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Abstract 
Public Infrastructure-as-a-Service (IaaS) cloud promises significant efficiency to businesses and 

organisations. This efficiency is possible by allowing “co-residency” where Virtual Machines 

(VMs) that belong to multiple users share the same physical infrastructure. With co-residency 

being inevitable in public IaaS clouds, malicious users can leverage information leakage via side 

channels to launch several powerful attacks on honest co-resident VMs.  

Because co-residency is a necessary first step to launching side channel attacks, this motivates 

this thesis to look into understanding the co-residency probability (i.e. the probability that a given 

VM receives a co-resident VM). This thesis aims to analyse and quantify the influence of cloud 

parameters (such as the number of hosts and users) on the co-residency probability in four 

commonly used Placement Algorithms (PAs). These PAs are First Fit, Next Fit, Power Save and 

Random. This analysis then helps to identify the cloud parameters’ settings that reduce the co-

residency probability in four PAs. Because there are many cloud parameters and parameters’ 

settings to consider, this forms the main challenge in this thesis. In order to overcome this 

challenge, fractional factorial design is used to reduce the number of required experiments to 

analyse and quantify the parameters’ influence in various settings.  

This thesis takes a quantitative experimental simulation and analytical prediction approach to 

achieve its aim. Using a purpose-built VM Co-residency simulator, (i) the most influential cloud 

parameters affecting co-residency probability in four PAs have been identified. Identifying the 

most influential parameters has helped to (ii) explore the best settings of these parameters that 

reduce the co-residency probability under the four PAs. Finally, analytical estimation, with the 

coexistence of different populations of attackers, has been derived to (iii) find the probability that 

a new co-residing VM belongs to an attacker. 

This thesis identifies the number of hosts to be the most influential cloud parameters on the co-

residency probability in the four PAs. Also, this thesis presents evidence that VMs hosted in IaaS 

clouds that use Next Fit or Random are more resilient against receiving co-resident VMs 

compared to when First Fit or Power Save are used. Further, VMs in IaaS clouds with a higher 

number of hosts are less likely to exhibit co-residency.  

This thesis generates new insights into the potential of co-residency reduction to reduce the 

attack surface for side channel attacks. The outcome of this thesis is a plausible blueprint for IaaS 

cloud providers to consider the influence on the co-residency probability as an important 

selection factor for cloud settings and PAs. 
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Chapter 1   

Introduction 
 

This chapter presents the context and motivation for this thesis. Then, the research approach, 

questions and statement are stated. Finally, the main contributions of the research and an 

overview of the thesis structure are presented. 

 

1.1 Context and Motivations 

Recent advances in cloud computing encourage businesses and organisations to host services 

and applications in third-party public clouds. A recent study on the cloud usage [63] showed 

that approximately 30% of IT organizations use public clouds such as Microsoft’s Azure [57] 

and Amazon’s EC2 [4]. These clouds provide Infrastructure-as-a-Service (IaaS) allowing 

individuals and organizations to host services on-demand, and paying just for what they have 

consumed. Businesses and governmental bodies may even use applications hosted in the 

cloud to access highly sensitive internal records. However, this rapid increase in the adoption 

rate of public IaaS cloud has resulted in the need for increased security.  

To achieve maximum utilization of their physical infrastructure, IaaS cloud providers allow 

multi-tenancy ending with co-residency. Multi-tenancy is where virtualization is used to 

enable multiple users (tenants) to share the same physical host. Co-residency is multiple co-

residing Virtual Machines (VMs) belonging to different users being hosted by the same 

physical host.  

Enabling co-residency can be cost-effective for IaaS cloud providers. However, co-residency 

has been shown to be one of the effective avenues for launching several easy-to-implement 

but powerful attacks on honest (i.e. non-attacker) co-resident VMs using side channels.  

 

1.1.1 Co-residency and Side Channel  

A side channel is a form of information leakage that arises as a result of sharing physical 

resources with other users. For example, the sharing of the CPU and memory caches, that has 

been shown by [13], [79] and many others to be a vulnerability that can be compromised to 

bypass VMs isolation. Side channel attacks in multi-tenant environments have been 

demonstrated by many researchers (see Section 2.3.2) to threaten the security of VMs, 

particularly in public IaaS clouds.  
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Researchers have introduced an increasing number of low-cost side channel attacks that can 

be launched after achieving co-residency. Using Amazon EC2 as a case study, Ristenpart et 

al’s [79] pioneer research demonstrated that side channel attacks targeting specific VMs are 

possible. They proved this after they successfully placed malicious VMs to become co-

resident with up to 40% of target VMs. Such action can have huge negative consequences for 

the honest co-resident VMs that belong to businesses and organizations. An attacker may be 

able to measure the host CPU cache usage to determine, for instance, how busy the co-

resident VM is, but this might be a smaller concern of the co-resident VM’s owner. More 

seriously, an attacker can use side channels to degrade co-resident VMs’ performance by 

more than 80% [92]. Alternatively, worse by running Denial of Service on co-residing VMs 

to block the cloud customers from accessing the compromised cloud services [53].   

Even more seriously, a co-resident attacker may be able to steal decryption and secret keys, 

such as ElGamal decryption keys [103], RSA [75] and AES [70] secret keys. Then executing 

malicious code in the host operating system [94]. Such action can result in breaches of 

privacy of the VMs running in public IaaS clouds, allowing co-resident attackers to 

eavesdrop on communications and steal sensitive data and make it public. 

The aforementioned security threat brought about by side channel attacks is amplified by the 

fact that attackers can run their malicious VMs in the cloud legitimately as long as they have 

access to the Internet and a payment method. Worse, an increasing amount of research in 

recent years has introduced new side channels [101]. Consequently, anyone who has access 

to the Internet, from any location, can attempt to co-reside and attack honest VMs, using any 

side channel they choose.  

 

1.1.2 Side Channel Attacks Countermeasures 

A public IaaS cloud uses a VM Placement Algorithm (PA) that controls where each new VM 

is placed, possibly to become co-resident with other VMs sharing the same host. Common 

practices to secure such shared environments usually include relying on virtualisation to 

ensure strong isolation between co-resident VMs so that they become unable to interfere with 

each other [9]. However, virtualized isolation that completely prevents side channels has 

been proven to be difficult to achieve. The following countermeasures address side channel 

attacks at the cloud provider side, the cloud user side and the hardware/software vendor’s 

side respectively:  



 17 

(1) Physical isolation enforcement: it can be argued that one pragmatic solution to 

mitigate side channel attacks is to disable co-residency completely. Ristenpart et al 

[79] suggested that cloud customers (businesses or governmental bodies) may 

consider running their VMs in physical isolation from other VMs. Following this 

suggestion, the Amazon EC2 cloud allows users to run dedicated VMs [28], ensuring 

that VMs belonging to each user do not share the same physical hardware with any 

other cloud users’ VMs. Although this service can effectively mitigate various side 

channels that exist in the shared hardware, significant price premiums are required for 

cloud users to use this service. It is estimated that it is 6.12 times more costly to run 

dedicated VMs compared to using regular VMs in Amazon EC2 [97]. This significant 

extra cost of the dedicated VMs diminishes its attractiveness, coupled with the fact 

that enabling co-residency is a definite choice of IaaS cloud providers due to its 

economic efficiency.  

One of the options left for protecting VMs from side channel attacks is to allow only 

other “trusted” VMs to become co-resident. If untrusted VMs become co-resident, 

then relocate the user’s VM to another host [11]. Trusted VMs, in this case, may 

include VMs that are self-owned or other trustworthy VMs. However, this requires 

enabling cloud users to audit and verify the cloud provider’s adherence to this policy, 

where the work of [102] has introduced a promising tool to help with this issue. 

 

2) Allowing the cloud user to specify where to place his VMs: Although this 

countermeasure is relatively straightforward, it does not solve the problem 

completely. In fact, it only shifts the liability to the user instead of the cloud provider 

without trying to eliminate the side channel or the side channel attacks. 

 

3) Preventing side channel vulnerabilities: This can be achieved via reducing the 

information that can be leaked by new cache hardware designs or by applying various 

blinding techniques. For example, using non-deterministic caches and cryptographic 

implementation of timing-resistant caches (see Section 2.3.3.3). However, [79] 

concluded that countermeasures that rely on preventing side channels vulnerabilities 

suffer from two major drawbacks. First, they are typically (a) impractical, for 

instance, incurring high overheads or requiring nonstandard hardware or they are (b) 
application-specific or hardware-specific. Second, these countermeasures do not, 
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ultimately, guarantee that all possible side channels have been anticipated and 

disabled, especially in the light of the increasing number of research in recent years 

that introduce new side channels.  

 

Despite the efforts being paid to VMs safeguarding against existing side channels, there 

remains a continuous potential risk of data leakage by new side channels that are yet to be 

discovered. Therefore, this opens an interesting research area to find an alternative approach 

to reduce the attack surface for side channel attacks, particularly one that does not rely on VMs 

physical isolation or side channels prevention. 

 

1.2 Thesis Aim and Approach 

Because co-residency is a necessary first step to launching side channel attacks, this motivates 

this thesis to look into understanding the co-residency probability. The co-residency 

probability is defined as the probability that a given VM receives a co-resident VM (i.e. 

honest or malicious VM) during its lifetime.  

The main aim of this thesis is to quantify and analyse the influence of cloud parameters (such 

as the number of hosts and users) on the co-residency probability under four commonly used 

PAs. These PAs are First Fit, Next Fit, Power Save and Random. This action then leads to 

identifying the influential parameters’ settings that reduce the co-residency probability in 

each PA. Reducing the attack surface for side channel attacks is one outcome of reducing the co-

residency probability. 

This thesis achieves its aim through quantitative experimental simulation and analytical 

prediction. This approach consists of four main steps:  

(1) Characterizing the co-residency occurrence behavior in IaaS clouds using co-

residency metrics, followed by  

(2) Identifying the most influential cloud parameters (such as the number of hosts, 

clusters and users) affecting co-residency probability in four PAs. To do so, the 

influence of all relevant cloud parameters is quantified.  

(3) Simulation experimentation to find the best settings of the most influential 

parameters that reduce the co-residency probability under each PA.  

(4) Analytical estimation, with the coexistence of different populations of attacker VMs, 

to find the probability that a new co-residing VM belongs to an attacker. These 

estimates help in identifying the best PAs that reduce the probability above. 
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Each of the above steps is addressed in a separate chapter that details how the step will be 

executed.  

The scope of this thesis is limited to public IaaS clouds only because the higher risk of side 

channels is usually associated with publicly accessible IaaS clouds where an attacker is able 

to fully control malicious VMs to attack co-resident VMs [79].  

1.3 Research Hypotheses and Questions 

The following two hypotheses are proposed: 

1. For a given PA, cloud parameters, such as the number of hosts and users, do not have 

the same influence on the co-residency probability in IaaS clouds.  

2. For a given VM, there is a non-zero probability that a new co-residing VM belongs to 

an attacker for any of the four PAs considered. 

 

Based on the aim above and research hypotheses, the following research questions are 

explored: 

1- How to characterise the co-residency occurrence behaviour in IaaS clouds? 

To experiment on co-residency in this thesis, the co-residency occurrence behaviour is 

characterised using four quantitative metrics (referred to as the co-residency metrics). 

Some of these characteristics include how likely a given VM u will be co-resided by 

another VM v, as well as how long this co-residency takes to occur. These metrics play a 

significant role in answering the remaining research questions, and should also be useful 

to further research on co-residency in IaaS clouds.  

 

2- For a given PA, what are the most influential cloud parameters affecting co-

residency probability?  

Modelling large-scale and dynamic environments, such as IaaS clouds, involves several 

parameters; some of them could exercise higher influence on the co-residency probability 

than others. For simplicity, this thesis focuses on the cloud parameters that have the most 

influence on the co-residency metrics. An Influence Evaluation Strategy is proposed to 

quantify the influence on the co-residency metrics across a variety of likely cloud 

parameters’ settings under four PAs. These PAs are First Fit, Next Fit, Power Save and 

Random (described in detail in Appendix A). The strategy uses fractional factorial 

designs [15] to design the experiments and applies Analysis Of Variance (ANOVA) tests 
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to identify the most influential parameters and parameters interactions on the co-

residency metrics.  

3- For a given PA, which parameter settings reduce the co-residency probability?  

The most influential parameters are used in controlled experiments to estimate the co-

residency metrics using a wide range of settings under four PAs to allow: 

(i) Identifying the best parameters’ settings where a given PA can reduce the co-

residency probability.  

(ii) Identifying any situations where selecting parameters’ settings in a given PA 

would not be able to reduce the co-residency probability. 

(iii) Identifying the best PAs, regardless of the parameters’ settings, that reduce the 

co-residency probability.  

 

4- For a given VM, what is the probability that a new co-residing VM belongs to an 

attacker? 

The risk of side channel attacks is magnified enormously if an honest VM is co-resided 

by an attacker VM. Therefore, this research question investigates reducing the malicious 

co-residency probability (i.e. the probability that the next co-residing VM belongs to an 

attacker). Two approximate analytical estimates are derived to estimate the malicious co-

residency probability with the coexistence of different populations of attackers. These 

estimates also help IaaS cloud providers to find the best PAs that can hinder attackers 

from easily achieving malicious co-residency.  

 

Each of the above research questions is addressed in a separate chapter that describes the 

approach used to answer the question, followed by a discussion of the important findings.   

The previous research questions can be summarized in the following thesis statement.  

 

1.4 Thesis Statement 

Co-residency is a necessary first step to launching several side channel attacks that have been 

shown to threaten the security of users’ VMs in public IaaS clouds. Therefore, this thesis 

looks into understanding the co-residency probability. This thesis aims to analyse and quantify 

the influence of cloud parameters (such as the number of hosts and users) on the co-residency 

probability in four commonly used PAs. These PAs are First Fit, Next Fit, Power Save and 
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Random. This analysis helps to identify the appropriate cloud parameters’ settings that reduce the 

co-residency probability in four PAs. Quantitative experimental simulation and analytical 

prediction approach are used to achieve the aim of this thesis. 

1.5 Challenges  

Studying co-residency occurrences behavior in the large, non-transparent and diverse IaaS 

clouds can become a very challenging task that requires an efficient testing methodology (i.e. 

testbed). Such a testbed must support experimentation under different scenarios and settings 

and, most importantly, a number of PAs. There is no single or best testbed that supports 

experimenting with many parameters that describe IaaS cloud architecture, functional and 

non-functional requirements. Based on the discussion in Appendix F, there are three testbeds 

that can be used for this thesis’s experiments: 

1- Public IaaS clouds 

2- Private IaaS clouds 

3- Simulators  

The above testbeds are evaluated in Appendix F for their suitability to conduct the thesis 

experiments, highlighting the limitations and advantages of each testbed. The choice of the 

testbed follows from the research aim that requires exploring the influence of various 

parameters on the co-residency metrics using different settings of IaaS clouds under four 

PAs. This evaluation nominates simulation to be a flexible and cost-effective testbed [1]. 

Therefore, simulation experimentation is adopted and the VM Co-residency simulator VMC 

was implemented and used as a testbed in this thesis. The VMC simulates the thesis’s system 

and attack models (Chapter 3) and uses the co-residency metrics to estimate different 

probabilities related to co-residency.  

Another challenge is that there are many cloud parameters and parameters’ settings to be 

included in limited resources experiments in this thesis. Therefore, fractional factorial design 

is applied that helps to construct a reduced and balanced experiment. Fractional factorial 

experiments are usually used to measure simultaneously the effects of many parameters on a 

product or process in a cost-effective way using minimal experimental runs [33].  

Also, estimating the malicious co-residency probability under various attackers ratios (i.e. the 

proportion of attacker VMs to total VMs) introduces another challenge. Exploring all likely 

attackers ratios, using simulation, is an attempt that resource and time limitations did not 
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allow. To overcome this challenge, analytical estimates are derived that take into account the 

attacker ratio (see Chapter 6).  

 

1.6 Contributions  

In the course of responding to the research questions, each chapter makes contributions to the 

field of VMs security in IaaS cloud. The main contributions of this thesis are as follows:  

First, defining four quantitative metrics to statistically characterise the probability of co-

residency occurrences. Some of these characteristics include how likely a given VM u will be 

co-resided by another VM v, as well as how long does this co-residency take to occur. While 

there has been work done in the area of co-residency, to the best of one’s knowledge this 

thesis is the first to characterise co-residency probability using quantitative metrics. These 

co-residency metrics proved to be very useful in answering the research questions in this 

thesis, and should also be useful for future research related to co-residency in IaaS clouds. 

 

Second, quantifying the influence of cloud parameters on the co-residency probability under 

four PAs (First Fit, Next Fit, Power Save and Random). This action leads to identifying the 

most influential parameters and parameter interactions on VM co-residency. A novel 

Influence Evaluation Strategy is proposed for assisting researchers to identify the most 

influential parameters on the co-residency metrics in large-scale, dynamic IaaS clouds. This 

strategy can be applied to assess the effect of varying multiple cloud parameters on the co-

residency metrics such as varying the rate at which VM requests are generated, using a 

different number of hosts and others. The Influence Evaluation Strategy identified the 

number of hosts to be the most influential cloud parameter on the co-residency probability in 

four PAs. 

Third, identifying the appropriate cloud settings in four PAs that reduce the co-residency 

probability. Reducing the co-residency probability aims to reduce the attack surface for side 

channel attacks. In order to identify the appropriate cloud settings, simulation experiments 

explored how the most influential parameters’ settings in four PAs could positively and 

negatively affect the co-residency metrics. The simulation experiments were conducted under 

a wide range of likely settings for publicly accessible IaaS clouds. The experiments present 

evidence that VMs hosted in IaaS clouds that use Next Fit or Random are more resilient against 

receiving co-resident VMs compared to when First Fit or Power Save are used. Further, VMs in 
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IaaS clouds with a higher number of hosts are less likely to exhibit co-residency. The outcome of 

this thesis is a plausible blueprint for IaaS cloud providers to consider the influence on the co-

residency probability as an important selection factor for cloud settings and PAs. 

While an increasing number of literatures have compared PAs in several aspects such as cost 

reduction [37], [48], [49] and performance and energy consumptions [40], [55], [58], [99], 

this thesis is the first to compare PAs in terms of how they affect the co-residency 

probability. 

The fourth contribution is deriving analytical estimates of the co-residency probability that 

take into account the number of attacker VMs in the IaaS cloud. These estimates can be used 

by anyone to determine analytically, with the coexistence of a given number of attacking 

VMs, the best PAs that reduce the malicious co-residency probability. That is to say that a 

new co-residing VM belongs to an attacker. Comparing First Fit, Next Fit, Power Save and 

Random PAs, the analytical estimation shows that the malicious co-residency probability 

varies widely from one PA to another. The analytical estimation shows that the right choice 

of PAs can reduce the likelihood of being co-resided by attackers’ VMs. In addition, these 

estimates are proved to compare well with the experimental estimates (i.e. using the VMC 

simulator). Therefore, the derived analytical estimates should become very useful for IaaS 

cloud providers and users for estimating the malicious co-residency probability in various 

IaaS cloud’s settings, PAs and number of attacker VMs.  

Fifth, introducing a new VM Co-residency (VMC) simulator that allows modelling of co-

residency behaviour using various cloud parameters’ settings and PAs. The VMC can be used 

as an experimentation tool for assessing the influence of cloud parameters on the co-

residency probability. The VMC simulator also allows the exploration of the appropriate 

parameter settings that reduce the co-residency probability in a given PA. The VMC has been 

used successfully as a testbed in this thesis and should also be useful in advancing future 

research related to VMs co-residency in IaaS clouds. 

 

1.7 Thesis Structure  

The remainder of this thesis consists of the following chapters: 

o Chapter 2 provides a background on cloud computing and related literature. Further, the 

chapter considers the key issues of side channels in public IaaS clouds and then explores 

common side channel attacks that can be launched against co-resident VMs. Available 
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countermeasures against side channels, including physical isolation and side channel 

vulnerabilities prevention, are shown to have some drawbacks. Therefore, this thesis 

looks into understanding the co-residency probability so that the best cloud parameters’ 

settings that reduce the co-residency probability are identified in four PAs. Co-residency 

reduction can contribute to reducing the attack surface for side channel attacks. 

o Chapter 3 begins by describing how the IaaS cloud is modelled in this thesis. Next, the 

co-residency metrics are defined to address the first research question. The co-residency 

metrics are quantitative measurements that characterise different probabilities related to 

co-residency occurrences in IaaS clouds. These co-residency metrics are used to identify 

the most influential parameters on co-residency (i.e. the second research question), as 

well as to find the best parameter settings in each PA that reduce the co-residency 

probability (i.e. the third research question). In addition, the co-residency metrics are 

used to derive analytical estimates of probabilities related to malicious co-residency (i.e. 

the fourth research question). 

 

o Using the VMC simulator as a testbed, Chapter 4 defines the Influence Evaluation 

Strategy and applies it to answer the second research question on what cloud parameters 

influence the co-residency metrics the most. Under First Fit, Next Fit, Power Save and 

Random PAs, the strategy quantifies the influence of cloud parameters on the co-

residency metrics then identifies the most influential parameters and 2-parameter 

interactions. In addition, the strategy provides useful insights that are used to compare the 

PAs in terms of their impact on the co-residency metrics. Further, the results presented in 

this chapter examine the first hypothesis put forward in Section 1.3. 

 

o Chapter 5 answers the third research question of “the parameter settings in a given PA 

that reduce the co-residency probability”. The VMC simulator is used to estimate the co-

residency metrics under four PAs using different settings of the most influential 

parameter. Pearson’s correlation analysis [14] is applied to study the correlation between 

parameters and the co-residency metrics. Then, the best parameter settings in four PAs 

that effectively reduce the co-residency probability are identified.  
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o Chapter 6 considers the probability that, for a given VM, the next co-residing VM 

belongs to an attacker (i.e. the fourth research question). Two analytical estimates of the 

malicious co-residency probability are derived and calculated. These analytical estimates 

are used to find, with the coexistence of different populations of attacking VMs, the 

probability that a new co-residing VM belongs to an attacker. The VMC simulator is used 

to validate these analytical approximations using the four PAs. The outcome of this 

validation shows an agreement between the analytical estimates and the simulation 

estimates across the four PAs. 

 

o Chapter 7 draws conclusions as to analysing and quantifying the influence of cloud 

parameters on the co-residency probability in public clouds. In addition, this chapter 

summarizes how the co-residency probability has been reduced through identifying the 

appropriate parameters’ settings in each PA. Finally, possible future work is discussed.  
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Chapter 2  

Background and Related Work  

 
2.1 Introduction 

This chapter begins by looking into cloud services and models; highlighting the crucial role 

that virtualization plays in making the cloud a cost-effective solution for businesses and 

organisations.  

In Section 2.2, virtualisation is shown to have brought a security threat to multi-tenant public 

IaaS clouds, where VMs belonging to different users share the same physical host (i.e. co-

residency).  

Section 2.3 surveys the related work on co-residency, presenting different methods for 

achieving co-residency with a target VM and the techniques used to detect successful co-

residency.  

Section 2.3.2 looks at co-residency as an attack avenue. Several easy to implement, yet 

harmful, side channel attacks that can be launched against co-resident VMs are discussed and 

shown to bring a significant threat to VMs security in the cloud.  

Available countermeasures against side channels, including physical isolation and side 

channel vulnerabilities prevention, are shown to have some drawbacks in Section 2.3.3.  

Because co-residency is a necessary first step to launching side channel attacks, 

understanding the co-residency probability (defined in Section 1.2) is identified as an 

interesting research gap in Section 2.3.3.4. Consequently, this thesis explores reducing the 

co-residency probability through the right choice of the cloud parameters’ settings in four 

PAs. Reducing the co-residency probability can contribute to reducing the attack surface for 

side channel attacks. 

 

2.2 Cloud Computing  

Recent advances in cloud computing encourage businesses and organisations to host services 

and applications in third-party public clouds. Since 2007, the term cloud has become an 

overused buzzword in the IT industry. Many definitions of cloud computing have been 

suggested from different application aspects. However, there is no agreed consensus 

definition for cloud computing. The U.S. National Institute of Standards and Technology, 

NIST, [56] provides an interesting definition that specifies essential characteristics of cloud 
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computing and delivery and deployment models as well. This definition is quoted as follows: 

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand network 

access to a shared pool of configurable computing resources (e.g., networks, servers, storage, 

applications, and services) that can be rapidly provisioned and released with minimal 

management effort or service provider interaction.” 

The following sections outline three service models, four deployment models as suggested in 

[56] and then look into technical aspects of cloud computing related to this thesis. 

 

2.2.1 Cloud Service Models 

Based on the delivery mechanism, cloud services are categorized into three major models: 

software, platform and infrastructure.  

2.2.1.1 Software as a Service (SaaS) 

In this model, the cloud user is given the ability to use certain applications hosted in a 

cloud infrastructure. These applications are normally accessible through a web 

browser. What is unique about this model is that cloud users are unable to control or 

manage the application configurations or the underlying cloud physical infrastructure 

including network, servers and operating systems.  

2.2.1.2 Platform as a Service (PaaS) 

Unlike the SaaS model, the users in this model can deploy applications, services and 

tools onto the cloud infrastructure given that the provider supports them. Although 

the users usually have control over the deployed application’s configurations and 

settings, they are still unable to manage or control the underlying cloud infrastructure 

including network, servers and operating systems.  

2.2.1.3 Infrastructure as a Service (IaaS)  

In this model, more capabilities are given to the cloud users. Among these capabilities 

is the provisioning of essential computing resources including processing, networks, 

and storage. The cloud user can deploy and run any operating systems and 

applications using dedicated and self-controlled VMs that are allocated into 

virtualised hosts using VM Placement Algorithms (PAs).  

Based on a comparison between the previous cloud service models, a cloud service is 

assumed to become more vulnerable as more capabilities are given to the users. 
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2.2.2 Cloud Deployment Models  

Based on the usage scopes, cloud infrastructure can be deployed in different fashions. The 

following are the four primary cloud deployment models:  

2.2.2.1 Private Cloud 

The cloud infrastructure in this model can be used exclusively by a single 

organization. The entire infrastructure may be self-owned and managed by the 

organization or outsourced to a third party irrespective of whether the cloud 

infrastructure is hosted on or off the premises. 

2.2.2.2 Community Cloud 

The cloud infrastructure in this model can be used exclusively by a specific 

community of users from organizations that share specific concerns such as security 

and compliance requirements. The entire infrastructure may be owned and managed 

by one or more of the community organizations or outsourced to a third party 

irrespective of whether the cloud infrastructure is hosted on or off any of the 

organisations’ premises. 

2.2.2.3 Public Cloud  

The cloud infrastructure in this deployment model is open for public use. The entire 

infrastructure is owned and managed by third-party providers and hosted on their 

premises. What is unique about this deployment model is that it is publicly accessible, 

and any user with access to the Internet and a payment method can legitimately use 

the cloud. 

2.2.2.4 Hybrid Cloud  

The cloud infrastructure in this deployment model is a combination of two or more 

cloud deployment models (private, community, or public).  

 

2.2.3 Technical Aspects  

The following are essential technical characteristics that are used in the cloud to support 

specific functional and economical requirements.  
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2.2.3.1 Virtualization 

Virtualization is an essential characteristic of cloud computing and helps to deliver 

the value of cloud computing. Virtualization is a technology that separates physical 

infrastructures to create various “virtual” dedicated resources. Virtualization allows 

the running of multiple operating systems and applications, using VMs, on the same 

physical host concurrently [63].  

2.2.3.2 Multi-tenancy  

Virtualization can effectively maximize the utilization of physical resources if multi-

tenancy is enabled, which is sharing of physical resources between multiple users (i.e. 

co-residency). Moreover, multi-tenancy brings an important economic benefit to 

cloud providers through sharing operating expenses between users in order to provide 

cost-effective cloud services.  

2.2.3.3 Security 

Although cloud computing has its advantages, it also comes with new threats. Before 

the cloud era had begun, data and applications were only deployed in the users’ own 

infrastructure inside their premises, and, therefore, the users’ data could be under 

their control and supervision and physically secured. On the other hand, exporting 

applications and data to a third-party cloud brings several threats to confidentiality, 

integrity and availability [78]. 

Among all the possible threats in the cloud environment, this thesis focuses on a threat 

brought by multi-tenancy (i.e. co-residency). Although enabling multi-tenancy can be cost-

effective for public IaaS cloud providers, the following sections show that co-residency is 

one successful avenue for launching several easy-to-implement and powerful attacks on 

honest co-resident VMs using side channels.  

 

2.3 Related Literature  

As mentioned in Section 1.2, the scope of this thesis is limited to public IaaS clouds only. 

This is because the higher risk of side channels is usually associated with publicly accessible 

IaaS clouds where an attacker is able to fully control malicious VMs to attack co-resident 

VMs.  
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Public cloud services provide IaaS allowing individuals and organizations to run and control 

VMs, and paying only for what they have consumed. Examples of public cloud services 

include Microsoft’s Azure [57] and Amazon’s EC2 [4]. In order to achieve maximum 

utilization of their physical infrastructure, cloud providers allow multi-tenancy [84], ending 

with many co-resident VMs sharing the same underlying physical infrastructure (e.g. host 

CPUs and memory). Common practices to secure such shared environments usually include 

ensuring strong isolation between co-resident VMs so that they become unable to interfere 

with each other. In addition, each VM should be unaware of other VMs running in the same 

physical host [9]. However, co-residency can lead to a risky situation where an attacker VM 

ends up residing on the same physical host with victim VM(s). An attacker’s co-residency 

with a victim VM gives an opportunity to launch several possible harmful attacks using side 

channels [103]. The next sections discuss related literature on co-residency, followed by a list 

of various types of side channel attacks and the available countermeasures, leading to 

identifying the research gap addressed by this thesis. 

 

2.3.1 Co-residency  

A number of research publications discuss different aspects of co-residency, where 

preliminary work on identifying co-residency as an existing threat in public IaaS clouds was 

undertaken by [79]. Their work demonstrates that the co-residency imposes a risk on 

sensitive services and data hosted in third-party public IaaS clouds. Their study was 

conducted in order to answer the following concrete questions: 

1- Is it possible to determine where in the cloud a VM is hosted (located)?  

2- Is it possible to determine whether two VMs are co-resident on the same physical 

host?  

3- Is it possible to place a malicious VM to be co-resident with a victim VM? 

4- Is it possible for an attacker to launch attacks that use side channels against co-

resident VMs?  

Using Amazon EC2 as a case study, researchers have shown that the answer to these four 

questions is “yes”. They demonstrated this by mapping Amazon EC2’s internal cloud 

infrastructure in order to locate where specific targeted VMs are likely to reside. Then, 

malicious VMs are launched until one or more of these VMs become co-resident with the 

targeted VMs. In addition, several scenarios, where an attacker can launch variant side 

channel attacks to collect sensitive information from co-resident VMs, were demonstrated. 



 31 

The authors claim that the method that they applied to achieve co-residency helped to co-

reside with up to 40% of the target VMs.  

The methods to achieve co-residency discussed next are related to the work done in the 

Amazon EC2 by [79]. Their method consists of the following three steps:  

-  Locating victim VMs (cloud cartography),  

-  Malicious VMs Placement,  

-  Co-residency detection and then launching side channel attacks against co-resident 

VMs. 

 

2.3.1.1 Locating Victim VMs (Cloud Cartography)  

In order to locate a specific target VM, the EC2 cloud’s internal physical 

infrastructure is mapped using the DNS services to resolve public DNS names to 

public IPs. Then, available network tools, such as nmap, hping and wget can be used 

to map each public IP to its private IP equivalent inside the EC2 cloud. This mapping 

process can provide a better understanding of how the cloud infrastructure is 

constructed. 

 

2.3.1.2 Co-residing Techniques 

Achieving co-residency with a particular victim in Amazon’s EC2 requires a good 

understanding of the cloud infrastructure, how the network addresses are assigned to 

each VM and the used PA. The following co-residing techniques have been applied to 

achieve targeted co-residency using the Amazon EC2’s cloud cartography that was 

constructed in the previous step:  

 

• Brute-force  

Using the cloud cartography, it is possible to determine roughly in which zone, in 

Amazon EC2, the targeted VMs are, allowing the attacker to create as many VMs 

as possible in the same zone. The authors claim that they achieved an average of 

8.4% successful co-residencies with a set of target VMs using brute-force. 

 

• Placement Locality Abuse 

Using Amazon’s EC2, the authors prove that VMs created with small time gaps 

are more likely to be placed in the same host. The placement locality abuse 
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technique involves detecting when the victim VMs are launched, then 

immediately creating malicious VMs with the hope that the PA will place them in 

the same host as the target(s). Abusing the placement locality allowed the 

malicious VMs to co-reside with 40% of the target VMs.  

