
Partially Commutative and

Differential Graded Algebraic

structures

ABDULSATAR JMAH THEIB AL-JUBURIE

Thesis submitted for the degree of

Doctor of Philosophy

School of Mathematics & Statistics

Newcastle University

Newcastle upon Tyne

United Kingdom

January 2015

This thesis is dedicated to my parents, my wife and my little daughter

for their love, endless support

and encouragement.

Acknowledgements

Foremost, I would like to express my special appreciation and thanks to my super-

visor Dr. Andrew Duncan, you have been a tremendous mentor for me. I would

like to thank you for sharing your knowledge, ideas, and limitless enthusiasm during

my time as a graduate student. I would also like to thank you for encouraging my

research and for allowing me to grow as a research scientist. Your advice on both

research as well as on my career have been invaluable.

I would like to thank my second supervisor Dr. Stefan Kolb for his encourage-

ment and guidance throughout my research.

In addition, I would like to thank my external examiner Dr. Alexander Konovalov

and my internal examiner Professor Sarah Rees for their valuable expertise and

comments on a previous draft of this thesis.

I would also extend my gratitude to the staff at Newcastle University and the

School of Mathematics and Statistics for their professional handling of my student

life which I thoroughly enjoyed.

A special thanks to my family. Words can not express how grateful I am to my

mother, and father for all of the sacrifices that you have made on my behalf. Your

prayer for me was what sustained me thus far.

I would also like to thank to my beloved wife, Zainab Al-Jumaili. Thank you for

supporting me for everything, and especially I can’t thank you enough for encourag-

ing me throughout this experience. To my beloved daughter Maryam, I would like

to express my thanks for being such a good girl always cheering me up.

I would like to thank my friends for their support, encouragement and under-

standing during the whole time of my study at the University of Newcastle.

Finally I thank my God, for letting me through all the difficulties. I have expe-

rienced Your guidance day by day. You are the One who let me finish my degree. I

will keep on trusting You for my future. Thank you,

Abdulsatar.

Abstract

The objects of study in this thesis are partially commutative and differential

graded algebraic structures. In fact my thesis is in two parts. The first on partially

commutative algebraic structures is concerned with automorphism groups of par-

tially commutative groups and their finite presentations. The second on differential

graded algebraic structures is concerned with differential graded modules.

I have given a description for Aut(GΓ), the automorphism group of the partially

commutative group GΓ following Day’s work, where Γ is a finite simple graph.

I have given a description for the subgroup Conj(GΓ) of automorphism group

Aut(GΓ) following Toinet’s work.

We have found a finite presentation for the subgroup ConjV of the automorphism

group Aut(GΓ).

I have developed AutParCommGrp (Finite Presentations of Automor-

phism Groups of Partially Commutative Groups and Their Subgroups) a

package using the GAP system for computation of a finite presentation for Aut(GΓ),

Conj(GΓ) and ConjV respectively.

In the second part of the thesis we consider the following situation: Let K be

a field of characteristic two and let R = K[x1, x2, · · · , xn] be a graded polynomial

ring, graded in the negative way. Suppose M is a differential graded R-module

with differential ∂ of degree P . We have constructed a classification for some types

of differential graded R-module where P ≤ −2, n > 1. This classification gives a

partial algorithm to test whether such modules are solvable. For modules outside

the classification we cannot decide, using our methods, whether or not they are

solvable. Also, we have proved in one case that M is solvable when R is a graded

polynomial ring, graded in the usual way (non-negatively graded) with (P ≥ 2, n >

1). We have developed an algorithm and written a GAP package SDGM (Solvable

Differential Graded Modules) to check whether the differential graded R-module

M with differential ∂ of degree P is solvable or not. Documentation has been written

for all the packages above.

Contents

I Partially Commutative Algebraic structures 1

1 Introduction 2

2 Finite Presentation for Automorphism Groups of pc Groups 9

2.1 Introduction . 9

2.2 Background for pc groups . 9

2.2.1 Partially Commutative Groups 11

2.3 Combinatorial group theory of partially commutative groups 13

2.4 Automorphisms of pc groups . 15

2.4.1 Laurence’s generators for Aut(GΓ) 15

2.4.2 Whitehead automorphisms for partially commutative groups . 17

2.5 Relations among Whitehead automorphisms 19

2.5.1 Relations R5 and R6 . 21

2.6 Peak reduction . 27

2.7 GAP Presentation for the Aut(GΓ) 29

2.7.1 IsSimpleGraph Function . 33

2.7.2 StarLinkDominateOfVertex Function 34

2.7.3 DeleteVerticesFromGraph Function 35

2.7.4 ConnectedComponentsOfGraph Function 35

2.7.5 DFSVisit Function . 36

2.7.6 WhiteheadAutomorphismsOfSecondType Function 37

2.7.7 WhiteheadAutomorphismsOfFirstType Function 38

2.7.8 RelationsOfGraphAutomorphisms Function 40

2.7.9 APCGRelationR1 Function . 41

2.7.10 APCGRelationR2 Function . 41

2.7.11 APCGRelationR3 Function . 42

2.7.12 APCGRelationR4 Function . 42

i

2.7.13 APCGRelationR5 Function . 42

2.7.14 APCGRelationR8 Function . 42

2.7.15 APCGRelationR9 Function . 43

2.7.16 APCGRelationR10 Function 43

2.7.17 APCGFinalReturn Function 43

2.7.18 FinitePresentationOfAutParCommGrp Function 44

2.7.19 TietzeTransformations Function 47

3 Finite Presentation for the Subgroup Conj(GΓ) 48

3.1 Introduction . 48

3.2 Finite Presentation for Conj(GΓ) . 48

3.3 GAP Presentation for Conj(GΓ) . 57

3.3.1 StarLinkOfVertex Function 58

3.3.2 CombinationsOfConnectedComponents Function 58

3.3.3 GeneratorsOfSubgroupConj Function 59

3.3.4 APCGRelationRConj1 Function 61

3.3.5 APCGRelationRConj2 Function 61

3.3.6 APCGRelationRConj3 Function 62

3.3.7 APCGRelationRConj4 Function 62

3.3.8 APCGConjLastReturn Function 62

3.3.9 FinitePresentationOfSubgroupConj Function 63

4 Finite Presentation for the Subgroup ConjV 65

4.1 Introduction and Background for ConjV 65

4.2 Whitehead Automorphisms and Day’s Relations 74

4.3 A Presentation for ConjV . 76

4.4 GAP Presentation for ConjV . 105

4.4.1 EquivalenceClassOfVertex Function 105

4.4.2 ClassPreservingConnectedComponents Function 106

4.4.3 GeneratorsOfSubgroupConjv Function 107

4.4.4 FinitePresentationOfSubgroupConjv Function 109

II Differential Graded Algebraic structures 111

5 Introduction and Preliminaries for DG Algebraic structures 112

5.1 Introduction . 112

ii

5.2 Preliminaries . 112

5.2.1 Exact Homology Sequences 113

6 Graded Rings and Graded Modules 117

6.1 Graded Rings . 117

6.2 Graded Modules . 122

7 Solvable Differential Graded Modules 129

7.1 Composition Series . 129

7.2 Solvable differential Graded Modules 134

8 GAP Algorithm for Solvable Differential Graded Modules 188

8.1 SwapRowsColumns Function . 188

8.2 Solveindic1WithProof Function . 189

8.3 Solveindic2WithProof Function . 190

8.4 Solveindic3WithProof Function . 190

8.5 Solveindic4WithProof Function . 191

8.5.1 Solveindic4Size2by2 Function 194

8.5.2 Solveindic4Size3by3 Function 195

8.5.3 Solveindic4Size4by4A Function 195

8.5.4 Solveindic4Size4by4B Function 196

8.5.5 Solveindic4Size5by5 Function 197

8.5.6 Solveindic4Size6by6 Function 197

8.5.7 Solveindic4Size6by6Above Function 198

8.5.8 Solveindic4Sizembym Function 200

8.6 SolvableModuleByUsualGradedWithProof Function 200

8.7 IsSolvableModuleWithProof Function 201

A Appendix 209

A.1 Appendix to Chapter 2 . 209

A.2 Appendix to Chapter 3 . 280

A.3 Appendix to Chapter 4 . 299

A.4 Appendix to Chapter 8 . 307

iii

List of Figures

2.1 A Graph Γ . 12

2.2 GΓ
∼= Z2 ∗ Z . 12

2.3 Graph of Γ . 12

2.4 Graph of Γ . 14

2.5 Graph of Γ . 16

2.6 Graph of Γ . 19

2.7 A Graph Γ . 21

3.1 A Graph Γ . 55

4.1 A Graph Γ . 66

4.2 Graph of Γ . 69

4.3 Graph of Γ . 77

4.4 Subgraph Γ\st(x) . 77

4.5 A Graph Γ . 96

6.1 Diagram ∆ . 127

6.2 Diagram Λ.1 . 128

6.3 Diagram Λ.2 . 128

iv

Glossary of Notation

Glossary of Notation

Γ a finite, simple, undirected graph with vertex set V

G group

GΓ the partially commutative group with underlying graph Γ

pc group partially commutative group

E edge set of the simple graph Γ (a list of pairs of vertices)

Fn a free group of rank n

Zn a free abelian group of rank n

Aut(GΓ) the automorphism group of GΓ

Ω the set of all Whitehead automorphisms of GΓ

Ω` the set of long-range elements of Ω

Ωs the set of short-range elements of Ω

L the union of V and its inverse V −1, i.e., L = V ∪ V −1

v(x) the vertex of x, be the unique element of V ∩ {x, x−1} ∀ x ∈ L
st(x) the star of the vertex x

st(x)−1 a set of inverse elements of st(x)

`k(x) the link of the vertex x

`k(x)−1 a set of inverse elements of `k(x)

stL(x) the union of st(v(x)) and st(v(x))−1

`kL(x) the union of `k(v(x)) and `k(v(x))−1

x ≥ y the domination relation: say x dominates y if `k(y) ⊂ st(x)

x ∼ y elements x and y of V are equivalent: that is st(x) = st(y)

[x] the equivalence class of x under ∼
Aut(Γ) the set of type (1) Whitehead automorphisms of Aut(GΓ)

Ω1 a special notation for the set of type (1) Whitehead automorphisms

Ω2 a special notation for the set of type (2) Whitehead automorphisms

(A, a) a special notation for type (2) Whitehead automorphisms of Aut(GΓ)

Y ⊥ the orthogonal complement of Y in V

cl(Y) the closure of Y in V , i.e. cl(Y) = ∩z∈Y ⊥st(z)
a(Y) the admissible set of Y , i.e. a(Y) = ∩y∈Y (st(y))⊥

d(x, y) the distance from x to y; where x, y ∈ Γ
Conj(G) the set of conjugating automorphisms of G

ConjN (G) the subgroup of all normal conjugating automorphisms

Conj(GΓ) the subgroup of all basis conjugating automorphisms

v

Glossary of Notation

ConjV (GΓ) the subgroup of all vertex conjugating automorphisms

LInnS the set of all elementary conjugating automorphisms

LInnC the set of all basic collected conjugating automorphisms

LInnR the set of regular elementary conjugating automorphisms

LInnV the set of basic vertex conjugating automorphisms

ConjA(G) subgroup of Conj(G) generated by all aggregate automorphisms

ConjS(G) the subgroup of Conj(G) generated by LInnS

ConjC(G) the subgroup of Conj(G) generated by LInnC

Dom(x) the set of all vertices dominated by x

Dom(Γ) the set of all dominated vertices

out(y) set of all x such that y ∈ Dom(x) and [y] 6= [x] for fixed y ∈ V
CAT (0) cube complexes

DGA differential graded algebra

DG R-module differential graded R-module

deg abbreviation of degree

f ' g the two maps f and g are homotopic

H ≤ G H is a subgroup of G

H �G H is a normal subgroup of G

H �G H is a normal subgroup of or equal to G

H 6 G H is not normal subgroup of G

G ∼= H the two groups G and H are isomorphic

StabG(s) the stabilizer of s in G

OrbG(s) the orbit of s under G

[x, y] the commutator of x and y

n the left normal factor semi-direct product

o the right normal factor semi-direct product

⊕ the direct sum

⊗ the tensor product

· the dot product.

vi

Part I

Partially Commutative Algebraic

structures

1

Chapter 1

Introduction

Geometric group theory views algebraic objects as geometric objects. The graph is a

geometric object whereas the group is an algebraic object. One relationship between

graphs and groups was first observed by Cayley. A graph consists of a vertex set V

and an edge set E. Historically, group concepts evolved in the context of geometry.

German mathematician Felix Klein proposed a precise definition of geometry using

group concepts “Geometry is the study of those properties of space which remain

unchanged under a given group of transformations”.

Partially commutative groups (pc groups “these are not the same as pc groups in

GAP”) have drawn much attention in geometric group theory, because of their rich

subgroup structure and good algorithmic properties. These groups act on cubical

complexes and have a variety of useful applications (see [16], [17], [39], [35]

and [36] for example.) In recent times, the study of automorphism groups of

partially commutative groups has been of great interest. We denote by Aut(G) the

automorphism group of a group G.

We will use Γ to denote a finite simple graph. We will write V = V (Γ) =

{x1, . . . , xn}, (n ≥ 1) for the finite set of vertices and E = E(Γ) ⊂ V ×V for the set

of edges, viewed as unordered pairs of vertices. The requirement that Γ be simple

simply means that the diagonal of V × V is excluded from the set of edges. The

partially commutative group (also known as a right-angled Artin group, a

trace group, a semi-free group or a graph group) of Γ , is the group defined by

presentation

GΓ = 〈V |RΓ 〉

2

where the relations are

RΓ = {[xi, xj] | xi, xj ∈ V and {xi, xj} ∈ E}

where [xi , xj] = x−1
i x−1

j xixj and (xi and xj are adjacent if there exists an edge

e ∈ E with e = {xi, xj}). When Γ has no edges then GΓ is free group of rank n, and

when Γ is the complete graph then GΓ is free abelian group of rank n. In general,

partially commutative groups can be thought of as interpolating between these two

extremes. Thus it seems reasonable to consider automorphism groups of partially

commutative groups as interpolating between Aut(Fn), the automorphism group of

a free group, and GL(n,Z), the automorphism group of a free abelian group.

A. Baudisch [8] first studied the partially commutative groups in the 1970’s.

Then C. Droms [28], [29], [30] further developed the theory in the 1980’s and

named them “graph groups”. Since then, they have been widely studied (as is

clear by the bibliography to this thesis.) For an introduction to this class of groups

and a survey of the literature see [16]. For example, from Humphries [41] one

knows that partially commutative groups are linear; their integral cohomology rings

were computed early on by Kim and Roush [48], and Jensen and Meier [44] have

extended this to include cohomology with group ring coefficients. More recently,

Papadima and Suciu [62] have computed the lower central series, Chern groups and

resonance varieties of these groups, while Charney, Crisp and Vogtmann [17] have

explored their automorphism groups (in the triangle-free case) and Bestvina, Kleiner

and Sageev [12] their rigidity properties. In [71] R. Wade has gave a description

of Duchamp and Krob’s extension of Magnus’ approach to the lower central series

of the free group to right-angled Artin groups.

The rich geometry of these groups is the feature that caused a significant inter-

est in them. In [17], Charney and Davis construct an Eilenberg-MacLane space

for each partially commutative group, which is a compact, non-positively curved,

piecewise-Euclidean cube complex. Bestvina and Brady [11] have effectively applied

geometric methods to the study of partially commutative groups. These groups can

parametrized by finite simplicial complexes Σ satisfying a certain flag condition.

There is heavy dependence of the Artin group associated to Σ on the combinatorial

structure of Σ, not only in topology. Nevertheless, Bestvina and Brady show that

the cohomological finiteness properties of the kernel of the canonical map onto Z
are determined by the topology of Σ alone.

3

From Koberda [49] one knows that a partially commutative group is the universal

group with specified commutation and noncommutation among its vertices. “For

any subset S ⊂ G of a group, we build the commutation graph of S, written

Comm(S), as follows. The vertices of Comm(S) are the elements of S, and two

vertices of S are connected by an edge if they commute in G”. The following

proposition gives the universal property of partially commutative groups.

Proposition 1.0.1. [49] Let G be a group and let S ⊂ G be a finite subset. The

inclusion S ⊂ G extends to a unique homomorphism

GComm(S) → G

which agrees with the identification V (Comm(S)) ∼= S. In the universal property, we

require S to be finite because partially commutative groups are defined to be finitely

generated.

A finite generating set for Aut(GΓ) the automorphism group of a partially com-

mutative group has been found by Servatius [69] and Laurence [51]. Over the last

few years, significantly more has been discovered: Bux, Charney, Crisp and Vogt-

mann ([14], [17] and [19] for example) have shown that these automorphism groups

are virtually torsion-free and have finite virtual cohomological dimension. Day has

shown also that peak reduction techniques may be used on certain subsets of the

generators and consequently has given a presentation for the automorphism group

of partially commutative groups [24] and [27]. These groups, moreover, have a very

rich subgroup structure. In other words, Gutierrez, Piggott and Ruane [40] were

able to construct a semi-direct product decomposition for the more general case of

automorphism groups of graph products of groups. In addition, Duncan, Remeslen-

nikov and Kazachkov [34] provided a description of several arithmetic subgroups

of the automorphism group of a partially commutative group. Noskov [60] also

found different arithmetic subgroups. Providing certain conditions have made on

the graph Γ , Charney and Vogtmann have shown [20] that the Tits alternative

holds for the outer automorphism group of G(Γ). Day [25] moreover, has shown

that in all cases this group holds either a finite-index nilpotent subgroup or a non-

Abelian free subgroup. Minasyan has shown [58] that partially commutative groups

are conjugacy separable (loc. cit.) from which it can be shown that their outer au-

tomorphism groups are residually finite. Lohrey and Schleimer [53] have studied

the compressed word problem and proved that the word problem for Aut(GΓ) is

4

reducible to the compressed word problem for G(Γ), i.e., the word problem for

Aut(GΓ) has polynomial time complexity.

Charney and Farber [18], and then Day [26], have studied automorphism groups

of partially commutative groups associated to random graphs, of Erdos-Renyi type.

They have shown that if the edge probability (p) lies between 0.2929 and 1 and is

constant then as the number of vertices (n) tends to ∞, the probability that the

partially commutative group has finite outer automorphism group tends to 1.

Duncan, Remeslennikov and Remeslennikov [35] have defined several standard

subgroups of the automorphism group Aut(GΓ) of a partially commutative group

using the notion of admissible subset of a graph (see Section 4.1). The automorphism

group of a partially commutative group GΓ with commutative graph Γ contains

a group AutΓ (GΓ) induced by isomorphisms of Γ . In Section 4.1 we introduce a

particular subgroup Stconj(K) and a subgroup AutΓcomp(G) of Aut(Γ) (see Definitions

4.1.5, 4.1.6).

Theorem 1.0.2. [35] The group Aut(G) can be decomposed into the internal semi-

direct product of the subgroup Stconj(K) and the finite subgroup AutΓcomp(G), i.e.

Aut(G) = Stconj(K)o AutΓcomp(G).

This theorem essentially reduces the problem of studying Aut(GΓ) to the study

of the group Stconj(K).

A basis-conjugating automorphism is one which maps each canonical gener-

ator x to xgx , for some gx ∈ G. Toinet [70] has constructed a presentation for

Conj(G) the group of basis-conjugating automorphisms. Here we consider sub-

groups ConjN(G) of normal conjugating automorphisms (see Definition 4.1.7)

and ConjV (GΓ) of vertex conjugating automorphisms (see Section 4.1). We

find a presentation for ConjV (GΓ) of the automorphism groups of the partially

commutative group Aut(GΓ).

Let G be a group with identity e and R be a ring with unit 1 different from 0.

Then R is said to be G-graded ring if there exist additive subgroups Rg of R such

that R = ⊕
∑
g∈G

Rg and RgRh ⊆ Rgh, for all g, h ∈ G.

Methods used in the study of graded rings have proved to be successful tools in

the structure theory of commutative rings. Due to the great importance of grading

of rings and modules, the study of this concept attracted wide interest from math-

5

ematicians everywhere. One of the mathematicians who studied the properties of

grading of rings in general when G is a group or a subgroup was Jespers in [37] and

[45]. On the other hand, M. Refai, carried out a number of studies about graded

ring theory and graded modules (see for example [64], [66] and [65]).

A differential graded category (DG category) over the commutative ring

R is a R-category A whose morphism spaces are differential graded R-modules

(Definition 6.2.5) and whose compositions

A(Y, Z)⊗A(X, Y)→ A(X,Z), (f, g) 7→ fg

are morphisms of differential graded R-modules.

DG categories already appear in [47]. In the seventies, they found applications

(see [67] and [31]) in the representation theory of finite-dimensional algebras.

From B. Keller [46] one knows how the DG categories enhance our understanding

of triangulated categories appearing in algebra and geometry. DG categories have

been studied extensively since that time. For an introduction to the theory of DG

category see [46].

A differential graded algebra (DG algebra) over the commutative ring R

is a graded algebra, A = ⊕i∈ZAi over R together with a differential, that is a

R-linear map d : A → A of degree -1 with d2 = 0, satisfying the Leibniz rule

d(rs) = d(r)s+ (−1)|r|rd(s), where r, s ∈ R and r is a graded element of degree |r|.
We can think of DG algebras as generalisations of rings, so we have just gained more

objects to work with. DG algebras, have been the object of considerable study in

recent years, and a good picture of their properties has been built up through the

work of many different researchers. For example, D. Dugger and B. Shipley [32] have

investigated the relationship between DG algebras and topological ring spectra. M.

Angel and R. Dlaz [4] have introduced the concept of N-differential graded algebras

(N-dga), and study the moduli space of deformations of the differential of an N-

dga. J. Jardine [43] has constructed a closed model structure for the category

of non-commutative DG algebras over an arbitrary commutative ring with unit.

Introductions to the theory of DG algebras can be found in [2], [6], [10] and [63].

Carlsson has studied properties of the differential graded modules (DG mod-

ules). In fact the solvable differential graded R-modules concept already appeared

in the 1983’s in work of G. Carlsson [15]. Recently, these modules have attracted

much interest in ring theory, homological algebra, category theory, algebraic geom-

6

etry and algebraic topology. For example, L. Avramov and D. Grayson [7] have

shown that the duals of infinite projective resolutions of modules over a complete

intersection are finitely generated DG modules over a graded polynomial ring. From

X. Mao [55] one knows some new results on cone length of DG modules and global

dimension of connected DG algebras. K. BECK [9] has investigated the image of

the totaling functor, defined from the category of complexes of graded A-modules

to the category of differential graded A-modules where A is a DG algebra with a

trivial differential over a commutative unital ring. To each Λ∗-differential graded

module A. Legrand [52] has associated “characteristic” classes which are invariants

of the quasi-isomorphism class of this module and determined the Pontrjagin prod-

uct by the zeroth and the first homology, where Λ∗ is not necessarily a connected

DG algebra.

The structure of this thesis is as follows: In Chapter 2, we present a background

to partially commutative groups. We then give a description of the generating sets of

automorphism groups of partially commutative groups. One of the commonly used

generating sets of Aut(GΓ) is the set of Whitehead automorphisms. We describe

the Whitehead automorphisms for partially commutative groups and the relations

among Whitehead automorphisms. We develop a GAP package to find a finite

presentation for the automorphism groups of partially commutative groups with a

finite simple graph Γ . In order to do this we give a description of Aut(GΓ) according

to Day’s work in [24].

In Chapter 3, we give a description of the subgroup of basis-conjugating auto-

morphisms Conj(GΓ) of Aut(GΓ) according to Toinet’s work, in [70], and Day’s

work in [24]. We develop an algorithm and written a GAP package that provides a

finite presentation for the subgroup Conj(GΓ).

In Chapter 4, we find a presentation for the subgroup ConjV of Aut(GΓ). We

develop a GAP package that provides a finite presentation for ConjV .

Chapter 5, contains some basic notions, definitions and results on exact homology

sequences. Chapter 6, outlines the general principles of graded rings and some of

their properties, as well as the definitions of graded algebras, and differential graded

modules over the graded polynomial ring R = K[x1, x2, . . . , xn].

In Chapter 7, we study composition series and then construct a classification for

some types of differential graded R-modules, based on the degree P of the differential

graded module and dimension of the module. This classification gives a partial

7

algorithm to test whether such modules are solvable.

In Chapter 8 we give an algorithm implemented in GAP for all the cases covered

in Chapter 7. This Chapter also includes a description of each function used in our

algorithm.

8

Chapter 2

Finite Presentation for

Automorphism Groups of pc

Groups

2.1 Introduction

Partially commutative groups have drawn much attention in geometric group the-

ory, because of their rich subgroup structure and good algorithmic properties, their

actions on cubical complexes and their various applications. This chapter is con-

cerned with automorphism groups of partially commutative groups and their finite

presentations.

The GAP system will be used to find a finite presentation for the automorphism

group of a partially commutative group. In order to do this work we will give a pre-

sentation for the automorphism group of a partially commutative group, according

to Day’s work in [24] and [27].

2.2 Background for pc groups

We will briefly describe the relationship between partially commutative groups, other

Artin groups and Coxeter groups.

Definition 2.2.1. A graph Γ consists of

(i) a non-empty set V (Γ) of vertices and

9

(ii) a set E(Γ) of edges

such that every edge e ∈ E(Γ) is a multiset {a, b} of two vertices a, b ∈ V (Γ).

Γ = (V,E) will denote a graph with vertex and edge sets V and E (one or both

of which may be infinite)

Vertices a and b are adjacent if there exists an edge e ∈ E with e = {a, b}. If

e ∈ E and e = {c, d} then e is said to be incident to c and to d and to join c and

d. If a and b are vertices joined by edges e1, . . . , ek, where k > 1, then e1, . . . , ek are

called multiple edges.

Definition 2.2.2. An edge of the form {a, a} is called a loop. A graph which has

no multiple edges and no loops is called a simple graph.

Remark 2.2.3. A graph is finite if both its vertex set and edge set are finite. In this

study we study only finite graphs, and so the term “graph” always means “finite

graph”. We call a graph with just one vertex trivial and all other graphs nontrivial.

All graphs in this thesis are finite and simple. For an introduction to this

class of graphs see [13] and [68].

Definition 2.2.4. [16] An Artin group A is a group with presentation of the form

A = 〈s1, . . . , sn| sisjsi . . .︸ ︷︷ ︸
mij

= sjsisj . . .︸ ︷︷ ︸
mji

for all i 6= j〉,

where mij = mji is an integer ≥ 2 or mij = ∞ in which case we omit the relation

between si and sj. If we add to this presentation the additional relations si = s−1
i

for all i, we obtain a Coxeter group

W = 〈s1, . . . , sn| si = s−1
i , sisjsi . . . = sjsisj . . . for all i 6= j〉

= 〈s1, . . . , sn| (si)2 = 1, (sisj)
mij = 1 for all i 6= j〉.

D∞ = Z/2Z ∗ Z/2Z is an example of Coxeter group.

A partially commutative group (right-angled Artin group) is an Artin group

in which mij ∈ {2,∞} for all i, j. In other words, in the presentation for the Artin

group, all relations are commutator relations: sisj = sjsi. Right-angled Coxeter

groups are defined similarly. The easiest way to determine the presentation for a

right-angled Coxeter or Artin group is by means of the defining graph (also called

the commutation graph) Γ . This is the graph whose vertices are labeled by the

10

generators S = {s1, . . . , sn} and whose edges connect a pair of vertices si, sj if and

only if mij = 2. Note that any finite, simple graph Γ is the defining graph for a

right-angled Coxeter group WΓ and a partially commutative groups GΓ .

Theorem 2.2.5. [16] Every partially commutative group embeds as a finite index

subgroup of a right-angled Coxeter group.

2.2.1 Partially Commutative Groups

Let Γ be a graph on n vertices, with vertex list V and a list of pairs of vertices E ,

i.e., Γ = (V,E), where

V = {x1, . . . , xn}

and

E = {{xi1 , xi2}, . . . , {xik , xik+1
}}

Let GΓ be the partially commutative group of Γ, defined by

GΓ = 〈V |RΓ 〉

where the relations are

RΓ = {[xi, xj] | xi, xj ∈ V and {xi, xj} ∈ E}

where [xi, xj] = x−1
i x−1

j xixj and (xi and xj are adjacent if there exists an edge

e ∈ E with e = {xi, xj}). According to this construction we have the following two

an important cases:

Firstly, if the graph Γ is the null graph (n vertices and no edges) then GΓ is free

group Fn of rank n. Secondly, if Γ is a complete graph on n vertices then GΓ is the

free abelian group Zn of rank n. In general, GΓ interpolates between these two

extremes. Similarly, the automorphism group Aut(GΓ), the automorphism group

of GΓ interpolates between Aut(Fn), the automorphism group of a free group, and

GL(n,Z), the automorphism group of a free abelian group. In fact the automor-

phism groups of partially commutative groups contain Aut(Fn) and GL(n,Z) and

automorphism groups of free and direct products of Aut(Fn) and GL(n,Z). From

now on Aut(GΓ), denotes the automorphism group of GΓ .

11

Example 2.2.1.1

The following are a few examples of partially commutative groups:

(1) If Γ is a square as in Figure 2.1, then GΓ decomposes as a direct product of

two free groups GΓ
∼= F (x, z)× F (y, w).

x y

w z

Figure 2.1: A Graph Γ

(2) If Γ = P3, the path on three vertices then GΓ
∼= F2 × Z.

(3) If Γ as in Figure 2.2, then GΓ
∼= Z2 ∗ Z.

zyx

Figure 2.2: GΓ ∼= Z2 ∗ Z

(4) If Γ is an n-gon for n ≥ 5, then GΓ cannot be decomposed as either a direct

product or a free product.

Remark 2.2.6. Let L = V ∪ V −1. For x ∈ L, we define v(x) ∈ V the vertex of x,

to be the unique element of V ∩ {x, x−1}. Hence e = {x, y} = {v(x), v(y)} for each

x, y ∈ L. The star of x denoted by st(x) is a set of all the vertices that are connected

directly to x by an edge, as well as the vertex x. The inverse of the star of x denoted

by st(x)−1 is the set of inverses of elements of st(x). The link of denoted by `k(x) is

st(x) \ {x}, and the inverse of the link of x denoted by `k(x)−1 is the set of inverses

of elements of `k(x). We set stL(x) = st(x)∪ st(x)−1 and `kL(x) = `k(x)∪ `k(x)−1.

Consider the graph of Γ of Figure 2.3 with V = {x, a, b, c, d, e, f, g}. Then we

have that,

x

ba

de

c

f

g

Figure 2.3: Graph of Γ

12

L = V ∪ V −1 = {x, a, b, c, d, e, f, g, x−1, a−1, b−1, c−1, d−1, e−1, f−1, g−1}.
st(x) = {x, a, b, c, d, e}, st(x)−1 = {x−1, a−1, b−1, c−1, d−1, e−1}, and

`k(x) = {a, b, c, d, e}, `k(x)−1 = {a−1, b−1, c−1, d−1, e−1}. Hence,

stL(x) = st(x) ∪ st(x)−1 = {x, a, b, c, d, e, x−1, a−1, b−1, c−1, d−1, e−1} and

`kL(x) = `k(x) ∪ `k(x)−1 = {a, b, c, d, e, f, a−1, b−1, c−1, d−1, e−1}.

2.3 Combinatorial group theory of partially com-

mutative groups

Let the set of letters L be V ∪ V −1. Recall that a word in L is a finite sequence

of elements of L and every word in L represents an element of GΓ . By a cyclic

word w we mean the set consisting of w and all cyclic permutations of the sequence

of letters of w. For example, xyy is a word and the corresponding cyclic word is

{xyy, yyx, yxy}.
Any two elements of a cyclic word represent group elements that are conjugate

to each other, so a cyclic word represents a well-defined conjugacy class, we say a

conjugate to b denoted a ∼ b if there exists g such that g−1ag = b. Now, if we pick

any two elements of a cyclic word as in our example above then these are conjugate

to each other:

(yy)xyy(yy)−1 = yyx,

(y−1)yyx(y) = yxy,

(y−1)yxy(y) = xyy.

If w is a cyclic word, we will use (w) to denote the set of all cyclic permutations of

w (it is the image of w under a cyclic permutation.) A word w on L is graphically

reduced if it contains no subsegments of the form aua−1, where a ∈ L and u is a

word in 〈`kL(a)〉 (because in this case aua−1 = u in GΓ , so w1aua
−1w2 = w1uw2 in

GΓ , for all words w1, w2). A cyclic word is graphically reduced if all its elements

are graphically reduced as words. If we consider the graph Γ of Figure 2.4 then we

have that,

L = V ∪ V −1 = {a, x1, x2, x3, x4, a
−1, x−1

1 , x−1
2 , x−1

3 , x−1
4 },

GΓ = 〈V |RΓ 〉,
`kL(a) = {x1, x2, x3, x

−1
1 , x−1

2 , x−1
3 },

RΓ = {[a, x1], [a, x2], [a, x3], [x3, x4]},

13

x1
a

x2

x3
x4

Figure 2.4: Graph of Γ

so we have ax1a
−1 = x1, ax2a

−1 = x2, ax3a
−1 = x3, and x3x4x

−1
3 = x4.

Now if we pick any word u in 〈`kL(a)〉, let we say u = x1x2x
−1
1 , then

aua−1 = ax1x2x
−1
1 a−1 = x1x2x

−1
1 .

If w is a word in L then the support of w is the set of letters x ∈ V such that

x or x−1 accurs in w, denoted supp(w). By Baudisch [8] if w and w′ are reduced

words representing the same element of GΓ then supp(w) = supp(w′). Therefore we

make the following definition.

Definition 2.3.1. For an element g of GΓ , the support of g is

supp(g) = supp(v) where v is a reduced word representing g.

The support supp(w) of a k-tuple W = (w1, . . . , wk) of conjugacy classes is⋃k
i=1 supp(wi).

By Baudisch [8] if w and w′ are graphically reduced words and represent the

same element of GΓ then the lengths of w and w′ are equal. Therefore we define

the length of an element g of GΓ to be the length of any graphically reduced word

representing g. We say that an element g in GΓ is cyclically reduced if it can not

be written as vhv−1 or v−1hv with v ∈ V , and |g| = |h|+ 2. By [69], Proposition 2,

every element of GΓ is conjugate to a unique (up to cyclic permutation) cyclically

reduced element. The length of a conjugacy class is defined to be the minimal

length of any of its representative elements. Observe that the length of a conjugacy

class is equal to the length of a cyclically reduced element representing it. For an

n-tuple of conjugacy classes W , we define the length of W , denoted by |W |, as the

sum of the length of its elements (n ≥ 1).

14

2.4 Automorphisms of pc groups

In this section we shall give the definition of Laurence-Servatius generators for

Aut(GΓ). We shall also give the definition of Whitehead automorphisms for par-

tially commutative groups. Some other definitions and concepts that are important

in our study will be given.

2.4.1 Laurence’s generators for Aut(GΓ)

We will state some definitions and concepts that are important in our study before

we give the definition of Laurence-Servatius generators for Aut(GΓ).

1. There is a reflexive and transitive binary relation on V called the domination

relation: x ≥ y (x dominates y) iff `k(y) ⊂ st(x).

2. Domination is clearly reflexive and transitive, since `k(x) ⊂ st(x), so x ≥ x and

this implies that the domination is reflexive. Now, domination is transitive,

because that if we have x ≥ y and y ≥ z then we have that `k(z) ⊂ st(y) and

`k(y) ⊂ st(x). So we have two cases:

(a) If y /∈ `k(z), since `k(z) ⊂ st(y) and y /∈ `k(z), then we will get that

`k(z) ⊂ `k(y), which implies to `k(z) ⊂ `k(y) ⊂ st(x), implies to x ≥ z.

(b) If y ∈ `k(z), as case(1), `k(z) \ {y} ⊂ `k(y) ⊂ st(x). So if we prove

that, y ∈ st(x) then `k(z) ⊂ st(x). Note that, since y ∈ `k(z) then we

have the edge e1 = {z, y}, and since `k(y) ⊂ st(x) then we have the edge

e2 = {z, x},also since `k(z) ⊂ st(y) then we have the edge e3 = {y, x}.
Therefore, y ∈ st(x), and hence x ≥ z. Thus domination is transitive.

3. For x, y ∈ L, say x ≥ y if v(x) ≥ v(y).

4. Write x ∼ y when x ≥ y and y ≥ x; the relation ∼ is called the domination

equivalence relation.

5. The adjacent domination relation, which holds for x and y if {x, y} ∈ E

(or [x, y] ∈ RΓ) and x ≤ y.

6. The non-adjacent domination relation, which holds for x and y if x ≤ y

{x, y} /∈ E (or [x, y] /∈ RΓ).

15

7. We say that x strictly dominates y if x ≥ y and x 6∼ y.

Definition 2.4.1. [51] and [69] The Laurence-Servatius generators for Aut(GΓ)

are the following four classes of automorphisms:

1. Transvections: For x, y ∈ L with x ≥ y and v(x) 6= v(y), the transvection

τx,y is the map that sends

y 7→ yx

and fixes all generators not equal to v(y). A transvection τx,y determines an

automorphism of GΓ (see [51], [69]).

2. Partial Conjugations: An automorphism cx,Y , for x ∈ L and Y a non-

empty union of connected components of Γ\st(x), that maps each y ∈ Y to

x−1yx and fixes all generators not in Y is called a partial conjugation. The

set Conj(GΓ) = Conj of all partial conjugations forms a subgroup of GΓ .

Every partial conjugation determines an automorphism of GΓ ([51], [69]).

For example in the graph of Γ of Figure 2.5 we have a partial conjugation

yi 7→ x−1yix, i = 1, 2, b 7→ b, c 7→ c, a 7→ a, d 7→ d, x 7→ x.

x

a

b

c

d

y1

y2

Figure 2.5: Graph of Γ

In particular if Y = Γ\st(x) then cx,Y is the inner automorphism γx sending

u to ux for all x ∈ V .

3. Inversions: For x ∈ V , the inversion τx of x is the map that sends

x 7→ x−1

and fixes all other generators. i.e., inversions send a standard generator of

GΓ to its inverse. Every inversion determines an automorphism of GΓ ([51],

[69]).

16

4. Graphic Automorphisms: For π an automorphism of the graph Γ , the

graphic automorphism of GΓ is determined by π is the map that sends

x 7→ π(x)

for each generator x ∈ X, (An automorphism of a graph G = (V,E) is a

permutation σ of the vertex set V , such that the pair of vertices {u, v} forms

an edge if and only if the pair {σ(u), σ(v)} also forms an edge.) Every graphic

automorphism is an automorphism of GΓ ([51], [69]) and the set of all graphic

automorphisms of Aut(GΓ) is denoted AutΓ (GΓ).

Theorem 2.4.2. [51] The group Aut(GΓ) is generated by the finite set consisting

of all transvections, partial conjugations, inversions and graphic automorphisms of

GΓ . The subgroup Conj(GΓ) is generated by the partial conjugations.

A finite presentation for the subgroup Conj(GΓ) of Aut(GΓ) is given in [70].

2.4.2 Whitehead automorphisms for partially commutative

groups

Definition 2.4.3. A Whitehead automorphism is an element α ∈ Aut(GΓ) of one

of the following two types:

Type (1): α restricted to V ∪ V −1 is a permutation of V ∪ V −1, or

Type (2): there is an element a ∈ V ∪V −1, called the multiplier of α, such that

for each x ∈ V the element α(x) is one of x, xa, a−1x, a−1xa.

Let Ω be the set of all Whitehead automorphisms of GΓ .

Definition 2.4.4. A Whitehead automorphism α ∈ Ω is long-range if α is of type

(1) or if α is of type (2) with multiplier a ∈ V ∪ V −1 and α fixes the elements of V

adjacent to a in Γ . Let Ω` be the set of long-range elements of Ω.

A Whitehead automorphism α ∈ Ω is short-range if α is of type (2) with

multiplier a ∈ V ∪ V −1 and α fixes the elements of V not adjacent to a in Γ . Let

Ωs be the set of short-range elements of Ω.

By [51] (see Section 2.2), we can conclude that Ω` ∪ Ωs is a generating set for

Aut(GΓ).

17

Theorem 2.4.5. [24] For any graph Γ , the group Aut(GΓ) is finitely presented.

Specifically, there is a finite set R of relations among the Whitehead automorphisms

Ω such that Aut(GΓ) = 〈Ω,R〉.

There is a special notation for type (2) Whitehead automorphisms. Let A ⊂ L

and a ∈ L, such that a ∈ A and a−1 /∈ A. If it exists, the symbol (A, a) denotes the

Whitehead automorphism satisfying

(A, a)(a) = a

and for x ∈ V \v(a) :

(A, a)(x) =


x if x /∈ A and x−1 /∈ A
xa if x ∈ A and x−1 /∈ A
a−1x if x /∈ A and x−1 ∈ A
a−1xa if x ∈ A and x−1 ∈ A

Say that (A, a) is well defined if the formula given above defines an automorphism

of GΓ .

Note:

i. For α ∈ Ω of type (2), one can always find a multiplier a ∈ L and a subset

A ⊂ L such that α = (A, a). There is a little ambiguity in choosing such a

representation that comes from the following fact: if a, b ∈ L with e = {a, b},
then ({a, b, b−1}, a) is the trivial automorphism. In another word if b and

b−1 ∈ `kL then we must delete them from the set A, because they cancel each

other.

ii. The set of type (1) Whitehead automorphisms is the finite subgroup ofAut(GΓ)

generated by the graphic automorphisms and inversions.

iii. The set Ω of Whitehead automorphisms is a finite generating set of Aut(GΓ).

Lemma 2.4.6. [24] For A ⊂ L with a ∈ A and a−1 /∈ A, the automorphism (A, a)

is well defined if and only if both of the following hold:

1. The set (V ∩A∩A−1)\1k(v(a)) is a union of connected components of Γ\st(a).

2. For each x ∈ (A\A−1), we have a ≥ x.

18

Alternatively, (A, a) is well defined if and only if for each x ∈ A\stL(a) with a �
x, (A, a) acts on the entire component of x ∈ Γ\st(a) by conjugation.

2.5 Relations among Whitehead automorphisms

In this section we define the set of relations R in Theorem 2.4.5. Note that we use

function composition order and automorphisms act on the left with sets. We use

the notation A+B for A∪B when A∩B = ∅. Note the shorthand A−a for A\{a}
and A+ a for A ∪ {a}.

Let Φ be the free group generated by the set Ω. We understand the relation

“w1 = w′′2 to correspond to w1w
−1
2 ∈ Φ. Note that if (A, a) ∈ Ω with B ⊂ `k(v(a))

and (B ∪ B−1) ∩ A = ∅, then (A, a) and (A + B + B−1, a) represent the same

element of Ω and therefore the same element of Φ. This is why we do not list

“(A, a) = (A + B + B−1, a)′′ in the relations below. We illustrate this by the

following example:

Let Γ be a graph of Figure 2.6 with the set of vertices, V = {a, b, c, d, e, f, g}

a
b

c

d

e

f

g

Figure 2.6: Graph of Γ

Let (A, a) = ({a, b, b−1}, a) ∈ Ω. So,

A = {a, b, b−1},
`k(v(a)) = {b, c, d, e}.
Let B = {d, e} ⊂ `k(v(a)) and so B−1 = {d−1, e−1}. From the above we have,

(A, a)(a) = a, (A+B +B−1, a)(a) = a, and for x ∈ V \v(a), we have

(A, a)(b) = a−1ba = a−1ab = b and (A+B +B−1, a)(b) = a−1ba = a−1ba = b,

(since [a, b] = 1⇒ ab = ba),

(A, a)(c) = c, (A+B +B−1, a)(c) = c,

(A, a)(d) = d, (A+B +B−1, a)(d) = a−1da = a−1ad = d,

(A, a)(e) = e, (A+B +B−1, a)(e) = a−1ea = a−1ae = e,

19

(A, a)(f) = f, (A+B +B−1, a)(f) = f ,

(A, a)(g) = g, (A+B +B−1, a)(g) = g.

Hence, (A, a) = (A+B +B−1, a).

Definition 2.5.1. [24] There are ten types of relations as follows:

(R1) (A, a)−1 = (A− a+ a−1, a−1)

for (A, a) ∈ Ω.

(R2) (A, a)(B, a) = (A ∪B, a)

for (A, a) and (B, a) ∈ Ω with A ∩B = {a}.

(R3) (B, b)(A, a)(B, b)−1 = (A, a)

for (A, a) and (B, b) ∈ Ω such that a /∈ B, b /∈ A, a−1 /∈ B, b−1 /∈ A, and at

least one of (a)A ∩ B = ∅ or (b)b ∈ 1kL(a) holds. We refer to this relation as

(R3a) if condition (a) holds and (R3b) if condition (b) holds.

(R4) (B, b)(A, a)(B, b)−1 = (A, a)(B − b+ a, a)

for (A, a) ∈ Ω and (B, b) ∈ Ω such that a /∈ B, b /∈ A, a−1 /∈ B, b−1 ∈ A, and

at least one of (a)A ∩ B = ∅ or (b)b ∈ `kL(a) holds. We refer to this relation

as (R4a) if condition (a) holds and (R4b) if condition (b) holds.

(R5) (A− a+ a−1, b)(A, a) = (A− b+ b−1, a)τb(a, b)

where τb ∈ I and (a, b) is the graphic automorphism transposing a and b; with

(A, a) ∈ Ω, b ∈ A, b−1 /∈ A, b 6= a, b ∼ a.

(R6) There are two types of R6 relation which are,

(R6a) τx(A, a)τ−1
x = (τx(A), τx(a)), where τx ∈ I, and

(R6b) φ(A, a)φ−1 = (φ(A), φ(a)), where φ ∈ Aut(GΓ).

(R7) The entire multiplication table of the type (1) Whitehead automorphisms,

which forms a finite subgroup of Aut GΓ .

(R8) (A, a) = (L− a−1, a)(L− A, a−1),

for (A, a) ∈ Ω.

(R9) (A, a)(L− b−1, b)(A, a)−1 = (L− b−1, b),

for (A, a) ∈ Ω and b ∈ L with b, b−1 /∈ A.

20

(R10) (A, a)(L− b−1, b)(A, a)−1 = (L− a−1, a)(L− b−1, b)

for (A, a) ∈ Ω and b ∈ L with b ∈ A, b−1 /∈ A and b 6= a.

Let R be the set of elements of Φ corresponding to all relations of the forms

(R1), (R2), (R3), (R4), (R5), (R6), (R7), (R8), (R9), (R10). This is the same

R in Theorem 3.3.9 and Day [24] proved in Section 5 that:

Aut(GΓ) := 〈Ω|RΓ 〉 .

2.5.1 Relations R5 and R6

In Day’s work relations (R5) and(R6) are not the same as the ones in the Definition

2.5.1. Our alternative forms for the relations (R5) and(R6) are more suitable for our

algorithm. In this section we show that our relations (R5) and(R6) are equivalent

to Day’s relations (R5) and(R6). Day’s (R5) and(R6) are

(R’5) (A− a+ a−1, b)(A, a) = (A− b+ b−1, a)σa,b

for (A, a) ∈ Ω and b ∈ A with b−1 /∈ A, b 6= a, and b ∼ a, where σa,b is the

type (1) Whitehead automorphism with σa,b(a) = b−1, σa,b(b) = a and which

fixes the other generations.

(R’6) σ(A, a)σ−1 = (σ(A), σ(a))

for (A, a) ∈ Ω of type (2) and σ ∈ Ω of type (1).

First, we will give an example for small graph and after that we will go to the

general case.

Example 2.5.1.1

Let V = {x1, x2, x3, x4, x5} be the set of vertices and Γ be a graph of Figure 2.7:

x1

x2

x3 x4

x5

Figure 2.7: A Graph Γ

21

We have graph isomorphism π such that,

π = x1 x2 x3 x4 x5

and another ρ such that

ρ =



x4 → x4

x3 → x5

x5 → x3

x1 → x2

x2 → x1

In this example the isomorphism group of Γ is generated by π and ρ (and is

isomorphic to dihedral group D5).

• G(Γ) = 〈x1, x2, x3, x4, x5〉 | [x1, x2] = [x2, x3] = [x3, x4] = [x4, x5]

= [x5, x1] = 1〉

• V ∪ V −1 = {x1, x2, x3, x4, x5, x
−1
1 , x−1

2 , x−1
3 , x−1

4 , x−1
5 }.

Now, let θ ∈ Aut(GΓ) be an automorphism of type (1), so θ permutes V ∪ V −1.

Let x ∈ V (Γ) then θ(x) = y ∈ V ∪V −1. Since θ ∈ Aut(GΓ) then θ(x−1) = θ(x)−1 =

y−1. Therefore, θ({x, x−1}) = {y, y−1}.
Group V ∪V −1 into pairs {x1, x

−1
1 }, {x2, x

−1
2 }, . . . , {xn, x−1

n } and then for each i,

θ maps {xi, x−1
i } to {xj, x−1

j } for some j. So, θ is a permutation of the set of pairs

{x1, x
−1
1 }, . . . , {xn, x−1

n }. In this case, if we forget the exponent ±1 of xi we may

use θ to define an automorphism θ0 of Γ . Namely if θ({xi, x−1
i }) = {xj, x+1

j } define

θ0(xi) = xj. In this case we say θ contracts to θ0. For example, let θ be such that

x1 x2 x3 x4 x5

Then θ contracts to the automorphism π above.

Conversely an automorphism α of Γ induces several automorphisms of GΓ which

contract to α. In fact if α(xi) = xj then we my define an automorphism θ of GΓ such

that (a) θ(xi) = xj or (b) θ(xi) = x−1
j . Suppose θ is defined by making such a choice

∀xi ∈ V (Γ). Since θ is obtained from α by composition with appropriate inversions,

22

it follows that θ determines an automorphism of GΓ . Moreover, by definition θ

contracts to α. As there are two choices for θ(xi), for i = 1, . . . , 5, every α ∈ Aut(Γ)

induces at most 2n distinct elements of Aut(GΓ).

In the example above, ρ gives rise to at most 25 automorphisms of type (1). So,

we have that

• {x1, x
−1
1 } → {x2, x

−1
2 } ⇒


a−→

{
x1 → x2

x−1
1 → x−1

2

b−→

{
x1 → x−1

2

x−1
1 → x2

For each of a,b we have that

• {x2, x
−1
2 } → {x1, x

−1
1 } ⇒


c−→

{
x2 → x1

x−1
2 → x−1

1

d−→

{
x2 → x−1

1

x−1
2 → x1

• If we have a and c:

ρ1 :

{
x1 � x2

x−1
1 � x−1

2

• If we have a and d:

ρ2 : x1 x2 x−1
1 x−1

2

• If we have b and c:

ρ3 : x1 x−1
2 x−1

1
x2

• If we have b and d:

ρ4 :

{
x1 � x−1

2

x−1
1 � x2

ρ5 : {x3, x
−1
3 } → {x5, x

−1
5 }

For ρ5 there are two possibilities

23

• {x3, x
−1
3 } → {x5, x

−1
5 } ⇒


e−→

{
x3 → x5

x−1
3 → x−1

5

f−→

{
x3 → x−1

5

x−1
3 → x5

Also,

• {x5, x
−1
5 } → {x3, x

−1
3 } ⇒


g−→

{
x5 → x5

x−1
5 → x−1

3

h−→

{
x5 → x−1

3

x−1
5 → x3

• Now, we come back to the general case of θ (on page 22):

Let

σ = 〈τx1 , . . . , τxn〉

= 〈τx1〉 ⊕ . . .⊕ 〈τxn〉

= 〈τx1|τ 2
x1
〉 ⊕ . . .⊕ 〈τxn|τ 2

xn〉.

Where,

τx1 : x1 → x−1
1 , x−1

1 → x1 and xj → xj, if j 6= 1, τ 2
x1

= 1 = (),

τx2 : x2 → x−1
2 , x−1

2 → x2 and xj → xj, if j 6= 2, τ 2
x2

= 1 = (),
...

τxn : xn → x−1
n , x−1

n → xn and xj → xj, if j 6= n, τ 2
xn = 1 = ()·

(There is no need for τx−1
j

for j = 1, . . . n, because we have that τx−1
j

= τxj).

Suppose that φ is any isomorphism of Γ . So for each x ∈ V and φ(x) ∈ V and

φ maps x bijectively to itself. Then φ gives rise to 2n automorphisms of type (1)

(where |V (Γ)| = n). For each x ∈ V we have two choices a and b,

x
a7−→φ(x)
b7−→φ(x)−1

• If x 7−→ φ(x) then x−1 7−→ φ(x)−1,

• If x 7−→ φ(x)−1 then x−1 7−→ φ(x), so once these choices have been made we

have uniquely determined an automorphism of type (1).

24

Now let

T = 〈automorphisms of type(1)〉 ≤ Aut(GΓ),

ζ = Aut(Γ) the group of automorphism of Γ (elements of which permute V).

I = 〈τx : x ∈ V (Γ) and τx(x) = x−1〉,

= Z2 ⊕ . . .⊕ Z2, (|V (Γ)| − times),

∼= (〈τx1〉 ⊕ . . .⊕ 〈τxn〉).

Any automorphism θ of type (1) permutes the sets {x, x−1} such that x ∈ V so

contracts to a graph automorphism φ, from which θ can be recovered as above.

Now we have the following facts; for θ and φ

Fact 1: φ−1τxφ = τφ−1(x). That is φτx = τφ(x)θ.

If φ ∈ ζ and τx ∈ I then for each z ∈ V we have that,

φ−1τxφ(z) =

{
φ−1φ(z) if x 6= φ(z)

φ−1(φ(z))−1 if x = φ(z),

=

{
z if x 6= φ(z)

φ−1(φ(z−1)) if x = φ(z),

=

{
z if x 6= φ(z)

z−1 if x = φ(z),

= τφ−1(z).

Fact 2: τxτy = τyτx, for each x 6= y ∈ V
Fact 3: Suppose we choose option b for x = x1, . . . , xr and option a for all other

x ∈ V . Then we will have the following fact. The resulting map of type (1) is

θ = τφ(x1) . . . τφ(xr)φ = φτx1 . . . τxr ,

and

φτx(x)→ φ(x−1) = φ(x)−1, ∀x ∈ V.

• From Fact 3 we have T = 〈I, ζ〉 and moreover T = ζI = Iζ. From Fact 1, as

τφ−1(x) ∈ I we have I � T .

25

• We show ζ ∩ I = {id}. Suppose α ∈ ζ ∩ I. Then α(x) ∈ V, ∀x ∈ V , as α ∈ ζ.

Also α(x) = x or x−1, as α ∈ I. Hence (as x−1 /∈ V) α(x) = x, ∀x ∈ V .

Therefore α = id and so ζ ∩ I = {id}. Therefore, T = ζ o I.

Therefore, given a presentation 〈Gens(ζ) ∪ I | Rels(ζ)〉 for ζ, a presentation for T

is,

T = 〈Gens(ζ)∪Gens(I) | Rels(ζ)∪{τ 2
v : v ∈ V (Γ)}∪{[τv, τu] : u, v ∈ V (Γ), u 6=

v} ∪ {φ−1τvφ = τφ−1(v) for each φ ∈ Gens(G) and τv ∈ Gens(I)}〉.

� Day’s relation R′5 is:

(R′5) (A− a+ a−1, b)(A, a) = (A− b+ b−1, a)σa,b

for (A, a) ∈ Ω and b ∈ A with b−1 /∈ A, b 6= a, and b ∼ a, where σa,b is the

type (1) Whitehead automorphism with σa,b(a) = b−1, σa,b(b) = a and which

fixes the other generations.

(R′5) involves type (1) automorphisms σa,b which we are writing as σa,b = τb(a, b)

where (a, b) ∈ AutΓ (G) is the graphic automorphism induced by the automorphism

(a, b) of Γ sending a to b and b to a. Hence, (R′5) becomes (R5) of Definition 2.5.1.

� Day’s relation R′6 is:

(R′6) σ(A, a)σ−1 = (σ(A), σ(a))

for (A, a) ∈ Ω of type (2) and σ ∈ Ω of type (1).

We have generators of type (1) of the form

I : that is τx for x ∈ V , and

ζ : that is graph isomorphisms (permutations of V). However not all type (1)

elements appear in our generating set. So we replace the above relation (R′6) with

(R6) of Definition 2.5.1

Note that (R′6) follows from (R6), as we may write any σ of type (1) as

σ = φ τx1 . . . τxr for suitable φ ∈ ζ and τxi ∈ I (from Fact 3) and then

26

σ(A, a)σ−1 = φτx1 . . . τxr(A, a)τ−1
xr . . . τ

−1
x1
φ−1

= φτx1 . . . τxr−1(τxr(A), τxr(a))τ−1
xr−1

. . . τ−1
x1
φ−1

= φτx1 . . . τxr−2(τxr−1τxr(A), τxr−1τxr(a))τ−1
xr−2

. . . τ−1
x2
φ−2

= φ(τx1 . . . τxr(A), τx1 . . . τxr(a))φ−1

= (φτx1 . . . τxr(A), φτx1 . . . τxr(a))

= (σ(A), σ(a)).

2.6 Peak reduction

Peak reduction is a technique in the study of Aut(F) that is a key ingredient in the

solution of several important problems. J.H.C. Whitehead invented the technique

in the 1930’s in [72] to provide an algorithm that takes in two conjugacy classes

(or more generally, k−tuples of conjugacy classes) from F and determines whether

there is an automorphism in Aut(F) that carries one to the other.

Definition 2.6.1. For W a k-tuple of conjugacy classes in GΓ , we say that a string

αm . . . α1 of elements of Aut(GΓ) is peak-reduced with respect to W if for each

i = 1, . . . ,m− 1, we do not have both

|(αi+1 . . . α1) ·W | ≤ |(αi . . . α1) ·W |

and

|(αi . . . α1) ·W | ≥ |(αi−1 . . . α1) ·W |

unless all three lengths are equal. It is equivalent to that, for some k1 ≤ k, the

length of αk . . . α1 ·W decreases with k until k = k1, remains constant until k = k2,

and then increases with k until k = m.

We see that Aut(GΓ) has peak reduction with respect to Ω if for any α ∈
Aut(GΓ) and any tuple of conjugacy classes W , we can find αm, . . . , α1 ∈ Ω such

that α = αm, . . . , α1 and the string of elements αm, . . . , α1 is peak-reduced with

respect to W .

Theorem 2.6.2. [24] The finite generating set Ω` ∪ Ωs for Aut(GΓ) has the fol-

lowing properties:

1. each α ∈ Aut(GΓ) can be written as α = βγ for some β ∈ 〈Ωs〉 and some

γ ∈ 〈Ω`〉,

27

2. the usual representation Aut(GΓ)→ Aut(H1(GΓ)) to the automorphism group

of the abelianization H1(GΓ), (where H1(GΓ) = GΓ/[GΓ , GΓ] = (GΓ)ab of

GΓ ,) restricts to an embedding 〈Ωs〉 ↪→ Aut H1(GΓ); and

3. the subgroup 〈Ω`〉 has peak reduction by elements of Ω` with respect to any

k−tuple W of conjugacy classes in GΓ .

Theorem 2.6.3. [24] The peak-reduction theorem for a free group Fn states that

there is a finite generating set Ω for Aut(Fn) (called the Whitehead automorphisms,

see [72]) such that Aut(Fn) has peak reduction with respect to any k−tuple of con-

jugacy classes W in Fn by element of Ω. We will give an example to explain this

theorem.

Example 2.6.0.2

For a free group Fn = F (x, y), pick any α ∈ Aut(Fn) and any k-tuple (w1, . . . , wk)

where wk is a representative of a conjugacy classes of Fn.

Let W = (x, xy, xy−1), |W | = 5. Suppose that,

α :

{
x 7−→ y−1xy

y 7−→ x2y

we can factorise α into Whitehead automorphism, according to Theorem 2.6.2, so

that

α = αm . . . α1,

|W | ≤ |α1W | ≤ |(α2α1)W | ≤ . . . ≤ |(αm . . . α1)W | = |αW |.

Now, we can factor α in the following way, α = α1 α2 α3 ,where

α2 = α3 :

{
x 7−→ x

y 7−→ yx

so written a Whitehead automorphism,

α2 = ({x, y}, x),

and

α1 :

{
x 7−→ y−1xy

y 7−→ y

28

so written as whitehead automorphism,

α1 = ({x, x−1, y}, y)

We will check that α = α1 α2 α3 :

α1α2α3(x) = α1α2(x) = α1(x) = y−1xy

α1α2α3(y) = α1α2(yx) = α1(yx2) = yy−1x2y = x2y.

Hence we get that,

α = α1α2α3 :

{
x 7−→ y−1xy

y 7−→ x2y

W = (x, xy, xy−1),

α3.W = (x, xyx, y−1), |α3.W | = 5.

α2α3.W = (x, xyx2, x−1y−1), |α2α3.W | = 7.

α1α2α3.W = (y−1xy, y−1xyx2y, y−1x−1) ∼ (x, xyx2, y−1x−1), |α1α2α3.W | = 7.

As we shown above that α = α1α2α3, then it is obvious that α.W = α1α2α3.W .

Hence, the sequence W , α1.W , α2α1.W , α3α2α1.W has no peak.

Lemma 2.6.4. [24] Let X be a k-tuple of conjugacy classes whose elements are

all the conjugacy classes in GΓ of length 2, each appearing once. If (A, a) ∈ Ω` and

|(A, a) ·X| ≤ |V |, then (A, a) is trivial or is the conjugation (L\{a−1}, a).

Lemma 2.6.5. [24] Suppose α, β ∈ Ω` and [W] is a k-tuple of conjugacy classes

of GΓ . If βα−1 forms a peak with respect to [W], there exist δ1, . . . , δkΩ` such that

βα−1 = δk . . . δ1 and for each i, 1 ≤ i < k, we have:

|(δi . . . δ1) · [W]| < |α−1 · [W]|

A factorization of βα−1 is peak-lowering if it satisfies the conclusions of the

Lemma, so Lemma 2.6.5 states that every peak has a peak-lowering factorization.

2.7 GAP Presentation for the Aut(GΓ)

First we will give a small example to find a finite presentation of automorphism

groups of partially commutative group Aut(GΓ).

29

Example 2.7.0.3

Let Γ = (V,E) be the following graph:

•x1 •x2

Then V = {x1, x2} and E = ∅. It is a free group with two generators {x1, x1}.
Thus,

(1) st(x1) = {x1},

`k(x1) = φ,

Comps1 = Γ\st(x1) = {x2} = connected components of Γ\st(x1).

(2) st(x2) = {x2},

`k(x1) = φ,

Comps2 = Γ\st(x2) = {x1} = connected components of Γ\st(x2).

(3) A list Y (x) , for each x in V of these vertices y in V such that y less then x,

and we call this list by Y, so

Y = {{x2}, {x1}}.

(4) Now, we will find the generators of type (2) of the Whitehead automorphisms

of the subgraph E1 = Γ\st(x1):

L1 = Comps1 ∪ {{x2}, {x−1
2 }}

= {x2, x
−1
2 } ∪ {{x2}, {x−1

2 }}

= {{x2}, {x−1
2 }, {x2, x

−1
2 }}.

Hence, the whitehead automorphisms of the subgraph E1 = Γ\st(x1) are:

C1 = {{{x2, x1}, x1}, {{x2, x
−1
1 }, x−1

1 }, {{x−1
2 , x1}, x1},

{{x−1
2 , x−1

1 }, x−1
1 }, {{x2, x

−1
2 , x1}, x1}, {{x2, x

−1
2 , x−1

1 }, x−1
1 }}.

(5) Now, we will find the generators of type (2) of whitehead automorphisms of

the subgraph E2 = Γ\st(x2) :

L2 = Comps2 ∪ {{x1}, {x−1
1 }}

= {{x1, x
−1
1 } ∪ {{x1}, {x−1

1 }}

30

= {{x1}, {x−1
1 }, {x1, x

−1
1 }}.

Hence, the whitehead automorphisms of the subgraph E2 = Γ\st(x2) are:

C2 = {{{x1, x2}, x2}, {{x1, x
−1
2 }, x−1

2 }, {{x−1
1 , x2}, x2}, {{x−1

1 , x−1
2 }, x−1

2 },

{{x1, x
−1
1 , x2}, x2}, {{x1, x

−1
1 , x−1

2 }, x−1
2 }}.

• Therefore, the generators of type (2) whitehead automorphisms of the graph

Γ are the following set A:

A = C1 ∪ C2,

A = {A1 = {{x2, x1}, x1}, A2 = {{x2, x
−1
1 }, x−1

1 }, A3 = {{x−1
2 , x1}, x1},

A4 = {{x−1
2 , x−1

1 }, x−1
1 }, A5 = {{x2, x

−1
2 , x1}, x1},

A6 = {{x2, x
−1
2 , x−1

1 }x−1
1 }, A7 = {{x1, x2}, x2},

A8 = {{x1, x
−1
2 }, x−1

2 }, A9 = {{x−1
1 , x2}, x2}, A10 = {{x−1

1 , x−1
2 }, x−1

2 },

A11 = {{x1, x
−1
1 , x2}, x2}, A12 = {{x1, x

−1
1 , x−1

2 }, x−1
2 }}.

• Now, we will find type (1) of generators of the whitehead automorphisms of

the graph Γ :

(1) The graph isomorphisms of Γ are that,

ζ = {F1 = (1, 2), identity } (permutation of vertices).

I = 〈gx : x ∈ V (Γ) and gx(x) = x−1〉,
= {gx1(x1) = x−1

1 , gx2(x2) = x−1
2 }

Thus, the generators of type (1) of the whitehead automorphisms are the

following set T :

T = ζ ∪ I = {F1, gx1 , gx2}

• Therefore, the generators set Gens of the automorphism groups of PCG of the

graph Γ is that,

Gens = A ∪ T = {A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, F1, gx1 , gx2}.

• The relations (Rels) between these generators as follows:

(1) R1 = {A1 ∗ A2, A3 ∗ A4, A5 ∗ A6, A7 ∗ A8, A9 ∗ A10, A11 ∗ A12}.

(2) R2 = {A1 ∗ A3 ∗ A−1
5 , A2 ∗ A4 ∗ A−1

6 , A3 ∗ A1 ∗ A−1
5 , A4 ∗ A2 ∗ A−1

6 , A7 ∗ A9∗

A−1
11 , A8 ∗ A10 ∗ A−1

12 , A9 ∗ A7 ∗ A−1
11 , A10 ∗ A8 ∗ A−1

12 }.

31

(3) R3 = ∅.

(4) R4 = ∅.

(5) R5 = {A9 ∗ A1 ∗ gx2 ∗ A−1
3 , A7 ∗ A2 ∗ gx2 ∗ A−1

4 , A10 ∗ A3 ∗ gx2 ∗ A−1
1 ,

A8 ∗ A4 ∗ gx2 ∗ A−1
2 , A3 ∗ A7 ∗ gx1 ∗ A−1

9 , A1 ∗ A8 ∗ gx1 ∗ A−1
10 ,

A4 ∗ A9 ∗ gx1 ∗ A−1
7 , A2 ∗ A10 ∗ gx1 ∗ A−1

8 }.

(6) R6 +R7 = {g2
x1
, g2
x2
, g−1
x1
∗ g−1

x2
∗ gx1 ∗ gx2 , g−1

x2
∗ g−1

x1
∗ gx2 ∗ gx1 , F−1

1 ∗ gx1 ∗ F1∗

gx2 , F
−1
1 ∗ gx2 ∗ F1 ∗ gx1}.

(7) R8 = {A1 ∗A−1
4 ∗A−1

5 , A2 ∗A−1
3 ∗A−1

6 , A3 ∗A−1
2 ∗A−1

5 , A4 ∗A−1
1 ∗A−1

6 , A5 ∗ Id∗

A−1
5 , A6∗Id∗A−1

6 , A7∗A−1
10 ∗A−1

11 , A8∗A−1
9 ∗A−1

12 , A9∗A−1
8 ∗A−1

11 , A10∗A−1
7 ∗

A−1
12 , A11 ∗ Id ∗ A−1

11 , A12 ∗ Id ∗ A−1
12 }.

(8) R9 = ∅.

(9) R10 = {A1 ∗A11 ∗A−1
1 ∗A−1

11 ∗A−1
5 , A2 ∗A11 ∗A−1

2 ∗A−1
11 ∗A−1

6 , A3 ∗A12 ∗A−1
3 ∗

A−1
12 ∗A−1

5 , A4∗A12∗A−1
4 ∗A−1

12 ∗A−1
6 , A7∗A5∗A−1

7 ∗A−1
5 ∗A−1

11 , A8∗A5∗A−1
8 ∗

A−1
5 ∗ A−1

12 , A9 ∗ A6 ∗ A−1
9 ∗ A−1

6 ∗ A−1
11 , A10 ∗ A6 ∗ A−1

10 ∗ A−1
6 ∗ A−1

12 }.

(10) We have one relation for the automorphisms of graph (F1 = (1, 2)), which is

F 2
1 .

Therefore, the relations set Rels among the generators Gens is that,

Rels = R1 ∪R2 ∪R3 ∪R4 ∪R5 ∪R6 ∪R7 ∪R8 ∪R9 ∪R10 ∪ {F 2
1 }.

Hence, the finite presentation for automorphism groups of GΓ is that,

Aut(GΓ) = 〈Gens|Rels〉 .

We have developed AutParCommGrp (Finite Presentations of Automor-

phism Groups of Partially Commutative Groups and Their Subgroups) a

package using the GAP system for computation of a finite presentation for the au-

tomorphism group of a partially commutative group Aut(GΓ) and their subgroups

Conj(GΓ) and ConjV which are described in Chapters 3 and 4 respectively see [1].

32

This package AutParCommGrp mainly installs new method to provide a finite

presentation for the groups Aut(GΓ), Conj(GΓ) and ConjV . The process involves

the computation of other objects/values which may be useful in their own right.

These are defined for a graph Γ = (V,E) on n vertices, with vertices V and edge

set E, where E is a list of pairs of vertices. They are the star St(v) and the link

Lk(v) for each vertex v of V , the list Y (v) of those vertices u in V such that u is less

than v, the subgraphs Γ\St(v), the connected components of a graph, the unions

of the connected components of a graph, the equivalence classes for each vertex v of

V under equivalence relation ∼ (St(v) and Lk(v) are used to define a partial order

on V which induces equivalence relation ∼). In addition, it can be used to apply

Tietze transformations to simplify the presentation of the groups it finds by using a

GAP function.

To write an algorithm to produce a finite presentation for the automorphism

group of a partially commutative group Aut(GΓ) first we find Ω the Whitehead

generators set of this group based on Laurence’s generators as defined in Section 2.4

and then find the set of relations R as defined in Definition 2.5.1.

The input of the main function FinitePresentationOfAutParCommGrp(V,E)

that provides finite presentation for the group Aut(GΓ) is a simple graph Γ = (V,E).

A graph with vertex set V of size n always has vertices {1, . . . , n} and E is a list

of pairs of elements of V . For example if Γ is a simple graph with vertex set

V = {x1, x2, x3} and edge set E = {[x1, x2], [x1, x3], [x2, x3]} (where [x, y] denotes

an edge joining x to y) then Γ will be represented as ([1, 2, 3], [[1, 2], [1, 3], [2, 3]]).

The output of FinitePresentationOfAutParCommGrp consists of two sets gens and

rels, where gens is the list of the Whitehead generators of Aut(GΓ) defined in

Section 2.4 and rels is the list of the relators R.

This section describes the functions from the package AutParCommGrp which

we have written for computing a finite presentation for Aut(GΓ) as follows.

2.7.1 IsSimpleGraph Function

A simple graph, is an unweighted, undirected graph containing no graph loops or

multiple edges. A simple graph may be either connected or disconnected. IsSimple-

Graph tests whether the graph Γ fulfills these conditions. The input of the function

IsSimpleGraph(V,E) is a graph Γ = (V,E), where V and E represents the list of

vertices and the list of edges respectively. The algorithm carries out the following

33

instructions:

IsSimpleGraph(V,E)

1 if V is empty list

2 then return error message

3 if V or E are not lists

4 then return error message

5 if Γ has loops

6 then return error message

7 if E 6⊂ V × V
8 then return error message

9 M ← Size(E)

10 for i in {1, . . . ,M}
11 do if E has multiple edges

12 then return error message

13 return true

2.7.2 StarLinkDominateOfVertex Function

The input of the function StarLinkDominateOfVertex(V,E) is a simple graph Γ =

(V,E). It computes the star St(v) and the link Lk(v) and concatenates them in two

separate lists St and Lk respectively. Also it calculates a list Y (v), for each vertex v

in V of those vertices u in V such that u is less than v, and we call the list of all such

Y (v), Y Y . In addition, it calculates sV , the size of the list of vertices V and M ,

the size of the list of edges E. The algorithm carries out the following instructions:

StarLinkDominateOfVertex(V,E)

1 for v in V (Γ)

2 do for e in E(Γ)

3 do if e is adjacent v

4 then Add “end point” of e to Lk[v]

5 St[v] = Lk[v] ∪ {v}
6 for v in St[v]

7 do for u in Lk[v]

8 do if St[u] ⊆ Lk[v]

9 then Add u to Y (v)

34

10 Append Y (v) to Y Y

11 L← V ∪ (−V)

12 return [St ,Lk ,YY , sV ,M ,L, sL]

2.7.3 DeleteVerticesFromGraph Function

The input of the function DeleteVerticesFromGraph(St, V, E) is the list of stars

St, the list of vertices V , and the list of edges E. It computes graphs Γ\St(v), for

all v in V , with NV the list of all lists of vertices of Γ\St(v) and NE the list of all

lists of edges of Γ\St(v). The algorithm carries out the following instructions:

Deletevertices(St, V, E)

1 sV ← Size(V)

2 M ← Size(E)

3 for v in V (Γ)

4 do for e in E(Γ)

5 do if e is not adjacent to u ∈ St(v)

6 then Add e to H1

7 Add vertices incident to edges in H1 to H2

8 Append H1 to NE and H2 to NV

9 return [NV ,NE , sNV , sNE]

2.7.4 ConnectedComponentsOfGraph Function

The input of the function ConnectedComponentsOfGraph(G1, G2) is the list of ver-

tices G1 and the list of edges G2 of a graph B. It computes the list of connected

components AllComps of the graph B and its size sAllComps. Also it computes the

list of non-isolated connected components NonIsolatedComps and the list of iso-

lated connected components IsolatedComps of the graph B. In addition it computes

the lists D and F the list of vertices of NonIsolatedComps and IsolatedComps re-

spectively. The algorithm carries out the following instructions:

ConnectedComponentsOfGraph(G1, G2)

1 M ← Length(G2) � G2 is edge list of a simple graph B.

2 for i in {1, . . . ,M}
3 do D ← ComputeVertexListOfNon-isolated components(B)

35

4 sD ← Size(D)

5 for i in {1, . . . ,M}
6 do W ← ComputeAdjacencyMatrix(B)

7 for i in {1, . . . , sD}
8 do if color[s] = 0 � color is a list of size sD with entries the

� numbers of non-isolated components.

9 then count← count+ 1

� count is a specific number representing

� the vertices of each component.

10 color[i]← count

11 NonIsolatedComps← DfsVisit(i,W, sD, count, color)

12 for k in {1, . . . , count}
13 do for i in {1, . . . , sD}
14 do Add non-isolated component with its inverse to new list P

15 Append P to the list NonIsolatedComps

16 F ← Difference(G1, D) � F is vertices of isolated components

17 sF ← Size(F)

18 for i in {1, . . . , sF}
19 do IsolatedComps← ComputeIsolated components(B)

20 AllComps← ComputeAllcomponents(B)

21 return [AllComps , sAllComps ,NonIsolatedComps ,D , IsolatedComps ,F]

2.7.5 DFSVisit Function

The input to DFSVisit(i,W, sD, count, color) is a vertex i of graph B, the weight

matrix W of B, the size sD of the vertex list of the graph B, an index count,

corresponding to a connected component of B and a list color. The sth item of color

is the (number of the) component of B to which the sth vertex of B belongs (or is

zero if s has not yet been processed). The function implements the depth search

algorithm to construct the connected components (having more than one vertex)

of the graph B. On input a vertex i with count j > 0, the algorithm checks to see if

there is a vertex s, joined to i by an edge, with color[s] = 0. On finding such an s the

algorithm sets color[s] = count and calls itself with input (s,W, sV, count, color).

36

DfsVisit(i,W, sD, count, color)

1 for s in {1, . . . , sD}
2 do if color[s] = 0 and W [i][s] = 1

3 then color[s] = count

4 DfsVisit(s,W, sD, count, color)

5 End

2.7.6 WhiteheadAutomorphismsOfSecondType Function

The inputs of the function WhiteheadAutomorphismsOfSecondType(NV, NE, St,

Y Y) are the lists of verticesNV and the list of edgesNE of the subgraphs Γ\St(v) =

(NV (v), NE(v)) for all v in V , the list of stars St(v), and the list Y Y defined in

StarLinkDominateOfVertex above. It computes the list A of type (2) Whitehead

automorphisms which forms the first part of the set of generators of Aut(GΓ). Also

it computes a list T of names of elements of A (the ith element of T is the name of

the ith element of A). The algorithm carries out the following instructions:

WhiteheadAutomorphismsOfSecondType(NV,NE, St, Y Y)

1 sNE ← Size(NE)

2 for h in {1, . . . , sNE} � h ∈ V
3 do G← NE(h)

4 R3← ConnectedComponentsOfGraph(G1, G2)

5 Comps← R3(3) � Comps is non-isolated components

6 sComps← Size(Comps)

7 D ← R3(4)

8 sD ← Size(D)

9 S ← St(h)

10 DY Y ← Y Y (v) ∪ Y Y (V)−1

11 sDY Y ← Size(DY Y)

12 Ls← [[]]

13 for t in {1, . . . , sDY Y }
14 do xn← DYY(t)

15 Ls← UnionElement(Ls, xn, S)

16 sAQ← Size(Ls)

17 for i in {1, . . . , sAQ}
18 do Add the non empty elements of Ls to new list L3

37

19 sMV ←MV(h)

20 for j in {1, . . . , sMV }
21 do if MV(h)(j) /∈ D and sMV 6= 1 and MV (h) 6= Y Y (h)

22 then Add [MV (h)(j)] and [MV (h)(j)] to Ls3

23 Add [MV (h)(j),MV (h)(j)−1] to Ls3

24 for each list W in L3

25 do Add W ∪ {h} to new list L4

26 for X in L4

27 do Add (X\{h}) ∪ {h−1} to new list L5

28 AA← Concatenation(L4, L5)

29 Add the non empty elements of AA to new list A

30 sA← Size(A)

31 for i in {1, . . . , sA}
32 do Add Ai the name of the ith element of A to new list T

33 return [A,T , sA]

2.7.7 WhiteheadAutomorphismsOfFirstType Function

The input of the function WhiteheadAutomorphismsOfFirstType(E, sV, sA, T) is

the list of edges E, the size of the list of vertices sV , the size of the list A of type (2)

Whitehead automorphism of Γ , defined above, and the list T , also defined earlier.

It computes the list Gens of the type (1) Whitehead automorphisms which forms

the second part of the set of generators of the automorphism group of GΓ , and

then computes the list of the generators gens of Aut(GΓ) with its size sgens. The

subgroup AutΓ (GΓ) of Aut(GΓ) consists of graph automorphism: that is, elements

π ∈ Aut(GΓ) such that π|Γ is a graph automorphism. The algorithm carries out the

following instructions:

WhiteheadAutomorphismsOfFirstType(E, sV, sA, T)

1 Gr ← GraphAutomorphismGroup(E)

2 HH ← AsGroup(Gr)

3 GHH ← GeneratorsOfGroup(HH)

4 KK ← IsomorphismFpGroupByGenerators(HH,GHH)

5 HHH ← Image(KK)

6 rels2← RelatorsOfFpGroup(HHH)

38

7 srels2← RelatorsOfFpGroup(rels2)

8 F ← GeneratorsOfGroup(HHH)

9 SF ← Size(F)

10 for each R in rels2

11 do zz ← ExtRepOfObj(R)

12 Add zz to new list Rels1

13 sRels1← Size(Rels1)

14 for i in {1, . . . , sF}
15 do Add fi the name of the ith element of F to new list Gens3

16 relvalofF ← GeneratorsOfGroup(HH)

17 srelvalofF ← Size(relvalofF)

18 for v in V

19 do I2← ComputeInversionAutomorphismOfEachVertex

20 Add I2 to new list I1

21 for A in {1, . . . , I1}
22 do Add Ai the name of the ith element of I1 to new list Gens2

23 sGens2← Size(Gens2)

24 Gens← Concatenation(Gens2, Gens3)

25 sGens← Size(Gens)

26 for i in {1, . . . , sGens}
27 do Add Gens(i) to new list gens

28 genss← Concatenation(T,Gens2)

29 gens← Concatenation(T,Gens)

30 sgenss← Size(genss)

31 sgens← Size(gens)

32 return [gens , sgens , sgenss ,Gens3 , relvalofF , srelvalofF ,Rels1 , sRels1 , sGens2]

Remark 2.7.1. We have an important notes before we start describe the functions

that compute the set of relations as follows:

(1) The relators are represented using sequences of the formR = [p, ε1n1, . . . , εknk],

where p,εi,ni are integers, εi = ±1, 0 ≤ p ≤ 2 and 1 ≤ ni. If p = 0 or 1

then the sequence R corresponds to the word WR = ((Aε1n1
)p+1 ∗ . . .∗ (Aεknk)

p+1),

and R is called the index of WR. For example relators of type (R1) have form

(A, a) ∗ (A − a + a−1, a−1) = 1 and have indices of form [0, idx1, idx2] where

39

idx1 =(A, a) and idx2 =(A− a + a−1, a−1). Sequences with p = 1 occur only

in Section 2.7.8 below.

