentration applied to the simulations. The iconic symbols “ ”,” ”,” ”, 

” ”,” ”,” ”,” ”,” ” and “ ”  are used to demonstrate appearance of RT1 to RT9 

respectively. 

a.  b.  

Figure 5.4 Characterisation plots with the border curves (BIOM0=100 C-mmol/L) 

Observation of Figure 5.3 and Figure 5.4 suggests that the border curves differentiating 

the “feast” phase area from the “famine” phase area form a locus of curves for different 

initial PHB content values. For a given initial biomass concentration and batch 

operational period a locus for border curves can be considered to reflect dependency of 

the “Border Line” co-ordination on the initial PHB content of the biomass. Figure 5.5 

shows a depiction of the border curve locus on a typical characterisation plot regarding 

PHB production process for a given initial biomass concentration and operational time.  

In Figure 5.5, the straight line connecting “Point1” to “Point2” is called “line-α” for the 

case of PePHB0 value of zero. In a similar manner, “line-β” is a straight line connecting 

“Point1” to “Point2” when initial PHB content is 100%. The area confined by “line-α”, 

“line-β” and the axes of the characterisation plot is the border curve locus as depicted on 

Figure 5.5.  
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Figure 5.5 Qualitative pattern of the border curve area in a characterisation plot 

In order to estimate equation of the border curve for a PePHB0 value in between 0% 

and 100%, the first step is to estimate the two border curves with PePHB0 value of 0% 

and 100%, and then genuine border curve is estimated as a linear ratio of the overall 

interval. Based on the illustrative description provided in this section, mathematical 

equations are developed in the next section for estimation of the border curve. 

5.4  Mathematical representation of the border curve equation 

Based on the illustrative description provided, the following steps are proposed to 

develop mathematical representations of the “Border Lines” as a function of both initial 

biomass concentration and their PHB content.  

1. Characterisation plots are drew for a range of different initial biomass 

concentrations with PePHB0 values of 0% and 100%. 

2. For each characterisation plot, Point1 and Point2 are identified. 

3. The gradient of the line connecting the two points is calculated as follow: 

   
        (      )          (      )

        (      )          (      )
 

(5.1) 

where    is the line gradient in (N-mmol/C-mmol). The gradients are specified 

for both PePHB0 value of zero (   ) and one hundred percent (   ).  

4. Two first order polynomial equations are fitted to the data in order to build 

equations predicting    values as functions of the initial biomass concentration, 
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one for PePHB0 values of zero and the other for PePHB0 value of one hundred 

percent. 

  ( )      (       ) (5.2) 

  ( )      (       ) (5.3) 

where   is the initial biomass concentration in (C-mmol/L), used when 

generating the characterisation plot procedure.   ,   ,     and     are the 

parameters of the polynomial equation fitted to the data.  

5. The line intercept crossing the acetate0 axis is specified using the following 

equation. 

                

         (      )

         (      )(
        (      )          (      )

        (      )          (      )
) 

 

(5.4) 

 

where                  is the measure on acetate0 axis where crossed by the 

“Border Line”. 

6. Two first order polynomial equations are fitted to the data in order to build 

equations predicting                  values as functions of the initial biomass 

concentration, one for PePHB0 values of 0% (                 ) and the other 

for PePHB0 value of 100% (                 ).  

  ( )                    (       ) (5.5) 

  ( )                    (       ) (5.6) 

where   ,   ,    and    are the parameters of the polynomial equation fitted to 

the data.  

7. The two line equations defining the straight lines connecting the Point1 to 

Point2 for the case of PePHB0 of 0% and 100% are given in the following 

equations.  

   (       ) (   (       ))    (5.7) 

   (       ) (   (       ))    (5.8) 
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where   is the initial ammonia concentration in (N-mmol/L) and   is the initial 

acetate concentration in (C-mmol/L) on the straight line for PePHB0 equal to 

0% (     ) and PePHB0 equal to 100% (     ).  

8. The “Border Line” separating the two operational regimes in a characterisation 

plot generated for a certain initial biomass concentration and PHB content level 

of        can be obtained using the following equation. 

    (   )    (5.9) 

where   and   are defined as 

  (       )         ((       )  (       )) (5.10) 

  (       )         ((       )  (       )) (5.11) 

The steps aforementioned are to be taken to develop the mathematical equation of the 

“Border Line”. The first step is to generate characterisation plots for different initial 

biomass concentrations and PePHB0 of 0% and 100%. These characterisation plots are 

generated and depicted in three set of initial biomass concentrations given in  

Appendix-C.  

In the first set of data given in Appendix C, 24 characterisation plots are depicted for 

initial biomass concentration in between 2 C-mmol/L and 200 C-mmol/L. On each plot, 

co-ordination of the points appearing in between the RT5 and the “feast” phase regime 

types for the maximum and minimum initial ammonia concentrations (Point2 and 

Point1) are noted. At the end, coordination of the Point1 and Point2 are tabulated along 

with the specifications obtained for the lines connecting the two points using  

Equation (5.1) and Equation (5.4). From Table 5.1 to Table 5.6, coordination of the 

Point1 and Point2 tabulated for PePHB0 value of 0% and 100% for various initial total 

biomass concentration. Characterisation plots were generated in three ranges of total 

biomass concentrations with the first group ranging in between 2 and 200 C-mmol/L, 

the second group ranging in between 200 and 1,000 C-mmol/L and the third group 

ranging between 1,000 and 15,000 C-mmol/L.  

  



 

 

 

Table 5.1 Point1 and Point2 coordination and the specifications of the straight line crossing the two points  

(Biomass range 2-200 C-mmol/L, PePHB0=0%) 

PePHB0=0% 

Simulation 

run number 

Initial 

Biomass  
(C-mmol/L) 

Point1 

Acetate0 
(C-mmol/L) 

Point1 

Ammonia0 
(N-mmol/L) 

Point2 

Acetate0 
(C-mmol/L) 

Point2 

Ammonia0 
(N-mmol/L) 

    

(
      

      
 ) 

                 

(C-mmol/L) 

1 2 11 0.1 133.4 5.1 0.04084 8.552 

2 10 41.6 0.2 154 5.2 0.04448 37.104 

3 20 77.8 0.3 200.2 5.3 0.04084 70.456 

4 40 147 0.4 269.4 5.4 0.04084 137.20 

5 60 218 0.5 340.4 5.5 0.04084 205.76 

6 80 288.8 0.6 411.2 5.6 0.04084 274.11 

7 100 358 0.7 480.4 5.7 0.04084 340.86 

8 120 428.8 0.8 551.2 5.8 0.04084 409.21 

9 140 499.8 0.9 620.4 5.9 0.04145 478.09 

10 160 569 1 691.4 6 0.04084 544.52 

11 180 648.8 1.1 773 6.1 0.04025 621.47 

12 200 725.2 1.2 849.4 6.2 0.04025 695.39 

 

  

1
1
4
 



 

 

 

Table 5.2 Point1 and Point2 coordination and the specifications of the straight line crossing the two points  

(Biomass range 2-200 C-mmol/L, PePHB0=100%) 

PePHB0=100% 

Simulation run 

number 

Initial 

Biomass  
(C-mmol/L) 

Point1 

Acetate0 
(C-mmol/L) 

Point1 

Ammonia0 
(N-mmol/L) 

Point2 

Acetate0 
(C-mmol/L) 

Point2 

Ammonia0 
(N-mmol/L) 

    

(
      

      
 ) 

                 

(C-mmol/L) 

13 2 3.8 0.1 128 5.1 0.04025 1.316 
14 10 7.4 0.2 129.8 5.2 0.04084 2.504 
15 20 9.2 0.3 133.4 5.3 0.04025 1.748 
16 40 12.8 0.4 138.8 5.4 0.03968 2.72 
17 60 14.6 0.5 138.8 5.5 0.04025 2.18 
18 80 18.2 0.6 142.4 5.6 0.04025 3.296 
19 100 20 0.7 144.2 5.7 0.04025 2.612 
20 120 23.6 0.8 147.8 5.8 0.04025 3.728 
21 140 25.4 0.9 151.4 5.9 0.03968 2.72 
22 160 32.6 1 156.8 6 0.04025 7.76 
23 180 30.8 1.1 156.8 6.1 0.03968 3.08 
24 200 34.4 1.2 156.8 6.2 0.04084 5.024 

 

  

1
1
5
 



 

 

 

Table 5.3 Point1 and Point2 coordination and the specifications of the straight line crossing the two points  

(Biomass range 200-1000 C-mmol/L, PePHB0=0%) 

PePHB0=0% 

Simulation run 

number 

Initial 

Biomass  
(C-mmol/L) 

Point1 

Acetate0 
(C-mmol/L) 

Point1 

Ammonia0 
(N-mmol/L) 

Point2 

Acetate0 
(C-mmol/L) 

Point2 

Ammonia0 
(N-mmol/L) 

    

(
      

      
 ) 

                 

(C-mmol/L) 

25 200 725.2 1.2 849.4 6.2 0.04025 695.39 
26 275 1012 2 1588 25 0.03993 961.9130 
27 350 1308 3 1866 26 0.04121 1235.217 
28 425 1584 4 2232 30 0.04012 1484.307 
29 500 1864 5 2488 30 0.04006 1739.2 
30 575 2164 6 3004 39.6 0.04 2014 
31 650 2442 7 3530 49.7 0.03924 2263.639 
32 725 2724 8 4020 60 0.04012 2524.615 
33 800 3008 9 4548 70 0.03961 2780.786 
34 875 3300 10 5050 80 0.04 3050 
35 950 3616 11 5540 89.4 0.04074 3346.051 
36 1000 3792 12 5976 98.4 0.03956 3488.666 

 

  

1
1
6
 



 

 

 

Table 5.4 Point1 and Point2 coordination and the specifications of the straight line crossing the two points  

(Biomass range 200-1000 C-mmol/L, PePHB0=100%) 

PePHB0=100% 

Simulation run 

number 

Initial 

Biomass  
(C-mmol/L) 

Point1 

Acetate0 
(C-mmol/L) 

Point1 

Ammonia0 
(N-mmol/L) 

Point2 

Acetate0 
(C-mmol/L) 

Point2 

Ammonia0 
(N-mmol/L) 

    

(
      

      
 ) 

                 

(C-mmol/L) 

37 200 34.4 1.2 156.8 6.2 0.0408 5.024 
38 275 72 2 632 25 0.04107 23.3043 
39 350 100 3 660 26 0.04107 26.9565 
40 425 121 4 767 30 0.04024 21.6153 
41 500 146 5 776 30 0.03968 20 
42 575 194 6 1010 39.6 0.04117 48.2857 
43 650 212 7 1276 49.7 0.04013 37.5737 
44 725 254 8 1514 60 0.04126 60.1538 
45 800 296 9 1766 70 0.04149 79.1147 
46 875 302 10 2052 80 0.04 52 
47 950 326 11 2270 89.4 0.04032 53.2448 
48 1000 362 12 2522 98.4 0.04 62 

 

  

1
1
7
 



 

 

 

Table 5.5 Point1 and Point2 coordination and the specifications of the straight line crossing the two points  

(Biomass range 1000-1500 C-mmol/L, PePHB0=0%) 

PePHB0=0% 

Simulation run 

number 

Initial 

Biomass  
(C-mmol/L) 

Point1 

Acetate0 
(C-mmol/L) 

Point1 

Ammonia0 
(N-mmol/L) 

Point2 

Acetate0 
(C-mmol/L) 

Point2 

Ammonia0 
(N-mmol/L) 

    

(
      

      
 ) 

                 

(C-mmol/L) 

49 1000 3792 12 5976 98.4 0.03956 3488.666 
50 2000 7440 15 10800 150 0.04017 7066.666 
51 3000 11120 25 16720 250 0.04017 10497.77 
52 4000 14980 35 22680 350 0.04090 14124.44 
53 5000 18800 55 28700 447 0.03959 17410.96 
54 6000 23400 100 34600 550 0.04017 20911.11 
55 7000 27720 130 40640 650 0.04024 24490 
56 8000 31880 160 46640 748 0.03983 27863.67 
57 9000 36100 180 52480 840 0.040 31632.72 
58 10000 40400 220 58400 948 0.04044 34960.43 
59 12500 50000 250 68400 990 0.04021 43783.78 
60 15000 59500 280 79500 1080 0.04 52500 

 

  

1
1
8
 



 

 

 

Table 5.6 Point1 and Point2 coordination and the specifications of the straight line crossing the two points  

(Biomass range 1000-1500 C-mmol/L, PePHB0=100%) 

PePHB0=100% 

Simulation run 

number 

Initial 

Biomass  
(C-mmol/L) 

Point1 

Acetate0 
(C-mmol/L) 

Point1 

Ammonia0 
(N-mmol/L) 

Point2 

Acetate0 
(C-mmol/L) 

Point2 

Ammonia0 
(N-mmol/L) 

    

(
      

      
 ) 

                 

(C-mmol/L) 

61 1000 362 12 2522 98.4 0.04 62 
62 2000 522 15 3852 150 0.04054 152 
63 3000 860 25 6380 250 0.04076 246.666 
64 4000 1080 35 9000 350 0.03977 200 
65 5000 1560 55 11360 447 0.04 385 
66 6000 3040 100 14220 550 0.04025 555.5555 
67 7000 3960 130 17080 650 0.03963 680 
68 8000 4680 160 19640 748 0.03930 809.2517 
69 9000 5520 180 21860 840 0.0439 1063.63 
70 10000 6320 220 24800 948 0.03939 1035.38 
71 12500 7440 250 25770 990 0.04037 1247.43 
72 15000 8680 280 28280 1080 0.04081 1820 

 

 

1
1
9
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The    ,    ,                   and                   values were obtained and 

tabulated. It can be noted from the tables that the obtained     values are very close to 

a constant value. Therefore, constants can be applied in place of Equation (5.2) and 

Equation (5.3) when    is independent of the initial biomass concentration. The 

average for     and     values along with their standard deviations are given in Table 

5.7. The standard deviation values are two orders of magnitude smaller than their 

average values. This indicates that variation of data around their average value is 

insignificant and hence the whole set can be replaced by the average value. 

Table 5.7 The average for the    and     values along with their standard 

deviations 

 Initial biomass concentration (C-mmol/L) 

Biom0 <200 200< Biom0 <1000 1000<Biom0<15000 

                  

Average gradient 

(N-mmol/C-mmol) 

0.04110 0.0402 0.0400 0.0406 0.04013 0.0401 

Standard deviation 0.001 0.0003 0.0004 0.0005 0.0003 0.0004 

 

These average values are called    and    respectively in case of PePHB0 of 0% and 

100% which take the place of Equation (5.2) and Equation (5.3). As the result,  

Equation (5.7) and Equation (5.8) are modified to the following formations: 

      (   (       ))    (5.12) 

      (   (       ))    (5.13) 

First order polynomial equations for prediction of                  values as functions of 

initial biomass concentrations in the form of Equation (5.5) and Equation (5.6) are built. 

In Figure 5.6, polynomial equations are given along with the coefficient of 

determination values for each case scenario.  
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2 < Biomass < 200   (C-mmol/L) 

 
200 < Biomass < 1,000  (C-mmol/L) 

 
1,000 < Biomass < 15,000  (C-mmol/L) 

 

Figure 5.6 Presentation of the linear equations predicting                  

It can be seen in Figure 5.6 that the coefficient of determination values are close to 1 for 

the equations related to the simulations with PePHB0 value of 0%. This confirms high 

capability of these equations to provide accurate prediction with minimal prediction 

error values. On the other hand, the coefficient of determination values for the 

simulations with PePHB0 values of 100% are significantly less than 1. However, since 

the magnitude of the                  values is considerably lower in the case of 

                  when compared to                   values, the effect of model error 

would not be significant on the overall estimation of the border curve co-ordination.  

In Table 5.8, equation parameters to be applied in Equation (5.12) and Equation (5.13) 

are given based on the results obtained from Table 5.8 and Figure 5.6. 

Table 5.8 Equation parameters for the Line-α and the Line-β to be applied on 

Equation (5.12) and Equation (5.13)  

Initial biomass concentration (C-mmol/L) 

2<BIOM0<200 200<BIOM0<1,000 1,000<BIOM0<15,000 

Line-α                            

0.04110 3.4374 0.0269 0.0400 3.4936 -0.597 0.04013 3.4992 4.193 
Line-β                            

0.0402 0.0171 1.6432 0.0406 0.0695 -1.68 0.0401 0.1189 -187.5 

 

At the end, the equation of the “Border Line” separating the “feast” from the “famine” 

phase operational regimes on a characterisation plot with PePHB0 value in between 0% 

and 100% is obtained from the following equation. 
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  (          (     ))    

(  ((       )         ((       )  (       ))))    

(5.14) 

This equation is a modified version of Equation (5.9) when line gradients are assumed 

to be constant. This equation will be referred to as the “Phase Differentiating Equation” 

since it enables segregation of the two “feast” and “famine” phase operations from each 

other.  

5.5  Validation of the “Phase Differentiating Equation” 

Six batch operations are considered for the validation purpose in this section. Table 5.9 

tabulates the simulation parameters associated with PHB batch operations for validation 

of the “Phase Differentiating Equation” or the “Border Line” obtained in this Chapter. 

Table 5.9 Simulation parameters for “Phase Differentiating Equation” validation  

Simulation 

Setting No 

Biom0 
(C-mmol/L) 

PePHB0 
% 

Time 
(hr) 

Deterministic 

Simulator Run 

Random Behaviour  

Simulator Runs 

1 70 30 12 Figure 5.7 Figure 5.8 

2 150 70 13 Figure 5.9 Figure 5.10 

3 400 15 18 Figure 5.12 Figure 5.13 

4 700 85 16 Figure 5.14 Figure 5.15 

5 3000 45 17 Figure 5.16 Figure 5.17 

6 9000 65 150 Figure 5.18 Figure 5.18 

 

The initial biomass concentrations imposed to the system are assigned such that two 

validation examinations are provided for each of the three biomass intervals considered 

in the equation development stage. In the first two simulation settings, the PePHB0 

value associated with initial PHB content of the cells are chosen to be 30% and 70% for 

initial biomass concentration of 70 C-mml/L and 150 C-mmol/L respectively. The batch 

operational periods are considered such that majority of the simulated batch operations 

reach to their operational maturity stage by formation of either “feast” or “famine” 

phase regime types.  

The validation process presented in this chapter is rather graphical than quantitative. In 

Section 6.4.3 and Section 6.5.5, qualitative assessment of the “Phase Differentiating 

Equation” for validation of the method accuracy will be carried out for the “feast” and 

“famine” phase regimen.  

The mathematical equation obtained in the previous section (Equation (5.14)) is 

validated to examine its capability to differentiate “feast” phase region from the 

“famine” phase region in different characterisation plots generated for different case 
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scenarios. The “Phase Differentiating Equation” is first validated by deterministic 

process simulator. Additionally, reliability of the equation is investigated by drawing 

the “Border Line” using the “Phase Differentiating Equation” on a series of 

characterisation plots generated using random behaviour process simulator. In this 

section, 4 examination runs are carried out using random behaviour process simulator in 

addition to the reference plot obtained using the deterministic behaviour process 

simulator. In order to assess reliability of the equation, comparison of the “Border Line” 

estimation accuracy is made using the reference plot.  

On each characterisation plot, three lines are depicted using the Equation (5.12),  

Equation (5.13) and Equation (5.14) for the case of PePHB0 of 0% (line-α), PePHB0 of 

100% (line-β) and the operational PePHB0 per cent (the “Border Line”). The acetate 

intercept values are also calculated and noted for each line on the graph. Similar to the 

Chapter 4, iconic symbols “ ”,” ”,” ”,” ”,” ”,” ”,” ”,” ” and “ ” are used to 

demonstrate occurrence of RT1 to RT9 regime types respectively. It is worthwhile 

mentioning that the “feast” phase regime types are RT6, RT7 and RT8 while the 

“famine” phase regime types are RT3 and RT5.  

  

Figure 5.7 Simulation setting No.1, validation of “Phase Differentiating Equation”-

Deterministic behaviour system 

Figure 5.7 shows a characterisation plot generated for the first examination study. As 

shown in this figure, the “Border Line” drew on the plot presents an accurate estimation 

of the “feast” and “famine” phase region boundary when deterministic behaviour 

process simulator is used for generation of the characterisation plot.  

In Figure 5.8, four examination runs are performed to generate four characterisation 

plots using random behaviour process simulator explained in Chapter 3 with identical 

operational parameters. Since biological behaviour of bacteria differs from one batch 
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simulation to another, process profiles of two batches with identical operational 

parameters may vary. As the result of the biological random behaviour, characterisation 

plots shown in Figure 5.8 differ from one experimental run to another.  

 

Figure 5.8 Simulation setting No.1, validation of “Phase Differentiating Equation”-  

Random behaviour system 

In the five characterisation plots depicted in Figure 5.7 and Figure 5.8, the three 

equations for line-α, line-β and the “Border Line” are the same as Equation (5.12), 

Equation (5.13) and Equation (5.14) are considered to be independent of the operational 

behaviour randomness. Due to biological randomness of behaviour, “feast” and 

“famine” phase operational regions overlap and it is not possible to consider a border 

curve that differentiates the “feast” and “famine” phase with high accuracy. However, 

the “Border Line” generated using Equation (5.14) provides an acceptable estimation of 

the two phase boundaries as depicted in Figure 5.8 for the four experiments.  

In the second examination case study, initial biomass concentration is 150 C-mmol/L 

with initial PHB content level of 70% as for PePHB0. The batch operation period is 

considered to be 13 hours for the process to reach maturity. In Figure 5.9, the 

characterisation plot generated using deterministic behaviour process simulator is 

shown along with the line-α, line-β and the “Border Line”. The accuracy of  

Equation (5.14) to draw the “Border Line” separating RT5 region area from RT8 region 

area is shown to be very high. In effect, the “Border Line” covers the batch operation 
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points represented by the “ ” symbol to indicate occurrence of RT9 regime operation. 

As mentioned in Chapter 4, RT9 is the regime type that appears in the boundary of the 

two operational phases and cannot be considered as either one.  

Comparison of the acetate intercept points in Figure 5.7 and Figure 5.9 for the first and 

second examination runs shows considerable increase for line-α and line-β while acetate 

intercept value associated with the “Border Line” demonstrates a significant decrease 

from the first examination run to the second examination run. As mentioned in the 

“Border Line” equation development section, since both line-α and line-β are defined 

for constant values of PePHB0, they are independent of the operational PePHB0 value. 

Therefore, an increase in PePHB0 value from 30% to 70% does not affect co-ordination 

estimation of these two lines. However, the acetate intercept is relative to the initial 

biomass concentration and higher acetate intercept value is estimated when initial 

biomass concentration increases.  

The “Border Line” equation is a function of PePHB0 value. For the case of batch 

operations initialised by low level of intracellular PHB content, the “Border Line” 

appears in the vicinity of the line-α with relatively high acetate intercept value. On the 

other hand, the “Border Line” shifts towards the line-β when PePHB0 value is high. 

Since initial biomass concentration has increased from 70 C-mmol/L to 150 C-mmol/L 

in the two examination runs, the acetate intercept value was expected to increase if the 

PePHB0 value remained the same in the two cases. However, PePHB0 value has 

increased from 30% to 70% and consequently the “Border Line” has been shifted 

towards the line-β resulting in a lower acetate intercept value obtained for the second 

examination run.  

In Figure 5.10, the four characterisation plots generated by the random behaviour 

process simulator are shown along with the “Border Line” obtained using “Phase 

Differentiating Equation”. Similar to the first examination run, “feast” and “famine” 

phase areas overlap and no clear boundary can be considered to differentiate these two 

areas on the characterisation plots. Despite the uncertainty, the “Border Line” drew on 

the plots can provide an acceptable approximation of the line that separates the two 

regions.  
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Figure 5.9 Simulation setting No.2, validation of “Phase Differentiating Equation”- 

Deterministic behaviour system 

 

 

Figure 5.10 Simulation setting No.2, validation of “Phase Differentiating 

Equation”- Random behaviour system 

In order to investigate the effect of PePHB0 value on dispersion rate of the “famine” 

phase batches into the “feast” phase area as specified by the “Border Line”, Figure 5.11 

is depicted for characterisation plots obtained from batch simulations carried out with 

PePHB0 value of 30%. In generation of this figure, simulation parameters were 

assigned to be the same as used in generation of Figure 5.10 with exception of the 

PePHB0 value.  
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Figure 5.11 Validation of PePHB0 reduction on regimen dispersion 

Comparison of characterisation plots shown in Figure 5.10 and Figure 5.11 suggests 

that dispersion of “feast” phase batches into the “famine” phase region (specified by the 

“Border Line”) does not significantly change when PePHB0 value is changed. Similar 
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400 C-mmol/L and PePHB0 value of 15%. Batch operation time is considered to be 18 

hours for each simulated batch to perform analysis on mature process operations.  

  

Figure 5.12 Simulation setting No.3, validation of “Phase Differentiating 

Equation”- Deterministic behaviour system 

 

Figure 5.13 Simulation setting No.3, validation of “Phase Differentiating 

Equation”- Random behaviour system 

Figure 5.12 demonstrates high accuracy of the equation obtained to segregate “feast” 
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the same simulation parameters considered to produce Figure 5.12. As shown in  
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Figure 5.13, the “Border Line” provides a reliable estimation of the boundary between 

the two phase regime areas.  

  

Figure 5.14 Simulation setting No.4, validation of “Phase Differentiating 

Equation”- Deterministic behaviour system 

 

Figure 5.15 Simulation setting No.4, validation of “Phase Differentiating 

Equation”- Random behaviour system 

In generation of the characterisation plots depicted in Figure 5.14 and Figure 5.15, 

deterministic and random behaviour process simulators are used respectively to 

simulate batch operations with initial biomass concentration of 700 C-mmol/L and 

PePHB0 value of 85%. Both accuracy and reliability of the “Border Line” separating 

the “feast” and “famine” phase regime areas can be confirmed by observing these two 

figures.  
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Figure 5.16 Simulation setting No.5, validation of “Phase Differentiating 

Equation”- Deterministic behaviour system 

 

Figure 5.17 Simulation setting No.5, validation of “Phase Differentiating 

Equation”- Random behaviour system 

The last two simulation settings in this chapter are defined such that equation 

parameters associated with the third biomass interval in “Phase Differentiating 

Equation” can be validated. Figure 5.16 and Figure 5.17 show characterisation plots 

generated using deterministic and random behaviour process simulators respectively for 

initial biomass concentration of 3,000 C-mmol/L, PePHB0 value of 45% for duration of 

17 hours. The accuracy and reliability of the “Phase Differentiating Equation” can be 

confirmed by observing proper approximation of the two regime boundaries.  
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 9  

Figure 5.18 Simulation setting No.6, validation of “Phase Differentiating 

Equation”- Deterministic behaviour system 

 

Figure 5.19 Simulation setting No.6, validation of “Phase Differentiating 

Equation”- Random behaviour system 

In the last simulation setting, initial biomass concentration of 9,000 C-mmol/L is 

considered with PePHB0 value of 65% for the deterministic and random behaviour 

process simulators used in generation of Figure 5.18 and Figure 5.19 respectively. In 

this examination run, batch operational duration is assigned to be 150 hours to 

investigate accuracy and reliability of the “Phase Differentiating Equation” for 

segregation of the “feast” and “famine” phase operational regions for the case of batch 

operations with prolonged duration. Appearance of RT9 regimen (presented by “ ” in 

the characterisation plots) is the indication of PHB drop due to carbon source shortage 
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during a “feast” phase batch operation. As expected, RT9 region forms in the “feast” 

phase areas and in the vicinity of the RT5 “famine” phase region. The “Phase 

Differentiating Equation” provides proper estimation of the boundary between the two 

phase regions as depicted in Figure 5.18 and Figure 5.19.  

