
Insider Threat: Memory Confidentiality
and Integrity in the Cloud

Francisco Rocha
School of Computing Science

Newcastle University

This dissertation is submitted for the degree of

Doctor of Philosophy

Newcastle upon Tyne, UK June 2015

I would like to dedicate this thesis to my parents, my sister, and my closest family and
friends.

Acknowledgements

I would like to acknowledge my supervisor, Professor Aad van Moorsel, for giving me the
opportunity to pursue my PhD studies at Newcastle University and for guiding me through-
out this journey.

Abstract

The advantages of always available services, such as remote device backup or data storage,
have helped the widespread adoption of cloud computing. However, cloud computing ser-
vices challenge the traditional boundary between trusted inside and untrusted outside. A
consumer’s data and applications are no longer in premises, fundamentally changing the
scope of an insider threat.

This thesis looks at the security risks associated with an insider threat. Specifically, we
look into the critical challenge of assuring data confidentiality and integrity for the execution
of arbitrary software in a consumer’s virtual machine. The problem arises from having
multiple virtual machines sharing hardware resources in the same physical host, while an
administrator is granted elevated privileges over such host.

We used an empirical approach to collect evidence of the existence of this security prob-
lem and implemented a prototype of a novel prevention mechanism for such a problem.
Finally, we propose a trustworthy cloud architecture which uses the security properties our
prevention mechanism guarantees as a building block.

To collect the evidence required to demonstrate how an insider threat can become a
security problem to a cloud computing infrastructure, we performed a set of attacks targeting
the three most commonly used virtualization software solutions. These attacks attempt to
compromise data confidentiality and integrity of cloud consumers’ data. The prototype to
evaluate our novel prevention mechanism was implemented in the Xen hypervisor and tested
against known attacks.

The prototype we implemented focuses on applying restrictions to the permissive mem-
ory access model currently in use in the most relevant virtualization software solutions. We
envision the use of a mandatory memory access control model in the virtualization soft-
ware. This model enforces the principle of least privilege to memory access, which means
cloud administrators are assigned with only enough privileges to successfully perform their
administrative tasks.

Although the changes we suggest to the virtualization layer make it more restrictive, our
solution is versatile enough to port all the functionality available in current virtualization

viii

solutions. Therefore, our trustworthy cloud architecture guarantees data confidentiality and
integrity and achieves a more transparent trustworthy cloud ecosystem while preserving
functionality.

Our results show that a malicious insider can compromise security sensitive data in the
three most important commercial virtualization software solutions. These virtualization so-
lutions are publicly available and the number of cloud servers using these solutions accounts
for the majority of the virtualization market. The prevention mechanism prototype we de-
signed and implemented guarantees data confidentiality and integrity against such attacks
and reduces the trusted computing base of the virtualization layer. These results indicate
how current virtualization solutions need to reconsider their view on insider threats.

Contents

Contents ix

List of Figures xiii

1 Introduction 1
1.1 Aim and Objectives . 2

1.2 Thesis Contributions . 3

1.3 Publication History . 4

2 Background 7
2.1 Security Principles . 7

2.1.1 Basic Requirements . 8

2.1.2 Design . 8

2.1.3 Approaches . 10

2.2 Cryptography . 11

2.2.1 Hash Function . 11

2.2.2 Public-Key Cryptography . 12

2.3 Virtualization . 15

2.3.1 Full Virtualization - Binary Translation 17

2.3.2 Paravirtualization . 18

2.3.3 Hardware-Assisted Virtualization 19

2.3.4 Guest OS Isolation . 19

2.3.5 Virtual Machine Introspection . 20

2.4 Cloud Computing . 20

2.4.1 Entities . 21

2.4.2 Essential Characteristics . 21

2.4.3 Deployment Models . 22

x Contents

2.4.4 Service Models . 23

2.5 Trustworthy Computing . 24

2.5.1 Trusted Platform Module . 24

2.5.2 TPM Functionality . 27

3 Literature Review of Virtualization and Security 31
3.1 Adversary Model . 32

3.2 Cryptography-centred Solutions . 32

3.3 Virtualization-centered Solutions . 34

3.3.1 SecVisor . 35

3.3.2 HyperShot . 36

3.3.3 Dom0 Disaggregation . 37

3.3.4 NOVA: a microhypervisor architecture 38

3.3.5 sHype Hypervisor . 39

3.3.6 CloudVisor . 39

3.3.7 Xoar . 40

3.3.8 VMGuard . 41

3.3.9 Min-V . 41

3.3.10 Summary . 42

3.4 Hardware-centred Solutions . 43

3.4.1 Terra . 43

3.4.2 Trusted Virtual Datacenters (TVDc) 44

3.4.3 Private Virtual Infrastructure (PVI) 45

3.4.4 NoHype . 46

3.4.5 Trusted Cloud Computing Platform (TCCP) 47

3.4.6 Excalibur . 48

3.4.7 TrustVisor . 49

3.4.8 myTrustedCloud . 49

3.4.9 Strongly Isolated Computing Environment (SICE) 50

3.4.10 Summary . 51

3.5 Conclusions . 52

4 Security Design Flaw in Current Virtual Machine Monitors 53
4.1 Adversary Model . 54

4.2 Attack Concept . 54

4.2.1 RSA Key Structure in Memory . 55

Contents xi

4.3 Virtual Machine Introspection Library . 57

4.3.1 Obtaining Virtual Memory Areas 58

4.4 Xen Hypervisor . 60

4.4.1 Inter-Virtual Machine Communication 61

4.4.2 Test Environment . 63

4.4.3 Memory Confidentiality and Integrity 64

4.4.4 Conclusions . 67

4.5 Linux KVM . 68

4.5.1 Test Environment . 70

4.5.2 Memory confidentiality and Integrity 70

4.5.3 Conclusions . 71

4.6 VMWare ESXi . 72

4.6.1 Test Environment . 74

4.6.2 Memory Confidentiality and Integrity 74

4.6.3 Conclusions . 76

4.7 Related Approaches . 76

4.8 Conclusions . 76

5 Lightweight Mandatory Memory Access Control (LMMAC) 79
5.1 Virtual Memory . 80

5.1.1 Paging . 81

5.1.2 Memory Virtualization . 82

5.2 Privilege Levels . 84

5.2.1 Privilege Levels and Virtualization 84

5.3 Mandatory Memory Access Control: Single Page 85

5.3.1 Test Environment . 86

5.3.2 Secure Inter-Virtual Machine Communication 87

5.4 Lightweight Mandatory Memory Access Control 95

5.4.1 Security Analysis . 102

5.4.2 Memory Performance . 104

5.5 Related Approaches . 108

5.6 Limitations . 108

6 Trustworthy Cloud Computing Architecture (TCCA) 111
6.1 Cloud Server Components . 112

6.2 Architecture Requirements . 114

xii Contents

6.3 Cloud Platform Trustworthiness . 121
6.3.1 Trusted Virtualization Environment 122
6.3.2 Critical Management Operations 124

6.4 Related Approaches . 129
6.5 Limitations . 130

7 Conclusions 131
7.1 Summary of Contributions . 132
7.2 Future Work . 133

7.2.1 Further Reductions to the Trusted Computing Base 133
7.2.2 Uniqueness of Software Agents 133
7.2.3 Monitoring Virtual Machines . 134
7.2.4 Managing Golden Integrity Measurements 134
7.2.5 Encrypt-on-Save Data . 135

References 137

List of Figures

2.1 Native Virtualization. 15

2.2 Binary Translation. 16

2.3 Paravirtualization. 17

2.4 Hardware-Assisted Virtualization. 18

2.5 Trusted Platform Module (TPM) [95]. 25

3.1 Trusted Computing Base (Security Enforcing Operations) [50]. 34

4.1 Virtual Machines’ Memory Space. 55

4.2 RSAPrivateKey ASN.1 type. 56

4.3 libVMI Architecture. 57

4.4 Linux kernel data structures for virtual memory organisation. 59

4.5 Xen Architecture. 60

4.6 Xen Test Environment. 63

4.7 Xen attack code executing. 66

4.8 Server virtual machine. 66

4.9 Client virtual machine. 67

4.10 Linux Kernel-based Virtual Machine Architecture. 69

4.11 Linux KVM Test Environment. 70

4.12 Generated private RSA key. 71

4.13 Compromised private RSA key. 72

4.14 Architecture for VMWare ESXi. 73

4.15 Generated private RSA key. 74

4.16 Compromised private RSA key. 75

5.1 Virtual address translation. 80

5.2 Paging: virtual address translation. 82

5.3 Levels of indirection for systems with a hypervisor. 83

xiv List of Figures

5.4 Protection Rings. 84
5.5 Solution: Xen Test Environment. 86
5.6 Enforcing access control. 95
5.7 Xen with LMMAC. 101
5.8 The memory hierarchy [13]. 104
5.9 Memory latency. 105
5.10 Memory Throughput. 107

6.1 Cloud server TCB components. 112
6.2 Trustworthy Cloud Architecture. 113
6.3 Public-key certificate verification. 117
6.4 System execution modes. 120
6.5 Remote attestation. 122
6.6 Trustworthy VM Launch. 125
6.7 Trustworthy VM Migration. 126
6.8 Trustworthy VM Backup. 127
6.9 Trustworthy VM termination. 128

Chapter 1

Introduction

Cloud computing offers multiple advantages such as a pay-per-use cost model and easy
access to an apparently unlimited pool of computational resources. These features are ap-
pealing for small and midsize companies looking for a versatile solution to expand their
businesses without a significant financial commitment. However, cloud computing is also
susceptible to new security threats such as abuse and nefarious use (e.g., criminal activities)
of cloud resources and malicious insiders. The latter is the focus of the work introduced in
this thesis [1].

The two major characteristics of cloud computing making it vulnerable to the type of at-
tacks discussed in this document are the use of virtualization technology, and the offloading
of consumer data to an off-premises cloud provider’s owned and managed remote infras-
tructure. The latter changes the traditional boundary between trusted inside and untrusted
outside.

In a cloud computing environment virtual machines from different consumers can co-
exist in the same physical server, while cloud administrators are granted elevated access
privileges over virtualization administration software, e.g., a management virtual machine.
These characteristics combined with a security design flaw and the offloading of consumer
data to the cloud provider’s infrastructure make it possible for a malicious insider to com-
promise security sensitive data that belongs to cloud consumers [73, 74].

An ideal cloud computing environment should permit cloud administrators to perform
the necessary tasks to keep the whole cloud ecosystem operational, while at the same time
guarantee that those administrators cannot compromise consumers’ data. Unfortunately,
current solutions do not enforce the principle of least privilege giving a malicious admin-
istrator the ability to compromise security sensitive data [73, 74]. The security problem
identified in this thesis affects the latest versions of the three major virtualization software

2 Introduction

solutions used in the cloud industry. Therefore, it is of paramount importance to perform
this research so virtualization software developers become aware of such risks.

Considering this information we define the problem statement for this thesis to be de-
signing a secure cloud computing architecture that enforces the principle of least privilege
and guarantees that cloud administrators can perform the necessary tasks to keep the system
operational.

1.1 Aim and Objectives

The aim of our work, as established in our problem statement, is to design a cloud archi-
tecture that prevents insider threats. Although this type of threat has been overlooked in the
research community, its impact is quite severe since malicious insiders, denial of services,
and malicious code account for more than 55% of the cost of cyber crime in the United
States [35].

Our strategy to achieve such goal consists in first exposing the insider threat as a relevant
security problem which is transversal to the most commonly used virtualization software
solutions. After exposing the seriousness of such security problem we introduce our pre-
vention mechanism and the role such mechanism plays in a more secure cloud architecture.

This thesis contains the context and details of a set of objectives we defined as necessary
to present our final solution. These objectives provide a clear definition of the scope of our
work, demonstrate the security problem we studied, and present our proposed solution, re-
sults, and its evaluation. This document should help the reader understand our motivation for
preventing insider threats, the reasons supporting the design decisions for our solution, and
how the suggested solution improves on current state of the art. Therefore, this document
focuses on background and literature review, elaborating on how the security flaw impacts
memory confidentiality and integrity, and discussing our solution and its applicability.

The background and literature review content supplies information on key subjects such
as cloud computing and security, and an analyses of current state of the art in cloud secu-
rity. This analysis focuses on how effectively cloud security prevents insider threats. These
chapters should provide a clear view of the scope of our research. The concepts and ideas
explained in these sections are paramount for understanding the chapters that follow.

After the background and literature review chapters, we introduce and explain the rel-
evant security design flaw in detail and demonstrate how a malicious insider can exploit
such flaw to compromise cloud consumers’ security sensitive data. Another important point
in this chapter is showing how this security problem is not just an implementation issue

1.2 Thesis Contributions 3

affecting a particular virtual machine monitor. The content of this chapter also introduces
advanced real time attacks a malicious insider can perform to compromise the confidential-
ity and integrity of consumers’ data.

The remainder of the thesis centres on describing our solution in detail, discussing how
we implemented and evaluated its effectiveness, and how taking advantage of such solution
can improve the security of current approaches.

Our solution introduces a mandatory memory access control mechanism into the virtual-
ization software, or virtual machine monitor. This mechanism performs access control in the
virtualization layer guaranteeing that a malicious insider with administrative privileges over
a virtualization server cannot compromise the confidentiality and integrity of consumers’
security sensitive data.

This approach restricts the access of an insider to the amount of privileges required to
conclude administrative tasks, i.e., it enforces the principle of least privilege. Using the
virtualization software as the access control enforcer also assures that the trusted computing
base of our approach is smaller when compared to previous solutions. A simple definition
for trusted computing base is the set of system components we implicitly trust to behave
correctly.

1.2 Thesis Contributions

This thesis contains a few contributions related to insider threats in cloud computing.

• A thorough literature review of the current state of the art in cloud computing security.
Our analysis centres on how effective current solutions are at preventing a malicious
insider from compromising memory confidentiality and integrity and consequentially
consumers data. The insights from this review led us to identifying the research gap
we could target for this work.

• Successfully compromised security sensitive data in three major virtualization soft-
ware solutions demonstrating their vulnerability to malicious insiders. The success of
these attacks proves the existence of a specific security design flaw. Performing these
attacks improved our perception of the problem which ultimately helped us with de-
vising our final solution.

• Our main contribution is the design, implementation, and testing of a novel preven-
tion mechanism that enforces the principle of least privilege to protect against insider

4 Introduction

threats. This approach enforces the principle of least privilege, and guarantees mem-
ory confidentiality and integrity for the execution of arbitrary software in a consumer
virtual machine hosted in a cloud computing environment.

• Proposal of a trustworthy cloud computing architecture. This architecture takes ad-
vantage of the security properties guaranteed through the use of our prevention mech-
anism. Although a few changes are required, this architecture does not prevent a
cloud administrator from performing his administrative tasks. The novelty of our ap-
proach is designing the architecture so its security sensitive operations become more
transparent to cloud consumers.

1.3 Publication History

The contributions in this thesis were first introduced in published peer-reviewed work writ-
ten or co-written by the author. Those publications are properly referenced throughout this
document. A list of the relevant publications follows.

• Rocha, F. (2015). Insider Threat: Memory Confidentiality and Integrity in the Cloud,
Lambert Academic Publishing (LAP). (invited publication)

• Rocha, F. and van Moorsel, A. (2015). Protecting against malicious insiders in cloud
computing: Survey and research challenges. (to be submitted)

• Rocha, F., Abreu, S., and Correia, M. (2013a). The Next Frontier: Managing Data

Confidentiality and Integrity in the Cloud. IEEE Computer Society Press.

• Rocha, F., Gross, T., and van Moorsel, A. (2013). Defense-in-depth against malicious
insiders in the cloud. In IEEE International Conference on Cloud Engineering 2013,
San Francisco, USA.

• Rocha, F., Abreu, S., and Correia, M. (2011). The final frontier: Confidentiality and
privacy in the cloud. Computer, 44:44–50.

• Rocha, F. and Correia, M. (2011). Lucy in the sky without diamonds: Stealing con-
fidential data in the cloud. In Proceedings of the 1st International Workshop on De-

pendability of Clouds, Data Centers and Virtual Computing Environments, DSNW
’11, Hong Kong.

1.3 Publication History 5

The remainder of this thesis is organized as follows. Chapter 2 provides the background
context with the key concepts required to understand later discussions in the document. A
literature review of related research work is included in Chapter 3. This chapter identifies
the research gap for our work and how it relates to similar research work. Chapter 4 in-
troduces successful attacks performed against major virtualization software. In Chapter 5
our approach to preventing the malicious insider threat is explained and its advantages and
disadvantages are also discussed. Chapter 6 proposes a trustworthy cloud architecture that
builds on our prevention mechanism to make the cloud ecosystem more transparent and
secure. The final chapter presents our conclusions and suggestions for future work.

Chapter 2

Background

This chapter introduces the required concepts from the key main subjects used in the re-
mainder of the thesis. The definitions needed to understand our explanations are included in
this chapter. More specific concepts and technologies are introduced in the relevant sections.

Security related publications typically use Alice and Bob as communicating parties as a
way of making the explanation of a complex subject easier to follow. These two individuals
were introduced in the publication that defined the RSA algorithm for public-key cryptog-
raphy [70]. Alice and Bob are the legitimate participants. For malicious actions we chose
to use Mallory, an active adversary that tries to subvert the security mechanisms Alice and
Bob use to keep their data secure [82].

The remainder of this chapter is organised as follows. It starts with an introduction
to the necessary security principles such as basic security requirements and approaches to
fulfil them. Next, it provides a short overview of relevant cryptographic primitives such as
secure hash functions. The two sections that follow define the key concepts of virtualization
and cloud computing. The final section contains a short introduction to key concepts of
trustworthy, or trusted, computing technology.

2.1 Security Principles

This first section is used to introduce the basic requirements and design principles a system
should respect in order to the protect the information resident within it.

8 Background

2.1.1 Basic Requirements

When considering the security of a system the basic requirements to look for are confi-

dentiality, integrity, and availability. There are several definitions for these requirements
but we decided to use the definitions established by the National Institute of Standards and
Technology (NIST) [60].

Confidentiality is the requirement that private or confidential information not be dis-
closed to unauthorized individuals. There are several scenarios where it is necessary to keep
information secure. For example, the motivation behind the first formal work in computer
security was the military need to implement the “need-to-know” principle [11].

The requirement of integrity can be subdivided in data and system integrity. Some au-
thors also consider origin integrity, which is typically known as authentication [11]. For the
purposes of this document we are going to focus on the first two.

Data integrity states that modification of information and programs must only happen in
a specified and authorized manner. For example, consider a scenario where Alice requests
a funds transfer to Bob with a value of one hundred pounds sterling. If Mallory is capable
of compromising the data integrity of such transaction, she could manipulate the bank to
process the transfer to her account instead of Bob’s account.

Guaranteeing system integrity means that the system must perform the expected function
in an unaltered fashion, free from unintended or deliberate unauthorized manipulation. A
famous example of inadvertent system failures was when an Ariane 5 rocket launch system
exploded due to a software error just forty seconds after it had initiated its flight. The project
had a $7 billion development cost and the destroyed rocket and its cargo were valued at $500
millon [22].

The final requirement is availability. A system satisfies the requirement of availabil-
ity when its legitimate users are able to access the desired data or resource. If for some
reason the system is unresponsive to its legitimate users, its availability is considered com-
promised. A well-known malicious attempt against a system’s availability is a denial of
service (DoS) attack. This type of attack consists in an adversary flooding a system with
illegitimate requests in order to consume resources. Hence, preventing the system from
handling legitimate requests.

2.1.2 Design

An accepted set of security design principles was established in the early days of computer
security. Since researchers could not find a complete method to eliminate all security flaws

2.1 Security Principles 9

from large scale general purpose systems, those principles were devised based on lessons
learnt from designing systems with security requirements. The list of principles includes,
economy of mechanism, fail-safe defaults, complete mediation, open design, separation of

privilege, least privilege, least common mechanism, and psychological acceptability [78].
For our work the most relevant principles are:

• Economy of Mechanism

• Complete Mediation

• Least Privilege

In this chapter we include definitions for these principles. In later chapters, when the context
is appropriate, we explain in detail why and how these principles are the most relevant to
our work.

The principle of economy of mechanism states that the design should be kept as simple
and small as possible. This principle is relevant when considering the security of a system
because a more complex and larger system means a wider attack surface for those wanting to
break the security of the system [78]. The importance of this principle is also noticeable for
mechanisms such as software source code inspection, whose success depends on a system
being small and simple.

Another principle to consider is the principle of least privilege. This principle states
that every program and user of the system should only be given the necessary privileges
to complete a task. The primary objective of this principle is to limit the damage that
can occur from unintentional, unwanted, or improper use of privilege [78]. In Chapter 4,
we demonstrate how current virtualization solutions not respecting the principle of least
privilege puts consumers’ data at risk.

The requirement that any access to a system object be checked for authorization is the
core of the principle of complete mediation [78]. The correct application of this principle
implies a system-wide view of access control, which means that it should be applied to
initialization, normal operation, recovery, shutdown, and maintenance. This wide influence
makes this principle a foundation to any protection mechanism of a system. Therefore, any
protection mechanism should deploy methods of identifying the source of all requests.

Throughout this document the notion of economy of mechanism is going to be associ-
ated with the concept of trusted computing base, which is why we decided to introduce the
latter at this point. We chose to use the definition of trusted computing base provided by the
Department of Defence (DoD). The DoD defines trusted computing base (TCB) to be the

10 Background

totality of protection mechanisms within a computer system, including hardware, software
and firmware, the combination of which is responsible for enforcing a security policy [19].

Considering the principle of economy of mechanism and the definition of trusted com-
puting base, we conclude that a system with a smaller trusted computing base is more secure,
i.e., respects the principle of economy of mechanism. This idea is very important for later
when discussing the advantages of our solution when compared with similar research.

These three principles are fundamental when you want to develop a trustworthy sys-
tem. The economy of mechanism principle guarantees a reduced trusted computing base

by design which is paramount for implementing trustworthy software modules. Assuring
a software module is not accessing unnecessary functionality/data through the principle of

least privilege creates an ecosystem where trustworthy software modules can interact with
each other whilst guaranteeing strong security properties. Finally, enforcing complete me-

diation in a secure system guarantees unwanted accesses can be prevented and logged when
applicable.

2.1.3 Approaches

Researchers have defined four classes of security approaches to enforce the basic security
requirements in a system. Those approaches are security through prevention, detection and

recovery, resilience, or deterrence [66].

Prevention solutions require detailed knowledge of a security problem at design time.
This knowledge makes it possible to devise mechanisms to harden a system’s security
against a known threat. For example, a prevention mechanism meant to guarantee the in-
tegrity of data is going to operate in a way that prevents unauthorized users from changing
that data.

A detection and recovery method centres on monitoring the behaviour of every program
and user of a system. This monitoring permits the detection of unauthorized behaviour,
which then allows the elimination of the source of malicious behaviour and consequent
restoration of normal system functionality. If we consider the integrity example once more.
When a detection and recovery mechanism is deployed, it is not going to try to prevent
violations of data integrity, but instead report when data integrity is no longer trustworthy.

Security mechanisms to assure resilience aim to guarantee graceful performance degra-
dation in an already compromised system. The assumption is that systems can contain
compromised nodes and hosts. For example, if a compromised node performs unauthorized
changes to data, violating its integrity, a resilience mechanism should guarantee that such

2.2 Cryptography 11

violation has the minimum impact possible in the whole system.

The last of the four approaches in our list is non-technical. Deterrence mechanisms con-
sist in providing legal disincentives, which should reduce the percentage of attacks against
a system. A simple example would be computer crime law that applies heavy penalties to
the exploitation of vulnerabilities in computer systems.

These definitions are relevant to our research so we can isolate the area our security
mechanism falls into. Without disregarding the importance of other security research areas.
Our work focuses on technological prevention mechanisms. The structure of this thesis
highlights it perfectly. We find and understand in detail a security problem which allows us
to design and prototype a prevention mechanism for such problem.

2.2 Cryptography

In this section we introduce the cryptographic primitives that are important for later discus-
sions. The content of this section does not intend to provide an extensive introduction to
cryptography.

2.2.1 Hash Function

The aim of a one-way hash function is to generate a fingerprint of a block of data, e.g., a file
or a message. When communicating parties wish to verify if the content of a message has
not changed and that it comes from the alleged source, they use a mechanism for message
authentication. Hash functions are widely used in message authentication. Let us consider
a hash function H, and list the properties it needs to satisfy in order to be practical in the
process of achieving message authentication [87].

1. H needs to handle blocks of data of any length.

2. H’s output must have a fixed-size.

3. Hardware and software implementations must be practical. Therefore, for any given
x, it is relatively easy to compute H(x).

4. A hash function is referred to as one-way if, for any given hash code h, it is computa-
tionally infeasible to find the x in H(x) = h.

12 Background

5. For a hash function to be considered weak collision resistant, it must satisfy the fol-
lowing requirement: For any given block of data x, it needs to be computationally
infeasible to find a block of data y not equal to x such that H(y) = H(x).

6. A strong collision resistant hash function fulfils the requirement of being computa-
tionally infeasible to find any pair (x,y) such that H(x) = H(y).

Properties from one to three are basic requirements for a hash function to be used in
message authentication. The fourth property adds the one-way attribute to a hash function,
which guarantees that computing a hash code is easy but, given a hash code, it is virtually
impossible to reach the original message. This attribute makes a hash code useful for secret-
based user authentication because the secret does not need to be send. If this property is not
valid, an attacker can easily invert a hash function, and from the hash code obtain the original
message.

Satisfying the fifth property turns a hash function weak collision resistant assuring that
for such function it is impossible to find an alternative message with the same hash code
as a known message. This property prevents forgery when using an enciphered hash code.
Assuming this property is not true and the message is not encrypted. An attacker could
intercept a message plus its enciphered hash code, use the message to generate a deciphered
hash code, and finally compute an alternative message for the same hash code.

The strong collision resistant property serves to protect against the sophisticated birthday
attack. This attack reduces the strength of a n-bit hash function from 2n to 2n/2 [86].

A hash code is as useful for message authentication as it is to verify data integrity. Since
it is computationally infeasible to find a y ̸= x such that H(x) = H(y), any changes to the
bits of the block of data x, result in a different hash code. This difference can be used to
verify if a message’s data integrity was compromised. This property is paramount for later
discussions.

A hash function can be as simple as performing a bit-by-bit exclusive-or of every data
block. However, to satisfy the properties previously enumerated we need a secure hash
function. The Secure Hash Algorithm (SHA) was developed by NIST and is the most widely
used secure hash function. Its hash codes can have 160, 256, 384, or 512 bits of length [87].

2.2.2 Public-Key Cryptography

The origins of public-key cryptography date back to 1976 when Diffie and Hellman intro-
duced their revolutionary idea [21]. When compared with traditional symmetric encryption

2.2 Cryptography 13

algorithms, a public-key algorithm uses mathematical operations rather than relying on op-
erations over bit patterns. Moreover, public-key cryptography is asymmetric, which means
it uses two distinct keys whereas symmetric encryption uses the same secret key for encryp-
tion and decryption.

The assumption about an adversary trying to break the security of an encryption scheme
is that she can obtain access to all encrypted data that gets transmitted, and has every detail
about the encryption/decryption algorithm [45]. Therefore, the security of any cryptosystem
depends on the size of the key, and the quality of the algorithm or how much computational
work is required to break a cipher.

The two distinct keys part of a public-key cryptosystem are referred to as public key
(PU) and private key (PR). These keys are usually generated by their owner. The owner of
a private key should always keep it secret and secure. The public key must be published in
a key directory or public file containing a set of such keys. This key distribution centre is
where individuals can collect public keys for the entities they wish to contact.

Diffie and Hellman defined the set of requirements a public-key cryptography algorithm
needs to satisfy [21, 87]. The list that follows enumerates those requirements. From this
point forward, the encryption and decryption procedures are denoted as E and D, respec-
tively.

1. Generating a private-public key (PRBob and PUBob, respectively) pair must be compu-
tationally easy for Bob.

2. It is computationally easy for Alice to obtain the ciphertext, C, for message M when
she knows Bob’s public key: C = E (PUBob,M).

3. Using his private key, it is computationally easy for Bob to retrieve the original mes-
sage M: M = D(PRBob,C) = D [PRBob,E (PUBob,M)]

4. It is computationally infeasible for Mallory to derive the private key from the public
key.

5. Assuming Mallory has Bob’s public key and a ciphertext Alice encrypted for Bob. It
is computationally infeasible for Mallory to recover the original message.

6. Any key of the private-public key pair can be used for encryption, with its pair used
for decryption. M = D [PUBob,E (PRBob,M)] = D [PRBob,E (PUBob,M)]

14 Background

The three applications of public-key cryptography are encryption and decryption of data,
digital signatures, and key exchange. An algorithm that supports these three applications is
the well-known RSA [70].

The first application is encryption and decryption of data. This application is similar to
what two communicating parties can achieve when using symmetric encryption algorithms
without the need for a shared secret key. An example of this application follows.

Let us consider a scenario where Alice needs to send a private message to Bob. Assum-
ing Alice and Bob have generated their public and private keys, and registered their public
keys in a public directory. The set of steps involved in Bob receiving an enciphered message
from Alice and deciphering it are described below.

1. Alice communicates with the public repository where Bob’s public key (PUBob) was
registered and obtains her own copy. This copy remains in Alice’s key ring for future
communications with Bob.

2. Alice wishes to send message M to Bob. To obtain a ciphertext, C, of message M,
Alice uses Bob’s public key and performs the operation C = E(PUBob,M). Finally,
she forwards cipher C to Bob.

3. Bob receives the ciphertext, C, and uses his private key (PRBob) to retrieve M through
the operation M = D(PRBob,C). Bob is the only one that can perform this decryption
step because only he has access to his private key.

This scenario illustrates how public-key cryptography can be used for exchanging con-
fidential data. The sender only needs the recipient’s public key to encrypt a message. The
security of this approach can be compromised if Mallory is capable of obtaining Bob’s pri-
vate key. A new public-private key pair can be generated at any point as long as the old
public key is revoked and replaced with the new one. This creates key management chal-
lenges in public-key cryptography systems.

Digital signatures is another application. For Bob to generate a digital signature he needs
to supply two arguments to the algorithm. The first argument is Bob’s private key and the
second is the whole message or a small block of data that is a function (e.g., a hash code) of
the message. The algorithm then signs (i.e., encrypts) the block of data with Bob’s private
key. Alice can then use Bob’s public key to decrypt the signed message which guarantees
her that the message came from Bob. This is valid as long as Bob is the only one with access
to his private key.

2.3 Virtualization 15

Hardware
Virtual Machine Monitor

Guest OS
App 0

…
App N

Virtual Machine 0

Guest OS
App 0

…
App N

Virtual Machine N

…

Fig. 2.1 Native Virtualization.

The final application is key exchange. The Diffie-Hellman approach is probably the
most famous key exchange method [21]. Key exchange algorithms are a complex area on
its own which is not in the scope of this thesis. Since Diffie-Hellman is a complex algorithm,
and not necessary for understanding the content of this document, we only provide a simple
way of using public-key cryptography for exchanging a secret key. Let us imagine that Alice
needs to send a secret key to Bob. Alice can sign a secret key with her private key, encrypt
it with Bob’s public key, and send it to Bob. This method is enough to guarantee a secure
key exchange method between Alice and Bob.

2.3 Virtualization

Virtualization is a main technological foundation for cloud computing. This section intro-
duces the key concepts of virtualization, the expected security properties in a virtualization
environment, and some security applications of virtualization.

The concept of virtual machine systems was introduced as a solution to the limitations of
the extended machine concept [28]. This concept was commonplace in 70s third generation
architectures and multi-programming operating systems such as OS/360 [18]. An extended
machine includes a set of non-privileged instructions combined with a set of system/super-
visory calls, with no access to the privileged instructions set. Which means that, without
the right privileges, the previous two sets are not enough to replicate a bare metal machine.
Therefore, one of the main limitations in this approach was that it did not support multiple

16 Background

operating systems on the same physical machine [28].

In virtual machine systems there are two main components, which are virtual machines

(VMs) and the virtual machine monitor (VMM). The term virtual machine refers to the
simulated machine whereas the virtual machine monitor is the simulator software. The
latter is the innovation in virtual machine systems which overcomes the limitations in the
extended machine approach. The VMM layer transforms the single machine interface into
many [28]. This means that each virtual machine is a replica of a computer system with
every instructions set and the required system resources.

