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Abstract 

 

The denitrifying bacterium strain HxN1 converts hexane and fumarate to 4-

methyloctanyl-CoA. It was proposed that an initial adduct derived from fumarate 

and the hex-2-yl radical is converted to a CoA-thioester, (1'-methylpentyl)-

succinyl-CoA 1, which rearranges to (2-methylhexyl)malonyl-CoA 2 by a 

mechanism similar to that of coenzyme B12-dependent radical enzyme 

methylmalonyl-CoA mutase. Decarboxylation of (2-methylhexyl)malonyl-CoA 

affords 4-methyloctanyl-CoA 3:  

 

To explore the stereochemistry of the mechanism of hexane degradation we 

have synthesised hexanes specifically labelled with deuterium: (2R,5R)-2,5-

dideuteriohexane, (2S,5S)-2,5-dideuteriohexane, (2R,5S)-2,5-dideuteriohexane, 

2,2,5,5-tetradeuteriohexane and 2,2-dideuteriohexane. This was achieved by 

tosylation of the relevant diol followed by reduction using LiAl2H4 as shown in 

example below: 

 

 

 

Analysis of products from the action of HxN1 on these labelled hexanes showed 

that the pro-S hydrogen is abstracted from C-2 of hexane with a primary kinetic 

isotope effect of ca. 3:  

 

(i) p-toluenesulfonyl chloride, pyridine in dichloromethane, 0 °C, 72 h; (Ts = p-toluenesulfonyl); (ii) 

LiAl
2
H4, tetraglyme, 120 °C, 2 h. 
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To elucidate the configuration at the newly formed stereocenters, all four 

stereoisomers of (1-methylpentyl)succinate were synthesised as shown below, 

in order to use them as standards for comparison with metabolites from strain 

HxN1.  

 

 

Comparison using gas chromatography (GC) showed that, anaerobic growth of 

the bacterium strain HxN1 with n-hexane gives nearly equal amounts of 

(2R,1′R)- and (2S,1′R)-(1-methylpentyl)succinate, which are formed by the 

radical addition of the hydrocarbon to fumarate. As a result of these 

stereochemical studies, a new concerted mechanism has been postulated for 

the enzymatic reaction combining hexane with fumarate.  

 

The anaerobic degradation pathways of the environmentally relevant polycyclic 

aromatic hydrocarbons are largely unknown and therefore the final part of this 

thesis describes a study of the enzymatic de-aromatisation reactions involved in 

the degradation of naphthalene by the sulfate-reducing enrichment culture N47. 

This study required the synthesis of 1,4,4a,5,6,7,8,8a-octahydronaphthalene-2-

carboxylic acid and 3,4,4a,5,6,7,8,8a-octahydronaphthalene-2-carboxylic acid, 

in order to check whether these compounds are intermediates in the 

degradation of naphthalene. Synthesis of these compounds was achieved using 

the method shown below: 

 

 

(i) H2SO4, MeOH, (ii) NaCN, H2O, RT, 5 h; (iii) 2,6-lutidine, SOCl2, Et2O, 60 °C, 12 h; (iv) 

H2SO4, H2O, 110 °C, 24 h. 
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HPLC, GCMS, NMR and UV/vis spectrum analysis suggested that 5,6,7,8-
tetrahydro-2-NCoA (THNCoA) is reduced by two electrons rather than by 
four electrons as suggested, therefore affording one of the possible hexahydro-
2-naphthoyl-CoA (HHNCoA) isomers: 
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1.1 INTRODUCTION TO ALKANE OXIDATION  

 

Alkanes are major constituents of crude oil but can also be produced by many 

living organisms where they can be serve as chemo-attractants or protecting 

agents against water loss, insects and pathogens. They are present in most 

soils and waters, but maintain a relatively constant concentration as a result of 

ongoing biodegradation processes. 

Alkanes are reduced molecules with a high energy and carbon content and 

therefore can be very good carbon and energy sources for microorganisms 

which can metabolise them. However, the metabolism of these compounds 

poses two problems: 

1) They are very hydrophobic and their water solubility is extremely low 

which creates a problem for their uptake. 

2) They are chemically inert compounds and must be activated before they 

can be metabolised, which requires a lot of energy. 

Despite these problems, many microorganisms (bacteria, fungi and yeast) have 

acquired the ability to metabolise alkanes and use them as a carbon source.16 A 

typical soil, sand or ocean sediment contains 104 - 106 hydrocarbon degrading 

microorganisms per gram,17 but this number can increase significantly in oil-

polluted sites.18 

Many of the alkane degraders are bacteria with a very adaptable mechanism 

and therefore alkanes are among many other substrates which can be 

metabolised and can serve as carbon sources.19 However, in the past few years 

some bacterial species have been characterised which can specifically degrade 

alkanes. They are called hydrocarbonoclastic bacteria and play a key role in the 

removal of hydrocarbons from polluted environments.20 One example is 

Alcanivorax borkumensis, a marine bacterium that can metabolise linear and 

branched alkanes, but is unable to use aromatic hydrocarbons, sugars, amino 

acids, fatty acids and most other common substrates as their carbon source.21 

They are present in non-polluted sea water in low numbers, probably using the 

alkanes produced by algae and other sea organisms as substrates but become 

predominant after a spill of crude oil. Therefore they are believed to play a key 
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role in the bioremediation of oil spills worldwide.22 Hydrocarbonoclastic alkane-

degrading bacteria of the genera Thalassolituus23, Oleiphilus24 and Oleispira25 

also play an important role in the biodegradation of oil spills in several 

environments.7d, 11 Alkanes can be metabolised aerobically or anaerobically. 

The pathways and the enzymology for both types of degradation are described 

below. 

 

1.2 AEROBIC DEGRADATION OF ALKANES 

 

The water solubility of n-alkanes decreases exponentially as their molecular 

weight increases (Table 1).26 The exact way in which alkanes enter a cell is 

unclear, but the mechanism differs depending on the microorganism 

considered, the molecular weight of the alkane and the characteristics of the 

environment.16b The direct uptake of alkane molecules from water can only be 

considered for lower molecular weight alkanes which are sufficiently soluble in 

water to assure a mass transfer. For longer chain n-alkanes, microorganisms 

may uptake these compounds either via a hydrophobic cell surface or by a 

surfactant-facilitated access. 

 

 Table 1 - Water solubility of n-alkanes (at 25 ˚C) 

n-Alkane Carbon atoms Molecular weight (g/mol) 
Solubility 

(mol/dm3) 

Propane 3 44.1 5 × 10-3 

Hexane 6 86.2 1.4 × 10-4 

Nonane 9 128.3 10-6 

Dodecane 12 170.3 2 × 10-8 

Hexadecane 16 226.4 2 × 10-10 

Eicosane 20 282.6 10-12 

Hexacosane 26 366.7 4 × 10-16 

 

Most of the bacteria which are able to degrade n-alkanes produce surfactants. 

Biosurfactants are produced by a variety of oil-degrading microorganisms. 

These biosurfactants can be of low molecular weight, acting by decreasing the 

oil–water interfacial tension, or high molecular weight acting as biodispersants 

by preventing coalescence of oil drops in water. For example, alasan, produced 

by a strain of Acinetobacter radioresistens, is a complex of an anionic 

polysaccharide and protein with a molecular weight of approximately 106 Da. 
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The polysaccharide component of alasan is unusual in that it contains 

covalently bound alanine. The protein is highly effective in stabilising oil-in-water 

emulsions and in solubilising hydrocarbons, including polycyclic aromatic 

hydrocarbons.27  

 

1.2.1 Pathways for aerobic degradation of n-alkanes 

 

Aerobic degradation of n-alkanes in most cases starts by the oxidation of a 

terminal methyl group to a primary alcohol, which is further oxidised to the 

corresponding aldehyde, and finally converted into a fatty acid. Fatty acids are 

conjugated to coenzyme A and further processed by -oxidation to generate 

acetyl-CoA. Subterminal oxidation also occurs, but is less common with 

microorganisms (Scheme 1).16b  

 

 

 

 

Scheme 1 – Pathways for aerobic degradation of n-alkanes. 
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While oxidation of fatty alcohols and fatty acids is common among 

microorganisms, activation of alkanes requires specific enzymes which are 

much less common. The initial terminal hydroxylation of n-alkanes can be 

carried out by enzymes belonging to different families (Table 2).16a   

 

 Table 2 – Alkane oxidising enzyme classes 

Enzyme class Characteristics Substrate length Host 

MMO, methane 

monooxygenase 

α 2 β 2 γ 2 hydroxylase; 

dinuclear iron reductase, 

[2Fe–2S], FAD, NADH 

regulatory subunit 

C1 Bacteria 

PRM, propane 

monooxygenase 

Non-heme iron 

monooxygenase similar 

to sMMO 

C3 Bacteria 

sBMO, butane 

monooxygenase 

Non-heme iron 

monooxygenase similar 

to sMMO 

C2 - C9 Bacteria 

pBMO, butane 

monooxygenase 

Copper-containing 

monooxygenase 

similar to pMMO 

C2 - C9 Bacteria 

CYP153 
Soluble cytochrome 

P450 monooxygenase 
C5 - C12 Bacteria 

CYP52 

Membrane-bound 

cytochrome P450 

monooxygenase 

C10 - C16 Yeasts 

AlkB-related 
Non-heme iron 

monooxygenase 

C3 - C13 or C10 –

C20 
Bacteria 

AlmA 
Flavin-binding 

monooxygenase 
C20 – C36 Bacteria 

LadA 

Thermophilic flavin-

dependent 

monooxygenase 

C10 – C30 Bacteria 

Dioxygenase 
Copper flavin-dependent 

dioxygenase 
C10 – C30 Bacteria 

The substrate range is approximate. 

 

 

Microorganisms degrading short-chain-length alkanes (C2 - C4) have enzymes 

associated with methane monooxygenases. Strains degrading medium-chain-

length alkanes (C5 - C11), or long-chain-length alkanes (>C12), commonly 

contain integral membrane non-heme iron monooxygenases related to the 

Pseudomonas putida GPo1 AlkB alkane hydroxylase. However, some strains 
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contain alkane hydroxylating enzymes that belong to a family of soluble 

cytochrome P450s (CYP450s) and that are active against C5 – C11 alkanes. 

Finally, several strains which are able to oxidise alkanes of more than 18 

carbon atoms contain alkane hydroxylases that seem to be unrelated to the 

former ones and that only recently have started to be characterised. Several 

yeasts can also oxidise alkanes as well with enzymes belonging to the family of 

microsomal CYP450 monooxygenases. Therefore, the role of yeasts in the 

biodegradation of alkanes may be more significant than previously thought.28 

 

1.2.2 Alkane hydroxylases related to methane monooxygenase 

 

The enzymes that initially oxidise short chain alkanes are related to methane 

monooxygenases. There are two different forms of methane monooxygenase. 

All methanotrophs produce a membrane-bound form of methane 

monooxygenase (pMMO) which oxidises a narrow range of alkanes, while some 

others additionally produce a soluble form of methane monooxygenase (sMMO) 

that is active on a broader range of substrates and oxidises C1 – C7 alkanes to 

the corresponding alcohols.29 

 

The catalytic iron core of the soluble methane monooxygenase (MMO) has the 

unique ability to hydroxylate methane: 

 

CH4 + O2 + 2e- + 2H+               CH3OH + H2O 

 

Quantum chemical calculations and crystallographic studies have provided the 

mechanism for the reaction sequence for the activation of methane by MMO 

leading to formation of methanol (Scheme 2).30 As shown in Fig. 2 the starting 

cluster 1 binds and activates dioxygen to form the superoxo species 2. As the 

O-O bond dissociates, one of the oxygens is bridge bonded but the other 

oxygen is only bound to the iron (3). Once the O-O bond is broken, it gives the 

key radical species (4) which is in equilibrium with 4ʼ. The oxy radical 4 

abstracts a hydrogen atom from methane to form Fe(IV)-OH group (5) and a 

methyl radical. The methyl radical recombines with the Fe(IV) centre to give 

intermediate 6, which has a weak Fe-C bond. The alkyl complex formed can 
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now lose methanol to form intermediate 7. This latter species is then reduced to 

regenerate intermediate 1, which reacts with dioxygen.   

 

 

 

 

1.2.3 The AlkB family of alkane hydroxylases 

 

The most extensively characterised alkane degradation pathway is from the 

AlkB family, which have a non-heme diiron monooxygenase membrane. AlkB 

requires two soluble electron transfer proteins named rubredoxin and 

rubredoxin reductase. Rubredoxin reductase, via its cofactor FAD, transfers 

electrons from NADH to the rubredoxin, which is turn transfers electrons to AlkB 

(Fig. 1).31  

The diiron cluster allows the oxygen-dependent activation of the alkane 

molecule through a substrate radical intermediate. One of the oxygen atoms of 

dioxygen is transferred to the terminal methyl group of alkane, while the other 

oxygen atom is reduced to H2O by electrons transferred by the rubredoxin. 

Oxidation is both regio- and stereo-specific. 

More than sixty AlkB homologs are known to date in both gram-positive and 

gram-negative microorganisms. Only a few of these enzymes oxidise C3 - C13 

alkanes, whereas most members of this family prefers alkanes larger than 

C10.
32  

 

Scheme 2 – Mechanism of activation of methane by MMO. 
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1.2.4 Cytochrome P450 alkane hydroxylases 

CYP450s are heme-thiolate proteins that catalyse the oxygenation of a large 

number of compounds. They are ubiquitous among all kingdoms of life and can 

be grouped in more than 100 families. Almost all eukaryotic P450s are 

membrane-bound (CYP52) enzymes, while most prokaryotic P450s are soluble 

(CYP153) and require the presence of a ferredoxin and ferredoxin reductase 

that transfers electrons from NAD(P)H to the cytochrome (Fig. 1).33 CYP450s 

from Mycobacterium sp. have been purified and shown to hydroxylate C6-C11 

alkanes to 1-alkanols with high affinity and regioselectivity.34  

As mentioned, several yeasts can assimilate alkanes as well. The enzymes 

involved are membrane bound cytochrome P450s of the CYP52 family and 

receive electrons from NADPH via flavin adenine dinucleotide (FAD)- and flavin 

mononucleotide (FMN)-containing reductases.35 

1.2.5 Alkane hydroxylases for long chain n-alkanes 

Several bacterial strains have been reported to oxidise alkanes larger than C20. 

The enzymes responsible for the oxidation of such alkanes, which are solid at 

room temperature, are still poorly characterised.16b In Acinetobacter sp. M1, 

which can grow on C13 – C44 alkanes, several alkane oxidising enzymes have 

R-CH3 
O2 

R-CH2OH 
H2O 

Rub 

Out 

NAD(P)H + H+  

In 

RubR 

NAD(P)+  

AH 

R-CH3 R-CH2OH 

Fdx 

FdxR 

Out 

NAD(P)H + H+  

In 

NAD(P)+  

CYP450 

H2O O2 

 Figure 1 – Oxidation of n-alkane hydroxylases belonging to the AlkB 

family (left) or to the bacterial cytochrome P450 family (right). AH, 

membrane bound alkane hydroxylase; Rub, rubredoxin; RubR, rubredoxin 

reductase; CYP450, soluble cytochrome P450; Fdx, ferredoxin; FdxR, 

ferredoxin reductase. The blue bar represents the cytoplasmic membrane; 

the phospholipid layer facing the cytoplasm is marked as ‘’In’’. 
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been detected. Two of them, named AlkMa and AlkMb, are related to the AlkB 

family and are membrane bound.36 A third enzyme has been reported that is 

soluble, requires Cu2+, does not receive electrons from NADH and is therefore 

clearly unrelated to the AlkB family of hydroxylases (Maeng et al., 1996). This 

enzyme has been proposed to be a dioxygenase which oxidises C10 – C30 

alkanes and generates n-alkyl hydroperoxides that are converted to the 

corresponding aldehyde.  

A different Acinetobacter strain, named DSM 17874, also contains at least three 

alkane oxidizing enzymes. Two of them are AlkB paralogs similar to the AlkMa 

and AlkMb enzymes described above, and oxidise alkanes in the range of C10 – 

C20 (Throne-Holst et al., 2006). A third enzyme has been reported that oxidises 

alkanes in the range of C20 to > C32. Its gene, designated almA, has been 

identified and codes for a flavin-binding monooxygenase.37 Genes homologous 

to almA were identified in several long-chain n-alkane degrading strains. 

A different long-chain alkane hydroxylase has been characterized in the 

thermophilic bacterium Geobacillus thermodenitrificans NG80-2. This enzyme is 

known as LadA and oxidises C15–C36 alkanes, generating the corresponding 

primary alcohols. Its crystal structure has been solved, revealing that it belongs 

to the bacterial luciferase family of proteins, which are two-component flavin-

dependent oxygenases. LadA is believed to oxidise alkanes by a mechanism 

similar to that of other flavoprotein monooxygenases.38 

Several bacterial strains can degrade > C20 alkanes using enzyme systems that 

have still not been characterised. It is likely that new enzyme classes will be 

found in the near future responsible for the oxidation of these high molecular 

weight alkanes. 

Some bacterial strains contain only one alkane hydroxylase. However, it is more 

common for these strains to contain more than one alkane oxidation system 

and in most cases they have different substrate ranges. 

1.2.6 Metabolism of the alcohols and aldehydes derived from the oxidation 

of alkanes 

The primary fatty alcohols generated by terminal oxidation of alkanes are further 

oxidised to aldehydes by an alcohol dehydrogenase (ADH). Subterminal 
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alcohols are respectively converted to ketones by alcohol dehydrogenases. 

There are several types of ADHs. Some use NAD(P)+ as electron acceptor, 

while others do not depend on NAD(P)+ and use electron acceptors such as 

cytochromes or ubiquinone. Most NAD(P)+-independent ADHs contain 

pyrroloquinoline quinone and are commonly named quinoprotein ADHs. 

The fatty acids generated by oxidation of the aldehydes are further metabolised 

by -oxidation, generating an acyl-CoA that enters the tricarboxylic acid cycle. 

However, when the carbon source is in excess relative to nitrogen, many 

bacteria use part of the carbon to generate storage materials such as 

triacylglycerols, wax esters, poly(hydroxybutyrate) or poly(3-

hydroxyalkanoates), which accumulate as lipid bodies.39 These compounds can 

serve as carbon and energy sources later during starvation periods. 

 

1.3 ANAEROBIC DEGRADATION OF ALKANES 

 

Bacteria and fungi that utilise hydrocarbons in the presence of dioxygen have 

been known since the beginning of the 20th century. The fact that dioxygen is 

not available in all the environments where hydrocarbons occur (e.g. in deep 

sediments and in oil reservoirs) has repeatedly evoked the question as to 

whether or not the biodegradation of hydrocarbons is possible under anoxic 

conditions and if so to what extent. It was not until the late 1980s that novel 

types of microorganisms were definitively shown to degrade hydrocarbons 

under strictly anoxic conditions (Fig. 2).40 Phototrophy is the process by which 

organisms trap light energy (photons) and store it as chemical energy in the 

form of ATP and/or reducing power in NADPH. Phototrophic anoxygenic is the 

photosynthetic process where light energy is captured and converted to ATP, 

without the production of dioxygen. Water is therefore not used as an electron 

donor. There are several groups of bacteria that undergo anoxygenic 

photosynthesis: green sulfur bacteria, green and red filamentous anoxygenic 

phototrophs (FAPs), phototrophic purple bacteria, phototrophic acidobacteria, 

and phototrophic heliobacteria.41 

Chemotrophs are organisms that obtain energy by the oxidation of electron 

donors in their environments. These electron donors can be organic 
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(chemoorganotrophs) or inorganic (chemolithotrophs). The chemotroph 

designation is in contrast to phototrophs, which utilise solar energy.42 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From a thermodynamic point of view, anaerobic biodegradation of alkanes 

under nitrate, sulfidogenic, and methanogenic conditions is possible43 (see 

Table 3 with hexadecane as a model substrate). As of yet no studies of 

degradation of alkanes under iron-reducing conditions has been reported. 

Hydrocarbons 

CnHm 

H2O 

CO2 

CO2 

CO2 

CO2 

CO2 

H2O 

H2O 

H2O 

H2O 

O2 

Cell 

mass  

NO3
- 

Cell 

mass  

Fe(I

II) 

Cell 

mass  

SO4
2- 

Cell 

mass  

Cell 

mass  

Cell 

mass  

Ligh

t  

Chemotrophic 

anaerobic 

Phototrophic 

anoxygenic 

Chemotrophic 

aerobic 

Figure 2 – Experimentally verified possibilities for the microbial utilisation of 
hydrocarbons. In all chemotrophic reactions, a part of the hydrocarbon is 
oxidised for energy conservation (catabolism) and another part is 
assimilated into cell mass. In aerobic oxidation of hydrocarbons dioxygen is 
not only the terminal electron acceptor, but is also needed for substrate 
activation (oxygenase reactions, also see Table 3).  
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 Table 3 - Gibbs free energies for hexadecane (C16H34) degradation coupled 

to selected redox reactions at standard conditions (298 K) at pH=7. 

Electron 

acceptor 

(ox/red) 

Overall energetic equation 
ΔG° 

(KJ/mol)a 

ΔG°ʼ 

(KJ/mol)b 

O2/H2O
c C16H34 + 24.5O2 → 16HCO3

- + H2O + 16H+ -9677 -10316 

NO3
-/N2 

C16H34 + 19.6NO3
- + 3.6H+ → 16HCO3

- + 9.8N2 + 

10.8H2O 
-9819 -9676 

Fe3+/Fe2+ 
C16H34 +

 98Fe3+ + 48H2O → 16HCO3
- + 98Fe2+ + 

114H+ 
-5336 -9891 

SO4
2-/H2S 

C16H34 + 12.25SO4
2- + 8.5H+ →  16HCO3

- + 

12.25H2S + H2O 
-897 -557 

CO3
-/CH4 

C16H34 + 11.25H2O → 3.75HCO3
- + 12.25CH4 + 

3.75H+ 
-204 -353 

a) ΔG°: standard Gibbs free energy: reactants and products at 1 M concentration 

and gases at a partial pressure of 1 atm. Hexadecane (C16H34) was chosen as the 

model substrate for free energy calculations. Gibbs free energy of formation for n-

hexadecane in the liquid state was taken from Helgeson et al. (1998).43a For all other 

compounds the data were taken from Thauer et al. (1977)43b and Hanselmann 

(1991).43c Methane, hydrogen, nitrogen and oxygen are in the gaseous phase at 

partial pressures of 1 atm. All other compounds are in the aqueous phase. 

b) ΔG°ʼ = ΔG° + m × 2.303RTlog 10-7 (m is the net number of protons formed in the 

equation). 

c) The reaction with dioxygen is shown for comparison. 

 

1.3.1 Methanogenesis 

This is referred to as the biological formation of methane that is carried out by 

strictly anaerobic microorganisms, Methanogenic degradation is the least 

energetically favourable process when compared to the other anaerobic 

respirations (Table 3). The main route whereby alkanes are converted to 

methane is assumed to involve syntrophic alkane conversion to acetate and 

hydrogen linked to syntrophic acetate oxidation to H2 and CO2 and coupled with 

methanogenesis from CO2 reduction (Fig. 3), which is known as the MADCOR 

process.44 So far no methanogenic isolates have been obtained and only a few 

studies have provided the phylogeny of microorganisms potentially involved in 

this syntrophic association. In the ditch mud methanogenic enrichment, it is 

assumed that the community is essentially composed of: (i) syntrophic proton 

reducing acetogenic bacteria (Syntrophus spp.) which decompose the alkane to 
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acetate and H2; (ii) a group of archaea (Methanosaeta) which form methane 

and CO2 from acetate; and (iii) another group of archaea (Metanospirillum and 

Methanoculleus) converting CO2 and H2 to methane.45 

 

 

 

 

 

 

 

 

 

 

 

The majority of biological methanogenesis (about 70%) originates from 

conversion of the methyl group of acetate to methane; However, only two 

genera are known, Methanosarcina and Methanosaeta, which utilise acetate as 

an energy source (Fig. 3).46 

 

As described in Scheme 3 the Methanosarcina utilise a two step pathway to fix 

acetate to acetyl-CoA, while the Methanosaeta utilise only one step. The 

pathways converge at acetyl-CoA. The solid lines represent steps where bonds 

to acetate carbon (carbon originating at either position) are formed or broken, 

while the dashed lines indicate steps which do not directly involve these carbon 

atoms. Both carbon atoms of acetate are generally conserved; the carboxyl 

position goes to CO2 while the methyl position goes to CH4.  

alkane(aq

) 

acetate(aq) 
Acetoclastic 

methanogenes

is 
Hydrogenotrophic 

methanogenesis 

CO2(aq) 

CO2(aq) 

CO2(aq) 

Total CO2 

CH4(aq) 

CH4(aq) 

CH4(aq) 

Total CH4 

Figure 3 - Model representation of 

MADCOR process, all species are 

assumed to be in aqueous phase 

where they are most available to the 

microorganism.  
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Scheme 3 - Catabolic pathways of aceticlastic methanogens. ATP 

(adenosine triphosphate), PPi (inorganic diphosphate), CoA (coenzyme A), 

H4STP (tetrahydrosarcinapterin), CoM (coenzyme M), and H-S-HTP (N-7-

mercaptoheptanoyl-O-phospho-L-threonine). 
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1.3.2 Nitrate-reducers 

These microorganisms are able to grow under anoxic conditions by coupling 

alkane oxidation to CO2 with NO3
- reduction to N2. Anaerobic degradation of 

alkanes under nitrate-reducing conditions has been regarded as an effective 

method in the bioremediation of crude oil.47  

 

Three of the identified denitrifying isolates which are able to grow under anoxic 

conditions by coupling alkane oxidation to CO2 with NO3
- reduction to N2 are 

strains HxN1, OcN1 and HdN1 (Fig. 4).9 

 

 

 

 

 

 

Oxidation of alkanes with nitrate as electron acceptor under strict exclusion of 

air have been demonstrated in quantitative growth experiments with pure 

cultures. Published enrichment studies, isolation and the comparison of the 

 Figure 4 - Phylogenetic (16S rRNA-based) affiliation of strain HdN1 with 

selected Beta- and Gamma-proteobacteria including other strains able to 

degrade aromatic or saturated petroleum hydrocarbons with nitrate (*). 

Strains able to degrade n-alkanes anaerobically are highlighted in bold; 

occurrence of (1-methylalkyl)succinate formation for alkane activation is 

also indicated (M). Bootstrap values (%; only > 60% shown) were obtained 

after 1000 resamplings. Scale bar, 10% estimated sequence divergence. 
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three mentioned n-alkane-degrading denitrifying bacteria are described and 

summarised below.  
 

1.3.2.1 General growth conditions 

 

According to published results by Ehrenreich et al.9, enrichment cultures (Fig. 6) 

with individual alkanes and crude oil were inoculated with a homogenised 

mixture of sediment samples from ditches in Bremen, Germany (source of 

strains HxN1 and OcN1). The inoculum for the enrichment culture with aliphatic 

mineral oil was activated sludge from the sewage plant in Lintel/Osterholz-

Scharmbeck, Germany (source of strain HdN1).9  

 

Bacteria were grown under strict anoxic conditions in defined bicarbonate/CO2-

buffered media (Fig. 5).48 Traces of dioxygen from air could lead to hydroxyl 

compounds through monooxygenases (which can be further degraded 

anaerobically). Hence, in addition to physical exclusion of air, a reductant 

(‘redox buffer’) was also used. Unlike sulfate-reducing bacteria that form a 

chemical reducing agent, sulfide, nitrate-reducing bacteria do not produce a 

reductant. Addition of sulfide (or other reducing sulfur compounds) is 

inappropriate because it could easily oxidise in by-reactions of the ‘high-

potential’ nitrate reduction pathway or it may inhibit denitrifiers. Hence fresh 

sodium ascorbate49 8 was used in addition to establish reducing conditions 

(ascorbate does not serve as a growth substrate for the presently studied pure 

cultures). The initial pH of the medium was adjusted to 7.1 and 5 mM NaNO3 

was added. Anoxic conditions in enrichment cultures were achieved solely by 

deaeration and flushing with N2/CO2 (90/10, v/v). Alkanes were added to the 

cultures as diluted solutions (0.5–10%, v/v) in 2,2,4,4,6,8,8-heptamethylnonane 

(HMN) 9 as inert carrier phase to avoid toxic effects.  
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1.3.2.2 Quantification of alkane consumption and nitrate reduction 

 

The batches were prepared by autoclaving a defined volume of deaerated HMN 

in a serum-stoppered, crimped vial under nitrogen and subsequently the 

required amount of the filter-sterilised alkane that serves as substrate is 

injected. Aliquots were withdrawn and injected into culture tubes by using 

nitrogen-flushed syringes with plastic piston (without rubber).9  

 

The time course of nitrate consumption during growth of strains HxN1, OcN1 

and HdN1 on alkanes has been measured with hexane, octane and 

hexadecane, respectively, where aliquots were withdrawn during growth from 

the aqueous phase by means of nitrogen-flushed syringes and used for 

subsequent determination of nitrate and nitrite. Separate cultures have also 

used to determine the balance of alkane degradation by strains HxN1 and 

HdN1, each incubated with a low and high amount of the organic substrate 

(Table 4).9  

 

 

 

 

V 

M 

H 

T 

O 

S 

 Figure 5 - Special glass bottle used for anoxic 

enrichment of alkane degrading denitrifying 

bacteria. Bottles were filled with approx. 400 mL 

freshwater sediment (S) and 600 mL mineral 

medium (M). The headspace (H) contained an 

anoxic atmosphere of N2/CO2 (90/10, v/v). 

Stoppers were of butyl rubber. Alkanes were 

added to the cultures as diluted solutions (0.5–

10%, v/v) in 2,2,4,4,6,8,8-heptamethylnonane 

inside a large (inner diameter, 18mm) thin-walled 

(1 mm) silicon tubing (T) sealed at the bottom 

with a glass cap. Collapse of the silicon tubing 

was prevented by an inserted spiral of stainless 

steel. The top of the silicon tubing was connected 

to a glass orifice sealed with a short piece of 

Viton tubing (V) and a glass rod. Withdrawal of 

samples for analyses and release of formed N2 

was achieved via the stopper of the side opening 

(O) using a syringe. 
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 Table 4 - Quantification of alkane consumption and nitrate reduction by strains 
HxN1 and HdN1. 

Exp. 

Alkane 

added 

(mmol) 

Alkane 

used 

(mmol)
a
 

Nitrate 

added 

(mmol) 

Nitrate 

used 

(mmol) 

Nitrite 

formed 

(mmol) 

Cell 

dry 

mass 

(mg) 

Alkane 

dissimi- 

lated 

(mmol)
b
 

Electrons 

from 

alkane 

dissimi-

lated 

(mmol)
c, d

 

Electrons 

used by 

NO3
-
 

reduction 

(mmol)
e
 

 

Strain 

HxN1 
         

Cells with 

small 

amount of 

hexane 

0.10 0.09 1.0 0.56 0.07 4.16 0.07 2.66 2.59 

Cells with 

large 

amount of 

hexane 

0.27 

 
0.18 1.0 1.0 0 9.85 0.14 5.32 5.00 

Cells 

without 

hexane 

0 0 1.0 0.02 0.01 0   0.07 

Cells 

without 

nitrate 

0.27 0.02 0 0 0 0    

Strain 

HdN1 
         

Cells with 

small 

amount of 

hexadecane 

0.10 0.098 3.4 1.0 0 13.0 0.076 7.45 5.00 

Cells with 

large 

amount of 

hexadecane 

0.20 0.174 1.6 1.6 0 21.0 0.139 13.62 8.00 

Cells 

without 

hexadecane 

0 0 1.6 0 0 0   0 

Cells 

without 

nitrate 

0.20 0.003 0 0 0 0   0 
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 Figure 6 - Phase-contrast photomicrographs of isolated denitrifying 

bacteria that can grow anaerobically on alkanes.9 A) Strain HxN1 

grown on hexane (oval-shaped, non-motile cells). B) Strain OcN1 

grown on octane (rod-shaped, motile cells). C) Strain HdN1 grown on 

valerate. D) Strain HdN1 grown on hexadecane (Oval, pleomorphic, 

partly motile cells). with cells accumulated around a droplet of the 

alkane. Bar =10 mm. Cells for micrographs A–C were concentrated by 

centrifugation. 
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For strain HxN1 the isolation of pure cultures is carried out via anoxic, liquid 

dilution series with hexane, cells showed to be 1 - 1.5 1.8 - 2 m in size (Fig. 

6.A) and non motile. Strain OcN1 is isolated via anoxic agar dilutions with 

caproate (hexanoate), cells showed to be 0.5 1 - 2m in size (Fig. 6.B) and 

highly motile. In contrast to strain HxN1, cells of strain OcN1 show a strong 

tendency to adhere to the hydrocarbon phase. Isolation of strain HdN1 is 

carried out via streaking on Gelrite (brand of gelling agent different to agar)  

medium with emulsified hexadecane and later restreaking with valerate 

(pentanoate) in anoxic bottles, which develops colonies of oval cells varying in 

size between 0.51.5 and 2 2.5 m (Fig. 6.C & D). Subsequent studies and 

results suggest that this variation is not due to different types of bacteria, but 

rather that only one type of denitrifying bacterium was isolated that exhibited a 

certain pleomorphism (bacteria that can to alter their shape or size in response 

to environmental conditions). Small cells were often motile and cells grown on 

hexadecane were partly associated with the hydrocarbon phase and often 

contained droplet-like inclusions. 