The “Phase Differentiating Equation” obtained in this chapter was successfully 

validated for the three biomass intervals considered in the development stage of the 

equation. This equation will play a crucial role in estimation of process pathway using 

the initial state of the batch. In Chapter 6, the “Phase Differentiating Equation” will be 

used to segregate “feast” phase batch data from “famine” phase batch data with the aim 

of developing empirical models targeting each phase separately. It is evident that 

models developed separately for each case of “feast” and “famine” phase batch data sets 

will be more accurate than the models developed without prior classification of the data 

sets.  

In Chapter 7, the “Phase Differentiating Equation” will be applied to design a recipe 

structure for production of PHB using Sequential Batch Reactors. This equation will be 

implemented within the recipe to assure occurrence of the “feast” and “famine” phase 

operations in the particular stages assigned in the recipe. Application of the recipe on 

the production reactors will reduce the costs associated with process monitoring and 

control. Additionally, it provides a window in direction of process automation with less 

labour work.  

5.6  Conclusions 

Prior to this study, there is no record of any reliable tool for segregation or prediction of 

biological operational phases based on information obtained from process initial state 

regarding PHB production using Mixed Microbial Cultures. The mathematical tool 

obtained in this chapter using the innovative method developed in Chapter 4 is a 

significant contribution of the author to improve PHB process understanding.  

Operational regions associated with the “feast” and “famine” phase were recognised on 

the characterisation plots generated by the procedure developed in Chapter 4. With the 

aim of formulating a mathematical equation that can differentiate the two phase 

operational regions, a series of characterisation plots were drawn and analysed in this 

chapter. The “Phase Differentiating Equation” was obtained using characterisation plots 

generated by deterministic behaviour process simulator.  
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The outcome of observing a cluster of characterisation plots was that the curve 

separating the two regions can be estimated with a straight line connecting two batch 

points on the boundary of the “feast” and “famine” phase regions. The author claims 

that the “Phase Differentiating Equation” developed in this research study is the only 

tool available for prediction of PHB batch operational phase based  on initial state of the 

process when using mixed microbial cultures.  

The “Phase Differentiating Equation” is an indispensable and valuable tool which can 

play essential role in different analytical studies considering the PHB production 

process. Two applications of the equation will be discussed in Chapter 6 and Chapter 7 

where a novel PHB production recipe is developed and established.  

It was demonstrated that the “Phase Differentiating Equation” developed in this chapter 

was accurate and reliable when four variables including initial acetate, ammonia, 

biomass concentrations along with the intracellular PHB content of the cells were 

considered. The “Phase Differentiating Equation” was successfully validated using 

characterisation plots generated by both deterministic and random behaviour process 

simulators. The validation process was carried out for six different case scenarios to 

investigate reliability of the equation to cover a wide range of initial biomass 

concentration and intracellular PHB content values.  

In the next chapter, the “Phase Differentiating Equation” will be applied for 

development of more accurate empirical models targeting classified operational data.  
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6.1  Introduction  

In this chapter, a novel mathematical tool is developed to construct quantitative 

representations of the PHB production process using mixed microbial cultures in batch 

operations. In this context, the term “mathematical model” is abbreviated to “model” to 

represent any consistent set of mathematical equations which correspond to some entity 

of the PHB process. In this study, the empirical models are trained using PHB process 

simulator introduced in Chapter 3. Empirical models are inexpensive and are known to 

be less effort demanding in comparison to mechanistic models for estimation of some 

specific attributes of the process. Different structure of empirical models will be tested 

to find the best model structures for estimation of the most important process attributes. 

These structures build the foundations for empirical model development using real 

experimental process data. There are a number of useful applications encountered for 

models developed using experimental process data. In addition to making quantitative 

predictions for the most important elements of the process, a robust relationship 

between process elements can be made in model development procedure (if available) 

to provide a comprehensive picture of the overall process.  

In the first step, empirical models are developed using a bulk of process data exclusive 

of any data classification. Unable to provide acceptable model predictions for the final 

total PHB concentration, the “Characterisation Method” analytical method developed in 

Chapter 4 will be used to classify process data prior to model development stage. An 

appropriate data management and organisation procedure offers the opportunity of 

target modelling with the prospect of obtaining more accurate models. The 

“Characterisation Method” and the classifications carried out by introduction of nine 

“Regime Types” for PHB process profiles will be used in this chapter for systemic 

identification of the “feast” and “famine” phase operational regimes.  

The “feast” and “famine” phase profiles are scrutinised in Section 6.4.2, Section 6.5.2, 

and Section 6.5.3 in order to identify the most significant elements of the process. The 

“famine” phase batch data are divided into the two groups based on their “Regime 

Types”. Additionally, empirical modelling of the most significant process occurrences 

during a batch operation, such as optimal batch termination time or exhaustion point of 

carbon or nitrogen sources will also be investigated in this chapter. These models can 

potentially be used for advanced process optimisation and control. 

At first, simple linear MLR models are developed to use initial batch conditions for 

prediction of the most significant elements of the process. Furthermore, more 
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sophisticated non-linear BANN models are built to demonstrate their proficiency over 

their linear counterparts. Additionally, high proficiency of BANN models over single 

structured neural networks will be demonstrated in the quest of an accurate and reliable 

modelling technique. Various structures for input-output modelling will be investigated 

in order to provide the most appropriate model structure for prediction of critical 

process attributes of the PHB production process.  

In the next section, an overview of empirical model development procedure is given.  

6.2  Empirical model development procedure  

The procedure of model development is discussed in this section. These stages are 

considered from data generation to the model validation procedure. Various structures 

are examined to find the most appropriate model input/output arrangements for specific 

applications using real experimental process data. 

6.2.1 Data generation 

In this stage, the simulation program provides batch operational data to be applied for 

development of mathematical models. With the aim of data generation, initial biomass, 

acetate and ammonia concentrations are assigned using MATLAB’s random value 

generator in pre-specified intervals respective to each element. Initial PHB content 

(PePHB0) is the fourth element assigned arbitrarily in a range between 0% and 100%. 

The “Phase Differentiating Equation” (Equation (5.14)) is applied to enable prediction 

of “feast” from the “famine” phase operational occurrence based on initial batch 

condition. Data generated within the predicted “feast” and “famine” phase operations 

are stored separately. 

6.2.2 Outlier detection 

In a typical model development procedure, a subset of the data collected from practical 

or simulated processes is not applied in analytical methods due to experimental errors, 

data corruption or undesired variability in the measurement. Outliers are discarded or 

replaced using statistical methods prior to model development.  

6.2.3 Data grouping 

Filtered data stored from the previous stage is divided randomly into two main groups 

as for model development and model validation. In this study, 70% of the batch data 

stored for a phase operation is used for training-testing and the remained 30% is used 

for validation purposes. 
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6.2.4 Data pre-processing 

One of the important stages after organised data collection and before model 

development is data pre-processing for the type of modelling designated for 

implementation. The type of pre-processing method is based on the type of data 

available for modelling and the modelling technique used to train the model. In this 

study, process data is scaled to the range between -1 and 1 for the minimum and 

maximum value of each variable respectively. After specifying the minimum and 

maximum values from the set of data stored for each variable for the model 

development data, data is transformed by a direct linear equation. These minimum and 

maximum values are stored for scaling the validation data and also unscaling of the 

model predictions to their original scale.  

6.2.5 Empirical model development 

Quantitative representation of a batch process can provide useful information about the 

process that is modelled. The golden rule is to build required models using the simplest 

modelling technique with the acceptable level of accuracy. Prior to model development, 

comprehensive process understanding is essential to identify the most significant and 

influential variables of the process being modelled. Based on the type of relationship 

observed in between the dependant and independent variables, an appropriate modelling 

technique is proposed and implemented. Evaluation of the modelling technique can be 

carried out when a suitable criterion is applied to compare models developed using 

different modelling structures or techniques.  

In this study, the most common mathematical algorithms to develop models for linear 

and non-linear process data are investigated and compared. In this section, data 

flowchart applied for neural network model development will be explained.  

The theory behind the neural network modelling was mentioned in Section 2.6.3. In this 

section, programing structure implemented using MATLAB to generate, manage and 

model empirical data in this study is described. Figure 6.1 shows data flowchart in three 

segments, (1) data generation, (2) data management and (3) data modelling.  

Simulated data is generated by “BIOSIM”, the coded program that simulates PHB 

production by mixed microbial cultures by Dias et al. (2005) and described in  

Chapter 3. Outlier detection, data grouping, and pre-processing of the data stored from 

the process simulation are depicted under data management block. 
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Figure 6.1 Data flowchart for developing neural network models 

For the purpose of neural network modelling, the scaled training data is divided 

randomly into two groups of the train and the test sets with a ratio of 4 to 1 respectively. 

As shown in data modelling block of Figure 6.1, prior to the model development, three 

important sets of modelling elements should be specified. This includes specification of 

the number of the model inputs and outputs, the number of neurons in the hidden layer 

of the NN model and modelling parameters including the damping factor and target SSE 

value.  

The feedforward neural network model with single hidden layer is applied with 

modelling structure consists of a number of dependant and independent variables 

(model inputs/outputs) and a number of neurons in the hidden layer. In Figure 6.1,     

is associated with the weight synapses for initial random values assigned to      

(     ),   being the number of model inputs and (     ),   being the number 

of hidden neurons.  

The weight synapses for the input bias is assigned by     that can be associated with 

     , (     ), in Figure 2.6. For the synapses connecting the hidden layer to the 
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single output neuron,     is considered to contain initial values for the weights 

associated with     , (     ), and     for the bias weight associated with      in 

Figure 2.6.  

Therefore, for a NN model with single hidden layer,   number of model inputs,   

number of hidden neurons predicting one dependant variable, a random matrix of  

(   ), a random vector of (   ), a random vector of (   ) and a single random 

value are considered in range between -0.1 and 0.1 for    ,    ,     and     

respectively.  

As depicted in Figure 6.1, (       ), (Y      ), (      ) and (Y     ) are the four 

matrixes containing scaled process data stored in two subsets of train data and test data. 

(       ) is a (    ) matrix with    being the number of observations classified in 

the train data for model inputs and (       ) is a (    ) vector containing    

number of train data for the model output. In similar manner, (      ) is a matrix of 

(    ) and (Y     ) is a vector of (    ) whose elements are the input and output 

data with    being the number of observation classified in the test subset. 

In Figure 6.1, “NNTRLM”, a coded MATLAB function that establishes neural network 

weights using the modelling parameters specified. This function operates based on the 

algorithm depicted in Figure 2.7 and it employs another coded function called “MTLM” 

to update NN weights using Levenberg-Marquardt method explained in Section 2.6.3.  

At the end of the operation, model weights (               ) are established and the 

final/best prediction results for the train and the test subsets are store in ( ̂       ) and 

( ̂      ) vectors respectively. (         ) and (        ) are also reported for 

evaluation purpose demonstrating prediction accuracy capabilities. 

With a NN model development coding programs in hand, Bootstrapping Aggregated 

Neural Network (BANN) models can be made by aggregating the individual NN 

models. Un-scaling of the prediction results will be carried out using the “scaling 

parameters” and validation of the BANN models will be investigated afterwards to 

assess prediction capability of the model on a set of unseen data.  

6.2.6 Model validation 

Validation of the models built in previous stages is carried out using data stored for 

validation purpose which has not been used in model development procedure. Model 

prediction errors are quantified using root mean squared errors (RMSE).  
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(6.1) 

Where (V) is the number of validation data and          values are the differences 

between prediction values obtained from the model and the true value of the data stored 

in the validation data set. 

In this study, data sets are scaled to -1 and 1. Therefore, the overall data range is a  

2-unit magnitude. RMSE value of 0.2 calculated for data with 2-unit magnitude, 

demonstrates prediction error of 10% (0.2 divided by the 2-unit magnitude) or 90% of 

prediction accuracy. Therefore, for model prediction accuracy of 90%, RMSE values of 

equal or less than 0.2 is acceptable for a scaled validation data set. 

6.2.7 Unscaling 

Scaling parameters used in the scaling stage is used to unscale prediction results of the 

models to return the data to their original scale.  

 

In the next sections, PHB batch process data are modelled for unclassified data  

(Section 6.3), classified “feast” phase data (Section 6.4) and classified “famine” phase 

data (Section 6.5). The aim is to investigate model prediction accuracy improvement 

using the classification tools developed in Chapter 4 and Chapter 5. 

6.3 Empirical modelling for unclassified operational data 

In this section, PHB batch process data comprising of both “feast” phase and “famine” 

phase batch operations are used to build empirical models predicting critical process 

attributes at the end of a well-developed batch operation. It is expected to observe 

considerable prediction accuracy improvement when model developing data are 

segregated into separate sub-sets of “feast” phase and “famine” phase data in the 

subsequent sections. Table 6.1 tabulates simulation parameters assigned to generate 

process data for the modelling purpose. Five random numbers are considered for each 

simulator parameters associated with initial biomass (BIOM0), acetate (ADDHA) and 

ammonia (ADDN) concentrations by iterative operators of “RandNo1”, “RandNo2” and 

“RandNo3” respectively. The range of random values are between a1 and b1 for initial 

biomass concentrations, a2 and b2 for acetate concentrations and a3 and b3 for 

ammonia concentrations as observed in practical recipes reported in Chapter 3. The 
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initial intracellular PHB content is randomly assigned in between 0% to 100% as the 

minimum and maximum capacity of the cells to restore PHB. 

Table 6.1 Process data generation contemplating “feast” and “famine” operational 

phases 

Programing parameters 

Iteration operator Minimum value Maximum value 

RandNo1 (BIOM0)=5 a1=2 (C-mmol/L) b1=140 (C-mmol/L) 

RandNo2 (ADDHA)=5 a2=100 (C-mmol/L) b2=700 (C-mmol/L) 

RandNo3 (ADDN)=5 a3=0.1 (N-mmol/L) b3=10 (N-mmol/L) 

PePHB0 0% 100% 

 

For each one of the five initial biomass concentration, five different values are randomly 

assigned for acetate concentrations for which 25 different values are randomly selected 

for ammonia concentration. The five BIOM0 values randomly selected are shown  

along with the 25 ADDHA and 125 ADDN values in Figure 6.2.a, Figure 6.2.b and  

Figure 6.2.c respectively.  

a. b. c.  

Figure 6.2 Random values assigned to process parameters for data generation 

The PHB process simulator explained in Chapter 3 is used to generate 125 process data 

sets using the parameters assigned randomly as aforementioned. The batch operational 

duration is set to 25 hours which is sufficient for batch operations to reach to the 

process maturity conditions. In Figure 6.3 and Figure 6.4 the critical process attributes 

are depicted at the initial (T0) and final (Point-Z) operational batch points respectively 

for the model training and validation data sets. Around 70% of the 125 data is used for 

model training purpose (88 batch operations) and the remained (37 batch operations) is 

used for model validation. 

 

0 5
0

50

100

150

200

In
it
ia

l 
to

ta
l 
b

io
m

a
s
s

(C
-m

m
o

l/
L

)

0 10 20
100

200

300

400

500

600

700

In
d

u
c
ti
o

n
 o

f 
A

c
e

ta
te

(C
-m

m
o

l/
L

)

0 50 100 150
0

2

4

6

8

10

In
d

u
c
ti
o

n
 o

f 
A

m
m

o
n

ia
(N

-m
m

o
l/
L

)



Chapter 6  Empirical Modelling 

142 

B
io

m
a

ss
 

(C
-m

m
o
l/

L
) 

P
H

B
 

(C
-m

m
o
l/

L
) 

A
ce

ta
te

 
(C

-m
m

o
l/

L
) 

B
io

m
a

ss
 

(C
-m

m
o
l/

L
) 

P
H

B
 

(C
-m

m
o
l/

L
) 

A
ce

ta
te

 
(C

-m
m

o
l/

L
) 

A
m

m
o

n
ia

 
(N

-m
m

o
l/

L
) 

A
m

m
o

n
ia

 
(N

-m
m

o
l/

L
) 

B
io

m
a

ss
 

(C
-m

m
o
l/

L
) 

P
H

B
 

(C
-m

m
o
l/

L
) 

A
ce

ta
te

 
(C

-m
m

o
l/

L
) 

B
io

m
a

ss
 

(C
-m

m
o
l/

L
) 

P
H

B
 

(C
-m

m
o
l/

L
) 

A
ce

ta
te

 
(C

-m
m

o
l/

L
) 

A
m

m
o

n
ia

 
(N

-m
m

o
l/

L
) 

A
m

m
o

n
ia

 
(N

-m
m

o
l/

L
) 

T0 Point-Z 
  

  

  

  

  

Data number Data number 

Figure 6.3 Training data for model development  

T0 Point-Z 
  

  

  

  

  

Data number Data number 

Figure 6.4 Validation data for model development 

0 50 100
0

50

100

0 20 40 60 80
20

40

60

80

100

120

0 50 100
-200

0

200

400

600

0 20 40 60 80
0

100

200

300

400

0 50 100
0

200

400

600

800

0 20 40 60 80
0

100

200

300

400

0 20 40 60 80

2

4

6

8

0 50 100
-2

0

2

4

6

0 20 40
0

50

100

0 10 20 30
20

40

60

80

100

120

0 20 40
-200

0

200

400

600

0 10 20 30
0

100

200

300

400

0 20 40
0

200

400

600

800

0 10 20 30
0

200

400

0 10 20 30

2

4

6

8

0 10 20 30
-2

-1

0

1

2



Chapter 6  Empirical Modelling 

143 

B
io

m
a

ss
 

(C
-m

m
o
l/

L
) 

P
H

B
 

(C
-m

m
o
l/

L
) 

A
ce

ta
te

 
(C

-m
m

o
l/

L
) 

B
io

m
a

ss
 

(C
-m

m
o
l/

L
) 

P
H

B
 

(C
-m

m
o
l/

L
) 

A
ce

ta
te

 
(C

-m
m

o
l/

L
) 

A
m

m
o

n
ia

 
(N

-m
m

o
l/

L
) 

A
m

m
o

n
ia

 
(N

-m
m

o
l/

L
) 

BANN is a sophisticated empirical modelling technique explained in Section 2.6.4 to 

build empirical models predicting biomass, PHB, acetate and ammonia concentrations 

after 25 hours of batch progression using four-input models. Initial biomass and 

intracellular PHB concentrations are input variables along with total acetate and 

ammonia concentrations injected to the batch processes.  

In Figure 6.5, model predictions are marked by “ “ and the true/ target values are 

shown by “ “. The RMSE values for the set of validation data are also calculated and 

noted on each plot. The RMSE values obtained for the scaled data sets can be used to 

compare model prediction capability regardless of the size of validation data set and 

data magnitude range.  

Scaled Unscaled 
  

  

  

  

  

Data number Data number 

Figure 6.5 BANN model validation for critical process attributes at batch final 

operation point (Point-Z) 

As mentioned, data sets are scaled to -1 and 1. Therefore, the overall data range for each 

data set is a 2-unit magnitude range. An RMSE value of 0.2 calculated for data with a  

2-unit of overall magnitude, demonstrates prediction error of 10% (0.2 divided by a  

2-unit range) or 90% of prediction accuracy. Therefore, for model prediction accuracy 

of 90%, RMSE values of equal or less than 0.2 are considered as acceptable values for 

scaled data sets in this study. 
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Since ammonia concentration at the end of a PHB batch process is insignificant, 

empirical models predicting this value is inconsequential. While final biomass 

concentration was predicted with high precision (with scaled RMSE of 0.05) and final 

acetate concentration prediction is in the acceptable range (with scaled RMSE of less 

than 0.2), the final PHB concentration prediction is poor (with scaled RMSE of 0.33). 

Since PHB is the process product and its model accuracy is highly demanded, 

investigations will be carried out in the subsequent sections to improve model 

predictions using segregated process data.  

6.4  The “feast” phase operational modelling 

6.4.1  Introduction 

Prior to model development, an understanding of the process profiles is required to 

identify the most significant elements of the process being modelled. With the aim of 

developing empirical models, process profiles are investigated in the two major 

operational phase groups classified as the “feast” phase and the “famine” phase.  

In order to generate process data for the modelling purpose, the PHB program simulator 

introduced in Chapter 3 is used. The original simulation program is embedded in a new 

program code structure that separates the “feast” phase data from the “famine” phase 

data using the “Phase Differentiation Equations” obtained in Chapter 5. The new 

structure is shown in Figure 6.6 where three iteration loops are considered to allocate 

random values to the initial biomass, acetate and ammonia concentrations. The 

“BIOSIM” program in this section is a modified version of the original program along 

with the supplement of the “Characterisation Method” module (CharMeth). Within the 

simulation program, Equation (5.14) is embedded in the “Phase Differentiation 

Equations” box where operational phase is predicted based on the initial state of the 

simulated batch. When a “feast” phase operation is predicted by the equation, the 

simulation result is stored in the “feast” phase memory box. On the other side, if 

prediction is towards “famine” phase occurrence, the simulation results are stored in the 

“famine” phase memory box based on the analysis carried out by the “CharMeth” 

module.  
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Figure 6.6 Data generation program structure separating operation phases 

The capability of empirical models in prediction of some significant elements of the 

process is investigated in this study by developing linear (MLR) and non-linear 

(BANN) models using data obtained from batch simulations.  

6.4.2  Description of the “feast” phase profile 

For the case of the “feast” phase operational profile in a mixed microbial culture of 32 

populations, “fPHB summation” is a factor defined as the summation of all the 32 fPHB 

values at any operational time. As mentioned in Chapter 3, fPHB indicates the ratio of 

PHB concentration over the PHB-free biomass concentration. PHB formation inside 

cells can be reflected by “fPHB summation” incline, and PHB consumption by “fPHB 

summation” declines during operational period.  

In Figure 6.7, two “feast” phase simulation results are depicted. On the left, two plots 

are shown for a low ratio of the PePHB0 factor; and on the right, two plots are given for 

a case of high PePHB0 ratio. These two simulation results are shown to demonstrate 

two different “fPHB summation” while their PHB profiles are similar. In Figure 6.7.a, 

PHB formation and biomass growth occur simultaneously; whereas in Figure 6.7.b, 

PHB stored in the cells is consumed initially to provide additional carbon in direction of 

biomass growth and then PHB formation takes place afterwards in presence of external 

feed source. As mentioned in Chapter 4, ammonia, acetate, PHB stability points are 
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specified along with the first additional analytical point with ( ), ( ), ( ), and ( ) 

signs respectively in Figure 6.7 (Dias et al., 2005).  

On the PHB profiles depicted in Figure 6.7, the illustrative indicators developed in 

Chapter 4 for acetate, ammonia and PHB stability point detection are shown as well. 

“Point-A”, “Point-B”, “Point-C” and “Point-D” are defined as the ammonia stability 

point, acetate stability point, PHB stability point and maintenance of the PHB stability 

detection point in a “feast” phase batch operation. This naming system will be used to 

assign model input/output structure.  

a.  b.  

Figure 6.7 “Feast” phase PHB profiles (RT8) for low PePHB0 (left) and high 

PePHB0 (right) values 

Comparison of the two simulation results suggest that continues inclination of PHB 

profile cannot be associated with continues formation of PHB within the cells. 

Additionally, it is not sufficient to observe and analyse the triple plots of acetate, 

ammonia and PHB to provide a detailed assessment of the batch process. Application of 

other process profile such as the “fPHB summation” factor can provide useful and 

interesting information about the process which is applied in the “famine” phase profile 

investigations with more tangible outcomes.  

In the next sections, modelling development procedure is performed for the “feast” 

phase operation data using linear and non-linear model development techniques.  

6.4.3  Data generation targeting “feast” phase batch operations 

In this section, data generation is carried out with the aim of developing empirical 

models predicting critical process elements in the “feast” phase operations. Therefore, 

simulation parameters are specified so that these parameters are appropriate for 

generation of data representing “feast” phase operations.  
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Simulation program is used to consider batch operations initiating with cells containing 

low level of PHB. In practice, “feast” phase operations are conducted to increase PHB 

content of cells. Initiating a “feast” phase operation with high PHB content cells results 

into PHB consumption towards cell replication with consequent PHB accumulation in 

presence of carbon source and nitrogen source limitation. Moreover, in an ideal SBR 

operation, a batch process is directed towards a “feast” phase operation after a “famine” 

phase operation is completed. As the result, PHB content of the cells should be low at 

the initial point of a “feast” phase operation after a successful “famine” phase 

occurrence (Dias et al., 2005).  

The “PePHB0” value that determines the “fPHB0” parameter to specify the PHB 

content of the initial biomass is randomly assigned in a range between 0% and 20% for 

each batch simulation since low PHB content cells are expected to initiate a “feast” 

phase batch process. In Table 6.2, the program parameters used to design a series of 

batch simulations is tabulated. The programing parameters are to assign random values 

to the initial biomass (BIOM0), acetate (ADDHA) and ammonia (ADDN) 

concentrations. The number of random numbers is specified by “RandNo1”, 

“RandNo2” and “RandNo3” for BIOM0, ADDHA and ADDN respectively. These 

numbers are generated in a range of numbers starting from “a1”, “a2” and “a3” and to 

the “b1”, “b2” and “b3” for BIOM0, ADDHA and ADDN respectively.  

Table 6.2 Process data generation targeting “feast” phase operation 

Programing parameters 

Iteration operator Minimum value Maximum value 

RandNo1 (BIOM0)=10 a1=2 (C-mmol/L) b1=140 (C-mmol/L) 

RandNo2 (ADDHA)=5 a2=100 (C-mmol/L) b2=700 (C-mmol/L) 

RandNo3 (ADDN)=5 a3=0.1 (N-mmol/L) b3=10 (N-mmol/L) 

PePHB0 0% 20% 

 

In Table 6.2, simulation results of 250 batch processes are given for 10 different values 

of initial biomass concentrations. For each initial biomass concentration, five different 

values are randomly assigned for acetate concentrations for which 25 different values 

are randomly selected for ammonia concentration introduced to the batch. The numbers 

of random values are selected so that the “feast” phase batch data is close to 125 as in 

Section 6.4 to make reliable comparisons. The 10 initial biomass concentrations, along 

with the 50 acetate concentration values and 250 ammonia concentrations assigned by 
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Data number Data number Data number 

random generator function are depicted in Figure 6.8.a, Figure 6.8.b, and Figure 6.8.c 

respectively.  

a.  b.  c.  

Figure 6.8 Random values assigned to process parameters for data generation 

targeting the “feast” phase  

The random values are used to simulate 250 batch operations. Based on the initial 

condition of the batches, occurrence of “feast” or “famine” phase operations were 

predicted using “Phase Differentiating Equation” (Equation (5.14)) derived on the basis 

of the “Characterisation Method” analysis. As the result, 128 batches were predicted to 

operate under the “feast” phase operation and the other 122 batches were expected to 

run under the “famine” phase.  

Simulation of the 250 batch operations provide concentration profiles to be analysed by 

the “CharMeth” module to identify the “Regime Type” number of each batch as defined 

in Chapter 4. Identification of RT6, RT7 and RT8 are associated with the “feast” phase 

operation and RT3 and RT5 represent “famine” phase operation. An operation under 

RT9 experiences PHB drop due to carbon source scarcity after PHB saturation. 

