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Abstract 

In current practice a plane stress framework comprising elastic moduli and Poisson’s 

ratios is most commonly used to represent the mechanical properties of architectural 

fabrics. This is often done to enable structural analysis utilising commercially available, 

non-specialist, finite element packages. Plane stress material models endeavour to fit a flat 

plane to the highly non-linear stress strain response surface of architectural fabric.  

 

Neural networks have been identified as a possible alternative to plane stress material 

models. Through a process of training they are capable of capturing the relationship 

between experimental input and output data. With the addition of historical inputs and 

internal variables it has been demonstrated that neural network models are capable of 

representing complex history dependant behaviour. The resulting neural network 

architectural fabric material models have been implemented within custom large strain 

finite element code. The finite element code, capable of using either a neural network or 

plane stress material model, utilises a dynamic relaxation solution algorithm and includes 

geodesic string control for soap film form-finding. Analytical FORM reliability analysis 

using implied stiffness matrices' derived from the equations of the neural network model 

has also been investigated.    
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Notation 

Finite Element Formulation 

{𝜎} Vector of element body stresses 

𝜎𝑥  Stress along the local 𝑋-axis (fabric warp direction) 

𝜎𝑦  Stress along the local 𝑌-axis (fabric fill direction) 

𝜏𝑥𝑦  Shear stress in the local co-ordinate system 

{𝜎0}  Vector of element initial stresses (pre-stress) 

{𝜀}   Vector of element body strains 

𝜀𝑥  Strain along the local 𝑋-axis (fabric warp direction) 

𝜀𝑦  Strain along the local 𝑌-axis (fabric fill direction) 

𝛾𝑥𝑦  Shear strain in the local co-ordinate system 

{𝜀0}  Vector of element initial strains 

{𝑥}𝑖  Element geometry array containing  nodal co-ordinates (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) in the 

global coordinate system 

{𝐶𝑜}𝑖  Initial nodal coordinates in the global co-ordinate system of the 𝑖th 

element 

{𝐶𝑡}𝑖  Updated nodal coordinates in the global co-ordinate system of the 𝑖th 

element 

𝑥𝑖, 𝑦𝑖 , 𝑧𝑖   Nodal coordinates in the global co-ordinate system at the 𝑖th node 

𝑋𝑖 , 𝑌𝑖, 𝑍𝑖   Nodal coordinates in the element local co-ordinate system at the 𝑖th 

node 

{𝛿}𝑖  Displacement array containing nodal displacements (𝑢𝑖, 𝑣𝑖, 𝑤𝑖) aligned 

with the global co-ordinate system 

𝑢𝑖, 𝑣𝑖 , 𝑤𝑖  Nodal displacements at the 𝑖th node aligned with the 𝑥, 𝑦, 𝑧 axis of the 

global co-ordinate system respectively 
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𝑈𝑖 , 𝑉𝑖, 𝑊𝑖  Nodal displacements at the 𝑖th node aligned with the 𝑋, 𝑌, 𝑍 axis of the 

local co-ordinate system respectively 

[𝐸]  Material stiffness matrix  

𝐸𝑤  Young's modulus aligned with local fabric warp direction 

𝐸𝑓  Young's modulus aligned with local fabric fill direction 

𝜐𝑓𝑤, 𝜐𝑤𝑓 Poisson's ratio 

𝐺𝑤𝑓  Shear modulus 

{P} Vector of applied forces 

{𝑅}  Vector of residual forces 

{𝐷}  Vector of combined displacements for system 

[𝐾𝑇]  System stiffness matrix 

[𝐾𝐸]  System elastic stiffness matrix 

[𝐾𝜎]  System geometric stiffness matrix 

  

Element Formulation 

𝑁𝑖   Element shape functions of the 𝑖th node defined at a point in terms of 

natural co-ordinates 

𝜉1, 𝜉2, 𝜉3  Natural co-ordinates 

𝜉, 𝜂  Independent natural co-ordinates 

𝐷𝑁𝜉,𝜂
  2 by 6 array of element shape functions derivatives with respect to 

independent natural co-ordinates 

𝐷𝑁𝑋,𝑌
  2 by 6 array of element shape functions derivatives with respect to local 

co-ordinates 𝑋 and 𝑌 

𝑇𝑚  Transformation matrix between global and local co-ordinate system at a 

point defined in terms of natural co-ordinates  

𝑙𝑖 , 𝑚𝑖 , 𝑛𝑖  Directional cosines between global and local co-ordinate axis 

𝜃  Angle between material warp direction and global 𝑥-direction 

𝜃𝑤  Basis vector describing material warp direction in the global 𝑥𝑦 plane 
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𝑍̂  Basis vector describing local 𝑍-direction 

𝑌̂  Basis vector describing local 𝑌-direction aligned with material fill 

direction 

𝑋̂  Basis vector describing local 𝑋-direction aligned with material warp 

direction 

𝑓𝑥, 𝑓𝑦, 𝑓𝑧  Nodal forces aligned with the 𝑥, 𝑦, 𝑧 axis of the global co-ordinate 

system respectively 

Φ  General scalar quantity 

𝐽, Γ  Jacobian matrix and inverse Jacobian matrix 

[𝜀0]  Array of first order Green-Lagrange strain terms 

[𝜀𝐿]  Array of second order Green-Lagrange strain terms 

𝐵  B-matrix of the finite element formulation 

𝐵0  Linear B-matrix related to first order strain terms 

𝐵𝐿  Non-linear B-matrix related to second order strain terms 

𝐺  G-matrix of the finite element formulation 

{∆}  Array of local displacement derivatives with respect to the local co-

ordinate system  

𝑊𝑖  Gauss weight 

  

Cable Formulation 

𝐿0   Initial cable length 

𝐿  Displaced cable length 

[𝑐̂]  Unit vector of cable directional cosines  

{𝑐𝑥, 𝑐𝑦, 𝑐𝑧}  Cable directional cosines 

𝐹𝑐𝑎0  Cable pre-stress 

𝐹𝑐𝑎  Cable force 

{𝑓𝑐𝑎}𝑖  Cable element residual force vector 

𝑇𝑘
𝑐𝑎  Cable transformation matrix 

𝑘𝐸
𝑐  Cable local element stiffness 

𝐾𝑇
𝑐𝑎  Cable system stiffness matrix 

𝐾𝐸
𝑐𝑎  Cable elastic stiffness matrix 

𝐾𝜎
𝑐𝑎  Cable geometric stiffness matrix 
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Geodesic Control String Formulation 

𝑐𝑠̂  Unit vector of geodesic control string directional cosines 

{𝑐𝑠𝑥, 𝑐𝑠𝑦, 𝑐𝑠𝑧}  Geodesic control string directional cosines 

{𝑓𝑐𝑠}𝑘  Geodesic control string residual force vector 

  

Wrinkling Procedure 

𝜎𝑚𝑎𝑥,𝑚𝑖𝑛
𝑝

  Principle stresses 

𝜀𝑚𝑎𝑥,𝑚𝑖𝑛 
𝑝

  Principle strains 

𝜃
𝑝

  Angle between maximum stress direction and local fabric warp 

direction 

[𝐸𝑚𝑜𝑑]  Modified material stiffness matrix 

[𝐸𝑟𝑜𝑡]  Transformed material stiffness matrix 

𝑃  Wrinkling penalisation factor 

𝜎𝑚𝑖𝑛
𝑝𝑒𝑟

  Minimum permissible stress 

  

Neural Network Variables 

𝐼𝑖  Input to the 𝑖𝑡ℎ  input neuron 

𝐼𝑖
𝑚𝑎𝑥  Maximum training input to the 𝑖𝑡ℎ  input neuron 

𝐼𝑖
𝑚𝑖𝑛  Minimum training input to the 𝑖𝑡ℎ   input neuron 

𝐼𝑖
𝑁𝑁  Scaled output of the 𝑖𝑡ℎ   input neuron 

𝑁𝐼  Number of neurons in the input layer 

𝑤𝑗𝑖
𝐼𝐻  Connection weight between 𝑖𝑡ℎ  input neuron and 𝑗𝑡ℎ  hidden neuron 

𝑏𝑗
H  Bias to the 𝑗𝑡ℎ  hidden neuron 

𝐻𝑗  Output of the 𝑗𝑡ℎ  hidden neuron 

𝑁𝐻  Number of neurons in the hidden layer 

𝑤𝑘𝑗
𝐻𝑂  Connection weight between  𝑗𝑡ℎ  hidden neuron and 𝑘𝑡ℎ output neuron 

𝑏𝑘
𝑂  Bias to the 𝑘𝑡ℎ output neuron 

𝑂𝑘
𝑁𝑁  Scaled output of the 𝑘𝑡ℎ output neuron 

𝑁𝑂  Number of neurons in the output layer 

𝑂𝑘  Output of the 𝑘𝑡ℎ output neuron 

𝑂𝑘
𝑚𝑎𝑥  Maximum training output of the 𝑘𝑡ℎ  output neuron 

𝑂𝑘
𝑚𝑖𝑛  Minimum training output of the 𝑘𝑡ℎ  output neuron 

𝑇𝑘,𝑐  Target output of the 𝑘𝑡ℎ  output neuron 

𝑥𝑘
𝑂  Input to the 𝑘𝑡ℎ  output neuron 

𝑥𝑗
𝐻  Input to the 𝑗𝑡ℎ  hidden neuron 
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𝜉𝑛  Historical stress stain internal variable 

Δ𝜂𝑛  Historical stress strain step internal variable 

𝐸𝑖𝑚𝑝𝑙𝑖𝑒𝑑  Implied elastic stiffness matrix 

𝑆𝑉𝑖   Historical input value 

𝐼𝑉𝑖
    

 
Internal historical input value 

Residual Strain Removal 

𝜀𝑖𝑇𝑃
  Strain a load profile turning point 

𝜀𝑖𝑇𝑃

𝑅𝑒𝑠  Residual strain at load profile turning point 

𝜀𝑖
𝑅𝑅  Strain with residual strain removed  

 

Reliability Analysis 

𝐺𝑖(𝑋𝑠𝑖)  A limit state function 

𝑋𝑠𝑖   Statistical basic variable 

𝜎𝑝𝑒𝑟
𝑤   Permissible fabric warp direction stress 

𝜎𝑝𝑒𝑟
𝑓

  Permissible fabric fill direction stress 

𝛿𝑝𝑒𝑟   Permissible nodal displacement 

𝑡𝑙𝑜𝑎𝑑  Imposed load coefficient  

𝑥𝑠𝑖
∗   Design point value 

𝜇𝑋𝑠𝑖

𝑁   Mean of design point value 

𝜎𝑋𝑠𝑖

𝑁   Standard deviation of design point value 

𝑥′𝑠𝑖
∗   Design point in standard normal space 

𝛼𝑖  Directional cosine  

𝛽  Safety index 

 

Acronyms 

ANN Artificial Neural Network 

CST Constant Strain Triangle 

DIC Digital Image Correlation 

EC0 Eurocode 0 

ETFE Ethene-co-tetrafluoroethene 

FDM Finite Difference Method 

FORM First Order Reliability Method 

GA Genetic Algorithm 

GP Genetic Programming 

iHLRF improved Hassofer-Lind, Rackwitz-Fiessler 
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LST Linear Strain Triangle 

LVDT Linear Variable Differential Transformer 

MSAJ Membrane Structures Association of Japan 

NURBS Non-Uniform Rational Basis Splines 

PTFE Polytetrafluoroethylene 

PVC Polyvinylchloride 

RMS Root Mean Squared Error 

SORM Second Order Reliability Method 

UDL Uniformly Distributed Load 

URS Updated Reference Strategy 
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Chapter 1. Introduction 

1.1 Background 

Architectural fabric structures typically comprise of a doubly curved pre-stressed 

membrane supported by any combination of cables, ridge beams, hoops, edge clamps and 

masts as illustrated by Figure 1-1. A fabric membrane may also be supported 

pneumatically using positive air pressure either within the entire building envelope or as 

individual cladding units, Figure 1-2 and Figure 1-3. The fabric membrane may form the 

entire building envelope or may be combined with other structural materials such as glass, 

wood or masonry to provide a full or partial enclosure [1]. 

 

Figure 1-1: ASU SkySong innovation Centre, Arizona USA [2] 

Architectural fabrics have negligible bending and compression stiffness. Hence, fabric 

structures are designed with sufficient curvature to enable environmental loads to be 

resisted as tensile forces in the plane of the fabric. This differs greatly with conventional 

roofs in which loads are typically resisted by arch action or by stiffness in bending. The 

shape of the fabric canopy is vital to its ability to resist all applied loads in tension.  



Chapter 1 Introduction  6 
 

 

Figure 1-2: Tempory pmeumatic structure 
 
 

 

Figure 1-3: Eastleigh Tennis Centre, Southampton, UK 
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Figure 1-4: Ashford Designer Outlet, Kent, UK  © Buro Happold 
 

The most common use of tensile membrane structures is to create striking aesthetically 

pleasing long span shelters or enclosures, as may be required for sports stadia, shopping 

complexes (Figure 1-4) and airports. This is mainly due to the weight of the material 

which is often treated as negligible for the purpose of design. In contrast self-weight is 

often the limiting factor in the design of more traditional concrete or steel long span 

structures. However, architectural fabric structures benefit from numerous additional 

advantages relevant for both large scale and smaller scale projects. These include high 

light transmission, reduced environmental impact and reduced requirement for ‘heavy’ 

support structure. Architectural fabrics have also been successfully used to create 

temporary and deployable canopies, Figure 1-5 and Figure 1-6 . 
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Figure 1-5: Venezuelan Pavilion, Hanover, Germany 
 
 

 

Figure 1-6: Medinah Umbrellas Prophets Holy Mosque 
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One of the main barriers to the use of architectural fabric in Europe, and worldwide, is a 

general lack of standardised design guidance which leads to a low level of readily available 

information for designers, fabricators and clients. A lack of knowledge prohibits the 

consideration of architectural fabric structures at the initial design stage. Lack of 

knowledge combined with high levels of uncertainty with regard to fabric performance 

also leads to the necessity for specialist testing and design which often proves to be 

prohibitively expensive for smaller scale projects. There have also been a number of 

catastrophic failures of fabric architecture which have also reduced confidence in the 

sector [3, 4]. This leads to the conclusion that a more robust standardised design 

methodology is required, along with a better understanding of architectural fabric 

behaviour, to enable the wider dissemination of architectural fabric structures. 

Architectural fabrics, sometimes referred to as structural or technical fabrics, typically 

comprise orthogonal woven yarns covered by one or more layers of coating, Figure 1-7. 

The yarn directions are typically referred to as warp and fill with the warp running along 

the fabric roll and the fill running across it. The configuration of the yarns is a product of 

the weaving process. The warp yarns are typically held taught and the fill yarns are woven 

between them, this leads to a greater crimp in the fill direction as demonstrated in Figure 

1-8. 

 

Figure 1-7: Typical architectural fabric warp and fill yarn configuration. 
 

Warp Yarns Fill Yarns 

Fill 

Warp 



Chapter 1 Introduction  10 
 

 

(a) 

 

(b) 

Figure 1-8: Microscopic image of PVC coated polyester fabric  
(a) Warp direction cross section (b) Fill direction cross section [6]  

 

The most commonly used yarns are either polyester, produced through a melt spinning 

process, or glass yarns, which are drawn from a melt. Polyester yarns are generally coated 

with polyvinylchloride (PVC) and glass yarns by polytetrafluoroethylene (PTFE). The 

coating provides additional stability to the weave geometry, protects the yarns from the 

elements, and enables the creation of a weather tight envelope. Alternative yarn and 

coating combinations include Silicone coated glass fabrics and PTFE coated PTFE fabrics. 

Additional outer coatings may also be added to enable better joining, printing and self-

cleaning properties [5]. 

In the simulation of tensile fabric structures it is common practice to represent membrane 

material as a homogeneous continuum described by a plane stress strain-stress 

relationship, where the material characteristics are represented by Young's modulus and 

Poisson's ratio. Fitting a plane stress model to biaxial test data for typical architectural 

fabrics leads to inconsistencies between the physical and theoretical descriptions, with 

values of Poisson's ratio in excess of the compressibility limit of 0.5, and for some fabrics 

approaching 2.0. An alternative to the plane stress framework is therefore required to 

more accurately represent fabric behaviour. 

Neural networks offer an exciting solution for the constitutive modelling of architectural 

fabrics as they are capable of capturing highly non-linear response. Furthermore, neural 
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network material models effectively ‘learn’ the material response directly from 

experimental data and therefore no prior knowledge of the response is required.  

1.2 Aim and Objectives 

The aim of this research is to provide a means of linking material testing and structural 

analysis within a computational mechanics framework that accurately describes both 

material and structural behaviour. The key hypothesis is that it is possible to represent 

experimentally captured architectural fabric stress-strain response, including historical 

loading effects, using a neural network material model within large strain finite element 

analysis.  

Neural network material models are selected based on their ability to capture highly non-

linear functional mappings. This enables the accurate representation of the complex fabric 

strain-stress response to biaxial loading. In addition the proven ability of the neural 

network material models to capture the effects of historical loading is a distinct advantage 

over other previously published material models employed in the simulation of 

architectural fabric structures. In order to develop an accurate and implementable 

material model, fabric response must be captured experimentally in a way that represents 

fabric response in a real world situation. 

In order to demonstrate the neural network material model it is vital that it be 

implemented within analysis code suitable for the simulation of architectural fabric 

structures. To that end a bespoke structural analysis tool will be developed. 

It is anticipated that this initial research will lead to the development of tools enabling 

accurate whole life simulation of fabric structures. This could enable the simulation of 

membrane installation leading to improvements in installation techniques and allow the 

accurate prediction of the medium and long term performance of fabric structures. 

The specific objectives are to: 

 Adapt pre-existing Fortran large strain finite element code to provide plane-stress 

analysis comparisons and enable the implementation of the neural network material 

model. 

 Capture the fabric material response through mechanical testing of architectural fabric. 

 Develop a neural network approach to represent the relationship between biaxial 

fabric strain and fabric stress with residual strain and load history effects included. 

 Implement and demonstrate the neural network material model. 
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 Demonstrate epistemic uncertainty introduced to neural network material models by 

random weight initiation and training data division.  

 Perform reliability analysis using the implemented material model. 

1.3 Scope 

The first section of this research focuses on the development of the finite-element based 

analysis tool in preparation for the implementation of the neural network material model. 

The second section is focused on the development of architectural fabric neural network 

material models. Fabric response is modelled with and without the inclusion of residual 

strain and load history effects. It should be noted that true time dependant behaviour such 

as creep is not included as loading rate is not implicitly captured in the network training 

data. 

The third and final section demonstrates the implementation of the neural network 

material models developed in the second section within the analysis tool of the first. 

Uncertainty is investigated and a reliability analysis protocol is developed. 

1.4 Thesis Structure 

Chapter 2. Literature review.  

Gives an overview of current analysis methods applied to architectural fabric structure. 

The current practice for fabric testing and architectural material modelling , with specific 

focus on plane-stress material models used in industry, is explored. A need for an accurate 

non-linear material model is demonstrated. The advantages and disadvantages of neural 

network material models are summarised and the previous applications of neural 

networks to material modelling are reviewed.  

Chapter 3. Finite Element Formulation 

The formulation of a six node Linear Strain Triangle (LST) including large strain terms is 

presented and its implementation within finite-element analysis code is demonstrated.  

Chapter 4. Neural Network Training and Validation  

The procedure for generating neural network material models for architectural fabric is 

presented. Initially fabric response is modelled with residual strain removed. This form of 

model effectively maps a single surface for the response in each of the material directions 

(warp and fill). Therefore, it is referred to as a response-surface neural network model. 
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This model is comparable with existing plane-stress architectural fabric material models 

and utilises similar experimental data in its development. The neural network model is 

then advanced to include load history requiring the development of specialist testing. This 

form of model is referred to as a load-history neural network model. Both forms of neural 

network models are validated using experimental data not used in training.  

Chapter 5. Neural Network Material Model Implementation.  

Implementation of the material models presented in Chapter 4 is described. Adaptation of 

the finite-element code to allow for the new material model is detailed including the 

development of iterative analysis to allow for inclusion of load history. Both forms of 

neural network material models are demonstrated using analysis of simple but realistic 

fabric structures including a conic and a hypar and compared with equivalent plane-stress 

analysis. Epistemic uncertainty introduced by the neural network is explored and a 

procedure for reliability analysis developed.  

Chapter 6. Reliability Analysis 

The analytical partial derivatives required for probabilistic reliability analyses are derived 

and validated. A protocol for the determination of statistical descriptions for the 

variability of neural networks is proposed. The statistical variables are used in an adapted 

reliability analysis protocol in order to perform a reliability analysis of a realistic hypar 

structure.   

 

Chapter 7. Conclusion and Recommendations.   

A summary of conclusions presented at the end of chapter is provided along with 

recommendations for further work.  

Bibliography 

All references use a numeric format, A full list of reference arranged in the order they 

appear may be found at the back of this document. 

Appendix 

All supporting material  
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1.5 Conferences and Publications 

IStructE Young Researchers Conference 2012 - Poster Presentation 

TensiNet Symposium 2013, [RE]THINKING Lightweight structures, 2013, Istanbul - 

Presentation and paper: A Neural Network Material Model for the Analysis of Fabric 

Structures 

Structural Membranes 2013, The sixth conference on Textile Composites and Inflatable 

Structures, Munich - Presentation: Implementation of a Neural Network Material Model for 

the Analysis of Fabric Structures 

 

Contributed to, 

Gosling, P. D., et al. (2013). "Analysis and design of membrane structures: Results of a 

round robin exercise." Engineering Structures 48: 313-328.
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Chapter 2. Literature Review 

In the first section of this chapter, numerical methods developed for the design of tensile 

membrane structures will be introduced and compared. The reliability analysis of fabric 

structures will also be addressed. This is done with a view to select an appropriate 

simulation procedure to develop and use in the implementation of the material model to 

be investigated in this thesis.   

In the second section, the material models applied to architectural fabrics will be reviewed 

along with experimental methods used to capture the fabric strain-stress response. 

Particular attention is paid to the plane stress framework currently used as the industry 

standard in the design of fabric structures. Various methodologies applied in literature to 

address the shortcoming of the plane stress framework are also reviewed. The need for an 

improved material model will be established. 

In the third and final section, artificial neural network material models are introduced. 

Neural network development and training is described along with the advantages and  

disadvantages associated with neural networks. The suitability of neural networks for the 

modelling of architectural fabrics will be established. A methodology for the application of 

neural network material modelling to architectural fabrics will be developed based on 

these findings.     

2.1 Simulation of Architectural Fabric Structures 

This section addresses the finite elements and solution algorithms typically used for the 

numerical simulation of tensile membrane structures along with their use within the 

design process. In general, the design process prior to construction may be defined as 

follows [7-9]. 

1. Conceptual development 

The site is assessed and a desired physical configuration is defined along with 

materials for both the membrane and support structure. 

2. Form finding 

An equilibrated form is established using physical modelling or, more commonly in 

current practice, finite element analysis using a zero elastic stiffness and positive 
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definite geometric stiffness element with a nonzero pre-stress. At this stage the 

structural shape is optimised via the manipulation of boundary conditions and pre-

stress. 

3. Static load analysis 

Appropriate surface pressures representing typical load cases, including snow 

loading and wind uplift, are applied to the form found structural model. In finite 

element analysis, material properties gathered through physical testing of chosen 

architectural fabrics should be used. However, due to the complexities and expense 

of material testing in many cases assumed stiffness values are used, at least for 

initial design.  Depending on the results of static analysis it may be necessary to 

return to the form finding step in order to achieve acceptable stress and strain 

values as dictated by the strength and serviceability limits of the fabric material 

and it's support structure. This process is likely to require numerous iterations. 

Current practice uses a permissible stress approach. However, more detailed 

reliability approaches may be adopted in order to validate the final configuration.  

4. Patterning 

The final form found configuration is used in conjunction with experimentally 

derived compensation values to develop cutting patterns for fabric panels that may 

be joined together on or off site prior to installation. Compensation values are 

applied in order to achieve the final structural form at the required pre-stress. The 

material direction within each panel and the position of seams should be taken into 

account within the simulation.    

5. Construction sequencing 

A sequence and method of assembly is established, and where possible simulated. 

Key to this sequence is the fixing of support and membrane components in place 

and application of pre-stress to the required level. This information will impact on 

the design of connection and support details.     

 

2.1.1 Form Finding  

Architectural fabrics possess negligible compressive stiffness. Fundamental to the ability 

of a fabric structure to resist load purely in tension is the formation of either an anticlastic 

or synclastic surface geometry. Anticlastic geometry comprises opposing curves that 

generally follow the warp and fill directions of the architectural fabric. This form of 

surface is stabilised by uniform pre-stress applied in the plane of the membrane by 

boundary restraints such as cables. Synclastic geometry comprises spherical type surfaces 
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that are stabilised by pneumatic or hydraulic pressure normal to the membrane surface. 

Such doubly curved surfaces are based on minimal surfaces. In mathematical terms, a 

minimal surface has zero mean curvature at any point. This leads to a locally minimised 

surface area formed between boundary conditions [1]. 

A physical model of a minimal surface may be formed by a soap film that has uniform 

surface tension. Frei Otto and his team at the Institute for Lightweight Structures are 

generally referred to as the pioneers of Soap film experiments. 

 “The study of soap bubbles greatly helps the understanding of pneumatic 

structures. In each soap bubble or agglomeration of soap bubbles the membrane 

stresses are equal at each point and in every direction, if we neglect infinitesimal 

stress differences caused by the weight of the bubble skin” [10, pg.11]    

Certain boundary conditions prohibit the formation of a minimal surface. In this situation 

a pseudo minimal surface may be achieved using architectural fabric by allowing localised 

stress variations. For example, the formation of a minimal surface between upper and 

lower rings to form a conic type structure is limited by necking where the mid plane 

radius reduces as the distance between the rings increases. This effect has been shown to  

be reduced by the application of a higher level of stress in the meridinal direction than in 

the circumferential direction [11].  

Unlike in the case of traditional structural forms where geometry is directly prescribed, 

the geometry of a tensile membrane structure is governed by the prescribed boundary 

conditions and desired stress state. An initial form-finding analysis is required followed by 

the generation of a suitable cutting pattern to reproduce that form. Prior to the 

development of non-linear computational methods, physical models were used in the 

development of geometry. Given a sufficiently accurate physical model, patterns or 

component geometry may be measured directly from the model, and used in hand 

calculations of forces [12]. These calculations offer only approximations as they cannot 

account for the effect of displacement on force. With the invention and subsequent 

development of computer-aided design in the late sixties, it became possible to generate 

minimal surfaces using computer methods and perform detailed stress analysis. Since 

then the power of commercially available computers has increased exponentially allowing 

the generation of increasingly complex numerical models.  

2.1.2 Solution Methods 
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The large displacement finite element formulation required for the simulation of fabric 

structures leads to state equations for equilibrium that are non-linear and cannot be 

solved in a single step. The principal approaches to solving the state equations of the finite 

element method for fabric structures may be divided in to two basic groups – matrix and 

vector methods. Vector methods are also referred to as dynamic methods. The key 

difference between matrix methods and vector methods is that the condition of 

equilibrium and compatibility for the entire structure remains coupled throughout the 

analysis for the former and are decoupled until equilibrium for the latter. 

2.1.2.1 Matrix Methods 

Argyris undertook some of the earliest work on matrix methods. He and his colleagues 

applied the Newton-Raphson method to the form-finding of cable-nets [13].  This method 

utilised material properties leading to additional computational cost and non-minimal 

surface solutions. Since this early work, attempts have been made to improve the 

suitability of this method when applied to form-finding, typically by the removal of 

material stiffness from the virtual work equation solved for equilibrium.   

The Force Density method was developed by Schek at Stuttgart University for the form 

finding of general networks [14]. This method makes use of the ratio between element 

forces and length, or ‘force densities’, to drive convergence to equilibrium. It simplifies the 

geometrically non-linear problem to a set of linear equations. Linkwitz described the 

development of the ‘Stuttgart-direct-approach’ which combines least squares, graph-

theory and numerical mathematics with force-densities [15]. This approach has been 

demonstrated using a simple form-finding exercise on a quadrilateral network restrained 

in four corners. It was shown that it is the proportional relationship between mesh and 

boundary cable force densities that governs the final form of the structure rather than 

their absolute values. One of the primary weaknesses of the method is that the coefficients 

used to drive convergence are a function of element length and so the shape of the initial 

mesh has an impact on the final solution. The force-densities are also physically 

meaningless and the values prescribed are typically  based only on the experience of the 

engineer.  The Force Density Method has been extended to incorporate membrane 

elements [16, 17] to allow for the representation of shear resistance. 

In order to perform static analysis, the finite difference terms are eliminated through the 

application of material properties to the finite difference equations describing the final 

form found configuration. The equilibrium equations are reported to become identical to 
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the equilibrium equations of the finite element method [17]. This procedure is used by the 

Easy Lightweight Structure Design software package [18]. 

When using a matrix method, such as the Newton-Raphson method, to solve the state 

equations of equilibrium with a zero stiffness matrix, the lack of in plane stiffness leads to 

floating nodes in the mesh surface. This leads to a singular structural stiffness matrix. The 

Updated Reference Strategy (URS) [19, 20] solved this problem by adding a continuation 

factor,    to the virtual work equation that artificially introduces in plane stiffness. The 

equation for virtual work,   ,  for a minimal surface with an isotropic stress field, given 

by,     

                      
 

  (2-1) 

becomes, 

                                
 

       . (2-2) 

In (2-1) and (2-2)  s is the Cauchy stress tensor,  t is the membrane thickness, A is the 

membrane area in the reference state,   and    are the real and virtual deformation 

gradients and   is the aforementioned continuation factor. The solution found using 

equation (2-2) does not represent the true minimal surface while    is less than 1. 

However URS employs an iterative process where the geometry solution to equation (2-2) 

is  found with increasing values of     The geometry from the previous step is used as the 

reference or initial geometry until   is equal to 1 and the final minimal surface has been 

found, Figure 2-1. 
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Figure 2-1: Hypar meshes illustrating the steps of a form finding simulation 
employing the Updated Reference Strategy [21]. 

Bonet and Mahaney also proposed the use of an ‘artificial constitutive model’ to reduce the 

problems of singularity caused by zero in-plane stiffness in a flat mesh [22]. This 

technique proposed the simultaneous minimisation of area and shear distortion to reduce 

mesh distortion. The authors demonstrated a positive effect on mesh regularity for the 

classical form finding problem of Scherk’s surface using a quadrilateral mesh. However, it 

was noted that limited difference was observed when using a triangular mesh.    

2.1.2.2 Vector Methods 

Early work on vector methods was undertaken by Barnes and Wakefield. Following the 

work of Day (1965), a Dynamic Relaxation algorithm was applied to the analysis various 

tension structures using a CST element that transformed the continuum membrane 

problem into a discrete cable analysis [23, 24]. The Dynamic Relaxation algorithm is based 

on Newton’s second law of motion. The force, or out-of-balance (residual) force is given by 

the sum of applied load and structural element forces at a specific node. The mass is an 

assumed lumped mass at that node. As the objective is to find the equilibrium condition 

and not the true dynamic behaviour of the structure, a fictitious mass is adopted, and is 

often defined to optimise convergence.  Barnes describes the development and use of 
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Dynamic Relaxation for form-finding and analysis of tension structures in [25]. Dynamic 

relaxation is employed in both GSA and Tensyl analysis packages.   

Recently particle methods  of form finding have been explored as an alternative to the 

classical finite element method [26, 27]. In [27] the a particle method is described for use 

in the form finding of gravity loaded shell structures using dynamic relaxation. This 

method could equally be applied to form finding of a tension structure. It is noted that the 

method is less computationally efficient than the finite element method but allows form 

finding without the definition of a grid.   

2.1.2.3 Comparison of Methods 

A comparative review of available numerical methods for structural form finding of 

general networks is presented in [28]. A useful framework is established in order to allow 

clear comparison of the methods. The  methods reviewed in [28] are divided in to three 

general categories. Stiffness matrix methods, that use both the elastic stiffness geometric 

stiffness matrices. Material independent geometric stiffness methods which employ matrix 

methods to solve the limit state equations. The final category, dynamic equilibrium 

methods, are also material independent that find static equilibrium by finding the 

equivalent steady-state solution of dynamic equilibrium.  

Geometric stiffness methods in general, and the multi-step form finding method with force 

adjustment in particular, were found to be more computationally efficient than dynamic 

equilibrium and stiffness matrix methods for form finding a minimal surface net. When 

form finding a network with non-uniform forces a single method or category of methods is 

not identified as being superior. It is also stated that application of the cable-net analogy is 

not easily applied to the simulation of a membrane due to the disregard of shear effects. 

This review offers some very useful insights into the similarities and differences between 

the various numerical form finding  methods available but cannot be used in isolation to 

inform a decision on the best method to be used for form finding with membrane 

elements.   

2.1.3 Specialist Membrane Finite Element Formulations 

Wakefield identified key attributes required for a fabric analysis package [29]. These 

include: control of surface stress during form finding, the ability to control fabric weave 

orientation during both form finding and analysis, the availability of specialist membrane 

elements, and the integration of patterning into the form-finding process.  The elements 

required for the simulation of fabric structures include membrane elements, geodesic 
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string elements, and slip cables, as well as more typical beam elements used to simulate 

supporting structures.  

2.1.3.1 Constant Strain Triangle  

Early work in the development of a specialist membrane element focused on the three-

node constant strain triangle (CST) formulation. A detailed review of this work may be 

found in [30] and [31]. An improved CST element has been proposed with the inclusion of 

higher order terms to overcome deficiencies in the basic formulation [31]. The CST 

element  continues to be used and is often used to benchmark higher-order elements 

including 6 & 8-node isoperimetric finite element formulations based on the linear strains. 

These elements attempt to overcome some of the shortcomings of the CST elements 

through the ability to represent a curved geometry and generate smoother stress 

distributions and transitions, particularly in areas exhibiting steep stress gradients. It was 

found in [31] that an isoperimetric element formulation generates a smoother stress 

distribution than the large strain CST formulation with only a small increase in 

computational expense.   

2.1.3.2 Isopararmetric formulations  

Isopararmetric formulations utilise natural co-ordinates to maintain inter-element 

compatibility by mapping the curved element onto standardised flat configuration defined 

by area or natural co-ordinates. In [32] and [31] the element geometry is transformed 

from the local Cartesian co-ordinate system on the tangent element plane to an oblique 

curvilinear material co-ordinate system, Figure 2-2. Alternatively in [30, 33] an 8 node 

quadrilateral element is developed with the local material co-ordinate system defined by 

the tangents to the element surface at each element Gauss point aligned with the fabric 

warp direction using a user defined angle.  A detailed description of the development of 

isoparametric elements is presented in [34] and has been used in the development of a 

number of specialist membrane element formulations including [30] and more recently 

[35].  
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Figure 2-2: Total, local, and basic isoparametric elements [32]  

A fully integrated design and analysis finite element methodology is presented in [35]. 

This includes formulations for both slip cable and membrane finite elements. The key 

novel feature described in this methodology is the fact that the membrane element 

accounts for development of the final 3-dimensional shape from initially flat panels, Figure 

2-3. The form finding process via minimal surfaces is rejected. The initial shapes of the 

fabric panels are defined by hand and are then geometrically refined in an iterative 

process based on the results of multiple analysis runs. This process is continued until a 

permissible stress state is found. Three examples are presented - the inflation of a square 

membrane, the analysis of a flat membrane bounded by cables, and a simple conic with 

edges cables. This method severely limits the available geometries and the trial and error 

process is likely to be time consuming. An alternative approach would be to perform 

patterning analysis in order to determine the magnitude of locked in stress in conjunction 

with the development of flat patterned panels.  
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Figure 2-3: Reference system for membrane element [35] 

This paper highlights the importance of patterning consideration in the early stages of 

model development. It also explores the likelihood of non-uniform stress fields resulting 

from the development of flat geometry into doubly curved geometry. However, the 

material model used to describe the material response is absolutely critical for the 

generation of useful, meaningful, results from this type of simulation. In [35] the authors 

used a constitutive model based on a unit cell of fabric in place of the more typical plane 

stress constitutive model.  

2.1.4 Uncertainty and Reliability Analysis 

A comprehensive review of current design practice involving numerous contributors from 

both industry and academia was undertaken in [36]. The review involved a comparative 

study of the form-finding and load analysis of a set of simple but realistic fabrics structures 

by each of the contributors. The results generated highlight the vast variability between 



Chapter 2 Literature Review  31 

the reactions, stresses, and displacement produced by the various simulation procedures 

employed within the industry. 

In the simulation and design of complex systems such as a fabric structure not all, if any, 

variables in the structural model can be identified with absolute certainty. These 

uncertainties may be categorised into 2 groups – epistemic uncertainty and aleatoric 

uncertainty. Aleatoric uncertainty is a statistical uncertainty. This group contains the 

inherent variability associated with a physical or simulated process; for example, 

uncertainty in material behaviour introduced by a manufacturing process. This type of 

uncertainty may be measured in terms of statistics generated through repeated 

simulations or physical tests. Epistemic or systematic uncertainties are variables or 

relationships that are identified as unknown in the process but are not accounted for in 

the model.  

Once it is accepted that both aleatoric and epistemic uncertainties exist within structural 

design it becomes important that this uncertainty is quantified in some way. Uncertainty 

quantification aims to identify sources of uncertainty and categorise them with a view to 

reduce all uncertainties to aleatoric uncertainties. Sources of uncertainty in the simulation 

and design of fabric structures include variability of actions, material properties and 

geometry, uncertainties in the load and resistance effects due to essential simplification of 

the system, and lack of knowledge concerning material behaviour and actions in real 

world conditions [16]. Reliability analysis of a structure aims to account for the identified 

uncertainties and to ultimately quantify the reliability (or safety) of a structure in terms of 

a probability of failure or a safety index. 

In the Eurocodes the definition for reliability is given as:  

"...the ability of a structure to comply with given requirements under specified conditions 

during the intended life, for which it was designed. In quantitive sense reliability may be 

defined as the complement of the probability of failure" [16]     

A reliability analysis requires that the structural behaviour be defined in terms of a finite 

number of statistical variables. In the analysis of fabric structures these variables may 

include, but are not limited to, loading, mechanical properties and geometry [8]. It is also 

required that the failure condition is defined as a differentiable function , which is positive 

in the safe domain and negative in the failure domain. This function is known as the limit 

state function and may be categorised as either an ultimate limit state, defining total 
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structural failure or collapse, or a serviceability limit state, defining a point at which the 

structure is no longer fit for purpose [20].  

The failure probability of a structural system may be calculated using either approximate 

methods or simulation methods.  Approximate methods assume a particular form of the 

limit state function around the “design point” (e.g. linear in the case of FORM and parabolic 

in the case of SORM) to enable calculation of the reliability index  , defined as the 

minimum distance from an origin point to the limit state surface in standard normal space. 

The probability of failure,   , is given by, 

                    
                  (2-3) 

where      represents the model defined in terms of uncertain parameters,   ,    

represent design points transformed in standard normal space, and      is the standard 

normal cumulative density function [37]. FORM and SORM approximations of a limit state 

surface are illustrated in Figure 2-4.  

 

Figure 2-4: Visualisation of FORM and SORM limit state approximations in standard 
normal space (reproduced from [11]) 

Simulation methods use multiple simulation runs with procedurally generated sets of 

uncertain variables in order to assess the probability of failure. Monte-Carlo simulation is 

the most widely used method in this category [11]. Importance Sampling aims to improve 

on the efficiency of reliability analysis via the Monte Carlo simulation by generating a 

greater number of samples in the region of the failure domain that accounts for the 

majority of the probability of failure. It is demonstrated in [38] that Importance Sampling  
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is ineffective for high-dimensional reliability analysis due to an inability to generate 

sufficient samples in the important region of the failure domain. The validity of the design 

point used in FORM and SORM is also shown to be affected by high-dimensional non-linear 

problems.  

In the simplest case of an approximate method where both the structural behaviour and 

limit state function is defined by a linear equation, the reliability index   may be found in a 

single step. Where the structural behaviour is described by a more complex non-linear 

approximation, i.e. defined implicitly from a finite element analysis, the reliability analysis 

becomes an optimisation problem where   is minimised within the standard normal space 

iteratively, Figure 2-5. A number of different optimisation algorithms for FORM, namely 

the fast probability integration method, hypersphere method, successive approach 

method and directional cosines method, are directly compared to Monte Carlo simulation 

in [16]. It is found that the directional cosines method shows the quickest convergence 

and has the added benefit of providing sensitivity information about the significance of the 

uncertain variables, allowing for simplification of the problem by the removal of stochastic 

variables with low sensitivities with respect to the limit state function. A commonly used 

directional cosine optimisation algorithm is the improved Hassofer-Lind, Rackwitz-

Fiessler (iHLRF) algorithm. It is required that the uncertainty variables are normally 

distributed. Where they are not normally distributed, they must be transformed to a 

normal distribution prior to their transformation to a standard normal variable. This is 

achieved via the Rackwitz-Fiessler transformation [31].  
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Figure 2-5: Integration of finite element analysis with FORM reliability analysis 
(reproduced from [39]) 

FORM and SORM reliability methods rely on the assumption that a single global design 

point, the point at the minimum distance from the origin in standard normal space, exists 

on the limit state surface. In practice, there may be potentially many local minima on the 

surface of the limit state function, any or all of which may be found when using a typical 

gradient driven optimisation algorithm and a range of starting points.  One solution to this 

problem, proposed in [40], is to force the optimisation algorithm to find multiple points by 

constructing 'barriers' around previously found solutions by moving the design point 

away from the origin. This enables an assessment to be made of the likelihood that the 

true global point has been found.  

Finite element analyses, especially for non-linear problems, are computationally 

expensive. Therefore, the number of times the finite element model is called to calculate 

the value of the limit state function needs to be limited, if only for practical reasons, [19].  

FORM and SORM have the advantage that they typically require only 5-10 evaluations of 

the limit state function (and therefore finite element analyses) to converge to a value of   

with sufficient accuracy, [41]. The combination of the computationally expensive finite 
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element analysis with a generally low probability of failure makes simulation methods, 

such as Monte Carlo simulation, unworkable because of the requirement for a number of 

simulations in the order of 105.  

Limitations of FORM and SORM are addressed in [19] and [41]. Convergence issues are 

introduced by discontinuous non-linear failure surfaces. One suggested remedy is the use 

of smooth material models. The generation of trial points located too far into the failure in 

the early stages of the search may cause the finite element analysis to collapse or 

convergence to take too many steps.  It is proposed that either limiting the step size or 

restricting the allowable position of the trial points in the initial steps of the search offers a 

solution to this problem. Collapse or failure of the finite element analysis is likely to occur 

when one or more statistical variable deviates far from their initial mean value. It is 

suggested that limiting the step size is acceptable, as this area of the failure region is 

unlikely to contain the design point. Therefore these regions may be avoided without 

reducing the accuracy of the estimated failure probability.  

FORM implemented with a specialist fabric finite element code is demonstrated in [8]. 

This paper is a continuation of the work undertaken in [31]. Reliability factors are 

obtained for two examples, a simple conceptual hypar and the real Doncaster Education 

City Crèche canopy. The reliability values obtained are compared with Eurocode guidance 

as well as deterministic limit state design using stress reduction factors. The main 

motivation for the development of reliability analysis for fabric structures is to enable the 

assessment of the reliability of a structure without the over simplification introduced by 

the use of an all-encompassing stress-reduction factor. Reliability analysis provides a 

formal framework for defining structural safety. As shown the Round Robin paper, [36], 

there is no consensus for the value of the stress reduction factor, essentially because it is 

based on serendipity.   

2.1.5 Summary and Conlusion 

The design process applied to fabric structures is highly specialised. Fabric structures 

resist all applied load in tension. Therefore, a doubly curved surface geometry is required 

in order to resist out of plane loads. The geometric form of a fabric structure is not directly 

prescribed, rather a form finding analysis is required in order to determine the form that 

is dependent on the applied pre-stress and boundary conditions. A minimal surface, such 

as that formed by a soap film, has been identified as an ideal form for a fabric structure. 
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Definition of a zero elastic stiffness in finite element analysis leads to floating nodes in the 

plane of the fabric. This makes the equilibrium solution to the virtual work equation 

singular. The finite difference method, which reduces the geometrically  non-linear 

problem to a set of linear equations, uses finite-differences to drive convergence. The use 

of finite differences is not ideal as the final solution is dependent on the initial 

configuration. The updated reference strategy introduces an artificial in-plane stiffness 

term to the virtual work equation. An iterative form finding process is undertaken, during 

which the in plane stiffness term is gradually reduced to zero. Dynamic relaxation utilises 

a vector method to solve the limit state equation where the condition of equilibrium and 

compatibility is decoupled. Geodesic control elements may be employed to control the 

final mesh configuration. These are useful for the definition and control of fabric panels 

which may be used for patterning after the form finding process is complete. 

Two main element formulations have been applied to the simulation of architectural 

fabrics, the constant strain triangular element and both triangular and quadrilateral 

higher order isoparametric elements. Isoparametric elements have the advantage of 

allowing curved geometry and are more suitable for the capture of steep stress gradients. 

The isoparamteric element formulation may be enhanced to include the local material 

direction by the inclusion of an angle term describing the material direction in the local co-

ordinate transformation. In this thesis an isoparametric large strain triangular element 

formulation will be employed with a dynamic relaxation solution algorithm. The use of 

dynamic relaxation is advantageous when implementing an alternative material model to 

the 3x3  plane stress elastic stiffness matrix, as the final solution is not determined directly  

from the structural stiffness matrix. Only the diagonal terms of the global stiffness matrix 

are used as damping coefficients. The solution is driven by the current out of balance force 

determined from the current level of stress given by the material model for the current 

level of strain. 

FORM reliability analysis has been  applied to fabric structures. The use of a directional-

cosine optimisation method, such as the improved Hassofer-Lind, Rackwitz-Fiessler 

(iHLRF) algorithm, enable the assessment of the significance of the uncertain variables. 

The reliability analysis is complicated by a non -linear limit state function. Mitigations may 

be required in order to stabilise the analysis procedure and the presence of multiple 

design points or a high degree of non-linearity may make the application of FORM analysis 

infeasible. The analysis procedure should be validated using a simulation reliability 

procedure such as a Monte Carlo simulation or Importance Sampling to ensure that a 

single minimum design point can be identified.   
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2.2 Determination and Representation of Material Behaviour 

The static analysis of a tensile fabric structure requires a material model along with 

boundary conditions and initial geometry, determined through form finding. The material 

model typically takes the form of a constitutive equation that relates values of strain to 

stress or vice versa. The accuracy of such material models is heavily dependent on 

assumptions made to simplify the material response. The various models may be divided 

into three disparate categories - elastic matrix models, mathematical models and 

mechanical models. Common to all material models is the requirement to accurately 

capture the fabric material response obtained from physical testing in order to validate 

and, in the majority of cases, calibrate the model.  

Architectural fabrics exhibit a number of distinct responses under the application of load. 

They exhibit different mechanical characteristics in the warp and weft yarn directions. The 

fabric response contains nonlinearity’s and is greatly influenced by the ratio of loading in 

the two directions. After the initial application and removal of load, unrecoverable strains 

alter the fabric response . This effect is generally reduced but remains in subsequent 

loading and unloading cycles [42-44]. The well documented nonlinear stress strain 

response of architectural fabric is attributed to the internal structure of the fabric and the 

combination of deformation mechanisms therein. These have been studied at length since 

the 1980s.  The mechanisms include crimp interchange, yarn extension and crushing, 

coating extensions, friction between yarn filaments and friction between yarns and 

coating [42, 45]. 

2.2.1 Fabric Testing Methodologies 

Many testing methodologies for fabrics were first developed for the determination of 

mechanical properties of uncoated woven fabrics used in the clothing industry [46]. In 

more recent years testing methodologies have been developed for fabrics used in 

engineering applications including woven fabrics used in the production of composites 

[47] as well as architectural fabrics. However, only a limited number of testing standards 

exist for architectural fabrics.  

2.2.1.1 Uniaxial Testing 

The simplest, and one of the most widely used, testing methodologies is uniaxial testing 

performed on strips of fabric. ASTM D 5035-11, ‘Standard Test Method for Breaking Force 

and Elongation of Textile Fabrics (Strip Method)’ [48] and ISO 1421:1998, ‘Rubber- or 

plastics-coated fabrics -- Determination of tensile strength and elongation at break’  [49] 



Chapter 2 Literature Review  38 

along with [50, 51] offer standardised uniaxial testing methodologies. Uniaxial tests are 

performed in order to assess material strength, determine stiffness characteristics [52, 

53], and investigate creep[54], the effects of strain rate[55, 56], load history and 

temperature[55, 56].    

For uniaxial testing, multiple samples are cut from a roll of fabric. The number of samples 

required is dependent upon the property under investigation.  Where an average value is 

required, 5 samples are deemed sufficient. Significantly more are required in order to 

investigate the distribution of measured values [57].  ASTM D 5035-11 states that samples 

should be aligned with the warp direction of the fabric and, if required, additional samples 

may be aligned with the fill direction. However, when testing architectural fabrics 

additional strips aligned at ‘off-axis’ angles from the warp direction are often also tested in 

order to investigate shear response [52, 53] and failure criteria[55]. The majority of 

European standard uniaxial testing is based on a 50mm wide strip. However, the 

European Design Guide recommends a strip width of 100mm in order achieve more 

consistent results due to the reduced influence of number of threads [57]. Samples are 

typically affixed into a tensile testing machine via jaw clamps or capstan fixtures which 

reduce the effect of sample damage at the restraints [58]. A constant rate of deformation is 

applied to the strip and elongation and load is recorded. Samples may be tested directly to 

failure or in a repetitive sequence of loading and unloading, referred to as cyclic loading, 

depending on the mechanical property under investigation. Samples may also be pre-

conditioned via cyclic loading prior to testing for mechanical properties.     

2.2.1.2 Biaxial Testing   

Biaxial testing is used to assess the response of fabric to varying stress ratios in the warp 

and fill directions and is typically used to obtain stiffness characteristics. The most 

common form of biaxial testing is performed on flat samples clamped along four edges 

within a specialist biaxial testing machine. These tests aim to induce stresses in line with 

the warp and fill directions, thus removing any shear effect. Various biaxial testing rigs 

have been developed each with individual features that aim to improve the homogeneity 

of the induced strain field whilst allowing for large displacements. Initial tests were 

performed on square samples. Later, arms were added to form the now more common 

cruciform sample in order to reduce the restraint produced by the clamp plate. 

Subsequently, slits within the cruciform arms were added to further reduce this affect 

[59]. A number of test rigs aim to further reduce restraint by clamping and individually 

loading each strip within the cruciform arm [57]. Strain is generally measured at the 
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centre of the fabric sample and the stress is derived from the applied load via a reduction 

factor to account for reduction in load between the sample's arms and the centre [55].      

Due to the complexity of the response of woven fabric to biaxial load, biaxial tests are 

typically load controlled as oppose to strain controlled. The most common use of biaxial 

testing is for the production of elastic stiffness constants. MSAJ/M-02-1995, ‘Testing 

Method for Elastic Constants of Membrane Materials’ [43] provides the only international 

standard methodology for biaxial testing for elastic constants. Biaxial testing is also used 

to determine compensation values, which account for initial fabric response during 

installation. Carefully considered load profile design for biaxial testing is of vital 

importance in order to capture fabric response relevant. The profile should contain a 

relevant load range and, for the determination of medium to long term properties, include 

mechanical conditioning.  Bridgens presented a protocol that aimed to explore the 

conditioned response of architectural fabric through the derivation of a more detailed 

response surface. This was achieved by testing the fabric using a radial load regime 

including 12 distinct load ratios preceded by conditioning load cycles [59, 60]. In contrast, 

Blum recommended a profile containing 3 cycles of loading in the warp direction while the 

fill is held at pre-stress followed by 3 cycles where the warp is held at pre-stress and the 

fill is loaded, in effect applying only two load ratios[57].   

2.2.1.3 Alternative Testing   

Alternative forms of biaxial testing to the in-plane test include the bursting test and 

cylinder test. Both use pneumatic pressure to induce biaxial stress within the sample. 

Bursting tests are performed on circular samples with fully clamped edges. The sample is 

inflated to failure and the internal pressure is used to calculate the biaxial forces within 

the membrane. This form of testing is more typically undertaken on non-woven 

membrane materials such as rubber[10] and ETFE foils [61] which do not exhibit such 

strong anisotropic mechanical behaviour. Cylinder tests are undertaken using a cylindrical 

sample that is clamped at each end and inflated to induce radial stress. Movement of the 

clamped ends allow for the independent application of axial load and torsion [46]. These 

tests may also be referred to as combined tests as shear may be induced through torsion at 

various biaxial loads. Kabche et al. presented an inflated cylinder test with combined 

tension and torsion in order to investigate the effect of inflation pressure on axial and 

shear stiffness moduli for the design of air beams [62]. This method of testing is developed 

with a specific structural design task in mind.  
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Similar to the aforementioned ‘off-axis’ uniaxial strip testing for the determination of 

shear characteristics, ‘off-axis’ biaxial tests have also been used [57]. Picture frame testing 

involves clamping the sample into a frame hinged at each corner. The frame may then be 

installed into a deformation machine and laterally displaced, effectively squashing the 

frame in order to induce shear stress [46].   

Combined shear testing methodologies endeavour to test fabrics under a combination of 

biaxial and shear loading. The use of a T-shaped specimen allows shear stress to be 

applied with controlled levels of axial pre-stress using a biaxial testing rig [63].  Other 

combined biaxial shear testing methods using specialist shear testing equipment include 

the cylinder test described previously, picture frame testing combined with initial biaxial 

conditioning and loading using a biaxial rig [64], shear ramp testing using a specialist load 

profile [65] and the KES-F tester. Galliot and Luchsinger provide a succinct overview of 

published shear tests which are illustrated in Figure 2-6 [65]. 

 

Figure 2-6: Test methods used for the investigation of fabric shear response [65].   

The aim of all mechanical testing is to induce a uniform and measurable strain field at a 

known load in order to infer an applied uniform stress field. This is somewhat difficult as 
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an in depth understanding of the stress field induced by a particular test requires an 

accurate understanding of how load is transferred from the restrained boundaries of the 

sample. This is often investigated using finite element simulation. However, an accurate 

material model is required in order to produce meaningful results. During testing, the 

applied load is typically measured via load transducers, and strain data is gathered using 

linear transducers or strain gauges adhered to the sample’s surface. These methods of 

strain measurement have the drawback of only measuring strain across a finite area of the 

sample and only in a single direction. This leads to an inability to capture non-uniformity.  

Recent advances in high-resolution digital cameras and computing has enabled the use 

optical measurement techniques such as digital image correlation in the field of material 

testing. Digital image correlation uses grey value digital images captured by two or more 

high resolution cameras. If the imaging parameter of each camera’s sensor along with the 

sensor’s orientation with respect to each other sensor is known it is possible to calculate 

the position of any point captured in two or more images. Through the application of a 

stochastic speckle pattern to the surface of the sample, this method may be used to 

measure sample contours, displacements and calculate strain during loading.  Individual 

points within the speckle pattern are identified in each image via a correlation algorithm, 

hence the name digital image correlation. Other optical measurement methods use a series 

of targets affixed to the sample surface in the place of a speckle pattern. These methods 

produce similar data to that produced using linear transducers with the advantage of 

removing the necessity to physically fix a device to the sample. Full-field image analysis 

measurement techniques have enabled researchers to gain an improved understanding of 

strain, and therefore stress distribution, throughout a sample[53].  

2.2.2 Plane Stress Framework 

Typically, a plane stress framework that comprises of elastic moduli and Poisson’s ratio is 

used to represent the mechanical properties of fabrics [43, 57, 66-68]. This is often done 

because fabric analysis codes such as GSA [69] and Easy [18] expect the material 

properties to be presented in a plane stress format, and do not have capabilities 

permitting other types of constitutive models [59]. Due to the well-documented non-linear 

behaviour of coated woven architectural fabrics [43, 67] various post-processing 

procedures are required in order to derive plane stress moduli from experimental data. A 

key post-processing procedure is the removal of residual strain (or accumulated creep 

strain) from the experimental data. This is done to remove distortion of the strain-strain-

stress response surface as defined by selected experimental load ratio arms. This enables 
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the fabric behaviour to be represented by a single surface, whether defined directly or 

using plane stress coefficients.  

The plane stress framework is a simplified form of Hooke’s stress-strain compliance 

relationship for an orthotropic material in which it is assumed that all stresses related to 

the z direction are negligible and therefore can be set to zero.  The compliance matrix is 

given by (2-4) 
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where   denotes strain,   stress,   Young’s moduli,   Poisson’s ratio and   shear moduli 

the subscripts x, y and z refer to the principle axis of the material. The strain to stress 

stiffness matrix, given in (2-5), is found from the inverse of the orthotropic plane stress 

compliance matrix. 
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Due to the symmetry of the compliance and stiffness matrices the reciprocal relationships 

(2-6) and (2-7) hold, such that, 
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When considering fabric, the principle directions are taken to be the warp and fill 

directions and to reflect this the following simplified nomenclature will be used, 

       ,        ,                  

where the subscripts   and   refer to the warp and fill directions of the coated woven 

fabric. In current industrial practice, plane stress elastic constants are derived from biaxial 

test data and measures are taken to ensure loading is applied solely along the warp fill 

yarn direction. Therefore, in-plane shear stress is generally assumed to be negligible, 

rendering the 3x3 compliance and stiffness matrices (2) and (3) to be  2x2 matrices.  This 

is only true if you assume that shear and direct stiffness are uncoupled, hence the zeros in 
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the 3x3 plane stress compliance matrix. This may not be a valid assumption for woven 

fabrics. 

2.2.2.1 Determination of Elastic Constants 

The MSAJ standard describes a method for the derivation of elastic constants, that, ‘satisfy 

a reciprocal relationship of anisotropic elastic material’ within a prescribed load range, 

from load-strain curves obtained for a set of 5 load ratios [43, p.19]. Four parameters are 

obtained in this process, tensile stiffness in the warp direction,   , and the fill direction, 

  , and corresponding Poission’s ratio in the warp,   , and weft,   , directions. Notation 

here is simplified, in MSAJ Tensile stiffness is expressed as the Young’s moduli multiplied 

by the thickness, here    and    incorporate the thickness. It is noted in MSAJ that the 

load-strain curves obtained via biaxial testing typically do not conform to a reciprocal 

relationship, (2-6) and (2-7), and must therefore be replaced by curves that do.  

The plane stress constitutive model is fitted to the experimental data using either a least 

squares method or a method of best approximation where the difference between stresses 

or strains predicted by the constitutive model and experimentally measured values are 

minimised. When the difference between experimental and predicted stress is minimised 

MSAJ gives the relationship between stress and strain in terms of Young’s moduli and 

Poisson’s ratio as follows, 
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This relationship is identical to the stiffness matrix equation(2-5) under the assumption of 

zero applied shear stress. When the difference between experimental and predicted strain 

is minimised the relationship becomes, 
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As expected this relationship is identical to the compliance matrix, equation (2-4), with 

shear stress assumed to be zero. 

Gosling and Bridgens explored the effectiveness of plane-stress theory using the 

compliance matrix, equation (2) [68]. The results of pairs of biaxial tests for ten different 

coated woven fabrics, five PVC coated polyester fabrics and five PTFE coated glass fibre 

fabrics, were combined into single data sets and used to calculate values of Young’s moduli 

and Poisson’s ratio for each material. This was achieved by minimising the root mean 

square difference between the predicted plane stress values and the test results. Unlike in 

the MSAJ standard, no constraints were placed on either the values on Young’s moduli or 

Poisson’s ratio and as a result the values determined did not adhere to the reciprocal 

relationship (4). The following reason was given for this inconsistency with plane stress 

theory ‘fundamental for this research is the fact coated woven fabrics are not homogeneous 

materials: the interaction of warp and fill yarns and the behaviour of the twisted yarn 

structure mean that they are better described as mechanisms. It is this mechanical 

interaction which causes the elastic moduli and Poisson’s ratios not to fit the relationship for 

a homogeneous material’ [68, p.220].  

 On comparing the predicted results with experimental data using response surfaces it was 

found that  ‘overall the correlation between the test data plane stress representation is good’ 

[68, p.218]. This was especially the case for the PVC-polyester fabrics where the variation 

between the test data and the model was found to be only twice the variation between the 

two tests used in the production of the elastic constants.  The improved fit achieved by the 

PVC-polyester model was attributed to the greater effect of mechanical preconditioning on 

PVC-coated polyester compared to PTFE coated glass fibre fabrics. PTFE coated glass fibre 

fabrics also show more consistency between tests.    

Blum et al. [57] proposed a biaxial test evaluation method which utilises elastic and 

interaction moduli for given stress ranges in the form, 

 
    

    
   

          

          
  

    
    

    

 

(2-10) 

where       and      represent change in stress in the warp and fill direction respectively 

and      and      represent change in strain in the warp and fill directions respectively. 

      and        are the elastic moduli in the warp and fill directions and       is an 

interaction moduli representing the stiffness interaction between the warp and fill 
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directions and may be used alongside the elastic moduli to define two Poisson’s ratios     

and    , 

    
     

     
  (2-11) 
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The inverse compliance matrix, which relates strains to stresses, is given by Blum et al. as,  

 
    
    

   
          

          
  

    

    
   

 

(2-13) 

where      denotes compliance in the warp direction,      compliance in the fill direction 

and       compliance interaction between warp and fill.  

The use of change in stress and strain, as opposed to absolute values, leads to the 

linearization of the fabrics non-linear behaviour between specified intervals. The elastic 

moduli may be assessed in this way through a specialised load profile, Figure 2-7, that is 

designed to allow the elastic constants to be decoupled. The warp and fill directions are 

loaded separately in order to produce the following pairs of equations, 
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and 
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Figure 2-7: Specialised biaxial load history for the determination of elastic constants 
[57] 

The four equations (2-14) and (2-15) are solved simultaneously to find the three 

unknowns      ,       and      . Unless the material is isotropic this method will produce 

two different values of       and differing values of Poisson’s ratio that do not adhere to 

the reciprocal relationship (2-7). For this reason an average of the two       terms  is 

generally used to give a single value [70]. This leads to a further simplification of the 

derived fabric response beyond linearisation. 

2.2.2.2 Adaptations to the Plane Stress Framework 

Minami [67] extends the use of multi-step linear approximation through the use of 

response surfaces. A pair of response surfaces relating to warp and fill strain in terms of 

warp and fill stress were developed from biaxial stress-strain curves obtained for 0:1, 1:2, 

1:1, 2:1 and 1:0 load ratios. The surfaces are split into quadrilateral or triangular elements 

with the corners of each element positioned on experimentally measured stress and strain 

values (Figure 2-8). 

Within each element it is assumed that the stresses and strains conform to plane stress 

linear elastic theory. Minami uses a stiffness matrix similar to that of Blum et al. [57] with 

two additional constants    and   , 
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(2-16) 

 

Figure 2-8: Discretized Warp and Fill response surfaces [67] 

The five unknown elastic constants (   ,    ,    ,    and   ) are found for each element 

through a process of minimising the sum of the squares (2-17), 
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such that, 

   

    
 

   

    
 

   

    
 

   

   
 

   

   
     

 

(2-18) 

This process is similar to that proposed in the MSAJ [43]. Where a more accurate load 

strain relationship is required it is suggested in [43] that a multistep linear approximation 

should be used to determine material constants.  Once the elastic constants have been 

derived for each element they are stored in a look up table that may be sourced by a finite 

element programme. Two simulations using a fundamental non-linear finite element 

method of two physical tests were reported to demonstrate the implementation.  The 

simulation and experimental results are compared to determine the accuracy of the non-

linear material model. A linear equation was used to calculate in plane shear stress for 

each element, as in, 
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(2-19) 

where     denotes in plane shear stress,  =49N/m defines shear rigidity and is 

determined through standard testing [71] and   denotes shear strain.  

The first physical test to be simulated was a cruciform specimen subjected to 1:1 biaxial 

loading, Figure 2-9. The second physical test simulated was the lateral deformation of a 

square sample, restrained along all four edges, induced by pneumatic pressure. The 

deflection was calculated in the centre of the specimen, Figure 2-9b. While the 

implementation examples presented demonstrate excellent agreement between 

simulation and experimentally measured data neither explore the fabric response away 

from 1:1 load ratio. This method introduces a level non-linearity but the accuracy of the 

model is highly dependent on the size of the element. Larger elements may lead to a failure 

to capture discontinuities in the behaviour of woven architectural fabric.  

 

  

(a) 1:1 biaxial test 
(b) Pressure induced deformation of a 

square  sample fixed along all edges 

Figure 2-9: FEM predictions using Minami's response surface material model 

compared with experimentally measured data points [67] 

Unlike the methods of MSAJ and Blum et al. , the method presented by Minami to 

determine elastic constants includes stress strain data collected during initial loading 

without the application of mechanical conditioning. It is however noted that for the 

analysis of in situ architectural fabric ‘the biaxial elongation property surface formed with 

the biaxial stress-strain curves measured after adequate iterative loading should be used’ 

[67, p.195]. 
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The compliance matrix (2-4) is used by Galliot and Luchsinger as the starting point for the 

development of a simple non-linear material model for PVC-polyester fabrics that does not 

rely of linearization of the stress-strain curve [66]. The stress-strain response of a fabric 

was investigated using the specialised load history proposed by Blum et al. (Figure 1) and 

a number of observations were made including the fact that the ‘Young’s moduli are almost 

linear functions of the normalized load ratio while the Poisson’s ratio is rather independent 

of the load ratio’ [66, p.442]. The normalised load ratios are given by, 

   
  

   
    

 
  

 

 

   
  

   
    

 
    

(2-20) 

The model therefore has three key assumptions, the first of which is common to all of the 

coated fabric material models discussed in this section – that for given a load ratio the 

material behaviour is linear elastic plane stress orthotropic. Therefore, the material 

behaviour may be described by the compliance matrix (2-4) that conforms to the 

reciprocal relationship (4) and may be expressed as, 

 
   
   

  

 
 
 
 
 
 

 
      

 
    

      
 

    
      

  
      

 

 
 
 
 
 
 

 
   

   
    

(2-21) 

However, as proposed by Galliot and Luchsinger, this linear model is extended to become 

non-linear by the second two assumptions; 

1. The Young’s moduli    and    may be expressed as linear functions of the load 

ratios    and   , 
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where   
    and   

    are the warp and fill moduli given by a 1:1 load ratio (       

    and     and     are the variation of young’s moduli across the entire range of tested 

load ratios. 
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2. The in-plane Poisson’s ratio     is independent of the load rations    ands    

The model parameters for seven types of PVC-polyester fabric were obtained from 

experimental data using a least square fit method performed using two sets of load ratios, 

one containing five and another containing thirteen different ratios. The experimental 

procedure included mechanical preconditioning with only the fifth and final load cycle for 

each load ratio used to determine fabric properties. The value of Poisson’s ratio was 

constrained to less than 0.5. The allowed range of Poisson’s ratio is an important 

consideration when applying the plane stress framework to architectural fabric. An 

isotropic elastic material with a Poisson’s ratio of 0.5 is typically considered to be 

incompressible. In the previously described plane-stress material models Poisson’s ratio 

regularly exceeds 0.5 [43] and in some cases exceeds 1 [68]. The required constraint is 

that the product of the two orthotropic Poisson’s ratio must not be greater than 1 in order 

to avoid a case where a positive strain results in a negative stress. This would be 

unacceptable when implemented within a finite element simulation. 

In comparison to other material models such as a standard plane stress orthotropic model 

(labelled orthotropic S in Figure 2-10) and the orthotropic linear model with two 

independent Poisson’s ratios [68] (labelled orthotropic NS in Figure 2-10),  it was found 

that the lowest RMS and lowest maximum absolute difference between experimental and 

model parameters was achieved by the non-linear model for all fabrics tested. The non-

linear model performance is also shown to be less sensitive to the number of load ratios 

used for fitting. This may suggest that less data is required to generate an accurate model, 

(Figure 2-10).  

 

Figure 2-10: RMS and maximum absolute difference between experimental data and 

model predictions (Orthotropic S: standard plane stress, Orthotropic NS: 

independent Poisson's ratios, Model: non-linear material model) [66] 
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To further investigate the effectiveness of the non-linear model, response surfaces were 

plotted using the model and compared with experimental data, Figure 2-11. It was 

concluded by Galliot and Luchsinger that ‘it clearly appears that the experimental curves do 

not lie all on a plane and thus linear models have limited capabilities. For the proposed non-

linear model, a curved surface enables a better representation of the experimental material 

characteristics’ [66, p.443].  While an improved fit has been shown by the comparison to 

the plane stress linear models it is still evident in Figure 2-11 that error between the 

experimental and predict material response remains.  

 

Figure 2-11: Stress-stress-strain representation of ‘non-linear’ model predictions 

(surface) and experimental data (dots) [66] 

Common to all the Plane Stress approximations discussed, with the exception of the 

procedure proposed by Blum et al, is the use of some form of minimising the root mean 

square difference between the proposed material model and experimental data in order to 

find a series of elastic constants. The main source of differences between the models is in 

the application of constraints which force the experimental data to conform to the 

orthotropic plane stress constitutive equations, and in particular the reciprocal 

relationships (2-6) and (2-7). 

The post-processing of stress-strain curves from which the elastic constants are calculated 

also varies from method to method. MSAJ [43] and Bridgens and Gosling [68] proposed the 

simplest methods of elastic constant approximation where single sets of elastic constants 

are produced for each set of test data. Minami, Blum et al and in some cases MSAJ used 

methods which created multi-linear approximations of the non-linear stress strain 

response and assumed a plane stress response for each linear section. This produced sets 

of multiple elastic constants for each stress-strain data set. Minami takes this concept 

further by creating response surfaces made up of linear elements each with a set of elastic 
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constants. Alternatively, Galliot et al. introduced non-linear terms by expressing Young’s 

moduli in terms of a load ratio term. Both Minami and Galliot et al. successfully implement 

their adapted plane-stress models into FEM software.  

