Analysing and Quantifying the Influence of System
Parameters on Virtual Machine Co-residency

in Public Clouds

Abdulaziz Alabdulhafez

A thesis submitted in partial fulfilment of the
degree of Doctor of Philosophy

in Computing Science

School of Computing Science
Newcastle University

September 2015

Abstract

Public Infrastructure-as-a-Service (IaaS) cloud promises significant efficiency to businesses and
organisations. This efficiency is possible by allowing “co-residency” where Virtual Machines
(VMs) that belong to multiple users share the same physical infrastructure. With co-residency
being inevitable in public IaaS clouds, malicious users can leverage information leakage via side
channels to launch several powerful attacks on honest co-resident VMs.

Because co-residency is a necessary first step to launching side channel attacks, this motivates
this thesis to look into understanding the co-residency probability (i.e. the probability that a given
VM receives a co-resident VM). This thesis aims to analyse and quantify the influence of cloud
parameters (such as the number of hosts and users) on the co-residency probability in four
commonly used Placement Algorithms (PAs). These PAs are First Fit, Next Fit, Power Save and
Random. This analysis then helps to identify the cloud parameters’ settings that reduce the co-
residency probability in four PAs. Because there are many cloud parameters and parameters’
settings to consider, this forms the main challenge in this thesis. In order to overcome this
challenge, fractional factorial design is used to reduce the number of required experiments to
analyse and quantify the parameters’ influence in various settings.

This thesis takes a quantitative experimental simulation and analytical prediction approach to
achieve its aim. Using a purpose-built VM Co-residency simulator, (i) the most influential cloud
parameters affecting co-residency probability in four PAs have been identified. Identifying the
most influential parameters has helped to (ii) explore the best settings of these parameters that
reduce the co-residency probability under the four PAs. Finally, analytical estimation, with the
coexistence of different populations of attackers, has been derived to (iii) find the probability that
a new co-residing VM belongs to an attacker.

This thesis identifies the number of hosts to be the most influential cloud parameters on the co-
residency probability in the four PA4s. Also, this thesis presents evidence that VMs hosted in [aaS
clouds that use Next Fit or Random are more resilient against receiving co-resident VMs
compared to when First Fit or Power Save are used. Further, VMs in laaS clouds with a higher
number of hosts are less likely to exhibit co-residency.

This thesis generates new insights into the potential of co-residency reduction to reduce the
attack surface for side channel attacks. The outcome of this thesis is a plausible blueprint for [aaS
cloud providers to consider the influence on the co-residency probability as an important

selection factor for cloud settings and PAs.

Acknowledgements

I would like to thank everyone who has offered me support and advice during my
Ph.D., especially my supervisor Dr. Paul Ezhilchelvan, Professor Isi Mitrani and my second

supervisor Dr. Feng Hao.

Declaration

All work contained within this thesis represents the original contribution of the author. This
thesis includes work that has been published in peer-reviewed publications. These
publications are as follows:

e A. Alabdulhafez and P. Ezhilchelvan, “Experimenting on Virtual Machines Co-
residency in the Cloud,” in Proceedings of the 29th Annual ACM Symposium on
Applied Computing - SAC ’14, 2014, pp. 363-366.

e A. Alabdulhafez and P. Ezhilchelvan, “Quantifying the Risk of Multi-tenancy in the
Cloud,” in Proceedings of the 6th York Doctoral Symposium on Computer Science
and Electronics - YDS 13,2013, pp. 73-78.

e A. Alabdulhafez and P. Ezhilchelvan, “Analyzing the Success Rate of Virtual
Machines Co-residency in the Cloud,” in Proceedings of the 6th Saudi Scientific
International Conference (SIC), 2012, pp. 164—168.

Content

Abstract 2
Acknowledgements 3
Declaration 4
List of Figures 10
List of Tables 12
Glossary of Notation and Abbreviations 14
Chapter 1 Introduction 15
1.1 Context and Motivations 15
1.1.1 Co-residency and Side Channel 15
1.1.2 Side Channel Attacks Countermeasures 16

1.2 Thesis Aim and Approach 18
1.3 Research Hypotheses and Questions 19
1.4 Thesis Statement 20
1.5 Challenges 21
1.6 Contributions 22
1.7 Thesis Structure 23
Chapter 2 Background and Related Work 26
2.1 Introduction 26
2.2 Cloud Computing 26
2.2.1 Cloud Service Models 27
2.2.1.1 Software as a Service (SaaS) 27

2.2.1.2 Platform as a Service (PaaS) 27

2.2.1.3 Infrastructure as a Service (1aaS) 27

2.2.2 Cloud Deployment Models 28
2.2.2.1 Private Cloud 28
2.2.2.2 Community Cloud 28

2.2.2.3 Public Cloud 28
2.2.2.4 Hybrid Cloud 28

2.2.3 Technical Aspects 28

2.2.3.1 Virtualization

2.2.3.2 Multi-tenancy

2.2.3.3 Security

2.3 Related Literature

2.3.1 Co-residency

2.3.1.1 Locating Victim VMs (Cloud Cartography)

2.3.1.2 Co-residing Techniques

2.3.1.3 Detecting Co-residency

2.3.2 Side Channel Attacks

2.3.3 Inhibiting Side Channel Attacks

2.3.3.1 Physical Isolation Enforcement

2.3.3.2 User Controlled VM Placement

2.3.3.3 Preventing Side Channel Vulnerabilities

2.3.3.4 Reducing Co-residency (The Research Motivation)

2.4 Summary

Chapter 3 Models and Co-residency Behavioral Metrics

3.1 Introduction

3.2 System and Attack Models

3.3 Notations and Definitions

3.4 Co-residency Metrics

3.4.1 Co-residency Coverage Probability (CCP)

3.4.2 Hit-free Lifetime Ratio (HFL)

3.4.3 Co-residency Vacancy (CV)

3.4.4 Co-residency Activity (CA)

3.5 Summary

Chapter 4 Quantifying Influence of Cloud Parameters on Co-residency

4.1 Introduction

4.2 Preliminary Definitions

4.3 Influence Evaluation Strategy

4.3.1 Phase 1: Parameters Reduction Using Composed Parameters

4.3.2 Phase 2: Levels Reduction Using Ranges

4.3.3 Phase 3: Experiment Reduction Using Fractional Factorial Design

29
29
29
29
30
31
31
32
33
36
36
37
37
38
40

41
41
41
46
47
47
47
48
49
50

51
51
52
55
57
59
61

4.3.3.1 Factorial Experimental Designs

62

4.3.4 Phase 4: Quantifying the Parameters Influence on the Co-residency Metrics

4.3.4.1 Effect Definition

65
65

4.3.4.2 Effect Significance

66

4.3.4.3 Overall Weighted Effect WE

67

4.4 Experimental Setup

68

4.5 Findings

69

4.5.1 Significant Effects Results

70

4.5.2 Identifying the Most Influential Parameters on the Co-residency Metrics

4.6 Discussion

72
71

4.7 Summary

79

Chapter 5 Reducing Co-residency Probability

81

5.1 Introduction

81

5.2 Method

82

5.2.1 Experimental Setup

82

5.2.2 Analysis Approach

84

5.2.3 Influential Parameters Correlations with the Co-residency Metrics

5.3 Findings

85
87

5.3.1 Reducing the Co-residency Coverage Probability (CCP)

89

5.3.2 Increasing the Hit-Free Lifetime (HFL)

91

5.3.3 Reducing the Co-residency Vacancy (CV)

94

5.3.4 Reducing the Co-residency Activity (CA)

97

5.3.5 Efficiency of the Influence Evaluation Strategy

5.4 Discussion

5.5 Summary

Chapter 6 Analytical Estimation of Malicious Co-residency Probability

6.1 Introduction

6.2 Malicious Co-residency Metrics

6.2.1 Preliminary Definitions

6.2.2 Analytical Estimation of the Malicious Co-residency Metrics

6.2.2.1 Malicious Co-residency Probability (MCP)

6.2.2.2 Attacker-free Lifetime Ratio (AFL)

101
102
105

107
107
108
108
110
110
111

6.3 Method

6.3.1 Analytical Estimation Accuracy
6.4 Findings

6.4.1 Analytical Estimation Validation

6.4.2 Malicious Co-residency Metrics as Attackers Ratio o Varies

6.5 Discussion

6.6 Summary

Chapter 7 Summary and Conclusions

7.1 Summary

7.2 Conclusion

7.3 Limitations

7.4 Future Work

Bibliography

Appendix A VMC Simulator Implementation
A.1 Definition
A.2 Implemented VM Placement Algorithms
A.2.1 First Fit
A.2.2 Next Fit
A.2.3 Power Save
A.2.4 Random

Appendix B Designing a Fractional Factorial Experiment

B.1 Fractional Factorial Definition

B.2 Designing a 21y* Fractional Factorial Experiment

Appendix C Weighted Effects on the Co-residency Metrics

Appendix D Significant 2-Parameter Interactions on the Co-residency Metrics
D.1 Significant 2-Parameter Interactions Using Next Fit (Broad-Experiment)
D.2 Significant 2-Parameter Interactions Using Next Fit (Narrow-Experiment)
D.3 Significant 2-Parameter Interactions Using Random (Broad-Experiment)

D.4 Significant 2-Parameter Interactions Using Random (Narrow-Experiment)
Appendix E VMC simulator’s Estimates of the Malicious Co-residency Metrics

Appendix F Criteria for Selecting Simulation as a Testbed
8

113
115
115
115
118
122
125

127
128
131
132
133

135

144
144
147
148
148
149
149

151
151
152

156

160
161
165
167
171

173

175

F.1 Introduction 175

F.2 Testbed Selection Criteria 175
F.2.1 Repeatable and Controllable 176
F.2.2 Transparent 176
F.2.3 Flexible 176
F.2.4 Accessible 177
F.2.5 Scalable 177
F.2.6 Inexpensive and Not Time-Consuming 177
F.2.7 Sufficient Reporting/Monitoring System 177

F.3 Available Testbeds 177
F.3.1 Public laaS Clouds 178
F.3.2 Private laaS Clouds 179
F.3.3 Simulators 180

F.3.3.1 Grid Simulators 180
F.3.3.2 Cloud Simulators 181

F.4 Evaluation and Discussion 187

F.5 VM Co-residency (VMC) Simulator 190

F.6 Summary 192

List of Figures

Figure 3.1 An IaaS cloud model with two clusters, two hosts in each cluster and three VMs 44
Figure 3.2 The lifetime of a VM u that receives k co-residency hits 46
Figure 3.3 Obtaining Hit-free Lifetime Ratio HFLu for a given VM u 48
Figure 3.4 Obtaining Co-residency Vacancy CVu of a given VM u 48
Figure 3.5 Obtaining Co-residency Activity CAu of a given VM u 49
Figure 4.1 Limitation of using two levels to test the parameters’ effects. 60
Figure 4.2 The overall Weighted Effect WE of the parameters/interactions under First Fit 75
Figure 4.3 The overall Weighted Effect WE of the parameters/interactions under Next Fit 76
Figure 4.4 The overall Weighted Effect WE of the parameters/interactions under Power Save 76

Figure 4.5 The overall Weighted Effect WE of the parameters/interactions under Random 77
Figure 5.1 Examples of correlation r-values 86
Figure 5.2 The CCP metric at different Number of Hosts (X2) 91
Figure 5.3 The HFL metric at different Number of Hosts (X2) 92
Figure 5.4 The HFL metric at different Users’ Arrival Rates (X4) 94
Figure 5.5 The CV metric at different Number of Hosts (X2) 95
Figure 5.6 The CV metric at different Users’ Arrival Rates (X4) 96
Figure 5.7 The CV metric at different VMs Average Lifetime (X7) 97
Figure 5.8 The CA metric at different Number of Hosts (X2) 98
Figure 5.9 The CA metric at different Users’ Arrival Rate (X4) 99
Figure 5.10 The CA metric at different VMs Average Lifetime (X7) 100
Figure 5.11 A frequency distribution of the influential parameters’ |r-values| 101
Figure 6.1 Variation of MCP with attackers’ VM requests ratio o 120
Figure 6.2 Variation of AFL with attackers’ VM requests ratio a 122
Figure A.1 Examples of the generated results by the VMC 146
Figure C.1 Weighted Effect WE on the co-residency metrics using First Fit 155
Figure C.2 Weighted Effect WE on the co-residency metrics using Next Fit 156

Figure C.3 Weighted Effect WE on the co-residency metrics using Power Save 157
Figure C.4 Weighted Effect WE on the co-residency metrics using Random 158

Figure D.1 Interaction plot for CCP between X1*X4 160
Figure D.2 Interaction plot for HFL between X1*X4 160
Figure D.3 Interaction plot for CV between X1*X4 161

Figure D.4 Interaction plot for C4 between X1*X4 161
Figure D.5 Interaction plot for CCP between X1*X8 162
Figure D.6 Interaction plot for HFL between X1*X8 162

10

Figure D.7 Interaction plot for CV between X1*X8

Figure D.8 Interaction plot for C4 between X1*X8

Figure D.9 Interaction plot for CCP between X1*X4

163
163
164

Figure D.10 Interaction plot for CCP between X1*X8
Figure D.11 Interaction plot for HFL between X1*X8

Figure D.12 Interaction plot for CA4 between X1*X8

Figure D.13 Interaction plot for CCP between X1*X4
Figure D.14 Interaction plot for CV between X1*X4

Figure D.15 Interaction plot for CA4 between X1*X4

Figure D.16 Interaction plot for CCP between X1*X8
Figure D.17 Interaction plot for HFL between X1*X8

164
165
165
166

166
167

167

Figure D.18 Interaction plot for CV between X1*X8

Figure D.19 Interaction plot for C4 between X1*X8

Figure D.20 Interaction plot for CCP between X1*X4
Figure D.21 Interaction plot for CCP between X1*X8
Figure D.22 Interaction plot for CA4 between X1*X8

Figure F.1 CloudSim Architecture

168
168

169
170
170
171

182

Figure F.2 NetworkCloudSim's new elements introduced to CloudSim Architecture

Figure F.3 Koala architecture

184
186

11

List of Tables

Table 4.1 Testing each parameter’s level in a two-way fractional factorial experiment design

Table 4.2 Example of the narrow and broad ranges.

Table 4.3 The VMC parameters after reduction

Table 4.4 The selected two levels per range for each parameter

Table 4.5 The narrow-experiment design

Table 4.6 The broad-experiment design

Table 4.7 Minitab statistical software output example

Table 4.8 PC configurations used to run the VMC simulator

Table 4.9 Examining the effects significance using p-value

Table 4.10 Overall WE of the parameters and interactions

Table 4.11 The four parameters/interactions with the highest overall WE in First Fit and Power

Save

Table 4.12 The four parameters/interactions with the highest overall WE in Next Fit and Random

Table 5.1 New levels for testing the most influential parameters.

Table 5.2 Control level for parameters

Table 5.3 Categorisation of the strength of correlation

Table 5.4 The r-values, minimum and maximum CCP observed under each PA

Table 5.5 The r-values, minimum and maximum HFL observed under each PA

Table 5.6 The r-values, minimum and maximum CV observed under each PA

Table 5.7 The r-values, minimum and maximum CA observed under each PA

Table 5.8 The CCP estimate with Number of Hosts (X2) varying between 1000-30000

53

54
58
61
63
64
66
69
71
73

74

_74

&3
84
86
88
88
&9
&9
90

Table 5.9 The HFL estimates under different Number of Hosts (X2) ranging between 1000-30000 91

Table 5.10 The HFL estimates with Users’ Arrival Rates (X4) varying between 2-5 93
Table 5.11 The CV estimates with Number of Hosts (X2) varying between 1000-30000 94
Table 5.12 The CV estimates with Users’ Arrival Rates (X4) varying between 2-5 96
Table 5.13 The CV estimates with VMs Average Lifetime (X7) varying between 2000-3600 97
Table 5.14 The CA estimates with Number of Hosts (X2) varying between 1000-30000 98
Table 5.15 The CA estimates with Users’ Arrival Rates (X4) varying between 2-5 99
Table 5.16 The CA estimates with VMs Average Lifetime (X7) varying between 2000-3600 100
Table 5.17 The best parameters’ settings in four PAs to reduce the co-residency probability 103

Table 6.1 Important estimates obtained by the VM C simulator with Number of Hosts (X2) varying

between 1000-30000

113

Table 6.2 Important estimates obtained by the VM C simulator with Users’ Arrival Rate (X4) varying

between 2-5

12

114

Table 6.3 The parameters levels used in the VM C simulator to estimate the MCPand AFL 115
Table 6.4 Percentage differences of the MCP estimates with an a of 0.10 as Number of Hosts (X2)
varies between 1000-30000 116
Table 6.5 Percentage differences of the MCP estimates with an o of 0.10 as Users’ Arrival Rate (X4)

varies between 2-5 116

Table 6.6 Percentage differences of the AFL estimates with an o of 0.10 as Number of Hosts (X2)
varies between 1000-30000 117
Table 6.7 Percentage differences of the AFL estimates with an o of 0.10 as Users’ Arrival Rate (X4)

varies between 2-5 117
Table 6.8 MCP estimates using analytical prediction as o varies 119
Table 6.9 AFL estimates using analytical prediction as a varies 121
Table A.1 The input parameters that define the VM C simulator 145
Table B.1 Constructing a full factorial experiment using 4 parameters 151
Table B.2 Adding all the possible interactions between the 4 parameters 152
Table B.3 Replacing X5, X6, X7 and X8 parameters with 3-parameter interactions 153
Table B.4 Final design of the 2v** fractional factorial experiment 154

Table E.1 The VMC simulator’s estimates of the malicious co-residency metrics under different

number of hosts with an a 0of 0.10 172

Table E.2 VMC simulator’s estimates of the malicious co-residency metrics under different users’

arrival rates with an a 0of 0.10 173

Table F.1 Testbeds evaluation matrix 188

13

Glossary of Notation and Abbreviations

[aaS
SaaS
PaaS
VM
PA
VYMC
Y

a

k

Nmalicious
Nhit

Nhit by malicious
LT

ccpe

HFL

614

CA

MCP
AFL
ANOVA

r-value

Infrastructure-as-a-Service

Software-as-a-Service

Platform-as-a-Service

Virtual Machine

VM Placement Algorithm

Virtual Machine Co-residency simulator

VM Requests Arrival Rate

Attackers VM Requests Ratio

Total Number of Co-residency Hits

The total number of placed malicious VMs in the cloud

The total number of VMs that experienced at least one hit in the cloud
The total number of VMs that experienced at least one malicious hit
VM Lifetime

Co-residency Coverage Probability

Hit-free Lifetime Ratio

Co-residency Vacancy

Co-residency Activity

Malicious Co-residency Probability

Attacker-free Lifetime Ratio

Analysis of variance test

The sample Pearson correlation coefficient

14

Chapter 1

Introduction

This chapter presents the context and motivation for this thesis. Then, the research approach,
questions and statement are stated. Finally, the main contributions of the research and an

overview of the thesis structure are presented.

1.1 Context and Motivations

Recent advances in cloud computing encourage businesses and organisations to host services
and applications in third-party public clouds. A recent study on the cloud usage [63] showed
that approximately 30% of IT organizations use public clouds such as Microsoft’s Azure [57]
and Amazon’s EC2 [4]. These clouds provide Infrastructure-as-a-Service (IaaS) allowing
individuals and organizations to host services on-demand, and paying just for what they have
consumed. Businesses and governmental bodies may even use applications hosted in the
cloud to access highly sensitive internal records. However, this rapid increase in the adoption
rate of public IaaS cloud has resulted in the need for increased security.

To achieve maximum utilization of their physical infrastructure, IaaS cloud providers allow
multi-tenancy ending with co-residency. Multi-tenancy is where virtualization is used to
enable multiple users (tenants) to share the same physical host. Co-residency is multiple co-
residing Virtual Machines (VMs) belonging to different users being hosted by the same
physical host.

Enabling co-residency can be cost-effective for laaS cloud providers. However, co-residency
has been shown to be one of the effective avenues for launching several easy-to-implement

but powerful attacks on honest (i.e. non-attacker) co-resident VMs using side channels.

1.1.1 Co-residency and Side Channel

A side channel is a form of information leakage that arises as a result of sharing physical
resources with other users. For example, the sharing of the CPU and memory caches, that has
been shown by [13], [79] and many others to be a vulnerability that can be compromised to
bypass VMs isolation. Side channel attacks in multi-tenant environments have been
demonstrated by many researchers (see Section 2.3.2) to threaten the security of VMs,

particularly in public IaaS clouds.

15

Researchers have introduced an increasing number of low-cost side channel attacks that can
be launched after achieving co-residency. Using Amazon EC2 as a case study, Ristenpart et
al’s [79] pioneer research demonstrated that side channel attacks targeting specific VMs are
possible. They proved this after they successfully placed malicious VMs to become co-
resident with up to 40% of target VMs. Such action can have huge negative consequences for
the honest co-resident VMs that belong to businesses and organizations. An attacker may be
able to measure the host CPU cache usage to determine, for instance, how busy the co-
resident VM is, but this might be a smaller concern of the co-resident VM’s owner. More
seriously, an attacker can use side channels to degrade co-resident VMs’ performance by
more than 80% [92]. Alternatively, worse by running Denial of Service on co-residing VMs
to block the cloud customers from accessing the compromised cloud services [53].

Even more seriously, a co-resident attacker may be able to steal decryption and secret keys,
such as ElGamal decryption keys [103], RSA [75] and AES [70] secret keys. Then executing
malicious code in the host operating system [94]. Such action can result in breaches of
privacy of the VMs running in public IaaS clouds, allowing co-resident attackers to
eavesdrop on communications and steal sensitive data and make it public.

The aforementioned security threat brought about by side channel attacks is amplified by the
fact that attackers can run their malicious VMs in the cloud legitimately as long as they have
access to the Internet and a payment method. Worse, an increasing amount of research in
recent years has introduced new side channels [101]. Consequently, anyone who has access
to the Internet, from any location, can attempt to co-reside and attack honest VMs, using any

side channel they choose.

1.1.2 Side Channel Attacks Countermeasures

A public TaaS cloud uses a VM Placement Algorithm (PA) that controls where each new VM
is placed, possibly to become co-resident with other VMs sharing the same host. Common
practices to secure such shared environments usually include relying on virtualisation to
ensure strong isolation between co-resident VMs so that they become unable to interfere with
each other [9]. However, virtualized isolation that completely prevents side channels has
been proven to be difficult to achieve. The following countermeasures address side channel
attacks at the cloud provider side, the cloud user side and the hardware/software vendor’s

side respectively:

16

(1) Physical isolation enforcement: it can be argued that one pragmatic solution to
mitigate side channel attacks is to disable co-residency completely. Ristenpart et a/
[79] suggested that cloud customers (businesses or governmental bodies) may
consider running their VMs in physical isolation from other VMs. Following this
suggestion, the Amazon EC2 cloud allows users to run dedicated VMs [28], ensuring
that VMs belonging to each user do not share the same physical hardware with any
other cloud users” VMs. Although this service can effectively mitigate various side
channels that exist in the shared hardware, significant price premiums are required for
cloud users to use this service. It is estimated that it is 6.12 times more costly to run
dedicated VMs compared to using regular VMs in Amazon EC2 [97]. This significant
extra cost of the dedicated VMs diminishes its attractiveness, coupled with the fact
that enabling co-residency is a definite choice of IaaS cloud providers due to its
economic efficiency.

One of the options left for protecting VMs from side channel attacks is to allow only
other “trusted” VMs to become co-resident. If untrusted VMs become co-resident,
then relocate the user’s VM to another host [11]. Trusted VMs, in this case, may
include VMs that are self-owned or other trustworthy VMs. However, this requires
enabling cloud users to audit and verify the cloud provider’s adherence to this policy,

where the work of [102] has introduced a promising tool to help with this issue.

2) Allowing the cloud user to specify where to place his VMs: Although this
countermeasure is relatively straightforward, it does not solve the problem
completely. In fact, it only shifts the liability to the user instead of the cloud provider

without trying to eliminate the side channel or the side channel attacks.

3) Preventing side channel vulnerabilities: This can be achieved via reducing the
information that can be leaked by new cache hardware designs or by applying various
blinding techniques. For example, using non-deterministic caches and cryptographic
implementation of timing-resistant caches (see Section 2.3.3.3). However, [79]
concluded that countermeasures that rely on preventing side channels vulnerabilities
suffer from two major drawbacks. First, they are typically (a) impractical, for
instance, incurring high overheads or requiring nonstandard hardware or they are (b)

application-specific or hardware-specific. Second, these countermeasures do not,

17

ultimately, guarantee that all possible side channels have been anticipated and
disabled, especially in the light of the increasing number of research in recent years

that introduce new side channels.

Despite the efforts being paid to VMs safeguarding against existing side channels, there
remains a continuous potential risk of data leakage by new side channels that are yet to be
discovered. Therefore, this opens an interesting research area to find an alternative approach
to reduce the attack surface for side channel attacks, particularly one that does not rely on VMs

physical isolation or side channels prevention.

1.2 Thesis Aim and Approach
Because co-residency is a necessary first step to launching side channel attacks, this motivates
this thesis to look into understanding the co-residency probability. The co-residency
probability is defined as the probability that a given VM receives a co-resident VM (i.e.
honest or malicious VM) during its lifetime.
The main aim of this thesis is to quantify and analyse the influence of cloud parameters (such
as the number of hosts and users) on the co-residency probability under four commonly used
PAs. These PAs are First Fit, Next Fit, Power Save and Random. This action then leads to
identifying the influential parameters’ settings that reduce the co-residency probability in
each PA. Reducing the attack surface for side channel attacks is one outcome of reducing the co-
residency probability.
This thesis achieves its aim through quantitative experimental simulation and analytical
prediction. This approach consists of four main steps:
(1) Characterizing the co-residency occurrence behavior in IaaS clouds using co-
residency metrics, followed by
(2) Identifying the most influential cloud parameters (such as the number of hosts,
clusters and users) affecting co-residency probability in four PAs. To do so, the
influence of all relevant cloud parameters is quantified.
(3) Simulation experimentation to find the best settings of the most influential
parameters that reduce the co-residency probability under each PA.
(4) Analytical estimation, with the coexistence of different populations of attacker VMs,
to find the probability that a new co-residing VM belongs to an attacker. These
estimates help in identifying the best PAs that reduce the probability above.

18

Each of the above steps is addressed in a separate chapter that details how the step will be
executed.

The scope of this thesis is limited to public IaaS clouds only because the higher risk of side
channels is usually associated with publicly accessible aaS clouds where an attacker is able

to fully control malicious VMs to attack co-resident VMs [79].

1.3 Research Hypotheses and Questions
The following two hypotheses are proposed:
1. For a given PA4, cloud parameters, such as the number of hosts and users, do not have
the same influence on the co-residency probability in [aaS clouds.
2. For a given VM, there is a non-zero probability that a new co-residing VM belongs to

an attacker for any of the four PA4s considered.

Based on the aim above and research hypotheses, the following research questions are
explored:
1- How to characterise the co-residency occurrence behaviour in IaaS clouds?
To experiment on co-residency in this thesis, the co-residency occurrence behaviour is
characterised using four quantitative metrics (referred to as the co-residency metrics).
Some of these characteristics include how likely a given VM u will be co-resided by
another VM v, as well as how long this co-residency takes to occur. These metrics play a
significant role in answering the remaining research questions, and should also be useful

to further research on co-residency in laaS clouds.

2- For a given PA, what are the most influential cloud parameters affecting co-
residency probability?
Modelling large-scale and dynamic environments, such as IaaS clouds, involves several
parameters; some of them could exercise higher influence on the co-residency probability
than others. For simplicity, this thesis focuses on the cloud parameters that have the most
influence on the co-residency metrics. An Influence Evaluation Strategy is proposed to
quantify the influence on the co-residency metrics across a variety of likely cloud
parameters’ settings under four PAs. These PAs are First Fit, Next Fit, Power Save and
Random (described in detail in Appendix A). The strategy uses fractional factorial

designs [15] to design the experiments and applies Analysis Of Variance (ANOVA) tests

19

to identify the most influential parameters and parameters interactions on the co-

residency metrics.

3- For a given PA, which parameter settings reduce the co-residency probability?
The most influential parameters are used in controlled experiments to estimate the co-
residency metrics using a wide range of settings under four PAs to allow:
(1) Identifying the best parameters’ settings where a given PA can reduce the co-
residency probability.
(i1) Identifying any situations where selecting parameters’ settings in a given PA
would not be able to reduce the co-residency probability.
(ii1) Identifying the best PAs, regardless of the parameters’ settings, that reduce the

co-residency probability.

4- For a given VM, what is the probability that a new co-residing VM belongs to an
attacker?
The risk of side channel attacks is magnified enormously if an honest VM is co-resided
by an attacker VM. Therefore, this research question investigates reducing the malicious
co-residency probability (i.e. the probability that the next co-residing VM belongs to an
attacker). Two approximate analytical estimates are derived to estimate the malicious co-
residency probability with the coexistence of different populations of attackers. These
estimates also help IaaS cloud providers to find the best PAs that can hinder attackers

from easily achieving malicious co-residency.

Each of the above research questions is addressed in a separate chapter that describes the

approach used to answer the question, followed by a discussion of the important findings.

The previous research questions can be summarized in the following thesis statement.

1.4 Thesis Statement

Co-residency is a necessary first step to launching several side channel attacks that have been

shown to threaten the security of users’ VMs in public IaaS clouds. Therefore, this thesis

looks into understanding the co-residency probability. This thesis aims to analyse and quantify

the influence of cloud parameters (such as the number of hosts and users) on the co-residency

probability in four commonly used PAs. These PAs are First Fit, Next Fit, Power Save and

20

Random. This analysis helps to identify the appropriate cloud parameters’ settings that reduce the
co-residency probability in four P4s. Quantitative experimental simulation and analytical

prediction approach are used to achieve the aim of this thesis.

1.5 Challenges
Studying co-residency occurrences behavior in the large, non-transparent and diverse laaS
clouds can become a very challenging task that requires an efficient testing methodology (i.e.
testbed). Such a testbed must support experimentation under different scenarios and settings
and, most importantly, a number of PA4s. There is no single or best testbed that supports
experimenting with many parameters that describe IaaS cloud architecture, functional and
non-functional requirements. Based on the discussion in Appendix F, there are three testbeds
that can be used for this thesis’s experiments:

1- Public IaaS clouds

2- Private IaaS clouds

3- Simulators
The above testbeds are evaluated in Appendix F for their suitability to conduct the thesis
experiments, highlighting the limitations and advantages of each testbed. The choice of the
testbed follows from the research aim that requires exploring the influence of various
parameters on the co-residency metrics using different settings of IaaS clouds under four
PAs. This evaluation nominates simulation to be a flexible and cost-effective testbed [1].
Therefore, simulation experimentation is adopted and the VM Co-residency simulator VMC
was implemented and used as a testbed in this thesis. The VMC simulates the thesis’s system
and attack models (Chapter 3) and uses the co-residency metrics to estimate different
probabilities related to co-residency.
Another challenge is that there are many cloud parameters and parameters’ settings to be
included in limited resources experiments in this thesis. Therefore, fractional factorial design
is applied that helps to construct a reduced and balanced experiment. Fractional factorial
experiments are usually used to measure simultaneously the effects of many parameters on a
product or process in a cost-effective way using minimal experimental runs [33].
Also, estimating the malicious co-residency probability under various attackers ratios (i.e. the
proportion of attacker VMs to total VMs) introduces another challenge. Exploring all likely

attackers ratios, using simulation, is an attempt that resource and time limitations did not

21

allow. To overcome this challenge, analytical estimates are derived that take into account the

attacker ratio (see Chapter 6).

1.6 Contributions
In the course of responding to the research questions, each chapter makes contributions to the

field of VMs security in IaaS cloud. The main contributions of this thesis are as follows:

First, defining four quantitative metrics to statistically characterise the probability of co-
residency occurrences. Some of these characteristics include how likely a given VM u will be
co-resided by another VM v, as well as how long does this co-residency take to occur. While
there has been work done in the area of co-residency, to the best of one’s knowledge this
thesis is the first to characterise co-residency probability using quantitative metrics. These
co-residency metrics proved to be very useful in answering the research questions in this

thesis, and should also be useful for future research related to co-residency in laaS clouds.

Second, quantifying the influence of cloud parameters on the co-residency probability under
four PAs (First Fit, Next Fit, Power Save and Random). This action leads to identifying the
most influential parameters and parameter interactions on VM co-residency. A novel
Influence Evaluation Strategy is proposed for assisting researchers to identify the most
influential parameters on the co-residency metrics in large-scale, dynamic laaS clouds. This
strategy can be applied to assess the effect of varying multiple cloud parameters on the co-
residency metrics such as varying the rate at which VM requests are generated, using a
different number of hosts and others. The Influence Evaluation Strategy identified the
number of hosts to be the most influential cloud parameter on the co-residency probability in

four PAs.

Third, identifying the appropriate cloud settings in four PAs that reduce the co-residency
probability. Reducing the co-residency probability aims to reduce the attack surface for side
channel attacks. In order to identify the appropriate cloud settings, simulation experiments
explored how the most influential parameters’ settings in four PAs could positively and
negatively affect the co-residency metrics. The simulation experiments were conducted under
a wide range of likely settings for publicly accessible IaaS clouds. The experiments present
evidence that VMs hosted in aaS clouds that use Next Fit or Random are more resilient against

receiving co-resident VMs compared to when First Fit or Power Save are used. Further, VMs in

22

IaaS clouds with a higher number of hosts are less likely to exhibit co-residency. The outcome of
this thesis is a plausible blueprint for IaaS cloud providers to consider the influence on the co-
residency probability as an important selection factor for cloud settings and PAs.

While an increasing number of literatures have compared PAs in several aspects such as cost
reduction [37], [48], [49] and performance and energy consumptions [40], [55], [58], [99],
this thesis is the first to compare PAs in terms of how they affect the co-residency

probability.

The fourth contribution is deriving analytical estimates of the co-residency probability that
take into account the number of attacker VMs in the laaS cloud. These estimates can be used
by anyone to determine analytically, with the coexistence of a given number of attacking
VMs, the best PAs that reduce the malicious co-residency probability. That is to say that a
new co-residing VM belongs to an attacker. Comparing First Fit, Next Fit, Power Save and
Random PAs, the analytical estimation shows that the malicious co-residency probability
varies widely from one P4 to another. The analytical estimation shows that the right choice
of PAs can reduce the likelihood of being co-resided by attackers’ VMs. In addition, these
estimates are proved to compare well with the experimental estimates (i.e. using the VMC
simulator). Therefore, the derived analytical estimates should become very useful for [aaS
cloud providers and users for estimating the malicious co-residency probability in various

laaS cloud’s settings, PAs and number of attacker VMs.

Fifth, introducing a new VM Co-residency (VM) simulator that allows modelling of co-
residency behaviour using various cloud parameters’ settings and PAs. The VMC can be used
as an experimentation tool for assessing the influence of cloud parameters on the co-
residency probability. The VMC simulator also allows the exploration of the appropriate
parameter settings that reduce the co-residency probability in a given PA. The VMC has been
used successfully as a testbed in this thesis and should also be useful in advancing future

research related to VMs co-residency in laaS clouds.

1.7 Thesis Structure

The remainder of this thesis consists of the following chapters:

o Chapter 2 provides a background on cloud computing and related literature. Further, the
chapter considers the key issues of side channels in public IaaS clouds and then explores
common side channel attacks that can be launched against co-resident VMs. Available

23

countermeasures against side channels, including physical isolation and side channel
vulnerabilities prevention, are shown to have some drawbacks. Therefore, this thesis
looks into understanding the co-residency probability so that the best cloud parameters’
settings that reduce the co-residency probability are identified in four PA4s. Co-residency

reduction can contribute to reducing the attack surface for side channel attacks.

Chapter 3 begins by describing how the IaaS cloud is modelled in this thesis. Next, the
co-residency metrics are defined to address the first research question. The co-residency
metrics are quantitative measurements that characterise different probabilities related to
co-residency occurrences in laaS clouds. These co-residency metrics are used to identify
the most influential parameters on co-residency (i.e. the second research question), as
well as to find the best parameter settings in each P4 that reduce the co-residency
probability (i.e. the third research question). In addition, the co-residency metrics are
used to derive analytical estimates of probabilities related to malicious co-residency (i.e.

the fourth research question).

Using the VMC simulator as a testbed, Chapter 4 defines the Influence Evaluation
Strategy and applies it to answer the second research question on what cloud parameters
influence the co-residency metrics the most. Under First Fit, Next Fit, Power Save and
Random PAs, the strategy quantifies the influence of cloud parameters on the co-
residency metrics then identifies the most influential parameters and 2-parameter
interactions. In addition, the strategy provides useful insights that are used to compare the
PAs in terms of their impact on the co-residency metrics. Further, the results presented in

this chapter examine the first hypothesis put forward in Section 1.3.

Chapter 5 answers the third research question of “the parameter settings in a given PA
that reduce the co-residency probability”. The VMC simulator is used to estimate the co-
residency metrics under four PAs using different settings of the most influential
parameter. Pearson’s correlation analysis [14] is applied to study the correlation between
parameters and the co-residency metrics. Then, the best parameter settings in four PAs

that effectively reduce the co-residency probability are identified.