 

A semilogarithmic plot of growth experiment with strain HxN1, OcN1 and HdN1 

provided an estimate of the shortest initial doubling time. Unlike OcN1 and 

HdN1, strain HxN1 excreted nitrite during growth which was further consumed 

after depletion of nitrate (Fig. 7.A & B). Using these plots anaerobic alkane 

consumption during nitrate reduction and formation of cell mass are measured 

(Table 4). In all cultures, the volume of gas produced per mol of nitrate reduced 

was in good agreement with nitrate reduction to dinitrogen. 
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Using quantitative growth experiments equations for complete oxidation of 

hexane, octane and hexadecane have been determined: 

 

 Figure 7 - Time courses of anaerobic growth of alkane-utilising 

denitrifying bacteria. A) Consumption of nitrate (●), formation of nitrite 

(■) and cell growth (▲) of strain HxN1 in a culture with hexane. B) 

Consumption of nitrate by strain OcN1 (○) and HdN1 (●) growing 

anaerobically with octane and hexadecane, respectively; nitrite was 

not detectable. Reliable monitoring of cell growth of strains OcN1 and 

HdN1 is not possible because cells grew partly in association with the 

alkane phase. 
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C6H14 + 7.6 NO3
- + 1.6 H+ → 6 HCO3

- + 3.8 N2 + 4.8 H2O 

ΔG°ʼ = - 492.8 kJ per mol nitrate 

 

C8H18 + 10 NO3
- + 2 H+ → 8 HCO3

- + 5 N2 + 6 H2O 

ΔG°ʼ = - 493.1 kJ per mol nitrate 

 

C16H34 + 19.6 NO3
- + 3.6 H+ → 16 HCO3

- + 9.8 N2 + 10.8 H2O 

ΔG°ʼ = - 493.7 kJ per mol nitrate 

Further tests have been carried out with strain HdN149 to get a better 

understanding of this isolate. The strain was grown with n-tetradecane and NO3
- 

or NO2
-.49 The cell shape of strain HdN1 has shown to be unusually variable 

and significantly influenced by the organic growth substrate.9 In particular long-

chain alkanes cause swelling of a large fraction of the cells. In such cells, 

spacious inclusions resembling storage compounds could be seen at high 

magnification (Fig 8.A). Cells in alkane cultures tended to grow in close contact 

with the overlying insoluble hydrocarbon phase. The bulk of alkane-grown cells 

was buoyant, possibly due to association with or storage of alkane droplets. 

Alkane storage and buoyancy are features known from aerobic alkane 

degraders.50 

Growth experiments have been carried out separately with n-tetradecane or n-

valerate (n-pentanoate) for strain HdN1. The isolated strain HdN1 was also 

mixed with strain OcN1, and a specific 16S rRNA-targeting fluorescent 

oligonucleotide probe DAPI 10 was applied. Whereas in the pure culture all 

cells exhibited the specific hybridisation signal (Fig 8.B), the mixed culture 

contained in addition the expected non-hybridising cells that exhibited only the 

general fluorescent stain (Fig 8.C). Hence, strain HdN1 is in principle 

distinguishable from contaminants by specific probing.  
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1.3.2.3 Anaerobic growth tests with alkanes and alkanoates 

The capability of strain HdN1 for complete hexadecane oxidation with nitrate 

according to 5 C16H34 + 98 NO3
- +  18 H+ → 80 HCO3

- + 49 N2 + 54 H2O has 

been verified formally with small, precisely quantifiable amounts of alkane.9 In 

all subsequent experiments, significantly higher amounts of alkanes were added 

Figure 8 - Microscopic images of 

strain HdN1. A) Highly variable cell 

forms of strain HdN1 grown 

anaerobically with hexadecane and 

nitrate. Phase-contrast micrographs 

of viable cells. Bar, 5 mm. B) Cells 

from a pure culture of strain HdN1 

hybridised with a specific 16S rRNA-

targeted oligonucleotide probe and 

stained with 4',6-diamidino-2-

phenylindole (DAPI*). The image 

represents an overlay of the probe 

and the DAPI signal. Bar, 5 mm. C) 

Mixed cells of strains HdN1 and 

OcN1 hybridised, stained and 

visualised as in (B). Bar, 5 mm. 

*(DAPI is a fluorescent stain that 

binds strongly to A-T rich regions in 

DNA. It is used extensively in 

fluorescence microscopy. DAPI can 

pass through an intact cell 

membrane therefore it can be used 

to stain both live and fixed cells, 

though it passes through the 

membrane less efficiently in live cells 

and therefore the effectiveness of the 

stain is lower).14 
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than could be oxidised by the electron acceptor (10 mM NO3
-). In this way, a 

large contact area between the insoluble hydrocarbon and the aqueous phase 

was provided which favoured growth, tests have revealed that strain HdN1 

utilised n-alkanes from C6 (n-hexane) to C30 (n-triacontane) as carbon sources 

and electron donors (C6 to C20, C24, C26, C28, C30, C36 and C40 tested). The other 

strains, HxN1 and OcN1, utilise a significantly narrower range of alkanes, which 

was from C6 to C8 (n-octane) and C8 to C12 (n-dodecane) respectively.  

1.3.2.4 Growth tests with different electron acceptors 

All three strains can also grow aerobically with alkanes. Examination of strain 

HdN1 in more detail has revealed that almost the same range of n-alkanes (and 

fatty acids) was oxidised with dioxygen as in anaerobic cultures with NO3
-. Only 

n-hexane has not so far been utilised with dioxygen. To further examine the 

capability for efficient use of NO2
- and N2O, these electron acceptors have been 

tested individually in the absence of NO3
-. 

Growth with alkanes can also occur with added NO2
- (instead of NO3

-), but 

takes a longer time. Surprisingly, strain HdN1 did not grow with alkanes in the 

growth tests with N2O. In accordance with the lack of growth, N2O was not 

consumed (Fig. 9.A, upper curve), and N2 (Fig. 9.C) or CO2 (Fig. 9.E) were not 

formed. In contrast, growth with 1-tetradecanol, 1-hexadecanol or fatty acids 

was possible with added N2O, and consumption of N2O (Fig. 9.B) as well as 

formation of N2 (Fig. 9.D) and CO2 (Fig. 9.F) was obvious. A minor formation of 

N2 from N2O during incubation with hexadecane can be explained by reduction 

with an endogenous electron source in the inoculum. The formation of N2 from 

N2O requires only 2 e-, whereas formation of N2 from NO3
- requires 10 e- from 

an electron donor:   

2 NO3
− + 10 e− + 12 H+ → N2 + 6 H2O 

For physiological comparison, strains HxN1 and OcN1 were also incubated with 

N2O as the only electron acceptor and utilisable alkanes (n-hexane and n-

octane, respectively). These strains were able to grow with N2O and alkanes. 

Results are summarised in Fig. 10. The inability for coupling alkane utilisation to 

N2O reduction is apparently unique for strain HdN1. 
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 Figure 9 - Time‐courses of the formation of N2O (A and B), N2 (C and 

D) and CO2 (E and F) in anaerobic cultures of strain HdN1 with n‐

hexadecane (A, C and E) or palmitate (B, D and F).  
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1.3.2.5 Search for metabolites and genes involved in alkane degradation 

Further research regarding difference in characteristics between HxN1, OcN1 

and HdN1 can be achieved by identification and analysis of the genes involved 

in the anaerobic degradation of n-alkanes in each culture.   

 

Metabolite analyses in a denitrifying isolate strain HxN1 proposed an anaerobic 

activation of the n-alkanes at a secondary carbon atom, followed by the addition 

of fumarate, resulting in a substituted succinate. In denitrifying strain HxN1 

diastereomers of (1-methylpentyl)succinate as n-hexane derivatives (Fig. 11) 

have been identified. The reaction resembles anaerobic toluene activation, 

which leads to benzylsuccinate via a glycyl radical enzyme (Scheme 19). Strain 

 Figure 10 - N2 formed in anaerobic cultures of strains HdN1, HxN1 and OcN1 

with alkanes (black bars) or fatty acids (striated bars) and either NO3
- (100 

µmol) or N2O (250 µmol). A control experiment with strain HdN1 for excluding 

N2O toxicity received both NO3
- and N2O. Here, more N2 was formed than with 

NO3
- alone. This indicated that not only NO3

- but also N2O was used in the 

anaerobic respiratory chain if alkane degradation was enabled by NO3
-.  
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HxN1 a useful organism for detailed investigation into the anaerobic 

degradation of alkanes. This section gives an insight into the strain HxN1 by 

analysing proteins specifically formed with n-hexane, identifying the encoding 

genes and comparing the derived amino acid sequences with those of 

benzylsuccinate synthase that catalyses an analogous reaction in the anaerobic 

metabolism of toluene.51  

 

 

 

 

 

 

 

 

Extract from HxN1 cells upon growth can be used for identification of the 

underlying genes from amino acid sequences of proteins. Extraction of 

cells from anaerobic growth by caproate (hexanoate) and nitrate and also 

n-hexane and nitrate, and subsequent two-dimensional gel 

electrophoresis of cell lysates grown with n-hexane versus cells grown 

with caproate, can be used to identify the proteins formed with the alkane 

as a substrate (Fig. 12). The latter was identified by partial amino acid 

sequencing, which showed similarity to the subsequences of BssA and 

BssC, the α-and γ-subunit of benzylsuccinate synthase. Alignment of 

sequences of positive clones revealed a putative operon structure with 

seven open reading frames (ORFs), as shown in Fig. 13. The deduced 

Figure 11 - Anaerobic activation of saturated hydrocarbons and toluene. 

A. Anaerobic activation of n-hexane according to metabolite analyses 

(Rabus et al., 2001)2; the indicated gene indicate the presence of enzyme 

(1-methylalkyl)succinate synthase. MasG is the tentative activase that 

introduces the radical into the large subunit, MasD. 

B. Analogous reaction principle in the well-studied anaerobic 

activation of toluene by benzylsuccinate synthase (Heider, 2007).13 
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amino acid sequences of four of the ORFs contained partial amino acid 

sequences of the four n-hexane initially analysed proteins. The seven 

ORFs identified most likely contain the genes encoding the n-alkane 

activating enzyme (1-methylalkyl)succinate synthase and are referred to 

as genes masA to masG. 

 

 

 

 

 

 

 

Gene products, MasC, MasD and MasE, have been shown to be structural 

homologues of the three subunits of benzylsuccinate synthase (BssABC). 

 

 
 
 

 Figure 12 - Two-dimensional gel electrophoresis of cell-free extract from strain 

HxN1 upon growth with (A) caproate and (B) n-hexane. Major n-hexane-specific 

proteins (and corresponding positions on the gel from caproate-grown cells) have 

been circled. Assignment due to partial amino acid sequencing and identified 

genes: 1 - 5, putative large subunit of n-alkane-activating enzyme (MasD); 6, 

putative acyl-CoA dehydrogenase (MasA).  

 Figure 13 - Map of the chromosomal region of strain HxN1 with identified 

open reading frames including the tentative structural genes of the n-

hexane-activating enzyme, masC, masD and masE. The gene products 

of masA, masB, masC and masD were detected as n-hexane-specific 

proteins via two-dimensional gel electrophoresis. 
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As shown in Fig. 14.A a large degree of identity exists between the large protein 

MasD and the large (α) subunit of benzylsuccinate synthase, BssA. Every glycyl 

radical enzyme requires activation by an activating protein that abstracts a 

hydrogen atom from the reactive glycine. All activases of this type belong to the 

enzyme family of S-adenosylmethionine-dependent radical generators (SAM-

radical enzymes).52 

 

 

 

MasG contains sequences which represent typical [Fe4S4] ferredoxin motifs; 

similar sequences are also present in activases of benzylsuccinate synthases 

and other glycyl radical enzymes (Fig. 14.B).53 

 

 Figure 14.A - Relationships between the large subunit, MasD, of the assumed 

n-alkane activating enzyme from strain HxN1 and radical-bearing subunits of 

other glycyl radical enzymes. Bss, benzylsuccinate synthase; Tut, synonym of 

BSS; Dah, glycerol dehydratase; Hpd, hydroxyphenylacetate decarboxylase; 

Pfl, pyruvate formate lyase; Nrd, ribonucleotide reductase. 

14.A 

14.B 

 Figure 14.B - Relationships between MasG, the assumed activase of the 

n-alkane-activating enzyme of strain HxN1, and activases of other glycyl 

radical enzymes.  
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In summary following studies based on the induction effect of n-hexane on 

strain HxN1, analogies in the mechanisms of anaerobic activation of n-hexane2 

and toluene13 and the similarity relationship in sequence between three mas 

gene products and the three subunits of the toluene activating enzyme 

benzylsuccinate synthase, it is possible to conclude that genes MasC, MasD 

and MasE are the subunits of the n-alkane activating enzyme (1-

methylalkyl)succinate synthase in strain HxN1. 

Investigation of metabolites and genes involved in alkane degradation via 

addition to fumarate have been reported for strain HxN1.2, 8 Metabolite analysis 

of strain OcN1 upon growth with n-octane and NO3
- reveals (1-

methylheptyl)succinate54, again indicating an activation via addition to fumarate. 

In contrast, alkyl-substituted succinates were never detectable in cultures and 

cells of strain HdN1. Another product searched for in anaerobic n-hexadecane 

cultures of strain HdN1 was 1-hexadecanol. If air was strictly excluded and if the 

culture was inactivated by heat2 before extraction, 1-hexadecanol was not 

detectable. In contrast, 1-hexadecanol was detected if the anaerobically grown 

culture was exposed to air for 20 - 30 min. Such 1-alkanol formation is a long-

known indicator of alkane monooxygenase activity. Metabolite analysis in 

anaerobic alkane degraders with facultative aerobic metabolism thus requires 

careful avoidance of artefacts due to reaction with O2 from air. 

The gene possibly encoding the alkane-activating enzyme in strain OcN1 was 

retrieved via polymerase chain reaction with degenerate primers for mas and 

ass genes, generation of a probe and screening of a genomic library, similar as 

described for strain HxN1. The derived amino acid sequence reveals a close 

relationships (Fig. 15) to the orthologue from strain HxN1 and a sulfate-reducing 

bacterium.51, 55 Attempts to amplify in an analogous manner mas- or ass-like 

genes from strain HdN1 failed. Therefore, a shotgun genomic library of strain 

HdN1 was established. This allowed assemblage of the complete genome 

sequence but neither this revealed mas- or ass-like genes.49 
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These findings suggested that the mechanism for alkane activation in strain 

HdN1, which has to involve the cleavage of a strong, apolar C−H bond, differs 

basically from the mechanism with fumarate as co-substrate in the two other 

strains. 

1.3.2.6 Linkage of alkane activation in strain HdN1 to the nitrate reduction 

pathway? 

The distinctive results of the incubation experiments with either alkanes or 

functionalised (O-group-containing) substrates and N2O may offer a clue as to 

how strain HdN1 could initiate alkane degradation under anoxic conditions. The 

electron acceptor tests with functionalised electron donors as well as identified 

genes indicate that strain HdN1 employs the common reduction sequence 

(NO3
-→ NO2

-→ NO → N2O → N2), which is in principle able to readily reduce 

N2O. Also during growth with alkanes as organic substrates and NO3
- or NO2

- 

as electron acceptors, N2O must have been a regular intermediate because N2 

rather than N2O was the end-product. However, N2O added alone did not allow 

growth with alkanes. An early reaction during alkane utilisation must thus 

depend on a nitrogen–oxygen (N–O) species other than N2O. The early reaction 

could be the biochemically crucial activation of the alkane. The required N–O 

species cannot be NO3
-, because growth with alkanes was also possible if NO2

- 

was added instead of NO3
-. Hence, NO2

- or NO (or a so far unknown product 

from NO2
- reduction) may be essential for alkane activation. The basic 

hypothesis is depicted in Scheme 4. From a thermodynamic point of view, an 

involvement of N–O species in alkane activation under anoxic conditions is an 

 Figure 15 - Relationship of the assumed catalytic (large) subunit (MasD) 
of the n-alkane activating enzyme in strain OcN1 to other enzymes 
activating hydrocarbons via addition to fumarate. Bar, 25% amino acid 
exchange. 
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appealing hypothesis. N–O species other than NO3
- are all metastable43b and 

represent or can provide strong potential oxidants; this property may be 

enzymatically exploited to achieve alkane activation. An indirect use to form 

another reactive compound as well as a direct use of an N–O species can be 

envisaged. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 4 - Hypothetical involvement of denitrification intermediates in alkane 

activation. It is assumed that a small proportion of NO2
- or NO is deviated from the 

respiratory chain for alkane activation. FA, fatty acid; TCA, tricarboxylic acid cycle. 
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1.3.2.7 Summary  

Strains HxN1 and OcN1, which are both Betaproteobacteria, as suggested 

by metabolite and gene analyses, utilise n-alkanes from C6 to C8 and C8 to C12 

respectively and both activate alkanes anaerobically in a fumarate-dependent 

reaction yielding alkylsuccinates,. However, strain HdN1 is unique in several 

respects. It belongs to the Gammaproteobacteria and is more versatile 

towards alkanes, utilising the range from C6 to C30 and neither analysis of 

metabolites nor analysis of genes in the complete genome sequence of strain 

HdN1 have hinted at fumarate-dependent alkane activation. Moreover, whereas 

strains HxN1 and OcN1 grew with alkanes and NO3
-, NO2

- or N2O added to the 

medium, strain HdN1 oxidized alkanes only with NO3
- or NO2

- but not with 

added N2O. However N2O is still readily used for growth with long-chain 

alcohols or fatty acids. Results suggest that NO2
- or a subsequently formed 

nitrogen compound other than N2O is needed for alkane activation in strain 

HdN1. From an energetic point of view, nitrogen–oxygen species are generally 

rather strong oxidants and may enable enzymatic mechanisms that are not 

possible under conditions of sulfate reduction or methanogenesis and thus 

allow a special mode of alkane activation. The most established mechanism for 

anaerobic activation of alkanes to date is the radical-catalysed addition to 

fumarate yielding alkylsuccinates.2 Genes encoding the putative enzyme have 

been detected in a nitrate-reducing51 and a sulfate-reducing strain55, However, 

an alternative pathway (sub-terminal carboxylation)12 for the anaerobic alkane 

oxidation has also been observed in the sulfate-reducing bacterium strain Hxd3  

(Scheme 5). A comparative study has revealed that strains HxN1 and OcN1 

form alkylsuccinates during growth with alkanes and contain a gene which 

encodes the responsible enzyme. In contrast, alkylsuccinates are not detectable 

in strain HdN1, and its complete genome sequence has not revealed any gene 

likely to encode (1-methylalkyl)succinate or alkylsuccinate synthase. A unique 

physiological characteristic of strain HdN1 was that it did not grow with alkanes 

if N2O was added instead of NO3
-, whereas growth with alcohols and fatty acids 

readily occurred with N2O. In contrast, strains HxN1 and OcN1 grew well with 

N2O and alkanes. These findings suggest that alkane activation in strain HdN1 

differs principally from alkane activation in strains HxN1 and OcN1 and requires 

an NO3
--derived compound other than N2O.  
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Scheme 5 - The anaerobic degradation pathway of alkanes showing the two types 

of anaerobic degradation pathway that have currently been identified. To date, 

subterminal carboxylation has only been found in the sulfate-reducing bacterium 

strain Hxd3.12 For short-chain n-alkanes, such as propane, refer to Kniemeyer et al 

(2007).15 
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 Table 5 – Properties of nitrate and sulfate reducing, alkane degrading bacteria 

under anoxic conditions. 

Organism Affilation Source 
Substrate 

range 

Mechanism 

involved 

Alternative 

electron 

acceptors 

D.T. Ref. 

Nitrate reducing        

Strain HxN1 - Prot. 
Ditch 

sediments 
C6-C8 Fumarate NO2

-
, N2O 11 h 

2, 9
 

Strain HdN1 - Prot. 
Activated 

sludge 
C6-C30 Unknown  

11-

13 h 

9, 56
 

Strain OcN1 - Prot. 
Ditch 

sediments 
C8-C12 Fumarate N2O nd 

9
 

Marinobacter sp. 

BC36 
- Prot. Lagoon mats C18 nd  nd 

57
 

Marinobacter sp. 

BP42 
- Prot. Lagoon mats C18 nd  nd 

57
 

Pseudomonas 

balearica 

strain BerOc6 

- Prot. Brakish lagoon C15-C18 nd  nd 
58

 

Sulfate reducing        

Strain Hxd3 -Prot.
Oil-water 

seperator 
C12-C20 Carboxylation  9 d 

12 

Strain AK-01 -Prot. 

Petroleum-

contaminated 

estuarine 

sediments 

C13-C18 Fumarate 
Thiosulfate 

and sulfite 
3 d 

1
 

Desulfatibacillum 

aliphaticivorans 

CV2803
T
 

-Prot. 

Hydrocarbon-

polluted 

marine 

sediments 

C13-C18 Fumarate 
Thiosulfate 

and sulfite 
nd 

59
 

Desulfoglaeba 

alkanexedens 

strain ALDCT 

-Prot. Oily sludge C6-C12 Fumarate Thiosulfate 
5.3 

d 

60
 

Strain BuS5 -Prot. 

Marine 

hydrocarbon 

seeps 

C3-C4 Fumarate  
4-5 

d 

15
 

Strain PL12 -Prot. 

Petroleum 

contaminated 

sediments 

C6, C10 nd   
61

 

Clone 

Butane12-GMe 
-Prot. 

Gulf of Mexico 

sediments 
C4 nd   

15
 

Desulfothermus 

naphthae TD3
T
 

-Prot. 

Guaymas 

Basin 

sediments 

C6-C16 nd Thiosulfate 9 d 
62

 

nd: not documented; DT: doubling time; -, -, - Prot.: -, -, -Protobacteria 
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1.3.3 Sulfate reducers 

Sulfate-reducing bacterial can obtain energy by oxidising organic compounds 

while reducing sulfate (SO2
−4) to hydrogen sulfide (H2S).  

 

 

 

 

 

 

 

 

The interest in these microorganisms stems from observations of sulfide 

formation in oil reservoirs. Phylogenetic analysis and functional genes suggest 

that sulfate-reducing bacterial (SRB) communities are affiliated with the family 

Desulfobacteraceae within the -Proteobacteria. Most members of this family 

are strict anaerobes that perform complete oxidation of organic compounds. In 

contrast to nitrate-reducers, sulfate-reducers that anaerobically oxidise 

saturated hydrocarbons are from hydrocarbon rich environments. So far eight 

alkane degrading sulfate-reducers have been isolated and reported in literature 

(Table 5). E.g. The alkane-degrading, sulfate-reducing bacterium 

Desulfatibacillum aliphaticivorans strain CV2803T, which was recently isolated 

from marine sediments, is able to grow by oxidising n-alkanes ranging from C12 

– C20 (Scheme 6).63 

 

 Figure 16 - Transmission 

electron photomicrograph of 

strain AK-01 grown on 

hexadecane (negatively 

stained with uranyl acetate). 

Bar, 1 mm.1 
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These microorganisms play an important part in sulfur cycle (Fig. 17).10 Sulfur 

which is a necessary element for life, is taken up as sulfate by SRB and 

subsequently plants and animals. Decomposition of dead organisms in the 

absence of dioxygen releases the sulfur again as hydrogen sulfide.  

 

 

Scheme 6 - Proposed pathway for anaerobic n-alkane metabolism by the 
sulfate-reducing bacterium D. aliphaticivorans strain CV2803T (bold arrows 
indicate the major pathway).  
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SRB can cause a serious problem for industries, such as the offshore oil 

industry, because of the production of sulfide, which is highly reactive, corrosive 

and toxic. However, these organisms can also be beneficial by removing sulfate 

and heavy metals from waste streams. 

 

The most recent reported alkane degrading sulfate reducers, which have been 

isolated, are strains AK-01, Hxd3 and TD3. All three strains have been isolated 

from environments which are anoxic and chronically exposed to hydrocarbons. 

However, there are some major differences between these strains. While both 

strains AK-01 and Hxd3 are mesophiles (grow best in moderate temperature, 

typically between 20 and 45 °C), TD3 is a thermophile (thrives at relatively high 

temperatures, between 45 and 122 °C) that originated from the hydrothermally 

 Figure 17 – Sulfur cycle10 

http://waterfacts.net/Visio-SulfurCycle_Web.pdf
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active Guaymas Basin. A phylogenetic tree displaying the relationship between 

these strains and other selected bacteria is shown in Fig. 18.1 

 

 

 

 

Research conducted within the last decade has shown that activation of 

hydrocarbons occurs under anoxic conditions, where two proposed 

mechanisms appear to be important among several bacterial genera capable of 

anaerobic n-alkane utilisation. In the case of n-alkanes, the subterminal carbon 

can be added to the double bond of fumarate to produce methyl-branched 

alkylsuccinates. This is the more common mechanism observed within bacteria 

capable of anaerobic hydrocarbon utilisation.64 

To date, the only other mechanism elucidated for n-alkane activation is that of 

strain Hxd3, a sulfate reducer closely related to the genus Desulfococcus. 

 Figure 18 - Phylogenetic relationship between the three alkane-degrading 

strains AK-01, Hxd3, and TD3 and other bacteria in the class 

Proteobacteria based on 16S rRNA sequence. The tree was constructed 

from approximately 1,300 aligned bases; T, type species in the genus; ∗, 

the 10 bacteria with their 16S rRNA sequences most similar to that of strain 

AK-01.1 
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Strain Hxd3 utilises C12 - C20 alkanes and carboxylates hexadecane at the C-3 

carbon, with subsequent elimination of the terminal and subterminal carbons.12 

As a result, Hxd3 produces C-odd and C-even fatty acids when grown on C-

even and C-odd alkanes, respectively. Therefore this mechanism of n-alkane 

degradation appears to be unique among strains studied thus far.12  

In contrast to strain Hxd3, studies have shown that sulfate-reducing strains AK-

01, Pnd3, and Desulfatibacillum aliphaticivorans strain CV2803 produce 

C-even and C-odd fatty acids when grown on C-even and C-odd n-alkanes, 

respectively.55, 63 

In the recent years these mechanism have been under study to determine the 

initial step in the biodegradation of alkane and also to find more evidence for 

both fumarate addition and carboxylation. Enrichment studies and the isolation 

of alkane-degrading denitrifying bacteria are described and summarised here. 

According to the results published by Callaghan et al,64 Ak-01 cultures were 

incubated with either H34-hexadecane or d34-hexadecane and the metabolites 

were derivatized with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) 11, 

which replaces the hydroxyl group with the more stable O-trimethylsilyl group, 

this protects the labile group and allows the compound to be used for analytical 

purposes. 

  

 

 

 
 Figure 19(i) - Mass spectra of 

silylated protonated 4-

methyloctadecanoic acid (A) and 

deuterated 4-methyloctadecanoic 

acid (B) identified in AK-01 

incubations. Fragment m/z 133 in 

B indicates that 4-

methyloctadecanoic acid 

undergoes a McLafferty 

rearrangement during the GC-MS 

analysis (Scheme 7). 
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 Figure 19(ii) -  Mass spectra of the putative 

silylated metabolite methylpentadecylsuccinic 

acid from AK-01 cultures incubated with 

protonated hexadecane (A), AK-01 cultures 

incubated with d34-hexadecane (B), and the 

sulfate-reducing consortium incubated with 

[1,2-13C2]hexadecane (C).  
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In addition to the identified metabolites which support a mechanism of 

hexadecane adding to the double bond of fumarate, no evidence suggesting 

carboxylation of hexadecane, such as deuterated pentadecanoic and 

tridecanoic acids, was detected in strain AK-01 extracts. The observed results 

demonstrated that the succinyl moiety in the metabolites is not attached to the 

terminal carbon atom in the hexadecyl moiety but is, rather, in a subterminal 

position yielding chromatographically distinct stereoisomers (diastereomers). 

Based on these observations, a pathway for carbon skeleton rearrangement 

and subsequent degradation of d34-hexadecane by the sulfate reducer AK-01 

was proposed, which is analogous to that for hexane degradation under 

denitrifying conditions by strain HxN1 (Scheme 8).2 

Scheme 7 - McLafferty ions that result from decarboxylation of 

deuterated MPA that has not undergone carbon skeleton rearrangement 

(m/z 134) (A) and carbon skeleton rearrangement of MPA followed by 

decarboxylation (m/z 133) (B). The latter ion was experimentally 

observed in the mass spectrum of d34-4-methyloctadecanoic acid (Fig. 

4B).  
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 Scheme 8 - Proposed mechanism of deuterated hexadecane degradation by 

strain AK-01. Putative deuterated metabolites are highlighted in blue.  
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 Figure 20 - Mass spectra of the methyl esters of the 15:0 fatty acid 

recovered from cultures of strain Hxd3 grown on hexadecane with 

unlabeled bicarbonate (a) or [13C]bicarbonate (b). Chemical structures 

represented by the mass spectra are shown as insets. Key diagnostic ion 

peaks are annotated in bold type with their m/z values, and the structural 

compositions of the represented ion fragments are delineated. Intersection 

with a dotted line indicates a point of bond cleavage, and the ion fragment 

formed subsequently contains only the part of the molecule to the left of 

the dotted line. 
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Scheme 9 - Proposed pathway for the oxidation of alkane to fatty acid by strain 

Hxd3. An alkane (A) is subterminally carboxylated at C-3 (step I) to form an 

intermediate (B). Two adjacent terminal carbon atoms are then eliminated (step 

II) to form a fatty acid one carbon shorter than the original alkane (C). This fatty 

acid can be beta oxidized (step III) and subsequently mineralized to CO2 or 

undergo transformation, such as chain elongation and C-10 methylation (step 

IV). Compound B (in brackets) is only a hypothetical intermediate and has not 

been observed. Atoms originating from the alkane are shown in bold type.  
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1.3.4 Comparison of aerobic and anaerobic degradation pathways of n-

alkanes 

To summarise, activation of alkanes by microbes can be carried out under both 

aerobic and anaerobic conditions with different enzyme systems. Under aerobic 

conditions, dioxygen serves as the electron acceptor, while under anaerobic 

conditions, compounds like sulfate and nitrate accept electrons in order to 

complete the process (Fig. 21).16b 

 

 

 

 

 

 

 

 

 

 

 

1.3.5 Environmental and other aspects of anaerobic alkane degradation 

Many studies of the anaerobic biodegradation of the hydrocarbons in natural 

habitats were initiated to determine whether or not bioremediation processes 

are possible in deep, anoxic petroleum-contaminated or fuel-contaminated 

sediments and aquifers.65 A basic idea for the study of anaerobic 

bioremediation is to make electron acceptors in injected water available at 

concentrations higher than that of dissolved dioxygen from air.66 The 

concentration of dioxygen in air-saturated water (8.6 mg/dm3 at 25 °C) has the 

capacity to oxidise, for instance, no more than 2.8 mg toluene/L. Nitrate and 

sulfate are much more soluble, for example, even gypsum (CaSO4), a form of 
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 Figure 21 – Aerobic and anaerobic alkane oxidation 
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sulfate with low solubility and a saturation concentration of 2 g CaSO4/dm3 

would allow the anaerobic oxidation of 300 mg toluene/dm3. There is no doubt 

that the degradation of petroleum and refined products is much faster under 

oxic than anoxic conditions. Furthermore, aerobic microorganisms seem to 

degrade a much wider range of hydrocarbon compounds than anaerobic 

microorganisms. 

 

The extent of the degradation of hydrocarbons from oil and the groups of 

microorganisms involved have been studied in enrichment cultures with 

sulfate67 or nitrate56 as electron acceptors. If crude oil is present in growth-

limiting amounts, the portion that can be oxidised under anoxic conditions can 

be estimated from the amount of reduced electron acceptor (e.g., sulfate or 

nitrate).  

 

Alkanes are quantitatively the most important fraction in crude oil. The 

biodegradation of alkanes which occurs in anoxic habitats is of great importance 

to the oil industry. Today, this process remains an exciting area of investigation 

to understand the factors that govern the biodegradation of oil in deep-

subsurface reservoirs. It is now well known that microbial activities associated 

with petroleum reservoirs have led to the decrease of oil quality, making refining 

more costly and recovery more difficult. For example the utilisation of 

hydrocarbons by SRB has been regarded as a source of hydrogen sulfide. 

Hydrogen sulfide is toxic, stimulates corrosion of steel and diminishes the value 

of oil and gas by increasing the sulfur and forms FeS precipitates that delay the 

separation of oil and water. Therefore, a better understanding of these 

microorganisms could have a huge influence on the efficiency and quality of the 

extracted oil.66   

 

Petroleum reserves have been depleted to certain levels, and anaerobic 

degradation is considered to be one of the major processes responsible for this 

phenomenon. Furthermore, bioorganic methane associated with biodegraded 

oil reservoirs is believed to be the result of microbial decomposition of oil 

alkanes.44 Therefore, in situ methanogenic biodegradation activities may offer a 

route for potential alternative and innovative energy recovery from existing oil 



48 
 

reservoirs after extraction. Following extensive water flooding, a large amount of 

the crude oil still remains trapped in the reservoir.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hence the recovery of energy from conventional reserves via in situ conversion 

of even a small amount residual oil to methane could provide a considerable 

supply of energy. This is of great interest because the world requirements for 

methane is constantly increasing and methanogenic conversion of oil alkanes 

could be seen as a future solution for world energy needs (Fig. 22).45 

Understanding the alkane degrading communities and their biochemical 

function will significantly advance the knowledge about the organisms mediating 

the specialised biochemical reaction steps. This will allow us to understand 

better the biological processes responsible for oil biodegradation in natural 
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environments and in petroleum reservoirs for possible biotechnological 

innovation and applications in utilisation of the residual oils. The anaerobic 

degradability of several hydrocarbons from crude oil does not necessarily 

contradict their obvious preservation in reservoirs (Fig. 23). First, oil in 

reservoirs is trapped in the pores of rocks, such that molecular diffusion into 

aqueous surroundings where bacteria can, in principle develop, is very limited. 

Second, many anaerobic bacteria formerly buried with sediments may have 

died due to substrate limitations or high temperature during catagenesis. Also 

extremely high salt concentrations may limit the diversity of bacteria that can 

develop in stratal waters. On the other hand, there are assumptions that 

anaerobic bacteria deposited with the original sediments have survived millions 

of years. 

