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ABSTRACT 

The poultry red mite (PAM) (Dermanyssus gallinae) has been deemed the most 
deleterious ectoparasite in commercial housing systems for laying hens, affecting the 
cost of production, health and welfare. Present control of the PRM is hindered by the 
limited number of acaricides available, resistance by PRM to acaricides and the 
ability of the PAM to evade control. Therefore the aim of this thesis was to investigate 
the manipulation of the host immune system as a means of developing a vaccine to 
control the PAM. Two experiments were carried out to gain a better understanding of 
the relationships between natural PRM infestation, acaricide application, the immune 
response of laying hens and the consequences for egg production and welfare. A 
further two experiments were implemented to determine the effect of immunisation 
with PAM antigen extracts on the immune response of hens and subsequent survival 
and fecundity of PAM. 

Experiments 1 and 2 evaluated the effect of estimated PRM populations on 
production parameters and the immune response of poultry across commercial laying 
sites. Both experiments showed significant correlations between PAM population and 
production parameters, specifically building temperature and hen mortality in 
Experiment 1 and 2 respectively. A significant reduction in PAM population following 
acaricide application was also observed. However, no significant relationship was 
found between PAM populations and either IgY or cytokine levels, although a 
Significant negative relationship was observed between IgY and the cytokine IL-4. In 
both experiments, variability of data was high which may have contributed to the 
failure to show a relationship between PRM population and the immune response of 
poultry. Nevertheless, these experiments highlight the suitability of commercial egg 
laying systems for proliferation of PAM and the consequences for poultry. 

Experiment 3 assessed the effect of immunisation with PAM antigen extracts on IgY 
and cytokine responses of pullets, as well as PRM survival and fecundity. There were 
2 treatments: an antigen treatment which received PRM antigen extracts in Complete 
Freund's adjuvant (CFA), followed by two immunisations of antigen with Incomplete 
Freund's adjuvant (IFA) and a control treatment in which the PRM antigen was 
substituted for saline. Significantly higher IgY levels were observed in the antigen 
treatment, although an increase in IgY levels in the control treatment was also seen, 
resulting from non-specific antibody binding which was confirmed by western blotting. 
PCR performed on PAM DNA revealed that non-specific binding was a likely effect of 
homology between Mycobacterium present in both PRM and in CFA. Significantly 
higher IL-10 levels were seen in the antigen treatment, which was in turn thought to 
be responsible for the significant inhibition observed in IL-4 and IL-S. Survival and 
fecundity of PRM was not significantly affected by treatment. 

Experiment 4 investigated the effect of immunisation of pullets with two different PRM 
antigen extracts, without the confounding effect of Mycobacterium in CFA. There 
were 2 control treatments receiving either PBS or IFA only, and two antigen 
treatments receiving IFA with either PBS or Urea-extracted PRM antigens. Levels of 



IgY and IgM were not significantly different between antigen treatments, but these in 
turn were significantly higher than the controls. Western blotting showed several 
bands in the antigen treatments, which were not seen in controls. An in vitro feeding 
system revealed no significant difference between treatments for survival or fecundity 
of PRM, confirming that immunisation with PRM antigens did not elicit a protective 
host immune response. 

In conclusion, this research programme has demonstrated that exposure to PRM 
antigens provoked an increase in immunoglobulin levels and changes to the relative 
expression of different cytokines in poultry. However, immunisation with PRM antigen 
extracts was not sufficient to cause a significant reduction in the survival or fecundity 
of PRM. Further research therefore is needed to identify a suitable antigen which 
elicits protection to laying hens from predation by the PRM. 
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Chapter 1 

Introduction 

Modern poultry production uses fully integrated techniques that allow for production 

of a large number of eggs in a limited amount of space and over a relatively short 

period of time (Axtell and Arends, 1990). Current production systems include 

intensive cage and extensive floor-based systems, such as barn and free-range. All 

of these systems are controlled to a degree, with the former being subject to severe 

environmental restrictions and the latter being more representative of the birds' 

natural surroundings. As a result, the ecology of poultry parasites is tied to the 

synthetic environment in which they and the birds exist and changes in this 

environment which negatively effect parasites are likely to be detrimental to the birds 

themselves (Axtell and Arends, 1990). Since the facilities and techniques for modern 

poultry production are fundamentally the same throughout the world, excluding 

climatic and geographical variability, conditions for parasites are ideal, worldwide 

(Axtell and Arends, 1990). 

At least 2,500 different species of mites from 40 different families are closely 

associated with birds, occupying all conceivable habitats on the bodies and nests of 

their hosts, with no avian species being free from parasitism by mites (Proctor and 

Owens, 2000). A number of mite species have evolved to inhabit poultry houses, of 

which the poultry red mite (Dermanyssus gallinae, De Geer, 1778), is considered to 

be the most profound. 

It has been suggested that the poultry red mite is currently the most economically 

deleterious ectoparasite of laying hens in several countries (Chauve, 1998) and has 

been identified globally (Levot, 1991; Axtell, 1999). The poultry red mite is an 

obligatory haematophagous (blood-sucking) ectoparasite of both domestic and wild 

birds, although it has been known to engorge on a range of other species, including 

man (Bruneau et al., 2001). The poultry red mite is referred to as a temporary 

parasite, since it is only found on the host when obtaining a blood-meat, with the 

majority of its lifecycle spent concealed in cracks and crevices of the house 

substructure. Subsequently, domestic poultry systems provide the poultry red mite 

with a wealth of potential hiding places, particularly in barn and free-range systems 

(Kilpinen, 2001). Therefore, the ban on cage systems within the EU proposed for 
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2012 is likely to indirectly reduce the welfare of hens due to the higher prevalence of 

the poultry red mite in extensive systems (Hoglund et al., 1995; Guy and Edwards, 

2006). 

The poultry red mite is largely seen as a problem affecting laying hens and to a 

lesser degree, broilers due to rapid turnover of meat birds (Kirkwood, 1967). The 

poultry red mite also exists as a threat in the spread of disease, since it can act as a 

vector for a number of pathogenic poultry infections such as Salmonella spp., 

spirochaetosis, chicken pox, Newcastle disease, fowl typhoid, fowl cholera, amongst 

others (Durden et al., 1993; Chirico et al., 2003; Moro et al., 2005). However, the 

most profound effect of the poultry red mite is as an obligatory blood sucking parasite 

(Chauve, 1998). The feeding mite can cause irritation, restlessness and mild or 

severe anaemia, occasionally resulting in death. Subsequently this can reduce both 

egg production and quality, as well as compromising welfare (Urquhart et al., 1996). 

