PARTIALLY COMMUTATIVE AND
DIFFERENTIAL (GRADED ALGEBRAIC
STRUCTURES

ABDULSATAR JMAH THEIB AL-JUBURIE

Thesis submitted for the degree of
Doctor of Philosophy

Newcastle
University

School of Mathematics € Statistics
Newcastle University
Newcastle upon Tyne

United Kingdom

January 2015

This thesis is dedicated to my parents, my wife and my little daughter
for their love, endless support

and encouragement.

Acknowledgements

Foremost, I would like to express my special appreciation and thanks to my super-
visor Dr. Andrew Duncan, you have been a tremendous mentor for me. I would
like to thank you for sharing your knowledge, ideas, and limitless enthusiasm during
my time as a graduate student. I would also like to thank you for encouraging my
research and for allowing me to grow as a research scientist. Your advice on both
research as well as on my career have been invaluable.

I would like to thank my second supervisor Dr. Stefan Kolb for his encourage-
ment and guidance throughout my research.

In addition, I would like to thank my external examiner Dr. Alexander Konovalov
and my internal examiner Professor Sarah Rees for their valuable expertise and
comments on a previous draft of this thesis.

I would also extend my gratitude to the staff at Newcastle University and the
School of Mathematics and Statistics for their professional handling of my student
life which I thoroughly enjoyed.

A special thanks to my family. Words can not express how grateful I am to my
mother, and father for all of the sacrifices that you have made on my behalf. Your
prayer for me was what sustained me thus far.

I would also like to thank to my beloved wife, Zainab Al-Jumaili. Thank you for
supporting me for everything, and especially I can’t thank you enough for encourag-
ing me throughout this experience. To my beloved daughter Maryam, I would like
to express my thanks for being such a good girl always cheering me up.

I would like to thank my friends for their support, encouragement and under-
standing during the whole time of my study at the University of Newcastle.

Finally I thank my God, for letting me through all the difficulties. I have expe-
rienced Your guidance day by day. You are the One who let me finish my degree. I

will keep on trusting You for my future. Thank you,

Abdulsatar.

Abstract

The objects of study in this thesis are partially commutative and differential
graded algebraic structures. In fact my thesis is in two parts. The first on partially
commutative algebraic structures is concerned with automorphism groups of par-
tially commutative groups and their finite presentations. The second on differential
graded algebraic structures is concerned with differential graded modules.

I have given a description for Aut(Gr), the automorphism group of the partially
commutative group G following Day’s work, where I" is a finite simple graph.

I have given a description for the subgroup Conj(Gr) of automorphism group
Aut(Gr) following Toinet’s work.

We have found a finite presentation for the subgroup C'onjy of the automorphism
group Aut(Gr).

I have developed AutParCommGrp (Finite Presentations of Automor-
phism Groups of Partially Commutative Groups and Their Subgroups) a
package using the G AP system for computation of a finite presentation for Aut(Gr),
Conj(Gr) and Conjy respectively.

In the second part of the thesis we consider the following situation: Let K be
a field of characteristic two and let R = K[z, 29, - ,2,] be a graded polynomial
ring, graded in the negative way. Suppose M is a differential graded R-module
with differential 0 of degree P. We have constructed a classification for some types
of differential graded R-module where P < —2, n > 1. This classification gives a
partial algorithm to test whether such modules are solvable. For modules outside
the classification we cannot decide, using our methods, whether or not they are
solvable. Also, we have proved in one case that M is solvable when R is a graded
polynomial ring, graded in the usual way (non-negatively graded) with (P > 2, n >
1). We have developed an algorithm and written a GAP package SDGM (Solvable
Differential Graded Modules) to check whether the differential graded R-module
M with differential 0 of degree P is solvable or not. Documentation has been written

for all the packages above.

Contents

I Partially Commutative Algebraic structures

1 Introduction

2 Finite Presentation for Automorphism Groups of pc Groups

2.1
2.2

2.3

24

2.5

2.6
2.7

Introductiono
Background for pc groupso
2.2.1 Partially Commutative Groups
Combinatorial group theory of partially commutative groups
Automorphisms of pcgroups
2.4.1 Laurence’s generators for Aut(Gp)
2.4.2 Whitehead automorphisms for partially commutative groups .
Relations among Whitehead automorphisms
2.5.1 Relations Rband R6
Peak reduction
GAP Presentation for the Aut(Gr)
2.7.1 IsSimpleGraph Function
2.7.2 StarLinkDominateOfVertex Function
2.7.3 DeleteVerticesFromGraph Function
2.7.4 ConnectedComponents0fGraph Function
2.7.5 DFSVisit Function
2.7.6 WhiteheadAutomorphismsOfSecondType Function
2.7.7 WhiteheadAutomorphismsOfFirstType Function
2.7.8 RelationsOfGraphAutomorphisms Function
2.7.9 APCGRelationR1 Function
2.7.10 APCGRelationR2 Function
2.7.11 APCGRelationR3 Function
2.7.12 APCGRelationR4 Function

2.7.13 APCGRelationR5 Function 42

2.7.14 APCGRelationR8 Function 42

2.7.15 APCGRelationR9 Function 43

2.7.16 APCGRelationR10 Function 43

2.7.17 APCGFinalReturn Function 43

2.7.18 FinitePresentationOfAutParCommGrp Function 44

2.7.19 TietzeTransformations Function A7

3 Finite Presentation for the Subgroup Conj(Gr) 48
3.1 Introduction 48
3.2 Finite Presentation for Conj(Gr) 48
3.3 GAP Presentation for Conj(Gr) 57
3.3.1 StarLinkOfVertex Function o8

3.3.2 CombinationsOfConnectedComponents Function o8

3.3.3 GeneratorsO0fSubgroupConj Function 29

3.3.4 APCGRelationRConjl Function 61

3.3.50 APCGRelationRConj2 Function 61

3.3.6 APCGRelationRConj3 Function 62

3.3.7 APCGRelationRConj4 Function 62

3.3.8 APCGConjLastReturn Function 62

3.3.9 FinitePresentationOfSubgroupConj Function 63

4 Finite Presentation for the Subgroup Conjy 65
4.1 Introduction and Background for Conjy 65
4.2 Whitehead Automorphisms and Day’s Relations 74
4.3 A Presentation for Congyo 76
4.4 GAP Presentation for Conjy 105
4.4.1 EquivalenceClassOfVertex Function 105

4.4.2 ClassPreservingConnectedComponents Function 106

4.4.3 GeneratorsOfSubgroupConjv Function 107

444 FinitePresentationOfSubgroupConjv Function 109

II Differential Graded Algebraic structures 111
5 Introduction and Preliminaries for DG Algebraic structures 112

5.1 Introduction 112

i

5.2 Preliminaries 112

5.2.1 Exact Homology Sequences 113
Graded Rings and Graded Modules 117
6.1 Graded Rings 117
6.2 Graded Modules. 122
Solvable Differential Graded Modules 129
7.1 Composition Series 129
7.2 Solvable differential Graded Modules 134
GAP Algorithm for Solvable Differential Graded Modules 188
8.1 SwapRowsColumns Function 188
8.2 SolveindicilWithProof Function 189
8.3 Solveindic2WithProof Function 190
8.4 Solveindic3WithProof Function 190
8.5 Solveindic4WithProof Function 191

8.5.1 Solveindic4Size2by2 Function 194

8.5.2 Solveindic4Size3by3 Function 195

8.5.3 Solveindic4Sizedby4A Function 195

8.5.4 Solveindic4Size4by4B Function 196

8.5.5 Solveindic4Sizebbyb Function 197

8.5.6 Solveindic4Size6by6 Function 197

8.5.7 Solveindic4Size6by6Above Function 198

8.5.8 Solveindic4Sizembym Function 200
8.6 SolvableModuleByUsualGradedWithProof Function 200
8.7 IsSolvableModuleWithProof Function 201
Appendix 209
A.1 Appendix to Chapter 2 209
A.2 Appendix to Chapter 3 280
A.3 Appendix to Chapter 4 299

A4 Appendix to Chapter 8 307

il

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1

4.1
4.2
4.3
4.4
4.5

6.1
6.2
6.3

A Graph I' 12
Gr=Z2«Z 12
Graphof I" 12
Graphof I 14
Graphof I' 16
Graphof I 19
A Graph I 21
A Graph I 55
A Graph I o 66
Graphof I 69
Graph of I 7
Subgraph I'\st(x) L 7
A Graph I 96
Diagram Ao 127
Diagram A.1 128
Diagram A.2 128

v

Glossary of Notation

Glossary of Notation

I

G

Gr

pc group

c(Y)

d(z,y)
Conj(Q)
Conjn(G)
Conj(Gr)

a finite, simple, undirected graph with vertex set V'

group

the partially commutative group with underlying graph I"
partially commutative group

edge set of the simple graph I" (a list of pairs of vertices)

a free group of rank n

a free abelian group of rank n

the automorphism group of G

the set of all Whitehead automorphisms of Gp

the set of long-range elements of 2

the set of short-range elements of {2

the union of V and its inverse V=1, ie., L=V UV~!

the vertex of z, be the unique element of V N {z, 271} Vo € L
the star of the vertex x

a set of inverse elements of st(x)

the link of the vertex x

a set of inverse elements of ¢k(x)

the union of st(v(x)) and st(v(x))~!

the union of £k(v(x)) and Ck(v(z))~?

the domination relation: say x dominates y if (k(y) C st(z)
elements = and y of V' are equivalent: that is st(x) = st(y)

the equivalence class of x under ~

the set of type (1) Whitehead automorphisms of Aut(Gr)

a special notation for the set of type (1) Whitehead automorphisms
a special notation for the set of type (2) Whitehead automorphisms
a special notation for type (2) Whitehead automorphisms of Aut(Gr)
the orthogonal complement of Y in V'

the closure of Y in V', ie. cl(Y) = N,y 15t(2)

the admissible set of Y, i.e. a(Y) = Nyey (st(y))*t

the distance from x to y; where z,y € I"

the set of conjugating automorphisms of G

the subgroup of all normal conjugating automorphisms

the subgroup of all basis conjugating automorphisms

Glossary of Notation

DG R-module
deg

[~y

H<G
H<«<G
HLG
HAG
G=H
Staba(s)
Orba(s)

[z, 9]
X

X
S
®

the subgroup of all vertex conjugating automorphisms
the set of all elementary conjugating automorphisms

the set of all basic collected conjugating automorphisms
the set of regular elementary conjugating automorphisms
the set of basic vertex conjugating automorphisms
subgroup of Conj(G) generated by all aggregate automorphisms
the subgroup of Conj(G) generated by Linng

the subgroup of Conj(G) generated by LInnc

the set of all vertices dominated by x

the set of all dominated vertices

set of all x such that y € Dom(x) and [y] # [z] for fixed y € V
cube complexes

differential graded algebra

differential graded R-module

abbreviation of degree

the two maps f and g are homotopic

H is a subgroup of G

H is a normal subgroup of G

H is a normal subgroup of or equal to G

H is not normal subgroup of G

the two groups G and H are isomorphic

the stabilizer of s in G

the orbit of s under GG

the commutator of x and y

the left normal factor semi-direct product

the right normal factor semi-direct product

the direct sum

the tensor product

the dot product.

vi

Part 1

Partially Commutative Algebraic

structures

Chapter 1
Introduction

Geometric group theory views algebraic objects as geometric objects. The graph is a
geometric object whereas the group is an algebraic object. One relationship between
graphs and groups was first observed by Cayley. A graph consists of a vertex set V'
and an edge set E. Historically, group concepts evolved in the context of geometry.
German mathematician Felix Klein proposed a precise definition of geometry using
group concepts “Geometry is the study of those properties of space which remain
unchanged under a given group of transformations”.

Partially commutative groups (pc groups “these are not the same as pc groups in
GAP”) have drawn much attention in geometric group theory, because of their rich
subgroup structure and good algorithmic properties. These groups act on cubical
complexes and have a variety of useful applications (see [16], [17], [39], [35]
and [36] for example.) In recent times, the study of automorphism groups of
partially commutative groups has been of great interest. We denote by Aut(G) the
automorphism group of a group G.

We will use I' to denote a finite simple graph. We will write V = V(I") =
{z1,...,2,},(n > 1) for the finite set of vertices and F' = E(I") C V x V for the set
of edges, viewed as unordered pairs of vertices. The requirement that I" be simple
simply means that the diagonal of V' x V is excluded from the set of edges. The
partially commutative group (also known as a right-angled Artin group, a
trace group, a semi-free group or a graph group) of I, is the group defined by

presentation

Gr = (V|Rr)

where the relations are

Rr = {[z;,zj] | zj,x; € V and {z;,2;} € E}

1 1

where [z; ,7;] = x; z; ;75 and (x; and x; are adjacent if there exists an edge
e € E with e = {x;,z;}). When I" has no edges then G is free group of rank n, and
when [is the complete graph then G is free abelian group of rank n. In general,
partially commutative groups can be thought of as interpolating between these two
extremes. Thus it seems reasonable to consider automorphism groups of partially
commutative groups as interpolating between Aut(F,), the automorphism group of
a free group, and GL(n,Z), the automorphism group of a free abelian group.

A. Baudisch [8] first studied the partially commutative groups in the 1970’s.
Then C. Droms [28], [29], [30] further developed the theory in the 1980’s and
named them “graph groups”. Since then, they have been widely studied (as is
clear by the bibliography to this thesis.) For an introduction to this class of groups
and a survey of the literature see [16]. For example, from Humphries [41] one
knows that partially commutative groups are linear; their integral cohomology rings
were computed early on by Kim and Roush [48], and Jensen and Meier [44] have
extended this to include cohomology with group ring coefficients. More recently,
Papadima and Suciu [62] have computed the lower central series, Chern groups and
resonance varieties of these groups, while Charney, Crisp and Vogtmann [17] have
explored their automorphism groups (in the triangle-free case) and Bestvina, Kleiner
and Sageev [12] their rigidity properties. In [71] R. Wade has gave a description
of Duchamp and Krob’s extension of Magnus’ approach to the lower central series
of the free group to right-angled Artin groups.

The rich geometry of these groups is the feature that caused a significant inter-
est in them. In [17], Charney and Davis construct an Eilenberg-MacLane space
for each partially commutative group, which is a compact, non-positively curved,
piecewise-Euclidean cube complex. Bestvina and Brady [11] have effectively applied
geometric methods to the study of partially commutative groups. These groups can
parametrized by finite simplicial complexes Y’ satisfying a certain flag condition.
There is heavy dependence of the Artin group associated to X' on the combinatorial
structure of X', not only in topology. Nevertheless, Bestvina and Brady show that
the cohomological finiteness properties of the kernel of the canonical map onto Z

are determined by the topology of X' alone.

From Koberda [49] one knows that a partially commutative group is the universal
group with specified commutation and noncommutation among its vertices. “For
any subset S C G of a group, we build the commutation graph of S, written
Comm/(S5), as follows. The vertices of Comm(S) are the elements of S, and two
vertices of S are connected by an edge if they commute in G”. The following

proposition gives the universal property of partially commutative groups.

Proposition 1.0.1. [49] Let G be a group and let S C G be a finite subset. The

inclusion S C G extends to a unique homomorphism
GComm(S) -G

which agrees with the identification V(Comm(S)) = S. In the universal property, we
require S to be finite because partially commutative groups are defined to be finitely

generated.

A finite generating set for Aut(Gr) the automorphism group of a partially com-
mutative group has been found by Servatius [69] and Laurence [51]. Over the last
few years, significantly more has been discovered: Bux, Charney, Crisp and Vogt-
mann ([14], [17] and [19] for example) have shown that these automorphism groups
are virtually torsion-free and have finite virtual cohomological dimension. Day has
shown also that peak reduction techniques may be used on certain subsets of the
generators and consequently has given a presentation for the automorphism group
of partially commutative groups [24] and [27]. These groups, moreover, have a very
rich subgroup structure. In other words, Gutierrez, Piggott and Ruane [40] were
able to construct a semi-direct product decomposition for the more general case of
automorphism groups of graph products of groups. In addition, Duncan, Remeslen-
nikov and Kazachkov [34] provided a description of several arithmetic subgroups
of the automorphism group of a partially commutative group. Noskov [60] also
found different arithmetic subgroups. Providing certain conditions have made on
the graph I', Charney and Vogtmann have shown [20] that the Tits alternative
holds for the outer automorphism group of G(I"). Day [25] moreover, has shown
that in all cases this group holds either a finite-index nilpotent subgroup or a non-
Abelian free subgroup. Minasyan has shown [58] that partially commutative groups
are conjugacy separable (loc. cit.) from which it can be shown that their outer au-
tomorphism groups are residually finite. Lohrey and Schleimer [53] have studied

the compressed word problem and proved that the word problem for Aut(Gr) is

4

reducible to the compressed word problem for G(I'), i.e., the word problem for
Aut(Gr) has polynomial time complexity.

Charney and Farber [18], and then Day [26], have studied automorphism groups
of partially commutative groups associated to random graphs, of Erdos-Renyi type.
They have shown that if the edge probability (p) lies between 0.2929 and 1 and is
constant then as the number of vertices (n) tends to oo, the probability that the
partially commutative group has finite outer automorphism group tends to 1.

Duncan, Remeslennikov and Remeslennikov [35] have defined several standard
subgroups of the automorphism group Aut(Gr) of a partially commutative group
using the notion of admissible subset of a graph (see Section 4.1). The automorphism
group of a partially commutative group G with commutative graph I' contains
a group Aut’(Gr) induced by isomorphisms of I'. In Section 4.1 we introduce a
particular subgroup St“*(K) and a subgroup Aut/,, (G) of Aut(I") (see Definitions
4.1.5, 4.1.6).

Theorem 1.0.2. [35] The group Aut(G) can be decomposed into the internal semi-
direct product of the subgroup St (K) and the finite subgroup Autl, (G), i.e.

comp

Aut(G) = St (K) x Autl,,.(G).

This theorem essentially reduces the problem of studying Aut(Gr) to the study
of the group St (K).

A basis-conjugating automorphism is one which maps each canonical gener-
ator x to x9%, for some g, € G. Toinet [70] has constructed a presentation for
Conj(G) the group of basis-conjugating automorphisms. Here we consider sub-
groups Conjy(G) of normal conjugating automorphisms (see Definition 4.1.7)
and Conjy(Gr) of vertex conjugating automorphisms (see Section 4.1). We
find a presentation for Conjy(Gr) of the automorphism groups of the partially

commutative group Aut(Gr).

Let G be a group with identity e and R be a ring with unit 1 different from 0.
Then R is said to be G-graded ring if there exist additive subgroups R, of IR such
that R=@® > R, and RyR;, C Ry, for all g,h € G.

geG
Methods used in the study of graded rings have proved to be successful tools in
the structure theory of commutative rings. Due to the great importance of grading

of rings and modules, the study of this concept attracted wide interest from math-

>

ematicians everywhere. One of the mathematicians who studied the properties of
grading of rings in general when G is a group or a subgroup was Jespers in [37] and
[45]. On the other hand, M. Refai, carried out a number of studies about graded
ring theory and graded modules (see for example [64], [66] and [65]).

A differential graded category (DG category) over the commutative ring
R is a R-category A whose morphism spaces are differential graded R-modules

(Definition 6.2.5) and whose compositions
AlY, Z2) @ A(X,Y) = AX, 2), (f,9)— f9g

are morphisms of differential graded R-modules.

DG categories already appear in [47]. In the seventies, they found applications
(see [67] and [31]) in the representation theory of finite-dimensional algebras.
From B. Keller [46] one knows how the DG categories enhance our understanding
of triangulated categories appearing in algebra and geometry. DG categories have
been studied extensively since that time. For an introduction to the theory of DG
category see [46].

A differential graded algebra (DG algebra) over the commutative ring R
is a graded algebra, A = @;czA; over R together with a differential, that is a
R-linear map d : A — A of degree -1 with d> = 0, satisfying the Leibniz rule
d(rs) = d(r)s + (—=1)I"lrd(s), where r, s € R and 7 is a graded element of degree |r|.
We can think of DG algebras as generalisations of rings, so we have just gained more
objects to work with. DG algebras, have been the object of considerable study in
recent years, and a good picture of their properties has been built up through the
work of many different researchers. For example, D. Dugger and B. Shipley [32] have
investigated the relationship between DG algebras and topological ring spectra. M.
Angel and R. Dlaz [4] have introduced the concept of N-differential graded algebras
(N-dga), and study the moduli space of deformations of the differential of an N-
dga. J. Jardine [43] has constructed a closed model structure for the category
of non-commutative DG algebras over an arbitrary commutative ring with unit.
Introductions to the theory of DG algebras can be found in [2], [6], [10] and [63].

Carlsson has studied properties of the differential graded modules (DG mod-
ules). In fact the solvable differential graded R-modules concept already appeared
in the 1983’s in work of G. Carlsson [15]. Recently, these modules have attracted

much interest in ring theory, homological algebra, category theory, algebraic geom-

etry and algebraic topology. For example, L. Avramov and D. Grayson [7] have
shown that the duals of infinite projective resolutions of modules over a complete
intersection are finitely generated DG modules over a graded polynomial ring. From
X. Mao [55] one knows some new results on cone length of DG modules and global
dimension of connected DG algebras. K. BECK [9] has investigated the image of
the totaling functor, defined from the category of complexes of graded A-modules
to the category of differential graded A-modules where A is a DG algebra with a
trivial differential over a commutative unital ring. To each A,-differential graded
module A. Legrand [52] has associated “characteristic” classes which are invariants
of the quasi-isomorphism class of this module and determined the Pontrjagin prod-
uct by the zeroth and the first homology, where A, is not necessarily a connected
DG algebra.

The structure of this thesis is as follows: In Chapter 2, we present a background
to partially commutative groups. We then give a description of the generating sets of
automorphism groups of partially commutative groups. One of the commonly used
generating sets of Aut(Gr) is the set of Whitehead automorphisms. We describe
the Whitehead automorphisms for partially commutative groups and the relations
among Whitehead automorphisms. We develop a GAP package to find a finite
presentation for the automorphism groups of partially commutative groups with a
finite simple graph I". In order to do this we give a description of Aut(G) according
to Day’s work in [24].

In Chapter 3, we give a description of the subgroup of basis-conjugating auto-
morphisms Conj(Gr) of Aut(Gr) according to Toinet’s work, in [70], and Day’s
work in [24]. We develop an algorithm and written a GAP package that provides a
finite presentation for the subgroup Conj(Gr).

In Chapter 4, we find a presentation for the subgroup Conjy of Aut(Gr). We
develop a GAP package that provides a finite presentation for Conjy .

Chapter 5, contains some basic notions, definitions and results on exact homology
sequences. Chapter 6, outlines the general principles of graded rings and some of
their properties, as well as the definitions of graded algebras, and differential graded
modules over the graded polynomial ring R = K|[zy,xa, ..., T,)].

In Chapter 7, we study composition series and then construct a classification for
some types of differential graded R-modules, based on the degree P of the differential

graded module and dimension of the module. This classification gives a partial

algorithm to test whether such modules are solvable.
In Chapter 8 we give an algorithm implemented in GAP for all the cases covered
in Chapter 7. This Chapter also includes a description of each function used in our

algorithm.

Chapter 2

Finite Presentation for
Automorphism Groups of pc

Groups

2.1 Introduction

Partially commutative groups have drawn much attention in geometric group the-
ory, because of their rich subgroup structure and good algorithmic properties, their
actions on cubical complexes and their various applications. This chapter is con-
cerned with automorphism groups of partially commutative groups and their finite
presentations.

The GAP system will be used to find a finite presentation for the automorphism
group of a partially commutative group. In order to do this work we will give a pre-
sentation for the automorphism group of a partially commutative group, according
to Day’s work in [24] and [27].

2.2 Background for pc groups

We will briefly describe the relationship between partially commutative groups, other

Artin groups and Coxeter groups.
Definition 2.2.1. A graph I consists of

(i) a non-empty set V(I") of vertices and

(i) aset E(I") of edges

such that every edge e € F(I") is a multiset {a,b} of two vertices a,b € V(I).

I' = (V, E) will denote a graph with vertex and edge sets V and E (one or both
of which may be infinite)

Vertices a and b are adjacent if there exists an edge e € E with e = {a,b}. If
e € E and e = {c¢, d} then e is said to be incident to ¢ and to d and to join ¢ and
d. If a and b are vertices joined by edges ey, ..., ex, where k > 1, then ey, ..., e, are

called multiple edges.

Definition 2.2.2. An edge of the form {a,a} is called a loop. A graph which has

no multiple edges and no loops is called a simple graph.

Remark 2.2.3. A graph is finite if both its vertex set and edge set are finite. In this
study we study only finite graphs, and so the term “graph” always means “finite
graph”. We call a graph with just one vertex trivial and all other graphs nontrivial.
All graphs in this thesis are finite and simple. For an introduction to this

class of graphs see [13] and [68].

Definition 2.2.4. [16] An Artin group A is a group with presentation of the form

A= (s1,...,5| 8iSjsi...=8;j8;5;... foralli # j),
—_—
mgj mg;

where m;; = mj; is an integer > 2 or m;; = oo in which case we omit the relation
between s; and s;. If we add to this presentation the additional relations s; = s;° !

for all i, we obtain a Coxeter group

W = (s1,...,8n] S :si_l,sisjsi... = 5j5;5j... for all i # j)
= (s1,...,8,| (5)% = 1, (s45;)™ = 1 for all i # j).
Do =7/27 % 7./27 is an example of Coxeter group.

A partially commutative group (right-angled Artin group) is an Artin group
in which m;; € {2, 00} for all 4, 5. In other words, in the presentation for the Artin
group, all relations are commutator relations: s;s; = s;s;. Right-angled Coxeter
groups are defined similarly. The easiest way to determine the presentation for a
right-angled Coxeter or Artin group is by means of the defining graph (also called
the commutation graph) I'. This is the graph whose vertices are labeled by the

10

generators S = {s1,...,s,} and whose edges connect a pair of vertices s;, s; if and
only if m;; = 2. Note that any finite, simple graph I" is the defining graph for a

right-angled Coxeter group Wr and a partially commutative groups Gr.

Theorem 2.2.5. [16] Every partially commutative group embeds as a finite index

subgroup of a right-angled Coxeter group.

2.2.1 Partially Commutative Groups

Let I" be a graph on n vertices, with vertex list V' and a list of pairs of vertices E |
ie, I'=(V,E), where

V:{xl,...,xn}

and
E= {{ximwiz}? R {xik7 xik+1}}

Let G be the partially commutative group of I', defined by

Gr = (VIRr)

where the relations are
Rp = {[z;,zj] | z;,x; € V and {z;,z;} € E}

where [2;,x;] = 7'z 225 and (x; and 2; are adjacent if there exists an edge
e € E with e = {z;,z;}). According to this construction we have the following two
an important cases:

Firstly, if the graph I is the null graph (n vertices and no edges) then G is free
group F), of rank n. Secondly, if I" is a complete graph on n vertices then G is the
free abelian group Z" of rank n. In general, G interpolates between these two
extremes. Similarly, the automorphism group Aut(Gr), the automorphism group
of G interpolates between Aut(F,), the automorphism group of a free group, and
GL(n,Z), the automorphism group of a free abelian group. In fact the automor-
phism groups of partially commutative groups contain Aut(F),) and GL(n,Z) and
automorphism groups of free and direct products of Aut(F},) and GL(n,Z). From

now on Aut(Gr), denotes the automorphism group of Gr.

11

Example 2.2.1.1

The following are a few examples of partially commutative groups:

(1) If I' is a square as in Figure 2.1, then G decomposes as a direct product of

two free groups Gr = F(z, z) x F(y,w).

z)

w z

Figure 2.1: A Graph I

(2) If I' = Ps, the path on three vertices then Gy = I, x Z.

(3) If I' as in Figure 2.2, then G = Z? x Z.

——o o

r Yy z

Figure 2.2: Gr 2 7%+ Z

(4) If I" is an n-gon for n > 5, then Gy cannot be decomposed as either a direct

product or a free product.

Remark 2.2.6. Let L =V UV~ For z € L, we define v(z) € V the vertex of z,
to be the unique element of V N {z,z7'}. Hence e = {z,y} = {v(z),v(y)} for each
z,y € L. The star of = denoted by st(z) is a set of all the vertices that are connected
directly to x by an edge, as well as the vertex x. The inverse of the star of + denoted
by st(z)~! is the set of inverses of elements of st(x). The link of denoted by ¢k(x) is
st(z) \ {z}, and the inverse of the link of 2 denoted by £k(x)~! is the set of inverses
of elements of ¢k(x). We set sty (x) = st(z)Ust(z)™" and lkr(z) = lk(x) U lk(x)~ .

Consider the graph of I' of Figure 2.3 with V' = {z,a,b,¢,d, e, f,g}. Then we
have that,

Figure 2.3: Graph of I"

12

L=VuV'={xabecde, fgztalbt et dt et f1 g1}
st(z) = {z,a,b,c,d, e}, st(x)™ ={x ™ a ', 07 ¢t d7 e}, and
Ck(x) = {a,b,c,d, e}, lk(x)™ ={a 1,67, c7t d7! e}, Hence,
stp(z) = st(x)Ust(x)™ ={z,a,b,c,d, e,z a” 07 ¢t d ! e '} and

Ckp(z) = Ck(x) Ulk(x)™t = {a,b,c,d,e, fya™ 07 ¢t d™ et}

2.3 Combinatorial group theory of partially com-

mutative groups

Let the set of letters L be V U V™1 Recall that a word in L is a finite sequence
of elements of L and every word in L represents an element of Gp. By a cyclic
word w we mean the set consisting of w and all cyclic permutations of the sequence
of letters of w. For example, xyy is a word and the corresponding cyclic word is
{zyy, yyx, yry}.

Any two elements of a cyclic word represent group elements that are conjugate
to each other, so a cyclic word represents a well-defined conjugacy class, we say a
conjugate to b denoted a ~ b if there exists g such that g 'ag = b. Now, if we pick
any two elements of a cyclic word as in our example above then these are conjugate

to each other:

(yy)zyy(yy) ' = yyz,

(y yya(y) = yry,

(v Dyzy(y) = zyy.

If w is a cyclic word, we will use (w) to denote the set of all cyclic permutations of
w (it is the image of w under a cyclic permutation.) A word w on L is graphically
reduced if it contains no subsegments of the form aua™', where a € L and u is a

— = win Gr, so wiaua " wy = wiuw, in

word in (¢kr(a)) (because in this case aua
Gr, for all words wy, wy). A cyclic word is graphically reduced if all its elements
are graphically reduced as words. If we consider the graph I' of Figure 2.4 then we

have that,
L=VUuV-={a,x, 29,23 24,a" m11>$2 ;T3 79541}
GF = <V|RF>7
Ek‘L(a) = {$1,$27x3ax1_17x2_17$51}7

Rr = {[a’ xl]’ [a’ x2]7 [av $3]7 [IE3,$4]},

13

X2

X1 Xyq

Figure 2.4: Graph of I"

1

so we have aria™! = 1, arsa™! = 29, axsa”! = x3, and x31475 " = 74

Now if we pick any word u in (¢kz(a)), let we say u = 12527 ", then

aua™' = ar roxytaT! = mymeny

If w is a word in L then the support of w is the set of letters € V such that

I accurs in w, denoted supp(w). By Baudisch [8] if w and w’ are reduced

T orx
words representing the same element of G then supp(w) = supp(w’). Therefore we

make the following definition.

Definition 2.3.1. For an element g of G, the support of g is
supp(g) = supp(v) where v is a reduced word representing g.

The support supp(w) of a k-tuple W = (wy, ..., wy) of conjugacy classes is
k
Uiz supp(w;).

By Baudisch [8] if w and w’ are graphically reduced words and represent the
same element of G then the lengths of w and w’ are equal. Therefore we define
the length of an element g of G to be the length of any graphically reduced word
representing g. We say that an element g in G is cyclically reduced if it can not
be written as vhv™! or v"thv with v € V, and |g| = |h|+ 2. By [69], Proposition 2,
every element of G is conjugate to a unique (up to cyclic permutation) cyclically
reduced element. The length of a conjugacy class is defined to be the minimal
length of any of its representative elements. Observe that the length of a conjugacy
class is equal to the length of a cyclically reduced element representing it. For an
n-tuple of conjugacy classes W, we define the length of W, denoted by ||, as the
sum of the length of its elements (n > 1).

14

2.4 Automorphisms of pc groups

In this section we shall give the definition of Laurence-Servatius generators for

Aut(Gr). We shall also give the definition of Whitehead automorphisms for par-

tially commutative groups. Some other definitions and concepts that are important

in our study will be given.

2.4.1 Laurence’s generators for Aut(Gr)

We will state some definitions and concepts that are important in our study before

we give the definition of Laurence-Servatius generators for Aut(Gr).

1.

There is a reflexive and transitive binary relation on V' called the domination

relation: x > y (x dominates y) iff (k(y) C st(x).

. Domination is clearly reflexive and transitive, since ¢k(z) C st(z), sox > x and

this implies that the domination is reflexive. Now, domination is transitive,
because that if we have x > y and y > z then we have that (k(z) C st(y) and
lk(y) C st(x). So we have two cases:

(a) If y ¢ Ck(z), since lk(z) C st(y) and y ¢ (k(z), then we will get that
lk(z) C Clk(y), which implies to (k(z) C lk(y) C st(x), implies to z > 2.

(b) If y € (k(2), as case(1), Ck(z) \ {y} C lk(y) C st(z). So if we prove
that, y € st(x) then ¢k(z) C st(x). Note that, since y € ¢k(z) then we
have the edge e; = {z,y}, and since (k(y) C st(x) then we have the edge
es = {z,x},also since fk(z) C st(y) then we have the edge e3 = {y,x}.

Therefore, y € st(z), and hence x > z. Thus domination is transitive.

. Forx,y € Lysay v >y if v(z) > v(y).

Write z ~ y when x > y and y > z; the relation ~ is called the domination

equivalence relation.

. The adjacent domination relation, which holds for z and y if {z,y} € F

(or [z,y] € Rr) and x < y.

. The non-adjacent domination relation, which holds for x and y if x < y

{z,y} ¢ E (or [v,y] ¢ Rr).

15

7. We say that x strictly dominates y if z > y and z ¢ y.

Definition 2.4.1. [51] and [69] The Laurence-Servatius generators for Aut(Gr)

are the following four classes of automorphisms:

1. Transvections: For z,y € L with x > y and v(x) # v(y), the transvection
Tzy is the map that sends

Y=y

and fixes all generators not equal to v(y). A transvection 7,, determines an
automorphism of G (see [51], [69]).

2. Partial Conjugations: An automorphism c¢,y, for x € L and Y a non-
empty union of connected components of I'\st(x), that maps each y € Y to
xlyz and fixes all generators not in Y is called a partial conjugation. The
set Conj(Gr) = Conj of all partial conjugations forms a subgroup of Gr.
Every partial conjugation determines an automorphism of G ([51], [69]).
For example in the graph of I' of Figure 2.5 we have a partial conjugation

yirs oty i=1,2, b= b, crsc,arra, d d, x> T

a

Yo b
Y1 c
d

Figure 2.5: Graph of I"

In particular if Y = I'\ st(z) then ¢, y is the inner automorphism 7, sending
u to u”® for all x € V.

3. Inversions: For x € V, the inversion 7, of x is the map that sends

i x !

and fixes all other generators. i.e., inversions send a standard generator of
Gr to its inverse. Every inversion determines an automorphism of Gp ([51],
[69]).

16

4. Graphic Automorphisms: For 7 an automorphism of the graph I, the

graphic automorphism of G is determined by 7 is the map that sends
x — m(z)

for each generator x € X, (An automorphism of a graph G = (V, E) is a
permutation o of the vertex set V', such that the pair of vertices {u, v} forms
an edge if and only if the pair {o(u),o(v)} also forms an edge.) Every graphic
automorphism is an automorphism of G ([51], [69]) and the set of all graphic
automorphisms of Aut(Gr) is denoted Aut! (Gr).

Theorem 2.4.2. [51] The group Aut(Gr) is generated by the finite set consisting
of all transvections, partial conjugations, inversions and graphic automorphisms of

Gr. The subgroup Conj(Gr) is generated by the partial conjugations.

A finite presentation for the subgroup Conj(Gr) of Aut(Gr) is given in [70].

2.4.2 Whitehead automorphisms for partially commutative
groups

Definition 2.4.3. A Whitehead automorphism is an element o € Aut(Gr) of one
of the following two types:

Type (1): a restricted to VUV ™! is a permutation of V.UV ™!, or

Type (2): there is an element a € VUV ™! called the multiplier of a, such that

for each x € V the element a(x) is one of z, za,a 'z, a 'za.
Let {2 be the set of all Whitehead automorphisms of Gr.

Definition 2.4.4. A Whitehead automorphism a € (2 is long-range if « is of type
(1) or if « is of type (2) with multiplier a € V' UV ™! and « fixes the elements of V/
adjacent to a in I'. Let (2, be the set of long-range elements of (2.

A Whitehead automorphism « € (2 is short-range if « is of type (2) with
multiplier a € V U V™! and « fixes the elements of V not adjacent to a in I". Let
{2, be the set of short-range elements of 2.

By [51] (see Section 2.2), we can conclude that 2, U (2, is a generating set for

17

Theorem 2.4.5. [24] For any graph I', the group Aut(Gr) is finitely presented.
Specifically, there is a finite set R of relations among the Whitehead automorphisms
2 such that Aut(Gr) = (2, R).

There is a special notation for type (2) Whitehead automorphisms. Let A C L
and a € L, such that a € A and a™! ¢ A. If it exists, the symbol (4, a) denotes the
Whitehead automorphism satisfying

(A,a)(a) =a

and for z € V\v(a) :

T ifr¢g A andzt ¢ A
ra ifreA andzt¢ A
alr ifzr¢g A andz'eA
alra fre A andzteA

(4, a)(z) =

Say that (A, a) is well defined if the formula given above defines an automorphism

of Gp.
Note:

i. For a € {2 of type (2), one can always find a multiplier a € L and a subset
A C L such that a = (A,a). There is a little ambiguity in choosing such a
representation that comes from the following fact: if a,b € L with e = {a, b},
then ({a,b,b7'},a) is the trivial automorphism. In another word if b and
b~! € lk; then we must delete them from the set A, because they cancel each
other.

ii. The set of type (1) Whitehead automorphisms is the finite subgroup of Aut(Gr)

generated by the graphic automorphisms and inversions.
iii. The set {2 of Whitehead automorphisms is a finite generating set of Aut(Gr).

Lemma 2.4.6. [2/] For AC L witha € A and a™' ¢ A, the automorphism (A, a)
is well defined if and only if both of the following hold:

1. The set (VNANA"Y)\1k(v(a)) is a union of connected components of I'\st(a).
2. For each v € (A\A™'), we have a > .

18

Alternatively, (A, a) is well defined if and only if for each v € A\str(a) with a %
z,(A,a) acts on the entire component of x € I'\st(a) by conjugation.

2.5 Relations among Whitehead automorphisms

In this section we define the set of relations R in Theorem 2.4.5. Note that we use
function composition order and automorphisms act on the left with sets. We use
the notation A+ B for AU B when AN B = (). Note the shorthand A —a for A\{a}
and A+ a for AU {a}.

Let @ be the free group generated by the set (2. We understand the relation
“w; = wj to correspond to wiw, ' € @. Note that if (A,a) € 2 with B C ¢k(v(a))
and (BUB) NA = (), then (A,a) and (A + B + B™',a) represent the same
element of {2 and therefore the same element of @. This is why we do not list
“(Aja) = (A+ B + B7',a)" in the relations below. We illustrate this by the
following example:

Let I" be a graph of Figure 2.6 with the set of vertices, V = {a,b,¢c,d,e, f,g}

9

S

Figure 2.6: Graph of I'

Let (A,a) = ({a,b,b7'},a) € £2. So,

A= {a,bb},

lk(v(a)) = {b,c,d,e}.

Let B ={d,e} C ¢k(v(a)) and so B~' = {d~',e'}. From the above we have,
(A,a)(a) =a, (A+ B+ B! a)(a) =a, and for z € V\v(a), we have
(A,a)(b) =a'ba=a"tab=0band (A+ B+ B ',a)(b) =a 'ba = a 'ba = b,
(since [a,b] =1 = ab = ba),

(A,a)(c)=¢, (A+B+B'a)c)=c,

(Aja)(d)=d, (A+B+B'a)d)=a'da=a"'ad=d,

(A,a)(e)=e, (A+B+B'a)le)=a'tea=alae=e,

19

(Aa)(f)=f (A+B+Ba)(f)=,
(A a)g) =9, (A+B+Ba)9) =y
Hence, (A,a) = (A+ B+ B7',a).

Definition 2.5.1. [24] There are ten types of relations as follows:

(R1) (4,0)" = (A—a+aa™)
for (A, a) € 2.

(R2) (4,a)(B,a) = (AU B, a)
for (A,a) and (B,a) € 2 with AN B = {a}.

(R3) (B,b)(A,a)(B,b)~" = (4,a)
for (A,a) and (B,b) € 2 such that a ¢ B,b ¢ A,a™' ¢ B,b™' ¢ A, and at
least one of (a)AN B = or (b)b € 1k (a) holds. We refer to this relation as
(R3a) if condition (a) holds and (R3b) if condition (b) holds.

(R4> (B7 b)(A7 CL)(B, b)_l = <A7 CL)(B —b+ a, CL)
for (A,a) € 2 and (B,b) € 2 such that a ¢ B,b¢ A,a™' ¢ B,b™' € A, and
at least one of (a)AN B =0 or (b)b € lky(a) holds. We refer to this relation
as (R4a) if condition (a) holds and (R4b) if condition (b) holds.

(R5) (A —a+ a717 b)(Aa (I) = (A —b+ bilv a>7—b<a7 b)
where 7, € I and (a, b) is the graphic automorphism transposing a and b; with
(Aja) e 2,be A, b ¢ A b#a, b~ a.

(R6) There are two types of R6 relation which are,
(R6a) 7.(A,a)r; ! = (1,(A), 7.(a)), where 7, € I, and
(R6D) S(A,a)é~" = (6(4), 6(a), where 6 € Aut(Gr).

(R7) The entire multiplication table of the type (1) Whitehead automorphisms,
which forms a finite subgroup of Aut Gr.

(R8) (A7 CL) = (L - aila CL)(L - Aa ail)v
for (A,a) € 12.

(Rg) (A7 CL)(L - b717 b) (Aa (l)il = (L - bilu b)7
for (A,a) € 2 and b € L with b,b! ¢ A.

20

(R]'O) <A7 a’)(‘L - b717 b)(Aa (l)il = (L - aila (l)(L - bilu b)
for (A,a) € 2 andbe L withbe A, b~' ¢ Aand b # a.

Let R be the set of elements of @ corresponding to all relations of the forms
(R1), (R2), (R3), (R4), (R5), (R6), (R7), (R8), (R9), (R10). This is the same
R in Theorem 3.3.9 and Day [24] proved in Section 5 that:

2.5.1 Relations R5 and R6

In Day’s work relations (R5) and(R6) are not the same as the ones in the Definition
2.5.1. Our alternative forms for the relations (R5) and(R6) are more suitable for our
algorithm. In this section we show that our relations (R5) and(R6) are equivalent
to Day’s relations (R5) and(R6). Day’s (R5) and(R6) are

(R‘75> (A —a+ a_lv b)(A7 a’) = (A —b+ b_17 CL)Ua,b

for (A,a) € 2 and b € A with b™' ¢ A b # a, and b ~ a, where o, is the
type (1) Whitehead automorphism with o,4(a) = b™%, 0,4(b) = a and which

fixes the other generations.

(R'6) o(A,a)o™! = (0(A),0(a))
for (A,a) € £2 of type (2) and o € (2 of type (1).

First, we will give an example for small graph and after that we will go to the

general case.

Example 2.5.1.1
Let V = {1, x9, x3, 24,25} be the set of vertices and I" be a graph of Figure 2.7:

x

o) X5

ZT3 Ty

Figure 2.7: A Graph I’

21

We have graph isomorphism 7 such that,

T = X1 > Ty > T3 > Ty > Ty

N

and another p such that

Ty — Xy
T3 — Ts
P = Ty — T3

1 — X9

\ T2 — T1

In this example the isomorphism group of I" is generated by 7 and p (and is

isomorphic to dihedral group Ds).

o G(I') = (w1, g, T3, Ta, T5) | [21, 22] = [22, x3] = |23, x4 = [4, T5]

= [z5,11] = 1)
-1 _ 1 -1 -1 o —1 1
o VUV ={x,x9, 23,24, 25,27 , 25 , T3 ,T, ,T5 }.

Now, let € Aut(Gr) be an automorphism of type (1), so # permutes V UV 1.
Let z € V(I') then 0(z) =y € VUV ™! Since § € Aut(Gr) then 0(z71) = 0(z)~! =
y~t. Therefore, O({z,27'}) = {y,y'}.

Group VUV~ into pairs {x1, 27"}, {zo, 25 '}, ..., {2, 7'} and then for each i,
6 maps {z;, z; '} to {z;, xj_l} for some j. So, # is a permutation of the set of pairs
{1, 27'Y, ... {z,, 271}, In this case, if we forget the exponent 41 of z; we may
use 6 to define an automorphism 6 of I'. Namely if §({z;, z;'}) = {z;, a:;rl} define
o(x;) = x;. In this case we say 6 contracts to 6y. For example, let 6 be such that

r1 - T2 > T3 -+ T4 - Ty

Then 6 contracts to the automorphism 7« above.

Conversely an automorphism « of I" induces several automorphisms of GG which
contract to av. In fact if a(z;) = z; then we my define an automorphism 6 of G such
that (a) 0(x;) = x; or (b) O(x;) = x;'. Suppose @ is defined by making such a choice

Va; € V(I). Since 6 is obtained from « by composition with appropriate inversions,

22

it follows that 6 determines an automorphism of Gp. Moreover, by definition 6
contracts to . As there are two choices for 0(x;), for i =1,...,5, every a € Aut(I)
induces at most 2" distinct elements of Aut(Gr).

In the example above, p gives rise to at most 2° automorphisms of type (1). So,

we have that

a T — T2
5 -1 -1
T —
-1 -1 1 2
o {z,x] } = {29, 25 } =]
} -1
For each of a,b we have that
c To — X1
; -1 -1
T, —T
-1 -1 2 1
o {zy, x5 } — {x1,27 } = .
} -1
o If we have a and ¢:
T = i)
P - _
T 1 Ty !
o [f we have ¢ and d:
P2 1 - T2 -t —— 1yt

If we have b and c:

P31y - x5! -]l ——— T2

If we have b and d:

=N
P4 - _
7S

Ps - {1'3,3351} — {.flfg),xgl}

For ps there are two possibilities

23

e T3 — Ts

1 1
Ta — X
-1 —1 3 5
o {v3, 25 } = {z5,25" } = .
-1
Also,
g Ty — Ty
xt — a7t
-1 —1 5 3
o {v5,05 } = {x3,25 } =)
-1

e Now, we come back to the general case of 6 (on page 22):

Let
g <7—-7317 77—xn>
<Tx1> S...D <7—1‘n>
= (T, |72,) © - & (T, |7,

Where,

Te, Ty —x Lot = and x; — xj, ifj;él,T:?l:l:(),

Tuy 1 T Ty ay = xsandx; — xy, if j# 2,7 =1=(),

Te, T, =yt at = a, and xy — xg, if j#En T =1=()

(There is no need for 7,1 for j =1,...n, because we have that 7,-1 = 7).
J J
Suppose that ¢ is any isomorphism of I'. So for each x € V and ¢(z) € V' and
¢ maps z bijectively to itself. Then ¢ gives rise to 2" automorphisms of type (1)

(where |V(I")] = n). For each x € V' we have two choices a and b,

o If z — ¢(x) then 71 — ¢(z)71,

o If x — ¢(x)~! then 27! —— ¢(z), so once these choices have been made we

have uniquely determined an automorphism of type (1).

24

Now let

T = (automorphisms of type(1)) < Aut(Gr),

¢ = Aut(I) the group of automorphism of I" (elements of which permute V).

I={(r,: 2 V() and 7.(x) = 271,
=Zo® ... 0 Zy, (|V(I')| — times),
= (7o) B - O (Twn))-

Any automorphism 6 of type (1) permutes the sets {z,27'} such that z € V so

contracts to a graph automorphism ¢, from which 6 can be recovered as above.

Now we have the following facts; for 6 and ¢

Fact 1: ¢ '7,¢ = 74-1(,). That is ¢7, = Ty()0.
If p € (and 7, € [then for each z € V we have that,

L b(2) = ¢~ o(z) if = # ¢(2)
¢ T p(2) { o ()1 if z = d(2),
(

:{z if ©# ¢(2)
oM p(=h) if = ¢(2),

[e ifatel)
i =0(2),

= T¢—1(Z).
Fact 2: 7,7, = 7y7,, foreachx #y eV

Fact 3: Suppose we choose option b for x = x1, ..., z, and option a for all other

x € V. Then we will have the following fact. The resulting map of type (1) is

0= T(z) - - - T¢(zr)¢ =Ty, - Tay,
and

¢7a(x) = ¢(a™") = o(z) !, Ve € V.

e From Fact 3 we have T'= (I, () and moreover T'= (I = I{. From Fact 1, as
To—1(z) € 1 we have [QT

25

e We show (NI = {id}. Suppose @ € (NI. Then a(z) € V, Vz €V, as a € (.
Also a(z) = z or 27, as a € I. Hence (as 27! ¢ V) a(z) =z, Vz € V.
Therefore a = id and so ¢ N [= {id}. Therefore, T'=(x I.

Therefore, given a presentation (Gens(¢) U I | Rels(()) for ¢, a presentation for T
is,

T = (Gens(¢)UGens(I) | Rels(Q)U{72:v e V(I }U{[r, 7] : u,v € V(I'),u #
v} U{od 11 = T4-1(, for each ¢ € Gens(G) and 7, € Gens(I)}).

B Day’s relation R’5 is:

(R'5) (A—a+a'b)(Aa)=(A—b+b" a)oay

for (A,a) € 2 and b € A with b™' ¢ Ab # a, and b ~ a, where g, is the
type (1) Whitehead automorphism with ,4(a) = b7, 0,4(b) = a and which

fixes the other generations.

(R'5) involves type (1) automorphisms o, which we are writing as o, = 7(a, b)
where (a,b) € Aut’ (G) is the graphic automorphism induced by the automorphism
(a,b) of I' sending a to b and b to a. Hence, (R'5) becomes (R5) of Definition 2.5.1.

B Day’s relation R'6 is:

(R'6) 0(A,a)o™" = (0(A),0(a))
for (A, a) € £2 of type (2) and o € 2 of type (1).

We have generators of type (1) of the form

I : that is 7, for x € V, and

¢ : that is graph isomorphisms (permutations of V). However not all type (1)
elements appear in our generating set. So we replace the above relation (R'6) with
(R6) of Definition 2.5.1

Note that (R'6) follows from (R6), as we may write any o of type (1) as

0= ¢Ty ... Ty, forsuitable ¢ € and 7,, € I (from Fact 3) and then

26

U(Aa a)a_l = QTgy -+ - Ta, (A> a)Tx_rl e '796_11 -

= OTuy - Twyy (o, (A), 7o (@) 1T

= Ty, oo Ty (Ta,_ T, (A), TxrileT<a>)T;r1_2 .. .7';21 -2
= ¢(Tay - To (A), Tay oo Ta, (@)

= (¢Tuy - Tu, (A), Ty .. T ()

= (0(A),0(a)).

2.6 Peak reduction

Peak reduction is a technique in the study of Aut(F") that is a key ingredient in the
solution of several important problems. J.H.C. Whitehead invented the technique
in the 1930’s in [72] to provide an algorithm that takes in two conjugacy classes
(or more generally, k—tuples of conjugacy classes) from F' and determines whether

there is an automorphism in Aut(F') that carries one to the other.

Definition 2.6.1. For W a k-tuple of conjugacy classes in G, we say that a string
Q- .. of elements of Aut(Gr) is peak-reduced with respect to W if for each

1=1,...,m — 1, we do not have both

|(Ozi+1...041) W| S |(O./Z‘...Oél) W|

and

|<041041>W| Z |(Oéi_1...041)'W|

unless all three lengths are equal. It is equivalent to that, for some k; < k, the
length of ay ... a; - W decreases with k until k = ki, remains constant until k& = ko,

and then increases with k£ until k£ = m.

We see that Aut(Gr) has peak reduction with respect to {2 if for any a €
Aut(Gr) and any tuple of conjugacy classes W, we can find «ay,,...,a; € {2 such
that « = ayy,,...,a; and the string of elements «,,,...,a; is peak-reduced with

respect to W.

Theorem 2.6.2. [2/] The finite generating set 2, U {25 for Aut(Gr) has the fol-

lowing properties:

1. each o € Aut(Gr) can be written as o = [y for some € (§25) and some
v € ({2,

27

2. the usual representation Aut(Gr) — Aut(H,(Gr)) to the automorphism group
of the abelianization Hi(Gr), (where Hi(Gr) = Gr/|Gr,Gr] = (Gr)aw of
Gr,) restricts to an embedding (£25) — Aut H(Gr); and

3. the subgroup (£2;) has peak reduction by elements of (2, with respect to any
k—tuple W of conjugacy classes in Gr.

Theorem 2.6.3. [24] The peak-reduction theorem for a free group F, states that
there is a finite generating set {2 for Aut(F,) (called the Whitehead automorphisms,
see [72]) such that Aut(F,) has peak reduction with respect to any k—tuple of con-
jugacy classes W in F,, by element of (2. We will give an example to explain this

theorem.

Example 2.6.0.2

For a free group F,, = F(z,y), pick any a € Aut(F,) and any k-tuple (wy, ..., wy)
where wy, is a representative of a conjugacy classes of F,.

Let W = (z,zy,zy '), |W| = 5. Suppose that,

x— y oy
a:
y — 22y

we can factorise a into Whitehead automorphism, according to Theorem 2.6.2, so
that

(W < |aaW| < [(aga)W| < oo < (agp - ..)W | = |[aW].

Now, we can factor « in the following way, « = a; as ag ,where

e
g = (3 .
y—yx

so written a Whitehead automorphism,
Gy = ({x7y}7 CC'),
and
{ x— y tay
a1

y—y

28

so written as whitehead automorphism,

o = ({z, 27y} y)

We will check that o = oy a9 3 :
a1eas(z) = aqas(r) = ap(x) =y lay
arpa3(y) = aras(yz) = an(ya?) = yy~ o’y = 2%y

Hence we get that,

{ T +— yilxy
a = (10903 9
yr— 27y

W= (z,ay,xy™"),

as. W = (z,zyz,y~), |as.W| = 5.

agaz. W = (z,xyx?, vy, |agas. W| = 7.

aragos. W = (y~ay,y~taya?y,y~ et ~ (2, aya? gy~ la T, Jononas W[=17,

As we shown above that o = ajasas, then it is obvious that a.W = ajasasz. W.

Hence, the sequence W, a;. W, apa; . W, agasay . W has no peak.

Lemma 2.6.4. [2/] Let X be a k-tuple of conjugacy classes whose elements are
all the conjugacy classes in G of length 2, each appearing once. If (A, a) € {2y and
|(A,a) - X| < |V|, then (A, a) is trivial or is the conjugation (L\{a"'},a).

Lemma 2.6.5. [24] Suppose «, B € 2y and [W] is a k-tuple of conjugacy classes
of Gr. If Ba™t forms a peak with respect to (W], there exist 81, ..., 0,82 such that
Ba~t = 6;,...0, and for each i, 1 <i < k, we have:

(3. 01) - W] < ot - [W]]

A factorization of Ba~! is peak-lowering if it satisfies the conclusions of the

Lemma, so Lemma 2.6.5 states that every peak has a peak-lowering factorization.

2.7 GAP Presentation for the Aut(Gr)

First we will give a small example to find a finite presentation of automorphism

groups of partially commutative group Aut(Gr).

29

Example 2.7.0.3
Let I' = (V, E) be the following graph:

.331 .1‘2

Then V = {z1,22} and E = (). It is a free group with two generators {zy,z1}.
Thus,

(1) st(z1) = {x},
lk(x1) = ¢,

Compsl = I'\st(x1) = {2} = connected components of I"\st(z1).

(2) st(ws) = {22},
k() = ¢,
Comps2 = I'\st(x9) = {1} = connected components of I'\st(z3).

(3) A list Y(x) , for each x in V' of these vertices y in V' such that y less then z,
and we call this list by Y, so

Vo= {{za}, {m1}}-

(4) Now, we will find the generators of type (2) of the Whitehead automorphisms
of the subgraph F; = I'\st(x1):

Ly = Comps1 U {{x},{z5'}}
= {a2, 25"} U {{aa}, {23 '}}
== {{xZ}v {x2_1}7 {3727 'T2_1}}
Hence, the whitehead automorphisms of the subgraph E; = I'\st(x;) are:

Cl = {{{IQ’ 931}, $1}> {{$2v 1'1_1}7 xl_l}v {{‘T2_1> $1}7 ‘Tl}v

{{5(72_1, xl_l}a ‘rl_l}a {{x% $2_17 xl}a C(:1}7 {{x% I2_17 5(71_1}, xl_l}}

(5) Now, we will find the generators of type (2) of whitehead automorphisms of
the subgraph Ey = I'\st(z3) :

Ly = Comps2 U{{x},{z7'}}
= {{zy, 27U {{z}, {a71})

30

= {{za} oy {21}
Hence, the whitehead automorphisms of the subgraph FEy = I'\st(xs) are:
Co = {{{zr, 22}, w2}, {{wn, 23" } 20 '} {{arh wo b o}, {20) 23 ')
{{z, a0t woh 2o}, {{zn, o7 23) 2y 1
e Therefore, the generators of type (2) whitehead automorphisms of the graph
I' are the following set A:
A=C1 U0y,
A={A = {{zz,m}, 0}, Ao = {{zz, 07} 27"}, As = {{ay), 21},
Ay ={{zzy a7 L et} As = {{o 20 21},
As = {{wo, 23 a7 Yo}, Ar = {1, 22}, 22},
As = {on g gt Ao = {{ah wady b Avo = (o ag s)
An = {27 woh 0}, A = {{zn, a7, 203 2y

e Now, we will find type (1) of generators of the whitehead automorphisms of
the graph I

(1) The graph isomorphisms of I" are that,
¢ ={F =(1,2), identity } (permutation of vertices).
I={g,:xz€ V() and g,(z) = 271),

= {gfﬁl (1’1> = xl_lag:w (xQ) = xQ_I}
Thus, the generators of type (1) of the whitehead automorphisms are the
following set T":

TZCU[: {Flyg:vlagl"z}

e Therefore, the generators set Gens of the automorphism groups of PCG of the
graph I is that,

Gens = AUT = {A1, As, A3, Ay, As, Ag, A7, Ag, Ag, Aro, A1, Aty 1,y Gays Gy -
e The relations (Rels) between these generators as follows:
(1) Ry = {Ay % Ay, Az x Ay, A5 % Ag, A7 * Ag, Ag % A1, A1y x Aa}.
(2) Ry ={A; x A3 x Ay Ao x Ay Agt Az x Ay x Agt Ay % Ay x Agt, Ap x Agx
ATl Agx Ay x A, Ag x Ay x AT, Ajg * Ag x AL}

31

(3) Ry =10.

0.

(4) Ry
(5) Rs = {Ag* Ay % g, ¥ A1 A7 % Ao % g, ALY, Ajg % Ag % guy ¥ AT
AS *A4 *ng *A;l,Ag *A7*9x1 *A;l,Al *Ag *9901 *AIOI,
A4 * Ag * Jgq * A;l,Az * Al() * Gy * As_l}
(6) Ro+ Ry ={02,, 92, 92, * Gy} * Gor * Guzs G * G ¥ G * Gy FT % gy % Fr%
Jzxa) Fl_l * Gup ¥ Fl * g$1}
(7) Re={A1* AJ x AgY Agx Agt % At Asx Ayt % AZt Ay s AT+ AGt) As + Tdx
A AgxIdx A5t Arx Ay x AL, Asx Ay T AL, Agx Ag x AT Ajgx A7 x
A1—217 A11 x Id * Al_ll, A12 x Id * A1_21 .
(8) Ry = 0.
(9) Rig={A1x A x AT x Al x AZH Apx Ay A s AT Agt, As x Ajg x A%
A * At Agx Ao x AT AL % Agt, Arx Asx A7 x AT AT Agx Agx Ag
At x AT Agx Ag x Ayt x At x AT Ao x Ag x Ap) + Agt x A).
(10) We have one relation for the automorphisms of graph (F; = (1,2)), which is
Therefore, the relations set Rels among the generators Gens is that,

Rels = R1UR2UR3U R4U R5U R6 U RTU RSU RIU R10 U {F2}.

Hence, the finite presentation for automorphism groups of G is that,

Aut(Gr) = (Gens|Rels) .

We have developed AutParCommGrp (Finite Presentations of Automor-
phism Groups of Partially Commutative Groups and Their Subgroups) a
package using the GAP system for computation of a finite presentation for the au-
tomorphism group of a partially commutative group Aut(Gr) and their subgroups

Conj(Gr) and Conjy which are described in Chapters 3 and 4 respectively see [1].

32

This package AutParCommGrp mainly installs new method to provide a finite
presentation for the groups Aut(Gr), Conj(Gr) and Conjy. The process involves
the computation of other objects/values which may be useful in their own right.
These are defined for a graph I' = (V, E)) on n vertices, with vertices V' and edge
set B, where FE is a list of pairs of vertices. They are the star St(v) and the link
Lk(v) for each vertex v of V, the list Y (v) of those vertices w in V' such that w is less
than v, the subgraphs I\ St(v), the connected components of a graph, the unions
of the connected components of a graph, the equivalence classes for each vertex v of
V' under equivalence relation ~ (St(v) and Lk(v) are used to define a partial order
on V which induces equivalence relation ~). In addition, it can be used to apply
Tietze transformations to simplify the presentation of the groups it finds by using a
G AP function.

To write an algorithm to produce a finite presentation for the automorphism
group of a partially commutative group Aut(Gr) first we find 2 the Whitehead
generators set of this group based on Laurence’s generators as defined in Section 2.4
and then find the set of relations R as defined in Definition 2.5.1.

The input of the main function FinitePresentationOfAutParCommGrp(V, E)
that provides finite presentation for the group Aut(Gr) is a simple graph I' = (V| E).
A graph with vertex set V' of size n always has vertices {1,...,n} and E is a list
of pairs of elements of V. For example if I" is a simple graph with vertex set
V = {z1, 29,23} and edge set E = {[z1, x|, [x1, x3], [r2, x3]} (where [z,y] denotes
an edge joining x to y) then I" will be represented as ([1,2, 3], [[1, 2], [1, 3], [2, 3]])-
The output of FinitePresentation0fAutParCommGrp consists of two sets gens and
rels, where gens is the list of the Whitehead generators of Aut(Gr) defined in
Section 2.4 and rels is the list of the relators R.

This section describes the functions from the package AutParCommGrp which

we have written for computing a finite presentation for Aut(Gr) as follows.

2.7.1 IsSimpleGraph Function

A simple graph, is an unweighted, undirected graph containing no graph loops or
multiple edges. A simple graph may be either connected or disconnected. IsSimple-
Graph tests whether the graph I fulfills these conditions. The input of the function
IsSimpleGraph(V, E) is a graph I' = (V, E), where V and E represents the list of

vertices and the list of edges respectively. The algorithm carries out the following

33

mstructions:

IsSSIMPLEGRAPH(V, E)
1 if V is empty list

2 then return error message
3 if V or E are not lists
4 then return error message
5 if I'" has loops
6 then return error message
7T fEZV XV
8 then return error message
9 M < SizE(FE)
10 foriin {1,...,M}
11 do if F has multiple edges
12 then return error message
13 return true

2.7.2 StarLinkDominateQOfVertex Function

The input of the function StarLinkDominateOfVertex(V, E) is a simple graph I" =
(V, E). It computes the star St(v) and the link Lk(v) and concatenates them in two
separate lists St and Lk respectively. Also it calculates a list Y (v), for each vertex v
in V of those vertices u in V' such that u is less than v, and we call the list of all such
Y (v), YY. In addition, it calculates sV, the size of the list of vertices V' and M,

the size of the list of edges F. The algorithm carries out the following instructions:

STARLINKDOMINATEOFVERTEX(V, E)
for v in V(I")
do for e in E(I)
do if e is adjacent v
then ADD “end point” of e to Lk[v]
St[v] = Lk[v] U {v}
for v in St[v]
do for u in Lk[v]
do if St[u] C Lk[v]
then ADD u to Y (v)

© 00 1 O Ut = W N =

34

10 Append Y (v) to YY
11 L+ VUu((-V)
12 return [St, Lk, YY sV M, L, sl]

2.7.3 DeleteVerticesFromGraph Function

The input of the function DeleteVerticesFromGraph(St,V, E) is the list of stars
St, the list of vertices V, and the list of edges F. It computes graphs '\ St(v), for
all vin V, with NV the list of all lists of vertices of I"\St(v) and NE the list of all

lists of edges of I'\St(v). The algorithm carries out the following instructions:

DELETEVERTICES(St, V, E)
1 sV < Size(V)

2 M < Size(FE)

3 forwvin V(I')

4 do for e in E(I)

5 do if e is not adjacent to u € St(v)
6 then ADD e to H1

7 ADD vertices incident to edges in H1 to H2
8 Append H1 to NE and H2 to NV

9 return [NV, NE,sNV sNE|

2.7.4 ConnectedComponentsOfGraph Function

The input of the function ConnectedComponents0fGraph(G1, G2) is the list of ver-
tices G1 and the list of edges G2 of a graph B. It computes the list of connected
components AllComps of the graph B and its size sAllIC'omps. Also it computes the
list of non-isolated connected components NonlsolatedComps and the list of iso-
lated connected components [solatedComps of the graph B. In addition it computes
the lists D and F' the list of vertices of NonlsolatedComps and [solatedComps re-

spectively. The algorithm carries out the following instructions:

CONNECTEDCOMPONENTSOFGRAPH(G1, G2)

1 M <« LENGTH(G?2) > G2 is edge list of a simple graph B.
2 foriin {1,..., M}
3 do D <~ COMPUTEVERTEXLISTOFNON-ISOLATED COMPONENTS(B)

35

4 sD + S1zg(D)
5 foriin {l,...,M}
6 do W <~ COMPUTEADJACENCYMATRIX(B)
7 foriin {1,...,sD}
8 do if color[s] =0 > color is a list of size sD with entries the
> numbers of non-isolated components.
9 then count < count + 1
> count is a specific number representing
> the vertices of each component.
10 colorli] < count
11 NonlIsolatedComps <— DFsVIsIT(i, W, sD, count, color)
12 for kin {1,..., count}
13 do for i in {1,...,sD}
14 do ADD non-isolated component with its inverse to new list P
15 Append P to the list NonlsolatedComps

16 F < DIFFERENCE(G1,D) ©> F is vertices of isolated components

17 sF < S1zE(F)

18 foriin {1,...,sF}

19 do IsolatedComps < COMPUTEISOLATED COMPONENTS(B)

20 AllComps < COMPUTEALLCOMPONENTS(B)

21 return [AllComps, sAllComps, NonlsolatedComps, D, IsolatedComps, F|

2.7.5 DFSVisit Function

The input to DFSVisit(i, W, sD, count, color) is a vertex i of graph B, the weight
matrix W of B, the size sD of the vertex list of the graph B, an index count,
corresponding to a connected component of B and a list color. The s** item of color
is the (number of the) component of B to which the s vertex of B belongs (or is
zero if s has not yet been processed). The function implements the depth search
algorithm to construct the connected components (having more than one vertex)
of the graph B. On input a vertex ¢ with count j > 0, the algorithm checks to see if
there is a vertex s, joined to i by an edge, with color[s] = 0. On finding such an s the

algorithm sets color[s| = count and calls itself with input (s, W, sV, count, color).

36

DrsVisit(i, W, sD, count, color)
1 forsin {l,...,sD}

2 do if color[s] =0 and W1i][s] =1

3 then color(s] = count

4 DrsVisit(s, W, sD, count, color)
5 END

2.7.6 WhiteheadAutomorphismsOfSecondType Function

The inputs of the function WhiteheadAutomorphismsOfSecondType(NV, NE, St,
YY) are the lists of vertices NV and the list of edges N E of the subgraphs I\ St(v) =
(NV(v), NE(v)) for all v in V| the list of stars St(v), and the list YY defined in
StarLinkDominateOfVertex above. It computes the list A of type (2) Whitehead
automorphisms which forms the first part of the set of generators of Aut(Gr). Also
it computes a list T of names of elements of A (the i'" element of T is the name of

the " element of A). The algorithm carries out the following instructions:

WHITEHEADAUTOMORPHISMSOFSECONDTYPE(NV, NE, St, YY)
1 sNE < S1zE(NE)

2 for hin {1,...,sNE} >heV
3 do G < NE(h)
4 R3 <~ CONNECTEDCOMPONENTSOFGRAPH(G1, G2)
5 Comps < R3(3) > C'omps is non-isolated components
6 sComps < S1ZE(Comps)
7 D + R3(4)
8 sD < S1ZE(D)
9 S <« St(h)
10 DYY « YY(v)uYY(V)!
11 sDYY < S1ze(DYY)
12 Ls < [[]]
13 for tin {1,...,sDYY}
14 do zn + DYY(t)
15 Ls <~ UNIONELEMENT(Ls, zn, S)
16 sAQ < S1zZE(Ls)
17 for i in {1,...,sAQ}
18 do ADD the non empty elements of Ls to new list L3

37

19 sMV < MV (h)

20 for jin {1,...,sMV}

21 do if MV(h)(j) ¢ D and sMV # 1 and MV (h) # YY (h)
22 then ApD [MV (h)(j)] and [MV (h)(j)] to Ls3

23 ApD [MV (h)(5), MV (h)(5)~'] to Ls3

24 for each list W in L3

25 do App W U {h} to new list L4

26 for X in L4

27 do App (X\{h})U{h™'} to new list L5

28 AA < CONCATENATION(LA4, L5)

29 ADD the non empty elements of AA to new list A

30 sA <« SizE(A)

31 foriin {1,...,sA}

32 do ADD A, the name of the i** element of A to new list 7'
33 return [A, T, sA]

2.7.7 WhiteheadAutomorphismsOfFirstType Function

The input of the function WhiteheadAutomorphismsOfFirstType(FE,sV,sA,T) is
the list of edges E, the size of the list of vertices sV, the size of the list A of type (2)
Whitehead automorphism of I', defined above, and the list T, also defined earlier.
It computes the list Gens of the type (1) Whitehead automorphisms which forms
the second part of the set of generators of the automorphism group of Gy, and
then computes the list of the generators gens of Aut(Gr) with its size sgens. The
subgroup Aut! (Gr) of Aut(Gr) consists of graph automorphism: that is, elements
7 € Aut(Gr) such that 7| is a graph automorphism. The algorithm carries out the

following instructions:

WHITEHEADAUTOMORPHISMSOFFIRSTTYPE(E, sV, sA, T)

Gr <~ GRAPHAUTOMORPHISMGROUP(E)

HH <+ AsGroupr(Gr)

GHH < GENERATORSOFGROUP(HH)

KK < IsoMORPHISMFPGROUPBYGENERATORS(HH,GHH)
HHH + IMAGE(KK)

rels2 < RELATORSOFFPGROUP(HHH)

S UL =W N =

38

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Remark 2.7.1. We have an important notes before we start describe the functions

srels2 <~ RELATORSOFFPGROUP(rels2)
F < GENERATORSOFGROUP(HHH)
SF <+ S1zE(F)
for each R in rels2

do zz + EXTREPOFOBJ(R)

ADD zz to new list Relsl

sRelsl < S1zE(Relsl)
for iin {1,...,sF}

do ADD f; the name of the i'" element of F to new list Gens3
relvalof F' < GENERATORSOFGROUP(HH)
srelvalof F < S1zE(relvalof F)
for vinV

do /2 <~ COMPUTEINVERSIONAUTOMORPHISMOFEACHVERTEX

ADD [2 to new list /1

for Ain {1,...,11}

do ADD A, the name of the i*” element of I1 to new list Gens2
sGens2 < S1ZE(Gens2)
Gens < CONCATENATION(Gens2, Gens3)
sGens < S1ZE(Gens)
for i in {1,...,sGens}

do ADD Gens(i) to new list gens
genss <— CONCATENATION(T, Gens2)
gens <— CONCATENATION(T, Gens)
sgenss < SIZE(genss)
sgens <— SIZE(gens)

return [gens, sgens, sgenss, Gens3, relvalofF, srelvalofF, Rels1, sRels1, sGens2]

that compute the set of relations as follows:

(1) The relators are represented using sequences of the form R = [p, e1ny, . .

where p,e;,n; are integers, ¢, = +£1, 0 < p < 2and 1 < n;. f p=0or1
then the sequence R corresponds to the word Wx = ((ASL)PF s x (A%)PH),
and R is called the index of Wx. For example relators of type (R1) have form
(A,a) x (A—a+a ' a ') =1 and have indices of form [0,idx1,idxr2] where

39

© Eknk]7

idrl =(A,a) and idr2 =(A —a+a ', a™!). Sequences with p = 1 occur only

in Section 2.7.8 below.

If p = 2 then the sequence R corresponds to a relator of type (R5). These have
the form Wx = 1 where Wi = (A—a+a™',b)x(A,a)xoapx (A—b+b"" a)™,
and the corresponding sequence is [2,idz1, idx2, —idx3,idx4, a, b, a] where,
idrl =(A—a+a'b),

idr2 =(A,a),

idr3 =(A —b+0b"' a)"!. In this case R is called the index of Wrp.

One type of graph isomorphisms of I" is an inversion, g, : © € V(I) given
by gu(z) = 27" and gy =y for each y € V(I') \ {z}. All inversions are type
(1) Whitehead automorphisms. The subgroup (g, : x € V(I")) is denoted I.

The inversions satisfy the relations of the form:

Rll={g2=1:2€V()}

2.7.8 RelationsOfGraphAutomorphisms Function

The inputs of the function Relations0fGraphAutomorphisms(sA, sgenss, relvalo—
fF,sV,sGens2) are the size sA of the list A of definition of the second type of

generator, the size of the list genss defined above which is called sgenss, the list

of generators of the graph automorphism relvalof F' from above, sV and sGens2 of

lists V and Gens2. Compute the row matrix of indices Rels of the generators which

forms the relations of this type, that related to the graph automorphism with its

size sRels. The algorithm carries out the following instructions:

RELATIONSOFGRAPHAUTOMORPHISMS(sA, sgenss, relvalof F, sV, sGens2)

1
2
3
4
o}
6

~J

for i in {sA+1,..., sgenss}

do ADD [1,i] to new list Rels > 1 means the generators of power two

for i in {sA+1,...,sgenss}

do for j in {sA+1,...,sgenss}
do if i # j
then ADD [0, —i, —7,1, j| to the list Rels

> 0 means generators here of power one

srelvalof F' < S1zE(relvalof F)

40

8 foriin {1,...,srelvalofF'}

9 do d < RELVALOFF([i])
10 F1«+d™!
11 ADD F1 to new list F'F
12 foriin {1,...,srelvalofF}
13 do for j in {1,...,sV}
14 do PP «+ ONPoINTS(j, FFi])
15 idrl < i+ sA + sGens2
16 ida2 <+ sA+ j
17 idr3 < sA+ PP
18 ADD [0, —idzl,idz2,idz1,idz3] to the list Rels

19 sRels < Rels
20 return [Rels, sRels]

2.7.9 APCGRelationR1 Function

The inputs of the function APCGRelationR1(sV, A, T, Rels) are the size of the list
of vertices sV, the list A defined earlier, the list of generators T from Section 2.7.6,
and the list of row matrices of indices of the generators Rels. It computes the list
of indices [0, idx1,idx2] of relators of type (R1) of Definition 2.5.1 and adds them
to the list Rels. We can replace Rels by empty list if we want just the list of row
matrices of indices of (R1). In addition it calculates the size of the list Rels. It

returns [Rels, sRels].