 

 

 

 

 

 

 

1.2 Radical Enzymes in Anaerobes 

 

 

 

 

 

 

 

 

1.4 RADICAL ENZYMES IN ANAEROBES 

These are enzymes that contain radicals and/or catalyse reaction with radical 

intermediates. Since radicals irreversibly react with dioxygen, most of these 

 Figure 23 –At the flanks of the basins, reservoir sediments lie on top of older 

basement rocks and produce reservoirs that are shallow, cool and may have local 

active meteoric water circulation, conditions ideal for biological activity. 5  

    



50 
 

enzymes occur in anaerobic bacteria and archaea, apart from the families of 

coenzyme B12 and S-adenosylmethionine (SAM)-dependent radical enzymes 

(Fig. 24), of which some members also occur in aerobes. Radical enzymes 

catalyse many of the key metabolic steps in anaerobes. Natures only relies on 

higher energy pathways via radicals when there is no low energy pathway 

alternative. This can be illustrated in the reduction of (S)-glutamate to butyrate. 

The most simplified and elegant proposed mechanism for the action of 

glutamate mutase is described in Scheme 10 in which carbon skeleton 

rearrangement of (S)-glutamate to (2S,3S)-3-methylaspartate occurs via 

intermediate radicals, in a reaction that is coenzyme B12-dependent.52 

 

 

 

In 3-methylaspartate the hydrogen atom β to the ammonium group is much 

more acidic than the corresponding protons in glutamate due to the adjacent 

carboxylate, and therefore ammonia can be eliminated. 

Coenzyme B12 (adenosylcobalamin) (Fig. 11(a)) is a derivative of vitamin B12 

and generates a 5’-deoxyadenosyl radical (Fig. 11(b)) by homolysis of the Co-C 

bond. 

 Scheme 10 – Proposed mechanism of action for glutamate mutase. 
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1.4.1 Generation of radicals 

Enzymatic radical reactions progress by at least four steps:52 

1) Generation and storage of an initiating radical. 

2) Reaction of the initiating radical with a substrate to give a substrate-

derived radical. 

3) Conversion of the substrate-derived radical into the product-related 

radical 

4) Conversion of the product-related radical into product which may result in 

recycling of the initiating radical. 

1.4.2 Coenzyme B12-dependent enzymes 

There are two different groups of coenzyme B12-dependent enzymes:68 

1) The eliminase family which comprises of ribonucleotide reductase, 

ethanolamine ammonia lyase and diol and glycerol dehydratases (Fig. 

25).  

 Figure 24 – Molecular structures of (a) AdoCbl, (b) Ado•, and (c) AdoMet. 
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2) The mutase family which comprises of carbon skeleton mutase and 

aminomutase sub-families. The carbon skeleton mutase sub-family 

consists of glutamate mutase, methylmalonyl-CoA mutase, 2-

methyleneglutarate mutase and isobutyryl-CoA mutase. The 

aminomutase sub-family consists of β-lysine-5,6-aminomutase and D-

ornithine-4,5-aminomutase (Fig. 26). 

 Figure 25 – The family of coenzyme B12 dependent eliminases. B = nucleobase. 

The coenzyme B12 dependent ribonucleotide reductase takes ribonucleoside 

triphosphates as substrates. 
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Both eliminases and mutases have similar pathways (Fig. 17) which involves 

the exchange between two adjacent carbon atoms of a group X (OH, NH3
+, or a 

carbon containing residue). 

1.4.3 S-Adenosylmethionine radical enzymes 

SAM is an alternative to coenzyme B12 as a generator of the 5ʼ-deoxyadenosyl 

radical. 

 Figure 26 – The family of coenzyme B12 dependent mutases. The methylene 

group in each reaction is reversibly converted into a methyl group via a methylene 

radical which may be stabilised by cob(II)alamin. 
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All SAM-dependent radical enzymes reduce SAM to methionine and 5’-

deoxyadenosyl radical, which initiates catalysis, generally by hydrogen atom 

abstraction from the substrate (Scheme 11).69 

 

 

1.4.3.1 Common features 

 

Despite their surprisingly diverse functions, all radical SAM enzymes contain an 

unconventional [4Fe-4S] cluster coordinated by three rather than four closely-

spaced cysteine residues site. Also they all need a low-potential one-electron 

donor, ferredoxin or flavodoxin, in order to reduce SAM. The 5’-deoxyadenosine 

formed is either irreversibly released as product or recycled to regenerate SAM, 

The majority of the SAM-dependent radical enzymes belong to the irreversible 

type. 

 

1.4.3.2 Proposed mechanism of SAM 

 

The first common step in all radical SAM enzyme reactions is the reduction of 

the [4Fe-4S] centres from the resting +2 to the active +1 state, The reduced 

[4Fe-4S] centre ([4Fe-4S]+) is believed to transfer an electron to the sulfonium 

 Scheme 11 – SAM in Radical Enzymes. 
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of SAM, resulting in its homolytic cleavage to methionine and the highly reactive 

5’-deoxyadenosyl radical (Scheme 12). 

 

 

 

 

The first SAM-dependent enzyme to be described that catalysed a 

rearrangement similar to a coenzyme B12-dependent reaction was lysine-2,3-

aminomutase.70 In the initial catalytic step a hydrogen atom is removed from C-

3 of lysine bound via the amino group to pyridoxal-5’-phosphate. The resulting 

5’-deoxyadenosine acts as a spectator during the consecutive rearrangement of 

the α-lysine-3-yl radical to the β-lysine-2-yl radical, probably via an aza-

cyclopropylcarbinyl radical. Finally, 5’-deoxyadenosine donates one methyl 

hydrogen atom back to the β-lysine-2-yl radical (as its pyridoxal imine) and the 

pyridoxal-5’-phosphate imine of β-lysine is formed (Scheme 13).52 

 Scheme 12 – Proposed mechanism of SAM. 
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1.4.4 Glycyl radical enzymes71 

A glycyl radical is formed by the removal of a hydrogen from a glycine and the 

resulting radical is located on the protein main chain. The first member of this 

class to be characterised as a radical enzyme was pyruvate:formate lyase, 

which is produced in Escherichia coli only under anoxic conditions, where it 

catalyses the reversible cleavage of pyruvate by CoASH to acetyl-CoA and 

formate (Scheme 14).72 

 

 

 

 

In pyruvate:formate lyase the fairly stable glycyl radical exhibits a characteristic 

electron paramagnetic resonance (EPR) signal, resulting from the coupling of 

the hydrogen that remained on the amino acid. The reaction of the radical with 

dioxygen inactivates the enzyme by cleavage of the polypeptide chain at the 

 Scheme 13 – Proposed mechanism of action of lysine-2,3-aminomutase. Py-

CHO, pyridoxal-5’-phosphate. 

 Scheme 14 – The conversion of pyruvate to formate as catalysed by PFL. 
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glycine residue. Therefore these enzymes can only occur in anaerobic 

microorganisms. The 5ʼ-deoxyadenosyl radical is generated by the action of a 

SAM-dependent activating enzyme, which contains at least one [4Fe-4S] 

cluster. 

The proposed mechanism of pyruvate:formate lyase73 suggests that the Gly734 

radical abstracts a hydrogen from Cys419 and causes radical formation at 

Cys418. This radical interacts with pyruvate to facilitate C–C bond homolysis 

yielding formate (Scheme 15).  

 

 

 
 Scheme 15 – Proposed mechanism of pyruvate:formate lyase. 
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Pyruvate formate lyase-activating enzyme (PFL-AE) catalyses the formation of 

the Gly734 radical of PFL. It has been proposed that PFL-AE uses a Fe–S 

cluster to cleave AdoMet to form a 5ʼ-deoxyadenosyl radical and that this radical 

goes on to abstract the pro-S hydrogen of the Gly734 residue of PFL, thus 

activating the enzyme (Scheme 16).  

 

 

 

 

The PFL-AE employs a radical cluster that utilises an Fe-S cluster for catalysis. 

This mechanism has common initiation steps in the SAM super-family (Scheme 

17). 

 

 

 

 

 

 

 

 

 

 

 

 

 Scheme 17 – Proposed mechanism for the activation of PFL by PFL-
AE and AdoMet.  

. 

Scheme 16 – From Archives of Biochemistry and Biophysics 2005, 433 (1), 290 

The reaction catalysed by pyruvate formate lyase activating enzyme. PFL-AE 

facilitates AdoMet cleavage to methionine and the 5ʼ-deoxyadenosyl radical, 

producing a glycyl radical at Gly734 and activating PFL. 
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Anaerobic hexane oxidation in a denitrifying bacterium HxN1 starts with an 

addition of the hex-2-yl radical to fumarate leading to (1-

methylpentyl)succinate.74 Although the enzyme has not been purified, a strong 

EPR signal indicative of a glycyl radical enzyme became visible in whole cells 

grown on hexane but not in cells grown on hexanoate (Fig. 21). This system is a 

major component of this thesis. 

 

 

 

1.5 ANAEROBIC DEGRADATION OF N-HEXANE 

First investigations into the anaerobic metabolism of n-alkanes were conducted 

with two phylogenetically related sulfate-reducing bacteria, strains Hxd3 and 

Pnd3.75 Studies suggested that anaerobic degradation of alkanes does not 

occur via desaturation to 1-alkenes. These findings also suggested different 

modes of initial reactions in the two n-alkane-degrading sulfate-reducing strains. 

However, by labelling studies, the methyl branch of the fatty acids was shown to 

be the original terminal carbon of the n-alkane, suggesting addition of a carbon 

compound to the subterminal position (C-2) of the n-alkanes. This showed a 

common principle in the mechanism of initial reactions of n-alkanes in both 

strains. 

 

The recently isolated denitrifying strain HxN12 was chosen for experiment. In 

contrast to other n-alkane degrading anaerobic bacteria, strain HxN1 grows 

relatively rapidly and does not adhere to the insoluble alkane phase, so that 

cells can be harvested easily. Strain HxN1 utilises n-alkanes with relatively 

short chains of C6 - C8 that are ultimately oxidised to CO2; other anaerobic n-

 Scheme 18 – Anaerobic hexane oxidation in denitrifying bacterium. 
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alkane-degrading strains grow preferentially with chain lengths between C8 and 

C18 (See Table 4). Recently, two-dimensional gel electrophoresis of cell extracts 

of strain HxN1 revealed specific formation of proteins during growth on n-

hexane that were not formed with growth on n-hexanoate. These proteins were 

therefore supposed to be specifically involved in initial reaction steps of n-

alkanes. 

The mode of anaerobic hexane activation can be elucidated by chemical 

analysis of metabolites. The denitrifying Azoarcus-like isolate (strain HxN1) 

growing on n-hexane forms alkyl-substituted succinates. This suggests an initial 

reaction similar to that in the anaerobic degradation of toluene because in the N 

terminus, one of these proteins exhibited a similarity to the small subunit (BssC) 

of benzylsuccinate synthase in denitrifying bacteria. The glycyl radical enzyme 

‘benzylsuccinate synthase’ (BSS) from Thauera aromatica (β-proteobacteria) 

converts toluene to a benzyl radical, which stereospecifically attacks the second 

substrate fumarate leading to 2-benzylsuccinate-3-yl radical and finally, the 

hydrogen is re-added, also in a stereospecific manner (Scheme 19).76  

 

 

 

 

However, n-hexane is not activated at one of the methyl groups (C-1), as 

indicated by the formed metabolites.74 Structural analyses including authentic 

standard compounds shows that strain HxN1 forms (1-methylpentyl)succinate 

from n-hexane and fumarate as the assumed co-substrate, which indicates that 

n-hexane must have been activated at the C-2 position. Traces of (1-

ethylbutyl)succinate are indicative of an additional, alternative activation at C-3 

in a side reaction (Fig. 27).74 

Scheme 19 – Mechanism for the BSS-catalyzed addition of toluene to fumarate. 



61 
 

 

 

 

 

 

 

 

 

 

Another unique feature found in the biosynthesis of (1-methylpentyl)succinate, 

which has two chiral centres, is the formation of both diastereomers in equal 

amount. Formation of diastereomers is not possible from toluene because 

benzylsuccinate has only one chiral centre; the enantiomer formed was shown 

to be (R)-2-benzylsuccinic acid (Scheme 19).76 After conversion of the latter to 

benzylsuccinyl-CoA, dehydrogenation and hydration reactions lead to 2-

carboxymethyl-3-hydroxyphenylpropionyl-CoA. Hence, the benzyl carbon 

position (original methyl group of toluene) is converted to a keto group which 

allows thiolytic cleavage into benzoyl-CoA and acetyl-CoA (Scheme 20).77  

 Figure 27 – Figure adapted from J. Bacteriol. 2001, 183 (5), 1710, Partial gas 

chromatograms of methylated extracts from heat-treated, acidified cultures of 

strain HxN1 after anaerobic growth with nitrate as the electron acceptor and with 

n-hexanoate (A) or n-hexane (B) as the only organic substrate. By studying the 

mass spectrometric data compounds 2 and 3 were interpreted as separable 

diastereomers of (1-methylpentyl)succinate (MPS) dimethyl ester; possible 

diastereomers of compound 1, (1-ethylbutyl)succinic acid (EBS) dimethyl ester, 

were not separable on the gas chromatography column. Asterisks (*) indicate 

chiral carbon atoms; assignment of the absolute stereochemistry of 

diastereomers was not achieved in this study. 
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An analogous metabolism of an assumed (1-methylpentyl)succinyl-CoA in the 

anaerobic metabolism of n-hexane is not possible. The tertiary carbon atom 

which forms at the original n-alkane chain would prevent oxidation beyond the 

alcohol level. In 2002 Wilkes et al. grew the strain HxN1 on n-hexane in order to 

assign metabolites specifically to the n-hexane metabolism.8 The fate of the 

succinate moiety in (1-methylpentyl)succinate was traced in an experiment in 

which a culture growing on unlabelled n-hexane was reacted with 2,3-d2-

fumarate.The results obtained by gas chromatography (GC) (Fig. 85) and 

electron ionization mass spectrometry (EIMS) showed that the degradation of 

(1-methylpentyl)succinate (possibly as thioester) in strain HxN1 involves 

rearrangement of the C-skeleton prior to further oxidation and thus differs in 

principle from degradation of benzylsuccinate. 

 

 Scheme 20 - Pathways of anaerobic toluene degradation in denitrifying bacteria. Only 

the reactions leading from the hydrocarbons to benzoyl-CoA (or 3-methylbenzoyl-CoA) 

are shown in detail. 75, Toluene; 65, fumarate; 76, benzylsuccinate; 77, succinate; 78, 

phenylitaconate; 79, 2-carboxymethyl-3-hydroxyphenylpropionyl-CoA; 80, succinyl-

CoA; 81, benzoyl-CoA. 
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Based on this finding and the identification of a suite of fatty acids specifically 

formed during growth of strain HxN1 on n-hexane, a pathway for the 

degradation of (1-methylpentyl)succinate (MPS) has been proposed8 (Scheme 

21). This pathway also accounts for the indispensable regeneration of fumarate, 

the co-substrate for alkane activation. As shown in Scheme 21, in one round, 1 

mol n-hexane is converted to 3 mol acetyl-CoA. The compounds that have been 

identified as methyl esters are followed by the corresponding peak numbers 

from Fig. 28. 63A, n-Hexane; 65B, fumarate; 67C, (1-methylpentyl)succinate 

(13, 14); 67D, (1-methylpentyl)succinyl-CoA (13, 14); 67E, (2-

methylhexyl)malonyl-CoA; 67F, 4-methyloctanoyl-CoA (7); 67G, 4-methyloct-2-

enoyl-CoA (10); 67H, 3-hydroxy-4-methyloctanoyl-CoA (11); 67I, 4-methyl-3-

oxooctanoyl-CoA; 67J, 2-methylhexanoyl-CoA (1); K, 2-methylhex-2-enoyl-CoA 

(3); 67L, 3-hydroxy-2-methylhexanoyl-CoA (5, 6); 67M, 2-methyl-3-

oxohexanoyl-CoA (4); 67N, propionyl-CoA; 67O, butyryl-CoA; 67P, acetyl-CoA; 

67Q, methylmalonyl-CoA; 67R, succinyl-CoA; 67S, succinate.  

 Figure 28 - Gas chromatograms of methylated extracts from the acidified 

culture of denitrifying strain HxN1 after anaerobic growth on n-hexane. 

(Figure adapted from Wilkes et al. 2002)8 
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1.5.1 Possible presence of a glycyl radical 

The distinct EPR signal in n-hexane-grown cells and its virtual absence in n-

hexanoate-grown cells of strain HxN1 provide evidence for the specific 

involvement of a radical in the anaerobic initial reaction of n-hexane (Fig. 29).74 

The observed signal is from a radical species which has a strong coupling to a 

single hydrogen atom. The average g value, line shape, and magnitude of the 

hyperfine coupling is typical for radicals at carbon side chains of amino acids, 

flavin radicals, or sulfur-centered radicals. There are presently no biochemically 

purified cell components other than glycyl radical enzymes which exhibit such 

an EPR signal. However, purification of the MPS-forming enzyme from strain 

HxN1 and structural 

investigations are needed to 

prove the assumed 

involvement of a glycyl radical. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 29 - EPR spectra of suspensions of cells of strain HxN1 grown anaerobically 

with n-hexanoate (A) and n-hexane (B) as the only organic substrates and nitrate as 

the electron acceptor. (Figure adapted from Wilkes et al. 2002)8 
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Scheme 21 – Identified methyl esters are followed by the corresponding peak numbers 

from Fig. 28. 63A, n-Hexane; 65B, fumarate; 67C, (1-methylpentyl)succinate (13, 14); 

67D, (1-methylpentyl)succinyl-CoA (13, 14); 67E, (2-methylhexyl)malonyl-CoA; 67F, 4-

methyloctanoyl-CoA (7); 67G, 4-methyloct-2-enoyl-CoA (10); 67H, 3-hydroxy-4-

methyloctanoyl-CoA (11); 67I, 4-methyl-3-oxooctanoyl-CoA; 67J, 2-methylhexanoyl-CoA 

(1); K, 2-methylhex-2-enoyl-CoA (3); 67L, 3-hydroxy-2-methylhexanoyl-CoA (5, 6); 67M, 

2-methyl-3-oxohexanoyl-CoA (4); 67N, propionyl-CoA; 67O, butyryl-CoA; 67P, acetyl-

CoA; 67Q, methylmalonyl-CoA; 67R, succinyl-CoA; 67S, succinate.  
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Butyryl-CoA is assumed to undergo -oxidation to acetyl-CoA and final 

oxidation to CO2. This assumption is justified because strain HxN1 is able to 

oxidise organic electron donors including added butyrate or acetate completely 

to CO2.
9 Six pathways are known for propionyl-CoA metabolism (Scheme 22).11 

Among these, the methylmalonyl-CoA pathway would regenerate fumarate by 

involving the least number of reaction steps (Scheme 22-c). This pathway, 

which is the most common in propionyl-CoA metabolism, starts with -

carboxylation to yield (S)-methylmalonyl-CoA and proceeds via reverse 

reactions of propionic acid fermentation to free succinate and further to 

fumarate. The assumption of such a pathway in strain HxN1 leaves open the 

possibility for carboxylation of propionyl-CoA by transcarboxylation with (2-

methylhexyl)malonyl-CoA as carboxyl donor, which would not require energy.  

 

 

 

Scheme 22 - Possible pathways for propionate oxidation
11

: a) -Oxidation, b) -

Oxidation, c) -Carboxylation, d) Reductive carboxylation, and e–g) Claisen 

condensations. 
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Chapter 2 

 

 

Introduction to Enzyme Stereospecificity  

and Isotopic Labelling 
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2.1 ENZYME STEREOSPECIFICITY 
 

The high degree of stereospecificity which exists within enzymes has been 

known since the time of Pasteur.78 However, the study of this stereospecificity in 

detail, in terms of the mechanism of reactions and nature of enzyme-substrate 

complex, has only been endeavoured with in the past few decades.  

From this newly acquired knowledge, the one feature that appears to the most 

interesting is that enzymatic reactions do not proceed with a large degree of 

concertedness in which all bond breaking and bond making occurs in a single 

step. The numbers of pericyclic reactions which are found in nature are 

extremely small; two such reactions are illustrated in Scheme 23, first reaction 

from primary metabolism and the second one from secondary metabolism. 

 

 

It is worth pointing out that even in these cases (Scheme 23), there is no 

definite proof that the reactions proceed with concerted mechanisms. Nature 

appears to prefer to carry reactions out in simple steps, normally involving 

cleavage or formation of one bond at a time. Therefore, in most cases bonding 

interactions as a means of controlling the stereospecificity of intermolecular 

reactions will be of minimal use. 

 

Scheme 23 – Enzyme-catalysed pericyclic reactions that are probably concerted. 
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The main basis of enzymatic stereospecificity is non-bonding interactions, i.e., 

steric control. One of the few reactions which appears to be catalysed by 

enzymes in a concerted manner is the nucleophilic displacement of SN2 type. 

Studies of methyl group transfer from S-adenosylmethionine to an acceptor 

have revealed this type of reaction to occur with inversion at the methyl carbon 

atom in all cases so far studied.79 

If enzyme-catalysed reactions proceed in a stepwise manner, this will usually 

involve the generation of reactive intermediates. However, the enzyme often 

has complete control over the way which these metastable species react further 

and this control is exerted while the substrate is bound in the active site of 

enzyme. 

Enzyme stereospecificity is actually the sum of two distinct, although not entirely 

separable, phenomena. First, is the overall steric courses of the reaction as this 

term is applied to reaction in solution, and secondly, it includes chiral 

recognition. If the reaction proceeds through a reactive intermediate (e.g., a 

carbenium ion possessing enantiotopic faces), chiral recognition will occur. 

Although in solution the intermediacy of such a carbenium ion would almost 

certainly result in loss of stereospecificity, chiral recognition by the enzyme may 

still result in stereospecific addition of a nucleophile to only one of the two 

enantiotopic faces. Likewise, if an enzymatic reaction produced an intermediate 

that in solution would be torsiosymmetric, torsion may be prevented at the 

active site, again allowing a stereospecific reaction. Therefore an understanding 

of the overall steric course, does now allow infering the existence of a reactive 

metastable intermediate during an enzymatic reaction in the same way as it 

does in studies of non-enzymatic reactions. Taking this reasoning into account, 

the steric course of an enzymatic reaction does not always provide information 

concerning the mechanism of reaction. 

In exceptional cases a loss of stereochemical integrity can be demonstrated 

during the course of an enzymatic reaction. Such an observation points to one 

of the two possible occurrences:79  
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1) One step in the overall reaction does not come under enzymatic control. 

I.e., tautomeric conversion of an enol into a ketone, although the enol 

may be produced enzymatically in a stereocontrolled fashion. If the 

tautomeric change occurs when the molecule is out of the active site, 

stereospecificity will be lost (Scheme 24). In the conversion of urocanic 

acid (86) into into 3-(4-oxo-4,5-dihydro-1H-imidazol-5-yl)propanoic acid 

(88), the true enzymatic product is most likely 3-(4-hydroxy-1H-imidazol-

5-yl)propanoic acid (87), but this spontaneously tautomerizes to afford 

racemic 88.79 

      

 

 

2) During the enzymatic reaction a reactive intermediate is generated which 

possesses homotopic groups or faces. Evidence for the intermediacy of 

a torsiosymmetric group has been obtained during several of the 

coenzyme B12 dependent enzymatic rearrangements (see Section 1.2). 

In many cases the observation of chiral recognition during a reaction 

does not require any special techiniques. I.e, the question of which 

enantiotopic face of a trigonal centre is attacked by a reagent in an 

enzymatic reaction is often instantly answered by knowing the absolute 

configuration of the product (Scheme 25).       

 

 

 

Scheme 24 – The urocanase reaction yields an achiral enolic product which is in 

equilibrium with its racemic tautomer. 

Scheme 25 – (2S)-Malate formation. 
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However, when the approaching reagent is identical with one of the three 

substituents already at the trigonal centre, isotopic labelling of the chemically 

equivalent substituents will be useful (Scheme 26). Determining the absolute 

configuration at the newly formed centre then creates another problem which 

cannot be solved by conventional methods. However, another enzyme with 

known stereospecificity may be used for such purpose. I.e., formation of citrate 

from oxaloacetate and acetyl-CoA in the citrate synthase reaction (Scheme 27 

& 28). 

 

    

Starting from isotopically labelled oxaloacetate the enzyme catalyses the 

formation of citrate containing a label in only one of its carboxymethylene 

groups. The position of this label was determined by making use of the known 

steric course of aconitase, which modifies only the (CH2COOH)Re group in a 

stereospecific dehydration. The results demonstrated that the labelled citrate 

was (R) and hence the enolate of the acetyl-CoA has attacked the Si-face of 

oxaloacetate. 

 

 

Scheme 26 

Scheme 27 – Chiral recognition of enantiotopic 

carboxymethylene groups of citrate by aconitase.  
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A large amount of difficult and delicate work must often be carried out in order 

to determine the steric course of an enzyme-catalysed reaction. Furthermore, 

the knowledge of the steric course actually encompasses a combination of 

chiral recognition by the enzyme and mechanistic requirements of the reaction. 

Unravelling these two factors may be difficult. Once stereochemical information 

has been achieved, data are then sought from other directions, notably from 

mechanistic investigations and from structural studies on the enzyme in general 

and on the active site in particular. These pieces of the puzzle should then 

interlock with knowledge of mechanistic organic chemistry to provide a detailed 

picture of what happens during an enzyme-catalysed reaction.   

2.2 ISOTOPIC LABELLING 

The introduction of pulsed Fourier-transform Nuclear Magnetic Resonance 

(NMR) spectrometers which significantly facilitated the routine 13C NMR 

assignment of small amounts of natural products, presented a major boost for 

the study of biosynthetic pathways in the early 1970s. In addition, precursors 

enriched with 13C and other stable isotopes, e.g. 2H, 18O, 15N, were becoming 

more readily available and major gains came from the use of precursors 

Scheme 28 – The fate of carbon dioxide introduced by pyruvate carboxylase 

into the citric cycle. 
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multiply labelled with 13C or with 13C in conjunction with 2H, 18O and 15N. The 

detection of these combinations of isotopic labels by either spin-spin coupling 

and/or isotopically shifted signals in the NMR spectra of the enriched 

metabolites allowed the incorporation of whole biosynthetic units to be 

elucidated for the first time. The biosynthetic unit could be a single bond or, 

indeed, a multi-atom unit. Thus the integrity of, for example, carbon-carbon, 

carbon-hydrogen or carbon-oxygen bonds during a complex metabolic pathway 

could be tested. The course of skeletal and other rearrangements could be 

traced and, most importantly, the biosynthetic origin of hydrogen, oxygen and 

nitrogen atoms could be determined and the oxidation levels of the 

intermediates in the pathway could be established by indirect methods.80 

 

2.2.1 Applications of double 13C labelling  

[1,2-13C2] acetate One of the most useful applications in 13C labelling, is to trace 

the mode of incorporation of intact acetate units into a wide range off 

metabolites. This has been one of the major developments in biosynthetic 

methodology and permits information to be obtained which would have been 

impossible or at best extremely difficult to obtain without isotopic labelling.  

The basic concept can be explained using a model polyketide system (Fig. 30). 

A molecule of acetate in which both carbons are entirely 13C contains two 

adjacent nuclei of spin 1/2 and so they will couple to each other. If this acetate 

molecule is incorporated intact into a metabolite then, in any individual 

molecule, those pairs of carbons derived from an originally intact acetate unit 

must necessarily both be enriched simultaneously and so will show a mutual 

13C-13C coupling. Thus, if C-1 is enriched, then C-2 must also be enriched. In 

the resultant 13C NMR spectrum, the natural abundance signal is flanked by 

13C-13C coupling satellites (Fig. 30b). By analysing the coupling patterns, 

information is obtained on the way in which the precursor molecules are 

assembled by the enzyme and on the way the polyketide chain folds up prior to 

condensation and cyclisation. If at any stage in the biosynthesis the bond 

between two carbons originally derived from an intact acetate unit is broken, 

then the 13C-13C coupling is lost and these carbons appear simply as enhanced 

singlets, as shown for C-3 and C-4 in Fig. 30c. In this way bond cleavage and 

rearrangement processes occurring during biosynthesis can be detected.  
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Incorporation of [1,2-13C2]acetate is especially useful in distinguishing among 

alternative foldings of linear polyketide or terpenoid precursors prior to 

cyclisation and subsequent modifications. For example, from the three possible 

foldings of the heptaketide precursor of herqueichrysin (110), a phenalenone 

metabolite of Penicillium herquei, only one folding is possible. 

 

 

 Figure 30a–c - Figure adapted from Simpson et al.6 Simulated 

proton decoupled 13C NMR spectra of a polyketide-derived moiety: 

a at natural abundance; b enriched from [1, 2–13C2]acetate; c after 

cleavage or rearrangement of an originally intact acetate unit. 
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The specific folding shown below was unambiguously established from the 

observed 13C-13C couplings in the 13C NMR spectrum of the enriched metabolite 

(Fig. 31).6 

 

 

 

 

 

 

Despite their enormous structural diversity, polyketide metabolites are related 

by their common derivation from highly functionalised carbon chains whose 

assemblies are controlled by multifunctional enzyme complexes, the polyketide 

synthases (PKSs) which, like the closely related fatty acid synthases, catalyse 

repetitious sequences of decarboxylative condensation reactions between 

 Figure 31 – Figure adapted from Simpson et al.6 13C NMR spectrum of [1, 2-
13C2]acetate enriched herqueichrysin (as its triacetate) determined at 67.89 

MHz. Note the severe overlap of the coupled 13C signals in the aromatic 

region and the second-order 13C-13C couplings arising from the similarity of 

the chemical shifts of C-8 and C-9. 
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simple acyl thioesters and malonate, as shown in Fig. 32.80 Each condensation 

is followed by a cycle of modifying reactions: ketoreduction, dehydration and 

enoyl reduction. In contrast to fatty acid biosynthesis where the full cycle of 

essentially reductive modifications normally follow each condensation reduction, 

the PKSs can use this sequence in a highly selective and controlled manner to 

assemble polyketide intermediates with an enormous number of permutations 

of functionality along the chain. As shown in Fig. 32, the reduction sequence 

can be largely or entirely omitted to produce the classical polyketide 

intermediate which bears a carbonyl on every alternate carbon and which 

normally cyclises to aromatic polyketide metabolites. On the other hand, the 

reductive sequence can be used fully or partially after each condensation to 

produce highly functionalised intermediates such as the “reduced polyketide” in 

Fig. 32. 

  

 

 

 

 

 

 

Much of the current understanding of the polyketide metabolites formed via 

these highly reduced intermediates has come from studies using 2H and 18O 

labelled precursors in conjunction with detailed 13C and 2H NMR analysis of the 

enriched metabolites. 2H NMR, despite several inherent disadvantages, has 

been the nucleus of choice in many biosynthetic studies. Its major limitations 

 Figure 32 - The assembly of fatty acids, polyketides and reduced 

polyketides. The “reduced polyketide” intermediate would be formed from an 

acetate starter by five successive condensation cycles. The first two cycles 

are condensations and are followed by condensation-ketoreduction, 

condensation-ketoreduction-elimination, and finally a full condensation-

ketoreduction-elimination-enoyl reduction cycle. Thus the overall reaction 

sequence is A, A, AB, ABC, ABCD. 
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are mainly as a consequence of the low magnetogyric ratio and the relaxation 

behaviour of the 2H nucleus. Because it is a quadrupole nucleus (spin 1) and 

thus very efficiently relaxed, the spectral lines are rather broad and this, coupled 

with the low magnetogyric constant and the small chemical shift range for 

hydrogen nuclei, often results in poorly resolved spectra. However, the rapid 

relaxation and lack of any n.O.e. mean that accurate integration of 2H NMR 

spectra is possible so that the relative enrichment at different sites in a 

metabolite can be accurately assessed. Another major advantage is that as a 

consequence of its low natural abundance (0.012%), much greater dilutions are 

tolerable than in the case of 13C-labelling: a 100% 2H-labelled precursor may be 

diluted 6000-fold and still result in a doubling of intensity over the corresponding 

natural abundance signal. This makes 2H-labelling particularly suitable for 

studying the incorporation of advanced intermediates on a biosynthetic 

pathway. The inherent lack of resolution in 2H NMR can be overcome by the 

use of isotope-induced shifts in 13C NMR.  The use of 13C as a “reporter” 

nucleus for both hydrogen and oxygen represents one of the great advances in 

biosynthetic studies with stable isotopes and makes use of the observation that 

substitution of a proton alpha or beta to a 13C by deuterium causes a change 

(usually upfield) in the 13C chemical shift. Similarly, the presence of 18O alpha to 

a 13C atom can be detected by an upfield shift in the 13C NMR spectrum. These 

effects are summarised in Fig. 33. When the deuterium label is directly attached 

to a 13C nucleus in the precursor molecule, the proton-noise-decoupled (p.n.d.) 

13C NMR spectrum of the enriched metabolite shows, for carbons which have 

retained deuterium label, a series of signals upfield of the normal resonance. 

The presence of each deuterium shifts the centre of the resonance by 0.3 - 0.6 

ppm and spin-spin coupling (1JCD) produces a characteristic multiplet; hence 

CD appears (Fig. 33a) as a triplet, whereas CD2 and CD3 would give 

respectively a quintet and septet. Shifted signals arising from carbons which 

bear no hydrogen suffer reduced signal-to-noise ratio caused by poor relaxation 

and lack of n.O.e. enhancement, a disadvantage of the method which is 

compounded by the multiplicities due to coupling. Deuterium decoupling can 

assist in this by removing the 13C–2H coupling (see Fig. 33 below). However, 

information not obtainable by direct 2H NMR spectroscopy, such as the 

distribution of label as CH2D, CHD2 and CD3 and the integrity of carbon-

hydrogen bonds during biosynthesis, may be gained. Many of the problems 
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associated with directly attached deuterium are avoided by placing the 

deuterium label two bonds away from the 13C reporter nucleus. The isotope 

shift, although reduced, is still observable, and as -hydrogens only contribute 

markedly to the relaxation of non-protonated 13C nuclei, the shifted signals 

otherwise retain any n.O.e. also experienced by the unshifted signals on proton 

decoupling. As geminal carbon-proton coupling constants are generally small, 

and carbon-deuterium couplings are over six times smaller again, the shifted 

signals are effectively singlets (Fig. 33b), even without deuterium decoupling, 

and this gives a further increase in the signal to noise ratio compared with the 

corresponding -shift experiment. However, neither of these methods provides 

reliable information on the stereospecificity of deuterium labelling. Although 2H 

NMR spectra are disadvantaged by their inherently low dispersion and broad 

lines, they have the advantage of providing information on the stereospecificity 

as well as regiospecificity of labelling. 2H NMR, however, does not prove the 

number of deuteriums incorporated. The biosynthetic incorporation of 18O can 

also be detected by the observation of 18O isotope induced shifts in the 13C 

NMR spectrum, as shown in Fig. 33c,d. The 18O may be conveniently 

introduced via a doubly labelled precursor or by growth in an 18O2 atmosphere. 