(2) If p = 2 then the sequence R corresponds to a relator of type (R5). These have

the form WR = 1 where WR = (A−a+a−1, b)∗ (A, a)∗σa,b ∗ (A− b+ b−1, a)−1,

and the corresponding sequence is [2, idx1, idx2,−idx3, idx4, a, b, a] where,

idx1 =(A− a+ a−1, b),

idx2 =(A, a),

idx3 =(A− b+ b−1, a)−1. In this case R is called the index of WR.

(3) One type of graph isomorphisms of Γ is an inversion, gx : x ∈ V (Γ) given

by gx(x) = x−1 and gy(y) = y for each y ∈ V (Γ) \ {x}. All inversions are type

(1) Whitehead automorphisms. The subgroup 〈gx : x ∈ V (Γ)〉 is denoted I.

The inversions satisfy the relations of the form:

R11 = {g2
x = 1 : x ∈ V (Γ)}

2.7.8 RelationsOfGraphAutomorphisms Function

The inputs of the function RelationsOfGraphAutomorphisms(sA, sgenss, relvalo−
fF, sV, sGens2) are the size sA of the list A of definition of the second type of

generator, the size of the list genss defined above which is called sgenss, the list

of generators of the graph automorphism relvalofF from above, sV and sGens2 of

lists V and Gens2. Compute the row matrix of indices Rels of the generators which

forms the relations of this type, that related to the graph automorphism with its

size sRels. The algorithm carries out the following instructions:

RelationsOfGraphAutomorphisms(sA, sgenss, relvalofF, sV, sGens2)

1 for i in {sA+ 1, . . . , sgenss}
2 do Add [1, i] to new list Rels � 1 means the generators of power two

3 for i in {sA+ 1, . . . , sgenss}
4 do for j in {sA+ 1, . . . , sgenss}
5 do if i 6= j

6 then Add [0,−i,−j, i, j] to the list Rels

� 0 means generators here of power one

7 srelvalofF ← Size(relvalofF)

40

8 for i in {1, . . . , srelvalofF}
9 do d← relvalofF([i])

10 F1← d−1

11 Add F1 to new list FF

12 for i in {1, . . . , srelvalofF}
13 do for j in {1, . . . , sV }
14 do PP ← OnPoints(j, FF [i])

15 idx1← i+ sA+ sGens2

16 idx2← sA+ j

17 idx3← sA+ PP

18 Add [0,−idx1, idx2, idx1, idx3] to the list Rels

19 sRels← Rels

20 return [Rels , sRels]

2.7.9 APCGRelationR1 Function

The inputs of the function APCGRelationR1(sV,A, T,Rels) are the size of the list

of vertices sV , the list A defined earlier, the list of generators T from Section 2.7.6,

and the list of row matrices of indices of the generators Rels. It computes the list

of indices [0, idx1, idx2] of relators of type (R1) of Definition 2.5.1 and adds them

to the list Rels. We can replace Rels by empty list if we want just the list of row

matrices of indices of (R1). In addition it calculates the size of the list Rels. It

returns [Rels, sRels].

2.7.10 APCGRelationR2 Function

The inputs of the function APCGRelationR2(A, T,Rels, St) are the list A is defined

earlier, list of the generators T of Aut(GΓ) from Section 2.7.6, the list of row matrix

of the indices of the generators Rels, and the list of stars St. It computes the list of

indices of the generators [0, idx1, idx2,−idx3] of relators of type (R2) of Definition

2.5.1 and adds them to the list Rels. We can replace Rels by empty list if we want

just the list of row matrices of indices of (R2). In addition it calculates the size of

the list Rels. It returns [Rels, sRels].

41

2.7.11 APCGRelationR3 Function

The inputs of the function APCGRelationR3(A, T, Lk,Rels) are the list A is defined

earlier, the list of the generators T of Aut(GΓ) from Section 2.7.6, the list of links

Lk, and the list of row matrix of the indices of the generators Rels. It computes the

list of the indices [0, idx1, idx2,−idx1,−idx2] of relators of type (R3) of Definition

2.5.1 and (R3a) and adds them to the list Rels. We can replace Rels by empty list

if we want just the list of row matrices of indices of (R3). In addition it calculates

the size of the list Rels. It returns [Rels, sRels].

2.7.12 APCGRelationR4 Function

The inputs of the function APCGRelationR4(A, T, Lk,Rels) are the list A is defined

earlier, the list of the generators T of Aut(GΓ) from Section 2.7.6, the list of links

Lk, and the list of row matrix of the indices of the generators Rels. It compute

the list of indices [0, idx1, idx2,−idx1,−idx3,−idx2] of relators of type (R4) and

(R4a) of Definition 2.5.1 and adds them to the list Rels. We can replace Rels by

empty list if we want just the list of row matrices of indices of (R4). In addition it

calculates the size of the list Rels. It returns [Rels, sRels].

2.7.13 APCGRelationR5 Function

The inputs of the function APCGRelationR5(A, St, Lk,Rels, T) are the list A is

defined earlier, the list of stars St, the list of links Lk, the list of row matrix of

the indices of the generators Rels , and the list of the generators T of Aut(GΓ)

from Section 2.7.6. It computes the list of indices [2, idx1, idx2, idx4,−idx3, j, k, j]

of relators of type (R5) of Definition 2.5.1, where 2 means that the idx4 refers to

the location of A’s (which are start at sA + 1 and end at sA + sGens2), j and k

refer to the vertex or its inverse, and adds them to the list Rels. We can replace

Rels by empty list if we want just the list of row matrices of indices of (R5). In

addition it calculates the sizes of the list Rels. It returns [Rels, sRels].

2.7.14 APCGRelationR8 Function

The inputs of the function APCGRelationR8(V,A, T, Lk,Rels) are the list of vertices

V , the list A is defined earlier, the list of the generators T of Aut(GΓ) from Section

2.7.6, the list of links Lk, and the list of row matrix of the indices of the generators

42

Rels. It computes the lists of indices [0, idx1,−idx3,−idx2], [0, idx1,−idx2], and

[0, idx1] of relators of type (R8) of Definition 2.5.1 and adds them to the list Rels.

We can replace Rels by empty list if we want just the list of row matrices of indices

of (R8). In addition it calculates the sizes of the list Rels. It returns [Rels, sRels].

2.7.15 APCGRelationR9 Function

The inputs of the function APCGRelationR9APCGRelationR9(V,A, T, Lk,Rels)

are the list of vertices V , the list A is defined earlier, the list of the generators T

of Aut(GΓ) from Section 2.7.6, the list of links Lk, and the list of row matrix of the in-

dices of the generatorsRels. It computes the list of indices [0, idx1, idx2,−idx1,−idx2]

of relators of type (R9) of Definition 2.5.1 and adds them to the list Rels. We can

replace Rels by empty list if we want just the list of row matrices of indices of (R9).

In addition it calculates the sizes of the list Rels. It returns [Rels, sRels].

2.7.16 APCGRelationR10 Function

The inputs of the function APCGRelationR10(V,A, T, Lk,Rels) are the list of ver-

tices V , the list A is defined earlier, the list of the generators T of Aut(GΓ) from

Section 2.7.6, the list of links Lk, the list of row matrix of the indices of the gen-

erators Rels. It computes the list of indices [0, idx1, idx2,−idx1,−idx2,−idx3] of

relators of type (R10) of Definition 2.5.1 and adds them to the list Rels. We can

replace Rels by empty list if we want just the list of row matrices of indices of (R10).

In addition it calculates the sizes of the list Rels. It returns [Rels, sRels].

2.7.17 APCGFinalReturn Function

The input of APCGFinalReturn(gens,Rels, sRels, sRels1, Rels1, sgenss) are the list

of generators gens, the list of the indices of the relators Rels, its size sRels, the list of

the matrices indices of the relators Rels1, it size sRels1 and sgenss the size of the list

genss defined in Section 2.7.7. It forms the list of relations rels from the list Rels

(computed in the functions RelationsOfGraphAutomorphisms, APCGRelationR1,

APCGRelationR2,. . ., APCGRelationR10). For each index R of one of these lists the

relatorWR is added to rels. It also forms the list of relations rels1 from the list Rels1

(computed in the functions WhiteheadAutomorphismsOfFirstType) and adds them

to the list rels1, and then adds it to the list of relations rels. At the same time it

43

computes the sizes of rels and rels1. It computes the free group F on gens defined

in Section 2.7.7. Also it computes the finitely presented group GGG = F/rels

where F is the free group on the generators gens defined in Section 2.7.7 and rels

is the list of relations which are defined on the generators gens. Finally, it returns

[F, gens, rels,GGG, sgens, srels]. In fact this function forms the output of one of

the main functions which is FinitePresentationOfAutParCommGrp in our package

AutParCommGrp. The algorithm carries out the following instructions:

APCGFinalReturn(gens,Rels, sRels, sRels1, Rels1, sgenss)

1 F ← FreeGroup(gens)

2 gens← GeneratorsOfGroup(F)

3 sgens← Size(gens)

4 for i in {1, . . . , sRels1}
5 do GHK ← Size(Rels1[i])

6 GHK1← GHK/2 � Find real length of each single relation

7 for j in {1, . . . , GHK1}
8 do Form rels1 the list of relators of graph group from Rels1

9 srels1← Size(rels1)

10 for i in {1, . . . , sRels}
11 do GHK ← Size(Rels[i])

12 Form rels the list of relators of the group from Rels

13 for i in {1, . . . , srels1}
14 do Add the list rels1 to the list rels

15 srels← Size(rels)

16 GGG← F/rels

17 return [F , gens , rels ,GGG , sgens , srels]

2.7.18 FinitePresentationOfAutParCommGrp Function

The function FinitePresentationOfAutParCommGrp(V,E) is the first main func-

tion in our algorithm. It provides a finite presentation for automorphism group

Aut(GΓ) of GΓ . The input of this function is a simple graph Γ = (V,E), where

V and E represent the set of vertices and the set of edges respectively. It returns

[gens, rels,GGG]. The algorithm carries out the following instructions:

44

FinitePresentationOfAutParCommGrp(V,E)

1 if Γ is simple graph

2 then Call The Function StarLinkDominateOfVertex

3 Call The Function DeleteVerticesFromGraph

4 Call Function WhiteheadAutomorphismsOfSecondType

5 Call Function WhiteheadAutomorphismsOfFirstType

6 Call The Function RelationsOfGraphAutomorphisms

7 Call The Function APCGRelationR5

8 Call The Function APCGRelationR1

9 Call The Function APCGRelationR2

10 Call The Function APCGRelationR3

11 Call The Function APCGRelationR4

12 Call The Function APCGRelationR8

13 Call The Function APCGRelationR9

14 Call The Function APCGRelationR10

15 Call The Function APCGFinalReturn

16 else return “The graph must be a simple graph”

17 return [gens , rels ,GGG]

Where,

(i) gens: is a list of free generators of the automorphism group Aut(GΓ) of GΓ .

(ii) rels: is a list of relations in the generators of the free group. Note that relations

are entered as relators, i.e., as words in the generators of the free group.

(iii) GGG := F/rels: is the automorphism group Aut(GΓ) of GΓ given as a finitely

presented group with generators gens and relators rels.

For example,

gap> B:=FinitePresentationOfAutParCommGrp([1,2],[[1,2]]);

[[A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, f1], [A9^2, A10^2,

A9^-1*A10^-1*A9*A10, A10^-1*A9^-1*A10*A9, f1^-1*A9*f1*A10,

f1^-1*A10*f1*A9,A7*A1*A10*A3^-1,A5*A2*A10*A4^-1,A8*A3*A10*A1^-1,

A6*A4*A10*A2^-1, A3*A5*A9*A7^-1, A1*A6*A9*A8^-1, A4*A7*A9*A5^-1,

A2*A8*A9*A6^-1, A1*A2, A3*A4, A5*A6, A7*A8, A1*A3, A2*A4, A3*A1,

45

A4*A2, A5*A7, A6*A8, A7*A5, A8*A6, A1*A4^-1, A2*A3^-1, A3*A2^-1,

A4*A1^-1, A5*A8^-1, A6*A7^-1, A7*A6^-1, A8*A5^-1, f1^2],

<fp group on the generators [A1, A2, A3, A4, A5, A6, A7, A8, A9,

A10, f1]>]

gap> B:=FinitePresentationOfAutParCommGrp([1,2],[]);

[[A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14,

f1], [A13^2, A14^2, A13^-1*A14^-1*A13*A14, A14^-1*A13^-1*A14*A13,

f1^-1*A13*f1*A14,f1^-1*A14*f1*A13,A9*A1*A14*A3^-1,A7*A2*A14*A4^-1,

A10*A3*A14*A1^-1,A8*A4*A14*A2^-1,A3*A7*A13*A9^-1,A1*A8*A13*A10^-1,

A4*A9*A13*A7^-1, A2*A10*A13*A8^-1, A1*A2, A3*A4, A5*A6, A7*A8,

A9*A10, A11*A12, A1*A3*A5^-1, A2*A4*A6^-1,A3*A1*A5^-1,A4*A2*A6^-1,

A7*A9*A11^-1, A8*A10*A12^-1, A9*A7*A11^-1, A10*A8*A12^-1,

A1*A4^-1*A5^-1, A2*A3^-1*A6^-1, A3*A2^-1*A5^-1,A4*A1^-1*A6^-1,

<identity ...>, <identity ...>, A7*A10^-1*A11^-1, A8*A9^-1*A12^-1,

A9*A8^-1*A11^-1, A10*A7^-1*A12^-1, <identity ...>, <identity ...>,

A1*A11*A1^-1*A11^-1*A5^-1, A2*A11*A2^-1*A11^-1*A6^-1,

A3*A12*A3^-1*A12^-1*A5^-1, A4*A12*A4^-1*A12^-1*A6^-1,

7*A5*A7^-1*A5^-1*A11^-1, A8*A5*A8^-1*A5^-1*A12^-1,

A9*A6*A9^-1*A6^-1*A11^-1, A10*A6*A10^-1*A6^-1*A12^-1, f1^2],

<fp group on the generators [A1, A2, A3, A4, A5, A6, A7, A8, A9,

A10, A11, A12, A13, A14, f1]>]

Remark 2.7.2. We use the standard GAP function AssignGeneratorVariables(G)

to makes our generators readable by GAP . If G is a group, whose generators are

represented by symbols this function assigns these generators to global variables

with the same names. The aim of this function is to make the generators work

interactively and more conveniently with GAP ; for more information see (37.2.3) of

the GAP Manuals.

For example from the output of FinitePresentationOfAutParCommGrp([1, 2],

[[1, 2]]) above we have:

gap> G:=B[3];

<fp group on the generators [A1, A2, A3, A4, A5, A6, A7, A8, A9,

A10, f1]>

46

gap> AssignGeneratorVariables(G);

#I Assigned the global variables [A1, A2, A3, A4, A5, A6,A7, A8,

A9, A10, f1]

2.7.19 TietzeTransformations Function

The aim of the function TietzeTransformations(G) is to simplify the presen-

tation of the finitely presented group G, i.e., to reduce the number of genera-

tors, the number of relators and the relator lengths. The input of the function

TietzeTransformations is a finite presentation of G. The operation returns a

group H isomorphic to G, so that the presentation of H has been simplified using

Tietze transformations. The algorithm carries out the following instructions:

TietzeTransformations(G)

1 hom← IsomorphismSimplifiedFpGroup(G)

2 H ← Image(hom)

3 R← RelatorsOfFpGroup(H)

4 return [H ,R]

For example, using the output of FinitePresentationOfAutParCommGrp([1, 2],

[[1, 2]]) in Section 2.7.18 we have that,

gap> G:=B[3];

<fp group on the generators [A1, A2, A3, A4, A5, A6, A7, A8, A9,

A10, f1]>

gap> D:=TietzeTransformations(G);

[<fp group on the generators [A1, A10, f1]>, [A10^2, f1^2,

A10*f1*A10*f1*A10*f1*A10*f1, A10*A1^-1*f1*A10*f1*A1^-1*A10*A1^-1]]

47

Chapter 3

Finite Presentation for the

Subgroup Conj(GΓ)

3.1 Introduction

The subgroup of Aut(GΓ), which we consider here, plays an important role in the

structure of Aut(GΓ): see for example [34], [35], [38], [57] and [61]. Recall

that the set of all basis conjugating automorphisms forms a subgroup Conj(GΓ)

generated by partial conjugations (see Chapter 2). A finite presentation for the the

subgroup Conj(GΓ) is given in [70].

Our aim in this chapter is to develop an algorithm using GAP system that

provides a finite presentation for the subgroup Conj(GΓ). In addition, we find

Tietze transformations to simplify the presentation of Conj(GΓ); using a GAP

function. In order to do this work we will give a description of the presentation of

the subgroup Conj(GΓ) according to Toinet’s work [70].

Note that amongst the partial conjugations we have the inner automorphisms;

so some of the generators of Conj(GΓ) are inner automorphisms.

3.2 Finite Presentation for Conj(GΓ)

In [70], Toinet computed a finite presentation for the subgroup Conj(GΓ) of

Aut(GΓ) generated by partial conjugations. In this section we will describe this

presentation following Toinet’s paper.

Let Ω be the set of Whitehead automorphisms. We set Ω1 to be the set of White-

48

head automorphisms of type (1), and Ω2 to be the set of Whitehead automorphisms

of type (2). We also denote by Ω` the set of long-range Whitehead automorphisms.

Note that, as we have mentioned in Chapter 2, Day in [24] proved that Aut(GΓ)

is generated by the Whitehead automorphisms, with the relations (R1) to (R10)

given in Definition 2.5.1.

In following we will apply the definition of peak reduced (see 2.6.1).

Theorem 3.2.1. [70] The subgroup Conj(GΓ) has a presentation 〈S|R〉 where S is

the set of partial conjugations cx,Y , for x ∈ L and Y a non-empty union of connected

components of Γ\st(x)), and R is the finite set of relations:

(C1) (cx,Y)−1 = cx−1,Y ,

(C2) cx,Y cx,Z = cx,Y ∪Z if Y ∩ Z = ∅,

(C3) cx,Y cy,Z = cy,Zcx,Y if x /∈ Z, y /∈ Y , x 6= y, y−1, and at least one of Y ∩ Z = ∅
or y ∈ `kL(x) holds,

(C4) γycx,Y γ
−1
y = cx,Y if y /∈ Y , x 6= y, y−1.

Proof. The proof is based on arguments developed by McCool in [56] and [57]

(similar arguments were used in [24]). Let S denote the set of partial conjugations

cx,Y where x ∈ L. LetR denote the set of relations given in the statement of Theorem

3.2.1. We shall construct a finite connected 2-complex K with fundamental group

Conj(GΓ) = 〈S | R〉.

We identify a partial conjugation with any of its representatives in Ω2. Note

that, for every (A, a) ∈ Ω2, (A, a) ∈ S if and only if (A− a)−1 = A− a.

Set V = {v1, . . . , vn}(n ≥ 1). Let W denote the n-tuple (v1, . . . , vn). The set

of vertices K(0) of K is the set of n-tuples α ·W , where α ranges over and set Ω1

of type (1) Whitehead automorphisms. For and α, β ∈ Ω1, the vertices α ·W and

βα ·W are joined by a Directed edge (α ·W,βα ·W ; β) labelled β. Note that, at this

stage, K is just the Cayley graph of Ω1. Next, for any α ∈ Ω1, and (A, a) ∈ S, we

add a loop (α ·W,α ·W ; (A, a)) labelled (A, a) at α ·W . This defines the 1-skeleton

K(1) of K.

We shall define the 2-cells of K. These 2-cells will derive from the relations

(R1)-(R10) of Definition 2.5.1. First, let K1 be the 2-complex obtained by attaching

49

2-cells corresponding to relation (R7) of Definition 2.5.1 to K(1). Note that, if C

is the 2-complex obtained from K1 by deleting the loops (α ·W,α ·W ; (A, a))(α ∈
Ω1, (A, a) ∈ S), then C is just the Cayley complex of Ω1, and therefore is simply

connected. We now explore the relations (R1)-(R5) and (R8)-(R10) of Definition

2.5.1 to determine which of these will give rise to relations on the elements of S.

Relation (R1) of Definition 2.5.1 will give rise to the following:

(A, a)−1 = (A− a+ a−1, a−1) (3.2.1)

for (A, a) ∈ S.

Relation (R2) of Definition 2.5.1 will give rise to

(A, a)(B, a) = (A ∪B, a) (3.2.2)

for (A, a), (B, a) ∈ S, with A ∩B = {a}.
Relation (R3) of Definition 2.5.1 will give rise to

(A, a)(B, b) = (B, b)(A, a), (3.2.3)

for (A, a), (B, b) ∈ S, such that a /∈ B, a−1 /∈ B, b /∈ A, b−1 /∈ A, and at least one

of (a) A ∩B = ∅ or (b) b ∈ `kL(a) holds.

From relation (R4) of Definition 2.5.1, no relations arise. Indeed, suppose that

(A, a), (B, b) are in S with a−1 /∈ B, b /∈ A, and b−1 ∈ A. Then b−1 = a (because

(A − a)−1 = A − a). But then a−1 = b ∈ B, leading to a contradiction with our

assumption on a.

From relation (R5) of Definition 2.5.1, no relations arise (by the same argument

as above).

From relation (R8) of Definition 2.5.1, we obtain a relation which is a direct

consequence of (3.2.1) and (3.2.2).

Relation (R9) of Definition 2.5.1 will give rise to the following:

(A, a)(L− `kL(b)− b−1, b)(A, a)−1 = (L− `kL(b)− b−1, b) (3.2.4)

for (A, a) ∈ S, and b ∈ L such that b /∈ A, and b−1 /∈ A.

From relation (R10) of Definition 2.5.1, no relations arise (by the same argument

as above).

We rewrite the relations (3.2.1)-(3.2.4) in the form

50

σεkk . . . σε11 = 1

where σ1, . . . , σk ∈ S and ε1, . . . , εk ∈ {−1, 1}. Let K2 be the 2-complex optioned

from K1 by attaching 2-cells corresponding to the relations (3.2.1)-(3.2.4). Note that

the boundary of each of these 2-cells has the from

(α ·W,α ·W ;σ1)ε1(α ·W,α ·W ;σ2)ε2 . . . (α ·W,α ·W ;σk)
εk ,

for α ∈ Ω1.

Finally, relation relation (R6) of Definition 2.5.1, will give rise to the following:

α(A, a)α−1 = (α(A), α(a)), (3.2.5)

for (A, a) ∈ S, and α ∈ Ω1. Then K is obtained from K2 by attaching 2-cells

corresponding to the relations (3.2.5). Observe that the boundary of each of these

2-cells has the form

(β·W,β·W ; (α(A), α(a)))−1(β·W,α−1β·W ;α)−1(α−1β·W,α−1β·W ; (A, a))(α−1β·
W,β ·W ;α), for β ∈ Ω1.

It remains to show that π1(K,W) = Conj(GΓ) = 〈S | R〉.
Let T be a maximal tree in the 1-skeleton K(1) of K. Note that T is in fact a

maximal tree in the 1-skeleton C(1) of C (i.e., the Cayley graph of Ω1). We compute

a presentation of π1(K,W) using T . For every vertex V in K, there exists a unique

reduced path pv from W to V in T . To each edge (V1, V2;α) of K, we associate the

element π1(K,W) represented by the loop pv1(V1, V2;α)p−1
V2

. We again denote this

by (V1, V2;α). Evidently these elements generate π1(K,W). Now, since C is simply

connected, we have

(α ·W,βα ·W ; β) = 1 (in π1(K,W)), (3.2.6)

for all α, β ∈ Ω1.

Let P be the set of combinatorial in the 1-skeleton K(1) of K. We define a map

ϕ̂ : P → Aut(GΓ) as follows. For an edge e = (V1, V2;α), we set ϕ̂(e) = α, and

for a path p = eεkk . . . e
ε1
1 , we set ϕ̂(p) = ϕ̂(ek)

εk . . . ϕ̂(e1)ε1 . Clearly, if p1 and p2

are loops at W such that p1 ∼ p2, then ϕ̂(p1) = ϕ̂(p2). Hence, ϕ̂ induces a map

ϕ : π1(K,W)→ Aut(GΓ). It is easily seen that ϕ is a homomorphism. Then we see

from (3.2.6) that ϕ maps π1(K,W) to Conj(GΓ). It follows immediately from the

51

construction of K that ϕ : π1(K,W) → Aut(GΓ) is surjective. Thus, it suffices to

show that ϕ is injective. Let p be a loop at W such that ϕ(p) = 1. We have to show

that p ∼ 1. Write p = eεkk . . . e
ε1
1 , where k ≥ 1 and εi ∈ {−1, 1} for all i ∈ {1, . . . , k}.

Using the 2-cells arising from (3.2.1) and the fact that Ω−1
1 = Ω1, we can restrict

our attention to the case where p = ek . . . e1. Set αi = ϕ(ei) for all i ∈ {1, . . . , k}.
Note that αi ∈ S ∪Ω1 ⊂ Ω` for all i ∈ {1, . . . , k}.

Let Z be a tuple containing each conjugacy class of length 2 ofGΓ , each appearing

once. We prove the following:

claim. We have p ∼ e′1 . . . e
′
1, such that, if we set α′i = ϕ(ei) for all i ∈ {1, . . . , l},

then (α′i ∈ Ω1 or (α′i ∈ Ω2 ∩ Inn(GΓ) for each i ∈ {1, . . . , l}.
First, we examine the case where αk . . . α1 is peak-reduced with respect to Z.

We claim that the sequence

| Z |, | α1 · Z |, | α2α1 · Z |, . . . , | αk−1 . . . α1 · Z |, | αk . . . α1 · Z |=| Z |

is a constant sequence. Suppose the contrary. By Lemma 2.6.4, | Z | is the least

element of the set {| α · Z | | α ∈ 〈Ω`〉}. Hence we can find i ∈ {1, . . . , k − 1} such

that we have

| αi−1 . . . α1 · Z |≤| αi . . . α1 · Z |,

| αi+1 . . . α1 · Z |≤| αi . . . α1 · Z |,

and at least one of these inequalities is strict, which contradicts the fact that the

product αk . . . α1 is peak-reduced. Therefore we have

| αi . . . α1 · Z |=| Z |,

for all indices i ∈ {1, . . . , k}. We argue by induction on i ∈ {1, . . . , k} to prove

that {αi . . . α1} ·Z is a tuple containing each conjugacy class of length 2 of GΓ , each

appearing once. The result holds for i = 0 by assumption. Suppose that i ≥ 1, and

that the result holds for i − 1. Observe that a type (1) Whitehead automorphism

does not change the length of a conjugacy class. Thus, we can assume that αi is a

type (2) Whitehead automorphism. Since | αiαi−1 . . . α1 · Z |=| αi−1 . . . α1 · Z |, αi
is trivial, or an inner automorphism by Lemma 2.6.4. Thus, the result holds for i.

In this case, p has already the desired from.

52

We now turn to prove the claim. We define

hp = max{| αi . . . α1 · Z || i ∈ {0, . . . , k}}

and

Np =| {i | i ∈ {0, . . . , k}and | αi . . . α1 · Z |= hp} | .

We argue by induction on hp. The base of induction is | Z |, i.e. the smallest

possible value for hp by Lemma 2.6.4. If hp =| Z |, then the product αk . . . α1 is

peak-reduced and we are done. Thus, we can assume that hp >| Z | and that the

result has been proved for all loop p′ with hp′ < hp. Let i ∈ {1, . . . , k} be such that

αi is a peak of height hp. An examination of the proof of Lemma 2.6.5 shows that

ei+1ei ∼ fj . . . f1 such that, if we set βk = ϕ(fk) for all k ∈ {1, . . . , j}, then

| βk . . . β1αi−1 . . . α1 · Z |<| αiαi−1 . . . α1 · Z | (3.2.7)

for all k ∈ {1, . . . , j − 1}. Therefore, we get

p ∼ ek . . . ei+2fj . . . f1ei−1 . . . e1 = p′,

and a new product αk . . . αi+2βj . . . β1αi−1 . . . α1. We argue by induction on Np.

If Np = 1, then (3.2.7) implies that hp′ < hp and Np′ < Np, and we can apply the

induction hypothesis on np. This proves the claim.

Hence, using the 2-cells arising from the relations (3.2.5), we obtain

p ∼ hS . . . h1gr . . . g1,

where, if we set

γi = ϕ(gi) for all i ∈ {1, . . . , r} and δj = ϕ(hj) for all j ∈ {1, . . . , s},

then δi ∈ Ω1 for all i ∈ {1, . . . , s} and γi ∈ Ω2 ∩ Inn(GΓ) for all j ∈ {1, . . . , r}.
Using relation (3.2.6), we obtain p ∼ gr . . . g1. Set Z = ∩v∈Vst(v). It follows from

Servatius’ Centralizer Theorem (see [69]) that the center Z(GΓ) of GΓ is the special

subgroup of GΓ generated by Z. Let Γ ′ be the full subgraph of Γ spanned by V \Z.

We have

53

GΓ ′ ' Inn(GΓ),

γi = ϕ(gi) for all i ∈ {1, . . . , r} and δj = ϕ(hj) for all j ∈ {1, . . . , S},

where the isomorphism is given by v 7→ wv (see, for example, [2, Lemma 5.3]).

Write

γi = (L− `kL(ci)− c−1
i , ci),

where ci ∈ (V \ Z)∪ (V \ Z)−1(i ∈ {1, . . . , r}). Since γr . . . γ1 = 1 (in Inn(GΓ)),

we have cr . . . c1 = 1 (in GΓ ′). Therefore cr . . . c1 is a product of conjugates of

defining relators of GΓ . Using the 2-cells corresponding to the relations (3.2.1) and

(3.2.3)(b), we deduce that p ∼ 1. We conclude that ϕ is injective, and thus

Conj(GΓ) = π1(K,W).

Now, using the 2-cells arising from the relations (3.2.5) (with α = β), we obtain

(α ·W,α ·W ; (α(A), α(a))) = (α ·W,W ;α−1)(W,W ; (A, a))(W,α ·W ;α),

and then, using (3.2.6)

(α ·W,α ·W ; (α(A), α(a))) = (W,W ; (A, a)), (3.2.8)

for all α ∈ Ω1, and (A, a) ∈ S. It then follows that Conj(GΓ) is generated

by the (W,W ; (A, a)), for (A, a) ∈ S. We identify (W,W ; (A, a)) with (A, a) for

all (A, a) ∈ S. Any relation in Conj(GΓ) = π1(K,W) will be a product of conju-

gates of boundary lables of 2-cells of K. Then, using relation (3.2.8) and identifying

(W,W ; (A, a)) with (A, a), we see that these relations (3.2.1)-(3.2.4) aboe are equiv-

alent to those of R. We have shown that Conj(GΓ) has the presentation 〈S | R〉.

Now we will give a small example to find a finite presentation of a subgroup

Conj(GΓ) of Aut(GΓ),

54

Example 3.2.0.1

Consider the graph Γ of Figure 3.1

x1 x2

x3 x4

Figure 3.1: A Graph Γ

Then V = {x1, x2, x3, x4} and E = {{x1, x2}, {x3, x4}}. Let Conj(GΓ) be a

subgroup of Aut(GΓ). Then,

(1) St(x1) = {x1, x2},

Lk{x1} = {x2},

Comps1 = {x−1
4 , x−1

3 , x3, x4} = the connected components of Γ\St(x1).

(2) St(x2) = {x2, x1}

Lk(x2) = {x1},

Comps2 = {x−1
4 , x−1

3 , x3, x4} = the connected components of Γ\St(x2).

(3) St(x3) = {x3, x4},

Lk(x3) = {x4},

Comps3 = {x−1
2 , x−1

1 , x1, x2} = the connected components of Γ\St(x3).

(4) St(x4) = {x4, x3},

Lk(x4) = {x3}

Comps4 = {x−1
2 , x−1

1 , x1, x2} = the connected components of Γ\St(x4).

• We find Y which is a non-empty union of connected components of Γ\st(x),

where x ∈ L:

Y = {Y1 = {x−1
4 , x−1

3 , x3, x4}, Y2 = {x−1
2 , x−1

1 , x1, x2}}

• Now, we find cx,Y , the partial conjugations that form the first part of the set

of the generators of Conj(GΓ):

Cx,Y = {cx−1
2 ,Y1

= {{x−1
4 , x−1

3 , x3, x4, x
−1
2 }, x−1

2 },

55

cx−1
1 ,Y1

= {{x−1
4 , x−1

3 , x3, x4, x
−1
1 }, x−1

1 },

cx1,Y1 = {{x−1
4 , x−1

3 , x3, x4, x1}, x1},

cx2,Y1 = {{x−1
4 , x−1

3 , x3, x4, x2}, x2},

cx−1
4 ,Y2

= {{x−1
2 , x−1

1 , x1, x2, x
−1
4 }, x−1

4 },

cx−1
3 ,Y2

= {{x−1
2 , x−1

1 , x1, x2, x
−1
3 }, x−1

3 }

cx3,Y2 = {{x−1
2 , x−1

1 , x1, x2, x3}, x3},

cx4,Y2 = {{x−1
2 , x−1

1 , x1, x2, x4}, x4}}.

• We find w, the inner automorphisms that form the second part of the set

of the generators of Conj(GΓ) (since every inner automorphism is a partial

conjugation):

W = {wx−1
2

= {{x−1
4 , x−1

3 , x−1
2 , x3, x4}, x−1

2 }, wx−1
1

= {{x−1
4 , x−1

3 , x−1
1 , x3, x4}, x−1

1 },

wx1 = {{x−1
4 , x−1

3 , x1, x3, x4}, x1}, wx2 = {{x−1
4 , x−1

3 , x2, x3, x4}, x2},

wx−1
4

= {{x−1
4 , x−1

2 , x−1
1 x1, x2}, x−1

4 }, wx−1
3

= {{x−1
3 , x−1

2 , x−1
1 x1, x2}, x−1

3 },

wx3 = {{x−1
2 , x−1

1 , x1, x2, x3}, x3}, wx4 = {{x−1
2 , x−1

1 , x1, x2, x4}, x4}}.

• We find S, the set of the generators of Conj(GΓ), which is equal to the union

of Cx,Y and W :

S = {cx−1
2 ,Y1

= {{x−1
4 , x−1

3 , x3, x4, x
−1
2 }, x

−1
2 }, cx−1

1 ,Y1
= {{x−1

4 , x−1
3 , x3, x4, x

−1
1 }, x

−1
1 },

cx1,Y1 = {{x−1
4 , x−1

3 , x3, x4, x1}, x1}, cx2,Y1 = {{x−1
4 , x−1

3 , x3, x4, x2}, x2},

cx−1
4 ,Y2

= {{x−1
2 , x−1

1 , x1, x2, x
−1
4 }, x

−1
4 }, cx−1

3 ,Y2
= {{x−1

2 , x−1
1 , x1, x2, x

−1
3 }, x

−1
3 }

cx3,Y2 = {{x−1
2 , x−1

1 , x1, x2, x3}, x3}, cx4,Y2 = {{x−1
2 , x−1

1 , x1, x2, x4}, x4}}.

• We find R, the set of relations according to the relations that are defined in

Theorem 4.2.3:

R = {cx−1
2 ,Y1

∗ cx2,Y1 , cx−1
1 ,Y1

∗ cx1,Y1 , cx1,Y1 ∗ cx−1
1 ,Y1

, cx2,Y1 ∗ cx−1
2 ,Y1

, cx−1
4 ,Y2

∗
cx4,Y2 , cx−1

3 ,Y2
∗ cx3,Y2 , cx3,Y2 ∗ cx−1

3 ,Y2
, cx4,Y2 ∗ cx−1

4 ,Y2
, cx−1

2 ,Y1
∗ cx−1

1 ,Y1
∗ (cx−1

2 ,Y1
)−1 ∗

(cx−1
1 ,Y1

)−1, cx−1
2 ,Y1

∗ cx1,Y1 ∗ (cx−1
2 ,Y1

)−1 ∗ (c1,Y1)
−1, cx−1

1 ,Y1
∗ cx2,Y1 ∗ (cx−1

1 ,Y1
)−1 ∗

(cx2,Y1)
−1, cx1,Y1 ∗ cx2,Y1 ∗ (cx1,Y1)

−1 ∗ (cx2,Y1)
−1, cx−1

4 ,Y2
∗ cx−1

3 ,Y2
∗ (cx−1

4 ,Y2
)−1 ∗

(cx−1
3 ,Y2

)−1, cx−1
4 ,Y2

∗ cx3,Y2 ∗ (cx−1
4 ,Y2

)−1 ∗ (cx3,Y2)
−1, cx−1

3 ,Y2
∗ cx4,Y2 ∗ (cx−1

3 ,Y2
)−1 ∗

(cx4,Y2)
−1, cx3,Y2 ∗ cx4,Y2 ∗ (cx3,Y2)

−1 ∗ (cx4,Y2)
−1, cx−1

1 ,Y1
∗ cx−1

2 ,Y1
∗ (cx−1

1 ,Y1
)−1 ∗

56

(cx−1
2 ,Y1

)−1, cx1,Y1 ∗ cx−1
2 ,Y1

∗ (cx1,Y1)
−1 ∗ (cx−1

2 ,Y1
)−1, cx−1

2 ,Y1
∗ cx−1

1 ,Y1
∗ (cx−1

2 ,Y1
)−1 ∗

(cx−1
1 ,Y1

)−1, cx2,Y1 ∗ cx−1
1 ,Y1

∗ (cx2,Y1)
−1 ∗ (cx−1

1 ,Y1
)−1, cx−1

2 ,Y1
∗ cx1,Y1 ∗ (cx−1

2 ,Y1
)−1 ∗

(cx1,Y1)
−1, cx2,Y1 ∗ cx1,Y1 ∗ (cx2,Y1)

−1 ∗ (cx1,Y1)
−1, cx−1

1 ,Y1
∗ cx2,Y1 ∗ (cx−1

1 ,Y1
)−1 ∗

(cx2,Y1)
−1, cx1,Y1 ∗ cx2,Y1 ∗ (cx1,Y1)

−1 ∗ (cx2,Y1)
−1, cx−1

3 ,Y2
∗ cx−1

4 ,Y2
∗ (cx−1

3 ,Y2
)−1 ∗

(cx−1
4 ,Y2

)−1, cx3,Y2 ∗ cx−1
4 ,Y2

∗ (cx3,Y2)
−1 ∗ (cx−1

4 ,Y2
)−1, cx−1

4 ,Y2
∗ cx−1

3 ,Y2
∗ (cx−1

4 ,Y2
)−1 ∗

(cx−1
3 ,Y2

)−1, cx4,Y2 ∗ cx−1
3 ,Y2

∗ (cx4,Y2)
−1 ∗ (cx−1

3 ,Y2
)−1, cx−1

4 ,Y2
∗ cx3,Y2 ∗ (cx−1

4 ,Y2
)−1 ∗

(cx3,Y2)
−1, cx4,Y2∗cx3,Y2∗(cx4,Y2)−1∗(cx3,Y2)−1, cx−1

3 ,Y2
∗cx4,Y2∗(cx−1

3 ,Y2
)−1∗(cx4,Y2)−1,

cx3,Y2 ∗ cx4,Y2 ∗ (cx3,Y2)
−1 ∗ (cx4,Y2)

−1}.

• Hence, the finite presentation for the group of Conj(GΓ) is

Conj(GΓ) = 〈S|R〉

3.3 GAP Presentation for Conj(GΓ)

This section describes the functions available from the AutParCommGrp pack-

age which we have written for computing a finite presentation for the subgroup

Conj(GΓ) of Aut(GΓ) with commuting graph Γ generated by partial conjugations.

To write an algorithm to produce this presentation we first construct the set S of

generators cx,Y (Laurence’s generators), and then find the set R of relations defined

in Theorem 3.2.1. The input of the main function FinitePresentationOfSubgroup-

Conj that provides finite presentation for the subgroup Conj(GΓ) is a simple graph

Γ = (V,E). A graph with vertex set V of size n always has vertices {1, . . . , n} and E

is a list of pairs of elements of V . For example if Γ is a simple graph with vertex set

V = {x1, x2, x3} and edge set E = {[x1, x2], [x1, x3], [x2, x3]} (where [x, y] denotes

an edge joining x to y) then Γ will be represented as ([1, 2, 3], [[1, 2], [1, 3], [2, 3]]).

The output of FinitePresentationOfSubgroupConj consists of two sets gens and

rels, where gens is the list of the generators of the automorphism cx,Y defined above

and rels is the list of the relators.

In addition, to the functions IsSimpleGraph, DeleteverticesFromGraph and

ConnectedComponentsOfGraph which we have described in Sections 2.7.1, 2.7.3 and

2.7.4 respectively the function FinitePresentationOfSubgroupConj runs the fol-

lowing functions:

57

3.3.1 StarLinkOfVertex Function

The input of the function StarLinkOfVertex(V,E) is a simple graph Γ = (V,E),

where V and E represents the list of vertices and the list of edges respectively. It

computes the star St(v) and the link Lk(v) and concatenates them in two separate

lists St and Lk respectively. The algorithm carries out the following instructions:

StarLinkOfVertex(V,E)

1 sV ← Size(V)

2 M ← Size(E)

3 St← NullMat(sV, 1, 0)

4 for v in V (Γ)

5 do Add v to St[v]

6 for e in E(Γ)

7 do if e is adjacent v

8 then Add “end point” of e to St[v]

9 for v in V (Γ)

10 do Y 2← Set(St[v])

11 Y 3← RemoveSet(Y 2, v)

12 Add Y 3 to new list Lk

13 return [St ,Lk]

3.3.2 CombinationsOfConnectedComponents Function

The input of the function CombinationsOfConnectedComponents(Comps) is the

list of connected components Comps of the specified graph B. The output is the set

of all combinations Y 4 of the multiset Comps (a list of objects which may contain

the same object several times) (see GAP manual (16.2.1). The algorithm carries

out the following instructions:

CombinationsOfConnectedComponents(Comps)

1 C1← Combinations(Comps)

2 sC1← Size(C1)

3 for q in {1, . . . , sC1}
4 do L2← Concatenation(C1[q])

5 U2← SSortedList(L2)

6 Add L2 to new list Y 2 and U2 to new list Y 3

58

7 sY 3← Size(Y 3)

8 for i in {1, . . . , sY 3}
9 do if Y 3[i] 6= ∅

10 Add Y 3[i] to new list Y 4

11 sY 4← Size(Y 4)

12 return [Y3 ,Y4 , sY4]

3.3.3 GeneratorsOfSubgroupConj Function

The input of the function GeneratorsOfSubgroupConj(NE,NV, V) is the list NE

of all lists of edges of Γ\St(v), the list NV of all lists of vertices of Γ\St(v), and and

the list of vertices V . It computes the list gens1 which form the type (1) generators

of Conj(GΓ). The algorithm carries out the following instructions:

GeneratorsOfSubgroupConj(NE,NV, V)

1 sNE ← Size(NE)

2 invV ← ComputeTheInveres(V)

3 L← Concatenation(V, invV)

4 for h in {1, . . . , sNE} � h ∈ V
5 do G2← NE(h)

6 G1← NV(h)

7 R3← ConnectedComponentsOfGraph(G1, G2)

8 Comps← R3(1) � Comps is the list of all components

9 sComps← R3(2)

10 R4← CombinationsOfConnectedComponents(Comps)

11 Y 3← R4(1)

12 Y 4← R4(2)

13 sY 4← R4(3)

14 for i in {1, . . . , sY 4}
15 do diff2← Difference(L, Y 4[i])

16 Add diff2 to new list xs1

17 for i in {1, . . . , sY 4}
18 do sz ← Size(xs1[i])

19 for j in {1, . . . , sz}
20 do KK ← Concatenation(Y 4[i], [xs1[i][j]])

21 HH ← [KK, xs1[i][j]]

59

22 Add HH to new list Y 5

23 sY 5← Size(Y 5)

24 Add Y 5 to new list Y 6

25 Add xs1 to new list xs2

26 Add Bs to new list Y 3

27 sY 6← Size(Y 6)

28 Y 7← Concatenation(Y 6)

29 sY 7← Size(Y 7)

30 xs3← Concatenation(xs2)

31 sxs3← Size(xs3)

32 for i in {1, . . . , sxs3}
33 do Add the non-empty element of xs3 to new list xs

34 sxs← Size(xs)

35 Uxs← Union(xs)

36 Uxs← Size(Uxs)

37 for i in {1, . . . , sY 7}
38 do Add the non-empty element of Y 7 to new list CxY 1

39 sCxY 1← Size(CxY 1)

40 for j in {1, . . . , sCxY 1}
41 do Compute CxY a list of the definitions of the partial conjugations

42 sCxY ← Size(CxY)

43 Y 8← Concatenation(Bs)

44 sBs← Size(Bs)

45 sY 8← Size(Y 8)

46 for i in {1, . . . , sY 8}
47 do Add the non-empty element of Y 8 to new list Y

48 sY ← Size(Y)

49 for k in {1, . . . , sCxY }
50 do Construct a list f such that f(n) = CxY (n), n ∈ N
51 sf ← Size(f)

52 for j in {1, . . . , sf}
53 do Add fi the name of the ith element of f to new list gens1

54 sgens1← Size(gens1)

55 return [CxY , sCxY ,Y , sY , f , sf , gens1 , sgens1]

60

Remark 3.3.1. The relators on the generators of Conj(GΓ) are represented using

sequences of the form R = [p, ε1n1, . . . , εknk], where p,εi,ni are integers, εi = ±1,

0 ≤ p ≤ 1 and 1 ≤ ni. Each sequence R determines a word WR, in the generators S,

as follows, andR is called the index ofWR. If p = 0 then the sequenceR corresponds

to a word WR = cv,Y ∗ cv−1,Y of length 2. For example relators of type (C1) have

form cv,Y ∗ cv−1,Y = 1 and have indices of form [0, idx1, idx2] where idx1 =cv,Y and

idx2 =cv−1,Y . If p = 1 then R corresponds to a word WR = wu ∗ cv,Y ∗w−1
u ∗ cv−1,Y of

length 4. For example relators of type (C4) have form wu ∗ cv,Y ∗w−1
u ∗ cv−1,Y = 1 if

u /∈ Y, v 6= u, u−1 and have indices of form [1, idx1, idx2, idx3, idx4] where idx1 =wu,

idx2 =cv,Y , idx3 =w−1
u , and idx4 =cv−1,Y . Sequences with p = 1 occur only in

Section 3.3.7.

3.3.4 APCGRelationRConj1 Function

The inputs of the function APCGRelationRConj1(CxY, Y, f) are CxY the list of the

definitions of partial conjugations of Conj(GΓ) defined in Section 3.3.3, Y the list of

the non-empty union of connected components of Γ\St(v) defined in Section 3.3.3,

f the list of the names of the definitions of partial conjugations defined in Section

3.3.3. It computes the list of indices [0, idx1, idx2] of relations of type (C1) and

adds each of them to the list R2a. In addition it calculates the size of the list R2a.

It returns [R2a, sR2a].

3.3.5 APCGRelationRConj2 Function

The inputs of the function APCGRelationRConj2(CxY, Y, Lk, f, R2a) are CxY the

list of the definitions of partial conjugations of Conj(GΓ) defined in Section 3.3.3,

Y the list of the non-empty union of connected components of Γ\St(v) defined

in Section 3.3.3, the list of links Lk, f the list of the names of the definitions of

partial conjugations defined in Section 3.3.3 and the list R2a computed in Section

3.3.4. It computes the list of indices [0, idx1, idx2, idx3] of relations of type (C2)

and adds each of them to the list R2a (we replace R2a by [] if we need just the

indices [0, idx1, idx2, idx3] of relations of type (C2). In addition it calculates the

size of the list R2a. It returns [R2a, sR2a].

61

3.3.6 APCGRelationRConj3 Function

The inputs of the function APCGRelationRConj3(CxY, Y, Lk, f, R2a) are CxY the

list of the definitions of partial conjugations of Conj(GΓ) defined in Section 3.3.3,

Y the list of the non-empty union of connected components of Γ\St(v) defined in

Section 3.3.3, the list of links Lk, f the list of the names of the definitions of partial

conjugations defined in Section 3.3.3 and the list R2a computed in Section 3.3.5. It

computes the list of indices [0, idx1, idx2, idx3, idx4] of relations of type (C3), and

adds each of them to the list R2a (we can replace R2a by [] if we need just the

indices [0, idx1, idx2, idx3] of relations of type (C3). In addition it calculates the

size of the list R2a. It returns [R2a, sR2a].

3.3.7 APCGRelationRConj4 Function

The inputs of the function APCGRelationRConj4(CxY, V, Lk, gens1, Y, f, R2a) are

CxY the list of the definitions of elementary partial conjugations of Conj(GΓ) de-

fined in Section 3.3.3, the list of vertices V , the list of links Lk, the list gens1 from

Section 3.3.3, Y the list of the non-empty union of connected components of Γ\St(v)

defined in Section 3.3.3, f the list of the names of the definitions of partial conjuga-

tions defined in Section 3.3.3 and the list R2a computed in Section 3.3.6. Firstly, it

computes the list of inner automorphisms W , then gens4 the list of the generators

of Conj(GΓ). This is the concatenation of the lists gens1 and W but; without

repeating generators that appear in gens1. Secondly, it computes the list of indices

[1, idx1, idx2, idx3, idx4] of relations of type (C4), and adds each of them to the list

R2a (we can replace R2a by [] if we need just the indices [1, idx1, idx2, idx3, idx4]

of relations of type (C4). It returns [W, gens4, R2a, sW, sgens4, sR2a] where sW ,

sgens4 and sR2a are the sizes of W , gens4 and R2a respectively.

3.3.8 APCGConjLastReturn Function

The inputs of the function APCGConjLastReturn(gens4, R2a, sR2a) are the list of

generators gens4 of the subgroup Conj(GΓ), the list of the indices of the relators

R2a and its size sR2a. It forms the list of relations rels from the list R2a. For each

element R of R2a the relator WR is added to a new list rels. It computes the free

group F on gens4 (defined in Section 3.3.7). Also it computes a finite presentation of

the groups GGG = F/rels. Finally, it returns the final return [gens, rels,GGG] of

62

the functions FinitePresentationOfSubgroupConj below. The algorithm carries

out the following instructions:

APCGConjLastReturn(gens4, R2a, sR2a)

1 F ← FreeGroup(gens4)

2 gens← GeneratorsOfGroup(F)

3 sgens← Size(gens)

4 for i in {1, . . . , sR2a}
5 do Form rels the list of relators of the subgroup from Rels

6 srels← Size(rels)

7 GGG← F/rels

8 return [gens , rels ,GGG]

3.3.9 FinitePresentationOfSubgroupConj Function

The function FinitePresentationOfSubgroupConj(V,E) provides finite presenta-

tion for the subgroup Conj(GΓ). The input of this function is a simple graph

Γ = (V,E). It returns [gens, rels,GGG]. The algorithm carries out the following

instructions:

FinitePresentationOfSubgroupConj(V,E)

1 if Γ is simple graph

2 then Call The Function StarLinkOfVertex

3 Call The The Function DeleteVerticesFromGraph

4 Call The Function GeneratorsOfSubgroupConj

5 Call The Function APCGRelationRConj1

6 Call The Function APCGRelationRConj2

7 Call The Function APCGRelationRConj3

8 Call The Function APCGRelationRConj4

9 Call The Function APCGConjLastReturn

10 else return “The graph must be a simple graph”

11 return [gens , rels ,GGG]

Where,

(i) gens is a list of free generators of the subgroup Conj(GΓ) of the automorphism

group Aut(GΓ) of GΓ .

63

(ii) rels is a list of relations in the generators of the free group F . Note that

relations are entered as relators, i.e., as words in the generators of the free

group.

(iiii) GGG := F/rels is a finitely presented of the subgroup Conj(GΓ) of the auto-

morphism group Aut(GΓ) of GΓ .

For example:

gap> A:=FinitePresentationOfSubgroupConj([1,2,3,4],[[1,2],[3,4]]);

[[f1, f2, f3, f4, f5, f6, f7, f8], [f1*f4, f2*f3, f3*f2, f4*f1,

f5*f8,f6*f7, f7*f6, f8*f5, f1*f2*f4*f3,f1*f3*f4*f2, f2*f4*f3*f1,

f3*f4*f2*f1, f5*f6*f8*f7, f5*f7*f8*f6, f6*f8*f7*f5, f7*f8*f6*f5,

f2*f1*f3*f4, f3*f1*f2*f4, f1*f2*f4*f3, f4*f2*f1*f3, f1*f3*f4*f2,

f4*f3*f1*f2, f2*f4*f3*f1, f3*f4*f2*f1, f6*f5*f7*f8, f7*f5*f6*f8,

f5*f6*f8*f7, f8*f6*f5*f7, f5*f7*f8*f6, f8*f7*f5*f6, f6*f8*f7*f5,

f7*f8*f6*f5], <fp group on the generators [f1, f2, f3, f4, f5,

f6, f7, f8]>]

Remark 3.3.2. We can simplify the presentation of Conj(GΓ) above by applying

the function TietzeTransformations(G) which is described in Section 2.7.19 as

follows:

gap> G:=A[3];

<fp group on the generators [f1, f2, f3, f4, f5, f6, f7, f8]>

gap> TietzeTransformations(G);

[<fp group of size infinity on the generators [f1, f2, f5, f6]>,

[f1*f2*f1^-1*f2^-1, f5*f6*f5^-1*f6^-1]]

64

Chapter 4

Finite Presentation for the

Subgroup ConjV

4.1 Introduction and Background for ConjV

Let Γ be a finite graph and let G = GΓ be the corresponding partially commutative

group. Recall that a basis-conjugating automorphism is one which maps each

canonical generator x to xgx , for some gx ∈ G. A presentation for the subgroup of

basis-conjugating automorphisms Conj(GΓ) is constructed in [70] as we saw that

in Chapter 3. Further subgroups of Aut(GΓ) are discussed in [35], using the notion

of admissible subset of a graph, defined as follows. Let V = V (Γ) and let x ∈ V .

Recall that the star of x is st(x) = {y ∈ V : [y, x] = 1}. If Y ⊂ V then the star

of Y is Y ⊥ = ∩x∈Y st(x). The closure of Y is cl(Y) = ∩z∈Y ⊥st(z). For x ∈ V , the

link of x is `k(x) = st(x)\{x}. The admissible set of Y is a(Y) = ∩y∈Y (st(y))⊥

and a(x) = ∩y∈`k(x)st(y).

An element φ ∈ Conj(G) is said to be a Vertex Conjugating automorphism

if, for every element x ∈ V there exists fx ∈ G such that φ(y) = yfx , for all y ∈ [x]

the equivalence class of the vertex x under the domination equivalence relation. The

subgroup of all vertex conjugating automorphism is denoted ConjV .

Our aim in this chapter is to find a finite presentation for the subgroup ConjV

of Aut(GΓ) generated by partial conjugations. Moreover, we develop an algorithm

using GAP system that provides a finite presentation for the subgroup ConjV of

Aut(GΓ) with commutative graph Γ . In addition, to find the Tietze transformations

of a copy of the presentation of the given finitely presented subgroup ConjV by using

65

a GAP function.

The work in this chapter is motivated by the work of Duncan and Remeslennikov

in [35], and we have used terminology and notation of that chapter wherever possi-

ble. Note that in some places there are differences between that notation and that of

other authors we have followed; in particular [35] has used the terms “conjugation”

or “elementary conjugation” to mean “partial conjugation”, we may occasionally

use those terms too.

Lemma 4.1.1. [35] For all x ∈ V ,

1. the set a(x) = {y ∈ V : `k(x) ⊆ st(y)} and

2. y ∈ a(x) if and only if cl(y) ⊆ a(x), for all y ∈ Y .

Proof. (1) y ∈ a(x) if and only if [y, v] = 1, for all v ∈ `k(x), if and only if

`k(x) ⊆ st(y).

(2) For all y ∈ V we have y ∈ cl(y), so the “if” clause follows. On the other hand

if y ∈ a(x) then, from (i), `k(x) ⊆ st(y); so (st(y))⊥ ⊆ (`k(x))⊥, as required.

Example 4.1.0.1

In the graph Γ of Figure 4.1

x1

x2

x3

x4

x5

x6

x7

x8

x9

Figure 4.1: A Graph Γ

• a(x1) = {x2, x3, x4, x5, x7, x8, x9}⊥ = {x1} = cl(x1);

66

• st(x4) = st(x7) = {x1, x3, x4, x5, x7, x8} and a(x4) = a(x7) = {x1, x4, x7} =

cl(x4) = cl(x7);

• cl(x2) = {x1, x2, x3, x8}⊥ = {x1, x2}, cl(x9) = {x1, x3, x8, x9}⊥ = {x1, x9},

`k(x9) = `k(x2) and a(x9) = a(x2) = {x1, x3, x8}⊥ = {x1, x2, x4, x7, x9} =

cl(x2) ∪ cl(x4) ∪ cl(x9);

• cl(x3) = {x1, x3}, cl(x8) = {x1, x8}, `k(x3) = `k(x8) and a(x3) = a(x8) =

{x1, x3, x8} = cl(x3) ∪ cl(x8);

• a(x5) = {x1, x4, x6, x7}⊥ = {x5} = cl(x5) and

• cl(x6) = {x5, x6}⊥ = {x5, x6} and a(x6) = {x5}⊥ = {x1, x4, x5, x6, x7} =

cl(x4) ∪ cl(x6).

For sets U,X we write U < X to indicate that U ⊆ X and U 6= X. A subset Y

of V is called a simplex if the full subgraph of Γ with vertices Y is isomorphic to

a complete graph.

Lemma 4.1.2. [35] For x 6= z ∈ X and subsets U and X of V the following hold.

(i) If U ⊆ X then a(X) ⊆ a(U).

(ii) a(U) ∩ a(X) = a(U ∪X).

(iii) cl(x) = a(x) ∩ st(x) so a(x) = cl(x) if and only if a(x) ⊆ st(x).

(iv) st(x) ⊆ a(x) if and only if st(x) generates a complete subgraph.

(v) If `k(x) ⊆ `k(z) then a(z) ⊆ a(x).

(vi) If st(x) ⊆ st(z) then a(z) ⊆ a(x).

(vii) a(z) ⊆ a(x) if and only if `k(x) ⊂ st(z).

(viii) a(x) = a(z) if and only if either st(x) = st(z) or `k(x) = `k(z).

(ix) If z ∈ a(x) then a(z) ⊆ a(x).

(x) a(U) = ∪y∈a(U)a(y).

(xi) If cl(x) = a(x) then cl(y) = a(y), for all y ∈ a(x).

67

(xii) If [x, z] = 1 then [G(a(x)), G(a(z))] = 1.

Proof. Statements (i) to (v) follow directly from the definitions and the fact that

if S ⊆ T the T⊥ ⊆ S⊥, for all subsets S, T of X. For (vi) note that in this case

z ∈ st(x), so as x 6= z, a(x) = (`k(x))⊥ = ((st(x)\{x, z})∪{z})⊥ = (st(x)\{x, z})⊥∩
st(z) ⊇ (st(z)\{x, z})⊥ ∩ st(x) = a(z).

The right to left implication of (vii) is a consequence of (v) and (vi), and the

fact that if `k(x) ⊆ st(z) then st(x) ⊆ st(z) or `k(x) ⊆ `k(z). To see the opposite

implication: if a(z) ⊆ a(x) then, as z ∈ a(z), we have z ∈ a(x), so `k(x) ⊆ st(z),

from Lemma 4.1.1.

To see (viii) suppose first that a(x) = a(z). Then, from (vii), we have `k(x) ⊆
st(z) and `k(z) ⊆ st(x). If x ∈ st(z) then z ∈ st(x), and in this case st(x) = st(z).

Otherwise x /∈ st(z) and z /∈ st(x) in which case `k(x) = `k(z). Conversely, if either

st(x) = st(z) or `k(x) = `k(z) then it follows, from (v) and (vi), that a(x) = a(z).

Statement (ix) follows immediately from (vii) and Lemma 4.1.1. Statement (x)

follows from (ix) as if y ∈ a(U) then a(y) ⊆ a(U).

To see statement (xi) observe that cl(x) is a simplex so if cl(x) = a(x) and

y ∈ a(x) then a(y) ⊆ a(x) implies that a(y) is a simplex. Therefore a(y) ⊆ st(y)

and the result follows from (iii).

For (xii) suppose that u ∈ a(x) and v ∈ a(z). Since z ∈ `k(x) we have u ∈ st(z)

and similarly v ∈ st(x). Since [u, y] = 1 for all y ∈ st(x), except possibly x, it follows

that u commutes with v, unless v = x. However if v = x then, since v ∈ (`k(z))⊥, v

commutes with all elements of st(z), including u.

Remark 4.1.3. Let ∼st be the relation on V given by x ∼st y if and only if st(x) =

st(y) and let ∼`k be the relation given by x ∼`k y if and only if `k(x) = `k(y).

These are equivalence relation and the equivalence classes of x under ∼st and ∼`k
are denoted by [x]st and [x]`k, respectively. Note that if | [x]st |> 1 then [x]`k = {x}
and the same is true on interchanging st and `k. Therefore the relation ∼, given

by x ∼ y if and only if x ∼st y or x ∼`k y, is an equivalence relation. Denote the

equivalence class of x under ∼ by [x]. Then x ∼ y if and only if x ∼st y or x ∼`k y,

and [x] = [x]st∪ [x]`k. It follows that x ∼ y if and only if st(x)\{x, y} = st(y)\{x, y}.

Example 4.1.0.2

In the graph Γ of Figure 4.2:

st(x) = {x, b, e, y, d, l} and st(y) = {y, b, e, x, d, l}.
So, st(x) = st(y) and st(x)\{x, y} = st(y)\{x, y}. Hence, x ∼ y.

68

x y

e
b

a c

d
l

k m

Figure 4.2: Graph of Γ

Definition 4.1.4. [35] Let x ∈ V and let C be a connected component of the full

subgraph Γ\st(x)

Then the automorphism βC,x given by

yβC,x =

yx, if y ∈ C

y, otherwise

is called an aggregate conjugating automorphism. The subgroup of Conj(G)

generated by all aggregate automorphisms is denoted ConjA(G).

Definition 4.1.5. [35] Let K = K(Γ) denote the set of admissible subsets of X

and define

St(K) = {φ ∈ Aut(G) | φ(G(Y)) = G(Y), for all Y ∈ K}.

Stconj(K) = {φ ∈ Aut(G) | (G(Y))φ = G(Y)fY , for some fY ∈ G, for all Y ∈ K}.

Definition 4.1.6. [35] Let Aut(G) be the automorphism group of the partially

commutative group GΓ with commutation graph Γ . An element φ ∈ Aut(G) is

(i) a graph automorphism if the restriction φ|X of φ to X is an element of Aut(Γ);

and

(ii) a compressed graph automorphism if φ|X is an element of Autcomp(Γ).

(iii) Denote by AutΓ (G) and AutΓcomp(G) the subgroups of Aut(GΓ) consisting of

graph automorphisms and compressed graph automorphisms, respectively.

69

(iv) For v ∈ X, denote by S[v](G) the subgroup of AutΓ (G) consisting of elements

φ such that φ|X ∈ S[v].

(v) Denote by AutΓsymm(Gj,∗) the subgroup of automorphisms φ of Aut(GΓ) such

that φ|X is an element of Autsymm(Γj,∗); and

(vi) by AutΓcomm(Gj,k) the subgroup of automorphisms φ such that φ|X is an element

of Autcomm(Γj,k).

Definition 4.1.7. [35] An element φ ∈ Conj(G) is said to be a normal conjugating

automorphism if, for ever element x ∈ V , there exists fx ∈ G such that φ(y) = yfx ,

for all y ∈ a(x). The subgroup of all normal conjugating automorphisms is denoted

ConjN(G).

Definition 4.1.8. [35] An elementary conjugating automorphism αC,u, where

u = x±1, for some x ∈ V is called an elementary singular conjugating au-

tomorphism if C = {y}, for some y ∈ V , and the set of all such elementary conju-

gating automorphisms is denoted LInnS = LInnS(G). The subgroup of Conj(G)

generated by LInnS(G) is called singular and denoted ConjS(G).

Definition 4.1.9. Let Trst = {τV ε,yδ ∈ Tr | x ∈ st(y), ε, δ = ±1} and Tr`k =

{τV ε,yδ ∈ Tr | x /∈ st(y), ε, δ = ±1}.

Definition 4.1.10. • If x and y are vertices of V such that st(x)∩st(y) = `k(y)

then we say that x dominates y.

• The set of all vertices dominated by x is denoted Dom(x) = {u ∈ V | x
dominates u }.

• The set of all dominated vertices is denoted Dom(Γ) = ∪x∈VDom(x).

• For fixed y ∈ V the set of all x such that y ∈ Dom(x) and [y] 6= [x] is the

outer admissible set of y, denoted out(y).

From the definition and Lemma 4.1.2 (vii) it follows that x dominates y if and

only if [x, y] 6= 1 and a(x) ⊆ a(y). Thus out(y) = {x ∈ a(y) : x /∈ [y] ∪ st(y)}.

If αC,x ∈ LInnS(G) then C = {y} is a connected component of Γst(x) so

`k(y) ⊆ st(x) and y /∈ st(x). Therefore x dominates y and τy,x ∈ Tr`k and

αC,x = τy,xτy−1,x. Hence ConjS is the subgroup of Aut(GΓ) generated by the

set {τy,xτy−1 , x | x dominates y} = LInnS.

70

Definition 4.1.11. [35] Let x, u ∈ V such that x dominates u and let [u]\{x} =

{v1, . . . , vn}. The conjugating automorphism

α[u],x =
n∏
i=1

α{vi},x

is called a basic collected conjugating automorphism and the set of all basic

collected conjugating automorphisms is denoted LInnC = LInnC(G). The subgroup

of Conj(G) generated by LInnC(G) is denoted ConjC = ConjC(G).

Definition 4.1.12. [35]

• The set of regular elementary conjugating automorphisms is

LInnR = LInnR(G) = (LInnG ∩ ConjV (G))\LInnS(G).

• The set of basic vertex conjugating automorphisms is LInnV = LInn(G) =

LInnR(G) ∪ LInnC(G).

Not that, an element αy,x ∈ LInnR iff

(i) | y |≥ 2; and,

(ii) ∀ y ∈ Y, [y] ⊆ Y ∪ st(x).

Lemma 4.1.13. [35] Let Γ be a group.

(i) (a) Γ has an isolated vertex then Inn = ConjN and

(b) if Γ has no isolated vertex then ConjA ≤ ConjN .

In all cases

Inn ≤ ConjA ≤ ConjV ≤ Conj

and

Inn ≤ ConjN ≤ ConjV ≤ Conj.

(ii) LInn(V) ≤ ConjV .

(iii) If φ ∈ ConjS then φ(x) = xfx, where v(fx) ⊆ a(x), for all x ∈ V .

Proof. (i) It is immediate from the definitions that Inn ≤ ConjA, Inn ≤ ConjN

and ConjV ≤ Conj. That ConjA ≤ ConjV follows from the fact that, if

71

x, y ∈ V then [y] ⊆ C ∪ x, for some connected component C of Γx. As

[x] ⊆ a(x), for all x, it follows that ConjN ≤ ConjV .

If x is an isolated vertex then a(x) = X, so for φ ∈ ConjN there exists fx ∈ G
such that φ(y) = yfx , for all y ∈ V . Hence, in this case ConjN = Inn. Assume

then that Γ has no isolated vertex. In this case, for all x ∈ X, the connected

component of Γ containing x also contains a(x). To see that ConjA ≤ ConjN

suppose that u ∈ V and consider the aggregate conjugating automorphism

β = βC,x, where x ∈ V . If x ∈ `k(u) then vβ = v, for all v ∈ a(u), so

assume that this is not the case. If x ∈ a(u) then x /∈ `k(u) implies that

a(u) ⊆ C ′ ∪ {x}, for some component C ′ of Γx, so we may also assume that

x /∈ a(u).

Now let v and w be distinct elements of a(u) and r be any element of `k(u).

Then the path v, r, w does not contain x; so v and w are either both in C

or both outside C. Hence βC,x either fixes every element of a(u), or acts as

conjugation by x on every element of a(u). Thus all elements of ConjA are

normal, as required.

(ii) Follow directly from the definition and the fact that the sets [x] partition X,

so that LInnC ⊆ ConjV .

(iii) An induction on the length of φ as a word in the generators LInnS is used. If

φ is trivial there is nothing to be proved, so assume inductively that the result

holds for words of length at most n−1 and that φ = φ0φ1, where φ0 has length

n− 1 as a word in LInn±1
S and φ1 ∈ LInn±1

S , say φ1 = αC,z, for some z ∈ V ±1

and C = {y}. Then φ0(x) = xfx , where ν(fx) ⊆ a(x), for all x ∈ V . Let x ∈ X
and u ∈ a(x)±1. Then φ1(u) = u unless u = y±1. In the latter case y ∈ a(x) so

z ∈ a(y)±1 ⊆ a(x)±1 and φ1(u) = uz implies ν(φ1(u)) ⊆ a(x). Thus we have

ν(φ1(fx)) ⊆ a(x). Now φ(x) = (φ1(x))φ1(fx) and since φ1(x) = xz if and only

if x = y±1 it follows that ν(φ(x)) ⊆ a(x), as required.

Definition 4.1.14. [51] Let φ be a conjugating automorphism and for each x ∈ V
let gx ∈ G be such that φ(x) = g−1

x ◦ x ◦ gx. The length | φ | of φ is
∑

x∈X lg(gx).

Lemma 4.1.15. ([51] [Lemma 2.5 and Lemma 2.8]). Let φ be a non-trivial element

of Conj and, for each x ∈ V , let gx ∈ G such that φ(x) = g−1
x ◦ x ◦ gx. Then

72

(i) there exist x, y ∈ V and ε ∈ {±1} such that xεgx is a right divisor of gy, and

(ii) if y, z ∈ V \st(x) such that [y, z] = 1 and xεgx is a right divisor of gy then xεgx

is a right divisor of gz.

(As can be seen from the example φ = α−1
C,x the variable ε taking values ±1 is

a necessary part of the lemma.)

Lemma 4.1.16. [35] Let φ ∈ ConjV and for each y ∈ V let gy ∈ G be such that

φ(y) = g−1
y ◦ y ◦ gy.

(i) If [y] = [y]st then gu = gy, for all u ∈ [y].

(ii) If [y] = [y]`k and | [y] |≥ 2 then there exist v ∈ [y] and my ∈ Z such that

gu = vmy ◦ gv, for all u ∈ [y]\{v}. Moreover if my 6= 0 then v is the unique

element of [y] with this property and, setting ε = −my/ | my |, S = [y]\{v}
and α =

∏
u∈S α{u},vε we have α ∈ LInn±1

C and | αφ |<| φ |.

Proof. Since φ ∈ ConjV , for all y ∈ V , there exists fy ∈ G such that φ(u) = ufy ,

for all u ∈ [y], and we may choose an fy of minimal length with this property. Fix

y ∈ V . Then ufu = φ(u) = ugu so guf
−1
y ∈ CG(u), for all u ∈ [y]. Therefore there are

a, b, c ∈ G such that gu = a ◦ b, fy = c ◦ b and guf
−1
y = a ◦ c−1 ∈ CG(u). As gu has no

left divisor in CG(u) this means that a = 1 and so fy = cu ◦ gu, for c = cu ∈ CG(u).

If [y] = [y]st then CG(u) = CG(y), for all u ∈ [y], so in this case gy = fy = gu, for

all u ∈ [y].

Assume then that [y] = [y]`k, with | [y] |≥ 2, and let u, v ∈ [y], v 6= u, so

[u, v] 6= 1. Suppose v ∈ v(fy). Then fy = cv ◦ gv = c′v ◦ vm ◦ gv, where c′vG(`k(v))

and m ∈ Z. Then ufy = uv
mgv , since `k(v) = `k(u). As gv has no left divisor in

CG(v) and [v, u] 6= 1 we have uv
mgv = g−1

v ◦ v−m ◦ u ◦ vm ◦ gv, so gu = vm ◦ gv. By

choice of fy we have c′v = 1, and if m 6= 0 then no element u ∈ [y], u 6= v, can be

a left divisor of vm ◦ gv, so the first statement of (ii) as well as the uniqueness of v

follow. Moreover v dominates u, for all u ∈ [y], so the final statement of (ii) also

holds.

Proposition 4.1.17. [35] ConjV is generated by LInnV = LInnR ∪ LInnC.

Proof. Note that, from Lemma 4.1.13 (ii) we have that 〈LInnV 〉 ≤ ConjV . So we

need to prove the opposite inclusion; ConjV ≤ 〈LInnV 〉. Suppose that φ ∈ ConjV
be an automorphism. By using the induction on the length of φ we will do this

73

direction. Assume that | φ |= k, so if | φ |= 0 then φ = 1 and there is nothing

to prove. Hence, suppose k > 1 and assume that if ϕ ∈ ConjV with | ϕ |< k

then ϕ ∈ 〈LInnV 〉 (by induction assumption). If there exists y ∈ V such that,

[y] = [y]`k, | [y] |≥ 2 and by using Lemma 4.1.16, suppose my 6= 0. Set α =

Πu=y,y2,...,ynα{u},vε ∈ LInnC(ε = 1 if m < 0 and ε = −1 if m > 0) and | αφ |<| φ |.
We have φ = α−1αφ. Now, α ∈ LInnC , so α−1 ∈ 〈LInnC〉 ⊆ 〈LInnV 〉. As

φ ∈ ConjV and α ∈ LInnC ⊆ ConjV we have αφ ∈ ConjV . Write αφ = ψ ∈ ConjV ,

with | ψ |<| φ | ; so by the assumption of induction we have that ψ ∈ 〈LInnV 〉
which implies that α−1ψ ∈ 〈LInnV 〉, so φ ∈ 〈LInnV 〉, as claimed.

Hence we assume that either [y] = [y]st or my = 0, and so gy = gu, for all u ∈ [y]

and for all y ∈ V . From Lemma 4.1.15(i) there exist x, y ∈ V, ε ∈ {±1} such that

φ(x) = g−1
x ◦x ◦ gx, φ(y) = g−1

y ◦ y ◦ gy and xεgx is a right divisor of gy. Suppose that

[x, y] = 1. Then [φ(x), φ(y)] = 1; that is [xgx , ygy] = 1. If gy = a ◦ xε ◦ gx, for some

a ∈ G, then this implies that [x, yax
ε
] = 1, from which it follows that [x, a] = 1.

However, in this case ygy is not reduced, a contradiction. Therefore y /∈ st(x), and

so u /∈ st(x), for all u ∈ [y].

Let [y] = {v1, . . . , vr} and let C1, . . . , Cs be the components of Γst(x) containing

v1, . . . , vr. Then, from Lemma 4.1.15(ii), xεgx is a right divisor of gc for all c ∈
C1 ∪ . . .∪Cs. Let α =

∏s
i=1 αCi,x−ε . Then | φ(x) |<| φ |. We claim that α ∈ ConjV .

Suppose not, so there is some z ∈ V and elements u, v ∈ [z] such that u ∈ Ci, for

some i, but v /∈ ∪si=1Ci ∪ {st(x)}. This implies that `k(u) = `k(v) ⊆ st(x) and,

as u ∈ Ci implies x /∈ st(u), so x dominates u. Then Ci = {u} so u ∈ [y] and

[z] = [y] ⊆ ∪si=1Ci, a contradiction. Thus no such z exists and α ∈ ConjV .

If s = 1 and | C1 |≥ 2 then α ∈ LInn±1
R . If s = 1 and | C1 |= 1 then x dominates

y and α ∈ LInn±1
C . If s > 1 then st(x) ⊇ `k(y) and x dominates every element of

[y]. In this case α ∈ LInn±1
C again. Hence by induction φ ∈ 〈LInnR ∪ LInnC〉.

4.2 Whitehead Automorphisms and Day’s Rela-

tions

If (A, a) is a Whitehead automorphism which is a partial conjugation automorphism

then for each y ∈ X either y is mapped to ya or y is fixed. Thus for all y ∈ V

with y 6= a±1, either y and y−1 belong to A or {y, y−1} ∩ A = ∅. Thus, for such

Whitehead automorphisms we can write A = C ∪ C−1 ∪ {a} where C ⊆ V and

74

a±1 /∈ C. Moreover, we may assume that A ∩ `kL(a) = ∅, since if y ∈ stL(a) then

ya = y. As (A, a) induces an automorphism of G, it follows now that C is a union of

vertices of connected components of Γ\st(a). Suppose that Γ\st(a) has connected

components C1, . . . Cn and C = ∪i∈TCi, where T is a non-empty subset of {1 . . . n}.
Then from the union of these connected components above we define αC,a = (A, a)

so

αC,a(v) =

{
va if v ∈ C
v otherwise.

On the other hand for y ∈ V , if x1, . . . , xr are such that `k(xi) ⊆ st(y), let

D = {x1, . . . , xr} and we define that τD,y = τx1,y ◦ . . . ◦ τxr,y. Then, written as a

Whitehead automorphism τD,y is (D ∪ {y}, y). Conversely, if (A, a) is a Whitehead

automorphism, and for all x ∈ V \{a} we have x ∈ A if and only if x−1 /∈ A then

setting D = A\{a} we have (A, a) = τD,a.

Now in general if (A, a) is a Whitehead automorphism then let C0 = {x ∈
A\{a} : x−1 /∈ A\{a}} and let C1 = {x ∈ V : x ∈ A and x−1 ∈ A}. Then τC0,a

is an automorphism and αC1,a is an automorphism and (A, a) = τC0,aαC1,a (and

τC0,aαC1,a = αC1,aτC0,a).

We now translate relations (R1) to (R10) of Day, from the terminology of White-

head automorphisms to the terminology used here.

Let α = (A, a) and β = (B, b) be a Whitehead automorphisms and write α =

τC0,aαC1,a and β = τD0,bαD1,b where C0 ∩ C1 = ∅ with A\{a} = C0 ∪ C1 ∪ C−1
1

and D0 ∩ D1 = ∅ with B\{b} = D0 ∪ D1 ∪ D−1
1 respectively and C1, D1 ⊆ V , and

C0 ∩ C−1
0 = D0 ∩D−1

0 = ∅.

In the following relations (R1) to (R10) when we consider sets A0 and A1 we

always assume A0∩A1 = ∅ (and similarly for B0, B1, or C0, C1, etc, and we assume

all automorphisms αA1,a, τA0,a mentioned, are well defined.) Now we can replace

(A, a) in each of (R1) to (R10) in Section 2.5 of Chapter two by τC0,aαC1,a, with

C0 ∩ C1 = ∅ and A\{a} = C0 ∪ C1 ∪ C−1
1 , such that τC0,a is one of τD,y and αC1,a is

one of αC,a(v) as defined above. Therefore,

(R1) (τC0,aαC1,a)
−1 = τC0,a−1αC1,a−1 , where τC0,a, αC1,a are of type (2) Whitehead

automorphisms.

(R2) (τC0,aαC1,a)(τD0,aαD1,a) = τC0∪D0,aαC1∪D1,a when (C0 ∪D0) ∩ (C1 ∪D1) = ∅.