2.7.10 APCGRelationR2 Function

The inputs of the function APCGRelationR2(A, T, Rels, St) are the list A is defined
earlier, list of the generators T of Aut(Gr) from Section 2.7.6, the list of row matrix
of the indices of the generators Rels, and the list of stars St. It computes the list of
indices of the generators [0, idz1,idx2, —idz3] of relators of type (R2) of Definition
2.5.1 and adds them to the list Rels. We can replace Rels by empty list if we want
just the list of row matrices of indices of (R2). In addition it calculates the size of
the list Rels. It returns [Rels, sRels].

41

2.7.11 APCGRelationR3 Function

The inputs of the function APCGRelationR3(A, T, Lk, Rels) are the list A is defined
earlier, the list of the generators 7" of Aut(Gr) from Section 2.7.6, the list of links
Lk, and the list of row matrix of the indices of the generators Rels. It computes the
list of the indices [0, idx1,idx2, —idx1, —idx2] of relators of type (R3) of Definition
2.5.1 and (R3a) and adds them to the list Rels. We can replace Rels by empty list
if we want just the list of row matrices of indices of (R3). In addition it calculates
the size of the list Rels. It returns [Rels, sRels].

2.7.12 APCGRelationR4 Function

The inputs of the function APCGRelationR4(A, T, Lk, Rels) are the list A is defined
earlier, the list of the generators 7" of Aut(Gr) from Section 2.7.6, the list of links
Lk, and the list of row matrix of the indices of the generators Rels. It compute
the list of indices [0,idx1,idx2, —idxl, —idx3, —idx2] of relators of type (R4) and
(R4a) of Definition 2.5.1 and adds them to the list Rels. We can replace Rels by
empty list if we want just the list of row matrices of indices of (R4). In addition it

calculates the size of the list Rels. It returns [Rels, sRels].

2.7.13 APCGRelationR5 Function

The inputs of the function APCGRelationR5(A, St, Lk, Rels, T) are the list A is
defined earlier, the list of stars St, the list of links Lk, the list of row matrix of
the indices of the generators Rels , and the list of the generators 7' of Aut(Gr)
from Section 2.7.6. It computes the list of indices [2,idx1, idx2, idxd, —idx3, j, k, j]
of relators of type (R5) of Definition 2.5.1, where 2 means that the idz4 refers to
the location of A’s (which are start at sA + 1 and end at sA + sGens2), j and k
refer to the vertex or its inverse, and adds them to the list Rels. We can replace
Rels by empty list if we want just the list of row matrices of indices of (R5). In

addition it calculates the sizes of the list Rels. It returns [Rels, sRels].

2.7.14 APCGRelationR8 Function

The inputs of the function APCGRelationR8(V, A, T, Lk, Rels) are the list of vertices
V', the list A is defined earlier, the list of the generators T' of Aut(Gr) from Section
2.7.6, the list of links Lk, and the list of row matrix of the indices of the generators

42

Rels. Tt computes the lists of indices [0,idx1, —idx3, —idx2], [0, idz1, —idz2], and
[0, idx1] of relators of type (R8) of Definition 2.5.1 and adds them to the list Rels.
We can replace Rels by empty list if we want just the list of row matrices of indices
of (R8). In addition it calculates the sizes of the list Rels. It returns [Rels, sRels].

2.7.15 APCGRelationR9 Function

The inputs of the function APCGRelationR9APCG RelationRI(V, A, T, Lk, Rels)
are the list of vertices V, the list A is defined earlier, the list of the generators T
of Aut(Gr) from Section 2.7.6, the list of links Lk, and the list of row matrix of the in-
dices of the generators Rels. It computes the list of indices [0, idx1, idx2, —idx1, —idx2]
of relators of type (R9) of Definition 2.5.1 and adds them to the list Rels. We can
replace Rels by empty list if we want just the list of row matrices of indices of (R9).

In addition it calculates the sizes of the list Rels. It returns [Rels, sRels].

2.7.16 APCGRelationR10 Function

The inputs of the function APCGRelationR10(V, A, T, Lk, Rels) are the list of ver-
tices V, the list A is defined earlier, the list of the generators T' of Aut(Gr) from
Section 2.7.6, the list of links Lk, the list of row matrix of the indices of the gen-
erators Rels. It computes the list of indices [0,idx1,idx2, —idx1, —idx2, —idx3] of
relators of type (R10) of Definition 2.5.1 and adds them to the list Rels. We can
replace Rels by empty list if we want just the list of row matrices of indices of (R10).
In addition it calculates the sizes of the list Rels. It returns [Rels, sRels].

2.7.17 APCGFinalReturn Function

The input of APCGFinalReturn(gens, Rels, sRels, sRelsl, Relsl, sgenss) are the list
of generators gens, the list of the indices of the relators Rels, its size sRels, the list of
the matrices indices of the relators Rels1, it size sRels1 and sgenss the size of the list
genss defined in Section 2.7.7. It forms the list of relations rels from the list Rels
(computed in the functions Relations0fGraphAutomorphisms, APCGRelationR1,
APCGRelationR2,..., APCGRelationR10). For each index R of one of these lists the
relator W is added to rels. It also forms the list of relations relsl from the list Relsl
(computed in the functions WhiteheadAutomorphismsOfFirstType) and adds them

to the list relsl, and then adds it to the list of relations rels. At the same time it

43

computes the sizes of rels and relsl. It computes the free group F' on gens defined
in Section 2.7.7. Also it computes the finitely presented group GGG = F/rels
where F' is the free group on the generators gens defined in Section 2.7.7 and rels
is the list of relations which are defined on the generators gens. Finally, it returns
[F, gens, rels, GGG, sgens, srels]. In fact this function forms the output of one of
the main functions which is FinitePresentationOfAutParCommGrp in our package

Aut ParCommGrp. The algorithm carries out the following instructions:

APCGFINALRETURN(gens, Rels, sRels, sRels1, Relsl, sgenss)

1 F < FREEGROUP(gens)
2 gens <~ GENERATORSOFGROUP(F))
3 sgens <— SIZE(gens)
4 foriin {1,...,sRelsl}
5 do GHK < S1zE(Relsl[i))
6 GHK1+ GHK/2 > Find real length of each single relation
7 for jin {1,... GHK1}
8 do FORrM relsl the list of relators of graph group from Relsl
9 srelsl < S1zE(relsl)
10 for iin {1,...,sRels}
11 do GHK <« S1ZE(Relsli])
12 ForM rels the list of relators of the group from Rels
13 foriin {1,...,srelsl}
14 do ADD the list relsl to the list rels
15 srels < S1zZE(rels)
16 GGG < F/rels
17 return [F, gens, rels, GGG, sgens, srels]

2.7.18 FinitePresentationOfAutParCommGrp Function

The function FinitePresentationOfAutParCommGrp(V, F) is the first main func-
tion in our algorithm. It provides a finite presentation for automorphism group
Aut(Gr) of Gp. The input of this function is a simple graph I' = (V| E), where
V and F represent the set of vertices and the set of edges respectively. It returns

[gens, rels, GGG]. The algorithm carries out the following instructions:

44

FINITEPRESENTATIONOFAUTPARCOMMGRP(V, E)

1 if I' is simple graph

2 then CALL THE FUNCTION STARLINKDOMINATEOFVERTEX

3 CALL THE FUNCTION DELETEVERTICESFROMGRAPH

4 CALL FuNCcTION WHITEHEADAUTOMORPHISMSOFSECONDTYPE
5) CALL FuNcTION WHITEHEADAUTOMORPHISMSOFFIRSTTYPE
6 CALL THE FUNCTION RELATIONSOFGRAPHAUTOMORPHISMS
7 CALL THE FuncTiON APCGRELATIONRS

8 CALL THE FuncTiION APCGRELATIONR1

9 CALL THE FuncTiION APCGRELATIONR2

10 CaLL THE FuncTiON APCGRELATIONR3

11 CALL THE FuncTiON APCGRELATIONRA4

12 CALL THE FuncTiON APCGRELATIONRS

13 CaALL THE FuncTiON APCGRELATIONR9

14 CALL THE FunNncTiON APCGRELATIONR10

15 CALL THE FuNcTION APCGFINALRETURN

16 else return “The graph must be a simple graph”
17 return [gens, rels, GGG

Where,
(i) gens: is a list of free generators of the automorphism group Aut(Gr) of Gp.

(ii) rels: is alist of relations in the generators of the free group. Note that relations

are entered as relators, i.e., as words in the generators of the free group.

(ii) GGG := F/rels: is the automorphism group Aut(Gr) of G given as a finitely

presented group with generators gens and relators rels.

For example,

gap> B:=FinitePresentation0fAutParCommGrp([1,2],[[1,2]]1);

[[A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, f1 1, [A972, A1072,
A9"-1xA10"-1%A9%A10, A107-1%xA9"-1%A10%A9, f1°-1%xA9xf1%A10,

f17-1%xA10%f1*%A9,A7T*xA1*xA10*%A3" -1 ,AB*A2*%A10%xA4"-1,A8*A3%xA10*A1" -1,
AG*AA*A10xA27 -1, A3xASxAOxA7" -1, A1xA6xA9*xA8" -1, A4xA7TxA9*xA5"-1,
A2xABxA9xA67-1, A1xA2, A3%A4, ABxA6, A7*A8, A1xA3, A2xA4, A3xA1,

45

AdxA2, ABxA7, A6%xA8, AT7*A5, A8%A6, Al1xA4"-1, A2%xA37-1, A3%A2°-1,
A4xA17-1, AB5*A8"-1, A6*%A7"-1, A7*A67-1, A8*A5"-1, f1°2],

<fp group on the generators [Al, A2, A3, A4, A5, A6, A7, A8, A9,
A10, f1 1>]

gap> B:=FinitePresentationOfAutParCommGrp([1,2],[]);

[[A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14,
f1], [A1372, A1472, A137-1xA14"-1xA13%A14, A14"-1*%A137-1xA14%A13,
f17-1xA13*f1*%A14,£f17°-1%A14*f1*A13,A0*%A1*A14*xA3" -1 ,A7*xA2*xA14xA4" -1,
A10*A3%A14%A17-1 A8*A4*A14%A27 -1, A3xA7*A13%xA9" -1 6 A1*xA8*A13%A10"-1,
A4xA9xA13%xA7" -1, A2xA10%A13%A87-1, A1xA2, A3xA4, A5xA6, AT7*A8,
A9%A10, A11%A12, A1xA3%A5°-1, A2*xA4xA6~-1,A3%A1%xA5" -1 6 A4*xA2%A6"-1,
A7xA9%A117-1, A8*xA10%A127-1, A9*A7*A11"-1, A10*xA8*A12"-1,
A1xA4"-1%xA5"-1, A2%xA37-1%A6"-1, A3*A2"-1%A5"-1 A4xA1"-1%A6"-1,
<identity ...>, <identity ...>, A7*A107-1xA11"-1, A8%A9"-1%A12"-1,
A9xA8~-1xA117-1, A10*A7"-1%A127-1, <identity ...>, <identity ...>,
A1xA11xA17-1%xA11"-1%xA5"-1, A2%A11*%A27-1%xA11"-1%xA6"-1,
A3xA12%xA37-1%A127-1%xA57-1, A4*A12%A4"-1%xA127-1%xA6"-1,
TxAB*A7T"—1xA5~-1xA11"-1, A8*AB*A87-1%A5"-1%xA12"-1,
A9xA6*A9"-1%A6"-1xA11"-1, A10*A6%xA10"-1*A6"-1*A12"-1, f1°2],

<fp group on the generators [Al, A2, A3, A4, A5, A6, A7, A8, A9,
A10, A11, A12, A13, A14, f1 1> 1]

Remark 2.7.2. We use the standard GAP function AssignGeneratorVariables(G)
to makes our generators readable by GAP. If GG is a group, whose generators are
represented by symbols this function assigns these generators to global variables
with the same names. The aim of this function is to make the generators work
interactively and more conveniently with G AP; for more information see (37.2.3) of
the GAP Manuals.

For example from the output of FinitePresentationOfAutParCommGrp([1, 2],

[[1,2]]) above we have:

gap> G:=B[3];
<fp group on the generators [Al, A2, A3, A4, A5, A6, A7, A8, A9,
A10, f1 1>

46

gap> AssignGeneratorVariables(G);
#I Assigned the global variables [Al, A2, A3, A4, A5, A6,A7, A8,
A9, A10, f1]

2.7.19 TietzeTransformations Function

The aim of the function TietzeTransformations(G) is to simplify the presen-
tation of the finitely presented group G, i.e., to reduce the number of genera-
tors, the number of relators and the relator lengths. The input of the function
TietzeTransformations is a finite presentation of G. The operation returns a
group H isomorphic to GG, so that the presentation of H has been simplified using

Tietze transformations. The algorithm carries out the following instructions:

TIETZETRANSFORMATIONS(G)

1 hom < ISOMORPHISMSIMPLIFIEDFPGROUP(G)
2 H + IMAGE(hom)

3 R < RELATORSOFFPGROUP(H)

4 return [H, R|

For example, using the output of FinitePresentationOfAutParCommGrp([1, 2],
[[1,2]]) in Section 2.7.18 we have that,

gap> G:=B[3];

<fp group on the generators [Al, A2, A3, A4, A5, A6, A7, A8, A9,
A10, f1 1>

gap> D:=TietzeTransformations(G);

[<fp group on the generators [A1, A10, f1 1>, [A1072, f1°2,
A10*f1xA10%f1xA10*%f1xA10*f1, A10%A1"-1*xf1xA10*xf1xA1"-1%A10*%A1"-1]]

47

Chapter 3

Finite Presentation for the

Subgroup Conj(Gr)

3.1 Introduction

The subgroup of Aut(Gr), which we consider here, plays an important role in the
structure of Aut(Gr): see for example [34], [35], [38], [57] and [61]. Recall
that the set of all basis conjugating automorphisms forms a subgroup Conj(Gr)
generated by partial conjugations (see Chapter 2). A finite presentation for the the
subgroup Conj(Gr) is given in [70].

Our aim in this chapter is to develop an algorithm using GAP system that
provides a finite presentation for the subgroup Conj(Gr). In addition, we find
Tietze transformations to simplify the presentation of Conj(Gr); using a GAP
function. In order to do this work we will give a description of the presentation of
the subgroup Conj(Gr) according to Toinet’s work [70].

Note that amongst the partial conjugations we have the inner automorphisms;

so some of the generators of Conj(Gr) are inner automorphisms.

3.2 Finite Presentation for Conj(G)

In [70], Toinet computed a finite presentation for the subgroup Conj(Gr) of
Aut(Gr) generated by partial conjugations. In this section we will describe this

presentation following Toinet’s paper.

Let {2 be the set of Whitehead automorphisms. We set {2; to be the set of White-

48

head automorphisms of type (1), and {25 to be the set of Whitehead automorphisms
of type (2). We also denote by (2, the set of long-range Whitehead automorphisms.

Note that, as we have mentioned in Chapter 2, Day in [24] proved that Aut(Gr)
is generated by the Whitehead automorphisms, with the relations (R1) to (R10)
given in Definition 2.5.1.

In following we will apply the definition of peak reduced (see 2.6.1).

Theorem 3.2.1. [70] The subgroup Conj(Gr) has a presentation (S|R) where S is
the set of partial conjugations c,y, forx € L andY a non-empty union of connected

components of I'\st(x)), and R is the finite set of relations:

(C1) (czy) ™t =cory,
(02) Ce,YCr.Zz = CpYUZ Zf YNZ= ®7

(C3) crycyz =cyzcey ife @& Z,y¢Y, z#y,y ', and at least one of Y N Z =)
ory € lkr(x) holds,

(04) 'yyca:,Y’YJI = Cgy ny ¢ Y: x 7é yvyil'

Proof. The proof is based on arguments developed by McCool in [56] and [57]
(similar arguments were used in [24]). Let S denote the set of partial conjugations
czy where z € L. Let R denote the set of relations given in the statement of Theorem

3.2.1. We shall construct a finite connected 2-complex K with fundamental group
Conj(Gr) = (S| R).

We identify a partial conjugation with any of its representatives in (2. Note
that, for every (A, a) € 25, (A,a) € S if and only if (A —a)™' = A —a.

Set V = {vy,...,v,}(n > 1). Let W denote the n-tuple (vy,...,v,). The set
of vertices K(© of K is the set of n-tuples a - W, where « ranges over and set {2
of type (1) Whitehead automorphisms. For and «, 8 € 2, the vertices o - W and
Ba- W are joined by a Directed edge (- W, Ba- W 3) labelled 5. Note that, at this
stage, K is just the Cayley graph of (. Next, for any « € (21, and (A, a) € S, we
add a loop (- W,ao-W; (A, a)) labelled (A, a) at «- W. This defines the 1-skeleton
KW of K.

We shall define the 2-cells of K. These 2-cells will derive from the relations
(R1)-(R10) of Definition 2.5.1. First, let K be the 2-complex obtained by attaching

49

2-cells corresponding to relation (R7) of Definition 2.5.1 to K*). Note that, if C
is the 2-complex obtained from K; by deleting the loops (a- W, - W3 (A, a))(a €
,(A,a) € S), then C is just the Cayley complex of (2, and therefore is simply
connected. We now explore the relations (R1)-(R5) and (R8)-(R10) of Definition
2.5.1 to determine which of these will give rise to relations on the elements of S.

Relation (R1) of Definition 2.5.1 will give rise to the following:

(Aa) ' =(A—-a+atat) (3.2.1)

for (A,a) € S.
Relation (R2) of Definition 2.5.1 will give rise to

(4,0)(B,a) = (AU B, a) (3.2.2)

for (A,a),(B,a) € S, with AN B = {a}.
Relation (R3) of Definition 2.5.1 will give rise to

(A,a)(B,b) = (B,b)(A,a), (3.2.3)

for (4,a),(B,b) € S, such that a ¢ B,a™ ¢ B,b¢ A, b~' ¢ A, and at least one
of (a) AN B =10 or (b) b € lkr(a) holds.

From relation (R4) of Definition 2.5.1, no relations arise. Indeed, suppose that
(A,a),(B,b) are in S with a™* ¢ B,b¢ A, and b=' € A. Then b~! = a (because
(A—a)™' = A—a). But then a=! = b € B, leading to a contradiction with our
assumption on a.

From relation (R5) of Definition 2.5.1, no relations arise (by the same argument
as above).

From relation (R8) of Definition 2.5.1, we obtain a relation which is a direct
consequence of (3.2.1) and (3.2.2).

Relation (R9) of Definition 2.5.1 will give rise to the following:

(A, a)(L — thr(b) — b1, b)(A, @)™ = (L — Ck(b) — b, b) (3.2.4)

for (A,a) € S, and b € L such that b ¢ A, and b ' ¢ A.

From relation (R10) of Definition 2.5.1, no relations arise (by the same argument
as above).

We rewrite the relations (3.2.1)-(3.2.4) in the form

50

€k €1 __
of ..ot =1

where o1, ...,0, € Sand €y,...,¢; € {—1,1}. Let K5 be the 2-complex optioned
from K by attaching 2-cells corresponding to the relations (3.2.1)-(3.2.4). Note that
the boundary of each of these 2-cells has the from

(- Wyao- W50 a-Wya-Wio9)? .. (a- Wa- W5 04)F,

for a € (.
Finally, relation relation (R6) of Definition 2.5.1, will give rise to the following:

a(A,a)at = (a(A), a(a)), (3.2.5)

for (A,a) € S, and o € §2;. Then K is obtained from K, by attaching 2-cells
corresponding to the relations (3.2.5). Observe that the boundary of each of these
2-cells has the form

(B-W, BV ((A), a(a)) " (B-W, 0~ 8-W;)~ (0 BT, 0 IV (A, 0)) ("
W,5-W;a), for g€ (.

It remains to show that m (K, W) = Conj(Gr) = (S | R).

Let T be a maximal tree in the 1-skeleton K" of K. Note that 7T is in fact a
maximal tree in the 1-skeleton C™") of C (i.e., the Cayley graph of £2;). We compute
a presentation of 71 (K, W) using T'. For every vertex V in K, there exists a unique
reduced path pv from W to V in T'. To each edge (V1, Vs;) of K, we associate the
element 7 (K, W) represented by the loop pv;(V1, Va; a)p(/;. We again denote this
by (V1, Va; «). Evidently these elements generate 71 (K, W). Now, since C' is simply

connected, we have

(- W, Ba- W3 8) =1 (in m(K,W)), (3.2.6)

for all a, 5 € (2.

Let P be the set of combinatorial in the 1-skeleton K™ of K. We define a map
o : P — Aut(Gr) as follows. For an edge e = (Vi, Va;), we set p(e) = «, and
for a path p = ef ...e}', we set <p/(\p) = pler)* ... p(e1). Clearly, if p; and po
are loops at W such that p; ~ po, then @(p1) = P(p2). Hence, @ induces a map
o :m (K, W) — Aut(Gr). It is easily seen that ¢ is a homomorphism. Then we see
from (3.2.6) that ¢ maps m (K, W) to Conj(Gr). It follows immediately from the

51

construction of K that ¢ : m (K, W) — Aut(Gr) is surjective. Thus, it suffices to
show that ¢ is injective. Let p be a loop at W such that ¢(p) = 1. We have to show
that p ~ 1. Write p=¢}*...e7', where k > 1 and ¢; € {—1,1} foralli € {1,... k}.
Using the 2-cells arising from (3.2.1) and the fact that 2, = (21, we can restrict
our attention to the case where p = ey ...e1. Set a; = p(e;) for all i € {1,...,k}.
Note that oy € SU 2 C 2 for all i € {1,... k}.

Let Z be a tuple containing each conjugacy class of length 2 of G, each appearing
once. We prove the following:

claim. We have p ~ ¢/ ... ¢/, such that, if we set o = p(e;) for alli € {1,...,},
then (o} € 2y or (o € 25N Inn(Gr) for each i € {1,...,1}.

First, we examine the case where oy ...a; is peak-reduced with respect to Z.

We claim that the sequence

|Z|7|a1'Z’7|a2a1'Z|7"'7|ak—l-"al'Z|7|ak‘-'al'Z|:|Z|

is a constant sequence. Suppose the contrary. By Lemma 2.6.4, | Z | is the least
element of the set {| - Z | | @ € (£24)}. Hence we can find ¢ € {1,...,k — 1} such

that we have

|O{i_1...041'Z|§|Oéi...O[1'Z|,
|Oéi+1...Oél'Z’S|OK¢...OK]'Z‘,

and at least one of these inequalities is strict, which contradicts the fact that the

product ay ...y is peak-reduced. Therefore we have

‘O[Z'...Oél‘Z‘:‘Z’,

for all indices ¢ € {1,...,k}. We argue by induction on i € {1,...,k} to prove
that {a; ... a1} Z is a tuple containing each conjugacy class of length 2 of G, each
appearing once. The result holds for ¢ = 0 by assumption. Suppose that ¢ > 1, and
that the result holds for i — 1. Observe that a type (1) Whitehead automorphism
does not change the length of a conjugacy class. Thus, we can assume that «; is a
type (2) Whitehead automorphism. Since | ayo;_1...0q0 - Z |=| ay_1...0q0 - Z |,
is trivial, or an inner automorphism by Lemma 2.6.4. Thus, the result holds for i.

In this case, p has already the desired from.

92

We now turn to prove the claim. We define

hy, =max{| a;...cr - Z || i €{0,... k}}

and

N,=|{i]|ie{0,...;ktand | a;...a1 - Z |=h,} | .

We argue by induction on h,. The base of induction is | Z |, i.e. the smallest
possible value for h, by Lemma 2.6.4. If h, =| Z |, then the product oy ... is
peak-reduced and we are done. Thus, we can assume that h, >| Z | and that the
result has been proved for all loop p" with h, < h,. Let i € {1,...,k} be such that
a; is a peak of height h,. An examination of the proof of Lemma 2.6.5 shows that
eir1€; ~ fj ... f1 such that, if we set 8, = p(fy) for all k € {1,...,j}, then

| ﬂ]@ ../31041‘_1 .o 4 |<| QoG_1...00 4 | (327)

for all k € {1,...,7 — 1}. Therefore, we get

/
pNek---€i+2fj---fleifl--'el:pa

and a new product ay ... a;428; ... Biag—1...a1. We argue by induction on N,,.
If N, =1, then (3.2.7) implies that h, < h, and N, < N,, and we can apply the
induction hypothesis on n,. This proves the claim.

Hence, using the 2-cells arising from the relations (3.2.5), we obtain

p~hs...hig,...q1,
where, if we set
v =¢(g;) for all i € {1,...,r} and 6; = p(h;) for all j € {1,...,s},

then d; € (2 for all i € {1,...,s} and v, € 2N Inn(Gr) for all j € {1,...,7}.
Using relation (3.2.6), we obtain p ~ g,...g1. Set Z = Nyepst(v). It follows from
Servatius’ Centralizer Theorem (see [69]) that the center Z(Gr) of G is the special
subgroup of G generated by Z. Let I be the full subgraph of I" spanned by V\ Z.
We have

33

Gp/ ~ Inn(Gp),

v =¢(g;) for all i € {1,...,r} and 0; = p(h;) for all j € {1,...,S},

where the isomorphism is given by v — w, (see, for example, [2, Lemma 5.3]).
Write

vi = (L —lkr(c;) — ¢ty),

where ¢; € W\ Z)U(V\ 2) (i € {1,...,r}). Since v, ...y = 1 (in Inn(Gr)),
we have ¢,...c; = 1 (in Gpv). Therefore ¢, ...c; is a product of conjugates of
defining relators of G. Using the 2-cells corresponding to the relations (3.2.1) and
(3.2.3)(b), we deduce that p ~ 1. We conclude that ¢ is injective, and thus

Conj(Gr) = m (K, W).

Now, using the 2-cells arising from the relations (3.2.5) (with o = /), we obtain

(o W,a-W;(a(A), a(a)) = (a- W, W; 0~) (W, W; (4,0)) (W, - W;a),

and then, using (3.2.6)

(- W,a- Wi (a(A), aa))) = (W, W; (4, q)), (3.2.8)

for all @ € (21, and (A,a) € S. It then follows that Conj(Gr) is generated
by the (W, W; (A, a)), for (A,a) € S. We identify (W, W:;(A,a)) with (A, a) for
all (A,a) € S. Any relation in Conj(Gr) = m (K, W) will be a product of conju-
gates of boundary lables of 2-cells of K. Then, using relation (3.2.8) and identifying
(W, W; (A, a)) with (A, a), we see that these relations (3.2.1)-(3.2.4) aboe are equiv-

alent to those of R. We have shown that Conj(Gr) has the presentation (S | R).
[

Now we will give a small example to find a finite presentation of a subgroup

Conj(Gr) of Aut(Gr),

o4

Example 3.2.0.1
Consider the graph I" of Figure 3.1

T

X2

xs3

Ty
Figure 3.1: A Graph I

Then V = {x1,x9, 23,24} and E = {{x1,x2},{x3,24}}. Let Conj(Gr) be a
subgroup of Aut(Gr). Then,
(1) St(x1) = {1, z2},
Lk{z1} = {z2},
Compsl = {z; ', x5", 3,74} = the connected components of 1"\ St(x1).
(2) St(xz) = {2, 21}
Lk’(l‘g) = {Il},

Comps2 = {x; ', x3", x3, 24} = the connected components of '\ St(x5).
(3) St(xg) = {.’133,374},

Lk’([L‘g) = {ZL‘4},

Comps3 = {x5 ", 27", 21, 25} = the connected components of '\ St(x3).
(4) St(xs) = {wa, 23},

Lk’(!lf4) = {1‘3}

Comps4 = {x5', 7", 21, 25} = the connected components of '\ St(x).

e We find Y which is a non-empty union of connected components of I'\st(z),
where x € L:
Y = {Yi = {51321, xi’jla T3, 1’4}, YVQ = {$51, xfla Ty, $2}}

e Now, we find ¢, y, the partial conjugations that form the first part of the set

of the generators of Conj(Gr):

Cm,Y = {Cx2*17yl = {{x;l,l‘gl,$3,$47ZE2_1}7$2_1},

35

iy, = Hai gt wg, e, a7} 2
Coyvy = oyt oyt o, 20, 11}, 11)
ooy = ({20, 237, 23, 04, 22}, w0},
Corly, = R e R O) S
wty, = Hoa o oy, 22,257 257)
Cas v = {{w5 1 27", 21, 9, w3}, w3},

CayYr = {{x517 x;l’ Ty, T, 3’34}7 134}}

e We find w, the inner automorphisms that form the second part of the set
of the generators of Conj(Gr) (since every inner automorphism is a partial

conjugation):

W = {wx;1 = {{a:;l,a;gl,xz_l,wg,m},xz_l}, w,—1 = {{x;l,xgl,ml_l,xg,m},1:1_1},
Wgy, = {{$Zl,$§1,$1,$3,$4},1‘1}, Wgy = {{$Zl,$§1,$2,$3,x4},$2},
w,—1 = {{x;l,x;l,ajflxl,ajg},le}, Wy = {{:L‘gl,;r;l,xl_lajl,xg},;rgl},

Wey = ({5t 2yt w1, wo, w3}, w3}, way, = {{ay 27 w1, 20, 14}, 24})

e We find S, the set of the generators of Conj(Gr), which is equal to the union
of Cyy and W:
S = {c Ly, = = {{ogt o3t wg, 20, 15), w0y },cfl v, = = {{ayt 23t wg, 20, 07) 27,
Cor vy = {{:U4 , T3 ,xg,x4,x1},m1},cm2 v, = {{$4 , T3 ,:Ug,x4,x2},x2},
Corlys = = {{z ! 27 21, 20,27 '}, 2 }7%—1 Yo = = {{zg ! 27" 21, 22,25}, 25}

ng,YQ = {{.’132 7:61 1,(171,%2,1;3},333}, CCC4,Y2 = {{1’2 7.T1_1,$1,$2,CC4},.'134}}.

e We find R, the set of relations according to the relations that are defined in
Theorem 4.2.3:

R o= {c 1y, % Conyiy Cumt yy % CayVis Can Vi % Culyys Can vy % Coztiyy, Gl iy,
CaYar Coazl vy * Cag,Yos Cag, Yo * Cuml vy Coa Yo * Coml vy Comt vy * Gyt iy % (Cpm1)™
(€) 170 Sty ¥ Cayy X (Cx; 1y) (Cl,Yl) 17%; ¥ Cw27Y1 * (fol,yl)
(sz,yl) JCorvi ¥ Copyi * (Coni) T E (Coavi) Ty, ¥ Gty * (Cpry,) T
(C%l,yg) 1Cailyy * Cas Yo * (ngl,yg)_l * (Caaya) ™ Cazly, * Cogyo * ()

(()

1 -1 -1
Coa¥s) ' Cas¥o * Cayvy * (Cogvy) ' % (Couva) Comlyy * Cpzly, *

56

(fol,yl)fa Ca1vi ¥ Cply; * (Coryi) % (Cazgl,Y)fl? Coglyy ¥Coflyy * (ngl,yl)fl *
(Cxl—l,yl)_lv Coa Vi ¥ Cprly; * (Coayy) ' * (%;1,1/1)_17 Cosly; * Coryy * (C:c;l,m)_l *
(Cayi)™h Cany * Coryy * (Canyi) ™ * (Coryi) T ooty * Canyy * (ot yy) 7 %
(Coavi) N Corvy * Capyy * (Covyy) % (cmyl)*l,cg%ﬂ,y2 * Oy y, * (cx;17Y2)*1 *
(Cartyy) ™h Can s * Gty * (Cagva) T (i y,) ThhCpmt iy, x ity % (0 y,) %
(st—l,yg)_1> CagYo * Cyrly, * (Cm,Yz)_l * (Cmgl,yg)_1> Cayly, * Casyo * (Cmgl,yg)_l *
(Casva) ™1y Cay VakCag o ¥ (Cay v) " 6 (Cag) ™ CJ/,;17Y2>|<C$4,Y2*(ngl,y2)7l*(c$47y2>il,

Ca3,Yy * Czy Y, * (CI37Y2)_1 * (02747Y2)_1}'
e Hence, the finite presentation for the group of Conj(Gr) is

Conj(Gr) = (S|R)

3.3 GAP Presentation for Conj(Gr)

This section describes the functions available from the AutParCommGrp pack-
age which we have written for computing a finite presentation for the subgroup
Conj(Gr) of Aut(Gr) with commuting graph I generated by partial conjugations.

To write an algorithm to produce this presentation we first construct the set S of
generators ¢, y (Laurence’s generators), and then find the set R of relations defined
in Theorem 3.2.1. The input of the main function FinitePresentation0fSubgroup-
Conj that provides finite presentation for the subgroup Conj(Gr) is a simple graph
I' = (V,E). A graph with vertex set V' of size n always has vertices {1,...,n} and £
is a list of pairs of elements of V. For example if I" is a simple graph with vertex set
V = {x1, 29,23} and edge set £ = {[z1, x2], [11, 23], [x2, 23]} (where [z, y] denotes
an edge joining x to y) then I' will be represented as ([1,2,3],[[1,2], [1, 3], [2, 3]]).
The output of FinitePresentation0fSubgroupConj consists of two sets gens and
rels, where gens is the list of the generators of the automorphism c, y defined above
and rels is the list of the relators.

In addition, to the functions IsSimpleGraph, DeleteverticesFromGraph and
ConnectedComponents0fGraph which we have described in Sections 2.7.1, 2.7.3 and
2.7.4 respectively the function FinitePresentationOfSubgroupConj runs the fol-

lowing functions:

o7

3.3.1 StarLinkOfVertex Function

The input of the function StarLinkOfVertex(V, E) is a simple graph I" = (V| E),
where V' and F represents the list of vertices and the list of edges respectively. It
computes the star St(v) and the link Lk(v) and concatenates them in two separate

lists St and Lk respectively. The algorithm carries out the following instructions:

STARLINKOFVERTEX(V, E)

1 sV < Sizg(V)
M <+ S1zE(FE)
St «— NuLLMAT(sV, 1,0)
for v in V(I')
do ADD v to St[v]
for e in E(I)
do if e is adjacent v
then ADD “end point” of e to St[v]

© 00 1 O Tt = W N

for v in V(I
do Y2 «+ SET(St[v])
Y3 <+~ REMOVESET(Y 2,0)
ADD Y3 to new list Lk
return [St, Lk]

— s =
w NN = O

3.3.2 CombinationsOfConnectedComponents Function

The input of the function Combinations0OfConnectedComponents(Comps) is the
list of connected components Comps of the specified graph B. The output is the set
of all combinations Y4 of the multiset Comps (a list of objects which may contain
the same object several times) (see GAP manual (16.2.1). The algorithm carries

out the following instructions:

COMBINATIONSOFCONNECTEDCOMPONENTS(Comps)

C'1 < COMBINATIONS(Comps)
sC1 «+ S1zg(C1)
for ¢in {1,...,sC1}
do L2 <~ CONCATENATION(C'1[q])
U2 < SSORTEDLIST(L2)
ADD L2 to new list Y2 and U2 to new list Y3

S O e W N

o8

sY'3 <+ S1ze(Y'3)
for i in {1,...,sY3}
do if Y3[i] £ 0
10 ADD Y 3[i] to new list Y4
11 sY4 < Size(Y4)
12 return [Y3, Y/, sY/]

3.3.3 Generators0fSubgroupConj Function

The input of the function Generators0fSubgroupConj(NE, NV, V) is the list NE
of all lists of edges of 1"\ St(v), the list NV of all lists of vertices of 1"\ St(v), and and
the list of vertices V. It computes the list gensl which form the type (1) generators

of Conj(Gr). The algorithm carries out the following instructions:

GENERATORSOFSUBGROUPCONJ(NE, NV, V)

1 sNE <« S1izg(NE)
2 invV < COMPUTETHEINVERES(V)
3 L <~ CONCATENATION(V, invV)
4 for hin {1,...,sNE} >heV
5 do G2 <+~ NE(h)
6 G1 <+ NV(h)
7 R3 <~ CONNECTEDCOMPONENTSOFGRAPH(G1, G2)
8 Comps < R3(1) > Comps is the list of all components
9 sComps < R3(2)
10 R4 < COMBINATIONSOFCONNECTEDCOMPONENTS(C'omps)
11 Y3+ R4(1)
12 Y4 + R4(2)
13 sY4 «— R4(3)
14 for i in {1,...,sY4}
15 do dif f2 < DIFFERENCE(L, Y'4][i])
16 ADD dif f2 to new list zsl
17 for i in {1,...,sY4}
18 do sz < S1zE(xsl[i])
19 for jin {1,...,sz}
20 do KK < CONCATENATION(Y'4[i], [xs1][i][7]])
21 HH + [KK, zsl[i][j]]

99

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
20
o1
o2
53
o4
95

ADD HH to new list Y5
sY'5 < S1ze(Y'5)
ADD Y5 to new list Y6

ADD sl to new list zs2
ADD Bs to new list Y3
sY6 + S1zE(Y'6)
Y7 <~ CONCATENATION(Y6)
sY'T « S1ze(Y7)
2583 < CONCATENATION(252)
sxs3 < S1ZE(xs3)
for i in {1,...,sxs3}

do ADD the non-empty element of xs3 to new list xs
sxs < SIZE(xs)
Uzs < UNION(z$)
Uzs < S1ze(Uxs)
for ¢ in {1,...,sY7}

do ADD the non-empty element of Y7 to new list CzY'1
sCzY'1 « S1ZE(CzY'1)
for jin {1,...,sCxY1}

do CoMPUTE CzY a list of the definitions of the partial conjugations
sCzY < S1ZzE(CzY)
Y8 < CONCATENATION(Bs5)
sBs < SI1ZE(Bs)
sY8 «— S1zE(Y'8)
for i in {1,...,sY8}

do ADD the non-empty element of Y8 to new list Y
sY < S1ze(Y)
for k in {1,...,sCzY}

do CONSTRUCT a list f such that f(n) = CzY(n), n € N
sf < S1ZE(f)
for jin {1,...,sf}

do ADD f; the name of the i** element of f to new list gensl
sgensl < S1ZE(gensl)
return [CzY, sCrY, Y, sY f, sf, gensl, sgensl]

60

Remark 3.3.1. The relators on the generators of Conj(Gr) are represented using
sequences of the form R = [p,einy, ..., exng], where p,e;,n; are integers, ¢; = +1,
0 <p<1landl1 <n,; Eachsequence R determines a word Wp, in the generators .S,
as follows, and R is called the index of Wx. If p = 0 then the sequence R corresponds
to a word Wg = ¢,y * ¢,-1y of length 2. For example relators of type (C'1) have
form ¢,y * ¢,-1y = 1 and have indices of form [0, idx1, idx2] where idxl =c,y and
idx2 =c,-1y. If p =1 then R corresponds to a word Wgr = w, * ¢,y * wy, ' x Cy-1y of
length 4. For example relators of type (C'4) have form w, * ¢,y xw, ' % c,-1y = 1 if

u ¢ Y,v # u,u~! and have indices of form [1,idx1, idz2, idx3, idz4] where idr1l =w,,

-1
u)

idr2 =c,y, tdxd =w
Section 3.3.7.

and idr4 =c,-1y. Sequences with p = 1 occur only in

3.3.4 APCGRelationRConjl Function

The inputs of the function APCGRelationRConj1(CzY,Y, f) are CzY the list of the
definitions of partial conjugations of Conj(Gr) defined in Section 3.3.3, Y the list of
the non-empty union of connected components of I'\St(v) defined in Section 3.3.3,
f the list of the names of the definitions of partial conjugations defined in Section
3.3.3. It computes the list of indices [0,idx1,idx2] of relations of type (C1) and
adds each of them to the list R2a. In addition it calculates the size of the list R2a.
It returns [R2a, sR2al).

3.3.5 APCGRelationRConj2 Function

The inputs of the function APCGRelationRConj2(CxY,Y, Lk, f, R2a) are CzY the
list of the definitions of partial conjugations of Conj(Gr) defined in Section 3.3.3,
Y the list of the non-empty union of connected components of I'\St(v) defined
in Section 3.3.3, the list of links Lk, f the list of the names of the definitions of
partial conjugations defined in Section 3.3.3 and the list R2a computed in Section
3.3.4. It computes the list of indices [0,idx1,idx2,idx3] of relations of type (C2)
and adds each of them to the list R2a (we replace R2a by [| if we need just the
indices [0,idx1,idx2,idx3] of relations of type (C2). In addition it calculates the
size of the list R2a. It returns [R2a, sR2al).

61

3.3.6 APCGRelationRConj3 Function

The inputs of the function APCGRelationRConj3(CzY,Y, Lk, f, R2a) are C'zY the
list of the definitions of partial conjugations of Conj(Gr) defined in Section 3.3.3,
Y the list of the non-empty union of connected components of I'\St(v) defined in
Section 3.3.3, the list of links Lk, f the list of the names of the definitions of partial
conjugations defined in Section 3.3.3 and the list R2a computed in Section 3.3.5. It
computes the list of indices [0,idx1,idx2,idx3, idx4] of relations of type (C3), and
adds each of them to the list R2a (we can replace R2a by [| if we need just the
indices [0, idx1,idx2,idx3] of relations of type (C3). In addition it calculates the
size of the list R2a. It returns [R2a, sR2al).

3.3.7 APCGRelationRConj4 Function

The inputs of the function APCGRelationRConj4(CxY,V, Lk, gensl,Y, f, R2a) are
CzY the list of the definitions of elementary partial conjugations of Conj(Gr) de-
fined in Section 3.3.3, the list of vertices V', the list of links Lk, the list gensl from
Section 3.3.3, Y the list of the non-empty union of connected components of 1"\ St(v)
defined in Section 3.3.3, f the list of the names of the definitions of partial conjuga-
tions defined in Section 3.3.3 and the list R2a computed in Section 3.3.6. Firstly, it
computes the list of inner automorphisms W, then gens4 the list of the generators
of Conj(Gr). This is the concatenation of the lists gensl and W but; without
repeating generators that appear in gensl. Secondly, it computes the list of indices
[1,idx1,idx2, idx3, idx4] of relations of type (C4), and adds each of them to the list
R2a (we can replace R2a by [] if we need just the indices [1,idz]1,idz2,idz3, idz4]
of relations of type (C4). It returns [W, gensd, R2a, sW, sgens4, sR2a] where sW,
sgens4d and sR2a are the sizes of W, gens4 and R2a respectively.

3.3.8 APCGConjLastReturn Function

The inputs of the function APCGConjLastReturn(gensd, R2a, sR2a) are the list of
generators gens4 of the subgroup Conj(Gr), the list of the indices of the relators
R2a and its size sR2a. It forms the list of relations rels from the list R2a. For each
element R of R2a the relator W is added to a new list rels. It computes the free
group F' on gens4 (defined in Section 3.3.7). Also it computes a finite presentation of
the groups GGG = F/rels. Finally, it returns the final return [gens, rels, GGG| of

62

the functions FinitePresentationOfSubgroupConj below. The algorithm carries

out the following instructions:

APCGCONJLASTRETURN(gens4, R2a, sR2a)

F < FREEGROUP(gens4)
gens < GENERATORSOFGROUP(F)
sgens < SI1ZE(gens)
for i in {1,...,sR2a}
do ForM rels the list of relators of the subgroup from Rels
srels <— S1ZE(rels)
GGG « F/rels
return [gens, rels, GGG]|

0 ~J O Ot = W N =

3.3.9 FinitePresentationOfSubgroupConj Function

The function FinitePresentation0fSubgroupConj(V, E) provides finite presenta-
tion for the subgroup Conj(Gr). The input of this function is a simple graph
I' = (V,E). Tt returns [gens,rels, GGG]. The algorithm carries out the following

mstructions:

FINITEPRESENTATIONOFSUBGROUPCONJ(V, E)
1 if ' is simple graph
2 then CALL THE FUNCTION STARLINKOFVERTEX
CALL THE THE FUNCTION DELETEVERTICESFROMGRAPH
CALL THE FUNCTION GENERATORSOFSUBGROUPCONJ
CALL THE FuncTiON APCGRELATIONRCONJ1
CALL THE FuNncTiION APCGRELATIONRCONJ2
CaLL THE FuncTiON APCGRELATIONRCONJ3
CALL THE FuncTiON APCGRELATIONRCONJ4
CALL THE FuNncTiION APCGCONJLASTRETURN

© 00 N O Ot B~ W

10 else return “The graph must be a simple graph”
11 return [gens, rels, GGG]

Where,

(i) gens is alist of free generators of the subgroup Conj(Gr) of the automorphism
group Aut(Gr) of Gr .

63

(i) rels is a list of relations in the generators of the free group F. Note that

relations are entered as relators, i.e., as words in the generators of the free

group.

(i) GGG := F/rels is a finitely presented of the subgroup Conj(Gr) of the auto-
morphism group Aut(Gr) of Gr.

For example:

gap> A:=FinitePresentation0fSubgroupConj([1,2,3,4],[[1,2],[3,4]]);
[[f1, f2, £3, f4, £f5, f6, £f7, £8], [f1xf4, f2*f3, £3*xf2, fd4xfl,
f5+f8,f6xf7, f7*f6, f8*f5, f1*xf2*xf4xf3 f1*xf3*xf4xf2, f2*xf4xf3xf1,
£3xf4xf2xf1, fExf6xE£8xf7, foExf7*xf8%f6, fO6xf8*xf7*xf5, f7*xf8*xf6x*fhH,
f2xf1x£3%xf4, £3xf1*xf2xf4, f1xf2*xf4*%f3, f4xf2*xf1%f3, f1*xf3*xf4*f2,
fAxE3*xf1xf2, f2xf4*x£3xf1, £3xf4*xf2xf1, fExf5*xf7*xf8, f7*xf5xf6*f8,
f5xf6x£8%f7, f8xf6xf5xf7, fH*xf7*f8*f6, f8*xf7*xfbxf6, f6+xf8*xf7*f5,
f7x£8xf6%xf5], <fp group on the generators [f1, f2, £f3, f4, f5,
£6, £7, £8 1>]

Remark 3.3.2. We can simplify the presentation of Conj(Gr) above by applying
the function TietzeTransformations(G) which is described in Section 2.7.19 as

follows:

gap> G:=A[3];

<fp group on the generators [f1, f2, £3, f4, f5, f6, f7, £8]>
gap> TietzeTransformations(G);

[<fp group of size infinity on the generators [f1, f2, f5, f6 1>,
[f1xf2xf1"-1%f27 -1, f5*xf6*f5 " -1*f6"-1]]

64

Chapter 4

Finite Presentation for the

Subgroup Conjy

4.1 Introduction and Background for Conjy

Let I be a finite graph and let G = G be the corresponding partially commutative
group. Recall that a basis-conjugating automorphism is one which maps each
canonical generator x to z9, for some g, € G. A presentation for the subgroup of
basis-conjugating automorphisms Conj(Gr) is constructed in [70] as we saw that
in Chapter 3. Further subgroups of Aut(Gr) are discussed in [35], using the notion
of admissible subset of a graph, defined as follows. Let V' = V(I") and let = € V.
Recall that the star of = is st(z) = {y € V : [y,z] = 1}. If Y C V then the star
of Y is Y+ = Ngeyst(x). The closure of Y is cl(Y) = N,y 1st(z). For z € V, the
link of z is ¢k(z) = st(x)\{z}. The admissible set of Y is a(Y) = Nyey (st(y))*
and a(z) = Nyeor()st(y)-

An element ¢ € Conj(G) is said to be a Vertex Conjugating automorphism
if, for every element x € V there exists f, € G such that ¢(y) = y/=, for all y € [z]
the equivalence class of the vertex x under the domination equivalence relation. The
subgroup of all vertex conjugating automorphism is denoted C'onjy .

Our aim in this chapter is to find a finite presentation for the subgroup Conjy
of Aut(Gr) generated by partial conjugations. Moreover, we develop an algorithm
using GAP system that provides a finite presentation for the subgroup Conjy of
Aut(Gr) with commutative graph I". In addition, to find the Tietze transformations

of a copy of the presentation of the given finitely presented subgroup C'onjy by using

65

a GAP function.

The work in this chapter is motivated by the work of Duncan and Remeslennikov
in [35], and we have used terminology and notation of that chapter wherever possi-
ble. Note that in some places there are differences between that notation and that of
other authors we have followed; in particular [35] has used the terms “conjugation”
or “elementary conjugation” to mean “partial conjugation”, we may occasionally

use those terms too.
Lemma 4.1.1. [35] For allx €V,
1. the set a(x) ={y € V : lk(x) C st(y)} and
2. y € a(x) if and only if cl(y) C a(x), for ally € Y.

Proof. (1) y € a(zx) if and only if [y,v] = 1, for all v € lk(z), if and only if
lk(x) C st(y).

(2) For all y € V we have y € cl(y), so the “if” clause follows. On the other hand
if y € a(z) then, from (i), fk(z) C st(y); so (st(y))* C (¢k(z))*, as required.
[

Example 4.1.0.1
In the graph I' of Figure 4.1

Lo

Iy
Wit T4
T T3
Tog i)

Figure 4.1: A Graph I

o a(r) = {$2,96'3,I47$5,907,$8>$9}l = {$1} = cl(r1);

66

o st(xy) = st(xy) = {x1, 3,24, 75,27, x5} and a(zy) = a(zr) = {x1, 24,27} =

cl(zq) = cl(xr);

® Cl(xz) = {$17I2,$3,96‘8}l = {xlax2}7 Cl(Ig) = {$1,I379587$9}L = {xlaﬂﬁg},

Ck(wg) = Clk(xy) and a(xg) = a(zy) = {x1, 23,28} = {31, 29, 24, 77,79} =
cl(xe) Ucl(xy) Ucl(xg);

o cl(xs) = {1,235}, cl(xs) = {x1, x5}, Clhk(xs) = Ck(zs) and a(x3) = a(zg) =
{1, 23,28} = cl(x3) Ucl(xg);

o a(zs) = {1, 24, 76, 27} = {25} = cl(x5) and

o cl(wg) = {ws, 26} = {5,276} and a(wg) = {w5}t = {21, 24,75, 76,77} =
cl(xy) Ucl(xg).

For sets U, X we write U < X to indicate that U C X and U # X. A subset YV
of V' is called a simplex if the full subgraph of I" with vertices Y is isomorphic to

a complete graph.
Lemma 4.1.2. [35] Forz # 2 € X and subsets U and X of V the following hold.
(i) IfU C X then a(X) C a(U).
(i) a(U) N a(X) = a(U U X).
(iii) cl(z) = a(z) N st(z) so a(z) = cl(x) if and only if a(z) C st(z).
(iv) st(z) C a(x) if and only if st(x) generates a complete subgraph.
(v) If th(z) C (h(2) then a(z) C a(x).
(vi) If st(x) C st(z) then a(z) C a(x).
(vii) a(z) C a(z) if and only if Ck(x) C st(2).
(viii) a(z) = a(z) if and only if either st(x) = st(z) or tk(z) = Ck(z).
(iv) If = € a(z) then a(z) C a().
(x) a(U) = Uyeaa(y).

(zi) If cl(x) = a(zx) then cl(y) = a(y), for all y € a(z).

67

(zii) If [x,z] = 1 then [G(a(z)),G(a(z))] = 1.

Proof. Statements (i) to (v) follow directly from the definitions and the fact that
if S C T the T+ C S+, for all subsets S, T of X. For (vi) note that in this case
z € st(x),so0asx # z,a(z) = (Ck(x))t = ((st(x)\{z, 2})U{z})*t = (st(z)\{x, 2})N
st(z) D (st(2)\{z, z})t Nst(z) = a(z).

The right to left implication of (vii) is a consequence of (v) and (vi), and the
fact that if (k(x) C st(z) then st(x) C st(z) or lk(z) C lk(z). To see the opposite
implication: if a(z) C a(z) then, as z € a(z), we have z € a(z), so lk(z) C st(z),
from Lemma 4.1.1.

To see (viii) suppose first that a(x) = a(z). Then, from (vii), we have (k(z) C
st(z) and Ck(z) C st(x). If = € st(z) then z € st(z), and in this case st(z) = st(z).
Otherwise x ¢ st(z) and z ¢ st(x) in which case (k(x) = (k(z). Conversely, if either
st(x) = st(z) or Lk(z) = lk(z) then it follows, from (v) and (vi), that a(z) = a(z).

Statement (iz) follows immediately from (vii) and Lemma 4.1.1. Statement (z)
follows from (ix) as if y € a(U) then a(y) C a(U).

To see statement (xi) observe that cl(x) is a simplex so if cl(z) = a(z) and
y € a(z) then a(y) C a(x) implies that a(y) is a simplex. Therefore a(y) C st(y)
and the result follows from (3iz).

For (zii) suppose that u € a(x) and v € a(z). Since z € k(x) we have u € st(z)
and similarly v € st(x). Since [u,y] = 1 for all y € st(x), except possibly x, it follows
that u commutes with v, unless v = z. However if v = x then, since v € (¢k(2))*,v

commutes with all elements of st(z), including w. O

Remark 4.1.3. Let ~4 be the relation on V' given by z ~g y if and only if st(z) =
st(y) and let ~g be the relation given by = ~y y if and only if (k(z) = Ck(y).
These are equivalence relation and the equivalence classes of x under ~g and ~y
are denoted by [z]s and [x]g, respectively. Note that if | [z]s [> 1 then [z]g = {z}
and the same is true on interchanging st and ¢k. Therefore the relation ~, given
by ~ y if and only if # ~y y or & ~y y, is an equivalence relation. Denote the
equivalence class of x under ~ by [z]. Then x ~ y if and only if z ~g y or = ~y y,
and [z] = [z]ssU[z]e. It follows that = ~ y if and only if st(x)\{z,y} = st(y)\{z,y}.

Example 4.1.0.2
In the graph I of Figure 4.2:
st(x) = {z,b,e,y,d, 1} and st(y) = {y, b, e, x,d,l}.
So, st(xz) = st(y) and st(x)\{z,y} = st(y)\{z,y}. Hence, x ~ y.

68

Figure 4.2: Graph of I

Definition 4.1.4. [35] Let x € V and let C be a connected component of the full
subgraph I'\st(z)
Then the automorphism B¢, given by

y*, ifyed

y, otherwise

yﬁC,m -

is called an aggregate conjugating automorphism. The subgroup of Conj(G)

generated by all aggregate automorphisms is denoted Conjs(G).

Definition 4.1.5. [35] Let X = K(I") denote the set of admissible subsets of X
and define

SHK) = {¢ € Aut(G) | (G(Y)) = G(Y),for all Y € K}.

St (K) = {¢ € Aut(G) | (G(Y))? = G(Y)!Y for some fy € G, forall Y € K}.

Definition 4.1.6. [35] Let Aut(G) be the automorphism group of the partially

commutative group G with commutation graph I'. An element ¢ € Aut(G) is

(i) a graph automorphism if the restriction ¢|x of ¢ to X is an element of Aut(I");

and
(i) a compressed graph automorphism if ¢|x is an element of Aut om,(I).

(iii) Denote by Aut!(G) and Aut! (G) the subgroups of Aut(Gr) consisting of

comp

graph automorphisms and compressed graph automorphisms, respectively.

69

(iv) For v € X, denote by Sp,)(G) the subgroup of Aut’ (G) consisting of elements
¢ such that ¢|x € Sp.

(v) Denote by Autl = (G;.) the subgroup of automorphisms ¢ of Aut(Gr) such

symm

that ¢|y is an element of Autsy,, (I} .); and

(vi) by Autl .. (G;) the subgroup of automorphisms ¢ such that ¢|x is an element

comm

Of Autcomm (]jj’k) .

Definition 4.1.7. [35] An element ¢ € Conj(G) is said to be a normal conjugating
automorphism if, for ever element x € V, there exists f, € G such that ¢(y) = y/=,
for all y € a(x). The subgroup of all normal conjugating automorphisms is denoted
Conjn(G).

Definition 4.1.8. [35] An elementary conjugating automorphism ac,, where
u = %!, for some x € V is called an elementary singular conjugating au-
tomorphism if C' = {y}, for some y € V, and the set of all such elementary conju-
gating automorphisms is denoted Linng = LInng(G). The subgroup of Conj(G)
generated by LInng(G) is called singular and denoted Conjs(G).

Definition 4.1.9. Let Try = {7y, € Tr | @ € st(y),e,6 = £1} and Try, =
{rye,s €Tr|x & st(y),e,0 = £1}.

Definition 4.1.10. e If z and y are vertices of V' such that st(x)Nst(y) = Ck(y)

then we say that + dominates y.

e The set of all vertices dominated by x is denoted Dom(z) = {u € V | z

dominates u }.
e The set of all dominated vertices is denoted Dom(I") = Uey Dom(x).

e For fixed y € V the set of all z such that y € Dom(x) and [y| # [z] is the

outer admissible set of y, denoted out(y).

From the definition and Lemma 4.1.2 (vii) it follows that = dominates y if and
only if [x,y] # 1 and a(x) C a(y). Thus out(y) = {z € a(y) : x ¢ [y] U st(y)}.

If ac, € Linng(G) then C' = {y} is a connected component of Iy, so
lk(y) C st(z) and y ¢ st(x). Therefore x dominates y and 7,, € Try and
oy = TyaTy-1 .. Hence Conjg is the subgroup of Aut(Gr) generated by the

set {7, ,7,~1,2 | x dominates y} = LInng.

70

Definition 4.1.11. [35] Let x,u € V such that dominates u and let [u]\{z} =

{v1,...,v,}. The conjugating automorphism

e = [[e
i=1

is called a basic collected conjugating automorphism and the set of all basic
collected conjugating automorphisms is denoted Linne = Linng(G). The subgroup
of Conj(G) generated by Linng(G) is denoted Conje = Conjo(G).

Definition 4.1.12. [35]

e The set of regular elementary conjugating automorphisms is

Linng = Linng(G) = (LInng N Conjy (G))\LInng(G).

e The set of basic vertex conjugating automorphisms is Linny = LInn(G) =
Linng(G)U LInnc(G).

Not that, an element o, , € LInng iff
(i) |y [>2; and,
(i) Yy ey, [y CY Ust(x).

Lemma 4.1.13. [35] Let I be a group.

(i) (a) I' has an isolated vertex then Inn = Conjy and
(b) if I' has no isolated vertex then Conjs < Conjy.

In all cases

Inn < Conjs < Conjy < Conj

and

Inn < Conjn < Conjy < Conj.
(11) LInn(V) < Conjy.
(iii) If ¢ € Conjg then ¢(x) = xf=, where v(f,) C a(z), for allz € V.

Proof. (i) Tt is immediate from the definitions that Inn < Conja, Inn < Conjy
and Conjy < Conj. That Conjs < Conjy follows from the fact that, if

71

z,y € V then [y] C C U x, for some connected component C' of I,. As
[z] C a(x), for all z, it follows that Conjn < Conjy.

If x is an isolated vertex then a(x) = X, so for ¢ € Conjy there exists f, € G
such that ¢(y) = y'=, for all y € V. Hence, in this case Conjy = Inn. Assume
then that I" has no isolated vertex. In this case, for all x € X, the connected
component of I" containing x also contains a(x). To see that Conjs < Conjy
suppose that « € V and consider the aggregate conjugating automorphism
B = Bea, where z € V. If x € lk(u) then v8 = v, for all v € a(u), so
assume that this is not the case. If x € a(u) then z ¢ (k(u) implies that

a(u) C C"U {x}, for some component C’ of I, so we may also assume that
z ¢ a(u).

Now let v and w be distinct elements of a(u) and r be any element of ¢k(u).
Then the path v, 7, w does not contain x; so v and w are either both in C
or both outside C. Hence f¢, either fixes every element of a(u), or acts as
conjugation by x on every element of a(u). Thus all elements of Conja are

normal, as required.

Follow directly from the definition and the fact that the sets [z] partition X,
so that LInnc C Conjy.

An induction on the length of ¢ as a word in the generators LInng is used. If
¢ is trivial there is nothing to be proved, so assume inductively that the result
holds for words of length at most n—1 and that ¢ = ¢g¢;1, where ¢g has length
n —1 as a word in L]nnfl and ¢; € Llnnfscl, say ¢1 = ac,., for some z € VE!
and C' = {y}. Then ¢y(v) = z/*, where v(f,) C a(x), forallz € V. Let z € X
and u € a(z)*!. Then ¢;(u) = u unless u = y*1. In the latter case y € a(x) so
z € a(y)*! C a(x)* and ¢;(u) = v* implies v(¢p;(u)) C a(z). Thus we have
v(p1(fe)) C a(x). Now ¢(x) = (¢1(2))?U=) and since ¢,(x) = 2% if and only
if z = y*! it follows that v(¢(x)) C a(x), as required.

[

Definition 4.1.14. [51] Let ¢ be a conjugating automorphism and for each z € V'
let g, € G be such that ¢(x) = g;' ox o g,. The length | ¢ | of ¢ is Y 19(gs)-

Lemma 4.1.15. ([51] [Lemma 2.5 and Lemma 2.8]). Let ¢ be a non-trivial element
of Conj and, for each x € V, let g, € G such that ¢(x) = g, ' ox 0 g,. Then

72

(1) there exist v,y € V and e € {£1} such that x°g, is a right divisor of g,, and

(ii) if y,z € V\st(x) such that [y, z] = 1 and x°g, is a right divisor of g, then x¢g,

15 a right divisor of g..

(As can be seen from the example ¢ = 045,13: the variable € taking values +1 1is

a necessary part of the lemma.)

Lemma 4.1.16. [35] Let ¢ € Conjy and for each y € V let g, € G be such that
d(y) =g, oy ogy.

(i) If [y] = [y]st then g, = gy, for all u € [y].

(it) If [y] = [yl and | [y] |> 2 then there exist v € [y| and m, € Z such that
Gu = V"™ 0 gy, for all u € [y]\{v}. Moreover if m, # 0 then v is the unique
element of [y| with this property and, setting e = —my/ | my, |, S = [y]\{v}

and o =[], cq Oupve we have o € LInnE' and | ag |<| ¢ |.

Proof. Since ¢ € Conjy, for all y € V, there exists f, € G such that ¢(u) = ufv,
for all u € [y], and we may choose an f, of minimal length with this property. Fix
y € V. Then uf* = ¢(u) = u? so g, f, ' € Cq(u), for all u € [y]. Therefore there are
a,b,c € G such that g, = aob, f, = coband g,f,; ' =aoc™' € Cu(u). As g, has no
left divisor in C(u) this means that @ = 1 and so f, = ¢, 0 gy, for ¢ = ¢, € Cg(u).

If [y] = [y]st then Ce(u) = Ce(y), for all u € [y], so in this case g, = f, = gu, for
all u € [y].

Assume then that [y] = [y]w, with | [y] |> 2, and let u,v € [y],v # u, so
[u,v] # 1. Suppose v € v(f,). Then f, = ¢, 0 g, = ¢, ov™ o g,, where ¢,G(lk(v))
and m € Z. Then u/v = u*"9 since (k(v) = (k(u). As g, has no left divisor in
Cg(v) and [v,u] # 1 we have u*"% = g-lov ™ ouov™o g,, S0 g, = v™ 0 g,. By
choice of f, we have ¢, = 1, and if m # 0 then no element u € [y],u # v, can be
a left divisor of v™ o g,, so the first statement of (i7) as well as the uniqueness of v
follow. Moreover v dominates u, for all u € [y], so the final statement of (i7) also
holds. [

Proposition 4.1.17. [35] Conjy is generated by LInny = LInng U Linnc.

Proof. Note that, from Lemma 4.1.13 (ii) we have that (LInny) < Conjy. So we
need to prove the opposite inclusion; Conjy < (LInny). Suppose that ¢ € Conjy

be an automorphism. By using the induction on the length of ¢ we will do this

73

direction. Assume that | ¢ |= k, so if | ¢ |= 0 then ¢ = 1 and there is nothing
to prove. Hence, suppose k > 1 and assume that if ¢ € Conjy with | ¢ |< k
then ¢ € (LInny) (by induction assumption). If there exists y € V such that,
[y] = [Yle, | [y] |> 2 and by using Lemma 4.1.16, suppose m, # 0. Set a =
Iy oy Oquy e € LInng(e =1if m <0 and e = =1 if m > 0) and | ag [<] ¢ |.
We have ¢ = a~'a¢. Now, a € Llnng, so a=' € (LInng) C (Linny). As
¢ € Conjy and a € LInng C Conjy we have ap € Conjy. Write agp = ¢ € Conjy,
with | ¢ |<| ¢ | ; so by the assumption of induction we have that ¢ € (LInny)
which implies that ' € (LInny), so ¢ € (LInny), as claimed.

Hence we assume that either [y] = [y]s or m, = 0, and so g, = g,, for all u € [y]
and for all y € V. From Lemma 4.1.15(i) there exist x,y € V,e € {1} such that
¢(x) = g, oxog,, ¢(y) = g, oyog, and xg, is a right divisor of g,. Suppose that
[z,y] = 1. Then [¢p(x), p(y)] = 1; that is [x9°,y%] = 1. If g, = a 0 2° o g,, for some
a € G, then this implies that [z,y%®] = 1, from which it follows that [z,a] = 1.
However, in this case y9 is not reduced, a contradiction. Therefore y ¢ st(x), and
so u ¢ st(x), for all u € [y].

Let [y] = {v1,..., v} and let C4,...,Cs be the components of I, containing
v1,...,0,. Then, from Lemma 4.1.15(ii), x°g, is a right divisor of g. for all ¢ €
CyU...UCs. Let a =[[;_, ac, 2. Then | ¢(z) |<| ¢ |. We claim that o € Conjy.
Suppose not, so there is some z € V and elements u,v € [z] such that u € C;, for
some 7, but v ¢ U_,C; U {st(z)}. This implies that (k(u) = (k(v) C st(z) and,
as u € C; implies z ¢ st(u), so x dominates u. Then C; = {u} so u € [y] and
[z] = y] € U;_,C;, a contradiction. Thus no such z exists and a € Conjy .

Ifs=1and|C) |>2then a € LInnE'. If s = 1 and | C; |= 1 then = dominates
y and a € LInnZE'. If s > 1 then st(z) D (k(y) and x dominates every element of
[y]. In this case a € LInnG' again. Hence by induction ¢ € (LInng U LInng). O

4.2 Whitehead Automorphisms and Day’s Rela-

tions

If (A, a) is a Whitehead automorphism which is a partial conjugation automorphism
then for each y € X either y is mapped to y® or y is fixed. Thus for all y € V
with y # a®!, either y and y~! belong to A or {y,y '} N A = 0. Thus, for such
Whitehead automorphisms we can write A = C'U C~' U {a} where C C V and

74

a*! ¢ C. Moreover, we may assume that A N kg (a) = 0, since if y € stz (a) then
y* =1y. As (A, a) induces an automorphism of G, it follows now that C' is a union of
vertices of connected components of I'\st(a). Suppose that I'\st(a) has connected
components C1,...C, and C = U;erC;, where T is a non-empty subset of {1...n}.
Then from the union of these connected components above we define ac, = (4, a)

SO

v difved
aca(v) = { v otherwise.

On the other hand for y € V, if xq,...,z, are such that (k(z;) C st(y), let
D = {xy,...,z,} and we define that 7p, = 7, , 0 ... 07, ,. Then, written as a
Whitehead automorphism 7p , is (D U {y},y). Conversely, if (A, a) is a Whitehead
automorphism, and for all z € V\{a} we have x € A if and only if 27! ¢ A then
setting D = A\{a} we have (A,a) = Tp,.

Now in general if (A, a) is a Whitehead automorphism then let Cy = {z €
A\{a} : 27" ¢ A\{a}} and let C; = {z € V : 2 € Aand ' € A}. Then 7¢,.
is an automorphism and ac, , is an automorphism and (A,a) = 7¢, .00, (and
TCo,a0Cra = OC1,aTCy,a)-

We now translate relations (R1) to (R10) of Day, from the terminology of White-
head automorphisms to the terminology used here.

Let @« = (A,a) and 8 = (B,b) be a Whitehead automorphisms and write av =
TCo.aCcra and B = Tp,pap,p where Co N Cy = () with A\{a} = Cy U C, U C;*
and Dy N Dy = () with B\{b} = Dy U D; U D;* respectively and C;, D; C V, and
ConCyl=DyN Dyt = 0.

In the following relations (R1) to (R10) when we consider sets Ay and A; we
always assume AgNA; = 0 (and similarly for By, By, or Cy, C4, etc, and we assume
all automorphisms oy, 4, T4, mentioned, are well defined.) Now we can replace
(A,a) in each of (R1) to (R10) in Section 2.5 of Chapter two by 7¢, «0cy 4, With
ConCy =0 and A\{a} = Co U C, Uy, such that 7, , is one of 7p,, and ag, 4 is

one of o ,4(v) as defined above. Therefore,

(R1) (Tepa®cia)™t = Tepa-1Q0, a1, Where T¢, 4, 00, o are of type (2) Whitehead

automorphisms.

(R2) (TCO,aacl,a)(TDo,aaDl,a) = TC’OUDO,aaCluD1,a When (Cg U Do) N (Cl U Dl) = Q)

75

(R3) (7cy,acy.a)(TDo @Dy b) = (TDopDy b)) (TCp.aCtcy.a) i v(a) & (Do U Dy), v(b) ¢
(CouU), a+#b,b~" and at least one of (a) (CoUC}) N (DyU Dy) =0 or (b)
b € lkr(a) holds. We refer to this relation as (R3a) if condition (a) holds and
(R3b) if condition (b) holds.

(R4) (TDo,b@Dl,b)(TCO,GO‘CL@)(TDo,baDl,b)_l = (TCOﬂC(Clya)(TD07aaD17a)7 such that

a,a”t ¢ DyU Dy, b1 € Cy and at least one of (a) (CoUCy) N (DyU Dy) =0
or (b) b € lkr(a). We refer to this relation as (R4a) if condition (a) holds and
(R4b) if condition (b) holds.

(R5) (7cy000,6)(T0o.a0Cra) = (Tey.aCtcya)Tap Where Cp = Co U {a"'} and C] =
(Co\{b}) U {b™'} such that b € Cp, b=' ¢ Cy with a # b and b ~ a, where 7 €
Aut(Gr) with m44(a) = b7, 7.4(b) = a and which fixes the other generators.

(R6) 7(Tcp,a0cy,a)T " = Tr(Co)m(a)On(Ci)n(a) for m € Aut(Gr) which is a graph

automorphism.

(R7) The entire multiplication table of the type (1) Whitehead automorphisms,
which forms a finite subgroup of Aut(Gr).

Note that L\{a™'} = (V UV "Y)\{a} = (V\sty(a))*' = D, so (L\{a"'},a)
corresponds to ap,. But, if D = (V\sty(a) then ap, = inner automorphism

of conjugation by a say (7,). Hence the relations (R8) to (R10) are that:

(R8) (7cy,acha) = Va(TEy.a-1E, a-1) Where T¢ o, ¢y o are of type (2) Whitehead
automorphisms, and E; = V\[C; U Cy U Cy ' U sty (v(a))] with Ey = Cy* and
Ya = QV\sty (v(a)),a-

(R9) (7¢y.attcra)e = W(Tcpatc,a) if b € L with bb™' ¢ Co U Cy and v, =

AV \sty (v(b)),b-

(R10) (7¢y,a0tcy,a)M = Ya(Tcp,aCtcy,a) if b € Cpy such that v, = ay\siy (v(a)),e and
Vo = Qy\sty (v(b)),b-
4.3 A Presentation for Conjy

Note that, if (4, a) € Conjy then we have Ay = () and A = A;UA;'U{a}. Moreover,
as above since (A4, a) is a partial conjugation we may assume AN ¢ky(a) = 0 so also
Ay N lEkL(a) = 0. So (A, a) can be written as ac, where C' = A;.

76

In [35] it is shown that Conjy is generated by a set called Linny as we saw
in Section 4.1. Here we use different generators which are more convenient. If we
use Whitehead automorphisms we need to combine them. So we could have a¢, €
LInng (which is already a Whitehead automorphism), and 8 = [] cj 10y ¥yte €
LInne, where [u] is an equivalent class of u for all u € V', which is also a Whitehead
automorphism. After we combine them we will get a new generator az, = ac, 5 €
Conjy which is also a Whitehead automorphism and one of Toinet’s generators. For
example, consider the graph of I" of Figure 4.3.

a v b
c

z w

xr
zﬂ\]
Yy Y

Figure 4.3: Graph of I'

So, we have [y] = {y,9}, B = agy.0qg .. and [c] = {c} and [a] = {a,b}. The
subgraph I"\st(x) is shown in Figure 4.4.

Figure 4.4: Subgraph I'\st(x)

Set Y = {a,b,c} then ay, € LlInng. Also setting Z = {a,b,c,y,y} then
0z, = aygf € Conjy. It is a Whitehead automorphism and one of Toinet’s
generators.

Therefore, we want a generating set for Conjy consisting of elements that belong

to Toinet’s generating set for C'onj. To this end, we make the following definition.

Definition 4.3.1. Define Wy to be the set of partial conjugations ac¢,, where
r € L=VUV~!and (as well as being a union of connected components of I"\st(z))
the set C' satisfies the condition that, for all z € V either

77

(i) [z]NC =¢; or

(i) [z] € CUst(x). (1)
Lemma 4.3.2. The following two properties hold on Wy, :

(a) Every element of Wy belongs to Conjy and

(b) LInny C Wy.

Proof. (a) Note that, ac, € Conjy < Vz € V 3 g, such that uac, = v Vu € [z].
But,

=gtz ifzeC
RACy =
’ z if z¢ C,

for each z € Z.

If ac, € Wy then suppose z € Z. By definition of Wy either (i) or (i¢) of (1)
holds. If (7) holds then, for each u € [z] we have u ¢ C so uac, = u. If (b) holds
then either, v € C' and hence uac, = u*, or u € st(x), so uac, = u = u® because
[u, 2] = 1. So in both cases uaec, = u* and we have uac, = u® for all u € [z]. This

means ac, € Conjy. Hence, every element of Wy belongs to Conjy .

(b) Let Be, € LInny. This implies that B¢, € LInng or e, € Linne. (Since
LInny = LInng U LInnc). Note that, if So, € LInng then we have that

(a) |C| > 2 and
(b) Yy € C,[y] € CUst(z) (def. of LInng).

Thus, Sc, € Wy (since e, satisfies the conditions of Wy). Hence, LInng C
Wy. If Bo. € LInne then e, is a basic collected conjugating automorphism (by
def. of LInn¢g). This implies that for some z,z € L we have x dominates z (i.e.,
lk(z) C st(x) and z ¢ st(x)) and [z]\{z} = {P1,...,0,} with Bo, = [[,_; By €
LInng. So Bex = acy where C' = {d4,...,0,}.

