Partially Commutative and Differential Graded Algebraic STRUCTURES

ABDULSATAR JMAH THEIB AL-JUBURIE

Thesis submitted for the degree of
Doctor of Philosophy

School of Mathematics \mathfrak{E}^{3} Statistics Newcastle University Newcastle upon Tyne

United Kingdom

January 2015

This thesis is dedicated to my parents, my wife and my little daughter for their love, endless support and encouragement.

Acknowledgements

Foremost, I would like to express my special appreciation and thanks to my supervisor Dr. Andrew Duncan, you have been a tremendous mentor for me. I would like to thank you for sharing your knowledge, ideas, and limitless enthusiasm during my time as a graduate student. I would also like to thank you for encouraging my research and for allowing me to grow as a research scientist. Your advice on both research as well as on my career have been invaluable.

I would like to thank my second supervisor Dr. Stefan Kolb for his encouragement and guidance throughout my research.

In addition, I would like to thank my external examiner Dr. Alexander Konovalov and my internal examiner Professor Sarah Rees for their valuable expertise and comments on a previous draft of this thesis.

I would also extend my gratitude to the staff at Newcastle University and the School of Mathematics and Statistics for their professional handling of my student life which I thoroughly enjoyed.

A special thanks to my family. Words can not express how grateful I am to my mother, and father for all of the sacrifices that you have made on my behalf. Your prayer for me was what sustained me thus far.

I would also like to thank to my beloved wife, Zainab Al-Jumaili. Thank you for supporting me for everything, and especially I can't thank you enough for encouraging me throughout this experience. To my beloved daughter Maryam, I would like to express my thanks for being such a good girl always cheering me up.

I would like to thank my friends for their support, encouragement and understanding during the whole time of my study at the University of Newcastle.

Finally I thank my God, for letting me through all the difficulties. I have experienced Your guidance day by day. You are the One who let me finish my degree. I will keep on trusting You for my future. Thank you,

Abdulsatar.

Abstract

The objects of study in this thesis are partially commutative and differential graded algebraic structures. In fact my thesis is in two parts. The first on partially commutative algebraic structures is concerned with automorphism groups of partially commutative groups and their finite presentations. The second on differential graded algebraic structures is concerned with differential graded modules.

I have given a description for $\operatorname{Aut}\left(G_{\Gamma}\right)$, the automorphism group of the partially commutative group G_{Γ} following Day's work, where Γ is a finite simple graph.

I have given a description for the subgroup $\operatorname{Conj}\left(G_{\Gamma}\right)$ of automorphism group $\operatorname{Aut}\left(G_{\Gamma}\right)$ following Toinet's work.

We have found a finite presentation for the subgroup Conj_{V} of the automorphism group $\operatorname{Aut}\left(G_{\Gamma}\right)$.

I have developed AutParCommGrp (Finite Presentations of Automorphism Groups of Partially Commutative Groups and Their Subgroups) a package using the $G A P$ system for computation of a finite presentation for $\operatorname{Aut}\left(G_{\Gamma}\right)$, $\operatorname{Conj}\left(G_{\Gamma}\right)$ and Conj_{V} respectively.

In the second part of the thesis we consider the following situation: Let K be a field of characteristic two and let $R=K\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ be a graded polynomial ring, graded in the negative way. Suppose M is a differential graded R-module with differential ∂ of degree P. We have constructed a classification for some types of differential graded R-module where $P \leq-2, n>1$. This classification gives a partial algorithm to test whether such modules are solvable. For modules outside the classification we cannot decide, using our methods, whether or not they are solvable. Also, we have proved in one case that M is solvable when R is a graded polynomial ring, graded in the usual way (non-negatively graded) with ($P \geq 2, n>$ 1). We have developed an algorithm and written a $G A P$ package $S D G M$ (Solvable Differential Graded Modules) to check whether the differential graded R-module M with differential ∂ of degree P is solvable or not. Documentation has been written for all the packages above.

Contents

I Partially Commutative Algebraic structures 1
1 Introduction 2
2 Finite Presentation for Automorphism Groups of pc Groups 9
2.1 Introduction 9
2.2 Background for pc groups 9
2.2.1 Partially Commutative Groups 11
2.3 Combinatorial group theory of partially commutative groups 13
2.4 Automorphisms of pc groups 15
2.4.1 Laurence's generators for $\operatorname{Aut}\left(G_{\Gamma}\right)$ 15
2.4.2 Whitehead automorphisms for partially commutative groups 17
2.5 Relations among Whitehead automorphisms 19
2.5.1 Relations $R 5$ and $R 6$ 21
2.6 Peak reduction 27
2.7 GAP Presentation for the $\operatorname{Aut}\left(G_{\Gamma}\right)$ 29
2.7.1 IsSimpleGraph Function 33
2.7.2 StarLinkDominateOfVertex Function 34
2.7.3 DeleteVerticesFromGraph Function 35
2.7.4 ConnectedComponentsOfGraph Function 35
2.7.5 DFSVisit Function 36
2.7.6 WhiteheadAutomorphismsOfSecondType Function 37
2.7.7 WhiteheadAutomorphismsOfFirstType Function 38
2.7.8 RelationsOfGraphAutomorphisms Function 40
2.7.9 APCGRelationR1 Function 41
2.7.10 APCGRelationR2 Function 41
2.7.11 APCGRelationR3 Function 42
2.7.12 APCGRelationR4 Function 42
2.7.13 APCGRelationR5 Function 42
2.7.14 APCGRelationR8 Function 42
2.7.15 APCGRelationR9 Function 43
2.7.16 APCGRelationR10 Function 43
2.7.17 APCGFinalReturn Function 43
2.7.18 FinitePresentationOfAutParCommGrp Function 44
2.7.19 TietzeTransformations Function 47
3 Finite Presentation for the Subgroup $\operatorname{Conj}\left(G_{\Gamma}\right)$ 48
3.1 Introduction 48
3.2 Finite Presentation for $\operatorname{Conj}\left(G_{\Gamma}\right)$ 48
3.3 GAP Presentation for $\operatorname{Conj}\left(G_{\Gamma}\right)$ 57
3.3.1 StarLinkOfVertex Function 58
3.3.2 CombinationsOfConnectedComponents Function 58
3.3.3 GeneratorsOfSubgroupConj Function 59
3.3.4 APCGRelationRConj1 Function 61
3.3.5 APCGRelationRConj2 Function 61
3.3.6 APCGRelationRConj3 Function 62
3.3.7 APCGRelationRConj4 Function 62
3.3.8 APCGConjLastReturn Function 62
3.3.9 FinitePresentationOfSubgroupConj Function 63
4 Finite Presentation for the Subgroup Conj $_{V}$ 65
4.1 Introduction and Background for Conj $_{V}$ 65
4.2 Whitehead Automorphisms and Day's Relations 74
4.3 A Presentation for Conj_{V} 76
4.4 GAP Presentation for Conj $_{V}$ 105
4.4.1 EquivalenceClassOfVertex Function 105
4.4.2 ClassPreservingConnectedComponents Function 106
4.4.3 GeneratorsOfSubgroupConjv Function 107
4.4.4 FinitePresentationOfSubgroupConjv Function 109
II Differential Graded Algebraic structures 111
5 Introduction and Preliminaries for DG Algebraic structures 112
5.1 Introduction 112
5.2 Preliminaries 112
5.2.1 Exact Homology Sequences 113
6 Graded Rings and Graded Modules 117
6.1 Graded Rings 117
6.2 Graded Modules 122
7 Solvable Differential Graded Modules 129
7.1 Composition Series 129
7.2 Solvable differential Graded Modules 134
8 GAP Algorithm for Solvable Differential Graded Modules 188
8.1 SwapRowsColumns Function 188
8.2 Solveindic1WithProof Function 189
8.3 Solveindic2WithProof Function 190
8.4 Solveindic3WithProof Function 190
8.5 Solveindic4WithProof Function 191
8.5.1 Solveindic4Size2by2 Function 194
8.5.2 Solveindic4Size3by3 Function 195
8.5.3 Solveindic4Size4by4A Function 195
8.5.4 Solveindic4Size4by4B Function 196
8.5.5 Solveindic4Size5by5 Function 197
8.5.6 Solveindic4Size6by6 Function 197
8.5.7 Solveindic4Size6by6Above Function 198
8.5.8 Solveindic4Sizembym Function 200
8.6 SolvableModuleByUsualGradedWithProof Function 200
8.7 IsSolvableModuleWithProof Function 201
A Appendix 209
A. 1 Appendix to Chapter 2 209
A. 2 Appendix to Chapter 3 280
A. 3 Appendix to Chapter 4 299
A. 4 Appendix to Chapter 8 307

List of Figures

2.1 A Graph Γ 12
$2.2 \quad G_{\Gamma} \cong \mathbb{Z}^{2} * \mathbb{Z}$ 12
2.3 Graph of Γ 12
2.4 Graph of Γ 14
2.5 Graph of Γ 16
2.6 Graph of Γ 19
2.7 A Graph Γ 21
3.1 A Graph Γ 55
4.1 A Graph Γ 66
4.2 Graph of Γ 69
4.3 Graph of Γ 77
4.4 Subgraph $\Gamma \backslash s t(x)$ 77
4.5 A Graph Γ 96
6.1 Diagram Δ 127
6.2 Diagram 1.1 128
6.3 Diagram $\Lambda .2$ 128

Glossary of Notation

\quad Glossary of Notation	
Γ	a finite, simple, undirected graph with vertex set V
G	group
G_{Γ}	the partially commutative group with underlying graph Γ
pc group	partially commutative group
E	edge set of the simple graph Γ (a list of pairs of vertices)
F_{n}	a free group of rank n
\mathbb{Z}^{n}	a free abelian group of rank n
$A u t\left(G_{\Gamma}\right)$	the automorphism group of G_{Γ}
Ω	the set of all Whitehead automorphisms of G_{Γ}
Ω_{ℓ}	the set of long-range elements of Ω
Ω_{s}	the set of short-range elements of Ω
L	the union of V and its inverse V^{-1}, i.e., $L=V \cup V^{-1}$
$v(x)$	the vertex of x, be the unique element of $V \cap\left\{x, x^{-1}\right\} \forall x \in L$
$s t(x)$	the star of the vertex x
$s t(x)^{-1}$	a set of inverse elements of $s t(x)$
$\ell k(x)$	the link of the vertex x
$\ell k(x)^{-1}$	a set of inverse elements of $\ell k(x)$
$s t_{L}(x)$	the union of $s t(v(x))$ and $s t(v(x))^{-1}$
$\ell k_{L}(x)$	the union of $\ell k(v(x))$ and $\ell k(v(x))^{-1}$
$x \geq y$	the domination relation: say x dominates y if $\ell k(y) \subset s t(x)$
$x \sim y$	elements x and y of V are equivalent: that is $s t(x)=s t(y)$
$[x]$	the equivalence class of x under \sim
$A u t(\Gamma)$	the set of type (1) Whitehead automorphisms of $A u t\left(G_{\Gamma}\right)$
Ω_{1}	a special notation for the set of type (1) Whitehead automorphisms
Ω_{2}	a special notation for the set of type (2) Whitehead automorphisms
(A, a)	a special notation for type (2) Whitehead automorphisms of $A u t\left(G_{\Gamma}\right)$
Y^{\perp}	the orthogonal complement of Y in V
$c l(Y)$	the closure of Y in V, i.e. $c l(Y)=\cap_{z \in Y} \perp s t(z)$
$\mathfrak{a}(Y)$	the admissible set of Y, i.e. $\mathfrak{a}(Y)=\cap_{y \in Y}(s t(y))^{\perp}$
$d(x, y)$	the distance from x to $y ;$ where $x, y \in \Gamma$
$C o n j(G)$	the set of conjugating automorphisms of G
$C o n j_{N}(G)$	the subgroup of all normal conjugating automorphisms
$C o n j\left(G_{\Gamma}\right)$	the subgroup of all basis conjugating automorphisms

Glossary of Notation	
$\operatorname{Conj}_{V}\left(G_{\Gamma}\right)$	the subgroup of all vertex conjugating automorphisms
LInn $_{\text {S }}$	the set of all elementary conjugating automorphisms
LInn $_{C}$	the set of all basic collected conjugating automorphisms
$L_{\text {LInn }}$	the set of regular elementary conjugating automorphisms
LInn $_{V}$	the set of basic vertex conjugating automorphisms
$\operatorname{Conj}_{A}(G)$	subgroup of $\operatorname{Conj}(G)$ generated by all aggregate automorphisms
$\operatorname{Conj}_{S}(G)$	the subgroup of $\operatorname{Conj}(G)$ generated by ${L I n n n_{S}}^{\text {a }}$
$\operatorname{Conj}_{C}(G)$	the subgroup of $\operatorname{Conj}(G)$ generated by $L I n n_{C}$
$\operatorname{Dom}(x)$	the set of all vertices dominated by x
$\operatorname{Dom}(\Gamma)$	the set of all dominated vertices
out(y)	set of all x such that $y \in \operatorname{Dom}(x)$ and $[y] \neq[x]$ for fixed $y \in V$
CAT(0)	cube complexes
$D G A$	differential graded algebra
$D G R$-module	differential graded R-module
deg	abbreviation of degree
$f \simeq g$	the two maps f and g are homotopic
$H \leq G$	H is a subgroup of G
$H \triangleleft G$	H is a normal subgroup of G
$H \unlhd G$	H is a normal subgroup of or equal to G
$H \nrightarrow G$	H is not normal subgroup of G
$G \cong H$	the two groups G and H are isomorphic
$\operatorname{Stab}_{G}(\mathrm{~s})$	the stabilizer of s in G
$\operatorname{Orb}_{G}(s)$	the orbit of s under G
[x, y]	the commutator of x and y
\ltimes	the left normal factor semi-direct product
\rtimes	the right normal factor semi-direct product
\oplus	the direct sum
\otimes	the tensor product
	the dot product.

Part I

Partially Commutative Algebraic structures

Chapter 1

Introduction

Geometric group theory views algebraic objects as geometric objects. The graph is a geometric object whereas the group is an algebraic object. One relationship between graphs and groups was first observed by Cayley. A graph consists of a vertex set V and an edge set E. Historically, group concepts evolved in the context of geometry. German mathematician Felix Klein proposed a precise definition of geometry using group concepts "Geometry is the study of those properties of space which remain unchanged under a given group of transformations".

Partially commutative groups (pc groups "these are not the same as pc groups in GAP") have drawn much attention in geometric group theory, because of their rich subgroup structure and good algorithmic properties. These groups act on cubical complexes and have a variety of useful applications (see [16], [17], [39], [35] and [36] for example.) In recent times, the study of automorphism groups of partially commutative groups has been of great interest. We denote by $\operatorname{Aut}(G)$ the automorphism group of a group G.

We will use Γ to denote a finite simple graph. We will write $V=V(\Gamma)=$ $\left\{x_{1}, \ldots, x_{n}\right\},(n \geq 1)$ for the finite set of vertices and $E=E(\Gamma) \subset V \times V$ for the set of edges, viewed as unordered pairs of vertices. The requirement that Γ be simple simply means that the diagonal of $V \times V$ is excluded from the set of edges. The partially commutative group (also known as a right-angled Artin group, a trace group, a semi-free group or a graph group) of Γ, is the group defined by presentation

$$
G_{\Gamma}=\left\langle V \mid R_{\Gamma}\right\rangle
$$

where the relations are

$$
R_{\Gamma}=\left\{\left[x_{i}, x_{j}\right] \mid x_{i}, x_{j} \in V \text { and }\left\{x_{i}, x_{j}\right\} \in E\right\}
$$

where $\left[x_{i}, x_{j}\right]=x_{i}^{-1} x_{j}^{-1} x_{i} x_{j}$ and (x_{i} and x_{j} are adjacent if there exists an edge $e \in E$ with $\left.e=\left\{x_{i}, x_{j}\right\}\right)$. When Γ has no edges then G_{Γ} is free group of rank n, and when Γ is the complete graph then G_{Γ} is free abelian group of rank n. In general, partially commutative groups can be thought of as interpolating between these two extremes. Thus it seems reasonable to consider automorphism groups of partially commutative groups as interpolating between $\operatorname{Aut}\left(F_{n}\right)$, the automorphism group of a free group, and $G L(n, \mathbb{Z})$, the automorphism group of a free abelian group.
A. Baudisch [8] first studied the partially commutative groups in the 1970's. Then C. Droms [28], [29], [30] further developed the theory in the 1980's and named them "graph groups". Since then, they have been widely studied (as is clear by the bibliography to this thesis.) For an introduction to this class of groups and a survey of the literature see [16]. For example, from Humphries [41] one knows that partially commutative groups are linear; their integral cohomology rings were computed early on by Kim and Roush [48], and Jensen and Meier [44] have extended this to include cohomology with group ring coefficients. More recently, Papadima and Suciu [62] have computed the lower central series, Chern groups and resonance varieties of these groups, while Charney, Crisp and Vogtmann [17] have explored their automorphism groups (in the triangle-free case) and Bestvina, Kleiner and Sageev [12] their rigidity properties. In [71] R. Wade has gave a description of Duchamp and Krob's extension of Magnus' approach to the lower central series of the free group to right-angled Artin groups.

The rich geometry of these groups is the feature that caused a significant interest in them. In [17], Charney and Davis construct an Eilenberg-MacLane space for each partially commutative group, which is a compact, non-positively curved, piecewise-Euclidean cube complex. Bestvina and Brady [11] have effectively applied geometric methods to the study of partially commutative groups. These groups can parametrized by finite simplicial complexes Σ satisfying a certain flag condition. There is heavy dependence of the Artin group associated to Σ on the combinatorial structure of Σ, not only in topology. Nevertheless, Bestvina and Brady show that the cohomological finiteness properties of the kernel of the canonical map onto \mathbb{Z} are determined by the topology of Σ alone.

From Koberda [49] one knows that a partially commutative group is the universal group with specified commutation and noncommutation among its vertices. "For any subset $S \subset G$ of a group, we build the commutation graph of S, written $\operatorname{Comm}(S)$, as follows. The vertices of $\operatorname{Comm}(S)$ are the elements of S, and two vertices of S are connected by an edge if they commute in $G^{\prime \prime}$. The following proposition gives the universal property of partially commutative groups.

Proposition 1.0.1. [49] Let G be a group and let $S \subset G$ be a finite subset. The inclusion $S \subset G$ extends to a unique homomorphism

$$
G_{C o m m(S)} \rightarrow G
$$

which agrees with the identification $V(\operatorname{Comm}(S)) \cong S$. In the universal property, we require S to be finite because partially commutative groups are defined to be finitely generated.

A finite generating set for $\operatorname{Aut}\left(G_{\Gamma}\right)$ the automorphism group of a partially commutative group has been found by Servatius [69] and Laurence [51]. Over the last few years, significantly more has been discovered: Bux, Charney, Crisp and Vogtmann ([14], [17] and [19] for example) have shown that these automorphism groups are virtually torsion-free and have finite virtual cohomological dimension. Day has shown also that peak reduction techniques may be used on certain subsets of the generators and consequently has given a presentation for the automorphism group of partially commutative groups [24] and [27]. These groups, moreover, have a very rich subgroup structure. In other words, Gutierrez, Piggott and Ruane [40] were able to construct a semi-direct product decomposition for the more general case of automorphism groups of graph products of groups. In addition, Duncan, Remeslennikov and Kazachkov [34] provided a description of several arithmetic subgroups of the automorphism group of a partially commutative group. Noskov [60] also found different arithmetic subgroups. Providing certain conditions have made on the graph Γ, Charney and Vogtmann have shown [20] that the Tits alternative holds for the outer automorphism group of $G(\Gamma)$. Day [25] moreover, has shown that in all cases this group holds either a finite-index nilpotent subgroup or a nonAbelian free subgroup. Minasyan has shown [58] that partially commutative groups are conjugacy separable (loc. cit.) from which it can be shown that their outer automorphism groups are residually finite. Lohrey and Schleimer [53] have studied the compressed word problem and proved that the word problem for $\operatorname{Aut}\left(G_{\Gamma}\right)$ is
reducible to the compressed word problem for $G(\Gamma)$, i.e., the word problem for $\operatorname{Aut}\left(G_{\Gamma}\right)$ has polynomial time complexity.

Charney and Farber [18], and then Day [26], have studied automorphism groups of partially commutative groups associated to random graphs, of Erdos-Renyi type. They have shown that if the edge probability (p) lies between 0.2929 and 1 and is constant then as the number of vertices (n) tends to ∞, the probability that the partially commutative group has finite outer automorphism group tends to 1 .

Duncan, Remeslennikov and Remeslennikov [35] have defined several standard subgroups of the automorphism group $A u t\left(G_{\Gamma}\right)$ of a partially commutative group using the notion of admissible subset of a graph (see Section 4.1). The automorphism group of a partially commutative group G_{Γ} with commutative graph Γ contains a group $A u t^{\Gamma}\left(G_{\Gamma}\right)$ induced by isomorphisms of Γ. In Section 4.1 we introduce a particular subgroup $S t^{c o n j}(\mathcal{K})$ and a subgroup $A u t_{\text {comp }}^{\Gamma}(G)$ of $A u t(\Gamma)$ (see Definitions 4.1.5, 4.1.6).

Theorem 1.0.2. [35] The group $\operatorname{Aut}(G)$ can be decomposed into the internal semidirect product of the subgroup $S t^{c o n j}(\mathcal{K})$ and the finite subgroup $A u t_{\text {comp }}^{\Gamma}(G)$, i.e.

$$
A u t(G)=S t^{\text {conj } j}(\mathcal{K}) \rtimes A u t_{\text {comp }}^{\Gamma}(G) .
$$

This theorem essentially reduces the problem of studying $\operatorname{Aut}\left(G_{\Gamma}\right)$ to the study of the group $S t^{c o n j}(\mathcal{K})$.

A basis-conjugating automorphism is one which maps each canonical generator x to $x^{g_{x}}$, for some $g_{x} \in G$. Toinet [70] has constructed a presentation for $\operatorname{Conj}(G)$ the group of basis-conjugating automorphisms. Here we consider subgroups $\operatorname{Conj}_{N}(G)$ of normal conjugating automorphisms (see Definition 4.1.7) and $\operatorname{Conj}_{V}\left(G_{\Gamma}\right)$ of vertex conjugating automorphisms (see Section 4.1). We find a presentation for $\operatorname{Conj}_{V}\left(G_{\Gamma}\right)$ of the automorphism groups of the partially commutative group $\operatorname{Aut}\left(G_{\Gamma}\right)$.

Let G be a group with identity e and R be a ring with unit 1 different from 0 . Then R is said to be G-graded ring if there exist additive subgroups R_{g} of R such that $R=\oplus \sum_{g \in G} R_{g}$ and $R_{g} R_{h} \subseteq R_{g h}$, for all $g, h \in G$.

Methods used in the study of graded rings have proved to be successful tools in the structure theory of commutative rings. Due to the great importance of grading of rings and modules, the study of this concept attracted wide interest from math-
ematicians everywhere. One of the mathematicians who studied the properties of grading of rings in general when G is a group or a subgroup was Jespers in [37] and [45]. On the other hand, M. Refai, carried out a number of studies about graded ring theory and graded modules (see for example [64], [66] and [65]).

A differential graded category (DG category) over the commutative ring R is a R-category \mathcal{A} whose morphism spaces are differential graded R-modules (Definition 6.2.5) and whose compositions

$$
\mathcal{A}(Y, Z) \otimes \mathcal{A}(X, Y) \rightarrow \mathcal{A}(X, Z), \quad(f, g) \mapsto f g
$$

are morphisms of differential graded R-modules.
DG categories already appear in [47]. In the seventies, they found applications (see [67] and [31]) in the representation theory of finite-dimensional algebras. From B. Keller [46] one knows how the DG categories enhance our understanding of triangulated categories appearing in algebra and geometry. DG categories have been studied extensively since that time. For an introduction to the theory of DG category see [46].

A differential graded algebra (DG algebra) over the commutative ring R is a graded algebra, $A=\oplus_{i \in \mathbb{Z}} A_{i}$ over R together with a differential, that is a R-linear map $d: A \rightarrow A$ of degree -1 with $d^{2}=0$, satisfying the Leibniz rule $d(r s)=d(r) s+(-1)^{|r|} r d(s)$, where $r, s \in R$ and r is a graded element of degree $|r|$. We can think of DG algebras as generalisations of rings, so we have just gained more objects to work with. DG algebras, have been the object of considerable study in recent years, and a good picture of their properties has been built up through the work of many different researchers. For example, D. Dugger and B. Shipley [32] have investigated the relationship between DG algebras and topological ring spectra. M. Angel and R. Dlaz [4] have introduced the concept of N-differential graded algebras (N-dga), and study the moduli space of deformations of the differential of an N dga. J. Jardine [43] has constructed a closed model structure for the category of non-commutative DG algebras over an arbitrary commutative ring with unit. Introductions to the theory of DG algebras can be found in [2], [6], [10] and [63].

Carlsson has studied properties of the differential graded modules (DG modules). In fact the solvable differential graded R-modules concept already appeared in the 1983's in work of G. Carlsson [15]. Recently, these modules have attracted much interest in ring theory, homological algebra, category theory, algebraic geom-
etry and algebraic topology. For example, L. Avramov and D. Grayson [7] have shown that the duals of infinite projective resolutions of modules over a complete intersection are finitely generated DG modules over a graded polynomial ring. From X. Mao [55] one knows some new results on cone length of DG modules and global dimension of connected DG algebras. K. BECK [9] has investigated the image of the totaling functor, defined from the category of complexes of graded A-modules to the category of differential graded A-modules where A is a DG algebra with a trivial differential over a commutative unital ring. To each Λ_{*}-differential graded module A. Legrand [52] has associated "characteristic" classes which are invariants of the quasi-isomorphism class of this module and determined the Pontrjagin product by the zeroth and the first homology, where Λ_{*} is not necessarily a connected DG algebra.

The structure of this thesis is as follows: In Chapter 2, we present a background to partially commutative groups. We then give a description of the generating sets of automorphism groups of partially commutative groups. One of the commonly used generating sets of $\operatorname{Aut}\left(G_{\Gamma}\right)$ is the set of Whitehead automorphisms. We describe the Whitehead automorphisms for partially commutative groups and the relations among Whitehead automorphisms. We develop a GAP package to find a finite presentation for the automorphism groups of partially commutative groups with a finite simple graph Γ. In order to do this we give a description of $\operatorname{Aut}\left(G_{\Gamma}\right)$ according to Day's work in [24].

In Chapter 3, we give a description of the subgroup of basis-conjugating automorphisms $\operatorname{Conj}\left(G_{\Gamma}\right)$ of $\operatorname{Aut}\left(G_{\Gamma}\right)$ according to Toinet's work, in [70], and Day's work in [24]. We develop an algorithm and written a GAP package that provides a finite presentation for the subgroup $\operatorname{Conj}\left(G_{\Gamma}\right)$.

In Chapter 4, we find a presentation for the subgroup Conj_{V} of $\operatorname{Aut}\left(G_{\Gamma}\right)$. We develop a GAP package that provides a finite presentation for $C o n j_{V}$.

Chapter 5, contains some basic notions, definitions and results on exact homology sequences. Chapter 6 , outlines the general principles of graded rings and some of their properties, as well as the definitions of graded algebras, and differential graded modules over the graded polynomial ring $R=K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.

In Chapter 7, we study composition series and then construct a classification for some types of differential graded R-modules, based on the degree P of the differential graded module and dimension of the module. This classification gives a partial
algorithm to test whether such modules are solvable.
In Chapter 8 we give an algorithm implemented in GAP for all the cases covered in Chapter 7. This Chapter also includes a description of each function used in our algorithm.

Chapter 2

Finite Presentation for Automorphism Groups of pc Groups

2.1 Introduction

Partially commutative groups have drawn much attention in geometric group theory, because of their rich subgroup structure and good algorithmic properties, their actions on cubical complexes and their various applications. This chapter is concerned with automorphism groups of partially commutative groups and their finite presentations.

The GAP system will be used to find a finite presentation for the automorphism group of a partially commutative group. In order to do this work we will give a presentation for the automorphism group of a partially commutative group, according to Day's work in [24] and [27].

2.2 Background for pc groups

We will briefly describe the relationship between partially commutative groups, other Artin groups and Coxeter groups.

Definition 2.2.1. A graph Γ consists of
(i) a non-empty set $V(\Gamma)$ of vertices and
(ii) a set $E(\Gamma)$ of edges
such that every edge $e \in E(\Gamma)$ is a multiset $\{a, b\}$ of two vertices $a, b \in V(\Gamma)$.
$\Gamma=(V, E)$ will denote a graph with vertex and edge sets V and E (one or both of which may be infinite)

Vertices a and b are adjacent if there exists an edge $e \in E$ with $e=\{a, b\}$. If $e \in E$ and $e=\{c, d\}$ then e is said to be incident to c and to d and to join c and d. If a and b are vertices joined by edges e_{1}, \ldots, e_{k}, where $k>1$, then e_{1}, \ldots, e_{k} are called multiple edges.

Definition 2.2.2. An edge of the form $\{a, a\}$ is called a loop. A graph which has no multiple edges and no loops is called a simple graph.

Remark 2.2.3. A graph is finite if both its vertex set and edge set are finite. In this study we study only finite graphs, and so the term "graph" always means "finite graph". We call a graph with just one vertex trivial and all other graphs nontrivial. All graphs in this thesis are finite and simple. For an introduction to this class of graphs see [13] and [68].

Definition 2.2.4. [16] An Artin group A is a group with presentation of the form

$$
A=\left\langle s_{1}, \ldots, s_{n}\right| \underbrace{s_{i} s_{j} s_{i} \ldots}_{m_{i j}}=\underbrace{s_{j} s_{i} s_{j} \ldots}_{m_{j i}} \text { for all } i \neq j\rangle
$$

where $m_{i j}=m_{j i}$ is an integer ≥ 2 or $m_{i j}=\infty$ in which case we omit the relation between s_{i} and s_{j}. If we add to this presentation the additional relations $s_{i}=s_{i}^{-1}$ for all i, we obtain a Coxeter group

$$
\begin{aligned}
W= & \left.\left\langle s_{1}, \ldots, s_{n}\right| s_{i}=s_{i}^{-1}, s_{i} s_{j} s_{i} \ldots=s_{j} s_{i} s_{j} \ldots \text { for all } i \neq j\right\rangle \\
& \left.=\left\langle s_{1}, \ldots, s_{n}\right|\left(s_{i}\right)^{2}=1,\left(s_{i} s_{j}\right)^{m_{i j}}=1 \text { for all } i \neq j\right\rangle .
\end{aligned}
$$

$D_{\infty}=\mathbb{Z} / 2 \mathbb{Z} * \mathbb{Z} / 2 \mathbb{Z}$ is an example of Coxeter group.
A partially commutative group (right-angled Artin group) is an Artin group in which $m_{i j} \in\{2, \infty\}$ for all i, j. In other words, in the presentation for the Artin group, all relations are commutator relations: $s_{i} s_{j}=s_{j} s_{i}$. Right-angled Coxeter groups are defined similarly. The easiest way to determine the presentation for a right-angled Coxeter or Artin group is by means of the defining graph (also called the commutation graph) Γ. This is the graph whose vertices are labeled by the
generators $S=\left\{s_{1}, \ldots, s_{n}\right\}$ and whose edges connect a pair of vertices s_{i}, s_{j} if and only if $m_{i j}=2$. Note that any finite, simple graph Γ is the defining graph for a right-angled Coxeter group W_{Γ} and a partially commutative groups G_{Γ}.

Theorem 2.2.5. [16] Every partially commutative group embeds as a finite index subgroup of a right-angled Coxeter group.

2.2.1 Partially Commutative Groups

Let Γ be a graph on n vertices, with vertex list V and a list of pairs of vertices E, i.e., $\Gamma=(V, E)$, where

$$
V=\left\{x_{1}, \ldots, x_{n}\right\}
$$

and

$$
E=\left\{\left\{x_{i_{1}}, x_{i_{2}}\right\}, \ldots,\left\{x_{i_{k}}, x_{i_{k+1}}\right\}\right\}
$$

Let G_{Γ} be the partially commutative group of Γ, defined by

$$
G_{\Gamma}=\left\langle V \mid R_{\Gamma}\right\rangle
$$

where the relations are

$$
R_{\Gamma}=\left\{\left[x_{i}, x_{j}\right] \mid x_{i}, x_{j} \in V \text { and }\left\{x_{i}, x_{j}\right\} \in E\right\}
$$

where $\left[x_{i}, x_{j}\right]=x_{i}^{-1} x_{j}^{-1} x_{i} x_{j}$ and (x_{i} and x_{j} are adjacent if there exists an edge $e \in E$ with $\left.e=\left\{x_{i}, x_{j}\right\}\right)$. According to this construction we have the following two an important cases:

Firstly, if the graph Γ is the null graph (n vertices and no edges) then G_{Γ} is free group F_{n} of rank n. Secondly, if Γ is a complete graph on n vertices then G_{Γ} is the free abelian group \mathbb{Z}^{n} of rank n. In general, G_{Γ} interpolates between these two extremes. Similarly, the automorphism group $\operatorname{Aut}\left(G_{\Gamma}\right)$, the automorphism group of G_{Γ} interpolates between $\operatorname{Aut}\left(F_{n}\right)$, the automorphism group of a free group, and $G L(n, \mathbb{Z})$, the automorphism group of a free abelian group. In fact the automorphism groups of partially commutative groups contain $\operatorname{Aut}\left(F_{n}\right)$ and $G L(n, \mathbb{Z})$ and automorphism groups of free and direct products of $\operatorname{Aut}\left(F_{n}\right)$ and $G L(n, \mathbb{Z})$. From now on $\operatorname{Aut}\left(G_{\Gamma}\right)$, denotes the automorphism group of G_{Γ}.

Example 2.2.1.1

The following are a few examples of partially commutative groups:
(1) If Γ is a square as in Figure 2.1, then G_{Γ} decomposes as a direct product of two free groups $G_{\Gamma} \cong F(x, z) \times F(y, w)$.

Figure 2.1: A Graph Γ
(2) If $\Gamma=P_{3}$, the path on three vertices then $G_{\Gamma} \cong F_{2} \times \mathbb{Z}$.
(3) If Γ as in Figure 2.2, then $G_{\Gamma} \cong \mathbb{Z}^{2} * \mathbb{Z}$.

$$
\dot{x} \quad \dot{y} \quad \dot{z}
$$

Figure 2.2: $G_{\Gamma} \cong \mathbb{Z}^{2} * \mathbb{Z}$
(4) If Γ is an n-gon for $n \geq 5$, then G_{Γ} cannot be decomposed as either a direct product or a free product.

Remark 2.2.6. Let $L=V \cup V^{-1}$. For $x \in L$, we define $v(x) \in V$ the vertex of x, to be the unique element of $V \cap\left\{x, x^{-1}\right\}$. Hence $e=\{x, y\}=\{v(x), v(y)\}$ for each $x, y \in L$. The star of x denoted by $\operatorname{st}(x)$ is a set of all the vertices that are connected directly to x by an edge, as well as the vertex x. The inverse of the star of x denoted by $s t(x)^{-1}$ is the set of inverses of elements of $\operatorname{st}(x)$. The link of denoted by $\ell k(x)$ is st $(x) \backslash\{x\}$, and the inverse of the link of x denoted by $\ell k(x)^{-1}$ is the set of inverses of elements of $\ell k(x)$. We set $s t_{L}(x)=s t(x) \cup s t(x)^{-1}$ and $\ell k_{L}(x)=\ell k(x) \cup \ell k(x)^{-1}$. Consider the graph of Γ of Figure 2.3 with $V=\{x, a, b, c, d, e, f, g\}$. Then we have that,

Figure 2.3: Graph of Γ

$$
\begin{aligned}
& L=V \cup V^{-1}=\left\{x, a, b, c, d, e, f, g, x^{-1}, a^{-1}, b^{-1}, c^{-1}, d^{-1}, e^{-1}, f^{-1}, g^{-1}\right\} . \\
& \operatorname{st}(x)=\{x, a, b, c, d, e\}, \operatorname{st}(x)^{-1}=\left\{x^{-1}, a^{-1}, b^{-1}, c^{-1}, d^{-1}, e^{-1}\right\}, \text { and } \\
& \ell k(x)=\{a, b, c, d, e\}, \ell k(x)^{-1}=\left\{a^{-1}, b^{-1}, c^{-1}, d^{-1}, e^{-1}\right\} . \text { Hence, } \\
& \operatorname{st}_{L}(x)=\operatorname{st}(x) \cup \operatorname{st}(x)^{-1}=\left\{x, a, b, c, d, e, x^{-1}, a^{-1}, b^{-1}, c^{-1}, d^{-1}, e^{-1}\right\} \text { and } \\
& \ell k_{L}(x)=\ell k(x) \cup \ell k(x)^{-1}=\left\{a, b, c, d, e, f, a^{-1}, b^{-1}, c^{-1}, d^{-1}, e^{-1}\right\} .
\end{aligned}
$$

2.3 Combinatorial group theory of partially commutative groups

Let the set of letters L be $V \cup V^{-1}$. Recall that a word in L is a finite sequence of elements of L and every word in L represents an element of G_{Γ}. By a cyclic word w we mean the set consisting of w and all cyclic permutations of the sequence of letters of w. For example, xyy is a word and the corresponding cyclic word is $\{x y y, y y x, y x y\}$.

Any two elements of a cyclic word represent group elements that are conjugate to each other, so a cyclic word represents a well-defined conjugacy class, we say a conjugate to b denoted $a \sim b$ if there exists g such that $g^{-1} a g=b$. Now, if we pick any two elements of a cyclic word as in our example above then these are conjugate to each other:

$$
\begin{aligned}
& (y y) x y y(y y)^{-1}=y y x, \\
& \left(y^{-1}\right) y y x(y)=y x y, \\
& \left(y^{-1}\right) y x y(y)=x y y .
\end{aligned}
$$

If w is a cyclic word, we will use (w) to denote the set of all cyclic permutations of w (it is the image of w under a cyclic permutation.) A word w on L is graphically reduced if it contains no subsegments of the form $a u a^{-1}$, where $a \in L$ and u is a word in $\left\langle\ell k_{L}(a)\right\rangle$ (because in this case $a u a^{-1}=u$ in G_{Γ}, so $w_{1} a u a^{-1} w_{2}=w_{1} u w_{2}$ in G_{Γ}, for all words w_{1}, w_{2}). A cyclic word is graphically reduced if all its elements are graphically reduced as words. If we consider the graph Γ of Figure 2.4 then we have that,

$$
\begin{aligned}
& L=V \cup V^{-1}=\left\{a, x_{1}, x_{2}, x_{3}, x_{4}, a^{-1}, x_{1}^{-1}, x_{2}^{-1}, x_{3}^{-1}, x_{4}^{-1}\right\}, \\
& G_{\Gamma}=\left\langle V \mid R_{\Gamma}\right\rangle \\
& \ell k_{L}(a)=\left\{x_{1}, x_{2}, x_{3}, x_{1}^{-1}, x_{2}^{-1}, x_{3}^{-1}\right\} \\
& R_{\Gamma}=\left\{\left[a, x_{1}\right],\left[a, x_{2}\right],\left[a, x_{3}\right],\left[x_{3}, x_{4}\right]\right\}
\end{aligned}
$$

Figure 2.4: Graph of Γ
so we have $a x_{1} a^{-1}=x_{1}, a x_{2} a^{-1}=x_{2}, a x_{3} a^{-1}=x_{3}$, and $x_{3} x_{4} x_{3}^{-1}=x_{4}$.
Now if we pick any word u in $\left\langle\ell k_{L}(a)\right\rangle$, let we say $u=x_{1} x_{2} x_{1}^{-1}$, then $a u a^{-1}=a x_{1} x_{2} x_{1}^{-1} a^{-1}=x_{1} x_{2} x_{1}^{-1}$.

If w is a word in L then the support of w is the set of letters $x \in V$ such that x or x^{-1} accurs in w, denoted $\operatorname{supp}(w)$. By Baudisch [8] if w and w^{\prime} are reduced words representing the same element of G_{Γ} then $\operatorname{supp}(w)=\operatorname{supp}\left(w^{\prime}\right)$. Therefore we make the following definition.

Definition 2.3.1. For an element g of G_{Γ}, the support of g is

$$
\operatorname{supp}(g)=\operatorname{supp}(v) \text { where } v \text { is a reduced word representing } g \text {. }
$$

The support $\operatorname{supp}(w)$ of a k-tuple $W=\left(w_{1}, \ldots, w_{k}\right)$ of conjugacy classes is $\bigcup_{i=1}^{k} \operatorname{supp}\left(w_{i}\right)$.

By Baudisch [8] if w and w^{\prime} are graphically reduced words and represent the same element of G_{Γ} then the lengths of w and w^{\prime} are equal. Therefore we define the length of an element g of G_{Γ} to be the length of any graphically reduced word representing g. We say that an element g in G_{Γ} is cyclically reduced if it can not be written as $v h v^{-1}$ or $v^{-1} h v$ with $v \in V$, and $|g|=|h|+2$. By [69], Proposition 2, every element of G_{Γ} is conjugate to a unique (up to cyclic permutation) cyclically reduced element. The length of a conjugacy class is defined to be the minimal length of any of its representative elements. Observe that the length of a conjugacy class is equal to the length of a cyclically reduced element representing it. For an n-tuple of conjugacy classes W, we define the length of W, denoted by $|W|$, as the sum of the length of its elements $(n \geq 1)$.

2.4 Automorphisms of pc groups

In this section we shall give the definition of Laurence-Servatius generators for $\operatorname{Aut}\left(G_{\Gamma}\right)$. We shall also give the definition of Whitehead automorphisms for partially commutative groups. Some other definitions and concepts that are important in our study will be given.

2.4.1 Laurence's generators for $\operatorname{Aut}\left(G_{\Gamma}\right)$

We will state some definitions and concepts that are important in our study before we give the definition of Laurence-Servatius generators for $\operatorname{Aut}\left(G_{\Gamma}\right)$.

1. There is a reflexive and transitive binary relation on V called the domination relation: $x \geq y$ (x dominates y) iff $\ell k(y) \subset s t(x)$.
2. Domination is clearly reflexive and transitive, since $\ell k(x) \subset s t(x)$, so $x \geq x$ and this implies that the domination is reflexive. Now, domination is transitive, because that if we have $x \geq y$ and $y \geq z$ then we have that $\ell k(z) \subset \operatorname{st}(y)$ and $\ell k(y) \subset s t(x)$. So we have two cases:
(a) If $y \notin \ell k(z)$, since $\ell k(z) \subset s t(y)$ and $y \notin \ell k(z)$, then we will get that $\ell k(z) \subset \ell k(y)$, which implies to $\ell k(z) \subset \ell k(y) \subset s t(x)$, implies to $x \geq z$.
(b) If $y \in \ell k(z)$, as $\operatorname{case}(1), \ell k(z) \backslash\{y\} \subset \ell k(y) \subset \operatorname{st}(x)$. So if we prove that, $y \in \operatorname{st}(x)$ then $\ell k(z) \subset \operatorname{st}(x)$. Note that, since $y \in \ell k(z)$ then we have the edge $e_{1}=\{z, y\}$, and since $\ell k(y) \subset s t(x)$ then we have the edge $e_{2}=\{z, x\}$,also since $\ell k(z) \subset \operatorname{st}(y)$ then we have the edge $e_{3}=\{y, x\}$. Therefore, $y \in \operatorname{st}(x)$, and hence $x \geq z$. Thus domination is transitive.
3. For $x, y \in L$, say $x \geq y$ if $v(x) \geq v(y)$.
4. Write $x \sim y$ when $x \geq y$ and $y \geq x$; the relation \sim is called the domination equivalence relation.
5. The adjacent domination relation, which holds for x and y if $\{x, y\} \in E$ (or $[x, y] \in R_{\Gamma}$) and $x \leq y$.
6. The non-adjacent domination relation, which holds for x and y if $x \leq y$ $\{x, y\} \notin E$ (or $[x, y] \notin R_{\Gamma}$).
7. We say that x strictly dominates y if $x \geq y$ and $x \nsucc y$.

Definition 2.4.1. [51] and [69] The Laurence-Servatius generators for $\operatorname{Aut}\left(G_{\Gamma}\right)$ are the following four classes of automorphisms:

1. Transvections: For $x, y \in L$ with $x \geq y$ and $v(x) \neq v(y)$, the transvection $\tau_{x, y}$ is the map that sends

$$
y \mapsto y x
$$

and fixes all generators not equal to $v(y)$. A transvection $\tau_{x, y}$ determines an automorphism of G_{Γ} (see [51], [69]).
2. Partial Conjugations: An automorphism $c_{x, Y}$, for $x \in L$ and Y a nonempty union of connected components of $\Gamma \backslash s t(x)$, that maps each $y \in Y$ to $x^{-1} y x$ and fixes all generators not in Y is called a partial conjugation. The set $\operatorname{Conj}\left(G_{\Gamma}\right)=\operatorname{Conj}$ of all partial conjugations forms a subgroup of G_{Γ}. Every partial conjugation determines an automorphism of G_{Γ} ([51], [69]). For example in the graph of Γ of Figure 2.5 we have a partial conjugation $y_{i} \mapsto x^{-1} y_{i} x, i=1,2, b \mapsto b, c \mapsto c, a \mapsto a, d \mapsto d, x \mapsto x$.

Figure 2.5: Graph of Γ

In particular if $Y=\Gamma \backslash s t(x)$ then $c_{x, Y}$ is the inner automorphism γ_{x} sending u to u^{x} for all $x \in V$.
3. Inversions: For $x \in V$, the inversion τ_{x} of x is the map that sends

$$
x \mapsto x^{-1}
$$

and fixes all other generators. i.e., inversions send a standard generator of G_{Γ} to its inverse. Every inversion determines an automorphism of G_{Γ} ([51], [69]).
4. Graphic Automorphisms: For π an automorphism of the graph Γ, the graphic automorphism of G_{Γ} is determined by π is the map that sends

$$
x \mapsto \pi(x)
$$

for each generator $x \in X$, (An automorphism of a graph $G=(V, E)$ is a permutation σ of the vertex set V, such that the pair of vertices $\{u, v\}$ forms an edge if and only if the pair $\{\sigma(u), \sigma(v)\}$ also forms an edge.) Every graphic automorphism is an automorphism of $G_{\Gamma}([51],[69])$ and the set of all graphic automorphisms of $\operatorname{Aut}\left(G_{\Gamma}\right)$ is denoted $A u t^{\Gamma}\left(G_{\Gamma}\right)$.

Theorem 2.4.2. [51] The group $\operatorname{Aut}\left(G_{\Gamma}\right)$ is generated by the finite set consisting of all transvections, partial conjugations, inversions and graphic automorphisms of G_{Γ}. The subgroup $\operatorname{Conj}\left(G_{\Gamma}\right)$ is generated by the partial conjugations.

A finite presentation for the subgroup $\operatorname{Conj}\left(G_{\Gamma}\right)$ of $\operatorname{Aut}\left(G_{\Gamma}\right)$ is given in [70].

2.4.2 Whitehead automorphisms for partially commutative groups

Definition 2.4.3. A Whitehead automorphism is an element $\alpha \in \operatorname{Aut}\left(G_{\Gamma}\right)$ of one of the following two types:

Type (1): α restricted to $V \cup V^{-1}$ is a permutation of $V \cup V^{-1}$, or
Type (2): there is an element $a \in V \cup V^{-1}$, called the multiplier of α, such that for each $x \in V$ the element $\alpha(x)$ is one of $x, x a, a^{-1} x, a^{-1} x a$.

Let Ω be the set of all Whitehead automorphisms of G_{Γ}.
Definition 2.4.4. A Whitehead automorphism $\alpha \in \Omega$ is long-range if α is of type (1) or if α is of type (2) with multiplier $a \in V \cup V^{-1}$ and α fixes the elements of V adjacent to a in Γ. Let Ω_{ℓ} be the set of long-range elements of Ω.

A Whitehead automorphism $\alpha \in \Omega$ is short-range if α is of type (2) with multiplier $a \in V \cup V^{-1}$ and α fixes the elements of V not adjacent to a in Γ. Let Ω_{s} be the set of short-range elements of Ω.

By [51] (see Section 2.2), we can conclude that $\Omega_{\ell} \cup \Omega_{s}$ is a generating set for $\operatorname{Aut}\left(G_{\Gamma}\right)$.

Theorem 2.4.5. [24] For any graph Γ, the group $\operatorname{Aut}\left(G_{\Gamma}\right)$ is finitely presented. Specifically, there is a finite set R of relations among the Whitehead automorphisms Ω such that $\operatorname{Aut}\left(G_{\Gamma}\right)=\langle\Omega, R\rangle$.

There is a special notation for type (2) Whitehead automorphisms. Let $A \subset L$ and $a \in L$, such that $a \in A$ and $a^{-1} \notin A$. If it exists, the symbol (A, a) denotes the Whitehead automorphism satisfying

$$
(A, a)(a)=a
$$

and for $x \in V \backslash v(a)$:

$$
(A, a)(x)= \begin{cases}x & \text { if } x \notin A \text { and } x^{-1} \notin A \\ x a & \text { if } x \in A \text { and } x^{-1} \notin A \\ a^{-1} x & \text { if } x \notin A \text { and } x^{-1} \in A \\ a^{-1} x a & \text { if } x \in A \text { and } x^{-1} \in A\end{cases}
$$

Say that (A, a) is well defined if the formula given above defines an automorphism of G_{Γ}.

Note:

i. For $\alpha \in \Omega$ of type (2), one can always find a multiplier $a \in L$ and a subset $A \subset L$ such that $\alpha=(A, a)$. There is a little ambiguity in choosing such a representation that comes from the following fact: if $a, b \in L$ with $e=\{a, b\}$, then $\left(\left\{a, b, b^{-1}\right\}, a\right)$ is the trivial automorphism. In another word if b and $b^{-1} \in \ell k_{L}$ then we must delete them from the set A, because they cancel each other.
ii. The set of type (1) Whitehead automorphisms is the finite subgroup of $\operatorname{Aut}\left(G_{\Gamma}\right)$ generated by the graphic automorphisms and inversions.
iii. The set Ω of Whitehead automorphisms is a finite generating set of $\operatorname{Aut}\left(G_{\Gamma}\right)$.

Lemma 2.4.6. [24] For $A \subset L$ with $a \in A$ and $a^{-1} \notin A$, the automorphism (A, a) is well defined if and only if both of the following hold:

1. The set $\left(V \cap A \cap A^{-1}\right) \backslash 1 k(v(a))$ is a union of connected components of $\Gamma \backslash s t(a)$.
2. For each $x \in\left(A \backslash A^{-1}\right)$, we have $a \geq x$.

Alternatively, (A, a) is well defined if and only if for each $x \in A \backslash s t_{L}(a)$ with $a \nsupseteq$ $x,(A, a)$ acts on the entire component of $x \in \Gamma \backslash$ st (a) by conjugation.

2.5 Relations among Whitehead automorphisms

In this section we define the set of relations R in Theorem 2.4.5. Note that we use function composition order and automorphisms act on the left with sets. We use the notation $A+B$ for $A \cup B$ when $A \cap B=\emptyset$. Note the shorthand $A-a$ for $A \backslash\{a\}$ and $A+a$ for $A \cup\{a\}$.

Let Φ be the free group generated by the set Ω. We understand the relation " $w_{1}=w_{2}^{\prime \prime}$ to correspond to $w_{1} w_{2}^{-1} \in \Phi$. Note that if $(A, a) \in \Omega$ with $B \subset \ell k(v(a))$ and $\left(B \cup B^{-1}\right) \cap A=\emptyset$, then (A, a) and $\left(A+B+B^{-1}, a\right)$ represent the same element of Ω and therefore the same element of Φ. This is why we do not list " $(A, a)=\left(A+B+B^{-1}, a\right)^{\prime}$ in the relations below. We illustrate this by the following example:

Let Γ be a graph of Figure 2.6 with the set of vertices, $V=\{a, b, c, d, e, f, g\}$

Figure 2.6: Graph of Γ
Let $(A, a)=\left(\left\{a, b, b^{-1}\right\}, a\right) \in \Omega$. So,
$A=\left\{a, b, b^{-1}\right\}$,
$\ell k(v(a))=\{b, c, d, e\}$.
Let $B=\{d, e\} \subset \ell k(v(a))$ and so $B^{-1}=\left\{d^{-1}, e^{-1}\right\}$. From the above we have, $(A, a)(a)=a, \quad\left(A+B+B^{-1}, a\right)(a)=a$, and for $x \in V \backslash v(a)$, we have $(A, a)(b)=a^{-1} b a=a^{-1} a b=b$ and $\left(A+B+B^{-1}, a\right)(b)=a^{-1} b a=a^{-1} b a=b$, (since $[a, b]=1 \Rightarrow a b=b a$),
$(A, a)(c)=c, \quad\left(A+B+B^{-1}, a\right)(c)=c$,
$(A, a)(d)=d, \quad\left(A+B+B^{-1}, a\right)(d)=a^{-1} d a=a^{-1} a d=d$,
$(A, a)(e)=e, \quad\left(A+B+B^{-1}, a\right)(e)=a^{-1} e a=a^{-1} a e=e$,
$(A, a)(f)=f, \quad\left(A+B+B^{-1}, a\right)(f)=f$,
$(A, a)(g)=g, \quad\left(A+B+B^{-1}, a\right)(g)=g$.
Hence, $(A, a)=\left(A+B+B^{-1}, a\right)$.
Definition 2.5.1. [24] There are ten types of relations as follows:
(R1) $(A, a)^{-1}=\left(A-a+a^{-1}, a^{-1}\right)$
for $(A, a) \in \Omega$.
$(\mathrm{R} 2)(A, a)(B, a)=(A \cup B, a)$
for (A, a) and $(B, a) \in \Omega$ with $A \cap B=\{a\}$.
(R3) $(B, b)(A, a)(B, b)^{-1}=(A, a)$
for (A, a) and $(B, b) \in \Omega$ such that $a \notin B, b \notin A, a^{-1} \notin B, b^{-1} \notin A$, and at least one of $(a) A \cap B=\emptyset$ or $(b) b \in 1 k_{L}(a)$ holds. We refer to this relation as (R3a) if condition (a) holds and (R3b) if condition (b) holds.
(R4) $(B, b)(A, a)(B, b)^{-1}=(A, a)(B-b+a, a)$
for $(A, a) \in \Omega$ and $(B, b) \in \Omega$ such that $a \notin B, b \notin A, a^{-1} \notin B, b^{-1} \in A$, and at least one of $(a) A \cap B=\emptyset$ or $(b) b \in \ell k_{L}(a)$ holds. We refer to this relation as (R4a) if condition (a) holds and (R4b) if condition (b) holds.
(R5) $\left(A-a+a^{-1}, b\right)(A, a)=\left(A-b+b^{-1}, a\right) \tau_{b}(a, b)$
where $\tau_{b} \in I$ and (a, b) is the graphic automorphism transposing a and b; with $(A, a) \in \Omega, b \in A, b^{-1} \notin A, b \neq a, b \sim a$.
(R6) There are two types of $R 6$ relation which are,
(R6a) $\tau_{x}(A, a) \tau_{x}^{-1}=\left(\tau_{x}(A), \tau_{x}(a)\right)$, where $\tau_{x} \in I$, and
$(R 6 b) \phi(A, a) \phi^{-1}=(\phi(A), \phi(a))$, where $\phi \in \operatorname{Aut}\left(G_{\Gamma}\right)$.
(R7) The entire multiplication table of the type (1) Whitehead automorphisms, which forms a finite subgroup of Aut G_{Γ}.
(R8) $(A, a)=\left(L-a^{-1}, a\right)\left(L-A, a^{-1}\right)$,
for $(A, a) \in \Omega$.
(R9) $(A, a)\left(L-b^{-1}, b\right)(A, a)^{-1}=\left(L-b^{-1}, b\right)$,
for $(A, a) \in \Omega$ and $b \in L$ with $b, b^{-1} \notin A$.
(R10) $(A, a)\left(L-b^{-1}, b\right)(A, a)^{-1}=\left(L-a^{-1}, a\right)\left(L-b^{-1}, b\right)$
for $(A, a) \in \Omega$ and $b \in L$ with $b \in A, b^{-1} \notin A$ and $b \neq a$.
Let R be the set of elements of Φ corresponding to all relations of the forms $(R 1),(R 2),(R 3),(R 4),(R 5),(R 6),(R 7),(R 8),(R 9),(R 10)$. This is the same R in Theorem 3.3.9 and Day [24] proved in Section 5 that:

$$
\operatorname{Aut}\left(G_{\Gamma}\right):=\left\langle\Omega \mid R_{\Gamma}\right\rangle
$$

2.5.1 Relations $R 5$ and $R 6$

In Day's work relations ($R 5$) and $(R 6)$ are not the same as the ones in the Definition 2.5.1. Our alternative forms for the relations $(R 5)$ and $(R 6)$ are more suitable for our algorithm. In this section we show that our relations ($R 5$) and ($R 6$) are equivalent to Day's relations ($R 5$) and ($R 6$). Day's $(R 5)$ and $(R 6)$ are
$\left(A-a+a^{-1}, b\right)(A, a)=\left(A-b+b^{-1}, a\right) \sigma_{a, b}$
for $(A, a) \in \Omega$ and $b \in A$ with $b^{-1} \notin A, b \neq a$, and $b \sim a$, where $\sigma_{a, b}$ is the type (1) Whitehead automorphism with $\sigma_{a, b}(a)=b^{-1}, \sigma_{a, b}(b)=a$ and which fixes the other generations.
(R'6) $\sigma(A, a) \sigma^{-1}=(\sigma(A), \sigma(a))$
for $(A, a) \in \Omega$ of type (2) and $\sigma \in \Omega$ of type (1).

First, we will give an example for small graph and after that we will go to the general case.

Example 2.5.1.1

Let $V=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ be the set of vertices and Γ be a graph of Figure 2.7:

Figure 2.7: A Graph Γ

We have graph isomorphism π such that,

$$
\pi=x_{1} \rightarrow x_{2} \rightarrow x_{3} \rightarrow x_{4} \rightarrow x_{5}
$$

and another ρ such that

$$
\rho=\left\{\begin{array}{l}
x_{4} \rightarrow x_{4} \\
x_{3} \rightarrow x_{5} \\
x_{5} \rightarrow x_{3} \\
x_{1} \rightarrow x_{2} \\
x_{2} \rightarrow x_{1}
\end{array}\right.
$$

In this example the isomorphism group of Γ is generated by π and ρ (and is isomorphic to dihedral group D_{5}).

- $G(\Gamma)=\left\langle x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\rangle \mid\left[x_{1}, x_{2}\right]=\left[x_{2}, x_{3}\right]=\left[x_{3}, x_{4}\right]=\left[x_{4}, x_{5}\right]$
$\left.=\left[x_{5}, x_{1}\right]=1\right\rangle$
- $V \cup V^{-1}=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{1}^{-1}, x_{2}^{-1}, x_{3}^{-1}, x_{4}^{-1}, x_{5}^{-1}\right\}$.

Now, let $\theta \in \operatorname{Aut}\left(G_{\Gamma}\right)$ be an automorphism of type (1), so θ permutes $V \cup V^{-1}$. Let $x \in V(\Gamma)$ then $\theta(x)=y \in V \cup V^{-1}$. Since $\theta \in \operatorname{Aut}\left(G_{\Gamma}\right)$ then $\theta\left(x^{-1}\right)=\theta(x)^{-1}=$ y^{-1}. Therefore, $\theta\left(\left\{x, x^{-1}\right\}\right)=\left\{y, y^{-1}\right\}$.

Group $V \cup V^{-1}$ into pairs $\left\{x_{1}, x_{1}^{-1}\right\},\left\{x_{2}, x_{2}^{-1}\right\}, \ldots,\left\{x_{n}, x_{n}^{-1}\right\}$ and then for each i, θ maps $\left\{x_{i}, x_{i}^{-1}\right\}$ to $\left\{x_{j}, x_{j}^{-1}\right\}$ for some j. So, θ is a permutation of the set of pairs $\left\{x_{1}, x_{1}^{-1}\right\}, \ldots,\left\{x_{n}, x_{n}^{-1}\right\}$. In this case, if we forget the exponent ± 1 of x_{i} we may use θ to define an automorphism θ_{0} of Γ. Namely if $\theta\left(\left\{x_{i}, x_{i}^{-1}\right\}\right)=\left\{x_{j}, x_{j}^{+1}\right\}$ define $\theta_{0}\left(x_{i}\right)=x_{j}$. In this case we say θ contracts to θ_{0}. For example, let θ be such that

Then θ contracts to the automorphism π above.
Conversely an automorphism α of Γ induces several automorphisms of G_{Γ} which contract to α. In fact if $\alpha\left(x_{i}\right)=x_{j}$ then we my define an automorphism θ of G_{Γ} such that (a) $\theta\left(x_{i}\right)=x_{j}$ or (b) $\theta\left(x_{i}\right)=x_{j}^{-1}$. Suppose θ is defined by making such a choice $\forall x_{i} \in V(\Gamma)$. Since θ is obtained from α by composition with appropriate inversions,
it follows that θ determines an automorphism of G_{Γ}. Moreover, by definition θ contracts to α. As there are two choices for $\theta\left(x_{i}\right)$, for $i=1, \ldots, 5$, every $\alpha \in \operatorname{Aut}(\Gamma)$ induces at most 2^{n} distinct elements of $\operatorname{Aut}\left(G_{\Gamma}\right)$.

In the example above, ρ gives rise to at most 2^{5} automorphisms of type (1). So, we have that

$$
\bullet\left\{x_{1}, x_{1}^{-1}\right\} \rightarrow\left\{x_{2}, x_{2}^{-1}\right\} \Rightarrow\left\{\begin{array}{l}
\xrightarrow{a}\left\{\begin{array}{l}
x_{1} \rightarrow x_{2} \\
x_{1}^{-1} \rightarrow x_{2}^{-1}
\end{array}\right. \\
\xrightarrow{b}\left\{\begin{array}{l}
x_{1} \rightarrow x_{2}^{-1} \\
x_{1}^{-1} \rightarrow x_{2}
\end{array}\right.
\end{array}\right.
$$

For each of a, b we have that

$$
\bullet\left\{x_{2}, x_{2}^{-1}\right\} \rightarrow\left\{x_{1}, x_{1}^{-1}\right\} \Rightarrow\left\{\begin{array}{l}
\stackrel{c}{\longrightarrow}\left\{\begin{array}{l}
x_{2} \rightarrow x_{1} \\
x_{2}^{-1} \rightarrow x_{1}^{-1} \\
x_{2} \rightarrow x_{1}^{-1} \\
x_{2}^{-1} \rightarrow x_{1}
\end{array}\right. \\
\xrightarrow{d}
\end{array}\right.
$$

- If we have a and c :

$$
\rho_{1}:\left\{\begin{array}{l}
x_{1} \leftrightarrows x_{2} \\
x_{1}^{-1} \leftrightarrows x_{2}^{-1}
\end{array}\right.
$$

- If we have a and d :

$$
\rho_{2}: x_{1} \longrightarrow x_{2} \longrightarrow x_{1}^{-1} \longrightarrow x_{2}^{-1}
$$

- If we have b and c :

$$
\rho_{3}: x_{1} \longrightarrow x_{2}^{-1} \longrightarrow x_{1}^{-1} \longrightarrow x_{2}
$$

- If we have b and d :

$$
\begin{gathered}
\rho_{4}:\left\{\begin{array}{l}
x_{1} \leftrightarrows x_{2}^{-1} \\
x_{1}^{-1} \leftrightarrows x_{2}
\end{array}\right. \\
\rho_{5}:\left\{x_{3}, x_{3}^{-1}\right\} \rightarrow\left\{x_{5}, x_{5}^{-1}\right\}
\end{gathered}
$$

For ρ_{5} there are two possibilities

$$
\bullet\left\{x_{3}, x_{3}^{-1}\right\} \rightarrow\left\{x_{5}, x_{5}^{-1}\right\} \Rightarrow\left\{\begin{array}{l}
\xrightarrow{e}\left\{\begin{array}{l}
x_{3} \rightarrow x_{5} \\
x_{3}^{-1} \rightarrow x_{5}^{-1}
\end{array}\right. \\
\xrightarrow{f}\left\{\begin{array}{l}
x_{3} \rightarrow x_{5}^{-1} \\
x_{3}^{-1} \rightarrow x_{5}
\end{array}\right.
\end{array}\right.
$$

Also,

$$
\text { - }\left\{x_{5}, x_{5}^{-1}\right\} \rightarrow\left\{x_{3}, x_{3}^{-1}\right\} \Rightarrow\left\{\begin{array}{l}
\xrightarrow{g}\left\{\begin{array}{l}
x_{5} \rightarrow x_{5} \\
x_{5}^{-1} \rightarrow x_{3}^{-1}
\end{array}\right. \\
\xrightarrow{h}\left\{\begin{array}{l}
x_{5} \rightarrow x_{3}^{-1} \\
x_{5}^{-1} \rightarrow x_{3}
\end{array}\right.
\end{array}\right.
$$

- Now, we come back to the general case of θ (on page 22):

Let

$$
\begin{aligned}
\sigma & =\left\langle\tau_{x_{1}}, \ldots, \tau_{x_{n}}\right\rangle \\
& =\left\langle\tau_{x_{1}}\right\rangle \oplus \ldots \oplus\left\langle\tau_{x_{n}}\right\rangle \\
& =\left\langle\tau_{x_{1}} \mid \tau_{x_{1}}^{2}\right\rangle \oplus \ldots \oplus\left\langle\tau_{x_{n}} \mid \tau_{x_{n}}^{2}\right\rangle .
\end{aligned}
$$

Where,

$$
\begin{aligned}
& \tau_{x_{1}}: \\
& \tau_{x_{2}}: \\
& \vdots x_{2} \rightarrow x_{1}^{-1}, x_{1}^{-1}, x_{2}^{-1} \rightarrow x_{1} \text { and } x_{j} \rightarrow x_{j} \text { and } x_{j} \rightarrow x_{j}, \text { if } j \neq 1, \tau_{x_{1}}^{2}=1=(), \\
& \vdots \\
& \tau_{x_{n}}: \\
& x_{n} \rightarrow x_{n}^{-1}, x_{n}^{-1} \rightarrow x_{n} \text { and } x_{j} \rightarrow x_{j}, \text { if } j \neq n, \tau_{x_{n}}^{2}=1=() .
\end{aligned}
$$

(There is no need for $\tau_{x_{j}^{-1}}$ for $j=1, \ldots n$, because we have that $\tau_{x_{j}^{-1}}=\tau_{x_{j}}$).
Suppose that ϕ is any isomorphism of Γ. So for each $x \in V$ and $\phi(x) \in V$ and ϕ maps x bijectively to itself. Then ϕ gives rise to 2^{n} automorphisms of type (1) (where $|V(\Gamma)|=n$). For each $x \in V$ we have two choices a and b,

$$
x \xrightarrow[\stackrel{a}{\leftrightarrows} \phi(x)]{\stackrel{a}{b} \phi(x)^{-1}}
$$

- If $x \longmapsto \phi(x)$ then $x^{-1} \longmapsto \phi(x)^{-1}$,
- If $x \longmapsto \phi(x)^{-1}$ then $x^{-1} \longmapsto \phi(x)$, so once these choices have been made we have uniquely determined an automorphism of type (1).

Now let

$$
T=\langle\text { automorphisms of type }(1)\rangle \leq A u t\left(G_{\Gamma}\right),
$$

$\zeta=\operatorname{Aut}(\Gamma)$ the group of automorphism of Γ (elements of which permute $V)$.

$$
\begin{aligned}
I & =\left\langle\tau_{x}: x \in V(\Gamma) \text { and } \tau_{x}(x)=x^{-1}\right\rangle, \\
& =\mathbb{Z}_{2} \oplus \ldots \oplus \mathbb{Z}_{2},(|V(\Gamma)|-\text { times }), \\
& \cong\left(\left\langle\tau_{x_{1}}\right\rangle \oplus \ldots \oplus\left\langle\tau_{x_{n}}\right\rangle\right) .
\end{aligned}
$$

Any automorphism θ of type (1) permutes the sets $\left\{x, x^{-1}\right\}$ such that $x \in V$ so contracts to a graph automorphism ϕ, from which θ can be recovered as above. Now we have the following facts; for θ and ϕ

Fact 1: $\quad \phi^{-1} \tau_{x} \phi=\tau_{\phi^{-1}(x)}$. That is $\phi \tau_{x}=\tau_{\phi(x)} \theta$.
If $\phi \in \zeta$ and $\tau_{x} \in I$ then for each $z \in V$ we have that,

$$
\begin{aligned}
\phi^{-1} \tau_{x} \phi(z) & = \begin{cases}\phi^{-1} \phi(z) & \text { if } x \neq \phi(z) \\
\phi^{-1}(\phi(z))^{-1} & \text { if } x=\phi(z),\end{cases} \\
& = \begin{cases}z & \text { if } x \neq \phi(z) \\
\phi^{-1}\left(\phi\left(z^{-1}\right)\right) & \text { if } x=\phi(z),\end{cases} \\
& = \begin{cases}z & \text { if } x \neq \phi(z) \\
z^{-1} & \text { if } x=\phi(z),\end{cases} \\
& =\tau_{\phi^{-1}(z) .} .
\end{aligned}
$$

Fact 2: $\tau_{x} \tau_{y}=\tau_{y} \tau_{x}$, for each $x \neq y \in V$
Fact 3: Suppose we choose option b for $x=x_{1}, \ldots, x_{r}$ and option a for all other $x \in V$. Then we will have the following fact. The resulting map of type (1) is

$$
\theta=\tau_{\phi\left(x_{1}\right)} \ldots \tau_{\phi\left(x_{r}\right)} \phi=\phi \tau_{x_{1}} \ldots \tau_{x_{r}}
$$

and

$$
\phi \tau_{x}(x) \rightarrow \phi\left(x^{-1}\right)=\phi(x)^{-1}, \forall x \in V .
$$

- From Fact 3 we have $T=\langle I, \zeta\rangle$ and moreover $T=\zeta I=I \zeta$. From Fact 1, as $\tau_{\phi^{-1}(x)} \in I$ we have $I \triangleleft T$.
- We show $\zeta \cap I=\{i d\}$. Suppose $\alpha \in \zeta \cap I$. Then $\alpha(x) \in V, \forall x \in V$, as $\alpha \in \zeta$. Also $\alpha(x)=x$ or x^{-1}, as $\alpha \in I$. Hence (as $\left.x^{-1} \notin V\right) \alpha(x)=x, \forall x \in V$. Therefore $\alpha=i d$ and so $\zeta \cap I=\{i d\}$. Therefore, $T=\zeta \rtimes I$.

Therefore, given a presentation $\langle\operatorname{Gens}(\zeta) \cup I \mid \operatorname{Rels}(\zeta)\rangle$ for ζ, a presentation for T is,
$T=\langle\operatorname{Gens}(\zeta) \cup \operatorname{Gens}(I)| \operatorname{Rels}(\zeta) \cup\left\{\tau_{v}^{2}: v \in V(\Gamma)\right\} \cup\left\{\left[\tau_{v}, \tau_{u}\right]: u, v \in V(\Gamma), u \neq\right.$ $v\} \cup\left\{\phi^{-1} \tau_{v} \phi=\tau_{\phi^{-1}(v)}\right.$ for each $\phi \in \operatorname{Gens}(G)$ and $\left.\left.\tau_{v} \in \operatorname{Gens}(I)\right\}\right\rangle$.

- Day's relation $R^{\prime} 5$ is:
$\left(R^{\prime} 5\right)\left(A-a+a^{-1}, b\right)(A, a)=\left(A-b+b^{-1}, a\right) \sigma_{a, b}$
for $(A, a) \in \Omega$ and $b \in A$ with $b^{-1} \notin A, b \neq a$, and $b \sim a$, where $\sigma_{a, b}$ is the type (1) Whitehead automorphism with $\sigma_{a, b}(a)=b^{-1}, \sigma_{a, b}(b)=a$ and which fixes the other generations.
($R^{\prime} 5$) involves type (1) automorphisms $\sigma_{a, b}$ which we are writing as $\sigma_{a, b}=\tau_{b}(a, b)$ where $(a, b) \in \operatorname{Aut}^{\Gamma}(G)$ is the graphic automorphism induced by the automorphism (a, b) of Γ sending a to b and b to a. Hence, ($\left.R^{\prime} 5\right)$ becomes ($R 5$) of Definition 2.5.1.

■ Day's relation $R^{\prime} 6$ is:

$\left(R^{\prime} 6\right) \sigma(A, a) \sigma^{-1}=(\sigma(A), \sigma(a))$
for $(A, a) \in \Omega$ of type (2) and $\sigma \in \Omega$ of type (1).
We have generators of type (1) of the form
I : that is τ_{x} for $x \in V$, and
ζ : that is graph isomorphisms (permutations of V). However not all type (1) elements appear in our generating set. So we replace the above relation $\left(R^{\prime} 6\right)$ with ($R 6$) of Definition 2.5.1

Note that ($R^{\prime} 6$) follows from ($R 6$), as we may write any σ of type (1) as

$$
\sigma=\phi \tau_{x_{1}} \ldots \tau_{x_{r}} \text { for suitable } \phi \in \zeta \text { and } \tau_{x_{i}} \in I \text { (from Fact 3) and then }
$$

$$
\begin{aligned}
\sigma(A, a) \sigma^{-1} & =\phi \tau_{x_{1}} \ldots \tau_{x_{r}}(A, a) \tau_{x_{r}}^{-1} \ldots \tau_{x_{1}}^{-1} \phi^{-1} \\
& =\phi \tau_{x_{1}} \ldots \tau_{x_{r-1}}\left(\tau_{x_{r}}(A), \tau_{x_{r}}(a)\right) \tau_{x_{r-1}}^{-1} \ldots \tau_{x_{1}}^{-1} \phi^{-1} \\
& =\phi \tau_{x_{1}} \ldots \tau_{x_{r-2}}\left(\tau_{x_{r-1}} \tau_{x_{r}}(A), \tau_{x_{r-1}} \tau_{x_{r}}(a)\right) \tau_{x_{r-2}}^{-1} \ldots \tau_{x_{2}}^{-1} \phi^{-2} \\
& =\phi\left(\tau_{x_{1}} \ldots \tau_{x_{r}}(A), \tau_{x_{1}} \ldots \tau_{x_{r}}(a)\right) \phi^{-1} \\
& =\left(\phi \tau_{x_{1}} \ldots \tau_{x_{r}}(A), \phi \tau_{x_{1}} \ldots \tau_{x_{r}}(a)\right) \\
& =(\sigma(A), \sigma(a)) .
\end{aligned}
$$

2.6 Peak reduction

Peak reduction is a technique in the study of $\operatorname{Aut}(F)$ that is a key ingredient in the solution of several important problems. J.H.C. Whitehead invented the technique in the 1930's in [72] to provide an algorithm that takes in two conjugacy classes (or more generally, k-tuples of conjugacy classes) from F and determines whether there is an automorphism in $\operatorname{Aut}(F)$ that carries one to the other.

Definition 2.6.1. For W a k-tuple of conjugacy classes in G_{Γ}, we say that a string $\alpha_{m} \ldots \alpha_{1}$ of elements of $\operatorname{Aut}\left(G_{\Gamma}\right)$ is peak-reduced with respect to W if for each $i=1, \ldots, m-1$, we do not have both

$$
\left|\left(\alpha_{i+1} \ldots \alpha_{1}\right) \cdot W\right| \leq\left|\left(\alpha_{i} \ldots \alpha_{1}\right) \cdot W\right|
$$

and

$$
\left|\left(\alpha_{i} \ldots \alpha_{1}\right) \cdot W\right| \geq\left|\left(\alpha_{i-1} \ldots \alpha_{1}\right) \cdot W\right|
$$

unless all three lengths are equal. It is equivalent to that, for some $k_{1} \leq k$, the length of $\alpha_{k} \ldots \alpha_{1} \cdot W$ decreases with k until $k=k_{1}$, remains constant until $k=k_{2}$, and then increases with k until $k=m$.

We see that $\operatorname{Aut}\left(G_{\Gamma}\right)$ has peak reduction with respect to Ω if for any $\alpha \in$ $\operatorname{Aut}\left(G_{\Gamma}\right)$ and any tuple of conjugacy classes W, we can find $\alpha_{m}, \ldots, \alpha_{1} \in \Omega$ such that $\alpha=\alpha_{m}, \ldots, \alpha_{1}$ and the string of elements $\alpha_{m}, \ldots, \alpha_{1}$ is peak-reduced with respect to W.

Theorem 2.6.2. [24] The finite generating set $\Omega_{\ell} \cup \Omega_{s}$ for $\operatorname{Aut}\left(G_{\Gamma}\right)$ has the following properties:

1. each $\alpha \in \operatorname{Aut}\left(G_{\Gamma}\right)$ can be written as $\alpha=\beta \gamma$ for some $\beta \in\left\langle\Omega_{s}\right\rangle$ and some $\gamma \in\left\langle\Omega_{\ell}\right\rangle$,
2. the usual representation $\operatorname{Aut}\left(G_{\Gamma}\right) \rightarrow \operatorname{Aut}\left(H_{1}\left(G_{\Gamma}\right)\right)$ to the automorphism group of the abelianization $H_{1}\left(G_{\Gamma}\right)$, (where $H_{1}\left(G_{\Gamma}\right)=G_{\Gamma} /\left[G_{\Gamma}, G_{\Gamma}\right]=\left(G_{\Gamma}\right)_{a b}$ of G_{Γ},) restricts to an embedding $\left\langle\Omega_{s}\right\rangle \hookrightarrow$ Aut $H_{1}\left(G_{\Gamma}\right)$; and
3. the subgroup $\left\langle\Omega_{\ell}\right\rangle$ has peak reduction by elements of Ω_{ℓ} with respect to any k-tuple W of conjugacy classes in G_{Γ}.

Theorem 2.6.3. [24] The peak-reduction theorem for a free group F_{n} states that there is a finite generating set Ω for $\operatorname{Aut}\left(F_{n}\right)$ (called the Whitehead automorphisms, see [72]) such that $\operatorname{Aut}\left(F_{n}\right)$ has peak reduction with respect to any k-tuple of conjugacy classes W in F_{n} by element of Ω. We will give an example to explain this theorem.

Example 2.6.0.2

For a free group $F_{n}=F(x, y)$, pick any $\alpha \in \operatorname{Aut}\left(F_{n}\right)$ and any k-tuple $\left(w_{1}, \ldots, w_{k}\right)$ where w_{k} is a representative of a conjugacy classes of F_{n}.
Let $W=\left(x, x y, x y^{-1}\right),|W|=5$. Suppose that,

$$
\alpha:\left\{\begin{array}{l}
x \longmapsto y^{-1} x y \\
y \longmapsto x^{2} y
\end{array}\right.
$$

we can factorise α into Whitehead automorphism, according to Theorem 2.6.2, so that

$$
\begin{gathered}
\alpha=\alpha_{m} \ldots \alpha_{1}, \\
|W| \leq\left|\alpha_{1} W\right| \leq\left|\left(\alpha_{2} \alpha_{1}\right) W\right| \leq \ldots \leq\left|\left(\alpha_{m} \ldots \alpha_{1}\right) W\right|=|\alpha W| .
\end{gathered}
$$

Now, we can factor α in the following way, $\alpha=\alpha_{1} \alpha_{2} \alpha_{3}$, where

$$
\alpha_{2}=\alpha_{3}:\left\{\begin{array}{l}
x \longmapsto x \\
y \longmapsto y x
\end{array}\right.
$$

so written a Whitehead automorphism,

$$
\alpha_{2}=(\{x, y\}, x),
$$

and

$$
\alpha_{1}:\left\{\begin{array}{l}
x \longmapsto y^{-1} x y \\
y \longmapsto y
\end{array}\right.
$$

so written as whitehead automorphism,

$$
\alpha_{1}=\left(\left\{x, x^{-1}, y\right\}, y\right)
$$

We will check that $\alpha=\alpha_{1} \alpha_{2} \alpha_{3}$:

$$
\begin{aligned}
& \alpha_{1} \alpha_{2} \alpha_{3}(x)=\alpha_{1} \alpha_{2}(x)=\alpha_{1}(x)=y^{-1} x y \\
& \alpha_{1} \alpha_{2} \alpha_{3}(y)=\alpha_{1} \alpha_{2}(y x)=\alpha_{1}\left(y x^{2}\right)=y y^{-1} x^{2} y=x^{2} y
\end{aligned}
$$

Hence we get that,

$$
\alpha=\alpha_{1} \alpha_{2} \alpha_{3}:\left\{\begin{array}{l}
x \longmapsto y^{-1} x y \\
y \longmapsto x^{2} y
\end{array}\right.
$$

$$
\begin{aligned}
& W=\left(x, x y, x y^{-1}\right) \\
& \alpha_{3} \cdot W=\left(x, x y x, y^{-1}\right),\left|\alpha_{3} \cdot W\right|=5 . \\
& \alpha_{2} \alpha_{3} \cdot W=\left(x, x y x^{2}, x^{-1} y^{-1}\right),\left|\alpha_{2} \alpha_{3} \cdot W\right|=7 . \\
& \alpha_{1} \alpha_{2} \alpha_{3} \cdot W=\left(y^{-1} x y, y^{-1} x y x^{2} y, y^{-1} x^{-1}\right) \sim\left(x, x y x^{2}, y^{-1} x^{-1}\right),\left|\alpha_{1} \alpha_{2} \alpha_{3} \cdot W\right|=7 .
\end{aligned}
$$

As we shown above that $\alpha=\alpha_{1} \alpha_{2} \alpha_{3}$, then it is obvious that $\alpha . W=\alpha_{1} \alpha_{2} \alpha_{3} . W$. Hence, the sequence $W, \alpha_{1} \cdot W, \alpha_{2} \alpha_{1} \cdot W, \alpha_{3} \alpha_{2} \alpha_{1} \cdot W$ has no peak.

Lemma 2.6.4. [24] Let X be a k-tuple of conjugacy classes whose elements are all the conjugacy classes in G_{Γ} of length 2, each appearing once. If $(A, a) \in \Omega_{\ell}$ and $|(A, a) \cdot X| \leq|V|$, then (A, a) is trivial or is the conjugation $\left(L \backslash\left\{a^{-1}\right\}, a\right)$.

Lemma 2.6.5. [24] Suppose $\alpha, \beta \in \Omega_{\ell}$ and [W] is a k-tuple of conjugacy classes of G_{Γ}. If $\beta \alpha^{-1}$ forms a peak with respect to $[W]$, there exist $\delta_{1}, \ldots, \delta_{k} \Omega_{\ell}$ such that $\beta \alpha^{-1}=\delta_{k} \ldots \delta_{1}$ and for each $i, 1 \leq i<k$, we have:

$$
\left|\left(\delta_{i} \ldots \delta_{1}\right) \cdot[W]\right|<\left|\alpha^{-1} \cdot[W]\right|
$$

A factorization of $\beta \alpha^{-1}$ is peak-lowering if it satisfies the conclusions of the Lemma, so Lemma 2.6.5 states that every peak has a peak-lowering factorization.

2.7 GAP Presentation for the $\operatorname{Aut}\left(G_{\Gamma}\right)$

First we will give a small example to find a finite presentation of automorphism groups of partially commutative group $\operatorname{Aut}\left(G_{\Gamma}\right)$.

Example 2.7.0.3

Let $\Gamma=(V, E)$ be the following graph:

Then $V=\left\{x_{1}, x_{2}\right\}$ and $E=\emptyset$. It is a free group with two generators $\left\{x_{1}, x_{1}\right\}$. Thus,
(1) $\operatorname{st}\left(x_{1}\right)=\left\{x_{1}\right\}$,
$\ell k\left(x_{1}\right)=\phi$,
Comps $1=\Gamma \backslash$ st $\left(x_{1}\right)=\left\{x_{2}\right\}=$ connected components of $\Gamma \backslash$ st $\left(x_{1}\right)$.
(2) $\operatorname{st}\left(x_{2}\right)=\left\{x_{2}\right\}$,
$\ell k\left(x_{1}\right)=\phi$,
Comps $2=\Gamma \backslash s t\left(x_{2}\right)=\left\{x_{1}\right\}=$ connected components of $\Gamma \backslash$ st $\left(x_{2}\right)$.
(3) A list $Y(x)$, for each x in V of these vertices y in V such that y less then x, and we call this list by Y , so

$$
Y=\left\{\left\{x_{2}\right\},\left\{x_{1}\right\}\right\} .
$$

(4) Now, we will find the generators of type (2) of the Whitehead automorphisms of the subgraph $E_{1}=\Gamma \backslash$ st $\left(x_{1}\right)$:

$$
\begin{aligned}
L_{1} & =C o m p s 1 \cup\left\{\left\{x_{2}\right\},\left\{x_{2}^{-1}\right\}\right\} \\
& =\left\{x_{2}, x_{2}^{-1}\right\} \cup\left\{\left\{x_{2}\right\},\left\{x_{2}^{-1}\right\}\right\} \\
& =\left\{\left\{x_{2}\right\},\left\{x_{2}^{-1}\right\},\left\{x_{2}, x_{2}^{-1}\right\}\right\} .
\end{aligned}
$$

Hence, the whitehead automorphisms of the subgraph $E_{1}=\Gamma \backslash s t\left(x_{1}\right)$ are:
$C_{1}=\left\{\left\{\left\{x_{2}, x_{1}\right\}, x_{1}\right\},\left\{\left\{x_{2}, x_{1}^{-1}\right\}, x_{1}^{-1}\right\},\left\{\left\{x_{2}^{-1}, x_{1}\right\}, x_{1}\right\}\right.$,
$\left.\left\{\left\{x_{2}^{-1}, x_{1}^{-1}\right\}, x_{1}^{-1}\right\},\left\{\left\{x_{2}, x_{2}^{-1}, x_{1}\right\}, x_{1}\right\},\left\{\left\{x_{2}, x_{2}^{-1}, x_{1}^{-1}\right\}, x_{1}^{-1}\right\}\right\}$.
(5) Now, we will find the generators of type (2) of whitehead automorphisms of the subgraph $E_{2}=\Gamma \backslash \operatorname{st}\left(x_{2}\right)$:

$$
\begin{aligned}
L_{2} & =\operatorname{Comps} 2 \cup\left\{\left\{x_{1}\right\},\left\{x_{1}^{-1}\right\}\right\} \\
& =\left\{\left\{x_{1}, x_{1}^{-1}\right\} \cup\left\{\left\{x_{1}\right\},\left\{x_{1}^{-1}\right\}\right\}\right.
\end{aligned}
$$

$$
=\left\{\left\{x_{1}\right\},\left\{x_{1}^{-1}\right\},\left\{x_{1}, x_{1}^{-1}\right\}\right\} .
$$

Hence, the whitehead automorphisms of the subgraph $E_{2}=\Gamma \backslash s t\left(x_{2}\right)$ are:

$$
\begin{aligned}
C_{2}=\{ & \left\{\left\{x_{1}, x_{2}\right\}, x_{2}\right\},\left\{\left\{x_{1}, x_{2}^{-1}\right\}, x_{2}^{-1}\right\},\left\{\left\{x_{1}^{-1}, x_{2}\right\}, x_{2}\right\},\left\{\left\{x_{1}^{-1}, x_{2}^{-1}\right\}, x_{2}^{-1}\right\}, \\
& \left.\left\{\left\{x_{1}, x_{1}^{-1}, x_{2}\right\}, x_{2}\right\},\left\{\left\{x_{1}, x_{1}^{-1}, x_{2}^{-1}\right\}, x_{2}^{-1}\right\}\right\} .
\end{aligned}
$$

- Therefore, the generators of type (2) whitehead automorphisms of the graph Γ are the following set A :

$$
\begin{aligned}
A= & C_{1} \cup C_{2}, \\
A=\{ & A_{1}=\left\{\left\{x_{2}, x_{1}\right\}, x_{1}\right\}, A_{2}=\left\{\left\{x_{2}, x_{1}^{-1}\right\}, x_{1}^{-1}\right\}, A_{3}=\left\{\left\{x_{2}^{-1}, x_{1}\right\}, x_{1}\right\}, \\
& A_{4}=\left\{\left\{x_{2}^{-1}, x_{1}^{-1}\right\}, x_{1}^{-1}\right\}, A_{5}=\left\{\left\{x_{2}, x_{2}^{-1}, x_{1}\right\}, x_{1}\right\}, \\
& A_{6}=\left\{\left\{x_{2}, x_{2}^{-1}, x_{1}^{-1}\right\} x_{1}^{-1}\right\}, A_{7}=\left\{\left\{x_{1}, x_{2}\right\}, x_{2}\right\}, \\
& A_{8}=\left\{\left\{x_{1}, x_{2}^{-1}\right\}, x_{2}^{-1}\right\}, A_{9}=\left\{\left\{x_{1}^{-1}, x_{2}\right\}, x_{2}\right\}, A_{10}=\left\{\left\{x_{1}^{-1}, x_{2}^{-1}\right\}, x_{2}^{-1}\right\}, \\
& \left.A_{11}=\left\{\left\{x_{1}, x_{1}^{-1}, x_{2}\right\}, x_{2}\right\}, A_{12}=\left\{\left\{x_{1}, x_{1}^{-1}, x_{2}^{-1}\right\}, x_{2}^{-1}\right\}\right\} .
\end{aligned}
$$

- Now, we will find type (1) of generators of the whitehead automorphisms of the graph Γ :
(1) The graph isomorphisms of Γ are that,

$$
\begin{aligned}
\zeta & =\left\{F_{1}=(1,2), \text { identity }\right\} \text { (permutation of vertices). } \\
I & =\left\langle g_{x}: x \in V(\Gamma) \text { and } g_{x}(x)=x^{-1}\right\rangle, \\
& =\left\{g_{x_{1}}\left(x_{1}\right)=x_{1}^{-1}, g_{x_{2}}\left(x_{2}\right)=x_{2}^{-1}\right\}
\end{aligned}
$$

Thus, the generators of type (1) of the whitehead automorphisms are the following set T :

$$
T=\zeta \cup I=\left\{F_{1}, g_{x_{1}}, g_{x_{2}}\right\}
$$

- Therefore, the generators set Gens of the automorphism groups of PCG of the graph Γ is that,

Gens $=A \cup T=\left\{A_{1}, A_{2}, A_{3}, A_{4}, A_{5}, A_{6}, A_{7}, A_{8}, A_{9}, A_{10}, A_{11}, A_{12}, F_{1}, g_{x_{1}}, g_{x_{2}}\right\}$.

- The relations (Rels) between these generators as follows:
(1) $R_{1}=\left\{A_{1} * A_{2}, A_{3} * A_{4}, A_{5} * A_{6}, A_{7} * A_{8}, A_{9} * A_{10}, A_{11} * A_{12}\right\}$.
(2) $R_{2}=\left\{A_{1} * A_{3} * A_{5}^{-1}, A_{2} * A_{4} * A_{6}^{-1}, A_{3} * A_{1} * A_{5}^{-1}, A_{4} * A_{2} * A_{6}^{-1}, A_{7} * A_{9} *\right.$ $\left.A_{11}^{-1}, A_{8} * A_{10} * A_{12}^{-1}, A_{9} * A_{7} * A_{11}^{-1}, A_{10} * A_{8} * A_{12}^{-1}\right\}$.
(3) $R_{3}=\emptyset$.
(4) $R_{4}=\emptyset$.
(5) $R_{5}=\left\{A_{9} * A_{1} * g_{x_{2}} * A_{3}^{-1}, A_{7} * A_{2} * g_{x_{2}} * A_{4}^{-1}, A_{10} * A_{3} * g_{x_{2}} * A_{1}^{-1}\right.$,

$$
\begin{aligned}
& A_{8} * A_{4} * g_{x_{2}} * A_{2}^{-1}, A_{3} * A_{7} * g_{x_{1}} * A_{9}^{-1}, A_{1} * A_{8} * g_{x_{1}} * A_{10}^{-1} \\
& \left.A_{4} * A_{9} * g_{x_{1}} * A_{7}^{-1}, A_{2} * A_{10} * g_{x_{1}} * A_{8}^{-1}\right\}
\end{aligned}
$$

(6) $R_{6}+R_{7}=\left\{g_{x_{1}}^{2}, g_{x_{2}}^{2}, g_{x_{1}}^{-1} * g_{x_{2}}^{-1} * g_{x_{1}} * g_{x_{2}}, g_{x_{2}}^{-1} * g_{x_{1}}^{-1} * g_{x_{2}} * g_{x_{1}}, F_{1}^{-1} * g_{x_{1}} * F_{1} *\right.$ $\left.g_{x_{2}}, F_{1}^{-1} * g_{x_{2}} * F_{1} * g_{x_{1}}\right\}$.
(7) $R_{8}=\left\{A_{1} * A_{4}^{-1} * A_{5}^{-1}, A_{2} * A_{3}^{-1} * A_{6}^{-1}, A_{3} * A_{2}^{-1} * A_{5}^{-1}, A_{4} * A_{1}^{-1} * A_{6}^{-1}, A_{5} * I d *\right.$ $A_{5}^{-1}, A_{6} * I d * A_{6}^{-1}, A_{7} * A_{10}^{-1} * A_{11}^{-1}, A_{8} * A_{9}^{-1} * A_{12}^{-1}, A_{9} * A_{8}^{-1} * A_{11}^{-1}, A_{10} * A_{7}^{-1} *$ $\left.A_{12}^{-1}, A_{11} * I d * A_{11}^{-1}, A_{12} * I d * A_{12}^{-1}\right\}$.
(8) $R_{9}=\emptyset$.
(9) $R_{10}=\left\{A_{1} * A_{11} * A_{1}^{-1} * A_{11}^{-1} * A_{5}^{-1}, A_{2} * A_{11} * A_{2}^{-1} * A_{11}^{-1} * A_{6}^{-1}, A_{3} * A_{12} * A_{3}^{-1} *\right.$

$$
\begin{aligned}
& A_{12}^{-1} * A_{5}^{-1}, A_{4} * A_{12} * A_{4}^{-1} * A_{12}^{-1} * A_{6}^{-1}, A_{7} * A_{5} * A_{7}^{-1} * A_{5}^{-1} * A_{11}^{-1}, A_{8} * A_{5} * A_{8}^{-1} * \\
& \left.A_{5}^{-1} * A_{12}^{-1}, A_{9} * A_{6} * A_{9}^{-1} * A_{6}^{-1} * A_{11}^{-1}, A_{10} * A_{6} * A_{10}^{-1} * A_{6}^{-1} * A_{12}^{-1}\right\} .
\end{aligned}
$$

(10) We have one relation for the automorphisms of graph $\left(F_{1}=(1,2)\right)$, which is F_{1}^{2}.

Therefore, the relations set Rels among the generators Gens is that,

$$
\text { Rels }=R 1 \cup R 2 \cup R 3 \cup R 4 \cup R 5 \cup R 6 \cup R 7 \cup R 8 \cup R 9 \cup R 10 \cup\left\{F_{1}^{2}\right\} .
$$

Hence, the finite presentation for automorphism groups of G_{Γ} is that,

$$
\left.\operatorname{Aut}\left(G_{\Gamma}\right)=\langle\text { Gens }| \text { Rels }\right\rangle .
$$

We have developed AutParCommGrp (Finite Presentations of Automorphism Groups of Partially Commutative Groups and Their Subgroups) a package using the GAP system for computation of a finite presentation for the automorphism group of a partially commutative group $\operatorname{Aut}\left(G_{\Gamma}\right)$ and their subgroups $\operatorname{Conj}\left(G_{\Gamma}\right)$ and Conj_{V} which are described in Chapters 3 and 4 respectively see [1].

This package AutParCommGrp mainly installs new method to provide a finite presentation for the groups $\operatorname{Aut}\left(G_{\Gamma}\right), \operatorname{Conj}\left(G_{\Gamma}\right)$ and Conj_{V}. The process involves the computation of other objects/values which may be useful in their own right. These are defined for a graph $\Gamma=(V, E)$ on n vertices, with vertices V and edge set E, where E is a list of pairs of vertices. They are the star $S t(v)$ and the link $L k(v)$ for each vertex v of V, the list $Y(v)$ of those vertices u in V such that u is less than v, the subgraphs $\Gamma \backslash S t(v)$, the connected components of a graph, the unions of the connected components of a graph, the equivalence classes for each vertex v of V under equivalence relation $\sim(S t(v)$ and $L k(v)$ are used to define a partial order on V which induces equivalence relation \sim). In addition, it can be used to apply Tietze transformations to simplify the presentation of the groups it finds by using a $G A P$ function.

To write an algorithm to produce a finite presentation for the automorphism group of a partially commutative group $\operatorname{Aut}\left(G_{\Gamma}\right)$ first we find Ω the Whitehead generators set of this group based on Laurence's generators as defined in Section 2.4 and then find the set of relations R as defined in Definition 2.5.1.

The input of the main function FinitePresentationOfAutParCommGrp (V, E) that provides finite presentation for the group $\operatorname{Aut}\left(G_{\Gamma}\right)$ is a simple graph $\Gamma=(V, E)$. A graph with vertex set V of size n always has vertices $\{1, \ldots, n\}$ and E is a list of pairs of elements of V. For example if Γ is a simple graph with vertex set $V=\left\{x_{1}, x_{2}, x_{3}\right\}$ and edge set $E=\left\{\left[x_{1}, x_{2}\right],\left[x_{1}, x_{3}\right],\left[x_{2}, x_{3}\right]\right\}$ (where $[x, y]$ denotes an edge joining x to y) then Γ will be represented as ([1, 2, 3], $[[1,2],[1,3],[2,3]])$. The output of FinitePresentationOfAutParCommGrp consists of two sets gens and rels, where gens is the list of the Whitehead generators of $\operatorname{Aut}\left(G_{\Gamma}\right)$ defined in Section 2.4 and rels is the list of the relators R.

This section describes the functions from the package AutParCommGrp which we have written for computing a finite presentation for $\operatorname{Aut}\left(G_{\Gamma}\right)$ as follows.

2.7.1 IsSimpleGraph Function

A simple graph, is an unweighted, undirected graph containing no graph loops or multiple edges. A simple graph may be either connected or disconnected. IsSimpleGraph tests whether the graph Γ fulfills these conditions. The input of the function IsSimpleGraph (V, E) is a graph $\Gamma=(V, E)$, where V and E represents the list of vertices and the list of edges respectively. The algorithm carries out the following
instructions:

```
IsSimpleGraph(V,E)
    if V is empty list
        then return error message
    if }V\mathrm{ or }E\mathrm{ are not lists
        then return error message
    if }\Gamma\mathrm{ has loops
        then return error message
    if }E\not\subsetV\times
        then return error message
    M\leftarrow\operatorname{Size}(E)
    for }i\mathrm{ in {1,_.,M}
        do if E has multiple edges
            then return error message
    return true
```


2.7.2 StarLinkDominateOfVertex Function

The input of the function $\operatorname{StarLinkDominateOfVertex}(V, E)$ is a simple graph $\Gamma=$ (V, E). It computes the star $S t(v)$ and the link $L k(v)$ and concatenates them in two separate lists $S t$ and $L k$ respectively. Also it calculates a list $Y(v)$, for each vertex v in V of those vertices u in V such that u is less than v, and we call the list of all such $Y(v), Y Y$. In addition, it calculates $s V$, the size of the list of vertices V and M, the size of the list of edges E. The algorithm carries out the following instructions:

```
StarLinkDominateOfVErtex(V,E)
    for v in }V(\Gamma
    do for e in E(\Gamma)
        do if e is adjacent v
            then ADD "end point" of e to Lk[v]
    St[v]=Lk[v]\cup{v}
    for v in St[v]
    do for u in Lk[v]
        do if St[u]\subseteqLk[v]
                                then ADD }u\mathrm{ to }Y(v
```

```
10 Append }Y(v)\mathrm{ to }Y
11 L\leftarrowV\cup(-V)
return [St,Lk, YY,sV,M,L,sL]
```


2.7.3 DeleteVerticesFromGraph Function

The input of the function DeleteVerticesFromGraph $(S t, V, E)$ is the list of stars $S t$, the list of vertices V, and the list of edges E. It computes graphs $\Gamma \backslash S t(v)$, for all v in V, with $N V$ the list of all lists of vertices of $\Gamma \backslash S t(v)$ and $N E$ the list of all lists of edges of $\Gamma \backslash S t(v)$. The algorithm carries out the following instructions:

Deletevertices $(S t, V, E)$

```
\(s V \leftarrow \operatorname{Size}(V)\)
\(M \leftarrow \operatorname{Size}(E)\)
for \(v\) in \(V(\Gamma)\)
    do for \(e\) in \(E(\Gamma)\)
        do if \(e\) is not adjacent to \(u \in S t(v)\)
            then \(\operatorname{ADD} e\) to \(H 1\)
                    Add vertices incident to edges in \(H 1\) to \(H 2\)
```

 Append \(H 1\) to \(N E\) and \(H 2\) to \(N V\)
 return \([N V, N E, s N V, s N E]\)

2.7.4 ConnectedComponentsOfGraph Function

The input of the function ConnectedComponentsOfGraph $(G 1, G 2)$ is the list of vertices $G 1$ and the list of edges $G 2$ of a graph B. It computes the list of connected components AllComps of the graph B and its size sAllComps. Also it computes the list of non-isolated connected components NonIsolatedComps and the list of isolated connected components IsolatedComps of the graph B. In addition it computes the lists D and F the list of vertices of NonIsolatedComps and IsolatedComps respectively. The algorithm carries out the following instructions:

ConnectedComponentsOfGraph $(G 1, G 2)$

```
M\leftarrow\operatorname{LENGTh}(G2) \trianglerightG2 is edge list of a simple graph B.
for }i\mathrm{ in {1,_.,M}
    do }D\leftarrow\mathrm{ ComputeVertexListOfNon-ISolated Components( }B\mathrm{ )
```

```
\(s D \leftarrow \operatorname{Size}(D)\)
for \(i\) in \(\{1, \ldots, M\}\)
    do \(W \leftarrow\) ComputeAdjacencyMatrix \((B)\)
for \(i\) in \(\{1, \ldots, s D\}\)
    do if color \([s]=0 \quad \triangleright\) color is a list of size \(s D\) with entries the
                                    \(\triangleright\) numbers of non-isolated components.
        then count \(\leftarrow\) count +1
            \(\triangleright\) count is a specific number representing
            \(\triangleright\) the vertices of each component.
        color \([i] \leftarrow\) count
        NonIsolatedComps \(\leftarrow \operatorname{DFSVISIT}(i, W, s D\), count, color \()\)
for \(k\) in \(\{1, \ldots\), count \(\}\)
    do for \(i\) in \(\{1, \ldots, s D\}\)
        do ADD non-isolated component with its inverse to new list \(P\)
            Append \(P\) to the list NonIsolatedComps
\(F \leftarrow \operatorname{Difference}(G 1, D) \triangleright F\) is vertices of isolated components
\(s F \leftarrow \operatorname{Size}(F)\)
for \(i\) in \(\{1, \ldots, s F\}\)
    do IsolatedComps \(\leftarrow\) ComputeIsolated Components \((B)\)
AllComps \(\leftarrow\) ComputeAllcomponents \((B)\)
return \([\) AllComps, sAllComps, NonIsolatedComps, \(D\), IsolatedComps,\(F]\)
```


2.7.5 DFSVisit Function

The input to DFSVisit $(i, W, s D$, count, color $)$ is a vertex i of graph B, the weight matrix W of B, the size $s D$ of the vertex list of the graph B, an index count, corresponding to a connected component of B and a list color. The $s^{\text {th }}$ item of color is the (number of the) component of B to which the $s^{\text {th }}$ vertex of B belongs (or is zero if s has not yet been processed). The function implements the depth search algorithm to construct the connected components (having more than one vertex) of the graph B. On input a vertex i with count $j>0$, the algorithm checks to see if there is a vertex s, joined to i by an edge, with color $[s]=0$. On finding such an s the algorithm sets color $[s]=$ count and calls itself with input ($s, W, s V$, count, color).

DFSVISIt ($i, W, s D$, count, color $)$
1 for s in $\{1, \ldots, s D\}$
2 do if color $[s]=0$ and $W[i][s]=1$
$3 \quad$ then color $[s]=$ count
$4 \quad \operatorname{DFSV} \operatorname{lsit}(s, W, s D$, count, color)
5 End

2.7.6 WhiteheadAutomorphisms0fSecondType Function

The inputs of the function WhiteheadAutomorphismsOfSecondType(NV, NE, St, $Y Y)$ are the lists of vertices $N V$ and the list of edges $N E$ of the subgraphs $\Gamma \backslash S t(v)=$ $(N V(v), N E(v))$ for all v in V, the list of stars $S t(v)$, and the list $Y Y$ defined in StarLinkDominateOfVertex above. It computes the list A of type (2) Whitehead automorphisms which forms the first part of the set of generators of $\operatorname{Aut}\left(G_{\Gamma}\right)$. Also it computes a list T of names of elements of A (the $i^{\text {th }}$ element of T is the name of the $i^{\text {th }}$ element of A). The algorithm carries out the following instructions:

```
WhiteheadAutomorphismsOf \(\operatorname{SecondType(~} N V, N E, S t, Y Y)\)
\(s N E \leftarrow \operatorname{Size}(N E)\)
    for \(h\) in \(\{1, \ldots, s N E\} \quad \triangleright h \in V\)
    do \(G \leftarrow \mathrm{NE}(h)\)
        \(R 3 \leftarrow\) ConnectedComponentsOfGraph \((G 1, G 2)\)
        Comps \(\leftarrow \mathrm{R} 3(3) \quad \triangleright\) Comps is non-isolated components
        \(s C o m p s \leftarrow \operatorname{Size}(C o m p s)\)
        \(D \leftarrow \mathrm{R} 3(4)\)
        \(s D \leftarrow \operatorname{Size}(D)\)
        \(S \leftarrow \mathrm{St}(h)\)
        \(D Y Y \leftarrow Y Y(v) \cup Y Y(V)^{-1}\)
        \(s D Y Y \leftarrow \operatorname{Size}(D Y Y)\)
        \(L s \leftarrow[[]]\)
        for \(t\) in \(\{1, \ldots, s D Y Y\}\)
            do \(x n \leftarrow \operatorname{DYY}(t)\)
                \(L s \leftarrow \operatorname{UnionElement}(L s, x n, S)\)
        \(s A Q \leftarrow \operatorname{Size}(L s)\)
        for \(i\) in \(\{1, \ldots, s A Q\}\)
            do ADD the non empty elements of \(L s\) to new list \(L 3\)
```

$$
s M V \leftarrow \operatorname{MV}(h)
$$

$$
\text { for } j \text { in }\{1, \ldots, s M V\}
$$

$$
\text { do if } \operatorname{MV}(h)(j) \notin D \text { and } s M V \neq 1 \text { and } M V(h) \neq Y Y(h)
$$

$$
\text { then } \operatorname{ADD}[M V(h)(j)] \text { and }[M V(h)(j)] \text { to } L s 3
$$

$$
\operatorname{ADD}\left[M V(h)(j), M V(h)(j)^{-1}\right] \text { to } L s 3
$$

for each list W in $L 3$
do AdD $W \cup\{h\}$ to new list $L 4$
for X in $L 4$
do $\operatorname{ADD}(X \backslash\{h\}) \cup\left\{h^{-1}\right\}$ to new list $L 5$
$A A \leftarrow \operatorname{Concatenation}(L 4, L 5)$
AdD the non empty elements of $A A$ to new list A
$s A \leftarrow \operatorname{Size}(A)$
for i in $\{1, \ldots, s A\}$
do ADD A_{i} the name of the $i^{\text {th }}$ element of A to new list T
return $[A, T, s A]$

2.7.7 WhiteheadAutomorphismsOfFirstType Function

The input of the function WhiteheadAutomorphismsOfFirstType $(E, s V, s A, T)$ is the list of edges E, the size of the list of vertices $s V$, the size of the list A of type (2) Whitehead automorphism of Γ, defined above, and the list T, also defined earlier. It computes the list Gens of the type (1) Whitehead automorphisms which forms the second part of the set of generators of the automorphism group of G_{Γ}, and then computes the list of the generators gens of $\operatorname{Aut}\left(G_{\Gamma}\right)$ with its size sgens. The subgroup $A u t^{\Gamma}\left(G_{\Gamma}\right)$ of $\operatorname{Aut}\left(G_{\Gamma}\right)$ consists of graph automorphism: that is, elements $\pi \in \operatorname{Aut}\left(G_{\Gamma}\right)$ such that $\left.\pi\right|_{\Gamma}$ is a graph automorphism. The algorithm carries out the following instructions:

WhiteheadAutomorphismsOfFirstType $(E, s V, s A, T)$
$1 G r \leftarrow \operatorname{GraphAutomorphismGroup}(E)$
$2 H H \leftarrow \operatorname{AsGroup}(G r)$
$3 G H H \leftarrow$ GeneratorsOfGroup $(H H)$
$4 K K \leftarrow$ IsomorphismFpGroupByGenerators $(H H, G H H)$
5 HHH $\leftarrow \operatorname{Image}(K K)$
6 rels $2 \leftarrow$ RelatorsOfFpGroup $(H H H)$
srels $2 \leftarrow$ RELATORSOFFpGROUP $($ rels 2$)$
$F \leftarrow \operatorname{Generators} \operatorname{OfGroup}(H H H)$
$S F \leftarrow \operatorname{SizE}(F)$
for each R in rels 2
do $z z \leftarrow \operatorname{ExtRepOfObj}(R)$
ADD $z z$ to new list Rels 1
sRels $1 \leftarrow \operatorname{SIZE}($ Rels 1$)$
for i in $\{1, \ldots, s F\}$
do $\operatorname{ADD} f_{i}$ the name of the $i^{t h}$ element of F to new list Gens3
relvalof $F \leftarrow$ GEnERATORSOFGROUP $(H H)$
srelvalof $F \leftarrow \operatorname{SIZE}($ relvalof $F)$
for v in V
do $I 2 \leftarrow$ ComputeInversionAutomorphismOfEachVertex
ADD $I 2$ to new list $I 1$
for A in $\{1, \ldots, I 1\}$
do $\operatorname{ADD} A_{i}$ the name of the $i^{t h}$ element of $I 1$ to new list Gens 2
sGens $2 \leftarrow \operatorname{SizE}(G e n s 2)$
Gens \leftarrow Concatenation $(G e n s 2, G e n s 3)$
$s G e n s \leftarrow \operatorname{SizE}(G e n s)$
for i in $\{1, \ldots, s G e n s\}$
do ADd Gens (i) to new list gens
genss \leftarrow Concatenation $(T, G e n s 2)$
gens \leftarrow Concatenation $(T, G e n s)$
sgenss $\leftarrow \operatorname{SIZE}($ genss $)$
sgens $\leftarrow \operatorname{SIzE}($ gens $)$
return [gens, sgens, sgenss, Gens3, relvalofF, srelvalofF, Rels1, sRels1, sGens2]

Remark 2.7.1. We have an important notes before we start describe the functions that compute the set of relations as follows:
(1) The relators are represented using sequences of the form $R=\left[p, \epsilon_{1} n_{1}, \ldots, \epsilon_{k} n_{k}\right]$, where p, ϵ_{i}, n_{i} are integers, $\epsilon_{i}= \pm 1,0 \leq p \leq 2$ and $1 \leq n_{i}$. If $p=0$ or 1 then the sequence R corresponds to the word $W_{R}=\left(\left(A_{n_{1}}^{\epsilon_{1}}\right)^{p+1} * \ldots *\left(A_{n_{k}}^{\epsilon_{k}}\right)^{p+1}\right)$, and R is called the index of W_{R}. For example relators of type $(R 1)$ have form $(A, a) *\left(A-a+a^{-1}, a^{-1}\right)=1$ and have indices of form $[0, i d x 1, i d x 2]$ where
$i d x 1=(A, a)$ and $i d x 2=\left(A-a+a^{-1}, a^{-1}\right)$. Sequences with $p=1$ occur only in Section 2.7.8 below.
(2) If $p=2$ then the sequence R corresponds to a relator of type ($R 5$). These have the form $W_{R}=1$ where $W_{R}=\left(A-a+a^{-1}, b\right) *(A, a) * \sigma_{a, b} *\left(A-b+b^{-1}, a\right)^{-1}$, and the corresponding sequence is $[2, i d x 1, i d x 2,-i d x 3, i d x 4, a, b, a]$ where, $i d x 1=\left(A-a+a^{-1}, b\right)$,
$i d x 2=(A, a)$,
$i d x 3=\left(A-b+b^{-1}, a\right)^{-1}$. In this case R is called the index of W_{R}.
(3) One type of graph isomorphisms of Γ is an inversion, $g_{x}: x \in V(\Gamma)$ given by $g_{x(x)}=x^{-1}$ and $g_{y(y)}=y$ for each $y \in V(\Gamma) \backslash\{x\}$. All inversions are type (1) Whitehead automorphisms. The subgroup $\left\langle g_{x}: x \in V(\Gamma)\right\rangle$ is denoted I. The inversions satisfy the relations of the form:

$$
R 11=\left\{g_{x}^{2}=1: x \in V(\Gamma)\right\}
$$

2.7.8 RelationsOfGraphAutomorphisms Function

The inputs of the function RelationsOfGraphAutomorphisms(sA, sgenss, relvalo$f F, s V, s G e n s 2$) are the size $s A$ of the list A of definition of the second type of generator, the size of the list genss defined above which is called sgenss, the list of generators of the graph automorphism relvalof F from above, $s V$ and $s G e n s 2$ of lists V and Gens2. Compute the row matrix of indices Rels of the generators which forms the relations of this type, that related to the graph automorphism with its size sRels. The algorithm carries out the following instructions:

RelationsOfGraphAutomorphisms ($s A$, sgenss, relvalof $F, s V$, sGens2)
for i in $\{s A+1, \ldots$, sgenss $\}$
do ADD $[1, i]$ to new list Rels $\triangleright 1$ means the generators of power two
for i in $\{s A+1, \ldots$, sgenss $\}$
do for j in $\{s A+1, \ldots$, sgenss $\}$
do if $i \neq j$
then ADD $[0,-i,-j, i, j]$ to the list Rels
$\triangleright 0$ means generators here of power one
7 srelvalof $F \leftarrow \operatorname{SizE}($ relvalof $F)$

```
for \(i\) in \(\{1, \ldots\), srelvalof \(F\}\)
    do \(d \leftarrow \operatorname{RELVALOFF}([i])\)
        \(F 1 \leftarrow d^{-1}\)
        Add \(F 1\) to new list \(F F\)
    for \(i\) in \(\{1, \ldots\), srelvalof \(F\}\)
    do for \(j\) in \(\{1, \ldots, s V\}\)
        do \(P P \leftarrow \operatorname{OnPoints}(j, F F[i])\)
        \(i d x 1 \leftarrow i+s A+s G e n s 2\)
        \(i d x 2 \leftarrow s A+j\)
        \(i d x 3 \leftarrow s A+P P\)
        AdD \([0,-i d x 1, i d x 2, i d x 1, i d x 3]\) to the list Rels
    sRels \(\leftarrow\) Rels
    return [Rels, sRels]
```


2.7.9 APCGRelationR1 Function

The inputs of the function APCGRelationR1($s V, A, T$, Rels) are the size of the list of vertices $s V$, the list A defined earlier, the list of generators T from Section 2.7.6, and the list of row matrices of indices of the generators Rels. It computes the list of indices $[0, i d x 1, i d x 2]$ of relators of type $(R 1)$ of Definition 2.5.1 and adds them to the list Rels. We can replace Rels by empty list if we want just the list of row matrices of indices of ($R 1$). In addition it calculates the size of the list Rels. It returns [Rels, sRels].