Therefore RT9 is neither a complete “feast” nor a “famine” phase operation in this 

context.  

Figure 6.9 shows four plots validating the prediction capability of the “Phase 

Differentiating Equation” (Equation (5.14)) by means of profile analysis represented by 

“Regime Type” numbers. Figure 6.9.a declares that 113 batch operations out of the total 

128 batches predicted to operate under the “feast” phase were executed under RT6, RT7 

or RT8 which confirms occurrence of the “feast” phase operation. The remained 15 

batches presented by RT4, RT5 or RT9 cannot be considered as a “feast” phase 

operation and therefore are depicted in Figure 6.9.c as incorrect prediction of the phase 

operation at the initial point of the batch.  
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a. b.  

c. d.  

Figure 6.9 Identification of valid “feast” phase data set 

The batch operations estimated to operate under the “famine” phase based on their 

initial conditions were also validated by the “Characterisation Method” to confirm that 

116 out of the 122 batches predicted for “famine” phase operation operated under either 

RT3 or RT5 which represent “famine” phase “Regime Types” as shown in Figure 6.9.b. 

The remaining 6 batches operated under RT4, RT7 or RT9 cannot be considered as a 

“famine” phase operations and depicted in Figure 6.9.d. These results show that phase 

prediction using the “Phase Differentiating Equation” (Equation (5.14)) is valid for 

more than 90% of the simulated batch processes.  

In this section, the focus of empirical model development is on process data obtained 

from the “feast” phase batch operations. With the aim of developing models targeting 

significant elements of the “feast” phase batch operation of the PHB production process, 

data set with the “feast” phase “Regime Type” numbers is considered. Around 70% of 

the data is used for model training purposes and the remaining is stored for the model 

validation. Therefore, 80 observations out of the total 113 “feast” phase batch data will 

be used as the training data set and the remaining 33 observations will be stored for 

model validation.  

The training and validation data are represented in Figure 6.10 and Figure 6.11. In these 

plots, biomass, PHB, acetate and ammonia concentrations at the initial point of batch 

operation (T0), ammonia stability point (Point-A), acetate stability point (Point-B) and 

PHB saturation point (Point-C) are depicted along with the time of Point-A, Point-B and 

Point-C occurrences for the “feast” phase operations.  
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Figure 6.10 Training data for the “feast” phase model development  
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Figure 6.11 Validation data for the “feast” phase model development 
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For empirical model development, training and validation data sets are pre-processed 

(scaled to -1 to 1) and stored. The scaling parameters are the minimum and maximum 

values for each subset of training data as tabulated in Table 6.3.  

Table 6.3 Scaling parameters for the “feast” phase data sets 

 T0 Point-A Point-B Point-C 

Min Max Min Max Min Max Min Max 

Time  
(hr) 

0 0 0.2 2.6 8.5 19.1 9.2 24.9 

Biomass 
(C-mmol/L) 

17.6 131.7 21 153.3 21.0 153.3 21.0 153.3 

PHB       
(C-mmol/L) 

0.1 53.8 13.7 123.5 13.7 123.5 53.2 473.3 

Acetate 
(C-mmol/L) 

153.8 696.94 128.0 641.3 128.0 641.3 4.2 467.3 

Ammonia 
(N-mmol/L) 

0.3 9.9 0 0.01 0 0.01 0 0 

 

The scaled training and validation data will be used to develop both MLR and BANN 

models. In the following section, MLR models are developed and validated.  

6.4.4  MLR modelling targeting “feast” phase process data 

The first modelling structure proposed to build MLR models has four inputs with the 

following formation: 

                         (6.2) 

where   ,   ,    and    are total biomass, PHB, acetate and ammonia concentrations at 

the initial point of the batch simulations and   ,   ,   ,    and    are MLR model 

parameters. The MLR modelling technique explained in Section 2.6.2 is applied to 

determine model parameters. The BLS solution of Equation (2.16) is used to obtain the 

MLR model parameters tabulated in Table 6.4.  

The prediction results are depicted for the unscaled validation data in Figure 6.12. In the 

plots depicted in this figure, the model predictions are marked by “ “ and the true/ 

target values are shown by “ “. The RMSE values for the set of validation data are 

calculated and noted on each plot. Since ammonia concentrations are insignificant in the 

process, empirical models are not trained for their predictions. 
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Table 6.4 MLR model parameters to predict significant occurrences in the “feast” 

phase operations 

 y = f(x1,x2,x3,x4)                
Model outputs 

  

Point-A 

  

  

Time -0.3584 -0.6448 -0.0080 0.0195 0.3818 

Biomass 0.8068 -0.1862 0.1422 0.1855 0.2786 

PHB -0.0209 0.4114 -0.4969 0.2959 -0.1106 

Acetate -0.0016 0.0655 0.0797 0.8681 -0.1173 

  

Point-B 

  

  

Time -0.4955 -0.4038 0.1088 0.2988 -0.2132 

Biomass 0.8070 -0.1863 0.2173 0.1855 0.2784 

PHB 0.5597 -0.0311 0.2516 0.2921 -0.0381 

Acetate -0.3746 -0.6295 0.2732 0.7351 -0.2516 

  

Point-C 

  

  

Time -0.1680 -0.2790 0.1854 -0.0038 0.1054 

Biomass 0.8070 -0.1863 0.2684 0.1855 0.2784 

PHB 0.5620 -0.0291 -0.0928 0.2958 -0.0271 

Acetate -0.3962 -0.6172 0.2589 0.6955 -0.2370 

 

Point-A Point-B Point-C 

   

   

   

   

Data number Data number Data number 

Figure 6.12 MLR model prediction results for the validation data 
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Looking at Figure 6.12, it can be deduced that MLR models are not capable of 

providing accurate predictions for the “feast” phase process elements. Therefore 

investigations to develop more reliable models will be conducted. Evaluation of model 

prediction capability will also be carried out after BANN model development stage in 

Section 6.4.6. In the next section, the same set of data used for MLR modelling will be 

applied to develop and validate non-linear neural network models to be compared with 

the results obtained from MLR model predictions.  

6.4.5  BANN modelling targeting “feast” phase process data 

With the aim of improving prediction capabilities of the empirical models, BANN 

modelling method is investigated in this section. In Section  6.2.5, general description of 

the data flowchart is given for development of an individual neural network model. In 

this section, scaled training data is used to develop a series of neural network models 

comprising of a single hidden layer. For a certain set of training data set, “train” and 

“test” data subsets are partitioned randomly to develop a series of neural networks with 

initial parameters arbitrarily generated to tune model parameters. This procedure is 

repeated for a range of different number of hidden neurons in the hidden layer denoted 

by (     ) for the minimum number of hidden neurons and (     ) for the maximum 

number of hidden neurons. The best model is the one presenting the lowest SSE value 

on the “test” data set and the neural network structure and the weights associated with 

the minimum SSE value is stored to be applied in the BANN structure. In Figure 6.13, 

development of   number of neural networks using a certain set of pre-processed 

training data is depicted.  

As depicted in Figure 6.13, random functions generate random values to initialise NN 

weights and also to set an arrangement for selection of the “train” and the “test” subsets 

from the original “training” data set. The first neural network model is built with       

number of hidden neurons using the Levenberg-Marquardt method mentioned in 

Section 2.6.3. The NN model is stored with its SSE value obtained on the “test” data 

set. Afterwards, one hidden neuron is added to the hidden layer and the NN weights are 

tuned to obtain the SSE value of the second NN model. This procedure is repeated until 

a NN model is developed for (     ) number of hidden neurons. The best model 

structure is selected via cross validation for the minimum SSE value for test data set.  

The second individual neural network model is built and selected by repeating the 

procedure mentioned with a random alteration in the selection of the “train” and the 

“test” subsets and initial model tuning parameters as depicted in Figure 6.13. This 
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procedure is repeated to build   number of individual neural networks to be 

implemented in the BANN model structure.  

In order to compare performance of the neural network models and the MLR models 

developed previously, the same set of training and validation data is used to predict 

process elements of significant importance. With the aim of building a BANN structure 

form   number of individual neural networks, MATLAB program is applied to 

implement the algorithm described in Figure 6.13. In this program, thirty neural 

networks are selected to model each element of high interest from the process (    ) 

and the number of neurons in the hidden layer varies in between 1 to 40 (       ,  

        ). The models selected for aggregation have the minimum SSE value on the 

“test” data among the models built with different number of hidden neurons.  

Figure 6.14 shows SSEtest values obtained for neural networks predicting total PHB 

concentration at its stability point in a “feast” phase profile (Point-C). As shown in 

Figure 6.14 and mentioned in description of Figure 6.13, 40 neural networks are 

developed with different number of hidden neurons for each of the 30 data sets obtained 

from re-arrangement of the training data. The points associated with the minimum 

SSEtest value in the set of models developed for a certain set of data are marked by “ ” 

in Figure 6.14. This figure is generated in modelling procedure carried out to predict 

total PHB concentration at its stability point using initial concentrations of biomass, 

PHB, acetate and ammonia as the independent variables.  

 



 

 

 

Figure 6.13 Development of N number of individual neural networks for a certain set of training data 

1
5
5
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Figure 6.14 SSEtest values obtained for NN models predicting PHB concentration at 

its stability point in “feast” phase profile 

Figure 6.14 shows that optimal number of hidden neurons varies from one model to 

another. In Figure 6.15 optimal numbers of hidden neurons are depicted for the models 

developed to predict PHB concentration at PHB saturation point. Considering Figure 

6.14 and Figure 6.15 it can be deduced that a high number of hidden neurons cannot be 

associated with the best model performance. 

 

Figure 6.15 Optimal number of hidden neurons obtained for each selected single 

NN model 

The thirty selected models are aggregated to form a single structure BANN model as 

explained in Section 2.6.4. Figure 6.16 shows SSE values obtained for the individual 
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neural network models along with the aggregated BANN model validated using the 33 

data sets stored for validation purpose of the model built for PHB at Point-C.  

 

Figure 6.16 Comparison of the single NN models with the BANN model SSE values 

It can be seen that the SSE value calculated for BANN is lower than the average value 

of single models SSE values. Although BANN model does not provide the most 

accurate predictions when compared to some single models with low SSE values, it 

presents predictions that are more reliable and acceptable in comparison to the least 

accurate single model predictions. Therefore, aggregation of the single models provided 

a robust prediction capability for the BANN model as demonstrated in Figure 6.16.  

The prediction capability of the BANN model developed to estimate total PHB 

concentration at the PHB saturation point of the “feast” phase operations is shown in 

Figure 6.17 for the unscaled validation data. The RMSE value of about 40 demonstrates 

prediction capability of around 90% for the range of validation data given between 100 

and 500 C-mmol/L. In addition to the predicted values by the BANN model and their 

true values as the target, prediction confidence bounds are calculated and shown in the 

figure. 

 

Figure 6.17 Validation of the model predicting PHB concentration at Point-C 

The case of BANN model development procedure for PHB concentration at Point-C 

was discussed as a standard procedure to present model structure and prediction results. 
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The other modelling results obtained for the significant elements of the “feast” phase 

profile using the same four input variables of initial biomass, PHB, acetate and 

ammonia concentrations are depicted in Figure 6.18, Figure 6.19 and Figure 6.20 for 

hidden neuron numbers (HNN), SSE values of prediction accuracy for scaled data, and 

aggregated model validation respectively.  

Point-A Point-B Point-C 

    

     

     

     
Single NN number Single NN number Single NN number 

Figure 6.18 Number of hidden neurons for each single NN structure 

In Figure 6.18, the number of hidden neurons selected to produce the lowest prediction 

errors for a specific arrangement of train-test data and the initial tuning parameters are 

shown for all modelling output targets. As mentioned in description of Figure 6.14 and 

Figure 6.15, optimal number of neurons in the hidden layer varies when initial model 

training parameters alter and that a NN model with high number of hidden neurons does 

not guarantee the most accurate predictions.  
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Figure 6.19 Sum square errors of single and aggregated model predictions for 

“feast” phase scaled data 

Figure 6.19 shows the SSE values for the validation data set using the single NN models 

along with the their counterpart produced by the aggregated BANN model. This figure 

confirms the validity of the statement made in description of Figure 6.16, arguing that 

the residual value of BANN modelling technique is approximately equal or less than the 

average value of the single models embedded within the BANN model. 
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Figure 6.20 BANN model validation for significant elements of the “feast” phase 

profiles 

Looking at Figure 6.20, it is evident that prediction capability of the models estimating 

the acetate, ammonia and PHB stability time points are not very satisfactory, especially 

when compared with MLR model prediction shown in Figure 6.12. On the other side, 

the most accurate estimations are presented for total biomass concentration at the three 

operational time points of Point-A, Point-B and Point-C. The accuracy of the models 

developed to estimate total PHB concentrations at the three operational time points is 

also very satisfying. However, for the case of models predicting acetate concentration at 

the three operational time points, the model estimating acetate concentration at 

ammonia exhaustion point (Point-A) is much more accurate than the other two models.  

In the next sub-section, capability of the linear MLR models will be compared with 

their equivalent non-linear BANN models based on the RMSE values obtained in the 

model validation procedure.  
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6.4.6  Comparison of the MLR and BANN model results 

The RMSE criterion used to specify prediction accuracy of the models built on the set 

of scaled data can also be used to compare prediction capability of different modelling 

techniques. Table 6.5 tabulates RMSE values obtained in Section 6.4.4 and Section 

6.4.5 respectively in validation process of the linear MLR and non-linear BANN 

models. As it can be seen in the table, the non-linear BANN models produced better 

estimation of the target variables compared to the linear MLR models. Therefore, the 

appropriate modelling method for the practical experimental data is suggested to be a 

non-linear BANN technique based on this study.  

Table 6.5 Comparison of the MLR and BANN model prediction capabilities 

 y = f(x1,x2,x3,x4) 
RMSE (validation data) 

Scaled data Unscaled data 

Model outputs MLR BANN MLR BANN 

  

Point-A 

  

  

Time 0.26 0.21 0.31 0.25 

Biomass 0.15 0.04 9.64 2.78 

PHB 0.34 0.15 18.9 8.12 

Acetate 0.15 0.05 38.18 13.77 

  

Point-B 

  

  

Time 0.57 0.55 3.02 2.91 

Biomass 0.15 0.04 9.64 2.84 

PHB 0.25 0.18 51.9 37.86 

Acetate 0.32 0.24 70.09 52.31 

  

Point-C 

  

  

Time 0.65 0.60 5.13 4.74 

Biomass 0.15 0.04 9.64 2.67 

PHB 0.25 0.19 53.54 40.22 

Acetate 0.33 0.24 77.30 55.5 

 

The overall assessment of the models predicting time elements of the “feast” phase 

process (including the ammonia depletion time at Point-A, acetate stability time at 

Point-B and PHB saturation at the Point-C process time) leads to the conclusion that 

models associated with process time provide inaccurate estimations. However, 

prediction of the biomass concentrations at the three operational points is much more 

accurate when modelled by BANN rather than the MLR modelling technique. The 

BANN modelling technique also produces better results for estimation of the PHB and 

acetate concentrations at the three operational points.  
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It was mentioned that a RMSE value of less than 0.2 for a scaled data set demonstrates 

prediction accuracy of more than 90%. Table 6.5 shows that RMSE values for 

prediction of total biomass and PHB concentrations using BANN models are in the 

acceptable range. BANN modelling of acetate concentrations is slightly out of the 

acceptable range and models predicting Point-A, Point-B and Point-C occurrence times 

are not accurate. These results also confirm high accuracy level for prediction of final 

PHB concentration when process data is classified for “feast” phase operations prior to 

model development. It was shown in Section 6.3 that acceptable prediction of final PHB 

concentration was not achievable without data classification.  

In the subsequent section, reduction of model input number is investigated to improve 

model generalisation capability by eliminating unnecessary model inputs using the 

BANN modelling technique. 

6.4.7  Development of BANN models with reduced number of inputs  

In this section, BANN models are developed using different combination of inputs with 

less than four variables applied in the previous sections. Reduction of model input 

variable number while maintaining prediction accuracy has a number of benefits that 

can be summarised into reduction model development effort and improvement of model 

generalisation capability. The first effort is to develop three-input models using the 

same data presented in the previous sections. The following formations are considered 

for BANN model development. 

               

               

               

               

where   ,   ,    and    are total biomass, PHB, acetate and ammonia concentrations at 

the initial point of the batch simulations. Table 6.6 tabulates RMSE values on the scaled 

validation data for the four model structures.  
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Table 6.6 RMSE values for BANN models developed on three-input structures 

  

 

y = f(x1,x2,x3) y = f(x1,x2,x4) y = f(x1,x3,x4) y = f(x2,x3,x4) 

RMSE  

(Scaled data) 

RMSE  

(Scaled data) 

RMSE  

(Scaled data) 

RMSE  

(Scaled data) 

  

Point-A 

   

Time 0.27 0.22 0.21 0.35 
Biomass 0.21 0.03 0.04 0.37 

PHB 0.29 0.14 0.29 0.14 
Acetate 0.16 0.37 0.05 0.05 

  

Point-B 

   

Time 0.56 0.54 0.54 0.53 
Biomass 0.21 0.03 0.04 0.37 

PHB 0.23 0.19 0.18 0.33 
Acetate 0.35 0.41 0.26 0.40 

  

Point-C 

   

Time 0.62 0.61 0.60 0.58 
Biomass 0.21 0.03 0.04 0.37 

PHB 0.24 0.20 0.18 0.36 
Acetate 0.37 0.41 0.26 0.42 

 

Looking at Table 6.6, it can be observed that model prediction capability is increased 

for a number of cases by considering three-input model structure. In the four-input 

models, introduction of some process variables as the model input have destructive 

effect on the model accuracy when model output is independent of the input variable.  

The BANN models that predict biomass concentrations at the Point-A, Point-B and 

Point-C are highly accurate when model formations f(x1, x2, x4) and f(x1, x3, x4) are 

applied. This outcome suggests application of two-input model formation of f(x1, x4) to 

confirm dependency of biomass concentration on only two initial process elements 

biomass and ammonia concentrations. Table 6.7 shows RMSE values calculated for the 

scaled validation data set stored using the random behaviour system.  

As given in Table 6.7, RMSE values obtained from the scaled validation data set is the 

lowest achieved for the prediction of biomass concentrations at different stages of the 

“feast” phase process. This indicates that biomass prediction is best performed using 

only the initial biomass and ammonia concentrations provided that the data is acquired 

from “feast” phase operations.  
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Table 6.7 RMSE values for models developed on initial biomass and ammonia 

concentrations by BANN 

y = f(x1, x4) 
RMSE  

(Scaled data) 

Point-A 

Time 0.22 

Biomass 0.01 
PHB 0.28 

Acetate 0.34 

Point-B 

Time 0.54 

Biomass 0.01 
PHB 0.19 

Acetate 0.42 

Point-C 

Time 0.58 

Biomass 0.01 
PHB 0.19 

Acetate 0.42 

 

Looking at Table 6.6, model formations f(x1, x2, x4) and f(x2, x3, x4) have the lowest 

RMSE values for the models predicting PHB concentration at the Point-A. In order to 

test model prediction improvement by applying only two put variables to the model, 

initial PHB and ammonia concentrations are implemented in BANN model 

development. Table 6.8 shows RMSE values for the models predicting the significant 

elements of the “feast” phase process.  

Table 6.8 RMSE values for models developed on initial PHB and ammonia 

concentrations by BANN 

y = f(x2, x4) 
RMSE  

(Scaled data) 

Point-A 

Time 0.43 

Biomass 0.47 
PHB 0.12 

Acetate 0.46 

Point-B 

Time 0.53 

Biomass 0.47 
PHB 0.45 

Acetate 0.43 

Point-C 

Time 0.57 

Biomass 0.48 
PHB 0.47 

Acetate 0.43 
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Looking at Table 6.8, it is evident that model predictions have degraded except for the 

case of PHB concentration at the Point-A. This outcome suggests that prediction of the 

PHB concentration at the ammonia depletion point is best performed when only two 

input variables of initial PHB and ammonia is considered for modelling.  

Table 6.9 RMSE values for models developed on initial PHB and ammonia 

concentrations by BANN 

y = f(x3, x4) 
RMSE  

(Scaled data) 

Point-A 

Time 0.37 

Biomass 0.42 
PHB 0.34 

Acetate 0.04 

Point-B 

Time 0.54 

Biomass 0.42 
PHB 0.35 

Acetate 0.40 

Point-C 

Time 0.58 

Biomass 0.41 

PHB 0.36 

Acetate 0.42 

 

The third type of models developed with two model inputs is based on initial acetate 

and ammonia concentrations. Since models predicting acetate concentration at the 

Point-A have the lowest RMSE values with model formations f(x1, x3, x4) and  

f(x2, x3, x4), the two-input model formation of f(x3, x4) is also considered in the 

investigations. Table 6.9 confirms prediction improvement for the model estimating 

acetate concentration at the ammonia depletion point.  

The later model formation demonstrate poor prediction capability for estimation of 

significant process elements other than the acetate concentration at the Point-A. In the 

next section, the most appropriate model structure is proposed to predict each 

significant element of the “feast” phase process by the means of the RMSE criterion 

based on the studies carried out in the previous sections. 

6.4.8  Recommendations for development of appropriate model structure 

targeting “feast” phase batch operations 

In this section, RMSE values obtained for the BANN and MLR models developed in the 

previous sections are compared to find the best model structure for each element of the 

“feast” phase operation. The training and validation data is the same obtained from the 
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random behaviour simulator system and stored to develop the models. Based on the 

RMSE criterion, the most appropriate model structures are proposed in Table 6.10.  

When modelling precision is the same for two model structures, the structure with lower 

number of input variables is selected. In practice, data acquisition and model 

development is less challenging when the number of process variables involved in the 

modelling technique is less.  

In Table 6.10, the lowest scaled RMSE values obtained for the models predicting the 

significant elements of the “feast” phase process are tabulated along with their 

modelling formulations. Based on RMSE values, the most accurate models are those 

predicting the biomass concentrations at the three process stages. The RMSE values for 

PHB concentration predictions at the three process stages are slightly less than 0.2 and 

can be considered as reliable models. In case of the acetate concentration models, high 

precision prediction is observed at the ammonia depletion point of the process; 

however, RMSE values are slightly higher than 0.2 when estimating acetate 

concentrations at Point-B and Point-C. The high RMSE values for the models predicting 

the time of significant occurrences for Point-B and Point-C in a “feast” phase batch 

indicate unreliable model predictions. Model prediction of ammonia depletion time 

point has scaled RMSE value of 0.21 which is not much more than the acceptable 

RMSE value of 0.2.  

Table 6.10 Proposition of the model structure for the significant elements of the 

“feast” phase operations 

  

 

Modelling 

formulation 

RMSE 

(scaled validation) 

  

Point-A 

  

 

Time f(x1, x3, x4) 0.21 

Biomass f(x1, x4) 0.01 

PHB f(x2, x4) 0.12 

Acetate f(x3, x4) 0.04 

  

Point-B 

  

  

Time f(x2, x4) 0.53 

Biomass f(x1, x4) 0.01 

PHB f(x1, x4) 0.19 

Acetate f(x1, x2, x3, x4) 0.24 

  

Point-C 

  

  

Time f(x2, x4) 0.57 

Biomass f(x1, x4) 0.01 

PHB f(x1, x4) 0.19 

Acetate f(x1, x2, x3, x4) 0.24 
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It is important to mention that the conclusions made in this study are mainly based on 

the data obtained using the simulation program explained in Chapter 3. In order to 

confirm the best modelling technique and structure, experimental data from real 

production process is required for each specific production unit. The aim of this study 

was to demonstrate reliability and prediction accuracy obtained using the BANN 

modelling in comparison to the single NN and linear MLR models when building 

empirical models targeting the “feast” phase PHB production batches. 

In the next section, empirical models are developed to estimate some significant 

elements of the “famine” phase operations.  

6.5  The “famine” phase operational modelling 

6.5.1  Introduction  

In this section, “famine” phase operational profiles are targeted in order to develop 

empirical models estimating critical process attributes. In production of the PHB using 

mixed microbial cultures, the main characteristic of the “famine” phase process is 

consumption of the intracellular PHB content in the absence of external feed source.  

In Chapter 4, “famine” phase operations were classified into two main “Regime Types” 

referred to as RT3 and RT5. In this section, process profiles associated with RT3 and 

RT5 are studied and their significant elements of the “Regime Types” are identified. 

The empirical models are developed for the case of batch simulation results obtained 

from a random behaviour process simulator reflecting PHB production using mixed 

microbial cultures.  

6.5.2  Description of the “famine” phase operational profile – RT3 

A production “feast” phase process should be followed by a “famine” phase in order to 

maintain biological wellbeing of the production cells (Dias et al., 2005). The success 

and effectiveness of the “famine” phase operation highly depends on the final status of 

the active biomass. The lower the intracellular PHB content of the cells at the end of the 

operation, the more efficacious the “famine” phase operation. The “famine” phase 

profiles appear in the form of either RT3 or RT5. The focus of this section is on RT3 

with the description given in Chapter 4. At first, a description of the batch profile is 

given prior to the model development stage. 

The process profile of this “Regime Type” can be divided into three operational 

intervals by two significant occurrences within the operational time. The first 



Chapter 6  Empirical Modelling 

168 

occurrence is acetate depletion which is referred to as “Point-P” in this study. Followed 

by the appearance of the “Point-P”, ammonia depletion takes place as the second 

significant occurrence in a process under RT3. The operational time in which ammonia 

depletion occurs is referred to as the “Point-Q” in this section.  

Figure 6.21 shows two batch operation plots under RT3 with “fPHB summation” 

subplot shown on the top and PHB concentration subplot shown in the bottom of the 

each plot. The “fPHB summation” was defined in Section 6.4.2 in description of the 

“feast” phase profiles. The same formulation is used as an indicator of the PHB content 

level within the cells.  

In the presence of both acetate and ammonia, a RT3 batch operation initiating with low 

intracellular PHB content undergoes a period of PHB storage until carbon source is 

depleted in the medium. Afterwards, intracellular PHB is consumed to maintain cell 

growth and replication (shown in Figure 6.21.a). On the other side, when initial 

intracellular PHB content is high, the cells consume their PHB as an energy source in 

parallel with the carbon sources available in the medium. The PHB consumption 

continues after acetate depletion in the medium (shown in Figure 6.21.b).  

a.  b.   

Figure 6.21 “Famine” phase profile with RT3 

As it can be seen in Figure 6.21, in the first division of the profile prior to “Point-P”, 

“fPHB summation” factor can be either increasing or decreasing by a very high ratio. In 

the second division of the profile between “Point-P” and “Point-Q”, “fPHB summation” 

factor decreases with a steep decline. It is in the third division of the RT3 occurring 

after “Point-Q” that the “fPHB summation” value reaches to a favourably low 

magnitude. Assessment of the plots shown in Figure 6.21 suggests that a successful 

“famine” phase operation under RT3 initiates when acetate depletion takes place. 
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Additionally, optimal batch termination point can be associated with ammonia 

exhaustion point when “famine” phase operation runs under RT3.  

In the next section, “famine” phase profiles under RT5 will be scrutinised.  

6.5.3  Description of the “famine” phase operational profile – RT5 

In addition to RT3, the “famine” phase operation also takes place under RT5 where 

unlike the former “Regime Type”, ammonia depletion occurs prior to acetate 

exhaustion. Figure 6.22 shows two batch operations under RT5 with different initial 

intracellular PHB contents. It can be observed that “fPHB summation” decline occurs 

after acetate complete depletion in the medium.  