The resulting shifts are generally not much larger than 0.05 ppm. These are 

very small effects, the same general size as -2H isotope shifts and are only 

readily observed with high field spectrometers. As shown in Fig. 33 there are 

two classes of isotope shifts: 

     

1. Primary () – the change in chemical shift of an atom when its isotope is 

changed, for example, the 1H chemical shift versus the 2D chemical shift. 

 

2. Secondary ()– the change in chemical shift of an atom when the isotope 

of one of the neighboring atoms is changed, for example, the 13C 

chemical shift difference between CH3OH and CH3OD. 

 

These techniques for elucidation of the origins of hydrogen and oxygen 

provided the basis for much of the work described below. 
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Colletodiol (116), a macrodiolide containing a 14-membered ring, was originally 

isolated from the plant pathogen Colletotrichium capsici along with a number of 

related macrodiolides including colletoketol (117), which was subsequently 

isolated (as grahamimycin A) from culture filtrates of Cytospora sp. ATCC 

20502. Incorporation of 13C-labelled acetates in C. capsici established that 

colletodiol was polyketide-derived and is formed via C6 and C8 hydroxyacids of 

tri- and tetra-ketide origins, respectively, as shown in Scheme 30. Depending on 

the exact structures of the intermediates, a number of mechanisms can be 

proposed for the formation of the lactone and 1,2-diol moieties in colletodiol. 

The origins of all the oxygen and hydrogen atoms have been elucidated by 

incorporation of [1-13C,2H3]- and [1-13C,18O2]acetates and 18O2 gas by cultures 

of Cytospora. The labelling pattern in colletodiol is summarised in Fig. 34. 

Interestingly, no 2H isotope-induced shifts could be observed for C-2 or C-8 in 

the 13C NMR spectrum of the [1-13C,2H3]acetate-enriched colletodiol. It is known 

Fig. 33a–d - Simulated proton noise decoupled 13C NMR spectra of a 

polyketide-derived moiety from: a [2-13C, 2-2H3]acetate; b [1-13C, 2-2H3]acetate; 

c [1-13C,18O2]acetate; d 18O2 gas. 
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that carbonyl carbons can be poor “reporter” atoms for -2H shifts and the 

presence of 2H label was shown by direct 2H NMR analysis of the enriched 

metabolite. The level of 2H incorporation is essentially uniform at all the 

enriched positions except for C-10 where a very low level was observed. From 

these results it can be concluded that the lactone ring formation occurs by an 

acyl substitution mechanism, as shown in Fig. 34 from the thioester 

intermediates (112) and (113) to give the macrocyclic triene (114). Examination 

of models suggested that the triene (114) would adopt a conformation similar to 

that observed for colletodiol and in this conformation epoxidation should occur 

from the more accessible 10Re, 11Re face of the Z-alkene to give the 10S,11R 

epoxide (115) which on hydrolysis would give colletodiol with the correct 

10R,11R stereochemistry and the observed origins of the hydroxyl oxygens. 

 

 

 
Fig. 34. Incorporation of [1-13C,18O2]-, [1-13C, 2-2H3]acetates and 18O2 into 

colletodiol and an acyl substitution mechanism for macrolactonisation. 
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Scheme 30 
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As indicated in Scheme 31 for the (R)-acetate, assuming that carboxylation to 

malonate proceeds with retention of configuration, there are four possible 

tritiated products from the condensation step. Thus, on subsequent incorpora-

tion into the 4- and 12-methylene groups of colletoketol (117) all positions 

where the stereospecific assignments of the diastereotopic hydrogens have 

been made, the stereochemical outcome can be deduced once it is known 

which of the prochiral hydrogens is incorporated along with 2H and which is 

incorporated along with 1H. This should be apparent from analysis of the p.n.d. 

3H NMR spectrum in which one 3H signal should be broadened by coupling to 

2H. The results for incorporation of (R)-acetate into colletoketol in Cytospora sp 

ATCC 20502 are shown in Fig. 35. 3H Label is incorporated most effectively into 

the methyl positions, but there is significant incorporation into all four methylene 

hydrogens. Interestingly, there is no observable incorporation into the 2- or 8-

alkene positions, in contrast to the results when [2H3]acetate is fed. This is 

difficult to rationalise, but it may be due to a “pool” effect, with the small amount 

of labelled acetate used in the experiment being entirely consumed by the PKS 

for the first two condensations, with unlabelled endogenous acetate being used 

for subsequent condensations. Close examination of the spectrum reveals a 

sharp singlet at  2.54, indicating 3H label at the 4-pro-S position with protium 

adjacent and a broader signal at  2.35, indicating 3H at the 4-pro-R position 

with deuterium adjacent. This is consistent with inversion of configuration. The 

results for the 12-methylene group is less clear as both the pro-R and pro-S 

hydrogen at  2.14 and 1.85 appear as sharp singlets.  
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Scheme 31 

 Figure 35 - Figure adapted from Simpson et al.6 533 MHz 3H 

NMR spectrum of colletoketol (117) enriched from feeding 

sodium (R)-[3H,2H,1H]acetate (50 mCi, 36 mCi mmol–1) to 

Cytospora sp.ATCC 20 502. 
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2.3 Conclusion 

 

Based on the examples given it is clear that the application of stable isotope 

labelling methodologies has made a major impact on the elucidation of 

biosynthetic and metabolic studies in a wide range of systems. As biosynthetic 

work becomes increasingly focused on studies at the enzymatic level, there will 

be continued scope for the further development of these applications 

particularly making use of sensitive mass spectral detection methods rather 

than the NMR methods which have dominated whole cell studies. These 

techniques will therefore will be used as the basis for study in Chapter 3. 
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Chapter 3 

 

 

Synthesis of Deuterated Substrates  

for Anaerobic Cultivation with Strain HxN1 
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3.1 DEUTERATED HEXANES 

As mentioned in the introduction, oxidation of n-hexane occurs at the C-2 or C-5 

position (Scheme 32) forming (1-methylpentyl)succinate (MPS), which possess 

two chiral centres and exist as four stereoisomers. 

 

 

 

 

 

 

 

 

Therefore to examine the formation of MPS in more detail and in order to 

establish the stereochemistry of the initial hydrogen atom abstraction step, n-

hexanes stereospecifically deuterated at the C-2 and C-5 position were required 

(Fig. 36). 

 

 

 

For this purpose, a strategy for the synthesis of (R,R)- and (S,S)-(2,5-

2H2)hexane from (S,S)- and (R,R)-hexane-2,5-diol respectively was developed 

(Scheme 33).  

Scheme 32 – Asterisks (*) indicate stereogenic centres. 

 Figure 36 – Target deuterated hexanes. 
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(S,S)- (124) and (R,R)-hexane-2,5-diol (122) were commercially available. 

However, in order to reduce costs, (S,S)-hexane-2,5-diol was synthesised 

inexpensively by reducing hexane-2,5-dione (126) with baker’s yeast (Scheme 

33).81 

 

 

 

Baker’s yeast was added to a solution of sucrose in water, followed by addition 

of the commercially available diketone 126. Reduction of the diketone 126 

yielded optically active diol 124, which was isolated in 60% yield and 99% ee 

(from comparison of optical rotation with literature81). The enantiomeric purity of 

diol 124 is due to presence of alcohol dehydrogenase enzymes in the baker’s 

yeast, which carry out the reduction of the ketone stereospecifically (Fig. 37).   

Scheme 33 - Synthesis of (R,R)- (119) and (S,S)-n-(2,5-2H2)hexane (118). (i) p-

toluenesulfonyl chloride, pyridine in dichloromethane, 0 °C, 72 h; (Ts = p-toluenesulfonyl); 

(ii) LiAl2H4, tetraglyme, 120 °C, 2 h.  

Scheme 34 – Synthesis of (S,S)-hexane-2,5-diol (124). (i) Baker’s yeast, sucrose, 

water, RT, 72 h. 
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The transfer of hydride by reduced nicotinamide adenine dinucleotide NADH is 

driven by the restoration of aromaticity to the pyridinium ring within the product 

molecule NAD+; the enantiospecificity of this reaction becomes apparent as 

hydride can only be added to the face of the carbonyl ‘recognised’ by the 

enzyme as the substrate. 

 

Tosylation of the diols 122 and 124 was achieved using p-toluenesulfonyl 

chloride and pyridine as base dissolved in DCM. The crude products were in full 

recrystallised to afford the pure ditosylates 123 and 125 respectively.81 13C and 

1H NMR spectra of both enantiomers was identical (See Fig. 38 for the 1H and 

13C NMR spectra of (2R,5R)-hexane-2,5-diol di-p-toluenesulfonate). However 

they did confirm that the corresponding diastereomer (128) was not formed, 

since the 13C NMR did not contain double peaks.The absolute configuration of 

the tosylates was confirmed by X-ray crystallography (Fig. 39 & 40). 

 

 

 

 Figure 37 – Typical alcohol dehydrogenase active site. 
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 Figure 38 - 1H and 13C NMR spectra of (2R,5R)-hexane-2,5-diol di-p-

toluenesulfonate. The (2S,5S)- isomer had identical NMR spectra. The numbers 

in red match the peaks with their corresponding atoms. 
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An interesting observation was made during the tosylation of the commercially 

available hexane-2,5-diol (mixture of isomers) 127 (Scheme 35), which resulted 

in isomeric mixture of ditosylates (123, 125 & 128). However after 

recrystallisation, the 13C NMR data (Fig. 41) indicated that only one of the 

diastereomers had been crystallised due to the fact that each carbon 

corresponded to a single peak. X-ray crystallography (Fig. 42) confirmed this 

tosylate to be the (2R,5S)-hexane-2,5-diol di-p-toluenesulfonate (128). 

 

Scheme 35 – Synthesis of (2R,5S)-hexane-2,5-diol di-p-toluenesulfonate.  

(2). 

 Figure 40 – (2S,5S)-Hexane-2,5-diol di-p-toluenesulfonate (125) 

 Figure 39 – (2R,5R)-Hexane-2,5-diol di-p-toluenesulfonate (123) 



91 
 

 

 

 

 

 

 

 Figure 41 - 1H and 13C NMR of (2R,5S)-hexane-2,5-diol di-p-toluenesulfonate (128). 

1H NMR (300 MHz, CDCI3) 

13C NMR (100 MHz, CDCI3) 
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Hexan-2-one was reduced with sodium tetradeuteroborohydride in ethanol to 

afford 2-deuterohexan-2-ol 129, which was characterised by 1H and 13C NMR. 

Within the limits of detection these spectra showed complete deuteration at C-2. 

Thus, the resonance at  4.0 in the 1H NMR of hexan-2-ol was completely 

absent from the spectrum of 2-deuterohexan-2-ol 130 (Fig. 43). Alcohol 130 

was converted into tosylate 131 in the standard way. The tosylate showed lack 

of a resonance at  4.5 confirming the presence of deuterium at C-2 (Fig. 44). 

Finally, the tosylate was reduced by lithium aluminium deuteride in tetraglyme to 

give 2,2-dideuterohexane 121A (80% yield), which was characterised by EIMS, 

1H, 2H and 13C NMR.  

 

 
Scheme 36 – Synthesis of 2,2-dideuterohexane (121A) and 2,2,5,5-

tetradeuterohexane (121B). (i) NaB2H4, THF, 60 °C, 3 h; (ii) p-Toluenesulfonyl 

chloride, pyridine in dichloromethane, 0 °C, 72 h; (iii) LiAl2H4, tetraglyme, 120 °C, 2 h.    

 Figure 42 – (2R,5S)-Hexane-2,5-diol di-p-toluenesulfonate (128) 
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2,2,5,5-tetradeuterohexane (121B) was prepared following a similar procedure 

from diketone 126 (See Fig. 45). 

 

 Figure 43 – 1H NMR of 2-deuterohexan-2-ol (130). 

 Figure 44 – 1H NMR of rac-(2-2H)-hexan-2-ol p-toluenesulfonate (131),  

1H NMR (300 MHz, CDCI3) 

1H NMR (300 MHz, CDCI3) 
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 Figure 45 - 1H and 13C NMR of deuterated tosylate 133. *The triplet at 

79.6 in 13C-NMR confirms the presence of CHD group.    
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The last step of the synthesis involved the use of tetraglyme 

(tetraethyleneglycol dimethyl ether) (134), a high boiling solvent (bp 275 °C), to 

facilitate (using direct distillation) the isolation of the labelled hexane following 

reduction of an intermediate tosylate by 

lithium aluminum deuteride.  

 

 

 

 

The synthesised tosylates were dissolved in a minimum amount of tetraglyme in 

a flask attached to a distillation system, which was connected to a nitrogen line. 

Lithium aluminium deuteride (2 equiv.) was added at room temperature (0 °C for 

large-scale). The nitrogen line was removed and replaced with a drying tube. 

The reaction flask was heated up to 140°C and the dideuterated hexanes were 

collected in the flask placed in dry ice in 75 – 85% (Fig. 46). Due to the low 

boiling point of hexane (69°C), the afforded products were then transferred into 

an ampoule and sealed using a heat gun in order to minimise the loss of 

product due to evaporation. 

 

3.1.1 Confirmation of deuteration  

The complete deuteration of the hexanes was confirmed by 1H-, 2H- and 13C-

spectroscopy (Fig. 47-53). The 1H NMR of 120 (Fig. 48) indicate that the ratio of 

terminal hydrogens to non-terminal hydrogens is 1:1, in contrast to the ratio of 

hydrogens in non-deuterated n-hexane (Fig. 47) which is 6:8. 2H-NMR 

spectroscopy was also performed to confirm the deuteration. 

 Figure 46 – Isolation of the labelled hexane by direct distillation. 

http://www.thefreedictionary.com/deuteration
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 Figure 48 – 1H- and 2H-NMR of (2R,5S)-(2,5-2H2)hexane (120). 
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 Figure 47 – 1H-NMR of n-hexane. 
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However, the most unique feature of the deuterated compounds is indicated in 

their 13C-NMR. The introduction of deuterium into a molecule has a distinct 

effect on its NMR spectra. 1H NMR spectra are simplified, as the extent of 

coupling resulting from deuterium atoms is 1/6th that of hydrogen atoms, and as 

such they do not significantly split the signals of adjacent protons. However, 

protons in geminal CHD groups are split by deuterium atoms into triplets as a 

result of deuterium having spin I = 1. This splitting was not visible on the spectra 

of most of the deuterated compounds synthesised in this project, possibly as a 

result of broadening of signals. 

 

As mentioned in chapter 2, 13C NMR spectra become more complicated, as 

deuterium atoms do split the signals of directly bonded 13C atoms, and this 

splitting shows up on a normal proton-decoupled spectrum, from which splitting 

from 1H atoms is removed. Splitting of a 13C signal by deuterium follows the rule 

multiplicity = 2I + 1, where I is the number of directly-bonded deuterium atoms. 

Hence, a carbon atom bonded to one deuterium will show as triplet, and a 

carbon atom bonded to two deuterium atoms will show as a quintet.82  

 

For example in deuterated hexane 120 only one deuterium is bonded to the 

carbon at C-2 and therefore the multiplicity = (2 × 1) + 1 = 3, which is shown as 

a triplet in 13C-NMR (Fig. 39). However, CD2 in the hexane 121B has a 

multiplicity of 5 and exhibits a quintet (Fig. 53). 

 

 

 

 

 

 

 

These features were present in the NMR spectra of all other deuterated 

hexanes, which is shown in figures 50 – 52. 

2 × CHD 

13

C-NMR 

Figure 49 – 13C-NMR of (2R,5S)-(2,5-2H2)hexane (120). 
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 Figure 50 – 1H and 13C-NMR of (2S,5S)-(2,5-2H2)hexane (120). 

 Figure 51 – 1H- and 13C-NMR of (2R,5R)-(2,5-2H2)hexane (119). 
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 Figure 52 – 1H and 13C-NMR of 2,2-dideuterohexane (121A). 

 Figure 53 – 1H- and 13C-NMR of 2,2,5,5-tetradeuterohexane (121B). 
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3.1.2 Inversion of configuration (SN2) following reduction by LiAl2H4  

The reduction of the tosylates by LiAl2H4 is a SN2 reaction and proceeds via 

inversion of configuration at each stereocentre.83 This process was first 

observed by P. Walden84 in 1896 when he noticed that compounds can invert 

their configuration as a result of substitution reactions. He reacted 

hydroxysuccinic acid with SOCl2 and PCl5 and realised that one of the steps 

during the reactions was associated with inversion of the configuration, 

whereas, the other proceeded with retention, but at the time he was unable to 

specify which (Scheme 37).   

 

 

Proof that an SN2 reaction proceeds with inversion of configuration was 

provided by Kenyon et al (Kenyon-Philips cycle) in a three-step reaction 

sequence in which the starting material and the product were enantiomers 

(Scheme 38).85 

 

  

Scheme 38 – Example of Kenyon-Philips cycle. 

Scheme 37  
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The deuteride anion behaves in the same way as acetate and approaches the 

electrophilic carbon at an angle of 180° from the leaving group (tosylate), 

resulting in inversion of configuration. The examples below are from published 

studies carried out by Baillif et al83 that confirm the SN2 stereochemistry of 

lithium aluminium deuteride on tosylates (Scheme 39): 

 

 

 

Assigning the absolute configuration for each step illustrated that configurations 

remained unchanged after tosylation, however it was inverted following 

reduction with LiAl2H4. 

 

A common reaction which can be used as evidence to confirm the SN2 reactivity 

of LiAlH4 is the reduction of epoxides. The epoxide on the cyclohexane ring 

shown below cleaves in such a direction as to give an axial alcohol, which is 

expected for a SN2 reaction (Scheme 40).86 

  

Scheme 39 – Reagents and conditions: (i) TsCl, pyr.; (ii) LiAl2H4, Et2O 

Scheme 40 – Reduction of epoxide by LiAlH4. 
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3.1.3 Analysis of the metabolites 

 

The deuterated hexanes prepared as described above, were transferred to 

glass ampoules, thermally sealed and sent to Prof. R. Rabus (Oldenburg 

university) laboratory to be used as growth substrates for strain HxN1. 

Rotational symmetry of the n-(2,5-2H2)hexane isomers forces the enzyme to 

attack a configurationally defined CHD center and simplifies the product 

analysis. 

 

Mass spectrometric analysis of metabolites formed during anaerobic growth of 

strain HxN1 in the presence of deuterated hexanes 1 and 3 were performed. 

Complete transfer of a deuterium atom to the succinate moiety of 16 was 

observed upon addition of 1, while essentially no deuterium transfer occurred 

with 3 (Fig. 38). 

 

As shown in figure 54 the fragment ion at m/z 199 resulting from loss of OCH3 

from one of the methyl ester moieties in spectrum (A) is shifted to m/z 201 in 

(B) and (C), indicating the presence of two deuterium atoms. The fragment ion 

at m/z 157 in (A) is shifted to m/z 159 and m/z 158 in (B) and (C), respectively. 

The fragment ions at m/z 114 and m/z 146 in (A) are shifted to m/z 115 and m/z 

147, respectively, in (C), while no shift is observed in (B). Thus, exclusively the 

pro-S hydrogen atom is abstracted from the n-hexane. 
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 Figure 54 – Figure adapted from Jarling et al.7 Mass spectra showing the labelling 

patterns of deuterated isotopologues of 16 (as dimethyl esters after derivatisation with 

diazomethane) formed during anaerobic growth of strain HxN1 in the presence of 

stereospecifically deuterated n-hexanes. A) 16 formed from non-deuterated n-hexane, 

B) (1’,4’-2H2)-16 formed from 3, C) (3,4’-2H2)-16 formed from 1.  
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Mass spectrometric analysis of (1-methylpentyl)succinic acid formed during 

anaerobic growth of strain HxN1 in the presence of (2R,5S)-n-(2,5-2H2)hexane 

(meso) revealed the presence of a ~ 3:1 mixture of the (1',4'-2H2)- and (3,4'-

2H2)-isotopologues, while in the presence of n-(2,2-2H2)hexane a ~ 5:1 mixture 

of the (4',4'-2H2)- and (3,1'-2H2)-isotopologues was observed. This shows that 

hydrogen abstraction from n-hexane has a primary kinetic isotope effect ≥ 3. 

 

 

 

 

 

 

3.1.4 Proposed mechanism 

 

The observed results proves that in the initial step of the catalytic cycle of the 

(1-methylpentyl)succinate-forming enzyme exclusively the pro-S hydrogen atom 

is abstracted from C-2 of n-hexane. Subsequently, the secondary alkyl species 

binds with a fumarate molecule on the face opposite to that from which the 

 Figure 55 – Mass spectra showing the labelling pattern of deuterated 

isotopologues of (1-methylpentyl)succinic acid (as dimethyl esters after 

derivatisation with diazomethane) formed in the presence of (2R,5S)-

n-(2,5-2H2)hexane (left) or n-(2,2-2H2)hexane (right).  
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hydrogen atom was abstracted, resulting in the 1’R configuration of 67. Thus, 

an overall inversion of configuration at C-2 of n-hexane takes place. The 

formation of 67 is completed by back transfer of the originally abstracted 

hydrogen atom, which regenerates the cysteinyl radical. The hydrogen 

abstraction and addition to fumarate may even occur in a concerted manner, 

similar to an SN2 reaction. Hence, a modified mechanism for the initial 

abstraction of hydrogen was proposed (Scheme 42). 

 

 

 

 

 

 

 

3.1.5 Summary  

In order to avoid the formation of unlabelled 67, incubation experiments were 

performed with cultures of strain HxN1 that had been adapted to n-heptane 

using a mixture of n-heptane and a dideuterated n-hexane (8:1). Rotational 

symmetry of the n-(2,5-2H2)hexane isomers causes the enzyme to attack a 

configurationally defined CHD center and makes the product analysis simpler. 

Upon the addition of 118, the complete transfer of a deuterium atom to the 

succinate moiety of 67 was observed, while no deuterium transfer occurred with 

119 (Figure 38). This proves that in the initial step of the catalytic cycle of the 

(1-methylpentyl)succinate-forming enzyme exclusively the pro-S hydrogen atom 

is abstracted from C-2 of unlabelled hexane 65. Afterwards, the secondary alkyl 

species binds with a fumarate molecule on the face opposite to that from which 

Scheme 42 – Proposed concerted mechanism of the (1-methylpentyl)succinate forming 

enzyme reaction. The active form of the enzyme is generated by abstraction of a 

hydrogen atom from an adjacent cysteine residue by the glycyl storage radical. 
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the hydrogen atom was abstracted, resulting in the 1′R configuration of MPS 67. 

Therefore, an overall inversion of configuration at C-2 of 1 takes place. The 

formation of 67 is completed by back transfer of the originally abstracted 

hydrogen atom, which regenerates the cysteinyl radical. The hydrogen 

abstraction and addition to fumarate may even occur in a concerted manner, 

similar to an SN2 reaction (Scheme 42). Such a mechanism could explain how 

the high difference in bond dissociation energy (BDE) between a thiol (RS-H) 

and a C-H bond of a methylene group in an alkane (ΔBDE ≈ 40 kJ mol−1) could 

be overcome.87 Hence, the highly energetic hex-2-yl radical may not exist as a 

single enzyme-bound species. The only detectable radical in this reaction would 

be that at C3 of the succinate moiety stabilised by the adjacent carboxylate, 

similar to the radical detected in the carbon-skeleton rearrangement catalyzed 

by glutamate mutase.88 With 120 and 121A, mixtures of dideuterated 

isotopologues of 67 were formed in which the main product was formed by the 

transfer of the pro-S hydrogen atom from C2 and C5, respectively (see the 

Supporting Information). This indicates a significant primary kinetic isotope 

effect (≥3) for the abstraction of the hydrogen atom. 

 

3.1.6 Comparison of the known transformation of succinyl-CoA to 

propionyl-CoA via methylmalonyl-CoA with the present pathway 

 

The fate of deuterium atoms from labeled substrates was used to elucidate the 

overall stereochemical course of the (1-methylpentyl)succinate-forming reaction 

and subsequent steps in the degradation pathway (Scheme 43). This was 

based on assumed similarities to the known transformation of succinyl-CoA to 

propionyl-CoA. In the latter pathway an epimerisation is required as (R)-

methylmalonyl-CoA formed from succinyl-CoA by methylmalonyl-CoA mutase is 

not a substrate of (S)-methylmalonyl-CoA decarboxylase. A corresponding step 

appears to be absent in the transformation of (2-methylhexyl)malonyl-CoA to 

(R)-4-methyloctanoyl-CoA as no exchange of the hydrogen atom at C-2 with 

external hydrogen was observed . 
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Scheme 43 - Comparison of the known transformation of succinyl-CoA to propionyl-

CoA via methylmalonyl-CoA with the corresponding reactions in the pathway of 

anaerobic oxidation of n-hexane in strain HxN1. i, methylmalonyl-CoA mutase; ii, 

methylmalonyl-CoA epimerase; iii; (S)-methylmalonyl-CoA decarboxylase, iv, 

postulated (1-methylalkyl)succinyl-CoA epimerase; v, (2-methylalkyl)malonyl-CoA 

mutase; vi, (2-methylalkyl)malonyl-CoA decarboxylase; R = hex-2-yl. 
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3.2 DEUTERATED DECANES 

 

In order to verify that the same mechanism applies to initial abstraction of 

hydrogen in > C6 alkanes, synthesis of deuterated decanes as substrates was 

also required. This section was not completed due to time factors, however two 

methods were developed for the synthesis of deuterated decanes. 

 

3.2.1 Synthesis of decane-2,9-diol di-p-toluenesulfonates 

 

The initial method involved hydrogenation of commercially available 147 to 

afford diketone 148, which was further reduced by sodium borohydride to afford 

diol 149, which was tosylated in the same manner as hexane-2,5-diol (127), 

subsequent fractional recrystallisation of the ditosylate mixture preferentially 

afforded a mixture of (2S,9S)- and (2R,9R)-decane-2,9-diol di-p-toluenesulfonates 

(151 and 152), which were fully characterised by 1H and 13C NMR (Fig. 57). The 

relative configuration of the mixture was achieved using X-ray crystallography 

(Fig. 56).    

 

 

 

 

 

 Scheme 44 – Synthesis of (2S,9S)- and (2R,9R)-2,9-dideuteriodecane. (i) 

H2, 10% Pd/C, THF, RT, 24 h; (ii) NaBH4, CH3OH, 0 ˚C, 2 h; (iii) C6H5N, 

TsCl, CH2Cl2, 0 ˚C, 72 h; (iv) LiAl2H4, tetraglyme.   
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A racemic mixture of (2S,9S)- and (2R,9R)-2,9-dideuteriodecane was obtained, 

using the same method for obtaining deuterated hexanes. This mixture wil be 

used as a reference standard for comparison of NMR spectra (Fig. 58).  

 

 

 Figure 56 - (2S,9S)- and (2R,9R)-decane-2,9-diol di-p-toluenesulfonates 

(151 and 152) 

1H NMR (300 MHz, CD3OD, CH3OD) 

 

(8H; 4×CH3) 

(10H; 

2×CH3, 

2×CH3) 

(4H; 4×Ar-H) 

(6H; 2×CH3) 

(2H; 2×CH) 

(4H; 4×Ar-H) 
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13C NMR (75 MHz, CD3OD, CH3OD) 

 

2, 9 

12, 23 

15, 26 

14, 16, 25, 27 

13, 17, 24, 28 

3, 8 

5, 6 

4,7 

18, 29 

1,10 

Methanol 

2, 9 

1, 10 

3, 8 

5, 6  

4, 7  

14H 

6H 

 Figure 57 - 1H and 13C NMR specta of ditosylates 151 and 152. 

 Figure 58 - 1H and 13C NMR spectra of (2S,9S)- and (2R,9R)-2,9-

dideuteriodecane (153 and 154). 

1H NMR (400 MHz, CDCI3) 

13C NMR (100 MHz, CDCI3) 

Chloroform 
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3.2.2 (2S,9S)-2,9-dideuteriodecane 

 

Protection of hydroxyl group in 155 using sodium hydride and benzyl bromide, 

was followed by olefin metathesis of 156 using Grubbs’ catalyst (1st generation) 

to afford 157 (see 1H NMR spectra; Fig. 59). 

 

 

 

Grubbs’ catalyst operates by redistribution of fragments of alkenes (olefins) by 

the scission and regeneration of carbon-carbon double bonds (Scheme 46). 

 

 

Subsequently, 157 was hydrogenated to afford diol 158, tosylated using the 

same method as before, and reduced by LiAl2H4 to give (2S,9S)-2,9-

dideuteriodecane (see 13C-NMR spectra; Fig. 60). 

 

 

Scheme 45 – Synthesis of (2S,9S)-2,9-dideuteriodecane.  

Scheme 46 – Mechanism of action of Grubbs’ catalyst.   
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1H NMR (400 MHz, CDCI3) 

(10H; 10×Ar-H) 

(2H; 2×CH) 

(4H; 2×CH2) 

(2H; 2×CH) 

(4H; 2×CH2) 

(4H; 2×CH2) 

(6H; 2×CH3) 

 Figure 59 - 1H NMR spectra of 157. 

13

C NMR, 100 MHz, CDCl3 

2, 9 

1, 10 

3, 8 

5, 6  

4, 7  

 Figure 60 - 13C NMR spectra of (2S,9S)-2,9-dideuteriodecane (154). 
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Chapter 4 

 

 

Synthesis of Succinic Acid Metabolites Produced by Strain 

HxN1 During Anaerobic Growth with Hexane 
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4.1 ASSIGNMENT OF CONFIGURATION OF STEREOCENTERS IN (1-

METHYLPENTYL)SUCCINIC ACID ISOMERS PRODUCED BY STRAIN HXN1 

DURING ANAEROBIC GROWTH WITH N-HEXANE 

Structures 67a-d of (1-methylpentyl)succinic acid (MPS) are formed following 

anaerobic degradation of hexane by strain HxN1. These structures have two 

chiral centres and therefore can exist as four possible stereoisomers. To explain 

the configuration at the newly formed stereocentres, synthesis of all four 

stereoisomers of 67 (a - d) was required in order to use them as standards for 

comparison with metabolites from strain HxN1.  

 

The synthesis of these stereoisomers was achieved from racemic and pure (R)- 

and (S)-hexan-2-ol through activation of the hydroxy group and displacement 

with diethyl malonate, followed by alkylation with ethyl bromoacetate, hydrolysis 

of the ester groups, and decarboxylation with hydrochloric acid to give the 

desired MPS in an overall 20% yield (Scheme 47).  

 

 

 

 

 

(R)- and (S)-hexan-2-ol are both commercially available. However, in order to 

reduce costs (S)-hexan-2-ol was also synthesised via reduction of hexan-2-one 

by carrots89 in a similar procedure as to that described in chapter 3 using 

baker’s yeast. The general feature of these reductions is, for most cases, well 

Scheme 47 - Synthesis of a mixture of (2R,1'S)- and (2S,1'S)-(1-methylpentyl)succinic 

acid. i, Methanesulfonyl chloride, triethylamine in dichloromethane (methanesulfonyl = 

Ms)3; ii, sodium hydride followed by diethyl malonate in 1,2-dimethoxyethane3; iii, 

sodium hydride followed by ethyl bromoacetate in tetrahydrofuran; iv, concentrated 

hydrochloric acid, reflux for 48 h. 
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documented by Prelog’s rule, which predicts that hydrogen transfer to the 

prochiral ketone always occurs from the Re-face, where L represents a large 

alkyl substituent and S a small alkyl substituent adjacent to the carbonyl group 

(Scheme 48) to yield chiral alcohols.90 But as Sih et al.91 pointed out one should 

exercise considerable caution when Prelog’s rule is applied to intact cell 

systems. 

 

 

 

From (S)-hexan-2-ol, [(2R,1’R) and (2S,1’R) isomers 67a and 67d] were 

obtained, whereas (R)-hexan-2-ol gave the [(2S,1’S) and (2R,1’S) isomers 67b 

and 67c]. Racemic hexan-2-ol afforded the mixture of (2R,1’R)/(2S,1’S) isomers 

(67a and 67b) and (2R,1’S)/(2S,1’R) isomers (67c and 67d) in a ratio of 6 : 5 

according to their 1H NMR spectrum (Fig. 62).  

 

 

Repeated fractional fractional recrystallisation of the afforded MPS 

stereoisomers 67a-d from racemic hexan-2-ol, using petrol:ethyl acetate, 

Scheme 48 – Reduction of ketone using carrots. 

 Figure 61 – Isolated mixtures of (1-methylpentyl)succinic acid (67). 
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afforded the (2R,1’S)/(2S,1’R) isomers (67c and 67d) in a pure form. The 

relative configurations were confirmed by X-ray crystallagrophy (Fig. 63). The 

mixture of (2R,1’R)/(2S,1’S) isomers (67a and 67b) was obtained (90% purity) 

by evaporation of the mother liquor.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

  

1H NMR (300 MHz, CDCl3, CHCl3) 

1
H NMR (400 MHz, CD3OD, CH3OD) 

 

(m, 1H; CHCHCH2) 

Obtained by recrystallisation 
from petrol:ethyl acetate 

 

Obtained by evaporation of the mother 
liquor  

 Figure 62 – Comparison of the 1H-NMR of the two sets of succinic acid 
diastereomers confirms a successful separation. 