The architecture in Figure 2.1 is an illustration of the classic virtualization approach IBM
introduced in the 70s [28]. The figure also shows that every virtual machine can execute its
own guest operating system (OS), which can then execute its own applications. In current
literature the term full virtualization is used to refer to an environment like the one shown
in Figure 2.1. The virtual machine monitor can also be referred to as hypervisor.

This particular full virtualization architecture is known as native, or bare metal, virtual-
ization because the virtual machine monitor interfaces directly with the bare metal machine.
The VMM controls the flow of instructions between virtual machines and the physical hard-
ware (e.g., CPU and memory) [81].

For purposes of the implementation discussed in this thesis, we are interested in the vir-
tualization of the x86 platform. The virtualization of this platform started with VMWare
back in the 90s [102]. The three virtualization approaches for the x86 platform are full
virtualization through binary translation, paravirtualization, and hardware assisted virtual-

ization. A brief introduction to each of these techniques follows.

Legend:

Hardware

Virtual Machine MonitorRing 0

Guest Operating SystemRing 1

Ring 2

User ApplicationsRing 3

Binary Translation
of OS requests

User Applications
direct execution

Fig. 2.2 Binary Translation.

2.3 Virtualization 17

2.3.1 Full Virtualization - Binary Translation

Full virtualization through binary translation was the first virtualization technique for the
x86 platform introduced by VMWare in 1998 [102]. VMWare solved the problem of vir-
tualizing sensitive x86 instructions that, at the time, were believed impossible to virtualize.
Their approach is a combination of binary translation and direct execution.

Figure 2.2 depicts the binary translation of sensitive x86 instructions and the direct ex-
ecution of user applications, i.e., non-privileged user-level instructions. The kernel code of
the guest operating system contains nonvirtualizable x86 instructions. The binary transla-
tion procedure consists in translating that kernel code to replace the nonvirtualizable x86
instructions with new instructions code that the virtual machine monitor understands, and
from which it can generate the desired requests to the virtual hardware. User applications
have permission to execute their non-privileged user-level instructions directly on the phys-
ical hardware to assure high throughput performance.

The combination of binary translation and direct execution guarantees full virtualization
for the guest operating systems executing in virtual machines. This means that the operat-
ing system does not need any modifications and it is not aware that it is executing on top
of a virtualization layer. There is a dedicated virtual machine monitor for each virtual ma-
chine. The VMM is responsible for providing the guest operating system of its VM with the
physical machine resources it expects, which include a virtual Basic Input/Output System
(BIOS), virtual devices, and virtual memory management.

Legend:

Hardware

Virtual Machine MonitorRing 0

Paravirtualized Guest Operating SystemRing 1

User ApplicationsRing 3

Hypercalls to
the VMM

User Applications
direct execution

Ring 2

Fig. 2.3 Paravirtualization.

18 Background

2.3.2 Paravirtualization

Paravirtualization introduces a new technique to handle the problem of the nonvirtualizable
privileged x86 instructions. This method relies on co-design of virtual machine monitor and
operating system [104]. The former offers an interface slightly different from the physical
machine. The latter is modified to interact with the virtual machine monitor so the set of
privileged x86 instructions can be virtualized.

Figure 2.3 illustrates the handling of instructions in a paravirtualizion environment. User

applications continue to execute their non-privileged instructions set natively for high per-
formance while the privileged OS-level instructions from the paravirtualized guest operat-

ing system generate an hypercall. Hypercalls are similar to the traditional system calls user
applications use in nonvirtualized environments to request privileged operations from the
kernel. In an hypercall, however, it is the operating system requesting a privileged operation
to the virtual machine monitor.

The paravirtualization approach enhances performance, scalability, and simplicity [104].
Another advantage is that it does not require hardware-assisted virtualization technology
(discussed below), but it has its own disadvantages. For example, a guest operating system
can only execute in a paravirtualized environment if its kernel is modified so it uses hyper-
calls to interact with the virtual machine monitor. These changes increase maintenance costs
and prevent off the shelf operating systems from executing in paravirtualized platforms.

Hardware

Virtual Machine MonitorRoot Mode
(host mode)

Guest Operating SystemRing 0

Legend:

User ApplicationsRing 3

OS requests trap
to VMM

User Applications
direct execution

Ring 2

Ring 1

Non-root Mode
(guest mode)

VMM executes in
host mode

Fig. 2.4 Hardware-Assisted Virtualization.

2.3 Virtualization 19

2.3.3 Hardware-Assisted Virtualization

Binary translation and paravirtualization were envisioned to solve the problem of virtualiz-
ing privileged x86 instructions due to rigid architecture requirements. The x86 architecture
provides four levels of privilege through rings 0, 1, 2, and 3. The problem arises from mov-
ing the OS away from ring 0 so the VMM can take its place as the software with highest
privilege execution level. Since the architecture was designed for a single operating system
when this change happens the privilege OS instructions do not behave as designed because
they are not executed in ring 0 any more. Therefore, an architecture redesign considering
virtualization requirements would improve its support.

Hardware-assisted virtualization is the redesign of the x86 architecture to better accom-
modate the requirements of virtual machine systems. Figure 2.4 shows the existence of
hardware support for a new root privilege level (root mode) where the virtual machine mon-

itor can execute at a higher privilege level than ring 0. In this architecture, when a virtual
machine monitor is present, privileged x86 instructions from the guest operating system are
set to automatically transfer platform control to the virtual machine monitor. This feature
removes the need for binary translation or paravirtualization.

Examples of hardware-based virtualization are Intel’s virtualization technology (Intel
VT) and AMD’s virtualization technology (AMD-V) [2, 36]. The set of features includes
fast transfer of platform control from guest operating systems to virtual machine monitor,
and the ability to uniquely assign physical Input/Output devices to a particular guest oper-
ating system.

2.3.4 Guest OS Isolation

The virtual machine monitor is responsible for partitioning the platform’s physical and log-
ical resources among the virtual machines [81]. Disk drives and network interface cards are
examples of physical resources available for partitioning. When a hypervisor is performing
physical partitioning, it assigns a separate physical resource to a particular virtual machine.
In logical partitioning, a set of resources available in one or more physical hosts is divided
among the virtual machines. This type of partitioning allows the VMs to share physical
resources such as processor and random access memory.

The responsibility of partitioning the resources implies that the hypervisor is also in
charge of keeping those resources properly isolated. Guaranteeing isolation between guest
operating systems, restricting which resources they can access, and managing their privilege
level is widely known as sandboxing [81]. The sandboxing of guest operating systems

20 Background

has security and reliability benefits. The security advantages are obviously assuring that a
malicious guest OS cannot perform unauthorized accesses to the resources of other guest
operating systems. The isolation between guest OSs guarantees that a crash or denial of
service in a guest OS is confined to its resources. Hence, such events do not affect the
whole system improving overall reliability.

Although sandboxing of guest operating systems improves security and reliability, a vir-
tualization environment might still be vulnerable to side-channel or escape attacks [81]. An
example of a side-channel attack is having a guest OS exploiting information patterns for
CPU usage to extract cryptographic keys [47]. A guest OS trying to break out of sandboxing
to escalate its privileges to the hypervisor level is an example of an escape attack. Succeed-
ing in such attack guarantees an adversary complete control over all the guest OSs executing
in the compromised physical host.

2.3.5 Virtual Machine Introspection

Since the virtual machine monitor executes at the highest level of privilege in a virtualiza-
tion architecture, it has complete access to the resources assigned to each virtual machine
executing on top of it. Therefore, the virtual machine monitor has the right permissions to
monitor the guest operating systems executing in virtual machines. Externally inspecting
the runtime state of a virtual machine is known as virtual machine instrospection (VMI)
[92].

The monitoring software can be located within a virtual machine or the virtual machine
monitor. Processor registers and memory are examples of collectible data through virtual
machine introspection techniques. This data can then be forwarded to external security
controls to be used in intrusion detection or other security operations [81].

2.4 Cloud Computing

Cloud computing is the platform under scrutiny in this thesis. We decided to adopt NIST’s
definition of cloud computing, which reads as follows: “Cloud computing is a model for
enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services) that can
be rapidly provisioned and released with minimal management effort or service provider
interaction.” [57]. The concept of utility computing introduced with the cloud demarcates
cloud computing from previous distributed systems models [3].

2.4 Cloud Computing 21

The remainder of this section provides key definitions for cloud entities, essential char-
acteristics, and service and deployment models.

2.4.1 Entities

The two main entities present in a cloud computing environment are the cloud provider

and the cloud consumer. Throughout this document these entities are also referred to as
provider or consumer, omitting the cloud prefix. The cloud provider is the owner of the
physical cloud infrastructure, which offers the shared pool of computing resources (e.g.,
storage and services) to cloud consumers. The cloud consumer can be an individual or a
company that takes advantage of the resources supplied by cloud providers.

2.4.2 Essential Characteristics

A set of essential characteristics distinguish cloud computing from traditional distributed
systems. NIST has identified on-demand self-service, broad network access, resource pool-

ing, rapid elasticity, and measured service as the most relevant features of cloud computing.

• On-Demand Self-Service: The automatic provisioning of computing resources, such
as server time and network storage, do not require any human interaction with each
of the service providers and can be performed as needed.

• Broad Network Access: The standardized access mechanisms and networked access
to computing resources promote the use of variable thin or thick client platforms (e.g.,
tablet, laptop, or smartphones).

• Resource Pooling: The computing resources available to consumers are setup in a
pool used to distribute them among multiple different consumers. The assignment or
reassignment of either physical or virtual resources is done in a dynamic manner in
order to satisfy consumer demand. Although the sense of resource location is lost in
cloud computing because consumers are not aware of the physical location of where
their share was allocated, it is possible to specify the desired location at a higher
level (e.g., country). The term computing resources refers to, for example, network
bandwidth or data storage.

• Rapid Elasticity: A consumer’s capabilities demand is satisfied through elastic re-
source provision and release. Using this approach makes it look like an unlimited pool

22 Background

of resources is available to the consumer. From which, capabilities can be acquired
and released at any time.

• Measured Service: A cloud system must be capable of automatically measuring re-
source usage at the appropriate level of abstraction for each type of service (e.g., stor-
age and bandwidth). This capability allows for resource usage monitoring, control,
and reporting, offering both the provider and consumer a good level of transparency.

2.4.3 Deployment Models

A cloud system can be deployed according to four different models as defined by NIST. The
models include private cloud, community cloud, public cloud, and hybrid cloud. The list that
follows provides a description of each model, offering an extra analysis of key advantages
and drawbacks relevant to our work. The different models are sorted from the one with the
highest to the one with the least number of security concerns. The hybrid model is left for
last because its security depends on the weakest model involved.

• Public Cloud: This is the deployment model that comes to mind when the word cloud
is mentioned. This model is provisioned for use by the general public. The owning
entity responsible for its management, and operation, can be a business, academic,
or government organization, or some combination of the previous. The location of
the cloud infrastructure is on the premises of the cloud provider. The major benefit
of this model is the low investment required by consumers to kick start a cloud-based
service offering. However, the open use philosophy of a public cloud brings additional
security risks for both consumers and providers.

• Community Cloud: An infrastructure created for a set of consumers from organi-
zations with shared objectives (e.g., mission or security requirements). The owner,
manager, and operator of the infrastructure can be any of the participating organi-
zations, a third party, or some combination of the previous. The location of such
infrastructure can be on or off premises. The advantage of this model is reduced costs
when compared with private clouds but sharing the infrastructure introduces some
security concerns for the consumers.

• Private Cloud: In this model the cloud infrastructure is deployed for use by a single
organization with several consumers (e.g., different business units). The owner of
the infrastructure can be the organization using it, a third party, or a combination of

2.4 Cloud Computing 23

both, and its location can be on or off premises. The disadvantage of this approach
is the higher cost when compared to other approaches, e.g., maintenance and initial
investment costs. However, not sharing the infrastructure with other organizations is
beneficial to data security.

• Hybrid Cloud: This deployment model consists in a combination of two or more
distinct cloud infrastructures (public, community, or private) that remain separate en-
tities, but are connected through standardized or proprietary technologies that en-
able data and application portability (e.g., cloud bursting for load balancing between
clouds). In this deployment model the clear advantage is the standardization of pro-
cesses between multiple cloud infrastructures. Although cost and security vary from
cloud to cloud, the security is always dependent on the low hanging fruit which in this
case is the presence of a public cloud among the set of cloud infrastructures.

2.4.4 Service Models

According to NIST there are three service models a cloud infrastructure can implement,
Infrastructure as a service (IaaS), Platform as a Service (PaaS), and Software as a Service

(SaaS). A detailed description of each model follows. The service models are ordered with
respect to the level of control (highest to lowest) the consumer has over the resources offered
to him on the cloud infrastructure.

• Infrastructure as a Service (IaaS): The cloud provider supplies the consumer with
fundamental computing resources such as processing, storage, and networks. The
consumer has complete control over the provisioned resources where he can deploy
and run arbitrary software, including operating systems and applications. The control
of the underlying physical infrastructure and virtualization layer are on the provider’s
realm. In this model, the consumer has the highest level of control over the resources
the remote cloud infrastructure provisions to him (e.g., control over a whole operating
system).

• Platform as a Service (PaaS): This type of service model gives the consumer per-
missions to deploy his own applications onto the cloud infrastructure. The consumer
can create or acquire applications, which are typically implemented using program-
ming languages, libraries, services, and tools offered by the provider. Like in IaaS the
consumer has no control over the underlying physical infrastructure or virtualization
layer, and in this model the control over the remote operating system is also removed.

24 Background

The consumer has control over the deployed applications and in some cases can also
manipulate specific environment configurations of hosting applications.

• Software as a Service (SaaS): The consumer sees further reduction in his permis-
sions over the remote cloud infrastructure. In a SaaS scenario the consumer only has
control over a set of user-specific application configuration settings. This means the
consumer is only allowed to use applications the cloud provider runs and offers in the
cloud infrastructure.

2.5 Trustworthy Computing

The not-for-profit Trusted Computing Group (TCG) is responsible for the definition of stan-
dards for trustworthy, or trusted, computing. This standards body is an initiative of major
information technology companies such as Intel and IBM [97].

An important standard TCG created is the Trusted Platform Module (TPM), which de-
fines hardware or software based security extensions for computing platforms. The imple-
mentation of this standard protects a system from unauthorized modifications and attacks
such as root kits. TCG has expanded its hardware-based security extensions to multiple
platforms ranging from hard disk drives to mobile phones. Intel’s Trusted Execution Tech-
nology (TXT) and AMD’s Secure Virtual Machine (SVM) are examples of implementations
of hardware-based security extensions defined in the Trusted Platform Module standard
[30, 91].

The subsections that follow introduce the key concepts and elements of a Trusted Plat-
form Module. The information provided in this section does not intend to be exhaustive.

2.5.1 Trusted Platform Module

The Trusted Computing Group defines the Trusted Platform Module (TPM) as a micro-
controller with capacity for secure storage of keys, passwords, and digital certificates [98].
The secure storage of sensitive data is assured through tamper-protection measures such as
tamper resistance and evidence. This protection prevents physical tampering of the TPM
module [95].

A root of trust is a hardware or software mechanism a system user implicitly trusts [29].
TPM’s tamper-protection features make it a logic choice for a root of trust. A root of trust
typically provides three roots of trust, a root of trust for measurement (RTM), root of trust
for storage (RTS), and root of trust for reporting (RTR) [95].

2.5 Trustworthy Computing 25

I/O

Non-
Volatile
Storage

Platform
Configuration

Registers
(PCRs)

Attestation
Identity
Keys
(AIKs)

Program
Code

Random
Number

Generator
SHA-1
Engine

Key
Generation

RSA
Engine Opt-in Exec

Engine

Fig. 2.5 Trusted Platform Module (TPM) [95].

• Root of Trust for Measurement (RTM). The RTM consists of an inherently reliable
implementation of a secure hash function, which may or may not reside within the
TPM. This hash algorithm is trusted to provide system integrity measurements used
in establishing the trustworthiness of a platform. An integrity measurement is the
process of collecting a hash code of software or data.

• Root of Trust for Storage (RTS). The group of TPM components and features re-
sponsible for securely storing information such as hash codes obtained in integrity
measurements.

• Root of Trust for Reporting (RTR). The set of TPM components and mechanisms
involved in reliably reporting the state of the platform in a verifiable manner.

These roots of trust are building blocks in mechanisms used to establish the trustworthi-
ness or integrity of a TPM-enabled platform.

Figure 2.5 illustrates the components of a Trusted Platform Module (TPM) according
to Trusted Computing Group’s specifications. The most relevant components for this doc-
ument are introduced in the subsections that follow. These components are introduced to-
gether with the functionalities they enable.

Cryptographic Keys and Data Storage

The Trusted Platform Module provides both non-volatile and volatile data storage. The non-
volatile storage is important to hold the endorsement key (EK), storage root key (SRK), and
other data used to manage the TPM state. Due to its security sensitive nature, these keys are

26 Background

stored in shielded-locations only accessible through a set of commands with the required
permissions. The EK and SRK are public-key cryptography key pairs. The TPM stores the
private key of each of these key pairs [29, 95].

The endorsement key is the foundation of the root of trust for reporting. The endorse-
ment key pair is generated in the manufacturing process. An endorsement key uniquely
identifies a platform, and ideally, should remain unchanged throughout the life of the asso-
ciated TPM. However, TPM vendors can expose functionality that allows an endorsement
key to be changed [29]. Taking ownership of a TPM allows the platform owner to create a
storage root key pair. In the event of a change of owner, the new TPM owner can generate a
different storage root key pair. The SRK is the base of the root of trust for storage.

Since using the endorsement key for signing platform state reports can violate the pri-
vacy of the platform. The endorsement key can be used to generate Attestation Identity Key
(AIK) pairs, which permit a remote entity to verify it is communicating with a TPM without
revealing which TPM. The TCG recommends attestation identity keys to be stored as blobs
in persistent external storage, instead of using TPM’s non-volatile storage.

Platform Configuration Register

Platform configuration registers (PCRs) are a set of storage locations whose principal ob-
jective is to provide secure storage for the hash codes collected during integrity measure-
ment processes. The minimum number of platform configuration registers is sixteen, with
registers 0-7 reserved for TPM use and the remainder free for an operating system and/or
applications to use. The values stored in platform configuration registers are not lost with
a system reboot but are reset whenever the platform loses power. The operations of read
and write for a platform configuration register (PCR) require special TPM commands and a
write operation can never be directly performed on a PCR [29, 95].

The write operation is actually an extend operation, typically referred to as extending the

PCR. There are two types of data involved in an integrity measurement process. The first
type is known as measured values, which are a representation of embedded data or program
code. The second type are hash codes of the measured values, referred to as measurement
digests.

A representation of the extend operation can be seen in equation 2.1. An extend op-
eration consists in using the current PCR value, concatenating it with the hash code of a
measured value (<new_hash>), and computing the hash code of the concatenated value.
The index letter i refers to the current PCR number [29, 95].

2.5 Trustworthy Computing 27

PCR[i] = SHA1(PCR[i] || < new_hash >) (2.1)

The extend operation provides some interesting advantages such as fix storage require-
ments and order preservation. The output of an extend PCR operation is a fixed-length hash
code, which means a single PCR is usable for an unbounded number of extend operations.
This makes the extend operation an optimal choice from a storage perspective.

The order preservation property can prevent an entity from manipulating the order in
which the integrity measurements were performed and stored. A secure hash function sat-
isfying the requirements defined in Subsection 2.2.1 can guarantee this property. Let us
consider an attack scenario where entity B, which executed after A and before C, wishes to
remove itself from the set of measured entities. Consider x = H(A)||H(B) and z = x||H(C).
From requirement 6, it is computationally infeasible to find any pair (x,y) such that H(x) =

H(y). Therefore, it is not possible to remove B from the execution path without influencing
the result of H(z).

2.5.2 TPM Functionality

The components and properties of the Trusted Platform Module allow it to offer interesting
security functionalities such as transitive trust, sealed storage, and remote attestation. The
remainder of this subsection describes this set of functionalities.

Transitive Trust

The objective of transitive, or inductive, trust is the use of a single root of trust to enlarge
the set of trustworthy entities in the platform. The process of transitive trust has three main
steps. First, the initial root of trust performs an integrity measurement of the entity it wishes
to add to the set of trustworthy entities. The measured value in transitive trust is program
code, whose measurement digest is useful in reaching the decision of whether the entity can
be trusted or not [29, 95].

Second, after performing the integrity measurement, the root of trust extends a platform
configuration register with the hash code of the measured value. Storing this value is useful
for logging and accountability.

Finally, if the root of trust considers the measured entity to be trustworthy, the set of
trustworthy entities expands to include the functionality of the measured entity. Since the

28 Background

measured entity is deemed trustworthy, it can then determine if other entities are trustworthy
or not. The process is iterative.

Sealed Storage

Sealed storage is a mechanism to protect private information from unauthorized accesses.
The two main processes in this mechanism are the sealing and unsealing operations. This
mechanism combines the use of encryption, the root of trust for storage (RTS), and the
measurement digests to provide protected storage of data [29].

The required inputs for the sealing process are the data to protect, and the selected
measurement digest(s) stored in platform configuration register(s). The seal process then
uses a storage key, which can be the storage root key (SRK) itself or a storage key that is
part of the SRK tree. This key encrypts the data creating the sealed data package. The
sealing process is internal to the TPM [29].

The seal process binds the sealed data package to the platform configuration, including
hardware and software, where it is performed. This implies that the sealed data can only
be revealed when the platform is in the same state it was when the sealing operation took
place. This behaviour is enforced through the inclusion of a nonce that only the TPM that
performed the operation knows [29, 96].

The purpose of the unseal operation is to retrieve the data in a sealed data package. This
operation is successful if and only if it is performed in the same TPM that created the sealed
data package, data integrity was not compromised, and the measurement digest(s) in the
used platform configuration register(s) are correct.

The first step is for the TPM to unseal the information within the sealed data package.
This includes decrypting all the data using the right storage key and verifying the data was
correctly decrypted. This step reveals the expected nonce and measurement digest(s).

The final steps use the nonce and measurement digest(s) to finish the operation. First, the
retrieved nonce is matched against a nonce internally held in the TPM. If the values match
then the TPM must be the TPM responsible for creating the sealed data package. Finally, the
measurement digest(s) retrieved in the operation need to be compared with the measurement
digest(s) stored in the expected platform configuration register(s). If these verifications are
successful the operation returns the protected data otherwise it fails [29, 96].

2.5 Trustworthy Computing 29

Remote Attestation

The necessity for remote attestation arises from the need remote platforms have of verifying
if a trustworthy platform configuration is present. The initiator in an attestation process is
usually the remote verifier. The main attestation process is divided in two principal stages.

One of these stages takes place on the platform under verification. This platform receives
a request for the execution of TPM’s TPM_Quote command together with a set of platform
configuration registers to quote, a nonce to prevent replay attacks, and the attestation identify
key to use in the digital signature. Upon reception of this request the platform’s TPM verifies
the authorization to use the desired attestation identity key, creates a structure holding the
measurement digests in the requested set of platform configuration registers, combines this
information with the provided nonce, and produces a digital signature.

The next stage takes place on the platform performing the verification. After requesting
the quote operation, this platform receives a fresh digital signature of the desired platform
configuration registers. The public key of the private-public attestation identity key pair is
used to verify the signature, the AIK key itself is verified, and then the measurement digests
are checked. This last step evaluates the trustworthiness of the remote platform, which can
either be trustworthy or not [29, 96].

Chapter 3

Literature Review of Virtualization and
Security

This literature review presents the challenges of protecting against a malicious insider in
cloud computing and the state-of-the-art solutions that try to prevent such threat. The chap-
ter begins with a definition of the adversary model and the data execution challenge which
is our main concern. Then, we review several security solutions grouping them according
to the major prevention technique they use. The three prevention techniques we analyse in
detail are cryptography, virtualization, and hardware-based approaches.

The difficulties associated with preventing insider threats creates necessity to devise
insider prevention techniques that rely on cryptography, virtualization, hardware, or combi-
nations of the three. The prevention difficulties are mostly due to the challenges behind the
data execution problem in the cloud.

Data execution in cloud computing refers to running applications that perform oper-
ations over data that a cloud consumer entrusted to a cloud provider. When this data is
security sensitive the system must assure the data’s confidentiality and integrity while, at
the same time, the system needs to perform operations over it. This is known as the data ex-
ecution problem. Hence, the data must either reside in the system in plaintext or the system
needs a mechanism to perform operations over encrypted data. However, the impossibility
of solving the data execution problem has been proved for multiple cloud consumers using a
cryptography-only approach in a scenario where there is no interaction between consumers
[100]. This work highlights how cryptography alone cannot guarantee privacy in scenar-
ios where a cloud service performs arbitrary operations over consumers’ unencrypted data.
Therefore, additional security enforcement approaches such as trusted computing and com-
plex trust ecosystems need to be used to try and remedy this problem.

32 Literature Review of Virtualization and Security

The remainder of this chapter defines an adversary model and reviews research work that
addresses the data execution problem in cloud computing. We group the multiple works
according to the major security mechanism used. This does not mean that a hardware-
centred approach cannot take advantage of cryptographic primitives and vice versa. We
designate the approaches as centred in the sense that they use a specific tool or primitive as
its main mechanism for preventing a security threat. For example, a cryptography-centred
uses cryptography as its main tool to prevent known security threats.

3.1 Adversary Model

The adversary considered in this thesis is a malicious insider with superuser privileges over
the systems within a cloud computing infrastructure. Consider the conceptual definition of a
malicious insider from the CERT Program at Carnegie Mellon University’s Software Engi-
neering Institute. According to which “a malicious insider is a current or former employee,
contractor, or other business partner who has or had authorized access to an organization’s
network, system or data and intentionally exceeded or misused that access in a manner that
negatively affected the confidentiality, integrity, or availability of the organization’s infor-
mation or information systems.” [14].

From a more practical perspective, we assume the attacker has no physical access to
cloud servers’ hardware, which means our work does not consider hardware-based attacks
such as connecting external peripherals to collect memory dumps or tamper with the in-
tegrity of hardware security modules (e.g., Trusted Platform Module).

It is assumed the attacker can change the virtual machine monitor, recompile it, and have
a server execute with this new rebuilt version. We are aware of the possibility of attacks
originating from a consumer’s virtual machine but that type of threat is not considered in
our work [108]. The adversary is capable of compiling and executing arbitrary software
with superuser privileges within the realm of cloud management software.

These considerations reflect the requirements expected in a real cloud computing infras-
tructure where a cloud administrator uses superuser privileges to configure and maintain
cloud servers.

3.2 Cryptography-centred Solutions

The features and benefits of using cryptography as a security mechanism have long been
known and validated within the research community. Common uses of its capabilities in-

3.2 Cryptography-centred Solutions 33

clude using encryption for strong confidentiality, or message authentication codes for data
integrity. However, cloud computing creates new, not easily solvable, research challenges
such as the data execution problem for which cryptography-only solutions are not enough
[41]. This limitation does not invalidate the use of cryptographic primitives as strong secu-
rity tools in different security approaches.

Cryptography-based solutions are a common approach to solving the data storage prob-
lem. The data storage problem occurs when a cloud consumer wishes to use cloud resources
to safely store security sensitive data.

A discussion of multiple cryptography-based cloud storage security solutions for cloud
computing can be found in [41]. Those security solutions include the secure enterprise-
class file system Iris which provides data integrity for cloud storage to protect against data
corruption and guarantees freshness to prevent rollback attacks [89]. The file system does
not address the insider threat as discussed in this thesis.

HAIL is a high-availability and integrity layer for cloud storage which uses storage
resources from multiple cloud providers to build a cost-effective and reliable cloud storage
solution from untrusted resources [12]. We do not provide much detail about these solutions
because they address the data storage problem which is not in the scope of our work. For a
good discussion on these solutions we refer the reader to [41].

In what follows, we provide a description and analysis of a security solution that uses
cryptographic mechanisms to address the data execution problem. To the best of our knowl-
edge this is the only solution that, despite using other technologies, uses cryptography as
its main mechanism to addresses the data execution problem. This research work was pub-
lished with the following title:

• Secure virtual machine execution under an untrusted management OS. (2010) [50]

This cryptography-centred approach envisions a secure virtualization architecture to pre-
vent attacks from a malicious management virtual machine executing in cloud servers. The
purpose of such architecture is to guarantee data confidentiality and integrity for consumer
virtual machines. A prototype was implemented using the Xen hypervisor [50].

Although it is a secure virtualization architecture, the authors use encryption to protect
the confidentiality of a virtual machine’s data such as its memory pages. The hypervisor
encrypts the memory pages before handing them over to the management virtual machine.

The system computes a cryptographic hash code of the data before proceeding with
its encryption. This hash code is used to guarantee data integrity through integrity checks
when the data is decrypted and reloaded within the VM. The addition of version information

34 Literature Review of Virtualization and Security

Fig. 3.1 Trusted Computing Base (Security Enforcing Operations) [50].

in the computation of the hash code assures data freshness. For example, a hash code
would be calculated before saving a VM’s state, and the same hash would be used to verify
data integrity once the VM is restored. Operations of save and restore are common in
virtualization solutions.

This cryptography-centred approach is effective in guaranteeing data confidentiality and
integrity for consumer owned data. However, it has two limitations which are lack of versa-
tility and the overhead associated with its cryptographic operations.

The lack of versatility is a considerable limitation in this approach as it prevents the
development of virtual machine monitoring solutions. This happens because the state of a
virtual machine is always encrypted. Therefore, it is not possible to implement cloud- based
solutions that can offer services based on reading a virtual machine’s state. The overhead
of encryption and decryption operations combined with key management issues can also
become a problem in this solution.

Figure 3.1 illustrates how the security enforcing operations of this approach are per-
formed in the hypervisor layer. This effectively reduces the trusted computing base (TCB)
by removing the operating system of the management virtual machine (Dom0) from it. Re-
moving the management virtual machine from the TCB is a step forward because it reduces
the attack surface for adversaries trying to exploit software vulnerabilities to compromise
the system. However, the implementation of its functionalities is going to have an impact in
the number of lines of code of the hypervisor.

3.3 Virtualization-centered Solutions

The idea of using a security kernel to enforce computer security has been around since
the early 1970s. A security kernel emerges as a possible reference validation mechanism,

3.3 Virtualization-centered Solutions 35

which is the combination of hardware and software to implement the concept of a reference
monitor [88]. The concept of a reference monitor states that all references by any program to
any other program, data or device are validated against a policy that defines the authorization
for each type of reference according to user and/ or program function within a computer
system [88].

From our point of view, exploring the security capabilities of virtualization is no more
than using a hypervisor as a reference validation mechanism which imitates a security kernel
in commodity systems. This approach enforces the principle of complete mediation. To the
best of our knowledge, the solutions that follow are the only known ones that exploit the
security capabilities of virtualization which could be used to prevent the malicious insider
threat.

In this section we discuss the following virtualization-centred solutions:

• SecVisor [83]

• HyperShot [85]

• Dom0 Disaggregation [59]

• NOVA: a microhypervisor architecture [90]

• sHype Hypervisor [76]

• CloudVisor [106]

• Xoar [16]

• VMGuard [24]

• Min-V [62]

3.3.1 SecVisor

SecVisor is a small code base hypervisor for commodity systems with the objective of pro-
tecting an operating system from advanced attacks such as kernel rootkits. A kernel rootkit
is a set of tools that allow an attacker to maintain kernel-level privileges over a compromised
system [34]. The three main objectives in SecVisor’s design are a reduced trusted computing
base to permit formal validation, reduced external interface to minimize the attack surface,
and minimal kernel changes for easy porting of commodity kernels [83].

36 Literature Review of Virtualization and Security

Executing at a virtual machine monitor privilege level allows SecVisor complete control
over the protection of the kernel under which it executes. This level of privilege is paramount
to ensure the integrity of kernel code.

SecVisor virtualizes physical memory to assure protection of a kernel’s memory space.
The option for virtualizing physical memory reduces the size of SecVisor’s interface because
it removes the need for a hypercall to maintain memory page tables. It also simplifies
portability by removing the need for kernel changes to interact with the aforementioned
hypercalls. These advantages respect the design principles defined by the authors.