Now (i) if w € V and [u] N C # ¢ then 9; € [u], for some i so [u] = [J;] = [2]
so [u] € CU{z} C CUst(x), so the second condition of Wy holds. On the other
hand if (ii) v € V and [u] N C' = ¢ then the first condition of Wy holds. So in all
cases either the first or the second condition of Wy holds. This implies B¢, € Wy.
Hence, LInny C Wy,. Therefore, LInny, = LInng U LInng C Wy,.

[

78

Lemma 4.3.3. If ac, € Wy and D = V\(C U st(x)) then ap e € Wy for e = £1.

Proof. To prove this it is necessary only to check that condition (1) on C' above
holds when C' is replaced by D. First note that, for all z € V, either [z] NC = ¢; or
[z] C C U st(x), by definition of Wy

(i) To show that if [z] C C' U st(z) then [z] N D = ¢.

[2]N D = [z] N (V\(C U st(x)))
=[z]N (VN (CUst(x))?) (since AAB= AN B°)
= ([z]n(CUst(z)))NV
=¢NV (since we have that [z] C C' U st(z) which implies that
[2]N(CUst(x) = ¢)

(ii) To show that if [z] N C' = ¢ then [2] C DU st(z) = V\(C U st(x)) U st(z).

Note that, by assumption [z] N C' = ¢, so if u € [z] then u € V\C and if also
u ¢ st(x) then u € V\(C U st(z)) = D. Hence [z] C D U st(x).

O

Given a = (A, a) Day defines a = (A’,a™ 1), where A’ = L\(A U ¢k(a)). In our
terminology, & = Tas q-1041 o1 Where Ay = {2 € A\{a™'} : 27! ¢ A\{a'}} =
{zteVH izeAtand Ay ={z eV :oecAandas e A} ={xecV 2t ¢
Ap,x ¢ stp(a) and x ¢ AL}

In the case of (A, a) € Wy we have Ag = () and A = A; UA;'U{a}. In this case
if @« = ac, then & = ap -1, where D = V\(CUsty(x)) ={y e V :y ¢ CUst(x)}.

Lemma 4.3.4. If 7 € Aut(I") and ac, € Wy then aq(oy () € Wy .

Proof. Let m € Aut(I') and ac, € Wy . Note that, to show o) r) € Wy we need
only to check the condition (1) on C holds when C' is replaced by n(C) and z is
replaced by 7(z).

Suppose z € V. We show that either [z] N 7(C) = ¢ or [z] C 7(C) U st(w(x)).
As m € Aut(I") there exists y € V such that w(y) = z. Suppose that [z]N7(C) # ¢;
and let u € [z] N7 (C). Since 7 [y is a graph automorphism we have 7la] = [7(a)l,

79

for each a € V. Hence [z] = [n(y)] = 7[y]. Now u = 7w(v) where v € C, since
u € 7(C), so w(v) € [z] = w[y]. Thus w(v) = w(v'), for some v’ € [y] and since 7
is one-one this implies v = v'; that is v € C' and v € [y] so v € [y] N C. But, since
ac, € Wy we have [yl N C = ¢ or [y] C C U st(x). Hence, as v € [y] N C we have
[y] C CUst(x). Hence n[y] C n(C)Un(st(z)) which implies that [z] C 7(C)Ust(m(x))
(as st(m(x)) = w(st(z))). Therefore, either [z] N7(C) = ¢ or [z] C 7(C) U st(m(x)).
This implies that azc)r@) € Wy. O

Lemma 4.3.5. If acy,ap, € Wy then acnp,, € Wy

Proof. Note that, to prove this it is necessary only to check that condition (1) on C'
above holds when C'is replaced by C' N D. Now fix acz, 0p € Wy and let 2z € Z.

If [2]NC = ¢ then 2]N(CND)=(z]NC)ND =¢ND = ¢. Similarly if
[2) N D = ¢ then [z] N (C' N D) = ¢.

Hence we may assume that [z] C C' U st(z) and [z] € D U st(z). Note that,
(CND)Ust(x) = (CUst(z))N(DUst(x)) (distributive laws). But, [2] C C'U st(x)
and [z] € DUst(z) by assumption. This implies that [z] C (C'Nst(z))N(DUst(z)).
ie., [2] € (CND)Ust(x). Hence, acnp, € Wy. O

Lemma 4.3.6. Let ac,,ap, € Wy and let D’ = V\(D Ust(y)) such that y*! ¢ C.

If acrnpr o s a well defined automorphism then it belongs to Wiy, .

Proof. Note that, acnp , is a well defined automorphism if and only if C N D' is a
union of connected components of I"'\st(x). Now suppose acnp . is a well defined
automorphism. So we need to show that acnp o, € Wy

If [z]NC = ¢ then [z]N(C'ND") = ¢ (as in previous lemma), so we assume
[z] € C U st(x). Therefore, there are two possibilities:

(i) [z]ND = ¢; or
(ii) [2] € D Ust(y).
If 2] N D" = ¢ then [2] N (C' N D) = ¢ so we assume there exists u € [z] N D'.

We need to show [z] C D' U st(x):

Case (i) If [z N D = ¢ then suppose there exists v € [z] with v € st(y). As
v ~ z either (a) st(z) = st(v) or (b) lk(z) = lk(v). In case (a) we have v € st(y)
implies y € st(v) = st(z) implies [z] C st(y) so u ¢ D', a contradiction.

If (b), lk(z) = Ck(v) then if y € ¢k(v) with y # v, as above we obtain y € (k(z)

and z € st(y) implies [z] € st(y). Hence in case (b) we must have y = v.

80

Note we assume that [2] C C U st(x) and y ¢ C (as y*' ¢ C) so we must have
y € st(x). Hence in this case v =y € D’ U st(z). On the other hand if v € [z] and
v ¢ st(y) then v ¢ D U st(y) so v € D; so that [z] C D' U st(x) in this case.

Case (ii) We assume that [z] C D U st(y). We show [z] N D" = ¢. Note that,

N[zl = [VAD Ust(y)] N[z]
= (VNn[zh)\(DUst(y)) (since (B\A)NC =(BNC)\A)

= [Z\(D U st(y))

= ¢ (since [z] € D U st(y)(by assumption).

Hence, acrp o € Wy]
Lemma 4.3.7. If acy,ap, € Wy withz € L. Then acyp, € Wy.

Proof. Note that, to prove this it is necessary only to check that if z € V then either
[z]N(CUD)=¢or[z] C(CUD)U st(z).

Suppose that [z] N (C'U D) # ¢. We have [z] N (C U D) = ([z]nC)U([z] N D)
(distributive laws). So we have [z] N C' # ¢ or [2]N D # ¢. Now if [z] NC # ¢
this implies that [z] C C U st(z) (by detention of Wy/). Similarly, if [z] N D # ¢
then [z] C (C' U D) U st(x). But, this implies to [z] C (C' U D) U st(z). Hence,
acupz € Wy. [

Recall that, Wy is the set of partial conjugations ac,, where z € L=V UV ™!
and (as well as being a union of connected components of I"\st(z)) the set C satisfies
the condition that, for all z € V either

() []NC = g; or
(i) [z] € CUst(x).

Definition 4.3.8. [24] Let w be a graphically reduced cyclic word and let a € L.
Then for b,¢c € L\lky(a), we define the adjacency counter of w relative to a,
written as (b, ¢}, 4, to be the number of subsegments of w of the form (buc™)*!,
where wu is any (possibly empty) word in (kg (a).

For a k-tuple of graphically reduced cyclic words W = (wy,...,wy), define the

adjacency counter of W relative to a as:

(b, C>W,a = Z C>w¢,a

For B,C C L, we define:

(B,C)wa= Y > (b)wa

be(B\lkL (a)) c€(C\LlkL (a))

For o = ac, € Wy, we define:

Dyw)(a) =[a- [W] [= | [W]]
When W is clear, we leave it out, writing (B, C), and D(«).
With W and a as above, note that for any B,C C L, the number (B,C), > 0
Further, we have (B,C), = (C, B),. It D C L with DN C = (), then we have:
(B,CUD),=(B,C),+ (B, D),

Also note that (a,a), = 0 (since each w; is graphically reduced).

From the discussion of Section 4.2 recall that, for ac, € Wy we have A =
CuCtu{a}.

Lemma 4.3.9. If W is a k-tuple of graphically reduced cyclic words, ac, € Wy,
and W' is the obvious representative of ac, - [W], then let E=CUC™!

Dyy(aca) = W' | = | W |=(E, I\(E U{a}))w.a — (@, E)wa

Proof. This is immediate from counting the letters removed and added in the defi-
nition of W’.
O

Lemma 4.3.10. [2/] Let W be a k-tuple of graphically reduced cyclic words. If
acq € Wy, then let A=CUCU{a}

D[W](OZC,G) = <A7 L\A>W,a - <CL, L>W,a

Proof. From Lemma 4.3.9:
D(aca) = (A\{a}, L\A)a — {(a, A\{a})a

= (A, L\A)a — ((a, L\A)a + (a, A\{a})a + (a, a)a)
= (A, L\A), — (a, L),

82

Lemma 4.3.11. [2/] Let o, € Wy and let [W] be a k-tuple of conjugacy classes
of Gr. Then we have:

2la”t (W] > | [W]]+ | Ba™" - [W] | (4.3.1)

Proof. Since Ba~! is a peak with respect to [W], we can sum the two inequalities in
the definition of a peak; by the fact that one of them is strict, we obtain this new

inequality. O]

Lemma 4.3.12. [2/] Suppose we have acq,apy € Wy with a ¢ D and a not
adjacent to b in I' (possibly a =b'). Then lkr(a) N D = 0.

Proof. If x € lkr(a) N D, then x € D and by 2.4.6, either b > x or ap, acts on the
connected component of z in I"\st(b) by conjugation. If the latter were true, since
a is adjacent to x and not b, we would have that a € D, a contradiction. So b > =z,

in which case a is adjacent to b, a contradiction. O

Lemma 4.3.13. [24] Suppose a, f € Wy and [W] is a k-tuple of conjugacy classes
of Gr, and also that @ = ac,, B = apy, and that either e = {a,b} or that (C'N
DYU(CNn{b, b *Hu(Dn{a,a) u{a}n{b}) =0 witha™t ¢ D. Then | 3-[W] |
<la™t-[W]].

For the proof see [24] for all automorphisms in Aut(Gr).

Given o = (A,a) Day defines @ = (A’,a™ '), where A" = L\(A U lkr(a)). In
our terminology, when « is a basis conjugating automorphism, o = a¢,, where
C={xeV:xe Az ¢stya)}, as above, so we define & = ¢ ,-1, where
C'=V\(CUstr(a))={z eV :x ¢ CUstr(a)}.

Now suppose that 8 = ap, is another basis conjugating automorphism, and let
B = DUD ' U{b} such that D C I'\st(b) C V and b € L, so that, written as a
Whitehead automorphism, 3 is (B, b).

Note that, in our terminology AN B = () if and only if

(CnDYU(Cn{bb ' Hu(Dn{a,a})U[{a}n{b}] =0.

Since A=CUC ' U{a} and B=DUD 'U{b}, then AN B = (if and only if
(Cuctu{ah)Nn(DUDU{B}) =0

83

But,

(Ccuctufah)n(DuDu{p}) =[(Cuctu{a})nD](CuUuCU{a})N
D ul(CucTtu{a}) N{b})]

(CnD)u(C'ND)U({a}n D)

ul(cnbDHu@C*t*nDHu{a}n D)

ulCn{hu(@C ' n{ph)u{a}n{d}

() if and only if

CnD)yuCn{bb*HuDn{a,aH)U{a}n{b}) =0
CND=0,Cn{bb~'} =0, DNn{a,a"'} =0 and {a} N{b} = 0.

Therefore,
ANB=0<«<= (CnD)UCn{bb'H)u(Dn{a,a'})U{a}n{b}) =0.

By the same argument we have that,
ANB#0 < (CnD)U(Cn{bb'H)u(Dn{a,a'})U{a}n{d}) #0
<~ CND#0,Cn{bb"'}#0, DN{a,a '} # 0 and {a} N {b} # 0.

Lemma 4.3.14. Suppose o, B € Wy and [W] is a k-tuple of conjugacy classes of
Gr. If Ba™! forms a peak with respect to W), there exist b1, ...,0, € Wy such that
Bat =6y...0, and for each i, 1 <i < k, we have:

(3. 01) - W] < ot - [W]]

A factorization of fa~! is peak-lowering if it satisfies the conclusions of the
lemma, so Lemma 4.53.14 states that every peak has a peak-lowering factorization.
Such a factorization might not be peak-reduced, but the height of its highest peak is
lower than the height of the peak in Ba~!.

Proof. Assume that o = ac, and 8 = apyp € Wy As in the discussion following
Lemma 4.3.3 let & = acr 4-1, where C' = V\(C' U stz (a) and let 3 = apry-1, where
D" = V\(D U str(b). (As usual refer to a € V as an element of G or a vertex of
I, as convenient.) Also we refer to a™! as a vertex of I (when really we mean a).

By Equation (R8) in Section 4.2, these automorphisms describe the same element

84

of Out(Gr), and therefore

al-[W)=a"' - [W]and ot - [W] = Ba"t - [W].

Moreover, from Lemma 4.3.3, & and /3 belong to Wy,. We claim that if the lemma
holds with o or § replaced with @ or 3 respectively, then it holds as originally
stated. Suppose 0 ...d0, with §; € Wy, is a peak-lowering factorization of fa ™!
(for example). By Equation (R2) and (RS8) in Section 4.2, the element 337! is
the partial conjugation apyp/p which is in Wy, because «, 8 and B are in Wy If
|Ba~t - [W]| < |a - [W]] then

-1
BO& = OépuD/’bak N 51

is a peak-lowering factorization of Ba~!

, since aupypr p, does not change the length
of any conjugacy class. Otherwise |W| < |a-[W]|. Again by Equation (R8), 33 is the
partial conjugation (inner automorphism of conjugation by b) ;. So (Ba=)"!Ba~!
is aypat.

If b ¢ C, then by Equations (R9) in Section 4.2, we know (Ba~!)"tBa~! is the
conjugation .

If b € O, then by Equation (R8), we know (Ba~1)"!8a~! is y,ay,a 1y, ! which
is then a product of conjugations by Equation (R9). In any case, we have a product
of conjugations 'y;- ..., equal to to (Ba~')"'Ba!; then

Ba~t :5k...61fy;...fy;

is a peak-lowering factorization of Ba~!, since conjugation does not change the
length of conjugacy classes. So we may swap out @ for o and 3 for 3 as needs be in
the proof of this lemma. Also, by the symmetry in the definition of a peak, we may
switch o and [if needed.

We fix a k-tuple of graphically reduced cyclic words W representing the conjugacy
class [W]. Throughout this proof W’ will denote the obvious representative of

a~! - [W] based on W. We break this proof down into several cases.

Case(1): a € lk(b). Of course, this implies that a € st(b) and b € st(a) and
since C N st(a) = ¢ = DN st(b), thena ¢ D CV andb¢g C CV. Soa!,b7! are
not in C' or D. Then by Equation (R3b) of Section 4.2, we have:

85

—1 -1
Ba = AppOice-1 = Qg a-1Qpp = & .

By Lemma 4.3.13, we know |3 - [W]| < |a~! - [W]], so the factorization is peak-

lowering.

Case(2): (CNDYU(CN{b, b 'HU(DN{a,a*})U({a}N{b}) =0 and a ¢ Ck(D).
Note that the first condition means that a # b and a*' ¢ D, so either a = b~! or
a~t¢ (DUD U{b}).

We have the following sub-cases:
Sub-case(2a): a = b~!. By Equation (R2) of Section 4.2, the following factor-

ization is peak-lowering:

—1
Ba~" = appOchy = CCUD,b-

(Ba~! = 6, and there is nothing to check to verify that this factorization is
peak-lowering.)

Sub-case(2b): a # b~!. In this case a=! ¢ (DU D' U {b}) and a ¢ (k(b). If
b+t ¢ C then by (R3a) of 4.2 we have,

—1
Ba = appOC,e-1 = Qg q-10D}

So by Lemma 4.3.13, we know that |3-[W]| < |a~!- [W]], so these factorizations

are peak-lowering.

Case(3): (CNDYU(CN{b,b'HU(DN{a,a })U({a}N{b}) # 0 and a ¢ Ck(D).
We show we may assume that a ¢ (DU D' U{b}) and b ¢ (CUCtU{a}). First,
by replacing 3 with 3, if necessary, we may assume a ¢ (D U D~'U {b}). If
b¢ (CUC~U{a}) the claim holds, so assume that b € (CUC U {a}). fb=a
then a € (D U D! U {b}), a contradiction. Hence we have b # a. If also b # a~!
then swapping o with & we have b ¢ (CUC~'U{a}), and the result holds. Thus we
may assume that b = a~'. However this gives a™! = b € (CUC™!), a contradiction.
This proves the claim.

Hence we assume that a« ¢ DU DU {b} and b ¢ CUC~! U{a}. We wish
to show that acnpr . is a well defined element of Wy,. Note that if @ = b=! then
stp(a) = str(b) so the result follows from Lemma 4.3.3 and Lemma 4.3.5, so we may

assume a # b1,

86

If acnpr o is a well defined element of Conjy; then it is in Wy by Lemma 4.3.6.
Now acnpr. is well defined if, for all x € C'N D', © ¢ st(a), the component of
I'\st(a) containing z is contained in C'N D'.

Suppose that the connected component of I'\st(a) containing z in Y and that
there exists y € Y with y ¢ C N D’. As ag, is in Conj, we have Y C C;soy € C
and thus y ¢ D'. Therefore y € V\D' so y € D U st(b). By Lemma 4.3.12 we have
C N lk(b) = 0 (also D N Lk(a) = B) so either y € D or y = b; but b ¢ C so y # b,
and soy € D.

Let Z be the connected component of I'\st(b) containing y. Then, as y € D
we have Z C D. As a ¢ D this means a ¢ Z; so st(a) N Z = 0, (because a is
not adjacent to b, and not equal to b and if we had a = b~! then we would have
st(a) = st(b); which intersects Z trivially. In other words, if v € st(a) then either
a € Z ora € lk(b) and either case gives a contradiction, so there isno v € ZNst(a).)
As b ¢ lk(a) and b # a*' we have b ¢ st(a) U C. To walk from y to any vertex
outside C' we must use vertices of st(a) which implies that Z C Y C C so Z is a
connected component of I"\st(a) which implies that Y = Z which in terms implies
that x € Z C D. However, by assumption z € D’ so this is a contradiction. Thus
C'N D’ is a union of connected component of I"\st(a) as required. Therefore, acnpr 4
is a well defined automorphism and from Lemma 4.3.6 it belongs to Wy,. Note that
apncrp is well defined by the same argument.

Next we will show that either acrpr or apner, shortens a™!- [W]. By Equation
(4.3.1), we know that 0 > Djs-1.)(a) + Djo-1.w(8). Of course, from the definition

of peak-lowering we have,

| o™t [W] > [W]]and | a™t - [W]|>| Ba™" - [W]]| (and one of these is strict).
By adding these two inequalities to each other we will get that

2l a - W] W]+ | Bat - W] (4.3.2)

Now from Definition 4.3.8 we have that,

Diwy() =| e W] = [[W]],

Dig-rwi(a) =l oo™t [W] | = [a™ " W] |=[(W] | = [a™" - [W]] (4.3.3)

87

and
Dig-1w)(8) =| B-a™ - [W]| = [a™" - [W] | (4.3.4)

By adding Equation (4.3.3) to Equation (4.3.4) we get that

Dia-1w)(@) + Dia=rw) (B) = —=(2 [o™ - [W])+ [W] [+ [B-a™" - [W][< 0

(as 2| ot W] |>| [W] |+ |8 -at-[W]| from Equation (4.3.2)).

Now by Lemma 4.3.10, where A = CUC ' U{a} and A’ = L\(A U ¢k (a)) we
know that
Digrany(0) = {4, AV tav — (0 Lo sav
=(ANB A orwa+ (ANB, Ay — (a, LY o-1.w4
and similarly, where B = DU D™t U {b} and B’ = L\(B U (k. (b)) we have:

Diarw(8) = (B, B'Ya-1a5 — (b, Lya-1vs
= (BOA, BYa-ravp + (BOA, B vy — (b, La-taws

From above we have that a,b € L =V UV ! witha #b*, CCV,DCV, A=
CuC~'U{a} and A" = L\(AUlkr(a)), B= DUD'U{b} and B’ = L\(BUlk(b)),
D' = V\(DUsty(v(b))), a ¢ B with a ¢ Ckr(b), b ¢ A, C NLky(b) = 0 and from
Lemma 4.3.12, D N ¢kr(a) = 0.

By definition C' N sty (v(a)) = 0 and D N sty (v(b)) = 0.

Claim: ANB = (CNnD)u(CnND)'u{a} = A,. First consider a. Note
that a € AN B, asa € A and a ¢ (ky(b) and a ¢ B implies that a € B’ and by
definition a € K.

Ifx=a"thenz ¢ A as CNsty(v(a)) =0sox ¢ ANB'. Also if x = a~! then
r¢CND andx ¢ {a} soxr ¢ K.

Now consider z = b*'. We have b # a*! and b ¢ A, b1 ¢ A so b*' ¢ AN B,

Also b ¢ CUC™! implies that b ¢ CND’ or (CND')~! and b*! ¢ {a} sob*! ¢ K.

If v € ANB' with z # ™!, b then z € A, v # ™', b*! implies that x € CUC ™.

Also z € B’ with z # a*' b*! implies that z ¢ B U lkr(b) and z # a*!, b*! if
and only if z ¢ DU D™ U{b} U lkL(b), z # a*!, . # b, Thenz € V and = € B’
if and only if x ¢ D U sty (v(b)) and z # a*'; x € V71 and 2 € B’ if and only if
x ¢ D7 Usty(v(b))™! and x # a*! so x € B if and only if x ¢ (D U sty (v(b)))*!
and x # a*!, if and only if # € D* and # a*!. Hence v € ANB’ and x # o™, b*!

88

if and only if x € (CND")U(CND)" and z # a*! if and only if x € A;.

Ai=CnDYu(CnD)Y'u{a}=ANnEB

By the same argument we have that,

Bi=({C'"nD)u(C’'nD)'u{p} =ANB.
Let A} = L\(A; U /lk(a)) and By = L\ (B U lk(b)).
Now from Lemma 4.3.10, we know that
D[oﬁLW](O‘CﬂD’,a) = <A17A,1>0F1-W,a - <a7L>0f1-W,a
= (ANB', L\(ANB'Ulk(a)))a-1.w.a— (@, L)a-1.wa
=(ANB,L\(ANB))a-1.wa — (@, LY o114
(as (W, lk(a)) =0 for all W C L.) Note that,

IN(AN B = (AU B) U (Ck(a)\B) U (AN k(b)) = (A’ U B) U (Ck(a)\B) as
ANtk(d) =0 (by Lemma 4.3.12). Since if U C L with U NV = (), then we have:
(B,UUV), =(B,U)s+ (B,V),, and (AU B) N (¢k(a)\B) = 0. So

D[afl.w](aCmD/@) = <A N B/, (A/ U B) U (fk’(a)\B))a—l.Wﬂ - <CL, L)afl.Wﬂ

=(ANB A UB)sy-1wa+ (ANB lk(a)\B)a-1wa — (a4, L)a-1.wa
=(ANB,AUB)s-1.wa—(a,L)o-1.wa (as (AN B, lk(a)\B) = 0)
= (AN B, AU (AN B))g-rava — (0 L)a 1w

=(ANB A prwa +(ANB AN B)a-1.wa — (@, L)a-1.wa

(as AUB=A"U(ANB) with AN (AN B) =0).
Similarly,

D[a—l,W} (aC’mD,b) = <B N Al, Bl)a—l-VV,a + <B N A/, AN B)a—l.ma — <a, L)a—l.Wﬂ.

We claim that (ANB, A")o-1.w.a > (ANB, ANB)4-1.wp. Recall that ¢k (b)NC =
0. If (cud™)*! is a subsegment of ! - W withc € ANB,d € A/ NB, and u a

89

word in (¢k(b)), then either u is a word in (¢k(b) N ¢k(a)), or v = w'uyu” where
v’ a word in (¢k(b) N lk(a)) and u; € Ck(b)\lk(a). If the former is true, cud™!
is counted by (AN B, A"),-1.w,; if the latter holds, then instead cu'w; is counted
by (AN B, A")g-1w,a (since uy ¢ (k(a)). Either way, each subsegment of o' - W
counted by the counter on the right hand side of the inequality is also counted by
the counter on the left hand side of the inequality, showing the inequality. Similarly,
we know (BN A, B')g-1wp > (BNAB NA)a-1wa.

According to the above we have the following;:
0> D[a—l.w](a) + D[a—l.W](ﬂ), (ANB, AYo-1wa > (AN B, A N B) 1., and
(BNA,B')o-1wp > (BNA B NA) 1w
So,
0> Dig-1.w)(a) + Dig-1.w7(5)
> (ANB A o1wa+ {(ANB AN B)o-1wa — (0, L) a-1.wa
+(BNA, B 1w+ (BNA,ANB)o-1wp — (a, L) a-1.wp

= Di-1.wi(acnpra) + Dia-r.w)(@pncrp)-

So one of acnpr, and apnerpy shortens [a~t - W1 O

Theorem 4.3.15. The subgroup Conjy of Aut(Gr) has a presentation with gener-
ators Wy (see Definition 4.53.1) and the finite set of relations R:

(R1) (O‘C,:ﬂ)_l = Qg -1,
(R2) aczop. = acups if CND = ¢,

R3) ac.ap, =apyacs ifv ¢ D,y ¢ C,x+#y,y~ " and at least one of CND = ¢
ory € lk(z) holds,

(%4) ’YyaC,z'Yyil = Qcx ny ¢ C; z 7é Y, yil'

Proof. Our proof is based on arguments that were used in Lemma 4.3.14. As-
sume that & = ac, and f = app € Wy. Let 7 € Aut(l'), then by Lemma
4.3.4, arc)m@ € Wy. We also denote by (2, the set of long-range Whitehead au-
tomorphisms. (As usual we refer to a € V as an element of G or a vertex of

1

I', as convenient.) Also we refer to a™' as a vertex of I (when really we mean

a = v(a™')). Let R denote the set of relations given in the statement of Theorem

90

4.3.15. We shall construct a finite connected 2-complex K with fundamental group
Conjy = (Wy [R).

Let V. =V(I') = {z1,...,z,}(n > 1). Let W denote the n-tuple (xy,...,x,).

The set of vertices K(©) of K is the set of n-tuples 7 - W, where 7 ranges over
the set Aut(I"). For any 7,1 € Aut(I"), the vertices m- W and - W are joined by
a directed edge (7 - W,y - W;) labelled 1. Note that, at this stage, K is just the
Cayley graph of Aut(I"). Next, for any 7 € Aut(I'), and ac, € Wy, we add a loop
(m- W, m-W;aca) labeled ag, at 7 - W. This defines the 1-skeleton K1) of K.

We shall define the 2-cells of K. These 2-cells will derive from the relations
(R1) — (R10) of Section 4.2. First, let K be the 2-complex obtained by attaching
2-cells corresponding to relation (R7) to K(!). Note that, if M is the 2-complex
obtained from K; by deleting the loops (m - W, - Wiac,), 7 € 1, a0, € Wy,
then M is just the Cayley complex of (21, and therefore is simply connected. We
now explore the relations (R1) — (R5) and (R8) — (R10) of Section 4.2 to determine
which of these will give rise to relations on the elements of Wy. When we apply
these relations to elements a4, app € Wy we have to write ac, as 7oy 000, and
app as Tp,pap,p and here Cp = Dy = () and Cy = C, Dy = D. Thus 7¢, 40y
and 7p, pap, » become o, and apy respectively. Relation (R1) will give rise to the

following:

acl, = aca (4.3.5)

for ac, € Wy (by definition a1 € Wy).
Relation (R2) will give rise to

QCaQDa = QCUDa (4.3.6)

for acq, ap. € Wy as, by Lemma 4.3.7, acup.a € Wy, with C N D = (.
Relation (R3) will give rise to

QCaODp = AppQCg (4.3.7)

for acq,apy € Wy, such that a ¢ D, a™' ¢ D, b¢ C, b~ ¢ C, and at least one
of (a) CND =¢or (b)be lky(a) holds.

From (R4), no relations arise. Indeed, in our case Cy =) so we cannot have
b1 e Q.

91

From (R5), no relations arise (by the same argument as above).

From (RS8), we obtain a relation which is a direct consequence of (4.3.5) and
(4.3.6). Indeed, if E; = V\[C U sty(v(a))] then, from (4.3.6) v, = acup,a =
QACaQE, o S0, from (4.3.5) oo = VoQp, a-1-

Relation (R9) will give rise to the following:

aC,aaV\stV(b),bOé(_j,la = Qy\sty (b),p (DOtE that ann\seyb)p = Tb) (4.3.8)

for ac, € Wy, and b € L such that b ¢ C, and b ¢ C as ay\s, s € Wy by
definition.

From (R10), no relations arise (by the same argument as above).

We rewrite the relations (4.3.5)-(4.3.8) in the form

€k €1 __
of ..ot =1

where oy1,...,0, € Wy and €1,...,6, € {—1,1}. Let K, be the 2-complex
obtained from K by attaching 2-cells corresponding to the relations (4.3.5)-(4.3.8).
Note that the boundary of each of these 2-cells has the from

(m-W,ym - Wio) N (m W, - W;o9)? ... (- W,m - W;04),

for m € Aut(I).
Finally, relation (R6) will give rise to the following:

W(ac@)w_la;(lc)m(a) =1, (4.3.9)

for ac, € Wy with 7 € Aut(I"). As noted above () r@) € Wy. Then K is
obtained from K by attaching 2-cells corresponding to the relations (4.3.9). Observe
that the boundary of each of these 2-cells has the form

W W Wi an(0ya(a) (0 W™ - W)
(r ' Wi Wiag,)(m™ ' - Wb - Wim),
for ¢ € Aut(I).
It remains to show that m (K, W) = Conjy = (Wy | R).
Let T be a maximal tree in the I-skeleton KV of K. Note that T is in fact
a maximal tree in the 1-skeleton C(V) of C' (i.e., the Cayley graph of Aut(I'). We

compute a presentation of w1 (K, W) using T'. For every vertex V in K, there exists

92

a unique reduced path py from W to V in T. To each edge (Vi, Vo;m) of K, we
associate the element 1 (K, W) represented by the loop py, (V1, Va; ﬂ)p(,;. We again
denote this by (Vi, Vo; 7). Evidently these elements generate m (K, W).

Now, since M is simply connected, we have

(m-W,pm - W) =1 (in m (K, W)), (4.3.10)

for all m,¢ € Aut(I).

Let P be the set of combinatorial paths in the 1-skeleton K™ of K. We define
amap o : P — Aut(Gr) as follows. For an edge e = (Vi, Va;), we set p(e) = ,
and for a path p = e} ... e}', we set go/(;) = @(er)*...p(e1)". Clearly, if p; and
po are loops at W such that p; ~ po, then @(p;) = @(p2). Hence, @ induces a map
o :m(K,W) — Aut(Gr). Then from (4.3.9) and (4.3.10) it is easily seen that ¢
is a homomorphism. So ¢ maps (K, W) to Conjy. It follows immediately from
the construction of K that ¢ : m (K, W) — Conjy is surjective. Thus, it suffices to
show that ¢ is injective. Let p be a loop at W such that ¢(p) = 1. We have to show
that p ~ 1. Write p = e ...ef', where k > 1 and ¢; € {—1,1} for all ¢ € {1,...,k}.
Using the 2-cells arising from (4.3.5) and the fact that Aut(I")™' = Aut(I'), we
can restrict our attention to the case where p = ep...e;. Set m = @(e;) for all
i€{l,...,k}. Note that m; € Wy, U Aut(I") C {2 for all i € {1,...,k}.

Let Z be a tuple containing each conjugacy class of length 2 of G, each appearing
once. We prove the following:

Claim There exist €. .. e} such that p ~ ¢} ... €} and if we set 7, = ¢(e}) for all
ie{l,...,0}, then 7, € Aut(I") or @} € Wy N Inn(Gr) for each i € {1,...,¢}.

First, we examine the case where 7 ...m is peak-reduced with respect to Z.

We claim that the sequence

| Z |, | m - Z |, | mom1 - Z |, | Tpr ..M - Z || T - Z | =] Z
is a constant sequence. Suppose the contrary. By Lemma 2.6.4, | Z | is the least
element of the set {| 7+ Z | | m € (£2)}. Hence we can find i € {1,...,k — 1} such

that we have

7T7;,1...7T1'Z’S‘?Ti...ﬂ'l'Z’,

93

|7TZ‘_|_1...’7T1'Z|§|7TZ'...7Tl'Z|,

and at least one of these inequalities is strict, which contradicts the fact that the

product 7, ... is peak-reduced. Therefore we have

|7T17T1Z|:|Z|

for all indices ¢ € {1,...,k}. We argue by induction on i € {1,...,k} to prove
that m;...m - Z is a tuple containing each conjugacy class of length 2 of G, each
appearing once. The result holds for ¢ = 0 by assumption. Suppose that i > 1, and
that the result holds for i — 1. Observe that Aut(I") does not change the length of a
conjugacy class. Thus, we can assume that 7; is in Wy,. Since | mm_y...m - Z |=|
Ti_1...7m1 - Z |,m; is trivial, or an inner automorphism by Lemma 2.6.4 Thus, the
result holds for ¢. In this case, p has already the desired form.

We now turn to prove the claim. We define

hy, =max{| m...m - Z||i€{0,...,k}}

and

N,=|{i|ie€{0,....k}and |m...m -Z |=hy}|.

We use induction on pairs (h,, N,) with left lexicographic order. The base of
induction is | Z |: the smallest possible value for h, by Lemma 2.6.4. If h, =| Z |,
then the product 7y ...m is peak-reduced and we are done. Thus, we can assume
that h, >| Z | and that the result has been proved for all loops p’ with h, < h,. Let
i € {1,...,k} be such that m; is a peak of height h,. An examination of the proof
of Lemma 4.3.14 shows that e;;1e; ~ f;... fi such that, if we set ¢, = ¢(fi) for all
ke{l,...,j}, then

| @Z)k...d}lﬂ'i_l...ﬂ'l -4 |<| TTi—1 .. .71 " Z | (4311)

for all k € {1,...,7 — 1}. Therefore, we get

/
pNek---€i+2fj---f16z>1---€1Ipa

and a new product 7, ... Tt .. w1 ... ™. We argue by induction on N,,.

If N, = 1, then (4.3.11) implies that h, < h, and we can apply the induction

94

hypothesis on h,. If N, > 2 then (4.3.11) implies that h, = h, and N, < N, and
we can apply the induction hypothesis on N,. This proves the claim.

Hence, using the 2-cells arising from the relations (4.3.9), we obtain

pNhs-.-h1gr-~g1,

where, if we set

v =¢(g;) foralli € {1,...,r} and 0; = ¢(h;) forall j € {1,..., s},

then 6; € Aut(I') for all i € {1,...,s} and v; € Wy N Inn(Gr) for all j €
{1,...,r}. Using relation (4.3.7), we obtain p ~ g,...g1. Set Z = (), o, st(v). It
follows from Servatius’ Centralizer Theorem (see [69]) that the center Z(Gr) of G

is the special subgroup of G generated by Z. Let I"” be the full subgraph of I
spanned by V' \ Z. We have

Gr ~ Inn(Gr),

where the isomorphism is given by v — w, (see, for example, Lemma 5.3 of

[69]). Write

Yi = aV\StL (ci),ci

where ¢; € VA\ZU (V\Z)™'(i € {1,...,r}). Since v,...v =1 (in Inn(Gr)), we
have ¢, ...c; =1 (in Gv). Therefore ¢, ...c; is a product of conjugates of defining
relators of G . Using the 2-cells corresponding to the relations (4.3.5) and (4.3.7)(b),
we deduce that p ~ 1. We conclude that ¢ is injective, and thus

Conjy = m (K, W).

Now, using the 2-cells arising from the relations (4.3.9) (with © = %), we obtain

(m- W, W; aneym(a) = (m- W,Ws YW, Wiac,) W,m-Wim). (4.3.12)
Note that, using (4.3.10) with 7! instead of 7 and ¢ = 7 then (7 - W, W;7 1) =

95

(771 - W, Winm) = (m' - W, W;9) = 1, and also with 7 = 1 and ¢y = 7 then
(W,m-W;m) = 1. Thus (4.3.12) becomes

(m-W,m - W aneym@) = W, Wi aca), (4.3.13)

for all 7 € Aut(I'), and ac, € Wy It then follows that Conjy is generated by the
(W, W5 ac,), for ac, € Wy. We identify (W, W;ac,) with ac, for all ac, € Wy.
Any relation in Conjy = m (K, W) will be a product of conjugates of boundary
labels of 2-cells of K. Then, using relation (4.3.13) and identifying (W, W;ac,)
with ac,, we see that the relations (4.3.5)-(4.3.8) above are equivalent to those of
R. We have shown that Conjy has the presentation (Wy |). O

Example 4.3.0.3
We will find a presentation for a subgroup Conjy of the automorphism group
Aut(Gr), that is correspond to the graph I" of Figure 4.5.

T Te
X3

T2 L5
Figure 4.5: A Graph I’

We have that V' = {x1, x9, x3, 24, 5, 26} the vertex list,

E == {{xla SE3}, {x27 x3}7 {Z‘3, 'r4}7 {x47 x5}7 {.1'4, 'T6}7 {'T57 xﬁ}} the edge hSt7
L= V_l uv = {$1_17$2_1a1’§1a%1173751,5756_1,951,9527333,534,9557-%6}-

1. We find the star and the link of each vertex x € V as follows:

T, T3}, Ck(xq) = {x3}.
st(xg) = {wg, 23}, Ck(xq) = {x3}.

i) st(x1) ={

i) st(a2) = {
(iii) st(zs) = {21,200, 25,24}, Lh(zs) = {1, 29, 24}
(iv) st(aa) = {3, 20, 75,26}, Ch(wa) = {w3, 75, 76}
(v) st(zs) = {we, x5, 26}, Ch(zs) = {24, 26}
(i) st(zs) = {we, w5, 76}, Ch(zg) = {x, 75}

2. We find the equivelence classes for each vertex z € V' as follows:

96

. We find the connected components of each subgraph I'\{x;}, where z; € V

and i =1,...,6 as follows:

(1) P\{a1} = {{z2, 25"} {2, 05,26, 23 " 25" 05 1)

(i) M{zo} = {{zr, 27"} {2, 25, 26,237 257 25 1)

(iit) IM\{zs} = {{zs, 26,25, 25" }}

(iv) I\{wa} = {{z1, 27" Hao, 23" })

(v) I\{zs} = {21, 20, 23,207 23" 25" }}

(vi) I\{6} = {{x1, 22, 25,27, 23" 23 }}

. We find the minimal connected components C' of each subgraph I"'\{z;}, where

r; € Vand ¢ = 1,...,6 , that is satisfies the condition that, for all z € V
either

@ EINC=0;o0r

(b) [2] € CUst(x)

as follows:

(i) The minimal connected components of I'\st(x1) are {{xs, 25"},
{24, 5, 26,27, 25 25}
(ii) The minimal connected components of I'\{z,} are {{z1, 27"}, {4,
T, T6, Ty, 5, 5)}
(iii) The minimal connected components of '\ {3} are {{zs, z6, 75", 75"} }.
(iv) The minimal connected components of I'\{z,} are {{x1, 2z, 27", 25'}}.

(v) The minimal connected components of I'\{z5} are {{z,zs, 23, 27", z5*

z3 '}

I

97

(vi) The minimal connected components of I'\{xg} are {{x1, zo, x5, 27", 25",

73}

5. We find the union of the minimal connected components of I'\{x;}, where

r; € Vandi=1,...,6 as follows:

U?:l F\{xl} = {CI = {x%x;l}v CQ = {:1:4,x5,:c6,a:;1,:c5*1,xg1},
C’3 = {5171,1‘1_1}, C’4 = {.175,1176,375_1,1'6_1},

05 = {ZL’l,CL’Q,l‘l_l,CCQ_l},OG = {xlij’{L‘&[El—l,{L‘Q_l,l’g—l}}.

6. We find the partial conjugations automorphisms ¢ ,, where C' is satisfies the
condition in statement (4) above and = € L. In fact these partial conjugations

automorphisms form Gens; the first part of the generators of C'onjy. So
Gensl = {fi = ag, .1 = {{wzeaz " a5 Y5),
fa=ac, o1 =z, 23" 25} 251,

fa=ac, ;o = {{z 23t 2y} 20),

fi=acg, o0 =z, 23" 25} 25,

fs = ag, o1 = {23 a7 '} a7,

fo = o,z = Hao, 23t a0}, 0},

fr = e, a0y = {2, 25", 235}, 25},

fs = oy ay = oo, 23t 24}, 24},

fo= e, as = {{w2, 25", w5}, 25},

fio = ez = {{z2, 23", 36}, w6},

fu=ag, oo = {{og w5, 26,20 057 w6 25w
fiz = agy ot = o, 25,26, 20 257 w6, 2y owg
fis = agy o = o, 05,26, 27 05 g oy ey)
fia = ac, o = {{za, w5, 26,27 25t a5 21}, @),

fi5 = acyzy = {{a, 35,26, 27, 25, 15 T}, 20},

fie = oy oy = {{za, w5, 06,23 25 ' a6t w3}, @),

fir = ACgagt = {{Ilﬂxl_lvxgl}vx(;l}ﬂ

98

fis = an,zgl = {{1’1,1‘1_1,1’51}7%'5_1},

f19 = an,:mfl = {{wlaxflvxézl}?xézl}’

2o

o2
fas
f 24
f 25
fas
for
Jas
fao
JEN
fa1
f 32
fs3
f 34
Jss
Js6
ot
JES
Js0
Jfao
fu
f 42
Jas
Jaa

f45 - OéCGrIZl - {{1‘1,$2,$3,$1_1,$2_

= an,,xgl = {{1}1,1'1_1,1'3?1},.1';1},

for =

OéCg,,xQ_l = {{"Bla xfla 11271}7 xgl}a

= Q05,29 = {{1'1,1'1_1,1’2},1‘2}7

= OC3,23 = {{1‘1,931_1,1‘3},333},

QO304 = {{xla xfla £L'4}, .%'4},

= OC5.25 = {{xl,xfl,x5},x5},

s, 26 = {{z1, 27", 6}, 76},

acy, vy = {{ws,zs, 257 26wy h '
ac,, w3 = {{zs, 6,25 g wg '} ag)
ac,, vy = {{ws, w6, 05, 0 w5} w7)
acy, o1t = {{zs, 26,25 w6 oy
ac,, 11 = {{xs, 16,75, 15, 11}, 11}
ac,, o = {{xs, 16,75, 15 1, Ta b, To),
ac,, v3 = {{xs, x6, 75" 15", w3}, 23},
ac,, 14 = {{xs, 16,75 15, T4}, 24},
acy, 75" = {{zn, 0,00t 2y g ag
acy, 75" = {{zy, 0,00 2y s g
acy, vyt = {{zy, 0,0t wy ot
acy, w3 = {{or, 22,01 25wyt ag ')
acs, 13 = {{x1, 10, 27, 251 13}, 13,

Qcy, Ty = {{xlv X2, Il_lv ZL'2_17 $4}, ZE4},

= Qcy,T5 = {{xl,I2,$;1,l’2_1,$5},$5}7

Qcy, Tg = {{xl>$2ax1_1>x2_17$6}7$6}7
0406,3781 = {{1}1,x27x37xfl7x51,x;l,l‘gl},.ﬁgl},
acs,xgl = {{.Tl,Ig,Ig,ZEl_l,IQ_I,(L’gl,l’gl},xgl},

Yagt e et

99

-1 -1 ,—1
f46 = QCg, T4 = {{Ihx%mi’)axl y Ly T3 ,[E4},ZL’4},

_ _ -1 -1 -1
far = acg, x5 = {{z1, T2, 03,07, 25, 037, 5}, 5},

_ _ -1 -1 ,—1
f48 = gy, Le = {{.751,%'2,373,1‘1 y Lo, X3 7x6}7x6}}'
. We find the inner automorphisms a¢ ,, where C' is satisfies the condition in
statement (4) above and = € L. In fact these inner automorphisms which are

also partial conjugations automorphisms form Gensy the second part of the

generators of Conjy .
_ _ -1 -1 -1 -1 -1 —1
GenSQ_{wl _{{xG y Ly Ty Ty 5Ty ,$2,$4,x5,$6},l’1 }7
-1 -1, -1 _—1
wo = {{ag 25,25 @y, T, B2, T4, T5, Te }, 11

_ 1 -1 -1 —1 -1 -1
ws = {{xg ", x5, 04, Ty, 17, X1, Ty, T5,T6}, Ty J,

1 1

o 1 -1 -1 -1 -1 -1
w4_{{x6 Ly Ly Ty 5Ty 7$2ax4,$57$6}7$1 },

1 -1 —1 -1
ws = {{wg , 25,04 Ty, T1, T2, Ty, T5, T}, T1},

1 —1 —1
y Ly , L1 ,X1,T2,T4,Ts, xﬁ}a ‘7;2}7

we = {{ag ", w5
wr = {{zg oyt ot oyt oyt v, g, w5, 06}, 5)
ws = {{ag 25wt @t w0, 0, 24, w5, 26}, T},

wy = {{zg" o5t ot oyt a7t 2y, 24, 25, 76}, 5)
wo = {{ag o5t ay oyt oyt oy, wg, w5, 6}, 27)

1 —1 —1
y Ly Ly ,T1,T2,T4,Ts, xﬁ}a ml}a

wi = {{agt, 25
wio = {{xg o5t 2yt wr v, 2o, T4, W5, 6}, 12})
. We find Gens the set of the generators of the subgroup Conjy as follows:
Gens = Gens; U Gensy
= {f1, f2, f3, fa, 5, fos fr: fss fo, fro, fu1s fiz, fis, fras fis, fues fiz, fis, fro,
J20, fo1, f22, fo3, faa fos, fa6, fors fas, fao, f30, f31, f32, f33, f34, [35, f36,
f37, f38, [39: fao, fa1s Jaz, faz, faas fas, fass Jaz, fas, wr, wa, w3, wa, ws,
wﬁaw77w8;w97w10,w117w12}-

. We find Rels the set of the relations according to Theorem 4.3.15 as follows:

Relsl = {f1* fio, f2* fo, fa* fa, fax* fr, fs* fo, fo* f5, fo* fa, fa* f3, fo* f2, fro%
Jis Ji1 * fie, fi12 % f1s, f13 % fia, fia * f13, 15 % fi2, fie % f11, fi7 % fae, f18 * fos, J10 %

100

Jaas J20 % fa3, fo1 % faz, faz * fa1, fa3 % foo, faa* fr9, fa5 * [1s, fa6 * f17, far * f34, fos *
J335 f20* f32, f30* [31, f31 % f30, f32 % fao, [33 % fas, [3a % far, f35 % fa2, f36 * fa1, far *
Ja0, f38 % [f30, f30 % f3s, fa0 * [37, far* [36, faz * [35, faz * fas, faa* faz, fas* fae, fa6 *
Jas, far * faa, fas * [as}.

Rels2 = {f1 % fir * faz, fox fis * far, f3* fro % fao, f3 % for % fs, fa* fu1 % fas, fax
Jos * f33, [% f16 % fas, [7 % f33 % fas, fs * faa x faz, fs * faa * [3, fo * fa5 * [36, [10 *
Ja6 % fa5, f11 % fa0 * fa3, f11 % f3s * [a3, f16 * [z * fos, f16 * [30 * fos, f10 * for *
Joa, foo * fag * [f33, foz * f33 % fog, foa * faa * fio, for * f37 % fao, for * fas * fao, fos *
f3s * fa3, faz % fag * fog, faa * fao * far, faa * fag * far}.

Rels3 = { fix fax fiox fo, frx fax frox fs, fu* fax fro* f3, fix fox frox fa, fix fie* faex
Jo, Ju* f1o% fao* fs, 1% fao* fao * [, [1* faz* fao * [, [1* faa* fao* [3, [1% fas* fa6 *
Jo, i fae fazx fo, 1 far* faox fs, f1* fao* fazx f3, Ju far faox fo, f1 faax fag*
Jos Jux fas* fag* fo, fr* fa* fag f3, Ju* far* fag* fa, fox f3x fox f, fox fax fox f3, fox
Jrox fox f1, fax firx fas* fr0, fo* f1o% fas* [3, fax faox fas* f7, fo* fas* fas* fu, fox foax
Jos* f3, fax fag* fas* f1, fo* fas* far* fro, fo* far* farx fs, fox faox far % f3, fox fan*
Javx f1, fax fag* farx fro, fox fas® farx fs, fox fao* far* [3, fo* fag* faz* f1, fa* fax fsx
Iy ax fox fax fay fax fox fox fa, fax fro* fax [1, fax fir% faa* fr0, fa* f1s* faax fo, f3x
Joox faax [z, fax faz* faak fa, f3* fos* faax fo, fax fao* faa* f1, [3 fag* f3a f7, f3* f30%
Jaax fo, faxfarx faax [, fax faa* faax fa, fax fas% faox fr0, 3 fae* fao* fo, [3* [as* faox
Iy fa% f30% fao* fa, 3% far* fao* fo, fax faox faox [1, fa* faz* fas* fr0, 3 faa fae*
Jo, fax farx fas* fo, fax fag* fao* f1, fax [sx fr% fo, fax fox frx [5, fax fax frx [3, fax
Jis* f16% fo, fax fra* fr6* f5, fax frox faz* fro, fax fis* faz* fo, fax fro% faz* [, fax
Joax foz f3, fax fos* fagk fa, fak fag* fazk f1, fax for* fag* fs, fax faox fazx fo, fax fz1%
Jaax [5, fax faax 3z f3, fax farx fao* fs, fax fao* [ao* [3, fsx frx fox fu, fox f11% frax
Ty [fro% frax fa, [5* far* farx fs, [5% fas* farx [, [5% faz farx fa, [5% faa* fa1 %
I3, fox frx fox fa, fox frx fiax fr, fox fro* i3k fa, fox fark faox fs, fox fas* fa0% f7, fox
Jasx fao* fa, fox faax faox f3, frx fax fax f3, fox fiax fiix fo, fox frax frox [, fr* frrx
J20* f10, fx f1s % a0 fo, f* fro% fa0* fs, [faa* fao* f3, 7 fas* fao* fo, f7 fa6*
Jaox f1, frx farx fas* fa, fo* a0k fas* fo, frx farx fas* [, ok f3a fog* f3, frx farx fasx
I8 frx faox fas* f3, fax fox fax fa, fax frox fax f1, fax fir* [1o% f10, fox f1s* f19% fo, fsx
Jaox fro% [z, fax faz* fio% fa, fa* fas* f1o% f2, fax fao* [1o% [1, [e* fag* far f7, fax fz0%
Jorx fo, fax far* farx f5, fax faz far* fua, [f3sx far* f10, fax fae* far* fo, fs* [as*
Jarx fr, fa* fao* far* fa, fax far* fark fo, fox faox farx f1, fa* faz* fas* fr0, fox faax
Jas* fo, fax farx fas* fo, fox fag* fas* 1, fox frox fox f1, fox firx f18* f10, fo* f19% f18%

101

I8, fox fa0% fis* f7, fox fas* fis* fa, fox faax fis* [3, fox fae* [1s* [1, fo* [35% f36
J10, fox farx fao* fs, fox fao* fac* [, fox faz* fae* f1, fox faz* faax f10, fo* fa5* faax
I8y fox fas* faax [3, fox fag* faax f1, fro% fis* f17% fo, fro% fro% [ir* fs, J10% fao* f17%
J7y Jio% fas* firk fa, fro% faax frox f3, fro% fas* firx f2, fro% fae* fas5* fo, fro% far* fa5%
I8, frox fao* fas % f3, fro% far * f35% fa, Jro% faa* fazx fo, frox fas* faz* [fs, fr0% fae *
Jaz* [3, frox farx faz* fo, fri* frox fi6* f1s, f1i% fi3* fie* f1a, Jro* fra* fie % f13, f11%
Jis* fie* f12, f11% far % faz * f15, f11 % faz faz * f12, f11 % fao* f33% f15, f11 % fa0 % f33 %
Jias Jur* farx 33 % f13, f11x fao* faz* fi2, fia* fie* fis % 11, fr2* fao * a2 * f16, f12 %
Jazx fook f11, fro% fas* faox f16, frox faz* faox f11, fis* fiex frax 11, f13% fag* f31% fe,
Jiz* faz* far* fi1, fra* fie* f13* f11, fra* fas * fa0% f16, fra* f33* f30% f11, f15% f16%
Jizx fi1, fi5% faox for* f16, f15% faz* far® f11, fi5% fas* fao* f16, [15% f33% fao* f11, f16%
Jorx faox f1s, f16% faz % fao* f12, f16% fao* fas* f15, f16% f30* fas * f1a, [16* f31 % fas *
J13, f16% faox fag* f12, [17* fis* fao* fos, f17% f1o% fag* faa, [1o% faa* fae* f19, Jrr% fas*
Joo* f1g, f1r* a6 fao* fos, frrx f3v* faz* foa, frok fao* fao* fro, Jio far* fa* f1g, fio*
Jaax fag* fos, frox fas* fag* foa, f17% fa* fas* fr9, fr7% far* fas* f1s, J1s* 19 fo5
Joa, f1s* faax fas* f19, fia* fa* fos* f17, f1s* fas* far* fae, fie* farx far* faa, fis* fao*
Jarxfro, fie* fazx far* 17, fis* faz* far* fae, [18% fas* far* fou, J1s* fae* far* f19, f18%
Jagx farx f17, fio% fao* faa* faz, f1o% faz* faa* fao, fro% fos * faa* f1s, [10* fo6* fa
Ji7, fro% fog* faax foz, fio% faox faa fao, fro% faok faa* for, fro% faz* faax fao, fro% fas5%
Jao* fa6, f1o% f36* fa0% fos, f1o% f3s* fao* fa3, f1o% [3o* fa0* fa0, Jr9% fa1* fao* [18, f10%
Jaz* faox f17, fro% faz* fac* fa6, f10% faa* fas* fa5, [1o% far* fas* f18, [10% fas* fae *
J17, Jao* farx faz* faz, fao* faz* faz* for, fao* faa fas* f19, fa0* far* [33% faa, fao* fag*
J33* faz, fao* faox f33% far, faox faa* f33* f10, foo* far* f30% fau, fao* fao* f30% f19, fo1%
Jas* faz* fao, for % far* f3a* faa, for % fas* faa* faz, far* f33% faa% fao, fa1* faa* f32%
J19, foz* faz* far foo, fook farx foo* foa, fao* fos* faok foz, fao* [33* fao* fao, fao* faax
Joox f19, faz* faax foo* f1o, faz* for* fag* foa, foz* faok fos* faa, faz* faox fog* fa1, foz*
Jaa* fag* f10, fa3* far* f3s* faa, foz* fao* [3s* f19, foa fas* [19% f18, faa* fae* [10 %
Ji7, foax fog* farx foz, foak fagx for fao, foax faok fork for, foa* faz* for fao, foax fas5%
Jarx fae, faa* f36% far* fos, foax fas* far* faz, foa faok far* fao, foax far* f3r% [18, foax
Jaz* farx fi7, foax faz* fas* fao, foax faa* fas* fos, faa* far* fas* f18, faa* fag* fas *
J17, Jas* fag* fis* 17, fas* fas* fae* fae, fas* far* 36 faa, fos* fa0% [36% f19, fas* fazx
Jae* f17, fas* faz* faa* fos, fos* fas* faa* foa, fos* fas* faax fro, fos* fas* faa* f17, foe*
J36% f35% fas, fa6% f37* f35% faa, foo* fao* [35% f19, fao* fa1 % [35% f18, fo6* faa* faz*
Joss Ja6* fas* faz* foa, foo* fas* faz* [10, fac % far* faz* f1s, far* fas * [3a* [33, for *
J33* faax fas, for* fas* fao* [33, far* faox fao* fas, fas* fao* f33* f32, fas* f30% fa3* fa1,

102

Jos * f31 % f33 % f30, fos * f32 % [33% [fao, fos * f3a % f33 % far, fos * fa7 % [30 % [f34, fos *
Jao * f30 % far, fao * faz * f3a % fos, f30* fa3* fa1 % fas, [31 % f33 % f30 % fas, [z * f33 %
Joo * fag, f33% faa* fog * for, faz * far * fag * f3a, f33% fao* fas * for, faa % fag * far
J33, faax fao% far* fas, f35% f36% faz * fa1, f35% farx faz* fao, [35% fao* faz * f37, f35%
Jar x faa * fa6, f35% faa * fag * far, f35 % fas* fas * fao, [35 % fae * fag * far, f35 % far %
Jag * [36, f36 % far* far * fao, f36 % Jao* a1 * [ar, f36 % faz * far * [f35, f36 % fag * far *
Ja2, f36% fas* faz* fa0, f36% fae * far* [37, [36* fas* far* f35, far fas * fao* [0, far*
J30% fa0* f3s, farx far* fao* f36, far* faax fao* f35, far* faz* fas* [az, far* faa* fae*
Jav, f3r* farx fas* f36, far* fas* fae* [35, [3s % fao* f30* f37, fa0% fao* [3s* far, fao*
Jar* f37% 36, fao* fao* f37% f35, fao* faz* fas* faz, fao* faax fas* far, fao* far* fas*
J365 Jao* fas* fas* [35, fa1 % fao* fa6% [35, far * faz* faa* faz, far fas* faa* fa0, fa1
Jaox faax faz, far % fag* faax fas, fa* faa* faz* far, fao* fas* faz* fao, fao* fae* faz
Ja7, Jag* farx faz* [36, faz* faa* fasg* far, faz* fas* fag* fa6, faz* fao* fas* fa5, faz*
Jar* fag* faa, faax fas* far* fa6, faa* fao* far* fa5, faa* fag* faz* [z, fa5* far* fag*
faas fas * fag* fag * faz, fae * far * fas * faa, fae * fas* fus* fuz, far % fag* faa faz}.

Relsd = {w:* frwin* fio, wak fi*xwio* fio, wak fr*win* fio, ws* fi*xwio* fio, wio*
Ji*wir * fro, win * f1xwie* fio, w1 * fakwin * fo, Wk foxwig* fo, wy* foxwyy *
Jo, Wy * foxwig* fo, wig* foxwir * fo, w1 * foxwio* fo, w1 * fakwyr* fg, wa* f3*
Wio* fg, Wax faxwirk fg, ws* faxwio* fs, wio* fakwir* fg, win* fakwio* fg, wy fax
w1k f7, Wok faxwiox fr, wak faxwin* fr, ws faxwio* fr, wio* fakwr* fr, wyy* fox
Wik fr, Wik frxwir* fa, wok frxwio* fa, wak frxwir* fo, ws* frxwio* fa, wig* frx
Wy [, Wik frxwiox fa, wix fokwry * f3, wok fykwio* f3, Wk fyxwin* f3, ws fg*
W1o* f3, Wio* fkwir* f3, Wik fakwio* f3, Wi foxwyy* fa, wak foxwio* fo, wyx fox
w11k fa, W5 foxwio* fa, Wio* fokwir* fo, win* foxwio* fa, w1 frokwir* f1, wo*
Jro*wio* f1, wak fro*xwin * f1, ws* fro*xwio* f1, wio* fro*win* f1, w1 * fro%*wig*
J1, wik frixwin x fig, wa* fi1xwio* fie, w3 * f11*wiz* fig, wa* f11xwir* fie, ws *
Jirkwio* fi6, We * f11%Wo * f16, Wr* f11%wWia* f16, Ws* f11 %W * f16, Wo* f11%wia*
J16, Wio* f11*wir* f16, Wir* f11%wio* f16, Wig* f11%Wo* f16, W1 fra*kwiy * f15, wo*
Jizxwio* fi5, Wak fraxwir fis, ws* fra*xwio* fis, wio* froxwin* fis, wirk frakwo*
J15, W3k f13x Wiz * fi4, We * f13%wo * f14, Wk f13* Wiz * f1a, Ws* f13%wg* f14, wg *
Jizkwio* f1a, wio* f13xwo* f1a, W3 fraxwia* f13, We* fra*wg* f13, Wr* fra*kwio*
J13, we* fra*wgx fi3, wo x fraxwiz* f13, Wia* fraxwo* fiz, w1 * fis*wiy * fio, wo*
Jis*wio* f12, Wak frs*win* f1a, Ws* fisxwio* fio, wigk fis*wir* fio, wir* frs*wio*

fiz, wik frexwin* fi1, wak fie*wio* fi1, Ws* fie*Wig* fi1, Wak fie*wi1* fi1, ws*

103

10.

Jie* W10 % f11, We * f16* Wo* f11, Wr* f16*wia* f11, We* f16%wWo* f11, Wo* f16% w1 *
Jit, wiok frexwinx fi1, wirk fre*wio* fi1, wig* fie*Wo* f11, wx fi7xwio* fag, we*
Jirkwo * fag, wrk frxwia* fag, We* f17%Wo* fag, Wo* f17 Wiz * fag, wia* f17xwe*
Ja6, W3 f1g x Wiz * fos, We * f18%Wo * fos, Wy * f1g* W12 * fos, Ws * f1% Wy * fo5, wo *
Jig*wiax fos, Wia* fig*wWo* fos, w3 * fro*wia* fos, We* fro%wg* fog, wr* fro*kwio*
Joa, Wk f1o%wog * foq, Wo x fro* Wiz * fag, Wia* f19%Wo* fog, Wk foo*wia* foz, we*
Jao*wo * faz, Wk fao*wia* foz, We* fag* W * faz, Wo* faoo* Wiz * faz, Wi * fog * We*
J23, W3 * fo3 % Wiz % fon, We * fa3% Wo * fon, Wk fazkwia* foo, Ws * faz *wWo* fog, wo *
Jaz ¥ Wia * foo, Wia ¥ foz % Wo * foo, W3 * fog x Wi * fr9, We * fog * Wo * f1g, Wy * fog *
Wiz * f19, We* fag ¥ Wo* f1g, Wo* fos xWia* f19, W1z* fag* Wo* f19, W3* fos ¥ w12 * fig,
W * fo5* Wy * f18, W1 fo5 % W12 f1g, W * fo5 % Wo * f18, Wo* fa5 *x Wi * f18, Wiz * fo5*
Wo* f18, W3* fas* Wiz f17, We* fag*Wo* f17, Wk fag*Wia* f17, We* fagkwox fi7, wo*
Jag*wWi2* f17, Wig* fag*wWo* f17, w1k farkwin * f34, Wox forxwio%* f34, W3k forxwig*
J34, Wa* forkwir* f3q, Ws* for*wio* f34, We* for*wo * f34, Wk forkwiz* f34, we*
Jorxwok fag, Wok forkwiak fag, wio* forxwir* faa, W11k for¥wio* f3a, Wiok forkwg*
J34, Wik fogxwin* f33, Wk fog*wio* f33, W3k fagkwWiax f33, Wa fogkwi1* f33, w5 fog*
W10* f33, We* fag*Wo* f33, Wr fagkWia* [33, We* fagkWok f33, Wo* fog* Wik f33, Wip*
Jag w1k f33, W11k fagx Wik f33, Wik fog*Wo* f33, W1 * fag kw11 * f32, Wak fag*wio*
J32, Wak fagxWi1% f30, Wy fagkwWig* f32, Wio* fag kW11 * f32, Wiy fagkWig* f32, w3k
Jaox Wiz f31, We * f30%Wo* f31,Wwr* fo*xwia* f31, We* f30%wg* f31,Wo* f30%wio*
J31, Wik f30xWo f31, W3k f31xwWia% f30, We* f31%Wo* f30, Wr f31kw12% f30, We* f31%
Wok f30, Wo* f31%W12% f30, Wiak f31%Wo* f30, W1* fao%w11* fag, Wak f3a%w10%* fag, Wy
Ja2xwirk fag, W5k faa*xWi0% fag, Wio* faakwir* fag, Wik faa*wWio* fag, W1k faz*kwyy*
Jog, Wak f33xwio* fog, W3k f33kwio* fog, Wax f33kwi1* fag, W5k f3z3kwio* fog, we* f33%
Wo* fog, Wy fazkwigk fog, We* f33xwWok fog, Wox fazkwiok fog, Wio* f33*wi1* fog, wir*
Ja3*w10%* fog, Wia* fa3*Wo* fog, W1k faakwiy * for, Wox fag*wio* for, w3k f3gxwio*
Jor, Wax faakwir for, Ws* fagxwio* far, We* faa*wWok for, wr fagkwiox for, wek faa*

Wo* for, Wo* fagxWia* for, Wio* faa*wi1* for, wi1* faaxwip* for, w12*f34*w9*f27}

Therefore, the set of the relations is

Rels = Relsl U Rels2 U Rels3 U Rels4.

From above we have a finite presentation for the subgroup C'onjy of the au-

tomorphism groups of the partially commutative group Aut(Gr) as follows:

104

Conjy = (Gens|Rels)

4.4 GAP Presentation for Conjy

This section describes the functions available from the AutParCommGrp package
which we have written for computing a finite presentation for the subgroup Conjy
of Aut(Gr) with commuting graph I” generated by partial conjugations Wy .

To write an algorithm to produce this presentation we first construct Wy, the
set of generators of the subgroup C'onjy that is defined earlier in Section 4.3, and
then find the set R of relations that are defined in Theorem 4.3.15. The input
of the main function FinitePresentationOfSubgroupConjv that provides finite
presentation for Conjy is a simple graph I' = (V, E). A graph with vertex set
V' of size n always has vertices {1,...,n} and E is a list of pairs of elements
of V. For example if I" is a simple graph with vertex set V = {x1,29, 23} and
edge set E = {[x1,xs], [11, 23], [x2, 23]} (where [z,y] denotes an edge joining z
to y) then I' will be represented as ([1,2,3],[[1,2],[1,3],[2,3]]). The output of
FinitePresentationOfSubgroupConjv consists of two sets gens and rels, where
gens is the list of the generators of the automorphism ac , defined above and rels
is the list of the relators.

In addition, to the functions IsSimpleGraph, StarLinkOfVertex, Deletevert-
icesFromGraph and ConnectedComponents0fGraph which we have described in Sec-
tions 2.7.1, 3.3.1, 2.7.3 and 2.7.4 respectively the function FinitePresentation0fS-

ubgroupConjv runs the following functions:

4.4.1 EquivalenceClass0fVertex Function

The input of the function EquivalenceClass0fVertex(St) is the list of stars St
that is defined in Section 3.3.1. It computes the equivalence classes for each vertex

v. The algorithm carries out the following instructions:

EQUIVALENCECLASSOFVERTEX(St)
1 sV <« S1ze(St)

2 foriin {1,...,sV}

3 do for jin {1,...,sV}

105

do dif f1 < DIFFERENCE(St[7], i, j])
dif f2 < DIFFERENCE(St[j], [, j])
if dif fl=diff2
then ADD j to new list EqCI1
7 ADD EqCI1 to new list FqCl
8 return FqCl

4.4.2 ClassPreservingConnectedComponents Function

The input of the function ClassPreservingConnectedComponents(FEqCl, Comps)
is FqCl the list of equivalence classes of vertices of I' and the list of connected
components Comps of a subgraph B of I' (usually B = I'\St(z), for some vertex
x). It constructs a new list of connected components Comps from the connected
components of the subgraph B by finding the connected components which satisfy
the conditions of partial conjugation for Wy,. The algorithm carries out the following

mstructions:

CLASSPRESERVINGCONNECTEDCOMPONENTS(FEqC1l, Comps)
1 sizeEqCl < S1ZE(EqCI)
2 foriin {1,...,sizeEqCl}
3 do sizeComps < S1ZE(Comps)
4 sizeEqClcurrent <— S1zE(EqCI[i])
) cdash <~ EMPTYLIST
6 remainingcdash <— EMPTYLIST
7 for jin {1,..., sizeEqClcurrent}
8 do for k in {1, ..., sizeComps}
9 if EqCli]]j] € Comps|k]
then cdash < UNION(cdash, Compsl[k])
10 for k in {1,..., sizeComps}
11 do if Comps|k| ¢ cdash
then ADD Compsl[k| to the list remainingedash
12 ADD cdash to the list remainingcdash
13 Comps = remainingcdash

14 return Comps

106

4.4.3 Generators0fSubgroupConjv Function

The input of the function Generators0fSubgroupConjv(NE, NV, St, V) is the list
NE of all lists of edges of I'\St(v), the list NV of all lists of vertices of 1"\ St(v), the
list of stars St that is defined in Section 3.3.1 and the list of vertices V. It computes
the list gensl which form the type (1) generators of Conjy. The algorithm carries

out the following instructions:

GENERATORSOFSUBGROUPCONJV(NE, NV, St, V)

1 sNE + S1ze(NE)
2 imvV < COMPUTETHEINVERES(V)
3 L < CONCATENATION(V, invV)
4 EqCl < EQUIVALENCECLASSOFVERTEX(S?)
5 for hin {1,...,sNE} >heV
6 do G2 <+~ NE(h)
7 G1 <+ NV(h)
8 R3 <~ CONNECTEDCOMPONENTSOFGRAPH(G1, G2)
9 Comps < R3(1) > C'omps is the list of all components
10 sComps < R3(2)
11 P < CLASSPRESERVINGCONNECTEDCOMPONENTS(FEqC1, Comps)
12 ADD the non-empty element of P to new list Y4
13 sY4 < S1ze(Y4)
14 for i in {1,...,sY4}
15 do dif f2 <— DIFFERENCE(L, Y'4[i])
16 ADD dif f2 to new list zsl
17 for i in {1,...,sY4}
18 do sz « S1zE(zsl[i])
19 for jin {1,...,sz}
20 do KK < CONCATENATION(Y'4[i], [xs1][i][7]])
21 HH «+ [KK, zsl[i][j]]
22 ADD HH to new list Y5
23 sY'5 + S1zE(Y'5)
24 ADD Y5 to new list Y6
25 ADD zsl to new list xs2
26 ADD Bs to new list Y3
27 sY6 < S1ZE(Y6)

107

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

43
44
45
46
47
48
49
20
o1
52
23
o4

if sY6+#0
then Y7 + CONCATENATION(Y 6)

sY'T7 < S1ze(Y'7)
153 <~ CONCATENATION(x52)
srs3 < SIZE(xs3)
for i in {1,...,sxs3}
do ADD the non-empty element of xs3 to new list xs
sxs < SIZE(xs)
Uzs < UNION(zs)
Uxs < S1ze(Uxs)
for i in {1,...,sY7}
do ADD the non-empty element of Y7 to new list CzY'1
sCxY'1 + S1zE(CzY'1)
for jin {1,...,sCxY1}
do CoOMPUTE CzY a list of the definitions of the partial
conjugations Wy of Conjy
sCxY <« S1ze(CzxY)
Y8 <+~ CONCATENATION(Bs)
for i in {1,...,sY8}
do ADD the non-empty element of Y8 to new list Y
sY < S1ze(Y)
for kin {1,...,sCzY}
do CONSTRUCT a list f such that f(n) = CxY(n), n € N
sf < S1ZE(f)
for jin {1,...,sf}
do ADD f; the name of the i** element of f to new list gensl
sgensl <— S1ZE(gensl)

return either [CzY,sCzY, Y, sY | f, sf, gensl, sgensl] or

an empty list if there is no component C satisfies the Definition 4.3.1

Remark 4.4.1. Note that,

(1) We use the functions APCGRelationRConj1, APCGRelationRConj2, APCGRela-

tionRConj3 and APCGRelationRConj4 which are described in Sections 3.3.4,
3.3.5, 3.3.6 and 3.3.7 respectively to find the set R of relations that are defined
in Theorem 4.3.15, by using the output of Generators0fSubgroupConjv above

108

rather than the output of Generators0fSubgroupConj which is described in
Section 3.3.3.

(2) We use the function APCGConjLastReturn(gensd, R2a,sR2a) which is de-
scribed in Section 3.3.8 to return the final return [gens,rels, GGG] of the

functions FinitePresentation0fSubgroupConjv below.

4.4.4 FinitePresentationOfSubgroupConjv Function

The function FinitePresentation0fSubgroupConjv(V, F) provides finite presen-
tation for the subgroup Conjy. The input of this function is a simple graph
I' = (V,E). It returns [gens, rels, GGG], where,

(i) gens is a list of free generators of the subgroup Conjy of the automorphism
group Aut(Gr) of Gr .

(ii) rels is a list of relations in the generators of the free group F. Note that

relations are entered as relators, i.e., as words in the generators of the free

group.

(iii) GGG := F/rels is a finitely presented of the subgroup Conjy of the automor-
phism group Aut(Gr) of Gr.

The algorithm carries out the following instructions:

FINITEPRESENTATIONOFSUBGROUPCONJV(V, E)
1 if I" is simple graph
2 then CALL THE FUNCTION STARLINKOFVERTEX
CALL THE FUNCTION DELETEVERTICESFROMGRAPH
CALL THE FUNCTION GENERATORSOFSUBGROUPCONJV
CALL THE FuncTiON APCGRELATIONRCONJ1
CaLL THE FuncTioN APCGRELATIONRCONJ2
CaLL THE FuncTiON APCGRELATIONRCONJ3
CaLL THE FuncTtioN APCGRELATIONRCONJ4
CALL THE FuNncTiION APCGCONJLASTRETURN

© 00 N O Ot = W

10 else return “The graph must be a simple graph”
11 return [gens, rels, GGG]

For example:

109

gap> C:=FinitePresentation0fSubgroupConjv([1,2,3],[[1,2],[2,3]1]1);
[[f1, f2, £3, f4, f5, f6, £f7, £8], [f1xf4, f2xf3, £3*xf2, f4xf1,
£5+f8, f6xf7, f7xf6, £8*f5, f1xf2*xfd*f3, f1xf3*%f4*xf2, f2*+f4*xf3*xf1,
£3xf4xf2xf1, fExf6*x£8*f7, fH*xf7*f8xf6, f6xf8*xf7xf5, f7+xf8*xf6*f5,
f2xf1x£3%xf4, f3xf1xf2xf4, £2*xf4*£3xf1, £3xf4xf2xf1, f5xf6*xf8*£f7,
f8*f6xf5xf7 , f5xf7xf8%xf6, f8*xf7xf5xf6], <fp group on the generators
[f1, f2, £3, f4, f5, f6, £f7, £8 1>]

Remark 4.4.2. We use the function TietzeTransformations(G) which is described
in Section 2.7.19 to simplify the presentation of C'onjy. For example, using the

output of FinitePresentation0OfSubgroupConjv above:

gap> G:=C[3];

<fp group on the generators [f1, f2, £3, f4, f5, f6, f7, £8]>
gap> TietzeTransformations(G);

[<fp group of size infinity on the generators [f1, f2, f5, f6 1>,
[f1xf2xf1"-1%f27-1, f5*xf6*f5 " -1*xf6"-1]]

110

Part 11

Differential Graded Algebraic

structures

111

Chapter 5

Introduction and Preliminaries for

DG Algebraic structures

5.1 Introduction

Let G be a group with identity e and R be a ring with unit 1 different from 0. Then
R is said to be G-graded ring if there exists an additive subgroup R, of R such that
R=@&) R,and RyR;, C Ry, for all g,h € G. Let K be a field of characteristic

geG
two, R = K|z, 29, ,x,] be a graded ring, graded in the negative way, and let M

be differential graded R-module, where the degree of the differential is P.