1
H NMR (400 MHz, CD3OD, CH3OD) 
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Display of single peaks in the 13C NMR of mixtures 2 and 4, further confirms the 

separation of distereomers (Fig. 64A and B). 

 

 

 

 

Figure 63 – X-ray crystallography of (2R,1’S)/(2S,1’R) isomers (67c and 67d). 

 

1 

6 

2 
3 

4 

9 10 

5 8 

7 

13C NMR (100 MHz, CD3OD, CH3OD) 

 

13C NMR (100 MHz, CD3OD, CH3OD) 

 

Figure 64A – 13C NMR of mixture 2 (67c and 67d). 

Figure 64B – 13C NMR of mixture 4 (67a and 67b). 
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Ultimately, mixtures 1 - 4 were isolated (Fig. 61). However, in order for the MPS 

mixtures (67a-d) to analysed by gas chromatography (GC), they were 

derivatized to 3-(1-methylpentyl)-1-(1-phenylethyl)pyrrolidine-2,5-diones / N-(1-

phenylethyl) 3-(1-methylpentyl)succinimides using (R)-(+)-1-phenylethylamine. 

Subsequently the chromatographs were compared with the chromatographs of 

products formed by strain HxN1 during anaerobic growth with n-hexane (Fig. 

65). 

      

 

 

 

 

 

67a 67b 67c 67d 

Figure 65 – Gas chromatograms showing the specific formation of the 

(2R,1'R)- and (2S,1'R)-isomers of 67 during anaerobic growth of strain HxN1 

with n-hexane A) Mixture of all four stereoisomers; B) (2R,1'R)/(2S,1'S); C) 

(2R,1'S)/(2S,1'R); D) (2S,1'S)/(2R,1'S); E) (2R,1'R)/(2S,1'R); F) products 

formed by strain HxN1 during anaerobic growth with n-hexane. 
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As shown in Fig. 65, strain HxN1 specifically forms equal amounts of 67a and 

67d during anaerobic growth with hexane. This demonstrates that both 

configurations at C-2 in the succinate moiety are present. However, the stereo-

center at C-1’ in the products (C-2 of the hydrocarbon substrate) has exclusively 

the R configuration (Scheme 48).  

 

 

 

 

4.2 Assignment of Configuration of 4-Methyloctanoic Acid Produced by 

Strain HxN1 During Anaerobic Growth with n-Hexane 

 

Using the (R) and (S)-4-methyloctanoic acid which were synthesised by my 

colleague Marta Drozdowska,7 assignment of the configuration of 4-

methyloctanoic acid which is further produced by strain HxN1 during anoxic 

growth with n-hexane, was possible using comparison in Gas chromatography. 

This confirms that only the (R)-enantiomer is formed (Fig. 66), which is in 

agreement with the results obtained for (1-methylpentyl)succinate. 

 

4.3 Conclusion  

 

Using the information gathered from analysis of the metabolites from deuterated 

hexanes and also GC comparison of metabolites with synthesised isomers, the 

following pathway is proposed for the Initial steps of the anaerobic oxidation of 

n-hexane in the denitrifying strain HxN1 (Scheme 50).  

 

Scheme 49 – Formation of equal amounts of 67a and 67d during anaerobic growth 

with hexane.  
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 Figure 66 - Gas chromatograms showing the specific formation of (R)-4-

methyloctanoic acid during anaerobic growth of strain HxN1 with n-hexane. 

A) Racemate; B) (R)-4-methyloctanoic acid; C) (S)-4-methyloctanoic acid; D) 

product formed by strain HxN1during anaerobic growth with n-hexane. 
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4.4 Discussion 

Mechanistically, this reaction appears to be similar to the formation of 

benzylsuccinate from toluene catalyzed by the glycyl radical enzyme 

benzylsuccinate synthase.92 Indeed, EPR spectroscopy provided strong 

evidence for the presence of a glycyl radical enzyme in cells of the denitrifying 

betaproteobacterium “Aromatoleum” strain HxN1 anaerobically grown with n-

hexane.2 A tentative (1-methylalkyl)succinate synthase similar to 

benzylsuccinate synthase has been identified.51 However, abstraction of a 

hydrogen atom from any C─H bond of an n-alkane is intrinsically more difficult 

than such a process at the methyl group of toluene.87 To better understand the 

Scheme 50 - Initial steps of the anaerobic oxidation of n-hexane in 

the denitrifying strain HxN1 including the proposed stereochemistry 

of the reactions involved as elucidated in this study. a) (1-

Methylalkyl)-succinate synthase; b) (1-methylalkyl)succinate-CoA 

ligase; c) (1-methylalkyl) succinyl-CoA epimerase; d) (2-

methylalkyl)malonyl-CoA mutase; e) (2-methylalkyl)malonyl-CoA 

decarboxylase; f) 4-methylalkanoyl-CoA dehydrogenase. 
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mechanism of n-alkane functionalization under anoxic conditions, we have 

studied the stereochemical features of this defining example of C─H activation. 

Analysis of metabolites present in cells of strain HxN1 anaerobically grown with 

n-hexane (65) had shown that the formed (1-methylpentyl)succinate (67) 

consists of two diastereoisomers (Scheme 49), indicating an apparent imperfect 

stereoselectivity of the enzymatic reaction. The analogous formation of 

benzylsuccinate from toluene by benzylsuccinate synthase yields exclusively 

the R enantiomer (Scheme 19). Anaerobic incubation of strain HxN1 with 

perdeuterated n-hexane revealed that the hydrogen atom abstracted from C-2 

of the n-alkane is transferred to C-3 of the succinate moiety. It has been 

suggested that subsequent degradation of 67 by means of activation as a 

coenzyme A thioester, intramolecular rearrangement to (2-methylhexyl)malonyl-

CoA (69), and decarboxylation leads to 4-methyloctanoyl-CoA (70), which is 

then further degraded by dehydrogenation and β-oxidation (Scheme 50). 

4.5 Labeling patterns of other metabolites detected upon anaerobic 

growth of strain HxN1 with various deuterium-labelled substrates 

 

The labelling patterns of metabolites detected upon anaerobic growth of strain 

HxN1 with various deuterium-labelled substrates were assigned based on 

interpretation of their mass spectrometric fragmentation patterns (Table 6 & 7). 

The observed labelling patterns imply fates of specific hydrogen atoms, which 

are fully in accord with the proposed stereochemistry of the enzyme reactions 

involved in n-hexane oxidation by strain HxN1 as discussed in Scheme 50. 

 

Substrates Products 
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 Table 67 – Labeling patterns of metabolites detected upon anaerobic growth of 

strain HxN1 with various deuterium-labeled substrates. 1, n-Hexane; 2, 

fumarate; 3, (1'R)-(1-methylpentyl)succinic acid dimethyl ester; 4, (R)-4-

methyloctanoic acid methyl ester; 5, (R)-4-methyloct-2-enoic acid methyl ester; 

6, (2,3-2H2)fumarate; 7, (1'R)-(3-2H)(1-methylpentyl)succinic acid dimethyl ester; 

8, (R)-(3-2H)4-methyloctanoic acid methyl ester; 9, n-(2H14)hexane; 10, (1'R)-

(3,1',2',2',3',3',4',4',5',5',5',6',6',6'-2H14)(1-methylpentyl)succinic acid dimethyl 

ester; 11, (R)-(2,4,5,5,6,6,7,7,8,8,8,1',1',1'-2H14)4-methyloctanoic acid methyl 

ester; 12, (R)-(4,5,5,6,6,7,7,8,8,8,1',1',1'-2H13)4-methyloct-2-enoic acid methyl 

ester; 13, (2S,5S)-n-(2,5-2H2)hexane; 14, (1'R,4'S)-(3,4'-2H2)(1-

methylpentyl)succinic acid dimethyl ester; 15, (4R,7S)-(2,7-2H2)4-

methyloctanoic acid methyl ester; 16, (4R,7S)-(7-2H)4-methyloct-2-enoic acid 

methyl ester; 17, (2R,5R)-n-(2,5-2H2)hexane; 18, (1'R,4'R)-(1',4'-2H2)(1-

methylpentyl)succinic acid dimethyl ester; 19, (4R,7R)-(4,7-2H2)4-

methyloctanoic acid methyl ester; 20, (4R,7R)-(4,7-2H2)4-methyloct-2-enoic acid 

methyl ester. (Metabolites 16 and 20 were not detected) 

 

 Table 7 - Mass spectrometric data of unlabeled and deuterated metabolites 
detected upon anaerobic growth of strain HxN1 with various unlabeled and 
deuterium-labeled substrates. The m/z values of key fragment ions used for the 
assignment of labeling patterns are given in bold numbers. 

No

. 

Metabolite Substrate Key Ions m/z (% relative 

intensity) 

1.1 

(1
’R

)-
(1

-m
e
th

y
lp

e
n
ty

l)
s
u
c
c
in

a
te

 

 all -(
1
H) all -(

1
H) M

+
 absent, 199 (14.5), 183 

(1.3), 171 (2.2), 170 (1.8), 157 
(33.9), 146 (48.7), 141 (6.2), 
139 (9.1), 125 (8.6), 114 (100), 
97 (5.1), 87 (6.0), 74 (1.8), 69 
(5.5), 59 (5.3), 55 (10.4) 

2.1 3-(
2
H) all -(

1
H) 2,3-(

2
H2) M

+
 absent, 200 (12.9), 184 

(0.8), 172 (1.8), 171 (2.1), 157 
(29.7), 147 (41.1), 142 (7.2), 
140 (7.8), 125 (9.8), 115 (100), 
97 (8.1), 88 (9.6), 75 (2.1), 70 
(4.4), 69 (4.9), 59 (8.0), 56 
(10.6), 55 (10.9) 

3.1 2,3-(
1
H

2
),(

2
H14) all -(

2
H) all -(

1
H) M

+
 absent, 213 (13.9), 194 

(1.0), 185 (1.8), 183 (1.2), 170 
(24.7), 152 (7.2), 148 (46.6), 
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138 (3.2), 137 (5.6), 118 (4.7), 
115 (100), 109 (7.0), 90 (3.5), 
89 (9.8), 77 (3.7), 62 (6.8), 59 
(6.8), 56 (6.6) 

4.1 (4'S )-3,4'-(
2
H2) (2S ,5S )-2,5-(

2
H2) all -(

1
H) M

+
 absent, 201 (13.9), 185 

(0.7), 173 (1.8), 172 (1.8), 158 
(29.0), 147 (47.6), 142 (6.8), 
141 (7.4), 126 (10.4), 115 (100), 
98 (7.6), 97 (6.0), 88 (8.9), 87 
(6.8), 82 (6.3), 71 (5.4), 70 
(7.0), 69 (5.4), 59 (12.3), 56 
(20.3), 55 (8.9) 

5.1 (4'R )-1',4'-(
2
H2) (2R ,5R)-2,5-(

2
H2) all -(

1
H) M

+
 absent, 201 (11.4), 185 

(0.7), 173 (1.3), 171 (2.0), 159 
(29.3), 146 (47.2), 142 (6.7), 
141 (6.4), 127 (4.6), 126 (5.5), 
114 (100), 99 (7.2), 87 (9.6), 86 
(7.0), 82 (4.6), 74 (2.6), 70 
(7.7), 59 (9.2), 56 (11.0), 55 
(13.2) 

6.1

a 

(4'S )-1',4'-(
2
H2) (2R ,5S )-2,5-(

2
H2) all -(

1
H) M

+
 absent, 201 (13.0), 185 

(0.7), 173 (1.8), 172 (0.7), 171 
(1.5), 159 (25.2), 158 (7.9), 147 
(19.2), 146 (45.9), 142 (7.4), 
141 (9.2), 127 (5.4), 126 (8.1), 
115 (33.4), 114 (100), 99 (8.5), 
98 (5.0), 97 (5.2), 88 (4.8), 87 
(11.7), 86 (6.6), 82 (6.0), 74 
(3.7), 71 (5.1),70 (9.7), 69 (4.6), 
59 (13.2), 57 (9.2), 56 (18.3), 55 
(15.2) 

6.1

b 

(4'R )-3,4'-(
2
H2) (2R ,5S )-2,5-(

2
H2) all -(

1
H) 
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Chapter 5 

 

 

Anaerobic Degradation of  

Naphthalene 
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5.1 INTRODUCTION TO POLYCYCLIC AROMATIC HYDROCARBONS  

 

Polycyclic aromatic hydrocarbons (PAHs) are among the most toxic and 

widespread contaminants in nature. Exposure to PAHs creates a significant risk 

for people living in industrialised areas of the world. Due to their hydrophobicity 

and strong adsorption to sediments they are poorly soluble in water and 

therefore have only a limited bioavailability in natural environments. For these 

reasons PAHs are very slowly degraded by microorganisms and remain in the 

environment over a long period of time until they are degraded, resuspended, 

bioaccumulated, or removed by dredging. The lipophilicity, environmental 

persistence, and genotoxicity increase as the molecular size of PAHs increases 

up to 4 or 5 fused benzene rings (Table 8) and toxicological concern shifts 

towards chronic toxicity, primarily carcinogenesis.93 The possible fates of PAHs 

in the environment include volatilisation, photooxidation, chemical oxidation, 

bioaccumulation, adsorption to soil particles, leaching and microbial degradation 

(Fig. 67).93 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Aerobic PAH-degrading bacteria make intensive use of dioxygen as a co-

substrate for ring hydroxylating/cleaving oxygenases, however, when saturated 

sediments are exposed to high carbon loads, e.g. by tar oils containing high 

amounts of PAHs, they rapidly turn anoxic due to the depletion of dioxygen. 

Under such conditions, the degradation of PAHs has to be performed by 

PAH 

Initial degradation 
(Biotransformation) 
 

Volatilisation 

Photo-oxidation 

Sedimentation 

Bioaccumulation 

Chemical oxidation 

Removal 

Complete mineralisation 

-CO2 

Figure 67 - Schematic representation of the environmental fate of 
PAHs. 
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anaerobic bacteria and specific anaerobic biochemical pathways are involved 

(Scheme 51).93  

 

PAH 
MW 
(g/mol) 

Solubility 
(mg/dm3) 

Genotoxicity 

 

128.2 32 ............ 

 

154.2 4 + Ames 

 

178.2 0.070 ............ 

 

178.2 1.300 ............ 

 

202.3 0.260 Weak Carcinogen 

 

202.3 0.140 ± Ames + UDS + SCE 

 

228.3 0.002 
+ Ames + CA + SCE + 
Carcinogen 

 

252.3 0.003 
+ Ames + CA + UDS + DA + 
SCE + Carcinogen 

 

 

R
e
c
a
lc

it
ra

n
c
e

 

 Table 8 - Chemical structures, physical and toxicological characteristics of polycyclic 

aromatic hydrocarbons. The symbols are: (DA) DNA adducts, (SCE) sister chromatid 

exchange, (CA) chromosomal aberrations, (Ames) Salmonella Typhimurium reversion 

assay, (UDS) unscheduled DNA synthesis, (-) not genotoxic. 
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In recent years, anaerobic microorganisms have successfully been cultivated 

with 2-methylnaphthalene, naphthalene or phenanthrene as sole carbon and 

electron source with different electron acceptors.94 These cultures reveal 

extremely slow growth rates greatly hampering in vitro studies of the 

degradation pathways. The best investigated anaerobic PAH-degrading cultures 

comprise the sulfate-reducing highly enriched culture N4795 and the pure culture 

NaphS296, which both degrade naphthalene with sulfate as electron acceptor. 

These studies have suggested a preliminary degradation pathway of 

naphthalene with two possible main routes to activate the ring in position 2, 

either carboxylation or methylation followed by fumarate addition (Scheme 52). 

The carbon atom in position 2 is the most electron rich, which would foster an 

electrophilic substitution reaction.94   

 

Scheme 51 - Pathways for the microbial catabolism of polycyclic aromatic hydrocarbons. 
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Scheme 52 - Proposed naphthalene and 2-methylnaphthalene degradation pathways. 

Enzymes involved in the pathway are as follows: (A) naphthalene methyl-transferase; 

(B) naphthyl-2-methylsuccinyl synthase; (C) naphthyl-2-methyl-succinyl-CoA 

transferase; (D) naphthyl-2-methyl-succinyl-CoA dehydrogenase; (E) naphthyl-2-

methylene succinyl-CoA hydratase; (F) naphthyl-2-hydroxymethyl-succinyl-CoA 

dehydrogenase; (G) napthyl-2-oxomethyl-succinyl-CoA thiolase; (H) naphthoate 

carboxylase; (I) naphthoyl-CoA ligase; (J and K) 2-napthtoyl-CoA reductase; (L) enoyl-

CoA hydratase. Cis-2-carboxycyclo-hexylacetic acid is then further degraded to form 

acetyl-CoA and CO2.  
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5.1.1 Synthesis of intermediates 

In order to confirm and study the proposed pathway, synthesis of 

1,4,4a,5,6,7,8,8a-octahydro-2-naphthoyl-CoA (174) was required. 

Initial attempts for the synthesis of this intermediate followed a similar 

procedure to the published synthesis of cyclohexene-1-carboxylic Acid (14) 

from cyclohexanone (13) using bromoform (Scheme 53).97 

 

 

However, when this procedure was attempted with the commercially available 

2-decalone (mixture of isomers) (178) as starting material, only a 3% yield of 

the conjugated acid (181a) was obtained. A second method also using the 

commercially available 2-decalone (178) was explored (Scheme 54).98 

 

 

 

 

In order to measure the ration cis- to trans-isomer in the purchased 2-decalone 

(178), 13C-NMR of 178 was obtained and compared with the literature values99 

reported (Table 9). 

 

Scheme 53 

Scheme 54 – Synthesis of 1,4,4a,5,6,7,8,8a-octahydronaphthalene-2-carboxylic 

acid (181a) and 3,4,4a,5,6,7,8,8a-octahydronaphthalene-2-carboxylic acid (181b). (i) 

H2SO4, MeOH, (ii) NaCN, H2O, RT, 5 h; (iii) 2,6-lutidine, SOCl2, Et2O, 60 °C, 12 h; 

(iv) H2SO4, H2O, 110 °C, 24 h. 
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 Table 9 

Carbon 

atom 

13C chemical shifts (ppm) of trans-

decal-2-ones (in CDCl3) 

13C chemical shifts (ppm) of cis-

decal-2-ones (in CDCl3) 

C-1 48.65 45.55 

C-2 211.93 213.42 

C-3 41.62 39.47 

C-4 33.68 28.87 

C-5 34.25 28.36 

C-6 25.64 22.99 

C-7 26.15 23.74 

C-8 32.72 28.87 

C-9 43.38 38.65 

C-10 41.69 (d) 34.92 (s) 

 

 

1H NMR (75 MHz, CDCl3, CDCl3) 
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Nucleophilic addition of the cyanide anion to the ketone 178 afforded the 

cyanohydrin 179 in high yield (95%). Treatment of cyanohydrin 179 with thionyl 

chloride using 2,6 lutidine as a bulky base afforded a mixture of nitriles 180a 

and 180b (63% yield) in a ratio of 7:3. Finally, the nitrile mixture 180 was 

hydrolysed using sulfuric acid to afford a mixture of the corresponding 

carboxylic acids 181a and 181b (4:1 ratio based on 1H NMR spectra; see fig. 

68) in 95% yield.   

Two different methods were used to separate the carboxylic acids. The first one 

using a semi-prep. HPLC, although this method was time consuming and could 

only be applied to a small quantity of material. However it resulted in apartial 

separation of isomers. 

Due to small quantity of material that was obtained using semi-prep HPLC, 

purification of the crude product by crystallisation followed by recrystallisation 

using different solvent mixtures was attempted, recrystallisation from absolute 

ethanol at 5 °C produced some ball-shaped crystals which were isolated. The 

comparison of 1H-NMR of the vinyl hydrogens in the isomers obtained in 

method 1 and 2, revealed some interesting results.  
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Following the separation of the two isomers by semi-prep HPLC, assigning the 

correct isomer to its corresponding 1H-NMR could not be done with certainty, X-

ray crystallography of the crystals (Fig. 70) obtained from recrystallisation 

assisted the assignment of 1H-NMR spectra (Fig. 69). The absolute 

configuration by X-ray crystalagraphy confirms that the purified crystals are 

(4aS,8aR)-1,4,4a,5,6,7,8,8a-octahydronaphthalene-2-carboxylic acid (cis-

isomer). 

 Figure 68 – 1H-NMR of the crude mixture of 181a and 181b carboxylic 

acids. 

1H NMR (300 MHz, CDCl3, CHCl3) 
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A 

-  

B 

C 

D 

 Figure 69 – Comparison of the 1H-NMRs of the isolated carboxylic acids; 

A, crude product, B & C, separated by HPLC, D, Obtained via 

recrystallisation. 

 Figure 70 – X-ray crystallography of the crystals obtained via method 2. 
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5.2 In vitro assay  

The synthesised carboxylic acids (181a & b) were sent for biological testing in 

the laboratories of Prof. M. Boll and Prof. R. Meckenstock.100 

 

 

 

Previous studies with the sulfate-reducing enrichment culture N47 have 

indicated that naphthalene is initially converted to 2-naphthoic acid via a 

carboxylation reaction.94 The product formed is then assumed to be activated by 

an ATP-dependent 2-naphthoic acid CoA ligase or by a CoA transferase. In 

order to study the subsequent anticipated reductive dearomatisation steps, cell 

extracts from culture N47 anaerobically grown on naphthalene and sulfate as 

electron donor and acceptor respectively, were reacted with 2-naphthoyl-CoA 

(NCoA) in anoxic in vitro assays. The NCoA used in these studies was 

chemically synthesised from 2-naphthoic acid and CoA via the corresponding 

succinimidyl ester. When extracts from strain N47 grown on naphthalene/sulfate 

were anaerobically incubated with 0.2 mM NCoA, the time-, protein- and 

sodiumdithionite-(5 mM) dependent decrease of NCoA and the concomitant 

 Figure 71 - HPLC analysis of in vitro conversion of NCoA and THNCoA by 
extracts from N47 grown on naphthalene. 

A. Time-dependent reduction of NCoA to THNCoA by NCoA reductase activity. 
B. Time- and ATP-dependent conversion of THNCoA to a HHNCoA compound 

eluting at 14.7 min by THNCoA reductase activity. 
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formation of a major more apolar product was observed by reversed phase 

HPLC analysis (Fig. 71). The product co-migrated with an authentic 5,6,7,8-

tetrahydro-2-NCoA (THNCoA) standard and displayed an identical UV/vis 

spectrum (Fig. 72A). GC-MS analysis of the hydrolysed and methyl-ester 

derivatised sample showed similar retention time and mass fragments as the 

methyl-ester derivative of authentic 5,6,7,8-tetrahydro-2-naphthoic acid (m/z ion 

fragments of m/z 77, 91, 103, 115, 131, 159, 175 and 190 for the methyl-ester 

derivative) (Fig. 73).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 72 – Figure adapted from Eberlein et. al.4 UV/vis spectra of 

substrates/products of NCoA reductase and THNCoA reductase. A. NCoA (solid 

line) and THNCoA (dotted line) standards; the UV spectrum of product formed by 

NCoA reductase was identical to that of an authentic THNCoA standard. B. The 

predicted HHNCoA product (solid line) and cyclohexa-1,5-diene-1-carboxyl-CoA 

(dotted line); the latter is the conjugated two-electron reduced product formed from 

benzoyl-CoA by benzoyl-CoA reductases. C. 1,4,4a,5,6,7,8,8a-octahydro-2-

naphthoyl-CoA (181a) (solid line) and Cyclohex-1-en-1-carboxyl-CoA (dotted line). 
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Virtually no product was identified in the initial phase of the reaction that could 

be assigned to a two electron reduced intermediate. Such a compound was 

expected to elute from the reversed phase HPLC column used between NCoA 

(retention time 12.5 min) and THNCoA (retention time 14 min). Thus, NCoA 

reductase is suggested to catalyse a four-electron reduction of the substrate 

without release of a two-electron reduced dihydro-NCoA intermediate.The 

product formed from THNCoA exhibited a UV/vis spectrum highly similar to that 

of the fully conjugated cyclic dienoyl-CoA compound cyclohexa-1,5-diene-1-

carboxyl-CoA, the product of ATP-dependent BCR (Fig. 72B). This spectrum is 

characterised by a shoulder at 310 nm caused by the dienoyl-CoA moiety 

indicating that the product formed from THNCoA is a hexahydronaphthoyl-CoA 

compound. In contrast, a conjugated octahydro-2-naphthoyl-CoA product has a 

clearly distinct UV spectrum that is very similar to that of a cyclic, conjugated 

monoenoyl-CoA compound (Fig. 72C). LC-MS-MS analysis of the free 

carboxylic acid of the THNCoA reductase product obtained after alkaline 

hydrolysis of the CoA-ester revealed a mass pair ion of 177.1–133.1 with a 

retention time of 22.04 min corresponding to hexahydro-2-naphthoic acid 

(HHN). These values were two mass 

units lower than that of a 

3,4,4a,5,6,7,8,8a-octahydro-2-

naphthoic acid (181a) chemical 

standard with a mass pair ion of 

179.05–135.05 with a retention time 

of 22.45 min (Fig. 7). These findings 

suggest that THNCoA was reduced 

by a two electron reduction to a 

conjugated hexahydro-NCoA 

(HHNCoA) product. 

 

 

 

 

Figure 73 – Figure adapted from Eberlein et 

al.4 Mass spectrum profiles of the methyl-

ester derivative detected at the retention time 

of 27.7 min from (A) in vitro 

conversion of NCoA by extracts from N47 

grown on naphthalene after hydrolysis of the 

CoA ester with 1 N NaOH; and (B) 

methyl-ester derivative of 5,6,7,8-tetrahydro-

2-naphthoic acid authentic chemical 

standard. 
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5.2 Conclusion 

 

As shown in Scheme 55, there are four possible isomers of hexahydro-2-

naphthoic acid with a fully conjugated system of the two olefinic bonds and the 

carbonyl moiety. In bold, are the putative genes coding for the enzymes 

catalysing the corresponding reactions, in parenthesis, their respective locus 

tags on the N47 genome. NmsABC, naphthyl-2-methyl-succinate synthase; 

BnsEF, naphthyl-2-methyl-succinate CoA transferase; BnsG, naphthyl-2-

methyl-succinyl-CoA dehydrogenase; BnsH, naphthyl-2-methylene-succinyl-

CoA hydratase; BnsCD, naphthyl-2-hydroxymethyl-succinyl-CoA 

dehydrogenase; BnsAB, naphthyl-2-oxomethyl-succinyl-CoA thiolase; 

NcrABCD, THNCoA reductase (Selesi et al., 2010). Abbreviations THNCoA and 

HHNCoA stand for 5,6,7,8-tetrahydro-2-naphthoyl-CoA and hexahydro-2-

naphthoyl-CoA respectively. 
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Scheme 55 - Proposed peripheral pathways for anaerobic naphthalene and 2-

methylnaphthalene degradation to naphthoic acid and the central naphthoyl-CoA 

pathway in enrichment culture N47.  
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Chapter 6 

 

 

Experimental 
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6.1 General information 

 

Melting points were determined on a Stuart SMP3 hot stage apparatus and are 

uncorrected. Infrared spectra were recorded on a Varian 800 FT-IR Scimitar 

Series infrared spectrometer. Mass spectra were recorded on Waters ACQUITY 

UPLCTM LCT premier MS in positive ion mode. Accurate mass analyses were 

measured using a Finnigan MAT95 or MAT900 by the EPSRC National Mass 

Spectrometry Service Centre, Grove Building, Swansea University, Singleton 

Park, Swansea, Wales, UK, SA2 8PP.1H NMR spectra were recorded on a 

Brüker Avance 300 MHz or Jeol ESC 400 MHz or Jeol Lambda/Eclipse 500 

MHz spectrometers at ambient temperatures in deuterated chloroform or 

methanol with tetramethylsilane as internal standard. Data for 1H spectra are 

reported as follows: chemical shifts are measured in ppm from internal 

tetramethylsilane on the δ scale, integration, multiplicity (br = broad, s = singlet, 

d = doublet, t = triplet, q = quartet, dd = doublet of doublets, ddd = doublet of 

doublet of doublets, dt = doublet of triplets, ddt = doublet of doublet of triplets 

and m = multiplet), coupling constants (J) are given in Hz, integration and 

assignment where possible. 13C NMR was recorded on a Brüker Avance (75.5 

MHz) or Jeol ESC (100.5 MHz) or Jeol Lambda/Eclipse (125 MHz) 

spectrometers at ambient temperature. Chemical shifts are reported in ppm 

from tetramethylsilane on the δ scale, using solvent resonance as the internal 

standard [deuterated chloroform (CDCl3) at 77.0 ppm]. Optical rotations were 

measured on a PolAAr 2001 digital polarimeter using a 1.0 dm cell at ambient 

temperature and are reported as follows [α]D
T (c g/100 mL, solvent).  

Thin layer chromatography was performed on EM reagent 0.25 mm silica gel 

60F plates. Visualisation was accomplished with UV light and aqueous 

potassium permanganate (VII) solution. Medium pressure (‘flash’) column 

chromatography was performed on Fluorochem LC3025 (40-63 μm) silica gel, 

eluting with the indicated solvent under forced flow. 

Chemicals were purchased from the Aldrich, Alfa Aesar or Fluorochem 

companies and were used as supplied except where indicated. All reactions 

were carried out under an atmosphere of nitrogen in pre-dried glassware. 

Where necessary, solvents were dried prior to use. 
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6.2 Details of microbiological experiments 

 

The deuterated hexanes were transferred to separate glass ampoules, 

thermally sealed and sent to the microbiology laboratory to be used as growth 

substrates for strain HxN1. 

 

The following work was carried out by Prof. Rene Jarling’s team7 and is as 

follows: 

 

The n-alkane-degrading betaproteobacterium strain HxN1 was anaerobically 

cultivated in chemically defined, bicarbonate-buffered, ascorbate-reduced (4 

mM) and nitrate-containing (9 mM) medium.9 Flat glass bottles (500 mL), 

containing 400 mL of medium and sealed with butyl rubber stoppers under a 

head space of N2-CO2 (90:10, vol/vol), were used for cultivation. n-Heptane, n-

hexane and n-(2H2)hexane stereoisomers were added to the medium diluted 

(0.1–5%, vol/vol) in sterile, deaerated 2,2,4,4,6,8,8-heptamethylnonane as an 

inert carrier phase (10 mL of mixture per bottle), using N2-flushed syringes. To 

scavenge possible traces of dioxygen with the reductant, the freshly prepared, 

n-alkane/carrier phase-containing medium was then preincubated for > 24 h 

prior to inoculation. Growing cultures of strain HxN1, passaged > 5 times with n-

heptane as sole organic substrate, were used for inoculation. Cultures were 

incubated at 28°C on a slowly rotating shaker (50 rpm) in nearly horizontal 

position, avoiding contact of the n-alkane/carrier phase mixture with the 

stoppers. Cultures were subjected to metabolite extraction immediately after 

depletion of nitrate and formed nitrite, both of which were monitored with 

disposable test strips (Merck, Darmstadt, Germany). 

 

Metabolite extraction was essentially performed as described. Cultures for 

metabolite analysis were heated in closed bottles in a water bath to 85°C for 15 

min to inactivate eventually present enzymes that may catalyse reactions with 

dioxygen during further handling in the air. In the n-hexane-grown cultures, the 

aqueous phase was separated from the overlying carrier phase via a separatory 

funnel. The heated cells were removed by centrifugation (7,000 3 g, 20 min) to 

avoid possible interference with phase separation during subsequent ether 

extraction. After heat inactivation, the culture broth was separated from the 



143 
 

carrier phase, acidified with HCl and extracted 3 times with 50 mL diethyl ether. 

The combined ether extracts were dried over anhydrous Na2SO4 and stored at 

4°C in glass bottles sealed with Teflon-coated screw caps. 

 

n-Heptane (5%, vol/vol) was used as growth substrate instead of n-hexane to 

avoid the formation of n-hexane-derived metabolites subsequently interfering 

with the analysis of the targeted n-(2H2)hexane-derived metabolites and also in 

order to use the smallest amounts of n-(2H2)hexane stereoisomers per 

incubation experiment due to little availability of deuterated hexanes. 

 

A pre-experiment with n-heptane (5%, vol/vol) and rising amounts of n-hexane 

(0.1–1%, vol/vol) was conducted to determine the lowest n-hexane 

concentration still allowing for recording an optimal metabolite profile. The main 

Incubation experiments were performed with cultures of strain HxN1 that had 

been adapted to n-heptane using a mixture of n-heptane and a dideuterated n-

hexane (8:1).  
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3. Synthesis of (1-methylpentyl)succinic acid stereoisomers 

 

(R)-Hexan-2-ol O-methanesulfonate (161a)3 

 

 

 

 

 

To (R)-hexan-2-ol (1.00 g, 1.2 mL, 9.8 mmol) and triethylamine (1.29 g, 1.8 mL, 

12.7 mmol) in dichloromethane (2.0 mL) stirred under nitrogen at 0 °C was 

added dropwise methanesulfonyl chloride (1.46 g, 1.0 mL, 12.7 mmol). Within 

30 min a white precipitate was formed and the mixture was stirred for a further 

60 min at 0°C. Saturated aqueous NaHCO3 (6 mL) was added and stirring was 

continued for 15 min. After separation of the phases the organic layer was 

washed with water (6 mL), dried (MgSO4) and concentrated to afford the title 

compound (1.51 g, 85% yield) as a yellow oil. 1H NMR (300 MHz, CDCl3, 

CHCl3): δ=4.78-4.67 ppm (m, 1H; CH), 2.93 (s, 3H; SCH3), 1.35 (d, 3J(H,H)=6.3 

Hz, 3H; CHCH3), 1.33-1.25 (m, 6H; 3×CH2), 0.85 (m, 3H; CH2CH3). 