Looking at Figure 6.21 and Figure 6.22, it is evident that continuous reduction of the 

“fPHB summation” factor (which is the subject of a “famine” phase operation) can be 

maintained in both “Regime Types” when acetate is completely exhausted in the 

medium. An additional outcome is that the “fPHB summation” factor reaches to a high 

magnitude by acetate consumption prior to its depletion point. Therefore, when optimal 

termination time for a “famine” phase operation is under investigation, acetate depletion 

point is the only process element that needs to be considered. However, since “fPHB 

summation” is at its high for “Point-P”, a different factor should be identified to specify 

operation duration after occurrence of the “Point-P”.  

a.  b.  

Figure 6.22 “Famine” phase profile with RT5 

The “famine” phase proficiency highly depends on the process operational duration. 

The longer a “famine” phase batch operates after acetate exhaustion, the higher the yield 

of the famine phase operation. On the other side, a prolonged famine phase operation is 

associated with higher operational running cost. Therefore, a balance should be made to 
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specify the optimal batch duration considering the acetate exhaustion point. In the next 

section, a new process factor is defined to be applied as a criterion for optimal batch 

termination time of the “famine” phase operations.  

6.5.4  Batch termination criterion for historic data of “famine” phase process 

In this section, “famine” phase batch termination point is identified using a series of 

historical batch data. Assessment of the “famine” phase profiles using the analytical tool 

introduced in this section provides a platform to estimate optimal “famine” phase batch 

termination time using empirical models developed on appropriate set of process data. 

First, the analytical tool to assess the historical batch data will be introduced and later 

BANN models will be developed to estimate the optimal duration of the “famine” phase 

batch operations.  

Looking at Figure 6.21 and Figure 6.22, it can be deduced that termination of the 

“famine” phase batch prior to the acetate exhaustion point is not favourable. In the case 

of RT3, “fPHB summation” level is close to its maximum at the acetate depletion point 

and “fPHB summation” level reaches to a local maximum which is the least desirable 

point to terminate a “famine” phase operation in RT5. Therefore, the proposed batch 

termination time should be an operation time occurring after detection of the acetate 

exhaustion point. In order to determine the “famine” phase operational duration, 

“fPHBsumEND” factor is defined as a criterion that regulates process termination in the 

simulation program. The following equation is used to calculate the “fPHBsumEND” 

value using “fPHB-summation” profile obtained from a complete “famine” phase batch 

profile. 

            

                                                   

(6.3) 

where “          ” and “          ” are the minimum and maximum values 

for “fPHB-summation” during a “famine” phase batch operation respectively. The 

“               ” factor is specified by the operator to determine the extent of 

PHB consumption by the cells through the “famine” phase operation. In order to 

address a successful “famine” phase batch operation, “               ” should 

have a small value in the range of zero to the unit value.  

In the simulation studies, the operational time in which “fPHB summation” is equal to 

the “          ” value is  recorded as the optimal point for “famine” phase batch 

termination. As an example, Figure 6.23 demonstrates a “fPHB summation” profile for 
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a “famine” phase batch operating under RT3 with “               ” value of 

15%.  

 

Figure 6.23 Identification of “famine” phase batch termination criterion 

As shown in the figure, “          ”, “          ” and “          ” 

values are specified to be equal to 73.6 C-mol/C-mol, 10.5 C-mol/C-mol and  

20 C-mol/C-mol respectively. The optimal batch termination time is specified by the 

symbol “ ” on the “fPHB summation” curve at about 10 hours after batch initiation. 

The acetate depletion point is also marked by the symbol “ ” on the graph.  

Identification of the “          ” point is not always as straightforward as shown 

in the case of Figure 6.23. The analytical tool to assess the historical batch profiles 

should be capable of finding the desirable “          ” point in various profile 

case scenarios. Therefore, a sophisticated algorithm is required to be developed in order 

to identify the most appropriate time point to terminate the operation. In Figure 6.24, an 

“fPHB summation” profile is shown for a “famine” phase batch operating under RT5.  

 

Figure 6.24 Detection of various “fPHBsumEND” points on a “famine” phase 

profile 

As shown in the figure, the “fPHB summation” curve crosses the “          ” 

level in more than one operational time points when “          ” value is high. In 

such cases, the algorithm identifying the batch termination time should specify the time 
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point which appears after the acetate exhaustion point in the process profile in order to 

address the appropriate time point. Figure 6.25 shows that the analytical tool correctly 

records the longest operational time point when “fPHBsumEND” criterion crosses the 

“fPHB-summation” curve in three points.  

 

Figure 6.25 Identification of “famine” phase batch termination point by the 

analytical tool 

The algorithm developed in this section will also be used in the next section to identify 

the optimal “famine” phase batch operation using a series of historic profiles for model 

development. Additionally, this tool will be applied in the next chapter to assess the 

yield of “famine” phase operation in the production recipe. The algorithm is embedded 

within the “CharMeth” module. In this study, the “               ” is considered 

to be at the 20% of the overall range of “fPHB summation” range.  

6.5.5  Data generation targeting “famine” phase batch operations 

In this section, “famine” phase data is used to develop empirical models using the linear 

MLR and non-linear BANN structures. In order to differentiate the “famine” phase from 

the “feast” phase data, the same program structure introduced in Section 6.4.3 to 

separate the two phase data is applied. The process simulation program applied in this 

section is the same used for the “feast” phase operational simulations.  

The simulation parameters applied in the simulation program are the same used in 

Section 6.4.3 for “feast” phase data generation except for the minimum and maximum 

initial acetate and PePHB0 values. For the case of the “famine” phase data generation, 

the minimum and maximum range of initial acetate is decreased from 100 C-mmol/L to 

2 C-mmol/L and from 700 C-mmol/L to 300 C-mmol/L respectively. This modification 

is to assure targeting “famine” phase operations when generating simulation data. Based 

on the results obtained from the characterisation plots, for the same range of initial 

ammonia concentration, high initial acetate concentration is potent to direct the batch 
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Data number Data number Data number 

into a “feast” phase operation while low initial acetate concentration directs the process 

into a “famine” phase operation.  

Since “famine” phase operations should be occurring after a “feast” phase operation, the 

PHB content of the cells should be high at the initial point of the operation. Therefore, 

the range of PePHB0 values is increased to 70% and 100% for the minimum and the 

maximum values of the PePHB0 range respectively.  

The rest of the simulation parameters applied in this section are identical to those used 

in Section 6.4.3 for the “feast” phase data generation stage. In Table 6.11, the program 

parameters used to design 250 batch simulations are tabulated for 10 different values of 

initial biomass concentrations. 

Table 6.11 Process data generation targeting “famine” phase operation 

Programing parameters 

Iteration operator Minimum value Maximum value 

RandNo1 (BIOM0)=10 a1=2 (C-mmol/L) b1=200 (C-mmol/L) 

RandNo2 (ADDHA)=5 a2=2 (C-mmol/L) b2=300 (C-mmol/L) 

RandNo3 (ADDN)=5 a3=0.1 (N-mmol/L) b3=10 (N-mmol/L) 

PePHB0 70% 100% 

 

For each initial biomass concentration, five different values are randomly assigned for 

acetate concentrations for which 25 different values are randomly selected for ammonia 

concentration introduced to the batch. The 10 initial biomass concentrations, along with 

the 50 acetate concentration values and 250 ammonia concentrations assigned  

by random generator function are depicted in Figure 6.26.a, Figure 6.26.b, and  

Figure 6.26.c respectively.  

a.  b.  c.  

Figure 6.26 Random values assigned to process parameters for data generation 

targeting the “famine” phase  
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In Figure 6.27, simulation results of 250 batch processes are given for 10 different 

values of initial biomass concentrations. For each value of initial biomass concentration, 

five different values are randomly assigned for initial acetate concentrations and for 

each acetate value 25 different values are randomly selected for initial ammonia 

concentrations in their specified range. As shown in Figure 6.27.a and Figure 6.27.c, 

115 batches were predicted to operate under the “feast” phase as oppose to the 135 

batches predicted for operation under the “famine” phase. These predictions were made 

applying the “Phase Differentiating Equation” obtained in Chapter 5.  

Analysis of the simulation profiles provides “Regime Type” numbers of the 250 batch 

operations. Based on the “Regime Type” numbers, 221 out of the 250 batches were 

correctly differentiated according to their “Regime Types”. The remaining batches 

consist of RT9 operations which represent neither “feast” nor “famine” phase 

operations. The other batches that operated under RT5 but predicted to operate  

under the “feast” phase can be considered as the error results of the “Phase  

Differentiating Equation” depicted in Figure 6.27.c. The two batches with RT4 depicted 

in Figure 6.27.d are immature operations that could not be considered as complete 

“famine” phase operations.  

a.  b.  

c.  d.  

Figure 6.27 Identification of valid “famine” phase batch data set 

The 129 batch data predicted and operated as “famine” phase batches are applied for 

model development and validation in this section. This data set includes batch 
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results specifies that 74 out of the 129 batches operated under RT5 and 55 batches 

operated under RT3. Additionally, analysis of the batch profiles provide suggestions for 

optimal batch termination time (Point-T) with “fPHBsumENDratio” criterion of 20% as 

depicted in Figure 6.28. According to this figure, batch operations under RT5 required 

longer batch duration in order to achieve the same level of PHB content when compared 

to the batches running under RT3.  

 

Figure 6.28 “Famine” phase batch durations with “fPHBsumENDratio” criterion 

of 20% 

It can be deduced from Figure 6.28 that batch operation under RT3 is more favourable 

than the RT5 when “famine” phase operational duration is considered. This is due to the 

fact that acetate depletion is the first significant occurrence in a RT3 operation which 

accelerates early consumption of the PHB contents of the cells.  

The first significant point in a “famine” phase batch operation is the initial point of the 

operation (T0), the second significant point is considered to be the acetate depletion 

point (Point-P) and the third significant point is the batch termination point (Point-T) 

specified by the batch termination criterion in this study. Similar to the “feast” phase 

modelling section, around 70% of the “famine” phase data is used for the model training 

and the remained is used for model validation purpose. Figure 6.29 shows training data 

sets for the time, biomass, PHB, acetate and ammonia concentrations at the three points. 

Out of total 129 “famine” phase batches, 91 data sets were randomly selected for model 

training purposes and the remained 38 data sets were stored for model validation stage 

depicted in Figure 6.30.   
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Figure 6.29 Training data for the “famine” phase model development   
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Figure 6.30 Validation data for the “famine” phase model development 

Using the minimum and maximum values of each training data set (Appendix-D,  

Table D.1), training and validation data sets are scaled and used in the modelling 

development procedure. In the following sections, “famine” phase operations are 

modelled with both RT3 and RT5 “Regime Types” considered together to model 

“famine” phase significant occurrences and later each “famine” phase operation is 

considered separately.   
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6.5.6  MLR modelling targeting “famine” phase process data 

The modelling structure proposed to build the MLR models consists of the same four 

inputs considered in the “feast” phase model development sections as given in  

Equation ((6.2)). The MLR model parameters are obtained and tabulated in Appendix-D 

(Table D.2). The models are validated and the predictions are unscaled and depicted in 

Figure 6.31. In the plots depicted in Figure 6.31, the model prediction values are 

marked by “ “ and the true/ target values are shown by “ “. The RMSE values for 

validation data are also depicted on these plots.  

Point-P Point-T 

  

  

  
Data number Data number 

Figure 6.31 MLR model validation developed for the “famine” phase data sets 

In the next section, the same set of data used for MLR modelling will be applied to 

develop and validate BANN models.  
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6.5.7  BANN modelling targeting “famine” phase process data 

The BANN models developed in this section are built under the same input-output 

structure used in the models built in the previous section. Optimal number of hidden 

neurons and the SSE values in the validation process of the individual NN models are 

given in Appendix-D (Figure D.1 and Figure D.2 respectively). 
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Figure 6.32 BANN model validation for significant elements of the “famine” phase 

profiles  

In Figure 6.32, BANN model prediction results are depicted for validation data sets. In 

this figure, model estimations are depicted for unscaled predictions along with the 

confidence bounds obtained using the results of single neural network models.  

Comparing the RMSE values of the linear MLR models and the non-linear BANN 

models demonstrate proficiency of BANN models over the linear models. In  

Appendix-D (Table D.3), RMSE values obtained in model validation procedure are 

given for five-input and three-input models. The additional model input in the five-input 

model is the time of acetate depletion in “famine” phase operations. The three-input 

models are designed to encounter the four possible combination of models with four 

different variables.  

In Table 6.12, the most appropriate model formulations are proposed based on the 

RMSE values and the number of model input variables obtained from simulation 

studies.  
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Table 6.12 Proposition of the model structure for the significant elements of the 

“famine” phase operations 

Recommendations 
Modelling 

formulation 

RMSE 

(scaled) 

Point-P 

 

Time f(x1,x3,x4) 0.34 

Biomass f(x1,x3,x4) 0.06 
PHB f(x2,x3) 0.04 

Point-T 

 

Time f(x1,x2,x3,x4,x5) 0.22 

Biomass f(x1,x4) 0.03 
PHB f(x2,x3) 0.06 

 

As mentioned, RMSE values of scaled validation data with magnitude less than 0.2 

indicate models performing with acceptable accuracy level. In the next sections, BANN 

models are developed on the two “famine” phase “Regime Type” numbers, RT3 and 

RT5 separately. This is to investigate model accuracy improvement when two “Regime 

Types” are modelled independently. 

6.5.8  BANN modelling targeting “famine” phase process operating under RT3 

In this section, a subset of the “famine” phase data set used in the previous section is 

considered containing data sets associated with batch operations operating under RT3. 

As noted on Figure 6.28, 55 batch data were identified to present the phase operation 

under RT3. Following the same procedure explained in the previous sections, 70% of 

the data which is 39 batch data is used for BANN model development and the remained 

16 batch data is applied for model validation. The optimal number of hidden neurons for 

each individual NN model and the SSE values obtained in the validation process of the 

individual NN models are given in Appendix-D (Figure D.3 and Figure D.4 

respectively).  

In Figure 6.33, BANN model prediction results are depicted for validation data sets. In 

this figure, model estimations are depicted for unscaled predictions along with the 

confidence bounds obtained using the results of single neural network models.  
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Figure 6.33 BANN model validation for significant elements of the RT3 data sets 

Similar to the previous section, RMSE values are obtained for models developed under 

various combinations of independent input variables. In Appendix-D (Table D.4), the 

five-input model has an additional acetate depletion time along with the other four input 

variables applied in modelling. The three-input models are designed to encounter the 

four possible combination of models with four different variables. In addition, one case 

of two-input models is also investigated with model formation of y=f(x3,x4) to examine 

prediction improvement for estimation of batch termination time. As given in 

Appendix-D (Table D.4), the lowest RMSE values are obtained for the three-input 

models to establish the most appropriate model structure to estimate other significant 

elements of a “famine” phase process under RT3.  

In Table 6.13, the most appropriate model formulations are proposed for the “famine” 

phase processes under RT3, based on their RMSE values and their number of model 

input variables obtained from simulation studies.  

In the next section, RT5 “famine” phase batch data will be applied for modelling. 
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Table 6.13 Proposition of the model structure for the significant elements of the 

RT3 data sets 

Recommendations 
Modelling 

formulation 

RMSE 

(scaled) 

Point-P 

 

Time f(x1,x2,x3) 0.26 

Biomass f(x1,x3,x4) 0.02 
PHB f(x2,x3,x4) 0.01 

Point-T 

 

Time f(x3,x4) 0.31 

Biomass f(x1,x3,x4) 0.03 
PHB f(x2,x3,x4) 0.03 

 

6.5.9  BANN modelling targeting “famine” phase process operating under RT5 

Similar to the previous section, “famine” phase data associated with the RT5 is used for 

BANN model development and validation. 74 batch data was stored for RT5 with 52 

batch data for model development and 22 batch data for validation purposes. The 

number of hidden neurons used in development of the individual neural networks and 

the SSE values in the validation process of the individual NN models are given in 

Appendix-D (Figure D.5 and Figure D.6 respectively).  

In Figure 6.34, BANN model prediction results are depicted for validation data sets. In 

this figure, model estimations are depicted for unscaled predictions along with the 

confidence bounds obtained using the results of single neural network models.  

Point-P Point-T 

  

  

  
Data number Data number 

Figure 6.34 BANN model validation for significant elements of the RT5 data sets 
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Similar to the previous section, RMSE values are obtained for models developed under 

various combinations of independent input variables. In Appendix-D (Table D.5), the 

five-input model has an additional acetate depletion time along with the general four 

input variables applied in modelling. The three-input models are designed to encounter 

the four possible combination of models with four different variables. One case of two-

input models is also investigated with model formation of y=f(x2,x3) to examine 

prediction improvement for estimation of PHB concentration at acetate depletion point. 

As given in Appendix-D (Table D.5), the lowest RMSE values are obtained for the 

three-input models to establish the most appropriate model structure to estimate the 

significant factors of the “famine” phase process under RT5.  

In Table 6.14, the most appropriate model formulations are proposed for the “famine” 

phase processes under RT5, based on their RMSE values and their number of model 

input variables obtained from simulation studies.  

Table 6.14 Proposition of the model structure for the significant elements of RT5 

batch profiles  

Recommendations 
Modelling 

formulation 

RMSE 

(Scaled) 

Point-P 

 

Time f(x2,x3,x4) 0.22 

Biomass f(x1,x3,x4) 0.01 

PHB f(x2,x3) 0.04 

Point-T 

 

Time f(x1,x2,x3,x4,x5) 0.14 

Biomass f(x1,x3,x4) 0.01 

PHB f(x1,x2,x3) 0.05 

 

In the next section, recommendations are made for modelling structures under “famine” 

phase operations. 

6.5.10  Recommendations for development of appropriate model structure 

targeting “famine” phase batch operations 

In Table 6.15, the lowest RMSE values obtained in prediction of significant process 

elements in the case of RT3 and RT5 ensemble (Table 6.12), only RT3 (Table 6.13) and 

only RT5 (Table 6.14) are shown.  
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Table 6.15 Lowest RMSE values obtained for prediction of significant elements in 

“famine” phase regimes 

RMSE  

(Scaled) 
RT3 and RT5 RT3 RT5 

Point-P 

 

Time 0.34 0.26 0.22 

Biomass 0.06 0.02 0.01 

PHB 0.04 0.01 0.04 

Point-T 

 

Time 0.22 0.31 0.14 

Biomass 0.03 0.03 0.01 

PHB 0.06 0.03 0.05 

Summation 0.75 0.63 0.47 

 

Overall assessment of the prediction capabilities between the “famine” phase data 

considered together and separately shows that separating the two “Regime Types” can 

increase model prediction accuracy. This is deduced from the summation of 6 

significant elements of the process for the three cases given in Table 6.15. However, for 

estimation of biomass and PHB concentrations, accuracy of the empirical models is 

found to be very high and segregation of the “famine” phase data into two subsets of 

RT3 and RT5 process data prior to model development is unnecessary.  

  



Chapter 6  Empirical Modelling 

185 

6.6  Conclusions  

Application of the “Characterisation Method” developed in Chapter 4 and the “Phase 

Differentiating Equation” developed in Chapter 5 proved to be beneficial for data 

classification prior to modelling. While empirical modelling of the process data bulk for 

product concentration (PHB) was demonstrated to be unreliable and inaccurate, 

identification of the different operational behaviour and model development using 

classified data sets proved to be effective for prediction improvement. It was shown that 

model development using classified data sets increased model prediction accuracy for 

estimation of almost every critical process attributes under investigation.  

Various modelling input-output structures were examined to obtain the appropriate 

formulations for prediction of the most significant elements of the “feast” and “famine” 

phase operations using their initial process state. It was shown that models with less 

number of input variables can provide more accurate predictions in some cases and 

additional input variables prevent sophisticated model training process. Reduction of 

model input variables can decrease model development effort and improvement of 

model generalisation capacity.  

Linear MLR modelling technique provided less accurate predictions when compared to 

the non-linear BANN models due to the non-linearity of the process data. Bootstrapping 

aggregation of a number of individual neural network models proved to increase model 

reliability. Comparison of the SSE values obtained from single structured neural 

network models and the models aggregated by bootstrapping method conformed that the 

residual value of BANN modelling technique is less than the average value of the single 

models embedded within the BANN model. It was also demonstrated that optimal 

number of neurons in the hidden layer of neural network structures varies when initial 

training parameters alter and that a model with high number of hidden neurons does not 

guarantee the most accurate predictions. 

The overall assessment of the models predicting time elements of the “feast” phase 

process leads to the conclusion that models associated with process time provide 

inaccurate estimations especially at the point of PHB saturation. Models predicting total 

biomass concentration provide accurate prediction using two-input models with initial 

biomass concentration and total ammonia concentration. For prediction of total PHB 

concentrations at different stages of a “feast” phase process, initial PHB concentration 

and total ammonia concentration builds acceptable empirical models. Prediction of 

acetate concentration at the final stage of a “feast” phase operation requires models with 
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input variables consisting of initial total biomass and PHB concentrations and total 

acetate and ammonia used in the process to make estimations close to the acceptable 

range.  

Unlike the “feast” phase operation with unique operational pathway, “famine” phase 

operation can be observed in two different pathways ending to RT3 or RT5. Analysis of 

the “famine” phase data led to the conclusion that batch operation under RT3 is more 

favourable than the RT5 when more efficient operation is required. Prediction of 

“famine” phase optimal termination point by empirical models is less accurate for the 

case of RT3 operations when compared to the RT5 counterparts. For estimation of 

biomass and PHB concentrations, accuracy of the empirical models was found to be 

very high and segregation of the “famine” phase data into two subsets of RT3 and RT5 

process data prior to model development found to be unnecessary. For estimation of 

final biomass concentration, a 2-input model of initial biomass concentration and total 

ammonia concentration is required. Moreover, a 2-input model of initial PHB 

concentration and total acetate concentration is capable of provide accurate prediction 

for final PHB concentration at the end of a “famine” phase operation.  

The empirical model structures providing accurate and reliable predictions will play an 

important role for assignment of production recipe parameters which will be discussed 

in Chapter 7.  
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7.1  Introduction  

Intracellular accumulation of PHB has been reported for a number of bacteria in either 

their wild form or by recombinant strains. Up to recent years, industrial scale production 

of PHB has been carried out using single strain microbial cultures. However, high cost 

of production associated with sterilization and process significant sensitivity against 

minor changes in operational condition lead to investigations towards PHB production 

under Mixed Microbial Cultures (MMC). Successful production is reported in both 

bench scale and full scale under a process type known as “feast” and “famine”. 

Sequential batch production method is a technique used to continuously maintain 

production condition by repetitively undertaking a series of operational practices.  

As mentioned in Chapter 2, an operation in nutrition shortage state is said to run in the 

“famine” phase; and on the other side, when nutrition abundance results into cell 

replication and augmented growth, operation is said to be under “feast” phase. 

In this chapter, based on “Characterisation Method” developed in Chapter 4, sequential 

batch production procedure known as SBR recipe is designed to impose occurrence of 

the two major biological phases in each sequence of the SBR for sustainable production. 

Feasibility studies are carried out to ensure validity of the approach using mechanistic 

models and the “Characterisation Method” developed in Chapter 4. The key element of 

innovation in the SBR recipe is application of the “Phase Differentiating Equation” 

(Equation (5.14)) to assure occurrence of the “feast” and the “famine” phase operations 

at the predefined SBR operational steps. Implementation of the “Phase Differentiating 

Equation” within the proposed SBR structure imposes another advantage in process 

execution which enables automated alleviation of the load effect. The proposed 

production procedure will be studied using the batch simulation program. Once the SBR 

recipe structure is established, recipe parameters will be assigned using empirical 

models developed in Chapter 6.  

At the end, a thorough study on the capability of the proposed SBR structure will be 

carried out to investigate reliability of the SBR process in occurrence of operational 

disturbances.   



Chapter 7 SBR Recipe Establishment 

189 

7.2  Generation of the SBR recipe 

7.2.1  Introduction 

Occurrence of both “feast” and “famine” phase operations in the majority of SBR cycles 

is crucial (Dias et al., 2005). Based on “Characterisation Method” studies carried out in 

Chapter 4, PHB production under MMC was identified under a number of process 

“Regime Types” classified into nine RT groups. Further studies demonstrated that 

process progression regimes consists of three pathways while two pathways end in the 

“famine” phase operation and the other ends in a “feast” phase operation at process 

maturity stage.  

In summary, RT1 is the initial regime with both acetate and ammonia available in the 

process. In the first “famine” phase pathway, RT1 is followed by RT2 (when acetate 

stability occurs) which later leads to RT3 by exhaustion of both feeding sources. The 

second “famine” phase pathway appears with initial ammonia depletion which is 

characterised by RT4 and terminates with acetate complete exhaustion in RT5. The last 

pathway is a “feast” phase operation with initial ammonia depletion in RT4 followed by 

acetate concentration stability in RT6. Further progression of a batch operation under 

RT6 leads to RT7 and RT8 where process primary exploitation and process maturity 

points are formed over operational time respectively. The ninth “Regime Type” (RT9) 

appears at the end of the third pathway when acetate is completely exhausted in the 

medium and cells start to consume their PHB content to provide metabolic activities of 

cells; hence, its occurrence is undesirable.  

With the aim of maximising PHB production, “feast” phase operation is the operational 

pathway to be addressed. On the other side, despite consumption of PHB in a “famine” 

phase operation, its occurrence is required to provide process conditions for sustainable 

SBR productions. Cells with low PHB content have more tendencies to replicate in 

presence of nutrient rich medium. Whereas PHB saturated cells are reluctant for 

reproduction and have no capacity to form further PHB within. Therefore, a “feast” 

phase operation should be followed by a “famine” phase operation prior to initiate 

subsequent production cycle to ensure presence of active culture in a production “feast” 

phase operation. This is the fundamental principle in design of production recipes which 

will be discussed in this chapter. 
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7.2.2 General structure of the recipe 

The SBR configuration proposed in this study consist of six operational steps within 

each sequence of the overall process. Each of these steps is schematically shown in 

Figure 7.1 in a separate division. At the initial point of a SBR run, for a given initial 

biomass concentration, a pair of feeding concentrations is imposed to the medium so 

that occurrence of the “feast” phase batch is assured. Process characterisation studies 

and the analysis providing mathematical equations to direct a PHB batch process into a 

particular phase operation is reported in Chapter 4 and Chapter 5.  

 

Figure 7.1 General structure of the SBR configuration 

Following completion of the “feast” phase batch process in the first step of the first 

cycle, batch reactor undergoes a period of quiescence so that majority of the biomass 

concentration precipitates. This settling step is noted as the second step of the SBR run. 

In the third step, a ratio of the biomass saturated with PHB after a “feast” phase 

operation is exploited for downstream processing. The proposed method has a number 

of advantages over other possible options such as partial reservation or constant 

exploitation of biomass. The most important advantage is process stability enforcement 

by extraction of process biomass variability. It is proposed to measure and set the 

remaining biomass sediment level to a curtain point associated with the biomass 

concentration specified as per the SBR recipe. It will also be shown in Section  7.3.5 that 
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operational fluctuation in practical execution of the recipe would not paralysed the SBR 

operation under the proposed recipe.  