Our aim is to study the case that (P < —2, n > 1), and we give classification
for the types where M is a solvable module and the cases where M is not solvable,
using the dimension of the module and the degree of the differential on the module.

Also we will give an algorithm for these cases, implement in GAP.

5.2 Preliminaries

In this section, we give a brief overview of some definitions and results of exact
homology sequences from [5], [42], [50] and [54]. For background on rings and
modules we use [21], [33] and [42].

112

5.2.1 Exact Homology Sequences

Definition 5.2.1. Consider a sequence (finite or infinite) of abelian group and
homomorphisms
AP A, A

This sequence is said to be exact at A, if and only if Im(¢1) = Ker(¢q). If it is

every where exact, it is said to be an exact sequence.

Theorem 5.2.2. (1) A, o Ao o, 0, is exact sequence if and only if ¢, is

epimorphism.
(2) 0 o A 2, Ag is exact sequence if and only if ¢o is monomorphism.

Proof. 1) Ay O Ay 2500 s exact sequence at Ay if and only if Im(¢y) =
Ker(¢y) = Ay iff ¢ is epimorphism.

2) 0 A 25 A, is exact sequence at A; if and only if Ker(¢y) = Im(¢) iff
¢ if and only if ¢9 is monomorphism.
O

Definition 5.2.3. An exact sequence of the form

0—>A1£>A2£>A3ﬁ>0

is called a short exact sequence. A diagram of modules

A -2 A,

o e

As ?A4

and homomorphisms is said be commutative iff V01 = P21);.
Theorem 5.2.4. Consider the following commutative diagram

0 Ay —F o, — 04y 0

2 m

0 By—" B — . B,

0

with exact rows. If any two of the three homomorphisms ny,m and ny are iso-

morphism, then the third is an isomorphism too.

113

Lemma 5.2.5. Suppose ¢ : A— B is epimorphism with kernel K, then the se-
quence 0— K — A %y B 50 is exact where i is the inclusion map.

Proof. Since ¢ is onto, then I'm(¢) = B = Ker(1). Hence the sequence is exact at
B

Also, Im(i) = A = Ker(¢), and hence the sequence is exact at A. Therefore,
0—K — A -2 B %0 is exact. m

Theorem 5.2.6. Suppose that the sequence A, o Ag RN Az RN Ay is exact,

then the following are equivalent:
1) ¢y is epimorphism.
2) &9 is the zero homomorphism.

2) &3 is monomorphism.

Proof. (1) gives (2): Suppose ¢; is epimorphism, so Im(¢;) = As. Since the
sequence is exact we have Im(¢;) = Ker(¢s), and so Ker(¢y) = Ay, which gives
that ¢o = 0.

(2) gives (3): Suppose ¢s is the zero map. Then Im(¢y) = 0, using that the
sequence is exact we have Im(¢2) = Ker(¢s) = 0. Therefore, ¢3 is monomorphism.

(3) gives (1): Suppose that ¢3 is monomorphism. Then the sequence is exact
at As, so Ker(¢s) = Im(¢2). But ¢35 is 1-1, we have I'm(¢2) = 0 and so ¢, is a zero
map. Since the sequence is exact at A we have Ker(¢s) = Im(¢1) = A;. Hence ¢,
is epimorphism.

]

Definition 5.2.7. Consider the sequences

A A,

A homomorphism from the first sequence into the second sequence is a family of

homomorphisms «; : A;— B; such that the following diagram commutes.

114

Ay Ap Ay e A; Aipr
‘O&l a0 aq | a a;+1
P-1) P
B By B e B; "~ Bin

(i.e. a1 0p; =1; oy for all 7). It is an isomorphism of sequences if each «; is

an isomorphism.

Definition 5.2.8. Let C' = {C),0,} and C" = {C},9,} be a chain complexes. A
chain map ¢ : C — (" is a collection of homomorphisms ¢, : C, — dp such that
(i, o ¢p = Pp_1 0 0p, for all p (i.e., the following diagrams commutes)

Op+1 Op

Cpta Cy Cp1
| ¢p+1 | d)p | ¢>p—1
ol o,
, p+1 ’ D ,
Cerl Cp Cpfl

Lemma 5.2.9. A chain map ¢ : C — C" induces a homomorphism

(hx)p : Hy(C) — Hp(C"), for all p given by:

(@)p(x + im(Fp11)) = dp(x) + Im(T},,)
Proof. Suppose ¢ : C'— C" is a chain map. To show that (¢.), is well-defined. Let
x4+ Im(0p+1) = y+ Im(0pt1). Then x —y € Im(0,41). Since 0,41 is onto, there is
z € Cpy1 such that dp41(2) =2 — .

But ¢, 00p41 = 9,110 ¢p41, implies to 9,11 (¢p41(2)) = Op(Fp41(2)) = dp(x—y) =

Qsp(x) — ().
Therefore, ¢,(z) +imd,, |, = ¢,(y) +im(d,,,). Also,

(@)p(+ Im(Dp41) +y + 1m(Fp11)) = (¢u)p(x + y) + im(Fp11))
= ¢p(z +y) +im(9,,,)
= (/517(“3) + gzﬁp(y)im(@}',H)
= ¢p(x) +1im(0)41) + Op(y) + im(9,41).
= (04)p(@+1m(0p11)) +(0:)p(y+im(Fps1)).-
And (6.)y(r - (2 1 im(Bp)) = (62)y(r + im (D)
= ¢p(rz) +im(0,,1)
=71 ¢p(x) +1m(0,,,)
= 1r(¢s)p(x + imOp11).

115

Hence (¢.), is a homomorphism. O

Lemma 5.2.10. a) The identity map i : C — C is a chain map and (i),
H,(C) — Hy(C) is the identity homomorphism.
b) If p: C — C"and : C" — C" are chain maps, then o : C — C' is a chain
map and (1 0 @), = 1y 0 Ps.

Proof. a) Clear by Lemma.

b) Consider the following digram

Op+1 Ip Op—1
e — p+1_>C —>Cp 11— """

¢p+1l ld’p d’pll

Op+1 4 ap apl
e —— p+1—>C —>Op 11—

¢p+ll l@bp wp 1l

aerl Z 8 ap 1

e — p+1%0 %Cplé'.‘

Since the diagram commutes we have ¢,_100, = J,06,, and 50 ¥,_1(¢p-100, =
Yp-1(0, 0 ¢p). Similarly, we have t,_1 0 0, = J 0 ¢, and s0 ¢,_1 0 0}, 0 ¢, =
0, 0 1y, 0 ¢p. Therefore, ¥, 1 0 ¢, 10, = 0 010 Py
By definition (¢.), : H,(C) = H,(C") is given by
Gu)p(2 +imIp11) = G(2) +imI,,, and
Yy)p Hy(C') — Hp(C") is given by
b)p(0(x) + im0, ;) = ¥(¢(x)) + imdyy,. Now,
(Y o@)x), : Hy(C) — Hy(C") is given by:
(¥ 0 @)x)p(x +imbpp1) = (¢ 0 §)(z) +im3,
So, (¢ 0 @)x)p(x +imdpi1) = (Y 0 ¢)(x) +imI,,.
= ¥((x)) +imy,,.
= (¥.)p(0(2)) +imy ;.
Hence ((¢ 0 ¢)%), = (¥u)p © (64)y-

(¢
(
(¥
(
(

116

Chapter 6

Graded Rings and Graded
Modules

In this chapter the concept of graded rings and some of its properties are presented.
We also, give the definitions of graded algebras, and differential graded modules over

the graded polynomial ring R = K[z, xo, ..., Z,)].

6.1 Graded Rings

Definition 6.1.1. [59] Let G be a group with identity e. Then a ring R is said to be

G-graded ring if there exist an additive subgroups R, of R such that R =&) R,
geG

and RyR, C Ry for all g,h € G (some references use RyR;, C R,y rather than
RyRy, C Ry, for example see [33]).

We denote the G-graded ring R by (R, G), and we denote the support of the
graded ring (R, G) by

supp(R,G) ={g € G: R, # 0}.

The elements of R, are called homogeneous of degree g. If € R, then x can be
written uniquely as » x, where z, is the component of z in R,. Also we write,

geG
h(R) = U R,.

geG

Definition 6.1.2. [21] Let A be a subset of R, for A € G we write Ay for AN R,.

A subset A is called graded subset of R if A=) A,.
AEG

117

Let I be an ideal of R, we say [is a graded ideal of (R,G)if I =& > (R,NI).

geG

Remark 6.1.3. Clearly, ® > (R, N I) C I and hence I is a graded of (R,G) if
geG
I C Y (RyNI). Also, J = > (R,NI) is the largest graded ideal of R which is
geG gelG
contained in I.

Now, we give some examples of G-graded ring.

Example 6.1.0.1
Let G be any group, then R is a G-graded ring with: R, = R and R, = 0 for all
g € G —{e}. This grading is called the trivial grading of R by G.

Example 6.1.0.2

The polynomial ring S = R|x1, 3, ..., x,] in n variables over the commutative ring
R is an example of a graded ring. Here Sy = R and the homogeneous component of
degree k is the subgroup of all R-linear combinations of monomials of degree k i.e.,
Sa =D ey TmX™ | rm € Rand my + ... +m, = d}. This is called the standard
grading on the polynomial ring R[x1,...,2,]. The ideal I generated by z1, ..., x, is
a graded ideal: every polynomial with zero constant term may be written uniquely
as a sum of homogeneous polynomials of degree k > 1, and each of these has zero
constant term hence lies in I. More generally, an ideal is a graded ideal if and only

if it can be generated by homogeneous polynomials (see Lemma 6.1.4 for the proof).

Example 6.1.0.3
[64] Let K be a field, and R = K|z] be the polynomial ring over K in one variable
x. Let G = Z3, then R is a G-graded ring with:

Ry= (k¥ ke K, r=0,1,2,...), forj € Zs.

Example 6.1.0.4
Let R =Zi] ={a+1ib:a,b € Z} (the Gaussian integers), and G = Zs, then R is a
G-graded ring with: Ry = 7Z, and R, = iZ.

The following example shows that an ideal of a G-graded ring need not be a

graded ideal in general:

Example 6.1.0.5
Let R = Z[i] , and Let G = Zy. Then R is a G-graded ring with: Ry = Z, and

118

Ry =iZ. Let I =< 141>, where z = (1 +1i),290 = 1 and z; = i. Clearly xy ¢ I
because if xy € I then there is a + ib € Z[i] such that 1 = (a + ib)(1 + ¢) which
implies a —b = 1 and a + b = 0. Hence 2a = 1, contradiction. Thus [/ is not a
graded ideal of (R , G).

Lemma 6.1.4. An ideal is a graded (homogeneous) ideal if and only if it can be

generated by homogeneous polynomaials.

Proof. Let R be a graded ring such that R = @&) R,, where the R, are additive
geG
abelian groups such that RyR;, C Rgyy for g,h > 1. If I C K|z] is graded (ho-

mogeneous), the homogeneous parts of the generators of I obviously generate I.

Conversely, let I be an ideal generated by homogeneous polynomials f;, i =1,...,r.

Suppose that w € [i.e., w =) a;fi, a; € K[z]. Note that each homogeneous part
i=1
(a;)) fi of a; is in I, because I is an ideal. Since this holds for any g € I, we have

that
@izl(] N Rg) CIC @121(] N Rg)

This means both are equal and [is graded ideal. O

Proposition 6.1.5. [33/ Stated that: Let R be a graded ring, let I be a graded ideal
in R and let I, = I N Ry, for all k > 0. Then R/I is naturally a graded ring whose

homogeneous component of degree k is isomorphic to Ry/I.
There would be necessary to prove the proposition above.

Proof. 1. We show that R;I; C I;;;. Let v € R;I; then o = r;a; where r; € R;
and a; € I;. So x € R;I; implies that r,a; € R;I; implies that r,a; € R;R; N1
(since R; NI = I;) implies that ra; € R;y; N1 (since R;R; C R;.;) which
implies that r;a; € I;4; (since R;y; NI = I;1;). Thus R;1; C I;4;.

2. We show that the multiplication (R;/I;)(R;/I;) C Riy;/Ii+;. is well defined.
We need to show that:

(ri + L) (ry + 1) = rirj + Liyj

where T + IZ < RZ/IZ and] + Ij S R]/I]
Letr;+ 1 =74+l and rj + [; = rg + I;. We need to show that:

(ri + L) (rj + I;) = (r; + L) (1} + I)

119

i.e., we need to show ryr; + Ii; = rir’; + I; ;. So if we show that (ryr; —rir}) €
I,+; we are done. Note that r; + I; = r; + I; implies that r; — r; € I; implies
that (r; —7})r; € I; (by multiply both sides by ;). So r;r; —rir; € I; (because
I; is an ideal). Similarly, r; + I; = r/ 4 I; implies that r; —r, € I; implies that
ri(ri—ri) € I; (by multiply both sides by r7). Hence rir;—rir; € I;. Therefore,
(riry — rir;) + (riry — rir’) € I + I; C I, which implies that (ryr; — rir}) €
I +1; CI. But, r;r; € RiR; C Riyj. So ryrj € Ry and 7“27‘3 € R;;;. Hence
rirg —rirs € TN Ry = Iy
3. Now we prove that R/I = &2 Ry /I where I, = R, N 1.
Foreachr € R,r =) r;such that r; € R;, we define ¢ : R — @& (Ry,/I;
by :
p(r) = Z ri +1;
(a) ¢ is ring homomorphism for:
e Ifr=>r;and t=> t; € R then,
p(r+1) =oQori+ 2 t) = e(Qori+) = 22(ri + 1) + I
= (2 + L)+ Ot + L) = o(r) + o).
o Ifr=>r,andt=>t; € R then,
p(r-t) = o((Qr) - (2ot) = Qo doriti) = 22 2o miti + 1
= Qri+ L) Qo b+ L) = ¢(r) - ¢(t).
So ¢ is ring homomorphism.
(b) ¢ is onto for:
Let y € @72 R/ 1), implies that y = """ ;4 I; implies that there exists
x € R; x =Y r; such that o(z) = (> r;) = > r; + I;. Thus ¢ is onto.
(c) ker(p) =1 for :
x € ker(p) if and only if (> ;) = 0 if and only if ("1 x;) =
Sai+ 1L =Y L if and only if > a; € Y I = @2 ,I; = I. Hence
R/I = &2 si/1 (by the first isomorphism theorem).

4. Now we check the ring axioms:

(a) R/I = @52 Ry/1) is abelian group.

(b) If r; + I;,r; + I; and 7, + I,, € R/I then,
[(ri + 1) - (rj + Ip)] - (ra 4+ In) = (rivy + Liv)(rn 4 1) = 1irjrn + Ligjin =
(ri + L) - (rjrn + Lin) = (ri+ L) - [(ry + L) - (ra +)]

120

Also, (ri+1;) - [(rj+1;) +(ro+1n)] = [(rit+L) - (ry+1;) |+ [(ri+ L) - (rn+ 1))

Hence associative holds.

Proposition 6.1.6. Let R be a G-graded ring and x,y € R,g € G. Then
(1) (x+y)g =24+ Y-

(2) (xy)g = X TrYr-14-
AeG

Proof. Let x,y € R, then x = > x, , y = > ys.
heG seG

(1) If xp, +ys € Ry — {0}, then x), +ys € RyN (R + Rs) # 0. Thus g = h = s and
hence (z +y)y = 74 + Y-

(2) Assume zy = > xpys. If 2pys € Ry then xys = 0 or hs = g. Thus s = h™lyg
h,s€eG

and hence, (zy), = Y Tpyn-14.
hea

Proposition 6.1.7. Let R be a G-graded ring. Then
(1) R. is a subring of R and 1 € R,.
(2) R, and R are R.-modules.

Proof. (1) R, is closed under multiplication, because R.R. C R, so R, is a subring

of R. Let 1 =)" rg be the homogeneous decomposition of 1 € R. pick ¢ € G,
seG
and \, € R,, then A\, = 1.\, = >_ r), with .\, € R,,. Consequently rsA =0
seG
for all s # e in G. It follows that r,A = 0 for all s # e in G and for all A\ € R.

Therefore, 1 =r, € R,.

(2) Since R.R, C R,, and R,R. C R., we have R and R, are left R.-modules.
]

121

6.2 Graded Modules

In this section, we will give a brief overview of some definitions and results of graded
algebras, and differential graded modules over the graded polynomial ring R =
K[z, 2o, ..., x,) following [54], [64], [3], [23] and [66].

Definition 6.2.1. A graded K-algebra A is a sequence of K-vector spaces

{A;},ez, together with vector space homomorphisms:
T A Qx Ay — Aiyj fori,j € Z and

i K — Ag, such that the following diagrams

AQA @A, =25 Ay © Ay

tem | |-

A ®Ajim IR Aitjym

commute for all 7, 7,m € Z

Definition 6.2.2. Let A be a graded K-algebraand ¢ : A;®@xA; = A;®k A; be the
K-vector space isomorphism which takes a ® b into b ® a. Then A is commutative

iff the following diagram:

A; @ Aj Aj @K Ai

commutes for all i, j, € Z.

A graded K-algebra A is called graded integral domain iff whenever ab = 0
for some a € A; and b € A, then a =0 or b = 0.

Note that K is a graded K-algebra: the grading is given by

K ifi=0
K; =
0 ifi#0

122

Example 6.2.0.6
Let R = K|x1, 23, ..., x,], be the ring of polynomials in n indeterminates over a field
K. Let

R; =0 forall j >0,

Ry =K, and

R; = the set of all homogeneous polynomials of degree — j if 7 < 0. Then R is
a graded K-algebra and a graded integral domain, with the negative grading.

Note that in R, if dim(f) = j, i.e., f € R; then degree of f = —j. From now
on R will be graded in the negative way above, where K is a field of

characteristic two, unless otherwise indicated.

Definition 6.2.3. Let R be a graded K-algebra. A (left) graded R-module
M is a graded K-module, together with a sequence ¢ : R; ® M; — M, ; of K-

homomorphisms, for i, 7 € Z such that the following diagrams:

R; ® R; @ My, LN Riy; @ My,

1@% laﬁ

R @ Mjym 2, Mitjim

J

R0®Mj¢—>Mj

commute for i, j,m € Z where p : K — Ry here Ry = K, (k® m) — km — km
and (k®@m) — (u(k) @m) — ¢(u(k) ® m) = km is the map given by the definition.
We denote this by M = &> ° _ M,. Similarly, we can define the right graded

R-modules. If R is commutative, we may regard left R-modules as right R-modules,

and vice versa. If m € M; define dim(m) = j.

Definition 6.2.4. Let M =@ > M;and N =& >, N; be a graded R-modules.

A map of degree P from M to N is a family F' = {f, : M,, — N,y p,n € Z} of
R-module homomorphisms such that F'(rm) = rF(m), for r € R and m € M.

Note that we will consider all elements in R to be homogeneous, so if we write

a € R, we mean a € R; for some 1 € Z.

123

Definition 6.2.5. A differential graded (DG) R-module M of degree P is a
graded R-module with an R-module homomorphism 0 : M — M of degree P such
that 92 = 0.

Definition 6.2.6. A graded R-module M is is said to be generated by a set

S = Ux_S;, where S; C M; for all 4, if every element g € M; can be written as
follows:

g = ersj, where 7; € R and s; € S such that dim(r;) + dim(s;) =1. (6.2.1)

The set S is called a generating set for M. Moreover, M is said to be finitely
generated if it has a finite generating set S. M is free if there exists a generating

set S such that every g € M; can be uniquely expressed as in (6.2.1) above.

Here we give an example of DG R-module, and also an illustration of a construc-

tion of Carlsson’s in [15].

Example 6.2.0.7
[64] Let K =7Z/2, and G = Z/2 = {1, a}, where a* = 1.
Let R = K]lz] be the graded polynomial ring in one variable of dimension —1

over K. Define the chain complex C, by
02005 C %00
where; Cy 2 Z/2®Z)2, Cy=Z/287Z/2,
91(1,0) = (0,1) 4 (1,0) (6.2.2)
01(0,1) = (1,0) + (0,1) and

0; =0 for 7 # 1.

Clearly 6;_1 0 0; = 0 for all j, and the matrix of d; with respect to the basis

{(1,0),(0,1)} is
1 1] .
L 1] , since K =7/2

For ¢ =0, 1, define an action of G on C; by
a(1,0) = (1,0) and
a(0,1) = (1,0). Then

124

ady; = d1a for 1 = 0,1 and hence for all 7. i.e., C, is a chain complex of K[G]
-modules.

Denote by (1,0)¢ and (0, 1)y for the generators of Cp, and similarly (1,0); and
(0,1); for the generators of C;. Since C; 2 Z/2 ® Z/2 = Z/2|G| for i = 0,1; C; is
a free Z/2[G]-module for all i, and a basis for C is {eg1 = (1,0)p,e02 = (0,1)0}.
Similarly a basis for C} is {e;1 = (1,0)1,e02 = (0,1);}.

From this chain complex C\, Carlsson constructs in [15] a free differential graded
module M over the graded polynomial ring K[X] as follows:

Let M; =0 fori > 2

My =0-Cod1l-C4
My=1-Copz-C;
M=z -Cyda? O
M_y=2°Cod 23 C

ijfl = ZUj+1 : C() ©® $j+2 : Cl

One can see that, for j > —1, the map
Roi @ M_j — M_i4;)

ar' @ (27 - ¢y, 29 ¢)) — (acpr™ | acy I
defines an R-module structure on M.
For j > —1, define 0_; : M_; — M_(j;1) by

O_j(2 - co, 2 -) = [27T81(er) + 27T (@ — 1o, 271 (a — 1)eq] (6.2.3)

where d; as in equation (6.2.3) and a as in the assumption. Now

D_j100_j(x? - co, a7t cq)
= 0_j 12?61 (c1) + 27 (a — D)eg , 292 (a — 1))
= [2772 - 61((a — V)ey) + 272 (a — 1)01(c1) , 2773 (a — 1)(a — 1)¢q]
= [2772 - [d1a(er) — di(er)] + 2772 - [adi(er) — di(er)] , 27*5(a® — 1)ei]
= [2772[ad1(c1) — d1(c1) +adi(c1) — b1 (cr)] , 2773 (a® —1)cy], (since ady = d1a)
=0 (since a’>=1and K =7Z/2).

Let e1 =e11, e2 =e12, e3 =ep1 and ey = ego. If m € M_;, then m can be

written uniquely as

125

m =27 - cg+ 7 ey for some ¢y € Cy and ¢; € C}.
But ¢y = aqep1 + agepe and ¢ = Pre1s + Peern for some o, ‘s and 5 's in
K|G]. Therefore,
m =2/ (areg1 + anega) + 27T (Brer 1 + Paer)
= (13j061)€0,1 + (IjOéz)eo,z + ($j+151)€1,1 + ($j+152)€1,2
= (7 T1B8))er + (27T By)es + (2 an)es + (2P an)ey,
and hence v = {e;}1_, is an R-basis for M, and M, is a free DG R-module.

Example 6.2.0.8
[63] Let R be a differential graded algebra and M and N be DG R-modules. Suppose
f: M — N is a morphism of DG R-modules. Then ker(f), coker(f), im(f) and

coim(f) are also DG R-modules.

Let M be free finite generated differential graded R—module of degree -1 with
basis S and differential 9. Then S can be written as a finite union U}*,Sy;. So there
exist two integers ¢t > r such that M; =0 for i > ¢j and s; = ¢ for j >t and j <.
Thus we get the following diagram:

M:0—- —0—M —M_ 41— — Mg —>---
U U U U U
St¢ ¢ St Si-1 Sr41 @ e

Note that some of {S;}’_, ., could be ¢.

To make the last diagram clear, Let as consider the following example.

Example 6.2.0.9
Let R = K[z,y]. Then 0 = Ry = Ry = --- ,Ry = K and R_; is the set of all
homogeneous polynomials of degree 1, R_5 is the set of all homogeneous polynomials
of degree 2, and so on. Hence 23y € R_, and of degree 4 but dimension -4. Now,
let M be a left R-module with basis {e;,e2}. suppose ej,es € My for some T', so
St ={ei,ex} and S; = if i £ T.

Note that dim(am) = dim(a)+dim(m), wherea € R, m € M. If g € My, then g
can be written uniquely as g = ae; +bey. Thus T' = dim(ae;) = dim(a) +dim(e;) =
dim(a)+T,so dim(a) = 0,i.e.,a € K. Similarly, b € K. Therefore My = Ke;®Ke,.

If g€ M; and j > T, then g can be written uniquely as : g = ae; + bep. Thus
Jj = dim(aey) = dim(a) + dim(ey) = dim(a) +T. So dim(a) = j — T > 0. Hence
a € Rj_p = 0. Similarly b = 0 Therefore, M; = 0 for 7 > T

If g € Mj and j < T, then g can be written uniquely as : g = ae; + beg, and

126

hence j = dim(aey) = dim(a) + dim(ey) = dim(a) + T. Then dim(a) = j — T < 0.
Hence a € R;_r. Similarly, b € R;_p Therefore, M; = R;_re; ® Rj_rey for j < T.

Hence, we get

M:0— - —0— MT ﬁ) MT_laT—ii Mr+1_>"'

Jur - Ul Ul Ul Ul
S: o ¢ Sr={e, e} ¢ ¢

Suppose that M is a free finitely generated differential graded R-module of degree
-1 with basis S, and differential 9. Let L = the total number of elements in the
R-basis S. Then 0 will be completely determined by an L x L matrix as in the
diagram A of Figure 6.1:

homog.
heme, ! 1 1 E
3 homog. | homog. H 1
| 1 : of
5¢ Polyns. of of : of : H
I 1 : degree j+1
degree 1 degree 2 ! degree 3 : L L
_________ b mm oo oo
homog. homog. |
1
of 1
#5850, constants of H
1
degree 1 degrea 2 1
---------- I homog.
I
I
O 1 constants of
I
L. __________ degree 1
.
~
~
~
~
~
~
~
~
~
~ .
homeg.
of
degree 1
| hemog. " homog.” ~ |
STVi O I
1 constants of of
1
1
1 degree 1 degree 2
mm———————
H ' hamog.
! 1
: O | constants of
1
1 1
degree 1

Figure 6.1: Diagram A

with 92 = 0.

Note that, some of the constants could be equal zeros. Also, some of the homo-

geneous polynomials may be equal to zero.

127

Similarly, if degree of 0 equal —j such that j > 0, then we can see the matrix of

0 with respect to the basis S as in the diagram A.1 of Figure 6.2:

\
hamag. homae. homag. P hamer,
#5 Potyns. of o of P
1
degres | degree 1 degree 42 | degree T-),
omar. [homos.
s, of
#5u Pobyns.of of
dogree i1 dogrea | dogree 11
\
i
H
Tamor.
51y o
dagres
hemet.
85 constants o
degree 1
om0
of
aree
homog. homes.
#5000 e \) of of
N degres | degrea j

Figure 6.2: Diagram A.1

with 02 = 0.

Finally, if degree of 0 equal is j such that j > 0 , then we can see the matrix of
0 with respect to the basis S as in the diagram A.2 of Figure 6.3::

! hemag.
'
85 e} o] 1 of
1 degree T-
S NSRRI N RUPIIIP MNP B-y 3-r-ot
1 hamaz. hemeog.
'
s,] of
1
degree 1 degrae jr+2
B s IRRECTEETEREEERERY ARy
'
#50a Vet
'
odeereez 0l
_/
#50 O

Figure 6.3: Diagram A.2

128

Chapter 7

Solvable Differential Graded
Modules

Let K be a field of characteristic two, R = K[z, xs, ..., 2,] is a graded ring of poly-
nomials graded in the negative way, and M be a free finitely generated differential
graded R-module of degree P such that (P < —2). We will give an example that M
is not necessarily solvable when (P < —2).

In this Chapter we will construct a classification for some types of differential
graded R-modules, based on the degree P of the differential module and dimension
of the module. This classification gives a partial algorithm to test whether such
modules are solvable. For modules outside the classification we cannot decide, using

our methods, whether or not they are solvable.

7.1 Composition Series

We will describe in this section the composition series by giving a definition for this
series as well as give some of the concepts and definitions and theories that will help

us in our study of differential graded modules.

Definition 7.1.1. By [64] Let M be a finitely generated free DG R-module of

degree P. A composition series for M is a sequence of free DG R-modules
0=ChcCiC...cCy=M

such that (C;/C;_) is free DG R-modules, whose differential is identically zero i.e.,
0(C;/C;-1) = 0. The length H of the series is called the composition length.

129

Any module having a basis of size t is isomorphic to any other module having a
basis of size t. If # : M — F is a surjective homomorphism from an R-module to
a free module F' then M = Ker(n) @ F. Therefore, if M has a composition series,
as in Definition 7.1.1 then C; = Cj_1 & (C;/Cj-1), ¥ j (see [42]).

Suppose M is finitely generated free DG R-module of degree P. M has basis S =
SrU...USp_k, T,k > 0. If g € My then g =Y r;s; where dim(r;)+dim(s;) = T. As
s; € S we have dim(s;) < T and as dim(r;) < 0 we have dim(s;) = T—dim(r;) > T.
This holds V 7, so M is generated by St.

Similarly, if g € My, where s # 0 we have g = > r;s; with dim/(r;)+dim(s;) =
T+s. SoT >dim(s;) =T+ s—dim(r;) >T+s (as —dim(r;) > 0). If s >0, it
follows that M7, , = 0, while if s < 0 then, setting t = —s, Mp_, is generated by
Sr_4U...USr.

Note that, as Mp_; is generated by Sr_;U...U Sy, it is also a finitely generated
free DG R-module for t = 0,... k. (Mp_; is free on Sp_yU...U S, since M is free
on S.)

Suppose M has a composition series 0 = Cy C C; C ... C C; = M. Then Cj is
finitely generated free; so has a finite basis S;, say j = 0,..., H. Then S; = U2,S;,
where (Sj)r—t € Mp_y; so (C)r—q is free on (Sj)r—;. Moreover we have a sequence
of free DG R-modules,

Vt0= (Co)Tft - (Cl)Tft c...C (Cq71>Tft - (Cq)Tft = MTft-

Also, as C;/C;_y is free, s0 is (~=)p_y = (C;)r—t/(Cj_1)7, for all £ > 0.

C,
Finally as 0(C;/Cj_1) = 0 we }ia\lfe O((Cj)r—t/(Cj—1)r—¢) = 0 V t. Therefore,
Mrp_; has a composition series. So My, Mr_q, ... are free DG R-modules and also
Cy/Cy-1 is free DG R-modules by the definition.
For a special case if degree 0 is -1, i.e, P = —1 then we have that,
0
i}
0= (Co)r C(Ch)r C...C (Cyur)r C (Cy)r = Mr
| Or
0= (Co)r—1 C (C1)r—1 C ... C (Cqe1)r—1 C (Cy)r—1 = Mp_4
b Or—
0= (Co)r—2 C (Ci)r—2C ... C(Cy-1)r—2 C (Cy)r—2 = Mr_5
b Or—s

130

Therefore, 0(Cy) = 0, i.e., 9(Cy) C Cy = {0}, 9(Cy) C C4,...0(C,) C Cyy.
So one can note that, the matrix 9 with respect to the basis S is a strictly upper
triangular.

In the general case, if degree 0 = —j such that j > 0, then

0= (CO)T C (Cl)T cC...C (qul)T C (Cq)T = My

0= (Co)r—; € (Ci)r—; C ... C(Comr)r—; C (Cylr—; = Mr_
Lor
0= (Co)r—2; C (Ci)r-2j C ... C (Cym1)1—25 C (Cyg)1—2j = Mr_3;
| O,

Then (C,);/(Cy-1)j—1 is free as C;/C;_ is free and Or((Cy)r/(Cy=1)r) = 0,

which means 07 ((Cy)r) C (Cy—1)r—;. So M; has composition series as follows,

0=(Co); C(C1); C... C(Cy1)j C(Cp)j = M;.

Therefore, the matrix of @ with respect to the basis S is a strictly upper triangular

with the diagonal elements which are zeros.

Example 7.1.0.10

Let K be a field and R = K|[z], be a polynomials ring with one variable over the
field K. Let M be a graded R-module with basis S = {ej,es,e3,e4}, such that
{e1, e2} have the same dimension 7', while {e3,e4} have dimension 7" — 1. Then M

is graded as follows:

0

i}
e,e0 € Mp=k-e1®k-es.

I
es,ea €Mpr_1 =R 1-e1®R_j.e0@k-e3sDk-ey.

!

131

!
MTfi = R,i -e1 D R,i.eg D R,i + €3 D R,i.€4.

!

We define the differential operator 0 with respect to the basis S as follows:

d(e1) =0,
6(62) =0,
d(e3) = x%e; + x2ey, and
O(ey) = 221 + 226y

It’s clear that 9% = 0.

Now, dim(9(e3)) = dim(z%e;) = dim(e;) + dim(2?) = T — 2. Similarly,
dim(es3) = dim(ey) = T — 1, while dim(9(e4)) = T — 2, so degree of the differ-
ential J is equal to -1.

Let (Cp) =0, (C1) = (e1,e2) over R = {fie1 + faea : f1, fo € R}, and (Cy) =
M. Thus, (C1/Cy) = (e1,e2). But, d(e1) = 9(ez) = 0, So 9(C1/Cy) = 0. Now,
(Cy/Cy) = (e, eq), but d(e3) = O(es) = x?e; + 226y € C4, also I((Cy/Ch)) =
d(C1) = 0. Therefore, we have that 0 = (Cy) C (Cy) C (Cy) = M which is a

composition series of M.

Note: If M has a composition series, then the matrix of 0 is similar to the upper
triangular matrix has its diagonal zeros and we call it a strictly upper triangular

matrix.

Example 7.1.0.11
Let M as in the previous example, and the differential operator 0 with respect to

the basis S = {ey, €9, €3, €4} has the following form:

132

_ =] R
—_ =) R
8 8 O© O
8 8 O© O

Then 0% = 0 and the differential operator 0 has degree is -1. Let 3; = es + €4 ,
B2 =e1 + e, B3 = e, and By = e3.

We claim that: (5, 85, 83 and [, form a basis to M over R. We will show that:

Let m € M;. Then, m = aje; + ases + ases + aseq. Hence, m = auf; +
a1fs + (a1 + o) B3 + (a3 + aq)fs. Also, if a1 + asfBs + asfz + ayfy = 0, then
aq(egteq)+ag(er+er)+aszest+ages = 0. Thus, age+(antas)es+ (a1 +ay)es+aey =
0. But, {e1,e2,e3,e4} is a basis for M, also s = a3 =0 and as + a3 =a; + a4 =0
this implies that ay = ap = a3 = ay = 0. So, {51, B2, fs, B4, } is a basis to M.

Now, 9(f:1) = 0(e3)+0(eq) = (wez+xes)+(xezt+xey) =0, 0(52) = d(e1)+0(e2) =
(xey+xegtes+ey)+(zeg+xeates+es) =0,0(83) = 0(ea) = weg +xea+e3+eq =
p1+ x5y and O(By) = J(ez) = wez + xey = x5. Hence, the matrix 0 with respect to
the basis {31, 2, B3, B4} is given by:

0" =

o O o O
o o o O
o O K8 =
S O O R

Let (Cy) = 0,(Cy) = (p1, B2), and (Cy) = M, then one can be easily shows that M

has a composition series.

Theorem 7.1.2. [15] Let M be a free finitely generated differential graded R-module
with differential O of degree P = —1, then M has a composition series.

Remark 7.1.3. If M admits a composition series, then we say that M is solvable.

Remark 7.1.4. Let M be any DGR-modules of rank 1 and 0 be a differential on
M of any degree. Then the matrix of d with respect to the basis {e;} is given by
0 = la], a € R. But 9*> = 0 which implies that @ = 0. Then M has a composition

series. From now we will only consider DG R — modules of rank greater than 1.

In our work we will use the following lemma:

133

Lemma 7.1.5. [6/] Let M be a free finitely generated differential graded R-module
with differential O and basis S = {e;},. consider the following elementary row and

column operations, on the matriz of O with respect to this basis:

(1) Exchange row(i) and row(j), and at the same time exchange column(i) and

column(j).

(2) Replace row (j) by row (7)+g(row(i)) and at the same time replace column(i)
by column(i) + g(column(j)) , where g € R and deg(g) = dim(e;) - dim(e;).

Then each of these operations corresponds to a change of basis in M.

Remark 7.1.6. Since the characteristic of the field which we deal with it is two, then
(-) is (+), thus the step (2) of Lemma 7.1.5 becomes that:

(Replace row(j) by row(j) — g(row(i)) and at the same time replace column(z)
by column(i) — g(column(j)) , where g € R and deg(g) = dim(e;) — dim(e;). Then

each of these operations corresponds to a change of basis in M).

Remark 7.1.7. If the matrix of 9 with respect to basis S is a strictly upper triangular

matrix, then M is solvable.

7.2 Solvable differential Graded Modules

In the following example we show that if R = Kz, 29,...,2,], n > 2 and M is
a free finitely generated differential graded R-module with differential 0 of degree
P < =2 then M is not necessarily solvable.

Example 7.2.0.12

Let R = Klxy,29,...,x,] be a graded ring of polynomials graded in the negative
way and M be a free finitely generated differential graded R-module of dimension
four with basis {ey, e, €3, e4}. Suppose the differential 0 on M has degree (P < —2),

and its matrix with respect to {eq, es, e3,e4} is

! 0 0 222
5 0 vyt a2 0
0 N N 0

xh 0 0 rpry

Clearly, 0% = 0.

134

We suppose M has a composition series. Then there exists an invertible matrix

B = {fi;}};=1, and strictly upper triangular matrix & such that 9- B = B- &', i.e.,

zxy 0 0 afay Juu fi2 i3 fu
0 iyt a2 0 Ja foo faz faa |
0 a may ! 0 fa fso fss fa |

| ap 0 0 riay ! Ju Jio fa3 o fu

Juu fiz fiz fua 0 g1 92 93

Jor foo foz fu 0 0 g4 g5

fs1 fs2 fsz fsa 0 0 0 gs

Ju fi2 fi3 fu 00 0 0

Multiply row(1) by column(1) to get, 125" fi1 + 22252 f4, = 0 which implies
that z25" ' fi1 = 22252 f4 (since K is of characteristic 2) and this implies that
T2f11 = T1fu.

Now, 5 | 1 fs1 implies that xo | fi1, say fu = xegs. Similarly fi1, = x19;.

In a similar way multiply row(2) with column(1) to get, z125" " for +a2zy 2 f5 =
0, which implies that ;25" fo; = 2323 f3; (since K is of characteristic 2) which
implies that xsfo; = 21 f31 which implies that xs | 21 f3; which implies that 5 | fa1,
say fs1 = xags. Similarly, fo; = x192. Thus, f;:(0,0,...,0) =0 for j =1,2,3,4.

Now since B is an invertible, there exists

such that BB~! = 1.

Therefore, hyy fi1 + hiafor + hizfar + hiafa = 1.
Now, by evaluating both sides at (0,0, ...,0) we will get that 0 = 1, which is a

contradiction. So M does not have a composition series. Hence M is not solvable.

Proposition 7.2.1. Let K be a field and let R = K[xq, 2o, ..., T, be a graded ring
of polynomials graded graded in the negative way. Let M be a free finitely generated
differential graded R-module with basis S = {e1, ea}, and with differential O of degree

135

P < —2. Suppose, dim(e1) = k1 and dim(ey) = ko, such that ky > ky. If ky —ky =t
such that t > — P, then M 1is solvable.

Proof. M is graded as follows:
0

+
e1r €My, =K -e®0-es.

!
!

€y € Mk2 = RRQ,]QI -e; @ k.es.
!
!

e; € Mkj = Rk].,kl e D Rkj,]62 e @ ... Dk.ey,.
!

Suppose that,
d(er) = fuer+ faes
O0(e2) = fizer + fare

Then the matrix of @ with respect to the basis {e;}7_; is given by:

5 [fn frz
f21 f22

Now,
dim(0(e1)) = dim(f11) + dim(ey),

]{31 + P = dzm(fu) + k‘l, implies that
dim(f11) = P < 0, and thus deg(f11) = —P.

So,
dim(0(e1)) = dim(fa1) + dim(eq),

ki + P = dim(fa1) + ko, implies that

136

dim(fy1) = P+ ky —ky > P — P =0, and thus
fo1 = C' # 0 (constant) or fo; = 0.

Also,
dim(0(e2)) = dim(fr2) + dim(ey),

]{72 + P = dZm(flg) + k‘l, implies that
dlm(flg) =P+ kg —]Cl < 0, and thus d€g(f12> = —(P + k’g — k’l)

So,
dim(0(e2)) = dim(fa2) + dim(eq),

ko + P = dim(fa2) + ko, implies that
dim(faz) = P + ks — ks = P, and thus deg(fxn) = —P.

Hence, the matrix of 0 is given by:

H— Jin o fi2
Jar fa2
where fo; = 0 or fo; = C' # 0 (constant).
Case (1): If fy; =0, then the matrix of 0 is given by

95— fu Ji2
0 f
since 92 = 0, implies that fZ =0 and f3, = 0.

ThUS, f11 =0 and f22 =0.

Therefore, the matrix of 0 is given by:

5— [0 f12]
0 O

Note that, 0 is strictly upper triangular matrix.
To show, M has a composition series:
Let Cy =0, Cy = (e1) and Cy = (eq, e3).
Then C;/C;_; is free, for all j =1, 2.
If z € O, then

137

T = 1€ + ey

So, 0(z) = a10(e1) + a20(e2)

0(z) = a1(0) + as(fize1) € Ch.

Thus, 9(Cy) C C4, and then 9(Cy/C}) = 0.

Also, if z € (', then z = aje; and so,

d(z) = aqd(er) = a1(0) =0 € Cy.

Hence, 0(C1) C Cp, and then 9(C,/Cy) = 0.

Therefore, 0 = Cy C C; C Cy = M is a composition series for M.
Hence, M is solvable.

Case (2): If fy; = C' # 0,(constant), then the matrix of d is given by:

fll f12
¢ fa

8:

Since, 9% = 0, we have that,
fii+Cha=0and Cfia + f3, = 0.
Hence, f1; = foo and C'f1y = f3.
Now, by Lemma 7.1.5, replace row(1) by row(1) — (%})row(Z) and at the same

fé} to

time replace column(2) by column(2) — (£+)column(1) to get:
0 0
a pum—
C 0

By Lemma 7.1.5, replace row(1) by row(2) and at the time replace column(2) by

column(1) to get:

e
0 0
Therefore, M is solvable as before (Case 1). O

Proposition 7.2.2. Let K be a field and let R = K[x1,2s,...,7,] be a graded
ring of polynomials graded in the negative way. Let M be a free finitely generated
differential graded R-module with basis S = {e;}3_, and with differential O of degree
(P < —2). Suppose that, dim(e;) = k; such that 1 < i < 3 and k; > ki1, If
ki — ki1 = t; such that t; > —P, then M 1is solvable.

138

Proof. M is graded as follows:

e1EMy, =K-eD0-e2®0-es.

es € My, = Riy—t;, €1 D k.ea®0 - es.

€3 € Mk3 = ng—kl e P ng*kg ey Dk - €s3.

ej € Mkj = Rk’j*kl -e1 D Rkj,]62 - ey D Rk‘j*k‘g, e3D... D k.@j.

Suppose that,
d(er) = fuer+ faex+ faies
d(ez) = fioe1 + faeo + fares
d(e3) = fizer + fazea + fazes

Then the matrix of d with respect to the basis {e; }_, is given by:

Juu fiz fis
0= Jor Ja2 Jfo3
fa1 fa2 fs3

Now,

dim(0(e1)) = dim(f1) + dim(ey),
ki + P = dim(f11) + k1, implies that

dim(f11) = P, and thus deg(f1) = —P.

139

So,
dim(0(e1)) = dim(fa1) + dim(eq),

]{31 + P = dlm(f21) +]{72, implies that
dzm(f21) :P+k1—]{72:P+t1 Z P—P:O, and thus
for =0or foy = C # 0 (constant).

Also,
dim(0(e1)) = dim(fs1) + dim(es),

ki + P = dim(fs1) + k3, implies that

dim(fs1) = k1 — ks+ P > —2P+ P = —P, and thus f3; =0

Also,
dim(0(eq)) = dim(f12) + dim(ey),

ko + P = dim(f12) + k1, implies that
dim(fiz) = ky — ki + P and thus deg(fi2) = —(ky — ky + P).

So,
dim(0(e2)) = dim(fa2) + dim(ez),

kg + P = dZm(fQQ) + kz, implies that

dim(faz) = P + ks — ks = P, and thus deg(fx) = —P.

So,
dim(0(e2)) = dim(f32) + dim(es),

ko + P = dZm(fgz) + k3, implies that
dim(fsg) = ke — ks + P> —P + P =0, and thus
fs2 =0or fss = a # 0 (constant).

Also,
dim(0(e3)) = dim(fr3) + dim(ey),

]{33 + P = dlm(flg) + kl, implies that

140

dlm(flg,) = k3 - k?l + P < 0 and thus d@g(f13> = —(]{73 —]{?1 + P)

So,
dim(@(es)) = dim{fzs) + dim(es),
ks + P = dim(fo3) + ko, implies that
dim(fa3) = P + k3 — ko < 0 and thus deg(fa3) = — (ks — k2 + P).
So,

dim(0(e3)) = dim(fs3) + dim(es),
ks + P = dim(fs3) + k3, implies that
dim(fs3) = P, and thus deg(fs3) = —P.

From the previous steps we can conclude the following:

L. f31 = Oa
2. fog=0o0r foy =C #0 (constant),
3. fa=0o0r fso=a#0 (constant),

4. deg(fi1) = deg(fa) = deg(fs3) = —P.

Hence,

fu fiz fis
0= for faz fo3
0 fa2 fa3

Case (1): If fy; = 0, then the matrix of 0 is given by

i fiz fis
O0=10 fao fa
0 fa2 f33
since 9 = 0, implies that fZ = 0 and then fi; = 0.
Thus,
0 fiz fiz
0=10 fa fa
0 fa2 fa3

141

In this case either fzs = 0 or f3z = a # 0 (constant).

Case (1.1): If f33 = 0, then the matrix of 0 is given by

0 fiz fis
d= 10 faa fo3
0 0 fs

since 9% = 0, implies that, f2, = f4 = 0.
So, faa = f33 = 0. (since R is an integral domain).

Thus,the matrix of 0 is given by

0 f12 f13
6 = O O f23
0 0 O

To show, M has a composition series:

Let Cp =0, Cy = (e1), Cy = {e1,e3), and C3 = (eq, ey, €3).
Then C;/C;_; is free, for all 1 < j <3.

If x € (5, then © = aje; + ases + azes,

So, 0(x) = a10(e1) + a20(e2) + azd(es),

d(z) = a1(0) + as(fize1) + as(fizer + fazes) € Co.
Hence, 0(C5) € Cy, and then 0(C5/Cy) = 0.

Also, if x € (5, then z = aje; + ases

So, O(x) = a10(e1) + az0(e2)

d(z) = a1 (0) + as(fr2e1) € Ch.

Hence, 0(Cy) € (4, and then 0(Cy/Cy) = 0.

Finally, if x € C}, then x = aye; and so,

d(z) = aqd(er) = a1(0) = 0 € Cy.

Hence, 0(C;) € Cy, and then 0(Cy/Cp) = 0.
Therefore, 0 = Cy C C; C Cy C C3 = M is a composition series for M.
Thus, M is solvable.

Case (1.2): If f33 = a # 0 (constant), then the matrix of 0 is given by:

0 fiz fis
d= 10 faa fo3
0 a fs3

142

Now, by Lemma 7.1.5, replace row(2) by row(2) — (£2)row(3) and at the same

«

time replace column(3) by column(3) — (£22)column(2) to get:

«

0 f12 afiz—foa fi2
o=10 0 0

0 «o 0

2)

By Lemma 7.1.5, replace row(2) by row(3) and at the time replace column(3)

by column(2) to get:

0 Otf13—af22f12 f12

J0=10 0 o
0 0 0

Therefore, M is solvable as before (Case 1.1).

Case (2): If fo; = C' # 0 (constant), then the matrix of 0 is given by:

fu fiz fis
o= |C faz fo3
0 fa2 fa3

In this case either fzs = 0 or fzz = a # 0 (constant).

Case (2.1): If f33 = 0, then the matrix of 0 is given by:

fir fi2 fis
o= 1|C f22 f23
0 0 0

By Lemma 7.1.5, replace row(1) by row(1) — (%)row@) and at the same time

replace column(2) by column(2) — (%)column(l) to get:

Chis—fi1f
0 0 13011 23
d=1C 0 fa3
0 0 J33
)

By Lemma 7.1.5, replace row(1) by row(2) and at the time replace column(2)

by column(1) to get:

143

0 C s
_ Chs—fuf
o=10 0 13011 23

0 0 Js3
Therefore, M is solvable as before (Case 1.1).

Case (2.2): f3 = a # 0 (constant),then the matrix of J is given by:

fu fiz fis
0= |C faz fo3
0 a [

Since, 9% = 0, multiply row(3) by column(1), we will get that aC' = 0, but this
is a contradiction because C' # 0 and « # 0.

Therefore, this case is not possible. O

Proposition 7.2.3. Let K be a field and let R = K[x1,%s,...,7,] be a graded
ring of polynomials graded in the negative way. Let M be a free finitely generated
differential graded R-module with basis S = {e;}}_, and with differential O of degree
(P < —2). Suppose that, dim(e;) = k; such that 1 < i < 4, and k; > kirq. If
ki — kiv1 = t; such that t; > —P, then M is solvable.

Proof. M is graded as follows:

0
!

e1EMy, =K -eg®0-e280-e3D0-ey.
+
4
€2 € My, = Riy, €1 B ke ®0-e3B0-ey.
d
+
63€Mk3:Rk3_k1 '61@Rk3_k2'62@K'63@0'64.
d

144

€4 € My, = Ry, - €1 D Riy—py - €2D Rpy gy €30 K - €4,
1
!

€; < Mkj = Rk]‘*kl e D R,kj,k2 <€y D Rkj,k?) + €3 D Rkj,]€4 ey, ... D K.ej.
1

Suppose that,

(e1) Jier + farea + faiez + fuieq
d(ea) = fiae1 + fazea + fanes + faoey
(e3) = fizer + fazea + fazes + fazes
(es) = fuer+ faez + faae3 + fues

Then the matrix of d with respect to the basis {e; }}_; is given by:

fll f12 f13 f14
f21 f22 f23 f24
f31 f32 f33 f34
f41 f42 f43 f44

a:

Now,
dim(0(ey)) = dim(f11) + dim(ey),
ki + P = dim(f11) + k1 implies that,
dim(f11) = P, and thus deg(f1) = —P.
So,
dim(9(e1)) = dim(fa1) + dim(es),
ki + P = dim(fa1) + ko implies that,
dim(fo1) =P+ ki —kye=P+t; > P— P =0, and thus
for =0 or fa1 = Cy # 0 (constant).
Also,

dim(d(er)) = dim(fs1) + dim(es),

145

kl + P = dzm(f31) + k?g, implies that
dim(fs1) = k1 — ks + P=—2P+ P = —P > 2 and thus f3; = 0, similarly f;; =0

Also,
dim(0(e2)) = dim(fr2) + dim(eq),

ks + P = dim(f12) + k1 implies that,
dim(fiz) = ky — ki + P < 0 and thus deg(fi2) = —(ky — k1 + P).

So,
dim(0(e2)) = dim(fa2) + dim(ez),

ko 4 P = dim(fa2) + kg implies that,
dim(fa) = P + ko — ko = P, and thus deg(fa) = —P.

So,
dim(0(e2)) = dim(fs2) + dim(es),

kg + P = dzm(f32) + k’3 implies that,
dlm(fgg) = k?g -]{33 + P Z —P+P= 0, and thus
fa2 =0 or fss = Cy # 0 (constant).

So,
dim(0(e2)) = dim(fi2) + dim(ey),

ko + P = dim(f42) + k4, implies that

dim(fs2) = ko — ky + P > 0, and thus fy» = 0 or fi3 = C3 # 0 (constant).

Also,
dim(D(es)) = dim(fi5) + dimfey),
ks + P = dim(f13) + ki implies that,
dim(f13) = ks — k1 + P < 0 and thus deg(fi3) = — (ks — k1 + P).
So,

dim(9(e3)) = dim(fas) + dim(es),

kg + P = dZm(fgg) + kQ, implies that

146

dlm(fgg,) =P+]{?3 -]{?2 < 0 and thus d@g(f23> = —(]{73 —]{?2 + P)

So,
dim(0(es)) = dim(fs3) + dim(es),
ks + P = dim(fs3) + k3, implies that
dim(fs3) = P, and thus degree fs3 = —P.
So,
dim(D(es)) = dim(fis) + dim(ea),
ks + P = dim(f43) + k4, implies that
dim(fs3) = ks — ks + P > 0, and thus fy3 = 0.
Also,

dim(0(eyq)) = dim(f14) + dim(ey),
ky+ P = dim(f14) + k1, implies that
dim(f14) = ky — k1 + P and thus deg(f14) = —(ks — k1 + P).
Similarly, degree foy = —(P+ky—ks), deg(f31) = —(P+ks—k3), and deg(f14) = —P.

Hence, the matrix of 0 is given by

fll f12 f13 f14
f21 f22 f23 f24
0 f32 f33 f34
0 0 fis fua

where,
1. fao1 =0or fo; = 1 # 0 (constant),
2. f32 =0or f32 = 52 7£ 0 (constant),

3. fas=0or fi3 = P35 # 0 (constant).

Case (1): If fo; = 0, then the matrix 0 is given by

147

fll f12 f13 f14
0 fao fez fu
0 f32 f33 f34
0 0 fi fu

Since 9% = 0, this implies fZ = 0 which implies f1; = 0.
Thus,

iz fi13 fua

Joo faz fu

Ja2 faz [

0 fiz fu

In this case either fss = 0 or fzs = [# 0 (constant).
Case (1.1): If f35 = 0, then the matrix 0 is given by

Q
I
o o o o

0 fiz fiz fia
0 fao fo3 Jfou
0 0 fss fau
0 0 fiz fau

since 92 = 0, implies that, f2, = 0 which implies foy = 0.
Thus,the matrix of 0 is given by

0 fi2 fi3 Jua
5= 0 0 Jfo fou
0 0 fsz fau
0 0 faz fau

In this case either fi3 =0 or fi3 = 3 # 0 (constant).
Case (1.1.a): If fy3 = 0, then the matrix 0 is given by

0 fiz fiz fia
o — 0 0 faz fau
0 0 fss fau
0 0 0 fu

Since 9 = 0, implies that, f2, = f2, = 0 which implies f33 = fiu = 0.

148

To

Thus,
0 fiz2 fiz Jfua

o= 0 0 f23 f24
0 0 0 fau
00 0 0

show, M has a composition series:

Let Co =0, Cy = (ey), Cy = (e, €3), C3 = (€1, e9,e3) and Cy = (e, €9, €3, €4).
Then C;/C;_; is free, for all 1 < j < 4.

If z € C4, then x = ajeq + ases + ases + ayey.

So, d(x) = a10(e1) + a20(e2) + azd(es) + aud(ey),

O(z) = a1(0) + az(fize1) + as(fizer + fazea) + au(fraer + fasez + faaez) € Cs.
Hence, 0(C,) C (5, and then 0(Cy4/C5) = 0.

Also, if z € Cs, then = = aje; + ases + ases,

So, d(x) = a10(e1) + a20(e2) + a30(es),

0(x) = a1(0) + aa(fizer) + as(fizer + fazea) € Co.

Hence, 0(C5) € (9, and then 9(C5/Cy) = 0.

Also, if x € (5, then z = aje; + ases

So, O(x) = a10(e1) + az0(e2)

d(z) = a1 (0) + as(fr2e1) € Ch.

Hence, 0(Cy) C (4, and then 0(Cy/Cy) = 0.

Finally, if x € ', then x = aye; and so,

d(x) = a10(e1) = a1 (0) = 0 € C.

Hence, 0(C;) € Cy, and then 9(C,/Cy) = 0.

Therefore, 0 = Cy C C; C Cy C O3 C C4y = M is a composition series for M.
Thus, M is solvable.

Case (1.1.b): If fy3 = 83 # 0 (constant) , then the matrix 0 is given by

0 fl? f13 f14
95— 0 0 fa fau
0 O f33 f34
0 0 b5 fu

Since 9? = 0, implies that, f% + (334 = 0 and B3f34 + f2, = 0, which implies
J33 = faa and B3f34 = f424-

Now, by Lemma 7.1.5, replace row(3) by row(3) — (£2)row(4) and at the same

B3
f33

time replace column (4) by column(4) — (32)column(3) to get:

149

0 f12 f13 53f14g3f33f13
5 0 0 f23 ﬁ3f2453fs3f23

0 0 0 0

0 0 pf3 0

)

By Lemma 7.1.5, replace row(3) by row(4) and at the time replace column(4) by

column(3) to get:

0 frp Bfuclula g
5 0 0 53f2453f33f23 fos
0 O 0 B3
0 O 0 0

Therefore, M is solvable as before (Case 1.1.a).
Case (1.2): If f33 = 2 # 0 (constant) , then the matrix 0 is given by

Ji2 fi3 fua
Jo2 foz fu
52 f33 f34
0 f43 f44

In this case either fi3 =0 or fi3 = 3 # 0 (constant).
Case (1.2.a): If f43 =0, then the matrix 0 is given by:

o O O O

0 f12 f13 fl4
0 f22 f23 f24

0 ﬁ2 f33 f34
000 0 fu

Since 9% = 0, implies that, f2, = 0, which implies fy4 = 0.
Thus,
0 fiz2 fi3 Jfua
0 fao foz fou

0 B2 faz [faa
o 0 0 0

Since 9 = 0, implies that, f2, + Bafo3 = 0 and B foz + f2 = 0.
Hence, for = f33 = 0 and By foz = f2,.

150

By Lemma 7.1.5, replace row(2) by row(2) — (J;Q—Q)Tow(?)) and at the same time

2

replace column(3) by column(3) — (%)calumn@) to get:
0 fio /32f1352f22f12 fia
Ba2f2a—far f
5 0 0 0 o
0 B 0 s
0 0 0 0

By Lemma 7.1.5, replace row(2) by row(3) and at the time replace column(2) by

column(3) to get:

0 52f1352fzzf12 f12 f14

P (O R S
- 0 0 0 B2 f2a—f22f34

B2

0 0 0 0

Therefore, M is solvable as before (case 1.1.a).
Case (1.2.b): If fi3 = B3 # 0 (constant), then the matrix 0 is given by:

f12 j&3 j&4
Joo foz fu
ﬁQ j33 j%4
0 53 j24

Since 9 = 0, implies that, 85 - 83 = 0, but 3 # 0 and B3 # 0 which implies to
contradiction. Thus, this case is not possible.
Case (2): If fo; = 1 # 0, then the matrix 0 is given by

o O o O

jﬁl jHZ jﬁ3 114
61 jb? ij jé4
0 132 fé3 jé4
0 0 jl3 jl4

In this case either f3; =0 or f3 = B2 # 0 (constant).
Case (2.1): If f33 = 0, then the matrix 9 is given by

151

j&l j&Q j&3 fﬁ4
51 jéQ fé3 jb4
0 0 fos fa
0 0 fis fu

In this case either fi3 =0 or fi3 = 53 # 0 (constant).
Case (2.1.a): If fy3 =0, then the matrix 0 is given by

8:

j&l jﬁ2 jﬁ3 114
ﬂl jb2 jb3 jé4
0 0 j%S jé4
00 0 fu

Since 9 = 0, implies that, f2 = f2, = 0, which implies f33 = f14 = 0.
Thus,

Juu fiz fiz S

B1 fa2 foz Sou

0 0 0 fu

O 0 0 O

a:

Since 9? = 0, implies that, fZ + f1fi2 = 0 and By fio+ f2, = 0. Hence, fi; = foo = 0.

and 31 fi2 = ffy.
By Lemma 7.1.5, replace row(1) by row(1) — (%)row@) and at the same time
replace column(2) by column(2) — (%)calumn(l) to get:

0 0 Bifis—fi1fos Brfia—fi1fea

B1 B1

5= Bi 0 fos3 foa
0 0 34

0 0 0

By Lemma 7.1.5, replace row(1) by row(2) and at the time replace column(1) by

column(2) to get:

O 61 j§3 jb4

0 0 Bifis—fi1fes Bifia—fi1foa
a — /Bl ﬁl

0 0 0 f34

0 O 0 0

152

Therefore, M is solvable as before (Case 1.1.a).
Case (2.1.b): If fy3 = 3 # 0 (constant).

fll f12 f13 f14
ﬂl f22 f23 f24
0 0 f33 f34
0 0 53 f44

Since 9? = 0, implies that, fz + B3fs4 = 0, and B3f34 + f4, = 0. Hence, f33 =

Jaa and f323 = [33 f34.

By Lemma 7.1.5, replace row(3) by row(3) — (£2)row(4) and at the same time

B3
replace column(4) by column(4) — (%)column(iﬂ) to get:

Bafia—f33fi3
fll f12 f13 B

3

Bafaa—f33fo3
51 f22 f23 B:

3

O 0 0 0
0 0 B 0

a:

By Lemma 7.1.5, replace row(3) by row(4) and at the time replace column(3) by
column(4) to get:

Jir S —’63]0145533]013 J13
B fap Bslafusln /;3]‘ sl fo
0 0 0 By
0 0 0 0

a:

Since 0% = 0, implies that, fZ + B1fi2 = 0, and S f12 + f%, = 0. Hence, fi; = foo

and f}; = b1 fia-
By Lemma 7.1.5, replace row(1) by row(1) — (%)row@) and at the same time

replace column(2) by column(2) — (%)column(l) to get:

0 0 Bifiz—fi1fos PilBsfia—f33f13]—Bs 1183 f24—f33f23]
B1 B183

o= s 0 fo3 W
0 0 0 3,
0 0 0 0

By Lemma 7.1.5, replace row(1) by row(2) and at the time replace column(1) by

column(2) to get:

153

B3 faa—f33fo3
0 Bl f23 B3
0 0 Bifis—fiifes BilB3fia—f33f13]—B3 1183 fea—f33f23]
o= B1 B1Bs
0 0 0 3,
0 0 0 0

Therefore, M is solvable as before (Case 1.1.a).

Case (2.2): If f33 = 5 # 0 (constant), then the matrix 0 is given by

fll f12 .f13

5 B fa fo3
B2 f33

0 0 [

fia
Joa
fa
Jfaa

Since 9% = 0, then we multiply row(3) by column(1) to get that 8,8, = 0, but
B1 # 0 and [y # 0 which implies to contradiction. Thus, this case is not possible.

[]

From the previous we conclude the following two propositions:

Proposition 7.2.4. Let K be a field and let R = Klx1,xo,...

ring of polynomaials graded in the negative way.

,Ty] be a graded
Let M be a free finitely generated

differential graded R-module with basis S = {e;}",, and differential O of degree
(P < —2). Suppose, dim(e;) = k; such that1 <i <m andk; > k1. Ifki—kip1 =1,

such that t; > — P, then M 1s solvable.

Proof. M is graded as follows:

0
!

61EMkl:K~61@0~62@O-63®...@0.em.

!

!

€y € Mk2 = ngfkl ce1 D K.egP0.e3PD0.esD...PO0.e,,.

!

!

€3 € My, = Riy—t, €1 D Rpy—iy -2 D Kes @ 0.es @ ... D 0.ep,.

154

+
€4 € My, = Ry, - €1 D Riy—py €2 Rpy gy €30 K.y © 0.5 D
+
+
e; € Mk]. = Rkj—kl AR Rkj—k2 - ey D Rkj—k3 S...D K.ej.
d

Suppose that,
dler) = fuer+...+ fmi€m,
d(e2) = fizer + ...+ fm2em,

dem) = fimer+ ...+ froumem:

Then the matrix of 0 with respect to the basis {e;}, is given by:

fll f12 flm

fml fm2 ce fmm
Now,
dim(0(e1)) = dim(f11) + dim(ey),
ki + P = dim(f11) + k1, implies that deg(f1;) = —P.

So,
dim(0(e1)) = dim(f;) + dim(e;) for each 2 < i < m.

So,
k’l + P = dzm(le) + kz and then

dlm(le) = (k?l — k?z) + P > O, i.e., fil € Rkl_kﬁ_p =0.

Therefore,
fir=0foreach 2 <7 <m.

155

...®0.ep.

Also,
dim(0(e2)) = dim(fr2) + dim(ey),

]CQ + P = dlm(fu) +]Cl,
dim(fi2) = ke — k1 + P < 0 implies that,

degreefio = —(P + ko — ky).

So,
dim(0(e2)) = dim(faz) + dim(ez),

ks + P = dim(fa2) + ko, implies that deg(fa2) = —P.
So,

dim(0(e2)) = dim(fi2) + dim(e;) for each 3 <i <m,

ko + P = dim(f;2) + k; and then

dzm(flg) =P+ (kQ — k1> >0, i.e., fin € RPJer*ki =0.

Therefore,
fia = 0foreach 3 <7 <m.
Now,
dim(0(em—1)) = dim(fipm-1)) + dim(e;) for each 1 <i <m — 1,
kmfl + P = dzm(fl(m,l)) + kl and then
dim(fim-1)) = (P + kpm-1 — ki) <0, ie., fim-1) € Rpip,_—k; 7 0.
Therefore,
fitm—1) # 0foreach 1 <i <m — 1,
and,
dim(9(em-1)) = dim(frm-1)) + dim(en),
km—1 4+ P = dim(fp@m-1) + ki, implies that
dim(fm(m-1)) = P + km—1 — ki, > 0 which implies that f,,—1) = 0.

Also,

dim(9(en)) = dim(fi) + dim(e;) for each 1 < i < m,

ky + P = dim(f;m) + k; and then

156

dim(fimy) = P+ (km — ki) <0, ie., fim € Rpyrp—k, 7 0.

Therefore,

fim # 0 for each 1 < i < m.

Hence, the matrix of 0 is given by:

fll f12 f13 f14
0 f22 f23 f24
0 0 f33 f34
=10 0 0 fu
0 0 0 0
0 0 0 0

Jim-1)
Jam-1)
f3(m—-1)
)

f4(m71

fm=1)m=1) fin—1)m

0

fim
fam
fsm
Jam

Smm

Since, 9> = 0 and R is an integral domain then we have that f; = 0, for each
1< <m.

Thus, 0 is given by :

0 fiz fiz Jfua fim=-1) fim

0 0 fa fu Jfoem=1) Jom

0 0 0 fau f3m-1) fam
=10 0 0 0 fam-1) fam

0 0 0 fin-1m

0 0 0 0

To show, M has a composition series:
Let Co =0 and C; = (ey,ea,...,¢;), forall 1 <j <m.
Then (C;/Cj_4) is free. If x € C}, then x can be written uniquely as:

T = Q1€ + ages + ... + aje;.
Thus,

d(r) = ard(er) + axd(ea) + ... + a;0(e)

157

8(x) = Oél(O) —+ ag(fu@l) + ...+ ozj(fljel 4+ ...+ f(j_l)jej_l) € Cj_l

Therefore,

0(C;/Cj—1) =0, foreach 1 < j < m.

Hence, 0 =Cy CCy CCy, C ... CC,, = M is a composition series for M.
Thus, M is solvable. O

Proposition 7.2.5. Let K be a field and let R = K[xq1,29,...,7,] be a graded
ring of polynomials graded in the negative way. Let M be a free finitely generated
differential graded R-module with basis S = {e;}",, and with differential O of degree
(p < =2). Suppose, dim(e;) = k; such that 1 <i < m andk; > k1. Ifki—kip1 =1;
such that t; > —p, then M is solvable.

Proof. M is graded as in (Proposition 7.2.4):

Suppose that,
de1) = fuer+ ...+ fmilm,
d(ea) = froer+ ...+ fmolm,

a(em) = flmel +.oo+ fmmem'

Then the matrix of 0 with respect to the basis {e;}, is given by:

fu fz oo fim
5 f'21 f.22 f2.m
Jmr fm2 oo fm
Now,
dim(9(e1)) = dim(f11) + dim(eq),
ki + P = dim(f11) + k1, implies that , deg(f11) = —P.
Also,

dim(9(eq)) = dim(fa1) + dim(ez),
]{31 + P = dlm(f21) +]{32, implies that dZm(le) = (/{31 - kg) + P= tl Z O,

which implise, fo; = 0 or fo; = Cy # 0 (constant).

158

So,
dim(0(e1)) = dim(f;) + dim(e;) for each 3 <i < m,

l{?l + P = d@m(le) + /{?z and then
dzm(le) = (k?l — k?z) + P >0, ie., fil € Rlﬂ—kﬁ-P =0.

Therefore,
fir=0foreach 3 <7 <m.

Also,
dim(0(eq)) = dim(f12) + dim(ey),

ko + P = dim(fi2) + k1,

dlm(flg) = kg -]fl + P <0 1mphes that, deg(flg) = —(kg - kl + P)
So,
dim(0(e2)) = dim(fa2) + dim(eq),
ky + P = dim(fa2) + ko, implies that, deg(fa) = —P.

So,
dim(0(e2)) = dim(fs2) + dim(es),

ky + P = dim(fsz) + ks, implies that, dim(fsy) = P+ ky —k; >0

fs2 =0o0r fs» = Cy # 0 (constant).

So,
dim(0(e2)) = dim(fia) + dim(e;) for each 4 < i < m,
ky + P = dim(fi2) + k; and then
dim(fio) = (ko — ki) + P >0, i.e., fio € Rpigy—k, = 0.
Therefore,
fio = 0foreach 4 <7 <m.
Now,

dim(0(em-1)) = dim(fium—1)) + dim(e;) for each 1 <i <m — 1,

159

km—l + P = dzm(fz(m_l)) + k’z and then
dlm(fz(mfl)) =P+ (km—l - kz) < 0, i.e., fi(mfl) € kafl—kri-P 7& 0.

Therefore,
figm—1) # 0foreach 1 <i <m —1,

and,

dim(0(€ep—1)) = dim(frm-1)) + dim(en),
km—1 + P = dim(fpm—1) + km, implies that, dim(fpm-1)) = P + kp—1 — kn > 0.

Thus, fom-1) =0 0or fom-1) = Cpm-1 # 0 (constant).

Also,
dim(9(en)) = dim(fim) + dim(e;) for each 1 < i < m,
km + P = dim(fiy, + k; and then
dim(fim)) = (ko — ki) + P <0, i.e., fiom) € Ripo—iyrr # 0.
Therefore,

fim # 0 foreach 1 < i < m.

Hence, the matrix of 0 is given by:

o fie fis fuooo finen i |

for fo2 foz fau .. fagm—-1) fom

0 fs2 faz faa ... J3(m—-1) J3m

0 0 fiz faa - fam—y) Jiam
I R R

0 0 0 0 ..o fomn fom

0 0 0 0 Jon-2)om-1) fon-2ym

0 0 0 0 fon-1yom-1) fon-1ym

(00 0 0 fen=v) fim

where,
for =0o0r fo1 = Cy # 0 (constant).
fa2 =0 o0r fs = Cy # 0 (constant).
fas =0or fi3 = C5 # 0 (constant).

160

fs4=00r fs4 = Cy # 0 (constant).

f(m,l)(m,g) =0or f(m,l)(m,Q) = Cm_2 7& 0 (constant).

Jmm—1) = 00 frm—1) = Crne1 # 0 (constant).
Case (1): If fo; = 0, then the matrix 0 is given by

[fun

o O O o O

0

fiz f13 fua
f22 fas S
fs2 fsz [
0 fiz fu
0 0 fau
0 0 0
0 0 0

In this case either f3; = 0 or f3z = Cy # 0 (constant).

Case (1.1): If f33 = 0, then the matrix 9 is given by

[fiu

0
0
0
0
0

0
0
0

Jiz fi3 fia
Joo foz fu
0 fss Jfas
0 fizs Jfaa
0 0 fa
0 0 0
0 0 0
0 0 0
0 0 0

fim=-1) fim
Jam—-1) fom
f3(m—-1) fam
Jam—-1) fiam
f5(m—-1) fom
Jo(m—-1) fom

Jm=2)(m=1) fim—2)m

Jon=1)m-1) Jim—1)m
Jm(m-1) Jmm
Jim—-1) Jim
Ja(m—1) Jom
f3(m—-1) fam
Jam—-1) Jiam
fo(m—-1) f5m
fo(m—-1)

In this case either fy;3 =0 or fy3 = C5 # 0 (constant).

Case (1.1.1): If f43 =0, then the matrix d is given by

(fu fie fu fuoo o fieey S

0 foo faz foa ... Jagm-1) Jom

0 0 fi3 faa ... f3(m—1) fam

0 0 0 fa - faemoy fiam
95— 0 0 0 fosa oo fom-y f5m

0 0 0 0 ..o fom fom

0 0 0 0 fon-2)m-1) fon-2)m

0 0 0 0 Jon-1yom-1) fon-1ym

(00 0 0 fm—1y frm

In this case either fs4 =0 or f54 = Cy # 0 (constant).
Case (1.1.1.1): If f54 = 0, then the matrix 0 is given by

(fin fi2 fis fuu oo fimen fim

0 fao faz foa ... fZ(m—l) Jom

0 0 fsz faa ... f3(m—1) fam

0 0 0 fa - faemoy fiam
9 0 0 0 0o ... fg,(m,l) fsm

0 0 0 0o ... f6(m_1) fom

0 0 0 0 ... fon-2m-1) Fon-o2m

0 0 0 0 ... fontym1) Ffontym

(0 0 0 0 .. fommy fom |

Similarly, we arrived to the following case: either f,,,—1) =0 or

fm(mfl) =Chn1 7é 0.
Case (1.1.....1.a):If f,,(,—1) = 0, then the matrix 0 is given by

162

(fiu iz fis fuu oo fimen fim

0 foo faz foa ... f2(m—l) Jom

0 0 fsz faa ... f3(m—1) fam

0 0 0 fa - faemoy fiam
9 0 0 0 0o ... f5(m,1) fsm

0 0 0 0o ... f6(m_1) fom

0 0 0 0 ... fon2m1 fon-2m

0 0 0 0 .o fontym1) Fontym

0 0 0 0 .. 0 fom |

Since 92 = 0, this implies f2 = 0 which implies f;; = 0 for each 1 <14 < m.

(the reason is that, R is an integral domain).