Under optimal conditions, the lifecycle of the poultry red mite can be completed within 

one week, thus rapidly establishing large populations (Soulsby, 1982). These, in 

conjunction with its ability to occupy small spaces makes control of the poultry red 

mite, typically performed using chemical sprays, extremely difficult (Bruneau et al., 

2001). In addition, resistance by the poultry red mite to the few registered chemicals 

available has been observed, which exacerbates the problem further (Beugnet et al., 

1997). It has recently been estimated that the cost of control for poultry red mite in 

the UK poultry industry alone is approximately £3.7 m per annum (Anon, 2003a). For 

these reasons, a range of alternative control methods have been proposed and have 

displayed varying degrees of success, including sorptive dusts, feeding deterrents, 

insect growth regulators and predatory insects (Chauve, 1998). However, one 

method which has shown promise for control of a number of haematophagous 

ectoparasite species is the use of vaccines, with particular success seen in the 

development of the tropical cattle tick (Boophilus microplus) Bm86 vaccine 

(Willadsen et al., 1996; Pruett, 1999; Dalton and Mulcahy, 2001; Nisbet and Huntley, 

2006). 

The aim of this thesis therefore is to investigate the manipulation of the host immune 

system as a means of developing a vaccine to control the poultry red mite. In order 

for this to be achieved, an extensive review of literature concerning poultry red mite 

biology, current control methods and host-parasite immune relationships was 

undertaken. This was followed by a number of experiments evaluating the 
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relationship between poultry red mite populations, poultry production parameters and 

acaricide application, as well as the concurrent development of a series of 

immunological, proteomic and genetic laboratory techniques to determine the effects 

of both natural and artificial exposure to the poultry red mite. Finally, two experiments 

were undertaken to evaluate the protective capacity of immunisation with poultry red 

mite antigens in pullets. 
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Chapter 2 

Literature Review 

2.1 Classification of Dermanyssus gallinae 

Dermanyssus gallinae is an arthropod belonging to the class Arachnida, subclass 

Acari, order Acarina, suborder Mesostigmata and family Dermanyssidae (Roberts 

and Janovy, 2000). Typical features of the members of the class Arachnida are that 

they have four pairs of legs, their bodies consist of a cephalo-thorax and abdomen, 

but the head is absent. Members of the order Acarina can be defined as arachnids 

with mouthparts located on the capitulum. Acarina also have two genital openings 

and claws on the end of the legs (Roberts and Janovy, 2000). Mesostigmata mites 

typically have two claws on the end of each leg, as well as no genital suckers, one 

pair of stigma and a body divided into anterior (gnathosoma) and posterior (idiosoma) 

sections (Moro et al., 2005). Characterisation of Dermanyssus mites is based around 

the large dorsal shield and structure of the mouthparts (Moss, 1968), features which 

are described in detail below. 

2.2 Morphology 

The identification of Dermanyssus gallinae requires caution since it is closely related 

to other mite species, sharing many morphological characteristics, in particular with 

the northern fowl mite (Ornithonyssus sylvia rum), which also parasitizes poultry 

(Bruneau et al., 2002). Both these mite species have stigmata (respiratory pores) in 

the centre of their bodies. A single stigma lies between the third and fourth coxae (leg 

joints) on each side of the body and is connected to a peritreme (supple membrane­

like structure). The coxae (leg joints) are evenly spaced, but crowded into the anterior 

half of the body, the tarsi (the terminal segments of the leg) are equipped with minute 

claws (empodia) and the ventrum is armoured with plates (Bowman, 1995). The 

empodia are not synonymous with claws they are usually an additional projection 

between the claws. However, these two mite species can be distinguished through 

careful examination. O. sylvia rum has a claw-like chelicerae (piercing mouthpart), 

whereas the chelicerae of D. gallinae are long and whip-like (see Figure 2.1) 

(Bruneau et al., 2002). The chelae (scissor-like structures on the end of the 

chelicerae) of D. gallinae are small in comparison to those of the Northern fowl mite. 

Also, D. gallinae has a single dorsal plate and sternal plate, whereas the posterior 
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regions of the dorsal and sternal plates of 0. sylvia rum are thinner and the 

genitoventral plate is drop-like (Bruneau et al. , 2002). 

Figure 2.1. Ornithonyssus sylvia rum (ventral view), a close relation of Dermanyssus 

gallinae (Left) (Bowman, 1995) 

* The chelicerae 

of red mite are 

slender and 

whip-like and 

the chelae are 

very small. 

Peritreme --__ II 

Chelae 

I '~I"-~--.,-~- Anal plate 

1 200 11m I 

The adult female poultry red mite measures approximately 1 mm in length and 0.4 

mm in width and varies in colour from grey to red depending on engorgement 

(Kaufman, 1996). The dorsal shield of the red mite, does not quite reach the posterior 

end of the body and its most posterior margin is truncated. The setae (scapular hairs) 

on the dorsal shield are smaller than those on the skin around the dorsal plate. 

Finally, the anus is on the posterior half of the anal plate, whereas that of 0. 

sylvia rum is on the anterior half of this plate (Soulsby, 1982). 
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2.3 Life cycle of the poultry red mite 

The poultry red mite has been known to infest a range of avian species including the 

fowl, pigeon, canary, duck, turkey, pheasant, sparrow and owl (De Lope and Moller, 

1993; Gicik et al. , 1999; Pampiglione et al., 2001; Romaniuk and Owczarzak­

Podziemska, 2002). However, their relationship is not exclusive to birds, as a number 

of cases of red mite parasitism have also been reported with alternative species 

including the dog, gerbil, rodents, rabbits and man (Soulsby, 1982; Bakr et al., 1995; 

Lucky et al., 2001). Although not entirely species-specific, red mite are seen most 

frequently on laying hens. It has been suggested that this is due to the lengthy flock 

turnover of approximately 72 weeks, allowing red mite time to establish large 

populations (Hoglund et al., 1995). 

The relationship of red mite with poultry is referred to as a temporary one, since the 

majority of their lifecycle is spent hiding in cracks and crevices in the substructure of 

the poultry house, only emerging at night to feed on the resting bird (OEFRA, 2001). 

The reasons for this are suggested to be that exposure to direct sunlight acts as a 

powerful killing agent, causing rapid dehydration, and it also eliminates the risk of 

being detected and consumed by birds (Wood, 1917). Therefore, the poultry house 

provides an ideal location for growth and proliferation of red mite, with numerous 

potential hiding places. In battery cage systems, the mites hide under conveyer belts 

and cage supports, whereas on slatted floor units, such as those typically found in 

barn and free-range systems, red mite conceal themselves under nest boxes, 

beneath troughs (see Figure 2.2) and in cracks in the house walls (Chauve, 1998). 

When red mite become abundant they overrun these areas and can be seen 

anywhere in the house, including exposed surfaces on walls and in roofing materials 

(Wood, 1917). 