The biomass remaining inside the vessel also contains high level of PHB content which 

should be consumed by the cells to regain their reproduction capabilities. The second 

portion of biomass can also be transferred to a smaller volume reactor for a “famine” 

phase operation. In the fourth step, feeding concentrations are monitored and additional 

substances are added to the reactor such that operational conditions for “famine” phase 

operation is satisfied. Consequently, the batch reactor is actuated to complete a 

“famine” phase batch in the fifth step of the SBR cycle. During the “famine” phase, 

cells consume ammonia as the external nitrogen source along with their PHB content as 

the intracellular carbon source for replication and maintenance. By the end of this step, 

biomass concentration is increased in reflection of PHB consumption in the operational 

system. In the sixth step, condition of the medium containing activated biomass is 

monitored and manipulated in accordance with the “feast” phase requirements by 

application of the “Phase Differentiating Equation” developed in Chapter 5. The 

subsequent sequence follows a “feast” phase operation in its first step and follows 

similar procedure aforementioned for the subsequent SBR sequence/cycle.  

7.2.3 Implementation of the SBR recipe  

Practical execution of the proposed SBR recipe requires identification of the essential 

process elements in the SBR architecture. These elements are specified in this section to 

draw a general picture of SBR execution with a number of process sequences or cycle 

number. Figure 7.2 illustrates the general architecture for execution of the SBR recipe 

for infinite number of cycles. This figure is a practical depiction of the SBR structure 

shown in Figure 7.1.  

STEP 1. In order to initiate a SBR process, the operational tank is prepared to initiate a 

“feast” phase operation with initial biomass (Biomass0), acetate (Acetate0) and 

ammonia (Ammonia0) concentrations along with the other essential materials required 

for successful execution of the batch process. In the SBR recipe, duration of the “feast” 

phase batch process is also specified. Specification of the initial biomass, acetate and 

ammonia concentrations are the requirement of the first step operation in the first cycle 

of the SBR run. For the second cycle and onwards, batch operation duration is the only 

batch element required to be specified in the SBR recipe since materials are taken from 

the sixth step of the former cycle to the first step of the executing first step.  
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STEP 2. After a successful “feast” phase operation in the first step of SBR cycle, cells 

should reach to their PHB maturity point while ammonia is completely exhausted and 

acetate concentration is reduced to a positive entity. At this stage, the SBR process 

undergoes an operational quiescence for precipitation of biomass in the tank. The 

quiescence operational period should be specified in the SBR recipe to be applied for 

every second step operation of each cycle.  

 

Figure 7.2 Structure of the SBR recipe for execution 

STEP 3. The third SBR step is the exploitation stage in which a portion of the total 

biomass containing PHB saturated bacteria is exploited from the operational tank. In the 

execution recipe, it is proposed to maintain a certain level of biomass at the end of the 

third step of the SBR as defined in the recipe. Therefore, a straight forward method is 

suggested to maintain SBR process operability by exploitation of different biomass 

concentrations in the event of operational deviation from its steady state conditions. 

These advantages favour selection of the proposed method over other possible options 

such as partial reservation or constant exploitation of biomass. This stage is the last 

stage of the SBR operation if the total number of operational cycles is met according to 

the recipe.  
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STEP 4. In the fourth step of the SBR recipe, a feed stream containing ammonia is 

injected to the operational system with the aim of directing the batch process into a 

“famine” phase operation. Ammonia injection increases bacteria replication in parallel 

to acetate consumption. As the result, the rate of acetate consumption increases 

significantly until acetate is exhausted in the operational system. Bacteria start to 

consume their intracellular PHB content to provide for their metabolic actives.  

STEP 5. The fifth step of the SBR process is the “famine” phase batch operation led by 

the injection of ammonia in the previous step. Importance of the “famine” phase 

operation is in reduction of PHB concentration inside bacteria in order to maintain their 

biological tendency for reproduction and PHB storage. The SBR process element that is 

required to be defined for this stage of the recipe is the operational duration.  

STEP 6. In the sixth step of the SBR process, a mixture of acetate and ammonia is 

injected to the operational system with the aim of directing the subsequent batch process 

into a “feast” phase operation. The major point of innovation in this recipe is the 

application of the “Phase Differentiating Equation” (Equation (5.14)) in specification of 

the appropriate acetate and ammonia added to the operational system. This equation was 

formulated as 

             (      )    

                                               

(5.1) 

where   is the initial acetate concentration in (C-mmol/L),   is the initial ammonia 

concentration in (N-mmol/L),   is the initial biomass concentration in (C-mmol/L), 

       value specifies PHB content percentage and   ,   ,   ,   ,   , and    are 

equation parameters tabulated in Table 5.8 (Section 5.4). 

With application of the “Phase Differentiating Equation” (Equation (5.14)), critical 

ammonia concentration is specified for a given biomass concentration with PHB content 

level of        value and acetate concentration specified in the recipe. If subsequent 

batch operation follows the general trend of its biological behaviour, providing less than 

the critical ammonia (specified using Equation (5.14)) to the system would result a 

“feast” phase operation. On the other side, maintaining more than the identified critical 

ammonia would lead to a “famine” phase operation. In order to direct the batch process 

into a “feast” phase operation, 80% of the critical ammonia value is considered to be 

provided to the batch operation in this study. The 80% ratio is proposed on the 

following two bases:  



Chapter 7 SBR Recipe Establishment 

194 

1. This ratio is high enough to maximise biomass replication with high ammonia 

concentration exposed to the system.  

2. It is not too high to impose risk of “famine” phase occurrence when “feast” 

phase is favourable. 

Acetate concentration should be increased to a level specified in the SBR recipe. For the 

specified acetate concentration and available biomass with their level of PHB content, 

the critical ammonia concentration is calculated using the “Phase Differentiating 

Equation” (Equation (5.14)) and 80% of this value is set as the target to increase 

ammonia concentration by the end of the sixth step of the SBR recipe execution.  

As depicted in Figure 7.2, termination of the sixth step is followed by initiation of the 

first step which is a “feast” phase batch operation with pre-defined duration specified in 

the SBR recipe. In the same manner, the subsequent sequence of the SBR process is 

carried out to complete all the cycles as specified in the recipe. Total exploitation of the 

biomass occurs in the third step of the final SBR cycle for process termination.  

In the next section, procedure of recipe parameter assignment will be discussed in 

detail. 

7.2.4 Procedure of assigning values to the SBR recipe parameters 

In this section, a procedure to allocate appropriate values to the parameters of the SBR 

recipe is discussed. This method is based on the amount of biomass concentration 

required to be produced/exploited from the operational system in different cycle stages. 

In other words, production scale is specified by assigning appropriate values to the 

recipe parameters associated with the biomass concentrations. This includes an 

approximation for the initial biomass injected to the operational system and the amount 

of biomass concentration kept in the SBR operation in the exploitation stage. The other 

parameters related to the inlet/outlet flow of materials to the system are specified in 

accordance with the biomass concentrations.  

In the initial step of parameter assignment, the amount of biomass kept in the 

operational system in the exploitation stage of the SBR process (STEP 3) is specified. 

The next step is to specify ammonia concentration at the end of the fourth step of the 

SBR cycle. Since ammonia is added to the system with the aim of directing the 

subsequent “famine” phase operation in the fifth step of the SBR, empirical models 

developed in Section 6.5 can be used to identify the ammonia augmentation level in the 

STEP 4.  



Chapter 7 SBR Recipe Establishment 

195 

Based on the amount of biomass and ammonia available in the initial state of the 

“famine” phase operation, biomass production would occur. A Bootstrapping 

Aggregated Neural Network (BANN) model predicting biomass concentration at the 

end of the “famine” phase operation (defined as Point-T in Chapter 6) can be used for 

reverse calculation. Table 6.12 shows that prediction of biomass concentration at the 

end of the “famine” phase operation is a function of initial biomass and ammonia 

concentration values. This model can be used for the given value of biomass 

concentration kept in the SBR process from STEP 3 to estimate the required value 

associated with biomass concentration at the end of the “famine” phase operation. The 

initial ammonia concentration is the variable to be identified by the BANN model. Prior 

to adding ammonia in STEP 4, insignificant amount of ammonia is available in the 

operational system since ammonia was completely exhausted in the former “feast” 

phase operation. Additionally, with the application of “Phase Differentiating Equation”, 

it is possible to calculate the maximum permissible acetate concentration available at 

the beginning of STEP 4 stage.  

Assuming that STEP 5 “famine” phase operation takes place successfully, the final 

biomass concentration should be close to the value predicted by the BANN model. The 

acetate and ammonia concentrations is manipulated in STEP 6 for the given biomass 

concentration to ensure occurrence of a “feast” phase operation in STEP 1 of the 

subsequent cycle.  

As biomass concentration is the basis of the recipe design, final concentration of 

biomass at the end of STEP 1 “feast” phase operation should be specified. Since initial 

and final concentration of biomass for the “feast” phase process are known, the 

empirical model proposed in Table 6.10 can be used to associate initial biomass and 

ammonia concentrations to the final biomass concentration in a “feast” phase operation. 

The appropriate ammonia concentration required to be injected to the operational 

system in STEP 6 can be identified using the model.  

In order to specify the appropriate acetate concentration for injection in this stage, 

“Phase Differentiating Equation” is applied. To assure “feast” phase operation, the 

specified ammonia concentration should meet the specified acetate concentration when 

ammonia concentration is 80% of its critical value. Therefore, appropriate acetate 

concentration can be obtained using the “Phase Differentiating Equation” for an 

ammonia value equal to 125% of the specified ammonia (125% is the ratio of 100 over 
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80, the reverse ratio of 80%). With the specified acetate and ammonia concentrations 

for STEP 6, SBR process is prepared to operate a “feast” phase batch operation.  

Empirical model structure proposed in Table 6.10 for prediction of final acetate 

concentration using initial biomass, PHB, acetate and ammonia concentrations can be 

used to check that the final acetate concentration does not exceed from the maximum 

permissible acetate concentration previously specified in STEP 4.  

In the SBR recipe, initial biomass, acetate and ammonia concentrations for SBR 

initiation in STEP 1 can be assigned by the concentration values expected at the end of 

the STEP 6 for these materials. Later, these values can be modified by the dominant 

steady state values of these materials at the initial point of STEP 1.  

Other than the recipe parameters assigned up to this point, parameters related to batch 

durations need to be specified as well. The best practice is to assign these values based 

on experiment results. Moreover, simulation studies can also be useful in this regard. 

The analytical tool to generate characterisation plots mentioned in Chapter 4 can 

provide useful information regarding the optimal duration of a “feast” phase batch 

process. In case of the “famine” phase optimal batch termination point, analysis of the 

historical data can provide a platform to assign the batch duration. For instance, in 

accordance with the Figure 6.28, optimal batch duration is longer when dominant 

“famine” phase operation runs under RT5 in comparison to RT3. As a proposition, 

average value of optimal batch termination times plus a ratio of their standard deviation 

can be used as the termination point of “famine” phase batch operations.  

The BANN model structure given in Table 6.10 for estimation of PHB saturation point 

in a “feast” phase operation can also be used to assign “feast” phase batch duration in 

the SBR recipe. It should be noted that the models predicting the most significant 

operational points do not perform accurately. For “famine” phase batch termination 

estimation, the model structure proposed in Table 6.12 can be used. When occurrence of 

one of the two “famine” phase “Regime Types” is more probable, one of two model 

structures given in Table 6.13 and Table 6.14 for RT3 and RT5 respectively is more 

favourable for more accurate estimation of batch termination points.  

At the end, a list of SBR Recipe Factors (RF) defined in this section for the SBR 

process aiming to produce PHB under MMC is tabulated in Table 7.1 along with brief 

description of the factor.   
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Table 7.1 SBR recipe factors 

SBR  

Recipe Factors 

Description 

RF1 

 

SBR cycle numbers 

RF2 Total biomass concentration introduced to the SBR at the initial point 

(STEP1). (C-mmol/L) 

RF3 PHB ratio available in the initial biomass relative to its maximum capacity 

(STEP1). 

RF4 Acetate concentration introduced to the SBR at the initial point (STEP1).  

(C-mmol/L) 

RF5 Ammonia concentration introduced to the SBR at the initial point (STEP1).  

(N-mmol/L) 

RF6 

 

STEP 1 operational duration  

(hour) 

RF7 

 

STEP 2 operational duration  

(hour) 

RF8 Total biomass concentration remained in the operation in STEP 3  

(C-mmol/L) 

RF9 

 

Ammonia concentration maintained by the end of STEP 4 

(N-mmol/L) 

RF10 

 

STEP 5 operational duration  

(hour) 

RF11 

 

Acetate concentration maintained by the end of STEP 6  

(C-mmol/L) 

 

In the next section, a typical SBR recipe is designed and later implemented by the 

simulation program.  

7.2.5 Design of a typical SBR recipe 

Following the procedure mentioned in the previous section, a typical SBR recipe is 

generated in this section based on the magnitude of the process variables reported in the 

literature. The biomass concentration considered in the SBR recipe alters in a range 

between 10 C-mmol/L and 40 C-mmol/L which is within the range of practical 

experiments reported in the literature (Serafim et al., 2004; Dias et al., 2006; Dias, 

2008).  

The biomass concentration kept in the SBR process in STEP 3 is considered to be 10  

C-mmol/L (RF8=10). The biomass replication in the “famine” phase operation increases 

the biomass concentration from 10 C-mmol/L to 20 C-mmol/L. In the “feast” phase 

operations, biomass growth is designed to be from 20 C-mmol/L to 30 C-mmol/L.  

Based on these biomass concentrations, acetate and ammonia feeding concentrations are 

specified as discussed in the previous section. The BANN model developed to predict 

biomass concentration at the final point of a “famine” phase operation (Point-T) is used 

to assign an appropriate value for addition of ammonia in STEP 4 of the SBR process. 
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Table 7.2 shows prediction results for a two-input model with x1 being initial biomass 

concentration and x4 being initial ammonia concentration. For a constant initial biomass 

of 10 C-mmol/L and variable initial ammonia concentration between 1 N-mmol/L and  

3 N-mmol/L, final biomass concentrations are estimated.  

Table 7.2 BANN model predictions for final biomass concentration in a “famine” 

phase batch operation 

x1 
(Initial biomass) 

x4 
(Initial ammonia) 

y=f(x1,x4) 
(Final biomass) 

10   (C-mmol/L) 1    (N-mmol/L) 15.5   (C-mmol/L) 

10   (C-mmol/L) 1.5 (N-mmol/L) 17.9   (C-mmol/L) 

10   (C-mmol/L) 2    (N-mmol/L) 19.8   (C-mmol/L) 

10   (C-mmol/L) 2.5 (N-mmol/L) 22.1   (C-mmol/L) 

10   (C-mmol/L) 3    (N-mmol/L) 24.5   (C-mmol/L) 

 

Since biomass concentration of 20 C-mmol/L is favourable, ammonia concentration of 

around 2 N-mmol/L is assigned to the SBR recipe (RF9=2). Therefore, ammonia 

augmentation level should be about 2 N-mmol/L in STEP 4 of the SBR process. Using 

“Phase Differentiating Equation” maximum permissible acetate concentration can be 

identified to assure occurrence of “famine” phase operations in the consecutive batch 

operation. The “Phase Differentiating Equation” is used for biomass concentrations less 

than 200 C-mmol/L: 

                                                        

                                                  

 

where   is the initial ammonia concentration in N-mmol/L,   is the initial acetate 

concentration in C-mmol/L and   is the initial biomass concentration in C-mmol/L. For 

initial biomass concentration of 10 C-mmol/L (Z=10 C-mmol/L), and ammonia 

concentration of 2 N-mmol/L (Y=2 N-mmol/L) the above equation takes the following 

format: 

                                                       

At the initial state of a “famine” phase operation,        value should be close to 

100%. For PePHB0 equal to 1, critical acetate concentration is calculated to be about  

50 C-mmol/L (X=50 C-mmol/L). This is the maximum acetate concentration that 

should be available at the beginning of STEP 4.  
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For STEP 6, acetate and ammonia feeding concentrations should be defined so that 

“feast” phase operations are assured in the subsequent STEP 1 batch operation. As 

mentioned, biomass concentration is expected to increase from 20 C-mmol/L to 30  

C-mmol/L in the “feast” phase operation. The proposed BANN model structure given in 

Table 6.10 is used to associate initial biomass and ammonia concentrations to final 

biomass concentration in a “feast” phase process. For a constant initial biomass 

concentration of 20 C-mmol/L, the BANN model is used to predict final biomass 

concentrations to target 30 C-mmol/L with various initial ammonia concentration 

values. In Table 7.3 prediction values are tabulated for 5 different initial ammonia 

values. As shown in this table, in order to reach to 30 C-mmol/L of biomass, 

augmentation of 2 N-mmol/L ammonia is required.  

Table 7.3 BANN model predictions for final biomass concentration in a “feast” 

phase batch operation 

x1 
(Initial biomass) 

x4 
(Initial ammonia) 

y=f(x1,x4) 
(Final biomass) 

20   (C-mmol/L) 1    (N-mmol/L) 25.8   (C-mmol/L) 

20   (C-mmol/L) 1.5 (N-mmol/L) 27.9   (C-mmol/L) 

20   (C-mmol/L) 2    (N-mmol/L) 30.1   (C-mmol/L) 

20   (C-mmol/L) 2.5 (N-mmol/L) 32.2   (C-mmol/L) 

20   (C-mmol/L) 3    (N-mmol/L) 34.3   (C-mmol/L) 

 

In order to assure “feast” phase operation, “Phase Differentiating Equation” is used to 

find the critical acetate concentration equivalent to 125% of the ammonia concentration 

injected in STEP 6 of the process. Based on the “Phase Differentiating Equation” 

(Equation (5.14)): 

                                                        

                                                  

 

For initial biomass concentration of 20 C-mmol/L (Z=20 C-mmol/L), and ammonia 

concentration of 2 1.25 N-mmol/L (Y=2.5 N-mmol/L) the above equation takes the 

following format: 

                                                           

At the initial state of a “feast” phase operation,        value should be close to 0%. 

For        equal to 0, critical acetate concentration is calculated to be about 130  

C-mmol/L (X=130 C-mmol/L). This is the acetate concentration that should be 
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available at the end of STEP 6 and beginning of the consecutive STEP 1 batch operation 

(RF11=130).  

In order to initiate the SBR operation, process conditions at STEP 1 steady state is 

considered. Therefore, initial biomass concentration is assigned to be equal to  

20 C-mmol/L, with low level of PHB content after a “famine” phase operation, initial 

ammonia concentration of 2 N-mmol/L and initial acetate concentration of  

130 C-mmo/L (RF2=20, RF3=10%, RF4=130, RF5=2). Up to this point, recipe 

parameters associated with feeding concentrations are all specified.  

It is also favourable to estimate final concentration of acetate at the end of STEP 1 

“feast” phase operation to ensure that the remained concentration is less than  

50 C-mmol/L. The BANN model structure given in Table 6.10 for prediction of final 

acetate concentration using initial biomass, PHB, acetate and ammonia concentrations 

are applied in this regard. For initial biomass concentration of 20 C-mmol/L (x1=20) 

with insignificant amount of intracellular PHB content (x2=0), initial acetate 

concentration of 130 C-mmol/L (x3=130) and initial ammonia concentration of  

2 N-mmol/L (x4=2) the final acetate concentration is predicted to be about 30 C-mmol/L 

by the BANN model. This value is considerably less than the maximum permissible 

amount for acetate concentration of 50 C-mmol/L that should be available at the 

beginning of STEP 4. Therefore, it does not produce any conflict for “famine” phase 

operation in the subsequent STEP 5 (For high initial intracellular PHB content (x2=1), 

the predicted final acetate concentration is far less than 30 C-mmol/L which confirms 

validity of the recipe in case of occurrence of disturbance effecting the initial 

intracellular PHB content). 

The batch duration parameters are assigned to 15 hours for the “feast” phase operations 

and 20 hours for the “famine” phase operations using BANN models with the structures 

proposed in Table 6.10 and Table 6.12 respectively (RF6=15, RF10=20). The 

quiescence period is considered to be 10 hours in simulations as proposed in the 

literature (RF7=10) (Dias, 2008). Assignment of a more accurate batch period time is a 

subject of experimental studies. 

In the next section, the SBR recipe generated in this section will be executed using the 

simulation program.  
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7.2.6 Execution of the SBR recipe  

In this section, computer simulation program discussed in Chapter 3 is used to 

implement the SBR recipe for production of PHB under mixed microbial cultures. The 

SBR production presented in this section is based on the SBR recipe developed in the 

previous section. The SBR recipe parameters presented in this section are assigned to 

generate a 50-cycle SBR run. This SBR recipe is tabulated in Table 7.4.  

Table 7.4 A SBR recipe for production of PHB  

SBR recipe 

RF1 Cycle Numbers 50 

 SBR stage Entity Value Unit 

RF2 Initiation Biomass 20 C-mmol/L 

RF3 Initiation PePHB0 0.1  

RF4 Initiation Acetate 130 C-mmol/L 

RF5 Initiation Ammonia 2 N-mmol/L 

RF6 Step 1: Time 15 hr 

RF7 Step 2: Time 10 hr 

RF8 Step 3: Biomass 10 C-mmol/L 

RF9 Step 4: Ammonia 2 N-mmol/L 

RF10 Step 5: Time 20 hr 

RF11 Step 6: Acetate 130 C-mmol/L 

 

Detailed simulation results for ammonia, acetate, PHB and biomass concentrations are 

depicted in different subplots shown for the first and the second sequence of the SBR in 

Figure 7.3 and Figure 7.4 respectively. Each column in the figures represents one step 

of the SBR recipe as designed in Section 7.2.2.  

 Demonstration of the first two SBR recipe cycles 

Cycle 1-STEP 1: As shown in the first column of Figure 7.3, SBR initiates with 

ammonia concentration of 2 N-mmol/L, acetate concentration of 130 C-mmol/L and 

total biomass concentration of 20 C-mmol/L. The total biomass concentration is 

composed of the biomass concentrations for each 32 populations of bacterial used as the 

mixed microbial cultures producing PHB. For simulation purpose, initial biomass 

concentration of cultures is randomly assigned to sum up to the total biomass 

concentration specified by the SBR recipe. The intracellular PHB content of the 

biomass at the initial point is 10% of the maximum capacity of each 32 populations.  

Looking at the first column of subplots shown in Figure 7.3, it can be deduced that the 

15 hour batch operation in the first step of the SBR recipe is operating under the “feast” 
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phase operation specifications. The concentration of total PHB increases to a maximum 

saturation point by the end of the batch without any PHB drop. This is in conformity 

with the SBR recipe in which the first step was designed to perform a “feast” phase 

operation. This operation represents an RT8 “Regime Type” in accordance to the 

“Characterisation Method” analysis with initial ammonia depletion followed by acetate 

concentration stability. The plots depicting total biomass and total PHB concentrations 

were obtained by summation of the 32 biomass and PHB values for each 32 active 

bacterial populations respectively. The ammonia depletion point is marked by ( ), 

acetate stability point is marked by ( ) and PHB saturation is marked by ( ). The PHB 

saturation is maintained for 10% of the overall batch duration confirmed by ( ) on the 

PHB plot. 

Cycle 1-STEP 2: The final state of the batch operation in the first step is used to define 

the initial state of the batch in the second step which is the settling step. In this stage, 

batch operation undergoes a period of quiescence in order to allow precipitation of the 

biomass. The quiescence stage requires 10 hours of quiescence with no input/output 

stream of materials into/from the operational system. The plots presenting critical 

process attributes are shown in the second column of the Figure 7.3. In this step, apart 

from a small portion of acetate consumed to maintain cells metabolic activities, no 

significant concentration alteration occurs in the biomass and PHB profiles.  

Cycle 1-STEP 3: The final state of the batch in quiescence step is used to define the 

initial process state in the third step of the recipe (exploitation step). The graphs 

showing the initial and final state of the process at this stage are given in the third 

column of plots in Figure 7.3. Since this stage of the SBR is not an operational process, 

a short instant is considered for biomass exploitation in this simulation study. However, 

this stage may require considerably more time in real operation practice. At this stage, 

the high intracellular PHB content cells are divided into two portions. One portion 

remains inside the operational system to be used in the consecutive steps of the SBR 

process assigned as RF8 in the recipe. The other portion is exploited from the system 

for PHB purification and downstream processing. As shown in Figure 7.3, total biomass 

concentration in the operational system drops from 30 C-mmol/L to 10 C-mmol/L in 

accordance with the recipe specifications. The biomass concentration of 20 C-mmol/L 

exploited from the reactor contains about 52 C-mmol/L intracellular PHB as the product 

of the first cycle of SBR operation. Since simulation period is considered to be short, 

process alteration in acetate or ammonia concentration is insignificant.  
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Cycle 1-STEP 4: In the fourth step, operational system is prepared to undergo a 

“famine” phase operation in the subsequent step. For that purpose, ammonia is 

introduced to the operational system in accordance with the specification given by RF9 

in the SBR recipe. Similar to the previous step, the time period considered for this 

simulated stage is short since injection of ammonia occurs instantly in practice. As 

shown in the fourth column of Figure 7.3, ammonia concentration is increased to  

2 N-mmol/L by the end of this step.  

Cycle 1-STEP 5: In the fifth step of the cycle, a batch process operation occurs. 

Execution of a well-designed SBR recipe leads to a “famine” phase operation in this 

step. The graphs shown in the fifth column of Figure 7.3 confirms “famine” phase 

operation for the first cycle of the SBR operation under RT3. In this process, both 

acetate and ammonia are consumed in direction of biomass replication. When acetate is 

completely exhausted in the operational system, cells start to consume their intracellular 

PHB content to maintain their metabolic activities. Consumption of the intracellular 

PHB is reflected in fPHB, PHB and total PHB plots. The operational duration is set to 

20 hours as specified in the SBR recipe (RF10=20). 

Cycle 1-STEP 6: by the end of the “famine” phase operation, cells should be in proper 

state to initiate a “feast” phase production stage. In the sixth step of the recipe, process 

preparations are carried out to direct the operational system into a “feast” phase process. 

Similar to the third and the fourth steps, the sixth step occurs instantly and a short time 

is considered for simulation of the step. The acetate augmentation concentration is 

specified by the SBR recipe using the “Phase Differentiating Equation” and accordingly 

ammonia is added to the operational system to insure “feast” phase operation in the 

consecutive step. The acetate augmentation factor is 130 C-mmol/L in the SBR recipe 

(RF11=130).  

Equation (5.14) is applied to assign appropriate ammonia augmentation concentration: 

                                                        

                                                  

 

where   is the initial ammonia concentration in N-mmol/L,   is the initial acetate 

concentration in C-mmol/L and   is the initial biomass concentration in C-mmol/L. The 

average        value for the 32 populations at the initial stage of the sixth step in the 

first cycle is about 15% (       = 0.15). The initial biomass concentration is 20  

C-mmol/L (Z=20) and the initial acetate concentration should be about 130 C-mmol/L 
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(X=130) as given in the recipe. Using equation mentioned above, the critical ammonia 

concentration is calculated to be about 2.8 N-mmol/L (Y=2.8).  

As mentioned in the recipe description section, in the sixth step of the SBR cycle 

ammonia is added to the operational system so that its concentration reaches to 80% of 

the critical ammonia concentration calculated. As shown in the sixth column graphs of 

Figure 7.3, acetate and ammonia concentrations are augmented to 130 C-mmol/L and 

2.2 N-mmol/L at the final operational state of the sixth step.  

Cycle 2-STEP 1: the second cycle of the SBR process initiates from the first step 

operational batch process. The initial state of the batch process is the final state of the 

batch from the previous sixth step. As shown in the first column of graphs in Figure 7.4, 

the operational batch undergoes a “feast” phase operational process as expected.  