Thus,

0 fio fis fu o fimen fim |
0 0 fa3 Jfou Jam—1) fom
0 0 0 fax - fagm-1) f3m
000 0 0 ... famo) Fim

s 00 0 0 o fn Fsm
00 0 0 Jo(m—1) fom
00 0 fon-2ytm-1) fim-2m
00 0 0 .. 0 Fn—tym
00 0 0 .. 0 0

Therefore, M is solvable (by the previous proposition).
Case (1.1.....1.b): If f,4m—1) = Crm—1 # 0 then the matrix 0 is given by

163

(fiu iz fis fuu oo fimen fim

0 foo faz foa ... f2(m—1) Jom

0 0 faz fau ... f3(m—1) fam

0 0 0 fa - faemoy fiam
9 0 0 0 0o ... f5(m,1) fsm

0 0 0 0o ... f6(m_1) fom

0 0 0 0 ... fon2m1 fon-2m

0 0 0 0 ... fonnym1) fomim

0 0 0 0 ... Cua fom |

Since 0% = 0, this implies that f(Qm—l)(m—l) + Cr—1 fim—1ym = 0 and Cpo1 fm—1ym +
2 =0.
Thus7 f(mfl)(mfl) = fmm and Cm—lf(mfl)m = f(mel)(mfl)'
By Lemma 7.1.5, replace row(m — 1) by row(m — 1) — (W)mw(m) and

at the same time replace column (m) by column(m) — (f(’”a::(_”z*))column(m —1)
to get:
-f11 fiz fiz fia .. fim—1) C’"*lflm_f(g;i)fmfmfl(mfl) T
0 fao foz foa ... fa(m—1) Cm*f2M*f(g;i)l<m—1)fz(m_1)
0 0 fs3s faa - Sfam- C’"‘1f3m_f<g;>l<mfl>f3<m71)
0 0 fae oo famen) C"Hf4m*f(g;)l<m—1)f4(m—1)
H— 0 0 0o ... fs(m=1) Zm—lff’m_f(mmi)l(ml)fs(ml)
0 0 0o ... fﬁ(mfl) ’"*1f6m_f(g;i)l(m—l)fﬁ(m—l)
0 0 f(m_2)(m_1) C’mf1f(m—2)m*f(g:i)l(m_l)f(m_Q)(m_l)
0 0
(0 0 0 0 ... Cuy 0 |

By Lemma 7.1.5, replace row(m — 1) by row(m) and at the same time replace

column(m — 1) by column(m) to get:

164

—f11 Jiz fizs fuaoo. Cm*lflm_f(g;)fm_l)fl(m_l) Jim-1)]
0 foo faz foa ... Cm_lme_f(’C";)le)fQ(m*l) fagm—-1)
0 0 fs3 faa ... Cm*lfgm_f(g;)fm_l)fg(m_l) J3(m—1)
0 0 0 fu Cm_1f4m7f(g;)fm71>f4(mfl) Jam—-1)
S0 0 00 Zmlfs’”‘f G titm= oty Fsm—1)
0 0 0 0 .. mrfon— oty oy Fom—1)
0 0 Cm—lf(m—2>m*f<rcn;)l<m—1>f(m—2><m—1> Fm—2)(m—1)
0 Cm-1
L 0 0 .

Therefore,, M is solvable (by the previous proposition).
Case (1.1.....1.2): If f,_1)m—2) = Cm—2 # 0 then the matrix 0 is given by

[fu fi2 fis fu fime2) iy fim
0 fao foz fou Jam—2) Jam—1) fom
0 0 Jfs3 fa J3(m—2) J3(m-1) fam
0 0 0 fu Ja(m—2) Jam—1) Jam
5 0O 0 0 0 [5(m—2) fs(m-1) fsm
0 0 0 0 fo(m—2) fo(m-1) Jom
0 0 fon-2ym-2) fm-2)m-1) fim-2)m
Crn—2 fon—1)(m=1) famn—1)m
i 0 Jm(m-1) Jmm]

In this case either f,,n—1) = 0 or frm-1) = Cm-1 # 0.
Case (1.1.....1.2.1): If f,,(;,—1) = O then the matrix 0 is given by

165

(fu 2 fis fuoo fimey fimey i]

0 foo fas foa - fom—2) Jam-1) fom

0 0 faz faa ..o fym—2) f3(m—1) fam

0 0 0 fu - fam—2 Jam—1) fam
9 0 0 0 0 ... fsm2 f5(m—-1) f5m

0 0 0 0 ... fem-2 Jo(m—-1) fom

00 0 0 ... fo2m-2 fon-2m-1) fon-2m

0 0 0 0 ... Cous fovwmy Fom

0 0 0 0 ... 0 0 o |

Since 9% = 0, this implies f(Qm_Q)(m_z) + Cra fm—2)m-1) = 0 and Cro—s frm—2)(m—1) +

fon-1m-1) = 0-
By Lemma 7.1.5, replace row(m—2) by [row(m—2)— (L2202

Cm—2

row(m—1)] and

at the same time replace column(m—1) by [COlUmn(m—l)—(f(m:)(:’;‘z))eolumn (m—
2)] to get:
_ Coma 1 tm 1= Forr o o From i
fu iz fis fuu oo fim—2) 2f1(m-1) é‘(rn_;)(2)f1(m—2) Fim
0 foo fo3 fou ... Fa(m—2) Cm*2f2<m—1>*gmm::xm—mfz(m—m o
Cm* f m— _fmf m— f m—
0 0 fiz fasa - f3m-2) . 2f3<)]fm_j)(2) ;(2) Fam
0 0 0 fau ... Faim—2) Cm—2f4(m71> ?521:22>(m72)f4(m72> Fim
0 0 0o ... f5(m72) Cmf2f5(m—1) fiin:;)(m—z)fs(m—z) Fom
=10 o o o ... Fotm—2) m—2fe(m—1) i;n_;?)(m72) 6(m—2) Fom ’
¢ 0 0 0 Son—3)(m-2) g Fom—3ym
0 0 0 0 0 0 .
0 0 0 0 Cm_2 0 f(m—l)m
(0 0 0 0 0 0 [
where g = Cm‘2f<m*3><m*1>*£<m_;2>(m—2>f<mfs>(mfz> and
h = COm—2f(m—2)m—Fm—2)(m=2) fm—2)(m-2)
o Cm—2 :

By Lemma 7.1.5, replace row(m —2) by row(m—1) and at the same time replace

column(m — 2) by column(m — 1) to get:

166

Crm—2f1(m—1)—f(m-2)(m-2)[1(m—2)

_fll f12 f13 f14 o —2 fl(m—2)
0 fao fas [fu Cm*2f2(m_1)7f:n:22)(m_2)f2(m_2) fo(m—2)
0 0 f33 f3us Cm*sz(m*)_f<2_722>(m72)f3<m72> J3(m—2)
0 0 0 fu Cm—2f4<m—1)*filn7—22><m—2>f4<m—z) Fatm—2)
0 0 0 0 Cnalsmoy I tymnloms e
d=10 0 0 0 Ontlemyfmnmatms p
0 0 0 0 g fn—3)(m-2)
0 0 0 0 0 Cos
0 0 0 0 0 0
(0 0 0 0 0 0
where g = Cm—2f<m—3)<m—1>*é”(mm:;xm—z)f(m—:s)(m—z) and
B = Gm=2fmam =S -2)m-2)fm-2)(m-2)
Crm—2

Therefore, M is solvable (by the previous proposition).
Case (1.1.....1.2.2): If f,,(m—1) = Cj1 # 0, then the matrix 0 is given by

Since 9% = 0, then we multiply row(m) by column(m—2) to get that , Cp,_2-C,,, 1 =
0, but (Cp,—1 # 0 and C,,_2 # 0), which implies to contradiction .Thus, this case is

not possible.

[f

0
0
0
0
0

o o cee

1

h
2

o O O O

(@) (@) .o

2

2

fiso fuue oo fime2) Jiom-1)
fas foa oo fopm—2) Jom—-1)
faz faa - f3m—2) f3(m—1)
0 fau o fam-2) Jam—1)
0 0 ... fsm-2 J5(m—-1)

0 0 ... f6(m—2) fﬁ(m—l)

fn-2)m=2) fan—2)(m=1) fim—2)m
Crn—2 f(m—l)(m—l) f(m—l)m

0 Cm—l

Jim
fam
fam
Jam
Jom
Jom

Smm

Similarly, we discuss the rest cases, and get that M is solvable.

We will discuss some other cases which the free finitely generated differential

167

Jim
Jom
f3m
fam
fom
fom

f(mf?))m

f(m—l)m

h
Smm

graded R-module M is solvable and then generalize them to the general case as the

following:

Proposition 7.2.6. Let K be a field and let R = K[xy,x9,...,2,] be a graded
ring of polynomaials graded in the negative way. Let M be a free finitely generated
differential graded R-module with basis S = {e;}3_, and with differential O of degree
P < —2. Suppose that, dim(e;) = k; such that 1 < i < 3 and k; > k1. If
ki —kix1 = t; such that t; < —P, then M 1is solvable in some cases, if t;+t;4.1 > —P.

Proof. M is graded as before (proposition 7.2.2).
Suppose that,
d(e1) = fuer+ farea + fares
d(ez) = fioer + frea + fares
d(es) = fizer + fazea + fazes

Then the matrix 0 with respect to the basis {e;}7_; is given by:

fu fiz fis
0= for fa2 fo3
fs1 fs2 [a3
Now,
dim(9(e1)) = dim(f11) + dim(ey),
kl + P = dzm(fll) + k’l, implies that
dim(f11) = P, and thus degree f;; = —P.
So,

dim(0(e1)) = dim(fa1) + dim(eq),
/{Zl + P = dlm(le) +]{72, implies that
dim(fy1) = P+ki—ky = P+t; < P—P =0, which implies deg(fa1) = —(P+k1—kz).

Also,
dim(0(eq)) = dim(fs1) + dim(e3),

k‘l + P = dzm(f31) + k‘g, implies that

dim(fs1) = P+ ks — ks > P — P =0, and thus f3; =0

168

Also,
dim(0(e2)) = dim(fr2) + dim(ey),

]{32 + P = dzm(f12) +]{71, implies that
dlm(flg) = kg — k’l + P < 0 and thus deg(flg) = —<k32 — k?l + P)

So,
dim(0(e2)) = dim(fa2) + dim(eq),

ko + P = dim(fa2) + ko, implies that
dim(fa2) = P + ko — ko = P, and thus deg(fan) = —P.

So,
dim(0(e2)) = dim(fs2) + dim(es),

ko + P = dZm(f32) + k3, implies that
dim(fsy) = P+ ky — ks < —P + P =0, and thus deg(fi2) = —(ky — ks + P).

Also,
dim(0(e3)) = dim(fi3) + dim(e1),

kg + P = dlm(flg) + /ﬁ, implies that

dim(fi3) = ks — k1 + P = P+ P < 0 and thus deg(f13) = —(ks — k1 + P).
So,
dim(0(e3)) = dim(fa3) + dim(ez),
/{Zg + P = dlm(fzg) +]{72, implies that
dlm(fgg) =P+ k?3 —]{32 < 0, and thus deg(f23) = —<k'3 - k'g + P)

So,
dim(0(e3)) = dim(fs3) + dim(es),

]{73 + P = dzm(f33) + k‘g, implies that
dim(fs3) = P, and thus deg(fs3) = —P.

Then the matrix 0 is given by:

169

Juu fiz fis
0= for fa2 fo3
0 fs2 fas

Since 9* = 0, multiply row(3) by column(1) to get fspfo; = 0 implies that

Jaa=0o0r fn =0.
Case (1): If f33 = 0 and fo1 # 0, then the matrix 0 is given by

fu fiz fis
0= for fa2 fo3
0 0 fs

Since 92 = 0, multiply row(3) by column(3) to get f% = 0 implies that fz3 = 0.

Hence, the matrix 0 is given by

fu fiz fis
0= for faz fo3
0 0 0

Since 9? = 0, multiply row(2) by column(1) to get fa1fi1 + fo1 22 = 0 implies that
fo1[f11 + fao] = 0. Thus, either fo; = 0 or fi; + fae = 0. But, fo; # 0 which implies
that fi1 + fo2 = 0 and so fi1 = fo2. Hence, the matrix 0 is given by

Thus,

fu fiz fis
0= for i fos
0 0 0

Since 9% = 0, multiply row(1) by column(1) to get fZ + fi2fs1 = 0 implies that
f 121 = f 12f 21-

Case (1.1): If f1; = 0, which implies fi2f2; = 0 and this implies to either fi5 = 0
or fo1 =0, but, fo1 # 0. So fi2 = 0, and then the matrix of 0 is given by

0 0 fi3
0= f21 0 f23
0O 0 O

By Lemma 7.1.5, replace row(1) by row(2) and at the time replace column(1) by

column(2) to get:

170

0 fa Jfa
d=10 0 fis
0 0 0
Thus, M is solvable (by proposition 7.2.4).
C&SG(]..Z): If f11 7é 0 then f12f21 7é 0 and this 1mphes to f12 7é 0 and f21 7& 0.

Therefore, we can not decide whether M is solvable or not by this method.
Case (2): If fo; =0 and f55 # 0, then the matrix of 0 is given by

Juu fiz fis
=10 faz fo3
0 fs2 fas

Since 9% = 0 multiply row(1) by column(1) to get f4 = 0 implies that fi; = 0
(since R is an integral domain).
Thus,
0 fiz Jfi3
0= |0 fa fo
0 fa2 fa3
Since 0% = 0, multiply row(3) by column(2) to get fsofor + fo3f33 = 0 implies
that fsa[foo + f33] = 0.
Thus, either f33 = 0 or foo+ f33 = 0. But, f32 # 0 which implies that foo+ f33 =0
and so foo = f33. Hence, the matrix 0 is given by
Thus,
0 fiz fiz
0= |0 fa fu
0 fa2 Jfa
Since 9% = 0, multiply row(2) by column(2) to get f2, + fo3fs» = 0 implies that
I 222 = fa3[32.
Case (2.1): If foo = 0 implies that fosf32 = 0 which implies that, either fo3 =0
or fsy = 0. But, f3; # 0 and thus fo3 = 0. Hence, the matrix 0 is given by

0 fiz fis
o= 10 0 0
0 fs2 O

171

Since 9% = 0, multiply row(1) by column(1) to get f3 = 0 implies that f3 = 0 (
since R is an integral domain).

By Lemma 7.1.5, replace row(2) by row(3) and at the time replace column(2)
by column(3) to get:

0 fiz fis
d=10 0 f32
0 0 0

Thus, M is solvable (by proposition 7.2.4).
Case (2.2): If foo # 0, then fo3f32 # 0, and this implies to fo3 # 0, and f35 # 0,
Therefore, we can not decide whether M is solvable or not by this method.
Case (3): If f33 =0 and fo; = 0, then the matrix 0 is given by

fu fiz fis
=10 faz fo3
0 0 fs

Since 0% = 0, then we have f7; = f% = f3; = 0, which implies that, fi; = fo =
f33 = 0. Then the matrix 0 is given by

0 fiz fi3
6 — O O f23
0 0 O
Thus, M is solvable (by proposition 7.2.4). O

Proposition 7.2.7. Let K be a field and let R = K|z, z, . .., x,] be a graded ring of
polynomials graded in the negative way. Let M be a free finitely generated differential
graded R-module with basis S = {e;}}_, and with differential O of degree P < —2.
Suppose that, dim(e;) = k; such that 1 <i <4 and k; > k1. If ki — ki1 = t; such
that t; < —P, then M is solvable in some cases, if t; +t; 1 > —P.

Proof. M is graded as before (proposition 7.2.3).

172

Suppose that,

(e1) Jier + farea + fzies + fueq
d(ea) = fiae1 + fazea + fanes + faoey
(e3) = fizer + fazea + fazes + fazes
(es) = fuer+ faez + faae3 + fues

Then the matrix of d with respect to the basis {e; }}_; is given by:

fll f12 f13 f14
f21 f22 f23 f24
f31 f32 f33 f34
f41 f42 f43 f44

a:

Now,
dim(0(ey)) = dim(f11) + dim(ey),
ki + P = dim(f11) + k1, implies that
dim(f11) = P, and thus deg(f1) = —P.
So,

dim(0(ey)) = dim(fo1) + dim(ez),
ki + P = dim(fo1) + ko, implies that
dlm(fgl) = P+k1 — k’g = P+t1 <P-P= 0, and thus deg(fn) = —(P+]€1 — kg)

Also,
dim(0(e1)) = dim(fs1) + dim(es),

kl + P = dlm(fgl) + kg, implies that
dim(fs31) = k1 — ks + P> —P > 2, and thus f3; = 0 similarly fy =0

Also,
dim(0(e2)) = dim(fr2) + dim(ey),

]{32 + P = dlm(flg) +]{31, implies that

dzm(fu) = kQ - k?l + P <0 and thus d@g(f12> = —<k52 -]{51 + P)

173

So,
dim(0(e2)) = dim(fa2) + dim(ez),

ks + P = dim(fa2) + ko, implies that
dim(fa) = P + ko — ko = P, and thus deg(fa) = —P.

So,
dim(0(e2)) = dim(fs2) + dim(es),

ko + P = dim(fs32) + k3, implies that

dlm(fgz) = k’g — k’g +P<—-P+P= 0, and thus deg(fgg) = —(P + k’g — k’g)

So,
dim(9(es)) = dim(fs2) + dim(ey),
ko + P = dim(f42) + k4, implies that
dim(fs) = ko — ky + P > P — P =0, and thus fg = 0.
Also,
dim(0(e3)) = dim(f13) + dim(ey),
ks + P = dim(f13) + k1, implies that
dim(fi3) = ks — k1 + P < 0 and thus deg(fi3) = — (ks — k1 + P).
So,

dim(9(e3)) = dim(fa3) + dim(ez),
]{33 + P = dlm(f23) + k27 implies that
dlm(fgg) =P+]{33 -]{?2 < 0, and thus d@g(f23> = —(k?3 - k?g + P)

So,
dim(0(e3)) = dim(fs3) + dim(es),

ks + P = dim(fs3) + k3, implies that
dim(fs3) = P, and thus degree f33 = —P.

So,
dim(9(e3)) = dim(f43) + dim(ey),

174

kg + P = dzm(f43) + k?4, implies that
dzm(f43) = kfg —ks+ P < 0, and thus d€g(f43> = —(k'g — ks + P)

Also,
dim(0(eq)) = dim(fr4) + dim(eq),

ky+ P = dim(f14) + k1, implies that
dim(fis) = ks — k1 + P < 0 and thus deg(f14) = — (ks — k1 + P).

Similarly, degree foy = —(P+4ky—ks), deg(fss) = —(P+ks—ks), and deg(foy) = —P.

Hence, the matrix of 0 is given by

fll f12 f13 f14
f21 f22 f23 f24
0 f32 f33 f34
0 0 fis fu

Since 9* = 0, multiply row(4) by column(2) to get fizfs2 = 0 implies that

Jiz=0o0r f32 = 0.
Case (1): If fi3 =0 and f35 # 0, then the matrix 0 is given by

8:

fll f12 f13 f14
f21 f22 f23 f24

0 fs2 faz faa
0 0 0 fau

a:

Since 9% = 0, then we have f?, = 0 which implies fy = 0.
Thus,

Juu fiz fiz fua

Jor Ja2 faz fu

0 fa2 fs3 faa
0O 0 0 O

o —

Since 9% = 0, multiply row(3) by column(1) to get fsafz; = 0 implies that fzs = 0
or fo; = 0. But, f33 # 0 implies to fo; = 0.

175

Thus,
Juu fiz fiz fua
0 fao fa3 Jfou

0 fa2 faz fa
0O 0 0 0

Since 9? = 0,then we have that f3, + fazfs2 = 0 and fo3f32 + f5 = 0. Hence,
Jo2 = f33 and fazfs2 = f222
Case (1.1):If foo = 0, then f33 = 0 and fo3f32 = 0, and this implies to either
fas =0 or f3o =0, but f33 # 0. So fa3 = 0, and then the matrix of J is given by
Thus,
S fiz fis S

o0 0 fu
0 fe2 0 fau
0 0 0 0

By Lemma 7.1.5, replace row(2) by row(3) and at the time replace column(2) by
column(3) to get:

Thus,
S fis fiz fia
95— 0 0 fa2 fau
0 0 faz fu
0O 0 0 0
Since 92 = 0,then fZ = 0 implies f;; = 0.
Thus,
0 fiz fizs fia
5— 0 0 fs fau
0 0 0 fu
0O 0 0 0

Therefore, M is solvable (by proposition 7.2.4).
Case (1.2): If foo # 0, then f33 # 0 and fa3f32 # 0, which implies that fo3 # 0
and f32 7é 0.

Therefore, we can not decide whether M is solvable or not by this method.
Case (2): If f33 =0 and fy3 # 0, then the matrix of d is given by

176

fll f12 f13 f14
f21 f22 f23 f24
0 0 fos fa
0 0 fis fu

Since 9> = 0,then we have that f3 + fiafor = 0 and fiafo1 + f2, = 0. Hence,
fi1 = fo2 and fiofor = f121
Case (2.1): If f;; = 0, then fyo = 0 and fi2f2; = 0, and this implies to either

f21 =0or f12 = 0.
Case (2.1.1): If fy; = 0, then the matrix of 0 is given by

0 fi2 fi3 Jua
5= 0 0 Jfo fou
0 0 fsz fau
0 0 fa3 fau

Since 0% = 0, then we have that f% + faifss = 0 and fz4fiz + f4 = 0. Hence,

J33 = faa and f34f43 = f??g-
Case (2.1.1.a): If f33 = 0, then fiy = 0 and f34f43 = 0. implies, f34 = 0 or

faz3 = 0, but f43 # 0 implies to f34 = 0. Hence, the matrix of 0 is given by

0 fiz fia Ji3
5— 0 0 fau fa
0O 0 0 O
0 0 fas O

By Lemma 7.1.5, replace row(3) by row(4) and at the time replace column(3) by
column(4) to get:

0 f12 f13 f14
0 0 0

o for
00 0 fi
0O 0 0 0

Therefore, M is solvable (by proposition 7.2.4).

Case (2.1.1.b): If f33 # 0, then fyy # 0 and fy3f34 # 0. implies to f34 # 0.
Therefore, we can not decide whether M is solvable or not by this method.

Case (2.1.2): If fi5 =0, and fy; # 0, then the matrix of 9 is given by

177

0 0 fizs fu
5= Jor 0 faz fos
0 0 fs3 fa
0 0 fiz fu

By Lemma 7.1.5, replace row(1) by row(2) and at the time replace column(1) by

column(2) to get:

jél jé3 jé4
113 114
f53 j%4
fﬁB j24

Since 9? = 0, then we have that f2 + fsafss = 0 and fsifaz + f3, = 0. Hence,
J33 = fas and f34fa3 = f:?g-

o O o O

o If f33 = 0,then M is solvable (Case (2.1.1.a)).

e If f33 # 0, then we can not decide whether M is solvable or not by this method.

Case (3): If fi3 = 0,and f35 = 0, then the matrix of 0 is given by

j&l jﬁQ j13 jﬁ4
jbl ij jé3 jé4
0 0 j%S jé4
00 0 fu

Since 9? = 0,then we have that fZ + fa1fio = 0 and fo,f12 + f2, = 0. Hence,
Ji1 = fa2 and fo f12 = f121-

Case (3.1): If f;; = 0, then fos = 0 and fy; f1o = 0. implies, either fo; = 0 or
Ji12=0.

Also, since 9? then f% =0 and f2, = 0. Hence, f33 = fiu = 0.

Case (3.1.1): If fy; = 0. then the matrix of 9 is given by

0 fiz fiz Jfia
9 — 0 0 faz fau
0 0 fss fa
000 0 fu

178

Therefore, M is solvable (by proposition 7.2.4).
Case (3.1.2): If fi5 =0 and fo1 # 0, then the matrix of d is given by

S 0 fis fu
far fa2 fas o fou
0 0 fss fa
0 0 0 fu

By Lemma 7.1.5, replace row(1) by row(2) and at the time replace column(1) by
column(2) to get:

Jiu 0 fiz fu
0 fao fa3 fu

0 0 f33 f34
00 0 fu

Therefore, M is solvable (by proposition 7.2.4).
]

Therefore, we can generalize proposition 7.2.6 and proposition 7.2.7

to the following proposition:

Proposition 7.2.8. Let K be a field and let R = K[z, xs,...,2,] be a graded
ring of polynomials graded in the negative way. Let M be a free finitely generated
differential graded R-module with basis S = {e;}",, and differential O of degree
P < —=2. Suppose, dim(e;) = k; such that 1 <i <m and k; > kir1. If ki — ki1 = t;
with t; < —P and t; + t;.1 > —P and the entries on the diagonal of the matriz O

with respect to the basis S = {e;}", are zeros then M is solvable.

Proof. We will proof this Proposition by using GAP system next Chapter (Section
8.5). O

Remark 7.2.9. Let K be a field and let R = Klzy,x,...,2,] be a graded ring
of polynomials graded in the negative way. Let M be a free finitely generated
differential graded R-module with basis S = {e;}",, and differential 0 of degree
P < —2. Suppose dim(e;) = k; such that 1 <i <m and k; > k. I k; — ki = ¢t
with t; < —P and t; +t;,; < —P then the module M is outside the classification so

we cannot decide, using our methods, whether or not it is solvable.

179

Proof. M is graded as before (proposition 7.2.4). Suppose that,

dler) = fuer+ ...+ fmi€m,
d(e2) = fizer + ...+ fm2em,

dem) = fimer+ ..+ foumem:

m
1=

Then the matrix 0 with respect to the basis {e;}*, is given by:

fll f12 flm
fml me fmm

Now,
dim(0(e1)) = dim(f;1) + dim(e;), for each 1 < i < 3,

ki + P = dim(fi1) + ki, and then,
dzm(fll) = (/{71 —]{52) + P <0, ie., fi1 € R —k+p #0.

Hence, deg(fi1) = —(P + k1 — k;). Therefore, f;; # 0, for each 1 <1 < 3.
So,
dim (9(e1)) = dim(fi1) + dim(e;), for each 4 < i < m,

ki 4+ P =dim(f;) + ki, and then dim(f;1) = P+ ky — k;.

Therefore, f;; =0 or deg(fi1) = —(P + k1 — k;), for each 4 <i < m.
Also,
dim(0(e2)) = dim(fi2) + dim(e;), for each 1 < i <4,

ko + P = dim(f;2) + ki, and then
dzm(fzg) =P+ ky—Fk; <0, ie., fio € Rpyp,—k, #0.

Hence, deg(fi2) = —(P + ky — k;). Therefore, f;s # 0, for each 1 <1 < 4.
Also,
dim(0(e2)) = dim(fi2) + dim(e;), for each 5 <i < m,

ko + P = dim(fi2) + ki, and then dim(fin) = P+ ko — k;.

Therefore, fi2 =0 or deg(fi2) = —(P + ky — k;), for each 5 <i < m.

180

Now,
dim(0(em—1)) = dim(fium-1)) + dim(e;), for each 1 <7 < m,

k-1 + P = dim(fim-1)) + k;, and then
dzm(f,(m,l)) = P + km—l — k’z < 0, i.e., fi(mfl) - ka—l—kip 7é O

Hence, deg(fim-1)) = —(km—1 — ki + P). Therefore, fijm-1) # 0, for each 1 <
1 < m.
Now,
dim(0(en,)) = dim(fim) + dim(e;), for each 1 <i < m.

kp + P = dim(fim) + ki, and then
dzm(fzm) =P+k,—k <O0,ie., fi, € RP+km—k1 £ 0.

Hence, deg(fim) = —(P + k,, — k;). Therefore, f;,, # 0, for each 1 < i < m.
Thus the matrix 9 is given by:

Ji1 Jiz oo fimey Jim

Jo1 fa2 e famey Jom

95— ffn féz . fs(njH) f?im
fon—v1 fon—v2 - fon—)m-1) fin—1)m
L S Jm2 oo fmmen) Jmm

where,
fii=0ordeg(fn)=—(P+k —k;),V4<i<m.
fio =0o0rdeg(fis) = —(P+ ke —k;),V5 <i<m.
fiz=0o0rdeg(fiz) = —(P + k3 — k;),V 6 < i <m.

fi(m—S) =0or deg(fi(m—3)) = —(P + ko3 — /fi)7Vi =m.

Therefore, in this case we cannot decide, using our methods, whether or not
M 1is solvable, because we are unable to convert the matrix 0 to a strictly upper
triangular matrix. Hence we can’t forming a composition series of a free finitely

generated differential graded R-submodules.

181

]

Proposition 7.2.10. Let K be a field and let R = Klxy,2s,...,x,] be a graded
ring of polynomials graded in the negative way. Let M be a free finitely generated
differential graded R-module with basis S = {e;}",, and differential O of degree
P < —2. Suppose dim(e;) = k; for 1 < i <m, such that k; < k. If ki — kix1 =1,
with t; < P, then M 1is solvable.

Proof. M is graded as before (proposition 7.2.4).
Suppose that,

der) = fuer+...+ fmi€m,
8(62) = f12€1 4+ ...+ fmgem,

dem) = fimer+ ...+ frumem:
Then the matrix 0 with respect to the basis {e;}1*, is given by:

fll f12 flm
fml fm2 fmm

Now,
dim(9(eq)) = dim(fi1) + dim(e;), for each 1 <1i < m,
ki+P = dzm(le)—i—kz, Zmplzes dzm(le) = P—(kz—l{h) < O,i.e.,fﬂ € RP—(k‘i—k‘1) 7é 0.

Therefore, f;; #0, for 1 <i < m.
Also,

dim(0(ez)) = dim(fi) + dim(e;), for 1 <i < m.
ko + P = dim(fi2) + k;, implies to dim(fiz) = P — (ki — k2) < 0 for 2 <i < m.

Therefore, fio € Rp_j,, # 0 and so fiz # 0, for 2 < i < m. While dim(f2) =
P — (kl -]ﬂg) >0 for i = 1, i.e., flg € RP—(kl—kg) =0 and so f12 =0.
Now,

dim(0(em)) = dim(fin,) + dim(e;), for 1 <i < m.

kw + P = dim(fim) + ks, implies to dim(fi,) = P — (ki — k),

182

This implies to dim(fim) > 0for 1 <i <m —1, ie., fin € Rp_(k—k,,) = 0 for
1 <i<m—1, and dim(f;,) <0 for i =m, i.e., fim € Rp # 0. Hence, f;,, =0 for
1<i<m-—1and f;, # 0 for i =m.

Then the matrix 0 with respect to the basis {e;}!", is given by:

fu
Ja1
far

Ju

0

22
32

Ja2

f(m—l)l f(m—1)2 f(m—1)3 f(m—1)4
fml

fm2

0 0o ... 0 |
0 0o ... 0
f33 0 e 0
Ja3 Jaa :
. . 0
fon-1)m-1)
Jm3 Jma Sy frm]

Since 0% = 0, this implies f;; = 0 for 1 <7 < m. So the matrix 9 become that

0 0 0 0
Ja1 0 0 0
fa1 J32 0 0 0
o= fu Ja2 Ju3 0
. . . 0 0
S Jn—v2 fan-13 Sfm-na - 0 0
! fm2 fms3 fima Jmm-1) 0]

By using Lemma 7.1.5 we will convert the matrix 0 to a strictly upper triangular

matrix as follows:

o O O O

J12
0

0
0

o fn
fs2 Ja
0 Jfis
0 0
0 0
0 0
0 0

Therefore, M is solvable.

fl(m72) f(mfl)1 fml
f2(m—2) f(m—1)2 fm2
f3(m—2) f(m—l)S fm3

f(m72)4 f(m71)4 fm4

Jom=2)m=1) fm(m—2)
0 fm(mfl)
0 0

183

Example 7.2.0.13
Let R = K[z, x, ..., x,], be the ring of polynomials in n indetrminates over a field
K of characteristic two. Let

R; =0 forall j <0,

Ry =K, and

R; = the set of all homogeneous polynomials of degree j for all j > 0. Then R
is a graded K-algebra and a graded integral domain, called the usual grading or

(positive grading).
Note that in R, if dim(f) = j, i.e., f € R; then degree of f = —j.

Proposition 7.2.11. Let K be a field and let R = K[z, x, ..., x,] be a graded poly-
nomaial ring graded in the usual way. Let M be a free finitely generated differential
graded R-module with basis S = {e;}",, and differential O of degree (P > 2,n > 1).
Suppose, dim(e;) = k; such that 1 <i<m. Ifky < ko <...<ky and ki1 —k; > P
then M 1is solvable.

Proof. Suppose that e; € My,, ea € My,,..., e, € My, .
Suppose that,

dler) = fuer+ ...+ fmi€m,
d(e2) = fizer + ...+ fm2em,

dem) = fimer+ ...+ foumem:

Then the matrix of 0 with respect to the basis {e;}, is given by:

fll f12 flm
fml fm2 fmm

Now,

dim(0(e1)) = dim(f11) + dim(ey),
ki — P = dim(f11) + k1, implies that dim(f;;) = —P < 0 and then deg(f1;) = 0.
Also,
dim(9(eq)) = dim(fi1) + dim(e;) for each 1 <i < m.

184

So,
kl —P= dzm(fﬂ) + /{Zz and then

dzm(fﬂ) = (l{fl —]{?Z) —P< 07 i.e., f,’l c Rkl_ki_P = 0.

Therefore,
fii=0foreach 1 <i <m.
Also,
dim(0(eq)) = dim(f12) + dim(ey),
]{32 —P= dlm(fu) +]{51,
dlm(flg) = kQ — kl —P>0 1mp11es that,
d@g(flg) = —(/{32 — kl — P)
So,
dim(0(e2)) = dim(faz) + dim(es),
ky — P = dim(fas) + ko, implies that deg(fa) = 0.
So,
dim(0(e2)) = dim(fi2) + dim(e;) for each 2 < i < m,
k’g —P= dzm(f,z) + kfl and then
dim(fiz) = (ko — k;) — P <0, ie., fio € Rpipyk, = 0.
Therefore,
fio = 0foreach 2 <i<m.
Now,

dim(0(em—1)) = dim(fipm-1)) + dim(e;) for each 1 < i <m — 1,
km—l —P= dzm(fl(m,l)) + kl and then
dzm(fl(m_l)) = (l{m,1 —k; — P) <0, i.e., fi(m—l) S ka_lfki,p 7é 0.

Therefore,
fitm—1) # 0foreach 1 <i <m — 1,

and,
dim(9(em—1)) = dim(fumgm-1)) + dim(en),

185

km—1 — P = dim(fom@m-1) + kp,, implies that

dim(fm(m-1)) = km-1 — km — P < 0 which implies that fy,m—1) = 0.

Also,
dim(0(en)) = dim(fim) + dim(e;) foreach 1 <i <m —1,
ky, — P = dim(fim) + k; and then
dzm(fz(m)) = (l{m — k’z) —P>0,ie., fin€ ka—ki—P 7é 0.
Therefore,
fim #0foreach 1 <i<m —1.
Finally,

dim(0(em)) = dim(frm) + dim(en),
kp—P = dim(foum)+km, implies that dim(f,) = —P < 0 and then deg(f,m) = 0.

Hence, the matrix of 0 is given by:

0 fio fis fiu o Jim-1) Jim

0 0 faz fau oo fom—1) Jfom

0 0 0 faa oo fagm—1) fom
=10 0 0 0 Jam-1) fam

0 0 0 fen-1m

o 0o o0 o0 ... 0 0

To show, M has a composition series:
Let Cop =0 and C; = (e1,e,...,¢;), forall 1 <j <m.
Then (C;/Cj_4) is free. If x € C}, then x can be written uniquely as:

T = qre) + ages + ... + ajé€;.

O(x) = qd(er) + ax0(ez) + ... + ;0 (e;)

=2
&
I

051(0) + Oég(flgel) + ...+ Odj(fljel + ...+ f(j_l)jej,l) € Ojfl

186

Therefore,
0(C;/Cj—1) =0, foreach 1 < j < m.

Hence, 0 =Cy C C; CCy C ... C (), = M is a composition series for M.
Thus, M is solvable.

187

Chapter 8

GAP Algorithm for Solvable
Differential Graded Modules

We have established a classification for some types of differential graded R-modules.
This classification gives a partial algorithm to test whether such modules are solv-
able. For modules outside the classification we cannot decide, using our methods,
whether or not they are solvable. In this Chapter we present an algorithm and writ-
ten a GAP package SDGM (Solvable Differential Graded R-Modules), for all
the cases mentioned in Chapter 7 (Propositions 7.2.4, 7.2.5, 7.2.8, 7.2.10, 7.2.11 and
Remark 7.2.9). The classification described in Chapter 7 depends on two basic pa-
rameters; the dimensions D = [ky, ..., k,| of the module M, such that dim(e;) = k;,
and the degree P of the differential on the module M where (n > 1). These two pa-
rameters represent the input for the main function IsSolvableModuleWithProof
of our algorithm. The output of IsSolvableModuleWithProof is either “true”
if M is a solvable module, and in this case a proof that M is solvable is also
output; or “fail” if we cannot convert the matrix d of the differential 0 with re-
spect to the basis S = {e;}™, to a strictly upper triangular matrix. The function
IsSolvableModuleWithProof contains many other functions: in the following we

describe all the functions used.

8.1 SwapRowsColumns Function

The input of the function SwapRowsColumns(degf,z,y) is a matrix degf of size

m x m and two numbers z # y, with 1 < <m, 1 <y < m. It exchanges row(z)

188

and row(y), and at the same time exchange, column(x) and column(y). It returns

the matrix degf after the replacement. The function works as follows:

SwapRowsCoLUMNS(deg f, z,y)

Tempb < STRUCTURALCOPY(deg f) > Tempb was empty list
deg f[x] < Temp5ly]

deg f[y] <= Temp5[z]

degf < TRANSPOSEDMATDESTRUCTIVE(deg f)

Temp6 <— STRUCTURALCOPY(deg f) > Tempb was empty list
deg f[x] < Tempbly]

deg f[y] <= Tempb[z]

degf < TRANSPOSEDMATDESTRUCTIVE(deg f)

© 00 J O Ut = W NN =

return degf

8.2 SolveindiclWithProof Function

The function Solveindicl1WithProof(m, dimf, f) is called only if the conditions of
Propositions 7.2.4,7.2.5 hold. The inputs of this function are the dimension m of
the vector of dimensions, the matrix dim f of dimensions and the identity matrix f
of size m x m which are output by the main function IsSolvableModuleWithProof.

The function outputs a proof that M is solvable. The function works as follows:

SOLVEINDIC1 WITHPROOF (m, dim f, f)
1 for jin {1,...,m}
2 do for i in {1,...,m}
3 doifi>j
4 then if dimf[i][j] >0
5 then 0 « f[i|[/]
6 else f[i]lj] = dim f[i]lj]
7 else fli][j] = dimf[i][J]
8 if f is an upper triangular matrix
9 then for j in {1,...,m}

10 do COMPUTE matrix d of 9 with respect to the basis S = {e;}™,

using the fact that 9> = 0 and R is an integral domain

11 else RETURN f is not upper triangluar matrix

189

12 CONSTRUCT a proof that M is solvable

13 return M is solvable

8.3 Solveindic2WithProof Function

The function Solveindic2WithProof(dimf,m) is called only if the conditions of
Remark 7.2.9 or the first case of Proposition 7.2.8 (as in Remark 8.5.1(i)) hold. The
inputs of this function are the matrix dimf of dimensions, the dimension m of the
vector of dimensions and the matrix ‘degf’” of size m x m which are output by the
main function IsSolvableModuleWithProof. The function is called if the modules
M is outside the classification or if (i) of Remark 8.5.1 hold. The function works as

follows:

SOLVEINDIC2WITHPROOF (dim f, m)
1 f<«dim
2 forjin{l,...,m—2}
3 do for i in {1,...,m}
4 doif i <j+2
5 then if dimf[i][j] <0
6 then f[i][j] = dim f[i][j]
7 else 0« f[i|[/]
> since 9 = 0 and R is an integral domain
else if dimfli][j] <0
then f[i][j] = dim[[i][j]
10 else 0 <« f[i|[j]
11 COoMPUTE matrix d of the differential 0 with respect to the basis S = {e;}1*;

12 return M is outside the classification

8.4 Solveindic3WithProof Function

The function Solveindic3WithProof(m,dimf, f) is called only if the conditions of
Proposition 7.2.10 hold. The inputs of this function are the dimension m of the
vector of dimensions, the matrix dimf of dimensions and the identity matrix f of
size m X m which are output by the main function IsSolvableModuleWithProof.

The function outputs a proof that M is solvable. The function works as follows:

190

SOLVEINDIC3WITHPROOF (m, dim f, f)

1 for jin {1,...,m}

2 do for i in {1,...,m}

3 doifi>j

4 then if dimf[i][j] > 0

5 then 0 < f[i][/]

6 else flil[j] = dim f[i][j]

7 else fil[j] = dimfillj

8 foriin {1,...,m}

9 do 0 + f[d][/] > since 9% = 0 and R is an integral domain
10 Tranf < TRANSPOSEDMATDESTRUCTIVE(f)
11 if Tranf is an upper triangular matrix
12 then COMPUTE matrix d of 0 with respect to the basis S = {e;}",
13 CONSTRUCT a proof that M is solvable
14 return M is solvable

8.5 Solveindic4WithProof Function

The function Solveindic4WithProof(degf) is called only if the conditions of Propo-
sition 7.2.8 hold. The input of this function is a matrix degf of size m x m
which is output by the main function IsSolvableModuleWithProof. It calls the
following functions: Solveindic4Size3by3(degf), Solveindic4Sizedby4A(degf),
Solveindic4Sizedby4B(degf), Solveindic4Sizebby5(degf), Solveindic4Size6-
by6(degf), Solveindic4Size6by6Above(degf) and Solveindic4Sizembym(degf)
(which will be described later in Section 8.5.1, ..., Section 8.5.8 respectively.) The

function outputs a proof that M is solvable.

Remark 8.5.1. When we run the main function IsSolvableModuleWithProof with
input that satisfies the conditions of Proposition 7.2.8, we will at some stage get the
matrix degf of size m x m with m > 2. In this case IsSolvableModuleWithProof
calls the function Solveindic4; (which calls the following functions: Solveindic4S-
ize3by3, Solveindic4Sizedby4A, Solveindic4Sizedby4B, Solveindic4Sizebbyb,
Solveindic4Size6by6, Solveindic4Size6by6Above and Solveindic4Sizembym.

fll f12

(i) If degf =
21 Jfo2
Mysolve2a(degf) is called.

), that is in the case fi; = fao2 = 0 then the function

191

0 fi2 fi3
(i) If degf = | for 0 fo3 |, that isin the case fzz = 0 and fi2 = 0 then the

0 f2 O
function Mysolve3a(degf) is called.

0 fi2 fi3 Jfua
far 0 fos o fau
0 0 f O

0 0 fuis O
faz =0 or fu3 # 0 (these are encoded as b = [0] and b = [1] respectively) then

the function Mysolveda(degf) is called.

0 fiz fiz Jfu
Joo 0 0 fu

(iii) If degf = , that is in the case f3» = 0 with either

(iv) If degf = , that is in the case f33 # 0 and fy3 = 0 (this

0 fe2 O
0 0 fus O
is encoded as b = [0]) then the function Mysolvedb(degf) is called.
0 fiz O
(v) Ilf degf = | 0 0 0 |, that is in the case f3; # 0 then Mysolve3b(degf)
0 f2 O

or Mysolgeneral(degf) is calld when m = 3.

0 fio fizs Ju fis

a0 fas fau fos
(vi) If degf = 0 f 0 0 fss [, thatisin the case f3 = 0 and fy3 =

0 0 fiz 0 O

0 0 0 fau 0
fsa # 0 (this is encoded as b = [1,1]) then the function Mysolveba— (degf)

is called.
0O 0 0 0 0 0
Jao 0 fo3 0 0 0
0O 0 0 0 0 O
vii) If degf = , that is in the case =0, =0
(vii) qf 0 0 fs 0 0 0 f32 Ji2
0 0 0 fsu O O

000 0 0 fg 0
and fi3 = fs4 = fe5 # 0 (this is encoded as b = [1,1,1]) then the function

Mysolvableb6 is called.

192

0 fiz fis Ju fis fim
oo 0 fas fou J2s Jom
0 fz 0 0 [35 fam
(viii) If degf = 0 0 fiz O 0 : , that is in
L . fom—2)m
0 0 0 0 fonma O 0
0O 0 0 0 0 fom-y 0
the case f3o = 0, fiz = 0 and fi3 = fou = fos = ... = finm-1) # 0 (this
is encoded as b = [1,1,...,1]) then the function Mysolvablel is called when
m > 6.
0 fiz fis fu fis fim
faa 0 fas fau s fom
0 f2 0 O 35 . fam
1. (ix) If degf = 0 0 fi3 O 0 ' : , that is
R . : fom—2)m
00 0 0 0 fonms O 0
0O 0 0 0 0 Jm(m—1) 0
in the case fso # 0, for = 0 and faz = fsa = fos = ... = frm—1) # 0 (this is

encoded as b =[1,1,...,1]) then the function Mysolgene—

ral(degf) is called when m > 3.

In detail the function works as follows:

SOLVEINDIC4AWITHPROOF (deg f)
1 m <« Si1zE(degf)
2 ifm=2
3 then SOLVEINDIC4SIZE2BY2(deg f)

4 foriin {1,...,2m 3}

5 do b <~ CONVERTTOBINARY(i — 1)

6 for jin {1,...,m—3}and j1=5+3

7 do if b[j] =0

3 then 0 degf[j1][j1 — 1] = deg f[j1][j1]
9 if b[j] = 1
10 then 0 < degf[j1][j1] = degf[j1 — 1][41]

193

11 0 < degf[i][i] for i = 1,2,3 > by the hypothesis of Proposition 7.2.8

12 Tempd <+ STRUCTURALCOPY(degf) after set Tempd to empty list
13 g < SuM(b)

14 degf < STRUCTURALCOPY (T emp4)

15 if g=0

16 then if m =3

17 then degf < SOLVEINDIC4SI1ZE3BY3(deg f)
18 ifm>4

19 then degf < SOLVEINDIC4S1ZE4BY4 A (deg f)
20 degf < STRUCTURALCOPY (T emp4)

21 degf < SOLVEINDIC4SI1ZE4ABY4B(deg f)
22 ifg=m-—3

23 then if m =3

24 then degf < SOLVEINDIC4SIZEMBYM (deg f)
25 ifm=4

26 then degf < SOLVEINDIC4SI1ZE4BY4 A (deg f)
27 degf < STRUCTURALCOPY(Temp4)

28 degf < SOLVEINDIC4SIZEMBYM(deg f)
29 if m=>5

30 then degf < SOLVEINDIC4SIZESBY5(deg f)
31 degf < STRUCTURALCOPY (T emp4)

32 degf < SOLVEINDIC4SIZEMBYM(deg f)
33 if m>6

34 then degf < SOLVEINDIC4SIZE6BY6ABOVE(deg f)
35 degf <= STRUCTURALCOPY (T'emp4)

36 degf < SOLVEINDIC4SIZEMBYM(deg f)

37 return degf

8.5.1 Solveindic4Size2by2 Function

The input of the function Solveindic4Size2by2(degf) is a matrix degf of size 2 x 2
as in Remark 8.5.1(i). Solveindic4Size2by2 convertes the matrix degf to an upper
Triangular matrix. It returns the matrix degf after finishing all the replacements.

The function works as follows:

194

SOLVEINDIC4SI1ZE2BY2(deg f)
degf[1][1] = degf[2][2] =0 ©> by the hypothesis of Proposition 7.2.8
0 < degf[1][2] > since % = 0 and R is an integral domain
degf < STRUCTURALCOPY(degf)
degf < SWAPROWSCOLUMNS(degf, 1,2)

1

2

3

4

5 if degf is not an upper triangular matrix

6 then degf < PRINT(degf) with some comments
7 else degf < PRINT(degf) with some comments
8

return degf

8.5.2 Solveindic4Size3by3 Function

The input of the function Solveindic4Size3by3(degf) is a matrix degf of size
3 x 3 as in Remark 8.5.1(ii) (it is Case 1 of 3 x 3 matrix). Solveindic4Size3by3
convertes the matrix degf to an upper Triangular matrix. It returns the matrix
degf after replacement and tests whether it is a strictly upper triangular matrix or

not. The function works as follows:

SOLVEINDIC4S1ZE3BY3(deg f)
degf[3][2] = degf[1][2] =0 ©> by the hypothesis of Proposition 7.2.8
degf < STRUCTURALCOPY(deg f)
degf < SwAPROWSCOLUMNS(deg f, 1,2)
if degf is not an upper triangular matrix
then degf < PRINT(degf) with some comments
else degf < PRINT(degf) with some comments

N O Tt = W N

return degf

8.5.3 Solveindic4Sized4by4A Function

The input of the function Solveindic4Sizedby4(degf) is a matrix degf of size
m x m where m >4 and f; =0,4=1,...,m and f3 = 0 with Sum(b) = 0 as in
Remark 8.5.1(iii). Solveindic4Sizedby4A convertes the matrix degf to an upper
Triangular matrix. It returns the matrix degf after replacement and tests whether

it is a strictly upper triangular matrix or not. The function works as follows:

195

SOLVEINDIC4S1ZE4BY4A (deg f)
degf[3][2] = degf[1][2] =0 © by the hypothesis of Proposition 7.2.8
degf <+ STRUCTURALCOPY(degf)
degf <+ SwaAPROwWSCOLUMNS(degf, 1,2)
if degf is an upper triangular matrix
then degf < PRINT(degf) with some comments
else degf < PRINT(degf) with some comments

N O Ot = W N

return degf

8.5.4 Solveindic4Size4by4B Function

The input of the function Solveindic4Sizedby4B(degf) is a matrix deg f of size m x
m where m > 4 and f3, # 0 with zeros on the diagonal and Sum(b) = 0. The matrix
degf of Remark 8.5.1(iv) is one example of the input of Solveindic4Size4by4B.
Mysolve4b convertes the matrix degf to an upper triangular matrix. It returns the
matrix degf after replacement and tests whether it is a strictly upper triangular

matrix or not. The function works as follows:

SOLVEINDIC4S1ZE4BY4B(deg f)

1 degf < Size(degf)
degf[2][1] = degf[2][3] =0 ©> by the hypothesis of Proposition 7.2.8
degf <+ SWAPROWSCOLUMNS(deg f, 2, 3)
if degf is an upper triangular matrix
then degf < PRINT(degf) with some comments
else degf + SwAPROWSCOLUMNS(degf,3,4)
deg f[1][3] =0
for i in {4,...,m}
do deg f[1][i] = deg f[2][i] = 0
> using 0% = 0 and R is an integral domain
10 degf + SWAPROWSCOLUMNS(deg f, 3,4)
11 degf < SWAPROWSCOLUMNS(degf, 2, 3)
12 degf < SWAPROWSCOLUMNS(deg f, 3,4)

© 00 J O T = W N

13 degf < PRINT(degf) with some comments
14 return degf

196

8.5.5 Solveindic4Size5by5 Function

The input of the function Solveindic4Size5by5(degf) is a matrix degf of size
5 x 5 with f3s = 0 and Sum(b) = 2 as in Remark 8.5.1(vi). Solveindic4Sizeb5by5
convertes the matrix deg f to an upper triangular matrix. It returns the matrix deg f
after replacement and tests whether it is a strictly upper triangular matrix or not.

The function works as follows:

SOLVEINDIC4SI1ZESBY5(deg f)

1 m <« Si1zE(degf)

2 degf[1]2] = degf[3][2] =0 ©> since 9 =0 and R is an integral domain
3 foriin {1,...,m}

4 do for jin {1,...,m}

5 if j>i+2

6 then f[i][j] = 0 > since 9> = 0 and R is an integral domain
7 degf < STRUCTURALCOPY (degf)

8 degf <+ SWAPROWSCOLUMNS(degf,1,2)

9 if degf is not an upper triangular matrix

10 then degf < SWAPROWSCOLUMNS(degf,3,4)
11 if degf is not an upper triangular matrix

12 then degf < SWAPROWSCOLUMNS(degf,4,5)
13 if degf is not an upper triangular matrix

14 then degf < SwAPROWSCOLUMNS(degf,3,4)
15 if degf is not an upper triangular matrix

16 then degf < PRINT(degf) with some comments
17 else degf «+ PRINT(degf) with some comments
18 return degf

8.5.6 Solveindic4Size6by6 Function

The input of the function Solveindic4Size6by6(degf) is a matrix degf of size 6 x 6
as in Remark 8.5.1(vii). This function is to convert a matrix deg f to a strictly upper
triangular matrix. It is the first case of size 6 x 6 where f3» = 0 and b = [1,1,1].
It runs the function SwapRowsColumns five times swapping rows and columns until
degf is upper triangular matrix. In fact the matrix degf in the input of the (n+1)

run of the function SwapRowsColumns it will be the matrix degf output by the n'*

197

run. It returns the matrix degf after finishing all the replacements. The function

works as follows:

SOLVEINDIC4SIZE6BY6(deg f)

degf + SwapRowsCoOLUMNS(degf, 1,2)
degf < SwAPROWSCOLUMNS(deg f, 2, 6)
degf < SWAPROWSCOLUMNS(degf, 3,4)
degf <+ SwaAPROWSCOLUMNS(deg f, 4,5)
degf < SwAPROWSCOLUMNS(deg f, 3,4)

S U W N =

return degf

8.5.7 Solveindic4Size6by6Above Function

The input of the function Solveindic4Size6by6Above(degf) is a matrix degf of
size m x m with m > 6 as in Remark 8.5.1(viii). Solveindic4Size6by6Above
convertes the matrix degf to an upper triangular matrix. It outputs a proof that

M 1is solvable for this case. The function works as follows:

SOLVEINDIC4SIZE6BYGABOVE(deg f)

1 mysize + S1zE(deg f)

2 degf[1][2] = degf[3][2] = 0
3 foriin {1,...,mysize}
4 do for j in {1,..., mysize}
5 if j>042
6 then f[i][j]] =0 > since 9> = 0 and R is an integral domain
7 if mysize < 6
8 then return that mysize must be greater than 6
9 else
10 if mysize =6
11 then degf < SOLVEINDIC4SI1ZE6BY6(deg f)
12 else
13 if mysize =7 or mysize = 8
14 then mycounter <— mysize — 6
15 degf < SOLVEINDIC4SIZEGBYG6(deg f)
16 for i in {1,..., mycounter}
17 doifi=1

198

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
20

then degf < SwapRowsCoLUMNS(degf,4 + 1,6 + 1)
degf < SWAPROWSCOLUMNS(degf,3 + i,4 + 1)
degf <+ SWAPROWSCOLUMNS(degf, 1,3 + 1)
ifi>1
then degf < SWAPROWSCOLUMNS(degf,4 + 4,6 + 1)
degf <+ SWAPROWSCOLUMNS(deg f,3 + 1,4 + 1)
degf < SwapROwWsCoOLUMNS(degf, 1+ 4,3 + 1)
degf + SWAPROWSCOLUMNS(degf, 1,1 + 1)
degf < SWAPROWSCOLUMNS(deg f,2,1 + 1)
if mysize > 9
then mycounter <— mysize — 6
degf < SOLVEINDIC4SIZEGBYG(deg f)
for ¢ in {1,...,mycounter}
doifi=1
then degf < SwAPROWSCOLUMNS(degf,4 + 4,6 +)
degf < SWAPROWSCOLUMNS(degf,3 + i,4 + 1)
degf < SWAPROWSCOLUMNS(degf, 1,3 + 1)
ife>1
then degf < SWAPROWSCOLUMNS(degf,4 + 4,6 + 1)
degf < SWAPROWSCOLUMNS(deg f,3 + 7,4 + 1)
degf < SwAPROWSCOLUMNS(deg f, 1+ 4,3 + 1)
degf + SWAPROWSCOLUMNS(degf, 1,1 + i)
degf < SWAPROWSCOLUMNS(degf,2,1 + i)
degf < STRUCTURALCOPY (degf)
mycounterl <— mysize — 8
for mycounter2 in {1, ..., mycounterl}
do for 7 in {1, ..., mycounter2}

mycounter3 <— mycounter2 — i+ 1

degf <+ SWAPROWSCOLUMNS(deg f, 2 + mycounter3, 3 + mycounter3)

if degf is not an upper triangular matrix
then degf < PRINT(degf) with some comments
else degf <+ PRINT(degf) with some comments
return degf

199

8.5.8 Solveindic4Sizembym Function

The input of the function Solveindic4Sizembym(degf) is a matrix degf of size
m x m with m > 3 as in Remark 8.5.1(ix). It convertes the matrix degf to an upper
triangular matrix. The function outputs a proof that M is solvable for this case.

The algorithm works as follows:

SOLVEINDIC4SIZEMBYM(deg f)

1 m < S1ze(degf)

2 degf[2)[1] = degf[2][3] = 0

3 foriin {1,...,m}

4 do for j in {1,...,m}

5 if j>i+42

6 then f[i][j] =0 > since 9> = 0 and R is an integral domain
7T 241

8 m+j

9 whilei<j
10 do degf < SwaAPRoOwsCoLUMNS(degf,1,7)
11 1+i41
12 jej—1
13 if degf is an upper triangular matrix
14 then degf < PRINT(degf) with some comments
15 else degf <+ PRINT(degf) with some comments

16 return degf

8.6 SolvableModuleByUsualGradedWithProof Function

The function SolvableModuleByUsualGradedWithProof (D, P) is called only if the
conditions of Proposition 7.2.11 hold. The inputs of this function are the list of
dimensions of the modules D = [ky,...,k,] where dim(e;) = k; and the degree
P of the differential on the module M. (The same inputs as the main function
IsSolvableModuleWithProof.) SolvableModuleByUsualGradedWithProof outputs

a proof that M is solvable. The algorithm works as follows:

200

SOLVABLEMODULEBYUSUALGRADED(D, P)

1

© 00 N O Tt = W N

—_ = =
N = O

13
14
15
16
17
18
19
20
21
22
23
24
25
26

m < SIZE(D)
D[1] + k1
0+
dimf < IDENTITYMAT(m)
degf < IDENTITYMAT(m)
degf2 < IDENTITYMAT(m)
f < IDENTITYMAT(m)
for i in {1,...,m}
do DJ[j| « dimej
for iin {1,...,m}
do DJi| < dimei
dimej — dimei — P < dim f[i][]
> by definition
if dimfli][j] <0
then f[i][j]] =0 > usual graded
—dimf[i][j] < degfi][J] > by the properties
for jin {1,...,m}
do for i in {1,...,m}
do REWRITE f after setting some of its entries to zero
if f is an upper triangular matrix
then for i in {1,...,m}
do 0 + f[i][7] > since 9% = 0 and R is an integral domain
COMPUTE the matrix d of the differential 0 with respect
to the basis S = {e; }I",
else return f is not upper triangluar matrix
CONSTRUCT a proof that M is solvable if f is an upper triangular matrix

return) is solvable

8.7 IsSolvableModuleWithProof Function

The function IsSolvableModuleWithProof(D, P) is the main function of our algo-
rithm. It checks which of the conditions of the Propositions 7.2.4, 7.2.5, 7.2.8, 7.2.10,
7.2.11 and Remark 7.2.9 hold. Then it calls one of the functions: Solveindic1With-
Proof, Solveindic2WithProof, Solveindic3WithProof, Solveindic4 and Solva-

201

bleModuleByUsualGradedWithProof according to the condition that matches the
function. The inputs of this function are the list of dimensions of the modules
D = [ky,...,k,] where dim(e;) = k; and the degree P of the differential on the
module M. The function outputs the dimension m of the vector of dimensions, the
matrix dimf of dimensions, the identity matrix f of size m x m, the matrix degf
of degrees, the flags indic and z;; ¢ = 1,2,3 to determine which of Solveindic(n)

function to run. The algorithm works as follows:

ISSOLVABLEMODULEWITHPROOF(D, P)
1 m < SizE(D)

2 ifP=1or—1

3 then return M is solvable (by Carlsson, 1983)

4 if P< -2

5 then k1 < DI1]

6 j<+<0

7 dimf < IDENTITYMAT(m)

8 degf < IDENTITYMAT(m)

9 degf2 < IDENTITYMAT(m)
10 f < IDENTITYMAT(m)
11 foriin {2,...,m}
12 doj<+j+1
13 k2 < DlJi]
14 dif fk + k1 — k2
15 if k1 > k2
16 then t[j| « dif fk > t was empty
17 if dif fk > —-P
18 then indic < 1 > indic was zero
19 xl 21 +1

> xl was zero
20 elseif dif fk < —P
21 then indic < 2
22 T2 412+ 1
> x2 was zero

23 elseif dif fk < P

202

24
25
26
27

28
29
30
31
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
20
ol
52
23

then indic < 3
x3 4+ x3+1
CHECK the conditions of the input of the two cases above
FOLLOWING the same strategy for indic = 1 and indic = 3
to construct indic =2 it t; +t;1; < —P and indic = 4
ift;, +t; .1 >—P
for jin {1,...,m}
do dimej + D|j]
for iin {1,...,m}
do dimei < Dli]
dimfi][j] « dimej — dimei + P
> by definition
if dimfli][j] >0
then f[i|[j] =0 > negative graded
deg fli]lj] < —dimfli]]J] >> by the properties
if indic =1
then CALL FUNCTION SOLVEINDIC1 WITHPROOF
if indic = 2 or (indic = 4 and m = 2)
then if m =2
then CALL FUNCTION SOLVEINDIC4SIZE2BY2
else CALL FUNCTION SOLVEINDIC2WITHPROOF
if indic =3
then CALL FUNCTION SOLVEINDIC3WITHPROOF
if indic =4
then CALL FUNCTION SOLVEINDIC4AWITHPROOF
if indic =1
then return true
if indic =2 and m # 2

then return fail

if indic =3
then return true
if indic =4

then return true

203

54 if P > 2 and the conditions of Proposition 7.2.11 are hold
55 then CALL FUNCTION SOLVABLEMODULEBYUSUALGRADEDWITHPROOF

56 return true

We will give some examples for the function IsSolvableModuleWithProof as

follows:
Example(1):

gap> C:=IsSolvableModuleWithProof ([30,20,10],-3);
diffk=10
diffk=10
indic=1
dimf=[[-3, -13, -23 1, [0, -3, -131, [0, 0, -3 1]
degf=[[3, 13, 231, [0, 3, 131, [0, 0, 31]
f={ [-3, -13, -23], [0, -3, -13], [0, 0, -3 1]]
Newf=[[0, -13, -23], [0, 0, -13], [0, 0, 0]]
a={ [o, "f12", "f13" 1, [0, 0, "f23" 1, [0, 0, 01 1,
(Since d"2=0 and R is an integral domain).
Let CO=0 and Cil=<el> , (C2=<el,e2> , (C3=<el,e2,e3>
C1/C0 is free, C2/C1l is free, C3/C2 is free
If x in C1, then x can be written uniquely as:
x=alxel
d(x)=alxd(el)
d(x)=a1(0) in CO
Hence d(C1) subset of CO and then d(C1/C0)=0.
If x in C2, then x can be written uniquely as:
x=alxel+a2x*e2
d(x)=alxd(el)+a2xd(e2)
d(x)=a1(0)+a2(f12xel) in C1
Hence d(C2) subset of C1 and then d(C2/C1)=0.
If x in C3, then x can be written uniquely as:
x=alxel+a2*e2+a3*e3
d(x)=alxd(el)+a2*d(e2)+a3*d(e3)
d(x)=al1(0)+a2(f12xel1)+a3(f13*el1+f23%e2) in C2
Hence d(C3) subset of C2 and then d(C3/C2)=0.
Hence, 0=CO subset of C1 subset of C2 subset of C3= M is

204

a composition series for M.

true
Example(2):

gap> C:=IsSolvableModuleWithProof ([30,20,10],-30);

diffk=10

diffk=10

indic=2

dimf=[[-30, -40, -50 1, [-20, -30, -40 1, [-10, -20, -30 1]
degf=[[30, 40, 50 1, [20, 30, 40], [10, 20, 30]]

f=[[-30, -40, -50], [-20, -30, -40], [-10, -20, -30]]
d=(["f11", "f12", "f13" 1, ["f21", "f22", "f23"],

["f31", "£32", "£33"]]

fail

Example(3):

gap> C:=IsSolvableModuleWithProof ([-20,-10,-5],-3);
diffk=-10
diffk=-5
indic=3
dimf={ [-3, 0, 01, [-13, -3, 01, [-18, -8, -3] 1]
degf=[[3, 0, 01, [13,3, 01, [18, 8, 31 1]
f=[[0, 0,01, [-13, 0,01, [-18, -8, 01]
Tranf=[[0, -13, -18], [0, 0, -8 1, [0, 0, 0]]
da=[[0, "f12", "f13"], [0, O, "f23"], [0, 0, 01 1,

(Since d°2=0 and R is an integral domain).

Let CO=0 and Cl=<el> , C2=<el,e2> , C3=<el,e2,e3>
C1/CO is free, C2/C1 is free, C3/C2 is free

If x in C1, then x can be written uniquely as:

x=alxel

d(x)=alxd(el)

d(x)=a1(0) in CO

Hence d(C1) subset of CO and then d(C1/C0)=0.

If x in C2, then x can be written uniquely as:

x=al*el+a2*e2

205

d(x)=alxd(el)+a2x*d(e2)

d(x)=al1(0)+a2(f12xel) in C1

Hence d(C2) subset of C1 and then d(C2/C1)=0.

If x in C3, then x can be written uniquely as:
x=al*el+a2*e2+a3*e3

d(x)=alxd(el)+a2*d(e2)+a3*d(e3)
d(x)=al1(0)+a2(f12xel1)+a3(f13*el1+f23%e2) in C2

Hence d(C3) subset of C2 and then d(C3/C2)=0.

Hence, 0=CO subset of C1 subset of C2 subset of C3= M is
a composition series for M.

true
Example(4):

gap> C:=IsSolvableModuleWithProof ([40,30,20,10],-11);

diffk=10

diffk=10

diffk=10

indic=4

dimf=([-11, -21, -31, -41], [-1, -11, -21, -31], [O, -1, -11,

211, [0, 0, -1, -11]]
degf=[[11, 21, 31, 4171, [1, 11, 21, 31], [0, 1, 11, 21],
[0,0,1, 1111

b=[0]

i=1

degf Original Case_after setting some elements to Zero is [[0, 21,
31,411, [1,0,21,311]1, [0,1,0,201, [0, 0,0,011

degf=([0, 1, 21, 311, [0, O, 31, 411, [0, 0, O, 21 1],
(0, 0, 0,011
Thus for the First case, degf is a strictly upper Triangular

matrix, so M is solvable.

degf=[[0, 31, 21, 41], [0, 0, 1, 21], [0, O, O, 311,
[0, 0, 0,011

Thus for the second case, degf is a strictly upper triangular

206

matrix, so M is solvable.

b=[1]

i=2

degf Original Case_after setting some elements to Zero is [[0, 21,
31,411, [1,0,2t1,81],([0,1,0,01, [0,0,1,01]

degf=([0, 1, 31, 21], [0, O, 41, 311, [0, 0, O, 11,
[0, 0, 0,011
Thus for the First case, degf is a strictly upper Triangular

matrix, so M is solvable.

degf=[[0, 0, 0, 21 1,[0, 0, 1, 0],[0, 0, 0, 11,[0, 0, 0, 01]
Thus for the second case, degf is a strictly upper triangular
matrix, so M is solvable.

true
Example(5):

gap> C:=IsSolvableModuleWithProof ([10,20,30],7);
diffk=10
diffk=10
dimf=[[0, 3, 131, [0, 0, 31, [0, 0, 01]
degree=[[0, -3, -13 1, [0, 0, -3 1, [0, 0, 011
f=([o0,3,13], [0,0,3],[0,0,011
a={ [o, "f12", "f13" 1, [0, O, "f23" 1, [0, 0, 011,
(Since d°2=0 and R is an integral domain).
Let CO=0 and Cl=<el> , (C2=<el,e2> , (C3=<el,e2,e3>
C1/CO is free, C2/C1 is free, C3/C2 is free.
If x in C1, then x can be written uniquely as:
x=alxel
d(x)=alxd(el)
d(x)=a1(0) in CO
Hence d(C1) subset of CO and then d(C1/C0)=0.
If x in C2, then x can be written uniquely as:

x=al*el+a2%*e2

207

d(x)=alxd(el)+a2x*d(e2)

d(x)=al1(0)+a2(f12xel) in C1

Hence d(C2) subset of C1 and then d(C2/C1)=0.

If x in C3, then x can be written uniquely as:
x=al*el+a2*e2+a3*e3

d(x)=alxd(el)+a2*d(e2)+a3*d(e3)
d(x)=al1(0)+a2(f12xel1)+a3(f13*el1+f23%e2) in C2

Hence d(C3) subset of C2 and then d(C3/C2)=0.

Hence, 0=CO subset of C1 subset of C2 subset of C3= M is
a composition series for M.

true

208

Appendix A

Appendix

A.1 Appendix to Chapter 2

In this appendix we will attached the codes for all the functions we have written

and used in Chapter 2 as follows:

1. IsSimpleGraph Function

IsSimpleGraph:=function(V,E)
local i,j,M,sV,tempx,tempedgex,tempedgey;
#t

##

The input of this function is a finite simple graph zeta=(V,E), where V and
E represents the list of vertices and the list of Edges respectively.

##

It returns "true" if zeta is a simple graph. Otherwise, It returns an error message.

##
sV:=Size(V);
M:= Length(E);
if V=[] then
Error("The graph must be simple and not a null graph");
fi;
if IsList(V)=false then
Error("V must be a list");
fi;
if IsList(E)=false then
Error ("E must be a graph");
fi;
for i in [1..sV] do
if IsPosInt(V[i])=false then

Error("The entries of V must be positive integers");

209

fi;
od;
if ForAny(V, v-> [v,v] in E)=true then
Error("The graph must be simple no loops");
fi;
if IsSubset(Cartesian(V,V),E)=false then
Error(" Every edge [x,y] must be a pair of vertices and x,y belong to V");
fi;
for i in [1..M] do # First loop through the list of edges E
tempedgex:=SSortedList(E[i]);
for j in [i+1..M] do # Second loop through the edges E excluding the first entry of E
tempedgey:=SSortedList (E[j]);
if tempedgex=tempedgey then # determine whether the specific edge
E[j] is equal to the edge tempedgex
Error("The graph must be simple no multiple edges");

fi;
od;
od;
return(true);
end;

StarLinkDominateOfVertex Function

StarLinkDominateOfVertex:=function(V,E)
local i,j,x1,M,sV,sE,tempx,St,indx1,Lk,indx2,x,YY,Y1,Y2,tempedgex, tempedgey,L,sL,invV;
##

##

The input of this function is a finite simple graph zeta=(V,E), where V and

E represents the list of vertices and the list of Edges respectively.

##

It computes the star St(v) and link Lk(v) and concatenates them in two separate
lists St and Lk respectively. Also it calculates a list Y(v), for each vertex
v in V of those vertices u in V such that u is less than v, and we call the

list of all such Y(v), YY. In addition, it calculates sV, the size of the

list of vertices V and M, the size of the list of edges E.

##
if IsSimpleGraph(V,E)=true then # Call the function IsSimpleGraph to test
whether the graph zeta is simple or not
sV:=Size(V);
M:= Length(E);

St:= NullMat(sV,1,0);

Lk:= NullMat(sV,1,0);

for i in [1..sV] do # loop through the vertices V
tempx:=V[i];
indx1:=1; index for the star of specific vertex v.
indx2:=0; index for the link of specific vertex v.

St [tempx] [indx1] : =tempx; St: is a two dimensional matrix, the rows

indices represent the vertices and the columns

H H H O

indices represent the star of a specific vertex.

210

for j in [1..M] do # loop through the edges E.
if tempx=E[j][1] then # This section to determine whether the specific
vertex E[jl[1] is equal to the vertex tempx.
if E[jI[1]1<>E[j1[2] then # excludes the isolated vertices from the calculation
indx1:=indx1+1;
indx2:=indx2+1;
St [tempx] [indx1] :=E[j] [2];
means that the vertex E[j]1[2] belongs to the star of a specific vertex v
Lk [tempx] [indx2] :=E[j] [2];
means that the vertex E[j][2] belongs to the link of a specific vertex v
fi;
fi;
if tempx=E[j][2] then # This section is the same of the first section,
above just we replaced the first coordinate of
the edge E(j) by the second coordinate.
if E[j1[1]1<>E[j1[2] then
indx1:=indx1+1;
indx2:=indx2+1;
St [tempx] [indx1] :=E[j]1[1];
Lk [tempx] [indx2] :=E[j] [1];

fi;
fi;
od;
od;
YY:=[1;
for i in [1..sV] do # loop through the vertices V.
Yi:=[];

for j in [1..sV] do # loop through the vertices V.
Y2:=Set(St[j]l); # make the list of star of each vertex v as an order set
RemoveSet(Y2,j); # remove the vertex j from the set Y2.
if IsSubsetSet(St[i],Y¥2) and j<>i then # computes a list Y(v), for each vertex v in V of
these vertices y in V such that u less than v.
Add(Y1,j); # Y1 represents a singleton list of Y(v) with respect to each vertex v
fi;
od;
Add(YY,Y1); # YY is a list which contains the lists of Y(v) for each,
vertex v in V of these vertices u in V such that u less than v
od;
invV:=-V;
L:=Concatenation(V,invV);
sL:=Size(L);

else

return("The graph must be a simple graph");

return([St,Lk,YY,sV,M,L,sL]);

end;

DeleteVerticesFromGraph Function

DeleteVerticesFromGraph:=function(St,V,E)

211

local NE,NV,h,v1,Ex,Vx,sStI,g,v,H1,H2,b,ExM,VxM,i,a,j,sNE,sNV,sV,M;

##

B L s s s s s s s s s

##

The input of this function are the list of stars St, the list of vertices V,
and the list of edges E.

##

It computes graphs zeta\St(v), for all v in V, with NV the list of all lists
of vertices of zeta\St(v) and NE the list of all lists of edges of zeta\St(v).

#i#
sV:=Size(V);
M:=Size(E);
NE:=[]1;
NV:=[];
for h in [1..sV] do # loop through the vertices V
v1:=St[h]; # represents star for each vertex v.
Ex:=E;
Vx:=V;
sStI:=Size(v1l); # represents the size of star of each vertex v.

for g in [1..sStI] do # loop through the elements of the star of each vertex v.
v:=vi[gl; # v: represents the vertices which are belongs to each star vi=St[h],

which we want to delete them from the graph zeta.

Hi:=[]1;
H2:=[];
b:=0;
ExM:=Size(Ex); # represents the size of the set of edges E.
VxM:=Size(Vx); # represents the size of the set of vertices V.

for i in [1..ExM] do # loop through the edges E.

a:=0;
for j in [1..2] do # loop through inside each edge of the set of edges E.
if Ex[i][j]l=v then # determine whether v is in the list of star of each,

vertex which we wants to delete it from the graph zeta.

od;
if a<>1 then # means that the coordinates of the pair (edge) does not
equal to v which we want to delete.
Add(H1,Ex[i]); # add that pair (edge) to list H1, which it will be the

list E without those edges, which are contains vertex v.

fi;
od;
Ex:=H1;
for i in [1..VxM] do # loop through the vertices V.
a:=0;
if Vx[il=v then # determine if this (Vx[i]) is equal to vertex v which
we need to delete.
a:=1; # if yes make a=1
fi;
if a<>1 then # means that this vertex is not equal to vertex v.

