

Analysing and Quantifying the Influence of System

Parameters on Virtual Machine Co-residency

in Public Clouds

Abdulaziz Alabdulhafez

A thesis submitted in partial fulfilment of the

degree of Doctor of Philosophy

in Computing Science

School of Computing Science

Newcastle University

September 2015

 2

Abstract
Public Infrastructure-as-a-Service (IaaS) cloud promises significant efficiency to businesses and

organisations. This efficiency is possible by allowing “co-residency” where Virtual Machines

(VMs) that belong to multiple users share the same physical infrastructure. With co-residency

being inevitable in public IaaS clouds, malicious users can leverage information leakage via side

channels to launch several powerful attacks on honest co-resident VMs.

Because co-residency is a necessary first step to launching side channel attacks, this motivates

this thesis to look into understanding the co-residency probability (i.e. the probability that a given

VM receives a co-resident VM). This thesis aims to analyse and quantify the influence of cloud

parameters (such as the number of hosts and users) on the co-residency probability in four

commonly used Placement Algorithms (PAs). These PAs are First Fit, Next Fit, Power Save and

Random. This analysis then helps to identify the cloud parameters’ settings that reduce the co-

residency probability in four PAs. Because there are many cloud parameters and parameters’

settings to consider, this forms the main challenge in this thesis. In order to overcome this

challenge, fractional factorial design is used to reduce the number of required experiments to

analyse and quantify the parameters’ influence in various settings.

This thesis takes a quantitative experimental simulation and analytical prediction approach to

achieve its aim. Using a purpose-built VM Co-residency simulator, (i) the most influential cloud

parameters affecting co-residency probability in four PAs have been identified. Identifying the

most influential parameters has helped to (ii) explore the best settings of these parameters that

reduce the co-residency probability under the four PAs. Finally, analytical estimation, with the

coexistence of different populations of attackers, has been derived to (iii) find the probability that

a new co-residing VM belongs to an attacker.

This thesis identifies the number of hosts to be the most influential cloud parameters on the co-

residency probability in the four PAs. Also, this thesis presents evidence that VMs hosted in IaaS

clouds that use Next Fit or Random are more resilient against receiving co-resident VMs

compared to when First Fit or Power Save are used. Further, VMs in IaaS clouds with a higher

number of hosts are less likely to exhibit co-residency.

This thesis generates new insights into the potential of co-residency reduction to reduce the

attack surface for side channel attacks. The outcome of this thesis is a plausible blueprint for IaaS

cloud providers to consider the influence on the co-residency probability as an important

selection factor for cloud settings and PAs.

 3

Acknowledgements

I would like to thank everyone who has offered me support and advice during my

Ph.D., especially my supervisor Dr. Paul Ezhilchelvan, Professor Isi Mitrani and my second

supervisor Dr. Feng Hao.

 4

Declaration

All work contained within this thesis represents the original contribution of the author. This
thesis includes work that has been published in peer-reviewed publications. These
publications are as follows:

• A. Alabdulhafez and P. Ezhilchelvan, “Experimenting on Virtual Machines Co-

residency in the Cloud,” in Proceedings of the 29th Annual ACM Symposium on

Applied Computing - SAC ’14, 2014, pp. 363–366.

• A. Alabdulhafez and P. Ezhilchelvan, “Quantifying the Risk of Multi-tenancy in the

Cloud,” in Proceedings of the 6th York Doctoral Symposium on Computer Science

and Electronics - YDS ’13, 2013, pp. 73–78.

• A. Alabdulhafez and P. Ezhilchelvan, “Analyzing the Success Rate of Virtual

Machines Co-residency in the Cloud,” in Proceedings of the 6th Saudi Scientific

International Conference (SIC), 2012, pp. 164–168.

 5

Content
Abstract ___ 2

Acknowledgements __ 3

Declaration ___ 4

List of Figures ___ 10

List of Tables __ 12

Glossary of Notation and Abbreviations _____________________________________ 14

Chapter 1 Introduction __ 15

1.1 Context and Motivations ___ 15

1.1.1 Co-residency and Side Channel ______________________________________ 15

1.1.2 Side Channel Attacks Countermeasures _______________________________ 16

1.2 Thesis Aim and Approach ___ 18

1.3 Research Hypotheses and Questions _____________________________________ 19

1.4 Thesis Statement ___ 20

1.5 Challenges __ 21

1.6 Contributions ___ 22

1.7 Thesis Structure ___ 23

Chapter 2 Background and Related Work ____________________________________ 26

2.1 Introduction ___ 26

2.2 Cloud Computing __ 26

2.2.1 Cloud Service Models ___ 27

2.2.1.1 Software as a Service (SaaS) ____________________________________ 27

2.2.1.2 Platform as a Service (PaaS) _____________________________________ 27

2.2.1.3 Infrastructure as a Service (IaaS) _________________________________ 27

2.2.2 Cloud Deployment Models ___ 28

2.2.2.1 Private Cloud __ 28

2.2.2.2 Community Cloud ___ 28

2.2.2.3 Public Cloud ___ 28

2.2.2.4 Hybrid Cloud __ 28

2.2.3 Technical Aspects __ 28

 6

2.2.3.1 Virtualization __ 29

2.2.3.2 Multi-tenancy __ 29

2.2.3.3 Security ___ 29

2.3 Related Literature __ 29

2.3.1 Co-residency __ 30

2.3.1.1 Locating Victim VMs (Cloud Cartography) _________________________ 31

2.3.1.2 Co-residing Techniques __ 31

2.3.1.3 Detecting Co-residency ___ 32

2.3.2 Side Channel Attacks __ 33

2.3.3 Inhibiting Side Channel Attacks _____________________________________ 36

2.3.3.1 Physical Isolation Enforcement __________________________________ 36

2.3.3.2 User Controlled VM Placement __________________________________ 37

2.3.3.3 Preventing Side Channel Vulnerabilities ___________________________ 37

2.3.3.4 Reducing Co-residency (The Research Motivation) ___________________ 38

2.4 Summary ___ 40

Chapter 3 Models and Co-residency Behavioral Metrics ________________________ 41

3.1 Introduction ___ 41

3.2 System and Attack Models ___ 41

3.3 Notations and Definitions __ 46

3.4 Co-residency Metrics ___ 47

3.4.1 Co-residency Coverage Probability (CCP) _____________________________ 47

3.4.2 Hit-free Lifetime Ratio (HFL) _______________________________________ 47

3.4.3 Co-residency Vacancy (CV) __ 48

3.4.4 Co-residency Activity (CA) ___ 49

3.5 Summary ___ 50

Chapter 4 Quantifying Influence of Cloud Parameters on Co-residency ___________ 51

4.1 Introduction ___ 51

4.2 Preliminary Definitions __ 52

4.3 Influence Evaluation Strategy ___ 55

4.3.1 Phase 1: Parameters Reduction Using Composed Parameters ______________ 57

4.3.2 Phase 2: Levels Reduction Using Ranges ______________________________ 59

4.3.3 Phase 3: Experiment Reduction Using Fractional Factorial Design __________ 61

 7

4.3.3.1 Factorial Experimental Designs __________________________________ 62

4.3.4 Phase 4: Quantifying the Parameters Influence on the Co-residency Metrics ___ 65

4.3.4.1 Effect Definition __ 65

4.3.4.2 Effect Significance __ 66

4.3.4.3 Overall Weighted Effect WE ____________________________________ 67

4.4 Experimental Setup ___ 68

4.5 Findings ___ 69

4.5.1 Significant Effects Results __ 70

4.5.2 Identifying the Most Influential Parameters on the Co-residency Metrics _____ 72

4.6 Discussion __ 77

4.7 Summary ___ 79

Chapter 5 Reducing Co-residency Probability ________________________________ 81

5.1 Introduction ___ 81

5.2 Method __ 82

5.2.1 Experimental Setup ___ 82

5.2.2 Analysis Approach __ 84

5.2.3 Influential Parameters Correlations with the Co-residency Metrics __________ 85

5.3 Findings ___ 87

5.3.1 Reducing the Co-residency Coverage Probability (CCP) __________________ 89

5.3.2 Increasing the Hit-Free Lifetime (HFL) _______________________________ 91

5.3.3 Reducing the Co-residency Vacancy (CV) _____________________________ 94

5.3.4 Reducing the Co-residency Activity (CA) ______________________________ 97

5.3.5 Efficiency of the Influence Evaluation Strategy ________________________ 101

5.4 Discussion ___ 102

5.5 Summary __ 105

Chapter 6 Analytical Estimation of Malicious Co-residency Probability __________ 107

6.1 Introduction __ 107

6.2 Malicious Co-residency Metrics __ 108

6.2.1 Preliminary Definitions ___ 108

6.2.2 Analytical Estimation of the Malicious Co-residency Metrics _____________ 110

6.2.2.1 Malicious Co-residency Probability (MCP) ________________________ 110

6.2.2.2 Attacker-free Lifetime Ratio (AFL) ______________________________ 111

 8

6.3 Method ___ 113

6.3.1 Analytical Estimation Accuracy ____________________________________ 115

6.4 Findings __ 115

6.4.1 Analytical Estimation Validation ____________________________________ 115

6.4.2 Malicious Co-residency Metrics as Attackers Ratio α Varies ______________ 118

6.5 Discussion ___ 122

6.6 Summary __ 125

Chapter 7 Summary and Conclusions ______________________________________ 127

7.1 Summary __ 128

7.2 Conclusion __ 131

7.3 Limitations __ 132

7.4 Future Work ___ 133

Bibliography ___ 135

Appendix A VMC Simulator Implementation _______________________________ 144

A.1 Definition ___ 144

A.2 Implemented VM Placement Algorithms ________________________________ 147

A.2.1 First Fit ___ 148

A.2.2 Next Fit ___ 148

A.2.3 Power Save __ 149

A.2.4 Random ___ 149

Appendix B Designing a Fractional Factorial Experiment _____________________ 151

B.1 Fractional Factorial Definition ___ 151

B.2 Designing a 2IV
4 Fractional Factorial Experiment __________________________ 152

Appendix C Weighted Effects on the Co-residency Metrics ____________________ 156

Appendix D Significant 2-Parameter Interactions on the Co-residency Metrics ___ 160

D.1 Significant 2-Parameter Interactions Using Next Fit (Broad-Experiment) _______ 161

D.2 Significant 2-Parameter Interactions Using Next Fit (Narrow-Experiment) ______ 165

D.3 Significant 2-Parameter Interactions Using Random (Broad-Experiment) _______ 167

D.4 Significant 2-Parameter Interactions Using Random (Narrow-Experiment) ______ 171

Appendix E VMC simulator’s Estimates of the Malicious Co-residency Metrics __ 173

Appendix F Criteria for Selecting Simulation as a Testbed ____________________ 175

 9

F.1 Introduction __ 175

F.2 Testbed Selection Criteria ___ 175

F.2.1 Repeatable and Controllable _______________________________________ 176

F.2.2 Transparent ___ 176

F.2.3 Flexible __ 176

F.2.4 Accessible __ 177

F.2.5 Scalable __ 177

F.2.6 Inexpensive and Not Time-Consuming ______________________________ 177

F.2.7 Sufficient Reporting/Monitoring System ____________________________ 177

F.3 Available Testbeds __ 177

F.3.1 Public IaaS Clouds ___ 178

F.3.2 Private IaaS Clouds ___ 179

F.3.3 Simulators __ 180

F.3.3.1 Grid Simulators ___ 180

F.3.3.2 Cloud Simulators __ 181

F.4 Evaluation and Discussion __ 187

F.5 VM Co-residency (VMC) Simulator _____________________________________ 190

F.6 Summary __ 192

 10

List of Figures
Figure 3.1 An IaaS cloud model with two clusters, two hosts in each cluster and three VMs ______ 44

Figure 3.2 The lifetime of a VM u that receives k co-residency hits __________________________ 46

Figure 3.3 Obtaining Hit-free Lifetime Ratio HFLu for a given VM u ________________________ 48

Figure 3.4 Obtaining Co-residency Vacancy CVu of a given VM u __________________________ 48

Figure 3.5 Obtaining Co-residency Activity CAu of a given VM u ___________________________ 49

Figure 4.1 Limitation of using two levels to test the parameters’ effects. ______________________ 60

Figure 4.2 The overall Weighted Effect WE of the parameters/interactions under First Fit ________ 75

Figure 4.3 The overall Weighted Effect WE of the parameters/interactions under Next Fit _______ 76

Figure 4.4 The overall Weighted Effect WE of the parameters/interactions under Power Save ____ 76

Figure 4.5 The overall Weighted Effect WE of the parameters/interactions under Random _______ 77

Figure 5.1 Examples of correlation r-values __ 86

Figure 5.2 The CCP metric at different Number of Hosts (X2) _____________________________ 91

Figure 5.3 The HFL metric at different Number of Hosts (X2) ______________________________ 92

Figure 5.4 The HFL metric at different Users’ Arrival Rates (X4) ___________________________ 94

Figure 5.5 The CV metric at different Number of Hosts (X2) _______________________________ 95

Figure 5.6 The CV metric at different Users’ Arrival Rates (X4) ____________________________ 96

Figure 5.7 The CV metric at different VMs Average Lifetime (X7) __________________________ 97

Figure 5.8 The CA metric at different Number of Hosts (X2) _______________________________ 98

Figure 5.9 The CA metric at different Users’ Arrival Rate (X4) ____________________________ 99

Figure 5.10 The CA metric at different VMs Average Lifetime (X7) ________________________ 100

Figure 5.11 A frequency distribution of the influential parameters’ |r-values| _________________ 101

Figure 6.1 Variation of MCP with attackers’ VM requests ratio α __________________________ 120

Figure 6.2 Variation of AFL with attackers’ VM requests ratio α ___________________________ 122

Figure A.1 Examples of the generated results by the VMC _______________________________146

Figure C.1 Weighted Effect WE on the co-residency metrics using First Fit __________________155

Figure C.2 Weighted Effect WE on the co-residency metrics using Next Fit__________________156

Figure C.3 Weighted Effect WE on the co-residency metrics using Power Save_______________ 157

Figure C.4 Weighted Effect WE on the co-residency metrics using Random _________________ 158

Figure D.1 Interaction plot for CCP between X1*X4____________________________________ 160

Figure D.2 Interaction plot for HFL between X1*X4____________________________________ 160

Figure D.3 Interaction plot for CV between X1*X4 ____________________________________ 161

Figure D.4 Interaction plot for CA between X1*X4_____________________________________ 161

Figure D.5 Interaction plot for CCP between X1*X8____________________________________ 162

Figure D.6 Interaction plot for HFL between X1*X8____________________________________ 162

 11

Figure D.7 Interaction plot for CV between X1*X8 _____________________________________163

Figure D.8 Interaction plot for CA between X1*X8 ____________________________________ 163

Figure D.9 Interaction plot for CCP between X1*X4 ____________________________________164

Figure D.10 Interaction plot for CCP between X1*X8___________________________________ 164

Figure D.11 Interaction plot for HFL between X1*X8___________________________________ 165

Figure D.12 Interaction plot for CA between X1*X8____________________________________ 165

Figure D.13 Interaction plot for CCP between X1*X4___________________________________166

Figure D.14 Interaction plot for CV between X1*X4____________________________________ 166

Figure D.15 Interaction plot for CA between X1*X4____________________________________ 167

Figure D.16 Interaction plot for CCP between X1*X8 ___________________________________167

Figure D.17 Interaction plot for HFL between X1*X8___________________________________ 168

Figure D.18 Interaction plot for CV between X1*X8____________________________________ 168

Figure D.19 Interaction plot for CA between X1*X8____________________________________ 169

Figure D.20 Interaction plot for CCP between X1*X4___________________________________ 170

Figure D.21 Interaction plot for CCP between X1*X8___________________________________ 170

Figure D.22 Interaction plot for CA between X1*X8____________________________________ 171

Figure F.1 CloudSim Architecture ___ 182

Figure F.2 NetworkCloudSim's new elements introduced to CloudSim Architecture ___________ 184

Figure F.3 Koala architecture ___ 186

 12

List of Tables
Table 4.1 Testing each parameter’s level in a two-way fractional factorial experiment design _____ 53

Table 4.2 Example of the narrow and broad ranges. ______________________________________ 54

Table 4.3 The VMC parameters after reduction ___ 58

Table 4.4 The selected two levels per range for each parameter _____________________________ 61

Table 4.5 The narrow-experiment design __ 63

Table 4.6 The broad-experiment design __ 64

Table 4.7 Minitab statistical software output example ____________________________________ 66

Table 4.8 PC configurations used to run the VMC simulator _______________________________ 69

Table 4.9 Examining the effects significance using p-value ________________________________ 71

Table 4.10 Overall WE of the parameters and interactions _________________________________ 73

Table 4.11 The four parameters/interactions with the highest overall WE in First Fit and Power

Save ___ 74

Table 4.12 The four parameters/interactions with the highest overall WE in Next Fit and Random _ 74

Table 5.1 New levels for testing the most influential parameters. ____________________________ 83

Table 5.2 Control level for parameters __ 84

Table 5.3 Categorisation of the strength of correlation ____________________________________ 86

Table 5.4 The r-values, minimum and maximum CCP observed under each PA ________________ 88

Table 5.5 The r-values, minimum and maximum HFL observed under each PA ________________ 88

Table 5.6 The r-values, minimum and maximum CV observed under each PA _________________ 89

Table 5.7 The r-values, minimum and maximum CA observed under each PA _________________ 89

Table 5.8 The CCP estimate with Number of Hosts (X2) varying between 1000-30000 __________ 90

Table 5.9 The HFL estimates under different Number of Hosts (X2) ranging between 1000-30000 _ 91

Table 5.10 The HFL estimates with Users’ Arrival Rates (X4) varying between 2-5 _____________ 93

Table 5.11 The CV estimates with Number of Hosts (X2) varying between 1000-30000 _________ 94

Table 5.12 The CV estimates with Users’ Arrival Rates (X4) varying between 2-5 ______________ 96

Table 5.13 The CV estimates with VMs Average Lifetime (X7) varying between 2000-3600 ______ 97

Table 5.14 The CA estimates with Number of Hosts (X2) varying between 1000-30000 _________ 98

Table 5.15 The CA estimates with Users’ Arrival Rates (X4) varying between 2-5 ______________ 99

Table 5.16 The CA estimates with VMs Average Lifetime (X7) varying between 2000-3600 _____ 100

Table 5.17 The best parameters’ settings in four PAs to reduce the co-residency probability ____ 103

Table 6.1 Important estimates obtained by the VMC simulator with Number of Hosts (X2) varying

between 1000-30000 ___ 113

Table 6.2 Important estimates obtained by the VMC simulator with Users’ Arrival Rate (X4) varying

between 2-5 __ 114

 13

Table 6.3 The parameters levels used in the VMC simulator to estimate the MCP and AFL ______ 115

Table 6.4 Percentage differences of the MCP estimates with an α of 0.10 as Number of Hosts (X2)

varies between 1000-30000 __ 116

Table 6.5 Percentage differences of the MCP estimates with an α of 0.10 as Users’ Arrival Rate (X4)

varies between 2-5 ___ 116

Table 6.6 Percentage differences of the AFL estimates with an α of 0.10 as Number of Hosts (X2)

varies between 1000-30000 __ 117

Table 6.7 Percentage differences of the AFL estimates with an α of 0.10 as Users’ Arrival Rate (X4)

varies between 2-5 ___ 117

Table 6.8 MCP estimates using analytical prediction as α varies ___________________________ 119

Table 6.9 AFL estimates using analytical prediction as α varies ____________________________ 121

Table A.1 The input parameters that define the VMC simulator ___________________________ 145

Table B.1 Constructing a full factorial experiment using 4 parameters ______________________ 151

Table B.2 Adding all the possible interactions between the 4 parameters ____________________ 152

Table B.3 Replacing X5, X6, X7 and X8 parameters with 3-parameter interactions ___________ 153

Table B.4 Final design of the 2IV
8-4 fractional factorial experiment _________________________ 154

Table E.1 The VMC simulator’s estimates of the malicious co-residency metrics under different

number of hosts with an α of 0.10 ___172

Table E.2 VMC simulator’s estimates of the malicious co-residency metrics under different users’

arrival rates with an α of 0.10___173

Table F.1 Testbeds evaluation matrix __ 188

 14

Glossary of Notation and Abbreviations

IaaS Infrastructure-as-a-Service

SaaS Software-as-a-Service

PaaS Platform-as-a-Service

VM Virtual Machine

PA VM Placement Algorithm

VMC Virtual Machine Co-residency simulator

γ VM Requests Arrival Rate

𝛼 Attackers VM Requests Ratio

k Total Number of Co-residency Hits

𝑛!"#$%$&'(The total number of placed malicious VMs in the cloud

𝑛!!" The total number of VMs that experienced at least one hit in the cloud

 𝑛!!" !" !"#$%$&'(The total number of VMs that experienced at least one malicious hit

LT VM Lifetime

CCP Co-residency Coverage Probability

HFL Hit-free Lifetime Ratio

CV Co-residency Vacancy

CA Co-residency Activity

MCP Malicious Co-residency Probability

AFL Attacker-free Lifetime Ratio

ANOVA Analysis of variance test

r-value The sample Pearson correlation coefficient

 15

Chapter 1

Introduction

This chapter presents the context and motivation for this thesis. Then, the research approach,

questions and statement are stated. Finally, the main contributions of the research and an

overview of the thesis structure are presented.

1.1 Context and Motivations

Recent advances in cloud computing encourage businesses and organisations to host services

and applications in third-party public clouds. A recent study on the cloud usage [63] showed

that approximately 30% of IT organizations use public clouds such as Microsoft’s Azure [57]

and Amazon’s EC2 [4]. These clouds provide Infrastructure-as-a-Service (IaaS) allowing

individuals and organizations to host services on-demand, and paying just for what they have

consumed. Businesses and governmental bodies may even use applications hosted in the

cloud to access highly sensitive internal records. However, this rapid increase in the adoption

rate of public IaaS cloud has resulted in the need for increased security.

To achieve maximum utilization of their physical infrastructure, IaaS cloud providers allow

multi-tenancy ending with co-residency. Multi-tenancy is where virtualization is used to

enable multiple users (tenants) to share the same physical host. Co-residency is multiple co-

residing Virtual Machines (VMs) belonging to different users being hosted by the same

physical host.

Enabling co-residency can be cost-effective for IaaS cloud providers. However, co-residency

has been shown to be one of the effective avenues for launching several easy-to-implement

but powerful attacks on honest (i.e. non-attacker) co-resident VMs using side channels.

1.1.1 Co-residency and Side Channel

A side channel is a form of information leakage that arises as a result of sharing physical

resources with other users. For example, the sharing of the CPU and memory caches, that has

been shown by [13], [79] and many others to be a vulnerability that can be compromised to

bypass VMs isolation. Side channel attacks in multi-tenant environments have been

demonstrated by many researchers (see Section 2.3.2) to threaten the security of VMs,

particularly in public IaaS clouds.

 16

Researchers have introduced an increasing number of low-cost side channel attacks that can

be launched after achieving co-residency. Using Amazon EC2 as a case study, Ristenpart et

al’s [79] pioneer research demonstrated that side channel attacks targeting specific VMs are

possible. They proved this after they successfully placed malicious VMs to become co-

resident with up to 40% of target VMs. Such action can have huge negative consequences for

the honest co-resident VMs that belong to businesses and organizations. An attacker may be

able to measure the host CPU cache usage to determine, for instance, how busy the co-

resident VM is, but this might be a smaller concern of the co-resident VM’s owner. More

seriously, an attacker can use side channels to degrade co-resident VMs’ performance by

more than 80% [92]. Alternatively, worse by running Denial of Service on co-residing VMs

to block the cloud customers from accessing the compromised cloud services [53].

Even more seriously, a co-resident attacker may be able to steal decryption and secret keys,

such as ElGamal decryption keys [103], RSA [75] and AES [70] secret keys. Then executing

malicious code in the host operating system [94]. Such action can result in breaches of

privacy of the VMs running in public IaaS clouds, allowing co-resident attackers to

eavesdrop on communications and steal sensitive data and make it public.

The aforementioned security threat brought about by side channel attacks is amplified by the

fact that attackers can run their malicious VMs in the cloud legitimately as long as they have

access to the Internet and a payment method. Worse, an increasing amount of research in

recent years has introduced new side channels [101]. Consequently, anyone who has access

to the Internet, from any location, can attempt to co-reside and attack honest VMs, using any

side channel they choose.

1.1.2 Side Channel Attacks Countermeasures

A public IaaS cloud uses a VM Placement Algorithm (PA) that controls where each new VM

is placed, possibly to become co-resident with other VMs sharing the same host. Common

practices to secure such shared environments usually include relying on virtualisation to

ensure strong isolation between co-resident VMs so that they become unable to interfere with

each other [9]. However, virtualized isolation that completely prevents side channels has

been proven to be difficult to achieve. The following countermeasures address side channel

attacks at the cloud provider side, the cloud user side and the hardware/software vendor’s

side respectively:

 17

(1) Physical isolation enforcement: it can be argued that one pragmatic solution to

mitigate side channel attacks is to disable co-residency completely. Ristenpart et al

[79] suggested that cloud customers (businesses or governmental bodies) may

consider running their VMs in physical isolation from other VMs. Following this

suggestion, the Amazon EC2 cloud allows users to run dedicated VMs [28], ensuring

that VMs belonging to each user do not share the same physical hardware with any

other cloud users’ VMs. Although this service can effectively mitigate various side

channels that exist in the shared hardware, significant price premiums are required for

cloud users to use this service. It is estimated that it is 6.12 times more costly to run

dedicated VMs compared to using regular VMs in Amazon EC2 [97]. This significant

extra cost of the dedicated VMs diminishes its attractiveness, coupled with the fact

that enabling co-residency is a definite choice of IaaS cloud providers due to its

economic efficiency.

One of the options left for protecting VMs from side channel attacks is to allow only

other “trusted” VMs to become co-resident. If untrusted VMs become co-resident,

then relocate the user’s VM to another host [11]. Trusted VMs, in this case, may

include VMs that are self-owned or other trustworthy VMs. However, this requires

enabling cloud users to audit and verify the cloud provider’s adherence to this policy,

where the work of [102] has introduced a promising tool to help with this issue.

2) Allowing the cloud user to specify where to place his VMs: Although this

countermeasure is relatively straightforward, it does not solve the problem

completely. In fact, it only shifts the liability to the user instead of the cloud provider

without trying to eliminate the side channel or the side channel attacks.

3) Preventing side channel vulnerabilities: This can be achieved via reducing the

information that can be leaked by new cache hardware designs or by applying various

blinding techniques. For example, using non-deterministic caches and cryptographic

implementation of timing-resistant caches (see Section 2.3.3.3). However, [79]

concluded that countermeasures that rely on preventing side channels vulnerabilities

suffer from two major drawbacks. First, they are typically (a) impractical, for

instance, incurring high overheads or requiring nonstandard hardware or they are (b)
application-specific or hardware-specific. Second, these countermeasures do not,

 18

ultimately, guarantee that all possible side channels have been anticipated and

disabled, especially in the light of the increasing number of research in recent years

that introduce new side channels.

Despite the efforts being paid to VMs safeguarding against existing side channels, there

remains a continuous potential risk of data leakage by new side channels that are yet to be

discovered. Therefore, this opens an interesting research area to find an alternative approach

to reduce the attack surface for side channel attacks, particularly one that does not rely on VMs

physical isolation or side channels prevention.

1.2 Thesis Aim and Approach

Because co-residency is a necessary first step to launching side channel attacks, this motivates

this thesis to look into understanding the co-residency probability. The co-residency

probability is defined as the probability that a given VM receives a co-resident VM (i.e.

honest or malicious VM) during its lifetime.

The main aim of this thesis is to quantify and analyse the influence of cloud parameters (such

as the number of hosts and users) on the co-residency probability under four commonly used

PAs. These PAs are First Fit, Next Fit, Power Save and Random. This action then leads to

identifying the influential parameters’ settings that reduce the co-residency probability in

each PA. Reducing the attack surface for side channel attacks is one outcome of reducing the co-

residency probability.

This thesis achieves its aim through quantitative experimental simulation and analytical

prediction. This approach consists of four main steps:

(1) Characterizing the co-residency occurrence behavior in IaaS clouds using co-

residency metrics, followed by

(2) Identifying the most influential cloud parameters (such as the number of hosts,

clusters and users) affecting co-residency probability in four PAs. To do so, the

influence of all relevant cloud parameters is quantified.

(3) Simulation experimentation to find the best settings of the most influential

parameters that reduce the co-residency probability under each PA.

(4) Analytical estimation, with the coexistence of different populations of attacker VMs,

to find the probability that a new co-residing VM belongs to an attacker. These

estimates help in identifying the best PAs that reduce the probability above.

 19

Each of the above steps is addressed in a separate chapter that details how the step will be

executed.

The scope of this thesis is limited to public IaaS clouds only because the higher risk of side

channels is usually associated with publicly accessible IaaS clouds where an attacker is able

to fully control malicious VMs to attack co-resident VMs [79].

1.3 Research Hypotheses and Questions

The following two hypotheses are proposed:

1. For a given PA, cloud parameters, such as the number of hosts and users, do not have

the same influence on the co-residency probability in IaaS clouds.

2. For a given VM, there is a non-zero probability that a new co-residing VM belongs to

an attacker for any of the four PAs considered.

Based on the aim above and research hypotheses, the following research questions are

explored:

1- How to characterise the co-residency occurrence behaviour in IaaS clouds?

To experiment on co-residency in this thesis, the co-residency occurrence behaviour is

characterised using four quantitative metrics (referred to as the co-residency metrics).

Some of these characteristics include how likely a given VM u will be co-resided by

another VM v, as well as how long this co-residency takes to occur. These metrics play a

significant role in answering the remaining research questions, and should also be useful

to further research on co-residency in IaaS clouds.

2- For a given PA, what are the most influential cloud parameters affecting co-

residency probability?

Modelling large-scale and dynamic environments, such as IaaS clouds, involves several

parameters; some of them could exercise higher influence on the co-residency probability

than others. For simplicity, this thesis focuses on the cloud parameters that have the most

influence on the co-residency metrics. An Influence Evaluation Strategy is proposed to

quantify the influence on the co-residency metrics across a variety of likely cloud

parameters’ settings under four PAs. These PAs are First Fit, Next Fit, Power Save and

Random (described in detail in Appendix A). The strategy uses fractional factorial

designs [15] to design the experiments and applies Analysis Of Variance (ANOVA) tests

 20

to identify the most influential parameters and parameters interactions on the co-

residency metrics.

3- For a given PA, which parameter settings reduce the co-residency probability?

The most influential parameters are used in controlled experiments to estimate the co-

residency metrics using a wide range of settings under four PAs to allow:

(i) Identifying the best parameters’ settings where a given PA can reduce the co-

residency probability.

(ii) Identifying any situations where selecting parameters’ settings in a given PA

would not be able to reduce the co-residency probability.

(iii) Identifying the best PAs, regardless of the parameters’ settings, that reduce the

co-residency probability.

4- For a given VM, what is the probability that a new co-residing VM belongs to an

attacker?

The risk of side channel attacks is magnified enormously if an honest VM is co-resided

by an attacker VM. Therefore, this research question investigates reducing the malicious

co-residency probability (i.e. the probability that the next co-residing VM belongs to an

attacker). Two approximate analytical estimates are derived to estimate the malicious co-

residency probability with the coexistence of different populations of attackers. These

estimates also help IaaS cloud providers to find the best PAs that can hinder attackers

from easily achieving malicious co-residency.

Each of the above research questions is addressed in a separate chapter that describes the

approach used to answer the question, followed by a discussion of the important findings.

The previous research questions can be summarized in the following thesis statement.

1.4 Thesis Statement

Co-residency is a necessary first step to launching several side channel attacks that have been

shown to threaten the security of users’ VMs in public IaaS clouds. Therefore, this thesis

looks into understanding the co-residency probability. This thesis aims to analyse and quantify

the influence of cloud parameters (such as the number of hosts and users) on the co-residency

probability in four commonly used PAs. These PAs are First Fit, Next Fit, Power Save and

 21

Random. This analysis helps to identify the appropriate cloud parameters’ settings that reduce the

co-residency probability in four PAs. Quantitative experimental simulation and analytical

prediction approach are used to achieve the aim of this thesis.

1.5 Challenges

Studying co-residency occurrences behavior in the large, non-transparent and diverse IaaS

clouds can become a very challenging task that requires an efficient testing methodology (i.e.

testbed). Such a testbed must support experimentation under different scenarios and settings

and, most importantly, a number of PAs. There is no single or best testbed that supports

experimenting with many parameters that describe IaaS cloud architecture, functional and

non-functional requirements. Based on the discussion in Appendix F, there are three testbeds

that can be used for this thesis’s experiments:

1- Public IaaS clouds

2- Private IaaS clouds

3- Simulators

The above testbeds are evaluated in Appendix F for their suitability to conduct the thesis

experiments, highlighting the limitations and advantages of each testbed. The choice of the

testbed follows from the research aim that requires exploring the influence of various

parameters on the co-residency metrics using different settings of IaaS clouds under four

PAs. This evaluation nominates simulation to be a flexible and cost-effective testbed [1].

Therefore, simulation experimentation is adopted and the VM Co-residency simulator VMC

was implemented and used as a testbed in this thesis. The VMC simulates the thesis’s system

and attack models (Chapter 3) and uses the co-residency metrics to estimate different

probabilities related to co-residency.

Another challenge is that there are many cloud parameters and parameters’ settings to be

included in limited resources experiments in this thesis. Therefore, fractional factorial design

is applied that helps to construct a reduced and balanced experiment. Fractional factorial

experiments are usually used to measure simultaneously the effects of many parameters on a

product or process in a cost-effective way using minimal experimental runs [33].

Also, estimating the malicious co-residency probability under various attackers ratios (i.e. the

proportion of attacker VMs to total VMs) introduces another challenge. Exploring all likely

attackers ratios, using simulation, is an attempt that resource and time limitations did not

 22

allow. To overcome this challenge, analytical estimates are derived that take into account the

attacker ratio (see Chapter 6).

1.6 Contributions

In the course of responding to the research questions, each chapter makes contributions to the

field of VMs security in IaaS cloud. The main contributions of this thesis are as follows:

First, defining four quantitative metrics to statistically characterise the probability of co-

residency occurrences. Some of these characteristics include how likely a given VM u will be

co-resided by another VM v, as well as how long does this co-residency take to occur. While

there has been work done in the area of co-residency, to the best of one’s knowledge this

thesis is the first to characterise co-residency probability using quantitative metrics. These

co-residency metrics proved to be very useful in answering the research questions in this

thesis, and should also be useful for future research related to co-residency in IaaS clouds.

Second, quantifying the influence of cloud parameters on the co-residency probability under

four PAs (First Fit, Next Fit, Power Save and Random). This action leads to identifying the

most influential parameters and parameter interactions on VM co-residency. A novel

Influence Evaluation Strategy is proposed for assisting researchers to identify the most

influential parameters on the co-residency metrics in large-scale, dynamic IaaS clouds. This

strategy can be applied to assess the effect of varying multiple cloud parameters on the co-

residency metrics such as varying the rate at which VM requests are generated, using a

different number of hosts and others. The Influence Evaluation Strategy identified the

number of hosts to be the most influential cloud parameter on the co-residency probability in

four PAs.

Third, identifying the appropriate cloud settings in four PAs that reduce the co-residency

probability. Reducing the co-residency probability aims to reduce the attack surface for side

channel attacks. In order to identify the appropriate cloud settings, simulation experiments

explored how the most influential parameters’ settings in four PAs could positively and

negatively affect the co-residency metrics. The simulation experiments were conducted under

a wide range of likely settings for publicly accessible IaaS clouds. The experiments present

evidence that VMs hosted in IaaS clouds that use Next Fit or Random are more resilient against

receiving co-resident VMs compared to when First Fit or Power Save are used. Further, VMs in

 23

IaaS clouds with a higher number of hosts are less likely to exhibit co-residency. The outcome of

this thesis is a plausible blueprint for IaaS cloud providers to consider the influence on the co-

residency probability as an important selection factor for cloud settings and PAs.

While an increasing number of literatures have compared PAs in several aspects such as cost

reduction [37], [48], [49] and performance and energy consumptions [40], [55], [58], [99],

this thesis is the first to compare PAs in terms of how they affect the co-residency

probability.

The fourth contribution is deriving analytical estimates of the co-residency probability that

take into account the number of attacker VMs in the IaaS cloud. These estimates can be used

by anyone to determine analytically, with the coexistence of a given number of attacking

VMs, the best PAs that reduce the malicious co-residency probability. That is to say that a

new co-residing VM belongs to an attacker. Comparing First Fit, Next Fit, Power Save and

Random PAs, the analytical estimation shows that the malicious co-residency probability

varies widely from one PA to another. The analytical estimation shows that the right choice

of PAs can reduce the likelihood of being co-resided by attackers’ VMs. In addition, these

estimates are proved to compare well with the experimental estimates (i.e. using the VMC

simulator). Therefore, the derived analytical estimates should become very useful for IaaS

cloud providers and users for estimating the malicious co-residency probability in various

IaaS cloud’s settings, PAs and number of attacker VMs.

Fifth, introducing a new VM Co-residency (VMC) simulator that allows modelling of co-

residency behaviour using various cloud parameters’ settings and PAs. The VMC can be used

as an experimentation tool for assessing the influence of cloud parameters on the co-

residency probability. The VMC simulator also allows the exploration of the appropriate

parameter settings that reduce the co-residency probability in a given PA. The VMC has been

used successfully as a testbed in this thesis and should also be useful in advancing future

research related to VMs co-residency in IaaS clouds.

