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Abstract i

Abstract

In current practice a plane stress framework comprising elastic moduli and Poisson’s
ratios is most commonly used to represent the mechanical properties of architectural
fabrics. This is often done to enable structural analysis utilising commercially available,
non-specialist, finite element packages. Plane stress material models endeavour to fit a flat

plane to the highly non-linear stress strain response surface of architectural fabric.

Neural networks have been identified as a possible alternative to plane stress material
models. Through a process of training they are capable of capturing the relationship
between experimental input and output data. With the addition of historical inputs and
internal variables it has been demonstrated that neural network models are capable of
representing complex history dependant behaviour. The resulting neural network
architectural fabric material models have been implemented within custom large strain
finite element code. The finite element code, capable of using either a neural network or
plane stress material model, utilises a dynamic relaxation solution algorithm and includes
geodesic string control for soap film form-finding. Analytical FORM reliability analysis
using implied stiffness matrices' derived from the equations of the neural network model

has also been investigated.
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Notation

Finite Element Formulation

{o} Vector of element body stresses

Oy Stress along the local X-axis (fabric warp direction)
ay Stress along the local Y-axis (fabric fill direction)
Txy Shear stress in the local co-ordinate system

{oo} Vector of element initial stresses (pre-stress)

{e} Vector of element body strains

Ex Strain along the local X-axis (fabric warp direction)
&y Strain along the local Y-axis (fabric fill direction)
Yxy Shear strain in the local co-ordinate system

{eo} Vector of element initial strains

{x}; Element geometry array containing nodal co-ordinates (x;, y;, z;) in the

global coordinate system

{Co}i Initial nodal coordinates in the global co-ordinate system of the ith
element

{C:}i Updated nodal coordinates in the global co-ordinate system of the ith
element

Xi, Vi, Zi Nodal coordinates in the global co-ordinate system at the ith node

X, Y, Z; Nodal coordinates in the element local co-ordinate system at the ith
node

{6} Displacement array containing nodal displacements (u;, v;, w;) aligned

with the global co-ordinate system

Ui, v;, Wi Nodal displacements at the ith node aligned with the x, y, z axis of the

global co-ordinate system respectively



Ui, Vi, W;

Notation

Nodal displacements at the ith node aligned with the X, Y, Z axis of the

local co-ordinate system respectively

Material stiffness matrix

Young's modulus aligned with local fabric warp direction
Young's modulus aligned with local fabric fill direction
Poisson's ratio

Shear modulus

Vector of applied forces

Vector of residual forces

Vector of combined displacements for system

System stiffness matrix

System elastic stiffness matrix

System geometric stiffness matrix

Element Formulation

N;

El! EZ' 63
&

Dy &m

DNX,Y

Tm

li,mi,ni

1

Element shape functions of the ith node defined at a point in terms of

natural co-ordinates
Natural co-ordinates
Independent natural co-ordinates

2 by 6 array of element shape functions derivatives with respect to

independent natural co-ordinates

2 by 6 array of element shape functions derivatives with respect to local

co-ordinates X and Y

Transformation matrix between global and local co-ordinate system at a

point defined in terms of natural co-ordinates
Directional cosines between global and local co-ordinate axis
Angle between material warp direction and global x-direction

Basis vector describing material warp direction in the global xy plane
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Wi

Notation

Basis vector describing local Z-direction

Basis vector describing local Y-direction aligned with material fill

direction

Basis vector describing local X-direction aligned with material warp

direction

Nodal forces aligned with the x, y, z axis of the global co-ordinate

system respectively

General scalar quantity

Jacobian matrix and inverse Jacobian matrix

Array of first order Green-Lagrange strain terms

Array of second order Green-Lagrange strain terms
B-matrix of the finite element formulation

Linear B-matrix related to first order strain terms
Non-linear B-matrix related to second order strain terms
G-matrix of the finite element formulation

Array of local displacement derivatives with respect to the local co-

ordinate system

Gauss weight

Cable Formulation

Lo
L

[€]

{cxcy ez}

FcaO
Fca
{fca}i
T
kg¢
KTCG,
KEca

ca
Ks

Initial cable length

Displaced cable length

Unit vector of cable directional cosines
Cable directional cosines

Cable pre-stress

Cable force

Cable element residual force vector
Cable transformation matrix

Cable local element stiffness

Cable system stiffness matrix

Cable elastic stiffness matrix

Cable geometric stiffness matrix

ix
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Geodesic Control String Formulation

s

Unit vector of geodesic control string directional cosines

{csx, CSy, csz} Geodesic control string directional cosines

{fcs}k

Geodesic control string residual force vector

Wrinkling Procedure

p
0. ;
max,min

p
max,min

ep

&

—

Emod]
Erot]

~U|—|

per
min

Principle stresses

Principle strains

Angle between maximum stress direction and local fabric warp
direction

Modified material stiffness matrix

Transformed material stiffness matrix

Wrinkling penalisation factor

Minimum permissible stress

Neural Network Variables

I
Il_max
Iimin
Ny

NI

Input to the i*" input neuron

Maximum training input to the i*" input neuron

Minimum training input to the i" input neuron

Scaled output of the i*" input neuron

Number of neurons in the input layer

Connection weight between it" input neuron and j** hidden neuron
Bias to the j* hidden neuron

Output of the j* hidden neuron

Number of neurons in the hidden layer

Connection weight between j'* hidden neuron and k*"* output neuron
Bias to the k" output neuron

Scaled output of the k" output neuron

Number of neurons in the output layer

Output of the k"* output neuron

Maximum training output of the k** output neuron

Minimum training output of the k** output neuron

Target output of the k" output neuron

Input to the k" output neuron

Input to the j** hidden neuron
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Any,
Eimplied
SV;

v,

Notation

Historical stress stain internal variable
Historical stress strain step internal variable
Implied elastic stiffness matrix

Historical input value

Internal historical input value

Residual Strain Removal

Eirp Strain a load profile turning point

si};if Residual strain at load profile turning point
efR Strain with residual strain removed
Reliability Analysis

G;(Xg) A limit state function

X Statistical basic variable

Oper Permissible fabric warp direction stress
o'rj;er Permissible fabric fill direction stress
Oper Permissible nodal displacement

tioad Imposed load coefficient

Xgi Design point value

,u)"(’si Mean of design point value

a,’}’si Standard deviation of design point value
x5 Design point in standard normal space
a; Directional cosine

p Safety index

Acronyms

ANN Artificial Neural Network

CST Constant Strain Triangle

DIC Digital Image Correlation

ECO Eurocode 0

ETFE Ethene-co-tetrafluoroethene

FDM Finite Difference Method

FORM First Order Reliability Method

GA Genetic Algorithm

GP Genetic Programming

iHLRF improved Hassofer-Lind, Rackwitz-Fiessler
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RMS
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Linear Strain Triangle

Linear Variable Differential Transformer
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Uniformly Distributed Load
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Chapter 1. Introduction

1.1 Background

Architectural fabric structures typically comprise of a doubly curved pre-stressed
membrane supported by any combination of cables, ridge beams, hoops, edge clamps and
masts as illustrated by Figure 1-1. A fabric membrane may also be supported
pneumatically using positive air pressure either within the entire building envelope or as
individual cladding units, Figure 1-2 and Figure 1-3. The fabric membrane may form the
entire building envelope or may be combined with other structural materials such as glass,

wood or masonry to provide a full or partial enclosure [1].

Figure 1-1: ASU SkySong innovation Centre, Arizona USA [2]

Architectural fabrics have negligible bending and compression stiffness. Hence, fabric
structures are designed with sufficient curvature to enable environmental loads to be
resisted as tensile forces in the plane of the fabric. This differs greatly with conventional
roofs in which loads are typically resisted by arch action or by stiffness in bending. The

shape of the fabric canopy is vital to its ability to resist all applied loads in tension.
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Figure 1-3: Eastleigh Tennis Centre, Southampton, UK
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Figure 1-4: Ashford Designer Outlet, Kent, UK © Buro Happold

The most common use of tensile membrane structures is to create striking aesthetically
pleasing long span shelters or enclosures, as may be required for sports stadia, shopping
complexes (Figure 1-4) and airports. This is mainly due to the weight of the material
which is often treated as negligible for the purpose of design. In contrast self-weight is
often the limiting factor in the design of more traditional concrete or steel long span
structures. However, architectural fabric structures benefit from numerous additional
advantages relevant for both large scale and smaller scale projects. These include high
light transmission, reduced environmental impact and reduced requirement for ‘heavy’
support structure. Architectural fabrics have also been successfully used to create

temporary and deployable canopies, Figure 1-5 and Figure 1-6 .
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Figure 1-5: Venezuelan Pavilion, Hanover, Germany

*"

Figure 1-6: Medinah Umbrellas Prophets Holy Mosque
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One of the main barriers to the use of architectural fabric in Europe, and worldwide, is a
general lack of standardised design guidance which leads to a low level of readily available
information for designers, fabricators and clients. A lack of knowledge prohibits the
consideration of architectural fabric structures at the initial design stage. Lack of
knowledge combined with high levels of uncertainty with regard to fabric performance
also leads to the necessity for specialist testing and design which often proves to be
prohibitively expensive for smaller scale projects. There have also been a number of
catastrophic failures of fabric architecture which have also reduced confidence in the
sector [3, 4]. This leads to the conclusion that a more robust standardised design
methodology is required, along with a better understanding of architectural fabric

behaviour, to enable the wider dissemination of architectural fabric structures.

Architectural fabrics, sometimes referred to as structural or technical fabrics, typically
comprise orthogonal woven yarns covered by one or more layers of coating, Figure 1-7.
The yarn directions are typically referred to as warp and fill with the warp running along
the fabric roll and the fill running across it. The configuration of the yarns is a product of
the weaving process. The warp yarns are typically held taught and the fill yarns are woven
between them, this leads to a greater crimp in the fill direction as demonstrated in Figure

1-8.

Fill Yarns Warp Yarns

Figure 1-7: Typical architectural fabric warp and fill yarn configuration.
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(b)

Figure 1-8: Microscopic image of PVC coated polyester fabric
(a) Warp direction cross section (b) Fill direction cross section [6]

The most commonly used yarns are either polyester, produced through a melt spinning
process, or glass yarns, which are drawn from a melt. Polyester yarns are generally coated
with polyvinylchloride (PVC) and glass yarns by polytetrafluoroethylene (PTFE). The
coating provides additional stability to the weave geometry, protects the yarns from the
elements, and enables the creation of a weather tight envelope. Alternative yarn and
coating combinations include Silicone coated glass fabrics and PTFE coated PTFE fabrics.
Additional outer coatings may also be added to enable better joining, printing and self-

cleaning properties [5].

In the simulation of tensile fabric structures it is common practice to represent membrane
material as a homogeneous continuum described by a plane stress strain-stress
relationship, where the material characteristics are represented by Young's modulus and
Poisson's ratio. Fitting a plane stress model to biaxial test data for typical architectural
fabrics leads to inconsistencies between the physical and theoretical descriptions, with
values of Poisson's ratio in excess of the compressibility limit of 0.5, and for some fabrics
approaching 2.0. An alternative to the plane stress framework is therefore required to

more accurately represent fabric behaviour.

Neural networks offer an exciting solution for the constitutive modelling of architectural

fabrics as they are capable of capturing highly non-linear response. Furthermore, neural
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network material models effectively ‘learn’ the material response directly from

experimental data and therefore no prior knowledge of the response is required.
1.2 Aim and Objectives

The aim of this research is to provide a means of linking material testing and structural
analysis within a computational mechanics framework that accurately describes both
material and structural behaviour. The key hypothesis is that it is possible to represent
experimentally captured architectural fabric stress-strain response, including historical
loading effects, using a neural network material model within large strain finite element

analysis.

Neural network material models are selected based on their ability to capture highly non-
linear functional mappings. This enables the accurate representation of the complex fabric
strain-stress response to biaxial loading. In addition the proven ability of the neural
network material models to capture the effects of historical loading is a distinct advantage
over other previously published material models employed in the simulation of
architectural fabric structures. In order to develop an accurate and implementable
material model, fabric response must be captured experimentally in a way that represents

fabric response in a real world situation.

In order to demonstrate the neural network material model it is vital that it be
implemented within analysis code suitable for the simulation of architectural fabric

structures. To that end a bespoke structural analysis tool will be developed.

[t is anticipated that this initial research will lead to the development of tools enabling
accurate whole life simulation of fabric structures. This could enable the simulation of
membrane installation leading to improvements in installation techniques and allow the

accurate prediction of the medium and long term performance of fabric structures.
The specific objectives are to:

e Adapt pre-existing Fortran large strain finite element code to provide plane-stress
analysis comparisons and enable the implementation of the neural network material

model.
e (Capture the fabric material response through mechanical testing of architectural fabric.

e Develop a neural network approach to represent the relationship between biaxial

fabric strain and fabric stress with residual strain and load history effects included.

e Implement and demonstrate the neural network material model.
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e Demonstrate epistemic uncertainty introduced to neural network material models by

random weight initiation and training data division.

e Perform reliability analysis using the implemented material model.
1.3 Scope

The first section of this research focuses on the development of the finite-element based

analysis tool in preparation for the implementation of the neural network material model.

The second section is focused on the development of architectural fabric neural network
material models. Fabric response is modelled with and without the inclusion of residual
strain and load history effects. It should be noted that true time dependant behaviour such
as creep is not included as loading rate is not implicitly captured in the network training

data.

The third and final section demonstrates the implementation of the neural network
material models developed in the second section within the analysis tool of the first.

Uncertainty is investigated and a reliability analysis protocol is developed.
1.4 Thesis Structure

Chapter 2. Literature review.

Gives an overview of current analysis methods applied to architectural fabric structure.
The current practice for fabric testing and architectural material modelling , with specific
focus on plane-stress material models used in industry, is explored. A need for an accurate
non-linear material model is demonstrated. The advantages and disadvantages of neural
network material models are summarised and the previous applications of neural

networks to material modelling are reviewed.

Chapter 3.  Finite Element Formulation
The formulation of a six node Linear Strain Triangle (LST) including large strain terms is

presented and its implementation within finite-element analysis code is demonstrated.

Chapter 4. Neural Network Training and Validation

The procedure for generating neural network material models for architectural fabric is
presented. Initially fabric response is modelled with residual strain removed. This form of
model effectively maps a single surface for the response in each of the material directions

(warp and fill). Therefore, it is referred to as a response-surface neural network model.
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This model is comparable with existing plane-stress architectural fabric material models
and utilises similar experimental data in its development. The neural network model is
then advanced to include load history requiring the development of specialist testing. This
form of model is referred to as a load-history neural network model. Both forms of neural

network models are validated using experimental data not used in training.

Chapter 5. Neural Network Material Model Implementation.

Implementation of the material models presented in Chapter 4 is described. Adaptation of
the finite-element code to allow for the new material model is detailed including the
development of iterative analysis to allow for inclusion of load history. Both forms of
neural network material models are demonstrated using analysis of simple but realistic
fabric structures including a conic and a hypar and compared with equivalent plane-stress
analysis. Epistemic uncertainty introduced by the neural network is explored and a

procedure for reliability analysis developed.

Chapter 6.  Reliability Analysis

The analytical partial derivatives required for probabilistic reliability analyses are derived
and validated. A protocol for the determination of statistical descriptions for the
variability of neural networks is proposed. The statistical variables are used in an adapted
reliability analysis protocol in order to perform a reliability analysis of a realistic hypar

structure.

Chapter 7.  Conclusion and Recommendations.
A summary of conclusions presented at the end of chapter is provided along with

recommendations for further work.

Bibliography

All references use a numeric format, A full list of reference arranged in the order they
appear may be found at the back of this document.

Appendix

All supporting material



Chapter 1 Introduction 14
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Chapter 2. Literature Review

In the first section of this chapter, numerical methods developed for the design of tensile
membrane structures will be introduced and compared. The reliability analysis of fabric
structures will also be addressed. This is done with a view to select an appropriate

simulation procedure to develop and use in the implementation of the material model to

be investigated in this thesis.

In the second section, the material models applied to architectural fabrics will be reviewed
along with experimental methods used to capture the fabric strain-stress response.
Particular attention is paid to the plane stress framework currently used as the industry
standard in the design of fabric structures. Various methodologies applied in literature to
address the shortcoming of the plane stress framework are also reviewed. The need for an

improved material model will be established.

In the third and final section, artificial neural network material models are introduced.
Neural network development and training is described along with the advantages and
disadvantages associated with neural networks. The suitability of neural networks for the
modelling of architectural fabrics will be established. A methodology for the application of
neural network material modelling to architectural fabrics will be developed based on

these findings.
2.1 Simulation of Architectural Fabric Structures

This section addresses the finite elements and solution algorithms typically used for the
numerical simulation of tensile membrane structures along with their use within the
design process. In general, the design process prior to construction may be defined as

follows [7-9].

1. Conceptual development
The site is assessed and a desired physical configuration is defined along with
materials for both the membrane and support structure.

2. Form finding
An equilibrated form is established using physical modelling or, more commonly in

current practice, finite element analysis using a zero elastic stiffness and positive
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definite geometric stiffness element with a nonzero pre-stress. At this stage the
structural shape is optimised via the manipulation of boundary conditions and pre-
stress.

3. Staticload analysis
Appropriate surface pressures representing typical load cases, including snow
loading and wind uplift, are applied to the form found structural model. In finite
element analysis, material properties gathered through physical testing of chosen
architectural fabrics should be used. However, due to the complexities and expense
of material testing in many cases assumed stiffness values are used, at least for
initial design. Depending on the results of static analysis it may be necessary to
return to the form finding step in order to achieve acceptable stress and strain
values as dictated by the strength and serviceability limits of the fabric material
and it's support structure. This process is likely to require numerous iterations.
Current practice uses a permissible stress approach. However, more detailed
reliability approaches may be adopted in order to validate the final configuration.

4. Patterning
The final form found configuration is used in conjunction with experimentally
derived compensation values to develop cutting patterns for fabric panels that may
be joined together on or off site prior to installation. Compensation values are
applied in order to achieve the final structural form at the required pre-stress. The
material direction within each panel and the position of seams should be taken into
account within the simulation.

5. Construction sequencing
A sequence and method of assembly is established, and where possible simulated.
Key to this sequence is the fixing of support and membrane components in place
and application of pre-stress to the required level. This information will impact on

the design of connection and support details.

2.1.1 Form Finding

Architectural fabrics possess negligible compressive stiffness. Fundamental to the ability
of a fabric structure to resist load purely in tension is the formation of either an anticlastic
or synclastic surface geometry. Anticlastic geometry comprises opposing curves that
generally follow the warp and fill directions of the architectural fabric. This form of
surface is stabilised by uniform pre-stress applied in the plane of the membrane by

boundary restraints such as cables. Synclastic geometry comprises spherical type surfaces
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that are stabilised by pneumatic or hydraulic pressure normal to the membrane surface.
Such doubly curved surfaces are based on minimal surfaces. In mathematical terms, a
minimal surface has zero mean curvature at any point. This leads to a locally minimised

surface area formed between boundary conditions [1].

A physical model of a minimal surface may be formed by a soap film that has uniform
surface tension. Frei Otto and his team at the Institute for Lightweight Structures are

generally referred to as the pioneers of Soap film experiments.

“The study of soap bubbles greatly helps the understanding of pneumatic
structures. In each soap bubble or agglomeration of soap bubbles the membrane
stresses are equal at each point and in every direction, if we neglect infinitesimal

stress differences caused by the weight of the bubble skin” [10, pg.11]

Certain boundary conditions prohibit the formation of a minimal surface. In this situation
a pseudo minimal surface may be achieved using architectural fabric by allowing localised
stress variations. For example, the formation of a minimal surface between upper and
lower rings to form a conic type structure is limited by necking where the mid plane
radius reduces as the distance between the rings increases. This effect has been shown to
be reduced by the application of a higher level of stress in the meridinal direction than in

the circumferential direction [11].

Unlike in the case of traditional structural forms where geometry is directly prescribed,
the geometry of a tensile membrane structure is governed by the prescribed boundary
conditions and desired stress state. An initial form-finding analysis is required followed by
the generation of a suitable cutting pattern to reproduce that form. Prior to the
development of non-linear computational methods, physical models were used in the
development of geometry. Given a sufficiently accurate physical model, patterns or
component geometry may be measured directly from the model, and used in hand
calculations of forces [12]. These calculations offer only approximations as they cannot
account for the effect of displacement on force. With the invention and subsequent
development of computer-aided design in the late sixties, it became possible to generate
minimal surfaces using computer methods and perform detailed stress analysis. Since
then the power of commercially available computers has increased exponentially allowing

the generation of increasingly complex numerical models.

2.1.2 Solution Methods
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The large displacement finite element formulation required for the simulation of fabric
structures leads to state equations for equilibrium that are non-linear and cannot be
solved in a single step. The principal approaches to solving the state equations of the finite
element method for fabric structures may be divided in to two basic groups — matrix and
vector methods. Vector methods are also referred to as dynamic methods. The key
difference between matrix methods and vector methods is that the condition of
equilibrium and compatibility for the entire structure remains coupled throughout the

analysis for the former and are decoupled until equilibrium for the latter.

2.1.2.1 Matrix Methods

Argyris undertook some of the earliest work on matrix methods. He and his colleagues
applied the Newton-Raphson method to the form-finding of cable-nets [13]. This method
utilised material properties leading to additional computational cost and non-minimal
surface solutions. Since this early work, attempts have been made to improve the
suitability of this method when applied to form-finding, typically by the removal of

material stiffness from the virtual work equation solved for equilibrium.

The Force Density method was developed by Schek at Stuttgart University for the form
finding of general networks [14]. This method makes use of the ratio between element
forces and length, or ‘force densities’, to drive convergence to equilibrium. It simplifies the
geometrically non-linear problem to a set of linear equations. Linkwitz described the
development of the ‘Stuttgart-direct-approach’ which combines least squares, graph-
theory and numerical mathematics with force-densities [15]. This approach has been
demonstrated using a simple form-finding exercise on a quadrilateral network restrained
in four corners. It was shown that it is the proportional relationship between mesh and
boundary cable force densities that governs the final form of the structure rather than
their absolute values. One of the primary weaknesses of the method is that the coefficients
used to drive convergence are a function of element length and so the shape of the initial
mesh has an impact on the final solution. The force-densities are also physically
meaningless and the values prescribed are typically based only on the experience of the
engineer. The Force Density Method has been extended to incorporate membrane

elements [16, 17] to allow for the representation of shear resistance.

In order to perform static analysis, the finite difference terms are eliminated through the
application of material properties to the finite difference equations describing the final

form found configuration. The equilibrium equations are reported to become identical to
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the equilibrium equations of the finite element method [17]. This procedure is used by the

Easy Lightweight Structure Design software package [18].

When using a matrix method, such as the Newton-Raphson method, to solve the state
equations of equilibrium with a zero stiffness matrix, the lack of in plane stiffness leads to
floating nodes in the mesh surface. This leads to a singular structural stiffness matrix. The
Updated Reference Strategy (URS) [19, 20] solved this problem by adding a continuation
factor, 4, to the virtual work equation that artificially introduces in plane stiffness. The

equation for virtual work, dw, for a minimal surface with an isotropic stress field, given

by,

dw = st [, (detFF~"):6FdA =0 (2-1)
becomes,

Swy = st [, (AdetFF™" + (1 - A)F):6FdA =0 0<A<1. (2-2)

In (2-1) and (2-2) s is the Cauchy stress tensor, tis the membrane thickness, A is the
membrane area in the reference state, Fand §F are the real and virtual deformation
gradients and A is the aforementioned continuation factor. The solution found using
equation (2-2) does not represent the true minimal surface while A is less than 1.
However URS employs an iterative process where the geometry solution to equation (2-2)
is found with increasing values of A. The geometry from the previous step is used as the
reference or initial geometry until 1 is equal to 1 and the final minimal surface has been

found, Figure 2-1.
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Figure 2-1: Hypar meshes illustrating the steps of a form finding simulation
employing the Updated Reference Strategy [21].

Bonet and Mahaney also proposed the use of an ‘artificial constitutive model’ to reduce the
problems of singularity caused by zero in-plane stiffness in a flat mesh [22]. This
technique proposed the simultaneous minimisation of area and shear distortion to reduce
mesh distortion. The authors demonstrated a positive effect on mesh regularity for the
classical form finding problem of Scherk’s surface using a quadrilateral mesh. However, it

was noted that limited difference was observed when using a triangular mesh.

2.1.2.2 Vector Methods

Early work on vector methods was undertaken by Barnes and Wakefield. Following the
work of Day (1965), a Dynamic Relaxation algorithm was applied to the analysis various
tension structures using a CST element that transformed the continuum membrane
problem into a discrete cable analysis [23, 24]. The Dynamic Relaxation algorithm is based
on Newton'’s second law of motion. The force, or out-of-balance (residual) force is given by
the sum of applied load and structural element forces at a specific node. The mass is an
assumed lumped mass at that node. As the objective is to find the equilibrium condition
and not the true dynamic behaviour of the structure, a fictitious mass is adopted, and is

often defined to optimise convergence. Barnes describes the development and use of



Chapter 2 Literature Review 27

Dynamic Relaxation for form-finding and analysis of tension structures in [25]. Dynamic

relaxation is employed in both GSA and Tensyl analysis packages.

Recently particle methods of form finding have been explored as an alternative to the
classical finite element method [26, 27]. In [27] the a particle method is described for use
in the form finding of gravity loaded shell structures using dynamic relaxation. This
method could equally be applied to form finding of a tension structure. It is noted that the
method is less computationally efficient than the finite element method but allows form

finding without the definition of a grid.

2.1.2.3 Comparison of Methods

A comparative review of available numerical methods for structural form finding of
general networks is presented in [28]. A useful framework is established in order to allow
clear comparison of the methods. The methods reviewed in [28] are divided in to three
general categories. Stiffness matrix methods, that use both the elastic stiffness geometric
stiffness matrices. Material independent geometric stiffness methods which employ matrix
methods to solve the limit state equations. The final category, dynamic equilibrium
methods, are also material independent that find static equilibrium by finding the

equivalent steady-state solution of dynamic equilibrium.

Geometric stiffness methods in general, and the multi-step form finding method with force
adjustment in particular, were found to be more computationally efficient than dynamic
equilibrium and stiffness matrix methods for form finding a minimal surface net. When
form finding a network with non-uniform forces a single method or category of methods is
not identified as being superior. It is also stated that application of the cable-net analogy is
not easily applied to the simulation of a membrane due to the disregard of shear effects.
This review offers some very useful insights into the similarities and differences between
the various numerical form finding methods available but cannot be used in isolation to
inform a decision on the best method to be used for form finding with membrane

elements.

2.1.3 Specialist Membrane Finite Element Formulations

Wakefield identified key attributes required for a fabric analysis package [29]. These
include: control of surface stress during form finding, the ability to control fabric weave
orientation during both form finding and analysis, the availability of specialist membrane
elements, and the integration of patterning into the form-finding process. The elements

required for the simulation of fabric structures include membrane elements, geodesic
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string elements, and slip cables, as well as more typical beam elements used to simulate

supporting structures.

2.1.3.1 Constant Strain Triangle

Early work in the development of a specialist membrane element focused on the three-
node constant strain triangle (CST) formulation. A detailed review of this work may be
found in [30] and [31]. An improved CST element has been proposed with the inclusion of
higher order terms to overcome deficiencies in the basic formulation [31]. The CST
element continues to be used and is often used to benchmark higher-order elements
including 6 & 8-node isoperimetric finite element formulations based on the linear strains.
These elements attempt to overcome some of the shortcomings of the CST elements
through the ability to represent a curved geometry and generate smoother stress
distributions and transitions, particularly in areas exhibiting steep stress gradients. It was
found in [31] that an isoperimetric element formulation generates a smoother stress
distribution than the large strain CST formulation with only a small increase in

computational expense.

2.1.3.2 Isopararmetric formulations

[sopararmetric formulations utilise natural co-ordinates to maintain inter-element
compatibility by mapping the curved element onto standardised flat configuration defined
by area or natural co-ordinates. In [32] and [31] the element geometry is transformed
from the local Cartesian co-ordinate system on the tangent element plane to an oblique
curvilinear material co-ordinate system, Figure 2-2. Alternatively in [30, 33] an 8 node
quadrilateral element is developed with the local material co-ordinate system defined by
the tangents to the element surface at each element Gauss point aligned with the fabric
warp direction using a user defined angle. A detailed description of the development of
isoparametric elements is presented in [34] and has been used in the development of a
number of specialist membrane element formulations including [30] and more recently

[35].
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Figure 2-2: Total, local, and basic isoparametric elements [32]

A fully integrated design and analysis finite element methodology is presented in [35].
This includes formulations for both slip cable and membrane finite elements. The key
novel feature described in this methodology is the fact that the membrane element
accounts for development of the final 3-dimensional shape from initially flat panels, Figure
2-3. The form finding process via minimal surfaces is rejected. The initial shapes of the
fabric panels are defined by hand and are then geometrically refined in an iterative
process based on the results of multiple analysis runs. This process is continued until a
permissible stress state is found. Three examples are presented - the inflation of a square
membrane, the analysis of a flat membrane bounded by cables, and a simple conic with
edges cables. This method severely limits the available geometries and the trial and error
process is likely to be time consuming. An alternative approach would be to perform
patterning analysis in order to determine the magnitude of locked in stress in conjunction

with the development of flat patterned panels.
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Figure 2-3: Reference system for membrane element [35]

This paper highlights the importance of patterning consideration in the early stages of
model development. It also explores the likelihood of non-uniform stress fields resulting
from the development of flat geometry into doubly curved geometry. However, the
material model used to describe the material response is absolutely critical for the
generation of useful, meaningful, results from this type of simulation. In [35] the authors
used a constitutive model based on a unit cell of fabric in place of the more typical plane

stress constitutive model.

2.1.4 Uncertainty and Reliability Analysis

A comprehensive review of current design practice involving numerous contributors from
both industry and academia was undertaken in [36]. The review involved a comparative
study of the form-finding and load analysis of a set of simple but realistic fabrics structures

by each of the contributors. The results generated highlight the vast variability between
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the reactions, stresses, and displacement produced by the various simulation procedures

employed within the industry.

In the simulation and design of complex systems such as a fabric structure not all, if any,
variables in the structural model can be identified with absolute certainty. These
uncertainties may be categorised into 2 groups - epistemic uncertainty and aleatoric
uncertainty. Aleatoric uncertainty is a statistical uncertainty. This group contains the
inherent variability associated with a physical or simulated process; for example,
uncertainty in material behaviour introduced by a manufacturing process. This type of
uncertainty may be measured in terms of statistics generated through repeated
simulations or physical tests. Epistemic or systematic uncertainties are variables or
relationships that are identified as unknown in the process but are not accounted for in

the model.

Once it is accepted that both aleatoric and epistemic uncertainties exist within structural
design it becomes important that this uncertainty is quantified in some way. Uncertainty
quantification aims to identify sources of uncertainty and categorise them with a view to
reduce all uncertainties to aleatoric uncertainties. Sources of uncertainty in the simulation
and design of fabric structures include variability of actions, material properties and
geometry, uncertainties in the load and resistance effects due to essential simplification of
the system, and lack of knowledge concerning material behaviour and actions in real
world conditions [16]. Reliability analysis of a structure aims to account for the identified
uncertainties and to ultimately quantify the reliability (or safety) of a structure in terms of

a probability of failure or a safety index.
In the Eurocodes the definition for reliability is given as:

"...the ability of a structure to comply with given requirements under specified conditions
during the intended life, for which it was designed. In quantitive sense reliability may be

defined as the complement of the probability of failure" [16]

A reliability analysis requires that the structural behaviour be defined in terms of a finite
number of statistical variables. In the analysis of fabric structures these variables may
include, but are not limited to, loading, mechanical properties and geometry [8]. It is also
required that the failure condition is defined as a differentiable function , which is positive
in the safe domain and negative in the failure domain. This function is known as the limit

state function and may be categorised as either an ultimate limit state, defining total
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structural failure or collapse, or a serviceability limit state, defining a point at which the

structure is no longer fit for purpose [20].

The failure probability of a structural system may be calculated using either approximate
methods or simulation methods. Approximate methods assume a particular form of the
limit state function around the “design point” (e.g. linear in the case of FORM and parabolic
in the case of SORM) to enable calculation of the reliability index 3, defined as the
minimum distance from an origin point to the limit state surface in standard normal space.

The probability of failure, Pg, is given by,
PF = fg(g)<0 h(e)de ~ pF = q)(_lx*l) = QD(—ﬂ), (2_3)

where h(0) represents the model defined in terms of uncertain parameters, 8, x*
represent design points transformed in standard normal space, and ®(*) is the standard
normal cumulative density function [37]. FORM and SORM approximations of a limit state

surface are illustrated in Figure 2-4.
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Figure 2-4: Visualisation of FORM and SORM limit state approximations in standard
normal space (reproduced from [11])

Simulation methods use multiple simulation runs with procedurally generated sets of
uncertain variables in order to assess the probability of failure. Monte-Carlo simulation is
the most widely used method in this category [11]. Importance Sampling aims to improve
on the efficiency of reliability analysis via the Monte Carlo simulation by generating a
greater number of samples in the region of the failure domain that accounts for the

majority of the probability of failure. It is demonstrated in [38] that Importance Sampling
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is ineffective for high-dimensional reliability analysis due to an inability to generate
sufficient samples in the important region of the failure domain. The validity of the design
point used in FORM and SORM is also shown to be affected by high-dimensional non-linear

problems.

In the simplest case of an approximate method where both the structural behaviour and
limit state function is defined by a linear equation, the reliability index § may be found in a
single step. Where the structural behaviour is described by a more complex non-linear
approximation, i.e. defined implicitly from a finite element analysis, the reliability analysis
becomes an optimisation problem where f is minimised within the standard normal space
iteratively, Figure 2-5. A number of different optimisation algorithms for FORM, namely
the fast probability integration method, hypersphere method, successive approach
method and directional cosines method, are directly compared to Monte Carlo simulation
in [16]. It is found that the directional cosines method shows the quickest convergence
and has the added benefit of providing sensitivity information about the significance of the
uncertain variables, allowing for simplification of the problem by the removal of stochastic
variables with low sensitivities with respect to the limit state function. A commonly used
directional cosine optimisation algorithm is the improved Hassofer-Lind, Rackwitz-
Fiessler (iHLRF) algorithm. It is required that the uncertainty variables are normally
distributed. Where they are not normally distributed, they must be transformed to a
normal distribution prior to their transformation to a standard normal variable. This is

achieved via the Rackwitz-Fiessler transformation [31].
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Figure 2-5: Integration of finite element analysis with FORM reliability analysis
(reproduced from [39])

FORM and SORM reliability methods rely on the assumption that a single global design
point, the point at the minimum distance from the origin in standard normal space, exists
on the limit state surface. In practice, there may be potentially many local minima on the
surface of the limit state function, any or all of which may be found when using a typical
gradient driven optimisation algorithm and a range of starting points. One solution to this
problem, proposed in [40], is to force the optimisation algorithm to find multiple points by
constructing 'barriers' around previously found solutions by moving the design point
away from the origin. This enables an assessment to be made of the likelihood that the

true global point has been found.

Finite element analyses, especially for non-linear problems, are computationally
expensive. Therefore, the number of times the finite element model is called to calculate
the value of the limit state function needs to be limited, if only for practical reasons, [19].
FORM and SORM have the advantage that they typically require only 5-10 evaluations of
the limit state function (and therefore finite element analyses) to converge to a value of 8

with sufficient accuracy, [41]. The combination of the computationally expensive finite



Chapter 2 Literature Review 35

element analysis with a generally low probability of failure makes simulation methods,
such as Monte Carlo simulation, unworkable because of the requirement for a number of

simulations in the order of 105.

Limitations of FORM and SORM are addressed in [19] and [41]. Convergence issues are
introduced by discontinuous non-linear failure surfaces. One suggested remedy is the use
of smooth material models. The generation of trial points located too far into the failure in
the early stages of the search may cause the finite element analysis to collapse or
convergence to take too many steps. Itis proposed that either limiting the step size or
restricting the allowable position of the trial points in the initial steps of the search offers a
solution to this problem. Collapse or failure of the finite element analysis is likely to occur
when one or more statistical variable deviates far from their initial mean value. It is
suggested that limiting the step size is acceptable, as this area of the failure region is
unlikely to contain the design point. Therefore these regions may be avoided without

reducing the accuracy of the estimated failure probability.

FORM implemented with a specialist fabric finite element code is demonstrated in [8].
This paper is a continuation of the work undertaken in [31]. Reliability factors are
obtained for two examples, a simple conceptual hypar and the real Doncaster Education
City Creche canopy. The reliability values obtained are compared with Eurocode guidance
as well as deterministic limit state design using stress reduction factors. The main
motivation for the development of reliability analysis for fabric structures is to enable the
assessment of the reliability of a structure without the over simplification introduced by
the use of an all-encompassing stress-reduction factor. Reliability analysis provides a
formal framework for defining structural safety. As shown the Round Robin paper, [36],
there is no consensus for the value of the stress reduction factor, essentially because it is

based on serendipity.

2.1.5 Summary and Conlusion

The design process applied to fabric structures is highly specialised. Fabric structures
resist all applied load in tension. Therefore, a doubly curved surface geometry is required
in order to resist out of plane loads. The geometric form of a fabric structure is not directly
prescribed, rather a form finding analysis is required in order to determine the form that
is dependent on the applied pre-stress and boundary conditions. A minimal surface, such

as that formed by a soap film, has been identified as an ideal form for a fabric structure.
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Definition of a zero elastic stiffness in finite element analysis leads to floating nodes in the
plane of the fabric. This makes the equilibrium solution to the virtual work equation
singular. The finite difference method, which reduces the geometrically non-linear
problem to a set of linear equations, uses finite-differences to drive convergence. The use
of finite differences is not ideal as the final solution is dependent on the initial
configuration. The updated reference strategy introduces an artificial in-plane stiffness
term to the virtual work equation. An iterative form finding process is undertaken, during
which the in plane stiffness term is gradually reduced to zero. Dynamic relaxation utilises
a vector method to solve the limit state equation where the condition of equilibrium and
compatibility is decoupled. Geodesic control elements may be employed to control the
final mesh configuration. These are useful for the definition and control of fabric panels

which may be used for patterning after the form finding process is complete.

Two main element formulations have been applied to the simulation of architectural
fabrics, the constant strain triangular element and both triangular and quadrilateral
higher order isoparametric elements. [soparametric elements have the advantage of
allowing curved geometry and are more suitable for the capture of steep stress gradients.
The isoparamteric element formulation may be enhanced to include the local material
direction by the inclusion of an angle term describing the material direction in the local co-
ordinate transformation. In this thesis an isoparametric large strain triangular element
formulation will be employed with a dynamic relaxation solution algorithm. The use of
dynamic relaxation is advantageous when implementing an alternative material model to
the 3x3 plane stress elastic stiffness matrix, as the final solution is not determined directly
from the structural stiffness matrix. Only the diagonal terms of the global stiffness matrix
are used as damping coefficients. The solution is driven by the current out of balance force
determined from the current level of stress given by the material model for the current

level of strain.

FORM reliability analysis has been applied to fabric structures. The use of a directional-
cosine optimisation method, such as the improved Hassofer-Lind, Rackwitz-Fiessler
(iHLRF) algorithm, enable the assessment of the significance of the uncertain variables.
The reliability analysis is complicated by a non -linear limit state function. Mitigations may
be required in order to stabilise the analysis procedure and the presence of multiple
design points or a high degree of non-linearity may make the application of FORM analysis
infeasible. The analysis procedure should be validated using a simulation reliability
procedure such as a Monte Carlo simulation or Importance Sampling to ensure that a

single minimum design point can be identified.
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2.2 Determination and Representation of Material Behaviour

The static analysis of a tensile fabric structure requires a material model along with
boundary conditions and initial geometry, determined through form finding. The material
model typically takes the form of a constitutive equation that relates values of strain to
stress or vice versa. The accuracy of such material models is heavily dependent on
assumptions made to simplify the material response. The various models may be divided
into three disparate categories - elastic matrix models, mathematical models and
mechanical models. Common to all material models is the requirement to accurately
capture the fabric material response obtained from physical testing in order to validate

and, in the majority of cases, calibrate the model.

Architectural fabrics exhibit a number of distinct responses under the application of load.
They exhibit different mechanical characteristics in the warp and weft yarn directions. The
fabric response contains nonlinearity’s and is greatly influenced by the ratio of loading in
the two directions. After the initial application and removal of load, unrecoverable strains
alter the fabric response . This effect is generally reduced but remains in subsequent
loading and unloading cycles [42-44]. The well documented nonlinear stress strain
response of architectural fabric is attributed to the internal structure of the fabric and the
combination of deformation mechanisms therein. These have been studied at length since
the 1980s. The mechanisms include crimp interchange, yarn extension and crushing,
coating extensions, friction between yarn filaments and friction between yarns and

coating [42, 45].

2.2.1 Fabric Testing Methodologies

Many testing methodologies for fabrics were first developed for the determination of
mechanical properties of uncoated woven fabrics used in the clothing industry [46]. In
more recent years testing methodologies have been developed for fabrics used in
engineering applications including woven fabrics used in the production of composites
[47] as well as architectural fabrics. However, only a limited number of testing standards

exist for architectural fabrics.

2.2.1.1 Uniaxial Testing

The simplest, and one of the most widely used, testing methodologies is uniaxial testing
performed on strips of fabric. ASTM D 5035-11, ‘Standard Test Method for Breaking Force
and Elongation of Textile Fabrics (Strip Method)’ [48] and ISO 1421:1998, ‘Rubber- or

plastics-coated fabrics -- Determination of tensile strength and elongation at break’ [49]
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along with [50, 51] offer standardised uniaxial testing methodologies. Uniaxial tests are
performed in order to assess material strength, determine stiffness characteristics [52,
53], and investigate creep[54], the effects of strain rate[55, 56], load history and
temperature[55, 56].

For uniaxial testing, multiple samples are cut from a roll of fabric. The number of samples
required is dependent upon the property under investigation. Where an average value is
required, 5 samples are deemed sufficient. Significantly more are required in order to
investigate the distribution of measured values [57]. ASTM D 5035-11 states that samples
should be aligned with the warp direction of the fabric and, if required, additional samples
may be aligned with the fill direction. However, when testing architectural fabrics
additional strips aligned at ‘off-axis’ angles from the warp direction are often also tested in
order to investigate shear response [52, 53] and failure criteria[55]. The majority of
European standard uniaxial testing is based on a 50mm wide strip. However, the
European Design Guide recommends a strip width of 100mm in order achieve more
consistent results due to the reduced influence of number of threads [57]. Samples are
typically affixed into a tensile testing machine via jaw clamps or capstan fixtures which
reduce the effect of sample damage at the restraints [58]. A constant rate of deformation is
applied to the strip and elongation and load is recorded. Samples may be tested directly to
failure or in a repetitive sequence of loading and unloading, referred to as cyclic loading,
depending on the mechanical property under investigation. Samples may also be pre-

conditioned via cyclic loading prior to testing for mechanical properties.

2.2.1.2 Biaxial Testing

Biaxial testing is used to assess the response of fabric to varying stress ratios in the warp
and fill directions and is typically used to obtain stiffness characteristics. The most
common form of biaxial testing is performed on flat samples clamped along four edges
within a specialist biaxial testing machine. These tests aim to induce stresses in line with
the warp and fill directions, thus removing any shear effect. Various biaxial testing rigs
have been developed each with individual features that aim to improve the homogeneity
of the induced strain field whilst allowing for large displacements. Initial tests were
performed on square samples. Later, arms were added to form the now more common
cruciform sample in order to reduce the restraint produced by the clamp plate.
Subsequently, slits within the cruciform arms were added to further reduce this affect
[59]. A number of test rigs aim to further reduce restraint by clamping and individually

loading each strip within the cruciform arm [57]. Strain is generally measured at the
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centre of the fabric sample and the stress is derived from the applied load via a reduction

factor to account for reduction in load between the sample's arms and the centre [55].

Due to the complexity of the response of woven fabric to biaxial load, biaxial tests are
typically load controlled as oppose to strain controlled. The most common use of biaxial
testing is for the production of elastic stiffness constants. MSA]/M-02-1995, ‘Testing
Method for Elastic Constants of Membrane Materials’ [43] provides the only international
standard methodology for biaxial testing for elastic constants. Biaxial testing is also used
to determine compensation values, which account for initial fabric response during
installation. Carefully considered load profile design for biaxial testing is of vital
importance in order to capture fabric response relevant. The profile should contain a
relevant load range and, for the determination of medium to long term properties, include
mechanical conditioning. Bridgens presented a protocol that aimed to explore the
conditioned response of architectural fabric through the derivation of a more detailed
response surface. This was achieved by testing the fabric using a radial load regime
including 12 distinct load ratios preceded by conditioning load cycles [59, 60]. In contrast,
Blum recommended a profile containing 3 cycles of loading in the warp direction while the
fill is held at pre-stress followed by 3 cycles where the warp is held at pre-stress and the

fill is loaded, in effect applying only two load ratios[57].

2.2.1.3 Alternative Testing

Alternative forms of biaxial testing to the in-plane test include the bursting test and
cylinder test. Both use pneumatic pressure to induce biaxial stress within the sample.
Bursting tests are performed on circular samples with fully clamped edges. The sample is
inflated to failure and the internal pressure is used to calculate the biaxial forces within
the membrane. This form of testing is more typically undertaken on non-woven
membrane materials such as rubber[10] and ETFE foils [61] which do not exhibit such
strong anisotropic mechanical behaviour. Cylinder tests are undertaken using a cylindrical
sample that is clamped at each end and inflated to induce radial stress. Movement of the
clamped ends allow for the independent application of axial load and torsion [46]. These
tests may also be referred to as combined tests as shear may be induced through torsion at
various biaxial loads. Kabche et al. presented an inflated cylinder test with combined
tension and torsion in order to investigate the effect of inflation pressure on axial and
shear stiffness moduli for the design of air beams [62]. This method of testing is developed

with a specific structural design task in mind.
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Similar to the aforementioned ‘off-axis’ uniaxial strip testing for the determination of
shear characteristics, ‘off-axis’ biaxial tests have also been used [57]. Picture frame testing
involves clamping the sample into a frame hinged at each corner. The frame may then be
installed into a deformation machine and laterally displaced, effectively squashing the

frame in order to induce shear stress [46].

Combined shear testing methodologies endeavour to test fabrics under a combination of
biaxial and shear loading. The use of a T-shaped specimen allows shear stress to be
applied with controlled levels of axial pre-stress using a biaxial testing rig [63]. Other
combined biaxial shear testing methods using specialist shear testing equipment include
the cylinder test described previously, picture frame testing combined with initial biaxial
conditioning and loading using a biaxial rig [64], shear ramp testing using a specialist load
profile [65] and the KES-F tester. Galliot and Luchsinger provide a succinct overview of

published shear tests which are illustrated in Figure 2-6 [65].

(a) Bias test (D) Picture frame test rig
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Figure 2-6: Test methods used for the investigation of fabric shear response [65].

The aim of all mechanical testing is to induce a uniform and measurable strain field at a

known load in order to infer an applied uniform stress field. This is somewhat difficult as
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an in depth understanding of the stress field induced by a particular test requires an
accurate understanding of how load is transferred from the restrained boundaries of the
sample. This is often investigated using finite element simulation. However, an accurate
material model is required in order to produce meaningful results. During testing, the
applied load is typically measured via load transducers, and strain data is gathered using
linear transducers or strain gauges adhered to the sample’s surface. These methods of
strain measurement have the drawback of only measuring strain across a finite area of the

sample and only in a single direction. This leads to an inability to capture non-uniformity.

Recent advances in high-resolution digital cameras and computing has enabled the use
optical measurement techniques such as digital image correlation in the field of material
testing. Digital image correlation uses grey value digital images captured by two or more
high resolution cameras. If the imaging parameter of each camera’s sensor along with the
sensor’s orientation with respect to each other sensor is known it is possible to calculate
the position of any point captured in two or more images. Through the application of a
stochastic speckle pattern to the surface of the sample, this method may be used to
measure sample contours, displacements and calculate strain during loading. Individual
points within the speckle pattern are identified in each image via a correlation algorithm,
hence the name digital image correlation. Other optical measurement methods use a series
of targets affixed to the sample surface in the place of a speckle pattern. These methods
produce similar data to that produced using linear transducers with the advantage of
removing the necessity to physically fix a device to the sample. Full-field image analysis
measurement techniques have enabled researchers to gain an improved understanding of

strain, and therefore stress distribution, throughout a sample[53].

2.2.2 Plane Stress Framework

Typically, a plane stress framework that comprises of elastic moduli and Poisson’s ratio is
used to represent the mechanical properties of fabrics [43, 57, 66-68]. This is often done
because fabric analysis codes such as GSA [69] and Easy [18] expect the material
properties to be presented in a plane stress format, and do not have capabilities
permitting other types of constitutive models [59]. Due to the well-documented non-linear
behaviour of coated woven architectural fabrics [43, 67] various post-processing
procedures are required in order to derive plane stress moduli from experimental data. A
key post-processing procedure is the removal of residual strain (or accumulated creep
strain) from the experimental data. This is done to remove distortion of the strain-strain-

stress response surface as defined by selected experimental load ratio arms. This enables
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the fabric behaviour to be represented by a single surface, whether defined directly or

using plane stress coefficients.

The plane stress framework is a simplified form of Hooke’s stress-strain compliance
relationship for an orthotropic material in which it is assumed that all stresses related to
the z direction are negligible and therefore can be set to zero. The compliance matrix is

given by (2-4)

Exx 1/Exx —Uyx/Eyy 0 Oxx
[SJWI = _ny/Exx 1/Eyy 0 [0-3’3’] )
Exy 0 0 1/2Gyy | %%y (2-4)

where ¢ denotes strain, o stress, E Young’'s moduli, v Poisson’s ratio and G shear moduli
the subscripts x, y and z refer to the principle axis of the material. The strain to stress
stiffness matrix, given in (2-5), is found from the inverse of the orthotropic plane stress

compliance matrix.

Oxx Exx/(1 - nyvxy) Exxvyx/(1 - nyvxy) 0 Exx
[Uxx = Eyyvxy/(1 - nyvxy) Eyy/(1 - nyvxy) 0 [“:J’J"
Oxy 0 0 2Gyy | LExy (2-5)

Due to the symmetry of the compliance and stiffness matrices the reciprocal relationships

(2-6) and (2-7) hold, such that,

Uxy — Uyx

Ex By (2-6)
Exvyx _ EyUyy

1=UyxVUxy 1=UyxVUxy (2-7)

When considering fabric, the principle directions are taken to be the warp and fill

directions and to reflect this the following simplified nomenclature will be used,
Exx = Ew, Eyy = Ef, Uy = Uyp, Uyy = VUpyy

where the subscripts w and f refer to the warp and fill directions of the coated woven
fabric. In current industrial practice, plane stress elastic constants are derived from biaxial
test data and measures are taken to ensure loading is applied solely along the warp fill
yarn direction. Therefore, in-plane shear stress is generally assumed to be negligible,
rendering the 3x3 compliance and stiffness matrices (2) and (3) to be 2x2 matrices. This

is only true if you assume that shear and direct stiffness are uncoupled, hence the zeros in
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the 3x3 plane stress compliance matrix. This may not be a valid assumption for woven

fabrics.

2.2.2.1 Determination of Elastic Constants

The MSA] standard describes a method for the derivation of elastic constants, that, ‘satisfy
a reciprocal relationship of anisotropic elastic material’ within a prescribed load range,
from load-strain curves obtained for a set of 5 load ratios [43, p.19]. Four parameters are
obtained in this process, tensile stiffness in the warp direction, E,,, and the fill direction,
Ef, and corresponding Poission’s ratio in the warp, v,,, and weft, v, directions. Notation
here is simplified, in MSA] Tensile stiffness is expressed as the Young’s moduli multiplied
by the thickness, here E,,, and Ef incorporate the thickness. It is noted in MSA] that the
load-strain curves obtained via biaxial testing typically do not conform to a reciprocal

relationship, (2-6) and (2-7), and must therefore be replaced by curves that do.

The plane stress constitutive model is fitted to the experimental data using either a least
squares method or a method of best approximation where the difference between stresses
or strains predicted by the constitutive model and experimentally measured values are
minimised. When the difference between experimental and predicted stress is minimised
MSA] gives the relationship between stress and strain in terms of Young’s moduli and

Poisson’s ratio as follows,
ow = E118y + Epp&f
O-y = E21€W + E22£f (2'8)

where,

_E _Ef _ _ VrwEw _ VwrEy _
Ell = Tw, EZZ = 7,E12 = E21 = T = Tandv =1 _UWfoW

This relationship is identical to the stiffness matrix equation(2-5) under the assumption of
zero applied shear stress. When the difference between experimental and predicted strain

is minimised the relationship becomes,
& = E110x — E120)
&y = Epp0y — E310y (2-9)

where,

1 1 v v,
11 EX, 22 Ey’ 12 21 Ey Ey
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As expected this relationship is identical to the compliance matrix, equation (2-4), with

shear stress assumed to be zero.

Gosling and Bridgens explored the effectiveness of plane-stress theory using the
compliance matrix, equation (2) [68]. The results of pairs of biaxial tests for ten different
coated woven fabrics, five PVC coated polyester fabrics and five PTFE coated glass fibre
fabrics, were combined into single data sets and used to calculate values of Young’s moduli
and Poisson’s ratio for each material. This was achieved by minimising the root mean
square difference between the predicted plane stress values and the test results. Unlike in
the MSA] standard, no constraints were placed on either the values on Young’s moduli or
Poisson’s ratio and as a result the values determined did not adhere to the reciprocal
relationship (4). The following reason was given for this inconsistency with plane stress
theory ‘fundamental for this research is the fact coated woven fabrics are not homogeneous
materials: the interaction of warp and fill yarns and the behaviour of the twisted yarn
structure mean that they are better described as mechanisms. It is this mechanical
interaction which causes the elastic moduli and Poisson’s ratios not to fit the relationship for

a homogeneous material’ [68, p.220].

On comparing the predicted results with experimental data using response surfaces it was
found that ‘overall the correlation between the test data plane stress representation is good’
[68, p.218]. This was especially the case for the PVC-polyester fabrics where the variation

between the test data and the model was found to be only twice the variation between the

two tests used in the production of the elastic constants. The improved fit achieved by the
PVC-polyester model was attributed to the greater effect of mechanical preconditioning on
PVC-coated polyester compared to PTFE coated glass fibre fabrics. PTFE coated glass fibre

fabrics also show more consistency between tests.

Blum et al. [57] proposed a biaxial test evaluation method which utilises elastic and

interaction moduli for given stress ranges in the form,

A011] _ [E1111 E1122] [Afn]
Aoy,|  |E E Ae

22 1122 E2222 22 (2-10)
where Aogy4 and Ag,, represent change in stress in the warp and fill direction respectively
and Ag;4 and Ae,, represent change in strain in the warp and fill directions respectively.

Ei111 and E,,,, are the elastic moduli in the warp and fill directions and E;;,, is an

interaction moduli representing the stiffness interaction between the warp and fill
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directions and may be used alongside the elastic moduli to define two Poisson’s ratios v,

and vy,
Vi = E1122

127 B (2-11)
Vor = E1122

21 E3222 (2'12)

The inverse compliance matrix, which relates strains to stresses, is given by Blum et al. as,

[Afn] Ci111 C1122] [AUM]

Agy; Ci122  Ca222] A0y,

(2-13)

where C,;1;denotes compliance in the warp direction, C,,,,compliance in the fill direction

and C,,, compliance interaction between warp and fill.