Figure 2.2 Poultry red mite infestation on water trough (http://www.icb.usp.br/­

marcelcplOermanyssus. htm) 

Red 
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2.3.1 Feeding habits 

Several investigations into red mite feeding habits have been conducted and have 

reached the general consensus that red mite will consume a blood-meal lasting 0.5 

to 2 hours, at intervals of 1-4 days, only feeding at night, with environmental 

conditions and host availability being the limiting factors (Chauve, 1998; DEFRA, 

2001; Kilpinen, 2001). In heavy infestations, the red mite appears to be less selective 

about the conditions in which they will feed and have been observed to feed in 

daylight (Nakamae et al., 1997). During engorgement, red mite are predominantly 

located on the underside of the birds wing, presumably due to a more suitable 

temperature, humidity and darkness (Anon., 2003b), although they can also be seen 

to feed on the breast and lower leg of the bird (Axtell and Arends, 1990). 

2.3.2 Mating behaviour 

After feeding the red mite must return to a hiding place for mating and egg 

deposition, which generally occurs 12 hours post blood consumption. It appears that 

there is little evidence of migration of red mite between hiding compartments when 

potential blood-meals are abundant, with mites also preferring the nesting areas of 

hens, therefore unequal mite distribution exists within the poultry house (Nordenfors 

et al., 2001). 

Mating behaviour of the red mite involves sperm transfer which is referred to as 

podospermal, where the males chelicerae are modified in the tube like 

spermadactyls, allowing the transfer of sperm from the males genital opening into 

sperm induction pores located on either side of the female'S body (podosoma) near 

the posterior of the third coxae. The appearance of spermatozoa isolated during 

mating are irregularly rounded non-polar cells, with granular cell membranes, 

agranular cytoplasm and large, densely stained nuclei. Mating behaviour requires 14 

min to 1 hour, in which one or both sperm induction pores may be used (Amano and 

Chant, 1978). It is thought that males are probably incapable of successfully 

inseminating more than three or four females in the same number of days 

(Hutcheson and Oliver, 1988). 

2.3.3 Poultry red mite- fertilisation/egg laying 

Fertilisation and oviposition (egg laying) usually takes place away from the host, 

although it may occasionally occur on the host. Female red mite have the capacity to 

feed and deposit eggs repeatedly with only one mating, but a blood-meal is required 

for each deposition (Wood, 1917). An average lay will result in the production of 
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between 2-7 eggs, laid over a period of several days (Soulsby, 1982; Nordenfors et 

al., 1999; Bruneau et al., 2001). Red mite will feed and deposit eggs in this manner 

several times, with each female having the capacity to lay approximately 30 eggs in 

its lifetime. The eggs themselves are small (400 x 270 \.1m), oval, smooth and pearly 

white (Chauve, 1998). Hatching generally occurs within 48-72 hours of being laid in 

summer conditions with optimum temperatures between 28-30°C and also 

appropriate relative humidity of around 60-90 % (Hoglund et al., 1995; Bucher, 1998; 

Chauve, 1998). Egg maturation, hatching of eggs and protonymphal maturation 

appears to be staggered, not synchronised in waves (Nordenfors et al., 1999). 

2.3.4 Poultry red mite-larva 

On hatching the larvae emerges and has no requirement to feed. The young larvae 

are white with six legs and move around slowly, unlike other stages which are very 

active. The length and width of the larval body is approximately the same as the 

eggs. These larvae moult within 24-48 hours after hatching at a mean ambient 

temperature of 23°C (Wood, 1917). 

2.3.5 Poultry red mite-protonymph 

The young nymph backs out of its larval skin to emerge as an eight-legged 

protonymph. After a few hours of resting, in order to give time for the body 

integument to harden, the nymph becomes very active and will feed on nesting birds, 

mainly at night. The protonymph is slightly darker than the larva, being slightly brown 

in colour. The protonymph measures approximately 568 ~m in length (abdomen 

only), a width and thickness of 338.4 and 266 ~m, respectively (Wood, 1917). 

2.3.6 Poultry red mite-deutonymph 

After a further 24-48 hours and an additional blood-meal, the protonymph moults into 

a second nymphal stage called the deutonymph. As with the preceding nymphal 

stage, a period of hardening of the integument is required before feeding. Soon after 

the deutonymph becomes active it obtains a further blood-meal. The dimensions of 

the deutonymph before feeding are 538.2 ~m in length, by a width of 297.9 ~m. After 

feeding, the mite increases to a size of 751.9 ~m in length by 461.4 ~m in width 

(Wood, 1917). After an additional 24-48 hours, the deutonymph in turn moults into an 

adult red mite. 
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2.3.7 Poultry red mite-adult 

As soon as the adult red mite crawls out of the nymphal skin they are ready to 

reproduce. Fertilisation can take place before or after feeding. Immediately after 

moulting the females will feed, but males prefer to mate before feeding, something 

which they are capable of doing several times in their lifespan (Wood, 1917). The 

complete life cycle of the red mite (egg to egg) can be completed within seven days if 

conditions are optimum, therefore rapidly establishing large populations in poultry 

houses (Soulsby, 1982). 

It has been well documented that the adult red mite can survive for long periods 

without feeding. This was initially demonstrated by Wood (1917), where red mite 

survived for up to 9 months without a blood-meal. Further research supports these 

findings (Tucci and Guimaraes, 1998). Therefore, it is possible for a reservoir red 

mite population to persist in an uninhabited building to eventually re-infest a new 

poultry generation (Urquhart et al., 1996). 

2.3.8 Host evasion strategies 

In order to obtain a successful blood-meal, it is essential that the red mite has some 

capacity to resist challenges from a variety of host mechanisms, including pain and 

itch responses, haemostasis and, most importantly, an immune defence (Schoeler 

and Wikel, 2001). The mechanisms which red mite employ to overcome these 

defences have not been specifically investigated. However, a series of common 

responses exist between arthropods and many of these are related to the 

pharmacological properties of their saliva (Schoeler and Wikel, 2001). 

Host haemostatic defences include coagulation pathways, platelet aggregation and 

vasoconstriction. In response to these defences, blood-feeding insects have 

developed countermeasures in the form of salivary molecules that inhibit components 

of the coagulation pathways, block platelet aggregation and act as vasodilators 

(Schoeler and Wikel, 2001). One signal which alerts an animal to parasite presence 

is histamine, a compound which causes the sensation of itch. In order to oppose this 

alert blood-feeding arthropods, e.g. the kissing bug (Rhodnius prolixus) produce 

histamine-binding proteins in the salivary glands, thus rendering histamine ineffective 

(Schoeler and Wikel, 2001). 

In addition, many arthropods are capable of modulating the host's immune defences 

by limiting both humoral and cellular systems. An example of this is the salivary-
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gland extract of the blackfly (Simulium vil/atum), which when injected intraperitoneally 

inhibits the in vitro proliferation of both T and B-Iymphocytes (Cross et al., 1994). 