1.7 Thesis Structure

The remainder of this thesis consists of the following chapters:

o Chapter 2 provides a background on cloud computing and related literature. Further, the

chapter considers the key issues of side channels in public IaaS clouds and then explores

common side channel attacks that can be launched against co-resident VMs. Available

 24

countermeasures against side channels, including physical isolation and side channel

vulnerabilities prevention, are shown to have some drawbacks. Therefore, this thesis

looks into understanding the co-residency probability so that the best cloud parameters’

settings that reduce the co-residency probability are identified in four PAs. Co-residency

reduction can contribute to reducing the attack surface for side channel attacks.

o Chapter 3 begins by describing how the IaaS cloud is modelled in this thesis. Next, the

co-residency metrics are defined to address the first research question. The co-residency

metrics are quantitative measurements that characterise different probabilities related to

co-residency occurrences in IaaS clouds. These co-residency metrics are used to identify

the most influential parameters on co-residency (i.e. the second research question), as

well as to find the best parameter settings in each PA that reduce the co-residency

probability (i.e. the third research question). In addition, the co-residency metrics are

used to derive analytical estimates of probabilities related to malicious co-residency (i.e.

the fourth research question).

o Using the VMC simulator as a testbed, Chapter 4 defines the Influence Evaluation

Strategy and applies it to answer the second research question on what cloud parameters

influence the co-residency metrics the most. Under First Fit, Next Fit, Power Save and

Random PAs, the strategy quantifies the influence of cloud parameters on the co-

residency metrics then identifies the most influential parameters and 2-parameter

interactions. In addition, the strategy provides useful insights that are used to compare the

PAs in terms of their impact on the co-residency metrics. Further, the results presented in

this chapter examine the first hypothesis put forward in Section 1.3.

o Chapter 5 answers the third research question of “the parameter settings in a given PA

that reduce the co-residency probability”. The VMC simulator is used to estimate the co-

residency metrics under four PAs using different settings of the most influential

parameter. Pearson’s correlation analysis [14] is applied to study the correlation between

parameters and the co-residency metrics. Then, the best parameter settings in four PAs

that effectively reduce the co-residency probability are identified.

 25

o Chapter 6 considers the probability that, for a given VM, the next co-residing VM

belongs to an attacker (i.e. the fourth research question). Two analytical estimates of the

malicious co-residency probability are derived and calculated. These analytical estimates

are used to find, with the coexistence of different populations of attacking VMs, the

probability that a new co-residing VM belongs to an attacker. The VMC simulator is used

to validate these analytical approximations using the four PAs. The outcome of this

validation shows an agreement between the analytical estimates and the simulation

estimates across the four PAs.

o Chapter 7 draws conclusions as to analysing and quantifying the influence of cloud

parameters on the co-residency probability in public clouds. In addition, this chapter

summarizes how the co-residency probability has been reduced through identifying the

appropriate parameters’ settings in each PA. Finally, possible future work is discussed.

 26

Chapter 2

Background and Related Work

2.1 Introduction

This chapter begins by looking into cloud services and models; highlighting the crucial role

that virtualization plays in making the cloud a cost-effective solution for businesses and

organisations.

In Section 2.2, virtualisation is shown to have brought a security threat to multi-tenant public

IaaS clouds, where VMs belonging to different users share the same physical host (i.e. co-

residency).

Section 2.3 surveys the related work on co-residency, presenting different methods for

achieving co-residency with a target VM and the techniques used to detect successful co-

residency.

Section 2.3.2 looks at co-residency as an attack avenue. Several easy to implement, yet

harmful, side channel attacks that can be launched against co-resident VMs are discussed and

shown to bring a significant threat to VMs security in the cloud.

Available countermeasures against side channels, including physical isolation and side

channel vulnerabilities prevention, are shown to have some drawbacks in Section 2.3.3.

Because co-residency is a necessary first step to launching side channel attacks,

understanding the co-residency probability (defined in Section 1.2) is identified as an

interesting research gap in Section 2.3.3.4. Consequently, this thesis explores reducing the

co-residency probability through the right choice of the cloud parameters’ settings in four

PAs. Reducing the co-residency probability can contribute to reducing the attack surface for

side channel attacks.

2.2 Cloud Computing

Recent advances in cloud computing encourage businesses and organisations to host services

and applications in third-party public clouds. Since 2007, the term cloud has become an

overused buzzword in the IT industry. Many definitions of cloud computing have been

suggested from different application aspects. However, there is no agreed consensus

definition for cloud computing. The U.S. National Institute of Standards and Technology,

NIST, [56] provides an interesting definition that specifies essential characteristics of cloud

 27

computing and delivery and deployment models as well. This definition is quoted as follows:

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks, servers, storage,

applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction.”

The following sections outline three service models, four deployment models as suggested in

[56] and then look into technical aspects of cloud computing related to this thesis.

2.2.1 Cloud Service Models

Based on the delivery mechanism, cloud services are categorized into three major models:

software, platform and infrastructure.

2.2.1.1 Software as a Service (SaaS)

In this model, the cloud user is given the ability to use certain applications hosted in a

cloud infrastructure. These applications are normally accessible through a web

browser. What is unique about this model is that cloud users are unable to control or

manage the application configurations or the underlying cloud physical infrastructure

including network, servers and operating systems.

2.2.1.2 Platform as a Service (PaaS)

Unlike the SaaS model, the users in this model can deploy applications, services and

tools onto the cloud infrastructure given that the provider supports them. Although

the users usually have control over the deployed application’s configurations and

settings, they are still unable to manage or control the underlying cloud infrastructure

including network, servers and operating systems.

2.2.1.3 Infrastructure as a Service (IaaS)

In this model, more capabilities are given to the cloud users. Among these capabilities

is the provisioning of essential computing resources including processing, networks,

and storage. The cloud user can deploy and run any operating systems and

applications using dedicated and self-controlled VMs that are allocated into

virtualised hosts using VM Placement Algorithms (PAs).

Based on a comparison between the previous cloud service models, a cloud service is

assumed to become more vulnerable as more capabilities are given to the users.

 28

2.2.2 Cloud Deployment Models

Based on the usage scopes, cloud infrastructure can be deployed in different fashions. The

following are the four primary cloud deployment models:

2.2.2.1 Private Cloud

The cloud infrastructure in this model can be used exclusively by a single

organization. The entire infrastructure may be self-owned and managed by the

organization or outsourced to a third party irrespective of whether the cloud

infrastructure is hosted on or off the premises.

2.2.2.2 Community Cloud

The cloud infrastructure in this model can be used exclusively by a specific

community of users from organizations that share specific concerns such as security

and compliance requirements. The entire infrastructure may be owned and managed

by one or more of the community organizations or outsourced to a third party

irrespective of whether the cloud infrastructure is hosted on or off any of the

organisations’ premises.

2.2.2.3 Public Cloud

The cloud infrastructure in this deployment model is open for public use. The entire

infrastructure is owned and managed by third-party providers and hosted on their

premises. What is unique about this deployment model is that it is publicly accessible,

and any user with access to the Internet and a payment method can legitimately use

the cloud.

2.2.2.4 Hybrid Cloud

The cloud infrastructure in this deployment model is a combination of two or more

cloud deployment models (private, community, or public).

2.2.3 Technical Aspects

The following are essential technical characteristics that are used in the cloud to support

specific functional and economical requirements.

 29

2.2.3.1 Virtualization

Virtualization is an essential characteristic of cloud computing and helps to deliver

the value of cloud computing. Virtualization is a technology that separates physical

infrastructures to create various “virtual” dedicated resources. Virtualization allows

the running of multiple operating systems and applications, using VMs, on the same

physical host concurrently [63].

2.2.3.2 Multi-tenancy

Virtualization can effectively maximize the utilization of physical resources if multi-

tenancy is enabled, which is sharing of physical resources between multiple users (i.e.

co-residency). Moreover, multi-tenancy brings an important economic benefit to

cloud providers through sharing operating expenses between users in order to provide

cost-effective cloud services.

2.2.3.3 Security

Although cloud computing has its advantages, it also comes with new threats. Before

the cloud era had begun, data and applications were only deployed in the users’ own

infrastructure inside their premises, and, therefore, the users’ data could be under

their control and supervision and physically secured. On the other hand, exporting

applications and data to a third-party cloud brings several threats to confidentiality,

integrity and availability [78].

Among all the possible threats in the cloud environment, this thesis focuses on a threat

brought by multi-tenancy (i.e. co-residency). Although enabling multi-tenancy can be cost-

effective for public IaaS cloud providers, the following sections show that co-residency is

one successful avenue for launching several easy-to-implement and powerful attacks on

honest co-resident VMs using side channels.

2.3 Related Literature

As mentioned in Section 1.2, the scope of this thesis is limited to public IaaS clouds only.

This is because the higher risk of side channels is usually associated with publicly accessible

IaaS clouds where an attacker is able to fully control malicious VMs to attack co-resident

VMs.

 30

Public cloud services provide IaaS allowing individuals and organizations to run and control

VMs, and paying only for what they have consumed. Examples of public cloud services

include Microsoft’s Azure [57] and Amazon’s EC2 [4]. In order to achieve maximum

utilization of their physical infrastructure, cloud providers allow multi-tenancy [84], ending

with many co-resident VMs sharing the same underlying physical infrastructure (e.g. host

CPUs and memory). Common practices to secure such shared environments usually include

ensuring strong isolation between co-resident VMs so that they become unable to interfere

with each other. In addition, each VM should be unaware of other VMs running in the same

physical host [9]. However, co-residency can lead to a risky situation where an attacker VM

ends up residing on the same physical host with victim VM(s). An attacker’s co-residency

with a victim VM gives an opportunity to launch several possible harmful attacks using side

channels [103]. The next sections discuss related literature on co-residency, followed by a list

of various types of side channel attacks and the available countermeasures, leading to

identifying the research gap addressed by this thesis.

2.3.1 Co-residency

A number of research publications discuss different aspects of co-residency, where

preliminary work on identifying co-residency as an existing threat in public IaaS clouds was

undertaken by [79]. Their work demonstrates that the co-residency imposes a risk on

sensitive services and data hosted in third-party public IaaS clouds. Their study was

conducted in order to answer the following concrete questions:

1- Is it possible to determine where in the cloud a VM is hosted (located)?

2- Is it possible to determine whether two VMs are co-resident on the same physical

host?

3- Is it possible to place a malicious VM to be co-resident with a victim VM?

4- Is it possible for an attacker to launch attacks that use side channels against co-

resident VMs?

Using Amazon EC2 as a case study, researchers have shown that the answer to these four

questions is “yes”. They demonstrated this by mapping Amazon EC2’s internal cloud

infrastructure in order to locate where specific targeted VMs are likely to reside. Then,

malicious VMs are launched until one or more of these VMs become co-resident with the

targeted VMs. In addition, several scenarios, where an attacker can launch variant side

channel attacks to collect sensitive information from co-resident VMs, were demonstrated.

 31

The authors claim that the method that they applied to achieve co-residency helped to co-

reside with up to 40% of the target VMs.

The methods to achieve co-residency discussed next are related to the work done in the

Amazon EC2 by [79]. Their method consists of the following three steps:

- Locating victim VMs (cloud cartography),

- Malicious VMs Placement,

- Co-residency detection and then launching side channel attacks against co-resident

VMs.

2.3.1.1 Locating Victim VMs (Cloud Cartography)

In order to locate a specific target VM, the EC2 cloud’s internal physical

infrastructure is mapped using the DNS services to resolve public DNS names to

public IPs. Then, available network tools, such as nmap, hping and wget can be used

to map each public IP to its private IP equivalent inside the EC2 cloud. This mapping

process can provide a better understanding of how the cloud infrastructure is

constructed.

2.3.1.2 Co-residing Techniques

Achieving co-residency with a particular victim in Amazon’s EC2 requires a good

understanding of the cloud infrastructure, how the network addresses are assigned to

each VM and the used PA. The following co-residing techniques have been applied to

achieve targeted co-residency using the Amazon EC2’s cloud cartography that was

constructed in the previous step:

• Brute-force

Using the cloud cartography, it is possible to determine roughly in which zone, in

Amazon EC2, the targeted VMs are, allowing the attacker to create as many VMs

as possible in the same zone. The authors claim that they achieved an average of

8.4% successful co-residencies with a set of target VMs using brute-force.

• Placement Locality Abuse

Using Amazon’s EC2, the authors prove that VMs created with small time gaps

are more likely to be placed in the same host. The placement locality abuse

 32

technique involves detecting when the victim VMs are launched, then

immediately creating malicious VMs with the hope that the PA will place them in

the same host as the target(s). Abusing the placement locality allowed the

malicious VMs to co-reside with 40% of the target VMs.

2.3.1.3 Detecting Co-residency

Co-residency detection through side channels was first exposed by [79]. After placing

many malicious VMs in different hosts, the attacker must check whether the target

victim VMs and any of the attacker’s VMs are co-resident or not. This can be

achieved using one of the following co-residency detection checks:

• Matching Dom0 IP (Xen-specific)

Dom0 is a special-privileged process created in hosts that run Xen virtualization

[21]. One of the Dom0 main jobs is to manage traffic routing between the co-

resident VMs. This co-residency detection check uses the network command

(trace route) to trace network packets that are sent to a victim VM,

comparing if the:

First hop = attacker’s VM’s Dom0 IP address

Last hop = victim VM’s Dom0 IP address

The victim VM and the attacker’s VM are in the same host (i.e. co-resident) if the

victim VM’s Dom0 IP address matches the attacker VM’s Dom0 IP address.

However, this method is specific to hosts that run Xen virtualization. Also, it

assumes that the Dom0 process responds to traceroute commands. Bates et al [13]

state that this co-residency detection check is no longer applicable in Amazon

EC2.

• Network Packet Round Trip Times

One of the simplest and easiest ways to detect co-residency is by measuring the

travel time of network packets sent from an attacker VM to a victim VM and then

to compare it with the time the same packet takes to reach other VMs that reside

in other hosts. Ristenpart et al demonstrated that it was possible to predict the co-

 33

residency of two VMs if the packet round trip time is lower when sent to a co-

resident victim VM [79].

• Non-network Based Co-residency Checks

It is possible for the IaaS cloud providers to disable the use of all network tools

offered to the cloud users. In this case, other non-network based co-residency

checks that use side channels are presented in a number of papers. For instance,

[79] demonstrated that an attacker can send a heavy load (e.g. HTTP requests) to

the target VM and can observe the CPU load of the attacker VM’s host. If the

CPU load has increased, then this a sign that the attacker VM shares the same host

with the target VM. Other side channel co-residency detection checks include

using cache-based side channel attacks [100] and using Active Traffic Analysis

[13].

Once an attacker succeeds in achieving and detecting a co-residency with a victim VM,

various possible side channel attacks can be launched to collect sensitive information about

the victim VM as shown next.

2.3.2 Side Channel Attacks

A side channel is a well-known security threat in multi-tenant systems. With a history that

goes back to 1972 [47], the threats of side channels are frequently present in systems where

users share physical resources, such as memory, network bandwidth and CPU caches.

A side channel is a form of information leakage that arises as a result of sharing physical

resources with other users. For example, sharing of the CPU and memory caches has been

shown by [13], [79] and many others to be a vulnerability that can be compromised to bypass

VMs isolation.

Side channel attacks in multi-tenant environments have been demonstrated by many

researchers to threaten the security of VMs, particularly in public IaaS clouds [8].

Researchers and hackers alike have introduced an increasing number of low-cost side

channel attacks that can be launched after achieving co-residency [16], [23], [24], [25]. Using

Amazon EC2 as a case study, Ristenpart et al’s pioneering research demonstrated that side

channel attacks are possible. Ristenpart et al proved this possibility after they successfully

placed malicious VMs to become co-resident with up to 40% of target VMs [79]. Such

actions can have huge negative consequences for the honest co-resident VMs.

 34

Examples of these side channel attacks include:

• Key leakage such as extracting RSA [75] and AES [33] secret keys.

In addition, the researchers in [103] have been able to extract ElGamal decryption

keys form a co-resident VM. They demonstrated this attack using the classic

Prime+Probe technique presented in [70]. The first step of this technique involves

priming the CPU cache (data or instruction) by accessing a certain range of addresses

that cause the cache to become full. The attacker then yields the CPU, which in turns

allows the victim VM to evict some of the attacker’s data or instructions from the

cache. Immediately, the attacker preempts the victim and starts probing the cache

again by accessing a certain range of addresses that cause the cache to become full.

At this stage, the attacker can measure the time taken for each cache access in order

to determine which cache lines were replaced by the victim. This action allows the

attacker to learn some information about the addresses that have been accessed by the

victim. By studying how standard libraries implement the private ElGamal decryption

key, the researchers show that monitoring the victim’s repeated exponentiations for a

few hours allows the attacker to reconstruct the 457-bit private exponent of a 4096-bit

modulus.

Secret keys leakage can result in breaches of privacy of the VMs running in public

IaaS clouds, allowing co-resident attackers to eavesdrop on communications and steal

sensitive data and make it public.

• Running Denial of Service (DOS) on a co-resident VM, blocking the compromised

VM’s owners and users from access. The researchers in [53] have introduced a new

form of DOS attack in IaaS clouds where they map the cloud network topology to

identify and starve an uplink bottleneck of a victim VM. The attack requires co-

residing with a victim VM as well as allocating other attacker’s VMs into enough

hosts within the same subnet. Then the attacking VMs are used to flood the uplink to

the victim VM with high UDP traffic. The immediate side effect of this attack is

starving other important TCP sessions of the victim VM as a result of the TCP

congestion avoidance mechanisms.

• Exploiting a heap buffer overflow to execute malicious code in the host operating

system [94].

• Determining web traffic rates. Side channel load measurement can be used to

estimate the number of web visitors to a co-resident VM, or even the most frequently

 35

visited pages. This information might be damaging if, for example, the co-resident

VM belongs to a corporate competitor. The researchers in [79] were able to estimate

the HTTP traffic rates to a co-resident VM using load measurement technique. This

technique involves performing cache load measurements while sending different rates

of HTTP requests to the victim VM. This action will allow the attacker to correlate

between traffic rates to the victim VM and load samples. Although this type of

information may sound harmless, it can be used to work out targeted VMs activity

patterns and peak trading times for maximum Denial of Service effect.

• Performance-Degrading attacks such as the Swiper attack [20] and the Resource-

freeing attack that was demonstrated to degrade co-resident VMs’ performance by

more than 80% [92].

• Gathering sensitive information via side channels as demonstrated in Amazon EC2

by [79] and included:

– Non-network based co-residency detection (see Section 2.3.1.3).

– Measuring the CPU cache usage of the targeted VMs to determine, for

instance, how busy the VMs are.

– Exploiting the memory bus as a high-bandwidth side channel for data

transmission [97].

• Keystroke timing: stealing SSH passwords from co-resident VMs as shown by [87]

and [36].

• Several application-specific side channels that have been reported to allow

attacking VMs to exploit co-resident VMs isolation. For instance, attackers were able

to steal and leak the VMware ESX hypervisor source code [16]. Because the

hypervisor is responsible for controlling the traffic between co-resident VMs, this

source code leakage potentially allows the attackers to find ways to eavesdrop on co-

resident VMs. Another vulnerability in Xen-based clouds has been reported that

allows a guest VM to execute arbitrary commands in the hypervisor [23]. Moreover, a

number of integer overflow vulnerabilities have been reported to affect the e2fsprogs

packages (these packages contain a number of utilities for ext2 and ext3 file systems

in Linux). An attacker can target a VM by –remotely- tricking the VM’s owner into

opening a malicious file in order to execute arbitrary code with the same permissions

as the victim. Worse, an attacker can gain access to other virtualized hosts by

exploiting this vulnerability as shown in [24] and [25].

 36

The aforementioned security threats brought about by side channel attacks is amplified by the

fact that attackers can run their malicious VMs in the cloud legitimately as long as they have

access to the Internet and a payment method. In addition, an increasing amount of research in

recent years introduces new side channels [101]. Therefore, anyone who has access to the

Internet, from any location, is able to attempt to co-reside and attack honest VMs, using any

side channel they choose.

2.3.3 Inhibiting Side Channel Attacks

Public IaaS clouds use a PA that controls where each new VM is placed, possibly to become

co-resident with other VMs sharing the same host. Common practices to secure such shared

environments usually include relying on virtualisation. Virtualisation ensures strong isolation

between co-resident VMs so that they become unable to interfere with each other [9].

However, virtualized isolation that completely prevents side channel attack has been proven

to be difficult to achieve. The following countermeasures address side channel attacks, at the

cloud provider side; the cloud user side, the hardware/software vendor side and cloud

provider side respectively:

2.3.3.1 Physical Isolation Enforcement

As mentioned in Section 1.1.2, it can be argued that one pragmatic solution to

mitigate side channel attacks is to disable co-residency completely. Ristenpart et al

suggested that cloud users may consider running their VMs in physical isolation from

other VMs [79]. Following this suggestion, the Amazon EC2 cloud allows users to

run dedicated VMs [28], ensuring that VMs belonging to each user do not share the

same physical hardware with any other cloud users’ VMs.

Although this service can effectively mitigate various side channels that exist in the

shared hardware, a significant price premium is required in order for cloud users to

benefit from this service. It is estimated that it is 6.12 times more costly to run

dedicated VMs compared to using regular VMs in Amazon EC2 [97].

One of the options left for protecting VMs from side channel attacks is only to allow

other ”trusted” VMs to become co-resident. If untrusted VMs become co-resident,

then relocate the user’s VM to another host [11]. Trusted VMs, in this case, may

include VMs that are self-owned or other trustworthy VMs. This countermeasure to

side channel attacks has been applied in the case of NASA and Amazon. Their

 37

agreement over a cloud service contract gave NASA the right to run its cloud services

in physically isolated, tenant-specific hardware [89]. This countermeasure requires

enabling the cloud users to audit and verify the cloud provider’s adherence to the

policy. The researchers in [102] have introduced a promising tool called HomeAlone

that uses side-channel analysis to verify that cloud providers keep their promise and

disable co-residency.

However, the significant extra cost of the physical isolation of VMs diminishes its

attractiveness, coupled with the fact that enabling co-residency is a definite choice of

IaaS cloud providers due to its economic efficiency.

2.3.3.2 User Controlled VM Placement

The research of Ristenpart et al concluded that the best recommendation is to give the

cloud users full responsibility and control to specify where their VMs should be

placed [79]. Although this countermeasure is relatively simple, it does not solve the

problem completely. In fact, it only shifts the liability to the user instead of the cloud

provider without trying to eliminate the side channel or the side channel attacks.

2.3.3.3 Preventing Side Channel Vulnerabilities

Researchers have introduced a number of countermeasures that rely on side channel

prevention. This can be achieved via reducing the information that can be leaked by

new hardware designs or by applying various blinding techniques [36], [41].

For instance, a group of researchers at MIT [46] have recently designed a hardware

chip that can hide how CPUs request information in cloud servers. This chip makes a

side channel attack that uses the shared CPUs very difficult to achieve.

Apart from this hardware countermeasure, several papers discussed a number of non-

hardware countermeasures that focus on preventing cache side channels. For instance,

one countermeasure against cache side channel attacks that use prime and probe

method (see Section 2.3.2) is to inject noise to the CPU cache timing [50], [104].

When an attacker primes the CPU cache, a special cache cleansing process is

invoked. This cache cleansing process simply primes the CPU cache in order to evict

the entire cache entries, and therefore preventing the attacker from gaining any useful

cache timing and load measurements. However, this approach reduces the CPU cache

 38

usefulness since it flushes the entire cache entries. Another countermeasure applies

cache partitioning, where each VM is assigned a separate partition of the cache [71].

Such action ensures no cache interference among co-resident VMs. In addition, a

considerable amount of literature has been devoted to introduce similar

countermeasures such as adjusting each VM’s perception of time, random delay

insertion, using non-deterministic caches and cryptographic implementation of

timing-resistant caches [31], [42], [52], [70], [72], [73], [75], [76], [91], [93].

However, [79] concluded that this type of countermeasures that rely on preventing

side channel vulnerabilities suffer from two drawbacks:

First, they are typically either:

(a) Impractical, for instance incurring high overheads or nonstandard

hardware is required such as [31], [41], [42], [52], [70], [71], [72], [73], [75],

[91], or

(b) Application-specific [36], [50], [76], [93] or hardware-specific [46], [104].

Second, these countermeasures do not, ultimately, guarantee that all possible side

channels have been anticipated and disabled, especially in the light of the increasing

number of research in recent years that introduces new side channels.

Despite the efforts being paid on VMs safeguarding against existing side channels, there

remains a continuous potential risk of data leakage by new side channel vulnerabilities that

are yet to be discovered. Therefore, this opens an interesting research area to find an

alternative approach to the reduction of the attack surface for side channel attacks, particularly

one that does not rely on VMs physical-isolation or side channels prevention.

2.3.3.4 Reducing Co-residency (The Research Motivation)

This problematic coexistence of co-residency and side channel threats suggests that

VMs hosted in a public IaaS cloud are exposed to side channel attacks as long as

there is a non-zero co-residency probability. Thus, this particular issue motivated this

thesis to look into understanding the co-residency probability in order to reduce it.

The main aim in this thesis is to analyse and quantify the influence of cloud

parameters (such as the number of host and users) on the co-residency probability

under four commonly used PAs. By doing so, this thesis identifies the combination of

parameters’ settings in each PA that reduces the co-residency probability.

 39

Unlike VMs physical-isolation and side channel prevention countermeasures,

reduction of the co-residency probability does not prevent side channel. Instead, it

aims to reduce the attack surface for side channel attacks by reducing the chance of

co-residency (i.e. the attack avenue).

The previous sections in this chapter show that research on different aspects of co-residency

has been carried out. Examples of such research include how to place VMs and detect co-

resident VMs, how to exploit side channels to attack co-resident VMs and how to protect

against such attacks using VMs physical-isolation and side channel prevention. However, the

fundamental questions of what could effect and reduce the likelihood of co-residency

occurrences in IaaS clouds and how to reduce co-residency are still not fully answered.

In a recent work, [3] highlighted the possibility of designing PAs that reduce the probability

of co-residency. In another very recent investigation into co-residency, the focus of [10] was

to formalise a new PA that balances between resource optimization and preventing attack

VMs from co-residing with a target set of honest VMs. The proposed PA was shown to work

best in a specific attack scenario. This scenario assumes that the attacker is computationally-

bounded and that the user computation is cryptographically split among a set of VMs.

Therefore, this requires the attacker to co-reside with all the user’s VMs in order to steal

meaningful information.

Based on the thesis aim and approach defined in Section 1.2, there are a number of important

differences between the work in this thesis and the work in [10]. First, the researchers aim to

minimize co-residency by formalizing a secure PA. Unlike their work, this thesis looks into

analysing and quantifying the influence of cloud parameters on the co-residency probability

in four PAs. Then, the appropriate settings of the most influential parameters that reduce the

co-residency probability are identified in each PA. Therefore, their study would have been

more relevant to the work in this thesis if the authors had included the cloud parameters’

settings as another factor to reduce the co-residency probability. In addition, their study has

assumed an attack scenario where a specific tenant’s VMs are targeted by attack VMs. In

contrast, this thesis extends the attack scenario to capture a worst-case scenario of a hostile or

threatening cloud environment, where all VMs are targets for attackers. Moreover, the work

in this thesis takes things a step further. For instance, this thesis derives two analytical

estimates of the probability that the next co-residing VM belongs to an attacker.

 40

2.4 Summary

This chapter provides a background on cloud computing and related literature. Further, the

chapter considers the key issues of side channels in public IaaS clouds, and then explores

common side channel attacks that can be launched against co-resident VMs. Available

countermeasures against side channels, including physical isolation and side channel

vulnerabilities prevention, are shown to have some drawbacks. This problematic coexistence

of co-residency and side channel threats suggests that VMs hosted in a public IaaS cloud are

exposed to side channel attacks as long as there is a non-zero co-residency probability. This

particular issue motivated this thesis to look into understanding the co-residency probability.

Therefore, this thesis quantifies the influence of cloud parameters on the co-residency

probability then determines the most influential parameters. This action then helps to identify

the combination of parameters’ settings that reduce the co-residency probability in four

commonly used PAs.

Unlike VMs physical-isolation and side channel prevention countermeasures, reduction of

the co-residency probability does not prevent side channel attacks. Instead, it aims to reduce

the attack surface for side channel attacks by reducing the chance of co-residency (i.e. the

attack avenue).

 41

Chapter 3

Models and Co-residency Behavioral Metrics

3.1 Introduction

This chapter begins by describing how the IaaS cloud is modelled in this thesis as well as the

attack model. Next, the first research question is addressed by characterising the behaviour of

co-residency in IaaS clouds using the co-residency metrics. The co-residency metrics are

quantitative measurements that assess the characteristics of co-residency occurrence

behaviour. Some of these characteristics include how likely a given honest VM u will be co-

resided by another VM v, as well as how long this co-residency takes to occur. These co-

residency metrics are used in Chapter 4 to identify the most influential parameters on the co-

residency probability (i.e. the second research question). Moreover, these metrics are used in

Chapter 5 to find the best parameter settings in each PA that reduce the co-residency

probability (i.e. the third research question). In addition, the co-residency metrics are also

used in Chapter 6 to derive analytical estimates of probabilities related to malicious co-

residency.

The remainder of this chapter is organized as follows. The next section defines the system

and attack models followed by Section 3.3 that outlines important notations and definitions.

In Section 3.4, the co-residency metrics are defined.

3.2 System and Attack Models

This thesis considers a publicly accessible IaaS cloud wherein the PA allows multi-tenancy

(i.e. the same physical hosts can be shared between multiple VMs) and that IaaS cloud

insiders (e.g. server administrators) are trustworthy. It also assumes that confidentiality-

requiring VMs of regular users (i.e. honest VMs) can receive new co-resident VMs. On the

other hand, the co-residing VM v (either honest or attacker VM) belongs to a third-party user

who can run and control a limited number of VMs simultaneously and legitimately in the

cloud. This thesis considers an attacker with the following objective:

 42

• To launch side channel attacks against arbitrary VMs. In order to do so, this requires

placing a VM v that the attacker controls (i.e. a malicious VM) in the same host

where a victim VM u is residing.

Before defining the system model components, the attack model can be described from two

perspectives:

• From an Honest VM’s Perspective

Whenever a new VM v is placed in a given host x, then every honest VM u that has

been already running and residing at x will experience a co-residency hit by v.

Two types of co-residency hits are considered in this thesis: arbitrary co-residency

hits (from malicious and honest VMs), and malicious co-residency hits (from

malicious VMs only). While Chapter 4 and 5 are concerned with co-residency hits,

Chapter 6’s focus is on malicious co-residency hits.

• From an Attacker’s Perspective

This thesis considers an attack model where new honest VMs are always placed to

hosts that contain either other honest VMs or no VMs at all. Therefore, the only co-

residing technique (see Section 2.3.1.2) for an attacker is to place a VM v to become

co-resident with a victim VM u during the latter’s lifetime. Another co-residing

technique can be achieved by placing v in a random host with the hope of u being

placed in the same host. However, the latter co-residing technique is excluded from

the scope of this thesis. Excluding this co-residing technique is based on the

assumption that attackers are interested in targeting specific and existing VMs in

public IaaS clouds.

The attack model also assumes that an attacker tries to co-reside with victim VM u

without the knowledge of where u is located in the cloud (i.e. brute-force placement,

see Section 2.3.1.2). The latter assumption introduces a challenge to attackers, as an

attacker will have to keep requesting malicious VMs with the hope that the PA places

one of the attacker’s malicious VMs to become co-resident with u. In addition, the PA

that is used in the modelled IaaS cloud is assumed to be public knowledge and

therefore it is known by the cloud users and the attackers. Finally, once v is co-

resident with u, it is assumed that an attacker is capable of detecting that v has co-

resided with the u (see Section 2.3.1.3).

 43

The system model in this thesis consists of the following main components (see Figure 3.1):

• Clusters: an IaaS cloud has at least one cluster (which is a pool of hosts). The total

number of clusters in the model is specified using the [Number of Clusters]

parameter.

• Hosts: A host is a physical server that can be shared among many users to run VMs

(i.e. multi-tenancy). Each host is assigned to a single cluster, where the total number

of hosts in the model is specified using the [Number of Hosts] parameter. A given

host is considered to be available when it has a free space to allocate new VMs,

whereas the host becomes full when it has no free space to allocate new VMs. Each

host can be allocated a maximum number of VMs specified using the [Max Host

Utilization] parameter.

• Users: A user can be a normal user who runs confidentiality-requiring VMs or an

attacker who aims to exploit side-channel leakage in a host (see Section 2.3.1.2)

through placing VMs to become co-resident with victim VMs.

• Users’ Arrival Rate: New users arrive in this model according to the [Users’ Arrival

Rate] parameter. The users’ arrival rate specifies the average number of new users to

arrive in every time unit. The total number of created users in an arbitrary duration of

time is specified using the [Number of Users] parameter.

• VMs: Each user can request, run and control a limited number of VMs

simultaneously. This number is specified in the model by the [Max Parallel VMs per

User] parameter. Each VM terminates after a certain amount of time specified by the

[VM Average Life Time] parameter. In this system model, VMs that belong to

attackers will be referred to as malicious VMs.

• VM Placement Algorithm (PA): A PA controls when and where (i.e. in which

cluster then in which host) each new VM is placed [62]. When a VM request arrives,

the PA selects a cluster that has at least one available host then selects an available

host within that cluster to place the new VM. In case all hosts are full, no placement

takes place. The system model considers four PAs that are used in popular IaaS cloud

platforms including Eucalyptus [6], OpenNebula [60], Nimbus [85] and OpenStack

[98]. These PAs are:

1- First Fit.

2- Next Fit.

3- Power Save.

 44

4- Random.

More detail on the above PAs is provided in Appendix A.

The following (Figure 3.1) shows an IaaS cloud model that has two clusters, two hosts in

each cluster and three VMs placed in Host1 and Host2.

Figure 3.1 An IaaS cloud model with two clusters, two hosts in each cluster and three

VMs

• VM Request: When a new user arrives in the IaaS cloud, the user issues a VM

request to place one or more new VMs. In this system model, the [VMs per Request]

parameter specifies the number of VMs in a single VM request, where this number is

either [VMs per Request] or 1±[VMs per Request].. For each VM request, the PA

places the requested VMs separately (i.e. one by one) immediately after it receives a

request from the user as there is no queuing of the VM requests. As a result, the PA

might be able to place all, part or none of the VMs for a given VM request depending

on the availability of hosts. For instance, if the PA receives a VM request when all

hosts are full, then the PA will not be able to place any of the requested VMs.

• VM Requests Arrival Rate (γ): The VM requests arrival rate, denoted as γ,

represents the number of VM requests per time unit. For the convenience of the

experiments, each user only issues a single VM request upon arrival. In addition,

𝛾!"#$%$&'(denotes the malicious VM requests arrival rate.

• Attackers VM Requests Ratio 𝜶

The attackers VM requests ratio α shows the ratio of malicious VMs to all VMs. The

attackers VM requests ratio α can be defined as:

 45

𝒂𝒕𝒕𝒂𝒄𝒌𝒆𝒓𝒔 𝑽𝑴 𝒓𝒆𝒒𝒖𝒆𝒔𝒕𝒔 𝒓𝒂𝒕𝒊𝒐 𝜶 =
𝛾𝒎𝒂𝒍𝒊𝒄𝒊𝒐𝒖𝒔

𝛾

• Co-residency Conditions: The following notations are used in the system model

when describing co-residency behaviours:

o x denotes a given host.

o v denotes a new VM that is placed in x (i.e. the co-residing VM).

o u denotes a given VM that resides at x where v is placed.

There are two conditions that need to be met in order to place v in x to become co-

resident with u:

o x must have an available space to accommodate v when the PA receives the

request to place v.

o v must be requested for placement during the window of time at which the PA

is going to select x for the next placement.

• Co-residency Hit: Whenever v is placed in a given host x, every victim VM u that

resides at x will experience a co-residency hit with v. Co-residency hits include any

hit that is received from either malicious or honest VMs during u’s lifetime. On the

other hand, a malicious co-residency hit is a special case of the co-residency hit. A

malicious hit occurs when u is co-resided by a malicious VM v that belongs to an

attacker.

• Total Number of Hits (k): For a given VM u, the total number of hits that u receives

is denoted as 𝑘!, where 𝑘! is a discrete random variable with possible values 0, 1,... .

When the context is clear, the subscript u is dropped for convenience.

• Total VMs in the Cloud: During an arbitrary amount of time, the notation n

represents the total number of placed VMs; whereas the 𝑛!"#$%$&'(is the total

number of placed malicious VMs. Similarly, the notation 𝑛!!" is the total number of

VMs that experienced at least one hit; whereas the 𝑛!!" !" !"#$%$&'(is the total

number of VMs that experienced at least one malicious hit.

• Time Unit: The unit for measuring time periods in the simulation of the system

model is denoted as the time unit. Examples of possible time units include second,

minutes and hours. In this model, the used time unit is a minute.

 46

3.3 Notations and Definitions

The following notations and definitions will be used throughout this thesis:

• VM Lifetime (LT): The lifetime of a VM u (i.e. 𝐿𝑇!) represents the time between the

moment at which u is placed in a given host and the moment it is terminated.

• Ratio (L) of a VM’s Lifetime: For a given VM u that experiences at least one hit

(k>0), the entire lifetime of u (𝐿𝑇!) can be divided into k+1 ratios 𝐿!, 𝐿!,…, 𝐿!, 𝐿!!!

based on the following (Figure 3.2):

-­‐ ℎ! is the time at which u is placed.