The use of change in stress and strain, as opposed to absolute values, leads to the

linearization of the fabrics non-linear behaviour between specified intervals. The elastic
moduli may be assessed in this way through a specialised load profile, Figure 2-7, that is
designed to allow the elastic constants to be decoupled. The warp and fill directions are

loaded separately in order to produce the following pairs of equations,

Aoyy = E11110&11 + E1122082;

Aoyy = 0 = Eq1220811 + Eppp2lep; (2-14)
and

Aoyy = 0 = Ej1118€11 + Eq122065,

Ao,y = E11228811 + EpppA85, (2-15)
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Figure 2-7: Specialised biaxial load history for the determination of elastic constants
[57]

The four equations (2-14) and (2-15) are solved simultaneously to find the three

unknowns E;141, E22,2 and E;15,. Unless the material is isotropic this method will produce

two different values of E;,, and differing values of Poisson’s ratio that do not adhere to

the reciprocal relationship (2-7). For this reason an average of the two E;;,, terms is

generally used to give a single value [70]. This leads to a further simplification of the

derived fabric response beyond linearisation.

2.2.2.2 Adaptations to the Plane Stress Framework

Minami [67] extends the use of multi-step linear approximation through the use of
response surfaces. A pair of response surfaces relating to warp and fill strain in terms of
warp and fill stress were developed from biaxial stress-strain curves obtained for 0:1, 1:2,
1:1, 2:1 and 1:0 load ratios. The surfaces are split into quadrilateral or triangular elements
with the corners of each element positioned on experimentally measured stress and strain

values (Figure 2-8).

Within each element it is assumed that the stresses and strains conform to plane stress
linear elastic theory. Minami uses a stiffness matrix similar to that of Blum et al. [57] with

two additional constants e, and ey,
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Figure 2-8: Discretized Warp and Fill response surfaces [67]

The five unknown elastic constants (E,,, Eyy, E.

vy» Exy, €x and ey) are found for each element

through a process of minimising the sum of the squares (2-17),

2 2
Ss = Zﬁ:l[(’rx — Eyxéx — Exygy - ex) + (Ty - Ex}’ex - E}’ye}’ - eJ’) ]n

(2-17)
such that,
0Ss _ 95 _ 9 _ 9 _ 05 _
OEyxx  O0Eyy 0Ey, 0dey 0dey

(2-18)

This process is similar to that proposed in the MSA] [43]. Where a more accurate load
strain relationship is required it is suggested in [43] that a multistep linear approximation
should be used to determine material constants. Once the elastic constants have been
derived for each element they are stored in a look up table that may be sourced by a finite
element programme. Two simulations using a fundamental non-linear finite element
method of two physical tests were reported to demonstrate the implementation. The
simulation and experimental results are compared to determine the accuracy of the non-
linear material model. A linear equation was used to calculate in plane shear stress for

each element, as in,

Ty = GY
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(2-19)

where 7,,, denotes in plane shear stress, G=49N/m defines shear rigidity and is

determined through standard testing [71] and y denotes shear strain.

The first physical test to be simulated was a cruciform specimen subjected to 1:1 biaxial
loading, Figure 2-9. The second physical test simulated was the lateral deformation of a
square sample, restrained along all four edges, induced by pneumatic pressure. The
deflection was calculated in the centre of the specimen, Figure 2-9b. While the
implementation examples presented demonstrate excellent agreement between
simulation and experimentally measured data neither explore the fabric response away
from 1:1 load ratio. This method introduces a level non-linearity but the accuracy of the
model is highly dependent on the size of the element. Larger elements may lead to a failure

to capture discontinuities in the behaviour of woven architectural fabric.
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Figure 2-9: FEM predictions using Minami's response surface material model

compared with experimentally measured data points [67]

Unlike the methods of MSA] and Blum et al., the method presented by Minami to
determine elastic constants includes stress strain data collected during initial loading
without the application of mechanical conditioning. It is however noted that for the
analysis of in situ architectural fabric ‘the biaxial elongation property surface formed with
the biaxial stress-strain curves measured after adequate iterative loading should be used’

[67, p.195].
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The compliance matrix (2-4) is used by Galliot and Luchsinger as the starting point for the
development of a simple non-linear material model for PVC-polyester fabrics that does not
rely of linearization of the stress-strain curve [66]. The stress-strain response of a fabric
was investigated using the specialised load history proposed by Blum et al. (Figure 1) and
a number of observations were made including the fact that the ‘Young’s moduli are almost
linear functions of the normalized load ratio while the Poisson’s ratio is rather independent
of the load ratio’ [66, p.442]. The normalised load ratios are given by,

Ow

Yw =

Iawz+af2
ag
Vr= ’ zf 2
ow“tof (2_20)
The model therefore has three key assumptions, the first of which is common to all of the
coated fabric material models discussed in this section - that for given a load ratio the
material behaviour is linear elastic plane stress orthotropic. Therefore, the material

behaviour may be described by the compliance matrix (2-4) that conforms to the

reciprocal relationship (4) and may be expressed as,

[ 1 ~Ywf / ]
/ Evw) Ev )
AUW]

—Uwf/ 1 Ao'f
Ev(yw) / Ergp |
| (2-21)

Aey]
[Agf] -
|
However, as proposed by Galliot and Luchsinger, this linear model is extended to become

non-linear by the second two assumptions;

1. The Young's moduli E,, and E; may be expressed as linear functions of the load

ratios y,, and yy,

1 .
Ew) = AEw (Vw - \/_7) + Eyt

_ 1 1:1
Efyp) = Ay (Vf - ﬁ) + Ef (2-22)

where EL! and E}}:1 are the warp and fill moduli given by a 1:1 load ratio (yf,, = 1/

v2) and AE,, and AEf are the variation of young’s moduli across the entire range of tested

load ratios.
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2. The in-plane Poisson’s ratio v, is independent of the load rations y,, ands y;

The model parameters for seven types of PVC-polyester fabric were obtained from
experimental data using a least square fit method performed using two sets of load ratios,
one containing five and another containing thirteen different ratios. The experimental
procedure included mechanical preconditioning with only the fifth and final load cycle for
each load ratio used to determine fabric properties. The value of Poisson’s ratio was
constrained to less than 0.5. The allowed range of Poisson’s ratio is an important
consideration when applying the plane stress framework to architectural fabric. An
isotropic elastic material with a Poisson’s ratio of 0.5 is typically considered to be
incompressible. In the previously described plane-stress material models Poisson'’s ratio
regularly exceeds 0.5 [43] and in some cases exceeds 1 [68]. The required constraint is
that the product of the two orthotropic Poisson’s ratio must not be greater than 1 in order
to avoid a case where a positive strain results in a negative stress. This would be

unacceptable when implemented within a finite element simulation.

In comparison to other material models such as a standard plane stress orthotropic model
(labelled orthotropic S in Figure 2-10) and the orthotropic linear model with two
independent Poisson’s ratios [68] (labelled orthotropic NS in Figure 2-10), it was found
that the lowest RMS and lowest maximum absolute difference between experimental and
model parameters was achieved by the non-linear model for all fabrics tested. The non-
linear model performance is also shown to be less sensitive to the number of load ratios
used for fitting. This may suggest that less data is required to generate an accurate model,

(Figure 2-10).
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Figure 2-10: RMS and maximum absolute difference between experimental data and
model predictions (Orthotropic S: standard plane stress, Orthotropic NS:

independent Poisson's ratios, Model: non-linear material model) [66]
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To further investigate the effectiveness of the non-linear model, response surfaces were
plotted using the model and compared with experimental data, Figure 2-11. It was
concluded by Galliot and Luchsinger that ‘it clearly appears that the experimental curves do
not lie all on a plane and thus linear models have limited capabilities. For the proposed non-
linear model, a curved surface enables a better representation of the experimental material
characteristics’ [66, p.443]. While an improved fit has been shown by the comparison to
the plane stress linear models it is still evident in Figure 2-11 that error between the

experimental and predict material response remains.
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Figure 2-11: Stress-stress-strain representation of ‘non-linear’ model predictions

(surface) and experimental data (dots) [66]

Common to all the Plane Stress approximations discussed, with the exception of the
procedure proposed by Blum et al, is the use of some form of minimising the root mean
square difference between the proposed material model and experimental data in order to
find a series of elastic constants. The main source of differences between the models is in
the application of constraints which force the experimental data to conform to the
orthotropic plane stress constitutive equations, and in particular the reciprocal

relationships (2-6) and (2-7).

The post-processing of stress-strain curves from which the elastic constants are calculated
also varies from method to method. MSA] [43] and Bridgens and Gosling [68] proposed the
simplest methods of elastic constant approximation where single sets of elastic constants
are produced for each set of test data. Minami, Blum et al and in some cases MSA] used
methods which created multi-linear approximations of the non-linear stress strain
response and assumed a plane stress response for each linear section. This produced sets
of multiple elastic constants for each stress-strain data set. Minami takes this concept

further by creating response surfaces made up of linear elements each with a set of elastic
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constants. Alternatively, Galliot et al. introduced non-linear terms by expressing Young’s
moduli in terms of a load ratio term. Both Minami and Galliot et al. successfully implement

their adapted plane-stress models into FEM software.

All of the plane stress models discussed adhere to the reciprocal relationships (4) and (5)
except for Bridgens & Gosling who do not impose any constraints. Nevertheless, Bridgens
and Gosling observe a generally good correlation between predicted and experimentally
measured values. Luchsinger et al introduce the greatest level of constraint and alone do
not allow Poisson’s ratios greater than 0.5. However, their non-linear model is shown to
perform better than both a simple plane stress orthotropic model, similar to that of MSA],

and Bridgens & Gosling’s unconstrained model.

In contrast to the above plane stress models which used biaxial test data, Chen et al. [52]
investigated whether architectural fabrics could be treated as an orthotropic material
using off-axial constitutive equations (2-23) derived for anisotropic lamina composites
[72]. Uniaxial testing was undertaken on samples of plain weave PVC coated polyester
biased to the warp direction in the range 0° to 90° at 15° intervals. Each biased sample
was initially tested to failure to find the ultimate strength. A second sample was then taken
to 20% of the determined ultimate strength. Load was applied at a constant rate, held and
released at a constant rate three times. It was found that after the first two load cycles the
third load cycle produced a more linear stress-strain response. This was attributed to
permanent deformation within the sample leading to reductions in both shear
deformation and crimp interchange in subsequent load cycles. Deformation was measured

in the loading and transverse direction.

The mechanical properties including Young’s modulus (E), shear modulus (G) and
Poisson’s ratio (v) were derived from the third load cycle results and compared to

predicted values derived from the off-axial constitutive relationship (2-23).

1 cos* 0 1 2v . sin* 6

— = (——J)c052951n29+—

Ex Ey Gy Ey E;

v v 1 1 1 2V .

ﬂ=£+(—+———+i)c052951n29 (2-23)
Ex E; E;  E; Gy E;

1 1 1 1 1 2V .
—=—1 (—+———+J)4c052951n29
Gxy Gi2 Ey  E; Giz Eq

_Bas (2-24)

Glz = 2(1+V4,5)
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Subscript 1 and 2 represent the fabrics warp and fill directions respectively, x and y
denote the direction of loading and the direction perpendicular to it respectively, fis the
bias angle of the fabric with respect to the warp direction. The principal shear modulus
was derived from the 45° bias test using equation (2-24). The shear moduli for all other
samples were calculated from the third equation in (2-23) which was simplified by
combing it with the second equation to give (2-25). This enables the shear modulus to be

calculated using experimentally derived Poisson’s ratio and elastic moduli.
1t (‘2 — ‘ﬂ)
Gxy  Gi12 E1  Ex (2-25)

In order to make predictions using the constitutive equations (2-23), Ej, E5, E4s, V1, and
V45 (and therefore G,) are required. By substituting 8 = 0° into (2-23) E; can be
identified as Young’s modulus in the warp direction. Likewise by substituting 8 = 90°, E,
is Young’s modulus in the fill direction. v;, and G;, are the warp direction Poisson’s ratio
and shear modulus, respectively. E,s and v,5 are Young’s modulus and Poisson’s ratio
related to loading at 45° bias to the warp direction (6 = 45°). The experimental results are

compared with the predictions of the constitutive equations in Figure 2-12.
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Figure 2-12: Experimental results (markers) compared to predicted results using
off-axial constitutive equations (lines) for E,, Gxy and v,y /Ex[52]

From this study it is concluded that ‘...coated fabrics could be treated as an orthotropic and
elastic material if loading was less than 20% of the ultimate tensile stress’ [52, p.373]. This
conclusion is also dependent on the fact that the fabric has been mechanically conditioned
via cyclic loading. This pre-conditioning replicates the typical behaviour of in-situ fabric
and is therefore relevant for structural analysis [60]. However, this study is based solely

on uniaxial loading conditions, a loading condition rarely, if ever, found in fabric
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structures, and does not account for the complexities introduced by biaxial loading [46]. It
is also noted that this study focuses on a single specimen of architectural fabric and
therefore does not take into account variation in weave pattern, manufacturing process,
yarn material or coating properties. The conclusion that coated fabrics in general can be
treated as orthotropic and elastic is arguably too broad. PTFE coated fabrics, for instance,
have been found to exhibit substantial non-linearity even after mechanical conditioning

[68].

2.2.3 Alternatives to the Plane Stress Framework

The failure of plane stress models to accurately represent architectural fabric material
behaviour was identified very early and led to the investigation of alternative methods.
Prior to the development of the plane stress model described above Day proposed the
representation of biaxial response using the relationship between mean and difference of
the principle stresses and strains first developed to represent soil mechanics [44]. The
model is defined by the equation of (2-26) where o, and o), is warp and fill stress
respectively and &, and ¢, is warp and fill strain. Due to a low shear stiffness of fabric, the
shear stiffness is assumed to be independent. The functions represented by f* to f* are

determined iteratively from points on 1:1, 5:1 and 1:5 load ration stress strain curves.

(ox+tay)
a="
(extey)
€ =7 2
T = (oy—0x)
2
— (ex—¢y)

2
0a = f1(ea) + f2(9)
T=f(ea) + f*(9) (2-26)

Bridgens and Gosling revisited this method [70] and concluded that it provided a good
solution for the representation of up to six non-linear curves. Further testing is required to
establish whether this method provides accurate interpolation between the three curves

used for the derivation of the model.
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2.2.3.1 Direct Stress-Strain Representation

Bridgens and Gosling also presented a method of direct stress-strain representation via
response surfaces developed from experimental data using spline curves, [68, 70]. Spline
functions offer an alternative to polynomial functions for the definition of smooth curved
surfaces. The suitability of three types of curve have been assessed for the generation of
response surfaces from biaxial test data namely Bezier curves, B-splines and Non-uniform

rational basis splines (NURBS).

Spline functions are proposed as they offer an ‘intrinsic interpretation of test data’ [70,
p.-1914]. A key advantage of spline curves over more simple polynomial functions is their
ability to represent rapid changes in gradient or discontinuities, both of which are features
of Biaxial test data. Bezier curves were successfully fit to typical stress strain data using
trial and error methods. An additional advantage highlighted is the ability of NURBS
functions to represent any number of independent variables thus making them well suited
for the inclusion of factors such as woven fabric shear behaviour which has been shown to

be non-linear, hysteric and discontinuous.

A major unresolved flaw in the use of spline curves is however highlighted in Figure 2-13.
[t was found that whilst spline curves may provide a close fit to data points, they are non-
unique. Varying the control point locations each with a mean square offset from the data
of zero can generate a wide range of interpolating curves. This non-uniqueness of the
curves leads to the conclusion that additional criteria are required to produce unique

curves that reliably represent the fabrics behaviour.
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Figure 2-13: Experimental data fit with two different rational Bezier curves [70]
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2.2.3.2 Elasto-Plastic Material Model

Very recently a elasto-plastic material model has been published which uses 11 variables
determined form a combination of biaxial and uniaxial test data [6]. The important noval
feature of this material model is the representation of permanent strain, as well as the
representation of orthotropic and non-linear behaviour. The model is implemented in the
finite element code Abaqus. The model is validated using both uniaxial and biaxial
experimental data. the model produces a reasonable fit to the uniaxial experimental data.
However, the response is somewhat simplified and multiple cycles have not been
demonstrated. The model is validated for a biaxial case using a simulation of quarter of a
biaxial sample undergoing a 1:1 load cycle. The simulation and experimental results again
are shown to be in reasonable agreement but again the response is simplified. Strain
recovery and negative strain is particularly underestimated. The ability of the model to
generalise other load ratio combinations has not yet been demonstrated due to a lack of

available data.
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Figure 2-14: Elasto-plastic model representation of biaxial response data compared
with experimental data [6].

2.2.3.3 Mechanical Models
An alternative approach to using only experimental data to derive stiffness parameters for

constitutive equations is to model the internal structure of the fabric, attempting to
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capture the various mechanisms that contribute to the overall response. The key
displacement mechanism to represent is crimp interchange. Crimp interchange is the
process of yarn straightening in the direction of maximum load increasing the crimp in the
orthogonal direction. Typically, models will represent a unit-cell, the smallest possible
repeatable unit, within the fabric. In the case of plain weave fabrics the unit cell is formed
by two orthogonally crossed yarns, creating half a wavelength of each the warp and fill.
The models are derived from the geometry of the unit-cell in combination with material

properties of the constituent yarns and coating material, if present.

The models can generally be placed into one of two groups [59]. The first group require
biaxial experimental data to determine various parameters and aim to fill the gaps
between measured data points on the stress-strain surface [73, 74]. The second group
uses yarn and coating properties along with fabric geometry to predict the stress-strain
response or ultimate strength of the fabric without the need for biaxial testing [75-78].
Since the late 1990s work has been undertaken in modelling the unit-cell or a group of
unit cells using 3-dimensional finite element analysis [79-81]. These models enable a
reduction in limiting assumptions but rely on the accurate definition of properties for the
constituent materials. The majority of models in this group have been developed to
investigate the mechanical behaviour of woven panels used in heat formed composites. All
models are validated, if not optimised, using experimental data and therefore some testing

is unavoidable.

2.2.4 Summary and Conclusions

Due to high computational cost and linking issues, mechanical models are rarely used
directly as constitutive models within the finite element simulation of fabric structures,
one exception is presented in [42]. They are more frequently used to produce coefficients
for the plane stress constitutive equations classically used. Mechanical material modelling
is outside the scope of this body of work. However, work in this area has provided
important insight into the overall behaviour of architectural fabrics. Furthermore, it
highlights the complexity of fabric behaviour and the need for consideration of this when

undertaking structural analysis.

Architectural fabric strain-stress response is complex and non-linear. Specialist biaxial
and uniaxial testing methodologies are used to capture the direct strain-stress response of
architectural fabric for the development and validation of fabric material models. These
methodologies will be employed to capture the experimental data required by the material

model to be developed in this thesis. Biaxial load profiles using various combinations of
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load ratios have been proposed in order to explore the full material response and provide
data for the fitting of constitutive models. Residual strain is typically removed prior to
fitting. Comprehensive load profiles including additional non-standard features will be
used to capture the full fabric response. The removal of residual strain in post processing
may be avoided if the model is designed to capture load history effects. Shear stress is
generally assumed to be decoupled from direct stress and is measured in separate
physical tests. The assumption of decoupled shear behaviour will be maintained in order
to allow the use of established biaxial testing methodologies. However, it is anticipated
that combined direct stress and shear response will be incorporated into the proposed

material mode at a later date.

A variety of fabric material models based on the plane stress framework have been
developed. It has been demonstrated that an improved fit to experimental data may be
achieved by disregarding the plane stress reciprocal relationship which constrains
Poisson's ratio. The plane stress framework has been further manipulated to include non-
linearity by adding additional terms. In one method the strain-strain-stress response
surface is divided into separate elements with unique elastic constants and in another the
elastic moduli are modified based on the current load ratio. Elastic matrix models based
on the plane stress framework are limited by the use of relatively small numbers of
variables and classical plane stress assumptions that do not apply to the mechanical

behaviour of woven coated fabrics.

Methods that entirely move away from plane stress assumptions were proposed as early
as 1986. A model based on the relationship between mean and difference of principle
stresses and strains showed promising results. The concept of direct stress-strain
representation using a response surface type model has also been explored. Extrapolation
between experimental data to generate a smooth continuous response surface is required
in order to implement this modelling methodology. Spline curves have shown to be most
promising but are sensitive to the location of control points leading to a large variation
between curves fit to the same data. Artificial neural network material modelling,
presented in the following section, offers a solution for the generalisation of fabric
response from biaxial experimental data. Neural networks trained using comprehensive
experimental data and have been demonstrated to successfully capture and generalise
non-linear and history dependant material response for a variety of materials.

Furthermore, they are suitable for implementation in finite element code.
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2.3 Neural Network Material Modelling

Advances in computing technology have allowed for the exploration of a number of
computer methods based on artificial intelligence concepts. Genetic Algorithms and Neural
Networks have been used in a number of engineering applications and both have been

used in constitutive modelling.

Genetic Algorithms (GAs) are an optimisation heuristic based on the principles of natural
selection. The process or evolution begins with a population of individuals, usually
randomly generated. Each individual member has a set of characteristics or chromosomes,
typically expressed in binary form, which can be altered or mutated. The process is
iterative; individuals are assessed using a fitness function, usually the objective function of
the optimisation. The individuals deemed to be less fit are discarded and the remaining
population is used to generate a new population through random combination and
mutation. The process is halted after a set number of generations or once the population
exhibits a specified level of fitness. Genetic Programming (GP) is a specific form of a
Genetic Algorithm where the objective function itself is obtained via evolution. In the case

of GP each individual of the population is a process or function.

GAs and GP have been used to define constitutive equations for a number of engineering
materials but have primarily been employed in the area of soils [82, 83] and composites
[84, 85]. They have also recently been used to explore the cyclic behaviour of steel [86,
87]. GAs are typically selected where a complex function is required to represent the

material response that is defined by several unknown parameters.

Artificial Neural Networks (ANNs) belong to the ‘soft computing’ [88] or ‘intelligent
method '[89] paradigm and are based on a highly simplified biological neuron such as may
be found in the brain. Their basic structure comprises layers of interconnected processing
units referred to as artificial neurons or nodes. Each neuron sums the input signals from
the previous layer along with a bias, performs some form of transfer function, and passes
it to each neuron of the next layer via a weighted connection. The weights and biases are
determined through a process of training and it is within the weights and biases that the
relationship between input and output is captured. ANNs have been successfully applied
to a wide range of real world problems including prediction [90, 91], control [92], pattern
recognition [93] and optimisation [94, 95]. It is however the ability of an ANN to
approximate a function which is of most relevance to constitutive modelling of
architectural fabric. This is where an ANN is trained to represent the functional mapping

of input signals, for example strains, to corresponding outputs, such as stresses [96]. The
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basics of ANNs have been widely discussed in the literature. Useful overviews are

provided in [97] and [98]. A brief summary is provided in the following paragraphs.

2.3.1 Artificial Neural Network Architecture

To understand the development of the artificial neuron a basic understanding of a
biological neuron is advantageous. An extremely simplified biological neuron, shown in
Figure 2-15(a), comprises a cell body or soma and two types of connective branches - the
axon and the dendrites. The dendrites receive signals and transfer them to the cell body.
The axon receives signals from the cell body and transfers them via synapses (microscopic
gaps) to the dendrites of neighbouring neurons [97]. Within the axon the signal is
electrical. However at the synapse the signal is converted to a chemical neurotransmitter.
The neurotransmitter is diffused across the synaptic gap to the dendrites of neighbouring
neurons, in turn causing that neuron to produce new electrical signals. The quantity of the
neurotransmitter produced and therefore the strength of the chemical signal is
proportional to the strength of the signal reaching the synapse. The magnitude of the
signal produced by any neuron is dependent on the intensity of signal received from
feeding neurons, the strength of connecting synapses, and the threshold of the neuron.
Due to the huge number of connections associated with each neuron and the vast number
of neurons within the network, this biological system is capable of completing massively

complex tasks, such as facial recognition, within a fraction of a second.

Though massively simplified, the basic process of a biological neuron is used to inform the
development of the artificial neuron. Within an artificial neuron, the activity of the cell
body is represented by the transfer function, f, and bias, b. The axon and dendrites are
represented by the connections, and the synapses by the weights w [98]. Figure 2-15
shows a biological neuron (a) alongside its equivalent artificial counterpart often referred

to as the perceptron (b).

Figure 2-15 (b) depicts a single perceptron. The perceptron sums the weighted output
signals from each neuron of the previous layer, adds a bias signal and passes the result
through an activation function. The function may be any differentiable function.
Commonly used activation functions include threshold, linear, sigmoid and Gaussian
functions. The sigmoid transfer function is the most commonly used transfer function for

constitutive modelling [97, 99-102].



Chapter 2 Literature Review 61

Figure 2-15: A biological neuron and an artificial neuron the perceptron [98]

The architecture of an ANN generally takes on a layered form with each layer containing a
number of neurons that receive weighted signals and output a response. ANNs are
typically categorised according to the organisation of the connections. A feed-forward
network is organised in such a way that the signal is passed consecutively from one layer
to the next. Networks belonging to this group include the single layer perceptron,
multilayer perceptron and radial basis function nets. A recurrent or feedback network
may contain one or more nodes that are connected to nodes either in the same or previous
layers. Networks belonging to this group include competitive networks [103], Kohonen'’s

SOM [104], Hopfield network [105] and ART models [106].

A graphical representation of a general multilayer feed forward neural network is shown
in Figure 2-16. The network contains an input layer made up of a node for each input value
that is connected to a subsequent layer known as the hidden layer. This layer contains a
user-defined number of neurons. The network may be built to contain any number of
additional hidden layers although one is often sufficient. The final layer of a standard feed
forward neural network is the output layer; this layer contains a neuron for each network

output.
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Figure 2-16: Single hidden layer feed-forward neural network architecture
2.3.2 Artificial Neural Network Training

The first feature of network training is the training paradigm. This depends on the form of
training data presented to the network. Supervised training occurs when a network is
presented with the correct answers corresponding to each given input. The learning
process aims to minimise the error between network output and the correct answer.
During unsupervised training the network learns solely from the underlying structure or
correlations within a set of inputs and organises them accordingly. Networks may also be
trained using a hybrid of both supervised and unsupervised learning. Functional
mappings, such as those performed by ANN constitutive models, require supervised

training.

The second feature of network training is the learning rule used to inform how network
weights are to be updated. Well known learning rules include error-correction, Boltzmann,
Hebbian and competitive. A learning algorithm is developed to update the weights
according to the selected rule. The selection of the learning rule and the subsequent
learning algorithm is dependent upon the architecture of the neural network and available
training data, which is in turn dependent on the task to be performed by the neural
network. Table 1 compiled by Jain et al, 1996 gives a good overview of existing network
architectures along with their associated learning algorithms and applications. As this
review is concerned with function approximation for constitutive modelling, the relevant
architectures include single or multilayer perceptron and radial basis-function networks.
These along with their associated training algorithms will be the focus of this review. For

details on other network architectures and learning algorithms see [97, 98] .
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Paradigm Learning rule Architecture Learning algorithm Task
Supervised Error-correction Single or multilayer Perceptron learning algorithms  Pattern classification, Function
perceptron EndpropngEon approximation, Prediction, Control
Adaline and Madaline
Boltzmann Recurrent Boltzmann learning algorithm Pattern classification
Hebbian Multilayer feed-forward Linear discriminant analysis Data analysis
Pattern classification
Competitive Competitive Learning vector quantization Within-class categorisation, Data
compression
ART network Pattern classification
Unsupervised Error-correction Multilayer feed-forward Sammon’s projection Data analysis
Hebbian Feed-forward or competitive Principal component analysis Data analysis, Data compression
Hopfield Network Associative memory learning Associative memory
Competitive Competitive Vector quantization Categorisation, Data compression
Kohonen’s SOM Kohonen’s SOM Categorisation, Data analysis
ART networks ART1, ART2 Categorisation
Hybrid Error-correction RBF network RBF learning algorithm Pattern classification, Function

and competitive

approximation, Prediction, Control

Table 1: Summary of common ANN architectures with associated learning algorithms [97]
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Multilayer feed- forward networks trained using back-propagation training algorithms are
by far the most commonly used network in material modelling. As shown in Figure 2-16
input signals are propagated forward through the network to be converted to an output
signal via the neurons and weighted connections. During this phase all connection weights
are held constant. The error between the network output and the target output is then
calculated and propagated backwards through the network. This error is used to update
the weights in the direction of the steepest gradient. The gradient is determined from the
partial derivatives of the total network error with respect to the network weights of
biases. This process of forward propagation of inputs and backward propagation of error

is repeated until the network reaches some level of convergence.

2.3.3 Artificial Neural Network Material Models

The key fundamental advantages of ANNs over other material models include learning
ability, generalisation, ability to cope with fuzzy or discontinuous data and adaptability
[97, 98, 107]. In contrast the key weaknesses are a limited ability to extrapolate, over-
fitting, poor definition of uncertainty with regard to prediction, and the ‘black-box’ nature
of ANNs [88, 108]. ANNs have been used to describe the characteristics of numerous
engineering materials including concrete [109, 110], soil [111, 112], steel [89] and
composite materials [113]. Neural networks show particular promise in modelling
materials that exhibit a highly complex non-linear response that may be history

dependent [100, 114, 115].

2.3.3.1 Representation of Load History Effects

A neural network with additional load history inputs is demonstrated in [114] to be
capable of capturing the cyclic behaviour of plain concrete under uniaxial cyclic loading.
The trained network output was compared to the experimental data used in training
alongside an analytical model for the same behaviour. The network was further tested
using unseen data not used in network training in order to illustrate the networks ability

to generalise the response.
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Figure 2-17: Trained hysteretic concrete network material model output alongside
experimental training data and analytical model prediction, [114]
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Figure 2-18: Trained hysteretic concrete network material model output alongside
experimental data not used in training, [114]

2.3.3.2 Functional Mapping of Experimental Data

Given that feed-forward, back-propagation ANNs effectively learn a functional mapping
through a process of training using sets of input data with known outputs, the need for
prior knowledge and limiting assumptions regarding the modelled response is, for
practical purposes, removed. However, knowledge of the material response is required in
order to effectively design the architecture of the network, gather comprehensive training

data, and implement a successful training algorithm. In the case of material modelling,
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training data may be gathered through traditional material experiments or, alternatively,

through the monitoring of an in-situ structure.

ANNSs have been shown to perform poorly when presented with inputs that are outside
the domain of the training data - e.g. extrapolation. This problem is illustrated clearly in
Figure 2-19 where a basic ANN is trained to map a sine curve using selected sections of the
curve [88]. This weakness leads to the need for the network designer to have an in depth
understanding of the required domain. However, limited guidance is available in the
definition of a comprehensive data set. Designer experience is commonly relied upon. One
alternative technique employed in constitutive modelling is the use of global load-
displacement data in combination with a finite element model and a partially trained ANN
material model to iteratively produce increasingly accurate stress-strain pairs for network

training [99, 116, 117]. This form of training is termed ‘auto progressive’ or ‘self-learning’.
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Figure 2-19: Neural networks trained to approximate sin(x) within two different

ranges of x [88]

2.3.3.3 Generalisation

Once trained an ANN will gain the ability to generalise the response and produce outputs
from previously unseen inputs within the domain of the training data. This ability to
generalise allows the network to robustly represent a function based on noisy or
incomplete data. An associated problem is over-fitting. This occurs when a network no
longer maintains the ability to generalise a response and effectively learns the noise or
scatter within the training data. Over-fitting may occur due to insufficient training data,
over training, or may be caused by unnecessarily large or complex network architecture.
This issue is illustrated in Figure 2-20 where a scattered data set is approximated by
increasingly large neural networks [88]. Numerous techniques have been employed to

prevent the over-fitting phenomena including early stopping during training [118] and
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adaptive training where the neurons are automatically added as required during network

training [17].
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Figure 2-20: Training and over-training of a neural network with data containing
scatter [88]

Neural Network material models are often viewed as 'black-box' models as their internal
parameters have no specific physical meaning. The lack of physical meaning is necessary
to allow for the networks key advantage of requiring no prior assumption about material
response. There have, however, been numerous studies which utilise ANN models to gain

insight into a material’s behaviour [17].

2.3.3.4 Adaptability and Implementation

Finally ANNs are adaptable in that they may undergo further training as additional
training data becomes available. Specifically within the area of material modelling, ANNs
have also been shown to be suitable for implementation within readily available finite
element code. Implementation of neural network constitutive models in finite element
analysis has been demonstrated in [119-121]. A constitutive model performs two
functions. Firstly it provides the means to determine current stresses from current strain.
This is relatively straightforward as current stress may be taken directly as the network
output. The second function is contributing to the generation of a global stiffness matrix
typically derived from the element B-matrix with the constitutive matrix in an equation of
the form (2-27). This is problematic, as it requires the constitutive equation to be in the

form of a square matrix compatible with the Element B-matrix.

Kg =Y. [, [BI"[E][B]dV (2-27)
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The derivation of an implied elastic stiffness matrix from the partial derivatives of the
neural network equations is proposed and demonstrated in [119]. Alternatively, a feed
forward neural network may be trained to directly generate elastic constants used to
populate and establish elastic matrix. This is demonstrated in the modelling of the
nonlinear spring back response of steel sheet metal in [102]. The use of network
derivatives is used in the implementation of a fuzzy neural network trained to represent

uncertain time dependant material response in a fuzzy finite element analysis [106].

2.3.4 Summary and Conclusions

Neural networks have been demonstrated to be suitable for the material modelling of a
wide variety of engineering materials. The back-propagation training algorithm is almost
exclusively used for the training of constitutive material models using experimentally
gathered strain-stress data. Physical testing may be coupled with a non linear finite
element simulation to facilitate the training of complex constitutive models form more
easily obtained boundary data. A relatively simple network architecture comprising a
single hidden layer with a tan-sigmoid function can be used to capture non-linear material

response.

The disadvantages of neural networks include poor extrapolation outside the bounds of
the supplied training data, over fitting leading to poor generalisation and uncertainty
introduced by the training process. All of these feature should be kept in mind during the
development of a neural network material model. The design and generation of a
comprehensive training data set should eliminate the requirement for the network to
extrapolate beyond the training data domain. Early stopping during training is a relatively
straight forward way to control over-fitting. Thorough testing using 'unseen' data not used
in training is also vital for the validation of the material model and should reveal if over-
fitting has occurred. The training of multiple networks using the same training data will

allow network uncertainty to be investigated and quantified.
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2.4 Summary and Conclusions

A holistic approach is required for the design of fabric structures due to the dependence of
the structural form on restraint conditions, applied pre-stress, patterning, and applied
loading. A complete fabric analysis package should be capable of form finding under
prescribed pre-stress, take into account the expected patterning at the earliest
opportunity, and be capable of resolving geometrically non-linear state equations.
Dynamic relaxation has been demonstrated to be a robust solution algorithm and will be

used in the code presented in this thesis.

The membrane element formulation should include large strain assumptions and control
of material direction. This is vital to enable the material warp and fill directions to be
aligned with panel geometry. Mesh control during form finding is also essential in order to
maintain regular mesh distribution and produce feasible panel geometries. Geodesic
control elements have been successfully demonstrated for this purpose. 6 node
isoparametric large strain linear strain triangle finite elements have been demonstrated
to be suitable for the representation of architectural fabric. They are able to represent
curved geometry and are more efficient in the approximation of steep stress gradients

than the more simplistic constant strain triangle element.

Reliability analysis of fabric structures enables the designer to assess the acceptability of a
design by providing an estimate of probability of failure or the safety index. FORM
reliability is a well-established methodology and has been implemented with a specialist
fabric finite element code. When assessing the feasibility of the implementation of FORM, a
number of issues should be considered and mitigated against. These include discontinuous
failure surfaces, the presence of multiple local design points, and instability of the finite

element caused by a design point located too far into the failure region.

The collection of comprehensive response data is required for the calibration of all current
material models. This is done through physical testing, most commonly based on either
uniaxial strip testing or biaxial testing on cruciform samples. Cruciform specimen testing
enables the capture of biaxial mechanical effects, including crimp interchange, which
massively influences the behaviour of in situ architectural fabric. Shear testing is further
challenging, and undertaken using a range of methods. The picture frame test shows
promise as it allows the shear test to be undertaken with varying levels of direct stress
applied. Typically, shear behaviour is decoupled from direct stress response and is

represented in the majority of material models by a single modulus.
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The constitutive material model used in conjunction with any specialist fabric finite
element package greatly affects the effectiveness of the simulation. Current best practice
relies on the plane stress framework with its compatibility with readily available finite
element codes. A variety of modifications to the plane stress approach have been
proposed, including the removal of the reciprocal relationship between Poisson's ratio
terms of the compliance matrix and the addition of various parameters that aim to add
non-linearity to the inherently linear plane stress model. One such model adapts the plane
stress material description to a response surface style model. A recent elasto-plastic fabric
material model has been demonstrated to capture non-linear behaviour and permanent
strain. However, the model performs poorly when representing load ratios which result in

negative strain and does not capture strain recovery.

A pure response surface type material mode offers promise due to the removal of limiting
plane stress assumptions and offers the opportunity to use experimental response data
directly to model fabric response. The key problem to solve is the interpolation between

available data points in order to model the response away from tested load ratios.

Neural networks, with one or more hidden layers and a sigmoid transfer function, have
been demonstrated to be capable of capturing constitutive relationships between stress
and strain for a variety of materials. They are capable of learning material response
directly from experimental data and have been shown to have the ability to generalise.
Neural network material models are capable of accurately reproducing material behaviour
in 'unseen' regions of the material response. However, it is important to note that
networks are unreliable in regions outside the training data. Careful training data set
design is vital to ensure that the network has sufficient data to represent the response

area required for simulation.

With the addition of historical inputs and internal variables, artificial neural network
material models have also been demonstrated to be capable of capturing history
dependant behaviour. This enables the effects of accumulated residual strain under cyclic
loading to be assessed in a finite element simulation. It is also noted that neural networks
can be implemented directly within finite element analysis. The current stress may be
obtained directly from the network model presented with current strain, and the global
stiffness matrix may be found using the implied stiffness matrix, which can be derived

directly from the network equations.

Therefore, in this thesis a feed forward neural network architecture with a single hidden

layer with a tan-sigmoid transfer function will be used for the development of fabric
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neural network material models. A back propagation training algorithm will be used for
network training. Additional network inputs will be used to facilitate the representation

of history dependant fabric behaviour.

The 'self-learning’ method of training, using a finite element simulation coupled with a
physical experiment, shows good potential for the capture of complex material response
from a relatively straightforward physical test. However, it increases the complexity of
network training. For this initial investigation into the development of an architectural
fabric material model the strain-stress training data will be obtained using established
fabric testing methodologies. Shear response will be assumed to be decoupled from the
direct stress response and will not be included in the network model at this stage of

development.

In order to assess the ability of the trained networks to accurately generalise fabric
response, and to identify cases of over-fitting, the networks will be tested with 'unseen'
data not used in training. The number of nodes required in the hidden layer will be
determined through the training of sets of networks with varying numbers of nodes. The
variability between network models trained with the same data will also be investigated

through the training of sets of multiple networks.

The trained and validated network material models will be implemented in the dynamic
relaxation, large strain, finite element code using an implied stiffness matrix. The network
will be used directly to determine current stress from strain, and the implied stiffness
matrix will be used to generate the system stiffness matrix used to determine the damping

coefficients for the dynamic relaxation algorithm.
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Chapter 3. Finite Element Formulation

The material models developed in the course of this PhD. are implemented in Fortran
finite element code developed from code initially proposed by Zhang [31]. In this chapter
the finite element equations will be developed, validated and demonstrated using a plane
stress material model. The membrane element developed will be based on a six node
linear strain triangle with large strain terms included. A dynamic relaxation solution
algorithm is used to solve the static equilibrium equation. The formulation also includes a
cable element, geodesic control elements for use during form finding and a wrinkling
procedure. The formulation is validated using a simple patch test and then further
demonstrated using simple but realistic fabric structures. For completeness a pattering

procedure is finally developed and demonstrated.

Two element formulations were presented by Zhang. The first was a three node constant
strain triangle (CST) element which includes higher order terms. The second was a six
node linear strain triangle (LST) element which utilised curvilinear co-ordinates in-order

to define the local coordinate system.

The six node LST formulation was selected for this work due to the advantages
demonstrated by the higher order element. However, difficulties were presented by the
formulation, and more critically the existing Fortran code, with regard to aligning the local
coordinate system with the local material direction. Due to the highly orthotropic nature
of architectural fabric material response this is highly influential in the accurate
simulation of a fabric structures. Zhang concluded that the inclusion of curvature terms in
the numerical representation of membrane surface lead to more accurate calculation of
strain from displacement. However, the inclusion of curvature terms may lead to
discontinuities in the simulated membrane at the nodes producing a quilted type pattern.
Therefore, the formulation for the LST element was replaced by one adapted from work
presented by Gosling on the development of an isoparametric eight node quadratic

element [30].

It has been demonstrated that neural network material models may be implemented
within commercially available finite element software packages. However, the
development of custom code enables a higher level of control and the implementation of

analytical sensitivity and reliability analysis. It is also the aim of this project to develop a
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robust computational mechanics framework that accurately describes both material and
structural behaviour. To this end an element developed specifically for the representation

of architectural fabric is required.
3.1 Element Equations

In the case of the analysis of thin elastic continua the three terms of stress and
corresponding strain terms describing plane stress are sufficient to represent an element’s

behaviour. Therefore the vector of element body stresses, {c}, is written as

{o}" = {0, 0y, 7y} (3.1)
Where o, and o), are principle direct stresses and 7,,, is the principle shear strain. The

corresponding strain vector is

{S}T = {er Eyy yxy} (3.2)

As demonstrated in [30, 31, 34] the element stiffness matrices and element load vectors
for a discretized system may be derived from the potential energy expression for an

individual element of that system.

Mpe = f, GLET[ENE} — ()T [E){eo) + () {oo])dV — [, (8T (F}dV —

[, 6y {®}ds

The first integral containing system strain, {€}, initial strain, {&,}, initial stress, {o;}, and

(3.3)

[E], an elastic matrix containing appropriate material properties, represents strain energy
per unit volume. The second and third integral containing body forces, {F}, and surface

tractions, {®}, represent work done by {F} and {®} as the body deforms [34].

As discussed in Chapter 2 a plane stress frame work is typically used to represent the
architectural fabric strain-stress relationship within a finite element formulation. The

plane stress material stiffness matrix [E] which relates current strain to stress is given by,

Ew EwVrw
[(1_Uwfvfw) (1-vwsvrw) ] Ex Ox
{0} = [El{e} = | _Ervws Er o l{& =19 (3.4)
(1-vwrvrw)  (A—Vwrurw) | Yxy Txy
0 0 Gur )

where E,, and Ef are values of Young’s modulus aligned with the local warp and fill
directions respectively, vs,, and v, r are values of Poisson’s ratio and G, is the shear
modulus. This form of material model will be used in the initial development of the finite

element code but will later be replaced by a neural network material model.
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3.1.1 Application of the assumed displacement field [25]

The adoption of potential energy infers that the displacements are the primary unknown.
As expanded upon later in Section 3.1.4 the displacements at any arbitrary point within a

body may be defined in terms of a normalised interpolation scheme such that

{6} ={wv,w} = [N]{6}; (3.5)

Using the definition of displacement in (3.5) the strain terms of (3.2) may be expressed in

matrix form as

{e} = [Bl{6} (3.6)

Where [B] contains differentials of the assumed displacement field [N]{5};.

Assuming that body forces and surface traction forces are zero and substituting (3.6) into

(3.3) yields the following expression for the potential energy of an individual element

I, =

(%" |f, BITIE1(B1AV | {6} — (8} J,, [BI"[E]leo]av + (3.7)

{6%" [, [B]"[ooldv
The total potential energies of the individual elements are summed to find the total
potential energy of the discretised system. Therefore, the total potential energy of a

system made up of m elements is given by

Mps = [ZiZ7 Mpe i] — (DY (P} (3.8)
The second term of (3.8) accounts for work done by concentrated forces, {P}, applied to
the system. The vector {D} contains the combined nodal displacements of the entire
system obtain by the vector summation of the corresponding terms of the element
displacement vectors, {6};. The element matrices contained within the square bracket

may be combined in the same way yielding

i

s = 3 (DY [SIZ7 [, [BI"IENB1aV| | (03 — (DY Tiz7*f, [BI"[E] solaV ] +
. (3.9)
Oy ziz [f, 1B [oolav]| — (DY (P}
In order to establish an expression for the equilibrium of the system (3.9) is differentiated
with respect to the nodal degrees of freedom 1 — n and set to zero. This is written as,

OMps _ o Mps _ o Mps _
oD, ’ D, ’ 4D,

0 (3.10)

The expression of equilibrium for the system is therefore found by applying (3.10) to (3.9).
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2= (R = i [f, (BT(ENBIAV] (DY - S [J, [BY[Eeolav] +
. ' (3.11)
=1 |J, (B loolav| + (P} = B[, [BY [olav]| — (P} =0

Where

[0] = [E1([e] — [2o]) + [00] = [EI(BI{D} — [o]) + [o0] (3.12)

Any non-zero values given by (3.11) constitute the out of balance or residual force vector,

{R}.
The second derivative of (3.9) yields the stiffness matrix, [K;] given by,

0%

0D1n?

= (K] = ZZ7[f, dIBY"[o)av]| +SiZ1(f, [B1"d[o)av | (3.13)

i

Taking the definition for stress in (3.12) the stress derivative is given by

dlo] = [E]d[e] = [E][B] (3.14)
Using (3.14) with (3.13)The elastic stiffness matrix, Kg, is given by

(K51 = SZ7 [, (BIIENBlaV], (3.15)

The remaining term in (3.13) is the geometric stiffness matrix, K, given by

[K,] = ZZ7 [, dIB)"[o)av] (3.16)

The geometric stiffness matrix, critical for form finding when the material stiffness defined

by [E] is set to zero, will be explicitly defined later in Section 3.1.8.

3.1.2 Dynamic Relaxation solution algorithm

Where an analysis is geometrically non-linear an incremental solution algorithm is require
in order to solve the static equilibrium equation (3.11). During the process of dynamic
relaxation all nodes undergo artificially damped pseudo oscillations controlled by the
element stiffness and nodal out of balance forces. The system oscillates about the
equilibrium position coming to rest only when the kinetic and potential energy of the
entire system has dissipated. Thus the static equilibrium position is found. Dynamic
relaxation was first applied to the form finding and analysis of tension structures in the

late 1960s.

Both Zhang, [26], and Gosling, [25], employed dynamic relaxation as their solution
algorithm. Zhang also implemented the commonly used Newton-Raphson method with his
LST element to enable comparison. It was found that the Dynamic Relaxation algorithm

was considerably less computationally expensive than the Newton-Raphson method when
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implemented in conjunction with the higher order LST element. Dynamic Relaxation does
not use the complete system stiffness matrix and therefore also offers considerable

advantages when implementing a Neural Network material model, see Chapter 5.

The following algorithm equations included for completeness, they are reproduced from

[30]. The D’Alembert principle is used to describe motion of the system,

Bog = MpqSpq + Cpq + Kpqlpq (3.17)
or

Bog = KpgOpa = MpqSpq + Cdpq (3.18)
and

Rpq = MpgSpq + Cdpq (3.19)

The subscripts pq refer to the p*®node in the q** direction (¢ = 1 - 3 corresponding to

the global axis directions {x, y, z}). The external load vector, P,,, includes terms

pq’
representing the effects of surface pressures and initial strain. The nodal stiffness, K, is
taken from the diagonal terms of the element stiffness matrix. R,, denotes the nodal out
of balance forces and M,, the fictitious nodal masses. Nodal acceleration, velocity and

displacement is denoted by Spq, Spq and &, respectively.

Kinetic damping has been shown to be more stable and efficient than the viscous damping
approach in (3.17). When using kinetic damping the un-damped oscillation of the system
is monitored and when a local kinetic energy peak is reached all velocity components are
reset to zero. The geometry is then updated and the process repeated until the kinetic and
potential energy is minimised and static equilibrium is achieved. Using this approach

(3.19)becomes

P

pq_K

p516

pq = Rpqg = Mpq0pq (3.20)

Using finite difference the acceleration, Spq, is derived form change in velocity over the

time increment At.

_Spa *=%pq * (3.21)

At
. t+—
Arecurrent equation for current nodal velocity, 6,, 2, is found by substitution of (3.21)

into (3.20) and rearranging to give,
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Opg * =08pq * tRpg Myq (3.22)
To ensure numerical stability the following expression for My, is suggested [30, 25]

KpgAt?
Mpq = —— (3.23)

Substitution of (3.23) into (3.22) yields,

.opdt At I o2
8pg 2 =0p; 2 +Ryg [—At_qu] (3.24)

. . At
The current nodal displacement, at time t + s calculated from the current

At
La thy
velocity, 5pq 2, using

2 At (3.25)

In order to monitor the kinetic energy it must be calculated at each pseudo oscillation

At At
defined by (3.24) and (3.25). Current and previous kinetic energy, U,"*z and U,'"2 are

given by,
2
t+£ _ 1 p=N «q=3 . t+%
U2 =3 Xp=1 2q=1Mpq | Spq (3.26)
And,
2
t—E 1 =N =3 . t—E
U 2= 525=1 Ya=1Mpq < Opq * (3:27)

At At
. . . = _Aat . A
A kinetic energy peak is detected when U, ' is less than U,," "z at time t + f However,

N . : A
the true kinetic energy peak will have occurred sometime before t + ?t
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Figure 3-1: Determination of t*to find true Kinetic energy peak during dynamic
relaxation iteration[25]

t-3A12 t+ A2

As demonstrated in Figure 3-1 the approximate time, t*, of the true energy peak may be
found by fitting a parabola through the current and two previous energy peaks. The

improved estimate of time is given by,

r=t-or (3.28)
Where,
At At
* o Ap._ BTC AL, U z-utt2 Ay,
St =Mt oy = M = At (3.29)

Therefore, an improved estimate of the position of the system at the kinetic energy peak is

given by

At At

2 At—G,, 76t (3:30)

At
e t+2 g t+
8" =08pq 2 —0pq

Substitution of (3.24) and (3.29) into (3.30) yields

£* t+£ . t+% t 2
8" =6, 2 —(1+a)dy, "At + At-a - Ry, [&'—qu] (3.31)

Through recurrent use of (3.24) and (3.25) the condition of static equilibrium in the
system may be found.

3.1.3 Initial and updated nodal configurations

The current stress is induced by the current strain. As shown in (3.6) strain is the product

of the current displacement and shape function derivatives contained within the B-matrix.
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For the determination of current strain the element B-matrix is derived from the initial
element nodal configuration, {C,};, and the current element nodal displacements, §. This

will be referred to as the initial element B-matrix, 4B. Therefore (3.6) becomes,

{e} = 0B](8") (3.32)
The residual force vector is always calculated at the updated nodal configuration
calculated at each energy peak. The updated nodal co-ordinates at time t, {C;};, of an
element may be defined by the dot product of the initial nodal co-ordinates and the
element global nodal displacements.

[xl V1 Zl'l Uy v wp
| X2 Y2 Zz2| U2 V2 Wy

_ ty _1%X3 Y3 Z3 Uz Uz Wwz| _
Ci={G)i+{8)i=|x, 3, z|T|w vi wol|™
X5 Y5 Zg |u5 Us W5I

X1+u, y1+vy zi+wy (3'33)

x2+u2 y2+172 Z2+W2
x3+u3 y3+173 Z3+W3
XotUy Yot Vy Zy+wy
XS+U.5 yS+V5 Zs+W5|
X tUg Vg T Vg Zg+ Wy

For the determination of current residual force the element B-matrix is derived from the
updated element nodal configuration. As the nodal co-ordinates have been updated the
nodal displacements become zero. This will be referred to as the updated element B-
matrix, .B.Using these element B-matrix definitions the residual force equation (3.11)

becomes,

®)y =27 [J, [ 8] [olav] - (P) (3.34)

Therefore, the elastic stiffness matrix (3.15) becomes,

[Kel = 220 (S, [ e8] [E1] oB]av] (335)

i

The geometric stiffness matrix (3.16) becomes
i=m T
[K,1 = 227 [J,, d[ B [olav] (3.36)

3.1.4 Natural co-ordinate system and shape functions [34]

An isoparametric element utilises shape functions based on a single natural coordinate

system to interpolate both the global element geometry, {x};, and displacements, {6};. The
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co-ordinates or displacements at any point within the element may therefore be found by

(3.37).

x=YZ0Nx, 8 = RIZEN6; (3.37)

The 6 element nodes are labelled i = 1 — 6. The shape function, { N;}, is calculated at the
point of interest defined in terms of the natural co-ordinates. The displacement
components u, v and w are represented by §;, similar expressions may be derived for the

global y and z co-ordinates.

(x3,¥3,23)

(0,0,1)

(%6, Y6 Z6)

(0.5,0,0.5) (0,0.5,0.5)

(x2,Y2,22)
(X4, Y4, 24)

(1,0,0) (0.5,0.5,0) (0,1,0)

(x1,Y1,71) xX,u

Figure 3-2: Mapping between global and natural co-ordinates

An isoparametric formulation is selected as it facilitates the generation of non-uniform
elements with curved boundaries. This is enabled through the mapping of the irregular
element in the global system to a regular element in the natural coordinate system as

demonstrated in Figure 3-2.

In the case of a triangle the natural co-ordinates are provided by area co-ordinates as

illustrated in Figure 3-3.

Point P divides a triangle into three subareas A, A, and A;. Area co-ordinates are defined
by the ratios between total area, 4, and subarea as shown in (3.38) with the constraints in

(3.39).

A A A
=2 =2 g== (3.38)

Ay + A, + A = Athereforeé; + & +& =1 (3.39)
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Figure 3-3: Definition of natural (area) co-ordinates §; for a triangle [34]

The shape functions of a 6 node quadratic triangular element expressed in terms of area

coordinate are given in (3.40) or in vector form (3.41).

Ny =828, —1) Ny =6,(28,—1) N3 =¢&3(263—1)

Ny = 4$,§; N5 = 48,83 Ng = 4¢35¢; (3.40)
Ny =1{6126 - 1) §&2&—1) $3(285—1) 468 468 4838) (3.41)

Due to the constraints shown in (3.39) the three area co-ordinates are not independent

and therefore may be redefined in terms of only &; and &, (3.42).

$1=¢ &=n H3=1-¢—n (3.42)
The derivatives of the of the shape function vector (3.41) with respect to the area co-
ordinates, required for the definition of the B matrix and definition of local direction base
vectors, are found using the chain rule and simplified by the partial derivatives of (3.42)
with respectto € and 7.