 

2.3.1.3 Detecting Co-residency  

Co-residency detection through side channels was first exposed by [79]. After placing 

many malicious VMs in different hosts, the attacker must check whether the target 

victim VMs and any of the attacker’s VMs are co-resident or not. This can be 

achieved using one of the following co-residency detection checks:  

 

• Matching Dom0 IP (Xen-specific) 

Dom0 is a special-privileged process created in hosts that run Xen virtualization 

[21]. One of the Dom0 main jobs is to manage traffic routing between the co-

resident VMs. This co-residency detection check uses the network command 

(trace route) to trace network packets that are sent to a victim VM, 

comparing if the: 

 

First hop = attacker’s VM’s Dom0 IP address 

Last hop = victim VM’s Dom0 IP address 

 

The victim VM and the attacker’s VM are in the same host (i.e. co-resident) if the 

victim VM’s Dom0 IP address matches the attacker VM’s Dom0 IP address. 

However, this method is specific to hosts that run Xen virtualization. Also, it 

assumes that the Dom0 process responds to traceroute commands. Bates et al [13] 

state that this co-residency detection check is no longer applicable in Amazon 

EC2.  

 

• Network Packet Round Trip Times 

One of the simplest and easiest ways to detect co-residency is by measuring the 

travel time of network packets sent from an attacker VM to a victim VM and then 

to compare it with the time the same packet takes to reach other VMs that reside 

in other hosts. Ristenpart et al demonstrated that it was possible to predict the co-
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residency of two VMs if the packet round trip time is lower when sent to a co-

resident victim VM [79]. 

 

• Non-network Based Co-residency Checks 

It is possible for the IaaS cloud providers to disable the use of all network tools 

offered to the cloud users. In this case, other non-network based co-residency 

checks that use side channels are presented in a number of papers. For instance, 

[79] demonstrated that an attacker can send a heavy load (e.g. HTTP requests) to 

the target VM and can observe the CPU load of the attacker VM’s host. If the 

CPU load has increased, then this a sign that the attacker VM shares the same host 

with the target VM. Other side channel co-residency detection checks include 

using cache-based side channel attacks [100] and using Active Traffic Analysis 

[13]. 

Once an attacker succeeds in achieving and detecting a co-residency with a victim VM, 

various possible side channel attacks can be launched to collect sensitive information about 

the victim VM as shown next. 

   

2.3.2 Side Channel Attacks 

A side channel is a well-known security threat in multi-tenant systems. With a history that 

goes back to 1972 [47], the threats of side channels are frequently present in systems where 

users share physical resources, such as memory, network bandwidth and CPU caches. 

A side channel is a form of information leakage that arises as a result of sharing physical 

resources with other users. For example, sharing of the CPU and memory caches has been 

shown by [13], [79] and many others to be a vulnerability that can be compromised to bypass 

VMs isolation.  

Side channel attacks in multi-tenant environments have been demonstrated by many 

researchers to threaten the security of VMs, particularly in public IaaS clouds [8].  

Researchers and hackers alike have introduced an increasing number of low-cost side 

channel attacks that can be launched after achieving co-residency [16], [23], [24], [25]. Using 

Amazon EC2 as a case study, Ristenpart et al’s pioneering research demonstrated that side 

channel attacks are possible. Ristenpart et al proved this possibility after they successfully 

placed malicious VMs to become co-resident with up to 40% of target VMs [79]. Such 

actions can have huge negative consequences for the honest co-resident VMs.  
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Examples of these side channel attacks include: 

• Key leakage such as extracting RSA [75] and AES [33] secret keys.  

In addition, the researchers in [103] have been able to extract ElGamal decryption 

keys form a co-resident VM. They demonstrated this attack using the classic 

Prime+Probe technique presented in [70]. The first step of this technique involves 

priming the CPU cache (data or instruction) by accessing a certain range of addresses 

that cause the cache to become full. The attacker then yields the CPU, which in turns 

allows the victim VM to evict some of the attacker’s data or instructions from the 

cache. Immediately, the attacker preempts the victim and starts probing the cache 

again by accessing a certain range of addresses that cause the cache to become full. 

At this stage, the attacker can measure the time taken for each cache access in order 

to determine which cache lines were replaced by the victim. This action allows the 

attacker to learn some information about the addresses that have been accessed by the 

victim. By studying how standard libraries implement the private ElGamal decryption 

key, the researchers show that monitoring the victim’s repeated exponentiations for a 

few hours allows the attacker to reconstruct the 457-bit private exponent of a 4096-bit 

modulus. 

Secret keys leakage can result in breaches of privacy of the VMs running in public 

IaaS clouds, allowing co-resident attackers to eavesdrop on communications and steal 

sensitive data and make it public. 

• Running Denial of Service (DOS) on a co-resident VM, blocking the compromised 

VM’s owners and users from access. The researchers in [53] have introduced a new 

form of DOS attack in IaaS clouds where they map the cloud network topology to 

identify and starve an uplink bottleneck of a victim VM. The attack requires co-

residing with a victim VM as well as allocating other attacker’s VMs into enough 

hosts within the same subnet. Then the attacking VMs are used to flood the uplink to 

the victim VM with high UDP traffic. The immediate side effect of this attack is 

starving other important TCP sessions of the victim VM as a result of the TCP 

congestion avoidance mechanisms.  

• Exploiting a heap buffer overflow to execute malicious code in the host operating 

system [94]. 

• Determining web traffic rates. Side channel load measurement can be used to 

estimate the number of web visitors to a co-resident VM, or even the most frequently 
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visited pages. This information might be damaging if, for example, the co-resident 

VM belongs to a corporate competitor. The researchers in [79] were able to estimate 

the HTTP traffic rates to a co-resident VM using load measurement technique. This 

technique involves performing cache load measurements while sending different rates 

of HTTP requests to the victim VM. This action will allow the attacker to correlate 

between traffic rates to the victim VM and load samples. Although this type of 

information may sound harmless, it can be used to work out targeted VMs activity 

patterns and peak trading times for maximum Denial of Service effect.  

• Performance-Degrading attacks such as the Swiper attack [20] and the Resource-

freeing attack that was demonstrated to degrade co-resident VMs’ performance by 

more than 80% [92]. 

• Gathering sensitive information via side channels as demonstrated in Amazon EC2 

by [79] and included: 

– Non-network based co-residency detection (see Section 2.3.1.3).  

– Measuring the CPU cache usage of the targeted VMs to determine, for 

instance, how busy the VMs are.  

– Exploiting the memory bus as a high-bandwidth side channel for data 

transmission [97]. 

• Keystroke timing: stealing SSH passwords from co-resident VMs as shown by [87] 

and [36]. 

• Several application-specific side channels that have been reported to allow 

attacking VMs to exploit co-resident VMs isolation. For instance, attackers were able 

to steal and leak the VMware ESX hypervisor source code [16]. Because the 

hypervisor is responsible for controlling the traffic between co-resident VMs, this 

source code leakage potentially allows the attackers to find ways to eavesdrop on co-

resident VMs. Another vulnerability in Xen-based clouds has been reported that 

allows a guest VM to execute arbitrary commands in the hypervisor [23]. Moreover, a 

number of integer overflow vulnerabilities have been reported to affect the e2fsprogs 

packages (these packages contain a number of utilities for ext2 and ext3 file systems 

in Linux). An attacker can target a VM by –remotely- tricking the VM’s owner into 

opening a malicious file in order to execute arbitrary code with the same permissions 

as the victim. Worse, an attacker can gain access to other virtualized hosts by 

exploiting this vulnerability as shown in [24] and [25]. 
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The aforementioned security threats brought about by side channel attacks is amplified by the 

fact that attackers can run their malicious VMs in the cloud legitimately as long as they have 

access to the Internet and a payment method. In addition, an increasing amount of research in 

recent years introduces new side channels [101]. Therefore, anyone who has access to the 

Internet, from any location, is able to attempt to co-reside and attack honest VMs, using any 

side channel they choose.  

 

2.3.3 Inhibiting Side Channel Attacks  

Public IaaS clouds use a PA that controls where each new VM is placed, possibly to become 

co-resident with other VMs sharing the same host. Common practices to secure such shared 

environments usually include relying on virtualisation. Virtualisation ensures strong isolation 

between co-resident VMs so that they become unable to interfere with each other [9]. 

However, virtualized isolation that completely prevents side channel attack has been proven 

to be difficult to achieve. The following countermeasures address side channel attacks, at the 

cloud provider side; the cloud user side, the hardware/software vendor side and cloud 

provider side respectively:  

2.3.3.1 Physical Isolation Enforcement 

As mentioned in Section 1.1.2, it can be argued that one pragmatic solution to 

mitigate side channel attacks is to disable co-residency completely. Ristenpart et al 

suggested that cloud users may consider running their VMs in physical isolation from 

other VMs [79]. Following this suggestion, the Amazon EC2 cloud allows users to 

run dedicated VMs [28], ensuring that VMs belonging to each user do not share the 

same physical hardware with any other cloud users’ VMs.  

Although this service can effectively mitigate various side channels that exist in the 

shared hardware, a significant price premium is required in order for cloud users to 

benefit from this service. It is estimated that it is 6.12 times more costly to run 

dedicated VMs compared to using regular VMs in Amazon EC2 [97].  

One of the options left for protecting VMs from side channel attacks is only to allow 

other ”trusted” VMs to become co-resident. If untrusted VMs become co-resident, 

then relocate the user’s VM to another host [11]. Trusted VMs, in this case, may 

include VMs that are self-owned or other trustworthy VMs. This countermeasure to 

side channel attacks has been applied in the case of NASA and Amazon. Their 
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agreement over a cloud service contract gave NASA the right to run its cloud services 

in physically isolated, tenant-specific hardware [89]. This countermeasure requires 

enabling the cloud users to audit and verify the cloud provider’s adherence to the 

policy. The researchers in [102] have introduced a promising tool called HomeAlone 

that uses side-channel analysis to verify that cloud providers keep their promise and 

disable co-residency.  

However, the significant extra cost of the physical isolation of VMs diminishes its 

attractiveness, coupled with the fact that enabling co-residency is a definite choice of 

IaaS cloud providers due to its economic efficiency. 

 

2.3.3.2 User Controlled VM Placement 

The research of Ristenpart et al concluded that the best recommendation is to give the 

cloud users full responsibility and control to specify where their VMs should be 

placed [79]. Although this countermeasure is relatively simple, it does not solve the 

problem completely. In fact, it only shifts the liability to the user instead of the cloud 

provider without trying to eliminate the side channel or the side channel attacks. 

 

2.3.3.3 Preventing Side Channel Vulnerabilities 

Researchers have introduced a number of countermeasures that rely on side channel 

prevention. This can be achieved via reducing the information that can be leaked by 

new hardware designs or by applying various blinding techniques [36], [41]. 

For instance, a group of researchers at MIT [46] have recently designed a hardware 

chip that can hide how CPUs request information in cloud servers. This chip makes a 

side channel attack that uses the shared CPUs very difficult to achieve.  

Apart from this hardware countermeasure, several papers discussed a number of non-

hardware countermeasures that focus on preventing cache side channels. For instance, 

one countermeasure against cache side channel attacks that use prime and probe 

method (see Section 2.3.2) is to inject noise to the CPU cache timing [50], [104]. 

When an attacker primes the CPU cache, a special cache cleansing process is 

invoked. This cache cleansing process simply primes the CPU cache in order to evict 

the entire cache entries, and therefore preventing the attacker from gaining any useful 

cache timing and load measurements. However, this approach reduces the CPU cache 
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usefulness since it flushes the entire cache entries. Another countermeasure applies 

cache partitioning, where each VM is assigned a separate partition of the cache [71]. 

Such action ensures no cache interference among co-resident VMs. In addition, a 

considerable amount of literature has been devoted to introduce similar 

countermeasures such as adjusting each VM’s perception of time, random delay 

insertion, using non-deterministic caches and cryptographic implementation of 

timing-resistant caches [31], [42], [52], [70], [72], [73], [75], [76], [91], [93].  

However, [79] concluded that this type of countermeasures that rely on preventing 

side channel vulnerabilities suffer from two drawbacks: 

First, they are typically either:  

(a) Impractical, for instance incurring high overheads or nonstandard 

hardware is required such as [31], [41], [42], [52], [70], [71], [72], [73], [75], 

[91], or  

(b) Application-specific [36], [50], [76], [93] or hardware-specific [46], [104].  

Second, these countermeasures do not, ultimately, guarantee that all possible side 

channels have been anticipated and disabled, especially in the light of the increasing 

number of research in recent years that introduces new side channels.  

 

Despite the efforts being paid on VMs safeguarding against existing side channels, there 

remains a continuous potential risk of data leakage by new side channel vulnerabilities that 

are yet to be discovered. Therefore, this opens an interesting research area to find an 

alternative approach to the reduction of the attack surface for side channel attacks, particularly 

one that does not rely on VMs physical-isolation or side channels prevention. 

 

2.3.3.4 Reducing Co-residency (The Research Motivation) 

This problematic coexistence of co-residency and side channel threats suggests that 

VMs hosted in a public IaaS cloud are exposed to side channel attacks as long as 

there is a non-zero co-residency probability. Thus, this particular issue motivated this 

thesis to look into understanding the co-residency probability in order to reduce it.  

The main aim in this thesis is to analyse and quantify the influence of cloud 

parameters (such as the number of host and users) on the co-residency probability 

under four commonly used PAs. By doing so, this thesis identifies the combination of 

parameters’ settings in each PA that reduces the co-residency probability. 
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Unlike VMs physical-isolation and side channel prevention countermeasures, 

reduction of the co-residency probability does not prevent side channel. Instead, it 

aims to reduce the attack surface for side channel attacks by reducing the chance of 

co-residency (i.e. the attack avenue). 

The previous sections in this chapter show that research on different aspects of co-residency 

has been carried out. Examples of such research include how to place VMs and detect co-

resident VMs, how to exploit side channels to attack co-resident VMs and how to protect 

against such attacks using VMs physical-isolation and side channel prevention. However, the 

fundamental questions of what could effect and reduce the likelihood of co-residency 

occurrences in IaaS clouds and how to reduce co-residency are still not fully answered.  

In a recent work, [3] highlighted the possibility of designing PAs that reduce the probability 

of co-residency. In another very recent investigation into co-residency, the focus of [10] was 

to formalise a new PA that balances between resource optimization and preventing attack 

VMs from co-residing with a target set of honest VMs. The proposed PA was shown to work 

best in a specific attack scenario. This scenario assumes that the attacker is computationally-

bounded and that the user computation is cryptographically split among a set of VMs. 

Therefore, this requires the attacker to co-reside with all the user’s VMs in order to steal 

meaningful information.  

Based on the thesis aim and approach defined in Section 1.2, there are a number of important 

differences between the work in this thesis and the work in [10]. First, the researchers aim to 

minimize co-residency by formalizing a secure PA. Unlike their work, this thesis looks into 

analysing and quantifying the influence of cloud parameters on the co-residency probability 

in four PAs. Then, the appropriate settings of the most influential parameters that reduce the 

co-residency probability are identified in each PA. Therefore, their study would have been 

more relevant to the work in this thesis if the authors had included the cloud parameters’ 

settings as another factor to reduce the co-residency probability. In addition, their study has 

assumed an attack scenario where a specific tenant’s VMs are targeted by attack VMs. In 

contrast, this thesis extends the attack scenario to capture a worst-case scenario of a hostile or 

threatening cloud environment, where all VMs are targets for attackers. Moreover, the work 

in this thesis takes things a step further. For instance, this thesis derives two analytical 

estimates of the probability that the next co-residing VM belongs to an attacker.   
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2.4 Summary 

This chapter provides a background on cloud computing and related literature. Further, the 

chapter considers the key issues of side channels in public IaaS clouds, and then explores 

common side channel attacks that can be launched against co-resident VMs. Available 

countermeasures against side channels, including physical isolation and side channel 

vulnerabilities prevention, are shown to have some drawbacks. This problematic coexistence 

of co-residency and side channel threats suggests that VMs hosted in a public IaaS cloud are 

exposed to side channel attacks as long as there is a non-zero co-residency probability. This 

particular issue motivated this thesis to look into understanding the co-residency probability. 

Therefore, this thesis quantifies the influence of cloud parameters on the co-residency 

probability then determines the most influential parameters. This action then helps to identify 

the combination of parameters’ settings that reduce the co-residency probability in four 

commonly used PAs.  

Unlike VMs physical-isolation and side channel prevention countermeasures, reduction of 

the co-residency probability does not prevent side channel attacks. Instead, it aims to reduce 

the attack surface for side channel attacks by reducing the chance of co-residency (i.e. the 

attack avenue).
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Chapter 3   

Models and Co-residency Behavioral Metrics  
 

 

3.1 Introduction 

This chapter begins by describing how the IaaS cloud is modelled in this thesis as well as the 

attack model. Next, the first research question is addressed by characterising the behaviour of 

co-residency in IaaS clouds using the co-residency metrics. The co-residency metrics are 

quantitative measurements that assess the characteristics of co-residency occurrence 

behaviour. Some of these characteristics include how likely a given honest VM u will be co-

resided by another VM v, as well as how long this co-residency takes to occur. These co-

residency metrics are used in Chapter 4 to identify the most influential parameters on the co-

residency probability (i.e. the second research question). Moreover, these metrics are used in 

Chapter 5 to find the best parameter settings in each PA that reduce the co-residency 

probability (i.e. the third research question). In addition, the co-residency metrics are also 

used in Chapter 6 to derive analytical estimates of probabilities related to malicious co-

residency.  

The remainder of this chapter is organized as follows. The next section defines the system 

and attack models followed by Section 3.3 that outlines important notations and definitions. 

In Section 3.4, the co-residency metrics are defined.  

 

3.2 System and Attack Models 

This thesis considers a publicly accessible IaaS cloud wherein the PA allows multi-tenancy 

(i.e. the same physical hosts can be shared between multiple VMs) and that IaaS cloud 

insiders (e.g. server administrators) are trustworthy. It also assumes that confidentiality-

requiring VMs of regular users (i.e. honest VMs) can receive new co-resident VMs. On the 

other hand, the co-residing VM v (either honest or attacker VM) belongs to a third-party user 

who can run and control a limited number of VMs simultaneously and legitimately in the 

cloud. This thesis considers an attacker with the following objective: 
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• To launch side channel attacks against arbitrary VMs. In order to do so, this requires 

placing a VM v that the attacker controls (i.e. a malicious VM) in the same host 

where a victim VM u is residing.   

Before defining the system model components, the attack model can be described from two 

perspectives: 

• From an Honest VM’s Perspective 

Whenever a new VM v is placed in a given host x, then every honest VM u that has 

been already running and residing at x will experience a co-residency hit by v.   

Two types of co-residency hits are considered in this thesis: arbitrary co-residency 

hits (from malicious and honest VMs), and malicious co-residency hits (from 

malicious VMs only). While Chapter 4 and 5 are concerned with co-residency hits, 

Chapter 6’s focus is on malicious co-residency hits. 

 

• From an Attacker’s Perspective 

This thesis considers an attack model where new honest VMs are always placed to 

hosts that contain either other honest VMs or no VMs at all. Therefore, the only co-

residing technique (see Section 2.3.1.2) for an attacker is to place a VM v to become 

co-resident with a victim VM u during the latter’s lifetime. Another co-residing 

technique can be achieved by placing v in a random host with the hope of u being 

placed in the same host. However, the latter co-residing technique is excluded from 

the scope of this thesis. Excluding this co-residing technique is based on the 

assumption that attackers are interested in targeting specific and existing VMs in 

public IaaS clouds. 

The attack model also assumes that an attacker tries to co-reside with victim VM u 

without the knowledge of where u is located in the cloud (i.e. brute-force placement, 

see Section 2.3.1.2). The latter assumption introduces a challenge to attackers, as an 

attacker will have to keep requesting malicious VMs with the hope that the PA places 

one of the attacker’s malicious VMs to become co-resident with u. In addition, the PA 

that is used in the modelled IaaS cloud is assumed to be public knowledge and 

therefore it is known by the cloud users and the attackers. Finally, once v is co-

resident with u, it is assumed that an attacker is capable of detecting that v has co-

resided with the u (see Section 2.3.1.3). 
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The system model in this thesis consists of the following main components (see Figure 3.1): 

• Clusters: an IaaS cloud has at least one cluster (which is a pool of hosts). The total 

number of clusters in the model is specified using the [Number of Clusters] 

parameter. 

• Hosts: A host is a physical server that can be shared among many users to run VMs 

(i.e. multi-tenancy). Each host is assigned to a single cluster, where the total number 

of hosts in the model is specified using the [Number of Hosts] parameter. A given 

host is considered to be available when it has a free space to allocate new VMs, 

whereas the host becomes full when it has no free space to allocate new VMs. Each 

host can be allocated a maximum number of VMs specified using the [Max Host 

Utilization] parameter. 

• Users: A user can be a normal user who runs confidentiality-requiring VMs or an 

attacker who aims to exploit side-channel leakage in a host (see Section 2.3.1.2) 

through placing VMs to become co-resident with victim VMs.  

• Users’ Arrival Rate: New users arrive in this model according to the [Users’ Arrival 

Rate] parameter. The users’ arrival rate specifies the average number of new users to 

arrive in every time unit. The total number of created users in an arbitrary duration of 

time is specified using the [Number of Users] parameter.  

• VMs: Each user can request, run and control a limited number of VMs 

simultaneously. This number is specified in the model by the [Max Parallel VMs per 

User] parameter. Each VM terminates after a certain amount of time specified by the 

[VM Average Life Time] parameter. In this system model, VMs that belong to 

attackers will be referred to as malicious VMs. 

• VM Placement Algorithm (PA): A PA controls when and where (i.e. in which 

cluster then in which host) each new VM is placed [62]. When a VM request arrives, 

the PA selects a cluster that has at least one available host then selects an available 

host within that cluster to place the new VM. In case all hosts are full, no placement 

takes place. The system model considers four PAs that are used in popular IaaS cloud 

platforms including Eucalyptus [6], OpenNebula [60], Nimbus [85] and  OpenStack 

[98]. These PAs are: 

1- First Fit. 

2- Next Fit. 

3- Power Save. 
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4- Random.  

More detail on the above PAs is provided in Appendix A. 

The following (Figure 3.1) shows an IaaS cloud model that has two clusters, two hosts in 

each cluster and three VMs placed in Host1 and Host2. 

 

 
Figure 3.1 An IaaS cloud model with two clusters, two hosts in each cluster and three 

VMs  
 

• VM Request: When a new user arrives in the IaaS cloud, the user issues a VM 

request to place one or more new VMs. In this system model, the [VMs per Request] 

parameter specifies the number of VMs in a single VM request, where this number is 

either [VMs per Request] or 1±[VMs per Request].. For each VM request, the PA 

places the requested VMs separately (i.e. one by one) immediately after it receives a 

request from the user as there is no queuing of the VM requests. As a result, the PA 

might be able to place all, part or none of the VMs for a given VM request depending 

on the availability of hosts.  For instance, if the PA receives a VM request when all 

hosts are full, then the PA will not be able to place any of the requested VMs.  

• VM Requests Arrival Rate (γ): The VM requests arrival rate, denoted as γ, 

represents the number of VM requests per time unit. For the convenience of the 

experiments, each user only issues a single VM request upon arrival. In addition, 

𝛾!"#$%$&'( denotes the malicious VM requests arrival rate. 

• Attackers VM Requests Ratio 𝜶 

The attackers VM requests ratio α shows the ratio of malicious VMs to all VMs. The 

attackers VM requests ratio α can be defined as: 



 45 

 

𝒂𝒕𝒕𝒂𝒄𝒌𝒆𝒓𝒔  𝑽𝑴  𝒓𝒆𝒒𝒖𝒆𝒔𝒕𝒔  𝒓𝒂𝒕𝒊𝒐  𝜶   =
𝛾𝒎𝒂𝒍𝒊𝒄𝒊𝒐𝒖𝒔

𝛾  

• Co-residency Conditions: The following notations are used in the system model 

when describing co-residency behaviours:  

o x denotes a given host. 

o v denotes a new VM that is placed in x (i.e. the co-residing VM). 

o u denotes a given VM that resides at x where v is placed. 

There are two conditions that need to be met in order to place v in x to become co-

resident with u:  

o x must have an available space to accommodate v when the PA receives the 

request to place v. 

o v must be requested for placement during the window of time at which the PA 

is going to select x for the next placement.  

• Co-residency Hit: Whenever v is placed in a given host x, every victim VM u that 

resides at x will experience a co-residency hit with v. Co-residency hits include any 

hit that is received from either malicious or honest VMs during u’s lifetime. On the 

other hand, a malicious co-residency hit is a special case of the co-residency hit. A 

malicious hit occurs when u is co-resided by a malicious VM v that belongs to an 

attacker. 

• Total Number of Hits (k): For a given VM u, the total number of hits that u receives 

is denoted as 𝑘!, where 𝑘! is a discrete random variable with possible values 0, 1,... . 

When the context is clear, the subscript u is dropped for convenience. 

• Total VMs in the Cloud: During an arbitrary amount of time, the notation n 

represents the total number of placed VMs; whereas the 𝑛!"#$%$&'( is the total 

number of placed malicious VMs. Similarly, the notation 𝑛!!" is the total number of 

VMs that experienced at least one hit; whereas the 𝑛!!"  !"  !"#$%$&'( is the total 

number of VMs that experienced at least one malicious hit. 

• Time Unit: The unit for measuring time periods in the simulation of the system 

model is denoted as the time unit. Examples of possible time units include second, 

minutes and hours.  In this model, the used time unit is a minute. 
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3.3 Notations and Definitions  

The following notations and definitions will be used throughout this thesis: 

 

• VM Lifetime (LT): The lifetime of a VM u (i.e. 𝐿𝑇!) represents the time between the 

moment at which u is placed in a given host and the moment it is terminated.  

• Ratio (L) of a VM’s Lifetime: For a given VM u that experiences at least one hit 

(k>0), the entire lifetime of u (𝐿𝑇!) can be divided into k+1 ratios 𝐿!, 𝐿!,…, 𝐿!, 𝐿!!! 

based on the following (Figure 3.2): 

-­‐ ℎ! is the time at which u is placed. 

-­‐ ℎ! is the time at which u experiences the Kth hit (0 ≤ K ≤ k). 

-­‐ ℎ!!! is the time at which u terminates. 

With 𝐿! as the ratio of lifetime duration between the (K-1)th hit and the Kth hit, the 𝐿! th ratio 

of 𝐿𝑇!  can be calculated as follows: 

 

𝑳𝑲 =
𝒉𝑲 −   𝒉𝑲!𝟏  

𝑳𝑻𝒖
      ,                          1 ≤ 𝐾 ≤ (𝑘 + 1) 

 

The following (Figure 3.2) shows an example of the 𝐿𝑇!, where u receives k co-residency 

hits from multiple VMs (𝑣!, 𝑣!, . . . , 𝑣!!!, 𝑣!) at time (ℎ!, ℎ!, . . . , ℎ!!!, ℎ!) respectively.  

 

 
Figure 3.2 The lifetime of a VM u that receives k co-residency hits 
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3.4 Co-residency Metrics 

Metrics defined in this section are estimated using simulation in Chapter 4 and 5. This thesis 

uses these co-residency metrics to: 

1- Quantify the influence of multiple cloud parameters on the co-residency probability. 

This action helps to identify the most influential parameters in Chapter 4 (i.e. the 

second research question). 

2- Find the best parameter settings that reduce the co-residency probability in four PAs 

in Chapter 5 (i.e. the third research question). 

3- Derive analytical estimates of probabilities related to malicious co-residency in 

Chapter 6 (i.e. the fourth research question).  

 

The next subsections define the co-residency metrics in detail.  

3.4.1 Co-residency Coverage Probability (CCP)  

For a given VM u, this metric shows the probability that u experiences a co-residency hit 

with any arbitrary VM (either malicious or honest) at least once during 𝐿𝑇! (i.e. P(k>0)). The 

Co-residency Coverage Probability CCP can be estimated using simulation as follows: 

 

𝑪𝑪𝑷 =
𝒏𝒉𝒊𝒕
𝒏                                   ,            𝟎 ≤ 𝑪𝑪𝑷 ≤ 𝟏 

 

For a given VM u, higher CCP indicates a higher probability of being vulnerable to at least 

one arbitrary co-residency hits. 

 

3.4.2 Hit-free Lifetime Ratio (HFL) 

For a given VM u that experiences at least one co-residency hit, the 𝐻𝐹𝐿!  represents the ratio 

of the time until the first co-residency hit (either a malicious or a honest hit) to the 𝐿𝑇!. 

Figure 3.3 shows how to obtain 𝐻𝐹𝐿!  of u. 
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Figure 3.3 Obtaining Hit-free Lifetime Ratio 𝑯𝑭𝑳𝒖  for a given VM u. 

 

The HFL for a given IaaS cloud can be estimated using simulation by averaging the 𝐻𝐹𝐿!  of 

every VM u that experienced at least one hit: 

 

𝑯𝑭𝑳 =   
𝟏
𝒏𝒉𝒊𝒕

𝒉  𝟏𝒖 −   𝒉  𝟎𝒖
𝑳𝑻𝒖

!!!"

𝒖!𝟏

                         ,𝟎 < 𝑯𝑭𝑳 ≤ 𝟏 

 

3.4.3 Co-residency Vacancy (CV) 

Figure 3.4 shows three availability windows during 𝐿𝑇! where host x is available to allocate 

new VMs. For a given VM u at x, Co-residency Vacancy 𝐶𝑉! is simply the ratio of the 

duration of these availability windows and the 𝐿𝑇!. In case x is full during the entire 𝐿𝑇! then 

𝐶𝑉! is equal to zero (0 ≤ 𝐶𝑉! ≤ 1).  

 
Figure 3.4 Obtaining Co-residency Vacancy 𝑪𝑽𝒖 of a given VM u. 
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The 𝐶𝑉! represents the ratio of the time during which VM u is vulnerable to co-residency and 

the 𝐿𝑇!. Therefore, the longer the 𝐶𝑉! the higher the chance that the PA will select u’s host to 

place new co-residing VMs. On the other hand, it is impossible to co-reside with u when 𝐶𝑉! 

is equal to zero. 

The CV in the cloud is estimated using simulation by averaging the 𝐶𝑉!  of every VM u: 

 

𝑪𝑽 =   
𝟏
𝒏 𝑪𝑽𝒖

𝒏

𝒖!𝟏

                     ,𝟎 ≤ 𝑪𝑽 ≤ 𝟏 

 

From an attacker perspective, the existence of an 𝐶𝑉! during 𝐿𝑇! (i.e. 𝐶𝑉!≠ 0) is a necessary 

condition to co-reside with u, however it is not sufficient to guarantee that the PA will select 

u’s host to place the attacker’s co-residing VMs. Therefore, 𝐶𝑉!≠ 0 represents the first 

condition to co-reside with u (see the conditions of a co-residency hit in Section 3.2 of this 

chapter), while the second condition is represented by the next metric.  

 

3.4.4 Co-residency Activity (CA) 

Considering the entire IaaS cloud, an inter-placement window can be defined as the time 

elapsed between any two consecutive placements of VMs (Figure 3.5). For a given VM u at 

host x, Co-residency Activity 𝐶𝐴! is the ratio between the inter-placement windows (that 

precedes each co-residency hit) and the 𝐿𝑇!. In case x is full during the entire 𝐿𝑇! then 𝐶𝐴! is 

equal to zero (0 ≤ 𝐶𝐴! ≤ 1).  

 

 
 Figure 3.5 Obtaining Co-residency Activity 𝑪𝑨𝒖  of a given VM u.   
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From an attacker perspective, it is impossible to co-reside with u when the 𝐶𝐴! is equal to 

zero. Unlike the 𝐶𝑉!, the existence of a 𝐶𝐴! during 𝐿𝑇! (i.e.𝐶𝐴!≠ 0) is sufficient to 

guarantee that u will receive a co-residency hit. Therefore, 𝐶𝐴! represents the second 

condition to co-reside with u (see Section 3.2). 

Similar to the CV in the cloud, the CA is estimated using simulation by averaging the 𝐶𝐴!  of 

each VM u: 

𝑪𝑨 =   
𝟏
𝒏 𝑪𝑨𝒖

𝒏

𝒖!𝟏

                     ,𝟎 ≤ 𝑪𝑨 ≤ 𝟏 

 

 

3.5 Summary  

This chapter described how the IaaS cloud is modelled as well as defining the attacker model. 