In order to guarantee the integrity of kernel code, SecVisor sets the CPU to refuse the
execution of any code that it has not approved. This means that the user defines a security
policy where approved code is listed and SecVisor uses such policies to make its deci-
sions. This does not mean that SecVisor prevents alteration of kernel code that can happen
through code injection, but it does prevent the injected code from executing because it is not
approved to execute.

The authors implemented SecVisor on top of an AMD-powered system taking advan-
tage of AMD’s Secure Virtual Machine (SVM) technology. SecVisor was used to protect
a ported Linux kernel. Therefore, SecVisor does not target cloud computing systems but
commodity systems. However, its design principles and security objectives are valid for a
virtual machine monitor designed to assure a secure cloud computing environment.

3.3.2 HyperShot

HyperShot is a hypervisor-level mechanism designed to obtain trustworthy virtual machine
snapshots [85]. It was implemented in a research prototype version of Microsoft’s Hyper-
V hypervisor. Since HyperShot is part of the hypervisor, which executes at an elevated
privilege level, a malicious insider with control over the privileged management virtual
machine (e.g., Dom0 for Xen or root VM for Hyper-V) cannot compromise the memory
space allocated to HyperShot.

The integrity of snapshots is assured through the use of a cryptographic hash of the snap-
shot. This hash code is calculated in the hypervisor and sent to the privilege VM together
with the snapshot. A malicious insider could attack the cryptographic hash to compromise
the integrity of a snapshot, that is however not possible because the snapshot hash is signed
using the signing capabilities available in a cloud server’s TPM. HyperShot uses copy-on-
write (CoW) for performance reasons and to guarantee consistency when a snapshot is built.
As an example the authors mention it took 391 seconds to obtain a trusted snapshot of the

3.3 Virtualization-centered Solutions 37

privileged VM. A hypervisor that is HyperShot compliant allows a cloud consumer to per-
form a remote attestation of its virtual machine.

The Hypershot protocol includes four main participants: (1) the cloud consumer request-
ing the attestation, (2) the HyperShot service front-end responsible for routing the snapshot
request to the correct cloud server, (3) the HyperShot proxy component which receives the
request from the front-end and uses an hypercall to pass it to the hypervisor, and (4) the
HyperShot mechanism inside the hypervisor responsible for generating the signed snapshot
hash and sending it back to the cloud consumer through the reserve path of the snapshot
request.

HyperShot assures data integrity for a VM’s snapshot by relocating the snapshot feature
into the hypervisor. Moving this operation to a higher privilege level of execution guaran-
tees that malicious insiders do not have enough permissions to attack it. This solution is
however not concerned with the confidentiality threats a consumer’s data faces when ex-
ecuting in a virtual machine. Removing the privileged management virtual machine from
the trusted computing base guarantees a smaller TCB for an HyperShot-enabled hypervisor
when compared to typical solutions, e.g., an unmodified Xen version.

3.3.3 Dom0 Disaggregation

Murray et al. authored one of the first studies to discuss the problems of having a large
trusted computing base in a virtualization environment. They propose a “trusted virtualiza-
tion” solution where the privileged virtual machine is disaggregated to achieve better overall
security [59].

In their work, besides the traditional number of lines of codes, the authors suggest two
new criteria to measure the trustworthiness of a TCB. They propose the size of the interface
and the size of the TCB state space as a complement to previously used criteria. These two
new measurement properties are used to approve their disaggreation of Xen’s management
virtual machine, or Dom0, where the domain builder process is transferred to a different
special purpose virtual machine. The domain builder process includes the required steps
to launch a new virtual machine in a cloud server. Their final solution includes, a TCB
comprised of the hypervisor, Dom0’s kernel, and part of the domain builder, and the lines
of code used for interface sanitizing code.

This disaggregation work is a step in the right direction because it moves the security
sensitive operations to a special-purpose virtual machine. However, it still includes a consid-
erable amount of code which enlarges the attack surface attackers can exploit, e.g., including

38 Literature Review of Virtualization and Security

a whole Linux kernel. Two main factors suggest this approach has room for improvement.

First, at the time of writing, the Linux kernel code base grew more than a million lines
of code in one year to a total of almost seventeen million lines of code [64]. Second, a news
article summarizing information from the 2012 Trustwave Global Security Report informs
that the Linux Kernel had nine critical vulnerabilities, including two zero-days, and that the
average response time to fix the zero-days was more than two years [33]. More recent data
from an executive summary of Trustwave’s report for the year of 2013 says that: “Linux
had the worst response time, with almost three years on average from initial vulnerability to
patch.”.

This information shows that there is a considerable security risk in including a whole
Linux Kernel in the TCB of a virtualization architecture. This solution does not use the
hypervisor as a reference validation mechanism to assure confidentiality and integrity for
consumer’s data. Therefore, it is required to trust the whole TCB just discussed, which does
not make this an ideal solution.

3.3.4 NOVA: a microhypervisor architecture

The NOVA approach is based on a microhypervisor architecture instead of the most common
monolithic approach used in solutions such as the Xen hypervisor and the Linux Kernel-
based Virtual Machine (KVM) [90].

The traditional monolithic approach is typically a large code base, including device
drivers and the functionality required to support the execution of one or several guest op-
erating systems. This architecture means that an exploitable security flaw found in the
monolithic block of code can be used to subvert the hypervisor compromising the security
properties it guarantees.

NOVA follows the microhypervisor architecture to reduce the trusted computing base
by at least an order of magnitude when compared with other solutions. NOVA respects two
fundamental design principles. The first principle states that it must provide a fine-grained
functional decomposition of the virtualization layer into a microhypervisor, a root partition
manager, a single virtual machine monitor per virtual machine, device drivers, and other
system services. The second principle reads that the principle of least privilege is enforced
between the multiple components just listed.

Although NOVA presents an alternative that can reduce the trusted computing base when
compared with approaches such as Xen and Linux KVM, to the best of our knowledge it
is not clear how such architecture assures data integrity and confidentiality when facing an

3.3 Virtualization-centered Solutions 39

insider threat. It is important to mention that NOVA does not target the malicious insider
threat, it was developed as an alternative approach to the virtualization of computational
resources.

3.3.5 sHype Hypervisor

The sHype hypervisor security architecture implements a mandatory access control policy-
based reference monitor for the Xen hypervisor. The objective of this architecture is to
use formal security policies that control the sharing of resources between virtual machines
through the use of a reference monitor. The reference monitor mediates all security-sensitive
operations [76].

Multiple security functions are provided, including secure services, resource monitor-
ing, access control between VMs, isolation of virtual resources, and TPM-based attestation.
The components of the sHype mandatory access control architecture are: the policy man-
ager, the access control module (ACM), and mediation hooks. The policy manager is a
special-purpose VM used to maintain the security policies. The ACM and mediation hooks
are implemented in the hypervisor. The former is responsible for delivering authorization
decisions based on the security policies, while the latter controls the access VMs have to the
policy-affected resources.

A malicious administrator can attack this solution because they are responsible for defin-
ing the policies that state which security mechanisms should be deployed. Therefore, this
approach is not ideal to face a malicious insider threat because administrators still have a
considerable amount of control over the security of the platform.

The simple use of a TPM-based attestation is vulnerable to time-of-check time-of-use
(TOCTOU) attacks [59]. This solution does reduce the trusted computing base but the def-
inition of security policies is dependent on humans, so a malicious insider can compromise
data integrity and confidentiality using a permissive security policy which can escape the
attestation due to the TOCTOU attack.

3.3.6 CloudVisor

CloudVisor is yet another different secure virtualization architecture where a featherweight
hypervisor is placed between the virtual machine monitor and the hardware [106]. The vir-
tual machine monitor is deprivileged together with the management virtual machine. The
main objective is to have CloudVisor monitor the hardware resources usage of the virtual
machine monitor and the VMs. This positioning allows CloudVisor to enforce isolation

40 Literature Review of Virtualization and Security

while at the same time protect the resources used by each guest VM. Although CloudVisor
assures isolation for the resources of VMs, it has a few disadvantages in terms of perfor-
mance and some architectural limitations.

This solution guarantees confidentiality and integrity for a consumer’s data executing in
virtual machines. However, CloudVisor incurs serious performance penalties, in some cases
over 22%, when compared with the Xen hypervisor. The suggested architecture impedes
the use of tools that require access to the memory space of consumers’ virtual machines to
perform monitoring tasks. The TCB is reduced to the lines of code of CloudVisor which is
a very good advantage.

3.3.7 Xoar

Xoar is another virtualization platform architecture that follows on the footsteps of previous
work on improving Xen’s security through disaggregation while introducing a few novel
mechanisms. This new architecture introduces the modularity and isolation principles used
in micro-kernels [16].

Some of the novel functionality Xoar supports includes disposable bootstrap and au-
ditable configurations. A disposable bootstrap means having special purpose VMs respon-
sible for performing operations that are only required at boot time, these VMs are destroyed
once the boot process is concluded. Xoar keeps secure audit logs of different system config-
urations that can later be used in queries to discover, for example, a list of VMs associated
with a known-vulnerable component.

Virtual machines that can be restarted to maintain freshness and isolation are also used
to harden critical components, e.g., XenStore. The disaggregation overhead is quite low but
having the VM that executes device drivers restarting causes noticeable overhead because
the intermittent outages lead to TCP performance degradation. However, the administrators
can configure the restart frequency and reduce the overall performance impact.

Even though Xoar does not target the malicious insider threat, its least privilege access
approach is ideal to interact with a hypervisor prepared to enforce the principle of least
privilege which can protect against malicious insiders. Since its protection mechanisms
were not designed considering an adversary model that includes a malicious administrator,
it is not a solution that guarantees data integrity and confidentiality when facing such an
adversary.

3.3 Virtualization-centered Solutions 41

3.3.8 VMGuard

VMGuard is an integrity monitoring system for management virtual machines such as Xen’s
Domain0. This solution achieves real-time monitoring through two special purpose virtual
machines denominated GuardDomain and GuardDomainU. These VMs run on a server
within a cloud infrastructure to monitor its co-resident management virtual machine [24].

GuardDomain collects integrity measurements of the privileged virtual machine, while
GuardDomainU closes the memory semantic gap between hypervisor and consumer virtual
machine. GuardServer is a third entity dedicated to storing the integrity measurements col-
lected by GuardDomain and verifying the trustworthiness of management virtual machines.
The authors implemented a prototype using the Xen hypervisor.

A serious limitation in this solution is that the same virtual machine it wishes to monitor
is the one responsible for bootstrapping and verifying the integrity of GuardDomainU. This
is not secure when a malicious insider has control over the management virtual machine.
Hence, if GuardDomainU is changed to behave maliciously the verification process is not
going to detect this because Domain0 can be under control of a malicious administrator.
Therefore, this solution is not ideal to guarantee data integrity and confidentiality against
malicious insiders.

3.3.9 Min-V

Min-V is a tiny hypervisor with a different approach to reducing the trusted computing base
in a cloud computing environment. The authors argue that the largest percentage of software
vulnerabilities seen in virtualization environments come from the software implementing
virtual devices. Therefore, they propose disabling non-critical virtual devices and reducing
the functionality in the critical ones [62].

Reducing the functionality of virtual devices a virtual machine requires has an obvious
impact on the boot process of a commodity operating system. To solve this problem the
authors devised delusional boot, a novel launch mechanism for virtual machines executing
in a cloud computing environment that uses Min-V.

The delusional boot process requires an isolated node in the network to perform the
initial boot of virtual machines. The process consists of three major steps. First, an image
of the consumer’s virtual machine is sent to a dedicated boot server. Second, a Min-V boot
stack powered boot server receives the image, disconnects from the network, reboots into
a full virtualization stack, and finally boots the virtual machine. The server then obtains a
snapshot of the VM, reboots to the initial state, reconnects to the network, and finally sends

42 Literature Review of Virtualization and Security

Solution Confidentiality Integrity TCB Cloud Insider Threat
SecVisor ✔ ✔ ✔ ✘ ✘

HyperShot ✘ ✔ ✘ ✔ ✘

Dom0 Disaggregation ✔ ✔ ✔ ✔ ✘

NOVA ✘ ✘ ✔ ✔ ✘

sHype ✔ ✔ ✘ ✔ ✘

CloudVisor ✔ ✔ ✔ ✔ ✔

Xoar ✘ ✔ ✔ ✔ ✘

VMGuard ✘ ✔ ✘ ✔ ✘

Min-V ✘ ✘ ✔ ✔ ✘

Table 3.1 Virtualization-centred solutions summary. ✔ = guarantees/addresses; ✘ = not
guarantees/addresses.

the snapshot to a production server. Finally, the VM snapshot is sent to a production server,
which is running Min-V’s virtualization stack. This server is responsible for replacing all
the disabled virtual devices for a null device.

This approach achieves the objective of reducing the trusted computing base of the virtu-
alization stack but at the same time it increases the complexity of the process of booting up
a virtual machine. The design principles mentioned in the paper do not include the principle
of least privilege, so it is not clear how this approach would behave when facing an insider
threat. An attack point could be the boot servers.

3.3.10 Summary

This subsection includes a table summarising how the solutions we analysed in this section
relate to the properties, environment, and threat we are considering in this thesis.

Table 3.1 shows how each of the solutions analysed in this section do with respect to
confidentiality, integrity, trusted computing base, cloud, and insider threat. For the con-

fidentiality and integrity properties we verified if the solutions are concerned with enforc-
ing these properties for consumers’ data resident in virtual machines’ memory space. The
trusted computing base column indicates if a solution reduces the TCB or not. Both the
cloud and insider threat show if the solution in question was developed for a cloud environ-
ment and if it considers the malicious insider threat when trying to guarantee confidentiality
and integrity for consumers’ data resident in a virtual machine’s memory space.

The work done on Dom0 disaggregation and sHype shows interesting approaches when
considering an insider threat but they maintain a considerably larger TCB. The most notice-
able aspect common to almost all the solutions analysed in this section is that only one of

3.4 Hardware-centred Solutions 43

them (i.e, CloudVisor) considers the insider threat from a similar perspective to what we do
in our work. This supports our conviction that more research needs to be done in order to
improve prevention mechanisms to protect a cloud system from insider threats.

3.4 Hardware-centred Solutions

The first references to trusted computer systems date back to late 1970s and early 1980s
[93]. Although the document mostly focuses on the strategy for computer security of the
United States’ Department of Defense (DoD), the importance of concepts such as trusted
computing base is already considered. In this section, we consider the Terra architecture as
the initial reference in more recent work regarding trusted computer systems in a virtualized
host [27].

The complete list of hardware-centred approaches discussed in this section is the fol-
lowing:

• Terra [27]

• Trusted Virtual Datacenters (TVDc) [7]

• Private Virtual Infrastructure (PVI) [49]

• NoHype [44]

• Trusted Cloud Computing Platform (TCCP) [79]

• Excalibur [80]

• TrustVisor [54]

• myTrustedCloud [103]

• Strongly Isolated Computing Environment (SICE) [4]

3.4.1 Terra

Terra is a security architecture with its foundation in a virtual machine monitor but it is not
intended for cloud computing. It is included in this document because to the best of our
knowledge it is the oldest among recent work addressing security problems similar to the
ones discussed in this thesis. Terra uses a virtual machine monitor to virtualize the hardware

44 Literature Review of Virtualization and Security

resources and it takes advantage of hardware-enforced properties to offer remote attestation
of running software [27].

A Terra managed system offers an open-box VM or a closed-box VM as the two possible
virtual machine abstractions. An open-box VM emulates the properties of standard open
systems supporting the execution of commodity operating systems. A closed-box VM im-
plements a closed system environment where the content is not accessible to the platform
owner.

The Terra architecture also includes a management virtual machine responsible for op-
erations such as assigning storage and memory resources to VMs, or starting and stopping
VMs. Terra relies on the VMM to assure the isolation, extensibility, efficiency, compatibil-
ity, and security properties. The VMM is assumed to be root secured, which means not even
the platform administrator can break its security properties. Functionality like remote attes-
tation and a trusted path between user and application are also guaranteed through VMM
properties.

From the information provided in the paper we assume the management virtual machine
responsible for starting and stopping virtual machines must be implemented in a similar
fashion to what is done in an off-the-shelf Xen hypervisor. Therefore, since the paper does
not consider the malicious insider threat there is a high probability that a malicious admin-
istrator can violate the confidentiality and integrity of consumer’s data.

3.4.2 Trusted Virtual Datacenters (TVDc)

Although IBM’s Trusted Virtual Datacenters (TVDc) do not specifically address the mali-
cious insider threat, it is relevant to discuss it here because such solution is referenced in
Private Virtual Infrastructures as the foundation for its correct operation.

The virtualization of datacenters brings with it new infrastructural and management is-
sues which IBM’s TVDc as a security solution tries to address. In TVDc, a workload is
denoted as a Trusted Virtual Domain (TVD) which is a group of virtual machines and re-
sources that cooperate to achieve a common goal [7].

Strong isolation between TVDs is enforced through the sHype hypervisor, which en-
forces Mandatory Access Control (MAC) policies [76]. A unique security label is assigned
to the members of a TVD in order to enforce the access control policies. For example, if a
VM and a resource have security labels that match, the VM is granted access to the resource,
otherwise if the security labels do not match that access is denied.

The access control policy defines which VMs can access which resources and which

3.4 Hardware-centred Solutions 45

communication links can be established between VMs. Policies can also be used to define
which VMs a hypervisor can run, or to configure anti-collocation rules restricting which
VMs can execute simultaneously in the same cloud server.

Finally, a TVDc also offers integrity guarantees on the software executing in TVDs’
VMs through the use of trustworthy computing technology. The hardware of a cloud server
only has one physical TPM, to satisfy the need of having a TPM per VM, TVDc includes a
virtual TPM (vTPM) per VM executing in a cloud server in its privileged management VM
[6]. The vTPMs are used to provide assurances on the integrity of the software executing
inside the VMs.

This solution does not address insider threats. Since cloud administrators are the ones
responsible for establishing security policies in data centres, they have a privilege position
to manipulate those policies. Previous research has demonstrated security vulnerabilities
are present in the virtual TPM approach [59].

3.4.3 Private Virtual Infrastructure (PVI)

Private Virtual Infrastructure (PVI) suggests a virtual datacenter on top of the existing cloud
infrastructure as a solution to assure privacy and security for data a consumer entrusts to
a cloud provider [49]. This approach is mostly based on IBM’s Trusted Virtual Datacen-
ters solution except for the inclusion of a special purpose virtual machine denominated as
Locator Bot (LoBot) and a consumer’s PVI factory.

LoBot is a self-contained virtual machine with a vTPM bound to the physical TPM of
a cloud server. Within LoBot there is an application responsible for collecting information
on the physical cloud server including integrity measurements stored in the physical TPM’s
PCRs. This information is then sealed and sent to the consumer’s PVI factory to allow the
consumer to verify the trustworthiness of the remote cloud platform. If the cloud platform is
deemed trustworthy the PVI factory configures and encrypts a consumer VM for launch in
the cloud infrastructure. Only a platform classified as trustworthy is capable of deciphering
the encrypted virtual machine.

The paper also suggests the use of LoBot as a means to achieve secure VM shutdown,
data destruction, continuous monitoring, and auditing. It is not clear if this features were
fully implemented and tested.

Both IBM’s Trusted Virtual Datacenters (TVDc) and Private Virtual Infrastructure (PVI)
suffer from the weaknesses inherited from the sHype hypervisor which they use as their
virtualization layer. We have already discussed how giving control over the security policies

46 Literature Review of Virtualization and Security

to the administrator makes it vulnerable to insider threats.

Not only that but it was proved that the virtual TPM (vTPM), used in both solutions, is
vulnerable to time-of-check-time-of-use (TOCTOU) attacks which undermine the security
of the whole system [59]. These security issues affect the confidentiality and integrity of
data cloud consumers entrust to cloud providers.

3.4.4 NoHype

NoHype proposes removing the virtualization layer to remove the security implications of
using such solutions, e.g., side-channel vulnerabilities. The core idea in NoHype is to lever-
age current hardware virtualization technology to eliminate the need for a traditional virtu-
alization layer [44].

The authors provide multiple evidences to demonstrate it is practical to remove the hy-
pervisor. First, it is shown how the architecture can run multiple virtual machines in one
physical server taking advantage of its hardware supported virtualization. Second, a discus-
sion is given on how to partition main memory and Input/Output (I/O) devices. Third, the
work demonstrates how networking can be moved to the physical network infrastructure.
Finally, the authors also show how to start/stop/migrate virtual machines.

Assigning a CPU core to an individual VM is how the CPU resources are shared. No-
Hype uses the multi-core memory controller (MMC) to partition physical memory among
VMs. A similar approach is used to share I/O devices but using the Input/Ouput Memory
Management Unit (IOMMU). The networking layer eliminates the traditional virtual Ether-
net switch and suggests using the physical network infrastructure to forward data between
VMs. A system manager software package runs in one of the cores and is responsible for
starting/stopping/migrating virtual machines.

The authors discuss two limitations for their solution, which are selling in extreme fine
grain units (e.g., sell a 1/4 of a core) and highly over-subscribe a physical cloud server (i.e.,
sell resources over the available amount). However, they argue that future hardware will
offer enough cores per chip to counter the first limitation, and that the second policy goes
against the cloud model.

NoHype’s design makes it strong in preventing side-channel attacks between co-resident
virtual machines in order to offer data confidentiality. The isolation is guaranteed through
hardware mechanisms such as the multi-core memory controller and the input/ output mem-
ory management unit (IOMMU). Therefore, threats like the timing cross-VM attack on
cryptographic keys can be prevented if the hardware behaves as expected [108].

3.4 Hardware-centred Solutions 47

Although using hardware to enforce isolation between VMs is a very strong approach,
the way the system manager starts virtual machines continues to leave some attack windows
for malicious insiders to exploit. The process of starting a virtual machine involves having
the system manager map the memory and disk of the new VM into its own memory space.
This means a malicious administrator has complete access to the memory area of a VM and
it is also responsible for getting the disk/VM image, so it is possible to tamper with the
image and inject malicious software in it.

The system manager continues to be a threat to the integrity of disk images because it
maps the memory space assigned to a VM and is responsible for getting the VM image
scheduled to be loaded. Another concern arises from the information provided in the paper.
Since the system manager is actually responsible for mapping and un-mapping the memory
space assigned to a VM it means that a malicious version of the system manager could skip
this step and keep full access to the memory space of consumer VMs.

Despite all these concerns it is important to remember that NoHype was not designed
specifically to address the malicious insider threat. Therefore, this is an interesting alterna-
tive to using a virtualization layer that can surely be hardened to prevent insider threats.

3.4.5 Trusted Cloud Computing Platform (TCCP)

The Trusted Cloud Computing Platform (TCCP) leverages the features of the trusted plat-
form module to build a safer cloud computing environment [79]. There are three key types
of entities in a TCCP, a Trusted Coordinator (TC), zero or more trusted nodes, and an Ex-
ternal Trusted Entity (ETE). The trusted computing base of a TCCP includes a Trusted Vir-
tual Machine Monitor (TVMM) which runs in each individual trusted node, and the whole
trusted coordinator.

The assumption about the TVMM is that it protects its integrity and prevents malicious
administrators from inspecting the memory space of a consumer’s virtual machine. It is also
assumed a certified TPM-chip is available in each trusted node in order to enforce a trusted
boot process for the TVMM.

The trusted coordinator is responsible for managing (e.g., adding and removing trusted
nodes) the list of nodes (trusted nodes) allowed to execute consumer’s VMs. An external
trusted entity owns and maintains the trusted coordinator. This entity can be seen as a
certification authority in common public-key cryptography infrastructure. A trusted node
must comply with two requirements, it must be located within the security perimeter and
execute a trusted virtual machine monitor. We are not going to discuss the details about the

48 Literature Review of Virtualization and Security

migration and launch protocols used in a TCCP.

This solution is more concerned with the management of trusted nodes within a cloud
platform, which includes strategies to keep the infrastructure limited to nodes executing a
trusted virtual machine monitor. In this thesis, our work focuses on how to assure that a
TVMM can in fact be trusted to offer the features this solution uses to maintain security in
a cloud infrastructure.

Guaranteeing that only trusted nodes running a TVMM execute consumers VMs assures
data integrity and confidentiality to consumers. These security properties are guaranteed
through security features assumed to be present in a TVMM.The trusted computing base
in a TCCP includes the trusted coordinator node and for each trusted node it includes the
TVMM. The inclusion of an external TC node makes the TCB unpredictable because the
TC’s software stack architecture is unknown.

3.4.6 Excalibur

Excalibur is another solution targeting the offering of trusted cloud services but through the
use of policy-sealed data primitives. This solution is centred on a component denominated
as monitor, which is responsible for enforcing the policy-sealed data policy [80].

Monitor is the only component with access to the TPM primitives in order to minimize
TPM’s negative performance impact. The TPM primitives relevant for this solution are seal
and unseal. In the seal operation the TPM takes the data to protect, and the credentials that
uniquely identify the platform as input and encrypts them. To unseal (i.e., decipher) the data
a platform needs to have identical credentials/configuration [29].

In a cloud infrastructure there can be one or more instances of the monitor component to
guarantee fault tolerance properties. The monitor is responsible for attesting a cloud server
before it is accepted as a valid destination for consumer’s data. A cloud server’s unique
configuration (e.g., hardware and software) are used as credentials to unseal policy-sealed
data. Ciphertext Policy Attribute-Based Encryption (CPABE) is used to cryptographically
enforce policies in a manner that can scale, is effective, and fault tolerant [8].

The monitor component allows cloud administrators to manage the mappings between
attributes and fingerprints. Therefore, it is necessary to prove to consumers that the mon-
itor component is trustworthy and is not accepting malicious mappings. This objective is
achieved through the use of a certification chain which permits the verification of mappings
before accepting them.

Excalibur does not address virtualization layer problems such as not complying with

3.4 Hardware-centred Solutions 49

the principle of least privilege and guaranteeing cloud administrator access to consumer’s
security sensitive data. Therefore, it is effective in assuring integrity and confidentiality
if the virtualization layer offers such properties. The use of data sealing based on TPM’s
primitives is effective as assured by the TPM and CPABE approach.

3.4.7 TrustVisor

TrustVisor is a virtual machine monitor designed with the objective of improving the secu-
rity of commodity systems. It intends to assure code and data integrity for selected parts of
executing applications while keeping the trusted computing base and performance overhead
to a minimum [54].

Assuring code integrity with fine granularity while keeping the performance impact to
a minimum is achieved through the use of a dynamic root of trust for measurement mech-
anism denominated TrustVisor Root of Trust for Measurement (TRTM). A limited set of
TPM features are implemented in a software micro-TPM that is part of TrustVisor. TRTM
together with the micro-TPM allow external entities to perform remote attestation of code
blocks executing in a TustVisor-enabled commodity system.

The capabilities offered through the combination of a micro-TPM and TRTM guaran-
tees data integrity and execution integrity. Execution integrity refers to the execution of a
code block with a set of inputs generating the expected set of outputs. TrustVisor assures
the execution of designated code blocks in isolation from the operating system, untrusted
applications, and system devices.

A prototype of TrustVisor was implemented on an AMD platform with support for
AMD’s Secure Virtual Machine technology with a trusted computing base of 6351 lines
of code. The performance overhead of adding TrustVisor to a commodity system is less
then 7%.

Although TrustVisor is not designed for a cloud environment, its design principles are a
solid foundation for the implementation of any trustworthy system. It is expected that the
trusted computing base of a virtual machine monitor that targets the cloud to be bigger than
TrustVisor’s but the features suggested in this work can be adapted to such platforms.

3.4.8 myTrustedCloud

In the myTrustedCloud architecture, the authors describe the use of trusted computing tech-
nology to improve on the security of a cloud provider offering infrastructure as a service

50 Literature Review of Virtualization and Security

solutions [103]. The integration of trustworthy services was tested with the Eucalyptus
cloud computing platform [63].

The main objective of myTrustedCloud is to permit remote attestation of virtual ma-
chines and elastic block storage. This service allows cloud consumers to verify the integrity
of their VMs and storage volumes. The integrity of these two components are dependent on
the integrity of node controller and storage controller which are part of the Eucalyptus sys-
tem. The node controller is the software responsible for managing a cloud server including
the life cycle of VMs running on that same server. A storage controller offers storage and
retrieval of virtual machine images and user data [63].

The integrity measurements used to verify the integrity of the components aforemen-
tioned is guaranteed through the use of a trusted boot process and an Integrity Measurement
Architecture (IMA) enabled Linux kernel [77]. The functions of the trusted platform mod-
ule then allow the kernel to perform integrity measurements of VM images and applications
executing inside verified virtual machines.

The problem with this architecture is the extremely large trusted computing base a cloud
consumer needs to trust. This is true when compared with solutions that rely only on a bare-
metal virtual machine monitor to enforce security properties. This approach includes the
Linux kernel in its trusted computing base, which currently has a code base of approximately
seventeen million lines of code [64]. It is known that the larger the number of lines of code
the more likely it is for that code to contain exploitable security vulnerabilities [58].

3.4.9 Strongly Isolated Computing Environment (SICE)

Strongly Isolated Computing Environment (SICE) is a framework that guarantees an iso-
lated execution environment for x86 hardware platforms. SICE further reduces the trusted
computing base when compared to the NoHype approach. NoHype still relies on a sys-
tem manager software package running in one of the cores to manage virtual machines. In
SICE, the trusted computing base is reduced to the hardware, BIOS, and System Manage-
ment Mode (SMM) [4].

The authors argue that its different and smaller trusted computing base gives SICE ad-
vantages when compared to previous microhypervisors and hardware-based isolation tech-
niques. The advantages are a smaller attack surface, compatibility with existing software
systems, and feasible hardware-based isolation.

SICE resides in System Management RAM (SMRAM), and it is responsible for assur-
ing secure initialisation, memory isolation, and integrity attestation of the isolated environ-

3.4 Hardware-centred Solutions 51

Solution Confidentiality Integrity TCB Cloud Insider Threat
Terra ✘ ✘ ✔ ✘ ✘

TVDc ✘ ✘ ✘ ✔ ✘

PVI ✘ ✘ ✘ ✔ ✘

NoHype ✘ ✘ ✔ ✔ ✘

TCCP ✔ ✔ ✘ ✔ ✔

Excalibur ✔ ✔ ✘ ✔ ✔

TrustVisor ✔ ✔ ✔ ✘ ✘

myTrustedCloud ✘ ✘ ✘ ✔ ✔

SICE ✔ ✔ ✔ ✔ ✘

Table 3.2 Hardware-centred solutions summary. ✔ = guarantees/addresses; ✘ = not guaran-
tees/addresses.

ments. An isolated environment consists of an isolated workload and a security manager.
The security manager of each isolated environment prevents it from accessing memory as-
signed to the legacy system. SMM is used to protect the isolated environment from the
legacy system.

The framework supports time-sharing and multi-core operation modes. Time-sharing
consists in multiplexing hardware resources usage between legacy system and isolated en-
vironments. The multi-core mode assigns one or multiple cores to each isolated environment
while the remainder of the processing resources is used to handle the legacy system. The
latter reminds the approach used in NoHype.

Although the authors argue that SICE differs from microhypervisors, later they affirm
that its security manager is in fact similar to the functionality of a microhypervisor. The fact
that this solution is only compatible with AMD-powered machines is also a limiting factor
to this approach. Assuming the security manager is not guaranteed access to the memory
space of virtual machines, the hardware-enforced isolation should be enough to assure data
confidentiality and integrity to cloud consumers. Otherwise, a malicious insider could take
advantage of a security manager access privileges to undermine the security of consumer’s
data.

3.4.10 Summary

This subsection includes a table summarising how the solutions we analysed in this section
related to the properties, environment, and threat we are considering in this thesis.

Table 3.2 shows how each of the solutions analysed in this section do with respect to
confidentiality, integrity, trusted computing base, cloud, and insider threat. For the con-

52 Literature Review of Virtualization and Security

fidentiality and integrity properties we verified if the solutions are concerned with enforc-
ing these properties for consumers’ data resident in virtual machines’ memory space. The
trusted computing base column indicates if a solution reduces the TCB or not. Both the
cloud and insider threat show if the solution in question was develop for a cloud environ-
ment and if it consider the malicious insider threat when trying to guarantee confidentiality
and integrity for consumers’ data resident in a virtual machine’s memory space.