All of the plane stress models discussed adhere to the reciprocal relationships (4) and (5) 

except for Bridgens & Gosling who do not impose any constraints. Nevertheless, Bridgens 

and Gosling observe a generally good correlation between predicted and experimentally 

measured values. Luchsinger et al introduce the greatest level of constraint and alone do 

not allow Poisson’s ratios greater than 0.5. However, their non-linear model is shown to 

perform better than both a simple plane stress orthotropic model, similar to that of MSAJ, 

and Bridgens & Gosling’s unconstrained model. 

In contrast to the above plane stress models which used biaxial test data, Chen et al. [52] 

investigated whether architectural fabrics could be treated as an orthotropic material 

using off-axial constitutive equations (2-23) derived for anisotropic lamina composites 

[72].  Uniaxial testing was undertaken on samples of plain weave PVC coated polyester 

biased to the warp direction in the range 0° to 90° at 15° intervals. Each biased sample 

was initially tested to failure to find the ultimate strength. A second sample was then taken 

to 20% of the determined ultimate strength. Load was applied at a constant rate, held and 

released at a constant rate three times. It was found that after the first two load cycles the 

third load cycle produced a more linear stress-strain response. This was attributed to 

permanent deformation within the sample leading to reductions in both shear 

deformation and crimp interchange in subsequent load cycles. Deformation was measured 

in the loading and transverse direction. 

The mechanical properties including Young’s modulus ( ), shear modulus ( ) and 

Poisson’s ratio ( ) were derived from the third load cycle results and compared to 

predicted values derived from the off-axial constitutive relationship (2-23).  

 

  
 

     

  
  

 

   
 

    

  
            

     

  
  

(2-23) 
   

  
 

   

  
  

 

  
 

 

  
 

 

   
 

    

  
             

 

   
 

 

   
  

 

  
 

 

  
 

 

   
 

    

  
              

    
   

        
  (2-24) 

 



Chapter 2 Literature Review  53 

Subscript 1 and 2 represent the fabrics warp and fill directions respectively, x and y 

denote the direction of loading and the direction perpendicular to it respectively,  is the 

bias angle of the fabric with respect to the warp direction. The principal shear modulus 

was derived from the 45° bias test using equation (2-24). The shear moduli for all other 

samples were calculated from the third equation in (2-23) which was simplified by 

combing it with the second equation to give (2-25). This enables the shear modulus to be 

calculated using experimentally derived Poisson’s ratio and elastic moduli. 
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In order to make predictions using the constitutive equations (2-23),   ,   ,          and 

    (and therefore    ) are required. By substituting      into (2-23)    can be 

identified as Young’s modulus in the warp direction. Likewise by substituting      ,    

is Young’s modulus in the fill direction.     and     are the warp direction Poisson’s ratio 

and shear modulus, respectively.     and     are Young’s modulus and Poisson’s ratio 

related to loading at 45° bias to the warp direction (     ). The experimental results are 

compared with the predictions of the constitutive equations in Figure 2-12. 

 

Figure 2-12: Experimental results (markers) compared to predicted results using 
off-axial constitutive equations (lines) for Ex, Gxy and νxy/Ex [52] 

From this study it is concluded that ‘...coated fabrics could be treated as an orthotropic and 

elastic material if loading was less than 20% of the ultimate tensile stress’ [52, p.373]. This 

conclusion is also dependent on the fact that the fabric has been mechanically conditioned 

via cyclic loading. This pre-conditioning replicates the typical behaviour of in-situ fabric 

and is therefore relevant for structural analysis [60]. However, this study is based solely 

on uniaxial loading conditions, a loading condition rarely, if ever, found in fabric 
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structures, and does not account for the complexities introduced by biaxial loading [46]. It 

is also noted that this study focuses on a single specimen of architectural fabric and 

therefore does not take into account variation in weave pattern, manufacturing process, 

yarn material or coating properties. The conclusion that coated fabrics in general can be 

treated as orthotropic and elastic is arguably too broad. PTFE coated fabrics, for instance, 

have been found to exhibit substantial non-linearity even after mechanical conditioning 

[68].    

2.2.3 Alternatives to the Plane Stress Framework  

The failure of plane stress models to accurately represent architectural fabric material 

behaviour was identified very early and led to the investigation of alternative methods. 

Prior to the development of the plane stress model described above Day proposed the 

representation of biaxial response using the relationship between mean and difference of 

the principle stresses and strains first developed to represent soil mechanics [44]. The 

model is defined by the equation of (2-26) where    and    is warp and fill stress 

respectively and    and    is warp and fill strain.  Due to a low shear stiffness of fabric, the 

shear stiffness is assumed to be independent. The functions represented by    to    are 

determined iteratively from points on 1:1, 5:1 and 1:5 load ration stress strain curves.  
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Bridgens and Gosling revisited this method [70] and concluded that it provided a good 

solution for the representation of up to six non-linear curves. Further testing is required to 

establish whether this method provides accurate interpolation between the three curves 

used for the derivation of the model.    
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2.2.3.1 Direct Stress-Strain Representation 

Bridgens and Gosling also presented a method of direct stress-strain representation via 

response surfaces developed from experimental data using spline curves, [68, 70]. Spline 

functions offer an alternative to polynomial functions for the definition of smooth curved 

surfaces. The suitability of three types of curve have been assessed for the generation of 

response surfaces from biaxial test data namely Bezier curves, B-splines and Non-uniform 

rational basis splines (NURBS). 

Spline functions are proposed as they offer an ‘intrinsic interpretation of test data’ [70, 

p.1914]. A key advantage of spline curves over more simple polynomial functions is their 

ability to represent rapid changes in gradient or discontinuities, both of which are features 

of Biaxial test data. Bezier curves were successfully fit to typical stress strain data using 

trial and error methods. An additional advantage highlighted is the ability of NURBS 

functions to represent any number of independent variables thus making them well suited 

for the inclusion of factors such as woven fabric shear behaviour which has been shown to 

be non-linear, hysteric and discontinuous.  

A major unresolved flaw in the use of spline curves is however highlighted in Figure 2-13. 

It was found that whilst spline curves may provide a close fit to data points, they are non-

unique.  Varying the control point locations each with a mean square offset from the data 

of zero can generate a wide range of interpolating curves. This non-uniqueness of the 

curves leads to the conclusion that additional criteria are required to produce unique 

curves that reliably represent the fabrics behaviour.  

 

Figure 2-13: Experimental data fit with two different rational Bezier curves [70] 
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2.2.3.2 Elasto-Plastic Material Model 

Very recently a elasto-plastic material model has been published which uses 11 variables 

determined form a combination of biaxial and uniaxial test data [6]. The important noval 

feature of this material model is the representation of permanent  strain, as well as the 

representation of orthotropic and non-linear behaviour. The model is implemented in the 

finite element code Abaqus. The model is validated using both uniaxial and biaxial 

experimental data. the model produces a reasonable fit  to the uniaxial experimental data. 

However, the response is somewhat simplified and multiple cycles have not been 

demonstrated. The model is validated for a biaxial case using a simulation of quarter of a 

biaxial sample undergoing a  1:1 load cycle. The simulation and experimental results again 

are shown to be in reasonable agreement but again the response is simplified. Strain 

recovery and negative strain is particularly underestimated. The ability of the model to 

generalise other load ratio combinations has not yet been demonstrated due to a lack of 

available data.  

 

Figure 2-14: Elasto-plastic model representation of biaxial  response data compared 
with experimental data [6]. 

2.2.3.3 Mechanical Models 

An alternative approach to using only experimental data to derive stiffness parameters for 

constitutive equations is to model the internal structure of the fabric, attempting to 
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capture the various mechanisms that contribute to the overall response. The key 

displacement mechanism to represent is crimp interchange. Crimp interchange is the 

process of yarn straightening in the direction of maximum load increasing the crimp in the 

orthogonal direction. Typically, models will represent a unit-cell, the smallest possible 

repeatable unit, within the fabric. In the case of plain weave fabrics the unit cell is formed 

by two orthogonally crossed yarns, creating half a wavelength of each the warp and fill. 

The models are derived from the geometry of the unit-cell in combination with material 

properties of the constituent yarns and coating material, if present.   

The models can generally be placed into one of two groups [59]. The first group require 

biaxial experimental data to determine various parameters and aim to fill the gaps 

between measured data points on the stress-strain surface [73, 74]. The second group 

uses yarn and coating properties along with fabric geometry to predict the stress-strain 

response or ultimate strength of the fabric without the need for biaxial testing [75-78]. 

Since the late 1990s work has been undertaken in modelling the unit-cell or a group of 

unit cells using 3-dimensional finite element analysis [79-81]. These models enable a 

reduction in limiting assumptions but rely on the accurate definition of properties for the 

constituent materials.  The majority of models in this group have been developed to 

investigate the mechanical behaviour of woven panels used in heat formed composites. All 

models are validated, if not optimised, using experimental data and therefore some testing 

is unavoidable. 

2.2.4 Summary and Conclusions 

Due to high computational cost and linking issues, mechanical models are rarely used 

directly as constitutive models within the finite element simulation of fabric structures, 

one exception is presented in [42]. They are more frequently used to produce coefficients 

for the plane stress constitutive equations classically used. Mechanical material modelling 

is outside the scope of this body of work. However, work in this area has provided 

important insight into the overall behaviour of architectural fabrics. Furthermore, it 

highlights the complexity of fabric behaviour and the need for consideration of this when 

undertaking structural analysis. 

Architectural fabric strain-stress response is complex and non-linear. Specialist biaxial 

and uniaxial testing methodologies are used to capture the direct strain-stress response of 

architectural fabric for the development and validation of fabric material models. These 

methodologies will be employed to capture the experimental data required by the material 

model to be developed in this thesis. Biaxial load profiles using various combinations of 
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load ratios have been proposed in order to explore the full material response and provide 

data for the fitting of constitutive models. Residual strain is typically removed prior to 

fitting.  Comprehensive load profiles including additional non-standard features will be 

used to capture the full fabric response. The removal of residual strain in post processing 

may be avoided if the model is designed to capture load history effects. Shear stress is 

generally assumed to be decoupled from direct stress and is measured in separate 

physical tests. The assumption of decoupled shear behaviour will be maintained in order 

to allow the use of established biaxial testing methodologies. However, it is anticipated 

that combined direct stress and shear response will be incorporated into the proposed 

material mode at a later date.  

A variety of fabric material models based on the plane stress framework have been 

developed. It has been demonstrated that an improved fit to experimental data may be 

achieved by disregarding the plane stress reciprocal relationship which constrains 

Poisson's ratio. The plane stress framework has been further manipulated to include non-

linearity by adding additional terms. In one method the strain-strain-stress response 

surface is divided into separate elements with unique elastic constants and in another the 

elastic moduli are modified based on the current load ratio. Elastic matrix models based 

on the plane stress framework are limited by the use of relatively small numbers of 

variables and classical plane stress assumptions that do not apply to the mechanical 

behaviour of woven coated fabrics. 

Methods that entirely move away from plane stress assumptions were proposed as early 

as 1986. A model based on the relationship between mean and difference of principle 

stresses and strains showed promising results. The concept of direct stress-strain 

representation using a response surface type model has also been explored. Extrapolation 

between experimental data to generate a smooth continuous response surface is required 

in order to implement this modelling methodology. Spline curves have shown to be most 

promising but are sensitive to the location of control points leading to a large variation 

between curves fit to the same data. Artificial neural network material modelling, 

presented in the following section, offers a solution for the generalisation of fabric 

response from biaxial experimental data. Neural networks trained using comprehensive 

experimental data and  have been demonstrated to successfully capture and generalise 

non-linear and history dependant material response for a variety of materials. 

Furthermore, they are suitable for implementation in finite element code.      
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2.3 Neural Network Material Modelling 

Advances in computing technology have allowed for the exploration of a number of 

computer methods based on artificial intelligence concepts. Genetic Algorithms and Neural 

Networks have been used in a number of engineering applications and both have been 

used in constitutive modelling.  

Genetic Algorithms (GAs) are an optimisation heuristic based on the principles of natural 

selection. The process or evolution begins with a population of individuals, usually 

randomly generated. Each individual member has a set of characteristics or chromosomes, 

typically expressed in binary form, which can be altered or mutated. The process is 

iterative; individuals are assessed using a fitness function, usually the objective function of 

the optimisation. The individuals deemed to be less fit are discarded and the remaining 

population is used to generate a new population through random combination and 

mutation. The process is halted after a set number of generations or once the population 

exhibits a specified level of fitness.  Genetic Programming (GP) is a specific form of a 

Genetic Algorithm where the objective function itself is obtained via evolution. In the case 

of GP each individual of the population is a process or function.    

GAs and GP have been used to define constitutive equations for a number of engineering 

materials but have primarily been employed in the area of soils [82, 83] and composites 

[84, 85]. They have also recently been used to explore the cyclic behaviour of steel [86, 

87]. GAs are typically selected where a complex function is required to represent the 

material response that is defined by several unknown parameters.     

Artificial Neural Networks (ANNs) belong to the  ‘soft computing’ [88] or ‘intelligent 

method ’[89] paradigm and are based on a highly simplified biological neuron such as may 

be found in the brain. Their basic structure comprises layers of interconnected processing 

units referred to as artificial neurons or nodes.  Each neuron sums the input signals from 

the previous layer along with a bias, performs some form of transfer function, and passes 

it to each neuron of the next layer via a weighted connection. The weights and biases are 

determined through a process of training and it is within the weights and biases that the 

relationship between input and output is captured.  ANNs have been successfully applied 

to a wide range of real world problems including prediction [90, 91], control [92], pattern 

recognition [93] and optimisation [94, 95]. It is however the ability of an ANN to 

approximate a function which is of most relevance to constitutive modelling of 

architectural fabric. This is where an ANN is trained to represent the functional mapping 

of input signals, for example strains, to corresponding outputs, such as stresses [96].  The 
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basics of ANNs have been widely discussed in the literature. Useful overviews are 

provided in [97] and [98].  A brief summary is provided in the following paragraphs. 

2.3.1 Artificial Neural Network Architecture 

To understand the development of the artificial neuron a basic understanding of a 

biological neuron is advantageous. An extremely simplified biological neuron, shown in 

Figure 2-15(a), comprises a cell body or soma and two types of connective branches - the 

axon and the dendrites. The dendrites receive signals and transfer them to the cell body. 

The axon receives signals from the cell body and transfers them via synapses (microscopic 

gaps) to the dendrites of neighbouring neurons [97]. Within the axon the signal is 

electrical. However at the synapse the signal is converted to a chemical neurotransmitter. 

The neurotransmitter is diffused across the synaptic gap to the dendrites of neighbouring 

neurons, in turn causing that neuron to produce new electrical signals. The quantity of the 

neurotransmitter produced and therefore the strength of the chemical signal is 

proportional to the strength of the signal reaching the synapse. The magnitude of the 

signal produced by any neuron is dependent on the intensity of signal received from 

feeding neurons, the strength of connecting synapses, and the threshold of the neuron. 

Due to the huge number of connections associated with each neuron and the vast number 

of neurons within the network, this biological system is capable of completing massively 

complex tasks, such as facial recognition, within a fraction of a second. 

Though massively simplified, the basic process of a biological neuron is used to inform the 

development of the artificial neuron. Within an artificial neuron, the activity of the cell 

body is represented by the transfer function, f, and bias, b.  The axon and dendrites are 

represented by the connections, and the synapses by the weights w [98]. Figure 2-15 

shows a biological neuron (a) alongside its equivalent artificial counterpart often referred 

to as the perceptron (b). 

Figure 2-15 (b) depicts a single perceptron. The perceptron sums the weighted output 

signals from each neuron of the previous layer, adds a bias signal and passes the result 

through an activation function. The function may be any differentiable function. 

Commonly used activation functions include threshold, linear, sigmoid and Gaussian 

functions. The sigmoid transfer function is the most commonly used transfer function for 

constitutive modelling [97, 99-102].  
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Figure 2-15: A biological neuron and an artificial neuron the perceptron [98] 

The architecture of an ANN generally takes on a layered form with each layer containing a 

number of neurons that receive weighted signals and output a response. ANNs are 

typically categorised according to the organisation of the connections. A feed-forward 

network is organised in such a way that the signal is passed consecutively from one layer 

to the next. Networks belonging to this group include the single layer perceptron, 

multilayer perceptron and radial basis function nets. A recurrent or feedback network 

may contain one or more nodes that are connected to nodes either in the same or previous 

layers. Networks belonging to this group include competitive networks [103], Kohonen’s 

SOM [104], Hopfield network [105]  and ART models [106].  

A graphical representation of a general multilayer feed forward neural network is shown 

in Figure 2-16. The network contains an input layer made up of a node for each input value 

that is connected to a subsequent layer known as the hidden layer. This layer contains a 

user-defined number of neurons. The network may be built to contain any number of 

additional hidden layers although one is often sufficient. The final layer of a standard feed 

forward neural network is the output layer; this layer contains a neuron for each network 

output. 
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Figure 2-16: Single hidden layer feed-forward neural network architecture      

2.3.2 Artificial Neural Network Training 

The first feature of network training is the training paradigm. This depends on the form of 

training data presented to the network. Supervised training occurs when a network is 

presented with the correct answers corresponding to each given input. The learning 

process aims to minimise the error between network output and the correct answer.  

During unsupervised training the network learns solely from the underlying structure or 

correlations within a set of inputs and organises them accordingly. Networks may also be 

trained using a hybrid of both supervised and unsupervised learning.  Functional 

mappings, such as those performed by ANN constitutive models, require supervised 

training.  

The second feature of network training is the learning rule used to inform how network 

weights are to be updated. Well known learning rules include error-correction, Boltzmann, 

Hebbian and competitive. A learning algorithm is developed to update the weights 

according to the selected rule. The selection of the learning rule and the subsequent 

learning algorithm is dependent upon the architecture of the neural network and available 

training data, which is in turn dependent on the task to be performed by the neural 

network. Table 1 compiled by Jain et al, 1996 gives a good overview of existing network 

architectures along with their associated learning algorithms and applications. As this 

review is concerned with function approximation for constitutive modelling, the relevant 

architectures include single or multilayer perceptron and radial basis-function networks. 

These along with their associated training algorithms will be the focus of this review. For 

details on other network architectures and learning algorithms see [97, 98] . 
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Input Signals Output Signals 

Forward propagation of input signals to be converted to 

outputs 

Back propagation of error signals to update connection 

weights 
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Paradigm Learning rule Architecture Learning algorithm Task 

Supervised Error-correction Single or multilayer 
perceptron 

Perceptron learning algorithms 

Back-propagation 

Adaline and Madaline 

Pattern classification, Function 
approximation, Prediction, Control 

Boltzmann Recurrent Boltzmann learning algorithm  Pattern classification 

Hebbian Multilayer feed-forward Linear discriminant analysis Data analysis  

Pattern classification 

Competitive Competitive Learning vector quantization Within-class categorisation, Data 
compression 

ART network  Pattern classification 

Unsupervised Error-correction Multilayer feed-forward Sammon’s projection Data analysis 

Hebbian Feed-forward or competitive  Principal component analysis  Data analysis, Data compression 

Hopfield Network Associative memory learning Associative memory 

Competitive Competitive Vector quantization  Categorisation, Data compression 

Kohonen’s SOM Kohonen’s SOM Categorisation, Data analysis 

ART networks ART1, ART2 Categorisation  

Hybrid Error-correction 
and competitive 

RBF network RBF learning algorithm Pattern classification, Function 
approximation, Prediction, Control 

Table 1: Summary of common ANN architectures with associated learning algorithms [97] 
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Multilayer feed- forward networks trained using back-propagation training algorithms are 

by far the most commonly used network in material modelling. As shown in Figure 2-16 

input signals are propagated forward through the network to be converted to an output 

signal via the neurons and weighted connections. During this phase all connection weights 

are held constant. The error between the network output and the target output is then 

calculated and propagated backwards through the network. This error is used to update 

the weights in the direction of the steepest gradient. The gradient is determined from the 

partial derivatives of the total network error with respect to the network weights of 

biases. This process of forward propagation of inputs and backward propagation of error 

is repeated until the network reaches some level of convergence. 

2.3.3 Artificial Neural Network Material Models 

The key fundamental advantages of ANNs over other material models include learning 

ability, generalisation, ability to cope with fuzzy or discontinuous data and adaptability 

[97, 98, 107]. In contrast the key weaknesses are a limited ability to extrapolate, over-

fitting, poor definition of uncertainty with regard to prediction, and the ‘black-box’ nature 

of ANNs [88, 108]. ANNs have been used to describe the characteristics of numerous 

engineering materials including concrete [109, 110], soil [111, 112], steel [89] and 

composite materials [113]. Neural networks show particular promise in modelling 

materials that exhibit a highly complex non-linear response that may be history 

dependent [100, 114, 115].  

2.3.3.1 Representation of Load History Effects  

A neural network with additional load history inputs is demonstrated in [114] to be 

capable of capturing the cyclic behaviour of plain concrete under uniaxial cyclic loading. 

The trained network output was compared to the experimental data used in training 

alongside an analytical model for the same behaviour. The network was further tested 

using unseen data not used in network training in order to illustrate the networks ability 

to generalise  the response. 
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Figure 2-17:  Trained hysteretic concrete network material model output alongside 
experimental training data and analytical model prediction, [114] 

 

 Figure 2-18:  Trained hysteretic concrete network material model output alongside 
experimental data not used in training, [114] 

2.3.3.2 Functional Mapping of Experimental Data 

Given that feed-forward, back-propagation ANNs effectively learn a functional mapping 

through a process of training using sets of input data with known outputs, the need for 

prior knowledge and limiting assumptions regarding the modelled response is, for 

practical purposes, removed. However, knowledge of the material response is required in 

order to effectively design the architecture of the network, gather comprehensive training 

data, and implement a successful training algorithm. In the case of material modelling, 
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training data may be gathered through traditional material experiments or, alternatively, 

through the monitoring of an in-situ structure.  

ANNs have been shown to perform poorly when presented with inputs that are outside 

the domain of the training data – e.g. extrapolation. This problem is illustrated clearly in 

Figure 2-19 where a basic ANN is trained to map a sine curve using selected sections of the 

curve [88]. This weakness leads to the need for the network designer to have an in depth 

understanding of the required domain. However, limited guidance is available in the 

definition of a comprehensive data set. Designer experience is commonly relied upon.  One 

alternative technique employed in constitutive modelling is the use of global load-

displacement data in combination with a finite element model and a partially trained ANN 

material model to iteratively produce increasingly accurate stress-strain pairs for network 

training [99, 116, 117]. This form of training is termed ‘auto progressive’ or ‘self-learning’.    

 

Figure 2-19: Neural networks trained to approximate sin(x) within two different 

ranges of x [88] 

2.3.3.3 Generalisation 

Once trained an ANN will gain the ability to generalise the response and produce outputs 

from previously unseen inputs within the domain of the training data. This ability to 

generalise allows the network to robustly represent a function based on noisy or 

incomplete data. An associated problem is over-fitting. This occurs when a network no 

longer maintains the ability to generalise a response and effectively learns the noise or 

scatter within the training data. Over-fitting may occur due to insufficient training data, 

over training, or may be caused by unnecessarily large or complex network architecture. 

This issue is illustrated in Figure 2-20 where a scattered data set is approximated by 

increasingly large neural networks [88]. Numerous techniques have been employed to 

prevent the over-fitting phenomena including early stopping during training [118] and 
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adaptive training where the neurons are automatically added as required during network 

training [17].  

 

Figure 2-20: Training and over-training of a neural network with data containing 
scatter [88]  

Neural Network material models are often viewed as 'black-box' models as their internal 

parameters have no specific physical meaning. The lack of physical meaning is necessary 

to allow for the networks key advantage of requiring no prior assumption about material 

response. There have, however, been numerous studies which utilise ANN models to gain 

insight into a material’s behaviour [17].      

2.3.3.4 Adaptability and Implementation 

Finally ANNs are adaptable in that they may undergo further training as additional 

training data becomes available. Specifically within the area of material modelling, ANNs 

have also been shown to be suitable for implementation within readily available finite 

element code. Implementation of neural network constitutive models in finite element 

analysis has been demonstrated in [119-121]. A constitutive model performs two 

functions. Firstly it provides the means to determine current stresses  from current strain. 

This is relatively straightforward as current stress may be taken directly as the network 

output. The second function is contributing to the generation of a global stiffness matrix 

typically derived from the element B-matrix with the constitutive matrix in an equation of 

the form (2-27). This is problematic, as it requires the constitutive equation to be in the 

form of a square matrix compatible with the Element B-matrix.  

                 
 

  (2-27) 



Chapter 2 Literature Review  68 

The derivation of an implied elastic stiffness matrix from the partial derivatives of the 

neural network equations is proposed and demonstrated in [119]. Alternatively, a feed 

forward neural network may be trained to directly generate elastic constants used to 

populate and establish elastic matrix. This is demonstrated in the modelling of the 

nonlinear spring back response of steel sheet metal in [102].  The use of network 

derivatives is used in the implementation of a fuzzy neural network trained to represent 

uncertain time dependant material response in a fuzzy finite element analysis [106].   

2.3.4 Summary and Conclusions 

Neural networks have been demonstrated to be suitable for the material modelling of a 

wide variety of engineering materials. The back-propagation training algorithm is almost 

exclusively used for the training of constitutive material models using experimentally 

gathered  strain-stress data. Physical testing may be coupled with a non linear finite 

element simulation to facilitate the training of complex constitutive models form more 

easily obtained boundary data.  A relatively simple network architecture comprising a 

single hidden layer with a tan-sigmoid function can be used to capture non-linear material 

response. 

The disadvantages of neural networks include poor extrapolation outside the bounds of 

the supplied training data, over fitting leading to poor generalisation and uncertainty 

introduced by the training process. All of these feature should be kept in mind during the 

development of a neural network material model. The design and generation of a 

comprehensive training data set should eliminate the requirement for the network to 

extrapolate beyond the training data domain. Early stopping during training is a relatively 

straight forward way to control over-fitting. Thorough testing using 'unseen' data not used 

in training is also vital for the validation of the material model and should reveal if over-

fitting has occurred. The training of multiple networks using the same training data will 

allow network uncertainty to be investigated and quantified.      
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2.4 Summary and Conclusions 

A holistic approach is required for the design of fabric structures due to the dependence of 

the structural form on restraint conditions, applied pre-stress, patterning, and applied 

loading. A complete fabric analysis package should be capable of form finding under 

prescribed pre-stress, take into account the expected patterning at the earliest 

opportunity, and be capable of resolving geometrically non-linear state equations. 

Dynamic relaxation has been demonstrated to be a robust solution algorithm and will be 

used in the code presented in this thesis. 

The membrane element formulation should include large strain assumptions and control 

of material direction. This is vital to enable the material warp and fill directions to be 

aligned with panel geometry. Mesh control during form finding is also essential in order to 

maintain regular mesh distribution and produce feasible panel geometries. Geodesic 

control elements have been successfully demonstrated for this purpose. 6 node 

isoparametric  large strain linear strain triangle finite elements have been demonstrated 

to be suitable for the representation of architectural fabric. They are able to represent 

curved geometry and are more efficient in the approximation of steep stress gradients 

than the more simplistic constant strain triangle element.  

Reliability analysis of fabric structures enables the designer to assess the acceptability of a 

design by providing an estimate of probability of failure or the safety index. FORM 

reliability is a well-established methodology and has been implemented with a specialist 

fabric finite element code. When assessing the feasibility of the implementation of FORM, a 

number of issues should be considered and mitigated against. These include discontinuous 

failure surfaces, the presence of multiple local design points, and instability of the finite 

element caused by a design point located too far into the failure region. 

The collection of comprehensive response data is required for the calibration of all current 

material models. This is done through physical testing, most commonly based on either 

uniaxial strip testing or biaxial testing on cruciform samples. Cruciform specimen testing 

enables the capture of biaxial mechanical effects, including crimp interchange, which 

massively influences the behaviour of in situ architectural fabric. Shear testing is further 

challenging, and undertaken using a range of methods. The picture frame test shows 

promise as it allows the shear test to be undertaken with varying levels of direct stress 

applied. Typically, shear behaviour is decoupled from direct stress response and is 

represented in the majority of material models by a single modulus. 
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The constitutive material model used in conjunction with any specialist fabric finite 

element package greatly affects the effectiveness of the simulation. Current best practice 

relies on the plane stress framework with its compatibility with readily available finite 

element codes. A variety of modifications to the plane stress approach have been 

proposed, including the removal of the reciprocal relationship between Poisson's ratio 

terms of the compliance matrix and the addition of various parameters that aim to add 

non-linearity to the inherently linear plane stress model. One such model adapts the plane 

stress material description to a response surface style model.  A recent elasto-plastic fabric 

material model has been demonstrated to capture non-linear behaviour and permanent 

strain. However, the model performs poorly when representing load ratios which result in 

negative strain and does not capture strain recovery. 

 A pure response surface type material mode offers promise due to the removal of limiting 

plane stress assumptions and offers the opportunity to use experimental response data 

directly to model fabric response. The key problem to solve is the interpolation between 

available data points in order to model the response away from tested load ratios. 

Neural networks, with one or more hidden layers and a sigmoid transfer function, have 

been demonstrated to be capable of capturing constitutive relationships between stress 

and strain for a variety of materials. They are capable of learning material response 

directly from experimental data and have been shown to have the ability to generalise. 

Neural network material models are capable of accurately reproducing material behaviour 

in 'unseen' regions of the material response.  However, it is important to note that 

networks are unreliable in regions outside the training data. Careful training data set 

design is vital to ensure that the network has sufficient data to represent the response 

area required for simulation.  

With the addition of historical inputs and internal variables, artificial neural network 

material models have also been demonstrated to be capable of capturing history 

dependant behaviour. This enables the effects of accumulated residual strain under cyclic 

loading to be assessed in a finite element simulation. It is also noted that neural networks 

can be implemented directly within finite element analysis. The current stress may be 

obtained directly from the network model presented with current strain, and the global 

stiffness matrix may be found using the implied stiffness matrix, which can be derived 

directly from the network equations.  

Therefore, in this thesis a feed forward neural network architecture with a single hidden 

layer with a tan-sigmoid transfer function will be used for the development of fabric 
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neural network material models. A back propagation training algorithm will be used for 

network training. Additional network inputs  will be used to facilitate the representation 

of  history dependant fabric behaviour.  

The 'self-learning' method of training,  using a finite element simulation coupled with a 

physical experiment, shows good potential for the capture of complex material response 

from a relatively straightforward physical test. However, it increases the complexity of 

network training. For this initial investigation into the development of an architectural 

fabric material model the strain-stress training data will be obtained using established 

fabric testing methodologies. Shear response will be assumed to be decoupled from the 

direct stress response and will not be included in the network model at this stage of 

development. 

In order to assess the ability of the trained networks to accurately generalise fabric 

response, and to identify cases of over-fitting, the networks will be tested with 'unseen' 

data not used in training. The number of nodes required in the hidden layer will be 

determined through the training of sets of networks with varying numbers of nodes. The 

variability between network models trained with the same data will also be investigated  

through the training of sets of multiple networks.    

The trained and validated network material models will be implemented in the dynamic 

relaxation, large strain, finite element code using an implied stiffness matrix. The network 

will be used directly to determine current stress from strain, and the implied stiffness 

matrix will be used to generate the system stiffness matrix used to determine the damping 

coefficients for the dynamic relaxation algorithm.  
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Chapter 3. Finite Element Formulation 

The material models developed in the course of this PhD. are implemented in Fortran 

finite element code developed from code initially proposed by Zhang [31]. In this chapter 

the finite element equations will be developed, validated and demonstrated using a plane 

stress material model. The membrane element developed will be based on a six node 

linear strain triangle with large strain terms included. A dynamic relaxation solution 

algorithm is used to solve the static equilibrium equation. The formulation also includes a 

cable element, geodesic control elements for use during form finding and a wrinkling 

procedure. The formulation is validated using a simple patch test and then further 

demonstrated using simple but realistic fabric structures. For completeness a pattering 

procedure is finally developed and demonstrated. 

Two element formulations were presented by Zhang. The first was a three node constant 

strain triangle (CST) element which includes higher order terms. The second was a six 

node linear strain triangle (LST) element which utilised curvilinear co-ordinates in-order 

to define the local coordinate system.  

The six node LST formulation was selected for this work due to the advantages 

demonstrated by the higher order element. However, difficulties were presented by the 

formulation, and more critically the existing Fortran code, with regard to aligning the local 

coordinate system with the local material direction. Due to the highly orthotropic nature 

of architectural fabric material response this is highly influential in the accurate 

simulation of a fabric structures. Zhang concluded that the inclusion of curvature terms in 

the numerical representation of membrane surface lead to more accurate calculation of 

strain from displacement. However, the inclusion of curvature terms may lead to 

discontinuities in the simulated membrane at the nodes producing a quilted type pattern. 

Therefore, the formulation for the LST element  was replaced by one adapted from  work 

presented by Gosling on the development of an isoparametric eight node quadratic 

element [30].   

It has been demonstrated that neural network material models may be implemented 

within commercially available finite element software packages. However, the 

development of custom code enables a higher level of control and the implementation of 

analytical sensitivity and reliability analysis. It is also the aim of this project to develop a 
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robust computational mechanics framework that accurately describes both material and 

structural behaviour. To this end an element developed specifically for the representation 

of architectural fabric is required. 

3.1 Element Equations 

In the case of the analysis of thin elastic continua the three terms of stress and 

corresponding strain terms describing plane stress are sufficient to represent an element’s 

behaviour. Therefore the vector of element body stresses, {𝜎}, is written as 

{𝜎}𝑇 = {𝜎𝑥, 𝜎𝑦, 𝜏𝑥𝑦}  (3.1) 

Where 𝜎𝑥 and 𝜎𝑦 are principle direct stresses and 𝜏𝑥𝑦 is the principle shear strain. The 

corresponding strain vector is 

{𝜀}𝑇 = {𝜀𝑥, 𝜀𝑦, 𝛾𝑥𝑦}  (3.2) 

As demonstrated in [30, 31, 34] the element stiffness matrices and element load vectors 

for a discretized system may be derived from the potential energy expression for an 

individual element of that system. 

Π𝑝𝑒 = ∫ (
1

2
{𝜀}𝑇[𝐸]{𝜀} − {𝜀}𝑇[𝐸]{𝜀0}𝑉

+ {𝜀}𝑇{𝜎0})𝑑𝑉 − ∫ {𝛿}𝑇{𝐹}
𝑉

𝑑𝑉 −

∫ {𝛿}𝑇{Φ}
𝑆

𝑑𝑆  

(3.3) 

The first integral containing system strain, {𝜀}, initial strain, {𝜀0}, initial stress, {𝜎0}, and 

[𝐸], an elastic matrix containing appropriate material properties, represents strain energy 

per unit volume. The second and third integral containing body forces, {𝐹}, and surface 

tractions, {Φ}, represent work done by {𝐹} and {Φ} as the body deforms [34]. 

As discussed in Chapter 2 a plane stress frame work is typically used to represent the 

architectural fabric strain-stress relationship within a finite element formulation. The 

plane stress material stiffness matrix [E] which relates current strain to stress is given by,  

{𝜎} = [𝐸]{𝜀} =

[
 
 
 
 

𝐸𝑤

(1−𝜐𝑤𝑓𝜐𝑓𝑤)

𝐸𝑤𝜐𝑓𝑤

(1−𝜐𝑤𝑓𝜐𝑓𝑤)
0

𝐸𝑓𝜐𝑤𝑓

(1−𝜐𝑤𝑓𝜐𝑓𝑤)

𝐸𝑓

(1−𝜐𝑤𝑓𝜐𝑓𝑤)
0

0 0 𝐺𝑤𝑓]
 
 
 
 

{

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

} = {

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

}  (3.4) 

where 𝐸𝑤 and 𝐸𝑓 are values of Young’s modulus aligned with the local warp and fill 

directions respectively, 𝜐𝑓𝑤 and 𝜐𝑤𝑓 are values of Poisson’s ratio and 𝐺𝑤𝑓 is the shear 

modulus. This form of material model will be used in the initial development of the finite 

element code but will later be replaced by a neural network material model. 
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3.1.1 Application of the assumed displacement field [25] 

The adoption of potential energy infers that the displacements are the primary unknown. 

As expanded upon later in Section 3.1.4 the displacements at any arbitrary point within a 

body may be defined in terms of a normalised interpolation scheme such that 

{𝛿} = {𝑢, 𝑣, 𝑤} ≈ [𝑁]{𝛿}𝑖  (3.5) 

Using the definition of displacement in (3.5) the strain terms of (3.2) may be expressed in 

matrix form as  

{𝜀} = [𝐵]{𝛿}𝑖  (3.6) 

Where [𝐵] contains differentials of the assumed displacement field [𝑁]{𝛿}𝑖. 

Assuming that body forces and surface traction forces are zero and substituting (3.6) into 

(3.3) yields the following expression for the potential energy of an individual element 

Π𝑝𝑒 =

1

2
{𝛿}𝑖

𝑇
[∫ [𝐵]𝑇[𝐸][𝐵]𝑑𝑉
𝑉

] {𝛿}𝑖 − {𝛿}𝑖
𝑇
∫ [𝐵]𝑇[𝐸][𝜀0]𝑑𝑉𝑉

+

{𝛿}𝑖
𝑇
∫ [𝐵]𝑇[𝜎0]𝑑𝑉𝑉

  

(3.7) 

The total potential energies of the individual elements are summed to find the total 

potential energy of the discretised system. Therefore, the total potential energy of a 

system made up of m elements is given by 

Π𝑝𝑠 = [∑ Π𝑝𝑒
𝑖=𝑚
𝑖=1 𝑖] − {𝐷}𝑇{𝑃} (3.8) 

The second term of (3.8) accounts for work done by concentrated forces, {P}, applied to 

the system. The vector {𝐷} contains the combined nodal displacements of the entire 

system obtain by the vector summation of the corresponding terms of the element 

displacement vectors,  {𝛿}𝑖. The element matrices contained within the square bracket 

may be combined in the same way yielding  

Π𝑝𝑠 =
1

2
{𝐷}𝑇 [∑ [∫ [𝐵]𝑇[𝐸][𝐵]𝑑𝑉

𝑉
]
𝑖

𝑖=𝑚
𝑖=1 ] {𝐷} − {𝐷}𝑇 ∑ [∫ [𝐵]𝑇[𝐸][𝜀0]𝑑𝑉𝑉

]
𝑖

𝑖=𝑚
𝑖=1 +

{𝐷}𝑇 ∑ [∫ [𝐵]𝑇[𝜎0]𝑑𝑉𝑉
]
𝑖

𝑖=𝑚
𝑖=1  − {𝐷}𝑇{𝑃}  

(3.9) 

In order to establish an expression for the equilibrium of the system (3.9) is differentiated 

with respect to the nodal degrees of freedom 1 → 𝑛 and set to zero. This is written as, 

∂Π𝑝𝑠

∂𝐷1
= 0,

∂Π𝑝𝑠

∂𝐷2
= 0,… ,

∂Π𝑝𝑠

∂𝐷𝑛
= 0  (3.10) 

The expression of equilibrium for the system is therefore found by applying (3.10) to (3.9). 
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∂Π𝑝𝑠

∂𝐷1→𝑛
= {𝑅} = ∑ [∫ [𝐵]𝑇[𝐸][𝐵]𝑑𝑉

𝑉
]
𝑖

𝑖=𝑚
𝑖=1 {𝐷} − ∑ [∫ [𝐵]𝑇[𝐸][𝜀0]𝑑𝑉𝑉

]
𝑖

𝑖=𝑚
𝑖=1 +

∑ [∫ [𝐵]𝑇[𝜎0]𝑑𝑉𝑉
]
𝑖

𝑖=𝑚
𝑖=1 + {𝑃}  = ∑ [∫ [𝐵]𝑇[𝜎]𝑑𝑉

𝑉
]
𝑖

𝑖=𝑚
𝑖=1 − {𝑃} = 0  

(3.11) 

Where 

[𝜎] = [𝐸]([𝜀] − [𝜀0]) + [𝜎0] = [𝐸]([𝐵]{𝐷} − [𝜀0]) + [𝜎0]  (3.12) 

Any non-zero values given by (3.11) constitute the out of balance or residual force vector, 

{𝑅}. 

The second derivative of (3.9) yields the stiffness matrix, [𝐾𝑇] given by, 

∂2Π𝑝𝑠

∂𝐷1→𝑛
2 = [𝐾𝑇] = ∑ [∫ 𝑑[𝐵]𝑇[𝜎]𝑑𝑉

𝑉
]
𝑖

𝑖=𝑚
𝑖=1 + ∑ [∫ [𝐵]𝑇𝑑[𝜎]𝑑𝑉

𝑉
]
𝑖

𝑖=𝑚
𝑖=1   (3.13) 

Taking the definition for stress in (3.12) the stress derivative is given by  

𝑑[𝜎] = [𝐸]𝑑[𝜀] = [𝐸][𝐵]  (3.14) 

Using (3.14) with (3.13)The elastic stiffness matrix, 𝐾𝐸 , is given by 

[𝐾𝐸] = ∑ [∫ [𝐵]𝑇[𝐸][𝐵]𝑑𝑉
𝑉

]
𝑖

𝑖=𝑚
𝑖=1   (3.15) 

The remaining term in (3.13) is the geometric stiffness matrix, 𝐾𝜎, given by 

[𝐾𝜎] = ∑ [∫ 𝑑[𝐵]𝑇[𝜎]𝑑𝑉
𝑉

]
𝑖

𝑖=𝑚
𝑖=1   (3.16) 

The geometric stiffness matrix, critical for form finding when the material stiffness defined 

by [E] is set to zero, will be explicitly defined later in Section 3.1.8. 

3.1.2 Dynamic Relaxation solution algorithm  

Where an analysis is geometrically non-linear an incremental solution algorithm is require 

in order to solve the static equilibrium equation (3.11). During the process of dynamic 

relaxation all nodes undergo artificially damped pseudo oscillations controlled by the 

element stiffness and nodal out of balance forces. The system oscillates about the 

equilibrium position coming to rest only when the kinetic and potential energy of the 

entire system has dissipated. Thus the static equilibrium position is found. Dynamic 

relaxation was first applied to the form finding and analysis of tension structures in the 

late 1960s.  

Both Zhang, [26], and Gosling, [25], employed dynamic relaxation as their solution 

algorithm. Zhang also implemented the commonly used Newton-Raphson method with his 

LST element to enable comparison. It was found that the Dynamic Relaxation algorithm 

was considerably less computationally expensive than the Newton-Raphson method when 
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implemented in conjunction with the higher order LST element. Dynamic Relaxation does 

not use the complete system stiffness matrix and therefore also offers considerable 

advantages when implementing a Neural Network material model, see Chapter 5.  

The following algorithm equations included for completeness, they are reproduced from  

[30]. The D’Alembert principle is used to describe motion of the system, 

𝑃𝑝𝑞 = 𝑀𝑝𝑞𝛿̈𝑝𝑞 + 𝐶𝛿̇𝑝𝑞 + 𝐾𝑝𝑞𝛿𝑝𝑞  (3.17) 

or 

𝑃𝑝𝑞 − 𝐾𝑝𝑞𝛿𝑝𝑞 = 𝑀𝑝𝑞𝛿̈𝑝𝑞 + 𝐶𝛿̇𝑝𝑞   (3.18) 

and 

𝑅𝑝𝑞 = 𝑀𝑝𝑞𝛿̈𝑝𝑞 + 𝐶𝛿̇𝑝𝑞  (3.19) 

The subscripts 𝑝𝑞 refer to the 𝑝𝑡ℎnode in the 𝑞𝑡ℎ direction (𝑞 = 1 → 3 corresponding to 

the global axis directions {𝑥, 𝑦, 𝑧}). The external load vector, 𝑃𝑝𝑞 , includes terms 

representing the effects of surface pressures and initial strain. The nodal stiffness, 𝐾𝑝𝑞, is 

taken from the diagonal terms of the element stiffness matrix.  𝑅𝑝𝑞 denotes the nodal out 

of balance forces and  𝑀𝑝𝑞 the fictitious nodal masses. Nodal acceleration, velocity and 

displacement is denoted by 𝛿̈𝑝𝑞, 𝛿̇𝑝𝑞 and 𝛿𝑝𝑞 respectively.  

Kinetic damping has been shown to be more stable and efficient than the viscous damping 

approach in (3.17). When using kinetic damping the un-damped oscillation of the system 

is monitored and when a local kinetic energy peak is reached all velocity components are 

reset to zero. The geometry is then updated and the process repeated until the kinetic and 

potential energy is minimised and static equilibrium is achieved. Using this approach 

(3.19)becomes 

𝑃𝑝𝑞 − 𝐾𝑝𝑞𝛿𝑝𝑞 = 𝑅𝑝𝑞 = 𝑀𝑝𝑞𝛿̈𝑝𝑞  (3.20) 

Using finite difference the acceleration, 𝛿̈𝑝𝑞 , is derived form change in velocity over the 

time increment ∆𝑡. 

𝛿̈𝑝𝑞 =
𝛿̇𝑝𝑞

𝑡+
∆𝑡
2 −𝛿̇𝑝𝑞

𝑡−
∆𝑡
2

∆𝑡
  (3.21) 

A recurrent equation for current nodal velocity,  𝛿̇𝑝𝑞
𝑡+

∆𝑡

2 , is found by substitution of (3.21) 

into (3.20) and rearranging to give, 
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𝛿̇𝑝𝑞
𝑡+

∆𝑡

2 = 𝛿̇𝑝𝑞
𝑡−

∆𝑡

2 + 𝑅𝑝𝑞
𝑡 ∆𝑡

𝑀𝑝𝑞
  (3.22) 

To ensure numerical stability the following expression for 𝑀𝑝𝑞 is suggested [30, 25] 

𝑀𝑝𝑞 ≥
𝐾𝑝𝑞∆𝑡

2

2
   (3.23) 

Substitution of  (3.23) into (3.22) yields, 

𝛿̇𝑝𝑞
𝑡+

∆𝑡

2 = 𝛿̇𝑝𝑞
𝑡−

∆𝑡

2 + 𝑅𝑝𝑞
𝑡 [

2

∆𝑡∙𝐾𝑝𝑞
]  (3.24) 

The current nodal displacement, at time 𝑡 +
∆𝑡

2
, is calculated from the current 

velocity,  𝛿̇𝑝𝑞
𝑡+

∆𝑡

2 , using 

𝛿𝑝𝑞
𝑡+

𝛿𝑡

2 = 𝛿̇𝑝𝑞
𝑡+

∆𝑡

2 ∆𝑡  (3.25) 

In order to monitor the kinetic energy it must be calculated at each pseudo oscillation 

defined by (3.24) and (3.25). Current and previous kinetic energy,  𝑈𝑘
𝑡+

∆𝑡

2  and  𝑈𝑘
𝑡−

∆𝑡

2  are 

given by,  

𝑈𝑘
𝑡+

∆𝑡

2 =
1

2
∑ ∑ 𝑀𝑝𝑞

𝑞=3
𝑞=1

𝑝=𝑁
𝑝=1 ( 𝛿̇𝑝𝑞

𝑡+
∆𝑡

2 )

2

  (3.26) 

And, 

𝑈𝑘
𝑡−

∆𝑡

2 =
1

2
∑ ∑ 𝑀𝑝𝑞

𝑞=3
𝑞=1

𝑝=𝑁
𝑝=1 ( 𝛿̇𝑝𝑞

𝑡−
∆𝑡

2 )

2

  (3.27) 

A kinetic energy peak is detected when 𝑈𝑘
𝑡+

∆𝑡

2  is less than 𝑈𝑘
𝑡−

∆𝑡

2  at time 𝑡 +
∆𝑡

2
. However, 

the true kinetic energy peak will have occurred sometime before 𝑡 +
∆𝑡

2
. 
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Figure 3-1: Determination of 𝒕∗to find true kinetic energy peak during dynamic 

relaxation iteration[25] 

As demonstrated in Figure 3-1 the approximate time, 𝑡∗, of the true energy peak may be 

found by fitting a parabola through the current and two previous energy peaks. The 

improved estimate of time is given by, 

𝑡∗ = 𝑡 − 𝛿𝑡∗  (3.28) 

Where, 

𝛿𝑡∗ = ∆𝑡 ∙
𝐵−𝐶

((𝐵−𝐶)−(𝐴−𝐵))
= ∆𝑡 ∙

𝑈𝑘
𝑡−
∆𝑡
2 −𝑈𝑘

𝑡+
∆𝑡
2

2𝑈𝑘
𝑡−
∆𝑡
2 −𝑈𝑘

𝑡+
∆𝑡
2 −𝑈𝑘

𝑡−
3∆𝑡
2

= ∆𝑡 ∙ 𝛼  (3.29) 

Therefore, an improved estimate of the position of the system at the kinetic energy peak is 

given by 

𝛿𝑡
∗
= 𝛿𝑝𝑞

𝑡+
∆𝑡

2 − 𝛿̇𝑝𝑞
𝑡+

∆𝑡

2 ∙ ∆𝑡 − 𝛿̇𝑝𝑞
𝑡−

∆𝑡

2 ∙ 𝛿𝑡∗  (3.30) 

Substitution of (3.24) and (3.29) into (3.30) yields  

𝛿𝑡
∗
= 𝛿𝑝𝑞

𝑡+
∆𝑡

2 − (1 + 𝛼)𝛿̇𝑝𝑞
𝑡+

∆𝑡

2 ∙ ∆𝑡 + ∆𝑡 ∙ 𝛼 ∙ 𝑅𝑝𝑞
𝑡 [

2

𝛿𝑡∙𝐾𝑝𝑞
]   (3.31) 

Through recurrent use of (3.24) and (3.25) the condition of static equilibrium in the 

system may be found.  

3.1.3 Initial and updated nodal configurations 

The current stress is induced by the current strain. As shown in (3.6) strain is the product 

of the current displacement and shape function derivatives contained within the B-matrix. 
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For the determination of current strain the element B-matrix is derived from the initial 

element nodal configuration, {𝐶𝑜}𝑖, and the current element nodal displacements, 𝛿𝑡. This 

will be referred to as the initial element B-matrix, 𝐵0 . Therefore (3.6) becomes,  

{𝜀} = [ 𝐵0 ]{𝛿𝑡}𝑖  (3.32) 

The residual force vector is always calculated at the updated nodal configuration 

calculated at each energy peak. The updated nodal co-ordinates at time 𝑡, {𝐶𝑡}𝑖 , of an 

element may be defined by the dot product of the initial nodal co-ordinates and the 

element global nodal displacements. 

{𝐶𝑡}𝑖 = {𝐶𝑜}𝑖 + {𝛿
𝑡}𝑖 =

[
 
 
 
 
 
𝑥1 𝑦1 𝑧1
𝑥2 𝑦2 𝑧2
𝑥3 𝑦3 𝑧3
𝑥4 𝑦4 𝑧4
𝑥5 𝑦5 𝑧5
𝑥6 𝑦6 𝑧6]

 
 
 
 
 

+

[
 
 
 
 
 
𝑢1 𝑣1 𝑤1
𝑢2 𝑣2 𝑤2
𝑢3 𝑣3 𝑤3
𝑢4 𝑣4 𝑤4
𝑢5 𝑣5 𝑤5
𝑢6 𝑣6 𝑤6]

 
 
 
 
 

=

[
 
 
 
 
 
𝑥1 + 𝑢1 𝑦1 + 𝑣1 𝑧1 +𝑤1
𝑥2 + 𝑢2 𝑦2 + 𝑣2 𝑧2 +𝑤2
𝑥3 + 𝑢3 𝑦3 + 𝑣3 𝑧3 +𝑤3
𝑥4 + 𝑢4 𝑦4 + 𝑣4 𝑧4 +𝑤4
𝑥5 + 𝑢5 𝑦5 + 𝑣5 𝑧5 +𝑤5
𝑥6 + 𝑢6 𝑦6 + 𝑣6 𝑧6 +𝑤6]

 
 
 
 
 

  

(3.33) 

For the determination of current residual force the element B-matrix is derived from the 

updated element nodal configuration. As the nodal co-ordinates have been updated the 

nodal displacements become zero.  This will be referred to as the updated element B-

matrix, 𝐵𝑡 . Using these element B-matrix definitions the residual force equation (3.11) 

becomes, 

{𝑅}  = ∑ [∫ [ 𝐵𝑡 ]
𝑇
[𝜎]𝑑𝑉

𝑉
]
𝑖

𝑖=𝑚
𝑖=1 − {𝑃}  (3.34) 

Therefore, the elastic stiffness matrix (3.15) becomes,  

[𝐾𝐸] = ∑ [∫ [ 𝐵𝑡 ]
𝑇
[𝐸][ 𝐵0 ]𝑑𝑉

𝑉
]
𝑖

𝑖=𝑚
𝑖=1   (3.35) 

The geometric stiffness matrix (3.16) becomes 

[𝐾𝜎] = ∑ [∫ 𝑑[ 𝐵𝑡 ]
𝑇
[𝜎]𝑑𝑉

𝑉
]
𝑖

𝑖=𝑚
𝑖=1   (3.36) 

3.1.4 Natural co-ordinate system and shape functions [34] 

An isoparametric element utilises shape functions based on a single natural coordinate 

system to interpolate both the global element geometry, {𝑥}𝑖, and displacements, {𝛿}𝑖. The 
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co-ordinates or displacements at any point within the element may therefore be found by 

(3.37). 

𝑥 = ∑ 𝑁𝑖𝑥𝑖
𝑖=6
𝑖=1 ,  𝛿 = ∑ 𝑁𝑖𝛿𝑖

𝑖=6
𝑖=1  (3.37) 

The 6 element nodes are labelled 𝑖 = 1 → 6. The shape function, { 𝑁𝑖}, is calculated at the 

point of interest defined in terms of the natural co-ordinates. The displacement 

components 𝑢, 𝑣 and 𝑤 are represented by 𝛿𝑖 , similar expressions may be derived for the 

global 𝑦 and 𝑧 co-ordinates. 

  

Figure 3-2: Mapping between global and natural co-ordinates 

An isoparametric formulation is selected as it facilitates the generation of non-uniform 

elements with curved boundaries. This is enabled through the mapping of the irregular 

element in the global system to a regular element in the natural coordinate system as 

demonstrated in Figure 3-2. 

In the case of a triangle the natural co-ordinates are provided by area co-ordinates as 

illustrated in Figure 3-3.  

Point 𝑃 divides a triangle into three subareas 𝐴1, 𝐴2 and 𝐴3. Area co-ordinates are defined 

by the ratios between total area, 𝐴, and subarea as shown in (3.38) with the constraints in 

(3.39). 

𝜉1 =
𝐴1

𝐴
     𝜉2 =

𝐴2

𝐴
     𝜉3 =

𝐴3

𝐴
  (3.38) 

𝐴1 + 𝐴1 + 𝐴1 = 𝐴 therefore 𝜉1 + 𝜉1 + 𝜉1 = 1 (3.39) 

(1,0,0) (0,1,0) 

(0,0,1) 

(0.5,0,0.5) (0,0.5,0.5) 

(0.5,0.5,0) 
𝑥, 𝑢 

𝑧, 𝑤 

𝑦, 𝑣 
1 

4 

2 

5 

3 

6 

(𝑥3, 𝑦3, 𝑧3) 

(𝑥5, 𝑦5, 𝑧5) 

(𝑥2, 𝑦2, 𝑧2) 

(𝑥4, 𝑦4, 𝑧4) 

(𝑥1, 𝑦1, 𝑧1) 

(𝑥6, 𝑦6, 𝑧6) 
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Figure 3-3: Definition of natural (area) co-ordinates 𝝃𝒊 for a triangle [34] 

The shape functions of a 6 node quadratic triangular element expressed in terms of area 

coordinate are given in (3.40) or in vector form (3.41). 

𝑁1 = 𝜉1(2𝜉1 − 1)     𝑁2 = 𝜉2(2𝜉2 − 1)     𝑁3 = 𝜉3(2𝜉3 − 1)  

𝑁4 = 4𝜉1𝜉2                 𝑁5 = 4𝜉2𝜉3                𝑁6 = 4𝜉3𝜉1  

 

 

(3.40) 

𝑁𝑖 = {𝜉1(2𝜉1 − 1) 𝜉2(2𝜉2 − 1) 𝜉3(2𝜉3 − 1) 4𝜉1𝜉2 4𝜉2𝜉3 4𝜉3𝜉1}  (3.41) 

 

Due to the constraints shown in (3.39) the three area co-ordinates are not independent 

and therefore may be redefined in terms of only 𝜉1 and 𝜉2 (3.42).  

𝜉1 = 𝜉     𝜉2 = 𝜂     𝜉3 = 1 − 𝜉 − 𝜂  (3.42) 

The derivatives of the of the shape function vector (3.41) with respect to the area co-

ordinates, required for the definition of the B matrix and definition of local direction base 

vectors, are found using the chain rule and simplified by the partial derivatives of (3.42) 

with respect to 𝜉 and  𝜂. 

𝜕𝑁𝑖

𝜕𝜉
=

𝜕𝑁𝑖

𝜕𝜉1

𝜕𝜉1

𝜕𝜉
+
𝜕𝑁𝑖

𝜕𝜉2

𝜕𝜉2

𝜕𝜉
+
𝜕𝑁𝑖

𝜕𝜉3

𝜕𝜉3

𝜕𝜉
=

𝜕𝑁𝑖

𝜕𝜉1
−
𝜕𝑁𝑖

𝜕𝜉3
  (3.43) 

𝜕𝑁𝑖

𝜕𝜂
=

𝜕𝑁𝑖

𝜕𝜉1

𝜕𝜉1

𝜕𝜂
+
𝜕𝑁𝑖

𝜕𝜉2

𝜕𝜉2

𝜕𝜂
+
𝜕𝑁𝑖

𝜕𝜉3

𝜕𝜉3

𝜕𝜂
=

𝜕𝑁𝑖

𝜕𝜉2
−
𝜕𝑁𝑖

𝜕𝜉3
  (3.44) 

Partially differentiating (3.41) with respect to the area co-ordinates 𝜉1, 𝜉2 and 𝜉3 gives,  

𝜕𝑁𝑖

𝜕𝜉1
= [4𝜉1 − 1 0 0 4𝜉2 0 4𝜉3] (3.45) 

𝜕𝑁𝑖

𝜕𝜉2
= [0 4𝜉2 − 1 0 4𝜉1 4𝜉3 0]  (3.46) 

𝑃 

𝐴3 

𝐴2 𝐴1 

4 

5 6 

1 2 

3 

Side 1 

Side 2 

Side 3 

𝜉1 =
1

2
 

𝜉2 = 0 

𝜉2 = 1 𝜉1 = 1 

𝜉3 =
1

2
 

𝜉2 =
1

2
 

𝜉1 = 0 

𝜉3 = 0 

𝜉3 = 1 
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𝜕𝑁𝑖

𝜕𝜉3
= [0 0 4𝜉3 − 1 0 4𝜉2 4𝜉1]  (3.47) 

Substituting (3.45)-(3.47) in to (3.43) and (3.44) gives, 

𝜕𝑁𝑖

𝜕𝜉
= [4𝜉1 − 1 0 −4𝜉3 + 1 4𝜉2 −4𝜉2 4(𝜉3 − 𝜉1)]  (3.48) 

𝜕𝑁𝑖

𝜕𝜂
= [0 4𝜉2 − 1 −4𝜉3 + 1 4𝜉1 4(𝜉3 − 𝜉2) −4𝜉1]   (3.49) 

For convenience these equations may be arranged into the 6 by 2 matrix [𝐷𝑁𝜉,𝜂], 

𝐷𝑁𝜉,𝜂 = [

𝜕𝑁1

𝜕𝜉

𝜕𝑁2

𝜕𝜉

𝜕𝑁3

𝜕𝜉

𝜕𝑁1

𝜕𝜂

𝜕𝑁2

𝜕𝜂

𝜕𝑁3

𝜕𝜂

    

𝜕𝑁4

𝜕𝜉

𝜕𝑁5

𝜕𝜉

𝜕𝑁6

𝜕𝜉

𝜕𝑁4

𝜕𝜂

𝜕𝑁5

𝜕𝜂

𝜕𝑁6

𝜕𝜂

]   

𝐷𝑁𝜉,𝜂 = [ 
4𝜉1 − 1 0 −4𝜉3 + 1 4𝜉2 −4𝜉2 4(𝜉3 − 𝜉1)
0 4𝜉2 − 1 −4𝜉3 + 1 4𝜉1 4(𝜉3 − 𝜉2) −4𝜉1

]  

(3.50) 

3.1.5 Element local co-ordinate system [30] 

The membrane transformation matrix, [𝑇𝑚],  is defined in terms of direction cosines 

between the global and local coordinate systems.  

𝑇𝑚 = [ 
𝑙1 𝑙2 𝑙3
𝑚1 𝑚2 𝑚3

𝑛1 𝑛2 𝑛3

]  (3.51) 

The direction cosines contained in 𝑇 are derived from the basis vectors aligned with the 

natural coordinate system along with the material direction. The natural coordinate basis 

vectors are the product of the derivatives of the shape functions given in (3.48) and (3.49) 

and the global element nodal co-ordinates.  

As demonstrated in [30] base vectors  𝜉  aligned natural coordinate direction may be 

defined by, 

𝜉 = [
𝜕𝑥

𝜕𝜉

𝑖
→+

𝜕𝑦

𝜕𝜉

𝑗
→+

𝜕𝑧

𝜕𝜉

𝑘
→]  (3.52) 

The basis vectors for the 𝜉 and 𝜂 natural coordinate directions may be defined in terms of 

the shape functions by substituting (3.48) into (3.52) in the same form as (3.37). 

𝜉 = [∑
𝜕𝑁𝑖

𝜕𝜉
𝑥𝑖

𝑖=6
𝑖=1 𝑖̂+ ∑

𝜕𝑁𝑖

𝜕𝜉
𝑦𝑖

𝑖=6
𝑖=1 𝑗̂ +∑

𝜕𝑁𝑖

𝜕𝜉
𝑧𝑖

𝑖=6
𝑖=1 𝑘̂]  (3.53) 

𝜂 = [∑
𝜕𝑁𝑖

𝜕𝜂
𝑥𝑖

𝑖=6
𝑖=1 𝑖̂ +∑

𝜕𝑁𝑖

𝜕𝜂
𝑦𝑖

𝑖=6
𝑖=1 𝑗̂ +∑

𝜕𝑁𝑖

𝜕𝜂
𝑧𝑖

𝑖=6
𝑖=1 𝑘̂]  (3.54) 

Due to the curvature of the element in three dimensions these two base vectors may not 

be orthogonal. However, they define a plane tangential to the element surface at any 
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arbitrary point. The cross product of the natural coordinate basis vectors produces the 

orthogonal vector, 𝑍, aligned the local 𝑍-direction. This vector is normalised to give 𝑍̂.  

𝑍 = 𝜉 × 𝜂  (3.55) 

𝑍̂ =
𝑍⃗

‖𝑍⃗‖
  or 𝑍̂ =

𝜉⃗⃗×𝜂⃗⃗⃗ 

‖𝜉⃗⃗×𝜂⃗⃗⃗ ‖
= [𝑛1 𝑖̂ +𝑛2 𝑗̂ +𝑛3 𝑘̂] (3.56) 

The material direction is defined in terms of an angle, 𝜃, referenced to the global 𝑥 

direction. Using 𝜃 global material warp and fill direction basis vectors, 𝜃𝑤 and 𝜃𝑓, may be 

defined in the global 𝑥y-plane(𝑧 = 0). 

𝜃𝑤 = [cos 𝜃 𝑖̂+ sin𝜃 𝑗̂ +0 𝑘̂] and 𝜃𝑓 = [−sin𝜃 𝑖̂+ cos 𝜃 𝑗̂ +0 𝑘̂]    (3.57) 

The cross product of the global fill direction basis vector, 𝜃𝑓, and the local Z-direction basis 

vector, 𝑍̂, gives the basis vector, 𝑋̂, aligned with the local warp material direction in the 

local coordinate plane. This is also referred to as the local 𝑋-direction basis vector. 

𝑋̂ =
 𝜃⃗⃗⃗𝑓×𝑍⃗ 

‖𝜃⃗⃗⃗𝑓×𝑍⃗  ‖
= [𝑙1 𝑖̂+ 𝑙2 𝑗̂ +𝑙3 𝑘̂]  (3.58) 

The cross product of the local 𝑋-direction basis vector, 𝑋̂, and  𝑍-direction base vector, 𝑍̂, 

completes the local orthogonal coordinate system giving the local 𝑌-direction basis 

vector, 𝑌̂, aligned with the local fill material direction in the local coordinate 𝑋𝑌-plane.   

𝑌̂ =
𝑍̂×𝑋̂

‖𝑍̂×𝑋̂ ‖
= [𝑚1 𝑖̂ +𝑚2 𝑗̂ +𝑚3 𝑘̂]  (3.59) 

Use of the global coordinate system to define 𝑋̂ from the cross product of 𝜃𝑓 and 𝑍  may 

lead to instability when the membrane element is precisely aligned with the global 𝑦𝑧-

plane. This alignment can occur when defining the initial mesh or during an analysis. In 

order to avoid instability the mesh may be tested for alignment with the 𝑦𝑧-plane by the 

condition, 

𝑍̂ = [±1 𝑖̂ +0 𝑗̂ +0 𝑘̂].  (3.60) 

Where the condition in (3.60) is true the following  alternative equations to (3.58) 

and (3.59) must be used. The local 𝑌-direction basis vector is found from, 
 

𝑌̂ =
𝜃⃗⃗⃗𝑤×𝑍⃗

‖𝜃⃗⃗⃗𝑤×𝑍⃗ ‖
= [𝑚1 𝑖̂ +𝑚2 𝑗̂ +𝑚3 𝑘̂].  

(3.61) 

The local 𝑋-direction may then be found from, 
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𝑋̂ =
 𝑌⃗⃗×𝑍⃗ 

‖𝑌⃗⃗×𝑍⃗   ‖
= [𝑙1 𝑖̂+ 𝑙2 𝑗̂ +𝑙3 𝑘̂]. (3.62) 

The local basis vectors transform global co-ordinates {𝑥 𝑦 𝑧}𝑖, forces {𝑓𝑥 𝑓𝑦 𝑓𝑧}𝑖 and 

displacements {𝑢 𝑣 𝑤}𝑖 to the local coordinate systems.  

3.1.6 The Jacobian matrix [30] 

The displacements are expressed as functions of the normalised natural co-ordinates. 

However, strains are required in terms of the element local coordinate system. Therefore, 

it is required that differentiation with respect to the natural co-ordinates is related to 

differentiation with respect to the local co-ordinates via a change in variable. The Jacobian 

accounts for the change in variable between the distorted element expressed in terms of 

local co-ordinates and the normalised element expressed in terms of natural co-ordinates.  

The Jacobian may be derived by taking a general scalar quantity, Φ, (for example of 

displacements in the global 𝑥 direction) at a position in the element defined by (𝜉, 𝜂). If the 

position of Φ is moved from (𝜉, 𝜂) to (𝜉 + 𝑑𝜉, 𝜂 + 𝑑𝜂) the change in Φ, 𝑑Φ, is given by,  

𝑑Φ =
𝜕Φ

𝜕𝜉
∙ 𝑑𝜉 +

𝜕Φ

𝜕𝜂
∙ 𝑑𝜂  (3.63) 

A change in position of 𝑑𝜉 implies a shift in position given as 𝜉 ∙ 𝑑𝜉. Likewise a change in 

position of 𝑑𝜂 implies a shift in position gives as 𝜂 ∙ 𝑑𝜂. Resolving these shifts into the local 

𝑋 and 𝑌 directions gives, 

𝑑X𝜉 = 𝜉 ∙ 𝑋̂𝑑𝜉 and 𝑑Y𝜉 = 𝜉 ∙ 𝑌̂𝑑𝜉 (3.64) 

𝑑X𝜂 = 𝜂 ∙ 𝑋̂𝑑𝜂 and 𝑑Y𝜂 = 𝜂 ∙ 𝑌̂𝑑𝜂 (3.65) 

Rewriting (3.63) in terms of the local coordinate system gives, 

𝑑Φ =
𝜕Φ

𝜕𝑋
∙ 𝑑𝑋+

𝜕Φ

𝜕𝑌
∙ 𝑑𝑌 (3.66) 

where, 𝑑𝑋 = 𝑑𝑋𝜉 + 𝑑𝑋𝜂and 𝑑𝑌 = 𝑑𝑌𝜉 + 𝑑𝑌𝜂  

Substitution of (3.64) and (3.65) into (3.66) gives, 

𝑑Φ = [𝜉 ∙ 𝑋̂
𝜕Φ

𝜕𝑋
+ 𝜉 ∙ 𝑌̂

𝜕Φ

𝜕𝑌
]  𝑑𝜉 + [𝜂 ∙ 𝑋̂

𝜕Φ

𝜕𝑋
+ 𝜂 ∙ 𝑌̂

𝜕Φ

𝜕𝑌
]  𝑑𝜂 =

𝜕Φ

𝜕𝜉
∙ 𝑑𝜉 +

𝜕Φ

𝜕𝜂
∙ 𝑑𝜂  (3.67) 

Collection of the common terms in (3.67) leads to the matrix formulation, 
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[

𝜕Φ

𝜕𝜉

𝜕Φ

𝜕𝜂

] = [
𝜉 ∙ 𝑋̂ 𝜉 ∙ 𝑌̂

𝜂 ∙ 𝑋̂ 𝜂 ∙ 𝑌̂
] [

𝜕Φ

𝜕𝑋
𝜕Φ

𝜕𝑌

]  (3.68) 

Or more usefully, 

[

𝜕Φ

𝜕𝑋
𝜕Φ

𝜕𝑌

] =
1

det [𝐽]
[
𝜂 ∙ 𝑌̂ −𝜉 ∙ 𝑌̂

−𝜂 ∙ 𝑋̂ 𝜉 ∙ 𝑋̂
] [

𝜕Φ

𝜕𝜉

𝜕Φ

𝜕𝜂

]  (3.69) 

𝐽 = [
𝜉 ∙ 𝑋̂ 𝜉 ∙ 𝑌̂

𝜂 ∙ 𝑋̂ 𝜂 ∙ 𝑌̂
] = [

𝐽11 𝐽12
𝐽21 𝐽22

]  (3.70) 

The determinant of the Jacobian is constant throughout the element. In the case of a 

rectangular element the determinant returns the area of the element. Therefore, for a 

triangular element it returns twice the area. 

3.1.7 Element B-matrix [30,34] 

Strain is defined using the Green-Lagrange definition for large strain (3.71)-(3.73).  