75

(R3) (τC0,aαC1,a)(τD0,bαD1,b) = (τD0,bαD1,b)(τC0,aαC1,a) if v(a) /∈ (D0 ∪ D1), v(b) /∈
(C0 ∪ C1), a 6= b, b−1 and at least one of (a) (C0 ∪ C1) ∩ (D0 ∪D1) = ∅ or (b)

b ∈ `kL(a) holds. We refer to this relation as (R3a) if condition (a) holds and

(R3b) if condition (b) holds.

(R4) (τD0,bαD1,b)(τC0,aαC1,a)(τD0,bαD1,b)
−1 = (τC0,aαC1,a)(τD0,aαD1,a), such that

a, a−1 /∈ D0 ∪D1, b−1 ∈ C0 and at least one of (a) (C0 ∪ C1) ∩ (D0 ∪D1) = ∅
or (b) b ∈ `kL(a). We refer to this relation as (R4a) if condition (a) holds and

(R4b) if condition (b) holds.

(R5) (τC′0,bαC1,b)(τC0,aαC1,a) = (τC′′0 ,aαC1,a)πa,b where C ′0 = C0 ∪ {a−1} and C ′′0 =

(C0\{b}) ∪ {b−1} such that b ∈ C0, b−1 /∈ C0 with a 6= b and b ∼ a, where π ∈
Aut(GΓ) with πa,b(a) = b−1, πa,b(b) = a and which fixes the other generators.

(R6) π(τC0,aαC1,a)π
−1 = τπ(C0),π(a)απ(C1),π(a) for π ∈ Aut(GΓ) which is a graph

automorphism.

(R7) The entire multiplication table of the type (1) Whitehead automorphisms,

which forms a finite subgroup of Aut(GΓ).

Note that L\{a−1} = (V ∪ V −1)\{a−1} = (V \stV (a))±1 = D, so (L\{a−1}, a)

corresponds to αD,a. But, if D = (V \stV (a) then αD,a = inner automorphism

of conjugation by a say (γa). Hence the relations (R8) to (R10) are that:

(R8) (τC0,aαC1,a) = γa(τE0,a−1αE1,a−1) where τC0,a, αC1,a are of type (2) Whitehead

automorphisms, and E1 = V \[C1 ∪ C0 ∪ C−1
0 ∪ stV (v(a))] with E0 = C−1

0 and

γa = αV \stV (v(a)),a.

(R9) (τC0,aαC1,a)γb = γb(τC0,aαC1,a) if b ∈ L with b, b−1 /∈ C0 ∪ C1 and γb =

αV \stV (v(b)),b.

(R10) (τC0,aαC1,a)γb = γaγb(τC0,aαC1,a) if b ∈ C0 such that γa = αV \stV (v(a)),a and

γb = αV \stV (v(b)),b.

4.3 A Presentation for ConjV

Note that, if (A, a) ∈ ConjV then we have A0 = ∅ and A = A1∪A−1
1 ∪{a}. Moreover,

as above since (A, a) is a partial conjugation we may assume A∩ `kL(a) = ∅ so also

A1 ∩ `kL(a) = ∅. So (A, a) can be written as αC,a where C = A1.

76

In [35] it is shown that ConjV is generated by a set called LInnV as we saw

in Section 4.1. Here we use different generators which are more convenient. If we

use Whitehead automorphisms we need to combine them. So we could have αC,x ∈
LInnR (which is already a Whitehead automorphism), and β =

∏
y∈[u]\{x} α{y},x ∈

LInnC , where [u] is an equivalent class of u for all u ∈ V , which is also a Whitehead

automorphism. After we combine them we will get a new generator αZ,x = αC,x β ∈
ConjV which is also a Whitehead automorphism and one of Toinet’s generators. For

example, consider the graph of Γ of Figure 4.3.

x

p

c

ba

wz

hi j

y y′

Figure 4.3: Graph of Γ

So, we have [y] = {y, ý}, β = α{y},xα{ý},x and [c] = {c} and [a] = {a, b}. The

subgraph Γ\st(x) is shown in Figure 4.4.

c
ba

y y′

Figure 4.4: Subgraph Γ\st(x)

Set Y = {a, b, c} then αY,x ∈ LInnR. Also setting Z = {a, b, c, y, ý} then

αZ,x = αY,xβ ∈ ConjV . It is a Whitehead automorphism and one of Toinet’s

generators.

Therefore, we want a generating set for ConjV consisting of elements that belong

to Toinet’s generating set for Conj. To this end, we make the following definition.

Definition 4.3.1. Define WV to be the set of partial conjugations αC,x, where

x ∈ L = V ∪V −1 and (as well as being a union of connected components of Γ\st(x))

the set C satisfies the condition that, for all z ∈ V either

77

(i) [z] ∩ C = φ; or

(ii) [z] ⊆ C ∪ st(x). (1)

Lemma 4.3.2. The following two properties hold on WV :

(a) Every element of WV belongs to ConjV and

(b) LInnV ⊆ WV .

Proof. (a) Note that, αC,x ∈ ConjV ⇔ ∀z ∈ V ∃ gz such that uαC,x = ugz ∀ u ∈ [z].

But,

zαC,x =

{
zx = x−1zx if z ∈ C
z if z /∈ C,

for each z ∈ Z.

If αC,x ∈ WV then suppose z ∈ Z. By definition of WV either (i) or (ii) of (1)

holds. If (i) holds then, for each u ∈ [z] we have u /∈ C so uαC,x = u. If (b) holds

then either, u ∈ C and hence uαC,x = ux, or u ∈ st(x), so uαC,x = u = ux because

[u, x] = 1. So in both cases uαC,x = ux and we have uαC,x = ux for all u ∈ [z]. This

means αC,x ∈ ConjV . Hence, every element of WV belongs to ConjV .

(b) Let βC,x ∈ LInnV . This implies that βC,x ∈ LInnR or βC,x ∈ LInnC . (Since

LInnV = LInnR ∪ LInnC). Note that, if βC,x ∈ LInnR then we have that

(a) |C| ≥ 2 and

(b) ∀y ∈ C, [y] ⊆ C ∪ st(x) (def. of LInnR).

Thus, βC,x ∈ WV (since βC,x satisfies the conditions of WV). Hence, LInnR ⊆
WV . If βC,x ∈ LInnC then βC,x is a basic collected conjugating automorphism (by

def. of LInnC). This implies that for some x, z ∈ L we have x dominates z (i.e.,

`k(z) ⊆ st(x) and z /∈ st(x)) and [z]\{x} = {ϑ1, . . . , ϑn} with βC,x =
∏

i=1 β{ϑi},x ∈
LInnC . So βC,x = αC,x where C = {ϑ1, . . . , ϑn}.

Now (i) if u ∈ V and [u] ∩ C 6= φ then ϑi ∈ [u], for some i so [u] = [ϑi] = [z]

so [u] ⊆ C ∪ {x} ⊆ C ∪ st(x), so the second condition of WV holds. On the other

hand if (ii) u ∈ V and [u] ∩ C = φ then the first condition of WV holds. So in all

cases either the first or the second condition of WV holds. This implies βC,x ∈ WV .

Hence, LInnV ⊆ WV . Therefore, LInnV = LInnR ∪ LInnC ⊆ WV .

78

Lemma 4.3.3. If αC,x ∈ WV and D = V \(C ∪ st(x)) then αD,xε ∈ WV for ε = ±1.

Proof. To prove this it is necessary only to check that condition (1) on C above

holds when C is replaced by D. First note that, for all z ∈ V , either [z]∩C = φ; or

[z] ⊆ C ∪ st(x), by definition of WV .

(i) To show that if [z] ⊆ C ∪ st(x) then [z] ∩D = φ.

[z] ∩D = [z] ∩ (V \(C ∪ st(x)))

= [z] ∩ (V ∩ (C ∪ st(x))c) (since A\B = A ∩Bc)

= ([z] ∩ (C ∪ st(x))c) ∩ V

= φ ∩ V (since we have that [z] ⊆ C ∪ st(x) which implies that

[z] ∩ (C ∪ st(x))c = φ)

= φ.

(ii) To show that if [z] ∩ C = φ then [z] ⊆ D ∪ st(x) = V \(C ∪ st(x)) ∪ st(x).

Note that, by assumption [z] ∩ C = φ, so if u ∈ [z] then u ∈ V \C and if also

u /∈ st(x) then u ∈ V \(C ∪ st(x)) = D. Hence [z] ⊆ D ∪ st(x).

Given α = (A, a) Day defines ᾱ = (A′, a−1), where A′ = L\(A ∪ `kL(a)). In our

terminology, ᾱ = τA′0,a−1αA′1,a−1 where A′0 = {x ∈ A′\{a−1} : x−1 /∈ A′\{a−1}} =

{x−1 ∈ V ±1 : x ∈ A0} and A′1 = {x ∈ V : x ∈ A′ and x−1 ∈ A′} = {x ∈ V : x±1 /∈
A′0, x /∈ stL(a) and x /∈ A′1}.

In the case of (A, a) ∈ WV we have A0 = ∅ and A = A1 ∪A−1
1 ∪{a}. In this case

if α = αC,x then ᾱ = αD,x−1 , where D = V \(C∪stL(x)) = {y ∈ V : y /∈ C∪stL(x)}.

Lemma 4.3.4. If π ∈ Aut(Γ) and αC,x ∈ WV then απ(C),π(x) ∈ WV .

Proof. Let π ∈ Aut(Γ) and αC,x ∈ WV . Note that, to show απ(C),π(x) ∈ WV we need

only to check the condition (1) on C holds when C is replaced by π(C) and x is

replaced by π(x).

Suppose z ∈ V . We show that either [z] ∩ π(C) = φ or [z] ⊆ π(C) ∪ st(π(x)).

As π ∈ Aut(Γ) there exists y ∈ V such that π(y) = z. Suppose that [z]∩ π(C) 6= φ;

and let u ∈ [z] ∩ π(C). Since π �V is a graph automorphism we have π[a] = [π(a)],

79

for each a ∈ V . Hence [z] = [π(y)] = π[y]. Now u = π(v) where v ∈ C, since

u ∈ π(C), so π(v) ∈ [z] = π[y]. Thus π(v) = π(v′), for some v′ ∈ [y] and since π

is one-one this implies v = v′; that is v ∈ C and v ∈ [y] so v ∈ [y] ∩ C. But, since

αC,x ∈ WV we have [y] ∩ C = φ or [y] ⊆ C ∪ st(x). Hence, as v ∈ [y] ∩ C we have

[y] ⊆ C∪st(x). Hence π[y] ⊆ π(C)∪π(st(x)) which implies that [z] ⊆ π(C)∪st(π(x))

(as st(π(x)) = π(st(x))). Therefore, either [z] ∩ π(C) = φ or [z] ⊆ π(C) ∪ st(π(x)).

This implies that απ(C),π(x) ∈ WV .

Lemma 4.3.5. If αC,x, αD,x ∈ WV then αC∩D,x ∈ WV .

Proof. Note that, to prove this it is necessary only to check that condition (1) on C

above holds when C is replaced by C ∩D. Now fix αC,x, αD,x ∈ WV and let z ∈ Z.

If [z] ∩ C = φ then [z] ∩ (C ∩ D) = ([z] ∩ C) ∩ D = φ ∩ D = φ. Similarly if

[z] ∩D = φ then [z] ∩ (C ∩D) = φ.

Hence we may assume that [z] ⊆ C ∪ st(x) and [z] ⊆ D ∪ st(x). Note that,

(C ∩D)∪ st(x) = (C ∪ st(x))∩ (D∪ st(x)) (distributive laws). But, [z] ⊆ C ∪ st(x)

and [z] ⊆ D∪st(x) by assumption. This implies that [z] ⊆ (C∩st(x))∩ (D∪st(x)).

i.e., [z] ⊆ (C ∩D) ∪ st(x). Hence, αC∩D,x ∈ WV .

Lemma 4.3.6. Let αC,x, αD,x ∈ WV and let D′ = V \(D∪ st(y)) such that y±1 /∈ C.

If αC∩D′,x is a well defined automorphism then it belongs to WV .

Proof. Note that, αC∩D′,x is a well defined automorphism if and only if C ∩D′ is a

union of connected components of Γ\st(x). Now suppose αC∩D′,x is a well defined

automorphism. So we need to show that αC∩D′,x ∈ WV .

If [z] ∩ C = φ then [z] ∩ (C ∩ D′) = φ (as in previous lemma), so we assume

[z] ⊆ C ∪ st(x). Therefore, there are two possibilities:

(i) [z] ∩D = φ; or

(ii) [z] ⊆ D ∪ st(y).

If [z] ∩ D′ = φ then [z] ∩ (C ∩ D′) = φ so we assume there exists u ∈ [z] ∩ D′.
We need to show [z] ⊆ D′ ∪ st(x):

Case (i) If [z] ∩ D = φ then suppose there exists v ∈ [z] with v ∈ st(y). As

v ∼ z either (a) st(z) = st(v) or (b) `k(z) = `k(v). In case (a) we have v ∈ st(y)

implies y ∈ st(v) = st(z) implies [z] ⊆ st(y) so u /∈ D′, a contradiction.

If (b), `k(z) = `k(v) then if y ∈ `k(v) with y 6= v, as above we obtain y ∈ `k(z)

and z ∈ st(y) implies [z] ∈ st(y). Hence in case (b) we must have y = v.

80

Note we assume that [z] ⊆ C ∪ st(x) and y /∈ C (as y±1 /∈ C) so we must have

y ∈ st(x). Hence in this case v = y ∈ D′ ∪ st(x). On the other hand if v ∈ [z] and

v /∈ st(y) then v /∈ D ∪ st(y) so v ∈ D; so that [z] ⊆ D′ ∪ st(x) in this case.

Case (ii) We assume that [z] ⊆ D ∪ st(y). We show [z] ∩D′ = φ. Note that,

D′ ∩ [z] = [V \(D ∪ st(y)] ∩ [z]

= (V ∩ [z])\(D ∪ st(y)) (since (B\A) ∩ C = (B ∩ C)\A)

= [z]\(D ∪ st(y))

= φ (since [z] ⊆ D ∪ st(y)(by assumption).

Hence, αC∩D′,x ∈ WV .

Lemma 4.3.7. If αC,x, αD,x ∈ WV with x ∈ L. Then αC∪D,x ∈ WV .

Proof. Note that, to prove this it is necessary only to check that if z ∈ V then either

[z] ∩ (C ∪D) = φ or [z] ⊆ (C ∪D) ∪ st(x).

Suppose that [z] ∩ (C ∪D) 6= φ. We have [z] ∩ (C ∪D) = ([z] ∩ C) ∪ ([z] ∩D)

(distributive laws). So we have [z] ∩ C 6= φ or [z] ∩ D 6= φ. Now if [z] ∩ C 6= φ

this implies that [z] ⊆ C ∪ st(x) (by detention of WV). Similarly, if [z] ∩ D 6= φ

then [z] ⊆ (C ∪ D) ∪ st(x). But, this implies to [z] ⊆ (C ∪ D) ∪ st(x). Hence,

αC∪D,x ∈ WV .

Recall that, WV is the set of partial conjugations αC,x, where x ∈ L = V ∪ V −1

and (as well as being a union of connected components of Γ\st(x)) the set C satisfies

the condition that, for all z ∈ V either

(i) [z] ∩ C = φ; or

(ii) [z] ⊆ C ∪ st(x).

Definition 4.3.8. [24] Let w be a graphically reduced cyclic word and let a ∈ L.

Then for b, c ∈ L\`kL(a), we define the adjacency counter of w relative to a,

written as 〈b, c〉w,a, to be the number of subsegments of w of the form (buc−1)±1,

where u is any (possibly empty) word in `kL(a).

For a k-tuple of graphically reduced cyclic words W = (w1, . . . , wk), define the

adjacency counter of W relative to a as:

〈b, c〉W,a =
k∑
i=1

〈b, c〉wi,a

81

For B,C ⊂ L, we define:

〈B,C〉W,a =
∑

b∈(B\`kL(a))

∑
c∈(C\`kL(a))

〈b, c〉W,a

For α = αC,a ∈ WV , we define:

D[W](α) =| α · [W] | − | [W] |

When W is clear, we leave it out, writing 〈B,C〉a and D(α).

With W and a as above, note that for any B,C ⊂ L, the number 〈B,C〉a ≥ 0.

Further, we have 〈B,C〉a = 〈C,B〉a. If D ⊂ L with D ∩ C = ∅, then we have:

〈B,C ∪D〉a = 〈B,C〉a + 〈B,D〉a

Also note that 〈a, a〉a = 0 (since each wi is graphically reduced).

From the discussion of Section 4.2 recall that, for αC,a ∈ WV we have A =

C ∪ C−1 ∪ {a}.

Lemma 4.3.9. If W is a k-tuple of graphically reduced cyclic words, αC,a ∈ WV ,

and W ′ is the obvious representative of αC,a · [W], then let E = C ∪ C−1

D[W](αC,a) =| W ′ | − |W |= 〈E,L\(E ∪ {a})〉W,a − 〈a,E〉W,a.

Proof. This is immediate from counting the letters removed and added in the defi-

nition of W ′.

Lemma 4.3.10. [24] Let W be a k-tuple of graphically reduced cyclic words. If

αC,a ∈ WV , then let A = C ∪ C−1 ∪ {a}

D[W](αC,a) = 〈A,L\A〉W,a − 〈a, L〉W,a

Proof. From Lemma 4.3.9:

D(αC,a) = 〈A\{a}, L\A〉a − 〈a,A\{a}〉a
= 〈A,L\A〉a − (〈a, L\A〉a + 〈a,A\{a}〉a + 〈a, a〉a)
= 〈A,L\A〉a − 〈a, L〉a

82

Lemma 4.3.11. [24] Let α, β ∈ WV and let [W] be a k-tuple of conjugacy classes

of GΓ . Then we have:

2 | α−1 · [W] | > | [W] | + | βα−1 · [W] | (4.3.1)

Proof. Since βα−1 is a peak with respect to [W], we can sum the two inequalities in

the definition of a peak; by the fact that one of them is strict, we obtain this new

inequality.

Lemma 4.3.12. [24] Suppose we have αC,a, αD,b ∈ WV with a /∈ D and a not

adjacent to b in Γ (possibly a = b−1). Then `kL(a) ∩D = ∅.

Proof. If x ∈ `kL(a) ∩D, then x ∈ D and by 2.4.6, either b ≥ x or αD,b acts on the

connected component of x in Γ\st(b) by conjugation. If the latter were true, since

a is adjacent to x and not b, we would have that a ∈ D, a contradiction. So b ≥ x,

in which case a is adjacent to b, a contradiction.

Lemma 4.3.13. [24] Suppose α, β ∈ WV and [W] is a k-tuple of conjugacy classes

of GΓ , and also that α = αC,a, β = αD,b, and that either e = {a, b} or that (C ∩
D)∪ (C ∩{b, b−1})∪ (D∩{a, a−1})∪ ({a}∩{b}) = ∅ with a−1 /∈ D. Then | β · [W] |
< | α−1 · [W] |.

For the proof see [24] for all automorphisms in Aut(GΓ).

Given α = (A, a) Day defines ᾱ = (A′, a−1), where A′ = L\(A ∪ `kL(a)). In

our terminology, when α is a basis conjugating automorphism, α = αC,a, where

C = {x ∈ V : x ∈ A, x /∈ stL(a)}, as above, so we define ᾱ = αC′,a−1 , where

C ′ = V \(C ∪ stL(a)) = {x ∈ V : x /∈ C ∪ stL(a)}.
Now suppose that β = αD,b is another basis conjugating automorphism, and let

B = D ∪ D−1 ∪ {b} such that D ⊆ Γ\st(b) ⊆ V and b ∈ L, so that, written as a

Whitehead automorphism, β is (B, b).

Note that, in our terminology A ∩B = ∅ if and only if

(C ∩D) ∪ (C ∩ {b, b−1}) ∪ (D ∩ {a, a−1}) ∪ [{a} ∩ {b}] = ∅.

Since A = C ∪C−1 ∪ {a} and B = D ∪D−1 ∪ {b}, then A∩B = ∅ if and only if

(C ∪ C−1 ∪ {a}) ∩ (D ∪D−1 ∪ {b}) = ∅

83

But,

(C ∪ C−1 ∪ {a}) ∩ (D ∪D−1 ∪ {b}) = [(C ∪ C−1 ∪ {a}) ∩D][(C ∪ C−1 ∪ {a})∩

D−1] ∪ [(C ∪ C−1 ∪ {a}) ∩ {b})]

= [(C ∩D) ∪ (C−1 ∩D) ∪ ({a} ∩D)]

∪ [(C ∩D−1) ∪ (C−1 ∩D−1) ∪ ({a} ∩D−1)]

∪ [(C ∩ {b}) ∪ (C−1 ∩ {b}) ∪ ({a} ∩ {b}]

= ∅ if and only if

(C ∩D) ∪ (C ∩ {b, b−1}) ∪ (D ∩ {a, a−1}) ∪ ({a} ∩ {b}) = ∅ ⇐⇒

C ∩D = ∅, C ∩ {b, b−1} = ∅, D ∩ {a, a−1} = ∅ and {a} ∩ {b} = ∅.

Therefore,

A ∩B = ∅ ⇐⇒ (C ∩D) ∪ (C ∩ {b, b−1}) ∪ (D ∩ {a, a−1}) ∪ ({a} ∩ {b}) = ∅.

By the same argument we have that,

A ∩B 6= ∅ ⇐⇒ (C ∩D) ∪ (C ∩ {b, b−1}) ∪ (D ∩ {a, a−1}) ∪ ({a} ∩ {b}) 6= ∅
⇐⇒ C ∩D 6= ∅, C ∩ {b, b−1} 6= ∅, D ∩ {a, a−1} 6= ∅ and {a} ∩ {b} 6= ∅.

Lemma 4.3.14. Suppose α, β ∈ WV and [W] is a k-tuple of conjugacy classes of

GΓ . If βα−1 forms a peak with respect to [W], there exist δ1, . . . , δk ∈ WV such that

βα−1 = δk . . . δ1 and for each i, 1 ≤ i < k, we have:

|(δi . . . δ1) · [W]| < |α−1 · [W]|

A factorization of βα−1 is peak-lowering if it satisfies the conclusions of the

lemma, so Lemma 4.3.14 states that every peak has a peak-lowering factorization.

Such a factorization might not be peak-reduced, but the height of its highest peak is

lower than the height of the peak in βα−1.

Proof. Assume that α = αC,a and β = αD,b ∈ WV . As in the discussion following

Lemma 4.3.3 let ᾱ = αC′,a−1 , where C ′ = V \(C ∪ stL(a) and let β̄ = αD′,b−1 , where

D′ = V \(D ∪ stL(b). (As usual refer to a ∈ V as an element of GΓ or a vertex of

Γ , as convenient.) Also we refer to a−1 as a vertex of Γ (when really we mean a).

By Equation (R8) in Section 4.2, these automorphisms describe the same element

84

of Out(GΓ), and therefore

α−1 · [W] = ᾱ−1 · [W] and βα−1 · [W] = β̄α−1 · [W].

Moreover, from Lemma 4.3.3, ᾱ and β̄ belong to WV . We claim that if the lemma

holds with α or β replaced with ᾱ or β̄ respectively, then it holds as originally

stated. Suppose δk . . . δ1, with δi ∈ WV , is a peak-lowering factorization of β̄α−1

(for example). By Equation (R2) and (R8) in Section 4.2, the element ββ̄−1 is

the partial conjugation αD∪D′,b which is in WV , because α, β and β̄ are in WV . If

|βα−1 · [W]| < |α · [W]| then

βα−1 = αD∪D′,bδk . . . δ1

is a peak-lowering factorization of βα−1, since αD∪D′,b does not change the length

of any conjugacy class. Otherwise |W | < |α·[W]|. Again by Equation (R8), β̄β is the

partial conjugation (inner automorphism of conjugation by b) γb. So (β̄α−1)−1βα−1

is αγbα
−1.

If b /∈ C, then by Equations (R9) in Section 4.2, we know (β̄α−1)−1βα−1 is the

conjugation γb.

If b ∈ C, then by Equation (R8), we know (β̄α−1)−1βα−1 is γaᾱγbᾱ
−1γ−1

a which

is then a product of conjugations by Equation (R9). In any case, we have a product

of conjugations γ
′
j . . . γ

′
1 equal to to (β̄α−1)−1βα−1; then

βα−1 = δk . . . δ1γ
′

j . . . γ
′

1

is a peak-lowering factorization of βα−1, since conjugation does not change the

length of conjugacy classes. So we may swap out ᾱ for α and β̄ for β as needs be in

the proof of this lemma. Also, by the symmetry in the definition of a peak, we may

switch α and β if needed.

We fix a k-tuple of graphically reduced cyclic wordsW representing the conjugacy

class [W]. Throughout this proof W ′ will denote the obvious representative of

α−1 · [W] based on W . We break this proof down into several cases.

Case(1): a ∈ `k(b). Of course, this implies that a ∈ st(b) and b ∈ st(a) and

since C ∩ st(a) = φ = D ∩ st(b), then a /∈ D ⊆ V and b /∈ C ⊆ V . So a−1, b−1 are

not in C or D. Then by Equation (R3b) of Section 4.2, we have:

85

βα−1 = αD,bαC,a−1 = αC,a−1αD,b = α−1β.

By Lemma 4.3.13, we know |β · [W]| < |α−1 · [W]|, so the factorization is peak-

lowering.

Case(2): (C∩D)∪(C∩{b, b−1})∪(D∩{a, a−1})∪({a}∩{b}) = ∅ and a /∈ `k(b).

Note that the first condition means that a 6= b and a±1 /∈ D, so either a = b−1 or

a−1 /∈ (D ∪D−1
1 ∪ {b}).

We have the following sub-cases:

Sub-case(2a): a = b−1. By Equation (R2) of Section 4.2, the following factor-

ization is peak-lowering:

βα−1 = αD,bαC,b = αC∪D,b.

(βα−1 = δ1 and there is nothing to check to verify that this factorization is

peak-lowering.)

Sub-case(2b): a 6= b−1. In this case a−1 /∈ (D ∪D−1 ∪ {b}) and a /∈ `k(b). If

b±1 /∈ C then by (R3a) of 4.2 we have,

βα−1 = αD,bαC,a−1 = αC,a−1αD,b

So by Lemma 4.3.13, we know that |β · [W]| < |α−1 · [W]|, so these factorizations

are peak-lowering.

Case(3): (C∩D)∪(C∩{b, b−1})∪(D∩{a, a−1})∪({a}∩{b}) 6= ∅ and a /∈ `k(b).

We show we may assume that a /∈ (D ∪D−1 ∪ {b}) and b /∈ (C ∪C−1 ∪ {a}). First,

by replacing β with β̄, if necessary, we may assume a /∈ (D ∪ D−1 ∪ {b}). If

b /∈ (C ∪ C−1 ∪ {a}) the claim holds, so assume that b ∈ (C ∪ C−1 ∪ {a}). If b = a

then a ∈ (D ∪ D−1 ∪ {b}), a contradiction. Hence we have b 6= a. If also b 6= a−1

then swapping α with ᾱ we have b /∈ (C ∪C−1∪{a}), and the result holds. Thus we

may assume that b = a−1. However this gives a−1 = b ∈ (C ∪C−1), a contradiction.

This proves the claim.

Hence we assume that a /∈ D ∪ D−1 ∪ {b} and b /∈ C ∪ C−1 ∪ {a}. We wish

to show that αC∩D′,a is a well defined element of WV . Note that if a = b−1 then

stL(a) = stL(b) so the result follows from Lemma 4.3.3 and Lemma 4.3.5, so we may

assume a 6= b−1.

86

If αC∩D′,a is a well defined element of ConjV ; then it is in WV by Lemma 4.3.6.

Now αC∩D′,a is well defined if, for all x ∈ C ∩ D′, x /∈ st(a), the component of

Γ\st(a) containing x is contained in C ∩D′.
Suppose that the connected component of Γ\st(a) containing x in Y and that

there exists y ∈ Y with y /∈ C ∩D′. As αC,a is in Conj, we have Y ⊆ C; so y ∈ C
and thus y /∈ D′. Therefore y ∈ V \D′ so y ∈ D ∪ st(b). By Lemma 4.3.12 we have

C ∩ `k(b) = ∅ (also D ∩ `k(a) = ∅) so either y ∈ D or y = b; but b /∈ C so y 6= b,

and so y ∈ D.

Let Z be the connected component of Γ\st(b) containing y. Then, as y ∈ D

we have Z ⊆ D. As a /∈ D this means a /∈ Z; so st(a) ∩ Z = ∅, (because a is

not adjacent to b, and not equal to b and if we had a = b−1 then we would have

st(a) = st(b); which intersects Z trivially. In other words, if v ∈ st(a) then either

a ∈ Z or a ∈ `k(b) and either case gives a contradiction, so there is no v ∈ Z∩st(a).)

As b /∈ `k(a) and b 6= a±1 we have b /∈ st(a) ∪ C. To walk from y to any vertex

outside C we must use vertices of st(a) which implies that Z ⊆ Y ⊆ C so Z is a

connected component of Γ\st(a) which implies that Y = Z which in terms implies

that x ∈ Z ⊆ D. However, by assumption x ∈ D′ so this is a contradiction. Thus

C∩D′ is a union of connected component of Γ\st(a) as required. Therefore, αC∩D′,a

is a well defined automorphism and from Lemma 4.3.6 it belongs to WV . Note that

αD∩C′,b is well defined by the same argument.

Next we will show that either αC∩D′,x or αD∩C′,y shortens α−1 · [W]. By Equation

(4.3.1), we know that 0 > D[α−1·W](α) +D[α−1·W](β). Of course, from the definition

of peak-lowering we have,

| α−1 · [W] |≥| [W] | and | α−1 · [W] |≥| βα−1 · [W] | (and one of these is strict).

By adding these two inequalities to each other we will get that

2 | α−1 · [W] |>| [W] | + | βα−1 · [W] | . (4.3.2)

Now from Definition 4.3.8 we have that,

D[W](α) =| α · [W] | − | [W] |,

D[α−1·W](α) =| α · α−1 · [W] | − | α−1 · [W] |=| [W] | − | α−1 · [W] | (4.3.3)

87

and

D[α−1·W](β) =| β · α−1 · [W] | − | α−1 · [W] | . (4.3.4)

By adding Equation (4.3.3) to Equation (4.3.4) we get that

D[α−1·W](α) +D[α−1·W](β) = −(2 | α−1 · [W] |)+ | [W] | + | β · α−1 · [W] |< 0

(as 2 | α−1 · [W] |>| [W] | + | β · α−1 · [W] | from Equation (4.3.2)).

Now by Lemma 4.3.10, where A = C ∪ C−1 ∪ {a} and A′ = L\(A ∪ `kL(a)) we

know that

D[α−1·W](α) = 〈A,A′〉α−1·W,a − 〈a, L〉α−1·W,a

= 〈A ∩B′, A′〉α−1·W,a + 〈A ∩B,A′〉a − 〈a, L〉α−1·W,a

and similarly, where B = D ∪D−1 ∪ {b} and B′ = L\(B ∪ `kL(b)) we have:

D[α−1·W](β) = 〈B,B′〉α−1·W,b − 〈b, L〉α−1·W,b

= 〈B ∩ A′, B′〉α−1·W,b + 〈B ∩ A,B′〉α−1·W,b − 〈b, L〉α−1·W,b

From above we have that a, b ∈ L = V ∪V −1 with a 6= b±1, C ⊂ V , D ⊂ V , A =

C∪C−1∪{a} and A′ = L\(A∪`kL(a)), B = D∪D−1∪{b} and B′ = L\(B∪`kL(b)),

D′ = V \(D ∪ stV (v(b))), a /∈ B with a /∈ `kL(b), b /∈ A, C ∩ `kL(b) = ∅ and from

Lemma 4.3.12, D ∩ `kL(a) = ∅.
By definition C ∩ stV (v(a)) = ∅ and D ∩ stV (v(b)) = ∅.

Claim: A ∩ B′ = (C ∩ D′) ∪ (C ∩ D′)−1 ∪ {a} = A1. First consider a. Note

that a ∈ A ∩ B′, as a ∈ A and a /∈ `kL(b) and a /∈ B implies that a ∈ B′ and by

definition a ∈ K.

If x = a−1 then x /∈ A, as C ∩ stV (v(a)) = ∅ so x /∈ A∩B′. Also if x = a−1 then

x /∈ C ∩D′ and x /∈ {a} so x /∈ K.

Now consider x = b±1. We have b 6= a±1 and b /∈ A, b−1 /∈ A, so b±1 /∈ A ∩B′.
Also b /∈ C∪C−1 implies that b /∈ C∩D′ or (C∩D′)−1 and b±1 /∈ {a} so b±1 /∈ K.

If x ∈ A∩B′ with x 6= a±1, b±1 then x ∈ A, x 6= a±1, b±1 implies that x ∈ C∪C−1.

Also x ∈ B′ with x 6= a±1, b±1 implies that x /∈ B ∪ `kL(b) and x 6= a±1, b±1 if

and only if x /∈ D ∪D−1 ∪ {b} ∪ `kL(b), x 6= a±1, x 6= b±1. Then x ∈ V and x ∈ B′

if and only if x /∈ D ∪ stV (v(b)) and x 6= a±1; x ∈ V −1 and x ∈ B′ if and only if

x /∈ D−1 ∪ stV (v(b))−1 and x 6= a±1 so x ∈ B′ if and only if x /∈ (D ∪ stV (v(b)))±1

and x 6= a±1, if and only if x ∈ D±1 and x 6= a±1. Hence x ∈ A∩B′ and x 6= a±1, b±1

88

if and only if x ∈ (C ∩D′) ∪ (C ∩D′)−1 and x 6= a±1 if and only if x ∈ A1.

A1 = (C ∩D′) ∪ (C ∩D′)−1 ∪ {a} = A ∩B′

By the same argument we have that,

B1 = (C ′ ∩D) ∪ (C ′ ∩D)−1 ∪ {b} = A′ ∩B.

Let A′1 = L\(A1 ∪ `k(a)) and B′1 = L\(B1 ∪ `k(b)).

Now from Lemma 4.3.10, we know that

D[α−1·W](αC∩D′,a) = 〈A1, A
′
1〉α−1·W,a − 〈a, L〉α−1·W,a

= 〈A∩B′, L\(A∩B′∪`k(a))〉α−1·W,a−〈a, L〉α−1·W,a

= 〈A ∩B′, L\(A ∩B′)〉α−1·W,a − 〈a, L〉α−1·W,a

(as 〈W, `k(a)〉 = 0 for all W ⊂ L.) Note that,

L\(A ∩ B′) = (A′ ∪ B) ∪ (`k(a)\B) ∪ (A ∩ `k(b)) = (A′ ∪ B) ∪ (`k(a)\B) as

A ∩ `k(b) = ∅ (by Lemma 4.3.12). Since if U ⊂ L with U ∩ V = ∅, then we have:

〈B,U ∪ V 〉a = 〈B,U〉a + 〈B, V 〉a, and (A′ ∪B) ∩ (`k(a)\B) = ∅. So

D[α−1·W](αC∩D′,a) = 〈A ∩B′, (A′ ∪B) ∪ (`k(a)\B)〉α−1·W,a − 〈a, L〉α−1·W,a

= 〈A ∩B′, A′ ∪B〉α−1·W,a + 〈A ∩B′, `k(a)\B〉α−1·W,a − 〈a, L〉α−1·W,a

= 〈A∩B′, A′ ∪B〉α−1·W,a− 〈a, L〉α−1·W,a (as 〈A∩B′, `k(a)\B〉 = 0)

= 〈A ∩B′, A′ ∪ (A ∩B)〉α−1·W,a − 〈a, L〉α−1·W,a

= 〈A ∩B′, A′〉α−1·W,a + 〈A ∩B′, A ∩B〉α−1·W,a − 〈a, L〉α−1·W,a

(as A′ ∪B = A′ ∪ (A ∩B) with A′ ∩ (A ∩B) = ∅).
Similarly,

D[α−1·W](αC′∩D,b) = 〈B ∩ A′, B′〉α−1·W,a + 〈B ∩ A′, A ∩B〉α−1·W,a − 〈a, L〉α−1·W,a.

We claim that 〈A∩B,A′〉α−1·W,a ≥ 〈A∩B,A′∩B〉α−1·W,b. Recall that `kL(b)∩C =

∅. If (cud−1)±1 is a subsegment of α−1 ·W with c ∈ A ∩ B, d ∈ A′ ∩ B, and u a

89

word in 〈`k(b)〉, then either u is a word in 〈`k(b) ∩ `k(a)〉, or u = u′u1u
′′ where

u′ a word in 〈`k(b) ∩ `k(a)〉 and u1 ∈ `k(b)\`k(a). If the former is true, cud−1

is counted by 〈A ∩ B,A′〉α−1·W,a; if the latter holds, then instead cu′u1 is counted

by 〈A ∩ B,A′〉α−1·W,a (since u1 /∈ `k(a)). Either way, each subsegment of α−1 ·W
counted by the counter on the right hand side of the inequality is also counted by

the counter on the left hand side of the inequality, showing the inequality. Similarly,

we know 〈B ∩ A,B′〉α−1·W,b ≥ 〈B ∩ A,B′ ∩ A〉α−1·W,a.

According to the above we have the following:

0 > D[α−1·W](α) +D[α−1·W](β), 〈A ∩B,A′〉α−1·W,a ≥ 〈A ∩B,A′ ∩B〉α−1·W,b and

〈B ∩ A,B′〉α−1·W,b ≥ 〈B ∩ A,B′ ∩ A〉α−1·W,a.

So,

0 > D[α−1·W](α) +D[α−1·W](β)

≥ 〈A ∩B′, A′〉α−1·W,a + 〈A ∩B′, A ∩B〉α−1·W,a − 〈a, L〉α−1·W,a

+〈B ∩ A′, B′〉α−1·W,b + 〈B ∩ A′, A ∩B〉α−1·W,b − 〈a, L〉α−1·W,b

= D[α−1·W](αC∩D′,a) +D[α−1·W](αD∩C′,b).

So one of αC∩D′,a and αD∩C′,b shortens [α−1 ·W].

Theorem 4.3.15. The subgroup ConjV of Aut(GΓ) has a presentation with gener-

ators WV (see Definition 4.3.1) and the finite set of relations <:

(<1) (αC,x)
−1 = αC,x−1,

(<2) αC,xαD,x = αC∪D,x if C ∩D = φ,

(<3) αC,xαD,y = αD,yαC,x if x /∈ D, y /∈ C, x 6= y, y−1 and at least one of C∩D = φ

or y ∈ `k(x) holds,

(<4) γyαC,xγ
−1
y = αC,x if y /∈ C, x 6= y, y−1.

Proof. Our proof is based on arguments that were used in Lemma 4.3.14. As-

sume that α = αC,a and β = αD,b ∈ WV . Let π ∈ Aut(Γ), then by Lemma

4.3.4, απ(C),π(a) ∈ WV . We also denote by Ω` the set of long-range Whitehead au-

tomorphisms. (As usual we refer to a ∈ V as an element of GΓ or a vertex of

Γ , as convenient.) Also we refer to a−1 as a vertex of Γ (when really we mean

a = v(a−1)). Let < denote the set of relations given in the statement of Theorem

90

4.3.15. We shall construct a finite connected 2-complex K with fundamental group

ConjV = 〈WV | <〉.

Let V = V (Γ) = {x1, . . . , xn}(n ≥ 1). Let W denote the n-tuple (x1, . . . , xn).

The set of vertices K(0) of K is the set of n-tuples π ·W , where π ranges over

the set Aut(Γ). For any π, ψ ∈ Aut(Γ), the vertices π ·W and ψπ ·W are joined by

a directed edge (π ·W,ψπ ·W ;ψ) labelled ψ. Note that, at this stage, K is just the

Cayley graph of Aut(Γ). Next, for any π ∈ Aut(Γ), and αC,a ∈ WV , we add a loop

(π ·W,π ·W ;αC,a) labeled αC,a at π ·W . This defines the 1-skeleton K(1) of K.

We shall define the 2-cells of K. These 2-cells will derive from the relations

(R1) − (R10) of Section 4.2. First, let K1 be the 2-complex obtained by attaching

2-cells corresponding to relation (R7) to K(1). Note that, if M is the 2-complex

obtained from K1 by deleting the loops (π · W,π · W ;αC,a), π ∈ Ω1, αC,a ∈ WV ,

then M is just the Cayley complex of Ω1, and therefore is simply connected. We

now explore the relations (R1)− (R5) and (R8)− (R10) of Section 4.2 to determine

which of these will give rise to relations on the elements of WV . When we apply

these relations to elements αC,a, αD,b ∈ WV we have to write αC,a as τC0,aαC1,a and

αD,b as τD0,bαD1,b and here C0 = D0 = ∅ and C1 = C, D1 = D. Thus τC0,aαC1,a

and τD0,bαD1,b become αC,a and αD,b respectively. Relation (R1) will give rise to the

following:

α−1
C,a = αC,a−1 (4.3.5)

for αC,a ∈ WV (by definition αC,a−1 ∈ WV).

Relation (R2) will give rise to

αC,aαD,a = αC∪D,a (4.3.6)

for αC,a, αD,a ∈ WV as, by Lemma 4.3.7, αC∪D,a ∈ WV , with C ∩D = ∅.
Relation (R3) will give rise to

αC,aαD,b = αD,bαC,a (4.3.7)

for αC,a, αD,b ∈ WV , such that a /∈ D, a−1 /∈ D, b /∈ C, b−1 /∈ C, and at least one

of (a) C ∩D = φ or (b) b ∈ `kL(a) holds.

From (R4), no relations arise. Indeed, in our case C0 = ∅ so we cannot have

b−1 ∈ C0.

91

From (R5), no relations arise (by the same argument as above).

From (R8), we obtain a relation which is a direct consequence of (4.3.5) and

(4.3.6). Indeed, if E1 = V \[C ∪ stV (v(a))] then, from (4.3.6) γa = αC∪E1,a =

αC,aαE1,a. So, from (4.3.5) αC,a = γaαE1,a−1 .

Relation (R9) will give rise to the following:

αC,aαV \stV (b),bα
−1
C,a = αV \stV (b),b (note that αV\stV(b),b = γb) (4.3.8)

for αC,a ∈ WV , and b ∈ L such that b /∈ C, and b−1 /∈ C as αV \stV (b),b ∈ WV by

definition.

From (R10), no relations arise (by the same argument as above).

We rewrite the relations (4.3.5)-(4.3.8) in the form

σεkk . . . σε11 = 1

where σ1, . . . , σk ∈ WV and ε1, . . . , εk ∈ {−1, 1}. Let K2 be the 2-complex

obtained from K1 by attaching 2-cells corresponding to the relations (4.3.5)-(4.3.8).

Note that the boundary of each of these 2-cells has the from

(π ·W,π ·W ;σ1)ε1(π.W, π ·W ;σ2)ε2 . . . (π ·W,π ·W ;σk)
εk ,

for π ∈ Aut(Γ).

Finally, relation (R6) will give rise to the following:

π(αC,a)π
−1α−1

π(C),π(a) = 1, (4.3.9)

for αC,a ∈ WV with π ∈ Aut(Γ). As noted above απ(C),π(a) ∈ WV . Then K is

obtained from K2 by attaching 2-cells corresponding to the relations (4.3.9). Observe

that the boundary of each of these 2-cells has the form

(ψ ·W,ψ ·W ;απ(C),π(a))
−1(ψ ·W,π−1ψ ·W ; π)

(π−1ψ ·W,π−1ψ ·W ;αC,a)(π
−1ψ ·W,ψ ·W ; π),

for ψ ∈ Aut(Γ).

It remains to show that π1(K,W) = ConjV = 〈WV | <〉.
Let T be a maximal tree in the 1-skeleton K(1) of K. Note that T is in fact

a maximal tree in the 1-skeleton C(1) of C (i.e., the Cayley graph of Aut(Γ). We

compute a presentation of π1(K,W) using T . For every vertex V in K, there exists

92

a unique reduced path pV from W to V in T . To each edge (V1, V2; π) of K, we

associate the element π1(K,W) represented by the loop pV1(V1, V2; π)p−1
V2

. We again

denote this by (V1, V2; π). Evidently these elements generate π1(K,W).

Now, since M is simply connected, we have

(π ·W,ψπ ·W ;ψ) = 1 (in π1(K,W)), (4.3.10)

for all π, ψ ∈ Aut(Γ).

Let P be the set of combinatorial paths in the 1-skeleton K(1) of K. We define

a map ϕ̂ : P → Aut(GΓ) as follows. For an edge e = (V1, V2; π), we set ϕ̂(e) = π,

and for a path p = eεkk . . . e
ε1
1 , we set ϕ̂(p) = ϕ̂(ek)

εk . . . ϕ̂(e1)ε1 . Clearly, if p1 and

p2 are loops at W such that p1 ∼ p2, then ϕ̂(p1) = ϕ̂(p2). Hence, ϕ̂ induces a map

ϕ : π1(K,W) → Aut(GΓ). Then from (4.3.9) and (4.3.10) it is easily seen that ϕ

is a homomorphism. So ϕ maps π1(K,W) to ConjV . It follows immediately from

the construction of K that ϕ : π1(K,W)→ ConjV is surjective. Thus, it suffices to

show that ϕ is injective. Let p be a loop at W such that ϕ(p) = 1. We have to show

that p ∼ 1. Write p = eεkk . . . e
ε1
1 , where k ≥ 1 and εi ∈ {−1, 1} for all i ∈ {1, . . . , k}.

Using the 2-cells arising from (4.3.5) and the fact that Aut(Γ)−1 = Aut(Γ), we

can restrict our attention to the case where p = ek . . . e1. Set πi = ϕ(ei) for all

i ∈ {1, . . . , k}. Note that πi ∈ WV ∪ Aut(Γ) ⊂ Ω` for all i ∈ {1, . . . , k}.
Let Z be a tuple containing each conjugacy class of length 2 ofGΓ , each appearing

once. We prove the following:

Claim There exist e′` . . . e
′
1 such that p ∼ e′` . . . e

′
1 and if we set π′i = ϕ(e′i) for all

i ∈ {1, . . . , `}, then π′i ∈ Aut(Γ) or π′i ∈ WV ∩ Inn(GΓ) for each i ∈ {1, . . . , `}.
First, we examine the case where πk . . . π1 is peak-reduced with respect to Z.

We claim that the sequence

| Z |, | π1 · Z |, | π2π1 · Z |, . . . , | πk−1 . . . π1 · Z |, | πk . . . π1 · Z |=| Z |

is a constant sequence. Suppose the contrary. By Lemma 2.6.4, | Z | is the least

element of the set {| π · Z | | π ∈ 〈Ω`〉}. Hence we can find i ∈ {1, . . . , k − 1} such

that we have

| πi−1 . . . π1 · Z |≤| πi . . . π1 · Z |,

93

| πi+1 . . . π1 · Z |≤| πi . . . π1 · Z |,

and at least one of these inequalities is strict, which contradicts the fact that the

product πk . . . π1 is peak-reduced. Therefore we have

| πi . . . π1 · Z |=| Z |

for all indices i ∈ {1, . . . , k}. We argue by induction on i ∈ {1, . . . , k} to prove

that πi . . . π1 · Z is a tuple containing each conjugacy class of length 2 of GΓ , each

appearing once. The result holds for i = 0 by assumption. Suppose that i ≥ 1, and

that the result holds for i− 1. Observe that Aut(Γ) does not change the length of a

conjugacy class. Thus, we can assume that πi is in WV . Since | πiπi−1 . . . π1 · Z |=|
πi−1 . . . π1 · Z |, πi is trivial, or an inner automorphism by Lemma 2.6.4 Thus, the

result holds for i. In this case, p has already the desired form.

We now turn to prove the claim. We define

hp = max{| πi . . . π1 · Z | | i ∈ {0, . . . , k}}

and

Np =| {i | i ∈ {0, . . . , k} and | πi . . . π1 · Z |= hp} | .

We use induction on pairs (hp, Np) with left lexicographic order. The base of

induction is | Z |: the smallest possible value for hp by Lemma 2.6.4. If hp =| Z |,
then the product πk . . . π1 is peak-reduced and we are done. Thus, we can assume

that hp >| Z | and that the result has been proved for all loops p′ with hp′ < hp. Let

i ∈ {1, . . . , k} be such that πi is a peak of height hp. An examination of the proof

of Lemma 4.3.14 shows that ei+1ei ∼ fj . . . f1 such that, if we set ψk = ϕ(fk) for all

k ∈ {1, . . . , j}, then

| ψk . . . ψ1πi−1 . . . π1 · Z |<| πiπi−1 . . . π1 · Z | (4.3.11)

for all k ∈ {1, . . . , j − 1}. Therefore, we get

p ∼ ek . . . ei+2fj . . . f1ei−1 . . . e1 = p′,

and a new product πk . . . πi+2ψj . . . ψ1πi−1 . . . π1. We argue by induction on Np.

If Np = 1, then (4.3.11) implies that hp′ < hp and we can apply the induction

94

hypothesis on hp. If Np ≥ 2 then (4.3.11) implies that hp = hp′ and Np′ < Np and

we can apply the induction hypothesis on Np. This proves the claim.

Hence, using the 2-cells arising from the relations (4.3.9), we obtain

p ∼ hs . . . h1gr . . . g1,

where, if we set

γi = ϕ(gi) for all i ∈ {1, . . . , r} and δj = ϕ(hj) for all j ∈ {1, . . . , s},

then δi ∈ Aut(Γ) for all i ∈ {1, . . . , s} and γj ∈ WV ∩ Inn(GΓ) for all j ∈
{1, . . . , r}. Using relation (4.3.7), we obtain p ∼ gr . . . g1. Set Z =

⋂
v∈V st(v). It

follows from Servatius’ Centralizer Theorem (see [69]) that the center Z(GΓ) of GΓ

is the special subgroup of GΓ generated by Z. Let Γ ′ be the full subgraph of Γ

spanned by V \ Z. We have

GΓ ′ ' Inn(GΓ),

where the isomorphism is given by v 7→ wv (see, for example, Lemma 5.3 of

[69]). Write

γi = αV \stL(ci),ci

where ci ∈ V \Z ∪ (V \Z)−1(i ∈ {1, . . . , r}). Since γr . . . γ1 = 1 (in Inn(GΓ)), we

have cr . . . c1 = 1 (in GΓ ′). Therefore cr . . . c1 is a product of conjugates of defining

relators of GΓ . Using the 2-cells corresponding to the relations (4.3.5) and (4.3.7)(b),

we deduce that p ∼ 1. We conclude that ϕ is injective, and thus

ConjV = π1(K,W).

Now, using the 2-cells arising from the relations (4.3.9) (with π = ψ), we obtain

(π ·W,π ·W ;απ(C),π(a)) = (π ·W,W ; π−1)(W,W ;αC,a)(W,π ·W ; π). (4.3.12)

Note that, using (4.3.10) with π−1 instead of π and ψ = π then (π ·W,W ; π−1) =

95

(π−1 · W,W ; π) = (π−1 · W,W ;ψ) = 1, and also with π = 1 and ψ = π then

(W,π ·W ; π) = 1. Thus (4.3.12) becomes

(π ·W,π ·W ;απ(C),π(a)) = (W,W ;αC,a), (4.3.13)

for all π ∈ Aut(Γ), and αC,a ∈ WV . It then follows that ConjV is generated by the

(W,W ;αC,a), for αC,a ∈ WV . We identify (W,W ;αC,a) with αC,a for all αC,a ∈ WV .

Any relation in ConjV = π1(K,W) will be a product of conjugates of boundary

labels of 2-cells of K. Then, using relation (4.3.13) and identifying (W,W ;αC,a)

with αC,a, we see that the relations (4.3.5)-(4.3.8) above are equivalent to those of

R. We have shown that ConjV has the presentation 〈WV | <〉.

Example 4.3.0.3

We will find a presentation for a subgroup ConjV of the automorphism group

Aut(GΓ), that is correspond to the graph Γ of Figure 4.5.

x1

x2

x3 x4

x5

x6

Figure 4.5: A Graph Γ

We have that V = {x1, x2, x3, x4, x5, x6} the vertex list,

E = {{x1, x3}, {x2, x3}, {x3, x4}, {x4, x5}, {x4, x6}, {x5, x6}} the edge list,

L = V −1 ∪ V = {x−1
1 , x−1

2 , x−1
3 , x−1

4 , x−1
5 , x−1

6 , x1, x2, x3, x4, x5, x6}.

1. We find the star and the link of each vertex x ∈ V as follows:

(i) st(x1) = {x1, x3}, `k(x1) = {x3}.

(ii) st(x2) = {x2, x3}, `k(x2) = {x3}.

(iii) st(x3) = {x1, x2, x3, x4}, `k(x3) = {x1, x2, x4}.

(iv) st(x4) = {x3, x4, x5, x6}, `k(x4) = {x3, x5, x6}.

(v) st(x5) = {x4, x5, x6}, `k(x5) = {x4, x6}.

(vi) st(x6) = {x4, x5, x6}, `k(x6) = {x4, x5}.

2. We find the equivelence classes for each vertex x ∈ V as follows:

96

(i) [x1] = {x1, x2}

(ii) [x2] = {x1, x2}

(iii) [x3] = {x3}

(iv) [x4] = {x4}

(v) [x5] = {x5, x6}

(vi) [x6] = {x5, x6}

3. We find the connected components of each subgraph Γ\{xi}, where xi ∈ V

and i = 1, . . . , 6 as follows:

(i) Γ\{x1} = {{x2, x
−1
2 }, {x4, x5, x6, x

−1
4 , x−1

5 , x−1
6 }}

(ii) Γ\{x2} = {{x1, x
−1
1 }, {x4, x5, x6, x

−1
4 , x−1

5 , x−1
6 }}

(iii) Γ\{x3} = {{x5, x6, x
−1
5 , x−1

6 }}

(iv) Γ\{x4} = {{x1, x
−1
1 }{x2, x

−1
2 }}

(v) Γ\{x5} = {{x1, x2, x3, x
−1
1 , x−1

2 , x−1
3 }}

(vi) Γ\{6} = {{x1, x2, x3, x
−1
1 , x−1

2 , x−1
3 }}

4. We find the minimal connected components C of each subgraph Γ\{xi}, where

xi ∈ V and i = 1, . . . , 6 , that is satisfies the condition that, for all z ∈ V

either

(a) [z] ∩ C = φ ; or

(b) [z] ⊆ C ∪ st(x)

as follows:

(i) The minimal connected components of Γ\st(x1) are {{x2, x
−1
2 },

{x4, x5, x6, x
−1
4 , x−1

5 , x−1
6 }}.

(ii) The minimal connected components of Γ\{x2} are {{x1, x
−1
1 }, {x4,

x5, x6, x
−1
4 , x−1

5 , x−1
6 }}.

(iii) The minimal connected components of Γ\{x3} are {{x5, x6, x
−1
5 , x−1

6 }}.

(iv) The minimal connected components of Γ\{x4} are {{x1, x2, x
−1
1 , x−1

2 }}.

(v) The minimal connected components of Γ\{x5} are {{x1, x2, x3, x
−1
1 , x−1

2 ,

x−1
3 }}.

97

(vi) The minimal connected components of Γ\{x6} are {{x1, x2, x3, x
−1
1 , x−1

2 ,

x−1
3 }}.

5. We find the union of the minimal connected components of Γ\{xi}, where

xi ∈ V and i = 1, . . . , 6 as follows:

⋃6
i=1 Γ\{xi} = {C1 = {x2, x

−1
2 }, C2 = {x4, x5, x6, x

−1
4 , x−1

5 , x−1
6 },

C3 = {x1, x
−1
1 }, C4 = {x5, x6, x

−1
5 , x−1

6 },
C5 = {x1, x2, x

−1
1 , x−1

2 }, C6 = {x1, x2, x3, x
−1
1 , x−1

2 , x−1
3 }}.

6. We find the partial conjugations automorphisms αC,x, where C is satisfies the

condition in statement (4) above and x ∈ L. In fact these partial conjugations

automorphisms form Gens1 the first part of the generators of ConjV . So

Gens1 = {f1 = αC1,x
−1
6

= {{x2, x
−1
2 , x−1

6 }, x−1
6 },

f2 = αC1,x
−1
5

= {{x2, x
−1
2 , x−1

5 }, x−1
5 },

f3 = αC1,x
−1
4

= {{x2, x
−1
2 , x−1

4 }, x−1
4 },

f4 = αC1,x
−1
3

= {{x2, x
−1
2 , x−1

3 }, x−1
3 },

f5 = αC1,x
−1
1

= {{x2, x
−1
2 , x−1

1 }, x−1
1 },

f6 = αC1,x1 = {{x2, x
−1
2 , x1}, x1},

f7 = αC1,x3 = {{x2, x
−1
2 , x3}, x3},

f8 = αC1,x4 = {{x2, x
−1
2 , x4}, x4},

f9 = αC1,x5 = {{x2, x
−1
2 , x5}, x5},

f10 = αC1,x6 = {{x2, x
−1
2 , x6}, x6},

f11 = αC2,x
−1
3

= {{x4, x5, x6, x
−1
4 , x−1

5 , x−1
6 , x−1

3 }, x−1
3 },

f12 = αC2,x
−1
2

= {{x4, x5, x6, x
−1
4 , x−1

5 , x−1
6 , x−1

2 }, x−1
2 },

f13 = αC2,x
−1
1

= {{x4, x5, x6, x
−1
4 , x−1

5 , x−1
6 , x−1

1 }, x−1
1 },

f14 = αC1,x1 = {{x4, x5, x6, x
−1
4 , x−1

5 , x−1
6 , x1}, x1},

f15 = αC1,x2 = {{x4, x5, x6, x
−1
4 , x−1

5 , x−1
6 , x2}, x2},

f16 = αC1,x3 = {{x4, x5, x6, x
−1
4 , x−1

5 , x−1
6 , x3}, x3},

f17 = αC3,x
−1
6

= {{x1, x
−1
1 , x−1

6 }, x−1
6 },

98

f18 = αC3,x
−1
5

= {{x1, x
−1
1 , x−1

5 }, x−1
5 },

f19 = αC3,x
−1
4

= {{x1, x
−1
1 , x−1

4 }, x−1
4 },

f20 = αC3,x
−1
3

= {{x1, x
−1
1 , x−1

3 }, x−1
3 },

f21 = αC3,x
−1
2

= {{x1, x
−1
1 , x−1

2 }, x−1
2 },

f22 = αC3,x2 = {{x1, x
−1
1 , x2}, x2},

f23 = αC3,x3 = {{x1, x
−1
1 , x3}, x3},

f24 = αC3,x4 = {{x1, x
−1
1 , x4}, x4},

f25 = αC3,x5 = {{x1, x
−1
1 , x5}, x5},

f26 = αC3 , x6 = {{x1, x
−1
1 , x6}, x6},

f27 = αC4 , x
−1
4 = {{x5, x6, x

−1
5 , x−1

6 , x−1
4 }, x−1

4 },

f28 = αC4 , x3 = {{x5, x6, x
−1
5 , x−1

6 , x−1
3 }, x−1

3 },

f29 = αC4 , x
−1
2 = {{x5, x6, x

−1
5 , x−1

6 , x−1
2 }, x−1

2 },

f30 = αC4 , x
−1
1 = {{x5, x6, x

−1
5 , x−1

6 , x−1
1 }, x−1

1 },

f31 = αC4 , x1 = {{x5, x6, x
−1
5 , x−1

6 , x1}, x1},

f32 = αC4 , x2 = {{x5, x6, x
−1
5 , x−1

6 , x2}, x2},

f33 = αC4 , x3 = {{x5, x6, x
−1
5 , x−1

6 , x3}, x3},

f34 = αC4 , x4 = {{x5, x6, x
−1
5 , x−1

6 , x4}, x4},

f35 = αC5 , x
−1
6 = {{x1, x2, x

−1
1 , x−1

2 , x−1
6 }, x−1

6 },

f36 = αC5 , x
−1
5 = {{x1, x2, x

−1
1 , x−1

2 , x−1
5 }, x−1

5 },

f37 = αC5 , x
−1
4 = {{x1, x2, x

−1
1 , x−1

2 , x−1
4 }, x−1

4 },

f38 = αC5 , x
−1
3 = {{x1, x2, x

−1
1 , x−1

2 , x−1
3 }, x−1

3 },

f39 = αC5 , x3 = {{x1, x2, x
−1
1 , x−1

2 , x3}, x3},

f40 = αC5 , x4 = {{x1, x2, x
−1
1 , x−1

2 , x4}, x4},

f41 = αC5 , x5 = {{x1, x2, x
−1
1 , x−1

2 , x5}, x5},

f42 = αC5 , x6 = {{x1, x2, x
−1
1 , x−1

2 , x6}, x6},

f43 = αC6 , x
−1
6 = {{x1, x2, x3, x

−1
1 , x−1

2 , x−1
3 , x−1

6 }, x−1
6 },

f44 = αC6 , x
−1
5 = {{x1, x2, x3, x

−1
1 , x−1

2 , x−1
3 , x−1

5 }, x−1
5 },

f45 = αC6 , x
−1
4 = {{x1, x2, x3, x

−1
1 , x−1

2 , x−1
3 , x−1

4 }, x−1
4 },

99

f46 = αC6 , x4 = {{x1, x2, x3, x
−1
1 , x−1

2 , x−1
3 , x4}, x4},

f47 = αC6 , x5 = {{x1, x2, x3, x
−1
1 , x−1

2 , x−1
3 , x5}, x5},

f48 = αC6 , x6 = {{x1, x2, x3, x
−1
1 , x−1

2 , x−1
3 , x6}, x6}}.

7. We find the inner automorphisms αC,x, where C is satisfies the condition in

statement (4) above and x ∈ L. In fact these inner automorphisms which are

also partial conjugations automorphisms form Gens2 the second part of the

generators of ConjV .

Gens2 = {w1 = {{x−1
6 , x−1

5 , x−1
4 , x−1

2 , x−1
1 , x2, x4, x5, x6}, x−1

1 },

w2 = {{x−1
6 , x−1

5 , x−1
4 , x−1

2 , x1, x2, x4, x5, x6}, x1},

w3 = {{x−1
6 , x−1

5 , x−1
4 , x−1

2 , x−1
1 , x1, x4, x5, x6}, x−1

2 },

w4 = {{x−1
6 , x−1

5 , x−1
4 , x−1

2 , x−1
1 , x2, x4, x5, x6}, x−1

1 },

w5 = {{x−1
6 , x−1

5 , x−1
4 , x−1

2 , x1, x2, x4, x5, x6}, x1},

w6 = {{x−1
6 , x−1

5 , x−1
4 , x−1

1 , x1, x2, x4, x5, x6}, x2},

w7 = {{x−1
6 , x−1

5 , x−1
4 , x−1

2 , x−1
1 , x1, x4, x5, x6}, x−1

2 },

w8 = {{x−1
6 , x−1

5 , x−1
4 , x−1

1 , x1, x2, x4, x5, x6}, x2},

w9 = {{x−1
6 , x−1

5 , x−1
4 , x−1

2 , x−1
1 , x1, x4, x5, x6}, x−1

2 },

w10 = {{x−1
6 , x−1

5 , x−1
4 , x−1

2 , x−1
1 , x1, x4, x5, x6}, x−1

1 },

w11 = {{x−1
6 , x−1

5 , x−1
4 , x−1

2 , x1, x2, x4, x5, x6}, x1},

w12 = {{x−1
6 , x−1

5 , x−1
4 , x−1

1 , x1, x2, x4, x5, x6}, x2}}

8. We find Gens the set of the generators of the subgroup ConjV as follows:

Gens = Gens1 ∪Gens2

= {f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, f15, f16, f17, f18, f19,

f20, f21, f22, f23, f24, f25, f26, f27, f28, f29, f30, f31, f32, f33, f34, f35, f36,

f37, f38, f39, f40, f41, f42, f43, f44, f45, f46, f47, f48, w1, w2, w3, w4, w5,

w6, w7, w8, w9, w10, w11, w12}.

9. We find Rels the set of the relations according to Theorem 4.3.15 as follows:

Rels1 = {f1 ∗f10, f2 ∗f9, f3 ∗f8, f4 ∗f7, f5 ∗f6, f6 ∗f5, f7 ∗f4, f8 ∗f3, f9 ∗f2, f10 ∗
f1, f11 ∗ f16, f12 ∗ f15, f13 ∗ f14, f14 ∗ f13, f15 ∗ f12, f16 ∗ f11, f17 ∗ f26, f18 ∗ f25, f19 ∗

100

f24, f20 ∗ f23, f21 ∗ f22, f22 ∗ f21, f23 ∗ f20, f24 ∗ f19, f25 ∗ f18, f26 ∗ f17, f27 ∗ f34, f28 ∗
f33, f29 ∗ f32, f30 ∗ f31, f31 ∗ f30, f32 ∗ f29, f33 ∗ f28, f34 ∗ f27, f35 ∗ f42, f36 ∗ f41, f37 ∗
f40, f38 ∗ f39, f39 ∗ f38, f40 ∗ f37, f41 ∗ f36, f42 ∗ f35, f43 ∗ f48, f44 ∗ f47, f45 ∗ f46, f46 ∗
f45, f47 ∗ f44, f48 ∗ f43}.

Rels2 = {f1 ∗ f17 ∗ f42, f2 ∗ f18 ∗ f41, f3 ∗ f19 ∗ f40, f3 ∗ f27 ∗ f8, f4 ∗ f11 ∗ f33, f4 ∗
f28 ∗ f33, f7 ∗ f16 ∗ f28, f7 ∗ f33 ∗ f28, f8 ∗ f24 ∗ f37, f8 ∗ f34 ∗ f3, f9 ∗ f25 ∗ f36, f10 ∗
f26 ∗ f35, f11 ∗ f20 ∗ f33, f11 ∗ f38 ∗ f33, f16 ∗ f23 ∗ f28, f16 ∗ f39 ∗ f28, f19 ∗ f27 ∗
f24, f20 ∗ f28 ∗ f33, f23 ∗ f33 ∗ f28, f24 ∗ f34 ∗ f19, f27 ∗ f37 ∗ f40, f27 ∗ f45 ∗ f40, f28 ∗
f38 ∗ f33, f33 ∗ f39 ∗ f28, f34 ∗ f40 ∗ f37, f34 ∗ f46 ∗ f37}.

Rels3 = {f1∗f2∗f10∗f9, f1∗f3∗f10∗f8, f1∗f8∗f10∗f3, f1∗f9∗f10∗f2, f1∗f18∗f26∗
f9, f1∗f19∗f26∗f8, f1∗f20∗f26∗f7, f1∗f23∗f26∗f4, f1∗f24∗f26∗f3, f1∗f25∗f26∗
f2, f1∗f36∗f42∗f9, f1∗f37∗f42∗f8, f1∗f40∗f42∗f3, f1∗f41∗f42∗f2, f1∗f44∗f48∗
f9, f1∗f45∗f48∗f8, f1∗f46∗f48∗f3, f1∗f47∗f48∗f2, f2∗f3∗f9∗f8, f2∗f8∗f9∗f3, f2∗
f10∗f9∗f1, f2∗f17∗f25∗f10, f2∗f19∗f25∗f8, f2∗f20∗f25∗f7, f2∗f23∗f25∗f4, f2∗f24∗
f25∗f3, f2∗f26∗f25∗f1, f2∗f35∗f41∗f10, f2∗f37∗f41∗f8, f2∗f40∗f41∗f3, f2∗f42∗
f41∗f1, f2∗f43∗f47∗f10, f2∗f45∗f47∗f8, f2∗f46∗f47∗f3, f2∗f48∗f47∗f1, f3∗f4∗f8∗
f7, f3∗f7∗f8∗f4, f3∗f9∗f8∗f2, f3∗f10∗f8∗f1, f3∗f17∗f24∗f10, f3∗f18∗f24∗f9, f3∗
f20∗f24∗f7, f3∗f23∗f24∗f4, f3∗f25∗f24∗f2, f3∗f26∗f24∗f1, f3∗f28∗f34∗f7, f3∗f30∗
f34∗f6, f3∗f31∗f34∗f5, f3∗f33∗f34∗f4, f3∗f35∗f40∗f10, f3∗f36∗f40∗f9, f3∗f38∗f40∗
f7, f3∗f39∗f40∗f4, f3∗f41∗f40∗f2, f3∗f42∗f40∗f1, f3∗f43∗f46∗f10, f3∗f44∗f46∗
f9, f3∗f47∗f46∗f2, f3∗f48∗f46∗f1, f4∗f5∗f7∗f6, f4∗f6∗f7∗f5, f4∗f8∗f7∗f3, f4∗
f13∗f16∗f6, f4∗f14∗f16∗f5, f4∗f17∗f23∗f10, f4∗f18∗f23∗f9, f4∗f19∗f23∗f8, f4∗
f24∗f23∗f3, f4∗f25∗f23∗f2, f4∗f26∗f23∗f1, f4∗f27∗f33∗f8, f4∗f30∗f33∗f6, f4∗f31∗
f33∗f5, f4∗f34∗f33∗f3, f4∗f37∗f39∗f8, f4∗f40∗f39∗f3, f5∗f7∗f6∗f4, f5∗f11∗f14∗
f7, f5∗f16∗f14∗f4, f5∗f27∗f31∗f8, f5∗f28∗f31∗f7, f5∗f33∗f31∗f4, f5∗f34∗f31∗
f3, f6∗f7∗f5∗f4, f6∗f11∗f13∗f7, f6∗f16∗f13∗f4, f6∗f27∗f30∗f8, f6∗f28∗f30∗f7, f6∗
f33∗f30∗f4, f6∗f34∗f30∗f3, f7∗f8∗f4∗f3, f7∗f13∗f11∗f6, f7∗f14∗f11∗f5, f7∗f17∗
f20∗f10, f7∗f18∗f20∗f9, f7∗f19∗f20∗f8, f7∗f24∗f20∗f3, f7∗f25∗f20∗f2, f7∗f26∗
f20∗f1, f7∗f27∗f28∗f8, f7∗f30∗f28∗f6, f7∗f31∗f28∗f5, f7∗f34∗f28∗f3, f7∗f37∗f38∗
f8, f7∗f40∗f38∗f3, f8∗f9∗f3∗f2, f8∗f10∗f3∗f1, f8∗f17∗f19∗f10, f8∗f18∗f19∗f9, f8∗
f20∗f19∗f7, f8∗f23∗f19∗f4, f8∗f25∗f19∗f2, f8∗f26∗f19∗f1, f8∗f28∗f27∗f7, f8∗f30∗
f27∗f6, f8∗f31∗f27∗f5, f8∗f33∗f27∗f4, f8∗f35∗f37∗f10, f8∗f36∗f37∗f9, f8∗f38∗
f37∗f7, f8∗f39∗f37∗f4, f8∗f41∗f37∗f2, f8∗f42∗f37∗f1, f8∗f43∗f45∗f10, f8∗f44∗
f45∗f9, f8∗f47∗f45∗f2, f8∗f48∗f45∗f1, f9∗f10∗f2∗f1, f9∗f17∗f18∗f10, f9∗f19∗f18∗

101

f8, f9∗f20∗f18∗f7, f9∗f23∗f18∗f4, f9∗f24∗f18∗f3, f9∗f26∗f18∗f1, f9∗f35∗f36∗
f10, f9∗f37∗f36∗f8, f9∗f40∗f36∗f3, f9∗f42∗f36∗f1, f9∗f43∗f44∗f10, f9∗f45∗f44∗
f8, f9∗f46∗f44∗f3, f9∗f48∗f44∗f1, f10∗f18∗f17∗f9, f10∗f19∗f17∗f8, f10∗f20∗f17∗
f7, f10∗f23∗f17∗f4, f10∗f24∗f17∗f3, f10∗f25∗f17∗f2, f10∗f36∗f35∗f9, f10∗f37∗f35∗
f8, f10∗f40∗f35∗f3, f10∗f41∗f35∗f2, f10∗f44∗f43∗f9, f10∗f45∗f43∗f8, f10∗f46∗
f43∗f3, f10∗f47∗f43∗f2, f11∗f12∗f16∗f15, f11∗f13∗f16∗f14, f11∗f14∗f16∗f13, f11∗
f15∗f16∗f12, f11∗f21∗f23∗f15, f11∗f22∗f23∗f12, f11∗f29∗f33∗f15, f11∗f30∗f33∗
f14, f11∗f31∗f33∗f13, f11∗f32∗f33∗f12, f12∗f16∗f15∗f11, f12∗f20∗f22∗f16, f12∗
f23∗f22∗f11, f12∗f28∗f32∗f16, f12∗f33∗f32∗f11, f13∗f16∗f14∗f11, f13∗f28∗f31∗f16,

f13∗f33∗f31∗f11, f14∗f16∗f13∗f11, f14∗f28∗f30∗f16, f14∗f33∗f30∗f11, f15∗f16∗
f12∗f11, f15∗f20∗f21∗f16, f15∗f23∗f21∗f11, f15∗f28∗f29∗f16, f15∗f33∗f29∗f11, f16∗
f21∗f20∗f15, f16∗f22∗f20∗f12, f16∗f29∗f28∗f15, f16∗f30∗f28∗f14, f16∗f31∗f28∗
f13, f16∗f32∗f28∗f12, f17∗f18∗f26∗f25, f17∗f19∗f26∗f24, f17∗f24∗f26∗f19, f17∗f25∗
f26∗f18, f17∗f36∗f42∗f25, f17∗f37∗f42∗f24, f17∗f40∗f42∗f19, f17∗f41∗f42∗f18, f17∗
f44∗f48∗f25, f17∗f45∗f48∗f24, f17∗f46∗f48∗f19, f17∗f47∗f48∗f18, f18∗f19∗f25∗
f24, f18∗f24∗f25∗f19, f18∗f26∗f25∗f17, f18∗f35∗f41∗f26, f18∗f37∗f41∗f24, f18∗f40∗
f41∗f19, f18∗f42∗f41∗f17, f18∗f43∗f47∗f26, f18∗f45∗f47∗f24, f18∗f46∗f47∗f19, f18∗
f48∗f47∗f17, f19∗f20∗f24∗f23, f19∗f23∗f24∗f20, f19∗f25∗f24∗f18, f19∗f26∗f24∗
f17, f19∗f28∗f34∗f23, f19∗f29∗f34∗f22, f19∗f32∗f34∗f21, f19∗f33∗f34∗f20, f19∗f35∗
f40∗f26, f19∗f36∗f40∗f25, f19∗f38∗f40∗f23, f19∗f39∗f40∗f20, f19∗f41∗f40∗f18, f19∗
f42∗f40∗f17, f19∗f43∗f46∗f26, f19∗f44∗f46∗f25, f19∗f47∗f46∗f18, f19∗f48∗f46∗
f17, f20∗f21∗f23∗f22, f20∗f22∗f23∗f21, f20∗f24∗f23∗f19, f20∗f27∗f33∗f24, f20∗f29∗
f33∗f22, f20∗f32∗f33∗f21, f20∗f34∗f33∗f19, f20∗f37∗f39∗f24, f20∗f40∗f39∗f19, f21∗
f23∗f22∗f20, f21∗f27∗f32∗f24, f21∗f28∗f32∗f23, f21∗f33∗f32∗f20, f21∗f34∗f32∗
f19, f22∗f23∗f21∗f20, f22∗f27∗f29∗f24, f22∗f28∗f29∗f23, f22∗f33∗f29∗f20, f22∗f34∗
f29∗f19, f23∗f24∗f20∗f19, f23∗f27∗f28∗f24, f23∗f29∗f28∗f22, f23∗f32∗f28∗f21, f23∗
f34∗f28∗f19, f23∗f37∗f38∗f24, f23∗f40∗f38∗f19, f24∗f25∗f19∗f18, f24∗f26∗f19∗
f17, f24∗f28∗f27∗f23, f24∗f29∗f27∗f22, f24∗f32∗f27∗f21, f24∗f33∗f27∗f20, f24∗f35∗
f37∗f26, f24∗f36∗f37∗f25, f24∗f38∗f37∗f23, f24∗f39∗f37∗f20, f24∗f41∗f37∗f18, f24∗
f42∗f37∗f17, f24∗f43∗f45∗f26, f24∗f44∗f45∗f25, f24∗f47∗f45∗f18, f24∗f48∗f45∗
f17, f25∗f26∗f18∗f17, f25∗f35∗f36∗f26, f25∗f37∗f36∗f24, f25∗f40∗f36∗f19, f25∗f42∗
f36∗f17, f25∗f43∗f44∗f26, f25∗f45∗f44∗f24, f25∗f46∗f44∗f19, f25∗f48∗f44∗f17, f26∗
f36∗f35∗f25, f26∗f37∗f35∗f24, f26∗f40∗f35∗f19, f26∗f41∗f35∗f18, f26∗f44∗f43∗
f25, f26∗f45∗f43∗f24, f26∗f46∗f43∗f19, f26∗f47∗f43∗f18, f27∗f28∗f34∗f33, f27∗
f33∗f34∗f28, f27∗f38∗f40∗f33, f27∗f39∗f40∗f28, f28∗f29∗f33∗f32, f28∗f30∗f33∗f31,

102

f28 ∗ f31 ∗ f33 ∗ f30, f28 ∗ f32 ∗ f33 ∗ f29, f28 ∗ f34 ∗ f33 ∗ f27, f28 ∗ f37 ∗ f39 ∗ f34, f28 ∗
f40 ∗ f39 ∗ f27, f29 ∗ f33 ∗ f32 ∗ f28, f30 ∗ f33 ∗ f31 ∗ f28, f31 ∗ f33 ∗ f30 ∗ f28, f32 ∗ f33 ∗
f29 ∗ f28, f33 ∗ f34 ∗ f28 ∗ f27, f33 ∗ f37 ∗ f38 ∗ f34, f33 ∗ f40 ∗ f38 ∗ f27, f34 ∗ f38 ∗ f37 ∗
f33, f34∗f39∗f37∗f28, f35∗f36∗f42∗f41, f35∗f37∗f42∗f40, f35∗f40∗f42∗f37, f35∗
f41 ∗ f42 ∗ f36, f35 ∗ f44 ∗ f48 ∗ f41, f35 ∗ f45 ∗ f48 ∗ f40, f35 ∗ f46 ∗ f48 ∗ f37, f35 ∗ f47 ∗
f48 ∗ f36, f36 ∗ f37 ∗ f41 ∗ f40, f36 ∗ f40 ∗ f41 ∗ f37, f36 ∗ f42 ∗ f41 ∗ f35, f36 ∗ f43 ∗ f47 ∗
f42, f36∗f45∗f47∗f40, f36∗f46∗f47∗f37, f36∗f48∗f47∗f35, f37∗f38∗f40∗f39, f37∗
f39∗f40∗f38, f37∗f41∗f40∗f36, f37∗f42∗f40∗f35, f37∗f43∗f46∗f42, f37∗f44∗f46∗
f41, f37∗f47∗f46∗f36, f37∗f48∗f46∗f35, f38∗f40∗f39∗f37, f39∗f40∗f38∗f37, f40∗
f41∗f37∗f36, f40∗f42∗f37∗f35, f40∗f43∗f45∗f42, f40∗f44∗f45∗f41, f40∗f47∗f45∗
f36, f40∗f48∗f45∗f35, f41∗f42∗f36∗f35, f41∗f43∗f44∗f42, f41∗f45∗f44∗f40, f41∗
f46∗f44∗f37, f41∗f48∗f44∗f35, f42∗f44∗f43∗f41, f42∗f45∗f43∗f40, f42∗f46∗f43∗
f37, f42∗f47∗f43∗f36, f43∗f44∗f48∗f47, f43∗f45∗f48∗f46, f43∗f46∗f48∗f45, f43∗
f47∗f48∗f44, f44∗f45∗f47∗f46, f44∗f46∗f47∗f45, f44∗f48∗f47∗f43, f45∗f47∗f46∗
f44, f45 ∗ f48 ∗ f46 ∗ f43, f46 ∗ f47 ∗ f45 ∗ f44, f46 ∗ f48 ∗ f45 ∗ f43, f47 ∗ f48 ∗ f44 ∗ f43}.