ON; _ 0N &y | ONi0E | ON; & _ ON; _ 0N,

9§ 0§ 9F | 05 9F | 083 9 06 04 (3-43)

ON; _ ON;9§y | ON;9¢, | ON; 3§ _ ONi _ ON;
am 0% Oan | 9& on | & Oy 08,  0&s (3.44)

Partially differentiating (3.41) with respect to the area co-ordinates &;, £, and &; gives,

%:[451—1 0 0 4& 0 4&] (3.45)
%:[o 45, -1 0 4§ 4& 0] (3.46)
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N _ 1

3%, 0 0 4&—1 0 4¢ 4&] (3.47)

Substituting (3.45)-(3.47) in to (3.43) and (3.44) gives,

ON;

5t = [41 -1 0 —4&+1 48 —48 4(53 — 1)) (3.48)
Ei’i_];];i =[0 45 -1 —4&+1 48 4(& &) —4&4] (3.49)

For convenience these equations may be arranged into the 6 by 2 matrix [DN %n]’

Ny Ny Ny ON, Mg N

D. = F N T T T T T:
New = |oNy 9N, ONs N, 0N 9N
lon on 9y An Ay 9y (3.50)

(461 —1 0 —4&+1 48, —48 463 —$1)
[0 48, -1 —4&+1 48 4(&5—82) —44&

3.1.5 Element local co-ordinate system [30]

The membrane transformation matrix, [T™], is defined in terms of direction cosines

between the global and local coordinate systems.

L oL, U
Tm = [ml m, m3] (351)
ng Nz N3

The direction cosines contained in T are derived from the basis vectors aligned with the
natural coordinate system along with the material direction. The natural coordinate basis
vectors are the product of the derivatives of the shape functions given in (3.48) and (3.49)

and the global element nodal co-ordinates.

As demonstrated in [30] base vectors 5 aligned natural coordinate direction may be

defined by,

2 [ox i ayJ az k
E—[a—5—>+65 t~ (3.52)

The basis vectors for the ¢ and 1 natural coordinate directions may be defined in terms of

the shape functions by substituting (3.48) into (3.52) in the same form as (3.37).

vy

_ 6aN
- I:Zi 1 a¢ Xl + l 1 af yl.]+ l 1 ¢ Zlk] (353)

N

i = DS Tt 4 TSy ) + DS T 2 K| (3.54)

Due to the curvature of the element in three dimensions these two base vectors may not

be orthogonal. However, they define a plane tangential to the element surface at any
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arbitrary point. The cross product of the natural coordinate basis vectors produces the

orthogonal vector, Z, aligned the local Z-direction. This vector is normalised to give Z.

- >

Z=¢&X

=

(3.55)

—

X1
X

Il
Ny
vyl

N

Z B orz = = [n1 L+n, ] +ns k] (3.56)

vy
3|

The material direction is defined in terms of an angle, 8, referenced to the global x
direction. Using 6 global material warp and fill direction basis vectors, éw and éf, may be

defined in the global xy-plane(z = 0).
§W = [cos 0 i+sin6 j+0 E] and §f = [— sin@ i+ cos 6 j +0 E] (3.57)

The cross product of the global fill direction basis vector, éf, and the local Z-direction basis

vector, Z, gives the basis vector, X, aligned with the local warp material direction in the

local coordinate plane. This is also referred to as the local X-direction basis vector.

R=F =l i+ L+l K] (3.58)

The cross product of the local X-direction basis vector, X, and Z-direction base vector, Z,
completes the local orthogonal coordinate system giving the local Y-direction basis

vector, ¥, aligned with the local fill material direction in the local coordinate XY-plane.

5 Zx . 5 ©
Y = xx] [m1 l+m,j+ms k] (3.59)

)

Use of the global coordinate system to define X from the cross product of éf and Z may
lead to instability when the membrane element is precisely aligned with the global yz-
plane. This alignment can occur when defining the initial mesh or during an analysis. In
order to avoid instability the mesh may be tested for alignment with the yz-plane by the

condition,

~

Z=[+1140740k]. (3.60)

Where the condition in (3.60) is true the following alternative equations to (3.58)

and (3.59) must be used. The local Y-direction basis vector is found from,

s 0,,xZ ~
Y=F—=|m;1+m, ] +msk|.
||9w><Z|| [ 1 2] 3 ]

(3.61)

The local X-direction may then be found from,
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¥

> Z
X = AN = [l i+ L] +5 k). (3.62)

The local basis vectors transform global co-ordinates {x y z};, forces {fx fy fZ}i and

displacements {u v w}; to the local coordinate systems.

3.1.6 The Jacobian matrix [30]

The displacements are expressed as functions of the normalised natural co-ordinates.
However, strains are required in terms of the element local coordinate system. Therefore,
it is required that differentiation with respect to the natural co-ordinates is related to
differentiation with respect to the local co-ordinates via a change in variable. The Jacobian
accounts for the change in variable between the distorted element expressed in terms of

local co-ordinates and the normalised element expressed in terms of natural co-ordinates.

The Jacobian may be derived by taking a general scalar quantity, ®, (for example of
displacements in the global x direction) at a position in the element defined by (&, n). If the

position of @ is moved from (&,7) to (¢ + d&,n + dn) the change in @, d®, is given by,

do = df + —-dn (3.63)

A change in position of d¢ implies a shift in position given as g? - d&. Likewise a change in
position of dn implies a shift in position gives as 7} - dn. Resolving these shifts into the local

X and Y directions gives,

N

dX; = &+ XdE and dY; = £ - Vdé (3.64)
dX, =17 -Xdnand dY, =7 Ydn (3.65)
Rewriting (3.63) in terms of the local coordinate system gives,

9D 9D
dd = T dX+5- day (3.66)
where, dX = dX; + dX,and dY = dY; + dY,

Substitution of (3.64) and (3.65) into (3.66) gives,

O =[§ R+ 8P dg+ [ Ry +7- V5| dn =52 dg + 57 dn (3.67)

Collection of the common terms in (3.67) leads to the matrix formulation,
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aﬁ g ~ g ~ acD

o8 _[f-X f-Y] ax G3.68)
ol |z2.¢ =2.v0|lo® .
9= - X Y=

on 1 1 ay

Or more usefully,

oD . 5 o [2®
ax|__1 [nY —=&-Y|fag
90| detll[_p.g  E.% |22 (3.69)
ay on
_[e-x &-7]_pn ]12]
/ [ﬁ X 7Y 21 J22 (3.70)

The determinant of the Jacobian is constant throughout the element. In the case of a
rectangular element the determinant returns the area of the element. Therefore, for a

triangular element it returns twice the area.

3.1.7 Element B-matrix [30,34]

Strain is defined using the Green-Lagrange definition for large strain (3.71)-(3.73).

e =22 +2(2) +(Z) + ()] (3.71)
e =2+ @)+ (Z) +(Z)] (3.72)
Voo =S+ 5543 5r eyt oxar + v v (3.73)

The initial first order terms represent the standard definition of engineering strain,

ou
[ = |
ov

15 * 35

[&0] = (3.74)

Q)
IS
SIS

<

The additional second order terms become significant as strain becomes large,

AU\ 2 a2 aw\2
[(a_x) +(a_x) +(a—x)]
AU\ 2 a2 aw\2
(a_y) +(a_y) +(a_y)
lf’_Uf’_U avaov  owow

0X oY 0X oY 0X oY

[e] =3 (3.75)

The B-matrix is the relationship between strain and displacement. The B-matrix consists

of two distinct parts. The linear term, B, is independent of current displacements
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accounts for &y. The non-linear strain term g; which is depenedent on displacement is

accounted for by B;. This leads to the following definition,
[e] = [eo] + [eL] = [Bo + B I{6;} = [53’] (3.76)
Vxy

3.1.7.1 Firstorder linear terms of the B-matrix, B [30,34]
The value of displacement in the local X direction, U, is interpolated from the global
displacements at each node via the shape functions calculated at the point of interest and

transformed into the local system via the unit vector X.

The first order linear contribution to the total strain may be derived from the derivative of

(3.77) with respect to X.

ou o1 O[N] i
EZXT W{é‘l} =XT [Zl 1 6 +Zl 1 X Ul +21 1 X Wi k] (378)

In agreement with [30] the additional terms which arise from the chain rule are assumed

to be zero and are therefore not included in (1.37).

Substituting the direction cosine form of, X7, shown in (3.59) into (3.78) yields,

U _ yii=6; ON; i=6; ON; i=6] ON;
Y = disth gyt Xisi b v X o w (3.79)

Similarly it can be shown that,

ou _ i=6 oON ON;

5 - Zl 1My = Y ul + Zl 1m2 Y vl +Zl 1m3 P1% Wi (380)

av _ i=6 JON; i=6 oN

o= DTt h S + BT T + TS 1 T w, (3.81)
ON;

a_Y - Z 1 aY ul + Zl 1m2 Y vl +Zl 1m3 aYl Wl (382)

Substituting (3.79)-(3.82) for the first order terms of (3.71)-(3.73) yields the definition of
linear strain. By taking out the displacement terms and arranging them into the global

displacement array, {6};, (3.84) leaves the linear 3 by 18 B-matrix in the following form,

[Bo] =
oN, oN, N, ONg
12 1, 20 L2 1, 2
17).¢ X oX oX 3.83
| om m, 2 . 2 2N | (3.83)
[ 19y 2 9y 3 oy 3 9y
aN, aN, aN, aN, , 9N, aN, azv6 aNg J
L Yy +my ax Ly ay +tm, ax I3 Yy +mg ax l3 +mg X
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63" ={wx vi Wi - Us Vs We} (3.84)
As shown in Section 3.1.6 the inverse of the Jacobian, /=1, relates derivatives of a scalar
quantity with respect to the natural co-ordinates (¢, 1) to derivatives with respect to the
local coordinate system (X, Y). Therefore, the derivatives of the shape functions, [N;], with
respect to the local co-ordinates may be found by matrix multiplication of the inverse of
the Jacobian (3.69) with the matrix of shape function derivatives with respect to natural

co-ordinates (3.50),

Dy, = [I] [DN&,,] (3.85)

where,

1 []22 _llz]z[rll Flz]

= detl11=J21  J11 1 T (3.86)
Shown explicitly (3.85) becomes,

[ ON aN aN, aN
5 ~ [‘116_;4_[‘126_”1 [‘116_;4_1"126_7,6

Nxy — ON ON ON ON
_F216_51+ 226—171 F216_61+F226_1]1
) (3.87)
_lox ax ax ax ax ax
Tlow o ons on. a5 o

oy o9y oy a9y oy oy
3.1.7.2 Second order displacement dependent terms of the B-matrix, B,
The following derivation of the displacement dependant B-matrix is based on the
derivation presented by Zienkiewicz [122] and is used by Gosling [30].
The second order strain terms defined in (3.75) may be rearranged into the form,

1 {AX}T {0} {A } 1
e =5 | 0 @7 ([2)] = 3aal (3.88)
{8y} A"
where,
r_[w avoaw r_[u v w

A} = ax  ox ax] and {4y} = ay oy ay] (3.89)

The 6 by 18 G-matrix relates local displacement derivatives to global nodal displacements

in the form,
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.a_U_
X
av
(1)
ow

= [G1{6} =|9¥
Y
6_V
)%
a_w
L 9y -

1 = [(3"]

and is assembled in a similar fashion to (3.83),

[ 1 Ny l N, l Ny l 96 1

1 5x 2 9x 39x ... 3 ax

1 ax 2 ax 3oax 3 ax

[G] _ 1 5x 2 X 3 X 3 oX
- l N, l N, l Ny l 9N
15y 2 9y 39y ... By

1y 2 9y 3 oy 3 ar

N, N, oN,; dNg
MGy M%)y M™%y N3 5y |

Taking the variation of (3.88) gives,

dle,] = 3 d[A][A] + 5 [Ald[A]
Inspection of (3.88) and (3.92) leads to the following property

a0
aial =3 () a7 ([
diay}' afa"

[ ©
=1 0 @y
BT (B

Substitution of (3.93) into (3.92) yields,

[d{Ax}] _

] = tA1d1a]

dle,] = 5 d[A][A] + 3 [Ald[A] = [4]d[A] = [A][G]d{s};

95

(3.90)

(3.91)

(3.92)

(3.93)

(3.94)

The relationship between the second-order strain terms and displacement is given by,

dle,] = [B]1d{6};

Therefore B; is given by,

[B.] = [A][G]

(3.95)

(3.96)
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3.1.7.3 Alternative second order displacement dependent terms of the B-matrix, B
On inspection of the above derivation for the second order displacement dependent terms
of the B-matrix it is apparent that the cancellation of the half term leads to a discrepancy
between Green-Lagrange definition for large strain (3.71)-(3.73) and the strain calculated
by the formulation. In order to ensure that the numerical formulation matches the
analytical results obtained using the Green-Lagrange theory, an alternative formulation is

presented and tested here.

The terms of the [A] matrix are found from (3.90) and may be arranged into the 3 by 6 [A]
matrix defined by (3.88) .Therefore, direct substitution of (3.90) into (3.88) gives,

@ @]
el =3 | © @ |[2] =316 (3.97)
A" a1

Therefore B, is given by,

[B.] = 5 [A][6] (3.98)

The element equations developed above are tested using a simple patch test. A 1 metre
square patch of fabric is discretised into 81 elements and restrained along two edges by
rolling restraints. Uniformly distributed loads (UDL) of 100kN/m are applied along the
free edges. The warp material direction is aligned with the global x-direction and the fill
material direction with the global y-direction. No prestress is applied to the material.
Therefore, no form finding is required.

100kN/m

_ — e~ -
§1>‘*‘. ----- L T E, = 1000kN/m
AR N R TN - E; = 1000kN/m

Bl Bpiepoe et e wm g = 03
SR ZAE B I B e Uy = 03
L IR S S N B Gyr = 30kN/m
I T N R N I

8T8 A AT
— I

X, u,warp

Figure 3-4: 32 element patch for validation of element equations
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The patch is given the plane stress material properties shown in Figure 3-4 alongside the
mesh definition and boundary conditions. Substitution of the values into the plane stress

stiffness matrix yields,

Ew EwVrw 0 1000 300
(1—vwfvfw) (1—vwfvfw) Ex 7;;; EBI 0 Ex
() =[Ele) = | _Erwr 5 Heyl={500 1000 o[ig
(A-vwsvpw)  (1-VwrUfw) | Yxy 091 091 Yivy (3.99)
0 0 Gur 0 0 30

The loads are applied only in the plane of the material. Therefore, no out of plane forces
are present and the standard definition for green’s strain may be used to relate

displacement to strain as follows.

(3.100)

1 Coberat)”\) ]
o [ ey
{e} = { } = < F=1q1 _
\* )

=Y l(( 01y+Aly)2 B 1)
2 2
oly

Vxy
Yxy

As all loading is aligned with the material directions no shear strain and hence shear stress
is introduced. The patch will undergo equal displacement in the principal directions due to

the applied load. The resulting stress in the patch after displacement is given by

100
Ox (1+w)
{0} = {O'y} ={ 100 (3.101)
Txy (1+v)
0

Three full analyses are completed. The first analysis uses the displacement dependent B
matrix (3.96) developed in Section 3.1.7.2 and the updated nodal configuration for
residual force calculation (3.34). This analysis yields the results shown in Figure 3-5(a-f).
The results alongside the expected results given by equations (3.99) to (3.101) are shown
in Table 3-1.

The second analysis uses the displacement dependent B matrix (3.98) developed in

Section 0 and the updated nodal configuration for residual force calculation (3.34). This
analysis yields uniform stress and strain results similar to those demonstrated in Figure
3-5 (a-f). The results alongside the expected results given by equations (3.99) to (3.101)

are shown in Table 3-2.

The third analysis again uses the displacement dependent B matrix (3.98) developed in

Section 0 but does not use the updated co-ordinate nodal configuration. Again this analysis
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yields uniform stress and strain results similar to those demonstrated in Figure 3-5 (a-f).

The results alongside the expected results given by equations (3.99) to (3.101) are shown

in Table 3-3.

All values are reported to 4 significant figures, the error between the analysis and the

result from (3.99) is attributed to rounding error.

Analysis (3.99) (3.100) (3.101)
Warp Stress, g, 94.16kN/m 94.14kN/m - 94.16kN/m
Fill Stress, o,, 94.16kN/m 94.14kN/m - 94.16kN/m
Warp Strain, &, 0.0659 0.0659 0.0640 -
Fill Strain, &, 0.0659 0.0659 0.0640 -
Warp Displacement, u 0.0621m - 0.0621m 0.0621m
Fill Displacement, v 0.0621m - 0.0621m 0.0621m

Table 3-1: Analysis results using [B;| = [4][G] and updated nodal configuration for

residual force calculation alongside expected results.

Analysis (3.99) (3.100) (3.101)
Warp Stress, o, 94.01kN/m 94.00kN/m - 94.01kN/m
Fill Stress, o,, 94.01kN/m 94.00kN/m - 94.01kN/m
Warp Strain, &, 0.0658 0.0658 0.0658 -
Fill Strain, &, 0.0658 0.0658 0.0658 -
Warp Displacement, u 0.0638m - 0.0638m 0.0638m
Fill Displacement, v 0.0638m - 0.0638m 0.0638m

Table 3-2: Analysis results using [B;] = % [A][G] and updated nodal configuration for

residual force calculation alongside expected results.

Analysis (3.99) (3.100) (3.101)
Warp Stress, g, 96.82kN/m 96.86kN/m - 93.84kN/m
Fill Stress, o,, 96.82kN/m 96.86kN/m - 93.84kN/m
Warp Strain, &, 0.0678 0.0678 0.0678 -
Fill Strain, &, 0.0678 0.0678 0.0678 -
Warp Displacement, u 0.0656m - 0.0656m 0.0656m
Fill Displacement, v 0.0656m - 0.0656m 0.0656m

Table 3-3: Analysis results using [B; ] = % [A][G] and initial nodal configuration for

residual force calculation alongside expected results.
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Stress xx Streﬂy
94.01 94.01
fo:or foor
194.01 +94.01
94.01 94.01
94.01 94.01
-94.01 94.01
94.01 94.01
¥ 94.01 94.01
. Ig4,m IaA.m
x 94.01 94.01

(a) Warp stress (kN/m) (b) Fill stress (kN/m)

Strain xx Strain yy
6.58 6.58
Is,ﬁﬂ ISVSE
6.58 6.58
6.58 6.58
6.58 6.58
6.58 6.58
6.58 6.58
b4 6.58 6.58
L Is_se Is.se
. 6.58 6.58
(c) Warp strain (%) (d) Fill strain (%)
X-DISPL Y-DISPL

0.063771 0.063771
In,nsssss I 0.056685

0.0496 0.0496
-0.042514 0.042514
- 0035428 0.035428
0.028343 0.028343
- 0021257 0.021257

[ [
(e) Warp displacement (m) (f) Fill displacement (m)
Figure 3-5: Patch test results using [B;| = %[A] [G]

The strain result produced by the analysis using (3.96) is not consistent with (3.100)
shown in Table 3-1. As demonstrated in Table 3-3 the analysis which uses (3.98) but does

not use the updated nodal configuration produces a stress result which is not consistent
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with (3.120). Only the results given by the analysis using (3.98) and the updated nodal
configuration for calculation of residual force produces consistent results across the board.
This indicates that the alternative definition for the second order displacement dependent
terms of the B-matrix including the half term, Section 3.1.7.3, should be used. The main

aim of this thesis is the development and demonstration of a material model. Therefore,
time constraints dictate that the further investigation of this finding is beyond the scope of
this PhD. However, if this formulation were to be developed further and used in further

studies it is recommended that this be investigated further.

3.1.8 Element initial stress stiffness matrix [30,122]

According to the principle of virtual work the following expression for the initial or

geometric stiffness matrix, [K,;¢], is suggested by Zienkiewicz [122]. The formulation uses

. s : 1
the revised definition for B; that includes the 5 term.

[K;°1d{s}: = [, d[B.]"{o}adV (3.102)

Taking the definition for B;, (3.98), and applying a variation with respect to the

displacement vector, {6};, gives

dlB,1" = {£d41G +Laldl61) (3.103)

Assuming that the current geometry is held constant d[G] = 0 and noting that

T
{3d[416} =[G d[A] substitution of (3.103) into (3.102) yields,

[K5°1d{8}; = f, 5[G]"d[A]"{}aV (3.104)

Using the definition for [A] given in (3.88) d[A]”{o} may be written as

s 0 (g
d[A]T{0}=[ OX d{Ax} d{Ai} {Tiyy}

. [d{Ax}o, + d{AY}Txy
B _d{Ay}Uy + d{AX}Txy]
(3.105)
_O-x [[3]d{AX} + Txy [13]d{AY}
_Txy [13]d{AX} + Gy [13]d{AY}

_O-x[13] Txy[IB]] [d{AX}
_Txy[IS] Uy[l3] d{Ay}



Chapter 3 Finite Element Formulation 101

_|oxllz] Txylls]

= [rxy[lgl o, L] ] ata)

Where [I5] is a 3 by 3 identity matrix.

Now using the definition for {A} given in (3.90) and again noting that d[G] = 0 (3.105)

may be rewritten as

d[A]" {0} = [M][G]d{5};
(3.106)
Where

_ oxllz]  Taylls]
[M] B [Txy[13] Uy[13]] (3_107)

Substitution of (3.106) into (3.104) leads to the final expression for the initial (or

geometric) stiffness matrix.

(K, = [, 5[G17[M][G]dV (3.108)

3.1.9 Numerical integration for triangles [31,34]

As the integrations within (3.11) and (3.108) are difficult to evaluate analytically due to
the complexity of the expressions numerical integration is employed. As demonstrated in

[34] the quadrature rule for a function ¢ of area coordinates {{;, ¢, 3} is given by

[, $dA =3 Wi, (3.109)

Where ¢; is the value of ¢ at a Gauss point in the triangle, W;is the weight corresponding
to that point and n is the number of Gauss points. The Jacobian, J;, is calculated at each

sample point using (3.70).

In the formulation presented by Zhang [31] it is proposed that 12 Gauss points should be
used in order to maintain accuracy effected by element distortions. The area co-ordinates

and weights of the sample points used are listed in Table 3-4 and shown in Figure 3-6.
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Point

$1

Area co-ordinates

$2

$3

Weight
W;

0.8738219710

0.0630890144

0.0630890144

0.0508449063

0.0630890144

0.8738219710

0.0630890144

0.0508449063

0.0630890144

0.0630890144

0.8738219710

0.0508449063

0.5014265096

0.2492867451

0.2492867451

0.1167862757

0.2492867451

0.5014265096

0.2492867451

0.1167862757

0.2492867451

0.2492867451

0.5014265096

0.1167862757

0.6365024991

0.3013524510

0.0531450498

0.0825810756

0.0531450498

0.6365024991

0.3013524510

0.0825810756

0.3013524510

0.0531450498

0.6365024991

0.0825810756

0.6365024991

0.0531450498

0.3013524510

0.0825810756

0.0531450498

0.3013524510

0.6365024991

0.0825810756

| |
RIR(B[o|eNo|ul s wW(N k|~

0.3013524510

0.6365024991

0.0531450498

0.0825810756

Table 3-4: Gauss point area co-ordinates and weights

$=1 e

fmo_/

Figure 3-6: Approximate Gauss point positions within element

3.1.10

Cable elements

102

The edges of fabric structures are often restrained by prestressed edge cables. Therefore,

an appropriate cable element is required. A classical linear element formulation used in

both [31] and [30] is employed with the assumption of large displacements.

As depicted in Figure 3-7 the cable comprises two nodes defined in the global co-ordinate

system as (x4, y1,21) and (x,, y,, z;) respectively. The nodes undergo global displacements

(uq,v1,wq) and (uy, v5, wy). The initial element length, L, is given by

Lo = J(x2 — %)%+ (72 —y1)? + (2, — 2,)?

(3.110)
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and the displaced length, L, by

L= 0, —=x +u —up)?+ (v —y1 + v — )2 + (2, — 21 + wp — wy)? (3.111)

qup(xz + Uz, Y2 + V2,2, + W)

-\

// "
PP (2 + U, Yz + 03,2, + W) T Py )

\

Py (x1,¥1,71)

Figure 3-7: Definition of linear cable element

The change in length in the local element direction, A.,, may be expresses in terms of the

initial and displaced lengths

Acg= (L = Lo) (3.112)
The direction of the element is defined by the unit vector ¢ containing the direction
cosines of the element, {cx, Cy, cz}. Due to the assumption of large displacement the
updated nodal coordinates are used in the definition of the direction cosines.

Cx (rz =21 +up —uy)
a- o]

1
= =702 =y1 +v2—v1) (3.113)
Cz (z2 — 71 + Wy —wy)

The cable force, F,,, acting along the cable axis is given by

EA
Fca = FcaO + K(L - LO) = Fcao + kECAca (3.114)

Where F,, is the cable prestress, and i—A is the local stiffness modulus of the element, kz°.
0

The cable element residual forces at each node in the global co-ordinate system are

combined into a single vector, {f,,};, and are given by
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(s = {fca}pl] B [—6Fm] (3.115)

{fca}pz B CFq

Therefore, the cable transformation matrix, T, which transforms the cable force from the

element local co-ordinate system to the global co-ordinate system may be expressed as,

[—(x2 — %1 + Uz —uy)]

[
[—Cy| 2=yt v2—v1)
TCa — —Cz|_1 —(z —z1 twy —wy)
k Cx Ll (xy —x1 +up —uq) (3.116)
lEyJ V2 —y1 t v, —vy)
z _(ZZ—Z]_+W2_W1)_

The cable element force vectors are assembled into a full system vector which is added to

the residual force equation (3.34) to give,

. T -
Ry =i [f, [ B] [01dv] + ZiZ[feali — (P} (3.117)
The cable elastic stiffness matrix in the global co-ordinate system, Kz, is given by,
A1 21T A11A1T
: L R T L T N

The geometric stiffness matrix K, which accounts for stiffness induced by the element’s

change in orientation is derived in [30] as

ca Fcao[ ( ] ) _([13] ] ] ) (3119)

[€1[¢
(1) (5] - [€][e])

The total element stiffness matrix, K7, is given by the summation of (3.118) and (3.119)

yielding,
K ca) _(K ca)
Kca:Kca+Kca:[(Tsub Tsub ]
’ E 7 _(KTsubca) (KTsubca)
where
Kroup™ = 220 - [2][6]7 + 22 - 1] (3.120)

Lo Lo
The cable contribution to stiffness is also assembled into a full system array and is added

to the total stiffness (3.13) to give,

[K7] = [Ko] + [Ke] + ZiZT K (3.121)
This formulation is selected due to its simplicity for development and implementation.
However, this cable element formulation may lead to strain discontinuities between the
cable and membrane elements which includes a mid-side node allowing curved sides and

non-linear strain.
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Figure 3-8: Illustration of discontinuity between 6 node membrane element and 2
node cable element.

With a sufficiently dense mesh these discontinuities are small and therefore assumed to be
insignificant for the meshes presented in this thesis. Where a structural simulation
requires highly curved cables or where a more accurate result for the cables is required it

would be desirable to use a more sophisticated 3-noded cable element.

3.1.11 Form finding with geodesic control

As the form of a fabric structure is a product of the applied prestress and restraints an
initial form finding process must be undertaken prior to any load analysis to find the
structures initial equilibrated form. As discussed in Chapter 2 the initial form may be
investigated using physical modelling with low stiffness materials or soap films. With the
rise in computer simulation physical modelling has been replaced by computer simulation
using a soap film analogy. Further improvements in efficiency may be achieved through

parametric design used to define initial mesh geometry

Figure 3-9: Conic mesh with panels, seams (red) and centre lines (blue)
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A fabric membrane is typically fabricated from panels welded along seams as shown in
Figure 3-9. The seams and centre lines of the panels follow geodesic paths over the
membrane surface. The material is generally aligned so the warp direction follows the
centre line of each panel. As form finding is undertaken with zero stiffness, additional
control is required in order to maintain the geodesic paths of the panel edges and centre
lines. This may be done by including special tensioned control elements similar to cable
elements. The following control element definition and computational procedure is
adapted from the warp string control element presented in [25] for a 3 node constant

strain element.

The residual forces within the control string acting in the global coordinate system
directions are derived in much the same way as the global cable residual forces. The force
acting in the local control string direction is transformed to the global via direction

cosines, ¢5, defined using the nodal co-ordinates at each end of the control string.

o Oy —x1 +up —uy)

[c3] = [Csy] =0z =y + v =) (3.122)
€Sz (22 — 21 + wy —wy)

The control string element is only used during form finding and therefore always has zero

stiffness. The tension force within the imaginary control element is arbitrary. Through

trial and error a value of 10kN/m was found to generate sufficient mesh control.

Fos = Fego = 10 (3.123)
The control string residual forces at each node of a control string k in the global co-

ordinate system are combined into a single vector, {f.s}, given by

() = {fcs}pl] _ [—asFCS (3.124)

fesde, CSFs

The resulting control string force vectors may then be combined into a full system array

by simple addition to give the final residual force at each node.

The control elements should not affect the shape of the final membrane only the alignment
of mesh along the panel edges and centre lines. Therefore, the residual forces at each node
in the string are resolved into orthogonal components aligned with a plane tangential to
the surface at that node. Any residual force component acting normal to the membrane
surface is zeroed. In order to prevent nodal drift along the string the residual force
component aligned with the string direction in the local surface co-ordinate system is also

zeroed. This leaves only residual forces acting perpendicular to the string within the
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membrane surface. These residual forces force the string to remain aligned with the
desired geodesic path. At the end nodes, for example those situated in boundary cables,

the residual force must be entirely zeroed to prevent distortion of the mesh boundary.

The local membrane surface coordinate system is defined using a vector normal to the
surface found from the average of the normal vectors of all connected elements. As the
surface of each element is curved the element normal vectors are defined at the specific
node within the element using the normalised natural co-ordinate system. The process is
similar that described in Section 3.1.5 for the development of the membrane

transformation matrix.

The natural co-ordinates of each node within the element are illustrated in Figure 3-2. The
tangent plane to the element surface at a node is derived from the natural co-ordinate

basis vectors at the node given by,
aNl i=6 ON; =
[ p e + 228 af Se Vil + L5 7 k] (3.125)

dN;
[ 15y i +2115,,,y11+211a k] (3.126)

The cross product of the natural coordinate basis vectors produces the orthogonal
vector, Z, aligned with the local Z-direction normal to the element surface.

X

Il
"W.L
=

Z (3.127)

Ny
|

i

Ny

Z orz = (3.128)

X

Al
31

As demonstrated in Figure 3-10(a) any node within the control string will be connected to
2 or more elements. An approximation for the normal vector to the surface at a node is

given by the mean of all element normal vectors associated with that node.

2 = [ny t4n, f +ns k| (3.129)

Where Z; ; denotes the normal vector at node i in element j, n is the total number of
elements connected to the control string at node i. Using the mean of the element normal
vectors is straightforward but may lead to undesirable influence of a single small or poorly
formed element. This is avoided by the careful design of the structural mesh used in
simulation. It is also noteworthy that soap film form finding leads to smooth surfaces.
Therefore, there is likely to be only limited variation in normal vectors associated with a

single node. Where a mesh is made up of irregular elements or the geodesic string sits on
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an uneven surface the area of the element should be taken into account when calculating

N. In this case (3.129) becomes,

i=n .
Z§=1 (Zi,j xAj)

N=""=
Tizra)

= [ny 140, J +ns3 k] (3.130)

where A; represents the area element j. As the above conditions do not occur in the

structural meshes in this thesis (3.129) is deemed to be sufficient. However, in future

implementations (3.130) may prove to be more effective.

To define the remaining basis vectors, illustrated in Figure 3-10(b), the element direction
vector, cs, is used. The cross product of the surface normal vector and the string direction

vector gives the basis vector perpendicular to the string in the tangent plane of the surface.

—

~l

= N xc3 (3.131)
~ ? ~ IVXEE: a ~ i
P = ] or? = o] = [my T +my j +m; k| (3.132)

The remaining basis vector is easily found from the cross product of the normal and

perpendicular basis vectors,

X =iy = L+l +5 k] (3.133)

Figure 3-10: (a) Element normals, Z »» and surface normals, N (b) Surface basis
vectors

The surface transformation matrix at node i, [T,**], may then be defined in terms of

direction cosines between the global and local surface coordinate systems.

L oL 1
TiCS = m1 mz m3 (3134)
n; Nz N3
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The control string residual force component acting normal to the membrane surface in the

local surface co-ordinate system is given by

{FCSN}i = NiT{fcs}i (3.135)

The control string residual force component acting within the surface tangent plane

aligned with the control string in the local surface co-ordinate system is given by

{Fsy) = &' fes): (3.136)

Therefore, the control string residual force component acting within the surface tangent

plane perpendicular to the control string in the global co-ordinate system is given by

{fcsy}i = {feshi — {chN]iNi - {P'CSX}iXi (3.137)
The control string element residual force vectors are assembled into a full system vector

which is added to the residual force equation (3.117) to give,

Ry =22 [f, [ 8] (o1av] + ZiUfeali + ZET s, ], - P) (3.138)

3.1.12 Dynamic Relaxation procedure overview

The iterative procedure as summarised by Barnes, [25], is shown in Figure 3-11.
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Set all nodal velocity components and residuals to zero.

Set kinetic energy to zero.

A

Compute the current surface normal vectors and set all

load components.

v

Add applied load components to vector of residuals.

v

Using the current element stresses (e.g. specified values

element strains) determine the link tensions and add

their resolved components to the residuals.

in form finding and/or stresses determined from current

\

Reset the residuals of all fixed or partially constrained

nodes to zero.

V.

Update all velocity components and node co-ordinates
using equations (3.24) and (3.25). Determine the kinetic
energy, KE, of the complete system using (3.26).

Check if current KE less than

previous time step.

\1, Yes

Apply small corrections to all nodal co-ordinates,
according to (3.31), so that their positions correspond

with the true KE peak time.

v

Check out of balance force to

determine if in equilibrium

Yes

Wrinkling Procedure

Figure 3-11: Summary of Dynamic Relaxation algorithm
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3.1.13 Wrinkling procedure

During Load analysis it is possible that the structure may undergo sufficient negative
strain to cause certain areas to exhibit negative stress. To account for the negligible
compressive stiffness of Architectural Fabric it is necessary to modify the material model
where a simulation produces such areas of negative stress. In order to detect areas of
negative stress, indicting wrinkled or even slack states, criterion based on principle stress,
principle strain or a combination of the two may be used. In certain situations the material
state may be misjudged when using an individual principle stress or principle strain
criterion. Therefore, it is important to select the most appropriate criteria for the material
being simulated. The following wrinkling procedure is based on those presented in [31]

and [123].

The principle stresses, i.e. the maximum and minimum stress at a gauss point are given by,

x~ 2 2
0P womin = 3 (0y +02) £ J (Z22)" + (1) (3.139)

where 0,, and oy are the warp and fill stresses at that gauss point and 7, is the shear

stress. Similarly the principle strains are given by,

X~ 2 2
Emaxmin =3 (& + &) £ \/ (8 Zgy) + (Vay) (3.140)

where ¢, and & are the warp and fill strains at that gauss point and yy,, is the shear strain.

The angle between the direction of maximum stress and the local warp direction is given
by,

67 = ltan™! (;%y) (3.141)
The fabric membrane may be deemed to be in one of three different states. The first state
is taut where the membrane has positive stress in all directions. The second state is
wrinkled where the membrane has negative stress in some directions but positive in
others. The final state is slack where the material undergoes negative stress in all

directions. Three different wrinkling criterion are suggested,

1. Stress criterion based solely on principle stress,

Gf;in > 0: ‘taut state’ (3.142)
ol <0andap,, > 0: ‘wrinkled state’ (3.143)

otherwise: ‘slack state’ (3.144)
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This criterion is straightforward but a case where negative maximum stress may occur in
combination with a positive minimum strain, thus a wrinkled state is incorrectly defined

as slack.

2. Strain criterion based solely on principle strain,

eﬁlm > 0: ‘taut state’ (3.145)
el <0andek, > 0: ‘wrinkled state’ (3.146)
otherwise: ‘slack state’ (3.147)

Again this criterion is straightforward. However, due to the effect of Poisson’s ratio, it has
been found that a taught state may be misjudged as wrinkled where a negative minimum

strain may coincide with positive minimum stress.

3. Mixed criterion based on a combination of principle stress and strain,

ob . >0 ‘taut state’ (3.148)
oP <Oandeb, >0  ‘wrinkled state’ (3.149)
otherwise: ‘slack state’ (3.150)

This criterion is deemed to have overcome the shortfalls of the individual stress and strain
criterion. During testing it was found that both the stress and mixed criterion achieved
reasonable results however the strain criterion failed to correctly identify area of
wrinkling. It is noted that in [123] the normal component of strain to the surface is used in
place of the principle strain in the criterion. Again in testing this lead to instabilities in the

formulation. Therefore, the formulation presented is in closer agreement to [31].

The procedure is initialised after convergence is reached using the unmodified material
stiffness matrix,[E]. Each Gauss point is then inspected and assigned a state depending on
the selected wrinkling criterion. Where the membrane is deemed to be taut after the first

analyses run the material stiffness matrix remains unmodified,

[Emoal = [E] (3.151)
Where the membrane is deemed to be wrinkled the material stiffness matrix is modified in
the direction of the minimum principle stress, i.e. normal to the wrinkle. The material

stiffness matrix is first transformed to be aligned with the minimum principle stress using,

[Eroc) = [TE(—0P)]IEI[TE(—67)]" (3.152)

where,
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c? 5?2 —2sc
[TE(67)] = [52 c? 2sc ], ¢ = cos(6”) and s = sin(67) (3.153)
sc —sc c?—s?

The rotated material stiffness matrix is then modified using a penalisation parameter, P, as

follows,

Erot,ll p- Erot,lz Erot,13
[Erot,mod] =|P-Erot21 P Erotp2 P Erot2s (3.154)
Erot,31 p- Erot,32 Erot,33

Finally the material stiffness matrix is transformed back to the original local material

system using

T
[Emoal = [T(67)][Erotmoal[T*(67)] (3.155)
Where the membrane is deemed to be slack the material stiffness matrix is penalised in all
directions

[Emoal = P - [E] (3.156)

In [123] the following definition for the penalisation parameter is suggested to improve

convergence stability,

ror P, <P SP=P,

Pcr — O_rz;zin N Pcr >Pp >P=PpP (3157)
min - \P,>1orP, <0 -P=1

where ¢7¢" is the maximum permissible compressive stress and o} ... is the current

minimum stress. This allows a small amount of compression in the structure.

The structure is then re-analysed using the modified elastic matrix at each Gauss point and
again the state of the membrane at each gauss point is assessed. If the membrane has
undergone a change of state i.e. from wrinkled or slack to taut the penalisation parameter

is modified to take this into account using.

old state is 'taut’ —» [Emoal = [E]

new state is 'taut’ - ] = . 3.158
old state is not 'taut’ - P=Poa-p ( )
new state = old state

where f = 10 as recommended in [123]. In [123] the unmodified material stiffness matrix
is used in conjunction with strain state derived using the modified stiffness matrix to
calculate an effective principle stress for the assessment of the wrinkling criterion. In
testing this consistently lead to instability in the analysis. Therefore, in the procedure
presented here the current stress calculated using the modified material stiffness matrix is

always used in the wrinkling criterion assessment.
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Wrinkling analysis continues until the convergence criterion is met after the material
stiffness matrix has been modified. In other words the out of balance force is not
significantly altered by the application of any wrinkling modification required. This will
occur when all compressive stresses greater than maximum permissible compressive

stress have been eliminated.

Calculate current stress strain state using procedure in

Figure 3-11

v

Calculate principle stresses and strains at each Gauss

point
\

Determine membrane state using selected criterion and

determine required penalisation parameter P

cr]f:lin >0 sglin <0andek >0 0P <0
‘Taut’ ‘Wrinkled’ ‘Slack’
v v v
— (Eotmoa] =PpP-
[EmOd] - [E] Erotn1 P Eroaz Erots [EmOd] P [E]
= P'Emt:u P'Ernt:ZZ P'Er;::,zz
Erotz1 P Eror3e Erot3s

Update stiffness matrix and out of balance force

v

No Check out of balance force to

determine if in equilibrium

Output results including wrinkle positions and directions

Figure 3-12: Wrinkling procedure summary
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3.2 Analysis Examples

3.2.1 Square based conic simulation

To demonstrate the effectiveness of the geodesic control string elements form finding
simulations are performed with and without control elements on a simple square based
conic. The conic is based on the conic example with equal pre-stress presented in [36] and
is show in Figure 3-13. The base is 14m square with a 5m diameter hoop 4m above the
base, the conic is fully fixed along all edges. First a form finding analysis is undertaken
with a pre-stress of 4kN/m applied in the warp and fill material directions followed by
load analysis where load is aplied to the form found mesh. The initial, unform-found,
meshes in this thesis have been generated using Grasshopper, an algorithmic modelling
plug in for Rhino 3D. For an overview of the mesh generation and analysis procedure for

the conic structure see Appendix A.

3.5m

3.5m

Iﬁlﬁlﬁlﬁl
om

5
14m 2
[€—>l<—>lc—><—>]
3.5m 3.5m 3.5m 3.5m
(a) Side Elevation (b) Plan View

Figure 3-13: Square based conic

The conic is assembled from 16 panels the edges of which are shown in red in Figure 3-13
the centre lines of the panels are shown in blue and define the material warp direction.

The initial mesh made up of 448 elements defined by 960 nodes is shown in Figure 3-14.
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Figure 3-14: Initial conic mesh

The conic is formed found with and without geodesic control elements the resulting mesh

configurations are shown in Figure 3-15(a-c).

(a) Over laid form found meshes, (b) Centre line cut through of over
with geodesic (black) and laid meshes with geodesic (black)
without geodesic (green) control and without geodesic (green)
control

¥ Yy

L.. L.

(a) Form found mesh with geodesic (b) Form found mesh without
control elements aligned with geodesic control elements
seams and centre lines

Figure 3-15: Form found conic mesh
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Figure 3-15(a) demonstrates that the mesh surface is approximately aligned within the
constraints of the mesh. The resulting seam edges and centre lines are more clearly shown
with and without geodesic control elements in Figure 3-15(b) and (c) respectively. It can

be seen that the seams and centre lines become distorted without the control elements.

The material properties shown in Table 3-5 are applied to the form found mesh and 3 load
analyses are undertaken to demonstrate the formulation with material properties. The
first analysis checks the uniformity of pre-stress by applying no load. The second load case
simulates a snow load of 0.6kN/m acting vertically .The third load case simulates wind

uplift load of 1kN/m applied perpendicular to the surface.

EW Ef Uwf Ufw wa

600kN/m 600kN/m 0.4 0.4 30kN/m

Table 3-5: Conic material properties

Figure 3-17 demonstrates that the mesh has been form found to an accuracy better than
+0.002kN/m. This is achieved by form finding using a convergence criteria or maximum
out of balance force of 0.001kN. The analysis with material properties is completed using a
maximum out of balance force of 0.0005kN. The convergence criteria is selected as a
compromise between computation speed and solution accuracy. A summary of results

may also be seen in Table 3-6.

Figure 3-18 showing global snow load results indicates that the maximum stress occurs in
warp direction in the top third of the conic. The maximum fill stress also occurs in this
area. Localised areas of negative warp strain occur at the base of each panel seam this
negative strain is caused by the inconsistency of material direction within neighbouring
panels. This phenomenon would not be observed where a continuous radial definition of
material direction is used. Peak levels of shear stress are also observed at panel

boundaries.

In order to investigate the effect of panel width the form finding and analysis process is

repeated using a refined mesh and the panels measuring half the width of the initial conic.
The conic is assembled from 32 panels as show in Figure 3-16 .The panel edges are shown
in red the centre lines which define the material direction of each panel are shown in blue.

The initial mesh made up of 1408 elements defined by 2944 nodes is shown in Figure 3-16.
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Figure 3-16: Initial refined conic mesh

The results of the analysis are shown in Figure 3-19. The areas of negative strain once
again occur at the base of each seam however at a reduced level. The peaks in shear stress
also follow the same distribution but at a reduced level. It is noted that refinement of mesh

may have some effect on stress levels however the reduction is notable.

Figure 3-20 showing projected wind load results indicates that the maximum stress occurs
around the central region of the conic in the redial fill direction. Again concentrated
strains this time positive are observed in the warp direction at the seam at the base.
Significant negative stresses are observed close to the hoop. As architectural fabrics have
no stiffness in compression the wrinkling procedure is initiated in order to reduce the
stiffness of elements undergoing wrinkling. This leads to the results shown in Figure 3-21.
It may be observed that the top section of the conic is has lost all warp prestress and the

reduction of stiffness leads to unacceptably large strain, in the range of 8% in the warp

direction.
Warp Stress (kN/m) | Fill Stress (kN/m) Displacement (m)
Z Absolute
Max Min Max Min
Max Min Max
Prestress 3.9957 4.0012 4.0035 | 3.9972 | 2.74e-5 0 2.94e-5
Snow Load 9.6240 1.8271 8.5199 | 1.3974 0 -0.1148 | 0.1156
Snow Load
. 9.2074 2.6476 8.6334 | 1.3684 0 -0.1100 | 0.1110
(refined)
Wind Load 10.733 -2.6278 12974 | 1.2002 | 0.1811 0 0.2025
Wind Load
o 11.464 0.0225 13.3050 | 2.5188 | 0.1860 0 0.2030
(Wrinkling)

Table 3-6: Conic results summary
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Figure 3-17: Conic prestress results
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Figure 3-18: Conic result snow load
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Figure 3-19: Refined conic result snow load
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3.2.2 Hypar simulation

To further demonstrate the effectiveness of the geodesic control string elements form
finding simulations are performed with and without control elements on a simple hypar.
The hypar is based on the hypar example with equal prestress presented in [36] and is
shown in Figure 3-22. The hypar is 6m square with high points at 2m. The structure is
fully fixed at each corner amnd has 12mm diameter edge cables with a prestress of 30kN.

A prestress of 3kN/m is applied to the membrane in the warp and fill material directions.

H

(a) Side Elevation (b) Plan View
Figure 3-22: Hypar
The hypar is assembled from 7 panels the edges of which are shown in red in Figure 3-13
the centre lines of the panels are shown in blue and define the material warp direction.
Additional geodesic control elements are shown in green. The initial mesh made up of 392

elements defined by 841 nodes is shown in Figure 3-23.

7
/u’
& /;:" ) P
p
A
v
(a) Perspective View (b) Plan View

Figure 3-23: Initial hypar mesh
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The hypar is form-found with and without geodesic control elements the resulting mesh

configurations are shown in Figure 3-24(a-d).

(a) Over laid form found meshes, (b) Diagonal cut through of over laid
with geodesic (black) without meshes with geodesic (black) and
and geodesic (green) control without geodesic (green) control

¥ ¥

L.. i..
@ @

(c) Form found mesh with geodesic (d) Form found mesh without
control elements aligned with geodesic control elements
seams and centre lines

Figure 3-24: Form found hypar mesh

Figure 3-24 (a) and (b) demonstrate that the form found mesh surfaces are equivalent.
Differences occur due to the positioning of the nodes however the overall shape is the
same with and without geodesic control elements. The resulting meshes are more clearly
shown with and without geodesic control elements in Figure 3-24 (c) and (d) respectively.
It can be seen that the seams and centre lines become distorted without the control
elements. Without control elements numerous LST elements at the mesh edges collapse
completely, this leads to a failure to converge at lower convergence criteria or when using

a more refined mesh.
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As in the case of the conic the material properties shown in Table 3-7 are applied to the
form found mesh and 3 load analyses are undertaken to demonstrate the formulation with
material properties. The first analysis checks the uniformity of prestress by applying no
load. The second load case simulates a wind uplift load of 1kN/m applied perpendicular to

the surface. The third load case simulates a snow load of 0.6kN/m acting in the global z

direction.
EW Ef Uwf Ufw wa
600kN/m 600kN/m 0.4 0.4 30kN/m

Table 3-7: Hypar material properties

Figure 3-25 demonstrates that the mesh has been form found to an accuracy better than
+0.012kN/m. This is achieved by form finding using a convergence criteria or maximum
out of balance force of 0.001kN. The analysis with material properties is completed using a
maximum out of balance force of 0.0005kN. Convergence criteria is selected as a
compromise between computation speed and solution accuracy. All numerical simulations

provide only approximate solutions to the physical real world problems.

Figure 3-26 showing global snow load results indicates that the maximum stress occurs in
fill direction between the hypar high points. There is a rapid stress change at the high
point corners which may be a feature for consideration for design. As expected maximum

displacement occurs in the centre of the membrane.

Figure 3-27 showing projected wind load results indicates that the maximum stress occurs
between the low points in the warp direction. Concentrated stresses and strains in both
material directions may be seen acting in the centre of the hypar in line with the warp
direction. These stress concentrations are also seen in the Z-direction results. Negative

stresses it the fill direction indicate that the membrane is in a wrinkled state.

Warp Stress (kN/m) | Fill Stress (kN/m) Displacement (m)
Z Absolute
Max Min Max Min

Max Min Max

Prestress 3.0026 2.9897 3.0044 | 2.9981 | 5.86e-5|-0.0002 | 0.0002

Snow Load 3.3081 0.5754 5.8744 3.069 0 -0.0649 | 0.0649

Wind Load 8.9381 3.1718 3.8495 | -0.2189 | 0.1192 0 0.1193
Wind Load

. 9.0208 3.6119 | 4.2710 | 0.3863 | 0.1104 0 0.1104
(Wrinkling)

Table 3-8: Hypar analysis results summary
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As the membrane has no resistance to negative or compressive loading a wrinkling
procedure is implemented to reduce the stiffness of the material in the wrinkle direction.
The results of the wrinkling procedure may be seen in Figure 3-28. The results are not
completely satisfactory as uneven stress and strain fields are observed. This indicates that
a more robust wrinkling procedure may be required to allow the smoother redistribution
of stress. However, the wrinkles demonstrated by the Z-direction displacements have been
substantially reduced indicting that the hypar will remain unwrinkled where compressive
stiffness is eliminated. This further highlights the requirement for a more consistent

material model.
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Figure 3-25: Hypar prestress results
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Figure 3-26: Hypar result snow load
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Figure 3-27: Hypar result wind load
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(e) Shear Stress
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Figure 3-28: Hypar result wind load with wrinkling procedure
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3.3 Patterning

The final step it the design process of a fabric structure is the generation of cutting
patterns. These cutting patterns are used to cut the constituent flat panels from rolls of
fabric. These panels are then connected together and prestressed into their final form. In
the case of a final form with highly doubly curved geometry the development of the flat
panel into final 3-dimensional shape may induce uneven direct stresses and high shear
stresses. Patterning using a finite element methodology allows for the investigation of the
development of these 'locked-in" forces via the reverse process of flattening a 3-dimension
doubly curved panel to flat cutting pattern panel. The patterning procedure, summarised
below, is driven by internal stresses induced in the mesh elements when the mesh is

projected to a flat plane.
The patterning procedure is as follows,

1. Asingle 3-dimensional meshed panel is isolated from the full form found mesh
under consideration. The panel edges and central seam have been controlled
during form finding via geodesic string elements. Depending on the configuration
of the initial 3-dimensional mesh a rigid body transformation may be performed
on the panel mesh order to minimise the initial applied displacement required to
perform the initial flattening (step 3). This mesh is referred to as the initial 3-
dimensional panel mesh.

2. All stresses within the element are set to zero and the central point of the mesh is
fully restrained,

3. Avector of applied Z- displacements is derived to transform all nodes in the initial
3-dimensional mesh to the same plane, for example the Z=0 plane. The resulting
mesh is referred to as Z=0 plane mesh.

4. Equation (3.32),{e} = [ (B]{6*};, with ¢B based on the initial 3 dimensional
configuration, is used to calculate the in plane strain induced in each of the
elements of the flattened panel mesh. The panel is now flat but the elements are
the incorrect size.

5. An arbitrary isotropic plane stress material stiffness matrix is defined in order to
calculate in plane stress induced by the strain derived in step 4 using equation
(3.4), {0} = [El{e}.

6. Equation (3.34), {R} = Y1 [fv [ tB]T[a]dV]i — {P}, where the applied load,

{P} = 0 and the B matrix is based on the deformed Z=0 plane configuration, is then
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used to calculate the equivalent nodal loads form the stress calculated in step 5.
All Z-direction equivalent nodal loads are set to zero.

7. A dynamic relaxation run is completed using the current Z=0 plane mesh and
equivalent nodal loads calculated in step 6. At the kinetic energy peak the Z=0
plane mesh is updated using the resulting X and Y displacements.

8. A new applied displacement vector may then be found by subtracting the current
Z=0 plane mesh geometry from the initial 3-dimensional panel mesh.

9. Step 4 to 8 is repeated until the equivalent nodal forces derived in 6 converge to

close to zero (i.e. {R}<0.00001).

If the panel is fully developable, for example is curved in only one direction the resulting
flat geometry will contain no 'locked in' stress, In the case of a non-developable doubly
curved panel residual stresses will remain after the patterning procedure has converged,
These stresses may be output from the analysis in order to assess the magnitude of the
'locked in' stresses and used to inform the need for adjustments to the panels. It should be
noted that only an arbitrary isotropic plane stress material stiffness matrix is used in the
calculations of the stresses and therefore the patterning output may not be treated as

actual stress only as a indication of relative magnitude,

After initial development the flattened panels would be reduced in size using
experimentally determined compensation factors to account for the non-recoverable
strain induced during installation in order to induce the required uniform prestress. A
reliable patterning procedure is vital as the development of a uniform prestress is
imperative for the safety of the structure. If the compensation is over estimated the
prestress induced may exceed the acceptable stress range and result in damage to the
fabric. Inversely if the compensation is under estimated initial strains induced during
installation, which are unrecoverable, may cause the membrane to become slack leading to
problems such as ponding and excessive vibration under wind loading. Finally a seam
allowance is required to allow for the overlap required to form a seam which will be

joined via welding or some other process.

To demonstrate the process the hypar mesh, Section 3.2.2, is patterned using the proposed
procedure. The initial non form found mesh has been formed from 7 fabric panels, these
panels are used in patterning. The mesh has been controlled during form-finding using
geodesic string elements in-order to maintain straight panel edges and a straight central

seam. After the form finding is complete it is a simple task to divide the mesh into its
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constituent panels. These panel meshes provide the initial geometry for the pattering

process, Figure 3-29.

Form found mesh spit into

constituent panels.

*

Individual panels flattened to

cutting patterns.

Panel 1 '

S

Panel 4 Panel 5 Panel 6 Panel 7

Panel 2

Panel 3

Figure 3-29: Patterning of a hypar.
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Figure 3-30: Patterning analysis output
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The stress and displacement output for Panels 1 to 3 from the patterning analysis is
graphically presented in Figure 3-30 in order to allow comparison. Panel 3 exhibits the
highest level of residual stress while undergoing the lowest level of displacement. In
contrast Panel 1 from the centre of the structure undergoes the largest absolute
displacements but exhibits relatively low residual stress. This indicates that Panel 3 has
greater double curvature than Panel 1. The 'locked in' stresses shown in Panel 3 may be

reduced by pattering the structure with a narrower panel width in this region.

To assess the validity of the final patterned panels three metrics are selected namely panel
area, perimeter length and seam compatibility. The initial and flattened areas and
perimeters of the 7 panels are presented in Table 3-9 along with the percentage error
between the two configurations. The seam compatibility for the 6 seams is presented in

Table 3-10.