24

o Chapter 6 considers the probability that, for a given VM, the next co-residing VM
belongs to an attacker (i.e. the fourth research question). Two analytical estimates of the
malicious co-residency probability are derived and calculated. These analytical estimates
are used to find, with the coexistence of different populations of attacking VMs, the
probability that a new co-residing VM belongs to an attacker. The VMC simulator is used
to validate these analytical approximations using the four PAs. The outcome of this
validation shows an agreement between the analytical estimates and the simulation

estimates across the four PA4s.

o Chapter 7 draws conclusions as to analysing and quantifying the influence of cloud
parameters on the co-residency probability in public clouds. In addition, this chapter
summarizes how the co-residency probability has been reduced through identifying the

appropriate parameters’ settings in each PA. Finally, possible future work is discussed.

25

Chapter 2
Background and Related Work

2.1 Introduction

This chapter begins by looking into cloud services and models; highlighting the crucial role
that virtualization plays in making the cloud a cost-effective solution for businesses and
organisations.

In Section 2.2, virtualisation is shown to have brought a security threat to multi-tenant public
laaS clouds, where VMs belonging to different users share the same physical host (i.e. co-
residency).

Section 2.3 surveys the related work on co-residency, presenting different methods for
achieving co-residency with a target VM and the techniques used to detect successful co-
residency.

Section 2.3.2 looks at co-residency as an attack avenue. Several easy to implement, yet
harmful, side channel attacks that can be launched against co-resident VMs are discussed and
shown to bring a significant threat to VMs security in the cloud.

Available countermeasures against side channels, including physical isolation and side
channel vulnerabilities prevention, are shown to have some drawbacks in Section 2.3.3.
Because co-residency is a necessary first step to launching side channel attacks,
understanding the co-residency probability (defined in Section 1.2) is identified as an
interesting research gap in Section 2.3.3.4. Consequently, this thesis explores reducing the
co-residency probability through the right choice of the cloud parameters’ settings in four
PAs. Reducing the co-residency probability can contribute to reducing the attack surface for

side channel attacks.

2.2 Cloud Computing

Recent advances in cloud computing encourage businesses and organisations to host services
and applications in third-party public clouds. Since 2007, the term cloud has become an
overused buzzword in the IT industry. Many definitions of cloud computing have been
suggested from different application aspects. However, there is no agreed consensus
definition for cloud computing. The U.S. National Institute of Standards and Technology,
NIST, [56] provides an interesting definition that specifies essential characteristics of cloud

26

computing and delivery and deployment models as well. This definition is quoted as follows:
“Cloud computing is a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction.”

The following sections outline three service models, four deployment models as suggested in

[56] and then look into technical aspects of cloud computing related to this thesis.

2.2.1 Cloud Service Models
Based on the delivery mechanism, cloud services are categorized into three major models:

software, platform and infrastructure.

2.2.1.1 Software as a Service (SaaS)

In this model, the cloud user is given the ability to use certain applications hosted in a
cloud infrastructure. These applications are normally accessible through a web
browser. What is unique about this model is that cloud users are unable to control or
manage the application configurations or the underlying cloud physical infrastructure

including network, servers and operating systems.

2.2.1.2 Platform as a Service (PaaS)

Unlike the SaaS model, the users in this model can deploy applications, services and
tools onto the cloud infrastructure given that the provider supports them. Although
the users usually have control over the deployed application’s configurations and
settings, they are still unable to manage or control the underlying cloud infrastructure

including network, servers and operating systems.

2.2.1.3 Infrastructure as a Service (IaaS)

In this model, more capabilities are given to the cloud users. Among these capabilities
is the provisioning of essential computing resources including processing, networks,
and storage. The cloud user can deploy and run any operating systems and
applications using dedicated and self-controlled VMs that are allocated into

virtualised hosts using VM Placement Algorithms (PAs).

Based on a comparison between the previous cloud service models, a cloud service is

assumed to become more vulnerable as more capabilities are given to the users.

27

2.2.2 Cloud Deployment Models
Based on the usage scopes, cloud infrastructure can be deployed in different fashions. The

following are the four primary cloud deployment models:

2.2.2.1 Private Cloud

The cloud infrastructure in this model can be used exclusively by a single
organization. The entire infrastructure may be self-owned and managed by the
organization or outsourced to a third party irrespective of whether the cloud

infrastructure is hosted on or off the premises.

2.2.2.2 Community Cloud

The cloud infrastructure in this model can be used exclusively by a specific
community of users from organizations that share specific concerns such as security
and compliance requirements. The entire infrastructure may be owned and managed
by one or more of the community organizations or outsourced to a third party
irrespective of whether the cloud infrastructure is hosted on or off any of the

organisations’ premises.

2.2.2.3 Public Cloud
The cloud infrastructure in this deployment model is open for public use. The entire

infrastructure is owned and managed by third-party providers and hosted on their
premises. What is unique about this deployment model is that it is publicly accessible,
and any user with access to the Internet and a payment method can legitimately use

the cloud.

2.2.2.4 Hybrid Cloud
The cloud infrastructure in this deployment model is a combination of two or more

cloud deployment models (private, community, or public).

2.2.3 Technical Aspects
The following are essential technical characteristics that are used in the cloud to support

specific functional and economical requirements.

28

2.2.3.1 Virtualization

Virtualization is an essential characteristic of cloud computing and helps to deliver
the value of cloud computing. Virtualization is a technology that separates physical
infrastructures to create various “virtual” dedicated resources. Virtualization allows
the running of multiple operating systems and applications, using VMs, on the same

physical host concurrently [63].

2.2.3.2 Multi-tenancy

Virtualization can effectively maximize the utilization of physical resources if multi-
tenancy is enabled, which is sharing of physical resources between multiple users (i.e.
co-residency). Moreover, multi-tenancy brings an important economic benefit to
cloud providers through sharing operating expenses between users in order to provide

cost-effective cloud services.

2.2.3.3 Security

Although cloud computing has its advantages, it also comes with new threats. Before
the cloud era had begun, data and applications were only deployed in the users’ own
infrastructure inside their premises, and, therefore, the users’ data could be under
their control and supervision and physically secured. On the other hand, exporting
applications and data to a third-party cloud brings several threats to confidentiality,

integrity and availability [78].

Among all the possible threats in the cloud environment, this thesis focuses on a threat

brought by multi-tenancy (i.e. co-residency). Although enabling multi-tenancy can be cost-

effective for public laaS cloud providers, the following sections show that co-residency is

one successful avenue for launching several easy-to-implement and powerful attacks on

honest co-resident VMs using side channels.

2.3 Related Literature

As mentioned in Section 1.2, the scope of this thesis is limited to public [aaS clouds only.

This is because the higher risk of side channels is usually associated with publicly accessible

IaaS clouds where an attacker is able to fully control malicious VMs to attack co-resident

29

Public cloud services provide laaS allowing individuals and organizations to run and control
VMs, and paying only for what they have consumed. Examples of public cloud services
include Microsoft’s Azure [57] and Amazon’s EC2 [4]. In order to achieve maximum
utilization of their physical infrastructure, cloud providers allow multi-tenancy [84], ending
with many co-resident VMs sharing the same underlying physical infrastructure (e.g. host
CPUs and memory). Common practices to secure such shared environments usually include
ensuring strong isolation between co-resident VMs so that they become unable to interfere
with each other. In addition, each VM should be unaware of other VMs running in the same
physical host [9]. However, co-residency can lead to a risky situation where an attacker VM
ends up residing on the same physical host with victim VM(s). An attacker’s co-residency
with a victim VM gives an opportunity to launch several possible harmful attacks using side
channels [103]. The next sections discuss related literature on co-residency, followed by a list
of various types of side channel attacks and the available countermeasures, leading to

identifying the research gap addressed by this thesis.

2.3.1 Co-residency
A number of research publications discuss different aspects of co-residency, where
preliminary work on identifying co-residency as an existing threat in public IaaS clouds was
undertaken by [79]. Their work demonstrates that the co-residency imposes a risk on
sensitive services and data hosted in third-party public IaaS clouds. Their study was
conducted in order to answer the following concrete questions:
1- Is it possible to determine where in the cloud a VM is hosted (located)?
2- Is it possible to determine whether two VMs are co-resident on the same physical
host?
3- Isit possible to place a malicious VM to be co-resident with a victim VM?
4- TIs it possible for an attacker to launch attacks that use side channels against co-
resident VMs?
Using Amazon EC2 as a case study, researchers have shown that the answer to these four
questions is “yes”. They demonstrated this by mapping Amazon EC2’s internal cloud
infrastructure in order to locate where specific targeted VMs are likely to reside. Then,
malicious VMs are launched until one or more of these VMs become co-resident with the
targeted VMs. In addition, several scenarios, where an attacker can launch variant side
channel attacks to collect sensitive information from co-resident VMs, were demonstrated.

30

The authors claim that the method that they applied to achieve co-residency helped to co-
reside with up to 40% of the target VMs.
The methods to achieve co-residency discussed next are related to the work done in the
Amazon EC2 by [79]. Their method consists of the following three steps:

- Locating victim VMs (cloud cartography),

- Malicious VMs Placement,

- Co-residency detection and then launching side channel attacks against co-resident

VMs.

2.3.1.1 Locating Victim VMs (Cloud Cartography)

In order to locate a specific target VM, the EC2 cloud’s internal physical
infrastructure is mapped using the DNS services to resolve public DNS names to
public IPs. Then, available network tools, such as nmap, hping and wget can be used
to map each public IP to its private IP equivalent inside the EC2 cloud. This mapping
process can provide a better understanding of how the cloud infrastructure is

constructed.

2.3.1.2 Co-residing Techniques

Achieving co-residency with a particular victim in Amazon’s EC2 requires a good
understanding of the cloud infrastructure, how the network addresses are assigned to
each VM and the used PA. The following co-residing techniques have been applied to
achieve targeted co-residency using the Amazon EC2’s cloud cartography that was

constructed in the previous step:

¢ Brute-force

Using the cloud cartography, it is possible to determine roughly in which zone, in
Amazon EC2, the targeted VMs are, allowing the attacker to create as many VMs
as possible in the same zone. The authors claim that they achieved an average of

8.4% successful co-residencies with a set of target VMs using brute-force.

e Placement Locality Abuse
Using Amazon’s EC2, the authors prove that VMs created with small time gaps

are more likely to be placed in the same host. The placement locality abuse

31

technique involves detecting when the victim VMs are launched, then
immediately creating malicious VMs with the hope that the P4 will place them in
the same host as the target(s). Abusing the placement locality allowed the
malicious VMs to co-reside with 40% of the target VMs.

2.3.1.3 Detecting Co-residency

Co-residency detection through side channels was first exposed by [79]. After placing
many malicious VMs in different hosts, the attacker must check whether the target
victim VMs and any of the attacker’s VMs are co-resident or not. This can be

achieved using one of the following co-residency detection checks:

e Matching Dom0 IP (Xen-specific)

DomO0 is a special-privileged process created in hosts that run Xen virtualization
[21]. One of the Dom0 main jobs is to manage traffic routing between the co-
resident VMs. This co-residency detection check uses the network command
(trace route) to trace network packets that are sent to a victim VM,

comparing if the:

First hop = attacker’s VM’s Dom0 IP address
Last hop = victim VM’s Dom0 IP address

The victim VM and the attacker’s VM are in the same host (i.e. co-resident) if the
victim VM’s Dom0 IP address matches the attacker VM’s Dom0 IP address.
However, this method is specific to hosts that run Xen virtualization. Also, it
assumes that the DomO process responds to traceroute commands. Bates et al [13]

state that this co-residency detection check is no longer applicable in Amazon

EC2.

e Network Packet Round Trip Times

One of the simplest and easiest ways to detect co-residency is by measuring the
travel time of network packets sent from an attacker VM to a victim VM and then
to compare it with the time the same packet takes to reach other VMs that reside

in other hosts. Ristenpart ef a/ demonstrated that it was possible to predict the co-

32

residency of two VMs if the packet round trip time is lower when sent to a co-

resident victim VM [79].

e Non-network Based Co-residency Checks
It is possible for the IaaS cloud providers to disable the use of all network tools
offered to the cloud users. In this case, other non-network based co-residency
checks that use side channels are presented in a number of papers. For instance,
[79] demonstrated that an attacker can send a heavy load (e.g. HTTP requests) to
the target VM and can observe the CPU load of the attacker VM’s host. If the
CPU load has increased, then this a sign that the attacker VM shares the same host
with the target VM. Other side channel co-residency detection checks include
using cache-based side channel attacks [100] and using Active Traffic Analysis
[13].
Once an attacker succeeds in achieving and detecting a co-residency with a victim VM,
various possible side channel attacks can be launched to collect sensitive information about

the victim VM as shown next.

2.3.2 Side Channel Attacks

A side channel is a well-known security threat in multi-tenant systems. With a history that
goes back to 1972 [47], the threats of side channels are frequently present in systems where
users share physical resources, such as memory, network bandwidth and CPU caches.

A side channel is a form of information leakage that arises as a result of sharing physical
resources with other users. For example, sharing of the CPU and memory caches has been
shown by [13], [79] and many others to be a vulnerability that can be compromised to bypass
VMs isolation.

Side channel attacks in multi-tenant environments have been demonstrated by many
researchers to threaten the security of VMs, particularly in public IaaS clouds [8].
Researchers and hackers alike have introduced an increasing number of low-cost side
channel attacks that can be launched after achieving co-residency [16], [23], [24], [25]. Using
Amazon EC2 as a case study, Ristenpart et al’s pioneering research demonstrated that side
channel attacks are possible. Ristenpart et al proved this possibility after they successfully
placed malicious VMs to become co-resident with up to 40% of target VMs [79]. Such

actions can have huge negative consequences for the honest co-resident VMs.

33

Examples of these side channel attacks include:

Key leakage such as extracting RSA [75] and AES [33] secret keys.

In addition, the researchers in [103] have been able to extract ElIGamal decryption
keys form a co-resident VM. They demonstrated this attack using the classic
Prime+Probe technique presented in [70]. The first step of this technique involves
priming the CPU cache (data or instruction) by accessing a certain range of addresses
that cause the cache to become full. The attacker then yields the CPU, which in turns
allows the victim VM to evict some of the attacker’s data or instructions from the
cache. Immediately, the attacker preempts the victim and starts probing the cache
again by accessing a certain range of addresses that cause the cache to become full.
At this stage, the attacker can measure the time taken for each cache access in order
to determine which cache lines were replaced by the victim. This action allows the
attacker to learn some information about the addresses that have been accessed by the
victim. By studying how standard libraries implement the private ElGamal decryption
key, the researchers show that monitoring the victim’s repeated exponentiations for a
few hours allows the attacker to reconstruct the 457-bit private exponent of a 4096-bit
modulus.

Secret keys leakage can result in breaches of privacy of the VMs running in public
IaaS clouds, allowing co-resident attackers to eavesdrop on communications and steal
sensitive data and make it public.

Running Denial of Service (DOS) on a co-resident VM, blocking the compromised
VM’s owners and users from access. The researchers in [53] have introduced a new
form of DOS attack in [aaS clouds where they map the cloud network topology to
identify and starve an uplink bottleneck of a victim VM. The attack requires co-
residing with a victim VM as well as allocating other attacker’s VMs into enough
hosts within the same subnet. Then the attacking VMs are used to flood the uplink to
the victim VM with high UDP traffic. The immediate side effect of this attack is
starving other important TCP sessions of the victim VM as a result of the TCP
congestion avoidance mechanisms.

Exploiting a heap buffer overflow to execute malicious code in the host operating
system [94].

Determining web traffic rates. Side channel load measurement can be used to

estimate the number of web visitors to a co-resident VM, or even the most frequently

34

visited pages. This information might be damaging if, for example, the co-resident
VM belongs to a corporate competitor. The researchers in [79] were able to estimate
the HTTP traffic rates to a co-resident VM using load measurement technique. This
technique involves performing cache load measurements while sending different rates
of HTTP requests to the victim VM. This action will allow the attacker to correlate
between traffic rates to the victim VM and load samples. Although this type of
information may sound harmless, it can be used to work out targeted VMs activity
patterns and peak trading times for maximum Denial of Service effect.
Performance-Degrading attacks such as the Swiper attack [20] and the Resource-
freeing attack that was demonstrated to degrade co-resident VMs’ performance by
more than 80% [92].
Gathering sensitive information via side channels as demonstrated in Amazon EC2
by [79] and included:

— Non-network based co-residency detection (see Section 2.3.1.3).

— Measuring the CPU cache usage of the targeted VMs to determine, for

instance, how busy the VMs are.
— Exploiting the memory bus as a high-bandwidth side channel for data
transmission [97].
Keystroke timing: stealing SSH passwords from co-resident VMs as shown by [87]
and [36].
Several application-specific side channels that have been reported to allow
attacking VMs to exploit co-resident VMs isolation. For instance, attackers were able
to steal and leak the VMware ESX hypervisor source code [16]. Because the
hypervisor is responsible for controlling the traffic between co-resident VMs, this
source code leakage potentially allows the attackers to find ways to eavesdrop on co-
resident VMs. Another vulnerability in Xen-based clouds has been reported that
allows a guest VM to execute arbitrary commands in the hypervisor [23]. Moreover, a
number of integer overflow vulnerabilities have been reported to affect the e2fsprogs
packages (these packages contain a number of utilities for ext2 and ext3 file systems
in Linux). An attacker can target a VM by —remotely- tricking the VM’s owner into
opening a malicious file in order to execute arbitrary code with the same permissions
as the victim. Worse, an attacker can gain access to other virtualized hosts by
exploiting this vulnerability as shown in [24] and [25].
35

The aforementioned security threats brought about by side channel attacks is amplified by the
fact that attackers can run their malicious VMs in the cloud legitimately as long as they have
access to the Internet and a payment method. In addition, an increasing amount of research in
recent years introduces new side channels [101]. Therefore, anyone who has access to the
Internet, from any location, is able to attempt to co-reside and attack honest VMs, using any

side channel they choose.

2.3.3 Inhibiting Side Channel Attacks

Public IaaS clouds use a PA that controls where each new VM is placed, possibly to become
co-resident with other VMs sharing the same host. Common practices to secure such shared
environments usually include relying on virtualisation. Virtualisation ensures strong isolation
between co-resident VMs so that they become unable to interfere with each other [9].
However, virtualized isolation that completely prevents side channel attack has been proven
to be difficult to achieve. The following countermeasures address side channel attacks, at the
cloud provider side; the cloud user side, the hardware/software vendor side and cloud

provider side respectively:

2.3.3.1 Physical Isolation Enforcement

As mentioned in Section 1.1.2, it can be argued that one pragmatic solution to
mitigate side channel attacks is to disable co-residency completely. Ristenpart et a/
suggested that cloud users may consider running their VMs in physical isolation from
other VMs [79]. Following this suggestion, the Amazon EC2 cloud allows users to
run dedicated VMs [28], ensuring that VMs belonging to each user do not share the
same physical hardware with any other cloud users’ VMs.

Although this service can effectively mitigate various side channels that exist in the
shared hardware, a significant price premium is required in order for cloud users to
benefit from this service. It is estimated that it is 6.12 times more costly to run
dedicated VMs compared to using regular VMs in Amazon EC2 [97].

One of the options left for protecting VMs from side channel attacks is only to allow
other “trusted” VMs to become co-resident. If untrusted VMs become co-resident,
then relocate the user’s VM to another host [11]. Trusted VMs, in this case, may
include VMs that are self-owned or other trustworthy VMs. This countermeasure to

side channel attacks has been applied in the case of NASA and Amazon. Their

36

agreement over a cloud service contract gave NASA the right to run its cloud services
in physically isolated, tenant-specific hardware [89]. This countermeasure requires
enabling the cloud users to audit and verify the cloud provider’s adherence to the
policy. The researchers in [102] have introduced a promising tool called HomeAlone
that uses side-channel analysis to verify that cloud providers keep their promise and
disable co-residency.

However, the significant extra cost of the physical isolation of VMs diminishes its
attractiveness, coupled with the fact that enabling co-residency is a definite choice of

IaaS cloud providers due to its economic efficiency.

2.3.3.2 User Controlled VM Placement

The research of Ristenpart e a/ concluded that the best recommendation is to give the
cloud users full responsibility and control to specify where their VMs should be
placed [79]. Although this countermeasure is relatively simple, it does not solve the
problem completely. In fact, it only shifts the liability to the user instead of the cloud

provider without trying to eliminate the side channel or the side channel attacks.

2.3.3.3 Preventing Side Channel Vulnerabilities

Researchers have introduced a number of countermeasures that rely on side channel
prevention. This can be achieved via reducing the information that can be leaked by
new hardware designs or by applying various blinding techniques [36], [41].

For instance, a group of researchers at MIT [46] have recently designed a hardware
chip that can hide how CPUs request information in cloud servers. This chip makes a
side channel attack that uses the shared CPUs very difficult to achieve.

Apart from this hardware countermeasure, several papers discussed a number of non-
hardware countermeasures that focus on preventing cache side channels. For instance,
one countermeasure against cache side channel attacks that use prime and probe
method (see Section 2.3.2) is to inject noise to the CPU cache timing [50], [104].
When an attacker primes the CPU cache, a special cache cleansing process is
invoked. This cache cleansing process simply primes the CPU cache in order to evict
the entire cache entries, and therefore preventing the attacker from gaining any useful

cache timing and load measurements. However, this approach reduces the CPU cache

37

usefulness since it flushes the entire cache entries. Another countermeasure applies
cache partitioning, where each VM is assigned a separate partition of the cache [71].
Such action ensures no cache interference among co-resident VMs. In addition, a
considerable amount of literature has been devoted to introduce similar
countermeasures such as adjusting each VM’s perception of time, random delay
insertion, using non-deterministic caches and cryptographic implementation of
timing-resistant caches [31], [42], [52], [70], [72], [73], [75], [76], [91], [93].
However, [79] concluded that this type of countermeasures that rely on preventing
side channel vulnerabilities suffer from two drawbacks:
First, they are typically either:

(a) Impractical, for instance incurring high overheads or nonstandard

hardware is required such as [31], [41], [42], [52], [70], [71], [72], [73], [75],

[91], or

(b) Application-specific [36], [50], [76], [93] or hardware-specific [46], [104].
Second, these countermeasures do not, ultimately, guarantee that all possible side
channels have been anticipated and disabled, especially in the light of the increasing

number of research in recent years that introduces new side channels.

Despite the efforts being paid on VMs safeguarding against existing side channels, there

remains a continuous potential risk of data leakage by new side channel vulnerabilities that

are yet to be discovered. Therefore, this opens an interesting research area to find an

alternative approach to the reduction of the attack surface for side channel attacks, particularly

one that does not rely on VMs physical-isolation or side channels prevention.

2.3.3.4 Reducing Co-residency (The Research Motivation)

This problematic coexistence of co-residency and side channel threats suggests that
VMs hosted in a public [aaS cloud are exposed to side channel attacks as long as
there is a non-zero co-residency probability. Thus, this particular issue motivated this
thesis to look into understanding the co-residency probability in order to reduce it.
The main aim in this thesis is to analyse and quantify the influence of cloud
parameters (such as the number of host and users) on the co-residency probability
under four commonly used PAs. By doing so, this thesis identifies the combination of

parameters’ settings in each PA that reduces the co-residency probability.

38

Unlike VMs physical-isolation and side channel prevention countermeasures,
reduction of the co-residency probability does not prevent side channel. Instead, it
aims to reduce the attack surface for side channel attacks by reducing the chance of
co-residency (i.e. the attack avenue).
The previous sections in this chapter show that research on different aspects of co-residency
has been carried out. Examples of such research include how to place VMs and detect co-
resident VMs, how to exploit side channels to attack co-resident VMs and how to protect
against such attacks using VMs physical-isolation and side channel prevention. However, the
fundamental questions of what could effect and reduce the likelihood of co-residency
occurrences in laaS clouds and how to reduce co-residency are still not fully answered.
In a recent work, [3] highlighted the possibility of designing PAs that reduce the probability
of co-residency. In another very recent investigation into co-residency, the focus of [10] was
to formalise a new PA that balances between resource optimization and preventing attack
VMs from co-residing with a target set of honest VMs. The proposed PA was shown to work
best in a specific attack scenario. This scenario assumes that the attacker is computationally-
bounded and that the user computation is cryptographically split among a set of VMs.
Therefore, this requires the attacker to co-reside with all the user’s VMs in order to steal
meaningful information.
Based on the thesis aim and approach defined in Section 1.2, there are a number of important
differences between the work in this thesis and the work in [10]. First, the researchers aim to
minimize co-residency by formalizing a secure PA. Unlike their work, this thesis looks into
analysing and quantifying the influence of cloud parameters on the co-residency probability
in four PAs. Then, the appropriate settings of the most influential parameters that reduce the
co-residency probability are identified in each PA. Therefore, their study would have been
more relevant to the work in this thesis if the authors had included the cloud parameters’
settings as another factor to reduce the co-residency probability. In addition, their study has
assumed an attack scenario where a specific tenant’s VMs are targeted by attack VMs. In
contrast, this thesis extends the attack scenario to capture a worst-case scenario of a hostile or
threatening cloud environment, where all VMs are targets for attackers. Moreover, the work
in this thesis takes things a step further. For instance, this thesis derives two analytical

estimates of the probability that the next co-residing VM belongs to an attacker.

39

2.4 Summary

This chapter provides a background on cloud computing and related literature. Further, the
chapter considers the key issues of side channels in public IaaS clouds, and then explores
common side channel attacks that can be launched against co-resident VMs. Available
countermeasures against side channels, including physical isolation and side channel
vulnerabilities prevention, are shown to have some drawbacks. This problematic coexistence
of co-residency and side channel threats suggests that VMs hosted in a public [aaS cloud are
exposed to side channel attacks as long as there is a non-zero co-residency probability. This
particular issue motivated this thesis to look into understanding the co-residency probability.
Therefore, this thesis quantifies the influence of cloud parameters on the co-residency
probability then determines the most influential parameters. This action then helps to identify
the combination of parameters’ settings that reduce the co-residency probability in four
commonly used PAs.

Unlike VMs physical-isolation and side channel prevention countermeasures, reduction of
the co-residency probability does not prevent side channel attacks. Instead, it aims to reduce
the attack surface for side channel attacks by reducing the chance of co-residency (i.e. the

attack avenue).

40

Chapter 3

Models and Co-residency Behavioral Metrics

3.1 Introduction

This chapter begins by describing how the IaaS cloud is modelled in this thesis as well as the
attack model. Next, the first research question is addressed by characterising the behaviour of
co-residency in laaS clouds using the co-residency metrics. The co-residency metrics are
quantitative measurements that assess the characteristics of co-residency occurrence
behaviour. Some of these characteristics include how likely a given honest VM u will be co-
resided by another VM v, as well as how long this co-residency takes to occur. These co-
residency metrics are used in Chapter 4 to identify the most influential parameters on the co-
residency probability (i.e. the second research question). Moreover, these metrics are used in
Chapter 5 to find the best parameter settings in each PA that reduce the co-residency
probability (i.e. the third research question). In addition, the co-residency metrics are also
used in Chapter 6 to derive analytical estimates of probabilities related to malicious co-
residency.

The remainder of this chapter is organized as follows. The next section defines the system
and attack models followed by Section 3.3 that outlines important notations and definitions.

In Section 3.4, the co-residency metrics are defined.

3.2 System and Attack Models

This thesis considers a publicly accessible IaaS cloud wherein the P4 allows multi-tenancy
(i.e. the same physical hosts can be shared between multiple VMs) and that [aaS cloud
insiders (e.g. server administrators) are trustworthy. It also assumes that confidentiality-
requiring VMs of regular users (i.e. honest VMs) can receive new co-resident VMs. On the
other hand, the co-residing VM v (either honest or attacker VM) belongs to a third-party user
who can run and control a limited number of VMs simultaneously and legitimately in the

cloud. This thesis considers an attacker with the following objective:

41

To launch side channel attacks against arbitrary VMs. In order to do so, this requires
placing a VM v that the attacker controls (i.e. a malicious VM) in the same host

where a victim VM u is residing.

Before defining the system model components, the attack model can be described from two

perspectives:

From an Honest VM’s Perspective

Whenever a new VM v is placed in a given host x, then every honest VM u that has
been already running and residing at x will experience a co-residency hit by v.

Two types of co-residency hits are considered in this thesis: arbitrary co-residency
hits (from malicious and honest VMs), and malicious co-residency hits (from
malicious VMs only). While Chapter 4 and 5 are concerned with co-residency hits,

Chapter 6’s focus is on malicious co-residency hits.

From an Attacker’s Perspective

This thesis considers an attack model where new honest VMs are always placed to
hosts that contain either other honest VMs or no VMs at all. Therefore, the only co-
residing technique (see Section 2.3.1.2) for an attacker is to place a VM v to become
co-resident with a victim VM u during the latter’s lifetime. Another co-residing
technique can be achieved by placing v in a random host with the hope of u being
placed in the same host. However, the latter co-residing technique is excluded from
the scope of this thesis. Excluding this co-residing technique is based on the
assumption that attackers are interested in targeting specific and existing VMs in
public IaaS clouds.

The attack model also assumes that an attacker tries to co-reside with victim VM u
without the knowledge of where u is located in the cloud (i.e. brute-force placement,
see Section 2.3.1.2). The latter assumption introduces a challenge to attackers, as an
attacker will have to keep requesting malicious VMs with the hope that the P4 places
one of the attacker’s malicious VMs to become co-resident with u. In addition, the P4
that is used in the modelled IaaS cloud is assumed to be public knowledge and
therefore it is known by the cloud users and the attackers. Finally, once v is co-
resident with u, it is assumed that an attacker is capable of detecting that v has co-

resided with the u (see Section 2.3.1.3).

42

The system model in this thesis consists of the following main components (see Figure 3.1):

Clusters: an laaS cloud has at least one cluster (which is a pool of hosts). The total
number of clusters in the model is specified using the [Number of Clusters]
parameter.
Hosts: A host is a physical server that can be shared among many users to run VMs
(i.e. multi-tenancy). Each host is assigned to a single cluster, where the total number
of hosts in the model is specified using the [Number of Hosts] parameter. A given
host is considered to be available when it has a free space to allocate new VMs,
whereas the host becomes fu// when it has no free space to allocate new VMs. Each
host can be allocated a maximum number of VMs specified using the [Max Host
Utilization] parameter.
Users: A user can be a normal user who runs confidentiality-requiring VMs or an
attacker who aims to exploit side-channel leakage in a host (see Section 2.3.1.2)
through placing VMs to become co-resident with victim VMs.
Users’ Arrival Rate: New users arrive in this model according to the [Users’ Arrival
Rate] parameter. The users’ arrival rate specifies the average number of new users to
arrive in every time unit. The total number of created users in an arbitrary duration of
time is specified using the [Number of Users] parameter.
VMs: Each user can request, run and control a limited number of VMs
simultaneously. This number is specified in the model by the [Max Parallel VMs per
User] parameter. Each VM terminates after a certain amount of time specified by the
[VM Average Life Time] parameter. In this system model, VMs that belong to
attackers will be referred to as malicious VMs.
VM Placement Algorithm (PA): A PA controls when and where (i.e. in which
cluster then in which host) each new VM is placed [62]. When a VM request arrives,
the PA selects a cluster that has at least one available host then selects an available
host within that cluster to place the new VM. In case all hosts are full, no placement
takes place. The system model considers four PAs that are used in popular IaaS cloud
platforms including Eucalyptus [6], OpenNebula [60], Nimbus [85] and OpenStack
[98]. These PAs are:

1- First Fit.

2- Next Fit.

3- Power Save.

43

4- Random.

More detail on the above PAs is provided in Appendix A.

The following (Figure 3.1) shows an IaaS cloud model that has two clusters, two hosts in

each cluster and three VMs placed in Hostl and Host2.

IaaS Computing Cloud

Figure 3.1 An IaaS cloud model with two clusters, two hosts in each cluster and three

VMs

VM Request: When a new user arrives in the laaS cloud, the user issues a VM
request to place one or more new VMs. In this system model, the [VMs per Request]
parameter specifies the number of VMs in a single VM request, where this number is
either [VMs per Request] or 1+£[VMs per Request].. For each VM request, the PA
places the requested VMs separately (i.e. one by one) immediately after it receives a
request from the user as there is no queuing of the VM requests. As a result, the P4
might be able to place all, part or none of the VMs for a given VM request depending
on the availability of hosts. For instance, if the PA receives a VM request when all
hosts are full, then the P4 will not be able to place any of the requested VMs.

VM Requests Arrival Rate (y): The VM requests arrival rate, denoted as v,
represents the number of VM requests per time unit. For the convenience of the
experiments, each user only issues a single VM request upon arrival. In addition,
Ymaticious denotes the malicious VM requests arrival rate.

Attackers VM Requests Ratio a

The attackers VM requests ratio a shows the ratio of malicious VMs to all VMs. The

attackers VM requests ratio a can be defined as:

44

Ymalicious

14

e Co-residency Conditions: The following notations are used in the system model

attackers VM requests ratio a =

when describing co-residency behaviours:
o x denotes a given host.
o vdenotes anew VM that is placed in x (i.e. the co-residing VM).
o u denotes a given VM that resides at x where v is placed.
There are two conditions that need to be met in order to place v in x to become co-
resident with u:
o x must have an available space to accommodate v when the PA receives the
request to place v.
o v must be requested for placement during the window of time at which the P4
is going to select x for the next placement.

e Co-residency Hit: Whenever v is placed in a given host x, every victim VM u that
resides at x will experience a co-residency hit with v. Co-residency hits include any
hit that is received from either malicious or honest VMs during u’s lifetime. On the
other hand, a malicious co-residency hit is a special case of the co-residency hit. A
malicious hit occurs when u is co-resided by a malicious VM v that belongs to an
attacker.

e Total Number of Hits (k): For a given VM u, the total number of hits that u receives
is denoted as k,,, where k,, is a discrete random variable with possible values 0, 1,... .
When the context is clear, the subscript u is dropped for convenience.

e Total VMs in the Cloud: During an arbitrary amount of time, the notation »
represents the total number of placed VMs; whereas the 1, 45ici0us 18 the total
number of placed malicious VMs. Similarly, the notation ny;, is the total number of
VMs that experienced at least one hit; whereas the 1yt by maticious 18 the total
number of VMs that experienced at least one malicious hit.

e Time Unit: The unit for measuring time periods in the simulation of the system
model is denoted as the time unit. Examples of possible time units include second,

minutes and hours. In this model, the used time unit is a minute.

45

3.3 Notations and Definitions

The following notations and definitions will be used throughout this thesis:

e VM Lifetime (LT): The lifetime of a VM u (i.e. LT,,) represents the time between the
moment at which u is placed in a given host and the moment it is terminated.

e Ratio (L) of a VM’s Lifetime: For a given VM u that experiences at least one hit
(k>0), the entire lifetime of u (LT,) can be divided into k+1 ratios Ly, Ly, ..., L, Ly4+1
based on the following (Figure 3.2):
- hy is the time at which u is placed.
- hy is the time at which u experiences the K' " hit (0 <K <k).
- hy4q is the time at which u terminates.

With L as the ratio of lifetime duration between the (K-1)™ hit and the K™ hit, the L™ ratio

of LT, can be calculated as follows:

hy — hg_4
= 1< K< (k 1
Lk LT, ' sks<(k+1)

The following (Figure 3.2) shows an example of the LT,,, where u receives k co-residency

hits from multiple VMs (v4, v,, ..., Vx_1, Vx) at time (hq, h,, ..., hy_q, hy) respectively.

Lifetime of U LTu

U starts V1 V2 ... Vk2 Vk-1 Vk U ends
A 4 4 4 4 v
ho h1 ha hk2 hik-1 hi hi+1

Figure 3.2 The lifetime of a VM u that receives k co-residency hits

46

3.4 Co-residency Metrics
Metrics defined in this section are estimated using simulation in Chapter 4 and 5. This thesis
uses these co-residency metrics to:

I- Quantify the influence of multiple cloud parameters on the co-residency probability.
This action helps to identify the most influential parameters in Chapter 4 (i.e. the
second research question).

2- Find the best parameter settings that reduce the co-residency probability in four PAs
in Chapter 5 (i.e. the third research question).

3- Derive analytical estimates of probabilities related to malicious co-residency in

Chapter 6 (i.e. the fourth research question).

The next subsections define the co-residency metrics in detail.

3.4.1 Co-residency Coverage Probability (CCP)

For a given VM u, this metric shows the probability that u experiences a co-residency hit
with any arbitrary VM (either malicious or honest) at least once during LT, (i.e. P(£>0)). The
Co-residency Coverage Probability CCP can be estimated using simulation as follows:

Npit
CCP=n , 0<ccp<1

For a given VM u, higher CCP indicates a higher probability of being vulnerable to at least

one arbitrary co-residency hits.

3.4.2 Hit-free Lifetime Ratio (HFL)
For a given VM u that experiences at least one co-residency hit, the HFL,, represents the ratio
of the time until the first co-residency hit (either a malicious or a honest hit) to the LT;,.

Figure 3.3 shows how to obtain HFL,, of u.

47

Lifetime of 1/ LTu

Time until first co-residency hit
‘hv

u starts First hit by v u ends
A 4 v
ho hi i+ 1

Figure 3.3 Obtaining Hit-free Lifetime Ratio HFL,, for a given VM u.

The HFL for a given laaS cloud can be estimated using simulation by averaging the HFL,, of

every VM u that experienced at least one hit:

HFL = Z L L ,0<HFL<1
Ny

3.4.3 Co-residency Vacancy (CV)

Figure 3.4 shows three availability windows during LT;, where host x is available to allocate
new VMs. For a given VM u at x, Co-residency Vacancy CV;, is simply the ratio of the
duration of these availability windows and the LT;,. In case x is full during the entire LT, then

CV, is equal to zero (0 < CV, < 1).