𝜀𝑥 =
𝜕𝑈

𝜕𝑋
+
1

2
[(
𝜕𝑈

𝜕𝑋
)
2
+ (

𝜕𝑉

𝜕𝑋
)
2
+ (

𝜕𝑊

𝜕𝑋
)
2
]  (3.71) 

𝜀𝑦 =
𝜕𝑉

𝜕𝑌
+
1

2
[(
𝜕𝑈

𝜕𝑌
)
2
+ (

𝜕𝑉

𝜕𝑌
)
2
+ (

𝜕𝑊

𝜕𝑌
)
2
]  (3.72) 

𝛾𝑥𝑦 =
𝜕𝑈

𝜕𝑌
+
𝜕𝑉

𝜕𝑋
+
1

2
[
𝜕𝑈

𝜕𝑋

𝜕𝑈

𝜕𝑌
+
𝜕𝑉

𝜕𝑋

𝜕𝑉

𝜕𝑌
+
𝜕𝑊

𝜕𝑋

𝜕𝑊

𝜕𝑌
]  (3.73) 

The initial first order terms represent the standard definition of engineering strain, 

[𝜀0] =  

[
 
 
 
 

𝜕𝑈

𝜕𝑋
𝜕𝑉

𝜕𝑌
𝜕𝑈

𝜕𝑌
+
𝜕𝑉

𝜕𝑋]
 
 
 
 

  (3.74) 

The additional second order terms become significant as strain becomes large, 

[𝜀𝐿] =
1

2
 

[
 
 
 
 (
𝜕𝑈

𝜕𝑋
)
2
+ (

𝜕𝑉

𝜕𝑋
)
2
+ (

𝜕𝑊

𝜕𝑋
)
2

(
𝜕𝑈

𝜕𝑌
)
2
+ (

𝜕𝑉

𝜕𝑌
)
2
+ (

𝜕𝑊

𝜕𝑌
)
2

𝜕𝑈

𝜕𝑋

𝜕𝑈

𝜕𝑌
+
𝜕𝑉

𝜕𝑋

𝜕𝑉

𝜕𝑌
+
𝜕𝑊

𝜕𝑋

𝜕𝑊

𝜕𝑌 ]
 
 
 
 

  (3.75) 

The B-matrix is the relationship between strain and displacement. The B-matrix consists 

of two distinct parts.  The linear term, 𝐵0, is independent of current displacements 
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accounts for 𝜀0. The non-linear strain term 𝜀𝐿 which is depenedent on displacement is 

accounted for by 𝐵𝐿. This leads to the following definition,   

[𝜀] = [𝜀0] + [𝜀𝐿] = [𝐵0 + 𝐵𝐿]{𝛿𝑖} =  [

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

]  (3.76) 

3.1.7.1 First order linear terms of the B-matrix, 𝑩𝟎 [30,34] 

The value of displacement in the local 𝑋 direction, 𝑈, is interpolated from the global 

displacements at each node via the shape functions calculated at the point of interest and 

transformed into the local system via the unit vector  𝑋̂. 

𝑈 = 𝑋̂𝑇[𝑁]{𝛿𝑖} = 𝑋̂
𝑇[∑ 𝑁𝑖𝑢𝑖

𝑖=6
𝑖=1 𝑖̂ +∑ 𝑁𝑖𝑣𝑖

𝑖=6
𝑖=1 𝑗̂+ ∑ 𝑁𝑖𝑤𝑖

𝑖=6
𝑖=1 𝑘̂]  (3.77) 

The first order linear contribution to the total strain may be derived from the derivative of 

(3.77) with respect to 𝑋.  

𝜕𝑈

𝜕𝑋
= 𝑋̂𝑇  

𝜕[𝑁]

𝜕𝑋
{𝛿𝑖} = 𝑋̂

𝑇 [∑
𝜕𝑁𝑖

𝜕𝑋
𝑢𝑖

𝑖=6
𝑖=1 𝑖̂ +∑

𝜕𝑁𝑖

𝜕𝑋
𝑣𝑖

𝑖=6
𝑖=1 𝑗̂ + ∑

𝜕𝑁𝑖

𝜕𝑋
𝑤𝑖

𝑖=6
𝑖=1 𝑘̂]  (3.78) 

In agreement with [30] the additional terms which arise from the chain rule are assumed 

to be zero and are therefore not included in (1.37).  

Substituting the direction cosine form of, 𝑋̂𝑇, shown in (3.59) into (3.78) yields, 

𝜕𝑈

𝜕𝑋
= ∑ 𝑙1

𝜕𝑁𝑖

𝜕𝑋
𝑢𝑖

𝑖=6
𝑖=1 + ∑ 𝑙2

𝜕𝑁𝑖

𝜕𝑋
𝑣𝑖 +

𝑖=6
𝑖=1 ∑ 𝑙3

𝜕𝑁𝑖

𝜕𝑋
𝑤𝑖

𝑖=6
𝑖=1   (3.79) 

Similarly it can be shown that, 

𝜕𝑈

𝜕𝑌
= ∑ 𝑚1

𝜕𝑁𝑖

𝜕𝑌
𝑢𝑖

𝑖=6
𝑖=1 + ∑ 𝑚2

𝜕𝑁𝑖

𝜕𝑌
𝑣𝑖 +

𝑖=6
𝑖=1 ∑ 𝑚3

𝜕𝑁𝑖

𝜕𝑌
𝑤𝑖

𝑖=6
𝑖=1   (3.80) 

𝜕𝑉

𝜕𝑋
= ∑ 𝑙1

𝜕𝑁𝑖

𝜕𝑋
𝑢𝑖

𝑖=6
𝑖=1 + ∑ 𝑙2

𝜕𝑁𝑖

𝜕𝑋
𝑣𝑖 +

𝑖=6
𝑖=1 ∑ 𝑙3

𝜕𝑁𝑖

𝜕𝑋
𝑤𝑖

𝑖=6
𝑖=1   (3.81) 

𝜕𝑉

𝜕𝑌
= ∑ 𝑚1

𝜕𝑁𝑖

𝜕𝑌
𝑢𝑖

𝑖=6
𝑖=1 +∑ 𝑚2

𝜕𝑁𝑖

𝜕𝑌
𝑣𝑖 +

𝑖=6
𝑖=1 ∑ 𝑚3

𝜕𝑁𝑖

𝜕𝑌
𝑤𝑖

𝑖=6
𝑖=1   (3.82) 

Substituting (3.79)-(3.82) for the first order terms of (3.71)-(3.73) yields the definition of 

linear strain. By taking out the displacement terms and arranging them into the global 

displacement array, {𝛿}𝑖, (3.84) leaves the linear 3 by 18 B-matrix in the following form, 

[𝐵0] =

[
 
 
 
 𝑙1

𝜕𝑁1

𝜕𝑋

𝑚1
𝜕𝑁1

𝜕𝑌

𝑙1
𝜕𝑁1

𝜕𝑌
+𝑚1

𝜕𝑁1

𝜕𝑋

𝑙2
𝜕𝑁1

𝜕𝑋

𝑚2
𝜕𝑁1

𝜕𝑌

𝑙2
𝜕𝑁1

𝜕𝑌
+𝑚2

𝜕𝑁1

𝜕𝑋

𝑙3
𝜕𝑁1

𝜕𝑋

𝑚3
𝜕𝑁1

𝜕𝑌

𝑙3
𝜕𝑁1

𝜕𝑌
+𝑚3

𝜕𝑁1

𝜕𝑋

⋯                      𝑙3
𝜕𝑁6

𝜕𝑋

⋯                   𝑚3
𝜕𝑁6

𝜕𝑌

⋯ 𝑙3
𝜕𝑁6

𝜕𝑌
+𝑚3

𝜕𝑁6

𝜕𝑋 ]
 
 
 
 

  
(3.83) 
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{𝛿𝑖}
𝑇 = {𝑢1 𝑣1 𝑤1 ⋯ 𝑢6 𝑣6 𝑤6}  (3.84) 

As shown in Section 3.1.6 the inverse of the Jacobian, 𝐽−1, relates derivatives of a scalar 

quantity with respect to the natural co-ordinates (𝜉, 𝜂) to derivatives with respect to the 

local coordinate system (𝑋, 𝑌). Therefore, the derivatives of the shape functions, [𝑁𝑖], with 

respect to the local co-ordinates may be found by matrix multiplication of the inverse of 

the Jacobian (3.69) with the matrix of shape function derivatives with respect to natural 

co-ordinates (3.50),  

𝐷𝑁𝑋,𝑌 = [Γ] [𝐷𝑁𝜉,𝜂]  (3.85) 

where, 

[Γ] =
1

det[𝐽]
[
𝐽22 −𝐽12
−𝐽21 𝐽11

] = [
Γ11 Γ12
Γ21 Γ22

]  (3.86) 

Shown explicitly (3.85) becomes, 

𝐷𝑁𝑋,𝑌 = [ 
Γ11

𝜕𝑁1

𝜕𝜉
+ Γ12

𝜕𝑁1

𝜕𝜂
⋯ ⋯ ⋯ ⋯ Γ11

𝜕𝑁6

𝜕𝜉
+ Γ12

𝜕𝑁6

𝜕𝜂

Γ21
𝜕𝑁1

𝜕𝜉
+ Γ22

𝜕𝑁1

𝜕𝜂
⋯ ⋯ ⋯ ⋯ Γ21

𝜕𝑁1

𝜕𝜉
+ Γ22

𝜕𝑁1

𝜕𝜂

]  

𝐷𝑁𝑋,𝑌 = [

𝜕𝑁1

𝜕𝑋

𝜕𝑁2

𝜕𝑋

𝜕𝑁3

𝜕𝑋

𝜕𝑁4

𝜕𝑋

𝜕𝑁5

𝜕𝑋

𝜕𝑁6

𝜕𝑋
𝜕𝑁1

𝜕𝑌

𝜕𝑁2

𝜕𝑌

𝜕𝑁3

𝜕𝑌

𝜕𝑁4

𝜕𝑌

𝜕𝑁5

𝜕𝑌

𝜕𝑁6

𝜕𝑌

 ]  

(3.87) 

3.1.7.2 Second order displacement dependent terms of the B-matrix, 𝑩𝑳 

The following derivation of the displacement dependant B-matrix is based on the 

derivation presented by Zienkiewicz [122] and is used by Gosling [30].  

 The second order strain terms defined in (3.75) may be rearranged into the form, 

[𝜀𝐿] =
1

2
 [

{Δ𝑋}
𝑇 {0}

  {0} {Δ𝑌}
𝑇

{Δ𝑌}
𝑇 {Δ𝑋}

𝑇

] [
{Δ𝑋}

{Δ𝑌}
] =

1

2
[𝐴][Δ]  (3.88) 

where,  

{Δ𝑋}
𝑇 = [

𝜕𝑈

𝜕𝑋
 

𝜕𝑉

𝜕𝑋

𝜕𝑊

𝜕𝑋
] and {Δ𝑌}

𝑇 = [
𝜕𝑈

𝜕𝑌

𝜕𝑉

𝜕𝑌

𝜕𝑊

𝜕𝑌
] (3.89) 

The 6 by 18 G-matrix relates local displacement derivatives to global nodal displacements 

in the form, 
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[Δ]  = [
{Δ𝑋}

{Δ𝑌}
] = [𝐺]{𝛿}𝑖 =

[
 
 
 
 
 
 
 
 
 
𝜕𝑈

𝜕𝑋
𝜕𝑉

𝜕𝑋
𝜕𝑊

𝜕𝑋
𝜕𝑈

𝜕𝑌
𝜕𝑉

𝜕𝑌
𝜕𝑊

𝜕𝑌 ]
 
 
 
 
 
 
 
 
 

  (3.90) 

 and is assembled in a similar fashion to (3.83),  

[𝐺] =  

[
 
 
 
 
 
 
 
 
 𝑙1

𝜕𝑁1

𝜕𝑋
𝑙2
𝜕𝑁1

𝜕𝑋
𝑙3
𝜕𝑁1

𝜕𝑋

𝑚1
𝜕𝑁1

𝜕𝑋
𝑚2

𝜕𝑁1

𝜕𝑋
𝑚3

𝜕𝑁1

𝜕𝑋

𝑛1
𝜕𝑁1

𝜕𝑋
𝑛2

𝜕𝑁1

𝜕𝑋
𝑛3

𝜕𝑁1

𝜕𝑋

⋯
⋯
⋯

𝑙3
𝜕𝑁6

𝜕𝑋

𝑚3
𝜕𝑁6

𝜕𝑋

𝑛3
𝜕𝑁6

𝜕𝑋

𝑙1
𝜕𝑁1

𝜕𝑌
𝑙2
𝜕𝑁1

𝜕𝑌
𝑙3
𝜕𝑁1

𝜕𝑌

𝑚1
𝜕𝑁1

𝜕𝑌
𝑚2

𝜕𝑁1

𝜕𝑌
𝑚3

𝜕𝑁1

𝜕𝑌

𝑛1
𝜕𝑁1

𝜕𝑌
𝑛2

𝜕𝑁1

𝜕𝑌
𝑛3

𝜕𝑁1

𝜕𝑌

⋯
⋯
⋯

𝑙3
𝜕𝑁6

𝜕𝑌

𝑚3
𝜕𝑁6

𝜕𝑌

𝑛3
𝜕𝑁6

𝜕𝑌 ]
 
 
 
 
 
 
 
 
 

  (3.91) 

Taking the variation of (3.88) gives, 

𝑑[𝜀𝐿] =
1

2
𝑑[𝐴][Δ] +

1

2
[𝐴]𝑑[Δ]  (3.92) 

Inspection of (3.88) and (3.92) leads to the following property 

𝑑[𝐴][Δ]  =
1

2
[

𝑑{Δ𝑋}
𝑇 {0}

  {0} 𝑑{Δ𝑌}
𝑇

𝑑{Δ𝑌}
𝑇 𝑑{Δ𝑋}

𝑇

] [
{Δ𝑋}

{Δ𝑌}
]  

                    =
1

2
[

{Δ𝑋}
𝑇 {0}

  {0} {Δ𝑌}
𝑇

{Δ𝑌}
𝑇 {Δ𝑋}

𝑇

] [
𝑑{Δ𝑋}

𝑑{Δ𝑌}
] = [𝐴]𝑑[Δ] 

(3.93) 

Substitution of (3.93) into (3.92) yields, 

𝑑[𝜀𝐿] =
1

2
𝑑[𝐴][Δ] +

1

2
[𝐴]𝑑[Δ] = [𝐴]𝑑[Δ] = [𝐴][𝐺]𝑑{𝛿}𝑖  (3.94) 

The relationship between the second-order strain terms and displacement is given by, 

𝑑[𝜀𝐿] = [𝐵𝐿]𝑑{𝛿}𝑖  (3.95) 

Therefore 𝐵𝐿 is given by, 

[𝐵𝐿] = [𝐴][𝐺] (3.96) 
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3.1.7.3 Alternative second order displacement dependent  terms of the B-matrix, 𝑩𝑳 

On inspection of the above derivation for the second order displacement dependent terms 

of the B-matrix it is apparent that the cancellation of the half term leads to a discrepancy 

between Green-Lagrange definition for large strain (3.71)-(3.73) and the strain calculated 

by the formulation. In order to ensure that the numerical formulation matches the 

analytical results obtained using the Green-Lagrange theory, an alternative formulation is 

presented and tested here. 

The terms of the [Δ] matrix are found from (3.90) and may be arranged into the 3 by 6 [A] 

matrix defined by (3.88) .Therefore, direct substitution of (3.90) into (3.88) gives, 

[𝜀𝐿] =
1

2
 [

{Δ𝑋}
𝑇 {0}

  {0} {Δ𝑌}
𝑇

{Δ𝑌}
𝑇 {Δ𝑋}

𝑇

] [
{Δ𝑋}

{Δ𝑌}
] =

1

2
[𝐴][𝐺]{𝛿}𝑖  (3.97) 

Therefore 𝐵𝐿 is given by, 

[𝐵𝐿] =
1

2
[𝐴][𝐺]  (3.98) 

The element equations developed above are tested using a simple patch test. A 1 metre 

square patch of fabric is discretised into 81 elements and restrained along two edges by 

rolling restraints. Uniformly distributed loads (UDL) of 100kN/m are applied along the 

free edges. The warp material direction is aligned with the global 𝑥-direction and the fill 

material direction with the global 𝑦-direction. No prestress is applied to the material. 

Therefore, no form finding is required. 

   

Figure 3-4: 32 element patch for validation of element equations 

𝑥, 𝑢, 𝑤𝑎𝑟𝑝 

𝑦
,𝑣
,𝑓
𝑖𝑙
𝑙 

1m 

1
m

 

100kN/m 

100kN/m 

𝐸𝑤 =  1000kN/m 

𝐸𝑓 =  1000kN/m 

𝜐𝑤𝑓 =  0.3 

𝜐𝑓𝑤 =  0.3 

𝐺𝑤𝑓 =  30kN/m 
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The patch is given the plane stress material properties shown in Figure 3-4 alongside the 

mesh definition and boundary conditions. Substitution of the values into the plane stress 

stiffness matrix yields, 

{𝜎} = [𝐸]{𝜀} =

[
 
 
 
 

𝐸𝑤

(1−𝜐𝑤𝑓𝜐𝑓𝑤)

𝐸𝑤𝜐𝑓𝑤

(1−𝜐𝑤𝑓𝜐𝑓𝑤)
0

𝐸𝑓𝜐𝑤𝑓

(1−𝜐𝑤𝑓𝜐𝑓𝑤)

𝐸𝑓

(1−𝜐𝑤𝑓𝜐𝑓𝑤)
0

0 0 𝐺𝑤𝑓]
 
 
 
 

{

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

} = [

1000

0.91

300

0.91
0

300

0.91

1000

0.91
0

0 0 30

] {

𝜀𝑥
𝜀𝑦
𝛾𝑤𝑦

}  

 

(3.99) 

The loads are applied only in the plane of the material. Therefore, no out of plane forces 

are present and the standard definition for green’s strain may be used to relate 

displacement to strain as follows. 

{𝜀} = {

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

} =

{
  
 

  
 1
2
(
( 𝑙𝑥0 +∆𝑙𝑥)

2

𝑙𝑥0

2 − 1)

1

2
(
( 𝑙𝑦0 +∆𝑙𝑦)

2

𝑙𝑦0

2 − 1)

𝛾𝑥𝑦 }
  
 

  
 

=

{
 

 
1

2
(
(1+𝑢)2

12
− 1)

1

2
(
(1+𝑣)2

12
− 1) 

0 }
 

 
  (3.100) 

As all loading is aligned with the material directions no shear strain and hence shear stress 

is introduced. The patch will undergo equal displacement in the principal directions due to 

the applied load. The resulting stress in the patch after displacement is given by 

{𝜎} = {

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

} = {

100

(1+𝑢)

100

(1+𝑣)

0

}  (3.101) 

Three full analyses are completed. The first analysis uses the displacement dependent B 

matrix (3.96) developed in Section 3.1.7.2 and the updated nodal configuration for 

residual force calculation (3.34). This analysis yields the results shown in Figure 3-5(a-f). 

The results alongside the expected results given by equations (3.99) to (3.101) are shown 

in Table 3-1.  

The second analysis uses the displacement dependent B matrix (3.98) developed in 

Section 0 and the updated nodal configuration for residual force calculation (3.34). This 

analysis yields uniform stress and strain results similar to those demonstrated in Figure 

3-5 (a-f). The results alongside the expected results given by equations (3.99) to (3.101) 

are shown in Table 3-2.  

The third analysis again uses the displacement dependent B matrix (3.98) developed in 

Section 0 but does not use the updated co-ordinate nodal configuration. Again this analysis 
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yields uniform stress and strain results similar to those demonstrated in Figure 3-5 (a-f). 

The results alongside the expected results given by equations (3.99) to (3.101) are shown 

in Table 3-3.  

All values are reported to 4 significant figures, the error between the analysis and the 

result from (3.99) is attributed to rounding error.  

 Analysis (3.99) (3.100) (3.101) 

Warp Stress, 𝝈𝒙 94.16kN/m 94.14kN/m - 94.16kN/m 

Fill Stress, 𝝈𝒚 94.16kN/m 94.14kN/m - 94.16kN/m 

Warp Strain, 𝜺𝒙 0.0659 0.0659 0.0640 - 

Fill Strain, 𝜺𝒚 0.0659 0.0659 0.0640 - 

Warp Displacement, 𝒖 0.0621m - 0.0621m 0.0621m 

Fill Displacement, 𝒗 0.0621m - 0.0621m 0.0621m 

Table 3-1:  Analysis results using [𝑩𝑳] = [𝑨][𝑮] and updated nodal configuration for 
residual force calculation alongside expected results. 

 Analysis (3.99) (3.100) (3.101) 

Warp Stress, 𝝈𝒙 94.01kN/m 94.00kN/m - 94.01kN/m 

Fill Stress, 𝝈𝒚 94.01kN/m 94.00kN/m - 94.01kN/m 

Warp Strain, 𝜺𝒙 0.0658 0.0658 0.0658 - 

Fill Strain, 𝜺𝒚 0.0658 0.0658 0.0658 - 

Warp Displacement, 𝒖 0.0638m - 0.0638m 0.0638m 

Fill Displacement, 𝒗 0.0638m - 0.0638m 0.0638m 

Table 3-2: Analysis results using [𝑩𝑳] =
𝟏

𝟐
[𝑨][𝑮] and updated nodal configuration for 

residual force calculation alongside expected results. 

 Analysis (3.99) (3.100) (3.101) 

Warp Stress, 𝝈𝒙 96.82kN/m 96.86kN/m - 93.84kN/m 

Fill Stress, 𝝈𝒚 96.82kN/m 96.86kN/m - 93.84kN/m 

Warp Strain, 𝜺𝒙 0.0678 0.0678 0.0678 - 

Fill Strain, 𝜺𝒚 0.0678 0.0678 0.0678 - 

Warp Displacement, 𝒖 0.0656m - 0.0656m 0.0656m 

Fill Displacement, 𝒗 0.0656m - 0.0656m 0.0656m 

Table 3-3: Analysis results using [𝑩𝑳] =
𝟏

𝟐
[𝑨][𝑮] and initial nodal configuration for 

residual force calculation alongside expected results. 
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(a) Warp stress (kN/m) (b) Fill stress (kN/m) 

  
(c) Warp strain (%) (d) Fill strain (%) 

  
(e) Warp displacement (m) (f) Fill displacement (m) 

Figure 3-5: Patch test results using [𝑩𝑳] =
𝟏

𝟐
[𝑨][𝑮]  

The strain result produced by the analysis using (3.96) is not consistent with (3.100) 

shown in Table 3-1. As demonstrated in Table 3-3 the analysis which uses (3.98) but does 

not use the updated nodal configuration produces a stress result which is not consistent 
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with (3.120). Only the results given by the analysis using (3.98) and the updated nodal 

configuration for calculation of residual force produces consistent results across the board. 

This indicates that the alternative definition for the second order displacement dependent 

terms of the B-matrix including the half term, Section 3.1.7.3, should be used. The main 

aim of this thesis is the development and demonstration of a material model. Therefore,  

time constraints dictate that the further investigation of this finding is beyond the scope of 

this PhD. However, if this formulation were to be developed further and used in further 

studies it is recommended that this be investigated further. 

3.1.8 Element initial stress stiffness matrix [30,122] 

According to the principle of virtual work the following expression for the initial or 

geometric stiffness matrix, [𝐾𝜎
𝑒], is suggested by Zienkiewicz [122]. The formulation uses 

the revised definition for 𝐵𝐿 that includes the 
1

2
 term. 

[𝐾𝜎
𝑒]𝑑{𝛿}𝑖 = ∫ 𝑑[𝐵𝐿]

𝑇{𝜎}
𝑉

𝑑𝑉  (3.102) 

Taking the definition for 𝐵𝐿, (3.98), and applying a variation with respect to the 

displacement vector, {𝛿}𝑖, gives 

𝑑[𝐵𝐿]
𝑇 = {

1

2
𝑑[𝐴]𝐺 +

1

2
[𝐴]𝑑[𝐺]}

𝑇
  (3.103) 

Assuming that the current geometry is held constant 𝑑[𝐺] = 0 and noting that 

{
1

2
𝑑[𝐴]𝐺}

𝑇
=

1

2
[𝐺]𝑇𝑑[𝐴]𝑇substitution of (3.103) into (3.102) yields, 

[𝐾𝜎
𝑒]𝑑{𝛿}𝑖 = ∫

1

2
[𝐺]𝑇𝑑[𝐴]𝑇{𝜎}

𝑉
𝑑𝑉  (3.104) 

Using the definition for [𝐴] given in (3.88) 𝑑[𝐴]𝑇{𝜎} may be written as 

𝑑[𝐴]𝑇{𝜎} = [
𝑑{Δ𝑋} 0 𝑑{Δ𝑌}

0 𝑑{Δ𝑋} 𝑑{Δ𝑌}
] {

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

}  

                    = [
𝑑{Δ𝑋}𝜎𝑥 + 𝑑{Δ𝑌}𝜏𝑥𝑦
𝑑{Δ𝑌}𝜎𝑦 + 𝑑{Δ𝑋}𝜏𝑥𝑦

]  

                    = [
𝜎𝑥[𝐼3]𝑑{Δ𝑋} + 𝜏𝑥𝑦[𝐼3]𝑑{Δ𝑌}

𝜏𝑥𝑦[𝐼3]𝑑{Δ𝑋} + 𝜎𝑦[𝐼3]𝑑{Δ𝑌}
]  

                    = [
𝜎𝑥[𝐼3] 𝜏𝑥𝑦[𝐼3]

𝜏𝑥𝑦[𝐼3] 𝜎𝑦[𝐼3]
] [
𝑑{Δ𝑋}

𝑑{Δ𝑌}
]  

(3.105) 
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                    = [
𝜎𝑥[𝐼3] 𝜏𝑥𝑦[𝐼3]

𝜏𝑥𝑦[𝐼3] 𝜎𝑦[𝐼3]
] 𝑑{∆}  

Where [𝐼3] is a 3 by 3 identity matrix. 

Now using the definition for {∆} given in (3.90) and again noting that 𝑑[𝐺] = 0 (3.105) 

may be rewritten as 

𝑑[𝐴]𝑇{𝜎} = [𝑀][𝐺]𝑑{𝛿}𝑖   

(3.106) 

Where 

[𝑀] = [
𝜎𝑥[𝐼3] 𝜏𝑥𝑦[𝐼3]

𝜏𝑥𝑦[𝐼3] 𝜎𝑦[𝐼3]
] 

 

(3.107) 

Substitution of (3.106) into (3.104) leads to the final expression for the initial (or 

geometric) stiffness matrix. 

[𝐾𝜎
𝑒] = ∫

1

2
[𝐺]𝑇[𝑀][𝐺]

𝑉
𝑑𝑉  (3.108) 

3.1.9 Numerical integration for triangles [31,34] 

As the integrations within (3.11) and (3.108) are difficult to evaluate analytically due to 

the complexity of the expressions numerical integration is employed. As demonstrated in 

[34] the quadrature rule for a function 𝜙 of area coordinates {𝜉1, 𝜉2, 𝜉3} is given by 

∫ 𝜙
𝐴

𝑑𝐴 =
1

2
∑ 𝑊𝑖𝐽𝑖𝜙𝑖
𝑖=𝑛
𝑛=1   (3.109) 

Where 𝜙𝑖 is the value of 𝜙 at a Gauss point in the triangle, 𝑊𝑖is the weight corresponding 

to that point and 𝑛 is the number of Gauss points. The Jacobian, 𝐽𝑖, is calculated at each 

sample point using (3.70). 

In the formulation presented by Zhang [31] it is proposed that 12 Gauss points should be 

used in order to maintain accuracy effected by element distortions. The area co-ordinates 

and weights of the sample points used are listed in Table 3-4 and shown in Figure 3-6. 
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Point Area co-ordinates Weight 
𝒊 𝝃𝟏 𝝃𝟐 𝝃𝟑 𝑾𝒊 
1 0.8738219710 0.0630890144 0.0630890144 0.0508449063 
2 0.0630890144 0.8738219710 0.0630890144 0.0508449063 
3 0.0630890144 0.0630890144 0.8738219710 0.0508449063 
4 0.5014265096 0.2492867451 0.2492867451 0.1167862757 
5 0.2492867451 0.5014265096 0.2492867451 0.1167862757 
6 0.2492867451 0.2492867451 0.5014265096 0.1167862757 
7 0.6365024991 0.3013524510 0.0531450498 0.0825810756 
8 0.0531450498 0.6365024991 0.3013524510 0.0825810756 
9 0.3013524510 0.0531450498 0.6365024991 0.0825810756 

10 0.6365024991 0.0531450498 0.3013524510 0.0825810756 
11 0.0531450498 0.3013524510 0.6365024991 0.0825810756 
12 0.3013524510 0.6365024991 0.0531450498 0.0825810756 

Table 3-4: Gauss point area co-ordinates and weights 

 

Figure 3-6: Approximate Gauss point positions within element 

 

3.1.10 Cable elements  

The edges of fabric structures are often restrained by prestressed edge cables. Therefore, 

an appropriate cable element is required. A classical linear element formulation used in 

both [31] and [30] is employed with the assumption of large displacements. 

As depicted in Figure 3-7 the cable comprises two nodes defined in the global co-ordinate 

system as (𝑥1, 𝑦1, 𝑧1) and (𝑥2, 𝑦2, 𝑧2) respectively. The nodes undergo global displacements 

(𝑢1, 𝑣1, 𝑤1) and (𝑢2, 𝑣2, 𝑤2). The initial element length, 𝐿0, is given by 

𝐿0 = √(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2 + (𝑧2 − 𝑧1)
2  (3.110) 
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and the displaced length, 𝐿, by 

𝐿 =  √(𝑥2 − 𝑥1 + 𝑢2 − 𝑢2)
2 + (𝑦2 − 𝑦1 + 𝑣2 − 𝑣1)

2 + (𝑧2 − 𝑧1 +𝑤2 −𝑤1)
2  (3.111) 

 

Figure 3-7: Definition of linear cable element 

The change in length in the local element direction, ∆𝑐𝑎, may be expresses in terms of the 

initial and displaced lengths 

∆𝑐𝑎= (𝐿 − 𝐿0)  (3.112) 

The direction of the element is defined by the unit vector 𝑐̂ containing the direction 

cosines of the element, {𝑐𝑥, 𝑐𝑦, 𝑐𝑧}. Due to the assumption of large displacement the 

updated nodal coordinates are used in the definition of the direction cosines. 

[𝑐̂] = [

𝑐𝑥
𝑐𝑦
𝑐𝑧
] =

1

𝐿
[

(𝑥2 − 𝑥1 + 𝑢2 − 𝑢1)

(𝑦2 − 𝑦1 + 𝑣2 − 𝑣1)

(𝑧2 − 𝑧1 +𝑤2 −𝑤1)
]  (3.113) 

The cable force, 𝐹𝑐𝑎, acting along the cable axis is given by 

𝐹𝑐𝑎 = 𝐹𝑐𝑎0 +
𝐸𝐴

𝐿0
(𝐿 − 𝐿0) = 𝐹𝑐𝑎0 + 𝑘𝐸

𝑐∆𝑐𝑎  (3.114) 

Where 𝐹𝑐𝑎0 is the cable prestress, and  
𝐸𝐴

𝐿0
 is the local stiffness modulus of the element, 𝑘𝐸

𝑐. 

The cable element residual forces at each node in the global co-ordinate system are 

combined into a single vector, {𝑓𝑐𝑎}𝑖, and are given by 

−𝐹𝑐𝑎  

𝐹𝑐𝑎  

𝑥, 𝑢 

𝑧, 𝑤 

𝑦, 𝑣 

𝑃2(𝑥2, 𝑦2, 𝑧2) 

𝑃1(𝑥1, 𝑦1, 𝑧1) 

𝑃2
𝑢𝑝
(𝑥2 + 𝑢2, 𝑦2 + 𝑣2, 𝑧2 +𝑤2) 

𝑃1
𝑢𝑝
(𝑥2 + 𝑢2, 𝑦2 + 𝑣2, 𝑧2 +𝑤2) 
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{𝑓𝑐𝑎}𝑖 = [
{𝑓𝑐𝑎}𝑃1
{𝑓𝑐𝑎}𝑃2

] = [
−𝑐̂𝐹𝑐𝑎
𝑐̂𝐹𝑐𝑎

]  
(3.115) 

Therefore, the cable transformation matrix, 𝑇𝑘
𝑐𝑎, which transforms the cable force from the 

element local co-ordinate system to the global co-ordinate system may be expressed as,  

𝑇𝑘
𝑐𝑎 =

[
 
 
 
 
 
−𝑐𝑥
−𝑐𝑦
−𝑐𝑧
𝑐𝑥
𝑐𝑦
𝑐𝑧 ]
 
 
 
 
 

=
1

𝐿

[
 
 
 
 
 
 
−(𝑥2 − 𝑥1 + 𝑢2 − 𝑢1)

−(𝑦2 − 𝑦1 + 𝑣2 − 𝑣1)

−(𝑧2 − 𝑧1 +𝑤2 −𝑤1)

(𝑥2 − 𝑥1 + 𝑢2 − 𝑢1)

(𝑦2 − 𝑦1 + 𝑣2 − 𝑣1)

(𝑧2 − 𝑧1 +𝑤2 −𝑤1) ]
 
 
 
 
 
 

  (3.116) 

The cable element force vectors are assembled into a full system vector which is added to 

the residual force equation (3.34) to give, 

{𝑅} = ∑ [∫ [ 𝐵𝑡 ]
𝑇
[𝜎]𝑑𝑉

𝑉
]
𝑖

𝑖=𝑚
𝑖=1 + ∑ [𝑓𝑐𝑎]𝑖

𝑖=𝑚
𝑖=1 − {𝑃}  (3.117) 

The cable elastic stiffness matrix in the global co-ordinate system, 𝐾𝐸
𝑐𝑎, is given by, 

𝐾𝐸
𝑐𝑎 = 𝑇𝑘

𝑐𝑇𝑘𝐸
𝑐𝑎𝑇𝑘

𝑐 =
𝐸𝐴

𝐿0 
[
[𝑐̂][𝑐̂]𝑇 −[𝑐̂][𝑐̂]𝑇

−[𝑐̂][𝑐̂]𝑇 [𝑐̂][𝑐̂]𝑇
]  (3.118) 

The geometric stiffness matrix 𝐾𝜎
𝑐 which accounts for stiffness induced by the element’s 

change in orientation is derived in [30] as 

𝐾𝜎
𝑐𝑎 =

𝐹𝑐𝑎0

𝐿0
[
([𝐼3] − [𝑐̂][𝑐̂]

𝑇) −([𝐼3] − [𝑐̂][𝑐̂]
𝑇)

−([𝐼3] − [𝑐̂][𝑐̂]
𝑇) ([𝐼3] − [𝑐̂][𝑐̂]

𝑇)
]  (3.119) 

The total element stiffness matrix, 𝐾𝑇
𝑐𝑎, is given by the summation of (3.118) and (3.119) 

yielding, 

𝐾𝑇
𝑐𝑎 = 𝐾𝐸

𝑐𝑎
+𝐾𝜎

𝑐𝑎 = [
(𝐾𝑇𝑠𝑢𝑏

𝑐𝑎) −(𝐾𝑇𝑠𝑢𝑏
𝑐𝑎)

−(𝐾𝑇𝑠𝑢𝑏
𝑐𝑎) (𝐾𝑇𝑠𝑢𝑏

𝑐𝑎)
]  

where 

𝐾𝑇𝑠𝑢𝑏
𝑐𝑎 =

𝐸𝐴−𝐹𝑐𝑎0

𝐿0 
∙ [𝑐̂][𝑐̂]𝑇 +

𝐹𝑐𝑎0

𝐿0 
∙ [𝐼3]  (3.120) 

The cable contribution to stiffness is also assembled into a full system array and is added 

to the total stiffness (3.13) to give, 

[𝐾𝑇] = [𝐾𝜎] + [𝐾𝐸] + ∑ [𝐾𝑇
𝑐𝑎]𝑖

𝑖=𝑚
𝑖=1   (3.121) 

This formulation is selected due to its simplicity for development and implementation. 

However, this cable element formulation may lead to strain discontinuities between the 

cable and membrane elements which includes a mid-side node allowing curved sides and 

non-linear strain.  
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Figure 3-8: Illustration of discontinuity between 6 node membrane element and 2 
node cable element. 

With a sufficiently dense mesh these discontinuities are small and therefore assumed to be 

insignificant for the meshes presented in this thesis. Where a structural simulation 

requires highly curved cables or where a more accurate result for the cables is required it 

would be desirable to use a more sophisticated 3-noded cable element. 

3.1.11 Form finding with geodesic control 

As the form of a fabric structure is a product of the applied prestress and restraints an 

initial form finding process must be undertaken prior to any load analysis to find the 

structures initial equilibrated form. As discussed in Chapter 2 the initial form may be 

investigated using physical modelling with low stiffness materials or soap films. With the 

rise in computer simulation physical modelling has been replaced by computer simulation 

using a soap film analogy. Further improvements in efficiency may be achieved through 

parametric design used to define initial mesh geometry 

 

Figure 3-9: Conic mesh with panels, seams (red) and centre lines (blue) 
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A fabric membrane is typically fabricated from panels welded along seams as shown in 

Figure 3-9. The seams and centre lines of the panels follow geodesic paths over the 

membrane surface. The material is generally aligned so the warp direction follows the 

centre line of each panel. As form finding is undertaken with zero stiffness, additional 

control is required in order to maintain the geodesic paths of the panel edges and centre 

lines. This may be done by including special tensioned control elements similar to cable 

elements. The following control element definition and computational procedure is 

adapted from the warp string control element presented in [25] for a 3 node constant 

strain element. 

The residual forces within the control string acting in the global coordinate system 

directions are derived in much the same way as the global cable residual forces. The force 

acting in the local control string direction is transformed to the global via direction 

cosines, 𝑐𝑠̂,   defined using the nodal co-ordinates at each end of the control string. 

[𝑐𝑠̂] = [

𝑐𝑠𝑥
𝑐𝑠𝑦
𝑐𝑠𝑧
] =

1

𝐿
[

(𝑥2 − 𝑥1 + 𝑢2 − 𝑢1)

(𝑦2 − 𝑦1 + 𝑣2 − 𝑣1)

(𝑧2 − 𝑧1 + 𝑤2 −𝑤1)
]  (3.122) 

 The control string element is only used during form finding and therefore always has zero 

stiffness. The tension force within the imaginary control element is arbitrary. Through 

trial and error a value of 10kN/m was found to generate sufficient mesh control.  

𝐹𝑐𝑠 = 𝐹𝑐𝑠0 = 10  (3.123) 

The control string residual forces at each node of a control string 𝑘 in the global co-

ordinate system are combined into a single vector, {𝑓𝑐𝑠}𝑘, given by 

{𝑓𝑐𝑠}𝑘 = [
{𝑓𝑐𝑠}𝑃1
{𝑓𝑐𝑠}𝑃2

] = [
−𝑐𝑠̂𝐹𝑐𝑠
𝑐𝑠̂𝐹𝑐𝑠

]  
(3.124) 

The resulting control string force vectors may then be combined into a full system array 

by simple addition to give the final residual force at each node.  

The control elements should not affect the shape of the final membrane only the alignment 

of mesh along the panel edges and centre lines. Therefore, the residual forces at each node 

in the string are resolved into orthogonal components aligned with a plane tangential to 

the surface at that node. Any residual force component acting normal to the membrane 

surface is zeroed. In order to prevent nodal drift along the string the residual force 

component aligned with the string direction in the local surface co-ordinate system is also 

zeroed. This leaves only residual forces acting perpendicular to the string within the 
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membrane surface. These residual forces force the string to remain aligned with the 

desired geodesic path. At the end nodes, for example those situated in boundary cables, 

the residual force must be entirely zeroed to prevent distortion of the mesh boundary.    

The local membrane surface coordinate system is defined using a vector normal to the 

surface found from the average of the normal vectors of all connected elements. As the 

surface of each element is curved the element normal vectors are defined at the specific 

node within the element using the normalised natural co-ordinate system. The process is 

similar that described in Section 3.1.5 for the development of the membrane 

transformation matrix.   

The natural co-ordinates of each node within the element are illustrated in Figure 3-2. The 

tangent plane to the element surface at a node is derived from the natural co-ordinate 

basis vectors at the node given by,  

𝜉 = [∑
𝜕𝑁𝑖

𝜕𝜉
𝑥𝑖

𝑖=6
𝑖=1 𝑖̂+ ∑

𝜕𝑁𝑖

𝜕𝜉
𝑦𝑖

𝑖=6
𝑖=1 𝑗̂ +∑

𝜕𝑁𝑖

𝜕𝜉
𝑧𝑖

𝑖=6
𝑖=1 𝑘̂]  (3.125) 

𝜂 = [∑
𝜕𝑁𝑖

𝜕𝜂
𝑥𝑖

𝑖=6
𝑖=1 𝑖̂ +∑

𝜕𝑁𝑖

𝜕𝜂
𝑦𝑖

𝑖=6
𝑖=1 𝑗̂ +∑

𝜕𝑁𝑖

𝜕𝜂
𝑧𝑖

𝑖=6
𝑖=1 𝑘̂]  (3.126) 

The cross product of the natural coordinate basis vectors produces the orthogonal 

vector, 𝑍, aligned with the local 𝑍-direction normal to the element surface.  

𝑍 = 𝜉 × 𝜂  (3.127) 

𝑍̂ =
𝑍⃗

‖𝑍⃗‖
  or 𝑍̂ =

𝜉⃗⃗×𝜂⃗⃗⃗ 

‖𝜉⃗⃗×𝜂⃗⃗⃗ ‖
 (3.128) 

As demonstrated in Figure 3-10(a) any node within the control string will be connected to 

2 or more elements. An approximation for the normal vector to the surface at a node is 

given by the mean of all element normal vectors associated with that node. 

𝑁̂ =
∑ 𝑍̂𝑖,𝑗
𝑗=𝑛
𝑗=1

𝑛
= [𝑛1 𝑖̂ +𝑛2 𝑗̂ +𝑛3 𝑘̂]  (3.129) 

Where 𝑍̂𝑖,𝑗 denotes the normal vector at node 𝑖 in element 𝑗, 𝑛 is the total number of 

elements connected to the control string at node 𝑖. Using the mean of the element normal 

vectors is straightforward but may lead to undesirable influence of a single small or poorly 

formed element. This is avoided by the careful design of the structural mesh used in 

simulation. It is also noteworthy that soap film form finding leads to smooth surfaces. 

Therefore, there is likely to be only limited variation in normal vectors associated with a 

single node. Where a mesh is made up of irregular elements or the geodesic string sits on 



Chapter 3 Finite Element Formulation 108 

an uneven surface the area of the element should be taken into account when calculating  

𝑁̂. In this case (3.129) becomes, 

𝑁̂ =
∑ (𝑍̂𝑖,𝑗 ×𝐴𝑗)
𝑗=𝑛
𝑗=1

∑ (𝐴𝑗)
𝑗=𝑛
𝑗=1

    = [𝑛1 𝑖̂ +𝑛2 𝑗̂ +𝑛3 𝑘̂]  (3.130) 

where 𝐴𝑗 represents the area element 𝑗. As the above conditions do not occur in the 

structural meshes in this thesis (3.129) is deemed to be sufficient. However, in future 

implementations (3.130) may prove to be more effective. 

To define the remaining basis vectors, illustrated in Figure 3-10(b), the element direction 

vector, 𝑐𝑠⃗⃗ ⃗⃗ , is used. The cross product of the surface normal vector and the string direction 

vector gives the basis vector perpendicular to the string in the tangent plane of the surface.     

𝑌⃗⃗ = 𝑁̂ × 𝑐𝑠⃗⃗⃗⃗   (3.131) 

𝑌̂ =
𝑌⃗⃗

‖𝑌⃗⃗‖
  or 𝑌̂ =

𝑁⃗⃗⃗×𝑐𝑠⃗⃗⃗⃗⃗  

‖𝑁⃗⃗⃗×𝑐𝑠⃗⃗⃗⃗⃗  ‖
= [𝑚1 𝑖̂ +𝑚2 𝑗̂ +𝑚3 𝑘̂] (3.132) 

The remaining basis vector is easily found from the cross product of the normal and 

perpendicular basis vectors, 

𝑋̂ =
𝑌̂×𝑍̂

‖𝑌̂×𝑍̂ ‖
= [𝑙1 𝑖̂ +𝑙2 𝑗̂ +𝑙3 𝑘̂]  (3.133) 

  

(a) (b) 
  

Figure 3-10: (a) Element normals, 𝒁̂𝒊, and surface normals, 𝑵⃗⃗⃗ (b) Surface basis 
vectors 

The surface transformation matrix at node 𝑖, [𝑇𝑖
𝐶𝑆],  may then be defined in terms of 

direction cosines between the global and local surface coordinate systems.  

𝑇𝑖
𝐶𝑆 = [ 

𝑙1 𝑙2 𝑙3
𝑚1 𝑚2 𝑚3

𝑛1 𝑛2 𝑛3

]  (3.134) 

𝑁 

𝑋̂ 
𝑌̂ 

1 
2 

𝑍̂1 𝑍̂2 

𝑁 

𝑐𝑠̂ 



Chapter 3 Finite Element Formulation 109 

The control string residual force component acting normal to the membrane surface in the 

local surface co-ordinate system is given by 

{𝐹𝑐𝑠𝑁}𝑖
= 𝑁̂𝑖

𝑇
{𝑓𝑐𝑠}𝑖  (3.135) 

The control string residual force component acting within the surface tangent plane 

aligned with the control string in the local surface co-ordinate system is given by  

{𝐹𝑐𝑠𝑋}𝑖
= 𝑋̂𝑖

𝑇
{𝑓𝑐𝑠}𝑖  (3.136) 

Therefore, the control string residual force component acting within the surface tangent 

plane perpendicular to the control string in the global co-ordinate system is given by 

{𝑓𝑐𝑠𝑦}𝑖
= {𝑓𝑐𝑠}𝑖 − {𝐹𝑐𝑠𝑁}𝑖

𝑁̂𝑖 − {𝐹𝑐𝑠𝑋}𝑖
𝑋̂𝑖  (3.137) 

The control string element residual force vectors are assembled into a full system vector 

which is added to the residual force equation (3.117) to give, 

{𝑅} = ∑ [∫ [ 𝐵𝑡 ]
𝑇
[𝜎]𝑑𝑉

𝑉
]
𝑖

𝑖=𝑚
𝑖=1 + ∑ [𝑓𝑐𝑎]𝑖

𝑖=𝑚
𝑖=1 + ∑ [𝑓𝑐𝑠𝑦]𝑖

𝑖=𝑚
𝑖=1 − {𝑃}  (3.138) 

3.1.12 Dynamic Relaxation procedure overview 

The iterative procedure as summarised by Barnes, [25], is shown in Figure 3-11. 
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Figure 3-11: Summary of Dynamic Relaxation algorithm 

Set all nodal velocity components and residuals to zero. 

Set kinetic energy to zero.  

Compute the current surface normal vectors and set all 

load components.  

Add applied load components to vector of residuals. 

Using the current element stresses (e.g. specified values 

in form finding and/or stresses determined from current 

element strains) determine the link tensions and add 

their resolved components to the residuals.  

Reset the residuals of all fixed or partially constrained 

nodes to zero. 

Update all velocity components and node co-ordinates 

using equations (3.24) and (3.25). Determine the kinetic 

energy, KE, of the complete system using (3.26).  

Check if current KE less than 

previous time step. 

Check out of balance force to 

determine if in equilibrium  

Apply small corrections to all nodal co-ordinates, 

according to (3.31), so that their positions correspond 

with the true KE peak time.  

Wrinkling Procedure 

No 

Yes 

No 

Yes 
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3.1.13 Wrinkling procedure 

During Load analysis it is possible that the structure may undergo sufficient negative 

strain to cause certain areas to exhibit negative stress. To account for the negligible 

compressive stiffness of Architectural Fabric it is necessary to modify the material model 

where a simulation produces such areas of negative stress. In order to detect areas of 

negative stress, indicting wrinkled or even slack states, criterion based on principle stress, 

principle strain or a combination of the two may be used. In certain situations the material 

state  may be misjudged when using an individual principle stress  or principle strain 

criterion. Therefore, it is important to select the most appropriate criteria for the material 

being simulated. The following wrinkling procedure is based on those presented in [31] 

and [123]. 

The principle stresses, i.e. the maximum and minimum stress at a gauss point are given by, 

𝜎𝑚𝑎𝑥,𝑚𝑖𝑛
𝑝

=
1

2
(𝜎𝑦 + 𝜎𝑥) ± √(

𝜎𝑥−𝜎𝑦

2
)
2
+ (𝜏𝑥𝑦)

2
  (3.139) 

where 𝜎𝑤 and 𝜎𝑓 are the warp and fill stresses at that gauss point and 𝜏𝑥𝑦 is the shear 

stress. Similarly the principle strains are given by, 

𝜀𝑚𝑎𝑥,𝑚𝑖𝑛
𝑝

=
1

2
(𝜀𝑦 + 𝜀𝑥) ± √(

𝜀𝑥−𝜀𝑦

2
)
2
+ (𝛾𝑥𝑦)

2
  (3.140) 

where 𝜀𝑤 and 𝜀𝑓 are the warp and fill strains at that gauss point and 𝛾𝑥𝑦 is the shear strain. 

The angle between the direction of maximum stress and the local warp direction is given 

by, 

𝜃
𝑝
=

1

2
tan−1 (

2𝜏𝑥𝑦

𝜎𝑥−𝜎𝑦
)  (3.141) 

The fabric membrane may be deemed to be in one of three different states. The first state 

is taut where the membrane has positive stress in all directions. The second state is 

wrinkled where the membrane has negative stress in some directions but positive in 

others. The final state is slack where the material undergoes negative stress in all 

directions. Three different wrinkling criterion are suggested, 

1. Stress criterion based solely on principle stress, 

𝜎𝑚𝑖𝑛
𝑝

> 0:                                     ‘taut state’ (3.142) 

𝜎𝑚𝑖𝑛
𝑝

≤ 0 𝑎𝑛𝑑 𝜎𝑚𝑎𝑥
𝑝

> 0:         ‘wrinkled state’ (3.143) 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒:                                  ‘slack state’  (3.144) 
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This criterion is straightforward but a case where negative maximum stress may occur in 

combination with a positive minimum strain, thus a wrinkled state is incorrectly defined 

as slack. 

2. Strain criterion based solely on principle strain, 

𝜀𝑚𝑖𝑛
𝑝

> 0:                                     ‘taut state’ (3.145) 

𝜀𝑚𝑖𝑛
𝑝

≤ 0 𝑎𝑛𝑑 𝜀𝑚𝑎𝑥
𝑝

> 0:         ‘wrinkled state’ (3.146) 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒:                                  ‘slack state’  (3.147) 

Again this criterion is straightforward. However, due to the effect of Poisson’s ratio, it has 

been found that a taught state may be misjudged as wrinkled where a negative minimum 

strain may coincide with positive minimum stress. 

3. Mixed criterion based on a combination of principle stress and strain, 

𝜎𝑚𝑖𝑛
𝑝

> 0:                                     ‘taut state’ (3.148) 

𝜎𝑚𝑖𝑛
𝑝

≤ 0 𝑎𝑛𝑑 𝜀𝑚𝑎𝑥
𝑝

> 0:         ‘wrinkled state’ (3.149) 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒:                                  ‘slack state’  (3.150) 

This criterion is deemed to have overcome the shortfalls of the individual stress and strain 

criterion. During testing it was found that both the stress and mixed criterion achieved 

reasonable results however the strain criterion failed to correctly identify area of 

wrinkling. It is noted that in [123] the normal component of strain to the surface is used in 

place of the principle strain in the criterion. Again in testing this lead to instabilities in the 

formulation. Therefore, the formulation presented is in closer agreement to [31]. 

The procedure is initialised after convergence is reached using the unmodified material 

stiffness matrix,[𝐸]. Each Gauss point is then inspected and assigned a state depending on 

the selected wrinkling criterion. Where the membrane is deemed to be taut after the first 

analyses run the material stiffness matrix remains unmodified, 

[𝐸𝑚𝑜𝑑] = [𝐸]  (3.151) 

Where the membrane is deemed to be wrinkled the material stiffness matrix is modified in 

the direction of the minimum principle stress, i.e. normal to the wrinkle. The material 

stiffness matrix is first transformed to be aligned with the minimum principle stress using, 

[𝐸𝑟𝑜𝑡] = [𝑇
𝐸(−𝜃

𝑝
)][𝐸][𝑇𝐸(−𝜃

𝑝
)]
𝑇

  (3.152) 

where, 
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[𝑇𝐸(𝜃
𝑝
)] = [

𝑐2 𝑠2 −2𝑠𝑐
𝑠2 𝑐2 2𝑠𝑐
𝑠𝑐 −𝑠𝑐 𝑐2 − 𝑠2

] , 𝑐 = cos(𝜃
𝑝
) and 𝑠 = sin(𝜃

𝑝
) (3.153) 

The rotated material stiffness matrix is then modified using a penalisation parameter, 𝑃, as 

follows, 

[𝐸𝑟𝑜𝑡,𝑚𝑜𝑑] = [𝑃 ∙

𝐸𝑟𝑜𝑡,11 𝑃 ∙ 𝐸𝑟𝑜𝑡,12 𝐸𝑟𝑜𝑡,13
𝐸𝑟𝑜𝑡,21 𝑃 ∙ 𝐸𝑟𝑜𝑡,22 𝑃 ∙ 𝐸𝑟𝑜𝑡,23
𝐸𝑟𝑜𝑡,31 𝑃 ∙ 𝐸𝑟𝑜𝑡,32 𝐸𝑟𝑜𝑡,33

]  (3.154) 

Finally the material stiffness matrix is transformed back to the original local material 

system using  

[𝐸𝑚𝑜𝑑] = [𝑇
𝐸(𝜃

𝑝
)][𝐸𝑟𝑜𝑡,𝑚𝑜𝑑][𝑇

𝐸(𝜃
𝑝
)]
𝑇

  (3.155) 

Where the membrane is deemed to be slack the material stiffness matrix is penalised in all 

directions 

[𝐸𝑚𝑜𝑑] = 𝑃 ∙ [𝐸]  (3.156) 

In [123] the following definition for the penalisation parameter is suggested to improve 

convergence stability, 

𝑃𝜎 =
𝜎𝑚𝑖𝑛
𝑝𝑒𝑟

𝜎𝑚𝑖𝑛
𝑝 → {

𝑃𝜎 < 𝑃  → 𝑃 = 𝑃𝜎
𝑃𝜎 > 𝑃 → 𝑃 = 𝑃

𝑃𝜎 > 1 𝑜𝑟 𝑃𝜎 < 0 → 𝑃 = 1
}  (3.157) 

where 𝜎𝑚𝑖𝑛
𝑝𝑒𝑟

 is the maximum permissible compressive stress and 𝜎𝑚𝑖𝑛
𝑝

 is the current 

minimum stress. This allows a small amount of compression in the structure. 

The structure is then re-analysed using the modified elastic matrix at each Gauss point and 

again the state of the membrane at each gauss point is assessed. If the membrane has 

undergone a change of state i.e. from wrinkled or slack to taut the penalisation parameter 

is modified to take this into account using. 

𝑛𝑒𝑤 𝑠𝑡𝑎𝑡𝑒 𝑖𝑠 ′𝑡𝑎𝑢𝑡′ → {
𝑜𝑙𝑑 𝑠𝑡𝑎𝑡𝑒 𝑖𝑠 ′𝑡𝑎𝑢𝑡′ → [𝐸𝑚𝑜𝑑] = [𝐸] 

𝑜𝑙𝑑 𝑠𝑡𝑎𝑡𝑒 𝑖𝑠 𝑛𝑜𝑡 ′𝑡𝑎𝑢𝑡′ →
𝑃 = 𝑃𝑜𝑙𝑑 ∙ 𝛽

𝑛𝑒𝑤 𝑠𝑡𝑎𝑡𝑒 = 𝑜𝑙𝑑 𝑠𝑡𝑎𝑡𝑒

}  (3.158) 

where 𝛽 = 10 as recommended in [123]. In [123] the unmodified material stiffness matrix 

is used in conjunction with strain state derived using the modified stiffness matrix to 

calculate an effective principle stress for the assessment of the wrinkling criterion. In 

testing this consistently lead to instability in the analysis. Therefore, in the procedure 

presented here the current stress calculated using the modified material stiffness matrix is 

always used in the wrinkling criterion assessment.  
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Wrinkling analysis continues until the convergence criterion is met after the material 

stiffness matrix has been modified. In other words the out of balance force is not 

significantly altered by the application of any wrinkling modification required. This will 

occur when all compressive stresses greater than maximum permissible compressive 

stress have been eliminated. 

 

Figure 3-12: Wrinkling procedure summary 

 

Calculate current stress strain state using procedure in 

Figure 3-11 

Calculate principle stresses and strains at each Gauss 

point 

Determine membrane state using selected criterion and 

determine required penalisation parameter 𝑃 

𝜎𝑚𝑖𝑛
𝑝

> 0 

‘Taut’ 

𝜀𝑚𝑖𝑛
𝑝

≤ 0 𝑎𝑛𝑑 𝜀𝑚𝑎𝑥
𝑝

> 0 

‘Wrinkled’ 

𝜎𝑚𝑎𝑥
𝑝

< 0 

‘Slack’ 

[𝐸𝑚𝑜𝑑] = 𝑃 ∙ [𝐸] 
[𝐸𝑟𝑜𝑡,𝑚𝑜𝑑]

= [𝑃 ∙

𝐸𝑟𝑜𝑡,11 𝑃 ∙ 𝐸𝑟𝑜𝑡,12 𝐸𝑟𝑜𝑡,13
𝐸𝑟𝑜𝑡,21 𝑃 ∙ 𝐸𝑟𝑜𝑡,22 𝑃 ∙ 𝐸𝑟𝑜𝑡,23
𝐸𝑟𝑜𝑡,31 𝑃 ∙ 𝐸𝑟𝑜𝑡,32 𝐸𝑟𝑜𝑡,33

] 

[𝐸𝑚𝑜𝑑] = [𝐸] 

Update stiffness matrix and out of balance force 

Yes 

No Check out of balance force to 

determine if in equilibrium  

Output results including wrinkle positions and directions 
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3.2 Analysis Examples 

3.2.1 Square based conic simulation 

To demonstrate the effectiveness of the geodesic control string elements form finding 

simulations are performed with and without control elements on a simple square based 

conic. The conic is based on the conic example with equal pre-stress presented in [36] and 

is show in Figure 3-13. The base is 14m square with a 5m diameter hoop 4m above the 

base, the conic is fully fixed along all edges. First a form finding analysis is undertaken 

with a pre-stress of 4kN/m applied in the warp and fill material directions followed by  

load analysis where load is aplied to the form found mesh. The initial, unform-found, 

meshes in this thesis have been generated using Grasshopper, an algorithmic modelling 

plug in for Rhino 3D. For an overview of the mesh generation and analysis procedure for 

the conic structure see Appendix A. 

 

 

 

(a) Side Elevation (b) Plan View 

Figure 3-13: Square based conic 

The conic is assembled from 16 panels the edges of which are shown in red in Figure 3-13 

the centre lines of the panels are shown in blue and define the material warp direction. 

The initial mesh made up of 448 elements defined by 960 nodes is shown in Figure 3-14.   
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Figure 3-14: Initial conic mesh 

The conic is formed found with and without geodesic control elements the resulting mesh 

configurations are shown in Figure 3-15(a-c).  

 

 

(a) Over laid form found meshes, 
with geodesic (black) and 

without geodesic (green) control 

(b) Centre line cut through of over 
laid meshes with geodesic (black) 

and without geodesic (green) 
control 

  
(a) Form found mesh with geodesic 

control elements aligned with 

seams and centre lines 

(b) Form found mesh without 

geodesic control elements 

Figure 3-15: Form found conic mesh 
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Figure 3-15(a) demonstrates that the mesh surface is approximately aligned within the 

constraints of the mesh. The resulting seam edges and centre lines are more clearly shown 

with and without geodesic control elements in Figure 3-15(b) and (c) respectively. It can 

be seen that the seams and centre lines become distorted without the control elements.  

The material properties shown in Table 3-5 are applied to the form found mesh and 3 load 

analyses are undertaken to demonstrate the formulation with material properties. The 

first analysis checks the uniformity of pre-stress by applying no load. The second load case 

simulates a snow load of 0.6kN/m acting vertically .The third load case simulates wind 

uplift load of 1kN/m applied perpendicular to the surface.  

𝑬𝒘 𝑬𝒇 𝝊𝒘𝒇 𝝊𝒇𝒘 𝑮𝒘𝒇 

600kN/m 600kN/m 0.4 0.4 30kN/m 

     Table 3-5: Conic material properties 

Figure 3-17 demonstrates that the mesh has been form found to an accuracy better than 

±0.002kN/m. This is achieved by form finding using a convergence criteria or maximum 

out of balance force of 0.001kN. The analysis with material properties is completed using a 

maximum out of balance force of 0.0005kN. The convergence criteria is selected as a 

compromise between computation speed and solution accuracy. A summary of results 

may also be seen in Table 3-6.  

Figure 3-18 showing global snow load results indicates that the maximum stress occurs in 

warp direction in the top third of the conic. The maximum fill stress also occurs in this 

area. Localised areas of negative warp strain occur at the base of each panel seam this 

negative strain is caused by the inconsistency of material direction within neighbouring 

panels. This phenomenon would not be observed where a continuous radial definition of 

material direction is used. Peak levels of shear stress are also observed at panel 

boundaries.  

In order to investigate the effect of panel width the form finding and analysis process is 

repeated using a refined mesh and the panels measuring half the width of the initial conic. 

The conic is assembled from 32 panels as show in Figure 3-16 .The panel edges are shown 

in red the centre lines which define the material direction of each panel are shown in blue. 

The initial mesh made up of 1408 elements defined by 2944 nodes is shown in Figure 3-16.  
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Figure 3-16: Initial refined conic mesh 

The results of the analysis are shown in Figure 3-19. The areas of negative strain once 

again occur at the base of each seam however at a reduced level. The peaks in shear stress 

also follow the same distribution but at a reduced level. It is noted that refinement of mesh 

may have some effect on stress levels however the reduction is notable. 

Figure 3-20 showing projected wind load results indicates that the maximum stress occurs 

around the central region of the conic in the redial fill direction. Again concentrated 

strains this time positive are observed in the warp direction at the seam at the base. 

Significant negative stresses are observed close to the hoop. As architectural fabrics have 

no stiffness in compression the wrinkling procedure is initiated in order to reduce the 

stiffness of elements undergoing wrinkling. This leads to the results shown  in Figure 3-21. 

It may be observed that the top section of the conic is has lost all warp prestress and the 

reduction of stiffness leads to unacceptably large strain, in the range of 8% in the warp 

direction.     

 Warp Stress (kN/m) Fill Stress (kN/m) Displacement (m) 

 
Max Min Max Min 

z Absolute 

 Max Min Max 

Prestress 3.9957 4.0012 4.0035 3.9972 2.74e-5 0 2.94e-5 

Snow Load 9.6240 1.8271 8.5199 1.3974 0 -0.1148 0.1156 

Snow Load 

(refined) 
9.2074 2.6476 8.6334 1.3684 0 -0.1100 0.1110 

Wind Load 10.733 -2.6278 12.974 1.2002 0.1811 0 0.2025 

Wind Load 

(Wrinkling) 
11.464 0.0225 13.3050 2.5188 0.1860 0 0.2030 

Table 3-6: Conic results summary  
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  (a) Warp stress (kN/m) (b) Fill stress (kN/m) 

  

  

  (c) Warp strain (%) (d) Fill strain (%) 

  

  

  (e) Shear Stress (f) Absolute displacement (m) 

Figure 3-17: Conic prestress results  
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(a) Warp stress (kN/m) (b) Fill stress (kN/m) 

  
(c) Warp strain (%) (d) Fill strain (%) 

  

  
(e) Shear Stress (f) Absolute displacement (m) 

Figure 3-18: Conic result snow load 
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(a) Warp stress (kN/m) (b) Fill stress (kN/m) 

  
(c) Warp strain (%) (d) Fill strain (%) 

  

  
(e) Shear Stress (f) Absolute displacement (m) 

Figure 3-19: Refined conic result snow load 
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(a) Warp stress (kN/m) (b) Fill stress (kN/m) 

  
(c) Warp strain (%) (d) Fill strain (%) 

  

  
(e) Shear Stress (f) Z displacement (m) 

Figure 3-20: Conic results wind load 
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(a) Warp stress (kN/m) (b) Fill stress (kN/m) 

  
(c) Warp strain (%) (d) Fill strain (%) 

  

  
(e) Shear Stress (f) Z displacement (m) 

Figure 3-21: Conic results wind load with wrinkling procedure 
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3.2.2 Hypar simulation 

To further demonstrate the effectiveness of the geodesic control string elements form 

finding simulations are performed with and without control elements on a simple hypar. 

The hypar is based on the hypar example with equal prestress presented in [36] and is 

shown in Figure 3-22. The hypar is 6m square with high points at 2m. The structure is 

fully fixed at each corner amnd has 12mm diameter edge cables with a prestress of 30kN. 

A prestress of 3kN/m is applied to the membrane in the warp and fill material directions. 

 

 

 

(a) Side Elevation (b) Plan View 

Figure 3-22: Hypar 

The hypar is assembled from 7 panels the edges of which are shown in red in Figure 3-13 

the centre lines of the panels are shown in blue and define the material warp direction. 

Additional geodesic control elements are shown in green. The initial mesh made up of 392 

elements defined by 841 nodes is shown in Figure 3-23.   

 

 

(a) Perspective View (b) Plan View 

Figure 3-23: Initial hypar mesh 
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The hypar is form-found with and without geodesic control elements the resulting mesh 

configurations are shown in  Figure 3-24(a-d). 

 

  
(a) Over laid form found meshes, 

with geodesic (black) without 
and geodesic (green) control 

(b) Diagonal cut through of over laid 
meshes with geodesic (black) and 
without geodesic (green) control 

  
(c) Form found mesh with geodesic 

control elements aligned with 

seams and centre lines 

(d) Form found mesh without 

geodesic control elements 

Figure 3-24: Form found hypar mesh 

Figure 3-24 (a) and (b) demonstrate that the form found  mesh surfaces are equivalent. 

Differences occur due to the positioning of the nodes however the overall shape is the 

same with and without geodesic control elements. The resulting meshes are more clearly 

shown with and without geodesic control elements in Figure 3-24 (c) and (d) respectively. 

It can be seen that the seams and centre lines become distorted without the control 

elements. Without control elements numerous LST elements at the mesh edges collapse 

completely, this leads to a failure to converge at lower convergence criteria or when using 

a more refined mesh.  
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As in the case of the conic the material properties shown in Table 3-7 are applied to the 

form found mesh and 3 load analyses are undertaken to demonstrate the formulation with 

material properties. The first analysis checks the uniformity of prestress by applying no 

load. The second load case simulates a wind uplift load of 1kN/m applied perpendicular to 

the surface. The third load case simulates a snow load of 0.6kN/m acting in the global z 

direction. 

𝑬𝒘 𝑬𝒇 𝝊𝒘𝒇 𝝊𝒇𝒘 𝑮𝒘𝒇 

600kN/m 600kN/m 0.4 0.4 30kN/m 

     Table 3-7: Hypar material properties 

Figure 3-25 demonstrates that the mesh has been form found to an accuracy better than 

±0.012kN/m. This is achieved by form finding using a convergence criteria or maximum 

out of balance force of 0.001kN. The analysis with material properties is completed using a 

maximum out of balance force of 0.0005kN. Convergence criteria  is selected as a 

compromise between computation speed and solution accuracy. All numerical simulations 

provide only approximate solutions to the physical real world problems. 

Figure 3-26 showing global snow load results indicates that the maximum stress occurs in 

fill direction between the hypar high points. There is a rapid stress change at the high 

point corners which may be a feature for consideration for design. As expected maximum 

displacement occurs in the centre of the membrane.     

Figure 3-27 showing projected wind load results indicates that the maximum stress occurs 

between the low points in the warp direction. Concentrated stresses and strains in both 

material directions may be seen acting in the centre of the hypar in line with the warp 

direction. These stress concentrations are also seen in the Z-direction results. Negative 

stresses it the fill direction indicate that the membrane is in a wrinkled state.  

 Warp Stress (kN/m) Fill Stress (kN/m) Displacement (m) 

 
Max Min Max Min 

z Absolute 

 Max Min Max 

Prestress 3.0026 2.9897 3.0044 2.9981 5.86e-5 -0.0002 0.0002 

Snow Load 3.3081 0.5754 5.8744 3.069 0 -0.0649 0.0649 

Wind Load 8.9381 3.1718 3.8495 -0.2189 0.1192 0 0.1193 

Wind Load 

(Wrinkling) 
9.0208 3.6119 4.2710 0.3863 0.1104 0 0.1104 

Table 3-8: Hypar analysis results summary 
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As the membrane has no resistance to negative or compressive loading a wrinkling 

procedure is implemented to reduce the stiffness of the material in the wrinkle direction. 