Hardware-centred solutions seem to be a promising avenue of research to prevent insider
threats in cloud computing environments. However, such solutions have not been tested
against insider threats the way we test the major virtualization software solutions in this
thesis.

3.5 Conclusions

This chapter discussed cryptography, virtualization, and hardware centred solutions to im-
prove security in cloud systems. There are several interesting approaches introduced in the
research works we analysed, e.g, closed-box VM concept introduced in Terra and the dis-
aggregation of Dom0 functionality [27, 59]. These approaches are valid and can help with
building strong security foundations in a cloud system. However, from all the solutions anal-
ysed only two consider insider threats from a perspective similar to ours, i.e, CloudVisor and
Secure virtual machine execution [50, 106].

Analysing these research works led us to the conclusion that more work is required
when looking into an insider threat that targets memory confidentiality and integrity in cloud
systems. CloudVisor can guarantee such properties but at the same time it has a considerable
performance impact and does not allow the development of monitoring solutions [106]. The
monitoring solutions considered here are tools that can be used to detect malicious use of
cloud computing resources, which means these tools need to detect malicious behaviour in
virtual machines. Secure virtual machine execution can also assure memory confidentiality
and integrity but it is not very versatile because it impairs the development of monitoring
solutions. This solution might also create some key management challenges [50].

Considering the insights from our analysis, we argue that there is a research gap for a
prevention mechanism that assures memory confidentiality and integrity that does not impair
the development of monitoring solutions. Therefore, our aim is to devise a solution that
guarantees memory confidentiality and integrity by enforcing the principle of least privilege
in a cloud system. These two security properties need to be assured even when an insider
threat is considered.

Chapter 4

Security Design Flaw in Current Virtual
Machine Monitors

This chapter presents evidence supporting the research problem we address in this thesis.
We study the malicious insider threat in cloud computing. Throughout this chapter we
demonstrate how a malicious insider can take advantage of a design flaw in current virtual-
ization solutions to violate the confidentiality or integrity of cloud consumers’ data.

The design flaw we identified is virtual machine monitors not enforcing the principle
of least privilege. Failure to enforce this principle gives cloud administrators (malicious)
access to data which they should not have the right to access, e.g., a cryptographic key
resident in the memory space of a virtual machine [73].

The evidence presented in this chapter consists of attacks performed against virtual ma-
chine monitors from three major providers of virtualization software solutions. We chose
to demonstrate the problem with the most commonly deployed commercial solution (i.e.,
VMWare ESXi) and the two major players from the open source community (i.e., Xen Hy-
pervisor and Linux KVM) [25, 61]. Showing that the problem exists in multiple vendors
argues in favour of a design flaw instead of an implementation fault in a particular virtual
machine monitor.

The remainder of this chapter is organised as follows. We start with a description of the
adversary model considered for our attacks. After, we provide a conceptual description of
the attack we use against each of the platforms and introduce the virtual machine introspec-
tion library. It is important to introduce the virtual machine introspection library because it
is used in two attack scenarios. Following these two sections, we provide a section dedicated
to each virtualization software. Each section contains an introduction to the virtualization
software under analysis, the attacks performed against it, and the outcome of those attacks.

54 Security Design Flaw in Current Virtual Machine Monitors

4.1 Adversary Model

The adversary model for this chapter is the same as the one described in Section 3.1. Insider
threats are under consideration. The main assumptions to remember are:

• Assumption 1: An attacker can rebuild the virtual machine monitor.

• Assumption 2: No hardware attacks are considered.

• Assumption 3: An attacker can compile and execute arbitrary software within the
realm of cloud management software.

4.2 Attack Concept

The idea for the attacks described in this chapter has its origins in the infamous cold boot

attack [32]. The authors of the cold boot attack demonstrate how random access memory
retains its contents for a certain amount of time after the machine is powered down. This
creates an attack window that an attacker can exploit.

The cold boot attack uses simple cooling techniques to preserve the content stored in
extracted random access memory modules so they can then by connected to another system
for forensic analysis. The attack shows how to successfully extract cryptographic keys
used by popular disk encryption solutions. The attack requires physical access to the target
machine (to extract the physical random access memory modules) but does not require any
special devices or materials.

Figure 4.1 depicts how each virtual machine in a virtualization environment possesses
its own virtual memory address space. Illustrated in the figure as a continuous array of byte-
sized elements with a total size of M−1. The virtual machine monitor in the picture is the
software layer with complete control over the physical random access memory.

The attacks demonstrated in this chapter became possible from realising that in a vir-
tualization environment an attacker does not require physical access to the memory of a
machine, a cloud server in our case. Physical access is not required because the virtual
machine monitor layer manages and has total access to the whole memory space. The fact
that the virtual machines share the same physical random access memory makes it possible
for an attacker to compromise the contents of the random access memory areas assigned to
each virtual machine [73].

We chose to attack the Linux operating system because it is an open source operating
system which makes it easier to get access to its internals and respective source code.

4.2 Attack Concept 55

Hardware
Virtual Machine Monitor

Virtual Machine 0 Virtual Machine N

…

0:
1:
2:
3:
4:
5:
6:
7:

M-1:

…

0:
1:
2:
3:
4:
5:
6:
7:

M-1:

…

Fig. 4.1 Virtual Machines’ Memory Space.

The relevance of these attacks is in demonstrating how not respecting the principle of
least privilege can undermine the security of a virtualized host. The attacks are ideal to
later illustrate how our approach to dealing with this design issue is effective in fixing the
problem.

4.2.1 RSA Key Structure in Memory

The structure of a RSA private key representation while it is loaded in runtime memory is
specified in PKCS #12 [75]. Its representation syntax can be found in the OSI networking
and system aspects - Abstract Syntax Notation One (ASN.1), which is defined in a four part
standard designated ITU-T X.680 [40].

The ITU-T X.680 or ISO 8824 defines standard notation for the definition of data types
and values. According to the standard, a data type is a generic category of information (e.g.,
numeric or textual), whereas a data value is an instance of a particular data type. The ASN.1
notation is supplemented with a set of encoding rules that specify the value of the octets that
carry application semantics, which are also known as transfer syntax.

The encoding rules to represent the abstract objects in binary form are described in ITU-
T X.690 or ISO 8825 and include Basic Encoding Rules (BER), Canonical Encoding Rules

(CER), and Distinguished Encoding Rules (DER). The CER and DER definitions are subsets
of BER and differ from each other in a set of restrictions.

The general rules for encoding are defined in ITU-T X.690 or ISO-8825-1 [39]. This

56 Security Design Flaw in Current Virtual Machine Monitors

Fig. 4.2 RSAPrivateKey ASN.1 type.

document defines that the encoding of a data value should be composed of four distinct com-
ponents: identifier octets, length octets, contents octets, and end-of-content octets. These
octets are order dependent and should appear in the order we just named them. The rele-
vant component for our discussion is the identifier octets, which encodes the ASN.1 tag for
the different types of data value, a list of such tags can be found in [38]. For example, an
integer value has a tag with a hexadecimal value of 0x02. The identifier octet is the starting
byte of any ASN.1 encoding and is composed by three blocks: the two-bit classification, the
constructed bit, and the primitive type.

The ASN.1 object identifier for a RSA private key is defined in [75], which defines
object identifiers for both public and private RSA keys. Since the objective of our attack is
to compromise a private key we focus on the representation of a private RSA key. Figure
4.2 illustrates the components of a binary representation for a RSA private key according to
the RSAPrivateKey ASN.1 type.

The key search method introduced with the cold boot attack consists in looking for
identifying features of the DER encoding. According to the authors the technique generated
no false positives, which in our tests happened to be true.

The search algorithm starts by looking for the ASN.1 SEQUENCE type whose universal
class tag is 0x10, but since its encoding must be constructed, the SEQUENCE header byte
changes to 0x30. A constructed encoding means the constructed bit in the identifier octet is
active. The next step is to locate the RSA version number together with the DER encoding
tag of the next field. The RSA version number must be zero on almost every case except
when multi-prime is used in its DER encoding. Therefore, the expected hexadecimal value
for this final set of bytes is 0x02 0x01 0x00 0x02, in which 0x02 0x01 0x00 is the RSA
version and 0x02 is the type of the next field. Decomposing the RSA version bytes we can
distinguish the identifier octet of an integer (0x02) that has one byte of length (0x01) with a

4.3 Virtual Machine Introspection Library 57

Hardware

Virtual Machine Monitor

CPU

VCPU

User Virtual Machine

Disk

Guest Operating
System and User

ApplicationsVMI Tools

Introspecting VM or VMM

Introspection
Applications

Memory

Network
HW eventsCPU Registers

Fig. 4.3 libVMI Architecture.

value of zero (0x00).

We use this search algorithm to locate private RSA keys in memory dumps of virtual
machines. More details can be found in Sections 4.5 and 4.6.

4.3 Virtual Machine Introspection Library

Virtual machine introspection (VMI) as previously mentioned in Subsection 2.3.5 performs
introspection of virtual machines running on top of a virtualization layer. The virtual ma-
chine introspection library (libVMI) introduces a few techniques to obtain runtime access to
the data of a virtual machine whilst it executes on top of a virtual machine monitor. This
library is relevant to this section because it is used in two of our attacks.

The libVMI solution, previously known as XenAccess, offers virtual memory introspec-
tion and virtual disk monitoring capabilities [65]. The introspection takes place externally,
usually from within a management virtual machine or the virtual machine monitor itself.
Introspection operations are offered for the Xen hypervisor and Linux KVM platforms, as
well as for memory snapshot files.

Figure 4.3 illustrates the entities involved in memory introspection when using libVMI.
An introspection application uses features of the libVMI library (VMI Tools), which allow
it to fetch a memory range from a virtual machine executing on top of a virtual machine
monitor.

The application requests cause the library to perform a system call which is processed
by a driver in the kernel executing on the virtual machine performing the introspection. This

58 Security Design Flaw in Current Virtual Machine Monitors

driver generates an hypercall to the virtual machine monitor. When the hypercall is complete
the introspection application is granted access to the desired memory area. These steps are
different when the introspection originates from within the virtual machine monitor layer.
This layer has access to the whole memory space so it would simply retrieve the necessary
memory areas to process.

Let us consider an example of using an introspection application to fetch a memory
area that belongs to a virtual machine executing in a Xen-powered platform. First, the
introspection application uses the features of libVMI to request a memory range from a
particular virtual machine. Second, the library communicates with Xen’s control library
which performs a system call to obtain access to the desired memory. Third, this system call
is handled by a driver in the kernel of domain-0 which generates a hypercall to guarantee
access to the requested memory range.

A well known example of introspection applications is the intrusion detection solution
VMWall. VMWall is a fine grained tamper-resistant process oriented firewall [84]. The
isolation provided through the hypervisor shields VMWall from advanced malicious threats
which can compromise the behaviour of normal application firewalls. VMWall uses virtual
machine introspection to collect data from network communications, which allows it to
correlate Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) traffic
to block attacks from bots, worms, and backdoors.

4.3.1 Obtaining Virtual Memory Areas

Finding where the correct virtual memory areas are located in the memory range assigned
to a virtual machine is a key operation in the process of attacking an application while it is
executing.

The introspection library libVMI enables the operation of extracting information from
virtual memory areas of a particular process executing in a guest virtual machine. In what
follows, we provide a brief explanation of how Linux manages virtual memory for its pro-
cesses.

Figure 4.4 illustrates the kernel data structures involved in the process of obtaining the
virtual memory areas for a process executing in a virtual machine. Although the figure does
not include in detail all the information these kernel data structures contain, it helps with
understanding our explanation. The introspection application must traverse all the structures
in the figure to reach the list of virtual memory areas in a particular process. Once that list
is obtained it can be used to get access to the virtual memory space of a process.

4.3 Virtual Machine Introspection Library 59

Fig. 4.4 Linux kernel data structures for virtual memory organisation.

The shapes in Figure 4.4 have different meanings, blocks represent a whole data struc-
ture, e.g., task_struct, the boxed names correspond to variables, and the arrows illustrate
memory address pointers. For example, the mmap variable is a pointer variable to the list of
virtual memory areas.

The Linux kernel maintains an individual task data structure (task_struct in the source
code) for each process. This data structure is responsible for storing all the information
required to run a process (e.g., the process identifier or PID and a pointer to the user stack).
One of the members of a task structure, mm, is a pointer to a mm_struct data structure,
which stores the current state for the virtual memory assigned to a process.

The kernel divides a process’ virtual memory into areas to simplify its management.
An area of virtual memory is a contiguously allocated memory range. A virtual memory
area (vm_area_struct in the source code) keeps information about a virtual memory range
allocated to a process (e.g., vm_start, which is a pointer to the beginning of an actual vir-
tual memory area and vm_next, that is a pointer to the next vm_area_struct in a list of
virtual memory areas). A list of vm_area_struct data structures, mmap, is found within the
mm_struct data structure.

An introspection application requires several steps to get the list of virtual memory areas
for a particular process. The first step is to traverse the kernel list of task structures and
locate the process of interest. Analysing the task structure data structure in the source code
makes it possible to calculate the offset to the mm_struct pointer. The second step uses the
calculated offset to retrieve a pointer, which gives access to the data stored in the mm_struct

data structure. The data located in the second step contains a variable that stores the size of
the list of virtual memory areas and a pointer to the list that has the actual vm_area_struct

data structures.

60 Security Design Flaw in Current Virtual Machine Monitors

Hardware

Xen Hypervisor

Guest OS

App 0

…

App N

domain-0

…

Guest OS

App 0

…

App N

domain-u 0

Guest OS

App 0

…

App N

domain-u N

Fig. 4.5 Xen Architecture.

Access to the list of virtual memory areas makes it possible to traverse the virtual mem-
ory space of a particular process. The attack that follows uses access to this list to hunt
for a desired byte pattern which can locate the intended task structure data structure and
consequently its list of virtual memory areas.

4.4 Xen Hypervisor

Xen is an open source hypervisor which was initially designed to overcome the lack of
support for full virtualization in the x86 architecture. It introduced paravirtualization instead
of offering the traditional full virtualization approach, where unmodified operating systems
can execute on top of the hypervisor [5, 104].

In full virtualization the provided virtual machine abstraction is identical to the under-
lying hardware allowing unmodified operating systems to run on top of it. In paravirtual-
ization, on the contrary, the offered virtual machine abstraction is similar but it does not
replicate the underlying hardware in its entirety. Therefore, an operating system requires
modifications in order to operate as a paravirtualized guest. These concepts were described
in detail in Section 2.3.

Figure 4.5 shows the basic architecture found in a Xen-powered cloud server. Xen is a
bare-metal hypervisor, which means it executes directly on top of the hardware layer. In Xen
lingo an executing virtual machine instance is referred to as domain or guest. Xen permits
two different types of virtual machine instances to execute on top of it. The first type is a

4.4 Xen Hypervisor 61

single virtual machine instance with elevated privileges denominated privileged domain or
domain-0, also known as dom0. The second type can have zero or several instances running,
these instances are referred to as unprivileged domain(s) or domain-u.

A Xen system is not useful without the presence of its domain-0. Xen launches the priv-
ileged domain (domain-0) at startup [105]. Domain-0 has direct access to the hardware and
hosts the device drivers for all the devices in the system. The software stack responsible for
the creation, termination, and configuration of unprivileged domains is also part of domain-
0. The privileged domain (domain-0) needs a Xen-enabled kernel which is standard since
Linux kernel version 3.0.

A domain-u is a virtual machine created through the privileged domain which executes
independently in the system. An unprivileged guest can be paravirtualized or a hardware
virtual machine (HVM).

Paravirtualization is efficient and does not require a central processing unit with virtual-
ization extensions. However, a paravirtualized operating system requires modifications and
it is also aware of the presence of a virtual machine monitor in the system. On the one hand,
these properties make it ideal for configurations that have high performance requirements
but, on the other hand, they also make it challenging to maintain or use in scenarios where
applications cannot be aware that they are executing in a virtual machine, e.g., malware
analysis.

A hardware virtual machine requires hardware virtualization extensions such as Intel VT
and AMD-V. These hardware extensions are used to improve the performance of hardware
emulation (e.g., PC Hardware or network adapter), which Xen provides through Qemu.
Any unmodified operating system can run in a HVM domain. This type of domain-u is
slower due to the costs associated with hardware emulation. Although they are slower than
a paravirtualized virtual machine, they do not have high maintenance costs and the operating
system should not be aware that it is operating in a virtualized host.

4.4.1 Inter-Virtual Machine Communication

Inter-Virtual Machine or inter-domain communication achieves higher throughput commu-
nication rates than traditional networked communications for data exchange between two
virtual machines executing in the same physical host [107]. It uses a shared memory com-
munications solution as opposed to a more traditional network communications protocol
stack approach. It is important to introduce inter-domain communication because we chose
to attack the virtual memory area of an application that uses this type of communication

62 Security Design Flaw in Current Virtual Machine Monitors

channel.
The latest release of Xen includes a new virtual channel library (i.e., libvchan) which

implements high-throughput bidirectional communication channels between applications
executing in different virtual machines. The channels are created in a client-server fashion
using shared memory. The IDs of participating domains and a port number must be ne-
gotiated prior to initializing the communication channels. The domain acting as server is
responsible for allocating the shared memory pages and determining the size of communi-
cation rings (one memory page by default). According to the information provided in Xen’s
source code, early testing has shown that this library can provide speeds comparable to pipes
within a single Linux domain which is faster than network-based communication.

In what follows, we introduce some implementation details that are required to under-
stand the attack we performed against Xen’s inter-domain communication library. When an
application executing in an unprivileged domain acts as the server in establishing an inter-
domain communication channel, it requires a libxenvchan data structure in order to properly
interact with the library.

Listing 4.1 virtual channel library data structures

1 s t r u c t r i n g _ s h a r e d {
2 u i n t 3 2 _ t cons , prod ;
3 } ;
4 s t r u c t l i b x e n v c h a n _ r i n g {
5 s t r u c t r i n g _ s h a r e d * sh ;
6 void * b u f f e r ;
7 i n t o r d e r ;
8 } ;
9 s t r u c t l i b x e n v c h a n {

10 union {
11 xc_gntshr * g n t s h r
12 xc_gnt tab * g n t t a b ;
13 } ;
14 s t r u c t v c h a n _ i n t e r f a c e * r i n g ;
15 xc_evtchn * e v e n t ;
16 u i n t 3 2 _ t e v e n t _ p o r t ;
17 i n t i s _ s e r v e r : 1 ;
18 i n t s e r v e r _ p e r s i s t : 1 ;
19 i n t b l o c k i n g : 1 ;

4.4 Xen Hypervisor 63

Hardware

Xen Hypervisor

Guest OS

Attack
Code

domain-0

Guest OS

vchan-
node2

liberal

Guest OS

vchan-
node2

vidigueira

Fig. 4.6 Xen Test Environment.

20 s t r u c t l i b x e n v c h a n _ r i n g read , w r i t e ;
21 } ;

Listing 4.1 shows a data structure which contains critical information in the establish-
ment of inter-domain communications. The data stored using such structures informs if
the application is a server, which port number is in use to communicate events, and it also
contains pointers to the shared memory area. This data structure creates identifiable data
patterns in memory making it possible for an attacker to locate and extract the information
it contains.

One of those data patterns consists of the last six members of the data structure (line 16–
line 20), starting from the variable event_port through to struct libxenvchan_ring write. The
value of event_port can be obtained using the management tool chain available in domain-0.
Possible combinations for the bit fields is_server, server_persist and blocking members are
23, but from the source code it is easy to figure out that a server application only uses the
is_server bit field. The read and write variables are libxenvchan_ring data structures and
contain two pointers and the variable order, which sets the size of the ring. The order is
another predictable value, it is either ten or eleven. Attack code to locate this data pattern in
memory can be implemented using this knowledge, such an attack is discussed in Subsection
4.4.3.

4.4.2 Test Environment

The test environment comprised a single desktop. In terms of hardware configuration the
server includes an Intel Core i7-870 64-bit CPU and 4GB of main memory. The server
installation consisted of Xen 4.2 unstable with a Fedora 16 domain-0 running a 64- bit

64 Security Design Flaw in Current Virtual Machine Monitors

Linux kernel, version 3.1.5-1. The first virtual machine was running a 32-bit Linux kernel
with physical address extension (PAE), version 3.3.2-6 for Fedora 16. The second virtual
machines’ operating system was also Fedora 16 but using a 64-bit Linux kernel with version
3.3.2-6.

Figure 4.6 depicts the test environment used to attack consumers’ data when virtual
machines execute on top of Xen. In this scenario we have two unprivileged domains with
hostnames liberal and vidigueira.

The liberal virtual machine runs a Fedora 32-bit Linux kernel (3.3.2-6) with PAE. The
vchan-node2 application is executed so liberal can act as a server in an inter-domain com-
munication channel with vidigueira. The purpose of this communication channel is the
exchange of text messages between client and server. The vidigueira virtual machine uses
vchan-node2 to connect as a client to the instance executing in liberal.

4.4.3 Memory Confidentiality and Integrity

The attack described in this subsection to test memory confidentiality and integrity in a Xen-
powered platform is an advanced attack that takes advantage of data security vulnerabilities
to prove the validity of our solution. We explain later how this attack against Xen’s virtual
channel library can be used to illustrate how our solution prevents this type of attack.

The attack can be divided into two main steps. First, it finds the libxenvchan data struc-
ture pattern in the memory space of a target process. Second, it uses the captured informa-
tion to poll the shared memory area in regular intervals in order to read the data exchanged
between the domains using the communication channel.

To explain the attack we need an example scenario. Consider the communication chan-
nel established between the unprivileged domains liberal and vidigueira from Figure 4.6.
The unprivileged domain liberal acts as a server and has the following values for the data
structures in listing 4.1:

• event_port: 0x17.

• is_server: 0x1.

• read.order: 0xA.

• write.order: 0xB.

The values assumed here were valid after server reboots and even after Xen was recom-
piled. The order variable for a ring is found in the libxenvchan_ring data structure (Listing

4.4 Xen Hypervisor 65

4.1: line 7). The variables (sh and buffer) before variable order are two pointers (Listing
4.1: line 5-6). Assume a 32-bits operating system, which means four bytes long pointers.

The attack code verifies a set of conditions before concluding it found a valid data pattern
for a libxenvchan data structure. The list that follows enumerates the conditions that need
to be true. The code only check the next condition if the previous one is valid. The attack
code looks for the following conditions in the virtual memory areas assigned to the process
of vchan-node2 executing in liberal:

1. Locate the four byte representation for 0x17 (event_port).

2. Check if the next four bytes contain 0x1, which means the bit field is_server is set.

3. The bit field variables (Listing 4.1: line 17-19) only require four bytes of memory.
Therefore, the offsets to 0xA (read.order) and 0xB (write.order) are 12 and 24 bytes,
respectively. To obtain twelve we add the bit fields (4 bytes) with the read.sh (4 bytes)
and read.buffer (4 bytes) pointers. The offset 24 comes from adding read.order (4
bytes), write.sh (4 bytes), and write.buffer (4 bytes) to the previous 12 bytes.

4. If all the previous conditions are valid, it has a lock on the expected pattern for a
libxenvchan data structure.

5. In the event that a libxenvchan data structure is not detected, the attack code does not
find the required byte pattern in memory and exits without setting up any memory
sniffing mechanisms.

After locating the desired data pattern it reads the whole data structure and extracts the
pointers to the shared memory area (i.e., variables ring and buffer in Listing 4.1 lines 14
and 6, respectively.) and offsets into the ring (i.e., field shr in Listing 4.1 line 5 for both
variables read and write). From our experiments, we have observed that this searching
stage only needs to be performed once because every time the server application launches,
it ends up reusing the same port for the event channel and the same memory locations for
the shared space. This is true even after rebooting the server or rebuilding Xen.

When the location and offsets are known, a thread is launched to poll the memory lo-
cations every ten milliseconds. Figure 4.7 illustrates the output of the attack code program.
When the last read value is inferior to the new value, the difference gives the number of
bytes written to the buffer (i.e., either read or write) associated with an offset. This allows
the code to extract the data exchanged between a client and server that are using Xen’s vir-
tual channel library. In the figure we can see that the server wrote 16 bytes of data whereas
the client wrote 21 bytes.

66 Security Design Flaw in Current Virtual Machine Monitors

Fig. 4.7 Xen attack code executing.

Fig. 4.8 Server virtual machine.

4.4 Xen Hypervisor 67

Fig. 4.9 Client virtual machine.

Figure 4.8 shows the command to execute the application vchan-node2 as a server. In
this case it sets up as a server accepting connections from the client virtual machine with ID
equal to two (vidigueira), using the specified virtual channel. We also decided to print the
IP address for the server virtual machine (liberal) and the result of sending ping requests
to the client virtual machine (vidigueira). This is just to prove that they are actual virtual
machines executing on the same network. The exchanged messages captured by the attack
code are also visible in this figure confirming that the attack code read the correct memory
locations.

The client virtual machine’s command line is shown in Figure 4.9. The vchan-node2

command connects as a client to the server with ID equal to one (liberal), using the specified
virtual channel. This figure displays the IP address for vidigueira and the output of a ping
command directed at the server virtual machine (liberal). Again, the objective is just to
show that these are separate virtual machines executing in the same network. The figure
also confirms that the messages captured by the attack code are the correct ones.

4.4.4 Conclusions

The success of our attack demonstrates that a Xen-powered platform is susceptible to the
insider threat. It is clear that consumers’ data resident in a virtual machine’s virtual memory
area can be compromised by a malicious insider. This proves that Xen is not enforcing the

68 Security Design Flaw in Current Virtual Machine Monitors

principle of least privilege regarding the data a cloud administrator needs to access in order
to perform the necessary administrative tasks.

The attack we demonstrate against the Xen hypervisor is more complex than the ones
that follow because we need it to prove the effectiveness of the solution we later devise and
implement using Xen. This attack targets a single memory page which is typically the basic
unit for memory allocation as mention in Section 5.1. This level of granularity later allows
us to reason about the security of our approach.

4.5 Linux KVM

Linux Kernel-based Virtual Machine (KVM) is an alternative approach to the more tradi-
tional VMM-based solutions such as Xen [68]. The most common virtualization approaches
resort to a thin virtualization layer which performs basic scheduling and memory man-
agement. A virtual machine monitor typically relies on a privileged virtual machine (e.g.,
domain-0) to perform management and input/output tasks.

A few design decisions dictate how the Linux KVM approach diverges from other open
source solutions. Linux KVM was designed as a loadable kernel module which transforms
the Linux kernel into a bare metal hypervisor. Two key design aspects helped KVM mature
into a stable and high performance hypervisor.

First, a KVM hypervisor requires CPUs that include hardware assisted virtualization
technology such as Intel VT-x and AMD-V. KVM uses the features of the virtualization
enabled hardware to virtualize the CPU, this allows it remove the need to support legacy
hardware or perform modifications to guest operating systems.

Second, instead of reimplementing the core functionalities of a hypervisor which in-
clude, for example, a memory manager, a process scheduler, and a network stack. KVM
takes advantage of the Linux kernel already including a solid implementation of the core
features required by a hypervisor. This becomes a strong argument when you think of a
hypervisor as a special purpose operating system that executes virtual machines instead
of applications. However, the trusted computing base of the Linux kernel is considerably
larger than that of hypervisor solutions implemented from scratch. This fact is important
when considering the security of a platform.

Figure 4.10 depicts the typical architecture for a platform that uses Linux KVM as its
virtualization layer. Using KVM means that virtual machines and virtual CPUs are no more
than a regular Linux process executing alongside traditional Linux applications. This means
that virtual machines are integrated in the Linux ecosystem and can take advantage of all

4.5 Linux KVM 69

Hardware

Linux Kernel KVM
driver

Normal
User

Process

… Normal
User

Process

Virtual
Machine
(guest
mode)

Virtual
Machine
(guest
mode)

…

QEMU I/O QEMU I/O

Fig. 4.10 Linux Kernel-based Virtual Machine Architecture.

the features of the Linux kernel.

Linux KVM uses a customized version of QEMU to handle device emulation [23]. The
machine emulator features of QEMU are used to provide an emulated BIOS, PCI bus, USB
bus, and a standard set of devices such as disk controllers and network cards. Device emu-
lation is required to provide full virtualization. A fully virtualized virtual machine commu-
nicates with QEMU emulated devices that compose a complete abstract physical machine,
which leads the virtual machine to believe it is executing on real physical hardware.

KVM offers full virtualization but it also supports a form of hybrid virtualization that
relies on an optimized I/O interface in the place of emulated devices to guarantee high
performance for input/output network and block devices. Hybrid virtualization uses the
virtualization standard for network and disk device drivers Virtio [67]. Using this approach
means the operating systems running in the virtual machines get most of the performance
benefits of paravirtualizion, but they are also aware that they are executing in a virtualized
platform.

Since the security of a virtual machine’s memory space is the topic under analysis in
this thesis, it is important to mention how KVM manages such resources. This is one of the
mechanisms that KVM inherits from the Linux kernel. The memory of a virtual machine is
stored just like any other Linux process and can take advantage of the memory management
features Linux offers such as swapping and backup.

Linux’s stable support for Non-Uniform Memory Access (NUMA) offers virtual ma-
chines efficient access to large amounts of memory. A Linux kernel feature called Kernel
Same-page Merging (KSM) scans memory assigned to virtual machines and merges iden-
tical memory pages into a single shared copy. In the event of a virtual machine requesting

70 Security Design Flaw in Current Virtual Machine Monitors

Hardware

Linux Kernel KVM
driver

Attack Code
(libvmi

introspection
application)

… Normal
User

Process

Xubuntu
(virtual

machine)

QEMU I/O

Fig. 4.11 Linux KVM Test Environment.

changes to such page, it receives its own private copy.

4.5.1 Test Environment

The test environment comprised a single desktop. In terms of hardware configuration the
server includes an Intel Core i7-870 64-bit CPU and 4GB of main memory. The host/server
operating system installed was Fedora 18. We used a 64-bit Linux kernel with version
3.6.10-4 for the server. The qemu-KVM version was 1.2.2. A single virtual machine was
set up using Xubuntu 12.04. We chose a 64-bit Linux kernel with version 3.2.0-29 for the
virtual machine.

Figure 4.11 illustrates the test environment used to test our attack against consumers’
data resident in a virtual machine executing on top of Linux KVM. Our attack code exe-
cutes as a normal system process and creates a memory dump file for a specific application
running in the Xubuntu virtual machine. We describe the attack in detail in the section that
follows.

4.5.2 Memory confidentiality and Integrity

The attack we devised to test memory confidentiality and integrity in a Linux KVM platform
can be divided in two step. First, we developed attack code in the form of a malicious
introspection application that retrieved the memory range assigned to a Java application
when it was executing in our Xubuntu virtual machine. Second, the memory dump of the
Java application was searched for the typical pattern a RSA private key exhibits while loaded
in runtime memory [32].

In more detail, the attack code consists of an introspection application that uses the fea-
tures of the virtual machine introspection library libVMI to identify and extract the virtual

4.5 Linux KVM 71

Fig. 4.12 Generated private RSA key.

memory areas associate with the Linux process created for the Java application we im-
plemented. The Java application simply loads a RSA private key into memory, prints the
various members that compose the key, and then enters an infinite iteration until the process
is killed. When the introspection application captures its virtual memory areas it creates a
memory dump over which we can run the key search algorithm introduced with the cold

boot attack.

We provide two figures to help us demonstrate that we compromised the private RSA
key generate by the Java application executed in the Xubuntu virtual machine. Figure 4.12
displays the value for the private exponent the application would use in decryption opera-
tions. The same value can be seen in Figure 4.13. This value was captured using the key
search algorithm suggested in the cold boot attack.

4.5.3 Conclusions

Compromising a consumer’s private RSA key demonstrates that our attack was successful.
The attack demonstrated here clearly violates the confidentiality of a consumer’s data. A
cloud administrator does not require access to a private RSA key a security sensitive appli-
cation uses while executing in a consumer owned virtual machine.

72 Security Design Flaw in Current Virtual Machine Monitors

Fig. 4.13 Compromised private RSA key.

The success of this attack means that a Linux KVM platform does not enforce the prin-
ciple of least privilege when it comes to the capabilities entrusted to system administrators.
Therefore, it is vulnerable to the insider threat just like the Xen hypervisor.