Lifetime of 1/ LTu
1

Availability Window Availability Window Availability Window
A A A
| [|
1 starts u ends
ho hic+1

Figure 3.4 Obtaining Co-residency Vacancy CV,, of a given VM u.

48

The CV, represents the ratio of the time during which VM u is vulnerable to co-residency and
the LT,,. Therefore, the longer the CVj, the higher the chance that the PA will select u’s host to
place new co-residing VMs. On the other hand, it is impossible to co-reside with # when CV,
is equal to zero.

The CV in the cloud is estimated using simulation by averaging the CV,, of every VM u:
1 n
CVZEZCVH 0<cV<1
u=1

From an attacker perspective, the existence of an CV,, during LT,, (i.e. CV,,# 0) is a necessary
condition to co-reside with u, however it is not sufficient to guarantee that the P4 will select
u’s host to place the attacker’s co-residing VMs. Therefore, CV,,# 0 represents the first
condition to co-reside with u (see the conditions of a co-residency hit in Section 3.2 of this

chapter), while the second condition is represented by the next metric.

3.4.4 Co-residency Activity (CA)

Considering the entire IaaS cloud, an inter-placement window can be defined as the time
elapsed between any two consecutive placements of VMs (Figure 3.5). For a given VM u at
host x, Co-residency Activity CA,, is the ratio between the inter-placement windows (that
precedes each co-residency hit) and the LT;,. In case x is full during the entire LT,, then CA,, is

equal to zero (0 < C4, < 1).

Lifetime of 1/ LTu
3

Availability Window Availability Window

)
f 1 [A

inter-placement window inter-placement window that
that precedes vl precedes v2

R hit by vl hit by » u ends
¢ | ¢ v

ho hic+1

Figure 3.5 Obtaining Co-residency Activity CA,, of a given VM u.

49

From an attacker perspective, it is impossible to co-reside with # when the C4,, is equal to
zero. Unlike the CV,,, the existence of a CA,, during LT, (i.e.CA,# 0) is sufficient to
guarantee that # will receive a co-residency hit. Therefore, CA,, represents the second
condition to co-reside with u (see Section 3.2).

Similar to the CV in the cloud, the CA4 is estimated using simulation by averaging the CA4,, of
each VM u:

3.5 Summary

This chapter described how the IaaS cloud is modelled as well as defining the attacker model.
Then, the behaviour of co-residency in the model was characterized using four co-residency
metrics. Some of these characteristics include how likely a given VM u will be co-resided by
another VM v (i.e. the CCP), as well as how long this co-residency takes to occur (i.e. the
HFL). These co-residency metrics are used in Chapter 4 to identify the most influential
parameters on co-residency (i.e. the second research question). In addition, Chapter 5 uses
these metrics to identify the best settings of the most influential parameters in four PAs that
reduce the probability that a given VM u experiences a co-residency (i.e. the third research
question). Next, the co-residency metrics are used in Chapter 6 to derive analytical estimates
of probabilities related to malicious co-residency. These probabilities include the probability
that a given VM u will be co-resided by a malicious VM v and for how long it remains free

from malicious hits (i.e. the fourth research question).

50

Chapter 4

Quantifying Influence of Cloud Parameters on Co-residency

4.1 Introduction

This chapter is dedicated to answering the second research question on the most influential
cloud parameters on the co-residency metrics. A parameter’s influence, measured in this
chapter as the parameter’s effect, is an estimate of how much varying a parameter influences
the co-residency metrics (i.e. CCP, HFL, CV and CA4).

Perhaps the main challenge faced in this chapter is that there are many cloud parameters and
parameters’ settings to be included in limited resources experiments. In order to overcome
this challenge, an Influence Evaluation Strategy is proposed to simplify the process of
designing experiments that have a large number of parameters and settings. The use of
fractional factorial design is one step (of multiple steps) that the strategy applies to construct
a reduced and balanced experiment. Fractional factorial experiments are usually used to
measure simultaneously the effects of many parameters on a product or process in a cost-
effective way using minimal experimental runs [33].

Further, the Influence Evaluation Strategy proposes a statistical approach to quantify the
effect of varying multiple parameters on the co-residency metrics such as varying the rate at
which VMs are requested, using different numbers of hosts and others. The strategy also
extends the influence evaluation to include how two parameters, together, affect the co-
residency metrics (i.e. parameters interaction effect).

This chapter applies the Influence Evaluation Strategy using the VMC simulator as a testbed
(see Appendix F for more details on the VMC simulator). The strategy quantifies the
influence of cloud parameters on the co-residency metrics then identifies the most influential
parameters and 2-parameter interactions in four PA4s. These PAs are First Fit, Next Fit, Power
Save and Random. The identified parameters are then used in Chapter 5 to determine the best
parameters’ settings that reduce the probability of co-residency in four PAs.

The remaining of this chapter is organized as follows. The next section outlines preliminary
definitions that are used in this chapter. In Section 4.3 the four-phase Influence Evaluation
Strategy is defined and then applied. Section 4.4 describes the experiments settings. The

findings are presented in Section 4.5 and discussed in Section 4.6.

51

4.2 Preliminary Definitions

The following definitions will be used throughout this chapter:

Experiment Design: In this chapter, changes are made to one or more independent
variables (i.e. the parameters) in order to observe the significant effect the changes
have on the co-residency metrics. Design of experiments (DoE) theory [34] provides
different ways to observe these effects. In particular, the Influence Evaluation
Strategy in this chapter uses fractional factorial experiment design (see Appendix B)
to construct reduced and balanced experiments. Next, these experiments are used to
quantify easily the influence of cloud parameters on the co-residency metrics and then
to identify the most influential parameters and 2-parameter interactions in four PA4s.
The following are the main components of an experiment design: dependent
variables, independent variables, levels and experimental runs.

Dependent Variables: In this chapter, the Influence Evaluation Strategy uses
simulation to measure the parameters and interactions effects on the co-residency
metrics (CCP, HFL, CV and CA). Therefore, the co-residency metrics represent the
experiments’ dependent variables.

Independent Variables (Parameters): The independent variables represent the
experiment’s input. Since the VMC simulator is used as a testbed, the simulator’s 36
parameters (Table A.1) represent the experiments’ independent variables. More detail
on the VMC simulator is provided in Appendix A.

Levels: Levels refer to the parameter’s settings/values in a given experiment. The
Influence Evaluation Strategy uses 2-level experiments that assign two numerical
levels to each parameter: a low level and a high level.

Experimental runs: In each experiment in this chapter, an experimental run consists
of a unique combination of levels of parameters.

Fractional Factorial Experiment Design: When there are too many parameters to
be included in a limited-resources experiment, fractional factorial design helps to
construct a reduced experiment design. Fractional factorial experiments are usually
used to measure simultaneously the effects of many parameters on a product or
process in a cost-effective way using minimal experimental runs [33]. The Influence
Evaluation Strategy uses 2-way fractional factorial experiment designs that assign
two levels for each parameter. As a result, this allows measuring the effects on the co-
residency metrics of each parameter in isolation and in combination with another

52

parameter (known as 2-parameter interaction). Table 4.1 shows in (a) an example of a

2-way experiment design that has the following:

O

O

O

The CCP metric as the dependent variable

Two parameters X1 and X2
2 levels: (X1;4y, and X1;4,) and (X2, and X2p;4p,) for X1 and X2

respectively.

Four experimental runs.

In addition, fractional factorial design ensures a balanced experiment. A balanced experiment

design guarantees that all parameters’ levels are equally tested as shown in (b) and (c) in

Table 4.1. More detail on how to construct 2-way fractional factorial designs is provided in

Appendix B.

Run | X1 X2 cCcpP

1 X1ow | X2i0w | 0.55

2 X1y | X2pign | 0.53

3 Xlnign | X2pow | 0.34

4 Xlpign | X2nign | 0-39

(a) Fractional factorial experiment runs.

Run | X1 CcCcpP Run | X1 cCcpP Run | X2 CcCcpP Run | X2 CcCcpP
1 X1, | 055 | [3 Xlpign | 0.34 1 X210w | 0.35 2 | X2pgn | 0.53
2 X1, | 0.53 4 X1pign | 0-39 3 X2,0w | 0.34 4 X2pign | 0.39

(b) In the left table: Runs that test X1

on Low level and on High level in

the right table

(¢) In the left table: Runs that test X2 on

Low level and on High level in the

right table

Table 4.1 Testing each parameter’s level in a two-way fractional factorial experiment
design

e Range: A range measures the numerical distance between a parameter’s 2-level

values (i.e. the low and high values). Two types of ranges are defined for each

parameter: the narrow range and the broad range, where the narrow range is nested

53

within the broad range. Table 4.2 shows how the [Number of Clusters] parameter, for

instance, is tested using narrow range and broad range.

Narrow Range Broad Range
Range Low Level | High level | Low Level | High level
Number of Clusters | 15 30 10 50

Table 4.2 Example of the narrow and broad ranges.

Narrow-experiment and Broad-experiment: The Influence Evaluation Strategy
uses two fractional factorial experiments (i.e. narrow-experiment and broad-
experiment) that will be conducted using four PA4s. The narrow-experiment refers to
the experiment that assigns two levels to the parameters from the narrow range,
whereas the broad-experiment assigns two levels from the broad range. Each
experiment consists of 16 experimental runs that are conducted using simulation.
Parameter Effect: A parameter’s effect is an assessment of the parameter influence.
The parameter’s effect measures the size of the change on the co-residency metric
that occurs when the parameter level is varied. In the Influence Evaluation Strategy,
ANOVA test calculates the effects using the simulation estimates of the co-residency
metrics (see Section 4.3.4.1).

2-Parameter Interaction’s Effect: In addition to the parameters’ effects, the effect
of every 2-parameter interaction is evaluated. Two parameters interact if the effect of
one of the parameters differs depending on the level of the other parameter. For
instance, the effect of users’ arrival rate on the co-residency metrics could differ
depending on how many VMs each user requests. An interaction’s effect measures
the size of the change on the co-residency metric that occurs when the levels of two
parameters (combined) are varied. An interaction of two parameters X1 and X2 is
denoted as X1*X2.

Effect’s Level of Significance: The significance level of an effect can be reported in

the following three ways based on the p-value as suggested by [22]:

. ‘significant’: 0.01 < p-value < 0.05;
. “highly significant': 0.001 < p-value < 0.01; and
. ‘very highly significant': p-value < 0.001

54

This Influence Evaluation Strategy reports an effect to be significant if the effect has
a p—value that is less than 0.05. Only statistically significant effects are considered
when quantifying the parameters influence (see Section 4.3.4.2).

e Experimental Runs Repetitions: A repetition of an experimental run is used to
increase the confidence on the results and to reduce the possibility of errors or
anomalous results [14]. In this chapter, each experimental run is simulated in ten
repetitions.

e Design Resolution: The resolution of a fractional factorial experiment design
specifies the degree to which the effect of each parameter confounds with the effects
of other parameters and interactions (see Appendix B for more details). A fractional

factorial design’s resolution can be of any of the following types:

. II: A parameter’s effect is confounded with another parameter’s effect.
. III: A parameter’s effect may confound with a 2-parameter interaction’s effect.
. IV: A parameter’s effect does not confound with any other parameter’s effect

nor with any 2-parameter interactions’ effect.

. V: A parameter’s effect does not confound with any 3-parameter interactions’
effect, and a 2-parameter interactions’ effect does not confound with any 2-
parameter interactions’ effect.

. VI: A parameter’s effect does not confound with any 4-parameter interactions’
effect, and a 2-parameter interactions’ effect does not confound with any 3-

parameter interactions’ effect.

A resolution IV fractional factorial design is used throughout this chapter.

4.3 Influence Evaluation Strategy

Using the VMC simulator, the Influence Evaluation Strategy quantifies the influence of cloud
parameters on the co-residency metrics in four PAs (First Fit, Next Fit, Power Save and
Random). Then, the strategy identifies the most influential parameters and 2-parameter
interactions in the four PA4s. The VMC simulator requires 36 different parameters to be
defined in order to simulate the [aaS cloud model in Chapter 3. Examining each parameter
effect under many levels could increase the reliability of the results, as well as increasing the
experiment size. However, measuring the effects of all the 36 parameters using every

possible level is impractical due to the limited time and resources available to this thesis. The
55

Influence Evaluation Strategy overcomes this challenge by simplifying the process of
conducting experiments that have a large number of parameters and levels.

This simplification tries to obtain a reduced-size experiment by reducing the number of
parameters, levels, and experiment’s runs as much as possible without seriously affecting the
experiment’s outcome. More precisely, the strategy comprises an effective reduction of
parameters in the first phase and a parameters levels reduction in the second phase leading to
the design of two reduced-size experiments using fractional factorial design in the third
phase. Finally, the fourth phase uses the ¥MC simulator to conduct the experiments.
Ultimately, the Analysis Of Variance test ANOVA is applied to quantify the parameters’
effects on the co-residency metrics both in isolation (i.e. parameters’ effects) and
combination (i.e. 2-parameter interactions effects).

The first three phases of the strategy are extended from [59] with slight differences that are
indicated throughout this chapter.

This Influence Evaluation Strategy consists of four phases that aim to:

1- Simplify the process of designing experiments that have a large number of
parameters and levels. As shown in the following sections, this simplification tends to
reduce the number of parameters and levels and, therefore, the experiment size as
much as possible without affecting the experiment’s outcome.

2- Identify the parameters and interactions that influence the co-residency metrics the
most in [aaS clouds under each PA. In order to do so, the strategy quantifies the
influence of multiple cloud parameters and interactions on the co-residency metrics.

The most influential parameters and interactions on the co-residency metrics will be used in
Chapter 5 to identify the best parameters’ settings in four PAs that reduce the co-residency
probability.

The following sections outline the four phases of the Influence Evaluation Strategy and how
they have been applied to design and conduct two reduced size experiments: the narrow-

experiment and the broad-experiment.

56

4.3.1 Phase 1: Parameters Reduction Using Composed Parameters
Phase input: 36 parameters used by the VMC simulator.

Phase Output: eight composed parameters.

The parameters reduction using the parameter composing method was originally presented in
[59] as one of the multiple steps towards designing reduced size experiments for identifying
the most significant parameters influencing large-scale model behaviour. Using the
parameters of the Koala simulator, they demonstrated the efficiency of composing similar
parameters and reduced the Koala’s parameters from 82 to only 23.

This parameters reduction method was applied to the VMC simulator’s input parameters. The
parameters reduction method composes parameters that describe similar characteristics to
form a single parameter, referred to as a composed parameter. Table 4.3 shows the VMC
simulator’s parameters after the parameters’ reduction.

For example, the Number of Hosts parameter X2 in Table 4.3 composes five similar
parameters. That is Number of Hosts of Type H1, Number of Hosts of Type H2, Number of
Hosts of Type H3, Number of Hosts of Type H4 and Number of Hosts of Type H5
respectively. Each of the previous individual parameters specifies the number of hosts for a
single host type, whereas the composed parameter X2 specifies the total number hosts of all
types combined. Another example is the Maximum Host Utilization parameter X3. Again,
X3 composes similar parameters that individually specify the maximum utilization limit for
each host type in the VMC simulator. The parameters reduction phase was applied to the
VMC simulator parameters and successfully reduced the number of parameters that will be
used in the experiments from 36 to 8 parameters. Out of these eight parameters, Number of
Clusters X1 is the only non-composed parameter as there is no similar parameter to be
composed with.

On the other hand, [59] continued the parameters reduction and reduced another 12
parameters of the Koala simulator using domain knowledge to eliminate the parameters that
appear to be insignificant to the intended experiment. While this step seems to further reduce
the number of parameters, it is not applied in this thesis. This is because this step requires
prior knowledge of the parameters that influence the co-residency metrics, and such

knowledge is what this thesis is trying to discover.

57

Composed ID Description Composed Parameter Consists of these
Parameters Parameters
Number of X1 | How many clusters to be created in the simulated model. A N/A
Clusters cloud has at least one cluster that contains a pool of hosts.
Number of Hosts of Type HI
A cluster has at least one host. A host is a physical server
that runs VMs. Each host is assigned to a single cluster, Number of Hosts of Type H2
where the total number of hosts in the IaaS cloud is specified | Number of Hosts of Type H3
Number of <2 using the [Number of Hosts] parameter. Each host can be Number of Hosts oF Type 17
Hosts allocated a limited number of VMs specified using the [Max
Host Utilization] parameter. Hosts will be distributed | Number of Hosts of Type HS
randomly into clusters with equal probability.
Max Utilization for Host Type H1
A Host is Full when the hosted VMs usage of the host's Max Utilization for Host Type H2
Max Host X3 | resources (CPU, memory and storage) reaches the Max Host
Utilization Utilization percentage. Max Utilization for Host Type H3
Max Utilization for Host Type H4
Max Utilization for Host Type HS5
Users’ Arrival Rate Of Type Ul
Users’ Arrival Rate Of Type U2
Users’ Arrival X4 | New users arrive into the IaaS cloud according to the [Users’ | Users’ Arrival Rate Of Type U3
Rate Arrival Rate] parameter that represents the average number Users’ Arrival Rate Of Type U4
of new users to be created every time unit. Users’ Arrival Rate Of Type U5
Max Number of Users of Type Ul
Max Number of Users of Type U2
Max Number of | X5 | The maximum number of users (of all types) to be created Max Number of Users of Type U3
Users during the simulation Max Number of Users of Type U4
Max Number of Users of Type U5
Max Parallel VMs of User Type Ul
Max Parallel VMs of User Type U2
Max Parallel X6 | The maximum number of concurrently running VMs (of all Max Parallel VMs of User Type U3
VMs per User types) a single user can have Max Parallel VMs of User Type U4
Max Parallel VMs of User Type U5
X SMALL VM Average Lifetime
How long a user (on average) holds his running VM (of any SMALL VM Average Lifetime
VM Average X7 | type) before terminating it (in time units) MEDIUM VM Average Lifetime
Life Time LARGE VM Average Lifetime
X _LARGE VM Average Lifetime
VMs per Request Rate for User Type Ul
VMs per Request Rate for User Type U2
VMs per X8 The number of VMs to be created in each new VMs request VMs per Request Rate for User Type U3
Request The number of VMs per request must be less than or equal to VMs per Request Rate for User Type U4

X6.

VMs per Request Rate for User Type U5

Table 4.3 The V'MC parameters after reduction

58

4.3.2 Phase 2: Levels Reduction Using Ranges
Phase inputs: eight parameters from the first phase.
Phase Outputs: Per parameter: two levels for the narrow range and

two levels for the broad range.

Having reduced the number of parameters to eight in the first phase, this phase of the
Influence Evaluation Strategy reduces the number of the parameters’ levels. To highlight the
challenge faced in this phase, an assumption can be made that each parameter can take up to
232 levels (i.e. the maximum value for a 32-bit unsigned integer). Moreover, each parameter
needs to be tested in each possible level to measure its effect. Consequently, this would result
in a gigantic experiment design that consists of (232)8 experimental runs, which exceeds the
time and resources available for this thesis. Again, [59] suggested a solution to this
challenge, one that assigns two levels for each parameter (low and high values). Then simply
measures the effect between these two levels and verifies the effect’s statistical significance.
There are a number of advantages of using two levels to measure the effect. Firstly, it
requires less experimental runs to test all parameters combinations, which allows more
repetitions of the experimental runs that can contribute significantly to the experiment's
robustness. In addition, using two levels per parameter fits naturally towards the next phase
of this Influence Evaluation Strategy that uses 2-way fractional factorial designs to reduce
the experiment size in a structured and balanced fashion.

However, using two levels to measure the effects comes with its limitations. Firstly, the two
levels that will be used to test each parameter’s effect, obviously, do not cover every possible
level. Secondly, measuring the effect of a parameter that is varied between two levels does
not guarantee that the parameter has a linear effect on the tested two levels. To illustrate the
effect’s linearity issue, Figure 4.1 represents the data from Table 4.1. Figure (a) suggests that
varying the two levels of parameter X2 does not change the CCP metric as much as X1 does.
However, testing X1 and X2 at more levels between the original low and high levels can
reveal a contradicting result as (b) demonstrates that X2 has, in fact, a larger influence,

changing the CCP more than X1 does.

59

ccp ccp

0.8 0.8

0.7 0.7

0.6 0.6

0.5 -~ — == 0.5

0.4 . 0.4

0.3 0.3

0.2 0.2

Low High Low High
—)] = = X2 —] = = X2
(a) X1 and X2 tested at two levels: low and high, (b) X1 and X2 tested at extra two levels between low

suggesting that X2 does not change the CCP metric and high, revealing that X2 has more influence as it
between its two levels as much as X1 does. changes the CCP more than X1.

Figure 4.1 Limitation of using two levels to test the parameters’ effects.

The previous two limitations are addressed in the Influence Evaluation Strategy. Specifically,
the strategy tests the effect of each parameter on the co-residency metrics twice using two
ranges: (1) the narrow range and (2) the broad range (see range definition in Section 4.2).
Each parameter will be tested at two levels per range such that the narrow range is a subset of
the broad range. Such action helps the exploration of a wider range of parameters levels.
Another workaround to address the second limitation is carried out in Chapter 5. Firstly, the
most influential parameters on the co-residency metrics are tested at ten levels. Secondly,
Pearson’s correlation analysis [14] is used to ensure that the most influential parameters have
significant linear effects with the co-residency metrics. It is worthwhile to mention that this
linearity check is not present in the Mills method. This linearity check will also evaluate the
accuracy of the proposed Influence Evaluation Strategy (see Section 5.3.5 for more details).
For each parameter, Table 4.4 outlines the selected two levels for each range. Where
possible, the broad range extends the distance between each parameter’s two levels compared
to the narrow range. For instance, the Number of hosts X2 in the broad range examines two
extremes in terms of cloud infrastructure size (100 hosts in low level to 30000 hosts in high
level) compared to the narrow range (1000 hosts to 10000 hosts). Similarly, the same is

applicable to the rest of the parameters.

60

It is important to note that public IaaS cloud providers, such as Amazon EC2 and Windows

Azure, usually obscure the details of their cloud infrastructure, networks and even PAs [79].

For this reason and based on the available literature [10], [58], [59], the two ranges for each

parameter were selected in such a way that they represent different variations of possible

IaaS settings in the real world.

Parameter ID | Narrow Range Broad Range

Low level | High level | Low level | High level
Number of Clusters X1 |15 30 10 50
Number of Hosts X2 | 1000 10000 100 30000
Max Host Utilization X3 | 80% 90% 50% 100%
Users’ Arrival Rate X4 |2 3 1 5
Number of Users X5 | 35000 50000 10000 75000
Parallel VMs per User X6 | 12 18 5 20
VM Average Lifetime X7 | 2000 2500 1600 3600
VMs per Request X8 |2 3 1 4

Table 4.4 The selected two levels per range for each parameter

4.3.3 Phase 3: Experiment Reduction Using Fractional Factorial Design

Phase inputs: from the first phase

: eight composed parameters, and

from the second phase: two levels for the narrow range per parameter

and

two levels for the broad range per parameter

Phase Output: two fractional factorial experiments: narrow-experiment and

broad-experiment

This phase of the Influence Evaluation Strategy uses the eight composed parameters and their

two levels ranges to design the experiments that will be used to quantify the influence of

cloud parameters on the co-residency metrics. Each experiment is designed so that it tests all

necessary parameter combinations, including parameter interactions while trying to reduce

the number of experimental runs. However, testing every parameter combination makes the

number of experimental runs grow very quickly. 2-way fractional factorial design (defined in

61

detail in Appendix B) will be used to construct balanced experiments with minimum
experimental runs in order to overcome this challenge. A balanced experiment design ensures
that all parameter levels are equally tested, like the example shown in (b) and (c) in Table
4.1. The basic concept of fractional factorial design is to include a subset (fraction) of the
original experimental runs such that only the important parameter combinations and
interactions are covered. This is in contrast to the traditional one parameter at a time
experimental approaches [90]. A resolution IV fractional factorial design is used throughout
this chapter. A resolution IV design ensures that the effect of a given parameter does not
confound with other parameters and 2-parameter interactions effects. The following sections

describe how fractional factorial is used to design the experiments in this chapter.

4.3.3.1 Factorial Experimental Designs

One of the main objectives of experimental design is to construct an experiment that is
capable of generating accurate results to support or reject the research hypothesis [59]. A
good experimental design must include all the necessary parameters combinations in order to
allow balanced experimentations. However, adding more parameters makes the experiment’s
design grow very quickly. For instance, the experiment in this chapter includes eight
parameters where each parameter takes two possible levels per range, yielding a total of (28
= 256) experimental runs (i.e. parameter combinations). In Design of Experiment (DoE)
theory, this type of experimental design where all parameter combinations are tested is
known as full factorial design. However, one of the challenges of using full factorial design
is that it can be difficult to test every possible parameter combination and to repeat the
experiment at the same time. For instance, including eight parameters with two levels in a
full factorial experiment with ten repetitions dramatically increases the number of the
experimental runs to 2560. One practical solution to overcome this limitation is to apply
fractional factorial to design reduced size experiments. Appendix B provides a full

description of factorial and fractional factorial experimental design. Section B.2 shows the
steps to design the main fractional factorial experiment in this chapter that uses a 214 fraction

of the 28 full factorial experiment, reducing the experimental runs from 256 to 16 runs only.
This design, of resolution IV, is denoted as 2"
Using the fractional factorial design in Table B.4, levels from the narrow and broad ranges

(Table 4.4) are assigned to the fractional factorial design table. This results in the narrow-
62

experiment that uses the 2-level values of the narrow range (Table 4.5) and the broad-

experiment that uses the 2-level values of the broad range (Table 4.6).

Run | X1 X2 X3 X4 XS5 X6 X7 X8
1 15.0 1000 80 2.0 35000 12 2000 2.0
2 30.0 1000 80 2.0 35000 18 2500 3.0
3 15.0 10000 80 2.0 50000 12 2500 3.0
4 30.0 10000 80 2.0 50000 18 2000 2.0
5 15.0 1000 90 2.0 50000 18 2500 2.0
6 30.0 1000 90 2.0 50000 12 2000 3.0
7 15.0 10000 90 2.0 35000 18 2000 3.0
8 30.0 10000 90 2.0 35000 12 2500 2.0
9 15.0 1000 80 3.0 50000 18 2000 3.0
10 |30.0 1000 80 3.0 50000 12 2500 2.0
11 |15.0 10000 80 3.0 35000 18 2500 2.0
12 130.0 10000 80 3.0 35000 12 2000 3.0
13 | 15.0 1000 90 3.0 35000 12 2500 3.0
14 |30.0 1000 90 3.0 35000 18 2000 2.0
15 |15.0 10000 90 3.0 50000 12 2000 2.0
16 |30.0 10000 90 3.0 50000 18 2500 3.0

Table 4.5 The narrow-experiment design

63

Run | X1 X2 X3 X4 XS5 X6 X7 X8
1 10 100 50 1 10000 5.0 1600 1.0
2 50 100 50 1 10000 20.0 3600 4.0
3 10 30000 50 1 75000 5.0 3600 4.0
4 50 30000 50 1 75000 20.0 1600 1.0
5 10 100 100 1 75000 20.0 3600 1.0
6 50 100 100 1 75000 5.0 1600 4.0
7 10 30000 100 1 10000 20.0 1600 4.0
8 50 30000 100 1 10000 5.0 3600 1.0
9 10 100 50 5 75000 20.0 1600 4.0
10 | 50 100 50 5 75000 5.0 3600 1.0
11 10 30000 50 5 10000 20.0 3600 1.0
12|50 30000 50 5 10000 5.0 1600 4.0
13 | 10 100 100 5 10000 5.0 3600 4.0
14 |50 100 100 5 10000 20.0 1600 1.0
15 |10 30000 100 5 75000 5.0 1600 1.0
16 |50 30000 100 5 75000 20.0 3600 4.0

Table 4.6 The broad-experiment design

As pointed out at the beginning of this chapter, the outcome of the Influence Evaluation
Strategy is to quantify the influence of cloud parameters on the co-residency metrics in four
PAs. Then, the strategy will be able to identify the most influential parameters and 2-
parameter interactions. Therefore, the next phase uses the VMC simulator to estimate the co-
residency metrics using the previous narrow-experiment (Table 4.5) and the broad-
experiment (Table 4.6) under the four PAs. In addition, each experimental run is simulated
ten times to increase the confidence in the findings. This results in 320 simulations per P4

and 1280 simulations in total for the four PAs.

64

4.3.4 Phase 4: Quantifying the Parameters Influence on the Co-residency Metrics
Phase inputs: From phase 3: two fractional factorial experiments:
narrow-experiment and
broad-experiment
Phase Output: Most influential parameters and interactions on

the co-residency metrics under each PA

Using the VMC simulator, this phase quantifies the influence of cloud parameters on the co-
residency metrics then identifies the most influential parameters and 2-parameter interactions
in four PAs. This action aims to answer the research’s second question on what influences
co-residency the most. Parameters and interactions influence is quantified under each P4
separately in order to make the identification process more accurate since the PA is
responsible for controlling where and when each VM is placed in the cloud. This separation
is essential in this thesis to examine whether an influential parameter under a given P4 would
have the same, less, more or no influence at all under another PA. Therefore, the narrow-
experiment and broad-experiment will be simulated in this phase using four PAs (i.e. First
Fit, Next Fit, Power Save and Random). Before describing how the simulation experiments
in this phase were carried out, the following sections explain how to measure and quantify

the effect and how to determine the effect significance.

4.3.4.1 Effect Definition

As defined at the beginning of this chapter, changing a parameter’s level can yield a change
on a given co-residency metric, where the size of this change represents the parameter’s
effect on that metric. The effect of a parameter or an interaction X on a given co-residency
metric M is calculated as follows:

Estimated Effect of X = | My;gn — Moy |

where:

M High = Metric’s average when X is on its high level

M, ,,, = Metric’s average when X is on its low level

An effect also tells the direction of the change. For instance, a negative effect implies that
changing the parameter’s level from high to low yields a decrement in the co-residency
metric value. However, this chapter focuses on quantifying the parameters and interactions

65

effects, regardless of the direction of the effects. Therefore, the magnitude of the effect value
is used to quantify the parameters and interactions influence on the co-residency metrics. A
higher effect value implies that a larger change takes place on the co-residency metric and
vice versa.

The effect for each parameter and interaction can be easily measured using Analysis Of
Variance (ANOVA). ANOVA is a collection of statistical models that can be used to
measure the effect of a single parameter as well as the effect of a 2-parameter interaction.
Using Minitab statistical software [7], an ANOVA test was applied on the simulation
estimates of the co-residency metrics. These estimates were obtained from the narrow-
experiment and the broad-experiment for each of the four P4s (First Fit, Next Fit, Power
Save and Random). The ANOVA test shows the effect of each parameter and interaction
relating to each co-residency metric. Using Minitab, the following Table 4.7 displays a
example of ANOVA test output of the effects on the CCP metric for two parameters X1 and

X2 and their 2-parameter interaction.

Fractional Factorial Design

Estimated Effects and for CCP (coded units)

Term Effect P

X1 -0.035 0.000
X2 -0.0131 0.120
X1*X2 0.0751 0.890

Table 4.7 Minitab statistical software output example

Having defined how to calculate the effects, it is more important to verify that the calculated
effect is significant enough to reproduce the same change on the co-residency metrics. The
effect significance can be verified using the p-value of each effect. The following section

defines when to consider the effect to be significant.

4.3.4.2 Effect Significance
In order to accept that a parameter or an interaction has a significant affect on a given metric,

a null hypothesis Hy and an alternative hypothesis H; are defined as follows:

66

H: effect=0
H;: effect # 0

The above null hypothesis Hy implies that there is no effect. In order to calculate the p-value
for H, testing, Student’s t-test is used [14]. The effect’s p-value gives the probability that H,
is held true when the experiment is conducted again. In this thesis, an effect is considered to
be statistically significant when there is less than 5% chance of accepting H, whenever the
experiment is repeated. Therefore, if the effect’s p-value is below 0.05 then Hj, is rejected
(and therefore H; is accepted), and the effect is considered to have a statistical significance.
In the previous example in Table 4.7, parameter X1 has a significant effect since its p-value
is less than 0.05. On the other hand, X2 and the X1*X2 interaction do not have significant
effects as their p-values are greater than 0.05.

In order to quantify the parameters’ influence under a given P4, the statistically significant
effects on each metric are used to calculate the overall Weighted Effect. The overall
Weighted Effect quantifies the overall influence of each parameter and interaction on the

four co-residency metrics combined as shown in the next section.

4.3.4.3 Overall Weighted Effect WE

For each PA, the previous step defines how to measure the parameters and interactions
effects and more importantly how to verify the effects significance. The
parameter/interaction overall Weighted Effect, or overall WE for short, consists of the
parameter/interaction WEs on the four co-residency metrics. A parameter’s WE on a given
co-residency metric quantifies the parameter’s effect relative to other parameters/interactions
effects on the same metric. More precisely, the WE measures an effect with respect to the
maximum observed significant effect on the same metric. As each PA is tested using a
narrow-experiment and a broad-experiment, the parameter/interaction WE on a given co-
residency metric M is calculated from both experiments as follows:

For a given parameter or interaction X, let e be a variable that takes the following values

(where the p-value corresponds to the parameter or interaction effect):

67

X's effect on M

e = { Maximum significant effect of all Xson M ’
0 , p — value = 0.05

p — value < 0.05

Then X’s WE on a given metric M =
e in the narrow-experiment
|.

e in the broad-experiment, 0<WE<2

For each X under a given P4, the sum of WESs on all four co-residency metrics represents X’s
overall WE on the co-residency metrics:

X’s Overall WE = Y.(X’s WE on each M), 0<Overall WE<S8

The maximum WE a parameter/interaction can achieve on a given metric is two. This is only
possible when the parameter/interaction has the highest significant effect on that metric in the
narrow-experiment and the broad-experiment together. Accordingly, the maximum overall
WE a parameter/interaction can achieve under a given PA is eight, given that the
parameter/interaction achieves maximum WE (i.e. two) on the four co-residency metrics.
Therefore, the overall WE for each parameter/interaction quantifies its overall influence on
the co-residency metrics compared to other parameters and interactions.

Under each PA, the parameters and interactions with the highest overall WE are selected as
the most influential parameters. The selected parameters will be used in Chapter 5 to answer
the third research question on the best parameters’ settings that reduce the co-residency

probability in four PAs.

4.4 Experimental Setup

The VMC simulator has been used to estimate the co-residency metrics in the narrow-
experiment and the broad-experiment (Table 4.5 and Table 4.6) under four PAs: First Fit,
Next Fit, Power Save and Random. Each experiment consisted of 16 experimental runs that
tested each parameter eight times per level. In addition, each experimental run was repeated
in ten simulation repetitions per PA. Such an approach allowed obtaining 160 test
observations per parameter level per P4, and, therefore, increased the confidence in the

simulation results.

68

All experimental runs were simulated for a period of 3800 minutes, and the simulation results
were collected after a 200 minutes warm-up period. This warm-up period allowed an
opportunity for VM placement activities to take place before recording the results.
Moreover, the VMC simulator depends on Java’s random function to simulate the co-
residency behaviour. This function accepts a number and returns a pseudorandom, uniformly
distributed value between 0 (inclusive) and the specified number (exclusive). The sequence
of the returned random numbers depends on the function’s seed number. The seed number
sets the initial value of the internal state of the pseudorandom number generator. If two
simulation runs are using the same random seed, they will generate identical sequences of
numbers. In order to enhance the robustness of the random numbers generated using Java’s
random function, the system clock is used as a seed number each time the random function is
used. Such an approach increased the confidence that each simulation run will receive a
different sequence of the generated random numbers. In addition, the simulation runs were
conducted at different times of the day using multiple PCs that have different configurations
(Table 4.8). Such an action ensures that the time at which the simulation is carried out, and

the PCs configurations’ impact on the simulation results, is minimal.

Configurations Type 1 Type 2 Type 3

Processor Spec. Intel(R) Core i7 CPU Intel(R) Core i7-3770 CPU Intel(R) Core i5 CPU
No. of Cores 8 CPUs X 2.93GHz 8 CPUs X 3.4GHz 2 CPUs X 2.4GHz
Memory Size 4096MB RAM 8192MB RAM 8192MB RAM
Operating System Windows 7 (64 bit) Windows 7 (64 bit) 0S X 1094

Table 4.8 PC configurations used to run the VMC simulator

The VMC simulator generates the results in Microsoft Excel format and text format (see
Appendix A). Once the simulation is done, the results are entered into the Minitab statistical
software to carry the ANOVA test in order to measure the parameters and interactions

effects.
4.5 Findings

The influence of cloud parameters and interactions on the co-residency metrics were

quantified under each PA as follows:

69

1 For each parameter and interaction: the effect and its significance on each of the co-
residency metrics (CCP, HFL, CV and CA) were calculated.
2 Then, the overall WE of each parameter and interaction was calculated to quantify the

parameters and interactions influence on the co-residency metrics.

Under each PA, four parameters and interactions with the highest overall WE were identified
as the most influential parameters on the co-residency metrics.

The next two subsections present the results in an orderly sequence using the above two
steps. The presented results confirm the thesis’s first hypothesis by quantifying the
parameters’ and interactions’ influence on the co-residency metrics. The following
observations were made as a result of simulating all experimental runs from the narrow-
experiment and the broad-experiment (Table 4.5 and Table 4.6). Each run was tested in ten

simulation repetitions under four PAs: First Fit, Next Fit, Power Save and Random.

4.5.1 Significant Effects Results

For the narrow-experiment and the broad-experiment, Table 4.9 shows the p-values (i.e. the
level of significance) of the parameters and 2-parameter interactions effects on the four co-
residency metrics under each PA.