Panel Confieuration Area Area Perimeter Perimeter

8 (mm?2) (%error) (mm) (%error)
Initial 1333751 5472.9

1 0.0000% 0.0111%
Flattened 1333750 5472.3
Initial 4012297 9682.9

2 0.0001% 0.0939%
Flattened 4012291 9673.8
Initial 5896534 15034.6

3 0.0017% 0.0811%
Flattened 5896434 15022.4
Initial 6300090 17970.9

4 0.0041% 0.0403%
Flattened 6299834 17963.6
Initial 5896521 15034.6

5 0.0015% 0.0811%
Flattened 5896432 15022.4
Initial 4012278 9682.9

6 0.0002% 0.0940%
Flattened 4012272 9673.7
Initial 1333772 5472.9

7 0.0001% 0.0113%
Flattened 1333771 5472.3

Table 3-9: Initial and patterned panel comparison

Percentage error between initial panel area and flattened panel area is less than 0.005%.
The maximum absolute error of 256.2mm? is observed in Panel 4 which is the largest
panel. Panel 6 exhibits the maximum percentage error between initial panel perimeter
length and flattened panel perimeter length of 0.094%. This equates to a maximum

absolute change in perimeter length of 12.2mm. while the absolute values appear
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significant when considered as a percentage they are deemed acceptable. Especially when

the approximated compensation discussed above is to be applied to the patterned panel.

Seam Length Absolute Required %
Seam Panel
(mm) error (mm) length change

1 1805.6 -0.0540%
1 1.95

2 1803.6 0.0541%

2 4197.2 -0.0117%
2 0.98

3 4196.2 0.0117%

3 7143.0 0.0149%
3 2.12

4 7145.1 -0.0149%

4 7145.1 -0.0148%
4 2.11

5 7143.0 0.0148%

5 4196.2 0.0118%
5 0.99

6 4197.2 -0.0118%

6 1803.6 0.0542%
° 7 1805.6 +95 -0.0541%

Table 3-10: Seam compatibility

A more significant measure of validity is the compatibility of the panel edges which will

joined at seams to form the final structure. A maximum incompatibility of 2.12mm is

observed in the seam between panels 3 and 4. If the incompatibility is distributed evenly

between the two panels edges Panel 4's edge length would need to be reduced by -0.022%

and Panel 3's length increased by 0.015%. The largest required length change occurs in

seam 1 and 6 and is equal to 0.054%. However, such incompatibilities may well be within

the construction tolerance for the structure and may be accounted for in the seam

allowance.
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3.4 Summary and Conclusions

This chapter describes the derivation for the formulation of a six node Linear Strain
Triangle (LST) element including large strain terms. The element is implemented within
finite-element analysis code and is demonstrated using a simple patch along with two
simple but realist fabric structure types namely a square base conic and a hypar .
Alongside the LST membrane element a liner cable element and special geodesic control

element are also developed and implemented.

The general element formulation is validated using a simple patch. Analysis results show
that the displacement dependent terms of the B-matrix should include a factor of a half.
The updated co-ordinate system in also required when calculating the nodal out-of

balance forces from the current element stress.

The geodesic control elements are demonstrated using both the hypar and conic
structures. The control elements are shown to have a limited impact on the final
membrane shape however they are vital in controlling the distribution of elements within
the form found mesh. It is important for the seams and centre lines of the mesh panels to
remain straight in order to enable accurate definition of material direction for load

analysis and also enable patterning of the individual mesh panels.

The conic results are of particular interest as the width of the panel had some effect on the
final stress distribution given by the analysis. This is due to the changes in material
direction at the panel seams. This gives a more accurate representation of stress within a
real structure than defining the material direction using a continuous radial local co-
ordinate system as used by other specialist fabric analysis software, for example Oasys

GSA.

The conic undergoing wind uplift loading underwent unacceptable high negative strain

close to the hoop indicting that this structure would fail under such loading conditions.

A wrinkling procedure is implemented where an element is deemed to have become
wrinkled. A combined wrinkling criteria is used i.e. an element is deemed to be wrinkled
when the minimum principle stress is negative and but the maximum principle strain is
positive. Where wrinkling occurs the elastic modulus is modified in the direction of the
minimum principle stress in order to reduce the stiffness of the wrinkled element in the
wrinkling direction. Where the element is deemed to be slack i.e. the maximum principle

stress is negative the stiffness is reduced in all directions. The procedure is demonstrated
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by the hypar undergoing a projected wind load of 1kN/m. Discontinuities in the stress

field indicate that this procedure requires improvement.

A patterning procedure for a panelled hypar mesh has been presented. The validity of the
flattened panels has been investigated through comparison panel area, perimeter length
and seam compatibility before and after flattening. Incompatibility between panels at the
seams may indicate that implementation of seam length control may improve the
patterning procedure. Nevertheless, the relatively low levels of incompatibility between
initial and flattened panel geometries demonstrates that this patterning procedure shows
promise. The patterning analysis output offers a valuable insight into flattening of the
proposed mesh. The results may be used to improve the design of the structural mesh in
order to reduce the 'locked in' stresses induced in the flattened panels therefore
improving the potential uniformity of the prestress induced in the final in situ fabric

structure.
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Chapter 4. Neural Network Training and Validation

As discussed in Chapter 3 fitting a plane stress model to biaxial test data for typical
architectural fabrics leads to inconsistencies between the physical and theoretical
descriptions, with values of Poisson's ratio in excess of the compressibility limit of 0.5, and
for some fabrics approaching 2.0 [124]. The allowable values of Poisson's ratio are also
constrained by the requirement that the product of the two orthotropic Poisson's ratios is
less than 1, equation (2.5), Section 2.2. When designed with appropriate architecture
neural networks are capable of capturing highly non-linear response. With the addition of
historical inputs and internal variables it has been demonstrated that neural network
models are capable of representing complex history dependant behaviour [114], Section

2.3.

This chapter begins by introducing the feed forward neural network, it’s basic architecture
and the chosen training algorithm. The process of creating a neural network material
model is then presented in terms of 3 stages. The first stage involves the collection and
processing of training and testing data. This requires the development of specialised
uniaxial and biaxial testing profiles. The second stage involves training of the neural
network; this process includes choice of network architecture, activation functions, and
other parameters. The third stage involves validation of trained network’s performance
using 'unseen' data sets. Implementation of the trained and validated network model for
simulation and prediction of structural response within a finite element analysis

programme, is covered in depth in Chapter 5.

Initially the fabric response is modelled with residual strain removed. This form of model
maps a surface to the response in each of the material directions (warp and fill). Therefore,
itis referred to as a response-surface neural network model. This model is comparable
with existing plane-stress architectural fabric material models and utilises similar
experimental data in its development. The neural network model is then extended to
include load history requiring the development of specialist testing. This form of model is
referred to as a load-history neural network model and is used initially to model uniaxial
response followed by biaxial response. All trained networks are validated using 'unseen’

data not used in training.
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4.1 Neural Networks

Neural networks are an artificial intelligence concept; through a process of training they
may become capable of capturing the relationship between sets of input and output data.
The trained network may then be used to generate output from previously unseen inputs.
It is the neural networks ability to generalise that makes them such a powerful tool,

Section 2.3.

4.1.1 Network architecture

The architecture of a feed forward neural network takes on a layered form. Each layer
contains a number of neurons which in turn are connected to the neurons of the next layer
via weighted connections. Connections between neurons in the same layer are not
permitted. In usual operation, information only travels forward through the network,
hence the network is referred to as a feed-forward neural network. However, during
training information is also passed backwards. The most commonly used training

algorithm with feed-forward neural networks is the back-propagation training algorithm.

A graphical representation of a general multilayer feed-forward neural network is shown
in Figure 1. This form of network contains an input layer made up of a neuron for each
input value which is connected to a subsequent layer known as the hidden layer. This
layer contains a user defined number of neurons, in this case 10. The network may also be
built to contain any number of additional hidden layers although one is often sufficient.
The final layer is the output layer. This layer contains a neuron for each network output.
The selection of input data an d output data is critical as a feed-forward neural network is
incapable of capturing 1 to many mappings. The inputs to the network must be such that
each set of inputs is uniquely mapped to a set of outputs. A single input set cannot be

mapped to multiple output sets.
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Forward propagation of input signals to be converted to
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Back propagation of error signals to update connections
Figure 4-1: Single hidden layer neural network architecture

Figure 4-2 depicts a single neuron within either the hidden or output layer. Each neuron
sums the weighted output signals from each neuron of the previous layer, adds a bias
signal and passes the result through an activation function. The activation function may be
any differentiable function. In this study a tan sigmoid transfer function is used in the
hidden layer and a linear transfer function is used in the output layer. The use of a non-
linear transfer function in the hidden layer enables this kind of network to capture non-

linear relationships between inputs and outputs.

Input Signals Bias Output Signal

Figure 4-2: A General Neuron

The feed forward neural network shown in Figure 4-1, containing a single hidden layer
with a tan-sigmoid transfer function, may be represented by the following set of equations.

The form of these equations is similar to that used by Hashash et al. [119].

NN
I

The output of the i*" neuron of the input layer IV, is given by

2(1—1mim 4-1
I{VN—u—1suchthat—1<1{VN<1 (1)

D)
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where i is the index of the neuron in the input layer (i = 1 — NI), [; is the un-scaled input
signal and I™**and I™" are the maximum and minimum values of the inputs contained in
the data set used for network training respectively. All input signals presented to the
neural network are scaled to fall within a range between -1 and 1 to allow the use of
inputs with different units. Scaling all inputs to the same range equalises the importance
attributed to each input regardless of unit. This leads to weight and bias values which fall
into a smaller more predictable range increasing the stability of the network training
algorithm. After training all new inputs must be scaled using the same scaling process.
This is why the scaling process is represented as part of the network and not as a separate

process prior to implementation or training.
The output of the j** neuron of the hidden layer, Hj, is given by

H; = tanh([Z?gl WinHI{VN + b]H]) (4-2)
where j is the index of the neuron in the hidden layer (j = 1 —» NH), WinH is the weight

assigned to the connection between the i** neuron of the input layer and the j**neuron of
the hidden layer, b; is the neuron bias. In matrix form, the output of the hidden layer, [B],

may be expressed as

[H] = tanh ([[WIH][INN] + [bH]D (4-3)
where [H] is a 1 by NH array of hidden layer outputs, [I""] is a 1by NI array of scaled

inputs from the input layer, [w'#] is the NB by NI matrix of connection weights between

the input and hidden layers and [b*]is a 1 by NB array of hidden layer biases.
The output of the k" neuron of the output layer, OF", is given by

ox" = ([Z)Zwi H; + b]) (4-4)
where k is the index of the neuron in the output layer(k = 1 — NO), W]-I;ICO is the weight
assigned to the connection between the jt* neuron of the hidden layer and the k*neuron
of the output layer, by, is the neuron bias. In matrix form the output of the output layer,

[OMN], may be expressed as

[0"N] = ([w”°1(B] + [b°]]) (4-5)
where [0¥V] is a 1 by NO array of output layer outputs, [w?°] is the NO by NB matrix of
connection weights between the hidden and output layer and [b°] is a 1 by NO array of

output layer biases.
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Prior to training all target outputs in the training data set are scaled in the same manner as
the training inputs (4-1). Again this removes the effect of outputs with different units to
each other and to the input values. Therefore, to return the real value with the same units
as the original target outputs it is necessary to reverse the scaling on the network output.
The final un-scaled output of the k" neuron of the output layer, Oy, is given by the inverse

of (4-1) yielding,

(4-6)

0 = (2242) x (0rax — o) + O™ such that — 1 < OV < 1
k=" J J et such tha <0" <

where 0;***and O;/*" are the maximum and minimum values, respectively, of the target

outputs contained in the data set used for network training.

4.1.2 Network training

A number of training algorithms have been developed, but the most commonly used in
training feed-forward neural networks fall under the general term of back-propagation.
The original back propagation learning algorithm came to the fore of the field in the 1980s
[125]. The aim of network training is to find the combination of network weights and
biases that reduces the error between network output and target outputs when the

network is presented with a training data set of input and output pairs.

Back propagation uses a gradient descent method in order to search for the minimum of
the networks total error function. The combination of weights and biases which minimise
the error function is the solution to the learning problem. The gradient of the error
function at each neuron within the network is required at each iteration step in order to
update the weights in the most efficient direction. This is found via the partial derivative of

total network error with respect to the network weights.

In this study the Matlab Neural Network Toolbox [126] is used for the development of the
neural networks. The Levenberg-Marquardt back-propagation training method ‘trainlm’ is
used; this method is an amalgamation of both quasi-newton and gradient decent methods.
In order to describe the Levenberg-Marquardt algorithm the original back-propagation
procedure as described in [125] is presented followed by the Levenberg-Marquardt
method as described in [127].

4.1.2.1 Back-propagation training [125]
The back-propagation training procedure comprises a three step process. In the first step,
input signals from the training data set, with corresponding known outputs, are

propagated forward through the network to be converted to an output signal via the
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neurons and weighted connections. During this phase all connection weights are held
constant. The error between the network output and the target output may then be
calculated. The second step involves the back propagation of error function derivatives in
order to derive the sensitivity of the error function to the individual weights and biases.
This is done to find the steepest gradient to the problem solution. The third and final step
involves updating all network weights and biases according to the calculated gradient.
This process is repeated iteratively until some convergence criterion is met. The initial
values for the weights and biases may be any arbitrary value but are often randomly

generated.

The first step is straight forward. However, the derivation of partial derivatives of the
error function is more complex. The network may be viewed as a complex chain of
functions. Therefore, the chain rule must be employed to find the required partial
derivatives. The partial derivatives of the error function are propagated backwards from
the output layer back to the input layer in order to determine the gradients required to

update the weights and biases.

For a given set of input vectors with associated target outputs the total network error, E, is

given by the following error function,

1 2 )
E= EZC Zk (Ok,c - Tk,c) (4 7)
where 0y, . denotes network output, T}, . denotes target output. As above, the subscript k
denotes the index of the output neuron and c the specific input-output pair of the training

data set.

Taking a single input output pair, the backward pass of error derivatives begins with the
partial derivative of the error function with respect to the network output. Taking the j*
neuron, differentiation of equation (4-7), temporarily disregarding the index c, yields
o= 0, — Ty (+8)

For the purposes of training it may be assumed that all input and output pairs have
already been scaled. Therefore the scaling input and output layers may be disregarded for
the purposes of training. Revisiting (4-4) and splitting the neuron processes into an input
unit and an output unit containing the activation function, the total input to the k* neuron

of the output layer, x2, is given by
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The bias may be treated as a weight by including a neuron with a constant output of 1 in

the preceding layer. In matrix form this yields

xlo W11 W1 NH (4'10)
0 . ; b BNH

XNo Wno,1 - WNo NH DnH

The output of the k" neuron in the output layer, O, is given by the output of the chosen

activation function, f. In the case of the network shown in Figure 4-1 this is a linear

function. Therefore the partial derivative of the output of the kt"* neuron in the output

. . 00k . .
layer with respect to the layers input, Wk is given by

k

30k _ (4-11)
ax? =1
The chain rule may then be employed to find the partial derivative of error with respect to
the output layer input, xj.
OE _ OE dOy _ OF (4-12)
axk aOk dxk aOk
This gives the sensitivity of the error function to the total input of the k" neuron of the

output layer.

By inspection of (4-9) it may be seen that the neuron input is a linear function of the
previous neuron outputs and the connection weights. Therefore, the partial derivative of

network error with respect to the connection weight, w;;, between the k" neuron of the
current layer and the j¢* neuron of the preceding hidden layer is given by
_9E__ O dxp _ OF . (4-13)
iiw,]f]p o 63(1,((J dwfjp o 6x,? J

The sensitivity of the network error with respect to the output of the j* node of the

hidden layer , is then found by considering the effect of neuron j of the hidden layer on
]

neuron k of the output layer.

08 oxf _ 9 mo (4-14)

ox0 9B,  ox0 Wij

Taking into account all the connections emanating from neuron k yields,

9E _ g wHO 4-15
6H]- - Z] 6xk k] ( )
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. . O0E . . . 0E

It is now possible to calculate P for any neuron in the hidden layer given PP for each
. . . . , OF

neuron in the output layer. This process is now repeated in order to find —5 for the
awﬁ

weights between the hidden and input layers.

Again splitting the neuron process into an input unit and an output unit containing the
activation function the total input to the j¢* neuron of the hidden layer, xj, is given by

X =, wiH MY 4 bR (4-16)
The output of the jt" neuron of the hidden layer, B;, is given by the output of the chosen
non-linear activation function, f. A tan-sigmoid activation function which is equivalent to

hyperbolic tan is used throughout this thesis.

1 (4-17)

—ZX]-

H; = f(xjH) ~ tanh(xjH) ~

1+e

The chain rule is then employed at the preceding layer to find the partial derivative of

error with respect to the layer input, x;.

OF _ 0F 0B; (4-18)
oxf' 9B oxf

The derivative of the tan-sigmoid function in (4-17) is given by

0B _ 2 4-19
o7 = Bi(1-B;) (4-19)

dxt!

Substitution of this into (4-18) yields,

321 =3, B(1-B7) (20
This gives the sensitivity of the error function to the total input of the j** neuron of the
hidden layer. By inspection of (4-16) it again may be seen that the neuron input is a linear
function of the previous neuron outputs and the connection weights. Therefore, the partial

derivative of network error with respect to the connection weight, w/?, between the jt*

ji

neuron of the current layer and the i‘* neuron of the preceding input layer is given by

9E _ 9E 9x; _ OE (4-21)

22 .y
TH H TH H 1i
awﬁ 6x]- 6wﬁ 6x]-

The partial derivatives of the error function with respect to all network weights may now
be found. This process may be expanded to apply to any size network with any number of

hidden layers containing any differentiable activation function.
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The values of s—i may be used to alter the weights individually for each input-output pair,

- : o . OE
this is termed on-line training. Alternatively the values of 5, are accumulated over the
entire training set before updating the weights, this is termed batch training. The simplest

. . . 9E
form of gradient descent changes each weight by an amount proportional to pwe

Aw = —e2E (4-22)
ow

where € is the learning rate. Convergence is improved by using an acceleration method
where the current gradient is used to modify the velocity of the point in weight space

instead of its position

— _ 98 4-23
Aw(t) = —€ v + alw;_q) ( )

where t is incremented by 1 for each run through the whole set of input-output cases, « is
an exponential decay factor between 0 and 1 that determines the relative contribution of

the current gradient and earlier gradients to the weight change.

4.1.2.2 Levenberg-Marquardt algorithm [127]
The Levenberg-Marquardt algorithm is an approximation to Newton's method. Given a
function f(w) which is to be minimised with respect to the vector w, then Newton's

method is given by

AW = —[V2E(W)]"1VE (W) (4-24)
where V2 f(w) is the Hessian matrix and V£ (w) is the gradient. Assuming that f(w) is a

sum of the squares function of the form

E(W) = XiL, el (W) (4-25)

it can be shown that

VE@W) = J" (W)e(Ww) (4-26)
VZE(W) = JT (W) (W) + S(W) (4-27)

where J(w) is the Jacobian matrix

rde;(w)  de (w) deq (W)
owq ow, ow,
de,(w)  dey(w) dey (W)
JWw) =1 ow, ow, .. dwy (4-28)
6eN(W) 6eN(vT/) "' 6eN(v_v)
L Ow, ow, ow, |

and
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S(w) = XL, e (W) VZe; (W) (4-29)

For the Gauss-Newton method it is assumed that S(w) ~ 0. Therefore (4-24) becomes

Aw = =[JTW)]W)] ™" (w)e (W) (4-30)
The modification introduced to equation (4-24) by the Levenberg-Marquardt may be
given as

AW = —[JTW)J (W) + ul] 7" (W)e ) (4-31)

The parameter u is multiplied by some factor f whenever a step would result in an
increase in E(w). When a step reduces E (w), u is divided by . When p is large the
algorithm becomes steepest descent, for small u the algorithm becomes Guass-Newton.
The terms of the Jacobian, equation (4-28), are found from the back-propagation

procedure described above, Section 4.1.2.1.

4.1.2.3 Training data division and early stopping

The Matlab Neural Network toolbox [126] employs a number of different criteria in order
to stop training. Training is halted when the gradient reaches a defined minimum (10-5),
the performance reaches a defined minimum or goal (10-1°), training time exceeds an
upper limit, or a maximum number of training epochs are completed (103). The final

stopping criterion involves validation checking leading to early stopping.

A key consideration when training neural networks is the issue of over fitting, where a
network is trained to a point where it no longer possesses the ability to generalise, Section
2.3. It is vital that the network is tested using previously ‘unseen’ data in order to identify
where over fitting has occurred. This problem has been the subject of numerous studies.
The factors identified as key to over fitting are network architecture, training control and

training data selection.

The default method of over fitting control employed by the Matlab Neural Network
Toolbox is early stopping. Available training data is divided into three subsets a training
set, a validation set and a testing set. The data is divided according to pre-defined ratios.
The training set comprises the largest proportion, typically 70%. The rest of the data is
divided equally between the validation and testing sets, 15% each. Allocation to the sets is

done by either a regular or random index list.

The training set is used to calculate current network error and the gradient with which the
weights and biases are updated. The validation data set is presented to the network after
each weight and bias update and the current error calculated. The error on the validation

data set is monitored throughout training. In the early stages of training both the training
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and validation data error generally decreases. As training progresses the training data
error will continue to decrease. However, as the network begins to over fit the training
data the validation data error will increase. If the validation data error consistently

increases for 6 iterations then training is stopped.

The testing data set is not used during training. It may be used after training to provide a
comparison to the validation data set error to check the division of data. By plotting the
mean square error at each training epoch the training progress may be investigated. If the
testing data error minimum is at a significantly different epoch to the validation set this

may indicate a poor division of data.
4.2 Biaxial Testing

The data required for network training and validation is collected by biaxial testing of
cruciform samples of architectural fabric. The aim of biaxial testing is to apply a known,
uniform stress field and accurately measure the resulting strain. All testing is done using a
custom built ‘floating’ rig and test protocol initially developed at Newcastle University in

the thesis of Bridgens [59].

4.2.1 Cruciform sample preparation

The cruciform sample (Figure 4-3) is designed to enable the uniform transfer of the
maximum amount of applied load into the central region of the sample, thus generating a
near uniform known stress field. The cruciform consists of a 300mm square central region
surround by 150mm long arms with additional allowance to form a welded pocket for a
clamping bar. The sample is laid out so that the warp and fill yarns are aligned with centre
lines of the cruciform arms. This may result in a non-orthogonal layout as illustrated in

Figure 4-3.

The cruciform arms contain slits set at regular intervals. Numerical simulations
undertaken by Bridgens [59] and also in the development of the standard published by the
MSA]J [43] indicate that the inclusion of slits significantly increases the total load
transferred to the central region of the cruciform. Slits also decrease the effect of large
shear deformations in the cruciform arms which result from unequal large strains in the

approximately orthogonal material directions.
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Figure 4-3: Cruciform sample dimensions for biaxial testing (Adapted from [59])

In order to convert the recorded applied load to an accurate stress value for the central
region of the cruciform a correction factor or equivalent effective gauge length is applied.
This is done to account for the loss of load due to the spreading of the cruciform arms.
Through numerical simulation of the cruciform sample a correction factor of 0.95, or an
equivalent effective gauge length of 315mm, has been determined by Bridgens in [59].

This factor has been deemed suitable for all load ratios.

4.2.2 Testrig

The test rig consists of two reaction frames into which the cruciform sample is clamped
using a bar set into machined circular hole. The upper frame is mounted on spherical

bearings enabling free movement in the plane of the fabric. This ensures that the rig
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remains aligned with the material warp and fill direction as deformation takes place. It

also allows for the testing of non-orthogonal cruciform samples.

Biaxial load is applied in the warp and fill material directions via two hydraulic rams.
Current load is measured by a load cell located between the ram and the sample clamp
plate. The ram head position is measured by a linear variable differential transformer
(LVDT). Both load and ram position are output to a control program in real time and either
may be used to control the ram. Testing for this body of work is load controlled. Strain in
the central region of the sample is measured at 2 second intervals concurrently with the
load cell output via LVDT displacement transducers aligned with the warp and fill

directions.
4.3 Response Surface Neural Network Material Model

Architectural fabric material models, particularly those based on the plane-stress
framework and those based on response surfaces, are fitted to experimental data in the
form of load ratio arms, Section 2.2. When a neural network is trained using data in the
form of load ratio arms it may be used to interpolate between those arms thus creating a
response surface style model. As this model is easy to visualise it is selected as a good
starting point for the initial development of an architectural fabric neural network

material model.

A constitutive material model endeavours to describe a material’s response to external
stimuli. In the case of architectural fabric modelling it is the relationship between stress
and strain that is of interest. Within a typical finite element analysis the current strain
state is used to determine the current level of stress which in turn is used to determine
whether the forces within a structure are in equilibrium with the external forces applied
to the structure. The current strain will therefore be used as input and the stress as output.
This leads to a network comprising two inputs (warp and fill strain), a single hidden layer

and two outputs (warp and fill stress).

4.3.1 Network performance criteria

The non-uniqueness of neural network material models has been identified as a key
feature [88]. Because neural networks are typically initialised using random numbers for
all weights and biases, two networks presented with identical training data will produce
different functional mappings. In order to find a network with the highest possible

performance, multiple networks are trained, and from that group the network with the
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best performance is selected. The performance criteria used for this purpose is the
coefficient of determination, R? given by,
R2 = 1 _ 2= Oi=f0? (4-32)
Y i—9)?
where y; is the target value, f; is the network output and y is the mean value of the targets.
The coefficient of determination is a relative measure of error and is therefore a clearer
indication of error than mean-square error. The closer the coefficient of determination is
to 1 the higher performance of the network. For each training data set 10 individual
networks are trained. Each network effectively models two response surfaces
representing warp and fill response separately. Therefore, the mean of the coefficients of
determination for the two surfaces is used to identify the network with the best overall

performance.

4.3.2 Response surface training data collection and pre-
processing

4.3.2.1 Experimental training data collection and pre-processing

A biaxial testing profile is developed that includes additional load ratios between the
standard 0:1, 1:2, 1:1, 2:1 and 1:0 ratios commonly used for the derivation of plane stress
elastic constants [43]. These ratios offer the opportunity to further investigate the true
shape of the interpolated response surface (Figure 4-5 and Figure 4-7) .The additional

load ratios may also provide ‘unseen’ testing data for network validation.

Ultimate Tensile . L.
Strength Maximum Stress Minimum Stress
(kN/m) (kN/m)
(kN/m)
Material Warp Fill Warp Fill Warp Fill
PVC
112 112 28 28 2.8 2.8
(5025S)
PTFE

(B18089) 160 140 40 35 3.5 3.5

Table 4.1: Maximum and minimum stress for biaxial profiles

A minimum stress of 2.5% of ultimate fabric strength is used for pre-stress. The maximum
stress is 25% of the ultimate tensile strength. Due to limitations in the computerised load

control system of the rig it is not possible achieve load ratios with a true 0 load. Therefore,
load ratios of 0:1 and 1:0 refer to load ration where the direction referred to by 0 is held at

the minimum stress value. In the case of PTFE coated glass fabric the ultimate tensile
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strength is different between the warp and fills directions. The profile values for the PVC

coated polyester and PTFE glass fibre fabrics tested are shown in Table 4.1.
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Figure 4-4: Load ratio arms Figure 4-5: Response surface derived
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Figure 4-6: Load ratio arms Figure 4-7: Response surface derived
investigated during PTFE biaxial test from PTFE biaxial test data.

Biaxial testing and data processing is based on the protocol laid out in [60]. As shown in
Figure 4-8 and Figure 4-9, the fabric is initially held at pre-stress for an arbitrary
30minutes followed by three 1:1 cycles. This initial combination of loading is applied to
condition the fabric so as to capture in situ behaviour in the following cycles as oppose to
the fabric’s initial behaviour which is heavily affected by crimp interchange. The profile
then continues through each ratio of interest with three 1:1 cycles between each. This

minimises the effect of the previous load ratio on the subsequent one.
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Figure 4-8: Testing profile for PVC coated polyester fabric comprising the applied
stress profile and the resulting strain.

In post processing residual strain is removed from the experimental data (Figure 4-8 and
Figure 4-9), in order to eliminate the effect of skew introduced by the accumulation of
residual strain throughout the test. This enables the representation of the response by a

single surface and removes the effect of load path dependency.

The procedure for residual strain removal begins by finding the index of each minimum
stress turning point, irp, within the profile. The strain, ¢; ., at each turning point may then
be found. As the profile returns to the same level of stress at the beginning and end of each

complete cycle the residual strain at each turning point, si};ff , may be found from,

Res _

giris = Eirp ~ Eipp_y (4-33)
where g, is the total strain at the current turning point and ¢;,,,__ is total strain at the
previous turning point. The residual strain is cumulatively subtracted from the total strain
to find the strain at any time step within the profile with current residual strain removed.
The strain with the cumulative residual strain removed, isR, between the current and

previous turning point index, (i = iyp_q — irp) is given by
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Res
RR e (1 s Eirp _ vlrp=irp-1 .Res _
Eirp_1oirp — €i (& —irp-1) <—(irp—irp_1)> ZiTP=1 Eirp (4-34)
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Figure 4-9: Testing profile for PTFE coated glass fibre fabric comprising the applied
stress profile and the resulting strain.

Three individual sets of data are used to train and validate the networks. The first data set
comprises the full set of 9 load ratios and is used as the training data set for Network 1.
The second data set comprises only the 0:1, 1:2, 1:1, 2:1 and 1:0 load ratios and is used as
the training data set for Network 2. The intermediate load ratios are used as 'unseen'
testing data for Network 2. The third data set is derived from a network trained to take the
warp and fill stress as input and output warp and fill strain. This network is also trained
using the full set of 9 load ratios. During biaxial testing the stress and strain information is
logged at 2 second intervals. For the purposes of network training the density of the
experimental data is reduced by only taking every 5th data point. This data reduction is
done to avoid over fitting and also enables the clearer plotting of the trained network

output.
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4.3.2.2 Additional synthetic training data generation via stress to strain network

As the experimental data is collected using a load-controlled process the stress envelope is
regular and the resulting strain envelope is non-regular. This irregularity makes it is
difficult to directly generate additional strain values to comprehensively explore the

response surface.

A stress to strain network model directly represents the load controlled biaxial test and is
therefore useful for producing a more comprehensive data set. Once trained this network
is presented with a regular grid of stress points, Figure 4-10 (a), and the network output
strains, Figure 4-10 (b), are taken to build an additional synthetic data set. This set is
used both as a training data set for Network 3 and as a testing set for Network 1 and 2. In

this way the gaps between loading arms may be investigated and cases of over-fitting may

be identified.
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(a) PVC Biaxial stress envelope with (b) PVC Biaxial strain envelope with
additional stress points additional strain points generated by

stress to strain network

Figure 4-10: Generation of additional training and testing data set

The stress to strain neural network shown in Figure 4-11 comprises an input layer
containing two inputs, warp and fill stress, a hidden layer containing 10 neurons and an
output layer containing 2 neurons for warp and fill strain. Tan-sigmoid transfer functions
are used in the neurons of the hidden layer and a linear transfer function is used in the
neurons of the output layer. For the purposes of early stopping 70% of the full training
data set is used for training, 15% for validation and 15% for testing. This division will be

used for all networks trained in this thesis.
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Warp Stress kN/m Warp Strain
Fill Stress kN/m ' Fill Strain

Input Layer Hidden Layer Output Layer

Figure 4-11: Stress to strain neural network architecture
All trained stress to strain networks produce R? values close to 1 indicating a high
correlation between network output and the target outputs. All networks are trained in a
relatively low number of training iterations (approx. 5 to 10 ) and do not trigger early
stopping criteria. The stopping criteria triggered is the minimum gradient. Version 7 of
the network trained and tested with the PVC (502S) data set produces the best
performance. Version 8 of the network trained and tested with the PTFE ( B18059) data
set produces the best performance. Visually the interpolation between the loading arms
shown in Figure 4-13 and Figure 4-14 appear reasonable. The network output from these

networks will form the additional data set for training and testing strain to stress network.

In order to conserve space a universal key (Figure 4-12) is used for all figures depicting
network output. Each figure is linked with a specific network within the table of Rz values
directly above it. The networks plotted generally demonstrate the highest performance

with one or both of the data sets used for training and testing.

Warp  Fill
|:| |:| Network generated target data
+ +

Experimentally generated target data

* * Network output from network generated data

o o Network output from experimentally generated data

Figure 4-12: Response surface neural network figure key
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Network performance when presented 9 experimental load ratios (training)

Network 1 2 3 4 5 6 7 8 9 10

Warp 0.9953 | 0.9964 | 0.9984 | 0.9970 | 0.9986 | 0.9973 | 0.9987 | 0.9943 | 0.9982 | 0.9977
Fill 0.9955 | 0.9960 | 0.9973 | 0.9944 | 0.9972 | 0.9964 | 0.9978 | 0.9969 | 0.9975 | 0.9978
Mean 0.9954 | 0.9962 | 0.9979 | 0.9957 | 0.9979 | 0.9968 | 0.9982 | 0.9956 | 0.9978 | 0.9978

Table 4.2: Coefficients of determination for PVC coated polyester (502S) stress to

Warp strain (%)
X IS}

20

Fill stress (kN/m)

strain neural network material model

Fill strain (%)
o

40 40
20 =4 20

00

Warp stress (kN/m) Fill stress (kN/m) 00 Warp stress (kN/m)

Figure 4-13: Network 7, Table 4.2, PVC (502S) stress to strain network

demonstrating best performance

Network performance when presented 9 experimental load ratios (training)

Network 1 2 3 4 5 6 7 8 9 10

Warp 0.9963 | 0.9971 | 0.9984 | 0.9909 | 0.9963 | 0.9961 | 0.9864 | 0.9979 | 0.9806 | 0.9957
Fill 0.9965 | 0.9961 | 0.9976 | 0.9934 | 0.9964 | 0.9961 | 0.9837 | 0.9982 | 0.9823 | 0.9954
Mean 0.9964 | 0.9966 | 0.9980 | 0.9921 | 0.9963 | 0.9961 | 0.9851 | 0.9981 | 0.9815 | 0.9956

Table 4.3: Coefficients of determination for PTFE coated glass fibre (B18059) stress
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Network 8, Table 4.3, PTFE (B18059) stress to strain network
demonstrating best performance
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4.3.3 Response Surface Neural Network Training and Validation

Similar to the stress to strain network used to generate the more comprehensive data set.

The strain to stress neural network shown in Figure 4-15 comprises an input layer

containing two inputs, warp and fill strain, a hidden layer containing 10 neurons and an

output layer containing 2 neurons for warp and fill stress. Tan-sigmoid transfer functions

are used in the neurons of the hidden layer and a linear transfer function is used in the

neurons of the output layer.
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Fill Strain
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Figure 4-15: Strain to stress neural network architecture
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4.3.3.1 PVC (502S) response surface neural network
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Network performance with 9 experimental load ratios (training data)
Network 1 2 3 4 5 6 7 8 9 10
Warp 0.9977 | 0.9978 | 0.9984 | 0.9948 | 0.9973 | 0.9968 | 0.9973 | 0.9975 | 0.9976 | 0.9982
Fill 0.9982 | 0.9986 | 0.9979 | 0.9945 | 0.9977 | 0.9958 | 0.9978 | 0.9979 | 0.9978 | 0.9984
Mean 0.9980 | 0.9982 | 0.9981 | 0.9947 | 0.9975 | 0.9963 | 0.9976 | 0.9977 | 0.9977 | 0.9983

Network performance with network generated data ('unseen’ testing data)
Network 1 2 3 4 5 6 7 8 9 10
Warp 0.9984 | 0.9880 | 0.9973 | 0.9928 | 0.9988 | 0.9937 | 0.9900 | 0.9991 | 0.9975 | 0.9656
Fill 0.9979 | 0.9734 | 0.9926 | 0.9944 | 0.9987 | 0.9956 | 0.9961 | 0.9983 | 0.9968 | 0.9810
Mean 0.9981 | 0.9807 | 0.9950 | 0.9936 | 0.9988 | 0.9946 | 0.9931 | 0.9987 | 0.9972 | 0.9733

Table 4.4: Coefficients of determination for PVC coated polyester (502S) strain to
stress neural network material model trained with 9 experimental load ratios
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Figure 4-16: Network 10, Table 4.4, PVC (502S) strain to stress network
demonstrating best performance with experimentally generated data used in
training
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Figure 4-17: Network 5, Table 4.4, PVC (502S) strain to stress network
demonstrating best performance with 'unseen’' network generated data used in
testing

Version 10 of the network trained using the 9 load ratios, Table 4.4, shows the best
performance when tested with the full experimental load ratio set. However, when tested
with the more comprehensive synthetic network generated data set a much lower
performance is observed, this indicates over-fitting may have occurred. This is confirmed
visually in Figure 4-16 where the effects of over fitting may be clearly seen between the
0:1 and 1:2 load ratio arms in both the warp and fill surfaces. It is noted that an R?value
lower than 0.990 indicates and unacceptable network error. Version 5 of the network
trained with the same data (Figure 4-17) produces a slightly decreased R? value when
presented with the full experimental load ratio set. However, when presented with the
network generated data set this network produces a much higher R? value. The network
has a greater ability to generalise within a reasonable range. This demonstrates the

importance of network testing using unseen data.
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Network performance with 9 experimental load ratios (partial training)

Network 1 2 3 4 5 6 7 8 9 10

Warp 0.9943 | 0.9935 | 0.9903 | 0.9944 | 0.9945 | 0.9770 | 0.9866 | 0.9918 | 0.9937 | 0.9879
Fill 0.9958 | 0.9957 | 0.9953 | 0.9946 | 0.9952 | 0.9959 | 0.9874 | 0.9943 | 0.9964 | 0.9928
Mean 0.9951 | 0.9946 | 0.9928 | 0.9945 | 0.9949 | 0.9865 | 0.9870 | 0.9930 | 0.9950 | 0.9904

Network performance with network generated data (unseen)

Network 1 2 3 4 5 6 7 8 9 10

Warp 0.9925 | 0.9892 | 0.9858 | 0.9908 | 0.9896 | 0.9687 | 0.9776 | 0.9843 | 0.9919 | 0.9786
Fill 0.9963 | 0.9947 | 0.9956 | 0.9939 | 0.9958 | 0.9961 | 0.9812 | 0.9917 | 0.9961 | 0.9812
Mean 0.9944 | 0.9920 | 0.9907 | 0.9924 | 0.9927 | 0.9824 | 0.9794 | 0.9880 | 0.9940 | 0.9799

Table 4.5: Coefficients of determination for PVC coated polyester (502S) strain to
stress neural network material model, trained with 5 load ratios
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Figure 4-18: Network 1, Table 4.5, PVC (502S) strain to stress network
demonstrating best performance with both data sets

The networks trained using the partial data set, Table 4.5, achieve the lowest performance
especially in the fill direction. This is expected as these networks have been trained with
the least comprehensive data set. Version 1 of the network trained using the reduced
experimental data set (Figure 4-18) exhibits the best performance when presented with
both the full experimental data set and the network generated data set. Both of these data
sets contain information relating to all of the 9 load ratios. Therefore, providing that over

fitting has not occurred, both data sets should produce a similar level of performance.
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Network performance with 9 experimental load ratios (unseen)

Network 1 2 3 4 5 6 7 8 9 10

Warp 0.9970 | 0.9972 | 0.9971 | 0.9968 | 0.9969 | 0.9972 | 0.9973 | 0.9971 | 0.9968 | 0.9976
Fill 0.9971 | 0.9975 | 0.9968 | 0.9967 | 0.9974 | 0.9972 | 0.9975 | 0.9970 | 0.9967 | 0.9969
Mean 0.9970 | 0.9974 | 0.9970 | 0.9968 | 0.9972 | 0.9972 | 0.9974 | 0.9971 | 0.9968 | 0.9973

Network performance with network generated data (training)

Network 1 2 3 4 5 6 7 8 9 10

Warp 0.9996 | 0.9994 | 0.9995 | 0.9991 | 0.9991 | 0.9995 | 0.9991 | 0.9997 | 0.9998 | 0.9995
Fill 0.9996 | 0.9994 | 0.9996 | 0.9994 | 0.9993 | 0.9996 | 0.9993 | 0.9996 | 0.9998 | 0.9997
Mean 0.9996 | 0.9994 | 0.9996 | 0.9993 | 0.9992 | 0.9995 | 0.9992 | 0.9997 | 0.9998 | 0.9996

Table 4.6: Coefficients of determination for PVC coated polyester (502S) strain to
stress neural network material model, trained with network generated data
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Figure 4-19: Network 9, Table 4.6, PVC (502S) strain to stress network
demonstrating best performance with both data sets

All of the networks trained using the PVC (502S) data sets achieve R? values close to 1
indicating a high correlation between network output and the target outputs. As would be
expected the highest R? values are observed when a network is tested using the same set

of data it was trained with.

Version 9 of the network trained with the network generated data set, Table 4.6,
demonstrates the best overall performance when presented with both the training data
and the unseen data sets. This network may be selected as having the best ability to
generalise the PVC fabric response. The use of synthetic training data, Section 4.3.2.2,
reduces the risk of over-fitting without the need for additional expensive physical testing.
It is however of extreme importance to gather sufficient data to thoroughly train and

validate any network model to be used in structural analysis.
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Network performance when presented 9 experimental load ratios (training)

Network 1 2 3 4 5 6 7 8 9 10

Warp 0.9946 | 0.9956 | 0.9956 | 0.9944 | 0.9936 | 0.9936 | 0.9888 | 0.9937 | 0.9955 | 0.9939
Fill 0.9803 | 0.9861 | 0.9870 | 0.9916 | 0.9685 | 0.9825 | 0.9813 | 0.9818 | 0.9858 | 0.9817
Mean 0.9874 | 0.9908 | 0.9913 | 0.9930 | 0.9810 | 0.9880 | 0.9851 | 0.9878 | 0.9907 | 0.9878

Network performance when network presented with network data (unseen)

Network 1 2 3 4 5 6 7 8 9 10

Warp 0.9684 | 0.9576 | 0.9576 | 0.8168 | 0.9657 | 0.9580 | 0.9697 | 0.9534 | 0.9589 | 0.9598
Fill 0.9027 | 0.8640 | 0.8861 | -0.4581! | 0.9385 | 0.8746 | 0.9210 | 0.8966 | 0.8910 | 0.8895
Mean 0.9356 | 0.9108 | 0.9219 | 0.1794 | 0.9521 | 0.9163 | 0.9453 | 0.9250 | 0.9250 | 0.9246

Table 4.7: Coefficients of determination for PTFE coated glass fibre (B18059) strain
to stress neural network material model, trained with 9 load ratios
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Figure 4-20: Network 4, Table 4.7, PTFE (B18059) strain to stress network
demonstrating best performance with experimentally generated data used in
training
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Figure 4-21: Network 5, Table 4.7, PTFE (B18059) strain to stress network
demonstrating best performance with 'unseen’' network generated data used in
testing

1 A negative R? value indicates that the mean on the testing data provides a better to the target output than the output
generated by the trained network.
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Version 4 of the network trained using the 9 load ratios shows the best performance,
although still lower than 0.990, when tested with the full experimental load ratio set. As
with the PVC networks the fill surface produces a considerably lower R? value than the
warp surface. This indicates that the material response of the fill direction yarns is more
complex than the warp. This may be due to the high level of crimp in this material

direction.

When tested with the more comprehensive network generated data set a much lower
performance is observed in both surfaces, this indicates that over-fitting has occurred.
This is confirmed visually in (Figure 4-20) where the poor correlation between network
output and targets may be clearly seen, especially between the 0:1 and 1:1 load ratio arms
where the fill direction carries a greater load than the warp direction. Version 5 of the
network trained with the same data (Figure 4-21) produces a slightly decreased R? value
when presented with the full experimental load ratio set. When presented with the
network generated data set this network produces a slightly higher R? value indicating a

decreased level of over fitting.

The networks trained using the partial data set achieve the lowest performance, this is the
same as the PVC networks. Version 3 (Figure 4-22) produces the highest R? value when
tested with the full experimental load ratio set. However, this performance is poor
especially for the load ratio arms not used in the training set. The ‘unseen’ load ratio arm
between the 0:1 and 1:2 load ratios collapses onto the 0:1 load ratio arm. This is due to the
high stiffness of the material leading to a steep response surface where one set of strain
values leads to multiple values of stress. These results indicate that a 2 input neural
network does not have sufficient inputs to avoid the detrimental effect of the one to many

mappings present in the PTFE training data



Chapter 4

Neural Network Training and Validation

173

Network performance when presented 9 experimental load ratios (partial training)

Network 1 2 3 4 5 6 7 8 9 10
Warp 0.9691 | 0.9658 | 0.9705 | 0.9632 | 0.8411 | 0.9348 | 0.9697 | 0.9697 | 0.9439 | 0.8618
Fill 0.8833 | 0.8948 | 0.8933 | 0.8825 | 0.8574 | 0.8841 | 0.8874 | 0.8937 | 0.8851 | 0.8705
Mean 0.9262 | 0.9303 | 0.9319 | 0.9229 | 0.8492 | 0.9095 | 0.9286 | 0.9317 | 0.9145 | 0.8662
Network performance when network presented with network data (unseen)
Network 1 2 3 4 5 6 7 8 9 10
Warp 0.9511 | 0.9613 | 0.9597 | 0.9349 | 0.7278 | 0.9398 | 0.9659 | 0.9574 | 0.9475 | 0.8778
Fill 0.8331 | 0.8624 | 0.8606 | 0.8216 | 0.7812 | 0.8470 | 0.8450 | 0.8579 | 0.8526 | 0.8349
Mean 0.8921 | 0.9119 | 0.9101 | 0.8782 | 0.7545 | 0.8934 | 0.9055 | 0.9077 | 0.9001 | 0.8563

Table 4.8: Coefficients of determination for PTFE coated glass fibre (B18059) strain
to stress neural network material model, trained with 5 load ratios
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Figure 4-22: Network 3, Table 4.8, PTFE (B18059) strain to stress network
demonstrating best performance with experimentally generated data partially
used in training

The one to many mapping issue, leading to poor performance, is also demonstrated by the

networks trained with the network generated data set (Figure 4-23). The warp surface

shows the most improvement compared to the networks trained with only experimental

data. However, the fill surface remains extremely poor. Although these networks show the

best overall performance they are not sufficiently accurate for use in a structural

simulation.
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Network performance when presented 9 experimental load ratios (unseen)

Network 1 2 3 4 5 6 7 8 9 10

Warp 0.9769 | 0.9751 | 09778 | 0.9608 | 0.9773 | 0.9734 | 0.9734 | 0.9743 | 0.9749 | 0.9737
Fill 0.9508 | 0.9520 | 0.9487 | 0.9315 | 0.9425 | 0.9382 | 0.9418 | 0.9443 | 0.9442 | 0.9275
Mean 0.9639 | 0.9635 | 0.9633 | 0.9461 | 0.9599 | 0.9558 | 0.9576 | 0.9593 | 0.9596 | 0.9506

Network performance when network presented with network data (training)

Network 1 2 3 4 5 6 7 8 9 10

Warp 0.9886 | 0.9915 | 0.9902 | 0.9905 | 0.9886 | 0.9910 | 0.9905 | 0.9917 | 0.9914 | 0.9918
Fill 0.9664 | 0.9698 | 0.9697 | 0.9644 | 0.9645 | 0.9693 | 0.9687 | 0.9697 | 0.9697 | 0.9702
Mean 0.9775 | 0.9806 | 0.9799 | 0.9775 | 0.9765 | 0.9801 | 0.9796 | 0.9807 | 0.9805 | 0.9810

Table 4.9: Coefficients of determination for PTFE coated glass fibre (B18059) strain
to stress neural network material model, trained with network generated data
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Figure 4-23: Network 1, Table 4.6, PTFE (B18059) strain to stress network
demonstrating best performance with 'unseen' experimentally generated data used
in testing

All of the 2 input networks trained using the PTFE (B18059) data sets achieve
unacceptably low R? values (less than 0.990) indicating a poor correlation between
network output and the target outputs. When presented with unseen data the PTFE

networks exhibit a very poor ability to generalise the response.

4.3.3.2 Additional Input

In order to capture the more complex material response of PTFE which includes one to
many mappings, a third input is required. The state equations of the finite element
analysis are solved iteratively via a dynamic relaxation algorithm, Section 3.1.2. The warp
and fill stress from the previous dynamic relaxation energy peak is readily available. This
information may be used to provide the approximate strain radial arm on which the target
stress is positioned in the form of a stress ratio. As in the case of the activation functions

within the hidden layer of the networks a tan sigmoid (or hyperbolic tan) function is used
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to scale the resulting ratio between -1 and 1. Therefore, the additional stress ratio input,

o0 s given by,
o0 = tanh (UV:":) (4-35)
9

where a* ! and a}‘_l are the warp and fill stresses from the previous dynamic relaxation

energy peak. These values will become increasingly accurate as the analysis progresses.

In order to generate values of a7%“for the training data set random perturbations in the

range of -1.0 to 1.0 are applied to the target stresses to be used in place of 62! and 0}1_1.

This range of perturbation is used to generate previous iteration stress values in a similar

range to those generated during implementation within finite element analysis.

Warp Strain

Warp Stress KN/m

|

Fill Stress KN/m

Fill Strain

Stress Ratio

Jratlo

Input Layer Hidden Layer Output Layer

Figure 4-24: 3 input strain to stress neural network architecture

The resulting 3 input strain to stress neural network, shown in Figure 4-24, comprises an
input layer containing three inputs, warp and fill strain and the stress ratio, a hidden layer
containing 10 neurons and an output layer containing 2 neurons for warp and fill strain.
Tan sigmoid transfer functions are used in the neurons of the hidden layer and a linear

transfer function is used in the neurons of the output layer.

All of the networks trained using the PTFE (B18059) data sets with the addition stress
ratio input show a considerable improvement in performance. Once again the highest R?
values are observed when a network is tested using the same set of data it was trained
with. When presented with unseen data the 3 input PTFE networks exhibit a good ability
to generalise the response. Version 4 of the network trained using the 9 load ratios (Figure
4-25) shows the best performance across all data sets producing R? values greater than
0.990. The fill surface also consistently produces a greater R? value than the warp when

presented with the network generated unseen data set.
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Network performance when presented 9 experimental load ratios (training)

Network 1 2 3 4 5 6 7 8 9 10

Warp 0.9982 | 0.9995 | 0.9972 | 0.9988 | 0.9984 | 0.9995 | 0.9994 | 0.9939 | 0.9993 | 0.9988
Fill 0.9988 | 0.9992 | 0.9986 | 0.9990 | 0.9991 | 0.9991 | 0.9990 | 0.9979 | 0.9992 | 0.9989
Mean 0.9985 | 0.9993 | 0.9979 | 0.9989 | 0.9988 | 0.9993 | 0.9992 | 0.9959 | 0.9992 | 0.9989

Network performance when network presented with network data (unseen)

Network 1 2 3 4 5 6 7 8 9 10

Warp 0.9674 | 0.9839 | 0.9515 | 0.9903 | 0.9774 | 0.9880 | 0.9861 | 0.9795 | 0.9838 | 0.9609
Fill 0.9976 | 0.9981 | 0.9970 | 0.9981 | 0.9986 | 0.9984 | 0.9984 | 0.9971 | 0.9983 | 0.9964
Mean 0.9825 | 0.9910 | 0.9743 | 0.9942 | 0.9880 | 0.9932 | 0.9923 | 0.9883 | 0.9911 | 0.9786

Table 4.10: Coefficients of determination for PTFE coated glass fibre (B18059)
strain to stress neural network material model, trained with 9 load ratios
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Figure 4-25: Network 4, Table 4.10, PTFE (B18059) 3 input strain to stress network
demonstrating best performance with 'unseen’ network generated data used in
testing

The networks trained using the partial data set again achieve the lowest performance.
Version 2 (Figure 4-26) produces the highest R? values when tested with both the full
experimental load ratio set and the network generated data se. However, this performance
is poor especially for the load ratio arms not used in the training set. The ‘unseen’ load
ratio arms between the 0:1 and 1:2 and 2:1 and 1:0 load ratios collapse onto the 0:1 and
1:0 load ratio arms respectively. This demonstrates that the additional load ratio arms are
required to capture the complex material response of PTFE coated glass fibre fabric. This
may indicate that further load ratio arms should be added to the biaxial testing profile in

order to provide unseen experimental testing data.
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Network performance when presented 9 experimental load ratios (partial training)

Network 1 2 3 4 5 6 7 8 9 10

Warp 0.9367 | 0.9772 | 09749 | 0.9743 | 0.9650 | 0.9789 | 0.9637 | 0.8864 | 0.8894 | 0.9765
Fill 0.8871 | 0.9912 | 0.9366 | 0.9193 | 0.9289 | 0.8934 | 0.9519 | 0.8412 | 0.9260 | 0.9675
Mean 09119 | 0.9842 | 0.9558 | 0.9468 | 0.9469 | 0.9361 | 0.9578 | 0.8638 | 0.9077 | 0.9720

Network performance when network presented with network data (unseen)

Network 1 2 3 4 5 6 7 8 9 10

Warp 0.9356 | 0.9640 | 0.9755 | 0.9649 | 0.9326 | 0.9583 | 0.9411 | 0.7176 | 0.8822 | 0.9498
Fill 0.8347 | 0.9828 | 0.9068 | 0.8784 | 0.8946 | 0.8404 | 0.9194 | 0.7713 | 0.8826 | 0.9467
Mean 0.8852 | 0.9734 | 0.9411 | 0.9217 | 0.9136 | 0.8994 | 0.9303 | 0.7444 | 0.8824 | 0.9482

Table 4.11: Coefficients of determination for PTFE coated glass fibre (B18059)
strain to stress neural network material model, trained with 5 load ratios
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Figure 4-26: Network 2, Table 4.11, PTFE (B18059) 3 input strain to stress network
demonstrating best performance with both data sets

Version 5 of the network trained with the network generated data set (Figure 4-27)
demonstrates the best overall performance when presented with both the training data
and the unseen data sets. This network may be selected as having the best ability to
generalise the PTFE fabric response. These results demonstrate that the additional input is
necessary for the network to produce a good prediction of stress from strain for a PTFE
coated glass fabric. This network requires further testing while implemented within a
finite element analysis in order to ensure that the training load ratio inputs are within an

appropriate range.
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Network performance when presented 9 experimental load ratios (unseen)

Network 1 2 3 4 5 6 7 8 9 10

Warp 0.9916 | 0.9896 | 0.9927 | 0.9910 | 0.9949 | 0.9896 | 0.9913 | 0.9926 | 0.9915 | 0.9909
Fill 0.9985 | 0.9988 | 0.9986 | 0.9986 | 0.9986 | 0.9980 | 0.9986 | 0.9987 | 0.9975 | 0.9986
Mean 0.9950 | 0.9942 | 0.9957 | 0.9948 | 0.9968 | 0.9938 | 0.9950 | 0.9956 | 0.9945 | 0.9947

Network performance when network presented with network data (training)

Network 1 2 3 4 5 6 7 8 9 10

Warp 0.9984 | 0.9982 | 0.9983 | 0.9984 | 0.9981 | 0.9977 | 0.9988 | 0.9982 | 0.9946 | 0.9984
Fill 0.9988 | 0.9989 | 0.9988 | 0.9988 | 0.9989 | 0.9985 | 0.9988 | 0.9989 | 0.9982 | 0.9988
Mean 0.9986 | 0.9985 | 0.9986 | 0.9986 | 0.9985 | 0.9981 | 0.9988 | 0.9986 | 0.9964 | 0.9986

Table 4.12: Coefficients of determination for PTFE coated glass fibre (B18059)
strain to stress neural network material model, trained with network generated
data
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Figure 4-27: Network 5, Table 4.10, PTFE (B18059) 3 input strain to stress network
demonstrating best performance with 'unseen’' experimentally generated data used
in testing
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4.4 History Neural Network Material Model

To date limited attempts have been made incorporate the effects of load history and
residual strain within fabric material models. It has been shown in [114] that relatively
simple neural network models are capable of representing hysteretic behaviour through
the use of ‘internal variables’ similar to the load ratio used in Section 4.3.3.2. This method

will be used to capture the hysteretic behaviour of architectural fabric.