2.7.10 APCGRelationR2 Function

The inputs of the function APCGRelationR2 $(A, T$, Rels, $S t)$ are the list A is defined earlier, list of the generators T of $\operatorname{Aut}\left(\mathrm{G}_{\Gamma}\right)$ from Section 2.7.6, the list of row matrix of the indices of the generators Rels, and the list of stars St. It computes the list of indices of the generators $[0, i d x 1, i d x 2,-i d x 3]$ of relators of type ($R 2$) of Definition 2.5.1 and adds them to the list Rels. We can replace Rels by empty list if we want just the list of row matrices of indices of ($R 2$). In addition it calculates the size of the list Rels. It returns [Rels, sRels].

2.7.11 APCGRelationR3 Function

The inputs of the function APCGRelationR3 $(A, T, L k$, Rels $)$ are the list A is defined earlier, the list of the generators T of $\operatorname{Aut}\left(\mathrm{G}_{\Gamma}\right)$ from Section 2.7.6, the list of links $L k$, and the list of row matrix of the indices of the generators Rels. It computes the list of the indices $[0, i d x 1, i d x 2,-i d x 1,-i d x 2]$ of relators of type $(R 3)$ of Definition 2.5.1 and ($R 3 a$) and adds them to the list Rels. We can replace Rels by empty list if we want just the list of row matrices of indices of ($R 3$). In addition it calculates the size of the list Rels. It returns [Rels, sRels].

2.7.12 APCGRelationR4 Function

The inputs of the function APCGRelationR4 $(A, T, L k$, Rels $)$ are the list A is defined earlier, the list of the generators T of $\operatorname{Aut}\left(\mathrm{G}_{\Gamma}\right)$ from Section 2.7.6, the list of links $L k$, and the list of row matrix of the indices of the generators Rels. It compute the list of indices $[0, i d x 1, i d x 2,-i d x 1,-i d x 3,-i d x 2]$ of relators of type ($R 4$) and ($R 4 a$) of Definition 2.5.1 and adds them to the list Rels. We can replace Rels by empty list if we want just the list of row matrices of indices of ($R 4$). In addition it calculates the size of the list Rels. It returns [Rels, sRels].

2.7.13 APCGRelationR5 Function

The inputs of the function APCGRelationR5 $(A, S t, L k, \operatorname{Rels}, T)$ are the list A is defined earlier, the list of stars $S t$, the list of links $L k$, the list of row matrix of the indices of the generators Rels, and the list of the generators T of $\operatorname{Aut}\left(\mathrm{G}_{\Gamma}\right)$ from Section 2.7.6. It computes the list of indices $[2, i d x 1, i d x 2, i d x 4,-i d x 3, j, k, j]$ of relators of type ($R 5$) of Definition 2.5.1, where 2 means that the $i d x 4$ refers to the location of A 's (which are start at $s A+1$ and end at $s A+s G e n s 2$), j and k refer to the vertex or its inverse, and adds them to the list Rels. We can replace Rels by empty list if we want just the list of row matrices of indices of (R5). In addition it calculates the sizes of the list Rels. It returns [Rels, sRels].

2.7.14 APCGRelationR8 Function

The inputs of the function APCGRelationR8($V, A, T, L k$, Rels) are the list of vertices V, the list A is defined earlier, the list of the generators T of $\operatorname{Aut}\left(\mathrm{G}_{\Gamma}\right)$ from Section 2.7.6, the list of links $L k$, and the list of row matrix of the indices of the generators

Rels. It computes the lists of indices $[0, i d x 1,-i d x 3,-i d x 2],[0, i d x 1,-i d x 2]$, and [$0, i d x 1]$ of relators of type ($R 8$) of Definition 2.5.1 and adds them to the list Rels. We can replace Rels by empty list if we want just the list of row matrices of indices of ($R 8$). In addition it calculates the sizes of the list Rels. It returns [Rels, sRels].

2.7.15 APCGRelationR9 Function

The inputs of the function APCGRelationR9APCGRelationR9($V, A, T, L k$, Rels) are the list of vertices V, the list A is defined earlier, the list of the generators T of $\operatorname{Aut}\left(\mathrm{G}_{\Gamma}\right)$ from Section 2.7.6, the list of links $L k$, and the list of row matrix of the indices of the generators Rels. It computes the list of indices $[0, i d x 1, i d x 2,-i d x 1,-i d x 2]$ of relators of type ($R 9$) of Definition 2.5.1 and adds them to the list Rels. We can replace Rels by empty list if we want just the list of row matrices of indices of (R9). In addition it calculates the sizes of the list Rels. It returns [Rels, sRels].

2.7.16 APCGRelationR10 Function

The inputs of the function APCGRelationR10($V, A, T, L k$, Rels $)$ are the list of vertices V, the list A is defined earlier, the list of the generators T of $\operatorname{Aut}\left(\mathrm{G}_{\Gamma}\right)$ from Section 2.7.6, the list of links $L k$, the list of row matrix of the indices of the generators Rels. It computes the list of indices $[0, i d x 1, i d x 2,-i d x 1,-i d x 2,-i d x 3]$ of relators of type ($R 10$) of Definition 2.5.1 and adds them to the list Rels. We can replace Rels by empty list if we want just the list of row matrices of indices of ($R 10$). In addition it calculates the sizes of the list Rels. It returns [Rels, sRels].

2.7.17 APCGFinalReturn Function

The input of APCGFinalReturn(gens, Rels, sRels, sRels1, Rels1, sgenss) are the list of generators gens, the list of the indices of the relators Rels, its size sRels, the list of the matrices indices of the relators Rels1, it size sRels1 and sgenss the size of the list genss defined in Section 2.7.7. It forms the list of relations rels from the list Rels (computed in the functions RelationsOfGraphAutomorphisms, APCGRelationR1, APCGRelationR2,..., APCGRelationR10). For each index R of one of these lists the relator W_{R} is added to rels. It also forms the list of relations rels 1 from the list Rels 1 (computed in the functions WhiteheadAutomorphismsOfFirstType) and adds them to the list rels1, and then adds it to the list of relations rels. At the same time it
computes the sizes of rels and rels1. It computes the free group F on gens defined in Section 2.7.7. Also it computes the finitely presented group $G G G=F / r e l s$ where F is the free group on the generators gens defined in Section 2.7.7 and rels is the list of relations which are defined on the generators gens. Finally, it returns [F, gens, rels, $G G G$, sgens, srels]. In fact this function forms the output of one of the main functions which is FinitePresentationOfAutParCommGrp in our package AutParCommGrp. The algorithm carries out the following instructions:

```
APCGFinalREturn(gens, Rels, sRels, sRels1, Rels1, sgenss)
    \(F \leftarrow \operatorname{FreeGroup}(\) gens \()\)
    gens \(\leftarrow\) GeneratorsOfGroup \((F)\)
    sgens \(\leftarrow \operatorname{SizE}(\) gens \()\)
    for \(i\) in \(\{1, \ldots\), sRels 1\(\}\)
    do \(G H K \leftarrow \operatorname{Size}(\operatorname{Rels} 1[i])\)
        \(G H K 1 \leftarrow G H K / 2 \quad \triangleright\) Find real length of each single relation
        for \(j\) in \(\{1, \ldots, G H K 1\}\)
            do Form rels 1 the list of relators of graph group from Rels1
                srels \(1 \leftarrow \operatorname{Size}(r e l s 1)\)
    for \(i\) in \(\{1, \ldots\), sRels \(\}\)
        do \(G H K \leftarrow \operatorname{SizE}(\operatorname{Rels}[i])\)
            Form rels the list of relators of the group from Rels
    for \(i\) in \(\{1, \ldots\), srels 1\(\}\)
        do ADD the list rels 1 to the list rels
            srels \(\leftarrow \operatorname{Size}(r e l s)\)
    \(G G G \leftarrow F /\) rels
    return [ \(F\), gens, rels, \(G G G\), sgens, srels]
```


2.7.18 FinitePresentationOfAutParCommGrp Function

The function FinitePresentationOfAutParCommgrp (V, E) is the first main function in our algorithm. It provides a finite presentation for automorphism group $\operatorname{Aut}\left(G_{\Gamma}\right)$ of G_{Γ}. The input of this function is a simple graph $\Gamma=(V, E)$, where V and E represent the set of vertices and the set of edges respectively. It returns [gens, rels, $G G G]$. The algorithm carries out the following instructions:

FinitePresentationOfAutParCommGrp (V, E)

1 if Γ is simple graph
then Call The Function StarLinkDominateOfVertex
Call The Function DeleteVerticesFromGraph
Call Function WhiteheadAutomorphismsOfSecondType
Call Function WhiteheadAutomorphismsOfFirstType
Call The Function RelationsOfGraphAutomorphisms
Call The Function APCGRelationR5
Call The Function APCGRelationR1
Call The Function APCGRelationR2
Call The Function APCGRelationR3
Call The Function APCGRelationR4
Call The Function APCGRelationR8
Call The Function APCGRelationR9
Call The Function APCGRelationR10 Call The Function APCGFinalReturn
else return "The graph must be a simple graph" return [gens, rels, $G G G$]

Where,
(i) gens: is a list of free generators of the automorphism group $\operatorname{Aut}\left(G_{\Gamma}\right)$ of G_{Γ}.
(ii) rels: is a list of relations in the generators of the free group. Note that relations are entered as relators, i.e., as words in the generators of the free group.
(iii) $G G G:=F /$ rels: is the automorphism group $\operatorname{Aut}\left(G_{\Gamma}\right)$ of G_{Γ} given as a finitely presented group with generators gens and relators rels.

For example,
gap> B:=FinitePresentationOfAutParCommGrp([1, 2], [[1, 2]]);
[[A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, f1], [A9^2, A10^2, A9^- $1 * \mathrm{~A} 10^{\wedge}-1 * \mathrm{~A} 9 * \mathrm{~A} 10, \mathrm{~A} 10^{\wedge}-1 * \mathrm{~A} 9^{\wedge}-1 * \mathrm{~A} 10 * \mathrm{~A} 9, \mathrm{f} 1^{\wedge}-1 * \mathrm{~A} 9 * \mathrm{f} 1 * \mathrm{~A} 10$, $\mathrm{f} 1^{\wedge}-1 * \mathrm{~A} 10 * \mathrm{f} 1 * \mathrm{~A} 9, \mathrm{~A} 7 * \mathrm{~A} 1 * \mathrm{~A} 10 * \mathrm{~A} 3^{\wedge}-1, \mathrm{~A} 5 * \mathrm{~A} 2 * \mathrm{~A} 10 * \mathrm{~A} 4^{\wedge}-1, \mathrm{~A} 8 * \mathrm{~A} 3 * \mathrm{~A} 10 * \mathrm{~A} 1^{\wedge}-1$, $\mathrm{A} 6 * \mathrm{~A} 4 * \mathrm{~A} 10 * \mathrm{~A} 2^{\wedge}-1, \mathrm{~A} 3 * \mathrm{~A} 5 * \mathrm{~A} 9 * \mathrm{~A} 7^{\wedge}-1, \mathrm{~A} 1 * \mathrm{~A} 6 * \mathrm{~A} 9 * \mathrm{~A} 8^{\wedge}-1, \mathrm{~A} 4 * \mathrm{~A} 7 * \mathrm{~A} 9 * \mathrm{~A} 5^{\wedge}-1$, $\mathrm{A} 2 * \mathrm{~A} 8 * \mathrm{~A} 9 * \mathrm{~A} 6^{\wedge}-1, \mathrm{~A} 1 * \mathrm{~A} 2, \mathrm{~A} 3 * \mathrm{~A} 4, \mathrm{~A} 5 * \mathrm{~A} 6, \mathrm{~A} 7 * \mathrm{~A} 8, \mathrm{~A} 1 * \mathrm{~A} 3, \mathrm{~A} 2 * \mathrm{~A} 4, \mathrm{~A} 3 * \mathrm{~A} 1$,

```
A4*A2, A5*A7, A6*A8, A7*A5, A8*A6, A1*A4^-1, A2*A3^-1, A3*A2^-1,
A4*A1^-1, A5*A8^-1, A6*A7^-1, A7*A6^-1, A8*A5^-1, f1^2 ],
<fp group on the generators [A1, A2, A3, A4, A5, A6, A7, A8, A9,
A10, f1 ]> ]
gap> B:=FinitePresentationOfAutParCommGrp([1,2],[]);
[ [ A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14,
f1], [ A13^2, A14^2, A13^-1*A14^-1*A13*A14, A14^-1*A13^-1*A14*A13,
f1^-1*A13*f1*A14,f1^-1*A14*f1*A13,A9*A1*A14*A3^-1,A7*A2*A14*A4^-1,
A10*A3*A14*A1^-1,A8*A4*A14*A2^-1,A3*A7*A13*A9^-1,A1*A8*A13*A10^-1,
A4*A9*A13*A7^-1, A2*A10*A13*A8^-1, A1*A2, A3*A4, A5*A6, A7*A8,
A9*A10, A11*A12, A1*A3*A5^-1, A2*A4*A6^-1,A3*A1*A5^-1,A4*A2*A6^-1,
A7*A9*A11^-1, A8*A10*A12^-1, A9*A7*A11^-1, A10*A8*A12^-1,
A1*A4^-1*A5^-1, A2*A3^-1*A6^-1, A3*A2^-1*A5^-1,A4*A1^-1*A6^-1,
<identity ...>, <identity ...>, A7*A10^-1*A11^-1, A8*A9^-1*A12^-1,
A9*A8^-1*A11^-1, A10*A7^-1*A12^-1, <identity ...>, <identity ...>,
A1*A11*A1^-1*A11^-1*A5^-1, A2*A11*A2^-1*A11^-1*A6^-1,
A3*A12*A3^-1*A12^-1*A5^-1, A4*A12*A4^-1*A12^-1*A6^-1,
7*A5*A7^-1*A5^-1*A11^-1, A8*A5*A8^-1*A5^-1*A12^-1,
A9*A6*A9^-1*A6^-1*A11^-1, A10*A6*A10^-1*A6^-1*A12^-1, f1^2 ],
<fp group on the generators [ A1, A2, A3, A4, A5, A6, A7, A8, A9,
A10, A11, A12, A13, A14, f1 ]> ]
```

Remark 2.7.2. We use the standard GAP function AssignGeneratorVariables (G) to makes our generators readable by $G A P$. If G is a group, whose generators are represented by symbols this function assigns these generators to global variables with the same names. The aim of this function is to make the generators work interactively and more conveniently with $G A P$; for more information see (37.2.3) of the GAP Manuals.

For example from the output of FinitePresentationOfAutParCommGrp([1, 2], $[[1,2]])$ above we have:
gap> G:=B[3] ;
<fp group on the generators [A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, f1]>
gap> AssignGeneratorVariables(G);
\#I Assigned the global variables [A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, f1]

2.7.19 TietzeTransformations Function

The aim of the function TietzeTransformations (G) is to simplify the presentation of the finitely presented group G, i.e., to reduce the number of generators, the number of relators and the relator lengths. The input of the function TietzeTransformations is a finite presentation of G. The operation returns a group H isomorphic to G, so that the presentation of H has been simplified using Tietze transformations. The algorithm carries out the following instructions:

```
TietzeTransformations \((G)\)
1 hom \(\leftarrow\) IsomorphismSimplifiedFpGroup \((G)\)
\(2 \quad H \leftarrow \operatorname{Image}(h o m)\)
\(3 \quad R \leftarrow\) RelatorsOfFpGroup \((H)\)
4 return \([H, R]\)
```

For example, using the output of FinitePresentationOfAutParCommGrp([1, 2], $[[1,2]])$ in Section 2.7.18 we have that,
gap> G:=B[3] ;
<fp group on the generators [A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, f1]>
gap> D:=TietzeTransformations(G);
[<fp group on the generators [A1, A10, f1]>, [A10^2, f1^2, $\left.\mathrm{A} 10 * \mathrm{f} 1 * \mathrm{~A} 10 * \mathrm{f} 1 * \mathrm{~A} 10 * \mathrm{f} 1 * \mathrm{~A} 10 * \mathrm{f} 1, \mathrm{~A} 10 * \mathrm{~A} 1^{\wedge}-1 * \mathrm{f} 1 * \mathrm{~A} 10 * \mathrm{f} 1 * \mathrm{~A} 1^{\wedge}-1 * \mathrm{~A} 10 * \mathrm{~A} 1^{\wedge}-1\right]$]

Chapter 3

Finite Presentation for the Subgroup $\operatorname{Conj}\left(G_{\Gamma}\right)$

3.1 Introduction

The subgroup of $\operatorname{Aut}\left(G_{\Gamma}\right)$, which we consider here, plays an important role in the structure of $\operatorname{Aut}\left(G_{\Gamma}\right)$: see for example [34], [35], [38], [57] and [61]. Recall that the set of all basis conjugating automorphisms forms a subgroup $\operatorname{Conj}\left(G_{\Gamma}\right)$ generated by partial conjugations (see Chapter 2). A finite presentation for the the subgroup $\operatorname{Conj}\left(G_{\Gamma}\right)$ is given in [70].

Our aim in this chapter is to develop an algorithm using $G A P$ system that provides a finite presentation for the subgroup $\operatorname{Conj}\left(G_{\Gamma}\right)$. In addition, we find Tietze transformations to simplify the presentation of $\operatorname{Conj}\left(G_{\Gamma}\right)$; using a GAP function. In order to do this work we will give a description of the presentation of the subgroup $\operatorname{Conj}\left(G_{\Gamma}\right)$ according to Toinet's work [70].

Note that amongst the partial conjugations we have the inner automorphisms; so some of the generators of $\operatorname{Conj}\left(G_{\Gamma}\right)$ are inner automorphisms.

3.2 Finite Presentation for $\operatorname{Conj}\left(G_{\Gamma}\right)$

In [70], Toinet computed a finite presentation for the subgroup $\operatorname{Conj}\left(G_{\Gamma}\right)$ of Aut $\left(G_{\Gamma}\right)$ generated by partial conjugations. In this section we will describe this presentation following Toinet's paper.

Let Ω be the set of Whitehead automorphisms. We set Ω_{1} to be the set of White-
head automorphisms of type (1), and Ω_{2} to be the set of Whitehead automorphisms of type (2). We also denote by Ω_{ℓ} the set of long-range Whitehead automorphisms.

Note that, as we have mentioned in Chapter 2, Day in [24] proved that Aut $\left(G_{\Gamma}\right)$ is generated by the Whitehead automorphisms, with the relations ($R 1$) to ($R 10$) given in Definition 2.5.1.

In following we will apply the definition of peak reduced (see 2.6.1).
Theorem 3.2.1. [70] The subgroup Conj $\left(G_{\Gamma}\right)$ has a presentation $\langle S \mid R\rangle$ where S is the set of partial conjugations $c_{x, Y}$, for $x \in L$ and Y a non-empty union of connected components of $\Gamma \backslash s t(x))$, and R is the finite set of relations:
(C1) $\left(c_{x, Y}\right)^{-1}=c_{x^{-1}, Y}$,
(C2) $c_{x, Y} c_{x, Z}=c_{x, Y \cup Z}$ if $Y \cap Z=\emptyset$,
(C3) $c_{x, Y} c_{y, Z}=c_{y, Z} c_{x, Y}$ if $x \notin Z, y \notin Y, x \neq y, y^{-1}$, and at least one of $Y \cap Z=\emptyset$ or $y \in \ell k_{L}(x)$ holds,
(C4) $\gamma_{y} c_{x, Y} \gamma_{y}^{-1}=c_{x, Y}$ if $y \notin Y, x \neq y, y^{-1}$.
Proof. The proof is based on arguments developed by McCool in [56] and [57] (similar arguments were used in [24]). Let S denote the set of partial conjugations $c_{x, Y}$ where $x \in L$. Let R denote the set of relations given in the statement of Theorem 3.2.1. We shall construct a finite connected 2-complex K with fundamental group

$$
\operatorname{Conj}\left(G_{\Gamma}\right)=\langle S \mid R\rangle .
$$

We identify a partial conjugation with any of its representatives in Ω_{2}. Note that, for every $(A, a) \in \Omega_{2},(A, a) \in S$ if and only if $(A-a)^{-1}=A-a$.

Set $\mathcal{V}=\left\{v_{1}, \ldots, v_{n}\right\}(n \geq 1)$. Let W denote the n-tuple $\left(v_{1}, \ldots, v_{n}\right)$. The set of vertices $K^{(0)}$ of K is the set of n-tuples $\alpha \cdot W$, where α ranges over and set Ω_{1} of type (1) Whitehead automorphisms. For and $\alpha, \beta \in \Omega_{1}$, the vertices $\alpha \cdot W$ and $\beta \alpha \cdot W$ are joined by a Directed edge $(\alpha \cdot W, \beta \alpha \cdot W ; \beta)$ labelled β. Note that, at this stage, K is just the Cayley graph of Ω_{1}. Next, for any $\alpha \in \Omega_{1}$, and $(A, a) \in S$, we add a loop $(\alpha \cdot W, \alpha \cdot W ;(A, a))$ labelled (A, a) at $\alpha \cdot W$. This defines the 1 -skeleton $K^{(1)}$ of K.

We shall define the 2-cells of K. These 2-cells will derive from the relations (R1)-(R10) of Definition 2.5.1. First, let K_{1} be the 2-complex obtained by attaching

2-cells corresponding to relation $(R 7)$ of Definition 2.5 .1 to $K^{(1)}$. Note that, if C is the 2-complex obtained from K_{1} by deleting the loops $(\alpha \cdot W, \alpha \cdot W ;(A, a))(\alpha \in$ $\left.\Omega_{1},(A, a) \in S\right)$, then C is just the Cayley complex of Ω_{1}, and therefore is simply connected. We now explore the relations (R1)-(R5) and (R8)-(R10) of Definition 2.5.1 to determine which of these will give rise to relations on the elements of S. Relation (R1) of Definition 2.5.1 will give rise to the following:

$$
\begin{equation*}
(A, a)^{-1}=\left(A-a+a^{-1}, a^{-1}\right) \tag{3.2.1}
\end{equation*}
$$

for $(A, a) \in S$.
Relation (R2) of Definition 2.5 .1 will give rise to

$$
\begin{equation*}
(A, a)(B, a)=(A \cup B, a) \tag{3.2.2}
\end{equation*}
$$

for $(A, a),(B, a) \in S$, with $A \cap B=\{a\}$.
Relation (R3) of Definition 2.5.1 will give rise to

$$
\begin{equation*}
(A, a)(B, b)=(B, b)(A, a) \tag{3.2.3}
\end{equation*}
$$

for $(A, a),(B, b) \in S$, such that $a \notin B, a^{-1} \notin B, b \notin A, b^{-1} \notin A$, and at least one of (a) $A \cap B=\emptyset$ or (b) $b \in \ell k_{L}(a)$ holds.

From relation (R4) of Definition 2.5.1, no relations arise. Indeed, suppose that $(A, a),(B, b)$ are in S with $a^{-1} \notin B, b \notin A$, and $b^{-1} \in A$. Then $b^{-1}=a$ (because $\left.(A-a)^{-1}=A-a\right)$. But then $a^{-1}=b \in B$, leading to a contradiction with our assumption on a.

From relation (R5) of Definition 2.5.1, no relations arise (by the same argument as above).

From relation (R8) of Definition 2.5.1, we obtain a relation which is a direct consequence of (3.2.1) and (3.2.2).

Relation (R9) of Definition 2.5.1 will give rise to the following:

$$
\begin{equation*}
(A, a)\left(L-\ell k_{L}(b)-b^{-1}, b\right)(A, a)^{-1}=\left(L-\ell k_{L}(b)-b^{-1}, b\right) \tag{3.2.4}
\end{equation*}
$$

for $(A, a) \in S$, and $b \in L$ such that $b \notin A$, and $b^{-1} \notin A$.
From relation ($R 10$) of Definition 2.5.1, no relations arise (by the same argument as above).

We rewrite the relations (3.2.1)-(3.2.4) in the form

$$
\sigma_{k}^{\epsilon_{k}} \ldots \sigma_{1}^{\epsilon_{1}}=1
$$

where $\sigma_{1}, \ldots, \sigma_{k} \in S$ and $\epsilon_{1}, \ldots, \epsilon_{k} \in\{-1,1\}$. Let K_{2} be the 2-complex optioned from K_{1} by attaching 2 -cells corresponding to the relations (3.2.1)-(3.2.4). Note that the boundary of each of these 2-cells has the from

$$
\left(\alpha \cdot W, \alpha \cdot W ; \sigma_{1}\right)^{\epsilon_{1}}\left(\alpha \cdot W, \alpha \cdot W ; \sigma_{2}\right)^{\epsilon_{2}} \ldots\left(\alpha \cdot W, \alpha \cdot W ; \sigma_{k}\right)^{\epsilon_{k}},
$$

for $\alpha \in \Omega_{1}$.
Finally, relation relation (R6) of Definition 2.5.1, will give rise to the following:

$$
\begin{equation*}
\alpha(A, a) \alpha^{-1}=(\alpha(A), \alpha(a)), \tag{3.2.5}
\end{equation*}
$$

for $(A, a) \in S$, and $\alpha \in \Omega_{1}$. Then K is obtained from K_{2} by attaching 2-cells corresponding to the relations (3.2.5). Observe that the boundary of each of these 2-cells has the form
$(\beta \cdot W, \beta \cdot W ;(\alpha(A), \alpha(a)))^{-1}\left(\beta \cdot W, \alpha^{-1} \beta \cdot W ; \alpha\right)^{-1}\left(\alpha^{-1} \beta \cdot W, \alpha^{-1} \beta \cdot W ;(A, a)\right)\left(\alpha^{-1} \beta\right.$. $W, \beta \cdot W ; \alpha), \quad$ for $\beta \in \Omega_{1}$.

It remains to show that $\pi_{1}(K, W)=\operatorname{Conj}\left(G_{\Gamma}\right)=\langle S \mid R\rangle$.
Let T be a maximal tree in the 1 -skeleton $K^{(1)}$ of K. Note that T is in fact a maximal tree in the 1 -skeleton $C^{(1)}$ of C (i.e., the Cayley graph of Ω_{1}). We compute a presentation of $\pi_{1}(K, W)$ using T. For every vertex V in K, there exists a unique reduced path $p v$ from W to V in T. To each edge $\left(V_{1}, V_{2} ; \alpha\right)$ of K, we associate the element $\pi_{1}(K, W)$ represented by the loop $p v_{1}\left(V_{1}, V_{2} ; \alpha\right) p_{V_{2}}^{-1}$. We again denote this by $\left(V_{1}, V_{2} ; \alpha\right)$. Evidently these elements generate $\pi_{1}(K, W)$. Now, since C is simply connected, we have

$$
\begin{equation*}
(\alpha \cdot W, \beta \alpha \cdot W ; \beta)=1 \quad\left(\text { in } \pi_{1}(K, W)\right) \tag{3.2.6}
\end{equation*}
$$

for all $\alpha, \beta \in \Omega_{1}$.
Let \mathcal{P} be the set of combinatorial in the 1 -skeleton $K^{(1)}$ of K. We define a map $\widehat{\varphi}: \mathcal{P} \rightarrow \operatorname{Aut}\left(G_{\Gamma}\right)$ as follows. For an edge $e=\left(V_{1}, V_{2} ; \alpha\right)$, we set $\widehat{\varphi}(e)=\alpha$, and for a path $p=e_{k}^{\epsilon_{k}} \ldots e_{1}^{\epsilon_{1}}$, we set $\widehat{\varphi(p)}=\widehat{\varphi}\left(e_{k}\right)^{\epsilon_{k}} \ldots \widehat{\varphi}\left(e_{1}\right)^{\epsilon_{1}}$. Clearly, if p_{1} and p_{2} are loops at W such that $p_{1} \sim p_{2}$, then $\widehat{\varphi}\left(p_{1}\right)=\widehat{\varphi}\left(p_{2}\right)$. Hence, $\widehat{\varphi}$ induces a map $\varphi: \pi_{1}(K, W) \rightarrow \operatorname{Aut}\left(G_{\Gamma}\right)$. It is easily seen that φ is a homomorphism. Then we see from (3.2.6) that φ maps $\pi_{1}(K, W)$ to $\operatorname{Conj}\left(G_{\Gamma}\right)$. It follows immediately from the
construction of K that $\varphi: \pi_{1}(K, W) \rightarrow \operatorname{Aut}\left(G_{\Gamma}\right)$ is surjective. Thus, it suffices to show that φ is injective. Let p be a loop at W such that $\varphi(p)=1$. We have to show that $p \sim 1$. Write $p=e_{k}^{\epsilon_{k}} \ldots e_{1}^{\epsilon_{1}}$, where $k \geq 1$ and $\epsilon_{i} \in\{-1,1\}$ for all $i \in\{1, \ldots, k\}$. Using the 2-cells arising from (3.2.1) and the fact that $\Omega_{1}^{-1}=\Omega_{1}$, we can restrict our attention to the case where $p=e_{k} \ldots e_{1}$. Set $\alpha_{i}=\varphi\left(e_{i}\right)$ for all $i \in\{1, \ldots, k\}$. Note that $\alpha_{i} \in S \cup \Omega_{1} \subset \Omega_{\ell}$ for all $i \in\{1, \ldots, k\}$.

Let Z be a tuple containing each conjugacy class of length 2 of G_{Γ}, each appearing once. We prove the following:
claim. We have $p \sim e_{1}^{\prime} \ldots e_{1}^{\prime}$, such that, if we set $\alpha_{i}^{\prime}=\varphi\left(e_{i}\right)$ for all $i \in\{1, \ldots, l\}$, then $\left(\alpha_{i}^{\prime} \in \Omega_{1}\right.$ or $\left(\alpha_{i}^{\prime} \in \Omega_{2} \cap \operatorname{Inn}\left(G_{\Gamma}\right)\right.$ for each $i \in\{1, \ldots, l\}$.

First, we examine the case where $\alpha_{k} \ldots \alpha_{1}$ is peak-reduced with respect to Z. We claim that the sequence

$$
|Z|,\left|\alpha_{1} \cdot Z\right|,\left|\alpha_{2} \alpha_{1} \cdot Z\right|, \ldots,\left|\alpha_{k-1} \ldots \alpha_{1} \cdot Z\right|,\left|\alpha_{k} \ldots \alpha_{1} \cdot Z\right|=|Z|
$$

is a constant sequence. Suppose the contrary. By Lemma 2.6.4, $|Z|$ is the least element of the set $\left\{|\alpha \cdot Z| \mid \alpha \in\left\langle\Omega_{\ell}\right\rangle\right\}$. Hence we can find $i \in\{1, \ldots, k-1\}$ such that we have

$$
\begin{aligned}
& \left|\alpha_{i-1} \ldots \alpha_{1} \cdot Z\right| \leq\left|\alpha_{i} \ldots \alpha_{1} \cdot Z\right|, \\
& \left|\alpha_{i+1} \ldots \alpha_{1} \cdot Z\right| \leq\left|\alpha_{i} \ldots \alpha_{1} \cdot Z\right|
\end{aligned}
$$

and at least one of these inequalities is strict, which contradicts the fact that the product $\alpha_{k} \ldots \alpha_{1}$ is peak-reduced. Therefore we have

$$
\left|\alpha_{i} \ldots \alpha_{1} \cdot Z\right|=|Z|
$$

for all indices $i \in\{1, \ldots, k\}$. We argue by induction on $i \in\{1, \ldots, k\}$ to prove that $\left\{\alpha_{i} \ldots \alpha_{1}\right\} \cdot Z$ is a tuple containing each conjugacy class of length 2 of G_{Γ}, each appearing once. The result holds for $i=0$ by assumption. Suppose that $i \geq 1$, and that the result holds for $i-1$. Observe that a type (1) Whitehead automorphism does not change the length of a conjugacy class. Thus, we can assume that α_{i} is a type (2) Whitehead automorphism. Since $\left|\alpha_{i} \alpha_{i-1} \ldots \alpha_{1} \cdot Z\right|=\left|\alpha_{i-1} \ldots \alpha_{1} \cdot Z\right|, \alpha_{i}$ is trivial, or an inner automorphism by Lemma 2.6.4. Thus, the result holds for i. In this case, p has already the desired from.

We now turn to prove the claim. We define

$$
h_{p}=\max \left\{\mid \alpha_{i} \ldots \alpha_{1} \cdot Z \| i \in\{0, \ldots, k\}\right\}
$$

and

$$
N_{p}=\mid\left\{i \mid i \in\{0, \ldots, k\} \text { and }\left|\alpha_{i} \ldots \alpha_{1} \cdot Z\right|=h_{p}\right\} \mid .
$$

We argue by induction on h_{p}. The base of induction is $|Z|$, i.e. the smallest possible value for h_{p} by Lemma 2.6.4. If $h_{p}=|Z|$, then the product $\alpha_{k} \ldots \alpha_{1}$ is peak-reduced and we are done. Thus, we can assume that $h_{p}>|Z|$ and that the result has been proved for all loop p^{\prime} with $h_{p^{\prime}}<h_{p}$. Let $i \in\{1, \ldots, k\}$ be such that α_{i} is a peak of height h_{p}. An examination of the proof of Lemma 2.6.5 shows that $e_{i+1} e_{i} \sim f_{j} \ldots f_{1}$ such that, if we set $\beta_{k}=\varphi\left(f_{k}\right)$ for all $k \in\{1, \ldots, j\}$, then

$$
\begin{equation*}
\left|\beta_{k} \ldots \beta_{1} \alpha_{i-1} \ldots \alpha_{1} \cdot Z\right|<\left|\alpha_{i} \alpha_{i-1} \ldots \alpha_{1} \cdot Z\right| \tag{3.2.7}
\end{equation*}
$$

for all $k \in\{1, \ldots, j-1\}$. Therefore, we get

$$
p \sim e_{k} \ldots e_{i+2} f_{j} \ldots f_{1} e_{i-1} \ldots e_{1}=p^{\prime}
$$

and a new product $\alpha_{k} \ldots \alpha_{i+2} \beta_{j} \ldots \beta_{1} \alpha_{i-1} \ldots \alpha_{1}$. We argue by induction on N_{p}. If $N_{p}=1$, then (3.2.7) implies that $h_{p^{\prime}}<h_{p}$ and $N_{p^{\prime}}<N_{p}$, and we can apply the induction hypothesis on n_{p}. This proves the claim.

Hence, using the 2-cells arising from the relations (3.2.5), we obtain

$$
p \sim h_{S} \ldots h_{1} g_{r} \ldots g_{1}
$$

where, if we set

$$
\gamma_{i}=\varphi\left(g_{i}\right) \text { for all } i \in\{1, \ldots, r\} \text { and } \delta_{j}=\varphi\left(h_{j}\right) \text { for all } j \in\{1, \ldots, s\},
$$

then $\delta_{i} \in \Omega_{1}$ for all $i \in\{1, \ldots, s\}$ and $\gamma_{i} \in \Omega_{2} \cap \operatorname{Inn}\left(G_{\Gamma}\right)$ for all $j \in\{1, \ldots, r\}$. Using relation (3.2.6), we obtain $p \sim g_{r} \ldots g_{1}$. Set $\mathcal{Z}=\cap_{v \in \mathcal{V}} s t(v)$. It follows from Servatius' Centralizer Theorem (see [69]) that the center $Z\left(G_{\Gamma}\right)$ of G_{Γ} is the special subgroup of G_{Γ} generated by \mathcal{Z}. Let Γ^{\prime} be the full subgraph of Γ spanned by $\mathcal{V} \backslash \mathcal{Z}$. We have

$$
G_{\Gamma^{\prime}} \simeq \operatorname{Inn}\left(G_{\Gamma}\right),
$$

$\gamma_{i}=\varphi\left(g_{i}\right)$ for all $i \in\{1, \ldots, r\}$ and $\delta_{j}=\varphi\left(h_{j}\right)$ for all $j \in\{1, \ldots, S\}$,
where the isomorphism is given by $v \mapsto w_{v}$ (see, for example, [2, Lemma 5.3]). Write

$$
\gamma_{i}=\left(L-\ell k_{L}\left(c_{i}\right)-c_{i}^{-1}, c_{i}\right),
$$

where $c_{i} \in(\mathcal{V} \backslash \mathcal{Z}) \cup(\mathcal{V} \backslash \mathcal{Z})^{-1}(i \in\{1, \ldots, r\})$. Since $\gamma_{r} \ldots \gamma_{1}=1\left(\right.$ in $\left.\operatorname{Inn}\left(G_{\Gamma}\right)\right)$, we have $c_{r} \ldots c_{1}=1$ (in $G_{\Gamma^{\prime}}$). Therefore $c_{r} \ldots c_{1}$ is a product of conjugates of defining relators of G_{Γ}. Using the 2-cells corresponding to the relations (3.2.1) and (3.2.3)(b), we deduce that $p \sim 1$. We conclude that φ is injective, and thus

$$
\operatorname{Conj}\left(G_{\Gamma}\right)=\pi_{1}(K, W)
$$

Now, using the 2-cells arising from the relations (3.2.5) (with $\alpha=\beta$), we obtain

$$
(\alpha \cdot W, \alpha \cdot W ;(\alpha(A), \alpha(a)))=\left(\alpha \cdot W, W ; \alpha^{-1}\right)(W, W ;(A, a))(W, \alpha \cdot W ; \alpha),
$$

and then, using (3.2.6)

$$
\begin{equation*}
(\alpha \cdot W, \alpha \cdot W ;(\alpha(A), \alpha(a)))=(W, W ;(A, a)), \tag{3.2.8}
\end{equation*}
$$

for all $\alpha \in \Omega_{1}$, and $(A, a) \in S$. It then follows that $\operatorname{Conj}\left(G_{\Gamma}\right)$ is generated by the $(W, W ;(A, a)$), for $(A, a) \in S$. We identify $(W, W ;(A, a))$ with (A, a) for all $(A, a) \in S$. Any relation in $\operatorname{Conj}\left(G_{\Gamma}\right)=\pi_{1}(K, W)$ will be a product of conjugates of boundary lables of 2-cells of K. Then, using relation (3.2.8) and identifying ($W, W ;(A, a)$) with (A, a), we see that these relations (3.2.1)-(3.2.4) aboe are equivalent to those of R. We have shown that $\operatorname{Conj}\left(G_{\Gamma}\right)$ has the presentation $\langle S \mid R\rangle$.

Now we will give a small example to find a finite presentation of a subgroup $\operatorname{Conj}\left(G_{\Gamma}\right)$ of $\operatorname{Aut}\left(G_{\Gamma}\right)$,

Example 3.2.0.1

Consider the graph Γ of Figure 3.1

Figure 3.1: A Graph Γ
Then $V=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $E=\left\{\left\{x_{1}, x_{2}\right\},\left\{x_{3}, x_{4}\right\}\right\}$. Let $\operatorname{Conj}\left(G_{\Gamma}\right)$ be a subgroup of $\operatorname{Aut}\left(G_{\Gamma}\right)$. Then,
(1) $\operatorname{St}\left(x_{1}\right)=\left\{x_{1}, x_{2}\right\}$,
$\operatorname{Lk}\left\{x_{1}\right\}=\left\{x_{2}\right\}$,
Comps $1=\left\{x_{4}^{-1}, x_{3}^{-1}, x_{3}, x_{4}\right\}=$ the connected components of $\Gamma \backslash \operatorname{St}\left(x_{1}\right)$.
(2) $\operatorname{St}\left(x_{2}\right)=\left\{x_{2}, x_{1}\right\}$
$L k\left(x_{2}\right)=\left\{x_{1}\right\}$,
Comps $2=\left\{x_{4}^{-1}, x_{3}^{-1}, x_{3}, x_{4}\right\}=$ the connected components of $\Gamma \backslash \operatorname{St}\left(x_{2}\right)$.
(3) $\operatorname{St}\left(x_{3}\right)=\left\{x_{3}, x_{4}\right\}$,
$L k\left(x_{3}\right)=\left\{x_{4}\right\}$,
Comps $3=\left\{x_{2}^{-1}, x_{1}^{-1}, x_{1}, x_{2}\right\}=$ the connected components of $\Gamma \backslash S t\left(x_{3}\right)$.
(4) $\operatorname{St}\left(x_{4}\right)=\left\{x_{4}, x_{3}\right\}$,
$L k\left(x_{4}\right)=\left\{x_{3}\right\}$
Comps $4=\left\{x_{2}^{-1}, x_{1}^{-1}, x_{1}, x_{2}\right\}=$ the connected components of $\Gamma \backslash S t\left(x_{4}\right)$.

- We find Y which is a non-empty union of connected components of $\Gamma \backslash \operatorname{st}(x)$, where $x \in L$:
$Y=\left\{Y_{1}=\left\{x_{4}^{-1}, x_{3}^{-1}, x_{3}, x_{4}\right\}, Y_{2}=\left\{x_{2}^{-1}, x_{1}^{-1}, x_{1}, x_{2}\right\}\right\}$
- Now, we find $c_{x, Y}$, the partial conjugations that form the first part of the set of the generators of $\operatorname{Conj}\left(G_{\Gamma}\right)$:
$C_{x, Y}=\left\{c_{x_{2}^{-1}, Y_{1}}=\left\{\left\{x_{4}^{-1}, x_{3}^{-1}, x_{3}, x_{4}, x_{2}^{-1}\right\}, x_{2}^{-1}\right\}\right.$,

$$
\begin{aligned}
& c_{x_{1}^{-1}, Y_{1}}=\left\{\left\{x_{4}^{-1}, x_{3}^{-1}, x_{3}, x_{4}, x_{1}^{-1}\right\}, x_{1}^{-1}\right\}, \\
& c_{x_{1}, Y_{1}}=\left\{\left\{x_{4}^{-1}, x_{3}^{-1}, x_{3}, x_{4}, x_{1}\right\}, x_{1}\right\}, \\
& c_{x_{2}, Y_{1}}=\left\{\left\{x_{4}^{-1}, x_{3}^{-1}, x_{3}, x_{4}, x_{2}\right\}, x_{2}\right\}, \\
& c_{x_{4}^{-1}, Y_{2}}=\left\{\left\{x_{2}^{-1}, x_{1}^{-1}, x_{1}, x_{2}, x_{4}^{-1}\right\}, x_{4}^{-1}\right\}, \\
& c_{x_{3}^{-1}, Y_{2}}=\left\{\left\{x_{2}^{-1}, x_{1}^{-1}, x_{1}, x_{2}, x_{3}^{-1}\right\}, x_{3}^{-1}\right\} \\
& c_{x_{3}, Y_{2}}=\left\{\left\{x_{2}^{-1}, x_{1}^{-1}, x_{1}, x_{2}, x_{3}\right\}, x_{3}\right\}, \\
& \left.c_{x_{4}, Y_{2}}=\left\{\left\{x_{2}^{-1}, x_{1}^{-1}, x_{1}, x_{2}, x_{4}\right\}, x_{4}\right\}\right\} .
\end{aligned}
$$

- We find w, the inner automorphisms that form the second part of the set of the generators of $\operatorname{Conj}\left(G_{\Gamma}\right)$ (since every inner automorphism is a partial conjugation):

$$
\begin{aligned}
W= & \left\{w_{x_{2}^{-1}}=\left\{\left\{x_{4}^{-1}, x_{3}^{-1}, x_{2}^{-1}, x_{3}, x_{4}\right\}, x_{2}^{-1}\right\}, w_{x_{1}^{-1}}=\left\{\left\{x_{4}^{-1}, x_{3}^{-1}, x_{1}^{-1}, x_{3}, x_{4}\right\}, x_{1}^{-1}\right\},\right. \\
& w_{x_{1}}=\left\{\left\{x_{4}^{-1}, x_{3}^{-1}, x_{1}, x_{3}, x_{4}\right\}, x_{1}\right\}, w_{x_{2}}=\left\{\left\{x_{4}^{-1}, x_{3}^{-1}, x_{2}, x_{3}, x_{4}\right\}, x_{2}\right\}, \\
& w_{x_{4}^{-1}}=\left\{\left\{x_{4}^{-1}, x_{2}^{-1}, x_{1}^{-1} x_{1}, x_{2}\right\}, x_{4}^{-1}\right\}, w_{x_{3}^{-1}}=\left\{\left\{x_{3}^{-1}, x_{2}^{-1}, x_{1}^{-1} x_{1}, x_{2}\right\}, x_{3}^{-1}\right\}, \\
& \left.w_{x_{3}}=\left\{\left\{x_{2}^{-1}, x_{1}^{-1}, x_{1}, x_{2}, x_{3}\right\}, x_{3}\right\}, w_{x_{4}}=\left\{\left\{x_{2}^{-1}, x_{1}^{-1}, x_{1}, x_{2}, x_{4}\right\}, x_{4}\right\}\right\} .
\end{aligned}
$$

- We find S, the set of the generators of $\operatorname{Conj}\left(G_{\Gamma}\right)$, which is equal to the union of $C_{x, Y}$ and W :

$$
\begin{aligned}
S= & \left\{c_{x_{2}^{-1}, Y_{1}}=\left\{\left\{x_{4}^{-1}, x_{3}^{-1}, x_{3}, x_{4}, x_{2}^{-1}\right\}, x_{2}^{-1}\right\}, c_{x_{1}^{-1}, Y_{1}}=\left\{\left\{x_{4}^{-1}, x_{3}^{-1}, x_{3}, x_{4}, x_{1}^{-1}\right\}, x_{1}^{-1}\right\},\right. \\
& c_{x_{1}, Y_{1}}=\left\{\left\{x_{4}^{-1}, x_{3}^{-1}, x_{3}, x_{4}, x_{1}\right\}, x_{1}\right\}, c_{x_{2}, Y_{1}}=\left\{\left\{x_{4}^{-1}, x_{3}^{-1}, x_{3}, x_{4}, x_{2}\right\}, x_{2}\right\}, \\
& c_{x_{4}^{-1}, Y_{2}}=\left\{\left\{x_{2}^{-1}, x_{1}^{-1}, x_{1}, x_{2}, x_{4}^{-1}\right\}, x_{4}^{-1}\right\}, c_{x_{3}^{-1}, Y_{2}}=\left\{\left\{x_{2}^{-1}, x_{1}^{-1}, x_{1}, x_{2}, x_{3}^{-1}\right\}, x_{3}^{-1}\right\} \\
& \left.c_{x_{3}, Y_{2}}=\left\{\left\{x_{2}^{-1}, x_{1}^{-1}, x_{1}, x_{2}, x_{3}\right\}, x_{3}\right\}, c_{x_{4}, Y_{2}}=\left\{\left\{x_{2}^{-1}, x_{1}^{-1}, x_{1}, x_{2}, x_{4}\right\}, x_{4}\right\}\right\} .
\end{aligned}
$$

- We find R, the set of relations according to the relations that are defined in Theorem 4.2.3:

$$
\begin{array}{r}
\quad R=\left\{c_{x_{2}^{-1}, Y_{1}} * c_{x_{2}, Y_{1}}, c_{x_{1}^{-1}, Y_{1}} * c_{x_{1}, Y_{1}}, c_{x_{1}, Y_{1}} * c_{x_{1}^{-1}, Y_{1}}, c_{x_{2}, Y_{1}} * c_{x_{2}^{-1}, Y_{1}}, c_{x_{4}^{-1}, Y_{2}} *\right. \\
c_{x_{4}, Y_{2}}, c_{x_{3}^{-1}, Y_{2}} * c_{x_{3}, Y_{2}}, c_{x_{3}, Y_{2}} * c_{x_{3}^{-1}, Y_{2}}, c_{x_{4}, Y_{2}} * c_{x_{4}^{-1}, Y_{2}}, c_{x_{2}^{-1}, Y_{1}} * c_{x_{1}^{-1}, Y_{1}} *\left(c_{x_{2}^{-1}, Y_{1}}\right)^{-1} * \\
\left(c_{x_{1}^{-1}, Y_{1}}\right)^{-1}, c_{x_{2}^{-1}, Y_{1}} * c_{x_{1}, Y_{1}} *\left(c_{x_{2}^{-1}, Y_{1}}\right)^{-1} *\left(c_{1, Y_{1}}\right)^{-1}, c_{x_{1}^{-1}, Y_{1}} * c_{x_{2}, Y_{1}} *\left(c_{x_{1}^{-1}, Y_{1}}\right)^{-1} * \\
\left(c_{x_{2}, Y_{1}}\right)^{-1}, c_{x_{1}, Y_{1}} * c_{x_{2}, Y_{1}} *\left(c_{x_{1}, Y_{1}}\right)^{-1} *\left(c_{x_{2}, Y_{1}}\right)^{-1}, c_{x_{4}^{-1}, Y_{2}} * c_{x_{3}^{-1}, Y_{2}} *\left(c_{x_{4}^{-1}, Y_{2}}\right)^{-1} * \\
\left(c_{x_{3}^{-1}, Y_{2}}\right)^{-1}, c_{x_{4}^{-1}, Y_{2}} * c_{x_{3}, Y_{2}} *\left(c_{x_{4}^{-1}, Y_{2}}\right)^{-1} *\left(c_{x_{3}, Y_{2}}\right)^{-1}, c_{x_{3}^{-1}, Y_{2}} * c_{x_{4}, Y_{2}} *\left(c_{x_{3}^{-1}, Y_{2}}\right)^{-1} * \\
\left.\left(c_{x_{1}, Y_{2}}\right)^{-1}, c_{x_{3}, Y_{1}} * c_{x_{2}, Y_{2}} *\left(c_{x_{3}, Y_{2}}\right)^{-1} *\left(c_{x_{4}, Y_{2}}\right)^{-1}, c_{x_{1}^{-1}, Y_{1}}\right)^{-1} *
\end{array}
$$

$$
\begin{aligned}
& \left(c_{x_{2}^{-1}, Y_{1}}\right)^{-1}, c_{x_{1}, Y_{1}} * c_{x_{2}^{-1}, Y_{1}} *\left(c_{x_{1}, Y_{1}}\right)^{-1} *\left(c_{x_{2}^{-1}, Y_{1}}\right)^{-1}, c_{x_{2}^{-1}, Y_{1}} * c_{x_{1}^{-1}, Y_{1}} *\left(c_{x_{2}^{-1}, Y_{1}}\right)^{-1} * \\
& \left(c_{x_{1}^{-1}, Y_{1}}\right)^{-1}, c_{x_{2}, Y_{1}} * c_{x_{1}^{-1}, Y_{1}} *\left(c_{x_{2}, Y_{1}}\right)^{-1} *\left(c_{x_{1}^{-1}, Y_{1}}\right)^{-1}, c_{x_{2}^{-1}, Y_{1}} * c_{x_{1}, Y_{1}} *\left(c_{x_{2}^{-1}, Y_{1}}\right)^{-1} * \\
& \left(c_{x_{1}, Y_{1}}\right)^{-1}, c_{x_{2}, Y_{1}} * c_{x_{1}, Y_{1}} *\left(c_{x_{2}, Y_{1}}\right)^{-1} *\left(c_{x_{1}, Y_{1}}\right)^{-1}, c_{x_{1}^{-1}, Y_{1}} * c_{x_{2}, Y_{1}} *\left(c_{x_{1}^{-1}, Y_{1}}\right)^{-1} * \\
& \left(c_{x_{2}, Y_{1}}\right)^{-1}, c_{x_{1}, Y_{1}} * c_{x_{2}, Y_{1}} *\left(c_{x_{1}, Y_{1}}\right)^{-1} *\left(c_{x_{2}, Y_{1}}\right)^{-1}, c_{x_{3}^{-1}, Y_{2}} * c_{x_{4}^{-1}, Y_{2}} *\left(c_{x_{3}^{-1}, Y_{2}}\right)^{-1} * \\
& \left(c_{x_{4}^{-1}, Y_{2}}\right)^{-1}, c_{x_{3}, Y_{2}} * c_{x_{4}^{-1}, Y_{2}} *\left(c_{x_{3}, Y_{2}}\right)^{-1} *\left(c_{x_{4}^{-1}, Y_{2}}\right)^{-1}, c_{x_{4}^{-1}, Y_{2}} * c_{x_{3}^{-1}, Y_{2}} *\left(c_{x_{4}^{-1}, Y_{2}}\right)^{-1} * \\
& \left(c_{x_{3}^{-1}, Y_{2}}\right)^{-1}, c_{x_{4}, Y_{2}} * c_{x_{3}^{-1}, Y_{2}} *\left(c_{x_{4}, Y_{2}}\right)^{-1} *\left(c_{x_{3}^{-1}, Y_{2}}\right)^{-1}, c_{x_{4}^{-1}, Y_{2}} * c_{x_{3}, Y_{2}} *\left(c_{x_{4}^{-1}, Y_{2}}\right)^{-1} * \\
& \left(c_{x_{3}, Y_{2}}\right)^{-1}, c_{x_{4}, Y_{2}} * c_{x_{3}, Y_{2}} *\left(c_{x_{4}, Y_{2}}\right)^{-1} *\left(c_{x_{3}, Y_{2}}\right)^{-1}, c_{x_{3}^{-1}, Y_{2}}^{* c_{x_{4}, Y_{2}} *\left(c_{x_{3}^{-1}, Y_{2}}\right)^{-1} *\left(c_{x_{4}, Y_{2}}\right)^{-1},} \\
& \left.c_{x_{3}, Y_{2}} * c_{x_{4}, Y_{2}} *\left(c_{x_{3}, Y_{2}}\right)^{-1} *\left(c_{x_{4}, Y_{2}}\right)^{-1}\right\} .
\end{aligned}
$$

- Hence, the finite presentation for the group of $\operatorname{Conj}\left(G_{\Gamma}\right)$ is
$\operatorname{Conj}\left(G_{\Gamma}\right)=\langle S \mid R\rangle$

3.3 GAP Presentation for $\operatorname{Conj}\left(G_{\Gamma}\right)$

This section describes the functions available from the AutParCommGrp package which we have written for computing a finite presentation for the subgroup $\operatorname{Conj}\left(G_{\Gamma}\right)$ of $\operatorname{Aut}\left(G_{\Gamma}\right)$ with commuting graph Γ generated by partial conjugations.

To write an algorithm to produce this presentation we first construct the set S of generators $c_{x, Y}$ (Laurence's generators), and then find the set R of relations defined in Theorem 3.2.1. The input of the main function FinitePresentationOfSubgroupConj that provides finite presentation for the subgroup $\operatorname{Conj}\left(G_{\Gamma}\right)$ is a simple graph $\Gamma=(V, E)$. A graph with vertex set V of size n always has vertices $\{1, \ldots, n\}$ and E is a list of pairs of elements of V. For example if Γ is a simple graph with vertex set $V=\left\{x_{1}, x_{2}, x_{3}\right\}$ and edge set $E=\left\{\left[x_{1}, x_{2}\right],\left[x_{1}, x_{3}\right],\left[x_{2}, x_{3}\right]\right\}$ (where $[x, y]$ denotes an edge joining x to y) then Γ will be represented as ([1, 2, 3], $[[1,2],[1,3],[2,3]])$. The output of FinitePresentationOfSubgroupConj consists of two sets gens and rels, where gens is the list of the generators of the automorphism $c_{x, Y}$ defined above and rels is the list of the relators.

In addition, to the functions IsSimpleGraph, DeleteverticesFromGraph and ConnectedComponentsOfGraph which we have described in Sections 2.7.1, 2.7.3 and 2.7.4 respectively the function FinitePresentationOfSubgroupConj runs the following functions:

3.3.1 StarLinkOfVertex Function

The input of the function $\operatorname{StarLink} \operatorname{Difertex}(V, E)$ is a simple graph $\Gamma=(V, E)$, where V and E represents the list of vertices and the list of edges respectively. It computes the star $S t(v)$ and the link $L k(v)$ and concatenates them in two separate lists $S t$ and $L k$ respectively. The algorithm carries out the following instructions:

```
StarLinkOfVertex ( \(V, E\) )
    \(s V \leftarrow \operatorname{Size}(V)\)
    \(M \leftarrow \operatorname{Size}(E)\)
    \(S t \leftarrow \operatorname{NulLMAt}(s V, 1,0)\)
    for \(v\) in \(V(\Gamma)\)
        do ADD \(v\) to \(S t[v]\)
        for \(e\) in \(E(\Gamma)\)
                    do if \(e\) is adjacent \(v\)
                then ADD "end point" of \(e\) to \(S t[v]\)
    for \(v\) in \(V(\Gamma)\)
        do \(Y 2 \leftarrow \operatorname{SET}(S t[v])\)
        \(Y 3 \leftarrow \operatorname{RemoveSet}(Y 2, v)\)
        Add \(Y 3\) to new list \(L k\)
    return \([S t, L k]\)
```


3.3.2 CombinationsOfConnectedComponents Function

The input of the function CombinationsOfConnectedComponents(Comps) is the list of connected components Comps of the specified graph B. The output is the set of all combinations $Y 4$ of the multiset Comps (a list of objects which may contain the same object several times) (see GAP manual (16.2.1). The algorithm carries out the following instructions:

CombinationsOfConnectedComponents(Comps)

```
C1\leftarrow CombinATions(Comps)
sC1\leftarrow\operatorname{Size}(C1)
for q in {1,\ldots,sC1}
    do L2 \leftarrow Concatenation(C1[q])
        U2\leftarrow\operatorname{SSORTEDList(L2)}
        ADD L2 to new list Y2 and U2 to new list Y3
```

```
\(s Y 3 \leftarrow \operatorname{Size}(Y 3)\)
for \(i\) in \(\{1, \ldots, s Y 3\}\)
    do if \(Y 3[i] \neq \emptyset\)
        AdD \(Y 3[i]\) to new list \(Y 4\)
\(s Y 4 \leftarrow \operatorname{Size}(Y 4)\)
return \(\left[Y 3, Y_{4}, s Y_{4}\right]\)
```


3.3.3 GeneratorsOfSubgroupConj Function

The input of the function GeneratorsOfSubgroupConj $(N E, N V, V)$ is the list $N E$ of all lists of edges of $\Gamma \backslash S t(v)$, the list $N V$ of all lists of vertices of $\Gamma \backslash S t(v)$, and and the list of vertices V. It computes the list gens 1 which form the type (1) generators of $\operatorname{Conj}\left(G_{\Gamma}\right)$. The algorithm carries out the following instructions:

```
GeneratorsOfSubgroup Conj( \(N E, N V, V)\)
\(s N E \leftarrow \operatorname{Size}(N E)\)
inv \(V \leftarrow\) ComputeTheInveres \((V)\)
\(L \leftarrow \operatorname{Concatenation}(V\), inv \(V)\)
for \(h\) in \(\{1, \ldots, s N E\} \quad \triangleright h \in V\)
    do \(G 2 \leftarrow \mathrm{NE}(h)\)
        \(G 1 \leftarrow \mathrm{NV}(h)\)
        \(R 3 \leftarrow\) ConnectedComponentsOfGraph \((G 1, G 2)\)
        Comps \(\leftarrow \mathrm{R} 3(1) \quad \triangleright\) Comps is the list of all components
        sComps \(\leftarrow \mathrm{R} 3(2)\)
        \(R 4 \leftarrow\) CombinationsOfConnectedComponents(Comps)
        \(Y 3 \leftarrow \mathrm{R} 4(1)\)
        \(Y 4 \leftarrow \mathrm{R} 4(2)\)
        \(s Y 4 \leftarrow \mathrm{R} 4(3)\)
        for \(i\) in \(\{1, \ldots, s Y 4\}\)
        do diff \(2 \leftarrow\) Difference \((L, Y 4[i])\)
                ADD diff 2 to new list \(x s 1\)
        for \(i\) in \(\{1, \ldots, s Y 4\}\)
        do \(s z \leftarrow \operatorname{SizE}(x s 1[i])\)
            for \(j\) in \(\{1, \ldots, s z\}\)
            do \(K K \leftarrow \operatorname{Concatenation~}(Y 4[i],[x s 1[i][j]])\)
                        \(H H \leftarrow[K K, x s 1[i][j]]\)
```

$$
s Y 5 \leftarrow \operatorname{Size}(Y 5)
$$

AdD $Y 5$ to new list $Y 6$
ADD $x s 1$ to new list $x s 2$
Add $B s$ to new list $Y 3$
$s Y 6 \leftarrow \operatorname{Size}(Y 6)$
$Y 7 \leftarrow$ Concatenation $(Y 6)$
$s Y 7 \leftarrow \operatorname{Size}(Y 7)$
$x s 3 \leftarrow \operatorname{Concatenation~}(x s 2)$
$s x s 3 \leftarrow \operatorname{Size}(x s 3)$
for i in $\{1, \ldots, s x s 3\}$
do ADD the non-empty element of $x s 3$ to new list $x s$
$s x s \leftarrow \operatorname{Size}(x s)$
$U x s \leftarrow \operatorname{Union}(x s)$
$U x s \leftarrow \operatorname{SizE}(U x s)$
for i in $\{1, \ldots, s Y 7\}$
do ADD the non-empty element of $Y 7$ to new list $C x Y 1$
$s C x Y 1 \leftarrow \operatorname{Size}(C x Y 1)$
for j in $\{1, \ldots, s C x Y 1\}$
do Compute $C x Y$ a list of the definitions of the partial conjugations
$s C x Y \leftarrow \operatorname{Size}(C x Y)$
$Y 8 \leftarrow \operatorname{Concatenation}(B s)$
$s B s \leftarrow \operatorname{Size}(B s)$
$s Y 8 \leftarrow \operatorname{Size}(Y 8)$
for i in $\{1, \ldots, s Y 8\}$
do ADd the non-empty element of $Y 8$ to new list Y
$s Y \leftarrow \operatorname{Size}(Y)$
for k in $\{1, \ldots, s C x Y\}$
do Construct a list f such that $f(n)=C x Y(n), n \in N$
$s f \leftarrow \operatorname{Size}(f)$
for j in $\{1, \ldots, s f\}$
do $\operatorname{ADD} f_{i}$ the name of the $i^{\text {th }}$ element of f to new list gens 1
sgens $1 \leftarrow \operatorname{Size}($ gens 1$)$
return $[C x Y, s C x Y, Y, s Y, f, s f$, gens1, sgens1]

Remark 3.3.1. The relators on the generators of $\operatorname{Conj}\left(G_{\Gamma}\right)$ are represented using sequences of the form $R=\left[p, \epsilon_{1} n_{1}, \ldots, \epsilon_{k} n_{k}\right]$, where p, ϵ_{i}, n_{i} are integers, $\epsilon_{i}= \pm 1$, $0 \leq p \leq 1$ and $1 \leq n_{i}$. Each sequence R determines a word W_{R}, in the generators S, as follows, and R is called the index of W_{R}. If $p=0$ then the sequence R corresponds to a word $W_{R}=c_{v, Y} * c_{v^{-1}, Y}$ of length 2. For example relators of type ($C 1$) have form $c_{v, Y} * c_{v^{-1}, Y}=1$ and have indices of form [$\left.0, i d x 1, i d x 2\right]$ where $i d x 1=c_{v, Y}$ and $i d x 2=c_{v^{-1}, Y}$. If $p=1$ then R corresponds to a word $W_{R}=w_{u} * c_{v, Y} * w_{u}^{-1} * c_{v^{-1}, Y}$ of length 4. For example relators of type ($C 4$) have form $w_{u} * c_{v, Y} * w_{u}^{-1} * c_{v^{-1}, Y}=1$ if $u \notin Y, v \neq u, u^{-1}$ and have indices of form $[1, i d x 1, i d x 2, i d x 3, i d x 4]$ where $i d x 1=w_{u}$, $i d x 2=c_{v, Y}, i d x 3=w_{u}^{-1}$, and $i d x 4=c_{v^{-1}, Y}$. Sequences with $p=1$ occur only in Section 3.3.7.

3.3.4 APCGRelationRConj1 Function

The inputs of the function APCGRelationRConj1 $(C x Y, Y, f)$ are $C x Y$ the list of the definitions of partial conjugations of $\operatorname{Conj}\left(G_{\Gamma}\right)$ defined in Section 3.3.3, Y the list of the non-empty union of connected components of $\Gamma \backslash S t(v)$ defined in Section 3.3.3, f the list of the names of the definitions of partial conjugations defined in Section 3.3.3. It computes the list of indices $[0, i d x 1, i d x 2]$ of relations of type ($C 1$) and adds each of them to the list $R 2 a$. In addition it calculates the size of the list $R 2 a$. It returns $[R 2 a, s R 2 a]$.

3.3.5 APCGRelationRConj2 Function

The inputs of the function APCGRelationRConj2 $(C x Y, Y, L k, f, R 2 a)$ are $C x Y$ the list of the definitions of partial conjugations of $\operatorname{Conj}\left(G_{\Gamma}\right)$ defined in Section 3.3.3, Y the list of the non-empty union of connected components of $\Gamma \backslash S t(v)$ defined in Section 3.3.3, the list of links $L k, f$ the list of the names of the definitions of partial conjugations defined in Section 3.3.3 and the list $R 2 a$ computed in Section 3.3.4. It computes the list of indices [$0, i d x 1, i d x 2, i d x 3]$ of relations of type $(C 2)$ and adds each of them to the list $R 2 a$ (we replace $R 2 a$ by [] if we need just the indices $[0, i d x 1, i d x 2, i d x 3]$ of relations of type ($C 2$). In addition it calculates the size of the list $R 2 a$. It returns [$R 2 a, s R 2 a]$.

3.3.6 APCGRelationRConj3 Function

The inputs of the function APCGRelationRConj3($C x Y, Y, L k, f, R 2 a)$ are $C x Y$ the list of the definitions of partial conjugations of $\operatorname{Conj}\left(G_{\Gamma}\right)$ defined in Section 3.3.3, Y the list of the non-empty union of connected components of $\Gamma \backslash S t(v)$ defined in Section 3.3.3, the list of links $L k, f$ the list of the names of the definitions of partial conjugations defined in Section 3.3.3 and the list $R 2 a$ computed in Section 3.3.5. It computes the list of indices $[0, i d x 1, i d x 2, i d x 3, i d x 4]$ of relations of type $(C 3)$, and adds each of them to the list $R 2 a$ (we can replace $R 2 a$ by [] if we need just the indices $[0, i d x 1, i d x 2, i d x 3]$ of relations of type ($C 3$). In addition it calculates the size of the list $R 2 a$. It returns $[R 2 a, s R 2 a]$.

3.3.7 APCGRelationRConj4 Function

The inputs of the function APCGRelationRConj4 $4(C x Y, V, L k, g e n s 1, Y, f, R 2 a)$ are $C x Y$ the list of the definitions of elementary partial conjugations of $\operatorname{Conj}\left(G_{\Gamma}\right)$ defined in Section 3.3.3, the list of vertices V, the list of links $L k$, the list gens 1 from Section 3.3.3, Y the list of the non-empty union of connected components of $\Gamma \backslash S t(v)$ defined in Section 3.3.3, f the list of the names of the definitions of partial conjugations defined in Section 3.3.3 and the list $R 2 a$ computed in Section 3.3.6. Firstly, it computes the list of inner automorphisms W, then gens4 the list of the generators of $\operatorname{Conj}\left(G_{\Gamma}\right)$. This is the concatenation of the lists gens 1 and W but; without repeating generators that appear in gens1. Secondly, it computes the list of indices [$1, i d x 1, i d x 2, i d x 3, i d x 4]$ of relations of type ($C 4$), and adds each of them to the list $R 2 a$ (we can replace $R 2 a$ by [] if we need just the indices [$1, i d x 1, i d x 2, i d x 3, i d x 4$] of relations of type (C4). It returns [W, gens $4, R 2 a, s W$, sgens $4, s R 2 a$] where $s W$, sgens 4 and $s R 2 a$ are the sizes of W, gens 4 and $R 2 a$ respectively.

3.3.8 APCGConjLastReturn Function

The inputs of the function APCGConjLastReturn (gens4, $R 2 a, s R 2 a$) are the list of generators gens 4 of the subgroup $\operatorname{Conj}\left(G_{\Gamma}\right)$, the list of the indices of the relators $R 2 a$ and its size $s R 2 a$. It forms the list of relations rels from the list $R 2 a$. For each element R of $R 2 a$ the relator W_{R} is added to a new list rels. It computes the free group F on gens 4 (defined in Section 3.3.7). Also it computes a finite presentation of the groups $G G G=F /$ rels. Finally, it returns the final return [gens, rels, $G G G$] of
the functions FinitePresentationOfSubgroupConj below. The algorithm carries out the following instructions:

APCGConjLastREturn(gens4, $R 2 a, s R 2 a$)
$F \leftarrow \operatorname{FreeGroup}($ gens 4$)$
gens $\leftarrow \operatorname{GeneratorsOfGroup}(F)$
sgens $\leftarrow \operatorname{Size}($ gens $)$
for i in $\{1, \ldots, s R 2 a\}$
do Form rels the list of relators of the subgroup from Rels
srels $\leftarrow \operatorname{Size}(r e l s)$
$G G G \leftarrow F /$ rels
return [gens, rels, $G G G$]

3.3.9 FinitePresentationOfSubgroupConj Function

The function FinitePresentationOfSubgroupConj (V, E) provides finite presentation for the subgroup $\operatorname{Conj}\left(G_{\Gamma}\right)$. The input of this function is a simple graph $\Gamma=(V, E)$. It returns [gens, rels, $G G G$]. The algorithm carries out the following instructions:

FinitePresentationOfSubgroupConj(V, E)
if Γ is simple graph
then Call The Function StarLinkOfVertex
Call The The Function DeleteVerticesFromGraph
Call The Function GeneratorsOfSubgroupConj
Call The Function APCGRelationRConj1
Call The Function APCGRelationRConj2
Call The Function APCGRelationRConj3
Call The Function APCGRelationRConj4
Call The Function APCGConjLastReturn
else return "The graph must be a simple graph"
return [gens, rels, $G G G$]
Where,
(i) gens is a list of free generators of the subgroup $\operatorname{Conj}\left(G_{\Gamma}\right)$ of the automorphism group $\operatorname{Aut}\left(G_{\Gamma}\right)$ of G_{Γ}.
(ii) rels is a list of relations in the generators of the free group F. Note that relations are entered as relators, i.e., as words in the generators of the free group.
(iiii) $G G G:=F /$ rels is a finitely presented of the subgroup $\operatorname{Conj}\left(G_{\Gamma}\right)$ of the automorphism group $\operatorname{Aut}\left(G_{\Gamma}\right)$ of G_{Γ}.

For example:

```
gap> A:=FinitePresentationOfSubgroupConj([1,2,3,4],[[1, 2], [3,4]]);
[ [f1, f2, f3, f4, f5, f6, f7, f8], [f1*f4, f2*f3, f3*f2, f4*f1,
f5*f8,f6*f7, f7*f6, f8*f5, f1*f2*f4*f3,f1*f3*f4*f2, f2*f4*f3*f1,
f3*f4*f2*f1, f5*f6*f8*f7, f5*f7*f8*f6, f6*f8*f7*f5, f7*f8*f6*f5,
f2*f1*f3*f4, f3*f1*f2*f4, f1*f2*f4*f3, f4*f2*f 1*f3, f1*f3*f4*f2,
f4*f3*f1*f2, f2*f4*f3*f1, f3*f4*f2*f1, f6*f5*f7*f8, f7*f5*f6*f8,
f5*f6*f8*f7, f8*f6*f5*f7, f5*f7*f8*f6, f8*f7*f5*f6, f6*f8*f7*f5,
f7*f8*f6*f5 ], <fp group on the generators [ f1, f2, f3, f4, f5,
f6, f7, f8 ]>]
```

Remark 3.3.2. We can simplify the presentation of $\operatorname{Conj}\left(G_{\Gamma}\right)$ above by applying the function TietzeTransformations (G) which is described in Section 2.7.19 as follows:
gap> G:=A[3];
<fp group on the generators [f1, f2, f3, f4, f5, f6, f7, f8]>
gap> TietzeTransformations(G);
[<fp group of size infinity on the generators [f1, f2, f5, f6]>, [f1*f2*f1^-1*f2^-1, f5*f6*f5^-1*f6^-1]]

Chapter 4

Finite Presentation for the Subgroup Conj ${ }_{V}$

4.1 Introduction and Background for Conj_{V}

Let Γ be a finite graph and let $G=G_{\Gamma}$ be the corresponding partially commutative group. Recall that a basis-conjugating automorphism is one which maps each canonical generator x to $x^{g_{x}}$, for some $g_{x} \in G$. A presentation for the subgroup of basis-conjugating automorphisms $\operatorname{Conj}\left(G_{\Gamma}\right)$ is constructed in [70] as we saw that in Chapter 3. Further subgroups of $\operatorname{Aut}\left(G_{\Gamma}\right)$ are discussed in [35], using the notion of admissible subset of a graph, defined as follows. Let $V=V(\Gamma)$ and let $x \in V$. Recall that the star of x is $s t(x)=\{y \in V:[y, x]=1\}$. If $Y \subset V$ then the star of Y is $Y^{\perp}=\cap_{x \in Y} s t(x)$. The closure of Y is $c l(Y)=\cap_{z \in Y \perp} s t(z)$. For $x \in V$, the link of x is $\ell k(x)=\operatorname{st}(x) \backslash\{x\}$. The admissible set of Y is $\mathfrak{a}(Y)=\cap_{y \in Y}(\operatorname{st}(y))^{\perp}$ and $\mathfrak{a}(x)=\cap_{y \in \ell k(x)} s t(y)$.

An element $\phi \in \operatorname{Conj}(G)$ is said to be a Vertex Conjugating automorphism if, for every element $x \in V$ there exists $f_{x} \in G$ such that $\phi(y)=y^{f_{x}}$, for all $y \in[x]$ the equivalence class of the vertex x under the domination equivalence relation. The subgroup of all vertex conjugating automorphism is denoted $C_{o n j}^{V}$.

Our aim in this chapter is to find a finite presentation for the subgroup Conj $_{V}$ of $\operatorname{Aut}\left(G_{\Gamma}\right)$ generated by partial conjugations. Moreover, we develop an algorithm using $G A P$ system that provides a finite presentation for the subgroup $C o n j_{V}$ of Aut $\left(G_{\Gamma}\right)$ with commutative graph Γ. In addition, to find the Tietze transformations of a copy of the presentation of the given finitely presented subgroup $C o n j_{V}$ by using
a $G A P$ function.
The work in this chapter is motivated by the work of Duncan and Remeslennikov in [35], and we have used terminology and notation of that chapter wherever possible. Note that in some places there are differences between that notation and that of other authors we have followed; in particular [35] has used the terms "conjugation" or "elementary conjugation" to mean "partial conjugation", we may occasionally use those terms too.

Lemma 4.1.1. [35] For all $x \in V$,

1. the set $\mathfrak{a}(x)=\{y \in V: \ell k(x) \subseteq \operatorname{st}(y)\}$ and
2. $y \in \mathfrak{a}(x)$ if and only if $\operatorname{cl}(y) \subseteq \mathfrak{a}(x)$, for all $y \in Y$.

Proof. (1) $y \in \mathfrak{a}(x)$ if and only if $[y, v]=1$, for all $v \in \ell k(x)$, if and only if $\ell k(x) \subseteq s t(y)$.
(2) For all $y \in V$ we have $y \in \operatorname{cl}(y)$, so the "if" clause follows. On the other hand if $y \in \mathfrak{a}(x)$ then, from $(i), \ell k(x) \subseteq \operatorname{st}(y)$; so $(s t(y))^{\perp} \subseteq(\ell k(x))^{\perp}$, as required.

Example 4.1.0.1

In the graph Γ of Figure 4.1

Figure 4.1: A Graph Γ

- $\mathfrak{a}\left(x_{1}\right)=\left\{x_{2}, x_{3}, x_{4}, x_{5}, x_{7}, x_{8}, x_{9}\right\}^{\perp}=\left\{x_{1}\right\}=\operatorname{cl}\left(x_{1}\right) ;$
- $\operatorname{st}\left(x_{4}\right)=\operatorname{st}\left(x_{7}\right)=\left\{x_{1}, x_{3}, x_{4}, x_{5}, x_{7}, x_{8}\right\}$ and $\mathfrak{a}\left(x_{4}\right)=\mathfrak{a}\left(x_{7}\right)=\left\{x_{1}, x_{4}, x_{7}\right\}=$ $\operatorname{cl}\left(x_{4}\right)=\operatorname{cl}\left(x_{7}\right)$;
- $\operatorname{cl}\left(x_{2}\right)=\left\{x_{1}, x_{2}, x_{3}, x_{8}\right\}^{\perp}=\left\{x_{1}, x_{2}\right\}, \operatorname{cl}\left(x_{9}\right)=\left\{x_{1}, x_{3}, x_{8}, x_{9}\right\}^{\perp}=\left\{x_{1}, x_{9}\right\}$, $\ell k\left(x_{9}\right)=\ell k\left(x_{2}\right)$ and $\mathfrak{a}\left(x_{9}\right)=\mathfrak{a}\left(x_{2}\right)=\left\{x_{1}, x_{3}, x_{8}\right\}^{\perp}=\left\{x_{1}, x_{2}, x_{4}, x_{7}, x_{9}\right\}=$ $c l\left(x_{2}\right) \cup \operatorname{cl}\left(x_{4}\right) \cup \operatorname{cl}\left(x_{9}\right) ;$
- $\operatorname{cl}\left(x_{3}\right)=\left\{x_{1}, x_{3}\right\}, \operatorname{cl}\left(x_{8}\right)=\left\{x_{1}, x_{8}\right\}, \ell k\left(x_{3}\right)=\ell k\left(x_{8}\right)$ and $\mathfrak{a}\left(x_{3}\right)=\mathfrak{a}\left(x_{8}\right)=$ $\left\{x_{1}, x_{3}, x_{8}\right\}=\operatorname{cl}\left(x_{3}\right) \cup \operatorname{cl}\left(x_{8}\right) ;$
- $\mathfrak{a}\left(x_{5}\right)=\left\{x_{1}, x_{4}, x_{6}, x_{7}\right\}^{\perp}=\left\{x_{5}\right\}=\operatorname{cl}\left(x_{5}\right)$ and
- $\operatorname{cl}\left(x_{6}\right)=\left\{x_{5}, x_{6}\right\}^{\perp}=\left\{x_{5}, x_{6}\right\}$ and $\mathfrak{a}\left(x_{6}\right)=\left\{x_{5}\right\}^{\perp}=\left\{x_{1}, x_{4}, x_{5}, x_{6}, x_{7}\right\}=$ $\operatorname{cl}\left(x_{4}\right) \cup \operatorname{cl}\left(x_{6}\right)$.

For sets U, X we write $U<X$ to indicate that $U \subseteq X$ and $U \neq X . A$ subset Y of V is called a simplex if the full subgraph of Γ with vertices Y is isomorphic to a complete graph.

Lemma 4.1.2. [35] For $x \neq z \in X$ and subsets U and X of V the following hold.
(i) If $U \subseteq X$ then $\mathfrak{a}(X) \subseteq \mathfrak{a}(U)$.
(ii) $\mathfrak{a}(U) \cap \mathfrak{a}(X)=\mathfrak{a}(U \cup X)$.
(iii) $\operatorname{cl}(x)=\mathfrak{a}(x) \cap \operatorname{st}(x)$ so $\mathfrak{a}(x)=\operatorname{cl}(x)$ if and only if $\mathfrak{a}(x) \subseteq \operatorname{st}(x)$.
(iv) $\operatorname{st}(x) \subseteq \mathfrak{a}(x)$ if and only if $\operatorname{st}(x)$ generates a complete subgraph.
(v) If $\ell k(x) \subseteq \ell k(z)$ then $\mathfrak{a}(z) \subseteq \mathfrak{a}(x)$.
(vi) If $\operatorname{st}(x) \subseteq \operatorname{st}(z)$ then $\mathfrak{a}(z) \subseteq \mathfrak{a}(x)$.
(vii) $\mathfrak{a}(z) \subseteq \mathfrak{a}(x)$ if and only if $\ell k(x) \subset \operatorname{st}(z)$.
(viii) $\mathfrak{a}(x)=\mathfrak{a}(z)$ if and only if either $\operatorname{st}(x)=\operatorname{st}(z)$ or $\ell k(x)=\ell k(z)$.
(ix) If $z \in \mathfrak{a}(x)$ then $\mathfrak{a}(z) \subseteq \mathfrak{a}(x)$.
(x) $\mathfrak{a}(U)=\cup_{y \in \mathfrak{a}(U)} \mathfrak{a}(y)$.
(xi) If $\operatorname{cl}(x)=\mathfrak{a}(x)$ then $\operatorname{cl}(y)=\mathfrak{a}(y)$, for all $y \in \mathfrak{a}(x)$.
(xii) If $[x, z]=1$ then $[G(\mathfrak{a}(x)), G(\mathfrak{a}(z))]=1$.

Proof. Statements (i) to (v) follow directly from the definitions and the fact that if $S \subseteq T$ the $T^{\perp} \subseteq S^{\perp}$, for all subsets S, T of X. For (vi) note that in this case $z \in \operatorname{st}(x)$, so as $x \neq z, \mathfrak{a}(x)=(\ell k(x))^{\perp}=((s t(x) \backslash\{x, z\}) \cup\{z\})^{\perp}=(s t(x) \backslash\{x, z\})^{\perp} \cap$ $s t(z) \supseteq(s t(z) \backslash\{x, z\})^{\perp} \cap \operatorname{st}(x)=\mathfrak{a}(z)$.

The right to left implication of (vii) is a consequence of (v) and $(v i)$, and the fact that if $\ell k(x) \subseteq s t(z)$ then $s t(x) \subseteq s t(z)$ or $\ell k(x) \subseteq \ell k(z)$. To see the opposite implication: if $\mathfrak{a}(z) \subseteq \mathfrak{a}(x)$ then, as $z \in \mathfrak{a}(z)$, we have $z \in \mathfrak{a}(x)$, so $\ell k(x) \subseteq \operatorname{st}(z)$, from Lemma 4.1.1.

To see (viii) suppose first that $\mathfrak{a}(x)=\mathfrak{a}(z)$. Then, from (vii), we have $\ell k(x) \subseteq$ $s t(z)$ and $\ell k(z) \subseteq s t(x)$. If $x \in \operatorname{st}(z)$ then $z \in \operatorname{st}(x)$, and in this case $s t(x)=s t(z)$. Otherwise $x \notin s t(z)$ and $z \notin s t(x)$ in which case $\ell k(x)=\ell k(z)$. Conversely, if either $s t(x)=s t(z)$ or $\ell k(x)=\ell k(z)$ then it follows, from (v) and $(v i)$, that $\mathfrak{a}(x)=\mathfrak{a}(z)$.

Statement (ix) follows immediately from (vii) and Lemma 4.1.1. Statement (x) follows from $(i x)$ as if $y \in \mathfrak{a}(U)$ then $\mathfrak{a}(y) \subseteq \mathfrak{a}(U)$.

To see statement (xi) observe that $c l(x)$ is a simplex so if $\operatorname{cl}(x)=\mathfrak{a}(x)$ and $y \in \mathfrak{a}(x)$ then $\mathfrak{a}(y) \subseteq \mathfrak{a}(x)$ implies that $\mathfrak{a}(y)$ is a simplex. Therefore $\mathfrak{a}(y) \subseteq \operatorname{st}(y)$ and the result follows from (iii).

For (xii) suppose that $u \in \mathfrak{a}(x)$ and $v \in \mathfrak{a}(z)$. Since $z \in \ell k(x)$ we have $u \in \operatorname{st}(z)$ and similarly $v \in \operatorname{st}(x)$. Since $[u, y]=1$ for all $y \in \operatorname{st}(x)$, except possibly x, it follows that u commutes with v, unless $v=x$. However if $v=x$ then, since $v \in(\ell k(z))^{\perp}, v$ commutes with all elements of $\operatorname{st}(z)$, including u.

Remark 4.1.3. Let $\sim_{s t}$ be the relation on V given by $x \sim_{s t} y$ if and only if $\operatorname{st}(x)=$ $s t(y)$ and let $\sim_{\ell k}$ be the relation given by $x \sim_{\ell k} y$ if and only if $\ell k(x)=\ell k(y)$. These are equivalence relation and the equivalence classes of x under $\sim_{s t}$ and $\sim_{\ell k}$ are denoted by $[x]_{s t}$ and $[x]_{\ell k}$, respectively. Note that if $\left|[x]_{s t}\right|>1$ then $[x]_{\ell k}=\{x\}$ and the same is true on interchanging st and ℓk. Therefore the relation \sim, given by $x \sim y$ if and only if $x \sim_{s t} y$ or $x \sim_{\ell k} y$, is an equivalence relation. Denote the equivalence class of x under \sim by $[x]$. Then $x \sim y$ if and only if $x \sim_{s t} y$ or $x \sim_{\ell k} y$, and $[x]=[x]_{s t} \cup[x]_{\ell k}$. It follows that $x \sim y$ if and only if $s t(x) \backslash\{x, y\}=s t(y) \backslash\{x, y\}$.

Example 4.1.0.2

In the graph Γ of Figure 4.2:
$s t(x)=\{x, b, e, y, d, l\}$ and $s t(y)=\{y, b, e, x, d, l\}$.
So, $s t(x)=s t(y)$ and $s t(x) \backslash\{x, y\}=s t(y) \backslash\{x, y\}$. Hence, $x \sim y$.

Figure 4.2: Graph of Γ

Definition 4.1.4. [35] Let $x \in V$ and let C be a connected component of the full subgraph $\Gamma \backslash s t(x)$

Then the automorphism $\beta_{C, x}$ given by

$$
y \beta_{C, x}= \begin{cases}y^{x}, & \text { if } y \in C \\ y, & \text { otherwise }\end{cases}
$$

is called an aggregate conjugating automorphism. The subgroup of $\operatorname{Conj}(G)$ generated by all aggregate automorphisms is denoted $\operatorname{Conj}_{A}(G)$.

Definition 4.1.5. [35] Let $\mathcal{K}=\mathcal{K}(\Gamma)$ denote the set of admissible subsets of X and define

$$
\begin{gathered}
S t(\mathcal{K})=\{\phi \in \operatorname{Aut}(G) \mid \phi(G(Y))=G(Y) \text {, for all } Y \in \mathcal{K}\} . \\
S t^{c o n j}(\mathcal{K})=\left\{\phi \in \operatorname{Aut}(G) \mid(G(Y))^{\phi}=G(Y)^{f_{Y}}, \text { for some } f_{Y} \in G, \text { for all } Y \in \mathcal{K}\right\} .
\end{gathered}
$$

Definition 4.1.6. [35] Let $\operatorname{Aut}(G)$ be the automorphism group of the partially commutative group G_{Γ} with commutation graph Γ. An element $\phi \in \operatorname{Aut}(G)$ is
(i) a graph automorphism if the restriction $\left.\phi\right|_{X}$ of ϕ to X is an element of $\operatorname{Aut}(\Gamma)$; and
(ii) a compressed graph automorphism if $\left.\phi\right|_{X}$ is an element of $A u t_{c o m p}(\Gamma)$.
(iii) Denote by $A u t^{\Gamma}(G)$ and $A u t_{\text {comp }}^{\Gamma}(G)$ the subgroups of $A u t\left(G_{\Gamma}\right)$ consisting of graph automorphisms and compressed graph automorphisms, respectively.
(iv) For $v \in X$, denote by $S_{[v]}(G)$ the subgroup of $A u t^{\Gamma}(G)$ consisting of elements ϕ such that $\left.\phi\right|_{X} \in S_{[v]}$.
(v) Denote by $A u t_{\text {symm }}^{\Gamma}\left(G_{j, *}\right)$ the subgroup of automorphisms ϕ of $\operatorname{Aut}\left(G_{\Gamma}\right)$ such that $\left.\phi\right|_{X}$ is an element of $\operatorname{Aut}_{\text {symm }}\left(\Gamma_{j, *}\right)$; and
(vi) by $A u t_{\text {comm }}^{\Gamma}\left(G_{j, k}\right)$ the subgroup of automorphisms ϕ such that $\left.\phi\right|_{X}$ is an element of $A u t_{\text {comm }}\left(\Gamma_{j, k}\right)$.

Definition 4.1.7. [35] An element $\phi \in \operatorname{Conj}(G)$ is said to be a normal conjugating automorphism if, for ever element $x \in V$, there exists $f_{x} \in G$ such that $\phi(y)=y^{f_{x}}$, for all $y \in \mathfrak{a}(x)$. The subgroup of all normal conjugating automorphisms is denoted $\operatorname{Conj}_{N}(G)$.

Definition 4.1.8. [35] An elementary conjugating automorphism $\alpha_{C, u}$, where $u=x^{ \pm 1}$, for some $x \in V$ is called an elementary singular conjugating automorphism if $C=\{y\}$, for some $y \in V$, and the set of all such elementary conjugating automorphisms is denoted $\operatorname{LInn}_{S}=\operatorname{LInn}_{S}(G)$. The subgroup of $\operatorname{Conj}(G)$ generated by $\operatorname{LInn}_{S}(G)$ is called singular and denoted $\operatorname{Conj}_{S}(G)$.

Definition 4.1.9. Let $\operatorname{Tr}_{s t}=\left\{\tau_{V^{\epsilon}, y^{\delta}} \in \operatorname{Tr} \mid x \in \operatorname{st}(y), \epsilon, \delta= \pm 1\right\}$ and $\operatorname{Tr}_{\ell k}=$ $\left\{\tau_{V^{\epsilon}, y^{\delta}} \in \operatorname{Tr} \mid x \notin \operatorname{st}(y), \epsilon, \delta= \pm 1\right\}$.

Definition 4.1.10. - If x and y are vertices of V such that $\operatorname{st}(x) \cap \operatorname{st}(y)=\ell k(y)$ then we say that x dominates y.

- The set of all vertices dominated by x is denoted $\operatorname{Dom}(x)=\{u \in V \mid x$ dominates u \}.
- The set of all dominated vertices is denoted $\operatorname{Dom}(\Gamma)=\cup_{x \in V} \operatorname{Dom}(x)$.
- For fixed $y \in V$ the set of all x such that $y \in \operatorname{Dom}(x)$ and $[y] \neq[x]$ is the outer admissible set of y, denoted out (y).

From the definition and Lemma 4.1.2 (vii) it follows that x dominates y if and only if $[x, y] \neq 1$ and $\mathfrak{a}(x) \subseteq \mathfrak{a}(y)$. Thus out $(y)=\{x \in \mathfrak{a}(y): x \notin[y] \cup \operatorname{st}(y)\}$. If $\alpha_{C, x} \in \operatorname{LInn}_{S}(G)$ then $C=\{y\}$ is a connected component of $\Gamma_{s t(x)}$ so $\ell k(y) \subseteq s t(x)$ and $y \notin s t(x)$. Therefore x dominates y and $\tau_{y, x} \in \operatorname{Tr}_{\ell k}$ and $\alpha_{C, x}=\tau_{y, x} \tau_{y^{-1}, x}$. Hence Conj_{S} is the subgroup of $\operatorname{Aut}\left(G_{\Gamma}\right)$ generated by the set $\left\{\tau_{y, x} \tau_{y^{-1}}, x \mid x\right.$ dominates $\left.y\right\}=\operatorname{LInn}_{S}$.

Definition 4.1.11. [35] Let $x, u \in V$ such that x dominates u and let $[u] \backslash\{x\}=$ $\left\{v_{1}, \ldots, v_{n}\right\}$. The conjugating automorphism

$$
\alpha_{[u], x}=\prod_{i=1}^{n} \alpha_{\left\{v_{i}\right\}, x}
$$

is called a basic collected conjugating automorphism and the set of all basic collected conjugating automorphisms is denoted $\operatorname{LInn}_{C}=\operatorname{LInn}_{C}(G)$. The subgroup of $\operatorname{Conj}(G)$ generated by $\operatorname{LInn}_{C}(G)$ is denoted $\operatorname{Conj}_{C}=\operatorname{Conj}_{C}(G)$.

Definition 4.1.12. [35]

- The set of regular elementary conjugating automorphisms is $\operatorname{LInn}_{R}=\operatorname{LInn}_{R}(G)=\left(\operatorname{LInn}_{G} \cap \operatorname{Conj}_{V}(G)\right) \backslash \operatorname{LInn}_{S}(G)$.
- The set of basic vertex conjugating automorphisms is $\operatorname{LInn}_{V}=\operatorname{LInn}(G)=$ $\operatorname{LInn}_{R}(G) \cup \operatorname{LInn} n_{C}(G)$.

Not that, an element $\alpha_{y, x} \in L I n n_{R}$ iff
(i) $|y| \geq 2$; and,
(ii) $\forall y \in Y,[y] \subseteq Y \cup s t(x)$.

Lemma 4.1.13. [35] Let Γ be a group.
(i) (a) Γ has an isolated vertex then $\operatorname{Inn}=\operatorname{Conj}_{N}$ and
(b) if Γ has no isolated vertex then $\operatorname{Conj}_{A} \leq \operatorname{Conj}{ }_{N}$.

In all cases

$$
\text { Inn } \leq \text { Conj }_{A} \leq \text { Conj }_{V} \leq \text { Conj }
$$

and

$$
I n n \leq \text { Conj }_{N} \leq \text { Conj }_{V} \leq \text { Conj }
$$

(ii) $\operatorname{LInn}(V) \leq \operatorname{Conj}_{V}$.
(iii) If $\phi \in \operatorname{Conj}_{S}$ then $\phi(x)=x^{f_{x}}$, where $v\left(f_{x}\right) \subseteq \mathfrak{a}(x)$, for all $x \in V$.

Proof. (i) It is immediate from the definitions that $\operatorname{Inn} \leq \operatorname{Conj}_{A}$, $\operatorname{Inn} \leq \operatorname{Conj}{ }_{N}$ and $\operatorname{Conj}_{V} \leq \operatorname{Conj}$. That $\operatorname{Conj}_{A} \leq \operatorname{Conj}_{V}$ follows from the fact that, if
$x, y \in V$ then $[y] \subseteq C \cup x$, for some connected component C of Γ_{x}. As $[x] \subseteq \mathfrak{a}(x)$, for all x, it follows that $\operatorname{Conj}_{N} \leq \operatorname{Conj}_{V}$.

If x is an isolated vertex then $\mathfrak{a}(x)=X$, so for $\phi \in \operatorname{Conj} j_{N}$ there exists $f_{x} \in G$ such that $\phi(y)=y^{f_{x}}$, for all $y \in V$. Hence, in this case $\operatorname{Conj}_{N}=I n n$. Assume then that Γ has no isolated vertex. In this case, for all $x \in X$, the connected component of Γ containing x also contains $\mathfrak{a}(x)$. To see that $\operatorname{Conj}_{A} \leq \operatorname{Conj}_{N}$ suppose that $u \in V$ and consider the aggregate conjugating automorphism $\beta=\beta_{C, x}$, where $x \in V$. If $x \in \ell k(u)$ then $v \beta=v$, for all $v \in \mathfrak{a}(u)$, so assume that this is not the case. If $x \in \mathfrak{a}(u)$ then $x \notin \ell k(u)$ implies that $\mathfrak{a}(u) \subseteq C^{\prime} \cup\{x\}$, for some component C^{\prime} of Γ_{x}, so we may also assume that $x \notin \mathfrak{a}(u)$.
Now let v and w be distinct elements of $\mathfrak{a}(u)$ and r be any element of $\ell k(u)$. Then the path v, r, w does not contain x; so v and w are either both in C or both outside C. Hence $\beta_{C, x}$ either fixes every element of $\mathfrak{a}(u)$, or acts as conjugation by x on every element of $\mathfrak{a}(u)$. Thus all elements of $C o n j_{A}$ are normal, as required.
(ii) Follow directly from the definition and the fact that the sets $[x]$ partition X, so that $\operatorname{LInn}_{C} \subseteq \operatorname{Conj}_{V}$.
(iii) An induction on the length of ϕ as a word in the generators $L I n n_{S}$ is used. If ϕ is trivial there is nothing to be proved, so assume inductively that the result holds for words of length at most $n-1$ and that $\phi=\phi_{0} \phi_{1}$, where ϕ_{0} has length $n-1$ as a word in $\operatorname{LIn}_{S}^{ \pm 1}$ and $\phi_{1} \in \operatorname{LInn}_{S}^{ \pm 1}$, say $\phi_{1}=\alpha_{C, z}$, for some $z \in V^{ \pm 1}$ and $C=\{y\}$. Then $\phi_{0}(x)=x^{f_{x}}$, where $\nu\left(f_{x}\right) \subseteq \mathfrak{a}(x)$, for all $x \in V$. Let $x \in X$ and $u \in \mathfrak{a}(x)^{ \pm 1}$. Then $\phi_{1}(u)=u$ unless $u=y^{ \pm 1}$. In the latter case $y \in \mathfrak{a}(x)$ so $z \in \mathfrak{a}(y)^{ \pm 1} \subseteq \mathfrak{a}(x)^{ \pm 1}$ and $\phi_{1}(u)=u^{z}$ implies $\nu\left(\phi_{1}(u)\right) \subseteq \mathfrak{a}(x)$. Thus we have $\nu\left(\phi_{1}\left(f_{x}\right)\right) \subseteq \mathfrak{a}(x)$. Now $\phi(x)=\left(\phi_{1}(x)\right)^{\phi_{1}\left(f_{x}\right)}$ and since $\phi_{1}(x)=x^{z}$ if and only if $x=y^{ \pm 1}$ it follows that $\nu(\phi(x)) \subseteq \mathfrak{a}(x)$, as required.

Definition 4.1.14. [51] Let ϕ be a conjugating automorphism and for each $x \in V$ let $g_{x} \in G$ be such that $\phi(x)=g_{x}^{-1} \circ x \circ g_{x}$. The length $|\phi|$ of ϕ is $\sum_{x \in X} l g\left(g_{x}\right)$.

Lemma 4.1.15. ([51] [Lemma 2.5 and Lemma 2.8]). Let ϕ be a non-trivial element of Conj and, for each $x \in V$, let $g_{x} \in G$ such that $\phi(x)=g_{x}^{-1} \circ x \circ g_{x}$. Then
(i) there exist $x, y \in V$ and $\epsilon \in\{ \pm 1\}$ such that $x^{\epsilon} g_{x}$ is a right divisor of g_{y}, and
(ii) if $y, z \in V \backslash$ st (x) such that $[y, z]=1$ and $x^{\epsilon} g_{x}$ is a right divisor of g_{y} then $x^{\epsilon} g_{x}$ is a right divisor of g_{z}.
(As can be seen from the example $\phi=\alpha_{C, x}^{-1}$ the variable ϵ taking values ± 1 is a necessary part of the lemma.)

Lemma 4.1.16. [35] Let $\phi \in$ Conj $_{V}$ and for each $y \in V$ let $g_{y} \in G$ be such that $\phi(y)=g_{y}^{-1} \circ y \circ g_{y}$.
(i) If $[y]=[y]_{s t}$ then $g_{u}=g_{y}$, for all $u \in[y]$.
(ii) If $[y]=[y]_{\ell k}$ and $|[y]| \geq 2$ then there exist $v \in[y]$ and $m_{y} \in \mathbb{Z}$ such that $g_{u}=v^{m_{y}} \circ g_{v}$, for all $u \in[y] \backslash\{v\}$. Moreover if $m_{y} \neq 0$ then v is the unique element of $[y]$ with this property and, setting $\epsilon=-m_{y} /\left|m_{y}\right|, S=[y] \backslash\{v\}$ and $\alpha=\prod_{u \in S} \alpha_{\{u\}, v^{\epsilon}}$ we have $\alpha \in \operatorname{LInn}_{C}^{ \pm 1}$ and $|\alpha \phi|<|\phi|$.

Proof. Since $\phi \in \operatorname{Conj}_{V}$, for all $y \in V$, there exists $f_{y} \in G$ such that $\phi(u)=u^{f_{y}}$, for all $u \in[y]$, and we may choose an f_{y} of minimal length with this property. Fix $y \in V$. Then $u^{f_{u}}=\phi(u)=u^{g_{u}}$ so $g_{u} f_{y}^{-1} \in C_{G}(u)$, for all $u \in[y]$. Therefore there are $a, b, c \in G$ such that $g_{u}=a \circ b, f_{y}=c \circ b$ and $g_{u} f_{y}^{-1}=a \circ c^{-1} \in C_{G}(u)$. As g_{u} has no left divisor in $C_{G}(u)$ this means that $a=1$ and so $f_{y}=c_{u} \circ g_{u}$, for $c=c_{u} \in C_{G}(u)$.

If $[y]=[y]_{s t}$ then $C_{G}(u)=C_{G}(y)$, for all $u \in[y]$, so in this case $g_{y}=f_{y}=g_{u}$, for all $u \in[y]$.

Assume then that $[y]=[y]_{\ell k}$, with $|[y]| \geq 2$, and let $u, v \in[y], v \neq u$, so $[u, v] \neq 1$. Suppose $v \in v\left(f_{y}\right)$. Then $f_{y}=c_{v} \circ g_{v}=c_{v}^{\prime} \circ v^{m} \circ g_{v}$, where $c_{v}^{\prime} G(\ell k(v))$ and $m \in \mathbb{Z}$. Then $u^{f_{y}}=u^{v^{m} g_{v}}$, since $\ell k(v)=\ell k(u)$. As g_{v} has no left divisor in $C_{G}(v)$ and $[v, u] \neq 1$ we have $u^{v^{m} g_{v}}=g_{v}^{-1} \circ v^{-m} \circ u \circ v^{m} \circ g_{v}$, so $g_{u}=v^{m} \circ g_{v}$. By choice of f_{y} we have $c_{v}^{\prime}=1$, and if $m \neq 0$ then no element $u \in[y], u \neq v$, can be a left divisor of $v^{m} \circ g_{v}$, so the first statement of (ii) as well as the uniqueness of v follow. Moreover v dominates u, for all $u \in[y]$, so the final statement of (ii) also holds.

Proposition 4.1.17. [35] Conj$_{V}$ is generated by $L I n n_{V}=L I n n_{R} \cup L I n n_{C}$.
Proof. Note that, from Lemma 4.1.13 (ii) we have that $\left\langle L I n n_{V}\right\rangle \leq \operatorname{Conj}_{V}$. So we need to prove the opposite inclusion; $\operatorname{Conj}_{V} \leq\left\langle L I n n_{V}\right\rangle$. Suppose that $\phi \in \operatorname{Conj}_{V}$ be an automorphism. By using the induction on the length of ϕ we will do this
direction. Assume that $|\phi|=k$, so if $|\phi|=0$ then $\phi=1$ and there is nothing to prove. Hence, suppose $k>1$ and assume that if $\varphi \in \operatorname{Conj}_{V}$ with $|\varphi|<k$ then $\varphi \in\left\langle L I n n_{V}\right\rangle$ (by induction assumption). If there exists $y \in V$ such that, $[y]=[y]_{\ell k},|[y]| \geq 2$ and by using Lemma 4.1.16, suppose $m_{y} \neq 0$. Set $\alpha=$ $\Pi_{u=y, y_{2}, \ldots, y_{n}} \alpha_{\{u\}, v^{\epsilon}} \in \operatorname{LInn}_{C}(\epsilon=1$ if $m<0$ and $\epsilon=-1$ if $m>0)$ and $|\alpha \phi|<|\phi|$. We have $\phi=\alpha^{-1} \alpha \phi$. Now, $\alpha \in \operatorname{LInn}_{C}$, so $\alpha^{-1} \in\left\langle L I n n_{C}\right\rangle \subseteq\left\langle L I n n_{V}\right\rangle$. As $\phi \in \operatorname{Conj}_{V}$ and $\alpha \in \operatorname{LInn}_{C} \subseteq \operatorname{Conj}_{V}$ we have $\alpha \phi \in \operatorname{Conj}_{V}$. Write $\alpha \phi=\psi \in \operatorname{Conj}_{V}$, with $|\psi|<|\phi|$; so by the assumption of induction we have that $\psi \in\left\langle\operatorname{LInn}_{V}\right\rangle$ which implies that $\alpha^{-1} \psi \in\left\langle L I n n_{V}\right\rangle$, so $\phi \in\left\langle L I n n_{V}\right\rangle$, as claimed.

Hence we assume that either $[y]=[y]_{s t}$ or $m_{y}=0$, and so $g_{y}=g_{u}$, for all $u \in[y]$ and for all $y \in V$. From Lemma 4.1.15(i) there exist $x, y \in V, \epsilon \in\{ \pm 1\}$ such that $\phi(x)=g_{x}^{-1} \circ x \circ g_{x}, \phi(y)=g_{y}^{-1} \circ y \circ g_{y}$ and $x^{\epsilon} g_{x}$ is a right divisor of g_{y}. Suppose that $[x, y]=1$. Then $[\phi(x), \phi(y)]=1$; that is $\left[x^{g_{x}}, y^{g_{y}}\right]=1$. If $g_{y}=a \circ x^{\epsilon} \circ g_{x}$, for some $a \in G$, then this implies that $\left[x, y^{a x^{\epsilon}}\right]=1$, from which it follows that $[x, a]=1$. However, in this case $y^{g_{y}}$ is not reduced, a contradiction. Therefore $y \notin \operatorname{st}(x)$, and so $u \notin \operatorname{st}(x)$, for all $u \in[y]$.

Let $[y]=\left\{v_{1}, \ldots, v_{r}\right\}$ and let C_{1}, \ldots, C_{s} be the components of $\Gamma_{s t(x)}$ containing v_{1}, \ldots, v_{r}. Then, from Lemma 4.1.15(ii), $x^{\epsilon} g_{x}$ is a right divisor of g_{c} for all $c \in$ $C_{1} \cup \ldots \cup C_{s}$. Let $\alpha=\prod_{i=1}^{s} \alpha_{C_{i}, x^{-\epsilon}}$. Then $|\phi(x)|<|\phi|$. We claim that $\alpha \in \operatorname{Conj}_{V}$. Suppose not, so there is some $z \in V$ and elements $u, v \in[z]$ such that $u \in C_{i}$, for some i, but $v \notin \cup_{i=1}^{s} C_{i} \cup\{s t(x)\}$. This implies that $\ell k(u)=\ell k(v) \subseteq s t(x)$ and, as $u \in C_{i}$ implies $x \notin s t(u)$, so x dominates u. Then $C_{i}=\{u\}$ so $u \in[y]$ and $[z]=[y] \subseteq \cup_{i=1}^{s} C_{i}$, a contradiction. Thus no such z exists and $\alpha \in C o n j_{V}$.