Then, the behaviour of co-residency in the model was characterized using four co-residency 

metrics. Some of these characteristics include how likely a given VM u will be co-resided by 

another VM v (i.e. the CCP), as well as how long this co-residency takes to occur (i.e. the 

HFL). These co-residency metrics are used in Chapter 4 to identify the most influential 

parameters on co-residency (i.e. the second research question). In addition, Chapter 5 uses 

these metrics to identify the best settings of the most influential parameters in four PAs that 

reduce the probability that a given VM u experiences a co-residency (i.e. the third research 

question). Next, the co-residency metrics are used in Chapter 6 to derive analytical estimates 

of probabilities related to malicious co-residency. These probabilities include the probability 

that a given VM u will be co-resided by a malicious VM v and for how long it remains free 

from malicious hits (i.e. the fourth research question).  
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Chapter 4   

Quantifying Influence of Cloud Parameters on Co-residency  
 

 

4.1 Introduction 

This chapter is dedicated to answering the second research question on the most influential 

cloud parameters on the co-residency metrics. A parameter’s influence, measured in this 

chapter as the parameter’s effect, is an estimate of how much varying a parameter influences 

the co-residency metrics (i.e. CCP, HFL, CV and CA).  

Perhaps the main challenge faced in this chapter is that there are many cloud parameters and 

parameters’ settings to be included in limited resources experiments. In order to overcome 

this challenge, an Influence Evaluation Strategy is proposed to simplify the process of 

designing experiments that have a large number of parameters and settings. The use of 

fractional factorial design is one step (of multiple steps) that the strategy applies to construct 

a reduced and balanced experiment. Fractional factorial experiments are usually used to 

measure simultaneously the effects of many parameters on a product or process in a cost-

effective way using minimal experimental runs [33].  

Further, the Influence Evaluation Strategy proposes a statistical approach to quantify the 

effect of varying multiple parameters on the co-residency metrics such as varying the rate at 

which VMs are requested, using different numbers of hosts and others. The strategy also 

extends the influence evaluation to include how two parameters, together, affect the co-

residency metrics (i.e. parameters interaction effect).  

This chapter applies the Influence Evaluation Strategy using the VMC simulator as a testbed 

(see Appendix F for more details on the VMC simulator). The strategy quantifies the 

influence of cloud parameters on the co-residency metrics then identifies the most influential 

parameters and 2-parameter interactions in four PAs. These PAs are First Fit, Next Fit, Power 

Save and Random. The identified parameters are then used in Chapter 5 to determine the best 

parameters’ settings that reduce the probability of co-residency in four PAs.  

The remaining of this chapter is organized as follows. The next section outlines preliminary 

definitions that are used in this chapter.  In Section 4.3 the four-phase Influence Evaluation 

Strategy is defined and then applied. Section 4.4 describes the experiments settings. The 

findings are presented in Section 4.5 and discussed in Section 4.6. 
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4.2 Preliminary Definitions  

The following definitions will be used throughout this chapter: 

• Experiment Design: In this chapter, changes are made to one or more independent 

variables (i.e. the parameters) in order to observe the significant effect the changes 

have on the co-residency metrics. Design of experiments (DoE) theory [34] provides 

different ways to observe these effects. In particular, the Influence Evaluation 

Strategy in this chapter uses fractional factorial experiment design (see Appendix B) 

to construct reduced and balanced experiments. Next, these experiments are used to 

quantify easily the influence of cloud parameters on the co-residency metrics and then 

to identify the most influential parameters and 2-parameter interactions in four PAs. 

The following are the main components of an experiment design: dependent 

variables, independent variables, levels and experimental runs. 

• Dependent Variables: In this chapter, the Influence Evaluation Strategy uses 

simulation to measure the parameters and interactions effects on the co-residency 

metrics (CCP, HFL, CV and CA). Therefore, the co-residency metrics represent the 

experiments’ dependent variables. 

• Independent Variables (Parameters): The independent variables represent the 

experiment’s input. Since the VMC simulator is used as a testbed, the simulator’s 36 

parameters (Table A.1) represent the experiments’ independent variables. More detail 

on the VMC simulator is provided in Appendix A.  

• Levels: Levels refer to the parameter’s settings/values in a given experiment. The 

Influence Evaluation Strategy uses 2-level experiments that assign two numerical 

levels to each parameter: a low level and a high level. 

• Experimental runs:  In each experiment in this chapter, an experimental run consists 

of a unique combination of levels of parameters.  

• Fractional Factorial Experiment Design: When there are too many parameters to 

be included in a limited-resources experiment, fractional factorial design helps to 

construct a reduced experiment design. Fractional factorial experiments are usually 

used to measure simultaneously the effects of many parameters on a product or 

process in a cost-effective way using minimal experimental runs [33]. The Influence 

Evaluation Strategy uses 2-way fractional factorial experiment designs that assign 

two levels for each parameter. As a result, this allows measuring the effects on the co-

residency metrics of each parameter in isolation and in combination with another 
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parameter (known as 2-parameter interaction). Table 4.1 shows in (a) an example of a 

2-way experiment design that has the following: 

o The CCP metric as the dependent variable 

o Two parameters X1 and X2  

o 2 levels: (X1!"# and X1!!"!) and (X2!"# and X2!!"!) for X1 and X2 

respectively.  

o Four experimental runs.  

 

In addition, fractional factorial design ensures a balanced experiment. A balanced experiment 

design guarantees that all parameters’ levels are equally tested as shown in (b) and (c) in 

Table 4.1. More detail on how to construct 2-way fractional factorial designs is provided in 

Appendix B. 

 

 Run X1 X2 CCP 

1 X1!"# X2!"# 0.55 

2 X1!"# X2!!"! 0.53 

3 X1!!"! X2!"# 0.34 

4 X1!!"! X2!!"! 0.39 
 

 

(a) Fractional factorial experiment runs. 

 
Run X1 CCP 

1 X1!"# 0.55 

2 X1!"# 0.53 
 

 
Run X1 CCP 

3 X1!!"! 0.34 

4 X1!!"! 0.39 
 

  
Run X2 CCP 

1 X2!"# 0.55 

3 X2!"# 0.34 
 

 
Run X2 CCP 

2 X2!!"! 0.53 

4 X2!!"! 0.39 
 

(b) In the left table: Runs that test X1 

on Low level and on High level in 

the right table  

 (c) In the left table: Runs that test X2 on 

Low level and on High level in the 

right table  

 
Table 4.1 Testing each parameter’s level in a two-way fractional factorial experiment 

design 
 

 

• Range: A range measures the numerical distance between a parameter’s 2-level 

values (i.e. the low and high values). Two types of ranges are defined for each 

parameter: the narrow range and the broad range, where the narrow range is nested 
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within the broad range. Table 4.2 shows how the [Number of Clusters] parameter, for 

instance, is tested using narrow range and broad range. 

 

 

Range 

Narrow Range Broad Range 

Low Level High level Low Level High level 

Number of Clusters 15 30 10 50 

 Table 4.2 Example of the narrow and broad ranges. 
 

 

• Narrow-experiment and Broad-experiment: The Influence Evaluation Strategy 

uses two fractional factorial experiments (i.e. narrow-experiment and broad-

experiment) that will be conducted using four PAs. The narrow-experiment refers to 

the experiment that assigns two levels to the parameters from the narrow range, 

whereas the broad-experiment assigns two levels from the broad range. Each 

experiment consists of 16 experimental runs that are conducted using simulation. 

• Parameter Effect: A parameter’s effect is an assessment of the parameter influence. 

The parameter’s effect measures the size of the change on the co-residency metric 

that occurs when the parameter level is varied. In the Influence Evaluation Strategy, 

ANOVA test calculates the effects using the simulation estimates of the co-residency 

metrics (see Section 4.3.4.1). 

• 2-Parameter Interaction’s Effect: In addition to the parameters’ effects, the effect 

of every 2-parameter interaction is evaluated. Two parameters interact if the effect of 

one of the parameters differs depending on the level of the other parameter. For 

instance, the effect of users’ arrival rate on the co-residency metrics could differ 

depending on how many VMs each user requests. An interaction’s effect measures 

the size of the change on the co-residency metric that occurs when the levels of two 

parameters (combined) are varied. An interaction of two parameters X1 and X2 is 

denoted as X1*X2. 

• Effect’s Level of Significance: The significance level of an effect can be reported in 

the following three ways based on the p-value as suggested by [22]: 

            •           `significant':  0.01 < p-value < 0.05; 

            •           `highly significant': 0.001 < p-value < 0.01; and 

            •           `very highly significant': p-value < 0.001 
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This Influence Evaluation Strategy reports an effect to be significant if the effect has 

a p–value that is less than 0.05. Only statistically significant effects are considered 

when quantifying the parameters influence (see Section 4.3.4.2). 

• Experimental Runs Repetitions: A repetition of an experimental run is used to 

increase the confidence on the results and to reduce the possibility of errors or 

anomalous results [14]. In this chapter, each experimental run is simulated in ten 

repetitions. 

• Design Resolution: The resolution of a fractional factorial experiment design 

specifies the degree to which the effect of each parameter confounds with the effects 

of other parameters and interactions (see Appendix B for more details). A fractional 

factorial design’s resolution can be of any of the following types: 

•         II: A parameter’s effect is confounded with another parameter’s effect. 

•         III: A parameter’s effect may confound with a 2-parameter interaction’s effect. 

•         IV: A parameter’s effect does not confound with any other parameter’s effect  

nor with any 2-parameter interactions’ effect. 

•         V: A parameter’s effect does not confound with any 3-parameter interactions’  

effect, and a 2-parameter interactions’ effect does not confound with any 2- 

parameter interactions’ effect. 

•         VI: A parameter’s effect does not confound with any 4-parameter interactions’  

effect, and a 2-parameter interactions’ effect does not confound with any 3-

parameter interactions’ effect. 

 

A resolution IV fractional factorial design is used throughout this chapter. 

 

4.3 Influence Evaluation Strategy  

Using the VMC simulator, the Influence Evaluation Strategy quantifies the influence of cloud 

parameters on the co-residency metrics in four PAs (First Fit, Next Fit, Power Save and 

Random). Then, the strategy identifies the most influential parameters and 2-parameter 

interactions in the four PAs. The VMC simulator requires 36 different parameters to be 

defined in order to simulate the IaaS cloud model in Chapter 3. Examining each parameter 

effect under many levels could increase the reliability of the results, as well as increasing the 

experiment size. However, measuring the effects of all the 36 parameters using every 

possible level is impractical due to the limited time and resources available to this thesis. The 
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Influence Evaluation Strategy overcomes this challenge by simplifying the process of 

conducting experiments that have a large number of parameters and levels.  

This simplification tries to obtain a reduced-size experiment by reducing the number of 

parameters, levels, and experiment’s runs as much as possible without seriously affecting the 

experiment’s outcome. More precisely, the strategy comprises an effective reduction of 

parameters in the first phase and a parameters levels reduction in the second phase leading to 

the design of two reduced-size experiments using fractional factorial design in the third 

phase. Finally, the fourth phase uses the VMC simulator to conduct the experiments. 

Ultimately, the Analysis Of Variance test ANOVA is applied to quantify the parameters’ 

effects on the co-residency metrics both in isolation (i.e. parameters’ effects) and 

combination (i.e. 2-parameter interactions effects).  

The first three phases of the strategy are extended from [59] with slight differences that are 

indicated throughout this chapter.  

This Influence Evaluation Strategy consists of four phases that aim to: 

1- Simplify the process of designing experiments that have a large number of 

parameters and levels. As shown in the following sections, this simplification tends to 

reduce the number of parameters and levels and, therefore, the experiment size as 

much as possible without affecting the experiment’s outcome.    

2- Identify the parameters and interactions that influence the co-residency metrics the 

most in IaaS clouds under each PA. In order to do so, the strategy quantifies the 

influence of multiple cloud parameters and interactions on the co-residency metrics.  

The most influential parameters and interactions on the co-residency metrics will be used in 

Chapter 5 to identify the best parameters’ settings in four PAs that reduce the co-residency 

probability. 

The following sections outline the four phases of the Influence Evaluation Strategy and how 

they have been applied to design and conduct two reduced size experiments: the narrow- 

experiment and the broad-experiment.  
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4.3.1 Phase 1: Parameters Reduction Using Composed Parameters  

Phase input: 36 parameters used by the VMC simulator. 

Phase Output: eight composed parameters.  

 

The parameters reduction using the parameter composing method was originally presented in 

[59] as one of the multiple steps towards designing reduced size experiments for identifying 

the most significant parameters influencing large-scale model behaviour. Using the 

parameters of the Koala simulator, they demonstrated the efficiency of composing similar 

parameters and reduced the Koala’s parameters from 82 to only 23.  

This parameters reduction method was applied to the VMC simulator’s input parameters. The 

parameters reduction method composes parameters that describe similar characteristics to 

form a single parameter, referred to as a composed parameter. Table 4.3 shows the VMC 

simulator’s parameters after the parameters’ reduction.  

For example, the Number of Hosts parameter X2 in Table 4.3 composes five similar 

parameters. That is Number of Hosts of Type H1, Number of Hosts of Type H2, Number of 

Hosts of Type H3, Number of Hosts of Type H4 and Number of Hosts of Type H5 

respectively. Each of the previous individual parameters specifies the number of hosts for a 

single host type, whereas the composed parameter X2 specifies the total number hosts of all 

types combined. Another example is the Maximum Host Utilization parameter X3. Again, 

X3 composes similar parameters that individually specify the maximum utilization limit for 

each host type in the VMC simulator. The parameters reduction phase was applied to the 

VMC simulator parameters and successfully reduced the number of parameters that will be 

used in the experiments from 36 to 8 parameters. Out of these eight parameters, Number of 

Clusters X1 is the only non-composed parameter as there is no similar parameter to be 

composed with.  

On the other hand, [59] continued the parameters reduction and reduced another 12 

parameters of the Koala simulator using domain knowledge to eliminate the parameters that 

appear to be insignificant to the intended experiment. While this step seems to further reduce 

the number of parameters, it is not applied in this thesis. This is because this step requires 

prior knowledge of the parameters that influence the co-residency metrics, and such 

knowledge is what this thesis is trying to discover. 
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Composed 

Parameters 

ID Description Composed Parameter Consists of these 

Parameters 

Number of 

Clusters 

X1 How many clusters to be created in the simulated model. A 

cloud has at least one cluster that contains a pool of hosts. 

N/A 

 

 

Number of 

Hosts 

 

 

X2 

A cluster has at least one host. A host is a physical server 

that runs VMs. Each host is assigned to a single cluster, 

where the total number of hosts in the IaaS cloud is specified 

using the [Number of Hosts] parameter. Each host can be 

allocated a limited number of VMs specified using the [Max 

Host Utilization] parameter. Hosts will be distributed 

randomly into clusters with equal probability. 

Number of Hosts of Type H1 

Number of Hosts of Type H2 

Number of Hosts of Type H3  

Number of Hosts of Type H4 

Number of Hosts of Type H5 

 

Max Host 

Utilization 

 

X3 

 

A Host is Full when the hosted VMs usage of the host's 

resources (CPU, memory and storage) reaches the Max Host 

Utilization percentage. 

Max Utilization for Host Type H1 

Max Utilization for Host Type H2  

Max Utilization for Host Type H3  

Max Utilization for Host Type H4  

Max Utilization for Host Type H5  

 

Users’ Arrival 

Rate 

 

X4 

 

New users arrive into the IaaS cloud according to the [Users’ 

Arrival Rate] parameter that represents the average number 

of new users to be created every time unit. 

Users’ Arrival Rate Of Type U1 

Users’ Arrival Rate Of Type U2 

Users’ Arrival Rate Of Type U3 

Users’ Arrival Rate Of Type U4 

Users’ Arrival Rate Of Type U5 

 

Max Number of 

Users 

 

X5 

 

The maximum number of users (of all types) to be created 

during the simulation 

Max Number of Users of Type U1 

Max Number of Users of Type U2 

Max Number of Users of Type U3 

Max Number of Users of Type U4 

Max Number of Users of Type U5 

 

Max Parallel 

VMs per User 

 

X6 

 

The maximum number of concurrently running VMs (of all 

types) a single user can have 

Max Parallel VMs of User Type U1 

Max Parallel VMs of User Type U2  

Max Parallel VMs of User Type U3 

Max Parallel VMs of User Type U4 

Max Parallel VMs of User Type U5 

 

VM Average 

Life Time  

 

X7 

 

How long a user (on average) holds his running VM (of any 

type) before terminating it (in time units)  

X_SMALL VM Average Lifetime  

SMALL VM Average Lifetime 

MEDIUM VM Average Lifetime 

LARGE VM Average Lifetime 

X_LARGE VM Average Lifetime 

 

VMs per 

Request 

 

X8 

 

The number of VMs to be created in each new VMs request  

The number of VMs per request must be less than or equal to 

X6. 

VMs per Request Rate for User Type U1 

VMs per Request Rate for User Type U2 

VMs per Request Rate for User Type U3 

VMs per Request Rate for User Type U4 

VMs per Request Rate for User Type U5 

Table 4.3 The VMC parameters after reduction 
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4.3.2 Phase 2: Levels Reduction Using Ranges 

Phase inputs: eight parameters from the first phase. 

Phase Outputs: Per parameter:  two levels for the narrow range and 

         two levels for the broad range. 

 

Having reduced the number of parameters to eight in the first phase, this phase of the 

Influence Evaluation Strategy reduces the number of the parameters’ levels. To highlight the 

challenge faced in this phase, an assumption can be made that each parameter can take up to 

2!" levels (i.e. the maximum value for a 32-bit unsigned integer). Moreover, each parameter 

needs to be tested in each possible level to measure its effect. Consequently, this would result 

in a gigantic experiment design that consists of (2!")! experimental runs, which exceeds the 

time and resources available for this thesis. Again, [59] suggested a solution to this 

challenge, one that assigns two levels for each parameter (low and high values). Then simply 

measures the effect between these two levels and verifies the effect’s statistical significance.  

There are a number of advantages of using two levels to measure the effect. Firstly, it 

requires less experimental runs to test all parameters combinations, which allows more 

repetitions of the experimental runs that can contribute significantly to the experiment's 

robustness. In addition, using two levels per parameter fits naturally towards the next phase 

of this Influence Evaluation Strategy that uses 2-way fractional factorial designs to reduce 

the experiment size in a structured and balanced fashion.  

However, using two levels to measure the effects comes with its limitations. Firstly, the two 

levels that will be used to test each parameter’s effect, obviously, do not cover every possible 

level. Secondly, measuring the effect of a parameter that is varied between two levels does 

not guarantee that the parameter has a linear effect on the tested two levels. To illustrate the 

effect’s linearity issue, Figure 4.1 represents the data from Table 4.1.  Figure (a) suggests that 

varying the two levels of parameter X2 does not change the CCP metric as much as X1 does. 

However, testing X1 and X2 at more levels between the original low and high levels can 

reveal a contradicting result as (b) demonstrates that X2 has, in fact, a larger influence, 

changing the CCP more than X1 does. 
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(a) X1 and X2 tested at two levels: low and high, 

suggesting that X2 does not change the CCP metric 

between its two levels as much as X1 does. 

(b) X1 and X2 tested at extra two levels between low 

and high, revealing that X2 has more influence as it 

changes the CCP more than X1.  
 

Figure 4.1 Limitation of using two levels to test the parameters’ effects. 
 

 

The previous two limitations are addressed in the Influence Evaluation Strategy. Specifically, 

the strategy tests the effect of each parameter on the co-residency metrics twice using two 

ranges: (1) the narrow range and (2) the broad range (see range definition in Section 4.2). 

Each parameter will be tested at two levels per range such that the narrow range is a subset of 

the broad range. Such action helps the exploration of a wider range of parameters levels. 

Another workaround to address the second limitation is carried out in Chapter 5. Firstly, the 

most influential parameters on the co-residency metrics are tested at ten levels. Secondly, 

Pearson’s correlation analysis [14] is used to ensure that the most influential parameters have 

significant linear effects with the co-residency metrics. It is worthwhile to mention that this 

linearity check is not present in the Mills method. This linearity check will also evaluate the 

accuracy of the proposed Influence Evaluation Strategy (see Section 5.3.5 for more details).  

For each parameter, Table 4.4 outlines the selected two levels for each range. Where 

possible, the broad range extends the distance between each parameter’s two levels compared 

to the narrow range. For instance, the Number of hosts X2 in the broad range examines two 

extremes in terms of cloud infrastructure size (100 hosts in low level to 30000 hosts in high 

level) compared to the narrow range (1000 hosts to 10000 hosts). Similarly, the same is 

applicable to the rest of the parameters.  
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It is important to note that public IaaS cloud providers, such as Amazon EC2 and Windows 

Azure, usually obscure the details of their cloud infrastructure, networks and even PAs [79]. 

For this reason and based on the available literature [10], [58], [59], the two ranges for each 

parameter were selected in such a way that they represent different variations of possible 

IaaS settings in the real world. 

 

Parameter ID Narrow Range Broad Range 

Low level High level Low level High level 

Number of Clusters X1 15 30 10 50 

Number of Hosts X2 1000 10000 100 30000 

Max Host Utilization X3 80% 90% 50% 100% 

Users’ Arrival Rate X4 2 3 1 5 

Number of Users X5 35000 50000 10000 75000 

Parallel VMs per User X6 12 18 5 20 

VM Average Lifetime  X7 2000 2500 1600 3600 

VMs per Request X8 2 3 1 4 

 Table 4.4 The selected two levels per range for each parameter 
 

 

4.3.3 Phase 3: Experiment Reduction Using Fractional Factorial Design 

Phase inputs: from the first phase     : eight composed parameters, and 

from the second phase: two levels for the narrow range per parameter               

                                      and 

                        two levels for the broad range per parameter 

Phase Output: two fractional factorial experiments: narrow-experiment and 

 broad-experiment 

 

This phase of the Influence Evaluation Strategy uses the eight composed parameters and their 

two levels ranges to design the experiments that will be used to quantify the influence of 

cloud parameters on the co-residency metrics. Each experiment is designed so that it tests all 

necessary parameter combinations, including parameter interactions while trying to reduce 

the number of experimental runs. However, testing every parameter combination makes the 

number of experimental runs grow very quickly. 2-way fractional factorial design (defined in 
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detail in Appendix B) will be used to construct balanced experiments with minimum 

experimental runs in order to overcome this challenge. A balanced experiment design ensures 

that all parameter levels are equally tested, like the example shown in (b) and (c) in Table 

4.1. The basic concept of fractional factorial design is to include a subset (fraction) of the 

original experimental runs such that only the important parameter combinations and 

interactions are covered. This is in contrast to the traditional one parameter at a time 

experimental approaches [90].  A resolution IV fractional factorial design is used throughout 

this chapter. A resolution IV design ensures that the effect of a given parameter does not 

confound with other parameters and 2-parameter interactions effects. The following sections 

describe how fractional factorial is used to design the experiments in this chapter. 

 

 

4.3.3.1 Factorial Experimental Designs 

One of the main objectives of experimental design is to construct an experiment that is 

capable of generating accurate results to support or reject the research hypothesis [59]. A 

good experimental design must include all the necessary parameters combinations in order to 

allow balanced experimentations. However, adding more parameters makes the experiment’s 

design grow very quickly. For instance, the experiment in this chapter includes eight 

parameters where each parameter takes two possible levels per range, yielding a total of (2! 

= 256) experimental runs (i.e. parameter combinations). In Design of Experiment (DoE) 

theory, this type of experimental design where all parameter combinations are tested is 

known as full factorial design. However, one of the challenges of using full factorial design 

is that it can be difficult to test every possible parameter combination and to repeat the 

experiment at the same time.  For instance, including eight parameters with two levels in a 

full factorial experiment with ten repetitions dramatically increases the number of the 

experimental runs to 2560. One practical solution to overcome this limitation is to apply 

fractional factorial to design reduced size experiments. Appendix B provides a full 

description of factorial and fractional factorial experimental design. Section B.2 shows the 

steps to design the main fractional factorial experiment in this chapter that uses a !
!!

 fraction 

of the 2! full factorial experiment, reducing the experimental runs from 256 to 16 runs only. 

This design, of resolution IV, is denoted as 2IV
4. 

Using the fractional factorial design in Table B.4, levels from the narrow and broad ranges 

(Table 4.4) are assigned to the fractional factorial design table. This results in the narrow-
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experiment that uses the 2-level values of the narrow range (Table 4.5) and the broad-

experiment that uses the 2-level values of the broad range (Table 4.6).  

 
Run X1 X2 X3 X4 X5 X6 X7 X8 

1 15.0 1000 80 2.0 35000 12 2000 2.0 

2 30.0 1000 80 2.0 35000 18 2500 3.0 

3 15.0 10000 80 2.0 50000 12 2500 3.0 

4 30.0 10000 80 2.0 50000 18 2000 2.0 

5 15.0 1000 90 2.0 50000 18 2500 2.0 

6 30.0 1000 90 2.0 50000 12 2000 3.0 

7 15.0 10000 90 2.0 35000 18 2000 3.0 

8 30.0 10000 90 2.0 35000 12 2500 2.0 

9 15.0 1000 80 3.0 50000 18 2000 3.0 

10 30.0 1000 80 3.0 50000 12 2500 2.0 

11 15.0 10000 80 3.0 35000 18 2500 2.0 

12 30.0 10000 80 3.0 35000 12 2000 3.0 

13 15.0 1000 90 3.0 35000 12 2500 3.0 

14 30.0 1000 90 3.0 35000 18 2000 2.0 

15 15.0 10000 90 3.0 50000 12 2000 2.0 

16 30.0 10000 90 3.0 50000 18 2500 3.0 

 Table 4.5 The narrow-experiment design 
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Run X1 X2 X3 X4 X5 X6 X7 X8 

1 10 100 50 1 10000 5.0 1600 1.0 

2 50 100 50 1 10000 20.0 3600 4.0 

3 10 30000 50 1 75000 5.0 3600 4.0 

4 50 30000 50 1 75000 20.0 1600 1.0 

5 10 100 100 1 75000 20.0 3600 1.0 

6 50 100 100 1 75000 5.0 1600 4.0 

7 10 30000 100 1 10000 20.0 1600 4.0 

8 50 30000 100 1 10000 5.0 3600 1.0 

9 10 100 50 5 75000 20.0 1600 4.0 

10 50 100 50 5 75000 5.0 3600 1.0 

11 10 30000 50 5 10000 20.0 3600 1.0 

12 50 30000 50 5 10000 5.0 1600 4.0 

13 10 100 100 5 10000 5.0 3600 4.0 

14 50 100 100 5 10000 20.0 1600 1.0 

15 10 30000 100 5 75000 5.0 1600 1.0 

16 50 30000 100 5 75000 20.0 3600 4.0 

 Table 4.6 The broad-experiment design 
 

As pointed out at the beginning of this chapter, the outcome of the Influence Evaluation 

Strategy is to quantify the influence of cloud parameters on the co-residency metrics in four 

PAs. Then, the strategy will be able to identify the most influential parameters and 2-

parameter interactions. Therefore, the next phase uses the VMC simulator to estimate the co-

residency metrics using the previous narrow-experiment (Table 4.5) and the broad-

experiment (Table 4.6) under the four PAs. In addition, each experimental run is simulated 

ten times to increase the confidence in the findings. This results in 320 simulations per PA 

and 1280 simulations in total for the four PAs.   
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4.3.4 Phase 4: Quantifying the Parameters Influence on the Co-residency Metrics   

Phase inputs: From phase 3: two fractional factorial experiments:  

 narrow-experiment and  

broad-experiment   

Phase Output: Most influential parameters and interactions on  

  the co-residency metrics under each PA 

 

Using the VMC simulator, this phase quantifies the influence of cloud parameters on the co-

residency metrics then identifies the most influential parameters and 2-parameter interactions 

in four PAs. This action aims to answer the research’s second question on what influences 

co-residency the most. Parameters and interactions influence is quantified under each PA 

separately in order to make the identification process more accurate since the PA is 

responsible for controlling where and when each VM is placed in the cloud. This separation 

is essential in this thesis to examine whether an influential parameter under a given PA would 

have the same, less, more or no influence at all under another PA. Therefore, the narrow-

experiment and broad-experiment will be simulated in this phase using four PAs (i.e. First 

Fit, Next Fit, Power Save and Random). Before describing how the simulation experiments 

in this phase were carried out, the following sections explain how to measure and quantify 

the effect and how to determine the effect significance.   

 

4.3.4.1 Effect Definition 

As defined at the beginning of this chapter, changing a parameter’s level can yield a change 

on a given co-residency metric, where the size of this change represents the parameter’s 

effect on that metric. The effect of a parameter or an interaction X on a given co-residency 

metric M is calculated as follows: 

Estimated Effect of X = |  𝑴𝑯𝒊𝒈𝒉 −   𝑴𝑳𝒐𝒘 | 

where: 

                 𝑀!"#! = Metric’s average when X is on its high level 

                  𝑀!"# = Metric’s average when X is on its low level 

 

An effect also tells the direction of the change. For instance, a negative effect implies that 

changing the parameter’s level from high to low yields a decrement in the co-residency 

metric value. However, this chapter focuses on quantifying the parameters and interactions 
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effects, regardless of the direction of the effects. Therefore, the magnitude of the effect value 

is used to quantify the parameters and interactions influence on the co-residency metrics. A 

higher effect value implies that a larger change takes place on the co-residency metric and 

vice versa. 

The effect for each parameter and interaction can be easily measured using Analysis Of 

Variance (ANOVA). ANOVA is a collection of statistical models that can be used to 

measure the effect of a single parameter as well as the effect of a 2-parameter interaction. 

Using Minitab statistical software [7], an ANOVA test was applied on the simulation 

estimates of the co-residency metrics. These estimates were obtained from the narrow- 

experiment and the broad-experiment for each of the four PAs (First Fit, Next Fit, Power 

Save and Random). The ANOVA test shows the effect of each parameter and interaction 

relating to each co-residency metric. Using Minitab, the following Table 4.7 displays a 

example of ANOVA test output of the effects on the CCP metric for two parameters X1 and 

X2 and their 2-parameter interaction.  

 
-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
  

Fractional	
  Factorial	
  Design	
  	
  

	
  

Estimated	
  Effects	
  and	
  for	
  CCP	
  (coded	
  units)	
  

-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
  

Term	
  	
  	
  	
  	
  	
  	
  Effect	
  	
   	
   P	
  

X1	
  	
  	
  	
  	
  	
  	
  	
  -­‐0.035	
  	
  	
   	
   0.000	
  

X2	
  	
  	
  	
  	
  	
  	
  	
  -­‐0.0131	
  	
   	
   0.120	
  

X1*X2	
  	
  	
  	
  	
  	
  0.0751	
  	
  	
  	
   0.890	
  

-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
  

 Table 4.7 Minitab statistical software output example 
 

Having defined how to calculate the effects, it is more important to verify that the calculated 

effect is significant enough to reproduce the same change on the co-residency metrics. The 

effect significance can be verified using the p-value of each effect. The following section 

defines when to consider the effect to be significant.  

 

4.3.4.2 Effect Significance 

In order to accept that a parameter or an interaction has a significant affect on a given metric, 

a null hypothesis 𝐻! and an alternative hypothesis 𝐻!  are defined as follows: 
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𝑯𝟎: effect = 𝟎 

𝑯𝟏: effect ≠ 𝟎 

 

The above null hypothesis 𝐻! implies that there is no effect. In order to calculate the p-value 

for 𝐻! testing, Student’s t-test is used [14]. The effect’s p-value gives the probability that 𝐻! 

is held true when the experiment is conducted again.  In this thesis, an effect is considered to 

be statistically significant when there is less than 5% chance of accepting 𝐻! whenever the 

experiment is repeated. Therefore, if the effect’s p-value is below 0.05 then 𝐻! is rejected 

(and therefore 𝐻! is accepted), and the effect is considered to have a statistical significance. 

In the previous example in Table 4.7, parameter X1 has a significant effect since its p-value 

is less than 0.05. On the other hand, X2 and the X1*X2 interaction do not have significant 

effects as their p-values are greater than 0.05. 

In order to quantify the parameters’ influence under a given PA, the statistically significant 

effects on each metric are used to calculate the overall Weighted Effect. The overall 

Weighted Effect quantifies the overall influence of each parameter and interaction on the 

four co-residency metrics combined as shown in the next section.  

 

4.3.4.3 Overall Weighted Effect WE 

For each PA, the previous step defines how to measure the parameters and interactions 

effects and more importantly how to verify the effects significance. The 

parameter/interaction overall Weighted Effect, or overall WE for short, consists of the 

parameter/interaction WEs on the four co-residency metrics. A parameter’s WE on a given 

co-residency metric quantifies the parameter’s effect relative to other parameters/interactions 

effects on the same metric. More precisely, the WE measures an effect with respect to the 

maximum observed significant effect on the same metric. As each PA is tested using a 

narrow-experiment and a broad-experiment, the parameter/interaction WE on a given co-

residency metric M is calculated from both experiments as follows: 

For a given parameter or interaction X, let e be a variable that takes the following values 

(where the p-value corresponds to the parameter or interaction effect): 
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𝒆 =
X′s  effect    on  M  

Maximum    significant  effect  of  all  Xs  on  M   , p− value < 0.05

        0                                                                                                                                                      , p− value ≥ 0.05
 

 

Then X’s WE on a given metric M = 

e in the narrow-experiment  

+  

e in the broad-experiment,    0 ≤ WE ≤ 2 

 

For each X under a given PA, the sum of WEs on all four co-residency metrics represents X’s 

overall WE on the co-residency metrics: 

X’s Overall WE = (X’s WE on each M),          0 ≤ Overall WE ≤ 8 

 

The maximum WE a parameter/interaction can achieve on a given metric is two. This is only 

possible when the parameter/interaction has the highest significant effect on that metric in the 

narrow-experiment and the broad-experiment together. Accordingly, the maximum overall 

WE a parameter/interaction can achieve under a given PA is eight, given that the 

parameter/interaction achieves maximum WE (i.e. two) on the four co-residency metrics. 