4.6 VMWare ESXi

VWare ESXi introduces VMWare’s next-generation of hypervisor software solutions. This
new generation architecture breaks with the old dependency on a general purpose operating
system. Past architectures had a Linux based console operating system (COS), or service
console, which used to support management and monitoring services. In this new architec-
ture, the hypervisor’s memory footprint was reduced to less than 32MB due to the removal
of the service console.

The service console used to be the principal management interface for the virtualized
host. In previous architectures the service console was primarily used to deploy VMWare
management agents and other infrastructure service agents (e.g. name service, logging, etc).
Remote command line interfaces were added to the most recent ESXi architecture in order
to replace the outdated Linux-based service console.

Figure 4.14 shows the organisation of the main components in the ESXi architecture.

4.6 VMWare ESXi 73

Hardware

VMWare ESXi (VMKernel)

VMM N

Virtual
Machine

N

VMM 0

Virtual
Machine

0

DCUI CIM VMX 0 VMX N

Fig. 4.14 Architecture for VMWare ESXi.

The key component in this architecture is the VMKernel operating system which provides
the primitives required to execute all the processes in the system. Example processes include
management applications and virtual machines. The inclusion of all device drivers means
that VMKernel controls all the hardware devices on the server. Therefore, it is responsible
for managing resources for applications.

Some examples of the main processes executing on top of VMKernel are the Direct Con-
sole User Interface (DCUI), Virtual Machine Monitor (VMM), and the Common Informa-
tion Model (CIM) system. The DCUI consists of low-level management and configuration
interfaces which are important in performing an initial basic configuration. These interfaces
are available through the server console. A virtual machine monitor is the execution en-
vironment for a virtual machine, and each VMM process as a helper process denominated
VMX. A pair consisting of a VMM and a VMX is assigned to each virtual machine. The
CIM system comprises a set of standard application programming interfaces that enable
remote applications to execute hardware-level management functions.

Memory management in VMWare ESXi is similar to what is done for Xen. When a
virtual machine requires the allocation of memory space, the hypervisor’s memory man-
agement functionality behaves just like a traditional operating system would and assigns the
virtual machine a set of the total number of memory pages in the host.

The operating system that runs inside the virtual machine then claims all that memory
using the traditional virtual memory approach to manage it. However, in this configuration
an extra level of address translation is required because multiple virtual machines execute
in the same physical host sharing its memory resources. Detailed descriptions of virtual
memory and memory virtualization are available in Chapter 5.

74 Security Design Flaw in Current Virtual Machine Monitors

Fig. 4.15 Generated private RSA key.

4.6.1 Test Environment

The host/server we used to configure VMWare ESXi was a Dell PowerEdge R720 server
with an Intel Xeon E5-2620 and 256GB of memory. We installed VMWare ESXi 5.5.0 Up-
date 1 which was the latest version at the time we performed our security tests. VMWare’s
vSphere Web Client was the solution we chose as management software for our virtualized
server. Using the web client we installed and configured a virtual machine with the Ubuntu
13.10 Linux operating system. The kernel was 64-bit with version 3.11.0-18.

Figure 4.15 shows the values for the generated private RSA key. This private RSA key
is part of the public-private RSA key pair a Java application generated. The application
was executing in the Ubuntu virtual machine. In the figure it is possible to verify that the
user ubuntu is logged in at the host named ubuntu-virtual-machine (the virtual machine’s
hostname).

4.6.2 Memory Confidentiality and Integrity

To test memory confidentiality and integrity in this environment we chose to reproduce
one of the memory attacks described in [73]. The attacks consisted in searching a virtual
machines’ memory snapshot for login credentials and RSA private keys. We decided to only
look for a private RSA key in a memory snapshot. The attack has two main stages. First, we
need to obtain a memory dump (also referred to as memory snapshot) of the virtual memory
space assigned to the virtual machine executing the Ubuntu 13.10 Linux operating system.

4.6 VMWare ESXi 75

Fig. 4.16 Compromised private RSA key.

Second, we use the key search algorithm introduced in the cold boot attack to locate the
intended private RSA key in the memory dump file.

VMWare’s vSphere Web Client provides a set of management features among which
you can find a memory snapshot functionality that an administrator can use to perform
crash analysis of virtual machines. This option is also available through the ESXi shell
using the command vim-cmd vmsvc/snapshot.create vmid. These are two valid approaches
to obtaining a memory dump of the Ubuntu virtual machine, which is the first step in our
attack.

The second part of this attack consists in using the key search algorithm introduced
in the cold boot attack. This algorithm tries to locate instances of private RSA keys in a
memory dump file. Since the memory dump contains the private private RSA key our Java
application generated, the search algorithm is successful and returns the values for that key.
Figure 4.16 displays the whole modulus value, the public exponent, and part of the private
exponent. It is possible to verify that this value match the ones shown in Figure 4.15.

76 Security Design Flaw in Current Virtual Machine Monitors

4.6.3 Conclusions

The attack we designed to check if VMWare’s ESXi is vulnerable to the insider threat was
successful. Therefore, we can compromise private RSA keys resident in memory of virtual
machines that run on top of VMWare’s ESXi hypervisor software.

This proves that VMWare is not enforcing the principle of least privilege to protect
consumers’ data. Hence, vulnerable to malicious insiders compromising confidentiality
and/or integrity of consumers’ data resident in virtual machines memory space. This is
common in all the three platforms we tested in our project.

4.7 Related Approaches

This section discusses previous work addressing attacks against memory confidentiality and
integrity. To the best of our knowledge, the work we presented here is novel. An approach
closely related to ours was the cold boot attack where attackers with physical access to a
machine could extract its random access memory in order to compromise data resident in
the obtained storage units [32]. This attack was already discussed in this chapter.

The novelty of our work is on how it removes the need for physical access to random
access memory and tests the same attack principles in a cloud computing environment. The
cold boot attack was intended against personal computers. To the best of our knowledge,
previous studies involving insider threats focused on employees compromising their em-
ployers systems or data [43]. In our scenario, an insider can compromise data that belongs
to entities besides their employer.

4.8 Conclusions

This chapter presents the results which led us to conclude that a security design flaw exists
in current virtualization solutions. We designate it as a security design flaw because the
vulnerability we exploit to obtain access to consumer security sensitive data is related to
design decisions for the virtualization software layer.

The tested virtualization solutions were not selected at random. According to a recent
study Xen, Linux KVM, and VMWare are the most commonly used platforms in virtual-
ization servers. The Aberdeen Group ran a survey that shows how Xen, Linux KVM, and
VMWare combined are the primary choice of hypervisor software for 79% of virtualization
servers. These three solutions can account for 83% of virtualization servers but not only

4.8 Conclusions 77

as a primary solution. Furthermore, 58% of the inquired are evaluating one of these three
platforms as a solution for future deployment [20].

Since we managed to execute successful attacks against all three platforms, it is safe
to assume that the majority of servers running virtualization solutions is vulnerable to such
attacks. Therefore, this is a relevant security problem that needs to be addressed.

The fact that our attacks reveal the same security problem in the major virtualization
platforms does raise the question of how can these products not address a security problem
such as the one identified in this chapter. From our perspective, it is probably related to
the complexity of integrating the level of security that would better prevent insider threats.
Therefore, to facilitate the implementation and operation of cloud ecosystems the virtualiza-
tion software might opted to relax the security requirements in favour of functionality. The
complexity of creating a cloud ecosystem that takes insider threats into account is demon-
strated in the challenges and trade-offs discussed in the next chapters.

Chapter 5

Lightweight Mandatory Memory Access
Control (LMMAC)

This chapter introduces the change we propose to a virtual machine monitor’s memory man-
agement mechanisms. The change we suggest is the addition of a prevention mechanism
which can eliminate the memory confidentiality and integrity problem we demonstrated on
Chapter 4. The objective of these changes is to enforce the principle of least privilege in
order to assure data security.

The principle of least privilege states that a subject is only given the privileges that it
requires in order to complete its task [11]. Therefore, our objective is to devise a prevention
mechanism that enforces the principle of least privilege to memory access whilst allowing a
cloud administrator to perform the required operations to maintain a cloud infrastructure.

The solution we propose is a lightweight mandatory memory access control (LMMAC)
prevention mechanism. Mandatory access control (MAC) is when a system mechanism
controls access to an object and an individual user cannot alter that access [11]. LMMAC
is a system mechanism that introduces controls in the virtual machine monitor that pre-
vent a cloud administrator (user) from accessing the memory areas (object) assigned to a
consumer’s virtual machine.

The remainder of this chapter is organised as follows. We start with a detailed intro-
duction to virtual memory systems and how those systems are implemented when a virtu-
alization layer is present. Next, we discuss the privilege levels offered by processors with
support for virtualization technology. After, we focus on our prevention mechanism ex-
plaining how it is feasible for one memory page, and how it can be applied to the memory
space of a consumer’s virtual machine to protect security sensitive data. Finally, we discuss
the limitations of our work.

80 Lightweight Mandatory Memory Access Control (LMMAC)

0:
1:
2:
3:
4:
5:
6:
7:

M-1:

CPU MMU

Virtual
Address

(VA)

Address
Translation

Physical
Address

(PA)

Data word

CPU chip

…

Fig. 5.1 Virtual address translation.

5.1 Virtual Memory

Consider a traditional system where an operating system manages multiple processes while
executing directly on top of the hardware layer. In this type of system, processes share
between them resources such as CPU and main memory. Sharing these resources creates
several and distinct challenges to system developers. The challenges of sharing main mem-
ory include providing memory space for running processes and preventing processes from
writing in each others memory spaces which can lead to unpredictable process failure states.

The efficient approach that most modern general-purpose operating systems use to man-
age main memory with fewer errors is denominated virtual memory (VM). Virtual memory
is an abstraction of main memory which encloses hardware exceptions, hardware address
translation, main memory, disk files, and kernel functionality that guarantees each process
with a large, uniform, and private address space [13]. For our discussion assume a linear

address space, which means a set of consecutive positive integer addresses.

There are a few important concepts that need to be clear in order to understand the inner
workings of virtual memory. The first one is the difference between a physical address (PA)
and a virtual address (VA). The main memory in a computer system consists of an array
of M contiguous byte-sized compartments. A physical address uniquely identifies each
byte in the array. A CPU can use physical addresses to access data stored in the physical

address space, this technique is known as physical addressing and is used in systems like
digital signal processors and embedded microcontrollers [13]. This is a simple and efficient
mechanism to access main memory. However, most recent processors prefer an addressing
scheme known as virtual addressing.

5.1 Virtual Memory 81

A processor using a virtual addressing approach uses virtual addresses to access mem-
ory cells in a virtual address space. The process of translating a virtual address to a physical

address is referred to as address translation. A virtual address is always converted to a phys-

ical address before the access request is sent to physical memory. The address translation

step is handled between processor hardware and the operating system. The operating system
generates and maintains a look-up table in main memory, which a CPU hardware module
known as memory management unit (MMU) uses to translate virtual addresses on the fly.

Figure 5.1 illustrates how a virtual address can translate to a different physical address.
The memory management unit translates the virtual address to the corresponding physical

address and sends the access request to physical memory. Main memory reads the memory
location and sends the data back to the CPU.

5.1.1 Paging

Paging is a memory management technique where an address space is simulated with a
small amount of physical RAM and some disk storage. The basic unit in a paging approach
is a memory page. The address space is divided into memory pages, which typically have
a fixed-size of 4 KBytes each [37]. A memory page can be unallocated, loaded in physical
memory or stored on the disk [13].

A virtual memory system uses paging as a memory management solution. A memory
page is used as a basic unit to transfer data between disk and physical memory. The virtual
address space is divided into virtual pages. Each virtual page as a corresponding physical

page (also know as page frames). In a system with more than one process, each process as
its own virtual address space divided in virtual pages that map to physical pages. Processes
can even share physical pages, which means different virtual pages mapping to the same
physical page.

Assuming a two-level page table approach, similar to the one used in 32-bit paging.
Figure 5.2 illustrates how a virtual address can be translated to a physical address. The
operating system or virtual machine monitor uses a page directory and a set of page tables
to keep track of memory pages. When a process tries to access a memory location, the
processor uses the page directory and page tables to perform an address translation from
virtual to physical address. The processor then executes the read or write operation on the
requested memory location.

82 Lightweight Mandatory Memory Access Control (LMMAC)

Virtual address

Directory Table Offset

PD Entry (PDE)

Page Directory (PD)

PT Entry (PTE)

Page Table (PT)
Physical Address

Physical Page

Fig. 5.2 Paging: virtual address translation.

5.1.2 Memory Virtualization

The virtual memory approach we just discussed is a solution mainly used in systems running
a single operating system. In this subsection, we explain how the concepts of virtual memory
are adapted in a virtualized platform. The terminology might be confusing, so there are a
few definitions we require before proceeding with explaining how virtual memory behaves
in a virtualized environment.

The necessary terminology for explaining how virtual memory is implemented in virtu-
alized platforms includes, host physical memory, guest physical memory, and guest virtual

memory. Definitions for these concepts follow.

• Host physical memory is the actual system hardware memory, which consists of an
array of M byte-sized cells.

• Guest physical memory is the memory a guest operating system running on a vir-
tual machine perceives as hardware memory. This is the memory a virtual machine
monitor makes visible to the guest operating system.

• Guest virtual memory is the abstraction of main memory a guest operating system
exposes to its applications. It consists of a contiguous array of N byte-sized cells.

The system hardware memory or host physical memory provides the storage space re-
quired by guest physical memory. Therefore, the virtual machine monitor maintains a table
that maps guest to host memory [15, 31].

The virtual machine monitor creates virtual machines, in this process it assigns a con-
tiguous memory address space to each virtual machine. A virtual machine is for a virtual
machine monitor what an application is for a traditional general-purpose operating system.

5.1 Virtual Memory 83

Host Physical MemoryVirtual Machine
Monitor

Guest Virtual MemoryApplication

Operating
System

Virtual Machine

Guest Physical Memory

Fig. 5.3 Levels of indirection for systems with a hypervisor.

The memory space assigned to each virtual machine offers the same properties as the mem-
ory space an operating system assigns to its applications. Hence, a virtual machine monitor
supports running multiple virtual machines in the same physical host while guaranteeing
memory isolation between them. From the perspective of an application executing inside a
guest operating system, having a virtual machine monitor present means an extra level of
address translation that finds the host physical address for a given guest physical address
[31].

Figure 5.3 depicts the address translation steps before the system can retrieve data resi-
dent in the host physical memory. The virtual machine monitor typically maintains a map-
ping table for each virtual machine in order to offer address translation from guest physical
memory to host physical memory. The interception of virtual machine instructions for guest
memory management allows the virtual machine monitor to maintain shadow page tables
that contain translations from guest virtual to host physical memory. Data in shadow page
tables is consistent with guest virtual to guest physical memory translation kept in the guest
operating system page tables and with guest virtual to host physical memory translation
stored in the mapping table.

The latest hardware-assisted virtualization technology offers support for memory virtu-
alization. Intel through its Extended Page Table (EPT) technology and AMD with its Rapid
Virtualization Indexing (RVI) approach. Both offer one layer to store guest virtual memory
to guest physical memory translation, and a second layer for guest physical to host physical
mapping [9, 10, 31].

84 Lightweight Mandatory Memory Access Control (LMMAC)

Level 0

Level 1

Level 2

Level 3

Fig. 5.4 Protection Rings.

5.2 Privilege Levels

A typical x86 processor offers protection based on the concept of a 2-bit privilege level.
The privilege levels go from 0 to 3, where the lower the number the highest the privilege
[37, 99]. Therefore, level 0 is the most-privileged whereas level 3 is the least-privileged.

These privilege levels are commonly represented as a set of protection rings as depicted
in Figure 5.4. The central ring is used for critical software such as an operating system. The
remainder of the rings are used for less critical software like user applications. A typical
configuration in traditional systems is to have a general-purpose operating system executing
in level 0 and user applications running in level 3, so only two privilege levels are used.

The purpose of the different levels of privilege is to prevent software running in a lesser
privilege level from accessing data that belongs to higher privilege levels. The processor
uses access rights to determine if the requesting software is granted access. For example,
accesses to memory areas can be qualified as either a supervisor-mode access or a user-mode

access. The processor keeps track of the current level of privilege and uses it to decide if
the requesting software is granted access. Main memory areas assigned to supervisor-mode
can never be accessed by a user-mode access request.

5.2.1 Privilege Levels and Virtualization

The protection rings approach is efficient in systems with a general-purpose operating sys-
tem which supports the execution of several user applications. However, when virtualization
is introduced a few challenges emerge such as the ring compression problem.

The introduction of a virtual machine monitor requires the use of ring de-privileging
to keep it isolated from virtual machines executing on the same physical host. Executing
in the most-privileged ring is useful to provide isolation between virtual machines. In this

5.3 Mandatory Memory Access Control: Single Page 85

configuration, the VMM runs in ring 0, virtual machines can run in either ring 1 or 3, and
user applications always run in ring 3. This creates the (0/1/3) and (0/3/3) models [37, 99].

A x86 CPU with support for 64-bit extensions needs to resort to paging to protect the
VMM from guest operating systems. However, paging does not distinguish between rings
0, 1, and 2. Therefore, the only model available would be the (0/3/3) model which does not
offer protection to guest operating systems from their own user applications because they
both execute in ring 3. This is known as the ring compression problem [37, 99].

Hardware-assisted virtualization introduces two new CPU operation modes that can
solve the ring compression problem. These new operation modes are known as VMX root
mode and VMX non-root mode [99]. A virtual machine monitor executes in VMX root
mode and it uses VMX non-root mode to execute its virtual machines. Both operation
modes support the four protection rings which means the operating system can run at the
expected privilege level.

These two new modes create two mode transitions denoted as VM entry and VM exit.
The transition from VMX root mode (virtual machine monitor) to VMX non-root mode
(virtual machine) is known as VM entry. VM exit refers to the transition from VMX non-
root mode (virtual machine) to VMX root mode (virtual machine monitor). A new data
structure is used to manage these two transition states and processor behaviour in VMX
non-root state. When in VMX non-root mode, many instructions and events cause VM exits.
These transition states can be managed by the virtual machine monitor.

The new modes introduced with hardware-assisted virtualization create the adequate
environment to properly isolate virtual machine monitor from virtual machines and their
user applications. The addition of these modes also maintains proper isolation between
virtual machines’ guest operating systems and their user applications.

5.3 Mandatory Memory Access Control: Single Page

This section presents our approach to testing the feasibility of the prevention mechanism
we envisioned to assure memory confidentiality and integrity when considering an insider
threat in cloud computing. The feasibility of our approach is demonstrated by testing if
it prevents the security problem identified in Chapter 4. This is an example of devising a
prevention mechanism as described in Subsection 2.1.3. Our approach choice is prevention
because we possess detailed knowledge of the security problem.

We provide the details on our implementation of a mandatory memory access control
scheme for a single virtual memory page, which is the basic unit in virtual memory systems

86 Lightweight Mandatory Memory Access Control (LMMAC)

Hardware

Xen Hypervisor

Guest OS

Attack
Code

domain-0

Guest OS

vchan-
node2

liberal

Guest OS

vchan-
node2

vidigueira

Fig. 5.5 Solution: Xen Test Environment.

as previously mentioned in Section 5.1. Therefore, if we can guarantee memory confiden-
tiality and integrity for the basic unit we can then scale it to protect the whole virtual mem-
ory space of a virtual machine. We chose the Xen hypervisor as virtual machine monitor to
implement our solution.

We chose to use inter-domain (or inter-virtual machine) communication as a test scenario
because the communication channel uses a single memory page, which is ideal to test if our
prevention mechanism can assure memory confidentiality and integrity for a single page.

5.3.1 Test Environment

The test environment comprised a single desktop. In terms of hardware configuration the
server includes an Intel Core i7-870 64-bit CPU and 4GB of main memory. The server in-
stallation consisted of Xen 4.2 unstable with a Fedora 16 domain-0 running a 64-bit Linux
kernel, version 3.1.5-1. The first virtual machine was running a 32-bit Linux kernel with
physical address extension (PAE), version 3.3.2-6 for Fedora 16. The second virtual ma-
chines’ operating system was also Fedora 16 but using a 64-bit Linux kernel with version
3.3.2-6.

Figure 5.5 depicts the test environment used to implement our prevention mechanism.
In this configuration, we have two virtual machines with hostnames liberal and vidigueira.
Both virtual machines are hardware virtual machines (HVM). The liberal virtual machine
runs a Fedora 32-bit Linux kernel (3.3.2-6) with PAE. The vchan-node2 application is
executed so liberal can act as a server in an inter-domain communication channel with
vidigueira. The purpose of this communication channel is the exchange of text messages
between client and server. The vidigueira virtual machine uses vchan-node2 to connect as
a client to the instance executing in liberal. Domain-0 is a malicious insider entity which

5.3 Mandatory Memory Access Control: Single Page 87

tries to execute attack code to compromise security sensitive data that belongs to cloud
consumers.

5.3.2 Secure Inter-Virtual Machine Communication

The vulnerability we identified shows that a malicious insider can compromise the data ex-
changed between virtual machines (typically server and client) communicating with each
other through an inter-virtual machine communication channel. The attack was demon-
strated in Subsection 4.4.3. Therefore, we classify the current inter-virtual machine com-
munication solution as insecure.

In this subsection, we provide a detailed explanation of how we can prevent an insider
from exploiting the identified vulnerability. Hence, we classify our approach to be a se-
cure inter-virtual machine communication solution. The prevention mechanism we propose
requires changes to the Linux kernel and Xen’s memory management.

We first need to map the memory virtualization concepts used in Xen to the generic
memory virtualization approach we introduced in Subsection 5.1.2. In Xen, a physical
address is known as a machine address (maddr) which can also be referred to as a machine

frame number (mfn). For hardware virtual machines (HVM), we have guest machine frame

number (gmfn) and guest machine address (gmaddr). A guest machine frame number or
address (gmfn/gmaddr) is what a guest believes to be the real physical machine frame or
address. A HVM guest runs in auto-translated mode, so it has gmfn different from mfn. The
guest operating systems executing in hardware virtual machines use a virtual address space
as they normally do when operating directly on top of the hardware layer. The virtualization
layer handles the translation from gmfn to the physical memory (mfn) [5].

The Linux kernel uses a page frame number (PFN) to index either virtual (VPFN) or
physical (PPFN) memory pages [52]. Understanding these concepts is paramount to follow
the changes we have made to both the Linux kernel and Xen.

Shared Memory

The Xen hypervisor has a mechanism for sharing memory between virtual machines. This
mechanism defines that a memory page can be owned by at most one virtual machine at
any time. The mechanism offers the owning virtual machine means of forcing reclamation
of mappings from misbehaving virtual machines. Therefore, shared memory mappings are
classified as asynchronous and transitory [26].

A foreign mapping is when virtual machine A maps a memory page owned by virtual

88 Lightweight Mandatory Memory Access Control (LMMAC)

machine B. For a foreign mapping to be successful the requesting virtual machine must
present a valid grant reference to Xen. A grant reference is composed of the identity of the
virtual machine granting mapping permission and an index into that virtual machine’s grant

table.
A grant table’s entries are of form (grant, D, P, R, U). Each entry can be read as: virtual

machine D has permission to map memory page P into its own memory address space. Flags
R and U are for read-only mode and mapping currently in use, respectively.

Xen maintains a private active grant table (AGT) for each virtual machine with entries
of the same format as a virtual machine’s grant table. Every time a grant reference (V, Idx)
is passed to Xen, it searches for index Idx in the AGT for matches. If no match is found, Xen
retrieves the necessary entry from the virtual machine’s grant table, performs the required
checks (e.g., if the requesting virtual machine matches D in the entry), and if all the checks
are successful Xen copies the entry into the virtual machine’s AGT and sets the in use (U)
flag.

From a practical perspective, when liberal and vidigueira (Figure 5.5) establish an inter-
virtual machine communication channel they go through the stages that follow. Assume
liberal is granting mapping permission to vidigueira.

1. The gntalloc device in liberal allocates a page (P) of kernel memory.

2. An entry is added to liberal’s grant table that says vidigueira can map memory page
P. No hypercall involved at this stage, unless the grant table needs to allocate more
space for its entries.

3. The generated grant reference is sent to vidigueira.

4. Virtual machine vidigueira can now map page P. The mapping can either be done
directly into kernel memory, or through the gntdev device so the page can be mapped
into the address space of a user application executing in vidigueira. At this stage Xen
performs permission checks.

5. The two virtual machines can communicate when an user application executing in
vidigueira maps the shared page.

As an example of using this mapping process. In our test environment, the vchan-node2

application executing in liberal performs a system call to the gntalloc device to allocate a
memory page to share with vidigueira. The vchan-node2 process executes as a user appli-
cation in ring 3, so it needs to request a system call so the processor transitions to ring 0

5.3 Mandatory Memory Access Control: Single Page 89

and executes the gntalloc device (Step 1). The execution then follows the remainder steps
until vidigueira’s vchan-node2 process maps the same page. After this final step, the virtual
machines can start using the shared memory page to communicate.

Changes: Linux Kernel

From Linux 3.0 onwards support exists for the native kernel to run as management virtual
machine (domain-0). This support includes the drivers required in the management of grant

tables. Grant tables are used in Xen as a method to allow memory sharing between virtual
machines as we just discussed.

The establishment of a shared memory page for communication does not include a step
that communicates which memory page is being used by which user application. The only
strategy to obtain a list of shared memory pages with virtual machine X would be to traverse
the active grant table page Xen maintains for virtual machine X. However, this table does
not contain information about which application is using the memory page. Therefore,
we decided to introduce a minor change to the sharing memory process so we could know
which memory page was being used by the inter-virtual machine communication application
vchan-node2.

The objective of our changes to the Linux kernel is to share with Xen which memory
page is being used to establish an inter-virtual machine communication channel between two
virtual machines. We introduced a call to a hypercall in the gntalloc device with the purpose
of reporting to Xen the machine frame number (mfn) used by the inter-virtual machine
communication channel, in our case between liberal and vidigueira.

Listing 5.1 Changes to the gntalloc device.

1
2 s t a t i c i n t a d d _ g r e f s (s t r u c t i o c t l _ g n t a l l o c _ a l l o c _ g r e f *op ,
3 u i n t 3 2 _ t * g r e f _ i d s ,
4 s t r u c t g n t a l l o c _ f i l e _ p r i v a t e _ d a t a * p r i v)
5 {
6 . . .
7 + unsigned long mfn ;
8 . . .
9 f o r (i = 0 ; i < op−>c o u n t ; i ++) {

10 . . .
11

90 Lightweight Mandatory Memory Access Control (LMMAC)

12 +mfn = pfn_ to_mfn (p a g e _ t o _ p f n (g r e f −>page)) ;
13 }
14
15 +# d e f i n e XENMEM_flag_pages 27
16 + i = HYPERVISOR_memory_op (XENMEM_flag_pages , &mfn) ;
17 . . .
18 }

Listing 5.1 illustrates our changes to the gntalloc device which is part of the Linux Ker-
nel. These changes store the machine frame number (mfn) in a variable and then use a
memory operation hypercall to communicate the value of mfn to the virtual machine moni-
tor (Xen). This value is not the actual machine frame number, it is the guest machine frame
number (gmfn) of the memory page used to establish the inter-virtual machine channel.
There is a local definition of XENMEM_flag_pages to avoid rebuilding the whole Linux
kernel. At this stage, we need to modify Xen to process this hypercall and accept the infor-
mation passed on from the operating system’s kernel.

Changes: Xen

For our solution to properly protect the memory page used in an inter-virtual machine com-
munication channel from unauthorized accesses, it is necessary to perform mandatory mem-
ory access control in the virtual machine monitor. To implement mandatory memory access
control in Xen we added an hypercall to process the guest machine frame number sent from
the Linux kernel, used an access control flag for that specific page, and enforced the access
control when domain-0 requested access to map the memory page.

Memory management in Xen uses a data structure named page_info to keep track of
how a memory frame is being used by the hypervisor. This data structure represents a single
memory page, typically 4kb in a x86 architecture. For example, the count_info field serves
as reference count and there are multiple flags to use with it such as PGC_page_table, which
is set when the page is being used as a page table.

Listing 5.2 Changes to Xen’s memory management.

1
2 xen / i n c l u d e / p u b l i c / memory . h
3
4 # d e f i n e XENMEM_flag_pages 27
5

5.3 Mandatory Memory Access Control: Single Page 91

6 xen / i n c l u d e / asm−x86 /mm. h
7
8 # d e f i n e _PGC_inv_dom0 P G _ s h i f t (1 0)
9 # d e f i n e PGC_inv_dom0 PG_mask (1 , 10)

10
11 xen / common / memory . c
12
13 long do_memory_op (unsigned long cmd , XEN_GUEST_HANDLE(void)

a r g)
14 {
15 . . .
16 case XENMEM_flag_pages : {
17 unsigned i n t gmfn , mfn ;
18 s t r u c t p a g e _ i n f o * page = NULL;
19 s t r u c t domain *md = NULL;
20 p2m_type_t p2mt ;
21 u i n t 6 4 _ t s t a r t , end ;
22
23 md = c u r r e n t −>domain ;
24
25 i f (md != NULL)
26 g d p r i n t k (XENLOG_INFO,
27 "−− f l a g _ p a g e s : %d %d \ n " , op , md−>

domain_id) ;
28
29 i f (copy_ f rom_gues t (&gmfn , arg , 1)) {
30 g d p r i n t k (XENLOG_INFO, "−− f l a g _ p a g e s :

copy_ f ro m_gues t f a i l e d . \ n ") ;
31 re turn −ENOSYS;
32 }
33
34 s t a r t = t s c _ t i c k s 2 n s ((u i n t 6 4 _ t)NOW()) ;
35
36 mfn = mfn_x (g e t _ g f n (md , gmfn , &p2mt)) ;
37 g d p r i n t k (XENLOG_INFO, "−− f l a g _ p a g e s : c o n v e r s i o n

92 Lightweight Mandatory Memory Access Control (LMMAC)

gmfn : 0 x%08x mfn : 0 x%08x \ n " , gmfn , mfn) ;
38
39 page = mfn_to_page (mfn) ;
40
41 i f (page != NULL) {
42 g d p r i n t k (XENLOG_INFO, "−− f l a g _ p a g e s :

c o u n t _ i n f o : 0 x%16 l x \ n " , page−>c o u n t _ i n f o) ;
43
44 page−>c o u n t _ i n f o | = PGC_inv_dom0 ;
45
46 g d p r i n t k (XENLOG_INFO, "−− f l a g _ p a g e s :

c o u n t _ i n f o : 0 x%16 l x \ n " , page−>c o u n t _ i n f o) ;
47 }
48
49 end = t s c _ t i c k s 2 n s ((u i n t 6 4 _ t)NOW()) ;
50
51 g d p r i n t k (XENLOG_INFO, "−− f l a g _ p a g e s : t ime e l a p s e d :%

l u ns \ n " , end − s t a r t) ;
52
53 re turn 0 ;
54 }
55 . . .
56 }
57
58 xen / a r c h / x86 /mm. c
59
60 i n t
61 g e t _ p a g e _ f r o m _ l 1 e (
62 l 1 _ p g e n t r y _ t l1e , s t r u c t domain * l1e_owner , s t r u c t

domain * pg_owner)
63 {
64 . . .
65 s t r u c t domain * r e a l _ p g _ o w n e r ;
66 . . .
67 i f (m f n _ v a l i d (mfn) && page−>c o u n t _ i n f o & PGC_inv_dom0) {

5.3 Mandatory Memory Access Control: Single Page 93

68 r e a l _ p g _ o w n e r = p a g e _ g e t _ o w n e r _ a n d _ r e f e r e n c e (page) ;
69
70 i f (r ea l_pg_owner −>domain_id != 0 && c u r r −>domain−>

domain_id == 0) {
71 MEM_LOG(" Access from (%u) t o map %08 l x from

(%u) r e j e c t e d \ n " ,
72 c u r r −>domain−>

domain_id , mfn ,
r ea l_pg_owner −>
domain_id) ;

73 re turn −EPERM;
74 }
75 }
76 . . .
77 }

Listing 5.2 displays the changes made to the memory management code of the Xen vir-
tual machine monitor. The first couple of alterations were the definition of a new hypercall
number to match the XENMEM_flag_pages used in the Linux kernel, and the definition of
a new access control flag for memory pages (PGC_inv_dom0).