However, since saliva is such an integral part of the success of haematophagous 

arthropods, it also poses a potential target for immunological control. In order to 

develop anti-arthropod vaccines, the immunological interactions occurring at the 

arthropod-host interface must be characterised in terms of the arthropod salivary 

constituents which are responsible for immunomodulation of hosts (Schoeler and 

Wikel, 2001). Manipulation of the immune system and vaccine development is 

discussed in more detail in Sections 2.11 and 2.13. 

2.3.9 Seasonal variation 

Poultry red mite have been observed to reproduce with greatest success at optimum 

temperatures ranging between 25-3rC, with lethal temperatures at extremes of 

below -20°C and above 45°C (Nordenfors et al., 1999). It is not surprising then that 

poultry farmers suggest that greater populations of red mite can be seen in summer 

rather than winter months (Nordenfors et al., 1999), these temperature ranges are 

typical of the British climate, warm in summer and occasionally reaching extremely 

low temperatures in winter months. Reports have shown that temperatures in modern 

egg production units are relatively stable from October to May, whereas daily 

fluctuations of approximately 10°C are apparent between May to August. This 

creates characteristic seasonal fluctuations in mite populations (Nordenfors and 

Hoglund, 2000). 

2.4 Control of the poultry red mite 

Control of the poultry red mite is particularly problematic for a number of reasons 

associated with its feeding habits and innate mite biology. Also the number of 

pesticides registered for application in poultry houses is relatively low for reasons 

including, development of acaricide resistance, chemical and antibiotic residues in 

food and undesirable environmental effects (Dalton and Mulcahy, 2001). In addition, 

the predilection of the red mite to small cracks and crevices, their ability to survive for 

extended periods without taking a blood-meal and their prolific reproduction capacity 

and short life cycle make eradication very challenging (Kilpinen, 2001). 
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2.4. 1 Chemical control 

At present, the primary method of control of the poultry red mite is by the use of 

chemical sprays. In recent years there have been over 35 potential compounds 

identified or proposed for the control of red mite, including organochlorines, 

organophosphates, pyrethroids, carbamates, amitraz and endectocides (Chauve, 

1998). However, the vast majority of these chemicals are unsuitable due to worries 

over food safety and their accumulation in the human food chain (Sam-Sun et al., 

2002). Environmental concerns have also been raised, such as the potential to 

poison wildlife and risk of chemicals leaching into watercourses. Alternatively, a 

number of chemicals which appeared to be efficient at controlling red mite in theory 

are actually inadequate in practice as they fail to be toxic to the mite (Chauve, 1998). 

Presently pyrethroids are the principal family of acaricides used to control the red 

mite in commercial poultry farming, preferred due to their low toxicity and minimal risk 

of egg contamination. Organophosphates are used to a much lesser extent as they 

have greater toxicity and contamination risks (Beugnet et al., 1997). Table 2.1 

provides a summary of the current chemicals recommended for treatment of the 

poultry red mite. 

Since the red mite spends the vast majority of its time away from the hen, the ideal 

insecticide would be one with the capacity to penetrate deep into the crevices which 

conceal the mite. The insecticide should remain active for as long as possible so the 

mite is exposed to it on emergence, although it must have limited toxicity to the bird 

itself. Hamscher et al. (2003) suggested that insecticide application must be repeated 

twice within two weeks in order to be effective at breaking the 7-10 day life cycle. 

Within Europe, regulations on the application of chemical acaricides vary between 

countries. In Germany for example, the chemical carbamate propoxur (2-

isopropoxyphenyl-N-methylcarbamate) is licensed to be used as an insecticide within 

poultry houses and is sprayed in the presence of the live bird. The European Union 

and German government specify a maximum legal residue level within hen's egg of 

50 ~g kg", as levels exceeding this are considered dangerous to human health. A 

German study by Hamscher et al. (2003), illustrated the potential risk of using such 

sprays on commercial poultry units. On several occasions levels of propoxur residues 

on eggs surpassed the legal requirement, reaching levels of up to 1 01 ~g kg". This 

highlights the difficulty in avoiding contamination of hen's eggs during spraying. 

Nonetheless, the same authors suggested that legal targets for spraying are more 

easily attained in free-range systems than in to battery systems, as birds have more 
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space to hide during application. Unfortunately, acaricide spraying at present is 

accepted as the most efficient way to control red mite, but it does undesirably 

compromise both animal and human health (Hamscher et al., 2003). It should also be 

noted that propoxur is not currently licensed for the control of red mite in the UK. 

Table 2.1. Products currently recommended for red mite control in the UK. (A DA S, 

2006) 

Product name Active Ingredient Comments 

INSECTICIDAL 
Barricade (Sorex) Synthetic pyrethroid Specific approval fro red mite. Currently the only 

(cypermethrin) product licensed for application to the birds. 
Manufacturers report 95 % control achieved for 73 
days. 

Llttac (Sorex) Pyrethroid Specific approval for red mite. Applied as a course 
(alphacypermethrin) spray to buildings containing poultry. Not to be 

sprayed on birds or eggs. 2-3 months residual 
activity. 

Teremld (Scotmas Permetherin and Specific approval for red mite. Applied as a residual 
Agriculture) (Plus Piperonyl Butoxide spray to buildings. 
other brand 
names). 
Actelllc Organophosphate Licensed for 'mite' control in animal husbandry. 

(pirimiphos-methyl) Apply as a dilute spray to the fabric of the building. 
Not to be applied directly to birds and eggs must be 
collected before application. 

Flcam W (Aventls) Carbamate Apply as a dilute spray to the fabric of the building. 
(Bendiocarb) Not to be applied directly to birds and eggs must be 

collected before application. 
NON-INSECTICIDAL 
Oeclmlte (Sorex) Silica-based Specific to red mite. Pesticide-free, working by 

physically inhibiting mite movement. Manufacturers 
Optlmlte Sorex, recommended its use as part of a rotational 

control programme, together with Littac. 

Insecto-sec Silica-based Pesticide Safety Directorate (PSD) approved. 
(BFREPA) Immobilising and desiccating effects on poultry red 

mite. 
Fossil shield Diatomaceous earth Imported desiccant - requires electrostatic 
(Integra) applicator. 

Diatomaceous earth 
Mltex (AglI) Imported desiccant - requires electrostatic 

applicator. 
Novel product (Uff Citrus extracts Repellent effects 
Hygiene) 

Breck-a-sole Garlic prill Repellent and killing effect 
(Ecospray) 

It is for these reasons that in many countries the use of a range of chemicals to 

control red mite are banned, which makes the commercial situation more complex. 

Sweden is one particular example where presently there are no registered acaricide 
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sprays available in the control of ectoparasites (Chirico and Tauson, 2002). 