Therefore, the overall WE for each parameter/interaction quantifies its overall influence on 

the co-residency metrics compared to other parameters and interactions.  

Under each PA, the parameters and interactions with the highest overall WE are selected as 

the most influential parameters. The selected parameters will be used in Chapter 5 to answer 

the third research question on the best parameters’ settings that reduce the co-residency 

probability in four PAs. 

 

4.4 Experimental Setup 

The VMC simulator has been used to estimate the co-residency metrics in the narrow-

experiment and the broad-experiment (Table 4.5 and Table 4.6) under four PAs: First Fit, 

Next Fit, Power Save and Random. Each experiment consisted of 16 experimental runs that 

tested each parameter eight times per level. In addition, each experimental run was repeated 

in ten simulation repetitions per PA. Such an approach allowed obtaining 160 test 

observations per parameter level per PA, and, therefore, increased the confidence in the 

simulation results. 
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All experimental runs were simulated for a period of 3800 minutes, and the simulation results 

were collected after a 200 minutes warm-up period. This warm-up period allowed an 

opportunity for VM placement activities to take place before recording the results.  

Moreover, the VMC simulator depends on Java’s random function to simulate the co-

residency behaviour. This function accepts a number and returns a pseudorandom, uniformly 

distributed value between 0 (inclusive) and the specified number (exclusive). The sequence 

of the returned random numbers depends on the function’s seed number. The seed number 

sets the initial value of the internal state of the pseudorandom number generator. If two 

simulation runs are using the same random seed, they will generate identical sequences of 

numbers. In order to enhance the robustness of the random numbers generated using Java’s 

random function, the system clock is used as a seed number each time the random function is 

used. Such an approach increased the confidence that each simulation run will receive a 

different sequence of the generated random numbers. In addition, the simulation runs were 

conducted at different times of the day using multiple PCs that have different configurations 

(Table 4.8). Such an action ensures that the time at which the simulation is carried out, and 

the PCs configurations’ impact on the simulation results, is minimal.  

 
Configurations Type 1 Type 2 Type 3 

Processor Spec. Intel(R) Core i7 CPU Intel(R) Core i7-3770 CPU Intel(R) Core i5 CPU 

No. of Cores 8 CPUs X 2.93GHz 8 CPUs X 3.4GHz 2 CPUs X 2.4GHz 

Memory Size 4096MB RAM 8192MB RAM 8192MB RAM 

Operating System Windows 7 (64 bit) Windows 7 (64 bit) OS X 10.9.4 

 

 Table 4.8 PC configurations used to run the VMC simulator  
 

The VMC simulator generates the results in Microsoft Excel format and text format (see 

Appendix A). Once the simulation is done, the results are entered into the Minitab statistical 

software to carry the ANOVA test in order to measure the parameters and interactions 

effects. 

 

4.5 Findings 

The influence of cloud parameters and interactions on the co-residency metrics were 

quantified under each PA as follows:  
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1 For each parameter and interaction: the effect and its significance on each of the co-

residency metrics (CCP, HFL, CV and CA) were calculated. 

2 Then, the overall WE of each parameter and interaction was calculated to quantify the 

parameters and interactions influence on the co-residency metrics.  

 

Under each PA, four parameters and interactions with the highest overall WE were identified 

as the most influential parameters on the co-residency metrics.  

The next two subsections present the results in an orderly sequence using the above two 

steps. The presented results confirm the thesis’s first hypothesis by quantifying the 

parameters’ and interactions’ influence on the co-residency metrics. The following 

observations were made as a result of simulating all experimental runs from the narrow-

experiment and the broad-experiment (Table 4.5 and Table 4.6). Each run was tested in ten 

simulation repetitions under four PAs: First Fit, Next Fit, Power Save and Random. 

 

4.5.1 Significant Effects Results 

For the narrow-experiment and the broad-experiment, Table 4.9 shows the p-values (i.e. the 

level of significance) of the parameters and 2-parameter interactions effects on the four co-

residency metrics under each PA.  

Under each PA, each level of every parameter was tested in 80 simulation repetitions in both 

the narrow-experiment and the broad-experiment, and, therefore, each effect’s p-value was 

calculated with 79 degrees of freedom. Wherever a parameter’s effect is significant (i.e. has a 

p-value < 0.05) then the effect will be considered in the parameter’s overall WE calculations.  
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Table 4.9 Examining the effects significance using p-value  

 
 

 Effects’ p-values on the co-residency metrics per Placement Algorithm 

PAê  Metrics è  CCP HFL 
CV CA 

Fi
rs

t F
it 

Experiment è  

Parameters ê  
Broad Narrow Broad Narrow Broad Narrow Broad Narrow 

X1 0 0.897 0.014 0.681 0 0.532 0 0.698 
X2 0 0.108 0.01 0 0 0 0 0 
X3 0 0 0.074 0.549 0.035 0 0 0.87 
X4 0 0 0 0.001 0.511 0.278 0 0 
X5 0 0.565 0 0.811 0 0.442 0.004 0.643 
X6 0.113 0.789 0.029 0.686 0.482 0.485 0.017 0.021 
X7 0 0 0 0.226 0 0.409 0 0 
X8 0 0 0.251 0.226 0.002 0.984 0 0.16 
X1*X2 0 0.187 0.046 0.687 0.209 0.704 0 0.823 
X1*X3 0 0.036 0.027 0.119 0 0.934 0 0 
X1*X4 0.16 0.863 0.05 0.88 0 0.406 0 0.012 
X1*X5 0.126 0.508 0.061 0.619 0.004 0.588 0.131 0.004 
X1*X6 0.111 0.978 0.826 0.743 0.04 0.32 0.001 0.716 
X1*X7 0 0.594 0.006 0.663 0 0 0 0.773 
X1*X8 0 0.699 0.271 0.469 0.027 0.528 0 0  

         

N
ex

t F
it 

X1 0 0.147 0 0.824 0.632 0.9 0 0.323 
X2 0 0 0 0 0 0 0 0 
X3 0 0.252 0.255 0.831 0.352 0.323 0 0.45 
X4 0 0 0 0 0 0.52 0 0.925 
X5 0.327 0.623 0.703 0.883 0.905 0.993 0.671 0.469 
X6 0.455 0.38 0.675 0.683 0.439 0.97 0.004 0.341 
X7 0 0.904 0.036 0.759 0.728 0.781 0 0.88 
X8 0 0 0 0.026 0 0.735 0 0.185 
X1*X2 0 0.027 0 0.815 0.799 0.912 0 0.558 
X1*X3 0 0.023 0.175 0.085 0.895 0.978 0 0.697 
X1*X4 0 0 0 0.13 0 0.834 0 0.754 
X1*X5 0.001 0.978 0.74 0.978 0.718 0.986 0.004 0.34 
X1*X6 0.001 0.948 0.711 0.923 0.996 0.952 0.691 0.325 
X1*X7 0 0.608 0.699 0.855 0.759 0.912 0 0.404 
X1*X8 0 0 0 0.02 0 0.937 0 0.006  

         

Po
w

er
 S

av
e 

X1 0 0.887 0.04 0.764 0 0.322 0 0.885 
X2 0 0 0.007 0 0 0 0 0 
X3 0 0 0.148 0.918 0.003 0 0 0.472 
X4 0 0 0 0.002 0.619 0.731 0.001 0 
X5 0 0.926 0.023 0.868 0 0.169 0.022 0.803 
X6 0 0.576 0.085 0.876 0.033 0.968 0.53 0.001 
X7 0 0 0 0.149 0 0.652 0 0 
X8 0 0 0.024 0.214 0.096 0.281 0.191 0.085 
X1*X2 0 0.374 0 0.69 0.525 0.775 0 0.819 
X1*X3 0 0.065 0.302 0.142 0 0.966 0 0 
X1*X4 0.576 0.755 0.029 0.685 0 0.845 0.244 0.009 
X1*X5 0 0.084 0.03 0.766 0.535 0.168 0.08 0 
X1*X6 0.017 0.834 0.589 0.601 0.05 0.467 0.32 0.927 
X1*X7 0 0.519 0.33 0.994 0 0 0 0.504 
X1*X8 0 0.512 0.633 0.538 0.001 0.138 0.001 0  

         

R
an

do
m

 

X1 0.035 0.889 0.468 0.893 0.887 0.756 0 0.214 
X2 0 0 0 0 0 0 0 0 
X3 0 0.291 0.764 0.768 0.202 0.239 0 0.519 
X4 0 0 0.046 0.029 0 0.971 0 0.724 
X5 0.53 0.549 0.242 0.99 0.736 0.957 0.374 0.479 
X6 0.055 0.418 0.698 0.875 0.83 0.982 0 0.276 
X7 0 0.345 0.011 0.57 0.474 0.835 0 0.993 
X8 0 0 0.514 0.191 0.008 0.977 0 0.232 
X1*X2 0 0.427 0.332 0.873 0.697 0.89 0 0.42 
X1*X3 0 0 0.049 0.17 0.778 0.957 0 0.919 
X1*X4 0 0 0.795 0.76 0.001 0.621 0 0.401 
X1*X5 0.353 0.385 0.689 0.769 0.768 0.982 0 0.76 
X1*X6 0.039 0.94 0.412 0.988 0.652 0.98 0.556 0.474 
X1*X7 0 0.449 0.028 0.741 0.58 0.819 0 0.533 
X1*X8 0 0 0.034 0.599 0 0.427 0 0 
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It would be of interest, before proceeding to calculate the overall WE of the parameters and 

interactions, to examine under which PA the parameters and interactions achieved more 

significant effects on the co-residency metrics. There are 512 effect observations for the four 

PAs in Table 4.9, of which 225 were statistically significant (see the highlighted cells). Out 

of these significant effects, 28.88% were observed under First Fit, 23.55% under Next Fit, 

26.66% under Power Save and 20.88% under Random.  

In addition, it would also be of interest to see whether using two level ranges (i.e. used in the 

narrow-experiment and the broad-experiment) has shown any difference with regard to the 

effects significance. Out of all significant effects in Table 4.9, 72.88% were observed under 

the broad-experiment compared to 27.11% under the narrow-experiment. 

 

4.5.2 Identifying the Most Influential Parameters on the Co-residency Metrics 

Under each PA, the overall WE of each parameter/interaction were calculated as described in 

Section 4.3.4.3. As mentioned earlier, the maximum overall WE a parameter/interaction can 

achieve under each PA is eight, given that the parameter/interaction has achieved maximum 

WE (i.e. two) on the four co-residency metrics.  

Table 4.10 outlines the overall WE of the parameters and interactions under First Fit, Next 

Fit, Power Save and Random PAs. In general, the 2-parameter interactions scored lower 

overall WE under the four PAs (average overall WE of 0.92) compared to the parameters 

(average overall WE of 1.99). 
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Overall Weighted Effect WE 

ID 
Parameter/ 

Interaction 

Under 

First Fit 

Under 

Next Fit 

Under 

Power Save 

Under 

Random 

X1 Number of Clusters 1.064 1.216 0.990 0.245 

X2 Number of Hosts 4.574 7.602 5.165 8.000 

X3 Max Host Utilization 2.364 0.594 2.614 0.636 

X4 Users’ Arrival Rate 4.295 1.969 4.197 1.101 

X5 Number of Users 0.967 0.000 0.802 0.000 

X6 Parallel VMs per User 0.511 0.135 0.510 0.180 

X7 VM Average Lifetime 3.665 0.609 3.563 0.565 

X8 VMs per Request 1.816 1.682 1.435 0.618 

X1*X2 

 

 

 

Two-parameter 

interactions 

0.715 1.376 0.839 0.239 

X1*X3 2.142 0.456 1.716 0.656 

X1*X4 1.109 1.689 0.801 0.742 

X1*X5 0.476 0.150 0.501 0.175 

X1*X6 0.442 0.017 0.017 0.013 

X1*X7 2.000 0.580 1.851 0.721 

X1*X8 1.209 2.160 1.492 1.517 

 Table 4.10 Overall WE of the parameters and interactions 
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The top four parameters and interactions with the highest overall WE under each PA are 

highlighted in Table 4.10. One major observation is that First Fit and Power Save share the 

same top four parameters and interactions, and the same observation applies for Next Fit and 

Random. Appendix C contains the parameters and interactions WEs on each of the co-

residency metrics under each PA. Moreover, Appendix D presents the interaction plots of the 

significant 2-parameter interactions on the co-residency metrics. 

Table 4.11 shows the parameters that scored the highest overall WE Under First Fit and 

Power Save:  

 

Parameters Overall WE under First Fit Overall WE under Power Save 

X2 4.573 5.165 

X4 4.294 4.197 

X7 3.664 3.563 

X3 2.363 2.613 

 Table 4.11 The four parameters/interactions with the highest overall WE under First 
Fit and Power Save 

 

For Next Fit and Random, Table 4.12 shows the parameters and interactions that scored the 

highest overall WE: 

 

Parameters Overall WE under Next Fit Overall WE under Random 

X2 7.601 8 

X1*X8 2.160 1.516 

X4 1.969 1.101 

X1*X4 1.689 0.741 

 Table 4.12 The four parameters/interactions with the highest overall WE under Next 
Fit and Random 

 

The Number of Hosts parameter (X2) repeatedly achieved the highest overall WE under the 

four PAs, achieving the maximum overall WE (i.e. 8) under Random. However, the 

parameters’ overall WEs were not similar under different PAs. For instance, The Number of 

Hosts (X2) achieved a higher overall WE under Next Fit and Random (7.602 and 8.00) 



 75 

compared to a relatively lower overall WE First Fit and Power Save (4.574 and 5.165). In 

contrast, The User Arrival Rate (X4) parameter had higher overall WE on First Fit and Power 

Save (4.295 and 4.197) compared to Next Fit and Random (1.969 and 1.101).  

In the following figures, the overall WE results from Table 4.10 are illustrated to compare the 

parameters and interactions influence on the co-residency metrics under First Fit in (Figure 

4.2), Next Fit in (Figure 4.3), Power Save in (Figure 4.4) and Random in (Figure 4.5). 

The X-axis shows the parameters and the 2-parameter interactions and the Y-axis show their 

overall WEs on the co-residency metrics.  

 

 

  
Figure 4.2 The overall Weighted Effect WE of the parameters/interactions under First 

Fit 
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Figure 4.3 The overall Weighted Effect WE of the parameters/interactions under Next 

Fit 
 

 

  
 Figure 4.4 The overall Weighted Effect WE of the parameters/interactions under 

Power Save 
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 Figure 4.5 The overall Weighted Effect WE of the parameters/interactions under 

Random 
 

 

4.6 Discussion 

The main outcomes of this chapter are: 

 

• The four most influential parameters and interactions on the co-residency 

metrics are the same for First Fit and Power Save on one hand, and for Next Fit 

and Random, on the other hand. 

This observation was the motivation for identifying the top four parameters and 

interactions that achieved the highest overall WE under a given PA as the most 

influential parameters and interactions on the co-residency metrics. This finding 

reveals that similarities exist between PAs in terms of what influences the co-

residency behaviour in IaaS clouds (Table 4.11 and Table 4.12). The most likely 

cause for the similarity between First Fit and Power Save is that they share one 

common feature, that is, they prioritise the clusters and hosts with smaller IDs for 

new VMs placements (see Appendix A). On the other hand, one possible explanation 

of why Next Fit and Random have similar influential parameters and interactions is 

related to how clusters and hosts are selected for placement. In particular, clusters and 

hosts are selected in Next Fit in a cyclic fashion and in Random as a fair random 
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selection. For instance, for a given IaaS that has C clusters, Next Fit selects a given 

cluster with a probability of !
!
  . Similarly, the same cluster will be selected for a new 

VM placement in Random with the same probability. Appendix A describes in detail 

how the four PAs select clusters and hosts for VMs placement.  

It is important to mention that PAs have been frequently compared for various 

applications such as [37], performance and energy consumptions [40], [55], [58], 

[99]. However, this thesis is the first to compare PAs in terms of their impact on co-

residency behaviour. In addition, this thesis is the first to identify that a similarity 

exists between First Fit and Power Save, as well as between Next Fit and Random. 

 

• The four most influential parameters and interactions on the co-residency 

metrics are identified under First Fit, Next Fit, Power Save and Random. 

This finding answers the second research question (i.e. For a given PA, what are the 

most influential cloud parameters affecting co-residency probability?). Table 4.10 

shows that the quantified influence on the co-residency metrics varies between these 

parameters and interactions. This variation confirms the first research hypothesis that 

“for a given PA, cloud parameters such as the number of hosts and users do not have 

the same influence on the co-residency probability in IaaS clouds.”  

Out of many parameters that define the IaaS cloud environment, one of the most 

significant findings in this chapter is that the number of hosts is the most influential 

parameter under four PAs. In addition, user arrival rate was identified among the four 

most influential parameters under four PAs.  

The following shows the four most influential parameters and two-parameter 

interactions under each PA: 

 

- Under First Fit and Power Save: 

The four most influential parameters on the co-residency metrics are (in 

order): Number of Hosts (X2), User Arrival Rate (X4), and VM Average 

Lifetime (X7) and Max Host Utilization (X3).  

 

- Under Next Fit and Random: 

The four most influential parameters on the co-residency metrics are (in 

order): Number of Hosts (X2), interaction of the Number of Clusters and the 
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VMs per Request parameters (X1*X8), User Arrival Rate (X4) and interaction 

of the Number of Clusters and the Users’ Arrival Rate parameters (X1*X4). 

Unlike First Fit and Power Save, 2-parameter interactions were identified to 

be influential under Next Fit and Random. 

 

This finding is particularly useful in this thesis to conduct further experiments in Chapter 

5 on fewer, yet high influential, parameters. These experiments should provide valuable 

insights on what settings enable the influential parameters to reduce the probability of co-

residency and under what PA.  

 

• When a 2-level experiment is used to quantify the parameters and interactions 

effects, the wider range between the two levels allows more significant effects 

compared to a narrower range to be observed.  

The results in Table 4.9 suggest that the parameters are more likely to have 

significant effects on the co-residency metrics when they are varied between distant 

levels. This finding suggests that adding/removing a few clusters, for example, is less 

likely to cause a significant effect on the co-residency behaviour compared to a 

relatively larger change.  

In addition, this finding also suggests that using two different level ranges (narrow-

range and broad-range) in the Influence Evaluation Strategy was useful to quantify 

the parameters influence on the co-residency metrics. The results show that the ratio 

of significant effects between the narrow-range and broad-range was approximately 

1:3.  

 

4.7 Summary  

Perhaps the main challenge faced in this chapter is that there were many cloud parameters 

and parameters’ settings to be included in limited resources experiments. In order to 

overcome this challenge, an Influence Evaluation Strategy has been proposed to simplify the 

process of designing experiments that have a large number of parameters and settings. The 

use of fractional factorial design was one step (of multiple steps) that the strategy applied to 

construct a reduced and balanced experiment. Using the VMC simulator as a testbed, this 

chapter has applied the Influence Evaluation Strategy to answer the second research question 

on what parameters influence the co-residency metrics the most. 
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Under each of the used PAs in this thesis, the strategy was able to quantify the influence of 

eight cloud parameters and their interactions on the co-residency metrics. This quantification 

led to identifying the four most influential parameters and 2-parameter interactions on the co-

residency metrics (Table 4.11 and Table 4.12). One of the most important findings in this 

chapter is that the number of hosts is the most influential parameter under four PAs. Under 

First Fit and Power Save, the four most influential parameters on the co-residency metrics 

were number of hosts, user arrival rate, VM average lifetime and maximum host utilization. 

On the other hand, the four most influential parameters under Next Fit and Random were the 

number of hosts, the interaction of the number of clusters and VMs per request parameters, 

user arrival rate and the interaction of the number of clusters and users’ arrival rate 

parameters. 

In addition, this thesis is the first to compare these four PAs in terms of their impact on the 

co-residency metrics. The findings show that a similarity exists between First Fit and Power 

Save, as well as between Next Fit and Random.  

Further, the results presented in Table 4.10 support the first hypothesis put forward in Section 

1.3. The first hypothesis states “for a given PA, cloud parameters such as the number of hosts 

and users do not have the same influence on the co-residency probability in IaaS clouds.” 

The next chapter (Chapter 5) is dedicated to answering the third research question on how the 

most influential parameters’ settings can be used to reduce the co-residency probability in 

four PAs.  
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Chapter 5   

Reducing Co-residency Probability   
 

 

5.1 Introduction  

This chapter aims to answer the third research question of “what are the parameter settings 

that reduce the co-residency probability in a given PA.” The co-residency probability 

determines the chance that a VM experiences an arbitrary co-residency hit (see Section 1.2).  

Chapter 4 identified the most influential parameters and 2-paremeter interactions on the co-

residency metrics (Table 4.11 and Table 4.12). Under First Fit, Next Fit, Power Save and 

Random, this chapter employs the VMC simulator to estimate the co-residency metrics using 

controlled experiments. These estimates are obtained by examining the influential parameter 

at more levels under four PAs. 

This approach serves two important functions. First, these estimates are used to test the 

influential parameters at more levels to investigate the relationship between each parameter 

and the co-residency metrics, in order to determine the best parameter settings that reduce the 

co-residency probability. For instance, does the increase in the number of hosts reflect a 

linear increase or decrease in the co-residency probability? Second, comparing PAs in terms 

of reducing the co-residency probability.  

Since that the co-residency metrics characterize probabilities related to co-residency, an 

assumption is made in this chapter that the co-residency probability is reduced when: 

• The Co-residency Coverage Probability CCP is reduced. 

• The Hit-Free Lifetime HFL is increased. 

• The Co-residency Vacancy CV is reduced.  

• The Co-residency Activity CA is reduced.    

 

The remainder of this chapter is organized as follows. The next section describes the method 

and the experiment settings that were used to estimate the co-residency metrics. The main 

conclusions are presented in Section 5.3 and discussed in Section 5.4. 
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5.2 Method 

The VMC simulator was used to estimate the co-residency metrics under four PAs (i.e. First 

Fit, Next Fit, Power Save and Random). This section defines how controlled experiments 

were conducted to examine further the influential parameters (identified in Chapter 4) using 

ten levels listed in Table 5.1. A controlled experiment is one in which all parameters are held 

constant except for one [14]. This section also explains how the results were analyzed to 

answer the third research question on which parameters’ settings reduce the co-residency 

probability in four PAs.  

 

5.2.1 Experimental Setup  

Chapter 4 identified the four most influential parameters under four PAs (Table 4.11 and 

Table 4.12). Therefore, one controlled experiment per influential parameter was conducted 

under each PA. In each experiment, the same eight parameters from Chapter 4 (Table 5.2) 

were separated into two groups: an experimental group and a control group. The 

experimental group contained one influential parameter that was tested at ten levels, while 

the control group consisted of the remaining 7 parameters that were kept constant. 

With ten new parameter levels defined in Table 5.1, each controlled experiment consisted of 

ten experimental runs.  These new levels were selected such that they were evenly distributed 

between the low level and the high level of the broad-range (Table 4.4). This action ensured 

more levels covered, especially the levels that were not tested by the Influence Evaluation 

Strategy in Chapter 4.   

In addition, Chapter 4 identified two 2-parameters interactions (i.e. X1*X4 and X1*X8) that 

had an influence under Next Fit and Random. The use of controlled experiments allowed 

testing each of the interacting parameters individually at ten levels while keeping the other 

control parameters (including the interacting parameter) at a constant level.  

There were many possible levels that could be assigned to the control parameters. Appendix 

D illustrates the significant two 2-parameters interactions (i.e. X1*X4 and X1*X8) and 

reveals that nearly 63.6% of these interactions were able to reduce the co-residency 

probability when both X4 and X8 were in low levels. This finding was one of the motivations 

for assigning the low levels from the narrow-range (Table 4.4) to the control parameters. 
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New levels of the most Influential Parameters 

Number of 

Clusters (X1) 

Number of 

Hosts (X2) 

Max Host 

Utilization (X3) 

Users’ Arrival 

Rate (X4) 

VM Average 

Lifetime (X7) 

VMs per 

Request (X8) 

15 1000 80% 2 2000 2 

19 4000 82% 2.33 2150 2.2 

23 7000 84% 2.66 2350 2.4 

29 10000 85% 2.99 2550 2.6 

33 13000 88% 3.33 2700 2.8 

37 16000 91% 3.66 2850 3 

41 19000 94% 3.99 3050 3.2 

44 22000 96% 4.33 3250 3.5 

47 25000 98% 4.66 3450 3.8 

50 30000 100% 5 3600 4 

 Table 5.1 New levels for testing the most influential parameters. 
 

 

For each influential parameter under a given PA, a controlled experiment was conducted 

using the following steps: 

1. The remaining parameters (i.e. the control group) were kept constant. Table 5.2 lists 

the levels that were used to fix the control parameters.  
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Parameter Control level 

Number of Clusters (X1) 15 

Number of Hosts (X2) 1000 

Max Host Utilization (X3) 80% 

Users’ Arrival Rate (X4) 2 

Number of Users (X5) 35000 

Parallel VMs per User (X6) 12 

VM Average Lifetime  (X7) 2000 

VMs per Request (X8) 2 

 Table 5.2 Control level for parameters  
 

2. The influential parameter’s levels from Table 5.1 were used in the VMC simulator 

while holding the control group parameters constant.  

3. To increase the reliability of the experiment’s results, each of the ten influential 

parameters’ levels was tested in ten simulation repetitions. This provided 100 

observations per parameter per PA. 

 

5.2.2 Analysis Approach   

With four influential parameters per PA and ten levels per parameters (tested in ten 

simulation repetitions), each PA was examined in 400 simulation runs yielding a total of 

1600 simulation runs under four PAs. These simulations’ results showed the following under 

each PA: 

1. Simulation estimates of the co-residency metrics (used to compare PAs in terms 

of reducing the co-residency probability). 

2. The correlation between the influential parameters and the co-residency metrics 

(used to identify the best parameter settings that reduce the co-residency 

probability).  

 

The co-residency metrics estimates were used to identify the best parameters’ settings that 

reduced the co-residency probability in four PAs. Each of the co-residency metrics was 

estimated with 99 degrees of freedom under each PA to increase the estimates accuracy. 

Confidence Intervals with 95% confidence level were used to enhance the precision of these 
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estimates. These intervals describe the likely range of a sample estimate from the true 

population. Confidence intervals are reported in tables as (Mean ± margin of error).  

However, it is important to note that outliers (i.e. observation points that are distant from 

other observations) can have an impact on the confidence interval [83]. The sample Pearson 

correlation coefficient was used to describe the linear correlation between parameters and 

metrics to obtain reliable estimates of the co-residency metrics and reduce the effect of these 

outliers. Pearson coefficients are sensitive to outliers, and the strongest correlations (i.e. 1.0 

and  -1.0) occur when data points fall exactly on a straight line. In this thesis, the stronger the 

Pearson’s correlation coefficients, the better the estimate.  

More importantly, calculating the Pearson’s correlation coefficients between the influential 

parameters and the co-residency metrics revealed valuable insights that helped to identify the 

best parameters’ settings that reduced the co-residency probability under each PA.  

The method in which the correlations were obtained and interpreted is described in the 

following section (Section 5.2.3).   

 

5.2.3 Influential Parameters Correlations with the Co-residency Metrics 

The sample Pearson correlation coefficient, or the r-value for short, was used to examine the 

influential parameters linear correlations with the co-residency metrics. The r-value can be 

any value between +1 and −1, where +1 indicates a total positive correlation, 0 indicates no 

correlation, and −1 indicates a total negative correlation [14]. As pointed out in the previous 

section, the strongest correlations (i.e. 1.0 and -1.0) occur when data points fall exactly on a 

straight line. The r-value is also useful to indicate the slope of the correlation, where a 

positive r-value indicates that an increase on the influential parameter’s level results in an 

increase on the corresponding co-residency metric and vice versa. 

Dancey and Reidy suggested the following categorisation of the strength of correlation as 

shown in Table 5.3 [26]:  
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|r-value| Strength of Correlation 

1 Perfect 

0.7 - 0.9 Strong 

0.4 - 0.6 Moderate 

0.1 - 0.3 Weak 

0 Zero 

 Table 5.3 Categorisation of the strength of correlation 
 

 

In this chapter, an influential parameter was considered to have a strong linear correlation 

with a given co-residency metric if the corresponding |r-values| is between 0.4 to1.0. Figure 

5.1 illustrates three examples of a moderate positive correlation at r-value = 0.5, no 

correlation at r-value = 0 and a strong negative correlation at r-value = -1.0. 

 

 

 
  

Figure 5.1 Examples of correlation r-values. 
 

Given that n is the number of an influential parameter’s observations in a controlled 

experiment (i.e. 100 in this chapter), 𝐴 is the average of the parameter’s levels and 𝑀 is the 

co-residency metric’s estimate, the sample Pearson correlation coefficient, r-value, was 

calculated as follows: 

 

𝒓− 𝒗𝒂𝒍𝒖𝒆 =   
[(𝑨𝒊 − 𝑨)(𝑴𝒊 −𝑴)𝒏

𝒊!𝟏 ]

(𝑨𝒊 − 𝑨)𝟐𝒏
𝒊!𝟏    (𝑴𝒊 −𝑴)𝟐𝒏

𝒊!𝟏   
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Finding the r-value between the influential parameters and the co-residency metrics served 

two important purposes: 

1. To verify whether the limitation identified in Section 4.3.2 had any effects on the 

Influence Evaluation Strategy outcomes. This limitation was present because the 

strategy measured each parameter’s effects between two levels only. Therefore, there 

is no guarantee that the parameter held a strong linear effect between these two levels, 

that is, no outlier was present. In contrast, the controlled experiments in this chapter 

tested more levels. Therefore, a weak r-value (i.e. |r-value|  < 0.4, see Table 5.3) 

between an influential parameter and the co-residency metrics can indicate the 

presence of outliers that were not detected by the Influence Evaluation Strategy. 

2. The r-value indicates the slope of the correlation between an influential parameter and 

the co-residency metrics. Therefore, it was used to identify the best parameters’ 

settings that reduced the co-residency probability under each PA. For instance, does 

the increase in the number of hosts reflect a linear increase or decrease in the co-

residency probability? 

 

Having defined the method that was used in this chapter, the following section highlights key 

findings from the controlled experiments.  

 

5.3 Findings  

This section outlines the important findings concerning the best parameters’ settings at which 

the co-residency probability was reduced in four PAs. Since the co-residency metrics 

estimate probabilities related to co-residency, an assumption was made that the co-residency 

probability can be reduced by: 

• Reducing the Co-residency Coverage Probability CCP,  

• Increasing the Hit-Free Lifetime HFL, 

• Reducing the Co-residency Vacancy CV and 

• Reducing the Co-residency Activity CA.    

 

The findings in the following sections can best be treated under the previous four headings. 

The following (Table 5.4, Table 5.5, Table 5.6 and Table 5.7) summarize the maximum and 

minimum observed values of the co-residency metrics under First Fit, Next Fit, Power Save 

and Random. In addition, the tables show the r-values of the correlation between the metric 
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and each of the influential parameters. The empty cells under each PA indicate that the 

corresponding parameter was not identified as an influential parameter under that particular 

PA.  