The hypercall number XENMEM_flag_pages is added as a new entry to the function
(do_memory_op) that processes memory related hypercalls. The code we added performs
the following steps to enable the access control flag (PGC_inv_dom0) to the correct memory
page.

1. Copy the guest machine frame number (gmfn) into a local variable (gmfn), i.e., resi-
dent in Xen’s memory space (line 29).

2. Obtain the machine frame number for the gmfn and store it in local variable mfn (line
36).

3. Use the machine frame number to get the page_info data structure for the memory
page. A pointer to the data structure is kept in variable page (line 39).

4. Use the memory page’s data structure to enable the PGC_inv_dom0 access control
flag on variable count_info (line 44).

94 Lightweight Mandatory Memory Access Control (LMMAC)

The remainder of the code we added enforces the mandatory access control to the mem-
ory page used in the inter-virtual machine communication channel. The steps that follow
implement our access control policy.

1. Verify if the machine frame number (mfn) is valid and check if the access control flag
PGC_inv_dom0 is enabled (line 67).

2. If the verifications in the previous step are successful, retrieve the data structure with
the details of the domain that owns the memory page and store the data structure in
real_page_owner (line 68).

3. Access is denied with operation not permitted (EPERM) if domain-0 is performing
the access request but the page is not owned by domain-0 (line 70-74).

Putting It All Together: Secure Inter-VM Communication

We defined a new access control flag to use in memory pages we wish to isolate from
domain-0. Using the information passed through the Linux kernel we can set that flag in
the correct memory page. With that memory page’s flag set we can later enforce an access
control policy in Xen, preventing domain-0 from mapping a protected memory page. Access
control has to be performed at the hypervisor level because the hypervisor is responsible for
executing security sensitive operations.

This level of access to security sensitive information means that the hypervisor’s code
needs to be verified using trustworthy computing mechanisms. This verification can later be
used to reported back to cloud consumers in order to assure them that the virtual machine
monitor is isolating their data from potential insider threats. A cloud architecture discussing
in detail how our approach can be used is presented in Chapter 6.

Figure 5.6 illustrates the steps involved in using the hypervisor to enforce memory access
control policies. The steps are as follow. First, the Linux kernel with support for Xen
(including our modifications) performs a hypercall informing Xen of which memory page
is used to set up the inter-virtual machine communication channel (1). Second, Xen modifies
the flags field for the referenced memory page and restricts access to domain-0, which in
our scenario is the attacker (2). Finally, when domain-0 tries to map the memory page used
for inter-virtual machine communication (3), Xen checks the flags for that memory page
and since the restriction is in place it rejects domain-0 access to it (4). This configuration
assures secure inter-virtual machine communication.

5.4 Lightweight Mandatory Memory Access Control 95

Hardware

Xen Hypervisor

Management VM
attack code

libvmi

libxenctrl

privcmd

User
Kernel

Target CVM (server)

vchan app

libxenvchan

xen_gntalloc

User
Kernel

1

3

24

Fig. 5.6 Enforcing access control.

5.4 Lightweight Mandatory Memory Access Control

The previous section demonstrates the feasibility of using a memory page access control
flag to enforce mandatory memory access control to a single memory page. Since we can
guarantee proper isolation for a memory page, which is the basic unit in paging memory
management solutions. We can expand this approach and apply it to the memory space
assigned to a virtual machine.

In this section, we introduce the details of how a virtual machine monitor’s memory
management can use mandatory memory access control to enforce the principle of least
privilege. Enforcing this principle prevents insider threats when considering memory con-
fidentiality and integrity vulnerabilities. A widely accepted definition of the principle of
least privilege defines it has a subject being given only the privileges that it needs in order
to complete its task [11].

The design weakness we demonstrated in Chapter 4 allows a malicious cloud admin-
istrator to obtain access to consumers’ security sensitive data such as cryptographic keys.
This isolation problem spawns from adopting a very permissive memory access policy for
the software managing (e.g., Xen’s domain-0) a system’s resources. An example of this per-
missive model is granting full access to the memory space of a consumer’s virtual machine.

A solution to prevent this type of security issue needs to use the virtual machine monitor
as the software layer responsible for enforcing the principle of least privilege when the
management software tries to access resources assigned to consumers’ virtual machines

96 Lightweight Mandatory Memory Access Control (LMMAC)

[74]. To evaluate this solution we implemented a prototype using the Xen hypervisor. In
what follows, we explain the details of our implementation.

Listing 5.3 Xen with LMMAC.

1
2 xen / t o o l s / l i b x l / x l . h
3
4 i n t main_elmmac (i n t argc , char ** a rgv) ;
5 i n t main_dlmmac (i n t argc , char ** a rgv) ;
6
7 xen / t o o l s / l i b x l / l i b x l . h
8
9 i n t l i bx l_domain_ lmmac (l i b x l _ c t x * c tx , u i n t 3 2 _ t domid , i n t

e n a b l e) ;
10
11 xen / t o o l s / l i b x c / x e n c t r l . h
12
13 i n t xc_domain_lmmac (x c _ i n t e r f a c e *xch , u i n t 3 2 _ t domid , i n t

e n a b l e) ;
14
15 xen / t o o l s / l i b x l / x l _ c m d t a b l e . c
16
17 s t r u c t cmd_spec cmd_ tab l e [] = {
18 . . .
19 { " elmmac " ,
20 &main_elmmac , 0 , 1 ,
21 " Enab le LMMAC" ,
22 "<Domain>" ,
23 } ,
24 { " dlmmac " ,
25 &main_dlmmac , 0 , 1 ,
26 " D i s a b l e LMMAC" ,
27 "<Domain>" ,
28 } ,
29 }
30

5.4 Lightweight Mandatory Memory Access Control 97

31 xen / t o o l s / l i b x l / x l_cmdimpl . c
32
33 i n t main_elmmac (i n t argc , char ** a rgv)
34 {
35 i n t o p t ;
36
37 i f ((o p t = d e f _ g e t o p t (a rgc , argv , " " , " elmmac " , 1)) !=

−1)
38 re turn o p t ;
39
40 f ind_doma in (a rgv [o p t i n d]) ;
41 l ibx l_domain_ lmmac (c tx , domid , 1) ;
42
43 re turn 0 ;
44 }
45
46 i n t main_dlmmac (i n t argc , char ** a rgv)
47 {
48 i n t o p t ;
49
50 i f ((o p t = d e f _ g e t o p t (a rgc , argv , " " , " dlmmac " , 1)) !=

−1)
51 re turn o p t ;
52
53 f ind_doma in (a rgv [o p t i n d]) ;
54 l ibx l_domain_ lmmac (c tx , domid , 0) ;
55
56 re turn 0 ;
57 }
58
59 xen / t o o l s / l i b x c / xc_domain . c
60
61 i n t xc_domain_lmmac (x c _ i n t e r f a c e *xch , u i n t 3 2 _ t domid , i n t

e n a b l e) {
62 i f (e n a b l e) re turn do_memory_op (xch , XENMEM_elmmac , &

98 Lightweight Mandatory Memory Access Control (LMMAC)

domid , s i z e o f (domid)) ;
63 e l s e re turn do_memory_op (xch , XENMEM_dlmmac , &domid ,

s i z e o f (domid)) ;
64 }
65
66 xen / t o o l s / l i b x l / l i b x l . c
67
68 i n t l i bx l_domain_ lmmac (l i b x l _ c t x * c tx , u i n t 3 2 _ t domid , i n t

e n a b l e) {
69 re turn xc_domain_lmmac (c tx −>xch , domid , e n a b l e) ;
70 }
71
72 xen / i n c l u d e / p u b l i c / memory . h
73
74 # d e f i n e XENMEM_elmmac 28
75 # d e f i n e XENMEM_dlmmac 29
76
77 xen / i n c l u d e / asm−x86 /mm. h
78
79 # d e f i n e _PGC_inv_dom0 P G _ s h i f t (1 0)
80 # d e f i n e PGC_inv_dom0 PG_mask (1 , 10)
81
82 xen / common / memory . c
83
84 long do_memory_op (unsigned long cmd , XEN_GUEST_HANDLE(void)

a r g)
85 {
86 . . .
87 case XENMEM_dlmmac : {
88 . . .
89 md = r c u _ l o c k _ d o m a i n _ b y _ i d (domid) ;
90
91 s p i n _ l o c k (&md−>p a g e _ a l l o c _ l o c k) ;
92
93 p a g e _ l i s t _ f o r _ e a c h (page , &md−> p a g e _ l i s t) {

5.4 Lightweight Mandatory Memory Access Control 99

94 page−>c o u n t _ i n f o &= PGC_inv_dom0 ;
95 }
96
97 s p i n _ u n l o c k (&md−>p a g e _ a l l o c _ l o c k) ;
98
99 rcu_un lock_domain (md) ;

100
101 re turn 0 ;
102 }
103 case XENMEM_elmmac : {
104 . . .
105 md = r c u _ l o c k _ d o m a i n _ b y _ i d (domid) ;
106
107 s p i n _ l o c k (&md−>p a g e _ a l l o c _ l o c k) ;
108
109 p a g e _ l i s t _ f o r _ e a c h (page , &md−> p a g e _ l i s t) {
110
111 i f (! ((page−>c o u n t _ i n f o &

PGC_count_mask) > 1 && (page−>u .
i n u s e . t y p e _ i n f o & PGT_count_mask)
== 0))

112 page−>c o u n t _ i n f o | = PGC_inv_dom0 ;
113 }
114
115 s p i n _ u n l o c k (&md−>p a g e _ a l l o c _ l o c k) ;
116
117 rcu_un lock_domain (md) ;
118
119 re turn 0 ;
120 }
121 . . .
122 }
123
124 xen / a r c h / x86 /mm. c
125

100 Lightweight Mandatory Memory Access Control (LMMAC)

126 i n t
127 g e t _ p a g e _ f r o m _ l 1 e (
128 l 1 _ p g e n t r y _ t l1e , s t r u c t domain * l1e_owner , s t r u c t

domain * pg_owner)
129 {
130 . . .
131 i f (m f n _ v a l i d (mfn) && page−>c o u n t _ i n f o & PGC_inv_dom0) {
132 i f (pg_owner−>domain_id != 0 && c u r r −>domain−>

domain_id == 0)
133 re turn −EPERM;
134 }
135 . . .
136 }

Listing 5.3 contains code excerpts of the additions made to Xen’s management tool (xl)

and Xen’s memory management.

The changes to Xen’s management tool (xl) consisted in the addition of two extra com-
mand line options that can be issued to enable (elmmac) or disable (dlmmac) LMMAC on
the specified virtual machine.

The commands issued through Xen’s management tool are handled by two new hyper-
calls added to the memory management operations section of Xen. The enable LMMAC
option protects the memory pages for the virtual machine with the provided ID. This option
does not enable the access control flag if the memory page is already in use with a special
purpose such as a page table page. The disable LMMAC option simply clears the access
control flag bit for all the memory pages assigned to a virtual machine.

Our changes to Xen’s memory management show how it is possible to enforce the prin-
ciple of least privilege in a Xen-powered cloud environment. We focused our study on
the use of hardware virtual machine (HVM) guests. No tests for paravirtualized virtual
machines were performed. This type of virtual machine should become less relevant with
hardware-assisted virtualization. Our implementation is restricted to changes to the memory
management of a virtual machine monitor (i.e., Xen hypervisor).

The first step to assure that Xen is respecting the principle of least privilege is to iden-
tify which memory accesses from domain-0 into a guest virtual machine memory space are
critical to guarantee the virtual machine’s correct operation. These memory accesses de-
pend on the type of guest virtual machine as follows. First, domain-0 maps a guest virtual

5.4 Lightweight Mandatory Memory Access Control 101

Fig. 5.7 Xen with LMMAC.

machine’s memory to load the Xen virtual firmware, which is a virtual BIOS used to assure
hardware virtual machines possess the expected standard start-up instructions. A second
mapping takes place when Xen emulates the hardware used in hardware virtual machines
that operate with a special purpose application executing in domain-0.

The changes to Xen consisted in using the list of memory pages allocated to a con-
sumer’s virtual machine and the flags associated to each memory page to distinguish be-
tween free (the virtual machine can use the memory page) and special (used by domain-0
for the purposes mentioned in the previous paragraph) memory pages (line 111). Traversing
the page list contained in the main domain data structure, makes it possible to achieve this
objective. While traversing the list we check if the flags of a memory page indicate it is
mapped to domain-0 for special purposes, if it is the code does nothing, else it enables our
memory access control security flag. Iterating through the complete list of memory pages
assigned to a virtual machine guarantees that all but the special purpose memory pages have
the restricted memory access flag active. Therefore, domain-0 will only have access to the
special purpose memory pages and be denied access for request to access any other memory
pages.

After implementing this lightweight mandatory memory access control mechanism we
retried the previously successful attacks against a Xen-powered cloud server. Figure 5.7
shows it is no longer possible to perform the attack demonstrated in Section 4.4. We enabled
LMMAC for the virtual machine with hostname liberal before trying to run the attack code.

The results show that our approach can enforce the principle of least privilege and pro-
tect data from insider threats. The attack code used before was unable to compromise any

102 Lightweight Mandatory Memory Access Control (LMMAC)

consumer data. Furthermore, the changes made to the virtualization layer prevent any kind
of memory introspection to be performed on virtual machines.

This implementation is a generalisation of what was demonstrated with secure inter-
virtual machine communication. The key point we try to demonstrate with this prototype is
that it is adequate to use an access control memory page flag to enforce a mandatory memory
access control policy that enforces the principle of least privilege to memory accesses. It is
important to clarify that this solution applies to a single cloud server, which means that to
secure a cloud ecosystem an architecture that builds on this secure foundation needs to be
devised.

5.4.1 Security Analysis

This security analysis focuses on how a lightweight mandatory memory access control pol-
icy guarantees confidentiality and integrity to the memory space assigned to a consumer’s
virtual machine. Our proposal aims at preventing unauthorised accesses to physical RAM,
we do not consider secondary storage security problems such as access to consumers’ stored
unencrypted data [73].

The objective of this analysis is to show how a virtual machine monitor with support for
a mechanism such as lightweight mandatory memory access control (LMMAC) can prevent
insider threats for memory confidentiality and integrity by guaranteeing proper isolation
between virtual machines and management software. We do not consider any availability
related issues. The assumptions for this analysis take into account that even if a virtual ma-
chine monitor implements our prevention mechanism it still needs to use hardware-assisted
remote attestation to prevent attackers from compromising its system integrity. This con-
trasts with the adversary model used for Chapter 3 and Chapter 4.

For our analysis, we consider the set of assumptions that follows.

• Assumption 1: an attacker cannot compromise a virtual machine monitor’s system
integrity.

• Assumption 2: No hardware attacks are considered.

An insider threat cannot compromise data confidentiality if the virtual machine monitor
restricts access to the memory pages assigned to a consumer’s virtual machine. A VMM
using a prevention mechanism like our lightweight mandatory memory access control ap-
proach prevents management software from mapping memory pages that might contain se-
curity sensitive data. The paragraphs that follow compare our prevention mechanism with

5.4 Lightweight Mandatory Memory Access Control 103

two previous solutions that assure data confidentiality for consumers’ security sensitive data
while it is stored in the memory space of a virtual machine [50, 76].

The first approach we consider guarantees data confidentiality of memory pages through
the use of cryptographic primitives. It encrypts the memory pages in the virtual machine
monitor before access is granted to any management software such as Xen’s domain-0 [50].
When compared to our prevention mechanism, this approach has a couple of limitations.
First, the use of cryptography means the handling of encryption and decryption of memory
pages introduces some processing overhead and key management challenges. Second, the
fact that pages are encrypted before management software can have access to it invalidates
the implementation of virtual machine monitoring solutions.

The second approach is very similar to ours, but it works using a set of policies which in
turn insert hooks in the virtual machine monitor’s code. This solution is more dynamic than
ours [76]. However, it requires loading a separate module and it is not very clear how such
an approach would behave when trustworthy computing is used to offer remote attestation to
consumers. One of the requirements of an integrity-protected virtual machine monitor is the
use of a dynamic root of trust, as provided with the latest trustworthy computing technology
[101]. In this scenario, our solution simply adds a few lines of code to virtualization layer
not interfering with the use of a dynamic root of trust to boot the virtual machine monitor in
a trusted fashion.

Not permitting management software to map any of the security sensitive memory pages
of a virtual machine assures that our solution guarantees data integrity for consumers’ data
executing in their virtual machines. Previous work uses encryption to protect a virtual ma-
chine’s memory pages from unwanted accesses [50]. However, the management software
still gets access to the encrypted pages to perform save, restore and migrate operations. At
this stage, the attacker has the memory pages in his possession, so he can keep the encrypted
memory pages for later cryptanalysis. In our approach, the management software does not
have access to virtual machines’ memory pages.

Assuring these security properties creates a strong foundation to build secure cloud com-
puting architectures that can offer trustworthy services to cloud consumers. The chapter that
follows presents a secure cloud computing architecture that takes advantage of these prop-
erties.

104 Lightweight Mandatory Memory Access Control (LMMAC)

Fig. 5.8 The memory hierarchy [13].

5.4.2 Memory Performance

Since our changes affect Xen’s memory management mechanisms, we decided to perform
some memory performance measurements to evaluate if there is an impact on the memory
performance of virtual machines. We chose to measure the latency of a memory read op-
eration together with the throughput for a few different memory operations. Latency is the
time it takes to complete a single memory operation whereas throughput gives the number
of operations the system can complete per unit time [13]. These two measurements give us
an idea of the performance impact of our prevention mechanism.

Memory Hierarchy

Memory hierarchy refers to the different levels of memory storage organised according
to the time a central processing unit requires to access each different level. The memory
hierarchy diagram is included in Figure 5.8. This diagram lists the different memory storage
units from the smallest, faster, and costlier to the lager, slower, and cheaper ones.

For our discussion, the relevant memory types are the L1, L2, and L3 caches plus main
memory. Two storage technologies are used for these types of memory. Cache memories
use the fast and expensive Static Random-Access Memory (SRAM) which can be access
in a few CPU clock cycles. Whereas main memory uses a slower and cheaper technology
known as Dynamic RAM (DRAM) which can be accessed in tens to hundreds clock cycles
[13].

The measurements presented in this subsection where performed in a virtual machine

5.4 Lightweight Mandatory Memory Access Control 105

0	

5	

10	

15	

20	

25	

0.
00
04
9	

0.
00
19
5	

0.
00
39
1	

0.
00
78
1	

0.
01
17
2	

0.
01
56
2	

0.
01
95
3	

0.
02
34
4	

0.
02
73
4	

0.
03
12
5	

0.
03
90
6	

0.
04
68
8	

0.
05
46
9	

0.
06
25
	

0.
07
81
2	

0.
09
37
5	

0.
10
93
8	

0.
12
5	

0.
15
62
5	

0.
18
75
	

0.
21
87
5	

0.
25
	

0.
31
25
	

0.
37
5	

0.
43
75
	

0.
5	

0.
62
5	

0.
75
	

0.
87
5	
 1	

1.
25
	

1.
5	

1.
75
	
 2	

2.
5	
 3	

3.
5	
 4	
 5	
 6	
 7	
 8	

M
em

or
y	

Re

ad
	
 L
at
en

cy
	
 (n

s)
	

Array	
 Size	
 (megabytes)	

No	
 Preven4on	

Preven4on	

Fig. 5.9 Memory latency.

with 32 kilobytes of L1 and L2 cache, 4 megabytes of L3 cache, and 1 gigabyte of main
memory.

Latency

To collect the latency of memory read operations we used the lat_mem_rd tool from the
LMBench benchmark suite for the Linux operating system [56]. The memory read bench-
mark requires a parameter specifying the maximum array size. The stride is automatically
established using the size in bytes of a pointer, i.e., if the system is 64 bits a pointer is 8
bytes which originates a stride of 64 (512/8) bytes. The stride can be changed if passed as a
parameter.

To measure memory latency the benchmark then uses the stride size to create a ring
of pointers to loop through one million times while measuring each read operation. This
process is repeated for multiple array sizes from 512 bytes until the maximum array size is
reached.

Figure 5.9 displays the latency results for memory read operations when our prevention
mechanism is enabled and when it is disabled. The graph presents the relationship between
memory latency in nanoseconds and multiple array sizes in percentages of a megabyte rang-
ing from 512 bytes to 8 megabytes. To populate this graph we collected measurements for

106 Lightweight Mandatory Memory Access Control (LMMAC)

Megabytes No Prevention Prevention
6 20.05 20.195
6.5 20.066 20.231
7 20.196 20.282
7.5 20.307 20.449
8 20.463 20.538

Table 5.1 Memory Latency.

array sizes from 512 bytes to a maximum of 8 megabytes. The maximum value was chosen
so it would exceed the capacity of the virtual machine’s cache memories. The stride value
was set to 128 bytes. This guarantees that read operations to main memory are measured as
well [56].

From the graph it is noticeable that the prevention mechanism has a small negative
impact in the memory latency of read operations. However, it is a negligible negative impact
when you consider the security benefits of making the virtualization layer secure by default
in terms of memory isolation. It is also evident when the cache memories have an impact
on read performance and then main memory is required. The lowest latency values are due
to L1 cache, followed by L2 cache, then L3 cache, and finally the value rise to close to 20
nanoseconds when main memory is required.

Since the different is very small we include table 5.1 to help with interpreting the results.
The values in the table are in nanoseconds and correspond to the latency of a memory read
operation of the array size in the megabytes column. The table makes it evident that there is
a small negative performance impact when the prevention mechanism is enabled. We chose
to display array size values greater than the cache because the difference is more evident
when main memory is in use.

Throughput

Throughput performance measurements were obtained with the memory bandwidth tool
part of the LMBench benchmark suite [56]. This tool requires two parameters defining the
memory size and the operation to be tested. The size parameter can be specified in kilobytes
(ending with k, e.g., 8k) or megabytes (ending with m, e.g., 1m). The operation relevant for
our tests is the memory read operation which is selected using rd as a second parameter.

Measuring the throughput of memory read operations is done by allocating the amount
of memory specified as a parameter, zeroing it, and then recording the reading times for
that memory as a series of integer loads and adds. For each four byte integer a load and

5.4 Lightweight Mandatory Memory Access Control 107

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

80000	

90000	

100000	

1K
B	

2K
B	

4K
B	

8K
B	

16
KB
	

32
KB
	

64
KB
	

12
8K
B	

25
6K
B	

51
2K
B	

1M
B	

2M
B	

4M
B	

8M
B	

16
MB
	

Th
ro
ug
hp

ut
	
 (M

B/
s)
	

Memory	
 block	
 size	

Preven4on	

No	
 Preven4on	

Fig. 5.10 Memory Throughput.

add operations are performed. The add operation is assumed to take one clock cycle and
therefore it does not influence the results [56].

The graph in Figure 5.10 illustrates the results for memory read throughput with multiple
memory test blocks. Each memory block was tested a thousand times. The difference in
throughput when our prevention mechanism is negligible as expected because the latency
overhead was not considerable. It is not easy to notice but the red line correspondent to
throughput values when our prevention mechanism is enabled is visible below the black line.
In this graph it is also noticeable the influence of cache memories for smaller memory test
block. The throughput stabilizes once frequent accesses to main memory are required. Table
5.2 contains the values used to plot the graph to provide the actual numerical difference.

Megabytes No Prevention Prevention
1 36440.91178 36352.41286
2 35954.24325 35799.09897
4 20834.06299 20734.16386
8 14550.42808 14524.38718
16 14506.69734 14468.06397

Table 5.2 Memory Throughput.

108 Lightweight Mandatory Memory Access Control (LMMAC)

5.5 Related Approaches

This section presents other research approaches that can be alternatives to our prevention
mechanism. These solutions can also assure data confidentiality and integrity against insider
threats but have distinct limitations from ours.

The first solution is a mechanism to guarantee secure virtual machine execution in an
untrusted cloud environment. This mechanism encrypts a virtual machine’s memory pages
before handing them over to the management software. This assure confidentiality is kept
even in the presence of a malicious insider with control over such management software.
However, this solution is too restrictive because it cannot implement cloud service that re-
quire access to cloud consumer’s data.

Cloudvisor is a lightweight virtual machine monitor that is placed between the hardware
and the virtual machine monitor. The aim of this location is so that CloudVisor can intercept
and manage every resource usage for VMM and VMs. Granting CloudVisor a level of
privileges higher that the virtual machine monitor and virtual machines allows it to enforce
isolation to memory resources. The main limitation of this approach is negative performance
impacts as high as 22%.

A completely different alternative is propose in NoHype [44]. This two approach sug-
gests the removal of the virtualization layer and the use of hardware-assisted virtualization
technology to guarantee the execution and isolation of virtual machines. A limitation of this
solution is the higher costs due to the inability of assigning fine grain units (e.g.. sell a 1/4
of a core) to virtual machines. However, reducing the trusted computing base to this order
of magnitude would be ideal.

Compared to this approaches our solution can be classified as more flexible than the first
two because it allows the definition of cloud architectures that can guarantee data confiden-
tiality and integrity while offering services that can access unencrypted consumer’s data.
When compared to NoHype it would simply be a question of the level of security required
by the consumers using the infrastructure. If costs are not a problem a server using NoHype
is a very good solution assuming NoHype is secure against the kind of attack we tested in
our work.

5.6 Limitations

The prevention mechanism we proposed in this chapter has two main limitations. One
limitation is in the prototype we implemented while the second one is in the architecture we

5.6 Limitations 109

used to implement that prototype.
Our implementation has limitations because it does not allow the execution of virtual

machine management operations that require access to memory pages. This happens be-
cause the virtual machine monitor is not granting management software access to any mem-
ory pages assigned to a virtual machine. We implemented the disable LMMAC option to
clear the memory page flags but some operations do not resume proper execution even after
we use the disable option. However, the implementation achieves the main objective we
had for it, it demonstrates that a mandatory access control at the virtual machine monitor
level can prevent insider threats and guarantee memory confidentiality and integrity. This
constrain is limited to our implementation, it does not mean a commercial solution using
our approach would be unable to circumvent this problem.

The second limitation is in the architecture we used which derives from the design of
the Xen hypervisor. This architecture contemplates a monolithic virtual machine monitor
which composes the virtualulization layer. However, the approach followed in monolithic
virtual machine monitors has limitations when compared with microhypervisors such as the
NOVA hypervisor [90].

The major limitation of a monolithic approach when compared to microhypervisors is
that it has a considerably larger trusted computing base [90]. The Department of Defense
(DoD) defines a trusted computing base to be “the totality of protection mechanisms within
a computer system, including hardware, software and firmware, the combination of which
is responsible for enforcing a security policy” [19]. The architecture of microhypervisors
is ideal to take advantage of the root-mode protection rings introduced with virtualization
extensions such as Intel VT-x and AMD-V. These protection rings were discussed in Sub-
section 5.2.1. This means a microhypervisor can run security critical code in ring 0 in
root-mode and de-privilege other functionalities to ring 3 still in root-mode. This approach
creates a smaller trusted computing base which means a lower probability of it having ex-
ploitable software vulnerabilities [58].

Chapter 6

Trustworthy Cloud Computing
Architecture (TCCA)

This chapter introduces a trustworthy cloud computing architecture that uses the security
properties offered by a virtual machine monitor that enforces the principle of least privilege
such as the one we suggest in Chapter 5. These security properties are a strong building
block to provide trustworthy cloud computing services to cloud consumers.

For a cloud computing service to be considered trustworthy it needs to report an integrity
measurement to an enquiring cloud consumer. A cloud consumer can use the integrity mea-
surement to decide if it trusts the service. We define this security property as transparency.

Transparency is a requirement that a remote untrusted system presents integrity mea-
surements to consumers through the use of trustworthy mechanisms. These measurements
allow a cloud consumer to verify the system integrity and/or trustworthiness of the remote
system. This chapter explains how we can use a trustworthy virtual machine monitor and
trusted computing technology to build a trustworthy cloud computing architecture.

The remainder of this chapter is organised as follows. First, we introduce the security
critical software components that compose a cloud computing server. Second, the architec-
ture requirements to build a trustworthy cloud computing ecosystem are described in detail.
Finally, we discuss how these components and mechanisms come together to create a trusted
virtualization environment and give an example scenario where this trusted environment is
used to offer trustworthy cloud management operations.

112 Trustworthy Cloud Computing Architecture (TCCA)

Hardware

Virtual Machine Monitor

Privileged
Operations

Privileged Operations VMManagement VM

T Trusted Computing Base

Management
Software

Fig. 6.1 Cloud server TCB components.

6.1 Cloud Server Components

The components of a cloud server differ from traditional approaches and each component
is responsible for distinct security related tasks. The virtual machine monitor, as previously
discussed, is the virtualization layer which makes it possible for multiple virtual machines
to execute and share resources on the same physical server.

In our architecture, in addition to those tasks, a virtual machine monitor is also the
policy decision and enforcement point for memory access. This is a critical difference in
terms of security because in the past the management virtual machine had access to the
whole memory space assigned to a consumer’s virtual machine. Although there are special
cases where consumer virtual machines can have direct access to hardware pass through
solutions, the management virtual machine is usually responsible for supplying hardware
drivers, virtual storage, and network access.

Current cloud architectures use the management virtual machine for managing and mon-
itoring virtual machines, which opens an easy and direct attack vector for malicious insiders
as demonstrated in Chapter 4. In the architecture we propose in this chapter, however,
the privileges of the management virtual machine were reviewed, and the operations that
allowed attacks on consumer’s data were moved to an isolated special-purpose virtual ma-
chine. This isolation implies that the virtual machine monitor must be compromised for an
attacker to obtain access to the whole memory range.

The privileged operations virtual machine, is the special-purpose virtual machine in
charge of performing the security sensitive operations on consumer’s data, e.g., launching
and migrating a virtual machine. These operations are very sensitive because they involve

6.1 Cloud Server Components 113

Fig. 6.2 Trustworthy Cloud Architecture.

accessing the whole memory space of a consumer’s virtual machine. These virtual machines
can have a reduced trusted computing base if they use solutions such as unikernels, e.g.,
Mirage OS and OSv [46, 53]. These kernels were developed to permit the execution of a
single application on top of the virtual machine monitor, reducing the trusted computing.
The last component is the consumer virtual machine, which can be zero or more depending
on the number of requests.

The major difference from past approaches is the dumbing down of the management
virtual machine by reducing its privileged operations. This alteration facilitates a more
appropriate virtual machine isolation, which is important to assure better overall security.
The management virtual machine behaves more like a terminal for the administrator, the
operations will then be performed in a different virtual machine with enough privileges to
process the request whilst keeping security sensitive information isolated.

This redesign does not offer holistic protection from insider threats because it is still
possible for an administrator to originate denial of service (DoS) attacks trying to prevent
required administration tasks such as stopping a virtual machine from launching. However,
it is an improvement when compared with current solutions.

The current memory access model for the virtualization layer is excessively permissive
which does not comply with the security design principle of least privilege. Figure 6.1
shows how the components present in the trusted computing base of a single cloud server
are organised in the trustworthy cloud computing architecture we propose. The most critical
component is the virtual machine monitor, or hypervisor, which is where the security poli-
cies are enforced. Therefore, the virtual machine monitor is responsible for enforcing the
principle of least privilege to the memory access model and deny access to the management
software when it tries to obtain access to memory pages assigned to a consumer’s virtual

114 Trustworthy Cloud Computing Architecture (TCCA)

machine. This virtual machine monitor functionality was demonstrated as being achievable
in Chapter 5.

This cloud server architecture suggests the use of mandatory memory access control at
the virtual machine monitor layer, preventing the software managing the system resources
from accessing the memory space where consumer’s security sensitive data resides. One
of the advantages of this approach is that it is in accordance with the principle of isolation
in virtualization, which affirms that the hypervisor is responsible for isolating the multiple
virtual machines running on the same physical server [81]. Another advantage is the reduced
trusted computing base when compared to previous approaches. Our solution includes the
hypervisor, and the special- purpose software dedicated to performing privileged operations,
e.g., building a new virtual machine. This means it does not need to worry about the full
blown Linux Kernel used in traditional management virtual machines such as Xen’s domain-
0.

6.2 Architecture Requirements

Our proposed solution is a trustworthy architecture that supplies extra security mechanisms
to consumers, but also requires a few adjustments in terms of basic cloud functionality when
compared with current approaches. The architecture we propose in this chapter focuses on
the data execution problem as discussed in Chapter 3. The problem of protecting data-at-rest
is not address in our work.