The results of the wrinkling procedure may be seen in Figure 3-28. The results are not 

completely satisfactory as uneven stress and strain fields are observed. This indicates that 

a more robust wrinkling procedure may be required to allow the smoother redistribution 

of stress. However, the wrinkles demonstrated by the Z-direction displacements have been 

substantially reduced indicting that the hypar will remain unwrinkled where compressive 

stiffness is eliminated. This further highlights the requirement for a more consistent 

material model. 
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(a) Warp stress (kN/m) (b) Fill stress (kN/m) 

  
(c) Warp strain (%) (d) Fill strain (%) 

  
(e) Shear stress (f) Absolute displacement (m) 

Figure 3-25: Hypar prestress results 
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(a) Warp stress (kN/m) (b) Fill stress (kN/m) 

  
(c) Warp strain (%) (d) Fill strain (%) 

 

  
(e) Shear Stress  (e) Z displacement (m) 

Figure 3-26: Hypar result snow load 
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(a) Warp stress (kN/m) (b) Fill stress (kN/m) 

  
(c) Warp strain (%) (d) Fill strain (%) 

 

  
(e) Shear Stress  (e) Z displacement (m) 

Figure 3-27: Hypar result wind load 
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(a) Warp stress (kN/m) (b) Fill stress (kN/m) 

  
(c) Warp strain (%) (d) Fill strain (%) 

 

  
(e) Shear Stress  (e) Z displacement (m) 

Figure 3-28: Hypar result wind load with wrinkling procedure 

  



Chapter 3 Finite Element Formulation 132 

3.3 Patterning 

The final step it the design process of a fabric structure is the generation of cutting 

patterns. These cutting patterns are used to cut the constituent flat panels from rolls of 

fabric. These panels are then connected together and prestressed into their final form. In 

the case of a final form with highly doubly curved geometry the development of the flat 

panel into final 3-dimensional shape may induce uneven direct stresses and high shear 

stresses.  Patterning using a finite element methodology allows for the investigation of the 

development of these 'locked-in'  forces via the reverse process of flattening a 3-dimension 

doubly curved panel to  flat cutting pattern panel. The patterning procedure, summarised 

below, is driven by internal stresses induced in the mesh elements when the mesh is 

projected to a flat plane.   

The patterning procedure is as follows, 

1. A single 3-dimensional meshed panel is isolated from the full form found mesh 

under consideration. The panel edges and central seam have been controlled 

during form finding via geodesic string elements. Depending on the configuration 

of the initial 3-dimensional mesh a rigid body transformation may be performed 

on the panel mesh order to minimise the initial applied displacement required to 

perform the initial flattening (step 3). This mesh is referred to as the initial 3-

dimensional panel mesh. 

2. All stresses within the element are set to zero and the central point of the mesh is 

fully restrained, 

3. A vector of applied Z- displacements is derived to transform all nodes in the initial 

3-dimensional mesh to  the same plane, for example  the Z=0 plane. The resulting  

mesh is referred to as Z=0 plane mesh. 

4. Equation (3.32), {𝜀} = [ 𝐵0 ]{𝛿𝑡}𝑖 , with 𝐵0  based on the initial 3 dimensional 

configuration, is used to calculate the in plane strain induced in each of the 

elements of the flattened panel mesh. The panel is now flat but the elements are 

the incorrect size. 

5. An arbitrary isotropic plane stress material stiffness matrix is defined in order to 

calculate in plane stress induced by the strain derived in step 4 using equation 

(3.4), {𝜎} = [𝐸]{𝜀} . 

6. Equation (3.34),  {𝑅}  = ∑ [∫ [ 𝐵𝑡 ]
𝑇
[𝜎]𝑑𝑉

𝑉
]
𝑖

𝑖=𝑚
𝑖=1 − {𝑃}, where the applied load, 

{𝑃} = 0 and the B matrix is based on the deformed Z=0 plane configuration, is then 
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used to  calculate the equivalent nodal loads form the stress calculated in step 5. 

All Z-direction equivalent nodal loads are set to zero. 

7. A dynamic relaxation run is completed using the current  Z=0 plane mesh and 

equivalent nodal loads calculated in step 6. At the kinetic energy peak the Z=0 

plane mesh is updated using  the resulting  X and Y displacements.   

8. A new applied displacement vector may then be found by subtracting the current 

Z=0 plane mesh geometry from the initial 3-dimensional panel mesh.  

9. Step 4 to 8 is repeated until the equivalent nodal forces derived in 6 converge to 

close to zero (i.e. {𝑅}<0.00001). 

If the panel is fully developable, for example is  curved in only one direction the resulting 

flat geometry will contain no 'locked in' stress, In the case of a non-developable  doubly 

curved panel residual stresses will remain after the patterning procedure has converged, 

These stresses may be output from the analysis in order to assess the magnitude of the 

'locked in' stresses and used to inform the need for adjustments to the panels. It should be 

noted that only an arbitrary isotropic plane stress material stiffness matrix is used in the 

calculations of the stresses and therefore the patterning output may not be treated as 

actual stress only as a indication of relative magnitude,  

After initial development the flattened panels would be reduced in size using 

experimentally determined compensation factors to account for the non-recoverable 

strain induced during installation in order to induce the required uniform  prestress. A 

reliable  patterning  procedure is vital as the development of a uniform prestress is 

imperative for the safety of the structure. If the compensation is over estimated the 

prestress induced may exceed the acceptable stress range and result in damage to the 

fabric. Inversely if the compensation is under estimated initial strains induced during 

installation, which are unrecoverable, may cause the membrane to become slack leading to 

problems such as ponding and excessive vibration under wind loading. Finally a seam 

allowance is required to allow for the overlap required to form a seam which will be 

joined via welding or some other process.  

To demonstrate the process the hypar mesh, Section 3.2.2, is patterned using the proposed 

procedure.  The initial non form found  mesh has been formed from 7 fabric panels, these 

panels are used in patterning. The mesh has been controlled during form-finding using 

geodesic string elements in-order to maintain straight panel edges and a straight central 

seam. After the form finding is complete it is a simple task to divide the mesh  into its 
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constituent panels. These panel meshes provide the initial geometry for the pattering 

process, Figure 3-29.  

 

Figure 3-29: Patterning of a hypar.   

 

  

Form found mesh spit into 

constituent panels. 

Individual panels flattened to 

cutting patterns. 

Panel 4 Panel 5 Panel 6 Panel 7 

Panel 1 

Panel 2 

Panel 3 
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Warp Stress (kN/m) Fill Stress (kN/m) 

  
Shear Stress Absolute Displacement (m) 

(a) Panel 4 

  

Warp Stress (kN/m) Fill Stress (kN/m) 

  

Shear Stress Absolute Displacement (m) 

(b) Panel 5 

  
Warp Stress (kN/m) Fill Stress (kN/m) 

  
Shear Stress Absolute Displacement (m) 

(c) Panel 6 

Figure 3-30:  Patterning analysis output 
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The stress and displacement output for Panels 1 to 3 from the patterning analysis is 

graphically presented in Figure 3-30 in order to allow comparison.  Panel 3 exhibits the 

highest level of residual stress while undergoing the lowest level of displacement. In 

contrast Panel 1 from the centre of the structure undergoes the largest absolute 

displacements but exhibits relatively  low residual stress. This indicates that Panel 3 has  

greater double curvature than Panel 1. The 'locked in' stresses shown in Panel 3 may be 

reduced by pattering the structure with a narrower panel width in this region.  

To assess the validity of the final patterned panels three metrics are selected namely panel 

area, perimeter length and seam compatibility. The initial and flattened areas and 

perimeters of the 7 panels are presented in Table 3-9 along with the percentage error 

between the two configurations. The seam compatibility for the 6 seams is presented in 

Table 3-10.  

Panel Configuration 
Area 

(mm2) 

Area 
(%error) 

Perimeter 
(mm) 

Perimeter 
(%error) 

1 
Initial 1333751 

0.0000% 
5472.9 

0.0111% 
Flattened 1333750 5472.3 

2 
Initial 4012297 

0.0001% 
9682.9 

0.0939% 
Flattened 4012291 9673.8 

3 
Initial 5896534 

0.0017% 
15034.6 

0.0811% 
Flattened 5896434 15022.4 

4 
Initial 6300090 

0.0041% 
17970.9 

0.0403% 
Flattened 6299834 17963.6 

5 
Initial 5896521 

0.0015% 
15034.6 

0.0811% 
Flattened 5896432 15022.4 

6 
Initial 4012278 

0.0002% 
9682.9 

0.0940% 
Flattened 4012272 9673.7 

7 
Initial 1333772 

0.0001% 
5472.9 

0.0113% 
Flattened 1333771 5472.3 

Table 3-9: Initial and patterned panel comparison  

Percentage error between initial panel area and flattened panel area is less than 0.005%. 

The maximum absolute error of 256.2mm2 is observed in Panel 4 which is the largest 

panel.  Panel 6 exhibits the maximum percentage error between initial panel perimeter 

length and flattened panel perimeter length of 0.094%. This equates to a maximum 

absolute change in perimeter length of 12.2mm. while the absolute values appear 
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significant when considered as a percentage they are deemed acceptable. Especially when 

the approximated compensation discussed above is to be applied to the patterned panel.  

Seam Panel 
Seam Length 

(mm) 
Absolute 

error (mm) 
Required % 

length change 

1 
1 1805.6 

1.95 
-0.0540% 

2 1803.6 0.0541% 

2 
2 4197.2 

0.98 
-0.0117% 

3 4196.2 0.0117% 

3 
3 7143.0 

2.12 
0.0149% 

4 7145.1 -0.0149% 

4 
4 7145.1 

2.11 
-0.0148% 

5 7143.0 0.0148% 

5 
5 4196.2 

0.99 
0.0118% 

6 4197.2 -0.0118% 

6 
6 1803.6 

1.95 
0.0542% 

7 1805.6 -0.0541% 

Table 3-10: Seam compatibility  

A more significant measure of validity is the compatibility of the panel edges which will 

joined at seams to form the final structure. A maximum incompatibility of 2.12mm is 

observed in the seam between panels 3 and 4. If the incompatibility is distributed evenly 

between the two panels edges Panel 4's edge length would need to be reduced by -0.022% 

and Panel 3's  length increased by 0.015%. The largest required length change occurs in 

seam 1 and 6 and is equal to 0.054%. However, such incompatibilities  may well be within 

the construction tolerance for the structure and may be accounted for in the seam 

allowance.  
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3.4 Summary and Conclusions 

This chapter describes the derivation for the formulation of a six node Linear Strain 

Triangle (LST) element including large strain terms. The element is implemented within 

finite-element analysis code and is demonstrated using a simple patch along with two 

simple but realist fabric structure types namely a square base conic and a hypar . 

Alongside the LST membrane element a liner cable element and special geodesic control 

element are also developed and implemented. 

The general element formulation is validated using a simple patch. Analysis results  show 

that the displacement dependent terms of the B-matrix should include a factor of a half. 

The updated co-ordinate system in also required when calculating the nodal out-of 

balance forces from the current element stress. 

The geodesic control elements are demonstrated using both the hypar and conic 

structures. The control elements are shown to have a limited impact on the final 

membrane shape however they are vital in controlling the distribution of elements within 

the form found mesh. It is important for the seams and centre lines of the mesh panels to 

remain straight in order to enable accurate definition of material direction for load 

analysis and also enable patterning of the individual mesh panels. 

The conic results are of particular interest as the width of the panel had some effect on the 

final stress distribution given by the analysis. This is due to the changes in material 

direction at the panel seams. This gives a more accurate representation of stress within a 

real structure than defining the material direction using a continuous radial local co-

ordinate system as used by other specialist  fabric analysis software, for example Oasys 

GSA. 

 The conic undergoing wind uplift loading underwent unacceptable high negative strain 

close to the hoop indicting that this structure would fail under such loading conditions. 

A wrinkling procedure is implemented where an element is deemed to have become 

wrinkled. A combined wrinkling criteria is used i.e. an element is deemed to be wrinkled 

when the minimum  principle stress is negative and but the maximum principle strain is 

positive.  Where wrinkling occurs the elastic modulus is modified in the direction of the 

minimum principle stress in order to reduce the stiffness of the wrinkled element in the 

wrinkling direction. Where the element is deemed to be slack i.e. the maximum principle 

stress is negative the stiffness is reduced in all directions. The procedure is demonstrated 
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by the hypar undergoing a projected wind load of 1kN/m. Discontinuities in the stress 

field indicate that this procedure requires improvement.  

A patterning procedure for a panelled hypar mesh has been presented. The validity of the 

flattened panels has been investigated through comparison panel area, perimeter length 

and seam compatibility before and after flattening. Incompatibility between panels at the 

seams may indicate that implementation of  seam length control may improve the 

patterning procedure. Nevertheless, the relatively low levels of incompatibility between 

initial and flattened panel geometries demonstrates that this patterning procedure shows 

promise. The patterning analysis output offers a valuable insight into flattening of the 

proposed mesh. The results may be used to improve the design of the structural mesh in 

order to reduce the 'locked in' stresses induced in the flattened panels therefore 

improving the potential uniformity of the prestress induced in the final in situ fabric 

structure.
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Chapter 4. Neural Network Training and Validation 

As discussed in Chapter 3 fitting a plane stress model to biaxial test data for typical 

architectural fabrics leads to inconsistencies between the physical and theoretical 

descriptions, with values of Poisson's ratio in excess of the compressibility limit of 0.5, and 

for some fabrics approaching 2.0 [124]. The allowable values of Poisson's ratio are also 

constrained by the requirement that the product of the two orthotropic Poisson's ratios is 

less than 1, equation (2.5), Section 2.2.  When designed with appropriate architecture 

neural networks  are capable of capturing highly non-linear response. With the addition of 

historical inputs and internal variables it has been demonstrated that neural network 

models are capable of representing complex history dependant behaviour [114], Section 

2.3.  

This chapter begins by introducing the feed forward neural network, it’s basic architecture 

and the chosen training algorithm. The process of creating a neural network material 

model is then presented in terms of 3 stages. The first stage involves the collection and 

processing of training and testing data. This requires the development of specialised 

uniaxial and  biaxial testing profiles. The second stage involves training of the neural 

network; this process includes choice of network architecture, activation functions, and 

other parameters. The third stage involves validation of trained network’s performance 

using 'unseen' data sets. Implementation of the trained and validated network model for 

simulation and prediction of structural response within a finite element analysis 

programme, is covered in depth in Chapter 5. 

Initially the fabric response is modelled with residual strain removed. This form of model 

maps a surface to the response in each of the material directions (warp and fill). Therefore, 

it is referred to as a response-surface neural network model. This model is comparable 

with existing plane-stress architectural fabric material models and utilises similar 

experimental data in its development. The neural network model is then extended to 

include load history requiring the development of specialist testing. This form of model is 

referred to as a load-history neural network model and is used  initially to model uniaxial 

response followed by biaxial response. All trained networks are validated using 'unseen' 

data not used in training.  
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4.1 Neural Networks 

Neural networks are an artificial intelligence concept; through a process of training they 

may become capable of capturing the relationship between sets of input and output data. 

The trained network may then be used to generate output from previously unseen inputs. 

It is the neural networks ability to generalise that makes them such a powerful tool, 

Section 2.3.  

4.1.1 Network architecture 

The architecture of a feed forward neural network takes on a layered form. Each layer 

contains a number of neurons which in turn are connected to the neurons of the next layer 

via weighted connections. Connections between neurons in the same layer are not 

permitted. In usual operation, information only travels forward through the network, 

hence the network is referred to as a feed-forward neural network. However, during 

training information is also passed backwards. The most commonly used training 

algorithm with feed-forward neural networks is the back-propagation training algorithm. 

A graphical representation of a general multilayer feed-forward neural network is shown 

in Figure 1. This form of network contains an input layer made up of a neuron for each 

input value which is connected to a subsequent layer known as the hidden layer. This 

layer contains a user defined number of neurons, in this case 10. The network may also be 

built to contain any number of additional hidden layers although one is often sufficient. 

The final layer is the output layer. This layer contains a neuron for each network output. 

The selection of input data an d output data is critical as a feed-forward neural network is 

incapable of capturing 1 to many mappings. The inputs to the network must be such that 

each set of inputs is uniquely mapped to a set of outputs. A single input set cannot be 

mapped to multiple output sets.     
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Figure 4-1: Single hidden layer neural network architecture 

Figure 4-2 depicts a single neuron within either the hidden or output layer. Each neuron 

sums the weighted output signals from each neuron of the previous layer, adds a bias 

signal and passes the result through an activation function. The activation function may be 

any differentiable function. In this study a tan sigmoid transfer function is used in the 

hidden layer and a linear transfer function is used in the output layer. The use of a non-

linear transfer function in the hidden layer enables this kind of network to capture non-

linear relationships between inputs and outputs.  

 

Figure 4-2: A General Neuron 

The feed forward neural network shown in Figure 4-1, containing a single hidden layer 

with a tan-sigmoid transfer function, may be represented by the following set of equations. 

The form of these equations is similar to that used by Hashash et al. [119]. 

The output of the     neuron of the input layer   
  , is given by 
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where   is the index of the neuron in the input layer (      ),    is the un-scaled input 

signal and   
   and   

    are the maximum and minimum values of the inputs contained in 

the data set used for network training respectively. All input signals presented to the 

neural network are scaled to fall within a range between -1 and 1 to allow the use of 

inputs with different units. Scaling all inputs to the same range equalises the importance 

attributed to each input regardless of unit. This leads to weight and bias values which fall 

into a smaller more predictable range increasing the stability of the network training 

algorithm. After training all new inputs must be scaled using the same scaling process. 

This is why the scaling process is represented as part of the network and not as a separate 

process prior to implementation or training. 

The output of the     neuron of the hidden layer,   , is given by  

             
    

     
   

       (4-2) 

where   is the index of the neuron in the hidden layer (      ),    
   is the weight 

assigned to the connection between the     neuron of the input layer and the    neuron of 

the hidden layer,    is the neuron bias. In matrix form, the output of the hidden layer,      

may be expressed as 

                             (4-3) 

where     is a 1 by    array of hidden layer outputs,       is a 1by    array of scaled 

inputs from the input layer, [   ] is the    by    matrix of connection weights between 

the input and hidden layers and      is a 1 by    array of hidden layer biases.  

The output of the     neuron of the output layer,   
  , is given by  

  
         

       
   

       (4-4) 

where   is the index of the neuron in the output layer(      ),    
   is the weight 

assigned to the connection between the     neuron of the hidden layer and the    neuron 

of the output layer,    is the neuron bias. In matrix form the output of the output layer, 

     , may be expressed as 

                        (4-5) 

where       is a 1 by    array of output layer outputs, [   ] is the    by    matrix of 

connection weights between the hidden and output layer and      is a 1 by    array of 

output layer biases.  
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Prior to training all target outputs in the training data set are scaled in the same manner as 

the training inputs (4-1). Again this removes the effect of outputs with different units to 

each other and to the input values. Therefore, to return the real value with the same units 

as the original target outputs it is necessary to reverse the scaling on the network output. 

The final un-scaled output of the     neuron of the output layer,   , is given by the inverse 

of (4-1) yielding, 

    
  

    

 
     

      
       

                  
      (4-6) 

where   
   and   

    are the maximum and minimum values, respectively, of the target 

outputs contained in the data set used for network training. 

4.1.2 Network training 

A number of training algorithms have been developed, but the most commonly used in 

training feed-forward neural networks fall under the general term of back-propagation. 

The original back propagation learning algorithm came to the fore of the field in the 1980s  

[125]. The aim of network training is to find the combination of network weights and 

biases that reduces the error between network output and target outputs when the 

network is presented with a training data set of input and output pairs.  

Back propagation uses a gradient descent method in order to search for the minimum of 

the networks total error function. The combination of weights and biases which minimise 

the error function is the solution to the learning problem. The gradient of the error 

function at each neuron within the network is required at each iteration step in order to 

update the weights in the most efficient direction. This is found via the partial derivative of 

total network error with respect to the network weights. 

In this study the Matlab Neural Network Toolbox [126] is used for the development of the 

neural networks. The Levenberg-Marquardt back-propagation training method ‘trainlm’ is 

used; this method is an amalgamation of both quasi-newton and gradient decent methods. 

In order to describe the Levenberg-Marquardt algorithm the original back-propagation 

procedure as described in [125] is presented followed by the Levenberg-Marquardt 

method as described in [127]. 

4.1.2.1 Back-propagation training [125] 

The back-propagation training procedure comprises a three step process. In the first step, 

input signals from the training data set, with corresponding known outputs, are 

propagated forward through the network to be converted to an output signal via the 
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neurons and weighted connections. During this phase all connection weights are held 

constant.  The error between the network output and the target output may then be 

calculated. The second step involves the back propagation of error function derivatives in 

order to derive the sensitivity of the error function to the individual weights and biases. 

This is done to find the steepest gradient to the problem solution. The third and final step 

involves updating all network weights and biases according to the calculated gradient. 

This process is repeated iteratively until some convergence criterion is met. The initial 

values for the weights and biases may be any arbitrary value but are often randomly 

generated.  

The first step is straight forward. However, the derivation of partial derivatives of the 

error function is more complex. The network may be viewed as a complex chain of 

functions. Therefore, the chain rule must be employed to find the required partial 

derivatives. The partial derivatives of the error function are propagated backwards from 

the output layer back to the input layer in order to determine the gradients required to 

update the weights and biases. 

For a given set of input vectors with associated target outputs the total network error, E, is 

given by the following error function,  

  
 

 
             

 
    (4-7) 

where      denotes network output,      denotes target output. As above, the subscript   

denotes the index of the output neuron and   the specific input-output pair of the training 

data set. 

Taking a single input output pair, the backward pass of error derivatives begins with the 

partial derivative of the error function with respect to the network output. Taking the     

neuron, differentiation of equation (4-7), temporarily disregarding the index  , yields 

  

   
        (4-8) 

For the purposes of training it may be assumed that all input and output pairs have 

already been scaled. Therefore the scaling input and output layers may be disregarded for 

the purposes of training. Revisiting (4-4) and splitting the neuron processes into an input 

unit and an output unit containing the activation function, the total input to the     neuron 

of the output layer,   
 , is given by  

  
              (4-9) 
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The bias may be treated as a weight by including a neuron with a constant output of 1 in 

the preceding layer. In matrix form this yields 

 
  
 

 
   
 

   

               

                
               

  

  

 
   

 

   

(4-10) 

The output of the     neuron in the output layer,   , is given by the output of the chosen 

activation function,  . In the case of the network shown in Figure 4-1 this is a linear 

function. Therefore the partial derivative of the output of the     neuron in the output 

layer with respect to the layers input, 
   

   
 is given by  

   

   
  1 (4-11) 

The chain rule may then be employed to find the partial derivative of error with respect to 

the output layer input,   .   

  

   
  

  

   
 
   

   
  

  

   
  (4-12) 

This gives the sensitivity of the error function to the total input of the     neuron of the 

output layer.  

By inspection of (4-9) it may be seen that the neuron input is a linear function of the 

previous neuron outputs and the connection weights. Therefore, the partial derivative of 

network error with respect to the connection weight,    , between the     neuron of the 

current layer and the      neuron of the preceding hidden layer is given by  

  

    
   

  

   
  

   
 

    
   

  

   
      (4-13) 

The sensitivity of the network error with respect to the output of the     node of the 

hidden layer, 
  

   
, is then found by considering the effect of neuron   of the hidden layer on 

neuron   of the output layer. 

  

   
  

   
 

   
 

  

   
     

    (4-14) 

Taking into account all the connections emanating from neuron k yields, 

  

   
  

  

   
    

      (4-15) 
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It is now possible to calculate 
  

  
 for any neuron in the hidden layer given 

  

  
 for each 

neuron in the output layer. This process is now repeated in order to find 
  

    
   for the 

weights between the hidden and input layers. 

Again splitting the neuron process into an input unit and an output unit containing the 

activation function the total input to the     neuron of the hidden layer,   , is given by 

  
      

    
  

    
   (4-16) 

The output of the     neuron of the hidden layer,   , is given by the output of the chosen 

non-linear activation function,  . A tan-sigmoid activation function which is equivalent to 

hyperbolic tan is used throughout this thesis.   

       
          

   
 

   
    

     (4-17) 

The chain rule is then employed at the preceding layer to find the partial derivative of 

error with respect to the layer input,   .   

  

   
  

  

   
 
   

   
   (4-18) 

The derivative of the tan-sigmoid function in (4-17) is given by  

   

   
         

    (4-19) 

Substitution of this into (4-18) yields, 

  

   
  

  

   
        

    (4-20) 

This gives the sensitivity of the error function to the total input of the     neuron of the 

hidden layer. By inspection of (4-16) it again may be seen that the neuron input is a linear 

function of the previous neuron outputs and the connection weights. Therefore, the partial 

derivative of network error with respect to the connection weight,    
  , between the     

neuron of the current layer and the      neuron of the preceding input layer is given by  

  

    
   

  

   
  

   

    
   

  

   
      

(4-21) 

The partial derivatives of the error function with respect to all network weights may now 

be found. This process may be expanded to apply to any size network with any number of 

hidden layers containing any differentiable activation function. 
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The values of  
  

  
 may be used to alter the weights individually for each input-output pair, 

this is termed on-line training. Alternatively the values of  
  

  
 are accumulated over the 

entire training set before updating the weights, this is termed batch training. The simplest 

form of gradient descent changes each weight by an amount proportional to 
  

  
.  

     
  

  
  (4-22) 

where   is the learning rate. Convergence is improved by using an acceleration method 

where the current gradient is used to modify the velocity of the point in weight space 

instead of its position  

        
  

     
           

(4-23) 

where t is incremented by 1 for each run through the whole set of input-output cases,   is 

an exponential decay factor between 0 and 1 that determines the relative contribution of 

the current gradient and earlier gradients to the weight change. 

4.1.2.2 Levenberg-Marquardt algorithm [127] 

The Levenberg-Marquardt algorithm is an approximation to Newton's method. Given a 

function       which is to be minimised with respect to the vector   , then Newton's 

method is given by 

                        (4-24) 

where         is the Hessian matrix and        is the gradient. Assuming that       is a 

sum of the squares function of the form  

         
   

        (4-25) 

it can be shown that  

                    (4-26) 

                           (4-27) 

where       is the Jacobian matrix  

       

 
 
 
 
 
 
       

   

       

   

 
       

   

       

   

       

   

 
       

   

 
 
 
 

       

   

       

   

 
       

    
 
 
 
 
 

  (4-28) 

and  
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             (4-29) 

For the Gauss-Newton method it is assumed that        . Therefore (4-24) becomes  

                                 (4-30) 

The modification introduced to equation (4-24)  by the Levenberg-Marquardt may be 

given as 

                                     (4-31) 

The parameter   is multiplied by some factor   whenever a step would result in an 

increase in      . When a step reduces      ,   is divided by   . When   is large the 

algorithm becomes steepest descent, for small   the algorithm becomes Guass-Newton. 

The terms of the Jacobian, equation (4-28),  are found from the back-propagation 

procedure described above, Section 4.1.2.1.  

4.1.2.3 Training data division and early stopping 

The Matlab Neural Network toolbox [126] employs a number of different criteria in order 

to stop training. Training is halted when the gradient reaches a defined minimum (10-5), 

the performance reaches a defined minimum or goal (10-10), training time exceeds an 

upper limit, or a maximum number of training epochs are completed (103). The final 

stopping criterion involves validation checking leading to early stopping.  

A key consideration when training neural networks is the issue of over fitting, where a 

network is trained to a point where it no longer possesses the ability to generalise, Section 

2.3. It is vital that the network is tested using previously ‘unseen’ data in order to identify 

where over fitting has occurred. This problem has been the subject of numerous studies. 

The factors identified as key to over fitting are network architecture, training control and 

training data selection.  

The default method of over fitting control employed by the Matlab Neural Network 

Toolbox is early stopping. Available training data is divided into three subsets a training 

set, a validation set and a testing set. The data is divided according to pre-defined ratios. 

The training set comprises the largest proportion, typically 70%. The rest of the data is 

divided equally between the validation and testing sets, 15% each. Allocation to the sets is 

done by either a regular or random index list.  

The training set is used to calculate current network error and the gradient with which the 

weights and biases are updated. The validation data set is presented to the network after 

each weight and bias update and the current error calculated. The error on the validation 

data set is monitored throughout training. In the early stages of training both the training 
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and validation data error generally decreases. As training progresses the training data 

error will continue to decrease. However, as the network begins to over fit the training 

data the validation data error will increase. If the validation data error consistently 

increases for 6 iterations then training is stopped.  

The testing data set is not used during training. It may be used after training to provide a 

comparison to the validation data set error to check the division of data. By plotting the 

mean square error at each training epoch the training progress may be investigated. If the 

testing data error minimum is at a significantly different epoch to the validation set this 

may indicate a poor division of data.           

4.2 Biaxial Testing  

The data required for network training and validation is collected by biaxial testing of 

cruciform samples of architectural fabric. The aim of biaxial testing is to apply a known, 

uniform stress field and accurately measure the resulting strain. All testing is done using a 

custom built ‘floating’ rig and test protocol initially developed at Newcastle University in 

the thesis of  Bridgens [59].  

4.2.1 Cruciform sample preparation 

The cruciform sample (Figure 4-3) is designed to enable the uniform transfer of the 

maximum amount of applied load into the central region of the sample, thus generating a 

near uniform known stress field. The cruciform consists of a 300mm square central region 

surround by 150mm long arms with additional allowance to form a welded pocket for a 

clamping bar. The sample is laid out so that the warp and fill yarns are aligned with centre 

lines of the cruciform arms. This may result in a non-orthogonal layout as illustrated in 

Figure 4-3.   

The cruciform arms contain slits set at regular intervals. Numerical simulations 

undertaken by Bridgens [59] and also in the development of the standard published by the 

MSAJ [43] indicate that the inclusion of slits significantly increases the total load 

transferred to the central region of the cruciform. Slits also decrease the effect of large 

shear deformations in the cruciform arms which result from unequal large strains in the 

approximately orthogonal  material directions.   
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Figure 4-3: Cruciform sample dimensions for biaxial testing (Adapted from [59]) 

In order to convert the recorded applied load to an accurate stress value for the central 

region of the cruciform a correction factor or equivalent effective gauge length is applied. 

This is done to account for the loss of load due to the spreading of the cruciform arms. 

Through numerical simulation of the cruciform sample a correction factor of 0.95, or an 

equivalent effective gauge length of 315mm, has been determined by Bridgens in [59]. 

This factor has been deemed suitable for all load ratios.    

4.2.2 Test rig 

The test rig consists of two reaction frames into which the cruciform sample is clamped 

using a bar set into machined circular hole. The upper frame is mounted on spherical 

bearings enabling free movement in the plane of the fabric. This ensures that the rig 

Setting out guide lines. Fill 
arms are aligned with fill 
yarns, not necessarily  
orthogonal to warp 

Arm folded back to this 
line and welded at this 
point to form a pocket   

Arm divided by 10 
30mm wide slits  

150mm  150mm  

144mm  

50mm  

150mm  

Fill  

Warp 

Note: Non-orthogonal configuration of warp and fill yarns exaggerated for clarity 
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remains aligned with the material warp and fill direction as deformation takes place. It 

also allows for the testing of non-orthogonal cruciform samples. 

Biaxial load is applied in the warp and fill material directions via two hydraulic rams. 

Current load is measured by a load cell located between the ram and the sample clamp 

plate. The ram head position is measured by a linear variable differential transformer 

(LVDT). Both load and ram position are output to a control program in real time and either 

may be used to control the ram. Testing for this body of work is load controlled. Strain in 

the central region of the sample is measured at 2 second intervals concurrently with the 

load cell output via LVDT displacement transducers aligned with the warp and fill 

directions. 

4.3 Response Surface Neural Network Material Model 

Architectural fabric material models, particularly those based on the plane-stress 

framework and those based on response surfaces, are fitted to experimental data in the 

form of load ratio arms, Section 2.2. When a neural network is trained using data in the 

form of load ratio arms it may be used to interpolate between those arms thus creating a 

response surface style model. As this model is easy to visualise it is selected as a good 

starting point for the initial development of an architectural fabric neural network 

material model.  

A constitutive material model endeavours to describe a material’s response to external 

stimuli. In the case of architectural fabric modelling it is the relationship between stress 

and strain that is of interest. Within a typical finite element analysis the current strain 

state is used to determine the current level of stress which in turn is used to determine 

whether the forces within a structure are in equilibrium with the external forces applied 

to the structure. The current strain will therefore be used as input and the stress as output. 

This leads to a network comprising two inputs (warp and fill strain), a single hidden layer 

and two outputs (warp and fill stress).    

4.3.1 Network performance criteria 

The non-uniqueness of neural network material models has been identified as a key 

feature [88]. Because neural networks are typically initialised using random numbers for 

all weights and biases, two networks presented with identical training data will produce 

different functional mappings. In order to find a network with the highest possible 

performance, multiple networks are trained, and from that group the network with the 
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best performance is selected. The performance criteria used for this purpose is the 

coefficient of determination,    given by,  

     
        

  
   

          
   

  (4-32)  

 
where    is the target value,    is the network output and    is the mean value of the targets. 

The coefficient of determination is a relative measure of error and is therefore a clearer 

indication of error than mean-square error. The closer the coefficient of determination is 

to 1 the higher performance of the network. For each training data set 10 individual 

networks are trained.  Each network effectively models two response surfaces 

representing warp and fill response separately. Therefore, the mean of the coefficients of 

determination for the two surfaces is used to identify the network with the best overall 

performance.  

4.3.2 Response surface training data collection and pre-

processing 

4.3.2.1 Experimental training data collection and pre-processing 

A biaxial testing profile is developed that includes additional load ratios between the 

standard 0:1, 1:2, 1:1, 2:1 and 1:0 ratios commonly used for the derivation of plane stress 

elastic constants [43]. These ratios offer the opportunity to further investigate the true 

shape of the interpolated response surface (Figure 4-5 and Figure 4-7) .The additional 

load ratios may also provide ‘unseen’ testing data for network validation.  

 
Ultimate Tensile 

Strength 

(kN/m) 

Maximum Stress 
(kN/m) 

Minimum Stress 
(kN/m) 

Material Warp Fill Warp Fill Warp Fill 

PVC  

(502S) 
112 112 28 28 2.8 2.8 

PTFE 
(B18089) 

160 140 40 35 3.5 3.5 

Table 4.1: Maximum and minimum stress for biaxial profiles 

A minimum stress of 2.5% of ultimate fabric strength is used for pre-stress. The maximum 

stress is 25% of the ultimate tensile strength. Due to limitations in the computerised load 

control system of the rig it is not possible achieve load ratios with a true 0 load. Therefore, 

load ratios of 0:1 and 1:0 refer to load ration where the direction referred to by 0 is held at 

the minimum stress value. In the case of PTFE coated glass fabric the ultimate tensile 
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strength is different between the warp and fills directions. The profile values for the PVC 

coated polyester and PTFE glass fibre fabrics tested are shown in Table 4.1. 

  

Figure 4-4:  Load ratio arms 
investigated during PVC biaxial test 

Figure 4-5: Response surface derived 
from PVC biaxial test data. 

  

Figure 4-6:  Load ratio arms 
investigated during PTFE biaxial test 

Figure 4-7: Response surface derived 
from PTFE biaxial test data. 

  

Biaxial testing and data processing is based on the protocol laid out in [60]. As shown in 

Figure 4-8 and Figure 4-9, the fabric is initially held at pre-stress for an arbitrary 

30minutes followed by three 1:1 cycles. This initial combination of loading is applied to 

condition the fabric so as to capture in situ behaviour in the following cycles as oppose to 

the fabric’s initial behaviour which is heavily affected by crimp interchange. The profile 

then continues through each ratio of interest with three 1:1 cycles between each. This 

minimises the effect of the previous load ratio on the subsequent one.  
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(a) Stress profile 
 

 

(b) Strain profile with and without residual strain removed 

Figure 4-8: Testing profile for PVC coated polyester fabric comprising the applied 
stress profile and the resulting strain.  

In post processing residual strain is removed from the experimental data (Figure 4-8 and 

Figure 4-9), in order to eliminate the effect of skew introduced by the accumulation of 

residual strain throughout the test. This enables the representation of the response by a 

single surface and removes the effect of load path dependency.  

The procedure for residual strain removal begins by finding the index of each minimum 

stress turning point,    , within the profile. The strain,     
, at each turning point may then 

be found. As the profile returns to the same level of stress at the beginning and end of each 

complete cycle the residual strain at each turning point,     

   , may be found from, 

    

        
       

  (4-33)  

 
where     

 is the total strain at the current turning point and       
is total strain at the 

previous turning point. The residual strain is cumulatively subtracted from the total strain 

to find the strain at any time step within the profile with current residual strain removed.  

The strain with the cumulative residual strain removed,   
    between the current and 

previous turning point index,               is given by 
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      . (4-34) 

 

 

(a) Stress profile 
 

 

 

(b) Strain profile with and without residual strain removed 

Figure 4-9: Testing profile for PTFE coated glass fibre fabric comprising the applied 
stress profile and the resulting strain. 

Three individual sets of data are used to train and validate the networks. The first data set 

comprises the full set of 9 load ratios and is used as the training data set for Network 1. 

The second data set comprises only the 0:1, 1:2, 1:1, 2:1 and 1:0 load ratios and is used as 

the training data set for Network 2. The intermediate load ratios are used as 'unseen' 

testing data for Network 2. The third data set is derived from a network trained to take the 

warp and fill stress as input and output warp and fill strain. This network is also trained 

using the full set of 9 load ratios. During biaxial testing the stress and strain information is 

logged at 2 second intervals. For the purposes of network training the density of the 

experimental data is reduced by only taking every 5th data point. This data reduction is 

done to avoid over fitting and also enables the clearer plotting of the trained network 

output. 
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4.3.2.2 Additional synthetic training data generation via stress to strain network 

As the experimental data is collected using a load-controlled process the stress envelope is 

regular and  the resulting strain envelope is non-regular. This irregularity makes it is 

difficult to directly generate additional strain values to comprehensively explore the 

response surface.  

A stress to strain network model directly represents the load controlled biaxial test and is 

therefore useful for producing a more comprehensive data set. Once trained this network 

is presented with a regular grid of stress points, Figure 4-10 (a), and the network output 

strains, Figure 4-10 (b),  are taken to build an additional synthetic  data set. This set is 

used both as a training data set for Network 3 and as a testing set for Network 1 and 2. In 

this way the gaps between loading arms may be investigated and cases of over-fitting may 

be identified. 

 

(a) PVC Biaxial stress envelope with 
additional stress points 

(b) PVC Biaxial strain envelope with 
additional strain points generated by 

stress to strain network 

Figure 4-10: Generation of additional training and testing data set  

The stress to strain neural network shown in Figure 4-11 comprises an input layer 

containing two inputs, warp and fill stress, a hidden layer containing 10 neurons and an 

output layer containing 2 neurons for warp and fill strain. Tan-sigmoid transfer functions 

are used in the neurons of the hidden layer and a linear transfer function is used in the 

neurons of the output layer. For the purposes of early stopping 70% of the full training 

data set is used for training, 15% for validation and 15% for testing. This division will be 

used for all networks trained in this thesis.  
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Figure 4-11: Stress to strain neural network architecture 

All trained stress to strain networks produce    values close to 1 indicating a high 

correlation between network output and the target outputs. All networks are trained in a 

relatively low number of training iterations (approx. 5 to 10 ) and do not trigger early 

stopping criteria. The stopping criteria triggered is the minimum gradient.  Version 7 of 

the network trained and tested with the PVC (502S) data set produces the best 

performance. Version 8 of the network trained and tested with the PTFE ( B18059) data 

set produces the best performance. Visually the interpolation between the loading arms 

shown in Figure 4-13 and Figure 4-14 appear reasonable. The network output from these 

networks will form the additional data set for training and testing strain to stress network.  

In order to conserve space a universal key (Figure 4-12) is used for all figures depicting 

network output. Each figure is linked with a specific network within the table of R2 values 

directly above it. The networks plotted generally demonstrate the highest performance 

with one or both of the data sets used for training and testing.  

Warp Fill  

  Network generated target data           

  Experimentally generated target data 

  Network output from network generated data 

  Network output from experimentally generated data 
net  

Figure 4-12: Response surface neural network figure key  
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Network performance when presented 9 experimental load ratios (training) 

Network 1 2 3 4 5 6 7 8 9 10 

Warp 0.9953 0.9964 0.9984 0.9970 0.9986 0.9973 0.9987 0.9943 0.9982 0.9977 

Fill 0.9955 0.9960 0.9973 0.9944 0.9972 0.9964 0.9978 0.9969 0.9975 0.9978 

Mean 0.9954 0.9962 0.9979 0.9957 0.9979 0.9968 0.9982 0.9956 0.9978 0.9978 

Table 4.2: Coefficients of determination for PVC coated polyester (502S) stress to 
strain neural network material model

  
Figure 4-13: Network 7, Table 4.2, PVC (502S) stress to strain network 

demonstrating best performance  

Network performance when presented 9 experimental load ratios (training) 

Network 1 2 3 4 5 6 7 8 9 10 

Warp  0.9963 0.9971 0.9984 0.9909 0.9963 0.9961 0.9864 0.9979 0.9806 0.9957 

Fill 0.9965 0.9961 0.9976 0.9934 0.9964 0.9961 0.9837 0.9982 0.9823 0.9954 

Mean 0.9964 0.9966 0.9980 0.9921 0.9963 0.9961 0.9851 0.9981 0.9815 0.9956 

Table 4.3: Coefficients of determination for PTFE coated glass fibre (B18059) stress 
to strain neural network material model  

  
Figure 4-14: :  Network 8, Table 4.3, PTFE (B18059) stress to strain network 

demonstrating best performance  



Chapter 4 Neural Network Training and Validation  167 
 

4.3.3 Response Surface Neural Network Training and Validation  

Similar to the stress to strain network used to generate the more comprehensive data set. 

The strain to stress neural network shown in Figure 4-15 comprises an input layer 

containing two inputs, warp and fill strain, a hidden layer containing 10 neurons and an 

output layer containing 2 neurons for warp and fill stress. Tan-sigmoid transfer functions 

are used in the neurons of the hidden layer and a linear transfer function is used in the 

neurons of the output layer.  

Figure 4-15: Strain to stress neural network architecture 

 

4.3.3.1 PVC (502S) response surface neural network 

Network performance with 9 experimental load ratios (training data) 

Network 1 2 3 4 5 6 7 8 9 10 

Warp  0.9977 0.9978 0.9984 0.9948 0.9973 0.9968 0.9973 0.9975 0.9976 0.9982 

Fill 0.9982 0.9986 0.9979 0.9945 0.9977 0.9958 0.9978 0.9979 0.9978 0.9984 

Mean 0.9980 0.9982 0.9981 0.9947 0.9975 0.9963 0.9976 0.9977 0.9977 0.9983 

Network performance with network generated data ('unseen' testing data) 

Network 1 2 3 4 5 6 7 8 9 10 

Warp  0.9984 0.9880 0.9973 0.9928 0.9988 0.9937 0.9900 0.9991 0.9975 0.9656 

Fill 0.9979 0.9734 0.9926 0.9944 0.9987 0.9956 0.9961 0.9983 0.9968 0.9810 

Mean 0.9981 0.9807 0.9950 0.9936 0.9988 0.9946 0.9931 0.9987 0.9972 0.9733 

Table 4.4: Coefficients of determination for PVC coated polyester (502S) strain to 
stress neural network material model trained with 9 experimental load ratios 

Warp Strain 

Fill Strain 

Warp Stress kN/m 

Fill Stress kN/m 

   

   

   

   

   

    

   

   

Input Layer Hidden Layer Output Layer 
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Figure 4-16: Network 10, Table 4.4, PVC (502S) strain to stress network 

demonstrating best performance with experimentally generated data used in 
training 

  
Figure 4-17: Network 5, Table 4.4, PVC (502S) strain to stress network 

demonstrating best performance with 'unseen' network generated data used in 
testing 

Version 10 of the network trained using the 9 load ratios, Table 4.4, shows the best 

performance when tested with the full experimental load ratio set. However, when tested 

with the more comprehensive synthetic network generated data set a much lower 

performance is observed, this indicates over-fitting may have occurred. This is confirmed 

visually in Figure 4-16 where the effects of over fitting may be clearly seen between the 

0:1 and 1:2  load ratio arms in both the warp and fill surfaces. It is noted that an   value 

lower than 0.990 indicates and unacceptable network error. Version 5 of the network 

trained with the same data (Figure 4-17) produces a slightly decreased    value when 

presented with the full experimental load ratio set. However, when presented with the 

network generated data set this network produces a much higher    value. The network 

has a greater ability to generalise within a reasonable range. This demonstrates the 

importance of network testing using unseen data.     
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Network performance with 9 experimental load ratios (partial training) 

Network 1 2 3 4 5 6 7 8 9 10 

Warp  0.9943 0.9935 0.9903 0.9944 0.9945 0.9770 0.9866 0.9918 0.9937 0.9879 

Fill 0.9958 0.9957 0.9953 0.9946 0.9952 0.9959 0.9874 0.9943 0.9964 0.9928 

Mean 0.9951 0.9946 0.9928 0.9945 0.9949 0.9865 0.9870 0.9930 0.9950 0.9904 

Network performance with network generated data (unseen) 

Network 1 2 3 4 5 6 7 8 9 10 

Warp  0.9925 0.9892 0.9858 0.9908 0.9896 0.9687 0.9776 0.9843 0.9919 0.9786 

Fill 0.9963 0.9947 0.9956 0.9939 0.9958 0.9961 0.9812 0.9917 0.9961 0.9812 

Mean 0.9944 0.9920 0.9907 0.9924 0.9927 0.9824 0.9794 0.9880 0.9940 0.9799 

Table 4.5: Coefficients of determination for PVC coated polyester (502S) strain to 
stress neural network material model, trained with 5 load ratios 

  
Figure 4-18: Network 1, Table 4.5 , PVC (502S) strain to stress network 

demonstrating best performance with both data sets 

The networks trained using the partial data set, Table 4.5, achieve the lowest performance 

especially in the fill direction. This is expected as these networks have been trained with 

the least comprehensive data set. Version 1 of the network trained using the reduced 

experimental data set (Figure 4-18) exhibits the best performance when presented with 

both the full experimental data set and the network generated data set. Both of these data 

sets contain information relating to all of the 9 load ratios. Therefore, providing that over 

fitting has not occurred, both data sets should produce a similar level of performance. 
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Network performance with 9 experimental load ratios (unseen) 

Network 1 2 3 4 5 6 7 8 9 10 

Warp  0.9970 0.9972 0.9971 0.9968 0.9969 0.9972 0.9973 0.9971 0.9968 0.9976 

Fill 0.9971 0.9975 0.9968 0.9967 0.9974 0.9972 0.9975 0.9970 0.9967 0.9969 

Mean 0.9970 0.9974 0.9970 0.9968 0.9972 0.9972 0.9974 0.9971 0.9968 0.9973 

Network performance with network generated data (training) 

Network 1 2 3 4 5 6 7 8 9 10 

Warp  0.9996 0.9994 0.9995 0.9991 0.9991 0.9995 0.9991 0.9997 0.9998 0.9995 

Fill 0.9996 0.9994 0.9996 0.9994 0.9993 0.9996 0.9993 0.9996 0.9998 0.9997 

Mean 0.9996 0.9994 0.9996 0.9993 0.9992 0.9995 0.9992 0.9997 0.9998 0.9996 

Table 4.6: Coefficients of determination for PVC coated polyester (502S) strain to 
stress neural network material model, trained with network generated data 

  
Figure 4-19: Network 9, Table 4.6, PVC (502S) strain to stress network 

demonstrating best performance with both data sets 

All of the networks trained using the PVC (502S) data sets achieve    values close to 1 

indicating a high correlation between network output and the target outputs. As would be 

expected the highest    values are observed when a network is tested using the same set 

of data it was trained with.  

Version 9 of the network trained with the network generated data set, Table 4.6, 

demonstrates the best overall performance when presented with both the training data 

and the unseen data sets. This network may be selected as having the best ability to 

generalise the PVC fabric response. The use of synthetic training data, Section 4.3.2.2, 

reduces the risk of over-fitting without the need for additional expensive physical testing. 

It is however of extreme importance to gather sufficient data to thoroughly train and 

validate any network model to be used in structural analysis. 
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Network performance when presented 9 experimental load ratios (training) 

Network 1 2 3 4 5 6 7 8 9 10 

Warp  0.9946 0.9956 0.9956 0.9944 0.9936 0.9936 0.9888 0.9937 0.9955 0.9939 

Fill 0.9803 0.9861 0.9870 0.9916 0.9685 0.9825 0.9813 0.9818 0.9858 0.9817 

Mean 0.9874 0.9908 0.9913 0.9930 0.9810 0.9880 0.9851 0.9878 0.9907 0.9878 

Network performance when network presented with network data (unseen) 

Network 1 2 3 4 5 6 7 8 9 10 

Warp  0.9684 0.9576 0.9576 0.8168 0.9657 0.9580 0.9697 0.9534 0.9589 0.9598 

Fill 0.9027 0.8640 0.8861 -0.45811 0.9385 0.8746 0.9210 0.8966 0.8910 0.8895 

Mean 0.9356 0.9108 0.9219 0.1794 0.9521 0.9163 0.9453 0.9250 0.9250 0.9246 

Table 4.7: Coefficients of determination for PTFE coated glass fibre (B18059) strain 
to stress neural network material model, trained with 9 load ratios 

  
Figure 4-20: Network 4, Table 4.7, PTFE (B18059) strain to stress network 

demonstrating best performance with experimentally generated data used in 
training  

  
Figure 4-21: Network 5, Table 4.7, PTFE (B18059) strain to stress network 

demonstrating best performance with 'unseen' network generated data used in 
testing  

                                                             
1 A negative    value indicates that the mean on the testing data provides a better to the target output than the output 
generated by the trained network. 
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Version 4 of the network trained using the 9 load ratios shows the best performance, 

although still lower than 0.990, when tested with the full experimental load ratio set. As 

with the PVC networks the fill surface produces a considerably lower    value than the 

warp surface. This indicates that the material response of the fill direction yarns is more 

complex than the warp. This may be due to the high level of crimp in this material 

direction.  

When tested with the more comprehensive network generated data set a much lower 

performance is observed in both surfaces, this indicates that over-fitting has occurred. 

This is confirmed visually in (Figure 4-20) where the poor correlation between network 

output and targets may be clearly seen, especially between the 0:1 and 1:1 load ratio arms 

where the fill direction carries a greater load than the warp direction. Version 5 of the 

network trained with the same data (Figure 4-21) produces a slightly decreased    value 

when presented with the full experimental load ratio set. When presented with the 

network generated data set this network produces a slightly higher    value indicating a 

decreased level of over fitting.  

The networks trained using the partial data set achieve the lowest performance, this is the 

same as the PVC networks. Version 3 (Figure 4-22) produces the highest    value when 

tested with the full experimental load ratio set. However, this performance is poor 

especially for the load ratio arms not used in the training set. The ‘unseen’ load ratio arm 

between the 0:1 and 1:2 load ratios collapses onto the 0:1 load ratio arm. This is due to the 

high stiffness of the material leading to a steep response surface where one set of strain 

values leads to multiple values of stress. These results indicate that a 2 input neural 

network does not have sufficient inputs to avoid the detrimental effect of the one to many 

mappings present in the PTFE training data 
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Network performance when presented 9 experimental load ratios (partial training) 

Network 1 2 3 4 5 6 7 8 9 10 

Warp  0.9691 0.9658 0.9705 0.9632 0.8411 0.9348 0.9697 0.9697 0.9439 0.8618 

Fill 0.8833 0.8948 0.8933 0.8825 0.8574 0.8841 0.8874 0.8937 0.8851 0.8705 

Mean 0.9262 0.9303 0.9319 0.9229 0.8492 0.9095 0.9286 0.9317 0.9145 0.8662 

Network performance when network presented with network data (unseen) 

Network 1 2 3 4 5 6 7 8 9 10 

Warp  0.9511 0.9613 0.9597 0.9349 0.7278 0.9398 0.9659 0.9574 0.9475 0.8778 

Fill 0.8331 0.8624 0.8606 0.8216 0.7812 0.8470 0.8450 0.8579 0.8526 0.8349 

Mean 0.8921 0.9119 0.9101 0.8782 0.7545 0.8934 0.9055 0.9077 0.9001 0.8563 

Table 4.8: Coefficients of determination for PTFE coated glass fibre (B18059) strain 
to stress neural network material model, trained with 5 load ratios 

  
Figure 4-22: Network 3, Table 4.8, PTFE (B18059) strain to stress network 

demonstrating best performance with  experimentally generated data partially 
used in training  

The one to many mapping issue, leading to poor performance, is also demonstrated by the 

networks trained with the network generated data set (Figure 4-23). The warp surface 

shows the most improvement compared to the networks trained with only experimental 

data. However, the fill surface remains extremely poor. Although these networks show the 

best overall performance they are not sufficiently accurate for use in a structural 

simulation. 
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Network performance when presented 9 experimental load ratios (unseen) 

Network 1 2 3 4 5 6 7 8 9 10 

Warp  0.9769 0.9751 0.9778 0.9608 0.9773 0.9734 0.9734 0.9743 0.9749 0.9737 

Fill 0.9508 0.9520 0.9487 0.9315 0.9425 0.9382 0.9418 0.9443 0.9442 0.9275 

Mean 0.9639 0.9635 0.9633 0.9461 0.9599 0.9558 0.9576 0.9593 0.9596 0.9506 

Network performance when network presented with network data (training) 

Network 1 2 3 4 5 6 7 8 9 10 

Warp  0.9886 0.9915 0.9902 0.9905 0.9886 0.9910 0.9905 0.9917 0.9914 0.9918 

Fill 0.9664 0.9698 0.9697 0.9644 0.9645 0.9693 0.9687 0.9697 0.9697 0.9702 

Mean 0.9775 0.9806 0.9799 0.9775 0.9765 0.9801 0.9796 0.9807 0.9805 0.9810 

Table 4.9: Coefficients of determination for PTFE coated glass fibre (B18059) strain 
to stress neural network material model, trained with network generated data 

  
Figure 4-23: Network 1, Table 4.6, PTFE (B18059) strain to stress network 

demonstrating best performance with 'unseen' experimentally generated data used 
in testing 

All of the 2 input networks trained using the PTFE (B18059) data sets achieve 

unacceptably low     values (less than 0.990) indicating a poor correlation between 

network output and the target outputs. When presented with unseen data the PTFE 

networks exhibit a very poor ability to generalise the response.   

4.3.3.2 Additional Input 

In order to capture the more complex material response of PTFE which includes one to 

many mappings, a third input is required. The state equations of the finite element 

analysis are solved iteratively via a dynamic relaxation algorithm, Section 3.1.2. The warp 

and fill stress from the previous dynamic relaxation energy peak is  readily available. This 

information may be used to provide the approximate strain radial arm on which the target 

stress is positioned in the form of a stress ratio. As in the case of the activation functions 

within the hidden layer of the networks a tan sigmoid (or hyperbolic tan) function is used 
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to scale the resulting ratio between -1 and 1. Therefore, the additional stress ratio input, 

      , is given by, 

             
  

   

  
      (4-35)  

 
where   

    and   
    are the warp and fill stresses from the previous dynamic relaxation 

energy peak. These values will become increasingly accurate as the analysis progresses.  

In order to generate values of       for the training data set random perturbations in the 

range of -1.0 to 1.0 are applied to the target stresses to be used in place of   
    and   

   . 

This range of perturbation is used to generate previous iteration stress values in a similar 

range to those generated during implementation within finite element analysis.  

 

Figure 4-24: 3 input strain to stress neural network architecture 

The resulting 3 input strain to stress neural network, shown in Figure 4-24, comprises an 

input layer containing three inputs, warp and fill strain and the stress ratio, a hidden layer 

containing 10 neurons and an output layer containing 2 neurons for warp and fill strain. 

Tan sigmoid transfer functions are used in the neurons of the hidden layer and a linear 

transfer function is used in the neurons of the output layer. 

All of the networks trained using the PTFE (B18059) data sets with the addition stress 

ratio input show a considerable improvement in performance. Once again the highest    

values are observed when a network is tested using the same set of data it was trained 

with. When presented with unseen data the 3 input PTFE networks exhibit a good ability 

to generalise the response. Version 4 of the network trained using the 9 load ratios (Figure 

4-25) shows the best performance across all data sets producing    values greater than 

0.990. The fill surface also consistently produces a greater    value than the warp when 

presented with the network generated unseen data set.  
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Network performance when presented 9 experimental load ratios (training) 

Network 1 2 3 4 5 6 7 8 9 10 

Warp  0.9982 0.9995 0.9972 0.9988 0.9984 0.9995 0.9994 0.9939 0.9993 0.9988 

Fill 0.9988 0.9992 0.9986 0.9990 0.9991 0.9991 0.9990 0.9979 0.9992 0.9989 

Mean 0.9985 0.9993 0.9979 0.9989 0.9988 0.9993 0.9992 0.9959 0.9992 0.9989 

Network performance when network presented with network data (unseen) 

Network 1 2 3 4 5 6 7 8 9 10 

Warp  0.9674 0.9839 0.9515 0.9903 0.9774 0.9880 0.9861 0.9795 0.9838 0.9609 

Fill 0.9976 0.9981 0.9970 0.9981 0.9986 0.9984 0.9984 0.9971 0.9983 0.9964 

Mean 0.9825 0.9910 0.9743 0.9942 0.9880 0.9932 0.9923 0.9883 0.9911 0.9786 

Table 4.10: Coefficients of determination for PTFE coated glass fibre (B18059) 
strain to stress neural network material model, trained with 9 load ratios 

  
Figure 4-25: Network 4, Table 4.10, PTFE (B18059) 3 input strain to stress network 

demonstrating best performance with 'unseen' network generated data used in 
testing  

The networks trained using the partial data set again achieve the lowest performance. 

Version 2 (Figure 4-26) produces the highest    values when tested with both the full 

experimental load ratio set and the network generated data se. However, this performance 

is poor especially for the load ratio arms not used in the training set. The ‘unseen’ load 

ratio arms between the 0:1 and 1:2 and 2:1 and 1:0 load ratios collapse onto the 0:1 and 

1:0 load ratio arms respectively. This demonstrates that the additional load ratio arms are 

required to capture the complex material response of PTFE coated glass fibre fabric. This 

may indicate that further load ratio arms should be added to the biaxial testing profile in 

order to provide unseen experimental testing data. 
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Network performance when presented 9 experimental load ratios (partial training) 

Network 1 2 3 4 5 6 7 8 9 10 

Warp  0.9367 0.9772 0.9749 0.9743 0.9650 0.9789 0.9637 0.8864 0.8894 0.9765 

Fill 0.8871 0.9912 0.9366 0.9193 0.9289 0.8934 0.9519 0.8412 0.9260 0.9675 

Mean 0.9119 0.9842 0.9558 0.9468 0.9469 0.9361 0.9578 0.8638 0.9077 0.9720 

Network performance when network presented with network data (unseen) 

Network 1 2 3 4 5 6 7 8 9 10 

Warp  0.9356 0.9640 0.9755 0.9649 0.9326 0.9583 0.9411 0.7176 0.8822 0.9498 

Fill 0.8347 0.9828 0.9068 0.8784 0.8946 0.8404 0.9194 0.7713 0.8826 0.9467 

Mean 0.8852 0.9734 0.9411 0.9217 0.9136 0.8994 0.9303 0.7444 0.8824 0.9482 

Table 4.11: Coefficients of determination for PTFE coated glass fibre (B18059) 
strain to stress neural network material model, trained with 5 load ratios 

  
(a) PTFE (B18059) warp surface (b) PTFE (B18059) fill surface 

Figure 4-26: Network 2, Table 4.11, PTFE (B18059) 3 input strain to stress network 
demonstrating best performance with both data sets 

Version 5 of the network trained with the network generated data set (Figure 4-27) 

demonstrates the best overall performance when presented with both the training data 

and the unseen data sets. This network may be selected as having the best ability to 

generalise the PTFE fabric response. These results demonstrate that the additional input is 

necessary for the network to produce a good prediction of stress from strain for a PTFE 

coated glass fabric. This network requires further testing while implemented within a 

finite element analysis in order to ensure that the training load ratio inputs are within an 

appropriate range. 
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Network performance when presented 9 experimental load ratios (unseen) 

Network 1 2 3 4 5 6 7 8 9 10 

Warp  0.9916 0.9896 0.9927 0.9910 0.9949 0.9896 0.9913 0.9926 0.9915 0.9909 

Fill 0.9985 0.9988 0.9986 0.9986 0.9986 0.9980 0.9986 0.9987 0.9975 0.9986 

Mean 0.9950 0.9942 0.9957 0.9948 0.9968 0.9938 0.9950 0.9956 0.9945 0.9947 

Network performance when network presented with network data (training) 

Network 1 2 3 4 5 6 7 8 9 10 

Warp  0.9984 0.9982 0.9983 0.9984 0.9981 0.9977 0.9988 0.9982 0.9946 0.9984 

Fill 0.9988 0.9989 0.9988 0.9988 0.9989 0.9985 0.9988 0.9989 0.9982 0.9988 

Mean 0.9986 0.9985 0.9986 0.9986 0.9985 0.9981 0.9988 0.9986 0.9964 0.9986 

Table 4.12: Coefficients of determination for PTFE coated glass fibre (B18059) 
strain to stress neural network material model, trained with network generated 

data 

  
Figure 4-27: Network 5, Table 4.10, PTFE (B18059) 3 input strain to stress network 
demonstrating best performance with 'unseen' experimentally generated data used 

in testing 
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4.4 History Neural Network Material Model 

To date limited attempts have been made incorporate the effects of load history and 

residual strain within fabric material models. It has been shown in [114] that relatively 

simple neural network models are capable of representing hysteretic behaviour through 

the use of ‘internal variables’ similar to the load ratio used in Section 4.3.3.2. This method 

will be used to capture the hysteretic behaviour of architectural fabric.   

The use of internal variables is proposed by Yun et al [114] as a solution to transform a 

one to many mapping to a single valued mapping in order to model materials which 

exhibit hysteretic behaviour. Initially these internal variables are adopted to capture the 

uniaxial hysteric behaviour of PVC coated polyester architectural fabric. This will then be 

extended to biaxial hysteric behaviour of both PVC coated polyester and PTFE coated glass. 

4.4.1 Network internal variables [114] 

For a strain controlled material model the following two ‘phenomenological’ variables may 

be used to describe the material behaviour. The value may be either scalar, as is the case of 

a uniaxial model, or tensor, as in the case of a biaxial model [114]. The first internal 

variable,    is the product of the previous level of stress       and the previous level of 

strain     . The second internal variable is the product of the previous level of stress and 

the current strain increment. The subscript   denotes the     incremental step. 

             (4-36) 

                            (4-37) 

 

The following proof that the neural network functional mapping is single-valued is given 

in [114]. A closed hysteresis loop is subdivides in 6 separate paths as shown in Figure 4-28. 

The sign of each of the three independent network inputs,   ,    and     are assessed 

along with the sign of  the network output,    and recorded in Table 4.13.   
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Figure 4-28: Variable sign combinations for strain controlled hysteresis loop 

               

Path 1 + + + 

  

+ 

Path 2 + - + + 

Path 3 - + + - 

Path 4 + + - - 

Path 5 + - - - 

Path 6 - + - + 

Table 4.13: Variable sign combinations for strain controlled hysteresis loop 

Due to the complexity of the biaxial response of architectural fabric this simple proof is not 

sufficient for the tensor case. However, extensive testing using ‘unseen’ data will be used 

to validate the model for biaxial representation. To reduce the number of inputs it has 

been demonstrated in [114] that the two internal variables may be combined into a single 

internal variable,    with no reduction in performance. 

           (4-38) 

 

It is stated that "The information contained in the single internal variable (     or     ) or 

two internal variables appears (   and       or      ) to be the same based on numerical 

experiments. According to numerical tests, using the combined single internal variable shows 

better training performance than using the two internal variables in the case of multi-

dimensional problems whereby many inputs are presented to the NN." [114, pg 453]. As the 

networks presented in this thesis are multi-dimensional, containing both warp and fill  

behaviour, this strategy has been adopted.  
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It should be noted that it is not possible to achieve similar results by indiscriminately  

combining input variables, for example the current warp and fill strain. This is due to the 

fact that the information contained within the new combined variable would not be the 

same as that contained within the individual input variables. An item of further work may 

be to investigate the validity of combining variables in order to further improve efficiency 

of the neural network model. 

4.4.2 Cyclic uniaxial training data collection and pre-processing 

The uniaxial testing protocol is based on the British Standard ‘Rubber or plastics coated 

fabrics - Determination of tensile strength and elongation at break’ (BS EN ISO1421:1998) 

[128]. Testing is completed using an Instron constant rate extension machine. 

 

Figure 4-29: Uniaxial cyclic load profiles 1,2 and 3, load is shown in terms of 
percentage of ultimate tensile strength for use with a range of fabrics 

Each test piece of PVC coated polyester fabric was cut to be 50 mm± 0.5 mm wide and of 

sufficient length to allow a distance of 200 mm± 1 mm between the jaws of the test 

machine. All samples were e taken from the central region of the fabric roll and were 
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aligned along the warp yarn direction. The samples were mounted in the Instron machine 

using serrated jaws tightened by hand using a strap wrench. The distance between the 

jaws is set to 200mm using vernier callipers and the position of the head re-set to zero. 

The load was not zeroed after the sample has been mounted in order to record any initial 

loading induced during mounting. Deformation was applied at a constant rate of 

10mm/min and loading is controlled by a load profile. Three different profiles, shown in 

Figure 8, were used to provide full data sets for training and testing and to investigate the 

ideal training profile.  

4.4.3 Cyclic uniaxial network training and validation 

 

Figure 4-30: 4 input strain to stress uniaxial hysteresis neural network architecture 

As in the previous study a Matlab fitting neural network is used. The resulting 4 input 

strain to stress neural network, shown in Figure 4-30, comprises an input layer containing 

four inputs, a single hidden layer containing a user defined number of nodes and an output 

layer containing a single output. The network model input comprises current strain, 

previous strain, previous stress, and the internal variables combined into a single input via 

addition. The output is the current level of stress. When run in recurrent mode the 

network output stress is used to produce the internal variable and previous stress input, 

Tan sigmoid transfer functions are used in the neurons of the hidden layer and a linear 

transfer function is used in the neurons of the output layer. For the purposes of early 

stopping 70% of the full training data set is used for training, 15% for validation and 15% 

for testing. This division will be used for all networks trained in this section.  

An initial brief study into the effect of training profile, training data density and number of 

nodes in hidden layer was undertaken using the PVC data sets. This was done to inform 
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the network architecture and training profile design. Different densities of training data 

were investigated. The experimental data is reduced according to a reduction factor. Each 

loading and unloading cycle is reduced to contain the number of data points specified by 

the reduction factor. Three training data sets were generated for each uniaxial profile the 

first with a reduction factor of 6, the second with a reduction factor of 10 and the third 

with a reduction factor of 14. Therefore, a total of 9 data sets were generated. 

 Three networks were trained for each training data set. The first with 4 nodes in the 

hidden layer, a second with 7 nodes and a third with 10 nodes. To account for the effect of 

random node initiation, 10 networks were trained for each case and the network which 

exhibited the lowest error when tested using the full training data set in recurrent mode 

was selected. Each selected network is then tested using the remaining 8 'unseen' data 

sets. As in Section 4.3.2 the network performance was assessed using the    value, 

equation (4-32).  

The full sets of    values are presented below in Table 4.14 to Table 4.16. The results are 

grouped according to the number of nodes of the hidden layer. The details of the trained 

networks are given in the column headers and the row titles give details of the testing data. 

The grey cells contain the    values relating to testing using the training data sets. The 

remaining values represent performance relating to testing using ‘unseen’ data. The    

values are calculated in recurrent mode as this is the way in which a network would 

function once implemented. 

  Training Data  

 Reduction 
Factor 

Profile 1 Profile 2 Profile 3  

 6 10 14 6 10 14 6 10 14 Mean 

T
e

st
in

g
 D

a
ta

 P
ro

fi
le

 1
 

6 0.995 0.943 0.249 0.990 0.933 0.633 0.990 0.869 0.911 0.835 

10 0.972 0.997 0.936 0.987 0.992 0.964 0.989 0.991 0.987 0.979 

14 0.952 0.991 0.995 0.973 0.989 0.992 0.984 0.992 0.993 0.985 

P
ro

fi
le

 2
 

6 0.988 0.965 0.602 0.995 0.952 0.788 0.978 0.912 0.932 0.901 

10 0.956 0.982 0.970 0.981 0.997 0.981 0.967 0.979 0.972 0.976 

14 0.934 0.967 0.986 0.963 0.995 0.997 0.956 0.972 0.977 0.972 

P
ro

fi
le

 3
 

6 0.947 0.785 0.474 0.878 0.913 0.672 0.994 0.916 0.938 0.835 

10 0.929 0.779 0.914 0.835 0.947 0.899 0.993 0.997 0.990 0.920 

14 0.914 0.779 0.942 0.806 0.945 0.889 0.992 0.997 0.997 0.918 

  Mean 0.954 0.910 0.785 0.934 0.963 0.868 0.983 0.958 0.966  

Table 4.14:    value matrix for 10 hidden node networks  
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  Training Data  

 Reduction 
Factor 

Profile 1 Profile 2 Profile 3  

 6 10 14 6 10 14 6 10 14 Mean 

T
es

ti
n

g 
D

at
a 

P
ro

fi
le

 1
 

6 0.995 0.935 0.852 0.991 0.972 0.704 0.992 0.716 0.835 0.888 

10 0.975 0.996 0.985 0.991 0.993 0.972 0.989 0.993 0.984 0.986 

14 0.941 0.993 0.997 0.975 0.991 0.993 0.984 0.993 0.995 0.985 

P
ro

fi
le

 2
 

6 0.983 0.955 0.897 0.995 0.981 0.843 0.985 0.959 0.896 0.944 

10 0.944 0.994 0.99 0.985 0.996 0.988 0.980 0.968 0.977 0.980 

14 0.865 0.988 0.994 0.967 0.989 0.997 0.974 0.962 0.948 0.965 

P
ro

fi
le

 3
 

6 0.709 0.874 0.797 0.878 0.887 0.774 0.996 0.234 0.868 0.780 

10 0.57 0.941 0.933 0.836 0.878 0.932 0.992 0.992 0.986 0.896 

14 0.504 0.939 0.945 0.805 0.862 0.931 0.988 0.993 0.997 0.885 

  Mean 0.832 0.957 0.932 0.936 0.950 0.904 0.987 0.868 0.943  

Table 4.15:    value matrix for 7 hidden node networks  

  Training Data  

 Reduction 
Factor 

Profile 1 Profile 2 Profile 3  

 6 10 14 6 10 14 6 10 14 Mean 

T
es

ti
n

g 
D

at
a 

P
ro

fi
le

 1
 

6 0.995 0.976 0.922 0.959 0.885 0.294 0.986 0.910 0.964 0.877 

10 0.982 0.995 0.989 0.951 0.994 0.946 0.983 0.668 0.984 0.944 

14 0.965 0.987 0.995 0.936 0.990 0.995 0.978 0.130 0.980 0.884 

P
ro

fi
le

 2
 

6 0.994 0.98 0.941 0.994 0.949 0.609 0.988 0.954 0.978 0.932 

10 0.981 0.992 0.987 0.977 0.996 0.979 0.979 0.607 0.991 0.943 

14 0.965 0.978 0.988 0.948 0.988 0.997 0.970 0.451 0.988 0.919 

P
ro

fi
le

 3
 

6 0.893 0.911 0.906 0.927 0.853 0.470 0.988 0.961 0.968 0.875 

10 0.846 0.862 0.963 0.925 0.840 0.887 0.984 0.993 0.991 0.921 

14 0.82 0.825 0.969 0.933 0.792 0.870 0.977 0.951 0.991 0.903 

  Mean 0.938 0.945 0.962 0.950 0.921 0.783 0.981 0.736 0.982  

Table 4.16:    value matrix for 4 hidden node networks  

It can be seen in all tables that generalisation across the three profiles is typically best 

when the network is trained using Profile 3. This is because profile 3 is the only profile 

which contains features from across all 3 of the profiles being investigated. For this reason, 

Profile 3 also yields the lowest regression values when used as an 'unseen' testing set for 

networks which have been trained with Profile 1 or Profile2.  This highlights the 

importance of developing a comprehensive training data set.  
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The size of the reduction factor effects the quantity of training data available but also 

effects the size of the load step between iterations.  When testing using corresponding 

reduction factors, network generalisation typically improves with reducing reduction 

factor. This indicates that a more sparse data set or higher load step achieves better 

results. However, changes in load step between training and testing sets will also affect 

network performance. From the tables above it can be seen that network performance 

reduces as the difference between the testing reduction factor and the training reduction 

factor increases. Inspecting the mean    value across all training sets testing with a 

reduction factor of 10 usually produces the highest performance.  