Under each PA, each level of every parameter was tested in 80 simulation repetitions in both
the narrow-experiment and the broad-experiment, and, therefore, each effect’s p-value was
calculated with 79 degrees of freedom. Wherever a parameter’s effect is significant (i.e. has a

p-value < 0.05) then the effect will be considered in the parameter’s overall WE calculations.

70

Effects’ p-values on the co-residency metrics per Placement Algorithm
PAW | Metrics & cce HFL
Experiment =
Broad Narrow Broad Narrow Broad Narrow Broad Narrow
Parameters WV
X1 0 0.897 0.014 0.681 0 0.532 0 0.698
X2 0 0.108 0.01 0 0 0 0 0
X3 0 0 0.074 0.549 0.035 0 0 0.87
X4 0 0 0 0.001 0.511 0.278 0 0
-E X5 0 0.565 0 0.811 0 0.442 0.004 0.643
- X6 0.113 0.789 0.029 0.686 0.482 0.485 0.017 0.021
4 X7 0 0 0 0.226 0 0.409 0 0
= X8 0 0 0.251 0.226 0.002 0.984 0 0.16
X1*X2 0 0.187 0.046 0.687 0.209 0.704 0 0.823
X1*X3 0 0.036 0.027 0.119 0 0.934 0 0
X1*X4 0.16 0.863 0.05 0.88 0 0.406 0 0.012
X1*X5 0.126 0.508 0.061 0.619 0.004 0.588 0.131 0.004
X1*X6 0.111 0.978 0.826 0.743 0.04 0.32 0.001 0.716
X1*X7 0 0.594 0.006 0.663 0 0 0 0.773
X1*X8 0 0.699 0.271 0.469 0.027 0.528 0 0
X1 0 0.147 0 0.824 0.632 0.9 0 0.323
X2 0 0 0 0 0 0 0 0
X3 0 0.252 0.255 0.831 0.352 0.323 0 0.45
X4 0 0 0 0 0 0.52 0 0.925
X5 0.327 0.623 0.703 0.883 0.905 0.993 0.671 0.469
= X6 0.455 0.38 0.675 0.683 0.439 0.97 0.004 0.341
= X7 0 0.904 0.036 0.759 0.728 0.781 0 0.88
= X8 0 0 0 0.026 0 0.735 0 0.185
2 X1*X2 0 0.027 0 0.815 0.799 0.912 0 0.558
X1*X3 0 0.023 0.175 0.085 0.895 0.978 0 0.697
X1*X4 0 0 0 0.13 0 0.834 0 0.754
X1*X5 0.001 0.978 0.74 0.978 0.718 0.986 0.004 0.34
X1*X6 0.001 0.948 0.711 0.923 0.996 0.952 0.691 0.325
X1*X7 0 0.608 0.699 0.855 0.759 0.912 0 0.404
X1*X8 0 0 0 0.02 0 0.937 0 0.006
X1 0 0.887 0.04 0.764 0 0.322 0 0.885
X2 0 0 0.007 0 0 0 0 0
X3 0 0 0.148 0.918 0.003 0 0 0.472
X4 0 0 0 0.002 0.619 0.731 0.001 0
° X5 0 0.926 0.023 0.868 0 0.169 0.022 0.803
; X6 0 0.576 0.085 0.876 0.033 0.968 0.53 0.001
n X7 0 0 0 0.149 0 0.652 0 0
5 X8 0 0 0.024 0.214 0.096 0.281 0.191 0.085
z X1*X2 0 0.374 0 0.69 0.525 0.775 0 0.819
g X1*X3 0 0.065 0.302 0.142 0 0.966 0 0
X1*X4 0.576 0.755 0.029 0.685 0 0.845 0.244 0.009
X1*X5 0 0.084 0.03 0.766 0.535 0.168 0.08 0
X1*X6 0.017 0.834 0.589 0.601 0.05 0.467 0.32 0.927
X1*X7 0 0.519 0.33 0.994 0 0 0 0.504
X1*X8 0 0.512 0.633 0.538 0.001 0.138 0.001 0
X1 0.035 0.889 0.468 0.893 0.887 0.756 0 0.214
X2 0 0 0 0 0 0 0 0
X3 0 0.291 0.764 0.768 0.202 0.239 0 0.519
X4 0 0 0.046 0.029 0 0.971 0 0.724
X5 0.53 0.549 0.242 0.99 0.736 0.957 0.374 0.479
£ X6 0.055 0.418 0.698 0.875 0.83 0.982 0 0.276
=) X7 0 0.345 0.011 0.57 0.474 0.835 0 0.993
'E X8 0 0 0.514 0.191 0.008 0.977 0 0.232
S X1*X2 0 0.427 0.332 0.873 0.697 0.89 0 0.42
~ X1*X3 0 0 0.049 0.17 0.778 0.957 0 0.919
X1*X4 0 0 0.795 0.76 0.001 0.621 0 0.401
X1*X5 0.353 0.385 0.689 0.769 0.768 0.982 0 0.76
X1*X6 0.039 0.94 0.412 0.988 0.652 0.98 0.556 0.474
X1*X7 0 0.449 0.028 0.741 0.58 0.819 0 0.533
X1*X8 0 0 0.034 0.599 0 0.427 0 0

Table 4.9 Examining the effects significance using p-value

71

It would be of interest, before proceeding to calculate the overall WE of the parameters and
interactions, to examine under which PA4 the parameters and interactions achieved more
significant effects on the co-residency metrics. There are 512 effect observations for the four
PAs in Table 4.9, of which 225 were statistically significant (see the highlighted cells). Out
of these significant effects, 28.88% were observed under First Fit, 23.55% under Next Fit,
26.66% under Power Save and 20.88% under Random.

In addition, it would also be of interest to see whether using two level ranges (i.e. used in the
narrow-experiment and the broad-experiment) has shown any difference with regard to the
effects significance. Out of all significant effects in Table 4.9, 72.88% were observed under

the broad-experiment compared to 27.11% under the narrow-experiment.

4.5.2 Identifying the Most Influential Parameters on the Co-residency Metrics

Under each PA, the overall WE of each parameter/interaction were calculated as described in
Section 4.3.4.3. As mentioned earlier, the maximum overall WE a parameter/interaction can
achieve under each PA is eight, given that the parameter/interaction has achieved maximum
WE (i.e. two) on the four co-residency metrics.

Table 4.10 outlines the overall WE of the parameters and interactions under First Fit, Next
Fit, Power Save and Random PAs. In general, the 2-parameter interactions scored lower
overall WE under the four PAs (average overall WE of 0.92) compared to the parameters
(average overall WE of 1.99).

72

Overall Weighted Effect WE
Parameter/ Under Under Under Under
1D
Interaction First Fit Next Fit | Power Save | Random
X1 Number of Clusters 1.064 1.216 0.990 0.245
X2 Number of Hosts 4.574 7.602 5.165 8.000
X3 Max Host Utilization | 2.364 0.594 2.614 0.636
X4 Users’ Arrival Rate 4.295 1.969 4.197 1.101
X5 Number of Users 0.967 0.000 0.802 0.000
X6 Parallel VMs per User | 0.511 0.135 0.510 0.180
X7 VM Average Lifetime | 3.665 0.609 3.563 0.565
X8 VMs per Request 1.816 1.682 1.435 0.618
X1*X2 0.715 1.376 0.839 0.239
X1*X3 2.142 0.456 1.716 0.656
X1*X4 1.109 1.689 0.801 0.742
X1*X5 0.476 0.150 0.501 0.175
Two-parameter
X1*X6 interactions 0.442 0.017 0.017 0.013
X1*X7 2.000 0.580 1.851 0.721
X1*X8 1.209 2.160 1.492 1.517

Table 4.10 Overall WE of the parameters and interactions

73

The top four parameters and interactions with the highest overall WE under each P4 are
highlighted in Table 4.10. One major observation is that First Fit and Power Save share the
same top four parameters and interactions, and the same observation applies for Next Fit and
Random. Appendix C contains the parameters and interactions WEs on each of the co-
residency metrics under each P4. Moreover, Appendix D presents the interaction plots of the
significant 2-parameter interactions on the co-residency metrics.

Table 4.11 shows the parameters that scored the highest overall WE Under First Fit and

Power Save:

Parameters | Overall WE under First Fit | Overall WE under Power Save
X2 4.573 5.165
X4 4.294 4.197
X7 3.664 3.563
X3 2.363 2.613

Table 4.11 The four parameters/interactions with the highest overall WE under First
Fit and Power Save

For Next Fit and Random, Table 4.12 shows the parameters and interactions that scored the

highest overall WE:

Parameters | Overall WE under Next Fit | Overall WE under Random
X2 7.601 8

X1*¥X8 2.160 1.516

X4 1.969 1.101

X1*X4 1.689 0.741

Table 4.12 The four parameters/interactions with the highest overall WE under Next
Fit and Random

The Number of Hosts parameter (X2) repeatedly achieved the highest overall WE under the
four PAs, achieving the maximum overall WE (i.e. 8) under Random. However, the
parameters’ overall WEs were not similar under different PA4s. For instance, The Number of

Hosts (X2) achieved a higher overall WE under Next Fit and Random (7.602 and 8.00)

74

compared to a relatively lower overall WE First Fit and Power Save (4.574 and 5.165). In
contrast, The User Arrival Rate (X4) parameter had higher overall WE on First Fit and Power
Save (4.295 and 4.197) compared to Next Fit and Random (1.969 and 1.101).

In the following figures, the overall WE results from Table 4.10 are illustrated to compare the
parameters and interactions influence on the co-residency metrics under First Fit in (Figure
4.2), Next Fit in (Figure 4.3), Power Save in (Figure 4.4) and Random in (Figure 4.5).

The X-axis shows the parameters and the 2-parameter interactions and the Y-axis show their

overall WEs on the co-residency metrics.

Overall WE Under First Fit
8
7
6
5
4
3
2 -
1 o — -
0 -
— (] N <t v \O o~ 0 N on <t v Ne) ~ (el
> o > > > > > > > > > > > > >
al al all al il * *
o o > > > > >

Figure 4.2 The overall Weighted Effect WE of the parameters/interactions under First
Fit

75

Overall WE Under Next Fit
8
7
6
5
4
3
2
1 -
0 -
— N on <t v Ne) o~ o0 N on <t v \O o~ o0
> o =< e o = > > =< < > > »< > >
Lor 2 B ox kb
> > > > > > >~

Figure 4.3 The overall Weighted Effect WE of the parameters/interactions under Next

Fit
Overall WE Under Power Save
8
7
6
5
4
3
2 -
1 -
O -
— (9| on < v Ne) o~ [ee] N on <t v \O o~ [ele]
> > > > > > > > < > > > > > >
T
>~ > o > > > X

Figure 4.4 The overall Weighted Effect WE of the parameters/interactions under
Power Save

76

8
7
6

Overall WE Under Random

X1
X2
X3
X4
X5
X6
X7
X8
X1*X2
X1*X3
X1*X4
X1*X5
X1*X6
X1#X7
X1*X8

Figure 4.5 The overall Weighted Effect WE of the parameters/interactions under

Random

4.6 Discussion

The main outcomes of this chapter are:

The four most influential parameters and interactions on the co-residency
metrics are the same for First Fit and Power Save on one hand, and for Next Fit
and Random, on the other hand.

This observation was the motivation for identifying the top four parameters and
interactions that achieved the highest overall WE under a given PA as the most
influential parameters and interactions on the co-residency metrics. This finding
reveals that similarities exist between PAs in terms of what influences the co-
residency behaviour in IaaS clouds (Table 4.11 and Table 4.12). The most likely
cause for the similarity between First Fit and Power Save is that they share one
common feature, that is, they prioritise the clusters and hosts with smaller IDs for
new VMs placements (see Appendix A). On the other hand, one possible explanation
of why Next Fit and Random have similar influential parameters and interactions is
related to how clusters and hosts are selected for placement. In particular, clusters and

hosts are selected in Next Fit in a cyclic fashion and in Random as a fair random

71

selection. For instance, for a given laaS that has C clusters, Next Fit selects a given
cluster with a probability of % . Similarly, the same cluster will be selected for a new

VM placement in Random with the same probability. Appendix A describes in detail
how the four PAs select clusters and hosts for VMs placement.

It is important to mention that PAs have been frequently compared for various
applications such as [37], performance and energy consumptions [40], [55], [58],
[99]. However, this thesis is the first to compare PAs in terms of their impact on co-
residency behaviour. In addition, this thesis is the first to identify that a similarity

exists between First Fit and Power Save, as well as between Next Fit and Random.

The four most influential parameters and interactions on the co-residency
metrics are identified under First Fit, Next Fit, Power Save and Random.

This finding answers the second research question (i.e. For a given PA, what are the
most influential cloud parameters affecting co-residency probability?). Table 4.10
shows that the quantified influence on the co-residency metrics varies between these
parameters and interactions. This variation confirms the first research hypothesis that
“for a given P4, cloud parameters such as the number of hosts and users do not have
the same influence on the co-residency probability in IaaS clouds.”

Out of many parameters that define the IaaS cloud environment, one of the most
significant findings in this chapter is that the number of hosts is the most influential
parameter under four PAs. In addition, user arrival rate was identified among the four
most influential parameters under four PAs.

The following shows the four most influential parameters and two-parameter

interactions under each PA:

- Under First Fit and Power Save:
The four most influential parameters on the co-residency metrics are (in
order): Number of Hosts (X2), User Arrival Rate (X4), and VM Average
Lifetime (X7) and Max Host Utilization (X3).

- Under Next Fit and Random:
The four most influential parameters on the co-residency metrics are (in

order): Number of Hosts (X2), interaction of the Number of Clusters and the
78

VMs per Request parameters (X1*X8), User Arrival Rate (X4) and interaction
of the Number of Clusters and the Users’ Arrival Rate parameters (X1*X4).
Unlike First Fit and Power Save, 2-parameter interactions were identified to

be influential under Next Fit and Random.

This finding is particularly useful in this thesis to conduct further experiments in Chapter

5 on fewer, yet high influential, parameters. These experiments should provide valuable

insights on what settings enable the influential parameters to reduce the probability of co-

residency and under what PA.

When a 2-level experiment is used to quantify the parameters and interactions
effects, the wider range between the two levels allows more significant effects
compared to a narrower range to be observed.

The results in Table 4.9 suggest that the parameters are more likely to have
significant effects on the co-residency metrics when they are varied between distant
levels. This finding suggests that adding/removing a few clusters, for example, is less
likely to cause a significant effect on the co-residency behaviour compared to a
relatively larger change.

In addition, this finding also suggests that using two different level ranges (narrow-
range and broad-range) in the Influence Evaluation Strategy was useful to quantify
the parameters influence on the co-residency metrics. The results show that the ratio
of significant effects between the narrow-range and broad-range was approximately

1:3.

4.7 Summary

Perhaps the main challenge faced in this chapter is that there were many cloud parameters
and parameters’ settings to be included in limited resources experiments. In order to
overcome this challenge, an Influence Evaluation Strategy has been proposed to simplify the
process of designing experiments that have a large number of parameters and settings. The
use of fractional factorial design was one step (of multiple steps) that the strategy applied to
construct a reduced and balanced experiment. Using the VMC simulator as a testbed, this
chapter has applied the Influence Evaluation Strategy to answer the second research question

on what parameters influence the co-residency metrics the most.

79

Under each of the used PAs in this thesis, the strategy was able to quantify the influence of
eight cloud parameters and their interactions on the co-residency metrics. This quantification
led to identifying the four most influential parameters and 2-parameter interactions on the co-
residency metrics (Table 4.11 and Table 4.12). One of the most important findings in this
chapter is that the number of hosts is the most influential parameter under four P4s. Under
First Fit and Power Save, the four most influential parameters on the co-residency metrics
were number of hosts, user arrival rate, VM average lifetime and maximum host utilization.
On the other hand, the four most influential parameters under Next Fit and Random were the
number of hosts, the interaction of the number of clusters and VMs per request parameters,
user arrival rate and the interaction of the number of clusters and users’ arrival rate
parameters.

In addition, this thesis is the first to compare these four PAs in terms of their impact on the
co-residency metrics. The findings show that a similarity exists between First Fit and Power
Save, as well as between Next Fit and Random.

Further, the results presented in Table 4.10 support the first hypothesis put forward in Section
1.3. The first hypothesis states “for a given PA, cloud parameters such as the number of hosts
and users do not have the same influence on the co-residency probability in IaaS clouds.”
The next chapter (Chapter 5) is dedicated to answering the third research question on how the
most influential parameters’ settings can be used to reduce the co-residency probability in

four PAs.

80

Chapter 5
Reducing Co-residency Probability

5.1 Introduction
This chapter aims to answer the third research question of “what are the parameter settings
that reduce the co-residency probability in a given PA.” The co-residency probability
determines the chance that a VM experiences an arbitrary co-residency hit (see Section 1.2).
Chapter 4 identified the most influential parameters and 2-paremeter interactions on the co-
residency metrics (Table 4.11 and Table 4.12). Under First Fit, Next Fit, Power Save and
Random, this chapter employs the VMC simulator to estimate the co-residency metrics using
controlled experiments. These estimates are obtained by examining the influential parameter
at more levels under four PAs.
This approach serves two important functions. First, these estimates are used to test the
influential parameters at more levels to investigate the relationship between each parameter
and the co-residency metrics, in order to determine the best parameter settings that reduce the
co-residency probability. For instance, does the increase in the number of hosts reflect a
linear increase or decrease in the co-residency probability? Second, comparing PAs in terms
of reducing the co-residency probability.
Since that the co-residency metrics characterize probabilities related to co-residency, an
assumption is made in this chapter that the co-residency probability is reduced when:

e The Co-residency Coverage Probability CCP is reduced.

e The Hit-Free Lifetime HFL is increased.

e The Co-residency Vacancy CV is reduced.

e The Co-residency Activity CA is reduced.

The remainder of this chapter is organized as follows. The next section describes the method

and the experiment settings that were used to estimate the co-residency metrics. The main

conclusions are presented in Section 5.3 and discussed in Section 5.4.

81

5.2 Method

The VMC simulator was used to estimate the co-residency metrics under four PAs (i.e. First
Fit, Next Fit, Power Save and Random). This section defines how controlled experiments
were conducted to examine further the influential parameters (identified in Chapter 4) using
ten levels listed in Table 5.1. A controlled experiment is one in which all parameters are held
constant except for one [14]. This section also explains how the results were analyzed to
answer the third research question on which parameters’ settings reduce the co-residency

probability in four PAs.

5.2.1 Experimental Setup

Chapter 4 identified the four most influential parameters under four PAs (Table 4.11 and
Table 4.12). Therefore, one controlled experiment per influential parameter was conducted
under each PA. In each experiment, the same eight parameters from Chapter 4 (Table 5.2)
were separated into two groups: an experimental group and a control group. The
experimental group contained one influential parameter that was tested at ten levels, while
the control group consisted of the remaining 7 parameters that were kept constant.

With ten new parameter levels defined in Table 5.1, each controlled experiment consisted of
ten experimental runs. These new levels were selected such that they were evenly distributed
between the low level and the high level of the broad-range (Table 4.4). This action ensured
more levels covered, especially the levels that were not tested by the Influence Evaluation
Strategy in Chapter 4.

In addition, Chapter 4 identified two 2-parameters interactions (i.e. X1*X4 and X1*X8) that
had an influence under Next Fit and Random. The use of controlled experiments allowed
testing each of the interacting parameters individually at ten levels while keeping the other
control parameters (including the interacting parameter) at a constant level.

There were many possible levels that could be assigned to the control parameters. Appendix
D illustrates the significant two 2-parameters interactions (i.e. X1*X4 and X1*X8) and
reveals that nearly 63.6% of these interactions were able to reduce the co-residency
probability when both X4 and X8 were in low levels. This finding was one of the motivations

for assigning the low levels from the narrow-range (Table 4.4) to the control parameters.

82

New levels of the most Influential Parameters

Number of Number of Max Host Users’ Arrival VM Average VMs per
Clusters (X1) Hosts (X2) Utilization (X3) Rate (X4) Lifetime (X7) Request (X8)
15 1000 80% 2 2000 2
19 4000 82% 2.33 2150 2.2
23 7000 84% 2.66 2350 24
29 10000 85% 2.99 2550 2.6
33 13000 88% 3.33 2700 2.8
37 16000 91% 3.66 2850 3
41 19000 94% 3.99 3050 32
44 22000 96% 433 3250 3.5
47 25000 98% 4.66 3450 3.8
50 30000 100% 5 3600 4

Table 5.1 New levels for testing the most influential parameters.

For each influential parameter under a given P4, a controlled experiment was conducted

using the following steps:

1. The remaining parameters (i.e. the control group) were kept constant. Table 5.2 lists

the levels that were used to fix the control parameters.

83

Parameter Control level
Number of Clusters (X1) 15

Number of Hosts (X2) 1000

Max Host Utilization (X3) 80%

Users’ Arrival Rate (X4) 2

Number of Users (X5) 35000
Parallel VMs per User (X6) | 12

VM Average Lifetime (X7) | 2000

VMs per Request (X8) 2

Table 5.2 Control level for parameters

2. The influential parameter’s levels from Table 5.1 were used in the VM C simulator
while holding the control group parameters constant.

3. To increase the reliability of the experiment’s results, each of the ten influential
parameters’ levels was tested in ten simulation repetitions. This provided 100

observations per parameter per PA.

5.2.2 Analysis Approach
With four influential parameters per PA and ten levels per parameters (tested in ten
simulation repetitions), each P4 was examined in 400 simulation runs yielding a total of
1600 simulation runs under four P4s. These simulations’ results showed the following under
each PA:
1. Simulation estimates of the co-residency metrics (used to compare PAs in terms
of reducing the co-residency probability).
2. The correlation between the influential parameters and the co-residency metrics
(used to identify the best parameter settings that reduce the co-residency

probability).

The co-residency metrics estimates were used to identify the best parameters’ settings that
reduced the co-residency probability in four PAs. Each of the co-residency metrics was
estimated with 99 degrees of freedom under each PA to increase the estimates accuracy.

Confidence Intervals with 95% confidence level were used to enhance the precision of these

84

estimates. These intervals describe the likely range of a sample estimate from the true
population. Confidence intervals are reported in tables as (Mean + margin of error).
However, it is important to note that outliers (i.e. observation points that are distant from
other observations) can have an impact on the confidence interval [83]. The sample Pearson
correlation coefficient was used to describe the linear correlation between parameters and
metrics to obtain reliable estimates of the co-residency metrics and reduce the effect of these
outliers. Pearson coefficients are sensitive to outliers, and the strongest correlations (i.e. 1.0
and -1.0) occur when data points fall exactly on a straight line. In this thesis, the stronger the
Pearson’s correlation coefficients, the better the estimate.

More importantly, calculating the Pearson’s correlation coefficients between the influential
parameters and the co-residency metrics revealed valuable insights that helped to identify the
best parameters’ settings that reduced the co-residency probability under each PA.

The method in which the correlations were obtained and interpreted is described in the

following section (Section 5.2.3).

5.2.3 Influential Parameters Correlations with the Co-residency Metrics

The sample Pearson correlation coefficient, or the r-value for short, was used to examine the
influential parameters linear correlations with the co-residency metrics. The r-value can be
any value between +1 and —1, where +1 indicates a total positive correlation, 0 indicates no
correlation, and —1 indicates a total negative correlation [14]. As pointed out in the previous
section, the strongest correlations (i.e. 1.0 and -1.0) occur when data points fall exactly on a
straight line. The r-value is also useful to indicate the slope of the correlation, where a
positive r-value indicates that an increase on the influential parameter’s level results in an
increase on the corresponding co-residency metric and vice versa.

Dancey and Reidy suggested the following categorisation of the strength of correlation as

shown in Table 5.3 [26]:

85

[r-value| | Strength of Correlation
1 Perfect
0.7-09 Strong
0.4-0.6 Moderate
0.1-03 Weak
0 Zero

Table 5.3 Categorisation of the strength of correlation

In this chapter, an influential parameter was considered to have a strong linear correlation

with a given co-residency metric if the corresponding [r-values| is between 0.4 to1.0. Figure

5.1 illustrates three examples of a moderate positive correlation at r-value = 0.5, no

correlation at r-value = 0 and a strong negative correlation at r-value = -1.0.

r-value = 0.5

r-value =0

r-value = -1.0

Positive Correlation

v

v

No Correlation

Strong Negative Correlation

Figure 5.1 Examples of correlation r-values.

Given that 7 is the number of an influential parameter’s observations in a controlled

experiment (i.e. 100 in this chapter), A is the average of the parameter’s levels and M is the

co-residency metric’s estimate, the sample Pearson correlation coefficient, r-value, was

calculated as follows:

r —value =

i=1[(4i — A)(M; — M)]

(T -2 [52,on, -

86

v

Finding the r-value between the influential parameters and the co-residency metrics served
two important purposes:

1. To verify whether the limitation identified in Section 4.3.2 had any effects on the
Influence Evaluation Strategy outcomes. This limitation was present because the
strategy measured each parameter’s effects between two levels only. Therefore, there
is no guarantee that the parameter held a strong linear effect between these two levels,
that is, no outlier was present. In contrast, the controlled experiments in this chapter
tested more levels. Therefore, a weak r-value (i.e. [r-value| < 0.4, see Table 5.3)
between an influential parameter and the co-residency metrics can indicate the
presence of outliers that were not detected by the Influence Evaluation Strategy.

2. The r-value indicates the slope of the correlation between an influential parameter and
the co-residency metrics. Therefore, it was used to identify the best parameters’
settings that reduced the co-residency probability under each PA. For instance, does
the increase in the number of hosts reflect a linear increase or decrease in the co-

residency probability?

Having defined the method that was used in this chapter, the following section highlights key

findings from the controlled experiments.

5.3 Findings
This section outlines the important findings concerning the best parameters’ settings at which
the co-residency probability was reduced in four PAs. Since the co-residency metrics
estimate probabilities related to co-residency, an assumption was made that the co-residency
probability can be reduced by:

e Reducing the Co-residency Coverage Probability CCP,

e Increasing the Hit-Free Lifetime HFL,

e Reducing the Co-residency Vacancy CV and

e Reducing the Co-residency Activity CA.

The findings in the following sections can best be treated under the previous four headings.
The following (Table 5.4, Table 5.5, Table 5.6 and Table 5.7) summarize the maximum and
minimum observed values of the co-residency metrics under First Fit, Next Fit, Power Save

and Random. In addition, the tables show the r-values of the correlation between the metric

87

and each of the influential parameters. The empty cells under each PA indicate that the

corresponding parameter was not identified as an influential parameter under that particular

PA.
§ First Fit Next Fit Power Save Random
g
8 Min | Max | r-value | Min | Max | r-value | Min | Max | r-value | Min | Max | r-value
=
A
X1 0.929 | 0.939 | 0.057 0.925 | 0.937 | 0.074
X2 0.834 | 0.891 -0.396 0.000 | 0.937 | -0.975 0.822 | 0.882 | -0.175 0.240 | 0.935 | -0.954
2]
*E X3 0.819 | 0915 0.428 0.820 | 0.913 | -0.026
=
E.:) X4 0.749 | 0.891 -0.575 0.923 | 0936 | -0.492 0.762 | 0.890 | -0.677 0.919 | 0936 | -0.784
&}
X7 0.734 | 0.885 -0.891 0.732 | 0.882 | -0.889
X8 0.930 | 0.940 | 0.444 0.929 | 0.937 | 0.136
Table 5.4 The r-values, minimum and maximum CCP observed under each PA
5 First Fit Next Fit Power Save Random
kot
g
= Min | Max | r-value | Min | Max | r-value | Min | Max | r-value | Min | Max | r-value
A
X1 0.142 | 0.161 -0.159 0.132 | 0.148 | -0.281
o X2 0.099 | 0.137 | -0.589 0.148 | 1.00 0.883 0.097 | 0.130 | -0.354 0.136 | 0.500 | 0.801
=
° X3 0.104 | 0.156 | -0.434 0.102 | 0.151 -0.315
=
ﬁ X4 0.097 | 0.216 | 0.523 0.095 | 0.157 | -0.877 0.099 | 0.235 | 0.630 0.098 | 0.150 | -0.806
= X7 | 0.033 | 0.149 | -0.870 0.030 | 0.143 | -0.891
X8 0.106 | 0.158 | -0.900 0.101 | 0.147 | -0.901

Table 5.5 The r-values, minimum and maximum HFL observed under each PA

88

wn
& | First Fit Next Fit Power Save Random
>
g
E Min | Max | r-value | Min | Max | r-value Min | Max | r-value | Min | Max | r-value
X1 0.1096 | 0.1547 | -0.288 0.0766 | 0.1098 | -0.152
X2 | 0.0005 | 0.0071 | -0.690 0421 | 0983 | 0538 0.0003 | 0.0057 | -0.727 0242 | 0977 | 0548
(2]
- -
E X3 | 0.0008 | 0.2202 | 0.549 0.0009 | 0.2126 | -0.087
E X4 | 0.0003 | 0.0038 | -0.281 0.0425 | 0.1472 | -0.869 0.0003 | 0.0048 | -0.274 0.0339 | 0.1137 | -0.898
8]
X7 | 0.0003 | 0.0049 | -0.264 0.0003 | 0.0054 | -0.362
X8 0.0776 | 0.1530 | -0.857 0.0578 | 0.0992 | -0.877

Table 5.6 The r-values, minimum and maximum CV observed under each PA

w
E First Fit Next Fit Power Save Random
L
g
= Min | Max | r-value | Min | Max | r-value | Min | Max | r-value | Min | Max | r-value
a
X1 0.0027 | 0.0034 | 0.192 0.0024 | 0.0033 | 0.163
X2 0.0001 | 0.0006 | -0.868 0.0000 | 0.0032 | -0.732 0.0001 | 0.0006 | -0.880 0.0001 | 0.0030 | -0.792
(2]
- -
E X3 0.0004 | 0.0017 | 0.695 0.0005 | 0.0018 | 0.749
E X4 0.0001 | 0.0006 | -0.870 0.0018 | 0.0032 | -0.810 0.0001 | 0.0006 | -0.844 0.0016 | 0.0031 | -0.848
@)
X7 0.0001 | 0.0015 | -0.504 0.0001 | 0.0020 | -0.494
X8 0.0026 | 0.0031 | -0.573 0.0022 | 0.0029 | -0.666

Table 5.7 The r-values, minimum and maximum CA observed under each PA

5.3.1 Reducing the Co-residency Coverage Probability (CCP)

This section describes the findings concerning the Co-residency Coverage Probability CCP.

The aim is to identify the best parameters’ settings at which the CCP estimate was low in

four PAs.

&9

cce

+ 95.0% confidence

r-value

Estimate interval of the estimate
First Fit 0.845 0.0018 -0.396
Next Fit 0.379 0.065 -0.975
Power Save 0.840 0.0019 -0.175
Random 0.501 0.043 -0.954

Table 5.8 The CCP estimate with Number of Hosts (X2) varying between 1000-30000

Table 5.8 shows a relatively high amount of variability in the CCP estimates. This variation
suggested that changing the number of hosts caused greater variability in the CCP, and the
degree of this variability is different between the PAs and higher in Next Fit and Random.
Figure 5.2 reveals that there has been a steep decline in the CCP when the Number of Hosts
(X2) has been increased using Next Fit. For instance, the figure shows that the CCP reached
zero for laaS clouds with a number of hosts larger than 25000. Similarly, the use of Random
reduced the CCP to 0.240 with a very strong negative correlation. The same figure also
shows that the Number of Hosts (X2) had negative correlations with the CCP under all PAs.
This negative correlation indicates that increasing the number of hosts in an laaS cloud
contributed to reducing the probability of co-residency. However, the negative correlation is

higher in Next Fit and Random as seen in the sharp drop of the CCP compared to the slight

decrease of the CCP under First Fit and Power Save.

90

e=g=>First Fit ™ Next Fit A= Power Save "™ Random

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10

0.00 -
0 5000 10000 15000 20000 25000 30000 35000

Number of Hosts

cce

Figure 5.2 The CCP metric at different Number of Hosts (X2)

5.3.2 Increasing the Hit-Free Lifetime (HFL)
This section describes the findings concerning the Hit-Free Lifetime HFL metric. The aim is

to identify the best parameters’ settings at which the HFL estimate was high in four PAs.

HFL *+ 95.0% confidence Fvalue
Estimate interval of the estimate
First Fit 0.108 0.0012 -0.589
Next Fit 0.771 0.054 0.883
Power Save 0.108 0.0011 -0.354
Random 0.414 0.020 0.801

Table 5.9 The HFL estimates under different Number of Hosts (X2) ranging between
1000-30000

91

This variation in the HFL estimates between PAs (Table 5.9) suggested that changing the
number of hosts caused greater variability in the HFL, and the degree of this variability is
different between the PAs and higher in Next Fit and Random.

Figure 5.3 reveals that there has been a gradual increase in the lifetime ratio at which a VM is
safe from co-residency hits (i.e. HFL) when the Number of Hosts (X2) was increased using
Next Fit. The figure shows that the HFL reached a peak value of 1.00 (i.e. the entire lifetime
of a given VM was hit-free). In addition, the use of Random prolonged the HFL to 0.414.
Similar to the Co-residency Coverage Probability (Section 5.3.1), Next Fit and Random
showed to have strong positive correlations that can be seen in the gradual rise of the HFL. In
contrast, the same figure shows that the number of hosts had relatively weaker negative

correlations that can be seen in the steady decline of the HFL under First Fit and Power Save.

esfmoLirst Fit == Next Fit &= Power Save ®™ ™ Random

1.00 -
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20

HFL

Y S
=

>

0.10 — & a 'y A A A a

0.00

0 5000 10000 15000 20000 25000 30000 35000
Number of Hosts

Figure 5.3 The HFL metric at different Number of Hosts (X2)

In addition, as the Users’ Arrival Rate (X4) increased, the lifetime ratio at which a VM is
safe from co-residency hits (i.e. HFL) has increased, showing a positive correlation using
First Fit and Power Save. The Hit-Free Lifetime HFL estimates under different PAs and

different users’ arrival rates ranging between 2-5 are shown in Table 5.10:

92

+ 95.0% confidence
HFL ’ r-value
Esti interval of the estimate
stimate
First Fit 0.146 0.0056 0.523
Next Fit 0.120 0.0035 -0.877
Power Save 0.139 0.0045 0.630
Random 0.116 0.0027 -0.806

Table 5.10 The HFL estimates with Users’ Arrival Rates (X4) varying between 2-5

Table 5.10 shows high variations in the HFL estimates. These variations indicated that
varying the users’ arrival rate caused a smaller amount of change on the HFL compared to
varying the number of hosts on the HFL (Table 5.9).

Figure 5.4 reveals that there has been a slight increase in the HFL when the users’ arrival rate
has been increased under First Fit. The figure shows that the HFL reached a peak value of
0.216 (i.e. approximately 21.6% of a given VM lifetime was hit-free) with a moderate
positive correlation. Similarly, the use of Power Save extended the HFL to 0.235 with a
strong positive correlation. In contrast, the same figure shows that the users’ arrival rate had

relatively stronger negative correlations with the HFL under Next Fit and Random.

93

e=g=>First Fit ™ Next Fit = Power Save ® ™ Random

0.3

0.25

0.2

~
& 0.15

H

0.1

0.05

2 2.5 3 3.5 4 4.5 5 5.5

Users Arrival Rate

Figure 5.4 The HFL metric at different Users’ Arrival Rates (X4)

5.3.3 Reducing the Co-residency Vacancy (CV)

This section describes the findings concerning the Co-residency Vacancy CV. The aim is to
identify the best parameters’ settings at which the CV estimate was low in four PA4s.

The CV estimates under different PAs, and different number of hosts ranging between 1000-
30000 are shown in Table 5.11:

cv + 95.0% confidence
r-value
Estimate interval of the estimate
First Fit 0.0018 0.0002 -0.690
Next Fit 0.922 0.125 0.538
Power Save 0.0014 0.0002 -0.727
Random 0.892 0.163 -0.690

Table 5.11 The CV estimates with Number of Hosts (X2) varying between 1000-30000

94

Table 5.11 reveals a relatively high variation in the CV estimates between PAs. Figure 5.5
reveals that increasing the Number of Hosts (X2) from 1000 to 7000 hosts under Next Fit and
Random caused a sharp rise of the CV. For instance, the CV reached the maximum observed
values of 0.9667 and 0.9095 respectively with moderate positive correlation. As the number
of hosts exceeds 7000, the observed values of the CV under Next Fit and Random were
clustered toward the maximum possible value of 1 (see Section 3.4.3). In contrast, Figure 5.5
shows that there has been a smaller change in the CV when the number of hosts has been
increased using both First Fit and Power Save. For example, the CV reached a low value of
0.0005 (i.e. a given VM’s host has been available for VMs placement during 0.05% of the

VM lifetime) with a strong negative correlation.

esgmoFirst Fit =M= Next Fit i=Power Save "™ Random

0.9
0.8
0.7
0.6

o 0.5
0.4 #
0.3

0.2

0.1

0 gttt —% e ———
0 5000 10000 15000 20000 2500 30000 35000

Number of Hosts

Figure 5.5 The CV metric at different Number of Hosts (X2)

In addition, as the Users’ Arrival Rate (X4) increased, the CV has decreased under all PAs
(i.e. negative correlations). The Co-residency Vacancy CV estimates under different PAs and

different users’ arrival rates ranging between 2-5 are shown in Table 5.12:

95

+ 95.0% confidence
v interval of the r-value
Estimate estimates
First Fit 0.0013 0.0001 -0.281
Next Fit 0.0845 0.0052 -0.869
Power Save 0.0011 0.0001 -0.274
Random 0.0602 0.0042 -0.898

Table 5.12 The CV estimates with Users’ Arrival Rates (X4) varying between 2-5

One interesting observation from Table 5.12 is that varying the users’ arrival rate caused a
smaller amount of change on the CV estimates compared to varying the number of hosts
(Table 5.11).