-­‐ ℎ! is the time at which u experiences the Kth hit (0 ≤ K ≤ k).

-­‐ ℎ!!! is the time at which u terminates.

With 𝐿! as the ratio of lifetime duration between the (K-1)th hit and the Kth hit, the 𝐿! th ratio

of 𝐿𝑇! can be calculated as follows:

𝑳𝑲 =
𝒉𝑲 − 𝒉𝑲!𝟏

𝑳𝑻𝒖
 , 1 ≤ 𝐾 ≤ (𝑘 + 1)

The following (Figure 3.2) shows an example of the 𝐿𝑇!, where u receives k co-residency

hits from multiple VMs (𝑣!, 𝑣!, . . . , 𝑣!!!, 𝑣!) at time (ℎ!, ℎ!, . . . , ℎ!!!, ℎ!) respectively.

Figure 3.2 The lifetime of a VM u that receives k co-residency hits

 47

3.4 Co-residency Metrics

Metrics defined in this section are estimated using simulation in Chapter 4 and 5. This thesis

uses these co-residency metrics to:

1- Quantify the influence of multiple cloud parameters on the co-residency probability.

This action helps to identify the most influential parameters in Chapter 4 (i.e. the

second research question).

2- Find the best parameter settings that reduce the co-residency probability in four PAs

in Chapter 5 (i.e. the third research question).

3- Derive analytical estimates of probabilities related to malicious co-residency in

Chapter 6 (i.e. the fourth research question).

The next subsections define the co-residency metrics in detail.

3.4.1 Co-residency Coverage Probability (CCP)

For a given VM u, this metric shows the probability that u experiences a co-residency hit

with any arbitrary VM (either malicious or honest) at least once during 𝐿𝑇! (i.e. P(k>0)). The

Co-residency Coverage Probability CCP can be estimated using simulation as follows:

𝑪𝑪𝑷 =
𝒏𝒉𝒊𝒕
𝒏 , 𝟎 ≤ 𝑪𝑪𝑷 ≤ 𝟏

For a given VM u, higher CCP indicates a higher probability of being vulnerable to at least

one arbitrary co-residency hits.

3.4.2 Hit-free Lifetime Ratio (HFL)

For a given VM u that experiences at least one co-residency hit, the 𝐻𝐹𝐿! represents the ratio

of the time until the first co-residency hit (either a malicious or a honest hit) to the 𝐿𝑇!.

Figure 3.3 shows how to obtain 𝐻𝐹𝐿! of u.

 48

Figure 3.3 Obtaining Hit-free Lifetime Ratio 𝑯𝑭𝑳𝒖 for a given VM u.

The HFL for a given IaaS cloud can be estimated using simulation by averaging the 𝐻𝐹𝐿! of

every VM u that experienced at least one hit:

𝑯𝑭𝑳 =
𝟏
𝒏𝒉𝒊𝒕

𝒉 𝟏𝒖 − 𝒉 𝟎𝒖
𝑳𝑻𝒖

!!!"

𝒖!𝟏

 ,𝟎 < 𝑯𝑭𝑳 ≤ 𝟏

3.4.3 Co-residency Vacancy (CV)

Figure 3.4 shows three availability windows during 𝐿𝑇! where host x is available to allocate

new VMs. For a given VM u at x, Co-residency Vacancy 𝐶𝑉! is simply the ratio of the

duration of these availability windows and the 𝐿𝑇!. In case x is full during the entire 𝐿𝑇! then

𝐶𝑉! is equal to zero (0 ≤ 𝐶𝑉! ≤ 1).

Figure 3.4 Obtaining Co-residency Vacancy 𝑪𝑽𝒖 of a given VM u.

 49

The 𝐶𝑉! represents the ratio of the time during which VM u is vulnerable to co-residency and

the 𝐿𝑇!. Therefore, the longer the 𝐶𝑉! the higher the chance that the PA will select u’s host to

place new co-residing VMs. On the other hand, it is impossible to co-reside with u when 𝐶𝑉!

is equal to zero.

The CV in the cloud is estimated using simulation by averaging the 𝐶𝑉! of every VM u:

𝑪𝑽 =
𝟏
𝒏 𝑪𝑽𝒖

𝒏

𝒖!𝟏

 ,𝟎 ≤ 𝑪𝑽 ≤ 𝟏

From an attacker perspective, the existence of an 𝐶𝑉! during 𝐿𝑇! (i.e. 𝐶𝑉!≠ 0) is a necessary

condition to co-reside with u, however it is not sufficient to guarantee that the PA will select

u’s host to place the attacker’s co-residing VMs. Therefore, 𝐶𝑉!≠ 0 represents the first

condition to co-reside with u (see the conditions of a co-residency hit in Section 3.2 of this

chapter), while the second condition is represented by the next metric.

3.4.4 Co-residency Activity (CA)

Considering the entire IaaS cloud, an inter-placement window can be defined as the time

elapsed between any two consecutive placements of VMs (Figure 3.5). For a given VM u at

host x, Co-residency Activity 𝐶𝐴! is the ratio between the inter-placement windows (that

precedes each co-residency hit) and the 𝐿𝑇!. In case x is full during the entire 𝐿𝑇! then 𝐶𝐴! is

equal to zero (0 ≤ 𝐶𝐴! ≤ 1).

 Figure 3.5 Obtaining Co-residency Activity 𝑪𝑨𝒖 of a given VM u.

 50

From an attacker perspective, it is impossible to co-reside with u when the 𝐶𝐴! is equal to

zero. Unlike the 𝐶𝑉!, the existence of a 𝐶𝐴! during 𝐿𝑇! (i.e.𝐶𝐴!≠ 0) is sufficient to

guarantee that u will receive a co-residency hit. Therefore, 𝐶𝐴! represents the second

condition to co-reside with u (see Section 3.2).

Similar to the CV in the cloud, the CA is estimated using simulation by averaging the 𝐶𝐴! of

each VM u:

𝑪𝑨 =
𝟏
𝒏 𝑪𝑨𝒖

𝒏

𝒖!𝟏

 ,𝟎 ≤ 𝑪𝑨 ≤ 𝟏

3.5 Summary

This chapter described how the IaaS cloud is modelled as well as defining the attacker model.

Then, the behaviour of co-residency in the model was characterized using four co-residency

metrics. Some of these characteristics include how likely a given VM u will be co-resided by

another VM v (i.e. the CCP), as well as how long this co-residency takes to occur (i.e. the

HFL). These co-residency metrics are used in Chapter 4 to identify the most influential

parameters on co-residency (i.e. the second research question). In addition, Chapter 5 uses

these metrics to identify the best settings of the most influential parameters in four PAs that

reduce the probability that a given VM u experiences a co-residency (i.e. the third research

question). Next, the co-residency metrics are used in Chapter 6 to derive analytical estimates

of probabilities related to malicious co-residency. These probabilities include the probability

that a given VM u will be co-resided by a malicious VM v and for how long it remains free

from malicious hits (i.e. the fourth research question).

 51

Chapter 4

Quantifying Influence of Cloud Parameters on Co-residency

4.1 Introduction

This chapter is dedicated to answering the second research question on the most influential

cloud parameters on the co-residency metrics. A parameter’s influence, measured in this

chapter as the parameter’s effect, is an estimate of how much varying a parameter influences

the co-residency metrics (i.e. CCP, HFL, CV and CA).

Perhaps the main challenge faced in this chapter is that there are many cloud parameters and

parameters’ settings to be included in limited resources experiments. In order to overcome

this challenge, an Influence Evaluation Strategy is proposed to simplify the process of

designing experiments that have a large number of parameters and settings. The use of

fractional factorial design is one step (of multiple steps) that the strategy applies to construct

a reduced and balanced experiment. Fractional factorial experiments are usually used to

measure simultaneously the effects of many parameters on a product or process in a cost-

effective way using minimal experimental runs [33].

Further, the Influence Evaluation Strategy proposes a statistical approach to quantify the

effect of varying multiple parameters on the co-residency metrics such as varying the rate at

which VMs are requested, using different numbers of hosts and others. The strategy also

extends the influence evaluation to include how two parameters, together, affect the co-

residency metrics (i.e. parameters interaction effect).

This chapter applies the Influence Evaluation Strategy using the VMC simulator as a testbed

(see Appendix F for more details on the VMC simulator). The strategy quantifies the

influence of cloud parameters on the co-residency metrics then identifies the most influential

parameters and 2-parameter interactions in four PAs. These PAs are First Fit, Next Fit, Power

Save and Random. The identified parameters are then used in Chapter 5 to determine the best

parameters’ settings that reduce the probability of co-residency in four PAs.

The remaining of this chapter is organized as follows. The next section outlines preliminary

definitions that are used in this chapter. In Section 4.3 the four-phase Influence Evaluation

Strategy is defined and then applied. Section 4.4 describes the experiments settings. The

findings are presented in Section 4.5 and discussed in Section 4.6.

 52

4.2 Preliminary Definitions

The following definitions will be used throughout this chapter:

• Experiment Design: In this chapter, changes are made to one or more independent

variables (i.e. the parameters) in order to observe the significant effect the changes

have on the co-residency metrics. Design of experiments (DoE) theory [34] provides

different ways to observe these effects. In particular, the Influence Evaluation

Strategy in this chapter uses fractional factorial experiment design (see Appendix B)

to construct reduced and balanced experiments. Next, these experiments are used to

quantify easily the influence of cloud parameters on the co-residency metrics and then

to identify the most influential parameters and 2-parameter interactions in four PAs.

The following are the main components of an experiment design: dependent

variables, independent variables, levels and experimental runs.

• Dependent Variables: In this chapter, the Influence Evaluation Strategy uses

simulation to measure the parameters and interactions effects on the co-residency

metrics (CCP, HFL, CV and CA). Therefore, the co-residency metrics represent the

experiments’ dependent variables.

• Independent Variables (Parameters): The independent variables represent the

experiment’s input. Since the VMC simulator is used as a testbed, the simulator’s 36

parameters (Table A.1) represent the experiments’ independent variables. More detail

on the VMC simulator is provided in Appendix A.

• Levels: Levels refer to the parameter’s settings/values in a given experiment. The

Influence Evaluation Strategy uses 2-level experiments that assign two numerical

levels to each parameter: a low level and a high level.

• Experimental runs: In each experiment in this chapter, an experimental run consists

of a unique combination of levels of parameters.

• Fractional Factorial Experiment Design: When there are too many parameters to

be included in a limited-resources experiment, fractional factorial design helps to

construct a reduced experiment design. Fractional factorial experiments are usually

used to measure simultaneously the effects of many parameters on a product or

process in a cost-effective way using minimal experimental runs [33]. The Influence

Evaluation Strategy uses 2-way fractional factorial experiment designs that assign

two levels for each parameter. As a result, this allows measuring the effects on the co-

residency metrics of each parameter in isolation and in combination with another

 53

parameter (known as 2-parameter interaction). Table 4.1 shows in (a) an example of a

2-way experiment design that has the following:

o The CCP metric as the dependent variable

o Two parameters X1 and X2

o 2 levels: (X1!"# and X1!!"!) and (X2!"# and X2!!"!) for X1 and X2

respectively.

o Four experimental runs.

In addition, fractional factorial design ensures a balanced experiment. A balanced experiment

design guarantees that all parameters’ levels are equally tested as shown in (b) and (c) in

Table 4.1. More detail on how to construct 2-way fractional factorial designs is provided in

Appendix B.

 Run X1 X2 CCP

1 X1!"# X2!"# 0.55

2 X1!"# X2!!"! 0.53

3 X1!!"! X2!"# 0.34

4 X1!!"! X2!!"! 0.39

(a) Fractional factorial experiment runs.

Run X1 CCP

1 X1!"# 0.55

2 X1!"# 0.53

Run X1 CCP

3 X1!!"! 0.34

4 X1!!"! 0.39

Run X2 CCP

1 X2!"# 0.55

3 X2!"# 0.34

Run X2 CCP

2 X2!!"! 0.53

4 X2!!"! 0.39

(b) In the left table: Runs that test X1

on Low level and on High level in

the right table

 (c) In the left table: Runs that test X2 on

Low level and on High level in the

right table

Table 4.1 Testing each parameter’s level in a two-way fractional factorial experiment

design

• Range: A range measures the numerical distance between a parameter’s 2-level

values (i.e. the low and high values). Two types of ranges are defined for each

parameter: the narrow range and the broad range, where the narrow range is nested

 54

within the broad range. Table 4.2 shows how the [Number of Clusters] parameter, for

instance, is tested using narrow range and broad range.

Range

Narrow Range Broad Range

Low Level High level Low Level High level

Number of Clusters 15 30 10 50

 Table 4.2 Example of the narrow and broad ranges.

• Narrow-experiment and Broad-experiment: The Influence Evaluation Strategy

uses two fractional factorial experiments (i.e. narrow-experiment and broad-

experiment) that will be conducted using four PAs. The narrow-experiment refers to

the experiment that assigns two levels to the parameters from the narrow range,

whereas the broad-experiment assigns two levels from the broad range. Each

experiment consists of 16 experimental runs that are conducted using simulation.

• Parameter Effect: A parameter’s effect is an assessment of the parameter influence.

The parameter’s effect measures the size of the change on the co-residency metric

that occurs when the parameter level is varied. In the Influence Evaluation Strategy,

ANOVA test calculates the effects using the simulation estimates of the co-residency

metrics (see Section 4.3.4.1).

• 2-Parameter Interaction’s Effect: In addition to the parameters’ effects, the effect

of every 2-parameter interaction is evaluated. Two parameters interact if the effect of

one of the parameters differs depending on the level of the other parameter. For

instance, the effect of users’ arrival rate on the co-residency metrics could differ

depending on how many VMs each user requests. An interaction’s effect measures

the size of the change on the co-residency metric that occurs when the levels of two

parameters (combined) are varied. An interaction of two parameters X1 and X2 is

denoted as X1*X2.

• Effect’s Level of Significance: The significance level of an effect can be reported in

the following three ways based on the p-value as suggested by [22]:

 • `significant': 0.01 < p-value < 0.05;

 • `highly significant': 0.001 < p-value < 0.01; and

 • `very highly significant': p-value < 0.001

 55

This Influence Evaluation Strategy reports an effect to be significant if the effect has

a p–value that is less than 0.05. Only statistically significant effects are considered

when quantifying the parameters influence (see Section 4.3.4.2).

• Experimental Runs Repetitions: A repetition of an experimental run is used to

increase the confidence on the results and to reduce the possibility of errors or

anomalous results [14]. In this chapter, each experimental run is simulated in ten

repetitions.

• Design Resolution: The resolution of a fractional factorial experiment design

specifies the degree to which the effect of each parameter confounds with the effects

of other parameters and interactions (see Appendix B for more details). A fractional

factorial design’s resolution can be of any of the following types:

• II: A parameter’s effect is confounded with another parameter’s effect.

• III: A parameter’s effect may confound with a 2-parameter interaction’s effect.

• IV: A parameter’s effect does not confound with any other parameter’s effect

nor with any 2-parameter interactions’ effect.

• V: A parameter’s effect does not confound with any 3-parameter interactions’

effect, and a 2-parameter interactions’ effect does not confound with any 2-

parameter interactions’ effect.

• VI: A parameter’s effect does not confound with any 4-parameter interactions’

effect, and a 2-parameter interactions’ effect does not confound with any 3-

parameter interactions’ effect.

A resolution IV fractional factorial design is used throughout this chapter.

4.3 Influence Evaluation Strategy

Using the VMC simulator, the Influence Evaluation Strategy quantifies the influence of cloud

parameters on the co-residency metrics in four PAs (First Fit, Next Fit, Power Save and

Random). Then, the strategy identifies the most influential parameters and 2-parameter

interactions in the four PAs. The VMC simulator requires 36 different parameters to be

defined in order to simulate the IaaS cloud model in Chapter 3. Examining each parameter

effect under many levels could increase the reliability of the results, as well as increasing the

experiment size. However, measuring the effects of all the 36 parameters using every

possible level is impractical due to the limited time and resources available to this thesis. The

 56

Influence Evaluation Strategy overcomes this challenge by simplifying the process of

conducting experiments that have a large number of parameters and levels.

This simplification tries to obtain a reduced-size experiment by reducing the number of

parameters, levels, and experiment’s runs as much as possible without seriously affecting the

experiment’s outcome. More precisely, the strategy comprises an effective reduction of

parameters in the first phase and a parameters levels reduction in the second phase leading to

the design of two reduced-size experiments using fractional factorial design in the third

phase. Finally, the fourth phase uses the VMC simulator to conduct the experiments.

Ultimately, the Analysis Of Variance test ANOVA is applied to quantify the parameters’

effects on the co-residency metrics both in isolation (i.e. parameters’ effects) and

combination (i.e. 2-parameter interactions effects).

The first three phases of the strategy are extended from [59] with slight differences that are

indicated throughout this chapter.

This Influence Evaluation Strategy consists of four phases that aim to:

1- Simplify the process of designing experiments that have a large number of

parameters and levels. As shown in the following sections, this simplification tends to

reduce the number of parameters and levels and, therefore, the experiment size as

much as possible without affecting the experiment’s outcome.

2- Identify the parameters and interactions that influence the co-residency metrics the

most in IaaS clouds under each PA. In order to do so, the strategy quantifies the

influence of multiple cloud parameters and interactions on the co-residency metrics.

The most influential parameters and interactions on the co-residency metrics will be used in

Chapter 5 to identify the best parameters’ settings in four PAs that reduce the co-residency

probability.

The following sections outline the four phases of the Influence Evaluation Strategy and how

they have been applied to design and conduct two reduced size experiments: the narrow-

experiment and the broad-experiment.

 57

4.3.1 Phase 1: Parameters Reduction Using Composed Parameters

Phase input: 36 parameters used by the VMC simulator.

Phase Output: eight composed parameters.

The parameters reduction using the parameter composing method was originally presented in

[59] as one of the multiple steps towards designing reduced size experiments for identifying

the most significant parameters influencing large-scale model behaviour. Using the

parameters of the Koala simulator, they demonstrated the efficiency of composing similar

parameters and reduced the Koala’s parameters from 82 to only 23.

This parameters reduction method was applied to the VMC simulator’s input parameters. The

parameters reduction method composes parameters that describe similar characteristics to

form a single parameter, referred to as a composed parameter. Table 4.3 shows the VMC

simulator’s parameters after the parameters’ reduction.

For example, the Number of Hosts parameter X2 in Table 4.3 composes five similar

parameters. That is Number of Hosts of Type H1, Number of Hosts of Type H2, Number of

Hosts of Type H3, Number of Hosts of Type H4 and Number of Hosts of Type H5

respectively. Each of the previous individual parameters specifies the number of hosts for a

single host type, whereas the composed parameter X2 specifies the total number hosts of all

types combined. Another example is the Maximum Host Utilization parameter X3. Again,

X3 composes similar parameters that individually specify the maximum utilization limit for

each host type in the VMC simulator. The parameters reduction phase was applied to the

VMC simulator parameters and successfully reduced the number of parameters that will be

used in the experiments from 36 to 8 parameters. Out of these eight parameters, Number of

Clusters X1 is the only non-composed parameter as there is no similar parameter to be

composed with.

On the other hand, [59] continued the parameters reduction and reduced another 12

parameters of the Koala simulator using domain knowledge to eliminate the parameters that

appear to be insignificant to the intended experiment. While this step seems to further reduce

the number of parameters, it is not applied in this thesis. This is because this step requires

prior knowledge of the parameters that influence the co-residency metrics, and such

knowledge is what this thesis is trying to discover.

 58

Composed

Parameters

ID Description Composed Parameter Consists of these

Parameters

Number of

Clusters

X1 How many clusters to be created in the simulated model. A

cloud has at least one cluster that contains a pool of hosts.

N/A

Number of

Hosts

X2

A cluster has at least one host. A host is a physical server

that runs VMs. Each host is assigned to a single cluster,

where the total number of hosts in the IaaS cloud is specified

using the [Number of Hosts] parameter. Each host can be

allocated a limited number of VMs specified using the [Max

Host Utilization] parameter. Hosts will be distributed

randomly into clusters with equal probability.

Number of Hosts of Type H1

Number of Hosts of Type H2

Number of Hosts of Type H3

Number of Hosts of Type H4

Number of Hosts of Type H5

Max Host

Utilization

X3

A Host is Full when the hosted VMs usage of the host's

resources (CPU, memory and storage) reaches the Max Host

Utilization percentage.

Max Utilization for Host Type H1

Max Utilization for Host Type H2

Max Utilization for Host Type H3

Max Utilization for Host Type H4

Max Utilization for Host Type H5

Users’ Arrival

Rate

X4

New users arrive into the IaaS cloud according to the [Users’

Arrival Rate] parameter that represents the average number

of new users to be created every time unit.

Users’ Arrival Rate Of Type U1

Users’ Arrival Rate Of Type U2

Users’ Arrival Rate Of Type U3

Users’ Arrival Rate Of Type U4

Users’ Arrival Rate Of Type U5

Max Number of

Users

X5

The maximum number of users (of all types) to be created

during the simulation

Max Number of Users of Type U1

Max Number of Users of Type U2

Max Number of Users of Type U3

Max Number of Users of Type U4

Max Number of Users of Type U5

Max Parallel

VMs per User

X6

The maximum number of concurrently running VMs (of all

types) a single user can have

Max Parallel VMs of User Type U1

Max Parallel VMs of User Type U2

Max Parallel VMs of User Type U3

Max Parallel VMs of User Type U4

Max Parallel VMs of User Type U5

VM Average

Life Time

X7

How long a user (on average) holds his running VM (of any

type) before terminating it (in time units)

X_SMALL VM Average Lifetime

SMALL VM Average Lifetime

MEDIUM VM Average Lifetime

LARGE VM Average Lifetime

X_LARGE VM Average Lifetime

VMs per

Request

X8

The number of VMs to be created in each new VMs request

The number of VMs per request must be less than or equal to

X6.

VMs per Request Rate for User Type U1

VMs per Request Rate for User Type U2

VMs per Request Rate for User Type U3

VMs per Request Rate for User Type U4

VMs per Request Rate for User Type U5

Table 4.3 The VMC parameters after reduction

 59

4.3.2 Phase 2: Levels Reduction Using Ranges

Phase inputs: eight parameters from the first phase.

Phase Outputs: Per parameter: two levels for the narrow range and

 two levels for the broad range.

Having reduced the number of parameters to eight in the first phase, this phase of the

Influence Evaluation Strategy reduces the number of the parameters’ levels. To highlight the

challenge faced in this phase, an assumption can be made that each parameter can take up to

2!" levels (i.e. the maximum value for a 32-bit unsigned integer). Moreover, each parameter

needs to be tested in each possible level to measure its effect. Consequently, this would result

in a gigantic experiment design that consists of (2!")! experimental runs, which exceeds the

time and resources available for this thesis. Again, [59] suggested a solution to this

challenge, one that assigns two levels for each parameter (low and high values). Then simply

measures the effect between these two levels and verifies the effect’s statistical significance.

There are a number of advantages of using two levels to measure the effect. Firstly, it

requires less experimental runs to test all parameters combinations, which allows more

repetitions of the experimental runs that can contribute significantly to the experiment's

robustness. In addition, using two levels per parameter fits naturally towards the next phase

of this Influence Evaluation Strategy that uses 2-way fractional factorial designs to reduce

the experiment size in a structured and balanced fashion.

However, using two levels to measure the effects comes with its limitations. Firstly, the two

levels that will be used to test each parameter’s effect, obviously, do not cover every possible

level. Secondly, measuring the effect of a parameter that is varied between two levels does

not guarantee that the parameter has a linear effect on the tested two levels. To illustrate the

effect’s linearity issue, Figure 4.1 represents the data from Table 4.1. Figure (a) suggests that

varying the two levels of parameter X2 does not change the CCP metric as much as X1 does.

However, testing X1 and X2 at more levels between the original low and high levels can

reveal a contradicting result as (b) demonstrates that X2 has, in fact, a larger influence,

changing the CCP more than X1 does.

 60

(a) X1 and X2 tested at two levels: low and high,

suggesting that X2 does not change the CCP metric

between its two levels as much as X1 does.

(b) X1 and X2 tested at extra two levels between low

and high, revealing that X2 has more influence as it

changes the CCP more than X1.

Figure 4.1 Limitation of using two levels to test the parameters’ effects.

The previous two limitations are addressed in the Influence Evaluation Strategy. Specifically,

the strategy tests the effect of each parameter on the co-residency metrics twice using two

ranges: (1) the narrow range and (2) the broad range (see range definition in Section 4.2).

Each parameter will be tested at two levels per range such that the narrow range is a subset of

the broad range. Such action helps the exploration of a wider range of parameters levels.

Another workaround to address the second limitation is carried out in Chapter 5. Firstly, the

most influential parameters on the co-residency metrics are tested at ten levels. Secondly,

Pearson’s correlation analysis [14] is used to ensure that the most influential parameters have

significant linear effects with the co-residency metrics. It is worthwhile to mention that this

linearity check is not present in the Mills method. This linearity check will also evaluate the

accuracy of the proposed Influence Evaluation Strategy (see Section 5.3.5 for more details).

For each parameter, Table 4.4 outlines the selected two levels for each range. Where

possible, the broad range extends the distance between each parameter’s two levels compared

to the narrow range. For instance, the Number of hosts X2 in the broad range examines two

extremes in terms of cloud infrastructure size (100 hosts in low level to 30000 hosts in high

level) compared to the narrow range (1000 hosts to 10000 hosts). Similarly, the same is

applicable to the rest of the parameters.

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

Low	
 High	

CCP	

X1	
 X2	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

Low	
 High	

CCP	

X1	
 X2	

 61

It is important to note that public IaaS cloud providers, such as Amazon EC2 and Windows

Azure, usually obscure the details of their cloud infrastructure, networks and even PAs [79].

For this reason and based on the available literature [10], [58], [59], the two ranges for each

parameter were selected in such a way that they represent different variations of possible

IaaS settings in the real world.

Parameter ID Narrow Range Broad Range

Low level High level Low level High level

Number of Clusters X1 15 30 10 50

Number of Hosts X2 1000 10000 100 30000

Max Host Utilization X3 80% 90% 50% 100%

Users’ Arrival Rate X4 2 3 1 5

Number of Users X5 35000 50000 10000 75000

Parallel VMs per User X6 12 18 5 20

VM Average Lifetime X7 2000 2500 1600 3600

VMs per Request X8 2 3 1 4

 Table 4.4 The selected two levels per range for each parameter

4.3.3 Phase 3: Experiment Reduction Using Fractional Factorial Design

Phase inputs: from the first phase : eight composed parameters, and

from the second phase: two levels for the narrow range per parameter

 and

 two levels for the broad range per parameter

Phase Output: two fractional factorial experiments: narrow-experiment and

 broad-experiment

This phase of the Influence Evaluation Strategy uses the eight composed parameters and their

two levels ranges to design the experiments that will be used to quantify the influence of

cloud parameters on the co-residency metrics. Each experiment is designed so that it tests all

necessary parameter combinations, including parameter interactions while trying to reduce

the number of experimental runs. However, testing every parameter combination makes the

number of experimental runs grow very quickly. 2-way fractional factorial design (defined in

 62

detail in Appendix B) will be used to construct balanced experiments with minimum

experimental runs in order to overcome this challenge. A balanced experiment design ensures

that all parameter levels are equally tested, like the example shown in (b) and (c) in Table

4.1. The basic concept of fractional factorial design is to include a subset (fraction) of the

original experimental runs such that only the important parameter combinations and

interactions are covered. This is in contrast to the traditional one parameter at a time

experimental approaches [90]. A resolution IV fractional factorial design is used throughout

this chapter. A resolution IV design ensures that the effect of a given parameter does not

confound with other parameters and 2-parameter interactions effects. The following sections

describe how fractional factorial is used to design the experiments in this chapter.

4.3.3.1 Factorial Experimental Designs

One of the main objectives of experimental design is to construct an experiment that is

capable of generating accurate results to support or reject the research hypothesis [59]. A

good experimental design must include all the necessary parameters combinations in order to

allow balanced experimentations. However, adding more parameters makes the experiment’s

design grow very quickly. For instance, the experiment in this chapter includes eight

parameters where each parameter takes two possible levels per range, yielding a total of (2!

= 256) experimental runs (i.e. parameter combinations). In Design of Experiment (DoE)

theory, this type of experimental design where all parameter combinations are tested is

known as full factorial design. However, one of the challenges of using full factorial design

is that it can be difficult to test every possible parameter combination and to repeat the

experiment at the same time. For instance, including eight parameters with two levels in a

full factorial experiment with ten repetitions dramatically increases the number of the

experimental runs to 2560. One practical solution to overcome this limitation is to apply

fractional factorial to design reduced size experiments. Appendix B provides a full

description of factorial and fractional factorial experimental design. Section B.2 shows the

steps to design the main fractional factorial experiment in this chapter that uses a !
!!

 fraction

of the 2! full factorial experiment, reducing the experimental runs from 256 to 16 runs only.

This design, of resolution IV, is denoted as 2IV
4.

Using the fractional factorial design in Table B.4, levels from the narrow and broad ranges

(Table 4.4) are assigned to the fractional factorial design table. This results in the narrow-

 63

experiment that uses the 2-level values of the narrow range (Table 4.5) and the broad-

experiment that uses the 2-level values of the broad range (Table 4.6).

Run X1 X2 X3 X4 X5 X6 X7 X8

1 15.0 1000 80 2.0 35000 12 2000 2.0

2 30.0 1000 80 2.0 35000 18 2500 3.0

3 15.0 10000 80 2.0 50000 12 2500 3.0

4 30.0 10000 80 2.0 50000 18 2000 2.0

5 15.0 1000 90 2.0 50000 18 2500 2.0

6 30.0 1000 90 2.0 50000 12 2000 3.0

7 15.0 10000 90 2.0 35000 18 2000 3.0

8 30.0 10000 90 2.0 35000 12 2500 2.0

9 15.0 1000 80 3.0 50000 18 2000 3.0

10 30.0 1000 80 3.0 50000 12 2500 2.0

11 15.0 10000 80 3.0 35000 18 2500 2.0

12 30.0 10000 80 3.0 35000 12 2000 3.0

13 15.0 1000 90 3.0 35000 12 2500 3.0

14 30.0 1000 90 3.0 35000 18 2000 2.0

15 15.0 10000 90 3.0 50000 12 2000 2.0

16 30.0 10000 90 3.0 50000 18 2500 3.0

 Table 4.5 The narrow-experiment design

 64

Run X1 X2 X3 X4 X5 X6 X7 X8

1 10 100 50 1 10000 5.0 1600 1.0

2 50 100 50 1 10000 20.0 3600 4.0

3 10 30000 50 1 75000 5.0 3600 4.0

4 50 30000 50 1 75000 20.0 1600 1.0

5 10 100 100 1 75000 20.0 3600 1.0

6 50 100 100 1 75000 5.0 1600 4.0

7 10 30000 100 1 10000 20.0 1600 4.0

8 50 30000 100 1 10000 5.0 3600 1.0

9 10 100 50 5 75000 20.0 1600 4.0

10 50 100 50 5 75000 5.0 3600 1.0

11 10 30000 50 5 10000 20.0 3600 1.0

12 50 30000 50 5 10000 5.0 1600 4.0

13 10 100 100 5 10000 5.0 3600 4.0

14 50 100 100 5 10000 20.0 1600 1.0

15 10 30000 100 5 75000 5.0 1600 1.0

16 50 30000 100 5 75000 20.0 3600 4.0

 Table 4.6 The broad-experiment design

As pointed out at the beginning of this chapter, the outcome of the Influence Evaluation

Strategy is to quantify the influence of cloud parameters on the co-residency metrics in four

PAs. Then, the strategy will be able to identify the most influential parameters and 2-

parameter interactions. Therefore, the next phase uses the VMC simulator to estimate the co-

residency metrics using the previous narrow-experiment (Table 4.5) and the broad-

experiment (Table 4.6) under the four PAs. In addition, each experimental run is simulated

ten times to increase the confidence in the findings. This results in 320 simulations per PA

and 1280 simulations in total for the four PAs.

 65

4.3.4 Phase 4: Quantifying the Parameters Influence on the Co-residency Metrics

Phase inputs: From phase 3: two fractional factorial experiments:

 narrow-experiment and

broad-experiment

Phase Output: Most influential parameters and interactions on

 the co-residency metrics under each PA

Using the VMC simulator, this phase quantifies the influence of cloud parameters on the co-

residency metrics then identifies the most influential parameters and 2-parameter interactions

in four PAs. This action aims to answer the research’s second question on what influences

co-residency the most. Parameters and interactions influence is quantified under each PA

separately in order to make the identification process more accurate since the PA is

responsible for controlling where and when each VM is placed in the cloud. This separation

is essential in this thesis to examine whether an influential parameter under a given PA would

have the same, less, more or no influence at all under another PA. Therefore, the narrow-

experiment and broad-experiment will be simulated in this phase using four PAs (i.e. First

Fit, Next Fit, Power Save and Random). Before describing how the simulation experiments

in this phase were carried out, the following sections explain how to measure and quantify

the effect and how to determine the effect significance.

4.3.4.1 Effect Definition

As defined at the beginning of this chapter, changing a parameter’s level can yield a change

on a given co-residency metric, where the size of this change represents the parameter’s

effect on that metric. The effect of a parameter or an interaction X on a given co-residency

metric M is calculated as follows:

Estimated Effect of X = | 𝑴𝑯𝒊𝒈𝒉 − 𝑴𝑳𝒐𝒘 |

where:

 𝑀!"#! = Metric’s average when X is on its high level

 𝑀!"# = Metric’s average when X is on its low level

An effect also tells the direction of the change. For instance, a negative effect implies that

changing the parameter’s level from high to low yields a decrement in the co-residency

metric value. However, this chapter focuses on quantifying the parameters and interactions

 66

effects, regardless of the direction of the effects. Therefore, the magnitude of the effect value

is used to quantify the parameters and interactions influence on the co-residency metrics. A

higher effect value implies that a larger change takes place on the co-residency metric and

vice versa.

The effect for each parameter and interaction can be easily measured using Analysis Of

Variance (ANOVA). ANOVA is a collection of statistical models that can be used to

measure the effect of a single parameter as well as the effect of a 2-parameter interaction.

Using Minitab statistical software [7], an ANOVA test was applied on the simulation

estimates of the co-residency metrics. These estimates were obtained from the narrow-

experiment and the broad-experiment for each of the four PAs (First Fit, Next Fit, Power

Save and Random). The ANOVA test shows the effect of each parameter and interaction

relating to each co-residency metric. Using Minitab, the following Table 4.7 displays a

example of ANOVA test output of the effects on the CCP metric for two parameters X1 and

X2 and their 2-parameter interaction.

-­‐	

Fractional	
 Factorial	
 Design	
 	

	

Estimated	
 Effects	
 and	
 for	
 CCP	
 (coded	
 units)	

-­‐	

Term	
 	
 	
 	
 	
 	
 	
 Effect	
 	
 	
 P	

X1	
 	
 	
 	
 	
 	
 	
 	
 -­‐0.035	
 	
 	
 	
 0.000	

X2	
 	
 	
 	
 	
 	
 	
 	
 -­‐0.0131	
 	
 	
 0.120	

X1*X2	
 	
 	
 	
 	
 	
 0.0751	
 	
 	
 	
 0.890	

-­‐	

 Table 4.7 Minitab statistical software output example

Having defined how to calculate the effects, it is more important to verify that the calculated

effect is significant enough to reproduce the same change on the co-residency metrics. The

effect significance can be verified using the p-value of each effect. The following section

defines when to consider the effect to be significant.

4.3.4.2 Effect Significance

In order to accept that a parameter or an interaction has a significant affect on a given metric,

a null hypothesis 𝐻! and an alternative hypothesis 𝐻! are defined as follows:

 67

𝑯𝟎: effect = 𝟎

𝑯𝟏: effect ≠ 𝟎

The above null hypothesis 𝐻! implies that there is no effect. In order to calculate the p-value

for 𝐻! testing, Student’s t-test is used [14]. The effect’s p-value gives the probability that 𝐻!

is held true when the experiment is conducted again. In this thesis, an effect is considered to

be statistically significant when there is less than 5% chance of accepting 𝐻! whenever the

experiment is repeated. Therefore, if the effect’s p-value is below 0.05 then 𝐻! is rejected

(and therefore 𝐻! is accepted), and the effect is considered to have a statistical significance.

In the previous example in Table 4.7, parameter X1 has a significant effect since its p-value

is less than 0.05. On the other hand, X2 and the X1*X2 interaction do not have significant

effects as their p-values are greater than 0.05.

In order to quantify the parameters’ influence under a given PA, the statistically significant

effects on each metric are used to calculate the overall Weighted Effect. The overall

Weighted Effect quantifies the overall influence of each parameter and interaction on the

four co-residency metrics combined as shown in the next section.