The use of internal variables is proposed by Yun et al [114] as a solution to transform a
one to many mapping to a single valued mapping in order to model materials which
exhibit hysteretic behaviour. Initially these internal variables are adopted to capture the
uniaxial hysteric behaviour of PVC coated polyester architectural fabric. This will then be

extended to biaxial hysteric behaviour of both PVC coated polyester and PTFE coated glass.

4.4.1 Network internal variables [114]

For a strain controlled material model the following two ‘phenomenological’ variables may
be used to describe the material behaviour. The value may be either scalar, as is the case of
a uniaxial model, or tensor, as in the case of a biaxial model [114]. The first internal
variable, &, is the product of the previous level of stress o,,_; and the previous level of
strain g,,_,. The second internal variable is the product of the previous level of stress and

the current strain increment. The subscript n denotes the nt" incremental step.

$n = Op—1&n-1 (4-36)
ANy = 0p_1(8q — €n—1) = Op_1lgy (4-37)

The following proof that the neural network functional mapping is single-valued is given
in [114]. A closed hysteresis loop is subdivides in 6 separate paths as shown in Figure 4-28.
The sign of each of the three independent network inputs, €, &, and An,, are assessed

along with the sign of the network output, g,, and recorded in Table 4.13.
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Figure 4-28: Variable sign combinations for strain controlled hysteresis loop

En Any, €n On
Path 1 + + + +
Path 2 + - + +
Path 3 - + + -

%

Path 4 + + - -
Path 5 + - - -
Path 6 - + - +

Table 4.13: Variable sign combinations for strain controlled hysteresis loop

Due to the complexity of the biaxial response of architectural fabric this simple proofis not

sufficient for the tensor case. However, extensive testing using ‘unseen’ data will be used

to validate the model for biaxial representation. To reduce the number of inputs it has

been demonstrated in [114] that the two internal variables may be combined into a single

internal variable, {,, with no reduction in performance.

(n =&+ Any,

(4-38)

It is stated that "The information contained in the single internal variable ({5 ,, or {¢ ) or

two internal variables appears (¢, and Ang , or An, ,,) to be the same based on numerical

experiments. According to numerical tests, using the combined single internal variable shows

better training performance than using the two internal variables in the case of multi-

dimensional problems whereby many inputs are presented to the NN." [114, pg 453]. As the

networks presented in this thesis are multi-dimensional, containing both warp and fill

behaviour, this strategy has been adopted.
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[t should be noted that it is not possible to achieve similar results by indiscriminately
combining input variables, for example the current warp and fill strain. This is due to the
fact that the information contained within the new combined variable would not be the
same as that contained within the individual input variables. An item of further work may
be to investigate the validity of combining variables in order to further improve efficiency

of the neural network model.

4.4.2 Cyclic uniaxial training data collection and pre-processing

The uniaxial testing protocol is based on the British Standard ‘Rubber or plastics coated
fabrics - Determination of tensile strength and elongation at break’ (BS EN 1S01421:1998)

[128]. Testing is completed using an Instron constant rate extension machine.

UNIAXIAL LOAD PROFILE 1
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Figure 4-29: Uniaxial cyclic load profiles 1,2 and 3, load is shown in terms of
percentage of ultimate tensile strength for use with a range of fabrics

Each test piece of PVC coated polyester fabric was cut to be 50 mm#* 0.5 mm wide and of
sufficient length to allow a distance of 200 mm#* 1 mm between the jaws of the test

machine. All samples were e taken from the central region of the fabric roll and were
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aligned along the warp yarn direction. The samples were mounted in the Instron machine

using serrated jaws tightened by hand using a strap wrench. The distance between the

jaws is set to 200mm using vernier callipers and the position of the head re-set to zero.

The load was not zeroed after the sample has been mounted in order to record any initial

loading induced during mounting. Deformation was applied at a constant rate of

10mm/min and loading is controlled by a load profile. Three different profiles, shown in

Figure 8, were used to provide full data sets for training and testing and to investigate the

ideal training profile.

4.4.3 Cyclic uniaxial network training and validation

Current Strain
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Figure 4-30: 4 input strain to stress uniaxial hysteresis neural network architecture

As in the previous study a Matlab fitting neural network is used. The resulting 4 input

strain to stress neural network, shown in Figure 4-30, comprises an input layer containing

four inputs, a single hidden layer containing a user defined number of nodes and an output

layer containing a single output. The network model input comprises current strain,

previous strain, previous stress, and the internal variables combined into a single input via

addition. The output is the current level of stress. When run in recurrent mode the

network output stress is used to produce the internal variable and previous stress input,

Tan sigmoid transfer functions are used in the neurons of the hidden layer and a linear

transfer function is used in the neurons of the output layer. For the purposes of early

stopping 70% of the full training data set is used for training, 15% for validation and 15%

for testing. This division will be used for all networks trained in this section.

An initial brief study into the effect of training profile, training data density and number of

nodes in hidden layer was undertaken using the PVC data sets. This was done to inform
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the network architecture and training profile design. Different densities of training data
were investigated. The experimental data is reduced according to a reduction factor. Each
loading and unloading cycle is reduced to contain the number of data points specified by
the reduction factor. Three training data sets were generated for each uniaxial profile the
first with a reduction factor of 6, the second with a reduction factor of 10 and the third

with a reduction factor of 14. Therefore, a total of 9 data sets were generated.

Three networks were trained for each training data set. The first with 4 nodes in the
hidden layer, a second with 7 nodes and a third with 10 nodes. To account for the effect of
random node initiation, 10 networks were trained for each case and the network which
exhibited the lowest error when tested using the full training data set in recurrent mode
was selected. Each selected network is then tested using the remaining 8 'unseen' data
sets. As in Section 4.3.2 the network performance was assessed using the R? value,

equation (4-32).

The full sets of R? values are presented below in Table 4.14 to Table 4.16. The results are
grouped according to the number of nodes of the hidden layer. The details of the trained
networks are given in the column headers and the row titles give details of the testing data.
The grey cells contain the R? values relating to testing using the training data sets. The
remaining values represent performance relating to testing using ‘unseen’ data. The R?
values are calculated in recurrent mode as this is the way in which a network would

function once implemented.

Training Data
Reduction Profile 1 Profile 2 Profile 3
Factor 6 | 10 | 14 | 6 | 10 | 14 | 6 | 10 | 14 |Mean
- 6 [0.995|0.943|0.249(0.990|0.933|0.6330.990|0.869|0.911 | 0.835
% 10 |0.972|0.997 | 0.936 {0.987|0.992 | 0.964 |0.989 | 0.991 | 0.987 | 0.979
S
A 14 [0.952]0.991|0.995|0.973|0.989|0.992 |0.984 | 0.992 | 0.993 | 0.985
g ﬁ 6 0.988|0.965|0.602 |0.995|0.952|0.788|0.978|0.912 | 0.932]0.901
_°E° % 10 |0.956/0.982|0.970|0.981|0.997 | 0.981 |0.967 | 0.979 | 0.972 | 0.976
E = 14 |0.934|0.967 | 0.986 |0.963 | 0.995 | 0.997 | 0.956 | 0.972 | 0.977 | 0.972
on 6 (0947(0.785|0.474(0.878|0.913|0.672 10.994 | 0916 | 0.938 | 0.835
% 10 [0.929|0.779|0.914 |1 0.835| 0.947 | 0.899 | 0.993 | 0.997 | 0.990 | 0.920
St
A 14 [0.914|0.779|0.942 | 0.806 | 0.945 | 0.889 | 0.992| 0.997 | 0.997 | 0.918
Mean | 0.954|0.910|0.785 [ 0.934 | 0.963 | 0.868 | 0.983 | 0.958 | 0.966

Table 4.14: R? value matrix for 10 hidden node networks
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Training Data
Reduction Profile 1 Profile 2 Profile 3
Factor 6 10 14 6 10 14 6 10 14 |Mean
- 6 10.995|0.935|0.852|0.991|0.972|0.7040.992|0.716 | 0.835 | 0.888
% 10 [0.975|0.996 | 0.985(0.991|0.993 | 0.972|0.989| 0.993 | 0.984 | 0.986
=
& | 14 |0.941/0.993|0.997|0.975(0.991|0.993|0.984 | 0.993 | 0.995 | 0.985
é: z 6 10.983|0.955|0.8970.995|0.981 | 0.843 |0.985|0.959 | 0.896 | 0.944
_%D % 10 [0.944|0.994 | 0.99 [0.985|0.996 | 0.988 |0.980|0.968 | 0.977 | 0.980
E = 14 [0.865|0.988|0.994 |0.967|0.989 [ 0.997 | 0.974| 0.962 | 0.948 | 0.965
o 6 10.709|0.874|0.797 | 0.878|0.887 | 0.774 [ 0.996 | 0.234 | 0.868 | 0.780
% 10 | 0.57 | 0.941|0.933|0.836|0.878|0.932|0.992|0.992 | 0.986 | 0.896
S
& | 14 |0.504|0.939|0.945|0.805|0.862|0.931{0.988|0.993 | 0.997 | 0.885
Mean | 0.832|0.957|0.932|0.936| 0.950 | 0.904 | 0.987 | 0.868 | 0.943
Table 4.15: R? value matrix for 7 hidden node networks
Training Data
Reduction Profile 1 Profile 2 Profile 3
Factor 6 10 14 6 10 14 6 10 14 |Mean
- 6 10.995|0.976|0.922]0.959|0.885|0.294 [ 0.986|0.910 | 0.964 | 0.877
% 10 [0.982|0.995|0.989 (0.951|0.994 | 0.946 | 0.983| 0.668 | 0.984 | 0.944
=
& | 14 |0.965|0.987|0.995|0.936|0.990 | 0.995|0.978| 0.130 | 0.980 | 0.884
§ ﬁ 6 10994 | 0.98 |[0.941]0.994 | 0.949 | 0.609 | 0.988| 0.954 | 0.978] 0.932
_%’3 % 10 [0.981|0.992|0.987 (0.977|0.996 | 0.979 | 0.979| 0.607 | 0.991 | 0.943
E & 14 [0.965|0.978|0.988|0.948|0.988 | 0.997 | 0.970| 0.451 | 0.988 | 0.919
on 6 10.893|/0.911|0.906|0.927|0.853|0.470(0.988| 0.961 | 0.968| 0.875
% 10 [0.846|0.862|0.963|0.925|0.840 | 0.887 | 0.984|0.993 | 0.991| 0.921
S
& | 14 | 0.82 |0.825|0.969|0.933|0.792|0.870|0.977| 0.951 | 0.991 | 0.903
Mean | 0.938| 0.945| 0.962|0.950| 0.921 | 0.783|0.981| 0.736 | 0.982

Table 4.16: R? value matrix for 4 hidden node networks

[t can be seen in all tables that generalisation across the three profiles is typically best

when the network is trained using Profile 3. This is because profile 3 is the only profile

which contains features from across all 3 of the profiles being investigated. For this reason,

Profile 3 also yields the lowest regression values when used as an 'unseen' testing set for

networks which have been trained with Profile 1 or Profile2. This highlights the

importance of developing a comprehensive training data set.
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The size of the reduction factor effects the quantity of training data available but also
effects the size of the load step between iterations. When testing using corresponding
reduction factors, network generalisation typically improves with reducing reduction
factor. This indicates that a more sparse data set or higher load step achieves better
results. However, changes in load step between training and testing sets will also affect
network performance. From the tables above it can be seen that network performance
reduces as the difference between the testing reduction factor and the training reduction
factor increases. Inspecting the mean R? value across all training sets testing with a

reduction factor of 10 usually produces the highest performance.

[t is difficult to identify the most effective reduction factor, and resulting load step, for
training from Table 4.14 to Table 4.16. However, is likely that a training load step in the
middle of the expected load step range is most suitable as it will be on average closest to
all load steps within the testing range. It is also probable that the load step during analysis
will be large and variable compared with data gathered through testing. The reduction
factor for training should be chosen with this in mind. Therefore, network generalisation
across varying load steps may be increased by creating a training data set containing non-
uniform load steps. This may be done by reducing the training data using a varying,

random reduction factor within a suitable range.

The effect of number of nodes in the hidden layer is difficult to identify. However, the
number of nodes required in the hidden layer is a contributing factor to the ability of a
network to generalise. The lowest R? values, indicating poorest performance, occur more
frequently in networks with fewer hidden nodes (Table 4.16). This may indicate that the 4
node network does not have sufficient complexity to accurately capture the fabric
response. When the mean R? value across all testing data sets is inspected the network
with the highest ability to generalise has 7 hidden nodes and is trained using profile 3

reduced by a reduction factor of 6.

Various methods for the selection of an optimum number of nodes have been proposed.
Methods of optimisation implemented during training exist and often involve the removal
or ‘pruning’ of unnecessary neurons. Ghaboussi and Sidartra developed an adaptive
training regime whereby additional nodes are progressively added to the network layers
as existing nodes become saturated [99, 129]. Other widely used more simplistic methods
for selecting the number of neurons in a network are based on either the ratio between
number of training patterns and network weights or the number of input and output

nodes.
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The effect of the number of nodes in the hidden layer is investigated further by training
networks with a number of hidden nodes from 1 to 20. The training data set with the best
overall performance from the previous investigation (Profile 3 reduced by a reduction
factor of 10) is used as the training set. 20 randomly initiated networks are trained for
each number of hidden nodes. In addition a single network manually initiated with
weights and biases set to 1 is also trained for each material. The performance of this
network is plotted alongside the boxplots. Each trained network is tested in recurrent
mode using both the training data set and an 'unseen' testing data set generated form
Profile 1 also reduced with a reduction factor of 10. The R? values generated from
recurrent testing using the training and testing data sets are plotted in the form of box-

plots in Figure 4-31a and Figure 4-31b respectively.

The worst R? value range in Figure 4-31 is produced by the 1 node networks. All other
networks produce a range of R? values. Outliers outside the maximum R? value range,
defined by red points in Figure 4-31, are also produced by all networks with more than 2

nodes in the hidden layer. The maximum range, or whisker length, is given by,
Qs + w(Qs — Q) < Outlier <Q; — w(Qz — Q1) (4-39)

where Q4 and Q5 are the 25th and 75th percentiles, respectively, and w is a constant equal
to 1.5 which corresponds to approximately 99.3 coverage if the data points are normally
distributed. The whisker length is defined by the most extreme value which are not

considered outliers.
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Figure 4-31: The effect of hidden node number on performance.

The differing levels of performance between networks with the same architecture is a
product of the complexity of the error function minimised during training and the starting
point defined by the randomised initial values of the weights and biases. The number of
local minima in the error surface searched during training increase with increasing

numbers of hidden nodes. It is therefore more likely that a local minimum as oppose to a
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global minimum will be found during training. Early over fitting will also increase with
increasing hidden node number. This will lead to early stopping of training prior to the
network fully 'learning’ the material response. This again highlights the necessity of
training and testing multiple randomly initiated networks. Testing with both training data

and 'unseen' testing data should be considered when identifying the best network.

In both Figure 4-31a and b the median R? value consistently increases with increasing
hidden nodes up to 9 nodes. When testing using the training data set (Figure 4-31a)
median performance and R? value range remains approximately the same between
networks with from 9 to 17 hidden nodes. However, in Figure 4-31b, median performance
generally drops and the R? value range shows a marked increase in networks with more
than 9 nodes in the hidden layer. This indicates that networks with more than 9 nodes are
more likely to over fit the training data and lose the ability to generalise between different
profiles. In both figures there is a considerable drop in median performance as well as a
marked increase in the range in networks with more than 17 nodes. This indicates that in
networks with more than 17 hidden nodes over fitting, to a point where results produced
when testing the network in recurrent mode leads to unacceptable errors, is more likely to
occur. This is the case when tested with both training and 'unseen’ testing data sets. These
networks have effectively lost all ability to generalise and small deviations from the

training data presented to the network lead to disproportionately large errors.

From the investigations above a network architecture including 9 hidden nodes in the
hidden layer is selected to capture the fabric response to cyclic uniaxial loading. Profile 3
reduced using a reduction factor of 10 is used for network training and Profile 1 and 2
reduced with the same factor are used as 'unseen' test data. The network is tested in

recurrent mode.
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Figure 4-32: Network output tested in recurrent mode using training data gathered
using Profile 3.

Figure 4-32 shows the network output generated in recurrent mode using the training
profile. The network model successfully captures the complex hysteretic fabric response.
Increasing error between the experimental target data and network output in the central
region of the profile occurs but is recovered later in the profile. This indicates that the
network is resistant to error accumulation occurring during network simulation in

recurrent mode.

The powerful generalisation capability of the network is demonstrated in Figure 4-33 and
Figure 4-34 where it is tested with ‘unseen’ data gathered using profiles 1 and 2
respectively. A similar pattern of error is observed in Figure 4-33 in the third cycle set to
the error shown in the sixth cycle set in Figure 4-32 this may indicate over fitting of this
specific profile feature. In all testing cases the network generates the greatest error at
maximum stress levels. This highlights the importance of capturing data beyond the
bounds of stress range anticipated in analysis in order to stay within the bounds of the

training data set.
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Figure 4-33: Network output tested in recurrent mode using previously unseen data
generated from profile 1.
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A key factor that has not been investigated here is the effect of differing load steps
contained within training data and data presented to the network during analysis. As the
internal variable given in (4-37) contains the strain step it is anticipated that the network
will be sensitive to the size of the strain step taken. Therefore, the load and strain steps
required in the analysis should be taken into account when gathering and processing the
training data for the network model. It is also vital that the network undergoes a vigorous
validation procedure. This will be further investigated through demonstrations of the

network material models implemented in finite element analysis, Section 5.3.1.

4.4.4 Cyclic biaxial training data collection and pre-processing

Biaxial data is gathered using the same procedure described in Section 4.2 except the
loading profile is designed to include additional features based on those investigated in
the uniaxial profile. In contrast to the response surface style network the residual strain is
not removed prior to training. This leads to the need to generate multiple stress strain

profiles to train a single network each with a different initial load ratio and ratio order.

Each profile is made up of 6 sets of loading and unloading cycles each containing 5 load
ratios. The resulting profiles are named according to the first load ratio applied to the
fabric in each set of loading and unloading cycles. The sets are distinguished by the
maximum and minimum loads applied in each material direction. In this way 5 unique
profiles are generated which aim to explore as much of the fabric response as possible
(Figure 4-35). The ultimate tensile strength shown in Table 4.17 are used in the
generation of the load profiles. For demonstration purposes the 1:1 profiles with strain
results for PVC (Figure 4-36) and PTFE (Figure 4-37) are shown below. The full sets of

profiles for each material have been provided in Appendix B.

Ultimate Tensile . L.
Strength Maximum Stress Minimum Stress
(kN/m) (kN/m)
(kN/m)
Material Warp Fill Warp Fill Warp Fill
PVC
112 112 28 28 2.8 2.8
(1202T2)
PTFE

(B18059) 140 120 35 30 3.5 3

Table 4.17: Maximum and minimum stress for biaxial profiles
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The fabric stress strain responses of the two materials are very distinct. The PVC strain
response is similar in both material directions, Figure 4-36 (d). This is due the
‘precontrant’ method of fabric production where tension is applied in both material
directions during fabrication. The approximately equal tension applied to the fill direction
during coating results in a similar level of crimp in both material directions. This reduces
the effect of crimp interchange upon initial loading. In contrast the PTFE coated glass
fabric is not tensioned in the fill direction during production. This leads to a higher degree
of crimp in the fill direction compared to the warp. Therefore, the PTFE fabric shows a
much greater initial strain in the fill direction compared to the warp direction. As the fill
direction yarns straighten, thus inducing positive strain in the fill direction, the warp
direction yarns become more crimped, inducing negative strain in the warp direction. This
initial fill direction strain is never recovered despite the lower minimum and maximum

applied stresses, Figure 4-37(d).

Despite the reduction of initial crimp interchange the PVC coated polyester fabric still
exhibits a significantly different response to initial loading compared to the conditioned
response. The initial behaviour of the PVC fabric is largely dependent on the elastic
material properties of the polyester yarns as oppose to the mechanical interaction of the
yarns. Initial strain behaviour is also observed each time the profile reaches a new
maximum stress for example of the third set of cycles leading to a jump in residual strain.
The PVC coated polyester fabric also exhibits an accumulation of residual strain in both
directions. After the initial loading cycle the PTFE coated glass fabric becomes similarly
stiff in both material directions and does not exhibit further initial behaviour into the
profile. The PTFE coated glass fabric also exhibits limited build-up of residual strain in
either direction. The large “Poisson’s effect” exhibited by both fabrics throughout the
applied profile may largely be attributed to the mechanical interaction of the yarns which
in turn is effected by the preceding stress ratio. This behaviour further highlights the need

for multiple profiles for testing.

In order to generate comprehensive training and ‘unseen’ testing data sets which contain
as many features as possible, half of the cycles of each profile are taken as training data
(Figure 4-38a and Figure 4-39a) and half as testing data (Figure 4-38b and Figure 4-39b).
The data points within the selected cycles are reduced by a factor of 0.1 and then
combined to form the final training and testing sets, the data points are denoted by black
points in the figures. The full sets of divided profiles for each material have been provided

in Appendix B.
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Figure 4-38: PVC Biaxial 1:1 stress and resulting strain profiles divided into training
and testing data respectively (— warp, - fill, « data point)
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4.4.5 Cyclic biaxial network training and validation

When modelling a biaxial response the internal variables (4-36)and (4-37)become,

$wn = Own-1&wn-1 (4-40)
$fn = Ofn-1&fn—1 (4-41)
Anyn = Uw,n—1(€w,n - 5w,n—1) = Oyn-188ywn (4-42)
Mo = 0rn-1(Ern — & n-1) = O n-10& (4-43)

where the additional subscripts w and f denote warp and fill directions respectively. As in
the case of the uniaxial internal variables the two variables may be combined into a single

variable for each material direction.

qw,n = fw,n + A77w,n (4'4’4)
qf,n = Ef,n + Ar)f,n (4'4’5)
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Figure 4-40: 8 input strain to stress biaxial hysteresis neural network architecture

As with the uniaxial history network the effect of the number of nodes in the hidden layer
is investigated by training multiple networks with 1 to 40 hidden nodes. The training data
sets described in Section 0 are used for each material. 20 randomly initiated networks are
trained for each number of hidden nodes along with an additional network manually
initiated with weights and biases set to 1. Each trained network is tested in recurrent
mode using both the training data set and the 'unseen' testing data set. The R? values

generated from recurrent testing using the training (Figure 4-42a and Figure 4-43a) and
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testing data sets (Figure 4-42b and Figure 4-43b) are plotted in the form of box-plots for
both materials. The performance of the manually initiated network is plotted alongside the
boxplots. As the network shows similar performance in both material directions only the
warp direction performance is shown. For comparison the non- recurrent mode

coefficients of determination for the PVC network model are plotted in Figure 4-41.
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Figure 4-41: Box and whisker diagrams of PVC network model testing performance
(R2 values) for warp material direction
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Figure 4-42: Box and whisker diagrams of PVC network model testing performance
(R2 values) for warp material direction.
As can be seen with sufficient nodes, i.e. greater than 10, the PVC networks achieve
coefficients of determination in excess of 0.99 for both the training data set and the
'unseen' testing data set. It is also of note that the recurrent performance, Figure 4-42,

follows the same trend as the non-recurrent performance, Figure 4-41.
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Figure 4-43: Box and whisker diagrams of PTFE network model testing performance
(R2 values) for warp material direction.

Both the PVC coated polyester and PTFE coated glass fabric networks with more than 10
hidden nodes show good overall performance, R2 values greater than 0.95, for all trained
networks contained within the box plots. Outliers denoted by red points are generated for
most hidden layer sizes and are omitted from the boxplots. For both fabrics, median

network performance, denoted by the red line, improves with increasing hidden node
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number up to approximately 15 hidden nodes. Increasing the number of hidden nodes
from 15 up to 40 does not consistently increase or decreases median performance. The
performance of networks with numbers of hidden nodes greater than 25 for PVC and 28
for PTFE are omitted in order to increase the clarity of the plots. The inter-quartile range
denoted by the box or the total range denoted by the whiskers, excluding outliers, also
does not demonstrate a consistent increase or decrease with increasing hidden node
number. This indicates that the trained networks are resistant to over training. As in the
case of the response surface style network, the PVC response is generalised more

effectively than the PTFE response.

The same general pattern is followed by the manually initialised networks, Figure 4-41 to
Figure 4-43. Variations in the performance of the network are attributed to the local
minima in the error surface. In only a few cases the manually initiated network achieves a
greater R? value than the best randomly initiated network in a set. In the case of the PTFE
network the manually initiated network rarely demonstrates a performance greater than
the median of the randomly initiated networks. This indicates that the most effective way
to generate networks with the high performance is to train multiple randomly initialised
networks and select the one demonstrating the best performance when tested with

‘unseen’ testing data.

Based on this information the final biaxial history network will have 15 nodes in the
hidden layer. A further 20 randomly initiated networks are trained and tested and the
network with the greatest Rz value when tested with 'unseen' testing data are graphically
presented for PVC (Figure 4-44 and Figure 4-45) and for PTFE (Figure 4-46, and Figure
4-47). Each full profile containing both the training and testing data are presented to the
trained network in recurrent mode. The resulting network output is plotted in a 3
dimensional strain-strain-stress plot for each material direction and for each profile
(Figure 4-44 and Figure 4-46). In order to show network performance more clearly stress
is plotted against time in 20 cycle sections for the 1:1 profile (Figure 4-45 and Figure 4-47).
Additional graphical results for all 5 profiles may be found in Appendix B.

In Figure 4-44 it may be visually confirmed that the stress strain response of PVC coated
polyester fabric, including load history, has been captured across all profiles. Some error is
visible for certain cycles. However this error is recovered in later cycles. In Figure 4-45a it
may be seen that the first 20 stress cycles of the profile show generally good agreement
between network output and targets. There is however some small underestimation in the

cycles after the first cycle in each set. In the following 60 cycles (Figure 4-45b to d) some
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significant underestimation occurs in the loading curves and over estimation in the
unloading curves particularly in the warp direction. This error does not appear to
accumulate (Figure 4-45c). The greatest error occurs in the cycles where one material
direction is held at constant stress while the other is varied. This leads to considerable
fluctuations in stress in the constant stress material direction. However, the error in the
non-constant material directing remains low. Similar features appear in all the profiles
tested (Appendix A). There is no clear visible distinction between data used in training and
unseen data used in testing. This demonstrates the neural network material models strong

ability to generalise.
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Figure 4-44: Strain stress plots from PVC network tested with full profiles in recurrent
mode(— warp, — fill, * target, © network output)
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Figure 4-46: Strain stress plots from PTFE network tested with full profiles in recurrent
mode (— warp, — fill, * target, © network output)

In Figure 4-46 it may be visually confirmed that as with the PVC coated polyester the
stress strain response of PTFE coated glass fabric, including load history, has been
captured across all profiles. Similarities between the PVC and PTFE network performance
are observed. The greatest error occurs in the cycles where one material direction is held
at constant stress while the other is varied. This loading ratio leads to error in both
material directions. There is also no clear visible distinction between data used in training

and unseen data used in testing for the PTFE network.

Unique to the PTFE network there is some over estimation in the first cycle of the profile
and also in the warp direction in the first cycle where the fill direction is held constant.
This occurs across all similar cycles in the rest of the profiles (Appendix A). In the

following 60 cycles (Figure 4-45b to d) some significant underestimation occurs in the
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loading and unloading curves particularly in the fill direction. This error does not appear

to accumulate and in fact recovers (Figure 4-45c).
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Despite the areas of error identified in the neural network models above, the models
provide a good representation of the complex material response. Compared to the
capability of a plane stress model to represent material response as a single flat surface
this form of material model enables the representation of non-linear history dependant
behaviour. This form of network also does not require the removal of residual strain from
the training data. The output of the network approximates the stress resulting from total

strain applied to the fabric.
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4.5 Summary and Conclusions

It has been demonstrated by the networks described above that neural network material
models are capable of capturing the complex non-linear stress-strain response of
architectural fabrics. The response surface style network captures the strain stress
relationship in a similar manner to the plane stress framework, but without the need for
plane stress assumptions. Due to the removal of residual strain, the network is not trained
using data directly captured from biaxial testing, and, therefore, the full response is not
captured. This network also has limitations when employed to capture the much steeper
response surface of PTFE coated glass fabric. However, this is overcome by the

introduction of the approximate load ratio as an additional input.

The uniaxial network demonstrates the capability of neural networks to model the effects
of load history. This initial study into uniaxial history neural networks offers a proof of
concept which leads to a biaxial response network which includes the effects of load
history. This form of network requires carefully designed experimental load profiles that
explore the full response envelope to provide comprehensive testing and training data
sets. The effects of load step have been investigated along with the number of hidden

nodes for both the uniaxial and biaxial material networks.

The effect of hidden node number is investigated by training multiple networks with
increasing numbers of hidden nodes. Box plots of the coefficients of determination,
generated from comprehensive network testing, indicate that uniaxial history networks
with 4 inputs require more than approximately 6 nodes but lose the ability to generalise
with more than 17 nodes. In the case of a biaxial history network with 8 inputs a number
of hidden nodes greater than 15 is found to provide good performance. However, there is
no consistent fall in median performance with increasing hidden nodes up to 40 nodes.
This brief study indicates that a good rule of thumb is that the number of hidden nodes

required is approximately equal to twice the number of network inputs.

Graphical representation of the final trained history networks for PVC and PTFE fabrics
demonstrate that it is possible to use appropriate neural network models in order to
capture and reproduce fabric response. The next step is the implementation of these
neural network material models for architectural fabrics within a custom fabric analysis

finite element programme.
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Chapter 5. Neural Network Material Model Implementation

In this chapter the history independent response surface and history dependant neural
network material models derived in Chapter 4 are implemented in place of the plane
stress framework within the finite element formulation described and demonstrated in
Chapter 3. Derivations of an implied stiffness matrix for both the response surface style
network and history network models are described, followed by a detailed description of
neural network implementation including consideration of wrinkling criteria for the
response surface network and iterative loading for the history network. Implementation
studies for both networks are presented using patch simulations of experimental data and

simulations of a more realistic hypar structure.

In a typical finite element analysis, Section 3.1, current stress is derived from the product a

plane stress elastic compliance matrix and current strain, equation (3.1).

[— Swlw
(A-vwrvrw)  (A-VwrUfw) Ex Oy
{o} = [El{e} = | __ErVwr Ey 0 {Ey} = {Uy } (3.1)
(A-vwrvpw)  (A-VwfUpy) ]/xy Txy
0 Gy

This is the matrix equivalent of performing the following three calculations,

. = Ey, EwVry 5 1
x (1-vyrvfw) x (A-vwrvrw) y ( ’ )
— _ ErVwr Er 5.2
o-f N (A-vwrvsw) x + (1-vwfvsw) Sy ( )
Txy = wayxy (5.3)

[t is clear that there is no interaction between the in plane strain and the shear strain,
equations (5.2) to (5.4). Due to the complex interactions exhibited by a typical fabric
material response this may not in fact be the case, Section 2.2. As the neural network
material model is implemented within the finite element formulation in place of the plane
stress elastic compliance matrix, equation(5.1), the network would ideally capture both
direct strain stress behaviour and shear behaviour. However, the complexities involved in
gathering sufficient training data with combined shear and biaxial stress response shear
stress and strain is not included within the network model at this stage of development . It
is deemed outside the scope of this thesis. Therefore, calculation of shear stress is

performed separately via the shear modulus, G,, ¢ (equation (5.4)).
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The response surface style network, which takes 2 inputs comprising current strain in the
warp and fill directions respectively works in a very similar manor to equations (5.2) and
(5.3) and may be implemented in a plane stress based finite element formulation within its
current form. The history network has an added level of complexity as it also takes
previous stress and strain as inputs in order to find the current strain. This is
accomplished through the use of history terms within the expression of equilibrium for
the system. Therefore, implementation of this form of network model requires loading to

be applied iteratively as opposed to a single load step.

The finite element formulation, Section 3.1, utilises a dynamic relaxation solver to
iteratively solve the state equation for equilibrium. The current stress state at each Gauss
point in an element may be derived directly from the network material models. However,
the diagonal terms of the system's elastic stiffness matrix, Kz, equation (3.15), are
required in order to provide damping to the dynamic relaxation algorithm, Section 3.1.2.

In order to derive these terms the material model is required in the form of a 3 by 3 matrix.

All 5 non-zero terms are required when the B matrix is not sparse.
(K] = =7 (S, (BITIEBav | (3.15)

5.1 Implied Stiffness Matrix

Assuming G,, ¢ is assumed to be a given constant, the numerical implementation of a
neural network material model in finite element analysis is achieved by derivation of an
‘implied’ stiffness matrix, E™P!€4, similar to that proposed by Hashash et al. [119]. This
involves the calculation of partial derivatives of the network output with respect to the

input to give,

. . 0
Elmplled
e =l o ] (5.4)
0 0 Gy
where,
00k=1 00)=1
Eimplied= Ogi=1 0¢i=> (5.5)

00k=p 00k=2]|
Ogi=1 O¢i=>

The network proposed in [119] has an input layer, two hidden layers and an output layer.
Both hidden layers and the output layer have a tan-sigmoid (tanh) activation function.
However, all of the networks used in this thesis consist of an input layer a single hidden

layer with a tan-sigmoid transfer function and an output layer with a linear transfer
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function, Figure 5-1. This form of network has been demonstrated as being sufficient for

the representation of a number of engineering materials, Section 2.1.

5.1.1 Response surface style neural network implied stiffness

Input Layer Hidden Layer Output Layer

Back propagation of error signals to update connection

Figure 5-1: Strain to stress neural network architecture

Revisiting the network equations given in Section 4.1.1, equations (4.1) to (4.6), and re-
writing them for the response surface style neural network shown in Figure 5-1 yields the

following set of equations. The network inputs are the current warp and fill strains

denoted by &; where,

Ei=1 = €y (5.6)
Ep = €. (5.7)
The network outputs are the current warp and fill stresses denoted by o, where,

Ox=1 = Oy, (5.8)
Og=2 = Of. (5.9)

All network inputs are scaled to a range -1 to 1 via equation (4.1). The inputs defined in

X

equation (5.7) and (5.6) are scaled according to the maximum, e™**, and minimum , g/*",

strains of the training data,

NN _ 2(s—g")
e = ks — 1. (5.10)

The output of the j* hidden node with a tan sigmoid transfer function remains the same,

H; = tanh([Z)5 wfie™ + b[']). (4.2)

The scaled stress output of the k" output node, equation (4.4), is given by,
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o = ([T wil? B; + b7)). (5.11)
The network output defined in equations (5.9) to (5.10), is finally scaled back to a value

with a physical meaning via equation (4.4) and the training data maximum and minimum

max

stress values, o;*** and amm

respectively,

akz("k “) (o7 — gin), (5.12)

The terms of the implied stiffness matrix may be found via partial differentiation of these
network equations. This process is very similar to that used in the derivation of the
derivatives used in back propagation training, Section 4.1.2.1. Employing the chain rule,
the partial derivative of the network outputs (warp and fill stress) with respect to the

network input, (warp and fill strain) is given by

dog _ 0oy 6aﬁN

dg;  aaPN G (5.13)

From equation (5.12) the partial derivative of the final un-scaled network output, g, with

respect to the scaled output layer output, gV, is given by

max min
doy _(Uk —Ok )

6agN 2

(5.14)

The partial derivative of the output layer output, g5V, with respect to the un-scaled input,

&; , requires further use of the chain rule leading to

aahN SNH (60;’3” aHi) (5.15)
de; J=1\ oH; a¢, ) '

From equation (5.11) the partial derivative of the output of the kth node of the output

layer, g™, with respect to the output of the j®* node of the hidden layer, H;, is given by

o'V a(B[Z)EwiF (By)+b]) who

Substitution of equation (5.10) into equation (4.2) and expansion of the summation leads
to the output of the j** node of the hidden layer in terms of the un-scaled network inputs,
as,

Hj = tanh( (M - 1) +wp (—E(EZ ) _ 1) + b”) (5.17)

(smax mm) ;nax ml‘n)

The partial derivative of a tan-sigmoid function is given by,

dtanh(f (&) tangg(ei)) = (1 - (tanh(f(fi))z)a];;;). (5.18)
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The partial derivative of the of the input to the tan-sigmoid activation function, f (¢;), of
the j'" node of the hidden layer with respect to the un-scaled input to the first node of the
input layer is given by,

eH ( i= 1‘5:m1n) eH 2(51‘:2‘5}11'211)_ ) H
6[ Wij1 ((Smax Smm) 1)-"sz <(£-{r_lax_£1_nin) 1 +b] 2W (519)

=1 =1 =2 =2
de (Smax mm

and with respect to the second node of the input layer by,

eH (51 1_€m' )_ eH (sl 2" %= 2) H
a[ W (Cir oo Ml i 1)“’]’] 2wy’ (5-20)

de. (Emax mm

Therefore, substitution of a generalise version of equations (5.19) and (5.20) into equation
(5.18) leads to the partial derivative of output of the j** node of the hidden layer with

respect to the un-scaled input of the i* node of the input layer,

2el = (1= (1)) (v epy (521)

Substitution of equations (5.21) and (5.16) into equation (5.15) and substitution of that
along with equation (5.14) into equation (5.13) leads to the following set of equations for

the terms of the implied elastic stiffness matrix,

min

a"’?: - - 1)27“ ({Wl /') (1 - (Hj)z) ((s:”;tv_jl;:gn ) ) (5.22)
L (a,z"v;x;a,zmi‘) £ (fwgry (1= ) (mZW_J”m)> ), (5.23)
e = g (1 0 )
Oocs (a,zngxz a,’c"l?)z ({WZH} x4(1- ()% (J—’fm) ) (5.25)

5.1.1.1 Implied stiffness validation with plane stress neural network model

[t is not the intention that a neural network material model should be used to represent a
plane stress material response. However, it is useful to demonstrate effectiveness of the
implied stiffness matrix using a network trained with plane stress data, e.g. a flat surface in
o, € space. The PTFE response surface style test data from Section 4.3.1, Figure 4.9, is used
to generate a plane stress training data set. Differential minimisation is used to fit a plane
stress material model to 5 unique cycles of the experimental test data with residual strain
removed. Error between strain generated from stress via a plane stress stiffness matrix,
equation (5.26), and experimental strain is minimised. Un-constrained independent

Poisson'’s ratios are used [68].
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[:’;] _ [ 1/Ey _ny/Ey] Uxx]

_ny/Ex 1/Ey Oyy (5'26)

The resulting elastic constants are shown in Table 5-1 along with the R? value achieved by
the plane stress material model. As an aside, it is notable that the performance of the plane
stress model is significantly lower than the equivalent neural network material models

assessed in Section 4.3.3 which consistently achieve R? values in excess of 0.98.

E, E, Uxy Uyy R?
PTFE B18089 1151.94 794.11 1.11 0.78 0.9105

Table 5-1 PTFE elastic constants

Two sets of data are generated using the plane-stress material model, equation (5.26). The
first uses the experimental stresses to generate plane stress strains. The second set
comprehensively explores the response area using a grid of stress points to generate
further plane stress strains. The resulting plane stress data sets along with the original

experimental data are plotted in Figure 5-3.

Warp  Fill

|:| . Plane stress model strains from synthetic mesh of
stress points

. . Plane stress model strains from experimental stress
points

+ + Experimentally generated data

* * Network output from synthetically generated stress
data

o o Network output from experimentally generated

stress data

Figure 5-2: Response surface neural network figure key

4
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Fill stress (kN/m) 00 Warp stress (kN/m) Fill stress (kN/m) 00 Warp stress (kN/m)

Figure 5-3: Plane stress representation of PTFE response
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A strain to stress neural network is trained using the plane stress data set derived from

experimental stresses. The network comprises an input layer containing two inputs, warp

and fill strain, a hidden layer containing 4 neurons and an output layer containing 2

neurons for warp and fill stress. The network variables, including weight and bias values

along with the maximum and minimum values used in scaling the network input and

output, are shown in Table 5-2.

wf-H bf' Wf(’f .
i=1| i=2 j=1|j=2|j=3|j=4
j=11]-18109 | -1.2209 | 0.0217 =1 0.0063 | -0.6703 | 31.1350 | -0.3894 | 0.0174
j=2|-17464 | -1.9173 | 0.5431 k =2 |0.0005 | -5.3687 | 2.9609 | -3.1338 | 0.5831

Jj= 0.4099 | 0.3738 | 0.0014
j=4|-2.2860 | -2.5098 | -0.7868
gnax gmin gmax ginin
i= i=2]i=1 i=2 k=1 | k=2 | k=1 | k=2
0.0308 | 0.0391 | -0.0303 | -0.0341 | 35.8970 | 31.4160 | -0.0982 | -0.0633

Table 5-2: PTFE plane-stress network variables

When tested with both the training data set and the additional mesh of data points the

network achieves R? values greater than 0.999. The resulting network output is plotted

alongside the target data in Figure 5-4.
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Figure 5-4: Plane stress strain to stress network output plotted with target data sets

In order to validate the implied stiffness matrix it is calculated at 3 points within the

response surface using equations (5.6) to (5.25)and the network variables, Table 5-2. The

network is trained with strain as input and stress as output. Therefore, the inverse of the
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stiffness matrix, equation (5.26) is used for validation. Substitution of the elastic constants

in Table 5-1 leads to,

Of

[8329.6 6470.3
6370.0 5742.2

Ow _ Ew/(1 - vyxvxy)
[ ] - [Efvwf/(l — UyyUyxy)

/)

vafw/(1 - vfwvwf)
Ef /(1 = VpyUpp)

] -

(5.27)

Data Index: 7 Data Index: 50 Data Index: 120
Value % Error Value % Error Value % Error
&y 0.0001 - -0.0120 - 0.0145 -
Ef 0.0017 - 0.0171 - -0.0154 -
oy 12.179 -0.0051 11.251 -0.0048 21.366 0.0038
af 10.659 0.0004 22.208 -0.0007 4116 0.0008
001 8330.6 8330.7 8330.3
0.0121 0.0128 0.0079
dgi_1 (8329.6) (8329.6) (8329.6)
901 6471.1 6471.1 6470.7
0.0125 0.0127 0.0070
dg;_» (6470.3) (6470.3) (6470.3)
90 -> 6370.0 6370.3 6370.3
-0.0007 0.0045 0.0041
0gi_1 (6370.0) (6370.0) (6370.0)
90 -> 5742.2 5742.5 5742.4
-0.0009 0.0044 0.0040
dgiy | (5742.2) (5742.2) (5742.2)

Table 5-3: Plane stress network implied stiffness validation

In Table 5-3 the low magnitude of the error between target stress and network stress

demonstrates that the implied stiffness matrix is equivalent to the compliance matrix used

in the generation of the training and testing data. This demonstrates that the implied

stiffness matrix is an effective equivalent to the plane stress stiffness matrix. When

implementing a non-uniform neural network, i.e. one trained directly from experimental

data as demonstrated in Section 4.3.2, each data point will generate a unique implied

stiffness matrix. The implied stiffness matrix effectively maps a plane tangential to the

network response surface at the current location. With a sufficiently small displacement

step this matrix may be used to approximate surrounding points on the surface according

to,
00k=1 00k=1

Own _ Own-1 AO'W _ Own-1 dgi=q1 dgi=y AEW

[Uf,n] - [Gf,n—l] + AO‘f] - [Gf,n—l 00k=p 00k=2 [Agf]' (5.28)
&= 0&i=>
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However, as previously discussed, when used in conjunction with a dynamic relaxation
solution algorithm the elastic stiffness matrix is used only to calculate the diagonal terms

of the system stiffness matrix for kinetic damping to control the rate of convergence.

5.1.2 History neural network implied stiffness

In order to capture material response with historical loading effects additional network
inputs are required (Section 4.4.4). The network equations for the biaxial hysteresis

neural network (Figure 5-5) are as follows. The network inputs are the current warp and

fill strains denoted by ¢; (i =1 — 2), where,
€i=1 = Ewns (529)

Eiza = Em (5.30)

and the historical stresses and strains from the previous loading iteration denoted by
SV, (i =3- 6)where,

SViz3 = Ewn-1, (5.31)
SVica = € -1, (5.32)
SVi=s = Own-1, (5.33)
SVieg = Ofn_1. (5.34)

The subscript n indicates the current load step and n — 1 the previous load step. The
internal variables, IV; (i =7 — 8), are derived from historical stresses and historical and

current strains, and are given by

IVi=7 = SVi:S X SVi=3 + SVi=5(€i=1 — SVL'=3) , (535)
IVi:g = SVi:G X SVi=4 + SVi=6(€i=2 - SVL'=4_) . (536)
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Figure 5-5: 8 input strain to stress biaxial hysteresis neural network architecture

As in the case of the response surface style network all network inputs are scaled to a
range between -1 and 1 as follows,

NN 2™ (5.37)
i - (sgnax_simin) )

GyNN — 20Vi=sy™™ (5.38)
1 ( SVimax _ SVimin ) )

[yNN = 2avim v (5.39)
L

- (IVimax_IVimin) -
With the additional inputs, the output of the j* hidden node, B;, with a tan sigmoid transfer

function is given by,

H; = tanh([ZNe wgH eV + SUSY wSVHSYNN 4 SNIV y IVH [y NN 4 pi]). (5.40)
The output of the k" output node is given by equation (5.11) and the un-scaled output is
given by equation (5.12). The derivatives of equations (5.13) to (5.16) also remain the
same. Substitution of equations (5.37) to (5.39) into equation (5.40) and expansion of the
summation leads to the output of the j*"* node of the hidden layer in terms of the un-scaled

network inputs, gives,

i=1— €2y’ iy — e i 5.41
tanh (Wle (M - 1> +wg! (M _ 1) +wvH <2(5V 3=sviZ") _ (541)

max_ .min max_ .min max min
(e ey (e25" -] (SVIs -sviZy
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e (o (2 )

max min max min
(SVi:4 —SVi=4 (SVi:S _SVizs)

- <2(svl 6—SVIM) B 1) N WIVH< ((SViesXSVizg+SVizs(8iz1 =SV i=3))-IVIH") B 1) N

w; _
6 max min max min
] (SVi=6 _SVi=6 (IVi=7 _IVi=7 )

IV ( ((SViz6XSVima+SVizs (Eima—SVia)) - IV 1) N bH>
J8 (vrgx_ i i)

Where, the internal variables are a function of the current strain. Therefore, the partial
derivative of the input to the tan-sigmoid activation function, f(g;), of the j** node of the

hidden layer with respect to the un-scaled input to the first node of the input layer is given

by,
sH NN NSV . SVH cy;NN N1V IVH ;.,NN ,  H
o(BsNe will el + xS WiV Hsv N4 s wiHivEN +pl])  qwiH 2wlVHsy,_g (5.42)
de (Emax mm (IVmax IV"ZL;TL )
sH NN NSV . SVH cy;NN N1V IVH ;.,NN ,  H IVH
o(BsNe will el + s wil HsvIN sl wiHIvEN +bl])  awi 2wlftsy,_q (5.43)
de. (Emax mm (IVmax_IV'min ' )

Substitution of a generalised version of equations (5.42) and (5.43) into the standard
derivative of a tan-sigmoid function, equation (5.18), leads to the partial derivative of the
output of the j* node of the hidden layer with respect to the un-scaled input of the i*"

node of the input layer, as in,

2ol = (1= (1)) oy (544)

Substitution of equations (5.44) and (5.16) into equation (5.15) and substitution of the
resulting expression along with equation (5.14) into equation (5.13) leads to the following

general equation for the terms of the implied elastic stiffness matrix in equation,

dokers _ (OH —Cfﬁnm) well 2wllH SV iy
e = Tt (i) (1 (8)°) (e + i)} (549)

(i+6)

Written explicitly this equation becomes,

%Zl:::ll — (amax;a{”l”) Z ({Wl U} X (1 — (H])Z) ((gmi‘:vffmin) j(;fl(;)j::(%zn)) ) )
G = A 5 (Gt} < (- (1)) ((mZWJHm) * 52%5555(2%%) ) (5.46)
%ZI:;Z (amaxz o) Z ({WZ U} X (1 - (Hj)z) <(£§n§:v_]€f¥un) j(;)il(;)j::(%zn)) ) )
o = e (o< (- 0)°) e + o)
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5.1.2.1 Implied stiffness validation with history neural network model

The 8 input PVC history network trained and tested in Section 4.4.4 is used to validate the
implied stiffness matrix. Taking a single cycle of the 0:1 profile, the implied stiffness is
calculated at each data point along with the network output. The network output in
recurrent mode along with the target data is shown in Figure 5-6 and the implied stiffness
results along with the target data is shown in Figure 5-7. It can clearly be seen that the

network output closely fits the target data.
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Figure 5-6: Network output plotted alongside target data from Profile 0:1, cycle 50.
(—warp, —fill, * target, o network output)

The fit of the implied stiffness results to the target data is less good but offers a reasonable
approximation. The error between the implied stiffness stress and target stress is due to
the failure of the linear implied stiffness matrix approximation to capture the changing
gradient of the non-linear fabric response. The next data point in the experimental
response surface may either lay above or below the flat tangent plane defined at the
current data point by the implied stiffness matrix. This leads to either an under or over
estimation of next stress step. This is particularly clear in the warp stress plot of Figure
5-7 where stress is underestimated in the initial loading section and overestimated
immediately after the turning point between loading unloading. This indicate that the

gradient of the response surface is particularly variable in these areas.
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Figure 5-7: Implied stiffness matrix output plotted alongside target data from
Profile 0:1, cycle 50. (— warp, —fill, * target, o network output)

To further validate the implied stiffness definition the analytical derivatives are compared
with an equivalent finite difference method derivative in Table 5-4. A perturbation of
1077, h, is added to each of the current strain inputs in turn and presented to the network.
The original network output, f(a), and perturbed output, f(a + h), may then be used to
find the finite difference derivative.

0f (@) _ flath)—f(a)
e (5.47)

The error between the analytical and numerical derivatives is generally less than 1%. The

only significant error occurs where the implied stiffness term is significantly lower than

. doy= . .
the other 3 terms, as in the case of the azk‘z term for the 10t data point which produces a
i=1

4.34% error. In addition this data point is positioned close to the loading to unloading
turning point of the load profile. As discussed above it is likely that in this region the
network warp response surface gradient varies significantly in agreement with the
variation of the experimental response surface gradient. Although the perturbation
applied to the strain is very small the perturbed input-output set represents a location on
the response surface with a marginally different gradient to the unperturbed input-output

set, The inconsistency between the strain to stress relationship at the perturbed and
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unperturbed response surface locations leads to inconsistencies between the finite
difference and analytical implied stiffness terms associated with the warp direction.
Data Index: 10 Data Index: 20
Inputs Inputs
Ewn 0.0765 0.0615
Efn 0.0173 0.0111
Own-1 24.8773 10.2473
Ofn-1 13.8637 6.5550
Ewn-1 0.0735 0.0646
Efn-1 0.0160 0.0119
Cwn 1.9030 0.6304
Cn 0.2404 0.0727
Outputs Outputs
Own 27.6031 7.4002
Ofn 15.0650 47717
Analytical Di:‘fiel:'i:lce % error | Analytical Di;‘fiel:-i;flce % error
001
92, 790.4 785.1 -0.6756 663.5 662.5 -0.1580
00y=1
92, 113.9 113.8 -0.1556 175.3 174.5 -0.4666
00y
92, 53.0 50.7 -4.3406 178.9 178.5 -0.2632
00)=2
9., 808.2 808.2 -0.0006 485.0 484.6 -0.0663

Table 5-4: PVC history network implied stiffness validation using finite difference
method (h =0.0000001)
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5.2 Response Surface Style Network Implementation

The expression of equilibrium for the system (Section 3.1 ) is given by,

2 = (R} = Bi1[f, (BTIENBIAV] (D} - Sy [J, [BI"[E1(eolav] +
(3.11)
= [J, B [oolav] + (P} = ZZT [, [B]"Ielav] — P} =o.
Where
[0] = [E]([e] — [0]) + [0] = [EI([BID} — [o]) + [05] (312)

In the case of the response surface network material model this equation is replaced by,

[o] = N([e] + [&D, (5.48)
where N([e] + [¢5]) denotes the network output which is a function of the total current
strain. The initial strain applied to the fabric is denoted by &, and the current strain
derived from the nodal displacement via the element B matrix by ¢. The expression of
equilibrium for the system becomes,

Ay
0Dyn

= (R} =T [J, BI'IN (] + [zoD]av] - (P} = 0. (5.49)

The initial strain is a constant value which is the strain applied in order to induce the
desired pre-stress defined during form-finding. This initial pre-stress is represented by g
in equation (3.12) and initial strain is typically 0 unless applied displacement boundary
conditions have been defined. In engineering practice, detailed numerical simulation of
fabric installation is generally not undertaken. This is due to the complexity of modelling
the fabrics initial response. However, an initial strain value that corresponds to the correct
initial stress level may be estimated using a stress to strain neural network, Section 4.3.2.2,

or through a patch test.

The current strain is given by the product of element B-matrix and nodal displacements

with the addition of initial strain, such as,

{e} = [BI{d}:i + [0]- (5.50)

The elastic stiffness matrix, Kg, is approximated by

[Kg] = 2zt [fv [B]T[E"m””ed][B]dV]i- (5.51)

The geometric stiffness matrix, K, given by

[K,] = X7 [f,, d[B]T[a]dV]i, (5.52)



Chapter 5 Neural Network Material Model Implementation 236

where the network definition for stress, g, equation (5.48), is used.

The implementation of the response surface network within the finite element analysis

procedure is summarised in Figure 5-8.
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Figure 5-8: Finite Element analysis procedure with response surface neural network
material model

It should be noted that the equivalent nodal loading is calculated at the first step of
analysis for the initial nodal configuration but is not updated during subsequent iterations.
As the finite element formulation allows large displacements this is a simplification of the
structural response. In reality the loading would be redistributed as the structural mesh
deformed. Similarly the definition of the material warp and fill directions with respect to
the global axis results in the direction remaining constant for each panel throughout the
analysis despite the occurrence of potentially significant deformation. Both of these
simplifications are applied in order to increase the stability of the finite element analysis
and the speed at which it converges to an equilibrium state. During the computational

design of an architectural fabric membrane the greatest deformation occurs during the
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initial form finding analysis when no external load is applied. As a zero stiffness element is
used the material direction is also not significant. After form finding it is assumed that the
changes in load distribution and material direction resulting from deformations of the
mesh induced by the applied load are small enough to justify the aforementioned

simplification.