Figure 5.6 reveals that the CV reached a low value of 0.0003 using First Fit and Power Save.
In contrast, the same figure shows that the users’ arrival rate had far stronger negative
correlations with the CV under Next Fit and Random. However, reducing the CV was better

achieved under First Fit and Power Save when the users’ arrival rate varies.

esp=oFirst Fit === Next Fit “==Power Save ™™ Random

0.2
0.18
0.16
0.14

0.12
0.1 \

~
O
0.08
0.06
0.04
0.02
o
2 2.5 3 3.5 4 4.5 5 5.5

Users Arrival Rate

Figure 5.6 The CV metric at different Users’ Arrival Rates (X4)
96

In addition, Table 5.13 shows the Co-residency Vacancy CV estimates under different VMs’
average lifetime ranging between 2000-3600 in First Fit and Power Save. The VMs average
lifetime parameter (X7) was identified to be among the most influential parameters on the co-
residency metrics under First Fit and Power Save. Further, Figure 5.7 shows that the CV was

kept at lower values that reached 0.0003 under different VMs average lifetime values.

cv + 95.0% confidence
r-value
Estimate interval of the estimate
First Fit 0.0019 0.0001 -0.264
Power Save 0.0019 0.0001 -0.362

Table 5.13 The CV estimates with VMs Average Lifetime (X7) varying between 2000-

3600
e===First Fit Power Save
0.01
0.008
0.006
~
)
0.004
> N R a
0.002 == Do Ty = \
0
2000 2200 2400 2600 2800 3000 3200 3400 3600 3800
VMs Average Lifetime

Figure 5.7 The CV metric at different VMs Average Lifetime (X7)

5.3.4 Reducing the Co-residency Activity (CA)

This section describes the findings concerning the Co-residency Activity CA. The aim is to
identify the best parameters’ settings at which the CA4 estimate was low in four PAs.

The Co-residency Activity CA estimates under different PAs and different number of hosts
ranging between 1000-30000 are shown in Table 5.14:

97

cA + 95.0% confidence
r-value
Estimate interval of the estimate
First Fit 0.0002 3x107° -0.868
Next Fit 0.0005 0.0001 -0.732
Power Save 0.0002 3x107° -0.880
Random 0.0006 0.0001 -0.792

Table 5.14 The CA estimates with Number of Hosts (X2) varying between 1000-30000

As the Number of Hosts (X2) increased, the Co-residency Activity CA4 has decreased under
all PAs with strong negative correlations. Figure 5.8 reveals that the CA was minuscule
regardless of the number of hosts or the PA, and reached the lowest value (i.e. zero) using

Next Fit, and 0.0001 in the remaining PAs.

e=g=>First Fit =™ Next Fit A Power Save "™ Random

0.004

0.003

0.003

0.002

CA

0.002

0.001

0.001

0.000 - — =
0 5000 10000 15000 20000 25000 30000 35000

Number of Hosts

Figure 5.8 The CA metric at different Number of Hosts (X2)

98

In addition, as the Users’ Arrival Rate (X4) increased, the CA4 has decreased under all PA4s.

The Co-residency Activity CA estimates under different PAs and different users’ arrival rate

ranging between 2-5 are shown in Table 5.15:

CA + 95.0% confidence
r-value
Estimate | interval of the estimate
First Fit 0.0003 2x107°3 -0.870
Next Fit 0.0024 6x107° -0.810
Power Save 0.0002 2x107°3 -0.844
Random 0.0021 7x107° -0.848

Table 5.15 The CA estimates with Users’ Arrival Rates (X4) varying between 2-5

Increasing the users’ arrival rate had a negative correlation with the Co-residency Activity
CA and the Co-residency Vacancy CV (Section 5.3.3) under all PAs. Figure 5.9 reveals that

the CA reached a low value of 0.0001 using First Fit and Power Save.

eb==First Fit === Next Fit “==Power Save *=Random
0.01
0.008
0.006
S
0.004
0002 M
/-\ - ;M @ & &
0 C = - - - a—_——a-—_— a6 A P\
2 2.5 3 3.5 4 4.5 5 5.5
Users Arrival Rate
Figure 5.9 The CA metric at different Users’ Arrival Rate (X4)

99

With respect to the VMs average lifetime (X7), Figure 5.10 shows that the CA was kept at
lower values as the VMs average lifetime increased in the First Fit as well as Power Save,
reaching a low value of 0.0001.

Further, the Co-residency Activity CA estimates under different VMs’ average lifetime
ranging between 2000-3600 in First Fit and Power Save are shown in Table 5.16:

cA + 95.0% confidence
r-value
interval of the estimate

Estimate
First Fit 0.0007 6x1075 -0.504
Power Save 0.0007 7x107° -0.494

Table 5.16 The CA estimates with VMs Average Lifetime (X7) varying between 2000-
3600

esp==First Fit Power Save

0.005

0.004

0.003

CA

0.002

0.001 L ——tn
- “v—\ ——-A\

N
0 >

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800
VMs Average Lifetime

Figure 5.10 The CA metric at different VMs Average Lifetime (X7)

100

Before proceeding to discuss the previous findings and their practical uses on reducing the
co-residency probability in IaaS clouds, the next section provides a summary of the
influential parameters linearity check results. These results will be used in Section 5.4 to
evaluate the effectiveness and efficiency of the Influence Evaluation Strategy in identifying

the most influential parameters on the co-residency metrics.

5.3.5 Efficiency of the Influence Evaluation Strategy

With four PA4s, four influential parameters per PA and four co-residency metrics, a total of 64
r-values were calculated. Since each parameter was tested at ten levels with ten simulation
repetitions, therefore, the Pearson’s correlation r-values (Section 5.2.2) were calculated with
98 degrees of freedom. The degrees of freedom for each r-value is equal to two less than the
number of observations per parameter [14]. The influential parameters’ r-values were
included in the findings in the previous sections.

According to the categorization of the strength of correlation in Table 5.3, the |r-values|
frequency distribution (Figure 5.11) shows that only 25% of the calculated r-values belong to
parameters that had relatively weak correlations with the co-residency metrics (|r-value| <
0.40). On the other hand, 75% of the r-values represented stronger correlations (|r-value| >

0.40).

—_
N

—_
[\

—_
(=]

o]

Frequency
(@)}

0 0.5 1

[r-value|

Figure 5.11 A frequency distribution of the influential parameters’ |r-values|

101

5.4 Discussion

The findings in this chapter answered the third research question on how the choice of the
influential parameters’ settings can reduce the co-residency probability in four PAs.
However, it is important to emphasize that the following discussion and conclusions are only
valid within the range of data collected under the following PAs: First Fit, Next Fit, Power
Save and Random.

The key results of this chapter are:

e Co-residency probability can be effectively reduced by the right choice of
parameters’ settings in the four PAs.
The results in this chapter show that the settings of the number of hosts and users’
arrival rate can positively and negatively affect the co-residency probability. The
findings therefore suggest some answers to the third research question depending on
the cloud infrastructure size (i.e. the number of hosts) and the cloud population
density (i.e. users’ arrival rate) in the four PAs.
The following comparison matrix (Table 5.17) summarizes how the co-residency
probability has been reduced in different [aaS cloud sizes and population densities in
four PAs. However, one major observation is that there is no overall best parameter
settings or P4 for reducing co-residency probability.
This particular finding is relevant particularly to IaaS cloud providers. The finding
demonstrates that the impact on co-residency probability should become an important
factor in the choice of the parameters’ settings and PAs for IaaS clouds, an aspect that

was not previously present in the available literature.

102

Cloud Size

Cloud Population Density

Reducing the Co-
residency Small Large Low High
Probability (<5000 (55000 hosts) (user arrival | (user arrival
hosts) rate <3) rate >3)
First Fit,
Reducing the Power Save Next Fit, First Fit, Power Save
cce (marginally Random
better)

Increasing the

HFL

Next Fit, Random (preference

to Next Fit as number of hosts

increase)

Next Fit,

Random

First Fit,

Power Save

Reducing the CV

First Fit, Power Save

(consistently at zero)

First Fit, Power Save

(consistently at zero)

Reducing the CA

First Fit,
Power Save
(consistently

low at

<0.001)

Next Fit,
Random
(converge to
First Fit and
Power Save as
number of

hosts increase

First Fit, Power Save (nearly

zero but marginally lower than

Next Fit and Random by less
than 0.003).

Table 5.17 The best parameters’ settings in four PAs to reduce the co-residency

probability

¢ In general, Next Fit and Random have a better tendency to hinder co-

residency in IaaS clouds.

By comparing the PAs at different number of hosts, the probability (with 95%

confidence intervals) that a given VM experiences at least one arbitrary co-residency

hit is between 0.314 to 0.444 in Next Fit. This is compared to 0.458 to 0.544 in

Random, 0.843 to 0.846 in First Fit and 0.838 to 0.841 in Power Save. One possible

explanation of why Next Fit and Random are better at reducing the co-residency

probability is associated with how they place VMs into hosts. That is, Next Fit and

103

Random tend to distribute VMs evenly to as many hosts as possible rather than
packing them tightly on the first available hosts as First Fit and Power Save do.
Therefore, VMs are less vulnerable to the reception of many co-residing VMs in Next
Fit and Random, as opposed to First Fit and Power Save. Section 4.6 discusses in
detail the similarity between Next Fit and Random in terms of how they place VMs.
One can argue that using a P4 that hinders attackers from achieving co-residency can
be a clever action that [aaS cloud provider may take to reduce the avenue for side
channel attacks. This finding corroborates the ideas of [79], who recommended that
securing against side channel attacks can be achieved via disabling co-residency, that

1s each VM runs in its dedicated host.

e For larger IaaS clouds, co-residency probability can be effectively reduced,
and even eliminated, by using Next Fit.

The findings in Section 5.3 showed that as the number of hosts exceeds 25000 hosts,
the use of Next Fit as a PA eliminated the Co-residency Coverage Probability CCP
and Co-residency Activity CA. The most likely cause of this is that the frequency, at
which a given VM u receives a co-residency hit when Next Fit is used, is proportional
to the number of hosts. That is, once u is placed in a host x, Next Fit selects x for the
next placement after placing a VM in all hosts. Therefore, this finding suggests that
using Next Fit in larger IaaS clouds (with a larger number of hosts) can be useful for

reducing, and even eliminating, the probability of co-residency.

e VM co-residency probability is dependent on the number of hosts, where
IaaS clouds with a higher number of hosts are less likely to exhibit co-
residency.

This finding suggests that VMs hosted in [aaS clouds that have a larger number of

hosts are likely to be safer from co-residency compared to IaaS clouds with a smaller

number of hosts. Regardless of the PA, the disproportionate effect that the number of

hosts had on the co-residency metrics (see Figure 5.2, Figure 5.5 and Figure 5.8)

provided convincing evidence to support this finding.

One practical application of this finding is for cloud users to compare the potential

co-residency probability at different [aaS clouds, depending on the number of hosts in

each cloud. On the basis of the previous evidence, it seems fair to suggest that hosting

104

sensitive data and applications in [aaS clouds that have more hosts can be an effective
practice to reduce the probability of experiencing co-residency hits. Such action can
reduce the attack surface for side channel attacks. One exception to this
recommendation is that the Co-residency Vacancy CV was shown to increase as the
number of hosts increases under Next Fit and Random PA4s. However, the existence
of a CV during a VM’s lifetime is considered to be a necessary, but not sufficient,
condition for an attacker to achieve co-residency with a given VM (see Section 3.4.3).
In addition, IaaS cloud providers might consider adding more hosts as a measure to
hinder co-residency. However, this suggests the existence of a trade-off between
reducing costs (i.e. not investing in new hosts) and increasing security (i.e. reducing

co-residency probability).

e The Influence Evaluation Strategy was efficient in identifying the most
influential parameters on the co-residency metrics.
With regards to the Influence Evaluation Strategy (Section 4.3.2), one of the
limitations of using 2-way Fractional Factorial experimentations is that the effect of
each parameter was measured at two levels only. Therefore, there was no guarantee
that there will be no outliers between these two levels as the presence of such outliers
might impact the strategy’s evaluation of the parameters effects. This limitation was
addressed in this chapter by examining the most influential parameters at more levels.
The results in Section 5.3.5 showed that there were strong linear correlations between
the influential parameters and the co-residency metrics. This linear correlation
suggests that outliers did not impact the ability of the Influence Evaluation Strategy to

identify the most influential parameters.

5.5 Summary

Using the VMC simulator as a testbed, the four most influential parameters identified in

Chapter 4 were used in controlled experiments in this chapter. These experiments aimed to

explore how the most influential parameters’ settings in four PAs could positively and

negatively affect the co-residency metrics. In order to achieve this aim, these experiments

estimated the co-residency metrics in four P4s under a wide range of likely settings for

publicly accessible IaaS clouds (Section 5.2).

105

Next, Pearson’s correlation analysis [14] has been applied to study the correlation between
these parameters and the co-residency metrics. This analysis helped in identifying the
parameters’ settings that were able to reduce the co-residency probability in each PA (see
Table 5.17).

Based on this finding, Section 5.4 presents evidence that VMs hosted in IaaS clouds with a
higher number of hosts are less likely to exhibit co-residency. Further, using Next Fit in
larger IaaS clouds has been shown to reduce effectively, and even eliminate, the co-residency
probability. In addition, the four PA4s have been compared in their ability to reduce the co-
residency probability. For instance, VMs in [aaS clouds that use Next Fit or Random are
found to be more resilient against receiving co-resident VMs compared to when First Fit or
Power Save are used. By comparing the PAs at different number of hosts, the probability
(with 95% confidence intervals) that a given VM experiences at least one arbitrary co-
residency hit is between 0.314 to 0.444 in Next Fit. This is compared to 0.458 to 0.544 in
Random, 0.843 to 0.846 in First Fit and 0.838 to 0.841 in Power Save.

This chapter focused on reducing the co-residency probability (i.e. the chance that a VM
experiences an arbitrary co-residency hit). In contrast, Chapter 6 estimates the malicious co-

residency probability (i.e. the chance that a VM experiences a malicious co-residency hit).

106

Chapter 6

Analytical Estimation of Malicious Co-residency Probability

6.1 Introduction

Chapter 3 defines four co-residency metrics that estimate probabilities related to co-residency
hits from arbitrary VMs (i.e. hits from malicious and honest VMs). Chapter 4 quantified the
influence of cloud parameters on the co-residency metrics then identifies the most influential
parameters and 2-parameter interactions (i.e. the second research question). Next, Chapter 5
answered the third research question and provides simulation estimates of the co-residency
metrics. These estimates helped to find the best parameter settings that reduce the probability
of receiving honest and malicious co-resident VMs in four P4s. On the other hand, this
chapter is concerned with estimating the probability that a new co-residing VM belongs to an
attacker (i.e. malicious co-residency probability) with the coexistence of different
populations of attackers.

Two malicious co-residency metrics are defined to estimate probabilities related to malicious
co-residency (i.e. the fourth research question). These probabilities are the probability that a
VM u receives a malicious hit and for how long it remains free from malicious hits. The
malicious co-residency metrics take into account the “biggest unknown” in the attack model:
the ratio of attackers VMs, noted to as a, which can take any value between 0 and 1 (see
Section 3.2). Unlike the co-residency metrics, this very wide range of possible values of a
presents a challenge in using the VMC simulator to estimate the malicious co-residency
metrics (see Section 1.5). Instead, this Chapter provides approximate analytical estimates of
the malicious co-residency metrics that take a into account. These estimates are derived to
explore all likely values of « easily, an attempt that simulation and time limitations did not
allow. These estimates are then used to determine analytically, with the coexistence of a
attacking VMs, the best PAs that reduce the probability that a new co-residing VM belongs to
an attacker.

To validate these analytical approximations, the VMC simulator is used to estimate the
malicious co-residency metrics under a specific a value using First Fit, Next Fit, Power Save

and Random.

107

The remainder of this chapter is organized as follows. The next section derives approximate
analytical estimates of two malicious co-residency metrics that take « into account. Section
6.3 defines how the proposed analytical approximation is validated using the VMC simulator.
Further, Section 6.4 describes the experiment’s settings. Finally, the findings are presented in

Section 6.4 and discussed in Section 6.5.

6.2 Malicious Co-residency Metrics

As pointed out in Chapter 1, the risk of side channel attacks is magnified by the occurrence
of malicious co-residency hits only. The second hypothesis of this thesis states “for a given
VM, there is a non-zero probability that a new co-residing VM belongs to an attacker for any
of the four PAs considered.” While the previous co-residency metrics (i.e. CCP, HFL, CV
and CA) address co-residency hits caused by arbitrary VMs, they do not distinguish between
malicious hits originated by attackers and honest hits. Therefore, this section defines two
malicious co-residency metrics to estimate probabilities related to malicious co-residency
hits. These probabilities are (1) the probability that a VM u receives a malicious hit and (2)
for how much time it remains free from malicious hits.

Based on the system and attack models (see Section 3.2), this section derives approximate
analytical estimates of the malicious co-residency metrics that take « into account.

It will be necessary to note that before proceeding to define the malicious co-residency
metrics, analytical approximations in this chapter are mainly based on the Probability theory.
In particular, P(x) is used as a notation for probability (i.e. P(x) reads as the probability of x).

In addition, the symbol "|" is used in conjunction with P(x) to denote a conditional

" | "
probability (e.g. P(x]y) means "probability of x given condition y"). Further, the notation P(4
and B) is interpreted as P(4) * P(B]A). In addition, the symbol E (x) is used to refer to an

estimated value of variable x.

6.2.1 Preliminary Definitions
In addition to the definitions set forth in Chapter 3, the following are important definitions

related to the malicious co-residency metrics estimations.

Expected Number of Hits E(k|k > 0)
For a given VM u that receives at least one hit (k>0), the E (k|k > 0) calculates the total
number of honest and malicious hits that u experiences. In addition, P(k = K |k > 0) is the

108

probability that u receives K hits, given that it receives at least one hit. Further, ny is the
number of VMs that experienced K hits and ny;; is the total number of VMs that experienced

at least one hit. Accordingly, the expected number of hits E (k|k > 0) can be derived as

follows:

E‘(k|k>0)=ZK*P(k=K|K>O)

K=1

ng

E(klk > 0) = ZK*n
= hit

1

E(klk > 0) = ZK*nK Eklk>0) =1
hit =4

n

Expected K™ Lifetime Ratio E(Ly)

For a given VM u, the expected K™ lifetime ratio Ly can be derived using the expected
number of hits E (k|k > 0) as follows (ny as the number of VMs that experienced K hits):

E(LK)ziZ Ly, ., 1<K< E(klk> 0)

ng u=1 u

The above can be used to calculate the expected lifetime ratios up to the E (k|k > 0)™ hit

(Figure 3.2). The L g(xk>0)+1 lifetime ratio, which represents the portion of the lifetime

between the E (k|k > 0)™ hit and the time at which a VM ends, can be derived as follows:

E(k|k>0)

ECL pppsoye1) =1— z E(L)
k=1

109

6.2.2 Analytical Estimation of the Malicious Co-residency Metrics

Having defined a, E (k|k > 0) and E(Lg), the next sections define the malicious co-
residency metrics and show how their estimates are derived using an analytical

approximation.

6.2.2.1 Malicious Co-residency Probability (MCP)

The Malicious Co-residency Probability MCP is the probability that an honest VM u
encounters a malicious co-residency hit at least once during its lifetime. The estimation of
MCP extends the Co-residency Coverage Probability CCP metric (see Section 3.4.1). Unlike
the CCP, the MCP focuses on malicious co-residency hits (caused by malicious VMs only),
whereas, the CCP considers both malicious and honest co-residency hits.

With the use of the CCP, a and E (k|k > 0), Probability theory is applied to derive an

estimate approximation of the MCP for a given VM u:

VY CCP, a and E(k|k > 0): 0<CCP<1,0<a<1and E(klk > 0) > 1:
E(MCP) = P(at least 1 hit AND at least 1 hit is malicious | number of hits>(0)
= P (k>0) * P(at least 1 hit is malicious | k >0)

= CCP * (1 — P (all hits are honest | k >0))

At this point, an approximation is introduced to the MCP estimate that involves assuming
that every VM, that is hit at least once, is hit exactly E(k|k > 0) times (where E (k|k > 0)
will be rounded down to the nearest integer):

~CCP * (I —P (all E(k|k > 0)hits are honest))

= CCP * (1 — (P (hitq is honest) *. .. * P (hitg|k>0)—1 IS honest) *
P (hitgk|k>0) is honest)))

=~ CCP * (1-P (hit is non-malicious) E¥*k>0))

~ CCP * (I- (I-a) EkIk>0))

110

Therefore, the Malicious Co-residency Probability MCP estimate can be approximated as

follows:

E(MCP) = CCP * (1- (1-a) EKI>0) "9 <EMCP)< 1

The MCP can reach its maximum value when every VM in the cloud will certainly has all of
its k co-residency hits as malicious. In this particular case, the MCP becomes the same as the
CCP value. This scenario can manifest itself when all other VMs in the cloud are malicious
VMs (i.e. the attacker’s VM requests ratio a equals one). However, this requires an attacker
to originate and control all the VMs in the cloud in order to achieve co-residency hits with
target VMs. In contrast, the MCP can reach its minimum value (i.e. zero) when every VM in
the cloud will certainly have all of its k co-residency hits as honest. This can be the case
when the attacker’s VM requests ratio o is zero. Another scenario in which the MCP can
reach zero is when each VM ends up running solely in its own physical host (i.e. in this case
CCP equals zero). This scenario is suggested in [79] to disable the risk of side channel
attacks. However, this requires the customer to pay for the opportunity cost of under-utilizing

the hosts’ resources due to not sharing them with other cloud users (see Section 2.3.3.1).

6.2.2.2 Attacker-free Lifetime Ratio (4FL)

For a given VM u, the Attacker-free Lifetime Ratio AFL is the sum of the lifetime ratios
(Figure 3.2) where u is free of malicious co-residency hits. A lifetime ratio L is considered
to be attacker-free when the K-1™ hit and all previous hits are honest.

Unlike the Hit-free Lifetime Ratio HFL metric (see Section 3.4.2), the AFL calculates the
attacker-free lifetime ratio from the moment VM u is launched until it experiences the first
malicious hit. On the other hand, the HFL calculates the lifetime ratio from the moment u is
launched until it experiences the first hit; regardless of whether the first hit is malicious or
honest. The AFL,, for a VM u that experiences at least one co-residency hit (k>0) can be

estimated using simulation, for example, as follows:
k+1

AFL, = Z(LK| Ly is attacker free) ,0 < AFL,< 1
K=1

The following is an approximate analytical estimate of the AFL that extends the CCP metric:
vV CCP, a, E(klk > 0)and E(Lg): 0<CCP<1,0<a<Il E(klk>0)>1and0< E(Lg)<1:

111

E(AFL)= (AFL | no hit) + (AFL | at least 1 hit and all hits are honest)

(AFL when u receives no hit)* P(no hit) + (AFL| k>0 and all hits are honest)

1 *(1I-CCP) + (AFL | k>0 and all hits are honest)

(I-CCP) + P(k>0) * (AFL | all are honest hits)

= (I-CCP) + CCP * (AFL | all are honest hits)

At this point, approximations are introduced that involve assuming that every VM u that is
hit at least once is hit exactly E (k|k > 0) times where E (k|k > 0) will always be rounded
down to the nearest integer. As a result, « has a total of E (k|k > 0)+1 lifetime ratios

E(Ll), e E(L E(k|k>0)); E(L E(k|k>o)+1)3
(I-CCP) + CCP * (AFL | all E(k|k > 0) hits are honest)

U

~ (I-CCP) + CCP * (E(Ly) + E(Ly|hit, non-malicious) + E (L3|hits; gng 2 non-malicious) +
.+ E(L Eklke>0)+1|MLS 1 to E(k|k>0) Nnon-malicious))

~ (I-CCP) + CCP * (E(L,) + E(Ly) * P(hity non-malicious) +
E(L3) * P(hit; non-malicious)* P(hit, non-malicious) + ... +

E(L g(irs0y+1) * PORILS 1 4o £ |kc0) non-malicious))

u

(I-CCP) + CCP * (E(L)) + E(Ly) * 1—a) +E(L3)* (1 —a)? +... +

E(L E(k|k>o)) x (1 — a) ECIR>0O-1 4 B(], E(k|k>o)+1) x (1 — a) EClk>0)y

Therefore, the AFL estimate can be approximated as follows:

E(k|k>0)+1

E(AFL) =~ (1 — CCP) + CCP * Z [E(Lg) (1 —a)¥1] ,0 < E(AFL)< 1
K=1

The AFL can reach its maximum value when there are no attackers in the IaaS cloud (i.e. the
attackers VM requests ratio o is zero). This action can result in a situation where every VM
in the cloud will have all of its & hits as honest. In contrast, the AFL can reach its minimum

value (i.e. HFL or zero) when every new VM request in the cloud is malicious (i.e. the

112

attackers VM requests ratio o is one). As mentioned in the previous section, this requires the
attacker to originate and control all the VMs in the cloud in order to achieve malicious co-
hits with target VMs. Another possible scenario where the AFL can reach its minimum value
is possible. For instance, when every sequence of newly created VMs tends to be placed in
the same physical host until the host becomes full (i.e. no space for new VMs). This scenario

is shown by [79] to be very dependent on the PA that is used by the cloud provider.

6.3 Method

Section 6.2 derived approximate analytical estimation of the malicious co-residency metrics
in order to easily examine all likely values of a values (the ratios of attackers VMs requests).
A comparison was made with experimental estimates obtained using simulation to validate
these analytical estimates. The VMC simulator was used to estimate the MCP and AFL with a
set to 0.10 in a variety of IaaS clouds settings (i.e. different Number of Hosts (X2) and Users’
Arrival Rates (X4)). These simulation estimates can help to determine how good the
malicious co-residency metrics analytical approximations are.

Based on the description in Sections 6.2.2.1 and 6.2.2.2, the analytical estimates of MCP and
AFL were calculated using the simulation estimates (Table 6.1 and Table 6.2): (1) the Co-
residency Coverage Percentage E(CCP), (2) number of hits E (k|k > 0) and (3) life ratios

E(L,). These estimates were calculated during the simulation experiments in this chapter:

Placement - -
, E(CCP) | E(klk>0) |E(Ly) | E(Lz) | E(L3) | E(L4) E(Ls)

Algorithms
First Fit 0.851 4.796 0.113 | 0.241 | 0.137 0.109 0.400
Next Fit 0.394 3.033 0.729 | 0.103 | 0.034 0.134 --
Power

0.851 4.705 0.110 | 0.230 | 0.132 0.108 0.420
Save
Random 0.537 3.090 0.363 | 0.348 | 0.098 0.191 ---

Table 6.1 Important estimates obtained by the VM C simulator with Number of Hosts
(X2) varying between 1000-30000

113

Placement

, E(ccP) | E(klk>0) |E(Ly) | E(Ly) | E(L3) | E(Ly) | E(Ls)
Algorithms
First Fit 0.815 4.098 0.127 [0.293 | 0.126 0.093 0.361
Next Fit 0.848 3.363 0.327 [0.257 |0.153 0.263 -
Power

0.811 4.103 0.132 | 0.288 |0.125 0.095 0.360

Save
Random 0.842 3.753 0.262 | 0.250 | 0.156 0.331 -

Table 6.2 Important estimates obtained by the VMC simulator with Users’ Arrival
Rate (X4) varying between 2-5

On the other hand, the VMC simulator estimates the malicious co-residency metrics for a
certain o as follows:

e Malicious Co-residency Probability MCP:

Let n be the total number of created VMs in the cloud and Nyt py maiicious 18 the total

number of VMs that experienced at least one malicious hit, then the MCP was estimated

using simulation as follows:

n
MCP =

hit by malicious

n

e Average Attacker-free Lifetime Ratio AFL:

Let ny;: be the total number of VMs that experienced at least one hit (£>0), then the AFL

was estimated using simulation as follows:

AFL = —

Nhit

[

1
n

D AFL, 4 (n =)

With o of 0.10, a total of 80 simulation estimates of the MCP and AFL were obtained under

different numbers of hosts and the users’ arrival rates (Table 6.3), while keeping the

remaining parameters constant (Table 5.2). Then, the average of these estimates was

compared with the metrics’ analytical prediction under First Fit, Next Fit, Power Save and

Random in Section 6.4.1.

114

Number of Hosts (X2) | Users’ Arrival Rates (X4)
1000 2
10000 3
15000 4
30000 5
Table 6.3 The parameters levels used in the VMC simulator to estimate the MCP and
AFL

6.3.1 Analytical Estimation Accuracy

In approximation theory [80], the predicted values can often be overestimation or
underestimation of the actual measurements. This can result from the fact that an
approximation cannot include all the parameters that represent the predicted reality. Thus,
this thesis calculates the percentage difference to quantify this amount of error between the
approximate analytical estimates and the simulation estimates. The percentage difference can

be obtained as follows:

analytical estimate — simulation estimate

Percentage dif ference = - - - *100
simulation estimate

Approximation theory states that an accepted analytical estimate depends on the type of
application and the sensitivity of the predicted values [80]. For the convenience of this
experiment, an analytical estimate will be considered acceptable if it has a percentage

difference up to £15%.

6.4 Findings
This section outlines the findings concerning the analytical estimation validation as well as

an analysis of malicious co-residency probabilities under different attackers ratios a.

6.4.1 Analytical Estimation Validation

With an attacker ratio o of 0.10, and under different number of hosts and users’ arrival rates,
the following (Table 6.4, Table 6.5, Table 6.6 and Table 6.7) show the analytical estimates,
the simulation estimates and the corresponding percentage difference for both the MCP and

AFL in four PAs.
115

Placement E(McCP) E(McP) Percentage
Algorithms Analytical estimate Simulation estimate Difference
First Fit 0.3377 0.2554 32.22%
Next Fit 0.1077 0.1056 2.00%
Power Save 0.3328 0.2774 19.95%

Random 0.1492 0.1679 -11.13%

Table 6.4 Percentage differences of the MCP estimates with an a of 0.10 as Number of

Hosts (X2) varies between 1000-30000

Placement E(McCP) E(McP) Percentage
Algorithms Analytical estimate Simulation estimate Difference
First Fit 0.2857 0.2846 0.39%
Next Fit 0.2528 0.2828 -10.58%
Power Save 0.2845 0.2877 -1.12%

Random 0.2749 0.2895 -5.06%

Table 6.5 Percentage differences of the MCP estimates with an a of 0.10 as Users’
Arrival Rate (X4) varies between 2-5

116

Placement E(AFL) E(AFL) Percentage
Algorithms Analytical estimate Simulation estimate Difference
First Fit 0.797 0.826 -3.53%
Next Fit 0.979 0.945 3.51%
Power Save 0.795 0.824 -3.61%

Random 0.943 0.929 1.46%

Table 6.6 Percentage differences of the 4AFL estimates with an a of 0.10 as Number of
Hosts (X2) varies between 1000-30000

Placement E(AFL) E(AFL) Percentage
Algorithms Analytical estimate Simulation estimate Difference
First Fit 0.833 0.842 -1.10%
Next Fit 0.887 0.902 -1.74%
Power Save 0.834 0.841 -0.91%

Random 0.863 0.885 -2.58%

Table 6.7 Percentage differences of the AFL estimates with an a of 0.10 as Users’
Arrival Rate (X4) varies between 2-5

The previous tables showed an agreement between the analytical estimates and the

simulation estimates across all PAs with an a of 0.10. About 75% and 100% of the obtained

analytical estimates of the MCP and AFL, respectively, had percentage differences less than

15%. Moreover, the mean percentage differences are 10.31% and 2.31% for the MCP and

AFL, respectively. On the other hand, the MCP was overestimated in First Fit and Power

Save as shown in the percentage difference that increased to levels that were pre-defined as

not being adequate (Section 6.3.1). Appendix E outlines, in detail, the VM C simulator’s

117

estimates of the malicious co-residency metrics under different numbers of hosts and users’

arrival rates with o set to 0.10 in four PAs.

6.4.2 Malicious Co-residency Metrics as Attackers Ratio a Varies

This section presents the approximate analytical estimation of the MCP and AFL under
different o values, where these analytical estimates were calculated using the simulation
estimates from Table 6.1 and Table 6.2.

Table 6.8 shows the analytical estimates of the MCP under different a values.

As Figure 6.1 illustrates, the relationship between the MCP and the attackers’ VM requests
ratio o depends on the used PA. When 0.1 or less a is present in the IaaS cloud, the expected
MCP for First Fit, Next Fit, Power Save and Random are very close. However, when a is
greater than 0.1, Next Fit and Random significantly outperform (in reducing the MCP) the
rest of the PAs.

In addition, Next Fit outperforms (in reducing the MCP) the rest of the PAs for all amounts
of a. Surprisingly, even with attackers’ VM requests ratio of 0.99, Next Fit was able to limit

the probability of malicious co-residency to only 0.394.

118

MCP estimate using analytical prediction
a First Fit Next Fit Power Save Random
0 0 0 0 0
0.000000001 | 4.081x107° 1.195x107° 4.004x107° 1.659x107°
0.0000001 4.081x1077 1.195x1077 4.004x1077 1.659x1077
0.000001 4.081x107° 1.195x107° 4.004x107° 1.659x107°
0.00001 4.081x107° 1.195x107° 4.004x1075 1.659x107°
0.0001 0.000408 0.000119 0.000400 0.000166
0.001 0.0041 0.00119 0.00400 0.00166
0.01 0.0400 0.01183 0.03930 0.01642
0.1 0.3376 0.10777 0.33263 0.14922
0.2 0.5592 0.19375 0.55317 0.26752
0.3 0.6972 0.26044 0.69210 0.35863
0.4 0.7776 0.31032 0.77406 0.42622
0.5 0.8204 0.34586 0.81837 0.47393
0.6 0.8405 0.36954 0.83958 0.50535
0.7 0.8484 0.38378 0.84805 0.52399
0.8 0.8506 0.39101 0.85056 0.53328
0.9 0.8510 0.39363 0.85098 0.53656
0.99 0.8510 0.39400 0.85100 0.53700

Table 6.8 MCP estimates using analytical prediction as a varies

119

MCP analytical estimate
<--% FIRST FIT NextFit @= ==®Power Save ®====Random

0.9

- O = DO =P -—- POt -—-®
0.8 oY=

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

Figure 6.1 Variation of MCP with attackers’ VM requests ratio a

Moreover, Table 6.9 shows the Analytical estimates of the AFL (the expected Attacker-Free
Lifetime ratio of a given VM) across different a values.

Similar to the MCP, Figure 6.2 illustrates that the relationship between the AFL and the
attackers” VM requests ratio a depends on the used PA. When 0.1 or less a is available, the
expected AFL for First Fit, Next Fit, Power Save and Random are very close. However, when
a is greater than 0.1, Next Fit and Random significantly outperform (in increasing the AFL)
the rest of the PA4s.

In addition, Next Fit outperforms (in increasing the AFL) the rest of the PAs for all amounts
of a. Even with attackers’ VM requests ratio of 0.99, Next Fit was able to prolong the

lifetime ratio at which a given VM is safe from malicious hits to 0.894.

120

AFL using analytical prediction

a First Fit Next Fit Power Save | Random
0 1.000 1.000 1.000 1.000
0.000000001 | 1.000 1.000 1.000 1.000
0.0000001 1.000 1.000 1.000 1.000
0.000001 1.000 1.000 1.000 1.000
0.00001 1.000 1.000 1.000 1.000
0.0001 1.000 1.000 1.000 1.000
0.001 0.998 1.000 0.998 0.999
0.01 0.977 0.998 0.977 0.994
0.1 0.797 0.979 0.794 0.943
0.2 0.648 0.961 0.643 0.893
0.3 0.539 0.946 0.533 0.849
0.4 0.460 0.934 0.453 0.810
0.5 0.401 0.923 0.394 0.777
0.6 0.356 0.915 0.350 0.747
0.7 0.321 0.908 0.315 0.721
0.8 0.292 0.902 0.287 0.698
0.9 0.267 0.897 0.263 0.677
0.99 0.247 0.894 0.245 0.660

Table 6.9 AFL estimates using analytical prediction as a varies

121

AFL analytical estimate

<--% FIRST FIT Next Fit @= ==®Power Save ®=====Random

1.00

0.90

0.80

0.70

0.60

0.50

0.40

0.30

0.20

0.10

0.00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

Figure 6.2 Variation of AFL with attackers’ VM requests ratio a

6.5 Discussion

Given that attackers are present in a given laaS cloud (i.e. VMs requests ratio « is greater
than zero), the findings in this chapter (Table 6.8 and Table 6.9) validated the second
research hypothesis. This hypothesis states “for a given VM, there is a non-zero probability
that a new co-residing VM belongs to an attacker for any of the four PAs considered.” The
findings also provided useful insights to answer the fourth research question that states “for a
given VM, what is the probability that a new co-residing VM belongs to an attacker.”
Further, the results illustrate how the malicious co-residency probability varies in various
populations of attacker VMs.

It is important to emphasize that the following discussion and conclusions are only valid
within the range of data collected under the following PAs: First Fit, Next Fit, Power Save
and Random.

The key findings in this chapter are:

122

The approximate analytical estimates of the malicious co-residency metrics are
acceptable over any given proportion of malicious users.