4.3.4.3 Overall Weighted Effect WE

For each PA, the previous step defines how to measure the parameters and interactions

effects and more importantly how to verify the effects significance. The

parameter/interaction overall Weighted Effect, or overall WE for short, consists of the

parameter/interaction WEs on the four co-residency metrics. A parameter’s WE on a given

co-residency metric quantifies the parameter’s effect relative to other parameters/interactions

effects on the same metric. More precisely, the WE measures an effect with respect to the

maximum observed significant effect on the same metric. As each PA is tested using a

narrow-experiment and a broad-experiment, the parameter/interaction WE on a given co-

residency metric M is calculated from both experiments as follows:

For a given parameter or interaction X, let e be a variable that takes the following values

(where the p-value corresponds to the parameter or interaction effect):

 68

𝒆 =
X′s effect on M

Maximum significant effect of all Xs on M , p− value < 0.05

 0 , p− value ≥ 0.05

Then X’s WE on a given metric M =

e in the narrow-experiment

+

e in the broad-experiment, 0 ≤ WE ≤ 2

For each X under a given PA, the sum of WEs on all four co-residency metrics represents X’s

overall WE on the co-residency metrics:

X’s Overall WE = (X’s WE on each M), 0 ≤ Overall WE ≤ 8

The maximum WE a parameter/interaction can achieve on a given metric is two. This is only

possible when the parameter/interaction has the highest significant effect on that metric in the

narrow-experiment and the broad-experiment together. Accordingly, the maximum overall

WE a parameter/interaction can achieve under a given PA is eight, given that the

parameter/interaction achieves maximum WE (i.e. two) on the four co-residency metrics.

Therefore, the overall WE for each parameter/interaction quantifies its overall influence on

the co-residency metrics compared to other parameters and interactions.

Under each PA, the parameters and interactions with the highest overall WE are selected as

the most influential parameters. The selected parameters will be used in Chapter 5 to answer

the third research question on the best parameters’ settings that reduce the co-residency

probability in four PAs.

4.4 Experimental Setup

The VMC simulator has been used to estimate the co-residency metrics in the narrow-

experiment and the broad-experiment (Table 4.5 and Table 4.6) under four PAs: First Fit,

Next Fit, Power Save and Random. Each experiment consisted of 16 experimental runs that

tested each parameter eight times per level. In addition, each experimental run was repeated

in ten simulation repetitions per PA. Such an approach allowed obtaining 160 test

observations per parameter level per PA, and, therefore, increased the confidence in the

simulation results.

 69

All experimental runs were simulated for a period of 3800 minutes, and the simulation results

were collected after a 200 minutes warm-up period. This warm-up period allowed an

opportunity for VM placement activities to take place before recording the results.

Moreover, the VMC simulator depends on Java’s random function to simulate the co-

residency behaviour. This function accepts a number and returns a pseudorandom, uniformly

distributed value between 0 (inclusive) and the specified number (exclusive). The sequence

of the returned random numbers depends on the function’s seed number. The seed number

sets the initial value of the internal state of the pseudorandom number generator. If two

simulation runs are using the same random seed, they will generate identical sequences of

numbers. In order to enhance the robustness of the random numbers generated using Java’s

random function, the system clock is used as a seed number each time the random function is

used. Such an approach increased the confidence that each simulation run will receive a

different sequence of the generated random numbers. In addition, the simulation runs were

conducted at different times of the day using multiple PCs that have different configurations

(Table 4.8). Such an action ensures that the time at which the simulation is carried out, and

the PCs configurations’ impact on the simulation results, is minimal.

Configurations Type 1 Type 2 Type 3

Processor Spec. Intel(R) Core i7 CPU Intel(R) Core i7-3770 CPU Intel(R) Core i5 CPU

No. of Cores 8 CPUs X 2.93GHz 8 CPUs X 3.4GHz 2 CPUs X 2.4GHz

Memory Size 4096MB RAM 8192MB RAM 8192MB RAM

Operating System Windows 7 (64 bit) Windows 7 (64 bit) OS X 10.9.4

 Table 4.8 PC configurations used to run the VMC simulator

The VMC simulator generates the results in Microsoft Excel format and text format (see

Appendix A). Once the simulation is done, the results are entered into the Minitab statistical

software to carry the ANOVA test in order to measure the parameters and interactions

effects.

4.5 Findings

The influence of cloud parameters and interactions on the co-residency metrics were

quantified under each PA as follows:

 70

1 For each parameter and interaction: the effect and its significance on each of the co-

residency metrics (CCP, HFL, CV and CA) were calculated.

2 Then, the overall WE of each parameter and interaction was calculated to quantify the

parameters and interactions influence on the co-residency metrics.

Under each PA, four parameters and interactions with the highest overall WE were identified

as the most influential parameters on the co-residency metrics.

The next two subsections present the results in an orderly sequence using the above two

steps. The presented results confirm the thesis’s first hypothesis by quantifying the

parameters’ and interactions’ influence on the co-residency metrics. The following

observations were made as a result of simulating all experimental runs from the narrow-

experiment and the broad-experiment (Table 4.5 and Table 4.6). Each run was tested in ten

simulation repetitions under four PAs: First Fit, Next Fit, Power Save and Random.

4.5.1 Significant Effects Results

For the narrow-experiment and the broad-experiment, Table 4.9 shows the p-values (i.e. the

level of significance) of the parameters and 2-parameter interactions effects on the four co-

residency metrics under each PA.

Under each PA, each level of every parameter was tested in 80 simulation repetitions in both

the narrow-experiment and the broad-experiment, and, therefore, each effect’s p-value was

calculated with 79 degrees of freedom. Wherever a parameter’s effect is significant (i.e. has a

p-value < 0.05) then the effect will be considered in the parameter’s overall WE calculations.

 71

Table 4.9 Examining the effects significance using p-value

 Effects’ p-values on the co-residency metrics per Placement Algorithm

PAê Metrics è CCP HFL
CV CA

Fi
rs

t F
it

Experiment è

Parameters ê
Broad Narrow Broad Narrow Broad Narrow Broad Narrow

X1 0 0.897 0.014 0.681 0 0.532 0 0.698
X2 0 0.108 0.01 0 0 0 0 0
X3 0 0 0.074 0.549 0.035 0 0 0.87
X4 0 0 0 0.001 0.511 0.278 0 0
X5 0 0.565 0 0.811 0 0.442 0.004 0.643
X6 0.113 0.789 0.029 0.686 0.482 0.485 0.017 0.021
X7 0 0 0 0.226 0 0.409 0 0
X8 0 0 0.251 0.226 0.002 0.984 0 0.16
X1*X2 0 0.187 0.046 0.687 0.209 0.704 0 0.823
X1*X3 0 0.036 0.027 0.119 0 0.934 0 0
X1*X4 0.16 0.863 0.05 0.88 0 0.406 0 0.012
X1*X5 0.126 0.508 0.061 0.619 0.004 0.588 0.131 0.004
X1*X6 0.111 0.978 0.826 0.743 0.04 0.32 0.001 0.716
X1*X7 0 0.594 0.006 0.663 0 0 0 0.773
X1*X8 0 0.699 0.271 0.469 0.027 0.528 0 0

N
ex

t F
it

X1 0 0.147 0 0.824 0.632 0.9 0 0.323
X2 0 0 0 0 0 0 0 0
X3 0 0.252 0.255 0.831 0.352 0.323 0 0.45
X4 0 0 0 0 0 0.52 0 0.925
X5 0.327 0.623 0.703 0.883 0.905 0.993 0.671 0.469
X6 0.455 0.38 0.675 0.683 0.439 0.97 0.004 0.341
X7 0 0.904 0.036 0.759 0.728 0.781 0 0.88
X8 0 0 0 0.026 0 0.735 0 0.185
X1*X2 0 0.027 0 0.815 0.799 0.912 0 0.558
X1*X3 0 0.023 0.175 0.085 0.895 0.978 0 0.697
X1*X4 0 0 0 0.13 0 0.834 0 0.754
X1*X5 0.001 0.978 0.74 0.978 0.718 0.986 0.004 0.34
X1*X6 0.001 0.948 0.711 0.923 0.996 0.952 0.691 0.325
X1*X7 0 0.608 0.699 0.855 0.759 0.912 0 0.404
X1*X8 0 0 0 0.02 0 0.937 0 0.006

Po
w

er
 S

av
e

X1 0 0.887 0.04 0.764 0 0.322 0 0.885
X2 0 0 0.007 0 0 0 0 0
X3 0 0 0.148 0.918 0.003 0 0 0.472
X4 0 0 0 0.002 0.619 0.731 0.001 0
X5 0 0.926 0.023 0.868 0 0.169 0.022 0.803
X6 0 0.576 0.085 0.876 0.033 0.968 0.53 0.001
X7 0 0 0 0.149 0 0.652 0 0
X8 0 0 0.024 0.214 0.096 0.281 0.191 0.085
X1*X2 0 0.374 0 0.69 0.525 0.775 0 0.819
X1*X3 0 0.065 0.302 0.142 0 0.966 0 0
X1*X4 0.576 0.755 0.029 0.685 0 0.845 0.244 0.009
X1*X5 0 0.084 0.03 0.766 0.535 0.168 0.08 0
X1*X6 0.017 0.834 0.589 0.601 0.05 0.467 0.32 0.927
X1*X7 0 0.519 0.33 0.994 0 0 0 0.504
X1*X8 0 0.512 0.633 0.538 0.001 0.138 0.001 0

R
an

do
m

X1 0.035 0.889 0.468 0.893 0.887 0.756 0 0.214
X2 0 0 0 0 0 0 0 0
X3 0 0.291 0.764 0.768 0.202 0.239 0 0.519
X4 0 0 0.046 0.029 0 0.971 0 0.724
X5 0.53 0.549 0.242 0.99 0.736 0.957 0.374 0.479
X6 0.055 0.418 0.698 0.875 0.83 0.982 0 0.276
X7 0 0.345 0.011 0.57 0.474 0.835 0 0.993
X8 0 0 0.514 0.191 0.008 0.977 0 0.232
X1*X2 0 0.427 0.332 0.873 0.697 0.89 0 0.42
X1*X3 0 0 0.049 0.17 0.778 0.957 0 0.919
X1*X4 0 0 0.795 0.76 0.001 0.621 0 0.401
X1*X5 0.353 0.385 0.689 0.769 0.768 0.982 0 0.76
X1*X6 0.039 0.94 0.412 0.988 0.652 0.98 0.556 0.474
X1*X7 0 0.449 0.028 0.741 0.58 0.819 0 0.533
X1*X8 0 0 0.034 0.599 0 0.427 0 0

 72

It would be of interest, before proceeding to calculate the overall WE of the parameters and

interactions, to examine under which PA the parameters and interactions achieved more

significant effects on the co-residency metrics. There are 512 effect observations for the four

PAs in Table 4.9, of which 225 were statistically significant (see the highlighted cells). Out

of these significant effects, 28.88% were observed under First Fit, 23.55% under Next Fit,

26.66% under Power Save and 20.88% under Random.

In addition, it would also be of interest to see whether using two level ranges (i.e. used in the

narrow-experiment and the broad-experiment) has shown any difference with regard to the

effects significance. Out of all significant effects in Table 4.9, 72.88% were observed under

the broad-experiment compared to 27.11% under the narrow-experiment.

4.5.2 Identifying the Most Influential Parameters on the Co-residency Metrics

Under each PA, the overall WE of each parameter/interaction were calculated as described in

Section 4.3.4.3. As mentioned earlier, the maximum overall WE a parameter/interaction can

achieve under each PA is eight, given that the parameter/interaction has achieved maximum

WE (i.e. two) on the four co-residency metrics.

Table 4.10 outlines the overall WE of the parameters and interactions under First Fit, Next

Fit, Power Save and Random PAs. In general, the 2-parameter interactions scored lower

overall WE under the four PAs (average overall WE of 0.92) compared to the parameters

(average overall WE of 1.99).

 73

Overall Weighted Effect WE

ID
Parameter/

Interaction

Under

First Fit

Under

Next Fit

Under

Power Save

Under

Random

X1 Number of Clusters 1.064 1.216 0.990 0.245

X2 Number of Hosts 4.574 7.602 5.165 8.000

X3 Max Host Utilization 2.364 0.594 2.614 0.636

X4 Users’ Arrival Rate 4.295 1.969 4.197 1.101

X5 Number of Users 0.967 0.000 0.802 0.000

X6 Parallel VMs per User 0.511 0.135 0.510 0.180

X7 VM Average Lifetime 3.665 0.609 3.563 0.565

X8 VMs per Request 1.816 1.682 1.435 0.618

X1*X2

Two-parameter

interactions

0.715 1.376 0.839 0.239

X1*X3 2.142 0.456 1.716 0.656

X1*X4 1.109 1.689 0.801 0.742

X1*X5 0.476 0.150 0.501 0.175

X1*X6 0.442 0.017 0.017 0.013

X1*X7 2.000 0.580 1.851 0.721

X1*X8 1.209 2.160 1.492 1.517

 Table 4.10 Overall WE of the parameters and interactions

 74

The top four parameters and interactions with the highest overall WE under each PA are

highlighted in Table 4.10. One major observation is that First Fit and Power Save share the

same top four parameters and interactions, and the same observation applies for Next Fit and

Random. Appendix C contains the parameters and interactions WEs on each of the co-

residency metrics under each PA. Moreover, Appendix D presents the interaction plots of the

significant 2-parameter interactions on the co-residency metrics.

Table 4.11 shows the parameters that scored the highest overall WE Under First Fit and

Power Save:

Parameters Overall WE under First Fit Overall WE under Power Save

X2 4.573 5.165

X4 4.294 4.197

X7 3.664 3.563

X3 2.363 2.613

 Table 4.11 The four parameters/interactions with the highest overall WE under First
Fit and Power Save

For Next Fit and Random, Table 4.12 shows the parameters and interactions that scored the

highest overall WE:

Parameters Overall WE under Next Fit Overall WE under Random

X2 7.601 8

X1*X8 2.160 1.516

X4 1.969 1.101

X1*X4 1.689 0.741

 Table 4.12 The four parameters/interactions with the highest overall WE under Next
Fit and Random

The Number of Hosts parameter (X2) repeatedly achieved the highest overall WE under the

four PAs, achieving the maximum overall WE (i.e. 8) under Random. However, the

parameters’ overall WEs were not similar under different PAs. For instance, The Number of

Hosts (X2) achieved a higher overall WE under Next Fit and Random (7.602 and 8.00)

 75

compared to a relatively lower overall WE First Fit and Power Save (4.574 and 5.165). In

contrast, The User Arrival Rate (X4) parameter had higher overall WE on First Fit and Power

Save (4.295 and 4.197) compared to Next Fit and Random (1.969 and 1.101).

In the following figures, the overall WE results from Table 4.10 are illustrated to compare the

parameters and interactions influence on the co-residency metrics under First Fit in (Figure

4.2), Next Fit in (Figure 4.3), Power Save in (Figure 4.4) and Random in (Figure 4.5).

The X-axis shows the parameters and the 2-parameter interactions and the Y-axis show their

overall WEs on the co-residency metrics.

Figure 4.2 The overall Weighted Effect WE of the parameters/interactions under First

Fit

0

1

2

3

4

5

6

7

8

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
1*

X
2

X
1*

X
3

X
1*

X
4

X
1*

X
5

X
1*

X
6

X
1*

X
7

X
1*

X
8

Overall WE Under First Fit

 76

Figure 4.3 The overall Weighted Effect WE of the parameters/interactions under Next

Fit

 Figure 4.4 The overall Weighted Effect WE of the parameters/interactions under

Power Save

0

1

2

3

4

5

6

7

8

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
1*

X
2

X
1*

X
3

X
1*

X
4

X
1*

X
5

X
1*

X
6

X
1*

X
7

X
1*

X
8

Overall WE Under Next Fit

0

1

2

3

4

5

6

7

8

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
1*

X
2

X
1*

X
3

X
1*

X
4

X
1*

X
5

X
1*

X
6

X
1*

X
7

X
1*

X
8

Overall WE Under Power Save

 77

 Figure 4.5 The overall Weighted Effect WE of the parameters/interactions under

Random

4.6 Discussion

The main outcomes of this chapter are:

• The four most influential parameters and interactions on the co-residency

metrics are the same for First Fit and Power Save on one hand, and for Next Fit

and Random, on the other hand.

This observation was the motivation for identifying the top four parameters and

interactions that achieved the highest overall WE under a given PA as the most

influential parameters and interactions on the co-residency metrics. This finding

reveals that similarities exist between PAs in terms of what influences the co-

residency behaviour in IaaS clouds (Table 4.11 and Table 4.12). The most likely

cause for the similarity between First Fit and Power Save is that they share one

common feature, that is, they prioritise the clusters and hosts with smaller IDs for

new VMs placements (see Appendix A). On the other hand, one possible explanation

of why Next Fit and Random have similar influential parameters and interactions is

related to how clusters and hosts are selected for placement. In particular, clusters and

hosts are selected in Next Fit in a cyclic fashion and in Random as a fair random

0

1

2

3

4

5

6

7

8

X
1

X
2

X
3

X
4

X
5

X
6

X
7

X
8

X
1*

X
2

X
1*

X
3

X
1*

X
4

X
1*

X
5

X
1*

X
6

X
1*

X
7

X
1*

X
8

Overall WE Under Random

 78

selection. For instance, for a given IaaS that has C clusters, Next Fit selects a given

cluster with a probability of !
!
 . Similarly, the same cluster will be selected for a new

VM placement in Random with the same probability. Appendix A describes in detail

how the four PAs select clusters and hosts for VMs placement.

It is important to mention that PAs have been frequently compared for various

applications such as [37], performance and energy consumptions [40], [55], [58],

[99]. However, this thesis is the first to compare PAs in terms of their impact on co-

residency behaviour. In addition, this thesis is the first to identify that a similarity

exists between First Fit and Power Save, as well as between Next Fit and Random.

• The four most influential parameters and interactions on the co-residency

metrics are identified under First Fit, Next Fit, Power Save and Random.

This finding answers the second research question (i.e. For a given PA, what are the

most influential cloud parameters affecting co-residency probability?). Table 4.10

shows that the quantified influence on the co-residency metrics varies between these

parameters and interactions. This variation confirms the first research hypothesis that

“for a given PA, cloud parameters such as the number of hosts and users do not have

the same influence on the co-residency probability in IaaS clouds.”

Out of many parameters that define the IaaS cloud environment, one of the most

significant findings in this chapter is that the number of hosts is the most influential

parameter under four PAs. In addition, user arrival rate was identified among the four

most influential parameters under four PAs.

The following shows the four most influential parameters and two-parameter

interactions under each PA:

- Under First Fit and Power Save:

The four most influential parameters on the co-residency metrics are (in

order): Number of Hosts (X2), User Arrival Rate (X4), and VM Average

Lifetime (X7) and Max Host Utilization (X3).

- Under Next Fit and Random:

The four most influential parameters on the co-residency metrics are (in

order): Number of Hosts (X2), interaction of the Number of Clusters and the

 79

VMs per Request parameters (X1*X8), User Arrival Rate (X4) and interaction

of the Number of Clusters and the Users’ Arrival Rate parameters (X1*X4).

Unlike First Fit and Power Save, 2-parameter interactions were identified to

be influential under Next Fit and Random.

This finding is particularly useful in this thesis to conduct further experiments in Chapter

5 on fewer, yet high influential, parameters. These experiments should provide valuable

insights on what settings enable the influential parameters to reduce the probability of co-

residency and under what PA.

• When a 2-level experiment is used to quantify the parameters and interactions

effects, the wider range between the two levels allows more significant effects

compared to a narrower range to be observed.

The results in Table 4.9 suggest that the parameters are more likely to have

significant effects on the co-residency metrics when they are varied between distant

levels. This finding suggests that adding/removing a few clusters, for example, is less

likely to cause a significant effect on the co-residency behaviour compared to a

relatively larger change.

In addition, this finding also suggests that using two different level ranges (narrow-

range and broad-range) in the Influence Evaluation Strategy was useful to quantify

the parameters influence on the co-residency metrics. The results show that the ratio

of significant effects between the narrow-range and broad-range was approximately

1:3.

4.7 Summary

Perhaps the main challenge faced in this chapter is that there were many cloud parameters

and parameters’ settings to be included in limited resources experiments. In order to

overcome this challenge, an Influence Evaluation Strategy has been proposed to simplify the

process of designing experiments that have a large number of parameters and settings. The

use of fractional factorial design was one step (of multiple steps) that the strategy applied to

construct a reduced and balanced experiment. Using the VMC simulator as a testbed, this

chapter has applied the Influence Evaluation Strategy to answer the second research question

on what parameters influence the co-residency metrics the most.

 80

Under each of the used PAs in this thesis, the strategy was able to quantify the influence of

eight cloud parameters and their interactions on the co-residency metrics. This quantification

led to identifying the four most influential parameters and 2-parameter interactions on the co-

residency metrics (Table 4.11 and Table 4.12). One of the most important findings in this

chapter is that the number of hosts is the most influential parameter under four PAs. Under

First Fit and Power Save, the four most influential parameters on the co-residency metrics

were number of hosts, user arrival rate, VM average lifetime and maximum host utilization.

On the other hand, the four most influential parameters under Next Fit and Random were the

number of hosts, the interaction of the number of clusters and VMs per request parameters,

user arrival rate and the interaction of the number of clusters and users’ arrival rate

parameters.

In addition, this thesis is the first to compare these four PAs in terms of their impact on the

co-residency metrics. The findings show that a similarity exists between First Fit and Power

Save, as well as between Next Fit and Random.

Further, the results presented in Table 4.10 support the first hypothesis put forward in Section

1.3. The first hypothesis states “for a given PA, cloud parameters such as the number of hosts

and users do not have the same influence on the co-residency probability in IaaS clouds.”

The next chapter (Chapter 5) is dedicated to answering the third research question on how the

most influential parameters’ settings can be used to reduce the co-residency probability in

four PAs.

 81

Chapter 5

Reducing Co-residency Probability

5.1 Introduction

This chapter aims to answer the third research question of “what are the parameter settings

that reduce the co-residency probability in a given PA.” The co-residency probability

determines the chance that a VM experiences an arbitrary co-residency hit (see Section 1.2).

Chapter 4 identified the most influential parameters and 2-paremeter interactions on the co-

residency metrics (Table 4.11 and Table 4.12). Under First Fit, Next Fit, Power Save and

Random, this chapter employs the VMC simulator to estimate the co-residency metrics using

controlled experiments. These estimates are obtained by examining the influential parameter

at more levels under four PAs.

This approach serves two important functions. First, these estimates are used to test the

influential parameters at more levels to investigate the relationship between each parameter

and the co-residency metrics, in order to determine the best parameter settings that reduce the

co-residency probability. For instance, does the increase in the number of hosts reflect a

linear increase or decrease in the co-residency probability? Second, comparing PAs in terms

of reducing the co-residency probability.

Since that the co-residency metrics characterize probabilities related to co-residency, an

assumption is made in this chapter that the co-residency probability is reduced when:

• The Co-residency Coverage Probability CCP is reduced.

• The Hit-Free Lifetime HFL is increased.

• The Co-residency Vacancy CV is reduced.

• The Co-residency Activity CA is reduced.

The remainder of this chapter is organized as follows. The next section describes the method

and the experiment settings that were used to estimate the co-residency metrics. The main

conclusions are presented in Section 5.3 and discussed in Section 5.4.

 82

5.2 Method

The VMC simulator was used to estimate the co-residency metrics under four PAs (i.e. First

Fit, Next Fit, Power Save and Random). This section defines how controlled experiments

were conducted to examine further the influential parameters (identified in Chapter 4) using

ten levels listed in Table 5.1. A controlled experiment is one in which all parameters are held

constant except for one [14]. This section also explains how the results were analyzed to

answer the third research question on which parameters’ settings reduce the co-residency

probability in four PAs.

5.2.1 Experimental Setup

Chapter 4 identified the four most influential parameters under four PAs (Table 4.11 and

Table 4.12). Therefore, one controlled experiment per influential parameter was conducted

under each PA. In each experiment, the same eight parameters from Chapter 4 (Table 5.2)

were separated into two groups: an experimental group and a control group. The

experimental group contained one influential parameter that was tested at ten levels, while

the control group consisted of the remaining 7 parameters that were kept constant.

With ten new parameter levels defined in Table 5.1, each controlled experiment consisted of

ten experimental runs. These new levels were selected such that they were evenly distributed

between the low level and the high level of the broad-range (Table 4.4). This action ensured

more levels covered, especially the levels that were not tested by the Influence Evaluation

Strategy in Chapter 4.

In addition, Chapter 4 identified two 2-parameters interactions (i.e. X1*X4 and X1*X8) that

had an influence under Next Fit and Random. The use of controlled experiments allowed

testing each of the interacting parameters individually at ten levels while keeping the other

control parameters (including the interacting parameter) at a constant level.

There were many possible levels that could be assigned to the control parameters. Appendix

D illustrates the significant two 2-parameters interactions (i.e. X1*X4 and X1*X8) and

reveals that nearly 63.6% of these interactions were able to reduce the co-residency

probability when both X4 and X8 were in low levels. This finding was one of the motivations

for assigning the low levels from the narrow-range (Table 4.4) to the control parameters.

 83

New levels of the most Influential Parameters

Number of

Clusters (X1)

Number of

Hosts (X2)

Max Host

Utilization (X3)

Users’ Arrival

Rate (X4)

VM Average

Lifetime (X7)

VMs per

Request (X8)

15 1000 80% 2 2000 2

19 4000 82% 2.33 2150 2.2

23 7000 84% 2.66 2350 2.4

29 10000 85% 2.99 2550 2.6

33 13000 88% 3.33 2700 2.8

37 16000 91% 3.66 2850 3

41 19000 94% 3.99 3050 3.2

44 22000 96% 4.33 3250 3.5

47 25000 98% 4.66 3450 3.8

50 30000 100% 5 3600 4

 Table 5.1 New levels for testing the most influential parameters.

For each influential parameter under a given PA, a controlled experiment was conducted

using the following steps:

1. The remaining parameters (i.e. the control group) were kept constant. Table 5.2 lists

the levels that were used to fix the control parameters.

 84

Parameter Control level

Number of Clusters (X1) 15

Number of Hosts (X2) 1000

Max Host Utilization (X3) 80%

Users’ Arrival Rate (X4) 2

Number of Users (X5) 35000

Parallel VMs per User (X6) 12

VM Average Lifetime (X7) 2000

VMs per Request (X8) 2

 Table 5.2 Control level for parameters

2. The influential parameter’s levels from Table 5.1 were used in the VMC simulator

while holding the control group parameters constant.

3. To increase the reliability of the experiment’s results, each of the ten influential

parameters’ levels was tested in ten simulation repetitions. This provided 100

observations per parameter per PA.

5.2.2 Analysis Approach

With four influential parameters per PA and ten levels per parameters (tested in ten

simulation repetitions), each PA was examined in 400 simulation runs yielding a total of

1600 simulation runs under four PAs. These simulations’ results showed the following under

each PA:

1. Simulation estimates of the co-residency metrics (used to compare PAs in terms

of reducing the co-residency probability).

2. The correlation between the influential parameters and the co-residency metrics

(used to identify the best parameter settings that reduce the co-residency

probability).

The co-residency metrics estimates were used to identify the best parameters’ settings that

reduced the co-residency probability in four PAs. Each of the co-residency metrics was

estimated with 99 degrees of freedom under each PA to increase the estimates accuracy.

Confidence Intervals with 95% confidence level were used to enhance the precision of these

 85

estimates. These intervals describe the likely range of a sample estimate from the true

population. Confidence intervals are reported in tables as (Mean ± margin of error).

However, it is important to note that outliers (i.e. observation points that are distant from

other observations) can have an impact on the confidence interval [83]. The sample Pearson

correlation coefficient was used to describe the linear correlation between parameters and

metrics to obtain reliable estimates of the co-residency metrics and reduce the effect of these

outliers. Pearson coefficients are sensitive to outliers, and the strongest correlations (i.e. 1.0

and -1.0) occur when data points fall exactly on a straight line. In this thesis, the stronger the

Pearson’s correlation coefficients, the better the estimate.

More importantly, calculating the Pearson’s correlation coefficients between the influential

parameters and the co-residency metrics revealed valuable insights that helped to identify the

best parameters’ settings that reduced the co-residency probability under each PA.

The method in which the correlations were obtained and interpreted is described in the

following section (Section 5.2.3).

5.2.3 Influential Parameters Correlations with the Co-residency Metrics

The sample Pearson correlation coefficient, or the r-value for short, was used to examine the

influential parameters linear correlations with the co-residency metrics. The r-value can be

any value between +1 and −1, where +1 indicates a total positive correlation, 0 indicates no

correlation, and −1 indicates a total negative correlation [14]. As pointed out in the previous

section, the strongest correlations (i.e. 1.0 and -1.0) occur when data points fall exactly on a

straight line. The r-value is also useful to indicate the slope of the correlation, where a

positive r-value indicates that an increase on the influential parameter’s level results in an

increase on the corresponding co-residency metric and vice versa.

Dancey and Reidy suggested the following categorisation of the strength of correlation as

shown in Table 5.3 [26]:

 86

|r-value| Strength of Correlation

1 Perfect

0.7 - 0.9 Strong

0.4 - 0.6 Moderate

0.1 - 0.3 Weak

0 Zero

 Table 5.3 Categorisation of the strength of correlation

In this chapter, an influential parameter was considered to have a strong linear correlation

with a given co-residency metric if the corresponding |r-values| is between 0.4 to1.0. Figure

5.1 illustrates three examples of a moderate positive correlation at r-value = 0.5, no

correlation at r-value = 0 and a strong negative correlation at r-value = -1.0.

Figure 5.1 Examples of correlation r-values.

Given that n is the number of an influential parameter’s observations in a controlled

experiment (i.e. 100 in this chapter), 𝐴 is the average of the parameter’s levels and 𝑀 is the

co-residency metric’s estimate, the sample Pearson correlation coefficient, r-value, was

calculated as follows:

𝒓− 𝒗𝒂𝒍𝒖𝒆 =
[(𝑨𝒊 − 𝑨)(𝑴𝒊 −𝑴)𝒏

𝒊!𝟏]

(𝑨𝒊 − 𝑨)𝟐𝒏
𝒊!𝟏 (𝑴𝒊 −𝑴)𝟐𝒏

𝒊!𝟏

 87

Finding the r-value between the influential parameters and the co-residency metrics served

two important purposes:

1. To verify whether the limitation identified in Section 4.3.2 had any effects on the

Influence Evaluation Strategy outcomes. This limitation was present because the

strategy measured each parameter’s effects between two levels only. Therefore, there

is no guarantee that the parameter held a strong linear effect between these two levels,

that is, no outlier was present. In contrast, the controlled experiments in this chapter

tested more levels. Therefore, a weak r-value (i.e. |r-value| < 0.4, see Table 5.3)

between an influential parameter and the co-residency metrics can indicate the

presence of outliers that were not detected by the Influence Evaluation Strategy.

2. The r-value indicates the slope of the correlation between an influential parameter and

the co-residency metrics. Therefore, it was used to identify the best parameters’

settings that reduced the co-residency probability under each PA. For instance, does

the increase in the number of hosts reflect a linear increase or decrease in the co-

residency probability?

Having defined the method that was used in this chapter, the following section highlights key

findings from the controlled experiments.

5.3 Findings

This section outlines the important findings concerning the best parameters’ settings at which

the co-residency probability was reduced in four PAs. Since the co-residency metrics

estimate probabilities related to co-residency, an assumption was made that the co-residency

probability can be reduced by:

• Reducing the Co-residency Coverage Probability CCP,

• Increasing the Hit-Free Lifetime HFL,

• Reducing the Co-residency Vacancy CV and

• Reducing the Co-residency Activity CA.

The findings in the following sections can best be treated under the previous four headings.

The following (Table 5.4, Table 5.5, Table 5.6 and Table 5.7) summarize the maximum and

minimum observed values of the co-residency metrics under First Fit, Next Fit, Power Save

and Random. In addition, the tables show the r-values of the correlation between the metric

 88

and each of the influential parameters. The empty cells under each PA indicate that the

corresponding parameter was not identified as an influential parameter under that particular

PA.

 Pa

ra
m

et
er

s First Fit Next Fit Power Save Random

Min Max r-value Min Max r-value Min Max r-value Min Max r-value

C
C

P
M

et
ri

c

X1

0.929 0.939 0.057

0.925 0.937 0.074

X2 0.834 0.891 -0.396 0.000 0.937 -0.975 0.822 0.882 -0.175 0.240 0.935 -0.954

X3 0.819 0.915 0.428

0.820 0.913 -0.026

X4 0.749 0.891 -0.575 0.923 0.936 -0.492 0.762 0.890 -0.677 0.919 0.936 -0.784

X7 0.734 0.885 -0.891

0.732 0.882 -0.889

X8

0.930 0.940 0.444

0.929 0.937 0.136

 Table 5.4 The r-values, minimum and maximum CCP observed under each PA

Pa
ra

m
et

er
s First Fit Next Fit Power Save Random

Min Max r-value Min Max r-value Min Max r-value Min Max r-value

H
F

L
M

et
ri

c

X1 0.142 0.161 -0.159 0.132 0.148 -0.281

X2 0.099 0.137 -0.589 0.148 1.00 0.883 0.097 0.130 -0.354 0.136 0.500 0.801

X3 0.104 0.156 -0.434 0.102 0.151 -0.315

X4 0.097 0.216 0.523 0.095 0.157 -0.877 0.099 0.235 0.630 0.098 0.150 -0.806

X7 0.033 0.149 -0.870 0.030 0.143 -0.891

X8 0.106 0.158 -0.900 0.101 0.147 -0.901

 Table 5.5 The r-values, minimum and maximum HFL observed under each PA

 89

Pa
ra

m
et

er
s

First Fit Next Fit Power Save Random

Min Max r-value Min Max r-value Min Max r-value Min Max r-value

C
V

 M
et

ri
c

X1 0.1096 0.1547 -0.288 0.0766 0.1098 -0.152

X2 0.0005 0.0071 -0.690 0.421 0.983 0.538 0.0003 0.0057 -0.727 0.242 0.977 0.548

X3 0.0008 0.2202 0.549 0.0009 0.2126 -0.087

X4 0.0003 0.0038 -0.281 0.0425 0.1472 -0.869 0.0003 0.0048 -0.274 0.0339 0.1137 -0.898

X7 0.0003 0.0049 -0.264 0.0003 0.0054 -0.362

X8 0.0776 0.1530 -0.857 0.0578 0.0992 -0.877

 Table 5.6 The r-values, minimum and maximum CV observed under each PA

Pa
ra

m
et

er
s

First Fit Next Fit Power Save Random

Min Max r-value Min Max r-value Min Max r-value Min Max r-value

C
A

 M
et

ri
c

X1 0.0027 0.0034 0.192 0.0024 0.0033 0.163

X2 0.0001 0.0006 -0.868 0.0000 0.0032 -0.732 0.0001 0.0006 -0.880 0.0001 0.0030 -0.792

X3 0.0004 0.0017 0.695 0.0005 0.0018 0.749

X4 0.0001 0.0006 -0.870 0.0018 0.0032 -0.810 0.0001 0.0006 -0.844 0.0016 0.0031 -0.848

X7 0.0001 0.0015 -0.504 0.0001 0.0020 -0.494

X8 0.0026 0.0031 -0.573 0.0022 0.0029 -0.666

 Table 5.7 The r-values, minimum and maximum CA observed under each PA

5.3.1 Reducing the Co-residency Coverage Probability (CCP)

This section describes the findings concerning the Co-residency Coverage Probability CCP.

The aim is to identify the best parameters’ settings at which the CCP estimate was low in

four PAs.

 90

 CCP

Estimate

± 95.0% confidence

interval of the estimate
r-value

First Fit 0.845 0.0018 -0.396

Next Fit 0.379 0.065 -0.975

Power Save 0.840 0.0019 -0.175

Random 0.501 0.043 -0.954

 Table 5.8 The CCP estimate with Number of Hosts (X2) varying between 1000-30000

Table 5.8 shows a relatively high amount of variability in the CCP estimates. This variation

suggested that changing the number of hosts caused greater variability in the CCP, and the

degree of this variability is different between the PAs and higher in Next Fit and Random.

Figure 5.2 reveals that there has been a steep decline in the CCP when the Number of Hosts

(X2) has been increased using Next Fit. For instance, the figure shows that the CCP reached

zero for IaaS clouds with a number of hosts larger than 25000. Similarly, the use of Random

reduced the CCP to 0.240 with a very strong negative correlation. The same figure also

shows that the Number of Hosts (X2) had negative correlations with the CCP under all PAs.

This negative correlation indicates that increasing the number of hosts in an IaaS cloud

contributed to reducing the probability of co-residency. However, the negative correlation is

higher in Next Fit and Random as seen in the sharp drop of the CCP compared to the slight

decrease of the CCP under First Fit and Power Save.

 91

 Figure 5.2 The CCP metric at different Number of Hosts (X2)

5.3.2 Increasing the Hit-Free Lifetime (HFL)

This section describes the findings concerning the Hit-Free Lifetime HFL metric. The aim is

to identify the best parameters’ settings at which the HFL estimate was high in four PAs.

 HFL

Estimate

± 95.0% confidence

interval of the estimate
r-value

First Fit 0.108 0.0012 -0.589

Next Fit 0.771 0.054 0.883

Power Save 0.108 0.0011 -0.354

Random 0.414 0.020 0.801

 Table 5.9 The HFL estimates under different Number of Hosts (X2) ranging between
1000-30000

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0 5000 10000 15000 20000 25000 30000 35000

C
C

P

Number of Hosts

First Fit Next Fit Power Save Random

 92

This variation in the HFL estimates between PAs (Table 5.9) suggested that changing the

number of hosts caused greater variability in the HFL, and the degree of this variability is

different between the PAs and higher in Next Fit and Random.

Figure 5.3 reveals that there has been a gradual increase in the lifetime ratio at which a VM is

safe from co-residency hits (i.e. HFL) when the Number of Hosts (X2) was increased using

Next Fit. The figure shows that the HFL reached a peak value of 1.00 (i.e. the entire lifetime

of a given VM was hit-free). In addition, the use of Random prolonged the HFL to 0.414.