If $s=1$ and $\left|C_{1}\right| \geq 2$ then $\alpha \in L I n n_{R}^{ \pm 1}$. If $s=1$ and $\left|C_{1}\right|=1$ then x dominates y and $\alpha \in L I n n_{C}^{ \pm 1}$. If $s>1$ then $s t(x) \supseteq \ell k(y)$ and x dominates every element of $[y]$. In this case $\alpha \in L I n n_{C}^{ \pm 1}$ again. Hence by induction $\phi \in\left\langle L I n n_{R} \cup L I n n_{C}\right\rangle$.

4.2 Whitehead Automorphisms and Day's Relations

If (A, a) is a Whitehead automorphism which is a partial conjugation automorphism then for each $y \in X$ either y is mapped to y^{a} or y is fixed. Thus for all $y \in V$ with $y \neq a^{ \pm 1}$, either y and y^{-1} belong to A or $\left\{y, y^{-1}\right\} \cap A=\emptyset$. Thus, for such Whitehead automorphisms we can write $A=C \cup C^{-1} \cup\{a\}$ where $C \subseteq V$ and
$a^{ \pm 1} \notin C$. Moreover, we may assume that $A \cap \ell k_{L}(a)=\emptyset$, since if $y \in s t_{L}(a)$ then $y^{a}=y$. As (A, a) induces an automorphism of G, it follows now that C is a union of vertices of connected components of $\Gamma \backslash s t(a)$. Suppose that $\Gamma \backslash s t(a)$ has connected components $C_{1}, \ldots C_{n}$ and $C=\cup_{i \in T} C_{i}$, where T is a non-empty subset of $\{1 \ldots n\}$. Then from the union of these connected components above we define $\alpha_{C, a}=(A, a)$ so

$$
\alpha_{C, a}(v)= \begin{cases}v^{a} & \text { if } v \in C \\ v & \text { otherwise } .\end{cases}
$$

On the other hand for $y \in V$, if x_{1}, \ldots, x_{r} are such that $\ell k\left(x_{i}\right) \subseteq \operatorname{st}(y)$, let $D=\left\{x_{1}, \ldots, x_{r}\right\}$ and we define that $\tau_{D, y}=\tau_{x_{1}, y} \circ \ldots \circ \tau_{x_{r}, y}$. Then, written as a Whitehead automorphism $\tau_{D, y}$ is $(D \cup\{y\}, y)$. Conversely, if (A, a) is a Whitehead automorphism, and for all $x \in V \backslash\{a\}$ we have $x \in A$ if and only if $x^{-1} \notin A$ then setting $D=A \backslash\{a\}$ we have $(A, a)=\tau_{D, a}$.

Now in general if (A, a) is a Whitehead automorphism then let $C_{0}=\{x \in$ $\left.A \backslash\{a\}: x^{-1} \notin A \backslash\{a\}\right\}$ and let $C_{1}=\left\{x \in V: x \in A\right.$ and $\left.x^{-1} \in A\right\}$. Then $\tau_{C_{0}, a}$ is an automorphism and $\alpha_{C_{1}, a}$ is an automorphism and $(A, a)=\tau_{C_{0}, a} \alpha_{C_{1}, a}$ (and $\left.\tau_{C_{0}, a} \alpha_{C_{1}, a}=\alpha_{C_{1}, a} \tau_{C_{0}, a}\right)$.

We now translate relations (R1) to (R10) of Day, from the terminology of Whitehead automorphisms to the terminology used here.

Let $\alpha=(A, a)$ and $\beta=(B, b)$ be a Whitehead automorphisms and write $\alpha=$ $\tau_{C_{0}, a} \alpha_{C_{1}, a}$ and $\beta=\tau_{D_{0}, b} \alpha_{D_{1}, b}$ where $C_{0} \cap C_{1}=\emptyset$ with $A \backslash\{a\}=C_{0} \cup C_{1} \cup C_{1}^{-1}$ and $D_{0} \cap D_{1}=\emptyset$ with $B \backslash\{b\}=D_{0} \cup D_{1} \cup D_{1}^{-1}$ respectively and $C_{1}, D_{1} \subseteq V$, and $C_{0} \cap C_{0}^{-1}=D_{0} \cap D_{0}^{-1}=\emptyset$.

In the following relations (R1) to (R10) when we consider sets A_{0} and A_{1} we always assume $A_{0} \cap A_{1}=\emptyset$ (and similarly for B_{0}, B_{1}, or C_{0}, C_{1}, etc, and we assume all automorphisms $\alpha_{A_{1}, a}, \tau_{A_{0}, a}$ mentioned, are well defined.) Now we can replace (A, a) in each of (R1) to (R10) in Section 2.5 of Chapter two by $\tau_{C_{0}, a} \alpha_{C_{1}, a}$, with $C_{0} \cap C_{1}=\emptyset$ and $A \backslash\{a\}=C_{0} \cup C_{1} \cup C_{1}^{-1}$, such that $\tau_{C_{0}, a}$ is one of $\tau_{D, y}$ and $\alpha_{C_{1}, a}$ is one of $\alpha_{C, a}(v)$ as defined above. Therefore,
(R1) $\left(\tau_{C_{0}, a} \alpha_{C_{1}, a}\right)^{-1}=\tau_{C_{0}, a^{-1}} \alpha_{C_{1}, a^{-1}}$, where $\tau_{C_{0}, a}, \alpha_{C_{1}, a}$ are of type (2) Whitehead automorphisms.
(R2) $\left(\tau_{C_{0}, a} \alpha_{C_{1}, a}\right)\left(\tau_{D_{0}, a} \alpha_{D_{1}, a}\right)=\tau_{C_{0} \cup D_{0}, a} \alpha_{C_{1} \cup D_{1}, a}$ when $\left(C_{0} \cup D_{0}\right) \cap\left(C_{1} \cup D_{1}\right)=\emptyset$.
(R3) $\left(\tau_{C_{0}, a} \alpha_{C_{1}, a}\right)\left(\tau_{D_{0}, b} \alpha_{D_{1}, b}\right)=\left(\tau_{D_{0}, b} \alpha_{D_{1}, b}\right)\left(\tau_{C_{0}, a} \alpha_{C_{1}, a}\right)$ if $v(a) \notin\left(D_{0} \cup D_{1}\right), v(b) \notin$ $\left(C_{0} \cup C_{1}\right), a \neq b, b^{-1}$ and at least one of (a) $\left(C_{0} \cup C_{1}\right) \cap\left(D_{0} \cup D_{1}\right)=\emptyset$ or (b) $b \in \ell k_{L}(a)$ holds. We refer to this relation as (R3a) if condition (a) holds and (R3b) if condition (b) holds.
(R4) $\left(\tau_{D_{0}, b} \alpha_{D_{1}, b}\right)\left(\tau_{C_{0}, a} \alpha_{C_{1}, a}\right)\left(\tau_{D_{0}, b} \alpha_{D_{1}, b}\right)^{-1}=\left(\tau_{C_{0}, a} \alpha_{C_{1}, a}\right)\left(\tau_{D_{0}, a} \alpha_{D_{1}, a}\right)$, such that $a, a^{-1} \notin D_{0} \cup D_{1}, b^{-1} \in C_{0}$ and at least one of (a) $\left(C_{0} \cup C_{1}\right) \cap\left(D_{0} \cup D_{1}\right)=\emptyset$ or (b) $b \in \ell k_{L}(a)$. We refer to this relation as (R4a) if condition (a) holds and (R4b) if condition (b) holds.
(R5) $\left(\tau_{C_{0}^{\prime}, b} \alpha_{C_{1}, b}\right)\left(\tau_{C_{0}, a} \alpha_{C_{1}, a}\right)=\left(\tau_{C_{0}^{\prime \prime}, a} \alpha_{C_{1}, a}\right) \pi_{a, b}$ where $C_{0}^{\prime}=C_{0} \cup\left\{a^{-1}\right\}$ and $C_{0}^{\prime \prime}=$ $\left(C_{0} \backslash\{b\}\right) \cup\left\{b^{-1}\right\}$ such that $b \in C_{0}, b^{-1} \notin C_{0}$ with $a \neq b$ and $b \sim a$, where $\pi \in$ $\operatorname{Aut}\left(G_{\Gamma}\right)$ with $\pi_{a, b}(a)=b^{-1}, \pi_{a, b}(b)=a$ and which fixes the other generators.
(R6) $\pi\left(\tau_{C_{0}, a} \alpha_{C_{1}, a}\right) \pi^{-1}=\tau_{\pi\left(C_{0}\right), \pi(a)} \alpha_{\pi\left(C_{1}\right), \pi(a)}$ for $\pi \in \operatorname{Aut}\left(G_{\Gamma}\right)$ which is a graph automorphism.
(R7) The entire multiplication table of the type (1) Whitehead automorphisms, which forms a finite subgroup of $\operatorname{Aut}\left(G_{\Gamma}\right)$.

Note that $L \backslash\left\{a^{-1}\right\}=\left(V \cup V^{-1}\right) \backslash\left\{a^{-1}\right\}=\left(V \backslash s t_{V}(a)\right)^{ \pm 1}=D$, so $\left(L \backslash\left\{a^{-1}\right\}, a\right)$ corresponds to $\alpha_{D, a}$. But, if $D=\left(V \backslash s t_{V}(a)\right.$ then $\alpha_{D, a}=$ inner automorphism of conjugation by a say $\left(\gamma_{a}\right)$. Hence the relations (R8) to (R10) are that:
(R8) $\left(\tau_{C_{0}, a} \alpha_{C_{1}, a}\right)=\gamma_{a}\left(\tau_{E_{0}, a^{-1}} \alpha_{E_{1}, a^{-1}}\right)$ where $\tau_{C_{0}, a}, \alpha_{C_{1}, a}$ are of type (2) Whitehead automorphisms, and $E_{1}=V \backslash\left[C_{1} \cup C_{0} \cup C_{0}^{-1} \cup s t_{V}(v(a))\right]$ with $E_{0}=C_{0}^{-1}$ and $\gamma_{a}=\alpha_{V \backslash s t_{V}(v(a)), a}$.
(R9) $\left(\tau_{C_{0}, a} \alpha_{C_{1}, a}\right) \gamma_{b}=\gamma_{b}\left(\tau_{C_{0}, a} \alpha_{C_{1}, a}\right)$ if $b \in L$ with $b, b^{-1} \notin C_{0} \cup C_{1}$ and $\gamma_{b}=$ $\alpha_{V \backslash s t_{V}(v(b)), b}$.
(R10) $\left(\tau_{C_{0}, a} \alpha_{C_{1}, a}\right) \gamma_{b}=\gamma_{a} \gamma_{b}\left(\tau_{C_{0}, a} \alpha_{C_{1}, a}\right)$ if $b \in C_{0}$ such that $\gamma_{a}=\alpha_{V \backslash s t_{V}(v(a)), a}$ and $\gamma_{b}=\alpha_{V \backslash s t_{V}(v(b)), b}$.

4.3 A Presentation for Conj_{V}

Note that, if $(A, a) \in C o n j_{V}$ then we have $A_{0}=\emptyset$ and $A=A_{1} \cup A_{1}^{-1} \cup\{a\}$. Moreover, as above since (A, a) is a partial conjugation we may assume $A \cap \ell k_{L}(a)=\emptyset$ so also $A_{1} \cap \ell k_{L}(a)=\emptyset$. So (A, a) can be written as $\alpha_{C, a}$ where $C=A_{1}$.

In [35] it is shown that Conj_{V} is generated by a set called $L I n n_{V}$ as we saw in Section 4.1. Here we use different generators which are more convenient. If we use Whitehead automorphisms we need to combine them. So we could have $\alpha_{C, x} \in$ $L I n n_{R}$ (which is already a Whitehead automorphism), and $\beta=\prod_{y \in[u] \backslash\{x\}} \alpha_{\{y\}, x} \in$ $L I n n_{C}$, where $[u]$ is an equivalent class of u for all $u \in V$, which is also a Whitehead automorphism. After we combine them we will get a new generator $\alpha_{Z, x}=\alpha_{C, x} \beta \in$ Conj_{V} which is also a Whitehead automorphism and one of Toinet's generators. For example, consider the graph of Γ of Figure 4.3.

Figure 4.3: Graph of Γ
So, we have $[y]=\{y, y\}, \beta=\alpha_{\{y\}, x} \alpha_{\{\dot{y}\}, x}$ and $[c]=\{c\}$ and $[a]=\{a, b\}$. The subgraph $\Gamma \backslash \operatorname{st}(x)$ is shown in Figure 4.4.

$$
y \cdot \quad \cdot y^{\prime}
$$

Figure 4.4: Subgraph $\Gamma \backslash s t(x)$
Set $Y=\{a, b, c\}$ then $\alpha_{Y, x} \in \operatorname{LInn}_{R}$. Also setting $Z=\{a, b, c, y, y\}$ then $\alpha_{Z, x}=\alpha_{Y, x} \beta \in \operatorname{Conj}_{V}$. It is a Whitehead automorphism and one of Toinet's generators.

Therefore, we want a generating set for $C o n j_{V}$ consisting of elements that belong to Toinet's generating set for Conj. To this end, we make the following definition.

Definition 4.3.1. Define W_{V} to be the set of partial conjugations $\alpha_{C, x}$, where $x \in L=V \cup V^{-1}$ and (as well as being a union of connected components of $\Gamma \backslash s t(x)$) the set C satisfies the condition that, for all $z \in V$ either
(i) $[z] \cap C=\phi$; or
(ii) $[z] \subseteq C \cup s t(x)$.

Lemma 4.3.2. The following two properties hold on W_{V} :
(a) Every element of W_{V} belongs to $C o n j_{V}$ and
(b) $L I n n_{V} \subseteq W_{V}$.

Proof. (a) Note that, $\alpha_{C, x} \in \operatorname{Conj}_{V} \Leftrightarrow \forall z \in V \exists g_{z}$ such that $u \alpha_{C, x}=u^{g_{z}} \forall u \in[z]$. But,

$$
z \alpha_{C, x}= \begin{cases}z^{x}=x^{-1} z x & \text { if } z \in C \\ z & \text { if } z \notin C\end{cases}
$$

for each $z \in Z$.
If $\alpha_{C, x} \in W_{V}$ then suppose $z \in Z$. By definition of W_{V} either (i) or (ii) of (1) holds. If (i) holds then, for each $u \in[z]$ we have $u \notin C$ so $u \alpha_{C, x}=u$. If (b) holds then either, $u \in C$ and hence $u \alpha_{C, x}=u^{x}$, or $u \in \operatorname{st}(x)$, so $u \alpha_{C, x}=u=u^{x}$ because $[u, x]=1$. So in both cases $u \alpha_{C, x}=u^{x}$ and we have $u \alpha_{C, x}=u^{x}$ for all $u \in[z]$. This means $\alpha_{C, x} \in \operatorname{Conj}_{V}$. Hence, every element of W_{V} belongs to $C o n j_{V}$.
(b) Let $\beta_{C, x} \in \operatorname{LInn}_{V}$. This implies that $\beta_{C, x} \in \operatorname{LInn}_{R}$ or $\beta_{C, x} \in$ LInn $_{C}$. (Since $\left.\operatorname{LInn}_{V}=\operatorname{LInn}_{R} \cup \operatorname{LInn}_{C}\right)$. Note that, if $\beta_{C, x} \in \operatorname{LInn}_{R}$ then we have that
(a) $|C| \geq 2$ and
(b) $\forall y \in C,[y] \subseteq C \cup s t(x)$ (def. of $\operatorname{LInn} n_{R}$).

Thus, $\beta_{C, x} \in W_{V}$ (since $\beta_{C, x}$ satisfies the conditions of W_{V}). Hence, LInn $_{R} \subseteq$ W_{V}. If $\beta_{C, x} \in \operatorname{LInn}_{C}$ then $\beta_{C, x}$ is a basic collected conjugating automorphism (by def. of $L I n n_{C}$). This implies that for some $x, z \in L$ we have x dominates z (i.e., $\ell k(z) \subseteq s t(x)$ and $z \notin s t(x))$ and $[z] \backslash\{x\}=\left\{\vartheta_{1}, \ldots, \vartheta_{n}\right\}$ with $\beta_{C, x}=\prod_{i=1} \beta_{\left\{\vartheta_{i}\right\}, x} \in$ LInn $_{C}$. So $\beta_{C, x}=\alpha_{C, x}$ where $C=\left\{\vartheta_{1}, \ldots, \vartheta_{n}\right\}$.

Now (i) if $u \in V$ and $[u] \cap C \neq \phi$ then $\vartheta_{i} \in[u]$, for some i so $[u]=\left[\vartheta_{i}\right]=[z]$ so $[u] \subseteq C \cup\{x\} \subseteq C \cup \operatorname{st}(x)$, so the second condition of W_{V} holds. On the other hand if (ii) $u \in V$ and $[u] \cap C=\phi$ then the first condition of W_{V} holds. So in all cases either the first or the second condition of W_{V} holds. This implies $\beta_{C, x} \in W_{V}$. Hence, $L I n n_{V} \subseteq W_{V}$. Therefore, $L I n n_{V}=L I n n_{R} \cup L I n n_{C} \subseteq W_{V}$.

Lemma 4.3.3. If $\alpha_{C, x} \in W_{V}$ and $D=V \backslash(C \cup s t(x))$ then $\alpha_{D, x^{\epsilon}} \in W_{V}$ for $\epsilon= \pm 1$.
Proof. To prove this it is necessary only to check that condition (1) on C above holds when C is replaced by D. First note that, for all $z \in V$, either $[z] \cap C=\phi$; or $[z] \subseteq C \cup s t(x)$, by definition of W_{V}.
(i) To show that if $[z] \subseteq C \cup s t(x)$ then $[z] \cap D=\phi$.

$$
\begin{aligned}
{[z] \cap D } & =[z] \cap(V \backslash(C \cup s t(x))) \\
& =[z] \cap\left(V \cap(C \cup s t(x))^{c}\right) \quad\left(\text { since } A \backslash B=A \cap B^{c}\right) \\
& =\left([z] \cap(C \cup s t(x))^{c}\right) \cap V \\
& =\phi \cap V \quad(\text { since we have that }[z] \subseteq C \cup s t(x) \text { which implies that } \\
& \left.\quad[z] \cap(C \cup s t(x))^{c}=\phi\right) \\
& =\phi .
\end{aligned}
$$

(ii) To show that if $[z] \cap C=\phi$ then $[z] \subseteq D \cup s t(x)=V \backslash(C \cup s t(x)) \cup s t(x)$.

Note that, by assumption $[z] \cap C=\phi$, so if $u \in[z]$ then $u \in V \backslash C$ and if also $u \notin s t(x)$ then $u \in V \backslash(C \cup s t(x))=D$. Hence $[z] \subseteq D \cup s t(x)$.

Given $\alpha=(A, a)$ Day defines $\bar{\alpha}=\left(A^{\prime}, a^{-1}\right)$, where $A^{\prime}=L \backslash\left(A \cup \ell k_{L}(a)\right)$. In our terminology, $\bar{\alpha}=\tau_{A_{0}^{\prime}, a^{-1}} \alpha_{A_{1}^{\prime}, a^{-1}}$ where $A_{0}^{\prime}=\left\{x \in A^{\prime} \backslash\left\{a^{-1}\right\}: x^{-1} \notin A^{\prime} \backslash\left\{a^{-1}\right\}\right\}=$ $\left\{x^{-1} \in V^{ \pm 1}: x \in A_{0}\right\}$ and $A_{1}^{\prime}=\left\{x \in V: x \in A^{\prime}\right.$ and $\left.x^{-1} \in A^{\prime}\right\}=\left\{x \in V: x^{ \pm 1} \notin\right.$ $A_{0}^{\prime}, x \notin \operatorname{st}_{L}(a)$ and $\left.x \notin A_{1}^{\prime}\right\}$.

In the case of $(A, a) \in W_{V}$ we have $A_{0}=\emptyset$ and $A=A_{1} \cup A_{1}^{-1} \cup\{a\}$. In this case if $\alpha=\alpha_{C, x}$ then $\bar{\alpha}=\alpha_{D, x^{-1}}$, where $D=V \backslash\left(C \cup s t_{L}(x)\right)=\left\{y \in V: y \notin C \cup s t_{L}(x)\right\}$.

Lemma 4.3.4. If $\pi \in \operatorname{Aut}(\Gamma)$ and $\alpha_{C, x} \in W_{V}$ then $\alpha_{\pi(C), \pi(x)} \in W_{V}$.
Proof. Let $\pi \in \operatorname{Aut}(\Gamma)$ and $\alpha_{C, x} \in W_{V}$. Note that, to show $\alpha_{\pi(C), \pi(x)} \in W_{V}$ we need only to check the condition (1) on C holds when C is replaced by $\pi(C)$ and x is replaced by $\pi(x)$.

Suppose $z \in V$. We show that either $[z] \cap \pi(C)=\phi$ or $[z] \subseteq \pi(C) \cup \operatorname{st}(\pi(x))$. As $\pi \in \operatorname{Aut}(\Gamma)$ there exists $y \in V$ such that $\pi(y)=z$. Suppose that $[z] \cap \pi(C) \neq \phi$; and let $u \in[z] \cap \pi(C)$. Since $\pi \upharpoonright_{V}$ is a graph automorphism we have $\pi[a]=[\pi(a)]$,
for each $a \in V$. Hence $[z]=[\pi(y)]=\pi[y]$. Now $u=\pi(v)$ where $v \in C$, since $u \in \pi(C)$, so $\pi(v) \in[z]=\pi[y]$. Thus $\pi(v)=\pi\left(v^{\prime}\right)$, for some $v^{\prime} \in[y]$ and since π is one-one this implies $v=v^{\prime}$; that is $v \in C$ and $v \in[y]$ so $v \in[y] \cap C$. But, since $\alpha_{C, x} \in W_{V}$ we have $[y] \cap C=\phi$ or $[y] \subseteq C \cup s t(x)$. Hence, as $v \in[y] \cap C$ we have $[y] \subseteq C \cup s t(x)$. Hence $\pi[y] \subseteq \pi(C) \cup \pi(s t(x))$ which implies that $[z] \subseteq \pi(C) \cup s t(\pi(x))$ (as $s t(\pi(x))=\pi(s t(x)))$. Therefore, either $[z] \cap \pi(C)=\phi$ or $[z] \subseteq \pi(C) \cup s t(\pi(x))$. This implies that $\alpha_{\pi(C), \pi(x)} \in W_{V}$.

Lemma 4.3.5. If $\alpha_{C, x}, \alpha_{D, x} \in W_{V}$ then $\alpha_{C \cap D, x} \in W_{V}$.
Proof. Note that, to prove this it is necessary only to check that condition (1) on C above holds when C is replaced by $C \cap D$. Now fix $\alpha_{C, x}, \alpha_{D, x} \in W_{V}$ and let $z \in Z$.

If $[z] \cap C=\phi$ then $[z] \cap(C \cap D)=([z] \cap C) \cap D=\phi \cap D=\phi$. Similarly if $[z] \cap D=\phi$ then $[z] \cap(C \cap D)=\phi$.

Hence we may assume that $[z] \subseteq C \cup s t(x)$ and $[z] \subseteq D \cup s t(x)$. Note that, $(C \cap D) \cup s t(x)=(C \cup s t(x)) \cap(D \cup s t(x))$ (distributive laws). But, $[z] \subseteq C \cup \operatorname{st}(x)$ and $[z] \subseteq D \cup s t(x)$ by assumption. This implies that $[z] \subseteq(C \cap s t(x)) \cap(D \cup \operatorname{st}(x))$. i.e., $[z] \subseteq(C \cap D) \cup s t(x)$. Hence, $\alpha_{C \cap D, x} \in W_{V}$.

Lemma 4.3.6. Let $\alpha_{C, x}, \alpha_{D, x} \in W_{V}$ and let $D^{\prime}=V \backslash(D \cup s t(y))$ such that $y^{ \pm 1} \notin C$. If $\alpha_{C \cap D^{\prime}, x}$ is a well defined automorphism then it belongs to W_{V}.

Proof. Note that, $\alpha_{C \cap D^{\prime}, x}$ is a well defined automorphism if and only if $C \cap D^{\prime}$ is a union of connected components of $\Gamma \backslash s t(x)$. Now suppose $\alpha_{C \cap D^{\prime}, x}$ is a well defined automorphism. So we need to show that $\alpha_{C \cap D^{\prime}, x} \in W_{V}$.

If $[z] \cap C=\phi$ then $[z] \cap\left(C \cap D^{\prime}\right)=\phi$ (as in previous lemma), so we assume $[z] \subseteq C \cup \operatorname{st}(x)$. Therefore, there are two possibilities:
(i) $[z] \cap D=\phi$; or
(ii) $[z] \subseteq D \cup s t(y)$.

If $[z] \cap D^{\prime}=\phi$ then $[z] \cap\left(C \cap D^{\prime}\right)=\phi$ so we assume there exists $u \in[z] \cap D^{\prime}$. We need to show $[z] \subseteq D^{\prime} \cup s t(x)$:

Case (i) If $[z] \cap D=\phi$ then suppose there exists $v \in[z]$ with $v \in \operatorname{st}(y)$. As $v \sim z$ either (a) $s t(z)=s t(v)$ or (b) $\ell k(z)=\ell k(v)$. In case (a) we have $v \in \operatorname{st}(y)$ implies $y \in \operatorname{st}(v)=s t(z)$ implies $[z] \subseteq s t(y)$ so $u \notin D^{\prime}$, a contradiction.

If (b), $\ell k(z)=\ell k(v)$ then if $y \in \ell k(v)$ with $y \neq v$, as above we obtain $y \in \ell k(z)$ and $z \in \operatorname{st}(y)$ implies $[z] \in \operatorname{st}(y)$. Hence in case (b) we must have $y=v$.

Note we assume that $[z] \subseteq C \cup \operatorname{st}(x)$ and $y \notin C$ (as $y^{ \pm 1} \notin C$) so we must have $y \in \operatorname{st}(x)$. Hence in this case $v=y \in D^{\prime} \cup s t(x)$. On the other hand if $v \in[z]$ and $v \notin s t(y)$ then $v \notin D \cup s t(y)$ so $v \in D$; so that $[z] \subseteq D^{\prime} \cup s t(x)$ in this case.

Case (ii) We assume that $[z] \subseteq D \cup s t(y)$. We show $[z] \cap D^{\prime}=\phi$. Note that,

$$
\begin{aligned}
D^{\prime} \cap[z] & =[V \backslash(D \cup s t(y)] \cap[z] \\
& =(V \cap[z]) \backslash(D \cup s t(y)) \quad(\text { since }(B \backslash A) \cap C=(B \cap C) \backslash A) \\
& =[z] \backslash(D \cup s t(y)) \\
& =\phi \quad \text { (since }[z] \subseteq D \cup s t(y) \text { (by assumption) } .
\end{aligned}
$$

Hence, $\alpha_{C \cap D^{\prime}, x} \in W_{V}$.
Lemma 4.3.7. If $\alpha_{C, x}, \alpha_{D, x} \in W_{V}$ with $x \in L$. Then $\alpha_{C \cup D, x} \in W_{V}$.
Proof. Note that, to prove this it is necessary only to check that if $z \in V$ then either $[z] \cap(C \cup D)=\phi$ or $[z] \subseteq(C \cup D) \cup s t(x)$.

Suppose that $[z] \cap(C \cup D) \neq \phi$. We have $[z] \cap(C \cup D)=([z] \cap C) \cup([z] \cap D)$ (distributive laws). So we have $[z] \cap C \neq \phi$ or $[z] \cap D \neq \phi$. Now if $[z] \cap C \neq \phi$ this implies that $[z] \subseteq C \cup s t(x)$ (by detention of W_{V}). Similarly, if $[z] \cap D \neq \phi$ then $[z] \subseteq(C \cup D) \cup s t(x)$. But, this implies to $[z] \subseteq(C \cup D) \cup s t(x)$. Hence, $\alpha_{C \cup D, x} \in W_{V}$.

Recall that, W_{V} is the set of partial conjugations $\alpha_{C, x}$, where $x \in L=V \cup V^{-1}$ and (as well as being a union of connected components of $\Gamma \backslash s t(x))$ the set C satisfies the condition that, for all $z \in V$ either
(i) $[z] \cap C=\phi$; or
(ii) $[z] \subseteq C \cup s t(x)$.

Definition 4.3.8. [24] Let w be a graphically reduced cyclic word and let $a \in L$. Then for $b, c \in L \backslash \ell k_{L}(a)$, we define the adjacency counter of w relative to a, written as $\langle b, c\rangle_{w, a}$, to be the number of subsegments of w of the form $\left(b u c^{-1}\right)^{ \pm 1}$, where u is any (possibly empty) word in $\ell k_{L}(a)$.

For a k-tuple of graphically reduced cyclic words $W=\left(w_{1}, \ldots, w_{k}\right)$, define the adjacency counter of W relative to a as:

$$
\langle b, c\rangle_{W, a}=\sum_{i=1}^{k}\langle b, c\rangle_{w_{i}, a}
$$

For $B, C \subset L$, we define:

$$
\langle B, C\rangle_{W, a}=\sum_{b \in\left(B \backslash \ell k_{L}(a)\right)} \sum_{c \in\left(C \backslash \ell k_{L}(a)\right)}\langle b, c\rangle_{W, a}
$$

For $\alpha=\alpha_{C, a} \in W_{V}$, we define:

$$
D_{[W]}(\alpha)=|\alpha \cdot[W]|-|[W]|
$$

When W is clear, we leave it out, writing $\langle B, C\rangle_{a}$ and $D(\alpha)$.
With W and a as above, note that for any $B, C \subset L$, the number $\langle B, C\rangle_{a} \geq 0$. Further, we have $\langle B, C\rangle_{a}=\langle C, B\rangle_{a}$. If $D \subset L$ with $D \cap C=\emptyset$, then we have:

$$
\langle B, C \cup D\rangle_{a}=\langle B, C\rangle_{a}+\langle B, D\rangle_{a}
$$

Also note that $\langle a, a\rangle_{a}=0$ (since each w_{i} is graphically reduced).

From the discussion of Section 4.2 recall that, for $\alpha_{C, a} \in W_{V}$ we have $A=$ $C \cup C^{-1} \cup\{a\}$.

Lemma 4.3.9. If W is a k-tuple of graphically reduced cyclic words, $\alpha_{C, a} \in W_{V}$, and W^{\prime} is the obvious representative of $\alpha_{C, a} \cdot[W]$, then let $E=C \cup C^{-1}$

$$
D_{[W]}\left(\alpha_{C, a}\right)=\left|W^{\prime}\right|-|W|=\langle E, L \backslash(E \cup\{a\})\rangle_{W, a}-\langle a, E\rangle_{W, a} .
$$

Proof. This is immediate from counting the letters removed and added in the definition of W^{\prime}.

Lemma 4.3.10. [24] Let W be a k-tuple of graphically reduced cyclic words. If $\alpha_{C, a} \in W_{V}$, then let $A=C \cup C^{-1} \cup\{a\}$

$$
D_{[W]}\left(\alpha_{C, a}\right)=\langle A, L \backslash A\rangle_{W, a}-\langle a, L\rangle_{W, a}
$$

Proof. From Lemma 4.3.9:

$$
\begin{aligned}
D\left(\alpha_{C, a}\right) & =\langle A \backslash\{a\}, L \backslash A\rangle_{a}-\langle a, A \backslash\{a\}\rangle_{a} \\
& =\langle A, L \backslash A\rangle_{a}-\left(\langle a, L \backslash A\rangle_{a}+\langle a, A \backslash\{a\}\rangle_{a}+\langle a, a\rangle_{a}\right) \\
& =\langle A, L \backslash A\rangle_{a}-\langle a, L\rangle_{a}
\end{aligned}
$$

Lemma 4.3.11. [24] Let $\alpha, \beta \in W_{V}$ and let [W] be a k-tuple of conjugacy classes of G_{Γ}. Then we have:

$$
\begin{equation*}
2\left|\alpha^{-1} \cdot[W]\right|>|[W]|+\left|\beta \alpha^{-1} \cdot[W]\right| \tag{4.3.1}
\end{equation*}
$$

Proof. Since $\beta \alpha^{-1}$ is a peak with respect to $[W]$, we can sum the two inequalities in the definition of a peak; by the fact that one of them is strict, we obtain this new inequality.

Lemma 4.3.12. [24] Suppose we have $\alpha_{C, a}, \alpha_{D, b} \in W_{V}$ with $a \notin D$ and a not adjacent to b in Γ (possibly $a=b^{-1}$). Then $\ell k_{L}(a) \cap D=\emptyset$.

Proof. If $x \in \ell k_{L}(a) \cap D$, then $x \in D$ and by 2.4.6, either $b \geq x$ or $\alpha_{D, b}$ acts on the connected component of x in $\Gamma \backslash s t(b)$ by conjugation. If the latter were true, since a is adjacent to x and not b, we would have that $a \in D$, a contradiction. So $b \geq x$, in which case a is adjacent to b, a contradiction.

Lemma 4.3.13. [24] Suppose $\alpha, \beta \in W_{V}$ and $[W]$ is a k-tuple of conjugacy classes of G_{Γ}, and also that $\alpha=\alpha_{C, a}, \beta=\alpha_{D, b}$, and that either $e=\{a, b\}$ or that $(C \cap$ $D) \cup\left(C \cap\left\{b, b^{-1}\right\}\right) \cup\left(D \cap\left\{a, a^{-1}\right\}\right) \cup(\{a\} \cap\{b\})=\emptyset$ with $a^{-1} \notin D$. Then $|\beta \cdot[W]|$ $<\left|\alpha^{-1} \cdot[W]\right|$.

For the proof see [24] for all automorphisms in $\operatorname{Aut}\left(G_{\Gamma}\right)$.
Given $\alpha=(A, a)$ Day defines $\bar{\alpha}=\left(A^{\prime}, a^{-1}\right)$, where $A^{\prime}=L \backslash\left(A \cup \ell k_{L}(a)\right)$. In our terminology, when α is a basis conjugating automorphism, $\alpha=\alpha_{C, a}$, where $C=\left\{x \in V: x \in A, x \notin s t_{L}(a)\right\}$, as above, so we define $\bar{\alpha}=\alpha_{C^{\prime}, a^{-1}}$, where $C^{\prime}=V \backslash\left(C \cup s t_{L}(a)\right)=\left\{x \in V: x \notin C \cup s t_{L}(a)\right\}$.

Now suppose that $\beta=\alpha_{D, b}$ is another basis conjugating automorphism, and let $B=D \cup D^{-1} \cup\{b\}$ such that $D \subseteq \Gamma \backslash s t(b) \subseteq V$ and $b \in L$, so that, written as a Whitehead automorphism, β is (B, b).

Note that, in our terminology $A \cap B=\emptyset$ if and only if

$$
(C \cap D) \cup\left(C \cap\left\{b, b^{-1}\right\}\right) \cup\left(D \cap\left\{a, a^{-1}\right\}\right) \cup[\{a\} \cap\{b\}]=\emptyset .
$$

Since $A=C \cup C^{-1} \cup\{a\}$ and $B=D \cup D^{-1} \cup\{b\}$, then $A \cap B=\emptyset$ if and only if

$$
\left(C \cup C^{-1} \cup\{a\}\right) \cap\left(D \cup D^{-1} \cup\{b\}\right)=\emptyset
$$

But,

$$
\begin{aligned}
&\left(C \cup C^{-1} \cup\{a\}\right) \cap\left(D \cup D^{-1} \cup\{b\}\right)= {\left[\left(C \cup C^{-1} \cup\{a\}\right) \cap D\right]\left[\left(C \cup C^{-1} \cup\{a\}\right) \cap\right.} \\
&\left.\left.D^{-1}\right] \cup\left[\left(C \cup C^{-1} \cup\{a\}\right) \cap\{b\}\right)\right] \\
&= {\left[(C \cap D) \cup\left(C^{-1} \cap D\right) \cup(\{a\} \cap D)\right] } \\
& \cup\left[\left(C \cap D^{-1}\right) \cup\left(C^{-1} \cap D^{-1}\right) \cup\left(\{a\} \cap D^{-1}\right)\right] \\
& \cup\left[(C \cap\{b\}) \cup\left(C^{-1} \cap\{b\}\right) \cup(\{a\} \cap\{b\}]\right. \\
&= \emptyset \text { if and only if }
\end{aligned}
$$

$$
\begin{aligned}
& (C \cap D) \cup\left(C \cap\left\{b, b^{-1}\right\}\right) \cup\left(D \cap\left\{a, a^{-1}\right\}\right) \cup(\{a\} \cap\{b\})=\emptyset \Longleftrightarrow \\
& \quad C \cap D=\emptyset, C \cap\left\{b, b^{-1}\right\}=\emptyset, D \cap\left\{a, a^{-1}\right\}=\emptyset \text { and }\{a\} \cap\{b\}=\emptyset .
\end{aligned}
$$

Therefore,

$$
A \cap B=\emptyset \Longleftrightarrow(C \cap D) \cup\left(C \cap\left\{b, b^{-1}\right\}\right) \cup\left(D \cap\left\{a, a^{-1}\right\}\right) \cup(\{a\} \cap\{b\})=\emptyset .
$$

By the same argument we have that,

$$
A \cap B \neq \emptyset \Longleftrightarrow(C \cap D) \cup\left(C \cap\left\{b, b^{-1}\right\}\right) \cup\left(D \cap\left\{a, a^{-1}\right\}\right) \cup(\{a\} \cap\{b\}) \neq \emptyset
$$

$$
\Longleftrightarrow C \cap D \neq \emptyset, C \cap\left\{b, b^{-1}\right\} \neq \emptyset, D \cap\left\{a, a^{-1}\right\} \neq \emptyset \text { and }\{a\} \cap\{b\} \neq \emptyset .
$$

Lemma 4.3.14. Suppose $\alpha, \beta \in W_{V}$ and $[W]$ is a k-tuple of conjugacy classes of G_{Γ}. If $\beta \alpha^{-1}$ forms a peak with respect to $[W]$, there exist $\delta_{1}, \ldots, \delta_{k} \in W_{V}$ such that $\beta \alpha^{-1}=\delta_{k} \ldots \delta_{1}$ and for each $i, 1 \leq i<k$, we have:

$$
\left|\left(\delta_{i} \ldots \delta_{1}\right) \cdot[W]\right|<\left|\alpha^{-1} \cdot[W]\right|
$$

A factorization of $\beta \alpha^{-1}$ is peak-lowering if it satisfies the conclusions of the lemma, so Lemma 4.3.14 states that every peak has a peak-lowering factorization. Such a factorization might not be peak-reduced, but the height of its highest peak is lower than the height of the peak in $\beta \alpha^{-1}$.

Proof. Assume that $\alpha=\alpha_{C, a}$ and $\beta=\alpha_{D, b} \in W_{V}$. As in the discussion following Lemma 4.3.3 let $\bar{\alpha}=\alpha_{C^{\prime}, a^{-1}}$, where $C^{\prime}=V \backslash\left(C \cup s t_{L}(a)\right.$ and let $\bar{\beta}=\alpha_{D^{\prime}, b^{-1}}$, where $D^{\prime}=V \backslash\left(D \cup s t_{L}(b)\right.$. (As usual refer to $a \in V$ as an element of G_{Γ} or a vertex of Γ, as convenient.) Also we refer to a^{-1} as a vertex of Γ (when really we mean a). By Equation (R8) in Section 4.2, these automorphisms describe the same element
of $\operatorname{Out}\left(G_{\Gamma}\right)$, and therefore

$$
\alpha^{-1} \cdot[W]=\bar{\alpha}^{-1} \cdot[W] \text { and } \beta \alpha^{-1} \cdot[W]=\bar{\beta} \alpha^{-1} \cdot[W] .
$$

Moreover, from Lemma 4.3.3, $\bar{\alpha}$ and $\bar{\beta}$ belong to W_{V}. We claim that if the lemma holds with α or β replaced with $\bar{\alpha}$ or $\bar{\beta}$ respectively, then it holds as originally stated. Suppose $\delta_{k} \ldots \delta_{1}$, with $\delta_{i} \in W_{V}$, is a peak-lowering factorization of $\bar{\beta} \alpha^{-1}$ (for example). By Equation ($R 2$) and ($R 8$) in Section 4.2, the element $\beta \bar{\beta}^{-1}$ is the partial conjugation $\alpha_{D \cup D^{\prime}, b}$ which is in W_{V}, because α, β and $\bar{\beta}$ are in W_{V}. If $\left|\beta \alpha^{-1} \cdot[W]\right|<|\alpha \cdot[W]|$ then

$$
\beta \alpha^{-1}=\alpha_{D \cup D^{\prime}, b} \delta_{k} \ldots \delta_{1}
$$

is a peak-lowering factorization of $\beta \alpha^{-1}$, since $\alpha_{D \cup D^{\prime}, b}$ does not change the length of any conjugacy class. Otherwise $|W|<|\alpha \cdot[W]|$. Again by Equation $(R 8), \bar{\beta} \beta$ is the partial conjugation (inner automorphism of conjugation by b) γ_{b}. So $\left(\bar{\beta} \alpha^{-1}\right)^{-1} \beta \alpha^{-1}$ is $\alpha \gamma_{b} \alpha^{-1}$.

If $b \notin C$, then by Equations $(R 9)$ in Section 4.2 , we know $\left(\bar{\beta} \alpha^{-1}\right)^{-1} \beta \alpha^{-1}$ is the conjugation γ_{b}.

If $b \in C$, then by Equation ($R 8$), we know $\left(\bar{\beta} \alpha^{-1}\right)^{-1} \beta \alpha^{-1}$ is $\gamma_{a} \bar{\alpha} \gamma_{b} \bar{\alpha}^{-1} \gamma_{a}^{-1}$ which is then a product of conjugations by Equation ($R 9$). In any case, we have a product of conjugations $\gamma_{j}^{\prime} \ldots \gamma_{1}^{\prime}$ equal to to $\left(\bar{\beta} \alpha^{-1}\right)^{-1} \beta \alpha^{-1}$; then

$$
\beta \alpha^{-1}=\delta_{k} \ldots \delta_{1} \gamma_{j}^{\prime} \ldots \gamma_{1}^{\prime}
$$

is a peak-lowering factorization of $\beta \alpha^{-1}$, since conjugation does not change the length of conjugacy classes. So we may swap out $\bar{\alpha}$ for α and $\bar{\beta}$ for β as needs be in the proof of this lemma. Also, by the symmetry in the definition of a peak, we may switch α and β if needed.

We fix a k-tuple of graphically reduced cyclic words W representing the conjugacy class $[W]$. Throughout this proof W^{\prime} will denote the obvious representative of $\alpha^{-1} \cdot[W]$ based on W. We break this proof down into several cases.

Case(1): $a \in \ell k(b)$. Of course, this implies that $a \in \operatorname{st}(b)$ and $b \in \operatorname{st}(a)$ and since $C \cap s t(a)=\phi=D \cap s t(b)$, then $a \notin D \subseteq V$ and $b \notin C \subseteq V$. So a^{-1}, b^{-1} are not in C or D. Then by Equation ($R 3 b$) of Section 4.2, we have:

$$
\beta \alpha^{-1}=\alpha_{D, b} \alpha_{C, a^{-1}}=\alpha_{C, a^{-1}} \alpha_{D, b}=\alpha^{-1} \beta .
$$

By Lemma 4.3.13, we know $|\beta \cdot[W]|<\left|\alpha^{-1} \cdot[W]\right|$, so the factorization is peaklowering.

Case(2): $(C \cap D) \cup\left(C \cap\left\{b, b^{-1}\right\}\right) \cup\left(D \cap\left\{a, a^{-1}\right\}\right) \cup(\{a\} \cap\{b\})=\emptyset$ and $a \notin \ell k(b)$. Note that the first condition means that $a \neq b$ and $a^{ \pm 1} \notin D$, so either $a=b^{-1}$ or $a^{-1} \notin\left(D \cup D_{1}^{-1} \cup\{b\}\right)$.

We have the following sub-cases:
Sub-case(2a): $a=b^{-1}$. By Equation (R2) of Section 4.2, the following factorization is peak-lowering:

$$
\beta \alpha^{-1}=\alpha_{D, b} \alpha_{C, b}=\alpha_{C \cup D, b} .
$$

$\left(\beta \alpha^{-1}=\delta_{1}\right.$ and there is nothing to check to verify that this factorization is peak-lowering.)

Sub-case(2b): $a \neq b^{-1}$. In this case $a^{-1} \notin\left(D \cup D^{-1} \cup\{b\}\right)$ and $a \notin \ell k(b)$. If $b^{ \pm 1} \notin C$ then by $(R 3 a)$ of 4.2 we have,

$$
\beta \alpha^{-1}=\alpha_{D, b} \alpha_{C, a^{-1}}=\alpha_{C, a^{-1}} \alpha_{D, b}
$$

So by Lemma 4.3.13, we know that $|\beta \cdot[W]|<\left|\alpha^{-1} \cdot[W]\right|$, so these factorizations are peak-lowering.

Case(3): $(C \cap D) \cup\left(C \cap\left\{b, b^{-1}\right\}\right) \cup\left(D \cap\left\{a, a^{-1}\right\}\right) \cup(\{a\} \cap\{b\}) \neq \emptyset$ and $a \notin \ell k(b)$. We show we may assume that $a \notin\left(D \cup D^{-1} \cup\{b\}\right)$ and $b \notin\left(C \cup C^{-1} \cup\{a\}\right)$. First, by replacing β with $\bar{\beta}$, if necessary, we may assume $a \notin\left(D \cup D^{-1} \cup\{b\}\right)$. If $b \notin\left(C \cup C^{-1} \cup\{a\}\right)$ the claim holds, so assume that $b \in\left(C \cup C^{-1} \cup\{a\}\right)$. If $b=a$ then $a \in\left(D \cup D^{-1} \cup\{b\}\right)$, a contradiction. Hence we have $b \neq a$. If also $b \neq a^{-1}$ then swapping α with $\bar{\alpha}$ we have $b \notin\left(C \cup C^{-1} \cup\{a\}\right)$, and the result holds. Thus we may assume that $b=a^{-1}$. However this gives $a^{-1}=b \in\left(C \cup C^{-1}\right)$, a contradiction. This proves the claim.

Hence we assume that $a \notin D \cup D^{-1} \cup\{b\}$ and $b \notin C \cup C^{-1} \cup\{a\}$. We wish to show that $\alpha_{C \cap D^{\prime}, a}$ is a well defined element of W_{V}. Note that if $a=b^{-1}$ then $s t_{L}(a)=s t_{L}(b)$ so the result follows from Lemma 4.3.3 and Lemma 4.3.5, so we may assume $a \neq b^{-1}$.

If $\alpha_{C \cap D^{\prime}, a}$ is a well defined element of Conj_{V}; then it is in W_{V} by Lemma 4.3.6. Now $\alpha_{C \cap D^{\prime}, a}$ is well defined if, for all $x \in C \cap D^{\prime}, x \notin \operatorname{st}(a)$, the component of $\Gamma \backslash s t(a)$ containing x is contained in $C \cap D^{\prime}$.

Suppose that the connected component of $\Gamma \backslash \operatorname{st}(a)$ containing x in Y and that there exists $y \in Y$ with $y \notin C \cap D^{\prime}$. As $\alpha_{C, a}$ is in Conj, we have $Y \subseteq C$; so $y \in C$ and thus $y \notin D^{\prime}$. Therefore $y \in V \backslash D^{\prime}$ so $y \in D \cup s t(b)$. By Lemma 4.3.12 we have $C \cap \ell k(b)=\emptyset$ (also $D \cap \ell k(a)=\emptyset$) so either $y \in D$ or $y=b$; but $b \notin C$ so $y \neq b$, and so $y \in D$.

Let Z be the connected component of $\Gamma \backslash \operatorname{st}(b)$ containing y. Then, as $y \in D$ we have $Z \subseteq D$. As $a \notin D$ this means $a \notin Z$; so $\operatorname{st}(a) \cap Z=\emptyset$, (because a is not adjacent to b, and not equal to b and if we had $a=b^{-1}$ then we would have $s t(a)=s t(b)$; which intersects Z trivially. In other words, if $v \in \operatorname{st}(a)$ then either $a \in Z$ or $a \in \ell k(b)$ and either case gives a contradiction, so there is no $v \in Z \cap \operatorname{st}(a)$.) As $b \notin \ell k(a)$ and $b \neq a^{ \pm 1}$ we have $b \notin s t(a) \cup C$. To walk from y to any vertex outside C we must use vertices of $\operatorname{st}(a)$ which implies that $Z \subseteq Y \subseteq C$ so Z is a connected component of $\Gamma \backslash$ st (a) which implies that $Y=Z$ which in terms implies that $x \in Z \subseteq D$. However, by assumption $x \in D^{\prime}$ so this is a contradiction. Thus $C \cap D^{\prime}$ is a union of connected component of $\Gamma \backslash s t(a)$ as required. Therefore, $\alpha_{C \cap D^{\prime}, a}$ is a well defined automorphism and from Lemma 4.3.6 it belongs to W_{V}. Note that $\alpha_{D \cap C^{\prime}, b}$ is well defined by the same argument.

Next we will show that either $\alpha_{C \cap D^{\prime}, x}$ or $\alpha_{D \cap C^{\prime}, y}$ shortens $\alpha^{-1} \cdot[W]$. By Equation (4.3.1), we know that $0>D_{\left[\alpha^{-1} \cdot W\right]}(\alpha)+D_{\left[\alpha^{-1} \cdot W\right]}(\beta)$. Of course, from the definition of peak-lowering we have,
$\left|\alpha^{-1} \cdot[W]\right| \geq|[W]|$ and $\left|\alpha^{-1} \cdot[W]\right| \geq\left|\beta \alpha^{-1} \cdot[W]\right|$ (and one of these is strict). By adding these two inequalities to each other we will get that

$$
\begin{equation*}
2\left|\alpha^{-1} \cdot[W]\right|>|[W]|+\left|\beta \alpha^{-1} \cdot[W]\right| . \tag{4.3.2}
\end{equation*}
$$

Now from Definition 4.3 .8 we have that,

$$
\begin{gather*}
D_{[W]}(\alpha)=|\alpha \cdot[W]|-|[W]|, \\
D_{\left[\alpha^{-1} \cdot W\right]}(\alpha)=\left|\alpha \cdot \alpha^{-1} \cdot[W]\right|-\left|\alpha^{-1} \cdot[W]\right|=|[W]|-\left|\alpha^{-1} \cdot[W]\right| \tag{4.3.3}
\end{gather*}
$$

and

$$
\begin{equation*}
D_{\left[\alpha^{-1} \cdot W\right]}(\beta)=\left|\beta \cdot \alpha^{-1} \cdot[W]\right|-\left|\alpha^{-1} \cdot[W]\right| . \tag{4.3.4}
\end{equation*}
$$

By adding Equation (4.3.3) to Equation (4.3.4) we get that

$$
\begin{aligned}
& D_{\left[\alpha^{-1} \cdot W\right]}(\alpha)+D_{\left[\alpha^{-1} \cdot W\right]}(\beta)=-\left(2\left|\alpha^{-1} \cdot[W]\right|\right)+|[W]|+\left|\beta \cdot \alpha^{-1} \cdot[W]\right|<0 \\
& \text { (as } \left.2\left|\alpha^{-1} \cdot[W]\right|>|[W]|+\left|\beta \cdot \alpha^{-1} \cdot[W]\right| \text { from Equation }(4.3 .2)\right) .
\end{aligned}
$$

Now by Lemma 4.3.10, where $A=C \cup C^{-1} \cup\{a\}$ and $A^{\prime}=L \backslash\left(A \cup \ell k_{L}(a)\right)$ we know that

$$
\begin{aligned}
D_{\left[\alpha^{-1} \cdot W\right]}(\alpha) & =\left\langle A, A^{\prime}\right\rangle_{\alpha^{-1} \cdot W, a}-\langle a, L\rangle_{\alpha^{-1} \cdot W, a} \\
& =\left\langle A \cap B^{\prime}, A^{\prime}\right\rangle_{\alpha^{-1} \cdot W, a}+\left\langle A \cap B, A^{\prime}\right\rangle_{a}-\langle a, L\rangle_{\alpha^{-1} \cdot W, a}
\end{aligned}
$$

and similarly, where $B=D \cup D^{-1} \cup\{b\}$ and $B^{\prime}=L \backslash\left(B \cup \ell k_{L}(b)\right)$ we have:

$$
\begin{aligned}
D_{\left[\alpha^{-1} \cdot W\right]}(\beta) & =\left\langle B, B^{\prime}\right\rangle_{\alpha^{-1} \cdot W, b}-\langle b, L\rangle_{\alpha^{-1} \cdot W, b} \\
& =\left\langle B \cap A^{\prime}, B^{\prime}\right\rangle_{\alpha^{-1} \cdot W, b}+\left\langle B \cap A, B^{\prime}\right\rangle_{\alpha^{-1} \cdot W, b}-\langle b, L\rangle_{\alpha^{-1} \cdot W, b}
\end{aligned}
$$

From above we have that $a, b \in L=V \cup V^{-1}$ with $a \neq b^{ \pm 1}, C \subset V, D \subset V, A=$ $C \cup C^{-1} \cup\{a\}$ and $A^{\prime}=L \backslash\left(A \cup \ell k_{L}(a)\right), B=D \cup D^{-1} \cup\{b\}$ and $B^{\prime}=L \backslash\left(B \cup \ell k_{L}(b)\right)$, $D^{\prime}=V \backslash\left(D \cup s t_{V}(v(b))\right), a \notin B$ with $a \notin \ell k_{L}(b), b \notin A, C \cap \ell k_{L}(b)=\emptyset$ and from Lemma 4.3.12, $D \cap \ell k_{L}(a)=\emptyset$.

By definition $C \cap s t_{V}(v(a))=\emptyset$ and $D \cap s t_{V}(v(b))=\emptyset$.
Claim: $A \cap B^{\prime}=\left(C \cap D^{\prime}\right) \cup\left(C \cap D^{\prime}\right)^{-1} \cup\{a\}=A_{1}$. First consider a. Note that $a \in A \cap B^{\prime}$, as $a \in A$ and $a \notin \ell k_{L}(b)$ and $a \notin B$ implies that $a \in B^{\prime}$ and by definition $a \in K$.

If $x=a^{-1}$ then $x \notin A$, as $C \cap s t_{V}(v(a))=\emptyset$ so $x \notin A \cap B^{\prime}$. Also if $x=a^{-1}$ then $x \notin C \cap D^{\prime}$ and $x \notin\{a\}$ so $x \notin K$.

Now consider $x=b^{ \pm 1}$. We have $b \neq a^{ \pm 1}$ and $b \notin A, b^{-1} \notin A$, so $b^{ \pm 1} \notin A \cap B^{\prime}$.
Also $b \notin C \cup C^{-1}$ implies that $b \notin C \cap D^{\prime}$ or $\left(C \cap D^{\prime}\right)^{-1}$ and $b^{ \pm 1} \notin\{a\}$ so $b^{ \pm 1} \notin K$.
If $x \in A \cap B^{\prime}$ with $x \neq a^{ \pm 1}, b^{ \pm 1}$ then $x \in A, x \neq a^{ \pm 1}, b^{ \pm 1}$ implies that $x \in C \cup C^{-1}$.
Also $x \in B^{\prime}$ with $x \neq a^{ \pm 1}, b^{ \pm 1}$ implies that $x \notin B \cup \ell k_{L}(b)$ and $x \neq a^{ \pm 1}, b^{ \pm 1}$ if and only if $x \notin D \cup D^{-1} \cup\{b\} \cup \ell k_{L}(b), x \neq a^{ \pm 1}, x \neq b^{ \pm 1}$. Then $x \in V$ and $x \in B^{\prime}$ if and only if $x \notin D \cup s t_{V}(v(b))$ and $x \neq a^{ \pm 1} ; x \in V^{-1}$ and $x \in B^{\prime}$ if and only if $x \notin D^{-1} \cup s t_{V}(v(b))^{-1}$ and $x \neq a^{ \pm 1}$ so $x \in B^{\prime}$ if and only if $x \notin\left(D \cup s t_{V}(v(b))\right)^{ \pm 1}$ and $x \neq a^{ \pm 1}$, if and only if $x \in D^{ \pm 1}$ and $x \neq a^{ \pm 1}$. Hence $x \in A \cap B^{\prime}$ and $x \neq a^{ \pm 1}, b^{ \pm 1}$
if and only if $x \in\left(C \cap D^{\prime}\right) \cup\left(C \cap D^{\prime}\right)^{-1}$ and $x \neq a^{ \pm 1}$ if and only if $x \in A_{1}$.

$$
A_{1}=\left(C \cap D^{\prime}\right) \cup\left(C \cap D^{\prime}\right)^{-1} \cup\{a\}=A \cap B^{\prime}
$$

By the same argument we have that,

$$
B_{1}=\left(C^{\prime} \cap D\right) \cup\left(C^{\prime} \cap D\right)^{-1} \cup\{b\}=A^{\prime} \cap B
$$

Let $A_{1}^{\prime}=L \backslash\left(A_{1} \cup \ell k(a)\right)$ and $B_{1}^{\prime}=L \backslash\left(B_{1} \cup \ell k(b)\right)$.
Now from Lemma 4.3.10, we know that

$$
\begin{aligned}
D_{\left[\alpha^{-1} \cdot W\right]}\left(\alpha_{C \cap D^{\prime}, a}\right) & =\left\langle A_{1}, A_{1}^{\prime}\right\rangle_{\alpha^{-1} \cdot W, a}-\langle a, L\rangle_{\alpha^{-1} \cdot W, a} \\
= & \left\langle A \cap B^{\prime}, L \backslash\left(A \cap B^{\prime} \cup \ell k(a)\right)\right\rangle_{\alpha^{-1} \cdot W, a}-\langle a, L\rangle_{\alpha^{-1} \cdot W, a} \\
& =\left\langle A \cap B^{\prime}, L \backslash\left(A \cap B^{\prime}\right)\right\rangle_{\alpha^{-1} \cdot W, a}-\langle a, L\rangle_{\alpha^{-1} \cdot W, a}
\end{aligned}
$$

(as $\langle W, \ell k(a)\rangle=0$ for all $W \subset L$.) Note that,

$$
L \backslash\left(A \cap B^{\prime}\right)=\left(A^{\prime} \cup B\right) \cup(\ell k(a) \backslash B) \cup(A \cap \ell k(b))=\left(A^{\prime} \cup B\right) \cup(\ell k(a) \backslash B) \text { as }
$$ $A \cap \ell k(b)=\emptyset$ (by Lemma 4.3.12). Since if $U \subset L$ with $U \cap V=\emptyset$, then we have: $\langle B, U \cup V\rangle_{a}=\langle B, U\rangle_{a}+\langle B, V\rangle_{a}$, and $\left(A^{\prime} \cup B\right) \cap(\ell k(a) \backslash B)=\emptyset$. So

$$
\begin{aligned}
& D_{\left[\alpha^{-1} \cdot W\right]}\left(\alpha_{C \cap D^{\prime}, a}\right)=\left\langle A \cap B^{\prime},\left(A^{\prime} \cup B\right) \cup(\ell k(a) \backslash B)\right\rangle_{\alpha^{-1} \cdot W, a}-\langle a, L\rangle_{\alpha^{-1} \cdot W, a} \\
&=\left\langle A \cap B^{\prime}, A^{\prime} \cup B\right\rangle_{\alpha^{-1} \cdot W, a}+\left\langle A \cap B^{\prime}, \ell k(a) \backslash B\right\rangle_{\alpha^{-1} \cdot W, a}-\langle a, L\rangle_{\alpha^{-1} \cdot W, a} \\
&=\left\langle A \cap B^{\prime}, A^{\prime} \cup B\right\rangle_{\alpha^{-1} \cdot W, a}-\langle a, L\rangle_{\alpha^{-1} \cdot W, a}\left(\operatorname{as}\left\langle A \cap B^{\prime}, \ell k(a) \backslash B\right\rangle=0\right) \\
&=\left\langle A \cap B^{\prime}, A^{\prime} \cup(A \cap B)\right\rangle_{\alpha^{-1} \cdot W, a}-\langle a, L\rangle_{\alpha^{-1} \cdot W, a} \\
&=\left\langle A \cap B^{\prime}, A^{\prime}\right\rangle_{\alpha^{-1} \cdot W, a}+\left\langle A \cap B^{\prime}, A \cap B\right\rangle_{\alpha^{-1} \cdot W, a}-\langle a, L\rangle_{\alpha^{-1} \cdot W, a}
\end{aligned}
$$

(as $A^{\prime} \cup B=A^{\prime} \cup(A \cap B)$ with $\left.A^{\prime} \cap(A \cap B)=\emptyset\right)$.
Similarly,

$$
D_{\left[\alpha^{-1} \cdot W\right]}\left(\alpha_{C^{\prime} \cap D, b}\right)=\left\langle B \cap A^{\prime}, B^{\prime}\right\rangle_{\alpha^{-1} \cdot W, a}+\left\langle B \cap A^{\prime}, A \cap B\right\rangle_{\alpha^{-1} \cdot W, a}-\langle a, L\rangle_{\alpha^{-1} \cdot W, a} .
$$

We claim that $\left\langle A \cap B, A^{\prime}\right\rangle_{\alpha^{-1} \cdot W, a} \geq\left\langle A \cap B, A^{\prime} \cap B\right\rangle_{\alpha^{-1} \cdot W, b}$. Recall that $\ell k_{L}(b) \cap C=$ \emptyset. If $\left(c u d^{-1}\right)^{ \pm 1}$ is a subsegment of $\alpha^{-1} \cdot W$ with $c \in A \cap B, d \in A^{\prime} \cap B$, and u a
word in $\langle\ell k(b)\rangle$ ，then either u is a word $\operatorname{in}\langle\ell k(b) \cap \ell k(a)\rangle$ ，or $u=u^{\prime} u_{1} u^{\prime \prime}$ where u^{\prime} a word in $\langle\ell k(b) \cap \ell k(a)\rangle$ and $u_{1} \in \ell k(b) \backslash \ell k(a)$ ．If the former is true，cud ${ }^{-1}$ is counted by $\left\langle A \cap B, A^{\prime}\right\rangle_{\alpha^{-1} \cdot W, a}$ ；if the latter holds，then instead $c u^{\prime} u_{1}$ is counted by $\left\langle A \cap B, A^{\prime}\right\rangle_{\alpha^{-1} \cdot W, a}$（since $u_{1} \notin \ell k(a)$ ）．Either way，each subsegment of $\alpha^{-1} \cdot W$ counted by the counter on the right hand side of the inequality is also counted by the counter on the left hand side of the inequality，showing the inequality．Similarly， we know $\left\langle B \cap A, B^{\prime}\right\rangle_{\alpha^{-1} \cdot W, b} \geq\left\langle B \cap A, B^{\prime} \cap A\right\rangle_{\alpha^{-1} \cdot W, a}$ ．

According to the above we have the following：

$$
\begin{aligned}
& 0>D_{\left[\alpha^{-1} \cdot W\right]}(\alpha)+D_{\left[\alpha^{-1} \cdot W\right]}(\beta),\left\langle A \cap B, A^{\prime}\right\rangle_{\alpha^{-1} \cdot W, a} \geq\left\langle A \cap B, A^{\prime} \cap B\right\rangle_{\alpha^{-1} \cdot W, b} \text { and } \\
& \left\langle B \cap A, B^{\prime}\right\rangle_{\alpha^{-1} \cdot W, b} \geq\left\langle B \cap A, B^{\prime} \cap A\right\rangle_{\alpha^{-1} \cdot W, a} .
\end{aligned}
$$

So，

$$
\begin{aligned}
0> & D_{\left[\alpha^{-1} \cdot W\right]}(\alpha)+D_{\left[\alpha^{-1} \cdot W\right]}(\beta) \\
\geq & \left\langle A \cap B^{\prime}, A^{\prime}\right\rangle_{\alpha^{-1} \cdot W, a}+\left\langle A \cap B^{\prime}, A \cap B\right\rangle_{\alpha^{-1} \cdot W, a}-\langle a, L\rangle_{\alpha^{-1} \cdot W, a} \\
& +\left\langle B \cap A^{\prime}, B^{\prime}\right\rangle_{\alpha^{-1} \cdot W, b}+\left\langle B \cap A^{\prime}, A \cap B\right\rangle_{\alpha^{-1} \cdot W, b}-\langle a, L\rangle_{\alpha^{-1} \cdot W, b} \\
= & D_{\left[\alpha^{-1} \cdot W\right]}\left(\alpha_{C \cap D^{\prime}, a}\right)+D_{\left[\alpha^{-1} \cdot W\right]}\left(\alpha_{D \cap C^{\prime}, b}\right) .
\end{aligned}
$$

So one of $\alpha_{C \cap D^{\prime}, a}$ and $\alpha_{D \cap C^{\prime}, b}$ shortens $\left[\alpha^{-1} \cdot W\right]$ ．
Theorem 4．3．15．The subgroup Conj_{V} of $\operatorname{Aut}\left(G_{\Gamma}\right)$ has a presentation with gener－ ators W_{V}（see Definition 4．3．1）and the finite set of relations \Re ：
（凡1）$\left(\alpha_{C, x}\right)^{-1}=\alpha_{C, x^{-1}}$,
（凡2）$\alpha_{C, x} \alpha_{D, x}=\alpha_{C \cup D, x}$ if $C \cap D=\phi$ ，
（R3）$\alpha_{C, x} \alpha_{D, y}=\alpha_{D, y} \alpha_{C, x}$ if $x \notin D, y \notin C, x \neq y, y^{-1}$ and at least one of $C \cap D=\phi$ or $y \in \ell k(x)$ holds，
（凡4）$\gamma_{y} \alpha_{C, x} \gamma_{y}^{-1}=\alpha_{C, x}$ if $y \notin C, x \neq y, y^{-1}$ ．
Proof．Our proof is based on arguments that were used in Lemma 4．3．14．As－ sume that $\alpha=\alpha_{C, a}$ and $\beta=\alpha_{D, b} \in W_{V}$ ．Let $\pi \in \operatorname{Aut}(\Gamma)$ ，then by Lemma 4．3．4，$\alpha_{\pi(C), \pi(a)} \in W_{V}$ ．We also denote by Ω_{ℓ} the set of long－range Whitehead au－ tomorphisms．（As usual we refer to $a \in V$ as an element of G_{Γ} or a vertex of Γ ，as convenient．）Also we refer to a^{-1} as a vertex of Γ（when really we mean $a=v\left(a^{-1}\right)$ ）．Let \Re denote the set of relations given in the statement of Theorem
4.3.15. We shall construct a finite connected 2-complex K with fundamental group Conj $_{V}=\left\langle W_{V} \mid \Re\right\rangle$.

Let $V=V(\Gamma)=\left\{x_{1}, \ldots, x_{n}\right\}(n \geq 1)$. Let W denote the n-tuple $\left(x_{1}, \ldots, x_{n}\right)$.
The set of vertices $K^{(0)}$ of K is the set of n-tuples $\pi \cdot W$, where π ranges over the set $\operatorname{Aut}(\Gamma)$. For any $\pi, \psi \in \operatorname{Aut}(\Gamma)$, the vertices $\pi \cdot W$ and $\psi \pi \cdot W$ are joined by a directed edge $(\pi \cdot W, \psi \pi \cdot W ; \psi)$ labelled ψ. Note that, at this stage, K is just the Cayley graph of $\operatorname{Aut}(\Gamma)$. Next, for any $\pi \in \operatorname{Aut}(\Gamma)$, and $\alpha_{C, a} \in W_{V}$, we add a loop $\left(\pi \cdot W, \pi \cdot W ; \alpha_{C, a}\right)$ labeled $\alpha_{C, a}$ at $\pi \cdot W$. This defines the 1-skeleton $K^{(1)}$ of K.

We shall define the 2-cells of K. These 2-cells will derive from the relations $(R 1)-(R 10)$ of Section 4.2. First, let K_{1} be the 2-complex obtained by attaching 2-cells corresponding to relation $(R 7)$ to $K^{(1)}$. Note that, if M is the 2-complex obtained from K_{1} by deleting the loops $\left(\pi \cdot W, \pi \cdot W ; \alpha_{C, a}\right), \pi \in \Omega_{1}, \alpha_{C, a} \in W_{V}$, then M is just the Cayley complex of Ω_{1}, and therefore is simply connected. We now explore the relations $(R 1)-(R 5)$ and $(R 8)-(R 10)$ of Section 4.2 to determine which of these will give rise to relations on the elements of W_{V}. When we apply these relations to elements $\alpha_{C, a}, \alpha_{D, b} \in W_{V}$ we have to write $\alpha_{C, a}$ as $\tau_{C_{0}, a} \alpha_{C_{1}, a}$ and $\alpha_{D, b}$ as $\tau_{D_{0}, b} \alpha_{D_{1}, b}$ and here $C_{0}=D_{0}=\emptyset$ and $C_{1}=C, D_{1}=D$. Thus $\tau_{C_{0}, a} \alpha_{C_{1}, a}$ and $\tau_{D_{0}, b} \alpha_{D_{1}, b}$ become $\alpha_{C, a}$ and $\alpha_{D, b}$ respectively. Relation ($R 1$) will give rise to the following:

$$
\begin{equation*}
\alpha_{C, a}^{-1}=\alpha_{C, a^{-1}} \tag{4.3.5}
\end{equation*}
$$

for $\alpha_{C, a} \in W_{V}$ (by definition $\alpha_{C, a^{-1}} \in W_{V}$).
Relation ($R 2$) will give rise to

$$
\begin{equation*}
\alpha_{C, a} \alpha_{D, a}=\alpha_{C \cup D, a} \tag{4.3.6}
\end{equation*}
$$

for $\alpha_{C, a}, \alpha_{D, a} \in W_{V}$ as, by Lemma 4.3.7, $\alpha_{C \cup D, a} \in W_{V}$, with $C \cap D=\emptyset$.
Relation ($R 3$) will give rise to

$$
\begin{equation*}
\alpha_{C, a} \alpha_{D, b}=\alpha_{D, b} \alpha_{C, a} \tag{4.3.7}
\end{equation*}
$$

for $\alpha_{C, a}, \alpha_{D, b} \in W_{V}$, such that $a \notin D, a^{-1} \notin D, b \notin C, b^{-1} \notin C$, and at least one of (a) $C \cap D=\phi$ or (b) $b \in \ell k_{L}(a)$ holds.

From ($R 4$), no relations arise. Indeed, in our case $C_{0}=\emptyset$ so we cannot have $b^{-1} \in C_{0}$.

From ($R 5$), no relations arise (by the same argument as above).
From ($R 8$), we obtain a relation which is a direct consequence of (4.3.5) and (4.3.6). Indeed, if $E_{1}=V \backslash\left[C \cup s t_{V}(v(a))\right]$ then, from (4.3.6) $\gamma_{a}=\alpha_{C \cup E_{1}, a}=$ $\alpha_{C, a} \alpha_{E_{1}, a}$. So, from (4.3.5) $\alpha_{C, a}=\gamma_{a} \alpha_{E_{1}, a^{-1}}$.

Relation ($R 9$) will give rise to the following:

$$
\begin{equation*}
\left.\alpha_{C, a} \alpha_{V \backslash s t_{V}(b), b} \alpha_{C, a}^{-1}=\alpha_{V \backslash s t_{V}(b), b} \text { (note that } \alpha_{V \backslash s t_{\mathrm{V}}(\mathrm{~b}), \mathrm{b}}=\gamma_{\mathrm{b}}\right) \tag{4.3.8}
\end{equation*}
$$

for $\alpha_{C, a} \in W_{V}$, and $b \in L$ such that $b \notin C$, and $b^{-1} \notin C$ as $\alpha_{V \backslash s t_{V}(b), b} \in W_{V}$ by definition.

From ($R 10$), no relations arise (by the same argument as above).
We rewrite the relations (4.3.5)-(4.3.8) in the form

$$
\sigma_{k}^{\epsilon_{k}} \ldots \sigma_{1}^{\epsilon_{1}}=1
$$

where $\sigma_{1}, \ldots, \sigma_{k} \in W_{V}$ and $\epsilon_{1}, \ldots, \epsilon_{k} \in\{-1,1\}$. Let K_{2} be the 2-complex obtained from K_{1} by attaching 2-cells corresponding to the relations (4.3.5)-(4.3.8).

Note that the boundary of each of these 2-cells has the from

$$
\left(\pi \cdot W, \pi \cdot W ; \sigma_{1}\right)^{\epsilon_{1}}\left(\pi \cdot W, \pi \cdot W ; \sigma_{2}\right)^{\epsilon_{2}} \ldots\left(\pi \cdot W, \pi \cdot W ; \sigma_{k}\right)^{\epsilon_{k}}
$$

for $\pi \in \operatorname{Aut}(\Gamma)$.
Finally, relation ($R 6$) will give rise to the following:

$$
\begin{equation*}
\pi\left(\alpha_{C, a}\right) \pi^{-1} \alpha_{\pi(C), \pi(a)}^{-1}=1 \tag{4.3.9}
\end{equation*}
$$

for $\alpha_{C, a} \in W_{V}$ with $\pi \in \operatorname{Aut}(\Gamma)$. As noted above $\alpha_{\pi(C), \pi(a)} \in W_{V}$. Then K is obtained from K_{2} by attaching 2 -cells corresponding to the relations (4.3.9). Observe that the boundary of each of these 2-cells has the form

$$
\begin{aligned}
& \left(\psi \cdot W, \psi \cdot W ; \alpha_{\pi(C), \pi(a)}\right)^{-1}\left(\psi \cdot W, \pi^{-1} \psi \cdot W ; \pi\right) \\
& \quad\left(\pi^{-1} \psi \cdot W, \pi^{-1} \psi \cdot W ; \alpha_{C, a}\right)\left(\pi^{-1} \psi \cdot W, \psi \cdot W ; \pi\right)
\end{aligned}
$$

for $\psi \in \operatorname{Aut}(\Gamma)$.
It remains to show that $\pi_{1}(K, W)=\operatorname{Conj}_{V}=\left\langle W_{V} \mid \Re\right\rangle$.
Let T be a maximal tree in the 1 -skeleton $K^{(1)}$ of K. Note that T is in fact a maximal tree in the 1-skeleton $C^{(1)}$ of C (i.e., the Cayley graph of $\operatorname{Aut}(\Gamma)$. We compute a presentation of $\pi_{1}(K, W)$ using T. For every vertex V in K, there exists
a unique reduced path p_{V} from W to V in T. To each edge $\left(V_{1}, V_{2} ; \pi\right)$ of K, we associate the element $\pi_{1}(K, W)$ represented by the loop $p_{V_{1}}\left(V_{1}, V_{2} ; \pi\right) p_{V_{2}}^{-1}$. We again denote this by $\left(V_{1}, V_{2} ; \pi\right)$. Evidently these elements generate $\pi_{1}(K, W)$.
Now, since M is simply connected, we have

$$
\begin{equation*}
(\pi \cdot W, \psi \pi \cdot W ; \psi)=1\left(\text { in } \pi_{1}(K, W)\right) \tag{4.3.10}
\end{equation*}
$$

for all $\pi, \psi \in \operatorname{Aut}(\Gamma)$.
Let \mathcal{P} be the set of combinatorial paths in the 1 -skeleton $K^{(1)}$ of K. We define a map $\widehat{\varphi}: \mathcal{P} \rightarrow \operatorname{Aut}\left(G_{\Gamma}\right)$ as follows. For an edge $e=\left(V_{1}, V_{2} ; \pi\right)$, we set $\widehat{\varphi}(e)=\pi$, and for a path $p=e_{k}^{\epsilon_{k}} \ldots e_{1}^{\epsilon_{1}}$, we set $\widehat{\varphi(p)}=\widehat{\varphi}\left(e_{k}\right)^{\epsilon_{k}} \ldots \widehat{\varphi}\left(e_{1}\right)^{\epsilon_{1}}$. Clearly, if p_{1} and p_{2} are loops at W such that $p_{1} \sim p_{2}$, then $\widehat{\varphi}\left(p_{1}\right)=\widehat{\varphi}\left(p_{2}\right)$. Hence, $\widehat{\varphi}$ induces a map $\varphi: \pi_{1}(K, W) \rightarrow \operatorname{Aut}\left(G_{\Gamma}\right)$. Then from (4.3.9) and (4.3.10) it is easily seen that φ is a homomorphism. So φ maps $\pi_{1}(K, W)$ to $C o n j_{V}$. It follows immediately from the construction of K that $\varphi: \pi_{1}(K, W) \rightarrow C o n j_{V}$ is surjective. Thus, it suffices to show that φ is injective. Let p be a loop at W such that $\varphi(p)=1$. We have to show that $p \sim 1$. Write $p=e_{k}^{\epsilon_{k}} \ldots e_{1}^{\epsilon_{1}}$, where $k \geq 1$ and $\epsilon_{i} \in\{-1,1\}$ for all $i \in\{1, \ldots, k\}$. Using the 2 -cells arising from (4.3.5) and the fact that $\operatorname{Aut}(\Gamma)^{-1}=\operatorname{Aut}(\Gamma)$, we can restrict our attention to the case where $p=e_{k} \ldots e_{1}$. Set $\pi_{i}=\varphi\left(e_{i}\right)$ for all $i \in\{1, \ldots, k\}$. Note that $\pi_{i} \in W_{V} \cup \operatorname{Aut}(\Gamma) \subset \Omega_{\ell}$ for all $i \in\{1, \ldots, k\}$.

Let Z be a tuple containing each conjugacy class of length 2 of G_{Γ}, each appearing once. We prove the following:

Claim There exist $e_{\ell}^{\prime} \ldots e_{1}^{\prime}$ such that $p \sim e_{\ell}^{\prime} \ldots e_{1}^{\prime}$ and if we set $\pi_{i}^{\prime}=\varphi\left(e_{i}^{\prime}\right)$ for all $i \in\{1, \ldots, \ell\}$, then $\pi_{i}^{\prime} \in \operatorname{Aut}(\Gamma)$ or $\pi_{i}^{\prime} \in W_{V} \cap \operatorname{Inn}\left(G_{\Gamma}\right)$ for each $i \in\{1, \ldots, \ell\}$.

First, we examine the case where $\pi_{k} \ldots \pi_{1}$ is peak-reduced with respect to Z. We claim that the sequence

$$
|Z|,\left|\pi_{1} \cdot Z\right|,\left|\pi_{2} \pi_{1} \cdot Z\right|, \ldots,\left|\pi_{k-1} \ldots \pi_{1} \cdot Z\right|,\left|\pi_{k} \ldots \pi_{1} \cdot Z\right|=|Z|
$$

is a constant sequence. Suppose the contrary. By Lemma 2.6.4, $|Z|$ is the least element of the set $\left\{|\pi \cdot Z| \mid \pi \in\left\langle\Omega_{\ell}\right\rangle\right.$. Hence we can find $i \in\{1, \ldots, k-1\}$ such that we have

$$
\left|\pi_{i-1} \ldots \pi_{1} \cdot Z\right| \leq\left|\pi_{i} \ldots \pi_{1} \cdot Z\right|
$$

$$
\left|\pi_{i+1} \ldots \pi_{1} \cdot Z\right| \leq\left|\pi_{i} \ldots \pi_{1} \cdot Z\right|
$$

and at least one of these inequalities is strict, which contradicts the fact that the product $\pi_{k} \ldots \pi_{1}$ is peak-reduced. Therefore we have

$$
\left|\pi_{i} \ldots \pi_{1} \cdot Z\right|=|Z|
$$

for all indices $i \in\{1, \ldots, k\}$. We argue by induction on $i \in\{1, \ldots, k\}$ to prove that $\pi_{i} \ldots \pi_{1} \cdot Z$ is a tuple containing each conjugacy class of length 2 of G_{Γ}, each appearing once. The result holds for $i=0$ by assumption. Suppose that $i \geq 1$, and that the result holds for $i-1$. Observe that $\operatorname{Aut}(\Gamma)$ does not change the length of a conjugacy class. Thus, we can assume that π_{i} is in W_{V}. Since $\left|\pi_{i} \pi_{i-1} \ldots \pi_{1} \cdot Z\right|=\mid$ $\pi_{i-1} \ldots \pi_{1} \cdot Z \mid, \pi_{i}$ is trivial, or an inner automorphism by Lemma 2.6.4 Thus, the result holds for i. In this case, p has already the desired form.

We now turn to prove the claim. We define

$$
h_{p}=\max \left\{\left|\pi_{i} \ldots \pi_{1} \cdot Z\right| \mid i \in\{0, \ldots, k\}\right\}
$$

and

$$
N_{p}=\mid\left\{i \mid i \in\{0, \ldots, k\} \text { and }\left|\pi_{i} \ldots \pi_{1} \cdot Z\right|=h_{p}\right\} \mid .
$$

We use induction on pairs $\left(h_{p}, N_{p}\right)$ with left lexicographic order. The base of induction is $|Z|$: the smallest possible value for h_{p} by Lemma 2.6.4. If $h_{p}=|Z|$, then the product $\pi_{k} \ldots \pi_{1}$ is peak-reduced and we are done. Thus, we can assume that $h_{p}>|Z|$ and that the result has been proved for all loops p^{\prime} with $h_{p^{\prime}}<h_{p}$. Let $i \in\{1, \ldots, k\}$ be such that π_{i} is a peak of height h_{p}. An examination of the proof of Lemma 4.3.14 shows that $e_{i+1} e_{i} \sim f_{j} \ldots f_{1}$ such that, if we set $\psi_{k}=\varphi\left(f_{k}\right)$ for all $k \in\{1, \ldots, j\}$, then

$$
\begin{equation*}
\left|\psi_{k} \ldots \psi_{1} \pi_{i-1} \ldots \pi_{1} \cdot Z\right|<\left|\pi_{i} \pi_{i-1} \ldots \pi_{1} \cdot Z\right| \tag{4.3.11}
\end{equation*}
$$

for all $k \in\{1, \ldots, j-1\}$. Therefore, we get

$$
p \sim e_{k} \ldots e_{i+2} f_{j} \ldots f_{1} e_{i-1} \ldots e_{1}=p^{\prime}
$$

and a new product $\pi_{k} \ldots \pi_{i+2} \psi_{j} \ldots \psi_{1} \pi_{i-1} \ldots \pi_{1}$. We argue by induction on N_{p}. If $N_{p}=1$, then (4.3.11) implies that $h_{p^{\prime}}<h_{p}$ and we can apply the induction
hypothesis on h_{p}. If $N_{p} \geq 2$ then (4.3.11) implies that $h_{p}=h_{p^{\prime}}$ and $N_{p^{\prime}}<N_{p}$ and we can apply the induction hypothesis on N_{p}. This proves the claim.

Hence, using the 2-cells arising from the relations (4.3.9), we obtain

$$
p \sim h_{s} \ldots h_{1} g_{r} \ldots g_{1}
$$

where, if we set

$$
\gamma_{i}=\varphi\left(g_{i}\right) \text { for all } i \in\{1, \ldots, r\} \text { and } \delta_{j}=\varphi\left(h_{j}\right) \text { for all } j \in\{1, \ldots, s\}
$$

then $\delta_{i} \in \operatorname{Aut}(\Gamma)$ for all $i \in\{1, \ldots, s\}$ and $\gamma_{j} \in W_{V} \cap \operatorname{Inn}\left(G_{\Gamma}\right)$ for all $j \in$ $\{1, \ldots, r\}$. Using relation (4.3.7), we obtain $p \sim g_{r} \ldots g_{1}$. Set $\mathcal{Z}=\bigcap_{v \in V} s t(v)$. It follows from Servatius' Centralizer Theorem (see [69]) that the center $Z\left(G_{\Gamma}\right)$ of G_{Γ} is the special subgroup of G_{Γ} generated by \mathcal{Z}. Let Γ^{\prime} be the full subgraph of Γ spanned by $V \backslash \mathcal{Z}$. We have

$$
G_{\Gamma^{\prime}} \simeq \operatorname{Inn}\left(G_{\Gamma}\right),
$$

where the isomorphism is given by $v \mapsto w_{v}$ (see, for example, Lemma 5.3 of [69]). Write

$$
\gamma_{i}=\alpha_{V \backslash s t_{L}\left(c_{i}\right), c_{i}}
$$

where $c_{i} \in V \backslash \mathcal{Z} \cup(V \backslash \mathcal{Z})^{-1}(i \in\{1, \ldots, r\})$. Since $\gamma_{r} \ldots \gamma_{1}=1$ (in $\operatorname{Inn}\left(G_{\Gamma}\right)$), we have $c_{r} \ldots c_{1}=1$ (in $G_{\Gamma^{\prime}}$). Therefore $c_{r} \ldots c_{1}$ is a product of conjugates of defining relators of G_{Γ}. Using the 2-cells corresponding to the relations (4.3.5) and (4.3.7)(b), we deduce that $p \sim 1$. We conclude that φ is injective, and thus

$$
\operatorname{Conj}_{V}=\pi_{1}(K, W)
$$

Now, using the 2-cells arising from the relations (4.3.9) (with $\pi=\psi$), we obtain

$$
\begin{equation*}
\left(\pi \cdot W, \pi \cdot W ; \alpha_{\pi(C), \pi(a)}\right)=\left(\pi \cdot W, W ; \pi^{-1}\right)\left(W, W ; \alpha_{C, a}\right)(W, \pi \cdot W ; \pi) \tag{4.3.12}
\end{equation*}
$$

Note that, using (4.3.10) with π^{-1} instead of π and $\psi=\pi$ then $\left(\pi \cdot W, W ; \pi^{-1}\right)=$
$\left(\pi^{-1} \cdot W, W ; \pi\right)=\left(\pi^{-1} \cdot W, W ; \psi\right)=1$, and also with $\pi=1$ and $\psi=\pi$ then $(W, \pi \cdot W ; \pi)=1$. Thus (4.3.12) becomes

$$
\begin{equation*}
\left(\pi \cdot W, \pi \cdot W ; \alpha_{\pi(C), \pi(a)}\right)=\left(W, W ; \alpha_{C, a}\right), \tag{4.3.13}
\end{equation*}
$$

for all $\pi \in \operatorname{Aut}(\Gamma)$, and $\alpha_{C, a} \in W_{V}$. It then follows that Conj_{V} is generated by the $\left(W, W ; \alpha_{C, a}\right)$, for $\alpha_{C, a} \in W_{V}$. We identify ($W, W ; \alpha_{C, a}$) with $\alpha_{C, a}$ for all $\alpha_{C, a} \in W_{V}$. Any relation in $\operatorname{Conj}_{V}=\pi_{1}(K, W)$ will be a product of conjugates of boundary labels of 2-cells of K. Then, using relation (4.3.13) and identifying ($W, W ; \alpha_{C, a}$) with $\alpha_{C, a}$, we see that the relations (4.3.5)-(4.3.8) above are equivalent to those of R. We have shown that $C o n j_{V}$ has the presentation $\left\langle W_{V} \mid \Re\right\rangle$.

Example 4.3.0.3

We will find a presentation for a subgroup Conj_{V} of the automorphism group $\operatorname{Aut}\left(G_{\Gamma}\right)$, that is correspond to the graph Γ of Figure 4.5.

Figure 4.5: A Graph Γ
We have that $V=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}$ the vertex list, $E=\left\{\left\{x_{1}, x_{3}\right\},\left\{x_{2}, x_{3}\right\},\left\{x_{3}, x_{4}\right\},\left\{x_{4}, x_{5}\right\},\left\{x_{4}, x_{6}\right\},\left\{x_{5}, x_{6}\right\}\right\}$ the edge list, $L=V^{-1} \cup V=\left\{x_{1}^{-1}, x_{2}^{-1}, x_{3}^{-1}, x_{4}^{-1}, x_{5}^{-1}, x_{6}^{-1}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right\}$.

1. We find the star and the link of each vertex $x \in V$ as follows:
(i) $\operatorname{st}\left(x_{1}\right)=\left\{x_{1}, x_{3}\right\}, \quad \ell k\left(x_{1}\right)=\left\{x_{3}\right\}$.
(ii) $\operatorname{st}\left(x_{2}\right)=\left\{x_{2}, x_{3}\right\}, \quad \ell k\left(x_{2}\right)=\left\{x_{3}\right\}$.
(iii) st $\left(x_{3}\right)=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, \quad \ell k\left(x_{3}\right)=\left\{x_{1}, x_{2}, x_{4}\right\}$.
(iv) $\operatorname{st}\left(x_{4}\right)=\left\{x_{3}, x_{4}, x_{5}, x_{6}\right\}, \quad \ell k\left(x_{4}\right)=\left\{x_{3}, x_{5}, x_{6}\right\}$.
(v) $\operatorname{st}\left(x_{5}\right)=\left\{x_{4}, x_{5}, x_{6}\right\}, \quad \ell k\left(x_{5}\right)=\left\{x_{4}, x_{6}\right\}$.
(vi) $\operatorname{st}\left(x_{6}\right)=\left\{x_{4}, x_{5}, x_{6}\right\}, \quad \ell k\left(x_{6}\right)=\left\{x_{4}, x_{5}\right\}$.
2. We find the equivelence classes for each vertex $x \in V$ as follows:
(i) $\left[x_{1}\right]=\left\{x_{1}, x_{2}\right\}$
(ii) $\left[x_{2}\right]=\left\{x_{1}, x_{2}\right\}$
(iii) $\left[x_{3}\right]=\left\{x_{3}\right\}$
(iv) $\left[x_{4}\right]=\left\{x_{4}\right\}$
(v) $\left[x_{5}\right]=\left\{x_{5}, x_{6}\right\}$
(vi) $\left[x_{6}\right]=\left\{x_{5}, x_{6}\right\}$
3. We find the connected components of each subgraph $\Gamma \backslash\left\{x_{i}\right\}$, where $x_{i} \in V$ and $i=1, \ldots, 6$ as follows:
(i) $\Gamma \backslash\left\{x_{1}\right\}=\left\{\left\{x_{2}, x_{2}^{-1}\right\},\left\{x_{4}, x_{5}, x_{6}, x_{4}^{-1}, x_{5}^{-1}, x_{6}^{-1}\right\}\right\}$
(ii) $\Gamma \backslash\left\{x_{2}\right\}=\left\{\left\{x_{1}, x_{1}^{-1}\right\},\left\{x_{4}, x_{5}, x_{6}, x_{4}^{-1}, x_{5}^{-1}, x_{6}^{-1}\right\}\right\}$
(iii) $\Gamma \backslash\left\{x_{3}\right\}=\left\{\left\{x_{5}, x_{6}, x_{5}^{-1}, x_{6}^{-1}\right\}\right\}$
(iv) $\Gamma \backslash\left\{x_{4}\right\}=\left\{\left\{x_{1}, x_{1}^{-1}\right\}\left\{x_{2}, x_{2}^{-1}\right\}\right\}$
(v) $\Gamma \backslash\left\{x_{5}\right\}=\left\{\left\{x_{1}, x_{2}, x_{3}, x_{1}^{-1}, x_{2}^{-1}, x_{3}^{-1}\right\}\right\}$
(vi) $\Gamma \backslash\{6\}=\left\{\left\{x_{1}, x_{2}, x_{3}, x_{1}^{-1}, x_{2}^{-1}, x_{3}^{-1}\right\}\right\}$
4. We find the minimal connected components C of each subgraph $\Gamma \backslash\left\{x_{i}\right\}$, where $x_{i} \in V$ and $i=1, \ldots, 6$, that is satisfies the condition that, for all $z \in V$ either
(a) $[z] \cap C=\phi$; or
(b) $[z] \subseteq C \cup s t(x)$
as follows:
(i) The minimal connected components of $\Gamma \backslash$ st $\left(x_{1}\right)$ are $\left\{\left\{x_{2}, x_{2}^{-1}\right\}\right.$, $\left.\left\{x_{4}, x_{5}, x_{6}, x_{4}^{-1}, x_{5}^{-1}, x_{6}^{-1}\right\}\right\}$.
(ii) The minimal connected components of $\Gamma \backslash\left\{x_{2}\right\}$ are $\left\{\left\{x_{1}, x_{1}^{-1}\right\},\left\{x_{4}\right.\right.$, $\left.\left.x_{5}, x_{6}, x_{4}^{-1}, x_{5}^{-1}, x_{6}^{-1}\right\}\right\}$.
(iii) The minimal connected components of $\Gamma \backslash\left\{x_{3}\right\}$ are $\left\{\left\{x_{5}, x_{6}, x_{5}^{-1}, x_{6}^{-1}\right\}\right\}$.
(iv) The minimal connected components of $\Gamma \backslash\left\{x_{4}\right\}$ are $\left\{\left\{x_{1}, x_{2}, x_{1}^{-1}, x_{2}^{-1}\right\}\right\}$.
(v) The minimal connected components of $\Gamma \backslash\left\{x_{5}\right\}$ are $\left\{\left\{x_{1}, x_{2}, x_{3}, x_{1}^{-1}, x_{2}^{-1}\right.\right.$, $\left.\left.x_{3}^{-1}\right\}\right\}$.
(vi) The minimal connected components of $\Gamma \backslash\left\{x_{6}\right\}$ are $\left\{\left\{x_{1}, x_{2}, x_{3}, x_{1}^{-1}, x_{2}^{-1}\right.\right.$, $\left.\left.x_{3}^{-1}\right\}\right\}$.
5. We find the union of the minimal connected components of $\Gamma \backslash\left\{x_{i}\right\}$, where $x_{i} \in V$ and $i=1, \ldots, 6$ as follows:

$$
\begin{aligned}
\bigcup_{i=1}^{6} \Gamma \backslash\left\{x_{i}\right\}=\left\{C_{1}\right. & =\left\{x_{2}, x_{2}^{-1}\right\}, C_{2}=\left\{x_{4}, x_{5}, x_{6}, x_{4}^{-1}, x_{5}^{-1}, x_{6}^{-1}\right\}, \\
C_{3} & =\left\{x_{1}, x_{1}^{-1}\right\}, C_{4}=\left\{x_{5}, x_{6}, x_{5}^{-1}, x_{6}^{-1}\right\}, \\
C_{5} & \left.=\left\{x_{1}, x_{2}, x_{1}^{-1}, x_{2}^{-1}\right\}, C_{6}=\left\{x_{1}, x_{2}, x_{3}, x_{1}^{-1}, x_{2}^{-1}, x_{3}^{-1}\right\}\right\} .
\end{aligned}
$$

6. We find the partial conjugations automorphisms $\alpha_{C, x}$, where C is satisfies the condition in statement (4) above and $x \in L$. In fact these partial conjugations automorphisms form $G e n s_{1}$ the first part of the generators of $C o n j_{V}$. So

$$
\begin{aligned}
& \text { Gens } 1=\left\{f_{1}=\alpha_{C_{1}, x_{6}^{-1}}=\left\{\left\{x_{2}, x_{2}^{-1}, x_{6}^{-1}\right\}, x_{6}^{-1}\right\},\right. \\
& f_{2}=\alpha_{C_{1}, x_{5}^{-1}}=\left\{\left\{x_{2}, x_{2}^{-1}, x_{5}^{-1}\right\}, x_{5}^{-1}\right\}, \\
& f_{3}=\alpha_{C_{1}, x_{4}^{-1}}=\left\{\left\{x_{2}, x_{2}^{-1}, x_{4}^{-1}\right\}, x_{4}^{-1}\right\}, \\
& f_{4}=\alpha_{C_{1}, x_{3}^{-1}}=\left\{\left\{x_{2}, x_{2}^{-1}, x_{3}^{-1}\right\}, x_{3}^{-1}\right\}, \\
& f_{5}=\alpha_{C_{1}, x_{1}^{-1}}=\left\{\left\{x_{2}, x_{2}^{-1}, x_{1}^{-1}\right\}, x_{1}^{-1}\right\}, \\
& f_{6}=\alpha_{C_{1}, x_{1}}=\left\{\left\{x_{2}, x_{2}^{-1}, x_{1}\right\}, x_{1}\right\}, \\
& f_{7}=\alpha_{C_{1}, x_{3}}=\left\{\left\{x_{2}, x_{2}^{-1}, x_{3}\right\}, x_{3}\right\}, \\
& f_{8}=\alpha_{C_{1}, x_{4}}=\left\{\left\{x_{2}, x_{2}^{-1}, x_{4}\right\}, x_{4}\right\}, \\
& f_{9}=\alpha_{C_{1}, x_{5}}=\left\{\left\{x_{2}, x_{2}^{-1}, x_{5}\right\}, x_{5}\right\}, \\
& f_{10}=\alpha_{C_{1}, x_{6}}=\left\{\left\{x_{2}, x_{2}^{-1}, x_{6}\right\}, x_{6}\right\}, \\
& f_{11}=\alpha_{C_{2}, x_{3}^{-1}}=\left\{\left\{x_{4}, x_{5}, x_{6}, x_{4}^{-1}, x_{5}^{-1}, x_{6}^{-1}, x_{3}^{-1}\right\}, x_{3}^{-1}\right\}, \\
& f_{12}=\alpha_{C_{2}, x_{2}^{-1}}=\left\{\left\{x_{4}, x_{5}, x_{6}, x_{4}^{-1}, x_{5}^{-1}, x_{6}^{-1}, x_{2}^{-1}\right\}, x_{2}^{-1}\right\}, \\
& f_{13}=\alpha_{C_{2}, x_{1}^{-1}}=\left\{\left\{x_{4}, x_{5}, x_{6}, x_{4}^{-1}, x_{5}^{-1}, x_{6}^{-1}, x_{1}^{-1}\right\}, x_{1}^{-1}\right\}, \\
& f_{14}=\alpha_{C_{1}, x_{1}}=\left\{\left\{x_{4}, x_{5}, x_{6}, x_{4}^{-1}, x_{5}^{-1}, x_{6}^{-1}, x_{1}\right\}, x_{1}\right\}, \\
& f_{15}=\alpha_{C_{1}, x_{2}}=\left\{\left\{x_{4}, x_{5}, x_{6}, x_{4}^{-1}, x_{5}^{-1}, x_{6}^{-1}, x_{2}\right\}, x_{2}\right\}, \\
& f_{16}=\alpha_{C_{1}, x_{3}}=\left\{\left\{x_{4}, x_{5}, x_{6}, x_{4}^{-1}, x_{5}^{-1}, x_{6}^{-1}, x_{3}\right\}, x_{3}\right\}, \\
& f_{17}=\alpha_{C_{3}, x_{6}^{-1}}=\left\{\left\{x_{1}, x_{1}^{-1}, x_{6}^{-1}\right\}, x_{6}^{-1}\right\},
\end{aligned}
$$

$$
\begin{aligned}
& f_{18}=\alpha_{C_{3}, x_{5}}=\left\{\left\{x_{1}, x_{1}^{-1}, x_{5}^{-1}\right\}, x_{5}^{-1}\right\}, \\
& f_{19}=\alpha_{C_{3}, x_{4}^{-1}}=\left\{\left\{x_{1}, x_{1}^{-1}, x_{4}^{-1}\right\}, x_{4}^{-1}\right\}, \\
& f_{20}=\alpha_{C_{3}, x_{3}^{-1}}=\left\{\left\{x_{1}, x_{1}^{-1}, x_{3}^{-1}\right\}, x_{3}^{-1}\right\}, \\
& f_{21}=\alpha_{C_{3}, x_{2}^{-1}}=\left\{\left\{x_{1}, x_{1}^{-1}, x_{2}^{-1}\right\}, x_{2}^{-1}\right\}, \\
& f_{22}=\alpha_{C_{3}, x_{2}}=\left\{\left\{x_{1}, x_{1}^{-1}, x_{2}\right\}, x_{2}\right\}, \\
& f_{23}=\alpha_{C_{3}, x_{3}}=\left\{\left\{x_{1}, x_{1}^{-1}, x_{3}\right\}, x_{3}\right\}, \\
& f_{24}=\alpha_{C_{3}, x_{4}}=\left\{\left\{x_{1}, x_{1}^{-1}, x_{4}\right\}, x_{4}\right\}, \\
& f_{25}=\alpha_{C_{3}, x_{5}}=\left\{\left\{x_{1}, x_{1}^{-1}, x_{5}\right\}, x_{5}\right\}, \\
& f_{26}=\alpha_{C_{3}}, x_{6}=\left\{\left\{x_{1}, x_{1}^{-1}, x_{6}\right\}, x_{6}\right\}, \\
& f_{27}=\alpha_{C_{4}}, x_{4}^{-1}=\left\{\left\{x_{5}, x_{6}, x_{5}^{-1}, x_{6}^{-1}, x_{4}^{-1}\right\}, x_{4}^{-1}\right\}, \\
& f_{28}=\alpha_{C_{4}}, x_{3}=\left\{\left\{x_{5}, x_{6}, x_{5}^{-1}, x_{6}^{-1}, x_{3}^{-1}\right\}, x_{3}^{-1}\right\}, \\
& f_{29}=\alpha_{C_{4}}, x_{2}^{-1}=\left\{\left\{x_{5}, x_{6}, x_{5}^{-1}, x_{6}^{-1}, x_{2}^{-1}\right\}, x_{2}^{-1}\right\}, \\
& f_{30}=\alpha_{C_{4}}, x_{1}^{-1}=\left\{\left\{x_{5}, x_{6}, x_{5}^{-1}, x_{6}^{-1}, x_{1}^{-1}\right\}, x_{1}^{-1}\right\}, \\
& f_{31}=\alpha_{C_{4}}, x_{1}=\left\{\left\{x_{5}, x_{6}, x_{5}^{-1}, x_{6}^{-1}, x_{1}\right\}, x_{1}\right\}, \\
& f_{32}=\alpha_{C_{4}}, x_{2}=\left\{\left\{x_{5}, x_{6}, x_{5}^{-1}, x_{6}^{-1}, x_{2}\right\}, x_{2}\right\}, \\
& f_{33}=\alpha_{C_{4}}, x_{3}=\left\{\left\{x_{5}, x_{6}, x_{5}^{-1}, x_{6}^{-1}, x_{3}\right\}, x_{3}\right\}, \\
& f_{34}=\alpha_{C_{4}}, x_{4}=\left\{\left\{x_{5}, x_{6}, x_{5}^{-1}, x_{6}^{-1}, x_{4}\right\}, x_{4}\right\}, \\
& f_{35}=\alpha_{C_{5}}, x_{6}^{-1}=\left\{\left\{x_{1}, x_{2}, x_{1}^{-1}, x_{2}^{-1}, x_{6}^{-1}\right\}, x_{6}^{-1}\right\}, \\
& f_{36}=\alpha_{C_{5}}, x_{5}^{-1}=\left\{\left\{x_{1}, x_{2}, x_{1}^{-1}, x_{2}^{-1}, x_{5}^{-1}\right\}, x_{5}^{-1}\right\}, \\
& f_{37}=\alpha_{C_{5}}, x_{4}^{-1}=\left\{\left\{x_{1}, x_{2}, x_{1}^{-1}, x_{2}^{-1}, x_{4}^{-1}\right\}, x_{4}^{-1}\right\}, \\
& f_{38}=\alpha_{C_{5}}, x_{3}^{-1}=\left\{\left\{x_{1}, x_{2}, x_{1}^{-1}, x_{2}^{-1}, x_{3}^{-1}\right\}, x_{3}^{-1}\right\}, \\
& f_{39}=\alpha_{C_{5}}, x_{3}=\left\{\left\{x_{1}, x_{2}, x_{1}^{-1}, x_{2}^{-1}, x_{3}\right\}, x_{3}\right\}, \\
& f_{40}=\alpha_{C_{5}}, x_{4}=\left\{\left\{x_{1}, x_{2}, x_{1}^{-1}, x_{2}^{-1}, x_{4}\right\}, x_{4}\right\}, \\
& f_{41}=\alpha_{C_{5}}, x_{5}=\left\{\left\{x_{1}, x_{2}, x_{1}^{-1}, x_{2}^{-1}, x_{5}\right\}, x_{5}\right\}, \\
& f_{42}=\alpha_{C_{5}}, x_{6}=\left\{\left\{x_{1}, x_{2}, x_{1}^{-1}, x_{2}^{-1}, x_{6}\right\}, x_{6}\right\}, \\
& f_{43}=\alpha_{C_{6}}, x_{6}^{-1}=\left\{\left\{x_{1}, x_{2}, x_{3}, x_{1}^{-1}, x_{2}^{-1}, x_{3}^{-1}, x_{6}^{-1}\right\}, x_{6}^{-1}\right\}, \\
& f_{44}=\alpha_{C_{6}}, x_{5}^{-1}=\left\{\left\{x_{1}, x_{2}, x_{3}, x_{1}^{-1}, x_{2}^{-1}, x_{3}^{-1}, x_{5}^{-1}\right\}, x_{5}^{-1}\right\}, \\
& f_{45}=\alpha_{C_{6}}, x_{4}^{-1}=\left\{\left\{x_{1}, x_{2}, x_{3}, x_{1}^{-1}, x_{2}^{-1}, x_{3}^{-1}, x_{4}^{-1}\right\}, x_{4}^{-1}\right\},
\end{aligned}
$$

$$
\begin{aligned}
& f_{46}=\alpha_{C_{6}}, x_{4}=\left\{\left\{x_{1}, x_{2}, x_{3}, x_{1}^{-1}, x_{2}^{-1}, x_{3}^{-1}, x_{4}\right\}, x_{4}\right\}, \\
& f_{47}=\alpha_{C_{6}}, x_{5}=\left\{\left\{x_{1}, x_{2}, x_{3}, x_{1}^{-1}, x_{2}^{-1}, x_{3}^{-1}, x_{5}\right\}, x_{5}\right\} \\
& \left.f_{48}=\alpha_{C_{6}}, x_{6}=\left\{\left\{x_{1}, x_{2}, x_{3}, x_{1}^{-1}, x_{2}^{-1}, x_{3}^{-1}, x_{6}\right\}, x_{6}\right\}\right\} .
\end{aligned}
$$

7. We find the inner automorphisms $\alpha_{C, x}$, where C is satisfies the condition in statement (4) above and $x \in L$. In fact these inner automorphisms which are also partial conjugations automorphisms form Gens $_{2}$ the second part of the generators of Conj $_{V}$.

$$
\begin{aligned}
& \text { Gens }_{2}=\left\{w_{1}=\left\{\left\{x_{6}^{-1}, x_{5}^{-1}, x_{4}^{-1}, x_{2}^{-1}, x_{1}^{-1}, x_{2}, x_{4}, x_{5}, x_{6}\right\}, x_{1}^{-1}\right\},\right. \\
& w_{2}=\left\{\left\{x_{6}^{-1}, x_{5}^{-1}, x_{4}^{-1}, x_{2}^{-1}, x_{1}, x_{2}, x_{4}, x_{5}, x_{6}\right\}, x_{1}\right\}, \\
& w_{3}=\left\{\left\{x_{6}^{-1}, x_{5}^{-1}, x_{4}^{-1}, x_{2}^{-1}, x_{1}^{-1}, x_{1}, x_{4}, x_{5}, x_{6}\right\}, x_{2}^{-1}\right\}, \\
& w_{4}=\left\{\left\{x_{6}^{-1}, x_{5}^{-1}, x_{4}^{-1}, x_{2}^{-1}, x_{1}^{-1}, x_{2}, x_{4}, x_{5}, x_{6}\right\}, x_{1}^{-1}\right\}, \\
& w_{5}=\left\{\left\{x_{6}^{-1}, x_{5}^{-1}, x_{4}^{-1}, x_{2}^{-1}, x_{1}, x_{2}, x_{4}, x_{5}, x_{6}\right\}, x_{1}\right\}, \\
& w_{6}=\left\{\left\{x_{6}^{-1}, x_{5}^{-1}, x_{4}^{-1}, x_{1}^{-1}, x_{1}, x_{2}, x_{4}, x_{5}, x_{6}\right\}, x_{2}\right\}, \\
& w_{7}=\left\{\left\{x_{6}^{-1}, x_{5}^{-1}, x_{4}^{-1}, x_{2}^{-1}, x_{1}^{-1}, x_{1}, x_{4}, x_{5}, x_{6}\right\}, x_{2}^{-1}\right\}, \\
& w_{8}=\left\{\left\{x_{6}^{-1}, x_{5}^{-1}, x_{4}^{-1}, x_{1}^{-1}, x_{1}, x_{2}, x_{4}, x_{5}, x_{6}\right\}, x_{2}\right\}, \\
& w_{9}=\left\{\left\{x_{6}^{-1}, x_{5}^{-1}, x_{4}^{-1}, x_{2}^{-1}, x_{1}^{-1}, x_{1}, x_{4}, x_{5}, x_{6}\right\}, x_{2}^{-1}\right\}, \\
& w_{10}=\left\{\left\{x_{6}^{-1}, x_{5}^{-1}, x_{4}^{-1}, x_{2}^{-1}, x_{1}^{-1}, x_{1}, x_{4}, x_{5}, x_{6}\right\}, x_{1}^{-1}\right\} \text {, } \\
& w_{11}=\left\{\left\{x_{6}^{-1}, x_{5}^{-1}, x_{4}^{-1}, x_{2}^{-1}, x_{1}, x_{2}, x_{4}, x_{5}, x_{6}\right\}, x_{1}\right\}, \\
& \left.w_{12}=\left\{\left\{x_{6}^{-1}, x_{5}^{-1}, x_{4}^{-1}, x_{1}^{-1}, x_{1}, x_{2}, x_{4}, x_{5}, x_{6}\right\}, x_{2}\right\}\right\}
\end{aligned}
$$

8. We find Gens the set of the generators of the subgroup $C o n j_{V}$ as follows:

$$
\begin{aligned}
\text { Gens }= & G e n s_{1} \cup G e n s_{2} \\
= & \left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}, f_{7}, f_{8}, f_{9}, f_{10}, f_{11}, f_{12}, f_{13}, f_{14}, f_{15}, f_{16}, f_{17}, f_{18}, f_{19},\right. \\
& f_{20}, f_{21}, f_{22}, f_{23}, f_{24}, f_{25}, f_{26}, f_{27}, f_{28}, f_{29}, f_{30}, f_{31}, f_{32}, f_{33}, f_{34}, f_{35}, f_{36}, \\
& f_{37}, f_{38}, f_{39}, f_{40}, f_{41}, f_{42}, f_{43}, f_{44}, f_{45}, f_{46}, f_{47}, f_{48}, w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, \\
& \left.w_{6}, w_{7}, w_{8}, w_{9}, w_{10}, w_{11}, w_{12}\right\} .
\end{aligned}
$$

9. We find Rels the set of the relations according to Theorem 4.3.15 as follows: Rels $1=\left\{f_{1} * f_{10}, f_{2} * f_{9}, f_{3} * f_{8}, f_{4} * f_{7}, f_{5} * f_{6}, f_{6} * f_{5}, f_{7} * f_{4}, f_{8} * f_{3}, f_{9} * f_{2}, f_{10} *\right.$ $f_{1}, f_{11} * f_{16}, f_{12} * f_{15}, f_{13} * f_{14}, f_{14} * f_{13}, f_{15} * f_{12}, f_{16} * f_{11}, f_{17} * f_{26}, f_{18} * f_{25}, f_{19} *$
$f_{24}, f_{20} * f_{23}, f_{21} * f_{22}, f_{22} * f_{21}, f_{23} * f_{20}, f_{24} * f_{19}, f_{25} * f_{18}, f_{26} * f_{17}, f_{27} * f_{34}, f_{28} *$ $f_{33}, f_{29} * f_{32}, f_{30} * f_{31}, f_{31} * f_{30}, f_{32} * f_{29}, f_{33} * f_{28}, f_{34} * f_{27}, f_{35} * f_{42}, f_{36} * f_{41}, f_{37} *$ $f_{40}, f_{38} * f_{39}, f_{39} * f_{38}, f_{40} * f_{37}, f_{41} * f_{36}, f_{42} * f_{35}, f_{43} * f_{48}, f_{44} * f_{47}, f_{45} * f_{46}, f_{46} *$ $\left.f_{45}, f_{47} * f_{44}, f_{48} * f_{43}\right\}$.