It is difficult  to identify the most effective reduction factor, and resulting load step, for 

training from Table 4.14 to Table 4.16. However, is likely that a training load step in the 

middle of the expected load step range is most suitable as it will be on average closest to 

all load steps within the testing range. It is also probable that the load step during analysis 

will be large and variable compared with data gathered through testing. The reduction 

factor for training should be chosen with this in mind. Therefore, network generalisation 

across varying load steps may be increased by  creating a training data set containing non-

uniform load steps. This may be done by reducing the training data using a varying, 

random reduction factor within a suitable range.  

The effect of number of nodes in the hidden layer is difficult to identify. However, the 

number of nodes required in the hidden layer is a contributing factor to the ability of a 

network to generalise. The lowest    values , indicating poorest performance, occur more 

frequently in networks with fewer hidden nodes (Table 4.16). This may indicate that the 4 

node network does not have sufficient complexity to accurately capture the fabric 

response.  When the mean    value across all testing data sets is inspected the network 

with the highest ability to generalise has 7 hidden nodes and is trained using profile 3 

reduced by a reduction factor of 6.  

Various methods for the selection of an optimum number of nodes have been proposed. 

Methods of optimisation implemented during training exist and often involve the removal 

or ‘pruning’ of unnecessary neurons. Ghaboussi and Sidartra developed an adaptive 

training regime whereby additional nodes are progressively added to the network layers 

as existing nodes become saturated [99, 129]. Other widely used more simplistic methods 

for selecting the number of neurons in a network are based on either the ratio between 

number of training patterns and network weights or the number of input and output 

nodes. 
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The effect of the number of nodes in the hidden layer is investigated further by training 

networks with a number of hidden nodes from 1 to 20. The training data set with the best 

overall performance from the previous investigation (Profile 3 reduced by a reduction 

factor of 10) is used as the training set. 20 randomly initiated networks are trained for 

each number of hidden nodes. In addition a single network manually initiated with 

weights and biases set to 1 is also trained for each material. The performance of this 

network is plotted alongside the boxplots. Each trained network is tested in recurrent 

mode using both the training data set  and an 'unseen' testing data set generated form 

Profile 1 also reduced with a reduction factor of 10. The     values generated from 

recurrent testing using the training and testing data sets  are plotted in the form of box-

plots in Figure 4-31a and Figure 4-31b respectively. 

The worst     value range in Figure 4-31 is produced by the 1 node networks. All other 

networks produce a range of    values. Outliers outside the maximum    value range, 

defined by red points in Figure 4-31, are also produced by all networks with more than 2 

nodes in the hidden layer. The maximum range, or whisker length, is given by,  

                                        (4-39)  

 
where    and    are the 25th and 75th percentiles, respectively, and   is a constant equal 

to 1.5 which corresponds to approximately 99.3 coverage if the data points are normally 

distributed. The whisker length is defined by the most extreme value which are not 

considered outliers. 
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(a) Testing performance with training data set in recurrent mode 

 

(b) Testing performance with 'unseen' testing data set in recurrent mode   
Figure 4-31: The effect of hidden node number on performance. 

 

The differing levels of performance between networks with the same architecture is a 

product of the complexity of the error function minimised during training and the starting 

point defined by the randomised initial values of the weights and biases. The number of 

local minima in the error surface searched during training increase with increasing 

numbers of hidden nodes. It is therefore more likely that a local minimum as oppose to a 
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global minimum will be found during training. Early over fitting will also increase with 

increasing hidden node number. This will lead to early stopping of training prior to the 

network fully 'learning' the material response. This again highlights the necessity of 

training and testing multiple randomly initiated networks. Testing with both training data 

and 'unseen' testing data should be considered when identifying the best network. 

In both Figure 4-31a and b the median    value consistently increases with increasing 

hidden nodes up to 9 nodes. When testing using the training data set (Figure 4-31a) 

median performance and    value range remains approximately the same between 

networks with from 9 to 17 hidden nodes. However, in Figure 4-31b, median performance 

generally drops and the    value range shows a marked increase in networks with more 

than 9 nodes in the hidden layer. This indicates that networks with more than 9 nodes are 

more likely to over fit the training data and lose the ability to generalise between different 

profiles. In both figures there is a considerable drop in median performance as well as a 

marked increase in the range in networks with more than 17 nodes. This indicates that in 

networks with more than 17 hidden nodes over fitting, to a point where results produced 

when testing the network in recurrent mode leads to unacceptable errors, is more likely to 

occur. This is the case when tested with both training and 'unseen' testing data sets. These 

networks have effectively lost all ability to generalise and small deviations from the 

training data presented to the network lead to disproportionately large errors. 

From the investigations above a network architecture including 9 hidden nodes in the 

hidden layer is selected to capture the fabric response to cyclic uniaxial loading. Profile 3 

reduced using a reduction factor of 10 is used for network training and Profile 1 and 2 

reduced with the same factor are used as 'unseen' test data. The network is tested in 

recurrent mode.  
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Figure 4-32: Network output tested in recurrent mode using training data gathered 
using Profile 3.   

Figure 4-32 shows the network output generated in recurrent mode using the training 

profile. The network model successfully captures the complex hysteretic fabric response. 

Increasing error between the experimental target data and network output in the central 

region of the profile occurs but is recovered later in the profile. This indicates that the 

network is resistant to error accumulation occurring during network simulation in 

recurrent mode.  

The powerful generalisation capability of the network is demonstrated in Figure 4-33 and 

Figure 4-34 where it is tested with ‘unseen’ data gathered using profiles 1 and 2 

respectively. A similar pattern of error is observed in Figure 4-33 in the third cycle set to 

the error shown in the sixth cycle set in Figure 4-32 this may indicate over fitting of this 

specific profile feature.  In all testing cases the network generates the greatest error at 

maximum stress levels. This highlights the importance of capturing data beyond the 

bounds of stress range anticipated in analysis in order to stay within the bounds of the 

training data set. 
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Figure 4-33: Network output tested in recurrent mode using previously unseen data 
generated from profile 1.   

 
Figure 4-34: Network output tested in recurrent mode using previously unseen data 

generated from profile 2.   
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A key factor that has not been investigated here is the effect of differing load steps 

contained within training data and data presented to the network during analysis. As the 

internal variable given in (4-37) contains the strain step it is anticipated that the network 

will be sensitive to the size of the strain step taken. Therefore, the load and strain steps 

required in the analysis should be taken into account when gathering and processing the 

training data for the network model. It is also vital that the network undergoes a vigorous 

validation procedure. This will be further investigated through demonstrations of the 

network material models implemented in finite element analysis, Section 5.3.1.  

4.4.4 Cyclic biaxial training data collection and pre-processing 

Biaxial data is gathered using the same procedure described in Section 4.2 except the 

loading profile is designed to include additional features based on those investigated in 

the uniaxial profile. In contrast to the response surface style network the residual strain is 

not removed prior to training. This leads to the need to generate multiple stress strain 

profiles to train a single network each with a different initial load ratio and ratio order. 

Each profile is made up of 6 sets of loading and unloading cycles each containing 5 load 

ratios. The resulting profiles are named according to the first load ratio applied to the 

fabric in each set of loading and unloading cycles. The sets are distinguished by the 

maximum and minimum loads applied in each material direction. In this way 5 unique 

profiles are generated which aim to explore as much of the fabric response as possible 

(Figure 4-35). The ultimate tensile strength shown in Table 4.17 are used in the 

generation of the load profiles. For demonstration purposes the 1:1 profiles with strain 

results for PVC (Figure 4-36) and PTFE (Figure 4-37) are shown below. The full sets of 

profiles for each material have been provided in Appendix B.  

 
Ultimate Tensile 

Strength 

(kN/m) 

Maximum Stress 
(kN/m) 

Minimum Stress 
(kN/m) 

Material Warp Fill Warp Fill Warp Fill 

PVC  

(1202T2) 
112 112 28 28 2.8 2.8 

PTFE 
(B18059) 

140 120 35 30 3.5 3 

Table 4.17: Maximum and minimum stress for biaxial profiles 

  



Chapter 4 Neural Network Training and Validation  192 
 

 
(a) 1:1 profile 

  
(b) 0:1 profile  (c) 1:0 profile  

  
(d) 1:2 profile  (e) 2:1 profile  

Figure 4-35: Biaxial load ratio arms 
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(a) Warp stress strain plot (b) Fill stress strain plot 
 

 

(c) Stress profile 

 
(d) Strain profile 

Figure 4-36: PVC Biaxial 1:1 stress profile and results for history network training 
and validation..............................  

 

  

(      warp,        fill) 
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(a) Warp stress strain plot (b) Fill stress strain plot 

 
(c) Stress profile 

 
(d) Strain profile 

Figure 4-37: PTFE Biaxial 1:1 stress profile and results for history network training 
and validation..............................  

 

  

(      warp,        fill) 
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The fabric stress strain responses of the two materials are very distinct. The PVC strain 

response is similar in both material directions, Figure 4-36 (d). This is due the 

‘precontrant’ method of fabric production where tension is applied in both material 

directions during fabrication. The approximately equal tension applied to the fill direction 

during coating results in a similar level of crimp in both material directions. This reduces 

the effect of crimp interchange upon initial loading. In contrast the PTFE coated glass 

fabric is not tensioned in the fill direction during production. This leads to a higher degree 

of crimp in the fill direction compared to the warp. Therefore, the PTFE fabric shows a 

much greater initial strain in the fill direction compared to the warp direction. As the fill 

direction yarns straighten, thus inducing positive strain in the fill direction, the warp 

direction yarns become more crimped, inducing negative strain in the warp direction. This 

initial fill direction strain is never recovered despite the lower minimum and maximum 

applied stresses, Figure 4-37(d). 

Despite the reduction of initial crimp interchange the PVC coated polyester fabric still 

exhibits a significantly different response to initial loading compared to the conditioned 

response.  The initial behaviour of the PVC fabric is largely dependent on the elastic 

material properties of the polyester yarns as oppose to the mechanical interaction of the 

yarns.  Initial strain behaviour is also observed each time the profile reaches a new 

maximum stress for example of the third set of cycles leading to a jump in residual strain. 

The PVC coated polyester fabric also exhibits an accumulation of residual strain in both 

directions. After the initial loading cycle the PTFE coated glass fabric becomes similarly 

stiff in both material directions and does not exhibit further initial behaviour into the 

profile. The PTFE coated glass fabric also exhibits limited build-up of residual strain in 

either direction. The large “Poisson’s effect” exhibited by both fabrics throughout the 

applied profile may largely be attributed to the mechanical interaction of the yarns which 

in turn is effected by the preceding stress ratio. This behaviour further highlights the need 

for multiple profiles for testing. 

In order to generate comprehensive training and ‘unseen’ testing data sets which contain 

as many features as possible, half of the cycles of each profile are taken as training data 

(Figure 4-38a and Figure 4-39a) and half as testing data (Figure 4-38b and Figure 4-39b). 

The data points within the selected cycles are reduced by a factor of 0.1 and then 

combined to form the final training and testing sets, the data points are denoted by black 

points in the figures. The full sets of divided profiles for each material have been provided 

in Appendix B.  
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(a) Training data 

 

 
(b) Testing data 

Figure 4-38: PVC Biaxial 1:1 stress and resulting strain profiles divided into training 
and testing data respectively .................................................... 

  
(      warp,        fill, • data point ) 
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(a) Training data 

 

 
(b) Testing data 

Figure 4-39: PTFE Biaxial 1:1 stress and resulting strain profiles divided into 
training and testing data respectively .......................................................... 

 
(      warp,        fill, • data point ) 
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4.4.5 Cyclic biaxial network training and validation 

When modelling a biaxial response the internal variables (4-36)and (4-37)become,  

                   (4-40) 

                   (4-41) 

                                        (4-42) 

                                        (4-43) 

where the additional subscripts   and   denote warp and fill directions respectively.  As in 

the case of the uniaxial internal variables the two variables may be combined into a single 

variable for each material direction.  

                 (4-44) 

                 (4-45) 

 

Figure 4-40: 8 input strain to stress biaxial hysteresis neural network architecture 

As with the uniaxial history network the effect of the number of nodes in the hidden layer 

is investigated by training multiple networks with 1 to 40 hidden nodes. The training data 

sets described in Section 0 are used for each material. 20 randomly initiated networks are 

trained for each number of hidden nodes along with an additional network manually 

initiated with weights and biases set to 1. Each trained network is tested in recurrent 

mode using both the training data set and the 'unseen' testing data set. The     values 

generated from recurrent testing using the training (Figure 4-42a and Figure 4-43a) and 
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testing data sets (Figure 4-42b and Figure 4-43b) are plotted in the form of box-plots for 

both materials. The performance of the manually initiated network is plotted alongside the 

boxplots. As the network shows similar performance in both material directions only the 

warp direction performance is shown. For comparison the non- recurrent mode 

coefficients of determination for the PVC network model are plotted in Figure 4-41. 

 
(a) Testing using training data set in non-recurrent mode 

 
(b) Testing using ‘unseen’ testing data set in non-recurrent mode 

Figure 4-41: Box and whisker diagrams of PVC network model testing performance 
(R2 values) for warp material direction 
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(a) Testing using training data set in recurrent mode 

 

(b) Testing using ‘unseen’ testing data set in recurrent mode 

Figure 4-42: Box and whisker diagrams of PVC network model testing performance 
(R2 values) for warp material direction.  

 
As can be seen with sufficient nodes, i.e. greater than 10, the PVC networks achieve 

coefficients of determination in excess of 0.99 for both the training data set and the 

'unseen' testing data set. It is also of note that the recurrent performance, Figure 4-42, 

follows the same trend as the non-recurrent performance, Figure 4-41.  
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(a) Testing using training data set in recurrent mode 

 

(b) Testing using ‘unseen’ testing data set in recurrent mode 

Figure 4-43: Box and whisker diagrams of PTFE network model testing performance 
(R2 values) for warp material direction.  

Both the PVC coated polyester and PTFE coated glass fabric networks with more than 10 

hidden nodes show good overall performance, R2 values greater than 0.95, for all trained 

networks contained within the box plots. Outliers denoted by red points are generated for 

most hidden layer sizes and are omitted from the boxplots. For both fabrics, median 

network performance, denoted by the red line, improves with increasing hidden node 



Chapter 4 Neural Network Training and Validation  203 
 

number up to approximately 15 hidden nodes. Increasing the number of hidden nodes 

from 15 up to 40 does not consistently increase or decreases median performance.  The 

performance of networks with numbers of hidden nodes greater than 25 for PVC and 28 

for PTFE are omitted in order to increase the clarity of the plots. The inter-quartile range 

denoted by the box or the total range denoted by the whiskers, excluding outliers, also 

does not demonstrate a consistent increase or decrease with increasing hidden node 

number. This indicates that the trained networks are resistant to over training. As in the 

case of the response surface style network, the PVC response is generalised more 

effectively than the PTFE response.  

The same general pattern is followed by the manually initialised networks, Figure 4-41 to 

Figure 4-43. Variations in the performance of the network are attributed to the local 

minima in the error surface. In only a few cases the manually initiated network achieves a 

greater R2 value than the best randomly initiated network in a set. In the case of the PTFE 

network the manually initiated network rarely demonstrates a performance greater than 

the median of the randomly initiated networks. This indicates that the most effective way 

to generate networks with the high performance is to train multiple randomly initialised 

networks and select the one demonstrating the best performance when tested with 

‘unseen’ testing data. 

Based on this information the final biaxial history network will have 15 nodes in the 

hidden layer. A further 20 randomly initiated networks are trained and tested and the 

network with the greatest R2 value when tested with 'unseen' testing data are graphically 

presented for PVC (Figure 4-44 and Figure 4-45) and for PTFE (Figure 4-46, and Figure 

4-47). Each full profile containing both the training and testing data are presented to the 

trained network in recurrent mode. The resulting network output is plotted in a 3 

dimensional strain-strain-stress plot for each material direction and for each profile 

(Figure 4-44 and Figure 4-46). In order to show network performance more clearly stress 

is plotted against time in 20 cycle sections for the 1:1 profile (Figure 4-45 and Figure 4-47). 

Additional graphical results for all 5 profiles may be found in Appendix B.  

In Figure 4-44 it may be visually confirmed that the stress strain response of PVC coated 

polyester fabric, including load history, has been captured across all profiles. Some error is 

visible for certain cycles. However this error is recovered in later cycles. In Figure 4-45a it 

may be seen that the first 20 stress cycles of the profile show generally good agreement 

between network output and targets. There is however some small underestimation in the 

cycles after the first cycle in each set. In the following 60 cycles (Figure 4-45b to d)  some 
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significant underestimation occurs in the loading curves and over estimation in the 

unloading curves particularly in the warp direction. This error does not appear to 

accumulate (Figure 4-45c).  The greatest error occurs in the cycles where one material 

direction is held at constant stress while the other is varied. This leads to considerable 

fluctuations in stress in the constant stress material direction. However, the error in the  

non-constant material directing remains low.  Similar features appear in all the profiles 

tested (Appendix A). There is no clear visible distinction between data used in training and 

unseen data used in testing. This demonstrates the neural network material models strong 

ability to generalise.  

  

(a) 1:1 Profile  

  

(b) 0:1 Profile 
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(c) 1:0 Profile 

  

(a) 1:2 Profile 

  

(a) 2:1 Profile 
 

Figure 4-44: Strain stress plots from PVC network tested with full profiles in recurrent 
mode---------------------------------------------------------- (      warp,        fill,  ∗  target,  ∘ network output) 
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(a) Cycles 1-20 

 

 
(b) Cycles 20-40 
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(c) Cycles 40-60 

 

 
(d) Cycles 60-80 

Figure 4-45: PVC network tested with 1:1 profile in recurrent mode 
 (      warp,        fill,  ∗  target,  ∘ network output) 
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(a) 1:1 Profile  

  

(b) 0:1 Profile 

  

(c) 1:0 Profile 
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(a) 1:2 Profile 

  

(a) 2:1 Profile 
Figure 4-46: Strain stress plots from PTFE network tested with full profiles in recurrent 

mode---------------------------------------------------------- 

In Figure 4-46 it may be visually confirmed that as with the  PVC coated polyester the 

stress strain response of PTFE coated glass fabric, including load history, has been 

captured across all profiles. Similarities between the PVC and PTFE network performance 

are observed. The greatest error occurs in the cycles where one material direction is held 

at constant stress while the other is varied. This loading ratio leads to error in both 

material directions. There is also no clear visible distinction between data used in training 

and unseen data used in testing for the PTFE network.  

Unique to the PTFE network there is some over estimation in the first cycle of the profile 

and also in the warp direction in the first cycle where the fill direction is held constant. 

This occurs across all similar cycles in the rest of the profiles (Appendix A).  In the 

following 60 cycles (Figure 4-45b to d)  some significant underestimation occurs in the 

(      warp,        fill,  ∗  target,  ∘ network output) 
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loading and unloading curves particularly in the fill direction. This error does not appear 

to accumulate and in fact recovers (Figure 4-45c).   

 

 
(a) Cycles 1-20 

 

 
(b) Cycles 20-40 
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(c) Cycles  40-60 

 

 
(d) Cycles 60-80 

Figure 4-47: PTFE network tested with 1:1 profile in recurrent mode 
 (      warp,        fill,  ∗  target,  ∘ network output) 
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Despite the areas of error identified in the neural network models above, the models  

provide a good representation of the complex material response. Compared to the 

capability of a plane stress model to represent material response as a single flat surface 

this form of material model enables the representation of non-linear history dependant 

behaviour. This form of network also does not require the removal of residual strain from 

the training data. The output of the network approximates the stress resulting from total 

strain applied to the fabric.   
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4.5 Summary and Conclusions 

It has been demonstrated by the networks described above that neural network material 

models are capable of capturing the complex non-linear stress-strain response of 

architectural fabrics. The response surface style network captures the strain stress 

relationship in a similar manner to the plane stress framework, but without the need for 

plane stress assumptions. Due to the removal of residual strain, the network is not trained 

using data directly captured from biaxial testing, and, therefore, the full response is not 

captured. This network also has limitations when employed to capture the much steeper 

response surface of PTFE coated glass fabric. However, this is overcome by the 

introduction of the approximate load ratio as an additional input.  

The uniaxial network demonstrates the capability of neural networks to model the effects 

of load history. This initial study into uniaxial history neural networks offers a proof of 

concept which leads to a biaxial response network which includes the effects of load 

history. This form of network requires carefully designed experimental load profiles that 

explore the full response envelope to provide comprehensive testing and training data 

sets. The effects of load step have been investigated along with the number of hidden 

nodes for both the uniaxial and biaxial material networks.   

The effect of hidden node number is investigated by training multiple networks with 

increasing numbers of hidden nodes. Box plots of the coefficients of determination, 

generated from comprehensive network testing, indicate that uniaxial history networks 

with 4 inputs require more than approximately 6 nodes but lose the ability to  generalise 

with more than 17 nodes. In the case of a biaxial history network with 8 inputs a number 

of hidden nodes greater than 15 is found to provide good performance. However, there is 

no consistent fall in median performance with increasing hidden nodes up to 40 nodes. 

This brief study indicates that a good rule of thumb is that the number of hidden nodes 

required is approximately equal to twice the number of network inputs. 

Graphical representation of the final trained history networks for PVC and PTFE fabrics 

demonstrate that it is possible to use appropriate neural network models in order to 

capture and reproduce fabric response. The next step is the implementation of these 

neural network material models for architectural fabrics within a custom fabric analysis 

finite element programme.  
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Chapter 5. Neural Network Material Model Implementation 

In this chapter the history independent response surface and history dependant neural 

network material models derived in Chapter 4 are implemented in place of the plane 

stress framework within the finite element formulation described and demonstrated in 

Chapter 3. Derivations of an implied stiffness matrix for both the response surface style 

network and history network models are described, followed by a detailed description of 

neural network implementation including consideration of wrinkling criteria for the 

response surface network and iterative loading for the history network. Implementation 

studies for both networks are presented using patch simulations of experimental data and 

simulations of a more realistic hypar structure.  

In a typical finite element analysis, Section 3.1, current stress is derived from the product a 

plane stress  elastic compliance matrix and current strain, equation (3.1).  
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This is the matrix equivalent of performing the following three calculations, 
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            (5.3) 

It is clear that there is no interaction between the in plane strain and the shear strain, 

equations (5.2) to (5.4). Due to the complex interactions exhibited by a typical fabric 

material response this may not in fact be the case, Section 2.2. As the neural network 

material model is implemented within the finite element formulation in place of the plane 

stress elastic compliance matrix, equation(5.1), the network would ideally capture both 

direct strain stress behaviour and shear behaviour. However, the complexities involved in 

gathering sufficient training data with combined shear and biaxial stress response shear 

stress and strain is not included within the network model at this stage of development . It 

is deemed outside the scope of this thesis. Therefore, calculation of shear stress is 

performed separately via the shear modulus,     (equation (5.4)).  
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The response surface style network, which takes 2 inputs comprising current  strain in the 

warp and fill directions respectively works in a very similar manor to equations (5.2) and 

(5.3) and may be implemented in a plane stress based finite element formulation within its 

current form. The history network has an added level of complexity as it also takes 

previous stress and strain as inputs in order to find the current strain. This is 

accomplished through the use of history terms within the expression of equilibrium for 

the system. Therefore, implementation of this form of network model requires loading to 

be applied iteratively as opposed to a single load step.  

The finite element formulation, Section 3.1, utilises a dynamic relaxation solver to 

iteratively solve the state equation for equilibrium. The current stress state at each Gauss 

point in an element may be derived directly from the network material models. However, 

the diagonal terms of the system's elastic stiffness matrix,   , equation (3.15),  are 

required in order to provide damping to the dynamic relaxation algorithm, Section 3.1.2. 

In order to derive these terms the material model is required in the form of a 3 by 3 matrix. 

All 5 non-zero terms are required when the B matrix is not sparse. 

                    
 

 
 

   
     (3.15) 

5.1 Implied Stiffness Matrix 

Assuming     is assumed to be a given constant, the numerical implementation of a 

neural network material model in finite element analysis is achieved by derivation of an 

‘implied’ stiffness matrix,         , similar to that  proposed by Hashash et al. [119]. This 

involves the calculation of partial derivatives of the network output with respect to the 

input to give, 

   
          

 
 

     

 , (5.4) 

where, 

          

     

     

     

     

     

     

     

     

 . (5.5) 

The network proposed in [119] has an input layer, two hidden layers and an output layer. 

Both hidden layers and the output layer have a tan-sigmoid (tanh) activation function.  

However, all of the networks used in this thesis consist of an input layer a single hidden 

layer with a tan-sigmoid transfer function and an output layer with a linear transfer 
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function, Figure 5-1. This form of network has been demonstrated as being sufficient for 

the  representation of a number of engineering materials, Section 2.1.  

5.1.1 Response surface style neural network implied stiffness 

 

Figure 5-1: Strain to stress neural network architecture 

Revisiting the network equations given  in Section 4.1.1, equations (4.1) to (4.6), and re-

writing them for the response surface style neural network shown in Figure 5-1 yields the 

following set of equations. The network inputs are the current warp and fill strains 

denoted by    where, 

           (5.6) 

           (5.7) 

The network outputs are the current warp and fill stresses denoted by    where, 

           (5.8) 

           (5.9) 

All network inputs are scaled to a range -1 to 1 via equation (4.1). The  inputs defined in 

equation (5.7) and (5.6) are scaled according to the maximum,   
      and minimum ,   

       

strains of the training data,  

  
   

       
    

   
      

    
      (5.10) 

The output of the     hidden node with a tan sigmoid transfer function remains the same,  

             
    

     
   

     . (4.2)  

The scaled stress output of the     output node, equation (4.4), is given by, 
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     . (5.11) 

The network output  defined in equations (5.9) to (5.10), is finally scaled back to a value 

with a physical meaning  via equation (4.4) and the training data maximum and minimum 

stress values,   
    and   

    respectively , 

    
  

    

 
     

      
    . (5.12) 

The terms of the implied stiffness matrix may be found via partial differentiation of these 

network equations. This process is very similar to that used in the derivation of the 

derivatives used in back propagation training, Section 4.1.2.1. Employing the chain rule, 

the partial derivative of the network outputs (warp and fill stress) with respect to the 

network input, (warp and fill strain) is given by 

   

   
 

   

   
  

   
  

   
. (5.13) 

From equation (5.12) the partial derivative of the final un-scaled network output,   , with 

respect to the scaled output layer output,   
  ,  is given by       

   

   
   

   
      

    

 
     (5.14) 

The partial derivative of the output layer output,   
  , with respect to the un-scaled input,  

  , requires further use of the chain rule leading to 

   
  

   
   

   
  

   

   

   
   

   .  (5.15) 

From equation (5.11) the partial derivative of the output of the kth node of the output 

layer,   
  , with respect to the output of the     node of the hidden layer,   , is given by 

   
  

   
 

        
         

  
     

   
    

  . (5.16) 

Substitution of equation (5.10) into equation (4.2) and expansion of the summation leads 

to the output of the     node of the hidden layer in terms of the un-scaled network inputs,  

as,  
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(5.17) 

The partial derivative of a tan-sigmoid function is given by, 

            

   
                

 
 

      

   
 . (5.18) 
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The partial derivative of the of the input to the tan-sigmoid activation function,      , of 

the     node of the hidden layer with respect to the un-scaled input to the first node of the 

input layer is given by, 
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(5.19) 

and with respect to the second node of the input layer by,  
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(5.20) 

Therefore, substitution of a generalise version of equations (5.19) and (5.20) into equation 

(5.18) leads to the partial derivative of output of the     node of the hidden layer with 

respect to the un-scaled input of the     node of the input layer, 

   

   
        

 
 

    
  

   
      

    
. (5.21) 

Substitution of equations (5.21) and (5.16) into equation (5.15) and substitution of that 

along with equation (5.14) into equation (5.13) leads to the following  set of equations for 

the terms of the implied elastic stiffness matrix, 
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(5.25) 

5.1.1.1 Implied stiffness validation with plane stress neural network model 

It is not the intention that a neural network material model should be used to represent a 

plane stress material response. However, it is useful to demonstrate effectiveness of the 

implied stiffness matrix using a network trained with plane stress data, e.g. a flat surface in 

    space. The PTFE response surface style test data from Section 4.3.1, Figure 4.9, is used 

to generate a plane stress training data set. Differential minimisation is used to fit a plane 

stress material model to 5 unique cycles of the experimental test data with residual strain 

removed. Error between strain generated from stress via a plane stress stiffness matrix, 

equation (5.26), and experimental strain is minimised.  Un-constrained independent 

Poisson’s ratios are used [68]. 
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   (5.26) 

The resulting elastic constants are shown in Table 5-1 along with the    value achieved by 

the plane stress material model. As an aside, it is notable that the performance of the plane 

stress model is significantly lower than the equivalent neural network material models 

assessed in Section 4.3.3 which consistently achieve    values in excess of 0.98.  

                  

PTFE B18089 1151.94 794.11 1.11 0.78 0.9105 

Table 5-1 PTFE elastic constants    

Two sets of data are generated using the plane-stress material model, equation (5.26). The 

first uses the experimental stresses to generate plane stress strains. The second set 

comprehensively explores the response area using a grid of stress points to generate 

further plane stress strains. The resulting plane stress data sets along with the original 

experimental data are plotted in Figure 5-3.      

Warp Fill  

  Plane stress model strains from synthetic mesh of 
stress points            

  Plane stress model strains from experimental stress 
points 

  Experimentally generated data 

  Network output from synthetically generated stress 
data 

  Network output from experimentally generated 
stress data 

 

Figure 5-2: Response surface neural network figure key  

  
Figure 5-3: Plane stress representation of PTFE response 

+ + 

∘ 
* * 

∘ 

• • 
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A strain to stress neural network is trained using the plane stress data set derived from 

experimental stresses. The network comprises an input layer containing two inputs, warp 

and fill strain, a hidden layer containing 4 neurons and an output layer containing 2 

neurons for warp and fill stress. The network variables, including weight and bias values 

along with the maximum and minimum values used in scaling the network input and 

output, are shown in Table 5-2. 

    
   

  
  

     
   

  
  

                           

    -1.8109 -1.2209 0.0217      0.0063 -0.6703 31.1350 -0.3894 0.0174 

    -1.7464 -1.9173 0.5431      0.0005 -5.3687 2.9609 -3.1338 0.5831 

    0.4099 0.3738 0.0014        

    -2.2860 -2.5098 -0.7868        
 

  
      

      
      

    

                                

0.0308 0.0391 -0.0303 -0.0341 35.8970 31.4160 -0.0982 -0.0633 

Table 5-2: PTFE plane-stress network variables 

When tested with both the training data set and the additional mesh of data points the 

network achieves    values greater than 0.999. The resulting network output is plotted 

alongside the target data in Figure 5-4. 

 
 

Figure 5-4: Plane stress strain to stress network output plotted with target data sets 

In order to validate the implied stiffness matrix it is calculated at 3 points within the 

response surface using equations (5.6) to (5.25)and the network variables, Table 5-2. The 

network is trained with strain as input and stress as output. Therefore, the inverse of the 
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stiffness matrix, equation (5.26) is used for validation. Substitution of the elastic constants 

in Table 5-1 leads to, 
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(5.27) 

 

 Data Index: 7 Data Index: 50 Data Index: 120 

  Value % Error Value % Error Value % Error 

   0.0001 - -0.0120 - 0.0145 - 

   0.0017 - 0.0171 - -0.0154 - 

   12.179 -0.0051 11.251 -0.0048 21.366 0.0038 

   10.659 0.0004 22.208 -0.0007 4.116 0.0008 

     

     
 

8330.6 

(8329.6) 
0.0121 

8330.7 

(8329.6) 
0.0128 

8330.3 

(8329.6) 
0.0079 

     

     
 

6471.1 

(6470.3) 
0.0125 

6471.1 

(6470.3) 
0.0127 

6470.7 

(6470.3) 
0.0070 

     

     
 

6370.0 

(6370.0) 
-0.0007 

6370.3 

(6370.0) 
0.0045 

6370.3 

(6370.0) 
0.0041 

     

     
 

5742.2 

(5742.2) 
-0.0009 

5742.5 

(5742.2) 
0.0044 

5742.4 

(5742.2) 
0.0040 

Table 5-3: Plane stress network implied stiffness validation 

In Table 5-3 the low magnitude of the error between target stress and network stress 

demonstrates that the implied stiffness matrix is equivalent to the compliance matrix used 

in the generation of the training and testing data. This demonstrates that the implied 

stiffness matrix is an effective equivalent to the plane stress stiffness matrix. When 

implementing a non-uniform neural network, i.e. one trained directly from experimental 

data as demonstrated in Section 4.3.2, each data point will generate a unique implied 

stiffness matrix. The implied stiffness matrix effectively maps a plane tangential to the 

network response surface at the current location. With a sufficiently small displacement 

step this matrix may be used to approximate surrounding points on the surface according 

to, 

 
    

    
   

      

      
   

   

   
   

      

      
   

     

     

     

     

     

     

     

     

  
   
   

 . (5.28) 
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However, as previously discussed, when used in conjunction with a dynamic relaxation 

solution algorithm the elastic stiffness matrix is used only to calculate the diagonal terms 

of the system stiffness matrix for kinetic damping to control the rate of convergence. 

5.1.2 History neural network implied stiffness 

In order to capture material response with historical loading effects additional network 

inputs are required (Section 4.4.4). The network equations for the biaxial hysteresis 

neural network (Figure 5-5) are as follows. The network inputs are the current warp and 

fill strains denoted by          , where, 

             (5.29) 

             (5.30) 

and the historical stresses and strains from the previous loading iteration denoted by 

           ,where, 

               (5.31) 

               (5.32) 

               (5.33) 

               (5.34) 

The subscript   indicates the current load step and     the previous load step. The 

internal variables,            , are derived from historical stresses and historical and 

current strains, and are given by 

                                    , (5.35) 

                                    . (5.36) 
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Figure 5-5: 8 input strain to stress biaxial hysteresis neural network architecture 

As in the case of the response surface style network all network inputs are scaled to a 
range between -1 and 1 as follows, 

  
   

       
    

   
      

    
  ,  

(5.37) 
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(5.38) 
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(5.39) 

With the additional inputs, the output of the jth hidden node,   , with a tan sigmoid transfer 

function is given by,  

             
    

       
      

       
      

     
    

   
   
   

  
     . (5.40) 

The output of the     output node is given by equation (5.11) and the un-scaled output is 

given by equation (5.12). The derivatives of equations (5.13) to (5.16) also remain the 

same. Substitution of equations (5.37) to (5.39) into equation (5.40) and expansion of the 

summation leads to the output of the     node of the hidden layer in terms of the un-scaled 

network inputs, gives,  

   

        
   

           
    

     
        

    
       

   
           

    

     
        

    
       

    
             

    

      
         

    
 

(5.41) 
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Where, the internal variables are a function of the current strain. Therefore, the partial 

derivative of the input to the tan-sigmoid activation function,      , of the     node of the 

hidden layer with respect to the un-scaled input to the first node of the input layer is given 

by, 
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 . (5.43) 

Substitution of a generalised version of equations (5.42) and (5.43) into the standard 

derivative of a tan-sigmoid function, equation (5.18), leads to the partial derivative of the 

output of the     node of the hidden layer with respect to the un-scaled input of the     

node of the input layer, as in,  

   

   
        

 
 

    
  

   
      

    
. (5.44) 

Substitution of equations (5.44) and (5.16) into equation (5.15) and substitution of the 

resulting expression along with equation (5.14) into equation (5.13) leads to the following  

general equation for the terms of the implied elastic stiffness matrix in equation,  

       

       
 

   
      

    

 
      

            
 
  

    
  

   
      

    
 

        
          

        
           

    
     

   . (5.45) 

Written explicitly this equation becomes, 
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(5.46) 
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5.1.2.1 Implied stiffness validation with history neural network model 

The 8 input PVC history network trained and tested in Section 4.4.4 is used to validate the 

implied stiffness matrix. Taking a single cycle of the 0:1 profile, the implied stiffness is 

calculated at each data point along with the network output. The network output in 

recurrent mode along with the target data is shown in Figure 5-6 and the implied stiffness 

results along with the target data is shown in Figure 5-7. It can clearly be seen that the 

network output closely fits the target data.  

 

 

Figure 5-6: Network output plotted alongside target data from Profile 0:1, cycle 50. 
(      warp,        fill,  ∗  target,  ∘ network output) 

The fit of the implied stiffness results to the target data is less good but offers a reasonable 

approximation. The error between the implied stiffness stress and target stress is due to 

the failure of the linear implied stiffness matrix approximation to capture the changing 

gradient of the non-linear fabric response. The next data point in the experimental 

response surface may  either lay above or below the flat tangent plane defined  at the 

current data point by the implied stiffness matrix. This leads to either an under or over 

estimation of next stress step. This is particularly clear in the warp stress plot of Figure 

5-7 where stress is underestimated in the initial loading section and overestimated 

immediately after the turning point between loading unloading. This indicate that the 

gradient of the response surface is particularly variable in these areas.           
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Figure 5-7: Implied stiffness matrix output plotted alongside target data from 
Profile 0:1, cycle 50. (      warp,       fill,  ∗  target,  ∘ network output)  

To further validate the implied stiffness definition the analytical derivatives are compared 

with an equivalent finite difference method derivative in Table 5-4. A perturbation of 

     , h, is added to each of the current strain inputs in turn and presented to the network. 

The original network output,       and perturbed output,         may then be used to 

find the finite difference derivative.  

     

  
 

           

 
  (5.47) 

The error between the analytical and numerical derivatives is generally less than 1%. The 

only significant error occurs where the implied stiffness term is significantly lower than 

the other 3 terms, as in the case of the 
     

     
 term for the 10th data point which produces a 

4.34% error. In addition this data point is positioned close to the loading to unloading 

turning point of the load profile. As  discussed above it is likely that in this region the 

network warp response surface gradient varies significantly in agreement with the 

variation of the experimental response surface gradient. Although the perturbation 

applied to the strain is very small the perturbed input-output set represents a location on 

the response surface with a marginally different gradient to the unperturbed input-output 

set, The inconsistency between the strain to stress relationship at the perturbed and 
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unperturbed response surface locations leads to inconsistencies between the finite 

difference and analytical implied stiffness terms associated with the warp direction. 

 Data Index: 10 Data Index: 20 

  Inputs Inputs 

     0.0765 0.0615 

     0.0173 0.0111 

       24.8773 10.2473 

       13.8637 6.5550 

       0.0735 0.0646 

       0.0160 0.0119 

     1.9030 0.6304 

     0.2404 0.0727 

 Outputs Outputs 

        27.6031     7.4002 

        15.0650     4.7717 

 Analytical 
Finite 

Difference 
% error Analytical 

Finite 
Difference 

% error 

     

     
 790.4 785.1 -0.6756 663.5 662.5 -0.1580 

     

     
 113.9 113.8 -0.1556 175.3 174.5 -0.4666 

     

     
 53.0 50.7 -4.3406 178.9 178.5 -0.2632 

     

     
 808.2 808.2 -0.0006 485.0 484.6 -0.0663 

Table 5-4: PVC history network implied stiffness validation using finite difference 
method (h = 0.0000001) 
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5.2 Response Surface Style Network Implementation 

The expression of equilibrium for the system (Section 3.1 ) is given by, 
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(3.11) 

Where 

                                              (3.12) 

In the case of the response surface network material model this equation is replaced by, 

               , (5.48) 

where             denotes the network output which is a function of the total current 

strain. The initial strain applied to the fabric is denoted by    and the current strain 

derived from the nodal displacement via the element B matrix by  . The expression of 

equilibrium for the system becomes, 

    

     
                             

 
 

   
         . (5.49) 

The initial strain is a constant value which is the strain applied in order to induce the 

desired pre-stress defined during form-finding. This initial pre-stress is represented by    

in equation (3.12) and initial strain is typically 0 unless applied displacement boundary 

conditions have been defined. In engineering practice, detailed numerical simulation of 

fabric installation is generally  not undertaken. This is due to the complexity of modelling 

the fabrics initial response. However, an initial strain value that corresponds to the correct 

initial stress level may be estimated using a stress to strain neural network, Section 4.3.2.2,  

or through a patch test.  

The current strain is given by the product of element B-matrix and nodal displacements 

with the addition of initial strain, such as,  

                . (5.50) 

The elastic stiffness matrix,   , is approximated by 

                           
 

 
 

   
   . (5.51) 

The geometric stiffness matrix,   , given by 

                  
 

 
 

   
   , (5.52) 
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where the network definition for stress,    equation (5.48), is used.  

The implementation of the response surface network within the finite element analysis 

procedure is summarised in  Figure 5-8. 

 

Figure 5-8: Finite Element analysis procedure with response surface neural network 
material model  

It should be noted that the equivalent nodal loading is calculated at the first step of 

analysis for the initial nodal configuration but is not updated during subsequent iterations. 

As the finite element formulation allows large displacements this is a simplification of the 

structural response. In reality the loading would be redistributed as the structural mesh 

deformed. Similarly the definition of the material warp and fill directions with respect to 

the global axis results in the direction remaining constant for each panel throughout the 

analysis despite the occurrence of potentially significant deformation. Both of these 

simplifications are applied in order to increase the stability of the finite element analysis 

and the speed at which it converges to an equilibrium state. During the computational 

design of an architectural fabric membrane the greatest deformation occurs during the 
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initial form finding analysis when no external load is applied. As a zero stiffness element is 

used the material direction is also not significant. After form finding it is assumed that the 

changes in load distribution and material direction resulting from deformations of the 

mesh induced by the applied load are small enough to justify the aforementioned 

simplification. 

5.2.1 Additional areas, wrinkling criteria 

Neural network generalisation is unreliable outside of the bounds of the training data. 

Therefore, it is necessary to include some additional data to enable the simulation of 

loading conditions outside the tested load ratios. In future work this is likely to involve the 

completion of more comprehensive testing profiles which explore stress response below 

pre-stress and into the wrinkled regions of the stress-strain response surface.  However, it 

is reasonable to use a plane stress approximation (Table 5-5) with wrinkling criteria 

applied in order to generate additional data points to train the network in these areas of 

the response surface. Especially given that engineering design practice would not 

normally permit such stress strain scenarios but data is required to enable the analysis to 

continue to a possible feasible or  acceptable solution at equilibrium.  

                  

769.3kN/m 856.4kN/m 0.32 0.59 30kN/m 

     Table 5-5: PVC plane stress elastic constants 

  

Figure 5-9: Training data with additional fictitious plane stress data zones 

Initially a regular grid of warp and fill strain pairs is generated. A minimum warp strain 

equal to minus 1 times the minimum absolute value of warp strain and a maximum equal 

to the maximum warp strain and the equivalent fill data is used to define the limits of the 

grid. Further data points are defined at intervals of 0.5% strain. All strain points that fall 
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within the experimental response envelope are removed from the data set and the 

resulting points are used with plane stress elastic constants to generate equivalent stress 

data. The additional plane stress data points are shown in Figure 5-9.  

In the current work shear stress is treated as being uncoupled from the direct stress, as in 

plane stress theory, and is calculated from shear strain using a shear modulus. For the 

purposes of applying wrinkling criteria the shear stain is assumed to be zero as is the case 

in the biaxial testing methodology used in the generation of the experimental training data. 

As discussed in Section 3.1.1.3 wrinkling is identified using one of 3 different sets of 

criterion, the principle stresses, the principle strains or a combination of both. The 

principle stress are given by, 

        
 

 
 

 
          

     

 
 
 
      

 
 , (3.132) 

and the principle strains by, 

        
 

 
 

 
          

     

 
 
 
      

 
. (3.133) 

 

1. Stress criterion based solely on principle stress, 

    
 

                                        ‘taut state’ (3.135) 

    
 

           
 

            ‘wrinkled state’ (3.136) 

                                            ‘slack state’  (3.137) 

 

2. Strain criterion based solely on principle strain, 

    
 

                                        ‘taut state’ (3.138) 

    
 

           
 

            ‘wrinkled state’ (3.139) 

                                            ‘slack state’  (3.140) 

 

3. Mixed criterion based on a combination of principle stress and strain, 

    
 

                                        ‘taut state’ (3.141) 

    
 

           
 

            ‘wrinkled state’ (3.142) 

                                            ‘slack state’  (3.143) 
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Depending upon the state identified a penalisation factor is applied to the elastic stiffness 

matrix. Where the fabric is identified as wrinkled, penalisation occurs in the direction of 

the wrinkle. In cases with zero shear strain the angle between maximum stress and the 

warp direction will either be 0° where warp stress is greater than fill or 90° where fill is 

greater than warp. Where the membrane is deemed to be slack the material stiffness 

matrix is penalised in all directions. 

The removal of shear stress form the wrinkling procedure leads to a simplification as the 

wrinkle direction will not be used or in fact calculated during analysis. However, it is not 

likely that a simulated fabric structure with areas of wrinkled or slack material would be 

deemed acceptable. Therefore, the additional data only serves to stabilise the analysis and 

allow the identification of problem areas in the design.  It should also be noted that all 

simulations provide only an approximation to the stress strain state of a real structure. 

Therefore uncertainty should be considered within the design procedure.  

When using the stress criterion (Figure 5-11a), negative maximum stress occurs in 

combination with a positive minimum strain and a wrinkled state is incorrectly defined as 

slack, this lead to a significant discontinuity in the surfaces. When using the strain 

criterion (Figure 5-11b), due to the effect of Poisson’s ratio, a taught state is misjudged as 

wrinkled where a negative minimum strain may coincide with positive minimum stress. In 

this context, the combined criterion (Figure 5-11c) is arguably the best method of 

identifying the state of the fabric and generates a continuous surface of additional training 

data points. 

 

Warp Fill  

  Network generated strains from synthetic mesh of 
stress points            

  Experimentally generated data 

  Additional plane stress data points with slack 
wrinkling criteria 

  Additional plane stress data points with wrinkled 
wrinkling criteria 

 

Figure 5-10: Response surface with additional wrinkling criteria data points figure 
key  

  

+ + 

* 
 

* 
 

• • 
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(a) Stress criterion 

  

(b) Strain criterion 

  

(c) Combined Criterion 

Figure 5-11: Training data with additional wrinkling criteria data points  

  



Chapter 5 Neural Network Material Model Implementation 241 

Warp Fill  

  Network generated target data           

  Experimentally generated target data 

  Network output from network generated data 

  Network output from experimentally generated data 
net  

Figure 5-12: Response surface neural network figure key  

  

Figure 5-13: PVC (502S) strain to stress network demonstrating best performance 
with ‘unseen’ testing data set (         ) 

 
Ten randomly initiated networks with 10 nodes in the hidden layer are trained with 

experimentally generated data and additional wrinkling criteria data. Each network is 

then tested using the ‘unseen’ network generated data set (Figure 5-13). The network 

demonstrating the highest     value when presented with the ‘unseen’ testing data is 

selected for use in simulations presented in the following sections.  The same process is 

used to train a 3 input PTFE neural network with additional wrinkling criteria data. The 

training and testing of multiple networks prior to selection is done to avoid the use of a 

network that has failed to accurately generalise the fabric response through over fitting or 

insufficient training. This is an important step in the development of neural network 

material models. The tool developed in Matlab for training response surface style 

networks is  demonstrated in Appendix C.  The uncertainty introduced by the variation in 

response between multiple networks trained with the same training data is explored 

further in Section 6.2.  

5.2.2 Patch test 

The 1 metre square patch of fabric, discretised into 32 elements with 81 nodes and 

restrained along two edges by rolling restraints (Section 3.2.1, Figure 5-14), is used to test 

+ + 

∘ 
* * 

∘ 
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the model trained above (Section 5.2.1). Uniformly distributed loads (UDL) of varying 

magnitudes (Table 5-6) are applied along the free edges. Load is applied in the warp 

material direction,   , aligned with the global  -direction and in the fill material direction, 

  , aligned with the global  -direction.  

 

Figure 5-14: 32 element patch for validation 

When using a plane stress model, the relationship between stress and strain is linear. 

Prestress is a constant added to the current stress increment given by the product of the 

elastic stiffness matrix and the current strain. As discussed above when using the neural 

network model the prestress is defined using the current strain only.   

In pre-processing prior to training the residual strain is removed from the data set at each 

point where the profile returns to prestress, equation (4.34) (Section 4.3.1). Therefore, an 

input of zero strain returns stress equal to test prestress. Therefore a simulation with an 

applied load equivalent to the prestress will lead to zero strain. An applied load below the 

test prestress will lead to a negative displacement and equivalent negative strain. As 

described in Section 5.2, in order to apply a prestress level greater than that applied in the 

training data an initial uniform strain,   , is applied to the structure. This strain may 

eventually be determined through simulation of installation. However, in this study the 

stress to strain network, used to generate additional training data, Section 4.3.2.2, is used 

to find the strain that returns stress equal to desired prestress. 

         

 
  

  
  
  

1m 

1
m

 

  kN/m 

  kN/m 
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Applied Load  

(kN/m) 

Strain 

 (%) 

Displacement 

(m) 

Stress 

(kN/m) 

Warp Fill Warp Fill Warp Fill Warp Fill 

2.8 2.8 -0.041 -0.027 -0.0004 -0.0003 2.801 2.801 

2.8 20 -2.202 2.272 -0.022 0.022 2.739 20.456 

20 2.8 1.836 -0.664 0.018 0.007 20.134 2.750 

20 15 1.563 0.784 0.016 0.008 19.845 14.771 

15 20 0.733 1.503 0.007 0.015 14.780 19.855 

25 19 2.096 1.120 0.021 0.011 24.725 18.614 

19 25 1.140 1.962 0.011 0.019 18.638 24.720 

17.5 27.5 0.821 2.429 0.008 0.024 17.090 27.278 

8 18 -0.195 1.537 -0.002 0.015 7.880 18.035 

22 12 1.863 0.389 0.018 0.004 21.915 11.783 

25 5 2.314 -0.471 0.023 -0.005 25.119 4.888 

5 25 -1.701 2.564 -0.017 0.025 4.876 25.437 

1 1 -0.203 -0.205 -0.002 -0.002 1.002 1.002 

Table 5-6: PVC neural network patch simulation results 

  

Figure 5-15: PVC (502S) strain to stress network with simulation results. 

 

The simulation results demonstrate a good fit with the response surfaces constructed 

from the data used for training, Figure 5-15. From the results, Table 5-6, it is observed that 

the applied load induces the expected equivalent stress. The small deviations occur due to 

the change in dimensions of the patch. For example, taking the results for the applied load 

of 17.5kN/m in the warp direction and 27.5kN/m. The updated dimensions of the patch at 

the end of the of the simulation is given by, 
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The analysis stress is agrees with the applied load divided by the updated patch 

dimensions,     

   
                 

          
  

    

     
        ,  

   
                 

          
  

    

     
        . 

The discrepancy between fill stress calculated above and analysis fill stress may be 

attributed to rounding error as demonstrated by 

    
                 

          
  

    

      
       .  

The PTFE network (Figure 5-16, Table 5-7) is much more unstable than the PVC Network. 

This is due to the extremely high influence of crimp at the more extreme load ratios 

generating a very steep non-linear surface. It is also extremely difficult to generate 

meaningful additional data to represent wrinkling behaviour. This is due to discrepancies 

between the plane stress approximation used to generate the additional data points and 

the experimental data, particularly at the boundaries of response surface generated by the 

0:1and 1:0 load ratios. Because of this the interface between experimental and additional 

input data, i.e. strain points which generate stress values below the pre-stress applied to 

the test specimen, is discontinuous. Nevertheless the results located inside the boundaries 

of the experimental training data still demonstrate a good fit with the response surfaces 

generated from the PTFE experimental training data, Figure 5-16. 
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Applied Load  

(kN/m) 

Strain 

 (%) 

Displacement 

(m) 

Stress 

(kN/m) 

Warp Fill Warp Fill Warp Fill Warp Fill 

3.5 3.5 -0.053 -0.020 -0.0005 -0.0002 3.501 3.502 

3.5 20 -2.359 2.112 -0.0239 0.0209 3.428 20.490 

20 3.5 1.611 -2.707 0.0160 -0.0274 20.560 3.445 

20 15 0.339 0.093 0.0034 0.0009 19.980 14.950 

15 20 -0.375 0.914 -0.0038 0.0091 14.860 20.080 

25 19 0.391 0.190 0.0039 0.0019 24.950 18.930 

19 25 -0.400 1.096 -0.0040 0.0109 18.800 25.100 

17.5 27.5 -0.689 1.375 -0.0069 0.0137 17.260 27.690 

8 18 -0.872 1.244 -0.0088 0.0124 7.903 18.160 

22 12 0.690 -0.385 0.0069 -0.0039 22.090 11.920 

25 5 1.768 -2.699 0.0175 -0.0274 25.700 4.914 

5 25 -2.726 2.458 -0.0276 0.0243 4.882 25.710 

1 1 -0.107 -0.210 -0.0011 -0.0021 1.002 1.001 

Table 5-7: PTFE neural network patch simulation results 

  

Figure 5-16: PTFE strain to stress network with simulation results. 
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5.2.3  Hypar 

The PVC response surface style network model (Section 5.2.2) is used to simulate a 

realistic structure.  The  hypar structure, Figure 5-17,  under both wind and snow loading, 

Section 3.2.3, is simulated. The simulation is also undertaken using the equivalent  plane 

stress material model defined in Table 5-5. The results from both sets of simulations are 

summarised in Table 5-8.  

 

 

 

(a) Side Elevation (b) Plan View 
Figure 5-17: Hypar structure. 
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(a) Warp stress (kN/m) (b) Fill stress (kN/m) 

  
(c) Warp strain (%) (d) Fill strain (%) 

  
(e) Shear stress (f) Absolute displacement (m) 

Figure 5-18: Hypar prestress results 
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(a) Warp stress (kN/m) (b) Fill stress (kN/m) 

  
(c) Warp strain (%) (d) Fill strain (%) 

  
(e) Shear stress (f) Z displacement (m) 

Figure 5-19: Hypar snow loading PVC neural network results 
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(a) Warp stress (kN/m) (b) Fill stress (kN/m) 

  
(c) Warp strain (%) (d) Fill strain (%) 

  
(e) Shear stress (f) Z displacement (m) 

Figure 5-20: Hypar snow loading PVC plane stress results 
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(a) Warp stress (kN/m) (b) Fill stress (kN/m) 

  
(c) Warp strain (%) (d) Fill strain (%) 

  
(e) Shear stress (f) Z displacement (m) 

Figure 5-21: Hypar wind loading PVC neural network results 
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(a) Warp stress (kN/m) (b) Fill stress (kN/m) 

  
(c) Warp strain (%) (d) Fill strain (%) 

  
(e) Shear stress (f) Z displacement (m) 

Figure 5-22: Hypar wind loading PVC plane stress results 
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 Warp Stress (kN/m) Fill Stress (kN/m) Displacement (mm) 

 
Max Min Max Min 

z Absolute 

 Max Min Max 

Prestress 

(Plane Stress) 
3.00 3.00 3.00 3.00 0 0 0 

Prestress 

(Network) 
3.28 3.03 3.18 3.05 1.2 -0.4 1.3 

Snow Load 

(Network) 
3.98 1.43 6.99 3.48 0 -59.6 59.6 

Snow Load 

(Plane Stress) 
3.42 0.13 6.25 2.92 0 -49.5 49.5 

Wind Load 

(Network) 
8.72 3.17 4.21 0.20 78.3 0.0 78.4 

Wind Load 

(Plane Stress) 
10.12 3.23 4.18 -0.32 107.1 0.0 110.0 

Table 5-8: Hypar analysis results summary 

The prestress simulation using the network material model generates stress results that 

deviate away from the applied prestress. The discrepancy is caused by smalls 

descrepancies between the network model output when presented with the initial strain 

and the pre-stress value used in the form-finding process. However, the deviations are 

small and the resulting absolute displacement is 1.3mm.  

 Under snow loading the stress distributions in both material directions follow a similar 

pattern. The maximum stress given by the neural network model is slightly greater than 

that given by the plane stress material model. The minimum stress given by the neural 

network is over 1kN/m greater in the warp direction than the plane stress material model. 

The maximum absolute displacement is approximately 10mm greater in the neural 

network simulation.   

There are similarities between the stress pattern generated by both material models. The 

minimum warp stress and maximum fill stress produced by the simulations are within 

0.1kN/m. However, the neural network material model produces a maximum warp stress 

that is 1.4kN/m greater than the plane stress material model results. The maximum 

absolute displacement is approximately 30mm greater.  

During the plane stress simulation of the hypar with applied wind loading the wrinkling 

procedure was triggered. However, the negative stress remains after convergence. The 

resulting stress distribution is uneven suggesting that the simulation was unstable. The 



Chapter 5 Neural Network Material Model Implementation 253 

neural network material model appears to generate a more stable analysis. When using 

the neural network material model the final response of the structure does not fall within 

the wrinkled or slack zone of the material response surface. However, the fill stress does 

reach levels lower than the applied pre-stress.   

The stability of the analysis is  potentially due to the continuous response surface,  

represented by the neural network material model that includes modified behaviour in the 

wrinkling-slack zone, Section 5.2.1. During the finite element analysis it is probable that 

areas of the structure undergo stresses and strains close to or within the wrinkled or slack 

regions of the material response surface. In the neural network material model the 

stiffness in the wrinkled-slack region is reduced avoiding the build up of significant 

compressive stress. As the analysis progresses the response may move back out of the 

wrinkled  or slack region eventually converging to a smooth final result.  

In comparison the plane stress analysis the wrinkling procedure is implemented in order 

to remove erroneous compressive stresses, Section 3.1.13. The structure is assessed using 

mixed wrinkling criterion, equation (3.141) to (3.143), after equilibrium has been reached. 

Regions of compressive stress have developed at this stage. Where wrinkling or slack 

regions are deemed to exist the elastic modulus is reduced and the analysis is re-run, this 

results in potentially large discontinuities in the material response between gauss points 

that are assessed as wrinkle and unwrinkled. In the case of the wind loading analysis, 

Figure 5-22, these discontinuities lead to an unstable analysis and eventual convergence to 

a uneven stress distribution.      

5.3 History neural network implementation 

In order to implement the history neural network historical stress and strain information 

is required. Load is applied to the model in steps and equilibrium is found at each step. 

The expression for equilibrium of the system becomes, 

    

     
                  

 
 
 

   
                   

 
 
 

   
          . (5.53) 

where    is the current load increment applied to each node,   is the current stress at 

each gauss point in an element and       is the stress at each gauss point from the 

previous load step. When using the history network material model, the equation for 

stress, (3.12), may be represented by, 

                                        . (5.54) 



Chapter 5 Neural Network Material Model Implementation 254 

Current strain is represented by   , strain from the previous load step by     , stress from 

the previous load step by     , the current internal variables by     and initial strain by   . 

As with the response surface network a constant initial strain,   , is applied to the fabric in 

order induce required prestress. Initial previous stress and strain values are also required 

for the first load step. A patch test with iterative loading may be used to determine an 

initial strain value with corresponding previous stress and strain values that corresponds 

to the correct initial stress level.  

Equations (5.50) to (5.52) are used to calculate current strain, the elastic stiffness matrix 

and geometric stiffness matrices, respectively.  Historical stress and strain values are 

updated at the end of each load step once equilibrium has been reached. The historical 

stress and strain values are not updated between kinetic energy peaks in the dynamic 

relaxation algorithm. During the iterative process the model undergoes pseudo 

oscillations about the equilibrium state. This would generate a false material response and 

potentially cause residual strain build up.   

The implementation of the history network within the iterative finite element analysis 

procedure is summarised in Figure 5-23. 
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Figure 5-23: Iterative  finite element analysis procedure with history neural 
network material model 

5.3.1 Biaxial test 

An attempt was made to validate the history neural network via simulation of the biaxial 

test used to generate the training data (Figure 5-14). In order to accurately model the 

biaxial test specimen arm slits that have unrestrained edges need to be included in the 

mesh. The neural network material model becomes unstable if used to simulate the 
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unrestrained slits. The use of a plane stress model for simulation of the arms and a 

network model for the central region has been explored. However, discontinuities 

between the two models leads to invalid results. The stress is reasonably consistent but 

the strain values are not inconsistent. Loading form zero is also impossible due to the 

constraints of the available testing data. Therefore an initial stress is required, for example 

2.8kN/m for the PVC fabric. In order to apply this stress to the plane stress arms a 

prescribed pre stress may be applied. However, due to the unrestrained arm edges this 

leads to an erroneous out of balance force across the arm.  

  
(a) Warp stress (kN/m) (b) Fill stress (kN/m) 

  
(c) Warp strain (%) (d) Fill strain (%) 

  
  

Figure 5-24:  Biaxial test specimen, applied load 4kN/m 

Due to the prohibitive complexities of simulating the biaxial cruciform with unrestrained 

edges, the 1m square patch used to investigate the response surface network, (Section 

5.2.2), is employed to investigate the performance of the network in simulation of fabric 

response with load history effects.  Iterative loading is applied to the unrestrained edges in 

order to induce stress equal to that in the biaxial profile. The simulation stress and strain 
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results may then be directly compared to the experimental results in order to assess to 

accuracy of the simulation.  

The effect of load step and training data selection is investigated. A total of six network 

training data sets are generated, three use 30 cycles from each of the 5 unique 

experimental profiles and three use 60 cycles form each of the experimental PVC profiles, 

Chapter 4. The first of three data sets uses data reduced by a factor of 0.1, i.e. 10% of the 

data is used, the second a factor 0.15 and the third 0.2. Each training data set is used to 

train 20 randomly initiated networks. Each trained network is used in three simulations of 

cycle 6 of the 1:1 PVC experimental profile. Loading for each simulation is derived from 

stress points taken from the experimental profile reduced using reduction factors of 0.1, 

0.15 and 0.2 respectively. 

 Mean absolute error between network simulation output and experimental results is 

calculated for each network simulation. The lowest mean absolute error, obtained from 

both warp and fill direction results, from each network and analysis set is reported in 

Table 5-9. Mean absolute percentage error (MAPE) is used as opposed to mean squared 

error as the effect of small values of strain is negated and a clearer impression of the level 

of accuracy can be gained. The number of network simulations that failed is also reported. 

A network simulation is deemed to have failed when a mean absolute percentage error 

above 15% is calculated in either material direction. 
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 Reduction Factor 0.1 

 60 Cycles 30 Cycles 

Testing Reduction Factor 0.1 0.5 0.2 0.1 0.15 0.2 

No. Failed Networks 10 9 18 13 10 17 

Best Network Performance 

MAPE Strain Warp (%) 2.27 5.01 8.43 2.38 5.41 10.61 

MAPE Strain Fill (%) 1.88 10.95 13.04 6.15 9.18 11.18 

MAPE Stress Warp (%) 0.44 0.51 0.55 0.46 0.52 0.58 

MAPE Stress Fill (%) 0.47 0.49 0.56 0.48 0.50 0.60 

 Reduction Factor 0.15 

 60 Cycles 30 Cycles 

Testing Reduction Factor 0.1 0.15 0.2 0.1 0.15 0.2 

No. Failed Networks 19 9 1 18 10 3 

Best Network Performance 

MAPE Strain Warp (%) 10.98 5.71 4.13 7.52 3.54 3.58 

MAPE Strain Fill (%) 3.86 3.60 6.79 7.04 3.79 8.24 

MAPE Stress Warp (%) 0.43 0.51 0.51 0.48 0.51 0.60 

MAPE Stress Fill (%) 0.42 0.61 0.63 0.54 0.55 0.61 

 Reduction Factor 0.2 

 60 Cycles 30 Cycles 

Testing Reduction Factor 0.1 0.15 0.2 0.1 0.15 0.2 

No. Failed Networks 20 19 11 20 18 9 

Best Network Performance 

MAPE Strain Warp (%) - 5.71 3.95 - 5.88 6.43 

MAPE Strain Fill (%) - 5.51 1.99 - 2.43 3.28 

MAPE Stress Warp (%) - 0.55 0.50 - 0.49 0.54 

MAPE Stress Fill (%) - 0.65 0.61 - 0.56 0.68 

Table 5-9: Mean absolute percentage error between experimental results and patch 
simulation of cycle 6 of 1:1 biaxial load profile (Chapter 4)  

Failure rates across each network group indicate that the training data load step has a 

significant effect on network performance. The minimum failure rate across a network 

group  is 1.5% and the maximum 100%. Lower failure rates are observed when the load 

step simulated is the same or lower than that used in training. The highest failure rates 

occur when a network is used to simulate a greater load step. This is highlighted by the 

100% failure rate of networks trained with data reduced by a factor of 0.2 when used to 

simulate experimental data reduced by a factor of 0.1. 
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Graphical representations of the simulation set results are shown in Figure 5-25 to Figure 

5-30. The training data is shown as a solid back line with data points indicated by +. 

Simulation of experimental data with a 0.1 reduction factor is shown in red, with a 0.15 

reduction factor in blue and with a 0.2 reduction factor in red. Maximum and minimum 

error across all acceptable networks in an analysis set is depicted by error bars. Where 

only one network has been deemed acceptable the upper error bar is given by the absolute 

error and the lower error bar by negative absolute error. The strain results of the network 

simulation achieving the lowest combined absolute percentage error across both material 

directions (Table 5-9) is plotted using a dashed line with data points indicated by *.  

 

 
Figure 5-25: Patch Simulation Results of Cycle 6 of 1:1 Profile Generated by a Load 

History Network Trained Using 60 Cycles and a Reduction Factor of 0.1. 
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Figure 5-26: Patch Simulation Results of Cycle 6 of 1:1 Profile Generated by a Load 

History Network Trained Using 30 Cycles and a Reduction Factor of 0.1. 

 

 
Figure 5-27: Patch Simulation Results of Cycle 6 of 1:1 Profile Generated by a Load 

History Network Trained Using 60 Cycles and a Reduction Factor of 0.15. 
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Figure 5-28: Patch Simulation Results of Cycle 6 of 1:1 Profile Generated by a Load 

History Network Trained Using 30 Cycles and a Reduction Factor of 0.15. 

 

 
Figure 5-29: Patch Simulation Results of Cycle 6 of 1:1 Profile Generated by a Load 

History Network Trained Using 60 Cycles and a Reduction Factor of 0.2. 



Chapter 5 Neural Network Material Model Implementation 262 

 

 
Figure 5-30: Patch Simulation Results of Cycle 6 of 1:1 Profile Generated by a Load 

History Network Trained Using 30 Cycles and a Reduction Factor of 0.2. 
 

A high degree of variation between Network simulation results is seen. Initially looking at 

only the networks with the lowest mean percentage error it can be seen that absolute 

error generally increases throughout the iterative analysis. This leads to actual error 

greater than 15% at the final stages of the analysis. This trend is also confirmed across the 

full network sets with widening error bars as the analysis progresses, particularly in the 

case of the networks trained with data reduced by a factor of 0.1 or 0.15.  The networks 

trained with data reduced by a factor of 0.2 are by far the least successful. However, this is 

largely due to the effect of greater load step on Network failure. It is likely that were the 

network to be used to simulate a smaller load step than that of the training data they 

would out-perform the networks trained with larger load steps. This indicates the 

development of the training data set is key in generating a successful Neural Network 

material model. Extensive testing is required to confirm that the trained network is 

suitable for the analysis task for which it will be employed.  

For comparison a plane stress material model is fit to both loading and unloading portions 

of  cycles 1 to 15 of the 1:1 profile by minimising error between experimental strain and 

model strain. The resulting  elastic constants are given in  Table 5-10 and were used in the 

simulation of cycle 6 of the 1:1 profile. As in Figure 5-25  to Figure 5-30 the plane stress 
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simulation is plotted with the experimental data. The results from the simulation using the 

network that demonstrated the best performance from the network set trained using 60 

cycles and a reduction factor of 0.2 is also plotted. The raw unadjusted simulation strain 

results, plotted in red, do not incorporate an applied prestress as input. The strain output 

is the result of the full applied load but cannot account for residual strain. The adjusted 

simulation result, plotted in blue, incorporated the prestress applied to the fabric as input. 

Therefore, the strain output is a result of the applied load minus the prestress, only the 

loading above prestress induces strain. The strain result is then adjusted by adding the 

initial strain associated with prestress taken from the first experimental data point of the 

cycle.  

                  

804.6kN/m 742.6kN/m 0.37 0.37 30kN/m 

     Table 5-10: PVC plane stress elastic constants 

 

 
Figure 5-31: Patch Simulation Results of Cycle 6 of 1:1 Profile Generated by a Plane 

stress elastic stiffness matrix fit to Cycles 1 to 15 of 1:1 Profile. 
 

Clearly the adjusted plane stress simulation out performs the unadjusted plane stress 

simulation and shows a particularly good fit  with the fill direction experimental strains. 