The results in (Table 6.4, Table 6.5, Table 6.6 and Table 6.7) show the analytical
estimates, the simulation estimates and the corresponding percentage differences.
About 75% and 100% of the obtained analytical estimates of the MCP and AFL,
respectively, had percentage differences less than 15% in the four PAs. Moreover, the
mean percentage differences are 10.31% and 2.31% for the MCP and AFL,
respectively. On the other hand, the MCP was overestimated in First Fit and Power
Save as shown in the percentage difference that increased to levels that were pre-
defined as not being adequate (Section 6.3). As these results show, the analytical
estimation of the malicious co-residency metrics agreed with the experimental
estimate (i.e. using the VMC simulator). Thus, this finding allows the conclusion that
the analytical estimation derived in this chapter can become very useful for estimating
the probability of an attacker successfully co-residing with a given VM under any a
value.

There can be several useful applications of the proposed analytical estimation. For
IaaS cloud providers, the VMC simulator can be used to find the CCP metric and the
E(k|k > 0) (Section 6.2) in order to obtain an analytical estimate of the malicious
co-residency metrics under any a value. This action can reveal valuable insights into
the TaaS cloud under study and can be used to compare the malicious co-residency

occurrence probabilities in different cloud settings, PAs and different attacker ratios.

e Under different proportion of malicious users, the right choice of P4 can
hinder attackers from easily achieving malicious co-residency.
The findings in Section 6.4.2 suggest that the used P4 is a primary factor in
determining the malicious co-residency likelihood. However, the results showed that
there is no best P4 for reducing the malicious co-residency probability. For instance,
Next fit and Random were better in reducing this probability compared to First Fit
and Power Save. By comparing the PAs as a varies between 0 to 0.99 (Table 6.8 and
Table 6.9), the probability (with 95% confidence intervals) that an honest VM u
encounters a malicious co-residency hit at least once during its lifetime (i.e. the MCP)
is between 0.197 to 0.376 in Next Fit, compared to 0.270 to 0.514 in Random, 0.490
to 0.862 in First Fit and 0.487 to 0.860 in Power Save. One possible explanation of

123

why Next Fit and Random are better at reducing the co-residency probability was
presented in Section 5.4. The explanation suggests that Next Fit and Random tend to
distribute VMs evenly across as many hosts as possible rather than packing them
tightly on the first available hosts as First Fit and Power Save do. Therefore, VMs are
less vulnerable to the reception of many co-residing VMs in Next Fit and Random, as
opposed to First Fit and Power Save. Thus, this provides evidence that the right
choice of PAs can hinder attackers from easily achieving malicious co-residency. In
addition, this finding corresponds well with the conclusion made in Section 5.4 that
the impact on co-residency probability should become an important factor in the

choice of PAs for [aaS clouds.

Generating 40% of the VMs requests —by attackers- in a given IaaS cloud can
lead to a substantial increase in the chance of achieving malicious co-residency.
The findings in Section 6.4.2 suggest that attackers can effectively increase their
chance to achieve malicious co-residency by originating no more than 40% of the
VMs requests in a given laaS cloud. The results in (Table 6.8) show that increasing
the attacker’s VMs request ratio from 0 to 0.4 caused a significant increase in the
MCP. For instance, the MCP increased from 0 to reach about 0.77 in First Fit and
Power Save, 0.31 in Next Fit and 0.42 in Random. In addition, the analytical
estimation of the AFL provides valuable insights that can help the attacker to increase
the chance of achieving co-residency with a particular VM u. For example, the
attacker can time the VM requests during a particular duration of «’s lifetime during
which u is expected not to be hit-free.

On the basis of the evidence currently available, it seems fair to suggest that
organized attackers with plentiful resources (e.g. organization-sponsored attackers)
can increase their chance of co-residing with victim VMs. This can be achieved
simply by requesting as many VMs as possible. Therefore, it can be argued that the
first line of defence against malicious co-residency in laaS clouds is cloud providers
themselves. This action supports the conclusions from Chapter 4 and 5 that [aaS
cloud providers must consider selecting a PA that hinders attackers from achieving
malicious co-residency. In addition, IaaS cloud providers can use the proposed
analytical estimation to experiment with a different a in order to determine the range

of a ratios that is relatively acceptable to keep the malicious co-residency probability

124

at its minimum. The providers can set the maximum number of VMs that a user can
create using this knowledge. Amazon EC2 limits the number of concurrent VMs a

user can create in a single individual account to 20 VMs [5].

6.6 Summary

The risk of side channel attacks is magnified enormously if an honest VM is co-resided by an
attacker VM. Therefore, this chapter investigated estimating the probability that the next co-
residing VM belongs to an attacker (i.e. the malicious co-residency probability). This
estimation was an attempt to answer the fourth research question (i.e. for a given VM, what
is the probability that a new co-residing VM belongs to an attacker). This chapter defined
two metrics (i.e. the MCP and AFL) that describe probabilities related to malicious co-
residency and take into account the attackers VMs requests ratio a. This thesis is the first to
derive two analytical estimates of probabilities related to malicious co-residency in Section
6.2.

Then, analytical estimates of the MCP and AFL have been compared with experimental
estimates (i.e. using the VMC simulator) in four PA4s under an a value of 0.10. The results in
(Table 6.4, Table 6.5, Table 6.6 and Table 6.7) show the analytical estimates, the simulation
estimates and the corresponding percentage differences in four P4s. About 75% and 100% of
the obtained analytical estimates of the MCP and AFL, respectively, had percentage
differences less than 15% in the four PA4s. Moreover, the mean percentage differences are
10.31% and 2.31% for the MCP and AFL, respectively. On the other hand, the MCP was
overestimated in First Fit and Power Save as shown in the percentage difference that
increased to levels that were pre-defined as not being adequate (Section 6.3). Therefore, the
derived analytical estimates were shown to agree with the experimental estimates in the four
PAs in Section 6.4.1.

Further, Section 6.4.2 used the calculated analytical estimates to compare First Fit, Next Fit,
Power Save and Random over a wide range of a values. By comparing the PAs as a varies
between 0 to 0.99 (Table 6.8 and Table 6.9), the probability (with 95% confidence intervals)
that an honest VM u encounters a malicious co-residency hit at least once during its lifetime
(i.e. the MCP) is between 0.197 to 0.376 in Next Fit, compared to 0.270 to 0.514 in Random,
0.490 to 0.862 in First Fit and 0.487 to 0.860 in Power Save. These results seem to be in
favour of the second research hypothesis that states “there is a non-zero probability that a

new co-residing VM belongs to an attacker in all PA4s.”

125

Thus, the aforementioned findings demonstrated that VMs hosted in IaaS clouds that use
Next Fit or Random are less likely to receive co-resident attacker VMs compared to when
First Fit or Power Save are used. The findings also suggest that the right choice of PAs can
reduce the probability of being co-resided by attackers VMs, which can reduce the attack
surface for side channel attacks. However, an interesting finding in Section 6.4.2 shows that a
sharp rise in the latter probability is possible if attackers manage to originate no more than

40% of the VMs requests in a given laaS cloud.

126

Chapter 7

Summary and Conclusions

Because co-residency is a necessary first step to launching side channel attacks, this
motivated this thesis to look into understanding the co-residency probability. As set forth in
Section 1.2, this thesis aims to analyse and quantify the influence of cloud parameters (such
as the number of host and users) on the co-residency probability under four commonly used
PAs. These PAs are First Fit, Next Fit, Power Save and Random. By doing so, this thesis was
able to identify the influential parameters’ settings that reduce the co-residency probability in
each PA. Reducing the attack surface for side channel attacks is, therefore, one outcome of
reducing the co-residency probability.

This thesis achieved its aim through quantitative experimental simulation and analytical

prediction. This approach consisted of four main steps:

(1) Characterizing the co-residency occurrence behavior in IaaS clouds using co-
residency metrics (Chapter 3), followed by

(2) Identifying the four most influential cloud parameters (such as the number of hosts,
clusters and users) affecting co-residency probability in four PAs. In order to do so,
Chapter 4 quantified the influence of multiple cloud parameters on the co-residency
probability. Then,

(3) Simulation experimentation to find the best settings of the most influential
parameters that reduce the co-residency probability under four PAs (Chapter 5),
finishing with

(4) Analytical estimation with the coexistence of different populations of attackers, to
find the probability that a new co-residing VM belongs to an attacker (Chapter 6).
These estimates helped to identify the best PAs that reduce the aforementioned
probability.

The above steps were posed as research questions in Section 1.3. This chapter will revisit the

research questions, summarizing the key findings and their implications in Section 7.1.

127

Section 7.2 draws some conclusions, followed by highlighting the limitations of this thesis in

Section 7.3. Finally, Section 7.4 proposes potentially fruitful avenues for future research.

7.1 Summary
There are two hypotheses set forward in Section 1.3:
1. For a given P4, cloud parameters such as the number of hosts and users do not have
the same influence on the co-residency probability in IaaS clouds.
2. For a given VM, there is a non-zero probability that a new co-residing VM belongs to
an attacker for any of the four PA4s considered.
An analysis of variance (ANOVA) test has been applied to the simulation estimates in
Section 4.3.4. This allows the quantifying of the influence of eight cloud parameters and
parameters interactions on the co-residency metrics under each P4 (Section 4.5). This
quantification showed that this influence varies with parameters, and, therefore, provided
evidence to support the first hypothesis.
Further, the findings in Chapter 6 are based on an analytical estimation that seems to be in
favour of the second hypothesis. The analytical estimation in Section 6.4.2 compared the
probability that a new co-residing VM belongs to an attacker in four PAs over a wide range
of a (i.e. attackers’ VMs requests ratio). Given that attackers exist in the IaaS cloud, the
analytical estimation results show that there is a non-zero probability that a new co-residing
VM belongs to an attacker in all PA4s.

The following is a brief summary of the key findings under each of the research questions.

1. How to characterise the co-residency occurrence behavior in IaaS clouds?

Following the description of the system and attack models in Section 3.2, four co-
residency metrics characterizing the co-residency occurrence behaviour in IaaS clouds
have been successfully defined in Chapter 3. Some of these characteristics include how
likely a given VM u will be co-resided by another VM v (i.e. the co-residency
probability), as well as how long does this co-residency take to occur.

These co-residency metrics were estimated using simulation to quantify the parameters’
influence on the co-residency metrics. This quantification led to identifying the four most

influential parameters and interactions on the co-residency metrics (Chapter 4).

128

These estimates also helped to find the best parameter settings that reduce the co-
residency probability in four PAs (Chapter 5).

In addition, the co-residency metrics were used to derive analytical estimates of
probabilities related to malicious co-residency (Chapter 6).

These metrics proved to be very useful in answering the research questions, and should

also be useful to further research on co-residency in [aaS clouds.

2. For a given PA, what are the four most influential cloud parameters (such as the

number of hosts, clusters and users) affecting the co-residency probability?
Due to the limited resources and time, this thesis focuses on the cloud parameters that
have the most influence on the co-residency metrics. Therefore, an Influence Evaluation
Strategy has been introduced (Section 4.3). This strategy statistically quantifies the
influence on the co-residency metrics across a variety of likely cloud parameters’ settings
in four commonly used PAs. These PAs are First Fit, Next Fit, Power Save and Random
(Appendix A provides a detailed description of these PAs). The strategy has applied
Fractional Factorial design (Appendix B) to obtain reduced-size experiments (Section
4.3.3). Then, the strategy has used the VMC simulator to run these experiments to
estimate the co-residency metrics across a variety of likely cloud parameters’ settings in
four PAs. Next, an Analysis of variance (ANOVA) test has been applied to the simulation
estimates in Section 4.3.4. As a result, the strategy successfully identified the four most
influential parameters and parameters interactions on the co-residency metrics under each
PA (Section 4.5).
One of the most important findings in (Section 4.6) is that, out of many parameters that
define the [aaS cloud environment, the number of hosts is the most influential parameter
across the four PA4s. The following are the four most influential parameters and two-
parameter interactions on the co-residency probability. Number of hosts, user arrival rate,
VM average lifetime and maximum host utilization were the four most influential
parameters in First Fit and Power Save. The four most influential parameters in Next Fit
and Random were the number of hosts, the interaction of the number of clusters and VMs
per request parameters, user arrival rate and the interaction of the number of clusters and
users’ arrival rate parameters.
In addition, this thesis is the first to compare four PAs in terms of their impact on the co-

residency probability and to identify that similarity exists between First Fit and Power

129

Save, as well as between Next Fit and Random.
The proposed Influence Evaluation Strategy is hoped to help researchers to identify the

most influential parameters on the co-residency probability under different PAs.

3. For a given PA, which parameter settings reduce the co-residency probability?

Using the VMC simulator as a testbed, the four most influential parameters identified in
Chapter 4 were used in controlled experiments in Chapter 5. These simulation
experiments are aimed to explore how the most influential parameters’ settings in four
PAs could positively and negatively affect the co-residency metrics. In order to achieve
this aim, these experiments estimated the co-residency metrics in four PA4s under a wide
range of likely settings for publicly accessible [aaS clouds (Section 5.2).

Next, Pearson’s correlation analysis has been applied to study the correlation between
these parameters and the co-residency metrics. This analysis helped in identifying the
parameters’ settings that were able to reduce the co-residency probability in each PA (see
Table 5.17). Based on this finding, Section 5.4 presents evidence that VMs hosted in [aaS
clouds with a higher number of hosts are less likely to exhibit co-residency.

Further, using Next Fit in larger laaS clouds has been shown to reduce effectively, and
even eliminate, the co-residency probability. In addition, the four PAs have been
compared in their ability to reduce the co-residency probability. For instance, VMs in
IaaS clouds that use Next Fit or Random are more resilient to the reception of co-resident

VMs compared to when First Fit or Power Save are used.

4. For a given VM, what is the probability that a new co-residing VM belongs to an
attacker?

The risk of side channel attacks is magnified enormously if an honest VM is co-resided
by an attacker. Therefore, this research question investigated reducing the probability that
the next co-residing VM belongs to an attacker (i.e. the malicious co-residency
probability). Chapter 6 defined two metrics (i.e. the MCP and AFL) that describe
probabilities related to malicious co-residency and also take into account the attackers’
VM s requests ratio a. This thesis is the first to derive two approximate analytical

estimates of probabilities related to malicious co-residency in Section 6.2.

130

Then, analytical estimates of the MCP and AFL have been compared with experimental
estimates (i.e. using the VMC simulator) in four PAs under an a value of 0.10. The results
in (Table 6.4, Table 6.5, Table 6.6, and Table 6.7) show the analytical estimates, the
simulation estimates and the corresponding percentage differences. About 75% and 100%
of the obtained analytical estimates of the MCP and AFL, respectively, had percentage
differences less than 15% in the four PAs. Moreover, the mean percentage differences are
10.31% and 2.31% for the MCP and AFL, respectively. On the other hand, the MCP was
overestimated in First Fit and Power Save as shown in the percentage difference that
increased to levels that were pre-defined as not being adequate (Section 6.3). Therefore,
the derived analytical estimates were shown to agree with the experimental estimates in
Section 6.4.1.

Further, Section 6.4.2 used the derived analytical estimates to compare First Fit, Next Fit,
Power Save and Random over a wide range of a values. By comparing the PAs as «
varies between 0 to 0.99 (Table 6.8 and Table 6.9), the probability (with 95% confidence
intervals) that an honest VM u encounters a malicious co-residency hit at least once
during its lifetime (i.e. the MCP) is between 0.197 to 0.376 in Next Fit, compared to
0.270 to 0.514 in Random, 0.490 to 0.862 in First Fit and 0.487 to 0.860 in Power Save.
Thus, the aforementioned findings demonstrated that VMs hosted in IaaS clouds that use
Next Fit or Random are less likely to receive co-resident attacker VMs compared to when
First Fit or Power Save are used. The findings also suggest that the right choice of PAs
can reduce the probability of being co-resided by attackers’ VMs, which can reduce the
attack surface for side channel attacks. However, an interesting finding in Section 6.4.2
shows that a sharp rise in the latter probability is possible if attackers manage to originate

no more than 40% of the VMs requests in a given IaaS cloud.

7.2 Conclusion

With co-residency being inevitable in public IaaS clouds, adverse consequences of side

channels, brought by co-residency, are shown to affect the VMs security in multi-tenant

public IaaS clouds. Because co-residency is a necessary first step to launching side channel

attacks, this motivated this thesis to look into understanding the co-residency probability.

Based on the summary in the previous section, this thesis successfully accomplished its aim

by analysing and quantifying the influence of cloud parameters on the co-residency

probability under four commonly used PAs. These PAs are First Fit, Next Fit, Power Save

131

and Random. Out of many parameters that define the laaS cloud environment, the number of
hosts was the most influential parameter across the four PAs. In addition, the findings of this
thesis shed new light on the conditions under which the co-residency probability varies. For
instance, the co-residency probability has been shown to decrease as the number of hosts
increases in laaS clouds.

After identifying the most influential parameters, this thesis has demonstrated that
determining and employing the appropriate parameters’ settings in a given P4 can effectively
reduce the co-residency probability in public [aaS clouds. Table 5.17 lists the best
parameters’ settings in four PAs that reduced the co-residency probability.

The work presented in this thesis is a plausible blueprint for IaaS cloud providers to consider
co-residency reduction as an important selection factor for PAs and cloud settings (such as
the number of hosts). Reducing the residency probability should complement the available
countermeasures to side channel attacks (Section 2.3.3) by reducing the attack surface for

side channel attacks.

The derived analytical estimates may also be useful for IaaS cloud providers and users for

estimating the co-residency probability in various laaS cloud settings and PAs.

7.3 Limitations

Since this work has been an exploratory venture into a little-chartered territory, a number of
assumptions had to be made to answer the research questions. Therefore, this thesis
inevitably has some limitations, the most significant of which are discussed in this section.
Analyzing and quantifying the influence of cloud parameters on the co-residency probability
has been based on an attack scenario in Section 3.2. The attack scenario makes assumptions
about how an attacker places malicious VMs, and, therefore, the analysis may be invalidated
if these assumptions fail to hold. Given a victim VM u and an attacker VM v, one of the most
basic assumptions is that v co-resides with u during the latter’s lifetime. This assumption is
supported by a demonstrated co-residing technique (see Section 2.3.1.2) that target specific
and existing VMs in public [aaS clouds, but may not hold for every type of technique. One
particular type of co-residing technique for which it may not hold is when the attacker places
many replicas of VM v in random hosts hoping that VM u becomes co-resident in a later

stage. Achieving co-residency using this technique might be possible for organized attackers

132

with plentiful resources (e.g., organization-sponsored attackers). However, this co-residing
technique falls outside the scope of this thesis. Preventing this technique may require the
IaaS cloud provider to monitor and limit attackers’ ability to request a vast number of VMs.
Another fundamental assumption made is that the used co-residing technique follows an
attack model where an attacker relies ultimately on the PA’s decision when attempting to co-
reside with victim VMs. Hence, this thesis does not consider a situation where an attacker is
an insider (e.g. a system administrator) who is capable of enforcing VM placement to co-
reside with victim VMs. This type of attack, which involves cloud insiders, is shown to be
feasible in the real-world [81]. Therefore, the aforementioned limitations suggest that the
outcome of this thesis is not applicable to all kinds of attacks.

It is important to re-emphasise the fact that co-residency reduction does not prevent side

channels; it instead aims to make co-residing with VMs in public IaaS clouds more difficult.

7.4 Future Work

The possibility of employing the right cloud parameters’ settings in four commonly used PAs
to reduce the co-residency probability has been demonstrated in this thesis. Therefore,
several future directions for research emerge. For instance, analysing and quantifying the
influence of various cloud parameters on the co-residency probability in more PAs.

In addition, the co-residency probability can be used as a useful benchmark for comparing
public IaaS clouds based on how their cloud settings and PA reduce the co-residency
probability.

Another interesting line of research would be to design PAs that reduce the co-residency
probability and also take into account other important aspects, such as performance and
energy consumptions. This kind of PAs might prove to be very useful in practice. A very
recent and promising attempt was made in this context by [10], formalizing a secure PA that
prevents a specific type of co-residency (see Section 2.3.3.4).

Moreover, an increasing number of publications have compared PAs in several aspects. Such
aspects include cost reduction [37], [48], [49] and performance and energy consumptions
[40], [55], [58], [99]. This thesis is the first to compare four PAs in terms of their impact on
the co-residency probability and to identify that a similarity exists between First Fit and
Power Save, as well as between Next Fit and Random. These findings open an interesting

area for future research that involves comparing more PAs in terms of how much they are

133

likely to reduce the co-residency probability.

Another interesting line of results from the previous P4As comparison would be to establish
lower and upper bounds on the trade-off between performance and resilience to co-residency
for each PA. More precisely, finding a lower bound on each PA4’s performance and an upper
bound on the expected probability of co-residency. This would be very helpful, within the
context of this thesis, to identify the cost of using each PA to secure against side channel

attacks.

134

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

[11]

[12]

A. Alabdulhafez and P. Ezhilchelvan, “Experimenting on Virtual Machines Co-
residency in the Cloud,” in Proceedings of the 29th Annual ACM Symposium on
Applied Computing - SAC ’14, 2014, pp. 363-366.

A. Alabdulhafez and P. Ezhilchelvan, “Analyzing the Success Rate of Virtual
Machines Co-residency in the Cloud,” in Proceedings of the 6th Saudi Scientific
International Conference (SIC), 2012, pp. 164—168.

H. Aljahdali, P. Townend, and J. Xu, “Enhancing Multi-tenancy Security in the Cloud
[aaS Model Over Public Deployment,” in Proceedings of the IEEE Seventh
International Symposium on Service-Oriented System Engineering, 2013, pp. 385—
390.

Amazon EC2, “AWS | Amazon Elastic Compute Cloud (EC2),” 2014. [Online].
Available: http://aws.amazon.com/ec2/. [Accessed: 23-Oct-2014].

Amazon EC2, “FAQs: How Many Instances Can I Run in Amazon EC2?,” 2014.
[Online]. Available:
http://aws.amazon.com/ec2/faqs/#How_many instances can I run in Amazon EC2.
[Accessed: 29-Oct-2014].

J. Araujo, R. Matos, V. Alves, P. Maciel, V. Souza, R. Matias, and K. Trivedi,
“Software Aging in the Eucalyptus Cloud Computing Infrastructure,” ACM Journal on
Emerging Technologies in Computing Systems, vol. 10, no. 1, pp. 1-22, Jan. 2014.

S. F. Arnold, Design of Experiments with MINITAB. The American Statistician, 2006.

A. Aviram, S. Hu, B. Ford, and R. Gummadi, “Determinating Timing Channels in
Compute Clouds,” in Proceedings of the ACM Workshop on Cloud Computing
Security - CCSW ’10, 2010, pp. 103—108.

P. Ayers, “Securing and Controlling Data in the Cloud,” Computer Fraud and
Security, vol. 2012, no. 11, pp. 1620, 2012.

Y. Azar, S. Kamara, I. Menache, M. Raykova, and B. Shepard, “Co-Location-
Resistant Clouds,” in Proceedings of the 6th ACM Workshop on Cloud Computing
Security - CCSW ’14, 2014, pp. 9-20.

M. B. Baig, C. Fitzsimons, S. Balasubramanian, R. Sion, and D. E. Porter,
“CloudFlow: Cloud-wide Policy Enforcement Using Fast VM Introspection,” in
Proceedings of the IEEE International Conference on Cloud Engineering, 2014, pp.
159-164.

J. Banks, C. John S., B. L. Nelson, and D. M. Nicol, Discrete-event System Simulation.
Prentice Hall, 2010.

135

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

A. Bates, B. Mood, J. Pletcher, H. Pruse, M. Valafar, and K. Butler, “Detecting Co-
residency with Active Traffic Analysis Techniques,” in Proceedings of the ACM
Workshop on Cloud Computing Security Workshop - CCSW 12,2012, pp. 1-12.

G. van Belle, Statistical Rules of Thumb. John Wiley & Sons, 2011.

G. E. P. Box, J. S. Hunter, and W. G. Hunter, Statistics for Experimenters: Design,
Innovation, and Discovery. Wiley-Interscience, 2005.

J. Brodkin, “VMware Confirms Source Code Leak, LulzSec-affiliated Hacker Claims
Credit | Ars Technica,” 2012. [Online]. Available:
http://arstechnica.com/business/2012/04/vmware-confirms-source-code-leak-lulzsec-
affiliated-hacker-claims-credit/. [Accessed: 19-Oct-2014].

S. Bugiel, S. Niirnberger, T. Poppelmann, A.-R. Sadeghi, and T. Schneider,
“AmazonlA: When Elasticity Snaps Back,” in Proceedings of the 18th ACM
Conference on Computer and Communications Security - CCS ’11, 2011, pp. 389—
400.

R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya,
“CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing
Environments and Evaluation of Resource Provisioning Algorithms,” Software:
Practice and Experience, vol. 41, no. 1, pp. 23-50, Jan. 2011.

H. Casanova, “Simgrid: A Toolkit for the Simulation of Application Scheduling,” in
Proceedings of the First IEEE/ACM International Symposium on Cluster Computing
and the Grid, 2001, pp. 430-437.

R. Chiang, S. Rajasekaran, N. Zhang, and H. H. Huang, “Swiper: Exploiting Virtual
Machine Vulnerability in Third-Party Clouds with Competition for I/O Resources,”
IEEFE Transactions on Parallel and Distributed Systems, no. 1, pp. 1-10, 2014.

D. Chisnall, The Definitive Guide to the Xen Hypervisor. Prentice Hall, 2008.

H. Coolican and P. L. in P. H. Coolican, Research Methods and Statistics in
Psychology, Sixth Edition. Psychology Press, 2014.

CVE, “CVE-2007-4993 : pygrub (tools/pygrub/src/GrubConf.py) in Xen 3.0.3, When
Booting a Guest Domain, Allows Local Users with Elevated Privileges to Execute
Arbitrary Commands,” 2007. [Online]. Available:
http://www.cvedetails.com/cve/CVE-2007-4993/. [Accessed: 19-Oct-2014].

CVE, “CVE-2007-5497 : Multiple Integer Overflows in libext2fs in e2fsprogs Before
1.40.3 Allow User-assisted Remote Attackers to Execute Code,” 2007. [Online].
Available: http://www.cvedetails.com/cve/CVE-2007-5497/. [Accessed: 19-Oct-
2014].

136

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

CVE, “CVE-2010-2240 - The do_anonymous_page function in mm/memory.c in the
Linux Kernel Before 2.6.27.52, 2.6.32.x,” 2010. [Online]. Available:
http://cve.circl.lu/cve/CVE-2010-2240. [Accessed: 19-Oct-2014].

C. P. Dancey and J. Reidy, Statistics Without Maths for Psychology. Pearson/Prentice
Hall, 2007.

C. L. Dumitrescu and I. Foster, “GangSim: A Simulator for Grid Scheduling Studies,”
in Proceedings of the IEEE International Symposium on Cluster Computing and the
Grid, 2005, vol. 2, pp. 1151-1158.

A. EC2, “AWS | Amazon EC2 Dedicated Instances,” 2014. [Online]. Available:
http://aws.amazon.com/ec2/purchasing-options/dedicated-instances/. [Accessed: 09-
Nov-2014].

L. Foster and C. Kesselman, The Grid: Blueprint for a New Computing Infrastructure.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999.

S. K. Garg and R. Buyya, “NetworkCloudSim: Modelling Parallel Applications in
Cloud Simulations,” in Proceedings of the Fourth IEEE International Conference on
Utility and Cloud Computing, 2011, pp. 105-113.

M. Godfrey and M. Zulkernine, “A Server-Side Solution to Cache-Based Side-
Channel Attacks in the Cloud,” in Proceedings of the IEEE Sixth International
Conference on Cloud Computing, 2013, pp. 163—170.

I. Gorka, S. I. Mehmet, E. Thomas, and B. Sunar, “Wait a Minute! A Fast, Cross-VM
Attack on AES,” in Proceedings of the 17th International Symposium on Research in
Attacks, Intrusions and Defenses, 2014, pp. 299-319.

R. F. Gunst and R. L. Mason, “Fractional Factorial Design,” Wiley Interdisciplinary
Reviews: Computational Statistics, vol. 1, no. 2, pp. 234-244, 20009.

J. Gustedt, E. Jeannot, and M. Quinson, “Experimental Methodologies For Large-
Scale Systems: A Survey,” Parallel Processing Letters, vol. 19, no. 03, pp. 399418,
Sep. 2009.

J. O. Henriksen, “An Introduction to SLX,” in Proceedings of the 29th Conference on
Winter Simulation - WSC ’97, 1997, pp. 559-566.

W.-M. Hu, “Reducing Timing Channels with Fuzzy Time,” in Proceedings of the
IEEE Computer Society Symposium on Research in Security and Privacy, 1991, pp. 8—
20.

C. Hyser, B. Mckee, R. Gardner, and B. Watson, Autonomic Virtual Machine
Placement in the Data Center. HP Laboratories, 2007.

T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2. Boston, MA:
Springer US, 2009.

137

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Y. Jararweh, Z. Alshara, M. Jarrah, M. Kharbutli, and M. N. Alsaleh, “TeachCloud: A
Cloud Computing Educational Toolkit,” International Journal of Cloud Computing,
vol. Volume 2, no. 2, pp. 237-257, 2013.

Jenn-Wei Lin and Chien-Hung Chen, “Interference-aware Virtual Machine Placement
in Cloud Computing Systems,” in Proceedings of the International Conference on
Computer & Information Science (ICCIS), 2012, vol. 2, pp. 598—603.

E. Keller, J. Szefer, J. Rexford, and R. B. Lee, “NoHype: Virtualized Cloud
Infrastructure Without the Virtualization,” ACM SIGARCH Computer Architecture
News, vol. 38, no. 3, pp. 350-361, Jun. 2010.

G. Keramidas, A. Antonopoulos, D. N. Serpanos, and S. Kaxiras, “Non Deterministic
Caches: A Simple and Effective Defense Against Side Channel Attacks,” Design
Automation for Embedded Systems, vol. 12, no. 3, pp. 221-230, Apr. 2008.

E. Kijsipongse and S. Vannarat, “Autonomic Resource Provisioning in Rocks Clusters

Using Eucalyptus Cloud Computing,” in Proceedings of the International Conference
on Management of Emergent Digital EcoSystems - MEDES 10, 2010, pp. 61-66.

D. Kliazovich, P. Bouvry, Y. Audzevich, and S. U. Khan, “GreenCloud: A Packet-
Level Simulator of Energy-Aware Cloud Computing Data Centers,” in Proceedings of
the IEEE Global Telecommunications Conference GLOBECOM 2010, 2010, pp. 1-5.

W. Kreutzer, J. Hopkins, and M. van Mierlo, “SimJAVA: Framework for Modeling
Queueing Networks in Java,” in Proceedings of the 29th Conference on Winter
Simulation - WSC 97, 1997, pp. 483—-488.

G. Kurian, O. Khan, and S. Devadas, “The Locality-aware Adaptive Cache Coherence
Protocol,” in Proceedings of the 40th Annual International Symposium on Computer
Architecture - ISCA ’13, 2013, vol. 41, no. 3, pp. 523-534.

B. W. Lampson, “A Note on the Confinement Problem,” Communications of the
ACM, vol. 16, no. 10, pp. 613-615, Oct. 1973.

K. Le, R. Bianchini, J. Zhang, Y. Jaluria, J. Meng, and T. D. Nguyen, “Reducing
Electricity Cost Through Virtual Machine Placement in High Performance Computing
Clouds,” in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis on - SC ’11, 2011, pp. 66-72.

B. Li, J. Li, J. Huai, T. Wo, Q. Li, and L. Zhong, “EnaCloud: An Energy-Saving
Application Live Placement Approach for Cloud Computing Environments,” in
Proceedings of the IEEE International Conference on Cloud Computing, 2009, pp.
17-24.

P. Li, D. Gao, and M. Reiter, “Mitigating Access-Driven Timing Channels in Clouds
Using StopWatch,” in Proceedings of the IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 2013, pp. 1-12.

138

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

S.-H. Lim, B. Sharma, G. Nam, E. K. Kim, and C. R. Das, “MDCSim: A Multi-tier
Data Center Simulation Platform,” in Proceedings of the IEEE International
Conference on Cluster Computing and Workshops, 2009, pp. 1-9.

F. Liu, L. Ren, and H. Bai, “Mitigating Cross-VM Side Channel Attack on Multiple
Tenants Cloud Platform,” Journal of Computers, vol. 9, no. 4, pp. 1005-1013, Apr.
2014.

H. Liu, “A New Form of DOS Attack in a Cloud and its Avoidance Mechanism,” in
Proceedings of the ACM on Cloud Computing Security Workshop - CCSW 10, 2010,
pp. 65-76.

J. Liu, F. Zhao, X. Liu, and W. He, “Challenges Towards Elastic Power Management
in Internet Data Centers,” in Proceedings of the 29th IEEE International Conference
on Distributed Computing Systems Workshops, 2009, pp. 65-72.

X.-F. Liu, Z.-H. Zhan, K.-J. Du, and W.-N. Chen, “Energy Aware Virtual Machine
Placement Scheduling in Cloud Computing Based on Ant Colony Optimization

Approach,” in Proceedings of the Conference on Genetic and Evolutionary
Computation - GECCO 14, 2014, pp. 41-48.

P. M. Mell and T. Grance, “The NIST Definition of Cloud Computing,” National
Institute of Standards & Technology, Sep. 2011.

Microsoft, “Azure: Microsoft’s Cloud Platform,” 2014. [Online]. Available:
http://azure.microsoft.com/en-us/. [Accessed: 23-Oct-2014].

K. Mills, J. Filliben, and C. Dabrowski, “Comparing VM-Placement Algorithms for
On-Demand Clouds,” in Proceedings of the IEEE Third International Conference on
Cloud Computing Technology and Science, 2011, pp. 91-98.

K. Mills, J. Filliben, and C. Dabrowski, “An Efficient Sensitivity Analysis Method for
Large Cloud Simulations,” in Proceedings of the IEEE 4th International Conference
on Cloud Computing, 2011, pp. 724-731.

D. Milojic¢i¢, I. M. Llorente, and R. S. Montero, “OpenNebula: A Cloud Management
Tool,” IEEE Internet Computing, vol. 15, no. 2, pp. 11-14, Mar. 2011.

S. Naicken, A. Basu, B. Livingston, and S. Rodhetbhai, “Towards Yet Another Peer-
to-Peer Simulator,” in Proceedings of The Fourth International Working Conference

on Performance Modelling and Evaluation of Heterogeneous Networks, 2006, pp. 37—
47.

A. Nathani, S. Chaudhary, and G. Somani, “Policy Based Resource Allocation in [aaS
Cloud,” Future Generation Computer Systems, vol. 28, no. 1, pp. 94-103, Jan. 2012.

Neovise, “Public, Private and Hybrid Clouds - When, Why and How They are Really
Used,” 2013. [Online]. Available: http://www.virtustream.com/company/buzz/press-
releases/neovise-research-report. [Accessed: 13-Nov-2014].

139

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

A. Nuiiez, J. L. Vazquez-Poletti, A. C. Caminero, J. Carretero, and I. M. Llorente,
“Design of a New Cloud Computing Simulation Platform,” in Proceedings of the

International Conference on Computational Science and its Applications, 2011, pp.
582-593.

A. Nuiez, J. Fernandez, R. Filgueira, F. Garcia, and J. Carretero, “SIMCAN: A
Flexible, Scalable and Expandable Simulation Platform for Modelling and Simulating

Distributed Architectures and Applications,” Simulation Modelling Practice and
Theory, vol. 20, no. 1, pp. 12-32, Jan. 2012.

A. Nuiiez, J. L. Vazquez-Poletti, A. C. Caminero, G. G. Castaiié, J. Carretero, and I.
M. Llorente, “iCanCloud: A Flexible and Scalable Cloud Infrastructure Simulator,”
Journal of Grid Computing, vol. 10, no. 1, pp. 185-209, Apr. 2012.

D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and D.
Zagorodnov, “The Eucalyptus Open-Source Cloud-Computing System,” in
Proceedings of the 9th IEEE/ACM International Symposium on Cluster Computing
and the Grid, 2009, pp. 124-131.

S. Ostermann, K. Plankensteiner, D. Bodner, G. Kraler, and R. Prodan, “Integration of
an Event-Based Simulation Framework into a Scientific Workflow Execution
Environment for Grids and Clouds.,” in Proceedings of the Towards a Service-Based
Internet - 4th European Conference, 2011, pp. 1-13.

S. Ostermann, K. Plankensteiner, R. Prodan, and T. Fahringer, “GroudSim: An Event-
based Simulation Framework for Computational Grids and Clouds,” in Proceedings of
the Conference on Parallel Processing, 2010, pp. 305-313.

D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks and Countermeasures: The
Case of AES,” in Proceedings of the Cryptographers’ Track at the RSA Conference on
Topics in Cryptology, 2006, pp. 1-20.

D. Page, “Partitioned Cache Architecture as a Side-Channel Defence Mechanism,”
IACR Cryptology ePrint Archive, vol. 280, no. 8, pp. 10-16, 2005.

D. Page, “Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel,” JACR
Cryptology ePrint Archive, vol. 190, no. 2, pp. 14-22, 2002.

D. Page, “Defending Against Cache-based Side-channel Attacks,” Information
Security Technical Report, vol. 8, no. 1, pp. 30—44, Mar. 2003.