5.2.1 Additional areas, wrinkling criteria

Neural network generalisation is unreliable outside of the bounds of the training data.
Therefore, it is necessary to include some additional data to enable the simulation of
loading conditions outside the tested load ratios. In future work this is likely to involve the
completion of more comprehensive testing profiles which explore stress response below
pre-stress and into the wrinkled regions of the stress-strain response surface. However, it
is reasonable to use a plane stress approximation (Table 5-5) with wrinkling criteria
applied in order to generate additional data points to train the network in these areas of
the response surface. Especially given that engineering design practice would not
normally permit such stress strain scenarios but data is required to enable the analysis to

continue to a possible feasible or acceptable solution at equilibrium.

Ew Ef i Vrw wa

769.3kN/m 856.4kN/m 0.32 0.59 30kN/m

Table 5-5: PVC plane stress elastic constants
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Figure 5-9: Training data with additional fictitious plane stress data zones
Initially a regular grid of warp and fill strain pairs is generated. A minimum warp strain
equal to minus 1 times the minimum absolute value of warp strain and a maximum equal
to the maximum warp strain and the equivalent fill data is used to define the limits of the

grid. Further data points are defined at intervals of 0.5% strain. All strain points that fall
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within the experimental response envelope are removed from the data set and the
resulting points are used with plane stress elastic constants to generate equivalent stress

data. The additional plane stress data points are shown in Figure 5-9.

In the current work shear stress is treated as being uncoupled from the direct stress, as in
plane stress theory, and is calculated from shear strain using a shear modulus. For the
purposes of applying wrinkling criteria the shear stain is assumed to be zero as is the case
in the biaxial testing methodology used in the generation of the experimental training data.
As discussed in Section 3.1.1.3 wrinkling is identified using one of 3 different sets of
criterion, the principle stresses, the principle strains or a combination of both. The

principle stress are given by,

w— 2 2
O-ﬁr)lax,min = %(o-f + UW) * J(%) + (Txy) ) (3.132)
and the principle strains by,

w— 2 2
€h xmin = 3 (& +&w) £ \/ (222) + (1y) (3.133)

1. Stress criterion based solely on principle stress,

Uf:lin > 0: ‘taut state’ (3.135)
ob . <0andab,, >0:  ‘wrinkled state’ (3.136)
otherwise: ‘slack state’ (3.137)

2. Strain criterion based solely on principle strain,

sﬁlin > 0: ‘taut state’ (3.138)
eh. <O0andek . > 0: ‘wrinkled state’ (3.139)
otherwise: ‘slack state’ (3.140)

3. Mixed criterion based on a combination of principle stress and strain,

aff“-n > 0: ‘taut state’ (3.141)
ob . <0andeh,, >0: ‘wrinkled state’ (3.142)

otherwise: ‘slack state’ (3.143)
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Depending upon the state identified a penalisation factor is applied to the elastic stiffness
matrix. Where the fabric is identified as wrinkled, penalisation occurs in the direction of
the wrinkle. In cases with zero shear strain the angle between maximum stress and the
warp direction will either be 0° where warp stress is greater than fill or 90° where fill is
greater than warp. Where the membrane is deemed to be slack the material stiffness

matrix is penalised in all directions.

The removal of shear stress form the wrinkling procedure leads to a simplification as the
wrinkle direction will not be used or in fact calculated during analysis. However, it is not
likely that a simulated fabric structure with areas of wrinkled or slack material would be
deemed acceptable. Therefore, the additional data only serves to stabilise the analysis and
allow the identification of problem areas in the design. It should also be noted that all
simulations provide only an approximation to the stress strain state of a real structure.

Therefore uncertainty should be considered within the design procedure.

When using the stress criterion (Figure 5-11a), negative maximum stress occurs in
combination with a positive minimum strain and a wrinkled state is incorrectly defined as
slack, this lead to a significant discontinuity in the surfaces. When using the strain
criterion (Figure 5-11b), due to the effect of Poisson’s ratio, a taught state is misjudged as
wrinkled where a negative minimum strain may coincide with positive minimum stress. In
this context, the combined criterion (Figure 5-11c) is arguably the best method of
identifying the state of the fabric and generates a continuous surface of additional training

data points.

Warp  Fill
|:| |:| Network generated strains from synthetic mesh of
stress points
+ + Experimentally generated data

. . Additional plane stress data points with slack
wrinkling criteria

Additional plane stress data points with wrinkled
wrinkling criteria

Figure 5-10: Response surface with additional wrinkling criteria data points figure
key
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Figure 5-11: Training data with additional wrinkling criteria data points
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Figure 5-12: Response surface neural network figure key
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Figure 5-13: PVC (502S) strain to stress network demonstrating best performance
with ‘unseen’ testing data set (R?> = 0.9978)

Ten randomly initiated networks with 10 nodes in the hidden layer are trained with
experimentally generated data and additional wrinkling criteria data. Each network is
then tested using the ‘unseen’ network generated data set (Figure 5-13). The network
demonstrating the highest R 2 value when presented with the ‘unseen’ testing data is
selected for use in simulations presented in the following sections. The same process is
used to train a 3 input PTFE neural network with additional wrinkling criteria data. The
training and testing of multiple networks prior to selection is done to avoid the use of a
network that has failed to accurately generalise the fabric response through over fitting or
insufficient training. This is an important step in the development of neural network
material models. The tool developed in Matlab for training response surface style
networks is demonstrated in Appendix C. The uncertainty introduced by the variation in
response between multiple networks trained with the same training data is explored

further in Section 6.2.

5.2.2 Patch test

The 1 metre square patch of fabric, discretised into 32 elements with 81 nodes and

restrained along two edges by rolling restraints (Section 3.2.1, Figure 5-14), is used to test
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the model trained above (Section 5.2.1). Uniformly distributed loads (UDL) of varying
magnitudes (Table 5-6) are applied along the free edges. Load is applied in the warp
material direction, P%, aligned with the global x-direction and in the fill material direction,

P/, aligned with the global y-direction.

P’kN/m
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Figure 5-14: 32 element patch for validation

When using a plane stress model, the relationship between stress and strain is linear.
Prestress is a constant added to the current stress increment given by the product of the
elastic stiffness matrix and the current strain. As discussed above when using the neural

network model the prestress is defined using the current strain only.

In pre-processing prior to training the residual strain is removed from the data set at each
point where the profile returns to prestress, equation (4.34) (Section 4.3.1). Therefore, an
input of zero strain returns stress equal to test prestress. Therefore a simulation with an
applied load equivalent to the prestress will lead to zero strain. An applied load below the
test prestress will lead to a negative displacement and equivalent negative strain. As
described in Section 5.2, in order to apply a prestress level greater than that applied in the
training data an initial uniform strain, &, is applied to the structure. This strain may
eventually be determined through simulation of installation. However, in this study the
stress to strain network, used to generate additional training data, Section 4.3.2.2, is used

to find the strain that returns stress equal to desired prestress.
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Applied Load Strain Displacement Stress
(kN/m) (%) (m) (kN/m)
Warp Fill Warp Fill Warp Fill Warp Fill
2.8 2.8 -0.041 | -0.027 | -0.0004 | -0.0003 2.801 2.801
2.8 20 -2.202 | 2.272 -0.022 0.022 2.739 20.456
20 2.8 1.836 | -0.664 0.018 0.007 20.134 2.750
20 15 1.563 0.784 0.016 0.008 19.845 14.771
15 20 0.733 1.503 0.007 0.015 14.780 19.855
25 19 2.096 1.120 0.021 0.011 24.725 18.614
19 25 1.140 1.962 0.011 0.019 18.638 24.720
17.5 27.5 0.821 2.429 0.008 0.024 17.090 27.278
8 18 -0.195 1.537 -0.002 0.015 7.880 18.035
22 12 1.863 0.389 0.018 0.004 21915 11.783
25 5 2.314 | -0471 0.023 -0.005 25.119 4.888
5 25 -1.701 | 2.564 -0.017 0.025 4.876 25.437
1 1 -0.203 | -0.205 | -0.002 -0.002 1.002 1.002
Table 5-6: PVC neural network patch simulation results
40 40
A %f N
2 17 -‘;jj ; f'f‘;fﬁ,n 4 2 ;‘h:‘}' ;3:{.‘3";‘5 Pt
0 + ,u;.,w-z . 0 . rET “.2 S
Fill strain (%) 4 -4 Fill strain (%) 4 -4

Figure 5-15: PVC (502S) strain to stress network with simulation results.

The simulation results demonstrate a good fit with the response surfaces constructed

Warp strain (%)

243

Warp strain (%)

from the data used for training, Figure 5-15. From the results, Table 5-6, it is observed that

the applied load induces the expected equivalent stress. The small deviations occur due to

the change in dimensions of the patch. For example, taking the results for the applied load

of 17.5kN/m in the warp direction and 27.5kN/m. The updated dimensions of the patch at

the end of the of the simulation is given by,
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Xgimension = 1 + 6, =1 —0.008 = 1.008 m
Ydimension = 1 + 5f =1-0.024=1.024m

The analysis stress is agrees with the applied load divided by the updated patch

dimensions,
Warp Applied Load 17.5
o, = ——L°PP = = 17.090,
Ydimension 1.024
Fill Applied Load 27.5
= PP =2 =27.282.

Xdimension 1.008

The discrepancy between fill stress calculated above and analysis fill stress may be
attributed to rounding error as demonstrated by

__ Fill Applied Load 275
Xdimension 1.0084

= 27.271.

The PTFE network (Figure 5-16, Table 5-7) is much more unstable than the PVC Network.
This is due to the extremely high influence of crimp at the more extreme load ratios
generating a very steep non-linear surface. It is also extremely difficult to generate
meaningful additional data to represent wrinkling behaviour. This is due to discrepancies
between the plane stress approximation used to generate the additional data points and
the experimental data, particularly at the boundaries of response surface generated by the
0:1and 1:0 load ratios. Because of this the interface between experimental and additional
input data, i.e. strain points which generate stress values below the pre-stress applied to
the test specimen, is discontinuous. Nevertheless the results located inside the boundaries
of the experimental training data still demonstrate a good fit with the response surfaces

generated from the PTFE experimental training data, Figure 5-16.
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Applied Load Strain Displacement Stress
(kN/m) (%) (m) (kN/m)
Warp Fill Warp Fill Warp Fill Warp Fill
3.5 3.5 -0.053 | -0.020 | -0.0005 | -0.0002 3.501 3.502
3.5 20 -2.359 | 2.112 | -0.0239 | 0.0209 3.428 20.490
20 3.5 1.611 | -2.707 | 0.0160 | -0.0274 | 20.560 3.445
20 15 0.339 0.093 0.0034 0.0009 19.980 14.950
15 20 -0.375 | 0914 | -0.0038 | 0.0091 14.860 20.080
25 19 0.391 0.190 | 0.0039 0.0019 24.950 18.930
19 25 -0.400 | 1.096 | -0.0040 | 0.0109 18.800 25.100
17.5 27.5 -0.689 | 1375 | -0.0069 | 0.0137 17.260 27.690
8 18 -0.872 | 1.244 | -0.0088 | 0.0124 7.903 18.160
22 12 0.690 | -0.385 | 0.0069 | -0.0039 | 22.090 11.920
25 5 1.768 | -2.699 | 0.0175 | -0.0274 | 25.700 4914
5 25 -2.726 | 2.458 | -0.0276 | 0.0243 4.882 25.710
1 1 -0.107 | -0.210 | -0.0011 | -0.0021 1.002 1.001

Table 5-7: PTFE neural network patch simulation results
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Figure 5-16: PTFE strain to stress network with simulation results.
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5.2.3 Hypar

The PVC response surface style network model (Section 5.2.2) is used to simulate a
realistic structure. The hypar structure, Figure 5-17, under both wind and snow loading,
Section 3.2.3, is simulated. The simulation is also undertaken using the equivalent plane
stress material model defined in Table 5-5. The results from both sets of simulations are

summarised in Table 5-8.

6m

(a) Side Elevation (b) Plan View
Figure 5-17: Hypar structure.
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Figure 5-18: Hypar prestress results
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Figure 5-19: Hypar snow loading PVC neural network results
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Figure 5-20: Hypar snow loading PVC plane stress results
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Figure 5-21: Hypar wind loading PVC neural network results



Chapter 5 Neural Network Material Model Implementation 251

\‘1F3~ Tl

N
7

7
by

Stress xx

Stress yy
10.013 4.1825
9.2644 3.7605
8.5163 3.3385
7.7681 29165
7.0199 24945
6.2717 20724
55235 1.6504
47753 1.2284
4.0271 0.80638
3279

(b) Fill stress (kN/m)

&
v

[

A

AI
TN

S

oK

/-
el
AR

S
N

N
NANE
R
s __.._,-’Ag

Strain yy

VAWAW . v AV
N
N

0.013344

¥ fozre
7 -
! W'H 10839
VAV st
-1.7262

-1.9403

fci

o
A rins

Stress xy Z-DISPL
0.29907 010706
0.23261 0095161
0.16615 0083266
0maza1 A % 0058478
X 4 !
-0.033228 =77 7 b 0.04758

.,‘ - r‘
-0.089687 ‘t..z_-l.! ’ 0035685
-0.16615 002379
02326 0011895
0.29906 N 0

(e) Shear stress (f) Z displacement (m)
Figure 5-22: Hypar wind loading PVC plane stress results
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Warp Stress (kN/m) | Fill Stress (KN/m) Displacement (mm)
y/ Absolute
Max Min Max Min
Max Min Max

Prestress

3.00 3.00 3.00 3.00 0 0 0
(Plane Stress)
Prestress

3.28 3.03 3.18 3.05 1.2 -0.4 1.3
(Network)
Snow Load

3.98 1.43 6.99 3.48 0 -59.6 59.6
(Network)
Snow Load

3.42 0.13 6.25 2.92 0 -49.5 49.5
(Plane Stress)
Wind Load

8.72 3.17 4.21 0.20 78.3 0.0 78.4
(Network)
Wind Load

10.12 3.23 4.18 -0.32 107.1 0.0 110.0
(Plane Stress)

Table 5-8: Hypar analysis results summary

The prestress simulation using the network material model generates stress results that
deviate away from the applied prestress. The discrepancy is caused by smalls
descrepancies between the network model output when presented with the initial strain
and the pre-stress value used in the form-finding process. However, the deviations are

small and the resulting absolute displacement is 1.3mm.

Under snow loading the stress distributions in both material directions follow a similar
pattern. The maximum stress given by the neural network model is slightly greater than
that given by the plane stress material model. The minimum stress given by the neural
network is over 1kN/m greater in the warp direction than the plane stress material model.
The maximum absolute displacement is approximately 10mm greater in the neural

network simulation.

There are similarities between the stress pattern generated by both material models. The
minimum warp stress and maximum fill stress produced by the simulations are within
0.1kN/m. However, the neural network material model produces a maximum warp stress
that is 1.4kN/m greater than the plane stress material model results. The maximum

absolute displacement is approximately 30mm greater.

During the plane stress simulation of the hypar with applied wind loading the wrinkling
procedure was triggered. However, the negative stress remains after convergence. The

resulting stress distribution is uneven suggesting that the simulation was unstable. The
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neural network material model appears to generate a more stable analysis. When using
the neural network material model the final response of the structure does not fall within
the wrinkled or slack zone of the material response surface. However, the fill stress does

reach levels lower than the applied pre-stress.

The stability of the analysis is potentially due to the continuous response surface,
represented by the neural network material model that includes modified behaviour in the
wrinkling-slack zone, Section 5.2.1. During the finite element analysis it is probable that
areas of the structure undergo stresses and strains close to or within the wrinkled or slack
regions of the material response surface. In the neural network material model the
stiffness in the wrinkled-slack region is reduced avoiding the build up of significant
compressive stress. As the analysis progresses the response may move back out of the

wrinkled or slack region eventually converging to a smooth final result.

In comparison the plane stress analysis the wrinkling procedure is implemented in order
to remove erroneous compressive stresses, Section 3.1.13. The structure is assessed using
mixed wrinkling criterion, equation (3.141) to (3.143), after equilibrium has been reached.
Regions of compressive stress have developed at this stage. Where wrinkling or slack
regions are deemed to exist the elastic modulus is reduced and the analysis is re-run, this
results in potentially large discontinuities in the material response between gauss points
that are assessed as wrinkle and unwrinkled. In the case of the wind loading analysis,
Figure 5-22, these discontinuities lead to an unstable analysis and eventual convergence to

a uneven stress distribution.
5.3 History neural network implementation

In order to implement the history neural network historical stress and strain information

is required. Load is applied to the model in steps and equilibrium is found at each step.

The expression for equilibrium of the system becomes,

T2 = (R} = S [, (B1[o™av] — S0 [f, (B1 o™ Mav] + (P} =0.  (5.53)
-n i i

where P™ is the current load increment applied to each node, 6™is the current stress at

each gauss point in an element and ¢"~ ! is the stress at each gauss point from the

previous load step. When using the history network material model, the equation for

stress, (3.12), may be represented by,

[0"] = N(["] + [eo], ["7*] + [g], [0™7H], T™. (5-54)
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Current strain is represented by £", strain from the previous load step by "1, stress from
the previous load step by 6”1, the current internal variables by ¢{™ and initial strain by &.
As with the response surface network a constant initial strain, g, is applied to the fabric in
order induce required prestress. Initial previous stress and strain values are also required
for the first load step. A patch test with iterative loading may be used to determine an
initial strain value with corresponding previous stress and strain values that corresponds

to the correct initial stress level.

Equations (5.50) to (5.52) are used to calculate current strain, the elastic stiffness matrix
and geometric stiffness matrices, respectively. Historical stress and strain values are
updated at the end of each load step once equilibrium has been reached. The historical
stress and strain values are not updated between kinetic energy peaks in the dynamic
relaxation algorithm. During the iterative process the model undergoes pseudo
oscillations about the equilibrium state. This would generate a false material response and

potentially cause residual strain build up.

The implementation of the history network within the iterative finite element analysis

procedure is summarised in Figure 5-23.
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Figure 5-23: Iterative finite element analysis procedure with history neural

5.3.1 Biaxial test

network material model

An attempt was made to validate the history neural network via simulation of the biaxial

test used to generate the training data (Figure 5-14). In order to accurately model the

biaxial test specimen arm slits that have unrestrained edges need to be included in the

mesh. The neural network material model becomes unstable if used to simulate the
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unrestrained slits. The use of a plane stress model for simulation of the arms and a
network model for the central region has been explored. However, discontinuities
between the two models leads to invalid results. The stress is reasonably consistent but
the strain values are not inconsistent. Loading form zero is also impossible due to the
constraints of the available testing data. Therefore an initial stress is required, for example
2.8kN/m for the PVC fabric. In order to apply this stress to the plane stress arms a
prescribed pre stress may be applied. However, due to the unrestrained arm edges this

leads to an erroneous out of balance force across the arm.

Stress xx Stress yy
41461 41598
3612 3.6288
I 30778 I 3.0978
. 25437 2.5668
20095 2.0358
| 14754 | 1.5048
094121 0.9738
b 040705 0.44279
h -0.127 -0.088214
. 0.66126 -0.61922
(a) Warp stress (kN/m) (b) Fill stress (kN/m)
Strain xx Strainyy
0.70581 0.71038
0.59929 0.60228
0.49277 0.49418
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0.27973 0.27799
o731 [ 0.16989
0.066688 0.061795
b -0.039832 b -0.046302
3 -0.14635 : -0.1544
x -0.25287 x -0.2625
(c) Warp strain (%) (d) Fill strain (%)

Figure 5-24: Biaxial test specimen, applied load 4kN/m

Due to the prohibitive complexities of simulating the biaxial cruciform with unrestrained
edges, the 1m square patch used to investigate the response surface network, (Section
5.2.2), is employed to investigate the performance of the network in simulation of fabric
response with load history effects. Iterative loading is applied to the unrestrained edges in

order to induce stress equal to that in the biaxial profile. The simulation stress and strain
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results may then be directly compared to the experimental results in order to assess to

accuracy of the simulation.

The effect of load step and training data selection is investigated. A total of six network
training data sets are generated, three use 30 cycles from each of the 5 unique
experimental profiles and three use 60 cycles form each of the experimental PVC profiles,
Chapter 4. The first of three data sets uses data reduced by a factor of 0.1, i.e. 10% of the
data is used, the second a factor 0.15 and the third 0.2. Each training data set is used to
train 20 randomly initiated networks. Each trained network is used in three simulations of
cycle 6 of the 1:1 PVC experimental profile. Loading for each simulation is derived from
stress points taken from the experimental profile reduced using reduction factors of 0.1,

0.15 and 0.2 respectively.

Mean absolute error between network simulation output and experimental results is
calculated for each network simulation. The lowest mean absolute error, obtained from
both warp and fill direction results, from each network and analysis set is reported in
Table 5-9. Mean absolute percentage error (MAPE) is used as opposed to mean squared
error as the effect of small values of strain is negated and a clearer impression of the level
of accuracy can be gained. The number of network simulations that failed is also reported.
A network simulation is deemed to have failed when a mean absolute percentage error

above 15% is calculated in either material direction.
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Reduction Factor 0.1

60 Cycles 30 Cycles
Testing Reduction Factor 0.1 0.5 0.2 0.1 0.15 0.2
No. Failed Networks 10 9 18 13 10 17

Best Network Performance
MAPE Strain Warp (%) 2.27 5.01 8.43 2.38 5.41 10.61
MAPE Strain Fill (%) 1.88 10.95 13.04 6.15 9.18 11.18
MAPE Stress Warp (%) 0.44 0.51 0.55 0.46 0.52 0.58
MAPE Stress Fill (%) 0.47 0.49 0.56 0.48 0.50 0.60
Reduction Factor 0.15

60 Cycles 30 Cycles
Testing Reduction Factor 0.1 0.15 0.2 0.1 0.15 0.2
No. Failed Networks 19 9 1 18 10 3

Best Network Performance
MAPE Strain Warp (%) 10.98 5.71 4.13 7.52 3.54 3.58
MAPE Strain Fill (%) 3.86 3.60 6.79 7.04 3.79 8.24
MAPE Stress Warp (%) 0.43 0.51 0.51 0.48 0.51 0.60
MAPE Stress Fill (%) 0.42 0.61 0.63 0.54 0.55 0.61
Reduction Factor 0.2

60 Cycles 30 Cycles
Testing Reduction Factor 0.1 0.15 0.2 0.1 0.15 0.2
No. Failed Networks 20 19 11 20 18 9

Best Network Performance

MAPE Strain Warp (%) - 571 3.95 - 5.88 6.43
MAPE Strain Fill (%) - 5.51 1.99 - 2.43 3.28
MAPE Stress Warp (%) - 0.55 0.50 - 0.49 0.54
MAPE Stress Fill (%) - 0.65 0.61 - 0.56 0.68

Table 5-9: Mean absolute percentage error between experimental results and patch
simulation of cycle 6 of 1:1 biaxial load profile (Chapter 4)

Failure rates across each network group indicate that the training data load step has a
significant effect on network performance. The minimum failure rate across a network
group is 1.5% and the maximum 100%. Lower failure rates are observed when the load
step simulated is the same or lower than that used in training. The highest failure rates
occur when a network is used to simulate a greater load step. This is highlighted by the
100% failure rate of networks trained with data reduced by a factor of 0.2 when used to

simulate experimental data reduced by a factor of 0.1.
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Graphical representations of the simulation set results are shown in Figure 5-25 to Figure
5-30. The training data is shown as a solid back line with data points indicated by +.
Simulation of experimental data with a 0.1 reduction factor is shown in red, with a 0.15
reduction factor in blue and with a 0.2 reduction factor in red. Maximum and minimum
error across all acceptable networks in an analysis set is depicted by error bars. Where
only one network has been deemed acceptable the upper error bar is given by the absolute
error and the lower error bar by negative absolute error. The strain results of the network
simulation achieving the lowest combined absolute percentage error across both material

directions (Table 5-9) is plotted using a dashed line with data points indicated by *.

1.6+

—+— Traing Data RF=0.1
Target RF=0.1
-4 Network 19, RF=0.1
> Target RF=0.15
-=-#= Network 5, RF=0.15
Target RF=0.2
Network 20, RF=0.2

Warp Strain (%)

)
®

T

o

e
o
T

o2
:é-h
0

55 55.5 56 56.5 57 57.5 58 58.5
Time

241

—+— Traing Data RF=0.1
Target RF=0.1
-4 Network 19, RF=0.1
o Target RF=0.15
=4 Network 5, RF=0.15
Target RF=0.2
Network 20, RF=0.2

Fill Strain (%)

1.2}

| |

1 1 J
54.5 55 55.5 56 56.5 57 57.5 58 58.5
Time

Figure 5-25: Patch Simulation Results of Cycle 6 of 1:1 Profile Generated by a Load
History Network Trained Using 60 Cycles and a Reduction Factor of 0.1.
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Figure 5-26: Patch Simulation Results of Cycle 6 of 1:1 Profile Generated by a Load
History Network Trained Using 30 Cycles and a Reduction Factor of 0.1.
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Figure 5-27: Patch Simulation Results of Cycle 6 of 1:1 Profile Generated by a Load
History Network Trained Using 60 Cycles and a Reduction Factor of 0.15.
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Figure 5-28: Patch Simulation Results of Cycle 6 of 1:1 Profile Generated by a Load
History Network Trained Using 30 Cycles and a Reduction Factor of 0.15.
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Figure 5-29: Patch Simulation Results of Cycle 6 of 1:1 Profile Generated by a Load
History Network Trained Using 60 Cycles and a Reduction Factor of 0.2.
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Figure 5-30: Patch Simulation Results of Cycle 6 of 1:1 Profile Generated by a Load
History Network Trained Using 30 Cycles and a Reduction Factor of 0.2.

A high degree of variation between Network simulation results is seen. Initially looking at
only the networks with the lowest mean percentage error it can be seen that absolute
error generally increases throughout the iterative analysis. This leads to actual error
greater than 15% at the final stages of the analysis. This trend is also confirmed across the
full network sets with widening error bars as the analysis progresses, particularly in the
case of the networks trained with data reduced by a factor of 0.1 or 0.15. The networks
trained with data reduced by a factor of 0.2 are by far the least successful. However, this is
largely due to the effect of greater load step on Network failure. It is likely that were the
network to be used to simulate a smaller load step than that of the training data they
would out-perform the networks trained with larger load steps. This indicates the
development of the training data set is key in generating a successful Neural Network
material model. Extensive testing is required to confirm that the trained network is

suitable for the analysis task for which it will be employed.

For comparison a plane stress material model is fit to both loading and unloading portions
of cycles 1 to 15 of the 1:1 profile by minimising error between experimental strain and
model strain. The resulting elastic constants are given in Table 5-10 and were used in the

simulation of cycle 6 of the 1:1 profile. As in Figure 5-25 to Figure 5-30 the plane stress
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simulation is plotted with the experimental data. The results from the simulation using the
network that demonstrated the best performance from the network set trained using 60
cycles and a reduction factor of 0.2 is also plotted. The raw unadjusted simulation strain
results, plotted in red, do not incorporate an applied prestress as input. The strain output
is the result of the full applied load but cannot account for residual strain. The adjusted
simulation result, plotted in blue, incorporated the prestress applied to the fabric as input.
Therefore, the strain output is a result of the applied load minus the prestress, only the
loading above prestress induces strain. The strain result is then adjusted by adding the

initial strain associated with prestress taken from the first experimental data point of the

cycle.

Ew Ef Uwf Ufw wa
804.6kN/m 742.6KN/m 0.37 0.37 30kN/m

Table 5-10: PVC plane stress elastic constants
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Figure 5-31: Patch Simulation Results of Cycle 6 of 1:1 Profile Generated by a Plane
stress elastic stiffness matrix fit to Cycles 1 to 15 of 1:1 Profile.

Clearly the adjusted plane stress simulation out performs the unadjusted plane stress
simulation and shows a particularly good fit with the fill direction experimental strains.

This is due to the reasonably linear response of the fabric in this material direction. In the
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warp direction the adjusted plane stress model demonstrates a similar fit to the
experimental data as the network model in the early stages of the loading portion of the
cycle. However, the plane stress simulation significantly under-estimates the peak strain
value and the unloading portion of the cycle. The network model is capable of replicating
the non-linear material response in the warp direction whereas the linear plane stress
model is not. The adjusted plane stress simulation result is made possible by the
availability of the initial strain data. In a typical plane stress simulation of a more complex
realistic structure this information would not be unavailable. The unadjusted result is

more representative of the typical results generated by a plane stress simulation.

[t is noted that the stress mean percentage error remains below 1% across all analysis sets,
Table 5-9. This is due to the fact that the stress is prescribed by the loading and therefore
in order for the simulation to reach convergence the stress in the patch must be in
equilibrium with the applied load. The error is caused by the changing dimensions of the
patch, hence the accuracy of the strain result has as an effect on the accuracy of the stress

result. However, a degree of error will always remain.

5.3.2 Hypar simulation

The network with the lowest mean absolute percentage error in the network set trained
with 60clycles of each profile reduced by a factor of 0.1 is used in the simulation of a hypar
structure. The dimensions of the hypar are the same as those described in Section 3.2.3
and used in Section 5.2.3 (Figure 3.21). However, the fabric prestress is increased from
3kN/m to 5kN/m and the cable prestress from 30kN to 50kN. This is done in order to
increase the likelihood that the simulation stresses will fall within the range of the
network training data, i.e. above 2.8kN/m. However, the increase in prestress causes
instability during the soap film form finding process with geodesic strings on the original
initial mesh (Figure 3.22). Therefore, a more coarse symmetrical mesh comprising 200
elements is used. This mesh is more stable and reaches an equilibrium state with a

uniform stress of 5kN/m.

Wind and snow load cases are simulated (Section 3.2.3 and 5.2.3). The loading is applied
iteratively in 11 equal steps starting at OkN/m2 up to a maximum load of 0.6kN/m? at
step 6 of for the snow load case and 1kN/m? for the wind before returning to OkN/m?2 at
step 11. GiD graphical output for iterations 1, 6 and 11 are shown in Figure 5-33 to Figure
5-35 for the snow case and Figure 5-37 to Figure 5-39 for the wind case. Iteration 1 is
shown in order to provide a clear comparison for iteration 11. The result contours are

standardised across all of the GiD figures.
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The form found mesh is shown in Figure 5-32 with selected nodes highlighted by coloured
points. The colours coincide with the colours used in the nodal result plots Figure 5-36

and Figure 5-40.

Warp

Pad

Fill

L= H

6D
Figure 5-32: Form-found mesh with selected nodes for result plotting.

Initial strain and stress conditions are determined using a patch analysis where a stress of
5kN/m is maintained over three iterations. According to the patch test an initial strain of
0.75% is applied in the warp direction and 1.11% in the fill in order to induce a 5kN/m

prestress.

At peak snow load (-0.6kN/m?2) the stress distribution is as expected. Maximum stress
occurs in the fill direction between the high points. Minimum stress, lower than initial
prestress, occurs in the warp direction between the low points. At peak wind load
(1.0kN/m?2) the stress distribution is again as expected. Maximum stress occurs in the
warp direction between the low points while minimum stress occurs in the fill direction

between the high points.

Atiteration 11 (load = 0kN/m?2) of the snow load case it can clearly seen that the hypar
has not returned to the same stress strain state as iteration 1 (Figure 5-35, Figure 5-36).
Residual deformation in the negative z direction has occurred. Stress is reduced in both
material directions below initial prestress. Residual strain in the warp direction has

reduced, i.e. been recovered, whereas residual strain in the fill direction has increased.

Residual deformation is also evident in the wind load case (Figure 5-39, Figure 5-40).
However, in this case the residual deformation is in the positive z-direction. The stress in
both directions is reduced. In the upward loading case the strain in the warp direction is
increased but in the fill direction recovered. The change in residual strain in the fill

direction, between the high points of the hypar, has a greater influence on residual
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displacement than change in residual strain in the warp direction between the low points.
Were the simulation to be continued through another load cycle in either loading direction
residual strain would continue to build and stress would reduce until the fabric would

eventually become slack.
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Figure 5-33: Hypar snow loading PVC history network maximum load
(Iteration 1: 0.0kN/m?2)
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Figure 5-34: Hypar snow loading PVC history network maximum load
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Figure 5-35: Hypar snow loading PVC history network maximum load
(Iteration 11: 0.0kN/mz2)
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Figure 5-36: Hypar snow loading PVC history network nodal results.
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Figure 5-37: Hypar wind loading PVC history network maximum load (Iteration 1:
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Figure 5-38: Hypar wind loading PVC history network maximum load (Iteration 6:
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Figure 5-39: Hypar snow loading PVC history network maximum load (Iteration 11:
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Figure 5-40: Hypar wind loading PVC history nodal results.
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Under both the snow and wind loading it can be clearly seen that the stress paths followed
at each of the selected nodes differ between loading and unloading (Figure 5-36, Figure
5-40). The recovery and increase of residual strain is of particular note. It is also noted
that stress levels which fall below the level of stress explored in the training data remain
within a reasonable range. This indicates that the network is capable of generalising

beyond the training data.

Warp Stress

(kN/m) Fill Stress (kN/m) |  Displacement (mm)

VA Absolute

Max Min Max Max
Max Min Max

Prestress

(Response 5.01 497 5.01 498 0.1 -0.1 0.2
Surface

Network)

Prestress:

Iteration 1
] 4.98 4.89 4.98 4.94 0.9 0.0 0.9
(History

Network)

Snow Load

(Response 5.50 2.83 8.04 5.23 0.0 -52.3 52.3
Surface

Network)

Snow Load:

Iteration 6 5.34 2.52 7.88 5.06 0.0 | -487 | 487

(History
Network)

Wind Load

(Response 10.20 5.16 5.80 1.17 70.7 0.0 70.7
Surface

Network)

Wind Load:

Iteration 6 9.89 4.82 552 | 1.04 | 90.7 | 0.0 90.7

(History
Network)

Table 5-11: Hypar analysis results summary

Simulations of the two load cases along with a prestress load case are repeated on the
same form found mesh using the PVC response surface style network from Section 5.2. An
initial strain of 0.121% in the warp direction and 0.113% is applied in the fill direction in
order to induce the required prestress. Both network models generate results within

approximately 0.1kN/m of the desired pre-stress and maximum displacements less than
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Imm. The maximum and minimum stress results for both snow and wind load cases are
all within 0.5kN/m of each other. In the snow loading case the maximum absolute
displacement from both network simulations is within 5mm of each other. However, in the
higher wind loading case the maximum absolute displacement simulated by the history

network is 20mm greater than that simulated by the response surface network.
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5.4 Summary and Conclusions

Derivation of the implied stiffness matrix has been presented and validated for both
response surface style and history neural network material models. The use of the implied
stiffness matrix along with the network material model within the finite element

formulation developed in Chapter 3 is described.

A patch test with the response surface style network produces results that fit within the
response surface used for training. When training the response surface style networks it
has been demonstrated that addition training data outside of the range of available
experimental data may be used to stabilise simulation of structures which undergo loading
that causes stress to decrease below prestress. The additional data was produced using
stress strain pairs generated using a plane stress material model with wrinkling criteria

applied.

A set of iteratively loaded patch tests with varying load steps demonstrate that the history
network is most effective when the load step is the same or similar to the load step used in
generating the training data set. It also demonstrates that the history network simulation
is likely to fail to reach an acceptable solution where the load step is greater than that used
in training. This indicates that the simulations expected stress range and required load

step should be considered when generating training data.

Simulation of the hypar using the history network and iterative loading generates results
in a similar range to those generated using the response surface network at peak load.
However, it is demonstrated that the history network captures stress history effects
including the build up and recovery of residual strain. Also at selected nodes in the mesh it
can be seen that the different stress paths are followed when loading and unloading. This
form of model has potential for the detailed simulation of fabric installation. It could also
provide information on expected residual displacement caused by repeated cyclic loading.
This could be used in the planning of maintenance such as re-tensioning required to

prevent wrinkled or slack areas forming within the fabric membrane.
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Chapter 6. Reliability Analysis

In this chapter a First Order Reliability Method (FORM) is applied to the finite element
formulation developed in Chapter 3. First the limit state functions and statistical variables
for an analysis using a plane stress material model are defined. The iterative Hasofer-Lind
and Rackwitz-Fiessler (HL-RF) FORM solution procedure is then described. The analytical
partial derivatives required for the solution procedure are then derived and verified using
the finite difference method. The implemented solution procedure is then validated using
a simple equivalent Monte Carlo simulation. The reliability analysis procedure is then
modified for use with a neural network material model. The Implied stiffness matrix
introduced in Chapter 5 is selected to enable the generation of statistical variables
representing the uncertainty within the neural network material model. Implied stiffness
statistical variables are found from multiple simulations using multiple trained networks.
The modified reliability analysis . The full reliability analysis procedure for a hypar using

the neural network is then demonstrated,

Reliability analysis is typically used to assess the structural safety. In Eurocode 0 (ECO)
the acceptable value of the safety index determined through reliability analysis is defined
for a variety of different classes of structure. Partial factors, applied to both actions (loads)
and resistance (material strength and stiffness), are determined to provide the same level
of safety through a process of calibration that uses the specified safety index in ECO. The
partial factors take into account uncertainty in the same way as a reliability analysis, but
don't require a reliability analysis to be performed for every design. Due to the
geometrically non-linear response of fabric structures to load it is suggested that
application of partial factors to actions may be inappropriate. Therefore, existing design
guides adopt either a permissible stress or combined approach with a limit state check for
overload conditions [130]. The permissible stress approach employs stress reduction

factors applied to the strength of the architectural fabric.

In the European Design Guide it is noted that across various available standards a
minimum stress factor of 5 is frequently used. However, a relatively wide range of factors,
from 3 to 9.5, is reported accounting for various load cases, load effects, environmental
impacts and material states. These combined factors do not provide an unambiguous

definition of structural reliability. Reliability analysis utilises probabilistic information
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that quantifies the uncertainty attached to a specific model variable including loads,

material properties and geometry.

The reliability analysis presented here builds on the work of Zhang [31, 8]. Derivatives of
the equations of the new element formulation are required in order to calculate the
gradients of the limit state functions. The analytical partial derivative, along with the
reliability algorithm is, presented here and validated using the finite difference method
and Monte Carlo Simulation. The algorithm and partial derivatives are then adapted to
use the implied stiffness matrix in place of the plane stress stiffness terms in order to
facilitate an approximation to the first order reliability analysis for the neural network
material models detailed in Chapters 4 and 5. This chapter serves as a first pass reliability

analysis of fabric structures using neural network material models.
6.1 Limit State Functions and Statistical Variables

Four separate limit state functions, G;_4(X;), are considered. The structure is deemed to
have failed when G;_4(X,;) < 0. The first two functions, (6.1) and (6.2), represent the

ultimate failure of the architectural fabric in the principle warp and fill material directions.
This is where the maximum stress in the direction in question, gy, or a,flax, exceeds the
permissible stress, oy, or O-pfer- Permissible stress is usually taken as a factored value of

the ultimate strength. The third function represents failure due to wrinkling or complete

loss of tension. In this case, the minimum principle stress, aP

'min» Must be greater than the

permissible stress which is set at zero, ager =

0. This is based on the principle stress
wrinkling criteria, equations (3.135) to (3.137), Section 3.1.13. The other criteria,
principle strain and mixed criteria, equations (3.138 )to (3.143), would be implemented in
the same way. The final limit state represents excessive deformation. In this case the limit

state is violated when the absolute maximum deformation, &,,,,, exceeds the allowable

limit, 8¢

G1(Xsi) = azgver — Omax (6.1)
Gy (Xsi) = O-z};er - arjrclax (6.2)
G3(Xsi) = Opri = Oper (6.3)
G4 (Xsi) = Oper — 18l max (6.4)

Where a plane stress material model with unconstrained Poisson’s ratios is employed,
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each limit state is a function of eight independent statistical variables, X,;. Seven statistical

basic variables represent uncertainty in the material properties, namely;

Xy = Ey, X = Ef, X3 = Vpyy, X4 = Vs, Xs = Gy, Xo = 0y, X7 = 0l (6.5)
where E,, and Ef are Young’s modulus in the warp and fill directions respectively, v¢,, and
Vi are unconstrained Poisson’s ratios, G, s is the shear modulus and a,;}; and alflt are the

fabrics ultimate strengths in the warp and fill directions, respectively.

The remaining statistical basic variable accounts for uncertainty associated with the

imposed load coefficient, t;,,4, with,

F
Xg = Fe = tioad (6.6)

where F is the applied load and F, is the deterministic design load. In cases where

Poisson’s ratio is constrained to follow the reciprocal relationship, the total number of

independent statistical variables is reduced to seven.
6.2 iHL-RF FORM Solution Procedure

The FORM solution procedure is based on the Hasofer-Lind and Rackwitz-Fiessler (iHL-
-RF) algorithm[16, 31] :

1. Define the appropriate limit state function and failure criterion.

2. Assume initial values of the design point x;, i = 1,2, ... n (normally mean value),
and calculate the corresponding value of the limit state functions G; ().

3. For those non-normally distributed variables, compute the mean and standard
deviation at the design point of the equivalent normal distribution using (6.7) and

(6.8). Then transform the random variables to the reduced coordinate system

using (6.9).

ux,, = Fx,}(0.5) = median of X; (6.7)
Ok = ¢-f[;;;f(j§i)] (68)
' = T (69)

. .. ad . . *
4. Compute the partial derivative ¢ evaluated at the design point xg;.

0Xsi

. . . aG . . . L
5. Compute the partial derivative 55 using the chain rule of differentiation as,

Isi
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10.
11.

G _ 3G Xy _

G N

= = ('
0Xrsi  0Xg5i0Xrgg  0Xg Xsi

Compute L

b= Jre ()

Reliability Analysis

Calculate the direction cosines, alpha,

G
BX’Si

a; = I

286

(6.10)

(6.11)

(6.12)

Compute the safety index f based on the values of the design points calculated in

step 6 as,

B= JZ0, (x5’

(6.13)

Compute the new values of design points (x'5;) in the reduced space using (6.14).

Check the convergence of .

1% G(X i)
X sitk+1) = @ (ﬁ +— )

* — N N 1%
Xsi(k+1) = Mxg T OX X sik+1)

(6.14)

Compute the new values of the design point (x;‘l-(kﬂ)) in the original space as,

(6.15)

Update the value of the limit state function G (X,;) for the new design point and check if the

design points are on the limit state function (i.e. |G (X,;)| is very close to zero, e.g. within

0.001 for the examples presented in this chapter). If the convergence criteria in step 7 are

satisfied and |G (X;)| is approximately zero, then stop. Otherwise, repeat steps 3 to 8 until

convergence.

6.3 Sensitivity Analysis

The gradients of the limit state functions are required for steps 4 and 5 of the solution

procedure presented above. They are calculated from the partial derivatives of the limit

state functions with respect to the statistical variable, as in,

3Gy _ 0(0Per—0max) _ 00Per  dopax

0Xsi 0Xsi 0Xsi 0Xsi

0G, _ a(azj:er_arj:mx) _ aa;}:er _ aa,’;ax

0Xsi 0Xsi 0Xsi 0Xsi
P P

9G3 — a(amin_apeT) — ao'rz;lin _ aUzI;)er

0Xi 0Xsi 0Xsi 0Xi

(6.16)

(6.17)

(6.18)
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0G, __ 6(57967”_6"11135) _ 65per _ 08 max (6 19)
0Xgi 0Xgi 0Xgi 0Xgi ' '

The gradients calculated by (6.16)to (6.19) effectively constitute a sensitivity analysis of
structural response with respect to the statistical variables. Therefore, the gradients
provide useful information about how the statistical variables influence the reliability of a
structure. In some cases, where a variable is identified as having a very limited impact (e.g.
the sensitivity is very low), the computational efficiency of the reliability analysis may be
greatly improved by eliminating these statistical variables that may then be classified as

deterministic.

6.3.1 Analytical derivatives

The derivative of displacement with respect to the statistical variables is first required to
be found. The simplest form of a general deterministic linear finite element analysis is

represented by,

K§ = For§ = K°'F (6.20)
where K is the structural stiffness matrix, § is the array of nodal displacaments and F is

the array of nodal forces.

Differentiating (6.20) with respect to the statistical variables using the chain rule gives,

dé daF

SR = (6.21)

Given that,

K = fv BT EBdv , then, (6.22)

dk _ o a8l r 48 T _ [ [2BI.95 r 4E

o=y i EB+BT B +B EdSld =/, [68 axsi] EB+BT 7B+ 623
7. 0B 38 '

B Eas e dv

Numerical integration with 12 Gauss Points is used to compute the integral of (6.22).

Therefore,

K = [ BTEBdv ~ Y52[B;" EB;] X GW; X Area (6.24)

The following sub-derivatives are defined:

_ a8 85 17 _ wn=12[[9B: aa
dKy == I, [Gaanc] EBdv ~ 052 |[5 o ] "EB, | x GW; x 4rea (6.25)
d, = f, BT ==Bdv ~ Y1512 (B, 5 Bi| x GW; x Area (6.26)
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(6.27)

X GW; X Area .

k= S, BT [ av = v1ete T[]

As the area of the element is also a function of the displacement, an additional derivative

term is required, as in,

dArea 06

a6 - T

dK, i "=12[B," EB;] X GW; X TR (6.28)
Substitution of (6.25) to (6.28) into (6.23) leads to,
[dK 55 T dKz + dK +dK |5+ Ko =T

Lox 2 3ax a * X5 Xy | dxXy (6.29)
Collecting together terms containing % yields,

St

[dK;6 + dK36 + dK,6 + K] 6X51 dTSL —dK,9 . (6.30)

in which the terms within the bracket may be described by the single variable, dK, as,

dK = dK;6 + dK;6 + dK,0 + K . (6.31)
Substitution of (6.31) into (6.30) gives,

a6
GXSL dXSl

dK — dK,5. (6.32)

Rearranging for 28 yields,
0Xsi

2 = ak[E - dk,0), (6:33)

and concludes the derivation of the derivative of displacement with respect to the

statistical variables.

The derivative of stress with respect to the statistical variable makes use of the

displacement sensitivity, as in,

o=Ee=EBS§ (6.34)

The derivative of the stress vector is thus given by,

do
aXSl aXSl 0Xsi 0Xsi

(6.35)

It is not possible to find the derivative of the B-matrix with respect to the statistical
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variable directly. Using the chain rule the derivative of the B-matrix may be expressed as a

function of the displacement derivative as,

o = ssoxs = P (636)
Substituting (6.36) into (6.35)leads to,

3 = oy B0 + Ed - (6.37)
The minimum principle stress is given by,

=030 ) JE o
Therefore, based on (6.38) the derivative is given by,

a‘;filln — 05 (:Zl N ZZ) o 5(ow- "f)(axf ggw)“"wfi;g (6.39)

2 ow-07)" +(ouy)’

As in the case of the B-matrix, (6.36), the derivatives of the membrane transformation
matrix, T™, cable transformation matrix, T¢, and cable force, P, with respect to the
statistical variables cannot be found directly. Again the chain rule is evoked, and use is

made of the displacement derivative to give,

aT™ _ 9T™ 38 _ m 08
8Xs; 08 0Xg dXs; (6.40)
OT¢ _ 91¢ 05 _ ymc 05
8Xs; 08 0Xg Xs; (6.41)
dP _ 9P 85 _ a8 (6.42)
0Xs; 06 0Xsi X
6.3.1.1 Elastic Stiffness Matrix Derivative
Assuming that the elastic stiffness matrix, E, is given by,
wU fw 0

(1- Uwfvfw) (A-vwrvfw)
[E] =|__Ervws Er o | (6.43)

|(1 Uwfvfw) (1_Uwfvfw) |
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it is relatively simple to find the partial derivatives of E with respect to the statistical

0E

Y The partial derivative of E with respect to the young's modulus in the warp
si

variables,

direction, E,,, is given by,

1 UfW
O0E] _ (A-vwrvrw)  (A-VwrVry)
el=] 0 0 of (6.44)
0 0 0
and similarly with respect to young's modulus in the fill direction, Ef, is given by,
0 0 0
0E] _ Uwf 1
[E:I - A-vwrvrw)  (A-VwrUrw) 0 ) (645)
0 0 0

The partial derivatives of E with respect to the Poisson's ratios v¢,, and v, are given by,

Ey Ewvrw Ey 0
o 'vaf(l_vwfvfw)2 Uwf(l_vwfvfw)z (A-vwrvfw)
[67] =1 Efwr ) S ob (6.46)
3 vajf(l_vwfvfw)2 Uwf(l_vwfvfw)2 I
l 0 0 OJ
and
[ — — Dwtw ]
o I Ufw(l_vwfvfw)z Ufw(l_vwfvfw)z I
[ﬁ] = Al E— Er 0 | (6.47)
lUfw(l_Uwafw)z (1-vwrvsw) Ufw(l_vwfvfw)2 J
0 0 0

Finally the partial derivatives of E with respect to the shear modulus, G, is given by,

oF 0 0 O
l==|=10 o of (6.48)
Xs
0 0 1
As E is not a function of the fabric ultimate strength or the applied load,

1 [0 00
[6X6_8]=[o 0 0], (6.49)
00 0

where Xq_g is o)), J{lt and t;,,4 respectively.