 

 

 

(S)-Hexan-2-ol O-methanesulfonate (161b) 

 

 

 

 

 

Prepared following the same procedure as 161a, from (S)-hexan-2-ol. 1H NMR 

(300 MHz, CDCl3, CHCl3): δ=4.78-4.67 ppm (m, 1H; CH), 2.93 (s, 3H; SCH3), 
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1.35 (d, 3J(H,H)=6.3 Hz, 3H; CHCH3), 1.33-1.25 (m, 6H; 3×CH2), 0.85 (m, 3H; 

CH2CH3). 

 

 

Diethyl (S)-(1-methylpentyl)malonate (162a)3 

 

 

 

 

 

To a suspension of sodium hydride (0.23 g, 5.8 mmol, 60% in mineral oil) in dry 

1,2-dimethoxyethane (4.0 mL) at room temperature was added dropwise diethyl 

malonate (0.91 g, 0.86 mL, 5.7 mmol) over 30 min. Hydrogen was evolved and 

the cloudy mixture became clear. The solution was stirred for 30 min after which 

(R)-hexan-2-ol O-methanesulfonate (0.85 g, 4.24 mmol) was added dropwise. 

The mixture was stirred at 85°C for 5 h and allowed to cool to room 

temperature. Diethyl ether (5.5 mL) and saturated ammonium chloride (4.5 mL) 

were added. After phase separation, the organic layer was washed with water 

(5 mL), dried (MgSO4) and concentrated to afford a crude oil. The oil was 

purified by medium pressure liquid chromatography on silica eluting with petrol 

– diethyl ether (9:1, v/v) to afford the title compound (0.76 g, 73%) as a 

colourless oil. Rf 0.6 petrol – diethyl ether (5:1, v/v). In a scale-up synthesis, the 

diester (53%) was purified by fractional distillation: bp 86-89°C (0.5 Torr) [diethyl 

malonate and the precursor mesylate were collected at bp 28-32°C and 60-

64°C, respectively]. 1H NMR (300 MHz, CDCl3, CHCl3): δ=4.12 ppm (q, 

3J(H,H)=7.1 Hz,4H; 2×OCH2), 3.16 (d, 3J(H,H)=8.2 Hz, 1H; COCH), 2.16 (m, 

1H; CH3CH), 1.39–1.07 (m, 12H; 2×OCH2CH3, 3×CH2), 0.91 (d, 3J(H,H)=6.8 

Hz, 3H; CHCH3), 0.82 (t, 3J(H,H)=6.8 Hz, 3H; CH2CH3). 

 

 

Diethyl (R)-(1-methylpentyl)malonate (162b) 

 



146 
 

 

 

 

 

Prepared following the same procedure as 162a, from (S)-hexan-2-ol O-

methanesulfonate. 1H NMR (300 MHz, CDCl3, CHCl3): δ=4.12 ppm (q, 

3J(H,H)=7.1 Hz,4H; 2×OCH2), 3.16 (d, 3J(H,H)=8.2 Hz, 1H; COCH), 2.16 (m, 

1H; CH3CH), 1.39–1.07 (m, 12H; 2×OCH2CH3, 3×CH2), 0.91 (d, 3J(H,H)=6.8 

Hz, 3H; CHCH3), 0.82 (t, 3J(H,H)=6.8 Hz, 3H; CH2CH3). 

 

 

Triethyl (S)-3-methylheptane-1,2,2-tricarboxylate (163a) 

 

 

 

 

 

A suspension of sodium hydride (30 mg, 0.75 mmol, 60% in mineral oil) in dry 

tetrahydrofuran (5.0 mL) was cooled to 0°C and to this was added diethyl (S)-

(1-methylpentyl)malonate (190 mg, 0.80 mmol) dropwise over a period of 30 

min. The reaction mixture was allowed to warm up to room temperature and 

stirred for 1.5 h. The mixture was cooled to 0°C and ethyl bromoacetate (0.12 

mg, 77 μL, 0.71 mmol) was added dropwise over a period of 30 min. After 

stirring for 48 h the mixture was poured into 1.5 M hydrochloric acid (65 μL) and 

ice (1.2 g). Extraction with dichloromethane (4 × 2 mL), drying (MgSO4) and 

removal of the solvent gave the crude product as light brown oil. The oil was 

purified by medium-pressure liquid chromatography on silica eluting with petrol 

– ethyl acetate (10:1, v/v) to afford triethyl (S)-3-methylheptane-1,2,2-
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tricarboxylate (161 mg, 61%) as a colourless oil. Rf 0.2 petrol – ethyl acetate 

(5:1, v/v). In a scale-up reaction most of the excess of diester was removed by 

distillation (bp 86-89°C, 0.5 Torr) and a short path silica column was performed 

to give the triester (48%). 1H NMR (300 MHz, CDCl3, CHCl3): δ=4.14 ppm (m, 

4H; 2×COOCH2), 4.05 (q, 3J(H,H)=7.1 Hz, 2H; CH2COOCH2), 2.82 (s, 2H; 

CCH2), 2.03 (m, 1H; CH3CH), 1.46–0.95 (m, 15H; 3×OCH2CH3, 3×CH2), 0.90 

(d, 3J(H,H)=6.8 Hz, 3H; CHCH3), 0.81 (t, 3J(H,H)=6.9 Hz, 3H; CH2CH3); 
13C 

NMR (100 MHz, CDCl3, CDCl3): δ=171.1 ppm, 170.4, 61.7, 61.3, 60.9, 60.1, 

38.8, 37.7, 32.0, 30.3, 22.7, 15.0, 14.1; LC-MS (ESI+): m/z 331([M+H]+); IR: 

2350, 1766, 902, 722, 649, 514 cm-1. 

 

Triethyl (R)-3-methylheptane-1,2,2-tricarboxylate (163b) 

 

 

 

 

 

Prepared following the same procedure as 163a, from (R)-(1-

methylpentyl)malonate. 1H NMR (300 MHz, CDCl3, CHCl3): δ=4.14 ppm (m, 

4H; 2×COOCH2), 4.05 (q, 3J(H,H)=7.1 Hz, 2H; CH2COOCH2), 2.82 (s, 2H; 

CCH2), 2.03 (m, 1H; CH3CH), 1.46–0.95 (m, 15H; 3×OCH2CH3, 3×CH2), 0.90 

(d, 3J(H,H)=6.8 Hz, 3H; CHCH3), 0.81 (t, 3J(H,H)=6.9 Hz, 3H; CH2CH3). 

 

(2R,1'S)- and (2S,1'S)-(1-Methylpentyl)succinic acid (67b and 67c mixture) 
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Triethyl (S)-3-methylheptane-1,2,2-tricarboxylate (150 mg, 0.45 mmol) was 

boiled at reflux with concentrated hydrochloric acid (150 mL) for 48 h. The 

resulting mixture was concentrated to afford (2R,1'S)- and (2S,1'S)-(1-

methylpentyl)succinic acid (ca. 1:1 mixture, 85 mg, 93%) as a yellow sticky 

solid. 1H NMR (300 MHz, CDCl3, CHCl3): δ=3.18-2.40 ppm (m, 3H; H at C-2 

and C-3), 1.98-1.85 (m, 0.5H; CHCHCH3, 2R,1'S), 1.83-1.71 (m, 0.5H; 

CHCHCH3, 2S,1'S), 1.35-1.05 (m, 6H; 3×CH2), 0.92-0.79 (m, 6H; CH2CH3, 

CHCH3); 
13C NMR (100 MHz, CDCl3, CDCl3): δ=181.5 ppm, 180.8, 179.5, 

179.4, 46.4, 45.8, 34.9, 34.2, 33.5, 31.3, 29.5, 29.4, 22.8, 17.1, 16.1, 14.1; LC-

MS (ESI-): m/z 201 ([M-H]-). The above synthetic route was also applied to (S)-

hexan-2-ol and racemic hexan-2-ol. The former gave a mixture of (2S,1'R)- and 

(2R,1'R)-(1-methylpentyl)succinic acid, whereas the latter gave a mixture of all 

four product stereoisomers. The racemic mixture of (2S,1'R)- and (2R,1'S)-(1-

methylpentyl)succinic acid was obtained by preferential crystallization (vapour 

diffusion) of all four isomers from petrol/ethyl acetate. The relative configuration 

was confirmed by X-ray crystallography (we thank Dr. R. Harrington, Newcastle 

University, for this result). The mother liquor was concentrated to afford a 

mixture enriched in (2R,1’R)- and (2S,1'S)-(1-methylpentyl)succinic acid. 

 

 

(2S,1'R)- and (2R,1'S)-(1-Methylpentyl)succinic acid (67c and 67d mixture) 
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Mp 143 – 144°C; 1H NMR (400 MHz, CD3OD, CH3OD): δ=2.83-2.23 ppm (m, 

3H; H at C-2 and C-3), 1.95-1.84 (m, 1H; CHCHCH2), 1.41-1.16 (m, 6H; 

3×CH2), 0.90 (t, 3J(H,H)=7.0 Hz, 3H; CH2CH3), 0.86 (d, 3J(H,H)=6.9 Hz, 3H; 

CHCH3); 
13C NMR (100 MHz, CD3OD, CH3OD): δ=177.1 ppm, 175.1, 45.6, 

34.4, 33.9, 30.8, 29.4, 22.4, 15.2, 13.0; LCMS (ESI-): m/z 201 ([M-H]-). 

 

 

(2R,1'R)- and (2S,1'S)-(1-Methylpentyl)succinic acid (67a and 67b mixture) 

 

 

 

 

 

Mp 87 – 89°C; 1H NMR (400 MHz, CD3OD, CH3OD): δ=2.80-2.31 ppm (m, 3H; 

H at C-2 and C-3), 1.83-1.71 (m, 1H; CHCHCH2), 1.47-1.08 (m, 6H; 3×CH2), 

0.90 (d, 3J(H,H)=6.9 Hz, 3H; CHCH3), 0.88 (t, 3J(H,H)=4.9 Hz, 3H; CH2CH3); 

13C NMR (100 MHz, CD3OD, CH3OD): δ=178.3 ppm, 176.6, 36.6, 35.2, 34.9, 

31.0, 24.1, 17.7, 17.1, 14.6; LCMS: m/z (ESI-): 201 ([M-H]-). 

 

4. Assignment of configuration of stereocenters in (1-

methylpentyl)succinic acid isomers produced by strain HxN1 during 

anaerobic growth with n-hexane 
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a) Derivatization of (1-methylpentyl)succinic acid 

 

Derivatization of (1-methylpentyl)succinic acid to 3-(1-methylpentyl)-1-(1- 

phenylethyl)pyrrolidine-2,5-diones / N-(1-phenylethyl) 3-(1-

methylpentyl)succinimides was performed using a modification of the procedure 

described that was suitable for small sample sizes.[3] (1-Methylpentyl)succinic 

acid (0.75 mg, 0.004 mmol) or a solvent-free extract of HxN1 (from 400 mL 

culture, acidified and extracted with diethyl ether), 2 mg (R)-1-

phenylethanamine (2 μL, 0.017 mmol), 1 mL toluene and no more than 4 pellets 

of 3Å molecular sieve were heated at reflux for 2 h. After removal of the solvent 

under reduced pressure the residue was taken up in 0.5 mL dichloromethane 

(GC grade) for analysis by gas chromatography (GC).  

 

    b) Gas chromatographic separation of 3-(1-methylpentyl)-1-(1-

phenylethyl)pyrrolidine-2,5-diones / N-(1-phenylethyl) 3-(1-

methylpentyl)succinimides 

 

This was performed using an Agilent 6890A gas chromatograph equipped with 

a PTV injection system, a flame ionisation detector and a HP-INNOWax fused 

silica capillary column (Agilent; length 30 m, inner diameter 0.25 mm, film 

thickness 0.25 m). Helium was used as carrier gas at a constant flow of 1.5 

mL/min. Upon sample injection at an injector temperature of 250°C the injector 

was set to splitless mode for 120 s. The GC oven temperature was 

programmed from 60°C (hold time 1 min) to 200°C at a heating rate of 10°C/min 

and further to 250°C (hold time 40 min) at a heating rate of 8°C/min. The 

resulting chromatograms are shown in Supporting Figure 1. The results were 

confirmed by separation of the same samples using the same gas 

chromatograph, however, equipped with a BPX5 fused silica capillary column 

(SGE; length 50 m, inner diameter 0.22 mm, film thickness 0.25 m) or a DB-

FFAP fused silica capillary column (Agilent; length 60 m, inner diameter 0.25 

mm, film thickness 0.25 m). For these analyses the GC oven temperature was 

programmed from 50°C (initial hold time 1 min) to 310°C (final hold time 30 min) 

at a heating rate of 3°C/min or from 120°C to 240°C (final hold time 25 min) at a 

heating rate of 8°C/min, respectively. 
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7. Synthesis and analytical characterization of deuterated n-hexanes 

 

(2S,5S)-Hexan-2,5-diol (124) 101 

 

 

 

 

 

Baker’s yeast (60 g) was added to a stirred solution of sucrose (100 g, 0.29 

mol) in H2O (520 mL) and allowed to stir for 1 h and acetonyl acetone (2.85 g, 

2.9 mL, 25 mmol) was added and additional solution of sucrose (75 g, 0.22 mol) 

in H2O (330 mL) was added to the mixture after 24 h, followed by addition of 

another portion of acetonyl acetone (2.85 g, 2.9 mL, 25 mmol) 1 h later, after 72 

h an additional portion of yeast (20 g) and sucrose (40 g, 0.17 mol) in H2O (150 

mL) were added and the mixture was stirred for another 72 h. The mixture was 

suction filtered through a thin layer of celite (30 g), followed by removal of the 

water under reduced pressure to afford a crude yellow solid, ethyl acetate (500 

mL) was added to the crude residue and the mixture was allowed to stir 

overnight.  

The mixture was filtered againt through celite (15g), dried (MgSO4) and 

concentrated to afford a yellow oil, the residue was dissolved in a minimum 

amount of ethyl acetate at reflux and allowed to cool slowly to room 

temperature, then stored at 5 °C overnight. Collection by suction filtration and 

drying under vacuum at room temperature afforded the diol (3.31 g, 28.0 mmol, 

56 %) as a white crystalline solid.  

1H NMR (300 MHz, CDCl3, CHCl3) δ=3.76 ppm (m, 2H, CH), 2.51 (br s, 2H, 

OH), 1.48 (m, 4H, 2 × CH2), 1.14 (d, 3J(H,H)=6.2 HZ, 6H, CH3). 

 

2-deuterohexan-2-ol (130) 
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1H NMR (300 MHz, CDCl3, CHCl3) δ=1.44-1.15 ppm (m, 6H, 3 × CH2), 1.11 (m, 

3H, CDOHCH3), 0.84 (m, 3H, CH3). 

 

(2S,5S)-Hexane-2,5-diol di-p-toluenesulfonate (125) 

 

 

 

 

 

To (2S,5S)-hexane-2,5-diol (1.18 g, 10.0 mmol) in dichloromethane (30 mL) 

containing pyridine (1.58 g, 20.0 mmol) cooled to 0°C and stirred was added p-

toluenesulfonyl chloride (3.80 g, 20.0 mmol) in small portions over a period of 1 

h. The mixture was stirred for 72 h, after which the white suspension was 

diluted with dichloromethane (20 mL) and washed with 10% aqueous 

hydrochloric acid (10 mL). The organic layer was separated and the aqueous 

layer was extracted further with dichloromethane (2 × 10 mL). The combined 

organic layers were washed with another portion of 10% aqueous hydrochloric 

acid (10 mL), saturated aqueous NaHCO3, dried (MgSO4) and concentrated 

under reduced pressure to afford a white solid. This was dissolved in a 

minimum amount of methanol at reflux and the solution was allowed to cool 

slowly to room temperature, and then stored at 5°C for 1 week. The resulting 

solid was collected by filtration and dried in vacuo at room temperature to afford 

the ditosylate (3.48 g, 82%) as a white crystalline solid, mp 92-95 °C (lit.81 94.5-

97 °C); 1H NMR (300 MHz, CDCl3, CHCl3): δ=7.77 ppm (d, 3J(H,H)=8.3 Hz, 4H; 
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4× Ar-H), 7.28 (d, 3J(H,H)=8.1 Hz, 4H; 4× Ar-H), 4.45 (m, 2H; 2× CH), 2.38 (s, 

6H; 2×Ar-CH3), 1.47 (m, 4H; 2×CH2), 1.06 (d, 3J(H,H)=6.3 Hz, 6H; 2×CHCH3). 

 

(2R,5S)-Hexane-2,5-diol di-O-p-toluenesulfonate (128) 

 

 

 

 

 

The meso-ditosylate was prepared following a similar procedure to that above 

from hexane-2,5-diol [mixture of (2R,5R)-, (2S,5S)- and meso-isomer] (1.18 g, 

10.0 mmol). Four recrystallizations from methanol afforded (2R,5S)-hexane-2,5-

diol di-O-p-toluenesulfonate (1.86 g, 44% yield), mp 114 - 116°C (lit.102 115.5 - 

117°C); 1H NMR (300 MHz, CDCl3, CHCl3): δ=7.78 ppm (d, 3J(H,H)=8.0 Hz, 4H; 

4× Ar-H), 7.35 (d, 3J(H,H)=8.0 Hz, 4H; 4× Ar-H), 4.53 (m, 2H; 2× CH), 2.38 (s, 

6H; 2×Ar-CH3), 1.49 (m, 4H; 2×CH2), 1.08 (m, 6H; 2×CHCH3). 

 

 

(2R,5R)-Hexane-2,5-diol di-p-toluenesulfonate (123) 

 

 

 

 

The ditosylate was prepared following a similar procedure to that above from 

(2R,5R)-hexane-2,5-diol (purchased from Alfa Aesar, Heysham LA3 2XY, UK) 

(1.18 g, 10.0 mmol). Recrystallisations from methanol yielded (2R,5R)-hexane-

2,5-diol di-O-p-toluenesulfonate (3.35 g, 79% yield), mp 89 – 92°C (lit.103 81 – 

91°C); 1H NMR (300 MHz, CDCl3, CHCl3): δ=7.79 ppm (d, 3J(H,H)=8.3 Hz, 4H; 
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4× Ar-H), 7.36 (d, 3J(H,H)=8.1 Hz, 4H; 4× Ar-H), 4.53 (m, 2H; 2× CH), 2.47 (s, 

6H; 2×ArCH3), 1.55 (m, 4H; 2×CH2), 1.15 (d, 3J(H,H)=6.3 Hz, 6H; 2×CHCH3). 

 

 

rac-(2-2H)-Hexan-2-ol p-toluenesulfonate (131) 

 

 

 

 

 

Hexan-2-one was reduced with sodium borodeuteride in tetrahydrofuran and 

the resulting (2-2H)-hexan-2-ol was converted into the p-toluenesulfonate by the 

above procedure. 

 

1H NMR (300 MHz, CD3OD, CH3OD): δ=7.74 ppm (d, 3J(H,H)=8.0 Hz, 2H; 2 × 

Ar-H), 7.28 (d, 3J(H,H)=8.0 Hz, 2H; 2 × Ar-H), 4.53 (m, 2H; 2× CH), 2.38 (s, 6H; 

2×Ar-CH3), 1.49 (m, 4H; 2×CH2), 1.08 (m, 6H; 2×CHCH3). 

 

 

2,5-dideuteriohexane-2,5-diyl bis(4-methylbenzenesulfonate) (133) 

 

 

 

 

 

 

1H NMR (300 MHz, CDCI3) δ=7.69 ppm (d, 3J(H,H)=8.3 Hz, 4H, Ar-H), 7.27 (d, 

3J(H,H)=Hz, 4H, Ar-H), 2.38 (s, 6H, 2 × Ar-CH3), 1.42 (m, 4H, 2 × CH2),  1.06 (d, 

3J(H,H)=6.3 Hz, 6H, 2 × CH-CH3), 
13C NMR (100 MHz, CDCI3) δ=144.75 ppm 
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(2 × Me-Ar-C), 134.40 (2 × S-Ar-C), 129.88 (4 × Ar-CH2), 127.77 (4 × Ar-CH2), 

79.62 (t, J = 22.7, 2 × D-C), 31.98 (2 × CH2), 21.71 (2 × Ph-CH3 ), 20.74 (2 × 

CH3). 

 

 

(2R,9R)- and (2S,9S)-decane-2,9-diyl bis(4-methylbenzenesulfonate) (151 

and 152 mixture) 

 

 

 

 

 

1H NMR (300 MHz, CDCI3) δ=7.80 ppm (d, 3J(H,H)=8.3 Hz, 4H, Ar-H), 7.45 (d, 

3J(H,H)=8.1 Hz, 4H, Ar-H), 4.65-4.50 (m, 2H; 2 × CH), 2.49 (s, 6H, 2 × Ar-CH3), 

1.60-1.40 (m, 10H, 2 × CHCH2 & 2 × CH3),  1.25-1.00 (m, 8H, 4 × CH2), 
13C 

NMR (100 MHz, CDCI3) δ=144.6 ppm, 133.7, 130.0, 127.5, 80.0, 38.9, 24.0, 

21.1. 

 

 

General procedure for preparation of dideuterated n-hexanes from 

tosylates 

 



156 
 

As shown in the figure below, the ditosylate or rac-(2-2H)hexan-2-ol p-

toluenesulphonate was dissolved in a minimum amount of tetraethyleneglycol 

dimethyl ether (tetraglyme) in a round-bottomed flask. The flask was attached to 

a distillation system, which was connected to a nitrogen line. LiAlD4 (2 equiv.) 

was added at 0°C or room temperature. The nitrogen line was removed and 

replaced with a drying tube. The reaction flask was heated up to 140°C (bath 

temperature) with the collecting flask placed in Cardice. The dideuterated 

hexane was collected over a period of up to 2 h in 75-85% yield. 

 

 

 

(2R,5R)-n-(2,5-2H2)Hexane (119) 

 

 

 

 

 

1H NMR (300 MHz, CDCl3, CHCl3): δ=1.27 ppm (br s, 6H; 2×CH2, 2×CHD), 0.89 

(d, 3J(H,H)=5.5 Hz, 6H; 2×CH3); 
13C NMR (100 MHz, CDCl3, CDCl3): δ=31.5 

ppm (2×CH2), 22.3 (t, 1J(C,D)=18.4 Hz; 2×CHD), 14.1 (2×CH3); 2H NMR (76.8 

MHz, dichloromethane): δ=1.29 ppm (relative to CHDCl2 at =5.33 ppm; br s; 

2×CHD). 

 

 

 

(2R,5S)-n-(2,5-2H2)Hexane (120) 
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1H NMR (300 MHz, CDCl3, CHCl3): δ=1.27 ppm (br s, 6H; 2×CH2, 2×CHD), 0.89 

(d, 3J(H,H)=5.0 Hz, 6H; 2×CH3); 
13C NMR (100 MHz, CDCl3, CDCl3): δ=31.56 

ppm (2×CH2), 22.35 (t, 1J(C,D)=19.1 Hz; 2×CHD), 14.11 (2×CH3); 2H NMR 

(76.8 MHz, dichloromethane): δ=1.28 ppm (relative to CHDCl2 at =5.33 ppm; 

br s; 2×CHD). 

 

 

(2S,5S)-n-(2,5-2H2)Hexane (118) 

 

 

 

 

 

1H NMR (300 MHz, CDCl3, CHCl3): δ=1.27 ppm (br s, 6H; 2×CH2, 2×CHD), 0.89 

(d, 3J(H,H)=5.5 Hz, 6H; 2×CH3); 
13C NMR (100 MHz, CDCl3, CDCl3): δ=31.55 

ppm (2×CH2), 22.34 (t, 1J(C,D)=18.4 Hz, 2×CHD), 14.09 (2×CH3); 2H NMR 

(76.8 MHz, dichloromethane): δ=1.29 ppm (relative to CHDCl2 at =5.33 ppm; 

br s; 2×CHD). 

 

 

n-(2,2-2H2)Hexane (121A) 

 

 

 

 

 



158 
 

1H NMR (300 MHz, CDCl3, CHCl3): δ=1.26 ppm (br s, 6H; 3×CH2), 0.87 (m, 6H; 

2×CH3); 
13C NMR (100 MHz, CDCl3, CDCl3): δ=31.62 ppm, 31.47, 22.75, 14.20, 

13.98; 2H NMR (76.8 MHz, dichloromethane): δ=1.27 ppm (relative to CHDCl2 

at =5.33 ppm; br s; CD2). 

 

Preparation of 2,2,5,5-tetradeuteriohexane (121B) 

 

 

 

1H NMR (300 MHz, CDCI3) δ 0.80 (s, 6H, 2×CH3), 1.17 (s, 4H, 2×CH2). 
13C 

NMR (100 MHz, CDCI3) δ 31.56 (2×CH2), 21.66 (qn, 1J(C,D)=19.1 Hz, 2×CD2), 

13.98 (2×CH3). D NMR (500 MHz, dichloromethane) 1.31 (s, 4D, 2×CD2).   

 

(2S,9S)- and (2R,9R)-2,9-dideuteriodecane (151 and 152 mixture) 

 

 

 

 

1H NMR (300 MHz, CDCl3, CHCl3): δ=1.27 ppm (br s, 14H; 6×CH2, 2×CHD), 

0.85 (d, 3J(H,H)=6.4 Hz, 6H; 2×CH3); 
13C NMR (100 MHz, CDCl3, CDCl3): 

δ=31.8 ppm (2×CHCH2), 29.7 (2×CH2), 29.3 (2×CH2), 22.5 (t, 1J(C,D)=19.1 Hz, 

2×CHD), 14.09 (2×CH3). 
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Decane-2,9-dione (148) 

 

 

 

 

 

Prepared following the above procedure, by hydrogenation of commercially 

available (E)-dec-5-ene-2,9-dione (3.0 g, 17.8 mmol) dissolved in 25.0 mL of 

tetrahydrofuran (THF), using 1.0g of Pd/C as catalyst. This afforded 2.85 g of 

decane-2,9-dione (95% yield) as a white solid. 1H NMR (300 MHz, CDCl3, 

CHCl3): δ=2.40 ppm (t, 4H, 3J(H,H)=7.3 Hz), 2.12 (s, 6H), 1.58-1.52 (m, 4H), 

1.30-1.26 (m, 4H). 13C NMR (CDCl3, 100 MHz) : δ=209.1 ppm, 43.7, 29.9, 29.0, 

23.7. 

 

rac-Decane-2,9-diol (149) 

 

 

 

1H NMR (300 MHz, CDCl3, CHCl3): δ=3.74 (m, 2H, 2 × CH3CH), 2.44 (t, 4H, 2 × 

CHCH2), 1.36 (m, 12H, 6 × CH2), 1.18 (d, 3J(H,H)=6.2 Hz, 2×CH3). 

 

(R)-((hex-5-en-2-yloxy)methyl)benzene (156) 

 

 

 

1H NMR (300 MHz, CDCl3, CHCl3): δ=7.35 ppm (m, 5H, 5×Ar-H), 5.75 (m, 

CHCH2), 5.0 (m, 2H, CH2), 4.55 (m, 2H, O-CH2), 3.55 (m, H, CH3CH), 2.15 (m, 

2H, CH2CHCH2), 1.80-1.50 (m, 2H, CHCH2CH2), 1.23 (d, 3H, 3J(H,H)=6.1 Hz, 

CH3). 
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(((2R,9R,Z)-dec-5-ene-2,9-diylbis(oxy))bis(methylene))dibenzene (157) 

 

 

 

 

 

1H NMR (300 MHz, CDCl3, CHCl3): δ=7.37-7.23 ppm (m, 10H, 10×Ar-H), 5.37 

(m, 2H, CHCH), 4.50 (dd, 4H, 3J(H,H)=11.8 Hz, 49.4 Hz, 2×O-CH2), 3.50 (m, 2H, 

10×CH), 2.05 (m, 4H, CH2CHCHCH2), 1:1 ratio 1.72-1.55 & 1.52-1.40 (m, 4H, 

2×CHCH2CH2), 1.18 (double doublets, 6H, 3J(H,H)=6.1 Hz, CH3). 

 

 

(2R,9R)-decane-2,9-diol (158) 

 

 

 

 

1H NMR (300 MHz, CDCl3, CHCl3): δ=3.72 ppm (m, 2H, 2×CH), 2:1 ratio 1.45-

1.30 & 1.29-1.15 (m, 12H, 6×CH2), 1.12 (dd, 6H, 3J(H,H)=6.2 Hz, 1.0 Hz, 

2×CH3). 

 

(2R,9R)-decane-2,9-diol di-p-toluenesulfonate (159) 
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1H NMR (300 MHz, CDCl3, CHCl3): δ=7.70 ppm (d, 3J(H,H)=8.3 Hz, 4H; 4×Ar-

H), 7.25 (d, 3J(H,H)=8.0 Hz, 4H; 4× Ar-H), 4.50 (m, 2H, 2×CH3CH), 2.37 (s, 6H, 

2×Ar-CH3), 1.52 (m, 4H, 2×CHCH2), 1.15 (d, 6H, 3J(H,H)=6.3 Hz, 2×CH3). 

 

 

(2S,9S)-decane-2,9-diol di-p-toluenesulfonate (154) 

 

 

 

 

 

1H NMR (300 MHz, CDCl3, CHCl3): δ=1.25 ppm (br s, 14H; 6×CH2, 2×CHD), 

0.85 (d, 3J(H,H)=5.9 Hz, 6H; 2×CH3); 
13C NMR (100 MHz, CDCl3, CDCl3): 

δ=31.93 ppm (2×CHCH2), 29.77 (CH2CH2CH2CH2), 29.45 (2×CHCH2CH2), 22.4 

(t, 1J(C,D)=19.1 Hz, 2×CHD), 14.07 (2×CH3). 

 

 

 

 

 

Synthesis of 1,4,4a,5,6,7,8,8a-octahydronaphthalene-2-carboxylic acid 
(181) 
 
 
 

 
Scheme 54 – Synthesis of 1,4,4a,5,6,7,8,8a-octahydronaphthalene-2-carboxylic 

acid (181a) and 3,4,4a,5,6,7,8,8a-octahydronaphthalene-2-carboxylic acid (181b). (i) 

H2SO4, MeOH, (ii) NaCN, H2O, RT, 5 h; (iii) 2,6-lutidine, SOCl2, Et2O, 60 °C, 12 h; 

(iv) H2SO4, H2O, 110 °C, 24 h; (v) Recrystalisation from ethanol. 
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Following a literature procedure98, a mixture of 1,4,4a,5,6,7,8,8a-

octahydronaphthalene-2-carbonitrile and 3,4,4a,5,6,7,8,8a-

octahydronaphthalene-2-carbonitrile was prepared from 2-decalone (4:1 mixture 

of cis- and trans-isomers) and then hydrolysed with aqueous sulfuric acid. 

Fractional recrystallisation of the 1,4,4a,5,6,7,8,8a-octahydronaphthalene- 

2-carboxylic acid from ethanol gave a single isomer, mp 142–143°C, which 

using X-ray Crystallography, was shown to possess cis stereochemistry at the 

ring junction. 

 

1H NMR (400 MHz, CDCl3, CHCl3): δ=7.04 ppm (m, H; CH), 2.3-1.2 (m, Fig. 

74); 13C NMR (100 MHz, CDCl3, CDCl3): δ=172.0 ppm, 140.9, 127.8, 100.0, 

58.6, 50.9, 32.6, 32.2, 28.8, 18.5, -20.1.  
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Crystal data and structure refinement for btg81. 

 

Identification code  btg81 

Chemical formula (moiety) C20H26O6S2 

Chemical formula (total) C20H26O6S2 

Formula weight  426.53 

Temperature  293(2) K 

Radiation, wavelength  MoK, 0.71073 Å 

Crystal system, space group  orthorhombic, Pbca 

Unit cell parameters a = 7.6411(2) Å  = 90° 

 b = 16.2167(4) Å = 90° 

 c = 16.6447(4) Å  = 90° 

Cell volume 2062.50(9) Å3 

Z 4 

Calculated density  1.374 g/cm3 

 0.292 mm1 

F(000) 904 

Crystal colour and size colourless, 0.40  0.40  0.40 mm3 

Reflections for cell refinement 5430 ( range 2.9 to 28.5°) 

Data collection method Oxford Diffraction Gemini A Ultra 

diffractometer 

 thick-slice  scans 

 range for data collection 3.2 to 28.6° 

Index ranges h 7 to 10, k 19 to 15, l 21 to 18 

Completeness to  = 26.0° 98.8 %  

Reflections collected 9227 

Independent reflections 2301 (Rint = 0.0228) 

Reflections with F2>2 1860 

Absorption correction semi-empirical from equivalents 
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Min. and max. transmission 0.8922 and 0.8922 

Structure solution direct methods 

Refinement method Full-matrix least-squares on F2 

Weighting parameters a, b 0.0512, 0.1031 

Data / restraints / parameters 2301 / 0 / 130 

Final R indices [F2>2 ] R1 = 0.0308, wR2 = 0.0853 

R indices (all data) R1 = 0.0402, wR2 = 0.0882 

Goodness-of-fit on F2 1.108 

Extinction coefficient 0.0010(6) 

Largest and mean shift/su 0.000 and 0.000 

Largest diff. peak and hole 0.35 and 0.33 e Å3 
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Table 2.  Atomic coordinates and equivalent isotropic displacement parameters (Å2) 

for btg81.  Ueq is defined as one third of the trace of the orthogonalized Uij tensor. 