This is due to the reasonably linear response of the fabric in this  material direction. In the 
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warp direction the adjusted plane stress model  demonstrates a similar fit to the 

experimental data as the network model in the early stages of the loading portion of the 

cycle. However, the plane stress simulation significantly under-estimates the peak strain 

value and the unloading portion of the cycle. The network model is capable of replicating 

the non-linear material response in the warp direction whereas the linear plane stress 

model is not. The adjusted plane stress simulation result is made possible by the 

availability of the initial strain data. In a typical plane stress simulation of a more complex 

realistic structure this information would not be unavailable. The unadjusted result is 

more representative of the typical results generated by a plane stress simulation.     

It is noted that the stress mean percentage error remains below 1% across all analysis sets, 

Table 5-9. This is due to the fact that the stress is prescribed by the loading and therefore 

in order for the simulation to reach convergence the stress in the patch must be in 

equilibrium with the applied load. The error is caused by the changing dimensions of the 

patch, hence the accuracy of the strain result has as an effect on the accuracy of the stress 

result. However, a degree of error will always remain.             

5.3.2 Hypar simulation 

The network with the lowest mean absolute percentage error in the network set trained 

with 60clycles of each profile reduced by a factor of 0.1 is used in the simulation of a hypar 

structure. The dimensions of the hypar are the same as those described in Section 3.2.3 

and used in Section 5.2.3 (Figure 3.21). However, the fabric prestress is increased from 

3kN/m to 5kN/m and the cable prestress from 30kN to 50kN. This is done in order to 

increase the likelihood that the simulation stresses will fall within the range of the 

network training data, i.e. above 2.8kN/m. However, the increase in prestress causes 

instability during the soap film form finding process with geodesic strings on the original 

initial mesh (Figure 3.22). Therefore, a more coarse symmetrical mesh comprising 200 

elements is used. This mesh is more stable and reaches an equilibrium state with a 

uniform stress of 5kN/m. 

Wind and snow load cases are simulated (Section 3.2.3 and 5.2.3). The loading is applied 

iteratively in 11 equal steps starting at 0kN/m2  up to a maximum load of 0.6kN/m2  at 

step 6 of for the snow load case and  1kN/m2 for the wind before returning to 0kN/m2 at 

step 11. GiD graphical output for iterations 1, 6 and 11 are shown in Figure 5-33 to Figure 

5-35 for the snow case and Figure 5-37 to Figure 5-39 for the wind case. Iteration 1 is 

shown in order to provide a clear comparison for iteration 11.  The result contours are 

standardised across all of the GiD figures. 
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The form found mesh is shown in Figure 5-32 with selected nodes highlighted by coloured 

points. The colours coincide with the colours used in the nodal result plots Figure 5-36 

and Figure 5-40.  

 

Figure 5-32: Form-found mesh with selected nodes for result plotting. 

Initial strain and stress conditions are determined using a patch analysis where a stress of 

5kN/m is maintained over three iterations. According to the patch test an initial strain of 

0.75% is applied in the warp direction and 1.11% in the fill in order to induce a 5kN/m 

prestress.  

At peak snow load (-0.6kN/m2) the stress distribution is as expected. Maximum stress 

occurs in the fill direction between the high points. Minimum stress, lower than initial 

prestress, occurs in the warp direction between the low points. At peak wind load 

(1.0kN/m2) the stress distribution is again as expected. Maximum stress occurs in the 

warp direction between the low points while minimum stress occurs in the fill direction 

between the high points.  

At iteration 11 (load = 0kN/m2)  of the snow load case it can clearly seen that the hypar 

has not returned to the same stress strain state as iteration 1 (Figure 5-35, Figure 5-36). 

Residual deformation in the negative z direction has occurred. Stress is reduced in both 

material directions below initial prestress. Residual strain in the warp direction has 

reduced, i.e. been recovered, whereas residual strain in the fill direction has increased.  

Residual deformation is also evident in the wind load case (Figure 5-39, Figure 5-40). 

However, in this case the residual deformation is in the positive z-direction. The stress in 

both directions is reduced. In the upward loading case the strain in the warp direction is 

increased but in the fill direction recovered. The change in residual strain in the fill 

direction, between the high points of the hypar, has a greater influence on residual 
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displacement than change in residual strain in the warp direction  between the low points. 

Were the simulation to be continued through another load cycle in either loading direction  

residual strain would continue to build and  stress would reduce until the fabric would 

eventually become slack. 
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(a) Warp stress (kN/m) (b) Fill stress (kN/m) 

  
(c) Warp strain (%) (d) Fill strain (%) 

 
 

(e) Z displacement (m)  

Figure 5-33: Hypar snow loading PVC history network maximum load            
(Iteration 1: 0.0kN/m2)  
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(a) Warp stress (kN/m) (b) Fill stress (kN/m) 

  
(c) Warp strain (%) (d) Fill strain (%) 

  
(e) Shear stress (f) Z displacement (m) 

Figure 5-34: Hypar snow loading PVC history network maximum load           
(Iteration 6: 0.6kN/m2) 
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(a) Warp stress (kN/m) (b) Fill stress (kN/m) 

  
(c) Warp strain (%) (d) Fill strain (%) 

  
(e) Shear stress (f) Z displacement (m) 

Figure 5-35: Hypar snow loading PVC history network maximum load           
(Iteration 11: 0.0kN/m2) 
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(a) Warp stress (kN/m) (b) Fill stress (kN/m) 

  
(c) Warp strain (%) (d) Fill strain (%) 

 
(e) Z displacement (m) 

Figure 5-36: Hypar snow loading PVC history network nodal results. 
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(a) Warp stress (kN/m) (b) Fill stress (kN/m) 

  
(c) Warp strain (%) (d) Fill strain (%) 

  
(e) Shear stress (f) Z displacement (m) 

Figure 5-37: Hypar wind loading PVC history network maximum load (Iteration 1: 
0.0kN/m2) 
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(a) Warp stress (kN/m) (b) Fill stress (kN/m) 

  
(c) Warp strain (%) (d) Fill strain (%) 

  
(e) Shear stress (f) Z displacement (m) 

Figure 5-38: Hypar wind loading PVC history network maximum load (Iteration 6: 
1.0kN/m2) 
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(a) Warp stress (kN/m) (b) Fill stress (kN/m) 

  
(c) Warp strain (%) (d) Fill strain (%) 

  
(e) Z displacement (m)  

Figure 5-39: Hypar snow loading PVC history network maximum load (Iteration 11: 
0.0kN/m2) 
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(a) Warp stress (kN/m) (b) Fill stress (kN/m) 

  
(c) Warp strain (%) (d) Fill strain (%) 

 
(f) Z displacement (m) 

Figure 5-40: Hypar wind loading PVC history nodal results. 
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Under both the snow and wind loading it can be clearly seen that the stress paths followed 

at each of the selected nodes differ between loading and unloading (Figure 5-36, Figure 

5-40).  The recovery and increase of residual strain is of particular note. It is also noted 

that stress levels which fall below the level of stress explored in the training data remain 

within a reasonable range. This indicates that the network is capable of generalising 

beyond the training data.    

 Warp Stress 
(kN/m) 

Fill Stress (kN/m) Displacement (mm) 

 
Max Min Max Max 

z Absolute 

 Max Min Max 

Prestress 

(Response 
Surface 
Network) 

5.01 4.97 5.01 4.98 0. 1 -0. 1 0. 2 

Prestress: 
Iteration 1 

(History 
Network) 

4.98 4.89 4.98 4.94 0.9 0.0 0.9 

Snow Load 

(Response 
Surface 
Network) 

5.50 2.83 8.04 5.23 0.0 -52.3 52.3 

Snow Load: 

Iteration 6 

(History 
Network) 

5.34 2.52 7.88 5.06 0.0 -48.7 48.7 

Wind Load 

(Response 
Surface 
Network) 

10.20 5.16 5.80 1.17 70.7 0.0 70.7 

Wind Load: 

Iteration 6 

(History 
Network) 

9.89 4.82 5.52 1.04 90.7 0.0 90.7 

Table 5-11: Hypar analysis results summary 

Simulations of the two load cases along with a prestress load case are repeated on the 

same form found mesh using the PVC response surface style network from Section 5.2. An 

initial strain of 0.121% in the warp direction and 0.113% is applied in the fill direction in 

order to induce the required prestress. Both network models generate results within 

approximately 0.1kN/m of the desired pre-stress and maximum displacements less than 
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1mm. The maximum and minimum stress results for both snow and wind load cases are 

all within 0.5kN/m of each other. In the snow loading case the maximum absolute 

displacement from both network simulations is within 5mm of each other. However, in the 

higher wind loading case the maximum absolute displacement simulated by the history 

network is 20mm greater than that simulated by the response surface network.   
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5.4 Summary and Conclusions 

Derivation of the implied stiffness matrix has been presented and validated for both 

response surface style and history neural network material models. The use of the implied 

stiffness matrix along with the network material model within the finite element 

formulation developed in Chapter 3 is described. 

A patch test with the response surface style network produces results that fit within the 

response surface used for training. When training the response surface style networks it 

has been demonstrated that addition training data outside of the range of available 

experimental data may be used to stabilise simulation of structures which undergo loading 

that causes stress to decrease below prestress. The additional data was produced using 

stress strain pairs generated using a plane stress material model with  wrinkling criteria 

applied. 

 A set of iteratively loaded patch tests with varying load steps demonstrate that the history 

network is most effective when the load step is the same or similar to the load step used in 

generating the training data set. It also demonstrates that the history network simulation 

is likely to fail to reach an acceptable solution where the load step is greater than that used 

in training. This indicates that the simulations expected stress range and required load 

step should be considered when generating training data. 

Simulation of the hypar using the history network and iterative loading generates results 

in a similar range to those generated using the response surface network at peak load. 

However, it is demonstrated that the history network captures stress history effects 

including the build up and recovery of residual strain. Also at selected nodes in the mesh it 

can be seen that the different stress paths are followed when loading and unloading. This 

form of model has potential for the detailed simulation of fabric installation. It could also 

provide information on expected residual displacement caused by repeated cyclic loading. 

This could be used in the planning of maintenance  such as re-tensioning required to 

prevent wrinkled or slack areas forming within the fabric membrane.
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Chapter 6. Reliability Analysis  

In this chapter a First Order Reliability Method (FORM) is applied to the finite element 

formulation developed in Chapter 3. First the limit state functions and statistical variables 

for an analysis using a plane stress material model are defined. The iterative Hasofer-Lind 

and Rackwitz-Fiessler (HL-RF) FORM solution procedure is then described. The analytical 

partial derivatives required for the solution procedure are then derived and verified using 

the finite difference method. The implemented solution procedure is then validated using 

a simple equivalent Monte Carlo simulation. The reliability analysis procedure is then 

modified for use with a neural network material model. The Implied stiffness matrix 

introduced in Chapter 5 is selected to enable the generation of statistical variables 

representing the uncertainty within the neural network material model.  Implied stiffness 

statistical variables are found from multiple simulations using multiple  trained networks. 

The modified reliability analysis .  The full  reliability analysis procedure for a hypar using 

the neural network is then demonstrated, 

Reliability analysis is typically used to assess the structural safety.  In Eurocode 0 (EC0) 

the acceptable value of the safety index determined through reliability analysis is defined 

for a variety of different classes of structure. Partial factors, applied to both actions (loads) 

and resistance (material strength and stiffness), are determined to provide the same level 

of  safety through a process of calibration that uses the specified safety index in ECO. The 

partial factors take into account uncertainty in the same way as a reliability analysis, but 

don't require a reliability analysis to be performed for every design. Due to the 

geometrically non-linear response of fabric structures to load it is suggested that 

application of partial factors to actions may be inappropriate. Therefore, existing design 

guides adopt either a permissible stress or combined approach with a limit state check for 

overload conditions [130]. The permissible stress approach employs stress reduction 

factors applied to the strength of the architectural fabric.  

In the European Design Guide it is noted that across various available standards a 

minimum stress factor of 5 is frequently used. However, a relatively wide range of factors, 

from 3 to 9.5, is reported accounting for various load cases, load effects, environmental 

impacts and material states. These combined factors do not provide an unambiguous 

definition of structural reliability. Reliability analysis utilises probabilistic information 
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that quantifies the uncertainty attached to a specific model variable including loads, 

material properties and geometry.  

The reliability analysis presented here builds on the work of Zhang [31, 8]. Derivatives of 

the equations of the new element formulation are required in order to calculate the 

gradients of the limit state functions. The analytical partial derivative, along with the 

reliability algorithm is, presented here and validated using the finite difference method 

and Monte Carlo Simulation.  The algorithm and partial derivatives are then adapted to 

use the implied stiffness matrix in place of the plane stress stiffness terms in order to 

facilitate an approximation to the first order reliability analysis for the neural network 

material models detailed in Chapters 4 and 5. This chapter serves as a first pass reliability 

analysis of fabric structures using neural network material models. 

6.1 Limit State Functions and Statistical Variables 

Four separate limit state functions, 𝐺1−4(𝑋𝑠𝑖), are considered. The structure is deemed to 

have failed when 𝐺1−4(𝑋𝑠𝑖) < 0. The first two functions, (6.1) and (6.2), represent the 

ultimate failure of the architectural fabric in the principle warp and fill material directions. 

This is where the maximum stress in the direction in question, 𝜎𝑚𝑎𝑥
𝑤  or 𝜎𝑚𝑎𝑥

𝑓
, exceeds the 

permissible stress, 𝜎𝑝𝑒𝑟
𝑤  or 𝜎𝑝𝑒𝑟

𝑓
. Permissible stress is usually taken as a factored value of 

the ultimate strength. The third function represents failure due to wrinkling or complete 

loss of tension. In this case, the minimum principle stress, 𝜎𝑚𝑖𝑛
𝑝

, must be greater than the 

permissible stress which is set at zero, 𝜎𝑝𝑒𝑟
𝑝

= 0. This is based on the principle stress 

wrinkling criteria, equations (3.135) to (3.137), Section 3.1.13. The other criteria, 

principle strain and mixed criteria, equations (3.138 )to (3.143), would be implemented in 

the same way. The final limit state represents excessive deformation. In this case the limit 

state is violated when the absolute maximum deformation, 𝛿𝑚𝑎𝑥, exceeds the allowable 

limit, 𝛿𝑝𝑒𝑟 . 

𝐺1(𝑋𝑠𝑖) = 𝜎𝑝𝑒𝑟
𝑤 − 𝜎𝑚𝑎𝑥

𝑤   (6.1) 

𝐺2(𝑋𝑠𝑖) = 𝜎𝑝𝑒𝑟
𝑓

− 𝜎𝑚𝑎𝑥
𝑓

  (6.2) 

𝐺3(𝑋𝑠𝑖) = 𝜎𝑚𝑖𝑛
𝑝

− 𝜎𝑝𝑒𝑟
𝑝

  (6.3) 

𝐺4(𝑋𝑠𝑖) = 𝛿𝑝𝑒𝑟 − |𝛿|𝑚𝑎𝑥  (6.4) 

 

Where a plane stress material model with unconstrained Poisson’s ratios is employed, 
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each limit state is a function of eight independent statistical variables, 𝑋𝑠𝑖 . Seven statistical 

basic variables represent uncertainty in the material properties, namely; 

𝑋1 = 𝐸𝑤 ,  𝑋2 = 𝐸𝑓 ,  𝑋3 = 𝜈𝑓𝑤 ,  𝑋4 = 𝜈𝑤𝑓 ,  𝑋5 = 𝐺𝑤𝑓 ,  𝑋6 = 𝜎𝑢𝑙𝑡
𝑓

,  𝑋7 = 𝜎𝑢𝑙𝑡
𝑤  , (6.5) 

where 𝐸𝑤  and 𝐸𝑓 are Young’s modulus in the warp and fill directions respectively, 𝜈𝑓𝑤 and 

𝜈𝑤𝑓 are unconstrained Poisson’s ratios, 𝐺𝑤𝑓 is the shear modulus and 𝜎𝑢𝑙𝑡
𝑤  and 𝜎𝑢𝑙𝑡

𝑓
 are the 

fabrics ultimate strengths in the warp and fill directions, respectively.  

The remaining statistical basic variable accounts for uncertainty associated with the 

imposed load coefficient, 𝑡𝑙𝑜𝑎𝑑, with, 

𝑋8 =
𝐹

𝐹𝑐
= 𝑡𝑙𝑜𝑎𝑑  (6.6) 

where 𝐹 is the applied load and 𝐹𝑐  is the deterministic design load. In cases where 

Poisson’s ratio is constrained to follow the reciprocal relationship, the total number of 

independent statistical variables is reduced to seven. 

6.2 iHL-RF FORM Solution Procedure 

The FORM solution procedure is based on the Hasofer-Lind and Rackwitz-Fiessler (iHL-

_RF) algorithm[16, 31] : 

1. Define the appropriate limit state function and failure criterion. 

2. Assume initial values of the design point 𝑥𝑠𝑖
∗ , 𝑖 = 1,2, …𝑛 (normally mean value), 

and calculate the corresponding value of the limit state functions 𝐺𝑖( ). 

3. For those non-normally distributed variables, compute the mean and standard 

deviation at the design point of the equivalent normal distribution using (6.7) and 

(6.8). Then transform the random variables to the reduced coordinate system 

using (6.9). 

𝜇𝑋𝑠𝑖

𝑁 = 𝐹𝑋𝑠𝑖

−1(0.5) = 𝑚𝑒𝑑𝑖𝑎𝑛 𝑜𝑓 𝑋𝑠𝑖  (6.7) 

𝜎𝑋𝑠𝑖

𝑁 =
𝑥𝑠𝑖

∗ −𝜇𝑋𝑠𝑖
𝑁

𝛷−1[𝐹𝑋𝑠𝑖
(𝑥𝑠𝑖

∗ )]
  (6.8) 

𝑥′𝑠𝑖
∗ =

𝑥𝑠𝑖
∗ −𝜇𝑋𝑠𝑖

𝑁

𝜎𝑋𝑠𝑖
𝑁    (6.9) 

4. Compute the partial derivative 
𝜕𝐺

𝜕𝑋𝑠𝑖
 evaluated at the design point 𝑥𝑠𝑖

∗ . 

5. Compute the partial derivative 
𝜕𝐺

𝜕𝑋′𝑠𝑖
 using the chain rule of differentiation as, 
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𝜕𝐺

𝜕𝑋′𝑠𝑖
=

𝜕𝐺

𝜕𝑋𝑠𝑖

𝜕𝑋𝑠𝑖

𝜕𝑋′𝑠𝑖
=

𝜕𝐺

𝜕𝑋𝑠𝑖
𝜎𝑋𝑠𝑖

𝑁   (6.10) 

6. Compute 𝐿 

𝐿 = √∑ (
𝜕𝐺

𝜕𝑋′𝑠𝑖
)
2

𝑖=1   (6.11) 

7. Calculate the direction cosines, alpha, 

𝛼𝑖 =

𝜕𝐺

𝜕𝑋′
𝑠𝑖

𝐿
  (6.12) 

8. Compute the safety index 𝛽 based on the values of the design points calculated in 

step 6 as, 

β = √∑ (x′si
∗ )

2n
i=1    (6.13) 

9. Compute the new values of design points (𝑥′
𝑠𝑖
∗
) in the reduced space using (6.14). 

𝑥′𝑠𝑖(𝑘+1)
∗ = −𝛼𝑖 (𝛽 +

𝐺(𝑋𝑠𝑖)

𝐿
)   (6.14) 

10. Check the convergence of 𝛽. 

11. Compute the new values of the design point (𝑥𝑠𝑖(𝑘+1)
∗ ) in the original space as, 

𝑥𝑠𝑖(𝑘+1)
∗ = 𝜇𝑋𝑠𝑖

𝑁 + 𝜎𝑋𝑠𝑖

𝑁 𝑥′𝑠𝑖(𝑘+1)
∗     (6.15) 

Update the value of the limit state function 𝐺(𝑋𝑠𝑖) for the new design point and check if the 

design points are on the limit state function (i.e. |𝐺(𝑋𝑠𝑖)| is very close to zero, e.g. within 

0.001 for the examples presented in this chapter). If the convergence criteria in step 7 are 

satisfied and |𝐺(𝑋𝑠𝑖)| is approximately zero, then stop. Otherwise, repeat steps 3 to 8 until 

convergence. 

6.3 Sensitivity Analysis 

The gradients of the limit state functions are required for steps 4 and 5 of the solution 

procedure presented above. They are calculated from the partial derivatives of the limit 

state functions with respect to the statistical variable, as in,  

𝜕𝐺1

𝜕𝑋𝑠𝑖
=

𝜕(𝜎𝑝𝑒𝑟
𝑤 −𝜎𝑚𝑎𝑥

𝑤 )

𝜕𝑋𝑠𝑖
=

𝜕𝜎𝑝𝑒𝑟
𝑤

𝜕𝑋𝑠𝑖
−

𝜕𝜎𝑚𝑎𝑥
𝑤

𝜕𝑋𝑠𝑖
   (6.16) 

𝜕𝐺2

𝜕𝑋𝑠𝑖
=

𝜕(𝜎𝑝𝑒𝑟
𝑓

−𝜎𝑚𝑎𝑥
𝑓

)

𝜕𝑋𝑠𝑖
=

𝜕𝜎𝑝𝑒𝑟
𝑓

𝜕𝑋𝑠𝑖
−

𝜕𝜎𝑚𝑎𝑥
𝑓

𝜕𝑋𝑠𝑖
  (6.17) 

𝜕𝐺3

𝜕𝑋𝑠𝑖
=

𝜕(𝜎𝑚𝑖𝑛
𝑝

−𝜎𝑝𝑒𝑟
𝑝

)

𝜕𝑋𝑠𝑖
=

𝜕𝜎𝑚𝑖𝑛
𝑝

𝜕𝑋𝑠𝑖
−

𝜕𝜎𝑝𝑒𝑟
𝑝

𝜕𝑋𝑠𝑖
  (6.18) 
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𝜕𝐺4

𝜕𝑋𝑠𝑖
=

𝜕(𝛿𝑝𝑒𝑟−𝛿𝑚𝑎𝑥)

𝜕𝑋𝑠𝑖
=

𝜕𝛿𝑝𝑒𝑟

𝜕𝑋𝑠𝑖
−

𝜕𝛿𝑚𝑎𝑥

𝜕𝑋𝑠𝑖
 . (6.19) 

 

The gradients calculated by (6.16)to (6.19) effectively constitute a sensitivity analysis of 

structural response with respect to the statistical variables. Therefore, the gradients 

provide useful information about how the statistical variables influence the reliability of a 

structure. In some cases, where a variable is identified as having a very limited impact (e.g. 

the sensitivity is very low), the computational efficiency of the reliability analysis may be 

greatly improved by eliminating these statistical variables that may then be classified as 

deterministic. 

6.3.1 Analytical derivatives 

The derivative of displacement with respect to the statistical variables is first required to 

be found. The simplest form of a general deterministic linear finite element analysis is 

represented by, 

𝐾𝛿 =  𝐹 𝑜𝑟 𝛿 =  𝐾−1𝐹  (6.20) 

where 𝐾 is the structural stiffness matrix, 𝛿 is the array of nodal displacaments and 𝐹 is 

the array of nodal forces. 

Differentiating (6.20) with respect to the statistical variables using the chain rule gives, 

𝑑𝐾

𝑑𝑋𝑠𝑖
𝛿 + 𝐾

𝑑𝛿

𝑑𝑋𝑠𝑖
=

𝑑𝐹

𝑑𝑋𝑠𝑖
  (6.21) 

Given that, 

𝐾 = ∫ 𝐵𝑇 𝐸𝐵𝑑𝑣
𝑣

 , then, (6.22) 

𝑑𝐾

𝑑𝑋𝑠𝑖
= ∫

𝑑𝐵

𝑑𝑋𝑠𝑖

𝑇
𝐸𝐵 + 𝐵𝑇 𝑑𝐸

𝑑𝑋𝑠𝑖
𝐵 + 𝐵𝑇𝐸

𝑑𝐵

𝑑𝑋𝑠𝑖𝑉
𝑑𝑣 = ∫ [

𝜕𝐵𝑇

𝜕𝛿

𝜕𝛿

𝜕𝑋𝑠𝑖
]
𝑇

𝐸𝐵 + 𝐵𝑇 𝑑𝐸

𝑑𝑋𝑠𝑖
𝐵 +

𝑉

𝐵𝑇𝐸
𝜕𝐵

𝜕𝛿

𝜕𝛿

𝜕𝑋𝑠𝑖
𝑑𝑣  

(6.23) 

Numerical integration with 12 Gauss Points is used to compute the integral of (6.22). 

Therefore,  

𝐾 = ∫ 𝐵𝑇 𝐸𝐵𝑑𝑣
𝑣

≈ ∑ [𝐵𝑖
𝑇 𝐸𝐵𝑖] × 𝐺𝑊𝑖 × 𝐴𝑟𝑒𝑎𝑛=12

𝑖=1   (6.24) 

The following sub-derivatives are defined: 

𝑑𝐾1
𝜕𝛿

𝜕𝑋𝑠𝑖
= ∫ [

𝜕𝐵

𝜕𝛿

𝜕𝛿

𝜕𝑋𝑠𝑖
]
𝑇
𝐸𝐵 𝑑𝑣 

𝑣
≈ ∑ [[

𝜕𝐵𝑖

𝜕𝛿

𝜕𝛿

𝜕𝑋𝑠𝑖
]
𝑇
𝐸𝐵𝑖  ] × 𝐺𝑊𝑖 × 𝐴𝑟𝑒𝑎𝑛=12

𝑖=1   (6.25) 

𝑑𝐾2 = ∫ 𝐵𝑇 𝑑𝐸

𝑑𝑋𝑠𝑖
𝐵𝑑𝑣

𝑣
≈ ∑ [𝐵𝑖

𝑇 𝑑𝐸

𝑑𝑋𝑠𝑖
𝐵𝑖] × 𝐺𝑊𝑖 × 𝐴𝑟𝑒𝑎𝑛=12

𝑖=1   (6.26) 
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𝑑𝐾3
𝜕𝛿

𝜕𝑋𝑠𝑖
= ∫ 𝐵𝑇𝐸 [

𝜕𝐵

𝜕𝛿

𝜕𝛿

𝜕𝑋𝑠𝑖
] 𝑑𝑣 ≈  ∑ [𝐵𝑖

𝑇𝐸 [
𝜕𝐵𝑖

𝜕𝛿

𝜕𝛿

𝜕𝑋𝑠𝑖
]] × 𝐺𝑊𝑖 × 𝐴𝑟𝑒𝑎𝑛=12

𝑖=1𝑣
 . 

(6.27) 

As the area of the element is also a function of the displacement, an additional derivative 

term is required, as in, 

𝑑𝐾4
𝜕𝛿

𝜕𝑋𝑠𝑖
= ∑ [𝐵𝑖

𝑇 𝐸𝐵𝑖] × 𝐺𝑊𝑖 ×
𝜕𝐴𝑟𝑒𝑎

𝜕𝛿

𝜕𝛿

𝜕𝑋𝑠𝑖

𝑛=12
𝑖=1   (6.28) 

 

Substitution of (6.25) to (6.28) into (6.23) leads to, 

[𝑑𝐾1
𝜕𝛿

𝜕𝑋𝑠𝑖
+ 𝑑𝐾2 + 𝑑𝐾3

𝜕𝛿

𝜕𝑋𝑠𝑖
+ 𝑑𝐾4

𝜕𝛿

𝜕𝑋𝑠𝑖
] 𝛿 + 𝐾

𝜕𝛿

𝜕𝑋𝑠𝑖
=

𝑑𝐹

𝑑𝑋𝑠𝑖
  (6.29) 

 

Collecting together terms containing 
𝜕𝛿

𝜕𝑋𝑠𝑖
 yields, 

[𝑑𝐾1𝛿 + 𝑑𝐾3𝛿 + 𝑑𝐾4𝛿 + 𝐾]
𝜕𝛿

𝜕𝑋𝑠𝑖
=

𝑑𝐹

𝑑𝑋𝑠𝑖
− 𝑑𝐾2𝛿 . (6.30) 

in which the terms within the bracket may be described by the single variable, dK, as, 

𝑑𝐾 = 𝑑𝐾1𝛿 + 𝑑𝐾3𝛿 + 𝑑𝐾4𝛿 + 𝐾 . (6.31) 

Substitution of (6.31) into (6.30) gives, 

𝑑𝐾
𝜕𝛿

𝜕𝑋𝑠𝑖
=

𝑑𝐹

𝑑𝑋𝑠𝑖
− 𝑑𝐾2𝛿 . (6.32) 

 

Rearranging for 
𝜕𝛿

𝜕𝑋𝑠𝑖
 yields, 

𝜕𝛿

𝜕𝑋
= 𝑑𝐾−1 [

𝑑𝐹

𝑑𝑋
− 𝑑𝐾2𝛿] , (6.33) 

 

and concludes the derivation of the derivative of displacement with respect to the 

statistical variables. 

The derivative of stress with respect to the statistical variable makes use of the 

displacement sensitivity, as in, 

𝜎 = 𝐸𝜀 = 𝐸𝐵𝛿  (6.34) 

The derivative of the stress vector is thus given by, 

𝜕𝜎

𝜕𝑋𝑠𝑖
=

𝜕𝐸

𝜕𝑋𝑠𝑖
𝐵𝛿 + 𝐸

𝜕𝐵

𝜕𝑋𝑠𝑖
𝛿 + 𝐸𝐵

𝜕𝛿

𝜕𝑋𝑠𝑖
  (6.35) 

 

It is not possible to find the derivative of the B-matrix with respect to the statistical 
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variable directly. Using the chain rule the derivative of the B-matrix may be expressed as a 

function of the displacement derivative as, 

𝜕𝐵

𝜕𝑋𝑠𝑖
=

𝜕𝐵

𝜕𝛿

𝜕𝛿

𝜕𝑋𝑠𝑖
= 𝑑𝐵

𝜕𝛿

𝜕𝑋𝑠𝑖
  . (6.36) 

 

Substituting (6.36) into (6.35)leads to, 

𝜕𝜎

𝜕𝑋𝑠𝑖
=

𝜕𝐸

𝜕𝑋𝑠𝑖
𝐵𝛿 + 𝐸𝑑𝐵

𝜕𝛿

𝜕𝑋𝑠𝑖
𝛿 + 𝐸𝐵

𝜕𝛿

𝜕𝑋𝑠𝑖
 . (6.37) 

 

The minimum principle stress is given by,  

𝜎𝑚𝑖𝑛
𝑝

= 0.5(𝜎𝑓 + 𝜎𝑤) − √(
𝜎𝑤−𝜎𝑓

2
)
2
+ (γ𝑤𝑓)

2
 . (6.38) 

 

Therefore, based on (6.38) the derivative is given by, 

𝜕𝜎𝑚𝑖𝑛
𝑝

𝜕𝑋𝑠𝑖
= 0.5 (

𝜕𝜎𝑓

𝜕𝑋𝑠𝑖
+

𝜕𝜎𝑤

𝜕𝑋𝑠𝑖
) −

0.5(𝜎𝑤−𝜎𝑓)(
𝜕𝜎𝑓

𝜕𝑋𝑠𝑖
−

𝜕𝜎𝑤
𝜕𝑋𝑠𝑖

)+2𝜎𝑤𝑓

𝜕𝜎𝑤𝑓

𝜕𝑋𝑠𝑖

2√1

4
(𝜎𝑤−𝜎𝑓)

2
+(𝜎𝑤𝑓)

2
 . (6.39) 

 

As in the case of the 𝐵-matrix, (6.36), the derivatives of the membrane transformation 

matrix, Tm, cable transformation matrix, Tc, and cable force, P, with respect to the 

statistical variables cannot be found directly. Again the chain rule is evoked, and use is 

made of the displacement derivative to give,   

𝜕𝑇𝑚

𝜕𝑋𝑠𝑖
=

𝜕𝑇𝑚

𝜕𝛿

𝜕𝛿

𝜕𝑋𝑠𝑖
= 𝑑𝑇𝑚 𝜕𝛿

𝜕𝑋𝑠𝑖
  (6.40) 

𝜕𝑇𝑐

𝜕𝑋𝑠𝑖
=

𝜕𝑇𝑐

𝜕𝛿

𝜕𝛿

𝜕𝑋𝑠𝑖
= 𝑑𝑇𝑐 𝜕𝛿

𝜕𝑋𝑠𝑖
  (6.41) 

𝜕𝑃

𝜕𝑋𝑠𝑖
=

𝜕𝑃

𝜕𝛿

𝜕𝛿

𝜕𝑋𝑠𝑖
= 𝑑𝑃

𝜕𝛿

𝜕𝑋𝑠𝑖
 . (6.42) 

6.3.1.1 Elastic Stiffness Matrix Derivative 

Assuming that the elastic stiffness matrix, E,  is given by, 

[𝐸] =

[
 
 
 
 

𝐸𝑤

(1−𝜐𝑤𝑓𝜐𝑓𝑤)

𝐸𝑤𝜐𝑓𝑤

(1−𝜐𝑤𝑓𝜐𝑓𝑤)
0

𝐸𝑓𝜐𝑤𝑓

(1−𝜐𝑤𝑓𝜐𝑓𝑤)

𝐸𝑓

(1−𝜐𝑤𝑓𝜐𝑓𝑤)
0

0 0 𝐺𝑤𝑓]
 
 
 
 

 , (6.43) 
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it is relatively simple to find the partial derivatives of E  with respect to the statistical 

variables, 
𝜕𝐸

𝜕𝑋𝑠𝑖
. The partial derivative of E with respect to the young's modulus in the warp 

direction, 𝐸𝑤, is given by, 

[
𝜕𝐸

𝜕𝑋1
] = [

1

(1−𝜐𝑤𝑓𝜐𝑓𝑤)

𝜐𝑓𝑤

(1−𝜐𝑤𝑓𝜐𝑓𝑤)
0

0 0 0
0 0 0

], (6.44) 

and similarly with respect to young's modulus in the fill direction, 𝐸𝑓 , is given by, 

[
𝜕𝐸

𝜕𝑋2
] = [

0 0 0
𝜐𝑤𝑓

(1−𝜐𝑤𝑓𝜐𝑓𝑤)

1

(1−𝜐𝑤𝑓𝜐𝑓𝑤)
0

0 0 0

]. (6.45) 

The partial derivatives of E with respect to the Poisson's ratios 𝜐𝑓𝑤 and 𝜐𝑤𝑓 are given by,  

[
𝜕𝐸

𝜕𝑋3
] =

[
 
 
 
 

𝐸𝑤

𝜐𝑤𝑓(1−𝜐𝑤𝑓𝜐𝑓𝑤)2

𝐸𝑤𝜐𝑓𝑤

𝜐𝑤𝑓(1−𝜐𝑤𝑓𝜐𝑓𝑤)2
+

𝐸𝑤

(1−𝜐𝑤𝑓𝜐𝑓𝑤)
0

𝐸𝑓𝜐𝑤𝑓

𝜐𝑤𝑓(1−𝜐𝑤𝑓𝜐𝑓𝑤)2

𝐸𝑓

𝜐𝑤𝑓(1−𝜐𝑤𝑓𝜐𝑓𝑤)2
0

0 0 0]
 
 
 
 

, (6.46) 

and  

[
𝜕𝐸

𝜕𝑋4
] =

[
 
 
 
 

𝐸𝑤

𝜐𝑓𝑤(1−𝜐𝑤𝑓𝜐𝑓𝑤)2

𝐸𝑤𝜐𝑓𝑤

𝜐𝑓𝑤(1−𝜐𝑤𝑓𝜐𝑓𝑤)2
0

𝐸𝑓𝜐𝑤𝑓

𝜐𝑓𝑤(1−𝜐𝑤𝑓𝜐𝑓𝑤)2
+

𝐸𝑓

(1−𝜐𝑤𝑓𝜐𝑓𝑤)

𝐸𝑓

𝜐𝑓𝑤(1−𝜐𝑤𝑓𝜐𝑓𝑤)2
0

0 0 0]
 
 
 
 

. (6.47) 

Finally the partial derivatives of E with respect to the shear modulus, 𝐺𝑤𝑓, is given by, 

[
𝜕𝐸

𝜕𝑋5
] = [

0 0 0
0 0 0
0 0 1

]. (6.48) 

As E is not a function of the fabric ultimate strength or the applied load, 

[
𝜕𝐸

𝜕𝑋6−8
] = [

0 0 0
0 0 0
0 0 0

], (6.49) 

where 𝑋6−8 is 𝜎𝑢𝑙𝑡
𝑤 , 𝜎𝑢𝑙𝑡

𝑓
 and 𝑡𝑙𝑜𝑎𝑑 respectively. 

6.3.1.2 Transformation matrix derivative 

A demonstrated in Section 3.1.5 the local 𝑍-direction basis vector is derived from the cross 
product of the natural co-ordinate basis vectors. When witten explicitly equation (3.56) 
becomes 

𝑍̂ =
𝜉̂ ×𝜂̂

‖𝜉̂ ×𝜂̂‖
= |

𝑖̂ 𝑗̂ 𝑘̂

𝜉1 𝜉2 𝜉3

𝜂̂1 𝜂̂2 𝜂̂3

| =
(𝜉̂2𝜂̂3−𝜉̂3𝜂̂2)

‖𝑍⃗‖
 𝑖̂ +

(𝜉̂3𝜂̂1−𝜉̂1𝜂̂3)

‖𝑍⃗‖
𝑗̂ +

(𝜉̂1𝜂̂2−𝜉̂2𝜂̂)

‖𝑍⃗‖
𝑘̂  (6.50) 

where, 
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‖𝑍‖ = √(𝜉2𝜂̂3 − 𝜉3𝜂̂2)
2
+ (𝜉3𝜂̂1 − 𝜉1𝜂̂3)

2
+ (𝜉1𝜂̂2 − 𝜉2𝜂̂1)

2
  (6.51) 

Therefore, the directional cosines describing the local Z-direction are given by, 

𝑛1 =
(𝜉̂2𝜂̂3−𝜉̂3𝜂̂2)

‖𝑍⃗‖
  (6.52) 

𝑛2 =
(𝜉̂3𝜂̂1−𝜉̂1𝜂̂3)

‖𝑍⃗‖
  (6.53) 

𝑛3 =
(𝜉̂1𝜂̂2−𝜉̂2𝜂̂1)

‖𝑍⃗‖
  (6.54) 

The local 𝑋-direction basis vector is obtained from the cross product of the global fill 

material direction basis vector, 𝜃𝑓 , with the local 𝑍-direction basis vector. When written 

explicitly, using the form of (3.56) and (3.57), (3.58) becomes 

𝑋̂ =
𝜃̂𝑓 ×𝑍̂

‖𝜃̂𝑓 ×𝑍̂‖
= |

𝑖̂ 𝑗̂ 𝑘̂

𝜃𝑓1
𝜃𝑓2

𝜃𝑓3

𝑍̂1 𝑍̂2 𝑍̂3

| = |
𝑖̂ 𝑗̂ 𝑘̂

− sin𝜃 cos 𝜃 0
𝑛1 𝑛2 𝑛3

| =

                 
(𝑐𝑜𝑠(𝜃) 𝑛3)

‖𝑋⃗⃗‖
 𝑖̂ +

(𝑠𝑖𝑛(𝜃)𝑛3)

‖𝑋⃗⃗‖
𝑗̂ +

( − 𝑠𝑖𝑛(𝜃)𝑛2−𝑐𝑜𝑠(𝜃)𝑛1)

‖𝑋⃗⃗‖
𝑘̂ , 

(6.55) 

where, 

‖𝑋⃗‖ = √(𝑐𝑜𝑠(𝜃) 𝑛3)
2 + (𝑠𝑖𝑛(𝜃)𝑛3)

2 + (−𝑠𝑖𝑛(𝜃) 𝑛2 − 𝑐𝑜𝑠(𝜃) 𝑛1)
2 . (6.56) 

 

Therefore, 

𝑙1 =
(𝑐𝑜𝑠(𝜃) 𝑛3)

‖𝑋⃗⃗‖
  (6.57) 

𝑙2 = 
(𝑠𝑖𝑛(𝜃)𝑛3)

‖𝑋⃗⃗‖
  (6.58) 

𝑙3 =
( − 𝑠𝑖𝑛(𝜃)𝑛2−𝑐𝑜𝑠(𝜃)𝑛1)

‖𝑋⃗⃗‖
 . (6.59) 

 

Finally the local 𝑌-direction basis vector derived from the cross product of the local 𝑋-

direction basis vector and the local 𝑍-direction material direction basis vector. When 

written explicitly, using the form of (3.57) and (3.58), (3.59)  becomes 

𝑌̂ =
𝑍̂×𝑋̂

‖𝑍̂×𝑋̂‖
= |

𝑖̂ 𝑗̂ 𝑘̂

𝑍̂1 𝑍̂2 𝑍̂3

𝑋̂1 𝑋̂2 𝑋̂3

| = |
𝑖̂ 𝑗̂ 𝑘̂
𝑛1 𝑛2 𝑛3

𝑙1 𝑙2 𝑙3

| =
(𝑛2𝑙3−𝑛3𝑙2)

‖𝑌⃗⃗‖
 𝑖̂ +

(𝑛3𝑙1−𝑛1𝑙3)

‖𝑌⃗⃗‖
𝑗̂ +

(𝑛1𝑙2−𝑛2𝑙1)

‖𝑌⃗⃗‖
𝑘̂ , 

where, 

‖𝑌⃗⃗‖ = √(𝑛2𝑙3 − 𝑛3𝑙2)
2 + (𝑛3𝑙1 − 𝑛1𝑙3)

2 + (𝑛1𝑙2 − 𝑛2𝑙1)
2 . (6.60) 
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Therefore, 

𝑚1 =
(𝑛2𝑙3−𝑛3𝑙2)

‖𝑌⃗⃗‖
  (6.61) 

𝑚2 =
(𝑛3𝑙1−𝑛1𝑙3)

‖𝑌⃗⃗‖
  (6.62) 

𝑚3 =
(𝑛1𝑙2−𝑛2𝑙1)

‖𝑌⃗⃗‖
 . (6.63) 

 

The partial derivative of the transformation matrix with respect to the global 

displacements, {𝛿}𝑖, is given by 

𝑑𝑇𝑚 =
𝜕𝑇

𝜕𝛿
=

[
 
 
 
 

 

𝜕𝑙1

𝜕𝛿

𝜕𝑙2

𝜕𝛿

𝜕𝑙3

𝜕𝛿
𝜕𝑚1

𝜕𝛿

𝜕𝑚2

𝜕𝛿

𝜕𝑚3

𝜕𝛿
𝜕𝑛1

𝜕𝛿

𝜕𝑛2

𝜕𝛿

𝜕𝑛3

𝜕𝛿 ]
 
 
 
 

 . (6.64) 

 

The updated global nodal co-ordinates of an element may be defined by the dot product of 

the initial nodal co-ordinates and the element global nodal displacements 

𝐶 = 𝐶0 ∙ 𝛿 =

[
 
 
 
 
 
𝑥1 𝑦1 𝑧1

𝑥2 𝑦2 𝑧2

𝑥3 𝑦3 𝑧3
𝑥4 𝑦4 𝑧4

𝑥5 𝑦5 𝑧5

𝑥6 𝑦6 𝑧6]
 
 
 
 
 

∙

[
 
 
 
 
 
𝑢1 𝑣1 𝑤1

𝑢2 𝑣2 𝑤2

𝑢3 𝑣3 𝑤3
𝑢4 𝑣4 𝑤4

𝑢5 𝑣5 𝑤5

𝑢6 𝑣6 𝑤6]
 
 
 
 
 

=

[
 
 
 
 
 
𝑥1 + 𝑢1 𝑦1 + 𝑣1 𝑧1 + 𝑤1

𝑥2 + 𝑢2 𝑦2 + 𝑣2 𝑧2 + 𝑤2

𝑥3 + 𝑢3 𝑦3 + 𝑣3 𝑧3 + 𝑤3

𝑥4 + 𝑢4 𝑦4 + 𝑣4 𝑧4 + 𝑤4

𝑥5 + 𝑢5 𝑦5 + 𝑣5 𝑧5 + 𝑤5

𝑥6 + 𝑢6 𝑦6 + 𝑣6 𝑧6 + 𝑤6]
 
 
 
 
 

  (6.65) 

 

Substitution of the above definition of the global nodal co-ordinates into the equations for 

the natural co-ordinate basis vectors 𝜉 (3.53) and 𝜂̂ (3.54) yields, 

𝜉1 = (4𝜉1 − 1)(𝑥1 + 𝑢1) − (4𝜉3 + 1)(𝑥3 + 𝑢3) + (4𝜉2)(𝑥4 + 𝑢4) −

   (4𝜉2)(𝑥5 + 𝑢5) + 4(𝜉3 − 𝜉1)(𝑥6 + 𝑢6) , 
(6.66) 

𝜉2 = (4𝜉1 − 1)(𝑦1 + 𝑣1) − (4𝜉3 + 1)(𝑦3 + 𝑣3) + (4𝜉2)(𝑦4 + 𝑣4) −

    (4𝜉2)(𝑦5 + 𝑣5) + 4(𝜉3 − 𝜉1)(𝑦6 + 𝑣6) , 

(6.67) 

𝜉3 = (4𝜉1 − 1)(𝑧1 + 𝑤1) − (4𝜉3 + 1)(𝑧3 + 𝑤3) + (4𝜉2)(𝑧4 + 𝑤4) −

   (4𝜉2)(𝑧5 + 𝑤5) + 4(𝜉3 − 𝜉1)(𝑧6 + 𝑤6) , 

(6.68) 

and 

𝜂̂1 = (4𝜉2 − 1)(𝑥2 + 𝑢2) − (4𝜉3 + 1)(𝑥3 + 𝑢3) + (4𝜉1)(𝑥4 + 𝑢4) +

4(𝜉3 − 𝜉2)(𝑥5 + 𝑢5) − 4(𝜉1)(𝑥6 + 𝑢6) , 
(6.69) 

𝜂̂2 = (4𝜉2 − 1)(𝑦2 + 𝑣2) − (4𝜉3 + 1)(𝑦3 + 𝑣3) + (4𝜉1)(𝑦4 + 𝑣4) + (6.70) 
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4(𝜉3 − 𝜉2)(𝑦5 + 𝑣5) − 4(𝜉1)(𝑦6 + 𝑣6) , 

𝜂̂3 = (4𝜉2 − 1)(𝑧2 + 𝑤2) − (4𝜉3 + 1)(𝑧3 + 𝑤3) + (4𝜉1)(𝑧4 + 𝑤4) +

4(𝜉3 − 𝜉2)(𝑧5 + 𝑤5) − 4(𝜉1)(𝑧6 + 𝑤6) . 

(6.71) 

Defining  

𝑎23 = 𝜉2𝜂̂3          𝑎31 = 𝜉3𝜂̂1          𝑎12 = 𝜉1𝜂̂2  

𝑏32 = 𝜉3𝜂̂2          𝑏13 = 𝜉1𝜂̂3          𝑏21 = 𝜉2𝜂̂1 , 
(6.72) 

‖𝑍‖ = 𝑐1 = (𝑎23 − 𝑏32)
2 + (𝑎31 − 𝑏13)

2 + (𝑎12 − 𝑏21)
2 , (6.73) 

 

and noting that the derivatives of the basis vectors are arranged within 𝑛 by 𝑚 matrices in 

the same form as (6.65) where 𝑛 indicates the element node (𝑛 = 1 → 6) and 𝑚 indicates 

the global displacement direction 𝑢, 𝑣 and 𝑤 (𝑚 = 1 → 3), 

𝜕𝜉1 =

[
 
 
 
 
 

4𝜉1 − 1 0 0
0 0 0

−4𝜉3 + 1 0 0
4𝜉2 0 0

−4𝜉2 0 0

4(𝜉3 − 𝜉1) 0 0]
 
 
 
 
 

𝜕𝜉2 =

[
 
 
 
 
 
0 4𝜉1 − 1 0
0 0 0
0 −4𝜉3 + 1 0
0 4𝜉2 0
0 −4𝜉2 0

0 4(𝜉3 − 𝜉1) 0]
 
 
 
 
 

𝜕𝜉3 =

[
 
 
 
 
 
0 0 4𝜉1 − 1
0 0 0
0 0  −4𝜉3 + 1 
0 0 4𝜉2

0 0 −4𝜉2

0 0 4(𝜉3 − 𝜉1)]
 
 
 
 
 

   (6.74) 

𝜕𝜂̂1 =

[
 
 
 
 
 

0 0 0
4𝜉2 − 1 0 0

−4𝜉3 + 1  0 0
4𝜉1 0 0

4(𝜉3 − 𝜉2) 0 0
−4𝜉1 0 0]

 
 
 
 
 

𝜕𝜂̂2 =

[
 
 
 
 
 
0 0 0
0 4𝜉2 − 1 0
0 −4𝜉3 + 1 0
0 4𝜉1 0

0 4(𝜉3 − 𝜉2) 0
0 −4𝜉1 0]

 
 
 
 
 

𝜕𝜂̂3 =

[
 
 
 
 
 
0 0 0
0 0 4𝜉2 − 1
0 0  −4𝜉3 + 1 
0 0 4𝜉1

0 0 4(𝜉3 − 𝜉2)

0 0 −4𝜉1 ]
 
 
 
 
 

 ,  

(6.75) 

 

then the derivatives of (6.72) and (6.73) are given by 

𝜕𝑎23

𝜕𝛿(𝑛,𝑚)
= 𝜕𝜉̂

2(𝑛,𝑚)
𝜂̂3 + 𝜕𝜂̂

3(𝑛,𝑚)
𝜉̂2  (6.76) 

𝜕𝑎31

𝜕𝛿(𝑛,𝑚)
= 𝜕𝜉̂

3(𝑛,𝑚)
𝜂̂1 + 𝜕𝜂̂

1(𝑛,𝑚)
𝜉3  (6.77) 

𝜕𝑎12

𝜕𝛿(𝑛,𝑚)
= 𝜕𝜉̂

1(𝑛,𝑚)
𝜂̂2 + 𝜕𝜂̂

2(𝑛,𝑚)
𝜉̂1  (6.78) 

𝜕𝑏32

𝜕𝛿(𝑛,𝑚)
= 𝜕𝜉̂

3(𝑛,𝑚)
𝜂̂2 + 𝜕𝜂̂

3(𝑛,𝑚)
𝜉̂2  (6.79) 

𝜕𝑏13

𝜕𝛿(𝑛,𝑚)
= 𝜕𝜉̂

1(𝑛,𝑚)
𝜂̂3 + 𝜕𝜂̂

3(𝑛,𝑚)
𝜉̂1  (6.80) 

𝜕𝑏21

𝜕𝛿(𝑛,𝑚)
= 𝜕𝜉̂

2(𝑛,𝑚)
𝜂̂1 + 𝜕𝜂̂

1(𝑛,𝑚)
𝜉2  (6.81) 

𝜕𝑐1

𝜕𝛿(𝑛,𝑚)
= 2(𝑎23 − 𝑏32) (

𝜕𝑎23

𝜕𝛿(𝑛,𝑚)
−

𝜕𝑏32

𝜕𝛿(𝑛,𝑚)
) + 2(𝑎31 − 𝑏13) (

𝜕𝑎31

𝜕𝛿(𝑛,𝑚)
−

𝜕𝑏13

𝜕𝛿(𝑛,𝑚)
) +

2(𝑎12 − 𝑏21) (
𝜕𝑎12

𝜕𝛿(𝑛,𝑚)
−

𝜕𝑏21

𝜕𝛿(𝑛,𝑚)
)  

(6.82) 
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Substituting the identities in (6.72) and (6.73) into the 𝑍-direction cosines, (6.52) to (6.54), 

and using the derivatives (6.76) to (6.82) the derivatives of the Z-direction cosines are 

given by, 

𝜕𝑛1

𝜕𝛿(𝑛,𝑚)
=

𝜕

𝜕𝛿(𝑛,𝑚)
(𝑎23 − 𝑏32)(𝑐1)

−1
2⁄ −

1

2
(𝑐1)

−3
2⁄

𝜕𝑐1

𝜕𝛿(𝑛,𝑚)
(𝑎23 − 𝑏32) =

(
𝜕𝑎23

𝜕𝛿(𝑛,𝑚)
−

𝜕𝑏32

𝜕𝛿(𝑛,𝑚)
) (𝑐1)

−1
2⁄ −

1

2
(𝑐1)

−3
2⁄

𝜕𝑐1

𝜕𝛿(𝑛,𝑚)
(𝑎23 − 𝑏32)  . 

(6.83) 

 

Similarly, 

𝜕𝑛2

𝜕𝑢(𝑛,𝑚)
= (

𝜕𝑎31

𝜕𝑢(𝑛,𝑚)
−

𝜕𝑏13

𝜕𝑢(𝑛,𝑚)
) (𝑐1)

−1
2⁄ −

1

2
(𝑐1)

−3
2⁄

𝜕𝑐1

𝜕𝑢(𝑛,𝑚)
(𝑎31 − 𝑏13)  (6.84) 

𝜕𝑛3

𝜕𝑢(𝑛,𝑚)
= (

𝜕𝑎12

𝜕𝑢(𝑛,𝑚)
−

𝜕𝑏21

𝜕𝑢(𝑛,𝑚)
) (𝑐1)

−1
2⁄ −

1

2
(𝑐1)

−3
2⁄

𝜕𝑐1

𝜕𝑢(𝑛,𝑚)
(𝑎12 − 𝑏21) . (6.85) 

 

Defining 

‖𝑋⃗‖ = 𝑐2 = (𝑐𝑜𝑠(𝜃) 𝑛3)
2 + (𝑠𝑖𝑛(𝜃) 𝑛3)

2 + ( − 𝑠𝑖𝑛(𝜃) 𝑛2 − 𝑐𝑜𝑠(𝜃) 𝑛1)
2 , (6.86) 

 

differentiation with respect to the displacements yields, 

𝜕𝑐2

𝜕𝛿(𝑛,𝑚)
= 2(𝑐𝑜𝑠(𝜃) 𝑛3) (𝑐𝑜𝑠(𝜃) 

𝜕𝑛3

𝜕𝛿(𝑛,𝑚)
) + 2(𝑠𝑖𝑛(𝜃) 𝑛3) (𝑠𝑖𝑛(𝜃)

𝜕𝑛3

𝜕𝛿(𝑛,𝑚)
) +

2(−𝑠𝑖𝑛(𝜃)𝑛2 − 𝑐𝑜𝑠(𝜃)𝑛1) (− 𝑠𝑖𝑛(𝜃)
𝜕𝑛2

𝜕𝛿(𝑛,𝑚)
− 𝑐𝑜𝑠(𝜃)

𝜕𝑛1

𝜕𝛿(𝑛,𝑚)
) . 

(6.87) 

 

Substituting (6.86) into the 𝑋-direction cosines, (6.57) to(6.59), and using the derivatives 

(6.83) to (6.85) and (6.87), the derivatives of the 𝑋-direction cosines are given by, 

𝜕𝑙1

𝜕𝛿(𝑛,𝑚)
= (𝑐𝑜𝑠(𝜃)

𝜕𝑛3

𝜕𝛿(𝑛,𝑚)
) (𝑐2)

−1
2⁄ −

1

2
(𝑐2)

−3
2⁄

𝜕𝑐2

𝜕𝛿(𝑛,𝑚)
(𝑐𝑜𝑠(𝜃)𝑛3)  (6.88) 

𝜕𝑙2

𝜕𝛿(𝑛,𝑚)
= (𝑠𝑖𝑛(𝜃)

𝜕𝑛3

𝜕𝛿(𝑛,𝑚)
) (𝑐2)

−1
2⁄ −

1

2
(𝑐2)

−3
2⁄

𝜕𝑐2

𝜕𝛿(𝑛,𝑚)
(𝑠𝑖𝑛(𝜃) 𝑛3)  (6.89) 

𝜕𝑙3

𝜕𝛿(𝑛,𝑚)
=

 (− 𝑠𝑖𝑛(𝜃)
𝜕𝑛2

𝜕𝛿(𝑛,𝑚)
− 𝑐𝑜𝑠(𝜃)

𝜕𝑛1

𝜕𝛿(𝑛,𝑚)
) (𝑐2)

−1
2⁄ −

1

2
(𝑐2)

−3
2⁄

𝜕𝑐2

𝜕𝛿(𝑛,𝑚)
(− 𝑠𝑖𝑛(𝜃)𝑛2 − 𝑐𝑜𝑠(𝜃)𝑛1) . 

(6.90) 

 

With, 
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𝑒23 = 𝑛2𝑙3          𝑒31 = 𝑛3𝑙1          𝑒12 = 𝑛1𝑙2  

𝑓32 = 𝑛3𝑙2          𝑓13 = 𝑛1𝑙3          𝑓21 = 𝑛2𝑙1  
(6.91) 

‖𝑌⃗⃗‖ = 𝑐3 = (𝑒23 − 𝑓32)
2 + (𝑒31 − 𝑓13)

2 + (𝑒12 − 𝑓21)
2 , (6.92) 

 

the derivatives of (6.91) and (6.92) are given by, 

𝜕𝑒23

𝜕𝑢(𝑛,𝑚)
=

𝜕𝑛2

𝜕𝑢(𝑛,𝑚)
𝑙3 +

𝜕𝑙3

𝜕𝑢(𝑛,𝑚)
𝑛2  (6.93) 

𝜕𝑒31

𝜕𝑢(𝑛,𝑚)
=

𝜕𝑛3

𝜕𝑢(𝑛,𝑚)
𝑙1 +

𝜕𝑙1

𝜕𝑢(𝑛,𝑚)
𝑛3  (6.94) 

𝜕𝑒12

𝜕𝑢(𝑛,𝑚)
=

𝜕𝑛1

𝜕𝑢(𝑛,𝑚)
𝑙2 +

𝜕𝑙2

𝜕𝑢(𝑛,𝑚)
𝑛1  (6.95) 

𝜕𝑓32

𝜕𝛿(𝑛,𝑚)
=

𝜕𝑛3

𝜕𝛿(𝑛,𝑚)
𝑙2 +

𝜕𝑙2

𝜕𝛿(𝑛,𝑚)
𝑛3  (6.96) 

𝜕𝑓13

𝜕𝛿(𝑛,𝑚)
=

𝜕𝑛1

𝜕𝛿(𝑛,𝑚)
𝑙3 +

𝜕𝑙3

𝜕𝛿(𝑛,𝑚)
𝑛1  (6.97) 

𝜕𝑓21

𝜕𝛿(𝑛,𝑚)
=

𝜕𝑛2

𝜕𝛿(𝑛,𝑚)
𝑙1 +

𝜕𝑙1

𝜕𝛿(𝑛,𝑚)
𝑛2  (6.98) 

𝜕𝑐3

𝜕𝛿(𝑛,𝑚)
= 2(𝑒23 − 𝑓32) (

𝜕𝑒23

𝜕𝛿(𝑛,𝑚)
−

𝜕𝑓32

𝜕𝛿(𝑛,𝑚)
) + 2(𝑒31 − 𝑓13) (

𝜕𝑒31

𝜕𝛿(𝑛,𝑚)
−

𝜕𝑓13

𝜕𝛿(𝑛,𝑚)
) +

2(𝑒12 − 𝑓21) (
𝜕𝑒12

𝜕𝛿(𝑛,𝑚)
−

𝜕𝑓21

𝜕𝛿(𝑛,𝑚)
) . 

(6.99) 

 

Substituting (6.91) and (6.92) into the 𝑌-direction cosines, (6.61) to(6.63), and using the 

derivatives (6.93) to (6.99) the derivatives of the 𝑌-direction cosines are given by 

𝜕𝑚1

𝜕𝛿(𝑛,𝑚)
= (

𝜕𝑒23

𝜕𝛿(𝑛,𝑚)
−

𝜕𝑓32

𝜕𝛿(𝑛,𝑚)
) (𝑐3)

−1
2⁄ −

1

2
(𝑐3)

−3
2⁄

𝜕𝑐3

𝜕𝛿(𝑛,𝑚)
(𝑒23 − 𝑓32)  (6.100) 

𝜕𝑚2

𝜕𝛿(𝑛,𝑚)
= (

𝜕𝑒31

𝜕𝛿(𝑛,𝑚)
−

𝜕𝑓13

𝜕𝛿(𝑛,𝑚)
) (𝑐1)

−1
2⁄ −

1

2
(𝑐1)

−3
2⁄

𝜕𝑐3

𝜕𝛿(𝑛,𝑚)
(𝑒31 − 𝑓13)  (6.101) 

𝜕𝑚2

𝜕𝛿(𝑛,𝑚)
= (

𝜕𝑒31

𝜕𝛿(𝑛,𝑚)
−

𝜕𝑓13

𝜕𝛿(𝑛,𝑚)
) (𝑐1)

−1
2⁄ −

1

2
(𝑐1)

−3
2⁄

𝜕𝑐3

𝜕𝛿(𝑛,𝑚)
(𝑒31 − 𝑓13) . (6.102) 

 

Revisiting (6.40), 
𝜕𝑇𝑚

𝜕𝑋𝑠𝑖
 may now be written as, 

𝜕𝑇𝑚(𝑖,𝑗)

𝜕𝑋𝑠𝑗
= [𝑑𝑇𝑚(𝑖, 𝑗)] [

𝜕𝛿

𝜕𝑋𝑠𝑖
] = (6.103) 
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[
𝜕𝑇𝑚(𝑖,𝑗)

𝜕𝛿1,1

𝜕𝑇𝑚(𝑖,𝑗)

𝜕𝛿1,2

𝜕𝑇𝑚(𝑖,𝑗)

𝜕𝛿1,3
 ⋯

𝜕𝑇𝑚(𝑖,𝑗)

𝜕𝛿6,1

𝜕𝑇𝑚(𝑖,𝑗)

𝜕𝛿6,2

𝜕𝑇𝑚(𝑖,𝑗)

𝜕𝛿6,3
]

[
 
 
 
 
 
 
 
 
 
 
 
𝜕𝛿1,1

𝜕𝑋𝑠𝑖

𝜕𝛿1,2

𝜕𝑋𝑠𝑖

𝜕𝛿1,3

𝜕𝑋𝑠𝑖

⋮
𝜕𝛿6,1

𝜕𝑋𝑠𝑖

𝜕𝛿6,2

𝜕𝑋𝑠𝑖

𝜕𝛿6,3

𝜕𝑋𝑠𝑖 ]
 
 
 
 
 
 
 
 
 
 
 

   

𝜕𝑇𝑚

𝜕𝑋𝑠𝑖
=

[
 
 
 
 
𝜕𝑇𝑚(1,1)

𝜕𝑋𝑠𝑖

𝜕𝑇𝑚(1,2)

𝜕𝑋𝑠𝑖

𝜕𝑇𝑚(1,3)

𝜕𝑋𝑠𝑖

𝜕𝑇𝑚(2,1)

𝜕𝑋𝑠𝑖

𝜕𝑇𝑚(2,2)

𝜕𝑋𝑠𝑖

𝜕𝑇𝑚(2,3)

𝜕𝑋𝑠𝑖

𝜕𝑇𝑚(3,1)

𝜕𝑋𝑠𝑖

𝜕𝑇𝑚(3,2)

𝜕𝑋𝑠𝑖

𝜕𝑇𝑚(3,3)

𝜕𝑋𝑠𝑖 ]
 
 
 
 

 . (6.104) 

6.3.1.3 B-matrix derivatives 

Using a similar form as above, the derivatives of the linear part of the B-matrix with 

respect to the displacements may be expressed as, 

𝜕𝐵0

𝜕𝛿(𝑛,𝑚)
=

[
 
 
 
 
 
𝜕𝐵0(1,1)

𝜕𝛿(𝑛,𝑚)

𝜕𝐵0(2,1)

𝜕𝛿(𝑛,𝑚)

𝜕𝐵0(3,1)

𝜕𝛿(𝑛,𝑚)

𝜕𝐵0(1,2)

𝜕𝛿(𝑛,𝑚)

𝜕𝐵0(2,2)

𝜕𝛿(𝑛,𝑚)

𝜕𝐵0(3,2)

𝜕𝛿(𝑛,𝑚)

𝜕𝐵0(1,3)

𝜕𝛿(𝑛,𝑚)

𝜕𝐵0(2,3)

𝜕𝛿(𝑛,𝑚)

𝜕𝐵0(3,3)

𝜕𝛿(𝑛,𝑚)

⋯
𝜕𝐵0(1,18)

𝜕𝛿(𝑛,𝑚)

⋯  
𝜕𝐵0(2,18)

𝜕𝛿(𝑛,𝑚)

⋯
𝜕𝐵0(3,18)

𝜕𝛿(𝑛,𝑚) ]
 
 
 
 
 

  (6.105) 

 

Revisiting equation (3.80) the derivatives of the first term of each row of the linear B-

matrix with respect to the global displacements may be expressed explicitly as, 

𝜕𝐵0(1,1)

𝜕𝛿(𝑛,𝑚)
= 𝑙1

𝜕
𝜕𝑁1
𝜕𝑋

𝜕𝛿(𝑛,𝑚)
+

𝜕𝑙1

𝜕𝛿(𝑛,𝑚)

𝜕𝑁1

𝜕𝑋
  (6.106) 

𝜕𝐵0(2,1)

𝜕𝛿(𝑛,𝑚)
= 𝑚1

𝜕
𝜕𝑁1
𝜕𝑌

𝜕𝛿(𝑛,𝑚)
+

𝜕𝑚1

𝜕𝛿(𝑛,𝑚)

𝜕𝑁1

𝜕𝑌
  

(6.107) 

𝜕𝐵0(3,1)

𝜕𝛿(𝑛,𝑚)
= 𝑙1

𝜕
𝜕𝑁1
𝜕𝑌

𝜕𝛿(𝑛,𝑚)
+

𝜕𝑙1

𝜕𝛿(𝑛,𝑚)

𝜕𝑁1

𝜕𝑌
+ 𝑚1

𝜕
𝜕𝑁1
𝜕𝑋

𝜕𝛿(𝑛,𝑚)
+

𝜕𝑚1

𝜕𝛿(𝑛,𝑚)

𝜕𝑁1

𝜕𝑋
   

(6.108) 

 

The remaining terms are easily obtained from the preceding procedure. The direction 

cosines and their partial derivatives have been found in Section 6.3.1.1. Therefore, all that 

remains is to find the derivatives of 
𝜕𝑁𝑖

𝜕𝑋
 and 

𝜕𝑁𝑖

𝜕𝑌
 with respect to the displacements.  