Cycle 2-STEP 2: precipitation is carried out during the 10 hours of operational 

quiescence.  

Cycle 2-STEP 3: in this step, 22 C-mmol/L of biomass is exploited from the process 

and 10 C-mmol/L remains in the vessel for the consecutive step of the cycle.  

Cycle 2-STEP 4: ammonia concentration is increased to 2 N-mmol/L as specified in the 

SBR recipe. 

Cycle 2-STEP 5: a batch operation occurs to reduce PHB content of the cells by 

operating under a “famine” phase operation. As shown in the fifth column graphs of 

Figure 7.4, “famine” phase operation is occurred under RT3 “Regime Type”. 

Cycle 2-STEP 6: in this step, acetate and ammonia is added to the operational system 

in order to prepare the batch for the subsequent “feast” phase operation.  



 

 

 

Figure 7.3 Detailed presentation of simulation results for the first cycle of PHB production under proposed SBR recipe 
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Figure 7.4 Detailed presentation of simulation results for the second cycle of PHB production under proposed SBR recipe 
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 Demonstration of the first five SBR recipe cycles 

Detailed description of the process elements for the first two SBR cycles was depicted 

in Figure 7.3 and Figure 7.4. In Figure 7.5, simulation results are shown for the first five 

cycles of this recipe. In this figure, significant elements of the process are depicted 

showing the initial and final state of each batch in each SBR step. Additionally, 

“Regime Type” numbers are given in the plots of the first row in order to provide 

qualitative description of the operational batch process carried out in each cycle. For 

each SBR step, one column of plots is allocated in Figure 7.5.  

In order to validate the SBR recipe, occurrence of the “feast” and “famine” phase 

operations in the first and the fifth SBR steps are investigated at first. The appearance of 

RT8 in STEP 1 and RT3 in STEP 5 confirms occurrence of the “feast” phase and the 

“famine” phase operations in conformity of the SBR structure respectively. Successful 

quiescence stage is characterised by RT4 in STEP 2. Otherwise, acetate shortage results 

in occurrence of RT5 which is a failure in STEP 2.  

The total biomass concentration profile follows the description designed in creation of 

the SBR recipe. In the five cycles, total biomass concentration increases from 20  

C-mmol/L to about 30 C-mmol/L in the first step SBR operations. In the third step SBR 

operations, 10 C-mmol/L of the total biomass concentration remain in the SBR 

operation while the second portion is exploited. In the “famine” phase operation stages, 

total biomass concentration increases from 10 C-mmol/L to 20 C-mmol/L as considered 

in the SBR recipe generation procedure.  

Looking at the first column graphs depicted in Figure 7.5, it can be seen that “feast” 

phase process characteristics are observable in the initial and final states of the process 

elements. PePHB values increased from less than 10% to more than 90% in each cycle 

and their effect on the total PHB concentrations is reflected on the PHB profile.  

In the second column of graphs shown Figure 7.5, concentration profiles are depicted 

for the quiescence stage of the SBR. These graphs demonstrate that acetate consumption 

is the only significant occurrence that takes place to maintain biological activities of the 

cells. As shown in the graphs, total biomass concentration, total PHB concentration and 

ammonia concentration remain the same during the quiescence stage.  



 

 

 

Figure 7.5 Execution of the SBR recipe in five cycles 
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In the third column of Figure 7.5, the process graphs associated with the exploitation 

stage are depicted. In the five cycles, the total biomass concentration exploited from the 

process varies in between 20 C-mmol/L to 23 C-mmol/L. This variation is mainly due 

to the variation of the loading ammonia concentration in the sixth step of the earlier 

cycle. For instance, maximum total biomass concentration exploited in the third step 

occurred in the second cycle when maximum ammonia concentration is assigned for the 

sixth step of the earlier cycle. The variation observed for the total PHB profiles are due 

to the variations in the total biomass concentration and the “feast” phase operations 

occurred prior to the exploitation stage.  

For the fourth step of the SBR, the loading concentration of ammonia is depicted on the 

top graph in the fourth column of Figure 7.5. On the bottom graph, the initial and final 

concentrations of ammonia are depicted to demonstrating ammonia increase from zero 

to the amount introduced to the process in this stage of the SBR. 

In the fifth column of Figure 7.5, PePHB profile is depicted to demonstrate 

effectiveness of the “famine” phase operation in reduction of PHB content of the 

operational cells. The initial PePHB values decreased from more than 95% to less than 

5% during the five “famine” phase operations in the SBR cycles. The complete 

exhaustion of the acetate and ammonia is depicted in their concentration profiles in this 

column of graphs.  

In the sixth column of Figure 7.5, initial, loading and final concentrations of acetate and 

ammonia are depicted in the graphs. As mentioned in the previous section, the acetate 

loading concentration is specified in the SBR recipe whereas the ammonia loading 

concentration is calculated using the “Phase Differentiating Equation”.  

Figure 7.5 demonstrates a successful release of the SBR recipe for a SBR process in the 

first five cycles. In Figure 7.6, a complete set of operational elements are shown for the 

50 cycles of the SBR recipe.  

 Demonstration of a complete SBR recipe with 50 cycles 

The first step in process analysis is carried out by observing the “Regime Type” 

numbers on the top graphs depicted for the first, second and fifth steps of the SBR 

operation. As shown on the “Regime Type” plot of the first step operations in  

Figure 7.6, the majority of the operations perform under RT8 which indications 

occurrence of a “feast” phase operation. In three cycles RT5 and in one cycle RT9 are 

the “Regime Types” observed in STEP 1 operations which are not favourable. In  
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STEP 2, six out of fifty operations encountered acetate exhaustion during the 

quiescence period by observing unfavourable RT5 in place of RT4. In STEP 5, RT3 and 

RT5 are the only “Regime Types” observed in the “Regime Type” plot to confirm 

“famine” phase occurrence in all cycles of the process.  

The overall assessment of the “Regime Type” plot leads to the conclusion that the SBR 

recipe is able to provide a successful SBR operation with low failure rate of less than 

10% in the “feast” phase operational stage (in 4 out of 50 cycles “feast” phase did not 

occur). This failure is mainly due to the unpredictable/randomness associated with the 

biological behaviour of the PHB process that is reflected in the simulation program.  

The loading concentration of ammonia in the sixth step of the SBR operation is 

specified using the “Phase Differentiating Equation”. As mentioned in Chapter 5, the 

“Phase Differentiating Equation” fails in a small ratio of the total predictions when 

random behaviour process simulator is applied. Unfortunately, failure of the equation to 

provide accurate estimation has negative effect on overall performance of the SBR 

process. However, this failure does not paralyse the overall process and the operation 

manages to retain its pre-defined pathway in the subsequent stages.  

Close observation of the concentration profiles in different stages of the SBR operation 

depicted in Figure 7.6 leads to the conclusion that the operational system follows the 

specifications defined in the SBR recipe except for a minority of the cycles. These 

deviations of the expected concentration profiles can be noted in the cycles with 

appearance of unexpected “Regime Types”.  

Execution of the SBR recipe with large number of cycles demonstrates the reliability of 

the method to perform successful PHB production under MMC using the SBR process 

with the proposed recipe structure. The success of the proposed recipe structure and its 

parameters can also be confirmed when no accumulation of substances is recorded over 

SBR process. The intracellular PHB content of the cells reduce to its minimal level in 

the “famine” phase operations while cells accumulate PHB to their maximum capacity 

in the majority of the “feast” phase operations as depicted in Figure 7.6.  

In the next section, capability of the SBR process operating under the generated recipe 

in rejection of different types of load disturbances will be investigated.  

 



 

 

 

Figure 7.6 Execution of the SBR recipe (demonstration of the 50 cycles)  
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7.3 Capability of the SBR recipe in disturbance rejection 

7.3.1 Introduction  

Application of the SBR recipe created for production of PHB under MMC is 

straightforward. However, execution of the recipe on the operational units might be 

coupled with disturbances that can potentially paralyse the process. For instance, if 

ammonia concentration is not maintained at exact 2 N-mmol/L, deviation of the 

operational recipe occurs with no predictable outcome and it can be considered as a 

disturbance to the operational recipe.  

In this section, both positive (external effect to the system is more than the specified 

value in the recipe) and negative (external effect to the system is less than the specified 

value in the recipe) disturbances are imposed to the recipe parameters that are 

associated with the substances injected or exploited from the operational system.  

With the aim of analysing the effect of executional disturbances to the operational 

process, deterministic behaviour process simulator is applied in the first step for a more 

clear observation of the disturbance effect on the SBR process. The SBR recipe 

generated in Section  7.2.5 is executed for 50 cycles and the results of a simulation run 

are depicted in Figure 7.7. Since deterministic behaviour process simulator is used to 

generate data depicted in Figure 7.7, the produced plots are more informative when 

compared with the plots depicted in Figure 7.6 where random behaviour process 

simulator is used for data generation.  

The deterministic behaviour process simulator produces identical results when two 

batch operations undergo the same operational conditions. Additionally, the “Phase 

Differentiating Equation” applied in the sixth step of the SBR cycles is very accurate for 

the case of deterministic behaviour system as mentioned in Chapter 5.  

The three recipe factors that can be imposed to load disturbances are RF8, RF9 and 

RF11 during the course of the SBR operation. The three graphs demonstrating the 

remaining biomass concentration in the third step (RF8), the ammonia augmentation 

concentration in the fourth step (RF9) and the acetate augmentation concentration in the 

sixth step (RF11) are the identical graphs when comparing Figure 7.6 with Figure 7.7. 

These three profiles are identical since no operational disturbance is considered in 

simulation studies of the two systems.  



 

 

 

Figure 7.7 Execution of the SBR recipe using deterministic behaviour process simulator 
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The analysis of the SBR recipe reaction to the load disturbances on RF8, RF9 and RF11 

are discussed in Section 7.3.2, Section 7.3.3 and Section 7.3.4 respectively. A brief 

summary of the figures depicted to illustrate the effect of disturbances on the SBR 

recipe is tabulated in Table 7.5. 

Table 7.5 Illustrative investigations on the recipe reactions to the load disturbances 

Source of load disturbance Deterministic 

behaviour 

simulator 

Random 

behaviour 

simulator 

RF8-The remained biomass concentration in STEP3 

 

Section 7.3.2 

Figure 7.8 

Section 7.3.2 

Figure 7.9 

RF9-The ammonia augmentation concentration in STEP4 

 

Section 7.3.3 

Figure 7.10 

Section 7.3.3 

Figure 7.11 

RF11-The acetate augmentation concentration in STEP11 

(disturbance recognition without delay) 

Section 7.3.4.A 

Figure 7.12 

Section 7.3.4.A 

Figure 7.13 

RF11-The acetate augmentation concentration in STEP11 

(disturbance recognition with delay)  

Section 7.3.4.B 

Figure 7.14 

Section 7.3.4.B 

Figure 7.15 

 

Investigations on the effect of RF11 disturbance on the recipe is carried out on two 

cases considering immediate (Section 7.3.4.A) or gradual recognition of the disturbance 

(Section 7.3.4.B). At the end, realisation of the SBR process operation is carried out by 

imposing operational execution variation of maximum 50% in RF8, RF9 and RF11. 

Moreover, histograms are shown to demonstrate PHB production variation in reflection 

of operational variations in Section 7.3.5.  

The effect of positive and negative load disturbances on these three SBR variables will 

be investigated in the next three sections. 
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7.3.2  The effect of load disturbance on the total biomass concentration 

remained inside the reactor in the 3
rd

 step of the SBR process - RF8 

In order to investigate the effect of load disturbance on the amount of biomass remained 

in the operational system in the exploitation stage; both deterministic and random 

behaviour process simulators are used. The load disturbances are imposed on the 10
th

 

and 25
th

 cycle numbers with a positive value and a negative value respectively.  

In Figure 7.8, simulation results for a SBR process operated under the recipe tabulated 

in Table 7.4 is depicted for the deterministic behaviour system. In this process,  

the biomass concentration remained in the operational system is considered to be  

20 C-mmol/L in the 10
th

 cycle and 1 C-mmol/L in the 25
th

 cycle in place of the  

10 C-mmol/L specified in the recipe.  

Looking at the “Regime Type” profiles in the first and the fifth steps of the operation, it 

can be observed that both “feast” phase and “famine” phase operations occur in each 

operational cycle. This figure demonstrates that disturbances on RF3 does not deviate 

the overall process from the original pathway considered in the SBR recipe. The 

operational recipe is capable of mitigating the effect of disturbances by two means. The 

first is alteration of ammonia concentration injected to the system in the sixth step of the 

same cycle and the second is biomass compensation in the third step of operation in the 

subsequent sequence.  

As it can be seen in Figure 7.8, the critical and loading ammonia graphs in the sixth 

column of plots drop to almost half of their steady state values in the 10
th

 cycle. This 

reaction from the operational process is caused by application of the “Phase 

Differentiating Equation” in assignment of appropriate concentration of ammonia in the 

sixth step of the process. Since additional biomass is available in the system, injection 

of less ammonia lead to less production of biomass in the subsequent “feast” phase. 

This reaction to the disturbance directs the process to its steady state pathway.  

The reverse effect is observable when only 1 C-mmol/L of biomass is maintained in the 

25
th

 cycle of the operational process. In the sixth step of the same sequence, the amount 

of ammonia injected into the system is more than its steady state to produce more 

biomass in the subsequent “feast” phase operation.  

The second mitigating reaction to the biomass shock can be observed in the subsequent 

cycle when biomass concentration remained in the operational system is the same as 

defined in the SBR recipe. In the third step of the 11
th

 cycle, more biomass is exploited 
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from the operational system to retain the 10 C-mmol/L of total biomass concentration in 

the process. On the other side, in the third step of the 26
th

 cycle the opposite occurrence 

is observed to bring the process back to its steady state pathway.  

The simulation graphs depicted in Figure 7.9 are generated using the random behaviour 

process simulator to investigate the effect of disturbance on RF3. The random function 

applied in the simulation program generates the same set of random values each time 

the simulation program is run. Therefore, without the disturbances, simulation graphs in 

Figure 7.9 should be identical to those of Figure 7.6.  

Comparing the “Regime Type” graphs in Figure 7.6 and Figure 7.9 suggests that 

disturbances on RF3 have minimal effect on the “Regime Types” of the operational 

systems. The “Regime Type” graphs for the second and the fifth steps are identical in 

the two figures. The first step operation in the 11
th

 cycle undergoes a RT9 “Regime 

Type” which is an unfavourable “feast” phase operation. The appearance of RT9 can 

also be associated with random behaviour of the biological system more than the effect 

of the biomass concentration disturbance.  

The same two mitigating effects of the recipe in the consecutive steps of the operation 

can be observed on the random behaviour systems after imposing the disturbances. The 

change in loading ammonia concentrations in the 10
th

 and 25
th

 cycles and the amount of 

biomass exploited from the system in the 11
th

 and 26
th

 cycles minimise the effect of two 

disturbances on the overall process.  

 



 

 

 

Figure 7.8 Execution of the SBR recipe with load disturbances on RF8 (deterministic behaviour process simulator) 
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Figure 7.9 Execution of the SBR recipe with load disturbances on RF8 
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7.3.3 The effect of load disturbance on the amount of ammonia introduced in 

the 4
th

 step of the SBR process – RF9 

The second type of load disturbance investigated in this study is the effect of loading 

change on the amount of ammonia introduced to the operation in the fourth step of the 

process. In the simulation results shown in Figure 7.10, two load disturbances are 

imposed to the fourth step of the SBR process. In the 10
th

 sequence, ammonia 

concentration is considered to be 4 N-mmol/L as opposed to the steady state  

2 N-mmol/L. Subsequently, in comparison to the steady state conditions, more biomass 

is produced in the fifth step of the same sequence and less ammonia is injected to the 

process in the sixth step. The additional biomass is exploited in the third step of the 11
th

 

cycle in order to redirect the process into the operational pathway defined in the SBR 

recipe.  

The second disturbance is imposed on the 25
th

 sequence of the simulation run. In the 

fourth step of this cycle, no ammonia is injected to the process. Subsequently, the fifth 

step operation turns into a quiescence stage instead of a “famine” phase operation. The 

fifth step operational regime is RT4 in the 25
th

 sequence which is not favourable. 

Insignificant amount of acetate is consumed during the fifth step and all is available in 

the sixth step. The “Phase Differentiating Equation” specifies more ammonia to be 

introduced into the sixth step when compared to the steady state value. This is to assure 

occurrence of the “feast” phase operation in the subsequent first step operation. The 

result of the “feast” phase operation is additional biomass production to compensate for 

the biomass lost in the previous fifth step operation. The additional biomass is exploited 

in STEP 3; however, acetate concentration remained higher than the steady state value. 

The additional acetate directs STEP 5 operation of the 26
th

 cycle into a “feast” phase 

operation with RT8 which is not favourable. The amount of ammonia injected in the 

sixth step of 26
th

 cycle remained high to reduce the effect of additional acetate in the 

operational system. The 27
th

 cycle is a successful cycle with “feast” phase operation in 

the first step and “famine” phase operation with RT5 in the fifth step. The process 

retains its steady state conditions after the 27
th

 cycle.  

The simulation results in Figure 7.10 demonstrate that “famine” phase operations are 

missed in two cycles after negative disturbance on RF9 recipe factor. In Figure 7.11, the 

simulation results are shown when the same disturbances are imposed to the random 

behaviour process system. Since random values are the same applied in generation of 
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Figure 7.6, the effect of ammonia load disturbances can be observed on random 

behaviour process systems when Figure 7.6 is compared with Figure 7.11.  

Comparison of the “Regime Type” graphs in Figure 7.6 and Figure 7.11 demonstrates 

that positive disturbance on the ammonia injection in STEP 4, changed the “Regime 

Type” of the first step in the 11
th

 cycle from expected RT8 to unfavourable RT9. 

Appearance of RT9 is due to the lack of external carbon source in STEP 1 that can be 

associated with the lower injection of acetate in STEP 6 operation of the 10
th

 cycle. 

Moreover, the randomness in the operational behaviour of the system that require more 

acetate for that particular operation as seen in the same operation depicted in Figure 7.9.  

When negative disturbance is imposed to the 25
th

 cycle of the operation, unlike the 

results obtained from the deterministic behaviour process system, the “feast” phase 

operation occurs in fifth step of the same sequence. The additional ammonia introduced 

in the sixth step of the 25
th

 cycle returns the process into its acceptable operational 

pathway with “feast” phase RT8 in the first step and “famine” phase RT5 in the fifth 

step of the 26
th

 cycle. 

As shown in Figure 7.11, the simulation results obtained from the random behaviour 

process simulator demonstrate that the effect of disturbances were mitigated after one 

cycle of operation and therefore the SBR recipe is capable of alleviating the effect of 

disturbances on ammonia concentration injected in the fourth step of the SBR process.  

 



 

 

 

Figure 7.10 Execution of the SBR recipe with load disturbances on RF9 (deterministic behaviour process simulator) 
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Figure 7.11 Execution of the SBR recipe with load disturbances on RF9 
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7.3.4  The effect of load disturbance to the amount of acetate introduced in the 

6
th

 step of the SBR process – RF11 

In this section, load disturbance to the acetate introduced in the 6
th

 step is considered in 

two cases. In the first case, critical ammonia concentration is specified based on the 

acetate concentration of the same sequence in which acetate disturbance occurs. In the 

second case, critical ammonia concentration is calculated based on the acetate value 

specified in the recipe. The effect of disturbance is observed in the subsequent step of 

operation. These two cases are considered in the next two sub-sections.  

7.3.4.A  Disturbance recognition as it occurs 

The simulation results shown in Figure 7.12 are shown to investigate the effect of load 

disturbances on loading acetate concentrations in the sixth step of the deterministic 

behaviour SBR process. In the 10
th

 cycle of the simulated process, loading acetate 

concentration is twice its steady state value and additional ammonia is injected in the 

same stage to mitigate the effect of the disturbance.  

In the subsequent cycle, more biomass is produced in the “feast” phase operation and 

then exploited in the third step in order to increase the rate of acetate consumption in the 

process. In the fifth step of the same sequence, acetate concentration is still higher than 

its steady state value and RT8 “feast” phase operation occurs in place of “famine” phase 

operation in this stage. The ammonia loaded in the 11
th

 cycle is higher than its steady 

state value in order to alleviate the effect of the additional acetate inside the operation. 

The subsequent “feast” phase operation initiates with high intracellular PHB content 

cells. The additional biomass is taken out of the operational system in the 12
th

 cycle and 

the SBR returns to its steady state condition.  

In order to simulate the effect of negative disturbance on the loading acetate 

concentration, no acetate is loaded to the sixth step of the process in the 25
th

 cycle. The 

loading ammonia concentration drops significantly in comparison to the steady state 

conditions. Since no ammonia is available in the first step operation of the subsequent 

cycle and acetate concentration is insignificant, unfavourable RT3 operation occurs in 

place of the “feast” phase operation. The amount of biomass exploited in the third step 

drops significantly while cells lack intracellular PHB content. Since PHB level in the 

operational cells is low, “famine” phase occurrence in the fifth step has minimal 

operational benefits. The steady state process condition is retained with injection of 

acetate to the process in the sixth step of operation.  
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In Figure 7.13, simulation results are depicted for the random behaviour process 

simulator exposed to the same positive and negative disturbances on the loading acetate 

concentration. The effect of the disturbances on this system is similar to their effect on 

the deterministic behaviour process system aforementioned.  

The effect of the additional acetate introduced to the system in the 10
th

 cycle is 

mitigated by adding more ammonia and producing more biomass in the subsequent 

cycle. The majority of the additional acetate is consumed in the “feast” and therefore a 

successful “famine” phase operation occurs in the fifth step operation of the 11
th

 cycle.  

When no acetate is injected in the 25
th

 cycle (in order to investigate the effect of 

negative disturbance on the system) ammonia loading in STEP 4 is low as directed by 

the “Phase Differentiating Equation” to direct the subsequent operation into a “feast” 

phase operation. Occurrence of the unfavourable RT5 which is a “famine” phase 

operation in the first step of the 26
th

 cycle cannot be prevented. The amount of PHB 

product exploited from the system drops to zero in this cycle and an unnecessary 

“famine” phase occurs in the fifth step of this cycle. The process returns to its normal 

operational pathway when steady state loading acetate concentration is injected into the 

process in the sixth step.  

Simulation results shown in Figure 7.12 and Figure 7.13 demonstrate the capability of 

the SBR process under the defined recipe in alleviation of the disturbances imposed on 

the loading acetate concentration. The “Regime Type” graphs deviate from the ideal 

operational regimes when disturbances occur; however, they retain the ideal regimes 

after one or two cycles after disturbance occurrence. Additionally, no accumulation of 

substances is observed during the SBR process. 

 



 

 

 

Figure 7.12 Execution of the SBR recipe with load disturbances on RF11 (deterministic behaviour process simulator) 
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Figure 7.13 Execution of the SBR recipe with load disturbances on RF11 
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7.3.4.B  Disturbance recognition with delay 

In absence of online monitoring for acetate concentration in the operational solution, 

ammonia loading concentration is calculated based on the acetate concentration 

specified in the SBR recipe. Therefore, the acetate and ammonia concentrations injected 

into the operational process do not follow the specifications directed by the “Phase 

Differentiating Equation” in occurrence of the acetate disturbance.  

In Figure 7.14, a positive disturbance is imposed on the loading acetate concentration in 

the 10
th

 cycle of the deterministic behaviour simulated process. In this simulation, the 

loading ammonia concentration remains the same as for the steady state condition in the 

10
th

 cycle. Since ammonia concentration is the same as its steady state value, biomass 

and PHB production stays the same as for the steady state conditions in the first step 

operation of the subsequent cycle. At the end of the “feast” phase operation, high 

concentration of acetate is remained in the operation. The high concentration of acetate 

in the operation prevents “famine” phase occurrence in the fifth step of the 11
th

 cycle. In 

the sixth step of the 11
th

 cycle, additional acetate concentration is detected and more 

ammonia is injected to the process as specified by the “Phase Differentiating Equation”. 

Subsequently, more biomass is produced in the first step “feast” operations and more 

biomass is exploited from the process in this cycle. The remained additional acetate in 

the system prevents “famine” phase occurrence in the fifth step and more ammonia is 

injected to reduce the effect of additional acetate in the system.  

For seven consecutive cycles, the “feast” phase operation is observed in both the first 

and the fifth steps of the process. Continuous production of PHB without PHB 

consumption in consecutive cycles is not desirable in a practical SBR operation. The 

process retains its steady state conditions when acetate concentration available in the 

fifth step operation returns to its steady state value.  

In the case of examining the effect of negative disturbances, the loading acetate 

concentration is reduced to zero in the 25
th

 cycle of the process. The ammonia 

augmentation concentration in the sixth step remains at its steady state value since no 

online measurement is presumed to be available to detect acetate shortage in the 

operational system. Subsequently, “famine” phase appears with RT3 “Regime Type” in 

the first step operation of the 26
th

 cycle. The biomass production in this cycle is lower 

than the steady state condition and the exploited biomass lacks PHB content. Since less 

ammonia is consumed in the first step operation in this cycle, its concentration increases 

significantly with injection of ammonia in the fourth step of the process. The “famine” 
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phase occurrence in the fifth step of the 26
th

 cycle is not significant since intracellular 

PHB content is low at the initial point of the operation. Assuming off-line measurement 

of the substrate concentration at the initial point of the sixth step operations, acetate 

concentration is augmented to the recipe specified value. The injected ammonia 

concentration in this stage is less than its steady state value since there is additional 

ammonia remained in the system from the unsuccessful first step operation in the 26
th

 

cycle. As shown in Figure 7.14, the SBR process retains its steady state conditions from 

the 27
th

 cycle to the end of the process.  

Analysis of the results shows that positive disturbance on the acetate loading 

concentration have more severe effect on the overall process than the negative 

disturbance. The effects of disturbances on loading acetate concentration using random 

behaviour process simulator are depicted in Figure 7.15. Comparison of the simulation 

results depicted in Figure 7.14 and Figure 7.15 shows that load disturbances on the 

acetate concentration lead to similar process behaviours in the both simulation results.  

In the random behaviour simulator results, the effect of the positive disturbance 

alleviated in fewer cycle runs (4 against 8) when compared to its deterministic 

counterpart. This suggests that average acetate consumption rate for the activated cells 

after the positive disturbance occurrence in the random behaviour process system is 

higher than the consumption rate in the deterministic system. Process deviations in 

operational cycles that cannot be associated with the disturbances are due to randomness 

associated with process behaviour discussed in assessment of Figure 7.6.  

As mentioned for the case of deterministic behaviour process simulator, positive 

loading acetate disturbance results into “famine” phase failures in the fifth step 

operations of consecutive cycles. On the other side, negative disturbance on acetate 

loading reduces biomass production of a few cycles and its effect mitigates without 

much disruption of the overall SBR operation.  

In summary, Figure 7.15 shows that the SBR recipe is cable of managing the process in 

occurrence of the acetate loading disturbance. As shown, a few process cycles deviated 

from their pre-defined pathway in occurrence of a disturbance and then retained their 

productive pathway. Additionally, it is demonstrated that acetate loading disturbance 

does not lead to accumulation of substances in the SBR process which is favourable.  