Figure 6.2 provides a view of the trustworthy cloud architecture containing multiple
physical servers interconnected through a local network. A typical trustworthy server has
a few components, including the hypervisor, a management virtual machine, a privileged
operations virtual machine, and a variable number of consumer virtual machines. These
servers are required to support trustworthy computing such as Intel’s Trusted execution
Technology (TXT) [30].

Providing a trustworthy cloud architecture has some requirements. In what follows,
we present the set of requirements we consider paramount to build such an architecture.
These requirements were inspired by work the NIST has done addressing the issues of
BIOS integrity measurement [69]. We determined the key requirements for a consumer to
evaluate the trustworthiness of a cloud platform to be:

• A trusted authority responsible for generating golden integrity measurements for plat-
form software or software agents.

6.2 Architecture Requirements 115

• Components capable of generating and collecting integrity measurements.

• Tamper resistant or tamper evident storage for integrity measurements.

• A secure communication channel for transferring integrity measurements between
consumer and cloud provider.

• A protocol to establish the trustworthiness of software executing in a remote platform.

How to satisfy these requirements is explained in detail below. Our explanation elabo-
rates on how basic security principles are achieved in order to guarantee cloud consumers
can trust the secure cloud ecosystem we propose.

Golden Integrity Measurements

A fundamental requirement for this architecture is the existence of a trusted authority re-
sponsible for receiving the original software from cloud providers and performing the re-
quired security tests before generating a golden integrity measurement for it. A golden

integrity measurement is a cryptographic hash code of the original trustworthy binary code
and/or data the trusted authority verified. It is also the correct cryptographic hash a con-
sumer expects to receive when verifying the trustworthiness of a particular cloud platform
software such as the hypervisor. In our propose cloud ecosystem, golden measurements
measurements are intended to offer functionality similar to the one possible using reference
integrity metric (RIM) certificates described in the mobile trusted module specification [94].

The use of a cryptographic hash is the logic design choice because cryptographic hash
functions are collision-resistant, which means that it is computationally impracticable to
find a different input that provides the same output/hash. Therefore, if a certain block of
code has a hash h1, it is impossible to use a different block of code, as input to the crypto-
graphic hash function, and obtain the same hash h1. Subsection 2.2.1 offers a more detailed
discussion on the security properties of hash functions. This property is key in assuring
that a particular integrity measurement is unequivocally bound to a single block of binary
code and/or data. However, a golden integrity measurement does not have the objective
of providing information on the presence or absence of vulnerable properties, e.g. buffer
overflows, in the measured binary code and/or data.

We envision the generation of golden integrity measurements as a strong addition to
the security development lifecycle. The security development lifecycle consists in a set of
traditional software development lifecycle phases with the addition of security steps that
intend to reach a final product as resilient as possible against malicious attacks. The phases

116 Trustworthy Cloud Computing Architecture (TCCA)

include requirements, design, implementation, verification, and release. The verification
phase already requires an independent team to perform a final security review of the product
[51]. Therefore, it should be trivial to bring in the generation of valid golden integrity
measurements.

Although a secure hash function offers certain security properties, it is not enough to as-
sure the authenticity of a golden integrity measurement. Let us consider a scenario where a
cloud provider develops his own infrastructure management software and generates himself
the golden integrity measurements. In such cases, if consumers trust the provided golden
integrity measurements then they are still vulnerable to attack originating from an insider
threat within the cloud provider environment. Hence, we suggest the use of trusted authori-
ties such as the ones in the well established public-key infrastructure (PKI). This approach
builds a chain of trust which the consumer can trust to verify the authenticity of golden
integrity measurements. In what follows, we explain in detail how such chain of trust is
achieved.

The primary goal of implementing a public-key infrastructure is to enable secure, conve-
nient, and efficient distribution of public keys. A public-key infrastructure (PKI) is defined
as the set of physical or logical entities and procedures required to achieve such an objec-
tive. The required procedures deal with the creation, management, storage, distribution, and
revocation of digital certificates based on asymmetric cryptography [86].

The digital or public-key certificate is the key component in a public-key infrastructure
because it is a secure and scalable means for the distribution of public keys [48]. Previous
approaches relied on a central public-key authority which would hold every public key and
distribute them to users through a direct request. Therefore, it would always be involved
in the transactions becoming a single-point of failure and a bottleneck. The use of digital
certificates allows users to exchange public keys without the intervention of a public-key
authority. However, the existence of a trusted third party denominated certificate authority

(CA) is required. A certificate authority is typically a government, financial institution, or
security company trusted within the user community.

The creation of a digital certificate requires the user to transmit its public key to the
certificate authority in a secure fashion. An unsigned certificate is basically the user’s public
key, data that uniquely identifies the user, and certificate authority identification details. The
certificate authority uses a secure hash function to obtain a hash code of all this data and
encrypts that hash code using its private key to create a digital signature. This signature is
then attached to the certificate. The user can then make the certificate public for anyone to
use or send it as a reply to individual requests.

6.2 Architecture Requirements 117

Owner’s ID
Owner’s public

key
CA information

unsigned certificate

H
unsigned
certificate

signed certificate

E

a. steps to signing a public key certificate

CA’s private key

unsigned
certificate

signed certificate

unsigned
certificate

signed certificate

H D

CA’s public key

signature verified by
comparing the

hash codes

b. verifying a CA’s signature in a signed certificate

Fig. 6.3 Public-key certificate verification.

Figure 6.3 illustrates how the party using the certificate can verify the user’s public key
through the digital signature attached to it. This signature is verified using the certificate
authority’s public key to decrypt the signed hash code and comparing it to a hash code
the verifying party generates from the certificate data. A match between the hash codes
guarantees the user’s public key can be trusted. For a more detailed description on the
contents of a digital certificate we refer the reader to the X.509 specification [17].

Let us consider as an example the generation of a golden integrity measurement for a
specific hypervisor version. During the verification phase of the security development life-
cycle an independent and trusted authority would perform security checks on the software.
In case those verifications were successful, it would generate a golden integrity measure-
ment for the software and sign it (i.e., encrypt the hash code of the software) using its
private key. The public key of this trusted authority can be obtained through its public-key
certificate.

It is important to clarify that using golden integrity measurements to offer trustworthy
software does not mean only a software version is valid. A version is considered valid as
long as the golden integrity measurement in use as a valid signature attached to it.

For a cloud consumer to verify the trustworthiness of the hypervisor it just needs to have
in his possession the correspondent golden integrity measurement and the trusted authority’s
public-key certificate. When communications are initiated with the cloud provider’s infras-
tructure, the consumer receives a fresh signed integrity measurement of the hypervisor in
use together with public-key certificate from the cloud provider. For the purpose of this dis-
cussion it is enough to know there is a digital certificate linked with the cloud provider, more

118 Trustworthy Cloud Computing Architecture (TCCA)

details about which certificate and why we can trust the provided integrity measurement are
given later.

The consumer can then check if the received integrity measurement matches the golden
integrity measurement. If there is a match then the consumer can trust the hypervisor ver-
sion execution in the cloud infrastructure. The public keys of both trusted authority and
cloud provider allow the client to verify the authenticity of the measurements used in this
verification.

Managing Integrity Measurements

This section discusses how our architecture possesses components capable of generating and
collecting integrity measurements, and offers tamper resistant or tamper evident storage for
integrity measurements. These requirements are satisfied through the support for hardware-
based security such as Intel’s Trusted Execution Technology (TXT). Therefore, the servers
require the presence of a Trusted Platform Module (TPM).

The TPM-chip provides the foundation for hardware-based security, and contains cryp-
tographic functional units (e.g., random number generator), non-volatile, and volatile stor-
age. It is tamper-proof and the hardware root of trust in a trustworthy environment. A root of
trust is a hardware or software mechanism that the user implicitly trusts [29]. The definition
of trust considered in this document comes from the Trusted Computing Group (TCG): “An
entity can be trusted if it always behaves in the expected manner for the intended purpose.”.
The TPM generates, collects, and offers the tamper resistant storage for integrity measure-
ments. However, using the TPM directly to manage integrity measurements has proved to
be a scalability and performance issue [55].

Our approach to address the performance issues related to intensive use of the TPM is
combining TPM functionality with a minimal software implementation of the TPM standard
denominated micro-TPM. The concept of a micro-TPM was introduced in TrustVisor as
a solution to offer fast integrity measurements of pieces of application logic (PAL) [54].
For the use of a software-based micro-TPM to be successful it must be combined with
the specific functionality from the hardware-base TPM. The relevant TPM functionality in
this case is transitive trust, which is described with some detail in Subsection 2.5.2. In what
follows, we discuss in detail how these two requirements allow for trustworthy management
of a platform’s integrity measurements.

The first requirement is to extend the hypervisor to implement the concept of a micro-

TPM. This is necessary because frequent usage of hardware support for obtaining integrity
measurements incurs in high performance overhead as demonstrated in Flicker [55]. A

6.2 Architecture Requirements 119

micro-TPM avoids this problem by executing at high speed in a platform’s primary CPU,
while offering a restricted set of the functionality from the TPM specification. A micro-

TPM implementation should offer basic randomness, measurement, attestation, and data
sealing capabilities. The micro-TPM is the mechanism used to generate and collect integrity
measurements. In terms of tamper evident storage we can either use the micro-TPM data
sealing capabilities, or the TPM’s own data storage.

Trustworthy computing can use a static or a Dynamic Root of Trust for Measurement

(DRTM). The Static Root of Trust for Measurement (STRM) was the first generation of
trusted computing. Typically, BIOS code was used as the STRM. When using a STRM the
trusted computing base (TCB) included BIOS, Option ROMS, Bootloader, OS and applica-
tions [29, 42]. Guaranteeing a secure boot means trusting every line of code in the software
involved in the boot sequence. Including all these elements creates a considerably large
TCB, which is not beneficial for the security of the platform.

The advent of new technology mechanisms, such as extensions for AMD’s Secure Vir-
tual Machine (SVM) and Intel Trusted Execution Technology (TXT) extensions to the x86
architecture brought with them the concept of Dynamic Root of Trust for Measurement

(DRTM).

This second generation allows the late launch of a measured and isolated block of code.
It is denominated late launch because it can be executed at any time. The SKINIT (AMD)
and SENTER (Intel) instructions allow a disruptive event (soft reset) to happen. These in-
structions atomically initialize the CPU to a state similar to INIT, load the Secure Loader
Block (SLB) code (or authenticated code SINIT module when using Intel TXT), enable
DMA protection for the entire SLB, send the SLB contents to the TPM, and transfer control
to the SLB. The SLB code can then proceed to launch applications starting from a trust-
worthy state. This new method removes BIOS, Option ROMS and Bootloader from the
TCB.

In our architecture, the integrity measurements follow a two-level approach as intro-
duced in TrustVisor [54]. The hardware-based security TPM-chip is used in a DRTM pro-
cess to obtain an integrity measurement of the hypervisor and store it in its physical PCRs.
Transitive trust happens in this stage with the addition of the hypervisor to the set of trusted
entities in a particular cloud server. This step removes the need for constant use of a plat-
form’s TPM consequently suppressing the performance overhead incurred from such use.
The micro-TPM capabilities of the hypervisor can be used to generate and store integrity
measurements for security sensitive pieces of application logic (PAL).

A piece of application logic, or PAL, needs to be registered for the system to put in

120 Trustworthy Cloud Computing Architecture (TCCA)

Legend:

VMM

Guest
Operating
System

Applications
PAL

VMM

Guest
Operating
System

Applications
PAL

VMM

Guest
Operating
System

Applications
PAL

Executing
Protected
Accessible

a. host mode b. guest mode c. secure
application

 mode

Fig. 6.4 System execution modes.

place the appropriate security measures for its execution. This security measures assure
data confidentiality and integrity, and code and execution integrity. Execution integrity con-
sists in guaranteeing that when code P executes with inputs Pinputs, it always generates
outputs Pout puts [54]. The processes a PAL goes through include registration, invocation,
termination, and removal.

Figure 6.4 illustrates the three existing execution modes and how memory protection
differs in each other. The highest privilege level is granted in host mode when the virtual-
ization layer is executing and has control of the system. The virtualization layer has control
over all of the system memory, which means it can manipulate the memory space of PALs,
guest operating systems, and the applications running on top of guest operating systems. A
guest operating system executes in guest mode, when the system is in this mode the virtu-
alization layer must protect its memory space and the memory space associated to PALs.
The most restrictive execution mode is the secure application mode, which is when a PAL
is executing. In this mode, the virtualization layer isolates the PAL’s memory space from all
the remaining system entities.

The registration process is already secure against an insider threat as demonstrated in
our security analysis of the proposed architecture. Since security sensitive operations are
performed in a special-purpose virtual machine, the remaining security concerns are related
to the operating system over which those operations are executed. The registration process
is guaranteed through an application-level hypercall interface. Developers can use such an
interface to register sets of functions as security sensitive.

A registration process consists in specifying a list of function entry points, and expected
input and output parameters. The virtualization layer is responsible for verifying that the
provided entry points belong to the calling application, while guaranteeing that the execut-
ing operating system does not perform any illegal access to the memory pages specified as

6.3 Cloud Platform Trustworthiness 121

security sensitive. Anyway, the security sensitive code must have a golden integrity mea-
surement which is going to allow consumers to verify its integrity.

Invoking a PAL happens as if the affected application is executing normally on top of
the hosting operating system. However, after registration, the memory space of a PAL is no
longer accessible to the owning application and hosting operating system. The virtualization
layer is responsible for handling the operations when a PAL is invoked in within its owning
application. Once a PAL is invoke, the virtualization layer assumes control and prepares
the environment for a PAL’s execution as follows: (1) locate the registered PAL to which
the executing sensitive code belongs to, (2) change from guest mode to secure application

mode so the memory access is restricted to the memory pages of the executing PAL, and (3)
prepare the execution environment so control can be passed to the executing PAL.

After a PAL’s execution is concluded it returns to the calling application, at this stage
control is again passed to the virtualization layer. When executing in secure application

mode any attempt to execute code that does not belong to the PAL memory pages results
in returning control to the virtualization layer. The virtualization layer can then process the
PAL’s output results and make them available to the calling application. Execution mode is
changed from secure application mode to guest mode, in which a PAL’s memory space is
no longer accessible. The calling application can recall the PAL at any time with different
input parameters.

The removal of a PAL can originate from the application that requested its registration
or in special cases from the operating system in which it executes. When a PAL is removed
from the security sensitive code list its memory pages are zeroed and made available to the
controlling operating system.

6.3 Cloud Platform Trustworthiness

In this section we present how the trustworthiness of a cloud platform can be shared with
cloud consumers increasing the level of transparency when compared with current ap-
proaches.

To protect the confidentiality and integrity of data kept in the cloud, the cloud platform
has to prevent certain attacks and give consumers the ability to assess that this protection is
in place. The latter requirement may seem excessive, but it arises from the concern we are
dealing with: the insider threat. A malicious insider is in a sense part of the cloud, so he
or she can provide false information to the consumer. In our solution, trust is grounded on
hardware – the TPM or CPU extensions for DRTM – instead of cloud operators.

122 Trustworthy Cloud Computing Architecture (TCCA)

Consumer
Agent

Remote
Agent

TPM/µTPM

1. Request Integrity Measurements

4. Signed Integrity Measurements

2. TPM quote
operation

3. Signed
PCR/µPCR

values

5. Verify signature and
platform trustworthiness

Fig. 6.5 Remote attestation.

6.3.1 Trusted Virtualization Environment

Our solution for protecting consumers’ data (and applications) in the cloud is based on the
assumption that the attacks against the VM come through the infrastructure and not from
targeting vulnerabilities in the consumer VMs themselves.

There are two basic principles for a VM to execute in a trustworthy fashion: (1) a con-
sumer VM is either encrypted or executing in a Trusted Virtualization Environment (TVE)

and (2) before a VM is decrypted and launched in a TVE, the consumer attests that it can
trust the TVE, i.e., that the TVE is indeed a trusted virtualualization environment.

Consumer VMs reside in the cloud in three places: in cloud servers, in the network (e.g.,
during deployment and migration), and backed up on disks. To prevent data disclosure and
modification, we have to limit what a system administrator can do with a VM on a server
and force it to be encrypted on the network and when backed up. Therefore, servers must
run a TVE.

A trusted virtualization environment (TVE) is the infrastructure software that manages a
single cloud server. It is basically another way of referring to the trusted computing base of
a virtualization cloud server. Figure 6.1 makes it clear that the main components of the TVE
are the virtualization layer and the management software. The software configuration of a
VM server is said to be a TVE if: (1) the management software does not offer administrator
operations that can directly compromise data confidentiality or integrity, and (2) it supports
only trusted versions of the critical software components part of the trusted computing base
(e.g., hypervisor and management software.). Referring to one TVE is a simplification;
cloud consumers can trust several TVE configurations.

6.3 Cloud Platform Trustworthiness 123

Remote Attestation

The basic operation on which a consumer relies to verify a trusted virtualization environ-
ment (principle 2) is remote attestation. The process consists in collecting a set of measure-
ments to verify the current configuration of the target cloud server. Since our solution uses
DRTM-based attestation, initial trust is established when the consumer receives an integrity
measurement for the hypervisor controlling the server.

Figure 6.5 provides an abstraction of the remote attestation process between a consumer
(left) and a cloud server (right). Consider that the challenging consumer uses his own com-
puter controlled in some manner, the security of this computer is out of the scope of our
work.

The remote attestation process is as follows: First, the consumer requests the server
where the hypervisor is running to send an integrity measurement of the hypervisor (1).
Second, a software agent in the server requests a quote operation from the TPM (2). Third,
the TPM replies with signed values of the platform configuration register that contains the
integrity measurement of the hypervisor (3). The consumer may provide a nonce to be
included in the signed data in order to assure freshness. Fourth, a message containing the
signed values is send to the consumer (4). Fifth, the consumer verifies the signature and
if the integrity measurement matches a trustworthy hypervisor version (5). This process
allows consumers to verify if the hypervisor running in a cloud server is trustworthy.

The behaviour of a consumer software agent on step five depends on the result of veri-
fying the validity of the receive integrity measurement(s):

• If the integrity measurement matches the consumer implicitly trusts the software exe-
cuting in the cloud infrastructure.

• In the event of receiving an integrity measurement that matches an older golden mea-
surement the consumer might trust the software if it is not associated with malicious
activity, but otherwise notifies the cloud provider about the event and chooses to not
trust the software.

• In case of a received integrity measurement matching an older golden measurement
associated with malicious activity, the consumer notifies the cloud provider to update
the platform and terminates the communication.

The remote attestation process just described is the most traditional one in which the
physical TPM is used to report integrity measurements on platform components. However,

124 Trustworthy Cloud Computing Architecture (TCCA)

in our architecture, transitive trust has a significant impact. When a consumer agent trusts
the hypervisor, this means that the hypervisor is added to the trusted computing base and its
micro-TPM capabilities are then used to generate and collect future integrity measurements
of a cloud platform components. For example, the micro-TPM could be used to store a copy
of the integrity measurement for the hypervisor in order to speed up its verification process.

6.3.2 Critical Management Operations

A description of virtual machine launch, migration, backup, and termination and how they
are performed in the trustworthy architecture follows [72]. This description does not in-
tend to include every critical operation that takes place in a cloud architecture, it simply
presents these four operations as examples of how a trustworthy architecture provides more
transparency while at the same time it protects a consumer’s security sensitive data.

Any other critical operations will be protected in a similar manner. This type of func-
tionality is also an example of software that is going to be measured using the micro-TPM

capabilities. The TPM itself is going to be used in the boot process of cloud servers to
keep an integrity measurement of the executing hypervisor. This measurement is used in
the initial trust establishment between consumer and cloud provider. Trusting the hypervi-
sor is paramount because it is the root of trust for obtaining further integrity measurements
of software agents like the ones discussed in this section. Establishing trust in a hypervisor
executing in a remote cloud server is achieved through a standard remote attestation process
as the one represented in Figure 6.5. However, the integrity measured obtained from the
physical TPM can then passed to the trusted software micro-TPM implementation.

To explain the operations discussed in this section, it is assumed the existence of a
software agent on each end of the communicating parties. This software agent will be re-
sponsible for performing the steps that take place in that party. The operations are divided
in several steps, which are numerically represented in the figures throughout this subsec-
tion. The number for each step is listed inside parenthesis after the corresponding written
description.

Virtual Machine Launch

In a trustworthy virtual machine launch operation, the final objective is to have the consumer
trust the software agents in the server responsible for handling his virtual machine and the
data he might offload to it.

Figure 6.6 depicts the complete process. The process starts with the consumer software

6.3 Cloud Platform Trustworthiness 125

Consumer
Agent

Management
Agent

POVM
Destination

Server Agent

1.
Req

ue
st

VM
 la

un
ch

2.
Sen

d s
erv

er
ad

dre
ss

6. Verify platform
trustworthiness

4. Request Integrity
Measurements

5. Signed Integrity
Measurements

7. Send VM
Decryption key

3. Request VM launch

9. Resource Usage

8. Collect Encrypted
VM image

Fig. 6.6 Trustworthy VM Launch.

agent contacting the software agent resident in the front-end server (1), which is responsible
for managing the resources available in the infrastructure. This is a simple interaction where
the consumer requests to launch a virtual machine and the front-end agent replies with the
physical address for an available cloud server (2).

The second stage takes place between the consumer and the destination cloud server.
First, the consumer requests a remote attestation of the platform where his virtual machine
is about to be launched (4). Second, after requesting a quote operation from the server’s
micro-TPM, the cloud server agent replies with a signed message containing the required
integrity measurements (5). Let us assume in this example scenario that the server sends
measurements for the hypervisor and the software responsible for launching the virtual ma-
chine. The VM launch software is executed in the privileged operations virtual machine.

After these steps, the consumer verifies the signature and checks if the integrity mea-
surements correspond to the current golden integrity measurements for the hypervisor and
VM launch routine (6). If the verification is successful the consumer establishes a secure
communication channel with the privileged operations virtual machine and sends the sym-
metric key necessary to decipher the encrypted virtual machine image (7). An approach
for exchanging the key could be using the public portion of an attestation identity key as-
sociated with the micro-TPM of the destination server. The virtual machine image can be
sent by the consumer or be collected from a local repository (8). Finally, the VM image is
deciphered using the key the consumer provided (9) and the process is concluded with the
launch of the virtual machine in the cloud server (10).

126 Trustworthy Cloud Computing Architecture (TCCA)

Resource
Management

Agent

POVM
Source

Server Agent

POVM
Destination

Server Agent

1. R
equest V

M Migration

2. Request Integrity Measurements

5. Encrypt VM Snapshot
+ Decryption key

3. Signed Integrity Measurements
4. Verify Platform
Trustworthiness

6. Decrypt VM
Snapshot

and Launch VM

Fig. 6.7 Trustworthy VM Migration.

The communications between consumer agent and privileged operations virtual machine
software agent are handled in the destination server agent which can be software part of the
management software of the server. This management software is part of the management
virtual machine as seen in Figure 6.1. In step seven of Figure 6.6, the secure communica-
tions channel between privileged operations virtual machine can use inter-virtual machine
communication solutions to avoid bloating the trusted computing base in the privileged
operations VM. The advantages and performance of using such channels to handle commu-
nications between virtual machines was already discussed in previous work [107].

Virtual Machine Migration

From the consumer’s perspective, verifying if the initial server (where his virtual machine
is instantiated) is trustworthy is not enough because virtual machines can be migrated to
different cloud servers within the cloud infrastructure. However, this problem can be easily
solved by having the source cloud server verify if the destination server is trustworthy. The
consumer has already verified that the initial server is trustworthy, so that guarantees that
the virtual machine migration operation can be trusted to perform the steps represented in
Figure 6.7. The communications between the involved servers are handled in the respective
management virtual machine. The data can then be sent to the privileged operations virtual
machine using inter-virtual machine communication channels in order to keep the trusted
computing base to a minimum.

Consider a scenario where an attacker tries to migrate a virtual machine from a trustwor-
thy server to a platform over which he has total control. This attack would not go through
because the source server would reject the migration when the integrity measurements do
not match a trustworthy virtualization environment. Furthermore, the privileged operations

6.3 Cloud Platform Trustworthiness 127

Consumer
Agent

POVM Server
Agent

1. Request VM Backup +
Encryption key

2. Take VM Snapshot
+ Encrypt VM

Snapshot

3. Store Encrypted VM

Snapshot

Fig. 6.8 Trustworthy VM Backup.

virtual machine should have software agents responsible for logging and auditing these op-
erations to detect any anomalies.

Under these assumptions the trustworthy virtual machine migration process is a simple
remote attestation of the destination server performed by the source cloud server. Figure 6.7
illustrates the required steps. First, the resource management agent requests a migration (1).
Second, the source server requests a remote attestation of the destination server’s platform
software (2). Next, the destination server requests a quote operation from its micro-TPM.

On the destination server, a signed list of the requested integrity measurements is sent to
source server (3). What follows is the verification of the signature and the platform software
(4). If the verification is successful a ciphered snapshot of the virtual machine together
with the decryption key is sent to the destination server (5). Finally, the destination server
deciphers the virtual machine snapshot and the VM is launched in the new trustworthy
server (6).

Virtual Machine Backup

Although some data confirms that cloud storage services might experience outages, one of
the major attractive points of the cloud is the always available promise [3]. The notion is
that you store data in the cloud and then you can access it from various client platforms as
long as it is capable of interfacing with the online storage system. With a service that offers
such high availability it is expected that consumers will be drawn to using it as a backup
resource. However, backing up a consumers data also presents some security requirements
which the approach that follows satisfies.

The assumption for this operation is that the server where the VM is executing is already
trusted by the consumer. If the VM snapshot needs to go through a backup server then a
process similar to a VM migration takes place before the backup is performed.

In Figure 6.8, it is possible to view the parties and steps involved in backing up a ciphered

128 Trustworthy Cloud Computing Architecture (TCCA)

Consumer
Agent

POVM Server
Agent

1. Request VM Termination +
Encryption key

2. Terminate VM
+ Take VM Snapshot
+ Zero Freed Memory

+ Encrypt VM Snapshot

3. Store Encrypted VM

Snapshot

Fig. 6.9 Trustworthy VM termination.

instance of a consumer’s virtual machine. The operation is quite simple. First, the consumer
agent sends a message containing the encryption key and a VM backup request to the cloud
server agent (1). Second, the server agent takes a snapshot of the VM to backup, encrypts
it using the consumer’s key (2). Finally, and still in the server agent, the encrypted VM
backup is stored in the appropriate storage media (3).

Virtual Machine Termination

Terminating a virtual machine is fairly simple. However, it is relevant to discuss this opera-
tion because it has some security implications. More specifically, due to the memory space
allocated to the VM throughout its life cycle.

Consider a scenario where an application (e.g., Apache Web Server) executing in a vir-
tual machine recurs to a private key to sign the values in a Diffie-Hellman key exchange.
This means that the private key will be present in volatile memory for the signing operation.
Therefore, if after termination this memory space is not zeroed or randomized an attacker
can assemble a special purpose Linux image designed to corrupt as little memory space as
possible so it can collect security sensitive data from the remainder of the memory.

The termination operation follows the steps represented in Figure 6.9. First, the con-
sumer requests a termination directly to the server where the VM is executing (1). At this
stage the consumer also informs the provider if he wishes for his VM image be encrypted
and stored in the cloud infrastructure. If this is true the consumer will annex the symmetric
encryption key to the request.

Second, the cloud server terminates the VM, zeroes or randomizes the memory space,
and encrypts (2) and stores the VM image in a local repository (3). The zeroing of the mem-
ory space should be done in the termination process because the operation is associated with
the VM in question. Therefore, it is ideal to perform it at this stage, and not when a new VM
is launched, so the owner of the VM can be assured that its security sensitive information is
secure. The operation is concluded when the cloud server notifies the management agent of

6.4 Related Approaches 129

the termination and the freed resources.

6.4 Related Approaches

This section discusses work that is closely related to the cloud ecosystem we propose in this
Chapter. It presents work that trusted computing technologies as a tool for securing both
virtualization and cloud computing.

TrustVisor is a virtual machine monitor built for commodity systems with the objective
of assuring code and data integrity for portions of executing applications [54]. This virtual
machine monitor implements a software micro-TPM which allows challenging entities to
verify the trustworthiness of a specific functionality in a remote system.

IBM’s trusted virtual datacenter (TVDc) approach aims at creating virtual domains of
virtual machines within a datacenter [7]. This solutions builds on the sHype hypervisor
which enforces mandatory memory access control (MAC) policies to guarantee isolated
trusted virtual domains [76]. This approach does not target cloud computing.

In Trusted Cloud Computing Platform (TCCP) the authors propose the use of trusted
computing base to improve the security of a cloud computing environment [79]. This solu-
tion uses a node known as trusted coordinator to keep track of the trusted nodes in a cloud
environment. Trusted nodes are cloud server with a trusted platform configuration.

The myTrustedCloud architecture integrates the offering of trustworthy cloud services
with the Eucalyptus cloud computing platform [103]. The trustworthy services implemented
include remote attestation of both virtual machines and elastic block storage.

The first two approaches discussed in this section were not about cloud computing. This
separates them from our contribution in this chapter. The cloud ecosystem we propose,
much like TrustVisor, tries to offer fine granularity when verifying the integrity of cloud
services. Another point that distinguishes our work from IBM’s TVDc is that we propose
security by default without any administrator responsible for devising security policies.

The last two works are very closely related to what we propose in this chapter, the
main distinction is our focus on achieving integrity verification of building blocks for cloud
services. Building blocks refer to smaller components of a complex cloud ecosystem such
as VM launch or migration.

The main concern for our approach is to keep the trusted computing base of measured
components to a minimum and then combine such components to build a more complex
ecosystem. This differs with other approaches which centre on measuring larger entities
such as virtual machines or only verifying the presence of a trusted virtual machine mon-

130 Trustworthy Cloud Computing Architecture (TCCA)

itor. The novelty about our proposal is assuring the integrity of cloud services with more
granularity. The cloud operation discussed in Section 6.3 are examples of the granularity
we suggest.

6.5 Limitations

In this section we introduce limitations identified in the cloud ecosystem proposed in this
chapter. We discuss three limitations that can have a negative impact in the security of the
proposed architecture.

The first problem is the challenges of managing of golden integrity measurements. A
cloud consumer trusts he/she can use golden integrity measurements to verify the trustwor-
thiness of a remote cloud computing platform. However, golden integrity measurements are
also going to need to be updated. The process of revoking old golden integrity measure-
ments and releasing new ones can be a challenging one. This process might end up opening
attack windows.

Another problem is the presence of software vulnerabilities in cloud services that are
considered trustworthy. The cloud ecosystem we propose here does not address this prob-
lem. It is true that we try to keep the trusted computing base of measured entities to a
minimum but that still does not assure that those entities are free from vulnerabilities.

The final problem we mention is a problem that transfer from public-key infrastructures
where the endpoint systems are left with trusting the entities at the root of the chain of
trust. This means that a cloud consumer is left with trusting that the entity responsible for
verifying the software and signing golden integrity measurements is trustworthy and does
not collude with cloud providers to compromise data confidentiality and integrity.

Chapter 7

Conclusions

The work in this thesis had two practical research stages. Initial work focused on demon-
strating how current virtualization layer software is not effective at preventing attacks orig-
inating from a malicious insider. Whereas the second stage was dedicated to designing a
novel trustworthy cloud architecture capable of preventing the attacks we had identified as
possible in current solutions.

The first stage focused on performing sophisticated attacks against the memory space
of virtual machines to compromise security sensitive consumer data. Our attacks were suc-
cessful against three of the major providers of software solutions for the virtualization layer.
Identifying the same vulnerability in three different solutions builds a strong argument in
favour of the issue being a security design problem and not a simple software development
flaw in certain virtualization layer software solutions.

The second and final stage consisted in designing and testing a novel cloud architecture
that could prevent the malicious insider attacks previously identified in our work. In this
stage we used a particular virtualization software and modified its memory management
mechanisms to turn the hypervisor into the policy decision and enforcement point in the
architecture. This change is paramount to guarantee a more trustworthy architecture while
reducing its trusted computing base.

This chapter discusses our main contributions and is organised in two major sections.
In Section 7.1 we discuss our major contributions and how they differ from previous work.
Finally, Section 7.2 is dedicated to lines of research we have identified as potential future
work.