6.3.1.2 Transformation matrix derivative

A demonstrated in Section 3.1.5 the local Z-direction basis vector is derived from the cross
product of the natural co-ordinate basis vectors. When witten explicitly equation (3.56)
becomes

. i 7] k = - R R . .
5 & X7 s 2 s (&M3—8&M2) |, (&H1-&1%3) o |, (81H2-50) ¢
Z == = = = l+ > + > k 650
R R IRE H HIERET] (6:50)
N1 N2 N3
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> f a2 aN2 (2 2 a2 fE oA £ a2
121 = ot — &)+ (et — &uts)” + (B — ) (651
Therefore, the directional cosines describing the local Z-direction are given by,

_ ($2ﬁ3—$3ﬁ2)

_ (Gafs=87) 6.52
M= (6:52)
($3ﬁ1—'§1ﬁ3)

— 2371 5173/ 6.53
"2 =T (6:53)
= EmEn) (6.54)

=5

The local X-direction basis vector is obtained from the cross product of the global fill
material direction basis vector, éf, with the local Z-direction basis vector. When written

explicitly, using the form of (3.56) and (3.57), (3.58) becomes

) S A
)?—Bf—xz—ééé—%ejeg—
=T, 2] . 9, Ury| =|—sin cos =
2 2, 7 nq n, nsg (6.55)
(cos(@)ngz) » , (sin(@)nz) . , (—sin(O)ny—cos(O)nq) &
— i+ = + = k,
] = AT
where,
||)?|| = \/(COS(Q) n3)? + (sin(@) n3)? + (—sin(0) n, — cos(6) ny)?. (6.56)
Therefore,
(cos(8) n3)
l, =—=+—=
1 7] (6.57)
|, = Em6mng) (6.58)
11Xl
Iy = (= sin(@)n,—cos(@)ny) (6.59)

1%l

Finally the local Y-direction basis vector derived from the cross product of the local X-
direction basis vector and the local Z-direction material direction basis vector. When

written explicitly, using the form of (3.57) and (3.58), (3.59) becomes

ZxX ‘ f k i j k (nylz—nszly) (n3zly—nql3) (nqily—nyly)
Y=="S=2, 2, Z;]=Ing np ng| ="t g4 Az g
2T vl B N I B
1 X2 X; 1 2 3
where,

||?|| = \/(nZZS - n3l2)2 + (n3l1 - n1l3)2 + (n1l2 - lell)z . (6.60)
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Therefore,

_ (nyl3—ngzly)

m, = —23__822
! (171l
(n3li—n4l3)
mo, = —=r———
2 7]
l,—n,l
my = (n1l,—nyly)

171
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(6.61)

(6.62)

(6.63)

The partial derivative of the transformation matrix with respect to the global

displacements, {6};, is given by

o o
) a6
amz am3
aé aé
oy 9% |
08 08

(6.64)

The updated global nodal co-ordinates of an element may be defined by the dot product of

the initial nodal co-ordinates and the element global nodal displacements

X1
[*2
X3
X4
X5
X6

C:C0'8:

1
Y2

V3
Va

Vs
Ve

Z2| U2
Z3 | |Us
Zg| |Ug
Zs

Usg
26J lu6

%1
U3
U3
2
Us
Ve

Xy + Uy
_|xstus
T lxg Uy

XS+U5

Xe + Ug

|'.x1 + u1

Y1tV
Y2+ V2
Y3 +v3
Vi + Uy
Y5 + Vs
Yo T Vs

Z; + wy
23+W3|
Zy + Wy
Z5+W5
Zg + Wg

Zl + Wl]

(6.65)

Substitution of the above definition of the global nodal co-ordinates into the equations for

the natural co-ordinate basis vectors & (3.53) and #j (3.54) yields,

& = (48 — Dy +uy) — (483 + 1) (o3 +us) + (46,) (g + uy) —
(482)(xs +us) + 4(&5 — &) (%6 + ug) ,

& = (48 — Dy +v1) — (48 + D (3 + v3) + (48) (s +v4) —

(48)(ys +v5) +4(&3 — 1) (Ve + v6) s

&3 = (48 — 1)(z1 +wy) — (483 + 1) (23 + w3) + (46,) (24 + wy) —

(482) (25 + ws) + 4(&3 — &1) (26 + Ws),

and

(6.66)

(6.67)

(6.68)

1 = (42 — D(xp +up) — (483 + D (x5 +uz) + (481) (g +uy) +
4(&3 — &) (x5 + us) — 4(&1) (x6 + ug) ,

flz = (48, — Dy +v2) — (483 + D(y3 +v3) + (48) (Vs +v4) +

(6.69)

(6.70)
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4(&3 — &) (s +vs) —4(E) (e + v6)
3 = (48 — D)(z5 + wy) — (483 + 1)(z5 + w3) + (481) (24 + wy) +
4(&3 — &) (zs +ws) — 4(81) (26 + We)

Defining
Qaz3 = 52773 az1 = 53771 a1z = 51772
b3, = 53772 b3 = 51773 by = sfzﬁw

”Z” = ¢y = (az3 — b3)?* + (azg — by3)* + (@12 — byq)?,

(6.71)

(6.72)

(6.73)

293

and noting that the derivatives of the basis vectors are arranged within n by m matrices in

the same form as (6.65) where n indicates the element node (n = 1 = 6) and m indicates

the global displacement direction u, vandw (m = 1 - 3),

F 45 —1 0 07 [0 45-1 0y 0 0 4&-1
0 00 0 0 0 00 0

. |-4&+1 0 o], |0 —4&+1 0| ., |0 0 —4&+1
ohi=| 45, 0 0/%=|o a5, 0|%=|0 0 4,
—45, 0 0 0 —4& 0 0 0 —45,

4(§3—&) 0 0l 0 4(s—-¢) O 0 0 4(5—¢%)

A 0_ 0 0 [O O_ O] [O 0 O_ ]
&—1 00 0 45-1 0 0 0 4&5—1

oo |Ha T 0 0| 0 —4G+1 0f . [0 0 —4&+1
& 4&, 0 0|?2% [0 ag 07?0 0 4¢

4(63—¢) 0 0 0 4(¢s—-%) O 0 0 4(5—¢&)
—4&, 0 0] 0 —4& 0 0 0 —4&

then the derivatives of (6.72) and (6.73) are given by

a?s:j;) = 085 umy13 + 032
a?s:;) = 083,11+ 0y €3
a?s:;) = 08, (2 T Oy
azzj;) = 083,12 + Oy 2
agfnljn) - ag1(n,m)ﬁ3 + aﬁ3(n,m)€1
agfnz_,ln) - ag2(n,m)ﬁ1 + aﬁl(n,m)éz
% = 2(az3 — b3y) (% — %) + 2(az; — by3) (% _

&) +
98(m,m)

)

(6.74)

(6.75)

(6.76)

(6.77)
(6.78)
(6.79)
(6.80)
(6.81)

(6.82)
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Substituting the identities in (6.72) and (6.73) into the Z-direction cosines, (6.52) to (6.54),

and using the derivatives (6.76) to (6.82) the derivatives of the Z-direction cosines are

given by,
an, 0 . -1, _1 -3/, _0c _ _
o 3um (az3 — b3z)(c1)™ /2 > (c)™ 72 36 (azz — bsy) = .
B ab _1 1 3/ 9 '
(S =) €072 = e g = b
Similarly,
on, _ ( dazy  dby3 -1, 1 -3/, _0c _ (6,84)
e et ) [CORCES TR e CREO0
ang _ ( dai;z  9by -1, 1 -3/, _0c _ (6,85)
Dutnmy (3u(n,m) au(n,m)) (c)™ /2 > (c)™ 72 Tt (a12 — by1) .
Defining
|X|| = c2 = (cos(8) n3)? + (sin(8) nz)? + (- sin(8) n, — cos(8) ny)?, (6.86)
differentiation with respect to the displacements yields,
666(62 = 2(cos(0) n3) (605(9) a;(n3 )) + 2(sin(6) n3) (sin(@) %) +
,m nm nm 6.87
| . on, o, (6.87)
2(=sin(@)n, — cos(0)ny) (— sin(8) — cos(0) ) .
38 (mm) 38 (nm)

Substituting (6.86) into the X-direction cosines, (6.57) to(6.59), and using the derivatives
(6.83) to (6.85) and (6.87), the derivatives of the X-direction cosines are given by,

ol ad _1 1 _3 0
T = (cos@) as(:jn)) ()72 =3 (e) 257 (cos (@) ny) (6.88)
612 _ . 6713 _1/ _ l _3/ acz . (6-89)
= (sin@®) a%m)) (@)™ =3 ) o5 (sin(8) )
mmy
(— sin(8) 6;(:27,1) — cos(8) a;(:;)) (cz)‘l/z — (6.90)

1(cz)_3/2 Oc; (—sin(@)n, — cos(@)n,).
2 66(,1,,,1)

With,



Chapter 6 Reliability Analysis

€3 = Nyl e31 = ngly e12 = Ml
f32 = nsl; fiz =nyl3 fa1 =12l

”?” = c3 = (€23 — f32)* + (€31 — f13)* + (€12 — f21)?,

the derivatives of (6.91) and (6.92) are given by,

6623 _ anz 613
au(n,m) au(n,m) 3 au(n,m)
6631 _ an3 611
au(n,m) au(n,m) 1 au(n,m)
6612 _ 6n1 l 612
aU(n'm) au(n,m) 2 aU(n,m)
Of32 _ Ong dlp
a8 = 35,02 T a5,
(n,m) (n,m) (n,m)
Ofis _  0ny di3
a8 = 3o 3 T o,
(n,m) (n,m) (n,m)
7] on al
fo1 2 1 n,

08mm)  08nmy ©  08mm)

dcs dezs 0f3,
= 2(ez3 — ( - —) + 2(e3q — (
98 (nm) (€25 = f52) 3 mm 98 mm) (31— f13)

de af;
2(e12 — f21)(65(12 —W:lm))-
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(6.91)

(6.92)

(6.93)

(6.94)
(6.95)
(6.96)
(6.97)

(6.98)

des; _ 0fis ) n (6.99)
08mm) 98mm

Substituting (6.91) and (6.92) into the Y-direction cosines, (6.61) to(6.63), and using the

derivatives (6.93) to (6.99) the derivatives of the Y-direction cosines are given by

o = (st -2 ()~ L o) o5 e

08(n,m) 08mm)y 08mm

am, :( des1  dfis >(Cl)_1/2 _%(Cl)_S

08 (n,m) 08mm)y 9mm)

am, =( dess  0fis >(C1)_1/2_%(C1)_3/ dcs (

08 (n,m) 08mm)y 9mm)

Revisiting (6. 40) may now be written as,
AT™(i,j) _ mes [958 _
aij - [dT (l,])] X

€23 — f32) (6.100)
P (6.101)
e31 — fi3) - (6.102)

(6.103)
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10581,17
0Xgi
361,
0Xgi
3613
aT™(i,j) oT™(i,j) oT™(i,j) aT™(i,j) 9T™(,j) oT™(,j) a{(Si
[661.1 981, 9815 06, 065, 08y ] 96,
06842
3663
[oxg; |
aT™(1,1) 9T™(1,2) IT™(1,3)
0Xsi 0Xsi 0Xsi
oT™ _ |9T™(2,1) A9T™(2,2) IT™(2,3)
0Xgi - 0Xsi 0Xsi 0Xsi (6104)
aT™(3,1) 9T™(3,2) 9T™(3,3)
0Xgi 0Xgi 0Xgi J

6.3.1.3 B-matrix derivatives
Using a similar form as above, the derivatives of the linear part of the B-matrix with

respect to the displacements may be expressed as,

0Bo(1,1) 9Boc1,2) 9Bo(1,3) 0Bo(1,18)
I 65(n_m) 65(n,m) aS(n'm) aS(n'm) I
0B, _ |630(2,1) 0Bo(2,2) 9Bo(2,3) 0Bo(2,18) (6.105)
98 m,m) 0mm)y 98mm)y 98nm) 98 n,m) ’
0Boz1) OBoz2) 09Bo(sa) aBo(3,1s)J

Revisiting equation (3.80) the derivatives of the first term of each row of the linear B-

matrix with respect to the global displacements may be expressed explicitly as,

aNy
Poun) _ ) Zox 4 _Ph 3ty (6.106)
aa(n'm) aa(n_m) aa(n'm) 0X
2 075t (6.107)
Bo(2,1) —m vy omy; 9N, .
98 mm) Lo8mm) = 08(mmy OY

oON oON
0Bo(31) _ I aa_yl al;  ONy 66—X1 am; 9Ny (6.108)
98 mm) Lo8am) = 08mm) oY L08mm) = 08(mm) 90X

The remaining terms are easily obtained from the preceding procedure. The direction

cosines and their partial derivatives have been found in Section 6.3.1.1. Therefore, all that

L. . . . IN; oN; . .
remains is to find the derivatives of a_xl and a_yl with respect to the displacements.

With (3.83) and (3.84)
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dN;
9

ON;

ON; _
= Iy o

X + I,

(6.109)
The shape function derivatives contained in DNM(?).SO) , are independent of the
displacements. Therefore, the derivative of (6.109) with respect to displacement is given
by,

ON;
a aXl _ 6F11 aNl 6F12 aNl _ 6F11 6F12 6 110
= — —t=—1py Neooon - (6.110)
8m)  08(m) 08 08mmy 0N 08my  NENWD T 38(nmy  NEM@D)

. ON; . . C e
Similarly a—y’ and the corresponding derivative is given by,

aN; on; aN;
M Ty 20 T, 2 (6.111)
0%l ar,, aN; . oy, ON; _ 8Ty T, (6.112)

8mmy  9um) 06 08(am) 0N 08(mmy  NEMAD | 38y Ném@b

Combining (6.110) to (6.112) and using the form of (3.84)

aDNX'Y _ al" D _
Smmy  O8my  NEm

Oy My | 0Ty oM | 9w 9Ne | 0Ty 0N

65(n_m) af aa(n'm) aT] 65(n‘m) af 65(n’m) 61] (6113)
Oy 0Ny | OTp ONi - . .. 9Tz 0Ny 0T ONi|

65(n'm) af aa(n'm) aT] 65(n‘m) af 65(n’m) 61]

From (3.83) the terms of the inverse Jacobian, T, expressed in terms of the Jacobian, are

T11 = (J22) X U11)22 = J12J21) ™ (6.114)
T2 = (—J12) X U11)22 — J1zJ21) ™" (6.115)
21 = (=J21) X U122 = J12J21) ™" (6.116)
T2 = (11) X U11)22 — J12J21) ™" (6.117)

The derivatives of (6.114) to (6.117) are,

ar aJ - 22
65(111;) - 66(;;) (]11]22 —]12]21) 1 (]11]22 —]12]21) ? 98(n,m) Urafaz ~ (6.118)
J12J21))22
or 9] - - :
o = = 4y = o)™ = Unilaz = Jiaan) 2 55 sz (6.119)
J12J21) —Jaqz
or,; _ 0J21

-1 ) b
96, - a6 X (111122 _]12]21) - (]11]22 _]12]21) a8 (]11]22 -
(n,m) (n,m) (mm)

]12]21) _]21

(6.120)
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ar aJ B ~
6u(nz,2n) _ au(:l = X (J11)22 = J12J21) "t = Ui1J2z — J12J21) 2 au( (]11]22 (6.121)
J12J21))11
With (3.67),
Joz =0-Y = XiZ3Hm;, (6.122)
then,
0J22  _ yi=3 4 _0my on; ) 6.123
ag(n'm) - i=1 Th aa(n'm) aa(n,m) ml . ( )
Similarly,
Ju=§-X= :iz'i‘ il (6.124)
_0J11 dl; 3E; '
88 (nm) Z aa(nm) 8 (nm) © (6.125)
Jiz =&V =% Em, (6.126)
0]12 — yi=3 ¢, aom; & '
98 (n,m) 1= El 98 (n,m) t 98 (nm) m; (6127)
Jor =10-X = X230l (6.128)
021 _ yi=35 _ 0L oM
08m,m) B Zi:lnl 08mm) 98mm) (6.129)

Following the product rule, the derivative of the determinant is given by,

38 nm) (U122 = J12)21) = ( 11 66(22) 66(11 ]22) ( 12 aa(zin) > ]21) (6.130)

A similar procedure is followed to find the derivatives of the non-linear part of the B-
matrix with respect to the displacements. Writing the definition of the non-linear B-matrix,

(3.94), explicitly yields,

B, =3[A]lG] = (6.131)
Z;:gAl,i X Giq Z::?Al,i X Gy, Z%i?Au X Giz Z::Z?Au X Gj1g

1 (= (= = =

S| B2 42 X G XT3 A0 X Gz XiZTA2i X Giz 0 BiZ§Azi X Giagl-
Yis8As X Gy XTS5 A3 X Gip XiZ9A3i X Gz o NiZ5A3; X Gy

Therefore, the derivatives of the second order B-matrix terms are given by,
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9B, _
38 nm)
3G,

[Z Alla (
BGM
1|2 AZla

S,
[Z A3la(

m)

BGH

aALi
i1 aﬁ(n,m)

6A2,i
i1 a5(n,m)

6A3'i
i1 a5(n,m)

2 All
Z AZL
2 A31

Reliability Analysis

6Gl 2 aAlyi
Bmy 2 98 (nmy

6612 aAz,i

02

38 (n.m) 38 nm)

6612 6A3,i
38 (nm) Y2 98 (nm
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044

04y,

118 Ba(nm)-! (6.132)
[

Ll 68( nm)

043

i,18 P) 5(n'm)

Using the form of (6.105), the derivatives of the G-matrix terms with respect to the

displacements may be expressed as,

r9G(1,1) 0G(1,2) 0G(1,3)

08mm)y 06mm) 98mm

66(2'1) 66(2,2) aG(2'3)

08mm)y 06mm) 98mm

66(3'1) GG(S,Z) aG(3'3)

G 08mm) 06mm) 98mm
08mmy |96a1n 0Guz  0Gua)
08mm)y 06mm) 98mm

66(5'1) 66(5,2) aG(5'3)

08mm)y 06mm) 98mm

0G(e,1) 0G6,2) 0G(e,3)

100imm) 98mm) O8mm)

0G(1,18)
aa(n’m)
0G(2,18)
a‘s(n,m)
0G(3,18)
6(5(n'm)
0G(4,18)
aa(n’m)
0G(s,18)
a‘s(n,m)
0G6,18)

08(nm) |

(6.133)

The derivatives of the first term of each row of the G-matrix with respect to the global

displacements may be expressed explicitly as,

ANy

aG(]__l) _ aﬁ dl; 0Ny
0mm) L 08mmy  08mm) X
ON
66(2'1) _ aa_xl aml aNl
38 (n,m) L8mmy = 98mmy 0X
ON
66(3'1) _ aa_Xl anl aNl
38 (n,m) Lo8mmy = 98nmy 0X
oON
aG(1_1) _ a@_yl dl; 0Ny
0mm) L 08mmy 08mm) OY
oON
66(2'1) _ aa_yl 6m1 6N1
98 (nm) Losmm) = 08mm) oY
oON
ey _ . Oy, _om oM
98 (mm) Yosmm) = 08mm) oY

(6.134)

(6.135)

(6.136)

(6.137)

(6.138)

(6.139)

As before, the remaining terms are easily obtained in the same way, including the partial

N o . . N aN;
derivatives of the direction cosines (e.g. see Section 6.3.1.1) and the derivatives ofa—x‘ and

oY

i with respect to the displacements.

The final derivatives to be found are those of matrix A. inspection of (3.85) yields,
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au av aw 0 0 0
% Al a2
[1).4 X X B_U aa_V aa_W
24 8mmy 98mmy 08mm) ay ay oy
=[ 0 0 0 98mm) 98nm) 95mm) (6.140)
ag(n’m) aa_U aa_V aa_ aa_u aa_V aa_W
Yy )4 a [1).4 X X
mm)  8mmy 08mm) 08mm) 08mm) 98mm)
To find the terms of the derivatives of {A} are found with respect to the
(nm)
displacements, as in,
— aa_U -
aa(nm)
av
Oax
38 mm)
ow
9%5x
oA 8, G a{5;
= o | = are (B + G g (6.141)
38 (n,m) 02Y 38 mm 38 (n,m)
38 (m,m)
av
O3y
38 (m,m)
ow
%
38 mm) |
Therefore, the derivatives of {A} may be expressed as,
au ON;
o _yime|( O omi O N5 Ly oM 00 | | sisef( 0L oM
06mm 2=\ 960m 0X | 1 080m) @D 158 35 0m =11\ 36(m) 0X
B LT a6 al; ON i
X . ON; 990(i2) 3 ON;i 6.142
2 6u(n,m)> Sy +l275; 6 tnm ] iz [(65(n,m) o Tl 65( )5(1 3 T ( )
ON; 99as)
39X 06(nm)
av (‘)N
5% sizo|(_oma_oni S e . 2N 9 i=e | (_amz_omy (6.143)
mm 2=\ 060m) X 1 aa( @D T M 56 am =11\ 96(m) 0X

BN

6m3 6Ni

)6(1 2) +

oN; 05@3)]

2 au(

39X 08(nm)

ON; 08z i=6
M2 3% 360am) +2i=1 38(nm) 0X +m

aN

3 aa(

)5(1 3) +
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au ON;
%% — yi=6 on; ON; +n 5% S 41 ON; 3831y 4 yis=6 on, %_'_ (6.144)
=11\ 96 0X ' 1 as( @D M X 96 0um =11\ 96 m) 0X

e aN; 95 on; ON o2
X ONj 00(i2) i=6 nz ON; X .
[ m— )5(1 2t 350 m)] + di=1 [<6S(n,m) ox T 13 —66(n,m)> 8iz) +

n., Wi 95as)
39X 96(nm)

ou (3N
5 _ yizo|(_ot_ami 6(., s aN; 9 | | ime|(_0_ani (6.145)
38 mm) =11\ 96 m) OY ' L 080um ) nthoy 38 mm) =11\ 96 (m) OY
dN; ON;
o=t aN; 98 i al; AN 0+
Y i 99G2) i=6|(_093 ON; oy )
L MU(nm )5(1 Rl 38 (m) +2is 50m 0¥ | s 98(nm) O3 +
ON; 08(i3)
I3
Y 06(nm)
av ON;
%% — yi=6|[_9mi_ ON; +m K S +m ON; 98iy) 4 yi=6 am, %_'_ (6.146)
38 nm) =1\ 38, BY 1 98mm) ) -GV 13Y 98(um) =11\ 960um) oY

o aN; 85 oms ON o
v g, 9Ni 99G.2) i=6 ms ONi v s
M2 au(n,m)) Oz T M2y aa(n_m)] + iz [(aa(n_m) ay T aa(nlm)) O3 +

m., 2N 9%z
3.9y 06(am)

au ON;
0= . 05 l a6 o . 6.147
Y — yi=6 [( o iy p )5@ o +n 2 (‘”)] + %ize [( onz ON: ( )

aﬁ(n’m) aS(nm) ay 1 65( ay 66( aS(n'm) aYy
ON;
i aN; 88 i ang ON; a—
Yy ON; 99(Gi2) i=6 n3 ON;
nz au( )6(1 2) + 712 Y 65( m) + i=1 aa(n,m) Y + n3 66( 6(1. 3) +
dN; 96(;
n3_l (i3)
ay 65(n'm)

. 0B .
From equation (6.36), aTO- may now be written as,
St

0B,
o) = [dBo (i )] |55 =

(6.148)
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rouy 1]
0Xgi
0uq,
0Xgi
O0uq 3
[630(1'.1') 0By(L) 0Bo(L)  9Bo(ij) 9Bo(i)) asoa,j)] 0Xsi
8814 361, 8613 8861 366,2 3863 :
’ ’ ’ ’ ’ ’ a‘“’6,1
Oug;
Oug3
and,
dBL(i,)) R
T = [dB ()] [55-| =
[0y 17
0uq
duq 3
[aBL(i,j) 0B,GL)) 9BuL) | 3BuGhi) 0BLGD) 0BG | O
ouq 4 ouy ouy s O0ue 1 Oug Oug3 '
’ ’ ’ ’ ’ S TR
Jug,
0Xgi
Oug3
L9
dBy(1,1) |, 9BL(1,1) dBy(1,18) , 9B.(1,18)
0Xsi 0Xsi 0Xsi 0Xsi
9B _ |8Bo(21) | 9B (2,1) 8By(2,18) , 0B.(2,18)
0Xsi - 0Xsi 0Xs; 0Xsi 0Xgi
dBy(31) , 9BL(3,1) dBy(3,18) , 9BL(3,18)
l 0Xsi 0Xsi 0Xsi 0Xsi J
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(6.149)

(6.150)

6.3.2 Verification of partial derivatives using finite differences

The analytical derivations for the limit state function sensitivities (partial derivatives) are

verified using the finite difference method (FDM). This is done to ensure that no errors

have been made during derivation or during implementation within the Fortran reliability

code.

A 2 metre square patch of fabric is discretised into 2 elements and restrained along two

edges by rolling restraints illustrated in Figure 6-1. A 10kN/m uniformly distributed load

(UDL) is applied in the x-direction and with 5kN/m applied in the y-direction along the

free edge. Point loads of 5kN in the x-direction and 10kN in the y-direction are also applied

in order to fix the position of the extreme stresses and displacements and to induce shear
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stress. Without the application of a point load a uniform stress is induced and the position
of the extreme stresses and displacement is affected by small systematic errors. This leads
to errors in the finite difference method. The warp material direction is aligned with the
global x-direction and the fill material direction with the global y-direction. No prestress is
applied to the material. Therefore, no form finding is required. An initial analysis to

equilibrium is performed with all variable set as in Figure 6-1.
5kN

5kN/m T

! f f

—_ - . —— 10kN

E, = 1000kN/m
E; = 1000kN/m
| o , »  —> 10kN/m vy = 0.3
) Upw = 0.3
Gy = 30kN/m

tioaa = 1

|/

vy, v, fill

2m

X, u, warp

Figure 6-1: Finite element patch for finite difference reliability simulation

For each of the 8 statistical variables, a perturbation equal to a percentage of the variable’s
initial value is added while holding all other variables constant. The analysis is re-run to
reach equilibrium. The finite difference derivatives for the required limit state, maximum
warp stress, maximum fill stress, minimum principle stress or displacement may then be
calculated. In general the finite difference method may be expressed as follows,

of(@ _ fla+tn)~f(a)
da h

(6.151)

where f is the function of interest and a is the statistical variable of interest, h is the value

of perturbation equal to a percentage of the initial value of the statistical variable.

The magnitude of the perturbation (h) has an impact on the accuracy of the numerically
estimated partial derivative obtained using FDM. Each FDM limit state sensitivity has
therefore been calculated using three perturbations - 0.1%, 0.001% and 0.00001%. The
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results are summarised in Table 6-1, 6-2 and 6-3, respectively. It should also be noted that

the accuracy of the analysis has an impact on the derivative values derived using FDM.

As shown in Table 6-1 a perturbation of 0.1% produces generally poor agreement

between the analytical and FDM limit state function sensitivities, indicating that it is

potentially too great or that the analytical sensitivities are incorrect.

wo_w f _
a(Jpearx me) : max stress warp 2oper=omas) Ufmax): max stress fill
si aXsi
X Finite difference Analytical o Finite difference Analytical %
; error error
st method approach ’ method approach ?
E, -1.10E-03 -1.17E-03 6.60% 2.60E-04 3.21E-04 23.40%
Ef -1.84E-04 -1.96E-04 6.38% -1.28E-03 -1.32E-03 3.03%
Vi -1.39E-01 -1.35E-01 -2.65% -8.95E-01 -8.87E-01 -0.90%
Vig -1.58E+00 -1.57E+00 -0.92% 6.23E-02 6.55E-02 5.24%
Gy 6.80E-02 7.00E-02 3.02% 6.51E-02 6.73E-02 3.34%
tioad -3.54E+01 -3.53E+01 -0.24% -1.81E+01 -1.80E+01 -0.60%
(b m—0h 3(Sper—Smax .
(”m;:; ."per) : min principal stress 3Oper—max) an : ), max displacement
X Finite difference Analytical Yperror Finite difference Analytical perror
st method approach 0 method approach 0
E, -3.76E-03 -4.08E-03 8.31% 5.95E-05 6.50E-05 9.19%
Ef -4.58E-04 -5.02E-04 9.56% -4.18E-06 -4.60E-06 10.18%
Viw 8.03E-01 8.02E-01 -0.13% 1.08E-02 1.08E-02 -0.01%
L2 -2.33E-01 -2.36E-01 1.49% -1.67E-03 -1.66E-03 -0.16%
Gy 1.68E-01 1.73E-01 2.95% 2.52E-04 2.60E-04 2.82%
tioad -7.21E+00 -7.15E+00 -0.84% -6.83E-02 -6.82E-02 -0.09%

Table 6-1: Sensitivities, finite difference method using perturbation of 0.1%
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Wﬁgfﬁu) : max stress warp %:’f“”): max stress fill
X, Finite difference Analytical Voerror Finite difference Analytical Yperror
method approach method approach
W -1.17E-03 -1.17E-03 0.08% 3.20E-04 3.21E-04 0.27%
Ef -1.96E-04 -1.96E-04 0.01% -1.32E-03 -1.32E-03 0.04%
Viw -1.33E-01 -1.35E-01 1.61% -8.89E-01 -8.87E-01 -0.23%
Vs -1.57E+00 -1.57E+00 0.05% 6.46E-02 6.55E-02 1.39%
G, 7.00E-02 7.00E-02 0.04% 6.73E-02 6.73E-02 0.02%
tioad -3.53E+01 -3.53E+01 0.00% -1.80E+01 -1.80E+01 -0.01%
—a(a&;’gjs") : min principal stress —a(spe;r;jmax): max displacement
X, Finite difference Analytical Voerror Finite difference Analytical Yperror
method approach method approach
W -4.07E-03 -4.08E-03 0.13% 6.49E-05 6.50E-05 0.09%
Ef -5.01E-04 -5.02E-04 0.12% -4.60E-06 -4.60E-06 0.10%
Viw 8.05E-01 8.02E-01 -0.28% 1.08E-02 1.08E-02 -0.02%
2 -2.35E-01 -2.36E-01 0.31% -1.66E-03 -1.66E-03 0.06%
G, 1.73E-01 1.73E-01 0.07% 2.60E-04 2.60E-04 0.03%
tioad -7.14E+00 -7.15E+00 0.07% -6.82E-02 -6.82E-02 0.00%

Table 6-2: Sensitivities, finite difference method using perturbation of 0.001%

a(o';aver_amax) .

a(”ger_"{mx)

T : max stress warp . : max stress fill
X, Finite difference Analytical Voerror Finite difference Analytical perror
method approach method approach
E, -1.17E-03 -1.17E-03 0.02% 3.20E-04 3.21E-04 0.06%
Ef -1.96E-04 -1.96E-04 -0.05% -1.32E-03 -1.32E-03 0.01%
Vi -1.33E-01 -1.35E-01 1.55% -8.89E-01 -8.87E-01 -0.21%
Vs -1.57E+00 -1.57E+00 0.06% 6.47E-02 6.55E-02 1.33%
Gy 7.00E-02 7.00E-02 0.01% 6.73E-02 6.73E-02 -0.01%
tioad -3.53E+01 -3.53E+01 0.00% -1.80E+01 -1.80E+01 0.00%
—a(af";’;:g") : min principal stress —a(sp':;jmuX)= max displacement
X, Finite difference Analytical Voerror Finite difference Analytical Yperror
method approach method approach
W -4.08E-03 -4.08E-03 0.04% 6.50E-05 6.50E-05 0.00%
Ef -5.01E-04 -5.02E-04 0.03% -4.60E-06 -4.60E-06 0.00%
Viw 8.04E-01 8.02E-01 -0.25% 1.08E-02 1.08E-02 -0.02%
Vs -2.36E-01 -2.36E-01 0.29% -1.66E-03 -1.66E-03 0.06%
G, 1.73E-01 1.73E-01 0.04% 2.60E-04 2.60E-04 0.00%
tioad -7.14E+00 -7.15E+00 0.08% -6.82E-02 -6.82E-02 0.00%

Table 6-3: Sensitivities, finite difference method using perturbation of 0.00001%
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The former statement is supported by the results given in Table 6-2 where a perturbation
0f 0.001% produces good agreement (less than 1% error) between the analytical
approach and FDM. This is shown across all limit states and all statistical variables except
Uy, for limit state 1 and v, for limit state 2. The greater persistent error exhibited by the
Poisson's ratio sensitivities at the lower perturbation is in part due to the greater impact
of these variables in comparison to Young's modulus and the shear modulus. As
highlighted in equations (6.46) and (6.47), unlike in the case of Young's moduli, a change
in either v¢,, or v, s will resultin a change in the stress in both material directions. As a
result, the relationship between stress and strain with respect to the Poisson'’s ratios is

more complex and interdependent than the other statistical variables. This is highlighted

OE . OE .
L2 term for limit state 1 and the —22 term for limit state 2.

by the . 30ms

It is also the case that the analytical derivatives only account for the sensitivity of the
stress at the Gauss point where the limit state stress or displacement occurs. The stress
and strain values at all other Gauss points are assumed to be fixed and therefore have no
impact on the limit state function. When using the finite difference method the statistical
variables are updated at all Gauss points and the analysis is re-run. Therefore, the
behaviour of the entire structure is taken into account in equation(6.151). This leads to a
greater difference between analytical and FDM for the variables which induce a more

complex and interdependent response.

In Table 6-3 it is clear that the agreement between analytical and FDM sensitivities
remains good with respect to E, Ef, G,,r and t;544 and in most cases the error decreases
with a further reduction in perturbation to 0.00001%. However, the sensitivities with
respect to to vy, and v, still show poorer agreement but still less than an acceptable
value of 2%. This indicates that the difference is not due to errors caused by the size of

perturbation.

6.3.3 Validation using Monte Carlo Simulation

Further validation of the reliability analysis is undertaken using Monte Carlo simulation.
The simulation is the same as that used above in Section 6.15 with the exception of the
loading. UDLs of 20kN/m in the x-direction and 30kN/m in the y-direction along with
additional point load of 10kN in the top corner node are applied. The loading has been
increased in order to increase the probability of failure and reduce the number of

simulation required for the Monte Carlo simulation..
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\
- —

2m

X, u,warp

Figure 6-2: Finite element patch for Monte Carlo simulation

Initially an analytical reliability analysis is run for each limit state and the probability of

failure is found from a standard normal table and the safety index  as shown in Table 6-4.

G1(Xsp) G (Xsi) G3(Xs;) G4(Xg)
= a';ver — Omax | = o{zer — o{nax = O_pmin - O-:er = Dg; = Dipax
B 2.724 2.160 1.437 1.323
o(—p) 0.3264e-2 0.1539e-1 0.7494e-1 0.9342e-1

Table 6-4: Analytically Derived HL_RF Probability of Failure

These values of § are outside the accepted range for a structure according to Eurocode 0
(ECO0), where the minimum value is 3.8. The probability of failure for the structure is,
therefore, greater than would be permitted by ECO. However, for an anticipated very small
probability of failure a very large number of Monte Carlo simulations would be required to
predict the failure probability with sufficient accuracy. It is, therefore, for the purposed of

validation, to adopt a larger failure probability at this stage.

A Monte Carlo simulation is run using normally distributed random variables generated
using the Box Muller method. Variables u; and u, are generated in pairs using random

numbers, r;and 1, in the range 1 to 0, and the means and standard deviations of the
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uncertain variables, uy ; and oy ; , as shown in (6.152) and (6.153). The variables are
independent. Therefore, new pairs of random numbers are used for the generation of each
variable set. The random numbers are generated using the Fortran ‘pseudo’ random
number generator and therefore are actually pseudo random numbers. The current local

time is used to derive the seed value.

Uy = px; + ox;((—21Inr) 2 sin 27ry) (6.152)

Uy = Py, + 0x;((—21n7)Y2 cos 2mr,) (6.153)

20,000 separate analyses were undertaken and each limit state value recorded. The
probability of failure may be found from (6.154) where N is the number of runs and
I[ G(Xsj) < 0] is an indicator function which equals 1 if [G (X,;) < 0] is true and 0 if

[G(Xs;) < 0]is false.

1
pr~ 2 XN I[G(Xs)) < 0] (6.154)
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Gl(Xsi) GZ (Xsi) GB (Xsi) G4(Xsi)

= G;IET ~Omax | = O{;er - o{nax = anin - ager =641 — Omax

Reliability
Analysis ®(—f3) 0.0033 0.0154 0.0749 0.0934
(Table 6-4)
Monte Carlo
Simulation 0.0027 0.0152 0.0735 0.0939
with equation
(6.154)
% error -18.18% -1.30% -1.87% 0.54%
Monte Carlo
Simulation with
CDF estimate 0.0029 0.0154 0.0736 0.0940
(Figure 6-3)
% error -12.12% 0.00% -1.74% 0.64%

Table 6-5: Comparison between analytically derived HL_RF probability of failure,
®(—p), and Monte Carlo probability of failure, ps

The values can also be sorted from low to high and used to plot a cumulative probability

function from which the approximate probability of failure may be read as demonstrated

in Figure 6-3(a)-(h).

[t can be seen that the probability of failure derived from the analytical and Monte Carlo

simulation are in generally good agreement. The high percentage error given by G; is due

to the relatively low probability of failure for this limit state. The accuracy of the Monte

Carlo simulation may be improved by increasing the quantity of simulations undertaken.
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6.4 Neural Network Variability

The training of neural networks involves a number of processes that contribute to
variation between networks trained to represent the same material (see Section 4.4.5, and
Section 5.3.1). The key processes include division of training data sets using randomised
data selection and the random initiation of the weights and biases at the beginning of
network training. The process of training, results in neural network material models that
offer a non-unique solution to the stress strain relationship of a material. Therefore,
neural network material models contain epistemic uncertainty. This is highlighted in
Figure 6-5. A set of 5 networks has been trained using data taken from Section 5.2 for a
response surface style network. The network weights and biases are randomly initialised
at the beginning of training. However each network is presented with identical training

data sets.

The 5 networks are each used in the simulation of the hypar structure used throughout

this thesis. A typical global snow load of -0.6kN/m?2 is applied to the structure.

4

| IH
6m

H

6m

(a) Side Elevation (b) Plan View

Figure 6-4: Hypar structure.

[t can clearly be seen in Figure 6-5 that each network produces different stress, strain and
displacement distributions with varying maximum and minimum values, despite being
trained using identical data. Each legend has been set to the same range in order to make
the variations clear. To account for this variation in design some form of reliability

analysis incorporating network simulation is required.
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Stross xy
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Warp Stress (kN/m) Fill Stress (kN/m) Shear Stress

Figure 6-5: Hypar stress plots from 5 randomly initiated networks trained using
identical data.
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6.5 Response Surface Style Neural Network Reliability Analysis

In order to include the neural network epistemic uncertainty within reliability analysis it
is necessary to replace the statistical variables describing the plane stress material model
with variables describing the network material model within the reliability analysis. This
is a complex problem due the high number of variables to consider. It is also not possible
to derive meaningful statistical information describing variability of the network weights
and biases as each variable cannot be considered in isolation. However, the implied
stiffness matrix, Chapter 5, offers an approximation to the network response and is
derived at each Gauss point for each dynamic relaxation energy peak. The implied stiffness
matrix approximates the network stress strain relationship by effectively fitting a surface
tangential to network stress strain response surface at the Gauss point's current position
on the response surface. The 4 variables of the implied stiffness matrix may be used in
place of the 4 variables of the plane stress material model for the purposes of reliability
analysis. Therefore, the 8 statistical variables for reliability analysis become,

Xt =EVN, X = EfYT, Xat =B, Xyt = By, X" = Gup, Xt =

P (6.155)
Ouier X7n = O-I‘ﬁt' Xg = tivaar

where GP refers to the Gauss point position of the current limit state and n refers to the
current load increment. The reliability analysis is run using the mean implied stiffness
matrices and associated standard deviations at each Gauss point calculated at the final
energy peak for a specific structural simulation in place of the neural network material

model.

An added level of complexity is introduced when considering an incrementally loaded
simulation as required when using a history network model. The variables at each load
increment must be considered as separate statistical variable. Therefore, a simulation with
10 load increments has 62 statistical variables. This will require a very large
computational effort and the development of incremental partial derivatives. Therefore,
for this initial study, only simulation of a single load increment with a response surface
style neural network is explored in this chapter. Development of an incremental reliability
analysis will be briefly explored in the further work section of Chapter 7, but is beyond the

scope of this thesis.

The analytical partial derivatives of the limit state functions, Sections 6.3 and 0, remain

largely the same with the obvious exception of the elastic stiffness derivatives.
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6.5.1.1 Implied Elastic Stiffness Matrix Derivatives
Partial differentiation of the implied stiffness matrix, EP!€? with respect to its 4

network related terms is straightforward and is given by,

[aEimpued]:[é 0 8], e [g ! 8] o _ F 0 8],

6X1 aXZ
0 0 O 0 0 O 0 00

(6.156)

implie 0 0 0
5=l 1 o]

The partial derivatives of E implied yith respect to the shear modulus, Gy g, remains the

same and,
oE 0 0 O
[ax 0 0 0) (6.157)
5
0 0 1

The implied stiffness matrix is fixed at the mean value for a given structural simulation.
Therefore the partial derivatives of the stiffness matrix with respect to the fabric ultimate

strength and the applied load remains,

o 0 0 0
| ={0 0 o, (6.158)
o8 0 0 0

where X¢_g is oy}, a{lt and t;, 44, respectively.

[t is noteworthy that in a true neural network material model simulation, the implied
elastic stiffness matrix varies depending on the current stress strain state of the Gauss
point at which the implied stiffness matrix is defined. Therefore, the implied stiffness
matrix is a function of applied load. Further work may be required to investigate the
variation of the implied stiffness matrix with respect to load. This level of complexity is
neglected for the purposes of this simplified case where the initial values of the implied

stiffness matrix are considered fixed for the purposes of reliability analysis.

6.5.2 Validation of implied stiffness partial derivative with finite
difference method.

As with the plane stress reliability analysis, Section 6.3.2, the partial derivatives of the
limit state function with respect to the statistical variables may be validated using the
finite difference method. A simple 2 element patch, Figure 6-1, is again employed for this
purpose. This patch is not suitable for detailed analysis but is selected for speed of analysis

due to its small stiffness matrix.
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As in the validation of the plane stress derivatives, Section 6.3.2, the finite difference

method is performed using 2 different levels of perturbation, 0.001% and 0.00001%,

noting that the 0.1% perturbation has been previously discounted as unsuitable.

The finite difference derivatives generated by a perturbation of 0.001% are in generally

good agreement with the analytically derived values, with <1% difference across all

variables with the exception of E, , for limit state 1 and E, ; for limit state 2. Decreasing

the perturbation to 0.00001% further reduces the error. Only the error between the

analytical and finite difference derivatives of limit state 2 with respect to E, ; remains

greater than 1%. This derivative has a value 2 orders of magnitude smaller than the other

the derivatives in this set. Therefore, it is likely that the error is due to the relatively small

magnitude of the derivative in question, resulting in the impact of error introduced by the

finite difference method being more significant.

Aoper—ihax) ‘:;:m“") : max stress warp 76(052';:5‘” : max stress fill
X, Finite difference Analytical Voerror Finite difference Analytical Yperror
method approach method approach
Eyq -1.45E-03 -1.44E-03 -0.74% 1.41E-03 1.40E-03 -0.67%
E,, 3.35E-04 3.35E-04 -0.22% -1.02E-03 -1.01E-03 -0.16%
E;q -1.05E-03 -1.03E-03 -1.01% 5.78E-05 4.55E-05 -21.23%
E;, 1.31E-04 1.40E-04 6.80% -1.48E-03 -1.49E-03 0.66%
Gy 8.26E-02 8.27E-02 0.03% 8.76E-02 8.77E-02 0.04%
tioad -3.54E+01 -3.54E+01 0.00% -1.91E+01 -1.91E+01 -0.01%
—a(af”;';:g") : min principal stress —a(spi;;jmaX)= max displacement
X, Finite difference Analytical Voerror Finite difference Analytical Yperror
method approach method approach
Eyq -6.74E-03 -6.73E-03 -0.01% 9.63E-05 9.65E-05 0.11%
Eqi; 3.27E-03 3.27E-03 -0.14% -2.09E-05 -2.09E-05 -0.02%
E;, 2.80E-03 2.81E-03 0.22% -4.24E-05 -4.23E-05 -0.02%
E;, -1.45E-03 -1.44E-03 -0.43% 8.21E-06 8.22E-06 0.12%
Gy 1.91E-01 1.91E-01 0.09% 3.82E-04 3.82E-04 0.03%
tioad -5.64E+00 -5.65E+00 0.14% -8.46E-02 -8.46E-02 0.00%

Table 6-6: Sensitivities, finite difference method using perturbation of 0.001%
(Implied Stiffness Variables)
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76(653;:%”) : max stress warp 76(‘75’;;:{““") : max stress fill
X, Finite difference Analytical Voerror Finite difference Analytical Yperror
method approach method approach
Eqq -1.44E-03 -1.44E-03 -0.12% 1.40E-03 1.40E-03 -0.18%
Eq, 3.36E-04 3.35E-04 -0.53% -1.02E-03 -1.01E-03 -0.26%
E;,q -1.03E-03 -1.03E-03 0.41% 3.91E-05 4.55E-05 16.26%
E;, 1.39E-04 1.40E-04 0.78% -1.48E-03 -1.49E-03 0.11%
G, 8.27E-02 8.27E-02 0.00% 8.77E-02 8.77E-02 0.00%
tioad -3.54E+01 -3.54E+01 0.00% -1.91E+01 -1.91E+01 0.00%
—a(a&;’gjs") : min principal stress —a(spe;r;jmax): max displacement
X, Finite difference Analytical Voerror Finite difference Analytical Yperror
method approach method approach
Eqq -6.74E-03 -6.73E-03 -0.06% 9.65E-05 9.65E-05 0.00%
Eq, 3.27E-03 3.27E-03 -0.20% -2.09E-05 -2.09E-05 -0.03%
E;q 2.83E-03 2.81E-03 -0.64% -4.24E-05 -4.23E-05 -0.03%
E;, -1.45E-03 -1.44E-03 -0.27% 8.22E-06 8.22E-06 -0.04%
G, 1.91E-01 1.91E-01 0.06% 3.82E-04 3.82E-04 0.00%
tioad -5.64E+00 -5.65E+00 0.15% -8.46E-02 -8.46E-02 0.00%

Table 6-7: Sensitivities, finite difference method using perturbation of 0.00001%
(Implied Stiffness Variables)

6.5.3 Reliability analysis of a Hypar

The partial derivatives described in Section 6.5 will be used in the reliability analysis of

the hypar structure demonstrated in Section 6.4. The hypar is patterned as shown in

Figure 6-4. It is subjected to a typical snow load of 0.6kN/m2. The non-neural-network

related statistical variables used in the reliability analysis are summarised in

Coefficient of
variation

0.1

0.1

0.2

0.2

Table 6-8. The maximum permissible stress in both directions is set at approximately 25%

of the ultimate limit strength of a typical PVC coated polyester fabric, and is related to tear

propagation. This is the maximum level of stress allowed in the biaxial testing used to

generate the network training data. Beyond this level of stress the network is unlikely to

be able to reliably generalise the fabric response as it is outside of the extents of the

training response surface, Section 2.3.
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Variable Gy tioad Oper o{zer

Mean 30 1 30 30
Stal}dgrd 3 0.1 6 6
Deviation

Coefficient of

L 0.1 0.1 0.2 0.2
variation

Table 6-8: Non network related statistical variables.

6.5.3.1 Derivation of Implied Stiffness matrix statistical variables.
The process of generating statistical information, i.e. means and standard deviations, for

the elastic stiffness constants is completed in two steps.

In the first step, a set of 30 response surface style networks are trained using experimental
data. The response surface style networks each take warp and fill strains as the (2), have
10 hidden nodes, and provide warp and fill stresses as the (2) outputs,. Construction of
training data sets and network initiation may done using random values (see section 6.4).
Here, a single training data set is derived from the available experimental data for PVC
coated polyester architectural fabric and used as training data for each network. In other
words, each network is trained using identical data. The weights and bias values are
initiated randomly. This means that the training algorithm begins at a different position in
the solution space for each network. This results in a set of 30 unique network material

models for the architectural fabric.

In the second step, each network is used in a simulation of the structure on which the
reliability analysis is to be performed. The structure is loaded as it will be in the reliability
analysis. The implied stiffness matrix for each Gauss point of the mesh at the equilibrium
state, after the final dynamic relaxation energy peak, is taken as output. These sets of
implied stiffness values are used to derive a mean implied stiffness matrix and associated
standard deviation for each Gauss point. The reliability analysis is then undertaken using
these values. In each reliability iteration the statistical information and limit state function
at the current design point is used to calculate the direction cosines, , and and the saftety
index, § (equations (6.9) to (6.13)). These values are then used along with each Guass
point's mean and standard deviation in order to update all the implied elastic stiffness
matrices (equations (6.14) and (6.15)). The process is repeated until the reliability

analysis convergence criteria are met.
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In order to illustrate the variation between each network simulation, stress, strain and

displacement data has been output for 6 key nodes in the hypar mesh, Figure 6-6.

..
o)

Figure 6-6: Hypar structure form-found mesh with selected nodes

The results extracted for each node are plotted as box plots, Figure 6-7, where the median
is denoted by the red line and the box contains all results between the 25th and 75th
percentile. The stress results produce the least outliers, denoted by a red +, with a typical
range of approximately 0.5kN/m or less. The strain and displacement results produce a
greater number of outliers and relatively larger ranges. This is expected as an applied load
drives the analysis and the level of stress is more or less prescribed. The nodal
displacement, which induced the strain required as input to the network model in order
reach equilibrium with the applied load, is found. Therefore, the higher level of variation

between displacement and strain results is expected.
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Figure 6-7: Results Variability Across 30 Networks
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Figure 6-8: Hypar snow results using mean implied stiffness values

The results of the hypar simulation based on mean implied stiffness values are shown in
Figure 6-8. The stress, strain and displacement values for the selected nodes are plotted as

*in Figure 6-7. For these latter values in both material directions, the stress values are
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greater than the range denoted by the box plots. The fill strains are generally greater than
the 75th percentile but still within the total range. The warp strains are generally at the
lower end of the range. These result in an overall deflection that is similar to the minimum
deflection observed in the network simulations. The error is likely to be caused by the
large strain step used in conjunction with the implied stiffness matrix. Accuracy of the
implied stiffness approximation in inversely proportional to the strain step. Iterative
loading would improve the accuracy of the implied stiffness solution, as the implied
stiffness would vary across the response surface. However, as previously discussed, this
would require the derivation and implementation of an iterative reliability analysis and
greatly increase the number of partial derivatives required. These results may also
indicate that a more suitable candidate for the initial implied stiffness values would be the
values derived from the network that generates the median stress result. However, the
mean values are deemed to produce results sufficiently similar to the typical network

response to serve as a substitute for the network in this initial study.
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Figure 6-9: Implied stiffness values for hypar mesh.
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The hypar mesh contains a total of 4704 Gauss points, for which the implied stiffness
values for each network along with the mean implied stiffness constants are plotted in
Figure 6-9. The symmetry of the plots is a result of the symmetrical mesh that is generated
systematically. It is evident from Figure 6-9 that the implied stiffness values show a high
degree of variation between networks. They also vary across the mesh. This demonstrates
the power of the network to capture the non-linear behaviour of the fabric material.
Overall means of the mean and standard deviation values for each implied stiffness

variable is shown in Table 6-9 to give an indication of the typical statistical properties.

variable E11 E12 EZI EZZ
Mean of means 640.3 536.4 593.1 1203.1
Mean standard 152.5 167.7 192.7 217.0
Deviation
Coefficient of 0.24 0.31 0.32 0.18

variation

Table 6-9: Network related statistical variables (Global mean).

The reliability analysis is limited to 10 iterations as computation of the analytical limit
state partial derivatives for each variable requires a significant computer resource. This is
largely due to the inversion of the partial derivative stiffness matrix, dK 1, required in the
determination of the the displacement derivatives (equation (6.33)). For the hypar
structure this matrix is a 2511 by 2511 matrix and has to be inverted for each statistical
variable for each iteration of the reliability algorithm. However, this remains a faster
process than using the finite difference method. Nevertheless, for this size structure, 10
iterations of the reliability algorithm take approximately 10 hours to complete with the

programme in its current form.

The statistical values for each gauss point are used in the reliability analysis of the
strength limit states; limit states 1 and 2, equation (6.1) and (6.2). Limit state 1 does not
fully converge to a stable result after 10 reliability iterations, Figure 6-10 (a) . However,
the limit state function approaches zero between iterations 4 and 7 with a concurrent
value of 8 that stabilises at approximately 4.4. Interestingly, and arguably providing
confidence in the solution, a very similar value of £ is obtained at iteration 10 with the
value of the limit state close to zero. Limit State 2 converges to a stable solution after 5
iterations, with a f value of 3.81 and a limit state function of approximately 0.001, Figure
6-10 (b). Both limit states generate a 8 value greater than the minimum of 3.8 suggested in
Eurocode 0 and represent a less than 0.007% probability of failure. As expected, the

probability of failure due to material rupture is higher in the fill direction, corresponding
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as it does with the high points of the hypar and greater stress levels under gravity loading.

The warp direction would be the critical direction in an uplift case.

The values of a for each statistical variable for both limit state functions Figure 6-10 (c)
and (d) clearly show that the most critical variable is the material strength in the relevant
direction. This is followed by the load factor. It is in fact questionable whether the

remaining 6 statistical variables have any significant impact despite their large standard

deviations.
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Figure 6-10: Limit State 1 and 2 Reliability Outputs

The statistical values for each Gauss point were next used in the reliability analysis of the
wrinkling and deformation serviceability limit states, limit state 3 and 4 respectively
equation (6.3) and (6.4). The reliability analysis for limit state 3, the minimum stress limit
state, becomes unstable after only a small number of iterations. The value of § becomes

greater than 5 after only 3 reliability iterations and the mesh collapsed after 8 iterations,
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Figure 6-12 (a). This may indicate that the failure due to wrinkling has an extremely low
probability. However, it is more likely that the large standard deviation of the statistical
variables combined with their complex interactions caused the analysis to become
unstable. Attempts to stabilise the analysis using the lower standard deviations also

produced similar results.
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Figure 6-11: Limit State 3 Reliability Outputs

Limit State 4 shows greater promise as the value of § did not diverge as quickly as for
Limit state 3, Figure 6-12 (a). However, the limit state function oscillates approximately
about its initial value and the 8 value shows no sign of converging. The load factor is
clearly the most significant variable and is the oscillation of the a-values of this variable is
the main cause of the oscillation of the limit-state function. It appears that the load factor
and E;; are working against each other, when the a-value for E;; becomes a positive value
the load factor alpha-value quickly switches from positive to negative, the same is true for

the a-value for E;,.

The oscillation was caused by ill conditioning between the limit state function, its partial
derivatives and the direction of loading and therefore displacement. This was due to the
use of the absolute value of displacement in the limit state function. Therefore, the
displacement limit state function was reformulated to include a unit factor accounting for
the principle direction of loading. This is deemed an acceptable solution as loading is
typically applied approximately perpendicular to the fabric surface and therefore the

principle direction of loading may be defined.
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G4(Xsi) = aper - (ldir)|6|max
Principle load direction+'ve —» 147 = 1 (6.159)

Principle load direction—"ve —» 14" = — 1

When using this form of the limit state function the reliability analysis becomes stable and
converges in 10 iterations with a stable § value of 0.96 and a minimum limit state function
value of -0.0002. A £ value of 0.96 represents an unacceptably high probability of failure

indicating that the design should be altered to increase allowable displacement or reduce

displacement.
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6.6 Summary and Conclusions

In this chapter the analytical partial derivatives required for probabilistic reliability
analyses using both plane stress and implied stiffness material models are derived and
validated. The reliability solution procedure is based on the improved Hasofer-Lind and
Rackwitz-Fiessler (iHL_RF) algorithm. Four limit state functions (failure in the warp
direction, failure in the fill direction, wrinkling and maximum displacement) have been
explored. The limit state functions are dependent on 8 statistical variables. The partial
derivatives of each limit state function with respect to each statistical variable describes

the sensitivity of that limit state to the variable.

Validation of the analytical sensitivities has been demonstrated using comparisons with
partial derivatives obtained from the finite difference method and based on the analysis of
a simple 2-element biaxially loaded patch. Varying levels of perturbation were
investigated. Excellent agreement is demonstrated between the analytical and finite
difference derivatives apart from where the derivative was very low or was incompatible

with the level of perturbation, where good agreement has been achieved.

Monte Carlo simulation has been used to validate the probabilities of failure for the four
limit state functions obtained from the reliability analysis. 20,000 Monte Carlo simulations
were run with normally distributed statistical variables. The probability of failure was
estimated using an indicator function and cumulative frequency plots. Excellent
agreement between the reliability analysis and Monte Carlo simulations has been achieved
for 3 of the 4 limit states. The limit state that showed the least agreement had a probability
of failure that was lower by a factor of 10 suggesting that insufficient number of analysis
runs had been completed to provide a reliable measure of the probability of failure from

the Monte Carlo simulation.

A procedure for reliability analysis using an implied stiffness material model to
approximate the network response has been explored. A set of 30 networks was trained
and used to generate statistical information for the reliability analysis of a realistic hypar
structure. Reliability analyses of the ultimate limit state functions for warp and fill stresses
converged acceptably, with f values of 4.4 for the warp direction and 3.8 in the fill. The
sensitivity of the analysis to the material properties is shown to be relatively low. The
reliability analysis of the principle stress serviceability limit functions proved to be
unstable and failed to reach acceptable levels of convergence. The analysis was not
stabilised by the reduction of the statistical uncertainty of the material model. The

displacement limit state was initially unstable. However, the modification of the limit state
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function with a direction term lead to a stable convergence. The resulting f value
represent an unacceptable high probability of failure. Significant further work is required
in order to develop a robust reliability analysis procedure for neural network material
models. However, initial work presented here indicates that with further development of

the procedure network reliability analysis will be possible.
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Chapter 7. Conclusions and Further Work

7.1 Conclusions

A large displacement finite element formulation based on a 6 node isoperimetric
triangular membrane element has been developed and demonstrated, Section 3.1 to 3.2.
The element formulation allows the designer to prescribe the element local coordinate
system to align with the desired fabric warp and fill direction. Geodesic control strings
have been implemented to control the panel edges and centre lines without effecting the
final form-found minimal surface. These features allow the patterning of the structure to

be incorporated into structural mesh.

The finite element formulation implemented as a Fortran console application has been
used to perform form finding, using a zero elastic stiffness matrix, and static load analysis,
using a plane stress orthotropic elastic stiffness matrix, on realistic fabric structural
meshes. A wrinkling procedure based on combined stress and stiffness criteria is
implemented within the static analysis. Where the wrinkling criteria is triggered
discontinuities in resulting stress field indicate that the analysis has potentially become

unstable.

A patterning procedure using the 6 node isoperimetric element is presented, Section 3.3.
The stress plot output from the patterning procedure allows the investigation of 'locked in'
forces induced during the flattening of the form found panels. Discontinuities between
neighbouring panel edge length are investigated and found to be relatively small. The
formulation includes all of the features identified as requirements for architectural fabric
simulation in the literature review, Section 2.1, and is suitable for the implementation of a

neural network material model.

Biaxial load profiles have been developed for PVC coated polyester and PTFE coated glass
architectural fabrics with additional load ratios between the typical 0:1, 1:2, 1:1, 2:1 and
1:0 load ratio arms, Section 4.3.2. The resulting experimental data with residual strain
removed has been used to represent fabric behaviour in the form of a strain-stress

response surface.

Response surface style neural network material models that have been trained and tested

using the data sets, Section 4.3.3. Networks trained with PVC data are capable of
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accurately generalising the PVC material response surface when presented with unseen
data. Problems caused by the steepness of the PTFE response surface, leading to one-to-
many mappings, have been overcome by the addition of a third stress ratio input. Stress to
strain neural networks have been used to generate additional stress strain data points to
further explore network generalisation. Some cases of over fitting have been identified.
This highlights the importance of comprehensive network validation with unseen data

prior to implementation.

Initially the load history dependant behaviour of architectural fabric has been investigated
using uniaxial experimental data generated using 3 unique load profiles, Section 4.4.2. A
network architecture with 4 inputs namely current strain, previous strain, previous stress

and internal variables has been developed to be trained with the uniaxial stress strain data.

A study into the effect of training data profile, load step and hidden node number was
undertaken, Section 4.4.3. Network generalisation improved when the network was
trained with data from the load profile with the widest variety of features. Network
performance decreased as the difference between the testing and training profile load step
increased. Networks with 4 hidden nodes produced unacceptably low R? value more
frequently than those with 7 or 10 nodes but no definitive conclusions regarding the

sufficient number of nodes could be made from this study.

A further study into the required number of hidden layer nodes for the uniaxial load
history network indicated that the networks performed best with between 9 and 17 nodes
the hidden layer. With more than 17 nodes, error increased indicating that over-fitting had
begun to occur. A network with 9 hidden nodes was trained with a data set taken from the
most comprehensive load profile. The trained network was capable of reproducing the

material response from the two unseen profiles with a high degree of accuracy.

The findings of the uniaxial studies were used to develop a set of five unique biaxial load
profiles. Each of the five load profiles used a different load ratio, 0:1, 1:2, 1:1, 2:1 or 1:0, as
a repeated conditioning cycle, Section 4.4.4. As in the most successful uniaxial profile,
differing upper and lower loads were used throughout the profiles to capture the effect of
previous stress magnitude as well as stress ratio. These profiles aimed to capture a wide
variety of loading conditions to enable the production of comprehensive data sets for both
training and testing. The profiles were used to generate data sets for PVC coated polyester

and PTFE coated glass fabric.