 

      x      y      z      Ueq 

 

S(1) 0.87901(4) 0.11708(2) 0.60182(2) 0.02038(13) 

O(1) 0.74464(12) 0.10293(5) 0.53174(5) 0.0199(2) 

O(2) 0.83542(13) 0.19007(6) 0.64548(6) 0.0274(3) 

O(3) 1.04563(13) 0.11148(6) 0.56337(6) 0.0295(3) 

C(1) 0.46778(18) 0.04400(8) 0.49549(8) 0.0208(3) 

C(2) 0.55496(18) 0.10563(8) 0.55051(8) 0.0206(3) 

C(3) 0.84902(17) 0.03191(8) 0.66539(8) 0.0190(3) 

C(5) 0.78429(18)  0.02455(9) 0.79425(8) 0.0238(3) 

C(4) 0.80244(17) 0.04344(8) 0.74471(8) 0.0220(3) 

C(6) 0.80861(19)  0.10399(8) 0.76518(8) 0.0228(3) 

C(7) 0.85222(18)  0.11390(8) 0.68449(9) 0.0238(3) 

C(8) 0.87554(17)  0.04716(9) 0.63465(8) 0.0219(3) 

C(9) 0.7892(2)  0.17828(10) 0.81818(9) 0.0334(4) 

C(10) 0.4872(2) 0.19213(9) 0.53817(9) 0.0320(4) 
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Table 3.   Bond lengths [Å] and angles [°] for btg81. 

 

S(1)–O(1)  1.5709(10) S(1)–O(2)  1.4284(10) 

S(1)–O(3)  1.4279(11) S(1)–C(3)  1.7550(13) 

O(1)–C(2)  1.4833(16) C(1)–C(1A)  1.517(3) 

C(1)–H(1A)  0.970 C(1)–H(1B)  0.970 

C(1)–C(2)  1.5104(18) C(2)–H(2A)  0.980 

C(2)–C(10)  1.5093(19) C(3)–C(4)  1.3800(19) 

C(3)–C(8)  1.3953(18) C(5)–H(3A)  0.930 

C(5)–C(4)  1.3840(19) C(5)–C(6)  1.3886(19) 

C(4)–H(4A)  0.930 C(6)–C(7)  1.393(2) 

C(6)–C(9)  1.5006(19) C(7)–H(7A)  0.930 

C(7)–C(8)  1.3753(19) C(8)–H(8A)  0.930 

C(9)–H(9A)  0.960 C(9)–H(9B)  0.960 

C(9)–H(9C)  0.960 C(10)–H(10A)  0.960 

C(10)–H(10B)  0.960 C(10)–H(10C)  0.960 

O(1)–S(1)–O(2) 110.27(6) O(1)–S(1)–O(3) 103.92(6) 

O(1)–S(1)–C(3) 104.32(6) O(2)–S(1)–O(3) 119.26(6) 

O(2)–S(1)–C(3) 108.36(6) O(3)–S(1)–C(3) 109.67(6) 

S(1)–O(1)–C(2) 118.55(8) C(1A)–C(1)–H(1A) 108.6 

C(1A)–C(1)–H(1B) 108.6 C(1A)–C(1)–C(2) 114.79(14) 

H(1A)–C(1)–H(1B) 107.5 H(1A)–C(1)–C(2) 108.6 

H(1B)–C(1)–C(2) 108.6 O(1)–C(2)–C(1) 106.48(10) 

O(1)–C(2)–H(2A) 109.5 O(1)–C(2)–C(10) 109.52(11) 

C(1)–C(2)–H(2A) 109.5 C(1)–C(2)–C(10) 112.40(11) 

H(2A)–C(2)–C(10) 109.5 S(1)–C(3)–C(4) 120.25(10) 

S(1)–C(3)–C(8) 118.89(10) C(4)–C(3)–C(8) 120.86(12) 

H(3A)–C(5)–C(4) 119.4 H(3A)–C(5)–C(6) 119.4 

C(4)–C(5)–C(6) 121.20(12) C(3)–C(4)–C(5) 119.20(12) 
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C(3)–C(4)–H(4A) 120.4 C(5)–C(4)–H(4A) 120.4 

C(5)–C(6)–C(7) 118.36(12) C(5)–C(6)–C(9) 121.79(13) 

C(7)–C(6)–C(9) 119.85(12) C(6)–C(7)–H(7A) 119.3 

C(6)–C(7)–C(8) 121.45(13) H(7A)–C(7)–C(8) 119.3 

C(3)–C(8)–C(7) 118.89(12) C(3)–C(8)–H(8A) 120.6 

C(7)–C(8)–H(8A) 120.6 C(6)–C(9)–H(9A) 109.5 

C(6)–C(9)–H(9B) 109.5 C(6)–C(9)–H(9C) 109.5 

H(9A)–C(9)–H(9B) 109.5 H(9A)–C(9)–H(9C) 109.5 

H(9B)–C(9)–H(9C) 109.5 C(2)–C(10)–H(10A) 109.5 

C(2)–C(10)–H(10B) 109.5 C(2)–C(10)–H(10C) 109.5 

H(10A)–C(10)–H(10B) 109.5 H(10A)–C(10)–H(10C) 109.5 

H(10B)–C(10)–H(10C) 109.5  

 

Symmetry operations for equivalent atoms 

A   x+1,y,z+1        
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Table 4.   Anisotropic displacement parameters (Å2) for btg81.  The anisotropic 

displacement factor exponent takes the form:  2[h2a*2U11 + ...+ 2hka*b*U12] 

 

      U11      U22      U33      U23      U13      U12 

 

S(1) 0.0186(2)  0.01888(19) 0.0237(2)   0.00078(13) 0.00043(14)   

0.00359(12) 

O(1) 0.0186(5)  0.0214(5) 0.0195(5)   0.0011(4) 0.0007(4)   

0.0011(4) 

O(2) 0.0332(6)  0.0187(5) 0.0304(5)   0.0050(4)  0.0024(5)   

0.0043(4) 

O(3) 0.0198(6)  0.0341(6) 0.0347(6)  0.0033(4) 0.0034(5)   

0.0046(4) 

C(1) 0.0190(7)  0.0188(7) 0.0248(6)   0.0012(5)  0.0015(6)  0.0008(5) 

C(2) 0.0173(7)  0.0204(7) 0.0241(7)   0.0025(5) 0.0011(6)  0.0003(5) 

C(3) 0.0149(6)  0.0204(7) 0.0216(6)   0.0001(5)  0.0020(5)   

0.0009(5) 

C(5) 0.0198(7)  0.0305(8) 0.0210(6)   0.0012(6)  0.0006(6)  0.0020(6) 

C(4) 0.0188(7)  0.0224(7) 0.0248(7)   0.0058(5)  0.0006(6)  0.0013(6) 

C(6) 0.0177(7)  0.0258(7) 0.0250(7)  0.0025(6)  0.0037(6)  0.0010(6) 

C(7) 0.0234(7)  0.0195(7) 0.0286(7)   0.0040(6)  0.0033(6)  0.0029(5) 

C(8) 0.0211(7)  0.0238(7) 0.0209(7)   0.0034(6)  0.0008(6)  0.0021(6) 

C(9) 0.0368(9)  0.0299(8) 0.0334(8)  0.0077(6)  0.0024(7)  0.0035(7) 

C(10) 0.0295(8)  0.0221(8) 0.0445(9)   0.0081(6)  0.0057(7)  0.0050(6) 
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Table 5.   Hydrogen coordinates and isotropic displacement parameters (Å2) 

for btg81. 

 

      x       y       z       U 

 

H(1A) 0.4862 0.0613 0.4403 0.025 

H(1B) 0.3428 0.0450 0.5056 0.025 

H(2A) 0.5365 0.0892 0.6065 0.025 

H(3A) 0.7553  0.0169 0.8480 0.029 

H(4A) 0.7835 0.0963 0.7646 0.026 

H(7A) 0.8659  0.1668 0.6639 0.029 

H(8A) 0.9084  0.0546 0.5813 0.026 

H(9A) 0.7405  0.1619 0.8689 0.050 

H(9B) 0.9019  0.2030 0.8267 0.050 

H(9C) 0.7129  0.2175 0.7929 0.050 

H(10A) 0.5500 0.2294 0.5724 0.048 

H(10B) 0.3648 0.1940 0.5511 0.048 

H(10C) 0.5036 0.2079 0.4831 0.048 
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Table 6.  Torsion angles [°] for btg81. 

 

O(2)–S(1)–O(1)–C(2)  50.42(10) O(3)–S(1)–O(1)–C(2)  179.34(8) 

C(3)–S(1)–O(1)–C(2) 65.75(9) S(1)–O(1)–C(2)–C(1)  146.16(9) 

S(1)–O(1)–C(2)–C(10) 92.07(12) C(1A)–C(1)–C(2)–O(1) 59.41(18) 

C(1A)–C(1)–C(2)–C(10) 179.34(15) O(1)–S(1)–C(3)–C(4)  121.47(11) 

O(1)–S(1)–C(3)–C(8) 59.45(12) O(2)–S(1)–C(3)–C(4)  3.99(13) 

O(2)–S(1)–C(3)–C(8) 176.94(10) O(3)–S(1)–C(3)–C(4) 127.74(11) 

O(3)–S(1)–C(3)–C(8)  51.34(12) S(1)–C(3)–C(4)–C(5)  178.21(10) 

C(8)–C(3)–C(4)–C(5) 0.8(2) C(6)–C(5)–C(4)–C(3)  1.3(2) 

C(4)–C(5)–C(6)–C(7) 0.1(2) C(4)–C(5)–C(6)–C(9)  179.95(13) 

C(5)–C(6)–C(7)–C(8) 1.7(2) C(9)–C(6)–C(7)–C(8)  178.28(13) 

C(6)–C(7)–C(8)–C(3)  2.2(2) S(1)–C(3)–C(8)–C(7) 179.93(10) 

C(4)–C(3)–C(8)–C(7) 0.9(2)  

 

Symmetry operations for equivalent atoms 

A   x+1,y,z+1        
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Table 1.  Crystal data and structure refinement for btg86. 
 
Identification code  btg86 
Chemical formula (moiety) C40H52O12S4 
Chemical formula (total) C40H52O12S4 
Formula weight  853.06 
Temperature  150(2) K 

Radiation, wavelength  MoK, 0.71073 Å 
Crystal system, space group  monoclinic, P1211 

Unit cell parameters a = 6.07920(10) Å  = 90° 

 b = 7.2085(2) Å  = 92.103(2)° 

 c = 23.3865(5) Å  = 90° 
Cell volume 1024.15(4) Å3 
Z 1 
Calculated density  1.383 g/cm3 

Absorption coefficient  0.294 mm1 
F(000) 452 

Crystal colour and size colourless, 0.30  0.20  0.20 mm3 

Reflections for cell refinement 6622 ( range 2.8 to 28.5°) 
Data collection method Xcalibur, Atlas, Gemini ultra 

 thick-slice  scans 

 range for data collection 3.0 to 28.5° 

Index ranges h 8 to 8, k 8 to 9, l 30 to 29 

Completeness to  = 26.0° 98.7 %  
Reflections collected 9186 
Independent reflections 4252 (Rint = 0.0202) 

Reflections with F2>2 3834 
Absorption correction semi-empirical from equivalents 
Min. and max. transmission 0.9170 and 0.9435 
Structure solution direct methods 
Refinement method Full-matrix least-squares on F2 
Weighting parameters a, b 0.0348, 0.0000 
Data / restraints / parameters 4252 / 1 / 258 

Final R indices [F2>2] R1 = 0.0250, wR2 = 0.0560 
R indices (all data) R1 = 0.0296, wR2 = 0.0570 
Goodness-of-fit on F2 0.978 

Absolute structure parameter  0.03(4) 
Extinction coefficient 0.0050(12) 
Largest and mean shift/su 0.001 and 0.000 

Largest diff. peak and hole 0.27 and 0.26 e Å3 
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Table 2.  Atomic coordinates and equivalent isotropic displacement parameters (Å2) 
for btg86.  Ueq is defined as one third of the trace of the orthogonalized Uij tensor. 
 
      x      y      z      Ueq 
 
S(1) 0.13446(7) 0.46561(6) 0.635959(16) 0.02535(10) 
S(2) 0.03462(6) 0.30026(5) 0.870089(15) 0.02329(10) 

O(1)  0.0474(2) 0.3462(2) 0.64469(5) 0.0448(4) 
O(2) 0.1123(2) 0.65493(18) 0.65320(5) 0.0392(3) 
O(3) 0.34748(18) 0.38155(16) 0.66493(4) 0.0248(3) 

O(4)  0.19321(19) 0.2551(2) 0.87339(5) 0.0406(3) 
O(5) 0.0904(2) 0.47141(17) 0.84301(5) 0.0386(3) 
O(6) 0.15918(17) 0.13790(15) 0.84055(4) 0.0218(2) 
C(1) 0.3673(3) 0.4722(3) 0.38702(7) 0.0380(4) 
C(2) 0.3107(3) 0.4653(2) 0.44937(6) 0.0252(3) 
C(3) 0.4589(3) 0.5307(2) 0.49150(7) 0.0272(4) 
C(4) 0.4098(3) 0.5270(2) 0.54870(7) 0.0252(4) 
C(5) 0.2082(2) 0.4551(2) 0.56391(6) 0.0212(3) 
C(6) 0.0581(3) 0.3884(2) 0.52364(7) 0.0243(3) 
C(7) 0.1101(3) 0.3945(2) 0.46572(7) 0.0271(4) 
C(8) 0.5600(3) 0.5729(3) 0.73173(8) 0.0344(4) 
C(9) 0.3913(3) 0.4204(2) 0.72712(6) 0.0216(4) 
C(10) 0.4727(3) 0.2399(2) 0.75276(6) 0.0242(4) 
C(11) 0.3144(3) 0.0773(2) 0.74893(6) 0.0231(3) 
C(12) 0.0998(3) 0.1000(2) 0.77926(6) 0.0206(3) 

C(13)  0.0401(3)  0.0722(2) 0.77648(7) 0.0310(4) 
C(14) 0.1606(2) 0.2917(2) 0.93861(6) 0.0185(3) 
C(15) 0.3717(3) 0.3634(2) 0.94704(7) 0.0231(3) 
C(16) 0.4635(3) 0.3701(2) 1.00174(7) 0.0236(3) 
C(17) 0.3497(2) 0.3061(2) 1.04856(6) 0.0215(3) 
C(18) 0.1397(3) 0.2344(2) 1.03900(6) 0.0225(3) 
C(19) 0.0437(3) 0.2257(2) 0.98412(6) 0.0209(3) 
C(20) 0.4545(3) 0.3154(3) 1.10785(7) 0.0352(4) 
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Table 3.   Bond lengths [Å] and angles [°] for btg86. 
 
S(1)–O(1)  1.4222(14) S(1)–O(2)  1.4308(13) 
S(1)–O(3)  1.5617(12) S(1)–C(5)  1.7612(14) 
S(2)–O(4)  1.4275(13) S(2)–O(5)  1.4331(13) 
S(2)–O(6)  1.5680(11) S(2)–C(14)  1.7517(14) 
O(3)–C(9)  1.4955(17) O(6)–C(12)  1.4907(17) 
C(1)–H(1A)  0.980 C(1)–H(1B)  0.980 
C(1)–H(1C)  0.980 C(1)–C(2)  1.511(2) 
C(2)–C(3)  1.393(2) C(2)–C(7)  1.388(2) 
C(3)–H(3A)  0.950 C(3)–C(4)  1.382(2) 
C(4)–H(4A)  0.950 C(4)–C(5)  1.389(2) 
C(5)–C(6)  1.374(2) C(6)–H(6A)  0.950 
C(6)–C(7)  1.403(2) C(7)–H(7A)  0.950 
C(8)–H(8A)  0.980 C(8)–H(8B)  0.980 
C(8)–H(8C)  0.980 C(8)–C(9)  1.504(2) 
C(9)–H(9A)  1.000 C(9)–C(10)  1.509(2) 
C(10)–H(10A)  0.990 C(10)–H(10B)  0.990 
C(10)–C(11)  1.517(2) C(11)–H(11A)  0.990 
C(11)–H(11B)  0.990 C(11)–C(12)  1.517(2) 
C(12)–H(12A)  1.000 C(12)–C(13)  1.505(2) 
C(13)–H(13A)  0.980 C(13)–H(13B)  0.980 
C(13)–H(13C)  0.980 C(14)–C(15)  1.390(2) 
C(14)–C(19)  1.385(2) C(15)–H(15A)  0.950 
C(15)–C(16)  1.378(2) C(16)–H(16A)  0.950 
C(16)–C(17)  1.395(2) C(17)–C(18)  1.388(2) 
C(17)–C(20)  1.506(2) C(18)–H(18A)  0.950 
C(18)–C(19)  1.392(2) C(19)–H(19A)  0.950 
C(20)–H(20A)  0.980 C(20)–H(20B)  0.980 
C(20)–H(20C)  0.980  
 
O(1)–S(1)–O(2) 117.07(8) O(1)–S(1)–O(3) 109.85(8) 
O(1)–S(1)–C(5) 109.75(8) O(2)–S(1)–O(3) 109.46(7) 
O(2)–S(1)–C(5) 109.92(7) O(3)–S(1)–C(5) 99.33(6) 
O(4)–S(2)–O(5) 117.75(8) O(4)–S(2)–O(6) 109.81(7) 
O(4)–S(2)–C(14) 109.58(7) O(5)–S(2)–O(6) 108.79(6) 
O(5)–S(2)–C(14) 109.38(8) O(6)–S(2)–C(14) 100.06(6) 
S(1)–O(3)–C(9) 117.69(9) S(2)–O(6)–C(12) 117.17(9) 
H(1A)–C(1)–H(1B) 109.5 H(1A)–C(1)–H(1C) 109.5 
H(1A)–C(1)–C(2) 109.5 H(1B)–C(1)–H(1C) 109.5 
H(1B)–C(1)–C(2) 109.5 H(1C)–C(1)–C(2) 109.5 
C(1)–C(2)–C(3) 120.46(15) C(1)–C(2)–C(7) 120.75(16) 
C(3)–C(2)–C(7) 118.79(14) C(2)–C(3)–H(3A) 119.3 
C(2)–C(3)–C(4) 121.41(15) H(3A)–C(3)–C(4) 119.3 
C(3)–C(4)–H(4A) 120.7 C(3)–C(4)–C(5) 118.63(15) 
H(4A)–C(4)–C(5) 120.7 S(1)–C(5)–C(4) 119.14(12) 
S(1)–C(5)–C(6) 119.01(11) C(4)–C(5)–C(6) 121.68(13) 
C(5)–C(6)–H(6A) 120.5 C(5)–C(6)–C(7) 118.90(14) 
H(6A)–C(6)–C(7) 120.5 C(2)–C(7)–C(6) 120.58(15) 
C(2)–C(7)–H(7A) 119.7 C(6)–C(7)–H(7A) 119.7 
H(8A)–C(8)–H(8B) 109.5 H(8A)–C(8)–H(8C) 109.5 
H(8A)–C(8)–C(9) 109.5 H(8B)–C(8)–H(8C) 109.5 
H(8B)–C(8)–C(9) 109.5 H(8C)–C(8)–C(9) 109.5 
O(3)–C(9)–C(8) 107.66(12) O(3)–C(9)–H(9A) 110.2 
O(3)–C(9)–C(10) 105.62(11) C(8)–C(9)–H(9A) 110.2 
C(8)–C(9)–C(10) 112.89(14) H(9A)–C(9)–C(10) 110.2 
C(9)–C(10)–H(10A) 108.2 C(9)–C(10)–H(10B) 108.2 
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C(9)–C(10)–C(11) 116.42(14) H(10A)–C(10)–H(10B) 107.3 
H(10A)–C(10)–C(11) 108.2 H(10B)–C(10)–C(11) 108.2 
C(10)–C(11)–H(11A) 108.2 C(10)–C(11)–H(11B) 108.2 
C(10)–C(11)–C(12) 116.35(13) H(11A)–C(11)–H(11B) 107.4 
H(11A)–C(11)–C(12) 108.2 H(11B)–C(11)–C(12) 108.2 
O(6)–C(12)–C(11) 106.69(12) O(6)–C(12)–H(12A) 109.8 
O(6)–C(12)–C(13) 108.02(12) C(11)–C(12)–H(12A) 109.8 
C(11)–C(12)–C(13) 112.66(13) H(12A)–C(12)–C(13) 109.8 
C(12)–C(13)–H(13A) 109.5 C(12)–C(13)–H(13B) 109.5 
C(12)–C(13)–H(13C) 109.5 H(13A)–C(13)–H(13B) 109.5 
H(13A)–C(13)–H(13C) 109.5 H(13B)–C(13)–H(13C) 109.5 
S(2)–C(14)–C(15) 119.14(11) S(2)–C(14)–C(19) 119.70(12) 
C(15)–C(14)–C(19) 121.02(14) C(14)–C(15)–H(15A) 120.5 
C(14)–C(15)–C(16) 119.03(13) H(15A)–C(15)–C(16) 120.5 
C(15)–C(16)–H(16A) 119.3 C(15)–C(16)–C(17) 121.42(15) 
H(16A)–C(16)–C(17) 119.3 C(16)–C(17)–C(18) 118.47(14) 
C(16)–C(17)–C(20) 120.19(15) C(18)–C(17)–C(20) 121.34(14) 
C(17)–C(18)–H(18A) 119.4 C(17)–C(18)–C(19) 121.15(14) 
H(18A)–C(18)–C(19) 119.4 C(14)–C(19)–C(18) 118.92(14) 
C(14)–C(19)–H(19A) 120.5 C(18)–C(19)–H(19A) 120.5 
C(17)–C(20)–H(20A) 109.5 C(17)–C(20)–H(20B) 109.5 
C(17)–C(20)–H(20C) 109.5 H(20A)–C(20)–H(20B) 109.5 
H(20A)–C(20)–H(20C) 109.5 H(20B)–C(20)–H(20C) 109.5 
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Table 4.   Anisotropic displacement parameters (Å2) for btg86.  The anisotropic 

displacement factor exponent takes the form: 22[h2a*2U11 + ...+ 2hka*b*U12] 
 
      U11      U22      U33      U23      U13      U12 
 
S(1) 0.0261(2)  0.0326(2) 0.01751(17)  0.00154(18) 0.00279(15) 
 0.00521(19) 

S(2) 0.0285(2)  0.0256(2) 0.01574(17)  0.00197(16) 0.00061(15) 
 0.00848(18) 
O(1) 0.0339(7)  0.0705(11) 0.0306(6)  0.0048(7) 0.0082(5)   

0.0126(7) 

O(2) 0.0571(8)  0.0375(7) 0.0232(6)   0.0029(5) 0.0024(6)  0.0241(6) 

O(3) 0.0329(6)  0.0267(6) 0.0148(5)   0.0028(4) 0.0002(5)  0.0080(5) 

O(4) 0.0246(6)  0.0721(10) 0.0247(6)   0.0111(6)  0.0038(5)  0.0103(6) 
O(5) 0.0712(9)  0.0249(6) 0.0199(5)  0.0029(5) 0.0021(6)  0.0112(7) 

O(6) 0.0266(6)  0.0229(6) 0.0159(5)   0.0020(5)  0.0003(5)  0.0058(5) 
C(1) 0.0585(12)  0.0354(10) 0.0203(7)  0.0017(8) 0.0034(8) 
 0.0032(10) 

C(2) 0.0389(9)  0.0184(7) 0.0184(7)   0.0003(7) 0.0028(7)  0.0055(8) 
C(3) 0.0275(9)  0.0277(9) 0.0269(9)  0.0023(7) 0.0060(7)   

0.0044(7) 

C(4) 0.0284(8)  0.0248(9) 0.0221(8)   0.0023(6)  0.0022(7)   

0.0039(7) 

C(5) 0.0261(8)  0.0209(8) 0.0167(7)   0.0004(7) 0.0018(6)  0.0012(7) 

C(6) 0.0246(8)  0.0228(8) 0.0254(8)  0.0021(7)  0.0017(7)   

0.0026(7) 

C(7) 0.0346(9)  0.0252(9) 0.0208(8)   0.0023(7)  0.0093(7)  0.0011(7) 

C(8) 0.0412(11)  0.0337(10) 0.0286(9)   0.0056(8) 0.0040(8)   

0.0074(9) 

C(9) 0.0269(8)  0.0259(10) 0.0122(7)   0.0026(6) 0.0030(6)  0.0002(7) 

C(10) 0.0224(8)  0.0328(9) 0.0173(7)  0.0011(7)  0.0010(6)  0.0028(7) 
C(11) 0.0278(8)  0.0236(8) 0.0177(7)  0.0004(6) 0.0001(7)  0.0061(7) 

C(12) 0.0260(8)  0.0213(8) 0.0141(7)   0.0005(6)  0.0029(6)  0.0022(7) 

C(13) 0.0361(9)  0.0291(10) 0.0278(9)   0.0009(7) 0.0009(7)   

0.0069(8) 

C(14) 0.0235(7)  0.0174(7) 0.0147(6)   0.0009(6) 0.0006(6)  0.0040(7) 
C(15) 0.0238(8)  0.0234(8) 0.0225(8)  0.0013(7) 0.0070(7)  0.0006(7) 

C(16) 0.0201(8)  0.0222(8) 0.0284(8)   0.0028(7)  0.0009(7)   

0.0009(7) 

C(17) 0.0270(8)  0.0186(7) 0.0188(7)   0.0035(7)  0.0013(6)  0.0042(7) 
C(18) 0.0282(8)  0.0212(8) 0.0187(7)  0.0017(6) 0.0075(7)  0.0012(7) 

C(19) 0.0208(8)  0.0194(8) 0.0226(8)   0.0024(7) 0.0031(6)   

0.0007(7) 

C(20) 0.0430(10)  0.0392(10) 0.0230(8)   0.0059(9)  0.0060(7) 
 0.0065(10) 
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Table 5.   Hydrogen coordinates and isotropic displacement parameters (Å2) 
for btg86. 
 
      x       y       z       U 
 
H(1A) 0.2622 0.3963 0.3645 0.057 
H(1B) 0.5165 0.4240 0.3826 0.057 
H(1C) 0.3599 0.6008 0.3735 0.057 
H(3A) 0.5967 0.5790 0.4807 0.033 
H(4A) 0.5119 0.5726 0.5770 0.030 

H(6A)  0.0786 0.3389 0.5348 0.029 
H(7A) 0.0072 0.3499 0.4374 0.033 
H(8A) 0.5040 0.6830 0.7114 0.052 
H(8B) 0.6965 0.5315 0.7147 0.052 
H(8C) 0.5895 0.6034 0.7721 0.052 
H(9A) 0.2527 0.4598 0.7454 0.026 
H(10A) 0.5127 0.2617 0.7936 0.029 
H(10B) 0.6090 0.2042 0.7336 0.029 
H(11A) 0.2791 0.0522 0.7080 0.028 

H(11B) 0.3910  0.0335 0.7648 0.028 
H(12A) 0.0152 0.2071 0.7625 0.025 

H(13A)  0.1753  0.0511 0.7971 0.047 

H(13B) 0.0418  0.1759 0.7941 0.047 

H(13C)  0.0779  0.1019 0.7364 0.047 
H(15A) 0.4513 0.4071 0.9155 0.028 
H(16A) 0.6074 0.4195 1.0077 0.028 
H(18A) 0.0600 0.1906 1.0705 0.027 

H(19A)  0.0996 0.1754 0.9780 0.025 
H(20A) 0.6088 0.2769 1.1066 0.053 
H(20B) 0.3760 0.2324 1.1333 0.053 
H(20C) 0.4467 0.4428 1.1222 0.053 
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Table 6.  Torsion angles [°] for btg86. 
 

O(1)–S(1)–O(3)–C(9)  85.03(12) O(2)–S(1)–O(3)–C(9) 44.82(12) 
C(5)–S(1)–O(3)–C(9) 159.92(11) O(4)–S(2)–O(6)–C(12) 65.59(11) 

O(5)–S(2)–O(6)–C(12)  64.61(12) C(14)–S(2)–O(6)–C(12)  179.22(10) 

C(1)–C(2)–C(3)–C(4) 179.51(16) C(7)–C(2)–C(3)–C(4)  0.2(2) 

C(2)–C(3)–C(4)–C(5) 0.4(2) C(3)–C(4)–C(5)–S(1)  175.18(13) 

C(3)–C(4)–C(5)–C(6) 0.0(2) O(1)–S(1)–C(5)–C(4)  165.59(13) 
O(1)–S(1)–C(5)–C(6) 19.12(16) O(2)–S(1)–C(5)–C(4) 64.29(15) 

O(2)–S(1)–C(5)–C(6)  111.01(14) O(3)–S(1)–C(5)–C(4)  50.46(14) 
O(3)–S(1)–C(5)–C(6) 134.24(13) S(1)–C(5)–C(6)–C(7) 174.72(13) 

C(4)–C(5)–C(6)–C(7)  0.4(2) C(1)–C(2)–C(7)–C(6)  179.99(16) 

C(3)–C(2)–C(7)–C(6)  0.2(2) C(5)–C(6)–C(7)–C(2) 0.6(2) 

S(1)–O(3)–C(9)–C(8)  100.86(14) S(1)–O(3)–C(9)–C(10) 138.30(11) 

O(3)–C(9)–C(10)–C(11)  61.47(16) C(8)–C(9)–C(10)–C(11)  178.85(12) 

C(9)–C(10)–C(11)–C(12)  61.75(19) S(2)–O(6)–C(12)–C(11) 134.10(11) 

S(2)–O(6)–C(12)–C(13)  104.53(13) C(10)–C(11)–C(12)–O(6)  57.85(17) 

C(10)–C(11)–C(12)–C(13)  176.23(14) O(4)–S(2)–C(14)–C(15)  168.30(13) 

O(4)–S(2)–C(14)–C(19) 7.31(15) O(5)–S(2)–C(14)–C(15)  37.83(14) 
O(5)–S(2)–C(14)–C(19) 137.78(13) O(6)–S(2)–C(14)–C(15) 76.33(14) 

O(6)–S(2)–C(14)–C(19)  108.06(13) S(2)–C(14)–C(15)–C(16) 174.84(12) 

C(19)–C(14)–C(15)–C(16)  0.7(2) C(14)–C(15)–C(16)–C(17) 0.3(2) 

C(15)–C(16)–C(17)–C(18) 0.0(2) C(15)–C(16)–C(17)–C(20)  179.97(16) 

C(16)–C(17)–C(18)–C(19) 0.2(2) C(20)–C(17)–C(18)–C(19)  179.86(15) 

S(2)–C(14)–C(19)–C(18)  174.64(11) C(15)–C(14)–C(19)–C(18) 0.9(2) 

C(17)–C(18)–C(19)–C(14)  0.6(2)  
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Table 1.  Crystal data and structure refinement for btg84. 
 
Identification code  btg84 
Chemical formula (moiety) C10H18O4 
Chemical formula (total) C10H18O4 
Formula weight  202.24 
Temperature  150(2) K 

Radiation, wavelength  CuK, 1.54178 Å 
Crystal system, space group  monoclinic, P121/c1 

Unit cell parameters a = 9.1729(18) Å  = 90° 

 b = 11.7134(16) Å  = 105.94(2)° 

 c = 10.748(2) Å  = 90° 
Cell volume 1110.4(3) Å3 
Z 4 
Calculated density  1.210 g/cm3 

Absorption coefficient  0.766 mm1 
F(000) 440 

Crystal colour and size colourless, 0.30  0.10  0.10 mm3 

Reflections for cell refinement 2118 ( range 3.8 to 63.0°) 
Data collection method Xcalibur, Atlas, Gemini ultra 

 thick-slice  scans 

 range for data collection 8.4 to 50.4° 

Index ranges h 9 to 9, k 11 to 11, l 10 to 10 

Completeness to  = 50.4° 99.6 %  
Reflections collected 5154 
Independent reflections 1154 (Rint = 0.0573) 

Reflections with F2>2 988 
Absorption correction semi-empirical from equivalents 
Min. and max. transmission 0.8027 and 0.9273 
Structure solution direct methods 
Refinement method Full-matrix least-squares on F2 
Weighting parameters a, b 0.2000, 0.0000 
Data / restraints / parameters 1154 / 0 / 138 

Final R indices [F2>2] R1 = 0.0878, wR2 = 0.2816 
R indices (all data) R1 = 0.0984, wR2 = 0.3299 
Goodness-of-fit on F2 1.560 
Extinction coefficient 0.017(7) 
Largest and mean shift/su 0.000 and 0.000 

Largest diff. peak and hole 0.38 and 0.37 e Å3 
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Table 2.  Atomic coordinates and equivalent isotropic displacement parameters (Å2) 
for btg84.  Ueq is defined as one third of the trace of the orthogonalized Uij tensor. 
 
      x      y      z      Ueq 
 

O(1) 0.0812(4) 0.1576(3)  0.0050(4) 0.0645(14) 
O(2) 0.3054(4) 0.1975(2) 0.1339(3) 0.0659(14) 
O(3) 0.3596(4) 0.1251(3) 0.4952(4) 0.0694(14) 
O(4) 0.1358(4) 0.1724(3) 0.3590(3) 0.0664(14) 

C(1) 0.3417(7)  0.5279(4) 0.3266(5) 0.0805(18) 

C(2) 0.3124(6)  0.4126(4) 0.2631(5) 0.0678(16) 

C(3) 0.2970(5)  0.3164(3) 0.3512(5) 0.0620(15) 

C(4) 0.2811(5)  0.2012(3) 0.2852(5) 0.0587(15) 

C(5) 0.2494(5)  0.1007(3) 0.3653(4) 0.0557(15) 
C(6) 0.2727(5) 0.0148(4) 0.3035(4) 0.0589(16) 
C(7) 0.1691(6) 0.0295(3) 0.1662(4) 0.0628(16) 
C(8) 0.1933(6) 0.1360(4) 0.0995(5) 0.0575(16) 
C(9) 0.2491(7) 0.1117(4) 0.3865(5) 0.0618(16) 

C(10) 0.0931(6)  0.1106(4) 0.3889(5) 0.0691(17) 
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Table 3.   Bond lengths [Å] and angles [°] for btg84. 
 