Rels2 $=\left\{f_{1} * f_{17} * f_{42}, f_{2} * f_{18} * f_{41}, f_{3} * f_{19} * f_{40}, f_{3} * f_{27} * f_{8}, f_{4} * f_{11} * f_{33}, f_{4} *\right.$ $f_{28} * f_{33}, f_{7} * f_{16} * f_{28}, f_{7} * f_{33} * f_{28}, f_{8} * f_{24} * f_{37}, f_{8} * f_{34} * f_{3}, f_{9} * f_{25} * f_{36}, f_{10} *$ $f_{26} * f_{35}, f_{11} * f_{20} * f_{33}, f_{11} * f_{38} * f_{33}, f_{16} * f_{23} * f_{28}, f_{16} * f_{39} * f_{28}, f_{19} * f_{27} *$ $f_{24}, f_{20} * f_{28} * f_{33}, f_{23} * f_{33} * f_{28}, f_{24} * f_{34} * f_{19}, f_{27} * f_{37} * f_{40}, f_{27} * f_{45} * f_{40}, f_{28} *$ $\left.f_{38} * f_{33}, f_{33} * f_{39} * f_{28}, f_{34} * f_{40} * f_{37}, f_{34} * f_{46} * f_{37}\right\}$.

Rels3 $=\left\{f_{1} * f_{2} * f_{10} * f_{9}, f_{1} * f_{3} * f_{10} * f_{8}, f_{1} * f_{8} * f_{10} * f_{3}, f_{1} * f_{9} * f_{10} * f_{2}, f_{1} * f_{18} * f_{26} *\right.$ $f_{9}, f_{1} * f_{19} * f_{26} * f_{8}, f_{1} * f_{20} * f_{26} * f_{7}, f_{1} * f_{23} * f_{26} * f_{4}, f_{1} * f_{24} * f_{26} * f_{3}, f_{1} * f_{25} * f_{26} *$ $f_{2}, f_{1} * f_{36} * f_{42} * f_{9}, f_{1} * f_{37} * f_{42} * f_{8}, f_{1} * f_{40} * f_{42} * f_{3}, f_{1} * f_{41} * f_{42} * f_{2}, f_{1} * f_{44} * f_{48} *$ $f_{9}, f_{1} * f_{45} * f_{48} * f_{8}, f_{1} * f_{46} * f_{48} * f_{3}, f_{1} * f_{47} * f_{48} * f_{2}, f_{2} * f_{3} * f_{9} * f_{8}, f_{2} * f_{8} * f_{9} * f_{3}, f_{2} *$ $f_{10} * f_{9} * f_{1}, f_{2} * f_{17} * f_{25} * f_{10}, f_{2} * f_{19} * f_{25} * f_{8}, f_{2} * f_{20} * f_{25} * f_{7}, f_{2} * f_{23} * f_{25} * f_{4}, f_{2} * f_{24} *$ $f_{25} * f_{3}, f_{2} * f_{26} * f_{25} * f_{1}, f_{2} * f_{35} * f_{41} * f_{10}, f_{2} * f_{37} * f_{41} * f_{8}, f_{2} * f_{40} * f_{41} * f_{3}, f_{2} * f_{42} *$ $f_{41} * f_{1}, f_{2} * f_{43} * f_{47} * f_{10}, f_{2} * f_{45} * f_{47} * f_{8}, f_{2} * f_{46} * f_{47} * f_{3}, f_{2} * f_{48} * f_{47} * f_{1}, f_{3} * f_{4} * f_{8} *$ $f_{7}, f_{3} * f_{7} * f_{8} * f_{4}, f_{3} * f_{9} * f_{8} * f_{2}, f_{3} * f_{10} * f_{8} * f_{1}, f_{3} * f_{17} * f_{24} * f_{10}, f_{3} * f_{18} * f_{24} * f_{9}, f_{3} *$ $f_{20} * f_{24} * f_{7}, f_{3} * f_{23} * f_{24} * f_{4}, f_{3} * f_{25} * f_{24} * f_{2}, f_{3} * f_{26} * f_{24} * f_{1}, f_{3} * f_{28} * f_{34} * f_{7}, f_{3} * f_{30} *$ $f_{34} * f_{6}, f_{3} * f_{31} * f_{34} * f_{5}, f_{3} * f_{33} * f_{34} * f_{4}, f_{3} * f_{35} * f_{40} * f_{10}, f_{3} * f_{36} * f_{40} * f_{9}, f_{3} * f_{38} * f_{40} *$ $f_{7}, f_{3} * f_{39} * f_{40} * f_{4}, f_{3} * f_{41} * f_{40} * f_{2}, f_{3} * f_{42} * f_{40} * f_{1}, f_{3} * f_{43} * f_{46} * f_{10}, f_{3} * f_{44} * f_{46} *$ $f_{9}, f_{3} * f_{47} * f_{46} * f_{2}, f_{3} * f_{48} * f_{46} * f_{1}, f_{4} * f_{5} * f_{7} * f_{6}, f_{4} * f_{6} * f_{7} * f_{5}, f_{4} * f_{8} * f_{7} * f_{3}, f_{4} *$ $f_{13} * f_{16} * f_{6}, f_{4} * f_{14} * f_{16} * f_{5}, f_{4} * f_{17} * f_{23} * f_{10}, f_{4} * f_{18} * f_{23} * f_{9}, f_{4} * f_{19} * f_{23} * f_{8}, f_{4} *$ $f_{24} * f_{23} * f_{3}, f_{4} * f_{25} * f_{23} * f_{2}, f_{4} * f_{26} * f_{23} * f_{1}, f_{4} * f_{27} * f_{33} * f_{8}, f_{4} * f_{30} * f_{33} * f_{6}, f_{4} * f_{31} *$ $f_{33} * f_{5}, f_{4} * f_{34} * f_{33} * f_{3}, f_{4} * f_{37} * f_{39} * f_{8}, f_{4} * f_{40} * f_{39} * f_{3}, f_{5} * f_{7} * f_{6} * f_{4}, f_{5} * f_{11} * f_{14} *$ $f_{7}, f_{5} * f_{16} * f_{14} * f_{4}, f_{5} * f_{27} * f_{31} * f_{8}, f_{5} * f_{28} * f_{31} * f_{7}, f_{5} * f_{33} * f_{31} * f_{4}, f_{5} * f_{34} * f_{31} *$ $f_{3}, f_{6} * f_{7} * f_{5} * f_{4}, f_{6} * f_{11} * f_{13} * f_{7}, f_{6} * f_{16} * f_{13} * f_{4}, f_{6} * f_{27} * f_{30} * f_{8}, f_{6} * f_{28} * f_{30} * f_{7}, f_{6} *$ $f_{33} * f_{30} * f_{4}, f_{6} * f_{34} * f_{30} * f_{3}, f_{7} * f_{8} * f_{4} * f_{3}, f_{7} * f_{13} * f_{11} * f_{6}, f_{7} * f_{14} * f_{11} * f_{5}, f_{7} * f_{17} *$ $f_{20} * f_{10}, f_{7} * f_{18} * f_{20} * f_{9}, f_{7} * f_{19} * f_{20} * f_{8}, f_{7} * f_{24} * f_{20} * f_{3}, f_{7} * f_{25} * f_{20} * f_{2}, f_{7} * f_{26} *$ $f_{20} * f_{1}, f_{7} * f_{27} * f_{28} * f_{8}, f_{7} * f_{30} * f_{28} * f_{6}, f_{7} * f_{31} * f_{28} * f_{5}, f_{7} * f_{34} * f_{28} * f_{3}, f_{7} * f_{37} * f_{38} *$ $f_{8}, f_{7} * f_{40} * f_{38} * f_{3}, f_{8} * f_{9} * f_{3} * f_{2}, f_{8} * f_{10} * f_{3} * f_{1}, f_{8} * f_{17} * f_{19} * f_{10}, f_{8} * f_{18} * f_{19} * f_{9}, f_{8} *$ $f_{20} * f_{19} * f_{7}, f_{8} * f_{23} * f_{19} * f_{4}, f_{8} * f_{25} * f_{19} * f_{2}, f_{8} * f_{26} * f_{19} * f_{1}, f_{8} * f_{28} * f_{27} * f_{7}, f_{8} * f_{30} *$ $f_{27} * f_{6}, f_{8} * f_{31} * f_{27} * f_{5}, f_{8} * f_{33} * f_{27} * f_{4}, f_{8} * f_{35} * f_{37} * f_{10}, f_{8} * f_{36} * f_{37} * f_{9}, f_{8} * f_{38} *$ $f_{37} * f_{7}, f_{8} * f_{39} * f_{37} * f_{4}, f_{8} * f_{41} * f_{37} * f_{2}, f_{8} * f_{42} * f_{37} * f_{1}, f_{8} * f_{43} * f_{45} * f_{10}, f_{8} * f_{44} *$ $f_{45} * f_{9}, f_{8} * f_{47} * f_{45} * f_{2}, f_{8} * f_{48} * f_{45} * f_{1}, f_{9} * f_{10} * f_{2} * f_{1}, f_{9} * f_{17} * f_{18} * f_{10}, f_{9} * f_{19} * f_{18} *$
$f_{8}, f_{9} * f_{20} * f_{18} * f_{7}, f_{9} * f_{23} * f_{18} * f_{4}, f_{9} * f_{24} * f_{18} * f_{3}, f_{9} * f_{26} * f_{18} * f_{1}, f_{9} * f_{35} * f_{36} *$ $f_{10}, f_{9} * f_{37} * f_{36} * f_{8}, f_{9} * f_{40} * f_{36} * f_{3}, f_{9} * f_{42} * f_{36} * f_{1}, f_{9} * f_{43} * f_{44} * f_{10}, f_{9} * f_{45} * f_{44} *$ $f_{8}, f_{9} * f_{46} * f_{44} * f_{3}, f_{9} * f_{48} * f_{44} * f_{1}, f_{10} * f_{18} * f_{17} * f_{9}, f_{10} * f_{19} * f_{17} * f_{8}, f_{10} * f_{20} * f_{17} *$ $f_{7}, f_{10} * f_{23} * f_{17} * f_{4}, f_{10} * f_{24} * f_{17} * f_{3}, f_{10} * f_{25} * f_{17} * f_{2}, f_{10} * f_{36} * f_{35} * f_{9}, f_{10} * f_{37} * f_{35} *$ $f_{8}, f_{10} * f_{40} * f_{35} * f_{3}, f_{10} * f_{41} * f_{35} * f_{2}, f_{10} * f_{44} * f_{43} * f_{9}, f_{10} * f_{45} * f_{43} * f_{8}, f_{10} * f_{46} *$ $f_{43} * f_{3}, f_{10} * f_{47} * f_{43} * f_{2}, f_{11} * f_{12} * f_{16} * f_{15}, f_{11} * f_{13} * f_{16} * f_{14}, f_{11} * f_{14} * f_{16} * f_{13}, f_{11} *$ $f_{15} * f_{16} * f_{12}, f_{11} * f_{21} * f_{23} * f_{15}, f_{11} * f_{22} * f_{23} * f_{12}, f_{11} * f_{29} * f_{33} * f_{15}, f_{11} * f_{30} * f_{33} *$ $f_{14}, f_{11} * f_{31} * f_{33} * f_{13}, f_{11} * f_{32} * f_{33} * f_{12}, f_{12} * f_{16} * f_{15} * f_{11}, f_{12} * f_{20} * f_{22} * f_{16}, f_{12} *$ $f_{23} * f_{22} * f_{11}, f_{12} * f_{28} * f_{32} * f_{16}, f_{12} * f_{33} * f_{32} * f_{11}, f_{13} * f_{16} * f_{14} * f_{11}, f_{13} * f_{28} * f_{31} * f_{16}$, $f_{13} * f_{33} * f_{31} * f_{11}, f_{14} * f_{16} * f_{13} * f_{11}, f_{14} * f_{28} * f_{30} * f_{16}, f_{14} * f_{33} * f_{30} * f_{11}, f_{15} * f_{16} *$ $f_{12} * f_{11}, f_{15} * f_{20} * f_{21} * f_{16}, f_{15} * f_{23} * f_{21} * f_{11}, f_{15} * f_{28} * f_{29} * f_{16}, f_{15} * f_{33} * f_{29} * f_{11}, f_{16} *$ $f_{21} * f_{20} * f_{15}, f_{16} * f_{22} * f_{20} * f_{12}, f_{16} * f_{29} * f_{28} * f_{15}, f_{16} * f_{30} * f_{28} * f_{14}, f_{16} * f_{31} * f_{28} *$ $f_{13}, f_{16} * f_{32} * f_{28} * f_{12}, f_{17} * f_{18} * f_{26} * f_{25}, f_{17} * f_{19} * f_{26} * f_{24}, f_{17} * f_{24} * f_{26} * f_{19}, f_{17} * f_{25} *$ $f_{26} * f_{18}, f_{17} * f_{36} * f_{42} * f_{25}, f_{17} * f_{37} * f_{42} * f_{24}, f_{17} * f_{40} * f_{42} * f_{19}, f_{17} * f_{41} * f_{42} * f_{18}, f_{17} *$ $f_{44} * f_{48} * f_{25}, f_{17} * f_{45} * f_{48} * f_{24}, f_{17} * f_{46} * f_{48} * f_{19}, f_{17} * f_{47} * f_{48} * f_{18}, f_{18} * f_{19} * f_{25} *$ $f_{24}, f_{18} * f_{24} * f_{25} * f_{19}, f_{18} * f_{26} * f_{25} * f_{17}, f_{18} * f_{35} * f_{41} * f_{26}, f_{18} * f_{37} * f_{41} * f_{24}, f_{18} * f_{40} *$ $f_{41} * f_{19}, f_{18} * f_{42} * f_{41} * f_{17}, f_{18} * f_{43} * f_{47} * f_{26}, f_{18} * f_{45} * f_{47} * f_{24}, f_{18} * f_{46} * f_{47} * f_{19}, f_{18} *$ $f_{48} * f_{47} * f_{17}, f_{19} * f_{20} * f_{24} * f_{23}, f_{19} * f_{23} * f_{24} * f_{20}, f_{19} * f_{25} * f_{24} * f_{18}, f_{19} * f_{26} * f_{24} *$ $f_{17}, f_{19} * f_{28} * f_{34} * f_{23}, f_{19} * f_{29} * f_{34} * f_{22}, f_{19} * f_{32} * f_{34} * f_{21}, f_{19} * f_{33} * f_{34} * f_{20}, f_{19} * f_{35} *$ $f_{40} * f_{26}, f_{19} * f_{36} * f_{40} * f_{25}, f_{19} * f_{38} * f_{40} * f_{23}, f_{19} * f_{39} * f_{40} * f_{20}, f_{19} * f_{41} * f_{40} * f_{18}, f_{19} *$ $f_{42} * f_{40} * f_{17}, f_{19} * f_{43} * f_{46} * f_{26}, f_{19} * f_{44} * f_{46} * f_{25}, f_{19} * f_{47} * f_{46} * f_{18}, f_{19} * f_{48} * f_{46} *$ $f_{17}, f_{20} * f_{21} * f_{23} * f_{22}, f_{20} * f_{22} * f_{23} * f_{21}, f_{20} * f_{24} * f_{23} * f_{19}, f_{20} * f_{27} * f_{33} * f_{24}, f_{20} * f_{29} *$ $f_{33} * f_{22}, f_{20} * f_{32} * f_{33} * f_{21}, f_{20} * f_{34} * f_{33} * f_{19}, f_{20} * f_{37} * f_{39} * f_{24}, f_{20} * f_{40} * f_{39} * f_{19}, f_{21} *$ $f_{23} * f_{22} * f_{20}, f_{21} * f_{27} * f_{32} * f_{24}, f_{21} * f_{28} * f_{32} * f_{23}, f_{21} * f_{33} * f_{32} * f_{20}, f_{21} * f_{34} * f_{32} *$ $f_{19}, f_{22} * f_{23} * f_{21} * f_{20}, f_{22} * f_{27} * f_{29} * f_{24}, f_{22} * f_{28} * f_{29} * f_{23}, f_{22} * f_{33} * f_{29} * f_{20}, f_{22} * f_{34} *$ $f_{29} * f_{19}, f_{23} * f_{24} * f_{20} * f_{19}, f_{23} * f_{27} * f_{28} * f_{24}, f_{23} * f_{29} * f_{28} * f_{22}, f_{23} * f_{32} * f_{28} * f_{21}, f_{23} *$ $f_{34} * f_{28} * f_{19}, f_{23} * f_{37} * f_{38} * f_{24}, f_{23} * f_{40} * f_{38} * f_{19}, f_{24} * f_{25} * f_{19} * f_{18}, f_{24} * f_{26} * f_{19} *$ $f_{17}, f_{24} * f_{28} * f_{27} * f_{23}, f_{24} * f_{29} * f_{27} * f_{22}, f_{24} * f_{32} * f_{27} * f_{21}, f_{24} * f_{33} * f_{27} * f_{20}, f_{24} * f_{35} *$ $f_{37} * f_{26}, f_{24} * f_{36} * f_{37} * f_{25}, f_{24} * f_{38} * f_{37} * f_{23}, f_{24} * f_{39} * f_{37} * f_{20}, f_{24} * f_{41} * f_{37} * f_{18}, f_{24} *$ $f_{42} * f_{37} * f_{17}, f_{24} * f_{43} * f_{45} * f_{26}, f_{24} * f_{44} * f_{45} * f_{25}, f_{24} * f_{47} * f_{45} * f_{18}, f_{24} * f_{48} * f_{45} *$ $f_{17}, f_{25} * f_{26} * f_{18} * f_{17}, f_{25} * f_{35} * f_{36} * f_{26}, f_{25} * f_{37} * f_{36} * f_{24}, f_{25} * f_{40} * f_{36} * f_{19}, f_{25} * f_{42} *$ $f_{36} * f_{17}, f_{25} * f_{43} * f_{44} * f_{26}, f_{25} * f_{45} * f_{44} * f_{24}, f_{25} * f_{46} * f_{44} * f_{19}, f_{25} * f_{48} * f_{44} * f_{17}, f_{26} *$ $f_{36} * f_{35} * f_{25}, f_{26} * f_{37} * f_{35} * f_{24}, f_{26} * f_{40} * f_{35} * f_{19}, f_{26} * f_{41} * f_{35} * f_{18}, f_{26} * f_{44} * f_{43} *$ $f_{25}, f_{26} * f_{45} * f_{43} * f_{24}, f_{26} * f_{46} * f_{43} * f_{19}, f_{26} * f_{47} * f_{43} * f_{18}, f_{27} * f_{28} * f_{34} * f_{33}, f_{27} *$ $f_{33} * f_{34} * f_{28}, f_{27} * f_{38} * f_{40} * f_{33}, f_{27} * f_{39} * f_{40} * f_{28}, f_{28} * f_{29} * f_{33} * f_{32}, f_{28} * f_{30} * f_{33} * f_{31}$,
$f_{28} * f_{31} * f_{33} * f_{30}, f_{28} * f_{32} * f_{33} * f_{29}, f_{28} * f_{34} * f_{33} * f_{27}, f_{28} * f_{37} * f_{39} * f_{34}, f_{28} *$ $f_{40} * f_{39} * f_{27}, f_{29} * f_{33} * f_{32} * f_{28}, f_{30} * f_{33} * f_{31} * f_{28}, f_{31} * f_{33} * f_{30} * f_{28}, f_{32} * f_{33} *$ $f_{29} * f_{28}, f_{33} * f_{34} * f_{28} * f_{27}, f_{33} * f_{37} * f_{38} * f_{34}, f_{33} * f_{40} * f_{38} * f_{27}, f_{34} * f_{38} * f_{37} *$ $f_{33}, f_{34} * f_{39} * f_{37} * f_{28}, f_{35} * f_{36} * f_{42} * f_{41}, f_{35} * f_{37} * f_{42} * f_{40}, f_{35} * f_{40} * f_{42} * f_{37}, f_{35} *$ $f_{41} * f_{42} * f_{36}, f_{35} * f_{44} * f_{48} * f_{41}, f_{35} * f_{45} * f_{48} * f_{40}, f_{35} * f_{46} * f_{48} * f_{37}, f_{35} * f_{47} *$ $f_{48} * f_{36}, f_{36} * f_{37} * f_{41} * f_{40}, f_{36} * f_{40} * f_{41} * f_{37}, f_{36} * f_{42} * f_{41} * f_{35}, f_{36} * f_{43} * f_{47} *$ $f_{42}, f_{36} * f_{45} * f_{47} * f_{40}, f_{36} * f_{46} * f_{47} * f_{37}, f_{36} * f_{48} * f_{47} * f_{35}, f_{37} * f_{38} * f_{40} * f_{39}, f_{37} *$ $f_{39} * f_{40} * f_{38}, f_{37} * f_{41} * f_{40} * f_{36}, f_{37} * f_{42} * f_{40} * f_{35}, f_{37} * f_{43} * f_{46} * f_{42}, f_{37} * f_{44} * f_{46} *$ $f_{41}, f_{37} * f_{47} * f_{46} * f_{36}, f_{37} * f_{48} * f_{46} * f_{35}, f_{38} * f_{40} * f_{39} * f_{37}, f_{39} * f_{40} * f_{38} * f_{37}, f_{40} *$ $f_{41} * f_{37} * f_{36}, f_{40} * f_{42} * f_{37} * f_{35}, f_{40} * f_{43} * f_{45} * f_{42}, f_{40} * f_{44} * f_{45} * f_{41}, f_{40} * f_{47} * f_{45} *$ $f_{36}, f_{40} * f_{48} * f_{45} * f_{35}, f_{41} * f_{42} * f_{36} * f_{35}, f_{41} * f_{43} * f_{44} * f_{42}, f_{41} * f_{45} * f_{44} * f_{40}, f_{41} *$ $f_{46} * f_{44} * f_{37}, f_{41} * f_{48} * f_{44} * f_{35}, f_{42} * f_{44} * f_{43} * f_{41}, f_{42} * f_{45} * f_{43} * f_{40}, f_{42} * f_{46} * f_{43} *$ $f_{37}, f_{42} * f_{47} * f_{43} * f_{36}, f_{43} * f_{44} * f_{48} * f_{47}, f_{43} * f_{45} * f_{48} * f_{46}, f_{43} * f_{46} * f_{48} * f_{45}, f_{43} *$ $f_{47} * f_{48} * f_{44}, f_{44} * f_{45} * f_{47} * f_{46}, f_{44} * f_{46} * f_{47} * f_{45}, f_{44} * f_{48} * f_{47} * f_{43}, f_{45} * f_{47} * f_{46} *$ $\left.f_{44}, f_{45} * f_{48} * f_{46} * f_{43}, f_{46} * f_{47} * f_{45} * f_{44}, f_{46} * f_{48} * f_{45} * f_{43}, f_{47} * f_{48} * f_{44} * f_{43}\right\}$.

Rels4 $=\left\{w_{1} * f_{1} w_{11} * f_{10}, w_{2} * f_{1} * w_{10} * f_{10}, w_{4} * f_{1} * w_{11} * f_{10}, w_{5} * f_{1} * w_{10} * f_{10}, w_{10} *\right.$ $f_{1} * w_{11} * f_{10}, w_{11} * f_{1} * w_{10} * f_{10}, w_{1} * f_{2} * w_{11} * f_{9}, w_{2} * f_{2} * w_{10} * f_{9}, w_{4} * f_{2} * w_{11} *$ $f_{9}, w_{5} * f_{2} * w_{10} * f_{9}, w_{10} * f_{2} * w_{11} * f_{9}, w_{11} * f_{2} * w_{10} * f_{9}, w_{1} * f_{3} * w_{11} * f_{8}, w_{2} * f_{3} *$ $w_{10} * f_{8}, w_{4} * f_{3} * w_{11} * f_{8}, w_{5} * f_{3} * w_{10} * f_{8}, w_{10} * f_{3} * w_{11} * f_{8}, w_{11} * f_{3} * w_{10} * f_{8}, w_{1} * f_{4} *$ $w_{11} * f_{7}, w_{2} * f_{4} * w_{10} * f_{7}, w_{4} * f_{4} * w_{11} * f_{7}, w_{5} * f_{4} * w_{10} * f_{7}, w_{10} * f_{4} * w_{11} * f_{7}, w_{11} * f_{4} *$ $w_{10} * f_{7}, w_{1} * f_{7} * w_{11} * f_{4}, w_{2} * f_{7} * w_{10} * f_{4}, w_{4} * f_{7} * w_{11} * f_{4}, w_{5} * f_{7} * w_{10} * f_{4}, w_{10} * f_{7} *$ $w_{11} * f_{4}, w_{11} * f_{7} * w_{10} * f_{4}, w_{1} * f_{8} * w_{11} * f_{3}, w_{2} * f_{8} * w_{10} * f_{3}, w_{4} * f_{8} * w_{11} * f_{3}, w_{5} * f_{8} *$ $w_{10} * f_{3}, w_{10} * f_{8} * w_{11} * f_{3}, w_{11} * f_{8} * w_{10} * f_{3}, w_{1} * f_{9} * w_{11} * f_{2}, w_{2} * f_{9} * w_{10} * f_{2}, w_{4} * f_{9} *$ $w_{11} * f_{2}, w_{5} * f_{9} * w_{10} * f_{2}, w_{10} * f_{9} * w_{11} * f_{2}, w_{11} * f_{9} * w_{10} * f_{2}, w_{1} * f_{10} * w_{11} * f_{1}, w_{2} *$ $f_{10} * w_{10} * f_{1}, w_{4} * f_{10} * w_{11} * f_{1}, w_{5} * f_{10} * w_{10} * f_{1}, w_{10} * f_{10} * w_{11} * f_{1}, w_{11} * f_{10} * w_{10} *$ $f_{1}, w_{1} * f_{11} * w_{11} * f_{16}, w_{2} * f_{11} * w_{10} * f_{16}, w_{3} * f_{11} * w_{12} * f_{16}, w_{4} * f_{11} * w_{11} * f_{16}, w_{5} *$ $f_{11} * w_{10} * f_{16}, w_{6} * f_{11} * w_{9} * f_{16}, w_{7} * f_{11} * w_{12} * f_{16}, w_{8} * f_{11} * w_{9} * f_{16}, w_{9} * f_{11} * w_{12} *$ $f_{16}, w_{10} * f_{11} * w_{11} * f_{16}, w_{11} * f_{11} * w_{10} * f_{16}, w_{12} * f_{11} * w_{9} * f_{16}, w_{1} * f_{12} * w_{11} * f_{15}, w_{2} *$ $f_{12} * w_{10} * f_{15}, w_{4} * f_{12} * w_{11} * f_{15}, w_{5} * f_{12} * w_{10} * f_{15}, w_{10} * f_{12} * w_{11} * f_{15}, w_{11} * f_{12} * w_{10} *$ $f_{15}, w_{3} * f_{13} * w_{12} * f_{14}, w_{6} * f_{13} * w_{9} * f_{14}, w_{7} * f_{13} * w_{12} * f_{14}, w_{8} * f_{13} * w_{9} * f_{14}, w_{9} *$ $f_{13} * w_{12} * f_{14}, w_{12} * f_{13} * w_{9} * f_{14}, w_{3} * f_{14} * w_{12} * f_{13}, w_{6} * f_{14} * w_{9} * f_{13}, w_{7} * f_{14} * w_{12} *$ $f_{13}, w_{8} * f_{14} * w_{9} * f_{13}, w_{9} * f_{14} * w_{12} * f_{13}, w_{12} * f_{14} * w_{9} * f_{13}, w_{1} * f_{15} * w_{11} * f_{12}, w_{2} *$ $f_{15} * w_{10} * f_{12}, w_{4} * f_{15} * w_{11} * f_{12}, w_{5} * f_{15} * w_{10} * f_{12}, w_{10} * f_{15} * w_{11} * f_{12}, w_{11} * f_{15} * w_{10} *$ $f_{12}, w_{1} * f_{16} * w_{11} * f_{11}, w_{2} * f_{16} * w_{10} * f_{11}, w_{3} * f_{16} * w_{12} * f_{11}, w_{4} * f_{16} * w_{11} * f_{11}, w_{5} *$
$f_{16} * w_{10} * f_{11}, w_{6} * f_{16} * w_{9} * f_{11}, w_{7} * f_{16} * w_{12} * f_{11}, w_{8} * f_{16} * w_{9} * f_{11}, w_{9} * f_{16} * w_{12} *$ $f_{11}, w_{10} * f_{16} * w_{11} * f_{11}, w_{11} * f_{16} * w_{10} * f_{11}, w_{12} * f_{16} * w_{9} * f_{11}, w_{3} * f_{17} * w_{12} * f_{26}, w_{6} *$ $f_{17} * w_{9} * f_{26}, w_{7} * f_{17} * w_{12} * f_{26}, w_{8} * f_{17} * w_{9} * f_{26}, w_{9} * f_{17} * w_{12} * f_{26}, w_{12} * f_{17} * w_{9} *$ $f_{26}, w_{3} * f_{18} * w_{12} * f_{25}, w_{6} * f_{18} * w_{9} * f_{25}, w_{7} * f_{18} * w_{12} * f_{25}, w_{8} * f_{18} * w_{9} * f_{25}, w_{9} *$ $f_{18} * w_{12} * f_{25}, w_{12} * f_{18} * w_{9} * f_{25}, w_{3} * f_{19} * w_{12} * f_{24}, w_{6} * f_{19} * w_{9} * f_{24}, w_{7} * f_{19} * w_{12} *$ $f_{24}, w_{8} * f_{19} * w_{9} * f_{24}, w_{9} * f_{19} * w_{12} * f_{24}, w_{12} * f_{19} * w_{9} * f_{24}, w_{3} * f_{20} * w_{12} * f_{23}, w_{6} *$ $f_{20} * w_{9} * f_{23}, w_{7} * f_{20} * w_{12} * f_{23}, w_{8} * f_{20} * w_{9} * f_{23}, w_{9} * f_{20} * w_{12} * f_{23}, w_{12} * f_{20} * w_{9} *$ $f_{23}, w_{3} * f_{23} * w_{12} * f_{20}, w_{6} * f_{23} * w_{9} * f_{20}, w_{7} * f_{23} * w_{12} * f_{20}, w_{8} * f_{23} * w_{9} * f_{20}, w_{9} *$ $f_{23} * w_{12} * f_{20}, w_{12} * f_{23} * w_{9} * f_{20}, w_{3} * f_{24} * w_{12} * f_{19}, w_{6} * f_{24} * w_{9} * f_{19}, w_{7} * f_{24} *$ $w_{12} * f_{19}, w_{8} * f_{24} * w_{9} * f_{19}, w_{9} * f_{24} * w_{12} * f_{19}, w_{12} * f_{24} * w_{9} * f_{19}, w_{3} * f_{25} * w_{12} * f_{18}$, $w_{6} * f_{25} * w_{9} * f_{18}, w_{7} * f_{25} * w_{12} * f_{18}, w_{8} * f_{25} * w_{9} * f_{18}, w_{9} * f_{25} * w_{12} * f_{18}, w_{12} * f_{25} *$ $w_{9} * f_{18}, w_{3} * f_{26} * w_{12} * f_{17}, w_{6} * f_{26} * w_{9} * f_{17}, w_{7} * f_{26} * w_{12} * f_{17}, w_{8} * f_{26} * w_{9} * f_{17}, w_{9} *$ $f_{26} * w_{12} * f_{17}, w_{12} * f_{26} * w_{9} * f_{17}, w_{1} * f_{27} * w_{11} * f_{34}, w_{2} * f_{27} * w_{10} * f_{34}, w_{3} * f_{27} * w_{12} *$ $f_{34}, w_{4} * f_{27} * w_{11} * f_{34}, w_{5} * f_{27} * w_{10} * f_{34}, w_{6} * f_{27} * w_{9} * f_{34}, w_{7} * f_{27} * w_{12} * f_{34}, w_{8} *$ $f_{27} * w_{9} * f_{34}, w_{9} * f_{27} * w_{12} * f_{34}, w_{10} * f_{27} * w_{11} * f_{34}, w_{11} * f_{27} * w_{10} * f_{34}, w_{12} * f_{27} * w_{9} *$ $f_{34}, w_{1} * f_{28} * w_{11} * f_{33}, w_{2} * f_{28} * w_{10} * f_{33}, w_{3} * f_{28} * w_{12} * f_{33}, w_{4} * f_{28} * w_{11} * f_{33}, w_{5} * f_{28} *$ $w_{10} * f_{33}, w_{6} * f_{28} * w_{9} * f_{33}, w_{7} * f_{28} * w_{12} * f_{33}, w_{8} * f_{28} * w_{9} * f_{33}, w_{9} * f_{28} * w_{12} * f_{33}, w_{10} *$ $f_{28} * w_{11} * f_{33}, w_{11} * f_{28} * w_{10} * f_{33}, w_{12} * f_{28} * w_{9} * f_{33}, w_{1} * f_{29} * w_{11} * f_{32}, w_{2} * f_{29} * w_{10} *$ $f_{32}, w_{4} * f_{29} * w_{11} * f_{32}, w_{5} * f_{29} * w_{10} * f_{32}, w_{10} * f_{29} * w_{11} * f_{32}, w_{11} * f_{29} * w_{10} * f_{32}, w_{3} *$ $f_{30} * w_{12} * f_{31}, w_{6} * f_{30} * w_{9} * f_{31}, w_{7} * f_{30} * w_{12} * f_{31}, w_{8} * f_{30} * w_{9} * f_{31}, w_{9} * f_{30} * w_{12} *$ $f_{31}, w_{12} * f_{30} * w_{9} * f_{31}, w_{3} * f_{31} * w_{12} * f_{30}, w_{6} * f_{31} * w_{9} * f_{30}, w_{7} * f_{31} * w_{12} * f_{30}, w_{8} * f_{31} *$ $w_{9} * f_{30}, w_{9} * f_{31} * w_{12} * f_{30}, w_{12} * f_{31} * w_{9} * f_{30}, w_{1} * f_{32} * w_{11} * f_{29}, w_{2} * f_{32} * w_{10} * f_{29}, w_{4} *$ $f_{32} * w_{11} * f_{29}, w_{5} * f_{32} * w_{10} * f_{29}, w_{10} * f_{32} * w_{11} * f_{29}, w_{11} * f_{32} * w_{10} * f_{29}, w_{1} * f_{33} * w_{11} *$ $f_{28}, w_{2} * f_{33} * w_{10} * f_{28}, w_{3} * f_{33} * w_{12} * f_{28}, w_{4} * f_{33} * w_{11} * f_{28}, w_{5} * f_{33} * w_{10} * f_{28}, w_{6} * f_{33} *$ $w_{9} * f_{28}, w_{7} * f_{33} * w_{12} * f_{28}, w_{8} * f_{33} * w_{9} * f_{28}, w_{9} * f_{33} * w_{12} * f_{28}, w_{10} * f_{33} * w_{11} * f_{28}, w_{11} *$ $f_{33} * w_{10} * f_{28}, w_{12} * f_{33} * w_{9} * f_{28}, w_{1} * f_{34} * w_{11} * f_{27}, w_{2} * f_{34} * w_{10} * f_{27}, w_{3} * f_{34} * w_{12} *$ $f_{27}, w_{4} * f_{34} * w_{11} * f_{27}, w_{5} * f_{34} * w_{10} * f_{27}, w_{6} * f_{34} * w_{9} * f_{27}, w_{7} * f_{34} * w_{12} * f_{27}, w_{8} * f_{34} *$ $\left.w_{9} * f_{27}, w_{9} * f_{34} * w_{12} * f_{27}, w_{10} * f_{34} * w_{11} * f_{27}, w_{11} * f_{34} * w_{10} * f_{27}, w_{12} * f_{34} * w_{9} * f_{27}\right\}$ Therefore, the set of the relations is

$$
\text { Rels }=\text { Rels } 1 \cup \text { Rels } 2 \cup \text { Rels } 3 \cup \text { Rels } 4 .
$$

10. From above we have a finite presentation for the subgroup Conj_{V} of the automorphism groups of the partially commutative group $\operatorname{Aut}\left(G_{\Gamma}\right)$ as follows:

$$
\left.\operatorname{Conj}_{V}=\langle\text { Gens }| \text { Rels }\right\rangle
$$

4.4 GAP Presentation for Conj_{V}

This section describes the functions available from the AutParCommGrp package which we have written for computing a finite presentation for the subgroup Conj $_{V}$ of $\operatorname{Aut}\left(G_{\Gamma}\right)$ with commuting graph Γ generated by partial conjugations W_{V}.

To write an algorithm to produce this presentation we first construct W_{V} the set of generators of the subgroup Conj $_{V}$ that is defined earlier in Section 4.3, and then find the set \Re of relations that are defined in Theorem 4.3.15. The input of the main function FinitePresentationOfSubgroupConjv that provides finite presentation for $C o n j_{V}$ is a simple graph $\Gamma=(V, E)$. A graph with vertex set V of size n always has vertices $\{1, \ldots, n\}$ and E is a list of pairs of elements of V. For example if Γ is a simple graph with vertex set $V=\left\{x_{1}, x_{2}, x_{3}\right\}$ and edge set $E=\left\{\left[x_{1}, x_{2}\right],\left[x_{1}, x_{3}\right],\left[x_{2}, x_{3}\right]\right\}$ (where $[x, y]$ denotes an edge joining x to y) then Γ will be represented as ([1,2,3], ,[1, 2], [1, 3], [2, 3]]). The output of FinitePresentationOfSubgroupConjv consists of two sets gens and rels, where gens is the list of the generators of the automorphism $\alpha_{C, x}$ defined above and rels is the list of the relators.

In addition, to the functions IsSimpleGraph, StarLinkOfVertex, DeleteverticesFromGraph and ConnectedComponentsOfGraph which we have described in Sections 2.7.1, 3.3.1, 2.7.3 and 2.7.4 respectively the function FinitePresentationOfSubgroupConjv runs the following functions:

4.4.1 EquivalenceClassOfVertex Function

The input of the function EquivalenceClassOfVertex $(S t)$ is the list of stars $S t$ that is defined in Section 3.3.1. It computes the equivalence classes for each vertex v. The algorithm carries out the following instructions:

EquivalenceClassOfVertex($S t$)

$1 s V \leftarrow \operatorname{Size}(S t)$
2 for i in $\{1, \ldots, s V\}$
3 do for j in $\{1, \ldots, s V\}$

4
5
6

7 Add $E q C l 1$ to new list $E q C l$
return EqCl

4.4.2 ClassPreservingConnectedComponents Function

The input of the function ClassPreservingConnectedComponents($\mathrm{EqCl}, \mathrm{Comps}$) is $E q C l$ the list of equivalence classes of vertices of Γ and the list of connected components Comps of a subgraph B of Γ (usually $B=\Gamma \backslash S t(x)$, for some vertex $x)$. It constructs a new list of connected components Comps from the connected components of the subgraph B by finding the connected components which satisfy the conditions of partial conjugation for W_{V}. The algorithm carries out the following instructions:

ClassPreservingConnectedComponents (Eq Cl, , Comps)

```
size \(E q C l \leftarrow \operatorname{Size}(E q C l)\)
for \(i\) in \(\{1, \ldots\), size \(E q C l\}\)
    do sizeComps \(\leftarrow \operatorname{Size}(C o m p s)\)
        sizeEqClcurrent \(\leftarrow \operatorname{Size}(E q C l[i])\)
        cdash \(\leftarrow\) EmptyList
        remainingcdash \(\leftarrow\) EmptyList
        for \(j\) in \(\{1, \ldots\), sizeEqClcurrent \(\}\)
            do for \(k\) in \(\{1, \ldots\), sizeComps \(\}\)
                if \(E q C l[i][j] \in \operatorname{Comps}[k]\)
                then \(c d a s h \leftarrow \operatorname{Union}(\) cdash, Comps \([k])\)
        for \(k\) in \(\{1, \ldots\), sizeComps \(\}\)
            do if Comps \([k] \not \subset\) cdash
                then Add Comps \([k]\) to the list remainingcdash
```

 12 ADD cdash to the list remainingcdash
 13 Comps \(=\) remainingcdash
 14 return Comps

4.4.3 GeneratorsOfSubgroupConjv Function

The input of the function GeneratorsOfSubgroupConjv($N E, N V, S t, V)$ is the list $N E$ of all lists of edges of $\Gamma \backslash S t(v)$, the list $N V$ of all lists of vertices of $\Gamma \backslash S t(v)$, the list of stars $S t$ that is defined in Section 3.3.1 and the list of vertices V. It computes the list gens 1 which form the type (1) generators of Conj_{V}. The algorithm carries out the following instructions:

GeneratorsOfSubgroupConjv($N E, N V, S t, V$)

```
\(s N E \leftarrow \operatorname{Size}(N E)\)
inv \(V \leftarrow\) ComputeTheInveres \((V)\)
\(L \leftarrow \operatorname{Concatenation}(V, i n v V)\)
\(\mathrm{EqCl} \leftarrow\) EquivalenceClassOfVertex \((S t)\)
for \(h\) in \(\{1, \ldots, s N E\} \quad \triangleright h \in V\)
    do \(G 2 \leftarrow \mathrm{NE}(h)\)
    \(G 1 \leftarrow \mathrm{NV}(h)\)
    \(R 3 \leftarrow\) ConnectedComponentsOfGraph \((G 1, G 2)\)
    Comps \(\leftarrow \mathrm{R} 3(1) \quad \triangleright\) Comps is the list of all components
    sComps \(\leftarrow \mathrm{R} 3(2)\)
    \(P \leftarrow\) ClassPreservingConnectedComponents (EqCl, Comps)
    ADD the non-empty element of \(P\) to new list \(Y 4\)
    \(s Y 4 \leftarrow \operatorname{Size}(Y 4)\)
    for \(i\) in \(\{1, \ldots, s Y 4\}\)
        do diff \(2 \leftarrow\) Difference \((L, Y 4[i])\)
            ADD diff2 to new list \(x s 1\)
    for \(i\) in \(\{1, \ldots, s Y 4\}\)
        do \(s z \leftarrow \operatorname{SizE}(x s 1[i])\)
            for \(j\) in \(\{1, \ldots, s z\}\)
            do \(K K \leftarrow\) Concatenation \((Y 4[i],[x s 1[i][j]])\)
                    \(H H \leftarrow[K K, x s 1[i][j]]\)
                    Add \(H H\) to new list \(Y 5\)
            \(s Y 5 \leftarrow \operatorname{Size}(Y 5)\)
            Add \(Y 5\) to new list \(Y 6\)
            ADD \(x s 1\) to new list \(x s 2\)
            AdD \(B s\) to new list \(Y 3\)
            \(s Y 6 \leftarrow \operatorname{Size}(Y 6)\)
```

```
if \(s Y 6 \neq 0\)
    then \(Y 7 \leftarrow\) Concatenation \((Y 6)\)
    \(s Y 7 \leftarrow \operatorname{Size}(Y 7)\)
    \(x s 3 \leftarrow\) Concatenation \((x s 2)\)
    \(s x s 3 \leftarrow \operatorname{Size}(x s 3)\)
    for \(i\) in \(\{1, \ldots, s x s 3\}\)
        do ADD the non-empty element of \(x s 3\) to new list \(x s\)
    \(s x s \leftarrow \operatorname{Size}(x s)\)
    \(U x s \leftarrow \operatorname{Union}(x s)\)
    \(U x s \leftarrow \operatorname{Size}(U x s)\)
    for \(i\) in \(\{1, \ldots, s Y 7\}\)
        do ADD the non-empty element of \(Y 7\) to new list \(C x Y 1\)
    \(s C x Y 1 \leftarrow \operatorname{Size}(C x Y 1)\)
    for \(j\) in \(\{1, \ldots, s C x Y 1\}\)
            do Compute \(C x Y\) a list of the definitions of the partial
                conjugations \(W_{V}\) of \(C o n j_{V}\)
    \(s C x Y \leftarrow \operatorname{Size}(C x Y)\)
    \(Y 8 \leftarrow\) Concatenation \((B s)\)
    for \(i\) in \(\{1, \ldots, s Y 8\}\)
        do ADD the non-empty element of \(Y 8\) to new list \(Y\)
    \(s Y \leftarrow \operatorname{Size}(Y)\)
    for \(k\) in \(\{1, \ldots, s C x Y\}\)
        do Construct a list \(f\) such that \(f(n)=C x Y(n), n \in N\)
    \(s f \leftarrow \operatorname{Size}(f)\)
    for \(j\) in \(\{1, \ldots, s f\}\)
        do \(\operatorname{ADD} f_{i}\) the name of the \(i^{\text {th }}\) element of \(f\) to new list gens 1
    sgens \(1 \leftarrow \operatorname{Size}(\) gens1)
return either [ \(C x Y, s C x Y, Y, s Y, f, s f\), gens1, sgens1] or
an empty list if there is no component \(C\) satisfies the Definition 4.3.1
```

Remark 4.4.1. Note that,
(1) We use the functions APCGRelationRConj1, APCGRelationRConj2, APCGRelationRConj3 and APCGRelationRConj4 which are described in Sections 3.3.4, $3.3 .5,3.3 .6$ and 3.3.7 respectively to find the set \Re of relations that are defined in Theorem 4.3.15, by using the output of GeneratorsOfSubgroupConjv above
rather than the output of GeneratorsOfSubgroupConj which is described in Section 3.3.3.
(2) We use the function APCGConjLastReturn (gens4, $R 2 a, s R 2 a$) which is described in Section 3.3.8 to return the final return [gens, rels, $G G G$] of the functions FinitePresentationOfSubgroupConjv below.

4.4.4 FinitePresentationOfSubgroupConjv Function

The function FinitePresentationOfSubgroupConjv (V, E) provides finite presentation for the subgroup Conj_{V}. The input of this function is a simple graph $\Gamma=(V, E)$. It returns [gens, rels, $G G G]$, where,
(i) gens is a list of free generators of the subgroup $C o n j_{V}$ of the automorphism group $\operatorname{Aut}\left(G_{\Gamma}\right)$ of G_{Γ}.
(ii) rels is a list of relations in the generators of the free group F. Note that relations are entered as relators, i.e., as words in the generators of the free group.
(iii) $G G G:=F /$ rels is a finitely presented of the subgroup Conj_{V} of the automorphism group $\operatorname{Aut}\left(G_{\Gamma}\right)$ of G_{Γ}.

The algorithm carries out the following instructions:

FinitePresentationOfSubgroupConjv (V, E)

1 if Γ is simple graph
2 then Call The Function StarLinkOfVertex
3 Call The Function DeleteVerticesFromGraph
4 Call The Function GeneratorsOfSubgroupConjv
5
6
7
else return "The graph must be a simple graph"
11 return [gens, rels, $G G G$]
For example:
gap> C:=FinitePresentationOfSubgroupConjv([1, 2, 3], [[1, 2], [2, 3]]);
[[f1, f2, f3, f4, f5, f6, f7, f8], [f1*f4, f2*f3, f3*f2, f4*f1, $\mathrm{f} 5 * \mathrm{f} 8, \mathrm{f} 6 * \mathrm{f} 7, \mathrm{f} 7 * \mathrm{f} 6, \mathrm{f} 8 * \mathrm{f} 5, \mathrm{f} 1 * \mathrm{f} 2 * \mathrm{f} 4 * \mathrm{f} 3, \mathrm{f} 1 * \mathrm{f} 3 * \mathrm{f} 4 * \mathrm{f} 2, \mathrm{f} 2 * \mathrm{f} 4 * \mathrm{f} 3 * \mathrm{f} 1$, $\mathrm{f} 3 * \mathrm{f} 4 * \mathrm{f} 2 * \mathrm{f} 1, \mathrm{f} 5 * \mathrm{f} 6 * \mathrm{f} 8 * \mathrm{f} 7, \mathrm{f} 5 * \mathrm{f} 7 * \mathrm{f} 8 * \mathrm{f} 6, \mathrm{f} 6 * \mathrm{f} 8 * \mathrm{f} 7 * \mathrm{f} 5, \mathrm{f} 7 * \mathrm{f} 8 * \mathrm{f} 6 * \mathrm{f} 5$, $\mathrm{f} 2 * \mathrm{f} 1 * \mathrm{f} 3 * \mathrm{f} 4, \mathrm{f} 3 * \mathrm{f} 1 * \mathrm{f} 2 * \mathrm{f} 4, \mathrm{f} 2 * \mathrm{f} 4 * \mathrm{f} 3 * \mathrm{f} 1, \mathrm{f} 3 * \mathrm{f} 4 * \mathrm{f} 2 * \mathrm{f} 1, \mathrm{f} 5 * \mathrm{f} 6 * \mathrm{f} 8 * \mathrm{f} 7$, $\mathrm{f} 8 * \mathrm{f} 6 * \mathrm{f} 5 * \mathrm{f} 7, \mathrm{f} 5 * \mathrm{f} 7 * \mathrm{f} 8 * \mathrm{f} 6, \mathrm{f} 8 * \mathrm{f} 7 * \mathrm{f} 5 * \mathrm{f} 6]$, <fp group on the generators [f1, f2, f3, f4, f5, f6, f7, f8]>]

Remark 4.4.2. We use the function TietzeTransformations (G) which is described in Section 2.7.19 to simplify the presentation of $C o n j_{V}$. For example, using the output of FinitePresentationOfSubgroupConjv above:
gap> G:=C[3];
<fp group on the generators [f1, f2, f3, f4, f5, f6, f7, f8]> gap> TietzeTransformations(G);
[<fp group of size infinity on the generators $[\mathrm{f} 1, \mathrm{f} 2, \mathrm{f} 5, \mathrm{f} 6$]>, [$\mathrm{f} 1 * \mathrm{f} 2 * \mathrm{f} 1^{\wedge}-1 * \mathrm{f} 2^{\wedge}-1, \mathrm{f} 5 * \mathrm{f} 6 * \mathrm{f} 5^{\wedge}-1 * \mathrm{f} 6^{\wedge}-1$]]

Part II

Differential Graded Algebraic structures

Chapter 5

Introduction and Preliminaries for DG Algebraic structures

5.1 Introduction

Let G be a group with identity e and R be a ring with unit 1 different from 0 . Then R is said to be G-graded ring if there exists an additive subgroup R_{g} of R such that $R=\oplus \sum_{g \in G} R_{g}$ and $R_{g} R_{h} \subseteq R_{g h}$ for all $g, h \in G$. Let K be a field of characteristic two, $R=K\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ be a graded ring, graded in the negative way, and let M be differential graded R-module, where the degree of the differential is P.

Our aim is to study the case that ($P \leq-2, n>1$), and we give classification for the types where M is a solvable module and the cases where M is not solvable, using the dimension of the module and the degree of the differential on the module. Also we will give an algorithm for these cases, implement in GAP.

5.2 Preliminaries

In this section, we give a brief overview of some definitions and results of exact homology sequences from [5], [42], [50] and [54]. For background on rings and modules we use [21], [33] and [42].

5.2.1 Exact Homology Sequences

Definition 5.2.1. Consider a sequence (finite or infinite) of abelian group and homomorphisms

$$
\cdots A_{1} \xrightarrow{\phi_{1}} A_{2} \xrightarrow{\phi_{2}} A_{3} \longrightarrow \cdots
$$

This sequence is said to be exact at A_{2} if and only if $\operatorname{Im}\left(\phi_{1}\right)=\operatorname{Ker}\left(\phi_{2}\right)$. If it is every where exact, it is said to be an exact sequence.

Theorem 5.2.2. (1) $A_{1} \xrightarrow{\phi_{1}} A_{2} \xrightarrow{\phi_{2}} 0$, is exact sequence if and only if ϕ_{1} is epimorphism.
(2) $0 \xrightarrow{\phi_{1}} A_{1} \xrightarrow{\phi_{2}} A_{2}$ is exact sequence if and only if ϕ_{2} is monomorphism.

Proof. 1) $A_{1} \xrightarrow{\phi_{1}} A_{2} \xrightarrow{\phi_{2}} 0$ is exact sequence at A_{2} if and only if $\operatorname{Im}\left(\phi_{1}\right)=$ $\operatorname{Ker}\left(\phi_{2}\right)=A_{2}$ iff ϕ_{1} is epimorphism.
2) $0 \xrightarrow{\phi_{1}} A_{1} \xrightarrow{\phi_{2}} A_{2}$ is exact sequence at A_{1} if and only if $\operatorname{Ker}\left(\phi_{2}\right)=\operatorname{Im}\left(\phi_{1}\right)$ iff ϕ_{1} if and only if ϕ_{2} is monomorphism.

Definition 5.2.3. An exact sequence of the form

$$
0 \longrightarrow A_{1} \xrightarrow{\phi_{1}} A_{2} \xrightarrow{\phi_{2}} A_{3} \xrightarrow{\phi_{3}} 0
$$

is called a short exact sequence. A diagram of modules

and homomorphisms is said be commutative iff $\psi_{2} \phi_{1}=\phi_{2} \psi_{1}$.
Theorem 5.2.4. Consider the following commutative diagram

with exact rows. If any two of the three homomorphisms η_{0}, η_{1} and η_{2} are isomorphism, then the third is an isomorphism too.

Lemma 5.2.5. Suppose $\phi: A \longrightarrow B$ is epimorphism with kernel K, then the sequence $0 \longrightarrow K \xrightarrow{i} A \xrightarrow{\phi} B \xrightarrow{\psi} 0$ is exact where i is the inclusion map.

Proof. Since ϕ is onto, then $\operatorname{Im}(\phi)=B=\operatorname{Ker}(\psi)$. Hence the sequence is exact at B

Also, $\operatorname{Im}(i)=A=\operatorname{Ker}(\phi)$, and hence the sequence is exact at A. Therefore, $0 \longrightarrow K \xrightarrow{i} A \xrightarrow{\phi} B \xrightarrow{\psi} 0$ is exact.

Theorem 5.2.6. Suppose that the sequence $A_{1} \xrightarrow{\phi_{1}} A_{2} \xrightarrow{\phi_{2}} A_{3} \xrightarrow{\phi_{3}} A_{4}$ is exact, then the following are equivalent:

1) ϕ_{1} is epimorphism.
2) ϕ_{2} is the zero homomorphism.
3) ϕ_{3} is monomorphism.

Proof. (1) gives (2): Suppose ϕ_{1} is epimorphism, so $\operatorname{Im}\left(\phi_{1}\right)=A_{2}$. Since the sequence is exact we have $\operatorname{Im}\left(\phi_{1}\right)=\operatorname{Ker}\left(\phi_{2}\right)$, and so $\operatorname{Ker}\left(\phi_{2}\right)=A_{2}$, which gives that $\phi_{2}=0$.
(2) gives (3): Suppose ϕ_{2} is the zero map. Then $\operatorname{Im}\left(\phi_{2}\right)=0$, using that the sequence is exact we have $\operatorname{Im}\left(\phi_{2}\right)=\operatorname{Ker}\left(\phi_{3}\right)=0$. Therefore, ϕ_{3} is monomorphism.
(3) gives (1): Suppose that ϕ_{3} is monomorphism. Then the sequence is exact at A_{3}, so $\operatorname{Ker}\left(\phi_{3}\right)=\operatorname{Im}\left(\phi_{2}\right)$. But ϕ_{3} is $1-1$, we have $\operatorname{Im}\left(\phi_{2}\right)=0$ and so ϕ_{2} is a zero map. Since the sequence is exact at A_{2} we have $\operatorname{Ker}\left(\phi_{2}\right)=\operatorname{Im}\left(\phi_{1}\right)=A_{1}$. Hence ϕ_{1} is epimorphism.

Definition 5.2.7. Consider the sequences

$$
\begin{aligned}
& \cdots \longrightarrow A_{1} \xrightarrow{\phi_{1}} A_{2} \xrightarrow{\phi_{2}} \cdots \\
& \cdots \longrightarrow B_{1} \xrightarrow{\psi_{1}} B_{2} \xrightarrow{\psi_{2}} \cdots
\end{aligned}
$$

A homomorphism from the first sequence into the second sequence is a family of homomorphisms $\alpha_{i}: A_{i} \longrightarrow B_{i}$ such that the following diagram commutes.

(i.e. $\alpha_{i+1} \circ \varphi_{i}=\psi_{i} \circ \alpha_{i}$ for all i). It is an isomorphism of sequences if each α_{i} is an isomorphism.

Definition 5.2.8. Let $C=\left\{C_{p}, \partial_{p}\right\}$ and $C^{\prime}=\left\{C_{p}^{\prime}, \partial_{p}^{\prime}\right\}$ be a chain complexes. A chain map $\phi: C \rightarrow C^{\prime}$ is a collection of homomorphisms $\phi_{p}: C_{p} \rightarrow \mathcal{C}_{p}$ such that $\partial_{p} \circ \phi_{p}=\phi_{p-1} \circ \partial_{p}$, for all p (i.e., the following diagrams commutes)

Lemma 5.2.9. A chain map $\phi: C \rightarrow C^{\prime}$ induces a homomorphism

$$
\begin{aligned}
& \left(\phi_{*}\right)_{p}: H_{p}(C) \rightarrow H_{P}\left(C^{\prime}\right), \text { for all } p \text { given by: } \\
& \left(\phi_{*}\right)_{p}\left(x+\operatorname{im}\left(\partial_{p+1}\right)\right)=\phi_{p}(x)+\operatorname{Im}\left(\partial_{p+1}^{\prime}\right)
\end{aligned}
$$

Proof. Suppose $\phi: C \rightarrow C^{\prime}$ is a chain map. To show that $\left(\phi_{*}\right)_{p}$ is well-defined. Let $x+\operatorname{Im}\left(\partial_{p+1}\right)=y+\operatorname{Im}\left(\partial_{p+1}\right)$. Then $x-y \in \operatorname{Im}\left(\partial_{p+1}\right)$. Since ∂_{p+1} is onto, there is $z \in C_{p+1}$ such that $\partial_{p+1}(z)=x-y$.

But $\phi_{p} \circ \partial_{p+1}=\partial_{p+1}^{\prime} \circ \phi_{p+1}$, implies to $\partial_{p+1}^{\prime}\left(\phi_{p+1}(z)\right)=\phi_{p}\left(\partial_{p+1}(z)\right)=\phi_{p}(x-y)=$ $\phi_{p}(x)-\phi_{p}(y)$.

Therefore, $\phi_{p}(x)+i m \partial_{p+1}^{\prime}=\phi_{p}(y)+i m\left(\partial_{p+1}^{\prime}\right)$. Also,
$\left.\left(\phi_{*}\right)_{p}\left(x+\operatorname{Im}\left(\partial_{p+1}\right)+y+i m\left(\partial_{p+1}\right)\right)=\left(\phi_{*}\right)_{p}(x+y)+i m\left(\partial_{p+1}\right)\right)$
$=\phi_{p}(x+y)+i m\left(\partial_{p+1}^{\prime}\right)$
$=\phi_{p}(x)+\phi_{p}(y) i m\left(\partial_{p+1}^{\prime}\right)$
$=\phi_{p}(x)+i m\left(\partial_{p+1}^{\prime}\right)+\phi_{p}(y)+i m\left(\partial_{p+1}^{\prime}\right)$.
$=\left(\phi_{*}\right)_{p}\left(x+\operatorname{Im}\left(\partial_{p+1}\right)\right)+\left(\phi_{*}\right)_{p}\left(y+i m\left(\partial_{p+1}\right)\right)$.
And $\left(\phi_{*}\right)_{p}\left(r \cdot\left(x+i m\left(\partial_{p+1}\right)\right)=\left(\phi_{*}\right)_{p}\left(r x+i m\left(\partial_{p+1}\right)\right.\right.$
$=\phi_{p}(r x)+i m\left(\partial_{p+1}^{\prime}\right)$
$=r \cdot \phi_{p}(x)+i m\left(\partial_{p+1}^{\prime}\right)$
$=r\left(\phi_{*}\right)_{p}\left(x+i m \partial_{p+1}\right)$.

Hence $\left(\phi_{*}\right)_{p}$ is a homomorphism.
Lemma 5.2.10. a) The identity map $i: C \rightarrow C$ is a chain map and $\left(i_{*}\right)_{p}$: $H_{p}(C) \rightarrow H_{p}(C)$ is the identity homomorphism.
b) If $\phi: C \rightarrow C^{\prime}$ and $\psi: C^{\prime} \rightarrow '^{\prime \prime}$ are chain maps, then $\psi \circ \phi: C \rightarrow \dot{C}^{\prime \prime}$ is a chain map and $(\psi \circ \phi)_{*}=\psi_{*} \circ \phi_{*}$.

Proof. a) Clear by Lemma.
b) Consider the following digram

Since the diagram commutes we have $\phi_{p-1} \circ \partial_{p}=\partial_{p}^{\prime} \circ \phi_{p}$, and so $\psi_{p-1}\left(\phi_{p-1} \circ \partial_{p}=\right.$ $\psi_{p-1}\left(\partial_{p}^{\prime} \circ \phi_{p}\right)$. Similarly, we have $\psi_{p-1} \circ \partial_{p}^{\prime}=\partial_{p}^{\prime \prime} \circ \psi_{p}$, and so $\psi_{p-1} \circ \partial_{p}^{\prime} \circ \phi_{p}=$ $\partial_{p}^{\prime \prime} \circ \psi_{p} \circ \phi_{p}$. Therefore, $\psi_{p-1} \circ \phi_{p-1} \partial_{p}=\partial_{p}^{\prime \prime} \circ \psi_{p} \circ \phi_{p}$.
By definition $\left(\phi_{*}\right)_{p}: H_{p}(C) \rightarrow H_{p}\left(C^{\prime}\right)$ is given by

$$
\begin{aligned}
& \left(\phi_{*}\right)_{p}\left(x+i m \partial_{p+1}\right)=\phi(x)+i m \partial_{p+1}^{\prime} \text { and } \\
& \left(\psi_{*}\right)_{p}: H_{p}\left(C^{\prime}\right) \rightarrow H_{p}\left(C^{\prime \prime}\right) \text { is given by } \\
& \left(\psi_{*}\right)_{p}\left(\phi(x)+i m \partial_{p+1}^{\prime}\right)=\psi(\phi(x))+i m \partial_{p+1}^{\prime \prime} . \text { Now, } \\
& ((\psi \circ \phi) *)_{p}: H_{p}(C) \rightarrow H_{p}\left(C^{\prime \prime}\right) \text { is given by: } \\
& ((\psi \circ \phi) *)_{p}\left(x+i m \partial_{p+1}\right)=(\psi \circ \phi)(x)+i m \partial_{p+1}^{\prime} .
\end{aligned}
$$

So, $((\psi \circ \phi) *)_{p}\left(x+i m \partial_{p+1}\right)=(\psi \circ \phi)(x)+i m \partial_{p+1}^{\prime \prime}$.

$$
\begin{aligned}
& =\psi(\phi(x))+i m \partial_{p+1}^{\prime \prime} . \\
& =\left(\psi_{*}\right)_{p}(\phi(x))+i m \partial_{p+1}^{\prime \prime} .
\end{aligned}
$$

Hence $((\psi \circ \phi) *)_{p}=\left(\psi_{*}\right)_{p} \circ\left(\phi_{*}\right)_{p}$.

Chapter 6

Graded Rings and Graded Modules

In this chapter the concept of graded rings and some of its properties are presented. We also, give the definitions of graded algebras, and differential graded modules over the graded polynomial $\operatorname{ring} R=K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$.

6.1 Graded Rings

Definition 6.1.1. [59] Let G be a group with identity e. Then a ring R is said to be G-graded ring if there exist an additive subgroups R_{g} of R such that $R=\oplus \sum_{g \in G} R_{g}$ and $R_{g} R_{h} \subseteq R_{g h}$ for all $g, h \in G$ (some references use $R_{g} R_{h} \subseteq R_{g+h}$ rather than $R_{g} R_{h} \subseteq R_{g h}$, for example see [33]).

We denote the G-graded ring R by (R, G), and we denote the support of the graded ring (R, G) by

$$
\operatorname{supp}(R, G)=\left\{g \in G: R_{g} \neq 0\right\} .
$$

The elements of R_{g} are called homogeneous of degree g. If $x \in R$, then x can be written uniquely as $\sum_{g \in G} x_{g}$ where x_{g} is the component of x in R_{g}. Also we write, $h(R)=\bigcup_{g \in G} R_{g}$.

Definition 6.1.2. [21] Let A be a subset of R, for $\lambda \in G$ we write A_{λ} for $A \cap R_{\lambda}$. A subset A is called graded subset of R if $A=\sum_{\lambda \in G} A_{\lambda}$.

Let I be an ideal of R, we say I is a graded ideal of (R, G) if $I=\oplus \sum_{g \in G}\left(R_{g} \cap I\right)$. Remark 6.1.3. Clearly, $\oplus \sum_{g \in G}\left(R_{g} \cap I\right) \subseteq I$ and hence I is a graded of (R, G) if $I \subseteq \sum_{g \in G}\left(R_{g} \cap I\right)$. Also, $J=\sum_{g \in G}\left(R_{g} \cap I\right)$ is the largest graded ideal of R which is contained in I.

Now, we give some examples of G-graded ring.

Example 6.1.0.1

Let G be any group, then R is a G-graded ring with: $R_{e}=R$ and $R_{g}=0$ for all $g \in G-\{e\}$. This grading is called the trivial grading of R by G.

Example 6.1.0.2

The polynomial ring $S=R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ in n variables over the commutative ring R is an example of a graded ring. Here $S_{0}=R$ and the homogeneous component of degree k is the subgroup of all R-linear combinations of monomials of degree k i.e., $S_{d}=\left\{\sum_{m \in N} r_{m} X^{m} \mid r_{m} \in R\right.$ and $\left.m_{1}+\ldots+m_{n}=d\right\}$. This is called the standard grading on the polynomial ring $R\left[x_{1}, \ldots, x_{n}\right]$. The ideal I generated by x_{1}, \ldots, x_{n} is a graded ideal: every polynomial with zero constant term may be written uniquely as a sum of homogeneous polynomials of degree $k>1$, and each of these has zero constant term hence lies in I. More generally, an ideal is a graded ideal if and only if it can be generated by homogeneous polynomials (see Lemma 6.1.4 for the proof).

Example 6.1.0.3

[64] Let K be a field, and $R=K[x]$ be the polynomial ring over K in one variable x. Let $G=\mathbb{Z}_{3}$, then R is a G-graded ring with:

$$
R_{j}=\left(k x^{3 r+j}: k \in K, r=0,1,2, \ldots\right), \text { for } j \in \mathbb{Z}_{3} .
$$

Example 6.1.0.4

Let $R=\mathbb{Z}[i]=\{a+i b: a, b \in \mathbb{Z}\}$ (the Gaussian integers), and $G=\mathbb{Z}_{2}$, then R is a G-graded ring with: $R_{0}=\mathbb{Z}$, and $R_{1}=i \mathbb{Z}$.

The following example shows that an ideal of a G-graded ring need not be a graded ideal in general:

Example 6.1.0.5

Let $R=\mathbb{Z}[i]$, and Let $G=\mathbb{Z}_{2}$. Then R is a G-graded ring with: $R_{0}=\mathbb{Z}$, and
$R_{1}=i \mathbb{Z}$. Let $I=<1+i>$, where $x=(1+i), x_{0}=1$ and $x_{1}=i$. Clearly $x_{0} \notin I$ because if $x_{0} \in I$ then there is $a+i b \in \mathbb{Z}[i]$ such that $1=(a+i b)(1+i)$ which implies $a-b=1$ and $a+b=0$. Hence $2 a=1$, contradiction. Thus I is not a graded ideal of (R, G).

Lemma 6.1.4. An ideal is a graded (homogeneous) ideal if and only if it can be generated by homogeneous polynomials.

Proof. Let R be a graded ring such that $R=\oplus \sum_{g \in G} R_{g}$, where the R_{g} are additive abelian groups such that $R_{g} R_{h} \subseteq R_{g+h}$ for $g, h \geq 1$. If $I \subset K[x]$ is graded (homogeneous), the homogeneous parts of the generators of I obviously generate I. Conversely, let I be an ideal generated by homogeneous polynomials $f_{i}, i=1, \ldots, r$. Suppose that $w \in I$ i.e., $w=\sum_{i=1}^{r} a_{i} f_{i}, a_{i} \in K[x]$. Note that each homogeneous part $\left(a_{i}\right)_{[j]} f_{i}$ of a_{i} is in I, because I is an ideal. Since this holds for any $g \in I$, we have that

$$
\oplus_{i \geq 1}\left(I \cap R_{g}\right) \subseteq I \subseteq \oplus_{i \geq 1}\left(I \cap R_{g}\right)
$$

This means both are equal and I is graded ideal.
Proposition 6.1.5. [33] Stated that: Let R be a graded ring, let I be a graded ideal in R and let $I_{k}=I \cap R_{k}$ for all $k \geq 0$. Then R / I is naturally a graded ring whose homogeneous component of degree k is isomorphic to R_{k} / I_{k}.

There would be necessary to prove the proposition above.
Proof. 1. We show that $R_{i} I_{j} \subseteq I_{i+j}$. Let $x \in R_{i} I_{j}$ then $x=r_{i} a_{j}$ where $r_{i} \in R_{i}$ and $a_{j} \in I_{j}$. So $x \in R_{i} I_{j}$ implies that $r_{i} a_{j} \in R_{i} I_{j}$ implies that $r_{i} a_{j} \in R_{i} R_{j} \cap I$ (since $R_{j} \cap I=I_{j}$) implies that $r_{i} a_{j} \in R_{i+j} \cap I$ (since $R_{i} R_{j} \subseteq R_{i+j}$) which implies that $r_{i} a_{j} \in I_{i+j}$ (since $R_{i+j} \cap I=I_{i+j}$). Thus $R_{i} I_{j} \subseteq I_{i+j}$.
2. We show that the multiplication $\left(R_{i} / I_{i}\right)\left(R_{j} / I_{j}\right) \subseteq R_{i+j} / I_{i+j}$. is well defined. We need to show that:

$$
\left(r_{i}+I_{j}\right)\left(r_{j}+I_{j}\right)=r_{i} r_{j}+I_{i+j}
$$

where $r_{i}+I_{i} \in R_{i} / I_{i}$ and $r_{j}+I_{j} \in R_{j} / I_{j}$.
Let $r_{i}+I_{i}=r_{i}^{\prime}+I_{i}$ and $r_{j}+I_{j}=r_{j}^{\prime}+I_{j}$. We need to show that:

$$
\left(r_{i}+I_{i}\right)\left(r_{j}+I_{j}\right)=\left(r_{i}^{\prime}+I_{i}\right)\left(r_{j}^{\prime}+I_{j}\right)
$$

i.e., we need to show $r_{i} r_{j}+I_{i+j}=r_{i}^{\prime} r_{j}^{\prime}+I_{i+j}$. So if we show that $\left(r_{i} r_{j}-r_{i}^{\prime} r_{j}^{\prime}\right) \in$ I_{i+j} we are done. Note that $r_{i}+I_{i}=r_{i}^{\prime}+I_{i}$ implies that $r_{i}-r_{i}^{\prime} \in I_{i}$ implies that $\left(r_{i}-r_{i}^{\prime}\right) r_{j} \in I_{i}$ (by multiply both sides by r_{j}). So $r_{i} r_{j}-r_{i}^{\prime} r_{j} \in I_{j}$ (because I_{i} is an ideal). Similarly, $r_{j}+I_{j}=r_{i}^{\prime}+I_{j}$ implies that $r_{j}-r_{i}^{\prime} \in I_{j}$ implies that $r_{i}^{\prime}\left(r_{i}-r_{i}^{\prime}\right) \in I_{j}$ (by multiply both sides by r_{i}^{\prime}). Hence $r_{i}^{\prime} r_{j}-r_{i}^{\prime} r_{j}^{\prime} \in I_{j}$. Therefore, $\left(r_{i} r_{j}-r_{i}^{\prime} r_{j}\right)+\left(r_{i}^{\prime} r_{j}-r_{i}^{\prime} r_{j}^{\prime}\right) \in I_{i}+I_{j} \subset I$, which implies that $\left(r_{i} r_{j}-r_{i}^{\prime} r_{j}^{\prime}\right) \in$ $I_{i}+I_{j} \subset I$. But, $r_{i} r_{j} \in R_{i} R_{j} \subset R_{i+j}$. So $r_{i} r_{j} \in R_{i+j}$ and $r_{i}^{\prime} r_{j}^{\prime} \in R_{i+j}$. Hence $r_{i} r_{j}-r_{i}^{\prime} r_{j}^{\prime} \in I \cap R_{i+j}=I_{i+j}$.
3. Now we prove that $R / I \cong \oplus_{k=0}^{\infty} R_{k} / I_{k}$ where $I_{k}=R_{k} \cap I$.

For each $r \in R, r=\sum_{i=0}^{n} r_{i}$ such that $r_{i} \in R_{i}$, we define $\varphi: R \longrightarrow \oplus_{k=0}^{\infty} R_{k} / I_{k}$ by :

$$
\varphi(r)=\sum r_{i}+I_{i}
$$

(a) φ is ring homomorphism for:

- If $r=\sum r_{i}$ and $t=\sum t_{i} \in R$ then,

$$
\begin{aligned}
& \varphi(r+t)=\varphi\left(\sum r_{i}+\sum t_{i}\right)=\varphi\left(\sum r_{i}+t_{i}\right)=\sum\left(r_{i}+t_{i}\right)+I_{i} \\
& =\left(\sum r_{i}+I_{i}\right)+\left(\sum t_{i}+I_{i}\right)=\varphi(r)+\varphi(t) .
\end{aligned}
$$

- If $r=\sum r_{i}$ and $t=\sum t_{i} \in R$ then, $\varphi(r \cdot t)=\varphi\left(\left(\sum r_{i}\right) \cdot\left(\sum t_{i}\right)\right)=\varphi\left(\sum \sum r_{i} t_{i}\right)=\sum \sum r_{i} t_{i}+I_{i}$ $=\left(\sum r_{i}+I_{i}\right)\left(\sum t_{i}+I_{i}\right)=\varphi(r) \cdot \varphi(t)$.
So φ is ring homomorphism.
(b) φ is onto for:

Let $y \in \oplus_{k=0}^{\infty} R_{k} / I_{k}$ implies that $y=\sum_{i=0}^{n} r_{i}+I_{i}$ implies that there exists $x \in R ; x=\sum r_{i}$ such that $\varphi(x)=\varphi\left(\sum r_{i}\right)=\sum r_{i}+I_{i}$. Thus φ is onto.
(c) $\operatorname{ker}(\varphi)=I$ for :
$x \in \operatorname{ker}(\varphi)$ if and only if $\varphi\left(\sum_{i=0}^{n} x_{i}\right)=0$ if and only if $\varphi\left(\sum_{i=0}^{n} x_{i}\right)=$ $\sum x_{i}+I_{i}=\sum_{i=0}^{n} I_{i}$ if and only if $\sum x_{i} \in \sum I_{i} \cong \oplus_{k=0}^{\infty} I_{i}=I$. Hence $R / I \cong \oplus_{k=0}^{\infty} s_{k} / I_{k}$ (by the first isomorphism theorem).
4. Now we check the ring axioms:
(a) $R / I=\oplus_{k=0}^{\infty} R_{k} / I_{k}$ is abelian group.
(b) If $r_{i}+I_{i}, r_{j}+I_{j}$ and $r_{n}+I_{n} \in R / I$ then,

$$
\begin{aligned}
& {\left[\left(r_{i}+I_{i}\right) \cdot\left(r_{j}+I_{j}\right)\right] \cdot\left(r_{n}+I_{n}\right)=\left(r_{i} r_{j}+I_{i+j}\right)\left(r_{n}+I_{n}\right)=r_{i} r_{j} r_{n}+I_{i+j+n}=} \\
& \left(r_{i}+I_{i}\right) \cdot\left(r_{j} r_{n}+I_{j+n}\right)=\left(r_{i}+I_{i}\right) \cdot\left[\left(r_{j}+I_{j}\right) \cdot\left(r_{n}+I_{n}\right)\right] .
\end{aligned}
$$

Also, $\left(r_{i}+I_{i}\right) \cdot\left[\left(r_{j}+I_{j}\right)+\left(r_{n}+I_{n}\right)\right]=\left[\left(r_{i}+I_{i}\right) \cdot\left(r_{j}+I_{j}\right)\right]+\left[\left(r_{i}+I_{i}\right) \cdot\left(r_{n}+I_{n}\right)\right]$. Hence associative holds.

Proposition 6.1.6. Let R be a G-graded ring and $x, y \in R, g \in G$. Then
(1) $(x+y)_{g}=x_{g}+y_{g}$.
(2) $(x y)_{g}=\sum_{\lambda \in G} x_{\lambda} y_{\lambda^{-1} g}$.

Proof. Let $x, y \in R$, then $x=\sum_{h \in G} x_{h}, y=\sum_{s \in G} y_{s}$.
(1) If $x_{h}+y_{s} \in R_{g}-\{0\}$, then $x_{h}+y_{s} \in R_{g} \cap\left(R_{h}+R_{s}\right) \neq 0$. Thus $g=h=s$ and hence $(x+y)_{g}=x_{g}+y_{g}$.
(2) Assume $x y=\sum_{h, s \in G} x_{h} y_{s}$. If $x_{h} y_{s} \in R_{g}$ then $x_{h} y_{s}=0$ or $h s=g$. Thus $s=h^{-1} g$ and hence, $(x y)_{g}=\sum_{h \in G} x_{h} y_{h^{-1} g}$.

Proposition 6.1.7. Let R be a G-graded ring. Then
(1) R_{e} is a subring of R and $1 \in R_{e}$.
(2) R_{g} and R are R_{e}-modules.

Proof. (1) R_{e} is closed under multiplication, because $R_{e} R_{e} \subseteq R_{e}$ so R_{e} is a subring of R. Let $1=\sum_{s \in G} r_{s}$ be the homogeneous decomposition of $1 \in R$. pick $\iota \in G$, and $\lambda_{\iota} \in R_{\iota}$, then $\lambda_{\iota}=1 . \lambda_{\iota}=\sum_{s \in G} r_{s} \lambda_{\iota}$ with $r_{s} \lambda_{\iota} \in R_{s \iota}$. Consequently $r_{s} \lambda=0$ for all $s \neq e$ in G. It follows that $r_{s} \lambda=0$ for all $s \neq e$ in G and for all $\lambda \in R$. Therefore, $1=r_{e} \in R_{e}$.
(2) Since $R_{e} R_{g} \subseteq R_{g}$, and $R_{g} R_{e} \subseteq R_{e}$, we have R and R_{g} are left R_{e}-modules.

6.2 Graded Modules

In this section, we will give a brief overview of some definitions and results of graded algebras, and differential graded modules over the graded polynomial ring $R=$ $K\left[x_{1}, x_{2}, \ldots, x_{n}\right.$] following [54], [64], [3], [23] and [66].

Definition 6.2.1. A graded K-algebra \mathbf{A} is a sequence of K-vector spaces $\left\{A_{j}\right\}_{j \in \mathbb{Z}}$, together with vector space homomorphisms:

$$
\begin{gathered}
\pi: A_{i} \otimes_{K} A_{j} \longrightarrow A_{i+j} \text { for } i, j \in \mathbb{Z} \text { and } \\
\mu: K \longrightarrow A_{0}, \text { such that the following diagrams } \\
A_{i} \otimes A_{j} \otimes A_{m} \xrightarrow{\pi \otimes 1} A_{i+j} \otimes A_{m} \\
1 \otimes \pi \downarrow \\
A_{i} \otimes A_{j+m} \xrightarrow{\pi} A_{i+j+m} \\
K \otimes A_{j}=A_{j} \otimes K^{1 \otimes \mu} \xrightarrow{\mu} A_{j} \otimes A_{0} \\
\mu \otimes 1 \downarrow \downarrow \\
A_{0} \otimes A_{j} \xrightarrow[\pi]{\downarrow_{2}} A_{j}
\end{gathered}
$$

commute for all $i, j, m \in \mathbb{Z}$
Definition 6.2.2. Let A be a graded K-algebra and $\psi: A_{j} \otimes_{K} A_{j} \rightarrow A_{j} \otimes_{K} A_{i}$ be the K-vector space isomorphism which takes $a \otimes b$ into $b \otimes a$. Then A is commutative iff the following diagram:

commutes for all $i, j, \in \mathbb{Z}$.
A graded K-algebra A is called graded integral domain iff whenever $a b=0$ for some $a \in A_{i}$ and $b \in A_{j}$ then $a=0$ or $b=0$.

Note that K is a graded K-algebra: the grading is given by

$$
K_{i}= \begin{cases}K & \text { if } i=0 \\ 0 & \text { if } i \neq 0\end{cases}
$$

Example 6.2.0.6

Let $R=K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, be the ring of polynomials in n indeterminates over a field K. Let
$R_{j}=0$ for all $j>0$,
$R_{0}=K$, and
$R_{j}=$ the set of all homogeneous polynomials of degree $-j$ if $j<0$. Then R is a graded K-algebra and a graded integral domain, with the negative grading.

Note that in R, if $\operatorname{dim}(f)=j$, i.e., $f \in R_{j}$ then degree of $f=-j$. From now on R will be graded in the negative way above, where K is a field of characteristic two, unless otherwise indicated.

Definition 6.2.3. Let R be a graded K-algebra. A (left) graded R-module M is a graded K-module, together with a sequence $\phi: R_{i} \otimes M_{j} \rightarrow M_{i+j}$ of K homomorphisms, for $i, j \in \mathbb{Z}$ such that the following diagrams:

commute for $i, j, m \in \mathbb{Z}$ where $\mu: K \longrightarrow R_{0}$ here $R_{0}=K,(k \otimes m) \mapsto k m \mapsto k m$ and $(k \otimes m) \mapsto(\mu(k) \otimes m) \mapsto \phi(\mu(k) \otimes m)=k m$ is the map given by the definition. We denote this by $M=\oplus \sum_{i=-\infty}^{\infty} M_{i}$. Similarly, we can define the right graded R-modules. If R is commutative, we may regard left R-modules as right R-modules, and vice versa. If $m \in M_{j}$ define $\operatorname{dim}(m)=j$.

Definition 6.2.4. Let $M=\oplus \sum_{i=-\infty}^{\infty} M_{i}$ and $N=\oplus \sum_{i=-\infty}^{\infty} N_{i}$ be a graded R-modules. A map of degree P from M to N is a family $F=\left\{f_{n}: M_{n} \rightarrow N_{n+P}, n \in \mathbb{Z}\right\}$ of R-module homomorphisms such that $F(r m)=r F(m)$, for $r \in R$ and $m \in M$.

Note that we will consider all elements in R to be homogeneous, so if we write $a \in R$, we mean $a \in R_{i}$ for some $i \in \mathbb{Z}$.

Definition 6.2.5. A differential graded (DG) R-module M of degree P is a graded R-module with an R-module homomorphism $\partial: M \rightarrow M$ of degree P such that $\partial^{2}=0$.

Definition 6.2.6. A graded R-module M is is said to be generated by a set $S=\cup_{i=-\infty}^{\infty} S_{i}$, where $S_{i} \subseteq M_{i}$ for all i, if every element $g \in M_{i}$ can be written as follows:

$$
\begin{equation*}
g=\sum r_{j} s_{j}, \text { where } r_{j} \in R \text { and } s_{j} \in S \text { such that } \operatorname{dim}\left(r_{j}\right)+\operatorname{dim}\left(s_{j}\right)=i \tag{6.2.1}
\end{equation*}
$$

The set S is called a generating set for M. Moreover, M is said to be finitely generated if it has a finite generating set $S . M$ is free if there exists a generating set S such that every $g \in M_{i}$ can be uniquely expressed as in (6.2.1) above.

Here we give an example of DG R-module, and also an illustration of a construction of Carlsson's in [15].

Example 6.2.0.7

[64] Let $K=\mathbb{Z} / 2$, and $G=\mathbb{Z} / 2 \cong\{1, a\}$, where $a^{2}=1$.
Let $R=K[x]$ be the graded polynomial ring in one variable of dimension -1 over K. Define the chain complex C_{*} by

$$
0 \rightarrow 0 \rightarrow C_{1} \xrightarrow{\delta_{1}} C_{0} \xrightarrow{\delta_{0}} 0 \rightarrow 0
$$

where; $C_{1} \cong \mathbb{Z} / 2 \oplus \mathbb{Z} / 2, \quad C_{0} \cong \mathbb{Z} / 2 \oplus \mathbb{Z} / 2$,

$$
\begin{gather*}
\delta_{1}(1,0)=(0,1)+(1,0) \tag{6.2.2}\\
\delta_{1}(0,1)=(1,0)+(0,1) \text { and } \\
\delta_{i} \equiv 0 \text { for } i \neq 1 .
\end{gather*}
$$

Clearly $\delta_{j-1} \circ \delta_{j}=0$ for all j, and the matrix of δ_{1} with respect to the basis $\{(1,0),(0,1)\}$ is

$$
\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right], \text { since } K=\mathbb{Z} / 2
$$

For $i=0,1$, define an action of G on C_{i} by

$$
\begin{aligned}
& a(1,0)=(1,0) \quad \text { and } \\
& a(0,1)=(1,0) . \text { Then }
\end{aligned}
$$

$a \delta_{1}=\delta_{1} a$ for $i=0,1$ and hence for all i. i.e., C_{*} is a chain complex of $K[G]$ -modules.

Denote by $(1,0)_{0}$ and $(0,1)_{0}$ for the generators of C_{0}, and similarly $(1,0)_{1}$ and $(0,1)_{1}$ for the generators of C_{1}. Since $C_{i} \cong \mathbb{Z} / 2 \oplus \mathbb{Z} / 2 \cong \mathbb{Z} / 2[G]$ for $i=0,1 ; C_{i}$ is a free $\mathbb{Z} / 2[G]$-module for all i, and a basis for C_{0} is $\left\{e_{0,1}=(1,0)_{0}, e_{0,2}=(0,1)_{0}\right\}$. Similarly a basis for C_{1} is $\left\{e_{1,1}=(1,0)_{1}, e_{0,2}=(0,1)_{1}\right\}$.

From this chain complex C_{*}, Carlsson constructs in [15] a free differential graded module M over the graded polynomial ring $K[X]$ as follows:

Let $M_{i}=0$ for $i \geq 2$

$$
\begin{aligned}
& M_{1}=0 \cdot C_{0} \oplus 1 \cdot C_{1} \\
& M_{0}=1 \cdot C_{0} \oplus x \cdot C_{1} \\
& M_{-1}=x \cdot C_{0} \oplus x^{2} \cdot C_{1} \\
& M_{-2}=x^{2} \cdot C_{0} \oplus x^{3} \cdot C_{1} \\
& \vdots \\
& M_{-j}=x^{j} \cdot C_{0} \oplus x^{j+1} \cdot C_{1} \\
& M_{-j-1}=x^{j+1} \cdot C_{0} \oplus x^{j+2} \cdot C_{1}
\end{aligned}
$$

One can see that, for $j \geq-1$, the map
$R_{-i} \otimes M_{-j} \longrightarrow M_{-(i+j)}$
$a x^{i} \otimes\left(x^{j} \cdot c_{0}, x^{j+1} \cdot c_{1}\right) \longmapsto\left(\alpha c_{0} x^{i+j}, \alpha c_{1} x^{i+j+1}\right)$
defines an R-module structure on M.
For $j \geq-1$, define $\partial_{-j}: M_{-j} \longrightarrow M_{-(j+1)}$ by

$$
\begin{equation*}
\partial_{-j}\left(x^{j} \cdot c_{0}, x^{j+1} \cdot c_{1}\right)=\left[x^{j+1} \delta_{1}\left(c_{1}\right)+x^{j+1}(a-1) c_{0}, x^{j+2}(a-1) c_{1}\right] \tag{6.2.3}
\end{equation*}
$$

where δ_{1} as in equation (6.2.3) and a as in the assumption. Now

$$
\begin{aligned}
& \partial_{-j-1} \circ \partial_{-j}\left(x^{j} \cdot c_{0}, x^{j+1} \cdot c_{1}\right) \\
& \quad=\partial_{-j-1}\left[x^{j+1} \delta_{1}\left(c_{1}\right)+x^{j+1}(a-1) c_{0}, x^{j+2}(a-1) c_{1}\right] \\
& \quad=\left[x^{j+2} \cdot \delta_{1}\left((a-1) c_{1}\right)+x^{j+2}(a-1) \delta_{1}\left(c_{1}\right), x^{j+3}(a-1)(a-1) c_{1}\right] \\
& \quad=\left[x^{j+2} \cdot\left[\delta_{1} a\left(c_{1}\right)-\delta_{1}\left(c_{1}\right)\right]+x^{j+2} \cdot\left[a \delta_{1}\left(c_{1}\right)-\delta_{1}\left(c_{1}\right)\right], x^{j+3}\left(a^{2}-1\right) c_{1}\right] \\
& \quad=\left[x^{j+2} \cdot\left[a \delta_{1}\left(c_{1}\right)-\delta_{1}\left(c_{1}\right)+a \delta_{1}\left(c_{1}\right)-\delta_{1}\left(c_{1}\right)\right], x^{j+3}\left(a^{2}-1\right) c_{1}\right], \quad\left(\text { since } a \delta_{1}=\delta_{1} a\right) \\
& \left.\quad=0 \quad \text { (since } a^{2}=1 \text { and } K=\mathbb{Z} / 2\right) .
\end{aligned}
$$

Let $e_{1}=e_{1,1}, \quad e_{2}=e_{1,2}, \quad e_{3}=e_{0,1}$ and $e_{4}=e_{0,2}$. If $m \in M_{-j}$, then m can be written uniquely as

$$
m=x^{j} \cdot c_{0}+x^{j+1} c_{1} \text { for some } c_{0} \in C_{0} \text { and } c_{1} \in C_{1} .
$$

But $c_{0}=\alpha_{1} e_{0,1}+\alpha_{2} e_{0,2} \quad$ and $c_{1}=\beta_{1} e_{1,1}+\beta_{2} e_{1,2}$ for some $\alpha_{i}{ }^{\prime} s$ and $\beta_{i}{ }^{\prime} s$ in $K[G]$. Therefore,

$$
\begin{aligned}
m & =x^{j}\left(\alpha_{1} e_{0,1}+\alpha_{2} e_{0,2}\right)+x^{j+1}\left(\beta_{1} e_{1,1}+\beta_{2} e_{1,2}\right) \\
& =\left(x^{j} \alpha_{1}\right) e_{0,1}+\left(x^{j} \alpha_{2}\right) e_{0,2}+\left(x^{j+1} \beta_{1}\right) e_{1,1}+\left(x^{j+1} \beta_{2}\right) e_{1,2} \\
& =\left(x^{j+1} \beta_{1}\right) e_{1}+\left(x^{j+1} \beta_{2}\right) e_{2}+\left(x^{j} \alpha_{1}\right) e_{3}+\left(x^{j} \alpha_{2}\right) e_{4},
\end{aligned}
$$

and hence $\gamma=\left\{e_{i}\right\}_{i=1}^{4}$ is an R-basis for M, and M, is a free DG R-module.

Example 6.2.0.8

[63] Let R be a differential graded algebra and M and N be DG R-modules. Suppose $f: M \rightarrow N$ is a morphism of DG R-modules. Then $\operatorname{ker}(f), \operatorname{coker}(f), \operatorname{im}(f)$ and $\operatorname{coim}(f)$ are also DG R-modules.

Let M be free finite generated differential graded R-module of degree -1 with basis S and differential ∂. Then S can be written as a finite union $\cup_{i=1}^{m} S_{k i}$. So there exist two integers $t>r$ such that $M_{i}=0$ for $i>t j$ and $s_{j}=\phi$ for $j>t$ and $j \leq r$. Thus we get the following diagram:

Note that some of $\left\{S_{j}\right\}_{j=r+1}^{t}$ could be ϕ.
To make the last diagram clear, Let as consider the following example.

Example 6.2.0.9

Let $R=K[x, y]$. Then $0=R_{1}=R_{2}=\cdots, R_{0}=K$ and R_{-1} is the set of all homogeneous polynomials of degree $1, R_{-2}$ is the set of all homogeneous polynomials of degree 2 , and so on. Hence $x^{3} y \in R_{-4}$ and of degree 4 but dimension -4. Now, let M be a left R-module with basis $\left\{e_{1}, e_{2}\right\}$. suppose $e_{1}, e_{2} \in M_{T}$ for some T, so $S_{T}=\left\{e_{1}, e_{2}\right\}$ and $S_{i}=\phi$ if $i \neq T$.

Note that $\operatorname{dim}(a m)=\operatorname{dim}(a)+\operatorname{dim}(m)$, where $a \in R, m \in M$. If $g \in M_{T}$, then g can be written uniquely as $g=a e_{1}+b e_{2}$. Thus $T=\operatorname{dim}\left(a e_{1}\right)=\operatorname{dim}(a)+\operatorname{dim}\left(e_{1}\right)=$ $\operatorname{dim}(a)+T$, so $\operatorname{dim}(a)=0$, i.e., $a \in K$. Similarly, $b \in K$. Therefore $M_{T}=K e_{1} \oplus K e_{2}$.

If $g \in M_{j}$ and $j>T$, then g can be written uniquely as : $g=a e_{1}+b e_{2}$. Thus $j=\operatorname{dim}\left(a e_{1}\right)=\operatorname{dim}(a)+\operatorname{dim}\left(e_{1}\right)=\operatorname{dim}(a)+T$. So $\operatorname{dim}(a)=j-T>0$. Hence $a \in R_{j-T}=0$. Similarly $b=0$ Therefore, $M_{j}=0$ for $j>T$.

If $g \in M_{j}$ and $j<T$, then g can be written uniquely as : $g=a e_{1}+b e_{2}$, and
hence $j=\operatorname{dim}\left(a e_{1}\right)=\operatorname{dim}(a)+\operatorname{dim}\left(e_{1}\right)=\operatorname{dim}(a)+T$. Then $\operatorname{dim}(a)=j-T<0$. Hence $a \in R_{j-T}$. Similarly, $b \in R_{j-T}$ Therefore, $M_{j}=R_{j-T} e_{1} \oplus R_{j-T} e_{2}$ for $j<T$. Hence, we get

$$
\begin{array}{cccccc}
M: 0 \longrightarrow & \cdots & 0 \longrightarrow & M_{T} \xrightarrow{\partial_{T}} & M_{T-1} \xrightarrow{\partial_{T-1}} & M_{r+1} \longrightarrow \\
U \mid & \cdots & \bigcup|\quad U| & U \mid & \bigcup \mid & \\
S: \phi & \cdots & \phi & S_{T}=\left\{e_{1}, e_{2}\right\} & \phi & \phi
\end{array}
$$

Suppose that M is a free finitely generated differential graded R-module of degree -1 with basis S, and differential ∂. Let $L=$ the total number of elements in the R-basis S. Then ∂ will be completely determined by an $L \times L$ matrix as in the diagram Δ of Figure 6.1:

Figure 6.1: Diagram Δ
with $\partial^{2}=0$.
Note that, some of the constants could be equal zeros. Also, some of the homogeneous polynomials may be equal to zero.

Similarly, if degree of ∂ equal $-j$ such that $j \geq 0$, then we can see the matrix of ∂ with respect to the basis S as in the diagram $\Lambda .1$ of Figure 6.2:

Figure 6.2: Diagram 1.1
with $\partial^{2}=0$.
Finally, if degree of ∂ equal is j such that $j>0$, then we can see the matrix of ∂ with respect to the basis S as in the diagram $\Lambda .2$ of Figure 6.3::

Figure 6.3: Diagram 1.2

Chapter 7

Solvable Differential Graded Modules

Let K be a field of characteristic two, $R=K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is a graded ring of polynomials graded in the negative way, and M be a free finitely generated differential graded R-module of degree P such that $(P \leq-2)$. We will give an example that M is not necessarily solvable when $(P \leq-2)$.

In this Chapter we will construct a classification for some types of differential graded R-modules, based on the degree P of the differential module and dimension of the module. This classification gives a partial algorithm to test whether such modules are solvable. For modules outside the classification we cannot decide, using our methods, whether or not they are solvable.

7.1 Composition Series

We will describe in this section the composition series by giving a definition for this series as well as give some of the concepts and definitions and theories that will help us in our study of differential graded modules.

Definition 7.1.1. By [64] Let M be a finitely generated free DG R-module of degree P. A composition series for M is a sequence of free DG R-modules

$$
0=C_{0} \subset C_{1} \subset \ldots \subset C_{q}=M
$$

such that $\left(C_{j} / C_{j-1}\right)$ is free $\mathrm{DG} R$-modules, whose differential is identically zero i.e., $\partial\left(C_{j} / C_{j-1}\right)=0$. The length H of the series is called the composition length.

Any module having a basis of size t is isomorphic to any other module having a basis of size t. If $\pi: M \longrightarrow F$ is a surjective homomorphism from an R-module to a free module F then $M \cong \operatorname{Ker}(\pi) \oplus F$. Therefore, if M has a composition series, as in Definition 7.1.1 then $C_{j} \cong C_{j-1} \oplus\left(C_{j} / C_{j-1}\right), \forall j$ (see [42]).

Suppose M is finitely generated free DG R-module of degree $P . M$ has basis $S=$ $S_{T} \cup \ldots \cup S_{T-k}, T, k \geq 0$. If $g \in M_{T}$ then $g=\sum r_{j} s_{j}$ where $\operatorname{dim}\left(r_{j}\right)+\operatorname{dim}\left(s_{j}\right)=T$. As $s_{j} \in S$ we have $\operatorname{dim}\left(s_{j}\right) \leq T$ and as $\operatorname{dim}\left(r_{j}\right) \leq 0$ we have $\operatorname{dim}\left(s_{j}\right)=T-\operatorname{dim}\left(r_{j}\right) \geq T$. This holds $\forall j$, so M is generated by S_{T}.

Similarly, if $g \in M_{T+s}$, where $s \neq 0$ we have $g=\sum r_{j} s_{j}$ with $\operatorname{dim}\left(r_{j}\right)+\operatorname{dim}\left(s_{j}\right)=$ $T+s$. So $T \geq \operatorname{dim}\left(s_{j}\right)=T+s-\operatorname{dim}\left(r_{j}\right) \geq T+s$ (as $\left.-\operatorname{dim}\left(r_{j}\right) \geq 0\right)$. If $s>0$, it follows that $M_{T+s}=0$, while if $s<0$ then, setting $t=-s, M_{T-t}$ is generated by $S_{T-t} \cup \ldots \cup S_{T}$.

Note that, as M_{T-t} is generated by $S_{T-t} \cup \ldots \cup S_{T}$, it is also a finitely generated free DG R-module for $t=0, \ldots, k$. (M_{T-t} is free on $S_{T-t} \cup \ldots \cup S_{T}$, since M is free on S.)

Suppose M has a composition series $0=C_{0} \subset C_{1} \subset \ldots \subset C_{q}=M$. Then C_{j} is finitely generated free; so has a finite basis S_{j}, say $j=0, \ldots, H$. Then $S_{j}=\cup_{t=0}^{\infty} S_{i}$, where $\left(S_{j}\right)_{T-t} \in M_{T-t}$; so $\left(C_{j}\right)_{T-t}$ is free on $\left(S_{j}\right)_{T-t}$. Moreover we have a sequence of free $\mathrm{DG} R$-modules,

$$
\forall t 0=\left(C_{0}\right)_{T-t} \subseteq\left(C_{1}\right)_{T-t} \subseteq \ldots \subseteq\left(C_{q-1}\right)_{T-t} \subseteq\left(C_{q}\right)_{T-t}=M_{T-t}
$$

Also, as C_{j} / C_{j-1} is free, so is $\left(\frac{C_{j}}{C_{j-1}}\right)_{T-t}=\left(C_{j}\right)_{T-t} /\left(C_{j-1}\right)_{T-t}$, for all $t \geq 0$.
Finally as $\partial\left(C_{j} / C_{j-1}\right)=0$ we have $\partial\left(\left(C_{j}\right)_{T-t} /\left(C_{j-1}\right)_{T-t}\right)=0 \forall t$. Therefore, M_{T-t} has a composition series. So M_{T}, M_{T-1}, \ldots are free DG R-modules and also C_{q} / C_{q-1} is free DG R-modules by the definition.

For a special case if degree ∂ is -1 , i.e, $P=-1$ then we have that,

$$
\begin{array}{cc}
& 0 \\
0=\left(C_{0}\right)_{T} \subset\left(C_{1}\right)_{T} \subset \ldots \subset\left(C_{q-1}\right)_{T} \subset\left(C_{q}\right)_{T} & \downarrow \\
0=\left(C_{0}\right)_{T-1} \subset\left(C_{1}\right)_{T-1} \subset \ldots \subset\left(C_{q-1}\right)_{T-1} \subset\left(C_{q}\right)_{T-1} & =M_{T} \\
& \downarrow \partial_{T} \\
& \\
& \\
0=\left(C_{0}\right)_{T-2} \subset\left(C_{1}\right)_{T-2} \subset \ldots \subset\left(C_{q-1}\right)_{T-2} \subset\left(C_{q}\right)_{T-2} & =M_{T-2} \\
& \downarrow \partial_{T-2}
\end{array}
$$

Therefore, $\partial\left(C_{1}\right)=0$, i.e., $\partial\left(C_{1}\right) \subseteq C_{0}=\{0\}, \partial\left(C_{2}\right) \subseteq C_{1}, \ldots \partial\left(C_{q}\right) \subseteq C_{q-1}$. So one can note that, the matrix ∂ with respect to the basis S is a strictly upper triangular.

In the general case, if degree $\partial=-j$ such that $j>0$, then

$$
\begin{aligned}
& 0 \\
& \downarrow \\
& 0=\left(C_{0}\right)_{T} \subset\left(C_{1}\right)_{T} \subset \ldots \subset\left(C_{q-1}\right)_{T} \subset\left(C_{q}\right)_{T} \quad=M_{T} \\
& \downarrow \partial_{T} \\
& 0=\left(C_{0}\right)_{T-j} \subset\left(C_{1}\right)_{T-j} \subset \ldots \subset\left(C_{q-1}\right)_{T-j} \subset\left(C_{q}\right)_{T-j} \quad=M_{T-j} \\
& \downarrow \partial_{T-j} \\
& 0=\left(C_{0}\right)_{T-2 j} \subset\left(C_{1}\right)_{T-2 j} \subset \ldots \subset\left(C_{q-1}\right)_{T-2 j} \subset\left(C_{q}\right)_{T-2 j}=M_{T-2 j} \\
& \downarrow \partial_{T-2 j}
\end{aligned}
$$

Then $\left(C_{q}\right)_{j} /\left(C_{q-1}\right)_{j-1}$ is free as C_{j} / C_{j-1} is free and $\partial_{T}\left(\left(C_{q}\right)_{T} /\left(C_{q-1}\right)_{T}\right)=0$, which means $\partial_{T}\left(\left(C_{q}\right)_{T}\right) \subset\left(C_{q-1}\right)_{T-j}$. So M_{j} has composition series as follows,

$$
0=\left(C_{0}\right)_{j} \subseteq\left(C_{1}\right)_{j} \subseteq \ldots \subseteq\left(C_{q-1}\right)_{j} \subseteq\left(C_{q}\right)_{j}=M_{j}
$$

Therefore, the matrix of ∂ with respect to the basis S is a strictly upper triangular with the diagonal elements which are zeros.

Example 7.1.0.10

Let K be a field and $R=K[x]$, be a polynomials ring with one variable over the field K. Let M be a graded R-module with basis $S=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$, such that $\left\{e_{1}, e_{2}\right\}$ have the same dimension T, while $\left\{e_{3}, e_{4}\right\}$ have dimension $T-1$. Then M is graded as follows:

$$
\begin{aligned}
& 0 \\
& \downarrow \\
e_{1}, e_{2} \in & M_{T}=k \cdot e_{1} \oplus k \cdot e_{2} . \\
& \downarrow \\
e_{3}, e_{4} \in & M_{T-1}=R_{-1} \cdot e_{1} \oplus R_{-1} \cdot e_{2} \oplus k \cdot e_{3} \oplus k \cdot e_{4} . \\
& \downarrow
\end{aligned}
$$

```
\downarrow
MT-i}=\mp@subsup{R}{-i}{}\cdot\mp@subsup{e}{1}{}\oplus\mp@subsup{R}{-i}{}.\mp@subsup{e}{2}{}\oplus\mp@subsup{R}{-i}{}\cdot\mp@subsup{e}{3}{}\oplus\mp@subsup{R}{-i}{}.\mp@subsup{e}{4}{}
    \downarrow
```

We define the differential operator ∂ with respect to the basis S as follows:

$$
\begin{aligned}
& \partial\left(e_{1}\right)=0, \\
& \quad \partial\left(e_{2}\right)=0, \\
& \partial\left(e_{3}\right)=x^{2} e_{1}+x^{2} e_{2}, \text { and } \\
& \partial\left(e_{4}\right)=x^{2} e_{1}+x^{2} e_{2} .
\end{aligned}
$$

Then the matrix of ∂ with respect to the basis S is given by:

$$
\partial=\left[\begin{array}{cc:cc}
0 & 0 & x^{2} & x^{2} \\
0 & 0 & x^{2} & x^{2} \\
\hdashline 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

It's clear that $\partial^{2}=0$.
Now, $\quad \operatorname{dim}\left(\partial\left(e_{3}\right)\right)=\operatorname{dim}\left(x^{2} e_{1}\right)=\operatorname{dim}\left(e_{1}\right)+\operatorname{dim}\left(x^{2}\right)=T-2 . \quad$ Similarly, $\operatorname{dim}\left(e_{3}\right)=\operatorname{dim}\left(e_{4}\right)=T-1$, while $\operatorname{dim}\left(\partial\left(e_{4}\right)\right)=T-2$, so degree of the differential ∂ is equal to -1 .

Let $\left(C_{0}\right)=0,\left(C_{1}\right)=\left\langle e_{1}, e_{2}\right\rangle$ over $R=\left\{f_{1} e_{1}+f_{2} e_{2}: f_{1}, f_{2} \in R\right\}$, and $\left(C_{2}\right)=$ M. Thus, $\left(C_{1} / C_{0}\right)=\left\langle e_{1}, e_{2}\right\rangle$. But, $\partial\left(e_{1}\right)=\partial\left(e_{2}\right)=0$, So $\partial\left(C_{1} / C_{0}\right)=0$. Now, $\left(C_{2} / C_{1}\right)=\left\langle e_{3}, e_{4}\right\rangle$, but $\partial\left(e_{3}\right)=\partial\left(e_{4}\right)=x^{2} e_{1}+x^{2} e_{2} \in C_{1}$, also $\partial\left(\left(C_{2} / C_{1}\right)\right)=$ $\partial\left(C_{1}\right)=0$. Therefore, we have that $0=\left(C_{0}\right) \subset\left(C_{1}\right) \subset\left(C_{2}\right)=M$ which is a composition series of M.

Note: If M has a composition series, then the matrix of ∂ is similar to the upper triangular matrix has its diagonal zeros and we call it a strictly upper triangular matrix.

Example 7.1.0.11

Let M as in the previous example, and the differential operator ∂ with respect to the basis $S=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ has the following form:

$$
\partial=\left[\begin{array}{llll}
x & x & 0 & 0 \\
x & x & 0 & 0 \\
1 & 1 & x & x \\
1 & 1 & x & x
\end{array}\right]
$$

Then $\partial^{2}=0$ and the differential operator ∂ has degree is -1 . Let $\beta_{1}=e_{3}+e_{4}$, $\beta_{2}=e_{1}+e_{2}, \beta_{3}=e_{2}$, and $\beta_{4}=e_{3}$.

We claim that: $\beta_{1}, \beta_{2}, \beta_{3}$ and β_{4} form a basis to M over R. We will show that:
Let $m \in M_{j}$. Then, $m=\alpha_{1} e_{1}+\alpha_{2} e_{2}+\alpha_{3} e_{3}+\alpha_{4} e_{4}$. Hence, $m=\alpha_{4} \beta_{1}+$ $\alpha_{1} \beta_{2}+\left(\alpha_{1}+\alpha_{2}\right) \beta_{3}+\left(\alpha_{3}+\alpha_{4}\right) \beta_{4}$. Also, if $\alpha_{1} \beta_{1}+\alpha_{2} \beta_{2}+\alpha_{3} \beta_{3}+\alpha_{4} \beta_{4}=0$, then $\alpha_{1}\left(e_{3}+e_{4}\right)+\alpha_{2}\left(e_{1}+e_{2}\right)+\alpha_{3} e_{2}+\alpha_{4} e_{3}=0$. Thus, $\alpha_{2} e_{1}+\left(\alpha_{2}+\alpha_{3}\right) e_{2}+\left(\alpha_{1}+\alpha_{4}\right) e_{3}+\alpha_{1} e_{4}=$ 0 . But, $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ is a basis for M, also $\alpha_{2}=\alpha_{1}=0$ and $\alpha_{2}+\alpha_{3}=\alpha_{1}+\alpha_{4}=0$ this implies that $\alpha_{1}=\alpha_{2}=\alpha_{3}=\alpha_{4}=0$. So, $\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4},\right\}$ is a basis to M.

Now, $\partial\left(\beta_{1}\right)=\partial\left(e_{3}\right)+\partial\left(e_{4}\right)=\left(x e_{3}+x e_{4}\right)+\left(x e_{3}+x e_{4}\right)=0, \partial\left(\beta_{2}\right)=\partial\left(e_{1}\right)+\partial\left(e_{2}\right)=$ $\left(x e_{1}+x e_{2}+e_{3}+e_{4}\right)+\left(x e_{1}+x e_{2}+e_{3}+e_{4}\right)=0, \partial\left(\beta_{3}\right)=\partial\left(e_{2}\right)=x e_{1}+x e_{2}+e_{3}+e_{4}=$ $\beta_{1}+x \beta_{2}$ and $\partial\left(\beta_{4}\right)=\partial\left(e_{3}\right)=x e_{3}+x e_{4}=x \beta_{1}$. Hence, the matrix ∂ with respect to the basis $\left\{\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right\}$ is given by:

$$
\partial^{*}=\left[\begin{array}{llll}
0 & 0 & 1 & x \\
0 & 0 & x & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Let $\left(C_{0}\right)=0,\left(C_{1}\right)=\left\langle\beta_{1}, \beta_{2}\right\rangle$, and $\left(C_{2}\right)=M$, then one can be easily shows that M has a composition series.