 
 Pa

ra
m

et
er

s First Fit Next Fit Power Save Random 

Min Max r-value Min Max r-value Min Max r-value Min Max r-value 

C
C

P 
M

et
ri

c 

X1 
   

0.929 0.939 0.057 
   

0.925 0.937 0.074 

X2 0.834 0.891 -0.396 0.000 0.937 -0.975 0.822 0.882 -0.175 0.240 0.935 -0.954 

X3 0.819 0.915 0.428 
   

0.820 0.913 -0.026 
   

X4 0.749 0.891 -0.575 0.923 0.936 -0.492 0.762 0.890 -0.677 0.919 0.936 -0.784 

X7 0.734 0.885 -0.891 
   

0.732 0.882 -0.889 
   

X8 
   

0.930 0.940 0.444 
   

0.929 0.937 0.136 

 

 Table 5.4 The r-values, minimum and maximum CCP observed under each PA 
 

 

 

 

Pa
ra

m
et

er
s First Fit Next Fit Power Save Random 

Min Max r-value  Min Max r-value Min Max r-value Min Max r-value 

H
F

L 
M

et
ri

c 

X1       0.142 0.161 -0.159       0.132 0.148 -0.281 

X2 0.099 0.137 -0.589 0.148 1.00 0.883 0.097 0.130 -0.354 0.136 0.500 0.801 

X3 0.104 0.156 -0.434       0.102 0.151 -0.315       

X4 0.097 0.216 0.523 0.095 0.157 -0.877 0.099 0.235 0.630 0.098 0.150 -0.806 

X7 0.033 0.149 -0.870       0.030 0.143 -0.891       

X8       0.106 0.158 -0.900       0.101 0.147 -0.901 

 

 Table 5.5 The r-values, minimum and maximum HFL observed under each PA 
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Pa
ra

m
et

er
s 

First Fit Next Fit Power Save Random 

Min Max r-value  Min Max r-value Min Max r-value Min Max r-value 

C
V

 M
et

ri
c 

X1       0.1096 0.1547 -0.288       0.0766 0.1098 -0.152 

X2 0.0005 0.0071 -0.690 0.421 0.983 0.538 0.0003 0.0057 -0.727 0.242 0.977 0.548 

X3 0.0008 0.2202 0.549       0.0009 0.2126 -0.087       

X4 0.0003 0.0038 -0.281 0.0425 0.1472 -0.869 0.0003 0.0048 -0.274 0.0339 0.1137 -0.898 

X7 0.0003 0.0049 -0.264       0.0003 0.0054 -0.362       

X8       0.0776 0.1530 -0.857       0.0578 0.0992 -0.877 

 

 Table 5.6 The r-values, minimum and maximum CV observed under each PA 
 

 

 

Pa
ra

m
et

er
s 

First Fit Next Fit Power Save Random 

Min Max r-value  Min Max r-value Min Max r-value Min Max r-value 

C
A

 M
et

ri
c 

X1       0.0027 0.0034 0.192       0.0024 0.0033 0.163 

X2 0.0001 0.0006 -0.868 0.0000 0.0032 -0.732 0.0001 0.0006 -0.880 0.0001 0.0030 -0.792 

X3 0.0004 0.0017 0.695       0.0005 0.0018 0.749       

X4 0.0001 0.0006 -0.870 0.0018 0.0032 -0.810 0.0001 0.0006 -0.844 0.0016 0.0031 -0.848 

X7 0.0001 0.0015 -0.504       0.0001 0.0020 -0.494       

X8       0.0026 0.0031 -0.573       0.0022 0.0029 -0.666 

 

 Table 5.7 The r-values, minimum and maximum CA observed under each PA 
 

 

5.3.1 Reducing the Co-residency Coverage Probability (CCP) 

This section describes the findings concerning the Co-residency Coverage Probability CCP. 

The aim is to identify the best parameters’ settings at which the CCP estimate was low in 

four PAs.  



 90 

 

 CCP 

Estimate 

± 95.0% confidence 

interval of the estimate 
r-value 

First Fit 0.845 0.0018 -0.396 

Next Fit 0.379 0.065 -0.975 

Power Save 0.840 0.0019 -0.175 

Random 0.501 0.043 -0.954 

 Table 5.8 The CCP estimate with Number of Hosts (X2) varying between 1000-30000 
 

 

Table 5.8 shows a relatively high amount of variability in the CCP estimates. This variation 

suggested that changing the number of hosts caused greater variability in the CCP, and the 

degree of this variability is different between the PAs and higher in Next Fit and Random.  

Figure 5.2 reveals that there has been a steep decline in the CCP when the Number of Hosts 

(X2) has been increased using Next Fit. For instance, the figure shows that the CCP reached 

zero for IaaS clouds with a number of hosts larger than 25000. Similarly, the use of Random 

reduced the CCP to 0.240 with a very strong negative correlation. The same figure also 

shows that the Number of Hosts (X2) had negative correlations with the CCP under all PAs. 

This negative correlation indicates that increasing the number of hosts in an IaaS cloud 

contributed to reducing the probability of co-residency. However, the negative correlation is 

higher in Next Fit and Random as seen in the sharp drop of the CCP compared to the slight 

decrease of the CCP under First Fit and Power Save.  
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 Figure 5.2 The CCP metric at different Number of Hosts (X2) 

  

 

5.3.2 Increasing the Hit-Free Lifetime (HFL) 

This section describes the findings concerning the Hit-Free Lifetime HFL metric. The aim is 

to identify the best parameters’ settings at which the HFL estimate was high in four PAs. 

 

 HFL 

Estimate 

± 95.0% confidence 

interval of the estimate 
r-value 

First Fit 0.108 0.0012 -0.589 

Next Fit 0.771 0.054 0.883 

Power Save 0.108 0.0011 -0.354 

Random 0.414 0.020 0.801 

 Table 5.9 The HFL estimates under different Number of Hosts (X2) ranging between 
1000-30000 
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This variation in the HFL estimates between PAs (Table 5.9) suggested that changing the 

number of hosts caused greater variability in the HFL, and the degree of this variability is 

different between the PAs and higher in Next Fit and Random.  

Figure 5.3 reveals that there has been a gradual increase in the lifetime ratio at which a VM is 

safe from co-residency hits (i.e. HFL) when the Number of Hosts (X2) was increased using 

Next Fit. The figure shows that the HFL reached a peak value of 1.00 (i.e. the entire lifetime 

of a given VM was hit-free). In addition, the use of Random prolonged the HFL to 0.414. 

Similar to the Co-residency Coverage Probability (Section 5.3.1), Next Fit and Random 

showed to have strong positive correlations that can be seen in the gradual rise of the HFL. In 

contrast, the same figure shows that the number of hosts had relatively weaker negative 

correlations that can be seen in the steady decline of the HFL under First Fit and Power Save.  

 

 
 Figure 5.3 The HFL metric at different Number of Hosts (X2) 

 

 

In addition, as the Users’ Arrival Rate (X4) increased, the lifetime ratio at which a VM is 

safe from co-residency hits (i.e. HFL) has increased, showing a positive correlation using 

First Fit and Power Save. The Hit-Free Lifetime HFL estimates under different PAs and 

different users’ arrival rates ranging between 2-5 are shown in Table 5.10: 
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 HFL 

Estimate 

± 95.0% confidence 

interval of the estimate 
r-value 

First Fit 0.146 0.0056 0.523 

Next Fit 0.120 0.0035 -0.877 

Power Save 0.139 0.0045 0.630 

Random 0.116 0.0027 -0.806 

 Table 5.10 The HFL estimates with Users’ Arrival Rates (X4) varying between 2-5 
 

 

Table 5.10 shows high variations in the HFL estimates. These variations indicated that 

varying the users’ arrival rate caused a smaller amount of change on the HFL compared to 

varying the number of hosts on the HFL (Table 5.9).  

Figure 5.4 reveals that there has been a slight increase in the HFL when the users’ arrival rate 

has been increased under First Fit. The figure shows that the HFL reached a peak value of 

0.216 (i.e. approximately 21.6% of a given VM lifetime was hit-free) with a moderate 

positive correlation. Similarly, the use of Power Save extended the HFL to 0.235 with a 

strong positive correlation. In contrast, the same figure shows that the users’ arrival rate had 

relatively stronger negative correlations with the HFL under Next Fit and Random.  
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 Figure 5.4 The HFL metric at different Users’ Arrival Rates (X4) 

 

 

5.3.3 Reducing the Co-residency Vacancy (CV) 

This section describes the findings concerning the Co-residency Vacancy CV. The aim is to 

identify the best parameters’ settings at which the CV estimate was low in four PAs. 

The CV estimates under different PAs, and different number of hosts ranging between 1000-

30000 are shown in Table 5.11: 

 

 CV 

Estimate 

± 95.0% confidence 

interval of the estimate 
r-value 

First Fit 0.0018 0.0002 -0.690 

Next Fit 0.922 0.125 0.538 

Power Save 0.0014 0.0002 -0.727 

Random 0.892 0.163 -0.690 

 Table 5.11 The CV estimates with Number of Hosts (X2) varying between 1000-30000 
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Table 5.11 reveals a relatively high variation in the CV estimates between PAs. Figure 5.5 

reveals that increasing the Number of Hosts (X2) from 1000 to 7000 hosts under Next Fit and 

Random caused a sharp rise of the CV. For instance, the CV reached the maximum observed 

values of 0.9667 and 0.9095 respectively with moderate positive correlation. As the number 

of hosts exceeds 7000, the observed values of the CV under Next Fit and Random were 

clustered toward the maximum possible value of 1 (see Section 3.4.3).  In contrast, Figure 5.5 

shows that there has been a smaller change in the CV when the number of hosts has been 

increased using both First Fit and Power Save. For example, the CV reached a low value of 

0.0005 (i.e. a given VM’s host has been available for VMs placement during 0.05% of the 

VM lifetime) with a strong negative correlation.  

 

 
 Figure 5.5 The CV metric at different Number of Hosts (X2) 

 

In addition, as the Users’ Arrival Rate (X4) increased, the CV has decreased under all PAs 

(i.e. negative correlations). The Co-residency Vacancy CV estimates under different PAs and 

different users’ arrival rates ranging between 2-5 are shown in Table 5.12: 
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 CV 

Estimate 

± 95.0% confidence 

interval of the 

estimates 

r-value 

First Fit 0.0013 0.0001 -0.281 

Next Fit 0.0845 0.0052 -0.869 

Power Save 0.0011 0.0001 -0.274 

Random 0.0602 0.0042 -0.898 

 Table 5.12 The CV estimates with Users’ Arrival Rates (X4) varying between 2-5 
 

One interesting observation from Table 5.12 is that varying the users’ arrival rate caused a 

smaller amount of change on the CV estimates compared to varying the number of hosts 

(Table 5.11). 

Figure 5.6 reveals that the CV reached a low value of 0.0003 using First Fit and Power Save. 

In contrast, the same figure shows that the users’ arrival rate had far stronger negative 

correlations with the CV under Next Fit and Random. However, reducing the CV was better 

achieved under First Fit and Power Save when the users’ arrival rate varies. 

  

 
 Figure 5.6 The CV metric at different Users’ Arrival Rates (X4) 
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In addition, Table 5.13 shows the Co-residency Vacancy CV estimates under different VMs’ 

average lifetime ranging between 2000-3600 in First Fit and Power Save. The VMs average 

lifetime parameter (X7) was identified to be among the most influential parameters on the co-

residency metrics under First Fit and Power Save. Further, Figure 5.7 shows that the CV was 

kept at lower values that reached 0.0003 under different VMs average lifetime values.  

 

 CV 

Estimate 

± 95.0% confidence 

interval of the estimate 
r-value 

First Fit 0.0019 0.0001 -0.264 

Power Save 0.0019 0.0001 -0.362 

 Table 5.13 The CV estimates with VMs Average Lifetime (X7) varying between 2000-
3600 

 

 
 Figure 5.7 The CV metric at different VMs Average Lifetime (X7) 
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 CA 

Estimate 

± 95.0% confidence 

interval of the estimate 
r-value 

First Fit 0.0002 3x10!! -0.868 

Next Fit 0.0005 0.0001 -0.732 

Power Save 0.0002 3x10!! -0.880 

Random 0.0006 0.0001 -0.792 

 Table 5.14 The CA estimates with Number of Hosts (X2) varying between 1000-30000  
 

As the Number of Hosts (X2) increased, the Co-residency Activity CA has decreased under 

all PAs with strong negative correlations. Figure 5.8 reveals that the CA was minuscule 

regardless of the number of hosts or the PA, and reached the lowest value (i.e. zero) using 

Next Fit, and 0.0001 in the remaining PAs.  

 

 

 
 Figure 5.8 The CA metric at different Number of Hosts (X2) 
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In addition, as the Users’ Arrival Rate (X4) increased, the CA has decreased under all PAs. 

The Co-residency Activity CA estimates under different PAs and different users’ arrival rate 

ranging between 2-5 are shown in Table 5.15: 

 

 
CA 

Estimate 

± 95.0% confidence 

interval of the estimate 
r-value 

First Fit 0.0003 2x10!! -0.870 

Next Fit 0.0024 6x10!! -0.810 

Power Save 0.0002 2x10!! -0.844 

Random 0.0021 7x10!! -0.848 

 Table 5.15 The CA estimates with Users’ Arrival Rates (X4) varying between 2-5 
 

Increasing the users’ arrival rate had a negative correlation with the Co-residency Activity 

CA and the Co-residency Vacancy CV (Section 5.3.3) under all PAs. Figure 5.9 reveals that 

the CA reached a low value of 0.0001 using First Fit and Power Save.  

 

 
 Figure 5.9 The CA metric at different Users’ Arrival Rate  (X4) 
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With respect to the VMs average lifetime (X7), Figure 5.10 shows that the CA was kept at 

lower values as the VMs average lifetime increased in the First Fit as well as Power Save, 

reaching a low value of 0.0001.  

Further, the Co-residency Activity CA estimates under different VMs’ average lifetime 

ranging between 2000-3600 in First Fit and Power Save are shown in Table 5.16: 

 

 CA 

Estimate 

± 95.0% confidence 

interval of the estimate 
r-value 

First Fit 0.0007 6x10!! -0.504 

Power Save 0.0007 7x10!! -0.494 

 Table 5.16 The CA estimates with VMs Average Lifetime (X7) varying between 2000-
3600 

 

 

 
 Figure 5.10 The CA metric at different VMs Average Lifetime (X7) 
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Before proceeding to discuss the previous findings and their practical uses on reducing the 

co-residency probability in IaaS clouds, the next section provides a summary of the 

influential parameters linearity check results. These results will be used in Section 5.4 to 

evaluate the effectiveness and efficiency of the Influence Evaluation Strategy in identifying 

the most influential parameters on the co-residency metrics.  

 

5.3.5 Efficiency of the Influence Evaluation Strategy  

With four PAs, four influential parameters per PA and four co-residency metrics, a total of 64 

r-values were calculated. Since each parameter was tested at ten levels with ten simulation 

repetitions, therefore, the Pearson’s correlation r-values (Section 5.2.2) were calculated with 

98 degrees of freedom. The degrees of freedom for each r-value is equal to two less than the 

number of observations per parameter [14]. The influential parameters’ r-values were 

included in the findings in the previous sections. 

According to the categorization of the strength of correlation in Table 5.3, the |r-values| 

frequency distribution (Figure 5.11) shows that only 25% of the calculated r-values belong to 

parameters that had relatively weak correlations with the co-residency metrics (|r-value| < 

0.40). On the other hand, 75% of the r-values represented stronger correlations (|r-value| ≥ 

0.40).  

 

 
 Figure 5.11 A frequency distribution of the influential parameters’ |r-values|  
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5.4 Discussion 

The findings in this chapter answered the third research question on how the choice of the 

influential parameters’ settings can reduce the co-residency probability in four PAs. 

However, it is important to emphasize that the following discussion and conclusions are only 

valid within the range of data collected under the following PAs: First Fit, Next Fit, Power 

Save and Random.  

The key results of this chapter are: 

 

• Co-residency probability can be effectively reduced by the right choice of 

parameters’ settings in the four PAs.   

The results in this chapter show that the settings of the number of hosts and users’ 

arrival rate can positively and negatively affect the co-residency probability. The 

findings therefore suggest some answers to the third research question depending on 

the cloud infrastructure size (i.e. the number of hosts) and the cloud population 

density (i.e. users’ arrival rate) in the four PAs.  

The following comparison matrix (Table 5.17) summarizes how the co-residency 

probability has been reduced in different IaaS cloud sizes and population densities in 

four PAs. However, one major observation is that there is no overall best parameter 

settings or PA for reducing co-residency probability. 

This particular finding is relevant particularly to IaaS cloud providers. The finding 

demonstrates that the impact on co-residency probability should become an important 

factor in the choice of the parameters’ settings and PAs for IaaS clouds, an aspect that 

was not previously present in the available literature. 
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Reducing the Co-

residency 

Probability 

Cloud Size Cloud Population Density 

Small 

(<5000 

hosts) 

Large 

(≥5000 hosts) 

Low 

(user arrival 

rate <3) 

High 

(user arrival 

rate ≥3) 

Reducing the 

CCP 

First Fit, 

Power Save 

(marginally 

better) 

Next Fit, 

Random 

First Fit, Power Save 

 

Increasing the 

HFL 

Next Fit, Random (preference 

to Next Fit as number of hosts 

increase) 

Next Fit, 

Random 

First Fit, 

Power Save 

Reducing the CV 
First Fit, Power Save 

(consistently at zero) 

First Fit, Power Save 

(consistently at zero) 

Reducing the CA 

First Fit, 

Power Save 

(consistently 

low at 

<0.001) 

Next Fit, 

Random 

(converge to 

First Fit and  

Power Save as 

number of 

hosts increase 

First Fit, Power Save (nearly 

zero but marginally lower than 

Next Fit and Random by less 

than 0.003). 

 
 Table 5.17 The best parameters’ settings in four PAs to reduce the co-residency 

probability  
 

 

• In general, Next Fit and Random have a better tendency to hinder co-

residency in IaaS clouds. 

By comparing the PAs at different number of hosts, the probability (with 95% 

confidence intervals) that a given VM experiences at least one arbitrary co-residency 

hit is between 0.314 to 0.444 in Next Fit. This is compared to 0.458 to 0.544 in 

Random, 0.843 to 0.846 in First Fit and 0.838 to 0.841 in Power Save. One possible 

explanation of why Next Fit and Random are better at reducing the co-residency 

probability is associated with how they place VMs into hosts. That is, Next Fit and 
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Random tend to distribute VMs evenly to as many hosts as possible rather than 

packing them tightly on the first available hosts as First Fit and Power Save do. 

Therefore, VMs are less vulnerable to the reception of many co-residing VMs in Next 

Fit and Random, as opposed to First Fit and Power Save. Section 4.6 discusses in 

detail the similarity between Next Fit and Random in terms of how they place VMs. 

One can argue that using a PA that hinders attackers from achieving co-residency can 

be a clever action that IaaS cloud provider may take to reduce the avenue for side 

channel attacks. This finding corroborates the ideas of [79], who recommended that 

securing against side channel attacks can be achieved via disabling co-residency, that 

is each VM runs in its dedicated host. 

 

• For larger IaaS clouds, co-residency probability can be effectively reduced, 

and even eliminated, by using Next Fit. 

The findings in Section 5.3 showed that as the number of hosts exceeds 25000 hosts, 

the use of Next Fit as a PA eliminated the Co-residency Coverage Probability CCP 

and Co-residency Activity CA. The most likely cause of this is that the frequency, at 

which a given VM u receives a co-residency hit when Next Fit is used, is proportional 

to the number of hosts. That is, once u is placed in a host x, Next Fit selects x for the 

next placement after placing a VM in all hosts. Therefore, this finding suggests that 

using Next Fit in larger IaaS clouds (with a larger number of hosts) can be useful for 

reducing, and even eliminating, the probability of co-residency.  

 

• VM co-residency probability is dependent on the number of hosts, where 

IaaS clouds with a higher number of hosts are less likely to exhibit co-

residency. 

This finding suggests that VMs hosted in IaaS clouds that have a larger number of 

hosts are likely to be safer from co-residency compared to IaaS clouds with a smaller 

number of hosts.  Regardless of the PA, the disproportionate effect that the number of 

hosts had on the co-residency metrics (see Figure 5.2, Figure 5.5 and Figure 5.8) 

provided convincing evidence to support this finding.  

One practical application of this finding is for cloud users to compare the potential 

co-residency probability at different IaaS clouds, depending on the number of hosts in 

each cloud. On the basis of the previous evidence, it seems fair to suggest that hosting 
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sensitive data and applications in IaaS clouds that have more hosts can be an effective 

practice to reduce the probability of experiencing co-residency hits. Such action can 

reduce the attack surface for side channel attacks.  One exception to this 

recommendation is that the Co-residency Vacancy CV was shown to increase as the 

number of hosts increases under Next Fit and Random PAs. However, the existence 

of a CV during a VM’s lifetime is considered to be a necessary, but not sufficient, 

condition for an attacker to achieve co-residency with a given VM (see Section 3.4.3). 

In addition, IaaS cloud providers might consider adding more hosts as a measure to 

hinder co-residency. However, this suggests the existence of a trade-off between 

reducing costs (i.e. not investing in new hosts) and increasing security (i.e. reducing 

co-residency probability).  

 

• The Influence Evaluation Strategy was efficient in identifying the most 

influential parameters on the co-residency metrics. 

With regards to the Influence Evaluation Strategy (Section 4.3.2), one of the 

limitations of using 2-way Fractional Factorial experimentations is that the effect of 

each parameter was measured at two levels only. Therefore, there was no guarantee 

that there will be no outliers between these two levels as the presence of such outliers 

might impact the strategy’s evaluation of the parameters effects. This limitation was 

addressed in this chapter by examining the most influential parameters at more levels. 

The results in Section 5.3.5 showed that there were strong linear correlations between 

the influential parameters and the co-residency metrics. This linear correlation 

suggests that outliers did not impact the ability of the Influence Evaluation Strategy to 

identify the most influential parameters. 

 

5.5 Summary  

Using the VMC simulator as a testbed, the four most influential parameters identified in 

Chapter 4 were used in controlled experiments in this chapter. These experiments aimed to 

explore how the most influential parameters’ settings in four PAs could positively and 

negatively affect the co-residency metrics. In order to achieve this aim, these experiments 

estimated the co-residency metrics in four PAs under a wide range of likely settings for 

publicly accessible IaaS clouds (Section 5.2).  
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Next, Pearson’s correlation analysis [14] has been applied to study the correlation between 

these parameters and the co-residency metrics. This analysis helped in identifying the 

parameters’ settings that were able to reduce the co-residency probability in each PA (see 

Table 5.17).  

Based on this finding, Section 5.4 presents evidence that VMs hosted in IaaS clouds with a 

higher number of hosts are less likely to exhibit co-residency. Further, using Next Fit in 

larger IaaS clouds has been shown to reduce effectively, and even eliminate, the co-residency 

probability. In addition, the four PAs have been compared in their ability to reduce the co-

residency probability. For instance, VMs in IaaS clouds that use Next Fit or Random are 

found to be more resilient against receiving co-resident VMs compared to when First Fit or 

Power Save are used. By comparing the PAs at different number of hosts, the probability 

(with 95% confidence intervals) that a given VM experiences at least one arbitrary co-

residency hit is between 0.314 to 0.444 in Next Fit. This is compared to 0.458 to 0.544 in 

Random, 0.843 to 0.846 in First Fit and 0.838 to 0.841 in Power Save. 

This chapter focused on reducing the co-residency probability (i.e. the chance that a VM 

experiences an arbitrary co-residency hit). In contrast, Chapter 6 estimates the malicious co-

residency probability (i.e. the chance that a VM experiences a malicious co-residency hit).  
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Chapter 6  

Analytical Estimation of Malicious Co-residency Probability  
 

 

6.1 Introduction 

Chapter 3 defines four co-residency metrics that estimate probabilities related to co-residency 

hits from arbitrary VMs (i.e. hits from malicious and honest VMs). Chapter 4 quantified the 

influence of cloud parameters on the co-residency metrics then identifies the most influential 

parameters and 2-parameter interactions (i.e. the second research question). Next, Chapter 5 

answered the third research question and provides simulation estimates of the co-residency 

metrics. These estimates helped to find the best parameter settings that reduce the probability 

of receiving honest and malicious co-resident VMs in four PAs. On the other hand, this 

chapter is concerned with estimating the probability that a new co-residing VM belongs to an 

attacker (i.e. malicious co-residency probability) with the coexistence of different 

populations of attackers.  

Two malicious co-residency metrics are defined to estimate probabilities related to malicious 

co-residency (i.e. the fourth research question). These probabilities are the probability that a 

VM u receives a malicious hit and for how long it remains free from malicious hits. The 

malicious co-residency metrics take into account the “biggest unknown” in the attack model: 

the ratio of attackers VMs, noted to as 𝛼, which can take any value between 0 and 1 (see 

Section 3.2). Unlike the co-residency metrics, this very wide range of possible values of 𝛼 

presents a challenge in using the VMC simulator to estimate the malicious co-residency 

metrics (see Section 1.5). Instead, this Chapter provides approximate analytical estimates of 

the malicious co-residency metrics that take 𝛼 into account. These estimates are derived to 

explore all likely values of 𝛼 easily, an attempt that simulation and time limitations did not 

allow. These estimates are then used to determine analytically, with the coexistence of 𝛼 

attacking VMs, the best PAs that reduce the probability that a new co-residing VM belongs to 

an attacker.  

To validate these analytical approximations, the VMC simulator is used to estimate the 

malicious co-residency metrics under a specific 𝛼 value using First Fit, Next Fit, Power Save 

and Random. 
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The remainder of this chapter is organized as follows. The next section derives approximate 

analytical estimates of two malicious co-residency metrics that take 𝛼 into account. Section 

6.3 defines how the proposed analytical approximation is validated using the VMC simulator. 

Further, Section 6.4 describes the experiment’s settings. Finally, the findings are presented in 

Section 6.4 and discussed in Section 6.5. 

 

6.2 Malicious Co-residency Metrics 

As pointed out in Chapter 1, the risk of side channel attacks is magnified by the occurrence 

of malicious co-residency hits only. The second hypothesis of this thesis states “for a given 

VM, there is a non-zero probability that a new co-residing VM belongs to an attacker for any 

of the four PAs considered.” While the previous co-residency metrics (i.e. CCP, HFL, CV 

and CA) address co-residency hits caused by arbitrary VMs, they do not distinguish between 

malicious hits originated by attackers and honest hits. Therefore, this section defines two 

malicious co-residency metrics to estimate probabilities related to malicious co-residency 

hits. These probabilities are (1) the probability that a VM u receives a malicious hit and (2) 

for how much time it remains free from malicious hits.    

Based on the system and attack models (see Section 3.2), this section derives approximate 

analytical estimates of the malicious co-residency metrics that take 𝛼 into account.  

It will be necessary to note that before proceeding to define the malicious co-residency 

metrics, analytical approximations in this chapter are mainly based on the Probability theory. 

In particular, P(x) is used as a notation for probability (i.e. P(x) reads as the probability of x). 

In addition, the symbol "|" is used in conjunction with P(x) to denote a conditional 

probability (e.g. P(x|y) means "probability of x given condition y"). Further, the notation P(A 

and B) is interpreted as P(A) * P(B|A). In addition, the symbol 𝐸 𝑥  is used to refer to an 

estimated value of variable x.  

 

6.2.1 Preliminary Definitions 

In addition to the definitions set forth in Chapter 3, the following are important definitions 

related to the malicious co-residency metrics estimations. 

 

Expected Number of Hits 𝑬(𝒌|𝒌 > 0) 

For a given VM u that receives at least one hit (k>0), the 𝐸(𝑘|𝑘 > 0) calculates the total 

number of honest and malicious hits that u experiences. In addition, 𝑃 𝑘 = 𝐾   𝑘 > 0) is the 
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probability that u receives K hits, given that it receives at least one hit. Further, 𝑛! is the 

number of VMs that experienced K hits and 𝑛!!" is the total number of VMs that experienced 

at least one hit. Accordingly, the expected number of hits 𝐸(𝑘|𝑘 > 0) can be derived as 

follows: 

𝑬(𝒌|𝒌 > 𝟎) = 𝑲 ∗ 𝑷 𝒌 = 𝑲   𝑲 > 𝟎)
!

𝑲!𝟏

 

𝑬 𝒌 𝒌 > 𝟎 =    𝑲 ∗
!

𝑲!𝟏

𝒏𝑲
𝒏𝒉𝒊𝒕

 

𝑬 𝒌 𝒌 > 𝟎 =
𝟏
𝒏𝒉𝒊𝒕

   𝑲 ∗
!

𝑲!𝟏

𝒏𝑲            ,𝑬 𝒌 𝒌 > 𝟎 ≥ 𝟏 

 

 

Expected Kth Lifetime Ratio 𝑬(𝑳𝒌) 

For a given VM u, the expected Kth lifetime ratio  𝐿!   can be derived using the expected 

number of hits 𝐸 𝑘 𝑘 > 0  as follows (𝑛! as the number of VMs that experienced K hits): 

  𝑬(  𝑳𝑲   ) =
𝟏
  𝒏𝑲
     𝑳𝑲𝒖

  𝒏𝑲

𝒖!𝟏
                    ,    1 ≤ K ≤  𝑬 𝒌 𝒌 > 𝟎  

 

The above can be used to calculate the expected lifetime ratios up to the 𝐸 𝑘 𝑘 > 0 th hit 

(Figure 3.2). The  𝐿  ! ! !!! !!  
 lifetime ratio, which represents the portion of the lifetime 

between the 𝐸 𝑘 𝑘 > 0 th hit and the time at which a VM ends, can be derived as follows: 

  𝑬(  𝑳    𝑬 𝒌 𝒌!𝟎 !𝟏   
)   = 𝟏−      𝑬(    𝑳𝑲   )

  𝑬 𝒌 𝒌!𝟎

𝑲!𝟏
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6.2.2 Analytical Estimation of the Malicious Co-residency Metrics 

Having defined 𝛼, 𝐸 𝑘 𝑘 > 0  and   𝐸(𝐿!), the next sections define the malicious co-

residency metrics and show how their estimates are derived using an analytical 

approximation.  

 

6.2.2.1 Malicious Co-residency Probability (MCP) 

The Malicious Co-residency Probability MCP is the probability that an honest VM u 

encounters a malicious co-residency hit at least once during its lifetime. The estimation of 

MCP extends the Co-residency Coverage Probability CCP metric (see Section 3.4.1). Unlike 

the CCP, the MCP focuses on malicious co-residency hits (caused by malicious VMs only), 

whereas, the CCP considers both malicious and honest co-residency hits.  

With the use of the CCP, 𝛼 and 𝐸 𝑘 𝑘 > 0 , Probability theory is applied to derive an 

estimate approximation of the MCP for a given VM u: 

 

∀ CCP,  𝜶 and 𝑬 𝒌 𝒌 > 0 : 0 ≤  𝑪𝑪𝑷 ≤  1, 0 ≤  𝜶 ≤  1 and 𝑬 𝒌 𝒌 > 0  ≥ 1: 

𝑬(𝑴𝑪𝑷) = P(at least 1 hit AND at least 1 hit is malicious | number of hits>0)  

= P (k >0) * P(at least 1 hit is malicious | k >0) 

= CCP *  (1 – P (all hits are honest | k >0)) 

 

At this point, an approximation is introduced to the 𝑀𝐶𝑃  estimate that involves assuming 

that every VM, that is hit at least once, is hit exactly 𝐸 𝑘 𝑘 > 0  times (where 𝐸 𝑘 𝑘 > 0  

will be rounded down to the nearest integer): 

≈ CCP *  (1 – P (all 𝐸 𝑘 𝑘 > 0 hits are honest)) 

≈ CCP * (1 – (P (ℎ𝑖𝑡! is honest) * . . . * P (ℎ𝑖𝑡! ! !!! !! is honest) *  

    P (ℎ𝑖𝑡! ! !!!  is honest))) 

≈ CCP * (1-P (hit is non-malicious)  ! ! !!! ) 

≈ CCP * (1- (1-𝛼)  ! ! !!! ) 
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Therefore, the Malicious Co-residency Probability MCP estimate can be approximated as 

follows:  

𝑬(𝑴𝑪𝑷) ≈  CCP * (1- (1-𝜶)  𝑬 𝒌 𝒌!! )        , 0 ≤ 𝑬(𝑴𝑪𝑷) ≤  1 

 

The MCP can reach its maximum value when every VM in the cloud will certainly has all of 

its k co-residency hits as malicious. In this particular case, the MCP becomes the same as the 

CCP value. This scenario can manifest itself when all other VMs in the cloud are malicious 

VMs (i.e. the attacker’s VM requests ratio α equals one). However, this requires an attacker 

to originate and control all the VMs in the cloud in order to achieve co-residency hits with 

target VMs. In contrast, the MCP can reach its minimum value (i.e. zero) when every VM in 

the cloud will certainly have all of its k co-residency hits as honest. This can be the case 

when the attacker’s VM requests ratio α is zero. Another scenario in which the MCP can 

reach zero is when each VM ends up running solely in its own physical host (i.e. in this case 

CCP equals zero). This scenario is suggested in [79] to disable the risk of side channel 

attacks. However, this requires the customer to pay for the opportunity cost of under-utilizing 

the hosts’ resources due to not sharing them with other cloud users (see Section 2.3.3.1). 

 

6.2.2.2 Attacker-free Lifetime Ratio (AFL) 

For a given VM u, the Attacker-free Lifetime Ratio AFL is the sum of the lifetime ratios 

(Figure 3.2) where u is free of malicious co-residency hits. A lifetime ratio 𝐿! is considered 

to be attacker-free when the K-1th hit and all previous hits are honest. 