O(1)–C(8)  1.323(6) O(1)–H(1)  0.79(7) 
O(2)–C(8)  1.226(5) O(3)–H(3)  0.87(6) 
O(3)–C(9)  1.328(6) O(4)–C(9)  1.227(5) 
C(1)–H(1A)  0.980 C(1)–H(1B)  0.980 
C(1)–H(1C)  0.980 C(1)–C(2)  1.503(6) 
C(2)–H(2A)  0.990 C(2)–H(2B)  0.990 
C(2)–C(3)  1.503(6) C(3)–H(3A)  0.990 
C(3)–H(3B)  0.990 C(3)–C(4)  1.513(6) 
C(4)–H(4A)  0.990 C(4)–H(4B)  0.990 
C(4)–C(5)  1.533(6) C(5)–H(5A)  1.000 
C(5)–C(6)  1.547(6) C(5)–C(10)  1.527(7) 
C(6)–H(6A)  1.000 C(6)–C(7)  1.530(6) 
C(6)–C(9)  1.495(6) C(7)–H(7A)  0.990 
C(7)–H(7B)  0.990 C(7)–C(8)  1.485(6) 
C(10)–H(10A)  0.980 C(10)–H(10B)  0.980 
C(10)–H(10C)  0.980  
 
C(8)–O(1)–H(1) 106(4) H(3)–O(3)–C(9) 110(4) 
H(1A)–C(1)–H(1B) 109.5 H(1A)–C(1)–H(1C) 109.5 
H(1A)–C(1)–C(2) 109.5 H(1B)–C(1)–H(1C) 109.5 
H(1B)–C(1)–C(2) 109.5 H(1C)–C(1)–C(2) 109.5 
C(1)–C(2)–H(2A) 108.5 C(1)–C(2)–H(2B) 108.5 
C(1)–C(2)–C(3) 115.1(4) H(2A)–C(2)–H(2B) 107.5 
H(2A)–C(2)–C(3) 108.5 H(2B)–C(2)–C(3) 108.5 
C(2)–C(3)–H(3A) 109.0 C(2)–C(3)–H(3B) 109.0 
C(2)–C(3)–C(4) 112.8(4) H(3A)–C(3)–H(3B) 107.8 
H(3A)–C(3)–C(4) 109.0 H(3B)–C(3)–C(4) 109.0 
C(3)–C(4)–H(4A) 108.4 C(3)–C(4)–H(4B) 108.4 
C(3)–C(4)–C(5) 115.5(3) H(4A)–C(4)–H(4B) 107.5 
H(4A)–C(4)–C(5) 108.4 H(4B)–C(4)–C(5) 108.4 
C(4)–C(5)–H(5A) 107.1 C(4)–C(5)–C(6) 111.1(3) 
C(4)–C(5)–C(10) 111.5(3) H(5A)–C(5)–C(6) 107.1 
H(5A)–C(5)–C(10) 107.1 C(6)–C(5)–C(10) 112.6(3) 
C(5)–C(6)–H(6A) 107.9 C(5)–C(6)–C(7) 113.0(3) 
C(5)–C(6)–C(9) 110.4(3) H(6A)–C(6)–C(7) 107.9 
H(6A)–C(6)–C(9) 107.9 C(7)–C(6)–C(9) 109.7(4) 
C(6)–C(7)–H(7A) 108.5 C(6)–C(7)–H(7B) 108.5 
C(6)–C(7)–C(8) 115.1(4) H(7A)–C(7)–H(7B) 107.5 
H(7A)–C(7)–C(8) 108.5 H(7B)–C(7)–C(8) 108.5 
O(1)–C(8)–O(2) 122.4(4) O(1)–C(8)–C(7) 112.7(5) 
O(2)–C(8)–C(7) 124.9(5) O(3)–C(9)–O(4) 122.3(4) 
O(3)–C(9)–C(6) 114.4(5) O(4)–C(9)–C(6) 123.2(5) 
C(5)–C(10)–H(10A) 109.5 C(5)–C(10)–H(10B) 109.5 
C(5)–C(10)–H(10C) 109.5 H(10A)–C(10)–H(10B) 109.5 
H(10A)–C(10)–H(10C) 109.5 H(10B)–C(10)–H(10C) 109.5 
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Table 4.   Anisotropic displacement parameters (Å2) for btg84.  The anisotropic 

displacement factor exponent takes the form: 22[h2a*2U11 + ...+ 2hka*b*U12] 
 
      U11      U22      U33      U23      U13      U12 
 
O(1) 0.076(3)  0.053(2) 0.073(3)  0.0064(16) 0.035(2)   

0.0031(18) 
O(2) 0.078(2)  0.056(2) 0.072(2)  0.0055(15) 0.0337(19)   

0.0077(18) 

O(3) 0.081(3)  0.059(2) 0.073(3)   0.0143(17) 0.030(2)  0.0035(17) 

O(4) 0.074(3)  0.056(2) 0.076(2)   0.0074(15) 0.0314(19) 
 0.0061(16) 

C(1) 0.110(4)  0.054(3) 0.088(4)   0.004(3) 0.045(3)  0.001(3) 

C(2) 0.080(3)  0.054(3) 0.081(3)   0.002(2) 0.041(3)   0.001(2) 
C(3) 0.075(3)  0.051(3) 0.069(3)  0.004(2) 0.036(3)  0.004(2) 

C(4) 0.070(3)  0.050(3) 0.068(3)   0.003(2) 0.039(3)   

0.0030(19) 
C(5) 0.065(3)  0.049(3) 0.062(3)  0.0015(19) 0.033(2)   

0.0006(18) 

C(6) 0.075(3)  0.051(3) 0.064(3)   0.001(2) 0.041(3)   

0.0022(19) 

C(7) 0.089(3)  0.046(3) 0.065(3)   0.006(2) 0.043(3)   0.008(2) 
C(8) 0.072(3)  0.047(3) 0.065(3)  0.001(2) 0.039(3)  0.003(2) 

C(9) 0.079(4)  0.050(3) 0.071(4)  0.001(2) 0.046(3)   0.006(3) 
C(10) 0.082(3)  0.055(3) 0.087(4)  0.000(2) 0.051(3)  0.002(2) 



198 
 

Table 5.   Hydrogen coordinates and isotropic displacement parameters (Å2) 
for btg84. 
 
      x       y       z       U 
 
H(3) 0.338(6) 0.181(5) 0.541(6) 0.083(17) 

H(1A) 0.3368  0.5865 0.2605 0.121 

H(1B) 0.2648  0.5437 0.3721 0.121 

H(1C) 0.4425  0.5286 0.3885 0.121 

H(2A) 0.2181  0.4169 0.1912 0.081 

H(2B) 0.3965  0.3945 0.2251 0.081 

H(3A) 0.3873  0.3153 0.4271 0.074 

H(3B) 0.2070  0.3302 0.3831 0.074 

H(4A) 0.1978  0.2057 0.2042 0.070 

H(4B) 0.3757  0.1849 0.2610 0.070 

H(5A) 0.3259  0.1045 0.4518 0.067 
H(6A) 0.3800 0.0179 0.2990 0.071 

H(7A) 0.1841  0.0364 0.1135 0.075 
H(7B) 0.0625 0.0278 0.1699 0.075 

H(10A) 0.0882  0.1808 0.4372 0.104 

H(10B) 0.0151  0.1128 0.3057 0.104 

H(10C) 0.0756  0.0446 0.4389 0.104 

H(1) 0.110(7) 0.209(6)  0.041(6) 0.10(2) 
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Table 6.  Torsion angles [°] for btg84. 
 
C(1)–C(2)–C(3)–C(4) 175.1(4) C(2)–C(3)–C(4)–C(5) 174.2(4) 

C(3)–C(4)–C(5)–C(6) 166.6(4) C(3)–C(4)–C(5)–C(10)  66.9(5) 

C(4)–C(5)–C(6)–C(7) 59.8(5) C(4)–C(5)–C(6)–C(9)  177.0(4) 

C(10)–C(5)–C(6)–C(7)  66.2(5) C(10)–C(5)–C(6)–C(9) 57.0(5) 

C(5)–C(6)–C(7)–C(8)  176.5(3) C(9)–C(6)–C(7)–C(8) 59.9(5) 

C(6)–C(7)–C(8)–O(1)  165.6(4) C(6)–C(7)–C(8)–O(2) 15.9(6) 

C(5)–C(6)–C(9)–O(3) 72.5(5) C(5)–C(6)–C(9)–O(4)  105.6(5) 

C(7)–C(6)–C(9)–O(3)  162.4(3) C(7)–C(6)–C(9)–O(4) 19.5(5) 
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Asymmetric unit for BTG105 
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Hydrogen Bonding in BTG105
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Table 1.  Crystal data and structure refinement for btg105. 
 
Identification code  btg105 
Chemical formula (moiety) C44H64O8 
Chemical formula (total) C44H64O8 
Formula weight  720.95 
Temperature  150(2) K 

Radiation, wavelength  MoK, 0.71073 Å 
Crystal system, space group  monoclinic, P121/c1 

Unit cell parameters a = 10.7054(9) Å  = 90° 

 b = 6.9447(4) Å  = 106.339(7)° 

 c = 13.3775(9) Å  = 90° 
Cell volume 954.39(12) Å3 
Z 1 
Calculated density  1.254 g/cm3 

Absorption coefficient 0.084 mm1 
F(000) 392 

Reflections for cell refinement 1630 ( range 2.9 to 28.5°) 
Data collection method Xcalibur, Atlas, Gemini ultra 

 thick-slice  scans 

 range for data collection 3.2 to 28.6° 

Index ranges h 12 to 12, k 6 to 9, l 14 to 17 

Completeness to  = 25.0° 99.9 %  
Reflections collected 4437 
Independent reflections 1992 (Rint = 0.0315) 

Reflections with F2>2 1529 
Absorption correction semi-empirical from equivalents 
Min. and max. transmission 0.82940 and 1.00000 
Structure solution direct methods 
Refinement method Full-matrix least-squares on F2 
Weighting parameters a, b 0.0381, 0.1708 
Data / restraints / parameters 1992 / 0 / 123 

Final R indices [F2>2] R1 = 0.0484, wR2 = 0.0983 
R indices (all data) R1 = 0.0688, wR2 = 0.1094 
Goodness-of-fit on F2 1.070 
Extinction coefficient 0.0048(18) 
Largest and mean shift/su 0.000 and 0.000 

Largest diff. peak and hole 0.22 and 0.18 e Å3 
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Table 2.  Atomic coordinates and equivalent isotropic displacement parameters (Å2) 
for btg105.  Ueq is defined as one third of the trace of the orthogonalized Uij tensor. 
 
      x      y      z      Ueq 
 
O(1) 0.01422(11) 0.13106(16) 0.40469(8) 0.0310(3) 
O(2) 0.10550(12) 0.19282(18) 0.57314(8) 0.0346(3) 
C(1) 0.08232(14) 0.2334(2) 0.47314(11) 0.0253(4) 
C(2) 0.14344(14) 0.4103(2) 0.44836(11) 0.0247(4) 
C(3) 0.20167(15) 0.5338(2) 0.52315(12) 0.0287(4) 
C(4) 0.26250(17) 0.7171(2) 0.50318(12) 0.0323(4) 
C(5) 0.23046(16) 0.7713(2) 0.38783(12) 0.0294(4) 
C(6) 0.32396(17) 0.9235(3) 0.36844(13) 0.0359(4) 
C(7) 0.45995(17) 0.8438(3) 0.38230(13) 0.0378(5) 
C(8) 0.45739(18) 0.6670(3) 0.31568(14) 0.0404(5) 
C(9) 0.36542(16) 0.5136(2) 0.33584(13) 0.0343(4) 
C(10) 0.22903(15) 0.5944(2) 0.31923(11) 0.0275(4) 
C(11) 0.13185(16) 0.4460(2) 0.33543(11) 0.0307(4) 
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Table 3.   Bond lengths [Å] and angles [°] for btg105. 
 
O(1)–C(1)  1.2244(18) O(2)–C(1)  1.3204(18) 
O(2)–H(2)  0.89(2) C(1)–C(2)  1.473(2) 
C(2)–C(3)  1.332(2) C(2)–C(11)  1.501(2) 
C(3)–H(3A)  0.950 C(3)–C(4)  1.488(2) 
C(4)–H(4A)  0.990 C(4)–H(4B)  0.990 
C(4)–C(5)  1.531(2) C(5)–H(5A)  1.000 
C(5)–C(6)  1.527(2) C(5)–C(10)  1.531(2) 
C(6)–H(6A)  0.990 C(6)–H(6B)  0.990 
C(6)–C(7)  1.519(2) C(7)–H(7A)  0.990 
C(7)–H(7B)  0.990 C(7)–C(8)  1.513(3) 
C(8)–H(8A)  0.990 C(8)–H(8B)  0.990 
C(8)–C(9)  1.525(2) C(9)–H(9A)  0.990 
C(9)–H(9B)  0.990 C(9)–C(10)  1.521(2) 
C(10)–H(10A)  1.000 C(10)–C(11)  1.522(2) 
C(11)–H(11A)  0.990 C(11)–H(11B)  0.990 
 
C(1)–O(2)–H(2) 106.9(13) O(1)–C(1)–O(2) 122.46(15) 
O(1)–C(1)–C(2) 121.62(14) O(2)–C(1)–C(2) 115.92(13) 
C(1)–C(2)–C(3) 120.79(14) C(1)–C(2)–C(11) 116.63(13) 
C(3)–C(2)–C(11) 122.54(14) C(2)–C(3)–H(3A) 118.2 
C(2)–C(3)–C(4) 123.52(14) H(3A)–C(3)–C(4) 118.2 
C(3)–C(4)–H(4A) 108.8 C(3)–C(4)–H(4B) 108.8 
C(3)–C(4)–C(5) 113.95(13) H(4A)–C(4)–H(4B) 107.7 
H(4A)–C(4)–C(5) 108.8 H(4B)–C(4)–C(5) 108.8 
C(4)–C(5)–H(5A) 107.6 C(4)–C(5)–C(6) 111.69(13) 
C(4)–C(5)–C(10) 111.63(13) H(5A)–C(5)–C(6) 107.6 
H(5A)–C(5)–C(10) 107.6 C(6)–C(5)–C(10) 110.50(14) 
C(5)–C(6)–H(6A) 109.2 C(5)–C(6)–H(6B) 109.2 
C(5)–C(6)–C(7) 112.24(14) H(6A)–C(6)–H(6B) 107.9 
H(6A)–C(6)–C(7) 109.2 H(6B)–C(6)–C(7) 109.2 
C(6)–C(7)–H(7A) 109.3 C(6)–C(7)–H(7B) 109.3 
C(6)–C(7)–C(8) 111.46(14) H(7A)–C(7)–H(7B) 108.0 
H(7A)–C(7)–C(8) 109.3 H(7B)–C(7)–C(8) 109.3 
C(7)–C(8)–H(8A) 109.3 C(7)–C(8)–H(8B) 109.3 
C(7)–C(8)–C(9) 111.60(14) H(8A)–C(8)–H(8B) 108.0 
H(8A)–C(8)–C(9) 109.3 H(8B)–C(8)–C(9) 109.3 
C(8)–C(9)–H(9A) 109.4 C(8)–C(9)–H(9B) 109.4 
C(8)–C(9)–C(10) 110.97(14) H(9A)–C(9)–H(9B) 108.0 
H(9A)–C(9)–C(10) 109.4 H(9B)–C(9)–C(10) 109.4 
C(5)–C(10)–C(9) 111.16(13) C(5)–C(10)–H(10A) 107.2 
C(5)–C(10)–C(11) 110.48(13) C(9)–C(10)–H(10A) 107.2 
C(9)–C(10)–C(11) 113.34(14) H(10A)–C(10)–C(11) 107.2 
C(2)–C(11)–C(10) 112.88(12) C(2)–C(11)–H(11A) 109.0 
C(2)–C(11)–H(11B) 109.0 C(10)–C(11)–H(11A) 109.0 
C(10)–C(11)–H(11B) 109.0 H(11A)–C(11)–H(11B) 107.8 
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Table 4.   Anisotropic displacement parameters (Å2) for btg105.  The anisotropic 

displacement factor exponent takes the form:  2[h2a*2U11 + ...+ 2hka*b*U12] 
 
      U11      U22      U33      U23      U13      U12 
 

O(1) 0.0375(7)  0.0276(6) 0.0264(6)   0.0002(5) 0.0062(5)   

0.0083(5) 
O(2) 0.0441(7)  0.0329(7) 0.0253(6)  0.0026(5) 0.0074(5)   

0.0121(6) 
C(1) 0.0249(8)  0.0263(9) 0.0244(8)  0.0008(7) 0.0064(6)  0.0036(7) 

C(2) 0.0239(8)  0.0247(8) 0.0252(8)   0.0005(7) 0.0064(6)   

0.0003(7) 

C(3) 0.0314(9)  0.0302(9) 0.0258(8)   0.0006(7) 0.0101(6)   

0.0009(8) 

C(4) 0.0392(10)  0.0278(9) 0.0322(9)   0.0088(7) 0.0136(7)   

0.0061(8) 
C(5) 0.0317(9)  0.0226(9) 0.0328(9)  0.0013(7) 0.0071(7)  0.0005(7) 

C(6) 0.0474(11)  0.0253(9) 0.0327(9)   0.0001(8) 0.0077(7)   

0.0068(8) 
C(7) 0.0407(10)  0.0401(11) 0.0326(9)  0.0010(8) 0.0102(7)   

0.0152(9) 
C(8) 0.0382(10)  0.0446(12) 0.0425(10)  0.0002(9) 0.0180(8)   

0.0060(9) 

C(9) 0.0406(10)  0.0296(9) 0.0363(9)   0.0022(8) 0.0168(7)  0.0000(8) 
C(10) 0.0337(9)  0.0255(9) 0.0223(8)  0.0004(7) 0.0060(6)   

0.0051(7) 

C(11) 0.0362(9)  0.0273(9) 0.0273(8)   0.0015(7) 0.0066(7)   

0.0073(8) 
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Table 5.   Hydrogen coordinates and isotropic displacement parameters (Å2) 
for btg105. 
 
      x       y       z       U 
 
H(3A) 0.2045 0.5033 0.5930 0.034 
H(4A) 0.3582 0.7060 0.5317 0.039 
H(4B) 0.2331 0.8224 0.5411 0.039 
H(5A) 0.1410 0.8281 0.3671 0.035 
H(6A) 0.2897 0.9740 0.2967 0.043 
H(6B) 0.3286 1.0320 0.4174 0.043 
H(7A) 0.5149 0.9439 0.3631 0.045 
H(7B) 0.4993 0.8102 0.4564 0.045 
H(8A) 0.5463 0.6129 0.3308 0.049 
H(8B) 0.4292 0.7042 0.2412 0.049 
H(9A) 0.3622 0.4035 0.2882 0.041 
H(9B) 0.3988 0.4661 0.4082 0.041 
H(10A) 0.1979 0.6380 0.2451 0.033 
H(11A) 0.0425 0.4911 0.3003 0.037 
H(11B) 0.1456 0.3232 0.3024 0.037 
H(2) 0.063(2) 0.085(3) 0.5773(15) 0.053(6) 
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Table 6.  Torsion angles [°] for btg105. 
 

O(1)–C(1)–C(2)–C(3) 170.43(15) O(1)–C(1)–C(2)–C(11)  7.3(2) 

O(2)–C(1)–C(2)–C(3)  9.5(2) O(2)–C(1)–C(2)–C(11) 172.75(14) 

C(1)–C(2)–C(3)–C(4)  178.52(14) C(11)–C(2)–C(3)–C(4)  0.9(2) 

C(2)–C(3)–C(4)–C(5) 11.0(2) C(3)–C(4)–C(5)–C(6)  163.31(14) 

C(3)–C(4)–C(5)–C(10)  39.04(19) C(4)–C(5)–C(6)–C(7) 70.45(18) 

C(10)–C(5)–C(6)–C(7)  54.45(17) C(5)–C(6)–C(7)–C(8) 54.18(19) 

C(6)–C(7)–C(8)–C(9)  54.5(2) C(7)–C(8)–C(9)–C(10) 55.85(19) 

C(8)–C(9)–C(10)–C(5)  56.42(17) C(8)–C(9)–C(10)–C(11) 178.44(13) 

C(4)–C(5)–C(10)–C(9)  69.43(17) C(4)–C(5)–C(10)–C(11) 57.30(17) 

C(6)–C(5)–C(10)–C(9) 55.51(17) C(6)–C(5)–C(10)–C(11)  177.76(13) 

C(1)–C(2)–C(11)–C(10)  162.84(13) C(3)–C(2)–C(11)–C(10) 19.5(2) 

C(5)–C(10)–C(11)–C(2)  46.83(18) C(9)–C(10)–C(11)–C(2) 78.68(17) 
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Table 7.  Hydrogen bonds for btg105 [Å and °]. 
 
D–H...A d(D–H) d(H...A) d(D...A) <(DHA) 
 
O(2)–H(2)...O(1A) 0.89(2) 1.76(2) 2.6464(16) 176(2) 
 
Symmetry operations for equivalent atoms 

A   x,y,z+1        
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Table 1.  Crystal data and structure refinement for ms2326. 
 
Identification code  ms2326 
Chemical formula (moiety) C24H34O6S2 
Chemical formula (total) C24H34O6S2 
Formula weight  482.63 
Temperature  120(2) K 
Radiation, wavelength  synchrotron, 0.68890 Å 
Crystal system, space group  orthorhombic, Fdd2 
Unit cell parameters a = 20.683(17) Å  
 b = 30.74(2) Å  
 c = 7.554(6) Å  
Cell volume 4803(6) Å3 
Z 8 
Calculated density  1.335 g/cm3 

Absorption coefficient  0.242 mm1 
F(000) 2064 

Crystal colour and size colourless, 0.02  0.02  0.00 mm3 

Reflections for cell refinement 4052 ( range 2.3 to 29.3°) 
Data collection method Crystal Logic diffractometer and Rigaku 
Saturn 724+ CCD 

 thick-slice  scans 

 range for data collection 2.3 to 24.4° 

Index ranges h 24 to 24, k 36 to 28, l 8 to 5 

Completeness to  = 24.4° 97.7 %  
Reflections collected 7088 
Independent reflections 1895 (Rint = 0.0723) 

Reflections with F2>2 1661 
Absorption correction semi-empirical from equivalents 
Min. and max. transmission 0.9952 and 0.9998 
Structure solution direct methods 
Refinement method Full-matrix least-squares on F2 
Weighting parameters a, b 0.1037, 2.5572 
Data / restraints / parameters 1895 / 1 / 148 

Final R indices [F2>2] R1 = 0.0576, wR2 = 0.1529 
R indices (all data) R1 = 0.0669, wR2 = 0.1580 
Goodness-of-fit on F2 1.084 
Absolute structure parameter 0.09(16) 
Extinction coefficient 0.0033(16) 
Largest and mean shift/su 0.000 and 0.000 

Largest diff. peak and hole 0.37 and 0.24 e Å3 
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Table 2.  Atomic coordinates and equivalent isotropic displacement parameters (Å2) 
for ms2326.  Ueq is defined as one third of the trace of the orthogonalized Uij tensor. 
 
      x      y      z      Ueq 
 
S 0.05203(5) 0.40090(3) 0.09696(17) 0.0455(4) 
O(1) 0.06495(14) 0.38637(10) 0.2934(5) 0.0522(9) 

O(2) 0.06162(16) 0.36521(10)  0.0163(5) 0.0560(10) 

O(3)  0.01071(14) 0.42016(10) 0.1078(6) 0.0623(10) 
C(1) 0.1314(3) 0.38294(17) 0.5420(9) 0.0602(15) 
C(2) 0.1291(2) 0.37034(14) 0.3551(8) 0.0512(13) 
C(3) 0.1366(2) 0.32112(15) 0.3228(8) 0.0551(13) 
C(4) 0.2056(2) 0.30601(15) 0.3523(10) 0.0549(12) 
C(5) 0.2146(2) 0.25710(14) 0.3443(9) 0.0553(13) 
C(6) 0.10971(19) 0.44131(12) 0.0465(6) 0.0396(11) 
C(7) 0.09865(18) 0.48426(12) 0.0976(8) 0.0458(11) 
C(8) 0.1445(2) 0.51564(12) 0.0549(7) 0.0433(12) 

C(9) 0.20158(18) 0.50436(13)  0.0272(7) 0.0406(11) 

C(10) 0.21132(19) 0.46134(13)  0.0761(6) 0.0410(11) 

C(11) 0.16546(19) 0.42931(12)  0.0397(7) 0.0406(10) 

C(12) 0.2524(2) 0.53840(14)  0.0678(7) 0.0496(12) 
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Table 3.   Bond lengths [Å] and angles [°] for ms2326. 
 
S–O(1)  1.572(4) S–O(2)  1.405(4) 
S–O(3)  1.429(3) S–C(6)  1.764(4) 
O(1)–C(2)  1.491(5) C(1)–H(1A)  0.980 
C(1)–H(1B)  0.980 C(1)–H(1C)  0.980 
C(1)–C(2)  1.465(8) C(2)–H(2)  1.000 
C(2)–C(3)  1.540(6) C(3)–H(3A)  0.990 
C(3)–H(3B)  0.990 C(3)–C(4)  1.517(6) 
C(4)–H(4A)  0.990 C(4)–H(4B)  0.990 
C(4)–C(5)  1.516(6) C(5)–C(5A)  1.530(8) 
C(5)–H(5A)  0.990 C(5)–H(5B)  0.990 
C(6)–C(7)  1.395(6) C(6)–C(11)  1.374(6) 
C(7)–H(7)  0.950 C(7)–C(8)  1.390(6) 
C(8)–H(8)  0.950 C(8)–C(9)  1.379(6) 
C(9)–C(10)  1.388(6) C(9)–C(12)  1.514(6) 
C(10)–H(10)  0.950 C(10)–C(11)  1.394(6) 
C(11)–H(11)  0.950 C(12)–H(12A)  0.980 
C(12)–H(12B)  0.980 C(12)–H(12C)  0.980 
 
O(1)–S–O(2) 109.2(2) O(1)–S–O(3) 102.6(2) 
O(1)–S–C(6) 106.81(19) O(2)–S–O(3) 119.1(2) 
O(2)–S–C(6) 108.8(2) O(3)–S–C(6) 109.57(19) 
S–O(1)–C(2) 122.7(3) H(1A)–C(1)–H(1B) 109.5 
H(1A)–C(1)–H(1C) 109.5 H(1A)–C(1)–C(2) 109.5 
H(1B)–C(1)–H(1C) 109.5 H(1B)–C(1)–C(2) 109.5 
H(1C)–C(1)–C(2) 109.5 O(1)–C(2)–C(1) 104.0(4) 
O(1)–C(2)–H(2) 109.1 O(1)–C(2)–C(3) 111.3(4) 
C(1)–C(2)–H(2) 109.1 C(1)–C(2)–C(3) 114.2(5) 
H(2)–C(2)–C(3) 109.1 C(2)–C(3)–H(3A) 109.3 
C(2)–C(3)–H(3B) 109.3 C(2)–C(3)–C(4) 111.8(4) 
H(3A)–C(3)–H(3B) 107.9 H(3A)–C(3)–C(4) 109.3 
H(3B)–C(3)–C(4) 109.3 C(3)–C(4)–H(4A) 108.7 
C(3)–C(4)–H(4B) 108.7 C(3)–C(4)–C(5) 114.4(4) 
H(4A)–C(4)–H(4B) 107.6 H(4A)–C(4)–C(5) 108.7 
H(4B)–C(4)–C(5) 108.7 C(4)–C(5)–C(5A) 113.6(5) 
C(4)–C(5)–H(5A) 108.8 C(4)–C(5)–H(5B) 108.8 
C(5A)–C(5)–H(5A) 108.8 C(5A)–C(5)–H(5B) 108.8 
H(5A)–C(5)–H(5B) 107.7 S–C(6)–C(7) 119.7(3) 
S–C(6)–C(11) 118.7(3) C(7)–C(6)–C(11) 121.5(4) 
C(6)–C(7)–H(7) 120.6 C(6)–C(7)–C(8) 118.7(4) 
H(7)–C(7)–C(8) 120.6 C(7)–C(8)–H(8) 119.5 
C(7)–C(8)–C(9) 120.9(4) H(8)–C(8)–C(9) 119.5 
C(8)–C(9)–C(10) 118.9(4) C(8)–C(9)–C(12) 120.8(4) 
C(10)–C(9)–C(12) 120.3(4) C(9)–C(10)–H(10) 119.3 
C(9)–C(10)–C(11) 121.4(4) H(10)–C(10)–C(11) 119.3 
C(6)–C(11)–C(10) 118.3(4) C(6)–C(11)–H(11) 120.8 
C(10)–C(11)–H(11) 120.8 C(9)–C(12)–H(12A) 109.5 
C(9)–C(12)–H(12B) 109.5 C(9)–C(12)–H(12C) 109.5 
H(12A)–C(12)–H(12B) 109.5 H(12A)–C(12)–H(12C) 109.5 
H(12B)–C(12)–H(12C) 109.5  
 
Symmetry operations for equivalent atoms 

A   x+1/2,y+1/2,z        
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Table 4.   Anisotropic displacement parameters (Å2) for ms2326.  The anisotropic 

displacement factor exponent takes the form: 22[h2a*2U11 + ...+ 2hka*b*U12] 
 
      U11      U22      U33      U23      U13      U12 
 

S 0.0415(5)  0.0362(5) 0.0589(9)  0.0028(5)  0.0041(5)   

0.0041(4) 

O(1) 0.0436(15)  0.0554(18) 0.058(3)  0.0075(17)  0.0040(14)   

0.0023(13) 

O(2) 0.0609(19)  0.0395(16) 0.068(3)   0.0037(17)  0.0021(17)   

0.0107(13) 
O(3) 0.0420(15)  0.0526(17) 0.092(3)  0.005(2) 0.0024(18)   

0.0067(13) 

C(1) 0.060(3)  0.050(2) 0.071(5)   0.016(3)  0.007(3)  0.000(2) 
C(2) 0.044(2)  0.049(2) 0.060(4)  0.001(3) 0.002(2)  0.0015(17) 

C(3) 0.051(2)  0.051(2) 0.064(4)  0.002(3)  0.006(2)  0.0024(18) 
C(4) 0.053(2)  0.054(2) 0.058(4)  0.000(3) 0.002(2)  0.0072(19) 

C(5) 0.054(2)  0.047(2) 0.065(4)   0.006(3)  0.005(3)  0.0029(18) 

C(6) 0.041(2)  0.0324(19) 0.046(3)  0.0015(17)  0.0053(18)   

0.0016(14) 

C(7) 0.0375(19)  0.042(2) 0.057(3)   0.003(2) 0.002(2)  0.0002(15) 

C(8) 0.045(2)  0.0327(19) 0.052(4)   0.0035(19) 0.002(2)   

0.0028(15) 

C(9) 0.0371(19)  0.040(2) 0.045(3)  0.002(2)  0.0032(18)   

0.0004(15) 

C(10) 0.040(2)  0.040(2) 0.043(3)   0.0025(18) 0.0033(17) 
 0.0022(16) 

C(11) 0.045(2)  0.0315(19) 0.045(3)  0.004(2)  0.0020(19) 
 0.0026(15) 

C(12) 0.047(2)  0.044(2) 0.058(4)   0.004(2) 0.010(2)   

0.0079(18) 
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Table 5.   Hydrogen coordinates and isotropic displacement parameters (Å2) 
for ms2326. 
 
      x       y       z       U 
 
H(1A) 0.1744 0.3767 0.5900 0.090 
H(1B) 0.0989 0.3664 0.6082 0.090 
H(1C) 0.1223 0.4141 0.5529 0.090 
H(2) 0.1640 0.3861 0.2896 0.061 
H(3A) 0.1074 0.3051 0.4039 0.066 
H(3B) 0.1235 0.3143 0.1999 0.066 
H(4A) 0.2336 0.3196 0.2616 0.066 
H(4B) 0.2202 0.3165 0.4695 0.066 
H(5A) 0.1935 0.2459 0.2358 0.066 
H(5B) 0.1925 0.2438 0.4473 0.066 
H(7) 0.0605 0.4919 0.1605 0.055 
H(8) 0.1363 0.5453 0.0827 0.052 

H(10) 0.2501 0.4535  0.1357 0.049 

H(11) 0.1726 0.3999  0.0736 0.049 

H(12A) 0.2946 0.5282  0.0263 0.074 

H(12B) 0.2413 0.5656  0.0076 0.074 

H(12C) 0.2541 0.5434  0.1959 0.074 
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Table 6.  Torsion angles [°] for ms2326. 
 

O(2)–S–O(1)–C(2) 62.2(3) O(3)–S–O(1)–C(2)  170.5(3) 

C(6)–S–O(1)–C(2)  55.3(3) S–O(1)–C(2)–C(1) 150.3(3) 

S–O(1)–C(2)–C(3)  86.3(5) O(1)–C(2)–C(3)–C(4) 169.2(5) 

C(1)–C(2)–C(3)–C(4)  73.4(6) C(2)–C(3)–C(4)–C(5) 173.0(5) 

C(3)–C(4)–C(5)–C(5A) 170.7(4) O(1)–S–C(6)–C(7)  82.5(4) 
O(1)–S–C(6)–C(11) 96.1(4) O(2)–S–C(6)–C(7) 159.7(4) 

O(2)–S–C(6)–C(11)  21.7(4) O(3)–S–C(6)–C(7) 27.9(5) 

O(3)–S–C(6)–C(11)  153.5(4) S–C(6)–C(7)–C(8)  179.4(4) 

C(11)–C(6)–C(7)–C(8) 2.0(8) C(6)–C(7)–C(8)–C(9)  3.7(8) 

C(7)–C(8)–C(9)–C(10) 3.6(8) C(7)–C(8)–C(9)–C(12)  177.9(5) 

C(8)–C(9)–C(10)–C(11)  1.7(7) C(12)–C(9)–C(10)–C(11) 179.7(5) 

S–C(6)–C(11)–C(10)  178.8(4) C(7)–C(6)–C(11)–C(10)  0.2(7) 
C(9)–C(10)–C(11)–C(6) 0.0(7)  
 
Symmetry operations for equivalent atoms 

A   x+1/2,y+1/2,z        
 