V. Paxson and S. Floyd, “Why We Don’t Know How to Simulate the Internet,” in
Proceedings of the 29th Conference on Winter Simulation - WSC 97, 1997, pp. 1037-
1044,

C. Percival, “Cache Missing for Fun and Profit,” in Proceedings of the BSDCan, 2005,
pp. 1-12.

140

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

N. Pitropakis, A. Pikrakis, and C. Lambrinoudakis, “Behaviour Reflects Personality:
Detecting Co-residence Attacks on Xen-based Cloud Environments,” International
Journal of Information Security, vol. 1, no. 1, pp. 1-7, Aug. 2014.

Rackspace, “Rackspace Cloud Company,” 2014. [Online]. Available:
http://www.rackspace.com/. [Accessed: 30-Oct-2014].

A. Reed, C. Rezek, and P. Simmonds, Security Guidance for Critical Areas of Focus
in Cloud Computing V3.0. Cloud Security Alliance, 2011.

T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, You, Get Off of My
Cloud: Exploring Information Leakage in Third-party Compute Clouds,” in
Proceedings of the 16th ACM Conference on Computer and Communications Security
- CCS ’09, 2009, pp. 199-212.

T. J. Rivlin, An Introduction to the Approximation of Functions. Courier Dover
Publications, 1981.

F. Rocha and M. Correia, “Lucy in the Sky Without Diamonds: Stealing Confidential
Data in the Cloud,” in Proceedings of the IEEE/IFIP 41st International Conference on
Dependable Systems and Networks Workshops (DSN-W), 2011, pp. 129—-134.

C. L. Sabharwal, “Thinking in Java,” IEEE Potentials, vol. 17, no. 3, pp. 33-37, 1998.

J. Sauro and J. R. Lewis, Quantifying the User Experience: Practical Statistics for
User Research. Elsevier, 2012.

W. Sellami, H. H. Kacem, and A. H. Kacem, “Towards a Multi-tenancy Aware Cloud
Service Composition,” in Proceedings of the 28th International Conference on
Advanced Information Networking and Applications Workshops, 2014, pp. 404—4009.

P. Sempolinski and D. Thain, “A Comparison and Critique of Eucalyptus,
OpenNebula and Nimbus,” in Proceedings of the IEEE Second International
Conference on Cloud Computing Technology and Science, 2010, pp. 417-426.

SimGrid Documentation, “SimGrid Simulator: VMs,” 2014. [Online]. Available:
http://simgrid.gforge.inria.fr/simgrid/latest/doc/group _msg VMs.html. [Accessed:
31-Oct-2014].

D. X. Song, D. Wagner, and X. Tian, “Timing Analysis of Keystrokes and Timing
Attacks on SSH,” in Proceedings of the 10th Conference on USENIX Security
Symposium, 2001, pp. 250-258.

H.J. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, K. Taura, and A. Chien, “The
MicroGrid: a Scientific Tool for Modeling Computational Grids,” in Proceedings of
the IEEE Supercomputing Conference (SC’2000), 2000, pp. 127-141.

B. B. Stone and A. Vance, “Companies Slowly Join Cloud-Computing,” The New
York Times, 18-Apr-2010.

141

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

N. Sudarsanam and D. D. Frey, “Using Ensemble Techniques to Advance Adaptive
One-factor-at-a-time Experimentation,” Quality and Reliability Engineering
International, vol. 27, no. 7, pp. 947-957, Nov. 2011.

J. Szefer, E. Keller, R. B. Lee, and J. Rexford, “Eliminating the Hypervisor Attack
Surface for a More Secure Cloud,” in Proceedings of the 18th ACM Conference on
Computer and Communications Security - CCS ’11, 2011, pp. 401-412.

V. Varadarajan, T. Kooburat, B. Farley, T. Ristenpart, and M. M. Swift, “Resource-
freeing Attacks: Improve Your Cloud Performance (at Your Neighbor’s Expense),” in

Proceedings of the ACM Conference on Computer and Communications Security -
CCS ’12,2012, pp. 281-292.

B. C. Vattikonda, S. Das, and H. Shacham, “Eliminating Fine Grained Timers in
Xen,” in Proceedings of the 3rd ACM Cloud Computing Security workshop - CCSW
11,2011, pp. 41-46.

VMware, “VMSA-2008-0008,” 2008. [Online]. Available:
http://www.vmware.com/security/advisories/ VMSA-2008-0008. [Accessed: 19-Oct-
2014].

J. Wang and M. N. Huhns, “Using Simulations to Assess the Stability and Capacity of
Cloud Computing Systems,” in Proceedings of the 48th ACM Annual Southeast
Regional Conference - ACM SE ’10, 2010, pp. 9-19.

B. Wickremasinghe, R. N. Calheiros, and R. Buyya, “CloudAnalyst: A CloudSim-
Based Visual Modeller for Analysing Cloud Computing Environments and
Applications,” in Proceedings of the 24th IEEE International Conference on
Advanced Information Networking and Applications, 2010, pp. 446—452.

Z. Wu, Z. Xu, and H. Wang, “Whispers in the Hyper-Space: High-Bandwidth and
Reliable Covert Channel Attacks Inside the Cloud,” IEEE/ACM Transactions on
Networking, vol. PP, no. 99, pp. 1-10, 2014.

F. Wuhib, R. Stadler, and H. Lindgren, “Dynamic Resource Allocation with
Management Objectives: Implementation for an OpenStack Cloud,” in Proceedings of

the 8th International Conference on Network and Service Management, 2012, pp.
309-315.

J. Xuand J. A. B. Fortes, “Multi-Objective Virtual Machine Placement in Virtualized
Data Center Environments,” in Proceedings of the IEEE/ACM International
Conference on Green Computing and Communications and International Conference
on Cyber, Physical and Social Computing, 2010, pp. 179—-188.

S. Yu, X. Gui, and J. Lin, “An Approach with Two-stage Mode to Detect Cache-based

Side Channel Attacks,” in Proceedings of the International Conference on Information
Networking 2013 (ICOIN), 2013, pp. 186—191.

142

[101] M. Zaigham, Cloud Computing: Challenges, Limitations and R&D Solutions. Cham:
Springer International Publishing, 2014.

[102] Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter, “HomeAlone: Co-residency Detection
in the Cloud via Side-Channel Analysis,” in Proceedings of the IEEE Symposium on
Security and Privacy, 2011, pp. 313-328.

[103] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-VM Side Channels and
Their Use to Extract Private Keys,” in Proceedings of the ACM Conference on
Computer and Communications Security - CCS ’12,2012, pp. 305-316.

[104] Y. Zhang and M. K. Reiter, “Diippel: Retrofitting Commodity Operating Systems to

Mitigate Cache Side Channels in the Cloud,” in Proceedings of the ACM Conference
on Computer & Communications Security - CCS '13, 2013, pp. 827-838.

143

Appendix A

VMC Simulator Implementation

A.1 Definition

This appendix describes how the VMC simulator implements the system model and the four
PAs used in this thesis (Section 3.2). The following are important preliminary definitions and
assumptions:

- The number of clusters in the system model is denoted as C

Each cluster is assigned a unique identifier 7, such that 0 <i < C
- Each cluster has a number of hosts ®
- Each host is assigned a unique identifier j, such that 0 <j < ®
- A host is available if it has an available space to accommodate a new VM
- Ahost is full if it cannot accommodate a new VM
- A cluster is available if it contains at least one available host
- A cluster is full if it does not contain any available host
- The VMC simulator implements the system model as follows:
o Clusters are ordered by their identifiers from lowest to highest
o Hosts in cluster i are ordered by their identifiers from lowest to highest
o The lowest cluster/host refers to the cluster/host with the lowest identifier
number
In addition, the attackers VMs requests rate o can be specified to the VMC simulator in order
to estimate probabilities related to malicious co-residency (see Chapter 6).
Further, the VMC defines the following 36 input parameters to describe the system model in
this thesis (Table A.1):

144

ID Parameters Description

1. Number of Clusters How many Clusters in the simulation

2. Number of Hosts of Type H1
How many Hosts of each type to be created in

3. Number of Hosts of Type H2 the simulation. Hosts will be distributed
randomly into clusters.

4. Number of Hosts of Type H3

5. Number of Hosts of Type H4

6. Number of Hosts of Type H5

7. Max Utilization for Host Type H1
A Host is Full when the hosted VMs usage of

8. Max Utilization for Host Type H2 the host's resources (CPU, memory and storage)
reaches the Max Host Utilization percentage.

9. Max Utilization for Host Type H3

10. | Max Utilization for Host Type H4

11. | Max Utilization for Host Type H5

12. | Users’ Arrival Rate Of Type Ul

13. | Users’ Arrival Rate Of Type U2 Average number of new users of each type to
be created every time unit

14. | Users’ Arrival Rate Of Type U3

15. | Users’ Arrival Rate Of Type U4

16. | Users’ Arrival Rate Of Type U5

17. | Maximum Number of Users of Type Ul

18. | Maximum Number of Users of Type U2 The maximum number of users that can run in
the simulated cloud simultaneously.

19. | Maximum Number of Users of Type U3

20. | Maximum Number of Users of Type U4

145

21. | Maximum Number of Users of Type U5

22. | Max Parallel VMs of User Type Ul

23. | Max Parallel VMs of User Type U2 The maximum number of concurrent VMs a
single user can run.

24. | Max Parallel VMs of User Type U3

25. | Max Parallel VMs of User Type U4

26. | Max Parallel VMs of User Type U5

27. | X SMALL VM Average Lifetime How long a user (on average) holds his running
VM before terminating it (in time units)

28. | SMALL VM Average Lifetime

29. | MEDIUM VM Average Lifetime

30. | LARGE VM Average Lifetime

31. | X LARGE VM Average Lifetime

32. | VMs per User Request Rate for User Type Ul How many new VM(s) to be created in each
new VMs request (on average). The number of

33. | VMs per User Request Rate for User Type U2 VMs per request must be less than or equal to
the Max Parallel VMs per User parameter.

34. | VMs per User Request Rate for User Type U3

35. | VMs per User Request Rate for User Type U4

36. | VMs per User Request Rate for User Type U5

Table A.1 The input parameters that define the VMC simulator.

In addition, the VMC produces the simulation outputs in an MS Excel file that contains five

sheets in which each shows different statistical information. In addition, a log file is

generated which displays the details of all the simulations actions and events in a text-based

format (Figure A.1).

146

| (15) Clusters Created

sts Created: Types /

==>>> H1(265) H2(247) H3(504) H4(505) H5(3479)
inutes Created

Simulator Started

In Minute (0):

Updating VMs Co-Location window time...
Performing already scheduled actions on
No scheduled actions found on this minute

E—

Created Users (3) - User Details:

User type: PU - User ID (@)

Action performed: ID (@) - User_ID (@) - Type (Create_VM) - VM Type: SMALL - VM_ID (@) Total of (2) VMs — Cluster ID (@) - Host ID (17)
Action performed: ID (@) - User_ID (@) - Type (Create_VM) - VM Type: SMALL - VM_ID (1) Total of (2) VMs - Cluster ID (1) - Host ID (27)
Action scheduled: ID (3) - User_ID (@) - Type (Create_VM) will be perfomed on Minute #(767)

User type: PU - User ID (1)

Action performed: ID (4) - User_ID (1) - Type (Create_VM) - VM Type: SMALL - VM_ID (2) Total of (1) VMs - Cluster ID (2) - Host ID (15)
Action scheduled: ID (6) - User_ID (1) - Type (Create_VM) will be perfomed on Minute #(767)

User type: PU - User ID (2)

Action performed: ID (7) - User_ID (2) - Type (Create_VM) - VM Type: SMALL - VM_ID (3) Total of (1) VMs - Cluster ID (3) - Host ID (12)
Action scheduled: ID (9) - User_ID (2) - Type (Create_VM) will be perfomed on Minute #(767)

Total of (3) new users created

In Minute (1):

Updating VMs Co-Location window time...
Performing already scheduled actions on
No scheduled actions found on this minute

R

Created Users (3) - User Details:

User type: MS - User ID (3)

Action performed: ID (1@) - User_ID (3) - Type (Create_VM) - VM Type: LARGE - VM_ID (4) Total of (2) VMs - Cluster ID (4) - Host ID (1)
Action performed: ID (1@) - User_ID (3) - Type (Create_VM) - VM Type: LARGE - VM_ID (5) Total of (2) VMs - Cluster ID (5) - Host ID (4)
Action scheduled: ID (13) - User_ID (3) - Type (Create_VM) will be perfomed on Minute #(546)

User type: PS - User ID (4)

Action performed: ID (14) - User_ID (4) - Type (Create_VM) - VM Type: LARGE - VM_ID (6) Total of (2) VMs - Cluster ID (6) - Host ID (7)
Action performed: ID (14) - User_ID (4) - Type (Create_VM) — VM Type: LARGE - VM_ID (7) Total of (2) VMs - Cluster ID (7) - Host ID (20)
Action scheduled: ID (17) - User_ID (4) - Type (Create_VM) will be perfomed on Minute #(2572)

User type: PU - User ID (5)

Action performed: ID (18) - User_ID (5) - Type (Create_VM) - VM Type: SMALL - VM_ID (8) Total of (2) VMs - Cluster ID (8) - Host ID (5)
Action performed: ID (18) - User_ID (5) - Type (Create_VM) - VM Type: SMALL - VM_ID (9) Total of (2) VMs - Cluster ID (9) - Host ID (3)
Action scheduled: ID (21) - User_ID (5) - Type (Create_VM) will be perfomed on Minute #(2572)

Total of (3) new users created

In Minute (2):

Updating VMs Co-Location window time......:veuuuns
Performing already scheduled actions on this minute
No scheduled actions found on this minute

IR

Created Users (3) - User Details:

User type: PU - User ID (6)
Artinn marfarmad:s TR (991 _ llear TR (&) _ Tuna [Frasta UM\ _ UM Tuna: GMAIL _ \M TR (181 Tatal af (9) UMc _ Cluctar TR (18) _ Hact TH (01

A NN c [b [E [F [G [H [v [J [KT €t [M T NTOT®PTQT]TRTSTTTTUTVIWTIE

0 0.000736 0.278099 0.242987 0.091605 0.192428 0.250736 0.171538 0.180757 18098 0.958124 1.408886

32
ﬂ@ R First Sheet , Second Sheet , Third Sheet | Forth Sheet / Fifth Sheet

Normal View Ready

Figure A.1 Examples of the results generated by the VMC

With regards to co-residency, the next section describes the PAs that are implemented by the

VMC simulator.

A.2 Implemented VM Placement Algorithms

Given a pool of hosts in the IaaS cloud (host 1, host 2, ..., host ®) that are distributed in
different clusters (cluster 1, cluster 2, ..., cluster C) and a sequence of VMs requests, the PAs
specify in which cluster and host a newly created VM should be placed. In case all hosts are

full, no placement takes place. The system model considers four PAs that are used in popular

147

[aaS cloud platforms including Eucalyptus [6], OpenNebula [60], Nimbus [85] and
OpenStack [98]. Based on the previous system model assumptions, the VMC simulator

implements the following PAs.

A.2.1 First Fit
First Fit places a new VM as follows:
o Placement in clusters level:
o Ifall clusters are full, then the new VM cannot be placed. Else
o Select the lowest available cluster i then go to Placement in hosts level.
o Placement in hosts level:

o Place the new VM in the lowest available host j from cluster i.

A.2.2 Next Fit
Next Fit mainly focuses on distributing the VMs equally between clusters and hosts
with the help of the following pointers:
o pointer; : Initially points to the lowest cluster (i.e. i =1).
o pointer; for each cluster i: Initially points to the lowest host that belongs to
cluster i.
Next fit places a new VM to hosts in a cyclic manner as follows:
o Placement in clusters level:
1. If all clusters are full, then the new VM cannot be placed. Else
2. If the cluster indicated by pointer; is full:
a. Move pointer; to point to the next cluster i+1, given that i+1< C.
Otherwise move it to point to the lowest cluster (i=1).
b. Repeat the Placement in clusters level.
3. Ifthe cluster indicated by pointer; is available:
a. Select cluster i for placement.
b. Move pointer; to point to the next cluster i+1, given that i+1< C.
Otherwise move it to point to the lowest cluster (i=1).

c. Go to Placement in hosts level.

o Placement in hosts level:

148

Now that an available cluster i is selected:

1. If the host indicated by pointer; is full:

a. Move pointer; to point to the next host j+1, given that j+1< .
Otherwise move it to point to the lowest host (j=1).

b. Repeat the Placement in hosts level.

2. If the host indicated by pointer; is available:
a. Place the new VM in host ;.
b. Move pointer; to point to the next host j+1, given that j+1< o.

Otherwise move it to point to the lowest host (j=1).

A.2.3 Power Save
Power Save is similar to First Fit but with a number of differences:

o Power Save puts a host to sleep mode when the host contains zero VM. A
sleep mode indicates that the host is unavailable for placing new VMs.

o Power Save reawakens a host from sleep mode to place new VMs when all the
other non-sleeping hosts are full.

o Initially: Power Save puts all hosts into sleep mode except host 1 in cluster 1.

o Upon receiving a VM placement request: Whenever a VM request is received,
Power Save checks non-sleeping hosts in all clusters if all of them are fu//
then:

= Select the lowest cluster that has a sleeping host,

= Awaken the lowest sleeping host.

Power Save places a new VM as follows:
o Placement in clusters level:
1. If all clusters are full, then the new VM cannot be placed. Else
2. Select the lowest available cluster i then go to Placement in hosts level.
o Placement in hosts level:

1. Place the new VM in the lowest available host j from cluster i.

A.2.4 Random

Random places new VMs in a rather straightforward way compared to the other

algorithms:

149

o Placement in clusters level:
1. If all clusters are full, then the new VM cannot be placed. Else
2. Select a cluster i uniformly at random. If it is fu/l, then keep selecting

random clusters until an available cluster i is found, then go to Placement

in hosts level.

o Placement in hosts level:
1. From the selected cluster i, select a host j uniformly at random. If it is fu/l

then keep selecting random hosts until an available host j is found

2. Place the new VM inj.

150

Appendix B

Designing a Fractional Factorial Experiment

B.1 Fractional Factorial Definition
Fractional factorial design is an effective experimental approach that is widely used in
industrial experiments [33]. When there are too many parameters and levels to be included in
a limited resources experiment, fractional factorial helps to construct a reduced and balanced
experiment design. Fractional factorial experiments are used in Chapter 4 to identify the top
influential parameters and interactions on the co-residency metrics in an effective way. The
basic concept of fractional factorial design is to include a subset (fraction) of the
experimental runs that only cover important parameter combinations and interactions. This is
in contrast to the full factorial experimental approach which includes all parameter
combinations. A 2-way fractional factorial design of an I'V resolution is used in Chapter 4
that ensures that the effect of a given parameter does not confound with the effects of any
other parameter and 2-parameter interactions.
Fractional factorial designs are expressed in this thesis using the following notation:
LP®
Where:
- L is the number of levels used to examine each parameter (i.e. L is always 2 in
Chapter 4),
- ris the design resolution which specifies the degree to which the effect of each
parameter confounds with the other parameters and interactions (i.e. » is chosen to
be of resolution IV),
- pis the number of parameters under investigation (i.e. eight parameters in Chapter
4), and
- s represents the size of the fraction that is selected from the original full factorial

design.

151

B.2 Designing a 2y Fractional Factorial Experiment
The aim in this section is to design a fractional factorial experiment to identify the most
influential parameters and interactions on the co-residency metrics in Chapter 4. Using the
eight parameters with two levels from Table 4.4, a full factorial experimental design that
covers all possible parameter combinations will result in 28 experimental runs. In order to
reduce the experiment size, the following steps are applied to design a 2;v** fractional
factorial experiment that uses a 214 fraction of the 28 experimental runs in the full factorial
design:

1. Starting with X1, X2, X3 and X4 as the design parameters, construct a full factorial

design of p-s parameters (i.e. 8-4 = 4) that has 2* experimental runs. These runs cover

all possible parameter combinations (Table B.1).

Run | X1 |X2 |X3 |X4

1 Low | Low | Low | Low
2 Low | High | High | High
3 High | Low | High | Low
4 High | High | Low | Low
5 High | Low | Low | Low
6 High | Low | High | High
7 Low | High | Low | High
8 High | High | Low | High
9 Low | Low | High | Low
10 | Low | High | High | Low
11 | High | High | High | Low
12 | Low | High | Low | Low
13 | High | Low | Low | High
14 | Low | Low | High | High
15 |Low | Low | Low | High
16 | High | High | High | High

Table B.1 Constructing a full factorial experiment using 4 parameters

152

Then all the possible interactions between these four parameters are added in new
columns (Table B.2). The new columns are simply the multiplication between the
interaction parameters levels. Multiplying the same level results in a High level, and

multiplying different level results in a Low level:

N
o
¥ N N N %)
]] o o]
a ¥ N) N N o) o) %) %) o)
Run [[[» X [o o o] o
— () en N — — - o o en — — — (o) —
o o o o o o o o o o o o o o o
1 Low | Low | Low | Low | High | High | High | High | High | High | Low | Low | Low | Low | High
2 High | Low | Low | Low | Low | Low | Low | High | High | High | High | High | High | Low | Low
3 Low | High | Low | Low | Low | High | High | Low | Low | High | High | High | Low | High | Low
4 High | High | Low | Low | High | Low | Low | Low | Low | High | Low | Low | High | High | High
5 Low | Low | High | Low | High | Low | High | Low | High | Low | High | Low | High | High | Low
6 High | Low | High | Low | Low | High | Low | Low | High | Low | Low | High | Low | High | High
7 Low | High | High | Low | Low | Low | High | High | Low | Low | Low | High | High | Low | High
8 High | High | High | Low | High | High | Low | High | Low | Low | High | Low | Low | Low | Low
9 Low | Low | Low | High | High | High | Low | High | Low | Low | Low | High | High | High | Low
10 High | Low | Low | High | Low | Low | High | High | Low | Low | High | Low | Low | High | High
11 Low | High | Low | High | Low | High | Low | Low | High | Low | High | Low | High | Low | High
12 High | High | Low | High | High | Low | High | Low | High | Low | Low | High | Low | Low | Low
13 Low | Low | High | High | High | Low | Low | Low | Low | High | High | High | Low | Low | High
14 High | Low | High | High | Low | High | High | Low | Low | High | Low | Low | High | Low | Low
15 Low | High | High | High | Low | Low | Low | High | High | High | Low | Low | Low | High | Low
16 High | High | High | High | High | High | High | High | High | High | High | High | High | High | High

Table B.2 Adding all the possible interactions between the 4 parameters

The remaining parameters (X5, X6, X7 and X8) are carefully substituted with
redundant high-order interactions of the first 4 parameters (i.e. 3-parameter
interactions). There are a number of standard approaches to substitute redundant
interactions with parameters in a resolution IV fractional factorial design suggested in
[15]. Resolution IV fractional factorial designs ensure that a parameter’s effect
confounds with at worst 3-parameter interactions. Therefore, 3-parameter and higher
interactions effects are not considered in identifying the influential parameters on the
co-residency metrics in Chapter 4. The basic rule to choose which 3-parameter

interactions are to be replaced with which parameter is that the effects of the

153

substituted 3-parameter interactions do not confound with the effects of the

parameters and 2-parameter interactions. Table B.3 shows that the X5, X6, X7 and

X8 parameters were substituted with the following 3-parameter interactions:

X5=X2X3X4 X6 =X1X3X4 X7=X1X2X3 X8 =X1X2X4
X7 X8 X6 X5
v v v v

N

o

¥ N N N %)

R]] o o]

un a v <+ v <+ <+ o) o) %) %) o)

o o i ”] o o o o ” o

— s en NA — — ! (o) s en — — — (o) —

o o o o o o o o o o o o o o o
1 Low | Low | Low Low High | High | High | High | High | High | Low | Low | Low | Low | High
2 High | Low | Low Low Low Low | Low | High | High | High | High | High | High | Low | Low
3 Low | High | Low Low Low High | High | Low | Low | High | High | High | Low | High | Low
4 High | High | Low Low High | Low | Low | Low | Low | High | Low | Low | High | High | High
5 Low | Low | High Low High | Low | High | Low | High | Low | High | Low | High | High | Low
6 High | Low | High Low Low High | Low | Low | High | Low | Low | High | Low | High | High
7 Low | High | High Low Low Low | High | High | Low | Low | Low | High | High | Low | High
8 High | High | High Low High | High | Low | High | Low | Low | High | Low | Low | Low | Low
9 Low | Low | Low High High | High | Low | High | Low | Low | Low | High | High | High | Low
10 High | Low | Low High Low Low | High | High | Low | Low | High | Low | Low | High | High
11 Low | High | Low High Low High | Low | Low | High | Low | High | Low | High | Low | High
12 High | High | Low High High | Low | High | Low | High | Low | Low | High | Low | Low | Low
13 Low | Low | High High High | Low | Low | Low | Low | High | High | High | Low | Low | High
14 High | Low | High High Low High | High | Low | Low | High | Low | Low | High | Low | Low
15 Low | High | High High Low Low | Low | High | High | High | Low | Low | Low | High | Low
16 High | High | High High High | High | High | High | High | High | High | High | High | High | High

Table B.3 Replacing XS5, X6, X7 and X8 parameters with 3-parameter interactions.

154

4. The final 2;v* fractional factorial experiment consists of 16 experimental runs
covering eight parameters combinations in a balanced fashion (Table B.4). Each
parameter is tested at each of its two levels in eight runs in order to increase the

validity of the results.

Run X1 X2 X3 X4 X5 X6 X7 X8

1 Low Low Low Low Low Low Low Low
2 High Low Low Low Low High High High
3 Low High Low Low High Low High High
4 High High Low Low High High Low Low
5 Low Low High Low High High High Low
6 High Low High Low High Low Low High
7 Low High High Low Low High Low High
8 High High High Low Low Low High Low
9 Low Low Low High High High Low High
10 High Low Low High High Low High Low
11 Low High Low High Low High High Low
12 High High Low High Low Low Low High
13 Low Low High High Low Low High High
14 High Low High High Low High Low Low
15 Low High High High High Low Low Low
16 High High High High High High High High

Table B.4 Final design of the 2;y"* fractional factorial experiment

155

Appendix C
Weighted Effects on the Co-residency Metrics

The results of the parameters and 2-parameter interactions Weighted Effects WEs on each of
the co-residency metrics are provided in this Appendix. These WEs are calculated under First
Fit, Next Fit, Power Save and Random. The following figures show the parameters and 2-
parameter interactions in the x-axis and the corresponding WEs in the y-axis. As per the
definition of WE in Section 4.3.4.3, the maximum WE on a given co-residency metric that
parameters and 2-parameter interactions can achieve is two.

When using First Fit as the P4 (Figure C.1), the results showed that User Arrival Rate (X4)
achieved the highest WE on the CCP metric followed by the VMs Request Rate (X8). In
addition, Users’ Arrival Rate (X4) achieved the highest WE on the HFL metric followed by
Number of Hosts (X2). However, Number of Hosts (X2) repeatedly scored the highest WE
on the CV and CA metrics.

Weighted Effect (WE) on the co-residency metrics using First Fit

2.50
2.00
k]
= 1.50
—
[
>
N
1.00
0.50
X1 X2 X3 X4 X5 X6 X7 X8 [X1*X2|X1*X3|X1*X4 X1*X5/X1*X6|X1*X7 | X1*X8
®WEonCCP | 0.12 | 0.04 | 0.70 | 2.00 | 0.05 | 0.00 | 0.46 1.26 025 | 0.21 0.00 | 0.00 [0.00 | 0.03 | 0.10
®WEonHFL | 0.18 | 1.19 | 0.00 | 1.36 | 0.27 | 0.16 | 1.00 | 0.00 | 0.14 | 0.16 | 0.00 | 0.00 | 0.00 | 0.20 | 0.00
“WE on CV 053 | 1.34 | 1.17 | 0.00 | 047 | 0.00 | 1.00 | 025 | 0.00 | 0.52 | 0.56 | 0.23 | 023 | 1.24 | 0.18
¥ WE on CA 024 | 2.00 | 049 | 094 | 0.19 | 0.35 1.20 | 0.31 0.32 1.25 0.55 | 025 | 0.22 | 0.52 0.93

Figure C.1 Weighted Effect WE on the co-residency metrics using First Fit
156

The WEs of the parameters and interactions when using Next Fit were different from the WEs
when First Fit was used (Figure C.2). The results showed that Number of Hosts (X2) scored
the highest WE on the CCP metric. However, the rest of the parameters and interactions
scored relatively smaller WEs. In addition, Number of Hosts (X2), User Arrival Rate (X4)
and VMs per Request (X8) scored the highest WEs on the HFL metric. Again, Number of
Hosts (X2) repeatedly scored the maximum WE on the CV and CA metrics. In general, 2-

parameter interactions scored more WESs on the metrics when using Next Fit compared to

First Fit.
Weighted Effect (WE) on the co-residency metrics using Next Fit
2.50
2.00
kA 1.50
-
p—
[
>
X
N 1.00
0.50
0.00 L - -
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 |XI*X2|X1*X3|X1*X4|X1*X5 X1*X6|X1*X7|X1*X8
BWEonCCP | 0.07 | 2.00 | 005 | 031 | 0.00 | 0.00 | 0.06 | 0.25 | 0.13 | 0.11 | 023 | 0.02 | 0.02 | 0.04 | 037
®WEonHFL | 089 | 1.60 | 0.00 | 1.13 [0.00 | 0.00 | 0.21 | 1.02 | 1.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 1.09
“WEonCV | 0.00 | 2.00 | 0.00 | 034 [0.00 | 0.00 | 0.00 | 0.24 | 0.00 | 0.00 | 027 | 0.00 | 0.00 | 0.00 | 035
® WEonCA | 0.26 | 200 | 0.54 | 0.19 | 000 | 0.14 | 035 | 0.18 | 024 | 035 | 0.19 | 0.13 | 0.00 | 0.54 | 0.34

Figure C.2 Weighted Effect WE on the co-residency metrics using Next Fit

When using Power Save as the PA (Figure C.3), Users’ Arrival Rate (X4) achieved the
highest WE on the CCP metric followed by the VMs per Request (X8). These two parameters
scored the highest WEs on the CCP metric when using the First Fit. In addition, Users’
Arrival Rate (X4) and Number of Hosts (X2) scored approximately similar WEs on the HFL
metric. Again, these two parameters scored the highest WEs on the HFL metric under First
Fit. Moreover, Number of Hosts (X2) scored the highest WE on the CV metric along with the
interaction of Number of Clusters (X1) and VMs Average Lifetime (X7). Finally, Number of

157

Hosts (X2) repeatedly scored the maximum WE on the CA metric. Further, VM Average

Lifetime (X7) is an important driving parameter of CA.

Weighted Effect (WE) on the co-residency metrics using Power Save
250
2.00
3 1.50
=]
=
<
>
]
2 1.00
0.50
o al 1R I 1.

Xl | X2 | X3 | X4 | X5 | X6 | X7 | X8 |XI*X2|X1*X3|X1*X4|X1*X5 X1*¥X6|X1*X7|X1*X8
=EWEonCCP | 0.10 | 0.51 | 079 | 2.00 | 0.03 | 0.03 | 0.47 | 1.28 | 0.27 | 0.08 | 0.00 | 0.02 | 0.02 | 0.03 | 0.I5
SWEonHFL | 0.14 | 1.19 | 000 | 124 | 0.16 | 0.00 | 1.00 | 0.16 | 0.25 | 0.00 | 0.15 | 0.15 | 0.00 | 0.00 | 0.00
“WEonCV | 046 | 147 | 127 | 0.00 | 0.42 | 020 | 1.00 | 0.00 | 0.00 | 0.53 | 042 | 0.00 | 0.00 | 1.28 | 032
= WEonCA | 029 | 2.00 | 0.55 | 096 | 0.19 | 028 | 1.09 | 0.00 | 0.32 | 1.10 | 0.23 | 033 | 0.00 | 0.54 | 1.02

Figure C.3 Weighted Effect WE on the co-residency metrics using Power Save

With regards to the WEs when using Random (Figure C.4), the results were similar to Next

Fit, but not quite to the same extent. In general, Number of Hosts (X2) can be seen as a

parameter with a strong influence on the metrics when Random is used as the PA. For

example, Number of Hosts (X2) scored the maximum WE on all metrics.

158

Weighted Effect (WE) on the co-residency metrics using Random

2.50
2.00
kA 150
< ‘
—
=]
>
I
N 1.00
0.50
X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 |X1*X2|X1*X3|X1*X4|X1*¥X5/X1¥X6|X1¥X7|X1*X8
®WEonCCP | 0.01 | 2.00 | 0.06 | 032 | 0.00 | 0.00 | 0.06 | 0.22 | 0.03 | 0.18 | 028 | 0.00 | 0.01 | 0.05 | 0.57
®WEon HFL | 0.00 | 2.00 | 0.00 | 025 | 0.00 | 0.00 | 0.13 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 0.00 | 0.11 | 0.11
EWEonCV | 0.00 | 2.00 | 0.00 | 034 | 0.00 | 0.00 | 0.00 | 0.16 | 0.00 | 0.00 | 020 | 0.00 | 0.00 | 0.00 | 035
= WEonCA | 023 | 200 | 057 | 0.19 | 0.00 | 0.18 | 038 | 023 | 021 | 038 | 026 | 0.18 | 0.00 | 0.56 | 0.49

Figure C.4 Weighted Effect WE on the co-residency metrics using Random

159

Appendix D
Significant 2-Parameter Interactions on the Co-residency

Metrics

Chapter 4 identified the X1*X4 and X1*X8 2-parameter interactions to have an influence on
the co-residency metrics under Next Fit and Random (Table 4.9). Examining the interaction
between parameters can significantly enhance the evaluation of their influence on the co-
residency metrics. The presence of a significant interaction indicates that the effect of one
parameter on the co-residency metrics is different at different levels of the other parameter.
Based on the results of the broad and narrow experiments (Table 4.5 and Table 4.6), 22
significant effects (i.e. p-value <0.05) on the co-residency metrics were caused by the 2-
parameter interactions (between X1*X4 and X1*X8). The following figures show the
statistically significant interaction effects on the co-residency metrics (i.e. CCP, HFL, CV
and CA) under Next Fit and Random. The figures reveal that 14 of these 2-parameter
interactions (nearly 63.6%) were able to reduce the co-residency probability (as defined in

Section 5.1) when both X4 and X8 were in low levels.

160

D.1 Significant 2-Parameter Interactions Using Next Fit (Broad-Experiment)

Interaction Plot for CCP

Users arrival rate X4

Data Means
Number of
Wiy /. clusters X1
/ —— 10
0.521 7 = 50
/
/
0.50 - v/
c /
/
(]
] i /
2 0.48 ,
/
0.46 - 7
/
/
0.44 -
-t
0.42 - : :
1 5
Users arrival rate X4
Figure D.1 Interaction plot for CCP between X1%X4
Interaction Plot for HFL
Data Means
Number of
} clusters X1
0.4+ , 7 —— 10
y —B— 50
/
/
0.3 /
/
c /
0.2 ,
/
/
/
0.1 /
/
:\.
0.0 : :
1 5

Figure D.2 Interaction plot for HFL between X1*X4

161

Interaction Plot for CV

Data Means
0.45 » Number of
s clusters X1
0.40 Y —o— 10
/ —B— 50
/
0.35 - /
/
/
e 0.301 /
© /
0 /
2 0.251 /
/
/
0.20 - /
/
/
0.15 1 Y
o
0.104 : ;
1 5
Users arrival rate X4
Figure D.3 Interaction plot for CV between X1*X4
Interaction Plot for cA
Data Means
0 00200 i - — — — — — n Number of
’ clusters X1
—— 10
0.00175 - il 50
0.00150 -
c
8 0.00125-
2 o
0.00100 -
0.00075 -
0.00050 - : :
1 5

Users arrival rate X4

Figure D.4 Interaction plot for CA between X1*X4

162

Interaction Plot for CCP

Data Means
0.56 - . Number of
/ clusters X1
| Y, —e— 10
0.54 Y —n— 50
/
0.52 - /
/
4 /
- 0.50 Y
S 0.48 /
2 0.481 , /
/
0.46 - Y
/
0.44 -
'H.
/
0.42 o
0.40 , ,
1 4
VMs per request X8
Figure D.5 Interaction plot for CCP between X1*X8
Interaction Plot for HFL
Data Means
Number of
, /- clusters X1
0.4 , P 10
Y —n— 50
/
/
0.3 /
/
c /
S /
= 0.2- 7
/
/
/
0.1+ 4
/
/
2\.
0.0 : .
1 4

VMs per request X8

Figure D.6 Interaction plot for HFL between X1*X8

163

Interaction Plot for CV

Data Means
0.45 Number of
/- clusters X1
0.40 - / —— 10
/ —m— 50
/
0.35 /
/
/
0.30 - /
& Y
]
= 0.5 '\/\
/
/
0.20 - /
/
/
0.15 1 /
4
0.104 : .
1 4
VMs per request X8
Figure D.7 Interaction plot for CV between X1*X8
Interaction Plot for CA
Data Means
0.00225 1 Number of
clusters X1
— —n
1002004 = —— 10
0.00200 .- — — . 5
0.00175 -
 0.00150
(1]
]
2 0.001251
0.00100
0.00075
0.00050 - : :
1 4

VMs per request X8

Figure D.8 Interaction plot for CA between X1*X8

164

D.2 Significant 2-Parameter Interactions Using Next Fit (Narrow-Experiment)

Mean

Interaction Plot for CCP
Data Means

0.84 1

0.82 -

0.80 -

0.78 -

0.76 -

0.74 1

0.72 -

+
.