Therefore poultry farmers rely on the development of alternative control methods. 

One possible substitute for the use of acaricide sprays which has been investigated 

in Sweden is the use of plastic strips impregnated with insecticide, such as the 

synthetic pyrethroid or permethrin. These strips have a low toxicity to poultry and 

man, require only low level concentrations and have a residual activity which is within 

governmental guidelines (Nordenfors et al., 2001). In one particular study across 

several farms, plastic strips were mounted either within the housing systems, 

allowing birds to rub against them and the acaricide to rub off on their plumage 

(Treatment A), or alternatively they were attached out of the birds reach, either on 

perches or egg belts (Treatment B). Results showed that permethrin impregnated 

traps significantly reduced (P<0.001) red mite populations by 53 and 39 % 

(Treatments A and B, respectively), with a most profound reduction of 92 % with 

traps attached to egg-belt lids after Treatment B. However, these control levels were 

not adequate to achieve complete eradication, allowing red mite populations to 

rapidly re-establish and cause irritation to hens (Nordenfors et al., 2001). 

Research has also been conducted on the administration of chemicals via 

intramuscular or intraperitoneal injection. However, both of these methods have 

limited use as they are only effective for short periods and therefore require either 

repeated doses or administration at high levels close to toxicity in order to be 

effective. The prOVision of effective doses are expensive both in terms of labour and 

materials, so widespread use is unlikely (Ash and Oliver, 1989). 

2.4.2 Resistance 

In situations where control using acaricides does not result in a significant reduction 

in red mite populations, there is the risk of the development of acaricide resistance 

(Chirico and Tauson, 2002). Not only does this occur if insufficient red mite numbers 

are killed, but also if there is perSistent, long term use of the same chemical. Chauve 

(1998) reported the suspicion of resistance by red mite to DDT and 

organophosphates, whilst other researchers have suggested resistance to 

pyrethroids in the Czeck Republic, Italy, Switzerland and more recently in France. 

However, many of these cases of resistance were not statistically validated, since it 

is often unclear whether treatment failures were due to resistance or simply 

insufficient acaricide application (Chauve, 1998). 
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A report by Beugnet et al. (1997) investigated the possible resistance of red mite in 

France to an organophosphate acaricide (dichlorvos) and pyrethroid (permethrin) 

using in vitro tests. In this trial, red mite were collected from five heavily infested 

farms and one farm which had no problem with red mite and therefore was used as a 

negative control. Red mite were then incubated on Whatman filter paper previously 

impregnated with one of the two chemicals. Mortality rates of red mite were 

determined after this and regression curves were drawn to enable the calculation of 

an estimated 50 % lethal concentration (LC50) i.e. the concentration at which half of 

the red mite population would be killed. The LC50 of the red mite from tested farms 

was then compared against the LC50 of red mite from the control farm and a 

resistance factor (RF) determined. The World Health Organization (Bramer, 1992) 

advised that arthropods were considered susceptible to treatment if the RF was 

below 3, if RF was between 3-5 then resistant genes are said to be present and if RF 

was above 5 resistance was apparent. Beugnet et al. (1997) observed that red mite 

were not resistant to organophosphates, with RF's were in the range 1.7-2.4, but 

were highly resistant to pyrethroid in all cases, with RF's between 8 and 40. 

Whilst it is important to avoid situations of acaricide resistance, the current lack of 

new acaricides coming onto the market makes this difficult (Beugnet et al., 1997). 

One suggestion is to employ a strategy of chemical rotation as soon as resistance is 

suspected. Three groups of chemicals are suggested for use in this rotation, 

organophosphates/carbamates, pyrethroids and endectocides. In practicing rotation 

the development of resistant genes, those allowing mites to remain unaffected by 

chemical treatment, within mite populations are limited and susceptibility genes, 

those permitting acaricide penetration, are promoted (Beugnet et al., 1997). 

(i) Mode of resistance 

The mode by which a number of acaricides, such as pyrethroids and DDT eradicate 

their targets is by selectively modifying the activity of nerve membrane sodium 

channels. This is achieved by acting on an insect's nervous system by slowing the 

action potential decay. This initiates repetitive discharge in sensory and motor axons 

leading to convulsive activity, eventually resulting in paralysis and death (Morin et al., 

2002). 

Pyrethroids in the past have been able to combine high insecticidal activity with low 

mammalian toxicity and so have been popular, effective acaricides. However, their 

perSistent use has produced resistance in many insect species (Hoglund et al., 
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1995). In response to this increasing resistance, pyrethroids were mixed with 

organophosphates (OP's) which proved to be very effective at controlling red mite, 

despite high resistance to pyrethroids and OP's when applied alone (Hoglund et al., 

1995). This reflected OP inhibition by parasite esterases, a group of hydrolytic 

enzymes, which among other functions cause the enhanced detoxification of 

pyrethroids. Detoxification of pyrethroids by esterases is one of the primary modes by 

which resistance occurs. However, even these combinations of pyrethroids and OP's 

encountered resistance after intensive application. It was discovered that further 

resistance involved decreased sensitivity at the sodium channel target site and is 

termed 'Knockdown resistance' or kdr (Soderlund and Knipple, 2003). Kdr resistance 

was originally reported in the 1950's and associated with the house fly (Musca 

domestica L., Busvine, 1951). However, more recently kdr has been reported in a 

number of other agricultural pests and disease vectors including mosquitoes 

(Anopheles stephens/) , cockroaches (Blattella germanica) and moths (Plutella 

xylostella) (Soderlund and Knipple, 2003). Kdr resistance is brought about by 

mutations in the structure of two domains associated with sodium channels, through 

changes to specific amino acids in parasites. This brings about between a 10-30 fold 

increase in resistance (Morin et al., 2002). Later, an even greater resistance was 

observed when, using the same mutations to sodium channels, but at different 

locations, resistance of up to 500-fold was observed. This type of resistance was 

deSignated super-kdr (Morin et al., 2002; Soderlund and Knipple, 2003). 

There are a number of alternative mechanisms which have been seen to mediate the 

occurrence of resistance, which generally involve gene mutations. One type of 

resistance observed is due to mutations in the sodium channel gene which confer 

target site insensitivity to the neurotoxic effect of pyrethroids. Similarly mutations in 

acetylchOlinesterase, a cleavage enzyme for the neurotransmitter acetylcholine, have 

also been seen to confer target site insensitivity to OP's. In the fruit fly (Drosophila 

melanogaster) , four point mutations in the acetylcholinesterase gene encode amino 

acid substitutions that render the enzyme insensitive to OP's (Morin et al., 2002). 