Rels4 = {w1∗f1w11∗f10, w2∗f1∗w10∗f10, w4∗f1∗w11∗f10, w5∗f1∗w10∗f10, w10∗
f1 ∗w11 ∗f10, w11 ∗f1 ∗w10 ∗f10, w1 ∗f2 ∗w11 ∗f9, w2 ∗f2 ∗w10 ∗f9, w4 ∗f2 ∗w11 ∗
f9, w5 ∗f2 ∗w10 ∗f9, w10 ∗f2 ∗w11 ∗f9, w11 ∗f2 ∗w10 ∗f9, w1 ∗f3 ∗w11 ∗f8, w2 ∗f3 ∗
w10∗f8, w4∗f3∗w11∗f8, w5∗f3∗w10∗f8, w10∗f3∗w11∗f8, w11∗f3∗w10∗f8, w1∗f4∗
w11∗f7, w2∗f4∗w10∗f7, w4∗f4∗w11∗f7, w5∗f4∗w10∗f7, w10∗f4∗w11∗f7, w11∗f4∗
w10∗f7, w1∗f7∗w11∗f4, w2∗f7∗w10∗f4, w4∗f7∗w11∗f4, w5∗f7∗w10∗f4, w10∗f7∗
w11∗f4, w11∗f7∗w10∗f4, w1∗f8∗w11∗f3, w2∗f8∗w10∗f3, w4∗f8∗w11∗f3, w5∗f8∗
w10∗f3, w10∗f8∗w11∗f3, w11∗f8∗w10∗f3, w1∗f9∗w11∗f2, w2∗f9∗w10∗f2, w4∗f9∗
w11∗f2, w5∗f9∗w10∗f2, w10∗f9∗w11∗f2, w11∗f9∗w10∗f2, w1∗f10∗w11∗f1, w2∗
f10∗w10∗f1, w4∗f10∗w11∗f1, w5∗f10∗w10∗f1, w10∗f10∗w11∗f1, w11∗f10∗w10∗
f1, w1∗f11∗w11∗f16, w2∗f11∗w10∗f16, w3∗f11∗w12∗f16, w4∗f11∗w11∗f16, w5∗
f11∗w10∗f16, w6∗f11∗w9∗f16, w7∗f11∗w12∗f16, w8∗f11∗w9∗f16, w9∗f11∗w12∗
f16, w10∗f11∗w11∗f16, w11∗f11∗w10∗f16, w12∗f11∗w9∗f16, w1∗f12∗w11∗f15, w2∗
f12∗w10∗f15, w4∗f12∗w11∗f15, w5∗f12∗w10∗f15, w10∗f12∗w11∗f15, w11∗f12∗w10∗
f15, w3 ∗f13 ∗w12 ∗f14, w6 ∗f13 ∗w9 ∗f14, w7 ∗f13 ∗w12 ∗f14, w8 ∗f13 ∗w9 ∗f14, w9 ∗
f13∗w12∗f14, w12∗f13∗w9∗f14, w3∗f14∗w12∗f13, w6∗f14∗w9∗f13, w7∗f14∗w12∗
f13, w8∗f14∗w9∗f13, w9∗f14∗w12∗f13, w12∗f14∗w9∗f13, w1∗f15∗w11∗f12, w2∗
f15∗w10∗f12, w4∗f15∗w11∗f12, w5∗f15∗w10∗f12, w10∗f15∗w11∗f12, w11∗f15∗w10∗
f12, w1∗f16∗w11∗f11, w2∗f16∗w10∗f11, w3∗f16∗w12∗f11, w4∗f16∗w11∗f11, w5∗

103

f16∗w10∗f11, w6∗f16∗w9∗f11, w7∗f16∗w12∗f11, w8∗f16∗w9∗f11, w9∗f16∗w12∗
f11, w10∗f16∗w11∗f11, w11∗f16∗w10∗f11, w12∗f16∗w9∗f11, w3∗f17∗w12∗f26, w6∗
f17∗w9∗f26, w7∗f17∗w12∗f26, w8∗f17∗w9∗f26, w9∗f17∗w12∗f26, w12∗f17∗w9∗
f26, w3 ∗f18 ∗w12 ∗f25, w6 ∗f18 ∗w9 ∗f25, w7 ∗f18 ∗w12 ∗f25, w8 ∗f18 ∗w9 ∗f25, w9 ∗
f18∗w12∗f25, w12∗f18∗w9∗f25, w3∗f19∗w12∗f24, w6∗f19∗w9∗f24, w7∗f19∗w12∗
f24, w8∗f19∗w9∗f24, w9∗f19∗w12∗f24, w12∗f19∗w9∗f24, w3∗f20∗w12∗f23, w6∗
f20∗w9∗f23, w7∗f20∗w12∗f23, w8∗f20∗w9∗f23, w9∗f20∗w12∗f23, w12∗f20∗w9∗
f23, w3 ∗f23 ∗w12 ∗f20, w6 ∗f23 ∗w9 ∗f20, w7 ∗f23 ∗w12 ∗f20, w8 ∗f23 ∗w9 ∗f20, w9 ∗
f23 ∗w12 ∗ f20, w12 ∗ f23 ∗w9 ∗ f20, w3 ∗ f24 ∗w12 ∗ f19, w6 ∗ f24 ∗w9 ∗ f19, w7 ∗ f24 ∗
w12∗f19, w8∗f24∗w9∗f19, w9∗f24∗w12∗f19, w12∗f24∗w9∗f19, w3∗f25∗w12∗f18,

w6∗f25∗w9∗f18, w7∗f25∗w12∗f18, w8∗f25∗w9∗f18, w9∗f25∗w12∗f18, w12∗f25∗
w9∗f18, w3∗f26∗w12∗f17, w6∗f26∗w9∗f17, w7∗f26∗w12∗f17, w8∗f26∗w9∗f17, w9∗
f26∗w12∗f17, w12∗f26∗w9∗f17, w1∗f27∗w11∗f34, w2∗f27∗w10∗f34, w3∗f27∗w12∗
f34, w4∗f27∗w11∗f34, w5∗f27∗w10∗f34, w6∗f27∗w9∗f34, w7∗f27∗w12∗f34, w8∗
f27∗w9∗f34, w9∗f27∗w12∗f34, w10∗f27∗w11∗f34, w11∗f27∗w10∗f34, w12∗f27∗w9∗
f34, w1∗f28∗w11∗f33, w2∗f28∗w10∗f33, w3∗f28∗w12∗f33, w4∗f28∗w11∗f33, w5∗f28∗
w10∗f33, w6∗f28∗w9∗f33, w7∗f28∗w12∗f33, w8∗f28∗w9∗f33, w9∗f28∗w12∗f33, w10∗
f28∗w11∗f33, w11∗f28∗w10∗f33, w12∗f28∗w9∗f33, w1∗f29∗w11∗f32, w2∗f29∗w10∗
f32, w4∗f29∗w11∗f32, w5∗f29∗w10∗f32, w10∗f29∗w11∗f32, w11∗f29∗w10∗f32, w3∗
f30∗w12∗f31, w6∗f30∗w9∗f31, w7∗f30∗w12∗f31, w8∗f30∗w9∗f31, w9∗f30∗w12∗
f31, w12∗f30∗w9∗f31, w3∗f31∗w12∗f30, w6∗f31∗w9∗f30, w7∗f31∗w12∗f30, w8∗f31∗
w9∗f30, w9∗f31∗w12∗f30, w12∗f31∗w9∗f30, w1∗f32∗w11∗f29, w2∗f32∗w10∗f29, w4∗
f32∗w11∗f29, w5∗f32∗w10∗f29, w10∗f32∗w11∗f29, w11∗f32∗w10∗f29, w1∗f33∗w11∗
f28, w2∗f33∗w10∗f28, w3∗f33∗w12∗f28, w4∗f33∗w11∗f28, w5∗f33∗w10∗f28, w6∗f33∗
w9∗f28, w7∗f33∗w12∗f28, w8∗f33∗w9∗f28, w9∗f33∗w12∗f28, w10∗f33∗w11∗f28, w11∗
f33∗w10∗f28, w12∗f33∗w9∗f28, w1∗f34∗w11∗f27, w2∗f34∗w10∗f27, w3∗f34∗w12∗
f27, w4∗f34∗w11∗f27, w5∗f34∗w10∗f27, w6∗f34∗w9∗f27, w7∗f34∗w12∗f27, w8∗f34∗
w9∗f27, w9∗f34∗w12∗f27, w10∗f34∗w11∗f27, w11∗f34∗w10∗f27, w12∗f34∗w9∗f27}

Therefore, the set of the relations is

Rels = Rels1 ∪Rels2 ∪Rels3 ∪Rels4.

10. From above we have a finite presentation for the subgroup ConjV of the au-

tomorphism groups of the partially commutative group Aut(GΓ) as follows:

104

ConjV = 〈Gens|Rels〉

4.4 GAP Presentation for ConjV

This section describes the functions available from the AutParCommGrp package

which we have written for computing a finite presentation for the subgroup ConjV

of Aut(GΓ) with commuting graph Γ generated by partial conjugations WV .

To write an algorithm to produce this presentation we first construct WV the

set of generators of the subgroup ConjV that is defined earlier in Section 4.3, and

then find the set < of relations that are defined in Theorem 4.3.15. The input

of the main function FinitePresentationOfSubgroupConjv that provides finite

presentation for ConjV is a simple graph Γ = (V,E). A graph with vertex set

V of size n always has vertices {1, . . . , n} and E is a list of pairs of elements

of V . For example if Γ is a simple graph with vertex set V = {x1, x2, x3} and

edge set E = {[x1, x2], [x1, x3], [x2, x3]} (where [x, y] denotes an edge joining x

to y) then Γ will be represented as ([1, 2, 3], [[1, 2], [1, 3], [2, 3]]). The output of

FinitePresentationOfSubgroupConjv consists of two sets gens and rels, where

gens is the list of the generators of the automorphism αC,x defined above and rels

is the list of the relators.

In addition, to the functions IsSimpleGraph, StarLinkOfVertex, Deletevert-

icesFromGraph and ConnectedComponentsOfGraph which we have described in Sec-

tions 2.7.1, 3.3.1, 2.7.3 and 2.7.4 respectively the function FinitePresentationOfS-

ubgroupConjv runs the following functions:

4.4.1 EquivalenceClassOfVertex Function

The input of the function EquivalenceClassOfVertex(St) is the list of stars St

that is defined in Section 3.3.1. It computes the equivalence classes for each vertex

v. The algorithm carries out the following instructions:

EquivalenceClassOfVertex(St)

1 sV ← Size(St)

2 for i in {1, . . . , sV }
3 do for j in {1, . . . , sV }

105

4 do diff1← Difference(St[i], [i, j])

5 diff2← Difference(St[j], [i, j])

6 if diff1 = diff2

then Add j to new list EqCl1

7 Add EqCl1 to new list EqCl

8 return EqCl

4.4.2 ClassPreservingConnectedComponents Function

The input of the function ClassPreservingConnectedComponents(EqCl, Comps)

is EqCl the list of equivalence classes of vertices of Γ and the list of connected

components Comps of a subgraph B of Γ (usually B = Γ\St(x), for some vertex

x). It constructs a new list of connected components Comps from the connected

components of the subgraph B by finding the connected components which satisfy

the conditions of partial conjugation for WV . The algorithm carries out the following

instructions:

ClassPreservingConnectedComponents(EqCl, Comps)

1 sizeEqCl← Size(EqCl)

2 for i in {1, . . . , sizeEqCl}
3 do sizeComps← Size(Comps)

4 sizeEqClcurrent← Size(EqCl[i])

5 cdash← EmptyList

6 remainingcdash← EmptyList

7 for j in {1, . . . , sizeEqClcurrent}
8 do for k in {1, . . . , sizeComps}
9 if EqCl[i][j] ∈ Comps[k]

then cdash← Union(cdash, Comps[k])

10 for k in {1, . . . , sizeComps}
11 do if Comps[k] 6⊂ cdash

then Add Comps[k] to the list remainingcdash

12 Add cdash to the list remainingcdash

13 Comps = remainingcdash

14 return Comps

106

4.4.3 GeneratorsOfSubgroupConjv Function

The input of the function GeneratorsOfSubgroupConjv(NE,NV, St, V) is the list

NE of all lists of edges of Γ\St(v), the list NV of all lists of vertices of Γ\St(v), the

list of stars St that is defined in Section 3.3.1 and the list of vertices V . It computes

the list gens1 which form the type (1) generators of ConjV . The algorithm carries

out the following instructions:

GeneratorsOfSubgroupConjv(NE,NV, St, V)

1 sNE ← Size(NE)

2 invV ← ComputeTheInveres(V)

3 L← Concatenation(V, invV)

4 EqCl ← EquivalenceClassOfVertex(St)

5 for h in {1, . . . , sNE} � h ∈ V
6 do G2← NE(h)

7 G1← NV(h)

8 R3← ConnectedComponentsOfGraph(G1, G2)

9 Comps← R3(1) � Comps is the list of all components

10 sComps← R3(2)

11 P ← ClassPreservingConnectedComponents(EqCl, Comps)

12 Add the non-empty element of P to new list Y 4

13 sY 4← Size(Y 4)

14 for i in {1, . . . , sY 4}
15 do diff2← Difference(L, Y 4[i])

16 Add diff2 to new list xs1

17 for i in {1, . . . , sY 4}
18 do sz ← Size(xs1[i])

19 for j in {1, . . . , sz}
20 do KK ← Concatenation(Y 4[i], [xs1[i][j]])

21 HH ← [KK, xs1[i][j]]

22 Add HH to new list Y 5

23 sY 5← Size(Y 5)

24 Add Y 5 to new list Y 6

25 Add xs1 to new list xs2

26 Add Bs to new list Y 3

27 sY 6← Size(Y 6)

107

28 if sY 6 6= 0

29 then Y 7← Concatenation(Y 6)

30 sY 7← Size(Y 7)

31 xs3← Concatenation(xs2)

32 sxs3← Size(xs3)

33 for i in {1, . . . , sxs3}
34 do Add the non-empty element of xs3 to new list xs

35 sxs← Size(xs)

36 Uxs← Union(xs)

37 Uxs← Size(Uxs)

38 for i in {1, . . . , sY 7}
39 do Add the non-empty element of Y 7 to new list CxY 1

40 sCxY 1← Size(CxY 1)

41 for j in {1, . . . , sCxY 1}
42 do Compute CxY a list of the definitions of the partial

conjugations WV of ConjV

43 sCxY ← Size(CxY)

44 Y 8← Concatenation(Bs)

45 for i in {1, . . . , sY 8}
46 do Add the non-empty element of Y 8 to new list Y

47 sY ← Size(Y)

48 for k in {1, . . . , sCxY }
49 do Construct a list f such that f(n) = CxY (n), n ∈ N
50 sf ← Size(f)

51 for j in {1, . . . , sf}
52 do Add fi the name of the ith element of f to new list gens1

53 sgens1← Size(gens1)

54 return either [CxY , sCxY ,Y , sY , f , sf , gens1 , sgens1] or

an empty list if there is no component C satisfies the Definition 4.3.1

Remark 4.4.1. Note that,

(1) We use the functions APCGRelationRConj1, APCGRelationRConj2, APCGRela-

tionRConj3 and APCGRelationRConj4 which are described in Sections 3.3.4,

3.3.5, 3.3.6 and 3.3.7 respectively to find the set < of relations that are defined

in Theorem 4.3.15, by using the output of GeneratorsOfSubgroupConjv above

108

rather than the output of GeneratorsOfSubgroupConj which is described in

Section 3.3.3.

(2) We use the function APCGConjLastReturn(gens4, R2a, sR2a) which is de-

scribed in Section 3.3.8 to return the final return [gens, rels,GGG] of the

functions FinitePresentationOfSubgroupConjv below.

4.4.4 FinitePresentationOfSubgroupConjv Function

The function FinitePresentationOfSubgroupConjv(V,E) provides finite presen-

tation for the subgroup ConjV . The input of this function is a simple graph

Γ = (V,E). It returns [gens, rels,GGG], where,

(i) gens is a list of free generators of the subgroup ConjV of the automorphism

group Aut(GΓ) of GΓ .

(ii) rels is a list of relations in the generators of the free group F . Note that

relations are entered as relators, i.e., as words in the generators of the free

group.

(iii) GGG := F/rels is a finitely presented of the subgroup ConjV of the automor-

phism group Aut(GΓ) of GΓ .

The algorithm carries out the following instructions:

FinitePresentationOfSubgroupConjv(V,E)

1 if Γ is simple graph

2 then Call The Function StarLinkOfVertex

3 Call The Function DeleteVerticesFromGraph

4 Call The Function GeneratorsOfSubgroupConjv

5 Call The Function APCGRelationRConj1

6 Call The Function APCGRelationRConj2

7 Call The Function APCGRelationRConj3

8 Call The Function APCGRelationRConj4

9 Call The Function APCGConjLastReturn

10 else return “The graph must be a simple graph”

11 return [gens , rels ,GGG]

For example:

109

gap> C:=FinitePresentationOfSubgroupConjv([1,2,3],[[1,2],[2,3]]);

[[f1, f2, f3, f4, f5, f6, f7, f8], [f1*f4, f2*f3, f3*f2, f4*f1,

f5*f8, f6*f7, f7*f6, f8*f5, f1*f2*f4*f3, f1*f3*f4*f2, f2*f4*f3*f1,

f3*f4*f2*f1, f5*f6*f8*f7, f5*f7*f8*f6, f6*f8*f7*f5, f7*f8*f6*f5,

f2*f1*f3*f4, f3*f1*f2*f4, f2*f4*f3*f1, f3*f4*f2*f1, f5*f6*f8*f7,

f8*f6*f5*f7,f5*f7*f8*f6, f8*f7*f5*f6], <fp group on the generators

[f1, f2, f3, f4, f5, f6, f7, f8]>]

Remark 4.4.2. We use the function TietzeTransformations(G) which is described

in Section 2.7.19 to simplify the presentation of ConjV . For example, using the

output of FinitePresentationOfSubgroupConjv above:

gap> G:=C[3];

<fp group on the generators [f1, f2, f3, f4, f5, f6, f7, f8]>

gap> TietzeTransformations(G);

[<fp group of size infinity on the generators [f1, f2, f5, f6]>,

[f1*f2*f1^-1*f2^-1, f5*f6*f5^-1*f6^-1]]

110

Part II

Differential Graded Algebraic

structures

111

Chapter 5

Introduction and Preliminaries for

DG Algebraic structures

5.1 Introduction

Let G be a group with identity e and R be a ring with unit 1 different from 0. Then

R is said to be G-graded ring if there exists an additive subgroup Rg of R such that

R = ⊕
∑
g∈G

Rg and RgRh ⊆ Rgh for all g, h ∈ G. Let K be a field of characteristic

two, R = K[x1, x2, · · · , xn] be a graded ring, graded in the negative way, and let M

be differential graded R-module, where the degree of the differential is P .

Our aim is to study the case that (P ≤ −2, n > 1), and we give classification

for the types where M is a solvable module and the cases where M is not solvable,

using the dimension of the module and the degree of the differential on the module.

Also we will give an algorithm for these cases, implement in GAP.

5.2 Preliminaries

In this section, we give a brief overview of some definitions and results of exact

homology sequences from [5], [42], [50] and [54]. For background on rings and

modules we use [21], [33] and [42].

112

5.2.1 Exact Homology Sequences

Definition 5.2.1. Consider a sequence (finite or infinite) of abelian group and

homomorphisms

· · ·A1
φ1−→ A2

φ2−→ A3 −→ · · ·

This sequence is said to be exact at A2 if and only if Im(φ1) = Ker(φ2). If it is

every where exact, it is said to be an exact sequence.

Theorem 5.2.2. (1) A1
φ1−→ A2

φ2−→ 0, is exact sequence if and only if φ1 is

epimorphism.

(2) 0
φ1−→ A1

φ2−→ A2 is exact sequence if and only if φ2 is monomorphism.

Proof. 1) A1
φ1−→ A2

φ2−→ 0 is exact sequence at A2 if and only if Im(φ1) =

Ker(φ2) = A2 iff φ1 is epimorphism.

2) 0
φ1−→ A1

φ2−→ A2 is exact sequence at A1 if and only if Ker(φ2) = Im(φ1) iff

φ1 if and only if φ2 is monomorphism.

Definition 5.2.3. An exact sequence of the form

0 −→ A1
φ1−→ A2

φ2−→ A3
φ3−→ 0

is called a short exact sequence. A diagram of modules

A1
φ1 //

ψ1

��

A2

ψ2

��
A3 φ2

// A4

and homomorphisms is said be commutative iff ψ2φ1 = φ2ψ1.

Theorem 5.2.4. Consider the following commutative diagram

0 A2 A1 A0 0

0 B2 B1 B0 0

η2

ϕ

η1

ψ

η0

ϕ′ ψ′

with exact rows. If any two of the three homomorphisms η0, η1 and η2 are iso-

morphism, then the third is an isomorphism too.

113

Lemma 5.2.5. Suppose φ : A−→B is epimorphism with kernel K, then the se-

quence 0−→K i−→ A
φ−→ B

ψ−→ 0 is exact where i is the inclusion map.

Proof. Since φ is onto, then Im(φ) = B = Ker(ψ). Hence the sequence is exact at

B

Also, Im(i) = A = Ker(φ), and hence the sequence is exact at A. Therefore,

0−→K i−→ A
φ−→ B

ψ−→ 0 is exact.

Theorem 5.2.6. Suppose that the sequence A1
φ1−→ A2

φ2−→ A3
φ3−→ A4 is exact,

then the following are equivalent:

1) φ1 is epimorphism.

2) φ2 is the zero homomorphism.

2) φ3 is monomorphism.

Proof. (1) gives (2): Suppose φ1 is epimorphism, so Im(φ1) = A2. Since the

sequence is exact we have Im(φ1) = Ker(φ2), and so Ker(φ2) = A2, which gives

that φ2 = 0.

(2) gives (3): Suppose φ2 is the zero map. Then Im(φ2) = 0, using that the

sequence is exact we have Im(φ2) = Ker(φ3) = 0. Therefore, φ3 is monomorphism.

(3) gives (1): Suppose that φ3 is monomorphism. Then the sequence is exact

at A3, so Ker(φ3) = Im(φ2). But φ3 is 1-1, we have Im(φ2) = 0 and so φ2 is a zero

map. Since the sequence is exact at A2 we have Ker(φ2) = Im(φ1) = A1. Hence φ1

is epimorphism.

Definition 5.2.7. Consider the sequences

· · · −→A1
φ1−→ A2

φ2−→ · · ·

· · · −→B1
ψ1−→ B2

ψ2−→ · · ·

A homomorphism from the first sequence into the second sequence is a family of

homomorphisms αi : Ai−→Bi such that the following diagram commutes.

114

· · · A−1 A0 A1 · · · Ai Ai+1 · · ·

· · · B−1 B0 B1 · · · Bi Bi+1 · · ·

α−1

ϕ−1

α0

ϕ0

α1 αi

ϕ1

αi+1

ψ−1 ψ0 ψ1

(i.e. αi+1 ◦ ϕi = ψi ◦ αi for all i). It is an isomorphism of sequences if each αi is

an isomorphism.

Definition 5.2.8. Let C = {Cp, ∂p} and C ′ = {C ′p, ∂′p} be a chain complexes. A

chain map φ : C → C ′ is a collection of homomorphisms φp : Cp → Ćp such that

∂́p ◦ φp = φp−1 ◦ ∂p, for all p (i.e., the following diagrams commutes)

· · · Cp+1 Cp Cp−1 · · ·

· · · ´Cp+1 Ćp ´Cp−1 · · ·

φp+1

∂p+1

φp

∂p

φp−1

∂′p+1 ∂′p

Lemma 5.2.9. A chain map φ : C → C ′ induces a homomorphism

(φ∗)p : Hp(C)→ HP (C ′), for all p given by:

(φ∗)p(x+ im(∂p+1)) = φp(x) + Im(∂′p+1)

Proof. Suppose φ : C → C ′ is a chain map. To show that (φ∗)p is well-defined. Let

x+ Im(∂p+1) = y + Im(∂p+1). Then x− y ∈ Im(∂p+1). Since ∂p+1 is onto, there is

z ∈ Cp+1 such that ∂p+1(z) = x− y.

But φp◦∂p+1 = ∂′p+1◦φp+1, implies to ∂′p+1(φp+1(z)) = φp(∂p+1(z)) = φp(x−y) =

φp(x)− φp(y).

Therefore, φp(x) + im∂′p+1 = φp(y) + im(∂′p+1). Also,

(φ∗)p(x+ Im(∂p+1) + y + im(∂p+1)) = (φ∗)p(x+ y) + im(∂p+1))

= φp(x+ y) + im(∂′p+1)

= φp(x) + φp(y)im(∂′p+1)

= φp(x) + im(∂′p+1) + φp(y) + im(∂′p+1).

= (φ∗)p(x+Im(∂p+1))+(φ∗)p(y+im(∂p+1)).

And (φ∗)p(r · (x+ im(∂p+1)) = (φ∗)p(rx+ im(∂p+1)

= φp(rx) + im(∂′p+1)

= r · φp(x) + im(∂′p+1)

= r(φ∗)p(x+ im∂p+1).

115

Hence (φ∗)p is a homomorphism.

Lemma 5.2.10. a) The identity map i : C → C is a chain map and (i∗)p :

Hp(C)→ Hp(C) is the identity homomorphism.

b) If φ : C → C ′ and ψ : C ′ → Ć ′ are chain maps, then ψ ◦φ : C → Ć ′ is a chain

map and (ψ ◦ φ)∗ = ψ∗ ◦ φ∗.

Proof. a) Clear by Lemma.

b) Consider the following digram

· · · // Cp+1

∂p+1 //

φp+1
��

Cp

φp
��

∂p // Cp−1

φp−1
��

∂p−1 // · · ·

· · · // ´Cp+1

´∂p+1 //

ψp+1
��

Ćp

ψp
��

∂́p // ´Cp−1

ψp−1
��

´∂p−1 // · · ·

· · · // ´́
Cp+1

´́
∂p+1 // ´́

Cp
´́
∂p // ´́

Cp−1

´́
∂p−1 // · · ·

Since the diagram commutes we have φp−1◦∂p = ∂′p◦φp, and so ψp−1(φp−1◦∂p =

ψp−1(∂′p ◦ φp). Similarly, we have ψp−1 ◦ ∂′p = ∂′′p ◦ ψp, and so ψp−1 ◦ ∂′p ◦ φp =

∂′′p ◦ ψp ◦ φp. Therefore, ψp−1 ◦ φp−1∂p = ∂′′p ◦ ψp ◦ φp.

By definition (φ∗)p : Hp(C)→ Hp(C
′) is given by

(φ∗)p(x+ im∂p+1) = φ(x) + im∂′p+1 and

(ψ∗)p : Hp(C
′)→ Hp(C

′′) is given by

(ψ∗)p(φ(x) + im∂′p+1) = ψ(φ(x)) + im∂′′p+1. Now,

((ψ ◦ φ)∗)p : Hp(C)→ Hp(C
′′) is given by:

((ψ ◦ φ)∗)p(x+ im∂p+1) = (ψ ◦ φ)(x) + im∂′p+1.

So, ((ψ ◦ φ)∗)p(x+ im∂p+1) = (ψ ◦ φ)(x) + im∂′′p+1.

= ψ(φ(x)) + im∂′′p+1.

= (ψ∗)p(φ(x)) + im∂′′p+1.

Hence ((ψ ◦ φ)∗)p = (ψ∗)p ◦ (φ∗)p.

116

Chapter 6

Graded Rings and Graded

Modules

In this chapter the concept of graded rings and some of its properties are presented.

We also, give the definitions of graded algebras, and differential graded modules over

the graded polynomial ring R = K[x1, x2, . . . , xn].

6.1 Graded Rings

Definition 6.1.1. [59] Let G be a group with identity e. Then a ring R is said to be

G-graded ring if there exist an additive subgroups Rg of R such that R = ⊕
∑
g∈G

Rg

and RgRh ⊆ Rgh for all g, h ∈ G (some references use RgRh ⊆ Rg+h rather than

RgRh ⊆ Rgh, for example see [33]).

We denote the G-graded ring R by (R, G), and we denote the support of the

graded ring (R, G) by

supp(R,G) = {g ∈ G : Rg 6= 0}.

The elements of Rg are called homogeneous of degree g. If x ∈ R, then x can be

written uniquely as
∑
g∈G

xg where xg is the component of x in Rg. Also we write,

h(R) =
⋃
g∈G

Rg.

Definition 6.1.2. [21] Let A be a subset of R, for λ ∈ G we write Aλ for A ∩Rλ.

A subset A is called graded subset of R if A =
∑
λ∈G

Aλ.

117

Let I be an ideal of R, we say I is a graded ideal of (R,G) if I = ⊕
∑
g∈G

(Rg∩I).

Remark 6.1.3. Clearly, ⊕
∑
g∈G

(Rg ∩ I) ⊆ I and hence I is a graded of (R,G) if

I ⊆
∑
g∈G

(Rg ∩ I). Also, J =
∑
g∈G

(Rg ∩ I) is the largest graded ideal of R which is

contained in I.

Now, we give some examples of G-graded ring.

Example 6.1.0.1

Let G be any group, then R is a G-graded ring with: Re = R and Rg = 0 for all

g ∈ G− {e}. This grading is called the trivial grading of R by G.

Example 6.1.0.2

The polynomial ring S = R[x1, x2, . . . , xn] in n variables over the commutative ring

R is an example of a graded ring. Here S0 = R and the homogeneous component of

degree k is the subgroup of all R-linear combinations of monomials of degree k i.e.,

Sd = {
∑

m∈N rmX
m | rm ∈ R and m1 + . . . + mn = d}. This is called the standard

grading on the polynomial ring R[x1, . . . , xn]. The ideal I generated by x1, . . . , xn is

a graded ideal: every polynomial with zero constant term may be written uniquely

as a sum of homogeneous polynomials of degree k > 1, and each of these has zero

constant term hence lies in I. More generally, an ideal is a graded ideal if and only

if it can be generated by homogeneous polynomials (see Lemma 6.1.4 for the proof).

Example 6.1.0.3

[64] Let K be a field, and R = K[x] be the polynomial ring over K in one variable

x. Let G = Z3, then R is a G-graded ring with:

Rj = (kx3r+j : k ∈ K, r = 0, 1, 2, ...), for j ∈ Z3.

Example 6.1.0.4

Let R = Z[i] = {a+ ib : a, b ∈ Z} (the Gaussian integers), and G = Z2, then R is a

G-graded ring with: R0 = Z, and R1 = iZ.

The following example shows that an ideal of a G-graded ring need not be a

graded ideal in general:

Example 6.1.0.5

Let R = Z[i] , and Let G = Z2. Then R is a G-graded ring with: R0 = Z, and

118

R1 = i Z. Let I =< 1 + i >, where x = (1 + i), x0 = 1 and x1 = i. Clearly x0 /∈ I
because if x0 ∈ I then there is a + ib ∈ Z[i] such that 1 = (a + ib)(1 + i) which

implies a − b = 1 and a + b = 0. Hence 2a = 1, contradiction. Thus I is not a

graded ideal of (R , G).

Lemma 6.1.4. An ideal is a graded (homogeneous) ideal if and only if it can be

generated by homogeneous polynomials.

Proof. Let R be a graded ring such that R = ⊕
∑
g∈G

Rg, where the Rg are additive

abelian groups such that RgRh ⊆ Rg+h for g, h ≥ 1. If I ⊂ K[x] is graded (ho-

mogeneous), the homogeneous parts of the generators of I obviously generate I.

Conversely, let I be an ideal generated by homogeneous polynomials fi, i = 1, . . . , r.

Suppose that w ∈ I i.e., w =
r∑
i=1

aifi, ai ∈ K[x]. Note that each homogeneous part

(ai)[j]fi of ai is in I, because I is an ideal. Since this holds for any g ∈ I, we have

that

⊕i≥1(I ∩Rg) ⊆ I ⊆ ⊕i≥1(I ∩Rg)

This means both are equal and I is graded ideal.

Proposition 6.1.5. [33] Stated that: Let R be a graded ring, let I be a graded ideal

in R and let Ik = I ∩ Rk for all k ≥ 0. Then R/I is naturally a graded ring whose

homogeneous component of degree k is isomorphic to Rk/Ik.

There would be necessary to prove the proposition above.

Proof. 1. We show that RiIj ⊆ Ii+j. Let x ∈ RiIj then x = riaj where ri ∈ Ri

and aj ∈ Ij. So x ∈ RiIj implies that riaj ∈ RiIj implies that riaj ∈ RiRj ∩ I
(since Rj ∩ I = Ij) implies that riaj ∈ Ri+j ∩ I (since RiRj ⊆ Ri+j) which

implies that riaj ∈ Ii+j (since Ri+j ∩ I = Ii+j). Thus RiIj ⊆ Ii+j.

2. We show that the multiplication (Ri/Ii)(Rj/Ij) ⊆ Ri+j/Ii+j. is well defined.

We need to show that:

(ri + Ij)(rj + Ij) = rirj + Ii+j

where ri + Ii ∈ Ri/Ii and rj + Ij ∈ Rj/Ij.

Let ri + Ii = r′i + Ii and rj + Ij = r′j + Ij. We need to show that:

(ri + Ii)(rj + Ij) = (r′i + Ii)(r
′
j + Ij)

119

i.e., we need to show rirj + Ii+j = r′ir
′
j + Ii+j. So if we show that (rirj−r′ir′j) ∈

Ii+j we are done. Note that ri + Ii = r′i + Ii implies that ri − r′i ∈ Ii implies

that (ri− r′i)rj ∈ Ii (by multiply both sides by rj). So rirj− r′irj ∈ Ij (because

Ii is an ideal). Similarly, rj + Ij = r′i + Ij implies that rj − r′i ∈ Ij implies that

r′i(ri−r′i) ∈ Ij (by multiply both sides by r′i). Hence r′irj−r′ir′j ∈ Ij. Therefore,

(rirj − r′irj) + (r′irj − r′ir′j) ∈ Ii + Ij ⊂ I, which implies that (rirj − r′ir′j) ∈
Ii + Ij ⊂ I. But, rirj ∈ RiRj ⊂ Ri+j. So rirj ∈ Ri+j and r′ir

′
j ∈ Ri+j. Hence

rirj − r′ir′j ∈ I ∩Ri+j = Ii+j.

3. Now we prove that R/I ∼= ⊕∞k=0Rk/Ik where Ik = Rk ∩ I.

For each r ∈ R , r =
∑n

i=0 ri such that ri ∈ Ri, we define ϕ : R −→ ⊕∞k=0Rk/Ik

by :

ϕ(r) =
∑

ri + Ii

(a) ϕ is ring homomorphism for:

• If r =
∑
ri and t =

∑
ti ∈ R then,

ϕ(r + t) = ϕ(
∑
ri +

∑
ti) = ϕ(

∑
ri + ti) =

∑
(ri + ti) + Ii

= (
∑
ri + Ii) + (

∑
ti + Ii) = ϕ(r) + ϕ(t).

• If r =
∑
ri and t =

∑
ti ∈ R then,

ϕ(r · t) = ϕ((
∑
ri) · (

∑
ti)) = ϕ(

∑∑
riti) =

∑∑
riti + Ii

= (
∑
ri + Ii)(

∑
ti + Ii) = ϕ(r) · ϕ(t).

So ϕ is ring homomorphism.

(b) ϕ is onto for:

Let y ∈ ⊕∞k=0Rk/Ik implies that y =
∑n

i=0 ri + Ii implies that there exists

x ∈ R; x =
∑
ri such that ϕ(x) = ϕ(

∑
ri) =

∑
ri + Ii. Thus ϕ is onto.

(c) ker(ϕ) = I for :

x ∈ ker(ϕ) if and only if ϕ(
∑n

i=0 xi) = 0 if and only if ϕ(
∑n

i=0 xi) =∑
xi + Ii =

∑n
i=0 Ii if and only if

∑
xi ∈

∑
Ii ∼= ⊕∞k=0Ii = I. Hence

R/I ∼= ⊕∞k=0sk/Ik (by the first isomorphism theorem).

4. Now we check the ring axioms:

(a) R/I = ⊕∞k=0Rk/Ik is abelian group.

(b) If ri + Ii, rj + Ij and rn + In ∈ R/I then,

[(ri + Ii) · (rj + Ij)] · (rn + In) = (rirj + Ii+j)(rn + In) = rirjrn + Ii+j+n =

(ri + Ii) · (rjrn + Ij+n) = (ri + Ii) · [(rj + Ij) · (rn + In)].

120

Also, (ri+Ii)·[(rj+Ij)+(rn+In)] = [(ri+Ii)·(rj+Ij)]+[(ri+Ii)·(rn+In)].

Hence associative holds.

Proposition 6.1.6. Let R be a G-graded ring and x, y ∈ R, g ∈ G. Then

(1) (x+ y)g = xg + yg.

(2) (xy)g =
∑
λ∈G

xλyλ−1g.

Proof. Let x, y ∈ R, then x =
∑
h∈G

xh , y =
∑
s∈G

ys.

(1) If xh + ys ∈ Rg −{0}, then xh + ys ∈ Rg ∩ (Rh +Rs) 6= 0. Thus g = h = s and

hence (x+ y)g = xg + yg.

(2) Assume xy =
∑
h,s∈G

xhys. If xhys ∈ Rg then xhys = 0 or hs = g. Thus s = h−1g

and hence, (xy)g =
∑
h∈G

xhyh−1g.

Proposition 6.1.7. Let R be a G-graded ring. Then

(1) Re is a subring of R and 1 ∈ Re.

(2) Rg and R are Re-modules.

Proof. (1) Re is closed under multiplication, because ReRe ⊆ Re so Re is a subring

of R. Let 1 =
∑
s∈G

rs be the homogeneous decomposition of 1 ∈ R. pick ι ∈ G,

and λι ∈ Rι, then λι = 1.λι =
∑
s∈G

rsλι with rsλι ∈ Rs ι. Consequently rsλ = 0

for all s 6= e in G. It follows that rsλ = 0 for all s 6= e in G and for all λ ∈ R.

Therefore, 1 = re ∈ Re.

(2) Since ReRg ⊆ Rg, and RgRe ⊆ Re, we have R and Rg are left Re-modules.

121

6.2 Graded Modules

In this section, we will give a brief overview of some definitions and results of graded

algebras, and differential graded modules over the graded polynomial ring R =

K[x1, x2, . . . , xn] following [54], [64], [3], [23] and [66].

Definition 6.2.1. A graded K-algebra A is a sequence of K-vector spaces

{Aj}j∈Z, together with vector space homomorphisms:

π : Ai ⊗K Aj −→ Ai+j for i, j ∈ Z and

µ : K −→ A0, such that the following diagrams

Ai ⊗ Aj ⊗ Am
π⊗1−−−→ Ai+j ⊗ Am

1⊗π
y yπ

Ai ⊗ Aj+m
π−−−→ Ai+j+m

K ⊗ Aj = Aj ⊗K
1⊗µ //

µ⊗1

��

Aj ⊗ A0

π

��
A0 ⊗ Aj π

// Aj

commute for all i, j,m ∈ Z

Definition 6.2.2. Let A be a graded K-algebra and ψ : Aj⊗KAj → Aj⊗KAi be the

K-vector space isomorphism which takes a⊗ b into b⊗ a. Then A is commutative

iff the following diagram:

Ai ⊗K Aj Aj ⊗K Ai

Ai+j

ψ

π π

commutes for all i, j,∈ Z.
A graded K-algebra A is called graded integral domain iff whenever ab = 0

for some a ∈ Ai and b ∈ Aj then a = 0 or b = 0.

Note that K is a graded K-algebra: the grading is given by

Ki =

{
K if i = 0

0 if i 6= 0

122

Example 6.2.0.6

Let R = K[x1, x2, ..., xn], be the ring of polynomials in n indeterminates over a field

K. Let

Rj = 0 for all j > 0,

R0 = K, and

Rj = the set of all homogeneous polynomials of degree − j if j < 0. Then R is

a graded K-algebra and a graded integral domain, with the negative grading.

Note that in R, if dim(f) = j, i.e., f ∈ Rj then degree of f = −j. From now

on R will be graded in the negative way above, where K is a field of

characteristic two, unless otherwise indicated.

Definition 6.2.3. Let R be a graded K-algebra. A (left) graded R-module

M is a graded K-module, together with a sequence φ : Ri ⊗ Mj → Mi+j of K-

homomorphisms, for i, j ∈ Z such that the following diagrams:

Ri ⊗Rj ⊗Mm
π⊗1−−−→ Ri+j ⊗Mm

1⊗φ
y yφ

Ri ⊗Mj+m
φ−−−→ Mi+j+m

K ⊗Mj

µ⊗1

��

Mj

R0 ⊗Mj φ
//Mj

commute for i, j,m ∈ Z where µ : K −→ R0 here R0 = K, (k ⊗m) 7→ km 7→ km

and (k⊗m) 7→ (µ(k)⊗m) 7→ φ(µ(k)⊗m) = km is the map given by the definition.

We denote this by M = ⊕
∑∞

i=−∞Mi. Similarly, we can define the right graded

R-modules. If R is commutative, we may regard left R-modules as right R-modules,

and vice versa. If m ∈Mj define dim(m) = j.

Definition 6.2.4. Let M = ⊕
∞∑

i=−∞
Mi and N = ⊕

∞∑
i=−∞

Ni be a graded R-modules.

A map of degree P from M to N is a family F = {fn : Mn → Nn+P , n ∈ Z} of

R-module homomorphisms such that F (rm) = rF (m), for r ∈ R and m ∈M .

Note that we will consider all elements in R to be homogeneous, so if we write

a ∈ R, we mean a ∈ Ri for some i ∈ Z.

123

Definition 6.2.5. A differential graded (DG) R-module M of degree P is a

graded R-module with an R-module homomorphism ∂ : M → M of degree P such

that ∂2 = 0.

Definition 6.2.6. A graded R-module M is is said to be generated by a set

S = ∪∞i=−∞Si, where Si ⊆ Mi for all i, if every element g ∈ Mi can be written as

follows:

g =
∑

rjsj, where rj ∈ R and sj ∈ S such that dim(rj) + dim(sj) = i. (6.2.1)

The set S is called a generating set for M . Moreover, M is said to be finitely

generated if it has a finite generating set S. M is free if there exists a generating

set S such that every g ∈Mi can be uniquely expressed as in (6.2.1) above.

Here we give an example of DG R-module, and also an illustration of a construc-

tion of Carlsson’s in [15].

Example 6.2.0.7

[64] Let K = Z/2, and G = Z/2 ∼= {1, a}, where a2 = 1.

Let R = K[x] be the graded polynomial ring in one variable of dimension −1

over K. Define the chain complex C∗ by

0→ 0→ C1
δ1−→ C0

δ0−→ 0→ 0

where; C1
∼= Z/2⊕ Z/2, C0

∼= Z/2⊕ Z/2,

δ1(1, 0) = (0, 1) + (1, 0) (6.2.2)

δ1(0, 1) = (1, 0) + (0, 1) and

δi ≡ 0 for i 6= 1.

Clearly δj−1 ◦ δj = 0 for all j, and the matrix of δ1 with respect to the basis

{(1, 0), (0, 1)} is[
1 1

1 1

]
, since K = Z/2

For i = 0, 1, define an action of G on Ci by

a(1, 0) = (1, 0) and

a(0, 1) = (1, 0). Then

124

aδ1 = δ1a for i = 0, 1 and hence for all i. i.e., C∗ is a chain complex of K[G]

-modules.

Denote by (1, 0)0 and (0, 1)0 for the generators of C0, and similarly (1, 0)1 and

(0, 1)1 for the generators of C1. Since Ci ∼= Z/2 ⊕ Z/2 ∼= Z/2[G] for i = 0, 1; Ci is

a free Z/2[G]-module for all i, and a basis for C0 is {e0,1 = (1, 0)0, e0,2 = (0, 1)0}.
Similarly a basis for C1 is {e1,1 = (1, 0)1, e0,2 = (0, 1)1}.

From this chain complex C∗, Carlsson constructs in [15] a free differential graded

module M over the graded polynomial ring K[X] as follows:

Let Mi = 0 for i ≥ 2

M1 = 0 · C0 ⊕ 1 · C1

M0 = 1 · C0 ⊕ x · C1

M−1 = x · C0 ⊕ x2 · C1

M−2 = x2 · C0 ⊕ x3 · C1
...

M−j = xj · C0 ⊕ xj+1 · C1

M−j−1 = xj+1 · C0 ⊕ xj+2 · C1
...

One can see that, for j ≥ −1, the map

R−i ⊗M−j −→M−(i+j)

axi ⊗ (xj · c0 , x
j+1 · c1) 7−→ (αc0x

i+j , αc1x
i+j+1)

defines an R-module structure on M .

For j ≥ −1, define ∂−j : M−j −→M−(j+1) by

∂−j(x
j · c0, x

j+1 · c1) = [xj+1δ1(c1) + xj+1(a− 1)c0 , x
j+2(a− 1)c1] (6.2.3)

where δ1 as in equation (6.2.3) and a as in the assumption. Now

∂−j−1 ◦ ∂−j(xj · c0 , x
j+1 · c1)

= ∂−j−1[xj+1δ1(c1) + xj+1(a− 1)c0 , x
j+2(a− 1)c1]

= [xj+2 · δ1((a− 1)c1) + xj+2(a− 1)δ1(c1) , xj+3(a− 1)(a− 1)c1]

= [xj+2 · [δ1a(c1)− δ1(c1)] + xj+2 · [aδ1(c1)− δ1(c1)] , xj+3(a2 − 1)c1]

= [xj+2 · [aδ1(c1)−δ1(c1)+aδ1(c1)−δ1(c1)] , xj+3(a2−1)c1], (since aδ1 = δ1a)

= 0 (since a2 = 1 and K = Z/2).

Let e1 = e1,1, e2 = e1,2, e3 = e0,1 and e4 = e0,2. If m ∈ M−j, then m can be

written uniquely as

125

m = xj · c0 + xj+1c1 for some c0 ∈ C0 and c1 ∈ C1.

But c0 = α1e0,1 + α2e0,2 and c1 = β1e1,1 + β2e1,2 for some αi
′s and βi

′s in

K[G]. Therefore,

m = xj(α1e0,1 + α2e0,2) + xj+1(β1e1,1 + β2e1,2)

= (xjα1)e0,1 + (xjα2)e0,2 + (xj+1β1)e1,1 + (xj+1β2)e1,2

= (xj+1β1)e1 + (xj+1β2)e2 + (xjα1)e3 + (xjα2)e4,

and hence γ = {ei}4
i=1 is an R-basis for M , and M , is a free DG R-module.

Example 6.2.0.8

[63] Let R be a differential graded algebra and M and N be DG R-modules. Suppose

f : M → N is a morphism of DG R-modules. Then ker(f), coker(f), im(f) and

coim(f) are also DG R-modules.

Let M be free finite generated differential graded R−module of degree -1 with

basis S and differential ∂. Then S can be written as a finite union ∪mi=1Ski. So there

exist two integers t > r such that Mi = 0 for i > tj and sj = φ for j > t and j ≤ r.

Thus we get the following diagram:

M : 0 −→ · · · −→ 0 −→Mt −→Mt−1 −→ · · · −→Mr+1 −→ · · ·
∪ · · · ∪ ∪ ∪ · · · ∪ · · ·

S : φ · · · φ St St−1 · · · Sr+1 φ · · ·

Note that some of {Sj}tj=r+1 could be φ.

To make the last diagram clear, Let as consider the following example.

Example 6.2.0.9

Let R = K[x, y]. Then 0 = R1 = R2 = · · · , R0 = K and R−1 is the set of all

homogeneous polynomials of degree 1, R−2 is the set of all homogeneous polynomials

of degree 2, and so on. Hence x3y ∈ R−4 and of degree 4 but dimension -4. Now,

let M be a left R-module with basis {e1, e2}. suppose e1, e2 ∈ MT for some T , so

ST = {e1, e2} and Si = φ if i 6= T .

Note that dim(am) = dim(a)+dim(m), where a ∈ R, m ∈M . If g ∈MT , then g

can be written uniquely as g = ae1 +be2. Thus T = dim(ae1) = dim(a)+dim(e1) =

dim(a)+T , so dim(a) = 0, i.e., a ∈ K. Similarly, b ∈ K. ThereforeMT = Ke1⊕Ke2.

If g ∈ Mj and j > T , then g can be written uniquely as : g = ae1 + be2. Thus

j = dim(ae1) = dim(a) + dim(e1) = dim(a) + T . So dim(a) = j − T > 0. Hence

a ∈ Rj−T = 0. Similarly b = 0 Therefore, Mj = 0 for j > T .

If g ∈ Mj and j < T , then g can be written uniquely as : g = ae1 + be2, and

126

hence j = dim(ae1) = dim(a) + dim(e1) = dim(a) + T . Then dim(a) = j − T < 0.

Hence a ∈ Rj−T . Similarly, b ∈ Rj−T Therefore, Mj = Rj−T e1 ⊕ Rj−T e2 for j < T .

Hence, we get

M : 0 −→ · · · −→ 0 −→ MT
∂T−→ MT−1

∂T−1−→ Mr+1 −→ · · ·⋃
| · · ·

⋃
|

⋃
|

⋃
|

⋃
|

S : φ · · · φ ST = {e1, e2} φ φ · · ·

Suppose that M is a free finitely generated differential graded R-module of degree

-1 with basis S, and differential ∂. Let L = the total number of elements in the

R-basis S. Then ∂ will be completely determined by an L × L matrix as in the

diagram ∆ of Figure 6.1:

Figure 6.1: Diagram ∆

with ∂2 = 0.

Note that, some of the constants could be equal zeros. Also, some of the homo-

geneous polynomials may be equal to zero.

127

Similarly, if degree of ∂ equal −j such that j ≥ 0, then we can see the matrix of

∂ with respect to the basis S as in the diagram Λ.1 of Figure 6.2:

Figure 6.2: Diagram Λ.1

with ∂2 = 0.

Finally, if degree of ∂ equal is j such that j > 0 , then we can see the matrix of

∂ with respect to the basis S as in the diagram Λ.2 of Figure 6.3::

Figure 6.3: Diagram Λ.2

128

Chapter 7

Solvable Differential Graded

Modules

Let K be a field of characteristic two, R = K[x1, x2, . . . , xn] is a graded ring of poly-

nomials graded in the negative way, and M be a free finitely generated differential

graded R-module of degree P such that (P ≤ −2). We will give an example that M

is not necessarily solvable when (P ≤ −2).

In this Chapter we will construct a classification for some types of differential

graded R-modules, based on the degree P of the differential module and dimension

of the module. This classification gives a partial algorithm to test whether such

modules are solvable. For modules outside the classification we cannot decide, using

our methods, whether or not they are solvable.

7.1 Composition Series

We will describe in this section the composition series by giving a definition for this

series as well as give some of the concepts and definitions and theories that will help

us in our study of differential graded modules.

Definition 7.1.1. By [64] Let M be a finitely generated free DG R-module of

degree P . A composition series for M is a sequence of free DG R-modules

0 = C0 ⊂ C1 ⊂ . . . ⊂ Cq = M

such that (Cj/Cj−1) is free DG R-modules, whose differential is identically zero i.e.,

∂(Cj/Cj−1) = 0. The length H of the series is called the composition length.

129

Any module having a basis of size t is isomorphic to any other module having a

basis of size t. If π : M −→ F is a surjective homomorphism from an R-module to

a free module F then M ∼= Ker(π)⊕ F . Therefore, if M has a composition series,

as in Definition 7.1.1 then Cj ∼= Cj−1 ⊕ (Cj/Cj−1), ∀ j (see [42]).

Suppose M is finitely generated free DG R-module of degree P . M has basis S =

ST∪. . .∪ST−k, T, k ≥ 0. If g ∈MT then g =
∑
rjsj where dim(rj)+dim(sj) = T . As

sj ∈ S we have dim(sj) ≤ T and as dim(rj) ≤ 0 we have dim(sj) = T−dim(rj) ≥ T .

This holds ∀ j, so M is generated by ST .

Similarly, if g ∈MT+s, where s 6= 0 we have g =
∑
rjsj with dim(rj)+dim(sj) =

T + s. So T ≥ dim(sj) = T + s− dim(rj) ≥ T + s (as −dim(rj) ≥ 0). If s > 0, it

follows that MT+s = 0, while if s < 0 then, setting t = −s, MT−t is generated by

ST−t ∪ . . . ∪ ST .

Note that, as MT−t is generated by ST−t ∪ . . .∪ST , it is also a finitely generated

free DG R-module for t = 0, . . . , k. (MT−t is free on ST−t ∪ . . .∪ST , since M is free

on S.)

Suppose M has a composition series 0 = C0 ⊂ C1 ⊂ . . . ⊂ Cq = M . Then Cj is

finitely generated free; so has a finite basis Sj, say j = 0, . . . , H. Then Sj = ∪∞t=0Si,

where (Sj)T−t ∈ MT−t; so (Cj)T−t is free on (Sj)T−t. Moreover we have a sequence

of free DG R-modules,

∀t 0 = (C0)T−t ⊆ (C1)T−t ⊆ . . . ⊆ (Cq−1)T−t ⊆ (Cq)T−t = MT−t.

Also, as Cj/Cj−1 is free, so is (
Cj
Cj−1

)T−t = (Cj)T−t/(Cj−1)T−t, for all t ≥ 0.

Finally as ∂(Cj/Cj−1) = 0 we have ∂((Cj)T−t/(Cj−1)T−t) = 0 ∀ t. Therefore,

MT−t has a composition series. So MT ,MT−1, . . . are free DG R-modules and also

Cq/Cq−1 is free DG R-modules by the definition.

For a special case if degree ∂ is -1, i.e, P = −1 then we have that,

0

↓
0 = (C0)T ⊂ (C1)T ⊂ . . . ⊂ (Cq−1)T ⊂ (Cq)T = MT

↓ ∂T
0 = (C0)T−1 ⊂ (C1)T−1 ⊂ . . . ⊂ (Cq−1)T−1 ⊂ (Cq)T−1 = MT−1

↓ ∂T−1

0 = (C0)T−2 ⊂ (C1)T−2 ⊂ . . . ⊂ (Cq−1)T−2 ⊂ (Cq)T−2 = MT−2

↓ ∂T−2

130

...

Therefore, ∂(C1) = 0, i.e., ∂(C1) ⊆ C0 = {0}, ∂(C2) ⊆ C1, . . . ∂(Cq) ⊆ Cq−1.

So one can note that, the matrix ∂ with respect to the basis S is a strictly upper

triangular.

In the general case, if degree ∂ = −j such that j > 0, then

0

↓
0 = (C0)T ⊂ (C1)T ⊂ . . . ⊂ (Cq−1)T ⊂ (Cq)T = MT

↓ ∂T
0 = (C0)T−j ⊂ (C1)T−j ⊂ . . . ⊂ (Cq−1)T−j ⊂ (Cq)T−j = MT−j

↓ ∂T−j
0 = (C0)T−2j ⊂ (C1)T−2j ⊂ . . . ⊂ (Cq−1)T−2j ⊂ (Cq)T−2j = MT−2j

↓ ∂T−2j
...

Then (Cq)j/(Cq−1)j−1 is free as Cj/Cj−1 is free and ∂T ((Cq)T/(Cq−1)T) = 0,

which means ∂T ((Cq)T) ⊂ (Cq−1)T−j. So Mj has composition series as follows,

0 = (C0)j ⊆ (C1)j ⊆ . . . ⊆ (Cq−1)j ⊆ (Cq)j = Mj.

Therefore, the matrix of ∂ with respect to the basis S is a strictly upper triangular

with the diagonal elements which are zeros.

Example 7.1.0.10

Let K be a field and R = K[x], be a polynomials ring with one variable over the

field K. Let M be a graded R-module with basis S = {e1, e2, e3, e4}, such that

{e1, e2} have the same dimension T , while {e3, e4} have dimension T − 1. Then M

is graded as follows:

0

↓
e1, e2 ∈MT = k · e1 ⊕ k · e2.

↓
e3, e4 ∈MT−1 = R−1 · e1 ⊕R−1.e2 ⊕ k · e3 ⊕ k · e4.

↓
...

131

↓
MT−i = R−i · e1 ⊕R−i.e2 ⊕R−i · e3 ⊕R−i.e4.

↓
...

We define the differential operator ∂ with respect to the basis S as follows:

∂(e1) = 0,

∂(e2) = 0,

∂(e3) = x2e1 + x2e2, and

∂(e4) = x2e1 + x2e2.

Then the matrix of ∂ with respect to the basis S is given by:

∂ =


0 0 x2 x2

0 0 x2 x2

0 0 0 0

0 0 0 0


It’s clear that ∂2 = 0.

Now, dim(∂(e3)) = dim(x2e1) = dim(e1) + dim(x2) = T − 2. Similarly,

dim(e3) = dim(e4) = T − 1, while dim(∂(e4)) = T − 2, so degree of the differ-

ential ∂ is equal to -1.

Let (C0) = 0, (C1) = 〈e1, e2〉 over R = {f1e1 + f2e2 : f1, f2 ∈ R}, and (C2) =

M . Thus, (C1/C0) = 〈e1, e2〉. But, ∂(e1) = ∂(e2) = 0, So ∂(C1/C0) = 0. Now,

(C2/C1) = 〈e3, e4〉, but ∂(e3) = ∂(e4) = x2e1 + x2e2 ∈ C1, also ∂((C2/C1)) =

∂(C1) = 0. Therefore, we have that 0 = (C0) ⊂ (C1) ⊂ (C2) = M which is a

composition series of M .

Note: If M has a composition series, then the matrix of ∂ is similar to the upper

triangular matrix has its diagonal zeros and we call it a strictly upper triangular

matrix.

Example 7.1.0.11

Let M as in the previous example, and the differential operator ∂ with respect to

the basis S = {e1, e2, e3, e4} has the following form:

132

∂ =


x x 0 0

x x 0 0

1 1 x x

1 1 x x


Then ∂2 = 0 and the differential operator ∂ has degree is -1. Let β1 = e3 + e4 ,

β2 = e1 + e2, β3 = e2, and β4 = e3.

We claim that: β1, β2, β3 and β4 form a basis to M over R. We will show that:

Let m ∈ Mj. Then, m = α1e1 + α2e2 + α3e3 + α4e4. Hence, m = α4β1 +

α1β2 + (α1 + α2)β3 + (α3 + α4)β4. Also, if α1β1 + α2β2 + α3β3 + α4β4 = 0, then

α1(e3+e4)+α2(e1+e2)+α3e2+α4e3 = 0. Thus, α2e1+(α2+α3)e2+(α1+α4)e3+α1e4 =

0. But, {e1, e2, e3, e4} is a basis for M, also α2 = α1 = 0 and α2 + α3 = α1 + α4 = 0

this implies that α1 = α2 = α3 = α4 = 0. So, {β1, β2, β3, β4, } is a basis to M.

Now, ∂(β1) = ∂(e3)+∂(e4) = (xe3+xe4)+(xe3+xe4) = 0, ∂(β2) = ∂(e1)+∂(e2) =

(xe1 +xe2 +e3 +e4)+(xe1 +xe2 +e3 +e4) = 0, ∂(β3) = ∂(e2) = xe1 +xe2 +e3 +e4 =

β1 + xβ2 and ∂(β4) = ∂(e3) = xe3 + xe4 = xβ1. Hence, the matrix ∂ with respect to

the basis {β1, β2, β3, β4} is given by:

∂∗ =


0 0 1 x

0 0 x 0

0 0 0 0

0 0 0 0


Let (C0) = 0, (C1) = 〈β1, β2〉, and (C2) = M , then one can be easily shows that M

has a composition series.

Theorem 7.1.2. [15] Let M be a free finitely generated differential graded R-module

with differential ∂ of degree P = −1, then M has a composition series.

Remark 7.1.3. If M admits a composition series, then we say that M is solvable.

Remark 7.1.4. Let M be any DGR-modules of rank 1 and ∂ be a differential on

M of any degree. Then the matrix of ∂ with respect to the basis {e1} is given by

∂ = [a], a ∈ R. But ∂2 = 0 which implies that a = 0. Then M has a composition

series. From now we will only consider DG R−modules of rank greater than 1.

In our work we will use the following lemma:

133

Lemma 7.1.5. [64] Let M be a free finitely generated differential graded R-module

with differential ∂ and basis S = {ei}mi=1. consider the following elementary row and

column operations, on the matrix of ∂ with respect to this basis:

(1) Exchange row(i) and row(j), and at the same time exchange column(i) and

column(j).

(2) Replace row (j) by row (j)+g(row(i)) and at the same time replace column(i)

by column(i) + g(column(j)) , where g ∈ R and deg(g) = dim(ej) - dim(ei).

Then each of these operations corresponds to a change of basis in M .

Remark 7.1.6. Since the characteristic of the field which we deal with it is two, then

(-) is (+), thus the step (2) of Lemma 7.1.5 becomes that:

(Replace row(j) by row(j)− g(row(i)) and at the same time replace column(i)

by column(i)− g(column(j)) , where g ∈ R and deg(g) = dim(ej)− dim(ei). Then

each of these operations corresponds to a change of basis in M).

Remark 7.1.7. If the matrix of ∂ with respect to basis S is a strictly upper triangular

matrix, then M is solvable.

7.2 Solvable differential Graded Modules

In the following example we show that if R = K[x1, x2, . . . , xn], n ≥ 2 and M is

a free finitely generated differential graded R-module with differential ∂ of degree

P ≤ −2, then M is not necessarily solvable.

Example 7.2.0.12

Let R = K[x1, x2, . . . , xn] be a graded ring of polynomials graded in the negative

way and M be a free finitely generated differential graded R-module of dimension

four with basis {e1, e2, e3, e4}. Suppose the differential ∂ on M has degree (P ≤ −2),

and its matrix with respect to {e1, e2, e3, e4} is

∂ =


x1x

m−1
2 0 0 x2

1x
m−2
2

0 x1x
m−1
2 x2

1x
m−2
2 0

0 xm2 x1x
m−1
2 0

xm2 0 0 x1x
m−1
2


Clearly, ∂2 = 0.

134

We suppose M has a composition series. Then there exists an invertible matrix

B = {fij}4
i,j=1, and strictly upper triangular matrix ∂′ such that ∂ ·B = B · ∂′, i.e.,

x1x
m−1
2 0 0 x2

1x
m−2
2

0 x1x
m−1
2 x2

1x
m−2
2 0

0 xm2 x1x
m−1
2 0

xm2 0 0 x1x
m−1
2



f11 f12 f13 f14

f21 f22 f23 f24

f31 f32 f33 f34

f41 f42 f43 f44

 =


f11 f12 f13 f14

f21 f22 f23 f24

f31 f32 f33 f34

f41 f42 f43 f44




0 g1 g2 g3

0 0 g4 g5

0 0 0 g6

0 0 0 0


Multiply row(1) by column(1) to get, x1x

m−1
2 f11 + x2

1x
m−2
2 f41 = 0 which implies

that x1x
m−1
2 f11 = x2

1x
m−2
2 f41 (since K is of characteristic 2) and this implies that

x2f11 = x1f41.

Now, x2 | x1f41 implies that x2 | f41, say f41 = x2g4. Similarly f11 = x1g1.

In a similar way multiply row(2) with column(1) to get, x1x
m−1
2 f21+x2

1x
m−2
2 f31 =

0, which implies that x1x
m−1
2 f21 = x2

1x
m−2
2 f31 (since K is of characteristic 2) which

implies that x2f21 = x1f31 which implies that x2 | x1f31 which implies that x2 | f31,

say f31 = x2g3. Similarly, f21 = x1g2. Thus, fj1(0, 0, . . . , 0) = 0 for j = 1, 2, 3, 4.

Now since B is an invertible, there exists

B−1 =


h11 h12 h13 h14

h21 h22 h23 h24

h31 h32 h33 h34

h41 h42 h43 h44


such that BB−1 = I.

Therefore, h11f11 + h12f21 + h13f31 + h14f41 = 1.

Now, by evaluating both sides at (0, 0, . . . , 0) we will get that 0 = 1, which is a

contradiction. So M does not have a composition series. Hence M is not solvable.

Proposition 7.2.1. Let K be a field and let R = K[x1, x2, . . . , xn] be a graded ring

of polynomials graded graded in the negative way. Let M be a free finitely generated

differential graded R-module with basis S = {e1, e2}, and with differential ∂ of degree

135

P ≤ −2. Suppose, dim(e1) = k1 and dim(e2) = k2, such that k1 > k2. If k1− k2 = t

such that t ≥ −P , then M is solvable.

Proof. M is graded as follows:

0

↓
e1 ∈Mk1 = K · e1 ⊕ 0 · e2.

↓
...

↓
e2 ∈Mk2 = Rk2−k1 · e1 ⊕ k.e2.

↓
...

↓
ej ∈Mkj = Rkj−k1 · e1 ⊕Rkj−k2 · e2 ⊕ . . .⊕ k.em.

↓
...

Suppose that,

∂(e1) = f11e1 + f21e2

∂(e2) = f12e1 + f22e2

Then the matrix of ∂ with respect to the basis {ei}2
i=1 is given by:

∂ =

[
f11 f12

f21 f22

]
Now,

dim(∂(e1)) = dim(f11) + dim(e1),

k1 + P = dim(f11) + k1, implies that

dim(f11) = P < 0, and thus deg(f11) = −P.

So,

dim(∂(e1)) = dim(f21) + dim(e2),

k1 + P = dim(f21) + k2, implies that

136

dim(f21) = P + k1 − k2 ≥ P − P = 0, and thus

f21 = C 6= 0 (constant) or f21 = 0.

Also,

dim(∂(e2)) = dim(f12) + dim(e1),

k2 + P = dim(f12) + k1, implies that

dim(f12) = P + k2 − k1 < 0, and thus deg(f12) = −(P + k2 − k1).

So,

dim(∂(e2)) = dim(f22) + dim(e2),

k2 + P = dim(f22) + k2, implies that

dim(f22) = P + k2 − k2 = P, and thus deg(f22) = −P.

Hence, the matrix of ∂ is given by:

∂ =

[
f11 f12

f21 f22

]
where f21 = 0 or f21 = C 6= 0 (constant).

Case (1): If f21 = 0, then the matrix of ∂ is given by

∂ =

[
f11 f12

0 f22

]
since ∂2 = 0, implies that f 2

11 = 0 and f 2
22 = 0.

Thus, f11 = 0 and f22 = 0.

Therefore, the matrix of ∂ is given by:

∂ =

[
0 f12

0 0

]

Note that, ∂ is strictly upper triangular matrix.

To show, M has a composition series:

Let C0 = 0, C1 = 〈e1〉 and C2 = 〈e1, e2〉.
Then Cj/Cj−1 is free, for all j = 1, 2.

If x ∈ C2, then

137

x = α1e1 + α2e2

So, ∂(x) = α1∂(e1) + α2∂(e2)

∂(x) = α1(0) + α2(f12e1) ∈ C1.

Thus, ∂(C2) ⊆ C1, and then ∂(C2/C1) = 0.

Also, if x ∈ C1, then x = α1e1 and so,

∂(x) = α1∂(e1) = α1(0) = 0 ∈ C0.

Hence, ∂(C1) ⊆ C0, and then ∂(C1/C0) = 0.

Therefore, 0 = C0 ⊆ C1 ⊆ C2 = M is a composition series for M .

Hence, M is solvable.

Case (2): If f21 = C 6= 0,(constant), then the matrix of ∂ is given by:

∂ =

[
f11 f12

C f22

]
Since, ∂2 = 0, we have that,

f 2
11 + Cf12 = 0 and Cf12 + f 2

22 = 0.

Hence, f11 = f22 and Cf12 = f 2
11.

Now, by Lemma 7.1.5, replace row(1) by row(1)− (f11
C

)row(2) and at the same

time replace column(2) by column(2)− (f11
C

)column(1) to get:

∂ =

[
0 0

C 0

]
By Lemma 7.1.5, replace row(1) by row(2) and at the time replace column(2) by

column(1) to get:

∂ =

[
0 C

0 0

]
Therefore, M is solvable as before (Case 1).

Proposition 7.2.2. Let K be a field and let R = K[x1, x2, . . . , xn] be a graded

ring of polynomials graded in the negative way. Let M be a free finitely generated

differential graded R-module with basis S = {ei}3
i=1 and with differential ∂ of degree

(P ≤ −2). Suppose that, dim(ei) = ki such that 1 ≤ i ≤ 3 and ki > ki+1. If

ki − ki+1 = ti such that ti ≥ −P , then M is solvable.

138

Proof. M is graded as follows:

0

↓
e1 ∈Mk1 = K · e1 ⊕ 0 · e2 ⊕ 0 · e3.

↓
...

↓
e2 ∈Mk2 = Rk2−k1 · e1 ⊕ k.e2 ⊕ 0 · e3.

↓
...

↓
e3 ∈Mk3 = Rk3−k1 · e1 ⊕Rk3−k2 · e2 ⊕ k · e3.

↓
...

↓
ej ∈Mkj = Rkj−k1 · e1 ⊕Rkj−k2 · e2 ⊕Rkj−k3 · e3 ⊕ . . .⊕ k.ej.

↓
...

Suppose that,

∂(e1) = f11e1 + f21e2 + f31e3

∂(e2) = f12e1 + f22e2 + f32e3

∂(e3) = f13e1 + f23e2 + f33e3

Then the matrix of ∂ with respect to the basis {e1}3
i=1 is given by:

∂ =

f11 f12 f13

f21 f22 f23

f31 f32 f33


Now,

dim(∂(e1)) = dim(f11) + dim(e1),

k1 + P = dim(f11) + k1, implies that

dim(f11) = P, and thus deg(f11) = −P.

139

So,

dim(∂(e1)) = dim(f21) + dim(e2),

k1 + P = dim(f21) + k2, implies that

dim(f21) = P + k1 − k2 = P + t1 ≥ P − P = 0, and thus

f21 = 0 or f21 = C 6= 0 (constant).

Also,

dim(∂(e1)) = dim(f31) + dim(e3),

k1 + P = dim(f31) + k3, implies that

dim(f31) = k1 − k3 + P ≥ −2P + P = −P, and thus f31 = 0

Also,

dim(∂(e2)) = dim(f12) + dim(e1),

k2 + P = dim(f12) + k1, implies that

dim(f12) = k2 − k1 + P and thus deg(f12) = −(k2 − k1 + P).

So,

dim(∂(e2)) = dim(f22) + dim(e2),

k2 + P = dim(f22) + k2, implies that

dim(f22) = P + k2 − k2 = P, and thus deg(f22) = −P.

So,

dim(∂(e2)) = dim(f32) + dim(e3),

k2 + P = dim(f32) + k3, implies that

dim(f32) = k2 − k3 + P ≥ −P + P = 0, and thus

f32 = 0 or f32 = α 6= 0 (constant).

Also,

dim(∂(e3)) = dim(f13) + dim(e1),

k3 + P = dim(f13) + k1, implies that

140

dim(f13) = k3 − k1 + P < 0 and thus deg(f13) = −(k3 − k1 + P).

So,

dim(∂(e3)) = dim(f23) + dim(e2),

k3 + P = dim(f23) + k2, implies that

dim(f23) = P + k3 − k2 < 0 and thus deg(f23) = −(k3 − k2 + P).

So,

dim(∂(e3)) = dim(f33) + dim(e3),

k3 + P = dim(f33) + k3, implies that

dim(f33) = P, and thus deg(f33) = −P.

From the previous steps we can conclude the following:

1. f31 = 0,

2. f21 = 0 or f21 = C 6= 0 (constant),

3. f32 = 0 or f32 = α 6= 0 (constant),

4. deg(f11) = deg(f22) = deg(f33) = −P.

Hence,

∂ =

f11 f12 f13

f21 f22 f23

0 f32 f33


Case (1): If f21 = 0, then the matrix of ∂ is given by

∂ =

f11 f12 f13

0 f22 f23

0 f32 f33


since ∂2 = 0, implies that f 2

11 = 0 and then f11 = 0.

Thus,

∂ =

0 f12 f13

0 f22 f23

0 f32 f33



141

In this case either f32 = 0 or f32 = α 6= 0 (constant).

Case (1.1): If f32 = 0, then the matrix of ∂ is given by

∂ =

0 f12 f13

0 f22 f23

0 0 f33


since ∂2 = 0, implies that, f 2

22 = f 2
33 = 0.

So, f22 = f33 = 0. (since R is an integral domain).

Thus,the matrix of ∂ is given by

∂ =

0 f12 f13

0 0 f23

0 0 0


To show, M has a composition series:

Let C0 = 0, C1 = 〈e1〉, C2 = 〈e1, e2〉, and C3 = 〈e1, e2, e3〉.
Then Cj/Cj−1 is free, for all 1 ≤ j ≤ 3.

If x ∈ C3, then x = α1e1 + α2e2 + α3e3,

So, ∂(x) = α1∂(e1) + α2∂(e2) + α3∂(e3),

∂(x) = α1(0) + α2(f12e1) + α3(f13e1 + f23e2) ∈ C2.

Hence, ∂(C3) ⊆ C2, and then ∂(C3/C2) = 0.

Also, if x ∈ C2, then x = α1e1 + α2e2

So, ∂(x) = α1∂(e1) + α2∂(e2)

∂(x) = α1(0) + α2(f12e1) ∈ C1.

Hence, ∂(C2) ⊆ C1, and then ∂(C2/C1) = 0.

Finally, if x ∈ C1, then x = α1e1 and so,

∂(x) = α1∂(e1) = α1(0) = 0 ∈ C0.

Hence, ∂(C1) ⊆ C0, and then ∂(C1/C0) = 0.

Therefore, 0 = C0 ⊆ C1 ⊆ C2 ⊆ C3 = M is a composition series for M .

Thus, M is solvable.

Case (1.2): If f32 = α 6= 0 (constant), then the matrix of ∂ is given by:

∂ =

0 f12 f13

0 f22 f23

0 α f33



142

Now, by Lemma 7.1.5, replace row(2) by row(2)− (f22
α

)row(3) and at the same

time replace column(3) by column(3)− (f22
α

)column(2) to get:

∂ =

0 f12
αf13−f22f12

α

0 0 0

0 α 0


By Lemma 7.1.5, replace row(2) by row(3) and at the time replace column(3)

by column(2) to get:

∂ =

0 αf13−f22f12
α

f12

0 0 α

0 0 0


Therefore, M is solvable as before (Case 1.1).

Case (2): If f21 = C 6= 0 (constant), then the matrix of ∂ is given by:

∂ =

f11 f12 f13

C f22 f23

0 f32 f33


In this case either f32 = 0 or f32 = α 6= 0 (constant).

Case (2.1): If f32 = 0, then the matrix of ∂ is given by:

∂ =

f11 f12 f13

C f22 f23

0 0 0


By Lemma 7.1.5, replace row(1) by row(1)− (f11

C
)row(2) and at the same time

replace column(2) by column(2)− (f11
C

)column(1) to get:

∂ =

0 0 Cf13−f11f23
C

C 0 f23

0 0 f33


By Lemma 7.1.5, replace row(1) by row(2) and at the time replace column(2)

by column(1) to get:

143

∂ =

0 C f23

0 0 Cf13−f11f23
C

0 0 f33


Therefore, M is solvable as before (Case 1.1).

Case (2.2): f32 = α 6= 0 (constant),then the matrix of ∂ is given by:

∂ =

f11 f12 f13

C f22 f23

0 α f33


Since, ∂2 = 0, multiply row(3) by column(1), we will get that αC = 0, but this

is a contradiction because C 6= 0 and α 6= 0.

Therefore, this case is not possible.

Proposition 7.2.3. Let K be a field and let R = K[x1, x2, . . . , xn] be a graded

ring of polynomials graded in the negative way. Let M be a free finitely generated

differential graded R-module with basis S = {ei}4
i=1 and with differential ∂ of degree

(P ≤ −2). Suppose that, dim(ei) = ki such that 1 ≤ i ≤ 4, and ki > ki+1. If

ki − ki+1 = ti such that ti ≥ −P , then M is solvable.

Proof. M is graded as follows:

0

↓
e1 ∈Mk1 = K · e1 ⊕ 0 · e2 ⊕ 0 · e3 ⊕ 0 · e4.

↓
...

↓
e2 ∈Mk2 = Rk2−k1 · e1 ⊕ k.e2 ⊕ 0 · e3 ⊕ 0 · e4.

↓
...

↓
e3 ∈Mk3 = Rk3−k1 · e1 ⊕Rk3−k2 · e2 ⊕K · e3 ⊕ 0 · e4.

↓
...

↓

144

e4 ∈Mk4 = Rk4−k1 · e1 ⊕Rk4−k2 · e2 ⊕Rk4−k3 · e3 ⊕K · e4.

↓
...

↓
ej ∈Mkj = Rkj−k1 · e1 ⊕Rkj−k2 · e2 ⊕Rkj−k3 · e3 ⊕Rkj−k4 · e4 ⊕ . . .⊕K.ej.

↓
...

Suppose that,

∂(e1) = f11e1 + f21e2 + f31e3 + f41e4

∂(e2) = f12e1 + f22e2 + f32e3 + f42e4

∂(e3) = f13e1 + f23e2 + f33e3 + f43e4

∂(e4) = f14e1 + f24e2 + f34e3 + f44e4

Then the matrix of ∂ with respect to the basis {e1}4
i=1 is given by:

∂ =


f11 f12 f13 f14

f21 f22 f23 f24

f31 f32 f33 f34

f41 f42 f43 f44


Now,

dim(∂(e1)) = dim(f11) + dim(e1),

k1 + P = dim(f11) + k1 implies that,

dim(f11) = P, and thus deg(f11) = −P.

So,

dim(∂(e1)) = dim(f21) + dim(e2),

k1 + P = dim(f21) + k2 implies that,

dim(f21) = P + k1 − k2 = P + t1 ≥ P − P = 0, and thus

f21 = 0 or f21 = C1 6= 0 (constant).

Also,

dim(∂(e1)) = dim(f31) + dim(e3),

145

k1 + P = dim(f31) + k3, implies that

dim(f31) = k1 − k3 + P = −2P + P = −P ≥ 2 and thus f31 = 0, similarly f41 = 0

Also,

dim(∂(e2)) = dim(f12) + dim(e1),

k2 + P = dim(f12) + k1 implies that,

dim(f12) = k2 − k1 + P < 0 and thus deg(f12) = −(k2 − k1 + P).

So,

dim(∂(e2)) = dim(f22) + dim(e2),

k2 + P = dim(f22) + k2 implies that,

dim(f22) = P + k2 − k2 = P, and thus deg(f22) = −P.

So,

dim(∂(e2)) = dim(f32) + dim(e3),

k2 + P = dim(f32) + k3 implies that,

dim(f32) = k2 − k3 + P ≥ −P + P = 0, and thus

f32 = 0 or f32 = C2 6= 0 (constant).

So,

dim(∂(e2)) = dim(f42) + dim(e4),

k2 + P = dim(f42) + k4, implies that

dim(f42) = k2 − k4 + P > 0, and thus f42 = 0 or f43 = C3 6= 0 (constant).

Also,

dim(∂(e3)) = dim(f13) + dim(e1),

k3 + P = dim(f13) + k1 implies that,

dim(f13) = k3 − k1 + P < 0 and thus deg(f13) = −(k3 − k1 + P).

So,

dim(∂(e3)) = dim(f23) + dim(e2),

k3 + P = dim(f23) + k2, implies that

146

dim(f23) = P + k3 − k2 < 0 and thus deg(f23) = −(k3 − k2 + P).

So,

dim(∂(e3)) = dim(f33) + dim(e3),

k3 + P = dim(f33) + k3, implies that

dim(f33) = P, and thus degree f33 = −P.

So,

dim(∂(e3)) = dim(f43) + dim(e4),

k3 + P = dim(f43) + k4, implies that

dim(f43) = k3 − k4 + P ≥ 0, and thus f43 = 0.

Also,

dim(∂(e4)) = dim(f14) + dim(e1),

k4 + P = dim(f14) + k1, implies that

dim(f14) = k4 − k1 + P and thus deg(f14) = −(k4 − k1 + P).

Similarly, degree f24 = −(P+k4−k2), deg(f34) = −(P+k4−k3), and deg(f44) = −P.
Hence, the matrix of ∂ is given by

∂ =


f11 f12 f13 f14

f21 f22 f23 f24

0 f32 f33 f34

0 0 f43 f44


where,

1. f21 = 0 or f21 = β1 6= 0 (constant),

2. f32 = 0 or f32 = β2 6= 0 (constant),

3. f43 = 0 or f43 = β3 6= 0 (constant).

Case (1): If f21 = 0, then the matrix ∂ is given by

147

∂ =


f11 f12 f13 f14

0 f22 f23 f24

0 f32 f33 f34

0 0 f43 f44


Since ∂2 = 0, this implies f 2

11 = 0 which implies f11 = 0.

Thus,

∂ =


0 f12 f13 f14

0 f22 f23 f24

0 f32 f33 f34

0 0 f43 f44


In this case either f32 = 0 or f32 = β2 6= 0 (constant).