The proposed biaxial load history neural network takes inputs of current and historical

strain, historical stress and internal variables for the warp and fill material directions,
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Section 4.4.5. A study into the number of nodes required by the biaxial load history
network demonstrated that network performance increased with an increasing number of
nodes, up to approximately 15 hidden nodes. Performance neither consistently increased
nor decreased with increasing hidden node numbers, up to 40 nodes. Due to the high

complexity of the training data over fitting was not identified.

PVC and PTFE neural network material models with 15 hidden nodes have been trained
with training data sets combining cycles from each of the experimental load profiles. The
trained networks were tested in recurrent mode, where historical stress and strain inputs
are taken from previous network output, with the full experimental profiles containing
both seen and unseen data. For both materials, the network output demonstrates excellent
agreement with the target experimental data. The network material models accurately
generalise the fabric response when presented with unseen data. This indicates that the
experimental load profiles have successfully captured the architectural fabric material

response.

The response surface and biaxial history neural network material models, Chapter 4, have
been implemented in the finite element formulation, Chapter 3. Shear response has been
assumed to be decoupled from direct stress and is calculated using a typical shear
modulus. An implied stiffness matrix derived from partial derivatives of the network
equations is used to generate the diagonal stiffness matrix terms required for the dynamic

relaxation solution algorithm.

The response surface implied stiffness matrix formulation has been validated using a
network trained using a data set derived from PTFE plane stress elastic constants, Section
5.1.1. The implied stiffness matrix was calculated at 3 points on the surface. Errors
between the network implied stiffness and target plane stress stiffness matrix terms were
consistently less than 0.02%. The history network implied stiffness matrix formulation

was validated using the finite difference method, Section 5.1.2.

Wrinkling behaviour is incorporated into the response surface network by generating
additional training data in the wrinkled zone, Section 5.2.1. This was done using a plane
stress approximation of the material response and applying a modification using
combined stress strain wrinkling criteria. A patch mesh simulated with loading to induce
stress ratios within the PVC and PTFE response surface has been used to demonstrate the
implemented neural network material models, Section 5.2.2. When plotted alongside the
experimental data it can be visually confirmed that the stress strain results for both

materials sit on the target surface.
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The PVC neural network material model has been demonstrated in a full simulation of a
hypar structure. In comparison to an equivalent plane stress simulations the Network
produces similar stress and displacement patterns with some variations in magnitude.
More significantly, the neural network produces a strikingly smoother stress distribution
than the plane stress material model when wrinkling areas developed under wind loading.
The network simulation is more stable as the modelled material response is continuous
and the stiffness reduces as the simulation approaches compressive stress. The plane
stress material model is modified only after the equilibrium condition has been found with
areas of negative stress. This leads to potentially significant discontinuities in the

modelled material response in subsequent solution iterations.

In order to implement the history neural network material model, the finite element
formulation has been modified to include incremental loading, Section 5.3. The effect of
the difference between training load step and simulation load step has been investigated,
Section 5.3.1. In a set of simulations using varying load step and multiple PVC network
models, the non-linear biaxial stress strain response of the architectural fabric was
reproduced with varying degrees of accuracy. Error between target and network output
was typically greater when the simulation load step differed from the training data load
step. This is in agreement with findings when the networks were tested outside of the
finite element code. Where the training data load step was smaller than the simulation
load step, the error between network output and target output consistently became
unacceptably large. Nevertheless numerous network models produced simulation results
in excellent agreement with the experimental results and a network model has shown to

be more accurate than a typical plane stress approximation.

A history neural network simulation of a hypar undergoing loading and unloading
demonstrated that the material model effectively captures load history effects including
residual strain build up, strain recovery and differing response to loading and unloading,
Section 5.3.2. Under both snow and wind loading residual deformation in the global z-
direction was observed, positive in the wind loading case and negative in the snow loading
case. This is driven by residual strain in the warp and fill directions. Under snow loading,
strain is recovered in the warp and builds up in the fill. Under wind loading, strain is
recovered in the fill and builds up in the warp. Stress is reduced in both directions below

prestress for both load cases.

Numerous studies throughout this thesis demonstrate the variation exhibited by neural
networks due to the random initiation of network weights and biases and training data

division. Varying performance has been consistently observed between randomly initiated
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networks trained using identical data. This has been further illustrated via variation in
hypar simulation results generated using a set of PVC network models, Section 6.2. It is
proposed that during model development, multiple networks should be trained using a
single comprehensive data set. The networks should then be rigorously tested using
unseen data. The network demonstrating the best performance should be selected for the

final simulation task.

In order to assess probability of failure given the uncertainty associated with the proposed
neural network material model, a FORM reliability analysis procedure has been developed,
Chapter 6. Initially the analytical derivatives of the proposed limit state functions have
been derived and validated for the original plane stress formulation using the finite
difference method, Section 6.1.5. The full plane stress FORM reliability analysis has been

validated using a simple Monte Carlo simulation of a biaxially loaded patch.

Meaningful statistical descriptions of the neural network variability cannot be derived
directly for the weights and biases of the network. It has been proposed that a set of
implied stiffness matrix, derived for each Gauss Point of a mesh at equilibrium, may be
used in place of a neural network material model. This enables an equivalent reliability
analysis to be performed. The required partial derivatives have been developed and
validated using the finite difference method. Statistical properties describing the variation
of implied stiffness matrix terms at each gauss point of a hypar mesh have been derived
from simulations using 30 randomly initiated trained network models, Section 6.3.3.1. The

coefficients of variation are relatively high, ranging between 0.18 and 0.32.

The statistical properties have been used to perform reliability analysis of the hypar mesh
from which they were derived. The strength limit states converge close to 0 in less than 10
FORM iterations and produce £ values of 4.4 in the warp direction and 3.8 in the fill. These
safety factors lie in an acceptable range as defined by ECO. The strength and load statistical
variables are demonstrated to be the most influential in these analysis. Despite their high
coefficients of variation, only minor contributions from the material model variables are
observed. The displacement limit state has a much greater dependence on the material
model variables. The analysis converges with a § value of 0.95, which represents an
unacceptably large probability of failure. Attempts to increase the allowable displacement
lead the finite element code to become unstable. The principle stress limit state analysis

diverged away from zero producing 8 values which are too high to be meaningful.

The aim of this PhD thesis was to provide a means of linking material testing and
structural analysis in order to improve the accuracy of fabric structure simulation.

Improving the accuracy of simulation reduces uncertainty allowing the reduction of partial
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factors applied to loading or material properties in design. This could lead to more cost
effective fabric structures and increase their feasibility for a wide variety of applications.
Improved confidence in simulation would also allow the development of more exciting
complex structures. Reliability analysis allows the designer to include the statistical
uncertainty associated with loading material properties and geometry. This enables the
designer to calculate a probability of failure for a structure. Work is currently underway
for the development of a European Design Code for fabric structures. This code will

require the development of standard approach for the assessment of structural safety.

The inclusion of load history effects in modelling architectural fabrics is a very new
development in the research field but is important for the accurate representation of the
complex stress strain behaviour exhibited by these materials. Previous architectural fabric
material models have typically been based around the plane stress frame work. Various
adaptations have been applied to the framework in order to allow the capture of non-
linear response. However, they still rely on the simplification of experimental data such as
linearisation and do not capture load history effects. A new elasto-plastic material model
has recently been published, this model captures permanent strain as well as orthotropic
non-linear behaviour. However, this model has not been demonstrated with multiple
uniaxial loading and unloading cycles and does not demonstrate an ability to capture
strain recovery or negative strain under biaxial loading conditions. Neural networks have
not previously been applied to material modelling of architectural fabrics but show
considerable promise when tested with unseen cyclic data They have been demonstrated
to have the capability to generalise fabric response to a wide variety of loading conditions.
They also do not require significant pre-processing of experimental data, this allows an

almost direct link between experimental data and structural simulation.

The inclusion of load history effects is of particular importance for simulation of
installation during which the fabric exhibits both conditioned and unconditioned
behaviour. During installation the key aim is to develop a stable, unwrinkled doubly
curved surface with the same level of prestress as that assumed in design. In practice
installation is rarely simulated, instead the form found mesh is used to develop patterned
panels which are reduced according to compensation factors found from physical tests.
Accurate simulation of installation would allow the designer to identify potential problem
areas that may develop as the fabric is pulled into place. Problems occurring during
installation may reduce the aesthetic appeal of a structure, reduce its design life and may
in extreme case lead to complete structural failure. This is extremely costly to both the

designer and client and increases the risk associated with architectural fabric structures.
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An improved understanding of load history effects would also allow for the proper
planning for maintenance of fabric structures such as re-tensioning and fabric panel
replacement. Consideration for these tasks in the design of connection and support details

would increase the design life of architectural fabric structures.

This thesis serves as promising proof of concept for the development and implementation
of architectural fabric neural network material models. It has been demonstrated that it is
possible to train neural network material models, using biaxial experimental data, to
accurately generalise the non-linear and history dependent strain stress response of
architectural fabric. The trained networks have been successfully implemented in a
specialist finite element code and have been used in the simulation of a realistic fabric
structures. High levels of epistemic uncertainty, introduced by the training process, has
been observed and quantified for the trained neural networks. Initial investigations using
reliability analysis have demonstrated that while network material model uncertainty has
a significant impact on the probability of failure associated with the displacement
serviceability limit state, the ultimate strength limit state probability of failure is largely

unaffected.
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7.2 Recommendations for Further Work

The form-finding procedure presented in this thesis is based on the classical soap-film
analogy and as such does not allow form finding with orthotropic prestress. A wide variety
of fabric structural forms may be investigated using pure minimal surfaces. However, the
implementation of non isometric form finding would greatly increase the number of

available forms.

As has been noted in Chapter 3, Section 3.1.10, the 2 node cable element formulation used
in the simulations presented in this PhD may potentially lead to stress strain
discontinuities between the cables and membrane elements. Where a structural
simulation requires highly curved cables or where the result is sensitive to the accuracy of
the cables a more sophisticated 3-noded cable element allowing a non-linear strain field
may be required. Initial work on a 3 node cable element formulation is presented in
Appendix D. This formulation has not been extensively tested or implemented in the finite

element code but serves as a starting point for an improved cable element formulation.

Currently the patterning procedure does not include seam length control allowing the
development of minor discontinuities between edge lengths of neighbouring panels. Some
form of geometric control is required to ensure compatibility of the final panels. The

application of compensation to produce the final panel geometries should be investigated.

Currently shear behaviour is not included in the proposed neural network fabric model.
The addition of inputs to a neural network model is reasonably arbitrary. For instance it is
straight forward to add an additional shear strain input to the response surface network.
However, the development of a network that includes both direct and shear stresses is
limited by the collection of sufficiently comprehensive data. Various shear testing
methodologies have been proposed which facilitate the application of both direct and
shear stresses. These methodologies may be adapted to allow the generation of

sufficiently comprehensive data required for network training.

It has been demonstrated that a finite element simulation of a test specimen may be
incorporated into the network training process to directly extract constitutive behaviour
from boundary measurements of load and displacement. This form of self-learning
simulation was initially demonstrated using idealised panels and bars [117]. More
recently it has been applied to non-liner connections [116] and soils [111]. This training
methodology offers a possible opportunity to capture fabric response through testing that
simulates the loading conditions undergone by insitu fabric structures. For example the

development of a doubly curved surface form an initially flat panel. The development of
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specialist experimental equipment would be required in order to implement this

methodology. Data may also potentially be gathered from insitu fabric structures.

Benchmarking of the proposed neural network fabric material model simulations against
physical tests would also be an ideal way of validating the material models . Digital image
correlation (DIC) has been applied to architectural fabric biaxial [6] and shear [64] tests to
provide detailed strain and displacement distribution data. Initial attempts were made to
simulate a full biaxial test specimen but the unrestrained edges of the slits in the arms
caused the simulation to become unstable. Development of a model suitable for the
representation of the unrestrained arms would facilitate a direct comparison between a
biaxial test simulation and DIC results. Rich displacement and strain data for simulation
validation could also be gathered from full scale structural tests or insitu structures using

DIC.

The reliability analysis procedure requires further development in order to improve
stability to allow analysis of the serviceability limit state. As described in Chapter 6, in
order to perform reliability analysis on an iteratively loaded fabric structure the limit state
function derivatives must be derived for each load increment. Taking the displacement
derivative with respect to the first implied stiffness term, ET, as an example. The
displacement derivative for the first load increment with respect to Effl is the same as
those used in Section 6.3 for a single load increment. At the second load increment the
total displacement is dependent on the variables of both the first and second load

increments, Effl and E{ffz. If the maximum load occurs at the 5th increment the final

maximum displacement is a function of Eff“s. The following 5 derivatives are required,

damax d5max d(gmax d(gmax d(gmax
dETTY ' dEPT? ' dENTS ' dERT* ' dEPTS

These derivatives maybe accessed using the finite difference method but this would be
very computationally expensive. Therefore, analytical definition of these terms is a

requirement in order to perform incremental load reliability analysis.

Computational expense is a limiting factor not only when considering incremental load
reliability analysis. It also limits the complexity and density of meshes that can be
analysed using the code developed in this Thesis. It would be beneficial to future research
using this code to redevelop the Fortran code to make it more user friendly and more
efficient. Initial efforts have been made using Matlab scripts and Rhino Grasshopper to
provide graphical user interfaces. It would be of further benefit to rewrite the code in an
object orientated language such as C# to facilitate better variable management, better

integration with powerful graphical tools such as Grasshopper and clear user interfaces.
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Appendix A. Grasshopper Mesh Generation

Conic Mesh Generation

Grasshopper is a powerful open access algorithmic modelling plug-in for Rhino 3D. It has
been used in this thesis for mesh generation as it allows complicated meshes to be
generated with relative ease A number of scripts have been generated for different
structure types, only the conic script is shown here. However all work in a similar manner.
As grasshopper is a Rhino plug-in it creates an excellent graphical interface and allows the
mesh to be captured in the form of an exportable Rhino 3D file. The Grasshopper script
interfaces with my Fortran code modules through the generation of .csv input files and by
reading .txt Fortran module output files. Fortran modules may also be called from within

the Grasshopper. For more information visit: http://www.grasshopper3d.com/

Overview of Conic Mesh Generation Grasshopper script:

E= ol
3 ¥ 1

i This area of the script contains all of the objects for the user interface,

i these will be described in the following pages. The rest of the script
1

1 performs the various functions of mesh generation, file generation
L


http://www.grasshopper3d.com/
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File directory containing input file (all

other files map from this)

Read in .csv file containing node co-

ordinates for setting out edge restraints

Read in .csv file containing node co-

1
1
1
ordinates for setting out hoop restraint |
1
(3 node used to define circle) !

]

Ring may need to be rotated to properly

1
1
1
form mesh between correct section of !
1
1
1

SSFAXAIPAENE A
Sl FALE RO,

Mesh generated from:

e  Strip Width
o Element Height
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Preview mesh and node points in Rhino

viewport

Bake initial mesh to Rhino view-port.

Panels are automatically generated with
geodesic control strings along the edges

(Green)and down the centre line (blue)

The panel warp direction angle is

aligned with the centre line

355

SERTEAI S RBLE,
SlmE FAL P AROR,

Mesh is simplified using Fortran script

to remove any coincident nodes

Hoop and edge restraints are selected
from the baked mesh in the Rhino view

port

Right click on control and select “Set

multiple points”

Certre Line B \

Preview \

Selected points are highlighted in blue

Enabled

(A=

Bake... \
Wire Display >

Disconnect > \

Reverse \

Flatten \
Graft
Simplify \

Expression »

BEEPEO
MlmE GRS BERQSIT BN

SSEIXAI® A

Set one Point \
Set Multiple Points

Manage Point collection \

Clear values \
Interalise data \

Extract parameter \

@ Hep...

Preview restraints (preview geometry is

highlighted in green)
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Cable pre-stress is defined in a CSV file

and read form the input directory

Cables are selected in the same way as

restraints in the Rhino viewport.
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An initial form-finding is run using a CST
element formulation (this is optional but
helps to generate a regular mesh

geometry)

Geodesic string elements may be

B 0.980343, 33,1430, 0. TTOA MY . . .

€ 0.523409, 11.314432, 0.7%53428 r

e ignored if not required
BLATEEE, 11 37345 1Eeaits  FEY N e e e e e e e e e e e e e e e e e e e e e
2 1.074084, 10.€08413, 1.43910¢

10 8.15834, 10.2€06€1 A Y Y e e e e o e e e e e e e e e e e e e e e e e e e e e e
11 2.987831, 10.39812 i

33 3043303, 483633, 3.3 Fabric pre-stress and allowable out of

117€ 6.5 is set

1177 15€,189, 160, 162,164, 166

1178 6.0

1178 248,168,170, 374, 472,173

v  EHWB ' N e T T T T T T T T T -
us: R4U136,139,040, 242 . . . .
120z .0 ; \ - Analysis input is automatically

1188 81, 9¢,97,200,408, 106

11684 €.9

k
1
1
S0 TN A generated and is saved to a CSV file that |
1187 ﬁ;,:u,u«.uc,ua.nn 1
1
1
1

i in turn is read by the Fortran FE code

4
-

Form found mesh is read back into
Grasshopper and may be viewed in the

Rhino viewport

S8
i
aa
a4
D%
T
240
G
L
0,
5
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CSV Input for Fortran CST to LST

conversion module generated and

B T - - | OSSO 1
B | A e e e A e I e A i A e i e
30,0, 12.0, 9.0

iedsen, ace, o Select geodesic or non-geodesic mesh !

§ 1.308777, 11.88€714, 0.228883

Preview generated mid side nodes in

Rhino viewport

Run Fortran module which slits 6-node
elements into 4 3-node elements to
enable results visualisation in Rhino

viewport
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Final LST mesh form-finding is run in
the same way as the initial CST mesh

form finding.

Again geodesic string elements may be

ignored if not required

Analysis input is automatically

1
1
1
generated and is saved to a CSV file that !
in turn is read by the Fortran FE code :

1

Fortran FE code if called from
Grasshopper, analysis progress is

displayed in a console:

The form found mesh is read back into

Displacement information may also

displayed on the form found in the Grasshopper and may be baked to the

Rhino viewport: Rhino viewport

i
.
s
T/
iy
a.
5
.
@ sl
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1
The material properties and settings !
required for the static analysis of the :
1
1
1

form found mesh are set

Elastic moduli for the warp and fill

directions along with a shear modulus

Poisson’s ratio for the warp and fill

directions (these are independent)

Equivalent nodal loads are applied to

the mesh using another Fortran Module

Type of loading is set
Global/Projected/No loading

Fortran equivalent nodal loading

58347

2.84283, 2.140€78,
3224 ¢ sesan3

3.383691, 3.086435,
§ 3328 5 sasany

e oo, o module input is generated and saved to

1226 50

a CSV file

Fortran loading module is called and

nodal loads generated. Load

1
1
1
1
1
1
information is read back into X
1
grasshopper and also saved for review !

1

1

in a .txt file
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Step 11:
Analysis

Input File: Input.csv

Start ST Amatyss

Initiate LST Analysis L

Grasshopper Mesh Generation

Analysis input is automatically
generated and is saved to a CSV file that

in turn is read by the Fortran FE code

Fortran FE code if called from
Grasshopper, analysis progress is

displayed in a console:

Z RATIO
1.00000000000000

0.00000000DPRODOE +0O0
TLL STRESS SHEAR
9E+008 ~ 0.00080098000B00AE+000 9.0000IBAODBA0DAE +0B0

NO_ SELECTED NODE!
1

SELECTED NODES SELECTED ELEMENTS
1 1

HHHI NN L OA D T NGHOHHHHHHIIINN NN

#  CAUsers\nsmithie\Documents\Phd\Conic Example 2\LST netexe | bl

Analysis output including GiD results
files are saved with the loading name as

a prefix

361
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Pattering of the form found mesh is also performed within the same Grasshopper script.

1. Asingle panel is selected from

within the mesh

ot near Doy
A PE e,

minimise the displacement required

for flattening

SSMIANI 95 e,
EIRPILIS AR

Rhino viewport and a central seam is

defined

T —
FeE e

SSEDRAI P AT
Slmt TRl e LRAR,

4. The Fortran pattering module
input .csv file is generated and the
module is run, the final flattened
panel may then be viewed and baked

to the viewport

4
an
ey
32

0
B
5
LY
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The final patterned panel meshes, baked to separate layers, and form found mesh may be

manipulated in Rhino 3D or exporetd to other CAD packages in the form of a .dwg file

S cone brampie 1195 K8) - Rhmoceros Commercal (64-br) Y . = O % ]

File Edt View Curve Surface Sobd Mesh Dimension Transform Tools Analyze Render Panels Help

imammumm(n Dynamic Extents Factor in Out Selected Target 1701 ). _Extents

]‘cumm-c

=
SetView | Display * Select | mmxm Curve Tools  Surface Tools ' Saolid Tools Render Tools | Draftng  NewinV5 | L]

o +§'Fp BEAD B Anand c@BHO D G)@?-‘A?’%**v'mo%*

-

OSEDEANI S ROIOROTAT ©
r ot T RN DI G-

| | Perspective | Top, Front | Right 4 | L il -
1 ‘EIIN-DMDIHI&-DnEIP-BY-\ﬂMEIM ] Vedex (] Proect (] Daatle
| Default

Transtom_Took Anshze Render Panct Help

| Sws | Choes StV o St Vewp Loyt Vi Trwrlom Carve Tol STl | ST |l Tal_ Rer T O w5 | ®
DEESTXDO~" +ASLPTH= «579090000 1,0,

v4ay
Name Materal
Defoit v -
1 ikt Mesh *SE
| stosobonten U iCe ]
So_1
Swp_1 - Rattened
S8
Sw_1e
ESY
S,

SEBDRAI P RAEIOROI DT *|

DL DDEEAAN
vooosanon0oooaq)

©,0,0,0,0,0,5,6,0,0, 0,0, 0,0, 5, 5,
[S[S[s[s[s[als[a[a[s]s]s]s]s[s]s]

EREEREREEY

b

Sl eel Fhl e RGOS IO
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Figure B.1: PVC Biaxial 1:1 stress profile and results for history network training
and validation(— warp, - fill)
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Figure B.2: PVC Biaxial 1:1 stress and resulting strain profiles divided into training

and testing data respectively (— warp,

fill, « data point)
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Figure B.3: PVC Biaxial 1:2 stress profile and results for history network training
and validation (— warp, - fill)
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Figure B.4: PVC Biaxial 1:2 stress and resulting strain profiles divided into training
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Figure B.5: PVC Biaxial 2:1 stress profile and results for history network training
and validation (— warp, - fill)
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Figure B.6: PVC Biaxial 2:1 stress and resulting strain profiles divided into training

and testing data respectively (— warp, - fill, « data point)
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Figure B.7: PVC Biaxial 0:1 stress profile and results for history network training
and validation (— warp, - fill)
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Figure B.9: PVC Biaxial 1:0 stress profile and results for history network training
and validation (— warp, - fill)
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Figure B.10: PVC Biaxial 1:0 stress and resulting strain profiles divided into training

and testing data respectively (— warp, - fill, « data point)
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Figure B.36: PTFE network tested with 1:0 profile in recurrent mode
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Figure B.37: PTFE network tested with 1:2 profile in recurrent mode
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Figure B.38: PTFE network tested with 1:2 profile in recurrent mode
(— warp, — fill, = target, © network output)



Appendix B Full Biaxial History Network Results 406

N
(=]

w
(=]
T

[y
(=]

Warp Stress (kN/m)
N
(=]

\
| |
0 1 ! l‘ 1 !‘
30 40 50 60 70 80 90 100 110 120 130
Time (minutes)

4‘0 | | I I 1
=
E 301 | 1
z
= |
0 = -
§ 20 . ° |
“ A
= 10 %
&3 s T
0 | " | | i | |
30 40 50 60 70 80 90 100 110 120 130
Time (minutes)
(a) Cycles 1-20
40 T T T T

w
(=]
T

1

Warp Stress (kN/m)
&
T
Il

% A
100 e AR A A , i
- :e. ""v W X
0 | | | ‘ 1
110 120 130 140 150 160 170 180
Time (minutes)
40 T T T
E 301 .
z
=
% 20r T
=
A
= 10 4
i \
0 1 il O O s O O O
110 120 130 140 150 160 170 180

Time (minutes)
(b) Cycles 20-40
Figure B.39: PTFE network tested with 2:1 profile in recurrent mode
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Figure B.40: PTFE network tested with 2:1 profile in recurrent mode
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Neural Network Training Tool

Neural Network Training Tool

409

MATLAB®is a high level language and interactive environment that provides a great many

tools for the generation of GUI, processing of raw data, graph plotting and neural network

training. The Neural Network Toolbox ™ (http://uk.mathworks.com/products/neural-

network/)contains all of the neural network development tools available within the

Matlab environment. A number of scripts have been developed in order to process raw

experimental data and build training data sets. Network training and testing is also

performed through scripts which call the functions of the Neural Network Toolbox. The

internal variables of the networks may be saved in a .csv file used as input when

implementing the network in the Fortran FE code. Several useful tools for reporting the

network training have also been developed including numerical performance output and

data plotting. The full response surface network training procedure is documented here.

4 /
File Edit Debug Darallel Desktop Window Help ¢

Matlab is opened and the "Current

MATLAB 7.11.0 (R2010b)

Ne|# =) “ | & rf [F] | @ | Current Folder: C:\Users\Micola\Dropbox\Phd\Thesis\5_Neural_Network_Implementation\Response Surface Network v

Shortcuts (2] How to Add [#] What's New
Current Folder % O 2 X Command Window

<« Response Surface Network -| 2@ #-  >> nevwork opvions
fe

Name = \

PVC_Appendix ~ AN

PVC_history \
) Assemble_profile.m

|| biax_processing.asv \
B

ssing.m

]! m

[ uildData2asv

) Buildbatazm

) createfiguressstrm
datamat

] DataPlot.m

1] diary
] Differential_min.m
FH matizb.mat

|| netwerk_options.asy
£ network_options.m
] NetworkPlotm

] NetworkPlotRev.ass
) NetworkPlotRev.m
| NetworkPlotTestasy
) NetworkPlotTestrm
) networktest.m

[ PFe_3.mat

HH pvc_sozsmat v

WrinklingCriteriaPlot.fig (Figure

No details available

4 Start | Busy

MENU - O

folder" is set to the directory
containing all scripts required for

network training.

\ NETWORK TRAINING OFTIONS

\ Import and process bl raw deta
PotDiaxisl data
\ Calculate elastc consants (differential mnimiation)
\ clear alopen fgures
\ Load saved processed data (Hatkib Workspace)

Build Training Data Set

Workspace “o e x
i) o ) % B | Steck | P Selectdatatoplot
Neme Value Min

< >
Command History e

menu opened by calling

window.

The scrpits are all accessed through a

[}
1
1
1
1
1
I "network_options" in the command
1
1
1
[

Reliability 2 = Reliability 4
Reliability 3 = Reliability 4

~-necwork_options
cle

Network_options

——— e ———



Appendix C Neural Network Training Tool

NETWORK TRAINING OPTIONS -~

Import and process bidial raw data

Plot biaxial data

Calculate elastic constants (differential minimization)

Clear all open figures

Load saved processed data (Matlab Workspace)

Build Training Data Set

Build Training Data Set With Wrinkling Criteria

Finizh

Clear Command and Workspace

Initially the menu provides limited
options. Further options become
available as the training process

proceeds.

To initiate network training select

"Import and process biaxial raw data".

The raw data processing scripts have
been adapted from in house biaxial

data processing scripts developed by

Dr. Ben Bridgens for the calculation of

elastic constants.

1 < Addtionl LoadRaties » s VG| Seoch e -1 ;
© 1l « Additional Load Rati Results ¢ | Search Resul: ”"n— X Upon Selectlng "ImpOI‘t
Organize *  New folder _-- = I @ 1
b Mme e = Tope e i and process biaxial raw
B Desktop || Nicola_001 - - —Elr’DZr’ZDTT 11:00 File 736 KB 1
& Downloads @ Nicola_001(PTFE)xlse == - 23/02/2011 10:32 Microsoft Office E... 797 KB .
p o i62 e assrs I data" a file explorer
4o Thesis @ Nicola_002(PVC) xlsx 19/07/2013 10:33 Microsoft Office E. 3340KB :
ke 1 window is opened to allow
£ OneDrive 1
ccuments I -
et 1 you to navigate to the raw
1. public 1
X , .
R , data file generated during
v 1
File name: | Nicola_002 v| [aiFiles ¢ v : a biaxial test.
""""""""""

Select Column Separator(s)
Ofomma ) Space ) Semicolon @ Tab () Other I:I MNumber of text header lines: fle=|
Preview of C:\Users\Nicola\Dropbox\Phd\Thesis\4_Neural Network Training and Validation\Test Data\Biaxial test (22_02_2011)\A¢ e el
2.0 0.070 83.707 83.700 2.0 ~ || Nicola 002‘ k- P
- 1
: . ——— ! The raw data is imported
6.0 0.066 83.684 83.700 6.0 7 3 00700 370 B A |
8.0 D.068 B3.656 83.600 8.0 - :
2 4 0.0%00) 83.6890 FERDS
10.0 0.073 83.611 83.600 10.0 3 6 _ — Bo660 83.6840 a7 : via the Matlab Import
12.0 0.082 B83.578 83.600 12.0 1 P 0.0620) 23,6560 33,60 .
14.0 0.069 B83.580 83.600 14.0 - i
5 10| 0.0730) 336110 33,60 | leard_
16.0 0.073 B83.562 83.600 16.0 & 12) 0,0820] 83,5780 83,60
18.0 0.073 B83.573 83.600 18.0 7 14) 0.0690) 83.5800 83.60 L e e e e e e
20.0 0.074 83.576 283.600 20.0 ] 18 0.0730) 83.5620 8360
22.0 D.063 B83.581 83.600 22.0 9 18| 0.0730) 83.5730 83.6(
24.0 0.066 B83.569 83.500 24.0 10 20 0.0740) 83.5760 83.6(
26.0 0.074 83.547 83.500 26.0 i 22 0.0630 83.5810 B340
28.0  0.083 83.512 83.500 28.0 v 12 24 0.0560 83.5600 3500
< > < >
<Back | Next> Finsh [ Generate MATLAB cade

410
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Enter test reference (used in chart titles & pdf filena NO SPACES,
PVC_Appendix ~

Enter sample width{mm})

‘300 A GUI is displayed in which the test

Stress reduction factor for cruciform data is named and variables used in the
0.85

Window for minima search (Minutes), should be about half the length of a load

’—";@ data to equivalent stress and strain

data are set.

1
1
1
1
1
1
conversion of load and displacement '
1
1
1
1
1
1

Fle Edit View Inset Tools Desktop Window Help ~

DEde [ kAL 0DE L B0 =O

Biaxial load history

o T T
Warp stress
—Fill stress
£ 20 —
Z
& 10 —
0 [ | T T T T T T T
0 100 200 300 400 500 700 300 900 000
Time (minutes)
Biaxial strain history
9 T T
Warp strain
8 — Fill strain
7L _
= _
s | i
g
£ Y -
[
| _
2 .
. _
0 — —
4 | | | | | | | | |
0 100 200 300 N 500 600 700 500 £ 1000
~ Time (minutes)

The resulting raw stress strain

Do you want to delete data from end of test? Enter time in minutes of new final data is plOtted

data point; default value of zero does not delete any data
260 ~ U
~
~ v
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File Edit View Inset Tools Dhsktop Window Help ~

DEdS [ kRSO DEL- S 0H =0
/

II Biaxial load history

301 2 3 4 4§ 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |22 23 24 25 26 27 28 29 30 31 32 33 34 3 o

Vi | Warp stress
1 %5~

I
|
|
|
|
15— ‘
|
|
[
|

P ey By ey o by iy by el I Iy e oy 1 ey

[ A \ \ PR AR TR R e ep gt il sress
FIPEIEE TR D ER R E I e AT E A |

PR L PR PV Y R L YL T LR T ! | -
IR AU AR R T A A R T AR R R AR AR AR A TR TR h N |

IR Rn LR R R R R R R R R TR RO A TR | 7
[Tt e R \ (T 1 e AR (R I AR (T| |
O A T \ I N U (PSR A O | | N
I I I o I I 1AV I I Iy I _

L 1 1
0
50 1 m) 150 200 250

Time (minutes)

Stress-strain data to be used for elastic moduli calculation
T T L
12 ‘13 ‘1 }15 ‘16 }17 ‘18 19 zu 21 22 23 24 25 z 27 za }29 ‘30 ‘31 ‘32 ‘33 |3 ‘35 ‘3 Ware

| | | A PATATATA fil
|
l

— — Position {
| Fa PP — — et

Siress (kN/m

o 4 v w E m o N @ @
T T+

.
AIATALAL
YV VN

i Wil

|
100 200 250
Strain (%)

1 1

— 1 1

Have :ymszeeg lﬁnﬁfe‘ﬂ'u;re—cﬂy‘? (answer No to try again with a different search window) : :

v B , identified the turning point search

1 1

to | window may be modified and the |

1 1

! turning points are recalculated !

————————————————————————————— . 7

Once the cyc]es have been identified Enter list of cycles to use for calculation of elastic constants

5610 14 18 22 26 30 34 "
correctly elastic constants for the

generation of additional data in the
wrinkling and slack region are fit to
selected cycles of the experimental data.
The cycles, residual strain settings, and
portion of the loading curve are each set

via a GUI.
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e Paln .- ! A 3D plot of the plane stress model
fit to the data is automatically
generated to allow inspection of the
fit. The elastic constants are stored

for use later and also output to the

1
1
1
1
1
1
1
1
1
1
1
1
1
1

! workspace

The raw biaxial data has now been processed and is output the Matlab workspace. The
remaining scripts have been developed solely for the generation of network material

models in this Thesis.

The next step in the process is the - NETWORK TRAINING OFTIONS

generation of training and testing data Import and process bixial raw data

sets. Options to generate data sets with Plot biaxial data

\ N
Calcu Iﬂte\:{lasﬁc\cunstants (differential minimisation}
AY

\

data are available. The following shows

\ \
\ \
Llear all\upen figures
M N
A N
Load saved pruc}e‘ssed dﬁta (Matlab Workspace)
\ .
RN N
Build Traiging Data Set

Build Training Data Set ?\\fith Wrinkling Criteria

the generation of a data set with

wrinkling data.

! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! or without additional wrinkling training 1
- |
! 1
! 1
! 1
! 1
! 1
! 1
! 1
! 1

Finizh

Enter list of main cycles to use for network training
5610141822

Clear Command and Workspace

N
N

Enter list of mid cycles to use for network training and te\sﬁng . L. .
26 30 34 38| T As with the fitting of elastic constants

the network training data sets are

Use resultz with or without residual strain? (w / wo)
wo

made up of selected cycles. Two lists of

cycles are required. These sets of cycles

Use loading or loading & unloading curves? {1/ ul)
I

testing as well as training. Again

residual strain may be included or
removed and the loading and / or

unloading portions may be selected.

1
1
1
1
1
1
1
1
1
1
1
provide 'unseen' data for network \
1
1
1
1
1
1
1
1
1
1
1
1
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I The density of a grid of additional

Wrinkling interval
0.5

stress data points is set. These points

are used in the generation of additional

data in the wrinkled region using a

plane stress model. A stress to strain

e B0 B o o oy iy e by sz
DSds|4(R50984 (308 =0 20860

network is also used to generate
additional data in the experimental
data region. These points are plotted to

allow the user to check the grid

Fomd & [Fpmd 1

Neural Network

Algorithms

Data Division: Interleaved (divideint)
Training: Levenberg-Marquardt (trainlm)

Tthoew B e o A set of 10 Stress to Strain networks
Derivative: Default (defaultderiv) - -

Pr s are trained and tested. The network
Progress
rzan 0| 4 iterations demonstrating the best fit is selected to
Time: 0:00:00
Performance:  0.00202 (NI NGOG | o generate the additional data set.
Gradient: 0.00357 3.09-06
Mu: 0.00100 1.00e-05
Validation Checks: 0 0

The Matlab training GUI allows

Flots
network training to be supervised.
[Eeiomanc i Bipfotperfonn)

(oimneEs Various plots may be generated.
(ploterrhist)
(plotregression)

Plot Interval: D 1 epochs

v Minimum gradient reached.

] Stop Training @ cancel
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REYTET] -

Stress Strain Pot Strain Stress Pt
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3 1
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1
7 1
Strain Fill(%) T 1
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1
1
ImETmmmEEmEEmIEE A O AIEEEEEEIEEEEEEEEETT H 1
I An interactive plot of the wrinkling data is y TTT o
1 }
! produced. This allows the user to plot the '
o 1 o . !
1 different wrinkling criteria (stress, strain and !
1
1 . 1
 combined). I
1
P ST !
L+~~~ "1 Plots of the final training data set are generated !
1
7’ ’ [} . . . 1
. and saved as jpegs in an automatically I
. | -
7 . }
R | generated network directory. i
/, 1
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d
e 7 Rmmwms -'ER
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MNETWORK TRAINING OPTIONS

Neural Network Training Tool

Import and process bixial raw data

Plot biaxial data

/

1
Calculate elastic constants (diffepérmal minimisation}
A |

/ 1

Clear all u-pen,ﬁgu rf;'s
/
I

Y2

1
Load zaved pruces-sed,ﬁata (Ma?tlah Workspace)
/

/ ]

Build Ffaining Dat§ Set
ya

7 1

I
Build Training’Data Set W'rth,'u'l.l'rin kling Criteria
ya

Y2 1

! Train and Test I‘#Btwu-rk

I
Train and Te=t Ratio Input Network

Save MNetwork

Finish

Clear Command and Workspace

The Network set is given a name and the

number of networks to be trained is set.

The training algorithm is set by default to
"trainlm" but any training algorithm available in

the Neural Network Toolbox may be used.
The number of hidden nodes is selected.

The hidden layer activation function is set by
default to "tansig", again any available transfer

function may be used.

Random data division and node initiation may

be turned on or off .

Training data group sizes are set, these sets are

used to implement early stopping.

The network training and testing
options are now available. Either a 2
input network or a 3 input network
with an additional ratio input may be

selected.

1
'Netwnrk Name

416

Appendix

Number of Networks

—————————————————————————————————— bl 10
Various network options are set via a GUI. :

Training Algorithm

trainim

Number of Hidden Modes

10

Hidden Layer Activation Function

tansig ~
W

Random Data Division (nfy)

n

Random Mode Initiation (nfy)

¥

Training Ratio(%)

7o

Validation Ratio(%)

15
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Once training and testing is complete the performance data for each set of networks is
output to the command window. These values are also saved to the workspace and may

easily be exported.

File Edit Debug Parallel Desktop Window Help
)D =] | & By E] L ] |‘ m @ | 7] ||C:\Users\Nicola\Dropbox\Phd\ThE;is\S_NEuraI_NEtwork_\mplEmEntat\on\REsponse Surface Metwork W ‘D
© Shortcuts &) How to Add [#] What's New
S R R R R AR R R R R R R R R AR AR R R R R R R R R R R R R ~
§ Train Network With 2 Inputs
;_ Uze Network trained using full experiment data set to ===
= simulate strain from stress to simulate comprehansive ====
% train Respon
q4 |
=
g Expermental Data (Training), Best Net: 2
o warp:0.9972 0.9930 0.9894 0.8973 0.9966 0.9974 0.3978 0.33979 0.3873 0.98z20
- £i11:0.9963 0.9978 0.9938 0.9964 0.9943 0.9974 0.9972 0.9959 0.9948 0.9870
mean:0.9968 0.9984 0.9915 0.996%9 0.9954 0.9974 0.9975 0.9969 0.9960 0.9895
====[Jge comprehansive strain response with netork trained ===
=====uzing full experimental data =et to simulate stregs =====
from strain
Network Data (Testing), Best HNet: 4
warp:0.9976 0.9954 0.9966 0.8978 0.9950 0.9980 0.9968 0.3980 0.33877 0.9877
£i11:0.994% 0.9942 0.89937 0.8952 0.9905 0.9947 0.9954 0.9946 0.9954 0.9936
mean:0.9962 0.9948 0.9951 0.9965 0.9927 0.9964 0.9961 0.9963 0.9965 0.9956
Expermental Data (Training), Best Net: 4
warp:0.9966 0.9957 0.8950 0.8973 0.9944 0.39971 0.3957 0.329&69 0.399&68 0.9%64
£i11:0.992% 0.9928 0.9905 0.9943 0.9877 0.9917 0.9931 0.9930 0.9928 0.9908
mean;:0.9947 0.9941 0.9%27 0.9958 0.99%10 0.9944 0.9944 0.99489 0.9948 0.9937
TUze comprehansive strain response with netork trained
====qmaing partial experimental data =et to simulate stress ===
from strain
Network Data (Testing), Best HNet: 3
warp:0.9956 0.9982 0.9962 0.9942 0.9957 0.9942 0.32963 0.2962 0.3855 0.9362
£i11:0.9833 0.8922 0.89937 0.98%& 0.9924 0.9907 0.9933 0.9912 0.9918 0.9921
mean:0. 9894 0.9942 0.9949 0.991% 0.9941 0.9924 0.9948 0.9937 0.9936 0.9942
Expermental Data (Partial Training), Best Net: 1
warp:0.9966 0.9960 0.9960 0.9958 0.9956 0.9947 0.9958 0.9961 0.9956 0.9956
£i11:0.9924 0.9908 0.9911 0.9%08 0.9%02 0.9888 0.9912 0.9912 0.9909 0.9901
mean:0.9945 0.9935 0.9935 0.9933 0.9%2% 0.9918 0.9935 0.9937 0.9933 0.992%
v
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Once the networks have been trained

become available.

1

1

1

network plotting and saving options :

|

Plot biaxial data '

Calculate elastic constants (differential mip‘lmis,gatiun}

1 1

7
7
1

7 1
U 1
Load saved processed data (Matl,}ib Workspace)
, 1

Clear all open figures

I T
Build Training Data Set :’
VA
/ 1

1
Build Training Data Set Wﬁﬁ Wrinklimg Criteria
/ 1

i 1

Train and Tt;'s.t Netwu-ryl

7 I
7 1
Plot Net Figures "

1
!
Train and Test Ratio Inpuj Network

Plot Network
4

Plot Name
Metwork 4

T
Save Network

Legend on(1 Woff(0}
1

Finish

Clear Command and Workspace

File Edit View Inset Tools Desktop Window Help ~

DEEAS MR UDEL- 208D

Stress o Strain Networkd, Full Experimental Strain to Stress Networkd, Full Experiment
R? Experimental:0.89731 R? Network:0.99785 & R? Experimental:0.99728

Strain to Stress Networkd, Partial Experiment Strain to Stress Networkd, Network Derived Strain
R? Network:0.99422 & R? Experimental:0.99578 R? Netwark:0.9979 & R? Experimental:0.99831
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i The "Save Network" option opens a GUI where the i
1 } N
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€ Metwerk w
10items




Appendix C Neural Network Training Tool 420

Cla
(W |
Home Insert Page Layout Formulas Data Review View @ - 7 X
[E % calibri 111 || ==|5 | |General - |E| S=lnsertr | X - ﬁr lﬁ
By |B £ U-||A & v @@ s || Fepeeter (3]~ .
= 5 Al | T L
Clipboard M Font (] Alignment L] Mumber & Cells Editing
Al - (2 fe| -2.5179 ¥
A B | c | o | E | F G H 1 1 K L M
1 -2.5179] 5.5335
2 -1559 -2.2763
3 -2.6131 0.4089
4 10478 1.8348
5 -4.69059 -0.44012
] -6.0418 -67712
7 0.86266 -2.4217
B 1.737 2.4714
9 | 0.20114 10.049
10| -349391 -2.1582
11| 0.83578
12 1.2049
13| 19487
14 | -0.75806
15 10233
16| 0.54754 A
17| 16304 3
18 | -0.03731
19| 3.7867
20| -4.0653
21 0.0474 -033723 -067302 -0.12714 -0.28815 -0.1584 -0.018585 -0.05518 -0.03341 0.00387
22 | 0.03367 1.7276 0.08616 3.422 -0.05085 -0.16911 -0.25589 -0.75997 -0.08951 0.01542
23 | 0.29071
24 0.237
25| 0.02679
26| 0.03094
27 | -0.03085
28 | -0.03129
28 27859
30 275974
31| -0.03085
32 | -0.03129 1
33
34
35
M 4+ M| pet ¥l | |
Ready | B (O = O

The final output is a .csv containing all of the weights, biases and scaling data allowing the

network to be implemented in the Fortran FE code.
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Appendix D. 3 Node Cable Element Formulation

In order to ensure compatibility between the cable element and the 6 noded membrane
element it is proposed that a 3-noded cable element formulation may be based on the

shape functions of the membrane element.

(x3,¥3,23)

(0,0,1)

(x5, Y5, 25)

(X6 Ve Z6)

(0.5,0,0.5) (0,0.5,0.5)

(x2,Y2,22)

(X4 Yar Z4)

(1,0,0) (0.5,05,0) (0,1,0)

(X1, ¥1,21) X, U

Figure D-1: Mapping between global and natural co-ordinates for 6 node membrane

element
D.1 Shape Functions
Py (%1, y1,21) Py (x4, Y4, 24) Py (%2, Y2, 22)
8, (ug, vy, wy) 84 (s, V4, W) 8, (uz, v, W5)
§$=15=0 §1=105¢,=05 $1=0¢,=1
@ @ ®

Figure D-2:Side 1 of the 6 node membrane element

In the current formulation the cables are approximated by straight lines. Therefore, as
illustrated in Figure D-3, the displaced length used to calculate current strain is calculated

by,

Ly = \/(x4—x1+u4—u1)2+(y4—y1+v4—v1)2+(z4—zl+w4—wl)2

Lz=\/(xz_x4+u2_u4)2+(3’2—3’4+V2—V4)2+(22—Z4+W2—W4)2
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P4((x4 +uy), (Vs + ), (24 + W4))

Py((ey + w), (1 + 1), (21 + w1)) Py((xz + 1), (2 + 12), (2, + W)

Figure D-3:2 node cable approximation of deformed side 1 of a membrane element

As an alternative it is proposed that the current cable stress and strain be derived using
shape functions in a similar fashion to the 6noded triangular element. Taking a single side

of the membrane element, the relevant shape function are,

Ny =§1(2§1 — 1) Ny =455 N, = §,(28, — 1) (D-1)
Through inspection it can be seen that &, = 1 — &, therefore the cable shape functions
become,

Ny =§(2§ —1) Ny = 4§ —4§% Ny =1 — 3¢ + 242 (D-2)

where & = &, for clarity the shape functions, coordinates and displacements are

renumbered 1—3 along the cable.

Given that x = Z%j N;x;and § = Zfzf N;§; itis now possible to interpolate co-ordinates

and displacements at any point along the cable element, Figure D-4.

Pz((xz + ), (¥, + 1), (2, + Wz))

Pe((y + up), O + 1), (2 + Wy))

P1((x1 +uy), (v + 1), (2 + W1)) £=05 Pa((xa +u3), (3 + v3), (23 + Wa))

Figure D-4:Interpolation of coordinates and displacements for 3 node cable element

x = Y3 Nx; = Nyxq + Nyxy + Naxg = (282 — E)xy + (48 — 48%)x, + (1 — 38 + 28D x5

y = ZiZINYi = Nuys + Noys + Nays = (282 — )yy + (4 — 489y, + (1 - 38 + 28y, (0-3)
z=YZ3N;z; = Nyzy + Nyzp + Nyzg = (282 — &)z, + (48 — 48Dz, + (1 — 3E + 282z,

u = Y3 Ny = Nyuy + Nouy + Naug = (282 — Ouy + (48 — 4EH)u, + (1 — 38 + 28H)u;,

v =Y Nw, = Ny + Nyv, + Navg = (282 — v, + (46 — 482)v, + (1 — 38 + 28 v, (D-4)
w = DIZINw; = Nywy + Nowy + Naws = (287 — E)w, + (48 — 48w, + (1 = 3§ +28%)w;
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D.2 Cable Transformation Matrix

Direction cosines may be found at each node in order to resolve the cable stiffness and

forces into the global system. These direction cosines may be found using the base vector

5 aligned natural coordinate direction given by,

2 6_x i dy ] az
¢= [af_’_*'af +6$ ]

. (D-5)
€=[Z;:? afl +Zl 165 yl]+21 165 k]
X = ||§_|| = [l i+ 1] +15 K] (D-6)
The local Y direction found from the cross product of X and the global z direction.
o _ zxX _ n n ~ D-7
Y—m—[mll+m2]+m3k] (D-7)
z=[01+0j+1k|
and finally
5 Xxy -
Z= ”XX [n1 i4+n,j+n; k] (D-8)

In cases where X is aligned with the global z direction the global y direction may be used

to find Z

5 Xxy n n =~ D-9
Z=ci= [ny T 4n, f +n3 k] (D-9)
and

6 Ix® _ R R ~ D-10
Y = xx] [m1 i+m;,j+ms k] ( )

The cable transformation matrix, [T€], is defined in terms of directional cosines between

the global and local coordinate systems.

LoLo L
TC: ml mz mgl

n; Ny N3

(D-11)

D.3 Jacobian

The displacements are expressed as functions of the normalised natural co-ordinates.
However, strains are required in terms of the element local coordinate system. Therefore,
it is required that differentiation with respect to the natural co-ordinates is related to

differentiation with respect to the local co-ordinates via a change in variable. The Jacobian
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accounts for the change in variable between the distorted element expressed in terms of

local co-ordinates and the normalised element expressed in terms of natural co-ordinates.

The Jacobian may be derived by taking a general scalar quantity, @, (for example of
displacements in the global x direction) at a position in the element defined by (). If the
position of @ is moved from (&) to (¢ + d&) the change in @, d®, is given by,

0P
do =72+ d§ (D.12)

A change in position of d¢ implies a shift in position given as é’ - d¢. Resolving these shifts

into the local X direction gives,

dXg =& Xdé (D.13)
Rewriting (D.12) in terms of the local coordinate system gives,

9P
do Za'dX+ (D.14)
where, dX = ng

Substitution of (D.13) into (D.14) gives,

do =[¢- 257 d5=‘;—‘;’-d§ (D.15)

Collection of the common terms in (D.15) leads to the formulation,

1 =[5]=-8[5] (D.16)
and
r= [g—j = [312] [Z—?] (D.17)

This allows the calculation of the partial derivatives with respect to the local coordinate
system expressed as

aN, ON, 61\/3]_[01\/1 aN, 6N3]
“lax ax ax

Dy, =1 [Dw | = M58 52 5 (D.18)

D.4 B-Matrix

Strain in the local cable direction is found by Greens Strain
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_0.5(%-Ly?)

€cable = Lo? (D-19)
where L is the initial length and [ is the length after deformation.

The B-matrix is the relationship between strain and displacement

Ecable = [BI{6;} (D-20)

The total squared length, L,?, is give by
ax? 6Y2 072
=4 (ax ax Tox ) dg (D-21)
The total squared displaced length, [2, is give by

= (G )+ G i) G5 )=

6Y ou vz ax ou ay av a9z ow

f/(ax o +—)df+f101(a +ox +—>df+2f I (Gan* onon + v o) %

The x-coordinate in the local Xcoordinate system, X, is interpolated from the global

(D-22)

coordinates at each node via the shape functions calculated at the point of interest and

transformed into the local system via the unit vector X.

The first order contribution to the total length may be derived from the derivative of (D-23)
with respect to €.

oT

a[N] aN N aN
=2 L) = 8T 2 S 1+ R Ty + N T 2 k] (D-24)

Substituting the direction cosine form of, X7 into (D-24) yields,

ax i3 ON; i=3, ON;

o= oo+ NS LSy + X R o i (D-25)
Similarly

ay i=3 ON ON;

£=Zl 1My = X Xz‘*‘Zl 1m2 X yl+21 1m3 X Zj (D'26)
0z i— ON; dN;

a=%£m5%+f wwn+ylwwa (D-27)
ou i=3

i Y m1 o ul + Zl 1m2 o vl +Zl 1m3 o Wl- (D-28)
v i=3

— = Z§= 1 o ul + Zl 1n2 o vl +Zl 1n3 o Wl- (D-29)
aW _ wi=3 oN dN; i=3 aNi

6X =11 >, 6X L+ l 1n2 ax Ul+ i=1 M3 > X Wi (D'30)
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Gathering these terms yields,

X

[al
ay
Ay} = 2| = [61{c}
(8 = 35| = et
li
ax
and
ax
ax
Y
dy} =1—=I1=[Gl{6};
0 = 55| = o1,
-
ax
where,
[G] =
R A A A - A By
1 5x 2 5x 3 ax 1 5x 2 9x 3 ax 1 5x 2 9x
1 5x 2 3x 3 ax 1 5x 2 9x 3 ax 1 ax 2 3x
1 5x 2 ax 3 ax 1 5x 2 9x 3 ax 1 ax 2 9x

{C}iT=[x1 Yi Z1 X2 Y2 Zz X3 Y3 Z3 |
{S}iT=[x1 Yi Z1 X2 Y2 Zz X3 Y3 Z3 |

this leads to,

Lo® = [ J({Ax} {Ax D) dE

12 = [P J{AY Ak DAE + [ J{0xT(0xDdE + 2 [ J({Ax}T{0x)) dE
Substituting (D-36) and (D-37) into (D-19) gives

_05(12-LyH) _

Ecable = ng -

0.5, J({axdT{ax})ag+ [, J({0x}T{0x})ag+2 [ J({ax3T(0x})dE - [, J({6x}T {Ax})de)
I 1A )T {AxDdE

_05(J7 J({axyTox)dg+2 [} J({Ax)T(0x})ds )
I 1(ax)T{Ax D ag

05(f; J(0x)TIG1(8Y)ag+2 [ 1({ax)TIG1{8})as )
I 1(axT Ak dE

Eliminating {§}; leads to

427

(D-31)

(D-32)

(D-34)
(D-35)

(D-36)

(D-37)

(D-38)
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[B] = [{ox}"11G] + [{Ax37116G] (D-39)

Z{Ax}T{Ax} Z{Ax}T{A }

D.5 Element Residual Forces

Gauss integration using 4 points is employed to approximate the integral between 0 and 1

in the form.

[ dL = S35 wig; (D-40)

The following 4 Gauss points and corresponding weights are proposed

Point 3 Weight
1 0.069432 0.34785
2 0.3300095 0.652145
3 0.6699905 0.652145
4 0.930568 0.34785

Table D-1: Gauss points and weights
Cable strain at each Gauss point is found from
€cabte = [BI{6;} (D-41)
Cable stress at each Gauss point is found from
ocabte = EA(&capie) + Feao (D-42)
The cable element residual forces at each node in the global co-ordinate system are given

by

{feadi= fl [ tB]T[Ucable]dl (D-43)

where ;B is calculated using the updated coordinates and is given by,

tB] [11 e I 66_1\;1 l3 a—; l1 aNz I 66_1\;2 I3 aa_l\? L a_; I % 13 6N3 (D-44)
D.6 Stiffness matrices
The elastic stiffness matrix is given by,
[Ke) =22 [), [ 8] (EAlBlaL] (D-45)
The geometric stiffness matrix is given by,
[K,° [ [ 5 [G] dl] (D-46)

[M] = [Ucable [13]] (D'47)