A number of metabolic mechanisms exist which also bring about resistance to 

acaricides. The most common is include detoxification of pyrethroids by 

overexpressed cytochrome P450 enzymes, a group of enzymes produced for the 

metabolism of toxic hydrocarbons (Lui and Scott, 1998). This was observed in 

research carried out on the house fly in which resistant strains were seen to 

transcribe 10 times the amount of P450 in comparison to non-resistant strains (Lui 
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and Scott, 1998). Alternatively, carboxylesterases, manufactured for the hydrolysis of 

endogenous and foreign compounds in parasites, are often involved in both 

pyrethroid and OP resistance through gene amplification and consequently 

overexpression or through mutations specifically increase direct hydrolytic activity to 

specific insecticides (Jamroz et al., 2000). 

2.4.3 Sorptive dust 

Sorptive dusts are a group of compounds which are selective in the control of 

insects. These chemicals are very fine (3-9 IJm), free flowing powders with a capacity 

to be highly absorptive. They are inert chemicals, which are harmless to animals and 

that do not decompose with age. Therefore arthropods are unlikely to develop 

physiological resistance against them. The method by which sorptive dust kills 

arthropods is by the absorption of the waterproof layer of lipid from the epicuticle, 

resulting in death by dehydration (Kirkwood, 1974). In one experiment a 40 % 

reduction in red mite populations within 1 hour was observed with complete 

eradication within 2 hours (Kirkwood, 1974). Field trials did not display complete 

eradication, although considerable reductions in mite populations were observed 

(Kirkwood, 1974). However, there are problems with application as it will only lie on 

horizontal surfaces unless applied using an electrostatic charge. 

2.4.4 Feeding deterrence 

In a number of cases the feeding patterns of red mite have been completely 

disrupted by the use of natural plant derived substances. This is particularly true of 

bay oils and citronella, which were tested in an in vitro feeding system to act as a 

repellent against the northern fowl mite (Ornithonyssus sylvia rum) , a closely related 

species to the red mite. However, the life habits of the two mites differ in that the 

northern fowl mite will spend a larger proportion of its time on the host, giving greater 

exposure time and making treatment more straightforward (Chauve, 1998; 

Nordenfors et al., 2001). 

Recent investigations reviewing the activity of a wide range of plant essential oils 

showed that there were several which could be potentially useful as control agents 

against red mite (Kim et al., 2004). In a filter paper contact bioassay, 100 % mortality 

at 0.07 mg cm2 was observed for bay, cade, cinnamon, clove bud, coriander, 

horseradish, lime dis SF, mustard, pennyroyal, pimento berry, spearmint, thyme red 

and thyme white oils. In fumigation tests with adult red mite at 0.28 mg cm2
, cade, 

clove bud, coriander, horseradish and mustard oils were more effective in closed 

16 



containers than in open ones, suggesting that the effect of these essential oils is 

largely due to action in their vapour phase and attack via the respiratory system of 

the mite. Irrespective of the fact that this concealed testing is not wholly 

representative of field conditions, some plant essential oils might be useful as 

fumigants for red mite and may warrant further investigation as potential control 

agents (Kim et al., 2004). 

2.4.5 Insect growth regulators (fGR) 

Studies conducted over several decades have established that peptide hormones 

and transmitters are key molecules in the regulation of development, complex 

behaviours, reproduction and other physiological processes in insects (Isaac et al., 

2007). IGR's are compounds that disrupt the normal development of insects by 

mimicking the action of these peptide hormones by interfering with hormone­

regulated processes (Collins, 2006). They have been used in a variety of practical 

applications, largely to control storage-insects, but have been seen to be effective 

against a range of insects including flies, fleas and cockroaches (Chauve, 1998). 

Examples of IGR's include juvenile hormone mimics, chitin-synthesis inhibitors 

(triflumuron) and angiotensin-converting enzyme (ACE) inhibitors. Chauve (1998) 

referred to unpublished data where IGR's were tested on colonies of red mite and 

were seen to reduce mite populations. Previous research into the potential of IGR's 

in the control of the house dust mite (Dermatophagoides farinae) showed promise, 

particularly with the use of juvenile hormone mimics (methoprene) which work on 

immature stages preventing maturation (Dowling et al., 1990). 

2.4.6 Predatory insects 

Occasional instances of other species of insect, including ants and spiders, predating 

upon mites have been reported (Wood, 1917). One such incidence in Sao Paulo, 

Brazil reported that earwigs (Dermaptera labiidae) were observed to consume red 

mite on chicken rearing units. The earwig was observed to be spread in chicken litter 

and farmers attributed low levels of infestation of hens by red mite to the presence of 

this predator. In response to these observations, a large number of earwigs were 

reared under laboratory conditions at a low cost with the use of cat food and dry bird 

feed as a source of nutrition and used as a control method (Costa et al., 1994). The 

lesser mealworm beetle (Alphitobius diaperinus) has also been observed to 

occasionally have a role in disposal of the red mite in much the same fashion 

(Chauve, 1998). 
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2.4. 7 Building design 

It has been suggested that in order to prevent the establishment of red mite 

populations there is a need to "design out" poultry houses that promote red mite 

proliferation by providing refuges which are found in traditional barn and free-range 

systems (Drakley and Walker, 2002). This can be achieved by modifying the design 

of feeders and nestboxes in new buildings, or simply plugging folds and joints using 

silicon sealant in existing buildings (Orakley and Walker, 2002). Conversely, it is 

considered that it is easier to meet legal targets for residual chemical levels in eggs 

in free-range systems in comparison to battery cages, since in free-range conditions 

birds have a wider variety of places to hide during acaricide application (Hamscher et 

al., 2003). The materials used in the design of new buildings or when upgrading 

existing facilities should also be considered. Bucher (1998) found that red mite 

showed increased longevity and greater proliferation of red mite when housed on 

smooth surfaces such as rubber, plastiC and glass in comparison with wood, metal, 

stone and clay. 

2.4.8 Recommended actions for red mite control (OEFRA, 2001) 

A review of current research was published by DEFRA (2001) as a means of 

formulation a recommended best practice strategy to reduce and hopefully eradicate 

red mite populations in commercial laying hen systems (Table 2.2). 
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Table 2.2 Current 'best practice' strategy for red mite control (DEFRA, 2001) 

Step Action 

1 Once the house is depleted and all manure has been removed, thorough cleaning 

using a power washer or steam-cleaner must be carried out. As many of the internal 

fittings as possible should be removed to facilitate good cleaning. 

2 Consideration should be given to cleaning the outside of the houses as it is known 

that red mite are naturally found in birds' nests in the UK and will migrate in search 

of a house when the poultry house is empty. 

3 Ensure that any obvious refuges are removed or sealed (especially in the areas 

surrounding the nest boxes and feeders). 

4 When the house is dry, it should be sprayed with an approved acaricide. using a flat-

fan spray for walls and floors, and a crack-and-crevice tool for application to small 

harbourages. Product use should be on a cyclical basis to reduce the risk of the 

development of resistance. 