Theorem 7.1.2. [15] Let M be a free finitely generated differential graded R-module with differential ∂ of degree $P=-1$, then M has a composition series.

Remark 7.1.3. If M admits a composition series, then we say that M is solvable.
Remark 7.1.4. Let M be any DGR-modules of rank 1 and ∂ be a differential on M of any degree. Then the matrix of ∂ with respect to the basis $\left\{e_{1}\right\}$ is given by $\partial=[a], a \in R$. But $\partial^{2}=0$ which implies that $a=0$. Then M has a composition series. From now we will only consider DG R - modules of rank greater than 1 .

In our work we will use the following lemma:

Lemma 7.1.5. [64] Let M be a free finitely generated differential graded R-module with differential ∂ and basis $S=\left\{e_{i}\right\}_{i=1}^{m}$. consider the following elementary row and column operations, on the matrix of ∂ with respect to this basis:
(1) Exchange $\operatorname{row}(i)$ and $\operatorname{row}(j)$, and at the same time exchange column(i) and column(j).
(2) Replace row (j) by row $(j)+g(\operatorname{row}(i))$ and at the same time replace column (i) by $\operatorname{column}(i)+g($ column $(j))$, where $g \in R$ and $\operatorname{deg}(g)=\operatorname{dim}\left(e_{j}\right)-\operatorname{dim}\left(e_{i}\right)$. Then each of these operations corresponds to a change of basis in M.

Remark 7.1.6. Since the characteristic of the field which we deal with it is two, then $(-)$ is $(+)$, thus the step (2) of Lemma 7.1.5 becomes that:
(Replace $\operatorname{row}(j)$ by $\operatorname{row}(j)-g(\operatorname{row}(i))$ and at the same time replace column (i) by column $(i)-g(\operatorname{column}(j))$, where $g \in R$ and $\operatorname{deg}(g)=\operatorname{dim}\left(e_{j}\right)-\operatorname{dim}\left(e_{i}\right)$. Then each of these operations corresponds to a change of basis in M).

Remark 7.1.7. If the matrix of ∂ with respect to basis S is a strictly upper triangular matrix, then M is solvable.

7.2 Solvable differential Graded Modules

In the following example we show that if $R=K\left[x_{1}, x_{2}, \ldots, x_{n}\right], n \geq 2$ and M is a free finitely generated differential graded R-module with differential ∂ of degree $P \leq-2$, then M is not necessarily solvable.

Example 7.2.0.12

Let $R=K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be a graded ring of polynomials graded in the negative way and M be a free finitely generated differential graded R-module of dimension four with basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$. Suppose the differential ∂ on M has degree $(P \leq-2)$, and its matrix with respect to $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ is

$$
\partial=\left[\begin{array}{cccc}
x_{1} x_{2}^{m-1} & 0 & 0 & x_{1}^{2} x_{2}^{m-2} \\
0 & x_{1} x_{2}^{m-1} & x_{1}^{2} x_{2}^{m-2} & 0 \\
0 & x_{2}^{m} & x_{1} x_{2}^{m-1} & 0 \\
x_{2}^{m} & 0 & 0 & x_{1} x_{2}^{m-1}
\end{array}\right]
$$

Clearly, $\partial^{2}=0$.

We suppose M has a composition series. Then there exists an invertible matrix $B=\left\{f_{i j}\right\}_{i, j=1}^{4}$, and strictly upper triangular matrix ∂^{\prime} such that $\partial \cdot B=B \cdot \partial^{\prime}$, i.e.,
$\left[\begin{array}{cccc}x_{1} x_{2}^{m-1} & 0 & 0 & x_{1}^{2} x_{2}^{m-2} \\ 0 & x_{1} x_{2}^{m-1} & x_{1}^{2} x_{2}^{m-2} & 0 \\ 0 & x_{2}^{m} & x_{1} x_{2}^{m-1} & 0 \\ x_{2}^{m} & 0 & 0 & x_{1} x_{2}^{m-1}\end{array}\right]\left[\begin{array}{cccc}f_{11} & f_{12} & f_{13} & f_{14} \\ f_{21} & f_{22} & f_{23} & f_{24} \\ f_{31} & f_{32} & f_{33} & f_{34} \\ f_{41} & f_{42} & f_{43} & f_{44}\end{array}\right]=$
$\left[\begin{array}{cccc}f_{11} & f_{12} & f_{13} & f_{14} \\ f_{21} & f_{22} & f_{23} & f_{24} \\ f_{31} & f_{32} & f_{33} & f_{34} \\ f_{41} & f_{42} & f_{43} & f_{44}\end{array}\right]\left[\begin{array}{cccc}0 & g_{1} & g_{2} & g_{3} \\ 0 & 0 & g_{4} & g_{5} \\ 0 & 0 & 0 & g_{6} \\ 0 & 0 & 0 & 0\end{array}\right]$
Multiply $\operatorname{row}(1)$ by column(1) to get, $x_{1} x_{2}^{m-1} f_{11}+x_{1}^{2} x_{2}^{m-2} f_{41}=0$ which implies that $x_{1} x_{2}^{m-1} f_{11}=x_{1}^{2} x_{2}^{m-2} f_{41}$ (since K is of characteristic 2) and this implies that $x_{2} f_{11}=x_{1} f_{41}$.

Now, $x_{2} \mid x_{1} f_{41}$ implies that $x_{2} \mid f_{41}$, say $f_{41}=x_{2} g_{4}$. Similarly $f_{11}=x_{1} g_{1}$.
In a similar way multiply row(2) with column(1) to get, $x_{1} x_{2}^{m-1} f_{21}+x_{1}^{2} x_{2}^{m-2} f_{31}=$ 0 , which implies that $x_{1} x_{2}^{m-1} f_{21}=x_{1}^{2} x_{2}^{m-2} f_{31}$ (since K is of characteristic 2) which implies that $x_{2} f_{21}=x_{1} f_{31}$ which implies that $x_{2} \mid x_{1} f_{31}$ which implies that $x_{2} \mid f_{31}$, say $f_{31}=x_{2} g_{3}$. Similarly, $f_{21}=x_{1} g_{2}$. Thus, $f_{j 1}(0,0, \ldots, 0)=0$ for $j=1,2,3,4$.

Now since B is an invertible, there exists

$$
B^{-1}=\left[\begin{array}{llll}
h_{11} & h_{12} & h_{13} & h_{14} \\
h_{21} & h_{22} & h_{23} & h_{24} \\
h_{31} & h_{32} & h_{33} & h_{34} \\
h_{41} & h_{42} & h_{43} & h_{44}
\end{array}\right]
$$

such that $B B^{-1}=I$.
Therefore, $h_{11} f_{11}+h_{12} f_{21}+h_{13} f_{31}+h_{14} f_{41}=1$.
Now, by evaluating both sides at $(0,0, \ldots, 0)$ we will get that $0=1$, which is a contradiction. So M does not have a composition series. Hence M is not solvable.

Proposition 7.2.1. Let K be a field and let $R=K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be a graded ring of polynomials graded graded in the negative way. Let M be a free finitely generated differential graded R-module with basis $S=\left\{e_{1}, e_{2}\right\}$, and with differential ∂ of degree
$P \leq-2$. Suppose, $\operatorname{dim}\left(e_{1}\right)=k_{1}$ and $\operatorname{dim}\left(e_{2}\right)=k_{2}$, such that $k_{1}>k_{2}$. If $k_{1}-k_{2}=t$ such that $t \geq-P$, then M is solvable.

Proof. M is graded as follows:
0
\downarrow
$e_{1} \in M_{k_{1}}=K \cdot e_{1} \oplus 0 \cdot e_{2}$.
\downarrow
\downarrow
$e_{2} \in M_{k_{2}}=R_{k_{2}-k_{1}} \cdot e_{1} \oplus k . e_{2}$.
\downarrow
\downarrow
$e_{j} \in M_{k_{j}}=R_{k_{j}-k_{1}} \cdot e_{1} \oplus R_{k_{j}-k_{2}} \cdot e_{2} \oplus \ldots \oplus$ k. e_{m}.
\downarrow

Suppose that,

$$
\begin{aligned}
\partial\left(e_{1}\right) & =f_{11} e_{1}+f_{21} e_{2} \\
\partial\left(e_{2}\right) & =f_{12} e_{1}+f_{22} e_{2}
\end{aligned}
$$

Then the matrix of ∂ with respect to the basis $\left\{e_{i}\right\}_{i=1}^{2}$ is given by:

$$
\partial=\left[\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right]
$$

Now,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{1}\right)\right)=\operatorname{dim}\left(f_{11}\right)+\operatorname{dim}\left(e_{1}\right), \\
k_{1}+P=\operatorname{dim}\left(f_{11}\right)+k_{1}, \text { implies that } \\
\operatorname{dim}\left(f_{11}\right)=P<0, \text { and thus } \operatorname{deg}\left(f_{11}\right)=-P .
\end{gathered}
$$

So,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{1}\right)\right)=\operatorname{dim}\left(f_{21}\right)+\operatorname{dim}\left(e_{2}\right), \\
k_{1}+P=\operatorname{dim}\left(f_{21}\right)+k_{2}, \text { implies that }
\end{gathered}
$$

$$
\begin{gathered}
\operatorname{dim}\left(f_{21}\right)=P+k_{1}-k_{2} \geq P-P=0, \text { and thus } \\
f_{21}=C \neq 0 \text { (constant) or } f_{21}=0 .
\end{gathered}
$$

Also,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{2}\right)\right)=\operatorname{dim}\left(f_{12}\right)+\operatorname{dim}\left(e_{1}\right), \\
k_{2}+P=\operatorname{dim}\left(f_{12}\right)+k_{1}, \text { implies that } \\
\operatorname{dim}\left(f_{12}\right)=P+k_{2}-k_{1}<0, \text { and thus } \operatorname{deg}\left(f_{12}\right)=-\left(P+k_{2}-k_{1}\right) .
\end{gathered}
$$

So,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{2}\right)\right)=\operatorname{dim}\left(f_{22}\right)+\operatorname{dim}\left(e_{2}\right), \\
k_{2}+P=\operatorname{dim}\left(f_{22}\right)+k_{2}, \text { implies that } \\
\operatorname{dim}\left(f_{22}\right)=P+k_{2}-k_{2}=P, \text { and thus } \operatorname{deg}\left(f_{22}\right)=-P .
\end{gathered}
$$

Hence, the matrix of ∂ is given by:

$$
\partial=\left[\begin{array}{ll}
f_{11} & f_{12} \\
f_{21} & f_{22}
\end{array}\right]
$$

where $f_{21}=0$ or $f_{21}=C \neq 0$ (constant).
Case (1): If $f_{21}=0$, then the matrix of ∂ is given by

$$
\partial=\left[\begin{array}{cc}
f_{11} & f_{12} \\
0 & f_{22}
\end{array}\right]
$$

since $\partial^{2}=0$, implies that $f_{11}^{2}=0$ and $f_{22}^{2}=0$.
Thus, $f_{11}=0$ and $f_{22}=0$.
Therefore, the matrix of ∂ is given by:

$$
\partial=\left[\begin{array}{cc}
0 & f_{12} \\
0 & 0
\end{array}\right]
$$

Note that, ∂ is strictly upper triangular matrix.
To show, M has a composition series:
Let $C_{0}=0, C_{1}=\left\langle e_{1}\right\rangle$ and $C_{2}=\left\langle e_{1}, e_{2}\right\rangle$.
Then C_{j} / C_{j-1} is free, for all $j=1,2$.
If $x \in C_{2}$, then
$x=\alpha_{1} e_{1}+\alpha_{2} e_{2}$
So, $\partial(x)=\alpha_{1} \partial\left(e_{1}\right)+\alpha_{2} \partial\left(e_{2}\right)$
$\partial(x)=\alpha_{1}(0)+\alpha_{2}\left(f_{12} e_{1}\right) \in C_{1}$.
Thus, $\partial\left(C_{2}\right) \subseteq C_{1}$, and then $\partial\left(C_{2} / C_{1}\right)=0$.
Also, if $x \in C_{1}$, then $x=\alpha_{1} e_{1}$ and so,
$\partial(x)=\alpha_{1} \partial\left(e_{1}\right)=\alpha_{1}(0)=0 \in C_{0}$.
Hence, $\partial\left(C_{1}\right) \subseteq C_{0}$, and then $\partial\left(C_{1} / C_{0}\right)=0$.
Therefore, $0=C_{0} \subseteq C_{1} \subseteq C_{2}=M$ is a composition series for M.
Hence, M is solvable.
Case (2): If $f_{21}=C \neq 0$, (constant), then the matrix of ∂ is given by:

$$
\partial=\left[\begin{array}{cc}
f_{11} & f_{12} \\
C & f_{22}
\end{array}\right]
$$

Since, $\partial^{2}=0$, we have that,
$f_{11}^{2}+C f_{12}=0$ and $C f_{12}+f_{22}^{2}=0$.
Hence, $f_{11}=f_{22}$ and $C f_{12}=f_{11}^{2}$.
Now, by Lemma 7.1.5, replace $\operatorname{row}(1)$ by $\operatorname{row}(1)-\left(\frac{f_{11}}{C}\right) \operatorname{row}(2)$ and at the same time replace column (2) by column $(2)-\left(\frac{f_{11}}{C}\right) \operatorname{column}(1)$ to get:

$$
\partial=\left[\begin{array}{ll}
0 & 0 \\
C & 0
\end{array}\right]
$$

By Lemma 7.1.5, replace row(1) by row(2) and at the time replace column(2) by column(1) to get:

$$
\partial=\left[\begin{array}{ll}
0 & C \\
0 & 0
\end{array}\right]
$$

Therefore, M is solvable as before (Case 1).
Proposition 7.2.2. Let K be a field and let $R=K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be a graded ring of polynomials graded in the negative way. Let M be a free finitely generated differential graded R-module with basis $S=\left\{e_{i}\right\}_{i=1}^{3}$ and with differential ∂ of degree $(P \leq-2)$. Suppose that, $\operatorname{dim}\left(e_{i}\right)=k_{i}$ such that $1 \leq i \leq 3$ and $k_{i}>k_{i+1}$. If $k_{i}-k_{i+1}=t_{i}$ such that $t_{i} \geq-P$, then M is solvable.

Proof. M is graded as follows:

```
    0
    \downarrow
e}\mp@subsup{e}{1}{}\in\mp@subsup{M}{\mp@subsup{k}{1}{}}{}=K\cdot\mp@subsup{e}{1}{}\oplus0\cdot\mp@subsup{e}{2}{}\oplus0\cdot\mp@subsup{e}{3}{}
    \downarrow
    \downarrow
e}\mp@subsup{e}{2}{}\in\mp@subsup{M}{\mp@subsup{k}{2}{}}{}=\mp@subsup{R}{\mp@subsup{k}{2}{}-\mp@subsup{k}{1}{}}{}\cdot\mp@subsup{e}{1}{}\oplusk.\mp@subsup{e}{2}{}\oplus0\cdot\mp@subsup{e}{3}{}
    \downarrow
    \downarrow
e}\mp@subsup{e}{3}{}\in\mp@subsup{M}{\mp@subsup{k}{3}{}}{}=\mp@subsup{R}{\mp@subsup{k}{3}{}-\mp@subsup{k}{1}{}}{}\cdot\mp@subsup{e}{1}{}\oplus\mp@subsup{R}{\mp@subsup{k}{3}{}-\mp@subsup{k}{2}{}}{}\cdot\mp@subsup{e}{2}{}\oplusk\cdot\mp@subsup{e}{3}{}
    \downarrow
    \downarrow
e}\mp@subsup{e}{j}{}\in\mp@subsup{M}{\mp@subsup{k}{j}{}}{}=\mp@subsup{R}{\mp@subsup{k}{j}{}-\mp@subsup{k}{1}{}}{}\cdot\mp@subsup{e}{1}{}\oplus\mp@subsup{R}{\mp@subsup{k}{j}{}-\mp@subsup{k}{2}{}}{}\cdot\mp@subsup{e}{2}{}\oplus\mp@subsup{R}{\mp@subsup{k}{j}{}-\mp@subsup{k}{3}{}}{}\cdot\mp@subsup{e}{3}{}\oplus\ldots\oplusk...\mp@subsup{e}{j}{}
    \downarrow
```

Suppose that,

$$
\begin{aligned}
\partial\left(e_{1}\right) & =f_{11} e_{1}+f_{21} e_{2}+f_{31} e_{3} \\
\partial\left(e_{2}\right) & =f_{12} e_{1}+f_{22} e_{2}+f_{32} e_{3} \\
\partial\left(e_{3}\right) & =f_{13} e_{1}+f_{23} e_{2}+f_{33} e_{3}
\end{aligned}
$$

Then the matrix of ∂ with respect to the basis $\left\{e_{1}\right\}_{i=1}^{3}$ is given by:

$$
\partial=\left[\begin{array}{lll}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33}
\end{array}\right]
$$

Now,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{1}\right)\right)=\operatorname{dim}\left(f_{11}\right)+\operatorname{dim}\left(e_{1}\right), \\
k_{1}+P=\operatorname{dim}\left(f_{11}\right)+k_{1}, \text { implies that } \\
\operatorname{dim}\left(f_{11}\right)=P, \text { and thus } \operatorname{deg}\left(f_{11}\right)=-P .
\end{gathered}
$$

So,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{1}\right)\right)=\operatorname{dim}\left(f_{21}\right)+\operatorname{dim}\left(e_{2}\right), \\
k_{1}+P=\operatorname{dim}\left(f_{21}\right)+k_{2}, \text { implies that } \\
\operatorname{dim}\left(f_{21}\right)=P+k_{1}-k_{2}=P+t_{1} \geq P-P=0, \text { and thus } \\
f_{21}=0 \text { or } f_{21}=C \neq 0 \text { (constant) } .
\end{gathered}
$$

Also,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{1}\right)\right)=\operatorname{dim}\left(f_{31}\right)+\operatorname{dim}\left(e_{3}\right), \\
k_{1}+P=\operatorname{dim}\left(f_{31}\right)+k_{3}, \text { implies that } \\
\operatorname{dim}\left(f_{31}\right)=k_{1}-k_{3}+P \geq-2 P+P=-P, \text { and thus } f_{31}=0
\end{gathered}
$$

Also,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{2}\right)\right)=\operatorname{dim}\left(f_{12}\right)+\operatorname{dim}\left(e_{1}\right), \\
k_{2}+P=\operatorname{dim}\left(f_{12}\right)+k_{1}, \text { implies that } \\
\operatorname{dim}\left(f_{12}\right)=k_{2}-k_{1}+P \text { and thus } \operatorname{deg}\left(f_{12}\right)=-\left(k_{2}-k_{1}+P\right) .
\end{gathered}
$$

So,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{2}\right)\right)=\operatorname{dim}\left(f_{22}\right)+\operatorname{dim}\left(e_{2}\right), \\
k_{2}+P=\operatorname{dim}\left(f_{22}\right)+k_{2}, \text { implies that } \\
\operatorname{dim}\left(f_{22}\right)=P+k_{2}-k_{2}=P, \text { and thus } \operatorname{deg}\left(f_{22}\right)=-P .
\end{gathered}
$$

So,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{2}\right)\right)=\operatorname{dim}\left(f_{32}\right)+\operatorname{dim}\left(e_{3}\right), \\
k_{2}+P=\operatorname{dim}\left(f_{32}\right)+k_{3}, \text { implies that } \\
\operatorname{dim}\left(f_{32}\right)=k_{2}-k_{3}+P \geq-P+P=0, \text { and thus } \\
f_{32}=0 \text { or } f_{32}=\alpha \neq 0 \text { (constant) } .
\end{gathered}
$$

Also,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{3}\right)\right)=\operatorname{dim}\left(f_{13}\right)+\operatorname{dim}\left(e_{1}\right), \\
k_{3}+P=\operatorname{dim}\left(f_{13}\right)+k_{1}, \text { implies that }
\end{gathered}
$$

$$
\operatorname{dim}\left(f_{13}\right)=k_{3}-k_{1}+P<0 \text { and thus } \operatorname{deg}\left(f_{13}\right)=-\left(k_{3}-k_{1}+P\right)
$$

So,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{3}\right)\right)=\operatorname{dim}\left(f_{23}\right)+\operatorname{dim}\left(e_{2}\right), \\
k_{3}+P=\operatorname{dim}\left(f_{23}\right)+k_{2}, \text { implies that } \\
\operatorname{dim}\left(f_{23}\right)=P+k_{3}-k_{2}<0 \text { and thus } \operatorname{deg}\left(f_{23}\right)=-\left(k_{3}-k_{2}+P\right) .
\end{gathered}
$$

So,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{3}\right)\right)=\operatorname{dim}\left(f_{33}\right)+\operatorname{dim}\left(e_{3}\right), \\
k_{3}+P=\operatorname{dim}\left(f_{33}\right)+k_{3}, \text { implies that } \\
\operatorname{dim}\left(f_{33}\right)=P, \text { and thus } \operatorname{deg}\left(f_{33}\right)=-P .
\end{gathered}
$$

From the previous steps we can conclude the following:

1. $f_{31}=0$,
2. $f_{21}=0$ or $f_{21}=C \neq 0$ (constant),
3. $f_{32}=0$ or $f_{32}=\alpha \neq 0$ (constant),
4. $\operatorname{deg}\left(f_{11}\right)=\operatorname{deg}\left(f_{22}\right)=\operatorname{deg}\left(f_{33}\right)=-P$.

Hence,

$$
\partial=\left[\begin{array}{ccc}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
0 & f_{32} & f_{33}
\end{array}\right]
$$

Case (1): If $f_{21}=0$, then the matrix of ∂ is given by

$$
\partial=\left[\begin{array}{ccc}
f_{11} & f_{12} & f_{13} \\
0 & f_{22} & f_{23} \\
0 & f_{32} & f_{33}
\end{array}\right]
$$

since $\partial^{2}=0$, implies that $f_{11}^{2}=0$ and then $f_{11}=0$.
Thus,

$$
\partial=\left[\begin{array}{lll}
0 & f_{12} & f_{13} \\
0 & f_{22} & f_{23} \\
0 & f_{32} & f_{33}
\end{array}\right]
$$

In this case either $f_{32}=0$ or $f_{32}=\alpha \neq 0$ (constant).
Case (1.1): If $f_{32}=0$, then the matrix of ∂ is given by

$$
\partial=\left[\begin{array}{ccc}
0 & f_{12} & f_{13} \\
0 & f_{22} & f_{23} \\
0 & 0 & f_{33}
\end{array}\right]
$$

since $\partial^{2}=0$, implies that, $f_{22}^{2}=f_{33}^{2}=0$.
So, $f_{22}=f_{33}=0$. (since R is an integral domain).
Thus, the matrix of ∂ is given by

$$
\partial=\left[\begin{array}{ccc}
0 & f_{12} & f_{13} \\
0 & 0 & f_{23} \\
0 & 0 & 0
\end{array}\right]
$$

To show, M has a composition series:
Let $C_{0}=0, C_{1}=\left\langle e_{1}\right\rangle, C_{2}=\left\langle e_{1}, e_{2}\right\rangle$, and $C_{3}=\left\langle e_{1}, e_{2}, e_{3}\right\rangle$.
Then C_{j} / C_{j-1} is free, for all $1 \leq j \leq 3$.
If $x \in C_{3}$, then $x=\alpha_{1} e_{1}+\alpha_{2} e_{2}+\alpha_{3} e_{3}$,
So, $\partial(x)=\alpha_{1} \partial\left(e_{1}\right)+\alpha_{2} \partial\left(e_{2}\right)+\alpha_{3} \partial\left(e_{3}\right)$,
$\partial(x)=\alpha_{1}(0)+\alpha_{2}\left(f_{12} e_{1}\right)+\alpha_{3}\left(f_{13} e_{1}+f_{23} e_{2}\right) \in C_{2}$.
Hence, $\partial\left(C_{3}\right) \subseteq C_{2}$, and then $\partial\left(C_{3} / C_{2}\right)=0$.
Also, if $x \in C_{2}$, then $x=\alpha_{1} e_{1}+\alpha_{2} e_{2}$
So, $\partial(x)=\alpha_{1} \partial\left(e_{1}\right)+\alpha_{2} \partial\left(e_{2}\right)$
$\partial(x)=\alpha_{1}(0)+\alpha_{2}\left(f_{12} e_{1}\right) \in C_{1}$.
Hence, $\partial\left(C_{2}\right) \subseteq C_{1}$, and then $\partial\left(C_{2} / C_{1}\right)=0$.
Finally, if $x \in C_{1}$, then $x=\alpha_{1} e_{1}$ and so,
$\partial(x)=\alpha_{1} \partial\left(e_{1}\right)=\alpha_{1}(0)=0 \in C_{0}$.
Hence, $\partial\left(C_{1}\right) \subseteq C_{0}$, and then $\partial\left(C_{1} / C_{0}\right)=0$.
Therefore, $0=C_{0} \subseteq C_{1} \subseteq C_{2} \subseteq C_{3}=M$ is a composition series for M.
Thus, M is solvable.
Case (1.2): If $f_{32}=\alpha \neq 0$ (constant), then the matrix of ∂ is given by:

$$
\partial=\left[\begin{array}{ccc}
0 & f_{12} & f_{13} \\
0 & f_{22} & f_{23} \\
0 & \alpha & f_{33}
\end{array}\right]
$$

Now, by Lemma 7.1.5, replace row(2) by row(2) - ($\left.\frac{f_{22}}{\alpha}\right) \operatorname{row}(3)$ and at the same time replace column(3) by column $(3)-\left(\frac{f_{22}}{\alpha}\right) \operatorname{column}(2)$ to get:

$$
\partial=\left[\begin{array}{ccc}
0 & f_{12} & \frac{\alpha f_{13}-f_{22} f_{12}}{\alpha} \\
0 & 0 & 0 \\
0 & \alpha & 0
\end{array}\right]
$$

By Lemma 7.1.5, replace row(2) by row(3) and at the time replace column(3) by column(2) to get:

$$
\partial=\left[\begin{array}{ccc}
0 & \frac{\alpha f_{13}-f_{22} f_{12}}{\alpha} & f_{12} \\
0 & 0 & \alpha \\
0 & 0 & 0
\end{array}\right]
$$

Therefore, M is solvable as before (Case 1.1).
Case (2): If $f_{21}=C \neq 0$ (constant), then the matrix of ∂ is given by:

$$
\partial=\left[\begin{array}{ccc}
f_{11} & f_{12} & f_{13} \\
C & f_{22} & f_{23} \\
0 & f_{32} & f_{33}
\end{array}\right]
$$

In this case either $f_{32}=0$ or $f_{32}=\alpha \neq 0$ (constant).
Case (2.1): If $f_{32}=0$, then the matrix of ∂ is given by:

$$
\partial=\left[\begin{array}{ccc}
f_{11} & f_{12} & f_{13} \\
C & f_{22} & f_{23} \\
0 & 0 & 0
\end{array}\right]
$$

By Lemma 7.1.5, replace $\operatorname{row}(1)$ by $\operatorname{row}(1)-\left(\frac{f_{11}}{C}\right) \operatorname{row}(2)$ and at the same time replace column (2) by column $(2)-\left(\frac{f_{11}}{C}\right) \operatorname{column}(1)$ to get:

$$
\partial=\left[\begin{array}{ccc}
0 & 0 & \frac{C f_{13}-f_{11} f_{23}}{C} \\
C & 0 & f_{23} \\
0 & 0 & f_{33}
\end{array}\right]
$$

By Lemma 7.1.5, replace row(1) by row(2) and at the time replace column(2) by column(1) to get:

$$
\partial=\left[\begin{array}{ccc}
0 & C & f_{23} \\
0 & 0 & \frac{C f_{13}-f_{11} f_{23}}{C} \\
0 & 0 & f_{33}
\end{array}\right]
$$

Therefore, M is solvable as before (Case 1.1).
Case (2.2): $f_{32}=\alpha \neq 0$ (constant), then the matrix of ∂ is given by:

$$
\partial=\left[\begin{array}{ccc}
f_{11} & f_{12} & f_{13} \\
C & f_{22} & f_{23} \\
0 & \alpha & f_{33}
\end{array}\right]
$$

Since, $\partial^{2}=0$, multiply row(3) by column(1), we will get that $\alpha C=0$, but this is a contradiction because $C \neq 0$ and $\alpha \neq 0$.

Therefore, this case is not possible.
Proposition 7.2.3. Let K be a field and let $R=K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be a graded ring of polynomials graded in the negative way. Let M be a free finitely generated differential graded R-module with basis $S=\left\{e_{i}\right\}_{i=1}^{4}$ and with differential ∂ of degree $(P \leq-2)$. Suppose that, $\operatorname{dim}\left(e_{i}\right)=k_{i}$ such that $1 \leq i \leq 4$, and $k_{i}>k_{i+1}$. If $k_{i}-k_{i+1}=t_{i}$ such that $t_{i} \geq-P$, then M is solvable.

Proof. M is graded as follows:

```
        0
        \downarrow
e}\mp@subsup{e}{1}{}\in\mp@subsup{M}{\mp@subsup{k}{1}{}}{}=K\cdot\mp@subsup{e}{1}{}\oplus0\cdot\mp@subsup{e}{2}{}\oplus0\cdot\mp@subsup{e}{3}{}\oplus0\cdot\mp@subsup{e}{4}{}
    \downarrow
    \downarrow
e}\mp@code{2}\in\mp@subsup{M}{\mp@subsup{k}{2}{}}{}=\mp@subsup{R}{\mp@subsup{k}{2}{}-\mp@subsup{k}{1}{}}{}\cdot\mp@subsup{e}{1}{}\oplusk.\mp@subsup{e}{2}{}\oplus0\cdot\mp@subsup{e}{3}{}\oplus0\cdot\mp@subsup{e}{4}{}
    \downarrow
    \vdots
    \downarrow
e}\mp@subsup{e}{3}{}\in\mp@subsup{M}{\mp@subsup{k}{3}{}}{}=\mp@subsup{R}{\mp@subsup{k}{3}{}-\mp@subsup{k}{1}{}}{}\cdot\mp@subsup{e}{1}{}\oplus\mp@subsup{R}{\mp@subsup{k}{3}{}-\mp@subsup{k}{2}{}}{}\cdot\mp@subsup{e}{2}{}\oplusK\cdot\mp@subsup{e}{3}{}\oplus0\cdot\mp@subsup{e}{4}{}
    \downarrow
    \downarrow
```

```
\(e_{4} \in M_{k_{4}}=R_{k_{4}-k_{1}} \cdot e_{1} \oplus R_{k_{4}-k_{2}} \cdot e_{2} \oplus R_{k_{4}-k_{3}} \cdot e_{3} \oplus K \cdot e_{4}\).
        \(\downarrow\)
    \(\downarrow\)
\(e_{j} \in M_{k_{j}}=R_{k_{j}-k_{1}} \cdot e_{1} \oplus R_{k_{j}-k_{2}} \cdot e_{2} \oplus R_{k_{j}-k_{3}} \cdot e_{3} \oplus R_{k_{j}-k_{4}} \cdot e_{4} \oplus \ldots \oplus K . e_{j}\).
    \(\downarrow\)
```

Suppose that,

$$
\begin{aligned}
\partial\left(e_{1}\right) & =f_{11} e_{1}+f_{21} e_{2}+f_{31} e_{3}+f_{41} e_{4} \\
\partial\left(e_{2}\right) & =f_{12} e_{1}+f_{22} e_{2}+f_{32} e_{3}+f_{42} e_{4} \\
\partial\left(e_{3}\right) & =f_{13} e_{1}+f_{23} e_{2}+f_{33} e_{3}+f_{43} e_{4} \\
\partial\left(e_{4}\right) & =f_{14} e_{1}+f_{24} e_{2}+f_{34} e_{3}+f_{44} e_{4}
\end{aligned}
$$

Then the matrix of ∂ with respect to the basis $\left\{e_{1}\right\}_{i=1}^{4}$ is given by:

$$
\partial=\left[\begin{array}{llll}
f_{11} & f_{12} & f_{13} & f_{14} \\
f_{21} & f_{22} & f_{23} & f_{24} \\
f_{31} & f_{32} & f_{33} & f_{34} \\
f_{41} & f_{42} & f_{43} & f_{44}
\end{array}\right]
$$

Now,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{1}\right)\right)=\operatorname{dim}\left(f_{11}\right)+\operatorname{dim}\left(e_{1}\right), \\
k_{1}+P=\operatorname{dim}\left(f_{11}\right)+k_{1} \text { implies that, } \\
\operatorname{dim}\left(f_{11}\right)=P, \text { and thus } \operatorname{deg}\left(f_{11}\right)=-P .
\end{gathered}
$$

So,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{1}\right)\right)=\operatorname{dim}\left(f_{21}\right)+\operatorname{dim}\left(e_{2}\right), \\
k_{1}+P=\operatorname{dim}\left(f_{21}\right)+k_{2} \text { implies that, } \\
\operatorname{dim}\left(f_{21}\right)=P+k_{1}-k_{2}=P+t_{1} \geq P-P=0, \text { and thus } \\
f_{21}=0 \text { or } f_{21}=C_{1} \neq 0 \text { (constant) } .
\end{gathered}
$$

Also,

$$
\operatorname{dim}\left(\partial\left(e_{1}\right)\right)=\operatorname{dim}\left(f_{31}\right)+\operatorname{dim}\left(e_{3}\right),
$$

$$
k_{1}+P=\operatorname{dim}\left(f_{31}\right)+k_{3}, \text { implies that }
$$

$\operatorname{dim}\left(f_{31}\right)=k_{1}-k_{3}+P=-2 P+P=-P \geq 2$ and thus $f_{31}=0$, similarly $f_{41}=0$ Also,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{2}\right)\right)=\operatorname{dim}\left(f_{12}\right)+\operatorname{dim}\left(e_{1}\right), \\
k_{2}+P=\operatorname{dim}\left(f_{12}\right)+k_{1} \text { implies that, } \\
\operatorname{dim}\left(f_{12}\right)=k_{2}-k_{1}+P<0 \text { and thus } \operatorname{deg}\left(f_{12}\right)=-\left(k_{2}-k_{1}+P\right) .
\end{gathered}
$$

So,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{2}\right)\right)=\operatorname{dim}\left(f_{22}\right)+\operatorname{dim}\left(e_{2}\right), \\
k_{2}+P=\operatorname{dim}\left(f_{22}\right)+k_{2} \text { implies that, } \\
\operatorname{dim}\left(f_{22}\right)=P+k_{2}-k_{2}=P, \text { and thus } \operatorname{deg}\left(f_{22}\right)=-P .
\end{gathered}
$$

So,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{2}\right)\right)=\operatorname{dim}\left(f_{32}\right)+\operatorname{dim}\left(e_{3}\right), \\
k_{2}+P=\operatorname{dim}\left(f_{32}\right)+k_{3} \text { implies that, } \\
\operatorname{dim}\left(f_{32}\right)=k_{2}-k_{3}+P \geq-P+P=0, \text { and thus } \\
f_{32}=0 \text { or } f_{32}=C_{2} \neq 0 \text { (constant). }
\end{gathered}
$$

So,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{2}\right)\right)=\operatorname{dim}\left(f_{42}\right)+\operatorname{dim}\left(e_{4}\right), \\
k_{2}+P=\operatorname{dim}\left(f_{42}\right)+k_{4}, \text { implies that }
\end{gathered}
$$

$$
\operatorname{dim}\left(f_{42}\right)=k_{2}-k_{4}+P>0, \text { and thus } f_{42}=0 \text { or } f_{43}=C_{3} \neq 0 \text { (constant). }
$$

Also,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{3}\right)\right)=\operatorname{dim}\left(f_{13}\right)+\operatorname{dim}\left(e_{1}\right), \\
k_{3}+P=\operatorname{dim}\left(f_{13}\right)+k_{1} \text { implies that, } \\
\operatorname{dim}\left(f_{13}\right)=k_{3}-k_{1}+P<0 \text { and thus } \operatorname{deg}\left(f_{13}\right)=-\left(k_{3}-k_{1}+P\right) .
\end{gathered}
$$

So,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{3}\right)\right)=\operatorname{dim}\left(f_{23}\right)+\operatorname{dim}\left(e_{2}\right), \\
k_{3}+P=\operatorname{dim}\left(f_{23}\right)+k_{2}, \text { implies that }
\end{gathered}
$$

$$
\operatorname{dim}\left(f_{23}\right)=P+k_{3}-k_{2}<0 \text { and thus } \operatorname{deg}\left(f_{23}\right)=-\left(k_{3}-k_{2}+P\right)
$$

So,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{3}\right)\right)=\operatorname{dim}\left(f_{33}\right)+\operatorname{dim}\left(e_{3}\right), \\
k_{3}+P=\operatorname{dim}\left(f_{33}\right)+k_{3}, \text { implies that } \\
\operatorname{dim}\left(f_{33}\right)=P, \text { and thus degree } f_{33}=-P .
\end{gathered}
$$

So,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{3}\right)\right)=\operatorname{dim}\left(f_{43}\right)+\operatorname{dim}\left(e_{4}\right), \\
k_{3}+P=\operatorname{dim}\left(f_{43}\right)+k_{4}, \text { implies that } \\
\operatorname{dim}\left(f_{43}\right)=k_{3}-k_{4}+P \geq 0, \text { and thus } f_{43}=0 .
\end{gathered}
$$

Also,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{4}\right)\right)=\operatorname{dim}\left(f_{14}\right)+\operatorname{dim}\left(e_{1}\right), \\
k_{4}+P=\operatorname{dim}\left(f_{14}\right)+k_{1}, \text { implies that } \\
\operatorname{dim}\left(f_{14}\right)=k_{4}-k_{1}+P \text { and thus } \operatorname{deg}\left(f_{14}\right)=-\left(k_{4}-k_{1}+P\right) .
\end{gathered}
$$

Similarly, degree $f_{24}=-\left(P+k_{4}-k_{2}\right)$, $\operatorname{deg}\left(f_{34}\right)=-\left(P+k_{4}-k_{3}\right)$, and $\operatorname{deg}\left(f_{44}\right)=-P$.
Hence, the matrix of ∂ is given by

$$
\partial=\left[\begin{array}{cccc}
f_{11} & f_{12} & f_{13} & f_{14} \\
f_{21} & f_{22} & f_{23} & f_{24} \\
0 & f_{32} & f_{33} & f_{34} \\
0 & 0 & f_{43} & f_{44}
\end{array}\right]
$$

where,

1. $f_{21}=0$ or $f_{21}=\beta_{1} \neq 0$ (constant),
2. $f_{32}=0$ or $f_{32}=\beta_{2} \neq 0$ (constant),
3. $f_{43}=0$ or $f_{43}=\beta_{3} \neq 0$ (constant).

Case (1): If $f_{21}=0$, then the matrix ∂ is given by

$$
\partial=\left[\begin{array}{cccc}
f_{11} & f_{12} & f_{13} & f_{14} \\
0 & f_{22} & f_{23} & f_{24} \\
0 & f_{32} & f_{33} & f_{34} \\
0 & 0 & f_{43} & f_{44}
\end{array}\right]
$$

Since $\partial^{2}=0$, this implies $f_{11}^{2}=0$ which implies $f_{11}=0$.
Thus,

$$
\partial=\left[\begin{array}{cccc}
0 & f_{12} & f_{13} & f_{14} \\
0 & f_{22} & f_{23} & f_{24} \\
0 & f_{32} & f_{33} & f_{34} \\
0 & 0 & f_{43} & f_{44}
\end{array}\right]
$$

In this case either $f_{32}=0$ or $f_{32}=\beta_{2} \neq 0$ (constant).
Case (1.1): If $f_{32}=0$, then the matrix ∂ is given by

$$
\partial=\left[\begin{array}{cccc}
0 & f_{12} & f_{13} & f_{14} \\
0 & f_{22} & f_{23} & f_{24} \\
0 & 0 & f_{33} & f_{34} \\
0 & 0 & f_{43} & f_{44}
\end{array}\right]
$$

since $\partial^{2}=0$, implies that, $f_{22}^{2}=0$ which implies $f_{22}=0$.
Thus, the matrix of ∂ is given by

$$
\partial=\left[\begin{array}{cccc}
0 & f_{12} & f_{13} & f_{14} \\
0 & 0 & f_{23} & f_{24} \\
0 & 0 & f_{33} & f_{34} \\
0 & 0 & f_{43} & f_{44}
\end{array}\right]
$$

In this case either $f_{43}=0$ or $f_{43}=\beta_{3} \neq 0$ (constant).
Case (1.1.a): If $f_{43}=0$, then the matrix ∂ is given by

$$
\partial=\left[\begin{array}{cccc}
0 & f_{12} & f_{13} & f_{14} \\
0 & 0 & f_{23} & f_{24} \\
0 & 0 & f_{33} & f_{34} \\
0 & 0 & 0 & f_{44}
\end{array}\right]
$$

Since $\partial^{2}=0$, implies that, $f_{33}^{2}=f_{44}^{2}=0$ which implies $f_{33}=f_{44}=0$.

Thus,

$$
\partial=\left[\begin{array}{cccc}
0 & f_{12} & f_{13} & f_{14} \\
0 & 0 & f_{23} & f_{24} \\
0 & 0 & 0 & f_{34} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

To show, M has a composition series:
Let $C_{0}=0, C_{1}=\left\langle e_{1}\right\rangle, C_{2}=\left\langle e_{1}, e_{2}\right\rangle, C_{3}=\left\langle e_{1}, e_{2}, e_{3}\right\rangle$ and $C_{4}=\left\langle e_{1}, e_{2}, e_{3}, e_{4}\right\rangle$.
Then C_{j} / C_{j-1} is free, for all $1 \leq j \leq 4$.
If $x \in C_{4}$, then $x=\alpha_{1} e_{1}+\alpha_{2} e_{2}+\alpha_{3} e_{3}+\alpha_{4} e_{4}$.
So, $\partial(x)=\alpha_{1} \partial\left(e_{1}\right)+\alpha_{2} \partial\left(e_{2}\right)+\alpha_{3} \partial\left(e_{3}\right)+\alpha_{4} \partial\left(e_{4}\right)$,
$\partial(x)=\alpha_{1}(0)+\alpha_{2}\left(f_{12} e_{1}\right)+\alpha_{3}\left(f_{13} e_{1}+f_{23} e_{2}\right)+\alpha_{4}\left(f_{14} e_{1}+f_{24} e_{2}+f_{34} e_{3}\right) \in C_{3}$.
Hence, $\partial\left(C_{4}\right) \subseteq C_{3}$, and then $\partial\left(C_{4} / C_{3}\right)=0$.
Also, if $x \in C_{3}$, then $x=\alpha_{1} e_{1}+\alpha_{2} e_{2}+\alpha_{3} e_{3}$,
So, $\partial(x)=\alpha_{1} \partial\left(e_{1}\right)+\alpha_{2} \partial\left(e_{2}\right)+\alpha_{3} \partial\left(e_{3}\right)$,
$\partial(x)=\alpha_{1}(0)+\alpha_{2}\left(f_{12} e_{1}\right)+\alpha_{3}\left(f_{13} e_{1}+f_{23} e_{2}\right) \in C_{2}$.
Hence, $\partial\left(C_{3}\right) \subseteq C_{2}$, and then $\partial\left(C_{3} / C_{2}\right)=0$.
Also, if $x \in C_{2}$, then $x=\alpha_{1} e_{1}+\alpha_{2} e_{2}$
So, $\partial(x)=\alpha_{1} \partial\left(e_{1}\right)+\alpha_{2} \partial\left(e_{2}\right)$
$\partial(x)=\alpha_{1}(0)+\alpha_{2}\left(f_{12} e_{1}\right) \in C_{1}$.
Hence, $\partial\left(C_{2}\right) \subseteq C_{1}$, and then $\partial\left(C_{2} / C_{1}\right)=0$.
Finally, if $x \in C_{1}$, then $x=\alpha_{1} e_{1}$ and so,
$\partial(x)=\alpha_{1} \partial\left(e_{1}\right)=\alpha_{1}(0)=0 \in C_{0}$.
Hence, $\partial\left(C_{1}\right) \subseteq C_{0}$, and then $\partial\left(C_{1} / C_{0}\right)=0$.
Therefore, $0=C_{0} \subseteq C_{1} \subseteq C_{2} \subseteq C_{3} \subseteq C_{4}=M$ is a composition series for M.
Thus, M is solvable.
Case (1.1.b): If $f_{43}=\beta_{3} \neq 0$ (constant), then the matrix ∂ is given by

$$
\partial=\left[\begin{array}{cccc}
0 & f_{12} & f_{13} & f_{14} \\
0 & 0 & f_{23} & f_{24} \\
0 & 0 & f_{33} & f_{34} \\
0 & 0 & \beta_{3} & f_{44}
\end{array}\right]
$$

Since $\partial^{2}=0$, implies that, $f_{33}^{2}+\beta_{3} f_{34}=0$ and $\beta_{3} f_{34}+f_{44}^{2}=0$, which implies $f_{33}=f_{44}$ and $\beta_{3} f_{34}=f_{44}^{2}$.

Now, by Lemma 7.1.5, replace $\operatorname{row}(3)$ by $\operatorname{row}(3)-\left(\frac{f_{33}}{\beta_{3}}\right) \operatorname{row}(4)$ and at the same time replace column (4) by column(4) - $\left(\frac{f_{33}}{\beta_{3}}\right) \operatorname{column}(3)$ to get:

$$
\partial=\left[\begin{array}{cccc}
0 & f_{12} & f_{13} & \frac{\beta_{3} f_{14}-f_{33} f_{13}}{\beta_{3}} \\
0 & 0 & f_{23} & \frac{\beta_{3} f_{24}-f_{33} f_{23}}{\beta_{3}} \\
0 & 0 & 0 & 0 \\
0 & 0 & \beta_{3} & 0
\end{array}\right]
$$

By Lemma 7.1.5, replace row(3) by row(4) and at the time replace column(4) by column(3) to get:

$$
\partial=\left[\begin{array}{cccc}
0 & f_{12} & \frac{\beta_{3} f_{14}-f_{33} f_{13}}{\beta_{3}} & f_{13} \\
0 & 0 & \frac{\beta_{3} f_{24}-f_{33} f_{23}}{\beta_{3}} & f_{23} \\
0 & 0 & 0 & \beta_{3} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore, M is solvable as before (Case 1.1.a).
Case (1.2): If $f_{32}=\beta_{2} \neq 0$ (constant), then the matrix ∂ is given by

$$
\partial=\left[\begin{array}{cccc}
0 & f_{12} & f_{13} & f_{14} \\
0 & f_{22} & f_{23} & f_{24} \\
0 & \beta_{2} & f_{33} & f_{34} \\
0 & 0 & f_{43} & f_{44}
\end{array}\right]
$$

In this case either $f_{43}=0$ or $f_{43}=\beta_{3} \neq 0$ (constant).
Case (1.2.a): If $f_{43}=0$, then the matrix ∂ is given by:

$$
\partial=\left[\begin{array}{cccc}
0 & f_{12} & f_{13} & f_{14} \\
0 & f_{22} & f_{23} & f_{24} \\
0 & \beta_{2} & f_{33} & f_{34} \\
0 & 0 & 0 & f_{44}
\end{array}\right]
$$

Since $\partial^{2}=0$, implies that, $f_{44}^{2}=0$, which implies $f_{44}=0$.
Thus,

$$
\partial=\left[\begin{array}{cccc}
0 & f_{12} & f_{13} & f_{14} \\
0 & f_{22} & f_{23} & f_{24} \\
0 & \beta_{2} & f_{33} & f_{34} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Since $\partial^{2}=0$, implies that, $f_{22}^{2}+\beta_{2} f_{23}=0$ and $\beta_{2} f_{23}+f_{33}^{2}=0$.
Hence, $f_{22}=f_{33}=0$ and $\beta_{2} f_{23}=f_{22}^{2}$.

By Lemma 7.1.5, replace $\operatorname{row}(2)$ by $\operatorname{row}(2)-\left(\frac{f_{22}}{\beta_{2}}\right) \operatorname{row}(3)$ and at the same time replace $\operatorname{column}(3)$ by column $(3)-\left(\frac{f_{22}}{\beta_{2}}\right) \operatorname{column}(2)$ to get:

$$
\partial=\left[\begin{array}{cccc}
0 & f_{12} & \frac{\beta_{2} f_{13}-f_{22} f_{12}}{\beta_{2}} & f_{14} \\
0 & 0 & 0 & \frac{\beta_{2} f_{24}-f_{22} f_{34}}{\beta_{2}} \\
0 & \beta_{2} & 0 & f_{34} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

By Lemma 7.1.5, replace $\operatorname{row}(2)$ by row(3) and at the time replace column(2) by column(3) to get:

$$
\partial=\left[\begin{array}{cccc}
0 & \frac{\beta_{2} f_{13}-f_{22} f_{12}}{\beta_{2}} & f_{12} & f_{14} \\
0 & 0 & \beta_{2} & f_{34} \\
0 & 0 & 0 & \frac{\beta_{2} f_{24}-f_{22} f_{34}}{\beta_{2}} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore, M is solvable as before (case 1.1.a).
Case (1.2.b): If $f_{43}=\beta_{3} \neq 0$ (constant), then the matrix ∂ is given by:

$$
\partial=\left[\begin{array}{cccc}
0 & f_{12} & f_{13} & f_{14} \\
0 & f_{22} & f_{23} & f_{24} \\
0 & \beta_{2} & f_{33} & f_{34} \\
0 & 0 & \beta_{3} & f_{44}
\end{array}\right]
$$

Since $\partial^{2}=0$, implies that, $\beta_{2} \cdot \beta_{3}=0$, but $\beta_{2} \neq 0$ and $\beta_{3} \neq 0$ which implies to contradiction. Thus, this case is not possible.

Case (2): If $f_{21}=\beta_{1} \neq 0$, then the matrix ∂ is given by

$$
\partial=\left[\begin{array}{cccc}
f_{11} & f_{12} & f_{13} & f_{14} \\
\beta_{1} & f_{22} & f_{23} & f_{24} \\
0 & f_{32} & f_{33} & f_{34} \\
0 & 0 & f_{43} & f_{44}
\end{array}\right]
$$

In this case either $f_{32}=0$ or $f_{32}=\beta_{2} \neq 0$ (constant).
Case (2.1): If $f_{32}=0$, then the matrix ∂ is given by

$$
\partial=\left[\begin{array}{cccc}
f_{11} & f_{12} & f_{13} & f_{14} \\
\beta_{1} & f_{22} & f_{23} & f_{24} \\
0 & 0 & f_{33} & f_{34} \\
0 & 0 & f_{43} & f_{44}
\end{array}\right]
$$

In this case either $f_{43}=0$ or $f_{43}=\beta_{3} \neq 0$ (constant).
Case (2.1.a): If $f_{43}=0$, then the matrix ∂ is given by

$$
\partial=\left[\begin{array}{cccc}
f_{11} & f_{12} & f_{13} & f_{14} \\
\beta_{1} & f_{22} & f_{23} & f_{24} \\
0 & 0 & f_{33} & f_{34} \\
0 & 0 & 0 & f_{44}
\end{array}\right]
$$

Since $\partial^{2}=0$, implies that, $f_{33}^{2}=f_{44}^{2}=0$, which implies $f_{33}=f_{44}=0$.
Thus,

$$
\partial=\left[\begin{array}{cccc}
f_{11} & f_{12} & f_{13} & f_{14} \\
\beta_{1} & f_{22} & f_{23} & f_{24} \\
0 & 0 & 0 & f_{34} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Since $\partial^{2}=0$, implies that, $f_{11}^{2}+\beta_{1} f_{12}=0$ and $\beta_{1} f_{12}+f_{22}^{2}=0$. Hence, $f_{11}=f_{22}=0$. and $\beta_{1} f_{12}=f_{11}^{2}$.

By Lemma 7.1.5, replace $\operatorname{row}(1)$ by $\operatorname{row}(1)-\left(\frac{f_{11}}{\beta_{1}}\right) \operatorname{row}(2)$ and at the same time replace column(2) by column(2) $-\left(\frac{f_{11}}{\beta_{1}}\right) \operatorname{column}(1)$ to get:

$$
\partial=\left[\begin{array}{cccc}
0 & 0 & \frac{\beta_{1} f_{13}-f_{11} f_{23}}{\beta_{1}} & \frac{\beta_{1} f_{14}-f_{11} f_{24}}{\beta_{1}} \\
\beta_{1} & 0 & f_{23} & f_{24} \\
0 & 0 & 0 & f_{34} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

By Lemma 7.1.5, replace $\operatorname{row}(1)$ by row(2) and at the time replace column(1) by column(2) to get:

$$
\partial=\left[\begin{array}{cccc}
0 & \beta_{1} & f_{23} & f_{24} \\
0 & 0 & \frac{\beta_{1} f_{13}-f_{11} f_{23}}{\beta_{1}} & \frac{\beta_{1} f_{14}-f_{11} f_{24}}{\beta_{1}} \\
0 & 0 & 0 & f_{34} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore, M is solvable as before (Case 1.1.a).
Case (2.1.b): If $f_{43}=\beta_{3} \neq 0$ (constant).

$$
\partial=\left[\begin{array}{cccc}
f_{11} & f_{12} & f_{13} & f_{14} \\
\beta_{1} & f_{22} & f_{23} & f_{24} \\
0 & 0 & f_{33} & f_{34} \\
0 & 0 & \beta_{3} & f_{44}
\end{array}\right]
$$

Since $\partial^{2}=0$, implies that, $f_{33}^{2}+\beta_{3} f_{34}=0$, and $\beta_{3} f_{34}+f_{44}^{2}=0$. Hence, $f_{33}=$ f_{44} and $f_{33}^{2}=\beta_{3} f_{34}$.

By Lemma 7.1.5, replace $\operatorname{row}(3)$ by $\operatorname{row}(3)-\left(\frac{f_{33}}{\beta_{3}}\right) \operatorname{row}(4)$ and at the same time replace column (4) by column (4) - $\left(\frac{f_{33}}{\beta_{3}}\right) \operatorname{column}(3)$ to get:

$$
\partial=\left[\begin{array}{cccc}
f_{11} & f_{12} & f_{13} & \frac{\beta_{3} f_{14}-f_{33} f_{13}}{\beta_{3}} \\
\beta_{1} & f_{22} & f_{23} & \frac{\beta_{3} f_{24}-f_{33} f_{23}}{\beta_{3}} \\
0 & 0 & 0 & 0 \\
0 & 0 & \beta_{3} & 0
\end{array}\right]
$$

By Lemma 7.1.5, replace row(3) by row(4) and at the time replace column(3) by column(4) to get:

$$
\partial=\left[\begin{array}{cccc}
f_{11} & f_{12} & \frac{\beta_{3} f_{14}-f_{33} f_{13}}{\beta_{3}} & f_{13} \\
\beta_{1} & f_{22} & \frac{\beta_{3} f_{24}-f_{33} f_{23}}{\beta_{3}} & f_{23} \\
0 & 0 & 0 & \beta_{3} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Since $\partial^{2}=0$, implies that, $f_{11}^{2}+\beta_{1} f_{12}=0$, and $\beta_{1} f_{12}+f_{22}^{2}=0$. Hence, $f_{11}=f_{22}$ and $f_{11}^{2}=\beta_{1} f_{12}$.

By Lemma 7.1.5, replace row(1) by row(1) $-\left(\frac{f_{11}}{\beta_{1}}\right)$ row (2) and at the same time replace column(2) by column(2) - $\left(\frac{f_{11}}{\beta_{1}}\right) \operatorname{column}(1)$ to get:

$$
\partial=\left[\begin{array}{cccc}
0 & 0 & \frac{\beta_{1} f_{13}-f_{11} f_{23}}{\beta_{1}} & \frac{\beta_{1}\left[\beta_{3} f_{14}-f_{33} f_{13}\right]-\beta_{3} f_{11}\left[\beta_{3} f_{24}-f_{33} f_{23}\right]}{\beta_{1} \beta_{3}} \\
\beta_{1} & 0 & f_{23} & \frac{\beta_{3} f_{24}-f_{33} f_{23}}{\beta_{3}} \\
0 & 0 & 0 & \beta_{3} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

By Lemma 7.1.5, replace row(1) by row(2) and at the time replace column(1) by column(2) to get:

$$
\partial=\left[\begin{array}{cccc}
0 & \beta_{1} & f_{23} & \frac{\beta_{3} f_{24}-f_{33} f_{23}}{\beta_{3}} \\
0 & 0 & \frac{\beta_{1} f_{13}-f_{11} f_{23}}{\beta_{1}} & \frac{\beta_{1}\left[\beta_{3} f_{14}-f_{33} f_{133}\right]-\beta_{3} f_{11}\left[\beta_{3} f_{24}-f_{33} f_{23}\right]}{\beta_{1} \beta_{3}} \\
0 & 0 & 0 & \beta_{3} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore, M is solvable as before (Case 1.1.a).
Case (2.2): If $f_{32}=\beta_{2} \neq 0$ (constant), then the matrix ∂ is given by

$$
\partial=\left[\begin{array}{cccc}
f_{11} & f_{12} & f_{13} & f_{14} \\
\beta_{1} & f_{22} & f_{23} & f_{24} \\
0 & \beta_{2} & f_{33} & f_{34} \\
0 & 0 & f_{43} & f_{44}
\end{array}\right]
$$

Since $\partial^{2}=0$, then we multiply $\operatorname{row}(3)$ by column(1) to get that $\beta_{1} \beta_{2}=0$, but $\beta_{1} \neq 0$ and $\beta_{2} \neq 0$ which implies to contradiction. Thus, this case is not possible.

From the previous we conclude the following two propositions:
Proposition 7.2.4. Let K be a field and let $R=K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be a graded ring of polynomials graded in the negative way. Let M be a free finitely generated differential graded R-module with basis $S=\left\{e_{i}\right\}_{i=1}^{m}$, and differential ∂ of degree $(P \leq-2)$. Suppose, $\operatorname{dim}\left(e_{i}\right)=k_{i}$ such that $1 \leq i \leq m$ and $k_{i}>k_{i+1}$. If $k_{i}-k_{i+1}=t_{i}$ such that $t_{i}>-P$, then M is solvable.

Proof. M is graded as follows:

```
        0
    \downarrow
e
    \downarrow
    \downarrow
e}\mp@subsup{e}{2}{}\in\mp@subsup{M}{\mp@subsup{k}{2}{}}{}=\mp@subsup{R}{\mp@subsup{k}{2}{}-\mp@subsup{k}{1}{}}{}\cdot\mp@subsup{e}{1}{}\oplusK.\mp@subsup{e}{2}{}\oplus0.\mp@subsup{e}{3}{}\oplus0.\mp@subsup{e}{4}{}\oplus\ldots\oplus0..\mp@subsup{e}{m}{}
    \downarrow
    \downarrow
e}\mp@subsup{e}{3}{}\in\mp@subsup{M}{\mp@subsup{k}{3}{}}{}=\mp@subsup{R}{\mp@subsup{k}{3}{}-\mp@subsup{k}{1}{}}{}\cdot\mp@subsup{e}{1}{}\oplus\mp@subsup{R}{\mp@subsup{k}{3}{}-\mp@subsup{k}{2}{}}{}\cdot\mp@subsup{e}{2}{}\oplusK.\mp@subsup{e}{3}{}\oplus0.\mp@subsup{e}{4}{}\oplus\ldots\oplus0..e.em
```

```
        \downarrow
        \downarrow
e}\mp@subsup{e}{4}{}\in\mp@subsup{M}{\mp@subsup{k}{4}{}}{}=\mp@subsup{R}{\mp@subsup{k}{4}{}-\mp@subsup{k}{1}{}}{}\cdot\mp@subsup{e}{1}{}\oplus\mp@subsup{R}{\mp@subsup{k}{4}{}-\mp@subsup{k}{2}{}}{}\cdot\mp@subsup{e}{2}{}\oplus\mp@subsup{R}{\mp@subsup{k}{4}{}-\mp@subsup{k}{3}{}}{}\cdot\mp@subsup{e}{3}{}\oplusK..\mp@subsup{e}{4}{}\oplus0.\mp@subsup{e}{5}{}\oplus\ldots\oplus0.\mp@subsup{e}{m}{}
    \downarrow
    \downarrow
e}\mp@code{j}\mp@subsup{M}{\mp@subsup{k}{j}{}}{=}=\mp@subsup{R}{\mp@subsup{k}{j}{}-\mp@subsup{k}{1}{}}{}\cdot\mp@subsup{e}{1}{}\oplus\mp@subsup{R}{\mp@subsup{k}{j}{}-\mp@subsup{k}{2}{}}{}\cdot\mp@subsup{e}{2}{}\oplus\mp@subsup{R}{\mp@subsup{k}{j}{}-\mp@subsup{k}{3}{}}{}\oplus\ldots\oplusK.\mp@subsup{e}{j}{}
\downarrow
```

Suppose that,

$$
\begin{aligned}
\partial\left(e_{1}\right) & =f_{11} e_{1}+\ldots+f_{m 1} e_{m} \\
\partial\left(e_{2}\right) & =f_{12} e_{1}+\ldots+f_{m 2} e_{m} \\
\vdots & \\
\partial\left(e_{m}\right) & =f_{1 m} e_{1}+\ldots+f_{m m} e_{m} .
\end{aligned}
$$

Then the matrix of ∂ with respect to the basis $\left\{e_{1}\right\}_{i=1}^{m}$ is given by:

$$
\partial=\left[\begin{array}{cccc}
f_{11} & f_{12} & \ldots & f_{1 m} \\
f_{21} & f_{22} & \ldots & f_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
f_{m 1} & f_{m 2} & \ldots & f_{m m}
\end{array}\right]
$$

Now,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{1}\right)\right)=\operatorname{dim}\left(f_{11}\right)+\operatorname{dim}\left(e_{1}\right), \\
k_{1}+P=\operatorname{dim}\left(f_{11}\right)+k_{1}, \text { implies that } \operatorname{deg}\left(f_{11}\right)=-P .
\end{gathered}
$$

So,

$$
\operatorname{dim}\left(\partial\left(e_{1}\right)\right)=\operatorname{dim}\left(f_{i 1}\right)+\operatorname{dim}\left(e_{i}\right) \text { for each } 2 \leq i \leq m .
$$

So,

$$
\begin{gathered}
k_{1}+P=\operatorname{dim}\left(f_{i 1}\right)+k_{i} \text { and then } \\
\operatorname{dim}\left(f_{i 1}\right)=\left(k_{1}-k_{i}\right)+P>0, \text { i.e., } f_{i 1} \in R_{k_{1}-k_{i}+P}=0 .
\end{gathered}
$$

Therefore,

$$
f_{i 1}=0 \text { for each } 2 \leq i \leq m .
$$

Also,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{2}\right)\right)=\operatorname{dim}\left(f_{12}\right)+\operatorname{dim}\left(e_{1}\right), \\
k_{2}+P=\operatorname{dim}\left(f_{12}\right)+k_{1}, \\
\operatorname{dim}\left(f_{12}\right)=k_{2}-k_{1}+P<0 \text { implies that }, \\
\text { degree }_{12}=-\left(P+k_{2}-k_{1}\right) .
\end{gathered}
$$

So,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{2}\right)\right)=\operatorname{dim}\left(f_{22}\right)+\operatorname{dim}\left(e_{2}\right), \\
k_{2}+P=\operatorname{dim}\left(f_{22}\right)+k_{2}, \text { implies that } \operatorname{deg}\left(f_{22}\right)=-P .
\end{gathered}
$$

So,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{2}\right)\right)=\operatorname{dim}\left(f_{i 2}\right)+\operatorname{dim}\left(e_{i}\right) \text { for each } 3 \leq i \leq m, \\
k_{2}+P=\operatorname{dim}\left(f_{i 2}\right)+k_{i} \text { and then } \\
\operatorname{dim}\left(f_{i 2}\right)=P+\left(k_{2}-k_{i}\right)>0, \text { i.e., } f_{i 2} \in R_{P+k_{2}-k_{i}}=0 .
\end{gathered}
$$

Therefore,

$$
f_{i 2}=0 \text { for each } 3 \leq i \leq m .
$$

Now,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{m-1}\right)\right)=\operatorname{dim}\left(f_{i(m-1)}\right)+\operatorname{dim}\left(e_{i}\right) \text { for each } 1 \leq i \leq m-1, \\
k_{m-1}+P=\operatorname{dim}\left(f_{i(m-1))}+k_{i}\right. \text { and then } \\
\operatorname{dim}\left(f_{i(m-1)}\right)=\left(P+k_{m-1}-k_{i}\right)<0, \text { i.e., } f_{i(m-1)} \in R_{P+k_{m-1}-k_{i}} \neq 0 .
\end{gathered}
$$

Therefore,

$$
f_{i(m-1)} \neq 0 \text { for each } 1 \leq i \leq m-1,
$$

and,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{m-1}\right)\right)=\operatorname{dim}\left(f_{m(m-1)}\right)+\operatorname{dim}\left(e_{m}\right), \\
k_{m-1}+P=\operatorname{dim}\left(f_{m(m-1)}+k_{m},\right. \text { implies that } \\
\operatorname{dim}\left(f_{m(m-1))}=P+k_{m-1}-k_{m} \geq 0 \text { which implies that } f_{m(m-1)}=0 .\right.
\end{gathered}
$$

Also,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{m}\right)\right)=\operatorname{dim}\left(f_{i m}\right)+\operatorname{dim}\left(e_{i}\right) \text { for each } 1 \leq i \leq m, \\
k_{m}+P=\operatorname{dim}\left(f_{i m}\right)+k_{i} \text { and then }
\end{gathered}
$$

$$
\operatorname{dim}\left(f_{i(m)}\right)=P+\left(k_{m}-k_{i}\right)<0, \text { i.e., } f_{i m} \in R_{P+k_{m}-k_{i}} \neq 0 .
$$

Therefore,

$$
f_{i m} \neq 0 \text { for each } 1 \leq i \leq m .
$$

Hence, the matrix of ∂ is given by:

$$
\partial=\left[\begin{array}{ccccccc}
f_{11} & f_{12} & f_{13} & f_{14} & \cdots & f_{1(m-1)} & f_{1 m} \\
0 & f_{22} & f_{23} & f_{24} & \cdots & f_{2(m-1)} & f_{2 m} \\
0 & 0 & f_{33} & f_{34} & \cdots & f_{3(m-1)} & f_{3 m} \\
0 & 0 & 0 & f_{44} & \cdots & f_{4(m-1)} & f_{4 m} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & f_{(m-1)(m-1)} & f_{(m-1) m} \\
0 & 0 & 0 & 0 & \ldots & 0 & f_{m m}
\end{array}\right]
$$

Since, $\partial^{2}=0$ and R is an integral domain then we have that $f_{i i}=0$, for each $1 \leq i \leq m$.

Thus, ∂ is given by :

$$
\partial=\left[\begin{array}{ccccccc}
0 & f_{12} & f_{13} & f_{14} & \ldots & f_{1(m-1)} & f_{1 m} \\
0 & 0 & f_{23} & f_{24} & \ldots & f_{2(m-1)} & f_{2 m} \\
0 & 0 & 0 & f_{34} & \ldots & f_{3(m-1)} & f_{3 m} \\
0 & 0 & 0 & 0 & \ldots & f_{4(m-1)} & f_{4 m} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 0 & f_{(m-1) m} \\
0 & 0 & 0 & 0 & \ldots & 0 & 0
\end{array}\right]
$$

To show, M has a composition series:
Let $C_{0}=0$ and $C_{j}=\left\langle e_{1}, e_{2}, \ldots, e_{j}\right\rangle$, for all $1 \leq j \leq m$.
Then $\left(C_{j} / C_{j-1}\right)$ is free. If $x \in C_{j}$, then x can be written uniquely as:

$$
x=\alpha_{1} e_{1}+\alpha_{2} e_{2}+\ldots+\alpha_{j} e_{j} .
$$

Thus,

$$
\partial(x)=\alpha_{1} \partial\left(e_{1}\right)+\alpha_{2} \partial\left(e_{2}\right)+\ldots+\alpha_{j} \partial\left(e_{j}\right)
$$

$$
\partial(x)=\alpha_{1}(0)+\alpha_{2}\left(f_{12} e_{1}\right)+\ldots+\alpha_{j}\left(f_{1 j} e_{1}+\ldots+f_{(j-1) j} e_{j-1}\right) \in C_{j-1}
$$

Therefore,

$$
\partial\left(C_{j} / C_{j-1}\right)=0, \text { for each } 1 \leq j \leq m .
$$

Hence, $0=C_{0} \subseteq C_{1} \subseteq C_{2} \subseteq \ldots \subseteq C_{m}=M$ is a composition series for M.
Thus, M is solvable.
Proposition 7.2.5. Let K be a field and let $R=K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be a graded ring of polynomials graded in the negative way. Let M be a free finitely generated differential graded R-module with basis $S=\left\{e_{i}\right\}_{i=1}^{m}$, and with differential ∂ of degree ($p \leq-2$). Suppose, $\operatorname{dim}\left(e_{i}\right)=k_{i}$ such that $1 \leq i \leq m$ and $k_{i}>k_{i+1}$. If $k_{i}-k_{i+1}=t_{i}$ such that $t_{i} \geq-p$, then M is solvable.

Proof. M is graded as in (Proposition 7.2.4):

Suppose that,

$$
\begin{aligned}
\partial\left(e_{1}\right) & =f_{11} e_{1}+\ldots+f_{m 1} e_{m} \\
\partial\left(e_{2}\right) & =f_{12} e_{1}+\ldots+f_{m 2} e_{m} \\
\vdots & \\
\partial\left(e_{m}\right) & =f_{1 m} e_{1}+\ldots+f_{m m} e_{m}
\end{aligned}
$$

Then the matrix of ∂ with respect to the basis $\left\{e_{1}\right\}_{i=1}^{m}$ is given by:

$$
\partial=\left[\begin{array}{cccc}
f_{11} & f_{12} & \ldots & f_{1 m} \\
f_{21} & f_{22} & \ldots & f_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
f_{m 1} & f_{m 2} & \ldots & f_{m m}
\end{array}\right]
$$

Now,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{1}\right)\right)=\operatorname{dim}\left(f_{11}\right)+\operatorname{dim}\left(e_{1}\right), \\
k_{1}+P=\operatorname{dim}\left(f_{11}\right)+k_{1}, \text { implies that }, \operatorname{deg}\left(f_{11}\right)=-P .
\end{gathered}
$$

Also,

$$
\operatorname{dim}\left(\partial\left(e_{1}\right)\right)=\operatorname{dim}\left(f_{21}\right)+\operatorname{dim}\left(e_{2}\right),
$$

$$
k_{1}+P=\operatorname{dim}\left(f_{21}\right)+k_{2} \text {, implies that } \operatorname{dim}\left(f_{21}\right)=\left(k_{1}-k_{2}\right)+P=t_{1} \geq 0,
$$

which implise, $f_{21}=0$ or $f_{21}=C_{1} \neq 0$ (constant).

So,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{1}\right)\right)=\operatorname{dim}\left(f_{i 1}\right)+\operatorname{dim}\left(e_{i}\right) \text { for each } 3 \leq i \leq m, \\
k_{1}+P=\operatorname{dim}\left(f_{i 1}\right)+k_{i} \text { and then } \\
\operatorname{dim}\left(f_{i 1}\right)=\left(k_{1}-k_{i}\right)+P>0 \text {, i.e., } f_{i 1} \in R_{k_{1}-k_{i}+P}=0 .
\end{gathered}
$$

Therefore,

$$
f_{i 1}=0 \text { for each } 3 \leq i \leq m .
$$

Also,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{2}\right)\right)=\operatorname{dim}\left(f_{12}\right)+\operatorname{dim}\left(e_{1}\right), \\
k_{2}+P=\operatorname{dim}\left(f_{12}\right)+k_{1},
\end{gathered}
$$

$$
\operatorname{dim}\left(f_{12}\right)=k_{2}-k_{1}+P<0 \text { implies that, } \operatorname{deg}\left(f_{12}\right)=-\left(k_{2}-k_{1}+P\right)
$$

So,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{2}\right)\right)=\operatorname{dim}\left(f_{22}\right)+\operatorname{dim}\left(e_{2}\right), \\
k_{2}+P=\operatorname{dim}\left(f_{22}\right)+k_{2}, \text { implies that, } \operatorname{deg}\left(f_{22}\right)=-P .
\end{gathered}
$$

So,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{2}\right)\right)=\operatorname{dim}\left(f_{32}\right)+\operatorname{dim}\left(e_{3}\right), \\
k_{2}+P=\operatorname{dim}\left(f_{32}\right)+k_{3}, \text { implies that, } \operatorname{dim}\left(f_{32}\right)=P+k_{2}-k_{1} \geq 0
\end{gathered}
$$

$f_{32}=0$ or $f_{32}=C_{2} \neq 0$ (constant).
So,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{2}\right)\right)=\operatorname{dim}\left(f_{i 2}\right)+\operatorname{dim}\left(e_{i}\right) \text { for each } 4 \leq i \leq m \\
k_{2}+P=\operatorname{dim}\left(f_{i 2}\right)+k_{i} \text { and then } \\
\operatorname{dim}\left(f_{i 2}\right)=\left(k_{2}-k_{i}\right)+P>0, \text { i.e., } f_{i 2} \in R_{P+k_{2}-k_{i}}=0 .
\end{gathered}
$$

Therefore,

$$
f_{i 2}=0 \text { for each } 4 \leq i \leq m .
$$

Now,

$$
\operatorname{dim}\left(\partial\left(e_{m-1}\right)\right)=\operatorname{dim}\left(f_{i(m-1)}\right)+\operatorname{dim}\left(e_{i}\right) \text { for each } 1 \leq i \leq m-1,
$$

$$
k_{m-1}+P=\operatorname{dim}\left(f_{i(m-1))}+k_{i}\right. \text { and then }
$$

$$
\operatorname{dim}\left(f_{i(m-1)}\right)=P+\left(k_{m-1}-k_{i}\right)<0 \text {, i.e., } f_{i(m-1)} \in R_{k_{m-1}-k_{i}+P} \neq 0
$$

Therefore,

$$
f_{i(m-1)} \neq 0 \text { for each } 1 \leq i \leq m-1,
$$

and,

$$
\operatorname{dim}\left(\partial\left(e_{m-1}\right)\right)=\operatorname{dim}\left(f_{m(m-1)}\right)+\operatorname{dim}\left(e_{m}\right),
$$

$k_{m-1}+P=\operatorname{dim}\left(f_{m(m-1)}+k_{m}\right.$, implies that, $\operatorname{dim}\left(f_{m(m-1)}\right)=P+k_{m-1}-k_{m} \geq 0$. Thus, $f_{m(m-1)}=0$ or $f_{m(m-1)}=C_{m-1} \neq 0$ (constant).

Also,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{m}\right)\right)=\operatorname{dim}\left(f_{i m}\right)+\operatorname{dim}\left(e_{i}\right) \text { for each } 1 \leq i \leq m \\
k_{m}+P=\operatorname{dim}\left(f_{i m}+k_{i}\right. \text { and then } \\
\operatorname{dim}\left(f_{i(m)}\right)=\left(k_{m}-k_{i}\right)+P<0, \text { i.e., } f_{i(m)} \in R_{k_{m}-k_{i}+P} \neq 0
\end{gathered}
$$

Therefore,

$$
f_{i m} \neq 0 \text { for each } 1 \leq i \leq m .
$$

Hence, the matrix of ∂ is given by:

$$
\partial=\left[\begin{array}{ccccccc}
f_{11} & f_{12} & f_{13} & f_{14} & \ldots & f_{1(m-1)} & f_{1 m} \\
f_{21} & f_{22} & f_{23} & f_{24} & \ldots & f_{2(m-1)} & f_{2 m} \\
0 & f_{32} & f_{33} & f_{34} & \ldots & f_{3(m-1)} & f_{3 m} \\
0 & 0 & f_{43} & f_{44} & \ldots & f_{4(m-1)} & f_{4 m} \\
0 & 0 & 0 & f_{54} & \ldots & f_{5(m-1)} & f_{5 m} \\
0 & 0 & 0 & 0 & \ldots & f_{6(m-1)} & f_{6 m} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & f_{(m-2)(m-1)} & f_{(m-2) m} \\
0 & 0 & 0 & 0 & \ldots & f_{(m-1)(m-1)} & f_{(m-1) m} \\
0 & 0 & 0 & 0 & \ldots & f_{m(m-1)} & f_{m m}
\end{array}\right]
$$

where,
$f_{21}=0$ or $f_{21}=C_{1} \neq 0$ (constant).
$f_{32}=0$ or $f_{32}=C_{2} \neq 0$ (constant).
$f_{43}=0$ or $f_{43}=C_{3} \neq 0$ (constant).

$$
f_{54}=0 \text { or } f_{54}=C_{4} \neq 0 \text { (constant). }
$$

$$
\begin{aligned}
& f_{(m-1)(m-2)}=0 \text { or } f_{(m-1)(m-2)}=C_{m-2} \neq 0 \text { (constant). } \\
& f_{m(m-1)}=0 \text { or } f_{m(m-1)}=C_{m-1} \neq 0 \text { (constant). }
\end{aligned}
$$

Case (1): If $f_{21}=0$, then the matrix ∂ is given by

$$
\partial=\left[\begin{array}{ccccccc}
f_{11} & f_{12} & f_{13} & f_{14} & \ldots & f_{1(m-1)} & f_{1 m} \\
0 & f_{22} & f_{23} & f_{24} & \ldots & f_{2(m-1)} & f_{2 m} \\
0 & f_{32} & f_{33} & f_{34} & \ldots & f_{3(m-1)} & f_{3 m} \\
0 & 0 & f_{43} & f_{44} & \ldots & f_{4(m-1)} & f_{4 m} \\
0 & 0 & 0 & f_{54} & \cdots & f_{5(m-1)} & f_{5 m} \\
0 & 0 & 0 & 0 & \ldots & f_{6(m-1)} & f_{6 m} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & f_{(m-2)(m-1)} & f_{(m-2) m} \\
0 & 0 & 0 & 0 & \ldots & f_{(m-1)(m-1)} & f_{(m-1) m} \\
0 & 0 & 0 & 0 & \ldots & f_{m(m-1)} & f_{m m}
\end{array}\right]
$$

In this case either $f_{32}=0$ or $f_{32}=C_{2} \neq 0$ (constant).
Case (1.1): If $f_{32}=0$, then the matrix ∂ is given by

$$
\partial=\left[\begin{array}{ccccccc}
f_{11} & f_{12} & f_{13} & f_{14} & \ldots & f_{1(m-1)} & f_{1 m} \\
0 & f_{22} & f_{23} & f_{24} & \cdots & f_{2(m-1)} & f_{2 m} \\
0 & 0 & f_{33} & f_{34} & \ldots & f_{3(m-1)} & f_{3 m} \\
0 & 0 & f_{43} & f_{44} & \ldots & f_{4(m-1)} & f_{4 m} \\
0 & 0 & 0 & f_{54} & \ldots & f_{5(m-1)} & f_{5 m} \\
0 & 0 & 0 & 0 & \ldots & f_{6(m-1)} & f_{6 m} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & f_{(m-2)(m-1)} & f_{(m-2) m} \\
0 & 0 & 0 & 0 & \ldots & f_{(m-1)(m-1)} & f_{(m-1) m} \\
0 & 0 & 0 & 0 & \ldots & f_{m(m-1)} & f_{m m}
\end{array}\right]
$$

In this case either $f_{43}=0$ or $f_{43}=C_{3} \neq 0$ (constant).
Case (1.1.1): If $f_{43}=0$, then the matrix ∂ is given by

$$
\partial=\left[\begin{array}{ccccccc}
f_{11} & f_{12} & f_{13} & f_{14} & \ldots & f_{1(m-1)} & f_{1 m} \\
0 & f_{22} & f_{23} & f_{24} & \ldots & f_{2(m-1)} & f_{2 m} \\
0 & 0 & f_{33} & f_{34} & \ldots & f_{3(m-1)} & f_{3 m} \\
0 & 0 & 0 & f_{44} & \ldots & f_{4(m-1)} & f_{4 m} \\
0 & 0 & 0 & f_{54} & \ldots & f_{5(m-1)} & f_{5 m} \\
0 & 0 & 0 & 0 & \ldots & f_{6(m-1)} & f_{6 m} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & f_{(m-2)(m-1)} & f_{(m-2) m} \\
0 & 0 & 0 & 0 & \ldots & f_{(m-1)(m-1)} & f_{(m-1) m} \\
0 & 0 & 0 & 0 & \ldots & f_{m(m-1)} & f_{m m}
\end{array}\right]
$$

In this case either $f_{54}=0$ or $f_{54}=C_{4} \neq 0$ (constant).
Case (1.1.1.1): If $f_{54}=0$, then the matrix ∂ is given by

$$
\partial=\left[\begin{array}{ccccccc}
f_{11} & f_{12} & f_{13} & f_{14} & \ldots & f_{1(m-1)} & f_{1 m} \\
0 & f_{22} & f_{23} & f_{24} & \ldots & f_{2(m-1)} & f_{2 m} \\
0 & 0 & f_{33} & f_{34} & \ldots & f_{3(m-1)} & f_{3 m} \\
0 & 0 & 0 & f_{44} & \ldots & f_{4(m-1)} & f_{4 m} \\
0 & 0 & 0 & 0 & \ldots & f_{5(m-1)} & f_{5 m} \\
0 & 0 & 0 & 0 & \ldots & f_{6(m-1)} & f_{6 m} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & f_{(m-2)(m-1)} & f_{(m-2) m} \\
0 & 0 & 0 & 0 & \ldots & f_{(m-1)(m-1)} & f_{(m-1) m} \\
0 & 0 & 0 & 0 & \ldots & f_{m(m-1)} & f_{m m}
\end{array}\right]
$$

Similarly, we arrived to the following case: either $f_{m(m-1)}=0$ or $f_{m(m-1)}=C_{m-1} \neq 0$.
Case (1.1.....1.a): If $f_{m(m-1)}=0$, then the matrix ∂ is given by

$$
\partial=\left[\begin{array}{ccccccc}
f_{11} & f_{12} & f_{13} & f_{14} & \ldots & f_{1(m-1)} & f_{1 m} \\
0 & f_{22} & f_{23} & f_{24} & \ldots & f_{2(m-1)} & f_{2 m} \\
0 & 0 & f_{33} & f_{34} & \ldots & f_{3(m-1)} & f_{3 m} \\
0 & 0 & 0 & f_{44} & \ldots & f_{4(m-1)} & f_{4 m} \\
0 & 0 & 0 & 0 & \ldots & f_{5(m-1)} & f_{5 m} \\
0 & 0 & 0 & 0 & \ldots & f_{6(m-1)} & f_{6 m} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & f_{(m-2)(m-1)} & f_{(m-2) m} \\
0 & 0 & 0 & 0 & \ldots & f_{(m-1)(m-1)} & f_{(m-1) m} \\
0 & 0 & 0 & 0 & \ldots & 0 & f_{m m}
\end{array}\right]
$$

Since $\partial^{2}=0$, this implies $f_{i i}^{2}=0$ which implies $f_{i i}=0$ for each $1 \leq i \leq m$.
(the reason is that, R is an integral domain).
Thus,

$$
\partial=\left[\begin{array}{ccccccc}
0 & f_{12} & f_{13} & f_{14} & \cdots & f_{1(m-1)} & f_{1 m} \\
0 & 0 & f_{23} & f_{24} & \cdots & f_{2(m-1)} & f_{2 m} \\
0 & 0 & 0 & f_{34} & \ldots & f_{3(m-1)} & f_{3 m} \\
0 & 0 & 0 & 0 & \ldots & f_{4(m-1)} & f_{4 m} \\
0 & 0 & 0 & 0 & \ldots & f_{5(m-1)} & f_{5 m} \\
0 & 0 & 0 & 0 & \ldots & f_{6(m-1)} & f_{6 m} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & f_{(m-2)(m-1)} & f_{(m-2) m} \\
0 & 0 & 0 & 0 & \ldots & 0 & f_{(m-1) m} \\
0 & 0 & 0 & 0 & \ldots & 0 & 0
\end{array}\right]
$$

Therefore, M is solvable (by the previous proposition).
Case (1.1.....1.b): If $f_{m(m-1)}=C_{m-1} \neq 0$ then the matrix ∂ is given by

$$
\partial=\left[\begin{array}{ccccccc}
f_{11} & f_{12} & f_{13} & f_{14} & \ldots & f_{1(m-1)} & f_{1 m} \\
0 & f_{22} & f_{23} & f_{24} & \ldots & f_{2(m-1)} & f_{2 m} \\
0 & 0 & f_{33} & f_{34} & \ldots & f_{3(m-1)} & f_{3 m} \\
0 & 0 & 0 & f_{44} & \ldots & f_{4(m-1)} & f_{4 m} \\
0 & 0 & 0 & 0 & \ldots & f_{5(m-1)} & f_{5 m} \\
0 & 0 & 0 & 0 & \ldots & f_{6(m-1)} & f_{6 m} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & f_{(m-2)(m-1)} & f_{(m-2) m} \\
0 & 0 & 0 & 0 & \ldots & f_{(m-1)(m-1)} & f_{(m-1) m} \\
0 & 0 & 0 & 0 & \ldots & C_{m-1} & f_{m m}
\end{array}\right]
$$

Since $\partial^{2}=0$, this implies that $f_{(m-1)(m-1)}^{2}+C_{m-1} f_{(m-1) m}=0$ and $C_{m-1} f_{(m-1) m}+$ $f_{m m}^{2}=0$.

Thus, $f_{(m-1)(m-1)}=f_{m m}$ and $C_{m-1} f_{(m-1) m}=f_{(m-1)(m-1)}^{2}$.
By Lemma 7.1.5, replace $\operatorname{row}(m-1)$ by $\operatorname{row}(m-1)-\left(\frac{f_{(m-1)(m-1)}}{C_{m-1}}\right) \operatorname{row}(m)$ and at the same time replace column (m) by column $(m)-\left(\frac{f_{(m-1)(m-1)}}{C_{m-1}}\right) \operatorname{column}(m-1)$ to get:

$$
\partial=\left[\begin{array}{ccccccc}
f_{11} & f_{12} & f_{13} & f_{14} & \cdots & f_{1(m-1)} & \frac{C_{m-1} f_{1 m}-f_{(m-1)(m-1)} f_{1(m-1)}}{C_{m-1}} \\
0 & f_{22} & f_{23} & f_{24} & \cdots & f_{2(m-1)} & \frac{C_{m-1} f_{2 m}-f_{(m-1)(m-1)} f_{2(m-1)}}{C_{2-1}} \\
0 & 0 & f_{33} & f_{34} & \cdots & f_{3(m-1)} & \frac{C_{m-1} f_{3 m}-f_{(m-1)(m-1)} f_{3(m-1)}}{C_{m-1}} \\
0 & 0 & 0 & f_{44} & \cdots & f_{4(m-1)} & \frac{C_{m-1} f_{4 m}-f_{(m-1)(m-1)} f_{4(m-1)}}{C_{m-1}} \\
0 & 0 & 0 & 0 & \ldots & f_{5(m-1)} & \frac{C_{m-1} f_{5 m}-f_{(m-1)(m-1)} f_{5(m-1)}}{C_{m-1}} \\
0 & 0 & 0 & 0 & \ldots & f_{6(m-1)} & \frac{C_{m-1} f_{6 m}-f_{(m-1)(m-1)} f_{6(m-1)}}{C_{m-1}} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & f_{(m-2)(m-1)} & \frac{C_{m-1} f_{(m-2) m}-f_{(m-1)(m-1)} f_{(m-2)(m-1)}}{C_{m-1}} \\
0 & 0 & 0 & 0 & \ldots & 0 & 0 \\
0 & 0 & 0 & 0 & \ldots & C_{m-1} & 0
\end{array}\right]
$$

By Lemma 7.1.5, replace $\operatorname{row}(m-1)$ by $\operatorname{row}(m)$ and at the same time replace column $(m-1)$ by column (m) to get:

$$
\partial=\left[\begin{array}{ccccccc}
f_{11} & f_{12} & f_{13} & f_{14} & \cdots & \frac{C_{m-1} f_{1 m}-f_{(m-1)(m-1)} f_{1(m-1)}}{C_{m-1}} & f_{1(m-1)} \\
0 & f_{22} & f_{23} & f_{24} & \cdots & \frac{C_{m-1} f_{2 m}-f_{(m-1)(m-1)} f_{2(m-1)}}{C_{m-1}} & f_{2(m-1)} \\
0 & 0 & f_{33} & f_{34} & \cdots & \frac{C_{m-1} f_{3 m}-f_{(m-1)(m-1)} f_{3(m-1)}}{C_{m-1}} & f_{3(m-1)} \\
0 & 0 & 0 & f_{44} & \cdots & \frac{C_{m-1} f_{4 m}-f_{(m-1)(m-1)} f_{4(m-1)}}{C_{m-1}} & f_{4(m-1)} \\
0 & 0 & 0 & 0 & \ldots & \frac{C_{m-1} f_{5 m}-f_{(m-1)(m-1)} f_{5(m-1)}}{C_{m-1}} & f_{5(m-1)} \\
0 & 0 & 0 & 0 & \ldots & \frac{C_{m-1} f_{6 m}-f_{(m-1)(m-1)} f_{6(m-1)}}{C_{m-1}} & f_{6(m-1)} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & \frac{C_{m-1} f_{(m-2) m}-f_{(m-1)(m-1)} f_{(m-2)(m-1)}}{C_{m-1}} & f_{(m-2)(m-1)} \\
0 & 0 & 0 & 0 & \ldots & 0 & C_{m-1} \\
0 & 0 & 0 & 0 & \ldots & 0 & 0
\end{array}\right]
$$

Therefore,, M is solvable (by the previous proposition).
Case (1.1.....1.2): If $f_{(m-1)(m-2)}=C_{m-2} \neq 0$ then the matrix ∂ is given by

$$
\partial=\left[\begin{array}{cccccccc}
f_{11} & f_{12} & f_{13} & f_{14} & \cdots & f_{1(m-2)} & f_{1(m-1)} & f_{1 m} \\
0 & f_{22} & f_{23} & f_{24} & \cdots & f_{2(m-2)} & f_{2(m-1)} & f_{2 m} \\
0 & 0 & f_{33} & f_{34} & \cdots & f_{3(m-2)} & f_{3(m-1)} & f_{3 m} \\
0 & 0 & 0 & f_{44} & \cdots & f_{4(m-2)} & f_{4(m-1)} & f_{4 m} \\
0 & 0 & 0 & 0 & \cdots & f_{5(m-2)} & f_{5(m-1)} & f_{5 m} \\
0 & 0 & 0 & 0 & \cdots & f_{6(m-2)} & f_{6(m-1)} & f_{6 m} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \\
0 & 0 & 0 & 0 & \ldots & f_{(m-2)(m-2)} & f_{(m-2)(m-1)} & f_{(m-2) m} \\
0 & 0 & 0 & 0 & \ldots & C_{m-2} & f_{(m-1)(m-1)} & f_{(m-1) m} \\
0 & 0 & 0 & 0 & \ldots & 0 & f_{m(m-1)} & f_{m m}
\end{array}\right]
$$

In this case either $f_{m(m-1)}=0$ or $f_{m(m-1)}=C_{m-1} \neq 0$.
Case (1.1.....1.2.1): If $f_{m(m-1)}=0$ then the matrix ∂ is given by

$$
\partial=\left[\begin{array}{cccccccc}
f_{11} & f_{12} & f_{13} & f_{14} & \cdots & f_{1(m-2)} & f_{1(m-1)} & f_{1 m} \\
0 & f_{22} & f_{23} & f_{24} & \cdots & f_{2(m-2)} & f_{2(m-1)} & f_{2 m} \\
0 & 0 & f_{33} & f_{34} & \cdots & f_{3(m-2)} & f_{3(m-1)} & f_{3 m} \\
0 & 0 & 0 & f_{44} & \cdots & f_{4(m-2)} & f_{4(m-1)} & f_{4 m} \\
0 & 0 & 0 & 0 & \cdots & f_{5(m-2)} & f_{5(m-1)} & f_{5 m} \\
0 & 0 & 0 & 0 & \cdots & f_{6(m-2)} & f_{6(m-1)} & f_{6 m} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \\
0 & 0 & 0 & 0 & \ldots & f_{(m-2)(m-2)} & f_{(m-2)(m-1)} & f_{(m-2) m} \\
0 & 0 & 0 & 0 & \ldots & C_{m-2} & f_{(m-1)(m-1)} & f_{(m-1) m} \\
0 & 0 & 0 & 0 & \ldots & 0 & 0 & f_{m m}
\end{array}\right]
$$

Since $\partial^{2}=0$, this implies $f_{(m-2)(m-2)}^{2}+C_{m-2} f_{(m-2)(m-1)}=0$ and $C_{m-2} f_{(m-2)(m-1)}+$ $f_{(m-1)(m-1)}^{2}=0$.

By Lemma 7.1.5, replace $\operatorname{row}(m-2)$ by $\left[\operatorname{row}(m-2)-\left(\frac{f_{(m-2)(m-2)}}{C_{m-2}}\right) \operatorname{row}(m-1)\right]$ and at the same time replace $\operatorname{column}(m-1)$ by $\left[\operatorname{column}(m-1)-\left(\frac{f_{(m-2)(m-2)}}{C_{m-2}}\right) \operatorname{column}(m-\right.$ 2)] to get:

$$
\partial=\left[\begin{array}{cccccccc}
f_{11} & f_{12} & f_{13} & f_{14} & \cdots & f_{1(m-2)} & \frac{C_{m-2} f_{1(m-1)}-f_{(m-2)(m-2)} f_{1(m-2)}}{C_{m-2}} & f_{1 m} \\
0 & f_{22} & f_{23} & f_{24} & \cdots & f_{2(m-2)} & \frac{C_{m-2} f_{2(m-1)}-f_{(m-2)(m-2)} f_{2(m-2)}}{C_{m-2}} & f_{2 m} \\
0 & 0 & f_{33} & f_{34} & \cdots & f_{3(m-2)} & \frac{C_{m-2} f_{3(m-)}-f_{m-2)(m-2)} f_{3(m-2)}}{C_{m-2}} & f_{3 m} \\
0 & 0 & 0 & f_{44} & \cdots & f_{4(m-2)} & \frac{C_{m-2} f_{4(m-1)}-f_{(m-2)(m-2)} f_{4(m-2)}}{C_{m-2}} & f_{4 m} \\
0 & 0 & 0 & 0 & \cdots & f_{5(m-2)} & \frac{C_{m-2} f_{5(m-1)}-f_{(m-2)(m-2)} f_{5(m-2)}}{C_{m-2}} & f_{5 m} \\
0 & 0 & 0 & 0 & \ldots & f_{6(m-2)} & \frac{C_{m-2} f_{6(m-1)}-f_{(m-2)(m-2)} f_{6(m-2)}}{C_{m-2}} & f_{6 m} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \\
0 & 0 & 0 & 0 & \ldots & f_{(m-3)(m-2)} & g & \\
0 & 0 & 0 & 0 & \ldots & 0 & 0 & f_{(m-3) m} \\
0 & 0 & 0 & 0 & \ldots & C_{m-2} & 0 & h \\
0 & 0 & 0 & 0 & \ldots & 0 & 0 & f_{(m-1) m}
\end{array}\right],
$$

where $g=\frac{C_{m-2} f_{(m-3)(m-1)}-f_{(m-2)(m-2)} f_{(m-3)(m-2)}}{C_{m-2}}$ and

$$
h=\frac{C_{m-2} f_{(m-2) m}-f_{(m-2)(m-2)} f_{(m-2)(m-2)}}{C_{m-2}} .
$$

By Lemma 7.1.5, replace $\operatorname{row}(m-2)$ by $\operatorname{row}(m-1)$ and at the same time replace column $(m-2)$ by column $(m-1)$ to get:

$$
\partial=\left[\begin{array}{cccccccc}
f_{11} & f_{12} & f_{13} & f_{14} & \ldots & \frac{C_{m-2} f_{1(m-1)}-f_{(m-2)(m-2)} f_{1(m-2)}}{C_{m-2}} & f_{1(m-2)} & f_{1 m} \\
0 & f_{22} & f_{23} & f_{24} & \ldots & \frac{C_{m-2} f_{2(m-1)}-f_{(m-2)(m-2)} f_{2(m-2)}}{C_{m-2}} & f_{2(m-2)} & f_{2 m} \\
0 & 0 & f_{33} & f_{34} & \ldots & \frac{C_{m-2} f_{3(m-)}-f_{m-2)(m-2)} f_{3(m-2)}}{C_{m-2)}} & f_{3(m-2)} & f_{3 m} \\
0 & 0 & 0 & f_{44} & \ldots & \frac{C_{m-2} f_{4(m-1)}-f_{m-2)(m-2)} f_{4(m-2)}}{C_{m-2}} & f_{4(m-2)} & f_{4 m} \\
0 & 0 & 0 & 0 & \ldots & \frac{C_{m-2} f_{5(m-1)}-f_{(m-2)(m-2)} f_{5(m-2)}}{C_{m-2}} & f_{5(m-2)} & f_{5 m} \\
0 & 0 & 0 & 0 & \ldots & \frac{C_{m-2} f_{6(m-1)}-f_{(m-2)(m-2)} f_{6(m-2)}}{C_{m-2}} & f_{6(m-2)} & f_{6 m} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \\
0 & 0 & 0 & 0 & \ldots & g & f_{(m-3)(m-2)} & f_{(m-3) m} \\
0 & 0 & 0 & 0 & \ldots & 0 & C_{m-2} & f_{(m-1) m} \\
0 & 0 & 0 & 0 & \ldots & 0 & 0 & h \\
0 & 0 & 0 & 0 & \ldots & 0 & 0 & f_{m m}
\end{array}\right],
$$

where $g=\frac{C_{m-2} f_{(m-3)(m-1)}-f_{(m-2)(m-2)} f_{(m-3)(m-2)}}{C_{m-2}}$ and

$$
h=\frac{C_{m-2} f_{(m-2) m}-f_{(m-2)(m-2)} f_{(m-2)(m-2)}}{C_{m-2}} .
$$

Therefore, M is solvable (by the previous proposition).
Case (1.1.....1.2.2): If $f_{m(m-1)}=C_{m-1} \neq 0$, then the matrix ∂ is given by

$$
\partial=\left[\begin{array}{cccccccc}
f_{11} & f_{12} & f_{13} & f_{14} & \cdots & f_{1(m-2)} & f_{1(m-1)} & f_{1 m} \\
0 & f_{22} & f_{23} & f_{24} & \cdots & f_{2(m-2)} & f_{2(m-1)} & f_{2 m} \\
0 & 0 & f_{33} & f_{34} & \cdots & f_{3(m-2)} & f_{3(m-1)} & f_{3 m} \\
0 & 0 & 0 & f_{44} & \cdots & f_{4(m-2)} & f_{4(m-1)} & f_{4 m} \\
0 & 0 & 0 & 0 & \cdots & f_{5(m-2)} & f_{5(m-1)} & f_{5 m} \\
0 & 0 & 0 & 0 & \cdots & f_{6(m-2)} & f_{6(m-1)} & f_{6 m} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \\
0 & 0 & 0 & 0 & \ldots & f_{(m-2)(m-2)} & f_{(m-2)(m-1)} & f_{(m-2) m} \\
0 & 0 & 0 & 0 & \ldots & C_{m-2} & f_{(m-1)(m-1)} & f_{(m-1) m} \\
0 & 0 & 0 & 0 & \cdots & 0 & C_{m-1} & f_{m m}
\end{array}\right]
$$

Since $\partial^{2}=0$, then we multiply $\operatorname{row}(m)$ by column $(m-2)$ to get that, $C_{m-2} \cdot C_{m-1}=$ 0 , but ($C_{m-1} \neq 0$ and $C_{m-2} \neq 0$), which implies to contradiction. Thus, this case is not possible.

Similarly, we discuss the rest cases, and get that M is solvable.

We will discuss some other cases which the free finitely generated differential
graded R-module M is solvable and then generalize them to the general case as the following:

Proposition 7.2.6. Let K be a field and let $R=K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be a graded ring of polynomials graded in the negative way. Let M be a free finitely generated differential graded R-module with basis $S=\left\{e_{i}\right\}_{i=1}^{3}$ and with differential ∂ of degree $P \leq-2$. Suppose that, $\operatorname{dim}\left(e_{i}\right)=k_{i}$ such that $1 \leq i \leq 3$ and $k_{i}>k_{i+1}$. If $k_{i}-k_{i+1}=t_{i}$ such that $t_{i}<-P$, then M is solvable in some cases, if $t_{i}+t_{i+1}>-P$.

Proof. M is graded as before (proposition 7.2.2).
Suppose that,

$$
\begin{aligned}
\partial\left(e_{1}\right) & =f_{11} e_{1}+f_{21} e_{2}+f_{31} e_{3} \\
\partial\left(e_{2}\right) & =f_{12} e_{1}+f_{22} e_{2}+f_{32} e_{3} \\
\partial\left(e_{3}\right) & =f_{13} e_{1}+f_{23} e_{2}+f_{33} e_{3}
\end{aligned}
$$

Then the matrix ∂ with respect to the basis $\left\{e_{1}\right\}_{i=1}^{3}$ is given by:

$$
\partial=\left[\begin{array}{lll}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33}
\end{array}\right]
$$

Now,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{1}\right)\right)=\operatorname{dim}\left(f_{11}\right)+\operatorname{dim}\left(e_{1}\right), \\
k_{1}+P=\operatorname{dim}\left(f_{11}\right)+k_{1}, \text { implies that } \\
\operatorname{dim}\left(f_{11}\right)=P, \text { and thus degree } f_{11}=-P .
\end{gathered}
$$

So,

$$
\operatorname{dim}\left(\partial\left(e_{1}\right)\right)=\operatorname{dim}\left(f_{21}\right)+\operatorname{dim}\left(e_{2}\right),
$$

$$
k_{1}+P=\operatorname{dim}\left(f_{21}\right)+k_{2}, \text { implies that }
$$

$\operatorname{dim}\left(f_{21}\right)=P+k_{1}-k_{2}=P+t_{1}<P-P=0$, which implies deg $\left(f_{21}\right)=-\left(P+k_{1}-k_{2}\right)$.
Also,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{1}\right)\right)=\operatorname{dim}\left(f_{31}\right)+\operatorname{dim}\left(e_{3}\right), \\
k_{1}+P=\operatorname{dim}\left(f_{31}\right)+k_{3}, \text { implies that } \\
\operatorname{dim}\left(f_{31}\right)=P+k_{1}-k_{3}>P-P=0, \text { and thus } f_{31}=0
\end{gathered}
$$

Also,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{2}\right)\right)=\operatorname{dim}\left(f_{12}\right)+\operatorname{dim}\left(e_{1}\right), \\
k_{2}+P=\operatorname{dim}\left(f_{12}\right)+k_{1}, \text { implies that } \\
\operatorname{dim}\left(f_{12}\right)=k_{2}-k_{1}+P<0 \text { and thus } \operatorname{deg}\left(f_{12}\right)=-\left(k_{2}-k_{1}+P\right) .
\end{gathered}
$$

So,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{2}\right)\right)=\operatorname{dim}\left(f_{22}\right)+\operatorname{dim}\left(e_{2}\right), \\
k_{2}+P=\operatorname{dim}\left(f_{22}\right)+k_{2}, \text { implies that } \\
\operatorname{dim}\left(f_{22}\right)=P+k_{2}-k_{2}=P, \text { and thus } \operatorname{deg}\left(f_{22}\right)=-P .
\end{gathered}
$$

So,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{2}\right)\right)=\operatorname{dim}\left(f_{32}\right)+\operatorname{dim}\left(e_{3}\right), \\
k_{2}+P=\operatorname{dim}\left(f_{32}\right)+k_{3}, \text { implies that }
\end{gathered}
$$

$\operatorname{dim}\left(f_{32}\right)=P+k_{2}-k_{3}<-P+P=0$, and thus $\operatorname{deg}\left(f_{12}\right)=-\left(k_{2}-k_{3}+P\right)$.
Also,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{3}\right)\right)=\operatorname{dim}\left(f_{13}\right)+\operatorname{dim}\left(e_{1}\right), \\
k_{3}+P=\operatorname{dim}\left(f_{13}\right)+k_{1}, \text { implies that }
\end{gathered}
$$

$$
\operatorname{dim}\left(f_{13}\right)=k_{3}-k_{1}+P=P+P<0 \text { and thus } \operatorname{deg}\left(f_{13}\right)=-\left(k_{3}-k_{1}+P\right)
$$

So,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{3}\right)\right)=\operatorname{dim}\left(f_{23}\right)+\operatorname{dim}\left(e_{2}\right), \\
k_{3}+P=\operatorname{dim}\left(f_{23}\right)+k_{2}, \text { implies that } \\
\operatorname{dim}\left(f_{23}\right)=P+k_{3}-k_{2}<0, \text { and thus } \operatorname{deg}\left(f_{23}\right)=-\left(k_{3}-k_{2}+P\right) .
\end{gathered}
$$

So,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{3}\right)\right)=\operatorname{dim}\left(f_{33}\right)+\operatorname{dim}\left(e_{3}\right), \\
k_{3}+P=\operatorname{dim}\left(f_{33}\right)+k_{3}, \text { implies that } \\
\operatorname{dim}\left(f_{33}\right)=P, \text { and thus } \operatorname{deg}\left(f_{33}\right)=-P .
\end{gathered}
$$

Then the matrix ∂ is given by:

$$
\partial=\left[\begin{array}{ccc}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
0 & f_{32} & f_{33}
\end{array}\right]
$$

Since $\partial^{2}=0$, multiply row(3) by column(1) to get $f_{32} f_{21}=0$ implies that $f_{32}=0$ or $f_{21}=0$.

Case (1): If $f_{32}=0$ and $f_{21} \neq 0$, then the matrix ∂ is given by

$$
\partial=\left[\begin{array}{ccc}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
0 & 0 & f_{33}
\end{array}\right]
$$

Since $\partial^{2}=0$, multiply row(3) by column(3) to get $f_{33}^{2}=0$ implies that $f_{33}=0$. Hence, the matrix ∂ is given by

$$
\partial=\left[\begin{array}{ccc}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
0 & 0 & 0
\end{array}\right]
$$

Since $\partial^{2}=0$, multiply row(2) by column(1) to get $f_{21} f_{11}+f_{21} f_{22}=0$ implies that $f_{21}\left[f_{11}+f_{22}\right]=0$. Thus, either $f_{21}=0$ or $f_{11}+f_{22}=0$. But, $f_{21} \neq 0$ which implies that $f_{11}+f_{22}=0$ and so $f_{11}=f_{22}$. Hence, the matrix ∂ is given by

Thus,

$$
\partial=\left[\begin{array}{ccc}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{11} & f_{23} \\
0 & 0 & 0
\end{array}\right]
$$

Since $\partial^{2}=0$, multiply row(1) by column(1) to get $f_{11}^{2}+f_{12} f_{21}=0$ implies that $f_{11}^{2}=f_{12} f_{21}$.

Case (1.1): If $f_{11}=0$, which implies $f_{12} f_{21}=0$ and this implies to either $f_{12}=0$ or $f_{21}=0$, but, $f_{21} \neq 0$. So $f_{12}=0$, and then the matrix of ∂ is given by

$$
\partial=\left[\begin{array}{ccc}
0 & 0 & f_{13} \\
f_{21} & 0 & f_{23} \\
0 & 0 & 0
\end{array}\right]
$$

By Lemma 7.1.5, replace row(1) by row(2) and at the time replace column(1) by column(2) to get:

$$
\partial=\left[\begin{array}{ccc}
0 & f_{21} & f_{23} \\
0 & 0 & f_{13} \\
0 & 0 & 0
\end{array}\right]
$$

Thus, M is solvable (by proposition 7.2.4).
Case(1.2): If $f_{11} \neq 0$ then $f_{12} f_{21} \neq 0$ and this implies to $f_{12} \neq 0$ and $f_{21} \neq 0$.
Therefore, we can not decide whether M is solvable or not by this method.
Case (2): If $f_{21}=0$ and $f_{32} \neq 0$, then the matrix of ∂ is given by

$$
\partial=\left[\begin{array}{ccc}
f_{11} & f_{12} & f_{13} \\
0 & f_{22} & f_{23} \\
0 & f_{32} & f_{33}
\end{array}\right]
$$

Since $\partial^{2}=0$ multiply row(1) by column(1) to get $f_{11}^{2}=0$ implies that $f_{11}=0$ (since R is an integral domain).

Thus,

$$
\partial=\left[\begin{array}{lll}
0 & f_{12} & f_{13} \\
0 & f_{22} & f_{23} \\
0 & f_{32} & f_{33}
\end{array}\right]
$$

Since $\partial^{2}=0$, multiply row(3) by column(2) to get $f_{32} f_{22}+f_{23} f_{33}=0$ implies that $f_{32}\left[f_{22}+f_{33}\right]=0$.

Thus, either $f_{32}=0$ or $f_{22}+f_{33}=0$. But, $f_{32} \neq 0$ which implies that $f_{22}+f_{33}=0$ and so $f_{22}=f_{33}$. Hence, the matrix ∂ is given by

Thus,

$$
\partial=\left[\begin{array}{ccc}
0 & f_{12} & f_{13} \\
0 & f_{22} & f_{23} \\
0 & f_{32} & f_{22}
\end{array}\right]
$$

Since $\partial^{2}=0$, multiply row(2) by column(2) to get $f_{22}^{2}+f_{23} f_{32}=0$ implies that $f_{22}^{2}=f_{23} f_{32}$.

Case (2.1): If $f_{22}=0$ implies that $f_{23} f_{32}=0$ which implies that, either $f_{23}=0$ or $f_{32}=0$. But, $f_{32} \neq 0$ and thus $f_{23}=0$. Hence, the matrix ∂ is given by

$$
\partial=\left[\begin{array}{ccc}
0 & f_{12} & f_{13} \\
0 & 0 & 0 \\
0 & f_{32} & 0
\end{array}\right]
$$

Since $\partial^{2}=0$, multiply row(1) by column(1) to get $f_{11}^{2}=0$ implies that $f_{11}^{2}=0$ (since R is an integral domain).