Unlike the Hit-free Lifetime Ratio HFL metric (see Section 3.4.2), the AFL calculates the 

attacker-free lifetime ratio from the moment VM u is launched until it experiences the first 

malicious hit. On the other hand, the HFL calculates the lifetime ratio from the moment u is 

launched until it experiences the first hit; regardless of whether the first hit is malicious or 

honest. The 𝐴𝐹𝐿! for a VM u that experiences at least one co-residency hit (k>0) can be 

estimated using simulation, for example, as follows: 

𝑨𝑭𝑳𝒖 = (𝑳𝑲|
𝒌!𝟏

𝑲!𝟏

𝑳𝑲  𝒊𝒔  𝒂𝒕𝒕𝒂𝒄𝒌𝒆𝒓  𝒇𝒓𝒆𝒆)            ,𝟎   ≤   𝑨𝑭𝑳𝒖 ≤     𝟏 

 

The following is an approximate analytical estimate of the AFL that extends the CCP metric:   

∀ CCP,  𝛼, 𝐸 𝑘 𝑘 > 0 and 𝐸(𝐿!): 0 ≤  𝐶𝐶𝑃 ≤  1, 0 ≤  𝛼 ≤  1, 𝐸 𝑘 𝑘 > 0 ≥  1 and 0 ≤    𝐸(𝐿!) ≤  1: 
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𝑬 𝑨𝑭𝑳 = (AFL | no hit) + (AFL | at least 1 hit and all hits are honest) 

= (AFL when u receives no hit)* P( no hit) + (AFL| k>0 and all hits are honest) 

=  1 * (1-CCP) + (AFL | k>0 and all hits are honest) 

= (1-CCP) + P(k>0) * (AFL | all are honest hits) 

= (1-CCP) + CCP * (AFL | all are honest hits) 

 

At this point, approximations are introduced that involve assuming that every VM u that is 

hit at least once is hit exactly 𝐸 𝑘 𝑘 > 0  times where 𝐸 𝑘 𝑘 > 0  will always be rounded 

down to the nearest integer. As a result, u has a total of 𝐸 𝑘 𝑘 > 0 +1 lifetime ratios 

𝐸 𝐿! ,… ,𝐸 𝐿  ! ! !!! , 𝐸(𝐿  ! ! !!! !!): 

≈ (1-CCP) + CCP * (AFL | all 𝐸 𝑘 𝑘 > 0   hits are honest) 

≈ (1-CCP) + CCP * (𝐸 𝐿!   + 𝐸(𝐿!|ℎ𝑖𝑡!  non-malicious) + 𝐸(𝐿!|ℎ𝑖𝑡𝑠!  !"#  ! non-malicious) +  

… + 𝐸 (𝐿  ! ! !!! !!|ℎ𝑖𝑡𝑠  !  !"  ! ! !!!    non-malicious))  

≈  (1-CCP) + CCP * (𝐸 𝐿! +   𝐸 𝐿!  * P(ℎ𝑖𝑡! non-malicious) +   

 𝐸 𝐿!  * P(ℎ𝑖𝑡! non-malicious)* P(ℎ𝑖𝑡!  non-malicious) + .	
  .	
  .	
  	
  + 

𝐸 𝐿  ! ! !!! !!  * P(ℎ𝑖𝑡𝑠  !  !"  ! ! !!!  non-malicious)) 

≈  (1-CCP) + CCP * (𝐸 𝐿! + 𝐸 𝐿! ∗   (1 − 𝛼) + 𝐸 𝐿! ∗ (1 − 𝛼)! + . . . + 

 𝐸 𝐿  ! ! !!! ∗ (1 − 𝛼)  ! ! !!! !! +   𝐸 𝐿  ! ! !!! !! ∗   (1 − 𝛼)  ! ! !!!   ) 

 

Therefore, the AFL estimate can be approximated as follows:  

 

𝑬 𝑨𝑭𝑳 ≈ 𝟏− 𝑪𝑪𝑷 +   𝑪𝑪𝑷 ∗ 𝑬 𝑳𝑲 ∗ 𝟏− 𝜶 𝑲!𝟏

𝑬 𝒌 𝒌!𝟎 !𝟏

𝑲!𝟏

             ,𝟎   ≤   𝑬 𝑨𝑭𝑳 ≤     𝟏 

 

The AFL can reach its maximum value when there are no attackers in the IaaS cloud (i.e. the 

attackers VM requests ratio α is zero). This action can result in a situation where every VM 

in the cloud will have all of its k hits as honest. In contrast, the AFL can reach its minimum 

value (i.e. HFL or zero) when every new VM request in the cloud is malicious (i.e. the 
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attackers VM requests ratio α is one). As mentioned in the previous section, this requires the 

attacker to originate and control all the VMs in the cloud in order to achieve malicious co-

hits with target VMs. Another possible scenario where the AFL can reach its minimum value 

is possible. For instance, when every sequence of newly created VMs tends to be placed in 

the same physical host until the host becomes full (i.e. no space for new VMs). This scenario 

is shown by [79] to be very dependent on the PA that is used by the cloud provider. 

 

6.3 Method 

Section 6.2 derived approximate analytical estimation of the malicious co-residency metrics 

in order to easily examine all likely values of 𝛼 values (the ratios of attackers VMs requests).  

A comparison was made with experimental estimates obtained using simulation to validate 

these analytical estimates. The VMC simulator was used to estimate the MCP and AFL with α 

set to 0.10 in a variety of IaaS clouds settings (i.e. different Number of Hosts (X2) and Users’ 

Arrival Rates (X4)). These simulation estimates can help to determine how good the 

malicious co-residency metrics analytical approximations are.  

Based on the description in Sections 6.2.2.1 and 6.2.2.2, the analytical estimates of MCP and 

AFL were calculated using the simulation estimates (Table 6.1 and Table 6.2): (1) the Co-

residency Coverage Percentage 𝐸 𝐶𝐶𝑃 , (2) number of hits 𝐸 𝑘 𝑘 > 0  and (3) life ratios 

𝐸 𝐿! . These estimates were calculated during the simulation experiments in this chapter: 

 

Placement 

Algorithms 
𝑬 𝑪𝑪𝑷  𝑬 𝑘 𝑘 > 0  𝑬 𝑳𝟏  𝑬 𝑳𝟐  𝑬 𝑳𝟑  𝑬 𝑳𝟒  𝑬 𝑳𝟓  

First Fit 0.851 4.796 0.113 0.241 0.137 0.109 0.400 

Next Fit 0.394 3.033 0.729 0.103 0.034 0.134 -- 

Power 

Save 
0.851 4.705 0.110 0.230 0.132 0.108 0.420 

Random 0.537 3.090 0.363 0.348 0.098 0.191 --- 

 Table 6.1 Important estimates obtained by the VMC simulator with Number of Hosts 
(X2) varying between 1000-30000 
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Placement 

Algorithms 
𝑬 𝑪𝑪𝑷  𝑬 𝑘 𝑘 > 0  𝑬 𝑳𝟏  𝑬 𝑳𝟐  𝑬 𝑳𝟑  𝑬 𝑳𝟒  𝑬 𝑳𝟓  

First Fit 0.815 4.098 0.127 0.293 0.126 0.093 0.361 

Next Fit 0.848 3.363 0.327 0.257 0.153 0.263 --- 

Power 

Save 
0.811 4.103 0.132 0.288 0.125 0.095 0.360 

Random 0.842 3.753 0.262 0.250 0.156 0.331 --- 

 Table 6.2 Important estimates obtained by the VMC simulator with Users’ Arrival 
Rate (X4) varying between 2-5 

 

On the other hand, the VMC simulator estimates the malicious co-residency metrics for a 
certain α as follows: 

 

• Malicious Co-residency Probability MCP: 

Let n be the total number of created VMs in the cloud and 𝑛!!"  !"  !"#$%$&'( is the total 

number of VMs that experienced at least one malicious hit, then the MCP was estimated 

using simulation as follows: 

𝑴𝑪𝑷 =
𝒏𝒉𝒊𝒕  𝒃𝒚  𝒎𝒂𝒍𝒊𝒄𝒊𝒐𝒖𝒔

𝒏  

 

• Average Attacker-free Lifetime Ratio AFL: 

Let 𝑛!!"  be the total number of VMs that experienced at least one hit (k>0), then the AFL 

was estimated using simulation as follows: 

𝑨𝑭𝑳 =   
𝟏
  𝑛   [ 𝑨𝑭𝑳𝒖

  𝒏𝒉𝒊𝒕  

𝒖!𝟏

+ (𝑛 − 𝑛!!"  )] 

 

With α of 0.10, a total of 80 simulation estimates of the MCP and AFL were obtained under 

different numbers of hosts and the users’ arrival rates (Table 6.3), while keeping the 

remaining parameters constant (Table 5.2). Then, the average of these estimates was 

compared with the metrics’ analytical prediction under First Fit, Next Fit, Power Save and 

Random in Section 6.4.1.   



 115 

 

Number of Hosts (X2) Users’ Arrival Rates (X4) 

1000 2 

10000 3 

15000 4 

30000 5 

 Table 6.3 The parameters levels used in the VMC simulator to estimate the MCP and 
AFL 

 

6.3.1 Analytical Estimation Accuracy 

In approximation theory [80], the predicted values can often be overestimation or 

underestimation of the actual measurements.  This can result from the fact that an 

approximation cannot include all the parameters that represent the predicted reality. Thus, 

this thesis calculates the percentage difference to quantify this amount of error between the 

approximate analytical estimates and the simulation estimates. The percentage difference can 

be obtained as follows:  

 

𝑷𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆  𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆 ≈   
𝒂𝒏𝒂𝒍𝒚𝒕𝒊𝒄𝒂𝒍    𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆− 𝒔𝒊𝒎𝒖𝒍𝒂𝒕𝒊𝒐𝒏  𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆

𝒔𝒊𝒎𝒖𝒍𝒂𝒕𝒊𝒐𝒏  𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆 ∗ 𝟏𝟎𝟎 

 

Approximation theory states that an accepted analytical estimate depends on the type of 

application and the sensitivity of the predicted values [80]. For the convenience of this 

experiment, an analytical estimate will be considered acceptable if it has a percentage 

difference up to ±15%. 

 

6.4 Findings 

This section outlines the findings concerning the analytical estimation validation as well as 

an analysis of malicious co-residency probabilities under different attackers ratios α. 

 

6.4.1 Analytical Estimation Validation 

With an attacker ratio α of 0.10, and under different number of hosts and users’ arrival rates, 

the following (Table 6.4, Table 6.5, Table 6.6 and Table 6.7) show the analytical estimates, 

the simulation estimates and the corresponding percentage difference for both the MCP and 

AFL in four PAs.   
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Placement 

Algorithms 

𝑬 𝑴𝑪𝑷  

Analytical estimate 

𝑬 𝑴𝑪𝑷  

Simulation estimate 

Percentage 

Difference 

First Fit 0.3377 0.2554 32.22% 

Next Fit 0.1077 0.1056 2.00% 

Power Save 0.3328 0.2774 19.95% 

Random 0.1492 0.1679 -11.13% 

Table 6.4 Percentage differences of the MCP estimates with an α of 0.10 as Number of 
Hosts (X2) varies between 1000-30000 

 

Placement 

Algorithms 

𝑬 𝑴𝑪𝑷  

Analytical estimate 

𝑬 𝑴𝑪𝑷  

Simulation estimate 

Percentage 

Difference 

First Fit 0.2857 0.2846 0.39% 

Next Fit 0.2528 0.2828 -10.58% 

Power Save 0.2845 0.2877 -1.12% 

Random 0.2749 0.2895 -5.06% 

Table 6.5 Percentage differences of the MCP estimates with an α of 0.10 as Users’ 
Arrival Rate (X4) varies between 2-5 
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Placement 

Algorithms 

𝑬 𝑨𝑭𝑳  

Analytical estimate 

𝑬 𝑨𝑭𝑳  

Simulation estimate 

Percentage 

Difference 

First Fit 0.797 0.826 -3.53% 

Next Fit 0.979 0.945 3.51% 

Power Save 0.795 0.824 -3.61% 

Random 0.943 0.929 1.46% 

Table 6.6 Percentage differences of the AFL estimates with an α of 0.10 as Number of 
Hosts (X2) varies between 1000-30000 

 

 

Placement 

Algorithms 

𝑬 𝑨𝑭𝑳  

Analytical estimate 

𝑬 𝑨𝑭𝑳  

Simulation estimate 

Percentage 

Difference 

First Fit 0.833 0.842 -1.10% 

Next Fit 0.887 0.902 -1.74% 

Power Save 0.834 0.841 -0.91% 

Random 0.863 0.885 -2.58% 

Table 6.7 Percentage differences of the AFL estimates with an α of 0.10 as Users’ 
Arrival Rate (X4) varies between 2-5 

 

The previous tables showed an agreement between the analytical estimates and the 

simulation estimates across all PAs with an α of 0.10. About 75% and 100% of the obtained 

analytical estimates of the MCP and AFL, respectively, had percentage differences less than 

15%. Moreover, the mean percentage differences are 10.31% and 2.31% for the MCP and 

AFL, respectively. On the other hand, the MCP was overestimated in First Fit and Power 

Save as shown in the percentage difference that increased to levels that were pre-defined as 

not being adequate (Section 6.3.1). Appendix E outlines, in detail, the VMC simulator’s 
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estimates of the malicious co-residency metrics under different numbers of hosts and users’ 

arrival rates with α set to 0.10 in four PAs. 

 

6.4.2 Malicious Co-residency Metrics as Attackers Ratio α Varies  

This section presents the approximate analytical estimation of the MCP and AFL under 

different α values, where these analytical estimates were calculated using the simulation 

estimates from Table 6.1 and Table 6.2. 

Table 6.8 shows the analytical estimates of the MCP under different α values.  

As Figure 6.1 illustrates, the relationship between the MCP and the attackers’ VM requests 

ratio α depends on the used PA. When 0.1 or less α is present in the IaaS cloud, the expected 

MCP for First Fit, Next Fit, Power Save and Random are very close. However, when α is 

greater than 0.1, Next Fit and Random significantly outperform (in reducing the MCP) the 

rest of the PAs. 

In addition, Next Fit outperforms (in reducing the MCP) the rest of the PAs for all amounts 

of α. Surprisingly, even with attackers’ VM requests ratio of 0.99, Next Fit was able to limit 

the probability of malicious co-residency to only 0.394. 
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 MCP estimate using analytical prediction 

α First Fit Next Fit Power Save Random 

0 0 0 0 0 

0.000000001 4.081x10!! 1.195x10!! 4.004x10!! 1.659x10!! 

0.0000001 4.081x10!! 1.195x10!! 4.004x10!! 1.659x10!! 

0.000001 4.081x10!! 1.195x10!! 4.004x10!! 1.659x10!! 

0.00001 4.081x10!! 1.195x10!! 4.004x10!! 1.659x10!! 

0.0001 0.000408 0.000119 0.000400 0.000166 

0.001 0.0041 0.00119 0.00400 0.00166 

0.01 0.0400 0.01183 0.03930 0.01642 

0.1 0.3376 0.10777 0.33263 0.14922 

0.2 0.5592 0.19375 0.55317 0.26752 

0.3 0.6972 0.26044 0.69210 0.35863 

0.4 0.7776 0.31032 0.77406 0.42622 

0.5 0.8204 0.34586 0.81837 0.47393 

0.6 0.8405 0.36954 0.83958 0.50535 

0.7 0.8484 0.38378 0.84805 0.52399 

0.8 0.8506 0.39101 0.85056 0.53328 

0.9 0.8510 0.39363 0.85098 0.53656 

0.99 0.8510 0.39400 0.85100 0.53700 

 Table 6.8 MCP estimates using analytical prediction as α varies  
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Figure 6.1 Variation of MCP with attackers’ VM requests ratio α  

 

 

Moreover, Table 6.9 shows the Analytical estimates of the AFL (the expected Attacker-Free 

Lifetime ratio of a given VM) across different α values.  

Similar to the MCP, Figure 6.2 illustrates that the relationship between the AFL and the 

attackers’ VM requests ratio α depends on the used PA. When 0.1 or less α is available, the 

expected AFL for First Fit, Next Fit, Power Save and Random are very close. However, when 

α is greater than 0.1, Next Fit and Random significantly outperform (in increasing the AFL) 

the rest of the PAs. 

In addition, Next Fit outperforms (in increasing the AFL) the rest of the PAs for all amounts 

of α. Even with attackers’ VM requests ratio of 0.99, Next Fit was able to prolong the 

lifetime ratio at which a given VM is safe from malicious hits to 0.894. 
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 AFL using analytical prediction 

α First Fit Next Fit Power Save Random 

0 1.000 1.000 1.000 1.000 

0.000000001 1.000 1.000 1.000 1.000 

0.0000001 1.000 1.000 1.000 1.000 

0.000001 1.000 1.000 1.000 1.000 

0.00001 1.000 1.000 1.000 1.000 

0.0001 1.000 1.000 1.000 1.000 

0.001 0.998 1.000 0.998 0.999 

0.01 0.977 0.998 0.977 0.994 

0.1 0.797 0.979 0.794 0.943 

0.2 0.648 0.961 0.643 0.893 

0.3 0.539 0.946 0.533 0.849 

0.4 0.460 0.934 0.453 0.810 

0.5 0.401 0.923 0.394 0.777 

0.6 0.356 0.915 0.350 0.747 

0.7 0.321 0.908 0.315 0.721 

0.8 0.292 0.902 0.287 0.698 

0.9 0.267 0.897 0.263 0.677 

0.99 0.247 0.894 0.245 0.660 

Table 6.9 AFL estimates using analytical prediction as α varies  
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Figure 6.2 Variation of AFL with attackers’ VM requests ratio α 

 

 

6.5 Discussion 

Given that attackers are present in a given IaaS cloud (i.e. VMs requests ratio 𝛼 is greater 

than zero), the findings in this chapter (Table 6.8 and Table 6.9) validated the second 

research hypothesis. This hypothesis states “for a given VM, there is a non-zero probability 

that a new co-residing VM belongs to an attacker for any of the four PAs considered.” The 

findings also provided useful insights to answer the fourth research question that states “for a 

given VM, what is the probability that a new co-residing VM belongs to an attacker.” 

Further, the results illustrate how the malicious co-residency probability varies in various 

populations of attacker VMs. 

It is important to emphasize that the following discussion and conclusions are only valid 

within the range of data collected under the following PAs: First Fit, Next Fit, Power Save 

and Random. 

The key findings in this chapter are: 
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• The approximate analytical estimates of the malicious co-residency metrics are 

acceptable over any given proportion of malicious users. 

The results in (Table 6.4, Table 6.5, Table 6.6 and Table 6.7) show the analytical 

estimates, the simulation estimates and the corresponding percentage differences. 

About 75% and 100% of the obtained analytical estimates of the MCP and AFL, 

respectively, had percentage differences less than 15% in the four PAs. Moreover, the 

mean percentage differences are 10.31% and 2.31% for the MCP and AFL, 

respectively. On the other hand, the MCP was overestimated in First Fit and Power 

Save as shown in the percentage difference that increased to levels that were pre-

defined as not being adequate (Section 6.3). As these results show, the analytical 

estimation of the malicious co-residency metrics agreed with the experimental 

estimate (i.e. using the VMC simulator). Thus, this finding allows the conclusion that 

the analytical estimation derived in this chapter can become very useful for estimating 

the probability of an attacker successfully co-residing with a given VM under any α 

value. 

There can be several useful applications of the proposed analytical estimation. For 

IaaS cloud providers, the VMC simulator can be used to find the CCP metric and the 

𝐸 𝑘 𝑘 > 0  (Section 6.2) in order to obtain an analytical estimate of the malicious 

co-residency metrics under any 𝛼 value. This action can reveal valuable insights into 

the IaaS cloud under study and can be used to compare the malicious co-residency 

occurrence probabilities in different cloud settings, PAs and different attacker ratios.  

 

• Under different proportion of malicious users, the right choice of PA can 

hinder attackers from easily achieving malicious co-residency.   

The findings in Section 6.4.2 suggest that the used PA is a primary factor in 

determining the malicious co-residency likelihood. However, the results showed that 

there is no best PA for reducing the malicious co-residency probability. For instance, 

Next fit and Random were better in reducing this probability compared to First Fit 

and Power Save. By comparing the PAs as 𝛼 varies between 0 to 0.99 (Table 6.8 and 

Table 6.9), the probability (with 95% confidence intervals) that an honest VM u 

encounters a malicious co-residency hit at least once during its lifetime (i.e. the MCP) 

is between 0.197 to 0.376 in Next Fit, compared to 0.270 to 0.514 in Random, 0.490 

to 0.862 in First Fit and 0.487 to 0.860 in Power Save. One possible explanation of 
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why Next Fit and Random are better at reducing the co-residency probability was 

presented in Section 5.4. The explanation suggests that Next Fit and Random tend to 

distribute VMs evenly across as many hosts as possible rather than packing them 

tightly on the first available hosts as First Fit and Power Save do. Therefore, VMs are 

less vulnerable to the reception of many co-residing VMs in Next Fit and Random, as 

opposed to First Fit and Power Save. Thus, this provides evidence that the right 

choice of PAs can hinder attackers from easily achieving malicious co-residency. In 

addition, this finding corresponds well with the conclusion made in Section 5.4 that 

the impact on co-residency probability should become an important factor in the 

choice of PAs for IaaS clouds.  

 

• Generating 40% of the VMs requests –by attackers- in a given IaaS cloud can 

lead to a substantial increase in the chance of achieving malicious co-residency. 

The findings in Section 6.4.2 suggest that attackers can effectively increase their 

chance to achieve malicious co-residency by originating no more than 40% of the 

VMs requests in a given IaaS cloud. The results in (Table 6.8) show that increasing 

the attacker’s VMs request ratio from 0 to 0.4 caused a significant increase in the 

MCP. For instance, the MCP increased from 0 to reach about 0.77 in First Fit and 

Power Save, 0.31 in Next Fit and 0.42 in Random. In addition, the analytical 

estimation of the AFL provides valuable insights that can help the attacker to increase 

the chance of achieving co-residency with a particular VM u. For example, the 

attacker can time the VM requests during a particular duration of u’s lifetime during 

which u is expected not to be hit-free. 

On the basis of the evidence currently available, it seems fair to suggest that 

organized attackers with plentiful resources (e.g. organization-sponsored attackers) 

can increase their chance of co-residing with victim VMs. This can be achieved 

simply by requesting as many VMs as possible. Therefore, it can be argued that the 

first line of defence against malicious co-residency in IaaS clouds is cloud providers 

themselves. This action supports the conclusions from Chapter 4 and 5 that IaaS 

cloud providers must consider selecting a PA that hinders attackers from achieving 

malicious co-residency. In addition, IaaS cloud providers can use the proposed 

analytical estimation to experiment with a different α in order to determine the range 

of α ratios that is relatively acceptable to keep the malicious co-residency probability 



 125 

at its minimum. The providers can set the maximum number of VMs that a user can 

create using this knowledge. Amazon EC2 limits the number of concurrent VMs a 

user can create in a single individual account to 20 VMs [5].  

 

6.6 Summary  

The risk of side channel attacks is magnified enormously if an honest VM is co-resided by an 

attacker VM. Therefore, this chapter investigated estimating the probability that the next co-

residing VM belongs to an attacker (i.e. the malicious co-residency probability). This 

estimation was an attempt to answer the fourth research question (i.e. for a given VM, what 

is the probability that a new co-residing VM belongs to an attacker). This chapter defined 

two metrics (i.e. the MCP and AFL) that describe probabilities related to malicious co-

residency and take into account the attackers VMs requests ratio α. This thesis is the first to 

derive two analytical estimates of probabilities related to malicious co-residency in Section 

6.2.  

Then, analytical estimates of the MCP and AFL have been compared with experimental 

estimates (i.e. using the VMC simulator) in four PAs under an α value of 0.10. The results in 

(Table 6.4, Table 6.5, Table 6.6 and Table 6.7) show the analytical estimates, the simulation 

estimates and the corresponding percentage differences in four PAs. About 75% and 100% of 

the obtained analytical estimates of the MCP and AFL, respectively, had percentage 

differences less than 15% in the four PAs. Moreover, the mean percentage differences are 

10.31% and 2.31% for the MCP and AFL, respectively. On the other hand, the MCP was 

overestimated in First Fit and Power Save as shown in the percentage difference that 

increased to levels that were pre-defined as not being adequate (Section 6.3). Therefore, the 

derived analytical estimates were shown to agree with the experimental estimates in the four 

PAs in Section 6.4.1. 

Further, Section 6.4.2 used the calculated analytical estimates to compare First Fit, Next Fit, 

Power Save and Random over a wide range of α values. By comparing the PAs as 𝛼 varies 

between 0 to 0.99 (Table 6.8 and Table 6.9), the probability (with 95% confidence intervals) 

that an honest VM u encounters a malicious co-residency hit at least once during its lifetime 

(i.e. the MCP) is between 0.197 to 0.376 in Next Fit, compared to 0.270 to 0.514 in Random, 

0.490 to 0.862 in First Fit and 0.487 to 0.860 in Power Save. These results seem to be in 

favour of the second research hypothesis that states “there is a non-zero probability that a 

new co-residing VM belongs to an attacker in all PAs.” 
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Thus, the aforementioned findings demonstrated that VMs hosted in IaaS clouds that use 

Next Fit or Random are less likely to receive co-resident attacker VMs compared to when 

First Fit or Power Save are used. The findings also suggest that the right choice of PAs can 

reduce the probability of being co-resided by attackers VMs, which can reduce the attack 

surface for side channel attacks. However, an interesting finding in Section 6.4.2 shows that a 

sharp rise in the latter probability is possible if attackers manage to originate no more than 

40% of the VMs requests in a given IaaS cloud.  
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Chapter 7  

Summary and Conclusions 
 

Because co-residency is a necessary first step to launching side channel attacks, this 

motivated this thesis to look into understanding the co-residency probability. As set forth in 

Section 1.2, this thesis aims to analyse and quantify the influence of cloud parameters (such 

as the number of host and users) on the co-residency probability under four commonly used 

PAs. These PAs are First Fit, Next Fit, Power Save and Random. By doing so, this thesis was 

able to identify the influential parameters’ settings that reduce the co-residency probability in 

each PA. Reducing the attack surface for side channel attacks is, therefore, one outcome of 

reducing the co-residency probability. 

This thesis achieved its aim through quantitative experimental simulation and analytical 

prediction. This approach consisted of four main steps:  

(1) Characterizing the co-residency occurrence behavior in IaaS clouds using co-

residency metrics (Chapter 3), followed by  

(2) Identifying the four most influential cloud parameters (such as the number of hosts, 

clusters and users) affecting co-residency probability in four PAs. In order to do so, 

Chapter 4 quantified the influence of multiple cloud parameters on the co-residency 

probability. Then,  

(3) Simulation experimentation to find the best settings of the most influential 

parameters that reduce the co-residency probability under four PAs (Chapter 5), 

finishing with  

(4) Analytical estimation with the coexistence of different populations of attackers, to 

find the probability that a new co-residing VM belongs to an attacker (Chapter 6). 

These estimates helped to identify the best PAs that reduce the aforementioned 

probability. 

The above steps were posed as research questions in Section 1.3. This chapter will revisit the 

research questions, summarizing the key findings and their implications in Section 7.1.  
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Section 7.2 draws some conclusions, followed by highlighting the limitations of this thesis in 

Section 7.3. Finally, Section 7.4 proposes potentially fruitful avenues for future research. 

 

 

7.1 Summary  

There are two hypotheses set forward in Section 1.3: 

1. For a given PA, cloud parameters such as the number of hosts and users do not have 

the same influence on the co-residency probability in IaaS clouds. 

2. For a given VM, there is a non-zero probability that a new co-residing VM belongs to 

an attacker for any of the four PAs considered. 

An analysis of variance (ANOVA) test has been applied to the simulation estimates in 

Section 4.3.4. This allows the quantifying of the influence of eight cloud parameters and 

parameters interactions on the co-residency metrics under each PA (Section 4.5). This 

quantification showed that this influence varies with parameters, and, therefore, provided 

evidence to support the first hypothesis. 

Further, the findings in Chapter 6 are based on an analytical estimation that seems to be in 

favour of the second hypothesis. The analytical estimation in Section 6.4.2 compared the 

probability that a new co-residing VM belongs to an attacker in four PAs over a wide range 

of α (i.e. attackers’ VMs requests ratio). Given that attackers exist in the IaaS cloud, the 

analytical estimation results show that there is a non-zero probability that a new co-residing 

VM belongs to an attacker in all PAs. 

The following is a brief summary of the key findings under each of the research questions. 

 

1. How to characterise the co-residency occurrence behavior in IaaS clouds? 
 

Following the description of the system and attack models in Section 3.2, four co-

residency metrics characterizing the co-residency occurrence behaviour in IaaS clouds 

have been successfully defined in Chapter 3. Some of these characteristics include how 

likely a given VM u will be co-resided by another VM v (i.e. the co-residency 

probability), as well as how long does this co-residency take to occur.  

These co-residency metrics were estimated using simulation to quantify the parameters’ 

influence on the co-residency metrics. This quantification led to identifying the four most 

influential parameters and interactions on the co-residency metrics (Chapter 4).  
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These estimates also helped to find the best parameter settings that reduce the co-

residency probability in four PAs (Chapter 5).  

In addition, the co-residency metrics were used to derive analytical estimates of 

probabilities related to malicious co-residency (Chapter 6). 

These metrics proved to be very useful in answering the research questions, and should 

also be useful to further research on co-residency in IaaS clouds.  

 

2. For a given PA, what are the four most influential cloud parameters (such as the 
number of hosts, clusters and users) affecting the co-residency probability?  
 

Due to the limited resources and time, this thesis focuses on the cloud parameters that 

have the most influence on the co-residency metrics. Therefore, an Influence Evaluation 

Strategy has been introduced (Section 4.3). This strategy statistically quantifies the 

influence on the co-residency metrics across a variety of likely cloud parameters’ settings 

in four commonly used PAs. These PAs are First Fit, Next Fit, Power Save and Random 

(Appendix A provides a detailed description of these PAs). The strategy has applied 

Fractional Factorial design (Appendix B) to obtain reduced-size experiments (Section 

4.3.3). Then, the strategy has used the VMC simulator to run these experiments to 

estimate the co-residency metrics across a variety of likely cloud parameters’ settings in 

four PAs. Next, an Analysis of variance (ANOVA) test has been applied to the simulation 

estimates in Section 4.3.4. As a result, the strategy successfully identified the four most 

influential parameters and parameters interactions on the co-residency metrics under each 

PA (Section 4.5).  

One of the most important findings in (Section 4.6) is that, out of many parameters that 

define the IaaS cloud environment, the number of hosts is the most influential parameter 

across the four PAs. The following are the four most influential parameters and two-

parameter interactions on the co-residency probability. Number of hosts, user arrival rate, 

VM average lifetime and maximum host utilization were the four most influential 

parameters in First Fit and Power Save. The four most influential parameters in Next Fit 

and Random were the number of hosts, the interaction of the number of clusters and VMs 

per request parameters, user arrival rate and the interaction of the number of clusters and 

users’ arrival rate parameters.  

In addition, this thesis is the first to compare four PAs in terms of their impact on the co-

residency probability and to identify that similarity exists between First Fit and Power 
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Save, as well as between Next Fit and Random.  

The proposed Influence Evaluation Strategy is hoped to help researchers to identify the 

most influential parameters on the co-residency probability under different PAs.  

3. For a given PA, which parameter settings reduce the co-residency probability?  
 

Using the VMC simulator as a testbed, the four most influential parameters identified in 

Chapter 4 were used in controlled experiments in Chapter 5. These simulation 

experiments are aimed to explore how the most influential parameters’ settings in four 

PAs could positively and negatively affect the co-residency metrics. In order to achieve 

this aim, these experiments estimated the co-residency metrics in four PAs under a wide 

range of likely settings for publicly accessible IaaS clouds (Section 5.2).  

Next, Pearson’s correlation analysis has been applied to study the correlation between 

these parameters and the co-residency metrics. This analysis helped in identifying the 

parameters’ settings that were able to reduce the co-residency probability in each PA (see 

Table 5.17). Based on this finding, Section 5.4 presents evidence that VMs hosted in IaaS 

clouds with a higher number of hosts are less likely to exhibit co-residency.  

Further, using Next Fit in larger IaaS clouds has been shown to reduce effectively, and 

even eliminate, the co-residency probability. In addition, the four PAs have been 

compared in their ability to reduce the co-residency probability. For instance, VMs in 

IaaS clouds that use Next Fit or Random are more resilient to the reception of co-resident 

VMs compared to when First Fit or Power Save are used.  