Case (1.1): If f32 = 0, then the matrix ∂ is given by

∂ =


0 f12 f13 f14

0 f22 f23 f24

0 0 f33 f34

0 0 f43 f44


since ∂2 = 0, implies that, f 2

22 = 0 which implies f22 = 0.

Thus,the matrix of ∂ is given by

∂ =


0 f12 f13 f14

0 0 f23 f24

0 0 f33 f34

0 0 f43 f44


In this case either f43 = 0 or f43 = β3 6= 0 (constant).

Case (1.1.a): If f43 = 0, then the matrix ∂ is given by

∂ =


0 f12 f13 f14

0 0 f23 f24

0 0 f33 f34

0 0 0 f44


Since ∂2 = 0, implies that, f 2

33 = f 2
44 = 0 which implies f33 = f44 = 0.

148

Thus,

∂ =


0 f12 f13 f14

0 0 f23 f24

0 0 0 f34

0 0 0 0


To show, M has a composition series:

Let C0 = 0, C1 = 〈e1〉, C2 = 〈e1, e2〉, C3 = 〈e1, e2, e3〉 and C4 = 〈e1, e2, e3, e4〉.
Then Cj/Cj−1 is free, for all 1 ≤ j ≤ 4.

If x ∈ C4, then x = α1e1 + α2e2 + α3e3 + α4e4.

So, ∂(x) = α1∂(e1) + α2∂(e2) + α3∂(e3) + α4∂(e4),

∂(x) = α1(0) + α2(f12e1) + α3(f13e1 + f23e2) + α4(f14e1 + f24e2 + f34e3) ∈ C3.

Hence, ∂(C4) ⊆ C3, and then ∂(C4/C3) = 0.

Also, if x ∈ C3, then x = α1e1 + α2e2 + α3e3,

So, ∂(x) = α1∂(e1) + α2∂(e2) + α3∂(e3),

∂(x) = α1(0) + α2(f12e1) + α3(f13e1 + f23e2) ∈ C2.

Hence, ∂(C3) ⊆ C2, and then ∂(C3/C2) = 0.

Also, if x ∈ C2, then x = α1e1 + α2e2

So, ∂(x) = α1∂(e1) + α2∂(e2)

∂(x) = α1(0) + α2(f12e1) ∈ C1.

Hence, ∂(C2) ⊆ C1, and then ∂(C2/C1) = 0.

Finally, if x ∈ C1, then x = α1e1 and so,

∂(x) = α1∂(e1) = α1(0) = 0 ∈ C0.

Hence, ∂(C1) ⊆ C0, and then ∂(C1/C0) = 0.

Therefore, 0 = C0 ⊆ C1 ⊆ C2 ⊆ C3 ⊆ C4 = M is a composition series for M .

Thus, M is solvable.

Case (1.1.b): If f43 = β3 6= 0 (constant) , then the matrix ∂ is given by

∂ =


0 f12 f13 f14

0 0 f23 f24

0 0 f33 f34

0 0 β3 f44


Since ∂2 = 0, implies that, f 2

33 + β3f34 = 0 and β3f34 + f 2
44 = 0, which implies

f33 = f44 and β3f34 = f 2
44.

Now, by Lemma 7.1.5, replace row(3) by row(3)− (f33
β3

)row(4) and at the same

time replace column (4) by column(4)− (f33
β3

)column(3) to get:

149

∂ =


0 f12 f13

β3f14−f33f13
β3

0 0 f23
β3f24−f33f23

β3

0 0 0 0

0 0 β3 0


By Lemma 7.1.5, replace row(3) by row(4) and at the time replace column(4) by

column(3) to get:

∂ =


0 f12

β3f14−f33f13
β3

f13

0 0 β3f24−f33f23
β3

f23

0 0 0 β3

0 0 0 0


Therefore, M is solvable as before (Case 1.1.a).

Case (1.2): If f32 = β2 6= 0 (constant) , then the matrix ∂ is given by

∂ =


0 f12 f13 f14

0 f22 f23 f24

0 β2 f33 f34

0 0 f43 f44


In this case either f43 = 0 or f43 = β3 6= 0 (constant).

Case (1.2.a): If f43 = 0, then the matrix ∂ is given by:

∂ =


0 f12 f13 f14

0 f22 f23 f24

0 β2 f33 f34

0 0 0 f44


Since ∂2 = 0, implies that, f 2

44 = 0, which implies f44 = 0.

Thus,

∂ =


0 f12 f13 f14

0 f22 f23 f24

0 β2 f33 f34

0 0 0 0


Since ∂2 = 0, implies that, f 2

22 + β2f23 = 0 and β2f23 + f 2
33 = 0.

Hence, f22 = f33 = 0 and β2f23 = f 2
22.

150

By Lemma 7.1.5, replace row(2) by row(2)− (f22
β2

)row(3) and at the same time

replace column(3) by column(3)− (f22
β2

)column(2) to get:

∂ =


0 f12

β2f13−f22f12
β2

f14

0 0 0 β2f24−f22f34
β2

0 β2 0 f34

0 0 0 0


By Lemma 7.1.5, replace row(2) by row(3) and at the time replace column(2) by

column(3) to get:

∂ =


0 β2f13−f22f12

β2
f12 f14

0 0 β2 f34

0 0 0 β2f24−f22f34
β2

0 0 0 0


Therefore, M is solvable as before (case 1.1.a).

Case (1.2.b): If f43 = β3 6= 0 (constant), then the matrix ∂ is given by:

∂ =


0 f12 f13 f14

0 f22 f23 f24

0 β2 f33 f34

0 0 β3 f44


Since ∂2 = 0, implies that, β2 · β3 = 0, but β2 6= 0 and β3 6= 0 which implies to

contradiction. Thus, this case is not possible.

Case (2): If f21 = β1 6= 0, then the matrix ∂ is given by

∂ =


f11 f12 f13 f14

β1 f22 f23 f24

0 f32 f33 f34

0 0 f43 f44


In this case either f32 = 0 or f32 = β2 6= 0 (constant).

Case (2.1): If f32 = 0, then the matrix ∂ is given by

151

∂ =


f11 f12 f13 f14

β1 f22 f23 f24

0 0 f33 f34

0 0 f43 f44


In this case either f43 = 0 or f43 = β3 6= 0 (constant).

Case (2.1.a): If f43 = 0, then the matrix ∂ is given by

∂ =


f11 f12 f13 f14

β1 f22 f23 f24

0 0 f33 f34

0 0 0 f44


Since ∂2 = 0, implies that, f 2

33 = f 2
44 = 0, which implies f33 = f44 = 0.

Thus,

∂ =


f11 f12 f13 f14

β1 f22 f23 f24

0 0 0 f34

0 0 0 0


Since ∂2 = 0, implies that, f 2

11 +β1f12 = 0 and β1f12 +f 2
22 = 0. Hence, f11 = f22 = 0.

and β1f12 = f 2
11.

By Lemma 7.1.5, replace row(1) by row(1)− (f11
β1

)row(2) and at the same time

replace column(2) by column(2)− (f11
β1

)column(1) to get:

∂ =


0 0 β1f13−f11f23

β1

β1f14−f11f24
β1

β1 0 f23 f24

0 0 0 f34

0 0 0 0


By Lemma 7.1.5, replace row(1) by row(2) and at the time replace column(1) by

column(2) to get:

∂ =


0 β1 f23 f24

0 0 β1f13−f11f23
β1

β1f14−f11f24
β1

0 0 0 f34

0 0 0 0



152

Therefore, M is solvable as before (Case 1.1.a).

Case (2.1.b): If f43 = β3 6= 0 (constant).

∂ =


f11 f12 f13 f14

β1 f22 f23 f24

0 0 f33 f34

0 0 β3 f44


Since ∂2 = 0, implies that, f 2

33 + β3f34 = 0, and β3f34 + f 2
44 = 0. Hence, f33 =

f44 and f
2
33 = β3f34.

By Lemma 7.1.5, replace row(3) by row(3)− (f33
β3

)row(4) and at the same time

replace column(4) by column(4)− (f33
β3

)column(3) to get:

∂ =


f11 f12 f13

β3f14−f33f13
β3

β1 f22 f23
β3f24−f33f23

β3

0 0 0 0

0 0 β3 0


By Lemma 7.1.5, replace row(3) by row(4) and at the time replace column(3) by

column(4) to get:

∂ =


f11 f12

β3f14−f33f13
β3

f13

β1 f22
β3f24−f33f23

β3
f23

0 0 0 β3

0 0 0 0


Since ∂2 = 0, implies that, f 2

11 + β1f12 = 0, and β1f12 + f 2
22 = 0. Hence, f11 = f22

and f 2
11 = β1f12.

By Lemma 7.1.5, replace row(1) by row(1)− (f11
β1

)row(2) and at the same time

replace column(2) by column(2)− (f11
β1

)column(1) to get:

∂ =


0 0 β1f13−f11f23

β1

β1[β3f14−f33f13]−β3f11[β3f24−f33f23]
β1β3

β1 0 f23
β3f24−f33f23

β3

0 0 0 β3

0 0 0 0


By Lemma 7.1.5, replace row(1) by row(2) and at the time replace column(1) by

column(2) to get:

153

∂ =


0 β1 f23

β3f24−f33f23
β3

0 0 β1f13−f11f23
β1

β1[β3f14−f33f13]−β3f11[β3f24−f33f23]
β1β3

0 0 0 β3

0 0 0 0


Therefore, M is solvable as before (Case 1.1.a).

Case (2.2): If f32 = β2 6= 0 (constant), then the matrix ∂ is given by

∂ =


f11 f12 f13 f14

β1 f22 f23 f24

0 β2 f33 f34

0 0 f43 f44


Since ∂2 = 0, then we multiply row(3) by column(1) to get that β1β2 = 0, but

β1 6= 0 and β2 6= 0 which implies to contradiction. Thus, this case is not possible.

From the previous we conclude the following two propositions:

Proposition 7.2.4. Let K be a field and let R = K[x1, x2, . . . , xn] be a graded

ring of polynomials graded in the negative way. Let M be a free finitely generated

differential graded R-module with basis S = {ei}mi=1, and differential ∂ of degree

(P ≤ −2). Suppose, dim(ei) = ki such that 1 ≤ i ≤ m and ki > ki+1. If ki−ki+1 = ti

such that ti > −P , then M is solvable.

Proof. M is graded as follows:

0

↓
e1 ∈Mk1 = K · e1 ⊕ 0 · e2 ⊕ 0 · e3 ⊕ . . .⊕ 0.em.

↓
...

↓
e2 ∈Mk2 = Rk2−k1 · e1 ⊕K.e2 ⊕ 0.e3 ⊕ 0.e4 ⊕ . . .⊕ 0.em.

↓
...

↓
e3 ∈Mk3 = Rk3−k1 · e1 ⊕Rk3−k2 · e2 ⊕K.e3 ⊕ 0.e4 ⊕ . . .⊕ 0.em.

154

↓
...

↓
e4 ∈Mk4 = Rk4−k1 · e1 ⊕Rk4−k2 · e2 ⊕Rk4−k3 · e3 ⊕K.e4 ⊕ 0.e5 ⊕ . . .⊕ 0.em.

↓
...

↓
ej ∈Mkj = Rkj−k1 · e1 ⊕Rkj−k2 · e2 ⊕Rkj−k3 ⊕ . . .⊕K.ej.

↓
...

Suppose that,

∂(e1) = f11e1 + . . .+ fm1em,

∂(e2) = f12e1 + . . .+ fm2em,
...

∂(em) = f1me1 + . . .+ fmmem·

Then the matrix of ∂ with respect to the basis {e1}mi=1 is given by:

∂ =


f11 f12 . . . f1m

f21 f22 . . . f2m

...
...

. . .
...

fm1 fm2 . . . fmm


Now,

dim(∂(e1)) = dim(f11) + dim(e1),

k1 + P = dim(f11) + k1, implies that deg(f11) = −P.

So,

dim(∂(e1)) = dim(fi1) + dim(ei) for each 2 ≤ i ≤ m.

So,

k1 + P = dim(fi1) + ki and then

dim(fi1) = (k1 − ki) + P > 0, i.e., fi1 ∈ Rk1−ki+P = 0.

Therefore,

fi1 = 0 for each 2 ≤ i ≤ m.

155

Also,

dim(∂(e2)) = dim(f12) + dim(e1),

k2 + P = dim(f12) + k1,

dim(f12) = k2 − k1 + P < 0 implies that,

degreef12 = −(P + k2 − k1).

So,

dim(∂(e2)) = dim(f22) + dim(e2),

k2 + P = dim(f22) + k2, implies that deg(f22) = −P.

So,

dim(∂(e2)) = dim(fi2) + dim(ei) for each 3 ≤ i ≤ m,

k2 + P = dim(fi2) + ki and then

dim(fi2) = P + (k2 − ki) > 0, i.e., fi2 ∈ RP+k2−ki = 0.

Therefore,

fi2 = 0 for each 3 ≤ i ≤ m.

Now,

dim(∂(em−1)) = dim(fi(m−1)) + dim(ei) for each 1 ≤ i ≤ m− 1,

km−1 + P = dim(fi(m−1)) + ki and then

dim(fi(m−1)) = (P + km−1 − ki) < 0, i.e., fi(m−1) ∈ RP+km−1−ki 6= 0.

Therefore,

fi(m−1) 6= 0 for each 1 ≤ i ≤ m− 1,

and,

dim(∂(em−1)) = dim(fm(m−1)) + dim(em),

km−1 + P = dim(fm(m−1) + km, implies that

dim(fm(m−1)) = P + km−1 − km ≥ 0 which implies that fm(m−1) = 0.

Also,

dim(∂(em)) = dim(fim) + dim(ei) for each 1 ≤ i ≤ m,

km + P = dim(fim) + ki and then

156

dim(fi(m)) = P + (km − ki) < 0, i.e., fim ∈ RP+km−ki 6= 0.

Therefore,

fim 6= 0 for each 1 ≤ i ≤ m.

Hence, the matrix of ∂ is given by:

∂ =



f11 f12 f13 f14 . . . f1(m−1) f1m

0 f22 f23 f24 . . . f2(m−1) f2m

0 0 f33 f34 . . . f3(m−1) f3m

0 0 0 f44 . . . f4(m−1) f4m

...
...

...
...

. . .
...

...

0 0 0 0 . . . f(m−1)(m−1) f(m−1)m

0 0 0 0 . . . 0 fmm



Since, ∂2 = 0 and R is an integral domain then we have that fii = 0, for each

1 ≤ i ≤ m.

Thus, ∂ is given by :

∂ =



0 f12 f13 f14 . . . f1(m−1) f1m

0 0 f23 f24 . . . f2(m−1) f2m

0 0 0 f34 . . . f3(m−1) f3m

0 0 0 0 . . . f4(m−1) f4m

...
...

...
...

. . .
...

...

0 0 0 0 . . . 0 f(m−1)m

0 0 0 0 . . . 0 0


To show, M has a composition series:

Let C0 = 0 and Cj = 〈e1, e2, . . . , ej〉, for all 1 ≤ j ≤ m.

Then (Cj/Cj−1) is free. If x ∈ Cj, then x can be written uniquely as:

x = α1e1 + α2e2 + . . .+ αjej.

Thus,

∂(x) = α1∂(e1) + α2∂(e2) + . . .+ αj∂(ej)

157

∂(x) = α1(0) + α2(f12e1) + . . .+ αj(f1je1 + . . .+ f(j−1)jej−1) ∈ Cj−1

Therefore,

∂(Cj/Cj−1) = 0, for each 1 ≤ j ≤ m.

Hence, 0 = C0 ⊆ C1 ⊆ C2 ⊆ . . . ⊆ Cm = M is a composition series for M.

Thus, M is solvable.

Proposition 7.2.5. Let K be a field and let R = K[x1, x2, . . . , xn] be a graded

ring of polynomials graded in the negative way. Let M be a free finitely generated

differential graded R-module with basis S = {ei}mi=1, and with differential ∂ of degree

(p ≤ −2). Suppose, dim(ei) = ki such that 1 ≤ i ≤ m and ki > ki+1. If ki−ki+1 = ti

such that ti ≥ −p, then M is solvable.

Proof. M is graded as in (Proposition 7.2.4):

Suppose that,

∂(e1) = f11e1 + . . .+ fm1em,

∂(e2) = f12e1 + . . .+ fm2em,
...

∂(em) = f1me1 + . . .+ fmmem·

Then the matrix of ∂ with respect to the basis {e1}mi=1 is given by:

∂ =


f11 f12 . . . f1m

f21 f22 . . . f2m

...
...

. . .
...

fm1 fm2 . . . fmm


Now,

dim(∂(e1)) = dim(f11) + dim(e1),

k1 + P = dim(f11) + k1, implies that , deg(f11) = −P.

Also,

dim(∂(e1)) = dim(f21) + dim(e2),

k1 + P = dim(f21) + k2, implies that dim(f21) = (k1 − k2) + P = t1 ≥ 0,

which implise, f21 = 0 or f21 = C1 6= 0 (constant).

158

So,

dim(∂(e1)) = dim(fi1) + dim(ei) for each 3 ≤ i ≤ m,

k1 + P = dim(fi1) + ki and then

dim(fi1) = (k1 − ki) + P > 0, i.e., fi1 ∈ Rk1−ki+P = 0.

Therefore,

fi1 = 0 for each 3 ≤ i ≤ m.

Also,

dim(∂(e2)) = dim(f12) + dim(e1),

k2 + P = dim(f12) + k1,

dim(f12) = k2 − k1 + P < 0 implies that, deg(f12) = −(k2 − k1 + P).

So,

dim(∂(e2)) = dim(f22) + dim(e2),

k2 + P = dim(f22) + k2, implies that, deg(f22) = −P.

So,

dim(∂(e2)) = dim(f32) + dim(e3),

k2 + P = dim(f32) + k3, implies that, dim(f32) = P + k2 − k1 ≥ 0

f32 = 0 or f32 = C2 6= 0 (constant).

So,

dim(∂(e2)) = dim(fi2) + dim(ei) for each 4 ≤ i ≤ m,

k2 + P = dim(fi2) + ki and then

dim(fi2) = (k2 − ki) + P > 0, i.e., fi2 ∈ RP+k2−ki = 0.

Therefore,

fi2 = 0 for each 4 ≤ i ≤ m.

Now,

dim(∂(em−1)) = dim(fi(m−1)) + dim(ei) for each 1 ≤ i ≤ m− 1,

159

km−1 + P = dim(fi(m−1)) + ki and then

dim(fi(m−1)) = P + (km−1 − ki) < 0, i.e., fi(m−1) ∈ Rkm−1−ki+P 6= 0.

Therefore,

fi(m−1) 6= 0 for each 1 ≤ i ≤ m− 1,

and,

dim(∂(em−1)) = dim(fm(m−1)) + dim(em),

km−1 + P = dim(fm(m−1) + km, implies that, dim(fm(m−1)) = P + km−1 − km ≥ 0.

Thus, fm(m−1) = 0 or fm(m−1) = Cm−1 6= 0 (constant).

Also,

dim(∂(em)) = dim(fim) + dim(ei) for each 1 ≤ i ≤ m,

km + P = dim(fim + ki and then

dim(fi(m)) = (km − ki) + P < 0, i.e., fi(m) ∈ Rkm−ki+P 6= 0.

Therefore,

fim 6= 0 for each 1 ≤ i ≤ m.

Hence, the matrix of ∂ is given by:

∂ =



f11 f12 f13 f14 . . . f1(m−1) f1m

f21 f22 f23 f24 . . . f2(m−1) f2m

0 f32 f33 f34 . . . f3(m−1) f3m

0 0 f43 f44 . . . f4(m−1) f4m

0 0 0 f54 . . . f5(m−1) f5m

0 0 0 0 . . . f6(m−1) f6m

...
...

...
...

. . .
...

...

0 0 0 0 . . . f(m−2)(m−1) f(m−2)m

0 0 0 0 . . . f(m−1)(m−1) f(m−1)m

0 0 0 0 . . . fm(m−1) fmm


where,

f21 = 0 or f21 = C1 6= 0 (constant).

f32 = 0 or f32 = C2 6= 0 (constant).

f43 = 0 or f43 = C3 6= 0 (constant).

160

f54 = 0 or f54 = C4 6= 0 (constant).
...

f(m−1)(m−2) = 0 or f(m−1)(m−2) = Cm−2 6= 0 (constant).

fm(m−1) = 0 or fm(m−1) = Cm−1 6= 0 (constant).

Case (1): If f21 = 0, then the matrix ∂ is given by

∂ =



f11 f12 f13 f14 . . . f1(m−1) f1m

0 f22 f23 f24 . . . f2(m−1) f2m

0 f32 f33 f34 . . . f3(m−1) f3m

0 0 f43 f44 . . . f4(m−1) f4m

0 0 0 f54 . . . f5(m−1) f5m

0 0 0 0 . . . f6(m−1) f6m

...
...

...
...

. . .
...

...

0 0 0 0 . . . f(m−2)(m−1) f(m−2)m

0 0 0 0 . . . f(m−1)(m−1) f(m−1)m

0 0 0 0 . . . fm(m−1) fmm


In this case either f32 = 0 or f32 = C2 6= 0 (constant).

Case (1.1): If f32 = 0, then the matrix ∂ is given by

∂ =



f11 f12 f13 f14 . . . f1(m−1) f1m

0 f22 f23 f24 . . . f2(m−1) f2m

0 0 f33 f34 . . . f3(m−1) f3m

0 0 f43 f44 . . . f4(m−1) f4m

0 0 0 f54 . . . f5(m−1) f5m

0 0 0 0 . . . f6(m−1) f6m

...
...

...
...

. . .
...

...

0 0 0 0 . . . f(m−2)(m−1) f(m−2)m

0 0 0 0 . . . f(m−1)(m−1) f(m−1)m

0 0 0 0 . . . fm(m−1) fmm


In this case either f43 = 0 or f43 = C3 6= 0 (constant).

Case (1.1.1): If f43 = 0, then the matrix ∂ is given by

161

∂ =



f11 f12 f13 f14 . . . f1(m−1) f1m

0 f22 f23 f24 . . . f2(m−1) f2m

0 0 f33 f34 . . . f3(m−1) f3m

0 0 0 f44 . . . f4(m−1) f4m

0 0 0 f54 . . . f5(m−1) f5m

0 0 0 0 . . . f6(m−1) f6m

...
...

...
...

. . .
...

...

0 0 0 0 . . . f(m−2)(m−1) f(m−2)m

0 0 0 0 . . . f(m−1)(m−1) f(m−1)m

0 0 0 0 . . . fm(m−1) fmm



In this case either f54 = 0 or f54 = C4 6= 0 (constant).

Case (1.1.1.1): If f54 = 0, then the matrix ∂ is given by

∂ =



f11 f12 f13 f14 . . . f1(m−1) f1m

0 f22 f23 f24 . . . f2(m−1) f2m

0 0 f33 f34 . . . f3(m−1) f3m

0 0 0 f44 . . . f4(m−1) f4m

0 0 0 0 . . . f5(m−1) f5m

0 0 0 0 . . . f6(m−1) f6m

...
...

...
...

. . .
...

...

0 0 0 0 . . . f(m−2)(m−1) f(m−2)m

0 0 0 0 . . . f(m−1)(m−1) f(m−1)m

0 0 0 0 . . . fm(m−1) fmm


Similarly, we arrived to the following case: either fm(m−1) = 0 or

fm(m−1) = Cm−1 6= 0.

Case (1.1.. . . .1.a): If fm(m−1) = 0, then the matrix ∂ is given by

162

∂ =



f11 f12 f13 f14 . . . f1(m−1) f1m

0 f22 f23 f24 . . . f2(m−1) f2m

0 0 f33 f34 . . . f3(m−1) f3m

0 0 0 f44 . . . f4(m−1) f4m

0 0 0 0 . . . f5(m−1) f5m

0 0 0 0 . . . f6(m−1) f6m

...
...

...
...

. . .
...

...

0 0 0 0 . . . f(m−2)(m−1) f(m−2)m

0 0 0 0 . . . f(m−1)(m−1) f(m−1)m

0 0 0 0 . . . 0 fmm


Since ∂2 = 0, this implies f 2

ii = 0 which implies fii = 0 for each 1 ≤ i ≤ m.

(the reason is that, R is an integral domain).

Thus,

∂ =



0 f12 f13 f14 . . . f1(m−1) f1m

0 0 f23 f24 . . . f2(m−1) f2m

0 0 0 f34 . . . f3(m−1) f3m

0 0 0 0 . . . f4(m−1) f4m

0 0 0 0 . . . f5(m−1) f5m

0 0 0 0 . . . f6(m−1) f6m

...
...

...
...

. . .
...

...

0 0 0 0 . . . f(m−2)(m−1) f(m−2)m

0 0 0 0 . . . 0 f(m−1)m

0 0 0 0 . . . 0 0


Therefore, M is solvable (by the previous proposition).

Case (1.1.. . . .1.b): If fm(m−1) = Cm−1 6= 0 then the matrix ∂ is given by

163

∂ =



f11 f12 f13 f14 . . . f1(m−1) f1m

0 f22 f23 f24 . . . f2(m−1) f2m

0 0 f33 f34 . . . f3(m−1) f3m

0 0 0 f44 . . . f4(m−1) f4m

0 0 0 0 . . . f5(m−1) f5m

0 0 0 0 . . . f6(m−1) f6m

...
...

...
...

. . .
...

...

0 0 0 0 . . . f(m−2)(m−1) f(m−2)m

0 0 0 0 . . . f(m−1)(m−1) f(m−1)m

0 0 0 0 . . . Cm−1 fmm


Since ∂2 = 0, this implies that f 2

(m−1)(m−1) + Cm−1f(m−1)m = 0 and Cm−1f(m−1)m +

f 2
mm = 0.

Thus, f(m−1)(m−1) = fmm and Cm−1f(m−1)m = f 2
(m−1)(m−1).

By Lemma 7.1.5, replace row(m− 1) by row(m− 1)− (
f(m−1)(m−1)

Cm−1
)row(m) and

at the same time replace column (m) by column(m) − (
f(m−1)(m−1)

Cm−1
)column(m − 1)

to get:

∂ =



f11 f12 f13 f14 . . . f1(m−1)
Cm−1f1m−f(m−1)(m−1)f1(m−1)

Cm−1

0 f22 f23 f24 . . . f2(m−1)
Cm−1f2m−f(m−1)(m−1)f2(m−1)

Cm−1

0 0 f33 f34 . . . f3(m−1)
Cm−1f3m−f(m−1)(m−1)f3(m−1)

Cm−1

0 0 0 f44 . . . f4(m−1)
Cm−1f4m−f(m−1)(m−1)f4(m−1)

Cm−1

0 0 0 0 . . . f5(m−1)
Cm−1f5m−f(m−1)(m−1)f5(m−1)

Cm−1

0 0 0 0 . . . f6(m−1)
Cm−1f6m−f(m−1)(m−1)f6(m−1)

Cm−1

...
...

...
...

. . .
...

...

0 0 0 0 . . . f(m−2)(m−1)
Cm−1f(m−2)m−f(m−1)(m−1)f(m−2)(m−1)

Cm−1

0 0 0 0 . . . 0 0

0 0 0 0 . . . Cm−1 0


By Lemma 7.1.5, replace row(m − 1) by row(m) and at the same time replace

column(m− 1) by column(m) to get:

164

∂ =



f11 f12 f13 f14 . . .
Cm−1f1m−f(m−1)(m−1)f1(m−1)

Cm−1
f1(m−1)

0 f22 f23 f24 . . .
Cm−1f2m−f(m−1)(m−1)f2(m−1)

Cm−1
f2(m−1)

0 0 f33 f34 . . .
Cm−1f3m−f(m−1)(m−1)f3(m−1)

Cm−1
f3(m−1)

0 0 0 f44 . . .
Cm−1f4m−f(m−1)(m−1)f4(m−1)

Cm−1
f4(m−1)

0 0 0 0 . . .
Cm−1f5m−f(m−1)(m−1)f5(m−1)

Cm−1
f5(m−1)

0 0 0 0 . . .
Cm−1f6m−f(m−1)(m−1)f6(m−1)

Cm−1
f6(m−1)

...
...

...
...

. . .
...

...

0 0 0 0 . . .
Cm−1f(m−2)m−f(m−1)(m−1)f(m−2)(m−1)

Cm−1
f(m−2)(m−1)

0 0 0 0 . . . 0 Cm−1

0 0 0 0 . . . 0 0


Therefore,, M is solvable (by the previous proposition).

Case (1.1.. . . .1.2): If f(m−1)(m−2) = Cm−2 6= 0 then the matrix ∂ is given by

∂ =



f11 f12 f13 f14 . . . f1(m−2) f1(m−1) f1m

0 f22 f23 f24 . . . f2(m−2) f2(m−1) f2m

0 0 f33 f34 . . . f3(m−2) f3(m−1) f3m

0 0 0 f44 . . . f4(m−2) f4(m−1) f4m

0 0 0 0 . . . f5(m−2) f5(m−1) f5m

0 0 0 0 . . . f6(m−2) f6(m−1) f6m

...
...

...
...

. . .
...

...

0 0 0 0 . . . f(m−2)(m−2) f(m−2)(m−1) f(m−2)m

0 0 0 0 . . . Cm−2 f(m−1)(m−1) f(m−1)m

0 0 0 0 . . . 0 fm(m−1) fmm


In this case either fm(m−1) = 0 or fm(m−1) = Cm−1 6= 0.

Case (1.1.. . . .1.2.1): If fm(m−1) = 0 then the matrix ∂ is given by

165

∂ =



f11 f12 f13 f14 . . . f1(m−2) f1(m−1) f1m

0 f22 f23 f24 . . . f2(m−2) f2(m−1) f2m

0 0 f33 f34 . . . f3(m−2) f3(m−1) f3m

0 0 0 f44 . . . f4(m−2) f4(m−1) f4m

0 0 0 0 . . . f5(m−2) f5(m−1) f5m

0 0 0 0 . . . f6(m−2) f6(m−1) f6m

...
...

...
...

. . .
...

...

0 0 0 0 . . . f(m−2)(m−2) f(m−2)(m−1) f(m−2)m

0 0 0 0 . . . Cm−2 f(m−1)(m−1) f(m−1)m

0 0 0 0 . . . 0 0 fmm


Since ∂2 = 0, this implies f 2

(m−2)(m−2) +Cm−2f(m−2)(m−1) = 0 and Cm−2f(m−2)(m−1) +

f 2
(m−1)(m−1) = 0.

By Lemma 7.1.5, replace row(m−2) by [row(m−2)−(
f(m−2)(m−2)

Cm−2
)row(m−1)] and

at the same time replace column(m−1) by [column(m−1)−(
f(m−2)(m−2)

Cm−2
)column(m−

2)] to get:

∂ =



f11 f12 f13 f14 . . . f1(m−2)
Cm−2f1(m−1)−f(m−2)(m−2)f1(m−2)

Cm−2
f1m

0 f22 f23 f24 . . . f2(m−2)
Cm−2f2(m−1)−f(m−2)(m−2)f2(m−2)

Cm−2
f2m

0 0 f33 f34 . . . f3(m−2)
Cm−2f3(m−)−f(m−2)(m−2)f3(m−2)

Cm−2
f3m

0 0 0 f44 . . . f4(m−2)
Cm−2f4(m−1)−f(m−2)(m−2)f4(m−2)

Cm−2
f4m

0 0 0 0 . . . f5(m−2)
Cm−2f5(m−1)−f(m−2)(m−2)f5(m−2)

Cm−2
f5m

0 0 0 0 . . . f6(m−2)
Cm−2f6(m−1)−f(m−2)(m−2)f6(m−2)

Cm−2
f6m

...
...

...
...

. . .
...

...

0 0 0 0 . . . f(m−3)(m−2) g f(m−3)m

0 0 0 0 . . . 0 0 h

0 0 0 0 . . . Cm−2 0 f(m−1)m

0 0 0 0 . . . 0 0 fmm



,

where g =
Cm−2f(m−3)(m−1)−f(m−2)(m−2)f(m−3)(m−2)

Cm−2
and

h =
Cm−2f(m−2)m−f(m−2)(m−2)f(m−2)(m−2)

Cm−2
.

By Lemma 7.1.5, replace row(m−2) by row(m−1) and at the same time replace

column(m− 2) by column(m− 1) to get:

166

∂ =



f11 f12 f13 f14 . . .
Cm−2f1(m−1)−f(m−2)(m−2)f1(m−2)

Cm−2
f1(m−2) f1m

0 f22 f23 f24 . . .
Cm−2f2(m−1)−f(m−2)(m−2)f2(m−2)

Cm−2
f2(m−2) f2m

0 0 f33 f34 . . .
Cm−2f3(m−)−f(m−2)(m−2)f3(m−2)

Cm−2
f3(m−2) f3m

0 0 0 f44 . . .
Cm−2f4(m−1)−f(m−2)(m−2)f4(m−2)

Cm−2
f4(m−2) f4m

0 0 0 0 . . .
Cm−2f5(m−1)−f(m−2)(m−2)f5(m−2)

Cm−2
f5(m−2) f5m

0 0 0 0 . . .
Cm−2f6(m−1)−f(m−2)(m−2)f6(m−2)

Cm−2
f6(m−2) f6m

...
...

...
...

. . .
...

...

0 0 0 0 . . . g f(m−3)(m−2) f(m−3)m

0 0 0 0 . . . 0 Cm−2 f(m−1)m

0 0 0 0 . . . 0 0 h

0 0 0 0 . . . 0 0 fmm



,

where g =
Cm−2f(m−3)(m−1)−f(m−2)(m−2)f(m−3)(m−2)

Cm−2
and

h =
Cm−2f(m−2)m−f(m−2)(m−2)f(m−2)(m−2)

Cm−2
.

Therefore, M is solvable (by the previous proposition).

Case (1.1.. . . .1.2.2): If fm(m−1) = Cm−1 6= 0, then the matrix ∂ is given by

∂ =



f11 f12 f13 f14 . . . f1(m−2) f1(m−1) f1m

0 f22 f23 f24 . . . f2(m−2) f2(m−1) f2m

0 0 f33 f34 . . . f3(m−2) f3(m−1) f3m

0 0 0 f44 . . . f4(m−2) f4(m−1) f4m

0 0 0 0 . . . f5(m−2) f5(m−1) f5m

0 0 0 0 . . . f6(m−2) f6(m−1) f6m

...
...

...
...

. . .
...

...

0 0 0 0 . . . f(m−2)(m−2) f(m−2)(m−1) f(m−2)m

0 0 0 0 . . . Cm−2 f(m−1)(m−1) f(m−1)m

0 0 0 0 . . . 0 Cm−1 fmm


Since ∂2 = 0, then we multiply row(m) by column(m−2) to get that , Cm−2 ·Cm−1 =

0, but (Cm−1 6= 0 and Cm−2 6= 0), which implies to contradiction .Thus, this case is

not possible.

Similarly, we discuss the rest cases, and get that M is solvable.

We will discuss some other cases which the free finitely generated differential

167

graded R-module M is solvable and then generalize them to the general case as the

following:

Proposition 7.2.6. Let K be a field and let R = K[x1, x2, . . . , xn] be a graded

ring of polynomials graded in the negative way. Let M be a free finitely generated

differential graded R-module with basis S = {ei}3
i=1 and with differential ∂ of degree

P ≤ −2. Suppose that, dim(ei) = ki such that 1 ≤ i ≤ 3 and ki > ki+1. If

ki−ki+1 = ti such that ti < −P , then M is solvable in some cases, if ti+ ti+1 > −P.

Proof. M is graded as before (proposition 7.2.2).

Suppose that,

∂(e1) = f11e1 + f21e2 + f31e3

∂(e2) = f12e1 + f22e2 + f32e3

∂(e3) = f13e1 + f23e2 + f33e3

Then the matrix ∂ with respect to the basis {e1}3
i=1 is given by:

∂ =

f11 f12 f13

f21 f22 f23

f31 f32 f33


Now,

dim(∂(e1)) = dim(f11) + dim(e1),

k1 + P = dim(f11) + k1, implies that

dim(f11) = P, and thus degree f11 = −P.

So,

dim(∂(e1)) = dim(f21) + dim(e2),

k1 + P = dim(f21) + k2, implies that

dim(f21) = P+k1−k2 = P+t1 < P−P = 0, which implies deg(f21) = −(P+k1−k2).

Also,

dim(∂(e1)) = dim(f31) + dim(e3),

k1 + P = dim(f31) + k3, implies that

dim(f31) = P + k1 − k3 > P − P = 0, and thus f31 = 0

168

Also,

dim(∂(e2)) = dim(f12) + dim(e1),

k2 + P = dim(f12) + k1, implies that

dim(f12) = k2 − k1 + P < 0 and thus deg(f12) = −(k2 − k1 + P).

So,

dim(∂(e2)) = dim(f22) + dim(e2),

k2 + P = dim(f22) + k2, implies that

dim(f22) = P + k2 − k2 = P, and thus deg(f22) = −P.

So,

dim(∂(e2)) = dim(f32) + dim(e3),

k2 + P = dim(f32) + k3, implies that

dim(f32) = P + k2 − k3 < −P + P = 0, and thus deg(f12) = −(k2 − k3 + P).

Also,

dim(∂(e3)) = dim(f13) + dim(e1),

k3 + P = dim(f13) + k1, implies that

dim(f13) = k3 − k1 + P = P + P < 0 and thus deg(f13) = −(k3 − k1 + P).

So,

dim(∂(e3)) = dim(f23) + dim(e2),

k3 + P = dim(f23) + k2, implies that

dim(f23) = P + k3 − k2 < 0, and thus deg(f23) = −(k3 − k2 + P).

So,

dim(∂(e3)) = dim(f33) + dim(e3),

k3 + P = dim(f33) + k3, implies that

dim(f33) = P, and thus deg(f33) = −P.

Then the matrix ∂ is given by:

169

∂ =

f11 f12 f13

f21 f22 f23

0 f32 f33


Since ∂2 = 0, multiply row(3) by column(1) to get f32f21 = 0 implies that

f32 = 0 or f21 = 0.

Case (1): If f32 = 0 and f21 6= 0, then the matrix ∂ is given by

∂ =

f11 f12 f13

f21 f22 f23

0 0 f33


Since ∂2 = 0, multiply row(3) by column(3) to get f 2

33 = 0 implies that f33 = 0.

Hence, the matrix ∂ is given by

∂ =

f11 f12 f13

f21 f22 f23

0 0 0


Since ∂2 = 0, multiply row(2) by column(1) to get f21f11 + f21f22 = 0 implies that

f21[f11 + f22] = 0. Thus, either f21 = 0 or f11 + f22 = 0. But, f21 6= 0 which implies

that f11 + f22 = 0 and so f11 = f22. Hence, the matrix ∂ is given by

Thus,

∂ =

f11 f12 f13

f21 f11 f23

0 0 0


Since ∂2 = 0, multiply row(1) by column(1) to get f 2

11 + f12f21 = 0 implies that

f 2
11 = f12f21.

Case (1.1): If f11 = 0, which implies f12f21 = 0 and this implies to either f12 = 0

or f21 = 0, but, f21 6= 0. So f12 = 0, and then the matrix of ∂ is given by

∂ =

 0 0 f13

f21 0 f23

0 0 0


By Lemma 7.1.5, replace row(1) by row(2) and at the time replace column(1) by

column(2) to get:

170

∂ =

0 f21 f23

0 0 f13

0 0 0


Thus, M is solvable (by proposition 7.2.4).

Case(1.2): If f11 6= 0 then f12f21 6= 0 and this implies to f12 6= 0 and f21 6= 0.

Therefore, we can not decide whether M is solvable or not by this method.

Case (2): If f21 = 0 and f32 6= 0, then the matrix of ∂ is given by

∂ =

f11 f12 f13

0 f22 f23

0 f32 f33


Since ∂2 = 0 multiply row(1) by column(1) to get f 2

11 = 0 implies that f11 = 0

(since R is an integral domain).

Thus,

∂ =

0 f12 f13

0 f22 f23

0 f32 f33


Since ∂2 = 0, multiply row(3) by column(2) to get f32f22 + f23f33 = 0 implies

that f32[f22 + f33] = 0.

Thus, either f32 = 0 or f22+f33 = 0. But, f32 6= 0 which implies that f22+f33 = 0

and so f22 = f33. Hence, the matrix ∂ is given by

Thus,

∂ =

0 f12 f13

0 f22 f23

0 f32 f22


Since ∂2 = 0, multiply row(2) by column(2) to get f 2

22 + f23f32 = 0 implies that

f 2
22 = f23f32.

Case (2.1): If f22 = 0 implies that f23f32 = 0 which implies that, either f23 = 0

or f32 = 0. But, f32 6= 0 and thus f23 = 0. Hence, the matrix ∂ is given by

∂ =

0 f12 f13

0 0 0

0 f32 0



171

Since ∂2 = 0, multiply row(1) by column(1) to get f 2
11 = 0 implies that f 2

11 = 0 (

since R is an integral domain).

By Lemma 7.1.5, replace row(2) by row(3) and at the time replace column(2)

by column(3) to get:

∂ =

0 f12 f13

0 0 f32

0 0 0


Thus, M is solvable (by proposition 7.2.4).

Case (2.2): If f22 6= 0, then f23f32 6= 0, and this implies to f23 6= 0, and f32 6= 0,

Therefore, we can not decide whether M is solvable or not by this method.

Case (3): If f32 = 0 and f21 = 0, then the matrix ∂ is given by

∂ =

f11 f12 f13

0 f22 f23

0 0 f33


Since ∂2 = 0, then we have f 2

11 = f 2
22 = f 2

33 = 0, which implies that, f11 = f22 =

f33 = 0. Then the matrix ∂ is given by

∂ =

0 f12 f13

0 0 f23

0 0 0


Thus, M is solvable (by proposition 7.2.4).

Proposition 7.2.7. Let K be a field and let R = K[x1, x2, . . . , xn] be a graded ring of

polynomials graded in the negative way. Let M be a free finitely generated differential

graded R-module with basis S = {ei}4
i=1 and with differential ∂ of degree P ≤ −2.

Suppose that, dim(ei) = ki such that 1 ≤ i ≤ 4 and ki > ki+1. If ki − ki+1 = ti such

that ti < −P , then M is solvable in some cases, if ti + ti+1 > −P .

Proof. M is graded as before (proposition 7.2.3).

172

Suppose that,

∂(e1) = f11e1 + f21e2 + f31e3 + f41e4

∂(e2) = f12e1 + f22e2 + f32e3 + f42e4

∂(e3) = f13e1 + f23e2 + f33e3 + f43e4

∂(e4) = f14e1 + f24e2 + f34e3 + f44e4

Then the matrix of ∂ with respect to the basis {e1}4
i=1 is given by:

∂ =


f11 f12 f13 f14

f21 f22 f23 f24

f31 f32 f33 f34

f41 f42 f43 f44


Now,

dim(∂(e1)) = dim(f11) + dim(e1),

k1 + P = dim(f11) + k1, implies that

dim(f11) = P, and thus deg(f11) = −P.

So,

dim(∂(e1)) = dim(f21) + dim(e2),

k1 + P = dim(f21) + k2, implies that

dim(f21) = P + k1− k2 = P + t1 < P −P = 0, and thus deg(f11) = −(P + k1− k2).

Also,

dim(∂(e1)) = dim(f31) + dim(e3),

k1 + P = dim(f31) + k3, implies that

dim(f31) = k1 − k3 + P > −P ≥ 2, and thus f31 = 0 similarly f41 = 0

Also,

dim(∂(e2)) = dim(f12) + dim(e1),

k2 + P = dim(f12) + k1, implies that

dim(f12) = k2 − k1 + P < 0 and thus deg(f12) = −(k2 − k1 + P).

173

So,

dim(∂(e2)) = dim(f22) + dim(e2),

k2 + P = dim(f22) + k2, implies that

dim(f22) = P + k2 − k2 = P, and thus deg(f22) = −P.

So,

dim(∂(e2)) = dim(f32) + dim(e3),

k2 + P = dim(f32) + k3, implies that

dim(f32) = k2 − k3 + P < −P + P = 0, and thus deg(f32) = −(P + k2 − k3).

So,

dim(∂(e2)) = dim(f42) + dim(e4),

k2 + P = dim(f42) + k4, implies that

dim(f42) = k2 − k4 + P > P − P = 0, and thus f42 = 0.

Also,

dim(∂(e3)) = dim(f13) + dim(e1),

k3 + P = dim(f13) + k1, implies that

dim(f13) = k3 − k1 + P < 0 and thus deg(f13) = −(k3 − k1 + P).

So,

dim(∂(e3)) = dim(f23) + dim(e2),

k3 + P = dim(f23) + k2, implies that

dim(f23) = P + k3 − k2 < 0, and thus deg(f23) = −(k3 − k2 + P).

So,

dim(∂(e3)) = dim(f33) + dim(e3),

k3 + P = dim(f33) + k3, implies that

dim(f33) = P, and thus degree f33 = −P.

So,

dim(∂(e3)) = dim(f43) + dim(e4),

174

k3 + P = dim(f43) + k4, implies that

dim(f43) = k3 − k4 + P < 0, and thus deg(f43) = −(k3 − k4 + P).

Also,

dim(∂(e4)) = dim(f14) + dim(e1),

k4 + P = dim(f14) + k1, implies that

dim(f14) = k4 − k1 + P < 0 and thus deg(f14) = −(k4 − k1 + P).

Similarly, degree f24 = −(P+k4−k2), deg(f34) = −(P+k4−k3), and deg(f24) = −P.
Hence, the matrix of ∂ is given by

∂ =


f11 f12 f13 f14

f21 f22 f23 f24

0 f32 f33 f34

0 0 f43 f44


Since ∂2 = 0, multiply row(4) by column(2) to get f43f32 = 0 implies that

f43 = 0 or f32 = 0.

Case (1): If f43 = 0 and f32 6= 0, then the matrix ∂ is given by

∂ =


f11 f12 f13 f14

f21 f22 f23 f24

0 f32 f33 f34

0 0 0 f44


Since ∂2 = 0, then we have f 2

44 = 0 which implies f44 = 0.

Thus,

∂ =


f11 f12 f13 f14

f21 f22 f23 f24

0 f32 f33 f34

0 0 0 0


Since ∂2 = 0, multiply row(3) by column(1) to get f32f21 = 0 implies that f32 = 0

or f21 = 0. But, f32 6= 0 implies to f21 = 0.

175

Thus,

∂ =


f11 f12 f13 f14

0 f22 f23 f24

0 f32 f33 f34

0 0 0 0


Since ∂2 = 0,then we have that f 2

22 + f23f32 = 0 and f23f32 + f 2
33 = 0. Hence,

f22 = f33 and f23f32 = f 2
22.

Case (1.1): If f22 = 0, then f33 = 0 and f23f32 = 0, and this implies to either

f23 = 0 or f32 = 0, but f32 6= 0. So f23 = 0, and then the matrix of ∂ is given by

Thus,

∂ =


f11 f12 f13 f14

0 0 0 f24

0 f32 0 f34

0 0 0 0


By Lemma 7.1.5, replace row(2) by row(3) and at the time replace column(2) by

column(3) to get:

Thus,

∂ =


f11 f13 f12 f14

0 0 f32 f34

0 0 f23 f24

0 0 0 0


Since ∂2 = 0,then f 2

11 = 0 implies f11 = 0.

Thus,

∂ =


0 f12 f13 f14

0 0 f32 f34

0 0 0 f24

0 0 0 0


Therefore, M is solvable (by proposition 7.2.4).

Case (1.2): If f22 6= 0, then f33 6= 0 and f23f32 6= 0, which implies that f23 6= 0

and f32 6= 0.

Therefore, we can not decide whether M is solvable or not by this method.

Case (2): If f32 = 0 and f43 6= 0, then the matrix of ∂ is given by

176

∂ =


f11 f12 f13 f14

f21 f22 f23 f24

0 0 f33 f34

0 0 f43 f44


Since ∂2 = 0,then we have that f 2

11 + f12f21 = 0 and f12f21 + f 2
22 = 0. Hence,

f11 = f22 and f12f21 = f 2
11.

Case (2.1): If f11 = 0, then f22 = 0 and f12f21 = 0, and this implies to either

f21 = 0 or f12 = 0.

Case (2.1.1): If f21 = 0, then the matrix of ∂ is given by

∂ =


0 f12 f13 f14

0 0 f23 f24

0 0 f33 f34

0 0 f43 f44


Since ∂2 = 0, then we have that f 2

33 + f34f43 = 0 and f34f43 + f 2
44 = 0. Hence,

f33 = f44 and f34f43 = f 2
33.

Case (2.1.1.a): If f33 = 0, then f44 = 0 and f34f43 = 0. implies, f34 = 0 or

f43 = 0, but f43 6= 0 implies to f34 = 0. Hence, the matrix of ∂ is given by

∂ =


0 f12 f14 f13

0 0 f24 f23

0 0 0 0

0 0 f43 0


By Lemma 7.1.5, replace row(3) by row(4) and at the time replace column(3) by

column(4) to get:

∂ =


0 f12 f13 f14

0 0 0 f24

0 0 0 f43

0 0 0 0


Therefore, M is solvable (by proposition 7.2.4).

Case (2.1.1.b): If f33 6= 0, then f44 6= 0 and f43f34 6= 0. implies to f34 6= 0.

Therefore, we can not decide whether M is solvable or not by this method.

Case (2.1.2): If f12 = 0, and f21 6= 0, then the matrix of ∂ is given by

177

∂ =


0 0 f13 f14

f21 0 f23 f24

0 0 f33 f34

0 0 f43 f44


By Lemma 7.1.5, replace row(1) by row(2) and at the time replace column(1) by

column(2) to get:

∂ =


0 f21 f23 f24

0 0 f13 f14

0 0 f33 f34

0 0 f43 f44


Since ∂2 = 0, then we have that f 2

33 + f34f43 = 0 and f34f43 + f 2
44 = 0. Hence,

f33 = f44 and f34f43 = f 2
33.

• If f33 = 0,then M is solvable (Case (2.1.1.a)).

• If f33 6= 0, then we can not decide whether M is solvable or not by this method.

Case (3): If f43 = 0,and f32 = 0, then the matrix of ∂ is given by

∂ =


f11 f12 f13 f14

f21 f22 f23 f24

0 0 f33 f34

0 0 0 f44


Since ∂2 = 0,then we have that f 2

11 + f21f12 = 0 and f21f12 + f 2
22 = 0. Hence,

f11 = f22 and f21f12 = f 2
11.

Case (3.1): If f11 = 0, then f22 = 0 and f21f12 = 0. implies, either f21 = 0 or

f12 = 0.

Also, since ∂2 then f 2
33 = 0 and f 2

44 = 0. Hence, f33 = f44 = 0.

Case (3.1.1): If f21 = 0. then the matrix of ∂ is given by

∂ =


0 f12 f13 f14

0 0 f23 f24

0 0 f33 f34

0 0 0 f44


178

Therefore, M is solvable (by proposition 7.2.4).

Case (3.1.2): If f12 = 0 and f21 6= 0, then the matrix of ∂ is given by

∂ =


f11 0 f13 f14

f21 f22 f23 f24

0 0 f33 f34

0 0 0 f44


By Lemma 7.1.5, replace row(1) by row(2) and at the time replace column(1) by

column(2) to get:

∂ =


f11 0 f13 f14

0 f22 f23 f24

0 0 f33 f34

0 0 0 f44


Therefore, M is solvable (by proposition 7.2.4).

Therefore, we can generalize proposition 7.2.6 and proposition 7.2.7

to the following proposition:

Proposition 7.2.8. Let K be a field and let R = K[x1, x2, . . . , xn] be a graded

ring of polynomials graded in the negative way. Let M be a free finitely generated

differential graded R-module with basis S = {ei}mi=1, and differential ∂ of degree

P ≤ −2. Suppose, dim(ei) = ki such that 1 ≤ i ≤ m and ki > ki+1. If ki− ki+1 = ti

with ti < −P and ti + ti+1 > −P and the entries on the diagonal of the matrix ∂

with respect to the basis S = {ei}mi=1 are zeros then M is solvable.

Proof. We will proof this Proposition by using GAP system next Chapter (Section

8.5).

Remark 7.2.9. Let K be a field and let R = K[x1, x2, . . . , xn] be a graded ring

of polynomials graded in the negative way. Let M be a free finitely generated

differential graded R-module with basis S = {ei}mi=1, and differential ∂ of degree

P ≤ −2. Suppose dim(ei) = ki such that 1 ≤ i ≤ m and ki > ki+1. If ki − ki+1 = ti

with ti < −P and ti + ti+1 ≤ −P then the module M is outside the classification so

we cannot decide, using our methods, whether or not it is solvable.

179

Proof. M is graded as before (proposition 7.2.4). Suppose that,

∂(e1) = f11e1 + . . .+ fm1em,

∂(e2) = f12e1 + . . .+ fm2em,
...

∂(em) = f1me1 + . . .+ fmmem·

Then the matrix ∂ with respect to the basis {ei}mi=1 is given by:

∂ =


f11 f12 . . . f1m

f21 f22 . . . f2m

...
...

. . .
...

fm1 fm2 . . . fmm


Now,

dim(∂(e1)) = dim(fi1) + dim(ei), for each 1 ≤ i ≤ 3,

k1 + P = dim(fi1) + ki, and then,

dim(fi1) = (k1 − ki) + P < 0, i.e., fi1 ∈ Rk1−ki+P 6= 0.

Hence, deg(fi1) = −(P + k1 − ki). Therefore, fi1 6= 0, for each 1 ≤ i ≤ 3.

So,

dim (∂(e1)) = dim(fi1) + dim(ei), for each 4 ≤ i ≤ m,

k1 + P = dim(fi1) + ki, and then dim(fi1) = P + k1 − ki.

Therefore, fi1 = 0 or deg(fi1) = −(P + k1 − ki), for each 4 ≤ i ≤ m.

Also,

dim(∂(e2)) = dim(fi2) + dim(ei), for each 1 ≤ i ≤ 4,

k2 + P = dim(fi2) + ki, and then

dim(fi2) = P + k2 − ki < 0, i.e., fi2 ∈ RP+k2−ki 6= 0.

Hence, deg(fi2) = −(P + k2 − ki). Therefore, fi2 6= 0, for each 1 ≤ i ≤ 4.

Also,

dim(∂(e2)) = dim(fi2) + dim(ei), for each 5 ≤ i ≤ m,

k2 + P = dim(fi2) + ki, and then dim(fi2) = P + k2 − ki.

Therefore, fi2 = 0 or deg(fi2) = −(P + k1 − ki), for each 5 ≤ i ≤ m.

180

Now,

dim(∂(em−1)) = dim(fi(m−1)) + dim(ei), for each 1 ≤ i ≤ m,

km−1 + P = dim(fi(m−1)) + ki, and then

dim(fi(m−1)) = P + km−1 − ki < 0, i.e., fi(m−1) ∈ Rkm−1−kiP 6= 0

Hence, deg(fi(m−1)) = −(km−1 − ki + P). Therefore, fi(m−1) 6= 0, for each 1 ≤
i ≤ m.

Now,

dim(∂(em)) = dim(fim) + dim(ei), for each 1 ≤ i ≤ m.

km + P = dim(fim) + ki, and then

dim(fim) = P + km − ki < 0, i.e., fim ∈ RP+km−k1 6= 0.

Hence, deg(fim) = −(P + km − ki). Therefore, fim 6= 0, for each 1 ≤ i ≤ m.

Thus the matrix ∂ is given by:

∂ =



f11 f12 . . . f1(m−1) f1m

f21 f22 . . . f2(m−1) f2m

f31 f32 . . . f3(m−1) f3m

...
...

...
...

f(m−1)1 f(m−1)2 . . . f(m−1)(m−1) f(m−1)m

fm1 fm2 . . . fm(m−1) fmm


where,

fi1 = 0 or deg(fi1) = −(P + k1 − ki), ∀ 4 ≤ i ≤ m.

fi2 = 0 or deg(fi2) = −(P + k2 − ki), ∀ 5 ≤ i ≤ m.

fi3 = 0 or deg(fi3) = −(P + k3 − ki),∀ 6 ≤ i ≤ m.

...

fi(m−3) = 0 or deg(fi(m−3)) = −(P + km−3 − ki),∀ i = m.

Therefore, in this case we cannot decide, using our methods, whether or not

M is solvable, because we are unable to convert the matrix ∂ to a strictly upper

triangular matrix. Hence we can’t forming a composition series of a free finitely

generated differential graded R-submodules.

181

Proposition 7.2.10. Let K be a field and let R = K[x1, x2, . . . , xn] be a graded

ring of polynomials graded in the negative way. Let M be a free finitely generated

differential graded R-module with basis S = {ei}mi=1, and differential ∂ of degree

P ≤ −2. Suppose dim(ei) = ki for 1 ≤ i ≤ m, such that ki < ki+1. If ki − ki+1 = ti

with ti < P , then M is solvable.

Proof. M is graded as before (proposition 7.2.4).

Suppose that,

∂(e1) = f11e1 + . . .+ fm1em,

∂(e2) = f12e1 + . . .+ fm2em,
...

∂(em) = f1me1 + . . .+ fmmem·

Then the matrix ∂ with respect to the basis {ei}mi=1 is given by:

∂ =


f11 f12 . . . f1m

f21 f22 . . . f2m

...
...

. . .
...

fm1 fm2 . . . fmm


Now,

dim(∂(e1)) = dim(fi1) + dim(ei), for each 1 ≤ i ≤ m,

k1+P = dim(fi1)+ki, implies dim(fi1) = P−(ki−k1) < 0, i.e., fi1 ∈ RP−(ki−k1) 6= 0.

Therefore, fi1 6= 0, for 1 ≤ i ≤ m.

Also,

dim(∂(e2)) = dim(fi2) + dim(ei), for 1 ≤ i ≤ m.

k2 + P = dim(fi2) + ki, implies to dim(fi2) = P − (ki − k2) < 0 for 2 ≤ i ≤ m.

Therefore, fi2 ∈ RP−k2−ki 6= 0 and so fi2 6= 0, for 2 ≤ i ≤ m. While dim(f12) =

P − (k1 − k2) > 0 for i = 1, i.e., f12 ∈ RP−(k1−k2) = 0 and so f12 = 0.

Now,

dim(∂(em)) = dim(fim) + dim(ei), for 1 ≤ i ≤ m.

km + P = dim(fim) + ki, implies to dim(fim) = P − (ki − km),

182

This implies to dim(fim) > 0 for 1 ≤ i ≤ m − 1, i.e., fim ∈ RP−(ki−km) = 0 for

1 ≤ i ≤ m− 1, and dim(fim) < 0 for i = m, i.e., fim ∈ RP 6= 0. Hence, fim = 0 for

1 ≤ i ≤ m− 1 and fim 6= 0 for i = m.

Then the matrix ∂ with respect to the basis {ei}mi=1 is given by:

∂ =



f11 0 0 0 . . . 0 0

f21 f22 0 0 . . . 0 0

f31 f32 f33 0 . . . 0 0

f41 f42 f43 f44 . . .
...

...
...

...
...

...
. . . 0 0

f(m−1)1 f(m−1)2 f(m−1)3 f(m−1)4 . . . f(m−1)(m−1) 0

fm1 fm2 fm3 fm4 . . . fm(m−1) fmm


Since ∂2 = 0, this implies fii = 0 for 1 ≤ i ≤ m. So the matrix ∂ become that

∂ =



0 0 0 0 . . . 0 0

f21 0 0 0 . . . 0 0

f31 f32 0 0 . . . 0 0

f41 f42 f43 0 . . .
...

...
...

...
...

...
. . . 0 0

f(m−1)1 f(m−1)2 f(m−1)3 f(m−1)4 . . . 0 0

fm1 fm2 fm3 fm4 . . . fm(m−1) 0


By using Lemma 7.1.5 we will convert the matrix ∂ to a strictly upper triangular

matrix as follows:

∂ =



0 f12 f31 f41 . . . f1(m−2) f(m−1)1 fm1

0 0 f32 f42 . . . f2(m−2) f(m−1)2 fm2

0 0 0 f43 . . . f3(m−2) f(m−1)3 fm3

0 0 0 0 . . . f(m−2)4 f(m−1)4 fm4

...
...

...
...

.
...

...

0 0 0 0 . . . 0 f(m−2)(m−1) fm(m−2)

0 0 0 0 . . . 0 0 fm(m−1)

0 0 0 0 . . . 0 0 0


Therefore, M is solvable.

183

Example 7.2.0.13

Let R = K[x1, x2, ..., xn], be the ring of polynomials in n indetrminates over a field

K of characteristic two. Let

Rj = 0 for all j < 0,

R0 = K, and

Rj = the set of all homogeneous polynomials of degree j for all j > 0. Then R

is a graded K-algebra and a graded integral domain, called the usual grading or

(positive grading).

Note that in R, if dim(f) = j, i.e., f ∈ Rj then degree of f = −j.

Proposition 7.2.11. Let K be a field and let R = K[x1, x2, . . . , xn] be a graded poly-

nomial ring graded in the usual way. Let M be a free finitely generated differential

graded R-module with basis S = {ei}mi=1, and differential ∂ of degree (P ≥ 2, n > 1).

Suppose, dim(ei) = ki such that 1 ≤ i ≤ m. If k1 < k2 < . . . < km and ki+1−ki > P

then M is solvable.

Proof. Suppose that e1 ∈Mk1 , e2 ∈Mk2 , . . . , em ∈Mkm .

Suppose that,

∂(e1) = f11e1 + . . .+ fm1em,

∂(e2) = f12e1 + . . .+ fm2em,
...

∂(em) = f1me1 + . . .+ fmmem·

Then the matrix of ∂ with respect to the basis {e1}mi=1 is given by:

∂ =


f11 f12 . . . f1m

f21 f22 . . . f2m

...
...

. . .
...

fm1 fm2 . . . fmm


Now,

dim(∂(e1)) = dim(f11) + dim(e1),

k1 − P = dim(f11) + k1, implies that dim(f11) = −P < 0 and then deg(f11) = 0.

Also,

dim(∂(e1)) = dim(fi1) + dim(ei) for each 1 ≤ i ≤ m.

184

So,

k1 − P = dim(fi1) + ki and then

dim(fi1) = (k1 − ki)− P < 0, i.e., fi1 ∈ Rk1−ki−P = 0.

Therefore,

fi1 = 0 for each 1 ≤ i ≤ m.

Also,

dim(∂(e2)) = dim(f12) + dim(e1),

k2 − P = dim(f12) + k1,

dim(f12) = k2 − k1 − P > 0 implies that,

deg(f12) = −(k2 − k1 − P).

So,

dim(∂(e2)) = dim(f22) + dim(e2),

k2 − P = dim(f22) + k2, implies that deg(f22) = 0.

So,

dim(∂(e2)) = dim(fi2) + dim(ei) for each 2 ≤ i ≤ m,

k2 − P = dim(fi2) + ki and then

dim(fi2) = (k2 − ki)− P < 0, i.e., fi2 ∈ RP+k2−ki = 0.

Therefore,

fi2 = 0 for each 2 ≤ i ≤ m.

Now,

dim(∂(em−1)) = dim(fi(m−1)) + dim(ei) for each 1 ≤ i ≤ m− 1,

km−1 − P = dim(fi(m−1)) + ki and then

dim(fi(m−1)) = (km−1 − ki − P) < 0, i.e., fi(m−1) ∈ Rkm−1−ki−P 6= 0.

Therefore,

fi(m−1) 6= 0 for each 1 ≤ i ≤ m− 1,

and,

dim(∂(em−1)) = dim(fm(m−1)) + dim(em),

185

km−1 − P = dim(fm(m−1) + km, implies that

dim(fm(m−1)) = km−1 − km − P < 0 which implies that fm(m−1) = 0.

Also,

dim(∂(em)) = dim(fim) + dim(ei) for each 1 ≤ i ≤ m− 1,

km − P = dim(fim) + ki and then

dim(fi(m)) = (km − ki)− P > 0, i.e., fim ∈ Rkm−ki−P 6= 0.

Therefore,

fim 6= 0 for each 1 ≤ i ≤ m− 1.

Finally,

dim(∂(em)) = dim(fmm) + dim(em),

km−P = dim(fmm)+km, implies that dim(fmm) = −P < 0 and then deg(fmm) = 0.

Hence, the matrix of ∂ is given by:

∂ =



0 f12 f13 f14 . . . f1(m−1) f1m

0 0 f23 f24 . . . f2(m−1) f2m

0 0 0 f34 . . . f3(m−1) f3m

0 0 0 0 . . . f4(m−1) f4m

...
...

...
...

. . .
...

...

0 0 0 0 . . . 0 f(m−1)m

0 0 0 0 . . . 0 0


To show, M has a composition series:

Let C0 = 0 and Cj = 〈e1, e2, . . . , ej〉, for all 1 ≤ j ≤ m.

Then (Cj/Cj−1) is free. If x ∈ Cj, then x can be written uniquely as:

x = α1e1 + α2e2 + . . .+ αjej.

Thus,

∂(x) = α1∂(e1) + α2∂(e2) + . . .+ αj∂(ej)

∂(x) = α1(0) + α2(f12e1) + . . .+ αj(f1je1 + . . .+ f(j−1)jej−1) ∈ Cj−1

186

Therefore,

∂(Cj/Cj−1) = 0, for each 1 ≤ j ≤ m.

Hence, 0 = C0 ⊆ C1 ⊆ C2 ⊆ . . . ⊆ Cm = M is a composition series for M.

Thus, M is solvable.

187

Chapter 8

GAP Algorithm for Solvable

Differential Graded Modules

We have established a classification for some types of differential graded R-modules.

This classification gives a partial algorithm to test whether such modules are solv-

able. For modules outside the classification we cannot decide, using our methods,

whether or not they are solvable. In this Chapter we present an algorithm and writ-

ten a GAP package SDGM (Solvable Differential Graded R-Modules), for all

the cases mentioned in Chapter 7 (Propositions 7.2.4, 7.2.5, 7.2.8, 7.2.10, 7.2.11 and

Remark 7.2.9). The classification described in Chapter 7 depends on two basic pa-

rameters; the dimensions D = [k1, . . . , kn] of the module M , such that dim(ei) = ki,

and the degree P of the differential on the module M where (n > 1). These two pa-

rameters represent the input for the main function IsSolvableModuleWithProof

of our algorithm. The output of IsSolvableModuleWithProof is either “true”

if M is a solvable module, and in this case a proof that M is solvable is also

output; or “fail” if we cannot convert the matrix d of the differential ∂ with re-

spect to the basis S = {ei}mi=1 to a strictly upper triangular matrix. The function

IsSolvableModuleWithProof contains many other functions: in the following we

describe all the functions used.

8.1 SwapRowsColumns Function

The input of the function SwapRowsColumns(degf, x, y) is a matrix degf of size

m×m and two numbers x 6= y, with 1 ≤ x ≤ m, 1 ≤ y ≤ m. It exchanges row(x)

188

and row(y), and at the same time exchange, column(x) and column(y). It returns

the matrix degf after the replacement. The function works as follows:

SwapRowsColumns(degf, x, y)

1 Temp5← StructuralCopy(degf) � Temp5 was empty list

2 degf [x]← Temp5[y]

3 degf [y]← Temp5[x]

4 degf ← TransposedMatDestructive(degf)

5 Temp6← StructuralCopy(degf) � Temp6 was empty list

6 degf [x]← Temp6[y]

7 degf [y]← Temp6[x]

8 degf ← TransposedMatDestructive(degf)

9 return degf

8.2 Solveindic1WithProof Function

The function Solveindic1WithProof(m, dimf, f) is called only if the conditions of

Propositions 7.2.4,7.2.5 hold. The inputs of this function are the dimension m of

the vector of dimensions, the matrix dimf of dimensions and the identity matrix f

of size m×m which are output by the main function IsSolvableModuleWithProof.

The function outputs a proof that M is solvable. The function works as follows:

Solveindic1WithProof(m, dimf, f)

1 for j in {1, . . . ,m}
2 do for i in {1, . . . ,m}
3 do if i > j

4 then if dimf [i][j] ≥ 0

5 then 0← f [i][j]

6 else f [i][j] = dimf [i][j]

7 else f [i][j] = dimf [i][j]

8 if f is an upper triangular matrix

9 then for j in {1, . . . ,m}
10 do Compute matrix d of ∂ with respect to the basis S = {ei}mi=1

using the fact that ∂2 = 0 and R is an integral domain

11 else Return f is not upper triangluar matrix

189

12 Construct a proof that M is solvable

13 return M is solvable

8.3 Solveindic2WithProof Function

The function Solveindic2WithProof(dimf,m) is called only if the conditions of

Remark 7.2.9 or the first case of Proposition 7.2.8 (as in Remark 8.5.1(i)) hold. The

inputs of this function are the matrix dimf of dimensions, the dimension m of the

vector of dimensions and the matrix ‘degf’ of size m ×m which are output by the

main function IsSolvableModuleWithProof. The function is called if the modules

M is outside the classification or if (i) of Remark 8.5.1 hold. The function works as

follows:

Solveindic2WithProof(dimf,m)

1 f ← dim

2 for j in {1, . . . ,m− 2}
3 do for i in {1, . . . ,m}
4 do if i < j + 2

5 then if dimf [i][j] < 0

6 then f [i][j] = dimf [i][j]

7 else 0← f [i][j]

� since ∂2 = 0 and R is an integral domain

8 else if dimf [i][j] < 0

9 then f [i][j] = dimf [i][j]

10 else 0← f [i][j]

11 Compute matrix d of the differential ∂ with respect to the basis S = {ei}mi=1

12 return M is outside the classification

8.4 Solveindic3WithProof Function

The function Solveindic3WithProof(m, dimf, f) is called only if the conditions of

Proposition 7.2.10 hold. The inputs of this function are the dimension m of the

vector of dimensions, the matrix dimf of dimensions and the identity matrix f of

size m ×m which are output by the main function IsSolvableModuleWithProof.

The function outputs a proof that M is solvable. The function works as follows:

190

Solveindic3WithProof(m, dimf, f)

1 for j in {1, . . . ,m}
2 do for i in {1, . . . ,m}
3 do if i > j

4 then if dimf [i][j] ≥ 0

5 then 0← f [i][j]

6 else f [i][j] = dimf [i][j]

7 else f [i][j] = dimf [i][j]

8 for i in {1, . . . ,m}
9 do 0← f [i][j] � since ∂2 = 0 and R is an integral domain

10 Tranf ← TransposedMatDestructive(f)

11 if Tranf is an upper triangular matrix

12 then Compute matrix d of ∂ with respect to the basis S = {ei}mi=1

13 Construct a proof that M is solvable

14 return M is solvable

8.5 Solveindic4WithProof Function

The function Solveindic4WithProof(degf) is called only if the conditions of Propo-

sition 7.2.8 hold. The input of this function is a matrix degf of size m × m

which is output by the main function IsSolvableModuleWithProof. It calls the

following functions: Solveindic4Size3by3(degf), Solveindic4Size4by4A(degf),

Solveindic4Size4by4B(degf), Solveindic4Size5by5(degf), Solveindic4Size6-

by6(degf), Solveindic4Size6by6Above(degf) and Solveindic4Sizembym(degf)

(which will be described later in Section 8.5.1, . . ., Section 8.5.8 respectively.) The

function outputs a proof that M is solvable.

Remark 8.5.1. When we run the main function IsSolvableModuleWithProof with

input that satisfies the conditions of Proposition 7.2.8, we will at some stage get the

matrix degf of size m×m with m ≥ 2. In this case IsSolvableModuleWithProof

calls the function Solveindic4; (which calls the following functions: Solveindic4S-

ize3by3, Solveindic4Size4by4A, Solveindic4Size4by4B, Solveindic4Size5by5,

Solveindic4Size6by6, Solveindic4Size6by6Above and Solveindic4Sizembym.

(i) If degf =

(
f11 f12

f21 f22

)
, that is in the case f11 = f22 = 0 then the function

Mysolve2a(degf) is called.

191

(ii) If degf =

 0 f12 f13

f21 0 f23

0 f32 0

, that is in the case f32 = 0 and f12 = 0 then the

function Mysolve3a(degf) is called.

(iii) If degf =


0 f12 f13 f14

f21 0 f23 f24

0 0 f32 0

0 0 f43 0

, that is in the case f32 = 0 with either

f43 = 0 or f43 6= 0 (these are encoded as b = [0] and b = [1] respectively) then

the function Mysolve4a(degf) is called.

(iv) If degf =


0 f12 f13 f14

f21 0 0 f24

0 f32 0 0

0 0 f43 0

, that is in the case f32 6= 0 and f43 = 0 (this

is encoded as b = [0]) then the function Mysolve4b(degf) is called.

(v) If degf =

 0 f12 0

0 0 0

0 f32 0

, that is in the case f32 6= 0 then Mysolve3b(degf)

or Mysolgeneral(degf) is calld when m = 3.

(vi) If degf =


0 f12 f13 f14 f15

f21 0 f23 f24 f25

0 f32 0 0 f35

0 0 f43 0 0

0 0 0 f54 0

, that is in the case f32 = 0 and f43 =

f54 6= 0 (this is encoded as b = [1, 1]) then the function Mysolve5a− (degf)

is called.

(vii) If degf =



0 0 0 0 0 0

f21 0 f23 0 0 0

0 0 0 0 0 0

0 0 f43 0 0 0

0 0 0 f54 0 0

0 0 0 0 f65 0


, that is in the case f32 = 0, f12 = 0

and f43 = f54 = f65 6= 0 (this is encoded as b = [1, 1, 1]) then the function

Mysolvable6 is called.

192

(viii) If degf =



0 f12 f13 f14 f15 . . . f1m

f21 0 f23 f24 f25 . . . f2m

0 f32 0 0 f35 . . . f3m

0 0 f43 0 0
. . .

...
...

...
. f(m−2)m

0 0 0 0 f(m−1)(m−2) 0 0

0 0 0 0 0 fm(m−1) 0


, that is in

the case f32 = 0, f12 = 0 and f43 = f54 = f65 = . . . = fm(m−1) 6= 0 (this

is encoded as b = [1, 1, . . . , 1]) then the function Mysolvable1 is called when

m ≥ 6.

1. (ix) If degf =



0 f12 f13 f14 f15 . . . f1m

f21 0 f23 f24 f25 . . . f2m

0 f32 0 0 f35 . . . f3m

0 0 f43 0 0
. . .

...
...

...
. f(m−2)m

0 0 0 0 f(m−1)(m−2) 0 0

0 0 0 0 0 fm(m−1) 0


, that is

in the case f32 6= 0, f21 = 0 and f43 = f54 = f65 = . . . = fm(m−1) 6= 0 (this is

encoded as b = [1, 1, . . . , 1]) then the function Mysolgene−
ral(degf) is called when m ≥ 3.

In detail the function works as follows:

Solveindic4WithProof(degf)

1 m← Size(degf)

2 if m = 2

3 then Solveindic4Size2by2(degf)

4 for i in {1, . . . , 2m−3}
5 do b← ConvertToBinary(i− 1)

6 for j in {1, . . . ,m− 3} and j1 = j + 3

7 do if b[j] = 0

8 then 0← degf [j1][j1− 1] = degf [j1][j1]

9 if b[j] = 1

10 then 0← degf [j1][j1] = degf [j1− 1][j1]

193

11 0← degf [i][i] for i = 1, 2, 3� by the hypothesis of Proposition 7.2.8

12 Temp4← StructuralCopy(degf) after set Temp4 to empty list

13 g ← Sum(b)

14 degf ← StructuralCopy(Temp4)

15 if g = 0

16 then if m = 3

17 then degf ← Solveindic4Size3by3(degf)

18 if m ≥ 4

19 then degf ← Solveindic4Size4by4A(degf)

20 degf ← StructuralCopy(Temp4)

21 degf ← Solveindic4Size4by4B(degf)

22 if g = m− 3

23 then if m = 3

24 then degf ← Solveindic4Sizembym(degf)

25 if m = 4

26 then degf ← Solveindic4Size4by4A(degf)

27 degf ← StructuralCopy(Temp4)

28 degf ← Solveindic4Sizembym(degf)

29 if m = 5

30 then degf ← Solveindic4Size5by5(degf)

31 degf ← StructuralCopy(Temp4)

32 degf ← Solveindic4Sizembym(degf)

33 if m ≥ 6

34 then degf ← Solveindic4Size6by6Above(degf)

35 degf ← StructuralCopy(Temp4)

36 degf ← Solveindic4Sizembym(degf)

37 return degf

8.5.1 Solveindic4Size2by2 Function

The input of the function Solveindic4Size2by2(degf) is a matrix degf of size 2×2

as in Remark 8.5.1(i). Solveindic4Size2by2 convertes the matrix degf to an upper

Triangular matrix. It returns the matrix degf after finishing all the replacements.

The function works as follows:

194

Solveindic4Size2by2(degf)

1 degf [1][1] = degf [2][2] = 0 � by the hypothesis of Proposition 7.2.8

2 0← degf [1][2] � since ∂2 = 0 and R is an integral domain

3 degf ← StructuralCopy(degf)

4 degf ← SwapRowsColumns(degf, 1, 2)

5 if degf is not an upper triangular matrix

6 then degf ← Print(degf) with some comments

7 else degf ← Print(degf) with some comments

8 return degf

8.5.2 Solveindic4Size3by3 Function

The input of the function Solveindic4Size3by3(degf) is a matrix degf of size

3 × 3 as in Remark 8.5.1(ii) (it is Case 1 of 3 × 3 matrix). Solveindic4Size3by3

convertes the matrix degf to an upper Triangular matrix. It returns the matrix

degf after replacement and tests whether it is a strictly upper triangular matrix or

not. The function works as follows:

Solveindic4Size3by3(degf)

1 degf [3][2] = degf [1][2] = 0 � by the hypothesis of Proposition 7.2.8

2 degf ← StructuralCopy(degf)

3 degf ← SwapRowsColumns(degf, 1, 2)

4 if degf is not an upper triangular matrix

5 then degf ← Print(degf) with some comments

6 else degf ← Print(degf) with some comments

7 return degf

8.5.3 Solveindic4Size4by4A Function

The input of the function Solveindic4Size4by4(degf) is a matrix degf of size

m ×m where m ≥ 4 and fii = 0, i = 1, . . . ,m and f32 = 0 with Sum(b) = 0 as in

Remark 8.5.1(iii). Solveindic4Size4by4A convertes the matrix degf to an upper

Triangular matrix. It returns the matrix degf after replacement and tests whether

it is a strictly upper triangular matrix or not. The function works as follows:

195

Solveindic4Size4by4A(degf)

1 degf [3][2] = degf [1][2] = 0 � by the hypothesis of Proposition 7.2.8

2 degf ← StructuralCopy(degf)

3 degf ← SwapRowsColumns(degf, 1, 2)

4 if degf is an upper triangular matrix

5 then degf ← Print(degf) with some comments

6 else degf ← Print(degf) with some comments

7 return degf

8.5.4 Solveindic4Size4by4B Function

The input of the function Solveindic4Size4by4B(degf) is a matrix degf of size m×
m where m ≥ 4 and f32 6= 0 with zeros on the diagonal and Sum(b) = 0. The matrix

degf of Remark 8.5.1(iv) is one example of the input of Solveindic4Size4by4B.

Mysolve4b convertes the matrix degf to an upper triangular matrix. It returns the

matrix degf after replacement and tests whether it is a strictly upper triangular

matrix or not. The function works as follows:

Solveindic4Size4by4B(degf)

1 degf ← Size(degf)

2 degf [2][1] = degf [2][3] = 0 � by the hypothesis of Proposition 7.2.8

3 degf ← SwapRowsColumns(degf, 2, 3)

4 if degf is an upper triangular matrix

5 then degf ← Print(degf) with some comments

6 else degf ← SwapRowsColumns(degf, 3, 4)

7 degf [1][3] = 0

8 for i in {4, . . . ,m}
9 do degf [1][i] = degf [2][i] = 0

� using ∂2 = 0 and R is an integral domain

10 degf ← SwapRowsColumns(degf, 3, 4)

11 degf ← SwapRowsColumns(degf, 2, 3)

12 degf ← SwapRowsColumns(degf, 3, 4)

13 degf ← Print(degf) with some comments

14 return degf

196

8.5.5 Solveindic4Size5by5 Function

The input of the function Solveindic4Size5by5(degf) is a matrix degf of size

5× 5 with f32 = 0 and Sum(b) = 2 as in Remark 8.5.1(vi). Solveindic4Size5by5

convertes the matrix degf to an upper triangular matrix. It returns the matrix degf

after replacement and tests whether it is a strictly upper triangular matrix or not.