By Lemma 7.1.5, replace row(2) by row(3) and at the time replace column(2) by column(3) to get:

$$
\partial=\left[\begin{array}{ccc}
0 & f_{12} & f_{13} \\
0 & 0 & f_{32} \\
0 & 0 & 0
\end{array}\right]
$$

Thus, M is solvable (by proposition 7.2.4).
Case (2.2): If $f_{22} \neq 0$, then $f_{23} f_{32} \neq 0$, and this implies to $f_{23} \neq 0$, and $f_{32} \neq 0$,
Therefore, we can not decide whether M is solvable or not by this method.
Case (3): If $f_{32}=0$ and $f_{21}=0$, then the matrix ∂ is given by

$$
\partial=\left[\begin{array}{ccc}
f_{11} & f_{12} & f_{13} \\
0 & f_{22} & f_{23} \\
0 & 0 & f_{33}
\end{array}\right]
$$

Since $\partial^{2}=0$, then we have $f_{11}^{2}=f_{22}^{2}=f_{33}^{2}=0$, which implies that, $f_{11}=f_{22}=$ $f_{33}=0$. Then the matrix ∂ is given by

$$
\partial=\left[\begin{array}{ccc}
0 & f_{12} & f_{13} \\
0 & 0 & f_{23} \\
0 & 0 & 0
\end{array}\right]
$$

Thus, M is solvable (by proposition 7.2.4).
Proposition 7.2.7. Let K be a field and let $R=K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be a graded ring of polynomials graded in the negative way. Let M be a free finitely generated differential graded R-module with basis $S=\left\{e_{i}\right\}_{i=1}^{4}$ and with differential ∂ of degree $P \leq-2$. Suppose that, $\operatorname{dim}\left(e_{i}\right)=k_{i}$ such that $1 \leq i \leq 4$ and $k_{i}>k_{i+1}$. If $k_{i}-k_{i+1}=t_{i}$ such that $t_{i}<-P$, then M is solvable in some cases, if $t_{i}+t_{i+1}>-P$.

Proof. M is graded as before (proposition 7.2.3).

Suppose that,

$$
\begin{aligned}
\partial\left(e_{1}\right) & =f_{11} e_{1}+f_{21} e_{2}+f_{31} e_{3}+f_{41} e_{4} \\
\partial\left(e_{2}\right) & =f_{12} e_{1}+f_{22} e_{2}+f_{32} e_{3}+f_{42} e_{4} \\
\partial\left(e_{3}\right) & =f_{13} e_{1}+f_{23} e_{2}+f_{33} e_{3}+f_{43} e_{4} \\
\partial\left(e_{4}\right) & =f_{14} e_{1}+f_{24} e_{2}+f_{34} e_{3}+f_{44} e_{4}
\end{aligned}
$$

Then the matrix of ∂ with respect to the basis $\left\{e_{1}\right\}_{i=1}^{4}$ is given by:

$$
\partial=\left[\begin{array}{llll}
f_{11} & f_{12} & f_{13} & f_{14} \\
f_{21} & f_{22} & f_{23} & f_{24} \\
f_{31} & f_{32} & f_{33} & f_{34} \\
f_{41} & f_{42} & f_{43} & f_{44}
\end{array}\right]
$$

Now,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{1}\right)\right)=\operatorname{dim}\left(f_{11}\right)+\operatorname{dim}\left(e_{1}\right), \\
k_{1}+P=\operatorname{dim}\left(f_{11}\right)+k_{1}, \text { implies that } \\
\operatorname{dim}\left(f_{11}\right)=P, \text { and thus } \operatorname{deg}\left(f_{11}\right)=-P .
\end{gathered}
$$

So,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{1}\right)\right)=\operatorname{dim}\left(f_{21}\right)+\operatorname{dim}\left(e_{2}\right), \\
k_{1}+P=\operatorname{dim}\left(f_{21}\right)+k_{2}, \text { implies that }
\end{gathered}
$$

$\operatorname{dim}\left(f_{21}\right)=P+k_{1}-k_{2}=P+t_{1}<P-P=0$, and thus $\operatorname{deg}\left(f_{11}\right)=-\left(P+k_{1}-k_{2}\right)$.
Also,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{1}\right)\right)=\operatorname{dim}\left(f_{31}\right)+\operatorname{dim}\left(e_{3}\right), \\
k_{1}+P=\operatorname{dim}\left(f_{31}\right)+k_{3}, \text { implies that }
\end{gathered}
$$

$$
\operatorname{dim}\left(f_{31}\right)=k_{1}-k_{3}+P>-P \geq 2, \text { and thus } f_{31}=0 \text { similarly } f_{41}=0
$$

Also,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{2}\right)\right)=\operatorname{dim}\left(f_{12}\right)+\operatorname{dim}\left(e_{1}\right), \\
k_{2}+P=\operatorname{dim}\left(f_{12}\right)+k_{1}, \text { implies that }
\end{gathered}
$$

$$
\operatorname{dim}\left(f_{12}\right)=k_{2}-k_{1}+P<0 \text { and thus } \operatorname{deg}\left(f_{12}\right)=-\left(k_{2}-k_{1}+P\right)
$$

So,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{2}\right)\right)=\operatorname{dim}\left(f_{22}\right)+\operatorname{dim}\left(e_{2}\right), \\
k_{2}+P=\operatorname{dim}\left(f_{22}\right)+k_{2}, \text { implies that } \\
\operatorname{dim}\left(f_{22}\right)=P+k_{2}-k_{2}=P, \text { and thus } \operatorname{deg}\left(f_{22}\right)=-P .
\end{gathered}
$$

So,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{2}\right)\right)=\operatorname{dim}\left(f_{32}\right)+\operatorname{dim}\left(e_{3}\right), \\
k_{2}+P=\operatorname{dim}\left(f_{32}\right)+k_{3}, \text { implies that }
\end{gathered}
$$

$\operatorname{dim}\left(f_{32}\right)=k_{2}-k_{3}+P<-P+P=0$, and thus $\operatorname{deg}\left(f_{32}\right)=-\left(P+k_{2}-k_{3}\right)$.
So,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{2}\right)\right)=\operatorname{dim}\left(f_{42}\right)+\operatorname{dim}\left(e_{4}\right), \\
k_{2}+P=\operatorname{dim}\left(f_{42}\right)+k_{4}, \text { implies that } \\
\operatorname{dim}\left(f_{42}\right)=k_{2}-k_{4}+P>P-P=0, \text { and thus } f_{42}=0 .
\end{gathered}
$$

Also,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{3}\right)\right)=\operatorname{dim}\left(f_{13}\right)+\operatorname{dim}\left(e_{1}\right), \\
k_{3}+P=\operatorname{dim}\left(f_{13}\right)+k_{1}, \text { implies that } \\
\operatorname{dim}\left(f_{13}\right)=k_{3}-k_{1}+P<0 \text { and thus } \operatorname{deg}\left(f_{13}\right)=-\left(k_{3}-k_{1}+P\right) .
\end{gathered}
$$

So,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{3}\right)\right)=\operatorname{dim}\left(f_{23}\right)+\operatorname{dim}\left(e_{2}\right), \\
k_{3}+P=\operatorname{dim}\left(f_{23}\right)+k_{2}, \text { implies that } \\
\operatorname{dim}\left(f_{23}\right)=P+k_{3}-k_{2}<0, \text { and thus } \operatorname{deg}\left(f_{23}\right)=-\left(k_{3}-k_{2}+P\right) .
\end{gathered}
$$

So,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{3}\right)\right)=\operatorname{dim}\left(f_{33}\right)+\operatorname{dim}\left(e_{3}\right), \\
k_{3}+P=\operatorname{dim}\left(f_{33}\right)+k_{3}, \text { implies that } \\
\operatorname{dim}\left(f_{33}\right)=P, \text { and thus degree } f_{33}=-P .
\end{gathered}
$$

So,

$$
\operatorname{dim}\left(\partial\left(e_{3}\right)\right)=\operatorname{dim}\left(f_{43}\right)+\operatorname{dim}\left(e_{4}\right),
$$

$$
k_{3}+P=\operatorname{dim}\left(f_{43}\right)+k_{4}, \text { implies that }
$$

$$
\operatorname{dim}\left(f_{43}\right)=k_{3}-k_{4}+P<0, \text { and thus } \operatorname{deg}\left(f_{43}\right)=-\left(k_{3}-k_{4}+P\right)
$$

Also,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{4}\right)\right)=\operatorname{dim}\left(f_{14}\right)+\operatorname{dim}\left(e_{1}\right), \\
k_{4}+P=\operatorname{dim}\left(f_{14}\right)+k_{1}, \text { implies that } \\
\operatorname{dim}\left(f_{14}\right)=k_{4}-k_{1}+P<0 \text { and thus } \operatorname{deg}\left(f_{14}\right)=-\left(k_{4}-k_{1}+P\right) .
\end{gathered}
$$

Similarly, degree $f_{24}=-\left(P+k_{4}-k_{2}\right)$, $\operatorname{deg}\left(f_{34}\right)=-\left(P+k_{4}-k_{3}\right)$, and $\operatorname{deg}\left(f_{24}\right)=-P$.
Hence, the matrix of ∂ is given by

$$
\partial=\left[\begin{array}{cccc}
f_{11} & f_{12} & f_{13} & f_{14} \\
f_{21} & f_{22} & f_{23} & f_{24} \\
0 & f_{32} & f_{33} & f_{34} \\
0 & 0 & f_{43} & f_{44}
\end{array}\right]
$$

Since $\partial^{2}=0$, multiply row(4) by column (2) to get $f_{43} f_{32}=0$ implies that $f_{43}=0$ or $f_{32}=0$.

Case (1): If $f_{43}=0$ and $f_{32} \neq 0$, then the matrix ∂ is given by

$$
\partial=\left[\begin{array}{cccc}
f_{11} & f_{12} & f_{13} & f_{14} \\
f_{21} & f_{22} & f_{23} & f_{24} \\
0 & f_{32} & f_{33} & f_{34} \\
0 & 0 & 0 & f_{44}
\end{array}\right]
$$

Since $\partial^{2}=0$, then we have $f_{44}^{2}=0$ which implies $f_{44}=0$.
Thus,

$$
\partial=\left[\begin{array}{cccc}
f_{11} & f_{12} & f_{13} & f_{14} \\
f_{21} & f_{22} & f_{23} & f_{24} \\
0 & f_{32} & f_{33} & f_{34} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Since $\partial^{2}=0$, multiply row(3) by column(1) to get $f_{32} f_{21}=0$ implies that $f_{32}=0$ or $f_{21}=0$. But, $f_{32} \neq 0$ implies to $f_{21}=0$.

Thus,

$$
\partial=\left[\begin{array}{cccc}
f_{11} & f_{12} & f_{13} & f_{14} \\
0 & f_{22} & f_{23} & f_{24} \\
0 & f_{32} & f_{33} & f_{34} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Since $\partial^{2}=0$, then we have that $f_{22}^{2}+f_{23} f_{32}=0$ and $f_{23} f_{32}+f_{33}^{2}=0$. Hence, $f_{22}=f_{33}$ and $f_{23} f_{32}=f_{22}^{2}$.

Case (1.1): If $f_{22}=0$, then $f_{33}=0$ and $f_{23} f_{32}=0$, and this implies to either $f_{23}=0$ or $f_{32}=0$, but $f_{32} \neq 0$. So $f_{23}=0$, and then the matrix of ∂ is given by

Thus,

$$
\partial=\left[\begin{array}{cccc}
f_{11} & f_{12} & f_{13} & f_{14} \\
0 & 0 & 0 & f_{24} \\
0 & f_{32} & 0 & f_{34} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

By Lemma 7.1.5, replace row(2) by row(3) and at the time replace column(2) by column(3) to get:

Thus,

$$
\partial=\left[\begin{array}{cccc}
f_{11} & f_{13} & f_{12} & f_{14} \\
0 & 0 & f_{32} & f_{34} \\
0 & 0 & f_{23} & f_{24} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Since $\partial^{2}=0$, then $f_{11}^{2}=0$ implies $f_{11}=0$.
Thus,

$$
\partial=\left[\begin{array}{cccc}
0 & f_{12} & f_{13} & f_{14} \\
0 & 0 & f_{32} & f_{34} \\
0 & 0 & 0 & f_{24} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore, M is solvable (by proposition 7.2.4).
Case (1.2): If $f_{22} \neq 0$, then $f_{33} \neq 0$ and $f_{23} f_{32} \neq 0$, which implies that $f_{23} \neq 0$ and $f_{32} \neq 0$.

Therefore, we can not decide whether M is solvable or not by this method.
Case (2): If $f_{32}=0$ and $f_{43} \neq 0$, then the matrix of ∂ is given by

$$
\partial=\left[\begin{array}{cccc}
f_{11} & f_{12} & f_{13} & f_{14} \\
f_{21} & f_{22} & f_{23} & f_{24} \\
0 & 0 & f_{33} & f_{34} \\
0 & 0 & f_{43} & f_{44}
\end{array}\right]
$$

Since $\partial^{2}=0$, then we have that $f_{11}^{2}+f_{12} f_{21}=0$ and $f_{12} f_{21}+f_{22}^{2}=0$. Hence, $f_{11}=f_{22}$ and $f_{12} f_{21}=f_{11}^{2}$.

Case (2.1): If $f_{11}=0$, then $f_{22}=0$ and $f_{12} f_{21}=0$, and this implies to either $f_{21}=0$ or $f_{12}=0$.

Case (2.1.1): If $f_{21}=0$, then the matrix of ∂ is given by

$$
\partial=\left[\begin{array}{cccc}
0 & f_{12} & f_{13} & f_{14} \\
0 & 0 & f_{23} & f_{24} \\
0 & 0 & f_{33} & f_{34} \\
0 & 0 & f_{43} & f_{44}
\end{array}\right]
$$

Since $\partial^{2}=0$, then we have that $f_{33}^{2}+f_{34} f_{43}=0$ and $f_{34} f_{43}+f_{44}^{2}=0$. Hence, $f_{33}=f_{44}$ and $f_{34} f_{43}=f_{33}^{2}$.

Case (2.1.1.a): If $f_{33}=0$, then $f_{44}=0$ and $f_{34} f_{43}=0$. implies, $f_{34}=0$ or $f_{43}=0$, but $f_{43} \neq 0$ implies to $f_{34}=0$. Hence, the matrix of ∂ is given by

$$
\partial=\left[\begin{array}{cccc}
0 & f_{12} & f_{14} & f_{13} \\
0 & 0 & f_{24} & f_{23} \\
0 & 0 & 0 & 0 \\
0 & 0 & f_{43} & 0
\end{array}\right]
$$

By Lemma 7.1.5, replace row(3) by row(4) and at the time replace column(3) by column(4) to get:

$$
\partial=\left[\begin{array}{cccc}
0 & f_{12} & f_{13} & f_{14} \\
0 & 0 & 0 & f_{24} \\
0 & 0 & 0 & f_{43} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore, M is solvable (by proposition 7.2.4).
Case (2.1.1.b): If $f_{33} \neq 0$, then $f_{44} \neq 0$ and $f_{43} f_{34} \neq 0$. implies to $f_{34} \neq 0$. Therefore, we can not decide whether M is solvable or not by this method.

Case (2.1.2): If $f_{12}=0$, and $f_{21} \neq 0$, then the matrix of ∂ is given by

$$
\partial=\left[\begin{array}{cccc}
0 & 0 & f_{13} & f_{14} \\
f_{21} & 0 & f_{23} & f_{24} \\
0 & 0 & f_{33} & f_{34} \\
0 & 0 & f_{43} & f_{44}
\end{array}\right]
$$

By Lemma 7.1.5, replace $\operatorname{row}(1)$ by row(2) and at the time replace column(1) by column(2) to get:

$$
\partial=\left[\begin{array}{cccc}
0 & f_{21} & f_{23} & f_{24} \\
0 & 0 & f_{13} & f_{14} \\
0 & 0 & f_{33} & f_{34} \\
0 & 0 & f_{43} & f_{44}
\end{array}\right]
$$

Since $\partial^{2}=0$, then we have that $f_{33}^{2}+f_{34} f_{43}=0$ and $f_{34} f_{43}+f_{44}^{2}=0$. Hence, $f_{33}=f_{44}$ and $f_{34} f_{43}=f_{33}^{2}$.

- If $f_{33}=0$,then M is solvable (Case (2.1.1.a)).
- If $f_{33} \neq 0$, then we can not decide whether M is solvable or not by this method.

Case (3): If $f_{43}=0$, and $f_{32}=0$, then the matrix of ∂ is given by

$$
\partial=\left[\begin{array}{cccc}
f_{11} & f_{12} & f_{13} & f_{14} \\
f_{21} & f_{22} & f_{23} & f_{24} \\
0 & 0 & f_{33} & f_{34} \\
0 & 0 & 0 & f_{44}
\end{array}\right]
$$

Since $\partial^{2}=0$,then we have that $f_{11}^{2}+f_{21} f_{12}=0$ and $f_{21} f_{12}+f_{22}^{2}=0$. Hence, $f_{11}=f_{22}$ and $f_{21} f_{12}=f_{11}^{2}$.

Case (3.1): If $f_{11}=0$, then $f_{22}=0$ and $f_{21} f_{12}=0$. implies, either $f_{21}=0$ or $f_{12}=0$.

Also, since ∂^{2} then $f_{33}^{2}=0$ and $f_{44}^{2}=0$. Hence, $f_{33}=f_{44}=0$.
Case (3.1.1): If $f_{21}=0$. then the matrix of ∂ is given by

$$
\partial=\left[\begin{array}{cccc}
0 & f_{12} & f_{13} & f_{14} \\
0 & 0 & f_{23} & f_{24} \\
0 & 0 & f_{33} & f_{34} \\
0 & 0 & 0 & f_{44}
\end{array}\right]
$$

Therefore, M is solvable (by proposition 7.2.4).
Case (3.1.2): If $f_{12}=0$ and $f_{21} \neq 0$, then the matrix of ∂ is given by

$$
\partial=\left[\begin{array}{cccc}
f_{11} & 0 & f_{13} & f_{14} \\
f_{21} & f_{22} & f_{23} & f_{24} \\
0 & 0 & f_{33} & f_{34} \\
0 & 0 & 0 & f_{44}
\end{array}\right]
$$

By Lemma 7.1.5, replace row(1) by row(2) and at the time replace column(1) by column(2) to get:

$$
\partial=\left[\begin{array}{cccc}
f_{11} & 0 & f_{13} & f_{14} \\
0 & f_{22} & f_{23} & f_{24} \\
0 & 0 & f_{33} & f_{34} \\
0 & 0 & 0 & f_{44}
\end{array}\right]
$$

Therefore, M is solvable (by proposition 7.2.4).

Therefore, we can generalize proposition 7.2.6 and proposition 7.2.7 to the following proposition:

Proposition 7.2.8. Let K be a field and let $R=K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be a graded ring of polynomials graded in the negative way. Let M be a free finitely generated differential graded R-module with basis $S=\left\{e_{i}\right\}_{i=1}^{m}$, and differential ∂ of degree $P \leq-2$. Suppose, $\operatorname{dim}\left(e_{i}\right)=k_{i}$ such that $1 \leq i \leq m$ and $k_{i}>k_{i+1}$. If $k_{i}-k_{i+1}=t_{i}$ with $t_{i}<-P$ and $t_{i}+t_{i+1}>-P$ and the entries on the diagonal of the matrix ∂ with respect to the basis $S=\left\{e_{i}\right\}_{i=1}^{m}$ are zeros then M is solvable.

Proof. We will proof this Proposition by using GAP system next Chapter (Section 8.5).

Remark 7.2.9. Let K be a field and let $R=K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be a graded ring of polynomials graded in the negative way. Let M be a free finitely generated differential graded R-module with basis $S=\left\{e_{i}\right\}_{i=1}^{m}$, and differential ∂ of degree $P \leq-2$. Suppose $\operatorname{dim}\left(e_{i}\right)=k_{i}$ such that $1 \leq i \leq m$ and $k_{i}>k_{i+1}$. If $k_{i}-k_{i+1}=t_{i}$ with $t_{i}<-P$ and $t_{i}+t_{i+1} \leq-P$ then the module M is outside the classification so we cannot decide, using our methods, whether or not it is solvable.

Proof. M is graded as before (proposition 7.2.4). Suppose that,

$$
\begin{aligned}
\partial\left(e_{1}\right) & =f_{11} e_{1}+\ldots+f_{m 1} e_{m} \\
\partial\left(e_{2}\right) & =f_{12} e_{1}+\ldots+f_{m 2} e_{m} \\
\vdots & \\
\partial\left(e_{m}\right) & =f_{1 m} e_{1}+\ldots+f_{m m} e_{m}
\end{aligned}
$$

Then the matrix ∂ with respect to the basis $\left\{e_{i}\right\}_{i=1}^{m}$ is given by:

$$
\partial=\left[\begin{array}{cccc}
f_{11} & f_{12} & \ldots & f_{1 m} \\
f_{21} & f_{22} & \ldots & f_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
f_{m 1} & f_{m 2} & \ldots & f_{m m}
\end{array}\right]
$$

Now,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{1}\right)\right)=\operatorname{dim}\left(f_{i 1}\right)+\operatorname{dim}\left(e_{i}\right), \text { for each } 1 \leq i \leq 3, \\
k_{1}+P=\operatorname{dim}\left(f_{i 1}\right)+k_{i}, \text { and then, } \\
\operatorname{dim}\left(f_{i 1}\right)=\left(k_{1}-k_{i}\right)+P<0, \text { i.e., } f_{i 1} \in R_{k_{1}-k_{i}+P} \neq 0
\end{gathered}
$$

Hence, $\operatorname{deg}\left(f_{i 1}\right)=-\left(P+k_{1}-k_{i}\right)$. Therefore, $f_{i 1} \neq 0$, for each $1 \leq i \leq 3$.
So,

$$
\operatorname{dim}\left(\partial\left(e_{1}\right)\right)=\operatorname{dim}\left(f_{i 1}\right)+\operatorname{dim}\left(e_{i}\right), \text { for each } 4 \leq i \leq m,
$$

$$
k_{1}+P=\operatorname{dim}\left(f_{i 1}\right)+k_{i}, \text { and then } \operatorname{dim}\left(f_{i 1}\right)=P+k_{1}-k_{i} \text {. }
$$

Therefore, $f_{i 1}=0$ or $\operatorname{deg}\left(f_{i 1}\right)=-\left(P+k_{1}-k_{i}\right)$, for each $4 \leq i \leq m$.
Also,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{2}\right)\right)=\operatorname{dim}\left(f_{i 2}\right)+\operatorname{dim}\left(e_{i}\right), \text { for each } 1 \leq i \leq 4, \\
k_{2}+P=\operatorname{dim}\left(f_{i 2}\right)+k_{i}, \text { and then } \\
\operatorname{dim}\left(f_{i 2}\right)=P+k_{2}-k_{i}<0, \text { i.e., } f_{i 2} \in R_{P+k_{2}-k_{i}} \neq 0
\end{gathered}
$$

Hence, $\operatorname{deg}\left(f_{i 2}\right)=-\left(P+k_{2}-k_{i}\right)$. Therefore, $f_{i 2} \neq 0$, for each $1 \leq i \leq 4$. Also,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{2}\right)\right)=\operatorname{dim}\left(f_{i 2}\right)+\operatorname{dim}\left(e_{i}\right), \text { for each } 5 \leq i \leq m, \\
k_{2}+P=\operatorname{dim}\left(f_{i 2}\right)+k_{i}, \text { and then } \operatorname{dim}\left(f_{i 2}\right)=P+k_{2}-k_{i} .
\end{gathered}
$$

Therefore, $f_{i 2}=0$ or $\operatorname{deg}\left(f_{i 2}\right)=-\left(P+k_{1}-k_{i}\right)$, for each $5 \leq i \leq m$.

Now,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{m-1}\right)\right)=\operatorname{dim}\left(f_{i(m-1)}\right)+\operatorname{dim}\left(e_{i}\right), \text { for each } 1 \leq i \leq m, \\
k_{m-1}+P=\operatorname{dim}\left(f_{i(m-1)}\right)+k_{i}, \text { and then } \\
\operatorname{dim}\left(f_{i(m-1)}\right)=P+k_{m-1}-k_{i}<0, \text { i.e., } f_{i(m-1)} \in R_{k_{m-1}-k_{i} P} \neq 0
\end{gathered}
$$

Hence, $\operatorname{deg}\left(f_{i(m-1)}\right)=-\left(k_{m-1}-k_{i}+P\right)$. Therefore, $f_{i(m-1)} \neq 0$, for each $1 \leq$ $i \leq m$.

Now,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{m}\right)\right)=\operatorname{dim}\left(f_{i m}\right)+\operatorname{dim}\left(e_{i}\right), \text { for each } 1 \leq i \leq m . \\
k_{m}+P=\operatorname{dim}\left(f_{i m}\right)+k_{i}, \text { and then } \\
\operatorname{dim}\left(f_{i m}\right)=P+k_{m}-k_{i}<0, \text { i.e., } f_{i m} \in R_{P+k_{m}-k_{1}} \neq 0 .
\end{gathered}
$$

Hence, $\operatorname{deg}\left(f_{i m}\right)=-\left(P+k_{m}-k_{i}\right)$. Therefore, $f_{i m} \neq 0$, for each $1 \leq i \leq m$.
Thus the matrix ∂ is given by:

$$
\partial=\left[\begin{array}{ccccc}
f_{11} & f_{12} & \cdots & f_{1(m-1)} & f_{1 m} \\
f_{21} & f_{22} & \cdots & f_{2(m-1)} & f_{2 m} \\
f_{31} & f_{32} & \cdots & f_{3(m-1)} & f_{3 m} \\
\vdots & \vdots & & \vdots & \vdots \\
f_{(m-1) 1} & f_{(m-1) 2} & \cdots & f_{(m-1)(m-1)} & f_{(m-1) m} \\
f_{m 1} & f_{m 2} & \cdots & f_{m(m-1)} & f_{m m}
\end{array}\right]
$$

where,

$$
\begin{aligned}
f_{i 1}= & 0 \text { or } \operatorname{deg}\left(f_{i 1}\right)=-\left(P+k_{1}-k_{i}\right), \forall 4 \leq i \leq m . \\
f_{i 2}= & 0 \text { or } \operatorname{deg}\left(f_{i 2}\right)=-\left(P+k_{2}-k_{i}\right), \forall 5 \leq i \leq m . \\
f_{i 3}= & 0 \text { or } \operatorname{deg}\left(f_{i 3}\right)=-\left(P+k_{3}-k_{i}\right), \forall 6 \leq i \leq m . \\
& \vdots \\
f_{i(m-3)}= & 0 \text { or } \operatorname{deg}\left(f_{i(m-3)}\right)=-\left(P+k_{m-3}-k_{i}\right), \forall i=m .
\end{aligned}
$$

Therefore, in this case we cannot decide, using our methods, whether or not M is solvable, because we are unable to convert the matrix ∂ to a strictly upper triangular matrix. Hence we can't forming a composition series of a free finitely generated differential graded R-submodules.

Proposition 7.2.10. Let K be a field and let $R=K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be a graded ring of polynomials graded in the negative way. Let M be a free finitely generated differential graded R-module with basis $S=\left\{e_{i}\right\}_{i=1}^{m}$, and differential ∂ of degree $P \leq-2$. Suppose $\operatorname{dim}\left(e_{i}\right)=k_{i}$ for $1 \leq i \leq m$, such that $k_{i}<k_{i+1}$. If $k_{i}-k_{i+1}=t_{i}$ with $t_{i}<P$, then M is solvable.

Proof. M is graded as before (proposition 7.2.4).
Suppose that,

$$
\begin{aligned}
\partial\left(e_{1}\right) & =f_{11} e_{1}+\ldots+f_{m 1} e_{m} \\
\partial\left(e_{2}\right) & =f_{12} e_{1}+\ldots+f_{m 2} e_{m} \\
\vdots & \\
\partial\left(e_{m}\right) & =f_{1 m} e_{1}+\ldots+f_{m m} e_{m}
\end{aligned}
$$

Then the matrix ∂ with respect to the basis $\left\{e_{i}\right\}_{i=1}^{m}$ is given by:

$$
\partial=\left[\begin{array}{cccc}
f_{11} & f_{12} & \ldots & f_{1 m} \\
f_{21} & f_{22} & \ldots & f_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
f_{m 1} & f_{m 2} & \ldots & f_{m m}
\end{array}\right]
$$

Now,

$$
\operatorname{dim}\left(\partial\left(e_{1}\right)\right)=\operatorname{dim}\left(f_{i 1}\right)+\operatorname{dim}\left(e_{i}\right), \text { for each } 1 \leq i \leq m,
$$

$k_{1}+P=\operatorname{dim}\left(f_{i 1}\right)+k_{i}$, implies $\operatorname{dim}\left(f_{i 1}\right)=P-\left(k_{i}-k_{1}\right)<0$, i.e., $f_{i 1} \in R_{P-\left(k_{i}-k_{1}\right)} \neq 0$.
Therefore, $f_{i 1} \neq 0$, for $1 \leq i \leq m$.
Also,

$$
\operatorname{dim}\left(\partial\left(e_{2}\right)\right)=\operatorname{dim}\left(f_{i 2}\right)+\operatorname{dim}\left(e_{i}\right), \text { for } 1 \leq i \leq m
$$

$k_{2}+P=\operatorname{dim}\left(f_{i 2}\right)+k_{i}$, implies to $\operatorname{dim}\left(f_{i 2}\right)=P-\left(k_{i}-k_{2}\right)<0$ for $2 \leq i \leq m$.
Therefore, $f_{i 2} \in R_{P-k_{2}-k_{i}} \neq 0$ and so $f_{i 2} \neq 0$, for $2 \leq i \leq m$. While $\operatorname{dim}\left(f_{12}\right)=$ $P-\left(k_{1}-k_{2}\right)>0$ for $i=1$, i.e., $f_{12} \in R_{P-\left(k_{1}-k_{2}\right)}=0$ and so $f_{12}=0$.

Now,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{m}\right)\right)=\operatorname{dim}\left(f_{i m}\right)+\operatorname{dim}\left(e_{i}\right), \text { for } 1 \leq i \leq m \\
k_{m}+P=\operatorname{dim}\left(f_{i m}\right)+k_{i}, \text { implies to } \operatorname{dim}\left(f_{i m}\right)=P-\left(k_{i}-k_{m}\right),
\end{gathered}
$$

This implies to $\operatorname{dim}\left(f_{i m}\right)>0$ for $1 \leq i \leq m-1$, i.e., $f_{i m} \in R_{P-\left(k_{i}-k_{m}\right)}=0$ for $1 \leq i \leq m-1$, and $\operatorname{dim}\left(f_{i m}\right)<0$ for $i=m$, i.e., $f_{i m} \in R_{P} \neq 0$. Hence, $f_{i m}=0$ for $1 \leq i \leq m-1$ and $f_{i m} \neq 0$ for $i=m$.

Then the matrix ∂ with respect to the basis $\left\{e_{i}\right\}_{i=1}^{m}$ is given by:

$$
\partial=\left[\begin{array}{ccccccc}
f_{11} & 0 & 0 & 0 & \ldots & 0 & 0 \\
f_{21} & f_{22} & 0 & 0 & \cdots & 0 & 0 \\
f_{31} & f_{32} & f_{33} & 0 & \cdots & 0 & 0 \\
f_{41} & f_{42} & f_{43} & f_{44} & \cdots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \ddots & 0 & 0 \\
f_{(m-1) 1} & f_{(m-1) 2} & f_{(m-1) 3} & f_{(m-1) 4} & \ldots & f_{(m-1)(m-1)} & 0 \\
f_{m 1} & f_{m 2} & f_{m 3} & f_{m 4} & \ldots & f_{m(m-1)} & f_{m m}
\end{array}\right]
$$

Since $\partial^{2}=0$, this implies $f_{i i}=0$ for $1 \leq i \leq m$. So the matrix ∂ become that

$$
\partial=\left[\begin{array}{ccccccc}
0 & 0 & 0 & 0 & \ldots & 0 & 0 \\
f_{21} & 0 & 0 & 0 & \ldots & 0 & 0 \\
f_{31} & f_{32} & 0 & 0 & \ldots & 0 & 0 \\
f_{41} & f_{42} & f_{43} & 0 & \ldots & \vdots & \vdots \\
\vdots & \vdots & \vdots & \vdots & \ddots & 0 & 0 \\
f_{(m-1) 1} & f_{(m-1) 2} & f_{(m-1) 3} & f_{(m-1) 4} & \ldots & 0 & 0 \\
f_{m 1} & f_{m 2} & f_{m 3} & f_{m 4} & \ldots & f_{m(m-1)} & 0
\end{array}\right]
$$

By using Lemma 7.1.5 we will convert the matrix ∂ to a strictly upper triangular matrix as follows:

$$
\partial=\left[\begin{array}{cccccccc}
0 & f_{12} & f_{31} & f_{41} & \ldots & f_{1(m-2)} & f_{(m-1)} 1 & f_{m 1} \\
0 & 0 & f_{32} & f_{42} & \ldots & f_{2(m-2)} & f_{(m-1) 2} & f_{m 2} \\
0 & 0 & 0 & f_{43} & \ldots & f_{3(m-2)} & f_{(m-1) 3} & f_{m 3} \\
0 & 0 & 0 & 0 & \ldots & f_{(m-2) 4} & f_{(m-1) 4} & f_{m 4} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 0 & f_{(m-2)(m-1)} & f_{m(m-2)} \\
0 & 0 & 0 & 0 & \ldots & 0 & 0 & f_{m(m-1)} \\
0 & 0 & 0 & 0 & \ldots & 0 & 0 & 0
\end{array}\right]
$$

Therefore, M is solvable.

Example 7.2.0.13

Let $R=K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, be the ring of polynomials in n indetrminates over a field K of characteristic two. Let

$$
R_{j}=0 \text { for all } j<0,
$$

$R_{0}=K$, and
$R_{j}=$ the set of all homogeneous polynomials of degree j for all $j>0$. Then R is a graded K-algebra and a graded integral domain, called the usual grading or (positive grading).

Note that in R, if $\operatorname{dim}(f)=j$, i.e., $f \in R_{j}$ then degree of $f=-j$.
Proposition 7.2.11. Let K be a field and let $R=K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be a graded polynomial ring graded in the usual way. Let M be a free finitely generated differential graded R-module with basis $S=\left\{e_{i}\right\}_{i=1}^{m}$, and differential ∂ of degree $(P \geq 2, n>1)$. Suppose, $\operatorname{dim}\left(e_{i}\right)=k_{i}$ such that $1 \leq i \leq m$. If $k_{1}<k_{2}<\ldots<k_{m}$ and $k_{i+1}-k_{i}>P$ then M is solvable.

Proof. Suppose that $e_{1} \in M_{k_{1}}, e_{2} \in M_{k_{2}}, \ldots, e_{m} \in M_{k_{m}}$.
Suppose that,

$$
\begin{aligned}
\partial\left(e_{1}\right) & =f_{11} e_{1}+\ldots+f_{m 1} e_{m} \\
\partial\left(e_{2}\right) & =f_{12} e_{1}+\ldots+f_{m 2} e_{m} \\
\vdots & \\
\partial\left(e_{m}\right) & =f_{1 m} e_{1}+\ldots+f_{m m} e_{m}
\end{aligned}
$$

Then the matrix of ∂ with respect to the basis $\left\{e_{1}\right\}_{i=1}^{m}$ is given by:

$$
\partial=\left[\begin{array}{cccc}
f_{11} & f_{12} & \ldots & f_{1 m} \\
f_{21} & f_{22} & \ldots & f_{2 m} \\
\vdots & \vdots & \ddots & \vdots \\
f_{m 1} & f_{m 2} & \ldots & f_{m m}
\end{array}\right]
$$

Now,

$$
\operatorname{dim}\left(\partial\left(e_{1}\right)\right)=\operatorname{dim}\left(f_{11}\right)+\operatorname{dim}\left(e_{1}\right),
$$

$k_{1}-P=\operatorname{dim}\left(f_{11}\right)+k_{1}$, implies that $\operatorname{dim}\left(f_{11}\right)=-P<0$ and then $\operatorname{deg}\left(f_{11}\right)=0$.
Also,

$$
\operatorname{dim}\left(\partial\left(e_{1}\right)\right)=\operatorname{dim}\left(f_{i 1}\right)+\operatorname{dim}\left(e_{i}\right) \text { for each } 1 \leq i \leq m .
$$

So,

$$
\begin{gathered}
k_{1}-P=\operatorname{dim}\left(f_{i 1}\right)+k_{i} \text { and then } \\
\operatorname{dim}\left(f_{i 1}\right)=\left(k_{1}-k_{i}\right)-P<0, \text { i.e., } f_{i 1} \in R_{k_{1}-k_{i}-P}=0 .
\end{gathered}
$$

Therefore,

$$
f_{i 1}=0 \text { for each } 1 \leq i \leq m .
$$

Also,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{2}\right)\right)=\operatorname{dim}\left(f_{12}\right)+\operatorname{dim}\left(e_{1}\right), \\
k_{2}-P=\operatorname{dim}\left(f_{12}\right)+k_{1}, \\
\operatorname{dim}\left(f_{12}\right)=k_{2}-k_{1}-P>0 \text { implies that, } \\
\operatorname{deg}\left(f_{12}\right)=-\left(k_{2}-k_{1}-P\right) .
\end{gathered}
$$

So,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{2}\right)\right)=\operatorname{dim}\left(f_{22}\right)+\operatorname{dim}\left(e_{2}\right), \\
k_{2}-P=\operatorname{dim}\left(f_{22}\right)+k_{2}, \text { implies that } \operatorname{deg}\left(f_{22}\right)=0 .
\end{gathered}
$$

So,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{2}\right)\right)=\operatorname{dim}\left(f_{i 2}\right)+\operatorname{dim}\left(e_{i}\right) \text { for each } 2 \leq i \leq m \\
k_{2}-P=\operatorname{dim}\left(f_{i 2}\right)+k_{i} \text { and then } \\
\operatorname{dim}\left(f_{i 2}\right)=\left(k_{2}-k_{i}\right)-P<0, \text { i.e., } f_{i 2} \in R_{P+k_{2}-k_{i}}=0 .
\end{gathered}
$$

Therefore,

$$
f_{i 2}=0 \text { for each } 2 \leq i \leq m .
$$

Now,

$$
\begin{gathered}
\operatorname{dim}\left(\partial\left(e_{m-1}\right)\right)=\operatorname{dim}\left(f_{i(m-1)}\right)+\operatorname{dim}\left(e_{i}\right) \text { for each } 1 \leq i \leq m-1, \\
k_{m-1}-P=\operatorname{dim}\left(f_{i(m-1))}+k_{i}\right. \text { and then } \\
\operatorname{dim}\left(f_{i(m-1)}\right)=\left(k_{m-1}-k_{i}-P\right)<0, \text { i.e., } f_{i(m-1)} \in R_{k_{m-1}-k_{i}-P} \neq 0 .
\end{gathered}
$$

Therefore,

$$
f_{i(m-1)} \neq 0 \text { for each } 1 \leq i \leq m-1,
$$

and,

$$
\operatorname{dim}\left(\partial\left(e_{m-1}\right)\right)=\operatorname{dim}\left(f_{m(m-1)}\right)+\operatorname{dim}\left(e_{m}\right),
$$

$$
\begin{gathered}
k_{m-1}-P=\operatorname{dim}\left(f_{m(m-1)}+k_{m},\right. \text { implies that } \\
\operatorname{dim}\left(f_{m(m-1))}=k_{m-1}-k_{m}-P<0 \text { which implies that } f_{m(m-1)}=0 .\right.
\end{gathered}
$$

Also,

$$
\begin{aligned}
\operatorname{dim}\left(\partial\left(e_{m}\right)\right)= & \operatorname{dim}\left(f_{i m}\right)+\operatorname{dim}\left(e_{i}\right) \text { for each } 1 \leq i \leq m-1, \\
& k_{m}-P=\operatorname{dim}\left(f_{i m}\right)+k_{i} \text { and then } \\
\operatorname{dim}\left(f_{i(m)}\right)= & \left(k_{m}-k_{i}\right)-P>0, \text { i.e., } f_{i m} \in R_{k_{m}-k_{i}-P} \neq 0 .
\end{aligned}
$$

Therefore,

$$
f_{i m} \neq 0 \text { for each } 1 \leq i \leq m-1 .
$$

Finally,

$$
\operatorname{dim}\left(\partial\left(e_{m}\right)\right)=\operatorname{dim}\left(f_{m m}\right)+\operatorname{dim}\left(e_{m}\right),
$$

$k_{m}-P=\operatorname{dim}\left(f_{m m}\right)+k_{m}$, implies that $\operatorname{dim}\left(f_{m m}\right)=-P<0$ and then $\operatorname{deg}\left(f_{m m}\right)=0$.
Hence, the matrix of ∂ is given by:

$$
\partial=\left[\begin{array}{ccccccc}
0 & f_{12} & f_{13} & f_{14} & \ldots & f_{1(m-1)} & f_{1 m} \\
0 & 0 & f_{23} & f_{24} & \ldots & f_{2(m-1)} & f_{2 m} \\
0 & 0 & 0 & f_{34} & \ldots & f_{3(m-1)} & f_{3 m} \\
0 & 0 & 0 & 0 & \ldots & f_{4(m-1)} & f_{4 m} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & 0 & f_{(m-1) m} \\
0 & 0 & 0 & 0 & \ldots & 0 & 0
\end{array}\right]
$$

To show, M has a composition series:
Let $C_{0}=0$ and $C_{j}=\left\langle e_{1}, e_{2}, \ldots, e_{j}\right\rangle$, for all $1 \leq j \leq m$.
Then $\left(C_{j} / C_{j-1}\right)$ is free. If $x \in C_{j}$, then x can be written uniquely as:

$$
x=\alpha_{1} e_{1}+\alpha_{2} e_{2}+\ldots+\alpha_{j} e_{j} .
$$

Thus,

$$
\begin{gathered}
\partial(x)=\alpha_{1} \partial\left(e_{1}\right)+\alpha_{2} \partial\left(e_{2}\right)+\ldots+\alpha_{j} \partial\left(e_{j}\right) \\
\partial(x)=\alpha_{1}(0)+\alpha_{2}\left(f_{12} e_{1}\right)+\ldots+\alpha_{j}\left(f_{1 j} e_{1}+\ldots+f_{(j-1) j} e_{j-1}\right) \in C_{j-1}
\end{gathered}
$$

Therefore,

$$
\partial\left(C_{j} / C_{j-1}\right)=0, \text { for each } 1 \leq j \leq m .
$$

Hence, $0=C_{0} \subseteq C_{1} \subseteq C_{2} \subseteq \ldots \subseteq C_{m}=M$ is a composition series for M. Thus, M is solvable.

Chapter 8

GAP Algorithm for Solvable Differential Graded Modules

We have established a classification for some types of differential graded R-modules. This classification gives a partial algorithm to test whether such modules are solvable. For modules outside the classification we cannot decide, using our methods, whether or not they are solvable. In this Chapter we present an algorithm and written a $G A P$ package $S D G M$ (Solvable Differential Graded R-Modules), for all the cases mentioned in Chapter 7 (Propositions 7.2.4, 7.2.5, 7.2.8, 7.2.10, 7.2.11 and Remark 7.2.9). The classification described in Chapter 7 depends on two basic parameters; the dimensions $D=\left[k_{1}, \ldots, k_{n}\right]$ of the module M, such that $\operatorname{dim}\left(e_{i}\right)=k_{i}$, and the degree P of the differential on the module M where ($n>1$). These two parameters represent the input for the main function IsSolvableModuleWithProof of our algorithm. The output of IsSolvableModuleWithProof is either "true" if M is a solvable module, and in this case a proof that M is solvable is also output; or "fail" if we cannot convert the matrix d of the differential ∂ with respect to the basis $S=\left\{e_{i}\right\}_{i=1}^{m}$ to a strictly upper triangular matrix. The function IsSolvableModuleWithProof contains many other functions: in the following we describe all the functions used.

8.1 SwapRowsColumns Function

The input of the function SwapRowsColumns $(\operatorname{deg} f, x, y)$ is a matrix $\operatorname{deg} f$ of size $m \times m$ and two numbers $x \neq y$, with $1 \leq x \leq m, 1 \leq y \leq m$. It exchanges $\operatorname{row}(x)$
and $\operatorname{row}(y)$, and at the same time exchange, $\operatorname{column}(x)$ and $\operatorname{column}(y)$. It returns the matrix $\operatorname{deg} f$ after the replacement. The function works as follows:

SwapRowsColumns(degf, x, y)

```
1 Temp \(5 \leftarrow \operatorname{StructuralCopy}(\operatorname{deg} f) \quad \triangleright T e m p 5\) was empty list
\(\operatorname{deg} f[x] \leftarrow \operatorname{Temp} 5[y]\)
\(\operatorname{deg} f[y] \leftarrow T e m p 5[x]\)
\(\operatorname{deg} f \leftarrow\) TransposedMatDestructive \((\operatorname{deg} f)\)
Temp \(6 \leftarrow \operatorname{StructuralCopy}(\operatorname{deg} f) \quad \triangleright\) Temp6 was empty list
\(\operatorname{deg} f[x] \leftarrow\) Temp \(6[y]\)
\(\operatorname{deg} f[y] \leftarrow T e m p 6[x]\)
\(\operatorname{deg} f \leftarrow\) TransposedMatDestructive(degf)
return degf
```


8.2 Solveindic1WithProof Function

The function Solveindic1WithProof $(m, \operatorname{dim} f, f)$ is called only if the conditions of Propositions 7.2.4,7.2.5 hold. The inputs of this function are the dimension m of the vector of dimensions, the matrix $\operatorname{dim} f$ of dimensions and the identity matrix f of size $m \times m$ which are output by the main function IsSolvableModuleWithProof. The function outputs a proof that M is solvable. The function works as follows:

```
Solveindic1WithProof \((m, \operatorname{dim} f, f)\)
    for \(j\) in \(\{1, \ldots, m\}\)
    do for \(i\) in \(\{1, \ldots, m\}\)
        do if \(i>j\)
            then if \(\operatorname{dimf}[i][j] \geq 0\)
                                    then \(0 \leftarrow f[i][j]\)
                                    else \(f[i][j]=\operatorname{dimf}[i][j]\)
            else \(f[i][j]=\operatorname{dimf}[i][j]\)
    if \(f\) is an upper triangular matrix
    then for \(j\) in \(\{1, \ldots, m\}\)
            do Compute matrix \(d\) of \(\partial\) with respect to the basis \(S=\left\{e_{i}\right\}_{i=1}^{m}\)
                using the fact that \(\partial^{2}=0\) and \(R\) is an integral domain
    else Return \(f\) is not upper triangluar matrix
```

Construct a proof that M is solvable
return M is solvable

8.3 Solveindic2WithProof Function

The function Solveindic2WithProof (dimf, m) is called only if the conditions of Remark 7.2.9 or the first case of Proposition 7.2 .8 (as in Remark 8.5.1(i)) hold. The inputs of this function are the matrix $\operatorname{dim} f$ of dimensions, the dimension m of the vector of dimensions and the matrix 'degf' of size $m \times m$ which are output by the main function IsSolvableModuleWithProof. The function is called if the modules M is outside the classification or if (i) of Remark 8.5.1 hold. The function works as follows:

Solveindic2WithProof(dimf, m)

```
f\leftarrowdim
for j in {1,\ldots,m-2}
    do for i in {1,\ldots,m}
        do if }i<j+
            then if }\operatorname{dimf}f[i][j]<
                        then f[i][j]=\operatorname{dimf}[i][j]
            else 0}\leftarrowf[i][j
            else if }\operatorname{dimf}[i][j]<
```



```
                    else 0}\leftarrowf[i][j
```

 \(\triangleright\) since \(\partial^{2}=0\) and \(R\) is an integral domain
 11 Compute matrix d of the differential ∂ with respect to the basis $S=\left\{e_{i}\right\}_{i=1}^{m}$
12 return M is outside the classification

8.4 Solveindic3WithProof Function

The function Solveindic3WithProof $(m, \operatorname{dim} f, f)$ is called only if the conditions of Proposition 7.2.10 hold. The inputs of this function are the dimension m of the vector of dimensions, the matrix dimf of dimensions and the identity matrix f of size $m \times m$ which are output by the main function IsSolvableModuleWithProof. The function outputs a proof that M is solvable. The function works as follows:

```
Solveindic3WithProof( \(m, \operatorname{dim} f, f\) )
    1 for \(j\) in \(\{1, \ldots, m\}\)
    do for \(i\) in \(\{1, \ldots, m\}\)
        do if \(i>j\)
            then if \(\operatorname{dimf}[i][j] \geq 0\)
                            then \(0 \leftarrow f[i][j]\)
                            else \(f[i][j]=\operatorname{dimf}[i][j]\)
            else \(f[i][j]=\operatorname{dimf}[i][j]\)
    for \(i\) in \(\{1, \ldots, m\}\)
    do \(0 \leftarrow f[i][j] \quad \triangleright\) since \(\partial^{2}=0\) and \(R\) is an integral domain
    Tranf \(\leftarrow \operatorname{TransposedMatDestructive~}(f)\)
    if Tranf is an upper triangular matrix
    then Compute matrix \(d\) of \(\partial\) with respect to the basis \(S=\left\{e_{i}\right\}_{i=1}^{m}\)
    Construct a proof that \(M\) is solvable
    return \(M\) is solvable
```


8.5 Solveindic4WithProof Function

The function Solveindic4WithProof (degf) is called only if the conditions of Proposition 7.2 .8 hold. The input of this function is a matrix $\operatorname{deg} f$ of size $m \times m$ which is output by the main function IsSolvableModuleWithProof. It calls the following functions: Solveindic4Size3by3(degf), Solveindic4Size4by4A(degf), Solveindic4Size4by4B(degf), Solveindic4Size5by5(degf), Solveindic4Size6by6(degf), Solveindic4Size6by6Above(degf) and Solveindic4Sizembym(degf) (which will be described later in Section 8.5.1, ..., Section 8.5.8 respectively.) The function outputs a proof that M is solvable.

Remark 8.5.1. When we run the main function IsSolvableModuleWithProof with input that satisfies the conditions of Proposition 7.2 .8 , we will at some stage get the matrix degf of size $m \times m$ with $m \geq 2$. In this case IsSolvableModuleWithProof calls the function Solveindic4; (which calls the following functions: Solveindic4Size3by3, Solveindic4Size4by4A, Solveindic4Size4by4B, Solveindic4Size5by5, Solveindic4Size6by6, Solveindic4Size6by6Above and Solveindic4Sizembym.
(i) If degf $=\left(\begin{array}{ll}f_{11} & f_{12} \\ f_{21} & f_{22}\end{array}\right)$, that is in the case $f_{11}=f_{22}=0$ then the function Mysolve2a(degf) is called.
(ii) If degf $=\left(\begin{array}{ccc}0 & f_{12} & f_{13} \\ f_{21} & 0 & f_{23} \\ 0 & f_{32} & 0\end{array}\right)$, that is in the case $f_{32}=0$ and $f_{12}=0$ then the function Mysolve3a(degf) is called.
(iii) If degf $=\left(\begin{array}{cccc}0 & f_{12} & f_{13} & f_{14} \\ f_{21} & 0 & f_{23} & f_{24} \\ 0 & 0 & f_{32} & 0 \\ 0 & 0 & f_{43} & 0\end{array}\right)$, that is in the case $f_{32}=0$ with either $f_{43}=0$ or $f_{43} \neq 0$ (these are encoded as $b=[0]$ and $b=[1]$ respectively) then the function Mysolve4a(degf) is called.
(iv) If degf $=\left(\begin{array}{cccc}0 & f_{12} & f_{13} & f_{14} \\ f_{21} & 0 & 0 & f_{24} \\ 0 & f_{32} & 0 & 0 \\ 0 & 0 & f_{43} & 0\end{array}\right)$, that is in the case $f_{32} \neq 0$ and $f_{43}=0$ (this is encoded as $b=[0])$ then the function Mysolve $4 b(\operatorname{deg} f)$ is called.
(v) If $\operatorname{deg} f=\left(\begin{array}{ccc}0 & f_{12} & 0 \\ 0 & 0 & 0 \\ 0 & f_{32} & 0\end{array}\right)$, that is in the case $f_{32} \neq 0$ then Mysolve $3 b(\operatorname{deg} f)$ or Mysolgeneral($\operatorname{deg} f$) is calld when $m=3$.
(vi) If degf $=\left(\begin{array}{ccccc}0 & f_{12} & f_{13} & f_{14} & f_{15} \\ f_{21} & 0 & f_{23} & f_{24} & f_{25} \\ 0 & f_{32} & 0 & 0 & f_{35} \\ 0 & 0 & f_{43} & 0 & 0 \\ 0 & 0 & 0 & f_{54} & 0\end{array}\right)$, that is in the case $f_{32}=0$ and $f_{43}=$ $f_{54} \neq 0$ (this is encoded as $b=[1,1]$) then the function Mysolve5a- (degf) is called.
(vii) If degf $=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ f_{21} & 0 & f_{23} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & f_{43} & 0 & 0 & 0 \\ 0 & 0 & 0 & f_{54} & 0 & 0 \\ 0 & 0 & 0 & 0 & f_{65} & 0\end{array}\right)$, that is in the case $f_{32}=0, f_{12}=0$ and $f_{43}=f_{54}=f_{65} \neq 0$ (this is encoded as $b=[1,1,1]$) then the function Mysolvable6 is called.
(viii) If degf $=\left(\begin{array}{ccccccc}0 & f_{12} & f_{13} & f_{14} & f_{15} & \ldots & f_{1 m} \\ f_{21} & 0 & f_{23} & f_{24} & f_{25} & \ldots & f_{2 m} \\ 0 & f_{32} & 0 & 0 & f_{35} & \ldots & f_{3 m} \\ 0 & 0 & f_{43} & 0 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & f_{(m-2) m} \\ 0 & 0 & 0 & 0 & f_{(m-1)(m-2)} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & f_{m(m-1)} & 0\end{array}\right)$, that is in the case $f_{32}=0, f_{12}=0$ and $f_{43}=f_{54}=f_{65}=\ldots=f_{m(m-1)} \neq 0$ (this is encoded as $b=[1,1, \ldots, 1]$) then the function Mysolvable 1 is called when $m \geq 6$.

1. (ix) If degf $=\left(\begin{array}{ccccccc}0 & f_{12} & f_{13} & f_{14} & f_{15} & \ldots & f_{1 m} \\ f_{21} & 0 & f_{23} & f_{24} & f_{25} & \ldots & f_{2 m} \\ 0 & f_{32} & 0 & 0 & f_{35} & \ldots & f_{3 m} \\ 0 & 0 & f_{43} & 0 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & f_{(m-2) m} \\ 0 & 0 & 0 & 0 & f_{(m-1)(m-2)} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & f_{m(m-1)} & 0\end{array}\right)$, that is in the case $f_{32} \neq 0, f_{21}=0$ and $f_{43}=f_{54}=f_{65}=\ldots=f_{m(m-1)} \neq 0$ (this is encoded as $b=[1,1, \ldots, 1])$ then the function Mysolgene$\operatorname{ral}(\operatorname{deg} f)$ is called when $m \geq 3$.

In detail the function works as follows:

Solveindic4WithProof (degf)

```
\(m \leftarrow \operatorname{SizE}(\operatorname{deg} f)\)
if \(m=2\)
    then Solveindic4Size2by2(degf)
    for \(i\) in \(\left\{1, \ldots, 2^{m-3}\right\}\)
        do \(b \leftarrow \operatorname{ConvertToBinary}(i-1)\)
        for \(j\) in \(\{1, \ldots, m-3\}\) and \(j 1=j+3\)
            do if \(b[j]=0\)
                then \(0 \leftarrow \operatorname{deg} f[j 1][j 1-1]=\operatorname{deg} f[j 1][j 1]\)
            if \(b[j]=1\)
                then \(0 \leftarrow \operatorname{deg} f[j 1][j 1]=\operatorname{deg} f[j 1-1][j 1]\)
```

$0 \leftarrow \operatorname{deg} f[i][i]$ for $i=1,2,3 \triangleright$ by the hypothesis of Proposition 7.2.8 Temp $4 \leftarrow \operatorname{StructuralCopy}(\operatorname{deg} f)$ after set Temp4 to empty list $g \leftarrow \operatorname{Sum}(b)$
$\operatorname{deg} f \leftarrow \operatorname{StructuralCopy}($ Temp4)
if $g=0$
then if $m=3$
then $\operatorname{deg} f \leftarrow$ Solveindic4Size3by3(degf)
if $m \geq 4$
then $\operatorname{deg} f \leftarrow$ Solveindic4Size4By4A(degf)
$\operatorname{deg} f \leftarrow \operatorname{StructuralCopy}(T e m p 4)$
$\operatorname{deg} f \leftarrow \operatorname{SolVEindic} 4 S i z e 4 B y 4 B(d e g f)$
if $g=m-3$
then if $m=3$
then $\operatorname{deg} f \leftarrow$ Solveindic4Sizembym $(\operatorname{deg} f)$
if $m=4$
then $\operatorname{deg} f \leftarrow$ Solveindic4Size4by4A(degf)
$\operatorname{deg} f \leftarrow \operatorname{StructuralCopy}(T e m p 4)$
$\operatorname{deg} f \leftarrow \operatorname{Solveindic} 4 \operatorname{SizEmbym}(\operatorname{deg} f)$
if $m=5$
then $\operatorname{deg} f \leftarrow$ Solveindic4Size5by5 $(\operatorname{deg} f)$
$\operatorname{deg} f \leftarrow \operatorname{StructuraLCopy}(T e m p 4)$
$\operatorname{deg} f \leftarrow \operatorname{Solveindic} 4 \operatorname{Sizembym}(\operatorname{deg} f)$
if $m \geq 6$
then $\operatorname{deg} f \leftarrow$ Solveindic4Size6By6Above $(\operatorname{deg} f)$
$\operatorname{deg} f \leftarrow \operatorname{StructuralCopy}(T e m p 4)$
$\operatorname{deg} f \leftarrow \operatorname{Solveindic} 4 \operatorname{Sizembym}(\operatorname{deg} f)$
return degf

8.5.1 Solveindic4Size2by2 Function

The input of the function Solveindic4Size2by2(degf) is a matrix degf of size 2×2 as in Remark 8.5.1(i). Solveindic4Size2by2 convertes the matrix $\operatorname{deg} f$ to an upper Triangular matrix. It returns the matrix $\operatorname{deg} f$ after finishing all the replacements. The function works as follows:

Solveindic4Size2by2(degf)
$\operatorname{deg} f[1][1]=\operatorname{degf}[2][2]=0 \quad \triangleright$ by the hypothesis of Proposition 7.2.8
$0 \leftarrow \operatorname{deg} f[1][2] \quad \triangleright$ since $\partial^{2}=0$ and R is an integral domain
$\operatorname{deg} f \leftarrow \operatorname{StructuralCopy}(\operatorname{deg} f)$
$\operatorname{deg} f \leftarrow \operatorname{SwapRowsColumns}(\operatorname{deg} f, 1,2)$
if $\operatorname{deg} f$ is not an upper triangular matrix
then $\operatorname{deg} f \leftarrow \operatorname{Print}(\operatorname{deg} f)$ with some comments
else $\operatorname{deg} f \leftarrow \operatorname{Print}(\operatorname{deg} f)$ with some comments
return degf

8.5.2 Solveindic4Size3by3 Function

The input of the function Solveindic4Size3by3(degf) is a matrix degf of size 3×3 as in Remark 8.5.1(ii) (it is Case 1 of 3×3 matrix). Solveindic4Size3by3 convertes the matrix $\operatorname{deg} f$ to an upper Triangular matrix. It returns the matrix $\operatorname{deg} f$ after replacement and tests whether it is a strictly upper triangular matrix or not. The function works as follows:

Solveindic4Size3by3(degf)
$\operatorname{deg} f[3][2]=\operatorname{degf}[1][2]=0 \quad \triangleright$ by the hypothesis of Proposition 7.2.8
$\operatorname{deg} f \leftarrow \operatorname{StructuralCopy}(\operatorname{deg} f)$
$\operatorname{deg} f \leftarrow \operatorname{SwapRowsColumns}(\operatorname{deg} f, 1,2)$
if $\operatorname{deg} f$ is not an upper triangular matrix
then $\operatorname{deg} f \leftarrow \operatorname{Print}(\operatorname{deg} f)$ with some comments
else $\operatorname{deg} f \leftarrow \operatorname{Print}(\operatorname{deg} f)$ with some comments
return degf

8.5.3 Solveindic4Size4by4A Function

The input of the function Solveindic4Size4by4(degf) is a matrix degf of size $m \times m$ where $m \geq 4$ and $f_{i i}=0, i=1, \ldots, m$ and $f_{32}=0$ with $\operatorname{Sum}(b)=0$ as in Remark 8.5.1(iii). Solveindic4Size4by4A convertes the matrix degf to an upper Triangular matrix. It returns the matrix $\operatorname{deg} f$ after replacement and tests whether it is a strictly upper triangular matrix or not. The function works as follows:

Solveindic4Size4by4A(degf)

$1 \operatorname{degf}[3][2]=\operatorname{degf}[1][2]=0 \quad \triangleright$ by the hypothesis of Proposition 7.2.8
$\operatorname{deg} f \leftarrow \operatorname{StructuralCopy}(\operatorname{deg} f)$
$\operatorname{deg} f \leftarrow \operatorname{SwapRowsColumns}(\operatorname{deg} f, 1,2)$
if degf is an upper triangular matrix
then $\operatorname{deg} f \leftarrow \operatorname{Print}(\operatorname{deg} f)$ with some comments
$6 \quad$ else $\operatorname{deg} f \leftarrow \operatorname{Print}(\operatorname{deg} f)$ with some comments
7 return degf

8.5.4 Solveindic4Size4by4B Function

The input of the function Solveindic4Size4by $4 \mathrm{~B}(\operatorname{deg} f)$ is a matrix $\operatorname{deg} f$ of size $m \times$ m where $m \geq 4$ and $f_{32} \neq 0$ with zeros on the diagonal and $\operatorname{Sum}(b)=0$. The matrix degf of Remark 8.5.1(iv) is one example of the input of Solveindic4Size4by4B. Mysolve4b convertes the matrix degf to an upper triangular matrix. It returns the matrix $\operatorname{deg} f$ after replacement and tests whether it is a strictly upper triangular matrix or not. The function works as follows:

Solveindic4Size4by4B(degf)

```
\(\operatorname{deg} f \leftarrow \operatorname{Size}(\operatorname{deg} f)\)
\(\operatorname{deg} f[2][1]=\operatorname{degf}[2][3]=0 \quad \triangleright\) by the hypothesis of Proposition 7.2.8
\(\operatorname{deg} f \leftarrow \operatorname{SwapRowsColumns}(\operatorname{deg} f, 2,3)\)
if \(\operatorname{deg} f\) is an upper triangular matrix
    then \(\operatorname{deg} f \leftarrow \operatorname{Print}(\operatorname{deg} f)\) with some comments
    else \(\operatorname{deg} f \leftarrow \operatorname{SwapRowsColumns}(\operatorname{deg} f, 3,4)\)
    \(\operatorname{deg} f[1][3]=0\)
    for \(i\) in \(\{4, \ldots, m\}\)
        do \(\operatorname{deg} f[1][i]=\operatorname{degf}[2][i]=0\)
                                    \(\triangleright\) using \(\partial^{2}=0\) and \(R\) is an integral domain
    \(\operatorname{deg} f \leftarrow \operatorname{SwapRowsColumns}(\operatorname{deg} f, 3,4)\)
    \(\operatorname{deg} f \leftarrow \operatorname{SwapRowsColumns}(\operatorname{deg} f, 2,3)\)
    \(\operatorname{deg} f \leftarrow \operatorname{SwapRowsColumns}(\operatorname{deg} f, 3,4)\)
    \(\operatorname{deg} f \leftarrow \operatorname{Print}(\operatorname{deg} f)\) with some comments
    return degf
```


8.5.5 Solveindic4Size5by5 Function

The input of the function Solveindic4Size5by5(degf) is a matrix degf of size 5×5 with $f_{32}=0$ and $\operatorname{Sum}(b)=2$ as in Remark 8.5.1(vi). Solveindic4Size5by5 convertes the matrix $\operatorname{deg} f$ to an upper triangular matrix. It returns the matrix $\operatorname{deg} f$ after replacement and tests whether it is a strictly upper triangular matrix or not. The function works as follows:

Solveindic4Size5by5 (degf)

```
\(m \leftarrow \operatorname{SizE}(\operatorname{deg} f)\)
\(\operatorname{deg} f[1][2]=\operatorname{deg} f[3][2]=0 \quad \triangleright\) since \(\partial^{2}=0\) and \(R\) is an integral domain
for \(i\) in \(\{1, \ldots, m\}\)
    do for \(j\) in \(\{1, \ldots, m\}\)
        if \(j \geq i+2\)
            then \(f[i][j]=0 \triangleright\) since \(\partial^{2}=0\) and \(R\) is an integral domain
\(\operatorname{deg} f \leftarrow \operatorname{StructuralCopy}(\operatorname{deg} f)\)
\(\operatorname{deg} f \leftarrow \operatorname{SwapRowsColumns}(\operatorname{deg} f, 1,2)\)
if degf is not an upper triangular matrix
    then \(\operatorname{deg} f \leftarrow\) SwapRowsColumns \((\operatorname{deg} f, 3,4)\)
if \(\operatorname{deg} f\) is not an upper triangular matrix
    then \(\operatorname{deg} f \leftarrow \operatorname{SwapRowsColumns}(\operatorname{deg} f, 4,5)\)
    if \(\operatorname{deg} f\) is not an upper triangular matrix
        then \(\operatorname{deg} f \leftarrow \operatorname{SwapRowsColumns}(\operatorname{deg} f, 3,4)\)
        if \(\operatorname{deg} f\) is not an upper triangular matrix
        then \(\operatorname{deg} f \leftarrow \operatorname{Print}(\operatorname{deg} f)\) with some comments
        else \(\operatorname{deg} f \leftarrow \operatorname{Print}(\operatorname{deg} f)\) with some comments
    return degf
```


8.5.6 Solveindic4Size6by6 Function

The input of the function Solveindic4Size6by6(degf) is a matrix degf of size 6×6 as in Remark 8.5.1(vii). This function is to convert a matrix degf to a strictly upper triangular matrix. It is the first case of size 6×6 where $f_{32}=0$ and $b=[1,1,1]$. It runs the function SwapRowsColumns five times swapping rows and columns until $\operatorname{deg} f$ is upper triangular matrix. In fact the matrix $\operatorname{deg} f$ in the input of the $(n+1)^{s t}$ run of the function SwapRowsColumns it will be the matrix degf output by the $n^{\text {th }}$
run. It returns the matrix $\operatorname{deg} f$ after finishing all the replacements. The function works as follows:

```
Solveindic4Size6by6(degf)
\(1 \operatorname{deg} f \leftarrow \operatorname{SwapRowsCoLumns}(\operatorname{deg} f, 1,2)\)
\(2 \operatorname{deg} f \leftarrow \operatorname{SwapRowsCoLumns}(\operatorname{deg} f, 2,6)\)
\(3 \operatorname{deg} f \leftarrow \operatorname{SwapRowsCoLumns}(\operatorname{deg} f, 3,4)\)
\(\operatorname{deg} f \leftarrow \operatorname{SwapRowsColumns}(\operatorname{deg} f, 4,5)\)
\(\operatorname{deg} f \leftarrow \operatorname{SwapRowsCoLumns}(\operatorname{deg} f, 3,4)\)
return degf
```


8.5.7 Solveindic4Size6by6Above Function

The input of the function Solveindic4Size6by6Above(degf) is a matrix degf of size $m \times m$ with $m \geq 6$ as in Remark 8.5.1(viii). Solveindic4Size6by6Above convertes the matrix $\operatorname{deg} f$ to an upper triangular matrix. It outputs a proof that M is solvable for this case. The function works as follows:

Solveindic4Size6by6Above(degf)

```
mysize \(\leftarrow \operatorname{SizE}(\operatorname{deg} f)\)
\(\operatorname{degf}[1][2]=\operatorname{deg} f[3][2]=0\)
for \(i\) in \(\{1, \ldots\), mysize \(\}\)
    do for \(j\) in \(\{1, \ldots\), mysize \(\}\)
        if \(j \geq i+2\)
            then \(f[i][j]=0 \quad \triangleright\) since \(\partial^{2}=0\) and \(R\) is an integral domain
if mysize \(<6\)
    then return that mysize must be greater than 6
    else
if mysize \(=6\)
    then \(\operatorname{deg} f \leftarrow\) Solveindic4Size6by6(degf)
    else
        if mysize \(=7\) or mysize \(=8\)
            then mycounter \(\leftarrow\) mysize -6
                \(\operatorname{deg} f \leftarrow \operatorname{Solveindic} 4 S_{\text {Size6By6 }}(\operatorname{deg} f)\)
                for \(i\) in \(\{1, \ldots\), mycounter \(\}\)
                    do if \(i=1\)
```

```
        then degf}\leftarrow\operatorname{SwapRowsColumns(degf,4+i,6+i)
        degf}\leftarrow\operatorname{SwapRowsColumns(degf, 3+i,4+i)
        degf}\leftarrow\operatorname{SwapRowsColumns(degf,1,3+i)
        if i>1
            then degf }\leftarrow\mathrm{ SwapRowsColumns(degf, 4+i,6+i)
                degf}\leftarrow\operatorname{SwapRowsColumns(degf, 3+i,4+i)
                degf}\leftarrow\operatorname{SwapRowsColumns(degf,1+i,3+i)
            degf}\leftarrow\operatorname{SwapRowsColumns(degf,1,1+i)
            degf}\leftarrow\operatorname{SwapRowsColumns(degf,2,1+i)
if mysize }\geq
    then mycounter }\leftarrow\mathrm{ mysize - 6
degf}\leftarrow\mathrm{ SolveinDic4Size6By6(degf)
for i in {1,\ldots,mycounter }
    do if }i=
        then degf}\leftarrow\operatorname{SwapRowsColumns(degf,4+i,6+i)
        degf}\leftarrow\operatorname{SwapRowsColumns(degf, 3+i,4+i)
        degf}\leftarrow\operatorname{SwapRowsColumns(degf, 1, 3+i)
        if i>1
            then degf}\leftarrow\mathrm{ SwapRowsColumns(degf,4+i,6+i)
                degf}\leftarrow\operatorname{SwapRowsColumns(degf,3+i,4+i)
                degf}\leftarrow\operatorname{SwapRowsColumns(degf,1+i,3+i)
                degf}\leftarrow\operatorname{SwapRowsColumns(degf,1,1+i)
                degf}\leftarrow\operatorname{SwapRowsColumns(degf,2,1+i)
degf}\leftarrow\operatorname{StructuralCopy(degf)
mycounter }1\leftarrow\mathrm{ mysize - 8
for mycounter 2 in {1,\ldots,mycounter 1}
        do for }i\mathrm{ in {1,_., mycounter 2}
        mycounter 3}\leftarrow\mathrm{ mycounter 2-i+1
        degf}\leftarrow\operatorname{SwapRowsColumNs(degf,2+mycounter 3, 3+mycounter 3)
if degf is not an upper triangular matrix
    then degf}\leftarrow\operatorname{Print}(\operatorname{degf})\mathrm{ with some comments
    else degf}\leftarrow\operatorname{Print}(\operatorname{degf})\mathrm{ with some comments
return degf
```


8.5.8 Solveindic4Sizembym Function

The input of the function Solveindic4Sizembym $(\operatorname{deg} f)$ is a matrix deg of size $m \times m$ with $m \geq 3$ as in Remark 8.5.1(ix). It convertes the matrix degf to an upper triangular matrix. The function outputs a proof that M is solvable for this case. The algorithm works as follows:

```
Solveindic4Sizembym (degf)
    \(m \leftarrow \operatorname{SizE}(\operatorname{deg} f)\)
    \(\operatorname{degf}[2][1]=\operatorname{deg} f[2][3]=0\)
    for \(i\) in \(\{1, \ldots, m\}\)
        do for \(j\) in \(\{1, \ldots, m\}\)
        if \(j \geq i+2\)
            then \(f[i][j]=0 \triangleright\) since \(\partial^{2}=0\) and \(R\) is an integral domain
    \(2 \leftarrow i\)
    \(m \leftarrow j\)
    while \(i<j\)
        do \(\operatorname{deg} f \leftarrow \operatorname{SwapRowsColumns}(\operatorname{deg} f, i, j)\)
    \(i \leftarrow i+1\)
    \(j \leftarrow j-1\)
    if \(\operatorname{deg} f\) is an upper triangular matrix
        then \(\operatorname{deg} f \leftarrow \operatorname{Print}(\operatorname{deg} f)\) with some comments
        else \(\operatorname{deg} f \leftarrow \operatorname{Print}(\operatorname{deg} f)\) with some comments
    return degf
```


8.6 SolvableModuleByUsualGradedWithProof Function

The function SolvableModuleByUsualGradedWithProof (D, P) is called only if the conditions of Proposition 7.2 .11 hold. The inputs of this function are the list of dimensions of the modules $D=\left[k_{1}, \ldots, k_{n}\right]$ where $\operatorname{dim}\left(e_{i}\right)=k_{i}$ and the degree P of the differential on the module M. (The same inputs as the main function IsSolvableModuleWithProof.) SolvableModuleByUsualGradedWithProof outputs a proof that M is solvable. The algorithm works as follows:

```
SolvableModuleByUsualGraded \((D, P)\)
    \(m \leftarrow \operatorname{Size}(D)\)
    \(D[1] \leftarrow k 1\)
    \(0 \leftarrow j\)
    \(\operatorname{dim} f \leftarrow \operatorname{IDEntityMat}(m)\)
    \(\operatorname{deg} f \leftarrow \operatorname{IdEntityMat}(m)\)
    \(\operatorname{deg} f 2 \leftarrow \operatorname{IDEntityMat}(m)\)
    \(f \leftarrow \operatorname{IdEntityMat}(m)\)
    for \(i\) in \(\{1, \ldots, m\}\)
    do \(D[j] \leftarrow\) dimej
        for \(i\) in \(\{1, \ldots, m\}\)
        do \(D[i] \leftarrow\) dimei
                \(\operatorname{dimej}-\operatorname{dime} i-P \leftarrow \operatorname{dimf}[i][j]\)
                                    \(\triangleright\) by definition
                if \(\operatorname{dimf}[i][j]<0\)
                    then \(f[i][j]=0 \quad \triangleright\) usual graded
                \(-\operatorname{dimf}[i][j] \leftarrow \operatorname{deg} f[i][j] \quad \triangleright\) by the properties
    for \(j\) in \(\{1, \ldots, m\}\)
        do for \(i\) in \(\{1, \ldots, m\}\)
            do Rewrite \(f\) after setting some of its entries to zero
    if \(f\) is an upper triangular matrix
        then for \(i\) in \(\{1, \ldots, m\}\)
            do \(0 \leftarrow f[i][i] \quad \triangleright\) since \(\partial^{2}=0\) and \(R\) is an integral domain
                Compute the matrix \(d\) of the differential \(\partial\) with respect
                to the basis \(S=\left\{e_{i}\right\}_{i=1}^{m}\)
        else return \(f\) is not upper triangluar matrix
    Construct a proof that \(M\) is solvable if \(f\) is an upper triangular matrix
    return \(M\) is solvable
```


8.7 IsSolvableModuleWithProof Function

The function IsSolvableModuleWithProof (D, P) is the main function of our algorithm. It checks which of the conditions of the Propositions 7.2.4, 7.2.5, 7.2.8, 7.2.10, 7.2.11 and Remark 7.2.9 hold. Then it calls one of the functions: Solveindic1WithProof, Solveindic2WithProof, Solveindic3WithProof, Solveindic4 and Solva-
bleModuleByUsualGradedWithProof according to the condition that matches the function. The inputs of this function are the list of dimensions of the modules $D=\left[k_{1}, \ldots, k_{n}\right]$ where $\operatorname{dim}\left(e_{i}\right)=k_{i}$ and the degree P of the differential on the module M. The function outputs the dimension m of the vector of dimensions, the matrix $\operatorname{dim} f$ of dimensions, the identity matrix f of size $m \times m$, the matrix $\operatorname{deg} f$ of degrees, the flags indic and $x_{i} ; i=1,2,3$ to determine which of $\operatorname{Solveindic}(n)$ function to run. The algorithm works as follows:

```
IsSolvableModuleWithProof \((D, P)\)
    \(m \leftarrow \operatorname{SizE}(D)\)
    if \(P=1\) or -1
    then return \(M\) is solvable (by Carlsson, 1983)
    if \(P \leq-2\)
        then \(k 1 \leftarrow D\) [1]
            \(j \leftarrow 0\)
            \(\operatorname{dimf} \leftarrow \leftarrow \operatorname{IDENTITYMAT}(m)\)
            \(\operatorname{deg} f \leftarrow \operatorname{IDEntityMat}(m)\)
            \(\operatorname{deg} f 2 \leftarrow \operatorname{IDENTITYMAT}(m)\)
            \(f \leftarrow \operatorname{IdentityMat}(m)\)
            for \(i\) in \(\{2, \ldots, m\}\)
            do \(j \leftarrow j+1\)
                \(k 2 \leftarrow D[i]\)
                diffk \(\leftarrow k 1-k 2\)
                if \(k 1>k 2\)
                    then \(t[j] \leftarrow\) diffk \(\quad \triangleright t\) was empty
                    if diffk \(\geq-P\)
                then indic \(\leftarrow 1 \triangleright\) indic was zero
                                    \(x 1 \leftarrow x 1+1\)
                                    \(\triangleright x 1\) was zero
            elseif \(\operatorname{diffk}<-P\)
                then indic \(\leftarrow 2\)
                                    \(x 2 \leftarrow x 2+1\)
                                    \(\triangleright x 2\) was zero
            elseif \(\operatorname{diffk}<P\)
```

then indic $\leftarrow 3$

$$
x 3 \leftarrow x 3+1
$$

Check the conditions of the input of the two cases above
Following the same strategy for $i n d i c=1$ and indic $=3$
to construct indic $=2$ if $t_{i}+t_{i+1} \leq-P$ and indic $=4$
if $t_{i}+t_{i+1}>-P$
for j in $\{1, \ldots, m\}$
do dime $\leftarrow \leftarrow D[j]$
for i in $\{1, \ldots, m\}$
do dime $i \leftarrow D[i]$
$\operatorname{dimf}[i][j] \leftarrow \operatorname{dimej}-\operatorname{dimei}+P$
\triangleright by definition
if $\operatorname{dimf}[i][j]>0$
then $f[i][j]=0 \quad \triangleright$ negative graded
$\operatorname{deg} f[i][j] \leftarrow-\operatorname{dimf}[i][j] \quad \triangleright$ by the properties
if indic $=1$
then Call Function Solveindic1WithProof
if indic $=2$ or $($ indic $=4$ and $m=2)$
then if $m=2$
then Call Function Solveindic4Size2by2
else Call Function Solveindic2WithProof
if indic $=3$
then Call Function Solveindic3WithProof
if indic $=4$
then Call Function Solveindic4WithProof
if indic $=1$
then return true
if indic $=2$ and $m \neq 2$
then return fail
if indic $=3$
then return true
if indic $=4$
then return true

54 if $P \geq 2$ and the conditions of Proposition 7.2 .11 are hold

We will give some examples for the function IsSolvableModuleWithProof as follows:

Example(1):

```
gap> C:=IsSolvableModuleWithProof([30, 20, 10],-3);
    diffk=10
    diffk=10
    indic=1
    dimf=[ [ -3, -13, -23 ], [ 0, -3, -13 ], [ 0, 0, -3 ] ]
    degf=[ [ 3, 13, 23 ], [ 0, 3, 13 ], [ 0, 0, 3 ] ]
    f=[[ [-3, -13, -23], [ 0, -3, -13], [ 0, 0, -3 ] ]
    Newf=[ [ 0, -13, -23 ], [ 0, 0, -13 ], [ 0, 0, 0 ] ]
    d=[ [ 0, "f12", "f13" ], [ 0, 0, "f23" ], [ 0, 0, 0 ] ],
    ( Since d^2=0 and R is an integral domain ).
```

Let $\mathrm{CO}=0$ and $\mathrm{C} 1=\langle\mathrm{e} 1>, \mathrm{C} 2=<\mathrm{e} 1, \mathrm{e} 2>, \mathrm{C} 3=<\mathrm{e} 1, \mathrm{e} 2, \mathrm{e} 3>$
$\mathrm{C} 1 / \mathrm{C0}$ is free, $\mathrm{C} 2 / \mathrm{C} 1$ is free, $\mathrm{C} 3 / \mathrm{C} 2$ is free
If x in C 1 , then x can be written uniquely as:
$\mathrm{x}=\mathrm{a} 1 * \mathrm{e} 1$
$d(x)=a 1 * d(e 1)$
$d(x)=a 1(0)$ in $C 0$
Hence $d(C 1)$ subset of $C 0$ and then $d(C 1 / C 0)=0$.
If x in C 2 , then x can be written uniquely as:
$\mathrm{x}=\mathrm{a} 1 * \mathrm{e} 1+\mathrm{a} 2 * \mathrm{e} 2$
$d(x)=a 1 * d(e 1)+a 2 * d(e 2)$
$d(x)=a 1(0)+a 2(f 12 * e 1)$ in C1
Hence $d(C 2)$ subset of $C 1$ and then $d(C 2 / C 1)=0$.
If x in C3, then x can be written uniquely as:
$\mathrm{x}=\mathrm{a} 1 * \mathrm{e} 1+\mathrm{a} 2 * \mathrm{e} 2+\mathrm{a} 3 * \mathrm{e} 3$
$d(x)=a 1 * d(e 1)+a 2 * d(e 2)+a 3 * d(e 3)$
$d(x)=a 1(0)+a 2(f 12 * e 1)+a 3(f 13 * e 1+f 23 * e 2)$ in $C 2$
Hence $d(C 3)$ subset of C2 and then $d(C 3 / C 2)=0$.
Hence, $0=C 0$ subset of $C 1$ subset of $C 2$ subset of $C 3=M$ is
a composition series for M.
true

Example(2):

```
gap> C:=IsSolvableModuleWithProof([30, 20, 10] ,-30);
    diffk=10
    diffk=10
    indic=2
    dimf=[ [ -30, -40, -50 ], [ -20, -30, -40 ], [ -10, -20, -30 ] ]
    degf=[ [ 30, 40, 50 ], [ 20, 30, 40 ], [ 10, 20, 30 ] ]
    f=[ [ -30, -40, -50], [ -20, -30, -40 ], [ -10, -20, -30 ] ]
    d=[ [ "f11", "f12", "f13" ], [ "f21", "f22", "f23" ],
        [ "f31", "f32", "f33" ] ]
fail
```


Example(3):

```
gap> C:=IsSolvableModuleWithProof([-20,-10,-5] ,-3);
    diffk=-10
    diffk=-5
    indic=3
    dimf=[ [ -3, 0, 0 ], [ -13, -3, 0 ], [ -18, -8, -3 ] ]
    degf=[ [ 3, 0, 0 ], [ 13, 3, 0 ], [ 18, 8, 3 ] ]
    f=[[ [0, 0, 0], [ -13, 0, 0], [ -18, -8, 0 ] ]
    Tranf=[ [ 0, -13, -18 ], [ 0, 0, -8 ], [ 0, 0, 0 ] ]
    d=[ [ 0, "f12", "f13" ], [ 0, 0, "f23" ], [ 0, 0, 0 ] ] ,
        ( Since d^2=0 and R is an integral domain ).
Let C0=0 and C1=<e1> , C2=<e1,e2> , C3=<e1,e2,e3>
    C1/C0 is free, C2/C1 is free, C3/C2 is free
If x in C1, then x can be written uniquely as:
x=a1*e1
d(x)=a1*d(e1)
d(x)=a1(0) in C0
```

Hence $d(C 1)$ subset of C 0 and then $\mathrm{d}(\mathrm{C} 1 / \mathrm{CO})=0$.
If x in C 2 , then x can be written uniquely as:
$\mathrm{x}=\mathrm{a} 1 * \mathrm{e} 1+\mathrm{a} 2 * \mathrm{e} 2$

```
\(d(x)=a 1 * d(e 1)+a 2 * d(e 2)\)
\(d(x)=a 1(0)+a 2(f 12 * e 1) \quad\) in \(C 1\)
```

Hence $d(C 2)$ subset of $C 1$ and then $d(C 2 / C 1)=0$.
If x in C3, then x can be written uniquely as:
$\mathrm{x}=\mathrm{a} 1 * \mathrm{e} 1+\mathrm{a} 2 * e 2+\mathrm{a} 3 * e 3$
$d(x)=a 1 * d(e 1)+a 2 * d(e 2)+a 3 * d(e 3)$
$d(x)=a 1(0)+a 2(f 12 * e 1)+a 3(f 13 * e 1+f 23 * e 2)$ in $C 2$
Hence $d(C 3)$ subset of $C 2$ and then $d(C 3 / C 2)=0$.
Hence, $0=C 0$ subset of $C 1$ subset of $C 2$ subset of $C 3=M$ is
a composition series for M.
true

Example(4):

```
gap> C:=IsSolvableModuleWithProof \(([40,30,20,10],-11)\);
    diffk=10
    diffk=10
    diffk=10
    indic=4
    \(\operatorname{dimf}=[[-11,-21,-31,-41],[-1,-11,-21,-31],[0,-1,-11\),
                -21 ], [ 0, 0, -1, -11 ] ]
    \(\operatorname{deg} f=[[11,21,31,41],[1,11,21,31],[0,1,11,21]\),
            \([0,0,1,11]\) ]
    \(\mathrm{b}=\left[\begin{array}{ll}0 & 1\end{array}\right]\)
    \(i=1\)
    degf Original Case_after setting some elements to Zero is [ [ 0, 21,
    \(31,41],[1,0,21,31],[0,1,0,21],[0,0,0,0]]\)
    \(\operatorname{deg} f=[\quad[0,1,21,31],[0,0,31,41],[0,0,0,21]\),
        \([0,0,0,0]\) ]
    Thus for the First case, degf is a strictly upper Triangular
    matrix, so \(M\) is solvable.
    \(\operatorname{deg} f=[[0,31,21,41],[0,0,1,21],[0,0,0,31]\),
        \([0,0,0,0]\) ]
    Thus for the second case, degf is a strictly upper triangular
```

```
matrix, so M is solvable.
```

```
b=[ lll
i=2
degf Original Case_after setting some elements to Zero is [[ 0, 21,
31, 41], [ 1, 0, 21, 31], [ 0, 1, 0, 0], [ 0, 0, 1, 0] ]
degf=[ [ 0, 1, 31, 21], [ 0, 0, 41, 31], [ 0, 0, 0, 1],
    [0, 0, 0, 0 ] ]
Thus for the First case, degf is a strictly upper Triangular matrix, so \(M\) is solvable.
\(\operatorname{deg} f=[[0,0,0,21],[0,0,1,0],[0,0,0,1],[0,0,0,0]]\) Thus for the second case, degf is a strictly upper triangular matrix, so \(M\) is solvable.
true
```

Example(5):
gap> C:=IsSolvableModuleWithProof $([10,20,30], 7)$;
diffk=10
diffk=10
$\operatorname{dimf}=[[0,3,13],[0,0,3],[0,0,0]]$
degree $=[[0,-3,-13],[0,0,-3],[0,0,0]]$
$f=[[0,3,13],[0,0,3],[0,0,0]]$
$d=[~[0, ~ " f 12 ", ~ " f 13 "], ~[0,0, ~ " f 23 "],[0,0,0]$] ,
(Since $d^{\wedge} 2=0$ and R is an integral domain).
Let $C 0=0$ and $C 1=\langle e 1\rangle, C 2=\langle e 1, e 2\rangle, C 3=\langle e 1, e 2, e 3\rangle$
C1/C0 is free, C2/C1 is free, C3/C2 is free.
If x in C 1 , then x can be written uniquely as:
$\mathrm{x}=\mathrm{a} 1 * \mathrm{e} 1$
$d(x)=a 1 * d(e 1)$
$d(x)=a 1(0)$ in C0
Hence $d(C 1)$ subset of $C 0$ and then $d(C 1 / C 0)=0$.
If x in C 2 , then x can be written uniquely as:
$\mathrm{x}=\mathrm{a} 1 * \mathrm{e} 1+\mathrm{a} 2 * \mathrm{e} 2$
$d(x)=a 1 * d(e 1)+a 2 * d(e 2)$
$d(x)=a 1(0)+a 2(f 12 * e 1)$ in C1
Hence $d(C 2)$ subset of $C 1$ and then $d(C 2 / C 1)=0$.
If x in C3, then x can be written uniquely as:
$\mathrm{x}=\mathrm{a} 1 * \mathrm{e} 1+\mathrm{a} 2 * \mathrm{e} 2+\mathrm{a} 3 * e 3$
$d(x)=a 1 * d(e 1)+a 2 * d(e 2)+a 3 * d(e 3)$
$d(x)=a 1(0)+a 2(f 12 * e 1)+a 3(f 13 * e 1+f 23 * e 2)$ in $C 2$
Hence $d(C 3)$ subset of $C 2$ and then $d(C 3 / C 2)=0$.
Hence, $0=C 0$ subset of $C 1$ subset of $C 2$ subset of $C 3=M$ is a composition series for M.
true

Appendix A

Appendix

A. 1 Appendix to Chapter 2

In this appendix we will attached the codes for all the functions we have written and used in Chapter 2 as follows:

1. IsSimpleGraph Function

```
IsSimpleGraph:=function(V,E)
local i,j,M,sV,tempx,tempedgex,tempedgey;
##
###############################################################################
##
## The input of this function is a finite simple graph zeta=(V,E), where V and
## E represents the list of vertices and the list of Edges respectively.
##
## It returns "true" if zeta is a simple graph. Otherwise, It returns an error message.
#################################################################################
##
sV:=Size(V);
M:= Length(E);
if V=[] then
    Error("The graph must be simple and not a null graph");
fi;
if IsList(V)=false then
        Error("V must be a list");
fi;
if IsList(E)=false then
    Error("E must be a graph");
fi;
for i in [1..sV] do
    if IsPosInt(V[i])=false then
        Error("The entries of V must be positive integers");
```

```
    fi;
od;
if ForAny(V, v-> [v,v] in E)=true then
    Error("The graph must be simple no loops");
fi;
if IsSubset(Cartesian(V,V),E)=false then
    Error(" Every edge [x,y] must be a pair of vertices and x,y belong to V");
fi;
for i in [1..M] do # First loop through the list of edges E
    tempedgex:=SSortedList(E[i]);
    for j in [i+1..M] do # Second loop through the edges E excluding the first entry of E
            tempedgey:=SSortedList(E[j]);
            if tempedgex=tempedgey then # determine whether the specific edge
                                    # E[j] is equal to the edge tempedgex
                Error("The graph must be simple no multiple edges");
            fi;
        od;
od;
return(true);
end;
```


2. StarLinkDominateOfVertex Function

```
StarLinkDominateOfVertex:=function(V,E)
local i,j,x1,M,sV,sE,tempx,St,indx1,Lk,indx2,x,YY,Y1,Y2,tempedgex,tempedgey,L,sL,invV;
##
#############################################################################
##
## The input of this function is a finite simple graph zeta=(V,E), where V and
## E represents the list of vertices and the list of Edges respectively.
##
## It computes the star St(v) and link Lk(v) and concatenates them in two separate
## lists St and Lk respectively. Also it calculates a list Y(v), for each vertex
## v in V of those vertices u in V such that u is less than v, and we call the
## list of all such Y(v), YY. In addition, it calculates sV, the size of the
## list of vertices V and M, the size of the list of edges E.
###############################################################################
##
if IsSimpleGraph(V,E)=true then # Call the function IsSimpleGraph to test
    # whether the graph zeta is simple or not
    sV:=Size(V);
    M:= Length(E);
    St:= NullMat(sV,1,0);
    Lk:= NullMat(sV,1,0);
    for i in [1..sV] do # loop through the vertices V
        tempx:=V[i];
        indx1:=1; # index for the star of specific vertex v.
        indx2:=0; # index for the link of specific vertex v.
        St[tempx] [indx1]:=tempx; # St: is a two dimensional matrix, the rows
        # indices represent the vertices and the columns
        # indices represent the star of a specific vertex.
```

```
        for j in [1..M] do # loop through the edges E.
                if tempx=E[j][1] then # This section to determine whether the specific
                            # vertex E[j][1] is equal to the vertex tempx.
                    if E[j][1]<>E[j][2] then # excludes the isolated vertices from the calculation
                        indx1:=indx1+1;
                        indx2:=indx2+1;
                        St [tempx] [indx1]:=E[j] [2];
                            # means that the vertex E[j][2] belongs to the star of a specific vertex v
                        Lk[tempx] [indx2]:=E[j] [2];
                            # means that the vertex E[j][2] belongs to the link of a specific vertex v
            fi;
                fi;
                if tempx=E[j][2] then # This section is the same of the first section,
                                    # above just we replaced the first coordinate of
                                    # the edge E(j) by the second coordinate.
                    if E[j][1]<>E[j][2] then
                        indx1:=indx1+1;
                        indx2:=indx2+1;
                        St [tempx] [indx1]:=E[j] [1];
                        Lk[tempx] [indx2]:=E[j] [1];
                fi;
                fi;
        od;
    od;
    YY:=[];
    for i in [1..sV] do # loop through the vertices V.
    Y1:=[];
    for j in [1..sV] do # loop through the vertices V.
                Y2:=Set(St[j]); # make the list of star of each vertex v as an order set
                RemoveSet(Y2,j); # remove the vertex j from the set Y2.
        if IsSubsetSet(St[i],Y2) and j<>i then # computes a list Y(v), for each vertex v in V of
                        # these vertices y in V such that u less than v.
        Add(Y1,j); # Y1 represents a singleton list of Y(v) with respect to each vertex v
            fi;
        od;
        Add(YY,Y1); # YY is a list which contains the lists of Y(v) for each,
                # vertex v in V of these vertices u in V such that u less than v
        od;
        invV:=-V;
        L:=Concatenation(V,invV);
        sL:=Size(L);
else
    return("The graph must be a simple graph");
fi;
return([St,Lk,YY,sV,M,L,sL]);
end;
```


3. DeleteVerticesFromGraph Function

[^0]```
local NE,NV,h,v1,Ex,Vx,sStI,g,v,H1,H2,b,ExM,VxM,i,a,j,sNE,sNV,sV,M;
```

\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#
\#\# The input of this function are the list of stars $S t$, the list of vertices $V$,
\#\# and the list of edges $E$.
\#\#
\#\# It computes graphs zeta\St(v), for all v in V, with NV the list of all lists
\#\# of vertices of zeta\St(v) and NE the list of all lists of edges of zeta\St(v).
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#
sV:=Size (V);
M:=Size (E) ;
NE: = [] ;
NV: = [] ;
for $h$ in [1..sV] do \# loop through the vertices V
v1:=St[h]; \# represents star for each vertex v.
Ex: $=\mathrm{E}$;
Vx: =V;
sStI:=Size(v1); \# represents the size of star of each vertex v.
for $g$ in [1..sStI] do \# loop through the elements of the star of each vertex $v$.
$\mathrm{v}:=\mathrm{v} 1[\mathrm{~g}] ; \quad \# \mathrm{v}: ~ r e p r e s e n t s ~ t h e ~ v e r t i c e s ~ w h i c h ~ a r e ~ b e l o n g s ~ t o ~ e a c h ~ s t a r ~ v 1=S t[h], ~$
\# which we want to delete them from the graph zeta.
H1: = [] ;
H2: = [] ;
$\mathrm{b}:=0$;
ExM:=Size(Ex); \# represents the size of the set of edges E.
$\mathrm{VxM}:=\operatorname{Size}(\mathrm{Vx})$; \# represents the size of the set of vertices V .
for i in [1..ExM] do \# loop through the edges E.
a: =0;
for $j$ in [1..2] do \# loop through inside each edge of the set of edges $E$.
if $\operatorname{Ex}[i][j]=v$ then \# determine whether $v$ is in the list of star of each,
\# vertex which we wants to delete it from the graph zeta.
a:=1;
b:=1;
fi;
od;
if $\mathrm{a}<>1$ then \# means that the coordinates of the pair (edge) does not
\# equal to v which we want to delete.
Add(H1,Ex[i]); \# add that pair (edge) to list H1, which it will be the
\# list E without those edges, which are contains vertex v .
fi;
od;
Ex:=H1;
for i in [1..VxM] do \# loop through the vertices V.
a: $=0$;
if $V x[i]=v$ then \# determine if this ( $V x[i]$ ) is equal to vertex $v$ which
\# we need to delete.
a:=1; \# if yes make $a=1$
fi;
if $a<>1$ then means that this vertex is not equal to vertex $v$.