 

4. For a given VM, what is the probability that a new co-residing VM belongs to an 
attacker? 

 

The risk of side channel attacks is magnified enormously if an honest VM is co-resided 

by an attacker. Therefore, this research question investigated reducing the probability that 

the next co-residing VM belongs to an attacker (i.e. the malicious co-residency 

probability). Chapter 6 defined two metrics (i.e. the MCP and AFL) that describe 

probabilities related to malicious co-residency and also take into account the attackers’ 

VMs requests ratio α. This thesis is the first to derive two approximate analytical 

estimates of probabilities related to malicious co-residency in Section 6.2.  
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Then, analytical estimates of the MCP and AFL have been compared with experimental 

estimates (i.e. using the VMC simulator) in four PAs under an α value of 0.10. The results 

in (Table 6.4, Table 6.5, Table 6.6, and Table 6.7) show the analytical estimates, the 

simulation estimates and the corresponding percentage differences. About 75% and 100% 

of the obtained analytical estimates of the MCP and AFL, respectively, had percentage 

differences less than 15% in the four PAs. Moreover, the mean percentage differences are 

10.31% and 2.31% for the MCP and AFL, respectively. On the other hand, the MCP was 

overestimated in First Fit and Power Save as shown in the percentage difference that 

increased to levels that were pre-defined as not being adequate (Section 6.3). Therefore, 

the derived analytical estimates were shown to agree with the experimental estimates in 

Section 6.4.1. 

Further, Section 6.4.2 used the derived analytical estimates to compare First Fit, Next Fit, 

Power Save and Random over a wide range of α values. By comparing the PAs as 𝛼 

varies between 0 to 0.99 (Table 6.8 and Table 6.9), the probability (with 95% confidence 

intervals) that an honest VM u encounters a malicious co-residency hit at least once 

during its lifetime (i.e. the MCP) is between 0.197 to 0.376 in Next Fit, compared to 

0.270 to 0.514 in Random, 0.490 to 0.862 in First Fit and 0.487 to 0.860 in Power Save.  

Thus, the aforementioned findings demonstrated that VMs hosted in IaaS clouds that use 

Next Fit or Random are less likely to receive co-resident attacker VMs compared to when 

First Fit or Power Save are used. The findings also suggest that the right choice of PAs 

can reduce the probability of being co-resided by attackers’ VMs, which can reduce the 

attack surface for side channel attacks. However, an interesting finding in Section 6.4.2 

shows that a sharp rise in the latter probability is possible if attackers manage to originate 

no more than 40% of the VMs requests in a given IaaS cloud. 

 

7.2 Conclusion 

With co-residency being inevitable in public IaaS clouds, adverse consequences of side 

channels, brought by co-residency, are shown to affect the VMs security in multi-tenant 

public IaaS clouds. Because co-residency is a necessary first step to launching side channel 

attacks, this motivated this thesis to look into understanding the co-residency probability.   

Based on the summary in the previous section, this thesis successfully accomplished its aim 

by analysing and quantifying the influence of cloud parameters on the co-residency 

probability under four commonly used PAs. These PAs are First Fit, Next Fit, Power Save 
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and Random. Out of many parameters that define the IaaS cloud environment, the number of 

hosts was the most influential parameter across the four PAs. In addition, the findings of this 

thesis shed new light on the conditions under which the co-residency probability varies. For 

instance, the co-residency probability has been shown to decrease as the number of hosts 

increases in IaaS clouds.  

After identifying the most influential parameters, this thesis has demonstrated that 

determining and employing the appropriate parameters’ settings in a given PA can effectively 

reduce the co-residency probability in public IaaS clouds. Table 5.17 lists the best 

parameters’ settings in four PAs that reduced the co-residency probability.  

The work presented in this thesis is a plausible blueprint for IaaS cloud providers to consider 

co-residency reduction as an important selection factor for PAs and cloud settings (such as 

the number of hosts). Reducing the residency probability should complement the available 

countermeasures to side channel attacks (Section 2.3.3) by reducing the attack surface for 

side channel attacks. 

The derived analytical estimates may also be useful for IaaS cloud providers and users for 

estimating the co-residency probability in various IaaS cloud settings and PAs.  

 

 

7.3 Limitations 

Since this work has been an exploratory venture into a little-chartered territory, a number of 

assumptions had to be made to answer the research questions. Therefore, this thesis 

inevitably has some limitations, the most significant of which are discussed in this section.   

Analyzing and quantifying the influence of cloud parameters on the co-residency probability 

has been based on an attack scenario in Section 3.2. The attack scenario makes assumptions 

about how an attacker places malicious VMs, and, therefore, the analysis may be invalidated 

if these assumptions fail to hold. Given a victim VM u and an attacker VM v, one of the most 

basic assumptions is that v co-resides with u during the latter’s lifetime. This assumption is 

supported by a demonstrated co-residing technique (see Section 2.3.1.2) that target specific 

and existing VMs in public IaaS clouds, but may not hold for every type of technique. One 

particular type of co-residing technique for which it may not hold is when the attacker places 

many replicas of VM v in random hosts hoping that VM u becomes co-resident in a later 

stage. Achieving co-residency using this technique might be possible for organized attackers 
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with plentiful resources (e.g., organization-sponsored attackers). However, this co-residing 

technique falls outside the scope of this thesis. Preventing this technique may require the 

IaaS cloud provider to monitor and limit attackers’ ability to request a vast number of VMs. 

Another fundamental assumption made is that the used co-residing technique follows an 

attack model where an attacker relies ultimately on the PA’s decision when attempting to co-

reside with victim VMs. Hence, this thesis does not consider a situation where an attacker is 

an insider (e.g. a system administrator) who is capable of enforcing VM placement to co-

reside with victim VMs. This type of attack, which involves cloud insiders, is shown to be 

feasible in the real-world [81]. Therefore, the aforementioned limitations suggest that the 

outcome of this thesis is not applicable to all kinds of attacks.  

It is important to re-emphasise the fact that co-residency reduction does not prevent side 

channels; it instead aims to make co-residing with VMs in public IaaS clouds more difficult.  

 

7.4 Future Work 

The possibility of employing the right cloud parameters’ settings in four commonly used PAs 

to reduce the co-residency probability has been demonstrated in this thesis. Therefore, 

several future directions for research emerge. For instance, analysing and quantifying the 

influence of various cloud parameters on the co-residency probability in more PAs.  

In addition, the co-residency probability can be used as a useful benchmark for comparing 

public IaaS clouds based on how their cloud settings and PA reduce the co-residency 

probability. 

Another interesting line of research would be to design PAs that reduce the co-residency 

probability and also take into account other important aspects, such as performance and 

energy consumptions. This kind of PAs might prove to be very useful in practice. A very 

recent and promising attempt was made in this context by [10], formalizing a secure PA that 

prevents a specific type of co-residency (see Section 2.3.3.4).  

Moreover, an increasing number of publications have compared PAs in several aspects. Such 

aspects include cost reduction [37], [48], [49] and performance and energy consumptions 

[40], [55], [58], [99]. This thesis is the first to compare four PAs in terms of their impact on 

the co-residency probability and to identify that a similarity exists between First Fit and 

Power Save, as well as between Next Fit and Random. These findings open an interesting 

area for future research that involves comparing more PAs in terms of how much they are 
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likely to reduce the co-residency probability.  

Another interesting line of results from the previous PAs comparison would be to establish 

lower and upper bounds on the trade-off between performance and resilience to co-residency 

for each PA. More precisely, finding a lower bound on each PA’s performance and an upper 

bound on the expected probability of co-residency. This would be very helpful, within the 

context of this thesis, to identify the cost of using each PA to secure against side channel 

attacks. 
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Appendix A 

VMC Simulator Implementation  
 

 

A.1 Definition  

This appendix describes how the VMC simulator implements the system model and the four 

PAs used in this thesis (Section 3.2). The following are important preliminary definitions and 

assumptions: 

- The number of clusters in the system model is denoted as C 

- Each cluster is assigned a unique identifier i, such that 0 < i ≤ C 

- Each cluster has a number of hosts ω 

- Each host is assigned a unique identifier j, such that 0 < j ≤ ω 

- A host is available if it has an available space to accommodate a new VM 

- A host is full if it cannot accommodate a new VM 

- A cluster is available if it contains at least one available host 

- A cluster is full if it does not contain any available host 

- The VMC simulator implements the system model as follows: 

o Clusters are ordered by their identifiers from lowest to highest 

o Hosts in cluster i are ordered by their identifiers from lowest to highest 

o The lowest cluster/host refers to the cluster/host with the lowest identifier 

number 

In addition, the attackers VMs requests rate α can be specified to the VMC simulator in order 

to estimate probabilities related to malicious co-residency (see Chapter 6).  

Further, the VMC defines the following 36 input parameters to describe the system model in 

this thesis (Table A.1): 
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ID Parameters Description 

1.  Number of Clusters How many Clusters in the simulation 

2.  Number of Hosts of Type H1  

How many Hosts of each type to be created in 

the simulation. Hosts will be distributed 

randomly into clusters.  

3.  Number of Hosts of Type H2 

4.  Number of Hosts of Type H3  

5.  Number of Hosts of Type H4 

6.  Number of Hosts of Type H5 

7.  Max Utilization for Host Type H1  

A Host is Full when the hosted VMs usage of 

the host's resources (CPU, memory and storage) 

reaches the Max Host Utilization percentage.  

8.  Max Utilization for Host Type H2  

9.  Max Utilization for Host Type H3  

10.  Max Utilization for Host Type H4  

11.  Max Utilization for Host Type H5  

12.  Users’ Arrival Rate Of Type U1  

Average number of new users of each type to 

be created every time unit  

13.  Users’ Arrival Rate Of Type U2 

14.  Users’ Arrival Rate Of Type U3 

15.  Users’ Arrival Rate Of Type U4 

16.  Users’ Arrival Rate Of Type U5 

17.  Maximum Number of Users of Type U1  

The maximum number of users that can run in 

the simulated cloud simultaneously.  

18.  Maximum Number of Users of Type U2 

19.  Maximum Number of Users of Type U3 

20.  Maximum Number of Users of Type U4 
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21.  Maximum Number of Users of Type U5 

22.  Max Parallel VMs of User Type U1  

The maximum number of concurrent VMs a 

single user can run. 

23.  Max Parallel VMs of User Type U2 

24.  Max Parallel VMs of User Type U3 

25.  Max Parallel VMs of User Type U4 

26.  Max Parallel VMs of User Type U5 

27.  X_SMALL VM Average Lifetime  How long a user (on average) holds his running 

VM before terminating it (in time units)  
28.  SMALL VM Average Lifetime 

29.  MEDIUM VM Average Lifetime 

30.  LARGE VM Average Lifetime 

31.  X_LARGE VM Average Lifetime 

32.  VMs per User Request Rate for User Type U1 How many new VM(s) to be created in each 

new VMs request (on average). The number of 

VMs per request must be less than or equal to 

the Max Parallel VMs per User parameter. 

33.  VMs per User Request Rate for User Type U2 

34.  VMs per User Request Rate for User Type U3 

35.  VMs per User Request Rate for User Type U4 

36.  VMs per User Request Rate for User Type U5 

Table A.1 The input parameters that define the VMC simulator. 
 

In addition, the VMC produces the simulation outputs in an MS Excel file that contains five 

sheets in which each shows different statistical information. In addition, a log file is 

generated which displays the details of all the simulations actions and events in a text-based 

format (Figure A.1). 
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Figure A.1 Examples of the results generated by the VMC 

 

 

With regards to co-residency, the next section describes the PAs that are implemented by the 

VMC simulator. 

 

A.2 Implemented VM Placement Algorithms 

Given a pool of hosts in the IaaS cloud (host 1, host 2, ..., host ω) that are distributed in 

different clusters (cluster 1, cluster 2, …, cluster C) and a sequence of VMs requests, the PAs 

specify in which cluster and host a newly created VM should be placed. In case all hosts are 

full, no placement takes place. The system model considers four PAs that are used in popular 
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IaaS cloud platforms including Eucalyptus [6], OpenNebula [60], Nimbus [85] and  

OpenStack [98]. Based on the previous system model assumptions, the VMC simulator 

implements the following PAs. 

 

 

A.2.1 First Fit  

First Fit places a new VM as follows: 

o Placement in clusters level: 

o If all clusters are full, then the new VM cannot be placed. Else 

o Select the lowest available cluster i then go to Placement in hosts level.  

o Placement in hosts level: 

o Place the new VM in the lowest available host j from cluster i. 

 

A.2.2 Next Fit  

Next Fit mainly focuses on distributing the VMs equally between clusters and hosts 

with the help of the following pointers: 

o pointer! : Initially points to the lowest cluster (i.e. i =1). 

o pointer! for each cluster i: Initially points to the lowest host that belongs to 

cluster i. 

Next fit places a new VM to hosts in a cyclic manner as follows: 

o Placement in clusters level:  

1. If all clusters are full, then the new VM cannot be placed. Else 

2. If the cluster indicated by pointer! is full: 

a. Move pointer!   to point to the next cluster i+1, given that i+1≤ C. 

Otherwise move it to point to the lowest cluster (i=1).  

b. Repeat the Placement in clusters level. 

3. If the cluster indicated by pointer! is available: 

a. Select cluster i for placement. 

b. Move pointer!   to point to the next cluster i+1, given that i+1≤ C. 

Otherwise move it to point to the lowest cluster (i=1).  

c. Go to Placement in hosts level. 

 

o Placement in hosts level: 
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Now that an available cluster i is selected: 

1. If the host indicated by pointer! is full: 

a. Move pointer!   to point to the next host j+1, given that j+1≤ ω. 

Otherwise move it to point to the lowest host (j=1).  

b. Repeat the Placement in hosts level. 

2. If the host indicated by pointer! is available: 

a. Place the new VM in host j. 

b. Move pointer!   to point to the next host j+1, given that j+1≤ ω. 

Otherwise move it to point to the lowest host (j=1).  

 

A.2.3 Power Save  

Power Save is similar to First Fit but with a number of differences: 

o  Power Save puts a host to sleep mode when the host contains zero VM. A 

sleep mode indicates that the host is unavailable for placing new VMs.  

o Power Save reawakens a host from sleep mode to place new VMs when all the 

other non-sleeping hosts are full.  

o Initially: Power Save puts all hosts into sleep mode except host 1 in cluster 1. 

o Upon receiving a VM placement request: Whenever a VM request is received, 

Power Save checks non-sleeping hosts in all clusters if all of them are full 

then:  

§ Select the lowest cluster that has a sleeping host, 

§  Awaken the lowest sleeping host. 

 

Power Save places a new VM as follows: 

o Placement in clusters level: 

1. If all clusters are full, then the new VM cannot be placed. Else 

2. Select the lowest available cluster i then go to Placement in hosts level.  

o Placement in hosts level: 

1. Place the new VM in the lowest available host j from cluster i. 

 

A.2.4 Random  

Random places new VMs in a rather straightforward way compared to the other 

algorithms: 
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o Placement in clusters level: 

1. If all clusters are full, then the new VM cannot be placed. Else 

2. Select a cluster i uniformly at random. If it is full, then keep selecting 

random clusters until an available cluster i is found, then go to Placement 

in hosts level. 

  

o Placement in hosts level: 

1. From the selected cluster i, select a host j uniformly at random. If it is full 

then keep selecting random hosts until an available host j is found  

2. Place the new VM in j. 
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Appendix B 

Designing a Fractional Factorial Experiment  
 

 

B.1 Fractional Factorial Definition  

Fractional factorial design is an effective experimental approach that is widely used in 

industrial experiments [33]. When there are too many parameters and levels to be included in 

a limited resources experiment, fractional factorial helps to construct a reduced and balanced 

experiment design. Fractional factorial experiments are used in Chapter 4 to identify the top 

influential parameters and interactions on the co-residency metrics in an effective way. The 

basic concept of fractional factorial design is to include a subset (fraction) of the 

experimental runs that only cover important parameter combinations and interactions. This is 

in contrast to the full factorial experimental approach which includes all parameter 

combinations.  A 2-way fractional factorial design of an IV resolution is used in Chapter 4 

that ensures that the effect of a given parameter does not confound with the effects of any 

other parameter and 2-parameter interactions. 

Fractional factorial designs are expressed in this thesis using the following notation: 

𝑳𝐫𝒑!𝒔 

Where: 

-­‐ L is the number of levels used to examine each parameter (i.e. L is always 2 in 

Chapter 4),  

-­‐ r is the design resolution which specifies the degree to which the effect of each 

parameter confounds with the other parameters and interactions (i.e. r is chosen to 

be of resolution IV),  

-­‐ p is the number of parameters under investigation (i.e. eight parameters in Chapter 

4), and 

-­‐ s represents the size of the fraction that is selected from the original full factorial 

design. 
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B.2 Designing a 2IV
4 Fractional Factorial Experiment  

The aim in this section is to design a fractional factorial experiment to identify the most 

influential parameters and interactions on the co-residency metrics in Chapter 4. Using the 

eight parameters with two levels from Table 4.4, a full factorial experimental design that 

covers all possible parameter combinations will result in 2! experimental runs. In order to 

reduce the experiment size, the following steps are applied to design a 2IV
8-4 fractional 

factorial experiment that uses a !
!!

 fraction of the 2! experimental runs in the full factorial 

design:  

1. Starting with X1, X2, X3 and X4 as the design parameters, construct a full factorial 

design of p-s parameters (i.e. 8-4 = 4) that has 24 experimental runs. These runs cover 

all possible parameter combinations (Table B.1).  

 

Run X1 X2 X3 X4 

1 Low Low Low Low 

2 Low High High High 

3 High Low High Low 

4 High High Low Low 

5 High Low Low Low 

6 High Low High High 

7 Low High Low High 

8 High High Low High 

9 Low Low High Low 

10 Low High High Low 

11 High High High Low 

12 Low High Low Low 

13 High Low Low High 

14 Low Low High High 

15 Low Low Low High 

16 High High High High 

Table B.1 Constructing a full factorial experiment using 4 parameters 
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2. Then all the possible interactions between these four parameters are added in new 

columns (Table B.2). The new columns are simply the multiplication between the 

interaction parameters levels. Multiplying the same level results in a High level, and 

multiplying different level results in a Low level: 

 
 

 

Run 

X
1 

X
2 

X
3 

X
4 

X
1X

2 

X
1X

3 

X
1X

4 

X
2X

3 

X
2X

4 

X
3X

4 

X
1X

2X
3 

X
1X

2X
4 

X
1X

3X
4 

X
2X

3X
4 

X
1X

2X
3X

4 

1           Low Low Low Low High High High High High High Low Low Low Low High 

2           High Low Low Low Low Low Low High High High High High High Low Low 

3           Low High Low Low Low High High Low Low High High High Low High Low 

4           High High Low Low High Low Low Low Low High Low Low High High High 

5         Low Low High Low High Low High Low High Low High Low High High Low 

6           High Low High Low Low High Low Low High Low Low High Low High High 

7           Low High High Low Low Low High High Low Low Low High High Low High 

8           High High High Low High High Low High Low Low High Low Low Low Low 

9           Low Low Low High High High Low High Low Low Low High High High Low 

10       High Low Low High Low Low High High Low Low High Low Low High High 

11       Low High Low High Low High Low Low High Low High Low High Low High 

12       High High Low High High Low High Low High Low Low High Low Low Low 

13       Low Low High High High Low Low Low Low High High High Low Low High 

14       High Low High High Low High High Low Low High Low Low High Low Low 

15       Low High High High Low Low Low High High High Low Low Low High Low 

16       High High High High High High High High High High High High High High High 

Table B.2 Adding all the possible interactions between the 4 parameters 

 

3. The remaining parameters (X5, X6, X7 and X8) are carefully substituted with 

redundant high-order interactions of the first 4 parameters (i.e. 3-parameter 

interactions). There are a number of standard approaches to substitute redundant 

interactions with parameters in a resolution IV fractional factorial design suggested in 

[15]. Resolution IV fractional factorial designs ensure that a parameter’s effect 

confounds with at worst 3-parameter interactions. Therefore, 3-parameter and higher 

interactions effects are not considered in identifying the influential parameters on the 

co-residency metrics in Chapter 4. The basic rule to choose which 3-parameter 

interactions are to be replaced with which parameter is that the effects of the 
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substituted 3-parameter interactions do not confound with the effects of the 

parameters and 2-parameter interactions. Table B.3 shows that the X5, X6, X7 and 

X8 parameters were substituted with the following 3-parameter interactions: 

X5 = X2X3X4          X6 = X1X3X4            X7 = X1X2X3             X8 = X1X2X4 

 
           X7 X8 X6 X5  

           ê ê ê ê  
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1      

     

Low Low Low Low High High High High High High Low Low Low Low High 

2      

     

High Low Low Low Low Low Low High High High High High High Low Low 

3      

     

Low High Low Low Low High High Low Low High High High Low High Low 

4      

     

High High Low Low High Low Low Low Low High Low Low High High High 

5      

     

Low Low High Low High Low High Low High Low High Low High High Low 

6      

     

High Low High Low Low High Low Low High Low Low High Low High High 
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Low High High Low Low Low High High Low Low Low High High Low High 
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High High High Low High High Low High Low Low High Low Low Low Low 

9      

     

Low Low Low High High High Low High Low Low Low High High High Low 

10    

   

High Low Low High Low Low High High Low Low High Low Low High High 

11    

   

Low High Low High Low High Low Low High Low High Low High Low High 

12    

   

High High Low High High Low High Low High Low Low High Low Low Low 

13    

   

Low Low High High High Low Low Low Low High High High Low Low High 

14    

   

High Low High High Low High High Low Low High Low Low High Low Low 

15    

   

Low High High High Low Low Low High High High Low Low Low High Low 

16    

   

High High High High High High High High High High High High High High High 

Table B.3 Replacing X5, X6, X7 and X8 parameters with 3-parameter interactions. 
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4. The final 2IV
4 fractional factorial experiment consists of 16 experimental runs 

covering eight parameters combinations in a balanced fashion (Table B.4). Each 

parameter is tested at each of its two levels in eight runs in order to increase the 

validity of the results. 
Run X1 X2 X3 X4 X5 X6 X7 X8 

1           Low Low Low Low Low Low Low Low 

2           High Low Low Low Low High High High 

3           Low High Low Low High Low High High 

4           High High Low Low High High Low Low 

5           Low Low High Low High High High Low 

6           High Low High Low High Low Low High 

7           Low High High Low Low High Low High 

8           High High High Low Low Low High Low 

9           Low Low Low High High High Low High 

10       High Low Low High High Low High Low 

11       Low High Low High Low High High Low 

12       High High Low High Low Low Low High 

13       Low Low High High Low Low High High 

14       High Low High High Low High Low Low 

15       Low High High High High Low Low Low 

16       High High High High High High High High 

Table B.4 Final design of the 2IV
8-4 fractional factorial experiment 
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Appendix C 

Weighted Effects on the Co-residency Metrics 
 

The results of the parameters and 2-parameter interactions Weighted Effects WEs on each of 

the co-residency metrics are provided in this Appendix. These WEs are calculated under First 

Fit, Next Fit, Power Save and Random. The following figures show the parameters and 2-

parameter interactions in the x-axis and the corresponding WEs in the y-axis. As per the 

definition of WE in Section 4.3.4.3, the maximum WE on a given co-residency metric that 

parameters and 2-parameter interactions can achieve is two.  

When using First Fit as the PA (Figure C.1), the results showed that User Arrival Rate (X4) 

achieved the highest WE on the CCP metric followed by the VMs Request Rate (X8). In 

addition, Users’ Arrival Rate (X4) achieved the highest WE on the HFL metric followed by 

Number of Hosts (X2). However, Number of Hosts (X2) repeatedly scored the highest WE 

on the CV and CA metrics. 

 

 
Figure C.1 Weighted Effect WE on the co-residency metrics using First Fit 

X1 X2 X3 X4 X5 X6 X7 X8 X1*X2 X1*X3 X1*X4 X1*X5 X1*X6 X1*X7 X1*X8 

WE on CCP 0.12 0.04 0.70 2.00 0.05 0.00 0.46 1.26 0.25 0.21 0.00 0.00 0.00 0.03 0.10 

WE on HFL 0.18 1.19 0.00 1.36 0.27 0.16 1.00 0.00 0.14 0.16 0.00 0.00 0.00 0.20 0.00 

WE on CV 0.53 1.34 1.17 0.00 0.47 0.00 1.00 0.25 0.00 0.52 0.56 0.23 0.23 1.24 0.18 

 WE on CA 0.24 2.00 0.49 0.94 0.19 0.35 1.20 0.31 0.32 1.25 0.55 0.25 0.22 0.52 0.93 
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Weighted Effect (WE) on the co-residency metrics using First Fit   
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The WEs of the parameters and interactions when using Next Fit were different from the WEs 

when First Fit was used (Figure C.2). The results showed that Number of Hosts (X2) scored 

the highest WE on the CCP metric. However, the rest of the parameters and interactions 

scored relatively smaller WEs. In addition, Number of Hosts (X2), User Arrival Rate (X4) 

and VMs per Request (X8) scored the highest WEs on the HFL metric. Again, Number of 

Hosts (X2) repeatedly scored the maximum WE on the CV and CA metrics. In general, 2-

parameter interactions scored more WEs on the metrics when using Next Fit compared to 

First Fit.  

 

 
Figure C.2 Weighted Effect WE on the co-residency metrics using Next Fit 

 

When using Power Save as the PA (Figure C.3), Users’ Arrival Rate (X4) achieved the 

highest WE on the CCP metric followed by the VMs per Request (X8). These two parameters 

scored the highest WEs on the CCP metric when using the First Fit. In addition, Users’ 

Arrival Rate (X4) and Number of Hosts (X2) scored approximately similar WEs on the HFL 

metric. Again, these two parameters scored the highest WEs on the HFL metric under First 

Fit. Moreover, Number of Hosts (X2) scored the highest WE on the CV metric along with the 

interaction of Number of Clusters (X1) and VMs Average Lifetime (X7).  Finally, Number of 

X1 X2 X3 X4 X5 X6 X7 X8 X1*X2 X1*X3 X1*X4 X1*X5 X1*X6 X1*X7 X1*X8 

WE on CCP 0.07 2.00 0.05 0.31 0.00 0.00 0.06 0.25 0.13 0.11 0.23 0.02 0.02 0.04 0.37 

WE on HFL 0.89 1.60 0.00 1.13 0.00 0.00 0.21 1.02 1.00 0.00 1.00 0.00 0.00 0.00 1.09 

WE on CV 0.00 2.00 0.00 0.34 0.00 0.00 0.00 0.24 0.00 0.00 0.27 0.00 0.00 0.00 0.35 

 WE on CA 0.26 2.00 0.54 0.19 0.00 0.14 0.35 0.18 0.24 0.35 0.19 0.13 0.00 0.54 0.34 
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Hosts (X2) repeatedly scored the maximum WE on the CA metric. Further, VM Average 

Lifetime (X7) is an important driving parameter of CA.  

 

 
Figure C.3 Weighted Effect WE on the co-residency metrics using Power Save 

 

With regards to the WEs when using Random (Figure C.4), the results were similar to Next 

Fit, but not quite to the same extent. In general, Number of Hosts (X2) can be seen as a 

parameter with a strong influence on the metrics when Random is used as the PA. For 

example, Number of Hosts (X2) scored the maximum WE on all metrics. 

 

X1 X2 X3 X4 X5 X6 X7 X8 X1*X2 X1*X3 X1*X4 X1*X5 X1*X6 X1*X7 X1*X8 

WE on CCP 0.10 0.51 0.79 2.00 0.03 0.03 0.47 1.28 0.27 0.08 0.00 0.02 0.02 0.03 0.15 

WE on HFL 0.14 1.19 0.00 1.24 0.16 0.00 1.00 0.16 0.25 0.00 0.15 0.15 0.00 0.00 0.00 

WE on CV 0.46 1.47 1.27 0.00 0.42 0.20 1.00 0.00 0.00 0.53 0.42 0.00 0.00 1.28 0.32 

 WE on CA 0.29 2.00 0.55 0.96 0.19 0.28 1.09 0.00 0.32 1.10 0.23 0.33 0.00 0.54 1.02 
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Figure C.4 Weighted Effect WE on the co-residency metrics using Random 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X1 X2 X3 X4 X5 X6 X7 X8 X1*X2 X1*X3 X1*X4 X1*X5 X1*X6 X1*X7 X1*X8 

WE on CCP 0.01 2.00 0.06 0.32 0.00 0.00 0.06 0.22 0.03 0.18 0.28 0.00 0.01 0.05 0.57 

WE on HFL 0.00 2.00 0.00 0.25 0.00 0.00 0.13 0.00 0.00 0.10 0.00 0.00 0.00 0.11 0.11 

WE on CV 0.00 2.00 0.00 0.34 0.00 0.00 0.00 0.16 0.00 0.00 0.20 0.00 0.00 0.00 0.35 

 WE on CA 0.23 2.00 0.57 0.19 0.00 0.18 0.38 0.23 0.21 0.38 0.26 0.18 0.00 0.56 0.49 
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Appendix D 

Significant 2-Parameter Interactions on the Co-residency 

Metrics 
 

Chapter 4 identified the X1*X4 and X1*X8 2-parameter interactions to have an influence on 

the co-residency metrics under Next Fit and Random (Table 4.9). Examining the interaction 

between parameters can significantly enhance the evaluation of their influence on the co-

residency metrics. The presence of a significant interaction indicates that the effect of one 

parameter on the co-residency metrics is different at different levels of the other parameter. 

Based on the results of the broad and narrow experiments (Table 4.5 and Table 4.6), 22 

significant effects (i.e. p-value <0.05) on the co-residency metrics were caused by the 2-

parameter interactions (between X1*X4 and X1*X8). The following figures show the 

statistically significant interaction effects on the co-residency metrics (i.e. CCP, HFL, CV 

and CA) under Next Fit and Random. The figures reveal that 14 of these 2-parameter 

interactions (nearly 63.6%) were able to reduce the co-residency probability (as defined in 

Section 5.1) when both X4 and X8 were in low levels. 
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D.1 Significant 2-Parameter Interactions Using Next Fit (Broad-Experiment) 

 

 

 
Figure D.1 Interaction plot for CCP between X1*X4 

 

 
Figure D.2 Interaction plot for HFL between X1*X4 
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Figure D.3 Interaction plot for CV between X1*X4 

 

 

 
Figure D.4 Interaction plot for CA between X1*X4 
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Figure D.5 Interaction plot for CCP between X1*X8 

 

 

 
Figure D.6 Interaction plot for HFL between X1*X8 
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Figure D.7 Interaction plot for CV between X1*X8 

 

 

 
Figure D.8 Interaction plot for CA between X1*X8 
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D.2 Significant 2-Parameter Interactions Using Next Fit (Narrow-Experiment) 

 

 
Figure D.9 Interaction plot for CCP between X1*X4 

 

 
Figure D.10 Interaction plot for CCP between X1*X8 
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Figure D.11 Interaction plot for HFL between X1*X8 

 

 
Figure D.12 Interaction plot for CA between X1*X8 

32

0.40

0.38

0.36

0.34

0.32

0.30

VMs per request X8

M
ea

n

15
30

clusters X1
Number of

Interaction Plot for HFL
Data Means

32

0.0018

0.0017

0.0016

0.0015

0.0014

VMs per request X8

M
ea

n

15
30

clusters X1
Number of

Interaction Plot for CW
Data Means

CA	
  



 167 

D.3 Significant 2-Parameter Interactions Using Random (Broad-Experiment) 

 

 
Figure D.13 Interaction plot for CCP between X1*X4 

 

 
Figure D.14 Interaction plot for CV between X1*X4 
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Figure D.15 Interaction plot for CA between X1*X4 

 

 

 
Figure D.16 Interaction plot for CCP between X1*X8 
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Figure D.17 Interaction plot for HFL between X1*X8 

 

 

 
Figure D.18 Interaction plot for CV between X1*X8 

41

0.27

0.26

0.25

0.24

0.23

0.22

0.21

VMs per request X8

M
ea

n
10
50

clusters X1
Number of

Interaction Plot for HFL
Data Means

41

0.35

0.30

0.25

0.20

0.15

0.10

VMs per request X8

M
ea

n

10
50

clusters X1
Number of

Interaction Plot for OW
Data Means

CV	
  



 170 

 

 
Figure D.19 Interaction plot for CA between X1*X8 
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D.4 Significant 2-Parameter Interactions Using Random (Narrow-Experiment) 

 

 
Figure D.20 Interaction plot for CCP between X1*X4 

 

 
Figure D.21 Interaction plot for CCP between X1*X8 
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Figure D.22 Interaction plot for CA between X1*X8 
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Appendix E 

VMC simulator’s Estimates of the Malicious Co-residency 

Metrics 
 

The following tables (Table E.1 and Table E.2) list the VMC simulator’s estimates for the 

malicious co-residency metrics MCP and AFL. These estimates were obtained under different 

numbers of hosts and users’ arrival rates with an α of 0.10 (see Section 6.2 for the definition 

of α). 