 

 

 

Figure 7.14 Execution of the SBR recipe with load disturbances on RF11 (deterministic behaviour process simulator) 
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Figure 7.15 Execution of the SBR recipe with load disturbances on RF11 
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7.3.5 Realisation of practical SBR process execution  

In simulation studies presented to this point, the concentration values assigned to the 

simulation program were exactly the same as they were specified in the recipe (except 

for the case of load disturbance cycles). In practical experiments, operational 

misconducts are inevitable in a course of operational SBR process. In other words, it is 

very difficult, if not impossible, to provide the exact amount of substances to the 

operational system as specified in the SBR recipe for each cycle. In this section, 

deviation from accurate execution of the recipe is taken to extremes in order to 

investigate recipe robustness despite operational abnormalities.  

There are three recipe factors associated with concentration values for substances 

injected or exploited from the operational system. In this section, the three concentration 

values assigned to the simulation program are selected from three sets of random 

numbers normally distributed around the three values specified in the SBR recipe. 

These three recipe parameters are (1) the biomass concentration kept in the SBR process 

in the exploitation stage of STEP 3 (RF8), (2) loading ammonia concentration in the 

STEP 4 (RF9) and (3) loading acetate concentration in the STEP 6 (RF11). In  

Figure 7.16 simulation results are shown using the random behaviour process simulator 

to investigate process robustness in face of executional variability.  

In Figure 7.16, maximum 50% deviation of the process variables is considered for the 

three process variables around their recipe specified values. This deviation percentage is 

so high that the tests can be considered as performance examination of the SBR recipe 

under significant level of operational misconduct. The “Regime Type” plots shown in 

Figure 7.16 confirm successful “feast” phase operations in 80% of the SBR process 

cycles. Since in the total fifty cycles of the SBR run, seven cycles failed in the first step 

“feast” phase operation and an additional three cycles failed in the second step 

quiescence operation. These failures occurred in the first or the second operational 

stages while “famine” phase operations successfully accomplished with RT3 and RT5 

“Regime Types” in the all fifth step operations. The main source of “feast” phase failure 

is acetate shortage in the first step or the second step operations. Because there is no 

acetate injection in between the first and second step operations, if acetate depletion 

occurs in the first step its effect can also be detected in the immediate second step of the 

cycle. Therefore, occurrence of the unfavourable first step “Regime Type” is reflected 

in the second step “Regime Type” plot.  



 

 

 

Figure 7.16 The third execution of the SBR recipe with maximum 50% deviation of RF8, RF9 and RF11 around their recipe specified 

values 
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In Figure 7.17, a histogram of total PHB concentration produced in 100 SBR runs with 

50 cycles is depicted. The SBR processes were carried out under the recipe tabulated in 

Table 7.4 while values assigned to the RF8, RF9 and RF11 are normally distributed 

around the recipe specified values with maximum deviation of 50%. For each 

production range in Figure 7.17, the number of cycles failed to perform successfully in 

the second or the fifth steps of SBR sequences is recorded. On the histogram, the 

average number of cycles failed in the first two steps is given along with their standard 

deviation range. As mentioned before, process failure in the first two steps of a SBR 

cycle can be associated with acetate shortage in these two stage operations. In this 

histogram, total number of “famine” phase failures in the SBR processes ranged in a 

specified PHB production range is depicted as well.  

Figure 7.17 shows that the less the number of failures in the first two steps of the SBR 

cycles, the higher the total amount of PHB production. Occurrence of acetate shortage 

in the first two step operations results into intracellular PHB consumption by the cells 

and reduction of the final PHB product.  

When a “famine” phase operation fails, total PHB production augments by occurrence 

of a “feast” phase operation in the fifth step of the cycle. This can also be shown in 

Figure 7.17 where higher number of cycles with “famine” phase failure leads to higher 

amount of total PHB exploited from the process.  

 

Figure 7.17 Histogram of total PHB production for 100 SBR runs under recipe 

given in Table 7.4 with maximum 50% deviation of RF8, RF9 and RF11 
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Figure 7.17 demonstrates that if the SBR recipe tabulated in Table 7.4 is executed with 

low level of accuracy (maximum 50% deviation from the recipe specified values for 

RF8, RF9 and RF11), there is about 30% chance of total PHB production in between 

2450 and 2550 C-mmol/L with around 10% failures in the first two stages of the 

operational cycles. Additionally, it is probable to observe “famine” phase failure in 

operational cycles for this group of SBR processes. 

Figure 7.17 also shows that the total chance of producing PHB in a range between 2350 

and 2450 C-mmol/L or in between 2550 and 2650 C-mmol/L is about 40%. The high 

production processes with more than 2650 C-mmol/L of PHB have about 10% 

probability of occurrence while the chance of PHB production lower than 2350  

C-mmol/L is about 20%. 

This outcome will be compared with 100 SBR runs with more accurate execution of the 

recipe. Figure 7.18 shows similar histogram as depicted in Figure 7.17 with a difference 

in the simulation study to reflect level of accuracy in recipe execution. In this figure, the 

level of execution accuracy of the same SBR recipe is considered to be higher than the 

previous simulation runs (maximum 10% deviation from the recipe specified values for 

RF8, RF9 and RF11). As the result of high operational accuracy, the number of cycles 

with “famine” phase failure is less than the previous case.  

 

Figure 7.18 Histogram of total PHB production for 100 SBR runs under recipe 

given in Table 7.4 with maximum 10% deviation of RF8, RF9 and RF11 
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Comparison of the two figures also suggests that the possibility of PHB production with 

median concentration is higher when deviation from the recipe is minimised in 

operational execution. Total PHB production in between 2450 and 2550 C-mmol/L 

remained about the same in the two cases; however, total number of “famine” phase 

failures has decreased significantly from 7 to only 2 cycles.  

The total chance of producing PHB in the range between 2350 and 2450 C-mmol/L or 

in between 2550 and 2650 C-mmol/L have increased from 40% to 50% while fewer 

cycles failed to perform “famine” phase operations. The additional 10% has been 

obtained from reduction of SBR run numbers with total PHB production of less than 

2350 C-mmol/L due to more accurate execution of the recipe.  

Simulation results confirm that proper and accurate execution of the proposed SBR 

recipe favours higher PHB production with fewer numbers of batches failing to perform 

a “famine” phase operation.  

7.4 Conclusions 

In this chapter, a novel method of SBR operational management was introduced for 

production of PHB with mixed microbial cultures. Since occurrence of both “feast” and 

“famine” phase operations is crucial in the majority SBR cycles for a successful and 

sustainable production process, the SBR architecture is designed to encompass both 

phases within each SBR sequence. The key element of this recipe is the implementation 

of the “Phase Differentiating Equation” developed in Chapter 5 which enabled process 

phase management to enforce occurrence of a particular phase in its specified SBR 

stage.  

Prior to this study, the lack of a well-documented and reliable strategy for production of 

microbial products that required sequential operational switch between essential 

biological phases led to inefficient production approach for PHB production using 

mixed microbial cultures in the “feast” and “famine” phase alteration strategy. The 

analytical tool established in Chapter 4 and the mathematical equation capable of 

segregating the “feast” and “famine” phase operational regions (“Phase Differentiating 

Equation” found in Chapter 5) enabled generation of a systematic approach towards a 

more reliable SBR process. The proposed SBR recipe established in this chapter can 

potentially revolutionise mass production of PHB using the cost effective mixed 

microbial culture method.  
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The “Characterisation Method” developed in Chapter 4 proved to be a powerful tool for 

encapsulation of the process information into the form of meaningful “Regime Type” 

code numbers to evaluate operational proficiency in different stages of the SBR process. 

Based on the general SBR structure suggested in this chapter, operational parameters 

were specified using the empirical models developed in Chapter 6. The reliability of the 

SBR structure along with the recipe factors defined in the recipe generation procedure 

was examined successfully with promising outcomes. The capability of the SBR recipe 

structure to mitigate operational and load disturbances was investigated by imposing 

rigorous disturbances to the SBR process using random behaviour process simulator. 

Therefore, anarchic behaviour of biological systems is also reflected by the process 

simulator to provide a more realistic representation of the experimental process. The 

simulation studies demonstrate high capability of the SBR recipe structure to alleviate 

the effect of undesired disturbances to different process variables in the production 

system. As it was shown, implementation of the “Phase Differentiating Equation” 

developed in Chapter 5 was the most important element for process stability especially 

in the case of load disturbance rejection. Application of the “Phase Differentiating 

Equation” in the production recipe acts as a supplement that impose operational process 

control within the nature of the recipe in absence of advanced control algorithms.  

 

In Chapter 8, PHB production will be optimised using Sequential Quadratic Programing 

algorithm for the production system that operate under the SBR recipe structure 

established in this chapter.  
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8.1  Introduction  

In simple words, mathematical optimisation is the selection of the best set of elements 

to meet a certain qualitative objective with regard to some criteria. More generally, in an 

optimisation problem a set of best available input values are selected from a defined 

domain with the aim of maximising or minimising an objective function while 

mathematical limitations are imposed by a set of constrains.  

The complexity of the optimisation problem is escalated when more than one objective 

is enforced into the objective function. In the majority of the multi-objective 

optimisation problems, these objectives conflict and a trade-off should be made to reach 

an optimum conclusion. The choice of best design among the possible solutions is 

delegated to the decision maker by assigning the optimisation constraints and 

parameters. 

In the last thirty years, emergence of cost effective and reliable computer machines 

capable of performing high speed computations increased. In the core of any capable 

optimisation problem solver, mathematical algorithms are implemented to find reliable 

solution using appropriate iterative methods. Classification of the iterative methods used 

to solve an optimisation problem is carried out according to the employment of 

Hessians, gradients or the simple function values. Sequential Quadratic Programming 

(SQP) is a Newton-based iterative method that evaluates Hessian of the objective 

function to converge to the solution of a constrained optimisation problem.  

In Section 2.5.3, SQP is introduced in brief. In this chapter, this algorithm is used for 

optimisation of the SBR process operating on the production recipe established in 

Chapter 7 for sustainable PHB production using mixed microbial culture cultivation. 

The aim is to develop a reliable procedure for optimisation of real production plants 

operating under the developed SBR recipe and using empirical models built using the 

real process data.  
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8.2  Data generation for SBR optimisation purpose  

The SBR recipe factors obtained in Section 7.2.5 will be used as the basis for the 

optimisation studies performed in this section. Since the effect of initial SBR condition 

on the overall PHB production is negligible, recipe parameters associated with the 

initial state of the SBR process are not considered in definition of the optimisation 

problem and remain identical to the values given in the SBR recipe.  

The optimisation function will be defined to determine the optimum concentration 

values associated with the most effective operational elements in different steps of the 

SBR process. The operation variables that have significant effect on the SBR process 

are the biomass concentration kept in the operational system in the 3
rd

 step of SBR 

cycles (RF8), ammonia augmentation concentration in every 4
th

 step of SBR cycles 

(RF9), and acetate augmentation concentration in every 6
th

 step of SBR cycles (RF11).  

Variation of these three SBR variables opens a window of process operability for 

optimisation. With reference to Table 7.4, the random behaviour process simulator is 

used to generate process data for 100 SBR simulation runs with 50 cycles in each  

run. The SBR recipe factors RF8, RF9 and RF11 are randomly assigned between 1  

C-mmol/L and 30 C-mmo/L (Figure 8.1.a), 0.2 N-mmol/L and 3 N-mmol/L  

(Figure 8.1.b), 10 C-mmol/L and 300 C-mmol/L (Figure 8.1.c) respectively. The 

simulated SBR operational data is used to develop empirical models for optimisation.  

The set of 100 random values assigned to each one of the three SBR variables is shown 

in the three sub-plots of Figure 8.1 and is used to operate 100 SBR simulation runs. The 

simulation results are recorded for the process elements associated with the variables 

considered in definition of the objective function for optimisation. Two of the most 

important elements considered in optimisation of the SBR process are (1) the amount of 

total PHB produced in a complete SBR run and (2) the total number of SBR cycles with 

“famine” phase failure in the 5
th

 step of the process.  

The amount of total PHB concentration in the SBR operation can be associated with 

production efficiency of the process. The importance of the second optimisation element 

is for evaluation of process biological sustainability. Although PHB is formed only 

under “feast” phase, occurrence of “famine” phase is very important for the process 

feasibility. The cell physiological adaptation to nutrient limitation results in higher PHB 

formation rates once nutrition is in excess (Dias et al., 2005). Therefore, occurrence of 
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“famine” phase operation in the majority of cycles is an essential element of a 

successful SBR process.  

a.  

b.  

c.  

Figure 8.1 SBR variables randomly assigned for process modelling 

As discussed in Chapter 7, PHB production increases when “feast” phase failure rate is 

minimised in the first two steps of the SBR process while “famine” phase while 

“famine” phase occurrence is dismissed in STEP 5. On the other side, process 

sustainability should be provided with occurrence of “famine” phase operation in each 

sequence of the SBR process to assure viable well-being of the bacteria in the operation. 

For this purpose, “famine” phase failure rate should be kept as minimal as possible in 

the 5
th

 step of each SBR sequence. Therefore, PHB production should be obtained 

regarding sustainable production (viable biological well-being) with “famine” phase 

occurrence in each sequence of SBR process.  
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The total amount of PHB production and “famine” phase failed cycles are recorded for 

the case of 100 simulation runs conducted with the SBR recipe tabulated in Table 7.4 

and the process variables given in Figure 8.1. These recorded values are shown for the 

total PHB product (Figure 8.2.a) and total number of cycles with “famine” phase failure 

in STEP 5 (Figure 8.2.b).  

a.  

b.  

Figure 8.2 SBR process outcome for optimisation purpose 

The recorded values associated with RF8, RF9 and RF11 variables used as the SBR 

process parameters are applied along with the simulation results obtained for the total 

PHB production and the number of cycles with “famine” phase failure for development 

of empirical models. As demonstrated in Figure 8.2.a, the total PHB production reaches 

to about 7,000 C-mmol/L in the SBR simulations with 50 cycles. However, with regards 

to Figure 8.2.b, the number of cycles in which “famine” phase failed to occur in STEP 5 

is high for the SBR runs with maximum total PHB production. As mentioned, the high 

PHB production is not favourable when “famine” phase failure is dominant in STEP 5 

since biological well-being is not maintained. Therefore, an optimisation study should 

be carried out to find optimal operational conditions.  

The model input variables have normal distribution around their average values. 

Looking at Figure 8.2.a, it can be said that the total PHB production values are also 

scattered with an approximation of a normal distribution. However, Figure 8.2.b shows 

that “famine” phase failure rate is below 5 cycles in most of the simulation runs and the 
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distribution of data is not close to the pattern observed in the SBR process variables. 

Therefore, it is expected to develop more accurate models for prediction of the total 

PHB production concentration compared to the model predicting the total number of 

cycles in which “famine” phase failure occurred in STEP 5.  

In the next section, empirical models will be developed. The prediction accuracy of the 

MLR models will be compared with non-linear ANN counterparts in the bootstrapping 

aggregated structure. The most accurate models will be used in optimisation algorithms 

to find optimal operational conditions in the subsequent sections. 

8.3  Empirical model development by MLR 

The MLR modelling technique explained in Section 2.6.2 is applied in this section to 

find the best parameters for the following 3-variable linear equation with the aim of 

generating the most accurate predictions for the model output. In the first case, the 

model output is the total PHB production amount in a SBE process. The total number of 

cycles with “famine” phase failure in STEP 5 is the output in the second model. The  

3-variable input models have the following general formation: 

                    (8.1) 

where   ,    and    are biomass concentration kept in operational system in STEP 3, 

ammonia augmentation concentration in STEP 4, and acetate augmentation 

concentration in STEP 6 respectively. In the first and the second model,   is the total 

PHB production concentration and number of cycles with “famine” phase failure 

respectively. Eighty percent of the simulation data obtained in the previous section is 

scaled in between -1 and 1 to be applied in MLR model development algorithm. 

Applying the BLS solution using Equation (2.16) given in Section 2.6.2 the two 

empirical models are built and tabulated as presented in Table 8.1.  

Table 8.1 MLR model parameters 

y = f(x1,x2,x3) 

            
Model outputs 

Total PHB production 

 
-0.187 -0.2714 -0.1027 0.9194 

Cycles with “famine” phase 

failure in the 5
th

 step 
-0.4331 -0.4327 -0.7487 0.3965 

 

These models are validated using the remaining 20% of the data set dismissed in the 

model development stage. The model prediction values are depicted along with the 
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scaled target simulation values for the total PHB production in Figure 8.3.a and the 

number of cycles failed to operate “famine” phase in STEP 5 in Figure 8.3.b.  

a.  

b.  

Figure 8.3 Validation of the MLR models 

The RMSE values reported on the scaled validation plots determine model prediction 

accuracy. Validation plot depicted for total PHB production mode in Figure 8.3 shows 

that prediction results are not sufficiently accurate with RMSE of 0.32 for the scaled 

data. The performance of the MLR model predicting the total number of “famine” phase 

failure in STEP 5 is inferior to the first model with high RMSE value of 0.55 for scaled 

validation data.  

As mentioned in Chapter 6, since overall data range is scaled to 2-unit magnitude, a 

RMSE value of 0.2 demonstrates prediction error of 10% (0.2 divided by the 2-unit 

magnitude) or 90% of prediction accuracy. Therefore, for model prediction accuracy of 

90%, RMSE values of equal or less than 0.2 is acceptable for a scaled validation data 

set. Since RMSE values obtained for the two MLR models are larger than 0.2 for their 

scaled validation data sets, investigations are carried out to build more accurate 

empirical models.  

In order to investigate model prediction improvement using non-linear methods, the 

BANN modelling technique discussed in Section 2.6.4 is applied in the next section on 

the same set of data obtained in this section.  
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8.4  Empirical model development by BANN 

In this section, BANN modelling technique explained in Sections 2.6.3 and Section 

2.6.4 is applied to develop non-linear models. Similar to the previous section, the first 

model predicts the total PHB production concentration and the second model estimates 

the total number of “famine” phase failure cycles in STEP 5. The same set of data used 

for model development in the previous section is used for training and testing the 

BANN models. These models are validated using the same set of validation data used in 

the MLR model validation stage.  

For each BANN model, twenty individual neural network models are selected based on 

their optimal number of hidden neuron numbers. As mentioned in Section 2.6.3, the 

optimal number of hidden neurons is selected based on the minimum SSE value found 

on the “test” data set for each arrangement of the model developing data set from the 

original training data.  

As demonstrated in Chapter 6, aggregation of twenty selected models provides a  

non-linear model with more reliable prediction capability. In Figure 8.4.a and  

Figure 8.4.c, the optimal numbers of hidden neurons are shown for the selected neural 

networks based on their minimal SSE values on “test” data set for the first and second 

models respectively.  

The SSE values for validation data set are depicted in Figure 8.4.b and Figure 8.4.d for 

the first and second models respectively. As shown, the BANN models produce more 

reliable predictions compared to outcome variation of the individual neural networks.  

In Figure 8.5.a and Figure 8.5.b, validation results are depicted for the scaled BANN 

model estimations and their confidence bounds versus their true target values for the 

two models. As shown, the non-linear BANN models for estimation of total PHB 

production concentration and “famine” phase failure cycles are more accurate than their 

MLR counterparts. The RMSE value obtained for the scaled validation data set of the 

first model is 0.15 which is within the acceptable range for accurate modelling since it 

is less than 0.2. The RMSE value calculated for the scaled validation data set of the 

second model is 0.28 which is unfavourable since it is higher than the 0.2 limit. 

However, application of the BANN modelling strategy reduced prediction error from 

RMSE of 0.55 for MLR model to RMSE of 0.28 for the same scaled validation data set.  
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a.  b.  

c.  d.  

Figure 8.4 Number of hidden neurons and prediction performance of the neural 

network models  

 

a.  

b.  

Figure 8.5 Validation of BANN models (scaled date) 

Since non-linear BANN models are more accurate than their MLR counterparts, the 

SQP algorithm is an appropriate algorithm for optimisation of a non-linear cost 
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function. Application of the SQP algorithm for optimisation of the SBR recipe will be 

carried out in the next section.  

8.5  Application of SQP for optimisation of the SBR recipe 

In Section 2.5.3, Sequential Quadratic Programming (SQP) was introduced as an 

optimisation technique commonly used for non-linear objective functions. In this 

section, the optimisation tool is applied to maximise PHB production while maintaining 

the total number of cycles with “famine” phase failures minimum.  

In this section, BANN models are implemented in the optimisation problem to provide a 

more reliable platform for optimal operation. Zhang (2004) made use of the BANN 

model structure to reduce model plant mismatch by introduction of model prediction 

confidence bounds as a penalty in the optimisation objective function. In an 

optimisation problem with embedded prediction confidence bounds, the solution is 

found such that the confidence bounds are forced to tighten up. This method increases 

reliability of the results derived from solving the optimisation problem. Therefore, in 

optimisation of a two variable problem, a four-variable objective function is defined as 

follow 

   
 
    [   ]    (          )   

  (         )    (               ) 

(8.2) 

where standard deviation of prediction errors generated by each individual neural 

network forming a BANN model is implemented in the objective function. The 

following definition of the standard deviation of a data vector    is applied in this 

study:  

       √
 

   
∑(      ) 
 

   

 

(8.3) 

where ( ) is the number of neural network models within a BANN model,    is the 

vector of prediction error values and    is the average value of the    vector. The   , 

   and    parameters in Equation (8.2) are the weighting factors for the elements 

defined in the objective function. The optimisation weighting factor    is considered for 

the total number of cycles with “famine” phase failures in a SBR process (FamineFail) 

relative to the total PHB concentration ([PHB]). In the objective function, the weighting 

factors    and    are multiplied to the standard deviations of PHB concentrations 
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(         ) and the total number of cycles with “famine” phase failure 

(               ) obtained from single neural network models respectively and relative 

to the total PHB concentration ([PHB]). Since optimisation algorithm is used to find the 

minimum value of the objective function by tuning the three recipe variables RF8, RF9 

and RF11, -1 is multiplied to the weighting factor associated with total PHB 

concentration term in Equation (8.2).  

In order to specify weighting factors, the range of change in the elements of the 

objective function should be specified primarily. Different combination of scaled input 

values for the three recipe variables were introduced to the function and their outputs 

were recorded for each element. Table 8.2 tabulates the minimum and maximum values 

recorded for each element.  

Table 8.2 Range of outputs from objective function for scaled data 

Elements of 

objective function 

for optimisation 

Minimum Maximum Difference Ratio to 

minimum 

difference 

PHB -1.190 0.907 2.097 51.1≈50 

FamineFail -1.127 1.262 2.389 58.2≈60 

STDerrPHB 0.011 0.052 0.041 1 

STDerrFamineFail 0.024 0.107 0.083 2 

 

The objective function can be altered to exhibit equivalent weighting factors. The ratio 

factors in Table 8.2 are obtained by dividing the range of differences to the minimum 

difference range (0.041 for STDerrPHB). Using these ratios and fixing the relative 

importance factors by the reference of [PHB], Equation (8.2) is transformed to  

Equation (8.4): 

   
 
   

 

 
[   ]    (          )      (         )

     (               ) 

(8.4) 

Based on the K values assigned to the objective function, the three recipe factors are 

obtained using the SQP optimisation algorithm. Table 8.3 shows five optimisation 

solutions for five different combinations of weighting parameters. For each case, a 

histogram of 100 SBR runs using the reference recipe given in Table 7.4 and updated 

with optimal values for RF8, RF9 and RF11 tabulated in Table 8.3 is produced. Similar 

methodology applied to generate histograms in Chapter 7 is used to draw histograms for 

optimisation results in this section. A maximum deviation of 10% from the recipe 

specified value is considered in simulation studies of the optimal SBR runs with 50 

sequential cycles.  
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Table 8.3 Optimisation results for different combinations of K values 

Run No. K1 K2 K3 RF8 RF9 RF11 Plot 

1 0 0 0 1 0.2 298 Figure 8.6 

2 1 0 0 14 3 300 Figure 8.7 

3 1 1 1 19 2.4 245 Figure 8.8 

4 0.5 0.5 0.5 18 2.8 291 Figure 8.9 

5 0.5 1 1 16 1.9 198 Figure 8.10 

 

In the first optimisation solution, the aim is to maximise PHB production regardless of 

“famine” phase failures (K1=0) or reduction of prediction error between the BANN and 

their actual results (K2=0, K3=0). The optimisation solution proposed RF8, RF9 and 

RF11 values of 1, 0.2 and 298 respectively. The histogram generated by the designed 

SBR recipe is depicted in Figure 8.6.  

 

Figure 8.6 Histogram of 100 SBR runs for the first run tabulated in Table 8.3 

As shown in Figure 8.6, total PHB production is considerably high with majority of 

SBR runs producing PHB in a range between 6,200 C-mmol/L and 6,600 C-mmol/L. 

The high production is obtained at the expense of high “famine” phase failure rate. 

Absence of “famine” phase occurrence in STEP 5 of each cycle and its replacement 

with “feast” operations increase PHB production in the simulation. However, as 

mentioned earlier in this chapter with refer to Dias et al. (2005), occurrence of a 

“famine” phase operation is essential once a “feast” phase operation takes place in a 

sequential production mode. Therefore, although the optimal recipe defined in the first 

optimisation solution looks tempting in simulation, in reality it is not practical.  
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With the aim of reducing failure in the STEP 5 operations, the weighting parameter 

associated with “famine” phase failure (K1) is increased to 1 in the second optimisation 

problem. The solution of the second optimisation problem is used to generate  

Figure 8.7. This figure demonstrates that average number of cycles with “famine” phase 

failure decreases from about 50 to less than 5 cycles. The reduction of “famine” phase 

failure rate increases process sustainability by augmentation of bacterial adaptation. 

Comparing Figure 8.6 and Figure 8.7 demonstrates PHB production reduction from the 

6,000-6,900 range to about 5,200-6,300 range in C-mmo/L. Low “famine” phase failure 

rate was obtained at expense of less PHB production with higher “feast” phase failure 

rate.  

 

Figure 8.7 Histogram of 100 SBR runs for the second run tabulated in Table 8.3 
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In the third optimisation problem, weighing parameters associated with the standard 

deviation of model errors (K2 and K3) are increased to the unit value. Figure 8.8 shows 

that the majority of SBR productions appear in the middle of the bell shape histogram 

demonstrating less process variation in the simulation studies. In other words, SBR 

process is directed towards operational regions where model accuracy is higher 

regarding both PHB production and “famine” phase factors.  

Comparing Figure 8.8 with Figure 8.6 and Figure 8.7 demonstrates PHB production in a 

range higher than the range depicted in Figure 8.7 and lower than the range shown in 

Figure 8.6 while “famine” phase failure rate remains high. Low process variation was 

obtained at the expense of lower PHB production in comparison to the first optimisation 

solution.  

In the fourth optimisation solution, PHB production has the highest weighting 

parameter and the other three parameters share the same weightings of half the highest 

parameter (K1=0.5, K2=0.5 and K3=0.5). This combination is selected to maximise PHB 

production while low rate of “famine” phase failure and model mismatch is maintained. 

Generating a histogram with 100 SBR runs operated with the optimal recipe values 

shows that high PHB production is achievable while “famine” phase failure rate is kept 

low. Moreover, the majority of SBR runs appear in the middle of the histogram to 

demonstrate low level of model mismatch as depicted in Figure 8.9.  