```
 Add(H2,Vx[i]); # add this vertex to the list H2, which it will
 # be the list of V\St[h]
 fi;
 od;
 Ex:=H1;
 Vx:=H2;
 od;
 Add(NE,H1); # NE is the list of all lists of vertices of zeta\St(v).
 Add(NV,H2); # NV is NE the list of all lists of edges of zeta\St(v).
od;
sNE:=Size(NE);
sNV:=Size(NV);
return([NV,NE,sNV,sNE]);
end;
```


## 4. ConnectedComponentsOfGraph Function

```
ConnectedComponentsOfGraph:=function(G1,G2)
local DFSVisit,i,j,u,e,N1,x1,y1,M,W,count,color,s,x2,D,k,sD,P,t,AllComps,sAllComps,
F,sF,Y1,sY1,C1,C2,Y2,Y3,L2,U2,q,sY3,Y4,L4,sY4,sG1,NonIsolatedComps,IsolatedComps;
##
##
##
The input of this function is the list of edges G of a graph B=(G1,G2),
where G1 is the list of vertices and G2 is the list of edges.
##
It returns [AllComps,sAllComps,NonIsolatedComps,D,IsolatedComps,F] where:
##
AllComps: the list of all the connected components of the graph B,
sAllComps: the size of AllComps,
NonIsolatedComps: the list of all the non-isolated connected components
of the graph B,
D: the list of vertices of non-isolated connected components,
IsolatedComps: the list of all the isolated connected components of the graph B,
F: the list of vertices of isolated connected components.
###
##
if IsList(G1)=false then
 return("G1 must be a list");
fi;
sG1:=Size(G1);
for i in [1..sG1] do
 if IsPosInt(G1[i])=false then
 return("The entries of G1 must be positive integers");
 fi;
od;
if IsList(G2)=false then
 return("G must be a graph");
fi;
if IsSubset(Cartesian(G1,G1),G2)=false then
 return(" Every edge [x,y] must be a pair of vertices and x,y belong to G1");
```

```
fi;
M:= Length(G2);
##
##
##
DFSVisit implements the depth search algorithm to construct the
connected components (having more than one vertex) of the graph B.
##
The input to DfsVisit are:
i: A vertex of graph B,
W: the weight matrix of B,
sD: the size of the vertex list of the graph B,
count: is a specific number representing the vertices of each component,
color: is a list of size sD with entries the numbers of
non-isolated components.
##
 DFSVisit:=function(i,W,sD,count,color)
 local j,s;
 for s in [1..sD] do
 if color[s]=0 and W[i][s]=1 then
 color[s]:=count;
 DFSVisit(s,W,sD,count,color);
 fi;
 od;
 end;;
##
##
##
This section computes the list of vertices D of the non-isolated
connected components of the graph B and its size sD.
##
e:=0;
u:=0;
D:= [];
for i in [1..M] do
 for t in [1..2] do
 u:=0;
 for j in [1..e] do
 if D[j]=G2[i][t] then
 u:=u+1;
 fi;
 od;
 if u=0 then
 e:=e+1;
 D[e]:=G2[i][t];
 fi;
 od;
od;
u:=0;
sD:=Size(D);
##
###
##
```

```
W:= NullMat(sD,sD,0); # Set W to be a null matrix of size sD x sD
count:=0; # index for the number of connected components
color:= ListWithIdenticalEntries(sD, O); # List "color" equal to null-vector of size sD.
s:=1; #s^th item of color is the (number of the) component of B to which
#the s^th vertex of B belongs (or is zero if s has not yet been processed).
for i in [1..M] do # loop through the edges of the list G2
 for j in [1..sD] do # loop through the list of vertices of D
 if D[j]=G2[i][1] then # determine whether the vertex D[j] equal to G[i][1]
 x1:=j;
 fi;
 od;
 for j in [1..sD] do
 if D[j]=G2[i][2] then # determine whether the vertex D[j] equal to G[i][2]
 y1:=j;
 fi;
 od;
 W[x1][y1]:=1; # construct the adjacency matrix of the graph B as that:
 W[y1][x1]:=1; # if W[x1][y1]= 1 and W[y1][x1]=1 then it means that
 # the vertex W[x1][y1] join with the vertex W[y1][x1]
 # otherwise W[x1][y1] and W[y1][x1] are disjoined.
od;
for i in [1..sD] do
 if color[i]=0 then # determine whether we are done with the vertices in
 # the same component
 count:= count+1; # we give another number for the next component
 color[i]:=count;
 DFSVisit(i,W,sD,count,color);
 fi;
od;
P:=[];
NonIsolatedComps:=[];
for k in [1..count] do # loop through the number of connected components k
 for i in [1..sD] do # loop through the list of vertices D
 if k=color[i] then # determine whether these vertices k have the same
 # number of connected component.
 Add(P,D[i]); # Adding the vertices D(i) which are in the same
 # connected component to the list P.
 fi;
 od;
 for i in [1..sD] do
 if k=color[i] then
 Add(P,-D[i]); # Adding the inverses of D(i) to the list P
 fi;
 od;
 Add(NonIsolatedComps,P); # NonIsolatedComps: the list of all the
 # non-isolated components of the graph B
 P:=[];
od;
##
###
##
In this section we compute the isolated connected components of
the graph B and add them to the list Comps
```

```
##
IsolatedComps:=[];
F:=Difference(G1,D);
sF:=Size(F);
if sF<>O then
 for i in [1..sF] do
 Add(IsolatedComps, [F[i],-F[i]]); # IsolatedComps: the list of all the
 # non-isolated components of the graph
 od;
fi;
AllComps:=Concatenation(NonIsolatedComps,IsolatedComps); # the list of all the
 # components of the graph B
sAllComps:=Size(AllComps);
##
##
##
return([AllComps,sAllComps,NonIsolatedComps,D,IsolatedComps,F]);
end;
```


## 5. WhiteheadAutomorphismsOfSecondType Function

```
WhiteheadAutomorphismsOfSecondType:=function(NV,NE,St,YY)
local i,j,gens2,gens,genss,Bs,MV,ME,sME,h,G1,G2,R3,Comps,sComps,sMV,sNE,UniA,
D,DD,sD,S,YYY,NYY,invNYY,DYY,sDYY,Ls,t,xn,union_element,AQ,sAQ,L3, sL3,L4, sL4, sAQ1,
L5,elms,diff,Combs1,NCombs,sNCombs,Combs2,q,L7,k,set,AA1,AA,sAA,A,sA,T,sT;
##
###
##
The input of this function are:
the lists of vertices NV of the subgraph zeta\St(v)
the list of edges NE of the subgraphs zeta\St(v)=(NV(v),NE(v)) for all v in V
the list of stars St(v)
list YY for each vertex v in V of these vertices u in V such that u less than v.
##
It computes the list A of type(2) Whitehead automorphisms which forms
the first part of the set of generators of Aut(G_zeta). Also it computes
a list T of names of elements of A (the i^th element of T is the name of
the i^th element of A).
###
##
gens2:=[];
gens:=[];
genss:=[];
AA:=[];
Bs:=[];
MV:=NV;
sNE:=Size(NE);
for h in [1..sNE]do #loop through the list NE
 G1:=NV[h];
```

```
G2:=NE [h];
R3:=ConnectedComponentsOfGraph(G1,G2);
 # computes the list of the Connected components
 # for each subgraph (NV(h),NE(h))
Comps:=R3[3]; # Comps: list of non-isolated components of the subgraph
sComps:=Size(Comps); # sComps: size of Comps
D:=R3[4] ; # D: the list of vertices of non-isolated components
sD:=Size(D); # sD: size of D
S:=St[h]; # S is the list of the star of the vertex h
YYY:=YY; # YYY is a list which contains the lists of Y(v),for each vertex
 # v in V of these vertices u in V such that u less than v
NYY:=YYY[h]; # YYY is the dominate list Of the vertex h
invNYY:=-NYY; # the inverse of NYY
DYY:=Concatenation(NYY,invNYY);
sDYY:=Size(DYY);
Ls:=[[]];
for t in [1..sDYY] do # loop through the list DYY
 xn:=DYY[t];
 union_element:=function(Ls,xn,S)
 # Call the function union-element to construct a list
 # called Ls of all subsets of St(v) + YY(v) + (-YY(v))
 local J,i,j,sLs;
 sLs:=Size(Ls);
 for i in [1..sLs] do
 J:=StructuralCopy(Ls[i]); # to make a structural copy of each object Ls[i]
 if not(-xn in J) or (not(xn in S) and not(-xn in S))then
 Add(J,xn);
 Add(Ls,J); # Ls is the list of all subsets of St(v) + YY(v) + (-YY(v))
 fi;
 od;
 end;;
 union_element(Ls,xn,S);
od;
AQ:=Ls;
sAQ:=Size(AQ);
L4:=[];
L3:=[];
if sComps=0 then # determine whether the list Comps
 # doesn't has any connected component
 for j in [1..sAQ] do # loop through the list Ls
 sAQ1:=Size(AQ[j]);
 if sAQ1 <> 0 then
 Add(L3,AQ[j]); # add each list (subsets) AQ(j) of AQ to new list L3
 fi;
 od;
 sMV:=Size(MV [h]); # sMV is the size of the vertex list of the subgraph (MV [h],ME[h])
 ###
 ## For any element X not in D and sMV > 1 and X<>YY [h] we add the [X], [-X] and
 ## [X,-X] to L3 (since these elements are part of isolated components)
 for j in [1..sMV] do # loop through the vertex list of the subgraph (MV [h],ME[h])
```

```
 if not (MV [h][j] in D) and sMV<>1 and MV[h]<>YY[h] then
 Add(L3, [MV[h][j]]);
 Add(L3,[-MV[h][j]]);
 Add(L3, [MV [h][j],-MV [h][j]]);
fi;
 od;
 ##
 sL3:=Size(L3);
 for k in [1..sL3] do # loop through list L3
 Add(L3[k],h); # we add the vertex h to each list of L3 and
 Add(L4,L3[k]); # we add the new list L3(k) to the list L4
 od;
 set:=L4;
 sL4:=Size(L4);
 L5:=[];
 ##
 ## In this part we delete the vertex h from each list set(i) and in the same
 ## time we add its inverse (-h) to the list diff, then we add the new list diff
 ## to the list L5
 for i in [1..sL4] do
 elms:=[h];;
 diff:=Difference(set[i],elms);;
 Add(diff,-h);
 Add(L5,diff);
 od;
 ##
fi;
L3:=[];
if sComps=1 then # determine whether the list Comps
 # has just one connected component
 for i in [1..sComps] do # loop through the list Comps
 for k in [1..sAQ] do # loop through the list AQ
 UniA:=Union([AQ[k] , Comps[i]]); # we make union for this component
 # with each list of of the list AQ
 Add(L3, UniA);
 od;
 od;
 sMV:=Size(MV [h]);
 for j in [1..sMV] do ## See the previous comments on this section
 if not (MV[h][j] in D) and sMV<>1 and MV[h]<>YY[h] then
 Add(L3, [MV [h][j]]);
 Add(L3, [-MV [h][j]]);
 Add(L3, [MV [h] [j] ,-MV [h][j]]);
 fi;
 od;
 sL3:=Size(L3);
 for k in [1..sL3] do
 Add(L3[k],h);
 Add(L4,L3[k]);
 od;
 set:=L4;
```

```
 sL4:=Size(L4);
 L5:=[];
 for i in [1..sL4] do
 elms:=[h];;
 diff:=Difference(set[i],elms);;
 Add(diff,-h);
 Add(L5,diff);
 od;
fi;
L3:=[];
if sComps >=2 then # determine whether the list Comps
 # has more than one connected component
 Combs1:=Combinations(Comps); # Combs1 is the list of all subsets of Comps
 # including the empty set and Comps itself
 NCombs:=Difference(Combs1,[[]]); # we removed the empty set from Combs1
 sNCombs:=Size(NCombs);
 Combs2:=[];
 for q in [1..sNCombs] do # loop through the elements of NCombs
 L7:=Concatenation(NCombs[q]); # to remove the extra brackets
 Add(Combs2,L7);
 od;
 for k in [1..sAQ] do # loop through the elements of AQ
 for i in [1..sNCombs] do # loop through the elements of NCombs
 UniA:=Union([AQ[k] ,Combs2[i]]);
 Add(L3, UniA);
 od;
 od;
 sMV:=Size(MV[h]);
 for j in [1..sMV] do # See the previous comments on this section
 if not (MV [h][j] in D) and sMV<>1 and MV [h]<>YY[h] then
 Add(L3, [MV [h][j]]);
 Add(L3, [-MV[h][j]]);
 Add(L3, [MV [h][j],-MV[h][j]]);
 fi;
 od;
 sL3:=Size(L3);
 for k in [1..sL3] do
 Add(L3[k],h);
 Add(L4,L3[k]);
 od;
 set:=L4;
 sL4:=Size(L4);
 L5:=[];
 for i in [1..sL4] do
 elms:=[h];;
 diff:=Difference(set[i],elms);;
 Add(diff,-h);
 Add(L5,diff);
 od;
fi;
for i in [1..sL4] do # loop through the elements of L4 and L5 in the same time
 AA1 := [];
 Add(AA1,L4[i]);
```

```
 Add(AA1,h); # we forms type(2) Whitehead automorphisms
 # with positive operator (h)
 Add(AA,AA1);
 AA1:=[];
 Add(AA1,L5[i]);
 Add(AA1,-h); # we forms type(2) Whitehead automorphisms
 # with negative operator (-h)
 Add(AA,AA1); # AA forms the type(2) Whitehead automorphisms which are
 # the first part of the generators of the automorphisms
 od; # of group of partially commutative group
od;
sAA:=Size(AA);
A:= [] ;
for i in [1..sAA] do # loop through the generators set AA
 if not (AA[i] in A) then # it helps us to rewrite the list AA without repetition
 Add(A,AA[i]); # The elements of list A are the definitions of Type(2)
 # Whitehead automorphisms of the generators of the
 # presentation of Aut(G_zeta)
 fi;
od;
sA:=Size(A);
T:=[];
for i in [1..sA]do
 Add(T,Concatenation(["A",String(i)])); # Compute the list T with i^th entry A(i) where
 # A(i) is the name of the i^th element of A
od;
sT:=Size(T);
return ([A,T,sA]);
end;
```


## 6. WhiteheadAutomorphismsOfFirstType Function

```
WhiteheadAutomorphismsOfFirstType:= function(E,sV,sA,T)
local gens2,gens,genss,E1,GraphAutomorphismGroup,Gr,HH,KK,rels1,HHH,srels1,
NJK,F,sF,Gens3,i,NF1,relvalofF, srelvalofF,I1,Gens2, I2 , J1, sGens2,Gens, sGens,
sgenss,sgens,zz,rels2,srels2,Rels1,sRels1;
##
##
##
The input of this function are:
the list of edges E
the size of the list of vertices sV
the size of the list A of type(2) Whitehead automorphism of Aut(G_zeta)
the list T with i^th entry A(i), where A(i) is the name of the i^th element of A.
##
It computes the list Gens of the type(1) Whitehead automorphisms which forms
the second part of the set of generators of the automorphism group of G_zeta,
and then computes the list of the generators gens of Aut(G_zeta) with its
size sgens. The subgroup Aut_zeta(G_zeta) of Aut(G_zeta) consists of graph
automorphism: that is, elements pi in Aut(G_zeta) such that pi restrict
to the graph zeta is a graph automorhism.
```


## \#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

 \#\#gens2:= [];
gens:=[];
genss: $=[]$;
E1: =E;
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#
\#\# The purpose of this section is to compute the group of the graph with the size \#\# of vertices $s V$ since the permutation on $V$ is an automorphism of the graph zeta \#\#
GraphAutomorphismGroup := function(E1)
return $\operatorname{SubgroupProperty(SymmetricGroup(sV),g~} \rightarrow \operatorname{Set}(E 1, k->0 n \operatorname{Sets}(k, g))=\operatorname{Set}(E 1))$;
end;
\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# \#\#

Gr:=GraphAutomorphismGroup (E) ;
HH:=AsGroup (Gr);
KK:=IsomorphismFpGroupByGenerators(HH, GeneratorsOfGroup (HH)) ;
\# returns an isomorphism from the given finite group
\# HH to a finitely presented group isomorphic to HH.
HHH:=Image (KK); \# Call Image the function which computes a finitely
\# presented group $H$ on the chosen generators KK
rels1:=[];
Rels1:=[];
rels2:=RelatorsOfFpGroup (HHH); \# rels2: relators set of the group automorphism of graph
srels2:=Size (rels2);
F:= GeneratorsOfGroup (HHH); \# F: generators set of the group automorphism of graph sF:=Size (F);
for i in [1..srels2] do
zz:=ExtRepOfObj(rels2[i]);
\# The function ExtRepOfObj() helps us to rewrite each
\# single relation as a vector with entires are the indces
\# and the power of the generators which are form that relation.
\# For example the result of ExtRepOfObj (A52*A4*A52^-1*A4~-1)
\# is the vector $[52,1,4,1,52,-1,4,-1]$
Add(Rels1,zz);
od;
sRels1:=Size(Rels1);
Gens3:=[];
for $i$ in [1..sF] do
NF1:=Concatenation(["f",String(i)]);
Add(Gens3,NF1); \# Gns3 is the first part of type(1) Whitehead automorphism
\# which are the same $F$ just we rewrite them to make them
\# suitable with the other generators
od;
relvalofF:= GeneratorsOfGroup(HH); \# Compute list of the definitions relvalofF of \# the generators Gens3 of the group of graph HH
srelvalofF:=Size(relvalofF);
I1:=[];
Gens2: = [];
for i in [1..sV] do

```
 I2:=Concatenation(["A",String(sA+i),"(",String(i),")", "=",String(-i)]);
 # Make a list, called I2, of type(1) Whitehead automorphisms which
 # send a generator to its inverse and add it to the leist I1
 Add(I1,I2);
 J1:=Concatenation(["A",String(sA+i)]);
 # rewrite the elements of I1 as a string to make
 # them compatible with the other generators and
 # add them to Gens2
 Add(Gens2,J1);
od;
sGens2:=Size(Gens2);
Gens:=Concatenation(Gens2,Gens3);
 # Concatenate the lists Gens2 and Gens3 in a new list called
 # Gens which represents all type(1) Whitehead automorphisms
sGens:=Size(Gens);
for i in [1..sGens] do
 Add(gens,Gens[i]);
od;
genss:=Concatenation(T,Gens2);
 # Concatenate the two lists T and Gens2 in a one list called
 # genss. The list genss helps to form the relations later
gens:=Concatenation(T,Gens); # Compute set of the generators gens of Aut(G_zeta),
 # by concatenating the two lists T and Gens.
sgenss:=Size(genss);
sgens:=Size(gens);
return([gens,sgens,sgenss,Gens3,relvalofF,srelvalofF,Rels1,sRels1,sGens2]);
end;
```


## 7. RelationsOfGraphAutomorphisms Function

```
RelationsOfGraphAutomorphisms:= function(sA,sgenss,relvalofF,sV,sGens2)
local rels,Rels,i,j,R6,FF,srelvalofF,d,F1,PP,R7,R11,idx1,idx2,idx3,srels,sRels;
##
###
##
The input of this function are:
the size sA of the list A of definition of the second type of generator,
the size of the list genss defined in WhiteheadAutomorphismsOfFirstType.g,
the list of generators of the graph automorphism relvalofF defined in,
WhiteheadAutomorphismsOfFirstType.g,
sizes sV, and sGens2 of the lists V and Gens2 respectively.
##
It computes the row matrix of indices Rels of the generators
which forms the relations of this type, that related to the
graph automorphism with its size sRels.
##
##
Rels:= [];
for i in [sA+1..sgenss] do # loop through the generators Gens2
 Add(Rels,[1,i]); # [1,i] is the row matrix of indices of each relation
 # of type R11={A~2=1 : A in Gens2} and add it to the
```

```
 # list Rels. The first entry 1 is just a flag to let
 # us know that here the generator is of power two
od;
for i in [sA+1..sgenss] do # loop through the generators Gens2
 for j in [sA+1..sgenss] do
 if i<>j then
 Add(Rels,[0,-i,-j,i,j]);
 # [0,-i,-j,i,j] is the row matrix of indices of
 # each relation of type (g^-1*h^-1*g*h) such that
 # g,h in Gens2. The first entry O is just a flag to
 # let us know that here the generator without any power
 fi;
 od;
od;
FF:= [];
srelvalofF:=Size(relvalofF);
for i in [1..srelvalofF] do # loop through the generators relvalofF
 # of the group of graph HH
 d:=relvalofF[i];
 F1:=d^-1; # computes F1 the inverse of each element of
 # relvalofF and add them to the list FF
 Add(FF,F1);
od;
##
##
In this section we apply the function PP to (j, sigma(i)) to return the value
sigma(i) for each i in the list of vertices { 1, ..., n } and sigma in the list
FF above. Using these values form the relations R7: that is compute the row
matrix of indices [0,-idx1,idx2,idx1,idx3], for each such relation, and
add it to the list Rels.
##
for i in [1..srelvalofF] do # loop through the generators relvalofF
 for j in [1..sV] do # loop through the vertex set V
 PP:=OnPoints(j,FF[i]);
 idx1:=i+sA+sGens2;
 idx2:=sA+j;
 idx3:=sA+PP;
 Add(Rels,[0,-idx1,idx2,idx1,idx3]);
 # means that the idx1 refers to the location
 # of F in the original F Matrix
 od;
od;
##
sRels:=Size(Rels);
return([Rels,sRels]);
end;
```


## 8. APCGRelationR1 Function

```
APCGRelationR1:=function(sV,A,T,Rels)
local k,j,i,diff1,UA,UAiff,R1,XX1,XX2,idx1,idx2,t,sA,srels,sRels;
```

\#\# The input of this function are:
\#\#\# sV: the size of the list of vertices of the graph zeta,
\#\#\# A : the list of type(2) Whitehead automorphisms of Aut(G_zeta),
\#\#\# T : the list of names of elements of $A$,
\#\#\# Rels: the list of row matrices of indices of relations (it is one
\#\#\# of the outputs of "APCGRelationR5".
\#\#\# Note that in order to get just the row matrices of indices of relation (R1)
\#\#\# we need to pass an empty list [] rather than the list Rels above.
\#\#
\#\# It computes the list of indices [0,idx1,idx2] of relators of type (R1)
\#\# of the group Aut(G_zeta) and adds them to the list Rels. In addition
\#\# it calculates the size of the list Rels.
\#\# It returns [Rels,sRels].
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#
sA:=Size (A) ;
for k in [1..sV] do \# loop through the list of vertices $V$
for i in [1..sA]do \# loop through the list A defined above
if $k$ in $A[i][1]$ and not (- $k$ in $A[i][1])$ and $A[i][2]=k$ then
\# Here we have satisfied the conditions,
\# of the Whitehead automorphism (A, a),
\# "a" is called the multiplier
diff1:=Difference(A[i][1],[k]); \# we delete the multiplier $k$ from each subset,
\# A[i][1] and add its inverse -k to this subset.
Add (diff1,-k) ;
for j in [1..sA]do \# loop through the list A defined above.
UA:=SSortedList(A[j][1]); \# Sorted lists A[j][1] to satisfy the conditions of (R1)
UAiff:=SSortedList(diff1); \# Sorted lists diff1 to satisfy the conditions of (R1)
if UA=UAiff and $A[j][2]=-k$ then $\#$ Verify the inverse of each ( $A, a$ )
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#
\#\# In this section we compute the list of indices [0,idx1,idx2] of relators of
\#\# type (R1) and add them to the list Rels. Note that 0 is just flag to let us
\#\# know that all the generators here of power 1. idx1 represents the index of a
\#\# specific generator $A(i)$. idx2 represents the index of the inverse of $A(j)$.
\#\# For example if $[0, i d x 1, i d x 2]=[0,1,2]$ then this means $A 1 * A 2=1$.
XX1:=Concatenation(["A",String(i)]);
\# XX1: represents a specific Whitehead automorphism (A,a) of A
XX2:=Concatenation(["A",String(j)]);
\# XX2: represents a specific Whitehead automorphism ( $A, a^{\wedge}-1$ )
\# which is the inverse of ( $\mathrm{A}, \mathrm{a}$ )
idx1:=0;
idx2:=0;
for $t$ in [1..sA] do \# Verify the indices of the given Whitehead
\# automorphisms $A(i)$ and $A(j)$ in $A$
if $\mathrm{XX} 1=\mathrm{T}[\mathrm{t}]$ then

```
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 od;
 Add(Rels,[0,idx1,idx2]);
 ##
 ###
 ##
 fi;
 od;
 fi;
 od;
od;
sRels:=Size(Rels);
return([Rels,sRels]);
end;
```


## 9. APCGRelationR2 Function

```
APCGRelationR2:=function(A,T,Rels,St)
local k,j,i,IntA,UniA,NUniA,l,K,t,UA,R2,XX1,XX2,XX3,idx1,idx2,idx3,t1,
sV,sA,R2a,K1,R2b,R2c,srels,sRels;
##
##
##
The input of this function are:
A: the list of type(2) generators computed in "WhiteheadAutomorphismsOfSecondType",
T: list of the names of elements of A,
Rels: the list of row matrices of indices of the relations (it is one
of the outputs of the "APCGRelationR1",
St: the list of stars computed in "StarLinkDominateOfVertex".
Note that in order to get just the row matrices of indices of relation (R2)
we need to pass an empty list [] rather than the list Rels above.
##
It computes the list of indices of the generators [0,idx1,idx2,-idx3] of
relators of type (R2) of the group Aut(G_zeta) and adds them to the list
Rels. In addition it calculates the size of the list Rels.
It returns [Rels,sRels].
###
##
sV:=Size(St); #Since the size of stars list equal to sV, the size of the vertex list
sA:=Size(A);
for k in [1..sV] do # loop through the vertex list V
 for i in [1..sA]do # loop through the list A defined above
 for j in [1..sA] do # loop through the list A defined above
 IntA:=Intersection([A [i] [1] , A[j][1]]);
 UniA:=Union([A[i][1] , A[j][1]]);
 NUniA:=[];
```

```
for l in St[k] do # In this loop if the vertex l and its inverse -l in the
 # same time are belong to the list UniA then we delete
 # them, because they will cancel each other.
 if l in UniA and -l in UniA then
 NUniA:=Difference(UniA, [-1,l]);
 UniA:=NUniA;
 fi;
od;
K:=[k];
if IntA=K and k in A[i][1] and not (-k in A[i][1]) and A[i][2]=k and k in A[j][1]
 and not (-k in A[j][1]) and A[j][2]=k and k in UniA and not (-k in UniA) then
 ##
 ##
 ## Section(1): We compute the first part of the list of indices
 ## [0,idx1,idx2,-idx3] of relators of type (R2) and add them to the list
 ## Rels. Note that O is just flag to let us know that all generators here
 ## of power 1. idx1: represents the index of the generator A(i).
 ## idx2: represents the index of the generator A(j). -idx3: represents
 ## the index of the inverse of the generator A(t).
 ## For example if [0,idx1,idx2,-idx3]= [0,1,3,-5],
 ## then this means A1*A3*A5^-1=1.
 ##
 for t in [1..sA]do
 UA:=SSortedList(A[t][1]);
 if A[t][2]=k then
 if UA=UniA or UA=NUniA then
 XX1:=Concatenation(["A",String(i)]);
 # XX1: represents a specific Whitehead automorphism (A,a) of A
 XX2:=Concatenation(["A",String(j)]);
 # XX2: represents a specific Whitehead automorphism (B,a) of A
 XX3:=Concatenation(["A",String(t)]);
 # XX3: represents a specific Whitehead automorphism (A+B,a^-1)
 # which is the inverse of (A+B,a) of A
 idx1:=0;
 idx2:=0;
 idx3:=0;
 for t1 in [1..sA] do
 # Verify the indices of the given Whitehead automorphisms
 # A(i), A(j) and the inverse of A(t) in A
 if XX1=T[t1] then
 idx1:=t1;
 fi;
 if XX2=T[t1] then
 idx2:=t1;
 fi;
 if XX3=T[t1] then
 idx3:=t1;
 fi;
 od;
 Add(Rels,[0,idx1,idx2,-idx3]);
 fi;
 fi;
 od;
```

\#\# Section(2): Note that in some cases when we delete the vertices 1 and
\#\# its inverse -1 from the list UniA=A+B we will get a new list NUniA= $[k]$,
\#\# but this is just the identity. So we will ignore this list (subset)
\#\# and we compute the second part of the list of indices [0,idx1,idx2]
\#\#
if NUniA=K then
XX1:=Concatenation(["A",String(i)]);
\# XX1: represents a specific Whitehead automorphism (A,a) of A
XX2:=Concatenation(["A", String( $j$ )]);
\# XX2: represents a specific Whitehead automorphism (B,a) of A
idx1:=0;
idx2:=0;
for t 1 in [1..sA] do
\# Verify the indices of the given Whitehead automorphisms
\# $A(i)$ and $A(j)$ in $A$
if $\mathrm{XX} 1=\mathrm{T}[\mathrm{t} 1]$ then
idx1:=t1;
fi;
if $\mathrm{XX} 2=\mathrm{T}[\mathrm{t} 1]$ then
idx2:=t1;
fi;
od;
Add(Rels, [0,idx1,idx2]);
fi;
\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#
fi;
K1:=[-k];
if IntA=K1 and $-k$ in $A[i][1]$ and not ( $k$ in $A[i][1]$ ) and $A[i][2]=-k$ and $-k$ in $A[j][1]$
and not ( $k$ in $A[j][1]$ ) and $A[j][2]=-k$ and $-k$ in UniA and not ( $k$ in UniA) then
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#
\#\# Section(3): we compute the third part of the list of indices [0,idx1,
\#\# idx2,-idx3] of relators of type (R2). It is the same of Section(1), just
\#\# we switch the multiplier "a" (k in this code) of the Whitehead
\#\# automorphism ( $\mathrm{A}, \mathrm{a}$ ) by its inverse " $\mathrm{a}^{\wedge}-1$ " ( -k in this code).
\#\#
for $t$ in [1..sA]do
UA: =SSortedList (A [t] [1]) ;
if $A[t][2]=-k$ then
if $U A=U n i A$ or $U A=N U n i A$ then
XX1:=Concatenation(["A",String(i)]);
XX2:=Concatenation(["A",String(j)]);
XX3:=Concatenation(["A",String(t)]);
idx1:=0;
idx2:=0;

```
 idx3:=0;
 for t1 in [1..sA] do
 if XX1=T[t1] then
 idx1:=t1;
 fi;
 if XX2=T[t1] then
 idx2:=t1;
 fi;
 if XX3=T[t1] then
 idx3:=t1;
 fi;
 od;
 Add(Rels,[0,idx1,idx2,-idx3]);
 fi;
 fi;
 od;
 ##
 ##
 ##
 ###
 ##
 ## We compute the fourth part of the list of indices [0,idx1,idx2] of
 ## relators of type (R2). It is the same of Section(2), just we switch the
 ## multiplier "a" (k in this code) of the Whitehead automorphism (A,a) by
 ## its inverse "a^-1" (-k in this code).
 ##
 if NUniA=K1 then
 XX1:=Concatenation(["A",String(i)]);
 XX2:=Concatenation(["A",String(j)]);
 idx1:=0;
 idx2:=0;
 for t1 in [1..sA] do
 if XX1=T[t1] then
 idx1:=t1;
 fi;
 if XX2=T[t1] then
 idx2:=t1;
 fi;
 od;
 Add(Rels,[0,idx1,idx2]);
 fi;
 ##
 ##
 ##
 fi;
 od;
 od;
od;
sRels:=Size(Rels);
return([Rels,sRels]);
end;
```


## 10. APCGRelationR3 Function

```
APCGRelationR3:=function(A,T,Lk,Rels)
local k,j,i,sV,sA,IntA,UniA,NUniA,l,K,t,UA,R2,XX1,XX2,idx1,idx2,
t1,R3a,R3a1,K1,R3b,R3b1,srels,sRels;
##
##
##
The input of this function are:
A: the list of type(2) generators computed in "WhiteheadAutomorphismsOfSecondType",
T: list of the names of elements of A,
Lk: the list of links computed in "StarLinkDominateOfVertex".
Rels: the list of row matrices of indices of the relations (it is one
of the outputs of the "APCGRelationR2",
Note that in order to get just the row matrices of indices of relation (R3)
we need to pass an empty list [] rather than the list Rels above.
##
It computes the list of indices of the generators [0,idx1,idx2,-idx1,-idx2]
of relators of types (R3a) and (R3b) of the group Aut(G_zeta) and adds them
to the list Rels. In addition it calculates the size of the list Rels.
It returns [Rels,sRels].
##
##
sV:=Size(Lk);
sA:=Size(A);
###
##
In this section we compute the list of indices [0,idx1,idx2,-idx1,-idx2] of
relators of type (R3a) by satisfying the conditions of this relations and add
them to the list Rels. Note that 0 is just flag to let us know that all the
generators here of power 1. idx1: represents the index of the generator A(i).
idx2: represents the index of the generator A(j). -idx1: means the inverse of A(i).
-idx2: means the inverse of A(j).
For example if [0,idx1,idx2,-idx1,-idx2]= [0, 9, 3, -9, -3], then this means
A9*A3*A9^-1*A3^-1=1.
##
for k in [1..sV] do # loop through the vertex list V
for l in [1..sV] do # loop through the vertex list V
 for i in [1..sA]do # loop through A the Type (2) Whitehead Automorphisms
 for j in [1..sA] do # loop through A the Type (2) Whitehead Automorphisms
 IntA:=Intersection([A[i][1] , A[j][1]]);
 if l in A[i][1] and not (-l in A[i][1]) and A[i][2]=l and k in A[j][1]
 and not (-k in A[j][1]) and A[j][2]=k and not (k in A[i][1]) and
 not (-k in A[i][1]) and not (l in A[j][1]) and not(-1 in A[j][1])
 and IntA=[] then
 XX1:=Concatenation(["A",String(i)]);
 # XX1: represents a specific Whitehead automorphism (A,a) of A
 XX2:=Concatenation(["A",String(j)]);
 # XX2: represents a specific Whitehead automorphism (B,b) of A
 idx1:=0;
 idx2:=0;
 for t in [1..sA] do # Verify the indices of the given Whitehead
 # automorphisms A(i) and A(j) in A
```

```
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 od;
 Add(Rels,[0,idx1,idx2,-idx1,-idx2]);
fi;
if l in A[i][1] and not (-l in A[i][1]) and A[i][2]=l and -k in A[j][1]
 and not (k in A[j][1]) and A[j][2]=-k and not (k in A[i][1]) and
 not (-k in A[i][1]) and not (l in A[j][1]) and not(-1 in A[j][1])
 and IntA=[] then
 XX1:=Concatenation(["A",String(i)]);
 # XX1: represents a specific Whitehead automorphism (A,a) of A
 XX2:=Concatenation(["A",String(j)]);
 # XX2: represents a specific Whitehead automorphism (B,b) of A
 idx1:=0;
 idx2:=0;
 for t in [1..sA] do # Verify the indices of the given Whitehead
 # automorphisms A(i) and A(j) in A
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 od;
 Add(Rels,[0,idx1,idx2,-idx1,-idx2]);
fi;
if -l in A[i][1] and not (l in A[i][1]) and A[i][2]=-l and k in A[j][1]
 and not (-k in A[j][1]) and A[j][2]=k and not (k in A[i][1]) and
 not (-k in A[i][1]) and not (l in A[j][1]) and not(-1 in A[j][1])
 and IntA=[] then
 XX1:=Concatenation(["A",String(i)]);
 # XX1: represents a specific Whitehead automorphism (A,a) of A
 XX2:=Concatenation(["A",String(j)]);
 # XX2: represents a specific Whitehead automorphism (B,b) of A
 idx1:=0;
 idx2:=0;
 for t in [1..sA] do # Verify the indices of the given Whitehead
 # automorphisms A(i) and A(j) in A
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 od;
 Add(Rels,[0,idx1,idx2,-idx1,-idx2]);
fi;
if -l in A[i][1] and not (l in A[i][1]) and A[i][2]=-1 and -k in A[j][1]
 and not (k in A[j][1]) and A[j][2]=-k and not (k in A[i][1]) and
```

```
 not (-k in A[i][1]) and not (l in A[j][1]) and not(-1 in A[j][1])
 and IntA=[] then
 XX1:=Concatenation(["A",String(i)]);
 # XX1: represents a specific Whitehead automorphism (A,a) of A
 XX2:=Concatenation(["A",String(j)]);
 # XX2: represents a specific Whitehead automorphism (B,b) of A
 idx1:=0;
 idx2:=0;
 for t in [1..sA] do # Verify the indices of the given Whitehead
 # automorphisms A(i) and A(j) in A
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 od;
 Add(Rels,[0,idx1,idx2,-idx1,-idx2]);
 fi;
 od;
 od;
 od;
od;
##
##
##
###
##
In this section we compute the list of indices [0,idx1,idx2,-idx1,-idx2] of
relators of type (R3b) by satisfying the conditions of this relations and add
them to the list Rels. Note that 0 is just flag to let us know that all the
generators here of power 1. idx1: represents the index of the generator A(i).
idx2: represents the index of the generator A(j). -idx1: represents the index
of the inverse of the generator A(i). -idx2: represents the index of the
inverse of the generator A(j).
For example if [0,idx1,idx2,-idx1,-idx2]= [0, 9, 3, -9, -3], then this
means that A9*A3*A9^-1*A3^-1=1.
##
for k in [1..sV] do
 for l in [1..sV] do
 for i in [1..sA]do
 for j in [1..sA] do
 IntA:=Intersection([A[i][1] , A[j][1]]);
 if l in A[i][1] and not (-l in A[i][1]) and A[i][2]=l and k in A[j][1]
 and not (-k in A[j][1]) and A[j][2]=k and not (k in A[i][1]) and
 not (-k in A[i][1]) and not (l in A[j][1]) and not(-1 in A[j][1])
 and IntA<>[] and l in Lk[k] then
 XX1:=Concatenation(["A",String(i)]);
 # XX1: represents a specific Whitehead automorphism (A,a) of A
 XX2:=Concatenation(["A",String(j)]);
 # XX2: represents a specific Whitehead automorphism (B,b) of A
 idx1:=0;
```

```
 idx2:=0;
 for t in [1..sA] do
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 od;
 Add(Rels,[0,idx1,idx2,-idx1,-idx2]);
fi;
if l in A[i][1] and not (-1 in A[i][1]) and A[i][2]=l and -k in A[j][1]
 and not (k in A[j][1]) and A[j][2]=-k and not (k in A[i][1]) and
 not (-k in A[i][1]) and not (l in A[j][1]) and not(-1 in A[j][1])
 and IntA<>[] and l in Lk[k] then
 XX1:=Concatenation(["A",String(i)]);
 # XX1: represents a specific Whitehead automorphism (A,a) of A
 XX2:=Concatenation(["A",String(j)]);
 # XX2: represents a specific Whitehead automorphism (B,b) of A
 idx1:=0;
 idx2:=0;
 for t in [1..sA] do
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 od;
 Add(Rels,[0,idx1,idx2,-idx1,-idx2]);
fi;
if -l in A[i][1] and not (l in A[i][1]) and A[i][2]=-l and k in A[j][1]
 and not (-k in A[j][1]) and A[j][2]=k and not (k in A[i][1]) and
 not (-k in A[i][1]) and not (l in A[j][1]) and not(-1 in A[j][1])
 and IntA<>[] and l in Lk[k] then
 XX1:=Concatenation(["A",String(i)]);
 # XX1: represents a specific Whitehead automorphism (A,a) of A
 XX2:=Concatenation(["A",String(j)]);
 # XX2: represents a specific Whitehead automorphism (B,b) of A
 idx1:=0;
 idx2:=0;
 for t in [1..sA] do
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 od;
 Add(Rels,[0,idx1,idx2,-idx1,-idx2]);
fi;
if -l in A[i][1] and not (l in A[i][1]) and A[i][2]=-1 and -k in A[j][1]
 and not (k in A[j][1]) and A[j][2]=-k and not (k in A[i][1]) and
```

```
 not (-k in A[i][1]) and not (l in A[j][1]) and not(-1 in A[j][1])
 and IntA<>[] and l in Lk[k] then
 XX1:=Concatenation(["A",String(i)]);
 # XX1: represents a specific Whitehead automorphism (A,a) of A
 XX2:=Concatenation(["A",String(j)]);
 # XX2: represents a specific Whitehead automorphism (B,b) of A
 idx1:=0;
 idx2:=0;
 for t in [1..sA] do
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 od;
 Add(Rels,[0,idx1,idx2,-idx1,-idx2]);
 fi;
 od;
 od;
 od;
od;
##
###
##
sRels:=Size(Rels);
return([Rels,sRels]);
end;
```


## 11. APCGRelationR4 Function

```
APCGRelationR4:=function(A,T,Lk,Rels)
local k,j,i,IntA,UniA,NUniA,l,K,t,UA6,R2,XX1,XX2,XX3,idx1,idx2,idx3,t1,R4a,
R4a1,R4a2,R4a3,K1,R4b,R4b1,R4b2,R4b3,srels,sRels,diff15,diff17,diff19,diff21,
diff22,diff16,diff18,diff20,UAdiff1,UAdiff15,UAdiff16,UAdiff17,UAdiff18,UAdiff19,
sV,sA,UAdiff20,UAdiff21,UAdiff22,UA7,UA8,UA9,UA10,UA11,UA12,UA13,n;
##
###
##
The input of this function are:
A: the list of type(2) generators computed in "WhiteheadAutomorphismsOfSecondType",
T: list of the names of elements of A,
Lk: the list of links computed in "StarLinkDominateOfVertex".
Rels: the list of row matrices of indices of the relations (it is one
of the outputs of the "APCGRelationR3",
Note that in order to get just the row matrices of indices of relation (R4)
we need to pass an empty list [] rather than the list Rels above.
##
It computes the list of indices of the generators [0,idx1,idx2,-idx1,-idx3,-idx2]
of relators of types (R4a) and (R4b) of the group Aut(G_zeta) and adds them
to the list Rels. In addition it calculates the size of the list Rels.
```

\#\# It returns [Rels,sRels].
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# \#\#
sV:=Size(Lk); \#Since the size of links list equal to sV , the size of the vertex list sA:=Size (A);
\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# \#\#
\#\# In this section we compute the list of indices [0,idx1,idx2,-idx1,-idx3,-idx2]
\#\# of relators of type (R4a) by satisfying the conditions of this relations and
\#\# add them to the list Rels. Note that 0 is just flag to let us know that all
\#\# the generators here of power 1. idx1: represents the index of the generator $A(i)$.
\#\# idx2: represents the index of the generator $A(j)$. -idx1: means the inverse of $A(i)$.
\#\# -idx3: means the inverse of the generator $A(n)$. -idx2: means the inverse of $A(j)$.
\#\# For example if [0,idx1,idx2,-idx1,-idx3,-idx2]= [ [ 0, 1, 13, -1, $-9,-13]$,
\#\# then this means that $A 1 * A 13 * A 1^{\wedge}-1 * A 9^{\wedge}-1 * A 13^{\wedge}-1=1$.
\#\#
for k in [1..sV] do \# loop through the vertex list V
for $l$ in [1..sV] do \# loop through the vertex list V
for i in [1..sA]do \# loop through A the Type (2) Whitehead Automorphisms
for j in [1..sA] do \# loop through A the Type (2) Whitehead Automorphisms IntA:=Intersection( [ A[i][1] , A[j][1] ] ); if 1 in $A[i][1]$ and $n o t(-1$ in $A[i][1])$ and $A[i][2]=1$ and $k$ in $A[j][1]$ and not (-k in $A[j][1])$ and $A[j][2]=k$ and not ( $k$ in $A[i][1]$ ) and not (-k in A[i][1]) and not (l in A[j][1]) and -l in A[j][1] and IntA=[] then
diff15:=Difference(A[i] [1], [1]);
Add (diff15,k);
for $n$ in [1..sA]do
UA6:=SSortedList(A[n] [1]);
UAdiff15:=SSortedList(diff15);
if UA6=UAdiff15 and A[n] [2]=k then XX1:=Concatenation(["A",String(i)]);
\# XX1: represents a specific automorphism (B,b) of A XX2:=Concatenation(["A",String(j)]);
\# XX2: represents a specific automorphism (A,a) of A XX3:=Concatenation(["A",String(n)]);
\# XX3: represents a specific automorphism ( $B-b+a, a$ ) of $A$ idx1:=0;
idx2:=0;
idx3:=0;
for $t$ in [1..sA] do
\# Verify the indices of the given Whitehead
\# automorphisms $A(i), A(j)$ and $A(n)$ in $A$
if $\mathrm{XX} 1=\mathrm{T}[\mathrm{t}]$ then
idx1:=t;
fi; if $\mathrm{XX} 2=\mathrm{T}[\mathrm{t}]$ then
idx2:=t;
fi;
if $\mathrm{XX} 3=\mathrm{T}[\mathrm{n}]$ then
idx3:=n;
fi;

```
 od;
 Add(Rels,[0,idx1,idx2,-idx1,-idx3,-idx2]);
 fi;
 od;
fi;
if l in A[i][1] and not (-l in A[i][1]) and A[i][2]=l and -k in A[j][1]
 and not (k in A[j][1]) and A[j][2]=-k and not (-k in A[i][1]) and
 not (k in A[i][1]) and not (l in A[j][1]) and -l in A[j][1] and
 IntA=[] then
 diff19:=Difference(A[i][1],[l]);
 Add(diff19,-k);
 for n in [1..sA]do
 UA10:=SSortedList(A[n] [1]);
 UAdiff19:=SSortedList(diff19);
 if UA10=UAdiff19 and A[n][2]=-k then
 XX1:=Concatenation(["A",String(i)]);
 # XX1: represents a specific automorphism (B,b) of A
 XX2:=Concatenation(["A",String(j)]);
 # XX2: represents a specific automorphism (A,a) of A
 Xx3:=Concatenation(["A",String(n)]);
 # XX3: represents a specific automorphism (B-b+a,a) of A
 idx1:=0;
 idx2:=0;
 idx3:=0;
 for t in [1..sA] do
 # Verify the indices of the given Whitehead
 # automorphisms A(i), A(j) and A(n) in A
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 if XX3=T[n] then
 idx3:=n;
 fi;
 od;
 Add(Rels,[0,idx1,idx2,-idx1,-idx3,-idx2]);
 fi;
 od;
fi;
if -l in A[i][1] and not (l in A[i][1]) and A[i][2]=-l and -k in A[j][1]
 and not (k in A[j][1]) and A[j][2]=-k and not (-k in A[i][1])
 and not (k in A[i][1]) and not (-1 in A[j][1]) and l in A[j][1]
 and IntA=[] then
 diff16:=Difference(A[i][1],[-1]);
 Add(diff16,-k);
 for n in [1..sA]do
 UA7:=SSortedList(A[n] [1]);
 UAdiff16:=SSortedList(diff16);
 if UA7=UAdiff16 and A[n][2]=-k then
 XX1:=Concatenation(["A",String(i)]);
 # XX1: represents a specific automorphism (B,b) of A
```

```
 XX2:=Concatenation(["A",String(j)]);
 # XX2: represents a specific automorphism (A,a) of A
 XX3:=Concatenation(["A",String(n)]);
 # XX3: represents a specific automorphism (B-b+a,a) of A
 idx1:=0;
 idx2:=0;
 idx3:=0;
 for t in [1..sA] do
 # Verify the indices of the given Whitehead
 # automorphisms A(i), A(j) and A(n) in A
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 if XX3=T[n] then
 idx3:=n;
 fi;
 od;
 Add(Rels,[0,idx1,idx2,-idx1,-idx3,-idx2]);
 fi;
 od;
fi;
if -l in A[i][1] and not (l in A[i][1]) and A[i][2]=l and k in A[j][1]
 and not (-k in A[j][1]) and A[j][2]=k and not (k in A[i][1])
 and not (-k in A[i][1]) and not (-l in A[j][1]) and l in A[j][1]
 and IntA=[] then
 diff20:=Difference(A[i][1],[-l]);
 Add(diff20,k)
 for n in [1..sA]do
 UA11:=SSortedList(A[n][1]);
 UAdiff1:=SSortedList(diff20);
 if UA11=UAdiff2O and A[n][2]=k then
 XX1:=Concatenation(["A",String(i)]);
 # XX1: represents a specific automorphism (B,b) of A
 XX2:=Concatenation(["A",String(j)]);
 # XX2: represents a specific automorphism (A,a) of A
 XX3:=Concatenation(["A",String(n)]);
 # XX3: represents a specific automorphism (B-b+a,a) of A
 idx1:=0;
 idx2:=0;
 idx3:=0;
 for t in [1..sA] do
 # Verify the indices of the given Whitehead
 # automorphisms A(i), A(j) and A(n) in A
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
```

```
 if XX3=T[n] then
 idx3:=n;
 fi;
 od;
 Add(Rels,[0,idx1,idx2,-idx1,-idx3,-idx2]);
 fi;
 od;
 fi;
 od;
 od;
 od;
od;
##
###
##
###
##
In this section we compute the list of indices [0,idx1,idx2,-idx1,-idx3,-idx2]
of relators of type (R4b) by satisfying the conditions of this relations and
add them to the list Rels. Note that 0 is just flag to let us know that all
the generators here of power 1. idx1: represents the index of the generator A(i).
idx2: represents the index of the generator A(j). -idx1: means the inverse of A(i).
of the inverse of the generator A(i).-idx3: means the inverse of the generator A(n).
-idx2: means the inverse of A(j).
For example if [0,idx1,idx2,-idx1,-idx3,-idx2]= [0, 25, 21, -25, -13,-21]
then this means that A25*A21*A25^-1*A13^-1*A21^-1=1.
The procedure use in this Section is similar to the first Section except
IntA<>[] replaced by IntA<>[] and l in Lk[k]
##
for k in [1..sV] do
 for l in [1..sV] do
 for i in [1..sA]do
 for j in [1..sA] do
 IntA:=Intersection([A[i][1] , A[j][1]]);
 if l in A[i][1] and not (-l in A[i][1]) and A[i][2]=l and k in A[j][1]
 and not (-k in A[j][1]) and A[j][2]=k and not (k in A[i][1])
 and not (-k in A[i][1]) and not (l in A[j][1]) and -l in A[j][1]
 and IntA<>[] and l in Lk[k] then
 diff17:=Difference(A[i][1],[l]);
 Add(diff17,k);
 for n in [1..sA]do
 UA8:=SSortedList(A[n] [1]);
 UAdiff17:=SSortedList(diff17);
 if UA8=UAdiff17 and A[n][2]=k then
 XX1:=Concatenation(["A",String(i)]);
 XX2:=Concatenation(["A",String(j)]);
 XX3:=Concatenation(["A",String(n)]);
 idx1:=0;
 idx2:=0;
 idx3:=0;
 for t in [1..sA] do
 if XX1=T[t] then
 idx1:=t;
```

```
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 if XX3=T[n] then
 idx3:=n;
 fi;
 od;
 Add(Rels,[0,idx1,idx2,-idx1,-idx3,-idx2]);
 fi;
 od;
fi;
if l in A[i][1] and not (-l in A[i][1]) and A[i][2]=l and -k in A[j][1]
 and not (k in A[j][1]) and A[j][2]=-k and not (-k in A[i][1])
 and not (k in A[i][1]) and not (l in A[j][1]) and -l in A[j][1]
 and IntA<>[] and l in Lk[k] then
 diff21:=Difference(A[i][1],[1]);
 Add(diff21,-k);
 for n in [1..sA]do
 UA12:=SSortedList (A [n] [1]);
 UAdiff21:=SSortedList(diff21);
 if UA12=UAdiff21 and A[n][2]=-k then
 XX1:=Concatenation(["A",String(i)]);
 XX2:=Concatenation(["A",String(j)]);
 XX3:=Concatenation(["A",String(n)]);
 idx1:=0;
 idx2:=0;
 idx3:=0;
 for t in [1..sA] do
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 if XX3=T[n] then
 idx3:=n;
 fi;
 od;
 Add(Rels,[0,idx1,idx2,-idx1,-idx3,-idx2]);
 fi;
 od;
fi;
if -l in A[i][1] and not (l in A[i][1]) and A[i][2]=-l and -k in A[j][1]
 and not (k in A[j][1]) and A[j][2]=-k and not (-k in A[i][1])
 and not (k in A[i][1]) and not (-1 in A[j][1]) and l in A[j][1]
 and IntA<>[] and l in Lk[k] then
 diff18:=Difference(A[i][1],[-1]);
 Add(diff18,-k);
 for n in [1..sA]do
 UA9:=SSortedList(A[n] [1]);
 UAdiff18:=SSortedList(diff18);
 if UA9=UAdiff18 and A[n][2]=-k then
```

```
 XX1:=Concatenation(["A",String(i)]);
 XX2:=Concatenation(["A",String(j)]);
 XX3:=Concatenation(["A",String(n)]);
 idx1:=0;
 idx2:=0;
 idx3:=0;
 for t in [1..sA] do
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 if XX3=T[n] then
 idx3:=n;
 fi;
 od;
 Add(Rels,[0,idx1,idx2,-idx1,-idx3,-idx2]);
 fi;
 od;
 fi;
 if -l in A[i][1] and not (l in A[i][1]) and A[i][2]=-l and k in A[j][1]
 and not (-k in A[j][1]) and A[j][2]=k and not (k in A[i][1])
 and not (-k in A[i][1]) and not (-l in A[j][1]) and l in A[j][1]
 and IntA<>[] and l in Lk[k] then
 diff22:=Difference(A[i][1],[-l]);
 Add(diff22,k);
 for n in [1..sA]do
 UA13:=SSortedList(A[n][1]);
 UAdiff22:=SSortedList(diff22);
 if UA13=UAdiff22 and A[n][2]=k then
 XX1:=Concatenation(["A",String(i)]);
 XX2:=Concatenation(["A",String(j)]);
 XX3:=Concatenation(["A",String(n)]);
 idx1:=0;
 idx2:=0;
 idx3:=0;
 for t in [1..sA] do
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 if XX3=T[n] then
 idx3:= n;
 fi;
 od;
 Add(Rels,[0,idx1,idx2,-idx1,-idx3,-idx2]);
 fi;
 od;
 fi;
od;
```

```
 od;
 od;
od;
##
##
##
sRels:=Size(Rels);
return([Rels,sRels]);
end;
```


## 12. APCGRelationR5 Function

```
APCGRelationR5:=function(A,St,Lk,Rels,T)
local k,j,i,m,UA,UAiff,UAiff2,IntA,UniA,NUniA,l,K,t,UA1,XX1,XX2,XX3,idx1,idx2,
sV,sA,idx3,idx4,t1,R5,srels,sRels,diff,diff1,diff2,UAdiff,UAdiff1,UAdiff2,lk,Y2;
##
###
##
A: the list of type(2) generators computed in "WhiteheadAutomorphismsOfSecondType",
St: the list of stars computed in "StarLinkDominateOfVertex",
Lk: the list of links computed in "StarLinkDominateOfVertex",
Rels: the list of row matrices of indices of the relations (it is one
of the outputs of the "RelationsOfGraphAutomorphisms",
Note that in order to get just the row matrices of indices of relation (R3)
we need to pass an empty list [] rather than the list Rels above.
T: list of the names of elements of A.
##
It computes the list of indices of the generators [2,idx1,idx2,idx4,-idx3,j,k,j]
of relators of type (R5) by satisfying the conditions of this relations
and add them to the list Rels. Note that the first entry "2" in the
list of indices above means that the idx4 refers to the location of A's
(which are start at sA+1 and end at sA+sGens2) and this type of generators
are automorphisms of graph that, just swap the vertex "b" (j in this code)
to the vertex "a" (k in this code) and vice versa. idx1: represents the
index of the generator A(1). idx2: represents the index of the generator
A(i). -idx3: represents the the inverse of the generator A(m). j and k
refer to the vertex or its inverse. In addition it calculates the sizes
of the list Rels.
For example if [2,idx1,idx2,-idx3,idx4,j,k,j]= [[2, 25, 1, 31, -3, 3, 1,3],
then this means that A25*A1*A31*A3^-1=1.
##
It returns [Rels,sRels].
##
##
sV:=Size(St); #Since the size of stars list equal to sV, the size of the vertex list
sA:=Size(A);
lk:=[];
for i in [1..sV] do
 Y2:=Difference(Lk[i],[0]);
 Add(lk,Y2);
od;
```

```
for k in [1..sV] do
 for j in [1..sV] do
 for i in [1..sA]do
\# \#\#
\#\# In this section we compute first part of the list of indices of the
\#\# generators which is [2,idx1,idx2,idx4,-idx3,j,k,j] of the relators of
\#\# type (R5) when the multiplier "a" (k in this code) of the automorphism (A,a)
\#\# is the original vertex "a" (not the inverse of "a"), and the multiplier "b"
\#\# (\(j\) in this code) of the automorphism (\(A-a+a^{\wedge}-1, b\)) is the original vertex " \(b\) "
\#\# and \(k\) not equal to \(j\) with \(\mathrm{k}^{\sim} \mathrm{j}\), by satisfying the conditions of this relations.
\#\# 2: means that idx4 refers to the location of \(A\) 's.
\# idx1: represents the index "l" of a specific generator \(A(1)\) of \(A\).
idx2: represents the index "i" of a specific generator A(i) of A.
-idx3: represents the inverse of the specific generator \(A(m)\) of \(A\) which corresponds to the index idx3.
idx4: refers to the index of \(A\) 's which starts at \(s A+1\) and end at \(s A+s G e n s 2\)
For example if [2,idx1,idx2,idx4,-idx3,j,k,j]=[2, 25, 1, 31, \(-3,3,1,3]\)
\#\# then this means that \(A 25 * A 1 * A 31 * A 3^{\wedge}-1=1\).
\#\#
if \(k\) in \(A[i][1]\) and not (\(-k\) in \(A[i][1]\)) and \(j\) in \(A[i][1]\) and not (\(-j\) in A[i][1]) and \(j<>k\) and \(A[i][2]=k\) and IsSubset (St[k],lk[j])=true and IsSubset (St [j],lk[k])=true then diff1:=Difference(A[i][1], [k]); Add (diff1, -k) ; diff2:=Difference(A[i][1], [j]); Add (diff2,-j) ;
for 1 in [1..sA]do
UA:=SSortedList (A [1] [1]) ;
UAiff:=SSortedList(diff1);
for \(m\) in [1..sA]do
UA1:=SSortedList (A [m] [1]) ;
UAiff2:=SSortedList(diff2);
if \(U A=U A i f f\) and \(A[1][2]=j\) and \(U A 1=U A i f f 2\) and \(A[m][2]=k\) then idx4: =sA \(+j\); XX1:=Concatenation(["A",String(1)]);
\# XX1: represents a specific automorphism (A-a+a^-1,b) of A XX2:=Concatenation(["A",String(i)]);
\# XX2: represents a specific automorphism (A,a) of \(A\)
XX3:=Concatenation(["A",String(m)]);
\# XX3: represents a specific automorphism (\(\left.A-b+b^{\wedge}-1, a\right)\) of \(A\) idx1:=0;
idx2:=0;
idx3:=0;
for \(t\) in [1..sA] do
\# Verify the indices of the given Whitehead
\# automorphisms \(\mathrm{A}(\mathrm{l}), \mathrm{A}(\mathrm{i})\) and \(\mathrm{A}(\mathrm{m})\) in A
if \(\mathrm{XX} 1=\mathrm{T}[\mathrm{t}]\) then
 idx1:=t;
fi;
if \(\mathrm{XX} 2=\mathrm{T}[\mathrm{t}]\) then
idx2:=t;
fi;
```

```
 if XX3=T[t] then
 idx3:=t;
 fi;
 od;
 Add(Rels,[2,idx1,idx2,idx4,-idx3,j,k,j]);
 # 2: means that the idx4 refers to the location of A's
 # which starts at sA+1 and end at sA+sGens2,
 # j: refers to the vertex or its inverse
 fi;
 od;
 od;
fi;
##
##
##
##
##
In this section we compute second part of the list of indices of the
generators which is [2,idx1,idx2,idx4,-idx3,j,k,j] of the relators of
type (R5) when the multiplier "a" (k in this code) of the automorphism (A,a)
is the original vertex "a", and the multiplier "b" (j in this code) of the
automorphism (A-a+a^-1,b) is the inverse of the vertex "b" (-j in this code)
and k not equal to -j with k~ -j, by satisfying the conditions of this
relations.
The procedure use in this Section is similar to the first Section above.
##
if k in A[i][1] and not (-k in A[i][1]) and -j in A[i][1] and not (j in A[i][1])
 and -j<>k and A[i][2]=k and IsSubset(St[k],lk[j])=true and
 IsSubset(St[j],lk[k])=true then
 diff1:=Difference(A[i][1],[k]);
 Add(diff1,-k);
 diff2:=Difference(A[i][1],[-j]);
 Add(diff2,j);
 for l in [1..sA]do
 UA:=SSortedList(A[1] [1]);
 UAiff:=SSortedList(diff1);
 for m in [1..sA]do
 UA1:=SSortedList(A[m] [1]);
 UAiff2:=SSortedList(diff2);
 if UA=UAiff and A[l][2]=-j and UA1=UAiff2 and A[m][2]=k then
 idx4:=sA+j;
 XX1:=Concatenation(["A",String(1)]);
 XX2:=Concatenation(["A",String(i)]);
 XX3:=Concatenation(["A",String(m)])
 idx1:=0;
 idx2:=0;
 idx3:=0;
 for t in [1..sA] do
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
```

```
 fi;
 if XX3=T[t] then
 idx3:=t;
 fi;
 od;
 Add(Rels,[2,idx1,idx2,idx4,-idx3, -j, k, -j]);
 fi;
 od;
 od;
fi;
##
###
##
###
##
In this section we compute third part of the list of indices of the
generators which is [2,idx1,idx2,idx4,-idx3,j,k,j] of the relators of
type (R5) when the multiplier "a" (k in this code) of the automorphism (A,a)
is the inverse of the vertex "a" (-k in this code), and the multiplier "b"
(j in this code) of the automorphism (}\textrm{A}-\textrm{a}+\mp@subsup{\textrm{a}}{}{\wedge}-1,\textrm{b}) is the original vertex "b
and -k not equal to j with -k ~ j, by satisfying the conditions of this
relations.
The procedure use in this Section is similar to the first Section above.
##
if -k in A[i][1] and not (k in A[i][1]) and j in A[i][1] and not (-j in A[i][1])
 and j<>-k and A[i][2]=-k and IsSubset(St[k],1k[j])=true and
 IsSubset(St[j],lk[k])=true then
 diff1:=Difference(A[i][1],[-k]);
 Add(diff1,k);
 diff2:=Difference(A[i][1],[j]);
 Add(diff2,-j);
 for l in [1..sA]do
 UA:=SSortedList(A[1][1]);
 UAiff:=SSortedList(diff1);
 for m in [1..sA]do
 UA1:=SSortedList(A [m] [1]);
 UAiff2:=SSortedList(diff2);
 if UA=UAiff and A[1][2]=j and UA1=UAiff2 and A[m][2]=-k then
 idx4:=sA+j;
 XX1:=Concatenation(["A",String(1)]);
 XX2:=Concatenation(["A",String(i)]);
 XX3:=Concatenation(["A",String(m)]);
 idx1:=0;
 idx2:=0;
 idx3:=0;
 for t in [1..sA] do
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 if XX3=T[t] then
```

```
 idx3:=t;
 fi;
 od;
 Add(Rels,[2,idx1,idx2,idx4,-idx3,j,-k,j]);
 fi;
 od;
 od;
fi;
##
##
##
##
##
In this section we compute third part of the list of indices of the
generators which is [2,idx1,idx2,idx4,-idx3,j,k,j] of the relators of
type (R5) when the multiplier "a" (k in this code) of the automorphism
(A,a) is the inverse of the vertex "a" (-k in this code), and the
multiplier "b" (j in this code) of the automorphism (A-a+a^-1,b) is
the inverse of the vertex "b" (-j in this code) and -k not equal to
-j with -k ~ -j, by satisfying the conditions of this relations.
The procedure use in this Section is similar to the first Section above.
##
if -k in A[i][1] and not (k in A[i][1]) and -j in A[i][1] and not (j in A[i][1])
 and -j<>-k and A[i][2]=-k and IsSubset(St[k],lk[j])=true and
 IsSubset(St[j],lk[k])=true then
 diff1:=Difference(A[i][1],[-k]);
 Add(diff1,k);
 diff2:=Difference(A[i][1],[-j]);
 Add(diff2,j);
 for l in [1..sA]do
 UA:=SSortedList(A[1] [1]);
 UAiff:=SSortedList(diff1);
 for m in [1..sA]do
 UA1:=SSortedList (A [m] [1]);
 UAiff2:=SSortedList(diff2);
 if UA=UAiff and A[1][2]=-j and UA1=UAiff2 and A[m][2]=-k then
 idx4:=sA+j;
 XX1:=Concatenation(["A",String(1)]);
 XX2:=Concatenation(["A",String(i)]);
 XX3:=Concatenation(["A",String(m)]);
 idx1:=0;
 idx2:=0;
 idx3:=0;
 for t in [1..sA] do
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 if XX3=T[t] then
 idx3:=t;
 fi;
```

```
 od;
 Add(Rels,[2,idx1,idx2,idx4,-idx3,-j,-k,-j]);
 fi;
 od;
 od;
 fi;
 ##
 ##
 ##
 od;
 od;
od;
sRels:=Size(Rels);
return([Rels,sRels]);
end;
```


## 13. APCGRelationR8 Function

```
APCGRelationR8:=function(V,A,T,Lk,Rels)
local k,j,i,IntA,UniA,NUniA,l,K,t,UA1,UA2,UA3,UA4,UA5,UA6,R2, XX1,XX2,XX3,idx1,
idx2,idx3,t1,R8,NR8,ty,invLk1,srels,sRels,diff1,diff2,diff3,diff4,diff5,diff6,
diff7,diff8,diff9,diff10,UAdiff1,UAdiff2,UAdiff3,UAdiff4,UAdiff5,UAdiff6,UAdiff7,
sV,sA,UAdiff8,UAdiff9,UAdiff10,UA7,UA8,UA13,n,invV,L,invLk,UniLk;
##
##
##
The input of this function are:
V: the list of vertices of the graph zeta,
A: the list of type(2) generators computed in "WhiteheadAutomorphismsOfSecondType",
T: list of the names of elements of A,
Lk: the list of links computed in "StarLinkDominateOfVertex".
Rels: the list of row matrices of indices of the relations (it is one
of the outputs of the "APCGRelationR4",
Note that in order to get just the row matrices of indices of relation (R8)
we need to pass an empty list [] rather than the list Rels above.
##
It computes the list of indices of the generators [0,idx1,-idx3,-idx2],
[0,idx1,-idx2], and [0,idx1] of relators of type (R8) of the group
Aut(G_zeta) by satisfying the conditions of this relations and add them
to the list Rels. In addition it calculates the size of the list Rels.
It returns [Rels,sRels].
###
##
sV:=Size(V);
sA:=Size(A);
invV:=-V; # invV is the inverses list of the vertex list V
L:=Concatenation(V,invV); # L is the union of the lists V and invV
for k in [1..sV] do # loop through the vertex list V
 ##
```

```
###
##
In this part we compute the list of indices When Lk(k) is not empty list.
##
if Lk[k]<>[0] then
 for i in [1..sA]do # loop throu A the Type (2) Whitehead Automorphisms
 if k in A[i][1] and not (-k in A[i][1]) and A[i][2]=k then
 diff3:=Difference(L,[-k]);
 invLk:=-Lk[k];
 UniLk:=Concatenation(Lk[k],invLk);
 diff5:=Difference(L,A[i][1]);
 diff4:=[];
 diff6:=[];
 for l in Lk[k] do # In this loop if the vertex l and its inverse -l in the
 # same time are belong to the list diff3 then we delete
 # them, because they will cancel each other.
 # We do the same if l and -l belong to the list diff5
 if l in diff3 and -l in diff3 then
 diff4:=Difference(diff3,[-1,l]);
 diff3:=diff4;
 fi;
 if l in diff5 and -l in diff5 then
 diff6:=Difference(diff5,[-l,l]);
 diff5:=diff6;
 fi;
 od;
 UAdiff4:=SSortedList(diff4);
 UAdiff5:=SSortedList(diff5);
 UAdiff6:=SSortedList(diff6);
 K:=[k] ;
 ty:=0;
 for j in [1..sA]do # loop through A, the Type (2) Whitehead Automorphisms
 for n in [1..sA]do # loop through A, the Type (2) Whitehead Automorphisms
 UA2:=SSortedList(A[j] [1]);
 UA3:=SSortedList(A [n] [1]);
 ###
 ##
 ## In this section we compute first part of the list of indices of the
 ## generators which is [0,idx1,-idx3,-idx2] of the relators of type
 ## (R8) by satisfying the conditions of this relations. Note that 0
 ## is just flag to let us know that all the generators here of power 1.
 ## idx1: represents the index of a specific generator A(i) of A.
 ## -idx3: represents the index of the inverse of a specific generator
 ## A(n) of A.
 ## -idx2: represents the index of the inverse of a specific generator
 ## A(j) of A.
 ## For example if [0,idx1,-idx3,-idx2]= [0, 1, -4, -5], then this
 ## means that A1*A4^-1*A5^-1=1.
 ##
 if UAdiff4=UA2 and A[j][2]=k and UAdiff6=UA3 and A[n] [2]=-k then
 XX1:=Concatenation(["A",String(i)]);
 # XX1: represents a specific automorphism (A,a) of A
```

```
 XX2:=Concatenation(["A",String(j)]);
 # XX2: represents a specific automorphism (L-A, a^-1) of A
 XX3:=Concatenation(["A",String(n)]);
 # XX3: represents a specific automorphism (L-a^-1, a) of A
 idx1:=0;
 idx2:=0;
 idx3:=0;
 for t in [1..sA] do # Verify the indices of the given Whitehead
 # automorphisms A(i), A(j) and A(n) in A
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 if XX3=T[n] then
 idx3:=n;
 fi;
 od;
 NR8:=[0,idx1,-idx3,-idx2];
 ty:=1;
fi;
##
###
##
###
##
In this section we compute second part of the list of indices of
the generators which is [0,idx1,-idx2] of the relators of type
(R8) by satisfying the conditions of this relations. Note that 0
is just flag to let us know that all the generators here of
power 1.
idx1: represents the index of a specific generator A(i) of A.
-idx2: represents the index of the inverse of a specific
generator A(n) of A.
For example if [0,idx1,-idx2]= [0, 7, -14], then this means
that A7*A14^-1=1.
Note that we have this case, because some time L-A-[l,-l]= [k]
which is just the identity or L-a^-1-[l,-l]= [k] which is just
the identity.
##
if UAdiff4=K and A[j][2]=k and UAdiff6=UA3 and A[n][2]=-k then
 XX1:=Concatenation(["A",String(i)]);
 # XX1: represents a specific automorphism (A,a) of A
 XX2:=Concatenation(["A",String(n)]);
 # XX2: represents a specific automorphism (L-a^-1, a) of A
 idx1:=0;
 idx2:=0;
 for t in [1..sA] do
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[n] then
```

```
 idx2:=n;
 fi;
 od;
 NR8:=[0,idx1,-idx2];
 ty:=1;
fi;
if UAdiff4=K and A[j][2]=k and UAdiff6=[] and UAdiff5= UA3
 and A[n][2]=-k then
 XX1:=Concatenation(["A",String(i)]);
 XX2:=Concatenation(["A",String(n)]);
 idx1:=0;
 idx2:=0;
 for t in [1..sA] do
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[n] then
 idx2:=n;
 fi;
 od;
 NR8:=[0,idx1,-idx2];
 ty:=1;
fi;
if UAdiff4=UA2 and A[j][2]=k and UAdiff6=-K and A[n][2]=-k then
 XX1:=Concatenation(["A",String(i)]);
 XX2:=Concatenation(["A",String(j)]);
 idx1:=0;
 idx2:=0;
 for t in [1..sA] do
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 od;
 NR8:=[0,idx1,-idx2];
 ty:=1;
fi;
##
###
##
###
##
In this section we compute third part of the list of indices of
the generators which is [0,idx1] of the relators of type (R8)
by satisfying the conditions of this relations. Note that O is
just flag to let us know that all the generators here of power 1.
idx1: represents the index of a specific generator A(i) of A.
Note that we have this case, because some time
L-A-[l,-l]= L-a^-1-[l,-l]= [k] which is just the identity.
##
if UAdiff4=K and A[j][2]=k and UAdiff6=-K and A[n][2]=-k then
```

```
 XX1:=Concatenation(["A",String(i)]);
 # XX1: represents a specific Whitehead automorphism (A,a) of A
 idx1:=0;
 for t in [1..sA] do
 if XX1=T[t] then
 idx1:=t;
 fi;
 od;
 NR8:=[0,idx1];
 ty:=1;
 fi;
 ##
 ###
 ##
 od;
 od;
fi;
if -k in A[i][1] and not (k in A[i][1]) and A[i][2]=-k then
 diff7:=Difference(L,[k]);
 invLk1:=-Lk[k];
 UniLk:=Concatenation(Lk[k],invLk1);
 diff9:=Difference(L,A[i][1]);
 diff8:=[];
 diff10:=[];
 for l in Lk[k] do
 if l in diff7 and -l in diff7 then
 diff8:=Difference(diff7,[-l,l]);
 diff7:=diff8;
 fi;
 if l in diff9 and -l in diff9 then
 diff10:=Difference(diff9,[-l,l]);
 diff9:=diff10;
 fi;
 od;
 K:=[-k];
 for j in [1..sA]do
 for n in [1..sA]do
 UA4:=SSortedList(A[j][1]);
 UAdiff8:=SSortedList(diff8);
 UA5:=SSortedList(A[n][1]);
 UAdiff9:=SSortedList(diff9);
 UAdiff10:=SSortedList(diff10);
 ##
 ##
 ## This section is the same first section above, just we have
 ## replace the multiplier "a" (k) by it inverse "a^-1" (-k).
 ##
 if UAdiff8=UA4 and UAdiff10=UA5 then
 XX1:=Concatenation(["A",String(i)]);
 XX2:=Concatenation(["A",String(j)]);
 XX3:=Concatenation(["A",String(n)]);
 idx1:=0;
 idx2:=0;
```

```
 idx3:=0;
 for t in [1..sA] do
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 if XX3=T[n] then
 idx3:=n;
 fi;
 od;
 NR8:=[0,idx1,-idx3,-idx2];
 ty:=1;
fi;
##
##
##
##
##
This section is the same second section above, just we have
replace the multiplier "a" (k in this code) by it inverse
"a^-1" (-k in this code).
##
if UAdiff8=K and A[j][2]=-k and UAdiff10=UA5 and A[n][2]=k then
 XX1:=Concatenation(["A",String(i)]);
 XX2:=Concatenation(["A",String(n)]);
 idx1:=0;
 idx2:=0;
 for t in [1..sA] do
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[n] then
 idx2:=n;
 fi;
 od;
 NR8:=[0,idx1,-idx2];
 ty:=1;
fi;
if UAdiff8=K and A[j][2]=-k and UAdiff10=[] and UAdiff9=UA5
 and A[n][2]=k then
 XX1:=Concatenation(["A",String(i)]);
 XX2:=Concatenation(["A",String(n)]);
 idx1:=0;
 idx2:=0;
 for t in [1..sA] do
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[n] then
 idx2:=n;
 fi;
```

```
 od;
 NR8:=[0,idx1,-idx2];
 ty:=1;
 fi;
 if UAdiff8=UA4 and A[j][2]=-k and UAdiff10=-K and A[n][2]=k then
 XX1:=Concatenation(["A",String(i)]);
 XX2:=Concatenation(["A",String(j)]);
 idx1:=0;
 idx2:=0;
 for t in [1..sA] do
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 od;
 NR8:=[0,idx1,-idx2];
 ty:=1;
 fi;
 ##
 ###
 ##
 ###
 ##
 ## This section is the same third section above, just we have
 ## replace the multiplier "a" (k) by it inverse "a^-1" (-k).
 ##
 if UAdiff8=K and A[j][2]=-k and UAdiff10=-K and A[n][2]=k then
 XX1:=Concatenation(["A",String(i)]);
 idx1:=0;
 idx2:=0;
 for t in [1..sA] do
 if XX1=T[t] then
 idx1:=t;
 fi;
 od;
 NR8:=[0,idx1];
 ty:=1;
 fi;
 od;
 od;
 fi;
 if ty=1 then
 Add(Rels,NR8);
 NR8:= [];
 R8:=[];
 ty:=0;
 fi;
 od;
fi;
##
```


## \#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

 \#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# \#\#
\#\# In this part we compute the list of indices When Lk(k) is empty list which
\#\# is the same first part when $\mathrm{Lk}(\mathrm{k})$ is not empty list with some small changes
\#\#
if $\mathrm{Lk}[\mathrm{k}]=[0]$ then
for i in [1..sA]do
if $k$ in $A[i][1]$ and not ( $-k$ in $A[i][1]$ ) and $A[i][2]=k$ then diff3:=Difference (L, [-k]); diff5:=Difference(L,A[i][1]) UAdiff4:=SSortedList(diff3); UAdiff6:=SSortedList (diff5) ; $\mathrm{K}:=[\mathrm{k}]$; ty:=0; for $j$ in [1..sA]do
for $n$ in [1..sA]do
UA2: =SSortedList (A [j] [1]) ;
UA3: =SSortedList (A [n] [1]) ;
if UAdiff $4=U A 2$ and $A[j][2]=k$ and UAdiff6=UA3 and $A[n][2]=-k$ then

XX1:=Concatenation(["A",String(i)]);
XX2:=Concatenation(["A",String(j)]);
XX3:=Concatenation(["A", String(n)])
idx1:=0;
idx2:=0;
idx3:=0;
for $t$ in [1..sA] do
if $\mathrm{XX} 1=\mathrm{T}[\mathrm{t}]$ then
idx1:=t;
fi;
if $\mathrm{XX2}=\mathrm{T}[\mathrm{t}]$ then
idx2:=t;
fi;
if $\mathrm{XX} 3=\mathrm{T}[\mathrm{n}]$ then
idx3:=n;
fi;
od;
NR8: $=[0, i d x 1,-i d x 3,-i d x 2]$;
ty:=1;
fi;
if UAdiff $4=K$ and $A[j][2]=k$ and UAdiff6=UA3 and $A[n][2]=-k$ then XX1:=Concatenation(["A",String(i)]);
XX2:=Concatenation(["A",String(n)]);
idx1:=0;
idx2:=0;
for $t$ in [1..sA] do
if $\mathrm{XX} 1=\mathrm{T}[\mathrm{t}]$ then
idx1:=t;
fi; if $\mathrm{XX} 2=\mathrm{T}[\mathrm{n}]$ then
idx2:=n;

```
 fi;
 od;
 NR8:=[0,idx1,-idx2];
 ty:=1;
 fi;
 if UAdiff4=UA2 and A[j][2]=k and UAdiff6=-K and A[n][2]=-k then
 XX1:=Concatenation(["A",String(i)]);
 XX2:=Concatenation(["A",String(j)]);
 idx1:=0;
 idx2:=0;
 for t in [1..sA] do
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 od;
 NR8:=[0,idx1,--idx2];
 ty:=1;
 fi;
 if UAdiff4=K and A[j][2]=k and UAdiff6=-K and A[n][2]=-k then
 XX1:=Concatenation(["A",String(i)]);
 idx1:=0;
 idx2:=0;
 for t in [1..sA] do
 if XX1=T[t] then
 idx1:=t;
 fi;
 od;
 NR8:=[0,idx1];
 ty:=1;
 fi;
 od;
 od;
fi;
if -k in A[i][1] and not (k in A[i][1]) and A[i][2]=-k then
 diff7:=Difference(L, [k]);
 diff9:=Difference(L,A[i][1]);
 K:=[-k];
 for j in [1..sA]do
 for n in [1..sA]do
 UA4:=SSortedList(A[j][1]);
 UAdiff8:=SSortedList(diff7);
 UA5:=SSortedList(A[n][1]);
 UAdiff10:=SSortedList(diff9);
 if UAdiff8=UA4 and UAdiff10=UA5 and A[j][2]=-k
 and A[n][2]=k then
 XX1:=Concatenation(["A",String(i)]);
 XX2:=Concatenation(["A",String(j)]);
 Xx3:=Concatenation(["A",String(n)]);
 idx1:=0;
 idx2:=0;
```

```
 idx3:=0;
 for t in [1..sA] do
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 if XX3=T[n] then
 idx3:=n;
 fi;
 od;
 NR8:=[0,idx1,-idx3,-idx2];
 ty:=1;
fi;
if UAdiff8=K and A[j][2]=-k and UAdiff10=UA5 and A[n][2]=k then
 XX1:=Concatenation(["A",String(i)]);
 XX2:=Concatenation(["A",String(n)]);
 idx1:=0;
 idx2:=0;
 for t in [1..sA] do
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[n] then
 idx2:=n;
 fi;
 od;
 NR8:=[0,idx1,-idx2];
 ty:=1;
fi;
if UAdiff8=UA4 and A[j][2]=-k and UAdiff10=-K and A[n][2]=k then
 XX1:=Concatenation(["A",String(i)]);
 XX2:=Concatenation(["A",String(j)]);
 idx1:=0;
 idx2:=0;
 for t in [1..sA] do
 if }\textrm{XX1}=\textrm{T}[\textrm{t}] the
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 od;
 NR8:=[0,idx1,-idx2];
 ty:=1;
fi;
if UAdiff8=K and A[j][2]=-k and UAdiff10=-K and A[n][2]=k then
 XX1:=Concatenation(["A",String(i)]);
 idx1:=0;
 idx2:=0;
 for t in [1..sA] do
 if XX1=T[t] then
```

```
 idx1:=t;
 fi;
 od;
 NR8:=[0,idx1];
 ty:=1;
 fi;
 od;
 od;
 fi;
 if ty=1 then
 Add(Rels,NR8);
 R8:= [];
 NR8:=[];
 ty:=0;
 fi;
 od;
 fi;
 ##
 ###
 ##
od;
sRels:=Size(Rels);
return([Rels,sRels]);
end;
```


## 14. APCGRelationR9 Function

```
APCGRelationR9:=function(V,A,T,Lk,Rels)
local k,j,i,zx,IntA,UniA,NUniA,l,K,t,UA13,UA14,UA16,UA23,UA24,UA25,UA26,
R2,XX1,XX2,XX3,idx1,idx2,idx3,t1,R9,R9a,R9b,R9c,invLk1,srels,sRels,diff13,
diff14,diff15,diff16,diff23,diff24,diff25,diff26,UAdiff16,UAdiff24,UAdiff23,
sV,sA,UAdiff25,UAdiff13,UAdiff14,UAdiff26,n,invV,L,invLk2,invLk3,UniLk;
##
##
##
The input of this function are:
V: the list of vertices of the graph zeta,
A: the list of type(2) generators computed in "WhiteheadAutomorphismsOfSecondType",
T: list of the names of elements of A,
Lk: the list of links computed in "StarLinkDominateOfVertex".
Rels: the list of row matrices of indices of the relations (it is one
of the outputs of the "APCGRelationR4",
Note that in order to get just the row matrices of indices of relation (R9)
we need to pass an empty list [] rather than the list Rels above.
##
It computes the list of indices of the generators [0,idx1,idx2,-idx1,-idx2]
of relators of type (R9) of the group Aut(G_zeta) by satisfying the conditions
of this relations and add them to the list Rels. In addition it calculates
the size of the list Rels.
It returns [Rels,sRels].
###
```

```
##
sV:=Size(V);
sA:=Size(A);
invV:=-V; # invV is the inverses list of the vertex list V
L:=Concatenation(V,invV); # L is the union of the lists V and invV
for k in [1..sV] do # loop through the vertex list V
 for j in [1..sV] do # loop through the vertex list V
 ##
 ###
 ##
 ## In this part we compute the list of indices When Lk(k) is not empty list.
 ##
 if Lk[j]<>[0] then
 for i in [1..sA]do # loop through A the Type (2) Whitehead Automorphisms
 ##
 ##
 ## In this section we compute first part of the list of indices of the
 ## generators which is [0,idx1,idx2,-idx1,-idx2] of the relators of type
 ## (R9) when the multiplier "a" (k in this code) of the automorphism
 ## (A,a) is the original vertex "a" (not the inverse of the vertex "a")
 ## and zx=L(j) as defined below by satisfying the conditions of this
 ## relations.
 ## 0: is flag to let us know that all the generators here of power 1.
 ## idx1: represents the index "i" of a specific generator A(i) of A.
 ## idx2: represents the index " }\textrm{n}\mathrm{ " of a specific generator A(n) of A.
 ## -idx1: represents the inverse of the specific generator A(i) of
 ## A which corresponds to the index idx1.
 ## -idx2: represents the inverse of the specific generator A(n) of
 ## A which corresponds to the index idx2.
 ## For example if [0,idx1,idx2,-idx1,-idx2]= [0, 9, 5, -9, -5] then
 ## this means that A9*A5*A9^-1*A5^-1=1.
 ##
 zx:=L[j]; # Here zx represents the vertices "b" (R9) of the graph zeta
 if k in A[i][1] and not (-k in A[i][1]) and A[i][2]=k and not
 (zx in A[i][1]) and not (-zx in A[i][1]) then
 diff15:=Difference(L, [-zx]);
 invLk2:=-Lk[j];
 UniLk:=Concatenation(Lk[j],invLk2);
 diff16:=[];
 for l in Lk[j] do
 # In this loop if the vertex l and its inverse -l in the
 # same time are belong to the list diff15 then we delete
 # them, because they will cancel each other
 if l in diff15 and -l in diff15 then
 diff16:=Difference(diff15,[-l,l]);
 diff15:=diff16;
 fi;
 od;
 for n in [1..sA]do # loop through A the Type (2) Whitehead Automorphisms
 UA16:=SSortedList(A[n][1]);
 UAdiff16:=SSortedList(diff16);
 if A[n][2]=zx then
 if UA16=UAdiff16 and diff16<>[zx] then
```

```
 XX1:=Concatenation(["A",String(i)]);
 # XX1: represents a specific automorphism (A,a) of A
 XX2:=Concatenation(["A",String(n)]);
 # XX2: represents a specific automorphism (L-b^-1, b) of A
 idx1:=0;
 idx2:=0;
 for t in [1..sA] do
 # Verify the indices of the given Whitehead
 # automorphisms A(i) and A(n) in A
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 od;
 Add(Rels,[0,idx1,idx2,-idx1,-idx2]);
 fi;
 fi;
 od;
fi;
##
###
##
##
##
In this section we compute second part of the list of indices of the
generators which is [0,idx1,idx2,-idx1,-idx2] of the relators of type
(R9) when the multiplier "a" (k in this code) of the automorphism
(A,a) is the original vertex "a" (not the inverse of the vertex "a")
and zx= -L(j) as
defined below by satisfying the conditions of this relations.
The procedure use in this Section is similar to the first Section
above.
##
zx:=-L[j]; # Here zx represents the inverses of the vertices b above
if k in A[i][1] and not (-k in A[i][1]) and A[i][2]=k and not
 (zx in A[i][1]) and not (-zx in A[i][1]) then
 diff23:=Difference(L,[-zx]);
 invLk2:=-Lk[j];
 UniLk:=Concatenation(Lk[j],invLk2);
 diff24:=[];
 for l in Lk[j] do
 if l in diff23 and -l in diff23 then
 diff24:=Difference(diff23,[-1,l]);
 diff23:=diff24;
 fi;
 od;
 for n in [1..sA]do
 UA24:=SSortedList(A [n] [1]);
 UAdiff24:=SSortedList(diff24);
 if A[n][2]=zx then
 if UA24=UAdiff24 and diff24<>[zx] then
```

```
 XX1:=Concatenation(["A",String(i)]);
 # XX1: represents a specific automorphism (A,a) of A
 XX2:=Concatenation(["A",String(n)]);
 # XX2: represents a specific automorphism (L-b^-1, b) of A
 idx1:=0;
 idx2:=0;
 for t in [1..sA] do
 # Verify the indices of the given Whitehead
 # automorphisms A(i) and A(n) in A
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 od;
 Add(Rels,[0,idx1,idx2,-idx1,-idx2]);
 fi;
 fi;
 od;
fi;
##
###
##
##
##
In this section we compute third part of the list of indices of the
generators which is [0,idx1,idx2,-idx1,-idx2] of the relators of type
(R9) when the multiplier "a" (k in this code) of the automorphism
(A,a) is the inverse of the vertex "a" and zx= L(j) as defined below
by satisfying the conditions of this relations.
The procedure use in this Section is similar to the first Section above.
##
zx:=L[j]; # Here zx represents the vertices "b" (R9) of the graph zeta
if -k in A[i][1] and not (k in A[i][1]) and A[i][2]=-k and not
 (zx in A[i][1]) and not (-zx in A[i][1]) then
 diff13:=Difference(L,[-zx]);
 invLk3:=-Lk[j];
 UniLk:=Concatenation(Lk[j],invLk3);
 diff14:=[];
 for l in Lk[j] do
 if l in diff13 and -l in diff13 then
 diff14:=Difference(diff13,[-1,l]);
 diff13:=diff14;
 fi;
 od;
 for n in [1..sA]do
 if A[n] [2]=zx then
 UA14:=SSortedList(A[n] [1]);
 UAdiff14:=SSortedList(diff14);
 if UA14=UAdiff14 and diff14<>[zx] then
 XX1:=Concatenation(["A",String(i)]);
 XX2:=Concatenation(["A",String(n)]);
```

```
 idx1:=0;
 idx2:=0;
 for t in [1..sA] do
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
od;
Add(Rels,[0,idx1,idx2,-idx1,-idx2]);
 fi;
 fi;
 od;
fi;
##
##
#
##
##
In this section we compute third part of the list of indices of the
generators which is [0,idx1,idx2,-idx1,-idx2] of the relators of type
(R9) when the multiplier "a" (k in this code) of the automorphism
(A,a) is the inverse of the vertex "a" and zx= -L(j) as defined
below by satisfying the conditions of this relations.
The procedure use in this Section is similar to the first Section above.
##
zx:=-L[j]; # Here zx represents the inverses of the vertices b above
if -k in A[i][1] and not (k in A[i][1]) and A[i][2]=-k and not
 (zx in A[i][1]) and not (-zx in A[i][1]) then
 diff25:=Difference(L,[-zx]);
 invLk3:=-Lk[j];
 UniLk:=Concatenation(Lk[j],invLk3);
 diff26:=[];
 for l in Lk[j] do
 if l in diff25 and -l in diff25 then
 diff26:=Difference(diff25,[-1,1]);
 diff25:=diff26;
 fi;
 od;
 for n in [1..sA]do
 if A[n][2]=zx then
 UA26:=SSortedList(A[n] [1]);
 UAdiff26:=SSortedList(diff26);
 if UA26=UAdiff26 and diff26<>[zx] then
 XX1:=Concatenation(["A",String(i)]);
 XX2:=Concatenation(["A",String(n)]);
 idx1:=0;
 idx2:=0;
 for t in [1..sA] do
 if XX1=T[t] then
 idx1:=t;
```

```
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 od;
 Add(Rels,[0,idx1,idx2,-idx1,-idx2]);
 fi;
 fi;
 od;
 fi;
 od;
fi;
##
###
##
End the first part when Lk(j) is not empty list
##
###
##
###
##
In this part we compute the list of indices When Lk(j) is empty list
which isthe same procedure of first part when Lk(j) is not empty list
with some changes.
##
if Lk[j]=[0] then
 for i in [1..sA]do
 zx:=L[j];
 if k in A[i][1] and not (-k in A[i][1]) and A[i][2]=k and not
 (zx in A[i][1]) and not (-zx in A[i][1]) then
 diff16:=Difference(L,[-zx]);
 for n in [1..sA]do
 UA16:=SSortedList(A[n][1]);
 UAdiff16:=SSortedList(diff16);
 if A[n][2]=zx then
 if UA16=UAdiff16 and diff16<>[zx] then
 XX1:=Concatenation(["A",String(i)]);
 XX2:=Concatenation(["A",String(n)]);
 idx1:=0;
 idx2:=0;
 for t in [1..sA] do
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 od;
 Add(Rels,[0,idx1,idx2,-idx1,-idx2]);
 fi;
 fi;
 od;
 fi;
```

```
zx:=-L[j];
if k in A[i][1] and not (-k in A[i][1]) and A[i][2]=k and not
 (zx in A[i][1]) and not (-zx in A[i][1]) then
 diff24:=Difference(L, [-zx]);
 for n in [1..sA]do
 UA24:=SSortedList(A[n] [1]);
 UAdiff24:=SSortedList(diff24);
 if A[n][2]=zx then
 if UA24=UAdiff24 and diff24<>[zx] then
 XX1:=Concatenation(["A",String(i)]);
 XX2:=Concatenation(["A",String(n)]);
 idx1:=0;
 idx2:=0;
 for t in [1..sA] do
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 od;
 Add(Rels,[0,idx1,idx2,-idx1,-idx2]);
 fi;
 fi;
 od;
fi;
zx:=L[j];
if -k in A[i][1] and not (k in A[i][1]) and A[i][2]=-k and not
 (zx in A[i][1]) and not (-zx in A[i][1]) then
 diff14:=Difference(L,[-zx]);
 for n in [1..sA]do
 if A[n][2]=zx then
 UA14:=SSortedList(A [n] [1]);
 UAdiff14:=SSortedList(diff14);
 if UA14=UAdiff14 and diff14<>[zx] then
 XX1:=Concatenation(["A",String(i)]);
 XX2:=Concatenation(["A",String(n)]);
 idx1:=0;
 idx2:=0;
 for t in [1..sA] do
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 od;
 Add(Rels,[0,idx1,idx2,-idx1,-idx2]);
 fi;
 fi;
 od;
fi;
zx:=-L[j];
```

```
 if -k in A[i][1] and not (k in A[i][1]) and A[i][2]=-k and not
 (zx in A[i][1]) and not (-zx in A[i][1]) then
 diff26:=Difference(L,[-zx]);
 for n in [1..sA]do
 if A[n][2]=zx then
 UA26:=SSortedList (A [n] [1]);
 UAdiff26:=SSortedList(diff26);
 if UA26=UAdiff26 and diff26<>[zx] then
 XX1:=Concatenation(["A",String(i)]);
 XX2:=Concatenation(["A",String(n)]);
 idx1:=0;
 idx2:=0;
 for t in [1..sA] do
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 od;
 Add(Rels,[0,idx1,idx2,-idx1,-idx2]);
 fi;
 fi;
 od;
 fi;
 od;
 fi;
 ##
 ## End the second part when Lk(j) is empty list
 ##
 ###
 ##
 od;
od;
sRels:=Size(Rels);
return([Rels,sRels]);
end;
```


## 15. APCGRelationR10 Function

```
APCGRelationR10:=function(V,A,T,Lk,Rels)
local k,j,i,m,zx,IntA,UniA,NUniA,l,K,t,UA13,UA14,UA16,UA23,UA24,UA25,UA26,
UA27,UA28,R2,XX1,XX2, XX3,idx1,idx2,idx3,t1,R10,R10a,R10b,R10c,invLk1,srels,
sRels,diff13,diff14,diff15,diff16,diff23,diff24,diff25,diff26,diff27,diff28,
UAdiff16,UAdiff24,UAdiff23,UAdiff25,UAdiff13,UAdiff14,UAdiff26,UAdiff27,
sV,sA,UAdiff28,n,invV,L,invLk2,invLk3,UniLk;
##
##
##
The input of this function are:
```

```
V: the list of vertices of the graph zeta,
A: the list of type(2) generators computed in "WhiteheadAutomorphismsOfSecondType",
T: list of the names of elements of A,
Lk: the list of links computed in "StarLinkDominateOfVertex".
Rels: the list of row matrices of indices of the relations (it is one
of the outputs of the "APCGRelationR4",
Note that in order to get just the row matrices of indices of relation (R9)
we need to pass an empty list [] rather than the list Rels above.
##
It computes the list of indices of the generators [0,idx1,idx2,-idx1,-idx2,-idx3]
of relators of type (R10) of the group Aut(G_zeta) by satisfying the conditions
of this relations and add them to the list Rels. In addition it calculates
the size of the list Rels.
It returns [Rels,sRels].
##
##
sV:=Size(V);
sA:=Size(A);
invV:=-V; # invV is the inverses list of the vertex list V
L:=Concatenation(V,invV); # L is the union of the lists V and invV
for k in [1..sV] do # loop through the vertex list V
 for j in [1..sV] do # loop through the vertex list V
 ##
 ###
 ##
 ## In this part we compute the list of indices When Lk(k) is not empty list.
 ##
 if Lk[j]<>[0] then
 for i in [1..sA]do # loop throu A the Type (2) Whitehead Automorphisms
 ##
 ##
 ## In this section we compute first part of the list of indices of the
 ## generators which is [0,idx1,idx2,-idx1,-idx2,-idx3] of the relators
 ## of type (R10) when the multiplier "a" (k in this code) of the
 ## automorphism (A,a) is the original vertex "a" (not the inverse of
 ## the vertex "a"), and the multiplier "b" (j in this code) of the
 ## automorphism (L-b^-1, b) is the original vertex "b" and k not equal
 ## to j, by satisfying the conditions of this relations.
 ## 0: is just flag to let us know that all generators here of power 1.
 ## idx1: represents the index "i" of a specific generator A(i) of A.
 ## idx2: represents the index "n" of a specific generator A(n) of A.
 ## -idx1: represents the inverse of the specific generator A(i) of A
 ## which corresponds to the index idx1.
 ## -idx2: represents the inverse of the specific generator A(n) of A
 ## which corresponds to the index idx2.
 ## -idx3: represents the inverse of the specific generator A(m) of A
 ## which corresponds to the index idx3.
 ## For example if [0,idx1,idx2,-idx1,-idx2,-idx3]= [0,1,27,-1,-27,-5],
 ## then this means that A1*A27*A1^-1*A27^-1*A5^-1=1.
 ##
 if k in A[i][1] and not (-k in A[i][1]) and A[i][2]=k and j in A[i][1]
 and not (-j in A[i][1]) and k<>j then
 diff15:=Difference(L,[-j]);
```

```
invLk2:=-Lk[j];
UniLk:=Concatenation(Lk[j],invLk2);
UniLk: represents the link of the vertex "j" with respect to L
diff16:=[];
for l in Lk[j] do # In this loop if the vertex l and its inverse -l in the
 # same time are belong to the list diff15 then we delete
 # them, because they will cancel each other
 if l in diff15 and -l in diff15 then
 diff16:=Difference(diff15,[-1,l]);
 diff15:=diff16;
 fi;
od;
diff27:=Difference(L,[-k]);
invLk3:=-Lk[k];
UniLk:=Concatenation(Lk[k],invLk3);
diff28:=[];
for l in Lk[j] do
 if l in diff27 and -l in diff27 then
 diff28:=Difference(diff27,[-1,l]);
 diff27:=diff28;
 fi;
od;
for n in [1..sA]do
 UA16:=SSortedList(A[n] [1]);
 UAdiff16:=SSortedList(diff16);
 for m in [1..sA]do
 UA28:=SSortedList(A[m][1]);
 UAdiff28:=SSortedList(diff28);
 if A[n][2]=j and A[m][2]=k then
 if UA16=UAdiff16 and diff16<>[j] and UA28=UAdiff28 then
 XX1:=Concatenation(["A",String(i)]);
 # XX1: represents a specific automorphism (A,a) of A
 XX2:=Concatenation(["A",String(n)]);
 # XX2: represents a specific automorphism (L-b^-1, b) of A
 XX3:=Concatenation(["A",String(m)]);
 # XX3: represents a specific automorphism (L-a^-1, a) of A
 idx1:=0;
 idx2:=0;
 idx3:=0;
 for t in [1..sA] do
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 if XX3=T[t] then
 idx3:=t;
 fi;;
 od;
 Add(Rels,[0,idx1,idx2,-idx1,-idx2,-idx3]);
 fi;
 fi;
```

```
 od;
 od;
fi;
##
###
##
###
##
In this section we compute second part of the list of indices of the
generators which is [0,idx1,idx2,-idx1,-idx2,-idx3] of the relators
of type (R10) when the multiplier "a" (k in this code) of the
automorphism (A,a) is the original vertex "a" (not the inverse of
the vertex "a") and the multiplier "b" (j in this code) of the
automorphism (L-b^-1, b) is the the inverse of the vertex "b"
(-j in this code) and k not equal to -j by satisfying the
conditions of this relations.
The procedure use in this Section is similar to the first Section above.
##
if k in A[i][1] and not (-k in A[i][1]) and A[i][2]=k and -j in A[i][1]
 and not (j in A[i][1]) and k<> -j then
 diff15:=Difference(L,[j]);
 invLk2:=-Lk[j];
 UniLk:=Concatenation(Lk[j],invLk2);
 diff16:=[];
 for l in Lk[j] do
 if l in diff15 and -l in diff15 then
 diff16:=Difference(diff15,[-1,l]);
 diff15:=diff16;
 fi;
 od;
 diff27:=Difference(L, [-k]);
 invLk3:=-Lk[k];
 UniLk:=Concatenation(Lk[k],invLk3);
 diff28:=[];
 for l in Lk[j] do
 if l in diff27 and -l in diff27 then
 diff28:=Difference(diff27,[-1,l]);
 diff27:=diff28;
 fi;
 od;
 for n in [1..sA]do
 UA16:=SSortedList(A [n] [1]);
 UAdiff16:=SSortedList(diff16);
 for m in [1..sA]do
 UA28:=SSortedList(A[m][1]);
 UAdiff28:=SSortedList(diff28);
 if A[n][2]=-j and A[m][2]=k then
 if UA16=UAdiff16 and diff16<>[-j] and UA28=UAdiff28 then
 XX1:=Concatenation(["A",String(i)]);
 XX2:=Concatenation(["A",String(n)]);
 XX3:=Concatenation(["A",String(m)]);
 idx1:=0;
 idx2:=0;
```

```
 idx3:=0;
 for t in [1..sA] do
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 if XX3=T[t] then
 idx3:=t;
 fi;
 od;
 Add(Rels,[0,idx1,idx2,-idx1,-idx2,-idx3]);
 fi;
 fi;
 od;
 od;
fi;
##
###
##
##
##
In this section we compute third part of the list of indices of the
generators which is [0,idx1,idx2,-idx1,-idx2,-idx3] of the relators
of type (R10) when the multiplier "a" (k in this code) of the
automorphism (A,a) is the inverse of the vertex "a" (-k in this code)
and the multiplier "b" (}\textrm{j}\mathrm{ in this code) of the automorphism (L-b^-1, b)
is the original vertex "b" and -k not equal to j by satisfying the
conditions of this relations.
The procedure use in this Section is similar to the first Section above.
##
if -k in A[i][1] and not (k in A[i][1]) and A[i][2]=-k
 and j in A[i][1] and not (-j in A[i][1]) and -k<>j then
 diff15:=Difference(L,[-j]);
 invLk2:=-Lk[j];
 UniLk:=Concatenation(Lk[j],invLk2);
 diff16:=[];
 for l in Lk[j] do
 if l in diff15 and -l in diff15 then
 diff16:=Difference(diff15,[-1,l]);
 diff15:=diff16;
 fi;
 od;
 diff27:=Difference(L,[k]);
 invLk3:=-Lk[k];
 UniLk:=Concatenation(Lk[k],invLk3);
 diff28:=[];
 for l in Lk[j] do
 if l in diff27 and -l in diff27 then
 diff28:=Difference(diff27,[-1,l]);
 diff27:=diff28;
 fi;
```

```
 od;
 for n in [1..sA]do
 UA16:=SSortedList(A[n] [1]);
 UAdiff16:=SSortedList(diff16);
 for m in [1..sA]do
 UA28:=SSortedList(A[m] [1]);
 UAdiff28:=SSortedList(diff28);
 if A[n][2]=j and A[m][2]=-k then
 if UA16=UAdiff16 and diff16<>[j] and UA28=UAdiff28 then
 XX1:=Concatenation(["A",String(i)]);
 XX2:=Concatenation(["A",String(n)]);
 XX3:=Concatenation(["A",String(m)]);
 idx1:=0;
 idx2:=0;
 idx3:=0;
 for t in [1..sA] do
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 if XX3=T[t] then
 idx3:=t;
 fi;
 od;
 Add(Rels,[0,idx1,idx2,-idx1,-idx2,-idx3]);
 fi;
 fi;
 od;
 od;
fi;
##
##
##
###
##
In this section we compute third part of the list of indices of the
generators which is [0,idx1,idx2,-idx1,-idx2,-idx3] of the relators
of type (R10) when the multiplier "a" (k in this code) of the
automorphism (A,a) is the inverse of the vertex "a" (-k in this code)
and the multiplier "b" (j in this code) of the automorphism (L-b^-1, b)
is the inverse of the vertex "b" (}-\textrm{j}\mathrm{ in this code) and -k not equal
to -j by satisfying the conditions of this relations.
The procedure use in this Section is similar to the first Section above.
##
if -k in A[i][1] and not (k in A[i][1]) and A[i][2]=-k and -j in A[i][1]
 and not (j in A[i][1]) and -k <> -j then
 diff15:=Difference(L,[j]);
 invLk2:=-Lk[j];
 UniLk:=Concatenation(Lk[j],invLk2);
 diff16:=[];
 for l in Lk[j] do
```

```
 if l in diff15 and -l in diff15 then
 diff16:=Difference(diff15,[-1,l]);
 diff15:=diff16;
 fi;
 od;
 diff27:=Difference(L, [k]);
 invLk3:=-Lk[k];
 UniLk:=Concatenation(Lk[k],invLk3);
 diff28:=[];
 for l in Lk[j] do
 if 1 in diff27 and -1 in diff27 then
 diff28:=Difference(diff27,[-1,l]);
 diff27:=diff28;
 fi;
 od;
 for n in [1..sA]do
 UA16:=SSortedList(A[n] [1]);
 UAdiff16:=SSortedList(diff16);
 for m in [1..sA]do
 UA28:=SSortedList (A [m] [1]);
 UAdiff28:=SSortedList(diff28);
 if }A[n][2]=-j and A[m][2]=-k then
 if UA16=UAdiff16 and diff16<> [-j] and UA28=UAdiff28 then
 XX1:=Concatenation(["A",String(i)]);
 XX2:=Concatenation(["A",String(n)]);
 XX3:=Concatenation(["A",String(m)]);
 idx1:=0;
 idx2:=0;
 idx3:=0;
 for t in [1..sA] do
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 if XX3=T[t] then
 idx3:=t;
 fi;
 od;
 Add(Rels,[0,idx1,idx2,-idx1,-idx2,-idx3]);
 fi;
 fi;
 od;
 od;
 fi;
 od;
fi;
##
###
##
End the first part when Lk(j) is not empty list
##
```

\#\# In this part we compute the list of indices When $\mathrm{Lk}(\mathrm{j})$ is empty list
\#\# which is the same procedure of first part when $\operatorname{Lk}(j)$ is not empty list
\#\# with some changes.
\#\#
if $\mathrm{Lk}[\mathrm{j}]=[0]$ then
for i in [1..sA]do
if $k$ in $A[i][1]$ and not ( $k$ in $A[i][1]$ ) and $A[i][2]=k$
and $j$ in $A[i][1]$ and not ( $-j$ in $A[i][1]$ ) and $k<>j$ then
diff15:=Difference(L, [-j]);
invLk2:=-Lk[j];
UniLk:=Concatenation(Lk[j],invLk2);
diff16:=Difference(diff15,UniLk);
diff27:=Difference(L, [-k]);
invLk3:=-Lk[k];
UniLk:=Concatenation(Lk[k],invLk3);
diff28:=Difference(diff27,UniLk);
for n in [1..sA]do
UA16:=SSortedList(A[n] [1]);
UAdiff16:=SSortedList (diff16) ;
for $m$ in [1..sA]do
UA28: =SSortedList (A [m] [1]) ;
UAdiff28:=SSortedList(diff28);
if $A[n][2]=j$ and $A[m][2]=k \quad$ then
if UA16=UAdiff16 and UA28=UAdiff28 then
XX1:=Concatenation(["A", String(i)]);
XX2:=Concatenation(["A",String(n)]);
XX3:=Concatenation(["A",String(m)]);
idx1:=0;
idx2:=0;
idx3:=0;
for $t$ in [1..sA] do
if $\mathrm{XX} 1=\mathrm{T}[\mathrm{t}]$ then
idx1:=t;
fi;
if $\mathrm{XX} 2=\mathrm{T}[\mathrm{t}]$ then
idx2:=t;
fi;
if $\mathrm{XX} 3=\mathrm{T}[\mathrm{t}]$ then
idx3:=t;
fi;
od;
Add(Rels, [0,idx1,idx2,-idx1,-idx2,-idx3]);
fi;
fi;
od;
od;
fi;
if $k$ in $A[i][1]$ and $n o t(-k$ in $A[i][1])$ and $A[i][2]=k$
and $-j$ in $A[i][1]$ and $\operatorname{not}(j$ in $A[i][1])$ and $k<>-j$ then

```
 diff15:=Difference(L,[j]);
 invLk2:=-Lk[j];
 UniLk:=Concatenation(Lk[j],invLk2);
 diff16:=Difference(diff15,UniLk);
 diff27:=Difference(L,[-k]);
 invLk3:=-Lk[k];
 UniLk:=Concatenation(Lk[k],invLk3);
 diff28:=Difference(diff27,UniLk);
 for n in [1..sA]do
 UA16:=SSortedList(A [n] [1]);
 UAdiff16:=SSortedList(diff16);
 for m in [1..sA]do
 UA28:=SSortedList(A [m] [1]);
 UAdiff28:=SSortedList(diff28);
 if A[n][2]=-j and A[m][2]=k then
 if UA16=UAdiff16 and UA28=UAdiff28 then
 XX1:=Concatenation(["A",String(i)]);
 XX2:=Concatenation(["A",String(n)]);
 XX3:=Concatenation(["A",String(m)]);
 idx1:=0;
 idx2:=0;
 idx3:=0;
 for t in [1..sA] do
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 if XX3=T[t] then
 idx3:=t;
 fi;
 od;
 Add(Rels,[0,idx1,idx2,-idx1,-idx2,-idx3]);
 fi;
 fi;
 od;
 od;
fi;
if -k in A[i][1] and not (k in A[i][1]) and A[i][2]=-k
 and j in A[i][1] and not (-j in A[i][1]) and -k<>j then
 diff15:=Difference(L,[-j]);
 invLk2:=-Lk[j];
 UniLk:=Concatenation(Lk[j],invLk2);
 diff16:=Difference(diff15,UniLk);
 diff27:=Difference(L,[k]);
 invLk3:=-Lk[k];
 UniLk:=Concatenation(Lk[k],invLk3);
 diff28:=Difference(diff27,UniLk);
 for n in [1..sA]do
 UA16:=SSortedList(A[n][1]);
 UAdiff16:=SSortedList(diff16);
 for m in [1..sA]do
```

```
 UA28:=SSortedList(A[m] [1]);
 UAdiff28:=SSortedList(diff28);
 if A[n][2]=j and A[m][2]=-k then
 if UA16=UAdiff16 and UA28=UAdiff28 then
 XX1:=Concatenation(["A",String(i)]);
 XX2:=Concatenation(["A",String(n)]);
 XX3:=Concatenation(["A",String(m)]);
 idx1:=0;
 idx2:=0;
 idx3:=0;
 for t in [1..sA] do
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 if XX3=T[t] then
 idx3:=t;
 fi;
 od;
 Add(Rels,[0,idx1,idx2,-idx1,-idx2,-idx3]);
 fi;
 fi;
 od;
 od;
fi;
if -k in A[i][1] and not (k in A[i][1]) and A[i][2]=-k
 and -j in A[i][1] and not (j in A[i][1]) and -k <> -j then
 diff15:=Difference(L,[j]);
 invLk2:=-Lk[j];
 UniLk:=Concatenation(Lk[j],invLk2);
 diff16:=Difference(diff15,UniLk);
 diff27:=Difference(L,[k]);
 invLk3:=-Lk[k];
 UniLk:=Concatenation(Lk[k],invLk3);
 diff28:=Difference(diff27,UniLk);
 for n in [1..sA]do
 UA16:=SSortedList(A[n][1]);
 UAdiff16:=SSortedList(diff16);
 for m in [1..sA]do
 UA28:=SSortedList(A[m] [1]);
 UAdiff28:=SSortedList(diff28);
 if A[n][2]=-j and A[m][2]=-k then
 if UA16=UAdiff16 and UA28=UAdiff28 then
 XX1:=Concatenation(["A",String(i)]);
 XX2:=Concatenation(["A",String(n)]);
 XX3:=Concatenation(["A",String(m)]);
 idx1:=0;
 idx2:=0;
 idx3:=0;
 for t in [1..sA] do
```

```
 if XX1=T[t] then
 idx1:=t;
 fi;
 if XX2=T[t] then
 idx2:=t;
 fi;
 if XX3=T[t] then
 idx3:=t;
 fi;
 od;
 Add(Rels,[0,idx1,idx2,-idx1,-idx2,-idx3]);
 fi;
 fi;
 od;
 od;
 fi;
 od;
 fi;
 ##
 ## End the second part when Lk(j) is empty list
 ##
 ###
 ##
 od;
od;
sRels:=Size(Rels);
return([Rels,sRels]);
end;
```


## 16. APCGFinalReturn Function

```
APCGFinalReturn:=function(gens,Rels,sRels,sRels1,Rels1,sgenss)
local i,j,j1,j2,C,F,rels,srels,GHK,KK,GGG,sgens,GHK1,KK1,ZZa,rels1,srels1;
##
##
##
The input of this function are:
gens: the list of the generators of the group Aut(G_zeta).
Rels: the list of the indices of the relators which computed in
"RelationsOfGraphAutomorphisms", "APCGRelationR1",..., "APCGRelationR10"
sRels: the size of the list Rels.
Rels1: the list of the indices of the relators of graph group
which computed in "WhiteheadAutomorphismsOfFirstType".
sRels1: the size of the list Rels1.
sgenss: the size of the list genss which is the name of the i^th of
generator of the Whitehead automorphisms of Aut(G_zeta).
It computed in "WhiteheadAutomorphismsOfFirstType"
##
It forms the list of relations rels from the lists Rels and Rels1.
In fact this function forms the output of the function
FinitePresentationOfAutParCommGrp in the package AutParCommGrp.
```

```
###
##
rels1:=[];
C:=gens;
F:=FreeGroup(C); # computes the free group on gens. The generators
 # are displayed as string.1, string.2, ..., string.n
gens:=GeneratorsOfGroup(F); # returns a list of generators gens of the free group F
sgens:=Size(gens);
##
##
In this section we form the list of relations rels1 from the list Rels1
(computed in the function WhiteheadAutomorphismsOfFirstType) and adds
them to the list rels1, and then adds it to the list of relations rels.
##
for i in [1..sRels1] do
 GHK:=Size(Rels1[i]);
 GHK1:=GHK/2; # To find the real length of each single relation
 j1:=1;
 for j in [1..GHK1] do
 KK:=sgenss+AbsoluteValue(Rels1[i][j1]); #function reading
 j2:=j1+1;
 KK1:=Rels1[i][j2]; # power
 if KK1 <> 1 then
 ZZa:=gens[KK] ^KK1;
 else
 ZZa:=gens [KK];
 fi;
 if j1=1 then
 rels1[i]:=ZZa;
 else
 rels1[i]:=rels1[i]*ZZa;
 fi;
 j1:=j1+2;
 od;
od;
srels1:=Size(rels1);
##
###
##
In this section we form the list of relations rels from the list Rels
(computed in the functions RelationsOfGraphAutomorphisms, APCGRelationR1,
APCGRelationR2,..., APCGRelationR10)
##
rels:=[];
for i in [1..sRels] do
 GHK:=Size(Rels[i]);
 KK:=AbsoluteValue(Rels[i] [2]);
 if Rels[i][1] = 0 then
 rels[i]:=gens[KK];
fi;
 if Rels[i][1] = 1 then
 rels[i]:=gens[KK]^2;
fi;
```

```
 if Rels[i][1] = 2 then
 rels[i]:=gens[KK];
 GHK:=GHK-3;
fi;
 if Rels[i][2] < O then
 rels[i]:=rels[i] -1;
fi;
 for j in [3..GHK] do
 KK:=AbsoluteValue(Rels[i][j]);
 if Rels[i][j] < O then
 rels[i]:=rels[i]*gens[KK]^-1;
 else
 rels[i]:=rels[i]*gens[KK];
 fi;
 od;
od;
srels:=Size(rels);
##
##
##
for i in [1..srels1] do # This loop is to add the relations of graph
 # automorphisms rels1 to final relations list rels
 j:=srels+i;
 rels[j]:=rels1[i];
od;
srels:=Size(rels);
GGG:=F/rels; # computes the finitely presented group on
 # the generators gens of F defined above
return([F,gens,rels,GGG,sgens,srels]);
end;
```


## 17. FinitePresentationOfAutParCommGrp Function

```
FinitePresentationOfAutParCommGrp:=function(V,E)
local R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,St,Lk,YY,sV,
M,NV,NE, sNV, sNE,A,sA,gens, sgens, sgenss, Gens3,rels, srels,Rels, sRels,
relvalofF,srelvalofF,rels1,srels1,sGens2,F,GGG,sComps,Rels1,sRels1,
T,Q,i,j,tempedgex,tempedgey;
##
##
##
The input of this function is a simple graph zeta=(V,E), where V and E
represent the set of vertices and the set of edges respectively.
##
It returns [gens,rels,GGG], where
gens: is a list of free generators of the automorphism group of
partially commutative group Aut(G_zeta).
rels: is a list of relations in the generators of the free group.
Note that relations are entered as relators, i.e., as words
in the generators of the free group.
GGG:=F/rels: is the automorphism group Aut(G_zeta) of G_zeta given
```

```
as a finite presentation group with generators gens
and relators rels.
##
In fact, the main work of this function is to run all the functions
we have read them below to give a finite presentation for automorphism
groups Aut(G_zeta) of G_zeta.
###
##
if IsSimpleGraph(V,E)=true then # Call the function IsSimpleGraph to test
 # whether the graph zeta is simple or not
##
##
##
This section is to compute the star St(v), link Lk(v) and the dominate
list Y(v) of each pair of vertices v,u in V
##
R1:=StarLinkDominateOfVertex(V,E); #F StarLinkDominateOfVertex(<V>, <E>)
 ## return([St,Lk,YY,sV,M,L,sL]);
St:=R1[1];
Lk:=R1[2];
YY:=R1[3] ;
sV:=R1[4];
M:=R1[5];
##
###
##
This section is to delete the star St(v) of a specific vertex v
from the graph zeta
##
R2:=DeleteVerticesFromGraph(St,V,E); #F DeleteverticesFromGraph(<St>, <V>, <E>)
 ## return([NV,NE,sNV,sNE]);
NV :=R2[1];
NE:=R2 [2];
sNV:=R2 [3];
sNE:=R2[4];
##
###
##
##
##
This section is to compute the type (2) Whitehead automorphisms
##
R3:=WhiteheadAutomorphismsOfSecondType(NV ,NE, St , YY);
 #F WhiteheadAutomorphismsOfSecondType(<NV>, <NE>, <St>, <YY>)
 ## return ([A,T,sA]);
A:=R3[1] ;
T:=R3[2];
sA:=R3[3]
##
###
##
##
##
```

```
This section is to compute the type (1) Whitehead automorphisms also to
copute the generators of the group automorphism of graph and then find
the generators of the automorphism group of partially commutative group
##
R4:=WhiteheadAutomorphismsOfFirstType(E,sV,sA,T);
 #F WhiteheadAutomorphismsOfFirstType(<E>, <sV>, <sA>, <T>)
 ## return([gens,sgens,sgenss,Gens3,relvalofF,srelvalofF,Rels1,sRels1,sGens2]);
gens:=R4[1];
sgens:=R4[2];
sgenss:=R4[3];
Gens3:=R4 [4];
relvalofF:=R4[5];
srelvalofF:=R4[6];
Rels1:=R4[7];
sRels1:=R4[8];
sGens2:=R4[9];
##
###
##
###
##
This section is to compute the relations related to the graph automorphisms
##
R5:=RelationsOfGraphAutomorphisms(sA,sgenss,relvalofF,sV,sGens2);
 #F RelationsOfGraphAutomorphisms(<sA>, <sgenss>, <relvalofF>, <sV>, <sGens2>)
 # return([Rels,sRels])
Rels:=R5[1];
sRels:=R5[2];
##
###
##
###
##
This section is to compute the relation R5
##
R6:=APCGRelationR5(A,St,Lk,Rels,T);
 #F APCGRelationR5(<A>, <St>, <Lk> <Rels>, <T>)
 ## return([Rels,sRels]);
Rels:=R6[1];
sRels:=R6[2];
##
###
##
###
##
This section is to compute the relation R1
##
R7:=APCGRelationR1(sV,A,T,Rels); #F APCGRelationR1(<sV>, <A>, <T>, <Rels>)
 ## return([Rels,sRels]);
Rels:=R7[1];
sRels:=R7[2];
##
##
```

\#\# This section is to compute the relation R2
\#\#
R8: =APCGRelationR2 (A,T,Rels,St) ; \#F APCGRelationR2( <A>, <T>, <Rels>, <St>)
\#\# return([Rels,sRels]);
Rels:=R8[1];
sRels:=R8[2];
\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#
\#\# This section is to compute the relation R3
\#\#
R9:=APCGRelationR3(A,T,Lk,Rels); \#F APCGRelationR3( <A>, <T>, <Lk>, <Rels>)
\#\# return([Rels,sRels])
Rels:=R9[1];
sRels:=R9[2]
\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#
\#\# This section is to compute the relation R4
\#\#
R10:=APCGRelationR4 (A,T,Lk,Rels); \#F APCGRelationR4( <A>, <T>, <Lk>, <Rels>)
\#\# return([Rels,sRels]);
Rels:=R10[1];
sRels:=R10[2];
\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#
\#\# This section is to compute the relation R8
\#\#
R11:=APCGRelationR8(V,A,T,Lk,Rels); \#F APCGRelationR8( <V>, <A>, <T>, <Lk>, <Rels>)
\#\# return([Rels,sRels]);
Rels:=R11[1];
sRels:=R11[2];
\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#
\#\# This section is to compute the relation R9
\#\#
R12:=APCGRelationR9(V,A,T,Lk,Rels); \#F APCGRelationR9( <V>, <A>, <T>, <Lk>, <Rels>)
\#\# return([Rels,sRels]);
Rels:=R12[1];

```
 sRels:=R12[2];
 ##
 ##
 ##
 ##
 ##
 ## This section is to compute the relation R10
 ##
 R13:=APCGRelationR10(V,A,T,Lk,Rels); #F APCGRelationR10(<V>, <A>, <T>, <Lk> <Rels>)
 ## return([Rels,sRels]);
 Rels:=R13[1];
 sRels:=R13[2];
 ##
 ###
 ##
 ###
 ##
 ## This section is to compute the final relations T from the matrix of
 ## indices of the generators and find the final return
 ##
 R14:=APCGFinalReturn(gens,Rels,sRels,sRels1,Rels1,sgenss);
 #F APCGFinalReturn(<gens>, <Rels>, <sRels>, <sRels1>, <Rels1>, <sgenss>)
 ## return([F,gens,rels,GGG,sgens,srels]);
 F:=R14[1]
 gens:=R14[2];
 rels:=R14[3];
 GGG:=R14[4];
 sgens:=R14[5];
 srels:=R14[6];
 ##
 ###
 ##
else
 return("The graph must be a simple graph");
fi;
return[gens,rels,GGG];
end;
```


## 18. TietzeTransformations Function

```
TietzeTransformations:=function(G)
local hom,H,R;
##
###
##
The aim of this function is to simplify the presentation of the finitely,
presented group G, i.e., to reduce the number of generators, the number
of relators and the relator lengths.
The input of this function is finite presentation of the group G.
##
```

\#\# Returns a group $H$ isomorphic to $G$, so that the presentation of $H$,
\#\# has been simplified using Tietze transformations.
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# \#\#
hom:= IsomorphismSimplifiedFpGroup(G); \# To find a homomorphism (an isomorphism).
$H:=$ Image(hom); \# Image ( map ) is the image of the general
\# mapping map, i.e., the subset of elements
\# of the range of map that are actually values
\# of map. Note that in this case the argument
\# may also be multi-valued.
$R:=$ RelatorsOfFpGroup $(H)$; \# returns the relators of the finitely presented group \# G as words in the free generators provided by the \# FreeGeneratorsOfFpGroup value of G.
return [H, R]
end;

## A. 2 Appendix to Chapter 3

In this appendix we will attached the codes for all the functions we have written in Chapter 3 as follows:

## 1. StarLinkOfVertex Function