Similar to the Co-residency Coverage Probability (Section 5.3.1), Next Fit and Random

showed to have strong positive correlations that can be seen in the gradual rise of the HFL. In

contrast, the same figure shows that the number of hosts had relatively weaker negative

correlations that can be seen in the steady decline of the HFL under First Fit and Power Save.

 Figure 5.3 The HFL metric at different Number of Hosts (X2)

In addition, as the Users’ Arrival Rate (X4) increased, the lifetime ratio at which a VM is

safe from co-residency hits (i.e. HFL) has increased, showing a positive correlation using

First Fit and Power Save. The Hit-Free Lifetime HFL estimates under different PAs and

different users’ arrival rates ranging between 2-5 are shown in Table 5.10:

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

0 5000 10000 15000 20000 25000 30000 35000

H
F

L

Number of Hosts

First Fit Next Fit Power Save Random

 93

 HFL

Estimate

± 95.0% confidence

interval of the estimate
r-value

First Fit 0.146 0.0056 0.523

Next Fit 0.120 0.0035 -0.877

Power Save 0.139 0.0045 0.630

Random 0.116 0.0027 -0.806

 Table 5.10 The HFL estimates with Users’ Arrival Rates (X4) varying between 2-5

Table 5.10 shows high variations in the HFL estimates. These variations indicated that

varying the users’ arrival rate caused a smaller amount of change on the HFL compared to

varying the number of hosts on the HFL (Table 5.9).

Figure 5.4 reveals that there has been a slight increase in the HFL when the users’ arrival rate

has been increased under First Fit. The figure shows that the HFL reached a peak value of

0.216 (i.e. approximately 21.6% of a given VM lifetime was hit-free) with a moderate

positive correlation. Similarly, the use of Power Save extended the HFL to 0.235 with a

strong positive correlation. In contrast, the same figure shows that the users’ arrival rate had

relatively stronger negative correlations with the HFL under Next Fit and Random.

 94

 Figure 5.4 The HFL metric at different Users’ Arrival Rates (X4)

5.3.3 Reducing the Co-residency Vacancy (CV)

This section describes the findings concerning the Co-residency Vacancy CV. The aim is to

identify the best parameters’ settings at which the CV estimate was low in four PAs.

The CV estimates under different PAs, and different number of hosts ranging between 1000-

30000 are shown in Table 5.11:

 CV

Estimate

± 95.0% confidence

interval of the estimate
r-value

First Fit 0.0018 0.0002 -0.690

Next Fit 0.922 0.125 0.538

Power Save 0.0014 0.0002 -0.727

Random 0.892 0.163 -0.690

 Table 5.11 The CV estimates with Number of Hosts (X2) varying between 1000-30000

0

0.05

0.1

0.15

0.2

0.25

0.3

2 2.5 3 3.5 4 4.5 5 5.5

H
F

L

Users Arrival Rate

First Fit Next Fit Power Save Random

 95

Table 5.11 reveals a relatively high variation in the CV estimates between PAs. Figure 5.5

reveals that increasing the Number of Hosts (X2) from 1000 to 7000 hosts under Next Fit and

Random caused a sharp rise of the CV. For instance, the CV reached the maximum observed

values of 0.9667 and 0.9095 respectively with moderate positive correlation. As the number

of hosts exceeds 7000, the observed values of the CV under Next Fit and Random were

clustered toward the maximum possible value of 1 (see Section 3.4.3). In contrast, Figure 5.5

shows that there has been a smaller change in the CV when the number of hosts has been

increased using both First Fit and Power Save. For example, the CV reached a low value of

0.0005 (i.e. a given VM’s host has been available for VMs placement during 0.05% of the

VM lifetime) with a strong negative correlation.

 Figure 5.5 The CV metric at different Number of Hosts (X2)

In addition, as the Users’ Arrival Rate (X4) increased, the CV has decreased under all PAs

(i.e. negative correlations). The Co-residency Vacancy CV estimates under different PAs and

different users’ arrival rates ranging between 2-5 are shown in Table 5.12:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5000 10000 15000 20000 25000 30000 35000

C
V

Number of Hosts

First Fit Next Fit Power Save Random

 96

 CV

Estimate

± 95.0% confidence

interval of the

estimates

r-value

First Fit 0.0013 0.0001 -0.281

Next Fit 0.0845 0.0052 -0.869

Power Save 0.0011 0.0001 -0.274

Random 0.0602 0.0042 -0.898

 Table 5.12 The CV estimates with Users’ Arrival Rates (X4) varying between 2-5

One interesting observation from Table 5.12 is that varying the users’ arrival rate caused a

smaller amount of change on the CV estimates compared to varying the number of hosts

(Table 5.11).

Figure 5.6 reveals that the CV reached a low value of 0.0003 using First Fit and Power Save.

In contrast, the same figure shows that the users’ arrival rate had far stronger negative

correlations with the CV under Next Fit and Random. However, reducing the CV was better

achieved under First Fit and Power Save when the users’ arrival rate varies.

 Figure 5.6 The CV metric at different Users’ Arrival Rates (X4)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

2 2.5 3 3.5 4 4.5 5 5.5

C
V

Users Arrival Rate

First Fit Next Fit Power Save Random

 97

In addition, Table 5.13 shows the Co-residency Vacancy CV estimates under different VMs’

average lifetime ranging between 2000-3600 in First Fit and Power Save. The VMs average

lifetime parameter (X7) was identified to be among the most influential parameters on the co-

residency metrics under First Fit and Power Save. Further, Figure 5.7 shows that the CV was

kept at lower values that reached 0.0003 under different VMs average lifetime values.

 CV

Estimate

± 95.0% confidence

interval of the estimate
r-value

First Fit 0.0019 0.0001 -0.264

Power Save 0.0019 0.0001 -0.362

 Table 5.13 The CV estimates with VMs Average Lifetime (X7) varying between 2000-
3600

 Figure 5.7 The CV metric at different VMs Average Lifetime (X7)

5.3.4 Reducing the Co-residency Activity (CA)

This section describes the findings concerning the Co-residency Activity CA. The aim is to

identify the best parameters’ settings at which the CA estimate was low in four PAs.

The Co-residency Activity CA estimates under different PAs and different number of hosts

ranging between 1000-30000 are shown in Table 5.14:

0

0.002

0.004

0.006

0.008

0.01

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800

C
V

VMs Average Lifetime

First Fit Power Save

 98

 CA

Estimate

± 95.0% confidence

interval of the estimate
r-value

First Fit 0.0002 3x10!! -0.868

Next Fit 0.0005 0.0001 -0.732

Power Save 0.0002 3x10!! -0.880

Random 0.0006 0.0001 -0.792

 Table 5.14 The CA estimates with Number of Hosts (X2) varying between 1000-30000

As the Number of Hosts (X2) increased, the Co-residency Activity CA has decreased under

all PAs with strong negative correlations. Figure 5.8 reveals that the CA was minuscule

regardless of the number of hosts or the PA, and reached the lowest value (i.e. zero) using

Next Fit, and 0.0001 in the remaining PAs.

 Figure 5.8 The CA metric at different Number of Hosts (X2)

0.000

0.001

0.001

0.002

0.002

0.003

0.003

0.004

0 5000 10000 15000 20000 25000 30000 35000

C
A

Number of Hosts

First Fit Next Fit Power Save Random

 99

In addition, as the Users’ Arrival Rate (X4) increased, the CA has decreased under all PAs.

The Co-residency Activity CA estimates under different PAs and different users’ arrival rate

ranging between 2-5 are shown in Table 5.15:

CA

Estimate

± 95.0% confidence

interval of the estimate
r-value

First Fit 0.0003 2x10!! -0.870

Next Fit 0.0024 6x10!! -0.810

Power Save 0.0002 2x10!! -0.844

Random 0.0021 7x10!! -0.848

 Table 5.15 The CA estimates with Users’ Arrival Rates (X4) varying between 2-5

Increasing the users’ arrival rate had a negative correlation with the Co-residency Activity

CA and the Co-residency Vacancy CV (Section 5.3.3) under all PAs. Figure 5.9 reveals that

the CA reached a low value of 0.0001 using First Fit and Power Save.

 Figure 5.9 The CA metric at different Users’ Arrival Rate (X4)

0

0.002

0.004

0.006

0.008

0.01

2 2.5 3 3.5 4 4.5 5 5.5

C
A

Users Arrival Rate

First Fit Next Fit Power Save Random

 100

With respect to the VMs average lifetime (X7), Figure 5.10 shows that the CA was kept at

lower values as the VMs average lifetime increased in the First Fit as well as Power Save,

reaching a low value of 0.0001.

Further, the Co-residency Activity CA estimates under different VMs’ average lifetime

ranging between 2000-3600 in First Fit and Power Save are shown in Table 5.16:

 CA

Estimate

± 95.0% confidence

interval of the estimate
r-value

First Fit 0.0007 6x10!! -0.504

Power Save 0.0007 7x10!! -0.494

 Table 5.16 The CA estimates with VMs Average Lifetime (X7) varying between 2000-
3600

 Figure 5.10 The CA metric at different VMs Average Lifetime (X7)

0

0.001

0.002

0.003

0.004

0.005

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800

C
A

VMs Average Lifetime

First Fit Power Save

 101

Before proceeding to discuss the previous findings and their practical uses on reducing the

co-residency probability in IaaS clouds, the next section provides a summary of the

influential parameters linearity check results. These results will be used in Section 5.4 to

evaluate the effectiveness and efficiency of the Influence Evaluation Strategy in identifying

the most influential parameters on the co-residency metrics.

5.3.5 Efficiency of the Influence Evaluation Strategy

With four PAs, four influential parameters per PA and four co-residency metrics, a total of 64

r-values were calculated. Since each parameter was tested at ten levels with ten simulation

repetitions, therefore, the Pearson’s correlation r-values (Section 5.2.2) were calculated with

98 degrees of freedom. The degrees of freedom for each r-value is equal to two less than the

number of observations per parameter [14]. The influential parameters’ r-values were

included in the findings in the previous sections.

According to the categorization of the strength of correlation in Table 5.3, the |r-values|

frequency distribution (Figure 5.11) shows that only 25% of the calculated r-values belong to

parameters that had relatively weak correlations with the co-residency metrics (|r-value| <

0.40). On the other hand, 75% of the r-values represented stronger correlations (|r-value| ≥

0.40).

 Figure 5.11 A frequency distribution of the influential parameters’ |r-values|

0

2

4

6

8

10

12

14

0 0.5 1

Fr
eq

ue
nc

y

|r-value|

 102

5.4 Discussion

The findings in this chapter answered the third research question on how the choice of the

influential parameters’ settings can reduce the co-residency probability in four PAs.

However, it is important to emphasize that the following discussion and conclusions are only

valid within the range of data collected under the following PAs: First Fit, Next Fit, Power

Save and Random.

The key results of this chapter are:

• Co-residency probability can be effectively reduced by the right choice of

parameters’ settings in the four PAs.

The results in this chapter show that the settings of the number of hosts and users’

arrival rate can positively and negatively affect the co-residency probability. The

findings therefore suggest some answers to the third research question depending on

the cloud infrastructure size (i.e. the number of hosts) and the cloud population

density (i.e. users’ arrival rate) in the four PAs.

The following comparison matrix (Table 5.17) summarizes how the co-residency

probability has been reduced in different IaaS cloud sizes and population densities in

four PAs. However, one major observation is that there is no overall best parameter

settings or PA for reducing co-residency probability.

This particular finding is relevant particularly to IaaS cloud providers. The finding

demonstrates that the impact on co-residency probability should become an important

factor in the choice of the parameters’ settings and PAs for IaaS clouds, an aspect that

was not previously present in the available literature.

 103

Reducing the Co-

residency

Probability

Cloud Size Cloud Population Density

Small

(<5000

hosts)

Large

(≥5000 hosts)

Low

(user arrival

rate <3)

High

(user arrival

rate ≥3)

Reducing the

CCP

First Fit,

Power Save

(marginally

better)

Next Fit,

Random

First Fit, Power Save

Increasing the

HFL

Next Fit, Random (preference

to Next Fit as number of hosts

increase)

Next Fit,

Random

First Fit,

Power Save

Reducing the CV
First Fit, Power Save

(consistently at zero)

First Fit, Power Save

(consistently at zero)

Reducing the CA

First Fit,

Power Save

(consistently

low at

<0.001)

Next Fit,

Random

(converge to

First Fit and

Power Save as

number of

hosts increase

First Fit, Power Save (nearly

zero but marginally lower than

Next Fit and Random by less

than 0.003).

 Table 5.17 The best parameters’ settings in four PAs to reduce the co-residency

probability

• In general, Next Fit and Random have a better tendency to hinder co-

residency in IaaS clouds.

By comparing the PAs at different number of hosts, the probability (with 95%

confidence intervals) that a given VM experiences at least one arbitrary co-residency

hit is between 0.314 to 0.444 in Next Fit. This is compared to 0.458 to 0.544 in

Random, 0.843 to 0.846 in First Fit and 0.838 to 0.841 in Power Save. One possible

explanation of why Next Fit and Random are better at reducing the co-residency

probability is associated with how they place VMs into hosts. That is, Next Fit and

 104

Random tend to distribute VMs evenly to as many hosts as possible rather than

packing them tightly on the first available hosts as First Fit and Power Save do.

Therefore, VMs are less vulnerable to the reception of many co-residing VMs in Next

Fit and Random, as opposed to First Fit and Power Save. Section 4.6 discusses in

detail the similarity between Next Fit and Random in terms of how they place VMs.

One can argue that using a PA that hinders attackers from achieving co-residency can

be a clever action that IaaS cloud provider may take to reduce the avenue for side

channel attacks. This finding corroborates the ideas of [79], who recommended that

securing against side channel attacks can be achieved via disabling co-residency, that

is each VM runs in its dedicated host.

• For larger IaaS clouds, co-residency probability can be effectively reduced,

and even eliminated, by using Next Fit.

The findings in Section 5.3 showed that as the number of hosts exceeds 25000 hosts,

the use of Next Fit as a PA eliminated the Co-residency Coverage Probability CCP

and Co-residency Activity CA. The most likely cause of this is that the frequency, at

which a given VM u receives a co-residency hit when Next Fit is used, is proportional

to the number of hosts. That is, once u is placed in a host x, Next Fit selects x for the

next placement after placing a VM in all hosts. Therefore, this finding suggests that

using Next Fit in larger IaaS clouds (with a larger number of hosts) can be useful for

reducing, and even eliminating, the probability of co-residency.

• VM co-residency probability is dependent on the number of hosts, where

IaaS clouds with a higher number of hosts are less likely to exhibit co-

residency.

This finding suggests that VMs hosted in IaaS clouds that have a larger number of

hosts are likely to be safer from co-residency compared to IaaS clouds with a smaller

number of hosts. Regardless of the PA, the disproportionate effect that the number of

hosts had on the co-residency metrics (see Figure 5.2, Figure 5.5 and Figure 5.8)

provided convincing evidence to support this finding.

One practical application of this finding is for cloud users to compare the potential

co-residency probability at different IaaS clouds, depending on the number of hosts in

each cloud. On the basis of the previous evidence, it seems fair to suggest that hosting

 105

sensitive data and applications in IaaS clouds that have more hosts can be an effective

practice to reduce the probability of experiencing co-residency hits. Such action can

reduce the attack surface for side channel attacks. One exception to this

recommendation is that the Co-residency Vacancy CV was shown to increase as the

number of hosts increases under Next Fit and Random PAs. However, the existence

of a CV during a VM’s lifetime is considered to be a necessary, but not sufficient,

condition for an attacker to achieve co-residency with a given VM (see Section 3.4.3).

In addition, IaaS cloud providers might consider adding more hosts as a measure to

hinder co-residency. However, this suggests the existence of a trade-off between

reducing costs (i.e. not investing in new hosts) and increasing security (i.e. reducing

co-residency probability).

• The Influence Evaluation Strategy was efficient in identifying the most

influential parameters on the co-residency metrics.

With regards to the Influence Evaluation Strategy (Section 4.3.2), one of the

limitations of using 2-way Fractional Factorial experimentations is that the effect of

each parameter was measured at two levels only. Therefore, there was no guarantee

that there will be no outliers between these two levels as the presence of such outliers

might impact the strategy’s evaluation of the parameters effects. This limitation was

addressed in this chapter by examining the most influential parameters at more levels.

The results in Section 5.3.5 showed that there were strong linear correlations between

the influential parameters and the co-residency metrics. This linear correlation

suggests that outliers did not impact the ability of the Influence Evaluation Strategy to

identify the most influential parameters.

5.5 Summary

Using the VMC simulator as a testbed, the four most influential parameters identified in

Chapter 4 were used in controlled experiments in this chapter. These experiments aimed to

explore how the most influential parameters’ settings in four PAs could positively and

negatively affect the co-residency metrics. In order to achieve this aim, these experiments

estimated the co-residency metrics in four PAs under a wide range of likely settings for

publicly accessible IaaS clouds (Section 5.2).

 106

Next, Pearson’s correlation analysis [14] has been applied to study the correlation between

these parameters and the co-residency metrics. This analysis helped in identifying the

parameters’ settings that were able to reduce the co-residency probability in each PA (see

Table 5.17).

Based on this finding, Section 5.4 presents evidence that VMs hosted in IaaS clouds with a

higher number of hosts are less likely to exhibit co-residency. Further, using Next Fit in

larger IaaS clouds has been shown to reduce effectively, and even eliminate, the co-residency

probability. In addition, the four PAs have been compared in their ability to reduce the co-

residency probability. For instance, VMs in IaaS clouds that use Next Fit or Random are

found to be more resilient against receiving co-resident VMs compared to when First Fit or

Power Save are used. By comparing the PAs at different number of hosts, the probability

(with 95% confidence intervals) that a given VM experiences at least one arbitrary co-

residency hit is between 0.314 to 0.444 in Next Fit. This is compared to 0.458 to 0.544 in

Random, 0.843 to 0.846 in First Fit and 0.838 to 0.841 in Power Save.

This chapter focused on reducing the co-residency probability (i.e. the chance that a VM

experiences an arbitrary co-residency hit). In contrast, Chapter 6 estimates the malicious co-

residency probability (i.e. the chance that a VM experiences a malicious co-residency hit).

 107

Chapter 6

Analytical Estimation of Malicious Co-residency Probability

6.1 Introduction

Chapter 3 defines four co-residency metrics that estimate probabilities related to co-residency

hits from arbitrary VMs (i.e. hits from malicious and honest VMs). Chapter 4 quantified the

influence of cloud parameters on the co-residency metrics then identifies the most influential

parameters and 2-parameter interactions (i.e. the second research question). Next, Chapter 5

answered the third research question and provides simulation estimates of the co-residency

metrics. These estimates helped to find the best parameter settings that reduce the probability

of receiving honest and malicious co-resident VMs in four PAs. On the other hand, this

chapter is concerned with estimating the probability that a new co-residing VM belongs to an

attacker (i.e. malicious co-residency probability) with the coexistence of different

populations of attackers.

Two malicious co-residency metrics are defined to estimate probabilities related to malicious

co-residency (i.e. the fourth research question). These probabilities are the probability that a

VM u receives a malicious hit and for how long it remains free from malicious hits. The

malicious co-residency metrics take into account the “biggest unknown” in the attack model:

the ratio of attackers VMs, noted to as 𝛼, which can take any value between 0 and 1 (see

Section 3.2). Unlike the co-residency metrics, this very wide range of possible values of 𝛼

presents a challenge in using the VMC simulator to estimate the malicious co-residency

metrics (see Section 1.5). Instead, this Chapter provides approximate analytical estimates of

the malicious co-residency metrics that take 𝛼 into account. These estimates are derived to

explore all likely values of 𝛼 easily, an attempt that simulation and time limitations did not

allow. These estimates are then used to determine analytically, with the coexistence of 𝛼

attacking VMs, the best PAs that reduce the probability that a new co-residing VM belongs to

an attacker.

To validate these analytical approximations, the VMC simulator is used to estimate the

malicious co-residency metrics under a specific 𝛼 value using First Fit, Next Fit, Power Save

and Random.

 108

The remainder of this chapter is organized as follows. The next section derives approximate

analytical estimates of two malicious co-residency metrics that take 𝛼 into account. Section

6.3 defines how the proposed analytical approximation is validated using the VMC simulator.

Further, Section 6.4 describes the experiment’s settings. Finally, the findings are presented in

Section 6.4 and discussed in Section 6.5.

6.2 Malicious Co-residency Metrics

As pointed out in Chapter 1, the risk of side channel attacks is magnified by the occurrence

of malicious co-residency hits only. The second hypothesis of this thesis states “for a given

VM, there is a non-zero probability that a new co-residing VM belongs to an attacker for any

of the four PAs considered.” While the previous co-residency metrics (i.e. CCP, HFL, CV

and CA) address co-residency hits caused by arbitrary VMs, they do not distinguish between

malicious hits originated by attackers and honest hits. Therefore, this section defines two

malicious co-residency metrics to estimate probabilities related to malicious co-residency

hits. These probabilities are (1) the probability that a VM u receives a malicious hit and (2)

for how much time it remains free from malicious hits.

Based on the system and attack models (see Section 3.2), this section derives approximate

analytical estimates of the malicious co-residency metrics that take 𝛼 into account.

It will be necessary to note that before proceeding to define the malicious co-residency

metrics, analytical approximations in this chapter are mainly based on the Probability theory.

In particular, P(x) is used as a notation for probability (i.e. P(x) reads as the probability of x).

In addition, the symbol "|" is used in conjunction with P(x) to denote a conditional

probability (e.g. P(x|y) means "probability of x given condition y"). Further, the notation P(A

and B) is interpreted as P(A) * P(B|A). In addition, the symbol 𝐸 𝑥 is used to refer to an

estimated value of variable x.

6.2.1 Preliminary Definitions

In addition to the definitions set forth in Chapter 3, the following are important definitions

related to the malicious co-residency metrics estimations.

Expected Number of Hits 𝑬(𝒌|𝒌 > 0)

For a given VM u that receives at least one hit (k>0), the 𝐸(𝑘|𝑘 > 0) calculates the total

number of honest and malicious hits that u experiences. In addition, 𝑃 𝑘 = 𝐾 𝑘 > 0) is the

 109

probability that u receives K hits, given that it receives at least one hit. Further, 𝑛! is the

number of VMs that experienced K hits and 𝑛!!" is the total number of VMs that experienced

at least one hit. Accordingly, the expected number of hits 𝐸(𝑘|𝑘 > 0) can be derived as

follows:

𝑬(𝒌|𝒌 > 𝟎) = 𝑲 ∗ 𝑷 𝒌 = 𝑲 𝑲 > 𝟎)
!

𝑲!𝟏

𝑬 𝒌 𝒌 > 𝟎 = 𝑲 ∗
!

𝑲!𝟏

𝒏𝑲
𝒏𝒉𝒊𝒕

𝑬 𝒌 𝒌 > 𝟎 =
𝟏
𝒏𝒉𝒊𝒕

 𝑲 ∗
!

𝑲!𝟏

𝒏𝑲 ,𝑬 𝒌 𝒌 > 𝟎 ≥ 𝟏

Expected Kth Lifetime Ratio 𝑬(𝑳𝒌)

For a given VM u, the expected Kth lifetime ratio 𝐿! can be derived using the expected

number of hits 𝐸 𝑘 𝑘 > 0 as follows (𝑛! as the number of VMs that experienced K hits):

 𝑬(𝑳𝑲) =
𝟏
 𝒏𝑲
 𝑳𝑲𝒖

 𝒏𝑲

𝒖!𝟏
 , 1 ≤ K ≤ 𝑬 𝒌 𝒌 > 𝟎

The above can be used to calculate the expected lifetime ratios up to the 𝐸 𝑘 𝑘 > 0 th hit

(Figure 3.2). The 𝐿 ! ! !!! !!
 lifetime ratio, which represents the portion of the lifetime

between the 𝐸 𝑘 𝑘 > 0 th hit and the time at which a VM ends, can be derived as follows:

 𝑬(𝑳 𝑬 𝒌 𝒌!𝟎 !𝟏
) = 𝟏− 𝑬(𝑳𝑲)

 𝑬 𝒌 𝒌!𝟎

𝑲!𝟏

 110

6.2.2 Analytical Estimation of the Malicious Co-residency Metrics

Having defined 𝛼, 𝐸 𝑘 𝑘 > 0 and 𝐸(𝐿!), the next sections define the malicious co-

residency metrics and show how their estimates are derived using an analytical

approximation.

6.2.2.1 Malicious Co-residency Probability (MCP)

The Malicious Co-residency Probability MCP is the probability that an honest VM u

encounters a malicious co-residency hit at least once during its lifetime. The estimation of

MCP extends the Co-residency Coverage Probability CCP metric (see Section 3.4.1). Unlike

the CCP, the MCP focuses on malicious co-residency hits (caused by malicious VMs only),

whereas, the CCP considers both malicious and honest co-residency hits.

With the use of the CCP, 𝛼 and 𝐸 𝑘 𝑘 > 0 , Probability theory is applied to derive an

estimate approximation of the MCP for a given VM u:

∀ CCP, 𝜶 and 𝑬 𝒌 𝒌 > 0 : 0 ≤ 𝑪𝑪𝑷 ≤ 1, 0 ≤ 𝜶 ≤ 1 and 𝑬 𝒌 𝒌 > 0 ≥ 1:

𝑬(𝑴𝑪𝑷) = P(at least 1 hit AND at least 1 hit is malicious | number of hits>0)

= P (k >0) * P(at least 1 hit is malicious | k >0)

= CCP * (1 – P (all hits are honest | k >0))

At this point, an approximation is introduced to the 𝑀𝐶𝑃 estimate that involves assuming

that every VM, that is hit at least once, is hit exactly 𝐸 𝑘 𝑘 > 0 times (where 𝐸 𝑘 𝑘 > 0

will be rounded down to the nearest integer):

≈ CCP * (1 – P (all 𝐸 𝑘 𝑘 > 0 hits are honest))

≈ CCP * (1 – (P (ℎ𝑖𝑡! is honest) * . . . * P (ℎ𝑖𝑡! ! !!! !! is honest) *

 P (ℎ𝑖𝑡! ! !!! is honest)))

≈ CCP * (1-P (hit is non-malicious) ! ! !!!)

≈ CCP * (1- (1-𝛼) ! ! !!!)

 111

Therefore, the Malicious Co-residency Probability MCP estimate can be approximated as

follows:

𝑬(𝑴𝑪𝑷) ≈ CCP * (1- (1-𝜶) 𝑬 𝒌 𝒌!!) , 0 ≤ 𝑬(𝑴𝑪𝑷) ≤ 1

The MCP can reach its maximum value when every VM in the cloud will certainly has all of

its k co-residency hits as malicious. In this particular case, the MCP becomes the same as the

CCP value. This scenario can manifest itself when all other VMs in the cloud are malicious

VMs (i.e. the attacker’s VM requests ratio α equals one). However, this requires an attacker

to originate and control all the VMs in the cloud in order to achieve co-residency hits with

target VMs. In contrast, the MCP can reach its minimum value (i.e. zero) when every VM in

the cloud will certainly have all of its k co-residency hits as honest. This can be the case

when the attacker’s VM requests ratio α is zero. Another scenario in which the MCP can

reach zero is when each VM ends up running solely in its own physical host (i.e. in this case

CCP equals zero). This scenario is suggested in [79] to disable the risk of side channel

attacks. However, this requires the customer to pay for the opportunity cost of under-utilizing

the hosts’ resources due to not sharing them with other cloud users (see Section 2.3.3.1).

6.2.2.2 Attacker-free Lifetime Ratio (AFL)

For a given VM u, the Attacker-free Lifetime Ratio AFL is the sum of the lifetime ratios

(Figure 3.2) where u is free of malicious co-residency hits. A lifetime ratio 𝐿! is considered

to be attacker-free when the K-1th hit and all previous hits are honest.

Unlike the Hit-free Lifetime Ratio HFL metric (see Section 3.4.2), the AFL calculates the

attacker-free lifetime ratio from the moment VM u is launched until it experiences the first

malicious hit. On the other hand, the HFL calculates the lifetime ratio from the moment u is

launched until it experiences the first hit; regardless of whether the first hit is malicious or

honest. The 𝐴𝐹𝐿! for a VM u that experiences at least one co-residency hit (k>0) can be

estimated using simulation, for example, as follows:

𝑨𝑭𝑳𝒖 = (𝑳𝑲|
𝒌!𝟏

𝑲!𝟏

𝑳𝑲 𝒊𝒔 𝒂𝒕𝒕𝒂𝒄𝒌𝒆𝒓 𝒇𝒓𝒆𝒆) ,𝟎 ≤ 𝑨𝑭𝑳𝒖 ≤ 𝟏

The following is an approximate analytical estimate of the AFL that extends the CCP metric:

∀ CCP, 𝛼, 𝐸 𝑘 𝑘 > 0 and 𝐸(𝐿!): 0 ≤ 𝐶𝐶𝑃 ≤ 1, 0 ≤ 𝛼 ≤ 1, 𝐸 𝑘 𝑘 > 0 ≥ 1 and 0 ≤ 𝐸(𝐿!) ≤ 1:

 112

𝑬 𝑨𝑭𝑳 = (AFL | no hit) + (AFL | at least 1 hit and all hits are honest)

= (AFL when u receives no hit)* P(no hit) + (AFL| k>0 and all hits are honest)

= 1 * (1-CCP) + (AFL | k>0 and all hits are honest)

= (1-CCP) + P(k>0) * (AFL | all are honest hits)

= (1-CCP) + CCP * (AFL | all are honest hits)

At this point, approximations are introduced that involve assuming that every VM u that is

hit at least once is hit exactly 𝐸 𝑘 𝑘 > 0 times where 𝐸 𝑘 𝑘 > 0 will always be rounded

down to the nearest integer. As a result, u has a total of 𝐸 𝑘 𝑘 > 0 +1 lifetime ratios

𝐸 𝐿! ,… ,𝐸 𝐿 ! ! !!! , 𝐸(𝐿 ! ! !!! !!):

≈ (1-CCP) + CCP * (AFL | all 𝐸 𝑘 𝑘 > 0 hits are honest)

≈ (1-CCP) + CCP * (𝐸 𝐿! + 𝐸(𝐿!|ℎ𝑖𝑡! non-malicious) + 𝐸(𝐿!|ℎ𝑖𝑡𝑠! !"# ! non-malicious) +

… + 𝐸 (𝐿 ! ! !!! !!|ℎ𝑖𝑡𝑠 ! !" ! ! !!! non-malicious))

≈ (1-CCP) + CCP * (𝐸 𝐿! + 𝐸 𝐿! * P(ℎ𝑖𝑡! non-malicious) +

 𝐸 𝐿! * P(ℎ𝑖𝑡! non-malicious)* P(ℎ𝑖𝑡! non-malicious) + .	
 .	
 .	
 	
 +

𝐸 𝐿 ! ! !!! !! * P(ℎ𝑖𝑡𝑠 ! !" ! ! !!! non-malicious))

≈ (1-CCP) + CCP * (𝐸 𝐿! + 𝐸 𝐿! ∗ (1 − 𝛼) + 𝐸 𝐿! ∗ (1 − 𝛼)! + . . . +

 𝐸 𝐿 ! ! !!! ∗ (1 − 𝛼) ! ! !!! !! + 𝐸 𝐿 ! ! !!! !! ∗ (1 − 𝛼) ! ! !!!)

Therefore, the AFL estimate can be approximated as follows:

𝑬 𝑨𝑭𝑳 ≈ 𝟏− 𝑪𝑪𝑷 + 𝑪𝑪𝑷 ∗ 𝑬 𝑳𝑲 ∗ 𝟏− 𝜶 𝑲!𝟏

𝑬 𝒌 𝒌!𝟎 !𝟏

𝑲!𝟏

 ,𝟎 ≤ 𝑬 𝑨𝑭𝑳 ≤ 𝟏

The AFL can reach its maximum value when there are no attackers in the IaaS cloud (i.e. the

attackers VM requests ratio α is zero). This action can result in a situation where every VM

in the cloud will have all of its k hits as honest. In contrast, the AFL can reach its minimum

value (i.e. HFL or zero) when every new VM request in the cloud is malicious (i.e. the

 113

attackers VM requests ratio α is one). As mentioned in the previous section, this requires the

attacker to originate and control all the VMs in the cloud in order to achieve malicious co-

hits with target VMs. Another possible scenario where the AFL can reach its minimum value

is possible. For instance, when every sequence of newly created VMs tends to be placed in

the same physical host until the host becomes full (i.e. no space for new VMs). This scenario

is shown by [79] to be very dependent on the PA that is used by the cloud provider.

6.3 Method

Section 6.2 derived approximate analytical estimation of the malicious co-residency metrics

in order to easily examine all likely values of 𝛼 values (the ratios of attackers VMs requests).

A comparison was made with experimental estimates obtained using simulation to validate

these analytical estimates. The VMC simulator was used to estimate the MCP and AFL with α

set to 0.10 in a variety of IaaS clouds settings (i.e. different Number of Hosts (X2) and Users’

Arrival Rates (X4)). These simulation estimates can help to determine how good the

malicious co-residency metrics analytical approximations are.

Based on the description in Sections 6.2.2.1 and 6.2.2.2, the analytical estimates of MCP and

AFL were calculated using the simulation estimates (Table 6.1 and Table 6.2): (1) the Co-

residency Coverage Percentage 𝐸 𝐶𝐶𝑃 , (2) number of hits 𝐸 𝑘 𝑘 > 0 and (3) life ratios

𝐸 𝐿! . These estimates were calculated during the simulation experiments in this chapter:

Placement

Algorithms
𝑬 𝑪𝑪𝑷 𝑬 𝑘 𝑘 > 0 𝑬 𝑳𝟏 𝑬 𝑳𝟐 𝑬 𝑳𝟑 𝑬 𝑳𝟒 𝑬 𝑳𝟓

First Fit 0.851 4.796 0.113 0.241 0.137 0.109 0.400

Next Fit 0.394 3.033 0.729 0.103 0.034 0.134 --

Power

Save
0.851 4.705 0.110 0.230 0.132 0.108 0.420

Random 0.537 3.090 0.363 0.348 0.098 0.191 ---

 Table 6.1 Important estimates obtained by the VMC simulator with Number of Hosts
(X2) varying between 1000-30000

 114

Placement

Algorithms
𝑬 𝑪𝑪𝑷 𝑬 𝑘 𝑘 > 0 𝑬 𝑳𝟏 𝑬 𝑳𝟐 𝑬 𝑳𝟑 𝑬 𝑳𝟒 𝑬 𝑳𝟓

First Fit 0.815 4.098 0.127 0.293 0.126 0.093 0.361

Next Fit 0.848 3.363 0.327 0.257 0.153 0.263 ---

Power

Save
0.811 4.103 0.132 0.288 0.125 0.095 0.360

Random 0.842 3.753 0.262 0.250 0.156 0.331 ---

 Table 6.2 Important estimates obtained by the VMC simulator with Users’ Arrival
Rate (X4) varying between 2-5

On the other hand, the VMC simulator estimates the malicious co-residency metrics for a
certain α as follows:

• Malicious Co-residency Probability MCP:

Let n be the total number of created VMs in the cloud and 𝑛!!" !" !"#$%$&'(is the total

number of VMs that experienced at least one malicious hit, then the MCP was estimated

using simulation as follows:

𝑴𝑪𝑷 =
𝒏𝒉𝒊𝒕 𝒃𝒚 𝒎𝒂𝒍𝒊𝒄𝒊𝒐𝒖𝒔

𝒏

• Average Attacker-free Lifetime Ratio AFL:

Let 𝑛!!" be the total number of VMs that experienced at least one hit (k>0), then the AFL

was estimated using simulation as follows:

𝑨𝑭𝑳 =
𝟏
 𝑛 [𝑨𝑭𝑳𝒖

 𝒏𝒉𝒊𝒕

𝒖!𝟏

+ (𝑛 − 𝑛!!")]

With α of 0.10, a total of 80 simulation estimates of the MCP and AFL were obtained under

different numbers of hosts and the users’ arrival rates (Table 6.3), while keeping the

remaining parameters constant (Table 5.2). Then, the average of these estimates was

compared with the metrics’ analytical prediction under First Fit, Next Fit, Power Save and

Random in Section 6.4.1.

 115

Number of Hosts (X2) Users’ Arrival Rates (X4)

1000 2

10000 3

15000 4

30000 5

 Table 6.3 The parameters levels used in the VMC simulator to estimate the MCP and
AFL

6.3.1 Analytical Estimation Accuracy

In approximation theory [80], the predicted values can often be overestimation or

underestimation of the actual measurements. This can result from the fact that an

approximation cannot include all the parameters that represent the predicted reality. Thus,

this thesis calculates the percentage difference to quantify this amount of error between the

approximate analytical estimates and the simulation estimates. The percentage difference can

be obtained as follows:

𝑷𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆 ≈
𝒂𝒏𝒂𝒍𝒚𝒕𝒊𝒄𝒂𝒍 𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆− 𝒔𝒊𝒎𝒖𝒍𝒂𝒕𝒊𝒐𝒏 𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆

𝒔𝒊𝒎𝒖𝒍𝒂𝒕𝒊𝒐𝒏 𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆 ∗ 𝟏𝟎𝟎

Approximation theory states that an accepted analytical estimate depends on the type of

application and the sensitivity of the predicted values [80]. For the convenience of this

experiment, an analytical estimate will be considered acceptable if it has a percentage

difference up to ±15%.

6.4 Findings

This section outlines the findings concerning the analytical estimation validation as well as

an analysis of malicious co-residency probabilities under different attackers ratios α.