The function works as follows:

Solveindic4Size5by5(degf)

1 m← Size(degf)

2 degf [1][2] = degf [3][2] = 0 � since ∂2 = 0 and R is an integral domain

3 for i in {1, . . . ,m}
4 do for j in {1, . . . ,m}
5 if j ≥ i+ 2

6 then f [i][j] = 0 � since ∂2 = 0 and R is an integral domain

7 degf ← StructuralCopy(degf)

8 degf ← SwapRowsColumns(degf, 1, 2)

9 if degf is not an upper triangular matrix

10 then degf ← SwapRowsColumns(degf, 3, 4)

11 if degf is not an upper triangular matrix

12 then degf ← SwapRowsColumns(degf, 4, 5)

13 if degf is not an upper triangular matrix

14 then degf ← SwapRowsColumns(degf, 3, 4)

15 if degf is not an upper triangular matrix

16 then degf ← Print(degf) with some comments

17 else degf ← Print(degf) with some comments

18 return degf

8.5.6 Solveindic4Size6by6 Function

The input of the function Solveindic4Size6by6(degf) is a matrix degf of size 6×6

as in Remark 8.5.1(vii). This function is to convert a matrix degf to a strictly upper

triangular matrix. It is the first case of size 6 × 6 where f32 = 0 and b = [1, 1, 1].

It runs the function SwapRowsColumns five times swapping rows and columns until

degf is upper triangular matrix. In fact the matrix degf in the input of the (n+1)st

run of the function SwapRowsColumns it will be the matrix degf output by the nth

197

run. It returns the matrix degf after finishing all the replacements. The function

works as follows:

Solveindic4Size6by6(degf)

1 degf ← SwapRowsColumns(degf, 1, 2)

2 degf ← SwapRowsColumns(degf, 2, 6)

3 degf ← SwapRowsColumns(degf, 3, 4)

4 degf ← SwapRowsColumns(degf, 4, 5)

5 degf ← SwapRowsColumns(degf, 3, 4)

6 return degf

8.5.7 Solveindic4Size6by6Above Function

The input of the function Solveindic4Size6by6Above(degf) is a matrix degf of

size m × m with m ≥ 6 as in Remark 8.5.1(viii). Solveindic4Size6by6Above

convertes the matrix degf to an upper triangular matrix. It outputs a proof that

M is solvable for this case. The function works as follows:

Solveindic4Size6by6Above(degf)

1 mysize← Size(degf)

2 degf [1][2] = degf [3][2] = 0

3 for i in {1, . . . ,mysize}
4 do for j in {1, . . . ,mysize}
5 if j ≥ i+ 2

6 then f [i][j] = 0 � since ∂2 = 0 and R is an integral domain

7 if mysize < 6

8 then return that mysize must be greater than 6

9 else

10 if mysize = 6

11 then degf ← Solveindic4Size6by6(degf)

12 else

13 if mysize = 7 or mysize = 8

14 then mycounter ← mysize− 6

15 degf ← Solveindic4Size6by6(degf)

16 for i in {1, . . . ,mycounter}
17 do if i = 1

198

18 then degf ← SwapRowsColumns(degf, 4 + i, 6 + i)

19 degf ← SwapRowsColumns(degf, 3 + i, 4 + i)

20 degf ← SwapRowsColumns(degf, 1, 3 + i)

21 if i > 1

22 then degf ← SwapRowsColumns(degf, 4 + i, 6 + i)

23 degf ← SwapRowsColumns(degf, 3 + i, 4 + i)

24 degf ← SwapRowsColumns(degf, 1 + i, 3 + i)

25 degf ← SwapRowsColumns(degf, 1, 1 + i)

26 degf ← SwapRowsColumns(degf, 2, 1 + i)

27 if mysize ≥ 9

28 then mycounter ← mysize− 6

29 degf ← Solveindic4Size6by6(degf)

30 for i in {1, . . . ,mycounter}
31 do if i = 1

32 then degf ← SwapRowsColumns(degf, 4 + i, 6 + i)

33 degf ← SwapRowsColumns(degf, 3 + i, 4 + i)

34 degf ← SwapRowsColumns(degf, 1, 3 + i)

35 if i > 1

36 then degf ← SwapRowsColumns(degf, 4 + i, 6 + i)

37 degf ← SwapRowsColumns(degf, 3 + i, 4 + i)

38 degf ← SwapRowsColumns(degf, 1 + i, 3 + i)

39 degf ← SwapRowsColumns(degf, 1, 1 + i)

40 degf ← SwapRowsColumns(degf, 2, 1 + i)

41 degf ← StructuralCopy(degf)

42 mycounter1← mysize− 8

43 for mycounter2 in {1, . . . ,mycounter1}
44 do for i in {1, . . . ,mycounter2}
45 mycounter3← mycounter2− i+ 1

46 degf ← SwapRowsColumns(degf, 2 +mycounter3, 3 +mycounter3)

47 if degf is not an upper triangular matrix

48 then degf ← Print(degf) with some comments

49 else degf ← Print(degf) with some comments

50 return degf

199

8.5.8 Solveindic4Sizembym Function

The input of the function Solveindic4Sizembym(degf) is a matrix degf of size

m×m with m ≥ 3 as in Remark 8.5.1(ix). It convertes the matrix degf to an upper

triangular matrix. The function outputs a proof that M is solvable for this case.

The algorithm works as follows:

Solveindic4Sizembym(degf)

1 m← Size(degf)

2 degf [2][1] = degf [2][3] = 0

3 for i in {1, . . . ,m}
4 do for j in {1, . . . ,m}
5 if j ≥ i+ 2

6 then f [i][j] = 0 � since ∂2 = 0 and R is an integral domain

7 2← i

8 m← j

9 while i < j

10 do degf ← SwapRowsColumns(degf, i, j)

11 i← i+ 1

12 j ← j − 1

13 if degf is an upper triangular matrix

14 then degf ← Print(degf) with some comments

15 else degf ← Print(degf) with some comments

16 return degf

8.6 SolvableModuleByUsualGradedWithProof Function

The function SolvableModuleByUsualGradedWithProof(D,P) is called only if the

conditions of Proposition 7.2.11 hold. The inputs of this function are the list of

dimensions of the modules D = [k1, . . . , kn] where dim(ei) = ki and the degree

P of the differential on the module M . (The same inputs as the main function

IsSolvableModuleWithProof.) SolvableModuleByUsualGradedWithProof outputs

a proof that M is solvable. The algorithm works as follows:

200

SolvableModuleByUsualGraded(D,P)

1 m← Size(D)

2 D[1]← k1

3 0← j

4 dimf ← IdentityMat(m)

5 degf ← IdentityMat(m)

6 degf2← IdentityMat(m)

7 f ← IdentityMat(m)

8 for i in {1, . . . ,m}
9 do D[j]← dimej

10 for i in {1, . . . ,m}
11 do D[i]← dimei

12 dimej − dimei− P ← dimf [i][j]

� by definition

13 if dimf [i][j] < 0

14 then f [i][j] = 0 � usual graded

15 −dimf [i][j]← degf [i][j] � by the properties

16 for j in {1, . . . ,m}
17 do for i in {1, . . . ,m}
18 do Rewrite f after setting some of its entries to zero

19 if f is an upper triangular matrix

20 then for i in {1, . . . ,m}
21 do 0← f [i][i] � since ∂2 = 0 and R is an integral domain

22 Compute the matrix d of the differential ∂ with respect

23 to the basis S = {ei}mi=1

24 else return f is not upper triangluar matrix

25 Construct a proof that M is solvable if f is an upper triangular matrix

26 return M is solvable

8.7 IsSolvableModuleWithProof Function

The function IsSolvableModuleWithProof(D,P) is the main function of our algo-

rithm. It checks which of the conditions of the Propositions 7.2.4, 7.2.5, 7.2.8, 7.2.10,

7.2.11 and Remark 7.2.9 hold. Then it calls one of the functions: Solveindic1With-

Proof, Solveindic2WithProof, Solveindic3WithProof, Solveindic4 and Solva-

201

bleModuleByUsualGradedWithProof according to the condition that matches the

function. The inputs of this function are the list of dimensions of the modules

D = [k1, . . . , kn] where dim(ei) = ki and the degree P of the differential on the

module M . The function outputs the dimension m of the vector of dimensions, the

matrix dimf of dimensions, the identity matrix f of size m ×m, the matrix degf

of degrees, the flags indic and xi; i = 1, 2, 3 to determine which of Solveindic(n)

function to run. The algorithm works as follows:

IsSolvableModuleWithProof(D,P)

1 m← Size(D)

2 if P = 1 or −1

3 then return M is solvable (by Carlsson, 1983)

4 if P ≤ −2

5 then k1← D[1]

6 j ← 0

7 dimf ← IdentityMat(m)

8 degf ← IdentityMat(m)

9 degf2← IdentityMat(m)

10 f ← IdentityMat(m)

11 for i in {2, . . . ,m}
12 do j ← j + 1

13 k2← D[i]

14 diffk ← k1− k2

15 if k1 > k2

16 then t[j]← diffk � t was empty

17 if diffk ≥ −P
18 then indic← 1 � indic was zero

19 x1← x1 + 1

� x1 was zero

20 elseif diffk < −P
21 then indic← 2

22 x2← x2 + 1

� x2 was zero

23 elseif diffk < P

202

24 then indic← 3

25 x3← x3 + 1

26 Check the conditions of the input of the two cases above

27 Following the same strategy for indic = 1 and indic = 3

to construct indic = 2 if ti + ti+1 ≤ −P and indic = 4

if ti + ti+1 > −P
28 for j in {1, . . . ,m}
29 do dimej ← D[j]

30 for i in {1, . . . ,m}
31 do dimei← D[i]

32 dimf [i][j]← dimej − dimei+ P

� by definition

33 if dimf [i][j] > 0

34 then f [i][j] = 0 � negative graded

35 degf [i][j]← −dimf [i][j] � by the properties

36 if indic = 1

37 then Call Function Solveindic1WithProof

38 if indic = 2 or (indic = 4 and m = 2)

39 then if m = 2

40 then Call Function Solveindic4Size2by2

41 else Call Function Solveindic2WithProof

42 if indic = 3

43 then Call Function Solveindic3WithProof

44 if indic = 4

45 then Call Function Solveindic4WithProof

46 if indic = 1

47 then return true

48 if indic = 2 and m 6= 2

49 then return fail

50 if indic = 3

51 then return true

52 if indic = 4

53 then return true

203

54 if P ≥ 2 and the conditions of Proposition 7.2.11 are hold

55 then Call Function SolvableModuleByUsualGradedWithProof

56 return true

We will give some examples for the function IsSolvableModuleWithProof as

follows:

Example(1):

gap> C:=IsSolvableModuleWithProof([30,20,10],-3);

diffk=10

diffk=10

indic=1

dimf=[[-3, -13, -23], [0, -3, -13], [0, 0, -3]]

degf=[[3, 13, 23], [0, 3, 13], [0, 0, 3]]

f=[[-3, -13, -23], [0, -3, -13], [0, 0, -3]]

Newf=[[0, -13, -23], [0, 0, -13], [0, 0, 0]]

d=[[0, "f12", "f13"], [0, 0, "f23"], [0, 0, 0]],

(Since d^2=0 and R is an integral domain).

Let C0=0 and C1=<e1> , C2=<e1,e2> , C3=<e1,e2,e3>

C1/C0 is free, C2/C1 is free, C3/C2 is free

If x in C1, then x can be written uniquely as:

x=a1*e1

d(x)=a1*d(e1)

d(x)=a1(0) in C0

Hence d(C1) subset of C0 and then d(C1/C0)=0.

If x in C2, then x can be written uniquely as:

x=a1*e1+a2*e2

d(x)=a1*d(e1)+a2*d(e2)

d(x)=a1(0)+a2(f12*e1) in C1

Hence d(C2) subset of C1 and then d(C2/C1)=0.

If x in C3, then x can be written uniquely as:

x=a1*e1+a2*e2+a3*e3

d(x)=a1*d(e1)+a2*d(e2)+a3*d(e3)

d(x)=a1(0)+a2(f12*e1)+a3(f13*e1+f23*e2) in C2

Hence d(C3) subset of C2 and then d(C3/C2)=0.

Hence, 0=C0 subset of C1 subset of C2 subset of C3= M is

204

a composition series for M.

true

Example(2):

gap> C:=IsSolvableModuleWithProof([30,20,10],-30);

diffk=10

diffk=10

indic=2

dimf=[[-30, -40, -50], [-20, -30, -40], [-10, -20, -30]]

degf=[[30, 40, 50], [20, 30, 40], [10, 20, 30]]

f=[[-30, -40, -50], [-20, -30, -40], [-10, -20, -30]]

d=[["f11", "f12", "f13"], ["f21", "f22", "f23"],

["f31", "f32", "f33"]]

fail

Example(3):

gap> C:=IsSolvableModuleWithProof([-20,-10,-5],-3);

diffk=-10

diffk=-5

indic=3

dimf=[[-3, 0, 0], [-13, -3, 0], [-18, -8, -3]]

degf=[[3, 0, 0], [13, 3, 0], [18, 8, 3]]

f=[[0, 0, 0], [-13, 0, 0], [-18, -8, 0]]

Tranf=[[0, -13, -18], [0, 0, -8], [0, 0, 0]]

d=[[0, "f12", "f13"], [0, 0, "f23"], [0, 0, 0]] ,

(Since d^2=0 and R is an integral domain).

Let C0=0 and C1=<e1> , C2=<e1,e2> , C3=<e1,e2,e3>

C1/C0 is free, C2/C1 is free, C3/C2 is free

If x in C1, then x can be written uniquely as:

x=a1*e1

d(x)=a1*d(e1)

d(x)=a1(0) in C0

Hence d(C1) subset of C0 and then d(C1/C0)=0.

If x in C2, then x can be written uniquely as:

x=a1*e1+a2*e2

205

d(x)=a1*d(e1)+a2*d(e2)

d(x)=a1(0)+a2(f12*e1) in C1

Hence d(C2) subset of C1 and then d(C2/C1)=0.

If x in C3, then x can be written uniquely as:

x=a1*e1+a2*e2+a3*e3

d(x)=a1*d(e1)+a2*d(e2)+a3*d(e3)

d(x)=a1(0)+a2(f12*e1)+a3(f13*e1+f23*e2) in C2

Hence d(C3) subset of C2 and then d(C3/C2)=0.

Hence, 0=C0 subset of C1 subset of C2 subset of C3= M is

a composition series for M.

true

Example(4):

gap> C:=IsSolvableModuleWithProof([40,30,20,10],-11);

diffk=10

diffk=10

diffk=10

indic=4

dimf=[[-11, -21, -31, -41], [-1, -11, -21, -31], [0, -1, -11,

-21], [0, 0, -1, -11]]

degf=[[11, 21, 31, 41], [1, 11, 21, 31], [0, 1, 11, 21],

[0, 0, 1, 11]]

b=[0]

i=1

degf Original Case_after setting some elements to Zero is [[0, 21,

31, 41], [1, 0, 21, 31], [0, 1, 0, 21], [0, 0, 0, 0]]

degf=[[0, 1, 21, 31], [0, 0, 31, 41], [0, 0, 0, 21],

[0, 0, 0, 0]]

Thus for the First case, degf is a strictly upper Triangular

matrix, so M is solvable.

degf=[[0, 31, 21, 41], [0, 0, 1, 21], [0, 0, 0, 31],

[0, 0, 0, 0]]

Thus for the second case, degf is a strictly upper triangular

206

matrix, so M is solvable.

b=[1]

i=2

degf Original Case_after setting some elements to Zero is [[0, 21,

31, 41], [1, 0, 21, 31], [0, 1, 0, 0], [0, 0, 1, 0]]

degf=[[0, 1, 31, 21], [0, 0, 41, 31], [0, 0, 0, 1],

[0, 0, 0, 0]]

Thus for the First case, degf is a strictly upper Triangular

matrix, so M is solvable.

degf=[[0, 0, 0, 21],[0, 0, 1, 0],[0, 0, 0, 1],[0, 0, 0, 0]]

Thus for the second case, degf is a strictly upper triangular

matrix, so M is solvable.

true

Example(5):

gap> C:=IsSolvableModuleWithProof([10,20,30],7);

diffk=10

diffk=10

dimf=[[0, 3, 13], [0, 0, 3], [0, 0, 0]]

degree=[[0, -3, -13], [0, 0, -3], [0, 0, 0]]

f=[[0, 3, 13], [0, 0, 3], [0, 0, 0]]

d=[[0, "f12", "f13"], [0, 0, "f23"], [0, 0, 0]] ,

(Since d^2=0 and R is an integral domain).

Let C0=0 and C1=<e1> , C2=<e1,e2> , C3=<e1,e2,e3>

C1/C0 is free, C2/C1 is free, C3/C2 is free.

If x in C1, then x can be written uniquely as:

x=a1*e1

d(x)=a1*d(e1)

d(x)=a1(0) in C0

Hence d(C1) subset of C0 and then d(C1/C0)=0.

If x in C2, then x can be written uniquely as:

x=a1*e1+a2*e2

207

d(x)=a1*d(e1)+a2*d(e2)

d(x)=a1(0)+a2(f12*e1) in C1

Hence d(C2) subset of C1 and then d(C2/C1)=0.

If x in C3, then x can be written uniquely as:

x=a1*e1+a2*e2+a3*e3

d(x)=a1*d(e1)+a2*d(e2)+a3*d(e3)

d(x)=a1(0)+a2(f12*e1)+a3(f13*e1+f23*e2) in C2

Hence d(C3) subset of C2 and then d(C3/C2)=0.

Hence, 0=C0 subset of C1 subset of C2 subset of C3= M is

a composition series for M.

true

208

Appendix A

Appendix

A.1 Appendix to Chapter 2

In this appendix we will attached the codes for all the functions we have written

and used in Chapter 2 as follows:

1. IsSimpleGraph Function

IsSimpleGraph:=function(V,E)

local i,j,M,sV,tempx,tempedgex,tempedgey;

##

###

##

The input of this function is a finite simple graph zeta=(V,E), where V and

E represents the list of vertices and the list of Edges respectively.

##

It returns "true" if zeta is a simple graph. Otherwise, It returns an error message.

###

##

sV:=Size(V);

M:= Length(E);

if V=[] then

Error("The graph must be simple and not a null graph");

fi;

if IsList(V)=false then

Error("V must be a list");

fi;

if IsList(E)=false then

Error("E must be a graph");

fi;

for i in [1..sV] do

if IsPosInt(V[i])=false then

Error("The entries of V must be positive integers");

209

fi;

od;

if ForAny(V, v-> [v,v] in E)=true then

Error("The graph must be simple no loops");

fi;

if IsSubset(Cartesian(V,V),E)=false then

Error(" Every edge [x,y] must be a pair of vertices and x,y belong to V");

fi;

for i in [1..M] do # First loop through the list of edges E

tempedgex:=SSortedList(E[i]);

for j in [i+1..M] do # Second loop through the edges E excluding the first entry of E

tempedgey:=SSortedList(E[j]);

if tempedgex=tempedgey then # determine whether the specific edge

E[j] is equal to the edge tempedgex

Error("The graph must be simple no multiple edges");

fi;

od;

od;

return(true);

end;

2. StarLinkDominateOfVertex Function

StarLinkDominateOfVertex:=function(V,E)

local i,j,x1,M,sV,sE,tempx,St,indx1,Lk,indx2,x,YY,Y1,Y2,tempedgex,tempedgey,L,sL,invV;

##

###

##

The input of this function is a finite simple graph zeta=(V,E), where V and

E represents the list of vertices and the list of Edges respectively.

##

It computes the star St(v) and link Lk(v) and concatenates them in two separate

lists St and Lk respectively. Also it calculates a list Y(v), for each vertex

v in V of those vertices u in V such that u is less than v, and we call the

list of all such Y(v), YY. In addition, it calculates sV, the size of the

list of vertices V and M, the size of the list of edges E.

###

##

if IsSimpleGraph(V,E)=true then # Call the function IsSimpleGraph to test

whether the graph zeta is simple or not

sV:=Size(V);

M:= Length(E);

St:= NullMat(sV,1,0);

Lk:= NullMat(sV,1,0);

for i in [1..sV] do # loop through the vertices V

tempx:=V[i];

indx1:=1; # index for the star of specific vertex v.

indx2:=0; # index for the link of specific vertex v.

St[tempx][indx1]:=tempx; # St: is a two dimensional matrix, the rows

indices represent the vertices and the columns

indices represent the star of a specific vertex.

210

for j in [1..M] do # loop through the edges E.

if tempx=E[j][1] then # This section to determine whether the specific

vertex E[j][1] is equal to the vertex tempx.

if E[j][1]<>E[j][2] then # excludes the isolated vertices from the calculation

indx1:=indx1+1;

indx2:=indx2+1;

St[tempx][indx1]:=E[j][2];

means that the vertex E[j][2] belongs to the star of a specific vertex v

Lk[tempx][indx2]:=E[j][2];

means that the vertex E[j][2] belongs to the link of a specific vertex v

fi;

fi;

if tempx=E[j][2] then # This section is the same of the first section,

above just we replaced the first coordinate of

the edge E(j) by the second coordinate.

if E[j][1]<>E[j][2] then

indx1:=indx1+1;

indx2:=indx2+1;

St[tempx][indx1]:=E[j][1];

Lk[tempx][indx2]:=E[j][1];

fi;

fi;

od;

od;

YY:=[];

for i in [1..sV] do # loop through the vertices V.

Y1:=[];

for j in [1..sV] do # loop through the vertices V.

Y2:=Set(St[j]); # make the list of star of each vertex v as an order set

RemoveSet(Y2,j); # remove the vertex j from the set Y2.

if IsSubsetSet(St[i],Y2) and j<>i then # computes a list Y(v), for each vertex v in V of

these vertices y in V such that u less than v.

Add(Y1,j); # Y1 represents a singleton list of Y(v) with respect to each vertex v

fi;

od;

Add(YY,Y1); # YY is a list which contains the lists of Y(v) for each,

vertex v in V of these vertices u in V such that u less than v

od;

invV:=-V;

L:=Concatenation(V,invV);

sL:=Size(L);

else

return("The graph must be a simple graph");

fi;

return([St,Lk,YY,sV,M,L,sL]);

end;

3. DeleteVerticesFromGraph Function

DeleteVerticesFromGraph:=function(St,V,E)

211

local NE,NV,h,v1,Ex,Vx,sStI,g,v,H1,H2,b,ExM,VxM,i,a,j,sNE,sNV,sV,M;

##

###

##

The input of this function are the list of stars St, the list of vertices V,

and the list of edges E.

##

It computes graphs zeta\St(v), for all v in V, with NV the list of all lists

of vertices of zeta\St(v) and NE the list of all lists of edges of zeta\St(v).

##

##

sV:=Size(V);

M:=Size(E);

NE:=[];

NV:=[];

for h in [1..sV] do # loop through the vertices V

v1:=St[h]; # represents star for each vertex v.

Ex:=E;

Vx:=V;

sStI:=Size(v1); # represents the size of star of each vertex v.

for g in [1..sStI] do # loop through the elements of the star of each vertex v.

v:=v1[g]; # v: represents the vertices which are belongs to each star v1=St[h],

which we want to delete them from the graph zeta.

H1:=[];

H2:=[];

b:=0;

ExM:=Size(Ex); # represents the size of the set of edges E.

VxM:=Size(Vx); # represents the size of the set of vertices V.

for i in [1..ExM] do # loop through the edges E.

a:=0;

for j in [1..2] do # loop through inside each edge of the set of edges E.

if Ex[i][j]=v then # determine whether v is in the list of star of each,

vertex which we wants to delete it from the graph zeta.

a:=1;

b:=1;

fi;

od;

if a<>1 then # means that the coordinates of the pair (edge) does not

equal to v which we want to delete.

Add(H1,Ex[i]); # add that pair (edge) to list H1, which it will be the

list E without those edges, which are contains vertex v.

fi;

od;

Ex:=H1;

for i in [1..VxM] do # loop through the vertices V.

a:=0;

if Vx[i]=v then # determine if this (Vx[i]) is equal to vertex v which

we need to delete.

a:=1; # if yes make a=1

fi;

if a<>1 then # means that this vertex is not equal to vertex v.

212

Add(H2,Vx[i]); # add this vertex to the list H2, which it will

be the list of V\St[h]

fi;

od;

Ex:=H1;

Vx:=H2;

od;

Add(NE,H1); # NE is the list of all lists of vertices of zeta\St(v).

Add(NV,H2); # NV is NE the list of all lists of edges of zeta\St(v).

od;

sNE:=Size(NE);

sNV:=Size(NV);

return([NV,NE,sNV,sNE]);

end;

4. ConnectedComponentsOfGraph Function

ConnectedComponentsOfGraph:=function(G1,G2)

local DFSVisit,i,j,u,e,N1,x1,y1,M,W,count,color,s,x2,D,k,sD,P,t,AllComps,sAllComps,

F,sF,Y1,sY1,C1,C2,Y2,Y3,L2,U2,q,sY3,Y4,L4,sY4,sG1,NonIsolatedComps,IsolatedComps;

##

###

##

The input of this function is the list of edges G of a graph B=(G1,G2),

where G1 is the list of vertices and G2 is the list of edges.

##

It returns [AllComps,sAllComps,NonIsolatedComps,D,IsolatedComps,F] where:

##

AllComps: the list of all the connected components of the graph B,

sAllComps: the size of AllComps,

NonIsolatedComps: the list of all the non-isolated connected components

of the graph B,

D: the list of vertices of non-isolated connected components,

IsolatedComps: the list of all the isolated connected components of the graph B,

F: the list of vertices of isolated connected components.

##

##

if IsList(G1)=false then

return("G1 must be a list");

fi;

sG1:=Size(G1);

for i in [1..sG1] do

if IsPosInt(G1[i])=false then

return("The entries of G1 must be positive integers");

fi;

od;

if IsList(G2)=false then

return("G must be a graph");

fi;

if IsSubset(Cartesian(G1,G1),G2)=false then

return(" Every edge [x,y] must be a pair of vertices and x,y belong to G1");

213

fi;

M:= Length(G2);

##

##

##

DFSVisit implements the depth search algorithm to construct the

connected components (having more than one vertex) of the graph B.

##

The input to DfsVisit are:

i: A vertex of graph B,

W: the weight matrix of B,

sD: the size of the vertex list of the graph B,

count: is a specific number representing the vertices of each component,

color: is a list of size sD with entries the numbers of

non-isolated components.

##

DFSVisit:=function(i,W,sD,count,color)

local j,s;

for s in [1..sD] do

if color[s]=0 and W[i][s]=1 then

color[s]:=count;

DFSVisit(s,W,sD,count,color);

fi;

od;

end;;

##

##

##

This section computes the list of vertices D of the non-isolated

connected components of the graph B and its size sD.

##

e:=0;

u:=0;

D:= [];

for i in [1..M] do

for t in [1..2] do

u:=0;

for j in [1..e] do

if D[j]=G2[i][t] then

u:=u+1;

fi;

od;

if u=0 then

e:=e+1;

D[e]:=G2[i][t];

fi;

od;

od;

u:=0;

sD:=Size(D);

##

##

##

214

W:= NullMat(sD,sD,0); # Set W to be a null matrix of size sD x sD

count:=0; # index for the number of connected components

color:= ListWithIdenticalEntries(sD, 0); # List "color" equal to null-vector of size sD.

s:=1; #s^th item of color is the (number of the) component of B to which

#the s^th vertex of B belongs (or is zero if s has not yet been processed).

for i in [1..M] do # loop through the edges of the list G2

for j in [1..sD] do # loop through the list of vertices of D

if D[j]=G2[i][1] then # determine whether the vertex D[j] equal to G[i][1]

x1:=j;

fi;

od;

for j in [1..sD] do

if D[j]=G2[i][2] then # determine whether the vertex D[j] equal to G[i][2]

y1:=j;

fi;

od;

W[x1][y1]:=1; # construct the adjacency matrix of the graph B as that:

W[y1][x1]:=1; # if W[x1][y1]= 1 and W[y1][x1]=1 then it means that

the vertex W[x1][y1] join with the vertex W[y1][x1]

otherwise W[x1][y1] and W[y1][x1] are disjoined.

od;

for i in [1..sD] do

if color[i]=0 then # determine whether we are done with the vertices in

the same component

count:= count+1; # we give another number for the next component

color[i]:=count;

DFSVisit(i,W,sD,count,color);

fi;

od;

P:=[];

NonIsolatedComps:=[];

for k in [1..count] do # loop through the number of connected components k

for i in [1..sD] do # loop through the list of vertices D

if k=color[i] then # determine whether these vertices k have the same

number of connected component.

Add(P,D[i]); # Adding the vertices D(i) which are in the same

connected component to the list P.

fi;

od;

for i in [1..sD] do

if k=color[i] then

Add(P,-D[i]); # Adding the inverses of D(i) to the list P

fi;

od;

Add(NonIsolatedComps,P); # NonIsolatedComps: the list of all the

non-isolated components of the graph B

P:=[];

od;

##

##

##

In this section we compute the isolated connected components of

the graph B and add them to the list Comps

215

##

IsolatedComps:=[];

F:=Difference(G1,D);

sF:=Size(F);

if sF<>0 then

for i in [1..sF] do

Add(IsolatedComps, [F[i],-F[i]]); # IsolatedComps: the list of all the

non-isolated components of the graph

od;

fi;

AllComps:=Concatenation(NonIsolatedComps,IsolatedComps); # the list of all the

components of the graph B

sAllComps:=Size(AllComps);

##

##

##

return([AllComps,sAllComps,NonIsolatedComps,D,IsolatedComps,F]);

end;

5. WhiteheadAutomorphismsOfSecondType Function

WhiteheadAutomorphismsOfSecondType:=function(NV,NE,St,YY)

local i,j,gens2,gens,genss,Bs,MV,ME,sME,h,G1,G2,R3,Comps,sComps,sMV,sNE,UniA,

D,DD,sD,S,YYY,NYY,invNYY,DYY,sDYY,Ls,t,xn,union_element,AQ,sAQ,L3,sL3,L4,sL4,sAQ1,

L5,elms,diff,Combs1,NCombs,sNCombs,Combs2,q,L7,k,set,AA1,AA,sAA,A,sA,T,sT;

##

###

##

The input of this function are:

the lists of vertices NV of the subgraph zeta\St(v)

the list of edges NE of the subgraphs zeta\St(v)=(NV(v),NE(v)) for all v in V

the list of stars St(v)

list YY for each vertex v in V of these vertices u in V such that u less than v.

##

It computes the list A of type(2) Whitehead automorphisms which forms

the first part of the set of generators of Aut(G_zeta). Also it computes

a list T of names of elements of A (the i^th element of T is the name of

the i^th element of A).

##

##

gens2:=[];

gens:=[];

genss:=[];

AA:=[];

Bs:=[];

MV:=NV;

sNE:=Size(NE);

for h in [1..sNE]do #loop through the list NE

G1:=NV[h];

216

G2:=NE[h];

R3:=ConnectedComponentsOfGraph(G1,G2);

computes the list of the Connected components

for each subgraph (NV(h),NE(h))

Comps:=R3[3]; # Comps: list of non-isolated components of the subgraph

sComps:=Size(Comps); # sComps: size of Comps

D:=R3[4]; # D: the list of vertices of non-isolated components

sD:=Size(D); # sD: size of D

S:=St[h]; # S is the list of the star of the vertex h

YYY:=YY; # YYY is a list which contains the lists of Y(v),for each vertex

v in V of these vertices u in V such that u less than v

NYY:=YYY[h]; # YYY is the dominate list Of the vertex h

invNYY:=-NYY; # the inverse of NYY

DYY:=Concatenation(NYY,invNYY);

sDYY:=Size(DYY);

Ls:=[[]];

for t in [1..sDYY] do # loop through the list DYY

xn:=DYY[t];

union_element:=function(Ls,xn,S)

Call the function union-element to construct a list

called Ls of all subsets of St(v) + YY(v) + (-YY(v))

local J,i,j,sLs;

sLs:=Size(Ls);

for i in [1..sLs] do

J:=StructuralCopy(Ls[i]); # to make a structural copy of each object Ls[i]

if not(-xn in J) or (not(xn in S) and not(-xn in S))then

Add(J,xn);

Add(Ls,J); # Ls is the list of all subsets of St(v) + YY(v) + (-YY(v))

fi;

od;

end;;

union_element(Ls,xn,S);

od;

AQ:=Ls;

sAQ:=Size(AQ);

L4:=[];

L3:=[];

if sComps=0 then # determine whether the list Comps

doesn’t has any connected component

for j in [1..sAQ] do # loop through the list Ls

sAQ1:=Size(AQ[j]);

if sAQ1 <> 0 then

Add(L3,AQ[j]); # add each list (subsets) AQ(j) of AQ to new list L3

fi;

od;

sMV:=Size(MV[h]); # sMV is the size of the vertex list of the subgraph (MV[h],ME[h])

##

For any element X not in D and sMV > 1 and X<>YY[h] we add the [X], [-X] and

[X,-X] to L3 (since these elements are part of isolated components)

for j in [1..sMV] do # loop through the vertex list of the subgraph (MV[h],ME[h])

217

if not (MV[h][j] in D) and sMV<>1 and MV[h]<>YY[h] then

Add(L3,[MV[h][j]]);

Add(L3,[-MV[h][j]]);

Add(L3,[MV[h][j],-MV[h][j]]);

fi;

od;

##

sL3:=Size(L3);

for k in [1..sL3] do # loop through list L3

Add(L3[k],h); # we add the vertex h to each list of L3 and

Add(L4,L3[k]); # we add the new list L3(k) to the list L4

od;

set:=L4;

sL4:=Size(L4);

L5:=[];

##

In this part we delete the vertex h from each list set(i) and in the same

time we add its inverse (-h) to the list diff, then we add the new list diff

to the list L5

for i in [1..sL4] do

elms:=[h];;

diff:=Difference(set[i],elms);;

Add(diff,-h);

Add(L5,diff);

od;

##

fi;

L3:=[];

if sComps=1 then # determine whether the list Comps

has just one connected component

for i in [1..sComps] do # loop through the list Comps

for k in [1..sAQ] do # loop through the list AQ

UniA:=Union([AQ[k] , Comps[i]]); # we make union for this component

with each list of of the list AQ

Add(L3, UniA);

od;

od;

sMV:=Size(MV[h]);

for j in [1..sMV] do ## See the previous comments on this section

if not (MV[h][j] in D) and sMV<>1 and MV[h]<>YY[h] then

Add(L3,[MV[h][j]]);

Add(L3,[-MV[h][j]]);

Add(L3,[MV[h][j],-MV[h][j]]);

fi;

od;

sL3:=Size(L3);

for k in [1..sL3] do

Add(L3[k],h);

Add(L4,L3[k]);

od;

set:=L4;

218

sL4:=Size(L4);

L5:=[];

for i in [1..sL4] do

elms:=[h];;

diff:=Difference(set[i],elms);;

Add(diff,-h);

Add(L5,diff);

od;

fi;

L3:=[];

if sComps >=2 then # determine whether the list Comps

has more than one connected component

Combs1:=Combinations(Comps); # Combs1 is the list of all subsets of Comps

including the empty set and Comps itself

NCombs:=Difference(Combs1,[[]]); # we removed the empty set from Combs1

sNCombs:=Size(NCombs);

Combs2:=[];

for q in [1..sNCombs] do # loop through the elements of NCombs

L7:=Concatenation(NCombs[q]); # to remove the extra brackets

Add(Combs2,L7);

od;

for k in [1..sAQ] do # loop through the elements of AQ

for i in [1..sNCombs] do # loop through the elements of NCombs

UniA:=Union([AQ[k] ,Combs2[i]]);

Add(L3, UniA);

od;

od;

sMV:=Size(MV[h]);

for j in [1..sMV] do # See the previous comments on this section

if not (MV[h][j] in D) and sMV<>1 and MV[h]<>YY[h] then

Add(L3,[MV[h][j]]);

Add(L3,[-MV[h][j]]);

Add(L3,[MV[h][j],-MV[h][j]]);

fi;

od;

sL3:=Size(L3);

for k in [1..sL3] do

Add(L3[k],h);

Add(L4,L3[k]);

od;

set:=L4;

sL4:=Size(L4);

L5:=[];

for i in [1..sL4] do

elms:=[h];;

diff:=Difference(set[i],elms);;

Add(diff,-h);

Add(L5,diff);

od;

fi;

for i in [1..sL4] do # loop through the elements of L4 and L5 in the same time

AA1:=[];

Add(AA1,L4[i]);

219

Add(AA1,h); # we forms type(2) Whitehead automorphisms

with positive operator (h)

Add(AA,AA1);

AA1:=[];

Add(AA1,L5[i]);

Add(AA1,-h); # we forms type(2) Whitehead automorphisms

with negative operator (-h)

Add(AA,AA1); # AA forms the type(2) Whitehead automorphisms which are

the first part of the generators of the automorphisms

od; # of group of partially commutative group

od;

sAA:=Size(AA);

A:=[];

for i in [1..sAA] do # loop through the generators set AA

if not (AA[i] in A) then # it helps us to rewrite the list AA without repetition

Add(A,AA[i]); # The elements of list A are the definitions of Type(2)

Whitehead automorphisms of the generators of the

presentation of Aut(G_zeta)

fi;

od;

sA:=Size(A);

T:=[];

for i in [1..sA]do

Add(T,Concatenation(["A",String(i)])); # Compute the list T with i^th entry A(i) where

A(i) is the name of the i^th element of A

od;

sT:=Size(T);

return ([A,T,sA]);

end;

6. WhiteheadAutomorphismsOfFirstType Function

WhiteheadAutomorphismsOfFirstType:= function(E,sV,sA,T)

local gens2,gens,genss,E1,GraphAutomorphismGroup,Gr,HH,KK,rels1,HHH,srels1,

NJK,F,sF,Gens3,i,NF1,relvalofF,srelvalofF,I1,Gens2,I2,J1,sGens2,Gens,sGens,

sgenss,sgens,zz,rels2,srels2,Rels1,sRels1;

##

###

##

The input of this function are:

the list of edges E

the size of the list of vertices sV

the size of the list A of type(2) Whitehead automorphism of Aut(G_zeta)

the list T with i^th entry A(i), where A(i) is the name of the i^th element of A.

##

It computes the list Gens of the type(1) Whitehead automorphisms which forms

the second part of the set of generators of the automorphism group of G_zeta,

and then computes the list of the generators gens of Aut(G_zeta) with its

size sgens. The subgroup Aut_zeta(G_zeta) of Aut(G_zeta) consists of graph

automorphism: that is, elements pi in Aut(G_zeta) such that pi restrict

to the graph zeta is a graph automorhism.

220

##

##

gens2:=[];

gens:=[];

genss:=[];

E1:=E;

##

##

The purpose of this section is to compute the group of the graph with the size

of vertices sV since the permutation on V is an automorphism of the graph zeta

##

GraphAutomorphismGroup := function(E1)

return SubgroupProperty(SymmetricGroup(sV),g -> Set(E1,k->OnSets(k,g)) = Set(E1));

end;

##

##

##

Gr:=GraphAutomorphismGroup(E);

HH:=AsGroup(Gr);

KK:=IsomorphismFpGroupByGenerators(HH,GeneratorsOfGroup(HH));

returns an isomorphism from the given finite group

HH to a finitely presented group isomorphic to HH.

HHH:=Image(KK); # Call Image the function which computes a finitely

presented group H on the chosen generators KK

rels1:=[];

Rels1:=[];

rels2:=RelatorsOfFpGroup(HHH); # rels2: relators set of the group automorphism of graph

srels2:=Size(rels2);

F:= GeneratorsOfGroup(HHH); # F: generators set of the group automorphism of graph

sF:=Size(F);

for i in [1..srels2] do

zz:=ExtRepOfObj(rels2[i]);

The function ExtRepOfObj() helps us to rewrite each

single relation as a vector with entires are the indces

and the power of the generators which are form that relation.

For example the result of ExtRepOfObj(A52*A4*A52^-1*A4^-1)

is the vector [52, 1, 4, 1, 52, -1, 4, -1]

Add(Rels1,zz);

od;

sRels1:=Size(Rels1);

Gens3:=[];

for i in [1..sF] do

NF1:=Concatenation(["f",String(i)]);

Add(Gens3,NF1); # Gns3 is the first part of type(1) Whitehead automorphism

which are the same F just we rewrite them to make them

suitable with the other generators

od;

relvalofF:= GeneratorsOfGroup(HH); # Compute list of the definitions relvalofF of

the generators Gens3 of the group of graph HH

srelvalofF:=Size(relvalofF);

I1:=[];

Gens2:=[];

for i in [1..sV] do

221

I2:=Concatenation(["A",String(sA+i),"(",String(i),")","=",String(-i)]);

Make a list, called I2, of type(1) Whitehead automorphisms which

send a generator to its inverse and add it to the leist I1

Add(I1,I2);

J1:=Concatenation(["A",String(sA+i)]);

rewrite the elements of I1 as a string to make

them compatible with the other generators and

add them to Gens2

Add(Gens2,J1);

od;

sGens2:=Size(Gens2);

Gens:=Concatenation(Gens2,Gens3);

Concatenate the lists Gens2 and Gens3 in a new list called

Gens which represents all type(1) Whitehead automorphisms

sGens:=Size(Gens);

for i in [1..sGens] do

Add(gens,Gens[i]);

od;

genss:=Concatenation(T,Gens2);

Concatenate the two lists T and Gens2 in a one list called

genss. The list genss helps to form the relations later

gens:=Concatenation(T,Gens); # Compute set of the generators gens of Aut(G_zeta),

by concatenating the two lists T and Gens.

sgenss:=Size(genss);

sgens:=Size(gens);

return([gens,sgens,sgenss,Gens3,relvalofF,srelvalofF,Rels1,sRels1,sGens2]);

end;

7. RelationsOfGraphAutomorphisms Function

RelationsOfGraphAutomorphisms:= function(sA,sgenss,relvalofF,sV,sGens2)

local rels,Rels,i,j,R6,FF,srelvalofF,d,F1,PP,R7,R11,idx1,idx2,idx3,srels,sRels;

##

###

##

The input of this function are:

the size sA of the list A of definition of the second type of generator,

the size of the list genss defined in WhiteheadAutomorphismsOfFirstType.g,

the list of generators of the graph automorphism relvalofF defined in,

WhiteheadAutomorphismsOfFirstType.g,

sizes sV, and sGens2 of the lists V and Gens2 respectively.

##

It computes the row matrix of indices Rels of the generators

which forms the relations of this type, that related to the

graph automorphism with its size sRels.

##

##

Rels:=[];

for i in [sA+1..sgenss] do # loop through the generators Gens2

Add(Rels,[1,i]); # [1,i] is the row matrix of indices of each relation

of type R11={A^2=1 : A in Gens2} and add it to the

222

list Rels. The first entry 1 is just a flag to let

us know that here the generator is of power two

od;

for i in [sA+1..sgenss] do # loop through the generators Gens2

for j in [sA+1..sgenss] do

if i<>j then

Add(Rels,[0,-i,-j,i,j]);

[0,-i,-j,i,j] is the row matrix of indices of

each relation of type (g^-1*h^-1*g*h) such that

g,h in Gens2. The first entry 0 is just a flag to

let us know that here the generator without any power

fi;

od;

od;

FF:=[];

srelvalofF:=Size(relvalofF);

for i in [1..srelvalofF] do # loop through the generators relvalofF

of the group of graph HH

d:=relvalofF[i];

F1:=d^-1; # computes F1 the inverse of each element of

relvalofF and add them to the list FF

Add(FF,F1);

od;

##

##

In this section we apply the function PP to (j, sigma(i)) to return the value

sigma(i) for each i in the list of vertices { 1, ..., n } and sigma in the list

FF above. Using these values form the relations R7: that is compute the row

matrix of indices [0,-idx1,idx2,idx1,idx3], for each such relation, and

add it to the list Rels.

##

for i in [1..srelvalofF] do # loop through the generators relvalofF

for j in [1..sV] do # loop through the vertex set V

PP:=OnPoints(j,FF[i]);

idx1:=i+sA+sGens2;

idx2:=sA+j;

idx3:=sA+PP;

Add(Rels,[0,-idx1,idx2,idx1,idx3]);

means that the idx1 refers to the location

of F in the original F Matrix

od;

od;

##

sRels:=Size(Rels);

return([Rels,sRels]);

end;

8. APCGRelationR1 Function

APCGRelationR1:=function(sV,A,T,Rels)

local k,j,i,diff1,UA,UAiff,R1,XX1,XX2,idx1,idx2,t,sA,srels,sRels;

223

##

###

##

The input of this function are:

sV: the size of the list of vertices of the graph zeta,

A : the list of type(2) Whitehead automorphisms of Aut(G_zeta),

T : the list of names of elements of A,

Rels: the list of row matrices of indices of relations (it is one

of the outputs of "APCGRelationR5".

Note that in order to get just the row matrices of indices of relation (R1)

we need to pass an empty list [] rather than the list Rels above.

##

It computes the list of indices [0,idx1,idx2] of relators of type (R1)

of the group Aut(G_zeta) and adds them to the list Rels. In addition

it calculates the size of the list Rels.

It returns [Rels,sRels].

##

##

sA:=Size(A);

for k in [1..sV] do # loop through the list of vertices V

for i in [1..sA]do # loop through the list A defined above

if k in A[i][1] and not (-k in A[i][1]) and A[i][2]=k then

Here we have satisfied the conditions,

of the Whitehead automorphism (A,a),

"a" is called the multiplier

diff1:=Difference(A[i][1],[k]); # we delete the multiplier k from each subset,

A[i][1] and add its inverse -k to this subset.

Add(diff1,-k);

for j in [1..sA]do # loop through the list A defined above.

UA:=SSortedList(A[j][1]); # Sorted lists A[j][1] to satisfy the conditions of (R1)

UAiff:=SSortedList(diff1); # Sorted lists diff1 to satisfy the conditions of (R1)

if UA=UAiff and A[j][2]=-k then # Verify the inverse of each (A,a)

##

##

In this section we compute the list of indices [0,idx1,idx2] of relators of

type (R1) and add them to the list Rels. Note that 0 is just flag to let us

know that all the generators here of power 1. idx1 represents the index of a

specific generator A(i). idx2 represents the index of the inverse of A(j).

For example if [0,idx1,idx2]= [0, 1, 2] then this means A1*A2=1.

XX1:=Concatenation(["A",String(i)]);

XX1: represents a specific Whitehead automorphism (A,a) of A

XX2:=Concatenation(["A",String(j)]);

XX2: represents a specific Whitehead automorphism (A,a^-1)

which is the inverse of (A,a)

idx1:=0;

idx2:=0;

for t in [1..sA] do # Verify the indices of the given Whitehead

automorphisms A(i) and A(j) in A

if XX1=T[t] then

224

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

od;

Add(Rels,[0,idx1,idx2]);

##

##

##

fi;

od;

fi;

od;

od;

sRels:=Size(Rels);

return([Rels,sRels]);

end;

9. APCGRelationR2 Function

APCGRelationR2:=function(A,T,Rels,St)

local k,j,i,IntA,UniA,NUniA,l,K,t,UA,R2,XX1,XX2,XX3,idx1,idx2,idx3,t1,

sV,sA,R2a,K1,R2b,R2c,srels,sRels;

##

###

##

The input of this function are:

A: the list of type(2) generators computed in "WhiteheadAutomorphismsOfSecondType",

T: list of the names of elements of A,

Rels: the list of row matrices of indices of the relations (it is one

of the outputs of the "APCGRelationR1",

St: the list of stars computed in "StarLinkDominateOfVertex".

Note that in order to get just the row matrices of indices of relation (R2)

we need to pass an empty list [] rather than the list Rels above.

##

It computes the list of indices of the generators [0,idx1,idx2,-idx3] of

relators of type (R2) of the group Aut(G_zeta) and adds them to the list

Rels. In addition it calculates the size of the list Rels.

It returns [Rels,sRels].

##

##

sV:=Size(St); #Since the size of stars list equal to sV, the size of the vertex list

sA:=Size(A);

for k in [1..sV] do # loop through the vertex list V

for i in [1..sA]do # loop through the list A defined above

for j in [1..sA] do # loop through the list A defined above

IntA:=Intersection([A[i][1] , A[j][1]]);

UniA:=Union([A[i][1] , A[j][1]]);

NUniA:=[];

225

for l in St[k] do # In this loop if the vertex l and its inverse -l in the

same time are belong to the list UniA then we delete

them, because they will cancel each other.

if l in UniA and -l in UniA then

NUniA:=Difference(UniA,[-l,l]);

UniA:=NUniA;

fi;

od;

K:=[k];

if IntA=K and k in A[i][1] and not (-k in A[i][1]) and A[i][2]=k and k in A[j][1]

and not (-k in A[j][1]) and A[j][2]=k and k in UniA and not (-k in UniA) then

###

##

Section(1): We compute the first part of the list of indices

[0,idx1,idx2,-idx3] of relators of type (R2) and add them to the list

Rels. Note that 0 is just flag to let us know that all generators here

of power 1. idx1: represents the index of the generator A(i).

idx2: represents the index of the generator A(j). -idx3: represents

the index of the inverse of the generator A(t).

For example if [0,idx1,idx2,-idx3]= [0,1,3,-5],

then this means A1*A3*A5^-1=1.

##

for t in [1..sA]do

UA:=SSortedList(A[t][1]);

if A[t][2]=k then

if UA=UniA or UA=NUniA then

XX1:=Concatenation(["A",String(i)]);

XX1: represents a specific Whitehead automorphism (A,a) of A

XX2:=Concatenation(["A",String(j)]);

XX2: represents a specific Whitehead automorphism (B,a) of A

XX3:=Concatenation(["A",String(t)]);

XX3: represents a specific Whitehead automorphism (A+B,a^-1)

which is the inverse of (A+B,a) of A

idx1:=0;

idx2:=0;

idx3:=0;

for t1 in [1..sA] do

Verify the indices of the given Whitehead automorphisms

A(i), A(j) and the inverse of A(t) in A

if XX1=T[t1] then

idx1:=t1;

fi;

if XX2=T[t1] then

idx2:=t1;

fi;

if XX3=T[t1] then

idx3:=t1;

fi;

od;

Add(Rels,[0,idx1,idx2,-idx3]);

fi;

fi;

od;

226

##

##

##

##

##

Section(2): Note that in some cases when we delete the vertices l and

its inverse -l from the list UniA=A+B we will get a new list NUniA=[k],

but this is just the identity. So we will ignore this list (subset)

and we compute the second part of the list of indices [0,idx1,idx2]

##

if NUniA=K then

XX1:=Concatenation(["A",String(i)]);

XX1: represents a specific Whitehead automorphism (A,a) of A

XX2:=Concatenation(["A",String(j)]);

XX2: represents a specific Whitehead automorphism (B,a) of A

idx1:=0;

idx2:=0;

for t1 in [1..sA] do

Verify the indices of the given Whitehead automorphisms

A(i) and A(j) in A

if XX1=T[t1] then

idx1:=t1;

fi;

if XX2=T[t1] then

idx2:=t1;

fi;

od;

Add(Rels,[0,idx1,idx2]);

fi;

##

##

##

fi;

K1:=[-k];

if IntA=K1 and -k in A[i][1] and not (k in A[i][1]) and A[i][2]=-k and -k in A[j][1]

and not (k in A[j][1]) and A[j][2]=-k and -k in UniA and not (k in UniA) then

##

##

Section(3): we compute the third part of the list of indices [0,idx1,

idx2,-idx3] of relators of type (R2). It is the same of Section(1), just

we switch the multiplier "a" (k in this code) of the Whitehead

automorphism (A,a) by its inverse "a^-1" (-k in this code).

##

for t in [1..sA]do

UA:=SSortedList(A[t][1]);

if A[t][2]=-k then

if UA=UniA or UA=NUniA then

XX1:=Concatenation(["A",String(i)]);

XX2:=Concatenation(["A",String(j)]);

XX3:=Concatenation(["A",String(t)]);

idx1:=0;

idx2:=0;

227

idx3:=0;

for t1 in [1..sA] do

if XX1=T[t1] then

idx1:=t1;

fi;

if XX2=T[t1] then

idx2:=t1;

fi;

if XX3=T[t1] then

idx3:=t1;

fi;

od;

Add(Rels,[0,idx1,idx2,-idx3]);

fi;

fi;

od;

##

###

##

###

##

We compute the fourth part of the list of indices [0,idx1,idx2] of

relators of type (R2). It is the same of Section(2), just we switch the

multiplier "a" (k in this code) of the Whitehead automorphism (A,a) by

its inverse "a^-1" (-k in this code).

##

if NUniA=K1 then

XX1:=Concatenation(["A",String(i)]);

XX2:=Concatenation(["A",String(j)]);

idx1:=0;

idx2:=0;

for t1 in [1..sA] do

if XX1=T[t1] then

idx1:=t1;

fi;

if XX2=T[t1] then

idx2:=t1;

fi;

od;

Add(Rels,[0,idx1,idx2]);

fi;

##

##

##

fi;

od;

od;

od;

sRels:=Size(Rels);

return([Rels,sRels]);

end;

228

10. APCGRelationR3 Function

APCGRelationR3:=function(A,T,Lk,Rels)

local k,j,i,sV,sA,IntA,UniA,NUniA,l,K,t,UA,R2,XX1,XX2,idx1,idx2,

t1,R3a,R3a1,K1,R3b,R3b1,srels,sRels;

##

###

##

The input of this function are:

A: the list of type(2) generators computed in "WhiteheadAutomorphismsOfSecondType",

T: list of the names of elements of A,

Lk: the list of links computed in "StarLinkDominateOfVertex".

Rels: the list of row matrices of indices of the relations (it is one

of the outputs of the "APCGRelationR2",

Note that in order to get just the row matrices of indices of relation (R3)

we need to pass an empty list [] rather than the list Rels above.

##

It computes the list of indices of the generators [0,idx1,idx2,-idx1,-idx2]

of relators of types (R3a) and (R3b) of the group Aut(G_zeta) and adds them

to the list Rels. In addition it calculates the size of the list Rels.

It returns [Rels,sRels].

##

##

sV:=Size(Lk);

sA:=Size(A);

###

##

In this section we compute the list of indices [0,idx1,idx2,-idx1,-idx2] of

relators of type (R3a) by satisfying the conditions of this relations and add

them to the list Rels. Note that 0 is just flag to let us know that all the

generators here of power 1. idx1: represents the index of the generator A(i).

idx2: represents the index of the generator A(j). -idx1: means the inverse of A(i).

-idx2: means the inverse of A(j).

For example if [0,idx1,idx2,-idx1,-idx2]= [0, 9, 3, -9, -3], then this means

A9*A3*A9^-1*A3^-1=1.

##

for k in [1..sV] do # loop through the vertex list V

for l in [1..sV] do # loop through the vertex list V

for i in [1..sA]do # loop through A the Type (2) Whitehead Automorphisms

for j in [1..sA] do # loop through A the Type (2) Whitehead Automorphisms

IntA:=Intersection([A[i][1] , A[j][1]]);

if l in A[i][1] and not (-l in A[i][1]) and A[i][2]=l and k in A[j][1]

and not (-k in A[j][1]) and A[j][2]=k and not (k in A[i][1]) and

not (-k in A[i][1]) and not (l in A[j][1]) and not(-l in A[j][1])

and IntA=[] then

XX1:=Concatenation(["A",String(i)]);

XX1: represents a specific Whitehead automorphism (A,a) of A

XX2:=Concatenation(["A",String(j)]);

XX2: represents a specific Whitehead automorphism (B,b) of A

idx1:=0;

idx2:=0;

for t in [1..sA] do # Verify the indices of the given Whitehead

automorphisms A(i) and A(j) in A

229

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

od;

Add(Rels,[0,idx1,idx2,-idx1,-idx2]);

fi;

if l in A[i][1] and not (-l in A[i][1]) and A[i][2]=l and -k in A[j][1]

and not (k in A[j][1]) and A[j][2]=-k and not (k in A[i][1]) and

not (-k in A[i][1]) and not (l in A[j][1]) and not(-l in A[j][1])

and IntA=[] then

XX1:=Concatenation(["A",String(i)]);

XX1: represents a specific Whitehead automorphism (A,a) of A

XX2:=Concatenation(["A",String(j)]);

XX2: represents a specific Whitehead automorphism (B,b) of A

idx1:=0;

idx2:=0;

for t in [1..sA] do # Verify the indices of the given Whitehead

automorphisms A(i) and A(j) in A

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

od;

Add(Rels,[0,idx1,idx2,-idx1,-idx2]);

fi;

if -l in A[i][1] and not (l in A[i][1]) and A[i][2]=-l and k in A[j][1]

and not (-k in A[j][1]) and A[j][2]=k and not (k in A[i][1]) and

not (-k in A[i][1]) and not (l in A[j][1]) and not(-l in A[j][1])

and IntA=[] then

XX1:=Concatenation(["A",String(i)]);

XX1: represents a specific Whitehead automorphism (A,a) of A

XX2:=Concatenation(["A",String(j)]);

XX2: represents a specific Whitehead automorphism (B,b) of A

idx1:=0;

idx2:=0;

for t in [1..sA] do # Verify the indices of the given Whitehead

automorphisms A(i) and A(j) in A

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

od;

Add(Rels,[0,idx1,idx2,-idx1,-idx2]);

fi;

if -l in A[i][1] and not (l in A[i][1]) and A[i][2]=-l and -k in A[j][1]

and not (k in A[j][1]) and A[j][2]=-k and not (k in A[i][1]) and

230

not (-k in A[i][1]) and not (l in A[j][1]) and not(-l in A[j][1])

and IntA=[] then

XX1:=Concatenation(["A",String(i)]);

XX1: represents a specific Whitehead automorphism (A,a) of A

XX2:=Concatenation(["A",String(j)]);

XX2: represents a specific Whitehead automorphism (B,b) of A

idx1:=0;

idx2:=0;

for t in [1..sA] do # Verify the indices of the given Whitehead

automorphisms A(i) and A(j) in A

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

od;

Add(Rels,[0,idx1,idx2,-idx1,-idx2]);

fi;

od;

od;

od;

od;

##

##

##

##

##

In this section we compute the list of indices [0,idx1,idx2,-idx1,-idx2] of

relators of type (R3b) by satisfying the conditions of this relations and add

them to the list Rels. Note that 0 is just flag to let us know that all the

generators here of power 1. idx1: represents the index of the generator A(i).

idx2: represents the index of the generator A(j). -idx1: represents the index

of the inverse of the generator A(i). -idx2: represents the index of the

inverse of the generator A(j).

For example if [0,idx1,idx2,-idx1,-idx2]= [0, 9, 3, -9, -3], then this

means that A9*A3*A9^-1*A3^-1=1.

##

for k in [1..sV] do

for l in [1..sV] do

for i in [1..sA]do

for j in [1..sA] do

IntA:=Intersection([A[i][1] , A[j][1]]);

if l in A[i][1] and not (-l in A[i][1]) and A[i][2]=l and k in A[j][1]

and not (-k in A[j][1]) and A[j][2]=k and not (k in A[i][1]) and

not (-k in A[i][1]) and not (l in A[j][1]) and not(-l in A[j][1])

and IntA<>[] and l in Lk[k] then

XX1:=Concatenation(["A",String(i)]);

XX1: represents a specific Whitehead automorphism (A,a) of A

XX2:=Concatenation(["A",String(j)]);

XX2: represents a specific Whitehead automorphism (B,b) of A

idx1:=0;

231

idx2:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

od;

Add(Rels,[0,idx1,idx2,-idx1,-idx2]);

fi;

if l in A[i][1] and not (-l in A[i][1]) and A[i][2]=l and -k in A[j][1]

and not (k in A[j][1]) and A[j][2]=-k and not (k in A[i][1]) and

not (-k in A[i][1]) and not (l in A[j][1]) and not(-l in A[j][1])

and IntA<>[] and l in Lk[k] then

XX1:=Concatenation(["A",String(i)]);

XX1: represents a specific Whitehead automorphism (A,a) of A

XX2:=Concatenation(["A",String(j)]);

XX2: represents a specific Whitehead automorphism (B,b) of A

idx1:=0;

idx2:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

od;

Add(Rels,[0,idx1,idx2,-idx1,-idx2]);

fi;

if -l in A[i][1] and not (l in A[i][1]) and A[i][2]=-l and k in A[j][1]

and not (-k in A[j][1]) and A[j][2]=k and not (k in A[i][1]) and

not (-k in A[i][1]) and not (l in A[j][1]) and not(-l in A[j][1])

and IntA<>[] and l in Lk[k] then

XX1:=Concatenation(["A",String(i)]);

XX1: represents a specific Whitehead automorphism (A,a) of A

XX2:=Concatenation(["A",String(j)]);

XX2: represents a specific Whitehead automorphism (B,b) of A

idx1:=0;

idx2:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

od;

Add(Rels,[0,idx1,idx2,-idx1,-idx2]);

fi;

if -l in A[i][1] and not (l in A[i][1]) and A[i][2]=-l and -k in A[j][1]

and not (k in A[j][1]) and A[j][2]=-k and not (k in A[i][1]) and

232

not (-k in A[i][1]) and not (l in A[j][1]) and not(-l in A[j][1])

and IntA<>[] and l in Lk[k] then

XX1:=Concatenation(["A",String(i)]);

XX1: represents a specific Whitehead automorphism (A,a) of A

XX2:=Concatenation(["A",String(j)]);

XX2: represents a specific Whitehead automorphism (B,b) of A

idx1:=0;

idx2:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

od;

Add(Rels,[0,idx1,idx2,-idx1,-idx2]);

fi;

od;

od;

od;

od;

##

##

##

sRels:=Size(Rels);

return([Rels,sRels]);

end;

11. APCGRelationR4 Function

APCGRelationR4:=function(A,T,Lk,Rels)

local k,j,i,IntA,UniA,NUniA,l,K,t,UA6,R2,XX1,XX2,XX3,idx1,idx2,idx3,t1,R4a,

R4a1,R4a2,R4a3,K1,R4b,R4b1,R4b2,R4b3,srels,sRels,diff15,diff17,diff19,diff21,

diff22,diff16,diff18,diff20,UAdiff1,UAdiff15,UAdiff16,UAdiff17,UAdiff18,UAdiff19,

sV,sA,UAdiff20,UAdiff21,UAdiff22,UA7,UA8,UA9,UA10,UA11,UA12,UA13,n;

##

###

##

The input of this function are:

A: the list of type(2) generators computed in "WhiteheadAutomorphismsOfSecondType",

T: list of the names of elements of A,

Lk: the list of links computed in "StarLinkDominateOfVertex".

Rels: the list of row matrices of indices of the relations (it is one

of the outputs of the "APCGRelationR3",

Note that in order to get just the row matrices of indices of relation (R4)

we need to pass an empty list [] rather than the list Rels above.

##

It computes the list of indices of the generators [0,idx1,idx2,-idx1,-idx3,-idx2]

of relators of types (R4a) and (R4b) of the group Aut(G_zeta) and adds them

to the list Rels. In addition it calculates the size of the list Rels.

233

It returns [Rels,sRels].

##

##

sV:=Size(Lk); #Since the size of links list equal to sV, the size of the vertex list

sA:=Size(A);

##

###

##

In this section we compute the list of indices [0,idx1,idx2,-idx1,-idx3,-idx2]

of relators of type (R4a) by satisfying the conditions of this relations and

add them to the list Rels. Note that 0 is just flag to let us know that all

the generators here of power 1. idx1: represents the index of the generator A(i).

idx2: represents the index of the generator A(j). -idx1: means the inverse of A(i).

-idx3: means the inverse of the generator A(n). -idx2: means the inverse of A(j).

For example if [0,idx1,idx2,-idx1,-idx3,-idx2]= [[0, 1, 13, -1, -9, -13],

then this means that A1*A13*A1^-1*A9^-1*A13^-1=1.

##

for k in [1..sV] do # loop through the vertex list V

for l in [1..sV] do # loop through the vertex list V

for i in [1..sA]do # loop through A the Type (2) Whitehead Automorphisms

for j in [1..sA] do # loop through A the Type (2) Whitehead Automorphisms

IntA:=Intersection([A[i][1] , A[j][1]]);

if l in A[i][1] and not (-l in A[i][1]) and A[i][2]=l and k in A[j][1]

and not (-k in A[j][1]) and A[j][2]=k and not (k in A[i][1]) and

not (-k in A[i][1]) and not (l in A[j][1]) and -l in A[j][1]

and IntA=[] then

diff15:=Difference(A[i][1],[l]);

Add(diff15,k);

for n in [1..sA]do

UA6:=SSortedList(A[n][1]);

UAdiff15:=SSortedList(diff15);

if UA6=UAdiff15 and A[n][2]=k then

XX1:=Concatenation(["A",String(i)]);

XX1: represents a specific automorphism (B,b) of A

XX2:=Concatenation(["A",String(j)]);

XX2: represents a specific automorphism (A,a) of A

XX3:=Concatenation(["A",String(n)]);

XX3: represents a specific automorphism (B-b+a,a) of A

idx1:=0;

idx2:=0;

idx3:=0;

for t in [1..sA] do

Verify the indices of the given Whitehead

automorphisms A(i), A(j) and A(n) in A

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

if XX3=T[n] then

idx3:=n;

fi;

234

od;

Add(Rels,[0,idx1,idx2,-idx1,-idx3,-idx2]);

fi;

od;

fi;

if l in A[i][1] and not (-l in A[i][1]) and A[i][2]=l and -k in A[j][1]

and not (k in A[j][1]) and A[j][2]=-k and not (-k in A[i][1]) and

not (k in A[i][1]) and not (l in A[j][1]) and -l in A[j][1] and

IntA=[] then

diff19:=Difference(A[i][1],[l]);

Add(diff19,-k);

for n in [1..sA]do

UA10:=SSortedList(A[n][1]);

UAdiff19:=SSortedList(diff19);

if UA10=UAdiff19 and A[n][2]=-k then

XX1:=Concatenation(["A",String(i)]);

XX1: represents a specific automorphism (B,b) of A

XX2:=Concatenation(["A",String(j)]);

XX2: represents a specific automorphism (A,a) of A

XX3:=Concatenation(["A",String(n)]);

XX3: represents a specific automorphism (B-b+a,a) of A

idx1:=0;

idx2:=0;

idx3:=0;

for t in [1..sA] do

Verify the indices of the given Whitehead

automorphisms A(i), A(j) and A(n) in A

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

if XX3=T[n] then

idx3:=n;

fi;

od;

Add(Rels,[0,idx1,idx2,-idx1,-idx3,-idx2]);

fi;

od;

fi;

if -l in A[i][1] and not (l in A[i][1]) and A[i][2]=-l and -k in A[j][1]

and not (k in A[j][1]) and A[j][2]=-k and not (-k in A[i][1])

and not (k in A[i][1]) and not (-l in A[j][1]) and l in A[j][1]

and IntA=[] then

diff16:=Difference(A[i][1],[-l]);

Add(diff16,-k);

for n in [1..sA]do

UA7:=SSortedList(A[n][1]);

UAdiff16:=SSortedList(diff16);

if UA7=UAdiff16 and A[n][2]=-k then

XX1:=Concatenation(["A",String(i)]);

XX1: represents a specific automorphism (B,b) of A

235

XX2:=Concatenation(["A",String(j)]);

XX2: represents a specific automorphism (A,a) of A

XX3:=Concatenation(["A",String(n)]);

XX3: represents a specific automorphism (B-b+a,a) of A

idx1:=0;

idx2:=0;

idx3:=0;

for t in [1..sA] do

Verify the indices of the given Whitehead

automorphisms A(i), A(j) and A(n) in A

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

if XX3=T[n] then

idx3:=n;

fi;

od;

Add(Rels,[0,idx1,idx2,-idx1,-idx3,-idx2]);

fi;

od;

fi;

if -l in A[i][1] and not (l in A[i][1]) and A[i][2]=l and k in A[j][1]

and not (-k in A[j][1]) and A[j][2]=k and not (k in A[i][1])

and not (-k in A[i][1]) and not (-l in A[j][1]) and l in A[j][1]

and IntA=[] then

diff20:=Difference(A[i][1],[-l]);

Add(diff20,k);

for n in [1..sA]do

UA11:=SSortedList(A[n][1]);

UAdiff1:=SSortedList(diff20);

if UA11=UAdiff20 and A[n][2]=k then

XX1:=Concatenation(["A",String(i)]);

XX1: represents a specific automorphism (B,b) of A

XX2:=Concatenation(["A",String(j)]);

XX2: represents a specific automorphism (A,a) of A

XX3:=Concatenation(["A",String(n)]);

XX3: represents a specific automorphism (B-b+a,a) of A

idx1:=0;

idx2:=0;

idx3:=0;

for t in [1..sA] do

Verify the indices of the given Whitehead

automorphisms A(i), A(j) and A(n) in A

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

236

if XX3=T[n] then

idx3:=n;

fi;

od;

Add(Rels,[0,idx1,idx2,-idx1,-idx3,-idx2]);

fi;

od;

fi;

od;

od;

od;

od;

##

##

##

##

##

In this section we compute the list of indices [0,idx1,idx2,-idx1,-idx3,-idx2]

of relators of type (R4b) by satisfying the conditions of this relations and

add them to the list Rels. Note that 0 is just flag to let us know that all

the generators here of power 1. idx1: represents the index of the generator A(i).

idx2: represents the index of the generator A(j). -idx1: means the inverse of A(i).

of the inverse of the generator A(i).-idx3: means the inverse of the generator A(n).

-idx2: means the inverse of A(j).

For example if [0,idx1,idx2,-idx1,-idx3,-idx2]= [0, 25, 21, -25, -13,-21]

then this means that A25*A21*A25^-1*A13^-1*A21^-1=1.

The procedure use in this Section is similar to the first Section except

IntA<>[] replaced by IntA<>[] and l in Lk[k]

##

for k in [1..sV] do

for l in [1..sV] do

for i in [1..sA]do

for j in [1..sA] do

IntA:=Intersection([A[i][1] , A[j][1]]);

if l in A[i][1] and not (-l in A[i][1]) and A[i][2]=l and k in A[j][1]

and not (-k in A[j][1]) and A[j][2]=k and not (k in A[i][1])

and not (-k in A[i][1]) and not (l in A[j][1]) and -l in A[j][1]

and IntA<>[] and l in Lk[k] then

diff17:=Difference(A[i][1],[l]);

Add(diff17,k);

for n in [1..sA]do

UA8:=SSortedList(A[n][1]);

UAdiff17:=SSortedList(diff17);

if UA8=UAdiff17 and A[n][2]=k then

XX1:=Concatenation(["A",String(i)]);

XX2:=Concatenation(["A",String(j)]);

XX3:=Concatenation(["A",String(n)]);

idx1:=0;

idx2:=0;

idx3:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

237

fi;

if XX2=T[t] then

idx2:=t;

fi;

if XX3=T[n] then

idx3:=n;

fi;

od;

Add(Rels,[0,idx1,idx2,-idx1,-idx3,-idx2]);

fi;

od;

fi;

if l in A[i][1] and not (-l in A[i][1]) and A[i][2]=l and -k in A[j][1]

and not (k in A[j][1]) and A[j][2]=-k and not (-k in A[i][1])

and not (k in A[i][1]) and not (l in A[j][1]) and -l in A[j][1]

and IntA<>[] and l in Lk[k] then

diff21:=Difference(A[i][1],[l]);

Add(diff21,-k);

for n in [1..sA]do

UA12:=SSortedList(A[n][1]);

UAdiff21:=SSortedList(diff21);

if UA12=UAdiff21 and A[n][2]=-k then

XX1:=Concatenation(["A",String(i)]);

XX2:=Concatenation(["A",String(j)]);

XX3:=Concatenation(["A",String(n)]);

idx1:=0;

idx2:=0;

idx3:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

if XX3=T[n] then

idx3:=n;

fi;

od;

Add(Rels,[0,idx1,idx2,-idx1,-idx3,-idx2]);

fi;

od;

fi;

if -l in A[i][1] and not (l in A[i][1]) and A[i][2]=-l and -k in A[j][1]

and not (k in A[j][1]) and A[j][2]=-k and not (-k in A[i][1])

and not (k in A[i][1]) and not (-l in A[j][1]) and l in A[j][1]

and IntA<>[] and l in Lk[k] then

diff18:=Difference(A[i][1],[-l]);

Add(diff18,-k);

for n in [1..sA]do

UA9:=SSortedList(A[n][1]);

UAdiff18:=SSortedList(diff18);

if UA9=UAdiff18 and A[n][2]=-k then

238

XX1:=Concatenation(["A",String(i)]);

XX2:=Concatenation(["A",String(j)]);

XX3:=Concatenation(["A",String(n)]);

idx1:=0;

idx2:=0;

idx3:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

if XX3=T[n] then

idx3:=n;

fi;

od;

Add(Rels,[0,idx1,idx2,-idx1,-idx3,-idx2]);

fi;

od;

fi;

if -l in A[i][1] and not (l in A[i][1]) and A[i][2]=-l and k in A[j][1]

and not (-k in A[j][1]) and A[j][2]=k and not (k in A[i][1])

and not (-k in A[i][1]) and not (-l in A[j][1]) and l in A[j][1]

and IntA<>[] and l in Lk[k] then

diff22:=Difference(A[i][1],[-l]);

Add(diff22,k);

for n in [1..sA]do

UA13:=SSortedList(A[n][1]);

UAdiff22:=SSortedList(diff22);

if UA13=UAdiff22 and A[n][2]=k then

XX1:=Concatenation(["A",String(i)]);

XX2:=Concatenation(["A",String(j)]);

XX3:=Concatenation(["A",String(n)]);

idx1:=0;

idx2:=0;

idx3:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

if XX3=T[n] then

idx3:= n;

fi;

od;

Add(Rels,[0,idx1,idx2,-idx1,-idx3,-idx2]);

fi;

od;

fi;

od;

239

od;

od;

od;

##

###

##

sRels:=Size(Rels);

return([Rels,sRels]);

end;

12. APCGRelationR5 Function

APCGRelationR5:=function(A,St,Lk,Rels,T)

local k,j,i,m,UA,UAiff,UAiff2,IntA,UniA,NUniA,l,K,t,UA1,XX1,XX2,XX3,idx1,idx2,

sV,sA,idx3,idx4,t1,R5,srels,sRels,diff,diff1,diff2,UAdiff,UAdiff1,UAdiff2,lk,Y2;

##

###

##

A: the list of type(2) generators computed in "WhiteheadAutomorphismsOfSecondType",

St: the list of stars computed in "StarLinkDominateOfVertex",

Lk: the list of links computed in "StarLinkDominateOfVertex",

Rels: the list of row matrices of indices of the relations (it is one

of the outputs of the "RelationsOfGraphAutomorphisms",

Note that in order to get just the row matrices of indices of relation (R3)

we need to pass an empty list [] rather than the list Rels above.

T: list of the names of elements of A.

##

It computes the list of indices of the generators [2,idx1,idx2,idx4,-idx3,j,k,j]

of relators of type (R5) by satisfying the conditions of this relations

and add them to the list Rels. Note that the first entry "2" in the

list of indices above means that the idx4 refers to the location of A’s

(which are start at sA+1 and end at sA+sGens2) and this type of generators

are automorphisms of graph that, just swap the vertex "b" (j in this code)

to the vertex "a" (k in this code) and vice versa. idx1: represents the

index of the generator A(l). idx2: represents the index of the generator

A(i). -idx3: represents the the inverse of the generator A(m). j and k

refer to the vertex or its inverse. In addition it calculates the sizes

of the list Rels.

For example if [2,idx1,idx2,-idx3,idx4,j,k,j]= [[2, 25, 1, 31, -3, 3, 1,3],

then this means that A25*A1*A31*A3^-1=1.

##

It returns [Rels,sRels].

##

##

sV:=Size(St); #Since the size of stars list equal to sV, the size of the vertex list

sA:=Size(A);

lk:=[];

for i in [1..sV] do

Y2:=Difference(Lk[i],[0]);

Add(lk,Y2);

od;

240

for k in [1..sV] do

for j in [1..sV] do

for i in [1..sA]do

###

##

In this section we compute first part of the list of indices of the

generators which is [2,idx1,idx2,idx4,-idx3,j,k,j] of the relators of

type (R5) when the multiplier "a" (k in this code) of the automorphism (A,a)

is the original vertex "a" (not the inverse of "a"), and the multiplier "b"

(j in this code) of the automorphism (A-a+a^-1,b) is the original vertex "b"

and k not equal to j with k~j, by satisfying the conditions of this relations.

2: means that idx4 refers to the location of A’s.

idx1: represents the index "l" of a specific generator A(l) of A.

idx2: represents the index "i" of a specific generator A(i) of A.

-idx3: represents the inverse of the specific generator A(m) of A which

corresponds to the index idx3.

idx4: refers to the index of A’s which starts at sA+1 and end at sA+sGens2

For example if [2,idx1,idx2,idx4,-idx3,j,k,j]= [2, 25, 1, 31, -3, 3, 1, 3]

then this means that A25*A1*A31*A3^-1=1.

##

if k in A[i][1] and not (-k in A[i][1]) and j in A[i][1] and not (-j in A[i][1])

and j<>k and A[i][2]=k and IsSubset(St[k],lk[j])=true and

IsSubset(St[j],lk[k])=true then

diff1:=Difference(A[i][1],[k]);

Add(diff1,-k);

diff2:=Difference(A[i][1],[j]);

Add(diff2,-j);

for l in [1..sA]do

UA:=SSortedList(A[l][1]);

UAiff:=SSortedList(diff1);

for m in [1..sA]do

UA1:=SSortedList(A[m][1]);

UAiff2:=SSortedList(diff2);

if UA=UAiff and A[l][2]=j and UA1=UAiff2 and A[m][2]=k then

idx4:=sA+j;

XX1:=Concatenation(["A",String(l)]);

XX1: represents a specific automorphism (A-a+a^-1,b) of A

XX2:=Concatenation(["A",String(i)]);

XX2: represents a specific automorphism (A,a) of A

XX3:=Concatenation(["A",String(m)]);

XX3: represents a specific automorphism (A-b+b^-1,a) of A

idx1:=0;

idx2:=0;

idx3:=0;

for t in [1..sA] do

Verify the indices of the given Whitehead

automorphisms A(l), A(i) and A(m) in A

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

241

if XX3=T[t] then

idx3:=t;

fi;

od;

Add(Rels,[2,idx1,idx2,idx4,-idx3,j,k,j]);

2: means that the idx4 refers to the location of A’s

which starts at sA+1 and end at sA+sGens2,

j: refers to the vertex or its inverse

fi;

od;

od;

fi;

##

###

##

###

##

In this section we compute second part of the list of indices of the

generators which is [2,idx1,idx2,idx4,-idx3,j,k,j] of the relators of

type (R5) when the multiplier "a" (k in this code) of the automorphism (A,a)

is the original vertex "a", and the multiplier "b" (j in this code) of the

automorphism (A-a+a^-1,b) is the inverse of the vertex "b" (-j in this code)

and k not equal to -j with k~ -j, by satisfying the conditions of this

relations.

The procedure use in this Section is similar to the first Section above.

##

if k in A[i][1] and not (-k in A[i][1]) and -j in A[i][1] and not (j in A[i][1])

and -j<>k and A[i][2]=k and IsSubset(St[k],lk[j])=true and

IsSubset(St[j],lk[k])=true then

diff1:=Difference(A[i][1],[k]);

Add(diff1,-k);

diff2:=Difference(A[i][1],[-j]);

Add(diff2,j);

for l in [1..sA]do

UA:=SSortedList(A[l][1]);

UAiff:=SSortedList(diff1);

for m in [1..sA]do

UA1:=SSortedList(A[m][1]);

UAiff2:=SSortedList(diff2);

if UA=UAiff and A[l][2]=-j and UA1=UAiff2 and A[m][2]=k then

idx4:=sA+j;

XX1:=Concatenation(["A",String(l)]);

XX2:=Concatenation(["A",String(i)]);

XX3:=Concatenation(["A",String(m)]);

idx1:=0;

idx2:=0;

idx3:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

242

fi;

if XX3=T[t] then

idx3:=t;

fi;

od;

Add(Rels,[2,idx1,idx2,idx4,-idx3,-j,k,-j]);

fi;

od;

od;

fi;

##

###

##

###

##

In this section we compute third part of the list of indices of the

generators which is [2,idx1,idx2,idx4,-idx3,j,k,j] of the relators of

type (R5) when the multiplier "a" (k in this code) of the automorphism (A,a)

is the inverse of the vertex "a" (-k in this code), and the multiplier "b"

(j in this code) of the automorphism (A-a+a^-1,b) is the original vertex "b"

and -k not equal to j with -k ~ j, by satisfying the conditions of this

relations.