```
StarLinkOfVertex:=function(V,E)
local i,j,x1,M,sV,sE,tempx,St,indx1,Lk,indx2,x,YY,Y1,Y2,tempedgex,tempedgey;
##
##
##
The input of this function is a finite simple graph zeta=(V,E), where V and
E represents the list of vertices and the list of Edges respectivly.
##
It computes the star St(v) and the link Lk(v) and concatenates them in
two separate lists St and Lk respectively.
###
##
if IsSimpleGraph(V,E)=true then # Call the function IsSimpleGraph to test
whether the graph zeta is simple or not
sV:=Length(V);
M:= Length(E);
St:= NullMat(sV,1,0);
for i in [1..sV] do # loop through the vertices V
 tempx:=V[i];
 indx1:=1; # index for the star of specific vertex v
 St[tempx][indx1]:=tempx; # St: is a two dimensional matrix, the rows
 # indices represent the vertices and the columns
 # indices represent the star of a specific vertex.
 for j in [1..M] do # loop through the edges E
 if tempx=E[j][1] then # determine whether the specific edge E[j][1]
 # is equal to the vertex tempx
 if E[j][1]<>E[j][2] then # excludes isolated vertices from the calculation
 indx1:=indx1+1;
 St[tempx][indx1]:=E[j][2]; # means that the vertex E[j][2] belonges to
 # the star of a specific vertex v
 fi;
 fi;
 if tempx=E[j][2] then # This section is the same of the first section,
 # above just we replaced the first coordinate of
 # the edge E(j) by the second coordinate.
 if E[j][1]<>E[j][2] then
 indx1:=indx1+1;
 St[tempx] [indx1]:=E[j] [1];
 fi;
 fi;
 od;
od;
Lk:=[];
```

```
 for j in [1..sV] do # loop through the list of vertices V
 Y2:=Set(St[j]); # make the list of a specific star St(j) as an order set
 RemoveSet(Y2,j); # remove the vertex v (j in this code) from the list Y2
 Add(Lk,Y2);
 od;
else
 return("The graph must be a simple graph");
fi;
return([St,Lk]);
end;
```


## 2. CombinationsOfConnectedComponents Function

```
CombinationsOfConnectedComponents:=function(Comps)
local i,C1,sC1,Y2,Y3,L2,U2,q,sY3,Y4,L4,sY4;
##
##
##
The input of this function is the list of connected
components Comps of the specified graph B.
##
The output is the set of all combinations Y4 of the multiset Comps.
##
##
C1:=Combinations(Comps); # Call the function Combinations to construct a list
 # called C1 of all combinations of the multiset Comps
sC1:=Size(C1);
##
##
##
In this section: loop through the list C1 to construct a list called Y2.
Each element l of C1 is a list of lists X1, ..., Xn. Call the Concatenation
function to form a new list h from the element of X1, ..., Xn.
Then add this list to Y2.
Y2:=[];
Y3:=[];
for q in [1..sC1] do
 L2:=Concatenation(C1[q]);
 U2:=SSortedList(L2); #sorting each element of L2
 Add(Y2,L2);
 Add(Y3,U2);
od;
##
##
##
sY3:=Size(Y3);
Y4:=[];
for i in [1..sY3] do # Loop through the list Y3 to construct a list Y4 by
 # adding each element of Y3 not equal to empty set to Y4
 if Y3[i]<>[] then
 Add(Y4,Y3[i]);
```

```
 fi;
od;
sY4:=Size(Y4);
return([Y3,Y4,sY4]);
end;
```


## 3. GeneratorsOfSubgroupConj Function

```
GeneratorsOfSubgroupConj:=function(NE,NV,V)
local i,j,gens2,gens,genss,rels,Rels,Bs,h,G2,G1,R3,R4,Comps,sComps,sMV,
sNE,UniA,D,DD,sD,S,YYY ,NYY,invNYY ,DYY,sDYY,Ls,t,xn,union_element,NCxY,
sgens,gens4, sgens4,gens3, sgens3,invV,sL,Y6, xs2,Y3,Y4,sY4,xs1,diff2,Y5,
sY5,sY6,sz,Y7,sY7,sxs2,xs3,sxs3,xs,sxs,Uxs,sUxs,CxY,sCxY,y9,y8,Y,sY,sBs,
Y8,sY8,y19,x11,sxs1,k,f,sf,gens1,sgens1,CxY1,sCxY1,y10,y99,NCY,KK,HH,L;
##
##
##
The input of this function are:
the list NE of all lists of edges of the subgraph zeta\St(v)
the list NV of all lists of vertices of the subgraph zeta\St(v)
the list V which is the list of vertices.
##
It computes the list gens1 which form the type(1) generators
(elementary partial conjugations) of the subgroup Conj(G_zeta)
of the group Aut(G_zeta).
##
##
gens:=[];
Bs:=[];
Y6:=[];
xs2:=[];
sNE:=Size(NE);
invV:=-V; # invV: is the inverses list of the vertex list V
L:=Concatenation(V,invV); # L is the union of the lists V and invV
for h in [1..sNE]do #loop through the lists NV and NE since they have same size
 G2:=NE[h];
 G1:=NV [h] ;
 R3:=ConnectedComponentsOfGraph(G1,G2);
 # computes the list of the Connected components
 # for each subgraph (NV(h),NE(h))
 Comps:=R3[1]; # Comps: list of all components of (NV(h),NE(h))
 sComps:=R3[2]; # sComps: size of Comps
 R4:=CombinationsOfConnectedComponents(Comps);
 # computes the list of the combinations
 # of the list Comps
 Y3:=R4[1]; # Y3: list of all combinations of the list Comps (it will be list of list)
 Y4:=R4[2]; # Y4: it is Y3 after SSorted its elements and delete the empty elements
 sY4:=R4[3]; # sY4: size of Y4
 xs1:=[];
 for i in [1..sY4] do # loop through the list Y4
```

```
 diff2:=Difference(L,Y4[i]); # computes the difference diff2 between the list
 # L and each elements (list) of the list Y4
 Add(xs1,diff2); # add each diff2 to the new list xs1
 od;
 sxs1:=Size(xs1);
 ##
 ###
 ##
 ## In this section: loop through the list Y4 to construct a list called Y6.
 ## In order to do this first find the size sz of xs1(i). For each element l
 ## of xs1(i) concatenate elements of Y4(i) with elements of l to give a list
 ## KK. Then form a listY5 of pairs HH; with entries (KK, l), for each element
 ## l of xs1(i). Then append Y5 to the list Y6.
 ##
 Y5:=[];
 for i in [1..sY4] do
 sz:=Size(xs1[i]);
 for j in [1..sz] do
 KK:=Concatenation(Y4[i],[xs1[i][j]]);
 HH:=[KK, xs1[i][j]];
 Add(Y5,HH);
 od;
od;
sY5:=Size(Y5);
Add(Y6,Y5);
##
##
##
Add(xs2,xs1); # Make new list xs2, by adding xs1 to xs2. This step and tht
 # next one are needed because there are two inner loops
Add(Bs,Y3); # Make new lists Bs, by adding Y3 to Bs
od; # ending the loop through the lists NV and NE
sY6:=Size(Y6);
Y7:=Concatenation(Y6); # Compute the list Y7 by concatenating the dense
 # list of lists Y6
sY7:=Size(Y7);
sxs2:=Size(xs2);
xs3:=Concatenation(xs2); # Compute the list xs3 by concatenating the dense
 # list of lists xs2
sxs3:=Size(xs3);
xs:=[];
##
###
##
In this section: loop through the list xs3 to construct a list called xs by
adding each non-empty entry of xs3 to xs, and calculate the size of xs.
for i in [1..sxs3] do
 if not (xs3[i] in xs) and xs3[i]<>[] then
 Add(xs,xs3[i]);
 fi;
od;
sxs:=Size(xs);
##
```

Uxs:=Union(xs); \# Call the function Union to construct a list called Uxs by
sUxs:=Size(Uxs); \# computing the union of $x$ s and calculates it size sUxs
CxY1:=[];
for $i$ in [1..sY7] do \# Loop through the list $Y 7$ to construct a list
\# called CxY1 by adding each non-empty entry of
\# Y7 to CxY1, and calculate its size sCxY1
if not (Y7[i] in CxY1) and $Y 7$ [i] <>[] then
Add (CxY1, Y7[i]) ;
fi;
od;
sCxY1:=Size(CxY1);
CxY:=[];
for $j$ in [1..sCxY1]do \# Loop through the list CxY1 to compute a list of
\# the definitions CxY of the partial conjugations,
\# with its size sCxY

```
 y9:=CxY1[j] [2];
 y10:=CxY1[j] [1];
 y99:=SSortedList(y10);
 NCY : = [y99,y9];
 Add(CxY,NCY);
od;
sCxY:=Size(CxY);
Y8:=Concatenation(Bs); # Make a list Y8 by concatenating the dense
 # list of lists Bs defined above
sBs:=Size(Bs);
sY8:=Size(Y8);
Y:=[] ;
for i in [1..sY8] do # Loop through the list Y8 to construct a list Y
 # of the non-empty unions of connected components
 # of zeta\St(v)
```

    if not (Y8[i] in Y) and Y8[i]<>[] then
        Add (Y,Y8[i]);
    fi;
    od;
sY:=Size (Y);
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#
\#\# In this section: loop through the lists CxY and Y to construct a list f
\#\# such that each element of $f$ represents the element of $C x Y$ of the same index,
\#\# i.e., $f(n)=C x Y(n), n$ in $N$, and calculate its size sf
\#\#
f: = [] ;
y19:=[];
for $k$ in [1..sCxY]do
x11:=CxY[k][2];
diff2:=Difference (CxY[k][1], [x11]);
for $j$ in [1..sY]do
if diff2=Y[j] then
y $19:=[j]$;
fi;
od;

```
 NCxY:=Concatenation(["c",String(x11),",","Y",String(y19[1])]);
 Add(f,NCxY);
od;
sf:=Size(f);
##
##
##
gens1:=[];
for j in [1..sf]do # Loop through the list f to create a list gens1 of type(1)
 # generators of of the subgroup Conj(G_zeta), and calculate
 # its size sgens1. Each element of gens1 represents the
 # element of f of the same index, i.e., gens1(n)=f(n), n in N.
 # (This make these generators compatible with GAP format.)
 Add(gens1,Concatenation(["f",String(j)]));
od;
sgens1:=Size(gens1);
return[CxY,sCxY,Y,sY,f,sf,gens1,sgens1];
end;;
```


## 4. APCGRelationRConj1 Function

```
APCGRelationRConj1:=function(CxY, Y, f)
local k,j,i,diff2,R1,XX1,XX2,idx1,idx2,t,y12,rels,R2a,sR2a,x8,sY,sCxY,sf;
##
###
##
The input of this function are:
CxY: list of elementary partial conjugations of Conj(G_zeta) or Conjv
computed in "GeneratorsOfSubgroupConj" or "GeneratorsOfSubgroupConjv",
Y: list of the non-empty union of connected components of zeta\St(v)
computed in "GeneratorsOfSubgroupConj" or "GeneratorsOfSubgroupConjv",
f: the list of the names of the definitions of the generators CxY
[f(n) = CxY(n), n in N].
##
It computes the list of indices [0,idx1,idx2] of relations of type (C1) of
Conj(G_zeta) or (Re1) of Conjv and adds each of them to the list R2a.
In addition it calculates the size of the list 'R2a'.
It returns [R2a,sR2a].
##
##
sY:=Size(Y);
sCxY:=Size(CxY);
sf:=Size(f);
R2a:=[];
if sY<>0 then
 y12:= [];
 for k in [1..sCxY]do # loop through the list CxY
 ###
 ##
 ## In this section we compute the list of indices of the generators which
 ## is [0,idx1,idx2] of the relators of type (C1) or (Re1) by satisfying the
```

```
conditions of the relation (C1) or relation(Re1).
0: is just flag to let us know that all the generators here of power 1.
idx1: represents the index of a specific generator f(t) of f.
idx2: represents the index of the inverse of the specific generator f(t).
For example if [0,idx1,idx2]= [0, 1, 4] then this means f1*f4=1.
##
x8:=CxY[k] [2];
diff2:=Difference(CxY[k][1],[x8]);
for j in [1..sY]do
 if diff2=Y[j] then
 y12:=[j];
 fi;
od;
XX1:=Concatenation(["c",String(x8),",","Y",String(y12[1])]);
XX1: represents a specific partial conjugations automorphism
alpha_Y,v of the list CxY
XX2:=Concatenation(["c",String(-x8),",","Y",String(y12[1])]);
XX2: represents a specific partial conjugations automorphism
alpha_Y,v^-1 of the list CxY which is the inverse of alpha_Y,v
idx1:=0;
idx2:=0;
for t in [1..sf] do # loop through the list f to find the indices
 if XX1=f[t] then
 idx1:=t;
 fi;
 if XX2=f[t] then
 idx2:=t;
 fi;
od;
Add(R2a,[0,idx1,idx2]);
##
###
##
 od;
else
 return("sY must be greater than zero");
fi;
sR2a:=Size(R2a);
return([R2a,sR2a]);
end;
```


## 5. APCGRelationRConj2 Function

```
APCGRelationRConj2:=function(CxY,Y,Lk,f,R2a)
local k,m,n,j,i,q,l,diff2,diff3, diff4,R2,XX1,XX2,XX3,idx1,idx2,idx3,t,y11,
y12,y13,y16,rels,sR2a, x8,x08,x11,IntY,UniY,U3,NUniA,sLK,lk,sY,sCxY,sf;
##
##
##
The input of this function are:
CxY: the list of elementary partial conjugations of Conj(G_zeta) or Conjv
```

```
computed in "GeneratorsOfSubgroupConj" or "GeneratorsOfSubgroupConjv",
Y: the list of the non-empty union of connected components of zeta\St(v)
computed in "GeneratorsOfSubgroupConj" or "GeneratorsOfSubgroupConjv",
Lk: the list of links computed in "StarLinkDominateOfVertex"
f: the list of the names of the definitions of the generators CxY
[f(n) = CxY(n), n in N],
R2a: the list of indices computed in "APCGRelationRConj1".
##
It computes the list of indices [0,idx1,idx2,idx3] of relations of type (C2)
of Conj(G_zeta) or (Re2) of Conjv and adds each of them to the list R2a (we
can replace R2a by [] if we need just the indices [0,idx1,idx2,idx3] of
relations of type (C2) or (Re2)).
In addition it calculates the size of the list R2a.
It returns [R2a,sR2a].
###
##
sY:=Size(Y);
sCxY:=Size(CxY);
sf:=Size(f);
if sY<>O then
 y11:=[];
 y13:=[];
 for i in [1..sCxY-1]do # loop through the list CxY excluding the last entry in CxY
 x8:=CxY[i] [2];
 x08:=AbsoluteValue(x8);
 diff2:=Difference(CxY[i] [1],[x8]);
 # diff2: represents the connected component Y(i) which is related
 # to a specific partial conjugation "alpha_Y(i),v" (CxY in this code)
 for t in [1..sY]do
 # Verify the index of a given list (diff2) in Y which related to "alpha_Y(i),v"
 if diff2=Y[t] then
 y11:=[t];
 fi;
 od;
 for j in [i+1..sCxY]do # loop through the list CxY excluding the first entry in CxY
 if x8=CxY[j][2] then
 diff3:=Difference(CxY[j][1],[x8]);
 # diff3: represents the connected component Y(i) which is related
 # to a specific partial conjugation "alpha_Y(j),v" (CxY in this code)
 for m in [1..sY]do
 # Verify the index of a given list diff2 in Y which related to "alpha_Y(j),v"
 if diff3=Y[m] then
 y13:=[m];
 fi;
 od;
 IntY:=Intersection([diff2 , diff3]);
 if IntY=[] then
 UniY:=Union([diff2 , diff3]);
 U3:=SSortedList(UniY);
 # U3: the sorted list of the union of the two components
 # diff2 and diff3 (Y union Z in the relation C2)
 NUniA:=[];
 lk:=Lk[x08];
```

```
 sLK:=Size(lk);
 if sLK<>0 then
 for q in [1..sLK]do
 # loop through the list lk to do that: if the vertex l and its
 # inverse -l are belong to lk and U3 in the same time then we
 # delete them, because they will cancel each other.
 l:=lk[q];
 if l in U3 and -l in U3 then
 NUniA:=Difference(U3,[-1,1]);
 U3:=NUniA;
 fi;
 od;
 fi;
 for n in [1..sCxY]do
 # Verify the index of a given list diff4 in Y which is related
 # to the automorphism "alpha_Y(i)+Y(j), v^-1" as in the relation (C2)
 x11:=CxY[i] [2];
 diff4:=Difference(CxY[n][1],[x11]);
 if U3=diff4 and CxY[n][2]=x8 then
 y16:=[];
 for t in [1..sY]do
 if diff4=Y[t] then
 y16:=[t];
 fi;
 od;
 XX1:=Concatenation(["c",String(x8),",","Y",String(y11[1])]);
 ## XX1: represents a specific partial conjugations automorphism
 ## "alpha_Y(i),v" of the list CxY
 XX2:=Concatenation(["c",String(x8),",","Y",String(y13[1])]);
 ## XX2: represents a specific partial conjugations automorphism
 ## "alpha_Y(j),v" of the list CxY
 XX3:=Concatenation(["c",String(-x8),",","Y",String(y16[1])]);
 ## XX3: represents a specific partial conjugations automorphism
 ## "alpha_Y(i)+Y(j),v^-1" of the list CxY which is the inverse
 ## of "alpha_Y+Z,v"
 idx1:=0;
 idx2:=0;
 idx3:=0;
 for t in [1..sf] do
 if XX1=f[t] then
 idx1:=t;
 fi;
 if XX2=f[t] then
 idx2:=t;
 fi;
 if XX3=f[t] then
 idx3:=t;
 fi;
 od;
 Add(R2a,[0,idx1,idx2,idx3]);
 fi;
 od;
fi;
```

```
 fi;
 od;
 od;
else
 return("sY must be greater than zero");
fi;
sR2a:=Size(R2a);
return([R2a,sR2a]);
end;
```


## 6. APCGRelationRConj3 Function

```
APCGRelationRConj3:=function(CxY,Y,Lk,f,R2a)
local k,m,n,j,i,q,l,diff2,diff3,diff4,R3,XX1,XX2,XX3,XX4,idx1,idx2,
idx3,idx4,t,y9,y10,y11,y12,y13,y16,rels,sR2a, x8, x08, x9, x11,IntY,UniY,
U3,NUniA, sLK,lk,invLk2,UniLk,sY,sCxY,sf;
##
###
##
The input of this function are:
CxY: the list of elementary partial conjugations of Conj(G_zeta) or Conjv
computed in "GeneratorsOfSubgroupConj" or "GeneratorsOfSubgroupConjv",
Y: the list of the non-empty union of connected components of zeta\St(v)
computed in "GeneratorsOfSubgroupConj" or "GeneratorsOfSubgroupConjv",
Lk: the list of links computed in "StarLinkDominateOfVertex"
f: the list of the names of the definitions of the generators CxY
[f(n) = CxY(n), n in N],
R2a: the list of indices computed in "APCGRelationRConj1".
##
It computes the list of indices [0,idx1,idx2,idx3,idx4] of relations of type (C3)
of Conj(G_zeta) or (Re3) of Conjv and adds each of them to the list R2a (we
can replace R2a by [] if we need just the indices [0,idx1,idx2,idx3,idx4] of
relations of type (C3) or (Re3)).
In addition it calculates the size of the list R2a.
It returns [R2a,sR2a].
##
##
sY:=Size(Y);
sCxY:=Size(CxY);
sf:=Size(f);
if sY<>O then
 y9:=[];
 for i in [1..sCxY-1]do # loop through the list CxY excluding the last entry in CxY
 x8:=CxY[i] [2];
 diff2:=Difference(CxY[i][1],[x8]);
 # diff2: represents the connected component Y(i) which is related to
 # a specific partial conjugation "alpha_Y(i),v" (CxY in this code) of (C3)
 for t in [1..sY]do
 # Verify the index of a given list diff2 (Y(i)) in Y which related
 # to "alpha_Y(i),v"
 if diff2=Y[t] then
```

```
 y9:=[t];
 fi;
od;
x08:=AbsoluteValue(x8);
invLk2:=-Lk[x08];
UniLk:=Concatenation(Lk[x08],invLk2);
for j in [i+1..sCxY]do # loop through the list CxY excluding the first entry in CxY
 x9:=CxY[j][2];
 diff3:=Difference(CxY[j][1],[x9]);
 # diff3: represents the connected component Y(j) which is related to
 # a specific partial conjugation "alpha_Y(j),v" (CxY in this code) of (C3)
 y10:= [];
 for m in [1..sY]do
 # Verify the index of a given list diff2 (Y(j)) in Y which related
 # to "alpha_Y(j),v"
 if diff3=Y[m] then
 y10:=[m];
 fi;
 od;
 ###
 ##
 ## In this section we compute the list of indices of the generators which is
 ## [0,idx1,idx2,idx3,idx4] of the relators of type (C3) or (Re3) by satisfying
 ## the conditions of the relation (C3) or relation(Re3).
 ## 0: is just flag to let us know that all the generators here of power 1.
 ## idx1: represents the index of a specific generator f(i) of f.
 ## idx2: represents the index of another specific generator f(j) of f.
 ## idx3: represents the index of the inverse of the specific generator f(i).
 ## idx4: represents the index of the inverse of the specific generator f(j).
 ## For example if [0,idx1,idx2,idx3,idx4]= [0, 1, 2, 4, 3] then this means
 ## f1*f2*f4*f3=1.
 ##
 if not (x8 in diff3) and not (x9 in diff2) then
 if x8<>x9 and x8<>-x9 then
 IntY:=Intersection([diff2 , diff3]);
 if IntY=[] or x9 in UniLk then
 XX1:=Concatenation(["c",String(x8),",","Y",String(y9[1])]);
 # XX1: represents a specific partial conjugations
 # automorphism "alpha_Y(i),v" of the list CxY
 XX2:=Concatenation(["c",String(x9),",","Y",String(y10[1])]);
 # XX2: represents a specific partial conjugations
 # automorphism "alpha_Y(j),u" of the list CxY
 XX3:=Concatenation(["c",String(-x8),", ", "Y",String(y10[1])]);
 # XX3: represents a specific partial conjugations
 # automorphism "alpha_Y(i),v^-1" of the list CxY
 # which is the inverse of "alpha_Y,v"
 XX4:=Concatenation(["c",String(-x9),",","Y",String(y9[1])]);
 # XX4: represents a specific partial conjugations
 # automorphism "alpha_Y(j),u^-1" of the list CxY
 # which is the inverse of "alpha_Y(j),u"
 idx1:=0;
 idx2:=0;
 idx3:=0;
```

```
 idx4:=0;
 for t in [1..sf] do
 if XX1=f[t] then
 idx1:=t;
 fi;
 if XX2=f[t] then
 idx2:=t;
 fi;
 if XX3=f[t] then
 idx3:=t;
 fi;
 if XX4=f[t] then
 idx4:=t;
 fi;
od;
Add(R2a,[0,idx1,idx2,idx3,idx4]);
 fi;
 fi;
 fi;
 od;
 od;
else
 return("sY must be greater than zero");
fi;
sR2a:=Size(R2a);
return([R2a,sR2a]);
end;
```


## 7. APCGRelationRConj4 Function

```
APCGRelationRConj4:=function(CxY,V,Lk,gens1,Y,f,R2a)
local k,m,n,j,i,q,l,diff2,diff3,diff4,R4,XX1,XX2,XX3,XX4,idx1,idx2,idx3,idx4,
t,y9,y10,y11,y12,y13,y16,sR2a, x8, x08,x9,x11,W,sW,IntY,UniY,U3,NUniA,sLK,lk,
invLk2,UniLk,KK,gens4,sgens4,gens3,sgens3,st1,st2,jx,Wj4,Wj,Wj3,Wj2,Wj1,Wznot,
sWznot,j1,y99,NCY,CxY1,sCxY1,x09,W1,y14,diff5,sY,sCxY,sf,sgens1,invV,L;
##
###
##
The input of this function are:
CxY: the list of elementary partial conjugations of Conj(G_zeta) or Conjv
computed in "GeneratorsOfSubgroupConj" or "GeneratorsOfSubgroupConjv",
V: the list of vertices
Lk: the list of links computed in "StarLinkDominateOfVertex"
gens1: type(1) generators of Conj(G_zeta) or Conjv computed in
"GeneratorsOfSubgroupConj" or "GeneratorsOfSubgroupConjv",
Y: the list of the non-empty union of connected components of zeta\St(v)
computed in "GeneratorsOfSubgroupConj" or "GeneratorsOfSubgroupConjv",
f: the list of the names of the definitions of the generators CxY
[f(n) = CxY(n), n in N],
R2a: the list of indices computed in "APCGRelationRConj1".
##
```

```
Firstly, it computes the list of elementary inner automorphisms W, then
gens4 the list of the generators of Conj(G_zeta) or Conjv. This is the
concatenation of the lists gens1 and W but; without repeating generators
that appear in gens1.
Secondly, it computes the list of indices [1,idx1,idx2,idx3,idx4] of relations
of type (C4) or (Re4) and adds each of them to the list R2a (we
can replace R2a by [] if we need just the indices [1,idx1,idx2,idx3,idx4]
of these relations.
It returns [W,gens4,R2a,sW,sgens4,sR2a] where sW, sgens4 and sR2a are the
sizes of W, gens4 and R2a respectively.
##
##
sCxY:=Size(CxY);
sgens1:=Size(gens1);
sY:=Size(Y);
sf:=Size(f)
invV:=-V; # invV: is the inverses list of the vertex list V
L:=Concatenation(V,invV); # L is the union of the lists V and invV
if sY<>O then
```

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#
\#\# In this section we compute the list of elementary inner automorphisms W
\#\# of the subgroup Conj(G_zeta) or Conjv by satisfying the conditions of this
\#\# type of partial conjugations automorphisms
\#\#
$\mathrm{W}:=[]$;
for j in [1..sCxY]do \# loop through the list CxY defined above
x9:=CxY[j] [2];
x09:=AbsoluteValue (x9) ;
invLk2:=-Lk[x09]; \# Compute invLk2 the inverse of of each link Lk(v); v in V
UniLk:=Concatenation(Lk[x09], invLk2);
\# Compute UniLk the link Lk(v) with respect to L
diff4:=Difference(L,UniLk); \# For each vertex v of $V$ we remove the list UniLk
\# from L, since UniLk consist of vertices with
\# thier inverses which cancel each other
diff5:=Difference(diff4,-[x9]);
\# diff5 is a one list (connected component) Y(i) of the list
\# Y which forms the first part of the inner automorphism W1
W1:=[diff5,x9]; \# Forms the elementary inner automorphism W1
Add(W,W1);
od;
\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#
sW:=Size (W) ;
Wznot:=[];
gens3:=[];
j1:=0;
for $j$ in [1..sCxY]do
\# In this loop we add each elementary inner automorphisms $W(j)$ to
\# a new list Wznot if $W(j)$ not belong to the list $C x Y$ and it is not
\# trivial automorphism then add its name $W(j 1)$ to the list gens3
if not (W[j] in CxY) and Size(W[j][1])<>1 then

```
 Add(Wznot,W[j]);
 j1:=j1+1;
 Add(gens3,Concatenation(["W",String(j1)]));
 fi;
od;
sWznot:=Size(Wznot);
sgens3:=Size(gens3);
if Wznot<>[] then
 gens4:=Concatenation(gens1,gens3);
 # gens4: the list of the generators of Conj(G_zeta) or Conjv
else
 gens4:=gens1; # Means the subgroup Conj(G_zeta) or Conjv has just the
 # type (1) generators (elementary partial conjugations)
fi;
sgens4:=Size(gens4);
y14:=[];
for i in [1..sCxY]do # loop through the list CxY excluding the first entry in CxY
 x8:=CxY[i][2];
 diff2:=Difference(CxY[i][1],[x8]);
 # diff2: represents the connected component Y(i) which is related
 # to a specific partial conjugation "alpha_Y(i),v" (CxY in this code)
 for t in [1..sY]do
 # Verify the index of a given list diff2 (Y(i)) in Y which related
 # to "alpha_Y(i),v"
 if diff2=Y[t] then
 y14:=[t];
 fi;
 od;
 ##
 ##
 ## In this section we compute the list of indices of the generators which is
 ## [1,idx1,idx2,idx3,idx4] of the relators of type (C4) or (Re4) by
 ## satisfying the conditions of these relations.
 ## 1: is just flag to let us know that R corresponds to a word
 ## W_R = gamma_u * alpha_Y,v * gamma^-1_u * alpha_Y,v^-1 of length 4 as in
 ## relation (C4) and (Re4) of the subgroups Conj(G_zeta) and Conjv respectively.
 idx1: represents the index of a specific generator f(i) of f.
 idx2: represents the index of another specific generator f(t) of f.
 idx3: represents the index of the inverse of the specific generator f(i).
 idx4: represents the index of the inverse of the specific generator f(t).
 # For example if [0,idx1,idx2,idx3,idx4]= [0, 1, 2, 4, 3] then this means
 ## f1*f2*f4*f3=1.
 ##
 for j in [1..sCxY]do
 x9:=W[j][2];
 diff3:=Difference(CxY[j][1],[x9]);
 if not (x9 in diff2) and x8<>x9 and x8<>-x9 and Size(W[j][1])<>1 then
 diff4:=Difference(W[j][1],[x9]);
 Add(diff4,-x9);
 diff4:=SSortedList(diff4);
 diff5:=[diff4,-x9];
 idx3:=0;
 for k in [1..sW]do
```

```
 if diff5=W[k] then
 idx3:=k+sgens1;
 fi;
 od;
 idx1:=j+sgens1;
 Wj:=W[j];
 Wj1:=Difference(W[j][1],[W[j][2]]);
 Wj2:=Union([Wj1,[-W[j][2]]]);
 Wj3:=SSortedList(Wj2);
 Wj4:=[Wj3,-W[j][2]];
 for q in [1..sCxY]do
 if Wj=CxY[q] then
 j:=q;
 idx1:=q;
 st1:="f";
 else
 st1:="W";
 fi;
 if Wj4=CxY[q] then
 jx:=q;
 st2:="f";
 idx3:=q;
 else
 st2:="W";
 fi;
 od;
 XX2:=Concatenation(["c",String(x8),",","Y",String(y14[1])]);
 # XX2: represents a specific partial conjugations
 # automorphism "alpha_Y(j),v" of the list CxY
 XX4:=Concatenation(["c",String(-x8),", ", "Y",String(y14[1])]);
 # XX4: represents a specific partial conjugations
 # automorphism "alpha_Y(j),v^-1" of the list CxY
 # which is the inverse of "alpha_Y(j),v"
 idx2:=0;
 idx4:=0;
 for t in [1..sf] do # loop through the list f defined above
 if XX2=f[t] then # Verify the index of the specific partial
 # conjugations XX2 in the list Y
 idx2:=t;
 fi;
 if XX4=f[t] then # Verify the index of the specific partial
 # conjugations XX4 in the list Y
 idx4:=t;
 fi;
 od;
 Add(R2a,[1,idx1,idx2,idx3,idx4]);
 fi;
 od;
 ##
 ###
 ##
 od;
```

else

```
 return("sgens4 must be greater than zero");
fi;
sR2a:=Size(R2a);
return([W,gens4,R2a,sW,sgens4,sR2a]);
end;
```


## 8. APCGConjLastReturn Function

```
APCGConjLastReturn:=function(gens4,R2a,sR2a)
local i,j,C,F,rels,srels,GHK,KK,GGG,gens,sgens,GHK1,KK1,ZZa;
##
##
##
The input of this function are:
gens4: the list of generators (defined in APCGRelationRConj4) of the
subgroup Conj(G_zeta),
R2a: the list of the indices of the relators (computed in the function
APCGRelationRConj, ..., APCGRelationRConj4), and
sR2a: the size of the list R2a.
##
It forms the list of relations "rels" from the list R2a For each
element R of R2a the relator W_R is added to a new list rels
##
In fact this function forms the output of the functions
"FinitePresentationOfSubgroupConj" and "FinitePresentationOfSubgroupConjv"
in the package AutParCommGrp.
###
##
C:=gens4;
F:=FreeGroup(C); # computes the free group on gens4. The generators
 # are displayed as string.1, string.2, ..., string.n
gens:=GeneratorsOfGroup(F); # returns a list of generators gens of the free group F
sgens:=Size(gens);
##
###
##
In this section we form the list of relations rels from the list R2a
For each element R of R2a the relator W_R is added to a new list rels
##
rels:=[];
for i in [1..sR2a] do
 GHK:=Size(R2a[i]);
 KK:=AbsoluteValue(R2a[i] [2]);
 rels[i]:=gens[KK];
 for j in [3..GHK] do
 KK:=AbsoluteValue(R2a[i][j]);
 rels[i]:=rels[i]*gens[KK];
 od;
od;
##
```

```
###
##
GGG:=F/rels; # computes the finitely presented group on
 # the generators gens of F defined above
srels:=Size(rels);
return[gens,rels,GGG];
end;
```


## 9. FinitePresentationOfSubgroupConj Function

```
FinitePresentationOfSubgroupConj:=function(V,E)
local R1,R2,R3,R4,R5,R6,R7,R8,St,Lk,sV,M,NV,NE,sNV,sNE,Bs,CxY,sCxY,gens1,
sgens1,gens, sgens,R2a, sR2a,Y,sY,f,sf, F,T,gens4, sgens4,GGG,L, sL, W, sW,rels,
srels,Q,i,j,tempedgex,tempedgey;
##
###
##
The input of this function is a simple graph zeta=(V,E), where V and E
represent the set of vertices and the set of edges respectively.
##
It returns [gens,rels,GGG], where
gens: is a list of free generators of the subgroup Conj(G_zeta) of the
group Aut(G_zeta).
rels: is a list of relations in the generators of the free group F.
Note that relations are entered as relators, i.e., as words in
the generators of the free group
GGG:=F/rels: is a finitely presented of the subgroup Conj(G_zeta)
with generators gens and relators rels.
##
In fact, the main work of this function is to run all the functions
we have read them below to give a finite presentation for the subgroup
Conj(G_zeta) of Aut(G_zeta).
##
##
if IsSimpleGraph(V,E)=true then # Call the function IsSimpleGraph to test
 # whether the graph zeta is simple or not
 ##
 ##
 ##
 ## This section is to compute the star St(v) and the link Lk(v) for each v in V
 ##
 R1:=StarLinkOfVertex(V,E); #F StarLinkOfVertex(<V>, <E>)
 ## return([St,Lk]);
 St:=R1[1] ;
 Lk:=R1[2];
 ##
 ##
 ##
 ## This section is to delete the star St(v) of a specific vertex v
 ## from the graph zeta
 ##
```

```
R2:=DeleteVerticesFromGraph(St,V,E); #F DeleteverticesFromGraph(<St>, <V>, <E>)
 ## return([NV,NE,sNV,sNE]);
NV :=R2 [1] ;
NE:=R2[2];
sNV:=R2[3];
sNE:=R2 [4];
##
##
##
This section is to compute the first part of the generators (elementary
partial conjugations) of the subgroup Conj(G_zeta)
##
R3:=GeneratorsOfSubgroupConj(NE,NV,V);
 #F GeneratorsOfSubgroupConj(<NE>, <NV>, <V>)
 ## return[CxY,sCxY,Y,sY,f,sf,gens1,sgens1];
CxY:=R3[1];
Y:=R3 [3] ;
f:=R3[5] ;
gens1:=R3[7];
##
###
##
This section is to compute the relation C1 of the subgroup Conj(G_zeta)
##
R4:=APCGRelationRConj1(CxY,Y,f); #F APCGRelationRConj1(<CxY>, <Y>, <f>)
 ## return([R2a,sR2a]);
R2a:=R4[1];
sR2a:=R4[2];
##
##
##
This section is to compute the relation C2 of the subgroup Conj(G_zeta)
##
R5:=APCGRelationRConj2(CxY,Y,Lk,f,R2a);
 #F APCGRelationRConj2(<CxY>, <Y>, <Lk>, <f>, <R2a>)
 ## return([R2a,sR2a])
R2a:=R5[1];
sR2a:=R5[2];
##
###
##
This section is to compute the relation C3 of the subgroup Conj(G_zeta)
##
R6:=APCGRelationRConj3(CxY,Y,Lk,f,R2a);
 #F APCGRelationRConj3(<CxY>, <Y>, <Lk>, <f>, <R2a>)
 ## return([R2a,sR2a]);
R2a:=R6[1];
sR2a:=R6[2];
##
##
##
This section is to compute the relation C4 of the subgroup Conj(G_zeta)
##
```

```
 R7:=APCGRelationRConj4(CxY,V,Lk,gens1,Y,f,R2a);
 #F APCGRelationRConj4(<CxY>, <V>, <Lk>, <gens1>, <Y>, <f>, <R2a>)
 ## return([W,gens4,R2a,sW,sgens4,sR2a]);
 W:=R7[1];
 gens4:=R7[2];
 R2a:=R7[3];
 sW:=R7[4];
 sgens4:=R7[5];
 sR2a:=R7[6];
 ##
 ###
 ##
 ## This section is to compute the final relations rels from the matrix R2a
 ## of indices of the generators and find the final return
 ##
 R8:=APCGConjLastReturn(gens4,R2a,sR2a);
 #F APCGConjLastReturn(<gens4>, <R2a>, <sR2a>)
 ## return[gens,rels,GGG];
 gens:=R8[1];
 rels:=R8[2];
 GGG:=R8[3];
 ##
 ###
 ##
else
 return("The graph must be a simple graph");
fi;
return[gens,rels,GGG];
end;
```


## A. 3 Appendix to Chapter 4

In this appendix we will attached the codes for all the functions we have written in Chapter 4 as follows:

## 1. EquivalenceClassOfVertex Function

```
EquivalenceClassOfVertex:=function(St)
local i,j,sV,EqCl,EqCl1,diff1,diff2;
##
##
##
The input of this function is the list of stars St.
##
It computes the equivalence classes for each vertex v in V.
###
##
EqCl:=[];
sV:=Size(St); # Since the size of St is the same of the list of vertices V
for i in [1..sV] do # Loop through the list of vertices V
EqCl1:=[];
 for j in [1..sV] do # Loop through the list of vertices V and
 # for all vertices i not equal j do that:
 diff1:=Difference(St[i],[i,j]); # compute diff1(i,j)=St(i)\{i,j}
 diff2:=Difference(St[j],[i,j]); # compute diff2(i,j)=St(j)\{i,j }
 if diff1 = diff2 then
 Add(EqCl1,j); # add the vertex j to the list EqCl1 if
 # diff1 = diff2
 fi;
 od;
 Add(EqCl,EqCl1);
od;
return(EqCl);
end;
```


## 2. ClassPreservingConnectedComponents Function

```
ClassPreservingConnectedComponents:=function(EqCl, Comps)
local i, j, k ,cdash, remainingcdash, sizeComps, sizeEqClcurrent,sizeEqCl;
##
##
##
The input of this function is:
EqCl: the list of equivalence classes of vertices of the graph zeta, and
Comps: the list of connected components of the graph zeta.
##
It constructs a new list of connected components Comps from the connected
components of the graph zeta by finding the connected components which
satisfy the conditions of partial conjugation for W_V (see Chapter one of
```

```
the manual for this package).
###
##
sizeEqCl:=Size(EqCl);
for i in [1 ..sizeEqCl] do # loop through the list EqCl
 sizeComps:=Size(Comps);
 sizeEqClcurrent:=Size(EqCl[i]); # computes the size of each element of EqCl
 cdash:=[];
 remainingcdash:=[];
 for j in [1..sizeEqClcurrent] do # loop through each element of EqCl
for k in [1..sizeComps] do # loop through the list Comps
 if EqCl[i][j] in Comps[k] then # if any element of EqCl(i)(j) belong to
 # any connected component Comps(k) then do:
 cdash:=Union(cdash, Comps[k]); # Union between the lists cdash and Comps(k)
 fi;
od;
 od;
 for k in [1..sizeComps] do # For each element Comps(k) of Comps, the function IsSubset
 # is called to find remainingcdash the remaining components
 # from the list Comps that contain no element of EqCl(i)
if IsSubset(cdash,Comps[k])=false then
 Add(remainingcdash,Comps[k]);
 fi;
 od;
 Add(remainingcdash,cdash);
 Comps:=remainingcdash; # Make a new list of connected components by
 # making Comps equal to list remainingcdash
od;
return(Comps);
end;
```


## 3. GeneratorsOfSubgroupConjv Function

```
GeneratorsOfSubgroupConjv:=function(NE,NV,St,V)
local i,j,gens2,gens,genss,rels,Rels,Bs,h,G2,G1,R3,R4,Comps,sComps,sMV,sNE,
UniA,D,DD,sD,S,YYY,NYY,invNYY,DYY,sDYY,Ls,t,xn,union_element,NCxY,sgens,
gens4,sgens4,gens3,sgens3,invV,sL,Y6,xs2,Y3,Y4,sY4,xs1,diff2,Y5,sY5,sY6,
sz,Y7,sY7,sxs2,xs3,sxs3,xs,sxs,Uxs,sUxs,CxY,sCxY,y9,y8,Y,sY,sBs,Y8,sY8,
y19,x11,sxs1,k,f,sf,gens1,sgens1,CxY1,sCxY1,y10,y99,NCY,KK,HH,R10,R11,
R12,SuccComps,EqCl,sR12,PY4,sPY4,L,sV;
##
###
##
The input of this function are:
the list NE of all lists of edges of the subgraph zeta\St(v),
the list NV of all lists of vertices of the subgraph zeta\St(v),
the list of stars St,
the list of vertices V.
##
It computes the list gens1 which form the type(1) generators of partial
```

```
conjugation for W_V the subgroup of Conj_V of the group Aut(G_zeta).
```

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#
gens:=[];
Bs:=[];
Y6: = [] ;
xs2:=[];
sNE:=Size (NE);
sV:=Size (V);
invV:=-V; \# invV: is the inverses list of the vertex list $V$
$\mathrm{L}:=$ Concatenation $(\mathrm{V}, \mathrm{invV})$; $\# \mathrm{~L}$ is the union of the lists $V$ and invV
R11:=EquivalenceClassOfVertex(St); \# Call this function to computes the equivalence
\# Classes of each vertex $v$ of the graph zeta
EqCl:=R11;
for $h$ in [1..sNE]do \#loop through the lists $N V$ and NE since they have the same size
G2: $=\mathrm{NE}[\mathrm{h}]$;
G1: =NV [h] ;
R3:=ConnectedComponentsOfGraph(G1,G2); \# computes the list of all Connected components
\# for each subgraph (NV(h),NE(h))
Comps:=R3[1]; \# Comps: list of components of (NV(h),NE(h))
sComps:=R3[2]; \# sComps: size of Comps
R12:=ClassPreservingConnectedComponents(EqCl, Comps);
\# Call this function to construct a new list of connected components
\# Comps from the connected components of the subgraph (NV(h),NE(h))
\# by finding the connected components which satisfy the conditions
\# of partial conjugation for W_V
sR12:=Size(R12);
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
Y4: = [] ;
for i in [1..sR12] do \# loop through the lists R12
if R12[i]<>[] then \# Chech that if R12(i) is not empty list
Add(Y4,R12[i]); \# If R12(i) is not empty add it to the list Y4
fi;
od;
sY4:=Size(Y4);
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
xs1:=[];
for i in [1..sY4] do \# loop through the list Y4
diff2:=Difference(L,Y4[i]); \# computes the difference diff2 between the
\# list $L$ and each elements (list) of the list
Add (xs1,diff2); \# Y4 add each diff2 to the new list xs1
od;
sxs1:=Size (xs1);
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#
\#\# In this section: loop through the list Y4 to construct a list called Y6.
\#\# In order to do this first find the size sz of $x s 1$ (i). For each element 1
\#\# of $x s 1(i)$ concatenate elements of $Y 4(i)$ with elements of 1 to give a list
\#\# KK. Then form a listY5 of pairs HH; with entries (KK, l), for each element
\#\# l of xs1(i). Then append Y5 to the list Y6.
\#\#
Y5: = [] ;

```
 for i in [1..sY4] do
 sz:=Size(xs1[i]);
 for j in [1..sz] do
 KK:=Concatenation(Y4[i],[xs1[i][j]]);
 HH:=[KK,xs1[i][j]];
 Add(Y5,HH);
 od;
 od;
 sY5:=Size(Y5);
 Add(Y6,Y5);
 sY6:=Size(Y5);
 ##
 ###
 ##
 Add(xs2,xs1); # Make new list xs2, by adding xs1 to xs2. This step and tht
 # next one are needed because there are two inner loops
 Add(Bs,Y4); # Make new lists Bs, by adding Y4 to Bs
od;
if Y6<>[] then # To check that the list Y6 is nonempty list i.e., Y6 have
 # connected components that satisfy the conditions of Conjv
sY6:=Size(Y6);
Y7:=Concatenation(Y6);
 # Compute the list Y7 by concatenating the dense list of lists Y6
sY7:=Size(Y7);
sxs2:=Size(xs2);
xs3:=Concatenation(xs2);
 # Compute the list xs3 by concatenating the dense list of lists xs2
sxs3:=Size(xs3);
##
##
##
In this section: loop through the list xs3 to construct a list called xs by
adding each non-empty entry of xs3 to xs, and calculate the size of xs.
##
xs:=[];
for i in [1..sxs3] do
 if not (xs3[i] in xs) and xs3[i]<>[] then
 Add(xs,xs3[i]);
 fi;
od;
sxs:=Size(xs);
##
###
##
Uxs:=Union(xs); # Call the function Union to construct a list called Uxs by
sUxs:=Size(Uxs); # computing the union of xs and calculates it size sUxs
CxY1:=[];
for i in [1..sY7] do # Loop through the list Y7 to construct a list
 # called CxY1 by adding each non-empty entry of
 # Y7 to CxY1, and calculate its size sCxY1
 if not (Y7[i] in CxY1) and Y7[i]<>[] then
 Add(CxY1,Y7[i]);
```

```
 fi;
od;
sCxY1:=Size(CxY1);
CxY:=[];
for j in [1..sCxY1]do # Loop through the list CxY1 to compute a list of
 # the definitions CxY of the elementary partial
 # conjugations, with its size sCxY
 y9:=CxY1[j][2];
 y10:=CxY1[j][1];
 y99:=SSortedList(y10);
 NCY:= [y99,y9];
 Add(CxY,NCY);
od;
sCxY:=Size(CxY);
Y8:=Concatenation(Bs); # Make a list Y8 by concatenating the dense
 # list of lists Bs defined above
sBs:=Size(Bs);
sY8:=Size(Y8);
Y:= [] ;
for i in [1..sY8] do # Loop through the list Y8 to construct a list Y
 # of the non-empty unions of connected components
 # of zeta\St(v)
 if not (Y8[i] in Y) and Y8[i]<> [] then
 Add(Y,Y8[i]);
 fi;
od;
sY:=Size(Y);
###
##
In this section: loop through the lists CxY and Y to construct a list f such
that each element of f represents the element of CxY of the same index, i.e.,
f(n)=CxY(n), n in N, and calculate its size sf
##
f:=[];
y19:=[];
for k in [1..sCxY]do
 x11:=CxY[k] [2];
 diff2:=Difference(CxY[k][1],[x11]);
 for j in [1..sY]do
 if diff2=Y[j] then
 y19:=[j];
 fi;
 od;
 NCxY:=Concatenation(["c",String(x11),",","Y",String(y19[1])]);
 Add(f,NCxY);
od;
sf:=Size(f);
##
##
##
gens1:=[];
for j in [1..sf]do # Loop through the list f to create a list gens1 of type(1)
 # generators of of the subgroup Conj(G_zeta), and calculate
```

```
 # its size sgens1. Each element of gens1 represents the
 # element of f of the same index, i.e., gens1(n)=f(n), n in N.
 # (This make these generators compatible with GAP format.)
```

```
 Add(gens1,Concatenation(["f",String(j)]));
 od;
 sgens1:=Size(gens1);
 return[CxY,sCxY,Y,sY,f,sf,gens1,sgens1];
else
 Print("\n");
 return[];
fi;
end;
```

```
 Print("There is no component C satisfies the conditions of partial conjugations");
```

```
 Print("There is no component C satisfies the conditions of partial conjugations");
```


## 4. FinitePresentationOfSubgroupConjv Function

```
FinitePresentationOfSubgroupConjv:=function(V,E)
local R1,R2,R3,R4,R5,R6,R7,R8,St,Lk,Lk1,sV,M,NV,NE,sNV,sNE,Bs,CxY,sCxY,
gens1,sgens1,gens,sgens,R2a,sR2a,Y,sY,f,sf, F,T,gens4, sgens4,GGG,L, sL, W,
sW,rels,srels,Q,i,j,tempedgex,tempedgey;
##
###
##
The input of this function is a simple graph zeta=(V,E), where V and E
represent the set of vertices and the set of edges respectively.
##
It returns [gens,rels,GGG], where
gens: is a list of free generators of the subgroup Conj_V of the
group Aut(G_zeta).
rels: is a list of relations in the generators of the free group F.
Note that relations are entered as relators, i.e., as words in
the generators of the free group
GGG:=F/rels: is a finitely presented of the subgroup Conj_V with
generators gens and relators rels.
##
In fact, the main work of this function is to run all the functions
we have read them below to give a finite presentation for the subgroup
Conj_V of Aut(G_zeta).
##
##
if IsSimpleGraph(V,E)=true then # Call the function IsSimpleGraph to test
 # whether the graph zeta is simple or not
##
##
##
This section is to compute the star St(v) and the link Lk(v) for each v in V
##
R1:=StarLinkOfVertex(V,E); #F StarLinkOfVertex(<V>, <E>)
 ## return([St,Lk]);
St:=R1[1];
```

```
Lk:=R1[2];
```

\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#
\#\# This section is to delete the star $\operatorname{St}(\mathrm{v})$ of a specific vertex v
\#\# from the graph zeta
\#\#
R2:=DeleteVerticesFromGraph(St,V,E); \#F DeleteverticesFromGraph( <St>, <V>, <E>) \#\# return([NV,NE,sNV,sNE]);
NV: $=$ R2[1];
NE: =R2[2];
sNV: =R2 [3];
sNE: $=$ R2 [4];
\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#
\#\# This section is to compute the first part of the generators $W_{-}$v
\#\# of the subgroup Conj_V
\#\#
R3:=GeneratorsOfSubgroupConjv(NE,NV,St, V);
\#F GeneratorsOfSubgroupConjv( <NE>, <NV>, <St>, <V> )
\#\# return[CxY,sCxY,Y,sY,f,sf,gens1,sgens1];
R3[1] <> [] then
CxY:=R3[1];
$\mathrm{Y}:=\mathrm{R} 3$ [3] ;
f:=R3 [5];
gens1:=R3[7];
\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#
\#\# This section is to compute the relation Re1 of the subgroup Conj(G_zeta)
\#\#
R4:=APCGRelationRConj1(CxY,Y,f); \#F APCGRelationRConj1( <CxY>, <Y>, <f> ) \#\# return([R2a,sR2a]);
R2a: $=\mathrm{R} 4$ [1];
sR2a:=R4[2];
\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#
\#\# This section is to compute the relation R2 of the subgroup Conj(G_zeta)
\#\#
R5: =APCGRelationRConj2(CxY,Y,Lk,f,R2a);
\#F APCGRelationRConj2( <CxY>, <Y>, <Lk>, <f>, <R2a> )
\#\# return([R2a,sR2a]);
R2a: $=\mathrm{R} 5$ [1];
sR2a:=R5[2];
\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#
\#\# This section is to compute the relation R3 of the subgroup Conj(G_zeta)
\#\#
R6: =APCGRelationRConj3(CxY,Y,Lk,f,R2a);
\#F APCGRelationRConj3( <CxY>, <Y>, <Lk>, <f>, <R2a> )

```
 ## return([R2a,sR2a]);
 R2a:=R6[1];
 sR2a:=R6[2];
 ##
 ###
 ##
 ## This section is to compute the relation R4 of the subgroup Conj(G_zeta)
 ##
 R7:=APCGRelationRConj4(CxY,V,Lk,gens1,Y,f,R2a);
 #F APCGRelationRConj4(<CxY>, <L>, <Lk>, <gens1> , <Y>, <f>, <R2a>)
 ## return([W,gens4,R2a,sW,sgens4,sR2a]);
 W:=R7[1];
 gens4:=R7[2];
 R2a:=R7[3];
 sW:=R7[4];
 sgens4:=R7[5];
 sR2a:=R7[6];
 ##
 ##
 ##
 ## This section is to compute the final relations rels from the matrix R2a
 ## of indices of the generators and find the final return
 ##
 R8:=APCGConjLastReturn(gens4,R2a,sR2a);
 #F APCGConjLastReturn(<gens4>, <R2a>, <sR2a>)
 ## return[gens,rels,GGG];
 gens:=R8[1];
 rels:=R8[2];
 GGG:=R8[3];
 ##
 ##
 ##
 return[gens,rels,GGG];
 else
 Print("The subgroup here is trivial subgroup");
 Print("\n");Print("\n");
 return[];
 fi;
else
 return("The graph must be a simple graph");
fi;
end;
```


## A. 4 Appendix to Chapter 8

In this appendix we will attached the codes for all the functions we have written in Chapter 8 as follows:

## 1. SwapRowsColumns Function

```
SwapRowsColumns:=function(degf,x,y)
local Temp5,Temp6;
##
###
##
The input of this function are:
a matrix degf of size m x m and two different numbers x,y where
x,y in {1, ..., m}.
##
It exchanges row(x) and row(y), and at the same time exchange,
column(x) and column(y).
It returns the matrix degf after the replacement.
##
##
##In this section we exchange the two rows }x\mathrm{ and }
##
 Temp5:= [] ;
 Temp5 := StructuralCopy(degf); # Row replacement
 degf[x]:=Temp5[y];
 degf[y]:=Temp5[x];
##
##
##
 degf:=TransposedMatDestructive(degf); # compute the transpose of degf
##
###
##
##In this section we exchange the two columns x and y
##
 Temp6:= [] ;
 Temp6 := StructuralCopy(degf);
 degf[x]:=Temp6[y];
 degf[y]:=Temp6[x];
##
##
##
 degf:=TransposedMatDestructive(degf); # compute the transpose of degf
##
##
##
return (degf);
end;
```


## 2. Solveindic1WithProof Function

```
Solveindic1WithProof:=function(dimf,f)
local i,j,diffk,dimej,dimei,f1,Cj,M1,M2,Cjb,Ca,Cja,Ma,Mb,Mc,Xd,Xd1,Md,Me1,Me2,m;
##
###
##
This function is called only if the conditions of Propositions 1.4.1
(as in the manual) holds.
##
The input of this function are:
dimf: the matrix of the dimensions of the polynomials which is of size m x m,
f: the identity matrix of size m x m.
dimf and f are output by the main function IsSolvableModuleWithProof.
##
The function outputs a proof that M is solvable
##
##
##
m:=Size(dimf);
##
##
##
In this section we compute new entries for matrix f, by going through the
entries of the matrix dimf and set f[i][j]= dimf[i][j] if dimf[i][j] < 0
and f[i][j]=0 if dimf[i][j] >= 0, for i=1, ..., m, depending on the facts
that in R, if dim (f) = j, i.e., f in R_j then degree of f = - j in the
negative grading.
##
for j in [1..m] do
 for i in [1..m] do
 if i>j then
 if dimf[i][j]>=0 then
 f[i][j]:=0;
 else
 f[i][j]:=dimf[i][j];
 fi;
 else
 f[i][j]:=dimf[i][j];
 fi;
 od;
od;
Print("\ f=",f);
Print(" ","\n");Print(" ","\n");
##
##
##
In this section if f is an upper triangular matrix then we Compute Newf
from f, using the fact that (partial) }2=0 and R is an integral domain
Also we compute the matrix d of the differential "partial" with respect
to the basis S = e_i where i=1, ..., m.
##
if IsUpperTriangularMat(f)=true then
```

```
 for i in [1..m] do
 f[i][i]:=0;
 od;
 Print("\ Newf=",f);
 Print(" ","\n");Print(" ","\n");
 for i in [1..m] do
 for j in [1..m] do
 if f[i][j]<>0 then
 f[i][j]:=Concatenation("f",String(i),String(j));
 fi;
 od;
 od;
 Print("\d=",f);
 Print(" ","\n");Print(" ","\n");
else
 return("f is not upper triangular matrix");
fi;
##
###
##
In this section we construct a proof that M is solvable if f is an
upper triangular matrix.
##
Print(" , (Since d^2=0 and R is an integral domain). ");
Print(" ","\n");Print(" ","\n");
Cjb:=" ";
Ca:="Let CO=O and ";
Print(Ca);
for j in [1..m] do
 Cja:=Concatenation(["C",String(j),"=<"]);
 for i in [1..j] do
 if i=j then
 M1:=Concatenation(["e",String(i)]);
 else
 M1:=Concatenation(["e",String(i),", "]);
 fi;
 Cja:=Concatenation([Cja,M1]);
 od;
 if j=m then
 Cja:=Concatenation([Cja,"> "]);
 else
 Cja:=Concatenation([Cja,"> , "]);
 fi;
 Print(Cja);
 if j=m then
 Cjb:=Concatenation([Cjb,"C",String(j),"/","C",String(j-1)," is free "]);
 else
 Cjb:=Concatenation([Cjb,"C",String(j),"/","C",String(j-1)," is free, "]);
 fi;
od;
Print(" ","\n");
Print(Cjb);
Print(" ","\n");Print(" ","\n");
```

```
M2:=[];
Ma:="x=";
Mb:="d(x)=";
Mc:="d(x)=a1(0)";
Xd:="If x in C";
Me2:="Hence, O=CO subset of ";
for j in [1..m] do
 Xd1:=Concatenation([Xd,String(j),", then x can be written uniquely as: "]);
 Print(Xd1);
 Ma:=Concatenation([Ma,"a",String(j),"*","e",String(j)]);
 Print(" ","\n");
 Print(Ma);
 Ma:=Concatenation([Ma,"+"]);
 Mb:=Concatenation([Mb,"a",String(j),"*","d(e",String(j),")"]);
 Print(" ","\n");
 Print(Mb);
 Mb:=Concatenation([Mb,"+"]);
 if j>1 then
 Mc:=Concatenation([Mc,"a",String(j),"("]) ;
 for i in [1..j-1] do
 if i<j-1 then
 Mc:=Concatenation([Mc,"f",String(i),String(j),"*","e",String(i),"+"]);
 else
 Mc:=Concatenation([Mc,"f",String(i),String(j),"*","e",String(i),")"]);
 fi;
 od;
 fi;
 Print(" ","\n");
 Print(Mc);
 Mc:=Concatenation([Mc,"+"]);
 Md:=Concatenation([" in ","C",String(j-1)]);
 Print(Md);
 Print(" ","\n");Print(" ","\n");
 Me1:=Concatenation(["Hence ","d(C",String(j),") subset of C",String(j-1)," and
 then d(C",String(j),"/C",String(j-1),")=0."]);
 Print(Me1);
 Print(" ","\n"); Print(" ","\n");
 if j<m then
 Me2:=Concatenation([Me2,"C",String(j)," subset of "]);
 else
 Me2:=Concatenation([Me2,"C",String(j),"= M is a composition series for M. "]);
 fi;
od;
Print(Me2);
Print(" ","\n"); Print(" ","\n");
##
##
##
return ("M is solvable");
end;
```


## 3. Solveindic2WithProof Function

```
Solveindic2WithProof:=function(dimf,m)
local i,j,f,d;
##
###
##
This function is called only if the conditions of Propositions 1.4.3
##(as in the manual) holds.
##
This function is called if the modules M is outside the classification.
##
The inputs of this function are the matrix dimf of dimensions and the
dimension m of the vector of dimensions which are output by the main
function IsSolvableModuleWithProof.
dimf and f are output by the main function IsSolvableModuleWithProof.
##
The function outputs a proof that M is solvable.
##
##
f:=dimf;
##
###
##
In this section we compute new entries for matrix f, by going through the
entries of the matrix dimf and set f[i][j]= dimf[i][j] if dimf[i][j] < 0
and f[i][j]=0 if dimf[i][j] >= 0, for i=1, ..., m, depending on the facts
that in R, if dim (f) = j, i.e., f in R_j then degree of f = - j in the
negative grading.
##
for j in [1..m-2] do
 for i in [1..m] do
 if i<j+2 then
 if dimf[i][j]<0 then
 f[i][j]:=dimf[i][j];
 else
 f[i][j]:=0;
 fi;
 else
 if dimf[i][j]<0 then
 f[i][j]:=dimf[i][j];
 else
 f[i][j]:=0;
 fi;
 fi;
 od;
od;
Print("\ f=",f);
Print(" ","\n");
##
###
##
We compute the matrix d of the differential "partial" with respect to
```

```
the basis S = e_i where i=1, ..., m.
##
for i in [1..m] do
 for j in [1..m] do
 if f[i][j]<>0 then
 f[i][j]:=Concatenation("f",String(i),String(j));
 fi;
 od;
od;
Print("\ d=",f);
Print(" ","\n");Print(" ","\n");
##
###
##
return("The module M is outside the classification");
end;
```


## 4. Solveindic3WithProof Function

```
Solveindic3WithProof:=function(m,dimf,f)
local i,j,diffk,dimej,dimei,f1,Cj,M1,M2,Cjb,Ca,Cja,Ma,Mb,Mc,Xd,Xd1,Md,Me1,Me2,Tranf;
##
##
##
This function is called only if the conditions of Propositions 1.4.4
(as in the manual) holds.
##
The input of this function are:
m: the dimension of the vector of dimensions
dimf: the matrix of the dimensions of the polynomials which is of size m x m,
f: the identity matrix of size m x m.
m, dimf and f are output by the main function IsSolvableModuleWithProof.
##
The function outputs a proof that M is solvable.
###
##
##
##
In this section we compute new entries for matrix f, by going through the
entries of the matrix dimf and set f[i][j]= dimf[i][j] if dimf[i][j] < 0
and f[i][j]=0 if dimf[i][j] >= 0, for i=1, ..., m, depending on the facts
that in R, if dim (f) = j, i.e., f in R_j then degree of f = - j in the
negative grading.
##
for j in [1..m] do
 for i in [1..m] do
 if i>j then
 if dimf[i][j]>=0 then
 f[i][j]:=0;
```

```
 else
 f[i][j]:=dimf[i][j];
 fi;
 else
 f[i][j]:=dimf[i][j];
 fi;
 od;
od;
##
###
##
In this section if f is an lower triangular matrix then we set f[i][i]
to zero, using the fact that (partial)^2 =0 and R is an integral domain.
##
if IsLowerTriangularMat(f)=true then
 for i in [1..m] do
 f[i][i]:=0;
 od;
 Print("\ f=",f);
 Print(" ","\n");
else
 return("f is not upper triangular matrix");
fi;
##
###
##
Tranf:=TransposedMatDestructive(f); # We have used TransposedMatDestructive(f) function,
 # because it will give us,the same result when we
 # use the rows and columns replacement.
Print("\ Tranf=",Tranf);
Print(" ","\n");
##
###
##
In this section we construct a proof that M is solvable if f is an
upper triangular matrix.
##
if IsUpperTriangularMat(Tranf)=true then
 for i in [1..m] do
 for j in [1..m] do
 if Tranf[i][j]<>0 then
 Tranf[i][j]:=Concatenation("f",String(i),String(j));
 fi;
 od;
 od;
 Print("\ d=",Tranf);
else
 return("Maybe d is not upper triangular matrix or maybe it is");
fi;
Print(" , (Since d^2=0 and R is an integral domain). ");
Print(" ","\n");Print(" ","\n");
Cjb:=" ";
Ca:="Let C0=O and ";
```

```
Print(Ca);
for j in [1..m] do
 Cja:=Concatenation(["C",String(j),"=<"]);
 for i in [1..j] do
 if i=j then
 M1:=Concatenation(["e",String(i)]);
 else
 M1:=Concatenation(["e",String(i),","]);
 fi;
 Cja:=Concatenation([Cja,M1]);
 od;
 if j=m then
 Cja:=Concatenation([Cja,"> "]);
 else
 Cja:=Concatenation([Cja,"> , "]);
 fi;
 Print(Cja);
 if j=m then
 Cjb:=Concatenation([Cjb,"C",String(j),"/","C",String(j-1)," is free "]);
 else
 Cjb:=Concatenation([Cjb,"C",String(j),"/","C",String(j-1)," is free, "]);
 fi;
od;
Print(" ","\n");
Print(Cjb);
Print(" ","\n");Print(" ","\n");
M2:=[];
Ma:="x=";
Mb:="d(x)=";
Mc:="d(x)=a1(0)";
Xd:="If x in C";
Me2:="Hence, 0=CO subset of ";
for j in [1..m] do
 Xd1:=Concatenation([Xd,String(j),", then x can be written uniquely as: "]);
 Print(Xd1);
 Ma:=Concatenation([Ma,"a",String(j),"*","e",String(j)]);
 Print(" ","\n");
 Print(Ma);
 Ma:=Concatenation([Ma,"+"]);
 Mb:=Concatenation([Mb,"a",String(j),"*","d(e",String(j),")"]);
 Print(" ","\n");
 Print(Mb);
 Mb:=Concatenation([Mb,"+"]);
 if j>1 then
 Mc:=Concatenation([Mc,"a",String(j),"("]);
 for i in [1..j-1] do
 if i<j-1 then
 Mc:=Concatenation([Mc,"f",String(i),String(j),"*","e",String(i),"+"]);
 else
 Mc:=Concatenation([Mc,"f",String(i),String(j),"*","e",String(i),")"]);
 fi;
 od;
 fi;
```

```
 Print(" ","\n");
 Print(Mc);
 Mc:=Concatenation([Mc,"+"]);
 Md:=Concatenation([" in ","C",String(j-1)]);
 Print(Md);
 Print(" ","\n");Print(" ","\n");
 Me1:=Concatenation(["Hence ","d(C",String(j),") subset of C",String(j-1)," and
 then d(C",String(j),"/C",String(j-1),")=0."]);
 Print(Me1);
 Print(" ","\n"); Print(" ","\n");
 if j<m then
 Me2:=Concatenation([Me2,"C",String(j)," subset of "]);
 else
 Me2:=Concatenation([Me2,"C",String(j),"= M is a composition series for M. "]);
 fi;
od;
 Print(Me2);
 Print(" ","\n"); Print(" ","\n");
##
##
##
return ("M is solvable.");
#return (f);
end;
```


## 5. Solveindic4Size2by2 Function

```
##
###
##
This function to convert the matrix degf to an upper triangular matrix.
##
The input of the function Solveindic4Size2by2 is a matrix degf of
size 2x2 which is output by the main function IsSolvableModuleWithProof.
##
It returns the matrix degf after replacement and tests whether it is
an upper triangular matrix or not.
##
##
Solveindic4Size2by2:=function(degf)
degf[1][1]:=0; # Using the hypothesis of Proposition 1.4.2.
degf[2][2]:=0; # Using the hypothesis of Proposition 1.4.2.
degf[1] [2]:=0; # Using (partial)^2 =0 (d^2=0 in this code) and R is an integral domain
degf:= StructuralCopy(degf);
degf:=SwapRowsColumns(degf,1,2);
##
##
##
This section to check whether degf is an upper triangular matrix or not
##
if IsUpperTriangularMat(degf)=false then
```

```
 Print("\ degf=",degf);
 Print(" ","\n");Print(" ","\n")
 Print("\ Thus, degf is not a strictly upper triangular matrix");
 Print(" ","\n");Print(" ","\n");
 else
 Print("\ degf=",degf);
 Print(" ","\n");Print(" ","\n");
 Print("\ Thus, degf is a strictly upper triangular matrix, so M is solvable.");
 Print(" ","\n");Print(" ","\n");
fi;
##
##
##
return (degf);
end;
```


## 6. Solveindic4Size3by3 Function

```
Solveindic4Size3by3:=function(degf)
#local SwapRowsColumns;
##
##
##
This function to convert the matrix degf to an upper triangular matrix.
##
The input of the function Solveindic4Size3by3 is a matrix degf of size
3x3 as in Remark 2.1(i) (it is case(1) of 3x3 matrix when f32=0).
This function is called only if f11=f22=f33=0 and Sum(b)=0
##
It returns the matrix degf after replacement and tests whether it is
a strictly upper triangular matrix or not.
##
##
degf[3][2]:=0; # Using (partial)^2 =0 (d^2=0 in this code) and R is an integral domain
degf[1][2]:=0; # Using (partial)^2 =0 (}\mp@subsup{d}{}{\wedge}2=0 in this code) and R is an integral domain
degf:= StructuralCopy(degf); # creating duplicate of degf
degf:=SwapRowsColumns(degf,1,2);
if IsUpperTriangularMat(degf)=false then
 Print("\ degf=",degf);
 Print(" ","\n");Print(" ","\n");
 Print("\ Thus for the first case, degf is not a strictly upper triangular matrix");
 Print(" ","\n");Print(" ","\n");
else
 Print("\ degf=",degf);
 Print(" ","\n");Print(" ","\n");
 Print("\ Thus for the first case, degf is a strictly upper
 triangular matrix, so M is solvable.");
 Print(" ","\n");Print(" ","\n");
fi;
return (degf);
```


## 7. Solveindic4Size4by4A Function

```
Solveindic4Size4by4A:=function(degf)
##
##
##
This function to convert the matrix degf to an upper triangular matrix.
##
The input of the function Solveindic4Size4by4A is a matrix degf of size
mxm where m>=4 and f[i][i]=0, i=1,...,m with f32=0, f12=0, f32=0 and
Sum(b)=0 as in Remark 2.1(ii).
##
It returns the matrix degf after replacement and tests whether it is
a strictly upper triangular matrix or not.
##
##
degf[3][2]:=0; # Using (partial)^2 =0 (d^2=0 in this code) and R is an integral domain
degf[1][2]:=0; # Using (partial)^2 =0 and R is an integral domain
degf:= StructuralCopy(degf); # creating duplicate of degf
degf:=SwapRowsColumns(degf,1,2);
if IsUpperTriangularMat(degf)=true then
 Print("\ degf=",degf);
 Print(" ","\n");Print(" ","\n");
 Print("\ Thus for the First case, degf is a strictly upper Triangular matrix,
 so M is solvable.");
 Print(" ","\n");Print(" ","\n");
 else
 degf:= StructuralCopy(degf); # creating duplicate of degf
 degf:=SwapRowsColumns(degf,3,4);
 Print("\ degf=",degf);
 Print(" ","\n");Print(" ","\n");
 Print("\ Thus for the First case, degf is a strictly upper Triangular matrix,
 so M is solvable.");
 Print(" ","\n");Print(" ","\n");
fi;
return (degf);
end;
```


## 8. Solveindic4Size4by4B Function

```
Solveindic4Size4by4B:=function(degf)
local i,m;
##
###
##
This function to convert the matrix degf to an upper triangular matrix.
##
The input of the function Solveindic4Size4by4B is a matrix degf of size
```

\#\# mxm where $m>=4$ such that $f 32<>0$ and $f 21=0$ with zeros on the diagonal and Sum(b) $=0$. \#\# The matrix degf of Remark 2.1 (ii) is one example of the input of this function.
\#\# It returns the matrix degf after replacement and tests whether it is \#\# a strictly upper triangular matrix or not.
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# \#\#
m:=Size (degf);
$\operatorname{deg}[2][1]:=0 ; \#$ Using (partial) ${ }^{\wedge} 2=0\left(d^{\wedge} 2=0\right.$ in this code) and $R$ is an integral domain degf[2] [3]:=0; \# Using (partial) ${ }^{\wedge} 2=0$ and $R$ is an integral domain
degf:=SwapRowsColumns (degf ,2,3);
if IsUpperTriangularMat(degf)=true then Print("\ degf=", degf); Print(" ","\n");Print(" ","\n"); Print("\ Thus for the second case, degf is a strictly upper triangular matrix, so $M$ is solvable.");

```
Print(" ","\n");Print(" ","\n");
```

else
degf:=SwapRowsColumns(degf ,3,4);
$\operatorname{degf}[1][3]:=0 ; \quad \#$ Using (partial) ${ }^{\sim} 2=0$ and $R$ is an integral domain
for i in [4..m] do
$\operatorname{deg}[1][i]:=0 ; \quad \#$ Using (partial) ${ }^{\wedge} 2=0$ and $R$ is an integral domain
$\operatorname{deg}[2][i]:=0 ; \quad \#$ Using (partial) ${ }^{\wedge} 2=0$ and $R$ is an integral domain
od;
degf:=SwapRowsColumns(degf,3,4);
degf:=SwapRowsColumns (degf,2,3);
degf:=SwapRowsColumns (degf,3,4);
Print("\ degf=", degf);
Print(" ","\n");Print(" ","\n");
Print("\ Thus for the second case, degf is a strictly upper triangular matrix,
so M is solvable.");
Print(" ","\n");Print(" ","\n");
fi;
return (degf);
end;

## 9. Solveindic4Size5by5 Function

```
Solveindic4Size5by5:=function(degf)
local i,j,m;
##
###
##
This function to convert the matrix degf to an upper triangular matrix.
##
The input of the function Solveindic4Size5by5 is a matrix degf of size
5x5 with f32=0 and Sum(b)=2 as in Remark 2.1(v).
##
It returns the matrix degf after replacement and tests whether it is
```

\#\# a strictly upper triangular matrix or not.
\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# \#\#
m:=Size(degf);
$\operatorname{degf}[3][2]:=0$; \# Using (partial) $)^{\wedge} 2=0\left(d^{\wedge} 2=0\right.$ in this code) and $R$ is an integral domain
$\operatorname{degf}[1][2]:=0$; \# Using (partial) $\wedge^{\wedge} 2=0$ and $R$ is an integral domain
\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#
\#\# We will do the following steps, because we have that
\#\# (partial) ${ }^{\wedge} 2=0$ ( $\mathrm{d}^{\wedge} 2=0$ in this code).
\#\# These steps will help us to convert the matrix degf
\#\# to an upper triangular matrix
\#\#
for i in [1..m] do
for $j$ in [1..m] do
if $j>=i+2$ then
$\operatorname{deg}[i][j]:=0 ;$
fi;
od;
od;
\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#
degf:= StructuralCopy(degf); \# creating duplicate of degf
degf:=SwapRowsColumns (degf,1,2);
if IsUpperTriangularMat (degf)=false then degf:=SwapRowsColumns (degf , 3,4);
fi;
if IsUpperTriangularMat (degf)=false then degf:=SwapRowsColumns(degf,4,5);
fi;
if IsUpperTriangularMat (degf)=false then
degf:=SwapRowsColumns(degf,3,4);
fi;
if IsUpperTriangularMat (degf)=false then
Print("\ degf=", degf);
Print(" ","\n");Print(" ","\n");
Print("\ Thus for the First case, degf is not a strictly upper triangular matrix.");
Print(" ","\n");Print(" ","\n");
else
Print("\degf=", degf);
Print(" ","\n");Print(" ","\n");
Print("\ Thus for the First case, degf is a strictly upper triangular matrix,
so $M$ is solvable.");
Print(" ","\n");Print(" ","\n");
fi;
return (degf);
end;

## 10. Solveindic4Size6by6 Function

```
Solveindic4Size6by6:=function(degf)
#local SwapRowsColumns;
##
###
##
This function to convert the matrix degf to an upper triangular matrix
##
The input of the function Solveindic4Size6by6 is a matrix degf of size
6x6. It is the first case of size 6x6 where f32=0 and b= [1,1,1]
i.e., Sum(b)=3 as in Remark 2.1(vi).
##
It runs the function SwapRowsColumns five times swapping rows and columns
until degf is upper triangular matrix.
It returns the matrix degf.
##
##
##
##
##
The the following steps will help us to convert the matrix
degf to an upper triangular matrix
##
degf:=SwapRowsColumns(degf,1,2);
degf:=SwapRowsColumns(degf,2,6);
degf:=SwapRowsColumns(degf,3,4);
degf:=SwapRowsColumns(degf,4,5);
degf:=SwapRowsColumns(degf,3,4);
##
###
##
return (degf);
end;
```


## 11. Solveindic4Size6by6Above Function

```
Solveindic4Size6by6Above:=function(degf)
local i,j,mysize,mycounter,mycounter1,mycounter2,mycounter3;
##
###
##
This function to convert the matrix degf to an upper triangular matrix.
##
The input of the function Solveindic4Size6by6Above is a matrix degf of
size m x m where m>=6. It is case (1) of size >= 6x6 where f32=0, as in
Remark 2.1(vii)
##
It returns the matrix degf after replacement and tests whether it is
a strictly upper triangular matrix or not.
##
```

mysize:=Size(degf);
$\operatorname{deg}[3][2]:=0 ; \#$ Using (partial) ${ }^{\wedge} 2=0\left(d^{\wedge} 2=0\right.$ in this code) and $R$ is an integral domain
$\operatorname{deg}[1][2]:=0 ; \#$ Using (partial) ${ }^{\wedge} 2=0$ and $R$ is an integral domain
\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#
\#\# We will do the following because we have that (partial)^2 =0
\#\# These steps will help us to convert the matrix degf to an
\#\# upper triangular matrix
\#\#
for i in [1..mysize] do
for $j$ in [1..mysize] do
if $j>=i+2$ then
$\operatorname{degf}[\mathrm{i}][\mathrm{j}]:=0$;
fi;
od;
od;
\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#
\#\# The following steps will help us to convert the matrix
\#\# degf to an upper triangular matrix
\#\#
if mysize<6 then
return("mysize must be >=6");
elif mysize=6 then
degf:=Solveindic4Size6by6(degf);
elif mysize=7 or mysize=8 then
mycounter:=mysize -6;
degf:=Solveindic4Size6by6(degf);
for i in [1..mycounter] do
if $i=1$ then
degf:=SwapRowsColumns(degf, 4+i,6+i);
degf:=SwapRowsColumns(degf, 3+i,4+i);
degf:=SwapRowsColumns(degf, 1 ,3+i);
fi;
if i>1 then
degf:=SwapRowsColumns(degf, 4+i,6+i);
degf:=SwapRowsColumns(degf, 3+i,4+i);
degf:=SwapRowsColumns(degf, 1+i,3+i);
degf:=SwapRowsColumns(degf, 1 ,1+i);
degf:=SwapRowsColumns(degf, $2,1+i)$;
fi;
od;
fi;
if mysize>=9 then
mycounter:=mysize -6;
degf:=Solveindic4Size6by6(degf);
for i in [1..mycounter] do
if $i=1$ then
degf:=SwapRowsColumns(degf, 4+i,6+i);

```
 degf:=SwapRowsColumns(degf, 3+i,4+i);
 degf:=SwapRowsColumns(degf, 1 ,3+i);
 fi;
 if i>1 then
 degf:=SwapRowsColumns(degf, 4+i,6+i);
 degf:=SwapRowsColumns(degf, 3+i,4+i);
 degf:=SwapRowsColumns(degf, 1+i,3+i);
 degf:=SwapRowsColumns(degf, 1 ,1+i);
 degf:=SwapRowsColumns(degf, 2 ,1+i);
 fi;
od;
degf:= StructuralCopy(degf); # creating duplicate of degf
mycounter1:=mysize -8;
for mycounter2 in [1..mycounter1] do
 for i in [1..mycounter2] do
 mycounter3:=mycounter2-i+1;
 degf:=SwapRowsColumns(degf, 2+mycounter3,3+mycounter3);
 od;
od;
fi;
if IsUpperTriangularMat(degf)=false then
 Print("\ degf=",degf);
 Print(" ","\n");Print(" ","\n");
 Print("\ Thus for the first case, degf is not a strictly upper triangular matrix");
 Print(" ","\n");Print(" ","\n");
 else
 Print("\ degf=",degf);
 Print(" ","\n");Print(" ","\n");
 Print("\ Thus for the first case, degf is a strictly upper triangular matrix,
 so M is solvable.");
 Print(" ","\n");Print(" ","\n");
 #return("Thus, M is solvable.");
fi;
return (degf);
end;
```


## 12. Solveindic4Sizembym Function

```
Solveindic4Sizembym:=function(degf)
local i,j,m;
##
###
##
This function to convert the matrix degf to an upper triangular matrix.
##
The input of the function Solveindic4Sizembym is a matrix degf of
size m x m with m>=3, as in Remark 2.1(viii). It is case (1) of size >= 6x6 where f32=0,
as in Remark 2.1(vii)
##
The function outputs a proof that M is solvable for this case.
###
```


## \#\#

m:=Size (degf);
\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#
\#\# We will do the following because we have that (partial)~2 $=0$
\#\# ( $\mathrm{d}^{\wedge} 2=0$ in this code) and $R$ is an integral domain.
\#\# These steps will help us to convert the matrix degf to an
\#\# upper triangular matrix
\#\#
$\operatorname{degf}[2][1]:=0 ;$
$\operatorname{degf}[2][3]:=0$;
for i in [1..m] do
for $j$ in [1..m] do if $j>=i+2$ then $\operatorname{degf}[i][j]:=0 ;$ fi;
od;

## od;

\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\# \#\#
\#\# After we set $i=2$ and $j=m$ we run the function SwapRowsColumns
\#\# while i<j with the input: SwapRowsColumns(degf,i,j) with
\#\# setting $i=i+1$ and $j=j-1$. These steps will help us to convert
\#\# the matrix degf to an upper triangular matrix
\#\#
i:=2;
j:=m;
while i<j do
degf:=SwapRowsColumns(degf,i,j);
i:=i+1;
j:=j-1;
od;
\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#
\#\# Tests whether the matrix degf is a strictly upper triangular matrix or not.
\#\#
if IsUpperTriangularMat(degf)=true then
Print("\ degf=", degf);
Print (" ","\n");Print(" ","\n");
Print("\ Thus for the second case, degf is a strictly upper triangular matrix,
so $M$ is solvable.");
Print(" ","\n");Print(" ","\n");
else
Print("\ degf=", degf);
Print(" ","\n");Print(" ","\n");
Print("\ Thus for the second case, degf is not a strictly upper triangular matrix.");
Print(" ","\n");Print(" ","\n");
fi;
\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#

## 13. Solveindic4WithProof Function

```
Solveindic4WithProof:=function(degf)
local i,j,t,Temp3,Cas1,b,x,jt,S1,j1,Temp4,g,m;
##
##
##
This function is called only if the conditions of Propositions 1.4.2
(as in the manual) holds.
##
The input of this function is a matrix degf of size m x m which is output
by the main function IsSolvableModuleWithProof.
##
It calls the functions: Solveindic4Size3by3, Solveindic4Size4by4A,
Solveindic4Size4by4B, Solveindic4Size5by5, Solveindic4Size6by6,
Solveindic4Size6by6Above and Solveindic4Sizembym
##
The function outputs a proof that M is solvable.
###
##
m:=Size(degf);
Temp3:=[];
Temp3 := StructuralCopy(degf); # backup
i:=0;
Cas1:=2^(m-3); ## Cas1 is the number of the cases which are solvable
jt:=0;
for i in [1..Cas1] do #loop through the solvable cases
 degf:= StructuralCopy(Temp3);
 ##
 ###
 ##
 ## In this section we convert decimal to binary which it helps us
 ## to represents fij by 0 oR 1 for some specific i and j, such that
 ## fij are entries below the diagonal of degf
 b:=[];
 x:=jt;
 while x>0 do
 Add(b,x mod 2);
 x:=(x-(x mod 2))/2;
 od;
 jt:=jt+1;
 S1:=m-Size(b)-3;
 if S1<>0 then
 for t in [1..S1] do
 Add(b,0);
 od;
 fi;
```

\#\# Set some entries of degf to zero, using the fact that
\#\# (partial)^2 $=0$ and $R$ is an integral domain
\#\#
j1:=0;
degf := StructuralCopy(Temp3);
for $j$ in [1..m-3] do
j1:=j+3;
if $b[j]=0$ then
$\operatorname{degf}[j 1][j 1-1]:=0 ;$
$\operatorname{degf}[j 1][j 1]:=0 ;$
else \#\# this case when $b[j]=1$
$\operatorname{degf}[j 1][j 1]:=0 ;$
$\operatorname{degf}[j 1-1][j 1]:=0 ;$
fi;
od;
\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#
\#\# If degf of size $3 x 3$ we set $f[i][i]=0$ for $i=1, \ldots, 3$,
\#\# using the hypothesis of Proposition 1.4.2
\#\#
$\operatorname{degf}[3][3]:=0 ;$
$\operatorname{degf}[2][2]:=0$;
$\operatorname{degf}[1][1]:=0$;
\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#
Temp4:=[];
Temp4:= StructuralCopy(degf); \# backup 2
$\mathrm{g}:=\operatorname{Sum}(\mathrm{b})$; \#\# g : Represents the sum of the entries of each vector b
degf:= StructuralCopy(Temp4);
if $g=0$ then \#\# This case represents the vector $b$ when all the entries of $b$ are zeros
Print (" $\backslash \mathrm{b}=\mathrm{"}, \mathrm{b}$ );
Print(" ","\n");Print(" ","\n");
Print("\i=",i);
Print(" ", "\n");Print(" ","\n");
Print("\ degf Original Case_after setting some elements to Zero is ", degf);
Print(" ","\n");Print(" ","\n");
if $m=3$ then
degf:=Solveindic4Size3by3(degf); \#\# It represents the first case when $f 32=0$.
fi;
if $m>=4$ then
degf:=Solveindic4Size4by4A(degf); \#\# It represents the first case when f32=0.
degf:= StructuralCopy (Temp4);
degf:=Solveindic4Size4by4B(degf); \#\# It represents the second case when f32<>0.
fi;
fi;
if $g=m-3$ then \# This case represents the vector $b$ when $a l l$ the entries of $b$ are Ones.

```
 Print("\ b=",b);
 Print(" ","\n");Print(" ","\n");
 Print("\ i=",i);
 Print(" ","\n");Print(" ","\n");
 Print("\ degf Original Case_after setting some elements to Zero is ",degf);
 Print(" ","\n");Print(" ","\n");
 if m=3 then
 degf:= StructuralCopy(Temp4);
 degf:=Solveindic4Sizembym(degf); ## It represents the second case when f32<>0.
 fi;
 if m=4 then
 degf:=Solveindic4Size4by4A(degf); ## It represents the first case when f32=0.
 degf:= StructuralCopy(Temp4);
 degf:=Solveindic4Sizembym(degf); ## It represents the second case when f32<>0.
 fi;
 if m=5 then
 degf:=Solveindic4Size5by5(degf); ## It represents the first case when f32=0.
 degf:= StructuralCopy(Temp4);
 degf:=Solveindic4Sizembym(degf); ## It represents the second case when f32<>0.
 fi;
 if m>=6 then
 degf:=Solveindic4Size6by6Above(degf); ## It represents the first case when f32=0.
 degf:= StructuralCopy(Temp4);
 degf:=Solveindic4Sizembym(degf); ## It represents the second case when f32<>0.
 fi;
 fi;
od; ############## End of The Loop of The Solvable Cases.
return("M is solvable.");
end;
```


## 14. SolvableModuleByUsualGradedWithProof Function

```
SolvableModuleByUsualGradedWithProof:=function(D,P)
local i,j,m,k1,k2,t,dimf,degf,f,diffk,dimej,dimei,f1,Cj,M1,M2,Cjb,Ca,Cja,Ma,
Mb,Mc, Xd, Xd1,Md,Me1,Me2,indic,indic1, x1, x2, x3,td,Temp1,Temp2, degf2,f12,Temp3;
##
##
##
The function SolvableModuleByUsualGraded is called only if the conditions
of Proposition 1.4.5 (as in the manual) hold.
##
The inputs of this function are the list of dimensions of the modules
D=[k_1, ..., k_n] where dim(e_i) = k_i and the degree P of the
differential on the module M. (The same inputs as the main function
IsSolvableModuleWithProof.)
##
The function outputs a proof that M is solvable.
##
###
##
m:=Size(D);
```

```
f1:=IdentityMat(m);
k1:=D[1];
j:=0;
t:=[];
dimf:=IdentityMat(m);
f:=IdentityMat(m);
##
##
##
In this section we generate the dimf-matrix following the hypothesis of
Proposition 1.4.5
##
for j in [1..m] do
 dimej:=D[j];
 for i in [1..m] do
 dimei:=D[i];
 dimf[i][j]:=dimej-dimei-P;
 if dimf[i][j]<0 then
 dimf[i][j]:=0;
 fi;
 degf[i][j]:=-1*dimf[i][j];
 od;
od;
Print(" ","\n");Print(" ","\n");
Print("\ dimf=",dimf);
Print(" ","\n");
##
###
##
In this section we compute new entries for matrix f, by going through the
entries of the matrix dimf and set f[i][j]= dimf[i][j] if dimf[i][j] >= 0
and f[i][j]=0 if dimf[i][j] < 0, for i=1, ..., m, depending on the facts
that in R, if dim (f) = j, i.e., f in R_j then degree of f = - j in the
unusual grading and any f of degree less than 0 it will be 0.
##
for j in [1..m] do
 for i in [1..m] do
 if i>j then
 if dimf[i][j]<0 then
 f[i][j]:=0;
 else
 f[i][j]:=dimf[i][j];
 fi;
 else
 f[i][j]:=dimf [i] [j];
 fi;
 od;
od;
Print("\ f=",f);
Print(" ","\n");
##
##
##
```

```
Tests whether the matrix f is an upper triangular matrix or not.
If f is an upper triangular we set f[i][i] to 0 where i=1,..., m
using the hypothesis of Proposition 1.4.5. Then compute the
matrix d of the differential "partial" with respect to the
basis S ={ e_i, ..., e_m}.
##
if IsUpperTriangularMat(f)=true then
 for i in [1..m] do
 f[i][i]:=0;
 od;
 for i in [1..m] do
 for j in [1..m] do
 if f[i][j]<>0 then
 f[i][j]:=Concatenation("f",String(i),String(j));
 fi;
 od;
 od;
 Print("\ d=",f);
else
 return("f is not upper triangular matrix");
fi;
##
##
##
In this section we construct a proof that M is solvable
if f is an upper triangular matrix.
##
Print(" , (Since d^2=0 and R is an integral domain). ");
Print(" ","\n");Print(" ","\n");
Cjb:=" ";
Ca:="Let CO=O and ";
Print(Ca);
for j in [1..m] do
 Cja:=Concatenation(["C",String(j),"=<"]);
 for i in [1..j] do
 if i=j then
 M1:=Concatenation(["e",String(i)]);
 else
 M1:=Concatenation(["e",String(i), ", "]);
 fi;
 Cja:=Concatenation([Cja,M1]);
 od;
 if j=m then
 Cja:=Concatenation([Cja,"> "]);
 else
 Cja:=Concatenation([Cja,"> , "]);
 fi;
 Print(Cja);
 if j=m then
 Cjb:=Concatenation([Cjb,"C",String(j),"/","C",String(j-1)," is free. "]);
 else
 Cjb:=Concatenation([Cjb,"C",String(j),"/","C",String(j-1)," is free, "]);
 fi;
```

```
od;
Print(" ","\n");
Print(Cjb);
Print(" ","\n");Print(" ","\n");
M2:=[];
Ma:="x=";
Mb:="d(x)=";
Mc:="d(x)=a1(0)";
Xd:="If x in C";
Me2:="Hence, O=CO subset of ";
for j in [1..m] do
 Xd1:=Concatenation([Xd,String(j),", then x can be written uniquely as: "]);
 Print(Xd1);
 Ma:=Concatenation([Ma,"a",String(j),"*","e",String(j)]);
 Print(" ","\n");
 Print(Ma);
 Ma:=Concatenation([Ma,"+"]);
 Mb:=Concatenation([Mb,"a",String(j),"*","d(e",String(j),")"]);
 Print(" ","\n");
 Print(Mb);
 Mb:=Concatenation([Mb,"+"]);
 if j>1 then
 Mc:=Concatenation([Mc,"a",String(j),"("]);
 for i in [1..j-1] do
 if i<j-1 then
 Mc:=Concatenation([Mc,"f",String(i),String(j),"*","e",String(i),"+"]);
 else
 Mc:=Concatenation([Mc,"f",String(i),String(j),"*","e",String(i),")"]);
 fi;
 od;
 fi;
 Print(" ","\n");
 Print(Mc);
 Mc:=Concatenation([Mc,"+"]);
 Md:=Concatenation([" in ","C",String(j-1)]);
 Print(Md);
 Print(" ","\n");Print(" ","\n");
 Me1:=Concatenation(["Hence ","d(C",String(j),") subset of C",String(j-1)," and
 then d(C",String(j),"/C",String(j-1),")=0."]);
 Print(Me1);
 Print(" ","\n"); Print(" ","\n");
 if j<m then
 Me2:=Concatenation([Me2,"C",String(j)," subset of "]);
 else
 Me2:=Concatenation([Me2,"C",String(j),"= M is a composition series for M. "]);
 fi;
od;
Print(Me2);
Print(" ","\n"); Print(" ","\n");
##
##
##
```

```
return("M is solvable.");
```

end;

## 15. IsSolvableModuleWithProof Function

```
IsSolvableModuleWithProof:=function(D,P)
local i,j,m,k1,k2,t,dimf,degf,f,diffk,dimej,dimei,f1,indic,indic1,
x1,x2,x3,td,Case1,Case2,Case3,Case4,Case5,Temp1,Temp2,degf2,f12,
Temp3,t1, t2, sumt, S,B;
##
###
##
The function IsSolvableModuleWithProof is the main function of our algorithm.
It checks which of the conditions of Propositions 1.4.1, 1.4.2, 1.4.4, 1.4.5
or Remark 1.4.3 hold (see the manual). Then it calls one of the functions:
Solveindic1WithProof, Solveindic2WithProof, Solveindic3WithProof,
Solveindic4WithProof and SolvableModuleByUsualGradedWithProof according
to the condition that matches the function.
##
The inputs of this function are the list of dimensions of the modules
D=[k_1, ..., k_n] where dim(e_i) = k_i and the degree P of the
differential on the module M.
##
The function outputs the dimension m of the vector of dimensions,
the matrix dimf of dimensions, the identity matrix f of size mxm,
the matrix degf of degrees, the flags indic and x_i; i=1,2,3 to
determine which of Solveindic(n)WithProof function to run; where n=1,..., 4
##
##
m:=Size(D);
if P=1 or P=-1 then ## With the usual graded or negative graded
 Print(" ","\n");Print(" ","\n");
 return("Then, M is solvable (by Carlsson,1983).");
fi;
if P<=-2 then ## Negative graded
 f1:=IdentityMat(m); ####
 k1:=D[1]; # k1 represents dim(e_1)
 j:=0;
 t:= [];
 dimf:=IdentityMat(m);
 degf:=IdentityMat(m);
 degf2:=IdentityMat(m);#####
 f:=IdentityMat(m);
 ##
 ##
 ##
 ## In this section we set the flags "indic" and x_i; i=1,2,3, by using the
 ## degree P. These flags are used to determine which of "Solveindic(n)WithProof";
 ## n=1,...,4 functions to run, after checking the conditions of Propositions
```

```
1.4.1, 1.4.2, 1.4.4 and Remark 1.4.3.
##
indic:=0;
x1:=0;
x2:=0;
x3:=0;
for i in [2..m] do
 j:=j+1;
 k2:=D[i];
 diffk:=k1-k2; ## This step finds that diffk=k(i)-k(i+1)
 Print("\ diffk=",diffk);
 Print(" ","\n");Print(" ","\n");
 if k1>k2 then
 t[j]:=diffk;
 if diffk>=-P then
 indic:=1; # It means Propositions 1.4.1 holds
 x1:=x1+1;
 elif diffk<-P then
 indic:=2; # It means Propositions 1.4.3 holds
 x2:=x2+1;
 fi;
 k1:=k2;
 else
 if diffk<P then
 indic:=3; # It means Propositions 1.4.4 holds
 x3:=x3+1;
 fi;
 fi;
 k1:=k2;
od;
if indic=1 then
 if x1<m-1 then
 return("Not True2 (the conditions of this Proposition 1.4.1 must be satisfied)");
 fi;
elif indic=2 then
 if x2<m-1 then
 return("Not True3 (the conditions of this Proposition 1.4.3 must be satisfied)");
 fi;
elif indic=3 then
 if x3<m-1 then
 return("Not True4 (the conditions of this Proposition 1.4.4 must be satisfied)");
 fi;
fi;
if indic=2 then # Case two when t(i)+t(i+1)<=-P
 x1:=0;
 x2:=0;
 j:=0;
 td:=[];
 t1:=t[1];
 for i in [2..m-1] do
 j:=j+1;
 t2:=t[i];
 sumt:=t1+t2;
```

```
 td[j]:=sumt;
 if sumt<=-P then
 x1:=x1+1;
 indic:=2; # It means Propositions 1.4.3 holds (when t(i)+ t(i+1)<=-P)
 else
 indic:=4; # It means Propositions 1.4.2 holds (when t(i)+ t(i+1)>-P)
 x2:=x2+1;
 fi;
 t1:=t2;
 od;
 if x1<m-2 and x2<m-2 then
 return("Not True6");
 fi;
fi;
Print("\ indic=",indic);
Print(" ","\n");Print(" ","\n");
##
###
##
###
##
In this section we compute the matrix dimf of dimensions of the elements
f_ij; i,j=1, ..., m of the matrix of the differential "partial" with
respect to the basis S ={ e_i, ..., e_m}.
Also we compute a matrix degf of degrees of f_ij, by seting
degf[i][j]=-dimf[i][j] where i,j=1, ..., m.
##
for j in [1..m] do
 dimej:=D[j];
 for i in [1..m] do
 dimei:=D[i];
 dimf[i][j]:=dimej-dimei+P;
 if dimf[i][j]>0 then
 dimf[i][j]:=0;
 fi;
 degf[i][j]:=-1*dimf[i][j];
 od;
od;
Print("\ dimf=",dimf);
Print(" ","\n");Print(" ","\n");
Print("\ degf=",degf);
Print(" ","\n");
##
###
##
################################### START-----Case one #######################
if indic=1 then
 Case1:=Solveindic1WithProof(dimf,f);
fi;
################################### END-----Case One #########################
##
#################################### START-----Case Two #########################
```

```
 if indic=2 or (indic=4 and m=2) then
 # (Since there is a common condition between them which is when m=2 and f11=f22=0)
 if m=2 then
 Case4:=Solveindic4Size2by2(degf);
 Print("\ Hence, if f11=f22=0 then the module M is solvable. Otherwise M
 outside the classification.");
 Print(" ","\n");Print(" ","\n");
 else
 Case2:=Solveindic2WithProof(dimf,m);
 fi;
 fi;
 ################################### END-----Case Two #########################
 ##
 #################################### START-----Case Three #####################
 if indic=3 then
 Case3:=Solveindic3WithProof(m,dimf,f);
 fi;
 #################################### END-----Case Three ########################
 ##
 ################################### START-----Case Four ######################
 if indic=4 then
 Case4:=Solveindic4WithProof(degf);
 fi;
 #################################### END-----Case Four #########################
 ##
 ################################### START-----Rerurn Cases 1-4 ###############
 if indic=1 then
 return(true);
 fi;
 if indic=2 and m<>2 then
 return(fail);
 fi;
 if indic=3 then
 return(true);
 fi;
 if indic=4 then
 return(true);
 fi;
 #################################### END-----Rerurn Cases 1-4 ##################
fi;
################################### START-----Case Five ##########################
##
In this section we satisfy the conditions of Proposition 1.4.5
##
S:=1;
if P>=2 then ## With the usual graded
 for i in [1..m-1] do
 diffk:=D[i+1]-D[i];
 Print(" ","\n");
 Print("\ diffk=",diffk);
 Print(" ","\n");
```

```
 if D[i]< D[i+1] and diffk>P then
 B:=1;
 else
 B:=0;
 fi;
 S:= S*B;
 od;
 if S=1 then
 Case5:=SolvableModuleByUsualGradedWithProof (D,P);
 else
 Print(" ","\n");Print(" ","\n");
 return("The input must be P>=2 and D[1]<D[2]<...<D[m] and
 D[i+1]-D[i]>P for i in [1..m]");
 fi;
fi;
return(true);
################################### END-----Case Five ##############################
end;
```


## Bibliography

[1] A.J. AL-Juburie and A.J. Duncan, AutParCommGrp(Finite Presentations of Automorphism Groups of Partially Commutative Groups and Their Subgroups) package, 2015, GAP System Library.
[2] M. Aldrich and J.R. Rozas, Exact and semisimple differential graded algebras, Comm. Algebra 30 (2002), 1053-1075.
[3] M. Amasaki, Generators of graded modules associated with linear filter-regular sequences, Journal of Pure and Applied Algebra 114 (1996), 1-23.
[4] M. Angel and R. Dlaz, On n-differential graded algebras, Journal of Pure and Applied Algebra 210(3) (2007), 673-683.
[5] L.L. Avramov and R. Buchweitz, Homological algebra modulo a regular sequence with special attention to codimension two, Journal of Algebra 230.1 (2000), 2467.
[6] L.L. Avramov, H. Foxby, and L. Halperin, 1999, manuscript.
[7] L.L. Avramov and D.R. Grayson, Resolutions and cohomology over complete intersections, Computations in algebraic geometry with Macaulay 2, Algorithms and Computations in Mathematics 8, Springer (2002), 131-178.
[8] A. Baudisch, Subgroups of semifree groups, Acta Math. Acad. Sci. Hungar (1-4) (1981), 19-28.
[9] K.A. Beck, On the image of the totaling functor, Communications in Algebra 43.4 (2015), 1640-1653.
[10] J. Bernstein and V. Lunts, Equivariant sheaves and functors, Springer, 1994.
[11] M. Bestvina and N. Brady, Morse theory and finiteness properties of groups, Invent. Math. 129 (1997), 445-470.
[12] M. Bestvina, B. Kleiner, and M. Sageev, The asymptotic geometry of rightangled Artin groups, I, Geometry and Topology 12 (2008), 1653-1700.
[13] J.A. Bondy and U.S.R. Murty, Graph theory with aplications, first edition, The Macmillan Press LTD, 1976.
[14] K. Bux, R. Charney, J. Crisp, and K. Vogtmann, Automorphisms of twodimensional RAAGs and partially symmetric automorphisms of free groups, Groups Geom. Dyn. 3(4) (2009), 541-554.
[15] G. Carlsson, On homology of finite free $(z / 2)^{k}$-complexes, Invent. Math. 74 (1983), 139-147.
[16] R. Charney, An introduction to right-angled Artin groups, Geom. Dedicata 125 (2007), 141-158.
[17] R. Charney, J. Crisp, and K. Vogtmann, Automorphisms of 2-dimensional rightangled Artin groups, Geom. Topol. 11 (2007), 2227-2264.
[18] R. Charney and M. Farber, Random groups arising as graph products, Algebraic and Geometric Topology 12 (2012), 979-995.
[19] R. Charney and K. Vogtmann, Finiteness properties of automorphism groups of right-angled Artin groups, Bull. Lond. Math. Soc. 41(1) (2009), 94-102.
[20] $\qquad$ , Subgroups and quotients of automorphism groups of RAAGs, Lowdimensional and symplectic topology 82(9) (2011), 1-19.
[21] M. Cohen and L.H. Rowen, Group graded rings, Comm. Algebra 11(11) (1983), 1253-1270.
[22] M. F. A. Couette, Études sur le frottement des liquides, Annales de Chimie et de Physique 21 (1890), 433-510.
[23] E.C. Dade, Group-graded rings and modules, Math. Z. 174(3) (1980), 241-262.
[24] M.B. Day, Peak reduction and finite presentations for automorphism groups of right-angled Artin groups, Geometry and Topology 13 (2009), 817-855.
[25] $\qquad$ , On solvable subgroups of automorphism groups of right-angled Artin groups, IJAC: Proceedings of the 2009 International Conference on Geometric and Combinatorial Methods in Group Theory and Semigroup Theory 21(1-2) (2011), 61-70.
[26] $\qquad$ , Finiteness of outer automorphism groups of random right-angled Artin groups, Algebraic and Geometric Topology 12 (2012), 1553-1583.
[27] $\qquad$ , Full-featured peak reduction in right-angled Artin groups, Algebraic and Geometric Topology 14 (2014), 1677-1743.
[28] C. Droms, Graph groups, coherence, and three-manifolds, J. Algebra 106(2) (1987), 484-489.
[29] , Isomorphisms of graph groups, Proc. Amer. Math. Soc. 100(3) (1987), 407-408.
[30] , Subgroups of graph groups, J. Algebra 110(2) (1987), 519-522.
[31] J.A. Drozd, Tame and wild matrix problems. In: Representation theory II. lecture notes in mathematics, vol.832, pp.242-258, Springer, Berlin,, 1980.
[32] D. Dugger and B. Shipley, Topological equivalences for differential graded algebras, Advances in Mathematics 212 (2007), 37-61.
[33] D. Dummit and M. Foote, Abstract algebra, John Wiley And Sons, third edition, New York, 2004.
[34] A.J. Duncan, I.V. Kazachkov, and V.N. Remeslennikov, Automorphisms of partially commutative groups I: Linear subgroups, Groups, Geometry, and Dynamics 4(4) (2010), 739-757.
[35] A.J. Duncan and V.N. Remeslennikov, Automorphisms of partially commutative groups II: Combinatorial subgroups, International Journal of Algebra and Computation 22(7) (2012), 1250074.
[36] E.S. Esyp, I.V. Kazachkov, and V.N. Remeslennikov, Divisibility theory and complexity of algorithms for free partially commutative groups, Contemporary Mathematics, Groups, Languages, Algorithms 378 (2005), 319-348.
[37] M. Ferrero and E. Jespers, prime ideals of graded rings and related matters, Communications in Algebra 18(11) (1991), 3819-3834.
[38] M. Gutierrez and S. Krstic, Normal forms for basis-conjugating automorphisms of a free group, Int. J. Algebra Comput. 8 (1998), 631-669.
[39] M. Gutierrez, A. Piggott, and K. Ruane, On the automorphisms of a graph product of abelian groups, Groups Geom. Dyn. 6 (2012), 125-153.
$\qquad$ , On the automorphisms of a graph product of abelian groups, Groups, Geometry and Dynamics 6(1) (2012), 125153.
[41] S.P. Humphries, On representations of Artin groups and the Tits conjecture, J. Algebra 169 (1994), 847862.
[42] T. Hungerford, Algebra, Springer-Verlang, New York, 1974.
[43] J.F. Jardine, A closed model category structure for differential graded algebras, Cyclic cohomology and noncommutative geometry (Waterloo, ON, 1995), Fields Inst. Commun., vol. 17, Amer. Math. Soc., Providence, RI (1997), 55-58.
[44] C. Jensen and J. Meier, The cohomology of right-angled Artin groups with group ring coefficients, bull, London Math. Soc. 37 (2005), 711-718.
[45] E. Jespers, Radicals of graded rings, Colloq. Math. Soc. J. Bolyai 61, North Holland, Amsterdam 61 (1993), 109-130.
[46] B. Keller, On differential graded categories, International Congress of Mathematicians, Eur. Math. Soc., Zurich II (2006), 151-190.
[47] G.M. Kelly, Chain maps inducing zero homology maps, Proc. Cambridge Philos. Soc. 61 (1965), 847-854.
[48] S. Kim and F.W. Roush, Homology of certain algebras defined by graphs, J. Pure Appl. Algebra 17 (1980), 179-186.
[49] H. Koberda, Right-angled Artin groups and their subgroups, 2013, An advanced mathematical course, Yale University, USA, http://users.math.yale.edu/users/koberda/raagcourse.pdf.
[50] T.Y. Lam, A first course in non commutative rings, Springer-Verlag, New York, 1991.
[51] M. Laurence, A generating set for the automorphism group of a graph group, J. London Math. Soc. 52(2) (1995), 318-334.
[52] A. Legrand, Differential graded modules over a nonconnected differential graded algebra, Journal of Pure and Applied Algebra 72 (1991), 53-66.
[53] M. Lohrey and S. Schleimer, Efficient computation in groups via compression, In Volker Diekert, Mikhail Volkov, and Andrei Voronkov, editors, Computer Science Theory and Applications, volume 4649 of Lecture Notes in Computer Science, Springer Berlin /Heidelberg 4649 (2007), 249-258.
[54] S. Maclane, Homology, Springer-Verlag, New York, 1995.
[55] X. Mao, A criterion for a connected $D G$ algebra to be homologically smooth, arXiv:1301.4382 4 (2013).
[56] J. McCool, Some finitely presented subgroups of the automorphism group of a free group, J. Algebra 35(6) (1975), 205-213.
[57] $\qquad$ , On basis-conjugating automorphisms of free groups, Canadian J. Math. 38(6) (1986), 1525-1529.
[58] A. Minasyan, Hereditary conjugacy separability of right angled Artin groups and its applications, Groups Geometry and Dynamics 6 (2012), 335-388.
[59] C. Nastasescu and F. Van Oystaeyen, Graded ring theory, Mathematical Library, (28), North Holland, Amsterdam, 1982.
[60] G.A. Noskov, The image of the automorphism group of a graph group under abelianization map, Vestnik NGU, Mat., Mekh. 12(2) (2012), 83-102.
[61] L.A. Orlandi-Korner, The Bieri-Neumann-Strebel invariant for basisconjugating automorphisms of free groups, Proceedings of the American Mathematical Society 128(5) (2000), 1257-1262.
[62] S. Papadima and A.I. Suciu, Algebraic invariants for right-angled Artin groups, Math. Ann. 334 (2006), 533-555.
[63] D. Pauksztello, Homological properties of differential graded algebras, Ph.D. thesis, Department of Pure Mathematics, Leeds University, 2008.
[64] M. Refai, Group actions on finite CW-complexes, Ph.D. thesis, Department of Mathematics, Colorado State University, 1989.
[65] $\qquad$ , On noetherian modules graded by g-sets, Acta Mathematica Hungarica 69(3) (1995), 211-219.
[66] M. Refai and M. Obiedat, On graduations of $k\left[x_{1}, x_{2}, \cdots, x_{n}\right]$, J. of Institute of Math and Computer Sci. 6(3) (1993), 241-252.
[67] A.V. Roiter, Matrix problems, proceedings of the international congress of mathematicians (Helsinki,1978), Acad. Sci. Fennica (1980), 319-322.
[68] K.H. Rosen, Discrete mathematics and its applications, sixth edition, McGrawHill, New York, 2007.
[69] H. Servatius, Automorphisms of graph groups, J. Algebra 126 (1989), 34-60.
[70] E. Toinet, A finitely presented subgroup of the automorphism group of a rightangled Artin group, Journal of Group Theory 15(6) (2012), 811-822.
[71] R.D. Wade, The lower central series of a right-angled Artin group, The Quarterly Journal of Mathematics; doi: 10.1093/qmath/hat002 (2013).
[72] J.H.C. Whitehead, On equivalent sets of elements in a free group, Ann. of Math. (2)37 (1936), 782-800.


[^0]:    DeleteVerticesFromGraph:=function(St,V,E)