6.4.1 Analytical Estimation Validation

With an attacker ratio α of 0.10, and under different number of hosts and users’ arrival rates,

the following (Table 6.4, Table 6.5, Table 6.6 and Table 6.7) show the analytical estimates,

the simulation estimates and the corresponding percentage difference for both the MCP and

AFL in four PAs.

 116

Placement

Algorithms

𝑬 𝑴𝑪𝑷

Analytical estimate

𝑬 𝑴𝑪𝑷

Simulation estimate

Percentage

Difference

First Fit 0.3377 0.2554 32.22%

Next Fit 0.1077 0.1056 2.00%

Power Save 0.3328 0.2774 19.95%

Random 0.1492 0.1679 -11.13%

Table 6.4 Percentage differences of the MCP estimates with an α of 0.10 as Number of
Hosts (X2) varies between 1000-30000

Placement

Algorithms

𝑬 𝑴𝑪𝑷

Analytical estimate

𝑬 𝑴𝑪𝑷

Simulation estimate

Percentage

Difference

First Fit 0.2857 0.2846 0.39%

Next Fit 0.2528 0.2828 -10.58%

Power Save 0.2845 0.2877 -1.12%

Random 0.2749 0.2895 -5.06%

Table 6.5 Percentage differences of the MCP estimates with an α of 0.10 as Users’
Arrival Rate (X4) varies between 2-5

 117

Placement

Algorithms

𝑬 𝑨𝑭𝑳

Analytical estimate

𝑬 𝑨𝑭𝑳

Simulation estimate

Percentage

Difference

First Fit 0.797 0.826 -3.53%

Next Fit 0.979 0.945 3.51%

Power Save 0.795 0.824 -3.61%

Random 0.943 0.929 1.46%

Table 6.6 Percentage differences of the AFL estimates with an α of 0.10 as Number of
Hosts (X2) varies between 1000-30000

Placement

Algorithms

𝑬 𝑨𝑭𝑳

Analytical estimate

𝑬 𝑨𝑭𝑳

Simulation estimate

Percentage

Difference

First Fit 0.833 0.842 -1.10%

Next Fit 0.887 0.902 -1.74%

Power Save 0.834 0.841 -0.91%

Random 0.863 0.885 -2.58%

Table 6.7 Percentage differences of the AFL estimates with an α of 0.10 as Users’
Arrival Rate (X4) varies between 2-5

The previous tables showed an agreement between the analytical estimates and the

simulation estimates across all PAs with an α of 0.10. About 75% and 100% of the obtained

analytical estimates of the MCP and AFL, respectively, had percentage differences less than

15%. Moreover, the mean percentage differences are 10.31% and 2.31% for the MCP and

AFL, respectively. On the other hand, the MCP was overestimated in First Fit and Power

Save as shown in the percentage difference that increased to levels that were pre-defined as

not being adequate (Section 6.3.1). Appendix E outlines, in detail, the VMC simulator’s

 118

estimates of the malicious co-residency metrics under different numbers of hosts and users’

arrival rates with α set to 0.10 in four PAs.

6.4.2 Malicious Co-residency Metrics as Attackers Ratio α Varies

This section presents the approximate analytical estimation of the MCP and AFL under

different α values, where these analytical estimates were calculated using the simulation

estimates from Table 6.1 and Table 6.2.

Table 6.8 shows the analytical estimates of the MCP under different α values.

As Figure 6.1 illustrates, the relationship between the MCP and the attackers’ VM requests

ratio α depends on the used PA. When 0.1 or less α is present in the IaaS cloud, the expected

MCP for First Fit, Next Fit, Power Save and Random are very close. However, when α is

greater than 0.1, Next Fit and Random significantly outperform (in reducing the MCP) the

rest of the PAs.

In addition, Next Fit outperforms (in reducing the MCP) the rest of the PAs for all amounts

of α. Surprisingly, even with attackers’ VM requests ratio of 0.99, Next Fit was able to limit

the probability of malicious co-residency to only 0.394.

 119

 MCP estimate using analytical prediction

α First Fit Next Fit Power Save Random

0 0 0 0 0

0.000000001 4.081x10!! 1.195x10!! 4.004x10!! 1.659x10!!

0.0000001 4.081x10!! 1.195x10!! 4.004x10!! 1.659x10!!

0.000001 4.081x10!! 1.195x10!! 4.004x10!! 1.659x10!!

0.00001 4.081x10!! 1.195x10!! 4.004x10!! 1.659x10!!

0.0001 0.000408 0.000119 0.000400 0.000166

0.001 0.0041 0.00119 0.00400 0.00166

0.01 0.0400 0.01183 0.03930 0.01642

0.1 0.3376 0.10777 0.33263 0.14922

0.2 0.5592 0.19375 0.55317 0.26752

0.3 0.6972 0.26044 0.69210 0.35863

0.4 0.7776 0.31032 0.77406 0.42622

0.5 0.8204 0.34586 0.81837 0.47393

0.6 0.8405 0.36954 0.83958 0.50535

0.7 0.8484 0.38378 0.84805 0.52399

0.8 0.8506 0.39101 0.85056 0.53328

0.9 0.8510 0.39363 0.85098 0.53656

0.99 0.8510 0.39400 0.85100 0.53700

 Table 6.8 MCP estimates using analytical prediction as α varies

 120

Figure 6.1 Variation of MCP with attackers’ VM requests ratio α

Moreover, Table 6.9 shows the Analytical estimates of the AFL (the expected Attacker-Free

Lifetime ratio of a given VM) across different α values.

Similar to the MCP, Figure 6.2 illustrates that the relationship between the AFL and the

attackers’ VM requests ratio α depends on the used PA. When 0.1 or less α is available, the

expected AFL for First Fit, Next Fit, Power Save and Random are very close. However, when

α is greater than 0.1, Next Fit and Random significantly outperform (in increasing the AFL)

the rest of the PAs.

In addition, Next Fit outperforms (in increasing the AFL) the rest of the PAs for all amounts

of α. Even with attackers’ VM requests ratio of 0.99, Next Fit was able to prolong the

lifetime ratio at which a given VM is safe from malicious hits to 0.894.

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

0	
 0.1	
 0.2	
 0.3	
 0.4	
 0.5	
 0.6	
 0.7	
 0.8	
 0.9	
 0.99	

MCP analytical estimate
FIRST FIT Next Fit Power Save Random

 121

 AFL using analytical prediction

α First Fit Next Fit Power Save Random

0 1.000 1.000 1.000 1.000

0.000000001 1.000 1.000 1.000 1.000

0.0000001 1.000 1.000 1.000 1.000

0.000001 1.000 1.000 1.000 1.000

0.00001 1.000 1.000 1.000 1.000

0.0001 1.000 1.000 1.000 1.000

0.001 0.998 1.000 0.998 0.999

0.01 0.977 0.998 0.977 0.994

0.1 0.797 0.979 0.794 0.943

0.2 0.648 0.961 0.643 0.893

0.3 0.539 0.946 0.533 0.849

0.4 0.460 0.934 0.453 0.810

0.5 0.401 0.923 0.394 0.777

0.6 0.356 0.915 0.350 0.747

0.7 0.321 0.908 0.315 0.721

0.8 0.292 0.902 0.287 0.698

0.9 0.267 0.897 0.263 0.677

0.99 0.247 0.894 0.245 0.660

Table 6.9 AFL estimates using analytical prediction as α varies

 122

Figure 6.2 Variation of AFL with attackers’ VM requests ratio α

6.5 Discussion

Given that attackers are present in a given IaaS cloud (i.e. VMs requests ratio 𝛼 is greater

than zero), the findings in this chapter (Table 6.8 and Table 6.9) validated the second

research hypothesis. This hypothesis states “for a given VM, there is a non-zero probability

that a new co-residing VM belongs to an attacker for any of the four PAs considered.” The

findings also provided useful insights to answer the fourth research question that states “for a

given VM, what is the probability that a new co-residing VM belongs to an attacker.”

Further, the results illustrate how the malicious co-residency probability varies in various

populations of attacker VMs.

It is important to emphasize that the following discussion and conclusions are only valid

within the range of data collected under the following PAs: First Fit, Next Fit, Power Save

and Random.

The key findings in this chapter are:

0.00	

0.10	

0.20	

0.30	

0.40	

0.50	

0.60	

0.70	

0.80	

0.90	

1.00	

0	
 0.1	
 0.2	
 0.3	
 0.4	
 0.5	
 0.6	
 0.7	
 0.8	
 0.9	
 0.99	

AFL analytical estimate

FIRST FIT Next Fit Power Save Random

 123

• The approximate analytical estimates of the malicious co-residency metrics are

acceptable over any given proportion of malicious users.

The results in (Table 6.4, Table 6.5, Table 6.6 and Table 6.7) show the analytical

estimates, the simulation estimates and the corresponding percentage differences.

About 75% and 100% of the obtained analytical estimates of the MCP and AFL,

respectively, had percentage differences less than 15% in the four PAs. Moreover, the

mean percentage differences are 10.31% and 2.31% for the MCP and AFL,

respectively. On the other hand, the MCP was overestimated in First Fit and Power

Save as shown in the percentage difference that increased to levels that were pre-

defined as not being adequate (Section 6.3). As these results show, the analytical

estimation of the malicious co-residency metrics agreed with the experimental

estimate (i.e. using the VMC simulator). Thus, this finding allows the conclusion that

the analytical estimation derived in this chapter can become very useful for estimating

the probability of an attacker successfully co-residing with a given VM under any α

value.

There can be several useful applications of the proposed analytical estimation. For

IaaS cloud providers, the VMC simulator can be used to find the CCP metric and the

𝐸 𝑘 𝑘 > 0 (Section 6.2) in order to obtain an analytical estimate of the malicious

co-residency metrics under any 𝛼 value. This action can reveal valuable insights into

the IaaS cloud under study and can be used to compare the malicious co-residency

occurrence probabilities in different cloud settings, PAs and different attacker ratios.

• Under different proportion of malicious users, the right choice of PA can

hinder attackers from easily achieving malicious co-residency.

The findings in Section 6.4.2 suggest that the used PA is a primary factor in

determining the malicious co-residency likelihood. However, the results showed that

there is no best PA for reducing the malicious co-residency probability. For instance,

Next fit and Random were better in reducing this probability compared to First Fit

and Power Save. By comparing the PAs as 𝛼 varies between 0 to 0.99 (Table 6.8 and

Table 6.9), the probability (with 95% confidence intervals) that an honest VM u

encounters a malicious co-residency hit at least once during its lifetime (i.e. the MCP)

is between 0.197 to 0.376 in Next Fit, compared to 0.270 to 0.514 in Random, 0.490

to 0.862 in First Fit and 0.487 to 0.860 in Power Save. One possible explanation of

 124

why Next Fit and Random are better at reducing the co-residency probability was

presented in Section 5.4. The explanation suggests that Next Fit and Random tend to

distribute VMs evenly across as many hosts as possible rather than packing them

tightly on the first available hosts as First Fit and Power Save do. Therefore, VMs are

less vulnerable to the reception of many co-residing VMs in Next Fit and Random, as

opposed to First Fit and Power Save. Thus, this provides evidence that the right

choice of PAs can hinder attackers from easily achieving malicious co-residency. In

addition, this finding corresponds well with the conclusion made in Section 5.4 that

the impact on co-residency probability should become an important factor in the

choice of PAs for IaaS clouds.

• Generating 40% of the VMs requests –by attackers- in a given IaaS cloud can

lead to a substantial increase in the chance of achieving malicious co-residency.

The findings in Section 6.4.2 suggest that attackers can effectively increase their

chance to achieve malicious co-residency by originating no more than 40% of the

VMs requests in a given IaaS cloud. The results in (Table 6.8) show that increasing

the attacker’s VMs request ratio from 0 to 0.4 caused a significant increase in the

MCP. For instance, the MCP increased from 0 to reach about 0.77 in First Fit and

Power Save, 0.31 in Next Fit and 0.42 in Random. In addition, the analytical

estimation of the AFL provides valuable insights that can help the attacker to increase

the chance of achieving co-residency with a particular VM u. For example, the

attacker can time the VM requests during a particular duration of u’s lifetime during

which u is expected not to be hit-free.

On the basis of the evidence currently available, it seems fair to suggest that

organized attackers with plentiful resources (e.g. organization-sponsored attackers)

can increase their chance of co-residing with victim VMs. This can be achieved

simply by requesting as many VMs as possible. Therefore, it can be argued that the

first line of defence against malicious co-residency in IaaS clouds is cloud providers

themselves. This action supports the conclusions from Chapter 4 and 5 that IaaS

cloud providers must consider selecting a PA that hinders attackers from achieving

malicious co-residency. In addition, IaaS cloud providers can use the proposed

analytical estimation to experiment with a different α in order to determine the range

of α ratios that is relatively acceptable to keep the malicious co-residency probability

 125

at its minimum. The providers can set the maximum number of VMs that a user can

create using this knowledge. Amazon EC2 limits the number of concurrent VMs a

user can create in a single individual account to 20 VMs [5].

6.6 Summary

The risk of side channel attacks is magnified enormously if an honest VM is co-resided by an

attacker VM. Therefore, this chapter investigated estimating the probability that the next co-

residing VM belongs to an attacker (i.e. the malicious co-residency probability). This

estimation was an attempt to answer the fourth research question (i.e. for a given VM, what

is the probability that a new co-residing VM belongs to an attacker). This chapter defined

two metrics (i.e. the MCP and AFL) that describe probabilities related to malicious co-

residency and take into account the attackers VMs requests ratio α. This thesis is the first to

derive two analytical estimates of probabilities related to malicious co-residency in Section

6.2.

Then, analytical estimates of the MCP and AFL have been compared with experimental

estimates (i.e. using the VMC simulator) in four PAs under an α value of 0.10. The results in

(Table 6.4, Table 6.5, Table 6.6 and Table 6.7) show the analytical estimates, the simulation

estimates and the corresponding percentage differences in four PAs. About 75% and 100% of

the obtained analytical estimates of the MCP and AFL, respectively, had percentage

differences less than 15% in the four PAs. Moreover, the mean percentage differences are

10.31% and 2.31% for the MCP and AFL, respectively. On the other hand, the MCP was

overestimated in First Fit and Power Save as shown in the percentage difference that

increased to levels that were pre-defined as not being adequate (Section 6.3). Therefore, the

derived analytical estimates were shown to agree with the experimental estimates in the four

PAs in Section 6.4.1.

Further, Section 6.4.2 used the calculated analytical estimates to compare First Fit, Next Fit,

Power Save and Random over a wide range of α values. By comparing the PAs as 𝛼 varies

between 0 to 0.99 (Table 6.8 and Table 6.9), the probability (with 95% confidence intervals)

that an honest VM u encounters a malicious co-residency hit at least once during its lifetime

(i.e. the MCP) is between 0.197 to 0.376 in Next Fit, compared to 0.270 to 0.514 in Random,

0.490 to 0.862 in First Fit and 0.487 to 0.860 in Power Save. These results seem to be in

favour of the second research hypothesis that states “there is a non-zero probability that a

new co-residing VM belongs to an attacker in all PAs.”

 126

Thus, the aforementioned findings demonstrated that VMs hosted in IaaS clouds that use

Next Fit or Random are less likely to receive co-resident attacker VMs compared to when

First Fit or Power Save are used. The findings also suggest that the right choice of PAs can

reduce the probability of being co-resided by attackers VMs, which can reduce the attack

surface for side channel attacks. However, an interesting finding in Section 6.4.2 shows that a

sharp rise in the latter probability is possible if attackers manage to originate no more than

40% of the VMs requests in a given IaaS cloud.

 127

Chapter 7

Summary and Conclusions

Because co-residency is a necessary first step to launching side channel attacks, this

motivated this thesis to look into understanding the co-residency probability. As set forth in

Section 1.2, this thesis aims to analyse and quantify the influence of cloud parameters (such

as the number of host and users) on the co-residency probability under four commonly used

PAs. These PAs are First Fit, Next Fit, Power Save and Random. By doing so, this thesis was

able to identify the influential parameters’ settings that reduce the co-residency probability in

each PA. Reducing the attack surface for side channel attacks is, therefore, one outcome of

reducing the co-residency probability.

This thesis achieved its aim through quantitative experimental simulation and analytical

prediction. This approach consisted of four main steps:

(1) Characterizing the co-residency occurrence behavior in IaaS clouds using co-

residency metrics (Chapter 3), followed by

(2) Identifying the four most influential cloud parameters (such as the number of hosts,

clusters and users) affecting co-residency probability in four PAs. In order to do so,

Chapter 4 quantified the influence of multiple cloud parameters on the co-residency

probability. Then,

(3) Simulation experimentation to find the best settings of the most influential

parameters that reduce the co-residency probability under four PAs (Chapter 5),

finishing with

(4) Analytical estimation with the coexistence of different populations of attackers, to

find the probability that a new co-residing VM belongs to an attacker (Chapter 6).

These estimates helped to identify the best PAs that reduce the aforementioned

probability.

The above steps were posed as research questions in Section 1.3. This chapter will revisit the

research questions, summarizing the key findings and their implications in Section 7.1.

 128

Section 7.2 draws some conclusions, followed by highlighting the limitations of this thesis in

Section 7.3. Finally, Section 7.4 proposes potentially fruitful avenues for future research.

7.1 Summary

There are two hypotheses set forward in Section 1.3:

1. For a given PA, cloud parameters such as the number of hosts and users do not have

the same influence on the co-residency probability in IaaS clouds.

2. For a given VM, there is a non-zero probability that a new co-residing VM belongs to

an attacker for any of the four PAs considered.

An analysis of variance (ANOVA) test has been applied to the simulation estimates in

Section 4.3.4. This allows the quantifying of the influence of eight cloud parameters and

parameters interactions on the co-residency metrics under each PA (Section 4.5). This

quantification showed that this influence varies with parameters, and, therefore, provided

evidence to support the first hypothesis.

Further, the findings in Chapter 6 are based on an analytical estimation that seems to be in

favour of the second hypothesis. The analytical estimation in Section 6.4.2 compared the

probability that a new co-residing VM belongs to an attacker in four PAs over a wide range

of α (i.e. attackers’ VMs requests ratio). Given that attackers exist in the IaaS cloud, the

analytical estimation results show that there is a non-zero probability that a new co-residing

VM belongs to an attacker in all PAs.

The following is a brief summary of the key findings under each of the research questions.

1. How to characterise the co-residency occurrence behavior in IaaS clouds?

Following the description of the system and attack models in Section 3.2, four co-

residency metrics characterizing the co-residency occurrence behaviour in IaaS clouds

have been successfully defined in Chapter 3. Some of these characteristics include how

likely a given VM u will be co-resided by another VM v (i.e. the co-residency

probability), as well as how long does this co-residency take to occur.

These co-residency metrics were estimated using simulation to quantify the parameters’

influence on the co-residency metrics. This quantification led to identifying the four most

influential parameters and interactions on the co-residency metrics (Chapter 4).

 129

These estimates also helped to find the best parameter settings that reduce the co-

residency probability in four PAs (Chapter 5).

In addition, the co-residency metrics were used to derive analytical estimates of

probabilities related to malicious co-residency (Chapter 6).

These metrics proved to be very useful in answering the research questions, and should

also be useful to further research on co-residency in IaaS clouds.

2. For a given PA, what are the four most influential cloud parameters (such as the
number of hosts, clusters and users) affecting the co-residency probability?

Due to the limited resources and time, this thesis focuses on the cloud parameters that

have the most influence on the co-residency metrics. Therefore, an Influence Evaluation

Strategy has been introduced (Section 4.3). This strategy statistically quantifies the

influence on the co-residency metrics across a variety of likely cloud parameters’ settings

in four commonly used PAs. These PAs are First Fit, Next Fit, Power Save and Random

(Appendix A provides a detailed description of these PAs). The strategy has applied

Fractional Factorial design (Appendix B) to obtain reduced-size experiments (Section

4.3.3). Then, the strategy has used the VMC simulator to run these experiments to

estimate the co-residency metrics across a variety of likely cloud parameters’ settings in

four PAs. Next, an Analysis of variance (ANOVA) test has been applied to the simulation

estimates in Section 4.3.4. As a result, the strategy successfully identified the four most

influential parameters and parameters interactions on the co-residency metrics under each

PA (Section 4.5).

One of the most important findings in (Section 4.6) is that, out of many parameters that

define the IaaS cloud environment, the number of hosts is the most influential parameter

across the four PAs. The following are the four most influential parameters and two-

parameter interactions on the co-residency probability. Number of hosts, user arrival rate,

VM average lifetime and maximum host utilization were the four most influential

parameters in First Fit and Power Save. The four most influential parameters in Next Fit

and Random were the number of hosts, the interaction of the number of clusters and VMs

per request parameters, user arrival rate and the interaction of the number of clusters and

users’ arrival rate parameters.

In addition, this thesis is the first to compare four PAs in terms of their impact on the co-

residency probability and to identify that similarity exists between First Fit and Power

 130

Save, as well as between Next Fit and Random.

The proposed Influence Evaluation Strategy is hoped to help researchers to identify the

most influential parameters on the co-residency probability under different PAs.

3. For a given PA, which parameter settings reduce the co-residency probability?

Using the VMC simulator as a testbed, the four most influential parameters identified in

Chapter 4 were used in controlled experiments in Chapter 5. These simulation

experiments are aimed to explore how the most influential parameters’ settings in four

PAs could positively and negatively affect the co-residency metrics. In order to achieve

this aim, these experiments estimated the co-residency metrics in four PAs under a wide

range of likely settings for publicly accessible IaaS clouds (Section 5.2).

Next, Pearson’s correlation analysis has been applied to study the correlation between

these parameters and the co-residency metrics. This analysis helped in identifying the

parameters’ settings that were able to reduce the co-residency probability in each PA (see

Table 5.17). Based on this finding, Section 5.4 presents evidence that VMs hosted in IaaS

clouds with a higher number of hosts are less likely to exhibit co-residency.

Further, using Next Fit in larger IaaS clouds has been shown to reduce effectively, and

even eliminate, the co-residency probability. In addition, the four PAs have been

compared in their ability to reduce the co-residency probability. For instance, VMs in

IaaS clouds that use Next Fit or Random are more resilient to the reception of co-resident

VMs compared to when First Fit or Power Save are used.

4. For a given VM, what is the probability that a new co-residing VM belongs to an
attacker?

The risk of side channel attacks is magnified enormously if an honest VM is co-resided

by an attacker. Therefore, this research question investigated reducing the probability that

the next co-residing VM belongs to an attacker (i.e. the malicious co-residency

probability). Chapter 6 defined two metrics (i.e. the MCP and AFL) that describe

probabilities related to malicious co-residency and also take into account the attackers’

VMs requests ratio α. This thesis is the first to derive two approximate analytical

estimates of probabilities related to malicious co-residency in Section 6.2.

 131

Then, analytical estimates of the MCP and AFL have been compared with experimental

estimates (i.e. using the VMC simulator) in four PAs under an α value of 0.10. The results

in (Table 6.4, Table 6.5, Table 6.6, and Table 6.7) show the analytical estimates, the

simulation estimates and the corresponding percentage differences. About 75% and 100%

of the obtained analytical estimates of the MCP and AFL, respectively, had percentage

differences less than 15% in the four PAs. Moreover, the mean percentage differences are

10.31% and 2.31% for the MCP and AFL, respectively. On the other hand, the MCP was

overestimated in First Fit and Power Save as shown in the percentage difference that

increased to levels that were pre-defined as not being adequate (Section 6.3). Therefore,

the derived analytical estimates were shown to agree with the experimental estimates in

Section 6.4.1.

Further, Section 6.4.2 used the derived analytical estimates to compare First Fit, Next Fit,

Power Save and Random over a wide range of α values. By comparing the PAs as 𝛼

varies between 0 to 0.99 (Table 6.8 and Table 6.9), the probability (with 95% confidence

intervals) that an honest VM u encounters a malicious co-residency hit at least once

during its lifetime (i.e. the MCP) is between 0.197 to 0.376 in Next Fit, compared to

0.270 to 0.514 in Random, 0.490 to 0.862 in First Fit and 0.487 to 0.860 in Power Save.

Thus, the aforementioned findings demonstrated that VMs hosted in IaaS clouds that use

Next Fit or Random are less likely to receive co-resident attacker VMs compared to when

First Fit or Power Save are used. The findings also suggest that the right choice of PAs

can reduce the probability of being co-resided by attackers’ VMs, which can reduce the

attack surface for side channel attacks. However, an interesting finding in Section 6.4.2

shows that a sharp rise in the latter probability is possible if attackers manage to originate

no more than 40% of the VMs requests in a given IaaS cloud.

7.2 Conclusion

With co-residency being inevitable in public IaaS clouds, adverse consequences of side

channels, brought by co-residency, are shown to affect the VMs security in multi-tenant

public IaaS clouds. Because co-residency is a necessary first step to launching side channel

attacks, this motivated this thesis to look into understanding the co-residency probability.

Based on the summary in the previous section, this thesis successfully accomplished its aim

by analysing and quantifying the influence of cloud parameters on the co-residency

probability under four commonly used PAs. These PAs are First Fit, Next Fit, Power Save

 132

and Random. Out of many parameters that define the IaaS cloud environment, the number of

hosts was the most influential parameter across the four PAs. In addition, the findings of this

thesis shed new light on the conditions under which the co-residency probability varies. For

instance, the co-residency probability has been shown to decrease as the number of hosts

increases in IaaS clouds.

After identifying the most influential parameters, this thesis has demonstrated that

determining and employing the appropriate parameters’ settings in a given PA can effectively

reduce the co-residency probability in public IaaS clouds. Table 5.17 lists the best

parameters’ settings in four PAs that reduced the co-residency probability.

The work presented in this thesis is a plausible blueprint for IaaS cloud providers to consider

co-residency reduction as an important selection factor for PAs and cloud settings (such as

the number of hosts). Reducing the residency probability should complement the available

countermeasures to side channel attacks (Section 2.3.3) by reducing the attack surface for

side channel attacks.

The derived analytical estimates may also be useful for IaaS cloud providers and users for

estimating the co-residency probability in various IaaS cloud settings and PAs.

7.3 Limitations

Since this work has been an exploratory venture into a little-chartered territory, a number of

assumptions had to be made to answer the research questions. Therefore, this thesis

inevitably has some limitations, the most significant of which are discussed in this section.

Analyzing and quantifying the influence of cloud parameters on the co-residency probability

has been based on an attack scenario in Section 3.2. The attack scenario makes assumptions

about how an attacker places malicious VMs, and, therefore, the analysis may be invalidated

if these assumptions fail to hold. Given a victim VM u and an attacker VM v, one of the most

basic assumptions is that v co-resides with u during the latter’s lifetime. This assumption is

supported by a demonstrated co-residing technique (see Section 2.3.1.2) that target specific

and existing VMs in public IaaS clouds, but may not hold for every type of technique. One

particular type of co-residing technique for which it may not hold is when the attacker places

many replicas of VM v in random hosts hoping that VM u becomes co-resident in a later

stage. Achieving co-residency using this technique might be possible for organized attackers

 133

with plentiful resources (e.g., organization-sponsored attackers). However, this co-residing

technique falls outside the scope of this thesis. Preventing this technique may require the

IaaS cloud provider to monitor and limit attackers’ ability to request a vast number of VMs.

Another fundamental assumption made is that the used co-residing technique follows an

attack model where an attacker relies ultimately on the PA’s decision when attempting to co-

reside with victim VMs. Hence, this thesis does not consider a situation where an attacker is

an insider (e.g. a system administrator) who is capable of enforcing VM placement to co-

reside with victim VMs. This type of attack, which involves cloud insiders, is shown to be

feasible in the real-world [81]. Therefore, the aforementioned limitations suggest that the

outcome of this thesis is not applicable to all kinds of attacks.

It is important to re-emphasise the fact that co-residency reduction does not prevent side

channels; it instead aims to make co-residing with VMs in public IaaS clouds more difficult.

7.4 Future Work

The possibility of employing the right cloud parameters’ settings in four commonly used PAs

to reduce the co-residency probability has been demonstrated in this thesis. Therefore,

several future directions for research emerge. For instance, analysing and quantifying the

influence of various cloud parameters on the co-residency probability in more PAs.

In addition, the co-residency probability can be used as a useful benchmark for comparing

public IaaS clouds based on how their cloud settings and PA reduce the co-residency

probability.

Another interesting line of research would be to design PAs that reduce the co-residency

probability and also take into account other important aspects, such as performance and

energy consumptions. This kind of PAs might prove to be very useful in practice. A very

recent and promising attempt was made in this context by [10], formalizing a secure PA that

prevents a specific type of co-residency (see Section 2.3.3.4).

Moreover, an increasing number of publications have compared PAs in several aspects. Such

aspects include cost reduction [37], [48], [49] and performance and energy consumptions

[40], [55], [58], [99]. This thesis is the first to compare four PAs in terms of their impact on

the co-residency probability and to identify that a similarity exists between First Fit and

Power Save, as well as between Next Fit and Random. These findings open an interesting

area for future research that involves comparing more PAs in terms of how much they are

 134

likely to reduce the co-residency probability.

Another interesting line of results from the previous PAs comparison would be to establish

lower and upper bounds on the trade-off between performance and resilience to co-residency

for each PA. More precisely, finding a lower bound on each PA’s performance and an upper

bound on the expected probability of co-residency. This would be very helpful, within the

context of this thesis, to identify the cost of using each PA to secure against side channel

attacks.

 135

Bibliography

[1] A. Alabdulhafez and P. Ezhilchelvan, “Experimenting on Virtual Machines Co-
residency in the Cloud,” in Proceedings of the 29th Annual ACM Symposium on
Applied Computing - SAC ’14, 2014, pp. 363–366.

[2] A. Alabdulhafez and P. Ezhilchelvan, “Analyzing the Success Rate of Virtual
Machines Co-residency in the Cloud,” in Proceedings of the 6th Saudi Scientific
International Conference (SIC), 2012, pp. 164–168.

[3] H. Aljahdali, P. Townend, and J. Xu, “Enhancing Multi-tenancy Security in the Cloud
IaaS Model Over Public Deployment,” in Proceedings of the IEEE Seventh
International Symposium on Service-Oriented System Engineering, 2013, pp. 385–
390.

[4] Amazon EC2, “AWS | Amazon Elastic Compute Cloud (EC2),” 2014. [Online].
Available: http://aws.amazon.com/ec2/. [Accessed: 23-Oct-2014].

[5] Amazon EC2, “FAQs: How Many Instances Can I Run in Amazon EC2?,” 2014.
[Online]. Available:
http://aws.amazon.com/ec2/faqs/#How_many_instances_can_I_run_in_Amazon_EC2.
[Accessed: 29-Oct-2014].

[6] J. Araujo, R. Matos, V. Alves, P. Maciel, V. Souza, R. Matias, and K. Trivedi,
“Software Aging in the Eucalyptus Cloud Computing Infrastructure,” ACM Journal on
Emerging Technologies in Computing Systems, vol. 10, no. 1, pp. 1–22, Jan. 2014.

[7] S. F. Arnold, Design of Experiments with MINITAB. The American Statistician, 2006.

[8] A. Aviram, S. Hu, B. Ford, and R. Gummadi, “Determinating Timing Channels in
Compute Clouds,” in Proceedings of the ACM Workshop on Cloud Computing
Security - CCSW ’10, 2010, pp. 103–108.

[9] P. Ayers, “Securing and Controlling Data in the Cloud,” Computer Fraud and
Security, vol. 2012, no. 11, pp. 16–20, 2012.

[10] Y. Azar, S. Kamara, I. Menache, M. Raykova, and B. Shepard, “Co-Location-
Resistant Clouds,” in Proceedings of the 6th ACM Workshop on Cloud Computing
Security - CCSW ’14, 2014, pp. 9–20.

[11] M. B. Baig, C. Fitzsimons, S. Balasubramanian, R. Sion, and D. E. Porter,
“CloudFlow: Cloud-wide Policy Enforcement Using Fast VM Introspection,” in
Proceedings of the IEEE International Conference on Cloud Engineering, 2014, pp.
159–164.

[12] J. Banks, C. John S., B. L. Nelson, and D. M. Nicol, Discrete-event System Simulation.
Prentice Hall, 2010.

 136

[13] A. Bates, B. Mood, J. Pletcher, H. Pruse, M. Valafar, and K. Butler, “Detecting Co-
residency with Active Traffic Analysis Techniques,” in Proceedings of the ACM
Workshop on Cloud Computing Security Workshop - CCSW ’12, 2012, pp. 1–12.

[14] G. van Belle, Statistical Rules of Thumb. John Wiley & Sons, 2011.

[15] G. E. P. Box, J. S. Hunter, and W. G. Hunter, Statistics for Experimenters: Design,
Innovation, and Discovery. Wiley-Interscience, 2005.

[16] J. Brodkin, “VMware Confirms Source Code Leak, LulzSec-affiliated Hacker Claims
Credit | Ars Technica,” 2012. [Online]. Available:
http://arstechnica.com/business/2012/04/vmware-confirms-source-code-leak-lulzsec-
affiliated-hacker-claims-credit/. [Accessed: 19-Oct-2014].

[17] S. Bugiel, S. Nürnberger, T. Pöppelmann, A.-R. Sadeghi, and T. Schneider,
“AmazonIA: When Elasticity Snaps Back,” in Proceedings of the 18th ACM
Conference on Computer and Communications Security - CCS ’11, 2011, pp. 389–
400.

[18] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya,
“CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing
Environments and Evaluation of Resource Provisioning Algorithms,” Software:
Practice and Experience, vol. 41, no. 1, pp. 23–50, Jan. 2011.

[19] H. Casanova, “Simgrid: A Toolkit for the Simulation of Application Scheduling,” in
Proceedings of the First IEEE/ACM International Symposium on Cluster Computing
and the Grid, 2001, pp. 430–437.

[20] R. Chiang, S. Rajasekaran, N. Zhang, and H. H. Huang, “Swiper: Exploiting Virtual
Machine Vulnerability in Third-Party Clouds with Competition for I/O Resources,”
IEEE Transactions on Parallel and Distributed Systems, no. 1, pp. 1–10, 2014.

[21] D. Chisnall, The Definitive Guide to the Xen Hypervisor. Prentice Hall, 2008.

[22] H. Coolican and P. L. in P. H. Coolican, Research Methods and Statistics in
Psychology, Sixth Edition. Psychology Press, 2014.

[23] CVE, “CVE-2007-4993  : pygrub (tools/pygrub/src/GrubConf.py) in Xen 3.0.3, When
Booting a Guest Domain, Allows Local Users with Elevated Privileges to Execute
Arbitrary Commands,” 2007. [Online]. Available:
http://www.cvedetails.com/cve/CVE-2007-4993/. [Accessed: 19-Oct-2014].

[24] CVE, “CVE-2007-5497  : Multiple Integer Overflows in libext2fs in e2fsprogs Before
1.40.3 Allow User-assisted Remote Attackers to Execute Code,” 2007. [Online].
Available: http://www.cvedetails.com/cve/CVE-2007-5497/. [Accessed: 19-Oct-
2014].

 137

[25] CVE, “CVE-2010-2240 - The do_anonymous_page function in mm/memory.c in the
Linux Kernel Before 2.6.27.52, 2.6.32.x,” 2010. [Online]. Available:
http://cve.circl.lu/cve/CVE-2010-2240. [Accessed: 19-Oct-2014].

[26] C. P. Dancey and J. Reidy, Statistics Without Maths for Psychology. Pearson/Prentice
Hall, 2007.

[27] C. L. Dumitrescu and I. Foster, “GangSim: A Simulator for Grid Scheduling Studies,”
in Proceedings of the IEEE International Symposium on Cluster Computing and the
Grid, 2005, vol. 2, pp. 1151–1158.

[28] A. EC2, “AWS | Amazon EC2 Dedicated Instances,” 2014. [Online]. Available:
http://aws.amazon.com/ec2/purchasing-options/dedicated-instances/. [Accessed: 09-
Nov-2014].

[29] I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing Infrastructure.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999.

[30] S. K. Garg and R. Buyya, “NetworkCloudSim: Modelling Parallel Applications in
Cloud Simulations,” in Proceedings of the Fourth IEEE International Conference on
Utility and Cloud Computing, 2011, pp. 105–113.

[31] M. Godfrey and M. Zulkernine, “A Server-Side Solution to Cache-Based Side-
Channel Attacks in the Cloud,” in Proceedings of the IEEE Sixth International
Conference on Cloud Computing, 2013, pp. 163–170.

[32] I. Gorka, S. I. Mehmet, E. Thomas, and B. Sunar, “Wait a Minute! A Fast, Cross-VM
Attack on AES,” in Proceedings of the 17th International Symposium on Research in
Attacks, Intrusions and Defenses, 2014, pp. 299–319.

[33] R. F. Gunst and R. L. Mason, “Fractional Factorial Design,” Wiley Interdisciplinary
Reviews: Computational Statistics, vol. 1, no. 2, pp. 234–244, 2009.

[34] J. Gustedt, E. Jeannot, and M. Quinson, “Experimental Methodologies For Large-
Scale Systems: A Survey,” Parallel Processing Letters, vol. 19, no. 03, pp. 399–418,
Sep. 2009.

[35] J. O. Henriksen, “An Introduction to SLX,” in Proceedings of the 29th Conference on
Winter Simulation - WSC ’97, 1997, pp. 559–566.

[36] W.-M. Hu, “Reducing Timing Channels with Fuzzy Time,” in Proceedings of the
IEEE Computer Society Symposium on Research in Security and Privacy, 1991, pp. 8–
20.

[37] C. Hyser, B. Mckee, R. Gardner, and B. Watson, Autonomic Virtual Machine
Placement in the Data Center. HP Laboratories, 2007.