132 Conclusions

7.1 Summary of Contributions

This thesis contains three major contributions: a literature review, identified a design flaw
in current virtualization layer software solutions, and design and implementation of a novel
trustworthy cloud architecture.

Our literature review presents a unique view on current virtualization software solu-
tions. It looks into the security effectiveness of such solutions when an insider threat is
considered. Therefore, it offers a different perspective on the security of various state of the
art virtualization solutions. More specifically, it analyses if different virtualization software
approaches can prevent a malicious insider from compromising security sensitive data and
guarantee memory integrity and confidentiality.

The security design flaw we identified is common to the three major virtualization soft-
ware providers for cloud solutions. Our experiments consisted in devising attacks to com-
promise security sensitive data while it is resident in random access memory. We performed
successful sophisticated attacks capable of compromising data from a virtual machine’s
memory space in real time. The fact that this permissive memory model is present in the
three major virtualization software providers makes it a relevant security issue that needs to
be researched. Previous work on this security challenge only identified a security flaw in a
specific virtualization solution [73].

The final contributions of this project are connected and include an insider threat pre-
vention mechanism and a trustworthy cloud architecture. We designed, implemented, and
tested our security mechanism to prevent a malicious insider from compromising security
sensitive data resident in random access memory. The novel contribution is how it reduces
the trusted computing base to include only the hypervisor. The hypervisor is turned into
the security policy decision and enforcement agent. Our design prevents the insider threat
by enforcing the principle of least privilege. This guarantees memory confidentiality and
integrity for consumer data resident in random access memory.

Our final contribution uses our insider threat prevention mechanism as a building block
in a trustworthy cloud computing architecture. In this architecture, we propose how to build
a trustworthy cloud ecosystem that allows remote cloud consumers to verify the trustwor-
thiness of a cloud computing platform. The novelty of this architecture is offering better
granularity of integrity verified cloud services.

7.2 Future Work 133

7.2 Future Work

This section discusses the research challenges we consider the most relevant in a trustworthy
cloud computing infrastructure. It is important to mention that some of these challenges are
a direct result from the changes imposed to the cloud ecosystem in order to transform the
virtualization layer in the policy decision and enforcement entity.

7.2.1 Further Reductions to the Trusted Computing Base

The trustworthy architecture we suggest in Chapter 6 can have further reductions to its
trusted computing base. The fact that Xen is a monolithic virtual machine monitor means
it has a considerably high number of lines of code when compared with microhypervisor
approaches such as the NOVA hypervisor [90].

Further reducing the trusted computing base of the trustworthy cloud computing archi-
tecture would mean disaggregating Xen or using a microhypervisor to take advantage of
the protection rings in root-mode. These protection rings could be used to isolate virtual
machine monitors launched for each individual virtual machine. This means that the crit-
ical parts of the hypervisor would execute in root-mode’s ring 0 while the less privilege
operations could execute in root-mode’s ring 3. A virtual machine’s guest operating system
and its applications would use non-root mode’s ring 0 and ring 3, respectively. In such an
architecture, the privilege operations currently isolated in a special-purpose virtual machine
could be moved to root-mode’s ring 3. This change means a mandatory memory access
control mechanism can be implemented in a more appropriate way starting from the design
stage of a secure microhypervisor architecture.

7.2.2 Uniqueness of Software Agents

This problem originates from one of the assumptions in the current public key infrastruc-
ture. The assumption assumes that certificate authorities are trustworthy and will not sign
certificates to rogue entities. Such certificates could be used in man in the middle attacks.

This assumption is relevant for our trustworthy architecture with regard to golden in-
tegrity measurements. Once again we are left with relying on the trusted authority to only
sign measurements for trustworthy software agents. The verification process involves both
cloud provider and trusted authority, so a collusion attack might have an undesired impact
on the trustworthiness of a cloud platform. It is even more serious if you consider how
everything would appear to be certified but at the same time the software controlling the

134 Conclusions

platform would be malicious.

7.2.3 Monitoring Virtual Machines

In previous cloud configurations, management software was granted full access to the mem-
ory space assigned to virtual machines executing in a cloud server. We have already shown
that this memory access model is too permissive and allows insiders to gain access to secu-
rity sensitive data. However, this model had the advantage of permitting detailed monitoring
of the activities in a consumer’s virtual machine.

Our architecture uses the virtualization layer to prevent insiders from obtaining access
to the memory space of virtual machines. Therefore, any previous monitoring solutions
based on virtual machine introspection are going to fail in such an architecture. The de-
sign choices we have made do not hinder the use of monitoring solutions based on virtual
machine introspection. However, their method of operation needs to shift to comply with
security requirements.

Trustworthy cloud monitoring solutions would have to relocate to the virtual machine
allowed to perform privileged operations. Which means that these operations would exe-
cute where the critical cloud management operations do. However, the data collected and
analysed in random access memory would have to be encrypted before it is stored in any
permanent storage media. The ideal encryption scheme would be one in which the cloud
provider and consumer need to supply a key in order to access the desired data. This would
be required in case this data needs to be accessed to solve any disputes.

7.2.4 Managing Golden Integrity Measurements

A trustworthy cloud architecture (like the one discussed in Subsection 6.2) needs to con-
sider the challenge of managing a set of golden integrity measurements. It will need to at
least perform such management tasks for the golden integrity measurements of hypervisor
versions available on cloud servers.

The challenge is how to synchronize a list of valid golden integrity measurements be-
tween consumer, trusted authority, and cloud provider. Consider a scenario where a hyper-
visor requires a security fix and a new golden integrity measurement needs to be created and
sent to the consumer. This situation creates an attack window during which an attacker can
use previously trustworthy hypervisors to mount attacks against consumers.

The problem is aggravated if we consider a cloud provider that offers verification of
critical cloud operations [71]. Therefore, the design of an effective method for revoking and

7.2 Future Work 135

releasing new golden integrity measurements is of paramount importance.

7.2.5 Encrypt-on-Save Data

Guaranteeing data confidentiality and integrity while data is loaded and processed in mem-
ory is positive but different challenges need to be overcome when the same data is moved
to permanent storage devices. The problem of assuring data confidentiality and integrity for
permanently stored data was partially discussed in Subsection 7.2.3 when we introduced the
challenges faced by data generated from monitoring virtual machines.

Consider a scenario where a consumer is using a text editor to modify a confidential
file. This type of software usually has auto save options which we envision as an advanced
feature when considering the support for encrypt-on-save functionality. It is ideal that a con-
sumer does not need to worry about the privacy of the information present in his documents
while storing or editing them in the cloud. Assuring that data is encrypted throughout its
complete life cycle is the final objective to achieving data confidentiality.

References

[1] Alliance, C. S. (2013). The Notorious Nine: Cloud Computing Top Threats in 2013.

[2] AMD (2014). AMD Virtualization (AMD-V) Technology.

[3] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., and Zaharia, M. (2010). A view of cloud computing.
Commun. ACM, 53(4):50–58.

[4] Azab, A. M., Ning, P., and Zhang, X. (2011). SICE: A Hardware-level Strongly Isolated
Computing Environment for x86 Multi-core Platforms. In Proceedings of the 18th ACM
Conference on Computer and Communications Security, CCS ’11, pages 375–388, New
York, NY, USA. ACM.

[5] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R.,
Pratt, I., and Warfield, A. (2003). Xen and the art of virtualization. In Proceedings
of the Nineteenth ACM Symposium on Operating Systems Principles, SOSP ’03, pages
164–177, New York, NY, USA. ACM.

[6] Berger, S., Cáceres, R., Goldman, K. A., Perez, R., Sailer, R., and van Doorn, L. (2006).
vTPM: virtualizing the trusted platform module. In Proceedings of the 15th conference
on USENIX Security Symposium - Volume 15, USENIX-SS’06, Berkeley, CA, USA.
USENIX Association.

[7] Berger, S., Cáceres, R., Pendarakis, D., Sailer, R., Valdez, E., Perez, R., Schildhauer,
W., and Srinivasan, D. (2008). TVDc: managing security in the trusted virtual datacenter.
SIGOPS Oper. Syst. Rev., 42(1):40–47.

[8] Bethencourt, J., Sahai, A., and Waters, B. (2007). Ciphertext-policy attribute-based
encryption. In Proceedings of the 2007 IEEE Symposium on Security and Privacy, SP
’07, pages 321–334, Washington, DC, USA. IEEE Computer Society.

[9] Bhatia, N. (2009a). Performance Evaluation of AMD RVI Hardware Assist.

[10] Bhatia, N. (2009b). Performance Evaluation of Intel EPT Hardware Assist.

[11] Bishop, M. (2004). Introduction to Computer Security. Addison-Wesley Professional.

[12] Bowers, K. D., Juels, A., and Oprea, A. (2009). HAIL: a high-availability and integrity
layer for cloud storage. In Proceedings of the 16th ACM conference on Computer and
communications security, CCS ’09, pages 187–198, New York, NY, USA. ACM.

138 References

[13] Bryant, R. E. and O’Hallaron, D. R. (2010). Computer Systems: A Programmer’s
Perspective. Addison-Wesley Publishing Company, USA, 2nd edition.

[14] Capelli, D., Moore, A., Trzeciak, R., and Shimeall, T. J. (2009). Common Sense
Guide to Prevention and Detection of Insider Threats. Software Engineering Institute,
3rd edition edition.

[15] Chisnall, D. (2007). The Definitive Guide to the Xen Hypervisor. Prentice Hall Press,
Upper Saddle River, NJ, USA, first edition.

[16] Colp, P., Nanavati, M., Zhu, J., Aiello, W., Coker, G., Deegan, T., Loscocco, P., and
Warfield, A. (2011). Breaking up is hard to do: security and functionality in a commodity
hypervisor. In Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles, SOSP ’11, pages 189–202. ACM.

[17] Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and Polk, W. (2008).
RFC 5280 - Internet X.509 Public Key Infrastructure Certificate and Certificate Revoca-
tion List (CRL) Profile. Technical report, The Internet Engineering Task Force.

[18] Denning, P. J. (1971). Third generation computer systems. ACM Comput. Surv.,
3(4):175–216.

[19] Department of Defense (1985). Department of Defense Trusted Computer System
Evaluation Criteria. Department of Defense. DOD 5200.28-STD (supersedes CSC-
STD-001-83).

[20] Dick Csaplar (2012). Is the Hypervisor Market Expanding or Contracting? http:
//goo.gl/X16XN5. The Aberdeen Group [Online; access 13-April-2015].

[21] Diffie, W. and Hellman, M. (2006). New directions in cryptography. IEEE Trans. Inf.
Theor., 22(6):644–654.

[22] European Space Agency - Inquiry Board (1996). Ariane 5 - flight 501 failure.

[23] Fabrice Bellard (2014). QEMU: Open Source Processor Emulator.

[24] Fang, H., Zhao, Y., Zang, H., Huang, H., Song, Y., Sun, Y., and Liu, Z. (2010). Vm-
guard: An integrity monitoring system for management virtual machines. In Parallel
and Distributed Systems (ICPADS), 2010 IEEE 16th International Conference on, pages
67–74.

[25] Floyer, D. (2013). Wikibon Hypervisor Study: Additional Analysis of Multi-
Hypervisor Environments. http://goo.gl/uaBFFM. Wikibon.org [Online; accessed 13-
April-2015].

[26] Fraser, K., H, S., Neugebauer, R., Pratt, I., Warfield, A., and Williamson, M. (2004).
Safe hardware access with the xen virtual machine monitor. In In 1st Workshop on Op-
erating System and Architectural Support for the on demand IT InfraStructure (OASIS.

[27] Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., and Boneh, D. (2003). Terra: a
virtual machine-based platform for trusted computing. In Proceedings of the nineteenth
ACM symposium on Operating systems principles, SOSP ’03, pages 193–206, New York,
NY, USA. ACM.

http://goo.gl/X16XN5
http://goo.gl/X16XN5
http://goo.gl/uaBFFM

References 139

[28] Goldberg, R. P. (1974). Survey of Virtual Machine Research. IEEE Computer,
7(9):34–45.

[29] Grawrock, D. (2009). Dynamics of a Trusted Platform: A Building Block Approach.
Intel Press, 1st edition.

[30] Greene, J. (2010). Intel Trusted Execution Technology: Hardware-based Technology
for Enhancing Server Platform Security. Technical report, Intel.

[31] Guo, F. (2011). Understanding memory resource management in vmware vsphere 5.0
- performance study.

[32] Halderman, J. A., Schoen, S. D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J. A., Feldman, A. J., Appelbaum, J., and Felten, E. W. (2009). Lest we remember:
Cold-boot attacks on encryption keys. Commun. ACM, 52(5):91–98.

[33] Heath, N. (2013). Linux trailed Windows in patching zero-days in 2012, report says
(ZDNet).

[34] Hoglund, G. and Butler, J. (2005). Rootkits: Subverting the Windows Kernel. Addison-
Wesley Professional.

[35] Institute, P. (2014). 2014 cost of cyber crime study: United states.

[36] Intel (2014). Hardware-Assisted Virtualization.

[37] Intel, Inc (2015). Intel R 64 and IA-32 Architectures Software Developer’s Manual.
Volume 3a: System Programming Guide.

[38] International Telecommunication Union (ITU) (2008a). X.680 : Information technol-
ogy - Abstract Syntax Notation One (ASN.1): Specification of basic notation.

[39] International Telecommunication Union (ITU) (2008b). X.690 : Information technol-
ogy - ASN.1 encoding rules: Specification of Basic En- coding Rules (BER), Canonical
Encoding Rules (CER) and Distinguished Encoding Rules (DER).

[40] International Telecommunication Union (ITU) (2014). ASN.1 Project.

[41] Juels, A. and Oprea, A. (2013). New approaches to security and availability for cloud
data. Commun. ACM, 56(2):64–73.

[42] Kauer, B. (2007). Oslo: Improving the security of trusted computing. In Proceedings
of 16th USENIX Security Symposium on USENIX Security Symposium, SS’07, pages
16:1–16:9, Berkeley, CA, USA. USENIX Association.

[43] Keeney, M. (2005). Insider threat study: Computer system sabotage in critical infras-
tructure sectors. US Secret Service and CERT Coordination Center.

[44] Keller, E., Szefer, J., Rexford, J., and Lee, R. B. (2010). NoHype: virtualized cloud
infrastructure without the virtualization. In Proceedings of the 37th annual international
symposium on Computer architecture, ISCA ’10, pages 350–361, New York, NY, USA.
ACM.

140 References

[45] Kerckhoffs, A. (1883). La cryptographie militaire. Journal des Sciences Militaires,
pages 161–191.

[46] Kivity, A., Laor, D., Costa, G., Enberg, P., Har’El, N., Marti, D., and Zolotarov,
V. (2014). OSv—Optimizing the Operating System for Virtual Machines. In 2014
USENIX Annual Technical Conference (USENIX ATC 14), pages 61–72, Philadelphia,
PA. USENIX Association.

[47] Kocher, P. C. (1996). Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems. In Proceedings of the 16th Annual International Cryptology
Conference on Advances in Cryptology, CRYPTO ’96, pages 104–113, London, UK,
UK. Springer-Verlag.

[48] Kohnfleder (1978). Towards a Practical Public Key Cryptosystem. MIT Department
of Electrical Engineering.

[49] Krautheim, F. J. (2009). Private virtual infrastructure for cloud computing. In Proceed-
ings of the 2009 conference on Hot topics in cloud computing, HotCloud’09, Berkeley,
CA, USA. USENIX Association.

[50] Li, C., Raghunathan, A., and Jha, N. (2010). Secure virtual machine execution under
an untrusted management os. In Cloud Computing (CLOUD), 2010 IEEE 3rd Interna-
tional Conference on, pages 172 –179.

[51] Lipner, S. (2004). The Trustworthy Computing Security Development Lifecycle. In
Proceedings of the 20th Annual Computer Security Applications Conference, ACSAC
’04, pages 2–13, Washington, DC, USA. IEEE Computer Society.

[52] Love, R. (2010). Linux Kernel Development. Addison-Wesley Professional, 3rd edi-
tion.

[53] Madhavapeddy, A., Mortier, R., Rotsos, C., Scott, D., Singh, B., Gazagnaire, T., Smith,
S., Hand, S., and Crowcroft, J. (2013). Unikernels: Library Operating Systems for the
Cloud. In Proceedings of the Eighteenth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ASPLOS ’13, pages 461–472,
New York, NY, USA. ACM.

[54] McCune, J. M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V. D., and Perrig, A. (2010).
Trustvisor: Efficient TCB reduction and attestation. In Proceedings of IEEE Symposium
on Security and Privacy (Oakland 2010).

[55] McCune, J. M., Parno, B., Perrig, A., Reiter, M. K., and Isozaki, H. (2008). Flicker:
An execution infrastructure for TCB minimization. In Proceedings of the ACM European
Conference in Computer Systems (EuroSys).

[56] McVoy, L. and Staelin, C. (1996). Lmbench: Portable tools for performance analysis.
In Proceedings of the 1996 Annual Conference on USENIX Annual Technical Confer-
ence, ATEC ’96, pages 23–23, Berkeley, CA, USA. USENIX Association.

[57] Mell, P. and Grance, T. (2011). The NIST definition of Cloud Computing.

References 141

[58] Misra, S. C. and Bhavsar, V. C. (2003). Relationships between selected software mea-
sures and latent bug-density: Guidelines for improving quality. In Proceedings of the
2003 International Conference on Computational Science and Its Applications: PartI,
ICCSA’03, pages 724–732, Berlin, Heidelberg. Springer-Verlag.

[59] Murray, D., Milos, G., and Hand, S. (2008). Improving xen security through disaggre-
gation. In Proceedings of the fourth ACM SIGPLAN/SIGOPS international conference on
Virtual execution environments, VEE ’08, pages 151–160, New York, NY, USA. ACM.

[60] National Institute of Standards and Technology (1995). An Introduction to Computer
Security: The NIST Handbook. Technical report, National Institute of Standards and
Technology, Washington.

[61] Nexenta (2012). Server Hypervisor Market Share Survey. http://goo.gl/xPfpTH.
UP2V.nl [Online; accessed 13-April-2015].

[62] Nguyen, A., Raj, H., Rayanchu, S., Saroiu, S., and Wolman, A. (2012). Delusional
boot: Securing hypervisors without massive re-engineering. In Proceedings of the 7th
ACM European Conference on Computer Systems, EuroSys ’12, pages 141–154, New
York, NY, USA. ACM.

[63] Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., and
Zagorodnov, D. (2009). The eucalyptus open-source cloud-computing system. In Cluster
Computing and the Grid, 2009. CCGRID ’09. 9th IEEE/ACM International Symposium
on, pages 124–131.

[64] Open HUB (2015). Linux Kernel. http://goo.gl/YYmmyo. Open HUB [Online; ac-
cessed 13-April-2015].

[65] Payne, B. D., Carbone, M., and Lee, W. (2007). Secure and flexible monitoring of
virtual machines. Computer Security Applications Conference, Annual, 0:385–397.

[66] Perrig, A. (2010). A clean-slate design for the next-generation secure internet (lecture
notes).

[67] Red Hat (2014a). libvirt: Virtualization API.

[68] Red Hat (2014b). Linux Kernel Based Virtual Machine.

[69] Regenscheid, A. and Scarfone, K. (2011). SP 800-155. BIOS Integrity Measure-
ment Guidelines (draft). Technical report, National Institute of Standards & Technology,
Gaithersburg, MD, United States.

[70] Rivest, R. L., Shamir, A., and Adleman, L. (1978). A method for obtaining digital
signatures and public-key cryptosystems. Commun. ACM, 21(2):120–126.

[71] Rocha, F., Abreu, S., and Correia, M. (2011). The final frontier: Confidentiality and
privacy in the cloud. Computer, 44:44–50.

[72] Rocha, F., Abreu, S., and Correia, M. (2013a). The Next Frontier: Managing Data
Confidentiality and Integrity in the Cloud. IEEE Computer Society Press.

http://goo.gl/xPfpTH
http://goo.gl/YYmmyo

142 References

[73] Rocha, F. and Correia, M. (2011). Lucy in the sky without diamonds: Stealing confi-
dential data in the cloud. In Proceedings of the 1st International Workshop on Depend-
ability of Clouds, Data Centers and Virtual Computing Environments, DSNW ’11, Hong
Kong.

[74] Rocha, F., Gross, T., and van Moorsel, A. (2013b). Defense-in-depth against malicious
insiders in the cloud. In IEEE International Conference on Cloud Engineering 2013, San
Francisco, USA.

[75] RSA Laboratories (2002). PKCS no.1 v2.1: RSA Cryptography Standard.

[76] Sailer, R., Jaeger, T., Valdez, E., Caceres, R., Perez, R., Berger, S., Griffin, J. L.,
and Doorn, Leendert van (2005). Building a MAC-Based Security Architecture for the
Xen Open-Source Hypervisor. In Proceedings of the 21st Annual Computer Security
Applications Conference, ACSAC ’05, pages 276–285, Washington, DC, USA. IEEE
Computer Society.

[77] Sailer, R., Zhang, X., Jaeger, T., and van Doorn, Leendert (2004). Design and Imple-
mentation of a TCG-based Integrity Measurement Architecture. In Proceedings of the
13th Conference on USENIX Security Symposium - Volume 13, SSYM’04, pages 16–16,
Berkeley, CA, USA. USENIX Association.

[78] Saltzer, J. and Schroeder, M. (1975). The protection of information in computer sys-
tems. Proceedings of the IEEE, 63(9):1278–1308.

[79] Santos, N., Gummadi, K. P., and Rodrigues, R. (2009). Towards trusted cloud com-
puting. In Proceedings of the 2009 conference on Hot topics in cloud computing, Hot-
Cloud’09, Berkeley, CA, USA. USENIX Association.

[80] Santos, N., Rodrigues, R., Gummadi, K. P., and Saroiu, S. (2012). Policy-sealed
data: a new abstraction for building trusted cloud services. In Proceedings of the 21st
USENIX conference on Security symposium, Security’12, pages 10–10, Berkeley, CA,
USA. USENIX Association.

[81] Scarfone, K. A., Souppaya, M. P., and Hoffman, P. (2011). SP 800-125. Guide to
Security for Full Virtualization Technologies. Technical report, National Institute of
Standards and Technology, Gaithersburg, MD, United States.

[82] Schneier, B. (1993). Applied Cryptography: Protocols, Algorithms, and Source Code
in C. John Wiley & Sons, Inc., New York, NY, USA.

[83] Seshadri, A., Luk, M., Qu, N., and Perrig, A. (2007). SecVisor: A Tiny Hypervisor to
Provide Lifetime Kernel Code Integrity for Commodity OSes. In Proceedings of Twenty-
first ACM SIGOPS Symposium on Operating Systems Principles, SOSP ’07, pages 335–
350, New York, NY, USA. ACM.

[84] Srivastava, A. and Giffin, J. (2008). Tamper-resistant, application-aware blocking of
malicious network connections. In Proceedings of the 11th International Symposium on
Recent Advances in Intrusion Detection, RAID ’08, pages 39–58, Berlin, Heidelberg.
Springer-Verlag.

References 143

[85] Srivastava, A., Raj, H., Giffin, J., and England, P. (2012). Trusted VM snapshots in
untrusted cloud infrastructures. In Proceedings of the 15th international conference on
Research in Attacks, Intrusions, and Defenses, RAID’12, pages 1–21, Berlin, Heidelberg.
Springer-Verlag.

[86] Stallings, W. (2010a). Cryptography and Network Security: Principles and Practice.
Prentice Hall Press, Upper Saddle River, NJ, USA, 5th edition.

[87] Stallings, W. (2010b). Network Security Essentials: Applications and Standards. Pren-
tice Hall Press, Upper Saddle River, NJ, USA, 4th edition.

[88] Stanley R. Ames Jr (1981). Security Kernels: A Solution or a problem? In Proceedings
of the IEEE Symposium on Security and Privacy.

[89] Stefanov, E., van Dijk, M., Juels, A., and Oprea, A. (2012). Iris: a scalable cloud
file system with efficient integrity checks. In Proceedings of the 28th Annual Computer
Security Applications Conference, ACSAC ’12, pages 229–238, New York, NY, USA.
ACM.

[90] Steinberg, U. and Kauer, B. (2010). NOVA: a microhypervisor-based secure virtualiza-
tion architecture. In Proceedings of the 5th European conference on Computer systems,
EuroSys ’10, pages 209–222, New York, NY, USA. ACM.

[91] Strongin, G. (2005). Trusted Computing Using AMD "Pacifica" and "Presidio" Secure
Virtual Machine Technology. Inf. Secur. Tech. Rep., 10(2):120–132.

[92] Tal Garfinkel and Mendel Rosenblum (2003). A Virtual Machine Introspection Based
Architecture for Intrusion Detection. In In Proc. Network and Distributed Systems Secu-
rity Symposium, pages 191–206.

[93] Tasker, P. S. (1981). Trusted computer systems. In Proceedings of the IEEE Sympo-
sium on Security and Privacy.

[94] Trusted Computing Group (2007a). TCG Mobile Reference Architecture.

[95] Trusted Computing Group (2007b). Trusted Computing Group - TCG Architecture
Overview, Version 1.4.

[96] Trusted Computing Group (2011). Trusted Computing Group - TPM Main Specifica-
tion Level 2 Version 1.2, Revision 116: Part 3 - Commands.

[97] Trusted Computing Group (2014a). Trusted Computing Group - About TCG.

[98] Trusted Computing Group (2014b). Trusted Computing Group - Developers - FAQ.

[99] Uhlig, R., Neiger, G., Rodgers, D., Santoni, A. L., Martins, F. C. M., Anderson, A. V.,
Bennett, S. M., Kagi, A., Leung, F. H., and Smith, L. (2005). Intel virtualization tech-
nology. Computer, 38(5):48–56.

[100] Van Dijk, M. and Juels, A. (2010). On the impossibility of cryptography alone for
privacy-preserving cloud computing. In Proceedings of the 5th USENIX conference on
Hot topics in security, HotSec’10, pages 1–8, Berkeley, CA, USA. USENIX Association.

144 References

[101] Vasudevan, A., McCune, J. M., Qu, N., van Doorn, Leendert, and Perrig, A. (2010).
Requirements for an Integrity-protected Hypervisor on the x86 Hardware Virtualized Ar-
chitecture. In Proceedings of the 3rd International Conference on Trust and Trustworthy
Computing, TRUST’10, pages 141–165, Berlin, Heidelberg. Springer-Verlag.

[102] VMWare (2007). Understanding Full Virtualization, Paravirtualization, and Hard-
ware Assist. http://goo.gl/kfREyp. VMWare white paper. [Online; access 13-April-
2015].

[103] Wallom, D., Turilli, M., Taylor, G., Hargreaves, N., Martin, A., Raun, A., and
McMoran, A. (2011). myTrustedCloud: Trusted Cloud Infrastructure for Security-
critical Computation and Data Managment. In Cloud Computing Technology and Science
(CloudCom), 2011 IEEE Third International Conference on, pages 247–254.

[104] Whitaker, A., Shaw, M., and Gribble, S. (2002). Denali: Lightweight Virtual Ma-
chines for Distributed and Networked Applications. In Proceedings of the 2002 USENIX
Annual Technical Conference.

[105] Xen Project (2014). Xen Project Software Overview. http://goo.gl/yTaLaA.

[106] Zhang, F., Chen, J., Chen, H., and Zang, B. (2011). Cloudvisor: retrofitting protection
of virtual machines in multi-tenant cloud with nested virtualization. In Proceedings of
the Twenty-Third ACM Symposium on Operating Systems Principles, SOSP ’11, pages
203–216, New York, NY, USA. ACM.

[107] Zhang, X., McIntosh, S., Rohatgi, P., and Griffin, J. L. (2007). XenSocket: A High-
throughput Interdomain Transport for Virtual Machines. In Proceedings of the ACM/I-
FIP/USENIX 2007 International Conference on Middleware, Middleware ’07, pages
184–203, New York, NY, USA. Springer-Verlag New York, Inc.

[108] Zhang, Y., Juels, A., Reiter, M. K., and Ristenpart, T. (2012). Cross-VM side chan-
nels and their use to extract private keys. In Proceedings of the 2012 ACM conference on
Computer and communications security, CCS ’12, pages 305–316, New York, NY, USA.
ACM.

http://goo.gl/kfREyp
http://goo.gl/yTaLaA

	Contents
	List of Figures
	1 Introduction
	1.1 Aim and Objectives
	1.2 Thesis Contributions
	1.3 Publication History

	2 Background
	2.1 Security Principles
	2.1.1 Basic Requirements
	2.1.2 Design
	2.1.3 Approaches

	2.2 Cryptography
	2.2.1 Hash Function
	2.2.2 Public-Key Cryptography

	2.3 Virtualization
	2.3.1 Full Virtualization - Binary Translation
	2.3.2 Paravirtualization
	2.3.3 Hardware-Assisted Virtualization
	2.3.4 Guest OS Isolation
	2.3.5 Virtual Machine Introspection

	2.4 Cloud Computing
	2.4.1 Entities
	2.4.2 Essential Characteristics
	2.4.3 Deployment Models
	2.4.4 Service Models

	2.5 Trustworthy Computing
	2.5.1 Trusted Platform Module
	2.5.2 TPM Functionality

	3 Literature Review of Virtualization and Security
	3.1 Adversary Model
	3.2 Cryptography-centred Solutions
	3.3 Virtualization-centered Solutions
	3.3.1 SecVisor
	3.3.2 HyperShot
	3.3.3 Dom0 Disaggregation
	3.3.4 NOVA: a microhypervisor architecture
	3.3.5 sHype Hypervisor
	3.3.6 CloudVisor
	3.3.7 Xoar
	3.3.8 VMGuard
	3.3.9 Min-V
	3.3.10 Summary

	3.4 Hardware-centred Solutions
	3.4.1 Terra
	3.4.2 Trusted Virtual Datacenters (TVDc)
	3.4.3 Private Virtual Infrastructure (PVI)
	3.4.4 NoHype
	3.4.5 Trusted Cloud Computing Platform (TCCP)
	3.4.6 Excalibur
	3.4.7 TrustVisor
	3.4.8 myTrustedCloud
	3.4.9 Strongly Isolated Computing Environment (SICE)
	3.4.10 Summary

	3.5 Conclusions

	4 Security Design Flaw in Current Virtual Machine Monitors
	4.1 Adversary Model
	4.2 Attack Concept
	4.2.1 RSA Key Structure in Memory

	4.3 Virtual Machine Introspection Library
	4.3.1 Obtaining Virtual Memory Areas

	4.4 Xen Hypervisor
	4.4.1 Inter-Virtual Machine Communication
	4.4.2 Test Environment
	4.4.3 Memory Confidentiality and Integrity
	4.4.4 Conclusions

	4.5 Linux KVM
	4.5.1 Test Environment
	4.5.2 Memory confidentiality and Integrity
	4.5.3 Conclusions

	4.6 VMWare ESXi
	4.6.1 Test Environment
	4.6.2 Memory Confidentiality and Integrity
	4.6.3 Conclusions

	4.7 Related Approaches
	4.8 Conclusions

	5 Lightweight Mandatory Memory Access Control (LMMAC)
	5.1 Virtual Memory
	5.1.1 Paging
	5.1.2 Memory Virtualization

	5.2 Privilege Levels
	5.2.1 Privilege Levels and Virtualization

	5.3 Mandatory Memory Access Control: Single Page
	5.3.1 Test Environment
	5.3.2 Secure Inter-Virtual Machine Communication

	5.4 Lightweight Mandatory Memory Access Control
	5.4.1 Security Analysis
	5.4.2 Memory Performance

	5.5 Related Approaches
	5.6 Limitations

	6 Trustworthy Cloud Computing Architecture (TCCA)
	6.1 Cloud Server Components
	6.2 Architecture Requirements
	6.3 Cloud Platform Trustworthiness
	6.3.1 Trusted Virtualization Environment
	6.3.2 Critical Management Operations

	6.4 Related Approaches
	6.5 Limitations

	7 Conclusions
	7.1 Summary of Contributions
	7.2 Future Work
	7.2.1 Further Reductions to the Trusted Computing Base
	7.2.2 Uniqueness of Software Agents
	7.2.3 Monitoring Virtual Machines
	7.2.4 Managing Golden Integrity Measurements
	7.2.5 Encrypt-on-Save Data

	References