5 Birds should be bought from breeder flocks that can be shown to be free from red 

mite and care should be taken to ensure transport and staff are not carrying any 

parasites in small numbers from recent exposure at other sites. 

6 Records of routine weekly monitoring of all houses should be kept in order to trigger 

spot treatments where necessary in areas where mites are found or rational 

treatment with other products. Treatment details must also be recorded at all times 

to monitor use and prevent extensive. prolonged use of anyone product. 

2.5 Transmission of red mite 

It is suggested that the primary way in which red mite are transmitted is via 

transportation with inanimate objects such as egg cases and trays, as well as 

passive transmission by personnel handling the poultry (Axtell and Arends, 1990). 

Therefore, in order to minimize the transmission risks between premises of laying 

birds it is important to implement a strict control strategy for replacement pullets. 

When purchasing new stock, it should a requirement that birds are free from all 

ectoparasite infestations (Hoglund et al., 1995). However it has also been observed 

that red mite will happily infest a range of other vertebrates that may be found in the 

hen house, such as rodents and wild birds. Consequently, irrespective of the 

comprehensiveness of control, there is always an apparent risk of infestation (8akr et 

al., 1995). 
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2.6 Pathogenicity 

It is widely accepted that red mite can be a potential vector of several avian diseases, 

both bacterial and viral. The first report of the red mite acting as a vector was for the 

St Louis encephalitis virus (Smith et al., 1946). Since then, a number of additional 

poultry pathogens have been linked with the mite, including Salmonella spp., 

spirochaetosis, chicken pox, Newcastle disease, fowl typhoid and fowl cholera, as 

well as a number of other livestock diseases (e.g. eastern equine encephalomyelitis 

virus) (Moro et al., 2005). However, red mite is considered most importantly as a 

direct pest through its capacity as an obligatory blood-sucking parasite (Hoglund et 

al., 1995; Nordenfors et al., 1999; Chauve, 1998; Bruneau et al., 2001). 

In order to determine the potential for red mite pathogenicity, a study by Durden et al. 

(1993) artificially induced eastern equine encephalomyelitis virus (EEE) in poultry 

using red mite as a vector. Red mite tested positive for EEE after engorging on blood 

from poultry which had previously been inoculated with EEE. The virus remained 

detectable by plaque assay in red mite samples for 30 days after the initial infectious 

blood-meal. However, virus was not observed in progeny of virus-exposed female 

red mite. Virus-exposed mites were then allowed to feed on naive chickens at 3, 7, 

11, 15 and 30 days. EEE transmission to chickens was seen at both 3 (one 

transmission in four trials) and 7 days (one transmission in four trials), but not after 

this. These findings provide some degree of reassurance that red mite are not potent 

transmitters of EEE, especially between different red mite stages. Nonetheless, some 

red mite were capable of spreading the virus up to a week after exposure, so caution 

is still required. Little other research has been conducted on the capacity of red mite 

as a vector of disease. However, care must be taken when attributing vectoral 

capacity of red mite as it is possible that pathogens isolated from mites are present 

only in the blood-meal as a direct result of feeding and, in fact, transmission does not 

occur (Chirico et al., 2003). 

2.7 Effect on poultry 

The poultry red mite has been suggested as the most important ectoparasite 

affecting egg laying hens in several countries (Chauve, 1998). To a lesser degree. it 

also affects breeding and rearing units, in both laying and broiler production (Chauve, 

1998). When obtaining a blood-meal from their host, feeding nymphs and adults 

cause irritation, restlessness and debilitation through loss of blood and stress. 
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Consequently this leads to a reduced rate of bird growth, decreased egg production, 

poor shell integrity, blood staining (Figure 2.3) and reduced egg size (Chauve, 1998). 

One such example of these debilitating capabilities was seen on a fully automated 

cage unit in Poland (Wojcik et al. , 2000) . Here birds showed all the typical symptoms 

of red mite infestation including a decrease in body weight, anaemia and exhaustion. 

Mortality of birds rose from 1 to 4 % and egg production was at a level of 92 % in un­

infested farms compared to 81 % on parasitized units (Wojcik et al. , 2000). A similar 

case was seen in France on a 60,000 hen cage unit, where a significant decrease 

(P<0.001) in egg production was recorded (85 %) and an increase in hen mortality of 

52 % (Cosoroaba, 2001). 

Figure 2.3 Blood spotting occurs as a result of eggs rolling over and squashing D. 

gallinae on the shell surface 

Red mite have also been observed to affect the behaviour of birds, with red mite 

infestation leading to increases in stereotypical behaviours including feather pecking 

self-grooming, head scratching behaviours and an overall reduction in welfare as well 

as a significant decrease (P<0.01) in bodyweight of parasitized birds (Kilpinen, 1999; 

Kilpinen et al. (2005). 

In heavy mite infestations severe and occasionally fatal anaemia can ensue (Figure 

2.4) (Soulsby, 1982; Urquhart et al., 1996; Kaufman, 1996; Bruneau et al., 2002). 

However, only a limited number of studies have examined the changes in blood 

composition of infested birds which may result in anaemia. A paper by Kirkwood 

(1967) describes observations on the erythrocyte values of poultry exposed to 

infestations of red mite to evaluate the parasitic impact. In the investigation, both 14-

week-old and 2-year old birds were maintained in small cages. A minimum of 10,000 

red mite per bird were sustained, although red mite number reached as high as 
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165,000 per young chick and 956,000 per adult. Birds were periodically bled from the 

brachial vein and the number of erythrocytes determined. Several birds died within 

16 hours from the onset of the experiment due to extensive anaemia, with all birds 

showing depletion in erythrocyte numbers. However, once marginally anaemic birds 

had been returned to mite-free cages they were seen to recover rapidly. There were 

several limitations to this research. Firstly, exposure of birds to red mite was vast and 

sudden, whereas under field conditions exposure is likely to be much more gradual 

and allows physiological compensation for erythrocyte numbers. These findings are 

substantiated by Kilpinen (1999) who also observed that the rate of increase of a red 

mite population is the most important factor in the onset of anaemia. The second 

limitation was that Kirkwood (1967) used small experimental cages which were not 

representative of those used commercially, therefore allowing a much elevated mite­

host interaction causing exaggerated loss of blood. Despite these limitations, this 

paper is useful as a model to establish the potential threat of the poultry red mite as a 

debilitating parasite in causing rapid and fatal anaemia. 