[38] T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2. Boston, MA:
Springer US, 2009.

 138

[39] Y. Jararweh, Z. Alshara, M. Jarrah, M. Kharbutli, and M. N. Alsaleh, “TeachCloud: A
Cloud Computing Educational Toolkit,” International Journal of Cloud Computing,
vol. Volume 2, no. 2, pp. 237–257, 2013.

[40] Jenn-Wei Lin and Chien-Hung Chen, “Interference-aware Virtual Machine Placement
in Cloud Computing Systems,” in Proceedings of the International Conference on
Computer & Information Science (ICCIS), 2012, vol. 2, pp. 598–603.

[41] E. Keller, J. Szefer, J. Rexford, and R. B. Lee, “NoHype: Virtualized Cloud
Infrastructure Without the Virtualization,” ACM SIGARCH Computer Architecture
News, vol. 38, no. 3, pp. 350–361, Jun. 2010.

[42] G. Keramidas, A. Antonopoulos, D. N. Serpanos, and S. Kaxiras, “Non Deterministic
Caches: A Simple and Effective Defense Against Side Channel Attacks,” Design
Automation for Embedded Systems, vol. 12, no. 3, pp. 221–230, Apr. 2008.

[43] E. Kijsipongse and S. Vannarat, “Autonomic Resource Provisioning in Rocks Clusters
Using Eucalyptus Cloud Computing,” in Proceedings of the International Conference
on Management of Emergent Digital EcoSystems - MEDES ’10, 2010, pp. 61–66.

[44] D. Kliazovich, P. Bouvry, Y. Audzevich, and S. U. Khan, “GreenCloud: A Packet-
Level Simulator of Energy-Aware Cloud Computing Data Centers,” in Proceedings of
the IEEE Global Telecommunications Conference GLOBECOM 2010, 2010, pp. 1–5.

[45] W. Kreutzer, J. Hopkins, and M. van Mierlo, “SimJAVA: Framework for Modeling
Queueing Networks in Java,” in Proceedings of the 29th Conference on Winter
Simulation - WSC ’97, 1997, pp. 483–488.

[46] G. Kurian, O. Khan, and S. Devadas, “The Locality-aware Adaptive Cache Coherence
Protocol,” in Proceedings of the 40th Annual International Symposium on Computer
Architecture - ISCA ’13, 2013, vol. 41, no. 3, pp. 523–534.

[47] B. W. Lampson, “A Note on the Confinement Problem,” Communications of the
ACM, vol. 16, no. 10, pp. 613–615, Oct. 1973.

[48] K. Le, R. Bianchini, J. Zhang, Y. Jaluria, J. Meng, and T. D. Nguyen, “Reducing
Electricity Cost Through Virtual Machine Placement in High Performance Computing
Clouds,” in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis on - SC ’11, 2011, pp. 66–72.

[49] B. Li, J. Li, J. Huai, T. Wo, Q. Li, and L. Zhong, “EnaCloud: An Energy-Saving
Application Live Placement Approach for Cloud Computing Environments,” in
Proceedings of the IEEE International Conference on Cloud Computing, 2009, pp.
17–24.

[50] P. Li, D. Gao, and M. Reiter, “Mitigating Access-Driven Timing Channels in Clouds
Using StopWatch,” in Proceedings of the IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 2013, pp. 1–12.

 139

[51] S.-H. Lim, B. Sharma, G. Nam, E. K. Kim, and C. R. Das, “MDCSim: A Multi-tier
Data Center Simulation Platform,” in Proceedings of the IEEE International
Conference on Cluster Computing and Workshops, 2009, pp. 1–9.

[52] F. Liu, L. Ren, and H. Bai, “Mitigating Cross-VM Side Channel Attack on Multiple
Tenants Cloud Platform,” Journal of Computers, vol. 9, no. 4, pp. 1005–1013, Apr.
2014.

[53] H. Liu, “A New Form of DOS Attack in a Cloud and its Avoidance Mechanism,” in
Proceedings of the ACM on Cloud Computing Security Workshop - CCSW ’10, 2010,
pp. 65–76.

[54] J. Liu, F. Zhao, X. Liu, and W. He, “Challenges Towards Elastic Power Management
in Internet Data Centers,” in Proceedings of the 29th IEEE International Conference
on Distributed Computing Systems Workshops, 2009, pp. 65–72.

[55] X.-F. Liu, Z.-H. Zhan, K.-J. Du, and W.-N. Chen, “Energy Aware Virtual Machine
Placement Scheduling in Cloud Computing Based on Ant Colony Optimization
Approach,” in Proceedings of the Conference on Genetic and Evolutionary
Computation - GECCO ’14, 2014, pp. 41–48.

[56] P. M. Mell and T. Grance, “The NIST Definition of Cloud Computing,” National
Institute of Standards & Technology, Sep. 2011.

[57] Microsoft, “Azure: Microsoft’s Cloud Platform,” 2014. [Online]. Available:
http://azure.microsoft.com/en-us/. [Accessed: 23-Oct-2014].

[58] K. Mills, J. Filliben, and C. Dabrowski, “Comparing VM-Placement Algorithms for
On-Demand Clouds,” in Proceedings of the IEEE Third International Conference on
Cloud Computing Technology and Science, 2011, pp. 91–98.

[59] K. Mills, J. Filliben, and C. Dabrowski, “An Efficient Sensitivity Analysis Method for
Large Cloud Simulations,” in Proceedings of the IEEE 4th International Conference
on Cloud Computing, 2011, pp. 724–731.

[60] D. Milojičić, I. M. Llorente, and R. S. Montero, “OpenNebula: A Cloud Management
Tool,” IEEE Internet Computing, vol. 15, no. 2, pp. 11–14, Mar. 2011.

[61] S. Naicken, A. Basu, B. Livingston, and S. Rodhetbhai, “Towards Yet Another Peer-
to-Peer Simulator,” in Proceedings of The Fourth International Working Conference
on Performance Modelling and Evaluation of Heterogeneous Networks, 2006, pp. 37–
47.

[62] A. Nathani, S. Chaudhary, and G. Somani, “Policy Based Resource Allocation in IaaS
Cloud,” Future Generation Computer Systems, vol. 28, no. 1, pp. 94–103, Jan. 2012.

[63] Neovise, “Public, Private and Hybrid Clouds - When, Why and How They are Really
Used,” 2013. [Online]. Available: http://www.virtustream.com/company/buzz/press-
releases/neovise-research-report. [Accessed: 13-Nov-2014].

 140

[64] A. Nuñez, J. L. Vázquez-Poletti, A. C. Caminero, J. Carretero, and I. M. Llorente,
“Design of a New Cloud Computing Simulation Platform,” in Proceedings of the
International Conference on Computational Science and its Applications, 2011, pp.
582–593.

[65] A. Núñez, J. Fernández, R. Filgueira, F. García, and J. Carretero, “SIMCAN: A
Flexible, Scalable and Expandable Simulation Platform for Modelling and Simulating
Distributed Architectures and Applications,” Simulation Modelling Practice and
Theory, vol. 20, no. 1, pp. 12–32, Jan. 2012.

[66] A. Núñez, J. L. Vázquez-Poletti, A. C. Caminero, G. G. Castañé, J. Carretero, and I.
M. Llorente, “iCanCloud: A Flexible and Scalable Cloud Infrastructure Simulator,”
Journal of Grid Computing, vol. 10, no. 1, pp. 185–209, Apr. 2012.

[67] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, and D.
Zagorodnov, “The Eucalyptus Open-Source Cloud-Computing System,” in
Proceedings of the 9th IEEE/ACM International Symposium on Cluster Computing
and the Grid, 2009, pp. 124–131.

[68] S. Ostermann, K. Plankensteiner, D. Bodner, G. Kraler, and R. Prodan, “Integration of
an Event-Based Simulation Framework into a Scientific Workflow Execution
Environment for Grids and Clouds.,” in Proceedings of the Towards a Service-Based
Internet - 4th European Conference, 2011, pp. 1–13.

[69] S. Ostermann, K. Plankensteiner, R. Prodan, and T. Fahringer, “GroudSim: An Event-
based Simulation Framework for Computational Grids and Clouds,” in Proceedings of
the Conference on Parallel Processing, 2010, pp. 305–313.

[70] D. A. Osvik, A. Shamir, and E. Tromer, “Cache Attacks and Countermeasures: The
Case of AES,” in Proceedings of the Cryptographers’ Track at the RSA Conference on
Topics in Cryptology, 2006, pp. 1–20.

[71] D. Page, “Partitioned Cache Architecture as a Side-Channel Defence Mechanism,”
IACR Cryptology ePrint Archive, vol. 280, no. 8, pp. 10–16, 2005.

[72] D. Page, “Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel,” IACR
Cryptology ePrint Archive, vol. 190, no. 2, pp. 14–22, 2002.

[73] D. Page, “Defending Against Cache-based Side-channel Attacks,” Information
Security Technical Report, vol. 8, no. 1, pp. 30–44, Mar. 2003.

[74] V. Paxson and S. Floyd, “Why We Don’t Know How to Simulate the Internet,” in
Proceedings of the 29th Conference on Winter Simulation - WSC ’97, 1997, pp. 1037–
1044.

[75] C. Percival, “Cache Missing for Fun and Profit,” in Proceedings of the BSDCan, 2005,
pp. 1–12.

 141

[76] N. Pitropakis, A. Pikrakis, and C. Lambrinoudakis, “Behaviour Reflects Personality:
Detecting Co-residence Attacks on Xen-based Cloud Environments,” International
Journal of Information Security, vol. 1, no. 1, pp. 1–7, Aug. 2014.

[77] Rackspace, “Rackspace Cloud Company,” 2014. [Online]. Available:
http://www.rackspace.com/. [Accessed: 30-Oct-2014].

[78] A. Reed, C. Rezek, and P. Simmonds, Security Guidance for Critical Areas of Focus
in Cloud Computing V3.0. Cloud Security Alliance, 2011.

[79] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, You, Get Off of My
Cloud: Exploring Information Leakage in Third-party Compute Clouds,” in
Proceedings of the 16th ACM Conference on Computer and Communications Security
- CCS ’09, 2009, pp. 199–212.

[80] T. J. Rivlin, An Introduction to the Approximation of Functions. Courier Dover
Publications, 1981.

[81] F. Rocha and M. Correia, “Lucy in the Sky Without Diamonds: Stealing Confidential
Data in the Cloud,” in Proceedings of the IEEE/IFIP 41st International Conference on
Dependable Systems and Networks Workshops (DSN-W), 2011, pp. 129–134.

[82] C. L. Sabharwal, “Thinking in Java,” IEEE Potentials, vol. 17, no. 3, pp. 33–37, 1998.

[83] J. Sauro and J. R. Lewis, Quantifying the User Experience: Practical Statistics for
User Research. Elsevier, 2012.

[84] W. Sellami, H. H. Kacem, and A. H. Kacem, “Towards a Multi-tenancy Aware Cloud
Service Composition,” in Proceedings of the 28th International Conference on
Advanced Information Networking and Applications Workshops, 2014, pp. 404–409.

[85] P. Sempolinski and D. Thain, “A Comparison and Critique of Eucalyptus,
OpenNebula and Nimbus,” in Proceedings of the IEEE Second International
Conference on Cloud Computing Technology and Science, 2010, pp. 417–426.

[86] SimGrid Documentation, “SimGrid Simulator: VMs,” 2014. [Online]. Available:
http://simgrid.gforge.inria.fr/simgrid/latest/doc/group__msg__VMs.html. [Accessed:
31-Oct-2014].

[87] D. X. Song, D. Wagner, and X. Tian, “Timing Analysis of Keystrokes and Timing
Attacks on SSH,” in Proceedings of the 10th Conference on USENIX Security
Symposium, 2001, pp. 250–258.

[88] H. J. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, K. Taura, and A. Chien, “The
MicroGrid: a Scientific Tool for Modeling Computational Grids,” in Proceedings of
the IEEE Supercomputing Conference (SC’2000), 2000, pp. 127–141.

[89] B. B. Stone and A. Vance, “Companies Slowly Join Cloud-Computing,” The New
York Times, 18-Apr-2010.

 142

[90] N. Sudarsanam and D. D. Frey, “Using Ensemble Techniques to Advance Adaptive
One-factor-at-a-time Experimentation,” Quality and Reliability Engineering
International, vol. 27, no. 7, pp. 947–957, Nov. 2011.

[91] J. Szefer, E. Keller, R. B. Lee, and J. Rexford, “Eliminating the Hypervisor Attack
Surface for a More Secure Cloud,” in Proceedings of the 18th ACM Conference on
Computer and Communications Security - CCS ’11, 2011, pp. 401–412.

[92] V. Varadarajan, T. Kooburat, B. Farley, T. Ristenpart, and M. M. Swift, “Resource-
freeing Attacks: Improve Your Cloud Performance (at Your Neighbor’s Expense),” in
Proceedings of the ACM Conference on Computer and Communications Security -
CCS ’12, 2012, pp. 281–292.

[93] B. C. Vattikonda, S. Das, and H. Shacham, “Eliminating Fine Grained Timers in
Xen,” in Proceedings of the 3rd ACM Cloud Computing Security workshop - CCSW
’11, 2011, pp. 41–46.

[94] VMware, “VMSA-2008-0008,” 2008. [Online]. Available:
http://www.vmware.com/security/advisories/VMSA-2008-0008. [Accessed: 19-Oct-
2014].

[95] J. Wang and M. N. Huhns, “Using Simulations to Assess the Stability and Capacity of
Cloud Computing Systems,” in Proceedings of the 48th ACM Annual Southeast
Regional Conference - ACM SE ’10, 2010, pp. 9–19.

[96] B. Wickremasinghe, R. N. Calheiros, and R. Buyya, “CloudAnalyst: A CloudSim-
Based Visual Modeller for Analysing Cloud Computing Environments and
Applications,” in Proceedings of the 24th IEEE International Conference on
Advanced Information Networking and Applications, 2010, pp. 446–452.

[97] Z. Wu, Z. Xu, and H. Wang, “Whispers in the Hyper-Space: High-Bandwidth and
Reliable Covert Channel Attacks Inside the Cloud,” IEEE/ACM Transactions on
Networking, vol. PP, no. 99, pp. 1–10, 2014.

[98] F. Wuhib, R. Stadler, and H. Lindgren, “Dynamic Resource Allocation with
Management Objectives: Implementation for an OpenStack Cloud,” in Proceedings of
the 8th International Conference on Network and Service Management, 2012, pp.
309–315.

[99] J. Xu and J. A. B. Fortes, “Multi-Objective Virtual Machine Placement in Virtualized
Data Center Environments,” in Proceedings of the IEEE/ACM International
Conference on Green Computing and Communications and International Conference
on Cyber, Physical and Social Computing, 2010, pp. 179–188.

[100] S. Yu, X. Gui, and J. Lin, “An Approach with Two-stage Mode to Detect Cache-based
Side Channel Attacks,” in Proceedings of the International Conference on Information
Networking 2013 (ICOIN), 2013, pp. 186–191.

 143

[101] M. Zaigham, Cloud Computing: Challenges, Limitations and R&D Solutions. Cham:
Springer International Publishing, 2014.

[102] Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter, “HomeAlone: Co-residency Detection
in the Cloud via Side-Channel Analysis,” in Proceedings of the IEEE Symposium on
Security and Privacy, 2011, pp. 313–328.

[103] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-VM Side Channels and
Their Use to Extract Private Keys,” in Proceedings of the ACM Conference on
Computer and Communications Security - CCS ’12, 2012, pp. 305–316.

[104] Y. Zhang and M. K. Reiter, “Düppel: Retrofitting Commodity Operating Systems to
Mitigate Cache Side Channels in the Cloud,” in Proceedings of the ACM Conference
on Computer & Communications Security - CCS ’13, 2013, pp. 827–838.

 144

Appendix A

VMC Simulator Implementation

A.1 Definition

This appendix describes how the VMC simulator implements the system model and the four

PAs used in this thesis (Section 3.2). The following are important preliminary definitions and

assumptions:

- The number of clusters in the system model is denoted as C

- Each cluster is assigned a unique identifier i, such that 0 < i ≤ C

- Each cluster has a number of hosts ω

- Each host is assigned a unique identifier j, such that 0 < j ≤ ω

- A host is available if it has an available space to accommodate a new VM

- A host is full if it cannot accommodate a new VM

- A cluster is available if it contains at least one available host

- A cluster is full if it does not contain any available host

- The VMC simulator implements the system model as follows:

o Clusters are ordered by their identifiers from lowest to highest

o Hosts in cluster i are ordered by their identifiers from lowest to highest

o The lowest cluster/host refers to the cluster/host with the lowest identifier

number

In addition, the attackers VMs requests rate α can be specified to the VMC simulator in order

to estimate probabilities related to malicious co-residency (see Chapter 6).

Further, the VMC defines the following 36 input parameters to describe the system model in

this thesis (Table A.1):

 145

ID Parameters Description

1. Number of Clusters How many Clusters in the simulation

2. Number of Hosts of Type H1

How many Hosts of each type to be created in

the simulation. Hosts will be distributed

randomly into clusters.

3. Number of Hosts of Type H2

4. Number of Hosts of Type H3

5. Number of Hosts of Type H4

6. Number of Hosts of Type H5

7. Max Utilization for Host Type H1

A Host is Full when the hosted VMs usage of

the host's resources (CPU, memory and storage)

reaches the Max Host Utilization percentage.

8. Max Utilization for Host Type H2

9. Max Utilization for Host Type H3

10. Max Utilization for Host Type H4

11. Max Utilization for Host Type H5

12. Users’ Arrival Rate Of Type U1

Average number of new users of each type to

be created every time unit

13. Users’ Arrival Rate Of Type U2

14. Users’ Arrival Rate Of Type U3

15. Users’ Arrival Rate Of Type U4

16. Users’ Arrival Rate Of Type U5

17. Maximum Number of Users of Type U1

The maximum number of users that can run in

the simulated cloud simultaneously.

18. Maximum Number of Users of Type U2

19. Maximum Number of Users of Type U3

20. Maximum Number of Users of Type U4

 146

21. Maximum Number of Users of Type U5

22. Max Parallel VMs of User Type U1

The maximum number of concurrent VMs a

single user can run.

23. Max Parallel VMs of User Type U2

24. Max Parallel VMs of User Type U3

25. Max Parallel VMs of User Type U4

26. Max Parallel VMs of User Type U5

27. X_SMALL VM Average Lifetime How long a user (on average) holds his running

VM before terminating it (in time units)
28. SMALL VM Average Lifetime

29. MEDIUM VM Average Lifetime

30. LARGE VM Average Lifetime

31. X_LARGE VM Average Lifetime

32. VMs per User Request Rate for User Type U1 How many new VM(s) to be created in each

new VMs request (on average). The number of

VMs per request must be less than or equal to

the Max Parallel VMs per User parameter.

33. VMs per User Request Rate for User Type U2

34. VMs per User Request Rate for User Type U3

35. VMs per User Request Rate for User Type U4

36. VMs per User Request Rate for User Type U5

Table A.1 The input parameters that define the VMC simulator.

In addition, the VMC produces the simulation outputs in an MS Excel file that contains five

sheets in which each shows different statistical information. In addition, a log file is

generated which displays the details of all the simulations actions and events in a text-based

format (Figure A.1).

 147

Figure A.1 Examples of the results generated by the VMC

With regards to co-residency, the next section describes the PAs that are implemented by the

VMC simulator.

A.2 Implemented VM Placement Algorithms

Given a pool of hosts in the IaaS cloud (host 1, host 2, ..., host ω) that are distributed in

different clusters (cluster 1, cluster 2, …, cluster C) and a sequence of VMs requests, the PAs

specify in which cluster and host a newly created VM should be placed. In case all hosts are

full, no placement takes place. The system model considers four PAs that are used in popular

 148

IaaS cloud platforms including Eucalyptus [6], OpenNebula [60], Nimbus [85] and

OpenStack [98]. Based on the previous system model assumptions, the VMC simulator

implements the following PAs.

A.2.1 First Fit

First Fit places a new VM as follows:

o Placement in clusters level:

o If all clusters are full, then the new VM cannot be placed. Else

o Select the lowest available cluster i then go to Placement in hosts level.

o Placement in hosts level:

o Place the new VM in the lowest available host j from cluster i.

A.2.2 Next Fit

Next Fit mainly focuses on distributing the VMs equally between clusters and hosts

with the help of the following pointers:

o pointer! : Initially points to the lowest cluster (i.e. i =1).

o pointer! for each cluster i: Initially points to the lowest host that belongs to

cluster i.

Next fit places a new VM to hosts in a cyclic manner as follows:

o Placement in clusters level:

1. If all clusters are full, then the new VM cannot be placed. Else

2. If the cluster indicated by pointer! is full:

a. Move pointer! to point to the next cluster i+1, given that i+1≤ C.

Otherwise move it to point to the lowest cluster (i=1).

b. Repeat the Placement in clusters level.

3. If the cluster indicated by pointer! is available:

a. Select cluster i for placement.

b. Move pointer! to point to the next cluster i+1, given that i+1≤ C.

Otherwise move it to point to the lowest cluster (i=1).

c. Go to Placement in hosts level.

o Placement in hosts level:

 149

Now that an available cluster i is selected:

1. If the host indicated by pointer! is full:

a. Move pointer! to point to the next host j+1, given that j+1≤ ω.

Otherwise move it to point to the lowest host (j=1).

b. Repeat the Placement in hosts level.

2. If the host indicated by pointer! is available:

a. Place the new VM in host j.

b. Move pointer! to point to the next host j+1, given that j+1≤ ω.

Otherwise move it to point to the lowest host (j=1).

A.2.3 Power Save

Power Save is similar to First Fit but with a number of differences:

o Power Save puts a host to sleep mode when the host contains zero VM. A

sleep mode indicates that the host is unavailable for placing new VMs.

o Power Save reawakens a host from sleep mode to place new VMs when all the

other non-sleeping hosts are full.

o Initially: Power Save puts all hosts into sleep mode except host 1 in cluster 1.

o Upon receiving a VM placement request: Whenever a VM request is received,

Power Save checks non-sleeping hosts in all clusters if all of them are full

then:

§ Select the lowest cluster that has a sleeping host,

§ Awaken the lowest sleeping host.

Power Save places a new VM as follows:

o Placement in clusters level:

1. If all clusters are full, then the new VM cannot be placed. Else

2. Select the lowest available cluster i then go to Placement in hosts level.

o Placement in hosts level:

1. Place the new VM in the lowest available host j from cluster i.

A.2.4 Random

Random places new VMs in a rather straightforward way compared to the other

algorithms:

 150

o Placement in clusters level:

1. If all clusters are full, then the new VM cannot be placed. Else

2. Select a cluster i uniformly at random. If it is full, then keep selecting

random clusters until an available cluster i is found, then go to Placement

in hosts level.

o Placement in hosts level:

1. From the selected cluster i, select a host j uniformly at random. If it is full

then keep selecting random hosts until an available host j is found

2. Place the new VM in j.

 151

Appendix B

Designing a Fractional Factorial Experiment

B.1 Fractional Factorial Definition

Fractional factorial design is an effective experimental approach that is widely used in

industrial experiments [33]. When there are too many parameters and levels to be included in

a limited resources experiment, fractional factorial helps to construct a reduced and balanced

experiment design. Fractional factorial experiments are used in Chapter 4 to identify the top

influential parameters and interactions on the co-residency metrics in an effective way. The

basic concept of fractional factorial design is to include a subset (fraction) of the

experimental runs that only cover important parameter combinations and interactions. This is

in contrast to the full factorial experimental approach which includes all parameter

combinations. A 2-way fractional factorial design of an IV resolution is used in Chapter 4

that ensures that the effect of a given parameter does not confound with the effects of any

other parameter and 2-parameter interactions.

Fractional factorial designs are expressed in this thesis using the following notation:

𝑳𝐫𝒑!𝒔

Where:

-­‐ L is the number of levels used to examine each parameter (i.e. L is always 2 in

Chapter 4),

-­‐ r is the design resolution which specifies the degree to which the effect of each

parameter confounds with the other parameters and interactions (i.e. r is chosen to

be of resolution IV),

-­‐ p is the number of parameters under investigation (i.e. eight parameters in Chapter

4), and

-­‐ s represents the size of the fraction that is selected from the original full factorial

design.

 152

B.2 Designing a 2IV
4 Fractional Factorial Experiment

The aim in this section is to design a fractional factorial experiment to identify the most

influential parameters and interactions on the co-residency metrics in Chapter 4. Using the

eight parameters with two levels from Table 4.4, a full factorial experimental design that

covers all possible parameter combinations will result in 2! experimental runs. In order to

reduce the experiment size, the following steps are applied to design a 2IV
8-4 fractional

factorial experiment that uses a !
!!

 fraction of the 2! experimental runs in the full factorial

design:

1. Starting with X1, X2, X3 and X4 as the design parameters, construct a full factorial

design of p-s parameters (i.e. 8-4 = 4) that has 24 experimental runs. These runs cover

all possible parameter combinations (Table B.1).

Run X1 X2 X3 X4

1 Low Low Low Low

2 Low High High High

3 High Low High Low

4 High High Low Low

5 High Low Low Low

6 High Low High High

7 Low High Low High

8 High High Low High

9 Low Low High Low

10 Low High High Low

11 High High High Low

12 Low High Low Low

13 High Low Low High

14 Low Low High High

15 Low Low Low High

16 High High High High

Table B.1 Constructing a full factorial experiment using 4 parameters

 153

2. Then all the possible interactions between these four parameters are added in new

columns (Table B.2). The new columns are simply the multiplication between the

interaction parameters levels. Multiplying the same level results in a High level, and

multiplying different level results in a Low level:

Run

X
1

X
2

X
3

X
4

X
1X

2

X
1X

3

X
1X

4

X
2X

3

X
2X

4

X
3X

4

X
1X

2X
3

X
1X

2X
4

X
1X

3X
4

X
2X

3X
4

X
1X

2X
3X

4

1 Low Low Low Low High High High High High High Low Low Low Low High

2 High Low Low Low Low Low Low High High High High High High Low Low

3 Low High Low Low Low High High Low Low High High High Low High Low

4 High High Low Low High Low Low Low Low High Low Low High High High

5 Low Low High Low High Low High Low High Low High Low High High Low

6 High Low High Low Low High Low Low High Low Low High Low High High

7 Low High High Low Low Low High High Low Low Low High High Low High

8 High High High Low High High Low High Low Low High Low Low Low Low

9 Low Low Low High High High Low High Low Low Low High High High Low

10 High Low Low High Low Low High High Low Low High Low Low High High

11 Low High Low High Low High Low Low High Low High Low High Low High

12 High High Low High High Low High Low High Low Low High Low Low Low

13 Low Low High High High Low Low Low Low High High High Low Low High

14 High Low High High Low High High Low Low High Low Low High Low Low

15 Low High High High Low Low Low High High High Low Low Low High Low

16 High High High High High High High High High High High High High High High

Table B.2 Adding all the possible interactions between the 4 parameters

3. The remaining parameters (X5, X6, X7 and X8) are carefully substituted with

redundant high-order interactions of the first 4 parameters (i.e. 3-parameter

interactions). There are a number of standard approaches to substitute redundant

interactions with parameters in a resolution IV fractional factorial design suggested in

[15]. Resolution IV fractional factorial designs ensure that a parameter’s effect

confounds with at worst 3-parameter interactions. Therefore, 3-parameter and higher

interactions effects are not considered in identifying the influential parameters on the

co-residency metrics in Chapter 4. The basic rule to choose which 3-parameter

interactions are to be replaced with which parameter is that the effects of the

 154

substituted 3-parameter interactions do not confound with the effects of the

parameters and 2-parameter interactions. Table B.3 shows that the X5, X6, X7 and

X8 parameters were substituted with the following 3-parameter interactions:

X5 = X2X3X4 X6 = X1X3X4 X7 = X1X2X3 X8 = X1X2X4

 X7 X8 X6 X5

 ê ê ê ê

Run

X
1

X
2

X
3

X
4

X
1X

2

X
1X

3

X
1X

4

X
2X

3

X
2X

4

X
3X

4

X
1X

2X
3

X
1X

2X
4

X
1X

3X
4

X
2X

3X
4

X
1X

2X
3X

4

1

Low Low Low Low High High High High High High Low Low Low Low High

2

High Low Low Low Low Low Low High High High High High High Low Low

3

Low High Low Low Low High High Low Low High High High Low High Low

4

High High Low Low High Low Low Low Low High Low Low High High High

5

Low Low High Low High Low High Low High Low High Low High High Low

6

High Low High Low Low High Low Low High Low Low High Low High High

7

Low High High Low Low Low High High Low Low Low High High Low High

8

High High High Low High High Low High Low Low High Low Low Low Low

9

Low Low Low High High High Low High Low Low Low High High High Low

10

High Low Low High Low Low High High Low Low High Low Low High High

11

Low High Low High Low High Low Low High Low High Low High Low High

12

High High Low High High Low High Low High Low Low High Low Low Low

13

Low Low High High High Low Low Low Low High High High Low Low High

14

High Low High High Low High High Low Low High Low Low High Low Low

15

Low High High High Low Low Low High High High Low Low Low High Low

16

High High High High High High High High High High High High High High High

Table B.3 Replacing X5, X6, X7 and X8 parameters with 3-parameter interactions.

 155

4. The final 2IV
4 fractional factorial experiment consists of 16 experimental runs

covering eight parameters combinations in a balanced fashion (Table B.4). Each

parameter is tested at each of its two levels in eight runs in order to increase the

validity of the results.
Run X1 X2 X3 X4 X5 X6 X7 X8

1 Low Low Low Low Low Low Low Low

2 High Low Low Low Low High High High

3 Low High Low Low High Low High High

4 High High Low Low High High Low Low

5 Low Low High Low High High High Low

6 High Low High Low High Low Low High

7 Low High High Low Low High Low High

8 High High High Low Low Low High Low

9 Low Low Low High High High Low High

10 High Low Low High High Low High Low

11 Low High Low High Low High High Low

12 High High Low High Low Low Low High

13 Low Low High High Low Low High High

14 High Low High High Low High Low Low

15 Low High High High High Low Low Low

16 High High High High High High High High

Table B.4 Final design of the 2IV
8-4 fractional factorial experiment

 156

Appendix C

Weighted Effects on the Co-residency Metrics

The results of the parameters and 2-parameter interactions Weighted Effects WEs on each of

the co-residency metrics are provided in this Appendix. These WEs are calculated under First

Fit, Next Fit, Power Save and Random. The following figures show the parameters and 2-

parameter interactions in the x-axis and the corresponding WEs in the y-axis. As per the

definition of WE in Section 4.3.4.3, the maximum WE on a given co-residency metric that

parameters and 2-parameter interactions can achieve is two.

When using First Fit as the PA (Figure C.1), the results showed that User Arrival Rate (X4)

achieved the highest WE on the CCP metric followed by the VMs Request Rate (X8). In

addition, Users’ Arrival Rate (X4) achieved the highest WE on the HFL metric followed by

Number of Hosts (X2). However, Number of Hosts (X2) repeatedly scored the highest WE

on the CV and CA metrics.

Figure C.1 Weighted Effect WE on the co-residency metrics using First Fit

X1 X2 X3 X4 X5 X6 X7 X8 X1*X2 X1*X3 X1*X4 X1*X5 X1*X6 X1*X7 X1*X8

WE on CCP 0.12 0.04 0.70 2.00 0.05 0.00 0.46 1.26 0.25 0.21 0.00 0.00 0.00 0.03 0.10

WE on HFL 0.18 1.19 0.00 1.36 0.27 0.16 1.00 0.00 0.14 0.16 0.00 0.00 0.00 0.20 0.00

WE on CV 0.53 1.34 1.17 0.00 0.47 0.00 1.00 0.25 0.00 0.52 0.56 0.23 0.23 1.24 0.18

 WE on CA 0.24 2.00 0.49 0.94 0.19 0.35 1.20 0.31 0.32 1.25 0.55 0.25 0.22 0.52 0.93

0.00

0.50

1.00

1.50

2.00

2.50

W
E

 v
al

ue
s

Weighted Effect (WE) on the co-residency metrics using First Fit

 157

The WEs of the parameters and interactions when using Next Fit were different from the WEs

when First Fit was used (Figure C.2). The results showed that Number of Hosts (X2) scored

the highest WE on the CCP metric. However, the rest of the parameters and interactions

scored relatively smaller WEs. In addition, Number of Hosts (X2), User Arrival Rate (X4)

and VMs per Request (X8) scored the highest WEs on the HFL metric. Again, Number of

Hosts (X2) repeatedly scored the maximum WE on the CV and CA metrics. In general, 2-

parameter interactions scored more WEs on the metrics when using Next Fit compared to

First Fit.

Figure C.2 Weighted Effect WE on the co-residency metrics using Next Fit

When using Power Save as the PA (Figure C.3), Users’ Arrival Rate (X4) achieved the

highest WE on the CCP metric followed by the VMs per Request (X8). These two parameters

scored the highest WEs on the CCP metric when using the First Fit. In addition, Users’

Arrival Rate (X4) and Number of Hosts (X2) scored approximately similar WEs on the HFL

metric. Again, these two parameters scored the highest WEs on the HFL metric under First

Fit. Moreover, Number of Hosts (X2) scored the highest WE on the CV metric along with the

interaction of Number of Clusters (X1) and VMs Average Lifetime (X7). Finally, Number of

X1 X2 X3 X4 X5 X6 X7 X8 X1*X2 X1*X3 X1*X4 X1*X5 X1*X6 X1*X7 X1*X8

WE on CCP 0.07 2.00 0.05 0.31 0.00 0.00 0.06 0.25 0.13 0.11 0.23 0.02 0.02 0.04 0.37

WE on HFL 0.89 1.60 0.00 1.13 0.00 0.00 0.21 1.02 1.00 0.00 1.00 0.00 0.00 0.00 1.09

WE on CV 0.00 2.00 0.00 0.34 0.00 0.00 0.00 0.24 0.00 0.00 0.27 0.00 0.00 0.00 0.35

 WE on CA 0.26 2.00 0.54 0.19 0.00 0.14 0.35 0.18 0.24 0.35 0.19 0.13 0.00 0.54 0.34

0.00

0.50

1.00

1.50

2.00

2.50

W
E

 v
al

ue
s

Weighted Effect (WE) on the co-residency metrics using Next Fit

 158

Hosts (X2) repeatedly scored the maximum WE on the CA metric. Further, VM Average

Lifetime (X7) is an important driving parameter of CA.

Figure C.3 Weighted Effect WE on the co-residency metrics using Power Save

With regards to the WEs when using Random (Figure C.4), the results were similar to Next

Fit, but not quite to the same extent. In general, Number of Hosts (X2) can be seen as a

parameter with a strong influence on the metrics when Random is used as the PA. For

example, Number of Hosts (X2) scored the maximum WE on all metrics.

X1 X2 X3 X4 X5 X6 X7 X8 X1*X2 X1*X3 X1*X4 X1*X5 X1*X6 X1*X7 X1*X8

WE on CCP 0.10 0.51 0.79 2.00 0.03 0.03 0.47 1.28 0.27 0.08 0.00 0.02 0.02 0.03 0.15

WE on HFL 0.14 1.19 0.00 1.24 0.16 0.00 1.00 0.16 0.25 0.00 0.15 0.15 0.00 0.00 0.00

WE on CV 0.46 1.47 1.27 0.00 0.42 0.20 1.00 0.00 0.00 0.53 0.42 0.00 0.00 1.28 0.32

 WE on CA 0.29 2.00 0.55 0.96 0.19 0.28 1.09 0.00 0.32 1.10 0.23 0.33 0.00 0.54 1.02

0.00

0.50

1.00

1.50

2.00

2.50

W
E

 v
al

ue
s

Weighted Effect (WE) on the co-residency metrics using Power Save

 159

Figure C.4 Weighted Effect WE on the co-residency metrics using Random

X1 X2 X3 X4 X5 X6 X7 X8 X1*X2 X1*X3 X1*X4 X1*X5 X1*X6 X1*X7 X1*X8

WE on CCP 0.01 2.00 0.06 0.32 0.00 0.00 0.06 0.22 0.03 0.18 0.28 0.00 0.01 0.05 0.57

WE on HFL 0.00 2.00 0.00 0.25 0.00 0.00 0.13 0.00 0.00 0.10 0.00 0.00 0.00 0.11 0.11

WE on CV 0.00 2.00 0.00 0.34 0.00 0.00 0.00 0.16 0.00 0.00 0.20 0.00 0.00 0.00 0.35

 WE on CA 0.23 2.00 0.57 0.19 0.00 0.18 0.38 0.23 0.21 0.38 0.26 0.18 0.00 0.56 0.49

0.00

0.50

1.00

1.50

2.00

2.50

W
E

 v
al

ue
s

Weighted Effect (WE) on the co-residency metrics using Random

 160

Appendix D

Significant 2-Parameter Interactions on the Co-residency

Metrics

Chapter 4 identified the X1*X4 and X1*X8 2-parameter interactions to have an influence on

the co-residency metrics under Next Fit and Random (Table 4.9). Examining the interaction

between parameters can significantly enhance the evaluation of their influence on the co-

residency metrics. The presence of a significant interaction indicates that the effect of one

parameter on the co-residency metrics is different at different levels of the other parameter.

Based on the results of the broad and narrow experiments (Table 4.5 and Table 4.6), 22

significant effects (i.e. p-value <0.05) on the co-residency metrics were caused by the 2-

parameter interactions (between X1*X4 and X1*X8). The following figures show the

statistically significant interaction effects on the co-residency metrics (i.e. CCP, HFL, CV

and CA) under Next Fit and Random. The figures reveal that 14 of these 2-parameter

interactions (nearly 63.6%) were able to reduce the co-residency probability (as defined in

Section 5.1) when both X4 and X8 were in low levels.