 

Figure 8.8 Histogram of 100 SBR runs for the third run tabulated in Table 8.3 
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Figure 8.9 Histogram of 100 SBR runs for the fourth run tabulated in Table 8.3 

In the last optimisation problem, weighting parameters associated with the standard 
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Figure 8.10 Histogram of 100 SBR runs for the fifth run tabulated in Table 8.3 
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8.6  Conclusions  

The two SBR process elements associated with PHB production in cultivation of mixed 

microbial cultures were defined in this chapter. These two elements were modelled with 

three operational variables associated with the amount of substances injected/exploited 

into/from the process during execution of an SBR operating under the recipe established 

in Chapter 7. It was shown that the BANN technique was able to provide more accurate 

and reliable prediction results in comparison to the single structured NN models and the 

non-linear MLR models.  

The BANN models were applied in an optimisation problem with an objective function 

defined to consider the model prediction confidence bounds as penalty. It was also 

shown that Sequential Quadratic Programming is a powerful tool in optimisation of 

problems with non-linear behaviour.  

The recipe parameters were optimised to address maximum PHB production while 

“famine” phase failure rate was kept at its minimum and model-process mismatch is 

forced to minimise. Different optimisation scenarios led to the conclusion that low rate 

“famine” phase failure can be achieved in price of mitigating PHB production rate. 

Additionally, implementation of mathematical terms in the objective function with the 

aim of reducing model-process mismatch can be beneficial if optimisation weighting 

factors are assigned wisely. Optimisation weightings with rigorous focus on reduction 

of model-process mismatch leads to SBR operations with unacceptable PHB production 

rate and consequent loss of resources.  

The investigations carried out in this chapter confirmed credibility of the BANN 

modelling and SQP optimisation algorithm to define SBR recipes that govern optimal 

SBR processes.  
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Chapter 9 

Conclusions and Recommendations for Future Works 

9.1  Conclusions 

The initial motivation of the research work was to build empirical models predicting 

PHB batch operation critical process attributes for optimisation studies and generation 

of production recipes. Failure to provide empirical models predicting PHB 

concentration at the end of the production batch in the first attempts led to the 

conclusion that sophisticated process understanding is required.  

It was shown that application of analytical methods to obtain operational enhancement 

for complex behaviour systems such as the PHB batch production is essential adjunct to 

the experimental techniques. In this research work, an analytical tool was successfully 

developed and applied to generate superior process understanding using a computer-

based process simulator. PHB production process investigated in this study exhibits 

complex biological behaviour that requires a sophisticated analytical method to classify 

its operational routine. Classification of the operational pathways enabled accurate 

modelling of the process critical attributes when empirical models were trained on 

classified process data.  

It was demonstrated that the acetate and ammonia batch profiles have dominant effects 

on the total PHB concentration profile. Mathematical algorithms were successfully 

developed with the aim of generating meaningful code values describing most 

significant occurrences in the process profiles. The code values were implemented to 

generate graphics that visualised operational progression with regards to feeding 

concentrations and operational duration. Observation of the operational graphics led to 

the following conclusions for PHB batch process using Mixed Microbial Cultures: 

 Application of the process feeding profiles including carbon and nitrogen 

sources can perform process classification 

 There are three different operational pathways considering variations of feeding 

concentrations 

 Two operational pathways lead to “famine” phase operations while the third 

pathway performs a “feast” phase operation.  
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 In order to perform a more efficient “famine” phase operation, the operational 

pathway with initial acetate depletion is more favourable than the other “famine” 

phase operation pathway with initial ammonia depletion.  

 For “feast” phase operation occurrence, initial ammonia depletion is followed by 

acetate stability in the final stage of the operation.  

 In the case of “feast” phase operation pathway, there is a window of optimal 

operational termination period. A “feast” phase operation can fail if batch 

operation is conducted for a prolonged period leading to acetate exhaustion and 

PHB lost. 

 The “feast” and “famine” phase operational areas can be segregated by a linear 

border. 

 The mathematical equations using initial acetate, ammonia, biomass and PHB 

concentrations can estimate the linear border differentiating the “feast” and 

“famine” phase areas. The predictions are reliable even if mathematical terms 

associated with randomness in biological behaviour of the simulated process are 

accentuated. 

 Process classification enables process data classification for target modelling of 

process critical attributes 

The “Phase Differentiating Equation” proved to be a useful tool for segregation of the 

process data into two sub-sets of “feast” and “famine” phase data. Target modelling for 

process data on each sub-set provided more reliable models which could not be obtained 

without data segregation. The outcomes of the modelling investigations are:  

 more accurate prediction is obtained using non-linear models (BANN) when 

compared to their linear counterparts (MLR) due to nonlinearity associated with 

biological behaviour of the PHB production operation. 

 more reliable models are developed by aggregating neural networks models 

using bootstrapping method compared to single structured neural networks.  

 optimal number of neurons in the hidden layer of a neural network varies for 

initial training parameters. The high number of hidden neurons does not 

guarantee a more accurate model. 

 generation of a number of models to be aggregated can be applied in calculation 

of prediction variance. A factor of standard deviation of the prediction error can 

be used to demonstrate estimation confidence bounds.  



Chapter 9  Conclusions and Recommendations 

255 

 

 in a number of occasions, models with fewer input variables can provide more 

accurate predictions and additional input variables prevent sophisticated model 

training process. 

 in “feast” phase operations, empirical models can provide acceptable predictions 

for final biomass and PHB concentrations using initial biomass and ammonia 

concentration values.  

 in “famine” phase operations, final biomass concentration is best modelled with 

initial biomass and ammonia concentrations while final PHB concentration is 

best modelled with initial PHB and acetate concentration values.  

 segregation of “famine” phase process data into the two sub-sets of “famine” 

phase operational pathway is not recommended since model predictions for final 

biomass and PHB concentrations do not improve significantly by data 

segregation.  

In Chapter 7, Sequential Batch Rector (SBR) approach which is a common method of 

bacterial cultivation using Mixed Microbial Culture (MMC) was implemented to 

develop a production recipe structure. The key element of innovation in the SBR recipe 

is application of the “Phase Differentiating Equation” to direct the process into either of 

the “feast” or “famine” phase operation to ensure occurrence of the both phases within 

each process sequence/cycle. Along with the general recipe structure, a procedure for 

appropriate assignment of the recipe parameter values was introduced using empirical 

models developed in this study. A series of simulated test runs were carried out on the 

SBR process to confirm capability of the generated recipe for disturbance mitigation 

and performing a robust and reliable. The simulation results demonstrated promising 

operational outcome using the production recipe proposed in this study. Further 

investigations should be carried out using real process experiments. The analytical 

method developed in Chapter 4 proved to be a powerful tool for encapsulation of the 

process information into the form of meaningful code numbers.  

At the end, the SBR process was modelled for optimisation purposes. Two elements of 

the process associated with successful occurrence of “feast” and “famine” operations 

within each SBR sequence were quantified and modelled using MLR, ANN and BANN 

techniques. Since BANN models proved to be more reliable and accurate, they were 

implemented in Sequential Quadratic Programming optimisation algorithm. The 

objective function was defined such that the model prediction confidence bounds were 

considered as penalty. It was shown the optimisation algorithm was capable of 
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providing sound results if appropriate weight factors in the objective function were 

assigned based on good knowledge about the PHB production process using MMC.  

Using the optimal values, a series of SBR operation runs were performed to generate 

histograms presenting the overall recipe performance based on the quantitative 

attributes to the successful “feast” and “famine” phase operations. It was shown that 

implementation of the model prediction confidence bounds as penalty factors in the 

objective function of the optimisation problem can increase accuracy of the prediction 

estimations in price of reducing volumetric production of the PHB product. In the other 

words, distribution of the production concentration around the average value is narrow 

when penalty factor is capitalised. However this distribution is wider around a smaller 

average value when this factor is paralysed.  

In the next section, application of Principal Component Analysis (PCA) along with the 

characterisation method developed in Chapter 4 will be discussed for classification of 

operational regimen of batch processes with different operational profile.  

9.2  Recommendation for future works 

9.2.1  Application of PCA in the “Characterisation Method” 

The “Characterisation Method” developed in Chapter 4 can also be applied on different 

simulation processes with similar operational specifications in order to provide valuable 

analytical results. Application of this method enables formation of illustrations that 

relate process elements of high significance (usually the process production amount) to 

the most dominant process variables.  

In the case of the PHB production process, the two feeding concentrations were 

considered as the process variables and total PHB product was the operational output. 

However, more than two dominant variables can be identified to affect the process 

output in a process. In that case, Principal Component Analysis (PCA) can be used to 

summarise information within a large set of original variables into a new set of 

variables with few number of components.  

PCA is a well-known mathematical technique in multivariate analysis. Like many other 

multivariate methods, application of PCA gained attention with the advent of electronic 

computers and has effectively entrenched in virtually every statistical computer 

package. Reduction of data dimensionality is the central idea of this technique when 

interrelated variables form the major body of the process information. Dimensionality 
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reduction is achieved by transforming correlated process data variables to a new set of 

uncorrelated variables, the principal components (PCs). Different mathematical methods 

have been introduced in literatures to perform PCA analysis on a set of data. In general, 

principal components are generated so that the first few PCs can present most of the 

variations present in the original data. Therefore, computation of eigenvalues and 

eigenvectors can be found in the core of almost of the PCA development techniques. 

Jolliffe (2005) has mentioned history, development procedures and application of PCA 

in detail. In brief, the following procedure is known to generate principal components of 

a number of variables. 

1. Data should be scaled and mean centred in respect to each variable 

2. The covariance of the data matrix is calculated 

3. The eigenvectors and eigenvalues are obtained for the covariance matrix 

4. Eigenvector associated with the highest eigenvalue is PC1, the second highest 

eigenvalue presents PC2 and the other PCs are followed as such. 

If a set of data with many variables lies close to a two-dimensional subspace, this data 

can be plotted with respect to these two dimensions with much more visual clarity. In 

this case, PCA provides a representation of data to enable best fitting of each 

observation to the first two PCs and thus drawing a two-dimensional plot of the data. 

The question of whether or not two PCs are adequate to present most of the variation in 

the data depends on the amount of variation they can capture. The cumulative 

percentage of total variation obtained from the eigenvalues is the most obvious criterion 

in identification of the amount of variation captured by selected number of PCs.  

The biplot of PC1 versus PC2 provides valuable graphical information about the 

relationship between variables of the process provided that these two PCs can capture 

most of the data variance. In the case of “Characterisation Method” analysis, each PC is 

treated as an individual process variable and should be considered as such in the 

analysis. The validity of the “Characterisation Method” explained in this study highly 

depends on the amount of total variation captured by the first two PCs.  

The PC profiles are scrutinised along with the main product profile or any other profile 

that contributes to the critical quality attributes of the process. Depending on the type 

and nature of the process being simulated, different occurrences gain attention in the 

profile analysis. A combination of mathematical and logical algorithms coded in adjunct 

to the simulation program enables detection of the critical process attributes. For a 
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specific simulated process, a precise algorithm is required to be developed and be tuned 

to detect important process occurrences. The outcome of the profile analysis step will be 

used to generate “Code Values”. These “Code Values” would be used to generate code 

vectors similar to the description given in Chapter 4.  

A code vector consists of code values that enable qualitative interpretation of the 

process profiles. In fact, a set of identical code values can provide a rapport between the 

process profiles that present similar qualitative characteristics. This property of identical 

code vectors builds up the foundation of the “Characterisation Method” in order to find 

clusters of process profiles with the same qualitative descriptions.  

Similar to the procedure explained in Chapter4, a bank of code vectors is formed by the 

code vectors that appear in process simulations for different combinations of process 

variables. In this context, PC1 and PC2 that capture most of the process variations are 

used as the process variables to enable process screening in different process conditions. 

With proper classification of the code vectors, foundation for characterisation plot 

generation is obtained. A characterisation plot can provide a general insight to the 

process behaviour regarding the two PCs effacing the process. Visualisation of the 

process qualitative behaviour can potentially lead to obtaining valuable information 

about the process and can open a window to improve process monitoring and control. 

9.2.2  Realisation of the simulated research work 

This research study was performed to provide a tool for classification of PHB 

production process using MMC in simulations. Application of the “Phase 

Differentiating Equation” developed based on simulation studies should be validated on 

real batch operations as the final step of confirmation.  

The empirical modelling methods applied in this study demonstrated high performance 

of non-linear methods in comparison to the linear techniques for the simulated process 

data. It is also expected to observe better estimation capability of the non-linear models 

than the linear counterparts when using real batch process data. Biological batch 

processes are known to be highly non-linear and the supremacy of non-linear modelling 

techniques for PHB batch operation should also be confirmed by real operational data.  

The “Phase Differentiating Equation” obtained from the simulation studies should be 

coupled with the empirical models developed using real PHB batch operation data to 

assign appropriate recipe factors in the SBR recipe structure established in this study. 

SBR execution for a real process under the proposed recipe structure is the final stage of 
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the recipe validation procedure. Execution of the SBR process with variation of the 

recipe factors can provide an operability window for SBR optimisation. Using the 

modelling techniques and optimisation algorithm discussed in this study, the SBR 

process can be optimised as defined by the objective function.  
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Run No.1 

 

 CV(1) CV(2) CV(3) CV(4) CV(5) CV(6) CV(7) 

CV1 1 0 1 1 0 3 0 

CV2 1 0 0 0 0 0 0 

CV3 1 0 1 1 0 1 0 

CV4 1 0 0 0 0 2 0 

CV5 1 0 1 1 0 3 1 

 

   
 

Run No.2 

 

 CV(1) CV(2) CV(3) CV(4) CV(5) CV(6) CV(7) 

CV6 1 1 1 1 2 3 1 

CV7 1 1 1 0 1 2 1 

CV8 1 1 1 1 2 1 0 

CV9 1 1 1 1 1 3 1 

CV10 1 1 0 0 0 2 1 

CV11 1 1 1 1 2 3 0 

CV12 1 1 1 1 1 3 0 

CV13 1 1 0 0 0 2 0 

CV14 1 1 1 0 1 3 0 

CV15 1 1 0 0 0 0 0 

CV16 1 1 1 1 0 3 0 
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Run No.3 

 
 

Run No.4 

 

 CV(1) CV(2) CV(3) CV(4) CV(5) CV(6) CV(7) 

CV17 1 1 1 0 1 2 0 

CV18 1 1 1 0 1 3 1 

 

   
 

Run No.5 

 

 CV(1) CV(2) CV(3) CV(4) CV(5) CV(6) CV(7) 

CV19 1 0 0 1 0 3 0 
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Run No.6 

 
 

Run No.7 

 
 

Run No.8 

 

 CV(1) CV(2) CV(3) CV(4) CV(5) CV(6) CV(7) 

CV20 1 1 1 1 1 1 0 

CV21 1 1 1 1 0 1 0 
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Run No.9 

 

 CV(1) CV(2) CV(3) CV(4) CV(5) CV(6) CV(7) 

CV22 1 1 1 1 0 3 1 

 

   
 

Run No.10 

 
 

Run No.11 
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Run No.12 

 
 

Run No.13 

 

 CV(1) CV(2) CV(3) CV(4) CV(5) CV(6) CV(7) 

CV23 1 1 0 1 0 3 0 

 

   
 

Run No.14 
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Run No.15 

 

 CV(1) CV(2) CV(3) CV(4) CV(5) CV(6) CV(7) 

CV24 1 1 1 0 1 1 0 

 

   
 

Run No.16 

 
 

Run No.17 
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Run No.18 

 
Run No.19 

 
Run No.20 
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Run No.22 

 
Run No.23 

 
 

Run No.24 

 
Run No.25 
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Run No.26 

 

 CV(1) CV(2) CV(3) CV(4) CV(5) CV(6) CV(7) 

CV25 1 1 1 0 1 0 0 

 

   
 

Run No.27 

 
Run No.28 
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Run No.29 

 
Run No.30 

 
Run No.31 
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9. 21.  

10. 22.  

11. 23.  

12. 24.  
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Point2 
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(
      

      
 ) 

                 
(C-mmol/L) 

1 2 11 0.1 133.4 5.1 0.04084 8.552 

2 10 41.6 0.2 154 5.2 0.04448 37.104 

3 20 77.8 0.3 200.2 5.3 0.04084 70.456 

4 40 147 0.4 269.4 5.4 0.04084 137.20 

5 60 218 0.5 340.4 5.5 0.04084 205.76 

6 80 288.8 0.6 411.2 5.6 0.04084 274.11 

7 100 358 0.7 480.4 5.7 0.04084 340.86 

8 120 428.8 0.8 551.2 5.8 0.04084 409.21 

9 140 499.8 0.9 620.4 5.9 0.04145 478.09 

10 160 569 1 691.4 6 0.04084 544.52 

11 180 648.8 1.1 773 6.1 0.04025 621.47 

12 200 725.2 1.2 849.4 6.2 0.04025 695.39 
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PePHB0=100% 

Simulation run 

number 

Initial 

Biomass  
(C-mmol/L) 

Point1 

Acetate0 
(C-mmol/L) 

Point1 

Ammonia0 
(N-mmol/L) 

Point2 

Acetate0 
(C-mmol/L) 

Point2 

Ammonia0 
(N-mmol/L) 

    

(
      

      
 ) 

                 
(C-mmol/L) 

13 2 3.8 0.1 128 5.1 0.04025 1.316 

14 10 7.4 0.2 129.8 5.2 0.04084 2.504 

15 20 9.2 0.3 133.4 5.3 0.04025 1.748 

16 40 12.8 0.4 138.8 5.4 0.03968 2.72 

17 60 14.6 0.5 138.8 5.5 0.04025 2.18 

18 80 18.2 0.6 142.4 5.6 0.04025 3.296 

19 100 20 0.7 144.2 5.7 0.04025 2.612 

20 120 23.6 0.8 147.8 5.8 0.04025 3.728 

21 140 25.4 0.9 151.4 5.9 0.03968 2.72 

22 160 32.6 1 156.8 6 0.04025 7.76 

23 180 30.8 1.1 156.8 6.1 0.03968 3.08 

24 200 34.4 1.2 156.8 6.2 0.04084 5.024 
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25. 37.  

26. 38.  

27. 39.  

28. 40.  
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29. 41.  

30. 42.  

31. 43.  

32. 44.  
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33. 45.  

34. 46.  

35. 47.  

36. 48.  
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Point2 

Acetate0 
(C-mmol/L) 

Point2 

Ammonia0 
(N-mmol/L) 

    

(
      

      
 ) 

                 
(C-mmol/L) 

25 200 725.2 1.2 849.4 6.2 0.04025 695.39 

26 275 1012 2 1588 25 0.03993 961.9130 

27 350 1308 3 1866 26 0.04121 1235.217 

28 425 1584 4 2232 30 0.04012 1484.307 

29 500 1864 5 2488 30 0.04006 1739.2 

30 575 2164 6 3004 39.6 0.04 2014 

31 650 2442 7 3530 49.7 0.03924 2263.639 

32 725 2724 8 4020 60 0.04012 2524.615 

33 800 3008 9 4548 70 0.03961 2780.786 

34 875 3300 10 5050 80 0.04 3050 

35 950 3616 11 5540 89.4 0.04074 3346.051 

36 1000 3792 12 5976 98.4 0.03956 3488.666 
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PePHB0=100% 

Simulation run 

number 
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Biomass  
(C-mmol/L) 
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Point2 

Acetate0 
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Point2 
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(N-mmol/L) 

    

(
      

      
 ) 

                 
(C-mmol/L) 

37 200 34.4 1.2 156.8 6.2 0.0408 5.024 

38 275 72 2 632 25 0.04107 23.3043 

39 350 100 3 660 26 0.04107 26.9565 

40 425 121 4 767 30 0.04024 21.6153 

41 500 146 5 776 30 0.03968 20 

42 575 194 6 1010 39.6 0.04117 48.2857 

43 650 212 7 1276 49.7 0.04013 37.5737 

44 725 254 8 1514 60 0.04126 60.1538 

45 800 296 9 1766 70 0.04149 79.1147 

46 875 302 10 2052 80 0.04 52 

47 950 326 11 2270 89.4 0.04032 53.2448 

48 1000 362 12 2522 98.4 0.04 62 
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49. 61.  

50. 62.  

51. 63.  

52. 64.  
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PePHB0=0% 

Simulation 

run number 

Initial 

Biomass  
(C-mmol/L) 

Point1 

Acetate0 
(C-mmol/L) 

Point1 

Ammonia0 
(N-mmol/L) 

Point2 

Acetate0 
(C-mmol/L) 

Point2 

Ammonia0 
(N-mmol/L) 

    

(
      

      
 ) 

                 
(C-mmol/L) 

49 1000 3792 12 5976 98.4 0.03956 3488.666 

50 2000 7440 15 10800 150 0.04017 7066.666 

51 3000 11120 25 16720 250 0.04017 10497.77 

52 4000 14980 35 22680 350 0.04090 14124.44 

53 5000 18800 55 28700 447 0.03959 17410.96 

54 6000 23400 100 34600 550 0.04017 20911.11 

55 7000 27720 130 40640 650 0.04024 24490 

56 8000 31880 160 46640 748 0.03983 27863.67 

57 9000 36100 180 52480 840 0.040 31632.72 

58 10000 40400 220 58400 948 0.04044 34960.43 

59 12500 50000 250 68400 990 0.04021 43783.78 

60 15000 59500 280 79500 1080 0.04 52500 
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PePHB0=100% 

Simulation run 
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(C-mmol/L) 

61 1000 362 12 2522 98.4 0.04 62 

62 2000 522 15 3852 150 0.04054 152 

63 3000 860 25 6380 250 0.04076 246.666 

64 4000 1080 35 9000 350 0.03977 200 

65 5000 1560 55 11360 447 0.04 385 

66 6000 3040 100 14220 550 0.04025 555.5555 

67 7000 3960 130 17080 650 0.03963 680 

68 8000 4680 160 19640 748 0.03930 809.2517 

69 9000 5520 180 21860 840 0.0439 1063.63 

70 10000 6320 220 24800 948 0.03939 1035.38 

71 12500 7440 250 25770 990 0.04037 1247.43 

72 15000 8680 280 28280 1080 0.04081 1820 
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“famine” phase modelling (RT3 and RT5) 

 

 
Table D.1 Scaling parameters for “famine” phase data sets 

 T0 Point-P Point-T 

Min Max Min Max Min Max 

Time  
(h) 

- - 0.15 5 4.5 14.55 

Biomass 
(C-mmol/L) 

15.5 197.3 40.4 243.7 41.7 243.7 

PHB 
(C-mmol/L) 

34.6 497.1 50.7 552.4 17.2 212.3 

Acetate 
(C-mmol/L) 

5.9 268.5 0 0 0 0 

Ammonia 
(N-mmol/L) 

0.3 9.9 0 7.5 0 2 

 

Table D.2 MLR model parameters for the “famine” phase data sets 

 y = f(x1,x2,x3,x4) 

               
Model outputs 

  

Point-P 

  

Time -0.1207 -0.4518 0.1677 0.8779 -0.2056 

Biomass 0.0883 0.7236 0.1891 0.1743 -0.1463 

PHB 0.0499 0.0830 0.8204 0.3081 0.0687 

  

Point-T 

  

Time 0.7082 -0.2147 0.4275 0.7820 -0.5287 

Biomass 0.2345 0.7204 0.2061 0.0826 -0.2817 

PHB 0.0863 0.0921 0.9175 0.2286 0.0419 

 

Point-P Point-T 

  

  

  
Single NN number Single NN number 

Figure D.1 Number of hidden neurons in single NN structure for the “famine” 

phase data sets  
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Single NN number Single NN number 

Figure D.2 Sum of squared errors of single and aggregated model predictions for 

“famine” phase scaled data 

 

Table D.3 RMSE values for different model structures developed using BANN 

technique for “famine” phase profile 

RMSE  

(Scaled validation) 

y=f(x1,x4) y=f(x2,x3) y=f(x1,x2,x3) y=f(x1,x2,x4) 

BANN BANN BANN BANN 

Point-P 

 

Time 0.68 0.39 0.38 0.67 

Biomass 0.09 0.14 0.09 0.10 
PHB 0.18 0.04 0.05 0.17 

Point-T 

 

Time 0.56 0.41 0.40 0.56 

Biomass 0.03 0.16 0.12 0.05 
PHB 0.14 0.06 0.06 0.13 

 

RMSE  

(Scaled validation) 

y=f(x1,x3,x4) y=f(x2,x3,x4) y=f(x1,x2,x3,x4) y=f(x1,x2,x3,x4,x5) 

BANN BANN BANN MLR BANN 

Point-P 

 

Time 0.34 0.35 0.34 0.35 --- 

Biomass 0.06 0.13 0.07 0.18 --- 

PHB 0.11 0.06 0.05 0.08 --- 

Point-T 

 

Time 0.25 0.25 0.24 0.33 0.22 

Biomass 0.03 0.13 0.05 0.33 0.05 

PHB 0.09 0.06 0.06 0.11 0.05 
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“famine” phase modelling (RT3) 
 

 

Point-P Point-T 

  

  

  
Single NN number Single NN number 

Figure D.3 Number of hidden neurons for each single NN structure for the RT3 

data sets 

 

Point-P Point-T 

  

  

  
Single NN number Single NN number 

Figure D.4 Sum of squared errors of single and aggregated model predictions for 

RT3 scaled data sets 
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Table D.4 RMSE values for different model structures developed using BANN 

technique for RT3 data sets 

RMSE  

(Scaled validation) 

y=f(x3,x4) y=f(x1,x2,x3) y=f(x1,x2,x4) y=f(x1,x3,x4) 

BANN BANN BANN BANN 

Point-P 

 

Time 0.46 0.26 0.42 0.28 

Biomass 0.60 0.05 0.09 0.02 
PHB 0.52 0.05 0.05 0.10 

Point-T 

 

Time 0.31 0.50 0.57 0.35 

Biomass 0.60 0.08 0.06 0.03 

PHB 0.52 0.04 0.06 0.09 

 

RMSE  

(Scaled validation) 

y=f(x2,x3,x4) y=f(x1,x2,x3,x4) y=f(x1,x2,x3,x4,x5) 

BANN BANN BANN 

Point-P 

 

Time 0.29 0.28 --- 

Biomass 0.11 0.05 --- 

PHB 0.01 0.05 --- 

Point-T 

 

Time 0.35 0.36 0.35 

Biomass 0.11 0.06 0.05 

PHB 0.03 0.04 0.04 

 

 

 

“famine” phase modelling (RT5) 
 

 

Point-P Point-T 

  

  

  
Single NN number Single NN number 

Figure D.5 Number of hidden neurons for each single NN structure for the RT5 

data sets 
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Figure D.6 Sum of squared errors of single and aggregated model predictions for 

RT5 scaled data sets 

 

Table D.5 RMSE values for different model structures developed using BANN 

technique for RT5 batch profiles 

RMSE  

(Scaled validation) 

y=f(x2,x3) y=f(x1,x2,x3) y=f(x1,x2,x4) y=f(x1,x3,x4) 

BANN BANN BANN BANN 

Point-P 

 

Time 0.39 0.25 0.39 0.23 

Biomass 0.14 0.09 0.05 0.01 
PHB 0.04 0.06 0.16 0.11 

Point-T 

 

Time 0.41 0.22 0.32 0.22 

Biomass 0.16 0.09 0.05 0.01 
PHB 0.06 0.05 0.14 0.09 

 

RMSE  

(Scaled validation) 

y=f(x2,x3,x4) y=f(x1,x2,x3,x4) y=f(x1,x2,x3,x4,x5) 

BANN BANN BANN 

Point-P 

 

Time 0.22 0.24 --- 

Biomass 0.11 0.04 --- 

PHB 0.06 0.06 --- 

Point-T 

 

Time 0.21 0.22 0.14 

Biomass 0.11 0.04 0.05 

PHB 0.06 0.06 0.06 
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