With (3.83) and (3.84)  
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𝜕𝑁𝑖

𝜕𝑋
= Γ11

𝜕𝑁𝑖

𝜕𝜉
+ Γ12

𝜕𝑁𝑖

𝜕𝜂
 . (6.109) 

The shape function derivatives contained in 𝐷𝑁𝜉,𝜂
(3.50) , are independent of the 

displacements. Therefore, the derivative of (6.109) with respect to displacement is given 

by, 

𝜕
𝜕𝑁𝑖
𝜕𝑋

𝜕𝛿(𝑛,𝑚)
=

𝜕Γ11

𝜕𝛿(𝑛,𝑚)

𝜕𝑁𝑖

𝜕𝜉
+

𝜕Γ12

𝜕𝛿(𝑛,𝑚)

𝜕𝑁𝑖

𝜕𝜂
=

𝜕Γ11

𝜕𝛿(𝑛,𝑚)
𝐷𝑁𝜉,𝜂(1,𝑖)

+
𝜕Γ12

𝜕𝛿(𝑛,𝑚)
𝐷𝑁𝜉,𝜂(2,𝑖)

  . (6.110) 

 

Similarly 
𝜕𝑁𝑖

𝜕𝑌
 and the corresponding derivative is given by, 

𝜕𝑁𝑖

𝜕𝑌
= Γ21

𝜕𝑁𝑖

𝜕𝜉
+ Γ22

𝜕𝑁𝑖

𝜕𝜂
  (6.111) 

𝜕
𝜕𝑁𝑖
𝜕𝑌

𝜕𝛿(𝑛,𝑚)
=

𝜕Γ21

𝜕𝛿(𝑛,𝑚)

𝜕𝑁𝑖

𝜕𝜉
+

𝜕Γ22

𝜕𝛿(𝑛,𝑚)

𝜕𝑁𝑖

𝜕𝜂
=

𝜕Γ21

𝜕𝛿(𝑛,𝑚)
𝐷𝑁𝜉,𝜂(1,𝑖)

+
𝜕Γ22

𝜕𝛿(𝑛,𝑚)
𝐷𝑁𝜉,𝜂(2,𝑖)

  . 
(6.112) 

 

Combining (6.110) to (6.112) and using the form of (3.84) 

𝜕𝐷𝑁𝑋,𝑌

𝜕𝛿(𝑛,𝑚)
=

𝜕Γ

𝜕𝛿(𝑛,𝑚)
𝐷𝑁𝜉,𝜂

=

[ 

𝜕Γ11

𝜕𝛿(𝑛,𝑚)

𝜕𝑁1

𝜕𝜉
+

𝜕Γ12

𝜕𝛿(𝑛,𝑚)

𝜕𝑁1

𝜕𝜂
⋯ ⋯ ⋯ ⋯

𝜕Γ11

𝜕𝛿(𝑛,𝑚)

𝜕𝑁6

𝜕𝜉
+

𝜕Γ12

𝜕𝛿(𝑛,𝑚)

𝜕𝑁6

𝜕𝜂

𝜕Γ21

𝜕𝛿(𝑛,𝑚)

𝜕𝑁1

𝜕𝜉
+

𝜕Γ22

𝜕𝛿(𝑛,𝑚)

𝜕𝑁1

𝜕𝜂
⋯ ⋯ ⋯ ⋯

𝜕Γ21

𝜕𝛿(𝑛,𝑚)

𝜕𝑁1

𝜕𝜉
+

𝜕Γ22

𝜕𝛿(𝑛,𝑚)

𝜕𝑁1

𝜕𝜂

] . 
(6.113) 

From (3.83) the terms of the inverse Jacobian, Γ, expressed in terms of the Jacobian, are 

Γ11 = (𝐽22) × (𝐽11𝐽22 − 𝐽12𝐽21)
−1  (6.114) 

Γ12 = (−𝐽12) × (𝐽11𝐽22 − 𝐽12𝐽21)
−1  (6.115) 

Γ21 = (−𝐽21) × (𝐽11𝐽22 − 𝐽12𝐽21)
−1  (6.116) 

Γ22 = (𝐽11) × (𝐽11𝐽22 − 𝐽12𝐽21)
−1 . (6.117) 

 

The derivatives of (6.114) to (6.117) are, 

𝜕Γ11

𝜕𝛿(𝑛,𝑚)
=

𝜕𝐽22

𝜕𝛿(𝑛,𝑚)
(𝐽11𝐽22 − 𝐽12𝐽21)

−1 − (𝐽11𝐽22 − 𝐽12𝐽21)
−2 𝜕

𝜕𝛿(𝑛,𝑚)
(𝐽11𝐽22 −

𝐽12𝐽21)𝐽22   

(6.118) 

𝜕Γ12

𝜕𝛿(𝑛,𝑚)
= −

𝜕𝐽𝑎12

𝜕𝛿(𝑛,𝑚)
(𝐽11𝐽22 − 𝐽12𝐽21)

−1 − (𝐽11𝐽22 − 𝐽12𝐽21)
−2 𝜕

𝜕𝛿(𝑛,𝑚)
(𝐽11𝐽22 −

𝐽12𝐽21) − 𝐽𝑎12   

(6.119) 

𝜕Γ21

𝜕𝛿(𝑛,𝑚)
= −

𝜕𝐽21

𝜕𝛿(𝑛,𝑚)
× (𝐽11𝐽22 − 𝐽12𝐽21)

−1 − (𝐽11𝐽22 − 𝐽12𝐽21)
−2 𝜕

𝜕𝛿(𝑛,𝑚)
(𝐽11𝐽22 −

𝐽12𝐽21) − 𝐽21   

(6.120) 



Chapter 6 Reliability Analysis 298 

𝜕Γ22

𝜕𝑢(𝑛,𝑚)
=

𝜕𝐽11

𝜕𝑢(𝑛,𝑚)
× (𝐽11𝐽22 − 𝐽12𝐽21)

−1 − (𝐽11𝐽22 − 𝐽12𝐽21)
−2 𝜕

𝜕𝑢(𝑛,𝑚)
(𝐽11𝐽22 −

𝐽12𝐽21)𝐽11   

(6.121) 

 

With (3.67), 

𝐽22 = 𝜂̂ ∙ 𝑌̂ = ∑ 𝜂̂𝑖𝑚𝑖
𝑖=3
𝑖=1  , (6.122) 

 

then,  

𝜕𝐽22

𝜕𝛿(𝑛,𝑚)
= ∑ 𝜂̂𝑖

𝜕𝑚𝑖

𝜕𝛿(𝑛,𝑚)
+

𝜕𝜂̂𝑖

𝜕𝛿(𝑛,𝑚)
𝑚𝑖

𝑖=3
𝑖=1  . (6.123) 

 

Similarly, 

𝐽11 = 𝜉 ∙ 𝑋̂ = ∑ 𝜉𝑖𝑙𝑖
𝑖=3
𝑖=1   (6.124) 

𝜕𝐽11

𝜕𝛿(𝑛,𝑚)
= ∑ 𝜉𝑖

𝜕𝑙𝑖

𝜕𝛿(𝑛,𝑚)
+

𝜕𝜉̂𝑖

𝜕𝛿(𝑛,𝑚)
𝑙𝑖

𝑖=3
𝑖=1   (6.125) 

𝐽12 = 𝜉 ∙ 𝑌̂ = ∑ 𝜉𝑖𝑚𝑖
𝑖=3
𝑖=1   (6.126) 

𝜕𝐽12

𝜕𝛿(𝑛,𝑚)
= ∑ 𝜉𝑖

𝜕𝑚𝑖

𝜕𝛿(𝑛,𝑚)
+

𝜕𝜉̂𝑖

𝜕𝛿(𝑛,𝑚)
𝑚𝑖

𝑖=3
𝑖=1   (6.127) 

𝐽21 = 𝜂̂ ∙ 𝑋̂ = ∑ 𝜂̂𝑖𝑙𝑖
𝑖=3
𝑖=1   (6.128) 

𝜕𝐽21

𝜕𝛿(𝑛,𝑚)
= ∑ 𝜂̂𝑖

𝜕𝑙𝑖

𝜕𝛿(𝑛,𝑚)
+

𝜕𝜂̂𝑖

𝜕𝛿(𝑛,𝑚)
𝑙𝑖

𝑖=3
𝑖=1  . (6.129) 

 

Following the product rule, the derivative of the determinant is given by, 

𝜕

𝜕𝛿(𝑛,𝑚)
(𝐽11𝐽22 − 𝐽12𝐽21) = (𝐽11

𝜕𝐽22

𝜕𝛿(𝑛,𝑚)
+

𝜕𝐽11

𝜕𝛿(𝑛,𝑚)
𝐽22) − (𝐽12

𝜕𝐽21

𝜕𝛿(𝑛,𝑚)
+

𝜕𝐽12

𝜕𝛿(𝑛,𝑚)
𝐽21)  (6.130) 

A similar procedure is followed to find the derivatives of the non-linear part of the B-

matrix with respect to the displacements. Writing the definition of the non-linear B-matrix,  

(3.94), explicitly yields, 

𝐵𝐿 =
1

2
[𝐴][𝐺] =

1

2
[

∑ 𝐴1,𝑖 × 𝐺𝑖1
𝑖=6
𝑖=1

∑ 𝐴2,𝑖 × 𝐺𝑖1
𝑖=6
𝑖=1

∑ 𝐴3𝑖 × 𝐺𝑖1
𝑖=6
𝑖=1

∑ 𝐴1,𝑖 × 𝐺𝑖,2
𝑖=6
𝑖=1

∑ 𝐴2,𝑖 × 𝐺𝑖,2
𝑖=6
𝑖=1

∑ 𝐴3,𝑖 × 𝐺𝑖,2
𝑖=6
𝑖=1

∑ 𝐴1,𝑖 × 𝐺𝑖,3
𝑖=6
𝑖=1

∑ 𝐴2,𝑖 × 𝐺𝑖,3
𝑖=6
𝑖=1

∑ 𝐴3,𝑖 × 𝐺𝑖,3
𝑖=6
𝑖=1

⋯  ∑ 𝐴1,𝑖 × 𝐺𝑖,18
𝑖=6
𝑖=1

⋯  ∑ 𝐴2,𝑖 × 𝐺𝑖,18
𝑖=6
𝑖=1

⋯  ∑ 𝐴3,𝑖 × 𝐺𝑖,18
𝑖=6
𝑖=1

] . 

(6.131) 

 

Therefore, the derivatives of the second order B-matrix terms are given by, 
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𝜕𝐵𝐿

𝜕𝛿(𝑛,𝑚)
=

1

2

[
 
 
 
 
 ∑ 𝐴1,𝑖

𝜕𝐺𝑖,1

𝜕𝛿(𝑛,𝑚)
+ 𝐺𝑖,1

𝜕𝐴1,𝑖

𝜕𝛿(𝑛,𝑚)

𝑖=6
𝑖=1

∑ 𝐴2,𝑖
𝜕𝐺𝑖,1

𝜕𝛿(𝑛,𝑚)
+ 𝐺𝑖,1

𝜕𝐴2,𝑖

𝜕𝛿(𝑛,𝑚)

𝑖=6
𝑖=1

∑ 𝐴3,𝑖
𝜕𝐺𝑖,1

𝜕𝛿(𝑛,𝑚)
+ 𝐺𝑖,1

𝜕𝐴3,𝑖

𝜕𝛿(𝑛,𝑚)

𝑖=6
𝑖=1

∑ 𝐴1,𝑖
𝜕𝐺𝑖,2

𝜕𝛿(𝑛,𝑚)
+ 𝐺𝑖,2

𝜕𝐴1,𝑖

𝜕𝛿(𝑛,𝑚)

𝑖=6
𝑖=1

∑ 𝐴2,𝑖
𝜕𝐺𝑖,2

𝜕𝛿(𝑛,𝑚)
+ 𝐺𝑖,2

𝜕𝐴2,𝑖

𝜕𝛿(𝑛,𝑚)

𝑖=6
𝑖=1

∑ 𝐴3𝑖
𝜕𝐺𝑖,2

𝜕𝛿(𝑛,𝑚)
+ 𝐺𝑖,2

𝜕𝐴3,𝑖

𝜕𝛿(𝑛,𝑚)

𝑖=6
𝑖=1

⋯ ∑ 𝐴1,𝑖
𝜕𝐺𝑖,18

𝜕𝛿(𝑛,𝑚)
+ 𝐺𝑖,18

𝜕𝐴1,𝑖

𝜕𝛿(𝑛,𝑚)

𝑖=6
𝑖=1

⋯ ∑ 𝐴2,𝑖
𝜕𝐺𝑖,18

𝜕𝛿(𝑛,𝑚)
+ 𝐺𝑖,18

𝜕𝐴2,𝑖

𝜕𝛿(𝑛,𝑚)

𝑖=6
𝑖=1

⋯ ∑ 𝐴3,𝑖
𝜕𝐺𝑖,18

𝜕𝛿(𝑛,𝑚)
+ 𝐺𝑖,18

𝜕𝐴3,𝑖

𝜕𝛿(𝑛,𝑚)

𝑖=6
𝑖=1 ]

 
 
 
 
 

 . 
(6.132) 

 

Using the form of (6.105), the derivatives of the G-matrix terms with respect to the 

displacements may be expressed as, 

𝜕𝐺

𝜕𝛿(𝑛,𝑚)
=

[
 
 
 
 
 
 
 
 
 
 
 
𝜕𝐺(1,1)

𝜕𝛿(𝑛,𝑚)

𝜕𝐺(2,1)

𝜕𝛿(𝑛,𝑚)

𝜕𝐺(3,1)

𝜕𝛿(𝑛,𝑚)

𝜕𝐺(1,2)

𝜕𝛿(𝑛,𝑚)

𝜕𝐺(2,2)

𝜕𝛿(𝑛,𝑚)

𝜕𝐺(3,2)

𝜕𝛿(𝑛,𝑚)

𝜕𝐺(1,3)

𝜕𝛿(𝑛,𝑚)

𝜕𝐺(2,3)

𝜕𝛿(𝑛,𝑚)

𝜕𝐺(3,3)

𝜕𝛿(𝑛,𝑚)

⋯
𝜕𝐺(1,18)

𝜕𝛿(𝑛,𝑚)

⋯  
𝜕𝐺(2,18)

𝜕𝛿(𝑛,𝑚)

⋯
𝜕𝐺(3,18)

𝜕𝛿(𝑛,𝑚)

𝜕𝐺(4,1)

𝜕𝛿(𝑛,𝑚)

𝜕𝐺(5,1)

𝜕𝛿(𝑛,𝑚)

𝜕𝐺(6,1)

𝜕𝛿(𝑛,𝑚)

𝜕𝐺(4,2)

𝜕𝛿(𝑛,𝑚)

𝜕𝐺(5,2)

𝜕𝛿(𝑛,𝑚)

𝜕𝐺(6,2)

𝜕𝛿(𝑛,𝑚)

𝜕𝐺(4,3)

𝜕𝛿(𝑛,𝑚)

𝜕𝐺(5,3)

𝜕𝛿(𝑛,𝑚)

𝜕𝐺(6,3)

𝜕𝛿(𝑛,𝑚)

⋯
𝜕𝐺(4,18)

𝜕𝛿(𝑛,𝑚)

⋯  
𝜕𝐺(5,18)

𝜕𝛿(𝑛,𝑚)

⋯
𝜕𝐺(6,18)

𝜕𝛿(𝑛,𝑚) ]
 
 
 
 
 
 
 
 
 
 
 

 . (6.133) 

 

The derivatives of the first term of each row of the G-matrix with respect to the global 

displacements may be expressed explicitly as, 

𝜕𝐺(1,1)

𝜕𝛿(𝑛,𝑚)
= 𝑙1

𝜕
𝜕𝑁1
𝜕𝑋

𝜕𝛿(𝑛,𝑚)
+

𝜕𝑙1

𝜕𝛿(𝑛,𝑚)

𝜕𝑁1

𝜕𝑋
  (6.134) 

𝜕𝐺(2,1)

𝜕𝛿(𝑛,𝑚)
= 𝑚1

𝜕
𝜕𝑁1
𝜕𝑋

𝜕𝛿(𝑛,𝑚)
+

𝜕𝑚1

𝜕𝛿(𝑛,𝑚)

𝜕𝑁1

𝜕𝑋
  

(6.135) 

𝜕𝐺(3,1)

𝜕𝛿(𝑛,𝑚)
= 𝑛1

𝜕
𝜕𝑁1
𝜕𝑋

𝜕𝛿(𝑛,𝑚)
+

𝜕𝑛1

𝜕𝛿(𝑛,𝑚)

𝜕𝑁1

𝜕𝑋
    

(6.136) 

𝜕𝐺(1,1)

𝜕𝛿(𝑛,𝑚)
= 𝑙1

𝜕
𝜕𝑁1
𝜕𝑌

𝜕𝛿(𝑛,𝑚)
+

𝜕𝑙1

𝜕𝛿(𝑛,𝑚)

𝜕𝑁1

𝜕𝑌
  

(6.137) 

𝜕𝐺(2,1)

𝜕𝛿(𝑛,𝑚)
= 𝑚1

𝜕
𝜕𝑁1
𝜕𝑌

𝜕𝛿(𝑛,𝑚)
+

𝜕𝑚1

𝜕𝛿(𝑛,𝑚)

𝜕𝑁1

𝜕𝑌
  

(6.138) 

𝜕𝐺(3,1)

𝜕𝛿(𝑛,𝑚)
= 𝑛1

𝜕
𝜕𝑁1
𝜕𝑌

𝜕𝛿(𝑛,𝑚)
+

𝜕𝑛1

𝜕𝛿(𝑛,𝑚)

𝜕𝑁1

𝜕𝑌
    

(6.139) 

 

As before, the remaining terms are easily obtained in the same way, including the partial 

derivatives of the direction cosines (e.g. see  Section 6.3.1.1) and the derivatives of 
𝜕𝑁𝑖

𝜕𝑋
 and 

𝜕𝑁𝑖

𝜕𝑌
 with respect to the displacements. 

 The final derivatives to be found are those of matrix A. inspection of (3.85)  yields, 
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𝜕𝐴

𝜕𝛿(𝑛,𝑚)
=

[
 
 
 
 

 

𝜕
𝜕𝑈

𝜕𝑋

𝜕𝛿(𝑛,𝑚)

𝜕
𝜕𝑉

𝜕𝑋

𝜕𝛿(𝑛,𝑚)

𝜕
𝜕𝑊

𝜕𝑋

𝜕𝛿(𝑛,𝑚)

0 0 0
𝜕

𝜕𝑈

𝜕𝑌

𝜕𝛿(𝑛,𝑚)

𝜕
𝜕𝑉

𝜕𝑌

𝜕𝛿(𝑛,𝑚)

𝜕
𝜕𝑊

𝜕𝑌

𝜕𝛿(𝑛,𝑚)

0 0 0
𝜕

𝜕𝑈

𝜕𝑌

𝜕𝛿(𝑛,𝑚)

𝜕
𝜕𝑉

𝜕𝑌

𝜕𝛿(𝑛,𝑚)

𝜕
𝜕𝑊

𝜕𝑌

𝜕𝛿(𝑛,𝑚)

𝜕
𝜕𝑈

𝜕𝑋

𝜕𝛿(𝑛,𝑚)

𝜕
𝜕𝑉

𝜕𝑋

𝜕𝛿(𝑛,𝑚)

𝜕
𝜕𝑊

𝜕𝑋

𝜕𝛿(𝑛,𝑚)]
 
 
 
 

  (6.140) 

To find the terms of 
𝜕𝐴

𝜕𝛿(𝑛,𝑚)
 the derivatives of {∆} are found with respect to the 

displacements, as in, 

𝜕∆

𝜕𝛿(𝑛,𝑚)
=

[
 
 
 
 
 
 
 
 
 
 
 
 
 

𝜕
𝜕𝑈

𝜕𝑋

𝜕𝛿(𝑛,𝑚)

𝜕
𝜕𝑉

𝜕𝑋

𝜕𝛿(𝑛,𝑚)

𝜕
𝜕𝑊

𝜕𝑋

𝜕𝛿(𝑛,𝑚)

𝜕
𝜕𝑈

𝜕𝑌

𝜕𝛿(𝑛,𝑚)

𝜕
𝜕𝑉

𝜕𝑌

𝜕𝛿(𝑛,𝑚)

𝜕
𝜕𝑊

𝜕𝑌

𝜕𝛿(𝑛,𝑚)]
 
 
 
 
 
 
 
 
 
 
 
 
 

=
𝜕𝐺

𝜕𝛿(𝑛,𝑚)
{𝛿𝑖} + 𝐺

𝜕{𝛿𝑖}

𝜕𝛿(𝑛,𝑚)
  (6.141) 

Therefore, the derivatives of {∆} may be expressed as, 

𝜕
𝜕𝑈

𝜕𝑋

𝜕𝛿(𝑛,𝑚)
= ∑ [(

𝜕𝑙1

𝜕𝛿(𝑛,𝑚)

𝜕𝑁𝑖

𝜕𝑋
+ 𝑙1

𝜕
𝜕𝑁𝑖
𝜕𝑋

𝜕𝛿(𝑛,𝑚)
)𝛿(𝑖,1) + 𝑙1

𝜕𝑁𝑖

𝜕𝑋

𝜕𝛿(𝑖,1)

𝜕𝛿(𝑛,𝑚)
] + ∑ [(

𝜕𝑙2

𝜕𝛿(𝑛,𝑚)

𝜕𝑁𝑖

𝜕𝑋
+𝑖=6

𝑖=1
𝑖=6
𝑖=1

𝑙2
𝜕

𝜕𝑁𝑖
𝜕𝑋

𝜕𝑢(𝑛,𝑚)
)𝛿(𝑖,2) + 𝑙2

𝜕𝑁𝑖

𝜕𝑋

𝜕𝛿(𝑖,2)

𝜕𝛿(𝑛,𝑚)
] +∑ [(

𝜕𝑙3

𝜕𝛿(𝑛,𝑚)

𝜕𝑁𝑖

𝜕𝑋
+ 𝑙3

𝜕
𝜕𝑁𝑖
𝜕𝑋

𝜕𝛿(𝑛,𝑚)
)𝛿(𝑖,3) +𝑖=6

𝑖=1

𝑙3
𝜕𝑁𝑖

𝜕𝑋

𝜕𝛿(𝑖,3)

𝜕𝛿(𝑛,𝑚)
]   

(6.142) 

𝜕
𝜕𝑉

𝜕𝑋

𝜕𝛿(𝑛,𝑚)
= ∑ [(

𝜕𝑚1

𝜕𝛿(𝑛,𝑚)

𝜕𝑁𝑖

𝜕𝑋
+ 𝑚1

𝜕
𝜕𝑁𝑖
𝜕𝑋

𝜕𝛿(𝑛,𝑚)
)𝛿(𝑖,1) + 𝑚1

𝜕𝑁𝑖

𝜕𝑋

𝜕𝛿(𝑖,1)

𝜕𝛿(𝑛,𝑚)
] + ∑ [(

𝜕𝑚2

𝜕𝛿(𝑛,𝑚)

𝜕𝑁𝑖

𝜕𝑋
+𝑖=6

𝑖=1
𝑖=6
𝑖=1

𝑚2

𝜕
𝜕𝑁𝑖
𝜕𝑋

𝜕𝑢(𝑛,𝑚)
)𝛿(𝑖,2) + 𝑚2

𝜕𝑁𝑖

𝜕𝑋

𝜕𝛿(𝑖,2)

𝜕𝛿(𝑛,𝑚)
] +∑ [(

𝜕𝑚3

𝜕𝛿(𝑛,𝑚)

𝜕𝑁𝑖

𝜕𝑋
+ 𝑚3

𝜕
𝜕𝑁𝑖
𝜕𝑋

𝜕𝛿(𝑛,𝑚)
)𝛿(𝑖,3) +𝑖=6

𝑖=1

𝑚3
𝜕𝑁𝑖

𝜕𝑋

𝜕𝛿(𝑖,3)

𝜕𝛿(𝑛,𝑚)
]   

(6.143) 
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𝜕
𝜕𝑈

𝜕𝑋

𝜕𝛿(𝑛,𝑚)
= ∑ [(

𝜕𝑛1

𝜕𝛿(𝑛,𝑚)

𝜕𝑁𝑖

𝜕𝑋
+ 𝑛1

𝜕
𝜕𝑁𝑖
𝜕𝑋

𝜕𝛿(𝑛,𝑚)
)𝛿(𝑖,1) + 𝑛1

𝜕𝑁𝑖

𝜕𝑋

𝜕𝛿(𝑖,1)

𝜕𝛿(𝑛,𝑚)
] + ∑ [(

𝜕𝑛2

𝜕𝛿(𝑛,𝑚)

𝜕𝑁𝑖

𝜕𝑋
+𝑖=6

𝑖=1
𝑖=6
𝑖=1

𝑛2

𝜕
𝜕𝑁𝑖
𝜕𝑋

𝜕𝑢(𝑛,𝑚)
)𝛿(𝑖,2) + 𝑛2

𝜕𝑁𝑖

𝜕𝑋

𝜕𝛿(𝑖,2)

𝜕𝛿(𝑛,𝑚)
] +∑ [(

𝜕𝑛3

𝜕𝛿(𝑛,𝑚)

𝜕𝑁𝑖

𝜕𝑋
+ 𝑛3

𝜕
𝜕𝑁𝑖
𝜕𝑋

𝜕𝛿(𝑛,𝑚)
)𝛿(𝑖,3) +𝑖=6

𝑖=1

𝑛3
𝜕𝑁𝑖

𝜕𝑋

𝜕𝛿(𝑖,3)

𝜕𝛿(𝑛,𝑚)
]   

(6.144) 

𝜕
𝜕𝑈

𝜕𝑌

𝜕𝛿(𝑛,𝑚)
= ∑ [(

𝜕𝑙1

𝜕𝛿(𝑛,𝑚)

𝜕𝑁𝑖

𝜕𝑌
+ 𝑙1

𝜕
𝜕𝑁𝑖
𝜕𝑌

𝜕𝛿(𝑛,𝑚)
)𝛿(𝑖,1) + 𝑙1

𝜕𝑁𝑖

𝜕𝑌

𝜕𝛿(𝑖,1)

𝜕𝛿(𝑛,𝑚)
] + ∑ [(

𝜕𝑙2

𝜕𝛿(𝑛,𝑚)

𝜕𝑁𝑖

𝜕𝑌
+𝑖=6

𝑖=1
𝑖=6
𝑖=1

𝑙2
𝜕

𝜕𝑁𝑖
𝜕𝑌

𝜕𝑢(𝑛,𝑚)
)𝛿(𝑖,2) + 𝑙2

𝜕𝑁𝑖

𝜕𝑌

𝜕𝛿(𝑖,2)

𝜕𝛿(𝑛,𝑚)
] +∑ [(

𝜕𝑙3

𝜕𝛿(𝑛,𝑚)

𝜕𝑁𝑖

𝜕𝑌
+ 𝑙3

𝜕
𝜕𝑁𝑖
𝜕𝑌

𝜕𝛿(𝑛,𝑚)
)𝛿(𝑖,3) +𝑖=6

𝑖=1

𝑙3
𝜕𝑁𝑖

𝜕𝑌

𝜕𝛿(𝑖,3)

𝜕𝛿(𝑛,𝑚)
]   

(6.145) 

𝜕
𝜕𝑉

𝜕𝑌

𝜕𝛿(𝑛,𝑚)
= ∑ [(

𝜕𝑚1

𝜕𝛿(𝑛,𝑚)

𝜕𝑁𝑖

𝜕𝑌
+ 𝑚1

𝜕
𝜕𝑁𝑖
𝜕𝑌

𝜕𝛿(𝑛,𝑚)
)𝛿(𝑖,1) + 𝑚1

𝜕𝑁𝑖

𝜕𝑌

𝜕𝛿(𝑖,1)

𝜕𝛿(𝑛,𝑚)
] + ∑ [(

𝜕𝑚2

𝜕𝛿(𝑛,𝑚)

𝜕𝑁𝑖

𝜕𝑌
+𝑖=6

𝑖=1
𝑖=6
𝑖=1

𝑚2

𝜕
𝜕𝑁𝑖
𝜕𝑌

𝜕𝑢(𝑛,𝑚)
)𝛿(𝑖,2) + 𝑚2

𝜕𝑁𝑖

𝜕𝑌

𝜕𝛿(𝑖,2)

𝜕𝛿(𝑛,𝑚)
] +∑ [(

𝜕𝑚3

𝜕𝛿(𝑛,𝑚)

𝜕𝑁𝑖

𝜕𝑌
+ 𝑚3

𝜕
𝜕𝑁𝑖
𝜕𝑌

𝜕𝛿(𝑛,𝑚)
)𝛿(𝑖,3) +𝑖=6

𝑖=1

𝑚3
𝜕𝑁𝑖

𝜕𝑌

𝜕𝛿(𝑖,3)

𝜕𝛿(𝑛,𝑚)
]   

(6.146) 

𝜕
𝜕𝑈

𝜕𝑌

𝜕𝛿(𝑛,𝑚)
= ∑ [(

𝜕𝑛1

𝜕𝛿(𝑛,𝑚)

𝜕𝑁𝑖

𝜕𝑌
+ 𝑛1

𝜕
𝜕𝑁𝑖
𝜕𝑌

𝜕𝛿(𝑛,𝑚)
)𝛿(𝑖,1) + 𝑛1

𝜕𝑁𝑖

𝜕𝑌

𝜕𝛿(𝑖,1)

𝜕𝛿(𝑛,𝑚)
] + ∑ [(

𝜕𝑛2

𝜕𝛿(𝑛,𝑚)

𝜕𝑁𝑖

𝜕𝑌
+𝑖=6

𝑖=1
𝑖=6
𝑖=1

𝑛2

𝜕
𝜕𝑁𝑖
𝜕𝑌

𝜕𝑢(𝑛,𝑚)
)𝛿(𝑖,2) + 𝑛2

𝜕𝑁𝑖

𝜕𝑌

𝜕𝛿(𝑖,2)

𝜕𝛿(𝑛,𝑚)
] +∑ [(

𝜕𝑛3

𝜕𝛿(𝑛,𝑚)

𝜕𝑁𝑖

𝜕𝑌
+ 𝑛3

𝜕
𝜕𝑁𝑖
𝜕𝑌

𝜕𝛿(𝑛,𝑚)
)𝛿(𝑖,3) +𝑖=6

𝑖=1

𝑛3
𝜕𝑁𝑖

𝜕𝑌

𝜕𝛿(𝑖,3)

𝜕𝛿(𝑛,𝑚)
]   

(6.147) 

From equation (6.36), 
𝜕𝐵0

𝜕𝑋𝑠𝑖
 may now be written as, 

𝜕𝐵0(𝑖,𝑗)

𝜕𝑋𝑠𝑖
= [𝑑𝐵0(𝑖, 𝑗)] [

𝜕𝛿

𝜕𝑋𝑠𝑖
] =

(6.148) 
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[
𝜕𝐵0(𝑖,𝑗)

𝜕𝛿1,1

𝜕𝐵0(𝑖,𝑗)

𝜕𝛿1,2

𝜕𝐵0(𝑖,𝑗)

𝜕𝛿1,3
 ⋯

𝜕𝐵0(𝑖,𝑗)

𝜕𝛿6,1

𝜕𝐵0(𝑖,𝑗)

𝜕𝛿6,2

𝜕𝐵0(𝑖,𝑗)

𝜕𝛿6,3
]

[
 
 
 
 
 
 
 
 
 
 
 
𝜕𝑢1,1

𝜕𝑋𝑠𝑖

𝜕𝑢1,2

𝜕𝑋𝑠𝑖

𝜕𝑢1,3

𝜕𝑋𝑠𝑖

⋮
𝜕𝑢6,1

𝜕𝑋𝑠𝑖

𝜕𝑢6,2

𝜕𝑋𝑠𝑖

𝜕𝑢6,3

𝜕𝑋𝑠𝑖 ]
 
 
 
 
 
 
 
 
 
 
 

  , 

and, 

𝜕𝐵𝐿(𝑖,𝑗)

𝜕𝑋𝑠𝑖
= [𝑑𝐵𝐿(𝑖, 𝑗)] [

𝜕𝑢

𝜕𝑋𝑠𝑖
] =

[
𝜕𝐵𝐿(𝑖,𝑗)

𝜕𝑢1,1

𝜕𝐵𝐿(𝑖,𝑗)

𝜕𝑢1,2

𝜕𝐵𝐿(𝑖,𝑗)

𝜕𝑢1,3
 ⋯

𝜕𝐵𝐿(𝑖,𝑗)

𝜕𝑢6,1

𝜕𝐵𝐿(𝑖,𝑗)

𝜕𝑢6,2

𝜕𝐵𝐿(𝑖,𝑗)

𝜕𝑢6,3
]

[
 
 
 
 
 
 
 
 
 
 
 
𝜕𝑢1,1

𝜕𝑋𝑠𝑖

𝜕𝑢1,2

𝜕𝑋𝑠𝑖

𝜕𝑢1,3

𝜕𝑋𝑠𝑖

⋮
𝜕𝑢6,1

𝜕𝑋𝑠𝑖

𝜕𝑢6,2

𝜕𝑋𝑠𝑖

𝜕𝑢6,3

𝜕𝑋𝑠𝑖 ]
 
 
 
 
 
 
 
 
 
 
 

    

 

(6.149) 

𝜕𝐵

𝜕𝑋𝑠𝑖
=

[
 
 
 
 
𝜕𝐵0(1,1)

𝜕𝑋𝑠𝑖
+

𝜕𝐵𝐿(1,1)

𝜕𝑋𝑠𝑖
⋯

𝜕𝐵0(1,18)

𝜕𝑋𝑠𝑖
+

𝜕𝐵𝐿(1,18)

𝜕𝑋𝑠𝑖

𝜕𝐵0(2,1)

𝜕𝑋𝑠𝑖
+

𝜕𝐵𝐿(2,1)

𝜕𝑋𝑠𝑖
⋯

𝜕𝐵0(2,18)

𝜕𝑋𝑠𝑖
+

𝜕𝐵𝐿(2,18)

𝜕𝑋𝑠𝑖

𝜕𝐵0(3,1)

𝜕𝑋𝑠𝑖
+

𝜕𝐵𝐿(3,1)

𝜕𝑋𝑠𝑖
⋯

𝜕𝐵0(3,18)

𝜕𝑋𝑠𝑖
+

𝜕𝐵𝐿(3,18)

𝜕𝑋𝑠𝑖 ]
 
 
 
 

 . 

 

(6.150) 

6.3.2 Verification of partial derivatives using finite differences 

The analytical derivations for the limit state function sensitivities (partial derivatives) are 

verified using the finite difference method (FDM). This is done to ensure that no errors 

have been made during derivation or during  implementation within the Fortran reliability 

code. 

 A 2 metre square patch of fabric is discretised into 2 elements and restrained along two 

edges by rolling restraints illustrated in Figure 6-1. A 10kN/m uniformly distributed load 

(UDL) is applied in the x-direction and with 5kN/m applied in the y-direction along the 

free edge. Point loads of 5kN in the x-direction and 10kN in the y-direction are also applied 

in order to fix the position of the extreme stresses and displacements and to induce shear 
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stress. Without the application of a point load a uniform stress is induced  and the position 

of the extreme stresses and displacement is affected by small systematic errors.  This leads 

to errors in the finite difference method. The warp material direction is aligned with the 

global 𝑥-direction and the fill material direction with the global 𝑦-direction. No prestress is 

applied to the material. Therefore, no form finding is required. An initial analysis to 

equilibrium is performed with all variable set as in Figure 6-1.  

 

Figure 6-1: Finite element patch for finite difference reliability simulation 

For each of the 8 statistical variables, a perturbation equal to a percentage of the variable’s 

initial value is added while holding all other variables constant. The analysis is re-run to 

reach equilibrium. The finite difference derivatives for the required limit state, maximum 

warp stress, maximum fill stress, minimum principle stress or displacement may then be 

calculated. In general the finite difference method may be expressed as follows,  

𝜕𝑓(𝑎)

𝜕𝑎
≈

𝑓(𝑎+ℎ)−𝑓(𝑎)

ℎ
  (6.151) 

where 𝑓 is the function of interest and 𝑎 is the statistical variable of interest, ℎ is the value 

of perturbation equal to a percentage of the initial value of the statistical variable. 

The magnitude of the perturbation (ℎ) has an impact on the accuracy of the numerically 

estimated partial derivative obtained using FDM. Each FDM limit state sensitivity has 

therefore been calculated using three perturbations – 0.1%, 0.001% and 0.00001%. The 

𝑥, 𝑢, 𝑤𝑎𝑟𝑝 

𝑦
,𝑣

,𝑓
𝑖𝑙
𝑙 

2m 

 

 

 

2m 10kN/m 

5kN/m 

𝐸𝑤 =  1000kN/m 

𝐸𝑓 =  1000kN/m 

𝜐𝑤𝑓 =  0.3 

𝜐𝑓𝑤 =  0.3 

𝐺𝑤𝑓 =  30kN/m 

𝑡𝑙𝑜𝑎𝑑 =  1 

 

5kN 

10kN 
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results are summarised in Table 6-1, 6-2 and 6-3, respectively. It should also be noted that 

the accuracy of the analysis has an impact on the derivative values derived using FDM.   

As shown in Table 6-1 a perturbation of 0.1% produces generally poor agreement 

between the analytical and FDM limit state function sensitivities, indicating that it is 

potentially too great or that the analytical sensitivities are incorrect. 

 
𝝏(𝝈𝒑𝒆𝒓

𝒘 −𝝈𝒎𝒂𝒙
𝒘 )

𝝏𝑿𝒔𝒊
 : max stress warp 

𝝏(𝝈𝒑𝒆𝒓
𝒇

−𝝈𝒎𝒂𝒙
𝒇

)

𝝏𝑿𝒔𝒊
: max stress fill 

𝑿𝒔𝒊 
Finite difference 

method 

Analytical 

approach 
%error 

Finite difference 

method 

Analytical 

approach 
%error 

𝑬𝒘 -1.10E-03 -1.17E-03 6.60% 2.60E-04 3.21E-04 23.40% 

𝑬𝒇 -1.84E-04 -1.96E-04 6.38% -1.28E-03 -1.32E-03 3.03% 

𝒗𝒇𝒘 -1.39E-01 -1.35E-01 -2.65% -8.95E-01 -8.87E-01 -0.90% 

𝒗𝒘𝒇 -1.58E+00 -1.57E+00 -0.92% 6.23E-02 6.55E-02 5.24% 

𝑮𝒘𝒇 6.80E-02 7.00E-02 3.02% 6.51E-02 6.73E-02 3.34% 

𝒕𝒍𝒐𝒂𝒅 -3.54E+01 -3.53E+01 -0.24% -1.81E+01 -1.80E+01 -0.60% 

  
𝝏(𝝈𝒎𝒊𝒏

𝒑
−𝝈𝒑𝒆𝒓

𝒑
)

𝝏𝑿𝒔𝒊
 : min principal stress 

𝝏(𝜹𝒑𝒆𝒓−𝜹𝒎𝒂𝒙)

𝝏𝑿𝒔𝒊
: max displacement 

𝑿𝒔𝒊 
Finite difference 

method 
Analytical 
approach 

%error 
Finite difference 

method 
Analytical 
approach 

%error 

𝑬𝒘 -3.76E-03 -4.08E-03 8.31% 5.95E-05 6.50E-05 9.19% 

𝑬𝒇 -4.58E-04 -5.02E-04 9.56% -4.18E-06 -4.60E-06 10.18% 

𝒗𝒇𝒘 8.03E-01 8.02E-01 -0.13% 1.08E-02 1.08E-02 -0.01% 

𝒗𝒘𝒇 -2.33E-01 -2.36E-01 1.49% -1.67E-03 -1.66E-03 -0.16% 

𝑮𝒘𝒇 1.68E-01 1.73E-01 2.95% 2.52E-04 2.60E-04 2.82% 

𝒕𝒍𝒐𝒂𝒅 -7.21E+00 -7.15E+00 -0.84% -6.83E-02 -6.82E-02 -0.09% 

Table 6-1: Sensitivities, finite difference method using perturbation of 0.1% 
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𝝏(𝝈𝒑𝒆𝒓

𝒘 −𝝈𝒎𝒂𝒙
𝒘 )

𝝏𝑿𝒔𝒊
 : max stress warp 

𝝏(𝝈𝒑𝒆𝒓
𝒇

−𝝈𝒎𝒂𝒙
𝒇

)

𝝏𝑿𝒔𝒊
: max stress fill 

𝑿𝒔𝒊 
Finite difference 

method 
Analytical 
approach 

%error 
Finite difference 

method 
Analytical 
approach 

%error 

𝑬𝒘 -1.17E-03 -1.17E-03 0.08% 3.20E-04 3.21E-04 0.27% 

𝑬𝒇 -1.96E-04 -1.96E-04 0.01% -1.32E-03 -1.32E-03 0.04% 

𝒗𝒇𝒘 -1.33E-01 -1.35E-01 1.61% -8.89E-01 -8.87E-01 -0.23% 

𝒗𝒘𝒇 -1.57E+00 -1.57E+00 0.05% 6.46E-02 6.55E-02 1.39% 

𝑮𝒘𝒇 7.00E-02 7.00E-02 0.04% 6.73E-02 6.73E-02 0.02% 

𝒕𝒍𝒐𝒂𝒅 -3.53E+01 -3.53E+01 0.00% -1.80E+01 -1.80E+01 -0.01% 

  
𝝏(𝝈𝒎𝒊𝒏

𝒑
−𝝈𝒑𝒆𝒓

𝒑
)

𝝏𝑿𝒔𝒊
 : min principal stress 

𝝏(𝜹𝒑𝒆𝒓−𝜹𝒎𝒂𝒙)

𝝏𝑿𝒔𝒊
: max displacement 

𝑿𝒔𝒊 
Finite difference 

method 
Analytical 
approach 

%error 
Finite difference 

method 
Analytical 
approach 

%error 

𝑬𝒘 -4.07E-03 -4.08E-03 0.13% 6.49E-05 6.50E-05 0.09% 

𝑬𝒇 -5.01E-04 -5.02E-04 0.12% -4.60E-06 -4.60E-06 0.10% 

𝒗𝒇𝒘 8.05E-01 8.02E-01 -0.28% 1.08E-02 1.08E-02 -0.02% 

𝒗𝒘𝒇 -2.35E-01 -2.36E-01 0.31% -1.66E-03 -1.66E-03 0.06% 

𝑮𝒘𝒇 1.73E-01 1.73E-01 0.07% 2.60E-04 2.60E-04 0.03% 

𝒕𝒍𝒐𝒂𝒅 -7.14E+00 -7.15E+00 0.07% -6.82E-02 -6.82E-02 0.00% 

Table 6-2: Sensitivities, finite difference method using perturbation of 0.001% 

 

𝝏(𝝈𝒑𝒆𝒓
𝒘 −𝝈𝒎𝒂𝒙

𝒘 )

𝝏𝑿𝒔𝒊
 : max stress warp 

𝝏(𝝈𝒑𝒆𝒓
𝒇

−𝝈𝒎𝒂𝒙
𝒇

)

𝝏𝑿𝒔𝒊
: max stress fill 

𝑿𝒔𝒊 
Finite difference 

method 
Analytical 
approach 

%error 
Finite difference 

method 
Analytical 
approach 

%error 

𝑬𝒘 -1.17E-03 -1.17E-03 0.02% 3.20E-04 3.21E-04 0.06% 

𝑬𝒇 -1.96E-04 -1.96E-04 -0.05% -1.32E-03 -1.32E-03 0.01% 

𝒗𝒇𝒘 -1.33E-01 -1.35E-01 1.55% -8.89E-01 -8.87E-01 -0.21% 

𝒗𝒘𝒇 -1.57E+00 -1.57E+00 0.06% 6.47E-02 6.55E-02 1.33% 

𝑮𝒘𝒇 7.00E-02 7.00E-02 0.01% 6.73E-02 6.73E-02 -0.01% 

𝒕𝒍𝒐𝒂𝒅 -3.53E+01 -3.53E+01 0.00% -1.80E+01 -1.80E+01 0.00% 

  
𝝏(𝝈𝒎𝒊𝒏

𝒑
−𝝈𝒑𝒆𝒓

𝒑
)

𝝏𝑿𝒔𝒊
 : min principal stress 

𝝏(𝜹𝒑𝒆𝒓−𝜹𝒎𝒂𝒙)

𝝏𝑿𝒔𝒊
: max displacement 

𝑿𝒔𝒊 
Finite difference 

method 
Analytical 
approach 

%error 
Finite difference 

method 
Analytical 
approach 

%error 

𝑬𝒘 -4.08E-03 -4.08E-03 0.04% 6.50E-05 6.50E-05 0.00% 

𝑬𝒇 -5.01E-04 -5.02E-04 0.03% -4.60E-06 -4.60E-06 0.00% 

𝒗𝒇𝒘 8.04E-01 8.02E-01 -0.25% 1.08E-02 1.08E-02 -0.02% 

𝒗𝒘𝒇 -2.36E-01 -2.36E-01 0.29% -1.66E-03 -1.66E-03 0.06% 

𝑮𝒘𝒇 1.73E-01 1.73E-01 0.04% 2.60E-04 2.60E-04 0.00% 

𝒕𝒍𝒐𝒂𝒅 -7.14E+00 -7.15E+00 0.08% -6.82E-02 -6.82E-02 0.00% 

Table 6-3: Sensitivities, finite difference method using perturbation of 0.00001% 
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The former statement is supported by the results given in Table 6-2 where a perturbation 

of 0.001% produces good agreement (less than 1% error) between the analytical 

approach and FDM. This is shown across all limit states and all statistical variables except 

𝑣𝑓𝑤 for limit state 1 and 𝑣𝑤𝑓 for limit state 2. The greater persistent error exhibited by the 

Poisson's ratio sensitivities at the lower perturbation is in part due to the greater impact 

of these variables in comparison to Young's modulus and the shear modulus. As 

highlighted in equations (6.46) and (6.47), unlike in the case of Young's moduli, a change 

in either 𝑣𝑓𝑤 or  𝑣𝑤𝑓 will result in a change in the stress in both material directions. As a 

result, the relationship between stress and strain with respect to the Poisson’s ratios is 

more complex and interdependent than the other statistical variables. This is highlighted 

by the  
𝜕𝐸1,2

𝜕𝑣𝑓𝑤
 term for limit state 1 and the 

𝜕𝐸2,1

𝜕𝑣𝑤𝑓
 term for limit state 2.  

It is also the case that the analytical derivatives only account for the sensitivity of the 

stress at the Gauss point where the limit state stress or displacement occurs. The stress 

and strain values at all other Gauss points are assumed to be fixed and therefore have no 

impact on the limit state function. When using the finite difference method the statistical 

variables are updated at all Gauss points and the analysis is re-run. Therefore, the 

behaviour of the entire structure is taken into account in equation(6.151).  This leads to a 

greater difference between analytical and FDM for the variables which induce a more 

complex and interdependent response. 

In Table 6-3 it is clear that the agreement between analytical and FDM sensitivities 

remains good with respect to 𝐸𝑤 , 𝐸𝑓 , 𝐺𝑤𝑓 and 𝑡𝑙𝑜𝑎𝑑 and in most cases the error decreases 

with a further reduction in perturbation to 0.00001%. However, the sensitivities with 

respect to to 𝑣𝑥𝑦 and 𝑣𝑦𝑥 still show poorer agreement but still less than an acceptable 

value of 2%. This indicates that the difference is not due to errors caused by the size of 

perturbation. 

6.3.3 Validation using Monte Carlo Simulation  

Further validation of the reliability analysis is undertaken using Monte Carlo simulation. 

The simulation is the same as that used above  in Section 6.15 with the exception of the 

loading. UDLs of 20kN/m in the x-direction and 30kN/m in the y-direction along with 

additional point load of 10kN in the top corner node are applied. The loading has been 

increased in order to increase the probability of failure and reduce the number of 

simulation required for the Monte Carlo simulation..  
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Figure 6-2: Finite element patch for Monte Carlo simulation 

Initially an analytical reliability analysis is run for each limit state and the probability of 

failure is found from a standard normal table and the safety index 𝛽 as shown in Table 6-4. 

 𝑮𝟏(𝑿𝒔𝒊) 

= 𝝈𝒑𝒆𝒓
𝒘 − 𝝈𝒎𝒂𝒙

𝒘  

𝑮𝟐(𝑿𝒔𝒊) 

= 𝝈𝒑𝒆𝒓
𝒇

− 𝝈𝒎𝒂𝒙
𝒇

 

𝑮𝟑(𝑿𝒔𝒊) 

= 𝝈𝒎𝒊𝒏
𝒑

− 𝝈𝒑𝒆𝒓
𝒑

 

𝑮𝟒(𝑿𝒔𝒊) 

= 𝑫𝒂𝒍 − 𝑫𝒎𝒂𝒙 

𝜷  2.724 2.160 1.437 1.323 

𝚽(−𝜷)  0.3264e-2 0.1539e-1 0.7494e-1 0.9342e-1 

Table 6-4: Analytically Derived HL_RF Probability of Failure 

 

These values of 𝛽 are outside the accepted range for a structure according to Eurocode 0 

(EC0), where the minimum value is 3.8. The probability of failure for the structure is, 

therefore, greater than would be permitted by EC0. However, for an anticipated very small 

probability of failure a very large number of Monte Carlo simulations would be required to 

predict the failure probability with sufficient accuracy. It is, therefore, for the purposed of 

validation, to adopt a larger failure probability at this stage.  

A Monte Carlo simulation is run using normally distributed random variables generated 

using the Box Muller method. Variables  𝑢1 and 𝑢2 are generated in pairs using random 

numbers,  𝑟1and 𝑟2, in the range 1 to 0, and the means and standard deviations of the 

10kN 

10kN 

𝑥, 𝑢, 𝑤𝑎𝑟𝑝 

𝑦, 𝑣, 𝑓𝑖𝑙𝑙 

2m 

2m 

20kN/m 

30kN/m 

𝐸𝑤 =  1000kN/m 

𝐸𝑓 =  1000kN/m 

𝜐𝑤𝑓 =  0.3 

𝜐𝑓𝑤 =  0.3 

𝐺𝑤𝑓 =  30kN/m 

𝑡𝑙𝑜𝑎𝑑 =  1 
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uncertain variables, 𝜇𝑋𝑠𝑖  and 𝜎𝑋𝑠𝑖  , as shown in (6.152) and (6.153). The variables are 

independent. Therefore, new pairs of random numbers are used for the generation of each 

variable set. The random numbers are generated using the Fortran ‘pseudo’ random 

number generator and therefore are actually pseudo random numbers. The current local 

time is used to derive the seed value. 

𝑢1 = 𝜇𝑋𝑠𝑖 + 𝜎𝑋𝑠𝑖((−2 ln 𝑟1)
1/2 sin 2𝜋𝑟2)   (6.152) 

𝑢2 = 𝜇𝑋𝑠𝑖 + 𝜎𝑋𝑠𝑖((−2 ln 𝑟1)
1/2 cos 2𝜋𝑟2)   (6.153) 

 

20,000 separate analyses were undertaken and each limit state value recorded. The 

probability of failure may be found from (6.154) where N is the number of runs and 

𝐼[ 𝐺(𝑋𝑠𝑗) ≤ 0] is an indicator function which equals 1 if [𝐺(𝑋𝑠𝑗) ≤ 0] is true and 0 if 

[𝐺(𝑋𝑠𝑗) ≤ 0 ] is false. 

𝑝𝑓 ≈
1

𝑁
∑ 𝐼[𝐺(𝑋𝑠𝑗) ≤ 0]𝑁

𝑗=1   (6.154) 
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𝑮𝟏(𝑿𝒔𝒊) 

= 𝝈𝒑𝒆𝒓
𝒘 − 𝝈𝒎𝒂𝒙

𝒘  

𝑮𝟐(𝑿𝒔𝒊) 

= 𝝈𝒑𝒆𝒓
𝒇

− 𝝈𝒎𝒂𝒙
𝒇

 

𝑮𝟑(𝑿𝒔𝒊) 

= 𝝈𝒎𝒊𝒏
𝒑

− 𝝈𝒑𝒆𝒓
𝒑

 

𝑮𝟒(𝑿𝒔𝒊) 

= 𝜹𝒂𝒍 − 𝜹𝒎𝒂𝒙 

Reliability 
Analysis 𝚽(−𝜷) 
(Table 6-4) 

0.0033 0.0154 0.0749 0.0934 

Monte Carlo 
Simulation  
with  equation 
(6.154) 

0.0027 0.0152 0.0735 0.0939 

% error -18.18% -1.30% -1.87% 0.54% 

Monte Carlo 
Simulation with 
CDF estimate  

(Figure 6-3) 

0.0029 0.0154 0.0736 0.0940 

% error -12.12% 0.00% -1.74% 0.64% 

Table 6-5: Comparison between analytically derived HL_RF probability of failure,  
𝚽(−𝜷), and Monte Carlo probability of failure, 𝒑𝒇 

 

The values can also be sorted from low to high and used to plot a cumulative probability 

function from which the approximate probability of failure may be read as demonstrated 

in Figure 6-3(a)-(h).  

It can be seen that the probability of failure derived from the analytical and Monte Carlo 

simulation are in generally good agreement. The high percentage error given by 𝐺1 is due 

to the relatively low probability of failure for this limit state. The accuracy of the Monte 

Carlo simulation may be improved by increasing the quantity of simulations undertaken.  

  
(a) Cumulative Probability (b) 50 points either side of intercept 
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(c) Cumulative Probability 
(d) 100 points either side of 

intercept 

  

(e) Cumulative Probability 
(f) 100 points either side of 

intercept 

  

(g) Cumulative Probability 
(h) 100 points either side of 

intercept 

Figure 6-3: Cumulative probability plots and intercepts from Monte Carlo 
simulation 
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6.4 Neural Network Variability 

The training of neural networks involves a number of processes that contribute to 

variation between networks trained to represent the same material (see Section 4.4.5, and  

Section 5.3.1). The key processes include division of training data sets using randomised 

data selection and the random initiation of the weights and biases at the beginning of 

network training. The process of training, results in neural network material models that 

offer a non-unique solution to the stress strain relationship of a material. Therefore, 

neural network material models contain epistemic uncertainty. This is highlighted in 

Figure 6-5. A set of 5 networks has been trained using data taken from Section 5.2 for a 

response surface style network. The network weights and biases are randomly initialised 

at the beginning of training. However each network is presented with identical training 

data sets.  

The 5 networks are each used in the simulation of the hypar structure used throughout 

this thesis. A typical global snow load of -0.6kN/m2 is applied to the structure.  

 

 

 

(a) Side Elevation (b) Plan View 

Figure 6-4: Hypar structure. 

 

It can clearly be seen in Figure 6-5 that each network produces different stress, strain and 

displacement distributions with varying maximum and minimum values, despite being 

trained using identical data. Each legend has been set to the same range in order to make 

the variations clear. To account for this variation in design some form of reliability 

analysis incorporating network simulation is required.  
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Warp Stress (kN/m) Fill Stress (kN/m) Shear Stress 

Figure 6-5: Hypar stress plots from 5 randomly initiated networks trained using 
identical data.  
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6.5 Response Surface Style Neural Network Reliability Analysis 

In order to include the neural network epistemic uncertainty within reliability analysis it 

is necessary to replace the statistical variables describing the plane stress material model 

with variables describing the network material model within the reliability analysis. This 

is a complex problem due the high number of variables to consider. It is also not possible 

to derive meaningful statistical information describing variability of the network weights 

and biases as each variable cannot be considered in isolation. However, the implied 

stiffness matrix, Chapter 5, offers an approximation to the network response and is 

derived at each Gauss point for each dynamic relaxation energy peak. The implied stiffness 

matrix approximates the network stress strain relationship by effectively fitting a surface 

tangential to network stress strain response surface  at the Gauss point's current position 

on the response surface. The 4 variables of the implied stiffness matrix may be used in 

place of the 4 variables of the plane stress material model for the purposes of reliability 

analysis. Therefore, the 8 statistical variables for reliability analysis become, 

𝑋1
𝑛 = 𝐸1,1

𝐺𝑃,𝑛,  𝑋2
𝑛 = 𝐸1,2

𝐺𝑃,𝑛,  𝑋3
𝑛 = 𝐸2,1

𝐺𝑃,𝑛,  𝑋4
𝑛 = 𝐸2,2

𝐺𝑃,𝑛 ,  𝑋5
𝑛 = 𝐺𝑤𝑓 ,  𝑋6

𝑛 =

𝜎𝑢𝑙𝑡
𝑓

,  𝑋7
𝑛 = 𝜎𝑢𝑙𝑡

𝑤 ,   𝑋8 = 𝑡𝑙𝑜𝑎𝑑, 
(6.155) 

where GP refers to the Gauss point position of the current limit state and n refers to the 

current load increment. The reliability analysis is run using the mean implied stiffness 

matrices and associated standard deviations at each Gauss point calculated at the final 

energy peak for a specific structural simulation in place of the neural network material 

model.  

An added level of complexity is introduced when considering an incrementally loaded 

simulation as required when using a history network model. The variables at each load 

increment must be considered as separate statistical variable. Therefore, a simulation with 

10 load increments has 62 statistical variables. This will require a very large 

computational effort and the development of incremental partial derivatives. Therefore, 

for this initial study, only simulation of a single load increment with a response surface 

style neural network is explored in this chapter. Development of an incremental reliability 

analysis will be briefly explored in the further work section of Chapter 7, but is beyond the 

scope of this thesis.  

The analytical partial derivatives of the limit state functions, Sections 6.3 and 0, remain 

largely the same with the obvious exception of the elastic stiffness derivatives.  
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6.5.1.1 Implied Elastic Stiffness Matrix Derivatives 

Partial differentiation of the implied stiffness matrix, 𝐸𝑖𝑚𝑝𝑙𝑖𝑒𝑑, with respect to its 4 

network related terms is straightforward and is given by, 

 [
𝜕𝐸𝑖𝑚𝑝𝑙𝑖𝑒𝑑

𝜕𝑋1
] = [

1 0 0
0 0 0
0 0 0

] , [
𝜕𝐸𝑖𝑚𝑝𝑙𝑖𝑒𝑑

𝜕𝑋2
] = [

0 1 0
0 0 0
0 0 0

] , [
𝜕𝐸𝑖𝑚𝑝𝑙𝑖𝑒𝑑

𝜕𝑋3
] = [

0 0 0
1 0 0
0 0 0

] ,

[
𝜕𝐸𝑖𝑚𝑝𝑙𝑖𝑒𝑑

𝜕𝑋4
] = [

0 0 0
0 1 0
0 0 0

]. 

(6.156) 

The partial derivatives of 𝐸𝑖𝑚𝑝𝑙𝑖𝑒𝑑 with respect to the shear modulus, 𝐺𝑤𝑓, remains the 

same and, 

[
𝜕𝐸

𝜕𝑋5
] = [

0 0 0
0 0 0
0 0 1

]. (6.157) 

 

The implied stiffness matrix is fixed at the mean value for a given structural simulation. 

Therefore the partial derivatives of the stiffness matrix with respect to the fabric ultimate 

strength and the applied load remains, 

[
𝜕𝐸

𝜕𝑋6−8
] = [

0 0 0
0 0 0
0 0 0

], (6.158) 

where 𝑋6−8 is 𝜎𝑢𝑙𝑡
𝑤 , 𝜎𝑢𝑙𝑡

𝑓
 and 𝑡𝑙𝑜𝑎𝑑, respectively.  

It is noteworthy that in a true neural network material model simulation, the implied 

elastic stiffness matrix varies depending on the current stress strain state of the Gauss 

point at which the implied stiffness matrix is defined. Therefore, the implied stiffness 

matrix is a function of applied load. Further work may be required to investigate the 

variation of the implied stiffness matrix with respect to load. This level of complexity is 

neglected for the purposes of this simplified case where the initial values of the implied 

stiffness matrix are considered fixed for the purposes of reliability analysis.   

6.5.2 Validation of implied stiffness partial derivative with finite 

difference method. 

As with the plane stress reliability analysis, Section 6.3.2, the partial derivatives of the 

limit state function with respect to the statistical variables may be validated using the 

finite difference method. A simple 2 element patch, Figure 6-1, is again employed for this 

purpose. This patch is not suitable for detailed analysis but is selected for speed of analysis 

due to its small stiffness matrix. 
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As in the validation of the plane stress derivatives , Section 6.3.2,  the finite difference 

method is performed using 2 different levels of perturbation, 0.001% and 0.00001%, 

noting that the 0.1% perturbation has been previously discounted as unsuitable.  

The finite difference derivatives generated by a perturbation of 0.001% are in generally 

good agreement with the analytically derived values, with <1% difference across all 

variables with the exception of 𝐸2,2 for limit state 1 and 𝐸2,1 for limit state 2.  Decreasing 

the perturbation to 0.00001% further reduces the error. Only the error between the 

analytical and finite difference derivatives of limit state 2 with respect to 𝐸2,1 remains 

greater than 1%. This derivative has a value 2 orders of magnitude smaller than the other 

the derivatives in this set. Therefore, it is likely that the error is due to the relatively small 

magnitude of the derivative in question, resulting in  the impact of error introduced by the 

finite difference method being more significant.  

 
𝝏(𝝈𝒑𝒆𝒓

𝒘 −𝝈𝒎𝒂𝒙
𝒘 )

𝝏𝑿𝒔𝒊
 : max stress warp 

𝝏(𝝈𝒑𝒆𝒓
𝒇

−𝝈𝒎𝒂𝒙
𝒇

)

𝝏𝑿𝒔𝒊
: max stress fill 

𝑿𝒔𝒊 
Finite difference 

method 
Analytical 
approach 

%error 
Finite difference 

method 
Analytical 
approach 

%error 

𝑬𝟏,𝟏 -1.45E-03 -1.44E-03 -0.74% 1.41E-03 1.40E-03 -0.67% 

𝑬𝟏,𝟐 3.35E-04 3.35E-04 -0.22% -1.02E-03 -1.01E-03 -0.16% 

𝑬𝟐,𝟏 -1.05E-03 -1.03E-03 -1.01% 5.78E-05 4.55E-05 -21.23% 

𝑬𝟐,𝟐 1.31E-04 1.40E-04 6.80% -1.48E-03 -1.49E-03 0.66% 

𝑮𝒘𝒇 8.26E-02 8.27E-02 0.03% 8.76E-02 8.77E-02 0.04% 

𝒕𝒍𝒐𝒂𝒅 -3.54E+01 -3.54E+01 0.00% -1.91E+01 -1.91E+01 -0.01% 

  
𝝏(𝝈𝒎𝒊𝒏

𝒑
−𝝈𝒑𝒆𝒓

𝒑
)

𝝏𝑿𝒔𝒊
 : min principal stress 

𝝏(𝜹𝒑𝒆𝒓−𝜹𝒎𝒂𝒙)

𝝏𝑿𝒔𝒊
: max displacement 

𝑿𝒔𝒊 
Finite difference 

method 
Analytical 
approach 

%error 
Finite difference 

method 
Analytical 
approach 

%error 

𝑬𝟏,𝟏 -6.74E-03 -6.73E-03 -0.01% 9.63E-05 9.65E-05 0.11% 

𝑬𝟏,𝟐 3.27E-03 3.27E-03 -0.14% -2.09E-05 -2.09E-05 -0.02% 

𝑬𝟐,𝟏 2.80E-03 2.81E-03 0.22% -4.24E-05 -4.23E-05 -0.02% 

𝑬𝟐,𝟐 -1.45E-03 -1.44E-03 -0.43% 8.21E-06 8.22E-06 0.12% 

𝑮𝒘𝒇 1.91E-01 1.91E-01 0.09% 3.82E-04 3.82E-04 0.03% 

𝒕𝒍𝒐𝒂𝒅 -5.64E+00 -5.65E+00 0.14% -8.46E-02 -8.46E-02 0.00% 

Table 6-6: Sensitivities, finite difference method using perturbation of 0.001% 
(Implied Stiffness Variables) 
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𝝏(𝝈𝒑𝒆𝒓

𝒘 −𝝈𝒎𝒂𝒙
𝒘 )

𝝏𝑿𝒔𝒊
 : max stress warp 

𝝏(𝝈𝒑𝒆𝒓
𝒇

−𝝈𝒎𝒂𝒙
𝒇

)

𝝏𝑿𝒔𝒊
: max stress fill 

𝑿𝒔𝒊 
Finite difference 

method 
Analytical 
approach 

%error 
Finite difference 

method 
Analytical 
approach 

%error 

𝑬𝟏,𝟏 -1.44E-03 -1.44E-03 -0.12% 1.40E-03 1.40E-03 -0.18% 

𝑬𝟏,𝟐 3.36E-04 3.35E-04 -0.53% -1.02E-03 -1.01E-03 -0.26% 

𝑬𝟐,𝟏 -1.03E-03 -1.03E-03 0.41% 3.91E-05 4.55E-05 16.26% 

𝑬𝟐,𝟐 1.39E-04 1.40E-04 0.78% -1.48E-03 -1.49E-03 0.11% 

𝑮𝒘𝒇 8.27E-02 8.27E-02 0.00% 8.77E-02 8.77E-02 0.00% 

𝒕𝒍𝒐𝒂𝒅 -3.54E+01 -3.54E+01 0.00% -1.91E+01 -1.91E+01 0.00% 

  
𝝏(𝝈𝒎𝒊𝒏

𝒑
−𝝈𝒑𝒆𝒓

𝒑
)

𝝏𝑿𝒔𝒊
 : min principal stress 

𝝏(𝜹𝒑𝒆𝒓−𝜹𝒎𝒂𝒙)

𝝏𝑿𝒔𝒊
: max displacement 

𝑿𝒔𝒊 
Finite difference 

method 
Analytical 
approach 

%error 
Finite difference 

method 
Analytical 
approach 

%error 

𝑬𝟏,𝟏 -6.74E-03 -6.73E-03 -0.06% 9.65E-05 9.65E-05 0.00% 

𝑬𝟏,𝟐 3.27E-03 3.27E-03 -0.20% -2.09E-05 -2.09E-05 -0.03% 

𝑬𝟐,𝟏 2.83E-03 2.81E-03 -0.64% -4.24E-05 -4.23E-05 -0.03% 

𝑬𝟐,𝟐 -1.45E-03 -1.44E-03 -0.27% 8.22E-06 8.22E-06 -0.04% 

𝑮𝒘𝒇 1.91E-01 1.91E-01 0.06% 3.82E-04 3.82E-04 0.00% 

𝒕𝒍𝒐𝒂𝒅 -5.64E+00 -5.65E+00 0.15% -8.46E-02 -8.46E-02 0.00% 

Table 6-7: Sensitivities, finite difference method using perturbation of 0.00001% 
(Implied Stiffness Variables) 

 

6.5.3  Reliability analysis of a Hypar 

The partial derivatives described in Section 6.5 will be used in the reliability analysis of 

the hypar structure demonstrated in Section 6.4. The hypar is patterned as shown in 

Figure 6-4. It is subjected to a typical snow load of 0.6kN/m2.  The non-neural-network 

related statistical variables used in the reliability analysis are summarised in  

Coefficient of 
variation 

0.1 0.1 0.2 0.2 

Table 6-8. The maximum permissible stress in both directions is set at approximately 25% 

of the ultimate limit strength of a typical PVC coated polyester fabric, and is related to tear 

propagation. This is the maximum level of stress allowed in the biaxial testing used to 

generate the network training data. Beyond this level of stress the network is unlikely to 

be able to reliably generalise the fabric response as it is outside of the extents of the 

training response surface, Section 2.3. 
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Variable 𝑮𝒙𝒚 𝒕𝒍𝒐𝒂𝒅 𝝈𝒑𝒆𝒓
𝒘  𝝈𝒑𝒆𝒓

𝒇
 

Mean 30 1 30 30 

Standard 
Deviation 

3 0.1 6 6 

Coefficient of 
variation 

0.1 0.1 0.2 0.2 

Table 6-8: Non network related statistical variables. 

 

6.5.3.1 Derivation of Implied Stiffness matrix statistical variables. 

The process of generating statistical information, i.e. means and standard deviations, for 

the elastic stiffness constants is completed in two steps.  

In the first step, a set of 30 response surface style networks are trained using experimental 

data. The response surface style networks each take warp and fill strains as the (2), have 

10 hidden nodes, and provide warp and fill stresses as the (2) outputs,. Construction of 

training data sets and network initiation may done using random values (see section 6.4). 

Here, a single training data set is derived from the available experimental data for PVC 

coated polyester architectural fabric and used as training data for each network. In other 

words, each network is trained using identical data. The weights and bias values are 

initiated randomly. This means that the training algorithm begins at a different position in 

the solution space for each network. This results in a set of 30 unique network material 

models for the architectural fabric.  

In the second step, each network is used in a simulation of the structure on which the 

reliability analysis is to be performed. The structure is loaded as it will be in the reliability 

analysis. The implied stiffness matrix for each Gauss point of the mesh at the equilibrium 

state, after the final dynamic relaxation energy peak, is taken as output. These sets of 

implied stiffness values are used to derive a mean implied stiffness matrix and associated 

standard deviation for each Gauss point. The reliability analysis is then undertaken using 

these values. In each reliability iteration the statistical information and limit state function 

at the current design point is used to calculate the direction cosines, 𝛼, and and the saftety 

index, 𝛽 (equations (6.9) to (6.13)). These values are then used along with each Guass 

point's mean and standard deviation in order to update all the implied elastic stiffness 

matrices (equations (6.14) and (6.15)). The process is repeated until the reliability 

analysis convergence criteria are met. 
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In order to illustrate the variation between each network simulation, stress, strain and 

displacement data has been output for 6 key nodes in the hypar mesh, Figure 6-6.  

 

Figure 6-6: Hypar structure form-found mesh with selected nodes 

 

The results extracted for each node are plotted as box plots, Figure 6-7, where the median 

is denoted by the red line and the box contains all results between the 25th and 75th 

percentile. The stress results produce the least outliers, denoted by a red +, with a typical 

range of approximately 0.5kN/m or less. The strain and displacement results produce a 

greater number of outliers and relatively larger ranges. This is expected as an applied load 

drives the analysis and the level of stress is more or less prescribed. The nodal 

displacement, which induced the strain required as input to the network model in order 

reach equilibrium with the applied load, is found. Therefore, the higher level of variation 

between displacement and strain results is expected. 
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(a) Warp stress (kN/m) (b) Fill stress (kN/m) 

  
(c) Warp strain (%) (d) Fill strain (%) 

 
(e) Displacement (mm) 

Figure 6-7: Results Variability Across 30 Networks 
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(a) Warp stress (kN/m) (b) Fill stress (kN/m) 

  
(c) Warp strain (%) (d) Fill strain (%) 

  
 (f) Absolute displacement (m) 

Figure 6-8: Hypar snow results using mean implied stiffness values 

 

The results of the hypar simulation based on mean implied stiffness values are shown in 

Figure 6-8. The stress, strain and displacement values for the selected nodes are plotted as 

* in Figure 6-7. For these latter values in both material directions, the stress values are 
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greater than the range denoted by the box plots. The fill strains are generally greater than 

the 75th percentile but still within the total range. The warp strains are generally at the 

lower end of the range. These result in an overall deflection that is similar to the minimum 

deflection observed in the network simulations. The error is likely to be caused by the 

large strain step used in conjunction with the implied stiffness matrix. Accuracy of the 

implied stiffness approximation in inversely proportional to the strain step. Iterative 

loading would improve the accuracy of the implied stiffness solution, as the implied 

stiffness would vary across the response surface. However, as previously discussed, this 

would require the derivation and implementation of an iterative reliability analysis and 

greatly increase the number of partial derivatives required. These results may also 

indicate that a more suitable candidate for the initial implied stiffness values would be the 

values derived from the network that generates the median stress result. However, the 

mean values are deemed to produce results sufficiently similar to the typical network 

response to serve as a substitute for the network  in this initial study.   

  

  

Figure 6-9: Implied stiffness values for hypar mesh. 
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The hypar mesh contains a total of 4704 Gauss points, for which the implied stiffness 

values for each network along with the mean implied stiffness constants are plotted in 

Figure 6-9. The symmetry of the plots is a result of the symmetrical mesh that is generated 

systematically. It is evident from Figure 6-9 that the implied stiffness values show a high 

degree of variation between networks. They also vary across the mesh. This demonstrates 

the power of the network to capture the non-linear behaviour of the fabric material. 

Overall means of the mean and standard deviation values for each implied stiffness 

variable is shown in Table 6-9 to give an indication of the typical statistical properties.  

Variable 𝑬𝟏𝟏 𝑬𝟏𝟐 𝑬𝟐𝟏 𝑬𝟐𝟐 

Mean of means 640.3 536.4 593.1 1203.1 

Mean standard 
Deviation 

152.5 167.7 192.7 217.0 

Coefficient of 
variation 

0.24 0.31 0.32 0.18 

Table 6-9: Network related statistical variables (Global mean). 

The reliability analysis is limited to 10 iterations as computation of the analytical limit 

state partial derivatives for each variable requires a significant computer resource. This is 

largely due to the inversion of the partial derivative stiffness matrix, 𝑑𝐾−1, required in the 

determination of the the displacement derivatives (equation (6.33)). For the hypar 

structure this matrix is a 2511 by 2511 matrix and has to be inverted for each statistical 

variable for each iteration of the reliability algorithm. However, this remains a faster 

process than using the finite difference method. Nevertheless, for this size structure, 10 

iterations of the reliability algorithm take approximately 10 hours to complete with the 

programme in its current form. 

The statistical values for each gauss point are used in the reliability analysis of the 

strength limit states; limit states 1 and 2, equation (6.1) and (6.2). Limit state 1 does not 

fully converge to a stable result after 10 reliability iterations, Figure 6-10 (a) . However, 

the limit state function approaches zero between iterations 4 and 7 with a concurrent 

value of 𝛽 that stabilises at approximately 4.4. Interestingly, and arguably providing 

confidence in the solution, a very similar value of 𝛽 is obtained at iteration 10 with the 

value of the limit state close to zero. Limit State 2 converges to a stable solution after 5 

iterations, with a  𝛽 value of 3.81 and a limit state function of approximately 0.001, Figure 

6-10 (b). Both limit states generate a 𝛽 value greater than the minimum of 3.8 suggested in 

Eurocode 0 and represent a less than 0.007% probability of failure. As expected, the 

probability of failure due to material rupture is higher in the fill direction, corresponding 
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as it does with the high points of the hypar and greater stress levels under gravity loading. 