 161

D.1 Significant 2-Parameter Interactions Using Next Fit (Broad-Experiment)

Figure D.1 Interaction plot for CCP between X1*X4

Figure D.2 Interaction plot for HFL between X1*X4

51

0.54

0.52

0.50

0.48

0.46

0.44

0.42

Users arrival rate X4

M
ea

n

10
50

clusters X1
Number of

Interaction Plot for CCP
Data Means

51

0.4

0.3

0.2

0.1

0.0

Users arrival rate X4

M
ea

n

10
50

clusters X1
Number of

Interaction Plot for HFL
Data Means

 162

Figure D.3 Interaction plot for CV between X1*X4

Figure D.4 Interaction plot for CA between X1*X4

51

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

Users arrival rate X4

M
ea

n
10
50

clusters X1
Number of

Interaction Plot for OW
Data Means

51

0.00200

0.00175

0.00150

0.00125

0.00100

0.00075

0.00050

Users arrival rate X4

M
ea

n

10
50

clusters X1
Number of

Interaction Plot for CW
Data Means

CV	

CA	

 163

Figure D.5 Interaction plot for CCP between X1*X8

Figure D.6 Interaction plot for HFL between X1*X8

41

0.56

0.54

0.52

0.50

0.48

0.46

0.44

0.42

0.40

VMs per request X8

M
ea

n
10
50

clusters X1
Number of

Interaction Plot for CCP
Data Means

41

0.4

0.3

0.2

0.1

0.0

VMs per request X8

M
ea

n

10
50

clusters X1
Number of

Interaction Plot for HFL
Data Means

 164

Figure D.7 Interaction plot for CV between X1*X8

Figure D.8 Interaction plot for CA between X1*X8

41

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

VMs per request X8

M
ea

n
10
50

clusters X1
Number of

Interaction Plot for OW
Data Means

41

0.00225

0.00200

0.00175

0.00150

0.00125

0.00100

0.00075

0.00050

VMs per request X8

M
ea

n

10
50

clusters X1
Number of

Interaction Plot for CW
Data Means

CV	

CA	

 165

D.2 Significant 2-Parameter Interactions Using Next Fit (Narrow-Experiment)

Figure D.9 Interaction plot for CCP between X1*X4

Figure D.10 Interaction plot for CCP between X1*X8

32

0.84

0.82

0.80

0.78

0.76

0.74

0.72

Users arrival rate X4

M
ea

n

15
30

clusters X1
Number of

Interaction Plot for CCP
Data Means

32

0.84

0.82

0.80

0.78

0.76

0.74

0.72

VMs per request X8

M
ea

n

15
30

clusters X1
Number of

Interaction Plot for CCP
Data Means

 166

Figure D.11 Interaction plot for HFL between X1*X8

Figure D.12 Interaction plot for CA between X1*X8

32

0.40

0.38

0.36

0.34

0.32

0.30

VMs per request X8

M
ea

n

15
30

clusters X1
Number of

Interaction Plot for HFL
Data Means

32

0.0018

0.0017

0.0016

0.0015

0.0014

VMs per request X8

M
ea

n

15
30

clusters X1
Number of

Interaction Plot for CW
Data Means

CA	

 167

D.3 Significant 2-Parameter Interactions Using Random (Broad-Experiment)

Figure D.13 Interaction plot for CCP between X1*X4

Figure D.14 Interaction plot for CV between X1*X4

51

0.600

0.575

0.550

0.525

0.500

0.475

0.450

Users arrival rate X4

M
ea

n

10
50

clusters X1
Number of

Interaction Plot for CCP
Data Means

51

0.35

0.30

0.25

0.20

0.15

0.10

Users arrival rate X4

M
ea

n

10
50

clusters X1
Number of

Interaction Plot for OW
Data Means

CV	

 168

Figure D.15 Interaction plot for CA between X1*X4

Figure D.16 Interaction plot for CCP between X1*X8

51

0.00175

0.00150

0.00125

0.00100

0.00075

0.00050

Users arrival rate X4

M
ea

n
10
50

clusters X1
Number of

Interaction Plot for CW
Data Means

41

0.65

0.60

0.55

0.50

0.45

0.40

VMs per request X8

M
ea

n

10
50

clusters X1
Number of

Interaction Plot for CCP
Data Means

CA	

 169

Figure D.17 Interaction plot for HFL between X1*X8

Figure D.18 Interaction plot for CV between X1*X8

41

0.27

0.26

0.25

0.24

0.23

0.22

0.21

VMs per request X8

M
ea

n
10
50

clusters X1
Number of

Interaction Plot for HFL
Data Means

41

0.35

0.30

0.25

0.20

0.15

0.10

VMs per request X8

M
ea

n

10
50

clusters X1
Number of

Interaction Plot for OW
Data Means

CV	

 170

Figure D.19 Interaction plot for CA between X1*X8

41

0.00175

0.00150

0.00125

0.00100

0.00075

0.00050

VMs per request X8

M
ea

n
10
50

clusters X1
Number of

Interaction Plot for CW
Data Means

CA	

 171

D.4 Significant 2-Parameter Interactions Using Random (Narrow-Experiment)

Figure D.20 Interaction plot for CCP between X1*X4

Figure D.21 Interaction plot for CCP between X1*X8

32

0.82

0.81

0.80

0.79

0.78

0.77

0.76

0.75

0.74

0.73

Users arrival rate X4

M
ea

n

15
30

clusters X1
Number of

Interaction Plot for CCP
Data Means

32

0.82

0.80

0.78

0.76

0.74

0.72

VMs per request X8

M
ea

n

15
30

clusters X1
Number of

Interaction Plot for CCP
Data Means

 172

Figure D.22 Interaction plot for CA between X1*X8

32

0.0018

0.0017

0.0016

0.0015

0.0014

0.0013

VMs per request X8

M
ea

n
15
30

clusters X1
Number of

Interaction Plot for CW
Data Means

CV	

 173

Appendix E

VMC simulator’s Estimates of the Malicious Co-residency

Metrics

The following tables (Table E.1 and Table E.2) list the VMC simulator’s estimates for the

malicious co-residency metrics MCP and AFL. These estimates were obtained under different

numbers of hosts and users’ arrival rates with an α of 0.10 (see Section 6.2 for the definition

of α).

 First Fit Next Fit Power Save Random

Number

of Hosts
MCP AFL MCP AFL MCP AFL MCP AFL

1000 0.2306 0.8382 0.3720 0.7919 0.2309 0.8436 0.3765 0.7833

10000 0.2408 0.8221 0.0416 0.9915 0.2372 0.8300 0.0648 0.9682

15000 0.2321 0.8305 0.0087 0.9997 0.3254 0.8087 0.1264 0.9769

30000 0.3182 0.8146 0.0000 1.0 0.3161 0.8151 0.1040 0.9883

Table E.1 The VMC simulator’s estimates of the malicious co-residency metrics under

different numbers of hosts with an α of 0.10

 174

 First Fit Next Fit Power Save Random

Users’

Arrival

Rate

MCP AFL MCP AFL MCP AFL MCP AFL

2 0.3206 0.8140 0.1864 0.9581 0.3213 0.8116 0.2067 0.9329

3 0.2837 0.8386 0.2537 0.9237 0.2936 0.8351 0.2720 0.8989

4 0.2729 0.8540 0.3224 0.8821 0.2726 0.8559 0.3150 0.8708

5 0.2615 0.8623 0.3685 0.8471 0.2636 0.8648 0.3644 0.8405

Table E.2 The VMC simulator’s estimates of the malicious co-residency metrics under

different users’ arrival rates with an α of 0.10

 175

Appendix F

Criteria for Selecting Simulation as a Testbed

F.1 Introduction

As pointed out in Chapter 1, this thesis takes an experimental approach to study co-residency

occurrence behaviour in IaaS clouds. Studying co-residency in large, non-transparent and

diverse IaaS clouds can become a very challenging task that requires an effective testbed that

supports experimentation under different scenarios and settings. Therefore, this appendix

makes two contributions. First, a number of cloud platforms and software tools are evaluated

on their suitability as experimental testbeds to examine different aspects of co-residency.

Second, a comparison is made of different testbeds based on how they meet certain

requirements for experimenting on large-scale clouds, such as scalability and cost.

In this appendix, Section F.2 outlines the testbed selection criteria to help identify the most

suitable testbed for experiments related to co-residency. In Section F.3, a survey of a number

of the available testbeds for experimentation on co-residency is provided, followed by a

comparison and evaluation of the elected testbeds according to the selection criteria in

Section F.4. This evaluation leads to a recommendation for implementing a new VM Co-

residency (VMC) simulator in Section F.5. The VMC simulator is used in this thesis as a

testbed for research on co-residency in the cloud.

It is worth mentioning that a summary of some of the results presented in this appendix

appeared in [1].

F.2 Testbed Selection Criteria

It can be argued that there is no single or best approach for experimenting on co-residency in

the cloud. This is because too many parameters exist that need to be taken into account when

conducting the experiments. Such parameters describe cloud architecture, functional and

non-functional requirements.

The thesis’s aim (Section 1.3) requires studying co-residency in large IaaS clouds under a

variety of settings. Such settings include various cloud user volumes, an assorted number of

VMs, different numbers of hosts and clusters and, most importantly, a number of PAs.

 176

Performing such an experiment in large and dynamic environments, such as IaaS clouds,

needs a testbed that meets a certain set of criteria and requirements. Meeting these

requirements helps to conduct the experiment efficiently within the limited time and

resources available. For the purpose of conducting this evaluation, it has been assumed that

the available time for experimentation on the selected testbed is six calendar months. In

addition, the research’s available resource is a small lab that consists of four mid-range

machines operated by a single researcher. The following selection criteria are set to help

choose the most suitable testbed for experiments in this thesis. The first three criteria were

inspired by [34]. On the other hand, the remaining criteria were derived from the experience

gained from previous own research [2] and were directly relevant to the needs of the type of

experiments in this thesis. The final evaluation will examine each testbed against each of the

following selection criteria:

F.2.1 Repeatable and Controllable

A repeatable experiment means that re-conducting the same experiment by the same

experimenter must produce similar results. Needless to say, being able to conduct and repeat

co-residency experiments in unpredictable environment conditions is the most important key

to achieving meaningful results. Therefore, conducting and repeating co-residency

experiments requires full control of the underlying cloud infrastructure (such as PAs, hosts

and clusters).

F.2.2 Transparent

It is necessary to have a testbed that offers a safe level of transparency to allow the

observation of different aspects of co-residency behaviours, such as detecting co-residency

hit and estimating co-residency hit probability.

F.2.3 Flexible

A flexible testbed must easily offer the ability to experiment on several cloud parameters’

settings with different levels of details and different PAs. This ability is crucial to allow the

experiment results to be generalizable.

 177

F.2.4 Accessible

This criterion states that the testbed must be available and legal to use in experimental

activities. Also, the time required for downloading, deploying and mastering the testbed with

proper technical documentation defines the accessibility requirement.

F.2.5 Scalable

The co-residency experiments in this thesis need to be conducted on various scales of IaaS

clouds (such as the various number of hosts, clusters and VMs). Scalability means that the

chosen testbed can accommodate the increase in the size of cloud resources while

maintaining the minimum expenditure of the research’s resources.

F.2.6 Inexpensive and Not Time-Consuming

In general, experimentation on large scale IaaS clouds requires both time and computational

resources. It is important to consider the time and budget limitations for running the

experiments on the selected testbed. Quick implementations of the experiment on the testbed,

with minimum expense, as well as an acceptable execution speed are important factors that

influence the testbed selection decisions.

F.2.7 Sufficient Reporting/Monitoring System

Large-scale experiments usually produce a vast amount of output and statistical data that are

used to analyse the results. In addition to the need for excellent reporting capabilities, the

testbed must also allow the user to monitor effectively and record all necessary actions

related to co-residency.

F.3 Available Testbeds

The experimental validation methodologies presented in [34] aim to define the best practices

to conduct sound experiments in large-scale systems. The suggested experimental

methodologies are categorized based on the type of the testbed they use. They include:

• Real-platform experiments: that is executing real applications on real platforms,

• Benchmarking: that is executing modelled applications on real platforms,

• Emulation: that is executing real applications on modelled platforms and

• Simulation: that is executing modelled applications on modelled platforms.

 178

Looking at the above experimental methodologies, the real-platform and the benchmarking

experiments usually use real applications/systems as a testbed, whereas the emulation and

simulation methodologies use modelled platforms. By focusing on real-platform and

simulation methodologies, this thesis uses three different testbeds for comparison based on

the aforementioned testbed criteria:

(1) Real public IaaS clouds;

(2) Real private IaaS clouds; and

(3) Simulators.

A straightforward evaluation of the comparison between these three testbeds was conducted

to assess each testbed against each criterion. This comparison will help to select the most

suitable testbed for the experiments in this thesis.

F.3.1 Public IaaS Clouds

Public IaaS cloud providers offer users the ability to rent computing infrastructure on-

demand to cover their needs. Public IaaS clouds such as Microsoft’s Windows Azure [57],

Amazon’s EC2 [4] and Rackspace [77] allow users to run their own VMs (i.e. as servers). In

order to utilize their physical infrastructure, virtualization is used to allow physical resources

to be shared between users. Because of this, each IaaS cloud exhibits different workloads and

can vary in the underlying infrastructure and configurations.

Using public IaaS clouds as testbeds is possible, yet it shows some limitations. [79]

pioneered research uses Amazon’s EC2 as a testbed. The researchers demonstrate that it is

possible to map the internal cloud infrastructure in order to locate and co-reside with targets

(see Chapter 2 for more details). They also describe a number of attacking scenarios where a

malicious user can gather sensitive information from co-resident VMs that share the same

underlying machine using side-channel attacks. Other research, such as the AmazonIA paper

[17], have used public IaaS clouds as a testbed. In particular, the researchers in AmazonIA

have used Amazon’s EC2 to launch various crafted Amazon Image Attacks in which they

were able to collect very sensitive information (including credentials, passwords and keys).

In addition, Amazon’s EC2 also has been used as a testbed in an early stage of this thesis.

As explained in Section 2.2, available public IaaS clouds, including Amazon’s EC2, are

usually accessible and easy to use with their rapid scalability. In addition, public IaaS cloud

providers normally supply documentation and how-to-use resources. However, using public

 179

clouds as a testbed comes with its own expenses. The diverse varieties of uncontrollable

infrastructure configurations and settings make the use of public IaaS clouds as a testbed in

this thesis an unpredictable and time-consuming task. Moreover, the pay-as-you-go nature of

the public IaaS cloud and the need for conducting repeatable experiments with different

parameters’ settings would incur expenses that exceed the available resources. Furthermore,

public IaaS cloud providers, such as Amazon EC2 and Windows Azure, usually obscure the

details of their cloud infrastructure, networks and even PAs, which results in a lack of

transparency [79]. With little to no transparency, it becomes difficult to conduct testing

experiments on such platforms. This is because the testers cannot obtain the necessary

information about the cloud anatomy and the implemented PA, making the public IaaS cloud

a non-transparent and hard to control testbed. Further, this lack of control might also result in

the inability to implement a sufficient reporting system for detecting underlying events

related to co-residency. Thus, this lack of control does not support generalizing the

experiment’s results due to the use of very specific cloud architecture. In some situations, it

is also possible that extensive experimental usage might lead to a violation of the cloud’s

usage policy [4]. From what has been discussed before, this combination of limitations shows

that public IaaS clouds are thought not to be always the best testbed for this type of research.

F.3.2 Private IaaS Clouds

Private IaaS clouds, such as the open-source Eucalyptus private cloud [67] and OpenNebula

[60] offer similar functionalities as public IaaS clouds. However, there is one major

difference: private IaaS clouds are implemented in the user’s own physical infrastructure

whereas public IaaS clouds run on a third party infrastructure (see Section 2.2). This feature

of the private IaaS clouds offers more flexibility to implement and model a vast array of

possible cloud architectures. Moreover, an open-source private cloud gives the researchers

the necessary transparency to control and monitor every single event in their experiments,

which forms a good repeatable and controllable testbed. Also, private IaaS clouds have been

used as testbeds in an experimental research context for various objectives. For instance, [6]

have conducted an evaluation of software ageing effects on Eucalyptus private cloud

infrastructure. Further, other researchers have used Eucalyptus as a proof of concept of

autonomic resource provisioning in rocks clusters [43]. However, there is still a need when

using private IaaS clouds for large capital investment to purchase and maintain the required

 180

hardware infrastructure to conduct scalable experiments, which can sometimes exceed the

available resources for this thesis.

F.3.3 Simulators

One of the widely used testbeds in large-scale experiments is to use simulators, such as grid

simulators and cloud computing simulators, instead of using real IaaS clouds as testbeds [34].

Computer simulation refers to the actual running of a program that describes a system model,

algorithms or equations.

Continuous simulations mimic physical systems' execution at the exact rate as actual clock

time. This is in contrast to discrete-event simulation, which has a collection of state variables

that reflect the current system status [12]. These state variables can change only at discrete

instants (called events), whose sequential order describes the simulated system behaviour. A

list of some of the grid simulators and cloud computing simulators, which are related to the

experiments in this thesis, with descriptions and comparisons, is provided next.

F.3.3.1 Grid Simulators

In the area of distributed computing, grid computing is a set of distributed systems that

provide on-demand access to dependable, consistent and inexpensive hardware and software

infrastructure. Grid computing is usually used to process large amounts of non-interactive

workloads [29]. There are many multi-tier data centre simulation platforms that have been

designed to support the modelling of different hardware specifications of the common data

centres’ components. Such components include hosts, network switches and communication

links. One example of multi-tier data centre simulators is MDCSim [51]. However, grid

simulators require more advanced capabilities in order to simulate the distributed

applications' behaviour more accurately. In order to meet the demand of research and

development on grid systems, several grid simulators have been introduced. Examples of

these simulators include SimGrid [19], MicroGrid [88], GridSim [88] and GangSim [27].

Recently, SimGrid started to support a very basic interface to implement virtualization

environments. However, this interface is highly experimental as stated on the project website

and that they “…do not expect too much of it right now” [86].

Among these grid simulators, it can be argued that GridSim is the most related to co-

residency research as it has been extended to form the base of some of the current cloud

simulators [18]. Initially, GridSim was introduced as a simulator for resource modelling,

 181

application scheduling and performance analysis in grid computing environments. It supports

the modelling of various application models, and it is capable of automating the task of

generating a stream of application workloads. GridSim was built upon SimJava [45], a

process-based discrete-event simulation framework implemented in Java. Since SimJava runs

a unique thread for each element in the simulation, it has been shown in [68] that SimJava

performance degrades when simulating more than 2000 grid entities concurrently. This is due

to the high consumption of memory. Since GridSim implements in the exact way in which

SimJava simulates the grids, it inherits this scalability limitation. It is important to note that

grid simulators have been designed to model comprehensively grid systems to the maximum

extent. However, none of these simulators are capable of clearly abstracting the application

layer from the virtual and physical machines layer. This type of abstraction is required when

trying to model multi-layer architecture such as the IaaS cloud. In addition, the above grid

simulators are not initially intended to model virtualized resources (i.e. VMs) [30].

Therefore, it would not be practical to use grid simulators in the co-residency experiments,

and therefore cloud simulators are instead considered as better testbeds in this thesis.

F.3.3.2 Cloud Simulators

A cloud simulator is a toolkit that models and simulates different cloud computing elements

and environments [58]. Cloud simulators are usually capable of simulating multiple clusters

and hosts. In addition, cloud simulators normally model the creation of VMs and the

placement of these VMs to hosts. Similarly, cloud simulators usually support the creation of

cloud users and the generation of different types of cloud-related events. The use of cloud

simulators can provide a higher degree of flexibility to conduct different types of

experiments on a close-to-real cloud environment. Several IaaS cloud simulators are

reviewed next in order to include them in the evaluation at the end of this appendix.

(i) CloudSim

CloudSim [18] is one of the widely used IaaS cloud modelling and simulation toolkit that

was developed at the University of Melbourne, Australia. The main goal of CloudSim is to

help IaaS cloud researchers to conduct comprehensive simulation-based experiments. The

main features that CloudSim offers includes the modelling and simulation of large-scale IaaS

clouds, with configurable data centres, physical hosts, resources and virtualization

provisioning, as well as power management. With its multi-layer design framework that

 182

reflects the layered architecture of real IaaS cloud environments, CloudSim was developed

using Java and was built on top of the SimJava-based grid simulator GridSim. As described

earlier, GridSim has a scalability limitation that CloudSim inherited initially. Therefore, the

developers of CloudSim decided to modify the first release of this simulator and implement a

new discrete-event management framework. This became the CloudSim core simulation

engine (Figure F.1). The new framework uses only three main threaded components, and the

remaining entities are implemented as objects. Each component in the CloudSim architecture

is implemented as a Java class that can be extended or changed to reflect certain simulation

requirements.

Figure F.1 CloudSim Architecture

Difficulties arise, however, when an attempt is made to simulate certain cloud environments

with specific requirements using CloudSim. Each of these different difficulties forms a

reason behind the development of many successive simulators that have been built upon

CloudSim. At least four cloud computing simulators worldwide have been adopted to extend

CloudSim in order to add new functionality or components that CloudSim is missing, such as

network latency, bandwidth simulation, SLA management, and more. For example, [39]

highlights the need to adopt an easy-to-set-up and user-friendly cloud simulator. They have

 183

surveyed the available cloud simulators in the market and elected CloudSim as a base

platform for their intended research. They claim that new enhancements and extensions to

CloudSim are essential to maintaining a user-friendly cloud simulator. These extensions have

been implemented in the TeachCloud cloud simulator. TeachCloud features a new graphical

user interface (GUI) for CloudSim, as well as adding SLA management and business process

management modules on the architecture level. In addition, TeachCloud builds several cloud

network models such as VL2, BCube, Portland and DCell to model different topologies that

can be found in real cloud environments.

Moreover, a group of researchers at the Pontifical Catholic University of Rio Grande do Sul

in Brazil have introduced another cloud simulator and visual modeller based on CloudSim,

called CloudAnalyst [96]. The primary goals of CloudAnalyst are to visually model, simulate

and analyse the effects of geographic distribution of large distributed social network

applications under multiple deployment configurations in the cloud. CloudAnalyst gives

large applications’ developers helpful insights into how to effectively distribute these types

of applications. Using CloudSim as the base simulation engine, CloudAnalyst leverages

whole features of CloudSim and implements important missing functionalities.

For example, instead of spending unnecessary time on programming the simulation

environment requirements using CloudSim, CloudAnalyst provides the user with a GUI to

easily control the simulator variables. This action is expected to help the user to focus on the

environment simulation experiment. The rest of the added functionality is mainly intended to

introduce a basic network, bandwidth and latency modelling management. This allows the

user to configure the number of generated applications’ workloads, to supply some

information of the geographic distribution of the origin of the generating traffic, as well as

defining the data centres' locations. By using this detailed information, CloudAnalyst is

capable of simulating distributed applications' behaviour in the cloud. Further, CloudAnalyst

produces various graphical reports in the form of tables and charts of users’ requests response

time, requests processing time and other useful analytical data.

In addition, CloudReport [101] is another CloudSim-based cloud computing simulator

developed at the Federal University of Ceara, Brazil. Its functionalities are very similar to

CloudAnalyst, providing an easy-to-use GUI and a rich reporting module.

Similar to CloudAnalyst, yet with more architecture-level changes, NetworkCloudSim cloud

computing simulator [30] has been introduced to overcome the limitations that can be found

in CloudSim’s network layer. CloudSim's network layer views the data centre’s resources as

 184

a collection of VMs, and therefore it is capable of simulating limited communications

activities between resources. The developers of NetworkCloudSim argue that CloudSim

suffers when simulating a large distributed application (such as message passing parallel

applications or multi-tier web applications hosted in different machines). The developers

state that a precise evaluation of PAs requires a more sophisticated modelling of the data

centre’s interconnection network. They also claim that they have equipped

NetworkCloudSim (Figure F.2) with the most advanced realistic application model compared

to CloudSim. Thus, the developers “... have designed a network flow model for Cloud data

centres utilizing bandwidth sharing and latencies to enable scalable and fast simulations.”

Figure F.2 NetworkCloudSim's new elements introduced to CloudSim Architecture

(ii) GreenCloud

In recent years, there has been an increasing amount of literature on energy-aware cloud data

centres. Researchers in this area have started to adopt the use of cloud simulators to

experiment with different environment-friendly PAs, to utilise the computing resources in an

energy-efficient fashion [54]. As an extension of the well-known NS2 network simulator

[38], GreenCloud was first introduced in 2010 as a packet-level simulator for energy-aware

cloud data centres [44]. Together with the workload generation and distribution which

GreenCloud offers, the simulator’s primary task is to capture precisely the energy

 185

consumption readings of the data centre components (hosts, switches and links). Moreover, it

can simulate and produce the simulation results for two-tier and three-tier architectures.

GreenCloud’s core strength can be observed in its ability to model the communication

interactions of any data centre network with an extensive level of detail since it uses the NS2

to implement a full TCP\IP protocol model. However, this advantage can affect GreenCloud

by limiting its scalability due to the heavy memory requirement needed to simulate such

detailed models.

(iii) GroudSim

Similar to CloudSim, GroudSim is a Java-based discrete-event cloud simulator developed by

[69]. In contrast to CloudSim and the aforementioned cloud simulators, GroudSim is capable

of supporting the simulation of applications running on combined cloud and grid platforms.

Its developers claim that it offers better scalability and performance compared to related

process-based simulators since it uses discrete-event simulation. GroudSim presents some

basic analysis and statistics of the simulated cloud. It also supports the modelling of grid and

cloud infrastructures including network and computational resources, task scheduling, file

transfer, and cost, failure and background models. Nevertheless, GroudSim has not escaped

criticism from its developers. They state in [68] that further programming needs to be done in

order to implement a different simulation control interface from the one used in the real

cloud. This interface is expected to extend the required efforts to execute the simulation

experiments.

(iv) Koala

As a medium-scale discrete-event simulation of IaaS clouds, Koala is a project run by the

National Institute of Standards and Technology (NIST). The project aims to implement a

cloud computing simulator that serves the research on clouds in a more controllable

environment [59]. High accuracy models require the definition of many parameters and lead

to long run-times resulting in more realistic simulation results, whereas the opposite is true

for high abstraction models. Koala has been designed to simulate cloud environments with

some abstractions while maintaining a good level of model accuracy. Offering a multi-

layered architecture (Figure F.3) based on the commercial discrete-event simulation

environment SLX [35], Koala was designed to model the Amazon EC2’s architecture

through the use of Eucalyptus private cloud APIs.

 186

Figure F.3 Koala architecture

Koala is capable of simulating several essential IaaS cloud components, such as cloud

controller, cluster controller and host controller, where they all communicate using web

services. Initial sensitivity analyses using Koala as a testbed [58] identified the number of

cloud users, the number of clusters and number of hosts per cluster as the major parameters

that influence the simulator behaviour. Perhaps the most interesting feature of Koala (which

has a relation to co-residency’s experiments) is that it has several PAs already implemented

in the cloud controller. These PAs are Least-full First, Next Fit, First Fit, Most-full First,

Percent Allocated, Random and Tag-and-Pack. Unfortunately, NIST’s project would have

been more useful for this thesis if Koala’s developers had made this simulator available for

the researchers to use. This lack of access forms the key issue that might be a strong obstacle

that prevents considering Koala as a suitable testbed for co-residency experiments in this

thesis.

(v) iCanCloud.

Very much like the Koala simulator, the iCanCloud simulation toolkit was specifically

implemented to simulate cloud resources as if they are actually running in the Amazon

 187

Elastic Compute Cloud (EC2). It can also be extended to simulate other IaaS clouds.

iCanCloud’s primary aim is “… to predict the trade-offs between cost and performance of a

given application executed in a specific hardware, and then provide users with useful

information about such costs.” [66]. Originally built upon the distributed systems simulator,

SIMCAN [65], iCanCloud adopts a multi-layer system design that models the common cloud

computing stack.

With its user-friendly GUI and the ability to generate graphical reports, iCanCloud simulator

easily allows the addition of new cloud components into its repository. Unlike the GroudSim

simulator, iCanCloud provides a POSIX-based API for modelling the simulation applications

in a much easier way. In addition, Amazon’s EC2 is the only environment which is modelled

in iCanCloud. However, perhaps the most serious disadvantage of this simulator is that it

does not provide a module to take care of creating the cloud resources. Such resources

include users, hosts, and VMs, at the start of each simulation run. Instead, it requires the use

of the provided GUI to define manually the new cloud resources parameters one by one,

which appears to be impractical when modelling a large-scale IaaS cloud environment in this

thesis.

F.4 Evaluation and Discussion

The first and foremost decision that need to be made when experimenting with co-residency

in the cloud is to select the appropriate testbed that meets the experiment’s requirements and

constraints. Whether to select a real/physical testbed or a simulator, each option is most

suitable in different scenarios and different situations. In this appendix, a number of available

testbeds for experimenting on co-residency in the cloud have been surveyed, including real

testbeds (i.e. public IaaS and private IaaS clouds) and simulators. A summary of the previous

testbeds evaluation is presented in Table F.1.

 188

Criteria Real Platforms Simulators

Public IaaS Private IaaS Grid Cloud

Repeatable

and

Controllable

No control on infrastructure

and PAs

Full Control, runs in local infrastructure

Transparent Little to no knowledge

about the infrastructure or

cloud settings

Full transparency, runs in local infrastructure

Flexible Very limited, strict usage

policies

Yes, more in open

source private

clouds

Yes, more in open source

simulators

Accessible Yes with friendly web-

based GUI and instant

support

Requires self-

maintained

infrastructure

Yes when support and

documentation are

provided

Scalable Yes, adding as many

resources as needed

Limited hardware

infrastructure (e.g.

expensive to add

more

hosts/machines)

Limited in simulators that

use threading

Cost and

Time

Pay per use, on demand Requires investing

in physical

infrastructure,

takes time for

deployment and

maintenance

Possible to run

immediately on a single

machine – cost is limited

to the license fee (if

required) - simulated

resources can be added

instantly with no cost

Reporting Very difficult for co-

residency

Requires implementation

Table F.1 Testbeds evaluation matrix

 189

Simulators are usually capable of modelling several essential IaaS cloud components with

some abstractions while maintaining a good level of model accuracy. Simulators can be a

sensible option when experimenting on very large-scale and dynamic clouds when there is a

need to be able to control and monitor the simulated cloud’s behaviour. Section F.3 shows

that the aforementioned cloud simulators vary in satisfying the testbed criteria defined

earlier. One major criticism is that none of the discussed simulators implements sufficient co-

residency monitoring, detection and reporting modules. As stated in Section F.2, these

modules are critical when studying co-residency in the cloud. However, implementing these

modules into these existing simulators is not an option for closed source simulators. On the

other hand, introducing these modules to the open source simulators is possible, but requires

a considerable amount of time and effort to achieve. This task becomes more challenging

when each of the discussed simulators focuses on modelling cloud elements that are

unrelated to co-residency experiments. In addition, some simulators are platform independent

(e.g. Java-based simulators) but relatively slow in execution.

Having explored the available public and private IaaS clouds (i.e. the real testbeds) for co-

residency experiments, these testbeds usually produce more accurate results than when using

simulators, as they are “real” platforms. However, given the context of this thesis, both

public and private IaaS clouds have been shown to suffer from a number of shortcomings.

For instance, public IaaS clouds are often not transparent testbeds, whereas control and

experiment repeatability are hard to achieve. Private IaaS clouds, in particular, can be an

expensive option when the experiment needs to be conducted many times on a large and

scalable cloud environment. It is worth mentioning that [34] confirms “experiments on real

platforms are often not reproducible, whereas, extensibility, applicability and revisability are

hard to achieve.”

Alternatively, satisfying all testbed criteria in this thesis can be accomplished by designing

and implementing a new simulator. This simulator solely implements the system model in

this thesis (Section 3.2) and models all the necessary behaviours of co-residency in IaaS

clouds. Implementing this new simulator is expected to support the run of this thesis’s

experiments according to the defined criteria. In fact, implementing and using a purpose-built

simulator instead of relying on an existing simulation tool has become a sensible practice for

satisfying each individual research’s requirements. For instance, [61] analysed 141 research

papers that use simulation to study large-scale peer-to-peer systems and reported that 30% of

these papers use their own custom simulation tool.

 190

From the previous discussion, simulation experimentation is adopted in this thesis. In using

the system model, a purpose-built VM Co-residency (VMC) simulator was implemented that

allows modelling of co-residency behaviour using various cloud parameters’ settings and

PAs. The next section gives an overview of the VMC simulator.

F.5 VM Co-residency (VMC) Simulator

Simulating large-scale environments, such as IaaS clouds, can be achieved using several

different approaches that aim to provide a controllable, transparent, accessible, scalable and

inexpensive test environment. These approaches can be categorised into two main sections:

purpose-built (i.e. for a specific use) simulators and general-purpose simulators. Purpose-

built simulators usually abstract some components of the modelled environment. On the

other hand, this type of simulator carries a very detailed implementation of other components

that are more related to the purpose for which the simulator is built [95]. The advantage of

using this approach is that the resulting simulator can be rather small in size and, therefore,

more scalable as this type of light simulator usually requires less computational resources.

However, this imposes some limitations when there is a need to change significantly the

system model by changing or adding some of the simulator’s missing components. This

challenge often involves rewriting a considerable part of the system architecture. On the

other hand, general purpose cloud simulators aim to include all possible components of the

modelled environments and all intercommunication events [64]. Perhaps the most serious

disadvantage of this kind of simulator is that sometimes they do not model enough

specifications that are usually required when attempting to conduct precise experimental

researches on particular components. In addition, this type of modelling usually results in a

large amount of simulation input parameters, which imposes an extra level of complexity

when designing the intended simulation experiment [74].

Instead, it is sometimes easier to simulate part of the whole system’s components in order to

reduce the input parameters. This in turn results in simulating more precise system

behaviours and produces more accurate responses [58]. For that reason, many distributed

systems simulators, including IaaS cloud simulators, have been purpose-built to simulate

specific system architectures or have been implemented only to study certain aspects of the

system behaviours. For example, the Koala cloud computing simulator has been specifically

designed to model the open-source Eucalyptus IaaS platform structure. Moreover, the

 191

iCanCloud simulator has been specifically modelled to simulate cloud environments as

provided by the Amazon EC2 (Section F.3).

Turning now to the VMC simulator, the VMC has been designed and implemented as a

discrete event simulation-based testbed. More attention was paid especially to the provision

of comprehensive modelling of PAs, co-residency monitoring and detection as well as

sufficient reporting modules. This kind of modelling can meet the testbed section criteria

(Section F.2) for conducting experiments related to co-residency in particular in an

unprecedented fashion. The main reason that motivated the introduction of the VMC was to

design and implement a simulator that models various IaaS cloud parameters and PAs. The

VMC is expected to assess efficiently the impact of each parameter setting on the co-

residency probability. In addition, the VMC can be used as an experimentation tool to

determine the appropriate parameter settings that reduce the co-residency probability in a

given PA. The VMC has been used successfully as a testbed in this thesis and can be used for

future research related to co-residency in IaaS clouds.

With regards to the VMC design, the VMC has been primarily built as a layered design

simulator using object-oriented Java programming language [82], which allowed modularity

in the design of the simulator components. This modularity helps to replace easily, reuse or

implement more details to the simulator components according to the user needs. This

includes modelling distributed clusters with multiple physical hosting machines, different

types of cloud users and multiple VMs types. More importantly, the VMC implements a

number of PAs based on the system model used in this thesis (Section 3.2). There are two

main reasons behind using layered design. The first is that the Java classes in the multi-

layered design enjoy the same module dependency. This module dependency adds an extra

level of clarity when looking at the VMC design for both simulator designers and users

compared to a flat architecture. The second is that the layered design allows a straightforward

integration of existing software and tools. Considering the scope of this thesis, the major IaaS

cloud elements that are related to this thesis are implemented in VMC (Appendix A). On the

other hand, some other non-functional elements have been excluded from the current

implementation since they are not in the focus of this thesis. Such elements include the cloud

services broker, billing management and SLA management. Fortunately, VMC modular

design, as mentioned earlier, allows the implementation of such components, if needed in the

future, easily.

 192

In addition, Appendix A provides more detail on the VMC simulator design and

implementation as well as the PAs that are used in this thesis and how the VMC implements

them.

F.6 Summary

In this appendix, a number of cloud platforms and software tools have been examined for

their suitability as a testbed for experimental research on co-residency. These testbeds have

been categorized into real-platforms (i.e. public IaaS clouds and private IaaS clouds) and

simulators. These testbeds have been selected based on their popularity, availability of

documentation and support, and whether they are applicable for experimental cloud usage.

These testbeds were evaluated against seven criteria such as their capabilities and flexibilities

in modelling an IaaS cloud, and for input control as well as output analysis. Using simulators

can be useful and more effective, especially if real testbeds (public and private IaaS clouds)

are expensive or not feasible. However, the evaluation shows that none of the current

simulators can be easily utilized for co-residency related research. Therefore, a purpose-built

co-residency simulator VMC has been implemented and used as a testbed in this thesis. The

VMC simulator allows the modelling of IaaS cloud environments and also can simulate and

monitor the co-residency behaviour in more depth. It is also hoped this co-residency

simulator will form a suitable testbed that helps in advancing research on this crucial topic.