The procedure use in this Section is similar to the first Section above.

##

if -k in A[i][1] and not (k in A[i][1]) and j in A[i][1] and not (-j in A[i][1])

and j<>-k and A[i][2]=-k and IsSubset(St[k],lk[j])=true and

IsSubset(St[j],lk[k])=true then

diff1:=Difference(A[i][1],[-k]);

Add(diff1,k);

diff2:=Difference(A[i][1],[j]);

Add(diff2,-j);

for l in [1..sA]do

UA:=SSortedList(A[l][1]);

UAiff:=SSortedList(diff1);

for m in [1..sA]do

UA1:=SSortedList(A[m][1]);

UAiff2:=SSortedList(diff2);

if UA=UAiff and A[l][2]=j and UA1=UAiff2 and A[m][2]=-k then

idx4:=sA+j;

XX1:=Concatenation(["A",String(l)]);

XX2:=Concatenation(["A",String(i)]);

XX3:=Concatenation(["A",String(m)]);

idx1:=0;

idx2:=0;

idx3:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

if XX3=T[t] then

243

idx3:=t;

fi;

od;

Add(Rels,[2,idx1,idx2,idx4,-idx3,j,-k,j]);

fi;

od;

od;

fi;

##

###

##

###

##

In this section we compute third part of the list of indices of the

generators which is [2,idx1,idx2,idx4,-idx3,j,k,j] of the relators of

type (R5) when the multiplier "a" (k in this code) of the automorphism

(A,a) is the inverse of the vertex "a" (-k in this code), and the

multiplier "b" (j in this code) of the automorphism (A-a+a^-1,b) is

the inverse of the vertex "b" (-j in this code) and -k not equal to

-j with -k ~ -j, by satisfying the conditions of this relations.

The procedure use in this Section is similar to the first Section above.

##

if -k in A[i][1] and not (k in A[i][1]) and -j in A[i][1] and not (j in A[i][1])

and -j<>-k and A[i][2]=-k and IsSubset(St[k],lk[j])=true and

IsSubset(St[j],lk[k])=true then

diff1:=Difference(A[i][1],[-k]);

Add(diff1,k);

diff2:=Difference(A[i][1],[-j]);

Add(diff2,j);

for l in [1..sA]do

UA:=SSortedList(A[l][1]);

UAiff:=SSortedList(diff1);

for m in [1..sA]do

UA1:=SSortedList(A[m][1]);

UAiff2:=SSortedList(diff2);

if UA=UAiff and A[l][2]=-j and UA1=UAiff2 and A[m][2]=-k then

idx4:=sA+j;

XX1:=Concatenation(["A",String(l)]);

XX2:=Concatenation(["A",String(i)]);

XX3:=Concatenation(["A",String(m)]);

idx1:=0;

idx2:=0;

idx3:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

if XX3=T[t] then

idx3:=t;

fi;

244

od;

Add(Rels,[2,idx1,idx2,idx4,-idx3,-j,-k,-j]);

fi;

od;

od;

fi;

##

###

##

od;

od;

od;

sRels:=Size(Rels);

return([Rels,sRels]);

end;

13. APCGRelationR8 Function

APCGRelationR8:=function(V,A,T,Lk,Rels)

local k,j,i,IntA,UniA,NUniA,l,K,t,UA1,UA2,UA3,UA4,UA5,UA6,R2,XX1,XX2,XX3,idx1,

idx2,idx3,t1,R8,NR8,ty,invLk1,srels,sRels,diff1,diff2,diff3,diff4,diff5,diff6,

diff7,diff8,diff9,diff10,UAdiff1,UAdiff2,UAdiff3,UAdiff4,UAdiff5,UAdiff6,UAdiff7,

sV,sA,UAdiff8,UAdiff9,UAdiff10,UA7,UA8,UA13,n,invV,L,invLk,UniLk;

##

###

##

The input of this function are:

V: the list of vertices of the graph zeta,

A: the list of type(2) generators computed in "WhiteheadAutomorphismsOfSecondType",

T: list of the names of elements of A,

Lk: the list of links computed in "StarLinkDominateOfVertex".

Rels: the list of row matrices of indices of the relations (it is one

of the outputs of the "APCGRelationR4",

Note that in order to get just the row matrices of indices of relation (R8)

we need to pass an empty list [] rather than the list Rels above.

##

It computes the list of indices of the generators [0,idx1,-idx3,-idx2],

[0,idx1,-idx2], and [0,idx1] of relators of type (R8) of the group

Aut(G_zeta) by satisfying the conditions of this relations and add them

to the list Rels. In addition it calculates the size of the list Rels.

It returns [Rels,sRels].

##

##

sV:=Size(V);

sA:=Size(A);

invV:=-V; # invV is the inverses list of the vertex list V

L:=Concatenation(V,invV); # L is the union of the lists V and invV

for k in [1..sV] do # loop through the vertex list V

##

245

##

##

In this part we compute the list of indices When Lk(k) is not empty list.

##

if Lk[k]<>[0] then

for i in [1..sA]do # loop throu A the Type (2) Whitehead Automorphisms

if k in A[i][1] and not (-k in A[i][1]) and A[i][2]=k then

diff3:=Difference(L,[-k]);

invLk:=-Lk[k];

UniLk:=Concatenation(Lk[k],invLk);

diff5:=Difference(L,A[i][1]);

diff4:=[];

diff6:=[];

for l in Lk[k] do # In this loop if the vertex l and its inverse -l in the

same time are belong to the list diff3 then we delete

them, because they will cancel each other.

We do the same if l and -l belong to the list diff5

if l in diff3 and -l in diff3 then

diff4:=Difference(diff3,[-l,l]);

diff3:=diff4;

fi;

if l in diff5 and -l in diff5 then

diff6:=Difference(diff5,[-l,l]);

diff5:=diff6;

fi;

od;

UAdiff4:=SSortedList(diff4);

UAdiff5:=SSortedList(diff5);

UAdiff6:=SSortedList(diff6);

K:=[k];

ty:=0;

for j in [1..sA]do # loop through A, the Type (2) Whitehead Automorphisms

for n in [1..sA]do # loop through A, the Type (2) Whitehead Automorphisms

UA2:=SSortedList(A[j][1]);

UA3:=SSortedList(A[n][1]);

###

##

In this section we compute first part of the list of indices of the

generators which is [0,idx1,-idx3,-idx2] of the relators of type

(R8) by satisfying the conditions of this relations. Note that 0

is just flag to let us know that all the generators here of power 1.

idx1: represents the index of a specific generator A(i) of A.

-idx3: represents the index of the inverse of a specific generator

A(n) of A.

-idx2: represents the index of the inverse of a specific generator

A(j) of A.

For example if [0,idx1,-idx3,-idx2]= [0, 1, -4, -5], then this

means that A1*A4^-1*A5^-1=1.

##

if UAdiff4=UA2 and A[j][2]=k and UAdiff6=UA3 and A[n][2]=-k then

XX1:=Concatenation(["A",String(i)]);

XX1: represents a specific automorphism (A,a) of A

246

XX2:=Concatenation(["A",String(j)]);

XX2: represents a specific automorphism (L-A, a^-1) of A

XX3:=Concatenation(["A",String(n)]);

XX3: represents a specific automorphism (L-a^-1, a) of A

idx1:=0;

idx2:=0;

idx3:=0;

for t in [1..sA] do # Verify the indices of the given Whitehead

automorphisms A(i), A(j) and A(n) in A

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

if XX3=T[n] then

idx3:=n;

fi;

od;

NR8:=[0,idx1,-idx3,-idx2];

ty:=1;

fi;

##

###

##

###

##

In this section we compute second part of the list of indices of

the generators which is [0,idx1,-idx2] of the relators of type

(R8) by satisfying the conditions of this relations. Note that 0

is just flag to let us know that all the generators here of

power 1.

idx1: represents the index of a specific generator A(i) of A.

-idx2: represents the index of the inverse of a specific

generator A(n) of A.

For example if [0,idx1,-idx2]= [0, 7, -14], then this means

that A7*A14^-1=1.

Note that we have this case, because some time L-A-[l,-l]= [k]

which is just the identity or L-a^-1-[l,-l]= [k] which is just

the identity.

##

if UAdiff4=K and A[j][2]=k and UAdiff6=UA3 and A[n][2]=-k then

XX1:=Concatenation(["A",String(i)]);

XX1: represents a specific automorphism (A,a) of A

XX2:=Concatenation(["A",String(n)]);

XX2: represents a specific automorphism (L-a^-1, a) of A

idx1:=0;

idx2:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[n] then

247

idx2:=n;

fi;

od;

NR8:=[0,idx1,-idx2];

ty:=1;

fi;

if UAdiff4=K and A[j][2]=k and UAdiff6=[] and UAdiff5= UA3

and A[n][2]=-k then

XX1:=Concatenation(["A",String(i)]);

XX2:=Concatenation(["A",String(n)]);

idx1:=0;

idx2:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[n] then

idx2:=n;

fi;

od;

NR8:=[0,idx1,-idx2];

ty:=1;

fi;

if UAdiff4=UA2 and A[j][2]=k and UAdiff6=-K and A[n][2]=-k then

XX1:=Concatenation(["A",String(i)]);

XX2:=Concatenation(["A",String(j)]);

idx1:=0;

idx2:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

od;

NR8:=[0,idx1,-idx2];

ty:=1;

fi;

##

##

##

##

##

In this section we compute third part of the list of indices of

the generators which is [0,idx1] of the relators of type (R8)

by satisfying the conditions of this relations. Note that 0 is

just flag to let us know that all the generators here of power 1.

idx1: represents the index of a specific generator A(i) of A.

Note that we have this case, because some time

L-A-[l,-l]= L-a^-1-[l,-l]= [k] which is just the identity.

##

if UAdiff4=K and A[j][2]=k and UAdiff6=-K and A[n][2]=-k then

248

XX1:=Concatenation(["A",String(i)]);

XX1: represents a specific Whitehead automorphism (A,a) of A

idx1:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

od;

NR8:=[0,idx1];

ty:=1;

fi;

##

###

##

od;

od;

fi;

if -k in A[i][1] and not (k in A[i][1]) and A[i][2]=-k then

diff7:=Difference(L,[k]);

invLk1:=-Lk[k];

UniLk:=Concatenation(Lk[k],invLk1);

diff9:=Difference(L,A[i][1]);

diff8:=[];

diff10:=[];

for l in Lk[k] do

if l in diff7 and -l in diff7 then

diff8:=Difference(diff7,[-l,l]);

diff7:=diff8;

fi;

if l in diff9 and -l in diff9 then

diff10:=Difference(diff9,[-l,l]);

diff9:=diff10;

fi;

od;

K:=[-k];

for j in [1..sA]do

for n in [1..sA]do

UA4:=SSortedList(A[j][1]);

UAdiff8:=SSortedList(diff8);

UA5:=SSortedList(A[n][1]);

UAdiff9:=SSortedList(diff9);

UAdiff10:=SSortedList(diff10);

###

##

This section is the same first section above, just we have

replace the multiplier "a" (k) by it inverse "a^-1" (-k).

##

if UAdiff8=UA4 and UAdiff10=UA5 then

XX1:=Concatenation(["A",String(i)]);

XX2:=Concatenation(["A",String(j)]);

XX3:=Concatenation(["A",String(n)]);

idx1:=0;

idx2:=0;

249

idx3:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

if XX3=T[n] then

idx3:=n;

fi;

od;

NR8:=[0,idx1,-idx3,-idx2];

ty:=1;

fi;

##

###

##

###

##

This section is the same second section above, just we have

replace the multiplier "a" (k in this code) by it inverse

"a^-1" (-k in this code).

##

if UAdiff8=K and A[j][2]=-k and UAdiff10=UA5 and A[n][2]=k then

XX1:=Concatenation(["A",String(i)]);

XX2:=Concatenation(["A",String(n)]);

idx1:=0;

idx2:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[n] then

idx2:=n;

fi;

od;

NR8:=[0,idx1,-idx2];

ty:=1;

fi;

if UAdiff8=K and A[j][2]=-k and UAdiff10=[] and UAdiff9=UA5

and A[n][2]=k then

XX1:=Concatenation(["A",String(i)]);

XX2:=Concatenation(["A",String(n)]);

idx1:=0;

idx2:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[n] then

idx2:=n;

fi;

250

od;

NR8:=[0,idx1,-idx2];

ty:=1;

fi;

if UAdiff8=UA4 and A[j][2]=-k and UAdiff10=-K and A[n][2]=k then

XX1:=Concatenation(["A",String(i)]);

XX2:=Concatenation(["A",String(j)]);

idx1:=0;

idx2:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

od;

NR8:=[0,idx1,-idx2];

ty:=1;

fi;

##

##

##

##

##

This section is the same third section above, just we have

replace the multiplier "a" (k) by it inverse "a^-1" (-k).

##

if UAdiff8=K and A[j][2]=-k and UAdiff10=-K and A[n][2]=k then

XX1:=Concatenation(["A",String(i)]);

idx1:=0;

idx2:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

od;

NR8:=[0,idx1];

ty:=1;

fi;

od;

od;

fi;

if ty=1 then

Add(Rels,NR8);

NR8:=[];

R8:=[];

ty:=0;

fi;

od;

fi;

##

251

##

##

##

##

In this part we compute the list of indices When Lk(k) is empty list which

is the same first part when Lk(k) is not empty list with some small changes.

##

if Lk[k]=[0] then

for i in [1..sA]do

if k in A[i][1] and not (-k in A[i][1]) and A[i][2]=k then

diff3:=Difference(L,[-k]);

diff5:=Difference(L,A[i][1]);

UAdiff4:=SSortedList(diff3);

UAdiff6:=SSortedList(diff5);

K:=[k];

ty:=0;

for j in [1..sA]do

for n in [1..sA]do

UA2:=SSortedList(A[j][1]);

UA3:=SSortedList(A[n][1]);

if UAdiff4=UA2 and A[j][2]=k and UAdiff6=UA3

and A[n][2]=-k then

XX1:=Concatenation(["A",String(i)]);

XX2:=Concatenation(["A",String(j)]);

XX3:=Concatenation(["A",String(n)]);

idx1:=0;

idx2:=0;

idx3:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

if XX3=T[n] then

idx3:=n;

fi;

od;

NR8:=[0,idx1,-idx3,-idx2];

ty:=1;

fi;

if UAdiff4=K and A[j][2]=k and UAdiff6=UA3 and A[n][2]=-k then

XX1:=Concatenation(["A",String(i)]);

XX2:=Concatenation(["A",String(n)]);

idx1:=0;

idx2:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[n] then

idx2:=n;

252

fi;

od;

NR8:=[0,idx1,-idx2];

ty:=1;

fi;

if UAdiff4=UA2 and A[j][2]=k and UAdiff6=-K and A[n][2]=-k then

XX1:=Concatenation(["A",String(i)]);

XX2:=Concatenation(["A",String(j)]);

idx1:=0;

idx2:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

od;

NR8:=[0,idx1,-idx2];

ty:=1;

fi;

if UAdiff4=K and A[j][2]=k and UAdiff6=-K and A[n][2]=-k then

XX1:=Concatenation(["A",String(i)]);

idx1:=0;

idx2:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

od;

NR8:=[0,idx1];

ty:=1;

fi;

od;

od;

fi;

if -k in A[i][1] and not (k in A[i][1]) and A[i][2]=-k then

diff7:=Difference(L,[k]);

diff9:=Difference(L,A[i][1]);

K:=[-k];

for j in [1..sA]do

for n in [1..sA]do

UA4:=SSortedList(A[j][1]);

UAdiff8:=SSortedList(diff7);

UA5:=SSortedList(A[n][1]);

UAdiff10:=SSortedList(diff9);

if UAdiff8=UA4 and UAdiff10=UA5 and A[j][2]=-k

and A[n][2]=k then

XX1:=Concatenation(["A",String(i)]);

XX2:=Concatenation(["A",String(j)]);

XX3:=Concatenation(["A",String(n)]);

idx1:=0;

idx2:=0;

253

idx3:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

if XX3=T[n] then

idx3:=n;

fi;

od;

NR8:=[0,idx1,-idx3,-idx2];

ty:=1;

fi;

if UAdiff8=K and A[j][2]=-k and UAdiff10=UA5 and A[n][2]=k then

XX1:=Concatenation(["A",String(i)]);

XX2:=Concatenation(["A",String(n)]);

idx1:=0;

idx2:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[n] then

idx2:=n;

fi;

od;

NR8:=[0,idx1,-idx2];

ty:=1;

fi;

if UAdiff8=UA4 and A[j][2]=-k and UAdiff10=-K and A[n][2]=k then

XX1:=Concatenation(["A",String(i)]);

XX2:=Concatenation(["A",String(j)]);

idx1:=0;

idx2:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

od;

NR8:=[0,idx1,-idx2];

ty:=1;

fi;

if UAdiff8=K and A[j][2]=-k and UAdiff10=-K and A[n][2]=k then

XX1:=Concatenation(["A",String(i)]);

idx1:=0;

idx2:=0;

for t in [1..sA] do

if XX1=T[t] then

254

idx1:=t;

fi;

od;

NR8:=[0,idx1];

ty:=1;

fi;

od;

od;

fi;

if ty=1 then

Add(Rels,NR8);

R8:=[];

NR8:=[];

ty:=0;

fi;

od;

fi;

##

##

##

od;

sRels:=Size(Rels);

return([Rels,sRels]);

end;

14. APCGRelationR9 Function

APCGRelationR9:=function(V,A,T,Lk,Rels)

local k,j,i,zx,IntA,UniA,NUniA,l,K,t,UA13,UA14,UA16,UA23,UA24,UA25,UA26,

R2,XX1,XX2,XX3,idx1,idx2,idx3,t1,R9,R9a,R9b,R9c,invLk1,srels,sRels,diff13,

diff14,diff15,diff16,diff23,diff24,diff25,diff26,UAdiff16,UAdiff24,UAdiff23,

sV,sA,UAdiff25,UAdiff13,UAdiff14,UAdiff26,n,invV,L,invLk2,invLk3,UniLk;

##

###

##

The input of this function are:

V: the list of vertices of the graph zeta,

A: the list of type(2) generators computed in "WhiteheadAutomorphismsOfSecondType",

T: list of the names of elements of A,

Lk: the list of links computed in "StarLinkDominateOfVertex".

Rels: the list of row matrices of indices of the relations (it is one

of the outputs of the "APCGRelationR4",

Note that in order to get just the row matrices of indices of relation (R9)

we need to pass an empty list [] rather than the list Rels above.

##

It computes the list of indices of the generators [0,idx1,idx2,-idx1,-idx2]

of relators of type (R9) of the group Aut(G_zeta) by satisfying the conditions

of this relations and add them to the list Rels. In addition it calculates

the size of the list Rels.

It returns [Rels,sRels].

##

255

##

sV:=Size(V);

sA:=Size(A);

invV:=-V; # invV is the inverses list of the vertex list V

L:=Concatenation(V,invV); # L is the union of the lists V and invV

for k in [1..sV] do # loop through the vertex list V

for j in [1..sV] do # loop through the vertex list V

##

###

##

In this part we compute the list of indices When Lk(k) is not empty list.

##

if Lk[j]<>[0] then

for i in [1..sA]do # loop through A the Type (2) Whitehead Automorphisms

##

##

In this section we compute first part of the list of indices of the

generators which is [0,idx1,idx2,-idx1,-idx2] of the relators of type

(R9) when the multiplier "a" (k in this code) of the automorphism

(A,a) is the original vertex "a" (not the inverse of the vertex "a")

and zx=L(j) as defined below by satisfying the conditions of this

relations.

0: is flag to let us know that all the generators here of power 1.

idx1: represents the index "i" of a specific generator A(i) of A.

idx2: represents the index "n" of a specific generator A(n) of A.

-idx1: represents the inverse of the specific generator A(i) of

A which corresponds to the index idx1.

-idx2: represents the inverse of the specific generator A(n) of

A which corresponds to the index idx2.

For example if [0,idx1,idx2,-idx1,-idx2]= [0, 9, 5, -9, -5] then

this means that A9*A5*A9^-1*A5^-1=1.

##

zx:=L[j]; # Here zx represents the vertices "b" (R9) of the graph zeta

if k in A[i][1] and not (-k in A[i][1]) and A[i][2]=k and not

(zx in A[i][1]) and not (-zx in A[i][1]) then

diff15:=Difference(L,[-zx]);

invLk2:=-Lk[j];

UniLk:=Concatenation(Lk[j],invLk2);

diff16:=[];

for l in Lk[j] do

In this loop if the vertex l and its inverse -l in the

same time are belong to the list diff15 then we delete

them, because they will cancel each other

if l in diff15 and -l in diff15 then

diff16:=Difference(diff15,[-l,l]);

diff15:=diff16;

fi;

od;

for n in [1..sA]do # loop through A the Type (2) Whitehead Automorphisms

UA16:=SSortedList(A[n][1]);

UAdiff16:=SSortedList(diff16);

if A[n][2]=zx then

if UA16=UAdiff16 and diff16<>[zx] then

256

XX1:=Concatenation(["A",String(i)]);

XX1: represents a specific automorphism (A,a) of A

XX2:=Concatenation(["A",String(n)]);

XX2: represents a specific automorphism (L-b^-1, b) of A

idx1:=0;

idx2:=0;

for t in [1..sA] do

Verify the indices of the given Whitehead

automorphisms A(i) and A(n) in A

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

od;

Add(Rels,[0,idx1,idx2,-idx1,-idx2]);

fi;

fi;

od;

fi;

##

###

##

###

##

In this section we compute second part of the list of indices of the

generators which is [0,idx1,idx2,-idx1,-idx2] of the relators of type

(R9) when the multiplier "a" (k in this code) of the automorphism

(A,a) is the original vertex "a" (not the inverse of the vertex "a")

and zx= -L(j) as

defined below by satisfying the conditions of this relations.

The procedure use in this Section is similar to the first Section

above.

##

zx:=-L[j]; # Here zx represents the inverses of the vertices b above

if k in A[i][1] and not (-k in A[i][1]) and A[i][2]=k and not

(zx in A[i][1]) and not (-zx in A[i][1]) then

diff23:=Difference(L,[-zx]);

invLk2:=-Lk[j];

UniLk:=Concatenation(Lk[j],invLk2);

diff24:=[];

for l in Lk[j] do

if l in diff23 and -l in diff23 then

diff24:=Difference(diff23,[-l,l]);

diff23:=diff24;

fi;

od;

for n in [1..sA]do

UA24:=SSortedList(A[n][1]);

UAdiff24:=SSortedList(diff24);

if A[n][2]=zx then

if UA24=UAdiff24 and diff24<>[zx] then

257

XX1:=Concatenation(["A",String(i)]);

XX1: represents a specific automorphism (A,a) of A

XX2:=Concatenation(["A",String(n)]);

XX2: represents a specific automorphism (L-b^-1, b) of A

idx1:=0;

idx2:=0;

for t in [1..sA] do

Verify the indices of the given Whitehead

automorphisms A(i) and A(n) in A

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

od;

Add(Rels,[0,idx1,idx2,-idx1,-idx2]);

fi;

fi;

od;

fi;

##

###

##

###

##

In this section we compute third part of the list of indices of the

generators which is [0,idx1,idx2,-idx1,-idx2] of the relators of type

(R9) when the multiplier "a" (k in this code) of the automorphism

(A,a) is the inverse of the vertex "a" and zx= L(j) as defined below

by satisfying the conditions of this relations.

The procedure use in this Section is similar to the first Section above.

##

zx:=L[j]; # Here zx represents the vertices "b" (R9) of the graph zeta

if -k in A[i][1] and not (k in A[i][1]) and A[i][2]=-k and not

(zx in A[i][1]) and not (-zx in A[i][1]) then

diff13:=Difference(L,[-zx]);

invLk3:=-Lk[j];

UniLk:=Concatenation(Lk[j],invLk3);

diff14:=[];

for l in Lk[j] do

if l in diff13 and -l in diff13 then

diff14:=Difference(diff13,[-l,l]);

diff13:=diff14;

fi;

od;

for n in [1..sA]do

if A[n][2]=zx then

UA14:=SSortedList(A[n][1]);

UAdiff14:=SSortedList(diff14);

if UA14=UAdiff14 and diff14<>[zx] then

XX1:=Concatenation(["A",String(i)]);

XX2:=Concatenation(["A",String(n)]);

258

idx1:=0;

idx2:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

od;

Add(Rels,[0,idx1,idx2,-idx1,-idx2]);

fi;

fi;

od;

fi;

##

##

#

##

##

In this section we compute third part of the list of indices of the

generators which is [0,idx1,idx2,-idx1,-idx2] of the relators of type

(R9) when the multiplier "a" (k in this code) of the automorphism

(A,a) is the inverse of the vertex "a" and zx= -L(j) as defined

below by satisfying the conditions of this relations.

The procedure use in this Section is similar to the first Section above.

##

zx:=-L[j]; # Here zx represents the inverses of the vertices b above

if -k in A[i][1] and not (k in A[i][1]) and A[i][2]=-k and not

(zx in A[i][1]) and not (-zx in A[i][1]) then

diff25:=Difference(L,[-zx]);

invLk3:=-Lk[j];

UniLk:=Concatenation(Lk[j],invLk3);

diff26:=[];

for l in Lk[j] do

if l in diff25 and -l in diff25 then

diff26:=Difference(diff25,[-l,l]);

diff25:=diff26;

fi;

od;

for n in [1..sA]do

if A[n][2]=zx then

UA26:=SSortedList(A[n][1]);

UAdiff26:=SSortedList(diff26);

if UA26=UAdiff26 and diff26<>[zx] then

XX1:=Concatenation(["A",String(i)]);

XX2:=Concatenation(["A",String(n)]);

idx1:=0;

idx2:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

259

fi;

if XX2=T[t] then

idx2:=t;

fi;

od;

Add(Rels,[0,idx1,idx2,-idx1,-idx2]);

fi;

fi;

od;

fi;

od;

fi;

##

##

##

End the first part when Lk(j) is not empty list

##

##

##

##

##

In this part we compute the list of indices When Lk(j) is empty list

which isthe same procedure of first part when Lk(j) is not empty list

with some changes.

##

if Lk[j]=[0] then

for i in [1..sA]do

zx:=L[j];

if k in A[i][1] and not (-k in A[i][1]) and A[i][2]=k and not

(zx in A[i][1]) and not (-zx in A[i][1]) then

diff16:=Difference(L,[-zx]);

for n in [1..sA]do

UA16:=SSortedList(A[n][1]);

UAdiff16:=SSortedList(diff16);

if A[n][2]=zx then

if UA16=UAdiff16 and diff16<>[zx] then

XX1:=Concatenation(["A",String(i)]);

XX2:=Concatenation(["A",String(n)]);

idx1:=0;

idx2:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

od;

Add(Rels,[0,idx1,idx2,-idx1,-idx2]);

fi;

fi;

od;

fi;

260

zx:=-L[j];

if k in A[i][1] and not (-k in A[i][1]) and A[i][2]=k and not

(zx in A[i][1]) and not (-zx in A[i][1]) then

diff24:=Difference(L,[-zx]);

for n in [1..sA]do

UA24:=SSortedList(A[n][1]);

UAdiff24:=SSortedList(diff24);

if A[n][2]=zx then

if UA24=UAdiff24 and diff24<>[zx] then

XX1:=Concatenation(["A",String(i)]);

XX2:=Concatenation(["A",String(n)]);

idx1:=0;

idx2:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

od;

Add(Rels,[0,idx1,idx2,-idx1,-idx2]);

fi;

fi;

od;

fi;

zx:=L[j];

if -k in A[i][1] and not (k in A[i][1]) and A[i][2]=-k and not

(zx in A[i][1]) and not (-zx in A[i][1]) then

diff14:=Difference(L,[-zx]);

for n in [1..sA]do

if A[n][2]=zx then

UA14:=SSortedList(A[n][1]);

UAdiff14:=SSortedList(diff14);

if UA14=UAdiff14 and diff14<>[zx] then

XX1:=Concatenation(["A",String(i)]);

XX2:=Concatenation(["A",String(n)]);

idx1:=0;

idx2:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

od;

Add(Rels,[0,idx1,idx2,-idx1,-idx2]);

fi;

fi;

od;

fi;

zx:=-L[j];

261

if -k in A[i][1] and not (k in A[i][1]) and A[i][2]=-k and not

(zx in A[i][1]) and not (-zx in A[i][1]) then

diff26:=Difference(L,[-zx]);

for n in [1..sA]do

if A[n][2]=zx then

UA26:=SSortedList(A[n][1]);

UAdiff26:=SSortedList(diff26);

if UA26=UAdiff26 and diff26<>[zx] then

XX1:=Concatenation(["A",String(i)]);

XX2:=Concatenation(["A",String(n)]);

idx1:=0;

idx2:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

od;

Add(Rels,[0,idx1,idx2,-idx1,-idx2]);

fi;

fi;

od;

fi;

od;

fi;

##

End the second part when Lk(j) is empty list

##

###

##

od;

od;

sRels:=Size(Rels);

return([Rels,sRels]);

end;

15. APCGRelationR10 Function

APCGRelationR10:=function(V,A,T,Lk,Rels)

local k,j,i,m,zx,IntA,UniA,NUniA,l,K,t,UA13,UA14,UA16,UA23,UA24,UA25,UA26,

UA27,UA28,R2,XX1,XX2,XX3,idx1,idx2,idx3,t1,R10,R10a,R10b,R10c,invLk1,srels,

sRels,diff13,diff14,diff15,diff16,diff23,diff24,diff25,diff26,diff27,diff28,

UAdiff16,UAdiff24,UAdiff23,UAdiff25,UAdiff13,UAdiff14,UAdiff26,UAdiff27,

sV,sA,UAdiff28,n,invV,L,invLk2,invLk3,UniLk;

##

###

##

The input of this function are:

262

V: the list of vertices of the graph zeta,

A: the list of type(2) generators computed in "WhiteheadAutomorphismsOfSecondType",

T: list of the names of elements of A,

Lk: the list of links computed in "StarLinkDominateOfVertex".

Rels: the list of row matrices of indices of the relations (it is one

of the outputs of the "APCGRelationR4",

Note that in order to get just the row matrices of indices of relation (R9)

we need to pass an empty list [] rather than the list Rels above.

##

It computes the list of indices of the generators [0,idx1,idx2,-idx1,-idx2,-idx3]

of relators of type (R10) of the group Aut(G_zeta) by satisfying the conditions

of this relations and add them to the list Rels. In addition it calculates

the size of the list Rels.

It returns [Rels,sRels].

##

##

sV:=Size(V);

sA:=Size(A);

invV:=-V; # invV is the inverses list of the vertex list V

L:=Concatenation(V,invV); # L is the union of the lists V and invV

for k in [1..sV] do # loop through the vertex list V

for j in [1..sV] do # loop through the vertex list V

##

###

##

In this part we compute the list of indices When Lk(k) is not empty list.

##

if Lk[j]<>[0] then

for i in [1..sA]do # loop throu A the Type (2) Whitehead Automorphisms

##

##

In this section we compute first part of the list of indices of the

generators which is [0,idx1,idx2,-idx1,-idx2,-idx3] of the relators

of type (R10) when the multiplier "a" (k in this code) of the

automorphism (A,a) is the original vertex "a" (not the inverse of

the vertex "a"), and the multiplier "b" (j in this code) of the

automorphism (L-b^-1, b) is the original vertex "b" and k not equal

to j, by satisfying the conditions of this relations.

0: is just flag to let us know that all generators here of power 1.

idx1: represents the index "i" of a specific generator A(i) of A.

idx2: represents the index "n" of a specific generator A(n) of A.

-idx1: represents the inverse of the specific generator A(i) of A

which corresponds to the index idx1.

-idx2: represents the inverse of the specific generator A(n) of A

which corresponds to the index idx2.

-idx3: represents the inverse of the specific generator A(m) of A

which corresponds to the index idx3.

For example if [0,idx1,idx2,-idx1,-idx2,-idx3]= [0,1,27,-1,-27,-5],

then this means that A1*A27*A1^-1*A27^-1*A5^-1=1.

##

if k in A[i][1] and not (-k in A[i][1]) and A[i][2]=k and j in A[i][1]

and not (-j in A[i][1]) and k<>j then

diff15:=Difference(L,[-j]);

263

invLk2:=-Lk[j];

UniLk:=Concatenation(Lk[j],invLk2);

UniLk: represents the link of the vertex "j" with respect to L

diff16:=[];

for l in Lk[j] do # In this loop if the vertex l and its inverse -l in the

same time are belong to the list diff15 then we delete

them, because they will cancel each other

if l in diff15 and -l in diff15 then

diff16:=Difference(diff15,[-l,l]);

diff15:=diff16;

fi;

od;

diff27:=Difference(L,[-k]);

invLk3:=-Lk[k];

UniLk:=Concatenation(Lk[k],invLk3);

diff28:=[];

for l in Lk[j] do

if l in diff27 and -l in diff27 then

diff28:=Difference(diff27,[-l,l]);

diff27:=diff28;

fi;

od;

for n in [1..sA]do

UA16:=SSortedList(A[n][1]);

UAdiff16:=SSortedList(diff16);

for m in [1..sA]do

UA28:=SSortedList(A[m][1]);

UAdiff28:=SSortedList(diff28);

if A[n][2]=j and A[m][2]=k then

if UA16=UAdiff16 and diff16<>[j] and UA28=UAdiff28 then

XX1:=Concatenation(["A",String(i)]);

XX1: represents a specific automorphism (A,a) of A

XX2:=Concatenation(["A",String(n)]);

XX2: represents a specific automorphism (L-b^-1, b) of A

XX3:=Concatenation(["A",String(m)]);

XX3: represents a specific automorphism (L-a^-1, a) of A

idx1:=0;

idx2:=0;

idx3:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

if XX3=T[t] then

idx3:=t;

fi;;

od;

Add(Rels,[0,idx1,idx2,-idx1,-idx2,-idx3]);

fi;

fi;

264

od;

od;

fi;

##

###

##

###

##

In this section we compute second part of the list of indices of the

generators which is [0,idx1,idx2,-idx1,-idx2,-idx3] of the relators

of type (R10) when the multiplier "a" (k in this code) of the

automorphism (A,a) is the original vertex "a" (not the inverse of

the vertex "a") and the multiplier "b" (j in this code) of the

automorphism (L-b^-1, b) is the the inverse of the vertex "b"

(-j in this code) and k not equal to -j by satisfying the

conditions of this relations.

The procedure use in this Section is similar to the first Section above.

##

if k in A[i][1] and not (-k in A[i][1]) and A[i][2]=k and -j in A[i][1]

and not (j in A[i][1]) and k<> -j then

diff15:=Difference(L,[j]);

invLk2:=-Lk[j];

UniLk:=Concatenation(Lk[j],invLk2);

diff16:=[];

for l in Lk[j] do

if l in diff15 and -l in diff15 then

diff16:=Difference(diff15,[-l,l]);

diff15:=diff16;

fi;

od;

diff27:=Difference(L,[-k]);

invLk3:=-Lk[k];

UniLk:=Concatenation(Lk[k],invLk3);

diff28:=[];

for l in Lk[j] do

if l in diff27 and -l in diff27 then

diff28:=Difference(diff27,[-l,l]);

diff27:=diff28;

fi;

od;

for n in [1..sA]do

UA16:=SSortedList(A[n][1]);

UAdiff16:=SSortedList(diff16);

for m in [1..sA]do

UA28:=SSortedList(A[m][1]);

UAdiff28:=SSortedList(diff28);

if A[n][2]=-j and A[m][2]=k then

if UA16=UAdiff16 and diff16<>[-j] and UA28=UAdiff28 then

XX1:=Concatenation(["A",String(i)]);

XX2:=Concatenation(["A",String(n)]);

XX3:=Concatenation(["A",String(m)]);

idx1:=0;

idx2:=0;

265

idx3:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

if XX3=T[t] then

idx3:=t;

fi;

od;

Add(Rels,[0,idx1,idx2,-idx1,-idx2,-idx3]);

fi;

fi;

od;

od;

fi;

##

###

##

###

##

In this section we compute third part of the list of indices of the

generators which is [0,idx1,idx2,-idx1,-idx2,-idx3] of the relators

of type (R10) when the multiplier "a" (k in this code) of the

automorphism (A,a) is the inverse of the vertex "a" (-k in this code)

and the multiplier "b" (j in this code) of the automorphism (L-b^-1, b)

is the original vertex "b" and -k not equal to j by satisfying the

conditions of this relations.

The procedure use in this Section is similar to the first Section above.

##

if -k in A[i][1] and not (k in A[i][1]) and A[i][2]=-k

and j in A[i][1] and not (-j in A[i][1]) and -k<>j then

diff15:=Difference(L,[-j]);

invLk2:=-Lk[j];

UniLk:=Concatenation(Lk[j],invLk2);

diff16:=[];

for l in Lk[j] do

if l in diff15 and -l in diff15 then

diff16:=Difference(diff15,[-l,l]);

diff15:=diff16;

fi;

od;

diff27:=Difference(L,[k]);

invLk3:=-Lk[k];

UniLk:=Concatenation(Lk[k],invLk3);

diff28:=[];

for l in Lk[j] do

if l in diff27 and -l in diff27 then

diff28:=Difference(diff27,[-l,l]);

diff27:=diff28;

fi;

266

od;

for n in [1..sA]do

UA16:=SSortedList(A[n][1]);

UAdiff16:=SSortedList(diff16);

for m in [1..sA]do

UA28:=SSortedList(A[m][1]);

UAdiff28:=SSortedList(diff28);

if A[n][2]=j and A[m][2]=-k then

if UA16=UAdiff16 and diff16<>[j] and UA28=UAdiff28 then

XX1:=Concatenation(["A",String(i)]);

XX2:=Concatenation(["A",String(n)]);

XX3:=Concatenation(["A",String(m)]);

idx1:=0;

idx2:=0;

idx3:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

if XX3=T[t] then

idx3:=t;

fi;

od;

Add(Rels,[0,idx1,idx2,-idx1,-idx2,-idx3]);

fi;

fi;

od;

od;

fi;

##

##

##

##

##

In this section we compute third part of the list of indices of the

generators which is [0,idx1,idx2,-idx1,-idx2,-idx3] of the relators

of type (R10) when the multiplier "a" (k in this code) of the

automorphism (A,a) is the inverse of the vertex "a" (-k in this code)

and the multiplier "b" (j in this code) of the automorphism (L-b^-1, b)

is the inverse of the vertex "b" (-j in this code) and -k not equal

to -j by satisfying the conditions of this relations.

The procedure use in this Section is similar to the first Section above.

##

if -k in A[i][1] and not (k in A[i][1]) and A[i][2]=-k and -j in A[i][1]

and not (j in A[i][1]) and -k <> -j then

diff15:=Difference(L,[j]);

invLk2:=-Lk[j];

UniLk:=Concatenation(Lk[j],invLk2);

diff16:=[];

for l in Lk[j] do

267

if l in diff15 and -l in diff15 then

diff16:=Difference(diff15,[-l,l]);

diff15:=diff16;

fi;

od;

diff27:=Difference(L,[k]);

invLk3:=-Lk[k];

UniLk:=Concatenation(Lk[k],invLk3);

diff28:=[];

for l in Lk[j] do

if l in diff27 and -l in diff27 then

diff28:=Difference(diff27,[-l,l]);

diff27:=diff28;

fi;

od;

for n in [1..sA]do

UA16:=SSortedList(A[n][1]);

UAdiff16:=SSortedList(diff16);

for m in [1..sA]do

UA28:=SSortedList(A[m][1]);

UAdiff28:=SSortedList(diff28);

if A[n][2]=-j and A[m][2]=-k then

if UA16=UAdiff16 and diff16<>[-j] and UA28=UAdiff28 then

XX1:=Concatenation(["A",String(i)]);

XX2:=Concatenation(["A",String(n)]);

XX3:=Concatenation(["A",String(m)]);

idx1:=0;

idx2:=0;

idx3:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

if XX3=T[t] then

idx3:=t;

fi;

od;

Add(Rels,[0,idx1,idx2,-idx1,-idx2,-idx3]);

fi;

fi;

od;

od;

fi;

od;

fi;

##

###

##

End the first part when Lk(j) is not empty list

##

268

###

##

###

##

In this part we compute the list of indices When Lk(j) is empty list

which is the same procedure of first part when Lk(j) is not empty list

with some changes.

##

if Lk[j]=[0] then

for i in [1..sA]do

if k in A[i][1] and not (-k in A[i][1]) and A[i][2]=k

and j in A[i][1] and not (-j in A[i][1]) and k<>j then

diff15:=Difference(L,[-j]);

invLk2:=-Lk[j];

UniLk:=Concatenation(Lk[j],invLk2);

diff16:=Difference(diff15,UniLk);

diff27:=Difference(L,[-k]);

invLk3:=-Lk[k];

UniLk:=Concatenation(Lk[k],invLk3);

diff28:=Difference(diff27,UniLk);

for n in [1..sA]do

UA16:=SSortedList(A[n][1]);

UAdiff16:=SSortedList(diff16);

for m in [1..sA]do

UA28:=SSortedList(A[m][1]);

UAdiff28:=SSortedList(diff28);

if A[n][2]=j and A[m][2]=k then

if UA16=UAdiff16 and UA28=UAdiff28 then

XX1:=Concatenation(["A",String(i)]);

XX2:=Concatenation(["A",String(n)]);

XX3:=Concatenation(["A",String(m)]);

idx1:=0;

idx2:=0;

idx3:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

if XX3=T[t] then

idx3:=t;

fi;

od;

Add(Rels,[0,idx1,idx2,-idx1,-idx2,-idx3]);

fi;

fi;

od;

od;

fi;

if k in A[i][1] and not (-k in A[i][1]) and A[i][2]=k

and -j in A[i][1] and not (j in A[i][1]) and k<> -j then

269

diff15:=Difference(L,[j]);

invLk2:=-Lk[j];

UniLk:=Concatenation(Lk[j],invLk2);

diff16:=Difference(diff15,UniLk);

diff27:=Difference(L,[-k]);

invLk3:=-Lk[k];

UniLk:=Concatenation(Lk[k],invLk3);

diff28:=Difference(diff27,UniLk);

for n in [1..sA]do

UA16:=SSortedList(A[n][1]);

UAdiff16:=SSortedList(diff16);

for m in [1..sA]do

UA28:=SSortedList(A[m][1]);

UAdiff28:=SSortedList(diff28);

if A[n][2]=-j and A[m][2]=k then

if UA16=UAdiff16 and UA28=UAdiff28 then

XX1:=Concatenation(["A",String(i)]);

XX2:=Concatenation(["A",String(n)]);

XX3:=Concatenation(["A",String(m)]);

idx1:=0;

idx2:=0;

idx3:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

if XX3=T[t] then

idx3:=t;

fi;

od;

Add(Rels,[0,idx1,idx2,-idx1,-idx2,-idx3]);

fi;

fi;

od;

od;

fi;

if -k in A[i][1] and not (k in A[i][1]) and A[i][2]=-k

and j in A[i][1] and not (-j in A[i][1]) and -k<>j then

diff15:=Difference(L,[-j]);

invLk2:=-Lk[j];

UniLk:=Concatenation(Lk[j],invLk2);

diff16:=Difference(diff15,UniLk);

diff27:=Difference(L,[k]);

invLk3:=-Lk[k];

UniLk:=Concatenation(Lk[k],invLk3);

diff28:=Difference(diff27,UniLk);

for n in [1..sA]do

UA16:=SSortedList(A[n][1]);

UAdiff16:=SSortedList(diff16);

for m in [1..sA]do

270

UA28:=SSortedList(A[m][1]);

UAdiff28:=SSortedList(diff28);

if A[n][2]=j and A[m][2]=-k then

if UA16=UAdiff16 and UA28=UAdiff28 then

XX1:=Concatenation(["A",String(i)]);

XX2:=Concatenation(["A",String(n)]);

XX3:=Concatenation(["A",String(m)]);

idx1:=0;

idx2:=0;

idx3:=0;

for t in [1..sA] do

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

if XX3=T[t] then

idx3:=t;

fi;

od;

Add(Rels,[0,idx1,idx2,-idx1,-idx2,-idx3]);

fi;

fi;

od;

od;

fi;

if -k in A[i][1] and not (k in A[i][1]) and A[i][2]=-k

and -j in A[i][1] and not (j in A[i][1]) and -k <> -j then

diff15:=Difference(L,[j]);

invLk2:=-Lk[j];

UniLk:=Concatenation(Lk[j],invLk2);

diff16:=Difference(diff15,UniLk);

diff27:=Difference(L,[k]);

invLk3:=-Lk[k];

UniLk:=Concatenation(Lk[k],invLk3);

diff28:=Difference(diff27,UniLk);

for n in [1..sA]do

UA16:=SSortedList(A[n][1]);

UAdiff16:=SSortedList(diff16);

for m in [1..sA]do

UA28:=SSortedList(A[m][1]);

UAdiff28:=SSortedList(diff28);

if A[n][2]=-j and A[m][2]=-k then

if UA16=UAdiff16 and UA28=UAdiff28 then

XX1:=Concatenation(["A",String(i)]);

XX2:=Concatenation(["A",String(n)]);

XX3:=Concatenation(["A",String(m)]);

idx1:=0;

idx2:=0;

idx3:=0;

for t in [1..sA] do

271

if XX1=T[t] then

idx1:=t;

fi;

if XX2=T[t] then

idx2:=t;

fi;

if XX3=T[t] then

idx3:=t;

fi;

od;

Add(Rels,[0,idx1,idx2,-idx1,-idx2,-idx3]);

fi;

fi;

od;

od;

fi;

od;

fi;

##

End the second part when Lk(j) is empty list

##

##

##

od;

od;

sRels:=Size(Rels);

return([Rels,sRels]);

end;

16. APCGFinalReturn Function

APCGFinalReturn:=function(gens,Rels,sRels,sRels1,Rels1,sgenss)

local i,j,j1,j2,C,F,rels,srels,GHK,KK,GGG,sgens,GHK1,KK1,ZZa,rels1,srels1;

##

###

##

The input of this function are:

gens: the list of the generators of the group Aut(G_zeta).

Rels: the list of the indices of the relators which computed in

"RelationsOfGraphAutomorphisms", "APCGRelationR1",..., "APCGRelationR10"

sRels: the size of the list Rels.

Rels1: the list of the indices of the relators of graph group

which computed in "WhiteheadAutomorphismsOfFirstType".

sRels1: the size of the list Rels1.

sgenss: the size of the list genss which is the name of the i^th of

generator of the Whitehead automorphisms of Aut(G_zeta).

It computed in "WhiteheadAutomorphismsOfFirstType"

##

It forms the list of relations rels from the lists Rels and Rels1.

In fact this function forms the output of the function

FinitePresentationOfAutParCommGrp in the package AutParCommGrp.

272

##

##

rels1:=[];

C:=gens;

F:=FreeGroup(C); # computes the free group on gens. The generators

are displayed as string.1, string.2, ..., string.n

gens:=GeneratorsOfGroup(F); # returns a list of generators gens of the free group F

sgens:=Size(gens);

###

##

In this section we form the list of relations rels1 from the list Rels1

(computed in the function WhiteheadAutomorphismsOfFirstType) and adds

them to the list rels1, and then adds it to the list of relations rels.

##

for i in [1..sRels1] do

GHK:=Size(Rels1[i]);

GHK1:=GHK/2; # To find the real length of each single relation

j1:=1;

for j in [1..GHK1] do

KK:=sgenss+AbsoluteValue(Rels1[i][j1]); #function reading

j2:=j1+1;

KK1:=Rels1[i][j2]; # power

if KK1 <> 1 then

ZZa:=gens[KK]^KK1;

else

ZZa:=gens[KK];

fi;

if j1=1 then

rels1[i]:=ZZa;

else

rels1[i]:=rels1[i]*ZZa;

fi;

j1:=j1+2;

od;

od;

srels1:=Size(rels1);

##

##

##

In this section we form the list of relations rels from the list Rels

(computed in the functions RelationsOfGraphAutomorphisms, APCGRelationR1,

APCGRelationR2,..., APCGRelationR10)

##

rels:=[];

for i in [1..sRels] do

GHK:=Size(Rels[i]);

KK:=AbsoluteValue(Rels[i][2]);

if Rels[i][1] = 0 then

rels[i]:=gens[KK];

fi;

if Rels[i][1] = 1 then

rels[i]:=gens[KK]^2;

fi;

273

if Rels[i][1] = 2 then

rels[i]:=gens[KK];

GHK:=GHK-3;

fi;

if Rels[i][2] < 0 then

rels[i]:=rels[i]^-1;

fi;

for j in [3..GHK] do

KK:=AbsoluteValue(Rels[i][j]);

if Rels[i][j] < 0 then

rels[i]:=rels[i]*gens[KK]^-1;

else

rels[i]:=rels[i]*gens[KK];

fi;

od;

od;

srels:=Size(rels);

##

##

##

for i in [1..srels1] do # This loop is to add the relations of graph

automorphisms rels1 to final relations list rels

j:=srels+i;

rels[j]:=rels1[i];

od;

srels:=Size(rels);

GGG:=F/rels; # computes the finitely presented group on

the generators gens of F defined above

return([F,gens,rels,GGG,sgens,srels]);

end;

17. FinitePresentationOfAutParCommGrp Function

FinitePresentationOfAutParCommGrp:=function(V,E)

local R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,St,Lk,YY,sV,

M,NV,NE,sNV,sNE,A,sA,gens,sgens,sgenss,Gens3,rels,srels,Rels,sRels,

relvalofF,srelvalofF,rels1,srels1,sGens2,F,GGG,sComps,Rels1,sRels1,

T,Q,i,j,tempedgex,tempedgey;

##

###

##

The input of this function is a simple graph zeta=(V,E), where V and E

represent the set of vertices and the set of edges respectively.

##

It returns [gens,rels,GGG], where

gens: is a list of free generators of the automorphism group of

partially commutative group Aut(G_zeta).

rels: is a list of relations in the generators of the free group.

Note that relations are entered as relators, i.e., as words

in the generators of the free group.

GGG:=F/rels: is the automorphism group Aut(G_zeta) of G_zeta given

274

as a finite presentation group with generators gens

and relators rels.

##

In fact, the main work of this function is to run all the functions

we have read them below to give a finite presentation for automorphism

groups Aut(G_zeta) of G_zeta.

##

##

if IsSimpleGraph(V,E)=true then # Call the function IsSimpleGraph to test

whether the graph zeta is simple or not

##

###

##

This section is to compute the star St(v), link Lk(v) and the dominate

list Y(v) of each pair of vertices v,u in V

##

R1:=StarLinkDominateOfVertex(V,E); #F StarLinkDominateOfVertex(<V>, <E>)

return([St,Lk,YY,sV,M,L,sL]);

St:=R1[1];

Lk:=R1[2];

YY:=R1[3];

sV:=R1[4];

M:=R1[5];

##

###

##

This section is to delete the star St(v) of a specific vertex v

from the graph zeta

##

R2:=DeleteVerticesFromGraph(St,V,E); #F DeleteverticesFromGraph(<St>, <V>, <E>)

return([NV,NE,sNV,sNE]);

NV:=R2[1];

NE:=R2[2];

sNV:=R2[3];

sNE:=R2[4];

##

###

##

###

##

This section is to compute the type (2) Whitehead automorphisms

##

R3:=WhiteheadAutomorphismsOfSecondType(NV,NE,St,YY);

#F WhiteheadAutomorphismsOfSecondType(<NV>, <NE>, <St>, <YY>)

return ([A,T,sA]);

A:=R3[1];

T:=R3[2];

sA:=R3[3];

##

###

##

###

##

275

This section is to compute the type (1) Whitehead automorphisms also to

copute the generators of the group automorphism of graph and then find

the generators of the automorphism group of partially commutative group

##

R4:=WhiteheadAutomorphismsOfFirstType(E,sV,sA,T);

#F WhiteheadAutomorphismsOfFirstType(<E>, <sV>, <sA>, <T>)

return([gens,sgens,sgenss,Gens3,relvalofF,srelvalofF,Rels1,sRels1,sGens2]);

gens:=R4[1];

sgens:=R4[2];

sgenss:=R4[3];

Gens3:=R4[4];

relvalofF:=R4[5];

srelvalofF:=R4[6];

Rels1:=R4[7];

sRels1:=R4[8];

sGens2:=R4[9];

##

###

##

###

##

This section is to compute the relations related to the graph automorphisms

##

R5:=RelationsOfGraphAutomorphisms(sA,sgenss,relvalofF,sV,sGens2);

#F RelationsOfGraphAutomorphisms(<sA>, <sgenss>, <relvalofF>, <sV>, <sGens2>)

return([Rels,sRels]);

Rels:=R5[1];

sRels:=R5[2];

##

###

##

###

##

This section is to compute the relation R5

##

R6:=APCGRelationR5(A,St,Lk,Rels,T);

#F APCGRelationR5(<A>, <St>, <Lk> <Rels>, <T>)

return([Rels,sRels]);

Rels:=R6[1];

sRels:=R6[2];

##

###

##

###

##

This section is to compute the relation R1

##

R7:=APCGRelationR1(sV,A,T,Rels); #F APCGRelationR1(<sV>, <A>, <T>, <Rels>)

return([Rels,sRels]);

Rels:=R7[1];

sRels:=R7[2];

##

###

276

##

###

##

This section is to compute the relation R2

##

R8:=APCGRelationR2(A,T,Rels,St); #F APCGRelationR2(<A>, <T>, <Rels>, <St>)

return([Rels,sRels]);

Rels:=R8[1];

sRels:=R8[2];

##

###

##

###

##

This section is to compute the relation R3

##

R9:=APCGRelationR3(A,T,Lk,Rels); #F APCGRelationR3(<A>, <T>, <Lk>, <Rels>)

return([Rels,sRels]);

Rels:=R9[1];

sRels:=R9[2];

##

###

##

###

##

This section is to compute the relation R4

##

R10:=APCGRelationR4(A,T,Lk,Rels); #F APCGRelationR4(<A>, <T>, <Lk>, <Rels>)

return([Rels,sRels]);

Rels:=R10[1];

sRels:=R10[2];

##

###

##

###

##

This section is to compute the relation R8

##

R11:=APCGRelationR8(V,A,T,Lk,Rels); #F APCGRelationR8(<V>, <A>, <T>, <Lk>, <Rels>)

return([Rels,sRels]);

Rels:=R11[1];

sRels:=R11[2];

##

###

##

###

##

This section is to compute the relation R9

##

R12:=APCGRelationR9(V,A,T,Lk,Rels); #F APCGRelationR9(<V>, <A>, <T>, <Lk>, <Rels>)

return([Rels,sRels]);

Rels:=R12[1];

277

sRels:=R12[2];

##

###

##

###

##

This section is to compute the relation R10

##

R13:=APCGRelationR10(V,A,T,Lk,Rels); #F APCGRelationR10(<V>, <A>, <T>, <Lk> <Rels>)

return([Rels,sRels]);

Rels:=R13[1];

sRels:=R13[2];

##

##

##

##

##

This section is to compute the final relations T from the matrix of

indices of the generators and find the final return

##

R14:=APCGFinalReturn(gens,Rels,sRels,sRels1,Rels1,sgenss);

#F APCGFinalReturn(<gens>, <Rels>, <sRels>, <sRels1>, <Rels1>, <sgenss>)

return([F,gens,rels,GGG,sgens,srels]);

F:=R14[1];

gens:=R14[2];

rels:=R14[3];

GGG:=R14[4];

sgens:=R14[5];

srels:=R14[6];

##

###

##

else

return("The graph must be a simple graph");

fi;

return[gens,rels,GGG];

end;

18. TietzeTransformations Function

TietzeTransformations:=function(G)

local hom,H,R;

##

###

##

The aim of this function is to simplify the presentation of the finitely,

presented group G, i.e., to reduce the number of generators, the number

of relators and the relator lengths.

The input of this function is finite presentation of the group G.

##

278

Returns a group H isomorphic to G, so that the presentation of H,

has been simplified using Tietze transformations.

##

##

hom:= IsomorphismSimplifiedFpGroup(G); # To find a homomorphism (an isomorphism).

H:= Image(hom); # Image(map) is the image of the general

mapping map, i.e., the subset of elements

of the range of map that are actually values

of map. Note that in this case the argument

may also be multi-valued.

R:= RelatorsOfFpGroup(H); # returns the relators of the finitely presented group

G as words in the free generators provided by the

FreeGeneratorsOfFpGroup value of G.

return[H,R];

end;

279

A.2 Appendix to Chapter 3

In this appendix we will attached the codes for all the functions we have written in

Chapter 3 as follows:

1. StarLinkOfVertex Function

StarLinkOfVertex:=function(V,E)

local i,j,x1,M,sV,sE,tempx,St,indx1,Lk,indx2,x,YY,Y1,Y2,tempedgex,tempedgey;

##

###

##

The input of this function is a finite simple graph zeta=(V,E), where V and

E represents the list of vertices and the list of Edges respectivly.

##

It computes the star St(v) and the link Lk(v) and concatenates them in

two separate lists St and Lk respectively.

###

##

if IsSimpleGraph(V,E)=true then # Call the function IsSimpleGraph to test

whether the graph zeta is simple or not

sV:=Length(V);

M:= Length(E);

St:= NullMat(sV,1,0);

for i in [1..sV] do # loop through the vertices V

tempx:=V[i];

indx1:=1; # index for the star of specific vertex v

St[tempx][indx1]:=tempx; # St: is a two dimensional matrix, the rows

indices represent the vertices and the columns

indices represent the star of a specific vertex.

for j in [1..M] do # loop through the edges E

if tempx=E[j][1] then # determine whether the specific edge E[j][1]

is equal to the vertex tempx

if E[j][1]<>E[j][2] then # excludes isolated vertices from the calculation

indx1:=indx1+1;

St[tempx][indx1]:=E[j][2]; # means that the vertex E[j][2] belonges to

the star of a specific vertex v

fi;

fi;

if tempx=E[j][2] then # This section is the same of the first section,

above just we replaced the first coordinate of

the edge E(j) by the second coordinate.

if E[j][1]<>E[j][2] then

indx1:=indx1+1;

St[tempx][indx1]:=E[j][1];

fi;

fi;

od;

od;

Lk:=[];

280

for j in [1..sV] do # loop through the list of vertices V

Y2:=Set(St[j]); # make the list of a specific star St(j) as an order set

RemoveSet(Y2,j); # remove the vertex v (j in this code) from the list Y2

Add(Lk,Y2);

od;

else

return("The graph must be a simple graph");

fi;

return([St,Lk]);

end;

2. CombinationsOfConnectedComponents Function

CombinationsOfConnectedComponents:=function(Comps)

local i,C1,sC1,Y2,Y3,L2,U2,q,sY3,Y4,L4,sY4;

##

##

##

The input of this function is the list of connected

components Comps of the specified graph B.

##

The output is the set of all combinations Y4 of the multiset Comps.

##

##

C1:=Combinations(Comps); # Call the function Combinations to construct a list

called C1 of all combinations of the multiset Comps

sC1:=Size(C1);

##

##

##

In this section: loop through the list C1 to construct a list called Y2.

Each element l of C1 is a list of lists X1, ..., Xn. Call the Concatenation

function to form a new list h from the element of X1, ..., Xn.

Then add this list to Y2.

Y2:=[];

Y3:=[];

for q in [1..sC1] do

L2:=Concatenation(C1[q]);

U2:=SSortedList(L2); #sorting each element of L2

Add(Y2,L2);

Add(Y3,U2);

od;

##

##

##

sY3:=Size(Y3);

Y4:=[];

for i in [1..sY3] do # Loop through the list Y3 to construct a list Y4 by

adding each element of Y3 not equal to empty set to Y4

if Y3[i]<>[] then

Add(Y4,Y3[i]);

281

fi;

od;

sY4:=Size(Y4);

return([Y3,Y4,sY4]);

end;

3. GeneratorsOfSubgroupConj Function

GeneratorsOfSubgroupConj:=function(NE,NV,V)

local i,j,gens2,gens,genss,rels,Rels,Bs,h,G2,G1,R3,R4,Comps,sComps,sMV,

sNE,UniA,D,DD,sD,S,YYY,NYY,invNYY,DYY,sDYY,Ls,t,xn,union_element,NCxY,

sgens,gens4,sgens4,gens3,sgens3,invV,sL,Y6,xs2,Y3,Y4,sY4,xs1,diff2,Y5,

sY5,sY6,sz,Y7,sY7,sxs2,xs3,sxs3,xs,sxs,Uxs,sUxs,CxY,sCxY,y9,y8,Y,sY,sBs,

Y8,sY8,y19,x11,sxs1,k,f,sf,gens1,sgens1,CxY1,sCxY1,y10,y99,NCY,KK,HH,L;

##

###

##

The input of this function are:

the list NE of all lists of edges of the subgraph zeta\St(v)

the list NV of all lists of vertices of the subgraph zeta\St(v)

the list V which is the list of vertices.

##

It computes the list gens1 which form the type(1) generators

(elementary partial conjugations) of the subgroup Conj(G_zeta)

of the group Aut(G_zeta).

##

##

gens:=[];

Bs:=[];

Y6:=[];

xs2:=[];

sNE:=Size(NE);

invV:=-V; # invV: is the inverses list of the vertex list V

L:=Concatenation(V,invV); # L is the union of the lists V and invV

for h in [1..sNE]do #loop through the lists NV and NE since they have same size

G2:=NE[h];

G1:=NV[h];

R3:=ConnectedComponentsOfGraph(G1,G2);

computes the list of the Connected components

for each subgraph (NV(h),NE(h))

Comps:=R3[1]; # Comps: list of all components of (NV(h),NE(h))

sComps:=R3[2]; # sComps: size of Comps

R4:=CombinationsOfConnectedComponents(Comps);

computes the list of the combinations

of the list Comps

Y3:=R4[1]; # Y3: list of all combinations of the list Comps (it will be list of list)

Y4:=R4[2]; # Y4: it is Y3 after SSorted its elements and delete the empty elements

sY4:=R4[3]; # sY4: size of Y4

xs1:=[];

for i in [1..sY4] do # loop through the list Y4

282

diff2:=Difference(L,Y4[i]); # computes the difference diff2 between the list

L and each elements (list) of the list Y4

Add(xs1,diff2); # add each diff2 to the new list xs1

od;

sxs1:=Size(xs1);

##

##

##

In this section: loop through the list Y4 to construct a list called Y6.

In order to do this first find the size sz of xs1(i). For each element l

of xs1(i) concatenate elements of Y4(i) with elements of l to give a list

KK. Then form a listY5 of pairs HH; with entries (KK, l), for each element

l of xs1(i). Then append Y5 to the list Y6.

##

Y5:=[];

for i in [1..sY4] do

sz:=Size(xs1[i]);

for j in [1..sz] do

KK:=Concatenation(Y4[i],[xs1[i][j]]);

HH:=[KK,xs1[i][j]];

Add(Y5,HH);

od;

od;

sY5:=Size(Y5);

Add(Y6,Y5);

##

##

##

Add(xs2,xs1); # Make new list xs2, by adding xs1 to xs2. This step and tht

next one are needed because there are two inner loops

Add(Bs,Y3); # Make new lists Bs, by adding Y3 to Bs

od; # ending the loop through the lists NV and NE

sY6:=Size(Y6);

Y7:=Concatenation(Y6); # Compute the list Y7 by concatenating the dense

list of lists Y6

sY7:=Size(Y7);

sxs2:=Size(xs2);

xs3:=Concatenation(xs2); # Compute the list xs3 by concatenating the dense

list of lists xs2

sxs3:=Size(xs3);

xs:=[];

##

##

##

In this section: loop through the list xs3 to construct a list called xs by

adding each non-empty entry of xs3 to xs, and calculate the size of xs.

for i in [1..sxs3] do

if not (xs3[i] in xs) and xs3[i]<>[] then

Add(xs,xs3[i]);

fi;

od;

sxs:=Size(xs);

##

283

##

##

Uxs:=Union(xs); # Call the function Union to construct a list called Uxs by

sUxs:=Size(Uxs); # computing the union of xs and calculates it size sUxs

CxY1:=[];

for i in [1..sY7] do # Loop through the list Y7 to construct a list

called CxY1 by adding each non-empty entry of

Y7 to CxY1, and calculate its size sCxY1

if not (Y7[i] in CxY1) and Y7[i]<>[] then

Add(CxY1,Y7[i]);

fi;

od;

sCxY1:=Size(CxY1);

CxY:=[];

for j in [1..sCxY1]do # Loop through the list CxY1 to compute a list of

the definitions CxY of the partial conjugations,

with its size sCxY

y9:=CxY1[j][2];

y10:=CxY1[j][1];

y99:=SSortedList(y10);

NCY:=[y99,y9];

Add(CxY,NCY);

od;

sCxY:=Size(CxY);

Y8:=Concatenation(Bs); # Make a list Y8 by concatenating the dense

list of lists Bs defined above

sBs:=Size(Bs);

sY8:=Size(Y8);

Y:=[];

for i in [1..sY8] do # Loop through the list Y8 to construct a list Y

of the non-empty unions of connected components

of zeta\St(v)

if not (Y8[i] in Y) and Y8[i]<>[] then

Add(Y,Y8[i]);

fi;

od;

sY:=Size(Y);

##

##

In this section: loop through the lists CxY and Y to construct a list f

such that each element of f represents the element of CxY of the same index,

i.e., f(n)=CxY(n), n in N, and calculate its size sf

##

f:=[];

y19:=[];

for k in [1..sCxY]do

x11:=CxY[k][2];

diff2:=Difference(CxY[k][1],[x11]);

for j in [1..sY]do

if diff2=Y[j] then

y19:=[j];

fi;

od;

284

NCxY:=Concatenation(["c",String(x11),",","Y",String(y19[1])]);

Add(f,NCxY);

od;

sf:=Size(f);

##

##

##

gens1:=[];

for j in [1..sf]do # Loop through the list f to create a list gens1 of type(1)

generators of of the subgroup Conj(G_zeta), and calculate

its size sgens1. Each element of gens1 represents the

element of f of the same index, i.e., gens1(n)=f(n), n in N.

(This make these generators compatible with GAP format.)

Add(gens1,Concatenation(["f",String(j)]));

od;

sgens1:=Size(gens1);

return[CxY,sCxY,Y,sY,f,sf,gens1,sgens1];

end;;

4. APCGRelationRConj1 Function

APCGRelationRConj1:=function(CxY, Y, f)

local k,j,i,diff2,R1,XX1,XX2,idx1,idx2,t,y12,rels,R2a,sR2a,x8,sY,sCxY,sf;

##

###

##

The input of this function are:

CxY: list of elementary partial conjugations of Conj(G_zeta) or Conjv

computed in "GeneratorsOfSubgroupConj" or "GeneratorsOfSubgroupConjv",

Y: list of the non-empty union of connected components of zeta\St(v)

computed in "GeneratorsOfSubgroupConj" or "GeneratorsOfSubgroupConjv",

f: the list of the names of the definitions of the generators CxY

[f(n) = CxY(n), n in N].

##

It computes the list of indices [0,idx1,idx2] of relations of type (C1) of

Conj(G_zeta) or (Re1) of Conjv and adds each of them to the list R2a.

In addition it calculates the size of the list ‘R2a’.

It returns [R2a,sR2a].

##

##

sY:=Size(Y);

sCxY:=Size(CxY);

sf:=Size(f);

R2a:=[];

if sY<>0 then

y12:=[];

for k in [1..sCxY]do # loop through the list CxY

###

##

In this section we compute the list of indices of the generators which

is [0,idx1,idx2] of the relators of type (C1) or (Re1) by satisfying the

285

conditions of the relation (C1) or relation(Re1).

0: is just flag to let us know that all the generators here of power 1.

idx1: represents the index of a specific generator f(t) of f.

idx2: represents the index of the inverse of the specific generator f(t).

For example if [0,idx1,idx2]= [0, 1, 4] then this means f1*f4=1.

##

x8:=CxY[k][2];

diff2:=Difference(CxY[k][1],[x8]);

for j in [1..sY]do

if diff2=Y[j] then

y12:=[j];

fi;

od;

XX1:=Concatenation(["c",String(x8),",","Y",String(y12[1])]);

XX1: represents a specific partial conjugations automorphism

alpha_Y,v of the list CxY

XX2:=Concatenation(["c",String(-x8),",","Y",String(y12[1])]);

XX2: represents a specific partial conjugations automorphism

alpha_Y,v^-1 of the list CxY which is the inverse of alpha_Y,v

idx1:=0;

idx2:=0;

for t in [1..sf] do # loop through the list f to find the indices

if XX1=f[t] then

idx1:=t;

fi;

if XX2=f[t] then

idx2:=t;

fi;

od;

Add(R2a,[0,idx1,idx2]);

##

###

##

od;

else

return("sY must be greater than zero");

fi;

sR2a:=Size(R2a);

return([R2a,sR2a]);

end;

5. APCGRelationRConj2 Function

APCGRelationRConj2:=function(CxY,Y,Lk,f,R2a)

local k,m,n,j,i,q,l,diff2,diff3,diff4,R2,XX1,XX2,XX3,idx1,idx2,idx3,t,y11,

y12,y13,y16,rels,sR2a,x8,x08,x11,IntY,UniY,U3,NUniA,sLK,lk,sY,sCxY,sf;

##

###

##

The input of this function are:

CxY: the list of elementary partial conjugations of Conj(G_zeta) or Conjv

286

computed in "GeneratorsOfSubgroupConj" or "GeneratorsOfSubgroupConjv",

Y: the list of the non-empty union of connected components of zeta\St(v)

computed in "GeneratorsOfSubgroupConj" or "GeneratorsOfSubgroupConjv",

Lk: the list of links computed in "StarLinkDominateOfVertex"

f: the list of the names of the definitions of the generators CxY

[f(n) = CxY(n), n in N],

R2a: the list of indices computed in "APCGRelationRConj1".

##

It computes the list of indices [0,idx1,idx2,idx3] of relations of type (C2)

of Conj(G_zeta) or (Re2) of Conjv and adds each of them to the list R2a (we

can replace R2a by [] if we need just the indices [0,idx1,idx2,idx3] of

relations of type (C2) or (Re2)).

In addition it calculates the size of the list R2a.

It returns [R2a,sR2a].

##

##

sY:=Size(Y);

sCxY:=Size(CxY);

sf:=Size(f);

if sY<>0 then

y11:=[];

y13:=[];

for i in [1..sCxY-1]do # loop through the list CxY excluding the last entry in CxY

x8:=CxY[i][2];

x08:=AbsoluteValue(x8);

diff2:=Difference(CxY[i][1],[x8]);

diff2: represents the connected component Y(i) which is related

to a specific partial conjugation "alpha_Y(i),v" (CxY in this code)

for t in [1..sY]do

Verify the index of a given list (diff2) in Y which related to "alpha_Y(i),v"

if diff2=Y[t] then

y11:=[t];

fi;

od;

for j in [i+1..sCxY]do # loop through the list CxY excluding the first entry in CxY

if x8=CxY[j][2] then

diff3:=Difference(CxY[j][1],[x8]);

diff3: represents the connected component Y(i) which is related

to a specific partial conjugation "alpha_Y(j),v" (CxY in this code)

for m in [1..sY]do

Verify the index of a given list diff2 in Y which related to "alpha_Y(j),v"

if diff3=Y[m] then

y13:=[m];

fi;

od;

IntY:=Intersection([diff2 , diff3]);

if IntY=[] then

UniY:=Union([diff2 , diff3]);

U3:=SSortedList(UniY);

U3: the sorted list of the union of the two components

diff2 and diff3 (Y union Z in the relation C2)

NUniA:=[];

lk:=Lk[x08];

287

sLK:=Size(lk);

if sLK<>0 then

for q in [1..sLK]do

loop through the list lk to do that: if the vertex l and its

inverse -l are belong to lk and U3 in the same time then we

delete them, because they will cancel each other.

l:=lk[q];

if l in U3 and -l in U3 then

NUniA:=Difference(U3,[-l,l]);

U3:=NUniA;

fi;

od;

fi;

for n in [1..sCxY]do

Verify the index of a given list diff4 in Y which is related

to the automorphism "alpha_Y(i)+Y(j),v^-1" as in the relation (C2)

x11:=CxY[i][2];

diff4:=Difference(CxY[n][1],[x11]);

if U3=diff4 and CxY[n][2]=x8 then

y16:=[];

for t in [1..sY]do

if diff4=Y[t] then

y16:=[t];

fi;

od;

XX1:=Concatenation(["c",String(x8),",","Y",String(y11[1])]);

XX1: represents a specific partial conjugations automorphism

"alpha_Y(i),v" of the list CxY

XX2:=Concatenation(["c",String(x8),",","Y",String(y13[1])]);

XX2: represents a specific partial conjugations automorphism

"alpha_Y(j),v" of the list CxY

XX3:=Concatenation(["c",String(-x8),",","Y",String(y16[1])]);

XX3: represents a specific partial conjugations automorphism

"alpha_Y(i)+Y(j),v^-1" of the list CxY which is the inverse

of "alpha_Y+Z,v"

idx1:=0;

idx2:=0;

idx3:=0;

for t in [1..sf] do

if XX1=f[t] then

idx1:=t;

fi;

if XX2=f[t] then

idx2:=t;

fi;

if XX3=f[t] then

idx3:=t;

fi;

od;

Add(R2a,[0,idx1,idx2,idx3]);

fi;

od;

fi;

288

fi;

od;

od;

else

return("sY must be greater than zero");

fi;

sR2a:=Size(R2a);

return([R2a,sR2a]);

end;

6. APCGRelationRConj3 Function

APCGRelationRConj3:=function(CxY,Y,Lk,f,R2a)

local k,m,n,j,i,q,l,diff2,diff3,diff4,R3,XX1,XX2,XX3,XX4,idx1,idx2,

idx3,idx4,t,y9,y10,y11,y12,y13,y16,rels,sR2a,x8,x08,x9,x11,IntY,UniY,

U3,NUniA,sLK,lk,invLk2,UniLk,sY,sCxY,sf;

##

###

##

The input of this function are:

CxY: the list of elementary partial conjugations of Conj(G_zeta) or Conjv

computed in "GeneratorsOfSubgroupConj" or "GeneratorsOfSubgroupConjv",

Y: the list of the non-empty union of connected components of zeta\St(v)

computed in "GeneratorsOfSubgroupConj" or "GeneratorsOfSubgroupConjv",

Lk: the list of links computed in "StarLinkDominateOfVertex"

f: the list of the names of the definitions of the generators CxY

[f(n) = CxY(n), n in N],

R2a: the list of indices computed in "APCGRelationRConj1".

##

It computes the list of indices [0,idx1,idx2,idx3,idx4] of relations of type (C3)

of Conj(G_zeta) or (Re3) of Conjv and adds each of them to the list R2a (we

can replace R2a by [] if we need just the indices [0,idx1,idx2,idx3,idx4] of

relations of type (C3) or (Re3)).

In addition it calculates the size of the list R2a.

It returns [R2a,sR2a].

##

##

sY:=Size(Y);

sCxY:=Size(CxY);

sf:=Size(f);

if sY<>0 then

y9:=[];

for i in [1..sCxY-1]do # loop through the list CxY excluding the last entry in CxY

x8:=CxY[i][2];

diff2:=Difference(CxY[i][1],[x8]);

diff2: represents the connected component Y(i) which is related to

a specific partial conjugation "alpha_Y(i),v" (CxY in this code) of (C3)

for t in [1..sY]do

Verify the index of a given list diff2 (Y(i)) in Y which related

to "alpha_Y(i),v"

if diff2=Y[t] then

289

y9:=[t];

fi;

od;

x08:=AbsoluteValue(x8);

invLk2:=-Lk[x08];

UniLk:=Concatenation(Lk[x08],invLk2);

for j in [i+1..sCxY]do # loop through the list CxY excluding the first entry in CxY

x9:=CxY[j][2];

diff3:=Difference(CxY[j][1],[x9]);

diff3: represents the connected component Y(j) which is related to

a specific partial conjugation "alpha_Y(j),v" (CxY in this code) of (C3)

y10:=[];

for m in [1..sY]do

Verify the index of a given list diff2 (Y(j)) in Y which related

to "alpha_Y(j),v"

if diff3=Y[m] then

y10:=[m];

fi;

od;

###

##

In this section we compute the list of indices of the generators which is

[0,idx1,idx2,idx3,idx4] of the relators of type (C3) or (Re3) by satisfying

the conditions of the relation (C3) or relation(Re3).

0: is just flag to let us know that all the generators here of power 1.

idx1: represents the index of a specific generator f(i) of f.

idx2: represents the index of another specific generator f(j) of f.

idx3: represents the index of the inverse of the specific generator f(i).

idx4: represents the index of the inverse of the specific generator f(j).

For example if [0,idx1,idx2,idx3,idx4]= [0, 1, 2, 4, 3] then this means

f1*f2*f4*f3=1.

##

if not (x8 in diff3) and not (x9 in diff2) then

if x8<>x9 and x8<>-x9 then

IntY:=Intersection([diff2 , diff3]);

if IntY=[] or x9 in UniLk then

XX1:=Concatenation(["c",String(x8),",","Y",String(y9[1])]);

XX1: represents a specific partial conjugations

automorphism "alpha_Y(i),v" of the list CxY

XX2:=Concatenation(["c",String(x9),",","Y",String(y10[1])]);

XX2: represents a specific partial conjugations

automorphism "alpha_Y(j),u" of the list CxY

XX3:=Concatenation(["c",String(-x8),",","Y",String(y10[1])]);

XX3: represents a specific partial conjugations

automorphism "alpha_Y(i),v^-1" of the list CxY

which is the inverse of "alpha_Y,v"

XX4:=Concatenation(["c",String(-x9),",","Y",String(y9[1])]);

XX4: represents a specific partial conjugations

automorphism "alpha_Y(j),u^-1" of the list CxY

which is the inverse of "alpha_Y(j),u"

idx1:=0;

idx2:=0;

idx3:=0;

290

idx4:=0;

for t in [1..sf] do

if XX1=f[t] then

idx1:=t;

fi;

if XX2=f[t] then

idx2:=t;

fi;

if XX3=f[t] then

idx3:=t;

fi;

if XX4=f[t] then

idx4:=t;

fi;

od;

Add(R2a,[0,idx1,idx2,idx3,idx4]);

fi;

fi;

fi;

od;

od;

else

return("sY must be greater than zero");

fi;

sR2a:=Size(R2a);

return([R2a,sR2a]);

end;

7. APCGRelationRConj4 Function

APCGRelationRConj4:=function(CxY,V,Lk,gens1,Y,f,R2a)

local k,m,n,j,i,q,l,diff2,diff3,diff4,R4,XX1,XX2,XX3,XX4,idx1,idx2,idx3,idx4,

t,y9,y10,y11,y12,y13,y16,sR2a,x8,x08,x9,x11,W,sW,IntY,UniY,U3,NUniA,sLK,lk,

invLk2,UniLk,KK,gens4,sgens4,gens3,sgens3,st1,st2,jx,Wj4,Wj,Wj3,Wj2,Wj1,Wznot,

sWznot,j1,y99,NCY,CxY1,sCxY1,x09,W1,y14,diff5,sY,sCxY,sf,sgens1,invV,L;

##

###

##

The input of this function are:

CxY: the list of elementary partial conjugations of Conj(G_zeta) or Conjv

computed in "GeneratorsOfSubgroupConj" or "GeneratorsOfSubgroupConjv",

V: the list of vertices

Lk: the list of links computed in "StarLinkDominateOfVertex"

gens1: type(1) generators of Conj(G_zeta) or Conjv computed in

"GeneratorsOfSubgroupConj" or "GeneratorsOfSubgroupConjv",

Y: the list of the non-empty union of connected components of zeta\St(v)

computed in "GeneratorsOfSubgroupConj" or "GeneratorsOfSubgroupConjv",

f: the list of the names of the definitions of the generators CxY

[f(n) = CxY(n), n in N],

R2a: the list of indices computed in "APCGRelationRConj1".

##

291

Firstly, it computes the list of elementary inner automorphisms W, then

gens4 the list of the generators of Conj(G_zeta) or Conjv. This is the

concatenation of the lists gens1 and W but; without repeating generators

that appear in gens1.

Secondly, it computes the list of indices [1,idx1,idx2,idx3,idx4] of relations

of type (C4) or (Re4) and adds each of them to the list R2a (we

can replace R2a by [] if we need just the indices [1,idx1,idx2,idx3,idx4]

of these relations.