The warp direction would be the critical direction in an uplift case.  

The values of 𝛼 for each statistical variable for both limit state functions Figure 6-10 (c) 

and (d) clearly show that the most critical variable is the material strength in the relevant 

direction. This is followed by the load factor. It is in fact questionable whether the 

remaining 6 statistical variables have any significant impact despite their large standard 

deviations.   

  

(a) Limit State 1, 𝜷 ≈ 𝟒.𝟒 (b) Limit State 1, 𝜶-values 

  

(c) Limit State 2, 𝜷 ≈ 𝟑. 𝟖𝟏 (d) Limit State 2, 𝜶-values 
Figure 6-10: Limit State 1 and 2 Reliability Outputs 

 

The statistical values for each Gauss point were next used in the reliability analysis of the 

wrinkling and deformation serviceability limit states, limit state 3 and 4 respectively 

equation (6.3) and (6.4). The reliability analysis for limit state 3, the minimum stress limit 

state, becomes unstable after only a small number of iterations. The value of 𝛽 becomes 

greater than 5 after only 3 reliability iterations and the mesh collapsed after 8 iterations, 
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Figure 6-12 (a). This may indicate that the failure due to wrinkling has an extremely low 

probability. However, it is more likely that the large standard deviation of the statistical 

variables combined with their complex interactions caused the analysis to become 

unstable. Attempts to stabilise the analysis using the lower standard deviations also 

produced similar results.  

  

(a) Limit State 3, fails to converge and 
becomes unstable after 8 

(b) Limit State 3, 𝜶-values 

Figure 6-11: Limit State 3 Reliability Outputs 

Limit State 4 shows greater promise as the value of 𝛽 did not diverge as quickly as for 

Limit state 3,  Figure 6-12 (a). However, the limit state function oscillates approximately 

about its initial value and the 𝛽 value shows no sign of converging. The load factor is 

clearly the most significant variable and is the oscillation of the 𝛼-values of this variable is 

the main cause of the oscillation of the limit-state function.  It appears that the load factor 

and 𝐸11 are working against each other, when the 𝛼-value for 𝐸11 becomes a positive value 

the load factor alpha-value quickly switches from positive to negative, the same is true for 

the 𝛼-value for 𝐸12.  

The oscillation was caused by ill conditioning between the limit state function, its partial 

derivatives and the direction of loading and therefore displacement. This was due to the 

use of the absolute value of displacement in the limit state function. Therefore, the 

displacement limit state function was reformulated to include a unit factor accounting for 

the principle direction of loading. This is deemed an acceptable solution as loading is 

typically applied approximately perpendicular to the fabric surface and therefore the 

principle direction of loading may be defined.  
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𝐺4(𝑋𝑠𝑖) = 𝛿𝑝𝑒𝑟 − (𝑙𝑑𝑖𝑟)|𝛿|𝑚𝑎𝑥  

𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑙𝑒 𝑙𝑜𝑎𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛+′𝑣𝑒 → 𝑙𝑑𝑖𝑟 =  1   

𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑙𝑒 𝑙𝑜𝑎𝑑 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛−′𝑣𝑒 → 𝑙𝑑𝑖𝑟 = − 1  

(6.159) 

 

When using this form of the limit state function the reliability analysis becomes stable and 

converges in 10 iterations with a stable 𝛽 value of 0.96 and a minimum limit state function 

value of -0.0002.  A 𝛽 value of 0.96 represents an unacceptably high probability of failure 

indicating that the design should be altered to increase allowable displacement or reduce 

displacement. 

  

(c) Limit State 4, fails to converge in 10 
iterations 

(d) Limit State 4, 𝜶-values 

Figure 6-12: Limit State 4, Without Direction Factor 

  

(c) Limit State 4, 𝜷 ≈ 𝟎. 𝟗𝟓 (d) Limit State 4, 𝜶-values 
Figure 6-13: Limit State 4 With Direction Factor 
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6.6 Summary and Conclusions 

In this chapter the analytical partial derivatives required for probabilistic reliability 

analyses using both plane stress and implied stiffness material models are derived and 

validated. The reliability solution procedure is based on the improved Hasofer-Lind and 

Rackwitz-Fiessler (iHL_RF) algorithm. Four limit state functions (failure in the warp 

direction, failure in the fill direction, wrinkling and maximum displacement) have been 

explored. The limit state functions are dependent on 8 statistical variables. The partial 

derivatives of each limit state function with respect to each statistical variable describes 

the sensitivity of that limit state to the variable.    

Validation of the analytical sensitivities has been demonstrated using comparisons with 

partial derivatives obtained from the finite difference method and based on the analysis of 

a simple 2-element biaxially loaded patch. Varying levels of perturbation were 

investigated. Excellent agreement is demonstrated between the analytical and finite 

difference derivatives apart from where the derivative was very low or was incompatible 

with the level of perturbation, where good agreement has been achieved. 

Monte Carlo simulation has been used to validate the probabilities of failure for the four 

limit state functions obtained from the reliability analysis. 20,000 Monte Carlo simulations 

were run with normally distributed statistical variables. The probability of failure was 

estimated using an indicator function and cumulative frequency plots. Excellent 

agreement between the reliability analysis and Monte Carlo simulations has been achieved 

for 3 of the 4 limit states. The limit state that showed the least agreement had a probability 

of failure that was lower by a factor of 10 suggesting that insufficient number of analysis 

runs had been completed to provide a reliable measure of the probability of failure from 

the Monte Carlo simulation.  

A procedure for reliability analysis using an implied stiffness material model to 

approximate the network response has been explored. A set of 30 networks was trained 

and used to generate statistical information for the reliability analysis of a realistic hypar 

structure. Reliability analyses of the ultimate limit state functions for warp and fill stresses 

converged acceptably, with 𝛽 values of 4.4 for the warp direction and 3.8 in the fill. The 

sensitivity of the analysis to the material properties is shown to be relatively low. The 

reliability analysis of the principle stress serviceability limit functions proved to be 

unstable and failed to reach acceptable levels of convergence. The analysis was not 

stabilised by the reduction of the statistical uncertainty of the material model.  The 

displacement limit state was initially unstable. However, the modification of the limit state 
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function with a direction term lead to a stable convergence. The resulting  𝛽 value 

represent an unacceptable high probability of failure. Significant further work is required 

in order to develop a robust reliability analysis procedure for neural network material 

models. However, initial work presented here indicates that with further development of 

the procedure network reliability analysis will be possible.  
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Chapter 7. Conclusions and Further Work 

7.1 Conclusions 

A large displacement finite element formulation based on a 6 node isoperimetric 

triangular membrane element has been developed and demonstrated, Section 3.1 to 3.2. 

The element formulation allows the designer to prescribe the element local coordinate 

system to align with the desired fabric warp and fill direction. Geodesic control strings 

have been implemented to control the panel edges and centre lines without effecting the 

final form-found minimal surface. These features allow the patterning of the structure to 

be incorporated into structural mesh.  

The finite element  formulation implemented as a Fortran console application  has been 

used to perform form finding, using a zero elastic stiffness matrix, and static load analysis, 

using a plane stress orthotropic elastic stiffness matrix, on realistic fabric structural 

meshes. A wrinkling procedure based on combined stress and stiffness criteria is 

implemented within the static analysis. Where the wrinkling criteria is triggered 

discontinuities in resulting stress field indicate that the analysis has potentially become 

unstable.  

A patterning procedure using the 6 node isoperimetric element is presented, Section 3.3. 

The stress plot output from the patterning procedure allows the investigation of 'locked in' 

forces induced during the flattening of the form found panels. Discontinuities between 

neighbouring panel edge length are investigated and found to be relatively small. The 

formulation includes all of the features identified as requirements for architectural fabric 

simulation in the literature review, Section 2.1, and is suitable for the implementation of a 

neural network material model.  

Biaxial load profiles have been developed for PVC coated polyester and PTFE coated glass 

architectural fabrics with additional load ratios between the typical 0:1, 1:2, 1:1, 2:1 and 

1:0 load ratio arms, Section 4.3.2. The resulting experimental data with residual strain 

removed  has been used to represent fabric behaviour in the form of a strain-stress 

response surface. 

Response surface style neural network material models that have been trained and tested 

using the data sets,  Section 4.3.3. Networks trained with PVC  data are capable of 



Chapter 7 Conclusions and Further Work 336 
 

accurately generalising the PVC material response surface when presented with unseen 

data. Problems caused by the steepness of the PTFE response surface, leading to one-to-

many mappings, have been overcome by the addition of a third stress ratio input. Stress to 

strain neural networks have been used to generate additional stress strain data points to 

further explore network generalisation. Some cases of over fitting have been identified. 

This highlights the importance of comprehensive network validation with unseen data 

prior to implementation.     

Initially the load history dependant behaviour of architectural fabric has been investigated 

using uniaxial experimental data generated using 3 unique load profiles, Section 4.4.2. A 

network architecture with 4 inputs namely current strain, previous strain, previous stress 

and internal variables has been developed to be trained with the uniaxial stress strain data. 

 A study into the effect of training data profile, load step and hidden node number was 

undertaken, Section 4.4.3. Network generalisation improved when the network was 

trained with data from the load profile with the widest variety of features. Network 

performance decreased as the difference between the testing and training profile load step 

increased. Networks with 4 hidden nodes produced unacceptably low    value more 

frequently than those with 7 or 10 nodes but no definitive conclusions regarding the 

sufficient number of nodes could be made from this study. 

 A further study into the required number of  hidden layer nodes for the uniaxial load 

history network indicated that the networks performed best with between 9 and 17 nodes 

the hidden layer. With more than 17 nodes, error increased indicating that over-fitting had 

begun to occur.  A network with 9 hidden nodes was trained with a data set taken from the 

most comprehensive load profile. The trained network was capable of reproducing the 

material response from the two unseen profiles with a high degree of accuracy.   

The findings of the uniaxial studies were used to develop  a set of five unique biaxial load 

profiles. Each of the five load profiles used a different load ratio, 0:1, 1:2, 1:1, 2:1 or 1:0, as 

a repeated conditioning cycle, Section 4.4.4. As in the most successful uniaxial profile, 

differing upper and lower loads were used throughout the profiles to capture the effect of 

previous stress magnitude as well as stress ratio. These profiles aimed to capture a wide 

variety of loading conditions to enable the production of comprehensive data sets for both 

training and testing. The profiles were used to generate data sets for PVC coated polyester 

and PTFE coated glass fabric.  

The proposed biaxial load history neural network takes inputs of current and historical 

strain, historical stress and internal variables for the warp and fill material directions, 
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Section 4.4.5. A study into the number of nodes required by the biaxial load history 

network demonstrated that network performance increased with an increasing number of 

nodes, up to approximately 15 hidden nodes. Performance neither consistently increased 

nor decreased with increasing hidden node numbers, up to 40 nodes. Due to the high 

complexity of the training data over fitting was not identified.   

PVC and PTFE neural network material models with 15 hidden nodes have been trained 

with training data sets combining cycles from each of the experimental load profiles. The 

trained networks were tested in recurrent mode, where historical stress and strain inputs 

are taken from previous network output, with the full experimental profiles containing 

both seen and unseen data. For both materials, the network output demonstrates excellent 

agreement with the target experimental data. The network material models accurately 

generalise the fabric response when presented with unseen data. This indicates that the 

experimental load profiles have successfully captured the architectural fabric material 

response. 

The response surface and biaxial history neural network material models, Chapter 4, have 

been implemented in the finite element formulation, Chapter 3. Shear response has been 

assumed to be decoupled from direct stress and is calculated using a typical shear 

modulus. An implied stiffness matrix derived from partial derivatives of the network 

equations is used to generate the diagonal stiffness matrix terms required for the dynamic 

relaxation solution algorithm. 

 The response surface implied stiffness matrix formulation has been validated using a 

network trained using a data set derived from PTFE plane stress elastic constants, Section 

5.1.1. The implied stiffness matrix was calculated at 3 points on the surface. Errors 

between the network implied stiffness and target plane stress stiffness matrix terms were 

consistently less than 0.02%. The history network implied stiffness matrix formulation 

was  validated using the finite difference method, Section 5.1.2.  

Wrinkling behaviour is incorporated into the response surface network by generating 

additional training data in the wrinkled zone, Section 5.2.1. This was done using a plane 

stress approximation of the material response and applying a modification using 

combined stress strain wrinkling criteria. A patch mesh simulated with loading to induce 

stress ratios within the PVC  and PTFE response surface has been used to demonstrate the 

implemented neural network material models, Section 5.2.2. When plotted alongside the 

experimental data it can be visually confirmed that the stress strain results for both 

materials sit on the target surface.  
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The PVC neural network material model has been demonstrated in a full simulation of a 

hypar structure. In comparison to an equivalent plane stress simulations the Network 

produces similar stress and displacement patterns with some variations in magnitude. 

More significantly, the neural network produces a strikingly smoother stress distribution 

than the plane stress material model when wrinkling areas developed under wind loading. 

The network simulation is more stable as the modelled material response is continuous 

and the stiffness reduces as the simulation approaches compressive stress. The plane 

stress material model is modified only after the equilibrium condition has been found with 

areas of negative stress. This leads to potentially significant discontinuities in the 

modelled material response in subsequent solution iterations.  

In order to implement the history neural network material model, the finite element 

formulation has been modified to include incremental loading, Section 5.3. The effect of 

the difference between training load step and simulation load step has been investigated, 

Section 5.3.1. In a set of simulations using varying load step and multiple PVC network 

models, the non-linear biaxial stress strain response of the architectural fabric was 

reproduced with varying degrees of accuracy. Error between target and network output 

was typically greater when the simulation load step differed from the training data load 

step. This is in agreement with findings when the networks were tested outside of the 

finite element code.  Where the training data load step was smaller than the simulation 

load step, the error between network output and target output consistently became 

unacceptably large. Nevertheless numerous network models produced simulation results 

in excellent agreement with the experimental results and a network model has shown to 

be more accurate than a typical plane stress approximation.   

A history neural network simulation of a hypar undergoing loading and unloading 

demonstrated that the material model effectively captures load history effects including 

residual strain build up, strain recovery and differing response to loading and unloading, 

Section 5.3.2. Under both snow and wind loading residual deformation in the global z-

direction was observed, positive in the wind loading case and negative in the snow loading 

case. This is driven by residual strain in the warp and fill directions. Under snow loading, 

strain is recovered in the warp and builds up in the fill. Under wind loading, strain is 

recovered in the fill and builds up in the warp.  Stress is reduced in both directions below 

prestress for both load cases.  

Numerous studies throughout this thesis demonstrate the variation exhibited by neural 

networks due to the random initiation of network weights and biases and training data 

division. Varying performance has been consistently observed between randomly initiated 
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networks trained using identical data. This has been further illustrated via variation in 

hypar simulation results generated using a set of PVC network models, Section 6.2. It is 

proposed that during model development, multiple networks should be trained using a 

single comprehensive data set. The networks should then be rigorously tested using 

unseen data. The network demonstrating the best performance should be selected for the 

final simulation task. 

In order to assess probability of failure given the uncertainty associated with the proposed 

neural network material model, a FORM reliability analysis procedure has been developed, 

Chapter 6. Initially the analytical derivatives of the proposed limit state functions have 

been derived and validated for the original plane stress formulation using the finite 

difference method, Section 6.1.5. The full plane stress FORM reliability analysis has been 

validated using a simple Monte Carlo simulation of a biaxially loaded patch.  

Meaningful statistical descriptions of the neural network variability cannot be derived 

directly for the weights and biases of the network. It has been proposed that a set of 

implied stiffness matrix, derived for each Gauss Point of a mesh at equilibrium, may be 

used in place of a neural network material model. This enables an equivalent reliability 

analysis to be performed. The required partial derivatives have been developed and 

validated using the finite difference method. Statistical properties describing the variation 

of implied stiffness matrix terms at each gauss point of a hypar mesh have been derived 

from simulations using 30 randomly initiated trained network models, Section 6.3.3.1. The 

coefficients of variation are relatively high, ranging between 0.18 and 0.32. 

The statistical properties have been used to perform reliability analysis of the hypar mesh 

from which they were derived. The strength limit states converge close to 0 in less than 10 

FORM iterations and produce   values of 4.4 in the warp direction and 3.8 in the fill. These 

safety factors lie in an acceptable range as defined by EC0. The strength and load statistical 

variables are demonstrated to be the most influential in these analysis.  Despite their high 

coefficients of variation, only minor contributions from the material model variables are 

observed. The displacement limit state has a much greater dependence on the material 

model variables. The analysis converges with a   value of 0.95, which represents an 

unacceptably large probability of failure. Attempts to increase the allowable displacement 

lead the finite element code to become unstable.  The principle stress limit state analysis 

diverged away from zero producing   values which are too high to be meaningful.   

The aim of this PhD thesis was to provide a means of linking material testing and 

structural analysis in order to improve the accuracy of fabric structure simulation. 

Improving the accuracy of simulation reduces uncertainty allowing the reduction of partial 
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factors applied to loading or material properties in design. This could lead to more cost 

effective fabric structures and increase their feasibility for a wide variety of applications. 

Improved confidence in simulation would also allow the development of more exciting 

complex structures. Reliability analysis allows the designer to include the statistical 

uncertainty associated with loading material properties and geometry. This enables the 

designer to calculate a probability of failure for a structure. Work is currently underway 

for the development of a European Design Code for fabric structures. This code will 

require the development of standard approach for the assessment of  structural safety. 

The inclusion of load history effects in modelling architectural fabrics is a very new 

development in the research field but is important for the accurate representation of the 

complex stress strain behaviour exhibited by these materials. Previous architectural fabric 

material models have typically been based around the plane stress frame work. Various 

adaptations have been applied to the framework in order to allow the capture of non-

linear response. However, they still rely on the simplification of experimental data such as 

linearisation and do not capture load history effects. A new elasto-plastic material model 

has recently been published, this model captures permanent strain as well as orthotropic 

non-linear behaviour. However, this model has not been demonstrated with multiple 

uniaxial loading and unloading cycles and does not demonstrate an ability to capture 

strain recovery or negative strain under biaxial loading conditions. Neural networks have 

not previously been applied to material modelling of architectural fabrics but show 

considerable promise when tested with unseen cyclic data They have been demonstrated 

to have the capability to generalise fabric response to a wide variety of loading conditions. 

They also do not require significant pre-processing of experimental data, this allows an 

almost direct link between experimental data and structural simulation.   

The inclusion of load history effects is of particular importance for simulation of 

installation during which the fabric exhibits both conditioned and unconditioned 

behaviour. During installation the key aim is to develop a stable, unwrinkled doubly 

curved surface with the same level of prestress as that assumed in design. In practice 

installation is rarely simulated, instead the form found mesh is used to develop patterned 

panels which are reduced according to compensation factors found from physical tests. 

Accurate simulation of installation would allow the designer to identify potential problem 

areas that may develop as the fabric is pulled into place. Problems occurring during 

installation may reduce the aesthetic appeal of a structure, reduce its design life and may 

in extreme case lead to complete structural failure. This is extremely costly to both the 

designer and client and increases the risk associated with architectural fabric structures. 
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An improved understanding  of load history effects would also allow for the proper 

planning for maintenance of fabric structures such as re-tensioning and fabric panel 

replacement. Consideration for these tasks in the design of connection and support details 

would increase the  design life of architectural fabric structures.  

This thesis serves as promising proof of concept for the development and implementation 

of architectural fabric neural network material models. It has been demonstrated that it is 

possible to train neural network material models, using biaxial experimental data, to 

accurately generalise the non-linear and history dependent strain stress response of 

architectural fabric. The trained networks have been successfully implemented in a 

specialist finite element code and have been used in the simulation of a realistic fabric 

structures. High levels of epistemic uncertainty, introduced by the training process, has 

been observed and quantified for the trained neural networks. Initial investigations using 

reliability analysis have demonstrated that while network material model uncertainty has 

a significant impact on the probability of failure associated with the displacement 

serviceability limit state, the ultimate strength limit state probability of failure is largely 

unaffected.  
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7.2 Recommendations for Further Work 

The form-finding procedure presented in this thesis is based on the classical soap-film 

analogy and as such does not allow form finding with orthotropic prestress. A wide variety 

of fabric structural forms may be investigated using pure minimal surfaces. However, the 

implementation of non isometric form finding would greatly increase the number of 

available forms.  

As has been noted in Chapter 3, Section 3.1.10, the 2 node cable element formulation used 

in the simulations presented in this PhD may potentially lead to stress strain 

discontinuities between the cables and membrane elements. Where a structural 

simulation requires highly curved cables or where the result is sensitive to the accuracy of 

the cables a more sophisticated 3-noded cable element allowing a non-linear strain field 

may be required. Initial work on a 3 node cable element formulation is presented in 

Appendix D. This formulation has not been extensively tested or implemented in the finite 

element code but serves as a starting point for an improved cable element formulation. 

Currently the patterning procedure does not include seam length control allowing the 

development of minor discontinuities between edge lengths of neighbouring panels. Some 

form of geometric control is required to ensure compatibility of the final panels. The 

application of compensation to produce the final panel geometries should be investigated. 

Currently shear behaviour is not included in the proposed neural network fabric model. 

The addition of inputs to a neural network model is reasonably arbitrary. For instance it is 

straight forward to add an additional shear strain input to the response surface network. 

However, the development of a network that includes both direct and shear stresses is 

limited by the collection of sufficiently comprehensive data.  Various shear testing 

methodologies have been proposed which facilitate the application of both direct and 

shear stresses. These methodologies may be adapted to allow the generation of 

sufficiently comprehensive data required for network training. 

It has been demonstrated that a finite element simulation of a test specimen may be 

incorporated into the network training process to directly extract constitutive behaviour 

from boundary measurements of load and displacement. This form of self-learning 

simulation was initially demonstrated using idealised panels and bars [117].  More 

recently it has been applied to non-liner connections [116] and soils [111]. This training 

methodology offers a possible opportunity to capture fabric response through testing that 

simulates the loading conditions undergone by insitu fabric structures. For example the 

development of a doubly curved surface form an initially flat panel. The development of 
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specialist experimental equipment would be required in order to implement this 

methodology. Data may also potentially be gathered from insitu fabric structures. 

Benchmarking of the proposed neural network fabric material model simulations against 

physical tests would also be an ideal way of validating the material models . Digital image 

correlation (DIC) has been applied to architectural fabric biaxial [6] and shear [64] tests to 

provide detailed strain and displacement distribution data. Initial attempts were made to 

simulate a full biaxial test specimen but the unrestrained edges of the slits in the arms 

caused the simulation to become unstable.  Development of a model suitable for the 

representation of the unrestrained arms would facilitate a direct comparison between a 

biaxial test simulation and DIC results. Rich displacement and strain data for simulation 

validation could also be gathered from full scale structural tests or insitu structures using 

DIC.     

The reliability analysis procedure requires further development in order to improve 

stability to allow  analysis of the serviceability limit state. As described in Chapter 6, in 

order to perform reliability analysis on an iteratively loaded fabric structure the limit state 

function derivatives must be derived for each load increment. Taking the displacement 

derivative with respect to the first implied stiffness term,     
 , as an example. The 

displacement derivative for the first load increment with respect to     
    is the same as 

those used in Section 6.3 for a single load increment. At the second load increment the 

total displacement is dependent on the variables of  both the first and second load 

increments,     
    and     

   . If the maximum load occurs at the 5th increment the final 

maximum displacement is a function of     
     .  The following 5 derivatives are required, 

     

     
    ,  

     

     
     , 

     

     
     , 

     

     
     , 

     

     
    

These derivatives maybe accessed using the finite difference method but this would be 

very computationally expensive. Therefore, analytical definition of these terms is a 

requirement in order to perform incremental load reliability analysis. 

Computational expense is a limiting factor not only when considering incremental load 

reliability analysis.  It also limits the complexity and density of meshes that can be 

analysed using the code developed in this Thesis. It would be beneficial to future research 

using this code to redevelop the Fortran code to make it more user friendly and more 

efficient. Initial efforts have been made using Matlab scripts and Rhino Grasshopper to 

provide graphical user interfaces. It would be of further benefit to rewrite the code in an 

object orientated language such as C# to facilitate better variable management, better 

integration with powerful graphical tools such as Grasshopper and clear user interfaces. 
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Appendix A. Grasshopper Mesh Generation 

Conic Mesh Generation 

Grasshopper is a powerful open access algorithmic modelling plug-in for Rhino 3D. It has 

been used in this thesis for mesh generation as it allows complicated meshes to be 

generated with relative ease A number of scripts have been generated for different 

structure types, only the conic script is shown here. However all work in a similar manner. 

As grasshopper is a Rhino plug-in it creates an excellent graphical interface and allows the 

mesh to be captured in the form of an exportable Rhino 3D file. The Grasshopper script 

interfaces with my Fortran code modules through the generation of .csv input files and by 

reading  .txt  Fortran module output files. Fortran modules may also be called from within 

the Grasshopper. For more information visit: http://www.grasshopper3d.com/ 

 

Overview of Conic Mesh Generation Grasshopper script: 

 

 

 

 

 

 

 

 

 

 

 

This area of the script contains all of the objects for the user interface, 

these will be described in the following pages. The rest of the script 

performs the  various functions of mesh generation, file generation 

and file reading.  

http://www.grasshopper3d.com/
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Read in .csv file containing node co-

ordinates for setting out edge restraints 

Read in .csv file containing node co-

ordinates for setting out hoop restraint 

(3 node used to define circle) 

File directory containing input file (all 

other files map from this) 

Ring may need to be rotated to properly 

form mesh between correct section of 

hoop. 

Define initial  mesh 

Mesh generated from: 

 Strip Width 
 Element Height 
 Division of strips 
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Preview mesh and node points in Rhino 

viewport  

Bake initial mesh to Rhino view-port. 

Panels are automatically generated with 

geodesic control strings along the edges  

(Green)and down the centre line (blue) 

The panel warp direction angle is 

aligned with the centre line 

 

 
Mesh is simplified using Fortran script 

to remove any coincident nodes 

Hoop and edge restraints are selected 

from the baked mesh in the Rhino view 

port  

Right click on control and select “Set 

multiple points” 

Selected points are highlighted in blue 

 

Preview restraints (preview geometry is 

highlighted in green) 
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Cable pre-stress is defined in a CSV file 

and read form the input directory 

Cables are selected in the same way as 

restraints in the Rhino viewport. 

 

Preview cables 
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An initial form-finding is run using a CST 

element formulation (this is optional but 

helps to generate a regular mesh 

geometry) 

Geodesic  string elements may be 

ignored if not required 

 

Analysis input is automatically 

generated and is saved to a CSV file that 

in turn is read by the Fortran FE code 

 

 

Fabric pre-stress and allowable out of 

balance force is set 

Fortran FE code if called from 

Grasshopper, analysis progress is 

displayed in a console: 

 

Geodesic string pre-stress and stiffness  

is set 

Form found mesh is read back into 

Grasshopper and may be viewed in the 

Rhino viewport 
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CSV Input for Fortran CST to LST 

conversion module generated and 

saved 

Select geodesic or non-geodesic mesh 

Run Fortran conversion module 

Preview generated mid side nodes in 

Rhino viewport 

 
Run Fortran module which slits 6-node 

elements into 4 3-node elements to 

enable  results visualisation in Rhino 

viewport 
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Final LST mesh  form-finding is run in 

the same way as the initial CST mesh 

form finding.  

Again geodesic  string elements may be 

ignored if not required 

 Analysis input is automatically 

generated and is saved to a CSV file that 

in turn is read by the Fortran FE code 

 
Fortran FE code if called from 

Grasshopper, analysis progress is 

displayed in a console: 

 

 

 

The form found mesh is read back into 

Grasshopper and may be baked to the 

Rhino viewport 

 

 

Displacement information may also 

displayed on the form found in the 

Rhino viewport: 
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The material properties and settings 

required for the static analysis of the 

form found mesh are set 

Elastic moduli for the warp and fill 

directions along with a shear modulus  

Poisson’s  ratio for the warp and fill 

directions (these are independent) 

Cable diameter and stiffness 

Allowable out of balance force 

Wrinkling procedure may be turned on 

or off 

Type of loading is set 

Global/Projected/No loading 

A load case name is defined 

Magnitude of Global or Projected load is 

set 

Fortran equivalent nodal loading 

module input is generated and saved to 

a CSV file 

Fortran loading module is called and 

nodal loads generated. Load 

information is read back into 

grasshopper and also saved for review 

in a .txt file 

Equivalent nodal loads are applied to 

the mesh using another Fortran Module 
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Fortran FE code if called from 

Grasshopper, analysis progress is 

displayed in a console: 

 

Analysis output including GiD results 

files are saved with the loading name as 

a prefix 

 

Analysis input is automatically 

generated and is saved to a CSV file that 

in turn is read by the Fortran FE code 
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Pattering of the form found mesh is also performed within the same Grasshopper script. 

 

 

  

  

  

 

  

1. A single panel is selected from 

within the mesh 

 

2. The selected panel is baked to the 

Rhino viewport and a central seam is 

defined  

 

3. The selected panel is transformed to 

minimise the displacement required 

for flattening   

 

 

4. The Fortran pattering module 

input .csv  file is generated and the 

module is run, the final flattened 

panel may then be viewed and baked 

to the viewport 
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The final patterned panel meshes, baked to separate layers, and form found mesh  may be 

manipulated in Rhino 3D or exporetd to other CAD packages in the form of a .dwg file 
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(a) Warp stress strain plot (b) Fill stress strain plot 
 

 

(c) Stress profile 

 
(d) Strain profile 

Figure B.1: PVC Biaxial 1:1 stress profile and results for history network training 
and validation..............................  

 

  

(      warp,        fill) 
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(a) Training data 

 

 
(b) Testing data 

Figure B.2: PVC Biaxial 1:1 stress and resulting strain profiles divided into training 
and testing data respectively ................................................................ 

  
(      warp,        fill, • data point ) 
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(a) Warp stress strain plot (b) Fill stress strain plot 

 
(c) Stress profile 

 
(d) Strain profile 

Figure B.3: PVC Biaxial 1:2 stress profile and results for history network training 
and validation..............................  

 

  

(      warp,        fill) 
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(a) Training data 

 

 
(b) Testing data 

Figure B.4: PVC Biaxial 1:2 stress and resulting strain profiles divided into training 
and testing data respectively ................................................................ 

  
(      warp,        fill, • data point ) 
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(a) Warp stress strain plot (b) Fill stress strain plot 

 

(c) Stress profile 

 
(d) Strain profile 

Figure B.5: PVC Biaxial 2:1 stress profile and results for history network training 
and validation..............................  

 

  

(      warp,        fill) 
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(a) Training data 

 

 
(b) Testing data 

Figure B.6: PVC Biaxial 2:1 stress and resulting strain profiles divided into training 
and testing data respectively ................................................................ 

  
(      warp,        fill, • data point ) 
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(a) Warp stress strain plot (b) Fill stress strain plot 

 

(c) Stress profile 

 
(d) Strain profile 

Figure B.7: PVC Biaxial 0:1 stress profile and results for history network training 
and validation..............................  

 

  

(      warp,        fill) 
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(a) Training data 

 

 
(b) Testing data 

Figure B.8: PVC Biaxial 0:1 stress and resulting strain profiles divided into training 
and testing data respectively ................................................................ 

  
(      warp,        fill, • data point ) 
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(a) Warp stress strain plot (b) Fill stress strain plot 

 

(c) Stress profile 

 
(d) Strain profile 

Figure B.9: PVC Biaxial 1:0 stress profile and results for history network training 
and validation..............................  

 

  

(      warp,        fill) 
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(a) Training data 

 

 
(b) Testing data 

Figure B.10: PVC Biaxial 1:0 stress and resulting strain profiles divided into training 
and testing data respectively ................................................................ 

  
(      warp,        fill, • data point ) 
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(a) Cycles 1-20 

 

 
(b) Cycles 20-40 

Figure B.11: PVC network tested with 1:1 profile in recurrent mode 
(      warp,        fill,  ∗  target,  ∘ network output) 
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(a) Cycles 40-60 

 

 
(b) Cycles 60-80 

Figure B.12: PVC network tested with 1:1 profile in recurrent mode 
  (      warp,        fill,  ∗  target,  ∘ network output) 
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(a) Cycles 1-20 

 

 
(b) Cycles 20-40 

Figure B.13: PVC network tested with 0:1 profile in recurrent mode 
(      warp,        fill,  ∗  target,  ∘ network output) 
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(a) Cycles 40-60 

 

 
(b) Cycles 60-80 

Figure B.14: PVC network tested with 0:1 profile in recurrent mode 
  (      warp,        fill,  ∗  target,  ∘ network output) 
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(a) Cycles 1-20 

 

 
(b) Cycles 20-40 

Figure B.15: PVC network tested with 1:0 profile in recurrent mode 
(      warp,        fill,  ∗  target,  ∘ network output) 
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(a) Cycles 40-60 

 

 
(b) Cycles 60-80 

Figure B.16: PVC network tested with 1:0 profile in recurrent mode 
 

  

(      warp,        fill,  ∗  target,  ∘ network output) 
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(a) Cycles 1-20 

 

 
(b) Cycles 20-40 

Figure B.17: PVC network tested with 1:2 profile in recurrent mode 
(      warp,        fill,  ∗  target,  ∘ network output) 
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(a) Cycles 40-60 

 

 
(b) Cycles 60-80 

Figure B.18: PVC network tested with 1:2 profile in recurrent mode 
 

  

(      warp,        fill,  ∗  target,  ∘ network output) 
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(a) Cycles 1-20 

 

 
(b) Cycles 20-40 

Figure B.19: PVC network tested with 2:1 profile in recurrent mode 
(      warp,        fill,  ∗  target,  ∘ network output) 
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(a) Cycles 40-60 

 

 
(b) Cycles 60-80 

Figure B.20: PVC network tested with 2:1 profile in recurrent mode 
 

  

(      warp,        fill,  ∗  target,  ∘ network output) 
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(a) Warp stress strain plot (b) Fill stress strain plot 

 
(c) Stress profile 

 
(d) Strain profile 

Figure B.21: PTFE Biaxial 1:1 stress profile and results for history network training 
and validation..............................  

  
(      warp,        fill) 
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(a) Training data 

 

 
(b) Testing data 

Figure B.22: PTFE Biaxial 1:1 stress and resulting strain profiles divided into 
training and testing data respectively ................................................................ 

  
(      warp,        fill, • data point ) 
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(a) Warp stress strain plot (b) Fill stress strain plot 

 

(c) Stress profile 

 
(d) Strain profile 

Figure B.23: PTFE Biaxial 1:2 stress profile and results for history network training 
and validation..............................  

 

  

(      warp,        fill) 
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(a) Training data 

 

 
(b) Testing data 

Figure B.24: PTFE Biaxial 1:2 stress and resulting strain profiles divided into 
training and testing data respectively ................................................................ 

  
(      warp,        fill, • data point ) 
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(a) Warp stress strain plot (b) Fill stress strain plot 

 

(c) Stress profile 

 
(d) Strain profile 

Figure B.25: PTFE Biaxial 2:1 stress profile and results for history network training 
and validation..............................  

  
(      warp,        fill) 
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(a) Training data 

 

 
(b) Testing data 

Figure B.26: PTFE Biaxial 2:1 stress and resulting strain profiles divided into 
training and testing data respectively ................................................................ 

  
(      warp,        fill, • data point ) 



Appendix B Full Biaxial History Network Results 394 
 

 

  

(a) Warp stress strain plot (b) Fill stress strain plot 

 

(c) Stress profile 

 
(d) Strain profile 

Figure B.27: PTFE Biaxial 0:1 stress profile and results for history network training 
and validation..............................  

 

  

(      warp,        fill) 
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(a) Training data 

 

 
(b) Testing data 

Figure B.28: PTFE Biaxial 0:1 stress and resulting strain profiles divided into 
training and testing data respectively ................................................................ 

  
(      warp,        fill, • data point ) 
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(a) Warp stress strain plot (b) Fill stress strain plot 

 

(c) Stress profile 

 
(d) Strain profile 

Figure B.29: PTFE Biaxial 1:0 stress profile and results for history network training 
and validation..............................  

 

  

(      warp,        fill) 
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(a) Training data 

 

 
(b) Testing data 

Figure B.30: PTFE Biaxial 1:0 stress and resulting strain profiles divided into 
training and testing data respectively ................................................................ 

  
(      warp,        fill, • data point ) 
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(a) Cycles 1-20 

 

 
(b) Cycles 20-40 

Figure B.31: PTFE network tested with 1:1 profile in recurrent mode 
(      warp,        fill,  ∗  target,  ∘ network output) 
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(a) Cycles 40-60 

 

 
(b) Cycles 60-80 

Figure B.32: PTFE network tested with 1:1 profile in recurrent mode 
  (      warp,        fill,  ∗  target,  ∘ network output) 
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(a) Cycles 1-20 

 

 
(b) Cycles 20-40 

Figure B.33: PTFE network tested with 0:1 profile in recurrent mode 
(      warp,        fill,  ∗  target,  ∘ network output) 
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(a) Cycles 40-60 

 

 
(b) Cycles 60-80 

Figure B.34: PTFE network tested with 0:1 profile in recurrent mode 
  (      warp,        fill,  ∗  target,  ∘ network output) 
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(a) Cycles 1-20 

 

 
(b) Cycles 20-40 

Figure B.35: PTFE network tested with 1:0 profile in recurrent mode 
(      warp,        fill,  ∗  target,  ∘ network output) 
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(a) Cycles 40-60 

 

 
(b) Cycles 60-80 

Figure B.36: PTFE network tested with 1:0 profile in recurrent mode 
  (      warp,        fill,  ∗  target,  ∘ network output) 



Appendix B Full Biaxial History Network Results 404 
 

 

 

 
(a) Cycles 1-20 

 

 
(b) Cycles 20-40 

Figure B.37: PTFE network tested with 1:2 profile in recurrent mode 
(      warp,        fill,  ∗  target,  ∘ network output) 
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(a) Cycles 40-60 

 

 
(b) Cycles 60-80 

Figure B.38: PTFE network tested with 1:2 profile in recurrent mode 
  (      warp,        fill,  ∗  target,  ∘ network output) 
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(a) Cycles 1-20 

 

 
(b) Cycles 20-40 

Figure B.39: PTFE network tested with 2:1 profile in recurrent mode 
(      warp,        fill,  ∗  target,  ∘ network output) 
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(a) Cycles 40-60 

 

 
(b) Cycles 60-80 

Figure B.40: PTFE network tested with 2:1 profile in recurrent mode 
  (      warp,        fill,  ∗  target,  ∘ network output) 
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Appendix C. Neural Network Training Tool 

MATLAB® is a high level language and interactive environment that provides a great many 

tools for the generation of GUI, processing of raw data, graph plotting and neural network 

training. The Neural Network Toolbox TM  (http://uk.mathworks.com/products/neural-

network/)contains all of the neural network development tools available within the 

Matlab environment. A number of scripts have been developed in order to process raw 

experimental data and build training data sets. Network training and testing is also 

performed through scripts which call the functions of the Neural Network Toolbox. The 

internal variables of the networks may be saved in a .csv file used as input when 

implementing the network in the Fortran FE code. Several useful tools for reporting the 

network training have also been developed including numerical performance output and 

data plotting. The full response surface network training procedure is documented here.   

 

 

 

 

 

 

 

 

Matlab is opened and the "Current 

folder" is set to the directory 

containing all scripts required for 

network training. 

The scrpits are all accessed through a 

menu opened by calling 

"network_options" in the command 

window. 
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Initially the menu provides limited 

options. Further options become 

available as the training process 

proceeds.  

To initiate network training select 

"Import and process biaxial raw data". 

The raw data processing scripts have 

been adapted from in house biaxial 

data processing scripts developed by 

Dr. Ben Bridgens for the calculation of 

elastic constants.  

Upon selecting "Import 

and process biaxial raw 

data" a file explorer 

window is opened to allow 

you to navigate to the raw 

data file generated during 

a biaxial test. 

The raw data is imported 

via the Matlab Import 

Wizard. 
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A GUI is displayed in which the test 

data is named and variables used in the 

conversion of load and displacement 

data to equivalent stress and strain 

data are set. 

The resulting raw stress strain 

data is plotted.  

 

The option to trim unnecessary 

data from the end of the profile 

is given.  
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Once trimmed the data is re-plotted with cycles identified. A 

residual strain removed data set is also generated and plotted at 

this stage.   

Once the cycles have been identified 

correctly elastic constants for the 

generation of additional data in the 

wrinkling and slack region are fit to 

selected cycles of the experimental data. 

The cycles, residual strain settings, and 

portion of the loading curve are each set 

via a GUI. 

If any cycles have been incorrectly 

identified the turning point search 

window may be modified and the 

turning points are recalculated. 
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The raw biaxial data has now been processed and is output the Matlab workspace. The 

remaining scripts have been developed solely for the generation of network material 

models in this Thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 3D plot of the plane stress model 

fit to the data is automatically 

generated to allow inspection of the 

fit. The elastic constants are stored 

for use later and also output to the 

workspace 

As with the fitting of elastic constants 

the network training data sets are 

made up of selected cycles. Two lists of 

cycles are required. These sets of cycles 

provide 'unseen' data for network 

testing as well as training. Again 

residual strain may be included or 

removed and the loading and / or 

unloading portions may be selected. 

The next step in the process is the 

generation of training and testing data 

sets. Options to generate data sets with 

or without additional wrinkling training 

data are available. The following shows 

the generation of a data set with 

wrinkling data. 
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The density of a grid of additional 

stress data points is set. These points 

are used in the generation of additional 

data  in the wrinkled region using a 

plane stress model. A stress to strain 

network is also used to generate 

additional  data in the experimental 

data region. These points are plotted to 

allow the user to check the grid 

density.  

A set of 10 Stress to Strain networks 

are trained and tested. The network 

demonstrating the best fit is selected to 

generate the additional data set. 

The Matlab training GUI allows 

network training to be supervised. 

Various plots may be generated. 
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An interactive plot of the wrinkling data is 

produced. This allows the user to plot the 

different wrinkling criteria (stress, strain and 

combined). 

Plots of the final training data set are generated 

and saved as jpegs in an automatically 

generated network directory. 
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The network training and testing 

options are now available. Either a 2 

input network or a 3 input network 

with an additional ratio input may be 

selected. 

Various network options are set via a GUI.  

The Network set is given a name and the 

number of networks to be trained is set.  

The training algorithm is set by default to 

"trainlm" but any training algorithm available in 

the Neural Network Toolbox may be used.  

The number of hidden nodes is selected. 

The hidden layer activation function is set by 

default to "tansig", again any available transfer 

function may be used. 

Random data division and node initiation may 

be turned on or off . 

Training data group sizes are set, these sets are 

used to implement early stopping. 
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Once training and testing is complete the performance data for each set of networks is 

output to the command window. These values are also saved to the workspace and may 

easily be exported. 
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Once the networks have been trained 

network plotting and saving options 

become available. 

The "Plot Net Figures" option opens a GUI where the network to be plotted is 

selected and a name for the plot is set. The legend may also be turned on or off. 

A set of jpeg images are saved to the network directory. 
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The "Save Network" option opens a GUI where the 

network set to be saved may be selected. The 

networks are saved in the automatically generated 

directory containing all the figures produced  during 

the training process.  

A .txt output from the 

command window is 

generated as a record of the 

training procedure. 

The contents of the 

workspace is saved, this 

enables training to re-run or 

additional networks to be 

trained. 

Each network is saved in a 

separate directory. 

The networks are saved in a 

directory named for the 

number of hidden nodes 

allowing for sets with 

different hidden layer sizes. 
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The final output is a .csv containing all of the weights, biases and scaling data allowing the 

network to be implemented in the Fortran FE code.  

 



Appendix D 3 Node Cable Element Formulation 421 

Appendix D. 3 Node Cable Element Formulation 

Contents 

Appendix D. 3 Node Cable Element Formulation ........................................................................422 

D.1 Shape Functions .............................................................................................................................422 

D.2 Cable Transformation Matrix ...................................................................................................424 

D.3 Jacobian .............................................................................................................................................424 

D.4 B-Matrix ............................................................................................................................................425 

D.6 Stiffness matrices ..........................................................................................................................428 

 

Figures 

Figure D-1: Mapping between global and natural co-ordinates for 6 node membrane 

element ........................................................................................................................................422 

Figure D-2:Side 1 of the 6 node membrane element .........................................................................422 

Figure D-3:2 node cable approximation of deformed side 1 of a membrane element ........423 

Figure D-4:Interpolation of coordinates and displacements for 3 node cable element .....423 

 

Tables 

Table D-1: Gauss points and weights .......................................................................................................428 

 

  



Appendix D 3 Node Cable Element Formulation 422 

 

Appendix D. 3 Node Cable Element Formulation 

In order to ensure compatibility between the cable element and the 6 noded membrane 

element it is proposed that a 3-noded cable element formulation may be based on the 

shape functions of the membrane element. 

 

Figure D-1: Mapping between global and natural co-ordinates for 6 node membrane 
element 

D.1 Shape Functions 

 

 

Figure D-2:Side 1 of the 6 node membrane element 

In the current formulation the cables are approximated by straight lines. Therefore, as 

illustrated in Figure D-3, the displaced length used to calculate current strain is calculated 

by, 

𝐿1 = √(𝑥4 − 𝑥1 + 𝑢4 − 𝑢1)
2 + (𝑦4 − 𝑦1 + 𝑣4 − 𝑣1)

2 + (𝑧4 − 𝑧1 + 𝑤4 − 𝑤1)
2  

𝐿2 = √(𝑥2 − 𝑥4 + 𝑢2 − 𝑢4)
2 + (𝑦2 − 𝑦4 + 𝑣2 − 𝑣4)

2 + (𝑧2 − 𝑧4 + 𝑤2 − 𝑤4)
2  

 

(1,0,0) (0,1,0) 
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6 
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(𝑥5, 𝑦5, 𝑧5) 

(𝑥2, 𝑦2, 𝑧2) 

(𝑥4, 𝑦4, 𝑧4) 

(𝑥1, 𝑦1, 𝑧1) 

(𝑥6, 𝑦6, 𝑧6) 

𝑃1(𝑥1, 𝑦1, 𝑧1) 

𝛿1(𝑢1, 𝑣1, 𝑤1) 

𝜉1 = 1, 𝜉2 = 0  

 

𝑃4(𝑥4, 𝑦4, 𝑧4) 
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𝛿2(𝑢2, 𝑣2, 𝑤2) 

𝜉1 = 0, 𝜉2 = 1 
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Figure D-3:2 node cable approximation of deformed side 1 of a membrane element 

As an alternative it is proposed that the current cable stress and strain be derived using 

shape functions in a similar fashion to the 6noded triangular element. Taking a single side 

of the membrane element , the relevant shape function are, 

𝑁1 = 𝜉1(2𝜉1 − 1)  𝑁4 = 4𝜉1𝜉2 𝑁2 = 𝜉2(2𝜉2 − 1)  (D-1) 

Through inspection it can be seen that 𝜉2 = 1 − 𝜉1 therefore the cable shape functions 

become, 

𝑁1 = 𝜉(2𝜉 − 1)  𝑁2 = 4𝜉 − 4𝜉2 𝑁3 = 1 − 3𝜉 + 2𝜉2  (D-2) 

where 𝜉 = 𝜉1, for clarity the shape functions, coordinates and displacements are 

renumbered 1→3 along the cable. 

Given that 𝑥 = ∑ 𝑁𝑖𝑥𝑖
𝑖=3
𝑖=1  and   𝛿 = ∑ 𝑁𝑖𝛿𝑖

𝑖=3
𝑖=1  it is now possible to interpolate co-ordinates 

and displacements at any point along the cable element, Figure D-4.  

 

Figure D-4:Interpolation of coordinates and displacements for 3 node cable element 

 

𝑥 = ∑ 𝑁𝑖𝑥𝑖
𝑖=3
𝑖=1 = 𝑁1𝑥1 + 𝑁2𝑥2 + 𝑁3𝑥3 = (2𝜉2 − 𝜉)𝑥1 + (4𝜉 − 4𝜉2)𝑥2 + (1 − 3𝜉 + 2𝜉2)𝑥3  

𝑦 = ∑ 𝑁𝑖𝑦𝑖
𝑖=3
𝑖=1 = 𝑁1𝑦1 + 𝑁2𝑦2 + 𝑁3𝑦3 = (2𝜉2 − 𝜉)𝑦1 + (4𝜉 − 4𝜉2)𝑦2 + (1 − 3𝜉 + 2𝜉2)𝑦3  

𝑧 = ∑ 𝑁𝑖𝑧𝑖
𝑖=3
𝑖=1 = 𝑁1𝑧1 + 𝑁2𝑧2 + 𝑁3𝑧3 = (2𝜉2 − 𝜉)𝑧2 + (4𝜉 − 4𝜉2)𝑧2 + (1 − 3𝜉 + 2𝜉2)𝑧3  

 

(D-3) 

𝑢 = ∑ 𝑁𝑖𝑢𝑖
𝑖=3
𝑖=1 = 𝑁1𝑢1 + 𝑁2𝑢2 + 𝑁3𝑢3 = (2𝜉2 − 𝜉)𝑢1 + (4𝜉 − 4𝜉2)𝑢2 + (1 − 3𝜉 + 2𝜉2)𝑢3  

𝑣 = ∑ 𝑁𝑖𝑣𝑖
𝑖=3
𝑖=1 = 𝑁1𝑣1 + 𝑁2𝑣2 + 𝑁3𝑣3 = (2𝜉2 − 𝜉)𝑣1 + (4𝜉 − 4𝜉2)𝑣2 + (1 − 3𝜉 + 2𝜉2)𝑣3  

𝑤 = ∑ 𝑁𝑖𝑤𝑖
𝑖=3
𝑖=1 = 𝑁1𝑤1 + 𝑁2𝑤2 + 𝑁3𝑤3 = (2𝜉2 − 𝜉)𝑤2 + (4𝜉 − 4𝜉2)𝑤2 + (1 − 3𝜉 + 2𝜉2)𝑤3  

(D-4) 

𝑃1((𝑥1 + 𝑢1), (𝑦1 + 𝑣1), (𝑧1 + 𝑤1))  

 

𝑃2((𝑥2 + 𝑢2), (𝑦2 + 𝑣2), (𝑧2 + 𝑤2)) 

 

𝑃3((𝑥3 + 𝑢3), (𝑦3 + 𝑣3), (𝑧3 + 𝑤3)) 

 

𝑃𝑥((𝑥𝑥 + 𝑢𝑥), (𝑦𝑥 + 𝑣𝑥), (𝑧𝑥 + 𝑤𝑥)) 

 

𝑃1((𝑥1 + 𝑢1), (𝑦1 + 𝑣1), (𝑧1 + 𝑤1)) 

 

𝑃4((𝑥4 + 𝑢4), (𝑦4 + 𝑣4), (𝑧4 + 𝑤4)) 

 

𝑃2((𝑥2 + 𝑢2), (𝑦2 + 𝑣2), (𝑧2 + 𝑤2)) 

 

𝛿 

𝜉 = 1 

𝜉 = 0.5 

𝜉 = 0 
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D.2 Cable Transformation Matrix 

Direction cosines may be found at each node in order to resolve the cable stiffness and 

forces into the global system. These direction cosines may be found using the base vector  

𝜉  aligned natural coordinate direction given by, 

𝜉 = [
𝜕𝑥

𝜕𝜉

𝑖
→ +

𝜕𝑦

𝜕𝜉

𝑗
→ +

𝜕𝑧

𝜕𝜉

𝑘
→]  

𝜉 = [∑
𝜕𝑁𝑖

𝜕𝜉
𝑥𝑖

𝑖=6
𝑖=1 𝑖̂+ ∑

𝜕𝑁𝑖

𝜕𝜉
𝑦𝑖

𝑖=6
𝑖=1 𝑗̂ +∑

𝜕𝑁𝑖

𝜕𝜉
𝑧𝑖

𝑖=6
𝑖=1 𝑘̂]  

(D-5) 

𝑋̂ =
𝜉⃗⃗

‖𝜉⃗⃗ ‖
= [𝑙1 𝑖̂+ 𝑙2 𝑗̂ +𝑙3 𝑘̂]  

(D-6) 

The local Y direction found from the cross product of 𝑋̂ and the global z direction.  

𝑌̂ =
𝑧×𝑋̂

‖𝑧×𝑋̂ ‖
= [𝑚1 𝑖̂ +𝑚2 𝑗̂ +𝑚3 𝑘̂]  

𝑧 = [0 𝑖̂+ 0 𝑗̂ +1 𝑘̂]  

(D-7) 

and finally 

𝑍̂ =
𝑋̂×𝑌̂ 

‖𝑋̂×𝑌̂ ‖
= [𝑛1 𝑖̂ +𝑛2 𝑗̂ +𝑛3 𝑘̂]  (D-8) 

In cases where 𝑋̂ is aligned with the global z direction the global y direction may be used 

to find 𝑍̂ 

𝑍̂ =
𝑋̂×𝑦 

‖𝑋̂×𝑦 ‖
= [𝑛1 𝑖̂ +𝑛2 𝑗̂ +𝑛3 𝑘̂]  (D-9) 

and  

𝑌̂ =
𝑍̂×𝑋̂

‖𝑍̂×𝑋̂ ‖
= [𝑚1 𝑖̂ +𝑚2 𝑗̂ +𝑚3 𝑘̂]  (D-10) 

The cable transformation matrix, [𝑇𝑐],  is defined in terms of directional cosines between 

the global and local coordinate systems.  

𝑇𝑐 = [ 
𝑙1 𝑙2 𝑙3
𝑚1 𝑚2 𝑚3

𝑛1 𝑛2 𝑛3

]  (D-11) 

D.3 Jacobian 

The displacements are expressed as functions of the normalised natural co-ordinates. 

However, strains are required in terms of the element local coordinate system. Therefore, 

it is required that differentiation with respect to the natural co-ordinates is related to 

differentiation with respect to the local co-ordinates via a change in variable. The Jacobian 
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accounts for the change in variable between the distorted element expressed in terms of 

local co-ordinates and the normalised element expressed in terms of natural co-ordinates.  

The Jacobian may be derived by taking a general scalar quantity, Φ, (for example of 

displacements in the global 𝑥 direction) at a position in the element defined by (𝜉). If the 

position of Φ is moved from (𝜉) to (𝜉 + 𝑑𝜉) the change in Φ, 𝑑Φ, is given by,  

𝑑Φ =
𝜕Φ

𝜕𝜉
∙ 𝑑𝜉  (D.12) 

A change in position of 𝑑𝜉 implies a shift in position given as 𝜉 ∙ 𝑑𝜉. Resolving these shifts 

into the local 𝑋 direction gives, 

𝑑X𝜉 = 𝜉 ∙ 𝑋̂𝑑𝜉  (D.13) 

Rewriting (D.12) in terms of the local coordinate system gives, 

𝑑Φ =
𝜕Φ

𝜕𝑋
∙ 𝑑𝑋+ (D.14) 

where, 𝑑𝑋 = 𝑑𝑋𝜉  

Substitution of (D.13) into (D.14) gives, 

𝑑Φ = [𝜉 ∙ 𝑋̂
𝜕Φ

𝜕𝑋
]  𝑑𝜉 =

𝜕Φ

𝜕𝜉
∙ 𝑑𝜉  (D.15) 

Collection of the common terms in (D.15) leads to the formulation, 

𝐽 = [
𝜕Φ

𝜕𝜉
] = [𝜉 ∙ 𝑋̂] [

𝜕Φ

𝜕𝑋
]  (D.16) 

and 

Γ = [
𝜕Φ

𝜕𝑋
] =

1

[𝜉⃗⃗∙𝑋̂]
[
𝜕Φ

𝜕𝜉
]  (D.17) 

This allows the calculation of the partial derivatives with respect to the local coordinate 

system expressed as 

𝐷𝑁𝑋
= [Γ] [𝐷𝑁𝜉

] = [Γ] [
𝜕𝑁1

𝜕𝜉

𝜕𝑁2

𝜕𝜉

𝜕𝑁3

𝜕𝜉
] = [

𝜕𝑁1

𝜕𝑋

𝜕𝑁2

𝜕𝑋

𝜕𝑁3

𝜕𝑋
]  (D.18) 

 

D.4 B-Matrix 

Strain in the local cable direction is found by Greens Strain  
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𝜀𝑐𝑎𝑏𝑙𝑒 =
0.5(𝑙2−𝐿0

2)

𝐿0
2   (D-19) 

where 𝐿0 is the initial length and 𝑙 is the length after deformation. 

The B-matrix is the relationship between strain and displacement  

𝜀𝑐𝑎𝑏𝑙𝑒 = [B]{𝛿𝑖}  (D-20) 

The total squared length, 𝐿0
2, is give by 

𝐿0
2 = ∫ 𝐽 (

𝜕𝑋

𝜕𝑋

2
+

𝜕𝑌

𝜕𝑋

2
+

𝜕𝑍

𝜕𝑋

2
)𝑑𝜉

0

1
  (D-21) 

The total squared displaced length, 𝑙2, is give by 

𝑙2 = ∫ 𝐽 ((
𝜕𝑋

𝜕𝑋
+

𝜕𝑈

𝜕𝑋
)

2

+ (
𝜕𝑌

𝜕𝑋
+

𝜕𝑉

𝜕𝑋
)

2

+ (
𝜕𝑍

𝜕𝑋
+

𝜕𝑊

𝜕𝑋
)

2

) 𝑑𝜉
0

1
=  

∫ 𝐽 (
𝜕𝑋

𝜕𝑋

2
+

𝜕𝑌

𝜕𝑋

2
+

𝜕𝑍

𝜕𝑋

2
) 𝑑𝜉

0

1
+ ∫ 𝐽 (

𝜕𝑈

𝜕𝑋

2
+

𝜕𝑉

𝜕𝑋

2
+

𝜕𝑊

𝜕𝑋

2
) 𝑑𝜉

0

1
+ 2∫ 𝐽 (

𝜕𝑋

𝜕𝑋

𝜕𝑈

𝜕𝑋
+

𝜕𝑌

𝜕𝑋

𝜕𝑉

𝜕𝑋
+

𝜕𝑍

𝜕𝑋

𝜕𝑊

𝜕𝑋
) 𝑑𝜉

0

1
  

(D-22) 

The x-coordinate in the local 𝑋coordinate system, 𝑋, is interpolated from the global 

coordinates at each node via the shape functions calculated at the point of interest and 

transformed into the local system via the unit vector 𝑋̂. 

𝑋 = 𝑋̂𝑇[𝑁]{𝛿𝑖} = 𝑋̂𝑇[∑ 𝑁𝑖𝑢𝑖
𝑖=6
𝑖=1 𝑖̂ +∑ 𝑁𝑖𝑣𝑖

𝑖=6
𝑖=1 𝑗̂+ ∑ 𝑁𝑖𝑤𝑖

𝑖=6
𝑖=1 𝑘̂]  (D-23) 

The first order contribution to the total length may be derived from the derivative of (D-23) 

with respect to 𝜉.  

𝜕𝑋

𝜕𝑋
= 𝑋̂𝑇  

𝜕[𝑁]

𝜕𝑋
{𝛿𝑖} = 𝑋̂𝑇 [∑

𝜕𝑁𝑖

𝜕𝑋
𝑥𝑖

𝑖=3
𝑖=1 𝑖̂ +∑

𝜕𝑁𝑖

𝜕𝑋
𝑦𝑖

𝑖=3
𝑖=1 𝑗̂ + ∑

𝜕𝑁𝑖

𝜕𝑋
𝑧𝑖

𝑖=3
𝑖=1 𝑘̂]  (D-24) 

Substituting the direction cosine form of, 𝑋̂𝑇 into (D-24) yields, 

𝜕𝑋

𝜕𝑋
= ∑ 𝑙1

𝜕𝑁𝑖

𝜕𝑋
𝑥𝑖

𝑖=3
𝑖=1 + ∑ 𝑙2

𝜕𝑁𝑖

𝜕𝑋
𝑦𝑖 +𝑖=3

𝑖=1 ∑ 𝑙3
𝜕𝑁𝑖

𝜕𝑋
𝑧𝑖

𝑖=3
𝑖=1   (D-25) 

Similarly 

𝜕𝑌

𝜕𝑋
= ∑ 𝑚1

𝜕𝑁𝑖

𝜕𝑋
𝑥𝑖

𝑖=3
𝑖=1 + ∑ 𝑚2

𝜕𝑁𝑖

𝜕𝑋
𝑦𝑖 +𝑖=3

𝑖=1 ∑ 𝑚3
𝜕𝑁𝑖

𝜕𝑋
𝑧𝑖

𝑖=3
𝑖=1   (D-26) 

𝜕𝑍

𝜕𝑋
= ∑ 𝑛1

𝜕𝑁𝑖

𝜕𝑋
𝑥𝑖

𝑖=3
𝑖=1 + ∑ 𝑛2

𝜕𝑁𝑖

𝜕𝑋
𝑦𝑖 +𝑖=3

𝑖=1 ∑ 𝑛3
𝜕𝑁𝑖

𝜕𝑋
𝑧𝑖

𝑖=3
𝑖=1   (D-27) 

𝜕𝑈

𝜕𝑋
= ∑ 𝑚1

𝜕𝑁𝑖

𝜕𝑋
𝑢𝑖

𝑖=3
𝑖=1 + ∑ 𝑚2

𝜕𝑁𝑖

𝜕𝑋
𝑣𝑖 +𝑖=3

𝑖=1 ∑ 𝑚3
𝜕𝑁𝑖

𝜕𝑋
𝑤𝑖

𝑖=3
𝑖=1   (D-28) 

𝜕𝑉

𝜕𝑋
= ∑ 𝑛1

𝜕𝑁𝑖

𝜕𝑋
𝑢𝑖

𝑖=3
𝑖=1 + ∑ 𝑛2

𝜕𝑁𝑖

𝜕𝑋
𝑣𝑖 +𝑖=3

𝑖=1 ∑ 𝑛3
𝜕𝑁𝑖

𝜕𝑋
𝑤𝑖

𝑖=3
𝑖=1   (D-29) 

𝜕𝑊

𝜕𝑋
= ∑ 𝑛1

𝜕𝑁𝑖

𝜕𝑋
𝑢𝑖

𝑖=3
𝑖=1 + ∑ 𝑛2

𝜕𝑁𝑖

𝜕𝑋
𝑣𝑖 +𝑖=3

𝑖=1 ∑ 𝑛3
𝜕𝑁𝑖

𝜕𝑋
𝑤𝑖

𝑖=3
𝑖=1   (D-30) 
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Gathering these terms yields, 

{Δ𝑋} =

[
 
 
 
 
𝜕𝑋

𝜕𝑋
𝜕𝑌

𝜕𝑋
𝑍

𝜕𝑋]
 
 
 
 

= [𝐺]{𝐶}𝑖  (D-31) 

and 

{∂𝑋} =

[
 
 
 
 
𝜕𝑋

𝜕𝑋
𝜕𝑌

𝜕𝑋
𝑍

𝜕𝑋]
 
 
 
 

= [𝐺]{𝛿}𝑖  (D-32) 

where, 

[𝐺] =

 

[
 
 
 
 𝑙1

𝜕𝑁1

𝜕𝑋
𝑙2

𝜕𝑁1

𝜕𝑋
𝑙3

𝜕𝑁1

𝜕𝑋

𝑚1
𝜕𝑁1

𝜕𝑋
𝑚2

𝜕𝑁1

𝜕𝑋
𝑚3

𝜕𝑁1

𝜕𝑋

𝑛1
𝜕𝑁1

𝜕𝑋
𝑛2

𝜕𝑁1

𝜕𝑋
𝑛3

𝜕𝑁1

𝜕𝑋

𝑙1
𝜕𝑁2

𝜕𝑋
𝑙2

𝜕𝑁2

𝜕𝑋
𝑙3

𝜕𝑁2

𝜕𝑋

𝑚1
𝜕𝑁2

𝜕𝑋
𝑚2

𝜕𝑁2

𝜕𝑋
𝑚3

𝜕𝑁2

𝜕𝑋

𝑛1
𝜕𝑁2

𝜕𝑋
𝑛2

𝜕𝑁2

𝜕𝑋
𝑛3

𝜕𝑁2

𝜕𝑋

𝑙1
𝜕𝑁3

𝜕𝑋
𝑙2

𝜕𝑁3

𝜕𝑋
𝑙3

𝜕𝑁3

𝜕𝑋

𝑚1
𝜕𝑁3

𝜕𝑋
𝑚2

𝜕𝑁3

𝜕𝑋
𝑚3

𝜕𝑁3

𝜕𝑋

𝑛1
𝜕𝑁3

𝜕𝑋
𝑛2

𝜕𝑁3

𝜕𝑋
𝑛3

𝜕𝑁3

𝜕𝑋 ]
 
 
 
 

  
(D-33) 

and, 

{𝐶}𝑖
𝑇

= [  𝑥1 𝑦1 𝑧1 𝑥2 𝑦2 𝑧2 𝑥3 𝑦3 𝑧3 ] (D-34) 

{𝛿}𝑖
𝑇

= [  𝑥1 𝑦1 𝑧1 𝑥2 𝑦2 𝑧2 𝑥3 𝑦3 𝑧3 ] (D-35) 

this leads to, 

𝐿0
2 = ∫ 𝐽({Δ𝑋}𝑇{Δ𝑋})𝑑𝜉

0

1
  (D-36) 

𝑙2 = ∫ 𝐽({Δ𝑋}𝑇{Δ𝑋})𝑑𝜉
0

1
+ ∫ 𝐽({∂𝑋}𝑇{∂𝑋})𝑑𝜉

0

1
+ 2∫ 𝐽({Δ𝑋}𝑇{∂𝑋})

0

1
𝑑𝜉  (D-37) 

Substituting (D-36) and (D-37) into (D-19) gives 

𝜀𝑐𝑎𝑏𝑙𝑒 =
0.5(𝑙2−𝐿0

2)

𝐿0
2 =

0.5(∫ 𝐽({Δ𝑋}𝑇{Δ𝑋})𝑑𝜉
0

1
+∫ 𝐽({∂𝑋}𝑇{∂𝑋})𝑑𝜉

0

1
+2∫ 𝐽({Δ𝑋}𝑇{∂𝑋})

0

1
𝑑𝜉 −∫ 𝐽({Δ𝑋}𝑇{Δ𝑋})𝑑𝜉

0

1
)

∫ 𝐽({Δ𝑋}𝑇{Δ𝑋})𝑑𝜉
0

1

  

=
0.5(∫ 𝐽({∂𝑋}𝑇{∂𝑋})𝑑𝜉

0

1
+2∫ 𝐽({Δ𝑋}𝑇{∂𝑋})

0

1
𝑑𝜉 )

∫ 𝐽({Δ𝑋}𝑇{Δ𝑋})𝑑𝜉
0

1

=

0.5(∫ 𝐽({∂𝑋}𝑇[𝐺]{𝛿}𝑖)𝑑𝜉
0

1
+2∫ 𝐽({Δ𝑋}𝑇[𝐺]{𝛿}𝑖)

0

1
𝑑𝜉 )

∫ 𝐽({Δ𝑋}𝑇{Δ𝑋})𝑑𝜉
0

1

  

(D-38) 

Eliminating {𝛿}𝑖 leads to  
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[𝐵] =  
1

2{Δ𝑋}𝑇{Δ𝑋}
[{∂𝑋}𝑇][𝐺] +

1

2{Δ𝑋}𝑇{Δ𝑋}
[{Δ𝑋}𝑇][𝐺]  (D-39) 

D.5 Element Residual Forces 

Gauss integration using 4 points is employed to approximate the integral between 0 and 1 

in the form. 

∫ 𝐽𝜙
0

1
𝑑𝐿 =

1

2
∑ 𝑊𝑖𝐽𝜙𝑖

𝑖=𝑛
𝑛=1   (D-40) 

The following 4 Gauss points and corresponding weights are proposed 

Point 𝝃 Weight 

1 0.069432 0.34785 

2 0.3300095 0.652145 

3 0.6699905 0.652145 

4 0.930568 0.34785 

Table D-1: Gauss points and weights 

Cable strain at each Gauss point is found from 

𝜀𝑐𝑎𝑏𝑙𝑒 = [B]{𝛿𝑖}  (D-41) 

Cable stress at each Gauss point is found from 

𝜎𝑐𝑎𝑏𝑙𝑒 = 𝐸𝐴(𝜀𝑐𝑎𝑏𝑙𝑒) + 𝐹𝑐𝑎0  (D-42) 

The cable element residual forces at each node in the global co-ordinate system are given 

by 

{𝑓𝑐𝑎}𝑖, = ∫ [ 𝐵𝑡 ]
𝑇
[𝜎𝑐𝑎𝑏𝑙𝑒 ]𝑑𝑙

𝑙
  (D-43) 

where 𝐵𝑡  is calculated using the updated coordinates and is given by, 

[ 𝐵𝑡 ] =  [𝑙1
𝜕𝑁1

𝜕𝜉
𝑙2

𝜕𝑁1

𝜕𝜉
𝑙3

𝜕𝑁1

𝜕𝜉
𝑙1

𝜕𝑁2

𝜕𝜉
𝑙2

𝜕𝑁2

𝜕𝜉
𝑙3

𝜕𝑁2

𝜕𝜉
𝑙1

𝜕𝑁3

𝜕𝜉
𝑙2

𝜕𝑁3

𝜕𝜉
𝑙3

𝜕𝑁3

𝜕𝜉
]   (D-44) 

D.6 Stiffness matrices 

The elastic stiffness matrix is given by,  

[𝐾𝐸] = ∑ [∫ [ 𝐵𝑡 ]
𝑇
[𝐸𝐴][𝐵]𝑑𝑙

𝑙
]
𝑖

𝑖=𝑚
𝑖=1   (D-45) 

The geometric stiffness matrix is given by, 

[𝐾𝜎
𝑒] = ∑ [∫

1

2
[𝐺]𝑇[𝑀][𝐺]

𝑙
𝑑𝑙]

𝑖

𝑖=𝑚
𝑖=1   (D-46) 

[𝑀] = [𝜎𝑐𝑎𝑏𝑙𝑒[𝐼3]] (D-47) 
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