212

Add(H2,Vx[i]); # add this vertex to the list H2, which it will
be the list of V\St[h]

od;
Ex:=H1;
Vx:=H2;
od;
Add(NE,H1) ; # NE is the list of all lists of vertices of zeta\St(v).
Add (NV,H2) ; # NV is NE the list of all lists of edges of zeta\St(v).
od;
sNE:=Size (NE);
sNV:=Size (NV);
return([NV,NE,sNV,sNE]) ;

end;

ConnectedComponentsOfGraph Function

ConnectedComponents0fGraph:=function(G1,G2)
local DFSVisit,i,j,u,e,N1,x1,y1,M,W,count,color,s,x2,D,k,sD,P,t,A11Comps,sAllComps,
F,sF,Y1,sY1,C1,C2,Y2,Y3,L2,U2,q,sY3,Y4,L4,sY4,sG1,NonIsolatedComps,IsolatedComps;

The input of this function is the list of edges G of a graph B=(G1,G2),
where G1 is the list of vertices and G2 is the list of edges.

##

It returns [AllComps,sAllComps,NonIsolatedComps,D,IsolatedComps,F] where:
##

AllComps: the list of all the connected components of the graph B,

sAllComps: the size of AllComps,

NonIsolatedComps: the list of all the non-isolated connected components
#Hit# of the graph B,

D: the list of vertices of non-isolated connected components,

IsolatedComps: the list of all the isolated connected components of the graph B,

F: the list of vertices of isolated connected components.

##
if IsList(Gl)=false then
return("Gl must be a list");
fi;
sG1:=Size(G1);
for i in [1..sG1] do
if IsPosInt(Gi[i]l)=false then
return("The entries of Gl must be positive integers");
fi;
od;
if IsList(G2)=false then
return("G must be a graph");
fi;
if IsSubset(Cartesian(G1,G1),G2)=false then

return(" Every edge [x,y] must be a pair of vertices and x,y belong to G1");

213

fi;
M:= Length(G2);
##

#it
DFSVisit implements the depth search algorithm to construct the
connected components (having more than one vertex) of the graph B.
#i
The input to DfsVisit are:
i: A vertex of graph B,
W: the weight matrix of B,
sD: the size of the vertex list of the graph B,
count: is a specific number representing the vertices of each component,
color: is a list of size sD with entries the numbers of
H#H# non-isolated components.
##

DFSVisit:=function(i,W,sD,count,color)

local j,s;

for s in [1..sD] do
if color([s]=0 and W[i][s]=1 then
color[s]:=count;
DFSVisit(s,W,sD,count,color);
fi;
od;

end;;

#i

##
This section computes the list of vertices D of the non-isolated

connected components of the graph B and its size sD.

##
e:=0;
u:=0;
D:= [1;

for i in [1..M] do
for t in [1..2] do
u:=0;
for j in [1..e] do
if D[j]1=G2[i][t] then

u:=u+l;
fi;
od;
if u=0 then
e:=e+l;
D[e]:=G2[i] [t];
fi;
od;
od;
u:=0;
sD:=Size(D);
##

L s T s T
##

214

W:= NullMat(sD,sD,0); # Set W to be a null matrix of size sD x sD
count:=0; # index for the number of connected components
color:= ListWithIdenticalEntries(sD, O); # List "color" equal to null-vector of size sD.
s:=1; #s"th item of color is the (number of the) component of B to which
#the s"th vertex of B belongs (or is zero if s has not yet been processed).
for i in [1..M] do # loop through the edges of the list G2
for j in [1..sD] do # loop through the list of vertices of D
if D[j1=G2[i][1] then # determine whether the vertex D[j] equal to G[il[1]
x1:=j;
fi;
od;
for j in [1..sD] do
if D[j]=G2[i][2] then # determine whether the vertex D[j] equal to G[i][2]

yii=is
fi;
od;
Wlx1] [y1]:=1; # construct the adjacency matrix of the graph B as that:
Wly1l [x1]:=1; # if W[x1][y1l= 1 and W([y1]l[x1]=1 then it means that

the vertex W[x1][y1] join with the vertex W[y1][x1]
otherwise W[x1][y1] and W[y1][x1] are disjoined.
od;
for i in [1..sD] do
if color[i]=0 then # determine whether we are done with the vertices in
the same component
count:= count+1l; # we give another number for the next component
color[i] :=count;
DFSVisit(i,W,sD,count,color);
fi;
od;
P:=[1;
NonIsolatedComps:=[];
for k in [1..count] do
for i in [1..sD] do
if k=color[i] then

loop through the number of connected components k
loop through the list of vertices D

determine whether these vertices k have the same
number of connected component.

Add(P,D[il); Adding the vertices D(i) which are in the same

* H ¥ H O

connected component to the list P.
fi;
od;
for i in [1..sD] do
if k=color[i] then
Add(P,-D[i]); # Adding the inverses of D(i) to the list P
fi;
od;
Add (NonIsolatedComps,P); # NonIsolatedComps: the list of all the

non-isolated components of the graph B

od;
##

##
In this section we compute the isolated connected components of
the graph B and add them to the list Comps

215

#i#
IsolatedComps:=[];
F:=Difference(G1,D);
sF:=8ize(F);
if sF<>0 then

for i in [1..sF] do

Add(IsolatedComps, [F[i],-F[i]]); # IsolatedComps: the list of all the
non-isolated components of the graph

od;

fi;

Al1Comps:=Concatenation(NonIsolatedComps,IsolatedComps); # the list of all the
components of the graph B
sA11Comps:=Size (Al11lComps) ;

return([Al11Comps,sAllComps,NonIsolatedComps,D,IsolatedComps,F]);

end;

Whitehead AutomorphismsOfSecondType Function

WhiteheadAutomorphisms0fSecondType:=function(NV,NE,St,YY)

local i,j,gens2,gens,genss,Bs,MV,ME,sME,h,G1,G2,R3,Comps,sComps,sMV,sNE,UniA,
D,DD,sD,S,YYY,NYY,invNYY,DYY,sDYY,Ls,t,xn,union_element,AQ,sAQ,L3,sL3,L4,sL4,sAQ1,
L5,elms,diff,Combs1,NCombs,sNCombs,Combs2,q,L7,k,set ,AA1,AA,sAA,A,sA,T,sT;

##

##
The input of this function are:
the lists of vertices NV of the subgraph zeta\St(v)
the list of edges NE of the subgraphs zeta\St(v)=(NV(v),NE(v)) for all v in V
the list of stars St(v)
list YY for each vertex v in V of these vertices u in V such that u less than v.
#i#
It computes the list A of type(2) Whitehead automorphisms which forms
the first part of the set of generators of Aut(G_zeta). Also it computes
a list T of names of elements of A (the i“th element of T is the name of
the i"th element of A).
S S s S s S s s S S s S s S S s s s s
##
gens2:=[];
gens:=[];
genss:=[];
AA:=[];
Bs:=[1;
MV:=NV;
sNE:=Size (NE);
for h in [1..sNE]Jdo #loop through the list NE
G1:=NV[h];

216

G2:=NE[h];
R3:=ConnectedComponents0fGraph(G1,G2) ;

computes the list of the Connected components

for each subgraph (NV(h),NE(h))
Comps:=R3[3]; # Comps: list of non-isolated components of the subgraph
sComps :=Size (Comps) ; # sComps: size of Comps
D:=R3[4]; # D: the list of vertices of non-isolated components
sD:=Size(D); # sD: size of D
S:=St[h]; # S is the list of the star of the vertex h
YYY:=YY; # YYY is a list which contains the lists of Y(v),for each vertex

v in V of these vertices u in V such that u less than v
NYY:=YYY[h]; # YYY is the dominate list Of the vertex h
invNYY:=-NYY; # the inverse of NYY
DYY:=Concatenation(NYY,invNYY);
sDYY:=Size (DYY);

Ls:=[[1];
for t in [1..sDYY] do # loop through the list DYY
xn:=DYY[t];

union_element:=function(Ls,xn,S)
Call the function union-element to construct a list
called Ls of all subsets of St(v) + YY(v) + (-YY(v))
local J,i,j,sLs;
sLs:=Size(Ls);
for i in [1..sLs] do
J:=StructuralCopy(Ls[i]); # to make a structural copy of each object Ls[il
if not(-xn in J) or (not(xn in S) and not(-xn in S))then
Add(J,xn);
Add(Ls,J); # Ls is the list of all subsets of St(v) + YY(v) + (-YY(v))
fi;
od;

end;;

union_element (Ls,xn,S);

od;

AQ:=Ls;

sAQ:=Size (AQ);

L4:=[1;

L3:=[];

if sComps=0 then # determine whether the list Comps

doesn’t has any connected component

for j in [1..sAQ] do # loop through the list Ls

sAQ1l:=Size(AQ[j]1);

if sAQ1l <> O then

Add(L3,AQ[j]1); # add each list (subsets) AQ(j) of AQ to new list L3

fi;
od;
sMV:=Size(MV[h]); # sMV is the size of the vertex list of the subgraph (MV[h],ME[h])

For any element X not in D and sMV > 1 and X<>YY[h] we add the [X], [-X] and

[X,-X] to L3 (since these elements are part of isolated components)

for j in [1..sMV] do # loop through the vertex list of the subgraph (MV[h],ME[h])

217

if not (MV[h][j] in D) and sMV<>1 and
Add (L3, [MV[h] [j11);
Add (L3, [-MV[h] [j11);
Add (L3, [MV[h] [j1,-MV[h][j11);
fi;
od;

MV [h]1<>YY[h] then

sL3:=Size(L3);

for k in [1..sL3] do # loop through list L3
Add (L3[k],h); # we add the vertex h
Add(L4,L3[k]); # we add the new list

set:=L4;
sL4:=Size(L4);

to each list of L3 and
L3(k) to the list L4

In this part we delete the vertex h from
time we add its inverse (-h) to the list
to the list L5
for i in [1..sL4] do
elms:=[h];;
diff:=Difference(set[i],elms);;
Add(diff,-h);
Add(L5,diff);
od;

each list set(i) and in the same
diff, then we add the new list diff

fi;
L3:=[1;
if sComps=1 then

for i in [1..sComps] do
for k in [1..sAQ] do
UniA:=Union([AQ[k] , Comps[i]])

Add (L3, Unid);
od;
od;
sMV:=Size (MV[h]) ;

for j in [1..sMV] do ## See the previous
if not (MV[h][j] in D) and sMV<>1 and
Add (L3, MV[h] [j11);
Add (L3, [-MV[h] [j11);
Add (L3, (MV[h] [3],-MV[h] [311);
fi;
od;
sL3:=Size(L3);
for k in [1..sL3] do
Add(L3[k],h);
Add(L4,L3[k]);
od;
set:=L4;

218

determine whether the list Comps
has just one connected component
loop through the list Comps

loop through the list AQ

we make union for this component
with each list of of the list AQ

B

H H H O H H

comments on this section
MV[h]1<>YY[h] then

sL4:=Size(L4);

L5:=[];
for i in [1..sL4] do
elms:=[h];;

diff:=Difference(set[i],elms);;
Add(diff,-h);
Add(L5,diff);
od;

fi;

L3:=[];

if sComps >=2 then determine whether the list Comps

has more than one connected component

Combs1:=Combinations(Comps) ; Combsl is the list of all subsets of Comps

#

#

#

including the empty set and Comps itself

NCombs:=Difference(Combs1, [[]]); # we removed the empty set from Combsl

sNCombs : =Size (NCombs) ;

Combs2:=[];

for q in [1..sNCombs] do # loop through the elements of NCombs
L7:=Concatenation(NCombs[q]); # to remove the extra brackets

Add (Combs2,L7) ;

od;
for k in [1..sAQ] do # loop through the elements of AQ
for i in [1..sNCombs] do # loop through the elements of NCombs
UniA:=Union([AQ[k] ,Combs2[il]);
Add (L3, UniA);
od;
od;

sMV:=Size (MV[h]);
for j in [1..sMV] do # See the previous comments on this section
if not (MV[h][j] in D) and sMV<>1 and MV[h]<>YY[h] then
Add (L3, [MV[h] [§11);
Add (L3, [-MV[h] [j11);
Add (L3, [MV[h] [j1,-MV[h] [311D;
fi;
od;
sL3:=Size(L3);
for k in [1..sL3] do
Add(L3[k],h);
Add(L4,L3[k]);

od;
set:=L4;
sL4:=Size(L4);
L5:=[];
for i in [1..sL4] do
elms:=[h];;
diff:=Difference(set[i],elms);;
Add(diff,-h);
Add(L5,diff);
od;
fi;
for i in [1..sL4] do # loop through the elements of L4 and L5 in the same time
AA1:=[];

Add (AA1,L4[il);

219

Add(AA1,h); # we forms type(2) Whitehead automorphisms
with positive operator (h)
Add(AA,AA1);

AAL:=[];
Add(AA1,L5[i]);
Add(AA1,-h); # we forms type(2) Whitehead automorphisms
with negative operator (-h)
Add (AA,AAL); # AA forms the type(2) Whitehead automorphisms which are
the first part of the generators of the automorphisms
od; # of group of partially commutative group
od;
sAA:=Size(AA);
A:=[];
for i in [1..sAA] do # loop through the generators set AA
if not (AA[i] in A) then # it helps us to rewrite the list AA without repetition
Add(A,AA[i]); # The elements of list A are the definitions of Type(2)
Whitehead automorphisms of the generators of the
presentation of Aut(G_zeta)
fi;
od;
sA:=Size(A);
T:=[1;

for i in [1..sAldo
Add(T,Concatenation(["A",String(i)])); # Compute the list T with i"th entry A(i) where
A(i) is the name of the i“th element of A
od;
sT:=Size(T);
return ([A,T,sAl);

end;

Whitehead AutomorphismsOfFirst Type Function

WhiteheadAutomorphismsOfFirstType:= function(E,sV,sA,T)

local gens2,gens,genss,El,GraphAutomorphismGroup,Gr,HH,KK,rels1,HHH,srels1,
NJK,F,sF,Gens3,i,NF1,relvalofF,srelvalofF,I1,Gens2,12,J1,sGens2,Gens,sGens,
sgenss,sgens,zz,rels2,srels2,Relsl,sRelsl;

##

##

The input of this function are:

the list of edges E

the size of the list of vertices sV

the size of the list A of type(2) Whitehead automorphism of Aut(G_zeta)

the list T with i"th entry A(i), where A(i) is the name of the i”th element of A.
##

It computes the list Gens of the type(1) Whitehead automorphisms which forms
the second part of the set of generators of the automorphism group of G_zeta,
and then computes the list of the generators gens of Aut(G_zeta) with its

size sgens. The subgroup Aut_zeta(G_zeta) of Aut(G_zeta) consists of graph
automorphism: that is, elements pi in Aut(G_zeta) such that pi restrict

to the graph zeta is a graph automorhism.

220

s s s s s s s s s s s s s T s s s T
##

gens2:=[];
gens:=[];
genss:=[];
El1:=E;

##

The purpose of this section is to compute the group of the graph with the size
of vertices sV since the permutation on V is an automorphism of the graph zeta
##

GraphAutomorphismGroup := function(E1l)

return SubgroupProperty(SymmetricGroup(sV),g -> Set(E1l,k->0nSets(k,g)) = Set(E1));
end;

#i#

##

Gr:=GraphAutomorphismGroup (E) ;
HH:=AsGroup(Gr) ;
KK :=IsomorphismFpGroupByGenerators (HH,Generators0fGroup (HH)) ;
returns an isomorphism from the given finite group

HH to a finitely presented group isomorphic to HH.

HHH:=Image (KK) ; # Call Image the function which computes a finitely
presented group H on the chosen generators KK

relsi:=[];

Relsi:=[];

rels2:=RelatorsOfFpGroup(HHH); # rels2: relators set of the group automorphism of graph
srels2:=Size(rels2);
F:= GeneratorsOfGroup (HHH) ; # F: generators set of the group automorphism of graph
sF:=Size(F);
for i in [1..srels2] do
zz:=ExtRep0f0bj (rels2[i]);
The function ExtRep0fObj() helps us to rewrite each

single relation as a vector with entires are the indces
and the power of the generators which are form that relation.
For example the result of ExtRepOfObj(A52*A4xA52°-1%xA4"-1)
is the vector [52, 1, 4, 1, 52, -1, 4, -1]
Add (Relsl,zz);

od;

sRels1:=Size(Relsl);

Gens3:=[];

for i in [1..sF] do
NF1:=Concatenation(["f",String(i)]);
Add(Gens3,NF1); # Gns3 is the first part of type(l) Whitehead automorphism
which are the same F just we rewrite them to make them
suitable with the other generators
od;
relvalofF:= GeneratorsO0fGroup(HH); # Compute list of the definitions relvalofF of
the generators Gens3 of the group of graph HH
srelvalofF:=Size(relvalofF);
I1:=[];
Gens2:=[];
for i in [1..sV] do

221

I2:=Concatenation(["A",String(sA+i),"(",String(i),")","=",String(-i)]1);
Make a list, called I2, of type(1) Whitehead automorphisms which
send a generator to its inverse and add it to the leist Il
Add(I1,I2);
J1:=Concatenation(["A",String(sA+i)]);
rewrite the elements of Il as a string to make
them compatible with the other generators and
add them to Gens2
Add (Gens2,J1);
od;
sGens2:=Size(Gens2) ;
Gens:=Concatenation(Gens2,Gens3) ;
Concatenate the lists Gens2 and Gens3 in a new list called
Gens which represents all type(1) Whitehead automorphisms
sGens:=Size(Gens);
for i in [1..sGens] do
Add(gens,Gens[i]);
od;
genss:=Concatenation(T,Gens2);
Concatenate the two lists T and Gens2 in a one list called
genss. The list genss helps to form the relations later
gens:=Concatenation(T,Gens); # Compute set of the generators gens of Aut(G_zeta),
by concatenating the two lists T and Gens.
sgenss:=Size(genss);
sgens:=S8ize(gens) ;
return([gens, sgens,sgenss,Gens3,relvalofF,srelvalofF,Relsl,sRelsl,sGens2]);

end;

RelationsOfGraphAutomorphisms Function

RelationsOfGraphAutomorphisms:= function(sA,sgenss,relvalofF,sV,sGens2)
local rels,Rels,i,j,R6,FF,srelvalofF,d,F1,PP,R7,R11,idx1,idx2,idx3,srels,sRels;
##

#i#

The input of this function are:

the size sA of the list A of definition of the second type of generator,
the size of the list genss defined in WhiteheadAutomorphismsOfFirstType.g,
the list of generators of the graph automorphism relvalofF defined in,

WhiteheadAutomorphismsOfFirstType.g,

sizes sV, and sGens2 of the lists V and Gens2 respectively.

##

It computes the row matrix of indices Rels of the generators

which forms the relations of this type, that related to the

graph automorphism with its size sRels.

##
Rels:=[];
for i in [sA+1..sgenss] do # loop through the generators Gens2
Add(Rels, [1,i]); # [1,i] is the row matrix of indices of each relation
of type R11={A"2=1 : A in Gens2} and add it to the

222

list Rels. The first entry 1 is just a flag to let
us know that here the generator is of power two
od;
for i in [sA+1..sgenss] do # loop through the generators Gens2
for j in [sA+1..sgenss] do
if i<>j then
Add (Rels, [0,-1,-3,1,31);
[0,-i,-j,i,j] is the row matrix of indices of
each relation of type (g~-1%¥h"-1%gxh) such that
g,h in Gens2. The first entry O is just a flag to
let us know that here the generator without any power
fi;
od;
od;
FF:=[1;
srelvalofF:=Size(relvalofF);
for i in [1..srelvalofF] do # loop through the generators relvalofF
of the group of graph HH
d:=relvalofF[i];
Fl:=d"-1; # computes F1 the inverse of each element of
relvalofF and add them to the list FF
Add(FF,F1);
od;

##
In this section we apply the function PP to (j, sigma(i)) to return the value
sigma(i) for each i in the list of vertices { 1, ..., n } and sigma in the list
FF above. Using these values form the relations R7: that is compute the row
matrix of indices [0,-idx1,idx2,idx1,idx3], for each such relation, and
add it to the list Rels.
#i#
for i in [1..srelvalofF] do # loop through the generators relvalofF
for j in [1..sV] do # loop through the vertex set V
PP:=0nPoints(j,FF[il]);
idx1:=i+sA+sGens2;
idx2:=sA+j;
idx3:=sA+PP;
Add(Rels, [0,-idx1,idx2,idx1,1dx3]);
means that the idxl refers to the location
of F in the original F Matrix
od;
od;

sRels:=Size(Rels);
return([Rels,sRels]);

end;

APCGRelationR1 Function

APCGRelationR1:=function(sV,A,T,Rels)
local k,j,i,diff1,UA,UAiff,R1,XX1,XX2,idx1,idx2,t,sA,srels,sRels;

223

##

L s s s I s s s s s s s s I s s s s s s s s s s
##

The input of this function are:

sV: the size of the list of vertices of the graph zeta,

A : the list of type(2) Whitehead automorphisms of Aut(G_zeta),

T : the list of names of elements of A,

Rels: the list of row matrices of indices of relations (it is one

of the outputs of "APCGRelationR5".

Note that in order to get just the row matrices of indices of relation (R1)

we need to pass an empty list [] rather than the list Rels above.

##

It computes the list of indices [0,idx1,idx2] of relators of type (R1)
of the group Aut(G_zeta) and adds them to the list Rels. In addition
it calculates the size of the list Rels.

It returns [Rels,sRels].

sA:=Size(A);
for k in [1..sV] do # loop through the list of vertices V
for i in [1..sAldo # loop through the list A defined above

if k in A[i][1] and not (-k in A[i][1]) and A[i][2]=k then

Here we have satisfied the conditiomns,
of the Whitehead automorphism (A,a),
"a" is called the multiplier

diffi:=Difference(A[i] [1],[k]); # we delete the multiplier k from each subset,
A[i][1] and add its inverse -k to this subset.
Add(diff1,-k);
for j in [1..sAldo # loop through the list A defined above.
UA:=SSortedList (A[jI1[1]); # Sorted lists A[j][1] to satisfy the conditions of (R1)
UAiff:=SSortedList(diffl); # Sorted lists diffl to satisfy the conditions of (R1)
if UA=UAiff and A[j][2]=-k then # Verify the inverse of each (4,a)
Lrzzssssiinnnsssiininsss s s s s i s s s s s s s s s s s s s s s s s T s s
##
In this section we compute the list of indices [0,idx1,idx2] of relators of
type (R1) and add them to the list Rels. Note that O is just flag to let us
know that all the generators here of power 1. idxl represents the index of a
specific generator A(i). idx2 represents the index of the inverse of A(j).

For example if [0,idx1,idx2]= [0, 1, 2] then this means A1xA2=1.

XX1:=Concatenation(["A",String(i)]);

XX1: represents a specific Whitehead automorphism (A,a) of A
XX2:=Concatenation(["A",String(j)]1);

XX2: represents a specific Whitehead automorphism (A,a"-1)

which is the inverse of (A,a)
idx1:=0;
idx2:=0;
for t in [1..sA] do # Verify the indices of the given Whitehead

automorphisms A(i) and A(j) in A
if XX1=T[t] then

224

idx1l:=t;

fi;
if XX2=T[t] then
idx2:=t;

fi;

od;

Add(Rels, [0,idx1,idx2]);

##

#i#

fi;
od;
fi;

od;
sRels:=Size(Rels);

return([Rels,sRels]);

end;

APCGRelationR2 Function

APCGRelationR2:=function(A,T,Rels,St)

local k,j,i,IntA,UniA,NUniA,1,K,t,UA,R2,XX1,XX2,XX3,idx1,1idx2,1idx3,t1,
sV,sA,R2a,K1,R2b,R2c,srels,sRels;

##

##

The input of this function are:

A: the list of type(2) generators computed in "WhiteheadAutomorphismsOfSecondType",
T: list of the names of elements of A,

Rels: the list of row matrices of indices of the relations (it is one

of the outputs of the "APCGRelationR1l",

St: the list of stars computed in "StarLinkDominateOfVertex".

Note that in order to get just the row matrices of indices of relation (R2)
we need to pass an empty list [] rather than the list Rels above.

##

It computes the list of indices of the generators [0,idx1,idx2,-idx3] of

relators of type (R2) of the group Aut(G_zeta) and adds them to the list
Rels. In addition it calculates the size of the list Rels.

It returns [Rels,sRels].

##
sV:=Size(St); #Since the size of stars list equal to sV, the size of the vertex list
sA:=Size(A);
for k in [1..sV] do # loop through the vertex list V
for i in [1..sAldo # loop through the list A defined above
for j in [1..sA] do # loop through the list A defined above
IntA:=Intersection([A[i]J[1] , A[jI1[1]1 1);
UniA:=Union([A[il[1] , A[j1[1] 1);
NUniA:=[];

225

for 1 in

St[k] do # In this loop if the vertex 1 and its inverse -1 in the
same time are belong to the list UniA then we delete
them, because they will cancel each other.

in UniA and -1 in UniA then

NUniA:=Difference(Unil, [-1,1]);
UniA:=NUnil;

if 1

fi;
od;
K:=[k];

if IntA=K and k in A[i]J[1] and not (-k in A[i]J[1]) and A[i][2]=k and k in A[j][1]
and not (-k in A[jI[1]) and A[j][2]=k and k in UniA and not (-k in UniA) then

##
##
##
##
##
##
##
##
##
##

Section(1): We compute the first part of the list of indices
[0,idx1,idx2,-idx3] of relators of type (R2) and add them to the list
Rels. Note that O is just flag to let us know that all generators here
of power 1. idxl: represents the index of the generator A(i).

idx2: represents the index of the generator A(j). -idx3: represents
the index of the inverse of the generator A(t).

For example if [0,idx1,idx2,-idx3]= [0,1,3,-5],

then this means A1*A3*A5°-1=1.

for t in [1..sAldo

UA:

if

=SSortedList (A[t] [1]);
A[t][2]=k then
if UA=UniA or UA=NUniA then
XX1:=Concatenation(["A",String(i)]);
XX1: represents a specific Whitehead automorphism (A,a) of A
XX2:=Concatenation(["A",String(j)]1);
XX2: represents a specific Whitehead automorphism (B,a) of A
XX3:=Concatenation(["A",String(t)]);
XX3: represents a specific Whitehead automorphism (A+B,a"-1)

which is the inverse of (A+B,a) of A
idx1:=0;
idx2:=0;
idx3:=0;

for t1 in [1..sA] do
Verify the indices of the given Whitehead automorphisms
A(i), A(j) and the inverse of A(t) in A
if XX1=T[t1] then
idx1:=t1;
fi;
if XX2=T[t1] then
idx2:=t1;
fi;
if XX3=T[t1] then
idx3:=t1;
fi;
od;
Add(Rels, [0,idx1,idx2,-idx3]);
fi;

fi;

od;

226

##

HHHEHHHEHEEEHEEHEHEHEEEHEEHEEEHHEHHERHRERHHEHEERHEEEEHEHEERHERHEERHEEREE

##

##
##
##
##
##
##
if

Section(2): Note that in some cases when we delete the vertices 1 and
its inverse -1 from the list UniA=A+B we will get a new list NUniA=[k],
but this is just the identity. So we will ignore this list (subset)

and we compute the second part of the list of indices [0,idx1,idx2]

NUniA=K then
XX1:=Concatenation(["A",String(i)]);
XX1: represents a specific Whitehead automorphism (A,a) of A
XX2:=Concatenation(["A",String(j)]);
XX2: represents a specific Whitehead automorphism (B,a) of A
idx1:=0;
idx2:=0;
for t1 in [1..sA] do
Verify the indices of the given Whitehead automorphisms
A(i) and A(j) in A
if XX1=T[t1] then

idx1l:=t1;
fi;
if XX2=T[t1] then
idx2:=t1;
fi;
od;
Add(Rels, [0,idx1,idx2]);
fi;
#i#
##
fi;
Ki:=[-k];

if IntA=K1 and -k in A[i][1] and not (k in A[i][1]) and A[i][2]=-k and -k in

and

not (k in A[jJ[1]) and A[j][2]=-k and -k in UniA and not (k in Unid)

A[j101]
then

##
##
##
##
##
##

Section(3): we compute the third part of the list of indices [0,idx1,
idx2,-idx3] of relators of type (R2). It is the same of Section(1), ju
we switch the multiplier "a" (k in this code) of the Whitehead

automorphism (A,a) by its inverse "a"-1" (-k in this code).

for t in [1..sAldo

UA:=SSortedList (A[t][1]);
if A[t][2]=-k then
if UA=UniA or UA=NUniA then

XX1:=Concatenation(["A",String(i)]);
XX2:=Concatenation(["A",String(j)]1);
XX3:=Concatenation(["A",String(t)]1);
idx1:=0;
idx2:=0;

227

st

od;

od;

od;

fi;

idx3:=0;
for t1 in [1..sA] do
if XX1=T[t1] then

idx1:=t1;
fi;
if XX2=T[t1] then
idx2:=t1;
fi;
if XX3=T[t1] then
idx3:=t1;
fi;
od;
Add(Rels, [0,idx1,idx2,-idx3]);
fi;
fi;
od;
#Hit
B s s s s s s s s s s
#Hit
##
We compute the fourth part of the list of indices [0,idx1,idx2] of

##
##
##
##
if

relators of type (R2). It is the same of Section(2), just we switch the
multiplier "a" (k in this code) of the Whitehead automorphism (A,a) by

its inverse "a"-1" (-k in this code).

NUniA=K1 then
XX1:=Concatenation(["A",String(i)]);
XX2:=Concatenation(["A",String(j)1);
idx1:=0;
idx2:=0;
for t1 in [1..sA] do

if XX1=T[t1] then

idx1:=t1;
fi;
if XX2=T[t1] then
idx2:=t1;
fi;
od;
Add(Rels, [0,idx1,idx2]);
fi;
##
##

sRels:=Size(Rels);
return([Rels,sRels]);

end;

228

10.

A

PCGRelationR3 Function

APCGRelationR3:=function(A,T,Lk,Rels)

local k,j,i,sV,sA,IntA,UniA,NUniA,1,K,t,UA,R2,XX1,XX2,1idx1,idx2,
t1,R3a,R3al1,K1,R3b,R3bl,srels,sRels;

##

##

The input of this function are:

A: the list of type(2) generators computed in "WhiteheadAutomorphismsOfSecondType",
T: list of the names of elements of A,

Lk: the list of links computed in "StarLinkDominateOfVertex".

Rels: the list of row matrices of indices of the relations (it is one

of the outputs of the "APCGRelationR2",

Note that in order to get just the row matrices of indices of relation (R3)
we need to pass an empty list [] rather than the list Rels above.

##

It computes the list of indices of the generators [0,idx1,idx2,-idx1,-idx2]

of relators of types (R3a) and (R3b) of the group Aut(G_zeta) and adds them
to the list Rels. In addition it calculates the size of the list Rels.

It returns [Rels,sRels].

##

sV:=Size(Lk);

sA:=Size(A);

##

In this section we compute the list of indices [0,idx1,idx2,-idx1,-idx2] of

relators of type (R3a) by satisfying the conditions of this relations and add
them to the list Rels. Note that 0 is just flag to let us know that all the

generators here of power 1. idxl: represents the index of the generator A(i).
idx2: represents the index of the generator A(j). -idxl: means the inverse of A(i).
-idx2: means the inverse of A(j).

For example if [0,idx1,idx2,-idx1,-idx2]= [0, 9, 3, -9, -3], then this means

##
##

for

A9*A3*A9”-1%A3"-1=1.

k in [1..sV] do # loop through the vertex list V
for 1 in [1..sV] do # loop through the vertex list V
for i in [1..sAldo # loop through A the Type (2) Whitehead Automorphisms

for j in [1..sA] do # loop through A the Type (2) Whitehead Automorphisms
IntA:=Intersection([A[i]1[1] , A[j1[11 1);
if 1 in A[il[1] and not (-1 in A[i1[1]) and A[i]l[2]=1 and k in A[jI[1]
and not (-k in A[j]1[1]) and A[jl[2]=k and not (k in A[i][1]) and
not (-k in A[i][1]) and not (1 in A[j][1]) and not(-1 in A[jI[1])
and IntA=[] then
XX1:=Concatenation(["A",String(i)]);
XX1: represents a specific Whitehead automorphism (A,a) of A
XX2:=Concatenation(["A",String(j)]1);
XX2: represents a specific Whitehead automorphism (B,b) of A
idx1:=0;
idx2:=0;
for t in [1..sA] do # Verify the indices of the given Whitehead
automorphisms A(i) and A(j) in A

229

if XX1=T[t] then

idx1l:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
od;
Add (Rels, [0,idx1,idx2,-idx1,-idx2]);

fi;
if 1 in A[i][1] and not (-1 in A[i]J[1]) and A[i][2]=1 and -k in A[j][1]
and not (k in A[jJ[1]) and A[jI[2]=-k and not (k in A[i][1]) and
not (-k in A[i]J[1]) and not (1 in A[j][1]) and not(-1 in A[j][1])
and IntA=[] then
XX1:=Concatenation(["A",String(i)]);
XX1: represents a specific Whitehead automorphism (A,a) of A
XX2:=Concatenation(["A",String(j)]1);
XX2: represents a specific Whitehead automorphism (B,b) of A
idx1:=0;
idx2:=0;
for t in [1..sA] do # Verify the indices of the given Whitehead
automorphisms A(i) and A(j) in A
if XX1=T[t] then

idx1l:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
od;
Add (Rels, [0,idx1,idx2,-idx1,-1dx2]);

fi;
if -1 in A[iJ[1] and not (1 in A[i][1]) and A[i][2]=-1 and k in A[j][1]
and not (-k in A[j][1]) and A[j]l[2]=k and not (k in A[i]J[1]) and
not (-k in A[i][1]) and not (1 in A[j]1[1]) and not(-1 in A[j][11)
and IntA=[] then
XX1:=Concatenation(["A",String(i)]1);
XX1: represents a specific Whitehead automorphism (A,a) of A
XX2:=Concatenation(["A",String(j)1);
XX2: represents a specific Whitehead automorphism (B,b) of A
idx1:=0;
idx2:=0;
for t in [1..sA] do # Verify the indices of the given Whitehead
automorphisms A(i) and A(j) in A
if XX1=T[t] then

idx1l:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
od;
Add (Rels, [0,idx1,idx2,-idx1,-1dx2]);

fi;
if -1 in A[i][1] and not (1 in A[i]J[1]) and A[i][2]=-1 and -k in A[j][1]
and not (k in A[j1[1]) and A[jl[2]=-k and not (k in A[i][1]) and

230

not (-k in A[i][1]) and not (1 in A[j]l[1]) and not(-1 in A[j]1[11)
and IntA=[] then
XX1:=Concatenation(["A",String(i)]);
XX1: represents a specific Whitehead automorphism (A,a) of A
XX2:=Concatenation(["A",String(j)1);
XX2: represents a specific Whitehead automorphism (B,b) of A
idx1:=0;
idx2:=0;
for t in [1..sA] do # Verify the indices of the given Whitehead
automorphisms A(i) and A(j) in A
if XX1=T[t] then
idx1l:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
od;
Add (Rels, [0,idx1,idx2,-idx1,-1dx2]);

fi;
od;
od;
od;
od;
#i#

##

##
In this section we compute the list of indices [0,idx1,idx2,-idx1,-idx2] of
relators of type (R3b) by satisfying the conditions of this relations and add
them to the list Rels. Note that O is just flag to let us know that all the
generators here of power 1. idxl: represents the index of the generator A(i).
idx2: represents the index of the generator A(j). -idxl: represents the index
of the inverse of the generator A(i). -idx2: represents the index of the
inverse of the generator A(j).
For example if [0,idx1,idx2,-idx1,-idx2]= [0, 9, 3, -9, -3], then this
means that A9*A3*A9"-1%A37-1=1.
##
for k in [1..sV] do
for 1 in [1..sV] do
for i in [1..sAldo
for j in [1..sA] do
IntA:=Intersection([A[i]J[1] , A[FI[1] 1);
if 1 in A[iJ[1] and not (-1 in A[il[1]) and A[i]l[2]=1 and k in A[jI[1]
and not (-k in A[j]1[1]) and A[jl[2]=k and not (k in A[i][1]) and
not (-k in A[i][1]) and not (1 in A[jI[1]) and not(-1 in A[j][1])
and IntA<>[] and 1 in Lk[k] then
XX1:=Concatenation(["A",String(i)]);
XX1: represents a specific Whitehead automorphism (A,a) of A
XX2:=Concatenation(["A",String(j)]1);
XX2: represents a specific Whitehead automorphism (B,b) of A
idx1:=0;

231

idx2:=0;
for t in [1..sA] do
if XX1=T[t] then

idx1l:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
od;
Add (Rels, [0,idx1,idx2,-idx1,-idx2]);
fi;
if 1 in A[i][1] and not (-1 in A[i]J[1]) and A[i][2]=1 and -k in A[j][1]
and not (k in A[jJ[1]) and A[j]1[2]=-k and not (k in A[i][1]) and
not (-k in A[i]J[1]) and not (1 in A[jI[1]) and not(-1 in A[j][1])
and IntA<>[] and 1 in Lk[k] then
XX1:=Concatenation(["A",String(i)]);

XX1: represents a specific Whitehead automorphism (A,a) of A
XX2:=Concatenation(["A",String(j)]1);

XX2:
idx1:=0;
idx2:=0;
for t in [1..sA] do

represents a specific Whitehead automorphism (B,b) of A

if XX1=T[t] then
idx1l:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
od;
Add(Rels, [0,idx1,idx2,-idx1,-idx2]);
fi;
if -1 in A[i][1] and not (1 in A[i][1]) and A[i][2]=-1 and k in A[j][1]
and not (-k in A[j]J[1]) and A[j][2]=k and not (k in A[i][1]) and
not (-k in A[i][1]) and not (1 in A[j]l[1]) and not(-1 in A[jI[1])
and IntA<>[] and 1 in Lk[k] then
XX1:=Concatenation(["A",String(i)]);
XX1: represents a specific Whitehead automorphism (A,a) of A
XX2:=Concatenation(["A",String(j)1);
XX2: represents a specific Whitehead automorphism (B,b) of A
idx1:=0;
idx2:=0;
for t in [1..sA] do
if XX1=T[t] then
idx1l:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
od;
Add(Rels, [0,idx1,idx2,-idx1,-idx2]);
fi;

if -1 in A[i1[1] and not (1 in A[i][1]) and A[i]l[2]
and not (k in A[j]1[11)

232

-1 and -k in A[j][1]

and A[j][2]=-k and not (k in A[i][1]) and

11.

not (-k in A[i][1]) and not (1 in A[j]1[1]) and not(-1 in A[j]1[11)
and IntA<>[] and 1 in Lk[k] then
XX1:=Concatenation(["A",String(i)]);

XX1: represents a specific Whitehead automorphism (A,a) of A
XX2:=Concatenation(["A",String(j)1);

XX2: represents a specific Whitehead automorphism (B,b) of A
idx1:=0;
idx2:=0;
for t in [1..sA] do

if XX1=T[t] then

idx1l:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
od;
Add (Rels, [0,idx1,idx2,-idx1,-1dx2]);
fi;
od;
od;
od;
od;
##
##

sRels:=Size(Rels);
return([Rels,sRels]);

end;

APCGRelationR4 Function

APCGRelationR4:=function(A,T,Lk,Rels)

local k,j,i,IntA,UniA,NUniA,1,K,t,UA6,R2,XX1,XX2,XX3,idx1,idx2,idx3,t1,R4a,
R4al,R4a2,R4a3,K1,R4b,R4b1,R4b2,R4b3,srels,sRels,diff15,diff17,diff19,diff21,
diff22,diff16,diff18,diff20,UAdiff1,UAdiff15,UAdiff16,UAdiff17 ,UAdiff18,UAdiff19,
sV,sA,UAdiff20,UAdiff21,UAdiff22,UA7,UA8,UA9,UA10,UA11,UA12,UA13,n;

##

##

The input of this function are:

A: the list of type(2) generators computed in "WhiteheadAutomorphismsOfSecondType",
T: list of the names of elements of A,

Lk: the list of links computed in "StarLinkDominateOfVertex".

Rels: the list of row matrices of indices of the relations (it is one

of the outputs of the "APCGRelationR3",

Note that in order to get just the row matrices of indices of relation (R4)

we need to pass an empty list [] rather than the list Rels above.

##

It computes the list of indices of the generators [0,idx1,idx2,-idx1,-idx3,-idx2]
of relators of types (R4a) and (R4b) of the group Aut(G_zeta) and adds them

to the list Rels. In addition it calculates the size of the list Rels.

233

It returns [Rels,sRels].

g s s

##

sV:=Size(Lk); #Since the size of links list equal to sV, the size of the vertex list
sA:=Size(A);

##

#i#

In this section we compute the list of indices [0,idx1,idx2,-idx1,-idx3,-idx2]

of relators of type (R4a) by satisfying the conditions of this relations and

add them to the list Rels. Note that O is just flag to let us know that all

the generators here of power 1. idxl: represents the index of the generator A(i).
idx2: represents the index of the generator A(j). -idxl: means the inverse of A(i).
-idx3: means the inverse of the generator A(n). -idx2: means the inverse of A(j).
For example if [0,idx1,idx2,-idx1,-idx3,-idx2]= [[0, 1, 13, -1, -9, -13 1],

then this means that A1*A13xA17-1%A97-1%A137-1=1.

##
for k in [1..sV] do # loop through the vertex list V
for 1 in [1..sV] do # loop through the vertex list V
for i in [1..sAldo # loop through A the Type (2) Whitehead Automorphisms

for j in [1..sA] do # loop through A the Type (2) Whitehead Automorphisms
IntA:=Intersection([A[i]1[1] , A[j1[1]1 1);
if 1 in A[i][1] and not (-1 in A[i][1]) and A[i]1[2]=1 and k in A[j][1]
and not (-k in A[jI1[1]) and A[jl[2]=k and not (k in A[i]1[1]) and
not (-k in A[i][1]) and not (1 in A[j][1]) and -1 in A[j]1[1]
and IntA=[] then
diffi15:=Difference(A[i] [11,[11);
Add(diff15,k);
for n in [1..sAldo
UA6:=SSortedList (A[n] [11);
UAdiff15:=SSortedList (diff15);
if UA6=UAdiff15 and A[n] [2]=k then
XX1:=Concatenation(["A",String(i)]);
XX1: represents a specific automorphism (B,b) of A
XX2:=Concatenation(["A",String(j)]1);
XX2: represents a specific automorphism (A,a) of A
XX3:=Concatenation(["A",String(n)1);

XX3: represents a specific automorphism (B-b+a,a) of A

idx1:=0;
idx2:=0;
idx3:=0;

for t in [1..sA] do
Verify the indices of the given Whitehead
automorphisms A(i), A(j) and A(n) in A
if XX1=T[t] then
idx1l:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
if XX3=T[n] then
idx3:=n;
fi;

234

od;
Add (Rels, [0,idx1,idx2,-idx1,-1dx3,-idx2]);
fi;
od;
fi;
if 1 in A[i][1] and not (-1 in A[i][1]) and A[i]1[2]=1 and -k in A[j][1]
and not (k in A[j1[1]) and A[j][2]=-k and not (-k in A[i][1]) and
not (k in A[i][1]) and not (1 in A[j1[1]) and -1 in A[jI[1] and
IntA=[] then
diff19:=Difference(A[i][1],[11);
Add(diff19,-k);
for n in [1..sAldo
UA10:=SSortedList (A[n] [1]);
UAdiff19:=SSortedList (diff19);
if UA10=UAdiff19 and A[n][2]=-k then
XX1:=Concatenation(["A",String(i)]);
XX1: represents a specific automorphism (B,b) of A
XX2:=Concatenation(["A",String(j)]1);
XX2: represents a specific automorphism (A,a) of A
XX3:=Concatenation(["A",String(n)]1);
XX3: represents a specific automorphism (B-b+a,a) of A
idx1:=0;
idx2:=0;
idx3:=0;
for t in [1..sA] do
Verify the indices of the given Whitehead
automorphisms A(i), A(j) and A(n) in A
if XX1=T[t] then
idx1l:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
if XX3=T[n] then
idx3:=n;
fi;
od;
Add(Rels, [0,idx1,idx2,-idx1,-idx3,-idx2]);
fi;
od;
fi;
if -1 in A[i]J[1] and not (1 in A[i]1[1]) and A[i]l[2]=-1 and -k in A[j][1]
and not (k in A[j][1]) and A[j][2]=-k and not (-k in A[i][1])
and not (k in A[i]J[1]) and not (-1 in A[j][1]) and 1 in A[j][1]
and IntA=[] then
diff16:=Difference(A[i] [1],[-11);
Add(diff16,-k);
for n in [1..sAldo
UA7:=SSortedList (A[n] [1]);
UAdiff16:=SSortedList (diff16);
if UA7=UAdiff16 and A[n][2]=-k then
XX1:=Concatenation(["A",String(i)]);

XX1: represents a specific automorphism (B,b) of A

235

XX2:=Concatenation(["A",String(j)]);
XX2: represents a specific automorphism (A,a) of A
XX3:=Concatenation(["A",String(n)]);
XX3: represents a specific automorphism (B-b+a,a) of A
idx1:=0;
idx2:=0;
idx3:=0;
for t in [1..sA] do
Verify the indices of the given Whitehead
automorphisms A(i), A(j) and A(n) in A
if XX1=T[t] then
idx1l:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
if XX3=T[n] then
idx3:=n;
fi;
od;
Add(Rels, [0,idx1,idx2,-idx1,-idx3,-1dx2]);
fi;
od;
fi;
if -1 in A[i]J[1] and not (1 in A[i1[1]) and A[i]1[2]=1 and k in A[jI[1]
and not (-k in A[j]1[1]) and A[j]l[2]=k and not (k in A[i][1])
and not (-k in A[i][1]) and not (-1 in A[j][1]) and 1 in A[j][1]
and IntA=[] then
diff20:=Difference(A[i] [1],[-11);
Add(diff20,k);
for n in [1..sAldo
UA11:=SSortedList (A[n] [1]);
UAdiff1:=SSortedList(diff20);
if UA11=UAdiff20 and A[n] [2]=k then

XX1:=Concatenation(["A",String(i)]);
XX1: represents a specific automorphism (B,b) of A
XX2:=Concatenation(["A",String(j)1);
XX2: represents a specific automorphism (A,a) of A
XX3:=Concatenation(["A",String(n)]);
XX3: represents a specific automorphism (B-b+a,a) of A
idx1:=0;
idx2:=0;
idx3:=0;
for t in [1..sA] do
Verify the indices of the given Whitehead
automorphisms A(i), A(j) and A(n) in A
if XX1=T[t] then
idx1l:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;

236

if XX3=T[n] then

idx3:=n;
fi;
od;
Add(Rels, [0,idx1,idx2,-idx1,-idx3,-1dx2]);
fi;
od;
fi;
od;
od;
od;

od;
##
##
##

In this section we compute the list of indices [0,idx1,idx2,-idx1,-idx3,-idx2]
of relators of type (R4b) by satisfying the conditions of this relations and
add them to the list Rels. Note that O is just flag to let us know that all
the generators here of power 1. idxl: represents the index of the generator A(i).
idx2: represents the index of the generator A(j). -idxl: means the inverse of A(i).
of the inverse of the generator A(i).-idx3: means the inverse of the generator A(n).
-idx2: means the inverse of A(j).
For example if [0,idx1,idx2,-idx1,-idx3,-idx2]= [0, 25, 21, -25, -13,-21]
then this means that A25%A21%A257-1%A137-1%A21°-1=1.
The procedure use in this Section is similar to the first Section except
IntA<>[] replaced by IntA<>[] and 1 in Lk[k]
##
for k in [1..sV] do
for 1 in [1..sV] do
for i in [1..sAldo
for j in [1..sA] do
IntA:=Intersection([A[i][1] , A[3I[1]1 1);
if 1 in A[i]J[1] and not (-1 in A[i]J[1]) and A[i][2]=1 and k in A[j][1]
and not (-k in A[j1[1]) and A[jl[2]=k and not (k in A[i][1])
and not (-k in A[i][1]) and not (1 in A[j]1[1]) and -1 in A[j][1]
and IntA<>[] and 1 in Lk[k] then
diff17:=Difference(A[i]l[1],[11);
Add(diff17,k);
for n in [1..sAldo
UA8:=SSortedList(A[n] [1]);
UAdiff17:=SSortedList (diff17);
if UA8=UAdiff17 and A[n] [2]=k then
XX1:=Concatenation(["A",String(i)]);
XX2:=Concatenation(["A",String(j)]);
XX3:=Concatenation(["A",String(n)]);
idx1:=0;
idx2:=0;
idx3:=0;
for t in [1..sA] do
if XX1=T[t] then
idx1l:=t;

237

fi;
if XX2=T[t] then

idx2:=t;
fi;
if XX3=T[n] then
idx3:=n;
fi;
od;
Add (Rels, [0,idx1,idx2,-idx1,-idx3,-idx2]);

fi;
od;
fi;
if 1 in A[i][1] and not (-1 in A[i]J[1]) and A[i][2]=1 and -k in A[j][1]
and not (k in A[jI[1]) and A[j][2]=-k and not (-k in A[i][1])
and not (k in A[i][1]) and not (1 in A[jI1[1]) and -1 in A[j][1]
and IntA<>[] and 1 in Lk[k] then
diff21:=Difference(A[i] [1],[1]);
Add(diff21,-k);
for n in [1..sAldo
UA12:=SSortedList (A[n] [1]);
UAdiff21:=SSortedList (diff21);
if UA12=UAdiff21 and A[n][2]=-k then
XX1:=Concatenation(["A",String(i)]);
XX2:=Concatenation(["A",String(j)]1);
XX3:=Concatenation(["A",String(n)]);
idx1:=0;
idx2:=0;
idx3:=0;
for t in [1..sA] do
if XX1=T[t] then
idx1l:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
if XX3=T[n] then
idx3:=n;
fi;
od;
Add (Rels, [0,idx1,idx2,-idx1,-idx3,-idx2]);
fi;
od;
fi;
if -1 in A[i][1] and not (1 in A[i1[1]) and A[i]l[2]=-1 and -k in A[j][1]
and not (k in A[jJ[1]) and A[j][2]=-k and not (-k in A[i][1])
and not (k in A[i]J[1]) and not (-1 in A[j][1]) and 1 in A[j][1]
and IntA<>[] and 1 in Lk[k] then
diff18:=Difference(A[i][1], [-11);
Add(diff18,-k);
for n in [1..sAldo
UA9:=SSortedList (A[n] [1]);
UAdiff18:=SSortedList(diff18);
if UA9=UAdiff18 and A[n] [2]=-k then

238

XX1:=Concatenation(["A",String(i)]);
XX2:=Concatenation(["A",String(j)]1);
XX3:=Concatenation(["A",String(n)]);
idx1:=0;
idx2:=0;
idx3:=0;
for t in [1..sA] do
if XX1=T[t] then
idx1l:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
if XX3=T[n] then
idx3:=n;
fi;
od;
Add (Rels, [0,idx1,idx2,-idx1,-idx3,-idx2]);
fi;
od;
fi;
if -1 in A[i][1] and not (1 in A[i][1]) and A[i][2]=-1 and k in A[j][1]
and not (~k in A[j1[1]) and A[jl[2]=k and not (k in A[i][1])
and not (-k in A[i][1]) and not (-1 in A[jI[1]) and 1 in A[j][1]
and IntA<>[] and 1 in Lk[k] then
diff22:=Difference(A[i][11,[-11);
Add(diff22,k);
for n in [1..sAldo
UA13:=SSortedList (A[n] [1]);
UAdiff22:=SSortedList (diff22);
if UA13=UAdiff22 and A[n] [2]=k then
XX1:=Concatenation(["A",String(i)]);
XX2:=Concatenation(["A",String(j)]);
XX3:=Concatenation(["A",String(n)]);
idx1:=0;
idx2:=0;
idx3:=0;
for t in [1..sA] do
if XX1=T[t] then
idx1l:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
if XX3=T[n] then
idx3:= n;
fi;
od;
Add (Rels, [0,idx1,idx2,-idx1,-idx3,-idx2]);
fi;
od;
fi;
od;

239

12.

##
sRels:=Size(Rels);
return([Rels,sRels]);

end;

APCGRelationR5 Function

APCGRelationR5:=function(A,St,Lk,Rels,T)

local k,j,i,m,UA,UAiff,UAiff2,IntA,UniA,NUniA,1,K,t,UAL,XX1,XX2,XX3,idx1,1idx2,
sV,sA,idx3,idx4,t1,R5,srels,sRels,diff,diff1,diff2,UAdiff ,UAdiff1,UAdiff2,1k,Y2;
##

#i#

A: the list of type(2) generators computed in "WhiteheadAutomorphismsOfSecondType",
St: the list of stars computed in "StarLinkDominateOfVertex",

Lk: the list of links computed in "StarLinkDominateOfVertex",

Rels: the list of row matrices of indices of the relations (it is one

of the outputs of the "RelationsOfGraphAutomorphisms",

Note that in order to get just the row matrices of indices of relation (R3)
we need to pass an empty list [] rather than the list Rels above.

T: list of the names of elements of A.

#

It computes the list of indices of the generators [2,idx1,idx2,idx4,-idx3,j,k,]j]
of relators of type (R5) by satisfying the conditions of this relations

and add them to the list Rels. Note that the first entry "2" in the

list of indices above means that the idx4 refers to the location of A’s

(which are start at sA+1l and end at sA+sGens2) and this type of generators
are automorphisms of graph that, just swap the vertex "b" (j in this code)
to the vertex "a" (k in this code) and vice versa. idxl: represents the

index of the generator A(l). idx2: represents the index of the generator

A(i). -idx3: represents the the inverse of the generator A(m). j and k

refer to the vertex or its inverse. In addition it calculates the sizes

of the list Rels.

For example if [2,idx1,idx2,-idx3,idx4,j,k,jl= [[2, 25, 1, 31, -3, 3, 1,3],
then this means that A25%A1%A31%A37-1=1.

##

It returns [Rels,sRels].

##
sV:=Size(St); #Since the size of stars list equal to sV, the size of the vertex list
sA:=Size(A);
1k:=[1;
for i in [1..sV] do
Y2:=Difference(Lk[i], [0]);
Add (1k,Y2);
od;

240

for k in [1..sV] do
for j in [1..sV] do
for i in [1..sAldo

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
#i#

In this section we compute first part of the list of indices of the
generators which is [2,idx1,idx2,idx4,-idx3,j,k,j] of the relators of

nan

type (R5) when the multiplier "a" (k in this code) of the automorphism (A,a)

is the original vertex "a" (not the inverse of "a"), and the multiplier "b"

(j in this code) of the automorphism (A-a+a”-1,b) is the original vertex "b"

and k not equal to j with k7j, by satisfying the conditions of this relatioms.

2: means that idx4 refers to the location of A’s.

idx1: represents the index "1" of a specific generator A(1l) of A.

idx2: represents the index "i" of a specific generator A(i) of A.

-idx3: represents the inverse of the specific generator A(m) of A which
corresponds to the index idx3.

idx4: refers to the index of A’s which starts at sA+1 and end at sA+sGens2

For example if [2,idx1,idx2,idx4,-idx3,j,k,jl= [2, 25, 1, 31, -3, 3, 1, 3]

then this means that A25%A1%¥A31%A37-1=1.

k in A[i][1] and not (-k in A[i][1]) and j in A[i]1[1] and not (-j in A[i][1])

and j<>k and A[i][2]=k and IsSubset(St[k],lk[j])=true and

IsSubset (St[j],1lk[k])=true then

diffl:=Difference(A[i][1], [k1);

Add(diff1,-k);

diff2:=Difference(A[i][1],[j]1);

Add(diff2,-j);

for 1 in [1..sAldo

UA:=SSortedList (A[1]1[11);
UAiff:=SSortedList(diff1);
for m in [1..sAldo
UA1:=SSortedList (A[m] [1]);
UAiff2:=SSortedList (diff2);
if UA=UAiff and A[1][2]=j and UA1=UAiff2 and A[m] [2]=k then

idx4:=sA+j;
XX1:=Concatenation(["A",String(1)1);
XX1: represents a specific automorphism (A-at+a”-1,b) of A
XX2:=Concatenation(["A",String(i)1);
XX2: represents a specific automorphism (A,a) of A
XX3:=Concatenation(["A",String(m)]);

XX3: represents a specific automorphism (A-b+b~-1,a) of A

idx1:=0;
idx2:=0;
idx3:=0;

for t in [1..sA] do
Verify the indices of the given Whitehead
automorphisms A(1), A(i) and A(m) in A
if XX1=T[t] then

idx1l:=t;

fi;

if XX2=T[t] then
idx2:=t;

fi;

241

if XX3=T[t] then
idx3:=t;
fi;
od;
Add(Rels, [2,idx1,idx2,idx4,-1dx3,j,k,j1);
2: means that the idx4 refers to the location of A’s
which starts at sA+1 and end at sA+sGens2,
j: refers to the vertex or its inverse
fi;
od;
od;
fi;
##

In this section we compute second part of the list of indices of the

generators which is [2,idx1,idx2,idx4,-idx3,j,k,j] of the relators of

type (R5) when the multiplier "a" (k in this code) of the automorphism (4,a)
is the original vertex "a", and the multiplier "b" (j in this code) of the
automorphism (A-at+a”-1,b) is the inverse of the vertex "b" (-j in this code)
and k not equal to -j with k™ -j, by satisfying the conditions of this

relations.

The procedure use in this Section is similar to the first Section above.

if k in A[il1[1] and not (-k in A[i1[1]) and -j in A[i]l[1] and not (j in A[i]1[11)
and -j<>k and A[i] [2]=k and IsSubset(St[k],1k[j])=true and
IsSubset (St[j],1k[k])=true then
diffl:=Difference(A[i][1], [k1);
Add(diff1,-k);
diff2:=Difference(A[i] [1], [-j1);
Add(diff2,j);
for 1 in [1..sAldo
UA:=SSortedList (A[1][1]);
UAiff:=SSortedList(diffl);
for m in [1..sAldo
UAl:=SSortedList(A[m] [1]);
UAiff2:=SSortedList(diff2);
if UA<UAiff and A[1][2]=-j and UA1=UAiff2 and A[m] [2]=k then
idx4:=sA+j;
XX1:=Concatenation(["A",String(1)]);
XX2:=Concatenation(["A",String(i)]);
XX3:=Concatenation(["A",String(m)]);
idx1:=0;
idx2:=0;
idx3:=0;
for t in [1..sA] do
if XX1=T[t] then

idx1l:=t;

fi;

if XX2=T[t] then
idx2:=t;

242

fi;
if XX3=T[t] then

idx3:=t;
fi;
od;
Add (Rels, [2,idx1,idx2,idx4,-idx3,-j,k,-j1);
fi;
od;
od;

fi;
##
##
##

In this section we compute third part of the list of indices of the
generators which is [2,idx1,idx2,idx4,-idx3,j,k,j] of the relators of
type (R5) when the multiplier "a" (k in this code) of the automorphism (4,a)
is the inverse of the vertex "a" (-k in this code), and the multiplier "b"
(j in this code) of the automorphism (A-a+a”-1,b) is the original vertex "b"
and -k not equal to j with -k ~ j, by satisfying the conditions of this
relations.
The procedure use in this Section is similar to the first Section above.
##
if -k in A[i][1] and not (k in A[i][1]) and j in A[i]1[1] and not (-j in A[i][1])
and j<>-k and A[i][2]=-k and IsSubset(St[k],1k[jl)=true and
IsSubset (St[j],lk[k])=true then
diff1:=Difference(A[i][1], [-k]1);
Add(diff1,k);
diff2:=Difference(A[i] [1],[j1);
Add(diff2,-j);
for 1 in [1..sAldo
UA:=SSortedList (A[1][11);
UAiff:=SSortedList(diff1l);
for m in [1..sAldo
UA1l:=SSortedList (A[m] [1]);
UAiff2:=SSortedList(diff2);
if UA=UAiff and A[1][2]=j and UA1=UAiff2 and A[m] [2]=-k then
idx4:=sA+j;
XX1:=Concatenation(["A",String(1)]);
XX2:=Concatenation(["A",String(i)]);
XX3:=Concatenation(["A",String(m)]);
idx1:=0;
idx2:=0;
idx3:=0;
for t in [1..sA] do
if XX1=T[t] then
idx1:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;

if XX3=T[t] then

243

idx3:=t;

fi;
od;
Add(Rels, [2,idx1,idx2,idx4,-1dx3,],-k,j1);
fi;
od;
od;

fi;
##
##
##
In this section we compute third part of the list of indices of the

##
##
##
##
##
##
##
##
if

generators which is [2,idx1,idx2,idx4,-idx3,j,k,j] of the relators of
type (R5) when the multiplier "a" (k in this code) of the automorphism
(A,a) is the inverse of the vertex "a" (-k in this code), and the
multiplier "b" (j in this code) of the automorphism (A-at+a”-1,b) is
the inverse of the vertex "b" (-j in this code) and -k not equal to

-j with -k 7 -j, by satisfying the conditions of this relations.

The procedure use in this Section is similar to the first Section above.

-k in A[i][1] and not (k in A[il[1]) and -j in A[i][1] and not (j in A[il[11)
and -j<>-k and A[i] [2]=-k and IsSubset(St[k],1lk[j]l)=true and
IsSubset (St[j],1lk[k])=true then
diffl:=Difference(A[i][1], [-k1);

Add(diff1,k);
diff2:=Difference(A[i][1],[-j1);
Add(diff2,3);
for 1 in [1..sAldo
UA:=SSortedList (A[1][1]1);
UAiff:=SSortedList(diffl);
for m in [1..sAldo
UA1l:=SSortedList (A[m] [1]);
UAiff2:=SSortedList (diff2);
if UA=UAiff and A[1][2]=-j and UA1=UAiff2 and A[m][2]=-k then
idx4:=sA+j;
XX1:=Concatenation(["A",String(1)1);
XX2:=Concatenation(["A",String(i)]);
XX3:=Concatenation(["A",String(m)]);
idx1:=0;
idx2:=0;
idx3:=0;
for t in [1..sA] do
if XX1=T[t] then
idx1l:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
if XX3=T[t] then
idx3:=t;
fi;

244

13.

od;
Add (Rels, [2,idx1,idx2,idx4,-1dx3,-j,-k,-j1);

od;
od;

fi;

##

##
od;
od;
od;
sRels:=Size(Rels);
return([Rels,sRels]);

end;

APCGRelationR8 Function

APCGRelationR8:=function(V,A,T,Lk,Rels)

local k,j,i,IntA,UniA,NUniA,1,K,t,UA1,UA2,UA3,UA4,UA5,UA6,R2,XX1,XX2,XX3,1idx1,
idx2,idx3,t1,R8,NR8,ty,invLkl,srels,sRels,diff1,diff2,diff3,diff4,diff5,diff6,
diff7,diff8,diff9,diff10,UAdiff1,UAdiff2,UAdiff3,UAdiff4,UAdiff5,UAdiff6,UAdiff7,
sV,sA,UAdiff8,UAdiff9,UAdiff10,UA7,UA8,UA13,n,invV,L,invLk,Unilk;

#i#

##

The input of this function are:

V: the list of vertices of the graph zeta,

A: the list of type(2) generators computed in "WhiteheadAutomorphismsOfSecondType",
T: list of the names of elements of A,

Lk: the list of links computed in "StarLinkDominateOfVertex".

Rels: the list of row matrices of indices of the relations (it is one

of the outputs of the "APCGRelationR4",

Note that in order to get just the row matrices of indices of relation (R8)
we need to pass an empty list [] rather than the list Rels above.

##

It computes the list of indices of the generators [0,idx1,-idx3,-idx2],

[0,idx1,-idx2], and [0,idx1] of relators of type (R8) of the group

Aut(G_zeta) by satisfying the conditions of this relations and add them

to the list Rels. In addition it calculates the size of the list Rels.

It returns [Rels,sRels].

##

sV:=Size(V);

sA:=Size(A);

invV:=-V; # invV is the inverses list of the vertex list V

L:=Concatenation(V,invV); # L is the union of the lists V and invV

for k in [1..sV] do # loop through the vertex list V
#i#

245

B s s s s s s T s s s s s s s

##

In this part we compute the list of indices When Lk(k) is not empty list.

##

if Lk[k]<>[0] then

for i in [1..sAldo # loop throu A the Type (2) Whitehead Automorphisms
if k in A[i][1] and not (-k in A[i][1]) and A[i] [2]=k then

diff3

invLk:
Unilk:
diff5:
diff4:
diffé6:

for 1

:=Difference(L, [-k]);

=-Lk[k];

=Concatenation(Lk[k],invLk) ;

=Difference(L,A[i] [1]);

=[1;

=[1;

in Lk[k] do # In this loop if the vertex 1 and its inverse -1 in the
same time are belong to the list diff3 then we delete
them, because they will cancel each other.
We do the same if 1 and -1 belong to the list diffb

if 1 in diff3 and -1 in diff3 then

diff4:=Difference(diff3,[-1,1]);
diff3:=diff4;

fi;

if 1 in diff5 and -1 in diff5 then

diff6:=Difference(diff5,[-1,1]);
diff5:=diff6;

fi;

od;

UAdiff4:=SSortedList(diff4);
UAdiff5:=SSortedList (diff5);
UAdiff6:=SSortedList (diff6);

K:=[k];

ty:=0;

for j in [1..sAldo # loop through A, the Type (2) Whitehead Automorphisms
for n in [1..sAldo # loop through A, the Type (2) Whitehead Automorphisms

UA2:=SSortedList (A[j][1]);
UA3:=SSortedList (A[n] [11);

B L S S S S S s S S s S S S S S S S
##

In this section we compute first part of the list of indices of the
generators which is [0,idx1,-idx3,-idx2] of the relators of type

(R8) by satisfying the conditions of this relations. Note that 0

is just flag to let us know that all the generators here of power 1.
idx1l: represents the index of a specific generator A(i) of A.

-idx3: represents the index of the inverse of a specific generator
A(n) of A.

-idx2: represents the index of the inverse of a specific generator
A(j) of A.

For example if [0,idx1,-idx3,-idx2]= [0, 1, -4, -5], then this

means that A1*A47-1%A5"-1=1.

##

if UAdiff4=UA2 and A[j]l[2]=k and UAdiff6=UA3 and A[n][2]=-k then

XX1:=Concatenation(["A",String(i)]1);

XX1: represents a specific automorphism (A,a) of A

246

XX2:=Concatenation(["A",String(j)]1);
XX2: represents a specific automorphism (L-A, a"-1) of A
XX3:=Concatenation(["A",String(n)]1);
XX3: represents a specific automorphism (L-a”-1, a) of A
idx1:=0;
idx2:=0;
idx3:=0;
for t in [1..sA] do # Verify the indices of the given Whitehead
automorphisms A(i), A(j) and A(n) in A
if XX1=T[t] then

idx1l:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
if XX3=T[n] then
idx3:=n;
fi;
od;
NR8:=[0,idx1,-idx3,-idx2];
ty:=1;
fi;
##
##
##
In this section we compute second part of the list of indices of
the generators which is [0,idx1,-idx2] of the relators of type
(R8) by satisfying the conditions of this relations. Note that O
is just flag to let us know that all the generators here of
power 1.
idx1: represents the index of a specific generator A(i) of A.
-idx2: represents the index of the inverse of a specific
generator A(n) of A.
For example if [0,idx1,-idx2]= [0, 7, -14], then this means
that A7*A147-1=1.
Note that we have this case, because some time L-A-[1,-1]= [k]
which is just the identity or L-a"-1-[1,-1]= [k] which is just
the identity.
##
if UAdiff4=K and A[j][2]=k and UAdiff6=UA3 and A[n] [2]=-k then

XX1:=Concatenation(["A",String(i)]);
XX1: represents a specific automorphism (A,a) of A
XX2:=Concatenation(["A",String(n)]);
XX2: represents a specific automorphism (L-a"-1, a) of A
idx1:=0;
idx2:=0;
for t in [1..sA] do

if XX1=T[t] then

idx1l:=t;
fi;

if XX2=T[n] then

247

idx2:=n;

fi;
od;
NR8:=[0,idx1,-idx2];
ty:=1;

fi;

if UAdiff4=K and A[j]1[2]=k and UAdiff6=[] and UAdiff5= UA3
and A[n][2]=-k then
XX1:=Concatenation(["A",String(i)]);
XX2:=Concatenation(["A",String(n)]);
idx1:=0;
idx2:=0;
for t in [1..sA] do

if XX1=T[t] then

idx1l:=t;
fi;
if XX2=T[n] then
idx2:=n;
fi;
od;
NR8:=[0,idx1,-idx2];
ty:=1;

fi;
if UAdiff4=UA2 and A[j]1[2]=k and UAdiff6=-K and A[n][2]=-k then
XX1:=Concatenation(["A",String(i)]);
XX2:=Concatenation(["A",String(j)]1);
idx1:=0;
idx2:=0;
for t in [1..sA] do
if XX1=T[t] then

idx1l:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
od;
NR8:=[0,idx1,-idx2];
ty:=1;
fi;
#i
##
##

In this section we compute third part of the list of indices of
the generators which is [0,idx1] of the relators of type (R8)

by satisfying the conditions of this relations. Note that O is
just flag to let us know that all the generators here of power 1.
idx1: represents the index of a specific generator A(i) of A.

Note that we have this case, because some time

L-A-[1,-1]= L-a"-1-[1,-1]= [k] which is just the identity.

##

if UAdiff4=K and A[jl[2]=k and UAdiff6=-K and A[n] [2]=-k then

248

XX1:=Concatenation(["A",String(i)]);
XX1: represents a specific Whitehead automorphism (A,a) of
idx1:=0;
for t in [1..sA] do
if XX1=T[t] then

idx1l:=t;
fi;
od;
NR8:=[0,idx1];
ty:=1;
fi;
#i#
##

od;
od;
fi;
if -k in A[i][1] and not (k in A[i][1]) and A[i] [2]=-k then
diff7:=Difference(L, [k]);
invLkl:=-Lk[k];
Unilk:=Concatenation(Lk[k],invLk1);
diff9:=Difference(L,A[i] [1]);
diff8:=[];
diff10:=[];
for 1 in Lk[k] do
if 1 in diff7 and -1 in diff7 then
diff8:=Difference(diff7,[-1,1]);
diff7:=diff8;
fi;
if 1 in diff9 and -1 in diff9 then
diff10:=Difference(diff9,[-1,11);
diff9:=diff10;
fi;
od;
K:=[-k];
for j in [1..sAldo
for n in [1..sAldo
UA4:=SSortedList(A[j]1[1]);
UAdiff8:=SSortedList (diff8);
UA5:=SSortedList (A[n][11);
UAdiff9:=SSortedList (diff9);
UAdiff10:=SSortedList(diff10);

##
This section is the same first section above, just we have
replace the multiplier "a" (k) by it inverse "a"-1" (-k).
##
if UAdiff8=UA4 and UAdiff10=UA5 then
XX1:=Concatenation(["A",String(i)]);
XX2:=Concatenation(["A",String(j)]1);
XX3:=Concatenation(["A",String(n)]1);
idx1:=0;
idx2:=0;

249

idx3:=0;
for t in [1..sA] do
if XX1=T[t] then

idx1l:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
if XX3=T[n] then
idx3:=n;
fi;
od;
NR8:=[0,idx1,-idx3,-idx2];
ty:=1;

fi;

H#BHBH R R R
#i#
This section is the same second section above, just we have
replace the multiplier "a" (k in this code) by it inverse
"a"-1" (-k in this code).
#
if UAdiff8=K and A[j]l[2]=-k and UAdiff10=UA5 and A[n][2]=k then
XX1:=Concatenation(["A",String(i)]);
XX2:=Concatenation(["A",String(n)]);
idx1:=0;
idx2:=0;
for t in [1..sA] do
if XX1=T[t] then

idx1:=t;
fi;
if XX2=T[n] then
idx2:=n;
fi;
od;
NR8:=[0,idx1,-idx2];
ty:=1;

fi;
if UAdiff8=K and A[j][2]=-k and UAdiff10=[] and UAdiff9=UA5
and A[n][2]=k then
XX1:=Concatenation(["A",String(i)]);
XX2:=Concatenation(["A",String(n)]);
idx1:=0;
idx2:=0;
for t in [1..sA] do
if XX1=T[t] then
idx1l:=t;
fi;
if XX2=T[n] then
idx2:=n;
fi;

250

fi;
##

od;

od;
NR8:=[0,idx1,-idx2];
ty:=1;
fi;
if UAdiff8=UA4 and A[j][2]=-k and UAdiff10=-K and A[n][2]=k then
XX1:=Concatenation(["A",String(i)]);
XX2:=Concatenation(["A",String(j)]1);
idx1:=0;
idx2:=0;
for t in [1..sA] do
if XX1=T[t] then

idx1l:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
od;
NR8:=[0,idx1,-idx2];
ty:=1;
fi;
##
##
##

This section is the same third section above, just we have

replace the multiplier "a" (k) by it inverse "a"-1" (-k).