  

 First Fit Next Fit Power Save Random 

Number 

of Hosts 
MCP AFL MCP AFL MCP AFL MCP AFL 

1000 0.2306 0.8382 0.3720 0.7919 0.2309 0.8436 0.3765 0.7833 

10000 0.2408 0.8221 0.0416 0.9915 0.2372 0.8300 0.0648 0.9682 

15000 0.2321 0.8305 0.0087 0.9997 0.3254 0.8087 0.1264 0.9769 

30000 0.3182 0.8146 0.0000 1.0 0.3161 0.8151 0.1040 0.9883 

Table E.1 The VMC simulator’s estimates of the malicious co-residency metrics under 

different numbers of hosts with an α of 0.10 
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 First Fit Next Fit Power Save Random 

Users’ 

Arrival 

Rate 

MCP AFL MCP AFL MCP AFL MCP AFL 

2 0.3206 0.8140 0.1864 0.9581 0.3213 0.8116 0.2067 0.9329 

3 0.2837 0.8386 0.2537 0.9237 0.2936 0.8351 0.2720 0.8989 

4 0.2729 0.8540 0.3224 0.8821 0.2726 0.8559 0.3150 0.8708 

5 0.2615 0.8623 0.3685 0.8471 0.2636 0.8648 0.3644 0.8405 

Table E.2 The VMC simulator’s estimates of the malicious co-residency metrics under 

different users’ arrival rates with an α of 0.10 
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Appendix F 

Criteria for Selecting Simulation as a Testbed 
 

 

 

F.1 Introduction 

As pointed out in Chapter 1, this thesis takes an experimental approach to study co-residency 

occurrence behaviour in IaaS clouds. Studying co-residency in large, non-transparent and 

diverse IaaS clouds can become a very challenging task that requires an effective testbed that 

supports experimentation under different scenarios and settings. Therefore, this appendix 

makes two contributions. First, a number of cloud platforms and software tools are evaluated 

on their suitability as experimental testbeds to examine different aspects of co-residency. 

Second, a comparison is made of different testbeds based on how they meet certain 

requirements for experimenting on large-scale clouds, such as scalability and cost.  

In this appendix, Section F.2 outlines the testbed selection criteria to help identify the most 

suitable testbed for experiments related to co-residency. In Section F.3, a survey of a number 

of the available testbeds for experimentation on co-residency is provided, followed by a 

comparison and evaluation of the elected testbeds according to the selection criteria in 

Section F.4. This evaluation leads to a recommendation for implementing a new VM Co-

residency (VMC) simulator in Section F.5. The VMC simulator is used in this thesis as a 

testbed for research on co-residency in the cloud. 

It is worth mentioning that a summary of some of the results presented in this appendix 

appeared in [1]. 

 

F.2 Testbed Selection Criteria  

It can be argued that there is no single or best approach for experimenting on co-residency in 

the cloud. This is because too many parameters exist that need to be taken into account when 

conducting the experiments. Such parameters describe cloud architecture, functional and 

non-functional requirements.  

The thesis’s aim (Section 1.3) requires studying co-residency in large IaaS clouds under a 

variety of settings. Such settings include various cloud user volumes, an assorted number of 

VMs, different numbers of hosts and clusters and, most importantly, a number of PAs. 
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Performing such an experiment in large and dynamic environments, such as IaaS clouds, 

needs a testbed that meets a certain set of criteria and requirements. Meeting these 

requirements helps to conduct the experiment efficiently within the limited time and 

resources available. For the purpose of conducting this evaluation, it has been assumed that 

the available time for experimentation on the selected testbed is six calendar months. In 

addition, the research’s available resource is a small lab that consists of four mid-range 

machines operated by a single researcher. The following selection criteria are set to help 

choose the most suitable testbed for experiments in this thesis. The first three criteria were 

inspired by [34]. On the other hand, the remaining criteria were derived from the experience 

gained from previous own research [2] and were directly relevant to the needs of the type of 

experiments in this thesis. The final evaluation will examine each testbed against each of the 

following selection criteria: 

 

F.2.1 Repeatable and Controllable 

A repeatable experiment means that re-conducting the same experiment by the same 

experimenter must produce similar results. Needless to say, being able to conduct and repeat 

co-residency experiments in unpredictable environment conditions is the most important key 

to achieving meaningful results. Therefore, conducting and repeating co-residency 

experiments requires full control of the underlying cloud infrastructure (such as PAs, hosts 

and clusters). 

 

F.2.2 Transparent 

It is necessary to have a testbed that offers a safe level of transparency to allow the 

observation of different aspects of co-residency behaviours, such as detecting co-residency 

hit and estimating co-residency hit probability. 

 

F.2.3 Flexible  

A flexible testbed must easily offer the ability to experiment on several cloud parameters’ 

settings with different levels of details and different PAs. This ability is crucial to allow the 

experiment results to be generalizable. 
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F.2.4 Accessible  

This criterion states that the testbed must be available and legal to use in experimental 

activities. Also, the time required for downloading, deploying and mastering the testbed with 

proper technical documentation defines the accessibility requirement. 

 

F.2.5 Scalable   

The co-residency experiments in this thesis need to be conducted on various scales of IaaS 

clouds (such as the various number of hosts, clusters and VMs).  Scalability means that the 

chosen testbed can accommodate the increase in the size of cloud resources while 

maintaining the minimum expenditure of the research’s resources.    

 

F.2.6 Inexpensive and Not Time-Consuming 

In general, experimentation on large scale IaaS clouds requires both time and computational 

resources. It is important to consider the time and budget limitations for running the 

experiments on the selected testbed. Quick implementations of the experiment on the testbed, 

with minimum expense, as well as an acceptable execution speed are important factors that 

influence the testbed selection decisions.   

 

F.2.7 Sufficient Reporting/Monitoring System 

Large-scale experiments usually produce a vast amount of output and statistical data that are 

used to analyse the results. In addition to the need for excellent reporting capabilities, the 

testbed must also allow the user to monitor effectively and record all necessary actions 

related to co-residency. 

 

F.3 Available Testbeds  

The experimental validation methodologies presented in [34] aim to define the best practices 

to conduct sound experiments in large-scale systems. The suggested experimental 

methodologies are categorized based on the type of the testbed they use. They include: 

• Real-platform experiments: that is executing real applications on real platforms, 

• Benchmarking: that is executing modelled applications on real platforms, 

• Emulation: that is executing real applications on modelled platforms and  

• Simulation: that is executing modelled applications on modelled platforms. 
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Looking at the above experimental methodologies, the real-platform and the benchmarking 

experiments usually use real applications/systems as a testbed, whereas the emulation and 

simulation methodologies use modelled platforms. By focusing on real-platform and 

simulation methodologies, this thesis uses three different testbeds for comparison based on 

the aforementioned testbed criteria:  

(1) Real public IaaS clouds;  

(2) Real private IaaS clouds; and  

(3) Simulators.  

 

A straightforward evaluation of the comparison between these three testbeds was conducted 

to assess each testbed against each criterion. This comparison will help to select the most 

suitable testbed for the experiments in this thesis.  

 

F.3.1 Public IaaS Clouds 

Public IaaS cloud providers offer users the ability to rent computing infrastructure on-

demand to cover their needs. Public IaaS clouds such as Microsoft’s Windows Azure [57], 

Amazon’s EC2 [4] and Rackspace [77] allow users to run their own VMs (i.e. as servers). In 

order to utilize their physical infrastructure, virtualization is used to allow physical resources 

to be shared between users. Because of this, each IaaS cloud exhibits different workloads and 

can vary in the underlying infrastructure and configurations. 

Using public IaaS clouds as testbeds is possible, yet it shows some limitations. [79] 

pioneered research uses Amazon’s EC2 as a testbed. The researchers demonstrate that it is 

possible to map the internal cloud infrastructure in order to locate and co-reside with targets 

(see Chapter 2 for more details). They also describe a number of attacking scenarios where a 

malicious user can gather sensitive information from co-resident VMs that share the same 

underlying machine using side-channel attacks. Other research, such as the AmazonIA paper 

[17], have used public IaaS clouds as a testbed. In particular, the researchers in AmazonIA 

have used Amazon’s EC2 to launch various crafted Amazon Image Attacks in which they 

were able to collect very sensitive information (including credentials, passwords and keys). 

In addition, Amazon’s EC2 also has been used as a testbed in an early stage of this thesis.  

As explained in Section 2.2, available public IaaS clouds, including Amazon’s EC2, are 

usually accessible and easy to use with their rapid scalability. In addition, public IaaS cloud 

providers normally supply documentation and how-to-use resources. However, using public 
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clouds as a testbed comes with its own expenses. The diverse varieties of uncontrollable 

infrastructure configurations and settings make the use of public IaaS clouds as a testbed in 

this thesis an unpredictable and time-consuming task. Moreover, the pay-as-you-go nature of 

the public IaaS cloud and the need for conducting repeatable experiments with different 

parameters’ settings would incur expenses that exceed the available resources. Furthermore, 

public IaaS cloud providers, such as Amazon EC2 and Windows Azure, usually obscure the 

details of their cloud infrastructure, networks and even PAs, which results in a lack of 

transparency [79]. With little to no transparency, it becomes difficult to conduct testing 

experiments on such platforms. This is because the testers cannot obtain the necessary 

information about the cloud anatomy and the implemented PA, making the public IaaS cloud 

a non-transparent and hard to control testbed. Further, this lack of control might also result in 

the inability to implement a sufficient reporting system for detecting underlying events 

related to co-residency. Thus, this lack of control does not support generalizing the 

experiment’s results due to the use of very specific cloud architecture. In some situations, it 

is also possible that extensive experimental usage might lead to a violation of the cloud’s 

usage policy [4]. From what has been discussed before, this combination of limitations shows 

that public IaaS clouds are thought not to be always the best testbed for this type of research.   

 

F.3.2 Private IaaS Clouds 

Private IaaS clouds, such as the open-source Eucalyptus private cloud [67] and OpenNebula 

[60] offer similar functionalities as public IaaS clouds. However, there is one major 

difference: private IaaS clouds are implemented in the user’s own physical infrastructure 

whereas public IaaS clouds run on a third party infrastructure (see Section 2.2). This feature 

of the private IaaS clouds offers more flexibility to implement and model a vast array of 

possible cloud architectures. Moreover, an open-source private cloud gives the researchers 

the necessary transparency to control and monitor every single event in their experiments, 

which forms a good repeatable and controllable testbed. Also, private IaaS clouds have been 

used as testbeds in an experimental research context for various objectives. For instance, [6] 

have conducted an evaluation of software ageing effects on Eucalyptus private cloud 

infrastructure. Further, other researchers have used Eucalyptus as a proof of concept of 

autonomic resource provisioning in rocks clusters [43]. However, there is still a need when 

using private IaaS clouds for large capital investment to purchase and maintain the required 
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hardware infrastructure to conduct scalable experiments, which can sometimes exceed the 

available resources for this thesis.  

 

F.3.3 Simulators 

One of the widely used testbeds in large-scale experiments is to use simulators, such as grid 

simulators and cloud computing simulators, instead of using real IaaS clouds as testbeds [34]. 

Computer simulation refers to the actual running of a program that describes a system model, 

algorithms or equations.  

Continuous simulations mimic physical systems' execution at the exact rate as actual clock 

time. This is in contrast to discrete-event simulation, which has a collection of state variables 

that reflect the current system status [12]. These state variables can change only at discrete 

instants (called events), whose sequential order describes the simulated system behaviour. A 

list of some of the grid simulators and cloud computing simulators, which are related to the 

experiments in this thesis, with descriptions and comparisons, is provided next. 

 

F.3.3.1 Grid Simulators 

In the area of distributed computing, grid computing is a set of distributed systems that 

provide on-demand access to dependable, consistent and inexpensive hardware and software 

infrastructure. Grid computing is usually used to process large amounts of non-interactive 

workloads [29]. There are many multi-tier data centre simulation platforms that have been 

designed to support the modelling of different hardware specifications of the common data 

centres’ components. Such components include hosts, network switches and communication 

links. One example of multi-tier data centre simulators is MDCSim [51].  However, grid 

simulators require more advanced capabilities in order to simulate the distributed 

applications' behaviour more accurately.  In order to meet the demand of research and 

development on grid systems, several grid simulators have been introduced. Examples of 

these simulators include SimGrid [19], MicroGrid [88], GridSim [88] and GangSim [27]. 

Recently, SimGrid started to support a very basic interface to implement virtualization 

environments. However, this interface is highly experimental as stated on the project website 

and that they “…do not expect too much of it right now” [86].  

Among these grid simulators, it can be argued that GridSim is the most related to co-

residency research as it has been extended to form the base of some of the current cloud 

simulators [18]. Initially, GridSim was introduced as a simulator for resource modelling, 
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application scheduling and performance analysis in grid computing environments. It supports 

the modelling of various application models, and it is capable of automating the task of 

generating a stream of application workloads. GridSim was built upon SimJava [45], a 

process-based discrete-event simulation framework implemented in Java. Since SimJava runs 

a unique thread for each element in the simulation, it has been shown in [68] that SimJava 

performance degrades when simulating more than 2000 grid entities concurrently. This is due 

to the high consumption of memory.  Since GridSim implements in the exact way in which 

SimJava simulates the grids, it inherits this scalability limitation. It is important to note that 

grid simulators have been designed to model comprehensively grid systems to the maximum 

extent. However, none of these simulators are capable of clearly abstracting the application 

layer from the virtual and physical machines layer. This type of abstraction is required when 

trying to model multi-layer architecture such as the IaaS cloud. In addition, the above grid 

simulators are not initially intended to model virtualized resources (i.e. VMs) [30].  

Therefore, it would not be practical to use grid simulators in the co-residency experiments, 

and therefore cloud simulators are instead considered as better testbeds in this thesis. 

 

F.3.3.2 Cloud Simulators  

A cloud simulator is a toolkit that models and simulates different cloud computing elements 

and environments [58]. Cloud simulators are usually capable of simulating multiple clusters 

and hosts. In addition, cloud simulators normally model the creation of VMs and the 

placement of these VMs to hosts.  Similarly, cloud simulators usually support the creation of 

cloud users and the generation of different types of cloud-related events. The use of cloud 

simulators can provide a higher degree of flexibility to conduct different types of 

experiments on a close-to-real cloud environment. Several IaaS cloud simulators are 

reviewed next in order to include them in the evaluation at the end of this appendix. 

 

(i) CloudSim 

CloudSim [18] is one of the widely used IaaS cloud modelling and simulation toolkit that 

was developed at the University of Melbourne, Australia. The main goal of CloudSim is to 

help IaaS cloud researchers to conduct comprehensive simulation-based experiments. The 

main features that CloudSim offers includes the modelling and simulation of large-scale IaaS 

clouds, with configurable data centres, physical hosts, resources and virtualization 

provisioning, as well as power management. With its multi-layer design framework that 
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reflects the layered architecture of real IaaS cloud environments, CloudSim was developed 

using Java and was built on top of the SimJava-based grid simulator GridSim. As described 

earlier, GridSim has a scalability limitation that CloudSim inherited initially. Therefore, the 

developers of CloudSim decided to modify the first release of this simulator and implement a 

new discrete-event management framework. This became the CloudSim core simulation 

engine (Figure F.1). The new framework uses only three main threaded components, and the 

remaining entities are implemented as objects. Each component in the CloudSim architecture 

is implemented as a Java class that can be extended or changed to reflect certain simulation 

requirements. 

  

 
Figure F.1 CloudSim Architecture 

 

 

Difficulties arise, however, when an attempt is made to simulate certain cloud environments 

with specific requirements using CloudSim. Each of these different difficulties forms a 

reason behind the development of many successive simulators that have been built upon 

CloudSim. At least four cloud computing simulators worldwide have been adopted to extend 

CloudSim in order to add new functionality or components that CloudSim is missing, such as 

network latency, bandwidth simulation, SLA management, and more. For example, [39] 

highlights the need to adopt an easy-to-set-up and user-friendly cloud simulator. They have 



 183 

surveyed the available cloud simulators in the market and elected CloudSim as a base 

platform for their intended research. They claim that new enhancements and extensions to 

CloudSim are essential to maintaining a user-friendly cloud simulator. These extensions have 

been implemented in the TeachCloud cloud simulator. TeachCloud features a new graphical 

user interface (GUI) for CloudSim, as well as adding SLA management and business process 

management modules on the architecture level. In addition, TeachCloud builds several cloud 

network models such as VL2, BCube, Portland and DCell to model different topologies that 

can be found in real cloud environments.  

Moreover, a group of researchers at the Pontifical Catholic University of Rio Grande do Sul 

in Brazil have introduced another cloud simulator and visual modeller based on CloudSim, 

called CloudAnalyst [96]. The primary goals of CloudAnalyst are to visually model, simulate 

and analyse the effects of geographic distribution of large distributed social network 

applications under multiple deployment configurations in the cloud. CloudAnalyst gives 

large applications’ developers helpful insights into how to effectively distribute these types 

of applications. Using CloudSim as the base simulation engine, CloudAnalyst leverages 

whole features of CloudSim and implements important missing functionalities.  

For example, instead of spending unnecessary time on programming the simulation 

environment requirements using CloudSim, CloudAnalyst provides the user with a GUI to 

easily control the simulator variables. This action is expected to help the user to focus on the 

environment simulation experiment. The rest of the added functionality is mainly intended to 

introduce a basic network, bandwidth and latency modelling management. This allows the 

user to configure the number of generated applications’ workloads, to supply some 

information of the geographic distribution of the origin of the generating traffic, as well as 

defining the data centres' locations. By using this detailed information, CloudAnalyst is 

capable of simulating distributed applications' behaviour in the cloud. Further, CloudAnalyst 

produces various graphical reports in the form of tables and charts of users’ requests response 

time, requests processing time and other useful analytical data.  

In addition, CloudReport [101] is another CloudSim-based cloud computing simulator 

developed at the Federal University of Ceara, Brazil. Its functionalities are very similar to 

CloudAnalyst, providing an easy-to-use GUI and a rich reporting module. 

Similar to CloudAnalyst, yet with more architecture-level changes, NetworkCloudSim cloud 

computing simulator [30] has been introduced to overcome the limitations that can be found 

in CloudSim’s network layer. CloudSim's network layer views the data centre’s resources as 
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a collection of VMs, and therefore it is capable of simulating limited communications 

activities between resources. The developers of NetworkCloudSim argue that CloudSim 

suffers when simulating a large distributed application (such as message passing parallel 

applications or multi-tier web applications hosted in different machines). The developers 

state that a precise evaluation of PAs requires a more sophisticated modelling of the data 

centre’s interconnection network. They also claim that they have equipped 

NetworkCloudSim (Figure F.2) with the most advanced realistic application model compared 

to CloudSim. Thus, the developers “... have designed a network flow model for Cloud data 

centres utilizing bandwidth sharing and latencies to enable scalable and fast simulations.”  

  

 
Figure F.2 NetworkCloudSim's new elements introduced to CloudSim Architecture 

 

 

(ii) GreenCloud 

In recent years, there has been an increasing amount of literature on energy-aware cloud data 

centres. Researchers in this area have started to adopt the use of cloud simulators to 

experiment with different environment-friendly PAs, to utilise the computing resources in an 

energy-efficient fashion [54]. As an extension of the well-known NS2 network simulator 

[38], GreenCloud was first introduced in 2010 as a packet-level simulator for energy-aware 

cloud data centres [44].  Together with the workload generation and distribution which 

GreenCloud offers, the simulator’s primary task is to capture precisely the energy 
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consumption readings of the data centre components (hosts, switches and links). Moreover, it 

can simulate and produce the simulation results for two-tier and three-tier architectures. 

GreenCloud’s core strength can be observed in its ability to model the communication 

interactions of any data centre network with an extensive level of detail since it uses the NS2 

to implement a full TCP\IP protocol model. However, this advantage can affect GreenCloud 

by limiting its scalability due to the heavy memory requirement needed to simulate such 

detailed models.  

 

(iii) GroudSim 

Similar to CloudSim, GroudSim is a Java-based discrete-event cloud simulator developed by 

[69]. In contrast to CloudSim and the aforementioned cloud simulators, GroudSim is capable 

of supporting the simulation of applications running on combined cloud and grid platforms. 

Its developers claim that it offers better scalability and performance compared to related 

process-based simulators since it uses discrete-event simulation. GroudSim presents some 

basic analysis and statistics of the simulated cloud. It also supports the modelling of grid and 

cloud infrastructures including network and computational resources, task scheduling, file 

transfer, and cost, failure and background models. Nevertheless, GroudSim has not escaped 

criticism from its developers. They state in [68] that further programming needs to be done in 

order to implement a different simulation control interface from the one used in the real 

cloud. This interface is expected to extend the required efforts to execute the simulation 

experiments. 

 

(iv) Koala 

As a medium-scale discrete-event simulation of IaaS clouds, Koala is a project run by the 

National Institute of Standards and Technology (NIST). The project aims to implement a 

cloud computing simulator that serves the research on clouds in a more controllable 

environment [59]. High accuracy models require the definition of many parameters and lead 

to long run-times resulting in more realistic simulation results, whereas the opposite is true 

for high abstraction models. Koala has been designed to simulate cloud environments with 

some abstractions while maintaining a good level of model accuracy. Offering a multi-

layered architecture (Figure F.3) based on the commercial discrete-event simulation 

environment SLX [35], Koala was designed to model the Amazon EC2’s architecture 

through the use of Eucalyptus private cloud APIs. 
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Figure F.3 Koala architecture 

 

Koala is capable of simulating several essential IaaS cloud components, such as cloud 

controller, cluster controller and host controller, where they all communicate using web 

services. Initial sensitivity analyses using Koala as a testbed [58] identified  the number of 

cloud users, the number of clusters and number of hosts per cluster as the major parameters 

that influence the simulator behaviour. Perhaps the most interesting feature of Koala (which 

has a relation to co-residency’s experiments) is that it has several PAs already implemented 

in the cloud controller. These PAs are Least-full First, Next Fit, First Fit, Most-full First, 

Percent Allocated, Random and Tag-and-Pack. Unfortunately, NIST’s project would have 

been more useful for this thesis if Koala’s developers had made this simulator available for 

the researchers to use. This lack of access forms the key issue that might be a strong obstacle 

that prevents considering Koala as a suitable testbed for co-residency experiments in this 

thesis.  

 

(v) iCanCloud.  

Very much like the Koala simulator, the iCanCloud simulation toolkit was specifically 

implemented to simulate cloud resources as if they are actually running in the Amazon 
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Elastic Compute Cloud (EC2). It can also be extended to simulate other IaaS clouds. 

iCanCloud’s primary aim is “… to predict the trade-offs between cost and performance of a 

given application executed in a specific hardware, and then provide users with useful 

information about such costs.” [66]. Originally built upon the distributed systems simulator, 

SIMCAN [65], iCanCloud adopts a multi-layer system design that models the common cloud 

computing stack.  

With its user-friendly GUI and the ability to generate graphical reports, iCanCloud simulator 

easily allows the addition of new cloud components into its repository. Unlike the GroudSim 

simulator, iCanCloud provides a POSIX-based API for modelling the simulation applications 

in a much easier way. In addition, Amazon’s EC2 is the only environment which is modelled 

in iCanCloud. However, perhaps the most serious disadvantage of this simulator is that it 

does not provide a module to take care of creating the cloud resources. Such resources 

include users, hosts, and VMs, at the start of each simulation run. Instead, it requires the use 

of the provided GUI to define manually the new cloud resources parameters one by one, 

which appears to be impractical when modelling a large-scale IaaS cloud environment in this 

thesis. 

 

F.4 Evaluation and Discussion 

The first and foremost decision that need to be made when experimenting with co-residency 

in the cloud is to select the appropriate testbed that meets the experiment’s requirements and 

constraints. Whether to select a real/physical testbed or a simulator, each option is most 

suitable in different scenarios and different situations. In this appendix, a number of available 

testbeds for experimenting on co-residency in the cloud have been surveyed, including real 

testbeds (i.e. public IaaS and private IaaS clouds) and simulators. A summary of the previous 

testbeds evaluation is presented in Table F.1. 
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Criteria Real Platforms Simulators 

Public IaaS Private IaaS Grid Cloud 

Repeatable 

and 

Controllable 

No control on infrastructure 

and PAs  

Full Control, runs in local infrastructure 

Transparent   Little to no knowledge 

about the infrastructure or 

cloud settings  

Full transparency, runs in local infrastructure  

Flexible Very limited, strict usage 

policies 

Yes, more in open 

source private 

clouds  

Yes, more in open source 

simulators  

Accessible Yes with friendly web-

based GUI and instant 

support 

Requires self-

maintained 

infrastructure 

Yes when support and 

documentation are 

provided 

Scalable Yes, adding as many 

resources as needed 

Limited hardware 

infrastructure (e.g. 

expensive to add 

more 

hosts/machines) 

Limited in simulators that 

use threading 

Cost and 

Time 

Pay per use, on demand Requires investing 

in physical 

infrastructure, 

takes time for 

deployment and 

maintenance 

Possible to run 

immediately on a single 

machine – cost is limited 

to the license fee (if 

required) - simulated 

resources can be added 

instantly with no cost 

Reporting Very difficult for co-

residency 

Requires implementation 

Table F.1 Testbeds evaluation matrix 
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Simulators are usually capable of modelling several essential IaaS cloud components with 

some abstractions while maintaining a good level of model accuracy. Simulators can be a 

sensible option when experimenting on very large-scale and dynamic clouds when there is a 

need to be able to control and monitor the simulated cloud’s behaviour. Section F.3 shows 

that the aforementioned cloud simulators vary in satisfying the testbed criteria defined 

earlier. One major criticism is that none of the discussed simulators implements sufficient co-

residency monitoring, detection and reporting modules. As stated in Section F.2, these 

modules are critical when studying co-residency in the cloud. However, implementing these 

modules into these existing simulators is not an option for closed source simulators. On the 

other hand, introducing these modules to the open source simulators is possible, but requires 

a considerable amount of time and effort to achieve. This task becomes more challenging 

when each of the discussed simulators focuses on modelling cloud elements that are 

unrelated to co-residency experiments. In addition, some simulators are platform independent 

(e.g. Java-based simulators) but relatively slow in execution. 

Having explored the available public and private IaaS clouds (i.e. the real testbeds) for co-

residency experiments, these testbeds usually produce more accurate results than when using 

simulators, as they are “real” platforms. However, given the context of this thesis, both 

public and private IaaS clouds have been shown to suffer from a number of shortcomings. 

For instance, public IaaS clouds are often not transparent testbeds, whereas control and 

experiment repeatability are hard to achieve. Private IaaS clouds, in particular, can be an 

expensive option when the experiment needs to be conducted many times on a large and 

scalable cloud environment. It is worth mentioning that [34] confirms “experiments on real 

platforms are often not reproducible, whereas, extensibility, applicability and revisability are 

hard to achieve.”   

Alternatively, satisfying all testbed criteria in this thesis can be accomplished by designing 

and implementing a new simulator. This simulator solely implements the system model in 

this thesis (Section 3.2) and models all the necessary behaviours of co-residency in IaaS 

clouds. Implementing this new simulator is expected to support the run of this thesis’s 

experiments according to the defined criteria. In fact, implementing and using a purpose-built 

simulator instead of relying on an existing simulation tool has become a sensible practice for 

satisfying each individual research’s requirements. For instance, [61] analysed 141 research 

papers that use simulation to study large-scale peer-to-peer systems and reported that 30% of 

these papers use their own custom simulation tool. 
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From the previous discussion, simulation experimentation is adopted in this thesis. In using 

the system model, a purpose-built VM Co-residency (VMC) simulator was implemented that 

allows modelling of co-residency behaviour using various cloud parameters’ settings and 

PAs. The next section gives an overview of the VMC simulator. 

 

F.5 VM Co-residency (VMC) Simulator  

Simulating large-scale environments, such as IaaS clouds, can be achieved using several 

different approaches that aim to provide a controllable, transparent, accessible, scalable and 

inexpensive test environment. These approaches can be categorised into two main sections: 

purpose-built (i.e. for a specific use) simulators and general-purpose simulators. Purpose-

built simulators usually abstract some components of the modelled environment. On the 

other hand, this type of simulator carries a very detailed implementation of other components 

that are more related to the purpose for which the simulator is built [95]. The advantage of 

using this approach is that the resulting simulator can be rather small in size and, therefore, 

more scalable as this type of light simulator usually requires less computational resources. 

However, this imposes some limitations when there is a need to change significantly the 

system model by changing or adding some of the simulator’s missing components. This 

challenge often involves rewriting a considerable part of the system architecture. On the 

other hand, general purpose cloud simulators aim to include all possible components of the 

modelled environments and all intercommunication events [64]. Perhaps the most serious 

disadvantage of this kind of simulator is that sometimes they do not model enough 

specifications that are usually required when attempting to conduct precise experimental 

researches on particular components. In addition, this type of modelling usually results in a 

large amount of simulation input parameters, which imposes an extra level of complexity 

when designing the intended simulation experiment [74].  

Instead, it is sometimes easier to simulate part of the whole system’s components in order to 

reduce the input parameters. This in turn results in simulating more precise system 

behaviours and produces more accurate responses [58]. For that reason, many distributed 

systems simulators, including IaaS cloud simulators, have been purpose-built to simulate 

specific system architectures or have been implemented only to study certain aspects of the 

system behaviours. For example, the Koala cloud computing simulator has been specifically 

designed to model the open-source Eucalyptus IaaS platform structure. Moreover, the 
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iCanCloud simulator has been specifically modelled to simulate cloud environments as 

provided by the Amazon EC2 (Section F.3).  

Turning now to the VMC simulator, the VMC has been designed and implemented as a 

discrete event simulation-based testbed. More attention was paid especially to the provision 

of comprehensive modelling of PAs, co-residency monitoring and detection as well as 

sufficient reporting modules. This kind of modelling can meet the testbed section criteria 

(Section F.2) for conducting experiments related to co-residency in particular in an 

unprecedented fashion. The main reason that motivated the introduction of the VMC was to 

design and implement a simulator that models various IaaS cloud parameters and PAs. The 

VMC is expected to assess efficiently the impact of each parameter setting on the co-

residency probability. In addition, the VMC can be used as an experimentation tool to 

determine the appropriate parameter settings that reduce the co-residency probability in a 

given PA. The VMC has been used successfully as a testbed in this thesis and can be used for 

future research related to co-residency in IaaS clouds.  

With regards to the VMC design, the VMC has been primarily built as a layered design 

simulator using object-oriented Java programming language [82], which allowed modularity 

in the design of the simulator components. This modularity helps to replace easily, reuse or 

implement more details to the simulator components according to the user needs. This 

includes modelling distributed clusters with multiple physical hosting machines, different 

types of cloud users and multiple VMs types. More importantly, the VMC implements a 

number of PAs based on the system model used in this thesis (Section 3.2). There are two 

main reasons behind using layered design. The first is that the Java classes in the multi-

layered design enjoy the same module dependency. This module dependency adds an extra 

level of clarity when looking at the VMC design for both simulator designers and users 

compared to a flat architecture. The second is that the layered design allows a straightforward 

integration of existing software and tools. Considering the scope of this thesis, the major IaaS 

cloud elements that are related to this thesis are implemented in VMC (Appendix A). On the 

other hand, some other non-functional elements have been excluded from the current 

implementation since they are not in the focus of this thesis. Such elements include the cloud 

services broker, billing management and SLA management. Fortunately, VMC modular 

design, as mentioned earlier, allows the implementation of such components, if needed in the 

future, easily. 
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In addition, Appendix A provides more detail on the VMC simulator design and 

implementation as well as the PAs that are used in this thesis and how the VMC implements 

them. 

 

F.6 Summary 

In this appendix, a number of cloud platforms and software tools have been examined for 

their suitability as a testbed for experimental research on co-residency. These testbeds have 

been categorized into real-platforms (i.e. public IaaS clouds and private IaaS clouds) and 

simulators. These testbeds have been selected based on their popularity, availability of 

documentation and support, and whether they are applicable for experimental cloud usage. 

These testbeds were evaluated against seven criteria such as their capabilities and flexibilities 

in modelling an IaaS cloud, and for input control as well as output analysis. Using simulators 

can be useful and more effective, especially if real testbeds (public and private IaaS clouds) 

are expensive or not feasible. However, the evaluation shows that none of the current 

simulators can be easily utilized for co-residency related research. Therefore, a purpose-built 

co-residency simulator VMC has been implemented and used as a testbed in this thesis. The 

VMC simulator allows the modelling of IaaS cloud environments and also can simulate and 

monitor the co-residency behaviour in more depth. It is also hoped this co-residency 

simulator will form a suitable testbed that helps in advancing research on this crucial topic. 

 

 

  

 

 

 

 

 

 