It returns [W,gens4,R2a,sW,sgens4,sR2a] where sW, sgens4 and sR2a are the

sizes of W, gens4 and R2a respectively.

##

##

sCxY:=Size(CxY);

sgens1:=Size(gens1);

sY:=Size(Y);

sf:=Size(f);

invV:=-V; # invV: is the inverses list of the vertex list V

L:=Concatenation(V,invV); # L is the union of the lists V and invV

if sY<>0 then

##

##

In this section we compute the list of elementary inner automorphisms W

of the subgroup Conj(G_zeta) or Conjv by satisfying the conditions of this

type of partial conjugations automorphisms

##

W:=[];

for j in [1..sCxY]do # loop through the list CxY defined above

x9:=CxY[j][2];

x09:=AbsoluteValue(x9);

invLk2:=-Lk[x09]; # Compute invLk2 the inverse of of each link Lk(v); v in V

UniLk:=Concatenation(Lk[x09],invLk2);

Compute UniLk the link Lk(v) with respect to L

diff4:=Difference(L,UniLk); # For each vertex v of V we remove the list UniLk

from L, since UniLk consist of vertices with

thier inverses which cancel each other

diff5:=Difference(diff4,-[x9]);

diff5 is a one list (connected component) Y(i) of the list

Y which forms the first part of the inner automorphism W1

W1:=[diff5,x9]; # Forms the elementary inner automorphism W1

Add(W,W1);

od;

##

###

##

sW:=Size(W);

Wznot:=[];

gens3:=[];

j1:=0;

for j in [1..sCxY]do

In this loop we add each elementary inner automorphisms W(j) to

a new list Wznot if W(j) not belong to the list CxY and it is not

trivial automorphism then add its name W(j1) to the list gens3

if not (W[j] in CxY) and Size(W[j][1])<>1 then

292

Add(Wznot,W[j]);

j1:=j1+1;

Add(gens3,Concatenation(["W",String(j1)]));

fi;

od;

sWznot:=Size(Wznot);

sgens3:=Size(gens3);

if Wznot<>[] then

gens4:=Concatenation(gens1,gens3);

gens4: the list of the generators of Conj(G_zeta) or Conjv

else

gens4:=gens1; # Means the subgroup Conj(G_zeta) or Conjv has just the

type (1) generators (elementary partial conjugations)

fi;

sgens4:=Size(gens4);

y14:=[];

for i in [1..sCxY]do # loop through the list CxY excluding the first entry in CxY

x8:=CxY[i][2];

diff2:=Difference(CxY[i][1],[x8]);

diff2: represents the connected component Y(i) which is related

to a specific partial conjugation "alpha_Y(i),v" (CxY in this code)

for t in [1..sY]do

Verify the index of a given list diff2 (Y(i)) in Y which related

to "alpha_Y(i),v"

if diff2=Y[t] then

y14:=[t];

fi;

od;

###

##

In this section we compute the list of indices of the generators which is

[1,idx1,idx2,idx3,idx4] of the relators of type (C4) or (Re4) by

satisfying the conditions of these relations.

1: is just flag to let us know that R corresponds to a word

W_R = gamma_u * alpha_Y,v * gamma^-1_u * alpha_Y,v^-1 of length 4 as in

relation (C4) and (Re4) of the subgroups Conj(G_zeta) and Conjv respectively.

idx1: represents the index of a specific generator f(i) of f.

idx2: represents the index of another specific generator f(t) of f.

idx3: represents the index of the inverse of the specific generator f(i).

idx4: represents the index of the inverse of the specific generator f(t).

For example if [0,idx1,idx2,idx3,idx4]= [0, 1, 2, 4, 3] then this means

f1*f2*f4*f3=1.

##

for j in [1..sCxY]do

x9:=W[j][2];

diff3:=Difference(CxY[j][1],[x9]);

if not (x9 in diff2) and x8<>x9 and x8<>-x9 and Size(W[j][1])<>1 then

diff4:=Difference(W[j][1],[x9]);

Add(diff4,-x9);

diff4:=SSortedList(diff4);

diff5:=[diff4,-x9];

idx3:=0;

for k in [1..sW]do

293

if diff5=W[k] then

idx3:=k+sgens1;

fi;

od;

idx1:=j+sgens1;

Wj:=W[j];

Wj1:=Difference(W[j][1],[W[j][2]]);

Wj2:=Union([Wj1,[-W[j][2]]]);

Wj3:=SSortedList(Wj2);

Wj4:=[Wj3,-W[j][2]];

for q in [1..sCxY]do

if Wj=CxY[q] then

j:=q;

idx1:=q;

st1:="f";

else

st1:="W";

fi;

if Wj4=CxY[q] then

jx:=q;

st2:="f";

idx3:=q;

else

st2:="W";

fi;

od;

XX2:=Concatenation(["c",String(x8),",","Y",String(y14[1])]);

XX2: represents a specific partial conjugations

automorphism "alpha_Y(j),v" of the list CxY

XX4:=Concatenation(["c",String(-x8),",","Y",String(y14[1])]);

XX4: represents a specific partial conjugations

automorphism "alpha_Y(j),v^-1" of the list CxY

which is the inverse of "alpha_Y(j),v"

idx2:=0;

idx4:=0;

for t in [1..sf] do # loop through the list f defined above

if XX2=f[t] then # Verify the index of the specific partial

conjugations XX2 in the list Y

idx2:=t;

fi;

if XX4=f[t] then # Verify the index of the specific partial

conjugations XX4 in the list Y

idx4:=t;

fi;

od;

Add(R2a,[1,idx1,idx2,idx3,idx4]);

fi;

od;

##

##

##

od;

else

294

return("sgens4 must be greater than zero");

fi;

sR2a:=Size(R2a);

return([W,gens4,R2a,sW,sgens4,sR2a]);

end;

8. APCGConjLastReturn Function

APCGConjLastReturn:=function(gens4,R2a,sR2a)

local i,j,C,F,rels,srels,GHK,KK,GGG,gens,sgens,GHK1,KK1,ZZa;

##

###

##

The input of this function are:

gens4: the list of generators (defined in APCGRelationRConj4) of the

subgroup Conj(G_zeta),

R2a: the list of the indices of the relators (computed in the function

APCGRelationRConj, ..., APCGRelationRConj4), and

sR2a: the size of the list R2a.

##

It forms the list of relations "rels" from the list R2a For each

element R of R2a the relator W_R is added to a new list rels

##

In fact this function forms the output of the functions

"FinitePresentationOfSubgroupConj" and "FinitePresentationOfSubgroupConjv"

in the package AutParCommGrp.

##

##

C:=gens4;

F:=FreeGroup(C); # computes the free group on gens4. The generators

are displayed as string.1, string.2, ..., string.n

gens:=GeneratorsOfGroup(F); # returns a list of generators gens of the free group F

sgens:=Size(gens);

##

##

##

In this section we form the list of relations rels from the list R2a

For each element R of R2a the relator W_R is added to a new list rels

##

rels:=[];

for i in [1..sR2a] do

GHK:=Size(R2a[i]);

KK:=AbsoluteValue(R2a[i][2]);

rels[i]:=gens[KK];

for j in [3..GHK] do

KK:=AbsoluteValue(R2a[i][j]);

rels[i]:=rels[i]*gens[KK];

od;

od;

##

295

##

##

GGG:=F/rels; # computes the finitely presented group on

the generators gens of F defined above

srels:=Size(rels);

return[gens,rels,GGG];

end;

9. FinitePresentationOfSubgroupConj Function

FinitePresentationOfSubgroupConj:=function(V,E)

local R1,R2,R3,R4,R5,R6,R7,R8,St,Lk,sV,M,NV,NE,sNV,sNE,Bs,CxY,sCxY,gens1,

sgens1,gens,sgens,R2a,sR2a,Y,sY,f,sf,F,T,gens4,sgens4,GGG,L,sL,W,sW,rels,

srels,Q,i,j,tempedgex,tempedgey;

##

###

##

The input of this function is a simple graph zeta=(V,E), where V and E

represent the set of vertices and the set of edges respectively.

##

It returns [gens,rels,GGG], where

gens: is a list of free generators of the subgroup Conj(G_zeta) of the

group Aut(G_zeta).

rels: is a list of relations in the generators of the free group F.

Note that relations are entered as relators, i.e., as words in

the generators of the free group

GGG:=F/rels: is a finitely presented of the subgroup Conj(G_zeta)

with generators gens and relators rels.

##

In fact, the main work of this function is to run all the functions

we have read them below to give a finite presentation for the subgroup

Conj(G_zeta) of Aut(G_zeta).

##

##

if IsSimpleGraph(V,E)=true then # Call the function IsSimpleGraph to test

whether the graph zeta is simple or not

##

##

##

This section is to compute the star St(v) and the link Lk(v) for each v in V

##

R1:=StarLinkOfVertex(V,E); #F StarLinkOfVertex(<V>, <E>)

return([St,Lk]);

St:=R1[1];

Lk:=R1[2];

##

##

##

This section is to delete the star St(v) of a specific vertex v

from the graph zeta

##

296

R2:=DeleteVerticesFromGraph(St,V,E); #F DeleteverticesFromGraph(<St>, <V>, <E>)

return([NV,NE,sNV,sNE]);

NV:=R2[1];

NE:=R2[2];

sNV:=R2[3];

sNE:=R2[4];

##

##

##

This section is to compute the first part of the generators (elementary

partial conjugations) of the subgroup Conj(G_zeta)

##

R3:=GeneratorsOfSubgroupConj(NE,NV,V);

#F GeneratorsOfSubgroupConj(<NE>, <NV>, <V>)

return[CxY,sCxY,Y,sY,f,sf,gens1,sgens1];

CxY:=R3[1];

Y:=R3[3];

f:=R3[5];

gens1:=R3[7];

##

##

##

This section is to compute the relation C1 of the subgroup Conj(G_zeta)

##

R4:=APCGRelationRConj1(CxY,Y,f); #F APCGRelationRConj1(<CxY>, <Y>, <f>)

return([R2a,sR2a]);

R2a:=R4[1];

sR2a:=R4[2];

##

##

##

This section is to compute the relation C2 of the subgroup Conj(G_zeta)

##

R5:=APCGRelationRConj2(CxY,Y,Lk,f,R2a);

#F APCGRelationRConj2(<CxY>, <Y>, <Lk>, <f>, <R2a>)

return([R2a,sR2a]);

R2a:=R5[1];

sR2a:=R5[2];

##

##

##

This section is to compute the relation C3 of the subgroup Conj(G_zeta)

##

R6:=APCGRelationRConj3(CxY,Y,Lk,f,R2a);

#F APCGRelationRConj3(<CxY>, <Y>, <Lk>, <f>, <R2a>)

return([R2a,sR2a]);

R2a:=R6[1];

sR2a:=R6[2];

##

##

##

This section is to compute the relation C4 of the subgroup Conj(G_zeta)

##

297

R7:=APCGRelationRConj4(CxY,V,Lk,gens1,Y,f,R2a);

#F APCGRelationRConj4(<CxY>, <V>, <Lk>, <gens1>, <Y>, <f>, <R2a>)

return([W,gens4,R2a,sW,sgens4,sR2a]);

W:=R7[1];

gens4:=R7[2];

R2a:=R7[3];

sW:=R7[4];

sgens4:=R7[5];

sR2a:=R7[6];

##

##

##

This section is to compute the final relations rels from the matrix R2a

of indices of the generators and find the final return

##

R8:=APCGConjLastReturn(gens4,R2a,sR2a);

#F APCGConjLastReturn(<gens4>, <R2a>, <sR2a>)

return[gens,rels,GGG];

gens:=R8[1];

rels:=R8[2];

GGG:=R8[3];

##

##

##

else

return("The graph must be a simple graph");

fi;

return[gens,rels,GGG];

end;

298

A.3 Appendix to Chapter 4

In this appendix we will attached the codes for all the functions we have written in

Chapter 4 as follows:

1. EquivalenceClassOfVertex Function

EquivalenceClassOfVertex:=function(St)

local i,j,sV,EqCl,EqCl1,diff1,diff2;

##

###

##

The input of this function is the list of stars St.

##

It computes the equivalence classes for each vertex v in V.

##

##

EqCl:=[];

sV:=Size(St); # Since the size of St is the same of the list of vertices V

for i in [1..sV] do # Loop through the list of vertices V

EqCl1:=[];

for j in [1..sV] do # Loop through the list of vertices V and

for all vertices i not equal j do that:

diff1:=Difference(St[i],[i,j]); # compute diff1(i,j)=St(i)\{i,j}

diff2:=Difference(St[j],[i,j]); # compute diff2(i,j)=St(j)\{i,j }

if diff1 = diff2 then

Add(EqCl1,j); # add the vertex j to the list EqCl1 if

diff1 = diff2

fi;

od;

Add(EqCl,EqCl1);

od;

return(EqCl);

end;

2. ClassPreservingConnectedComponents Function

ClassPreservingConnectedComponents:=function(EqCl, Comps)

local i, j, k ,cdash, remainingcdash, sizeComps, sizeEqClcurrent,sizeEqCl;

##

###

##

The input of this function is:

EqCl: the list of equivalence classes of vertices of the graph zeta, and

Comps: the list of connected components of the graph zeta.

##

It constructs a new list of connected components Comps from the connected

components of the graph zeta by finding the connected components which

satisfy the conditions of partial conjugation for W_V (see Chapter one of

299

the manual for this package).

##

##

sizeEqCl:=Size(EqCl);

for i in [1 ..sizeEqCl] do # loop through the list EqCl

sizeComps:=Size(Comps);

sizeEqClcurrent:=Size(EqCl[i]); # computes the size of each element of EqCl

cdash:=[];

remainingcdash:=[];

for j in [1..sizeEqClcurrent] do # loop through each element of EqCl

for k in [1..sizeComps] do # loop through the list Comps

if EqCl[i][j] in Comps[k] then # if any element of EqCl(i)(j) belong to

any connected component Comps(k) then do:

cdash:=Union(cdash, Comps[k]); # Union between the lists cdash and Comps(k)

fi;

od;

od;

for k in [1..sizeComps] do # For each element Comps(k) of Comps, the function IsSubset

is called to find remainingcdash the remaining components

from the list Comps that contain no element of EqCl(i)

if IsSubset(cdash,Comps[k])=false then

Add(remainingcdash,Comps[k]);

fi;

od;

Add(remainingcdash,cdash);

Comps:=remainingcdash; # Make a new list of connected components by

making Comps equal to list remainingcdash

od;

return(Comps);

end;

3. GeneratorsOfSubgroupConjv Function

GeneratorsOfSubgroupConjv:=function(NE,NV,St,V)

local i,j,gens2,gens,genss,rels,Rels,Bs,h,G2,G1,R3,R4,Comps,sComps,sMV,sNE,

UniA,D,DD,sD,S,YYY,NYY,invNYY,DYY,sDYY,Ls,t,xn,union_element,NCxY,sgens,

gens4,sgens4,gens3,sgens3,invV,sL,Y6,xs2,Y3,Y4,sY4,xs1,diff2,Y5,sY5,sY6,

sz,Y7,sY7,sxs2,xs3,sxs3,xs,sxs,Uxs,sUxs,CxY,sCxY,y9,y8,Y,sY,sBs,Y8,sY8,

y19,x11,sxs1,k,f,sf,gens1,sgens1,CxY1,sCxY1,y10,y99,NCY,KK,HH,R10,R11,

R12,SuccComps,EqCl,sR12,PY4,sPY4,L,sV;

##

###

##

The input of this function are:

the list NE of all lists of edges of the subgraph zeta\St(v),

the list NV of all lists of vertices of the subgraph zeta\St(v),

the list of stars St,

the list of vertices V.

##

It computes the list gens1 which form the type(1) generators of partial

300

conjugation for W_V the subgroup of Conj_V of the group Aut(G_zeta).

##

##

gens:=[];

Bs:=[];

Y6:=[];

xs2:=[];

sNE:=Size(NE);

sV:=Size(V);

invV:=-V; # invV: is the inverses list of the vertex list V

L:=Concatenation(V,invV); # L is the union of the lists V and invV

R11:=EquivalenceClassOfVertex(St); # Call this function to computes the equivalence

Classes of each vertex v of the graph zeta

EqCl:=R11;

for h in [1..sNE]do #loop through the lists NV and NE since they have the same size

G2:=NE[h];

G1:=NV[h];

R3:=ConnectedComponentsOfGraph(G1,G2); # computes the list of all Connected components

for each subgraph (NV(h),NE(h))

Comps:=R3[1]; # Comps: list of components of (NV(h),NE(h))

sComps:=R3[2]; # sComps: size of Comps

R12:=ClassPreservingConnectedComponents(EqCl,Comps);

Call this function to construct a new list of connected components

Comps from the connected components of the subgraph (NV(h),NE(h))

by finding the connected components which satisfy the conditions

of partial conjugation for W_V

sR12:=Size(R12);

###

Y4:=[];

for i in [1..sR12] do # loop through the lists R12

if R12[i]<>[] then # Chech that if R12(i) is not empty list

Add(Y4,R12[i]); # If R12(i) is not empty add it to the list Y4

fi;

od;

sY4:=Size(Y4);

##

xs1:=[];

for i in [1..sY4] do # loop through the list Y4

diff2:=Difference(L,Y4[i]); # computes the difference diff2 between the

list L and each elements (list) of the list

Add(xs1,diff2); # Y4 add each diff2 to the new list xs1

od;

sxs1:=Size(xs1);

###

##

In this section: loop through the list Y4 to construct a list called Y6.

In order to do this first find the size sz of xs1(i). For each element l

of xs1(i) concatenate elements of Y4(i) with elements of l to give a list

KK. Then form a listY5 of pairs HH; with entries (KK, l), for each element

l of xs1(i). Then append Y5 to the list Y6.

##

Y5:=[];

301

for i in [1..sY4] do

sz:=Size(xs1[i]);

for j in [1..sz] do

KK:=Concatenation(Y4[i],[xs1[i][j]]);

HH:=[KK,xs1[i][j]];

Add(Y5,HH);

od;

od;

sY5:=Size(Y5);

Add(Y6,Y5);

sY6:=Size(Y5);

##

##

##

Add(xs2,xs1); # Make new list xs2, by adding xs1 to xs2. This step and tht

next one are needed because there are two inner loops

Add(Bs,Y4); # Make new lists Bs, by adding Y4 to Bs

od; # ending the loop through the lists NV and NE

if Y6<>[] then # To check that the list Y6 is nonempty list i.e., Y6 have

connected components that satisfy the conditions of Conjv

sY6:=Size(Y6);

Y7:=Concatenation(Y6);

Compute the list Y7 by concatenating the dense list of lists Y6

sY7:=Size(Y7);

sxs2:=Size(xs2);

xs3:=Concatenation(xs2);

Compute the list xs3 by concatenating the dense list of lists xs2

sxs3:=Size(xs3);

##

###

##

In this section: loop through the list xs3 to construct a list called xs by

adding each non-empty entry of xs3 to xs, and calculate the size of xs.

##

xs:=[];

for i in [1..sxs3] do

if not (xs3[i] in xs) and xs3[i]<>[] then

Add(xs,xs3[i]);

fi;

od;

sxs:=Size(xs);

##

###

##

Uxs:=Union(xs); # Call the function Union to construct a list called Uxs by

sUxs:=Size(Uxs); # computing the union of xs and calculates it size sUxs

CxY1:=[];

for i in [1..sY7] do # Loop through the list Y7 to construct a list

called CxY1 by adding each non-empty entry of

Y7 to CxY1, and calculate its size sCxY1

if not (Y7[i] in CxY1) and Y7[i]<>[] then

Add(CxY1,Y7[i]);

302

fi;

od;

sCxY1:=Size(CxY1);

CxY:=[];

for j in [1..sCxY1]do # Loop through the list CxY1 to compute a list of

the definitions CxY of the elementary partial

conjugations, with its size sCxY

y9:=CxY1[j][2];

y10:=CxY1[j][1];

y99:=SSortedList(y10);

NCY:=[y99,y9];

Add(CxY,NCY);

od;

sCxY:=Size(CxY);

Y8:=Concatenation(Bs); # Make a list Y8 by concatenating the dense

list of lists Bs defined above

sBs:=Size(Bs);

sY8:=Size(Y8);

Y:=[];

for i in [1..sY8] do # Loop through the list Y8 to construct a list Y

of the non-empty unions of connected components

of zeta\St(v)

if not (Y8[i] in Y) and Y8[i]<>[] then

Add(Y,Y8[i]);

fi;

od;

sY:=Size(Y);

##

##

In this section: loop through the lists CxY and Y to construct a list f such

that each element of f represents the element of CxY of the same index, i.e.,

f(n)=CxY(n), n in N, and calculate its size sf

##

f:=[];

y19:=[];

for k in [1..sCxY]do

x11:=CxY[k][2];

diff2:=Difference(CxY[k][1],[x11]);

for j in [1..sY]do

if diff2=Y[j] then

y19:=[j];

fi;

od;

NCxY:=Concatenation(["c",String(x11),",","Y",String(y19[1])]);

Add(f,NCxY);

od;

sf:=Size(f);

##

###

##

gens1:=[];

for j in [1..sf]do # Loop through the list f to create a list gens1 of type(1)

generators of of the subgroup Conj(G_zeta), and calculate

303

its size sgens1. Each element of gens1 represents the

element of f of the same index, i.e., gens1(n)=f(n), n in N.

(This make these generators compatible with GAP format.)

Add(gens1,Concatenation(["f",String(j)]));

od;

sgens1:=Size(gens1);

return[CxY,sCxY,Y,sY,f,sf,gens1,sgens1];

else

Print("There is no component C satisfies the conditions of partial conjugations");

Print("\n");

return[];

fi;

end;

4. FinitePresentationOfSubgroupConjv Function

FinitePresentationOfSubgroupConjv:=function(V,E)

local R1,R2,R3,R4,R5,R6,R7,R8,St,Lk,Lk1,sV,M,NV,NE,sNV,sNE,Bs,CxY,sCxY,

gens1,sgens1,gens,sgens,R2a,sR2a,Y,sY,f,sf,F,T,gens4,sgens4,GGG,L,sL,W,

sW,rels,srels,Q,i,j,tempedgex,tempedgey;

##

###

##

The input of this function is a simple graph zeta=(V,E), where V and E

represent the set of vertices and the set of edges respectively.

##

It returns [gens,rels,GGG], where

gens: is a list of free generators of the subgroup Conj_V of the

group Aut(G_zeta).

rels: is a list of relations in the generators of the free group F.

Note that relations are entered as relators, i.e., as words in

the generators of the free group.

GGG:=F/rels: is a finitely presented of the subgroup Conj_V with

generators gens and relators rels.

##

In fact, the main work of this function is to run all the functions

we have read them below to give a finite presentation for the subgroup

Conj_V of Aut(G_zeta).

##

##

if IsSimpleGraph(V,E)=true then # Call the function IsSimpleGraph to test

whether the graph zeta is simple or not

##

##

##

This section is to compute the star St(v) and the link Lk(v) for each v in V

##

R1:=StarLinkOfVertex(V,E); #F StarLinkOfVertex(<V>, <E>)

return([St,Lk]);

St:=R1[1];

304

Lk:=R1[2];

##

##

##

This section is to delete the star St(v) of a specific vertex v

from the graph zeta

##

R2:=DeleteVerticesFromGraph(St,V,E); #F DeleteverticesFromGraph(<St>, <V>, <E>)

return([NV,NE,sNV,sNE]);

NV:=R2[1];

NE:=R2[2];

sNV:=R2[3];

sNE:=R2[4];

##

##

##

This section is to compute the first part of the generators W_v

of the subgroup Conj_V

##

R3:=GeneratorsOfSubgroupConjv(NE,NV,St,V);

#F GeneratorsOfSubgroupConjv(<NE>, <NV>, <St>, <V>)

return[CxY,sCxY,Y,sY,f,sf,gens1,sgens1];

if R3[1]<>[] then

CxY:=R3[1];

Y:=R3[3];

f:=R3[5];

gens1:=R3[7];

##

##

##

This section is to compute the relation Re1 of the subgroup Conj(G_zeta)

##

R4:=APCGRelationRConj1(CxY,Y,f); #F APCGRelationRConj1(<CxY>, <Y>, <f>)

return([R2a,sR2a]);

R2a:=R4[1];

sR2a:=R4[2];

##

##

##

This section is to compute the relation R2 of the subgroup Conj(G_zeta)

##

R5:=APCGRelationRConj2(CxY,Y,Lk,f,R2a);

#F APCGRelationRConj2(<CxY>, <Y>, <Lk>, <f>, <R2a>)

return([R2a,sR2a]);

R2a:=R5[1];

sR2a:=R5[2];

##

##

##

This section is to compute the relation R3 of the subgroup Conj(G_zeta)

##

R6:=APCGRelationRConj3(CxY,Y,Lk,f,R2a);

#F APCGRelationRConj3(<CxY>, <Y>, <Lk>, <f>, <R2a>)

305

return([R2a,sR2a]);

R2a:=R6[1];

sR2a:=R6[2];

##

##

##

This section is to compute the relation R4 of the subgroup Conj(G_zeta)

##

R7:=APCGRelationRConj4(CxY,V,Lk,gens1,Y,f,R2a);

#F APCGRelationRConj4(<CxY>, <L>, <Lk>, <gens1> , <Y>, <f>, <R2a>)

return([W,gens4,R2a,sW,sgens4,sR2a]);

W:=R7[1];

gens4:=R7[2];

R2a:=R7[3];

sW:=R7[4];

sgens4:=R7[5];

sR2a:=R7[6];

##

##

##

This section is to compute the final relations rels from the matrix R2a

of indices of the generators and find the final return

##

R8:=APCGConjLastReturn(gens4,R2a,sR2a);

#F APCGConjLastReturn(<gens4>, <R2a>, <sR2a>)

return[gens,rels,GGG];

gens:=R8[1];

rels:=R8[2];

GGG:=R8[3];

##

##

##

return[gens,rels,GGG];

else

Print("The subgroup here is trivial subgroup");

Print("\n");Print("\n");

return[];

fi;

else

return("The graph must be a simple graph");

fi;

end;

306

A.4 Appendix to Chapter 8

In this appendix we will attached the codes for all the functions we have written in

Chapter 8 as follows:

1. SwapRowsColumns Function

SwapRowsColumns:=function(degf,x,y)

local Temp5,Temp6;

##

###

##

The input of this function are:

a matrix degf of size m x m and two different numbers x,y where

x,y in {1, ..., m}.

##

It exchanges row(x) and row(y), and at the same time exchange,

column(x) and column(y).

It returns the matrix degf after the replacement.

##

##

##In this section we exchange the two rows x and y

##

Temp5:=[];

Temp5 := StructuralCopy(degf); # Row replacement

degf[x]:=Temp5[y];

degf[y]:=Temp5[x];

##

##

##

degf:=TransposedMatDestructive(degf); # compute the transpose of degf

##

##

##

##In this section we exchange the two columns x and y

##

Temp6:=[];

Temp6 := StructuralCopy(degf);

degf[x]:=Temp6[y];

degf[y]:=Temp6[x];

##

##

##

degf:=TransposedMatDestructive(degf); # compute the transpose of degf

##

##

##

return (degf);

end;

307

2. Solveindic1WithProof Function

Solveindic1WithProof:=function(dimf,f)

local i,j,diffk,dimej,dimei,f1,Cj,M1,M2,Cjb,Ca,Cja,Ma,Mb,Mc,Xd,Xd1,Md,Me1,Me2,m;

##

###

##

This function is called only if the conditions of Propositions 1.4.1

(as in the manual) holds.

##

The input of this function are:

dimf: the matrix of the dimensions of the polynomials which is of size m x m,

f: the identity matrix of size m x m.

dimf and f are output by the main function IsSolvableModuleWithProof.

##

The function outputs a proof that M is solvable.

##

##

##

m:=Size(dimf);

##

##

##

In this section we compute new entries for matrix f, by going through the

entries of the matrix dimf and set f[i][j]= dimf[i][j] if dimf[i][j] < 0

and f[i][j]=0 if dimf[i][j] >= 0, for i=1, ..., m, depending on the facts

that in R, if dim (f) = j, i.e., f in R_j then degree of f = - j in the

negative grading.

##

for j in [1..m] do

for i in [1..m] do

if i>j then

if dimf[i][j]>=0 then

f[i][j]:=0;

else

f[i][j]:=dimf[i][j];

fi;

else

f[i][j]:=dimf[i][j];

fi;

od;

od;

Print("\ f=",f);

Print(" ","\n");Print(" ","\n");

##

##

##

In this section if f is an upper triangular matrix then we Compute Newf

from f, using the fact that (partial)^2 =0 and R is an integral domain.

Also we compute the matrix d of the differential "partial" with respect

to the basis S = e_i where i=1, ..., m.

##

if IsUpperTriangularMat(f)=true then

308

for i in [1..m] do

f[i][i]:=0;

od;

Print("\ Newf=",f);

Print(" ","\n");Print(" ","\n");

for i in [1..m] do

for j in [1..m] do

if f[i][j]<>0 then

f[i][j]:=Concatenation("f",String(i),String(j));

fi;

od;

od;

Print("\ d=",f);

Print(" ","\n");Print(" ","\n");

else

return("f is not upper triangular matrix");

fi;

##

##

##

In this section we construct a proof that M is solvable if f is an

upper triangular matrix.

##

Print(" , (Since d^2=0 and R is an integral domain). ");

Print(" ","\n");Print(" ","\n");

Cjb:=" ";

Ca:="Let C0=0 and ";

Print(Ca);

for j in [1..m] do

Cja:=Concatenation(["C",String(j),"=<"]);

for i in [1..j] do

if i=j then

M1:=Concatenation(["e",String(i)]);

else

M1:=Concatenation(["e",String(i),","]);

fi;

Cja:=Concatenation([Cja,M1]);

od;

if j=m then

Cja:=Concatenation([Cja,"> "]);

else

Cja:=Concatenation([Cja,"> , "]);

fi;

Print(Cja);

if j=m then

Cjb:=Concatenation([Cjb,"C",String(j),"/","C",String(j-1)," is free "]);

else

Cjb:=Concatenation([Cjb,"C",String(j),"/","C",String(j-1)," is free, "]);

fi;

od;

Print(" ","\n");

Print(Cjb);

Print(" ","\n");Print(" ","\n");

309

M2:=[];

Ma:="x=";

Mb:="d(x)=";

Mc:="d(x)=a1(0)";

Xd:="If x in C";

Me2:="Hence, 0=C0 subset of ";

for j in [1..m] do

Xd1:=Concatenation([Xd,String(j),", then x can be written uniquely as: "]);

Print(Xd1);

Ma:=Concatenation([Ma,"a",String(j),"*","e",String(j)]);

Print(" ","\n");

Print(Ma);

Ma:=Concatenation([Ma,"+"]);

Mb:=Concatenation([Mb,"a",String(j),"*","d(e",String(j),")"]);

Print(" ","\n");

Print(Mb);

Mb:=Concatenation([Mb,"+"]);

if j>1 then

Mc:=Concatenation([Mc,"a",String(j),"("]);

for i in [1..j-1] do

if i<j-1 then

Mc:=Concatenation([Mc,"f",String(i),String(j),"*","e",String(i),"+"]);

else

Mc:=Concatenation([Mc,"f",String(i),String(j),"*","e",String(i),")"]);

fi;

od;

fi;

Print(" ","\n");

Print(Mc);

Mc:=Concatenation([Mc,"+"]);

Md:=Concatenation([" in ","C",String(j-1)]);

Print(Md);

Print(" ","\n");Print(" ","\n");

Me1:=Concatenation(["Hence ","d(C",String(j),") subset of C",String(j-1)," and

then d(C",String(j),"/C",String(j-1),")=0."]);

Print(Me1);

Print(" ","\n"); Print(" ","\n");

if j<m then

Me2:=Concatenation([Me2,"C",String(j)," subset of "]);

else

Me2:=Concatenation([Me2,"C",String(j),"= M is a composition series for M. "]);

fi;

od;

Print(Me2);

Print(" ","\n"); Print(" ","\n");

##

##

##

return ("M is solvable");

end;

310

3. Solveindic2WithProof Function

Solveindic2WithProof:=function(dimf,m)

local i,j,f,d;

##

###

##

This function is called only if the conditions of Propositions 1.4.3

##(as in the manual) holds.

##

This function is called if the modules M is outside the classification.

##

The inputs of this function are the matrix dimf of dimensions and the

dimension m of the vector of dimensions which are output by the main

function IsSolvableModuleWithProof.

dimf and f are output by the main function IsSolvableModuleWithProof.

##

The function outputs a proof that M is solvable.

##

##

f:=dimf;

##

##

##

In this section we compute new entries for matrix f, by going through the

entries of the matrix dimf and set f[i][j]= dimf[i][j] if dimf[i][j] < 0

and f[i][j]=0 if dimf[i][j] >= 0, for i=1, ..., m, depending on the facts

that in R, if dim (f) = j, i.e., f in R_j then degree of f = - j in the

negative grading.

##

for j in [1..m-2] do

for i in [1..m] do

if i<j+2 then

if dimf[i][j]<0 then

f[i][j]:=dimf[i][j];

else

f[i][j]:=0;

fi;

else

if dimf[i][j]<0 then

f[i][j]:=dimf[i][j];

else

f[i][j]:=0;

fi;

fi;

od;

od;

Print("\ f=",f);

Print(" ","\n");

##

##

##

We compute the matrix d of the differential "partial" with respect to

311

the basis S = e_i where i=1, ..., m.

##

for i in [1..m] do

for j in [1..m] do

if f[i][j]<>0 then

f[i][j]:=Concatenation("f",String(i),String(j));

fi;

od;

od;

Print("\ d=",f);

Print(" ","\n");Print(" ","\n");

##

##

##

return("The module M is outside the classification");

end;

4. Solveindic3WithProof Function

Solveindic3WithProof:=function(m,dimf,f)

local i,j,diffk,dimej,dimei,f1,Cj,M1,M2,Cjb,Ca,Cja,Ma,Mb,Mc,Xd,Xd1,Md,Me1,Me2,Tranf;

##

###

##

This function is called only if the conditions of Propositions 1.4.4

(as in the manual) holds.

##

The input of this function are:

m: the dimension of the vector of dimensions

dimf: the matrix of the dimensions of the polynomials which is of size m x m,

f: the identity matrix of size m x m.

m, dimf and f are output by the main function IsSolvableModuleWithProof.

##

The function outputs a proof that M is solvable.

##

##

##

##

In this section we compute new entries for matrix f, by going through the

entries of the matrix dimf and set f[i][j]= dimf[i][j] if dimf[i][j] < 0

and f[i][j]=0 if dimf[i][j] >= 0, for i=1, ..., m, depending on the facts

that in R, if dim (f) = j, i.e., f in R_j then degree of f = - j in the

negative grading.

##

for j in [1..m] do

for i in [1..m] do

if i>j then

if dimf[i][j]>=0 then

f[i][j]:=0;

312

else

f[i][j]:=dimf[i][j];

fi;

else

f[i][j]:=dimf[i][j];

fi;

od;

od;

##

##

##

In this section if f is an lower triangular matrix then we set f[i][i]

to zero, using the fact that (partial)^2 =0 and R is an integral domain.

##

if IsLowerTriangularMat(f)=true then

for i in [1..m] do

f[i][i]:=0;

od;

Print("\ f=",f);

Print(" ","\n");

else

return("f is not upper triangular matrix");

fi;

##

##

##

Tranf:=TransposedMatDestructive(f); # We have used TransposedMatDestructive(f) function,

because it will give us,the same result when we

use the rows and columns replacement.

Print("\ Tranf=",Tranf);

Print(" ","\n");

##

##

##

In this section we construct a proof that M is solvable if f is an

upper triangular matrix.

##

if IsUpperTriangularMat(Tranf)=true then

for i in [1..m] do

for j in [1..m] do

if Tranf[i][j]<>0 then

Tranf[i][j]:=Concatenation("f",String(i),String(j));

fi;

od;

od;

Print("\ d=",Tranf);

else

return("Maybe d is not upper triangular matrix or maybe it is");

fi;

Print(" , (Since d^2=0 and R is an integral domain). ");

Print(" ","\n");Print(" ","\n");

Cjb:=" ";

Ca:="Let C0=0 and ";

313

Print(Ca);

for j in [1..m] do

Cja:=Concatenation(["C",String(j),"=<"]);

for i in [1..j] do

if i=j then

M1:=Concatenation(["e",String(i)]);

else

M1:=Concatenation(["e",String(i),","]);

fi;

Cja:=Concatenation([Cja,M1]);

od;

if j=m then

Cja:=Concatenation([Cja,"> "]);

else

Cja:=Concatenation([Cja,"> , "]);

fi;

Print(Cja);

if j=m then

Cjb:=Concatenation([Cjb,"C",String(j),"/","C",String(j-1)," is free "]);

else

Cjb:=Concatenation([Cjb,"C",String(j),"/","C",String(j-1)," is free, "]);

fi;

od;

Print(" ","\n");

Print(Cjb);

Print(" ","\n");Print(" ","\n");

M2:=[];

Ma:="x=";

Mb:="d(x)=";

Mc:="d(x)=a1(0)";

Xd:="If x in C";

Me2:="Hence, 0=C0 subset of ";

for j in [1..m] do

Xd1:=Concatenation([Xd,String(j),", then x can be written uniquely as: "]);

Print(Xd1);

Ma:=Concatenation([Ma,"a",String(j),"*","e",String(j)]);

Print(" ","\n");

Print(Ma);

Ma:=Concatenation([Ma,"+"]);

Mb:=Concatenation([Mb,"a",String(j),"*","d(e",String(j),")"]);

Print(" ","\n");

Print(Mb);

Mb:=Concatenation([Mb,"+"]);

if j>1 then

Mc:=Concatenation([Mc,"a",String(j),"("]);

for i in [1..j-1] do

if i<j-1 then

Mc:=Concatenation([Mc,"f",String(i),String(j),"*","e",String(i),"+"]);

else

Mc:=Concatenation([Mc,"f",String(i),String(j),"*","e",String(i),")"]);

fi;

od;

fi;

314

Print(" ","\n");

Print(Mc);

Mc:=Concatenation([Mc,"+"]);

Md:=Concatenation([" in ","C",String(j-1)]);

Print(Md);

Print(" ","\n");Print(" ","\n");

Me1:=Concatenation(["Hence ","d(C",String(j),") subset of C",String(j-1)," and

then d(C",String(j),"/C",String(j-1),")=0."]);

Print(Me1);

Print(" ","\n"); Print(" ","\n");

if j<m then

Me2:=Concatenation([Me2,"C",String(j)," subset of "]);

else

Me2:=Concatenation([Me2,"C",String(j),"= M is a composition series for M. "]);

fi;

od;

Print(Me2);

Print(" ","\n"); Print(" ","\n");

##

##

##

return ("M is solvable.");

#return (f);

end;

5. Solveindic4Size2by2 Function

##

###

##

This function to convert the matrix degf to an upper triangular matrix.

##

The input of the function Solveindic4Size2by2 is a matrix degf of

size 2x2 which is output by the main function IsSolvableModuleWithProof.

##

It returns the matrix degf after replacement and tests whether it is

an upper triangular matrix or not.

##

##

Solveindic4Size2by2:=function(degf)

degf[1][1]:=0; # Using the hypothesis of Proposition 1.4.2.

degf[2][2]:=0; # Using the hypothesis of Proposition 1.4.2.

degf[1][2]:=0; # Using (partial)^2 =0 (d^2=0 in this code) and R is an integral domain

degf:= StructuralCopy(degf);

degf:=SwapRowsColumns(degf,1,2);

##

##

##

This section to check whether degf is an upper triangular matrix or not

##

if IsUpperTriangularMat(degf)=false then

315

Print("\ degf=",degf);

Print(" ","\n");Print(" ","\n");

Print("\ Thus, degf is not a strictly upper triangular matrix");

Print(" ","\n");Print(" ","\n");

else

Print("\ degf=",degf);

Print(" ","\n");Print(" ","\n");

Print("\ Thus, degf is a strictly upper triangular matrix, so M is solvable.");

Print(" ","\n");Print(" ","\n");

fi;

##

##

##

return (degf);

end;

6. Solveindic4Size3by3 Function

Solveindic4Size3by3:=function(degf)

#local SwapRowsColumns;

##

###

##

This function to convert the matrix degf to an upper triangular matrix.

##

The input of the function Solveindic4Size3by3 is a matrix degf of size

3x3 as in Remark 2.1(i) (it is case(1) of 3x3 matrix when f32=0).

This function is called only if f11=f22=f33=0 and Sum(b)=0.

##

It returns the matrix degf after replacement and tests whether it is

a strictly upper triangular matrix or not.

##

##

degf[3][2]:=0; # Using (partial)^2 =0 (d^2=0 in this code) and R is an integral domain

degf[1][2]:=0; # Using (partial)^2 =0 (d^2=0 in this code) and R is an integral domain

degf:= StructuralCopy(degf); # creating duplicate of degf

degf:=SwapRowsColumns(degf,1,2);

if IsUpperTriangularMat(degf)=false then

Print("\ degf=",degf);

Print(" ","\n");Print(" ","\n");

Print("\ Thus for the first case, degf is not a strictly upper triangular matrix");

Print(" ","\n");Print(" ","\n");

else

Print("\ degf=",degf);

Print(" ","\n");Print(" ","\n");

Print("\ Thus for the first case, degf is a strictly upper

triangular matrix, so M is solvable.");

Print(" ","\n");Print(" ","\n");

fi;

return (degf);

316

end;

7. Solveindic4Size4by4A Function

Solveindic4Size4by4A:=function(degf)

##

###

##

This function to convert the matrix degf to an upper triangular matrix.

##

The input of the function Solveindic4Size4by4A is a matrix degf of size

mxm where m>=4 and f[i][i]=0, i=1,...,m with f32=0, f12=0, f32=0 and

Sum(b)=0 as in Remark 2.1(ii).

##

It returns the matrix degf after replacement and tests whether it is

a strictly upper triangular matrix or not.

##

##

degf[3][2]:=0; # Using (partial)^2 =0 (d^2=0 in this code) and R is an integral domain

degf[1][2]:=0; # Using (partial)^2 =0 and R is an integral domain

degf:= StructuralCopy(degf); # creating duplicate of degf

degf:=SwapRowsColumns(degf,1,2);

if IsUpperTriangularMat(degf)=true then

Print("\ degf=",degf);

Print(" ","\n");Print(" ","\n");

Print("\ Thus for the First case, degf is a strictly upper Triangular matrix,

so M is solvable.");

Print(" ","\n");Print(" ","\n");

else

degf:= StructuralCopy(degf); # creating duplicate of degf

degf:=SwapRowsColumns(degf,3,4);

Print("\ degf=",degf);

Print(" ","\n");Print(" ","\n");

Print("\ Thus for the First case, degf is a strictly upper Triangular matrix,

so M is solvable.");

Print(" ","\n");Print(" ","\n");

fi;

return (degf);

end;

8. Solveindic4Size4by4B Function

Solveindic4Size4by4B:=function(degf)

local i,m;

##

###

##

This function to convert the matrix degf to an upper triangular matrix.

##

The input of the function Solveindic4Size4by4B is a matrix degf of size

317

mxm where m>=4 such that f32<>0 and f21=0 with zeros on the diagonal and Sum(b)=0.

The matrix degf of Remark 2.1(ii) is one example of the input of this function.

##

##

It returns the matrix degf after replacement and tests whether it is

a strictly upper triangular matrix or not.

##

##

m:=Size(degf);

degf[2][1]:=0; # Using (partial)^2 =0 (d^2=0 in this code) and R is an integral domain

degf[2][3]:=0; # Using (partial)^2 =0 and R is an integral domain

degf:=SwapRowsColumns(degf,2,3);

if IsUpperTriangularMat(degf)=true then

Print("\ degf=",degf);

Print(" ","\n");Print(" ","\n");

Print("\ Thus for the second case, degf is a strictly upper triangular matrix,

so M is solvable.");

Print(" ","\n");Print(" ","\n");

else

degf:=SwapRowsColumns(degf,3,4);

degf[1][3]:=0; # Using (partial)^2 =0 and R is an integral domain

for i in [4..m] do

degf[1][i]:=0; # Using (partial)^2 =0 and R is an integral domain

degf[2][i]:=0; # Using (partial)^2 =0 and R is an integral domain

od;

degf:=SwapRowsColumns(degf,3,4);

degf:=SwapRowsColumns(degf,2,3);

degf:=SwapRowsColumns(degf,3,4);

Print("\ degf=",degf);

Print(" ","\n");Print(" ","\n");

Print("\ Thus for the second case, degf is a strictly upper triangular matrix,

so M is solvable.");

Print(" ","\n");Print(" ","\n");

fi;

return (degf);

end;

9. Solveindic4Size5by5 Function

Solveindic4Size5by5:=function(degf)

local i,j,m;

##

###

##

This function to convert the matrix degf to an upper triangular matrix.

##

The input of the function Solveindic4Size5by5 is a matrix degf of size

5x5 with f32=0 and Sum(b)=2 as in Remark 2.1(v).

##

It returns the matrix degf after replacement and tests whether it is

318

a strictly upper triangular matrix or not.

##

##

##

m:=Size(degf);

degf[3][2]:=0; # Using (partial)^2 =0 (d^2=0 in this code) and R is an integral domain

degf[1][2]:=0; # Using (partial)^2 =0 and R is an integral domain

##

###

##

We will do the following steps, because we have that

(partial)^2 =0 (d^2=0 in this code).

These steps will help us to convert the matrix degf

to an upper triangular matrix

##

for i in [1..m] do

for j in [1..m] do

if j>= i+2 then

degf[i][j]:=0;

fi;

od;

od;

##

##

##

degf:= StructuralCopy(degf); # creating duplicate of degf

degf:=SwapRowsColumns(degf,1,2);

if IsUpperTriangularMat(degf)=false then

degf:=SwapRowsColumns(degf,3,4);

fi;

if IsUpperTriangularMat(degf)=false then

degf:=SwapRowsColumns(degf,4,5);

fi;

if IsUpperTriangularMat(degf)=false then

degf:=SwapRowsColumns(degf,3,4);

fi;

if IsUpperTriangularMat(degf)=false then

Print("\ degf=",degf);

Print(" ","\n");Print(" ","\n");

Print("\ Thus for the First case, degf is not a strictly upper triangular matrix.");

Print(" ","\n");Print(" ","\n");

else

Print("\ degf=",degf);

Print(" ","\n");Print(" ","\n");

Print("\ Thus for the First case, degf is a strictly upper triangular matrix,

so M is solvable.");

Print(" ","\n");Print(" ","\n");

fi;

return (degf);

end;

319

10. Solveindic4Size6by6 Function

Solveindic4Size6by6:=function(degf)

#local SwapRowsColumns;

##

###

##

This function to convert the matrix degf to an upper triangular matrix.

##

The input of the function Solveindic4Size6by6 is a matrix degf of size

6x6. It is the first case of size 6x6 where f32=0 and b= [1,1,1]

i.e., Sum(b)=3 as in Remark 2.1(vi).

##

It runs the function SwapRowsColumns five times swapping rows and columns

until degf is upper triangular matrix.

It returns the matrix degf.

##

##

##

##

##

The the following steps will help us to convert the matrix

degf to an upper triangular matrix

##

degf:=SwapRowsColumns(degf,1,2);

degf:=SwapRowsColumns(degf,2,6);

degf:=SwapRowsColumns(degf,3,4);

degf:=SwapRowsColumns(degf,4,5);

degf:=SwapRowsColumns(degf,3,4);

##

##

##

return (degf);

end;

11. Solveindic4Size6by6Above Function

Solveindic4Size6by6Above:=function(degf)

local i,j,mysize,mycounter,mycounter1,mycounter2,mycounter3;

##

###

##

This function to convert the matrix degf to an upper triangular matrix.

##

The input of the function Solveindic4Size6by6Above is a matrix degf of

size m x m where m>=6. It is case (1) of size >= 6x6 where f32=0, as in

Remark 2.1(vii)

##

It returns the matrix degf after replacement and tests whether it is

a strictly upper triangular matrix or not.

##

320

##

##

mysize:=Size(degf);

degf[3][2]:=0; # Using (partial)^2 =0 (d^2=0 in this code) and R is an integral domain

degf[1][2]:=0; # Using (partial)^2 =0 and R is an integral domain

##

###

##

We will do the following because we have that (partial)^2 =0

These steps will help us to convert the matrix degf to an

upper triangular matrix

##

for i in [1..mysize] do

for j in [1..mysize] do

if j>= i+2 then

degf[i][j]:=0;

fi;

od;

od;

##

###

##

The following steps will help us to convert the matrix

degf to an upper triangular matrix

##

if mysize<6 then

return("mysize must be >=6");

elif mysize=6 then

degf:=Solveindic4Size6by6(degf);

elif mysize=7 or mysize=8 then

mycounter:=mysize -6;

degf:=Solveindic4Size6by6(degf);

for i in [1..mycounter] do

if i=1 then

degf:=SwapRowsColumns(degf, 4+i,6+i);

degf:=SwapRowsColumns(degf, 3+i,4+i);

degf:=SwapRowsColumns(degf, 1 ,3+i);

fi;

if i>1 then

degf:=SwapRowsColumns(degf, 4+i,6+i);

degf:=SwapRowsColumns(degf, 3+i,4+i);

degf:=SwapRowsColumns(degf, 1+i,3+i);

degf:=SwapRowsColumns(degf, 1 ,1+i);

degf:=SwapRowsColumns(degf, 2 ,1+i);

fi;

od;

fi;

if mysize>=9 then

mycounter:=mysize -6;

degf:=Solveindic4Size6by6(degf);

for i in [1..mycounter] do

if i=1 then

degf:=SwapRowsColumns(degf, 4+i,6+i);

321

degf:=SwapRowsColumns(degf, 3+i,4+i);

degf:=SwapRowsColumns(degf, 1 ,3+i);

fi;

if i>1 then

degf:=SwapRowsColumns(degf, 4+i,6+i);

degf:=SwapRowsColumns(degf, 3+i,4+i);

degf:=SwapRowsColumns(degf, 1+i,3+i);

degf:=SwapRowsColumns(degf, 1 ,1+i);

degf:=SwapRowsColumns(degf, 2 ,1+i);

fi;

od;

degf:= StructuralCopy(degf); # creating duplicate of degf

mycounter1:=mysize -8;

for mycounter2 in [1..mycounter1] do

for i in [1..mycounter2] do

mycounter3:=mycounter2-i+1;

degf:=SwapRowsColumns(degf, 2+mycounter3,3+mycounter3);

od;

od;

fi;

if IsUpperTriangularMat(degf)=false then

Print("\ degf=",degf);

Print(" ","\n");Print(" ","\n");

Print("\ Thus for the first case, degf is not a strictly upper triangular matrix");

Print(" ","\n");Print(" ","\n");

else

Print("\ degf=",degf);

Print(" ","\n");Print(" ","\n");

Print("\ Thus for the first case, degf is a strictly upper triangular matrix,

so M is solvable.");

Print(" ","\n");Print(" ","\n");

#return("Thus, M is solvable.");

fi;

return (degf);

end;

12. Solveindic4Sizembym Function

Solveindic4Sizembym:=function(degf)

local i,j,m;

##

###

##

This function to convert the matrix degf to an upper triangular matrix.

##

The input of the function Solveindic4Sizembym is a matrix degf of

size m x m with m>=3, as in Remark 2.1(viii). It is case (1) of size >= 6x6 where f32=0,

as in Remark 2.1(vii)

##

The function outputs a proof that M is solvable for this case.

##

322

##

m:=Size(degf);

##

###

##

We will do the following because we have that (partial)^2 =0

(d^2=0 in this code) and R is an integral domain.

These steps will help us to convert the matrix degf to an

upper triangular matrix

##

degf[2][1]:=0;

degf[2][3]:=0;

for i in [1..m] do

for j in [1..m] do

if j>= i+2 then

degf[i][j]:=0;

fi;

od;

od;

##

###

##

After we set i=2 and j=m we run the function SwapRowsColumns

while i<j with the input: SwapRowsColumns(degf,i,j) with

setting i=i+1 and j=j-1. These steps will help us to convert

the matrix degf to an upper triangular matrix

##

i:=2;

j:=m;

while i<j do

degf:=SwapRowsColumns(degf,i,j);

i:=i+1;

j:=j-1;

od;

##

###

##

Tests whether the matrix degf is a strictly upper triangular matrix or not.

##

if IsUpperTriangularMat(degf)=true then

Print("\ degf=",degf);

Print(" ","\n");Print(" ","\n");

Print("\ Thus for the second case, degf is a strictly upper triangular matrix,

so M is solvable.");

Print(" ","\n");Print(" ","\n");

else

Print("\ degf=",degf);

Print(" ","\n");Print(" ","\n");

Print("\ Thus for the second case, degf is not a strictly upper triangular matrix.");

Print(" ","\n");Print(" ","\n");

fi;

##

###

323

##

return (degf);

end;

13. Solveindic4WithProof Function

Solveindic4WithProof:=function(degf)

local i,j,t,Temp3,Cas1,b,x,jt,S1,j1,Temp4,g,m;

##

###

##

This function is called only if the conditions of Propositions 1.4.2

(as in the manual) holds.

##

The input of this function is a matrix degf of size m x m which is output

by the main function IsSolvableModuleWithProof.

##

It calls the functions: Solveindic4Size3by3, Solveindic4Size4by4A,

Solveindic4Size4by4B, Solveindic4Size5by5, Solveindic4Size6by6,

Solveindic4Size6by6Above and Solveindic4Sizembym

##

The function outputs a proof that M is solvable.

##

##

m:=Size(degf);

Temp3:=[];

Temp3 := StructuralCopy(degf); # backup

i:=0;

Cas1:=2^(m-3); ## Cas1 is the number of the cases which are solvable

jt:=0;

for i in [1..Cas1] do #loop through the solvable cases

degf:= StructuralCopy(Temp3);

##

###

##

In this section we convert decimal to binary which it helps us

to represents fij by 0 oR 1 for some specific i and j, such that

fij are entries below the diagonal of degf

b:=[];

x:=jt;

while x>0 do

Add(b,x mod 2);

x:=(x-(x mod 2))/2;

od;

jt:=jt+1;

S1:=m-Size(b)-3;

if S1<>0 then

for t in [1..S1] do

Add(b,0);

od;

fi;

324

##

###

##

Set some entries of degf to zero, using the fact that

(partial)^2 =0 and R is an integral domain

##

j1:=0;

degf := StructuralCopy(Temp3);

for j in [1..m-3] do

j1:=j+3;

if b[j]=0 then

degf[j1][j1-1]:=0;

degf[j1][j1]:=0;

else ## this case when b[j]=1

degf[j1][j1]:=0;

degf[j1-1][j1]:=0;

fi;

od;

##

###

##

If degf of size 3x3 we set f[i][i]=0 for i=1, ..., 3,

using the hypothesis of Proposition 1.4.2

##

degf[3][3]:=0;

degf[2][2]:=0;

degf[1][1]:=0;

##

###

##

Temp4:=[];

Temp4:= StructuralCopy(degf); # backup 2

g:=Sum(b); ## g: Represents the sum of the entries of each vector b

degf:= StructuralCopy(Temp4);

if g=0 then ## This case represents the vector b when all the entries of b are zeros

Print("\ b=",b);

Print(" ","\n");Print(" ","\n");

Print("\ i=",i);

Print(" ","\n");Print(" ","\n");

Print("\ degf Original Case_after setting some elements to Zero is ",degf);

Print(" ","\n");Print(" ","\n");

if m=3 then

degf:=Solveindic4Size3by3(degf); ## It represents the first case when f32=0.

fi;

if m>=4 then

degf:=Solveindic4Size4by4A(degf); ## It represents the first case when f32=0.

degf:= StructuralCopy(Temp4);

degf:=Solveindic4Size4by4B(degf); ## It represents the second case when f32<>0.

fi;

fi;

if g=m-3 then # This case represents the vector b when all the entries of b are Ones.

325

Print("\ b=",b);

Print(" ","\n");Print(" ","\n");

Print("\ i=",i);

Print(" ","\n");Print(" ","\n");

Print("\ degf Original Case_after setting some elements to Zero is ",degf);

Print(" ","\n");Print(" ","\n");

if m=3 then

degf:= StructuralCopy(Temp4);

degf:=Solveindic4Sizembym(degf); ## It represents the second case when f32<>0.

fi;

if m=4 then

degf:=Solveindic4Size4by4A(degf); ## It represents the first case when f32=0.

degf:= StructuralCopy(Temp4);

degf:=Solveindic4Sizembym(degf); ## It represents the second case when f32<>0.

fi;

if m=5 then

degf:=Solveindic4Size5by5(degf); ## It represents the first case when f32=0.

degf:= StructuralCopy(Temp4);

degf:=Solveindic4Sizembym(degf); ## It represents the second case when f32<>0.

fi;

if m>=6 then

degf:=Solveindic4Size6by6Above(degf); ## It represents the first case when f32=0.

degf:= StructuralCopy(Temp4);

degf:=Solveindic4Sizembym(degf); ## It represents the second case when f32<>0.

fi;

fi;

od; ############## End of The Loop of The Solvable Cases.

return("M is solvable.");

end;

14. SolvableModuleByUsualGradedWithProof Function

SolvableModuleByUsualGradedWithProof:=function(D,P)

local i,j,m,k1,k2,t,dimf,degf,f,diffk,dimej,dimei,f1,Cj,M1,M2,Cjb,Ca,Cja,Ma,

Mb,Mc,Xd,Xd1,Md,Me1,Me2,indic,indic1,x1,x2,x3,td,Temp1,Temp2,degf2,f12,Temp3;

##

###

##

The function SolvableModuleByUsualGraded is called only if the conditions

of Proposition 1.4.5 (as in the manual) hold.

##

The inputs of this function are the list of dimensions of the modules

D=[k_1, ..., k_n] where dim(e_i) = k_i and the degree P of the

differential on the module M. (The same inputs as the main function

IsSolvableModuleWithProof.)

##

The function outputs a proof that M is solvable.

##

##

##

m:=Size(D);

326

f1:=IdentityMat(m);

k1:=D[1];

j:=0;

t:=[];

dimf:=IdentityMat(m);

f:=IdentityMat(m);

##

##

##

In this section we generate the dimf-matrix following the hypothesis of

Proposition 1.4.5

##

for j in [1..m] do

dimej:=D[j];

for i in [1..m] do

dimei:=D[i];

dimf[i][j]:=dimej-dimei-P;

if dimf[i][j]<0 then

dimf[i][j]:=0;

fi;

degf[i][j]:=-1*dimf[i][j];

od;

od;

Print(" ","\n");Print(" ","\n");

Print("\ dimf=",dimf);

Print(" ","\n");

##

##

##

In this section we compute new entries for matrix f, by going through the

entries of the matrix dimf and set f[i][j]= dimf[i][j] if dimf[i][j] >= 0

and f[i][j]=0 if dimf[i][j] < 0, for i=1, ..., m, depending on the facts

that in R, if dim (f) = j, i.e., f in R_j then degree of f = - j in the

unusual grading and any f of degree less than 0 it will be 0.

##

for j in [1..m] do

for i in [1..m] do

if i>j then

if dimf[i][j]<0 then

f[i][j]:=0;

else

f[i][j]:=dimf[i][j];

fi;

else

f[i][j]:=dimf[i][j];

fi;

od;

od;

Print("\ f=",f);

Print(" ","\n");

##

###

##

327

Tests whether the matrix f is an upper triangular matrix or not.

If f is an upper triangular we set f[i][i] to 0 where i=1,..., m

using the hypothesis of Proposition 1.4.5. Then compute the

matrix d of the differential "partial" with respect to the

basis S ={ e_i, ..., e_m}.

##

if IsUpperTriangularMat(f)=true then

for i in [1..m] do

f[i][i]:=0;

od;

for i in [1..m] do

for j in [1..m] do

if f[i][j]<>0 then

f[i][j]:=Concatenation("f",String(i),String(j));

fi;

od;

od;

Print("\ d=",f);

else

return("f is not upper triangular matrix");

fi;

##

###

##

In this section we construct a proof that M is solvable

if f is an upper triangular matrix.

##

Print(" , (Since d^2=0 and R is an integral domain). ");

Print(" ","\n");Print(" ","\n");

Cjb:=" ";

Ca:="Let C0=0 and ";

Print(Ca);

for j in [1..m] do

Cja:=Concatenation(["C",String(j),"=<"]);

for i in [1..j] do

if i=j then

M1:=Concatenation(["e",String(i)]);

else

M1:=Concatenation(["e",String(i),","]);

fi;

Cja:=Concatenation([Cja,M1]);

od;

if j=m then

Cja:=Concatenation([Cja,"> "]);

else

Cja:=Concatenation([Cja,"> , "]);

fi;

Print(Cja);

if j=m then

Cjb:=Concatenation([Cjb,"C",String(j),"/","C",String(j-1)," is free. "]);

else

Cjb:=Concatenation([Cjb,"C",String(j),"/","C",String(j-1)," is free, "]);

fi;

328

od;

Print(" ","\n");

Print(Cjb);

Print(" ","\n");Print(" ","\n");

M2:=[];

Ma:="x=";

Mb:="d(x)=";

Mc:="d(x)=a1(0)";

Xd:="If x in C";

Me2:="Hence, 0=C0 subset of ";

for j in [1..m] do

Xd1:=Concatenation([Xd,String(j),", then x can be written uniquely as: "]);

Print(Xd1);

Ma:=Concatenation([Ma,"a",String(j),"*","e",String(j)]);

Print(" ","\n");

Print(Ma);

Ma:=Concatenation([Ma,"+"]);

Mb:=Concatenation([Mb,"a",String(j),"*","d(e",String(j),")"]);

Print(" ","\n");

Print(Mb);

Mb:=Concatenation([Mb,"+"]);

if j>1 then

Mc:=Concatenation([Mc,"a",String(j),"("]);

for i in [1..j-1] do

if i<j-1 then

Mc:=Concatenation([Mc,"f",String(i),String(j),"*","e",String(i),"+"]);

else

Mc:=Concatenation([Mc,"f",String(i),String(j),"*","e",String(i),")"]);

fi;

od;

fi;

Print(" ","\n");

Print(Mc);

Mc:=Concatenation([Mc,"+"]);

Md:=Concatenation([" in ","C",String(j-1)]);

Print(Md);

Print(" ","\n");Print(" ","\n");

Me1:=Concatenation(["Hence ","d(C",String(j),") subset of C",String(j-1)," and

then d(C",String(j),"/C",String(j-1),")=0."]);

Print(Me1);

Print(" ","\n"); Print(" ","\n");

if j<m then

Me2:=Concatenation([Me2,"C",String(j)," subset of "]);

else

Me2:=Concatenation([Me2,"C",String(j),"= M is a composition series for M. "]);

fi;

od;

Print(Me2);

Print(" ","\n"); Print(" ","\n");

##

###

##

329

return("M is solvable.");

end;

15. IsSolvableModuleWithProof Function

IsSolvableModuleWithProof:=function(D,P)

local i,j,m,k1,k2,t,dimf,degf,f,diffk,dimej,dimei,f1,indic,indic1,

x1,x2,x3,td,Case1,Case2,Case3,Case4,Case5,Temp1,Temp2,degf2,f12,

Temp3,t1,t2,sumt,S,B;

##

###

##

The function IsSolvableModuleWithProof is the main function of our algorithm.

It checks which of the conditions of Propositions 1.4.1, 1.4.2, 1.4.4, 1.4.5

or Remark 1.4.3 hold (see the manual). Then it calls one of the functions:

Solveindic1WithProof, Solveindic2WithProof, Solveindic3WithProof,

Solveindic4WithProof and SolvableModuleByUsualGradedWithProof according

to the condition that matches the function.

##

The inputs of this function are the list of dimensions of the modules

D=[k_1, ..., k_n] where dim(e_i) = k_i and the degree P of the

differential on the module M.

##

The function outputs the dimension m of the vector of dimensions,

the matrix dimf of dimensions, the identity matrix f of size mxm,

the matrix degf of degrees, the flags indic and x_i; i=1,2,3 to

determine which of Solveindic(n)WithProof function to run; where n=1,..., 4.

##

##

m:=Size(D);

if P=1 or P=-1 then ## With the usual graded or negative graded

Print(" ","\n");Print(" ","\n");

return("Then, M is solvable (by Carlsson,1983).");

fi;

if P<=-2 then ## Negative graded

f1:=IdentityMat(m); ####

k1:=D[1]; # k1 represents dim(e_1)

j:=0;

t:=[];

dimf:=IdentityMat(m);

degf:=IdentityMat(m);

degf2:=IdentityMat(m);#####

f:=IdentityMat(m);

##

##

##

In this section we set the flags "indic" and x_i; i=1,2,3, by using the

degree P. These flags are used to determine which of "Solveindic(n)WithProof";

n=1,...,4 functions to run, after checking the conditions of Propositions

330

1.4.1, 1.4.2, 1.4.4 and Remark 1.4.3.

##

indic:=0;

x1:=0;

x2:=0;

x3:=0;

for i in [2..m] do

j:=j+1;

k2:=D[i];

diffk:=k1-k2; ## This step finds that diffk=k(i)-k(i+1)

Print("\ diffk=",diffk);

Print(" ","\n");Print(" ","\n");

if k1>k2 then

t[j]:=diffk;

if diffk>=-P then

indic:=1; # It means Propositions 1.4.1 holds

x1:=x1+1;

elif diffk<-P then

indic:=2; # It means Propositions 1.4.3 holds

x2:=x2+1;

fi;

k1:=k2;

else

if diffk<P then

indic:=3; # It means Propositions 1.4.4 holds

x3:=x3+1;

fi;

fi;

k1:=k2;

od;

if indic=1 then

if x1<m-1 then

return("Not True2 (the conditions of this Proposition 1.4.1 must be satisfied)");

fi;

elif indic=2 then

if x2<m-1 then

return("Not True3 (the conditions of this Proposition 1.4.3 must be satisfied)");

fi;

elif indic=3 then

if x3<m-1 then

return("Not True4 (the conditions of this Proposition 1.4.4 must be satisfied)");

fi;

fi;

if indic=2 then # Case two when t(i)+ t(i+1)<=-P

x1:=0;

x2:=0;

j:=0;

td:=[];

t1:=t[1];

for i in [2..m-1] do

j:=j+1;

t2:=t[i];

sumt:=t1+t2;

331

td[j]:=sumt;

if sumt<=-P then

x1:=x1+1;

indic:=2; # It means Propositions 1.4.3 holds (when t(i)+ t(i+1)<=-P)

else

indic:=4; # It means Propositions 1.4.2 holds (when t(i)+ t(i+1)>-P)

x2:=x2+1;

fi;

t1:=t2;

od;

if x1<m-2 and x2<m-2 then

return("Not True6");

fi;

fi;

Print("\ indic=",indic);

Print(" ","\n");Print(" ","\n");

##

##

##

##

##

In this section we compute the matrix dimf of dimensions of the elements

f_ij; i,j=1, ..., m of the matrix of the differential "partial" with

respect to the basis S ={ e_i, ..., e_m}.

Also we compute a matrix degf of degrees of f_ij, by seting

degf[i][j]=-dimf[i][j] where i,j=1, ..., m.

##

for j in [1..m] do

dimej:=D[j];

for i in [1..m] do

dimei:=D[i];

dimf[i][j]:=dimej-dimei+P;

if dimf[i][j]>0 then

dimf[i][j]:=0;

fi;

degf[i][j]:=-1*dimf[i][j];

od;

od;

Print("\ dimf=",dimf);

Print(" ","\n");Print(" ","\n");

Print("\ degf=",degf);

Print(" ","\n");

##

##

##

################################### START-----Case one #######################

if indic=1 then

Case1:=Solveindic1WithProof(dimf,f);

fi;

################################### END-----Case One #########################

##

################################### START-----Case Two #######################

332

if indic=2 or (indic=4 and m=2) then

(Since there is a common condition between them which is when m=2 and f11=f22=0)

if m=2 then

Case4:=Solveindic4Size2by2(degf);

Print("\ Hence, if f11=f22=0 then the module M is solvable. Otherwise M

outside the classification.");

Print(" ","\n");Print(" ","\n");

else

Case2:=Solveindic2WithProof(dimf,m);

fi;

fi;

################################### END-----Case Two #########################

##

################################### START-----Case Three #####################

if indic=3 then

Case3:=Solveindic3WithProof(m,dimf,f);

fi;

################################### END-----Case Three #######################

##

################################### START-----Case Four ######################

if indic=4 then

Case4:=Solveindic4WithProof(degf);

fi;

################################### END-----Case Four ########################

##

################################### START-----Rerurn Cases 1-4 ###############

if indic=1 then

return(true);

fi;

if indic=2 and m<>2 then

return(fail);

fi;

if indic=3 then

return(true);

fi;

if indic=4 then

return(true);

fi;

################################### END-----Rerurn Cases 1-4 ##################

fi;

################################### START-----Case Five ##########################

##

In this section we satisfy the conditions of Proposition 1.4.5

##

S:=1;

if P>=2 then ## With the usual graded

for i in [1..m-1] do

diffk:=D[i+1]-D[i];

Print(" ","\n");

Print("\ diffk=",diffk);

Print(" ","\n");

333

if D[i]< D[i+1] and diffk>P then

B:=1;

else

B:=0;

fi;

S:= S*B;

od;

if S=1 then

Case5:=SolvableModuleByUsualGradedWithProof(D,P);

else

Print(" ","\n");Print(" ","\n");

return("The input must be P>=2 and D[1]<D[2]<...<D[m] and

D[i+1]-D[i]>P for i in [1..m]");

fi;

fi;

return(true);

################################### END-----Case Five ##############################

end;

334

Bibliography

[1] A.J. AL-Juburie and A.J. Duncan, AutParCommGrp(Finite Presentations of

Automorphism Groups of Partially Commutative Groups and Their Subgroups)

package, 2015, GAP System Library.

[2] M. Aldrich and J.R. Rozas, Exact and semisimple differential graded algebras,

Comm. Algebra 30 (2002), 1053–1075.

[3] M. Amasaki, Generators of graded modules associated with linear filter-regular

sequences, Journal of Pure and Applied Algebra 114 (1996), 1–23.

[4] M. Angel and R. Dlaz, On n-differential graded algebras, Journal of Pure and

Applied Algebra 210(3) (2007), 673–683.

[5] L.L. Avramov and R. Buchweitz, Homological algebra modulo a regular sequence

with special attention to codimension two, Journal of Algebra 230.1 (2000), 24–

67.

[6] L.L. Avramov, H. Foxby, and L. Halperin, 1999, manuscript.

[7] L.L. Avramov and D.R. Grayson, Resolutions and cohomology over complete in-

tersections, Computations in algebraic geometry with Macaulay 2, Algorithms

and Computations in Mathematics 8, Springer (2002), 131–178.

[8] A. Baudisch, Subgroups of semifree groups, Acta Math. Acad. Sci. Hungar (1-4)

(1981), 19–28.

[9] K.A. Beck, On the image of the totaling functor, Communications in Algebra

43.4 (2015), 1640–1653.

[10] J. Bernstein and V. Lunts, Equivariant sheaves and functors, Springer, 1994.

335

[11] M. Bestvina and N. Brady, Morse theory and finiteness properties of groups,

Invent. Math. 129 (1997), 445–470.

[12] M. Bestvina, B. Kleiner, and M. Sageev, The asymptotic geometry of right-

angled Artin groups, I, Geometry and Topology 12 (2008), 1653–1700.

[13] J.A. Bondy and U.S.R. Murty, Graph theory with aplications, first edition, The

Macmillan Press LTD, 1976.

[14] K. Bux, R. Charney, J. Crisp, and K. Vogtmann, Automorphisms of two-

dimensional RAAGs and partially symmetric automorphisms of free groups,

Groups Geom. Dyn. 3(4) (2009), 541–554.

[15] G. Carlsson, On homology of finite free (z/2)k-complexes, Invent. Math. 74

(1983), 139–147.

[16] R. Charney, An introduction to right-angled Artin groups, Geom. Dedicata 125

(2007), 141–158.

[17] R. Charney, J. Crisp, and K. Vogtmann, Automorphisms of 2-dimensional right-

angled Artin groups, Geom. Topol. 11 (2007), 2227–2264.

[18] R. Charney and M. Farber, Random groups arising as graph products, Algebraic

and Geometric Topology 12 (2012), 979–995.

[19] R. Charney and K. Vogtmann, Finiteness properties of automorphism groups

of right-angled Artin groups, Bull. Lond. Math. Soc. 41(1) (2009), 94–102.

[20] , Subgroups and quotients of automorphism groups of RAAGs, Low-

dimensional and symplectic topology 82(9) (2011), 1–19.

[21] M. Cohen and L.H. Rowen, Group graded rings, Comm. Algebra 11(11) (1983),

1253–1270.

[22] M. F. A. Couette, Études sur le frottement des liquides, Annales de Chimie et

de Physique 21 (1890), 433–510.

[23] E.C. Dade, Group-graded rings and modules, Math. Z. 174(3) (1980), 241–262.

[24] M.B. Day, Peak reduction and finite presentations for automorphism groups of

right-angled Artin groups, Geometry and Topology 13 (2009), 817–855.

336

[25] , On solvable subgroups of automorphism groups of right-angled Artin

groups, IJAC: Proceedings of the 2009 International Conference on Geometric

and Combinatorial Methods in Group Theory and Semigroup Theory 21(1-2)

(2011), 61–70.

[26] , Finiteness of outer automorphism groups of random right-angled Artin

groups, Algebraic and Geometric Topology 12 (2012), 1553–1583.

[27] , Full-featured peak reduction in right-angled Artin groups, Algebraic and

Geometric Topology 14 (2014), 1677–1743.

[28] C. Droms, Graph groups, coherence, and three-manifolds, J. Algebra 106(2)

(1987), 484–489.

[29] , Isomorphisms of graph groups, Proc. Amer. Math. Soc. 100(3) (1987),

407–408.

[30] , Subgroups of graph groups, J. Algebra 110(2) (1987), 519–522.

[31] J.A. Drozd, Tame and wild matrix problems. In: Representation theory II.

lecture notes in mathematics, vol.832, pp.242-258, Springer, Berlin,, 1980.

[32] D. Dugger and B. Shipley, Topological equivalences for differential graded alge-

bras, Advances in Mathematics 212 (2007), 37–61.

[33] D. Dummit and M. Foote, Abstract algebra, John Wiley And Sons, third edition,

New York, 2004.

[34] A.J. Duncan, I.V. Kazachkov, and V.N. Remeslennikov, Automorphisms of

partially commutative groups I: Linear subgroups, Groups, Geometry, and Dy-

namics 4(4) (2010), 739–757.

[35] A.J. Duncan and V.N. Remeslennikov, Automorphisms of partially commuta-

tive groups II: Combinatorial subgroups, International Journal of Algebra and

Computation 22(7) (2012), 1250074.

[36] E.S. Esyp, I.V. Kazachkov, and V.N. Remeslennikov, Divisibility theory and

complexity of algorithms for free partially commutative groups, Contemporary

Mathematics, Groups, Languages, Algorithms 378 (2005), 319–348.

337

[37] M. Ferrero and E. Jespers, prime ideals of graded rings and related matters,

Communications in Algebra 18(11) (1991), 3819–3834.

[38] M. Gutierrez and S. Krstic, Normal forms for basis-conjugating automorphisms

of a free group, Int. J. Algebra Comput. 8 (1998), 631–669.

[39] M. Gutierrez, A. Piggott, and K. Ruane, On the automorphisms of a graph

product of abelian groups, Groups Geom. Dyn. 6 (2012), 125–153.

[40] , On the automorphisms of a graph product of abelian groups, Groups,

Geometry and Dynamics 6(1) (2012), 125153.

[41] S.P. Humphries, On representations of Artin groups and the Tits conjecture, J.

Algebra 169 (1994), 847862.

[42] T. Hungerford, Algebra, Springer-Verlang, New York, 1974.

[43] J.F. Jardine, A closed model category structure for differential graded algebras,

Cyclic cohomology and noncommutative geometry (Waterloo, ON, 1995), Fields

Inst. Commun., vol. 17, Amer. Math. Soc., Providence, RI (1997), 55–58.

[44] C. Jensen and J. Meier, The cohomology of right-angled Artin groups with group

ring coefficients,bull, London Math. Soc. 37 (2005), 711–718.

[45] E. Jespers, Radicals of graded rings, Colloq. Math. Soc. J. Bolyai 61, North

Holland, Amsterdam 61 (1993), 109–130.

[46] B. Keller, On differential graded categories, International Congress of Mathe-

maticians, Eur. Math. Soc., Zurich II (2006), 151–190.

[47] G.M. Kelly, Chain maps inducing zero homology maps, Proc. Cambridge Philos.

Soc. 61 (1965), 847–854.

[48] S. Kim and F.W. Roush, Homology of certain algebras defined by graphs, J.

Pure Appl. Algebra 17 (1980), 179–186.

[49] H. Koberda, Right-angled Artin groups and their subgroups,

2013, An advanced mathematical course, Yale University, USA,

http://users.math.yale.edu/users/koberda/raagcourse.pdf.

338

[50] T.Y. Lam, A first course in non commutative rings, Springer-Verlag, New York,

1991.

[51] M. Laurence, A generating set for the automorphism group of a graph group, J.

London Math. Soc. 52(2) (1995), 318–334.

[52] A. Legrand, Differential graded modules over a nonconnected differential graded

algebra, Journal of Pure and Applied Algebra 72 (1991), 53–66.

[53] M. Lohrey and S. Schleimer, Efficient computation in groups via compression,

In Volker Diekert, Mikhail Volkov, and Andrei Voronkov, editors, Computer

Science Theory and Applications, volume 4649 of Lecture Notes in Computer

Science, Springer Berlin /Heidelberg 4649 (2007), 249–258.

[54] S. Maclane, Homology, Springer-Verlag, New York, 1995.

[55] X. Mao, A criterion for a connected DG algebra to be homologically smooth,

arXiv:1301.4382 4 (2013).

[56] J. McCool, Some finitely presented subgroups of the automorphism group of a

free group, J. Algebra 35(6) (1975), 205–213.

[57] , On basis-conjugating automorphisms of free groups, Canadian J. Math.

38(6) (1986), 1525–1529.

[58] A. Minasyan, Hereditary conjugacy separability of right angled Artin groups and

its applications, Groups Geometry and Dynamics 6 (2012), 335–388.

[59] C. Nastasescu and F. Van Oystaeyen, Graded ring theory, Mathematical Li-

brary, (28), North Holland, Amsterdam, 1982.

[60] G.A. Noskov, The image of the automorphism group of a graph group under

abelianization map, Vestnik NGU, Mat., Mekh. 12(2) (2012), 83–102.

[61] L.A. Orlandi-Korner, The Bieri-Neumann-Strebel invariant for basis-

conjugating automorphisms of free groups, Proceedings of the American Math-

ematical Society 128(5) (2000), 1257–1262.

[62] S. Papadima and A.I. Suciu, Algebraic invariants for right-angled Artin groups,

Math. Ann. 334 (2006), 533–555.

339

[63] D. Pauksztello, Homological properties of differential graded algebras, Ph.D.

thesis, Department of Pure Mathematics, Leeds University, 2008.

[64] M. Refai, Group actions on finite CW-complexes, Ph.D. thesis, Department of

Mathematics, Colorado State University, 1989.

[65] , On noetherian modules graded by g-sets, Acta Mathematica Hungarica

69(3) (1995), 211–219.

[66] M. Refai and M. Obiedat, On graduations of k[x1, x2, · · · , xn], J. of Institute of

Math and Computer Sci. 6(3) (1993), 241–252.

[67] A.V. Roiter, Matrix problems, proceedings of the international congress of math-

ematicians (Helsinki,1978), Acad. Sci. Fennica (1980), 319–322.

[68] K.H. Rosen, Discrete mathematics and its applications, sixth edition, McGraw-

Hill, New York, 2007.

[69] H. Servatius, Automorphisms of graph groups, J. Algebra 126 (1989), 34–60.

[70] E. Toinet, A finitely presented subgroup of the automorphism group of a right-

angled Artin group, Journal of Group Theory 15(6) (2012), 811–822.

[71] R.D. Wade, The lower central series of a right-angled Artin group, The Quar-

terly Journal of Mathematics; doi: 10.1093/qmath/hat002 (2013).

[72] J.H.C. Whitehead, On equivalent sets of elements in a free group, Ann. of Math.

(2)37 (1936), 782–800.

340