##

if UAdiff8=K and A[j][2]=-k and UAdiff10=-K and A[n][2]=k then

XX1:=Concatenation(["A",String(i)]);
idx1:=0;
idx2:=0;
for t in [1..sA] do
if XX1=T[t] then

idx1l:=t;
fi;
od;
NR8:=[0,idx1];
ty:=1;
fi;
od;
od;
fi;
if ty=1 then
Add (Rels,NR8);
NR8:=[1;
R8:=[];
ty:=0;

fi;

251

HIHHHHH AR
##
HIHHHF R R R
##
In this part we compute the list of indices When Lk(k) is empty list which
is the same first part when Lk(k) is not empty list with some small changes.
##
if Lk[k]=[0] then
for i in [1..sAldo
if k in A[i]J[1] and not (-k in A[i][1]) and A[i] [2]=k then
diff3:=Difference(L, [-k]);
diff5:=Difference(L,A[i][1]);
UAdiff4:=SSortedList(diff3);
UAdiff6:=SSortedList (diff5);
K:=[k];
ty:=0;
for j in [1..sAldo
for n in [1..sAldo
UA2:=SSortedList (A[j][1]);
UA3:=SSortedList (A[n] [1]);
if UAdiff4=UA2 and A[jl[2]=k and UAdiff6=UA3
and A[n][2]=-k then
XX1:=Concatenation(["A",String(i)]);
XX2:=Concatenation(["A",String(j)]);
XX3:=Concatenation(["A",String(n)]);
idx1:=0;
idx2:=0;
idx3:=0;
for t in [1..sA] do
if XX1=T[t] then

idx1:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
if XX3=T[n] then
idx3:=n;
fi;
od;
NR8:=[0,idx1,-idx3,-idx2];
ty:=1;

fi;
if UAdiff4=K and A[j]l[2]=k and UAdiff6=UA3 and A[n] [2]=-k then
XX1:=Concatenation(["A",String(i)]);
XX2:=Concatenation(["A",String(n)]);
idx1:=0;
idx2:=0;
for t in [1..sA] do
if XX1=T[t] then
idx1:=t;
fi;
if XX2=T[n] then

idx2:=n;

252

fi;

od;
NR8:=[0,idx1,-idx2];
ty:=1;

fi;
if UAdiff4=UA2 and A[j][2]=k and UAdiff6=-K and A[n][2]=-k then
XX1:=Concatenation(["A",String(i)]);
XX2:=Concatenation(["A",String(j)]1);
idx1:=0;
idx2:=0;
for t in [1..sA] do
if XX1=T[t] then

idx1l:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
od;
NR8:=[0,idx1,-idx2];
ty:=1;

fi;
if UAdiff4=K and A[j][2]=k and UAdiff6=-K and A[n][2]=-k then
XX1:=Concatenation(["A",String(i)]);
idx1:=0;
idx2:=0;
for t in [1..sA] do
if XX1=T[t] then

idx1l:=t;
fi;
od;
NR8:=[0,idx1];
ty:=1;

fi;
od;
od;
fi;
if -k in A[i][1] and not (k in A[i][1]) and A[i] [2]=-k then

diff7:=Difference(L, [k]);

diff9:=Difference(L,A[i][1]);

K:=[-k];

for j in [1..sAldo

for n in [1..sAldo
UA4:=SSortedList (A[j]1[11);
UAQiff8:=SSortedList (diff7);
UA5:=SSortedList (A[n] [1]);
UAdiff10:=SSortedList(diff9);
if UAdiff8=UA4 and UAdiff10=UA5 and A[j][2]=-k

and A[n][2]=k then
XX1:=Concatenation(["A",String(i)]);
XX2:=Concatenation(["A",String(j)]1);
XX3:=Concatenation(["A",String(n)]);
idx1:=0;
idx2:=0;

253

idx3:=0;
for t in [1..sA] do
if XX1=T[t] then

idx1l:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
if XX3=T[n] then
idx3:=n;
fi;
od;
NR8:=[0,idx1,-idx3,-idx2];
ty:=1;

fi;
if UAdiff8=K and A[j][2]=-k and UAdiff10=UA5 and A[n][2]=k then
XX1:=Concatenation(["A",String(i)]);
XX2:=Concatenation(["A",String(n)]);
idx1:=0;
idx2:=0;
for t in [1..sA] do
if XX1=T[t] then

idx1l:=t;
fi;
if XX2=T[n] then
idx2:=n;
fi;
od;
NR8:=[0,idx1,-idx2];
ty:=1;

fi;
if UAdiff8=UA4 and A[j][2]=-k and UAdiff10=-K and A[n] [2]=k then
XX1:=Concatenation(["A",String(i)]);
XX2:=Concatenation(["A",String(j)]1);
idx1:=0;
idx2:=0;
for t in [1..sA] do
if XX1=T[t] then

idx1l:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
od;
NR8:=[0,idx1,-idx2];
ty:=1;

fi;
if UAdiff8=K and A[j][2]=-k and UAdiff10=-K and A[n][2]=k then
XX1:=Concatenation(["A",String(i)]);
idx1:=0;
idx2:=0;
for t in [1..sA] do
if XX1=T[t] then

254

idx1l:=t;

fi;
od;
NR8:=[0,idx1];
ty:=1;
fi;
od;
od;
fi;
if ty=1 then
Add (Rels,NR8);
R8:=[];
NR8:=[];
ty:=0;
fi;
od;
fi;
#i#
IR R
#i#

od;
sRels:=Size(Rels);
return([Rels,sRels]);

end;

APCGRelationR9 Function

APCGRelationR9:=function(V,A,T,Lk,Rels)

local k,j,i,zx,IntA,UniA,NUniA,1,K,t,UA13,UA14,UA16,UA23,UA24,UA25,UA26,
R2,XX1,XX2,XX3,idx1,idx2,idx3,t1,R9,R9a,R9b,R9¢c,invLkl,srels,sRels,diff13,
diff14,diff15,diff16,diff23,diff24,diff25,dif£26,UAdiff16,UAdif£24,UAdif£23,
sV,sA,UAdif£25,UAdiff13,UAdif£14,UAdif£26,n,invV,L, invLk2, invLk3,UniLk;

##

##

The input of this function are:

V: the list of vertices of the graph zeta,

A: the list of type(2) generators computed in "WhiteheadAutomorphismsOfSecondType",
T: list of the names of elements of A,

Lk: the list of links computed in "StarLinkDominateOfVertex".

Rels: the list of row matrices of indices of the relations (it is one

of the outputs of the "APCGRelationR4",

Note that in order to get just the row matrices of indices of relation (R9)
we need to pass an empty list [] rather than the list Rels above.

##

It computes the list of indices of the generators [0,idx1,idx2,-idx1,-idx2]

of relators of type (R9) of the group Aut(G_zeta) by satisfying the conditions
of this relations and add them to the list Rels. In addition it calculates

the size of the list Rels.

It returns [Rels,sRels].

255

##

sV:=Size(V);
sh:=Size(A);

invV:=-V; # invV is the inverses list of the vertex list V
L:=Concatenation(V,invV); # L is the union of the lists V and invV
for k in [1..sV] do # loop through the vertex list V
for j in [1..sV] do # loop through the vertex list V
##
##

In this part we compute the list of indices When Lk(k) is not empty list.
##
if Lk[j1<>[0] then

for i in [1..sAldo # loop through A the Type (2) Whitehead Automorphisms

In this section we compute first part of the list of indices of the

generators which is [0,idx1,idx2,-idx1,-idx2] of the relators of type

(R9) when the multiplier "a" (k in this code) of the automorphism
(A,a) is the original vertex "a" (not the inverse of the vertex "a")
and zx=L(j) as defined below by satisfying the conditions of this
relations.

0: is flag to let us know that all the generators here of power 1.
idx1: represents the index "i" of a specific generator A(i) of A.

"n" of a specific generator A(n) of A.

i1dx2: represents the index
-idx1l: represents the inverse of the specific generator A(i) of

A which corresponds to the index idxi1.

-idx2: represents the inverse of the specific generator A(n) of

A which corresponds to the index idx2.

For example if [0,idx1,idx2,-idx1,-idx2]= [0, 9, 5, -9, -5] then
this means that A9*A5*A97-1xA5"-1=1.

zx:=L[j]; # Here zx represents the vertices "b" (R9) of the graph zeta
if k in A[i]J[1] and not (-k in A[i][1]) and A[i][2]=k and not
(zx in A[i]1[1]1) and not (-zx in A[i]l[1]) then
diff15:=Difference(L, [-zx]);
invLk2:=-Lk[j];
Unilk:=Concatenation(Lk[j],invLk2) ;
diff16:=[];
for 1 in Lk[j] do
In this loop if the vertex 1 and its inverse -1 in the
same time are belong to the list diffl5 then we delete
them, because they will cancel each other
if 1 in diff15 and -1 in diff15 then
diff16:=Difference(diff15,[-1,1]);
diff15:=diff16;
fi;
od;

for n in [1..sAldo # loop through A the Type (2) Whitehead Automorphisms

UA16:=SSortedList (A[n] [1]);
UAdiff16:=SSortedList(diff16);
if A[n][2]=zx then
if UA16=UAdiff16 and diff16<>[zx] then

256

XX1:=Concatenation(["A",String(i)]);
XX1: represents a specific automorphism (A,a) of A
XX2:=Concatenation(["A",String(n)]);
XX2: represents a specific automorphism (L-b~-1, b) of A
idx1:=0;
idx2:=0;
for t in [1..sA] do
Verify the indices of the given Whitehead
automorphisms A(i) and A(n) in A
if XX1=T[t] then

idx1l:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
od;
Add(Rels, [0,idx1,idx2,-idx1,-idx2]);
fi;
fi;
od;
fi;
##
##
##
In this section we compute second part of the list of indices of the

##
##
##
##
##
##
##
##
ZX
if

generators which is [0,idx1,idx2,-idx1,-idx2] of the relators of type
(R9) when the multiplier "a" (k in this code) of the automorphism
(A,a) is the original vertex "a" (not the inverse of the vertex "a")
and zx= -L(j) as

defined below by satisfying the conditions of this relatioms.

The procedure use in this Section is similar to the first Section

above.
:=-L[j]; # Here zx represents the inverses of the vertices b above
k in A[i1[1] and not (-k in A[i][1]) and A[i]l[2]=k and not

(zx in A[i]1[1]) and not (-zx in A[i][1]) then
diff23:=Difference(L, [-zx]);
invLk2:=-Lk[j];
Unilk:=Concatenation(Lk[j],invLk2);
diff24:=[];
for 1 in Lk[j] do
if 1 in diff23 and -1 in diff23 then
diff24:=Difference(diff23, [-1,1]);
diff23:=diff24;
fi;
od;
for n in [1..sAldo
UA24:=SSortedList (A[n] [1]);
UAdiff24:=SSortedList (diff24);
if A[n][2]=zx then
if UA24=UAdiff24 and diff24<>[zx] then

257

XX1:=Concatenation(["A",String(i)]);

XX1: represents a specific automorphism (A,a) of A

XX2:=Concatenation(["A",String(n)]);

XX2: represents a specific automorphism (L-b~-1, b) of A

idx1:=0;
idx2:=0;
for t in [1..sA] do

Verify the indices of the given Whitehead

automorphisms A(i) and A(n) in A
if XX1=T[t] then

idx1l:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
od;
Add (Rels, [0,idx1,idx2,-idx1,-idx2]);
fi;
fi;
od;

fi;
##
##
##
In this section we compute third part of the list of indices of the
generators which is [0,idx1,idx2,-idx1,-idx2] of the relators of type
(R9) when the multiplier "a" (k in this code) of the automorphism
(A,a) is the inverse of the vertex "a" and zx= L(j) as defined below
by satisfying the conditions of this relations.
The procedure use in this Section is similar to the first Section above.
##
zx:=L[j]; # Here zx represents the vertices "b" (R9) of the graph zeta
if -k in A[i][1] and not (k in A[il[1]) and A[i]l[2]=-k and not

(zx in A[i]1[1]) and not (-zx in A[i][1]) then
diff13:=Difference(L, [-zx]);
invLk3:=-Lk[j];
Unilk:=Concatenation(Lk[j],invLk3);
diff14:=[1;
for 1 in Lk[j] do
if 1 in diff13 and -1 in diff13 then
diff14:=Difference(diff13,[-1,11);
diff13:=diff14;
fi;
od;
for n in [1..sAldo
if A[n][2]=2zx then
UA14:=SSortedList (A[n] [1]);
UAdiff14:=SSortedList(diff14);
if UA14=UAdiff14 and diff14<>[zx] then

XX1:=Concatenation(["A",String(i)]1);
XX2:=Concatenation(["A",String(n)1);

258

idx1:=0;
idx2:=0;
for t in [1..sA] do
if XX1=T[t] then

idx1l:=t;

fi;

if XX2=T[t] then
idx2:=t;

fi;

od;
Add (Rels, [0,idx1,idx2,-idx1,-idx2]);

B G S S S L S S S S e
##
In this section we compute third part of the list of indices of the
generators which is [0,idx1,idx2,-idx1,-idx2] of the relators of type
(R9) when the multiplier "a" (k in this code) of the automorphism
(A,a) is the inverse of the vertex "a" and zx= -L(j) as defined
below by satisfying the conditions of this relatioms.
The procedure use in this Section is similar to the first Section above.
##
zx:=-L[j]; # Here zx represents the inverses of the vertices b above
if -k in A[i][1] and not (k in A[i]l[1]) and A[i][2]=-k and not
(zx in A[i1[1]) and not (-zx in A[il[1]) then
diff25:=Difference(L, [-zx]);
invLk3:=-Lk[j];
UniLk:=Concatenation(Lk[j],invLk3);
diff26:=[];
for 1 in Lk[j] do
if 1 in diff25 and -1 in diff25 then
diff26:=Difference(diff25, [-1,1]1);
diff25:=diff26;
fi;
od;
for n in [1..sAldo
if A[n][2]=zx then
UA26:=SSortedList (A[n] [1]);
UAdiff26:=SSortedList (diff26);
if UA26=UAdiff26 and diff26<>[zx] then

XX1:=Concatenation(["A",String(i)]);
XX2:=Concatenation(["A",String(n)]);
idx1:=0;
idx2:=0;
for t in [1..sA] do
if XX1=T[t] then
idx1:=t;

259

fi;

if XX2=T[t] then

idx2:=t;
fi;
od;
Add (Rels, [0,idx1,idx2,-idx1,-idx2]);
£i;
£i;
od;
fi;
od;

fi;
##
##
End the first part when Lk(j) is not empty list
##

L s s s s s s s s s s s s s L s s s s s T s
##

##
In this part we compute the list of indices When Lk(j) is empty list
which isthe same procedure of first part when Lk(j) is not empty list
with some changes.
##
if Lk[j1=[0] then
for i in [1..sAldo
zx:=L[j];
if k in A[i]J[1] and not (-k in A[i][1]) and A[i] [2]=k and not
(zx in A[i][1]) and not (-zx in A[i][1]) then
diff16:=Difference(L, [-zx]);
for n in [1..sAldo
UA16:=SSortedList (A[n] [1]);
UAdiff16:=SSortedList (diff16);
if A[n][2]=zx then
if UA16=UAdiff16 and diff16<>[zx] then
XX1:=Concatenation(["A",String(i)1);
XX2:=Concatenation(["A",String(n)]1);
idx1:=0;
idx2:=0;
for t in [1..sA] do
if XX1=T[t] then

idx1l:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
od;
Add (Rels, [0,idx1,idx2,-idx1,-idx2]);
fi;
fi;
od;

fi;

260

zx:=-L[j];
if k in A[i][1] and not (-k in A[i][1]) and A[i] [2]=k and not
(zx in A[i]1[1]) and not (-zx in A[i][1]) then
diff24:=Difference(L, [-zx]);
for n in [1..sAldo
UA24:=SSortedList (A[n] [1]);
UAdiff24:=SSortedList(diff24);
if A[n] [2]=zx then
if UA24=UAdiff24 and diff24<>[zx] then
XX1:=Concatenation(["A",String(i)]);
XX2:=Concatenation(["A",String(n)]);
idx1:=0;
idx2:=0;
for t in [1..sA] do
if XX1=T[t] then

idx1l:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
od;
Add (Rels, [0,idx1,idx2,-idx1,-idx2]);
fi;
fi;
od;
fi;
zx:=L[j];

if -k in A[i][1] and not (k in A[i]J[1]) and A[i][2]=-k and not
(zx in A[i][1]) and not (-zx in A[i][1]) then
diffi14:=Difference(L, [-zx]);
for n in [1..sAldo
if A[n][2]=zx then
UA14:=SSortedList (A[n] [1]);
UAdiff14:=SSortedList(diff14);
if UA14=UAdiff14 and diff14<>[zx] then
XX1:=Concatenation(["A",String(i)]);
XX2:=Concatenation(["A",String(n)]1);
idx1:=0;
idx2:=0;
for t in [1..sA] do
if XX1=T[t] then

idx1l:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
od;
Add (Rels, [0,idx1,idx2,-idx1,-1dx2]);
fi;
fi;
od;
fi;
zx:=-L[j];

261

15.

if -k in A[i][1] and not (k in A[i]J[1]) and A[i][2]=-k and not
(zx in A[i][1]) and not (-zx in A[i][1]) then
diff26:=Difference(L, [-zx]);
for n in [1..sAldo
if A[n][2]=zx then
UA26:=SSortedList (A[n] [1]);
UAdiff26:=SSortedList (diff26);
if UA26=UAdiff26 and diff26<>[zx] then

XX1:=Concatenation(["A",String(i)]);
XX2:=Concatenation(["A",String(n)]);
idx1:=0;
idx2:=0;
for t in [1..sA] do

if XX1=T[t] then

idx1l:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
od;
Add(Rels, [0,idx1,idx2,-idx1,-idx2]);
fi;
fi;
od;
fi;
od;
fi;
##
End the second part when Lk(j) is empty list
##
##
od;
od;

sRels:=Size(Rels);
return([Rels,sRels]);

end;

APCGRelationR10 Function

APCGRelationR10:=function(V,A,T,Lk,Rels)

local k,j,i,m,zx,IntA,UniA,NUniA,1,K,t,UA13,UA14,UA16,UA23,UA24,UA25,UA26,
UA27,UA28,R2,XX1,XX2,XX3,1idx1,idx2,idx3,t1,R10,R10a,R10b,R10c, invLkl,srels,
sRels,diff13,diff14,diff15,diff16,diff23,diff24,diff25,diff26,diff27,diff28,
UAdiff16,UAdiff24 ,UAdif£23,UAdif£f25,UAdiff13,UAdiff14,UAdiff26,UAdiff27,
sV,sA,UAdiff28,n,invV,L,invLk2,invLk3,Unilk;

##

##

The input of this function are:

262

V: the list of vertices of the graph zeta,

A: the list of type(2) generators computed in "WhiteheadAutomorphismsOfSecondType",
T: list of the names of elements of A,

Lk: the list of links computed in "StarLinkDominateOfVertex".

Rels: the list of row matrices of indices of the relations (it is one

of the outputs of the "APCGRelationR4",

Note that in order to get just the row matrices of indices of relation (R9)

we need to pass an empty list [] rather than the list Rels above.

##

It computes the list of indices of the generators [0,idx1,idx2,-idx1,-idx2,-idx3]
of relators of type (R10) of the group Aut(G_zeta) by satisfying the conditions
of this relations and add them to the list Rels. In addition it calculates

the size of the list Rels.

It returns [Rels,sRels].

##
sV:=Size(V);
sA:=Size(A);
invV:=-V; invV is the inverses list of the vertex list V
for k in [1..sV] do
for j in [1..sV] do
##

#

L:=Concatenation(V,invV); # L is the union of the lists V and invV
loop through the vertex list V
#

loop through the vertex list V

##
In this part we compute the list of indices When Lk(k) is not empty list.
##
if Lk[j]<>[0] then
for i in [1..sAldo # loop throu A the Type (2) Whitehead Automorphisms

##

In this section we compute first part of the list of indices of the
generators which is [0,idx1,idx2,-idx1,-idx2,-idx3] of the relators
of type (R10) when the multiplier "a" (k in this code) of the

automorphism (A,a) is the original vertex "a" (not the inverse of
the vertex "a"), and the multiplier "b" (j in this code) of the

automorphism (L-b"-1, b) is the original vertex "b" and k not equal
to j, by satisfying the conditions of this relatioms.

0: is just flag to let us know that all generators here of power 1.

nin

idx1: represents the index "i" of a specific generator A(i) of A.

nan

idx2: represents the index "n" of a specific generator A(m) of A.
-idx1l: represents the inverse of the specific generator A(i) of A
which corresponds to the index idx1.
-idx2: represents the inverse of the specific generator A(n) of A
which corresponds to the index idx2.
-idx3: represents the inverse of the specific generator A(m) of A
which corresponds to the index idx3.
For example if [0,idx1,idx2,-idx1,-idx2,-idx3]= [0,1,27,-1,-27,-5],
then this means that A1*A27*A17-1%A277-1%A5"-1=1.
##
if k in A[i]1[1] and not (-k in A[il[1]) and A[i][2]=k and j in A[i][1]
and not (-j in A[i][1]) and k<>j then
diff15:=Difference(L, [-j]1);

263

invLk2:=-Lk[j];
Unilk:=Concatenation(Lk[j],invLk2);
Unilk: represents the link of the vertex "j" with respect to L
diff16:=[];
for 1 in Lk[j] do # In this loop if the vertex 1 and its inverse -1 in the
same time are belong to the list diffl5 then we delete
them, because they will cancel each other
if 1 in diff15 and -1 in diff15 then
diff16:=Difference(diff15,[-1,1]);
diff15:=diff16;
fi;
od;
diff27:=Difference(L, [-k]);
invLk3:=-Lk[k];
UniLk:=Concatenation(Lk[k],invLk3);
diff28:=[];
for 1 in Lk[j] do
if 1 in diff27 and -1 in diff27 then
diff28:=Difference(diff27,[-1,1]);
diff27:=diff28;
fi;
od;
for n in [1..sAldo
UA16:=SSortedList(A[n] [1]);
UAdiff16:=SSortedList (diff16);
for m in [1..sAldo
UA28:=SSortedList (A[m] [1]);
UAdiff28:=SSortedList (diff28);
if A[n][2]=j and A[m][2]=k then
if UA16=UAdiff16 and diff16<>[j] and UA28=UAdiff28 then
XX1:=Concatenation(["A",String(i)]);
XX1: represents a specific automorphism (A,a) of A
XX2:=Concatenation(["A",String(n)]);
XX2: represents a specific automorphism (L-b~-1, b) of A
XX3:=Concatenation(["A",String(m)]);
XX3: represents a specific automorphism (L-a"-1, a) of A
idx1:=0;
idx2:=0;
idx3:=0;
for t in [1..sA] do
if XX1=T[t] then
idx1l:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
if XX3=T[t] then
idx3:=t;
fij;
od;
Add (Rels, [0,idx1,idx2,-idx1,-idx2,-1dx3]);
fi;
fi;

264

##
##
##
##
##
##
##
#i#
#i#
##
##
if

In this section we compute second part of the list of indices of the
generators which is [0,idx1,idx2,-idx1,-idx2,-idx3] of the relators
of type (R10) when the multiplier "a" (k in this code) of the
automorphism (A,a) is the original vertex "a" (not the inverse of
the vertex "a") and the multiplier "b" (j in this code) of the
automorphism (L-b~-1, b) is the the inverse of the vertex "Db"

(-j in this code) and k not equal to -j by satisfying the

conditions of this relatioms.

The procedure use in this Section is similar to the first Section above.

k in A[i][1] and not (-k in A[i][1]) and A[i][2]=k and -j in A[i][1]
and not (j in A[i][1]) and k<> -j then
diff15:=Difference(L, [j1);
invLk2:=-Lk[j];
Unilk:=Concatenation(Lk[j],invLk2);
diff16:=[];
for 1 in Lk[j] do
if 1 in diff15 and -1 in diff15 then
diff16:=Difference(diff15,[-1,1]);
diff15:=diff16;
fi;
od;
diff27:=Difference(L, [-k]);
invLk3:=-Lk[k];
UniLk:=Concatenation(Lk[k],invLk3);
diff28:=[];
for 1 in Lk[j] do
if 1 in diff27 and -1 in diff27 then
diff28:=Difference(diff27,[-1,1]);
diff27:=diff28;
fi;
od;
for n in [1..sAldo
UA16:=SSortedList (A[n] [1]);
UAdiff16:=SSortedList (diff16);
for m in [1..sAldo
UA28:=SSortedList (A[m] [1]);
UAQiff28:=SSortedList (diff28);
if A[n][2]=-j and A[m][2]=k then
if UA16=UAdiff16 and diff16<>[-j] and UA28=UAdiff28 then
XX1:=Concatenation(["A",String(i)]);
XX2:=Concatenation(["A",String(n)]);
XX3:=Concatenation(["A",String(m)]1);
idx1:=0;
idx2:=0;

265

idx3:=0;
for t in [1..sA] do
if XX1=T[t] then

idx1l:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
if XX3=T[t] then
idx3:=t;
fi;
od;
Add (Rels, [0,idx1,idx2,-idx1,-idx2,-idx3]);
fi;
fi;
od;
od;
fi;
##
##
##

In this section we compute third part of the list of indices of the
generators which is [0,idx1,idx2,-idx1,-idx2,-idx3] of the relators
of type (R10) when the multiplier "a" (k in this code) of the
automorphism (A,a) is the inverse of the vertex "a" (-k in this code)
and the multiplier "b" (j in this code) of the automorphism (L-b~-1, b)
is the original vertex "b" and -k not equal to j by satisfying the
conditions of this relatioms.
The procedure use in this Section is similar to the first Section above.
#i#
if -k in A[i][1] and not (k in A[i]J[1]) and A[i][2]=-k
and j in A[iJ[1] and not (-j in A[i][1]) and -k<>j then
diffi15:=Difference(L, [-j]);
invLk2:=-Lk[j];
Unilk:=Concatenation(Lk[j],invLk2) ;
diff16:=[];
for 1 in Lk[j] do
if 1 in diff15 and -1 in diff15 then
diff16:=Difference(diff15,[-1,1]);
diff15:=diff16;
fi;
od;
diff27:=Difference(L, [k]);
invLk3:=-Lk[k];
UnilLk:=Concatenation(Lk[k],invLk3);
diff28:=[];
for 1 in Lk[j] do
if 1 in diff27 and -1 in diff27 then
diff28:=Difference(diff27,[-1,1]1);
diff27:=diff28;
fi;

266

fi;

##

od;
for n in [1..sAldo
UA16:=SSortedList (A[n] [1]);
UAdiff16:=SSortedList (diff16);
for m in [1..sAldo
UA28:=SSortedList (A[m] [1]);
UAdiff28:=SSortedList (diff28);
if A[n][2]=j and A[m] [2]=-k then
if UA16=UAdiff16 and diff16<>[j] and UA28=UAdiff28 then
XX1:=Concatenation(["A",String(i)]);
XX2:=Concatenation(["A",String(n)]);
XX3:=Concatenation(["A",String(m)]);
idx1:=0;
idx2:=0;
idx3:=0;
for t in [1..sA] do
if XX1=T[t] then

idx1:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
if XX3=T[t] then
idx3:=t;
fi;
od;
Add (Rels, [0,idx1,idx2,-idx1,-idx2,-idx3]);
fi;
fi;
od;

od;

HHHHEHEEEHHEHEHRHEEEEHEHEEEHEEHEERHHEHEHRHEEEHEHEEEHHEHERRHR

##

HHHHEHEEEHHEEHRHERHHEHEEEHEEHEERHHEHEHRHEREHEHEEEEHEHEERHER

##
#i#
##
##
##
##
##
##
##
##
if

In this section we compute third part of the list of indices of the
generators which is [0,idx1,idx2,-idx1,-idx2,-idx3] of the relators

of type (R10) when the multiplier "a" (k in this code) of the
automorphism (A,a) is the inverse of the vertex "a" (-k in this code)
and the multiplier "b" (j in this code) of the automorphism (L-b~-1, b)
is the inverse of the vertex "b" (-j in this code) and -k not equal
to -j by satisfying the conditions of this relations.

The procedure use in this Section is similar to the first Section above.

-k in A[i][1] and not (k in A[i]J[1]) and A[i]l[2]=-k and -j in A[i][1]
and not (j in A[i][1]) and -k <> -j then

diff15:=Difference(L, [j1);

invLk2:=-Lk[j];

Unilk:=Concatenation(Lk[j],invLk2);

diff16:=[];

for 1 in Lk[j] do

267

if 1 in diff15 and -1 in diff15 then
diff16:=Difference(diff15,[-1,1]);
diff15:=diff16;
fi;
od;
diff27:=Difference(L, [k]);
invLk3:=-Lk[k] ;
Unilk:=Concatenation(Lk[k],invLk3);
diff28:=[];
for 1 in Lk[j] do
if 1 in diff27 and -1 in diff27 then
diff28:=Difference(diff27,[-1,1]);
diff27:=diff28;
fi;
od;
for n in [1..sAldo
UA16:=SSortedList (A[n] [1]);
UAdiff16:=SSortedList (diff16);
for m in [1..sAldo
UA28:=SSortedList (A[m] [1]);
UAdiff28:=SSortedList (diff28);
if A[n][2]=-j and A[m] [2]=-k then
if UA16=UAdiff16 and diff16<>[-j] and UA28=UAdiff28 then
XX1:=Concatenation(["A",String(i)]);
XX2:=Concatenation(["A",String(n)]);
XX3:=Concatenation(["A",String(m)]);
idx1:=0;
idx2:=0;
idx3:=0;
for t in [1..sA] do
if XX1=T[t] then

idx1l:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
if XX3=T[t] then
idx3:=t;
fi;
od;
Add (Rels, [0,idx1,idx2,-idx1,-idx2,-1dx3]);
fi;
fi;
od;
od;
fi;
od;
fi;
##
##
End the first part when Lk(j) is not empty list
##

268

#i#
#i#
#i#
#i#
##
##
##
##
if

S s s s s s s s s s s
g s s s s s

In this part we compute the list of indices When Lk(j) is empty list
which is the same procedure of first part when Lk(j) is not empty list

with some changes.

Lk[jl1=[0] then
for i in [1..sAldo
if k in A[i][1] and not (-k in A[i][1]) and A[i][2]=k
and j in A[i][1] and not (-j in A[i][1]) and k<>j then
diff15:=Difference(L, [-j]);
invLk2:=-Lk[j];
UniLk:=Concatenation(Lk[j],invLk2);
diff16:=Difference(diff15,UniLk) ;
diff27:=Difference(L, [-k]);
invLk3:=-Lk[k];
UniLk:=Concatenation(Lk[k],invLk3);
diff28:=Difference(diff27,UniLk) ;
for n in [1..sAldo
UA16:=SSortedList(A[n] [1]);
UAdiff16:=SSortedList (diff16);
for m in [1..sAldo
UA28:=SSortedList (A[m] [1]);
UAdiff28:=SSortedList (diff28);
if A[n][2]=j and A[m][2]=k then
if UA16=UAdiff16 and UA28=UAdiff28 then
XX1:=Concatenation(["A",String(i)]);
XX2:=Concatenation(["A",String(n)]);
XX3:=Concatenation(["A",String(m)]);
idx1:=0;
idx2:=0;
idx3:=0;
for t in [1..sA] do
if XX1=T[t] then
idx1:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
if XX3=T[t] then
idx3:=t;
fi;
od;
Add (Rels, [0,idx1,idx2,-idx1,-idx2,-idx3]);
fi;
fi;
od;
od;
fi;
if k in A[i][1] and not (-k in A[i][1]) and A[i][2]=k
and -j in A[i][1] and not (j in A[i][1]) and k<> -j then

269

diff15:=Difference(L, [j1);
invLk2:=-Lk[j];
Unilk:=Concatenation(Lk[j],invLk2) ;
diff16:=Difference(diff15,Unilk);
diff27:=Difference(L, [-k]);
invLk3:=-Lk[k] ;
Unilk:=Concatenation(Lk[k],invLk3);
diff28:=Difference(diff27,Unilk);
for n in [1..sAldo
UA16:=SSortedList (A[n] [1]);
UAdiff16:=SSortedList (diff16);
for m in [1..sAldo
UA28:=SSortedList (A[m] [1]);
UAQiff28:=SSortedList (diff28);
if A[n][2]=-j and A[m][2]=k then
if UA16=UAdiff16 and UA28=UAdiff28 then
XX1:=Concatenation(["A",String(i)]);
XX2:=Concatenation(["A",String(n)]1);
XX3:=Concatenation(["A",String(m)]1);
idx1:=0;
idx2:=0;
idx3:=0;
for t in [1..sA] do
if XX1=T[t] then
idx1l:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
if XX3=T[t] then
idx3:=t;
fi;
od;
Add (Rels, [0,idx1,idx2,-idx1,-idx2,-idx3]);
fi;
fi;
od;
od;
fi;
if -k in A[i]1[1] and not (k in A[i]J[1]) and A[i][2]=-k
and j in A[i][1] and not (-j in A[i][1]) and -k<>j then
diffib:=Difference(L, [-j1);
invLk2:=-Lk[j];
Unilk:=Concatenation(Lk[j],invLk2);
diff16:=Difference(diff15,Unilk);
diff27:=Difference(L, [k]);
invLk3:=-Lk[k];
UniLk:=Concatenation(Lk[k],invLk3);
diff28:=Difference(diff27,UniLk) ;
for n in [1..sAldo
UA16:=SSortedList(A[n] [1]);
UAdiff16:=SSortedList (diff16);
for m in [1..sAldo

270

UA28:=SSortedList (A[m] [1]);
UAdiff28:=SSortedList (diff28);
if A[n][2]=j and A[m][2]=-k then
if UA16=UAdiff16 and UA28=UAdiff28 then
XX1:=Concatenation(["A",String(i)1);
XX2:=Concatenation(["A",String(n)]1);
XX3:=Concatenation(["A",String(m)]);
idx1:=0;
idx2:=0;
idx3:=0;
for t in [1..sA] do
if XX1=T[t] then
idx1l:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
if XX3=T[t] then
idx3:=t;
fi;
od;
Add (Rels, [0,idx1,idx2,-idx1,-idx2,-idx3]);
fi;
fi;
od;
od;
fi;
if -k in A[i][1] and not (k in A[i]J[1]) and A[i] [2]=-k
and -j in A[i][1] and not (j in A[i][1]) and -k <> -j then
diff15:=Difference(L, [j]1);
invLk2:=-Lk[j];
UniLk:=Concatenation(Lk[j],invLk2);
diff16:=Difference(diff15,UniLk) ;
diff27:=Difference(L, [k]);
invLk3:=-Lk[k];
Unilk:=Concatenation(Lk[k],invLk3);
diff28:=Difference(diff27,Unilk);
for n in [1..sAldo
UA16:=SSortedList (A[n] [1]);
UAdiff16:=SSortedList(diff16);
for m in [1..sAldo
UA28:=SSortedList (A[m] [1]);
UAdiff28:=SSortedList (diff28);
if A[n][2]=-j and A[m] [2]=-k then
if UA16=UAdiff16 and UA28=UAdiff28 then

XX1:=Concatenation(["A",String(i)]);
XX2:=Concatenation(["A",String(n)]);
XX3:=Concatenation(["A",String(m)]);
idx1:=0;

idx2:=0;

idx3:=0;

for t in [1..sA] do

271

if XX1=T[t] then

idx1l:=t;
fi;
if XX2=T[t] then
idx2:=t;
fi;
if XX3=T[t] then
idx3:=t;
fi;
od;
Add (Rels, [0,idx1,idx2,-idx1,-idx2,-idx3]);
fi;
fi;
od;
od;
fi;
od;
fi;
##
End the second part when Lk(j) is empty list
#t
#t

od;
od;
sRels:=Size(Rels);
return([Rels,sRels]);

end;

APCGFinalReturn Function

APCGFinalReturn:=function(gens,Rels,sRels,sRelsl,Relsl,sgenss)
local i,j,j1,j2,C,F,rels,srels,GHK,KK,GGG, sgens,GHK1,KK1,ZZa,relsl,srelsl;
##

##

The input of this function are:

gens: the list of the generators of the group Aut(G_zeta).

Rels: the list of the indices of the relators which computed in

#iH# "RelationsOfGraphAutomorphisms", "APCGRelationR1",..., "APCGRelationR10"
sRels: the size of the list Rels.

Relsl: the list of the indices of the relators of graph group

#Hi## which computed in "WhiteheadAutomorphismsOfFirstType".

sRelsl: the size of the list Relsl.

sgenss: the size of the list genss which is the name of the i“th of

#i#H# generator of the Whitehead automorphisms of Aut(G_zeta).
#H#H# It computed in "WhiteheadAutomorphismsOfFirstType"
##

It forms the list of relations rels from the lists Rels and Relsl.
In fact this function forms the output of the function

FinitePresentationOfAutParCommGrp in the package AutParCommGrp.

272

S s s s S s s
##
relsi:=[];
C:=gens;
F:=FreeGroup(C) ; # computes the free group on gens. The generators
are displayed as string.l, string.2, ..., string.n
gens:=Generators0fGroup(F); # returns a list of generators gens of the free group F

sgens:=Size(gens) ;

##
In this section we form the list of relations relsl from the list Relsl
(computed in the function WhiteheadAutomorphismsOfFirstType) and adds
them to the list relsl, and then adds it to the list of relations rels.
#i#
for i in [1..sRelsil] do
GHK:=Size(Rels1[i]);
GHK1:=GHK/2; # To find the real length of each single relation
jl:=1;
for j in [1..GHK1] do
KK:=sgenss+AbsoluteValue(Rels1[i] [j1]); #function reading
j2:=j1+1;
KK1:=Rels1[i][j2]; # power
if KK1 <> 1 then
ZZa:=gens [KK] "KK1;
else
ZZa:=gens [KK] ;
fi;
if j1=1 then
relsi[i] :=ZZa;
else
relsi[i] :=relsi[i]*ZZa;

fi;
jl:=j1+2;
od;
od;
srelsl:=Size(relsl);
#t
#

In this section we form the list of relations rels from the list Rels
(computed in the functions RelationsOfGraphAutomorphisms, APCGRelationR1,
APCGRelationR2,..., APCGRelationR10)
##
rels:=[];
for i in [1..sRels] do

GHK:=Size(Rels[i]);

KK:=AbsoluteValue(Rels[i] [2]);

if Rels[i][1] = O then

rels[i] :=gens[KK];
fi;

if Rels[i][1] = 1 then

rels[i] :=gens[KK]"2;

fi;

273

17.

if Rels[i][1] = 2 then
rels[i] :=gens[KK];
GHK : =GHK-3;
fi;
if Rels[i][2] < O then
rels[i] :=rels[i]~-1;
fi;
for j in [3..GHK] do
KK:=AbsoluteValue(Rels[il [j1);
if Rels[i][j] < O then
rels[i] :=rels[i]*gens[KK] "-1;
else
rels[i] :=rels[i]*gens[KK];
fi;
od;
od;
srels:=Size(rels);
##
s s s g g
##
for i in [1..srelsl] do # This loop is to add the relations of graph
automorphisms relsl to final relations list rels
ji=srels+i;
rels[jl:=relsi[il;
od;
srels:=Size(rels);
GGG:=F/rels; # computes the finitely presented group on
the generators gens of F defined above
return([F,gens,rels,GGG,sgens,srels]);

end;

FinitePresentationOfAutParCommGrp Function

FinitePresentationOfAutParCommGrp:=function(V,E)

local R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,St,Lk,YY,sV,
M,NV,NE,sNV,sNE,A,sA,gens,sgens,sgenss,Gens3,rels,srels,Rels,sRels,
relvalofF,srelvalofF,relsl,srelsl,sGens2,F,GGG,sComps,Relsl,sRelsl,
T,Q,1,j,tempedgex,tempedgey;

##
s
##

The input of this function is a simple graph zeta=(V,E), where V and E
represent the set of vertices and the set of edges respectively.

##

It returns [gens,rels,GGG], where

gens: is a list of free generators of the automorphism group of

#it# partially commutative group Aut(G_zeta).

rels: is a list of relations in the generators of the free group.
#i# Note that relations are entered as relators, i.e., as words
#Hit# in the generators of the free group.

GGG:=F/rels: is the automorphism group Aut(G_zeta) of G_zeta given

274

##
##
##
##

#i#

##

as a finite presentation group with generators gens
and relators rels.

In fact, the main work of this function is to run all the functions

we have read them below to give a finite presentation for automorphism
groups Aut(G_zeta) of G_zeta.

IsSimpleGraph(V,E)=true then # Call the function IsSimpleGraph to test

whether the graph zeta is simple or not

##
##

This section is to compute the star St(v), link Lk(v) and the dominate

list Y(v) of each pair of vertices v,u in V

##

R1:=StarLinkDominateOfVertex(V,E); #F StarLinkDominateOfVertex(<V>, <E>)
return([St,Lk,YY,sV,M,L,sL]);

St:=R1[1];

Lk:=R1[2];

YY:=R1[3];

sV:=R1[4];

M:=R1[5];

#t

##

This section is to delete the star St(v) of a specific vertex v

from the graph zeta

##

R2:=DeleteVerticesFromGraph(St,V,E); #F DeleteverticesFromGraph(<St>, <V>,
return([NV,NE,sNV,sNE]);

NV:=R2[1];
NE:=R2[2];
sNV:=R2[3];
sNE:=R2[4];
##

##

##

This section is to compute the type (2) Whitehead automorphisms

##

R3:=WhiteheadAutomorphisms0fSecondType (NV,NE,St,YY);
#F WhiteheadAutomorphismsOfSecondType(<NV>, <NE>, <St>, <YY>)
return ([A,T,sAl);

A:=R3[1];

T:=R3[2];

sA:=R3[3];

##

##
HHEHEEEHERHEEEHHEHEERHEEEEHEHEERHERHEEEHEEEHERHEEEHHEHEERHEREEERHEEREE
##

275

<E>)

This section is to compute the type (1) Whitehead automorphisms also to
copute the generators of the group automorphism of graph and then find
the generators of the automorphism group of partially commutative group
##
R4:=WhiteheadAutomorphismsOfFirstType(E,sV,sA,T);
#F WhiteheadAutomorphismsOfFirstType(<E>, <sV>, <sA>, <T>)
return([gens,sgens,sgenss,Gens3,relvalofF,srelvalofF,Relsl,sRelsl,sGens2]);
gens:=R4[1];
sgens:=R4[2];
sgenss:=R4[3];
Gens3:=R4[4];
relvalofF:=R4[5];
srelvalofF:=R4[6];
Rels1:=R4[7];
sRels1:=R4[8];
sGens2:=R4[9];
##
B g S g g S S S S S R S S S
##

##

This section is to compute the relations related to the graph automorphisms

##

R5:=Relations0fGraphAutomorphisms(sA,sgenss,relvalofF,sV,sGens2);
#F RelationsOfGraphAutomorphisms(<sA>, <sgenss>, <relvalofF>, <sV>, <sGens2>)
return([Rels,sRels]);

Rels:=R5[1];

sRels:=R5[2];

##

##

This section is to compute the relation R5

##

R6:=APCGRelationR5(A,St,Lk,Rels,T);
#F APCGRelationR5(<A>, <St>, <Lk> <Rels>, <T>)
return([Rels,sRels]);

Rels:=R6[1];

sRels:=R6[2];

##

##

##

This section is to compute the relation R1

##

R7:=APCGRelationR1(sV,A,T,Rels); #F APCGRelationR1(<sV>, <A>, <T>, <Rels>)
return([Rels,sRels]);

Rels:=R7[1];
sRels:=R7[2];
##

#it

HEBHHHHHHEEEE R AR R R

##

This section is to compute the relation R2

#t

R8:=APCGRelationR2(A,T,Rels,St); #F APCGRelationR2(<A>, <T>, <Rels>, <St>)
return([Rels,sRels]);

Rels:=R8[1];

sRels:=R8[2];

##

##

##

This section is to compute the relation R3

##

R9:=APCGRelationR3(A,T,Lk,Rels); #F APCGRelationR3(<A>, <T>, <Lk>, <Rels>)
return([Rels,sRels]);

Rels:=R9[1];

sRels:=R9[2];

##

##
This section is to compute the relation R4
##

R10:=APCGRelationR4(A,T,Lk,Rels); #F APCGRelationR4(<A>, <T>, <Lk>, <Rels>)
return([Rels,sRels]);

Rels:=R10[1];

sRels:=R10[2];

##

HHBHHHEEHEEEE AR AR R

##

HHBHHHHHHEEEE AR R R

##

This section is to compute the relation R8

##

R11:=APCGRelationR8(V,A,T,Lk,Rels); #F APCGRelationR8(<V>, <A>, <T>, <Lk>, <Rels>)

return([Rels,sRels]);

Rels:=R11[1];

sRels:=R11[2];

##

##

##

This section is to compute the relation R9

##

R12:=APCGRelationR9(V,A,T,Lk,Rels); #F APCGRelationR9(<V>, <A>, <T>, <Lk>, <Rels>)
return([Rels,sRels]);

Rels:=R12[1];

277

18.

sRels:=R12[2];

##

B g S s
##

##
This section is to compute the relation R10
##

R13:=APCGRelationR10(V,A,T,Lk,Rels); #F APCGRelationR10(<V>, <A>, <T>, <Lk> <Rels>)

return([Rels,sRels]);

Rels:=R13[1];
sRels:=R13[2];
##

This section is to compute the final relations T from the matrix of

indices of the generators and find the final return
##
R14:=APCGFinalReturn(gens,Rels,sRels,sRelsl,Relsl,sgenss);

F

#F APCGFinalReturn(<gens>, <Rels>, <sRels>, <sRelsl>, <Relsl>, <sgenss>)
return([F,gens,rels,GGG,sgens,srels]);
:=R14[1];

gens:=R14[2];
rels:=R14[3];
GGG:=R14[4];
sgens:=R14[5];
srels:=R14[6];
##

##

else

fi;

return("The graph must be a simple graph");

return([gens,rels,GGG];

end;

TietzeTransformations Function

TietzeTransformations:=function(G)
local hom,H,R;

##

##
##
##
#i#
#i#
#i#

The aim of this function is to simplify the presentation of the finitely,
presented group G, i.e., to reduce the number of generators, the number
of relators and the relator lengths.

The input of this function is finite presentation of the group G.

278

Returns a group H isomorphic to G, so that the presentation of H,

has been simplified using Tietze transformationms.

B s s s s s s s s s s s s T s s s T s T
##

hom:= IsomorphismSimplifiedFpGroup(G);
H:

To find a homomorphism (an isomorphism).

Image (hom) ; Image(map) is the image of the general

of the range of map that are actually values

#

#

mapping map, i.e., the subset of elements

#

of map. Note that in this case the argument
#

may also be multi-valued.

e
]

Relators0fFpGroup (H) ; # returns the relators of the finitely presented group
G as words in the free generators provided by the
FreeGeneratorsOfFpGroup value of G.

return([H,R];

end;

279

A.2 Appendix to Chapter 3

In this appendix we will attached the codes for all the functions we have written in

Chapter 3 as follows:

1. StarLinkOfVertex Function

StarLinkOfVertex:=function(V,E)
local i,j,x1,M,sV,sE,tempx,St,indx1,Lk,indx2,x,YY,Y1,Y2,tempedgex, tempedgey;
#it

##

The input of this function is a finite simple graph zeta=(V,E), where V and
E represents the list of vertices and the list of Edges respectivly.

##

It computes the star St(v) and the link Lk(v) and concatenates them in

two separate lists St and Lk respectively.

##
if IsSimpleGraph(V,E)=true then # Call the function IsSimpleGraph to test
whether the graph zeta is simple or not
sV:=Length (V) ;
M:= Length(E);
St:= NullMat(sV,1,0);

for i in [1..sV] do # loop through the vertices V

tempx:=V[i];

indx1:=1; # index for the star of specific vertex v

St [tempx] [indx1] :=tempx; # St: is a two dimensional matrix, the rows
indices represent the vertices and the columns
indices represent the star of a specific vertex.

for j in [1..M] do # loop through the edges E

if tempx=E[j][1] then # determine whether the specific edge E[j][1]

is equal to the vertex tempx

if E[jI[11<>E[j][2] then # excludes isolated vertices from the calculation
indx1:=indx1+1;
St [tempx] [indx1] :=E[j] [2]; # means that the vertex E[j][2] belonges to
the star of a specific vertex v
fi;
fi;
if tempx=E[j][2] then # This section is the same of the first section,
above just we replaced the first coordinate of
the edge E(j) by the second coordinate.
if E[j1[11<>E[j1[2] then
indx1:=indx1+1;
St [tempx] [indx1] :=E[j]1[1];
fi;
fi;
od;
od;
Lk:=[];

280

for j in [1..sV] do # loop through the list of vertices V

Y2:=Set(St[j1); # make the list of a specific star St(j) as an order set
RemoveSet(Y2,j); # remove the vertex v (j in this code) from the list Y2
Add(Lk,Y2);
od;
else

return("The graph must be a simple graph");
fi;
return([St,Lk]);

end;

CombinationsOfConnected Components Function

Combinations0OfConnectedComponents:=function(Comps)
local i,C1,sC1,Y2,Y3,1L2,U2,q,sY3,Y4,L4,sY4;
##

#i#

The input of this function is the list of connected

components Comps of the specified graph B.

##

The output is the set of all combinations Y4 of the multiset Comps.

L s S S S S S s s S S s S s S S S s s S s

##

C1:=Combinations(Comps); # Call the function Combinations to construct a list
called C1 of all combinations of the multiset Comps

sC1:=Size(C1);

##

##

In this section: loop through the list Cl1 to construct a list called Y2.

Each element 1 of C1 is a list of lists X1, ..., Xn. Call the Concatenation
function to form a new list h from the element of X1, ..., Xn.

Then add this 1list to Y2.

Y2:=[1;

¥3:=[1;

for q in [1..sC1] do
L2:=Concatenation(C1[ql);
U2:=SSortedList(L2); #sorting each element of L2

Add(Y2,L2);
Add(Y3,U02);
od;
#it
#i
sY3:=Size(Y3);
Y4:=[]1;

for i in [1..sY3] do # Loop through the list Y3 to construct a list Y4 by
adding each element of Y3 not equal to empty set to Y4
if Y3[il<>[] then
Add(Y4,Y3[i]);

281

fi;
od;
sY4:=Size(Y4);
return([Y3,Y4,sY4]);

end;

GeneratorsOfSubgroupConj Function

Generators0fSubgroupConj:=function(NE,NV,V)

local i,j,gens2,gens,genss,rels,Rels,Bs,h,G2,G1,R3,R4,Comps,sComps,sMV,
sNE,UniA,D,DD,sD,S,YYY,NYY,invNYY,DYY,sDYY,Ls,t,xn,union_element,NCxY,
sgens,gensé4,sgens4,gens3,sgens3,invV,sL,Y6,xs2,Y3,Y4,sY4,xs1,diff2,Y5,
sY5,sY6,sz,Y7,sY7,sxs2,xs3,sxs3,xs, sxs,Uxs, sUxs,CxY,sCxY,y9,y8,Y,sY,sBs,
Y8,sY8,y19,x11,sxs1,k,f,sf,gens1,sgens1,CxY¥1,sCxY¥1,y10,y99,NCY,KK,HH,L;
##

##

The input of this function are:

the list NE of all lists of edges of the subgraph zeta\St(v)
the list NV of all lists of vertices of the subgraph zeta\St(v)
the list V which is the list of vertices.

##

It computes the list gensl which form the type(l) generators

(elementary partial conjugations) of the subgroup Conj(G_zeta)
of the group Aut(G_zeta).

#it

gens:=[];

Bs:=[];

Y6:=[];

xs2:=[1;

sNE:=Size (NE);

invV:=-V; # invV: is the inverses list of the vertex list V

L:=Concatenation(V,invV); # L is the union of the lists V and invV
for h in [1..sNE]do #loop through the lists NV and NE since they have same size
G2:=NE[h];
G1:=NV[h];
R3:=ConnectedComponents0fGraph(G1,G2) ;
computes the list of the Connected components
for each subgraph (NV(h),NE(h))
Comps:=R3[1]; # Comps: list of all components of (NV(h),NE(h))
sComps:=R3[2]; # sComps: size of Comps

R4:=Combinations0fConnectedComponents (Comps) ;

computes the list of the combinations

of the list Comps
Y3:=R4[1]; # Y3: list of all combinations of the list Comps (it will be list of list)
Y4:=R4[2]; # Y4: it is Y3 after SSorted its elements and delete the empty elements
sY4:=R4[3]; # sY4: size of Y4
xs1:=[];
for i in [1..sY4] do # loop through the list Y4

282

diff2:=Difference(L,Y4[i]); # computes the difference diff2 between the list
L and each elements (list) of the list Y4

Add(xs1,diff2); # add each diff2 to the new list xsi
od;
sxsl:=Size(xsl);
##
##

In this section: loop through the list Y4 to construct a list called Y6.
In order to do this first find the size sz of xs1(i). For each element 1
of xs1(i) concatenate elements of Y4(i) with elements of 1 to give a list
KK. Then form a listY5 of pairs HH; with entries (KK, 1), for each element
1 of xs1(i). Then append Y5 to the list Y6.
##
¥5:=[1;
for i in [1..sY4] do
sz:=Size(xs1[i]);
for j in [1..sz] do
KK:=Concatenation(Y4[i], [xs1[i][j11);
HH:=[KK,xs1[i]1[j1];

Add(Y5,HH) ;
od;
od;
sY5:=Size(Y5);
Add(Y6,Y5) ;
##
#i#t

Add(xs2,xs1); # Make new list xs2, by adding xsl to xs2. This step and tht
next one are needed because there are two inner loops
Add (Bs,Y3); # Make new lists Bs, by adding Y3 to Bs
od; # ending the loop through the lists NV and NE
sY6:=Size(Y6);
Y7:=Concatenation(Y6); # Compute the list Y7 by concatenating the dense
list of lists Y6
sY7:=Size(Y7);
sxs2:=Size(xs2);
xs3:=Concatenation(xs2); # Compute the list xs3 by concatenating the dense
list of lists xs2
sxs3:=Size(xs3);
xs:=[1;
##

#i#
In this section: loop through the list xs3 to construct a list called xs by
adding each non-empty entry of xs3 to xs, and calculate the size of xs.
for i in [1..sxs3] do
if not (xs3[i] in xs) and xs3[i]<>[] then
Add (xs,xs3[i]);

fi;
od;
sxs:=Size(xs);
##

283

g g S S s S S s S S s S S s S S s S s
##
Uxs:=Union(xs); # Call the function Union to construct a list called Uxs by
sUxs:=Size(Uxs); # computing the union of xs and calculates it size sUxs
CxY1:=[];
for i in [1..sY7] do # Loop through the list Y7 to comstruct a list
called CxY1l by adding each non-empty entry of
Y7 to CxY1l, and calculate its size sCxY1
if not (Y7[i] in CxY1) and Y7[i]l<>[] then
Add(CxY1,Y7[il);
fi;
od;
sCxY1:=Size(CxY1);
CxY:=[];
for j in [1..sCxY1]ldo # Loop through the list CxYl to compute a list of
the definitions CxY of the partial conjugatioms,
with its size sCxY
y9:=CxY1[j1[2];
y10:=CxY1[j1[1];
y99:=SSortedList (y10) ;
NCY:=[y99,y9];
Add (CxY,NCY) ;
od;
sCxY:=Size(CxY);
Y8:=Concatenation(Bs); # Make a list Y8 by concatenating the dense
list of lists Bs defined above
sBs:=Size(Bs);
sY8:=Size(Y8);
Y:=[1;
for i in [1..sY8] do # Loop through the list Y8 to construct a list Y
of the non-empty unions of connected components
of zeta\St(v)
if not (Y8[i] in Y) and Y8[il<>[] then
Add(Y,Y8[il);
fi;
od;
sY:=Size(Y);

In this section: loop through the lists CxY and Y to construct a list f
such that each element of f represents the element of CxY of the same index,
i.e., £f(n)=CxY(n), n in N, and calculate its size sf
##
£:=01;
y19:=[1;
for k in [1..sCxYldo
x11:=CxY[k] [2];
diff2:=Difference(CxY[k] [1], [x11]);
for j in [1..sY]do
if diff2=Y[j] then
y19:=[j1;
fi;
od;

284

NCxY:=Concatenation(["c",String(x11),",","Y",String(y19[1]1)1);
Add (f,NCxY) ;

od;
sf:=Size(f);
##

##
gens1:=[];

for j in [1..sfldo # Loop through the list f to create a list gensl of type(1)
generators of of the subgroup Conj(G_zeta), and calculate
its size sgensl. Each element of gensl represents the
element of f of the same index, i.e., gensi(n)=f(n), n in N.
(This make these generators compatible with GAP format.)

Add (gens1,Concatenation(["f",String(j)]1));

od;

sgensl:=Size(gensl);

return[CxY,sCxY,Y,sY,f,sf,gensl,sgens1];

end;;

APCGRelationRConjl Function

APCGRelationRConjl:=function(CxY, Y, f)
local k,j,i,diff2,R1,XX1,XX2,idx1,idx2,t,y12,rels,R2a,sR2a,x8,sY,sCxY,sf;
##

##
The input of this function are:

CxY: list of elementary partial conjugations of Conj(G_zeta) or Conjv

#Hit# computed in "GeneratorsOfSubgroupConj" or "GeneratorsOfSubgroupConjv",
Y: list of the non-empty union of connected components of zeta\St(v)
#H## computed in "GeneratorsOfSubgroupConj" or "Generators0fSubgroupConjv",

f: the list of the names of the definitions of the generators CxY
#it# [f(n) = CxY(n), n in N].
##
It computes the list of indices [0,idx1,idx2] of relations of type (C1l) of
Conj(G_zeta) or (Rel) of Conjv and adds each of them to the list R2a.
In addition it calculates the size of the list ‘R2a’.
It returns [R2a,sR2a].
IR R
##
sY:=Size(Y);
sCxY:=Size(CxY);
sf:=Size(f);
R2a:=[];
if sY<>0 then
yi2:=[1;
for k in [1..sCxY]do # loop through the list CxY

##
In this section we compute the list of indices of the generators which
is [0,idx1,idx2] of the relators of type (C1l) or (Rel) by satisfying the

285

conditions of the relation (Cl) or relation(Rel).
0: is just flag to let us know that all the generators here of power 1.
idx1l: represents the index of a specific generator f(t) of f.
idx2: represents the index of the inverse of the specific generator f(t).
For example if [0,idx1,idx2]= [0, 1, 4] then this means f1xf4=1.
##
x8:=CxY[k] [2];
diff2:=Difference(CxY[k] [1], [x8]);
for j in [1..sY]do
if diff2=Y[j] then
yi12:=[j]1;
fi;

od;
XX1:=Concatenation(["c",String(x8),",","Y",String(y12[1]1)1);
XX1: represents a specific partial conjugations automorphism
alpha_Y,v of the list CxY
XX2:=Concatenation(["c",String(-x8),",","Y",String(y12[1]1)]1);
XX2: represents a specific partial conjugations automorphism
alpha_Y,v"-1 of the list CxY which is the inverse of alpha_Y,v
idx1:=0;
idx2:=0;
for t in [1..sf] do # loop through the list f to find the indices

if XX1=f[t] then

idx1l:=t;
fi;
if XX2=f[t] then
idx2:=t;

fi;
od;
Add(R2a, [0,idx1,idx2]);
##

od;
else
return("sY must be greater than zero");
fi;
sR2a:=Size(R2a);
return([R2a,sR2al);

end;

APCGRelationRConj2 Function

APCGRelationRConj2:=function(CxY,Y,Lk,f,R2a)

local k,m,n,j,i,q,1,diff2,diff3,diff4,R2,XX1,XX2,XX3,idx1,idx2,idx3,t,yl1,
y12,y13,y16,rels,sR2a,x8,x08,x11,IntY,UniY,U3,NUniA,sLK,1k,sY,sCxY,sf;

##

##
The input of this function are:

CxY: the list of elementary partial conjugations of Conj(G_zeta) or Conjv

286

#Hi## computed in "GeneratorsOfSubgroupConj" or "GeneratorsOfSubgroupConjv",
Y the list of the non-empty union of connected components of zeta\St(v)
#Hi## computed in "GeneratorsOfSubgroupConj" or "GeneratorsOfSubgroupConjv",
Lk: the list of links computed in "StarLinkDominateOfVertex"

£ the list of the names of the definitions of the generators CxY

#it# [f(n) = CxY(n), n in N],

R2a: the list of indices computed in "APCGRelationRConjil".

##

It computes the list of indices [0,idx1,idx2,idx3] of relations of type (C2)
of Conj(G_zeta) or (Re2) of Conjv and adds each of them to the list R2a (we
can replace R2a by [] if we need just the indices [0,idx1,idx2,idx3] of

relations of type (C2) or (Re2)).

In addition it calculates the size of the list R2a.

It returns [R2a,sR2a].

##
sY:=Size(Y);
sCxY:=Size (CxY);
sf:=Size(f);
if sY<>0 then
yi1:=[];
y13:=[];
for i in [1..sCxY-1ldo # loop through the list CxY excluding the last entry in CxY
x8:=CxY[i] [2];
x08:=AbsoluteValue(x8);
diff2:=Difference(CxY[i] [1], [x8]);
diff2: represents the connected component Y(i) which is related
to a specific partial conjugation "alpha Y(i),v" (CxY in this code)
for t in [1..sY]do
Verify the index of a given list (diff2) in Y which related to "alpha_Y(i),v"
if diff2=Y[t] then
yil:=[t];
fi;
od;
for j in [i+1..sCxY]do # loop through the list CxY excluding the first entry in CxY
if x8=CxY[j]1[2] then
diff3:=Difference(CxY[j1[1], [x8]);
diff3: represents the connected component Y(i) which is related
to a specific partial conjugation "alpha_Y(j),v" (CxY in this code)
for m in [1..sY]ldo
Verify the index of a given list diff2 in Y which related to "alpha_Y(j),v"
if diff3=Y[m] then
y13:=[m];
fi;
od;
IntY:=Intersection([diff2 , diff3]);
if IntY=[] then
UniY:=Union([diff2 , diff3]);
U3:=SSortedList (UniY);
U3: the sorted list of the union of the two components
diff2 and diff3 (Y union Z in the relation C2)
NUniA:=[];
1k:=Lk[x08];

287

sLK:=Size(1k);
if sLK<>0 then
for q in [1..sLKldo
loop through the list 1k to do that: if the vertex 1 and its
inverse -1 are belong to lk and U3 in the same time then we
delete them, because they will cancel each other.
1:=1k[ql;
if 1 in U3 and -1 in U3 then
NUniA:=Difference(U3,[-1,1]);
U3:=NUniA;
fi;
od;
fi;
for n in [1..sCxY]do
Verify the index of a given list diff4 in Y which is related
to the automorphism "alpha_Y(i)+Y(j),v"-1" as in the relation (C2)
x11:=CxY[i][2];
diff4:=Difference(CxY[n] [1], [x11]);
if U3=diff4 and CxY[n][2]=x8 then
y16:=[1;
for t in [1..sYldo
if diff4=Y[t] then
yi16:=[t];
fi;
od;
XX1:=Concatenation(["c",String(x8),",","Y",String(y11[11)1);
XX1: represents a specific partial conjugations automorphism
"alpha Y(i),v" of the list CxY
XX2:=Concatenation(["c",String(x8),",","Y",String(y13[1]1)1);
XX2: represents a specific partial conjugations automorphism
"alpha_Y(j),v" of the list CxY
XX3:=Concatenation(["c",String(-x8),",","Y",String(y16[1]1)]1);
XX3: represents a specific partial conjugations automorphism
"alpha_Y(i)+Y(j),v"-1" of the list CxY which is the inverse
of "alpha Y+Z,v"
idx1:=0;
idx2:=0;
idx3:=0;
for t in [1..sf] do
if XX1=f[t] then
idx1l:=t;
fi;
if XX2=f[t] then
idx2:=t;
fi;
if XX3=f[t] then
idx3:=t;
fi;
od;
Add(R2a, [0,idx1,idx2,idx3]);
fi;
od;
fi;

288

fi;
od;

od;
else

return("sY must be greater than zero");
fi;
sR2a:=Size(R2a);
return([R2a,sR2al) ;

end;

APCGRelationRConj3 Function

APCGRelationRConj3:=function(CxY,Y,Lk,f,R2a)

local k,m,n,j,i,q,1,diff2,diff3,diff4,R3,XX1,XX2,XX3,XX4,idx1,idx2,
idx3,idx4,t,y9,y10,y11,y12,y13,y16,rels,sR2a,x8,x08,x9,x11,IntY,UniyY,
U3,NUniA,sLK,1k,invLk2,Unilk,sY,sCxY,sf;

##

#i#
The input of this function are:

CxY: the list of elementary partial conjugations of Conj(G_zeta) or Conjv

#Hi## computed in "GeneratorsOfSubgroupConj" or "GeneratorsOfSubgroupConjv",
Y the list of the non-empty union of connected components of zeta\St(v)
#Hi#H# computed in "GeneratorsOfSubgroupConj" or "GeneratorsOfSubgroupConjv",

Lk: the list of links computed in "StarLinkDominateOfVertex"

£ the list of the names of the definitions of the generators CxY

#it# [f(n) = CxY(n), n in N],

R2a: the list of indices computed in "APCGRelationRConji1".

##

It computes the list of indices [0,idx1,idx2,idx3,idx4] of relations of type (C3)
of Conj(G_zeta) or (Re3) of Conjv and adds each of them to the list R2a (we
can replace R2a by [] if we need just the indices [0,idx1,idx2,idx3,idx4] of
relations of type (C3) or (Re3)).

In addition it calculates the size of the list R2a.

It returns [R2a,sR2a].

#i#
sY:=Size(Y);
sCxY:=Size (CxY);
sf:=Size(f);
if sY<>0 then
y9:=[1;
for i in [1..sCxY-1]do # loop through the list CxY excluding the last entry in CxY
x8:=CxY[i] [2];
diff2:=Difference(CxY[i] [1], [x8]);
diff2: represents the connected component Y(i) which is related to
a specific partial conjugation "alpha_Y(i),v" (CxY in this code) of (C3)
for t in [1..sY]do
Verify the index of a given list diff2 (Y(i)) in Y which related
to "alpha_Y(i),v"
if diff2=Y[t] then

289

y9:=[t];
fi;
od;
x08:=AbsoluteValue(x8) ;
invLk2:=-Lk [x08];
UniLk:=Concatenation(Lk[x08],invLk2);
for j in [i+1..sCxYldo # loop through the list CxY excluding the first entry in CxY
x9:=CxY[j]1[2];
diff3:=Difference(CxY[j][1], [x9]);
diff3: represents the connected component Y(j) which is related to
a specific partial conjugation "alpha_Y(j),v" (CxY in this code) of (C3)
y10:=[1;
for m in [1..sY]do
Verify the index of a given list diff2 (Y(j)) in Y which related
to "alpha_Y(j),v"
if diff3=Y[m] then
y10:=[m];
fi;

In this section we compute the list of indices of the generators which is
[0,idx1,idx2,idx3,idx4] of the relators of type (C3) or (Re3) by satisfying
the conditions of the relation (C3) or relation(Re3).

0: is just flag to let us know that all the generators here of power 1.

idx1: represents the index of a specific generator f(i) of f.

idx2: represents the index of another specific generator f(j) of f.

idx3: represents the index of the inverse of the specific generator f(i).
idx4: represents the index of the inverse of the specific generator £(j).
For example if [0,idx1,idx2,idx3,idx4]= [0, 1, 2, 4, 3] then this means
f1xf2xf4*x£3=1.

if not (x8 in diff3) and not (x9 in diff2) then
if x8<>x9 and x8<>-x9 then
IntY:=Intersection([diff2 , diff3]);
if IntY=[] or x9 in Unilk then
XX1:=Concatenation(["c",String(x8),",","Y",String(y9[11)1);
XX1: represents a specific partial conjugations
automorphism "alpha_Y(i),v" of the list CxY
XX2:=Concatenation(["c",String(x9),",","Y",String(y10[1]1)1);
XX2: represents a specific partial conjugations
automorphism "alpha_Y(j),u" of the list CxY
XX3:=Concatenation(["c",String(-x8),",","Y",String(y10[11)1);
XX3: represents a specific partial conjugations
automorphism "alpha_Y(i),v"-1" of the list CxY
which is the inverse of "alpha Y,v"
XX4:=Concatenation(["c",String(-x9),",","Y",String(y9[11)1);
XX4: represents a specific partial conjugations
automorphism "alpha_Y(j),u"-1" of the list CxY

which is the inverse of "alpha_Y(j),u"

idx1:=0;
idx2:=0;
idx3:=0;

290

idx4:=0;
for t in [1..sf] do
if XX1=f[t] then

idx1l:=t;
fi;
if XX2=f[t] then
idx2:=t;
fi;
if XX3=f[t] then
idx3:=t;
fi;
if XX4=f[t] then
idx4:=t;
fi;
od;
Add (R2a, [0,idx1,idx2,1idx3,idx4]);
fi;
fi;
fi;
od;
od;
else
return("sY must be greater than zero");
fi;

sR2a:=Size(R2a);
return([R2a,sR2al);

end;

APCGRelationRConj4 Function

APCGRelationRConj4:=function(CxY,V,Lk,gens1,Y,f,R2a)

local k,m,n,j,i,q,1,diff2,diff3,diff4,R4,XX1,XX2,XX3,XX4,idx1,idx2,idx3,1idx4,
t,y9,y10,y11,y12,y13,y16,sR2a,x8,x08,x9,x11,W,sW,IntY,UniY,U3,NUniA,sLK, 1k,
invLk2,Unilk,KK,gens4,sgens4,gens3,sgens3,stl,st2, jx,Wj4,Wj,Wj3,Wj2,Wjl,Wznot,
sWznot,j1,y99,NCY,CxY1,sCxY1,x09,W1,y14,diff5,sY,sCxY,sf,sgensl,invV,L;

##

##

The input of this function are:

CxY: the list of elementary partial conjugations of Conj(G_zeta) or Conjv
#Hi## computed in "GeneratorsOfSubgroupConj" or "GeneratorsOfSubgroupConjv",
##H# V: the list of vertices

Lk: the list of links computed in "StarLinkDominateOfVertex"

gensl: type(l) generators of Conj(G_zeta) or Conjv computed in

#Hit# "Generators0fSubgroupConj" or "GeneratorsOfSubgroupConjv",

Y the list of the non-empty union of connected components of zeta\St(v)
#H## computed in "GeneratorsOfSubgroupConj" or "GeneratorsOfSubgroupConjv",
£ the list of the names of the definitions of the generators CxY

#it# [f(n) = CxY(n), n in N],

R2a: the list of indices computed in "APCGRelationRConji".
#i#

291

Firstly, it computes the list of elementary inner automorphisms W, then

gens4 the list of the generators of Conj(G_zeta) or Conjv. This is the

concatenation of the lists gensl and W but; without repeating generators

that appear in gensl.

Secondly, it computes the list of indices [1,idx1,idx2,idx3,idx4] of relations
of type (C4) or (Re4) and adds each of them to the list R2a (we

can replace R2a by [] if we need just the indices [1,idx1,idx2,idx3,idx4]

of these relationms.

It returns [W,gens4,R2a,sW,sgens4,sR2a] where sW, sgens4 and sR2a are the

sizes of W, gens4 and R2a respectively.

##
sCxY:=Size(CxY);

sgens1:=Size(gensl);

sY:=Size(Y);
sf:=Size(f);
invV:=-V; # invV: is the inverses list of the vertex list V

L:=Concatenation(V,invV); # L is the union of the lists V and invV
if sY<>0 then

##
In this section we compute the list of elementary inner automorphisms W
of the subgroup Conj(G_zeta) or Conjv by satisfying the conditions of this
type of partial conjugations automorphisms
##
W:=[1;
for j in [1..sCxY]do # loop through the list CxY defined above
x9:=CxY[jI[2];
x09:=AbsoluteValue(x9);
invLk2:=-Lk[x09]; # Compute invLk2 the inverse of of each link Lk(v); v in V
Unilk:=Concatenation(Lk[x09],invLk2);
Compute Unilk the link Lk(v) with respect to L
diff4:=Difference(L,Unilk); # For each vertex v of V we remove the list UnilLk
from L, since Unilk consist of vertices with
thier inverses which cancel each other
diff5:=Difference(diff4,-[x9]);
diffb5 is a one list (connected component) Y(i) of the list

Y which forms the first part of the inner automorphism W1

Wi:=[diff5,x9]; # Forms the elementary inner automorphism W1
Add(W,W1);

od;

##

##

sW:=Size(W);

Wznot:=[];

gens3:=[];

j1:=0;

for j in [1..sCxYldo
In this loop we add each elementary inner automorphisms W(j) to
a new list Wznot if W(j) not belong to the list CxY and it is not
trivial automorphism then add its name W(jl) to the list gens3
if not (W[j] in CxY) and Size(W[j][1])<>1 then

292

Add (Wznot,W[jl);
jl:=j1+1;
Add (gens3,Concatenation(["W",String(j1)1));
fi;
od;
sWznot:=Size(Wznot) ;
sgens3:=Size(gens3);
if Wznot<>[] then
gens4:=Concatenation(gensl,gens3);
gens4: the list of the generators of Conj(G_zeta) or Conjv
else
gens4:=gensl; # Means the subgroup Conj(G_zeta) or Conjv has just the

type (1) generators (elementary partial conjugations)

fi;
sgens4:=Size(gens4) ;
y14:=[1;

for i in [1..sCxY]do # loop through the list CxY excluding the first entry in CxY
x8:=CxY[i] [2];
diff2:=Difference(CxY[i] [1], [x8]);
diff2: represents the connected component Y(i) which is related
to a specific partial conjugation "alpha_Y(i),v" (CxY in this code)
for t in [1..sY]ldo
Verify the index of a given list diff2 (Y(i)) in Y which related
to "alpha_Y(i),v"
if diff2=Y[t] then
y14:=[t];
fi;
od;

##
In this section we compute the list of indices of the generators which is
[1,idx1,idx2,idx3,idx4] of the relators of type (C4) or (Red4) by
satisfying the conditions of these relatioms.
1: is just flag to let us know that R corresponds to a word
W_R = gamma_u * alpha_Y,v * gamma™-1_u * alpha_Y,v"-1 of length 4 as in
relation (C4) and (Re4) of the subgroups Conj(G_zeta) and Conjv respectively.
idx1: represents the index of a specific generator f(i) of f.
idx2: represents the index of another specific generator f(t) of f.
idx3: represents the index of the inverse of the specific generator f(i).
idx4: represents the index of the inverse of the specific generator f(t).
For example if [0,idx1,idx2,idx3,idx4]= [0, 1, 2, 4, 3] then this means
f1xf2xf4*x£3=1.
##
for j in [1..sCxY]do
x9:=W[jl[2];
diff3:=Difference(CxY[j][1], [x9]);
if not (x9 in diff2) and x8<>x9 and x8<>-x9 and Size(W[j][1])<>1 then
diff4:=Difference(W[j][1], [x9]);
Add(diff4,-x9);
diff4:=SSortedList (diff4);
diff5:=[diff4,-x9];
idx3:=0;
for k in [1..sWldo

293

if diff5=W[k] then

idx3:=k+sgens1;

fi;
od;
idx1:=j+sgensli;
Wj:=W[jl;

Wjl:=Difference (W[j1[1], [W[j1[2]11);
Wj2:=Union([Wj1, [-W[3j]1[2]111);
Wj3:=SSortedList (Wj2) ;
Wj4:=[Wj3,-wlj1[211;
for q in [1..sCxY]do

if Wj=CxY[q] then

je=a;
idx1:=q;
stl:="f";
else
stl:="W";
fi;
if Wj4=CxY[q] then
jx:i=q;
st2:="f";
idx3:=q;
else
st2:="W";
fi;

od;
XX2:=Concatenation(["c",String(x8),",","Y",String(y14[1]1)]);
XX2: represents a specific partial conjugations
automorphism "alpha_Y(j),v" of the list CxY
XX4:=Concatenation(["c",String(-x8),",","Y",String(y14[11)1);
XX4: represents a specific partial conjugations
automorphism "alpha_Y(j),v"-1" of the list CxY
which is the inverse of "alpha_Y(j),v"
idx2:=0;
idx4:=0;
for t in [1..sf] do # loop through the list f defined above
if XX2=f[t] then # Verify the index of the specific partial
conjugations XX2 in the list Y
idx2:=t;
fi;
if XX4=f[t] then # Verify the index of the specific partial
conjugations XX4 in the list Y

idx4:=t;
fi;
od;
Add (R2a, [1,idx1,idx2,idx3,idx4]);
fi;

od;
##
##

od;

else

294

return("sgens4 must be greater than zero");
fi;

sR2a:=Size(R2a);
return([W,gens4,R2a,sW,sgens4,sR2a]);

end;

APCGConjLastReturn Function

APCGConjLastReturn:=function(gens4,R2a,sR2a)
local i,j,C,F,rels,srels,GHK,KK,GGG,gens,sgens,GHK1,KK1,ZZa;
##

##
The input of this function are:

gens4: the list of generators (defined in APCGRelationRConj4) of the

#it# subgroup Conj(G_zeta),

R2a: the list of the indices of the relators (computed in the function
#i## APCGRelationRConj, ..., APCGRelationRConj4), and

sR2a: the size of the list R2a.