Number of
clusters X1
15
30

Users arrival rate X4

Figure D.9 Interaction plot for CCP between X1%X4

Mean

Interaction Plot for CCP
Data Means

0.84 -

0.82 1

0.80 -

0.78 -

0.76 -

0.74 1

0.72 -

Number of
clusters X1
15
30

VMs per request X8

Figure D.10 Interaction plot for CCP between X1*X8
165

Interaction Plot for HFL

Data Means
0.40 - Number of
R clusters X1
—— 15
0.38 1 \ - 30
\
\
0.36- N
c \
g \
= 0.34- -— N —e
\
\
0.32 N
\
\
_ \
0.30 \
|]
T T
2 3
VMs per request X8
Figure D.11 Interaction plot for HFL between X1*X8
Interaction Plot for caA
Data Means
Number of
0.0018- clusters X1
—e— 15
- 30
0.0017
c
o 0.0016-
=
0.0015
0.0014+

VMs per request X8

Figure D.12 Interaction plot for CA between X1*X8

166

D.3 Significant 2-Parameter Interactions Using Random (Broad-Experiment)

Interaction Plot for CCP

Users arrival rate X4

Data Means
0.600 Number of
} clusters X1
, —— 10
0.5751 , = 50
/
/
0.550 /
/
/
c
B 0.525- d
= *\/\
/
0.500 - /
/
/
0.475- 7
1
0.450- . .
1 5
Users arrival rate X4
Figure D.13 Interaction plot for CCP between X1*X4
Interaction Plot for vy
Data Means
0.351 Number of
clusters X1
—e— 10
0.301 = 0
0.25
c
(]
L]
=
0.20
0.154
0.101

Figure D.14 Interaction plot for CV between X1%X4

167

Mean

Interaction Plot for CA
Data Means

0.00175

Number of
clusters X1
10
50

0.00150

0.00125

0.00100

0.00075

0.00050

Users arrival rate X4

Figure D.15 Interaction plot for CA between X1%X4

Mean

Interaction Plot for CCP
Data Means

0.65 |

0.60 -

Number of
clusters X1
10
50

0.55 1

0.50 -

0.45 -

0.40 -

VMs per request X8

Figure D.16 Interaction plot for CCP between X1*X8
168

Mean

Interaction Plot for HFL
Data Means

0.27 -

0.26 ~

Number of
clusters X1
10
50

0.25 -

0.24 -

0.23 -

0.22 -

0.21 -

VMs per request X8

Figure D.17 Interaction plot for HFL between X1*X8

Mean

Interaction Plot for CV
Data Means

0.351

0.30 ~

Number of
clusters X1
10
50

0.25 1

0.20 -

0.15 -

0.10 -

VMs per request X8

Figure D.18 Interaction plot for CV between X1*X8
169

Mean

Interaction Plot for CA
Data Means

0.00175

0.00150

0.00125

0.00100

0.00075

0.00050

—— — — —n

Number of
clusters X1
10
50

VMs per request X8

Figure D.19 Interaction plot for CA between X1*X8

170

D.4 Significant 2-Parameter Interactions Using Random (Narrow-Experiment)

Interaction Plot for CCP

Data Means
0.82 - Number of
/ clusters X1
0.81 - / —o— 15
/ —m— 30
0.80- /
0.79- /
c /
£ 0.78 /
[}
= 0.77 /
/
0.76 4
/
0.75 1 , /
0.74 7
0.73 1 o
T T
2 3
Users arrival rate X4
Figure D.20 Interaction plot for CCP between X1*X4
Interaction Plot for CCP
Data Means
Number of
0.82 - clusters X1
—— 15
- 30
0.80 -
g 0.78
[}
=
0.76 -
0.74 -
0.72- . .
2 3
VMs per request X8

Figure D.21 Interaction plot for CCP between X1*X8

171

Mean

Interaction Plot for CV
Data Means

0.0018+

0.0017

0.0016+

0.0015+

0.0014+

0.0013+

Number of
clusters X1
15
30

VMs per request X8

Figure D.22 Interaction plot for CA between X1*X8

172

Appendix E
VMC simulator’s Estimates of the Malicious Co-residency

Metrics

The following tables (Table E.1 and Table E.2) list the VMC simulator’s estimates for the
malicious co-residency metrics MCP and AFL. These estimates were obtained under different

numbers of hosts and users’ arrival rates with an o of 0.10 (see Section 6.2 for the definition

of a).

First Fit Next Fit Power Save Random
Number
MCP AFL MCP AFL MCP AFL MCP AFL
of Hosts
1000 0.2306 0.8382 0.3720 0.7919 0.2309 0.8436 0.3765 0.7833

10000 0.2408 0.8221 0.0416 0.9915 0.2372 0.8300 0.0648 0.9682

15000 0.2321 0.8305 0.0087 0.9997 0.3254 0.8087 0.1264 0.9769

30000 0.3182 0.8146 0.0000 1.0 0.3161 0.8151 0.1040 0.9883

Table E.1 The VMC simulator’s estimates of the malicious co-residency metrics under

different numbers of hosts with an a of 0.10

173

First Fit Next Fit Power Save Random
Users’
Arrival MCP AFL MCP AFL MCP AFL MCP AFL
Rate
2 0.3206 0.8140 0.1864 0.9581 0.3213 0.8116 0.2067 0.9329
3 0.2837 0.8386 0.2537 0.9237 0.2936 0.8351 0.2720 0.8989
4 0.2729 0.8540 0.3224 0.8821 0.2726 0.8559 0.3150 0.8708
5 0.2615 0.8623 0.3685 0.8471 0.2636 0.8648 0.3644 0.8405

Table E.2 The VMC simulator’s estimates of the malicious co-residency metrics under

different users’ arrival rates with an o of 0.10

174

Appendix F

Criteria for Selecting Simulation as a Testbed

F.1 Introduction

As pointed out in Chapter 1, this thesis takes an experimental approach to study co-residency
occurrence behaviour in [aaS clouds. Studying co-residency in large, non-transparent and
diverse laaS clouds can become a very challenging task that requires an effective testbed that
supports experimentation under different scenarios and settings. Therefore, this appendix
makes two contributions. First, a number of cloud platforms and software tools are evaluated
on their suitability as experimental testbeds to examine different aspects of co-residency.
Second, a comparison is made of different testbeds based on how they meet certain
requirements for experimenting on large-scale clouds, such as scalability and cost.

In this appendix, Section F.2 outlines the testbed selection criteria to help identify the most
suitable testbed for experiments related to co-residency. In Section F.3, a survey of a number
of the available testbeds for experimentation on co-residency is provided, followed by a
comparison and evaluation of the elected testbeds according to the selection criteria in
Section F.4. This evaluation leads to a recommendation for implementing a new VM Co-
residency (VMC) simulator in Section F.5. The VMC simulator is used in this thesis as a
testbed for research on co-residency in the cloud.

It is worth mentioning that a summary of some of the results presented in this appendix

appeared in [1].

F.2 Testbed Selection Criteria

It can be argued that there is no single or best approach for experimenting on co-residency in
the cloud. This is because too many parameters exist that need to be taken into account when
conducting the experiments. Such parameters describe cloud architecture, functional and
non-functional requirements.

The thesis’s aim (Section 1.3) requires studying co-residency in large [aaS clouds under a
variety of settings. Such settings include various cloud user volumes, an assorted number of

VMs, different numbers of hosts and clusters and, most importantly, a number of PAs.

175

Performing such an experiment in large and dynamic environments, such as [aaS clouds,
needs a testbed that meets a certain set of criteria and requirements. Meeting these
requirements helps to conduct the experiment efficiently within the limited time and
resources available. For the purpose of conducting this evaluation, it has been assumed that
the available time for experimentation on the selected testbed is six calendar months. In
addition, the research’s available resource is a small lab that consists of four mid-range
machines operated by a single researcher. The following selection criteria are set to help
choose the most suitable testbed for experiments in this thesis. The first three criteria were
inspired by [34]. On the other hand, the remaining criteria were derived from the experience
gained from previous own research [2] and were directly relevant to the needs of the type of
experiments in this thesis. The final evaluation will examine each testbed against each of the

following selection criteria:

F.2.1 Repeatable and Controllable

A repeatable experiment means that re-conducting the same experiment by the same
experimenter must produce similar results. Needless to say, being able to conduct and repeat
co-residency experiments in unpredictable environment conditions is the most important key
to achieving meaningful results. Therefore, conducting and repeating co-residency
experiments requires full control of the underlying cloud infrastructure (such as PAs, hosts

and clusters).

F.2.2 Transparent
It is necessary to have a testbed that offers a safe level of transparency to allow the
observation of different aspects of co-residency behaviours, such as detecting co-residency

hit and estimating co-residency hit probability.

F.2.3 Flexible
A flexible testbed must easily offer the ability to experiment on several cloud parameters’
settings with different levels of details and different PAs. This ability is crucial to allow the

experiment results to be generalizable.

176

F.2.4 Accessible
This criterion states that the testbed must be available and legal to use in experimental
activities. Also, the time required for downloading, deploying and mastering the testbed with

proper technical documentation defines the accessibility requirement.

F.2.5 Scalable

The co-residency experiments in this thesis need to be conducted on various scales of laaS
clouds (such as the various number of hosts, clusters and VMs). Scalability means that the
chosen testbed can accommodate the increase in the size of cloud resources while

maintaining the minimum expenditure of the research’s resources.

F.2.6 Inexpensive and Not Time-Consuming

In general, experimentation on large scale [aaS clouds requires both time and computational
resources. It is important to consider the time and budget limitations for running the
experiments on the selected testbed. Quick implementations of the experiment on the testbed,
with minimum expense, as well as an acceptable execution speed are important factors that

influence the testbed selection decisions.

F.2.7 Sufficient Reporting/Monitoring System

Large-scale experiments usually produce a vast amount of output and statistical data that are
used to analyse the results. In addition to the need for excellent reporting capabilities, the
testbed must also allow the user to monitor effectively and record all necessary actions

related to co-residency.

F.3 Available Testbeds
The experimental validation methodologies presented in [34] aim to define the best practices
to conduct sound experiments in large-scale systems. The suggested experimental
methodologies are categorized based on the type of the testbed they use. They include:

e Real-platform experiments: that is executing real applications on real platforms,

e Benchmarking: that is executing modelled applications on real platforms,

e Emulation: that is executing real applications on modelled platforms and

e Simulation: that is executing modelled applications on modelled platforms.

177

Looking at the above experimental methodologies, the real-platform and the benchmarking
experiments usually use real applications/systems as a testbed, whereas the emulation and
simulation methodologies use modelled platforms. By focusing on real-platform and
simulation methodologies, this thesis uses three different testbeds for comparison based on
the aforementioned testbed criteria:

(1) Real public IaaS clouds;

(2) Real private IaaS clouds; and

(3) Simulators.

A straightforward evaluation of the comparison between these three testbeds was conducted
to assess each testbed against each criterion. This comparison will help to select the most

suitable testbed for the experiments in this thesis.

F.3.1 Public IaaS Clouds

Public TaaS cloud providers offer users the ability to rent computing infrastructure on-
demand to cover their needs. Public IaaS clouds such as Microsoft’s Windows Azure [57],
Amazon’s EC2 [4] and Rackspace [77] allow users to run their own VMs (i.e. as servers). In
order to utilize their physical infrastructure, virtualization is used to allow physical resources
to be shared between users. Because of this, each IaaS cloud exhibits different workloads and
can vary in the underlying infrastructure and configurations.

Using public IaaS clouds as testbeds is possible, yet it shows some limitations. [79]
pioneered research uses Amazon’s EC2 as a testbed. The researchers demonstrate that it is
possible to map the internal cloud infrastructure in order to locate and co-reside with targets
(see Chapter 2 for more details). They also describe a number of attacking scenarios where a
malicious user can gather sensitive information from co-resident VMs that share the same
underlying machine using side-channel attacks. Other research, such as the AmazonlA paper
[17], have used public [aaS clouds as a testbed. In particular, the researchers in AmazonlA
have used Amazon’s EC2 to launch various crafted Amazon Image Attacks in which they
were able to collect very sensitive information (including credentials, passwords and keys).
In addition, Amazon’s EC2 also has been used as a testbed in an early stage of this thesis.
As explained in Section 2.2, available public laaS clouds, including Amazon’s EC2, are
usually accessible and easy to use with their rapid scalability. In addition, public IaaS cloud

providers normally supply documentation and how-to-use resources. However, using public

178

clouds as a testbed comes with its own expenses. The diverse varieties of uncontrollable
infrastructure configurations and settings make the use of public laaS clouds as a testbed in
this thesis an unpredictable and time-consuming task. Moreover, the pay-as-you-go nature of
the public laaS cloud and the need for conducting repeatable experiments with different
parameters’ settings would incur expenses that exceed the available resources. Furthermore,
public IaaS cloud providers, such as Amazon EC2 and Windows Azure, usually obscure the
details of their cloud infrastructure, networks and even PAs, which results in a lack of
transparency [79]. With little to no transparency, it becomes difficult to conduct testing
experiments on such platforms. This is because the testers cannot obtain the necessary
information about the cloud anatomy and the implemented P4, making the public IaaS cloud
a non-transparent and hard to control testbed. Further, this lack of control might also result in
the inability to implement a sufficient reporting system for detecting underlying events
related to co-residency. Thus, this lack of control does not support generalizing the
experiment’s results due to the use of very specific cloud architecture. In some situations, it
is also possible that extensive experimental usage might lead to a violation of the cloud’s
usage policy [4]. From what has been discussed before, this combination of limitations shows

that public IaaS clouds are thought not to be always the best testbed for this type of research.

F.3.2 Private IaaS Clouds

Private IaaS clouds, such as the open-source Eucalyptus private cloud [67] and OpenNebula
[60] offer similar functionalities as public IaaS clouds. However, there is one major
difference: private IaaS clouds are implemented in the user’s own physical infrastructure
whereas public [aaS clouds run on a third party infrastructure (see Section 2.2). This feature
of the private IaaS clouds offers more flexibility to implement and model a vast array of
possible cloud architectures. Moreover, an open-source private cloud gives the researchers
the necessary transparency to control and monitor every single event in their experiments,
which forms a good repeatable and controllable testbed. Also, private IaaS clouds have been
used as testbeds in an experimental research context for various objectives. For instance, [6]
have conducted an evaluation of software ageing effects on Eucalyptus private cloud
infrastructure. Further, other researchers have used Eucalyptus as a proof of concept of
autonomic resource provisioning in rocks clusters [43]. However, there is still a need when

using private laaS clouds for large capital investment to purchase and maintain the required

179

hardware infrastructure to conduct scalable experiments, which can sometimes exceed the

available resources for this thesis.

F.3.3 Simulators

One of the widely used testbeds in large-scale experiments is to use simulators, such as grid
simulators and cloud computing simulators, instead of using real IaaS clouds as testbeds [34].
Computer simulation refers to the actual running of a program that describes a system model,
algorithms or equations.

Continuous simulations mimic physical systems' execution at the exact rate as actual clock
time. This is in contrast to discrete-event simulation, which has a collection of state variables
that reflect the current system status [12]. These state variables can change only at discrete
instants (called events), whose sequential order describes the simulated system behaviour. A
list of some of the grid simulators and cloud computing simulators, which are related to the

experiments in this thesis, with descriptions and comparisons, is provided next.

F.3.3.1 Grid Simulators

In the area of distributed computing, grid computing is a set of distributed systems that
provide on-demand access to dependable, consistent and inexpensive hardware and software
infrastructure. Grid computing is usually used to process large amounts of non-interactive
workloads [29]. There are many multi-tier data centre simulation platforms that have been
designed to support the modelling of different hardware specifications of the common data
centres’ components. Such components include hosts, network switches and communication
links. One example of multi-tier data centre simulators is MDCSim [51]. However, grid
simulators require more advanced capabilities in order to simulate the distributed
applications' behaviour more accurately. In order to meet the demand of research and
development on grid systems, several grid simulators have been introduced. Examples of
these simulators include SimGrid [19], MicroGrid [88], GridSim [88] and GangSim [27].
Recently, SimGrid started to support a very basic interface to implement virtualization
environments. However, this interface is highly experimental as stated on the project website
and that they “...do not expect too much of it right now” [86].

Among these grid simulators, it can be argued that GridSim is the most related to co-
residency research as it has been extended to form the base of some of the current cloud

simulators [18]. Initially, GridSim was introduced as a simulator for resource modelling,

180

application scheduling and performance analysis in grid computing environments. It supports
the modelling of various application models, and it is capable of automating the task of
generating a stream of application workloads. GridSim was built upon SimJava [45], a
process-based discrete-event simulation framework implemented in Java. Since SimJava runs
a unique thread for each element in the simulation, it has been shown in [68] that SimJava
performance degrades when simulating more than 2000 grid entities concurrently. This is due
to the high consumption of memory. Since GridSim implements in the exact way in which
SimJava simulates the grids, it inherits this scalability limitation. It is important to note that
grid simulators have been designed to model comprehensively grid systems to the maximum
extent. However, none of these simulators are capable of clearly abstracting the application
layer from the virtual and physical machines layer. This type of abstraction is required when
trying to model multi-layer architecture such as the IaaS cloud. In addition, the above grid
simulators are not initially intended to model virtualized resources (i.e. VMs) [30].
Therefore, it would not be practical to use grid simulators in the co-residency experiments,

and therefore cloud simulators are instead considered as better testbeds in this thesis.

F.3.3.2 Cloud Simulators

A cloud simulator is a toolkit that models and simulates different cloud computing elements
and environments [58]. Cloud simulators are usually capable of simulating multiple clusters
and hosts. In addition, cloud simulators normally model the creation of VMs and the
placement of these VMs to hosts. Similarly, cloud simulators usually support the creation of
cloud users and the generation of different types of cloud-related events. The use of cloud
simulators can provide a higher degree of flexibility to conduct different types of
experiments on a close-to-real cloud environment. Several laaS cloud simulators are

reviewed next in order to include them in the evaluation at the end of this appendix.

(i) CloudSim

CloudSim [18] is one of the widely used IaaS cloud modelling and simulation toolkit that
was developed at the University of Melbourne, Australia. The main goal of CloudSim is to
help IaaS cloud researchers to conduct comprehensive simulation-based experiments. The
main features that CloudSim offers includes the modelling and simulation of large-scale IaaS
clouds, with configurable data centres, physical hosts, resources and virtualization

provisioning, as well as power management. With its multi-layer design framework that

181

reflects the layered architecture of real IaaS cloud environments, CloudSim was developed
using Java and was built on top of the SimJava-based grid simulator GridSim. As described
earlier, GridSim has a scalability limitation that CloudSim inherited initially. Therefore, the
developers of CloudSim decided to modify the first release of this simulator and implement a
new discrete-event management framework. This became the CloudSim core simulation
engine (Figure F.1). The new framework uses only three main threaded components, and the
remaining entities are implemented as objects. Each component in the CloudSim architecture
is implemented as a Java class that can be extended or changed to reflect certain simulation

requirements.

User code
ocihcadin onigurti
Specification Scenario Requirements Configuration

Scheduling
Policy I

User or Data Center Broker |

CloudSim

User .

Virtual
interace clouse
Structures
Services Execution Management

Cloud VM | cPU | | Memory | Storage | Bandwidth
Services isioni Allocation Allocation Allocation Allocation

Cloud Events Cloud

Resources Handling Sensor Coordinator Data Center
Network Message delay
Network Topolog Calculation

CloudSim core simulation engine

Figure F.1 CloudSim Architecture

Difficulties arise, however, when an attempt is made to simulate certain cloud environments
with specific requirements using CloudSim. Each of these different difficulties forms a
reason behind the development of many successive simulators that have been built upon
CloudSim. At least four cloud computing simulators worldwide have been adopted to extend
CloudSim in order to add new functionality or components that CloudSim is missing, such as
network latency, bandwidth simulation, SLA management, and more. For example, [39]

highlights the need to adopt an easy-to-set-up and user-friendly cloud simulator. They have
182

surveyed the available cloud simulators in the market and elected CloudSim as a base
platform for their intended research. They claim that new enhancements and extensions to
CloudSim are essential to maintaining a user-friendly cloud simulator. These extensions have
been implemented in the TeachCloud cloud simulator. TeachCloud features a new graphical
user interface (GUI) for CloudSim, as well as adding SLA management and business process
management modules on the architecture level. In addition, TeachCloud builds several cloud
network models such as VL2, BCube, Portland and DCell to model different topologies that
can be found in real cloud environments.

Moreover, a group of researchers at the Pontifical Catholic University of Rio Grande do Sul
in Brazil have introduced another cloud simulator and visual modeller based on CloudSim,
called CloudAnalyst [96]. The primary goals of CloudAnalyst are to visually model, simulate
and analyse the effects of geographic distribution of large distributed social network
applications under multiple deployment configurations in the cloud. CloudAnalyst gives
large applications’ developers helpful insights into how to effectively distribute these types
of applications. Using CloudSim as the base simulation engine, CloudAnalyst leverages
whole features of CloudSim and implements important missing functionalities.

For example, instead of spending unnecessary time on programming the simulation
environment requirements using CloudSim, CloudAnalyst provides the user with a GUI to
easily control the simulator variables. This action is expected to help the user to focus on the
environment simulation experiment. The rest of the added functionality is mainly intended to
introduce a basic network, bandwidth and latency modelling management. This allows the
user to configure the number of generated applications’ workloads, to supply some
information of the geographic distribution of the origin of the generating traffic, as well as
defining the data centres' locations. By using this detailed information, CloudAnalyst is
capable of simulating distributed applications' behaviour in the cloud. Further, CloudAnalyst
produces various graphical reports in the form of tables and charts of users’ requests response
time, requests processing time and other useful analytical data.

In addition, CloudReport [101] is another CloudSim-based cloud computing simulator
developed at the Federal University of Ceara, Brazil. Its functionalities are very similar to
CloudAnalyst, providing an easy-to-use GUI and a rich reporting module.

Similar to CloudAnalyst, yet with more architecture-level changes, NetworkCloudSim cloud
computing simulator [30] has been introduced to overcome the limitations that can be found

in CloudSim’s network layer. CloudSim's network layer views the data centre’s resources as

183

a collection of VMs, and therefore it is capable of simulating limited communications
activities between resources. The developers of NetworkCloudSim argue that CloudSim
suffers when simulating a large distributed application (such as message passing parallel
applications or multi-tier web applications hosted in different machines). The developers
state that a precise evaluation of PAs requires a more sophisticated modelling of the data
centre’s interconnection network. They also claim that they have equipped
NetworkCloudSim (Figure F.2) with the most advanced realistic application model compared
to CloudSim. Thus, the developers “... have designed a network flow model for Cloud data

centres utilizing bandwidth sharing and latencies to enable scalable and fast simulations.”

User code
Sirr.u.Jlat?on Cloud User I~ " Application |
Specification Scenario Requirements | _ Configuration_ _I
Scheduling
Policy [User or Data Center Broker ‘
CloudSim
User - —
Interface ’ Cloudlet ‘ I Virtual] ‘ Application | Application
Structures Machine Cloudlet
VM —
. Cloudlet VM Application Cloudlet
Services Execution Management Execution
Cloud VM cPU Memory Storage Bandwidth
Services Provisioning Allocation Allocation Alocation Allocation
Cloud
Events Cloud Networked
Resources| | Handling ‘ s ‘ ’ Coordinator ‘ ‘ Deta Gene! { Data Center I Retwork
Network Network Message delay
Topology Calculation

| CloudSim Discrete Event Simulation Core |

Figure F.2 NetworkCloudSim's new elements introduced to CloudSim Architecture

(ii) GreenCloud

In recent years, there has been an increasing amount of literature on energy-aware cloud data
centres. Researchers in this area have started to adopt the use of cloud simulators to
experiment with different environment-friendly PAs, to utilise the computing resources in an
energy-efficient fashion [54]. As an extension of the well-known NS2 network simulator
[38], GreenCloud was first introduced in 2010 as a packet-level simulator for energy-aware
cloud data centres [44]. Together with the workload generation and distribution which

GreenCloud offers, the simulator’s primary task is to capture precisely the energy

184

consumption readings of the data centre components (hosts, switches and links). Moreover, it
can simulate and produce the simulation results for two-tier and three-tier architectures.
GreenCloud’s core strength can be observed in its ability to model the communication
interactions of any data centre network with an extensive level of detail since it uses the NS2
to implement a full TCP\IP protocol model. However, this advantage can affect GreenCloud
by limiting its scalability due to the heavy memory requirement needed to simulate such

detailed models.

(iii) GroudSim

Similar to CloudSim, GroudSim is a Java-based discrete-event cloud simulator developed by
[69]. In contrast to CloudSim and the aforementioned cloud simulators, GroudSim is capable
of supporting the simulation of applications running on combined cloud and grid platforms.
Its developers claim that it offers better scalability and performance compared to related
process-based simulators since it uses discrete-event simulation. GroudSim presents some
basic analysis and statistics of the simulated cloud. It also supports the modelling of grid and
cloud infrastructures including network and computational resources, task scheduling, file
transfer, and cost, failure and background models. Nevertheless, GroudSim has not escaped
criticism from its developers. They state in [68] that further programming needs to be done in
order to implement a different simulation control interface from the one used in the real
cloud. This interface is expected to extend the required efforts to execute the simulation

experiments.

(iv) Koala

As a medium-scale discrete-event simulation of [aaS clouds, Koala is a project run by the
National Institute of Standards and Technology (NIST). The project aims to implement a
cloud computing simulator that serves the research on clouds in a more controllable
environment [59]. High accuracy models require the definition of many parameters and lead
to long run-times resulting in more realistic simulation results, whereas the opposite is true
for high abstraction models. Koala has been designed to simulate cloud environments with
some abstractions while maintaining a good level of model accuracy. Offering a multi-
layered architecture (Figure F.3) based on the commercial discrete-event simulation
environment SLX [35], Koala was designed to model the Amazon EC2’s architecture

through the use of Eucalyptus private cloud APIs.

185

(1) DEMAND LAYER
User User User User User User o060 User User User User
#1 #2 #3 #4 #5 #6 #n-3 #n-2 #n1 #n

s A A A

(4) INTERNET

CLOUD CONTROLLER

(3) (4) (4)
RESOURCE
ALLOCATION Cluster
cl P
Cmnu;:::#1 < E LAYER Contr(l),ljler#c- < E Cogm}::#c L u|_J
Z =z =
< < < -
) = & -
Move £ NODE CONTROLLER #p NODE CONTROLLER #q
NODE CONTROLLER ma-1 Z (2) NODE CONTROLLER om z Z
NODE COMTROL R oy = SUPPLY NODE CONTROLLER #p< | - NODE CONTROLLER so< | 1= ~—
= LR LAYER NODE CONTROLLER £3 NODE CONTROLLER #3 |
[wooE contRoLLER 22 [wooz conTroLLER 22 [WwooE conRoLLER 22
it | P L2 Ler e [T NODE CONTROLLER #1 |1
= NODERESOURCES | e rETnEs
v . -

Figure F.3 Koala architecture

Koala is capable of simulating several essential laaS cloud components, such as cloud
controller, cluster controller and host controller, where they all communicate using web
services. Initial sensitivity analyses using Koala as a testbed [58] identified the number of
cloud users, the number of clusters and number of hosts per cluster as the major parameters
that influence the simulator behaviour. Perhaps the most interesting feature of Koala (which
has a relation to co-residency’s experiments) is that it has several PAs already implemented
in the cloud controller. These PAs are Least-full First, Next Fit, First Fit, Most-full First,
Percent Allocated, Random and Tag-and-Pack. Unfortunately, NIST’s project would have
been more useful for this thesis if Koala’s developers had made this simulator available for
the researchers to use. This lack of access forms the key issue that might be a strong obstacle
that prevents considering Koala as a suitable testbed for co-residency experiments in this

thesis.

(v) iCanCloud.
Very much like the Koala simulator, the iCanCloud simulation toolkit was specifically

implemented to simulate cloud resources as if they are actually running in the Amazon

186

Elastic Compute Cloud (EC2). It can also be extended to simulate other IaaS clouds.
iCanCloud’s primary aim is “... to predict the trade-offs between cost and performance of a
given application executed in a specific hardware, and then provide users with useful
information about such costs.” [66]. Originally built upon the distributed systems simulator,
SIMCAN [65], iCanCloud adopts a multi-layer system design that models the common cloud
computing stack.

With its user-friendly GUI and the ability to generate graphical reports, iCanCloud simulator
easily allows the addition of new cloud components into its repository. Unlike the GroudSim
simulator, iCanCloud provides a POSIX-based API for modelling the simulation applications
in a much easier way. In addition, Amazon’s EC2 is the only environment which is modelled
in iCanCloud. However, perhaps the most serious disadvantage of this simulator is that it
does not provide a module to take care of creating the cloud resources. Such resources
include users, hosts, and VMs, at the start of each simulation run. Instead, it requires the use
of the provided GUI to define manually the new cloud resources parameters one by one,
which appears to be impractical when modelling a large-scale IaaS cloud environment in this

thesis.

F.4 Evaluation and Discussion

The first and foremost decision that need to be made when experimenting with co-residency
in the cloud is to select the appropriate testbed that meets the experiment’s requirements and
constraints. Whether to select a real/physical testbed or a simulator, each option is most
suitable in different scenarios and different situations. In this appendix, a number of available
testbeds for experimenting on co-residency in the cloud have been surveyed, including real
testbeds (i.e. public [aaS and private [aaS clouds) and simulators. A summary of the previous

testbeds evaluation is presented in Table F.1.

187

Criteria

Real Platforms

Simulators

Public IaaS Private IaaS Grid Cloud
Repeatable | No control on infrastructure | Full Control, runs in local infrastructure
and and PAs
Controllable
Transparent | Little to no knowledge Full transparency, runs in local infrastructure
about the infrastructure or
cloud settings
Flexible Very limited, strict usage Yes, more in open | Yes, more in open source
policies source private simulators
clouds
Accessible Yes with friendly web- Requires self- Yes when support and
based GUI and instant maintained documentation are
support infrastructure provided
Scalable Yes, adding as many Limited hardware | Limited in simulators that
resources as needed infrastructure (e.g. | use threading
expensive to add
more
hosts/machines)
Cost and Pay per use, on demand Requires investing | Possible to run
Time in physical immediately on a single
infrastructure, machine — cost is limited
takes time for to the license fee (if
deployment and required) - simulated
maintenance resources can be added
instantly with no cost
Reporting Very difficult for co- Requires implementation
residency

Table F.1 Testbeds evaluation matrix

188

Simulators are usually capable of modelling several essential laaS cloud components with
some abstractions while maintaining a good level of model accuracy. Simulators can be a
sensible option when experimenting on very large-scale and dynamic clouds when there is a
need to be able to control and monitor the simulated cloud’s behaviour. Section F.3 shows
that the aforementioned cloud simulators vary in satisfying the testbed criteria defined
earlier. One major criticism is that none of the discussed simulators implements sufficient co-
residency monitoring, detection and reporting modules. As stated in Section F.2, these
modules are critical when studying co-residency in the cloud. However, implementing these
modules into these existing simulators is not an option for closed source simulators. On the
other hand, introducing these modules to the open source simulators is possible, but requires
a considerable amount of time and effort to achieve. This task becomes more challenging
when each of the discussed simulators focuses on modelling cloud elements that are
unrelated to co-residency experiments. In addition, some simulators are platform independent
(e.g. Java-based simulators) but relatively slow in execution.

Having explored the available public and private IaaS clouds (i.e. the real testbeds) for co-
residency experiments, these testbeds usually produce more accurate results than when using
simulators, as they are “real” platforms. However, given the context of this thesis, both
public and private [aaS clouds have been shown to suffer from a number of shortcomings.
For instance, public laaS clouds are often not transparent testbeds, whereas control and
experiment repeatability are hard to achieve. Private [aaS clouds, in particular, can be an
expensive option when the experiment needs to be conducted many times on a large and
scalable cloud environment. It is worth mentioning that [34] confirms “experiments on real
platforms are often not reproducible, whereas, extensibility, applicability and revisability are
hard to achieve.”

Alternatively, satisfying all testbed criteria in this thesis can be accomplished by designing
and implementing a new simulator. This simulator solely implements the system model in
this thesis (Section 3.2) and models all the necessary behaviours of co-residency in [aaS
clouds. Implementing this new simulator is expected to support the run of this thesis’s
experiments according to the defined criteria. In fact, implementing and using a purpose-built
simulator instead of relying on an existing simulation tool has become a sensible practice for
satisfying each individual research’s requirements. For instance, [61] analysed 141 research
papers that use simulation to study large-scale peer-to-peer systems and reported that 30% of

these papers use their own custom simulation tool.

189

From the previous discussion, simulation experimentation is adopted in this thesis. In using
the system model, a purpose-built VM Co-residency (VMC) simulator was implemented that
allows modelling of co-residency behaviour using various cloud parameters’ settings and

PAs. The next section gives an overview of the VMC simulator.

F.5 VM Co-residency (VMC) Simulator

Simulating large-scale environments, such as laaS clouds, can be achieved using several
different approaches that aim to provide a controllable, transparent, accessible, scalable and
inexpensive test environment. These approaches can be categorised into two main sections:
purpose-built (i.e. for a specific use) simulators and general-purpose simulators. Purpose-
built simulators usually abstract some components of the modelled environment. On the
other hand, this type of simulator carries a very detailed implementation of other components
that are more related to the purpose for which the simulator is built [95]. The advantage of
using this approach is that the resulting simulator can be rather small in size and, therefore,
more scalable as this type of light simulator usually requires less computational resources.
However, this imposes some limitations when there is a need to change significantly the
system model by changing or adding some of the simulator’s missing components. This
challenge often involves rewriting a considerable part of the system architecture. On the
other hand, general purpose cloud simulators aim to include all possible components of the
modelled environments and all intercommunication events [64]. Perhaps the most serious
disadvantage of this kind of simulator is that sometimes they do not model enough
specifications that are usually required when attempting to conduct precise experimental
researches on particular components. In addition, this type of modelling usually results in a
large amount of simulation input parameters, which imposes an extra level of complexity
when designing the intended simulation experiment [74].

Instead, it is sometimes easier to simulate part of the whole system’s components in order to
reduce the input parameters. This in turn results in simulating more precise system
behaviours and produces more accurate responses [58]. For that reason, many distributed
systems simulators, including IaaS cloud simulators, have been purpose-built to simulate
specific system architectures or have been implemented only to study certain aspects of the
system behaviours. For example, the Koala cloud computing simulator has been specifically

designed to model the open-source Eucalyptus IaaS platform structure. Moreover, the

190

iCanCloud simulator has been specifically modelled to simulate cloud environments as
provided by the Amazon EC2 (Section F.3).

Turning now to the VMC simulator, the VMC has been designed and implemented as a
discrete event simulation-based testbed. More attention was paid especially to the provision
of comprehensive modelling of PAs, co-residency monitoring and detection as well as
sufficient reporting modules. This kind of modelling can meet the testbed section criteria
(Section F.2) for conducting experiments related to co-residency in particular in an
unprecedented fashion. The main reason that motivated the introduction of the VMC was to
design and implement a simulator that models various IaaS cloud parameters and PAs. The
VMC is expected to assess efficiently the impact of each parameter setting on the co-
residency probability. In addition, the VMC can be used as an experimentation tool to
determine the appropriate parameter settings that reduce the co-residency probability in a
given PA. The VMC has been used successfully as a testbed in this thesis and can be used for
future research related to co-residency in laaS clouds.

With regards to the VMC design, the VMC has been primarily built as a layered design
simulator using object-oriented Java programming language [82], which allowed modularity
in the design of the simulator components. This modularity helps to replace easily, reuse or
implement more details to the simulator components according to the user needs. This
includes modelling distributed clusters with multiple physical hosting machines, different
types of cloud users and multiple VMs types. More importantly, the VM C implements a
number of PAs based on the system model used in this thesis (Section 3.2). There are two
main reasons behind using layered design. The first is that the Java classes in the multi-
layered design enjoy the same module dependency. This module dependency adds an extra
level of clarity when looking at the VMC design for both simulator designers and users
compared to a flat architecture. The second is that the layered design allows a straightforward
integration of existing software and tools. Considering the scope of this thesis, the major [aaS
cloud elements that are related to this thesis are implemented in VMC (Appendix A). On the
other hand, some other non-functional elements have been excluded from the current
implementation since they are not in the focus of this thesis. Such elements include the cloud
services broker, billing management and SLA management. Fortunately, VMC modular
design, as mentioned earlier, allows the implementation of such components, if needed in the

future, easily.

191

In addition, Appendix A provides more detail on the VMC simulator design and
implementation as well as the PAs that are used in this thesis and how the ¥MC implements

them.

F.6 Summary

In this appendix, a number of cloud platforms and software tools have been examined for
their suitability as a testbed for experimental research on co-residency. These testbeds have
been categorized into real-platforms (i.e. public IaaS clouds and private laaS clouds) and
simulators. These testbeds have been selected based on their popularity, availability of
documentation and support, and whether they are applicable for experimental cloud usage.
These testbeds were evaluated against seven criteria such as their capabilities and flexibilities
in modelling an IaaS cloud, and for input control as well as output analysis. Using simulators
can be useful and more effective, especially if real testbeds (public and private laaS clouds)
are expensive or not feasible. However, the evaluation shows that none of the current
simulators can be easily utilized for co-residency related research. Therefore, a purpose-built
co-residency simulator VMC has been implemented and used as a testbed in this thesis. The
VMC simulator allows the modelling of IaaS cloud environments and also can simulate and
monitor the co-residency behaviour in more depth. It is also hoped this co-residency

simulator will form a suitable testbed that helps in advancing research on this crucial topic.

192