##

It forms the list of relations "rels" from the list R2a For each

element R of R2a the relator W_R is added to a new list rels

##

In fact this function forms the output of the functions

"FinitePresentationOfSubgroupConj" and "FinitePresentationOfSubgroupConjv"

in the package AutParCommGrp.

##
C:=gens4;
F:=FreeGroup(C); # computes the free group on gens4. The generators

are displayed as string.1l, string.2, ..., string.n
gens:=Generators0fGroup(F); # returns a list of generators gens of the free group F
sgens:=Size(gens);
##

##
In this section we form the list of relations rels from the list R2a
For each element R of R2a the relator W_R is added to a new list rels
##
rels:=[];
for i in [1..sR2a] do
GHK:=Size(R2a[il);
KK:=AbsoluteValue(R2a[i] [2]);
rels[i] :=gens[KK];
for j in [3..GHK] do
KK:=AbsoluteValue(R2a[i] [j]1);
rels[i] :=rels[i]*gens[KK];
od;
od;
##

295

B g g S g g S s s s
##
GGG:=F/rels; # computes the finitely presented group on

the generators gens of F defined above
srels:=Size(rels);
return[gens,rels,GGG] ;

end;

FinitePresentationOfSubgroupConj Function

FinitePresentation0fSubgroupConj:=function(V,E)

local R1,R2,R3,R4,R5,R6,R7,R8,5t,Lk,sV,M,NV,NE,sNV,sNE,Bs,CxY,sCxY,gens1,
sgensl,gens,sgens,R2a,sR2a,Y,sY,f,sf,F,T,gens4,sgens4,GGG,L,sL,W,sW,rels,
srels,Q,1i,j,tempedgex, tempedgey;

##

#i#

The input of this function is a simple graph zeta=(V,E), where V and E
represent the set of vertices and the set of edges respectively.

##

It returns [gens,rels,GGG], where

gens: is a list of free generators of the subgroup Conj(G_zeta) of the
#it# group Aut(G_zeta).

rels: is a list of relations in the generators of the free group F.

Note that relations are entered as relators, i.e., as words in
#i## the generators of the free group

GGG:=F/rels: is a finitely presented of the subgroup Conj(G_zeta)
#H## with generators gens and relators rels.

#it

In fact, the main work of this function is to run all the functions
we have read them below to give a finite presentation for the subgroup

Conj(G_zeta) of Aut(G_zeta).

##
if IsSimpleGraph(V,E)=true then # Call the function IsSimpleGraph to test
whether the graph zeta is simple or not
##
##

This section is to compute the star St(v) and the link Lk(v) for each v in V

R1:=StarLinkOfVertex(V,E); #F StarLinkOfVertex(<V>, <E>)
return([St,Lk]);

St:=R1[1];
Lk:=R1[2];
##
##

This section is to delete the star St(v) of a specific vertex v
from the graph zeta
#i#

296

R2:=DeleteVerticesFromGraph(St,V,E); #F DeleteverticesFromGraph(<St>, <V>, <E>)

return([NV,NE,sNV,sNE]);

NV:=R2[1];
NE:=R2[2];
sNV:=R2[3];
sNE:=R2[4];
##

##

This section is to compute the first part of the generators (elementary
partial conjugations) of the subgroup Conj(G_zeta)
##
R3:=Generators0fSubgroupConj (NE,NV,V) ;
#F Generators0fSubgroupConj(<NE>, <NV>, <V>)
return[CxY,sCxY,Y,sY,f,sf,gensl,sgensi];
CxY:=R3[1];
Y:=R3[3];
f:=R3[5];
gens1:=R3[7];
##

##

This section is to compute the relation C1 of the subgroup Conj(G_zeta)

##

R4:=APCGRelationRConj1(CxY,Y,f); #F APCGRelationRConjl(<CxY>, <Y>, <f>)
return([R2a,sR2al);

R2a:=R4[1];
sR2a:=R4[2];
##

##

This section is to compute the relation C2 of the subgroup Conj(G_zeta)
##
R5:=APCGRelationRConj2(CxY,Y,Lk,f,R2a);

#F APCGRelationRConj2(<CxY>, <Y>, <Lk>, <f>, <R2a>)

return([R2a,sR2a]l);

R2a:=R5[1];
sR2a:=R5[2];
##

##

This section is to compute the relation C3 of the subgroup Conj(G_zeta)

##

R6:=APCGRelationRConj3(CxY,Y,Lk,f,R2a);
#F APCGRelationRConj3(<CxY>, <Y>, <Lk>, <f>, <R2a>)
return([R2a,sR2al);

R2a:=R6[1];
sR2a:=R6[2];
##

##

This section is to compute the relation C4 of the subgroup Conj(G_zeta)
##

297

R7:=APCGRelationRConj4(CxY,V,Lk,gens1,Y,f,R2a);
#F APCGRelationRConj4(<CxY>, <V>, <Lk>, <gensl>, <Y>, <f>, <R2a>)
return([W,gens4,R2a,sW,sgens4,sR2al);

W:=R7[1];

gens4:=R7[2];

R2a:=R7[3];

sW:=R7[4];

sgens4:=R7[5];

sR2a:=R7[6];

##

##
This section is to compute the final relations rels from the matrix R2a
of indices of the generators and find the final return
##
R8:=APCGConjLastReturn(gens4,R2a,sR2a);
#F APCGConjLastReturn(<gens4>, <R2a>, <sR2a>)
return[gens,rels,GGG];

gens:=R8[1];
rels:=R8[2];
GGG:=R8[3];
#t
#t

else

return("The graph must be a simple graph");
fi;
return([gens,rels,GGG] ;

end;

298

A.3 Appendix to Chapter 4

In this appendix we will attached the codes for all the functions we have written in

Chapter 4 as follows:

1. EquivalenceClassOfVertex Function

EquivalenceClassOfVertex:=function(St)

local i,j,sV,EqCl,EqCl1,diff1,diff2;

##
AR
##

The input of this function is the list of stars St.

##

It computes the equivalence classes for each vertex v in V.

##
EqCl:=[];
sV:=Size(St); # Since the size of St is the same of the list of vertices V

for i in [1..sV] do # Loop through the list of vertices V
EqCl1:=[];

for j in [1..sV] do Loop through the list of vertices V and
for all vertices i not equal j do that:
compute diff1(i,j)=St(i)\{i,j}

compute diff2(i,j)=St(jH)\{i,j }

diffl:=Difference(St[i], [i,j]);
diff2:=Difference(St[jl, [i,j]1);
if diff1l = diff2 then
Add(EqC11,3); # add the vertex j to the list EqCl1 if
diffl = diff2

H H OB B

fi;
od;
Add (EqC1,EqCl1);
od;
return(EqCl) ;

end;

2. ClassPreservingConnectedComponents Function

ClassPreservingConnectedComponents:=function(EqCl, Comps)
local i, j, k ,cdash, remainingcdash, sizeComps, sizeEqClcurrent,sizeEqCl;
##

##

The input of this function is:

EqQCl: the list of equivalence classes of vertices of the graph zeta, and
Comps: the list of connected components of the graph zeta.

##

It constructs a new list of connected components Comps from the connected
components of the graph zeta by finding the connected components which

satisfy the conditions of partial conjugation for W_V (see Chapter one of

299

the manual for this package).
AR
##
sizeEqCl:=Size(EqCl);
for i in [1 ..sizeEqCl] do # loop through the list EqCl
sizeComps:=Size (Comps) ;
sizeEqClcurrent:=Size(EqC1l[il); # computes the size of each element of EqCl
cdash:=[];

remainingcdash:=[];

for j in [1..sizeEqClcurrent] do # loop through each element of EqCl
for k in [1..sizeComps] do # loop through the list Comps
if EqC1[i][j] in Comps[k] then # if any element of EqCl(i)(j) belong to

any connected component Comps(k) then do:
cdash:=Union(cdash, Comps[k]); # Union between the lists cdash and Comps (k)
fi;
od;
od;
for k in [1..sizeComps] do # For each element Comps(k) of Comps, the function IsSubset
is called to find remainingcdash the remaining components

from the list Comps that contain no element of EqCl(i)

if IsSubset(cdash,Comps[k])=false then

Add(remainingcdash,Comps [k]) ;

fi;

od;

Add(remainingcdash,cdash);

Comps:=remainingcdash; # Make a new list of connected components by

making Comps equal to list remainingcdash

od;
return(Comps) ;

end;

GeneratorsOfSubgroupConjv Function

Generators0fSubgroupConjv:=function(NE,NV,St,V)

local i, j,gens2,gens,genss,rels,Rels,Bs,h,G2,G1,R3,R4,Comps,sComps,sMV,sNE,
UniA,D,DD,sD,S,YYY,NYY,invNYY,DYY,sDYY,Ls,t,xn,union_element,NCxY,sgens,
gens4,sgens4,gens3,sgens3, invV,sL,Y6,xs2,Y3,Y4,sY4,xs1,diff2,Y5,sY5,sY6,
sz,Y7,sY7,sxs2,xs3,sxs3,xs,sxs,Uxs,sUxs,CxY,sCxY,y9,y8,Y,sY,sBs,¥Y8,sY8,
y19,x11,sxs1,k,f,sf,gens1,sgens1,CxY1,sCxY1,y10,y99,NCY,KK,HH,R10,R11,
R12,SuccComps,EqCl,sR12,PY4,sPY4,L,sV;

##

##

The input of this function are:

the list NE of all lists of edges of the subgraph zeta\St(v),

the list NV of all lists of vertices of the subgraph zeta\St(v),

the list of stars St,

the list of vertices V.

#i#

It computes the list gensl which form the type(l) generators of partial

300

conjugation for W_V the subgroup of Conj_V of the group Aut(G_zeta).
B g T
#i#t

gens:=[];

Bs:=[];

Y6:=[];

xs2:=[1;

sNE:=Size (NE);

sV:=Size(V);

invV:=-V; # invV: is the inverses list of the vertex list V
L:=Concatenation(V,invV); # L is the union of the lists V and invV
R11l:=EquivalenceClassOfVertex(St); # Call this function to computes the equivalence

Classes of each vertex v of the graph zeta

EqCl:=R11;

for h in [1..sNE]Jdo #loop through the lists NV and NE since they have the same size
G2:=NE[h];
G1:=NV[h];

R3:=ConnectedComponents0fGraph(G1,G2); # computes the list of all Connected components
for each subgraph (NV(h),NE(h))

Comps:=R3[1]; # Comps: list of components of (NV(h),NE(h))

sComps:=R3[2] ; # sComps: size of Comps

R12:=ClassPreservingConnectedComponents (EqCl,Comps) ;
Call this function to construct a new list of connected components
Comps from the connected components of the subgraph (NV(h),NE(h))
by finding the connected components which satisfy the conditions
of partial conjugation for W_V

sR12:=Size(R12);

Y4:=[]1;
for i in [1..sR12] do # loop through the lists R12
if R12[i]<>[] then # Chech that if R12(i) is not empty list
Add(Y4,R12[i]); # If R12(i) is not empty add it to the list Y4
fi;
od;
sY4:=Size(Y4);

for i in [1..sY4] do # loop through the list Y4
diff2:=Difference(L,Y4[i]); # computes the difference diff2 between the
list L and each elements (list) of the list
Add(xs1,diff2); # Y4 add each diff2 to the new list xsi
od;

sxsl:=Size(xsl);

##

In this section: loop through the list Y4 to construct a list called Y6.
In order to do this first find the size sz of xs1(i). For each element 1
of xs1(i) concatenate elements of Y4(i) with elements of 1 to give a list
KK. Then form a listY5 of pairs HH; with entries (KK, 1), for each element
1 of xs1(i). Then append Y5 to the list Y6.

##

Y5:=[];

301

for i in [1..sY4] do
sz:=Size(xs1[i]);
for j in [1..sz] do
KK:=Concatenation(Y4[il, [xs1[i][j1]1);
HH:=[KK,xs1[i]1[j1];
Add(Y5,HH) ;

od;
od;
sY5:=Size(Y5);
Add(Y6,Y5);
sY6:=Size(Y5);
##
##

Add(xs2,xs1); # Make new list xs2, by adding xsl1 to xs2. This step and tht
next one are needed because there are two inner loops
Add(Bs,Y4); # Make new lists Bs, by adding Y4 to Bs
od; # ending the loop through the lists NV and NE

if Y6<>[] then # To check that the list Y6 is nonempty list i.e., Y6 have

connected components that satisfy the conditions of Conjv

sY6:=Size(Y6);

Y7:=Concatenation(Y6);

Compute the list Y7 by concatenating the dense list of lists Y6

sY7:=Size(Y7);

sxs2:=Size(xs2);

xs3:=Concatenation(xs2);

Compute the list xs3 by concatenating the dense list of lists xs2
sxs3:=Size(xs83);
##

##
In this section: loop through the list xs3 to construct a list called xs by
adding each non-empty entry of xs3 to xs, and calculate the size of xs.
##
xs:=[];
for i in [1..sxs3] do

if not (xs3[i] in xs) and xs3[il<>[] then

Add(xs,xs3[i]);

fi;
od;
sxs:=Size(xs);
##
##
Uxs:=Union(xs); # Call the function Union to construct a list called Uxs by
sUxs:=Size(Uxs); # computing the union of xs and calculates it size sUxs
CxY1:=[];

for i in [1..sY7] do # Loop through the list Y7 to construct a list
called CxY1l by adding each non-empty entry of
Y7 to CxY1l, and calculate its size sCxY1
if not (Y7[i] in CxY1) and Y7[il<>[] then
Add(CxY1,Y7[i]);

302

fi;
od;
sCxY1:=Size(CxY1);
CxY:=[];
for j in [1..sCxY1]ldo # Loop through the list CxY1l to compute a list of
the definitions CxY of the elementary partial
conjugations, with its size sCxY
y9:=CxY1[j]1[2];
y10:=CxY1[j1[1];
y99:=8SortedList (y10) ;
NCY:=[y99,y9];
Add (CxY,NCY);
od;
sCxY:=Size (CxY);
Y8:=Concatenation(Bs); # Make a list Y8 by concatenating the dense
list of lists Bs defined above
sBs:=Size(Bs);
sY8:=Size(Y8);
Y:=[1;
for i in [1..sY8] do # Loop through the list Y8 to comstruct a list Y
of the non-empty unions of connected components
of zeta\St(v)
if not (Y8[i] in Y) and Y8[il<>[] then
Add(Y,Y8[il);

fi;
od;
sY:=Size(Y);
##

In this section: loop through the lists CxY and Y to comstruct a list f such
that each element of f represents the element of CxY of the same index, i.e.,
f(n)=CxY(n), n in N, and calculate its size sf
##
£:=[1;
y19:=[1;
for k in [1..sCxYldo

x11:=CxY[k] [2];

diff2:=Difference(CxY[k] [1], [x11]);

for j in [1..sYldo

if diff2=Y[j] then

y19:=[j1;
fi;
od;
NCxY:=Concatenation(["c",String(x11),",","Y",String(y19[11)1);
Add (£ ,NCxY) ;
od;
sf:=Size(f);
##
#i#
gensl:=[];

for j in [1..sfldo # Loop through the list f to create a list gensl of type(1l)

generators of of the subgroup Conj(G_zeta), and calculate

303

its size sgensl. Each element of gensl represents the
element of f of the same index, i.e., gensi(n)=f(n), n in N.

(This make these generators compatible with GAP format.)

Add(gens1,Concatenation(["f",String(j)1));
od;
sgens1:=Size(gensl);
return[CxY,sCxY,Y,sY,f,sf,gens1,sgens1];
else
Print ("There is no component C satisfies the conditions of partial conjugations");
Print("\n");
return[];
fi;

end;

FinitePresentationOfSubgroupConjv Function

FinitePresentation0fSubgroupConjv:=function(V,E)

local R1,R2,R3,R4,R5,R6,R7,R8,5t,Lk,Lkl,sV,M,NV,NE,sNV,sNE,Bs,CxY,sCxY,
gensl,sgensl,gens,sgens,R2a,sR2a,Y,sY,f,sf,F,T,gens4,sgens4,GGG,L,sL,W,
sW,rels,srels,Q,i,j,tempedgex,tempedgey;

##

L s s s s s s s s s s s s s I s s s s s s s s s s
##

The input of this function is a simple graph zeta=(V,E), where V and E
represent the set of vertices and the set of edges respectively.

##

It returns [gens,rels,GGG], where

gens: is a list of free generators of the subgroup Conj_V of the

#Hit# group Aut(G_zeta).

rels: is a list of relations in the generators of the free group F.

#i# Note that relations are entered as relators, i.e., as words in
#Hit# the generators of the free group.

GGG:=F/rels: is a finitely presented of the subgroup Conj_V with

#Hit# generators gens and relators rels.

#i#

In fact, the main work of this function is to run all the functions
we have read them below to give a finite presentation for the subgroup
Conj_V of Aut(G_zeta).
S S S s e s s S S s s s s s S s s s
##
if IsSimpleGraph(V,E)=true then # Call the function IsSimpleGraph to test
whether the graph zeta is simple or not
##

##
This section is to compute the star St(v) and the link Lk(v) for each v in V
##
R1:=StarLinkOfVertex(V,E); #F StarLinkOfVertex(<V>, <E>)
return([St,Lk]);
St:=R1[1];

304

Lk:=R1[2];

##

HIHHHF R R R

##

This section is to delete the star St(v) of a specific vertex v

from the graph zeta

##

R2:=DeleteVerticesFromGraph(St,V,E); #F DeleteverticesFromGraph(<St>, <V>, <E>)
return([NV,NE,sNV,sNE]);

NV:=R2[1];
NE:=R2[2];
sNV:=R2[3];
sNE:=R2[4];
i

i

This section is to compute the first part of the generators W_v

of the subgroup Conj_V

R3:=Generators0fSubgroupConjv(NE,NV,St,V);
#F Generators0fSubgroupConjv(<NE>, <NV>, <St>, <V>)
return[CxY,sCxY,Y,sY,f,sf,gensl,sgensl];
if R3[11<>[] then
CxY:=R3[1];
Y:=R3[3];
f:=R3[5];
gens1:=R3[7];
##

##

This section is to compute the relation Rel of the subgroup Conj(G_zeta)

##

R4:=APCGRelationRConj1(CxY,Y,f); #F APCGRelationRConjl(<CxY>, <Y>, <f>)
return([R2a,sR2al);

R2a:=R4[1];
sR2a:=R4[2];
##

##

This section is to compute the relation R2 of the subgroup Conj(G_zeta)
##
R5:=APCGRelationRConj2(CxY,Y,Lk,f,R2a);
#F APCGRelationRConj2(<CxY>, <Y>, <Lk>, <f>, <R2a>)
return([R2a,sR2al);

R2a:=R5[1];
sR2a:=R5[2] ;
##
##

This section is to compute the relation R3 of the subgroup Conj(G_zeta)
##
R6:=APCGRelationRConj3(CxY,Y,Lk,f,R2a);

#F APCGRelationRConj3(<CxY>, <Y>, <Lk>, <f>, <R2a>)

305

return([R2a,sR2a]);

R2a:=R6[1];

sR2a:=R6[2];

##

##

This section is to compute the relation R4 of the subgroup Conj(G_zeta)
##

R7:=APCGRelationRConj4(CxY,V,Lk,gens1,Y,f,R2a);

#F APCGRelationRConj4(<CxY>, <L>, <Lk>, <gemnsl> , <Y>, <f>, <R2a>)

return([W,gens4,R2a,sW,sgens4,sR2a]);
W:=R7[1];
gens4:=R7[2];
R2a:=R7[3];
sW:=R7[4];
sgens4:=R7[5];
sR2a:=R7[6];
##
B e e
##
This section is to compute the final relations rels from the matrix R2a
of indices of the generators and find the final return
##
R8:=APCGConjLastReturn(gens4,R2a,sR2a) ;

#F APCGConjLastReturn(<gens4>, <R2a>, <sR2a>)
return([gens,rels,GGG];

gens:=R8[1];
rels:=R8[2];
GGG:=R8[3];
##

##
return[gens,rels,GGG] ;
else
Print ("The subgroup here is trivial subgroup");
Print("\n") ;Print ("\n");
return(];
fi;
else
return("The graph must be a simple graph");
fi;

end;

306

A.4 Appendix to Chapter 8

In this appendix we will attached the codes for all the functions we have written in

Chapter 8 as follows:

1. SwapRowsColumns Function

SwapRowsColumns:=function(degf,x,y)
local Temp5,Temp6;
##

##

The input of this function are:

a matrix degf of size m x m and two different numbers x,y where
x,y in {1, ..., m}.

##

It exchanges row(x) and row(y), and at the same time exchange,
column(x) and column(y).

It returns the matrix degf after the replacement.

##
##In this section we exchange the two rows x and y
##
Temp5:=[];
Temp5 := StructuralCopy(degf); # Row replacement
degf [x] :=Temp5[y];
degf [y] :=Temp5 [x];
##
##
degf :=TransposedMatDestructive(degf); # compute the transpose of degf
##
#i#
##In this section we exchange the two columns x and y
##
Temp6:=[];
Temp6 := StructuralCopy(degf) ;
degf [x] :=Temp6 [y] ;
degf [y] :=Temp6 [x] ;
##
#i
degf :=TransposedMatDestructive(degf); # compute the transpose of degf
##
#i#

return (degf);

end;

307

2. Solveindic1WithProof Function

SolveindiciWithProof :=function(dimf,f)
local i,j,diffk,dimej,dimei,f1,Cj,M1,M2,Cjb,Ca,Cja,Ma,Mb,Mc,Xd,Xd1,Md,Mel,Me2,m;
##

##

This function is called only if the conditions of Propositions 1.4.1

(as in the manual) holds.

##

The input of this function are:

dimf: the matrix of the dimensions of the polynomials which is of size m x m,
#Hit# f: the identity matrix of size m x m.

dimf and f are output by the main function IsSolvableModuleWithProof.

##

The function outputs a proof that M is solvable.

##

B g S s s s s s s s S s s S s s s s s
##

m:=Size(dimf);

##

##
In this section we compute new entries for matrix f, by going through the
entries of the matrix dimf and set f[i][jl= dimf[i][j] if dimf[i][j] < O
and f[i][j1=0 if dimf[i][j] >= O, for i=1, ..., m, depending on the facts
that in R, if dim (f) = j, i.e., f in R_j then degree of £ = - j in the
negative grading.
##
for j in [1..m] do
for i in [1..m] do
if i>j then
if dimf[i][j]1>=0 then
£[1][31:=0;
else
£[i] [j]:=dimf [1] [j];
fi;
else
£[i]1[j]1:=dimf [1] [j];

fi;
od;
od;
Print("\ f=",f);
Print(" ","\n");Print(" ","\n");
##
##

In this section if f is an upper triangular matrix then we Compute Newf
from f, using the fact that (partial)”2 =0 and R is an integral domain.
Also we compute the matrix d of the differential "partial" with respect
to the basis S = e_i where i=1, ..., m.

##

if IsUpperTriangularMat (f)=true then

308

for i in [1..m] do

f[i] [1]:=0;
od;
Print ("\ Newf=",f);
Print(" ","\n");Print(" ","\n");

for i in [1..m] do
for j in [1..m] do
if £[i]1[j1<>0 then
f[i][j]:=Concatenation("f",String(i),String(j));

fi;
od;
od;
Print ("\ d=",f);
Print(" ","\n");Print(" ","\n");
else

return("f is not upper triangular matrix");
fi;
##
s s s s s
##
In this section we construct a proof that M is solvable if f is an
upper triangular matrix.
##
Print(" , (Since d°2=0 and R is an integral domain). ");
Print(" ","\n");Print(" ","\n");

Cjb:=" ",
Ca:="Let CO=0 and ";
Print(Ca);

for j in [1..m] do
Cja:=Concatenation(["C",String(j),"=<"]);
for i in [1..j] do
if i=j then
M1:=Concatenation(["e",String(i)]);
else
M1:=Concatenation(["e",String(i),","]);
fi;
Cja:=Concatenation([Cja,M1]);
od;
if j=m then
Cja:=Concatenation([Cja,"> "1);
else
Cja:=Concatenation([Cja,"> , "1);
fi;
Print(Cja);
if j=m then
Cjb:=Concatenation([Cjb,"C",String(j),"/","C",String(j-1)," is free "]);

else
Cjb:=Concatenation([Cjb,"C",String(j),"/","C",String(j-1)," is free, "]);
fi;
od;
Print(" ","\n");
Print(Cjb);

Print(" ","\n");Print(" ","\n");

309

M2:=[1;

Ma:
Mb:
Mc:
Xd:

ng=";

"d(X)=";
"d(x)=a1(0)";
"If x in C";

Me2:="Hence, 0=CO subset of ";

for j in [1..m] do

Xd1:=Concatenation([Xd,String(j),", then x can be written uniquely as: "]);
Print (Xd1);
Ma:=Concatenation([Ma,"a",String(j),"*","e",String(j)1);
Print(" ","\n");

Print (Ma);

Ma:=Concatenation([Ma,"+"]);
Mb:=Concatenation([Mb,"a",String(j),"*","d(e",String(j),")"1);
Print(" ","\n");

Print (Mb) ;

Mb:=Concatenation([Mb,"+"]);

if j>1 then

Mc:=Concatenation([Mc,"a",String(j),"("1);
for i in [1..j-1] do
if i<j-1 then
Mc:=Concatenation([Mc,"f",String(i),String(j),"*","e",String(i),"+"1);

else
Mc:=Concatenation([Mc,"f",String(i),String(j),"*","e",String(i),")"]1);
fi;
od;
fi;
Print(" ","\n");
Print (Mc);

Mc:=Concatenation([Mc,"+"]);

Md:=Concatenation([" in ","C",String(j-1)1);

Print (Md) ;

Print(" ","\n") ;Print(" ","\n");

Mel:=Concatenation(["Hence ","d(C",String(j),") subset of C",String(j-1)," and
then d(C",String(j),"/C",String(j-1),")=0."1);

Print (Mel);

Print(" ","\n"); Print(" ","\n");

if j<m then

Me2:=Concatenation([Me2,"C",String(j)," subset of " 1);

else
Me2:=Concatenation([Me2,"C",String(j),"= M is a composition series for M. "]1);
fi;
od;
Print (Me2) ;
Print(" ","\n"); Print(" ","\n");
##
#i#

return ("M is solvable");

end;

310

3. Solveindic2WithProof Function

Solveindic2WithProof :=function(dimf,m)
local i,j,f,d;
##

##

This function is called only if the conditions of Propositions 1.4.3
##(as in the manual) holds.

##

This function is called if the modules M is outside the classification.
##

The inputs of this function are the matrix dimf of dimensions and the
dimension m of the vector of dimensions which are output by the main
function IsSolvableModuleWithProof.

dimf and f are output by the main function IsSolvableModuleWithProof.
##

The function outputs a proof that M is solvable.

L s s s s s s s s I s s s s s s s s s s s s s s s s s T s T
##

f:=dimf;

##

##
In this section we compute new entries for matrix f, by going through the
entries of the matrix dimf and set f[i][jl= dimf[i][j] if dimf[i][j] < O
and f[i][j]=0 if dimf[i][j] >= O, for i=1, ..., m, depending on the facts
that in R, if dim (f) = j, i.e., f in R_j then degree of f = - j in the
negative grading.
##
for j in [1..m-2] do
for i in [1..m] do
if i<j+2 then
if dimf[i][j]1<0 then
£[i1[§] :=dimf [i] [j1;
else
£[i1[j1:=0;
fi;
else
if dimf[i]1[j]1<0 then
£[i]1[j]1:=dimf [i]1 [j];

else
f[i1[31:=0;
fi;
fi;
od;
od;
Print("\ f=",f);
Print(" ","\n");
##

2 s S S S S S S s S S S R s S S s S S s S S s S s
##
We compute the matrix d of the differential "partial" with respect to

311

the basis S = e_i where i=1, ..., m.
##
for i in [1..m] do
for j in [1..m] do
if £[i]1[j1<>0 then
£[i] [j]:=Concatenation("f",String(i),String(j));
fi;
od;
od;
Print("\ d=",f);
Print(" ","\n");Print(" ","\n");
##

##
return("The module M is outside the classification");

end;

Solveindic3WithProof Function

Solveindic3WithProof:=function(m,dimf,f)
local i,j,diffk,dimej,dimei,f1,Cj,M1,M2,Cjb,Ca,Cja,Ma,Mb,Mc,Xd,Xd1,Md,Mel,Me2,Tranf;
##

##

This function is called only if the conditions of Propositions 1.4.4

(as in the manual) holds.

##

The input of this function are:

#it# m: the dimension of the vector of dimensions

dimf: the matrix of the dimensions of the polynomials which is of size m x m,
#Hit# f: the identity matrix of size m x m.

m, dimf and f are output by the main function IsSolvableModuleWithProof.
##

The function outputs a proof that M is solvable.

##
AR R R
##
In this section we compute new entries for matrix f, by going through the
entries of the matrix dimf and set f[i]l[jl= dimf[i][j] if dimf[il[j] < O
and f[i][j1=0 if dimf[i][j] >= 0, for i=1, ..., m, depending on the facts
that in R, if dim (f) = j, i.e., f in R_j then degree of f = - j in the
negative grading.
##
for j in [1..m] do
for i in [1..m] do
if i>j then
if dimf[i] [j1>=0 then
£[i1[j]1:=0;

312

else
£[1i]1 [j]:=dimf [i] [j];
fi;
else
£[i]1[j]:=dimf [1] [j];
fi;
od;
od;
#i#

##

In this section if f is an lower triangular matrix then we set f[i][i]
to zero, using the fact that (partial)”2 =0 and R is an integral domain.
#i#

if IsLowerTriangularMat (f)=true then

for i in [1..m] do

f[i][i]:=0;
od;
Print("\ f=",f);
Print(" ","\n");
else

return("f is not upper triangular matrix");
fi;
##

##

Tranf :=TransposedMatDestructive(f); # We have used TransposedMatDestructive(f) function,
because it will give us,the same result when we
use the rows and columns replacement.

Print("\ Tranf=",Tranf);

Print(" ","\n");

#i#

##
In this section we construct a proof that M is solvable if f is an
upper triangular matrix.
##
if IsUpperTriangularMat(Tranf)=true then

for i in [1..m] do

for j in [1..m] do
if Tranf[i][j1<>0 then
Tranf [i] [j] :=Concatenation("f",String(i),String(j));
fi;
od;

od;

Print ("\ d=",Tranf);
else

return("Maybe d is not upper triangular matrix or maybe it is");
fi;
Print(" , (Since d°2=0 and R is an integral domain). ");
Print(" ","\n");Print(" ","\n");
Cjb:="";
Ca:="Let CO0=0 and ";

313

Print(Ca);
for j in [1..m] do
Cja:=Concatenation(["C",String(j),"=<"1);
for i in [1..j] do
if i=j then
M1:=Concatenation(["e",String(i)]);
else
M1:=Concatenation(["e",String(i),","]);
fi;
Cja:=Concatenation([Cja,M1]);
od;
if j=m then

Cja:=Concatenation([Cja,"> "1);

else

Cja:=Concatenation([Cja,"> , "1);
fi;
Print(Cja);

if j=m then
Cjb:=Concatenation([Cjb,"C",String(j),"/","C",String(j-1)," is free "1);

else
Cjb:=Concatenation([Cjb,"C",String(j),"/","C",String(j-1)," is free, "1);
fi;
od;
Print(" ","\n");
Print (Cjb);
Print(" ","\n");Print(" ","\n");
M2:=[];
Ma:="x=";
Mb:="d(x)=";

Mc:="d(x)=a1(0)";
Xd:="If x in C";
Me2:="Hence, 0=CO subset of ";
for j in [1..m] do
Xd1:=Concatenation([Xd,String(j),", then x can be written uniquely as: "]);
Print(Xd1);
Ma:=Concatenation([Ma,"a",String(j),"*","e",String(j)]1);
Print(" ","\n");
Print (Ma) ;
Ma:=Concatenation([Ma,"+"]);
Mb:=Concatenation([Mb,"a",String(j),"*","d(e",String(j),")"1);
Print(" ","\n");
Print (Mb) ;
Mb:=Concatenation([Mb,"+"]);
if j>1 then
Mc:=Concatenation([Mc,"a",String(j),"("1);
for i in [1..j-1] do
if i<j-1 then
Mc:=Concatenation([Mc,"f",String(i),String(j),"*","e",String(i),"+"]);
else
Mc:=Concatenation([Mc,"f",String(i),String(j),"*","e",String(i),")"]);
fi;
od;
fi;

314

Print(" ","\n");
Print (Mc) ;
Mc:=Concatenation([Mc,"+"]);
Md:=Concatenation([" in ","C",String(j-1)1);
Print (Md) ;
Print(" ","\n");Print(" ","\n");
Mel:=Concatenation(["Hence ","d(C",String(j),") subset of C",String(j-1)," and
then d(C",String(j),"/C",String(j-1),")=0."1);
Print (Mel);
Print(" ","\n"); Print(" ","\n");
if j<m then
Me2:=Concatenation([Me2,"C",String(j)," subset of " 1);

else
Me2:=Concatenation([Me2,"C",String(j),"= M is a composition series for M. "]);
fi;
od;
Print (Me2);
Print(" ","\n"); Print(" ","\n");
#i#
##

return ("M is solvable.");
#return (f);

end;

Solveindic4Size2by2 Function

##

##

This function to convert the matrix degf to an upper triangular matrix.
##

The input of the function Solveindic4Size2by2 is a matrix degf of

size 2x2 which is output by the main function IsSolvableModuleWithProof.
##

It returns the matrix degf after replacement and tests whether it is

an upper triangular matrix or not.

##

Solveindic4Size2by2:=function(degf)

degf[1][1]:=0; # Using the hypothesis of Proposition 1.4.2.

degf[2] [2]:=0; # Using the hypothesis of Proposition 1.4.2.

degf[1]1[2]:=0; # Using (partial)"2 =0 (d"2=0 in this code) and R is an integral domain
degf:= StructuralCopy(degf);

degf :=SwapRowsColumns (degf,1,2);

##

##

This section to check whether degf is an upper triangular matrix or not
##

if IsUpperTriangularMat(degf)=false then

315

Print("\ degf=",degf);

Print(" ","\n");Print(" ","\n");
Print("\ Thus, degf is not a strictly upper triangular matrix");
Print(" ","\n");Print(" ","\n");
else
Print ("\ degf=",degf);
Print(" ","\n");Print(" ","\n");
Print ("\ Thus, degf is a strictly upper triangular matrix, so M is solvable.");
Print(" ","\n");Print(" ","\n");
fi;
##
##

return (degf);

end;

Solveindic4Size3by3 Function

Solveindic4Size3by3:=function(degf)

#local SwapRowsColumns;

This function to convert the matrix degf to an upper triangular matrix.

The input of the function Solveindic4Size3by3 is a matrix degf of size
3x3 as in Remark 2.1(i) (it is case(l) of 3x3 matrix when £32=0).

This function is called only if £11=£f22=£33=0 and Sum(b)=0.

##

It returns the matrix degf after replacement and tests whether it is

a strictly upper triangular matrix or not.

##

degf[3]1[2]:=0; # Using (partial)”2 =0 (d"2=0 in this code) and R is an integral domain
degf[1][2]:=0; # Using (partial)”2 =0 (d"2=0 in this code) and R is an integral domain
degf:= StructuralCopy(degf); # creating duplicate of degf

degf : =SwapRowsColumns (degf,1,2);

if IsUpperTriangularMat(degf)=false then
Print("\ degf=",degf);

Print(" ","\n");Print(" ","\n");
Print("\ Thus for the first case, degf is not a strictly upper triangular matrix");
Print(" ","\n");Print(" ","\n");
else
Print ("\ degf=",degf);
Print(" ","\n");Print(" ","\n");
Print("\ Thus for the first case, degf is a strictly upper
triangular matrix, so M is solvable.");
Print(" ","\n");Print(" ","\n");
fi;

return (degf);

316

end;

Solveindic4Size4by4 A Function

Solveindic4Size4by4A:=function(degf)
##

This function to convert the matrix degf to an upper triangular matrix.

The input of the function Solveindic4Sizedby4A is a matrix degf of size
mxm where m>=4 and f[i][i]=0, i=1,...,m with £32=0, f12=0, £32=0 and
Sum(b)=0 as in Remark 2.1(ii).

It returns the matrix degf after replacement and tests whether it is

a strictly upper triangular matrix or not.

##
degf [3]1[2]:=0; # Using (partial)”2 =0 (d"2=0 in this code) and R is an integral domain
degf[1]1[2]:=0; # Using (partial)"2 =0 and R is an integral domain
degf:= StructuralCopy(degf); # creating duplicate of degf
degf :=SwapRowsColumns (degf,1,2) ;
if IsUpperTriangularMat(degf)=true then
Print ("\ degf=",degf);
Print(" ","\n");Print(" ","\n");
Print("\ Thus for the First case, degf is a strictly upper Triangular matrix,
so M is solvable.");
Print(" ","\n");Print(" ","\n");
else
degf:= StructuralCopy(degf); # creating duplicate of degf
degf : =SwapRowsColumns (degf,3,4) ;
Print("\ degf=",degf);
Print(" ","\n");Print(" ","\n");
Print("\ Thus for the First case, degf is a strictly upper Triangular matrix,
so M is solvable.");
Print(" ","\n");Print(" ","\n");
fi;
return (degf);

end;

Solveindic4Size4by4B Function

Solveindic4Size4by4B:=function(degf)
local i,m;
##

##
This function to convert the matrix degf to an upper triangular matrix.
##
The input of the function Solveindic4Size4by4B is a matrix degf of size

317

mxm where m>=4 such that £32<>0 and f£21=0 with zeros on the diagonal and Sum(b)=0.
The matrix degf of Remark 2.1(ii) is one example of the input of this function.

##

##

It returns the matrix degf after replacement and tests whether it is

a strictly upper triangular matrix or not.

##

m:=Size(degf);

degf[2][1]:=0; # Using (partial)"2 =0 (d"2=0 in this code) and R is an integral domain
degf [2] [3]:=0; # Using (partial)"2 =0 and R is an integral domain

degf :=SwapRowsColumns (degf,2,3) ;
if IsUpperTriangularMat(degf)=true then
Print("\ degf=",degf);
Print(" ","\n");Print(" ","\n");
Print("\ Thus for the second case, degf is a strictly upper triangular matrix,
so M is solvable.");
Print(" ","\n");Print(" ","\n");
else
degf :=SwapRowsColumns (degf,3,4) ;
degf [1]1 [3]:=0; # Using (partial)”2 =0 and R is an integral domain
for i in [4..m] do
degf[11[il:=0; # Using (partial)”2 =0 and R is an integral domain
degf[2]1[i]:=0; # Using (partial)”2 =0 and R is an integral domain
od;
degf :=SwapRowsColumns (degf,3,4) ;
degf : =SwapRowsColumns (degf,2,3) ;
degf : =SwapRowsColumns (degf,3,4) ;
Print("\ degf=",degf);
Print(" ","\n");Print(" ","\n");
Print("\ Thus for the second case, degf is a strictly upper triangular matrix,
so M is solvable.");
Print(" ","\n");Print(" ","\n");
fi;
return (degf);

end;

Solveindic4Size5by5 Function

Solveindic4Sizebbyb5:=function(degf)
local i,j,m;
##

##

This function to convert the matrix degf to an upper triangular matrix.
##

The input of the function Solveindic4Size5by5 is a matrix degf of size
5x5 with £32=0 and Sum(b)=2 as in Remark 2.1(v).

##

It returns the matrix degf after replacement and tests whether it is

318

a strictly upper triangular matrix or not.

##

Lrnssssiinnnsssiinnsss s s s s i s s i s s s s s s s s s s s s s T s s 2

##

m:=Size(degf);

degf [3]1[2]:=0; # Using (partial)”2 =0 (d°2=0 in this code) and R is an integral domain
degf[11[2]:=0; # Using (partial)"2 =0 and R is an integral domain

##

##
We will do the following steps, because we have that
(partial)~2 =0 (d"2=0 in this code).
These steps will help us to convert the matrix degf
to an upper triangular matrix
##
for i in [1..m] do
for j in [1..m] do
if j>= i+2 then
degf [i][j]:=0;
fi;
od;
od;
#i

##

degf := StructuralCopy(degf); # creating duplicate of degf

degf :=SwapRowsColumns (degf,1,2);

if IsUpperTriangularMat(degf)=false then
degf : =SwapRowsColumns (degf,3,4) ;

fi;

if IsUpperTriangularMat(degf)=false then
degf :=SwapRowsColumns (degf,4,5) ;

fi;

if IsUpperTriangularMat(degf)=false then
degf : =SwapRowsColumns (degf,3,4) ;

fi;

if IsUpperTriangularMat(degf)=false then
Print("\ degf=",degf);

Print(" ","\n");Print(" ","\n");
Print("\ Thus for the First case, degf is not a strictly upper triangular matrix.");
Print(" ","\n");Print(" ","\n");
else
Print("\ degf=",degf);
Print(" ","\n");Print(" ","\n");
Print("\ Thus for the First case, degf is a strictly upper triangular matrix,
so M is solvable.");
Print(" ","\n");Print(" ","\n");
fi;

return (degf);

end;

319

10.

11.

Solveindic4Size6by6 Function

Solveindic4Size6by6:=function(degf)
#local SwapRowsColumns;
##

##

This function to convert the matrix degf to an upper triangular matrix.
##

The input of the function Solveindic4Size6by6 is a matrix degf of size

6x6. It is the first case of size 6x6 where £32=0 and b= [1,1,1]

i.e., Sum(b)=3 as in Remark 2.1(vi).

##

It runs the function SwapRowsColumns five times swapping rows and columns

until degf is upper triangular matrix.

It returns the matrix degf.
##
L s S S S S S s S s S S s S S s S S s S S s S s

The the following steps will help us to convert the matrix
degf to an upper triangular matrix

##

degf :=SwapRowsColumns (degf,1,2);

degf :=SwapRowsColumns (degf,2,6) ;

degf :=SwapRowsColumns (degf,3,4) ;

degf :=SwapRowsColumns (degf,4,5) ;

degf :=SwapRowsColumns (degf,3,4) ;

#i#

##
return (degf);

end;

Solveindic4Size6by6Above Function

Solveindic4Size6by6Above:=function(degf)
local i, j,mysize,mycounter,mycounterl,mycounter2,mycounter3;
##

##

This function to convert the matrix degf to an upper triangular matrix.
##

The input of the function Solveindic4Size6by6Above is a matrix degf of

size m x m where m>=6. It is case (1) of size >= 6x6 where £32=0, as in
Remark 2.1(vii)

##

It returns the matrix degf after replacement and tests whether it is

a strictly upper triangular matrix or not.

##

320

HH##HE AR R R

##

mysize:=Size(degf);

degf[3][2]:=0; # Using (partial)"2 =0 (d"2=0 in this code) and R is an integral domain
degf[1]1[2]:=0; # Using (partial)"2 =0 and R is an integral domain

#it

##
We will do the following because we have that (partial)~2 =0
These steps will help us to convert the matrix degf to an
upper triangular matrix
##
for i in [1..mysize] do
for j in [1..mysize] do
if j>= i+2 then
degf[i] [j]:=0;
fi;
od;
od;
##

#i#
The following steps will help us to convert the matrix
degf to an upper triangular matrix
##
if mysize<6 then
return("mysize must be >=6");
elif mysize=6 then
degf :=Solveindic4Size6by6 (degf) ;
elif mysize=7 or mysize=8 then
mycounter:=mysize -6;
degf:=Solveindic4Size6by6 (degf) ;
for i in [1..mycounter] do
if i=1 then
degf :=SwapRowsColumns (degf, 4+i,6+i);
degf :=SwapRowsColumns (degf, 3+i,4+i);
degf :=SwapRowsColumns(degf, 1 ,3+i);
fi;
if i>1 then
degf :=SwapRowsColumns (degf, 4+i,6+i);
degf :=SwapRowsColumns (degf, 3+i,4+i);
degf :=SwapRowsColumns (degf, 1+i,3+i);
degf :=SwapRowsColumns (degf, 1 ,1+i);
degf :=SwapRowsColumns(degf, 2 ,1+i);

od;
fi;
if mysize>=9 then

mycounter:=mysize -6;

degf :=Solveindic4Size6by6 (degf) ;

for i in [1..mycounter] do

if i=1 then
degf :=SwapRowsColumns (degf, 4+i,6+i);

321

12.

fi;
if

fi;

degf :=SwapRowsColumns (degf, 3+i,4+i);
degf :=SwapRowsColumns(degf, 1 ,3+i);
fi;
if i>1 then
degf :=SwapRowsColumns (degf, 4+i,6+i);
degf :=SwapRowsColumns (degf, 3+i,4+i);
degf :=SwapRowsColumns (degf, 1+i,3+i);
degf :=SwapRowsColumns (degf, 1 ,1+i);
degf :=SwapRowsColumns (degf, 2 ,1+i);
fi;
od;
degf:= StructuralCopy(degf); # creating duplicate of degf
mycounterl:=mysize -8;
for mycounter2 in [1..mycounterl] do
for i in [1..mycounter2] do
mycounter3:=mycounter2-i+1;
degf :=SwapRowsColumns (degf, 2+mycounter3,3+mycounter3);
od;
od;

IsUpperTriangularMat (degf)=false then
Print ("\ degf=",degf);
Print(" ","\n");Print(" ","\n");
Print("\ Thus for the first case, degf is not a strictly upper triangular matrix");
Print(" ","\n");Print(" ","\n");

else
Print("\ degf=",degf);
Print(" ","\n");Print(" u’n\nn);

Print("\ Thus for the first case, degf is a strictly upper triangular matrix,
so M is solvable.");
Print(" ","\n");Print(" u,n\nn);

#return("Thus, M is solvable.");

return (degf);

end;

Solveindic4Sizembym Function

Solveindic4Sizembym:=function(degf)

local i,j,m;

##

##

This function to convert the matrix degf to an upper triangular matrix.
##

The input of the function Solveindic4Sizembym is a matrix degf of

##
##
#i#
#i#

size m x m with m>=3, as in Remark 2.1(viii). It is case (1) of size >= 6x6 where f32=0,

as in Remark 2.1(vii)

The function outputs a proof that M is solvable for this case.

322

#i#
m:=Size(degf);
##

##

We will do the following because we have that (partial)”2 =0
(d°2=0 in this code) and R is an integral domain.

These steps will help us to convert the matrix degf to an

upper triangular matrix

##

degf [2] [1] :=0;

degf [2] [3] :=0;

for i in [1..m] do

for j in [1..m] do
if j>= i+2 then
degf[i] [j]:=0;
fi;
od;
od;
##

##

After we set i=2 and j=m we run the function SwapRowsColumns
while i<j with the input: SwapRowsColumns(degf,i,j) with

setting i=i+l1 and j=j-1. These steps will help us to convert

the matrix degf to an upper triangular matrix

##
i:=2;
ji=m;

while i<j do
degf :=SwapRowsColumns (degf,i,j);
i:=i+1;
ji=j-1;
od;
##
B S S S S S
##
Tests whether the matrix degf is a strictly upper triangular matrix or not.
##
if IsUpperTriangularMat(degf)=true then
Print("\ degf=",degf);
Print(" ","\n");Print(" ","\n");
Print("\ Thus for the second case, degf is a strictly upper triangular matrix,

so M is solvable.");

Print(" ","\n");Print(" ","\n");
else
Print("\ degf=",degf);
Print(" ","\n");Print(" ","\n");
Print("\ Thus for the second case, degf is not a strictly upper triangular matrix.");
Print(" ","\n");Print(" ","\n");
fi;
##

13.

#i#
return (degf);

end;

Solveindic4aWithProof Function

Solveindic4WithProof :=function(degf)
local i,j,t,Temp3,Casl,b,x,jt,S1,j1,Tempd,g,m;
##

##
This function is called only if the conditions of Propositions 1.4.2
(as in the manual) holds.
##
The input of this function is a matrix degf of size m x m which is output
by the main function IsSolvableModuleWithProof.
##
It calls the functions: Solveindic4Size3by3, Solveindic4Sizedby4A,
Solveindic4Size4by4B, Solveindic4Sizebbyb, Solveindic4Size6by6,
Solveindic4Size6by6Above and Solveindic4Sizembym
##
The function outputs a proof that M is solvable.
HHHEHHHEHEEHHEHEEEEHEEHEHEEEHHBHEERHEEEHERHEERHEEHEERHERHEERHERRHERER
##
m:=Size(degf);
Temp3:=[];
Temp3 := StructuralCopy(degf); # backup
i:=0;
Cas1:=2"(m-3); ## Casl is the number of the cases which are solvable
jt:=0;
for i in [1..Cas1] do #loop through the solvable cases
degf:= StructuralCopy(Temp3) ;
##

##
In this section we convert decimal to binary which it helps us
to represents fij by O oR 1 for some specific i and j, such that
fij are entries below the diagonal of degf
b:=[1;
x:=jt;
while x>0 do
Add(b,x mod 2);
x:=(x-(x mod 2))/2;
od;
jti=jt+1;
S1:=m-Size(b)-3;
if S1<>0 then
for t in [1..S1] do
Add (b,0);
od;
fi;

324

##
LE s s s s s s s s s s s s s s s s s s
##
Set some entries of degf to zero, using the fact that
(partial)"2 =0 and R is an integral domain
##
j1:=0;
degf := StructuralCopy(Temp3);
for j in [1..m-3] do
j1l:=j+3;
if b[j1=0 then
degf [j1][j1-1]:=0;
degf[j1][j1]:=0;
else ## this case when b[jl=1
degf[j11[j1]:=0;
degf [j1-11[j1]:=0;

fi;
od;
##
##
If degf of size 3x3 we set f[il[i]=0 for i=1, ..., 3,
using the hypothesis of Proposition 1.4.2
##

degf [3]1[3]:=0;
degf [2] [2] :=0;
degf [1] [1]:=0;
##

##
Temp4:=[];
Temp4:= StructuralCopy(degf); # backup 2

g:=Sum(b); ## g: Represents the sum of the entries of each vector b

degf:= StructuralCopy(Temp4) ;

if g=0 then ## This case represents the vector b when all the entries of b are zeros
Print("\ b=",b);

Print(" ","\n");Print(" ","\n");
Print("\ i=",i);
Print (" u’n\nn);Print(u n’u\nn);

Print("\ degf Original Case_after setting some elements to Zero is ",degf);
Print (" ","\n");Print(" ","\n");
if m=3 then
degf:=Solveindic4Size3by3(degf); ## It represents the first case when £32=0.
fi;
if m>=4 then
degf :=Solveindic4Size4by4A(degf); ## It represents the first case when £32=0.
degf:= StructuralCopy(Temp4) ;
degf :=Solveindic4Size4by4B(degf); ## It represents the second case when £32<>0.
fi;
fi;

if g=m-3 then # This case represents the vector b when all the entries of b are Ones.

325

14.

Print("\ b=",b);

Print (" ","\n");Print(" ","\n");

Print("\ i=",i);

Print(" ","\n");Print(" ","\n");

Print("\ degf Original Case_after setting some elements to Zero is ",degf);
Print(" ","\n");Print(" ","\n");

if m=3 then

degf:= StructuralCopy(Temp4) ;
degf :=Solveindic4Sizembym(degf); ## It represents the second case when £32<>0.
fi;
if m=4 then
degf :=Solveindic4Size4by4A(degf); ## It represents the first case when £32=0.
degf:= StructuralCopy(Temp4) ;
degf:=Solveindic4Sizembym(degf); ## It represents the second case when £32<>0.
fi;
if m=5 then
degf:=Solveindic4Sizebby5(degf); ## It represents the first case when £32=0.
degf:= StructuralCopy(Temp4) ;
degf:=Solveindic4Sizembym(degf); ## It represents the second case when £32<>0.
fi;
if m>=6 then
degf :=Solveindic4Size6by6Above (degf); ## It represents the first case when £32=0.
degf:= StructuralCopy(Temp4) ;
degf:=Solveindic4Sizembym(degf); ## It represents the second case when £32<>0.
fi;
fi;
od; #######H#####E End of The Loop of The Solvable Cases.
return("M is solvable.");

end;

SolvableModuleByUsualGradedWithProof Function

SolvableModuleByUsualGradedWithProof :=function(D,P)

local i,j,m,kl1,k2,t,dimf,degf,f,diffk,dimej,dimei,f1,Cj,M1,M2,Cjb,Ca,Cja,Ma,
Mb,Mc,Xd,Xd1,Md,Mel,Me2,indic,indicl,x1,x2,x3,td,Templ,Temp2,degf2,f12,Temp3;
#i#t

The function SolvableModuleByUsualGraded is called only if the conditions
of Proposition 1.4.5 (as in the manual) hold.

##
The inputs of this function are the list of dimensions of the modules
D=[k_1, ..., k_n] where dim(e_i) = k_i and the degree P of the

differential on the module M. (The same inputs as the main function
IsSolvableModuleWithProof.)

The function outputs a proof that M is solvable.

##

m:=Size(D);

326

f1:=IdentityMat(m);

k1:=D[1];
j:=0;
t:=[1;

dimf:=IdentityMat (m) ;
f:=IdentityMat (m);
##

##
In this section we generate the dimf-matrix following the hypothesis of
Proposition 1.4.5
##
for j in [1..m] do
dimej:=D[j];
for i in [1..m] do
dimei:=D[i];
dimf [i] [j] :=dimej-dimei-P;
if dimf[i] [jI1<O0 then
dimf [i] [j]:=0;
fi;
degf [1] [j]:=-1*dimf [i] [j];
od;
od;
Print(" ","\n");Print(" ","\n");
Print("\ dimf=",dimf);
Print(" ","\n");
##

##

In this section we compute new entries for matrix f, by going through the
entries of the matrix dimf and set f[i][j]= dimf[i][j] if dimf[i][j] >= O
and f[i][jl=0 if dimf[i][j] < O, for i=1, ..., m, depending on the facts
that in R, if dim (£f) = j, i.e., f in R_j then degree of f = - j in the
unusual grading and any f of degree less than O it will be O.

##

for j in [1..m] do

for i in [1..m] do

if i>j then
if dimf[i] [j1<0 then
£[i]1[j1:=0;
else

£[i1[§]:=dimf [i][];

£[i][j]:=dimf [i] [j];

od;
od;
Print("\ f=",f);
Print(" ","\n");
##
H#BHBH R 3
##

327

Tests whether the matrix f is an upper triangular matrix or not.
If f is an upper triangular we set f[i]l[i] to O where i=1,..., m
using the hypothesis of Proposition 1.4.5. Then compute the
matrix d of the differential "partial" with respect to the
basis S ={ e_i, ..., e_m}.
#i#
if IsUpperTriangularMat (f)=true then
for i in [1..m] do
£[i]1[i]:=0;
od;
for i in [1..m] do
for j in [1..m] do
if £[i][j1<>0 then
f£[i] [j]:=Concatenation("f",String(i),String(j));
fi;
od;
od;
Print("\ d=",f);
else
return("f is not upper triangular matrix");
fi;
##

##

In this section we construct a proof that M is solvable
if f is an upper triangular matrix.

##

Print(" , (Since d"2=0 and R is an integral domain). ");
Print(" ","\n");Print(" ","\n");

Cjb:=" u;
Ca:="Let CO=0 and ";
Print(Ca);

for j in [1..m] do
Cja:=Concatenation(["C",String(j),"=<"1);
for i in [1..j] do
if i=j then
M1:=Concatenation(["e",String(i)]);
else
M1:=Concatenation(["e",String(i),","1);
fi;
Cja:=Concatenation([Cja,M1]);
od;
if j=m then
Cja:=Concatenation([Cja,"> "1);
else
Cja:=Concatenation([Cja,"> , "1);
fi;
Print(Cja);
if j=m then
Cjb:=Concatenation([Cjb,"C",String(j),"/","C",String(j-1)," is free.
else
Cjb:=Concatenation([Cjb,"C",String(j),"/","C",String(j-1)," is free,
fi;

328

"1);

"1);

od;

Print(" ","\n");
Print(Cjb);
Print(" ","\n");Print(" ","\n");

M2:
Ma:
Mb:
Mc:
Xd:

od;

;

nx=";

"a(0=";
"d(x)=al1(0)";

"If x in C";

Me2:="Hence, 0=CO subset of ";
for j in [1..m] do

Xd1:=Concatenation([Xd,String(j),", then x can be written uniquely as: "]);
Print (Xd1);
Ma:=Concatenation([Ma,"a",String(j),"*","e",String(j)]1);
Print(" ","\n");

Print (Ma) ;

Ma:=Concatenation([Ma,"+"]);
Mb:=Concatenation([Mb,"a",String(j),"*","d(e",String(j),")"]);
Print(" ","\n");

Print (Mb);

Mb:=Concatenation([Mb,"+"]);

if j>1 then

Mc:=Concatenation([Mc,"a",String(j),"("1);

for i in [1..j-1] do
if i<j-1 then
Mc:=Concatenation([Mc,"f",String(i),String(j),"*","e",String(i),"+"1);
else
Mc:=Concatenation([Mc,"f",String(i),String(j),"*","e",String(i),")"]);
fi;
od;
fi;
Print(" ","\n");
Print (Mc) ;

Mc:=Concatenation([Mc,"+"]);

Md:=Concatenation([" in ","C",String(j-1)1);

Print (Md) ;

Print(" ","\n");Print(" ","\n");

Mel:=Concatenation(["Hence ","d(C",String(j),") subset of C",String(j-1)," and
then d(C",String(j),"/C",String(j-1),")=0."1);

Print (Mel);

Print(" ","\n"); Print(" ","\n");

if j<m then

else

fi;

Me2:

Me2:

Print (Me2);
Print(" ","\n"); Print(" n’n\nn);

##

=Concatenation([Me2,"C",String(j)," subset of " 1);

=Concatenation([Me2,"C",String(j),"= M is a composition series for M. "]);

s s s s s s T s s s s s s s s s

##

329

15.

return("M is solvable.");

end;

IsSolvableModuleWithProof Function

IsSolvableModuleWithProof :=function(D,P)

local i,j,m,k1,k2,t,dimf,degf,f,diffk,dimej,dimei,fl,indic,indicl,
x1,x2,x3,td,Casel,Case2,Case3,Case4,Case5,Templ,Temp2,degf2,f12,
Temp3,t1,t2,sumt,S,B;

##

##

The function IsSolvableModuleWithProof is the main function of our algorithm.
It checks which of the conditions of Propositions 1.4.1, 1.4.2, 1.4.4, 1.4.5
or Remark 1.4.3 hold (see the manual). Then it calls one of the functions:

SolveindiclWithProof, Solveindic2WithProof, Solveindic3WithProof,

Solveindic4WithProof and SolvableModuleByUsualGradedWithProof according

to the condition that matches the function.

#i#

The inputs of this function are the list of dimensions of the modules
D=[k_1, ..., k_n] where dim(e_i) = k_i and the degree P of the

differential on the module M.

##

The function outputs the dimension m of the vector of dimensionmns,
the matrix dimf of dimensions, the identity matrix f of size mxm,
the matrix degf of degrees, the flags indic and x_i; i=1,2,3 to

determine which of Solveindic(n)WithProof function to run; where n=1,..., 4.

#
m:=Size(D);
if P=1 or P=-1 then ## With the usual graded or negative graded
Print(" ","\n");Print(" ","\n");
return("Then, M is solvable (by Carlsson,1983).");
fi;
if P<=-2 then ## Negative graded
f1:=IdentityMat(m); ####
k1:=D[1]; # k1 represents dim(e_1)
j:=0;
t:=01;
dimf :=IdentityMat(m);
degf :=IdentityMat(m);
degf2:=IdentityMat (m) ; #####
f:=IdentityMat(m);
##

##

In this section we set the flags "indic" and x_i; i=1,2,3, by using the

degree P. These flags are used to determine which of "Solveindic(n)WithProof";

n=1,...,4 functions to run, after checking the conditions of Propositions

330

1.4.1, 1.4.2, 1.

4.4 and Remark 1.4.3.

##
indic:=0;
x1:=0;
x2:=0;
x3:=0;
for i in [2..m] do
ji=j+1;
k2:=D[i];
diffk:=k1-k2; ## This step finds that diffk=k(i)-k(i+1)
Print("\ diffk=",diffk);
Print(" ","\n");Print(" ","\n");
if k1>k2 then
t[j]:=diffk;
if diffk>=-P then
indic:=1; # It means Propositions 1.4.1 holds
x1:=x1+1;
elif diffk<-P then
indic:=2; # It means Propositions 1.4.3 holds
X2:=x2+1;
fi;
k1:=k2;
else
if diffk<P then
indic:=3; # It means Propositions 1.4.4 holds
x3:=x3+1;
fi;
fi;
k1:=k2;
od;

if indic=1 then
if x1<m-1 then
return("Not
fi;
elif indic=2 then
if x2<m-1 then
return("Not
fi;
elif indic=3 then
if x3<m-1 then

return("Not

fi;
fi;
if indic=2 then #
x1:=0;
x2:=0;
j:=0;
td:=[1;
tl:=t[1];
for i in [2..m-
jr=j+l;
t2:=t[i];

True2 (the conditions of this Proposition 1.4.1 must be satisfied)");

True3 (the conditions of this Proposition 1.4.3 must be satisfied)");

True4 (the conditions of this Proposition 1.4.4 must be satisfied)");

Case two when t(i)+ t(i+1)<=-P

1] do

sumt:=t1+t2;

331

td[j] :=sumt;
if sumt<=-P then
x1:=x1+1;

indic:=2; # It means Propositions 1.4.3 holds (when t(i)+ t(i+1)<=-P)

else
indic:=4; # It means Propositions 1.4.2 holds (when t(i)+ t(i+1)>-P)
x2:=x2+1;

fi;

t1:=t2;

od;
if x1<m-2 and x2<m-2 then
return("Not True6");

fi;
fi;
Print("\ indic=",indic);
Print(" ","\n");Print(" ","\n");
##
HHHHHHEEEE R R R
##

##

In this section we compute the matrix dimf of dimensions of the elements
£_ij; i,j=1, ..., m of the matrix of the differential "partial" with

respect to the basis S ={ e_i, ..., e_m}.

Also we compute a matrix degf of degrees of f_ij, by seting

degf[il [j1=-dimf [i] [j] where i,j=1, ..., m.

##

for j in [1..m] do
dimej:=D[j];
for i in [1..m] do
dimei:=D[i];
dimf [i] [j]:=dimej-dimei+P;
if dimf[i] [j1>0 then
dimf [1] [j]:=0;
fi;
degf[i] [j]:=-1*dimf [i] [j];
od;
od;
Print("\ dimf=",dimf);
Print(" ","\n");Print(" ","\n");
Print("\ degf=",degf);
Print(" ","\n");
##

##

START----- Case one

if indic=1 then
Casel:=SolveindiciWithProof (dimf,f);
fi;
#IF R END-———— Case One ##t########H# 1
##

if indic=2 or (indic=4 and m=2) then
(Since there is a common condition between them which is when m=2 and f11=£22=0)
if m=2 then
Case4:=Solveindic4Size2by2(degf) ;
Print("\ Hence, if f11=f22=0 then the module M is solvable. Otherwise M
outside the classification.");
Print(" ","\n");Print(" ","\n");
else
Case2:=Solveindic2WithProof (dimf ,m) ;
fi;
fi;

END Case Two

""""" #Hit# ######## START-----Case Three # HiHHHHHHH

if indic=3 then
Case3:=Solveindic3WithProof (m,dimf,f);

“““““ #it# ######## START-----Case Four ## HiH#H#HAH
if indic=4 then
Case4:=Solveindic4WithProof (degf) ;

fi;
END Case Four
##
START----- Rerurn Cases 1-4 ###############
if indic=1 then
return(true);
fi;
if indic=2 and m<>2 then
return(fail);
fi;
if indic=3 then
return(true);
fi;
if indic=4 then
return(true);
fi;
END----- Rerurn Cases 1-4
fi;
START Case Five
##
In this section we satisfy the conditions of Proposition 1.4.5
##
S:=1;

if P>=2 then ## With the usual graded
for i in [1..m-1] do
diffk:=D[i+1]-D[i];

Print(" ","\n");
Print ("\ diffk=",diffk);
Print(" ","\n");

333

if D[i]l< D[i+1] and diffk>P then

B:=1;
else
B:=0;
fi;
S:= Sx*B;
od;
if S=1 then
Caseb:=SolvableModuleByUsualGradedWithProof (D,P) ;
else
Print(" ","\n");Print(" ","\n");
return("The input must be P>=2 and D[1]<D[2]<...<D[m] and
D[i+1]-D[i]>P for i in [1..m]");
fi;
fi;
return(true);

Case Five

334

Bibliography

[1]

[10]

A.J. AL-Juburie and A.J. Duncan, AutParCommGrp(Finite Presentations of
Automorphism Groups of Partially Commutative Groups and Their Subgroups)
package, 2015, GAP System Library.

M. Aldrich and J.R. Rozas, FEzact and semisimple differential graded algebras,
Comm. Algebra 30 (2002), 1053-1075.

M. Amasaki, Generators of graded modules associated with linear filter-reqular
sequences, Journal of Pure and Applied Algebra 114 (1996), 1-23.

M. Angel and R. Dlaz, On n-differential graded algebras, Journal of Pure and
Applied Algebra 210(3) (2007), 673-683.

L.L. Avramov and R. Buchweitz, Homological algebra modulo a reqular sequence
with special attention to codimension two, Journal of Algebra 230.1 (2000), 24—
67.

L.L. Avramov, H. Foxby, and L. Halperin, 1999, manuscript.

L.L. Avramov and D.R. Grayson, Resolutions and cohomology over complete in-
tersections, Computations in algebraic geometry with Macaulay 2, Algorithms
and Computations in Mathematics 8, Springer (2002), 131-178.

A. Baudisch, Subgroups of semifree groups, Acta Math. Acad. Sci. Hungar (1-4)
(1981), 19-28.

K.A. Beck, On the image of the totaling functor, Communications in Algebra
43.4 (2015), 1640-1653.

J. Bernstein and V. Lunts, Equivariant sheaves and functors, Springer, 1994.

335

[11]

[12]

[13]

[14]

[15]

[16]

[21]

[22]

[23]

[24]

M. Bestvina and N. Brady, Morse theory and finiteness properties of groups,
Invent. Math. 129 (1997), 445-470.

M. Bestvina, B. Kleiner, and M. Sageev, The asymptotic geometry of right-
angled Artin groups, I, Geometry and Topology 12 (2008), 1653-1700.

J.A. Bondy and U.S.R. Murty, Graph theory with aplications, first edition, The
Macmillan Press LTD, 1976.

K. Bux, R. Charney, J. Crisp, and K. Vogtmann, Automorphisms of two-
dimensional RAAGs and partially symmetric automorphisms of free groups,
Groups Geom. Dyn. 3(4) (2009), 541-554.

G. Carlsson, On homology of finite free (z/2)*-complexes, Invent. Math. 74
(1983), 139-147.

R. Charney, An introduction to right-angled Artin groups, Geom. Dedicata 125
(2007), 141-158.

R. Charney, J. Crisp, and K. Vogtmann, Automorphisms of 2-dimensional right-
angled Artin groups, Geom. Topol. 11 (2007), 2227-2264.

R. Charney and M. Farber, Random groups arising as graph products, Algebraic
and Geometric Topology 12 (2012), 979-995.

R. Charney and K. Vogtmann, Finiteness properties of automorphism groups
of right-angled Artin groups, Bull. Lond. Math. Soc. 41(1) (2009), 94-102.

, Subgroups and quotients of automorphism groups of RAAGSs, Low-
dimensional and symplectic topology 82(9) (2011), 1-19.

M. Cohen and L.H. Rowen, Group graded rings, Comm. Algebra 11(11) (1983),
1253-1270.

M. F. A. Couette, Etudes sur le frottement des liquides, Annales de Chimie et
de Physique 21 (1890), 433-510.

E.C. Dade, Group-graded rings and modules, Math. Z. 174(3) (1980), 241-262.

M.B. Day, Peak reduction and finite presentations for automorphism groups of
right-angled Artin groups, Geometry and Topology 13 (2009), 817-855.

336

[25]

[26]

[27]

[28]

[35]

[36]

, On solvable subgroups of automorphism groups of right-angled Artin
groups, IJAC: Proceedings of the 2009 International Conference on Geometric
and Combinatorial Methods in Group Theory and Semigroup Theory 21(1-2)
(2011), 61-70.

, Finiteness of outer automorphism groups of random right-angled Artin
groups, Algebraic and Geometric Topology 12 (2012), 1553—-1583.

, Full-featured peak reduction in right-angled Artin groups, Algebraic and
Geometric Topology 14 (2014), 1677-1743.

C. Droms, Graph groups, coherence, and three-manifolds, J. Algebra 106(2)
(1987), 484-489.

, Isomorphisms of graph groups, Proc. Amer. Math. Soc. 100(3) (1987),
407-408.

, Subgroups of graph groups, J. Algebra 110(2) (1987), 519-522.

J.A. Drozd, Tame and wild matriz problems. In: Representation theory II.

lecture notes in mathematics, vol.832, pp.242-258, Springer, Berlin,, 1980.

D. Dugger and B. Shipley, Topological equivalences for differential graded alge-
bras, Advances in Mathematics 212 (2007), 37-61.

D. Dummit and M. Foote, Abstract algebra, John Wiley And Sons, third edition,
New York, 2004.

A.J. Duncan, 1.V. Kazachkov, and V.N. Remeslennikov, Automorphisms of
partially commutative groups I: Linear subgroups, Groups, Geometry, and Dy-
namics 4(4) (2010), 739-757.

A.J. Duncan and V.N. Remeslennikov, Automorphisms of partially commuta-
tive groups II: Combinatorial subgroups, International Journal of Algebra and
Computation 22(7) (2012), 1250074.

E.S. Esyp, I.V. Kazachkov, and V.N. Remeslennikov, Divisibility theory and
complezity of algorithms for free partially commutative groups, Contemporary
Mathematics, Groups, Languages, Algorithms 378 (2005), 319-348.

337

[37]

[38]

[39]

[40]

[42]

[43]

[44]

[45]

[46]

M. Ferrero and E. Jespers, prime ideals of graded rings and related matters,
Communications in Algebra 18(11) (1991), 3819-3834.

M. Gutierrez and S. Krstic, Normal forms for basis-conjugating automorphisms
of a free group, Int. J. Algebra Comput. 8 (1998), 631-669.

M. Gutierrez, A. Piggott, and K. Ruane, On the automorphisms of a graph
product of abelian groups, Groups Geom. Dyn. 6 (2012), 125-153.

, On the automorphisms of a graph product of abelian groups, Groups,
Geometry and Dynamics 6(1) (2012), 125153.

S.P. Humphries, On representations of Artin groups and the Tits conjecture, J.
Algebra 169 (1994), 847862.

T. Hungerford, Algebra, Springer-Verlang, New York, 1974.

J.F. Jardine, A closed model category structure for differential graded algebras,
Cyclic cohomology and noncommutative geometry (Waterloo, ON, 1995), Fields
Inst. Commun., vol. 17, Amer. Math. Soc., Providence, RI (1997), 55-58.

C. Jensen and J. Meier, The cohomology of right-angled Artin groups with group
ring coefficients,bull, London Math. Soc. 37 (2005), 711-718.

E. Jespers, Radicals of graded rings, Colloq. Math. Soc. J. Bolyai 61, North
Holland, Amsterdam 61 (1993), 109-130.

B. Keller, On differential graded categories, International Congress of Mathe-
maticians, Eur. Math. Soc., Zurich II (2006), 151-190.

G.M. Kelly, Chain maps inducing zero homology maps, Proc. Cambridge Philos.
Soc. 61 (1965), 847-854.

S. Kim and F.W. Roush, Homology of certain algebras defined by graphs, J.
Pure Appl. Algebra 17 (1980), 179-186.

H. Koberda, Right-angled — Artin groups and their subgroups,
2013, An advanced mathematical course, Yale University, USA,
http://users.math.yale.edu/users/koberda/raagcourse.pdf.

338

[50]

[51]

[52]

[53]

[56]

[57]

[58]

T.Y. Lam, A first course in non commutative rings, Springer-Verlag, New York,
1991.

M. Laurence, A generating set for the automorphism group of a graph group, J.
London Math. Soc. 52(2) (1995), 318-334.

A. Legrand, Differential graded modules over a nonconnected differential graded
algebra, Journal of Pure and Applied Algebra 72 (1991), 53-66.

M. Lohrey and S. Schleimer, Efficient computation in groups via compression,
In Volker Diekert, Mikhail Volkov, and Andrei Voronkov, editors, Computer
Science Theory and Applications, volume 4649 of Lecture Notes in Computer
Science, Springer Berlin /Heidelberg 4649 (2007), 249-258.

S. Maclane, Homology, Springer-Verlag, New York, 1995.

X. Mao, A criterion for a connected DG algebra to be homologically smooth,

arXiv:1301.4382 4 (2013).

J. McCool, Some finitely presented subgroups of the automorphism group of a
free group, J. Algebra 35(6) (1975), 205-213.

, On basis-conjugating automorphisms of free groups, Canadian J. Math.
38(6) (1986), 1525-1529.

A. Minasyan, Hereditary conjugacy separability of right angled Artin groups and
its applications, Groups Geometry and Dynamics 6 (2012), 335-388.

C. Nastasescu and F. Van Oystaeyen, Graded ring theory, Mathematical Li-
brary, (28), North Holland, Amsterdam, 1982.

G.A. Noskov, The image of the automorphism group of a graph group under
abelianization map, Vestnik NGU, Mat., Mekh. 12(2) (2012), 83-102.

L.A. Orlandi-Korner, The Bieri-Neumann-Strebel invariant for basis-
conjugating automorphisms of free groups, Proceedings of the American Math-
ematical Society 128(5) (2000), 1257-1262.

S. Papadima and A.I. Suciu, Algebraic invariants for right-angled Artin groups,
Math. Ann. 334 (2006), 533-555.

339

[63]

[64]

[65]

[66]

[72]

D. Pauksztello, Homological properties of differential graded algebras, Ph.D.
thesis, Department of Pure Mathematics, Leeds University, 2008.

M. Refai, Group actions on finite CW-complezes, Ph.D. thesis, Department of
Mathematics, Colorado State University, 1989.

, On noetherian modules graded by g-sets, Acta Mathematica Hungarica
69(3) (1995), 211-219.

M. Refai and M. Obiedat, On graduations of k[z1,xo, -+ ,x,], J. of Institute of
Math and Computer Sci. 6(3) (1993), 241-252.

A.V. Roiter, Matriz problems, proceedings of the international congress of math-
ematicians (Helsinki, 1978), Acad. Sci. Fennica (1980), 319-322.

K.H. Rosen, Discrete mathematics and its applications, sixth edition, McGraw-
Hill, New York, 2007.

H. Servatius, Automorphisms of graph groups, J. Algebra 126 (1989), 34-60.

E. Toinet, A finitely presented subgroup of the automorphism group of a right-
angled Artin group, Journal of Group Theory 15(6) (2012), 811-822.

R.D. Wade, The lower central series of a right-angled Artin group, The Quar-
terly Journal of Mathematics; doi: 10.1093/qmath/hat002 (2013).

J.H.C. Whitehead, On equivalent sets of elements in a free group, Ann. of Math.
(2)37 (1936), 782-800.

340