A more recent study by Kilpinen et al. (2005) also demonstrated the debilitating 

capacity of red mite, when several birds died as a result of the rapid onset of 

anaemia. Significantly lower (P<0.05) packed cell volumes (PCV) and reduced 

concentrations of circulating haemoglobin in red blood cells were observed in 

infested birds. It was suggested that birds were suffering from regenerative anaemia, 

where blood is lost faster than the rate of haematopoiesis. It was estimated that at 

peak infestation, birds were parasitized with between 150,000 to 200,000 red mite, 

which was suggested to be equivalent to that seen in a poultry house under severe 

attack. Again this highlights the potential risks and costs associated with red mite 

infestation. 

Figure 2.4 (A) Anaemia caused by heavy Dermanyssus gallinae infection. (B) 

Negative control (Kaufman, 1996) 
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2.8 Human-mite Interactions 

A number of incidents of red mite parasitizing humans have been recorded. Humans 

come into contact with the red mite whilst working in poultry houses or alternatively 

the mite may enter rooms when migrating from wild birds' nests in the eves of 

residential houses (Urquhart et al., 1996). When bitten, symptoms in humans range 

from minor irritation, to skin lesions and dermatitis and in one case multiple 

erythematous papules (inflamed lesions) accompanied by severe pruritus (itching) 

were observed. Red mite readily infect other animals of both domestic and wild 

species and have been seen to cause erythema (reddening of the skin) and intense 

pruritus in cats (Urquhart et al., 1996, Bruneau et al., 2001; Bruneau et al., 2002; 

Rosen et al., 2002). 

2.9 Host detection 

In many parasite species an array of senses are used in order to locate potential 

hosts which act as a source of food. Usually ectoparasites rely on several host­

related stimuli, each showing variable importance depending on the context in which 

they are detected (Kilpinen, 2005). These host detection strategies used in other 

species are thought to remain consistent with those used by red mite (Zeman, 1988). 

It is important to note that the ease with which red mite reach the host has an effect 

on the speed of population increase. Hungry mites, even though they may be 

positioned near to the host, have great difficulty in locating the host unless the route 

of access is direct. This accounts for the predilection of red mite for nest boxes and 

perches, in order to be in close proximity of their food source (Zeman, 1988). 

2.9. 1 Environmental stimuli 

Heat is a well documented stimulus involved in host detection and location processes 

of many ectoparasites (Kilpinen, 2001). There has been some interest in the link 

between temperature and predation by red mite. Kilpinen (2001) carried out a study 

to determine the sensitivity of the poultry red mite to temperature change and also 

response to temperature gradient (speed of temperature change). Results showed 

that temperature was a powerful activating stimulus, with rises in temperature 

resulting in increases in red mite activity. However, mites were seen to lack a well­

defined response to temperature change itself, but respond much more distinctly to a 

temperature gradient. Temperature changes of 0.2°C failed to activate mites when 

the temperature gradient was below 0.004°C/s, whereas temperature changes as low 
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as 0.04°C were successful at higher gradients starting at around 0.005°C/s. This 

sensitivity of the red mite to heat may be used to direct them towards their potential 

host, although temperature can only act as a close range measure since a bird will 

generally have a surface temperature close to that of the surrounding building. 

However, in close proximity to a nesting bird the body temperature is distinctly higher 

than ambient temperature. Therefore potentially guiding the mite towards the birds by 

the heat transmitted through the nesting substrates. Kilpinen (2001) also suggests 

that heat from exhaled air from the bird could also be used for host detection. 

Temperature is closely related to humidity regarding the survival and fecundity of red 

mite, with an optimum red mite proliferation seen at a relative humidity of 70 %, 

similar to that in a poultry house (Nordenfors et al., 1999). Since both are so closely 

linked it is likely that humidity also plays a role in host detection (Kilpinen, 2005), 

although little research has been conducted in this area. 

CO2 is also considered to be a host attractant for a wide range of ectoparasites, 

although the behavioural response can vary depending on other external factors 

(Kilpinen, 2005). For example, responsiveness of the tick Amblyomma hebraeum is 

immediately enhanced by CO2 contact, whilst the tick Ornithodoros concanensis 

initially react with a negative response, followed by habituation with extended 

exposure. A further tick species, Argas cooley; does not react to CO2 unless it is 

already active (Kilpinen, 2005). The response of red mite to CO2 stimulation in 

daylight is to freeze and remain motionless, even with the activating stimulus of heat. 

If vibrations were applied during CO2 immobility, then mites start moving but only for 

the duration of the vibrations. This is a mechanism which apparently allows red mite 

to avoid been eaten by the host. When light intensities were reduced, where birds 

would not be able to see mites, the freezing response is abandoned and only the 

simultaneous joint effect of heat and vibration can cause changes to activity levels 

(Kilpinen, 2005). 

It is clear that host detection is a complicated procedure involving interaction 

between several different host-related stimuli (temperature, humidity, vibration and 

CO2). All of these stimuli can effect behaviour of the ectoparasite depending on the 

context in which they are applied (Kilpinen, 2005). An understanding of the impact of 

these environmental stimuli on mite development and survival may have potential 

implications in future red mite control, although it must be remembered that any 

24 



changes to environmental conditions employed as control strategies, may hinder bird 

performance (Nordenfors et al., 1999). 

2.9.2 Surface skin lipids 

In addition to changes in environmental conditions, the poultry red mite appears to 

have other means of host detection. One such way was studied by Zeman (1988) in 

which red mite affinity to surface skin lipids of birds was investigated. Extracts from 

various tissues, plumage and the uropygial glands (located close to the skin surface) 

were removed from hens, dissolved in solvents and subsequently spread onto skin 

(dissected from birds) or synthetic Parafilm® M membranes, in order to search for the 

presence of a kairomone (a naturally produced pheromone) for attracting red mite. 

Membranes impregnated with feather and uropygial gland extracts, as well as non­

impregnated natural skin were highly attractive to red mite, but muscle and fatty 

tissues on the other hand produced no response. Thus, it was apparent that mites 

were attracted to a component of the uropygial gland secretions. Subsequent 

chromatography and in vitro assessment of gland secretions revealed that, in fact 

both diesters of fatty acids and skin surface lipids, comprising of ester wax, appeared 

to attract red mite. Therefore, these components were observed to possess essential 

properties enabling them to play a key role in the host-parasite relationship. The 

structures of these skin surface lipids have also been observed to show specificity to 

different avian species and so can assist in taxonomic classification. 

In addition to specific molecules involved in host detection, other membrane 

characteristics such as texture, elasticity and affinity to lipids, amongst others, also 

seem to be required in host recognition by mites. This was concluded from in vitro 

studies which showed that red mite displayed very little interest in synthetic 

membranes of the type generally accepted by many other blood-sucking arthropods 

(Butler et al., 1984). Red mite have also shown this extreme selectivity even when 

using skin from other avian species (Bruneau et al., 2001). 

2.10 Housing systems 

It is commonly acknowledged that red mite infestation levels vary between production 

systems (Kilpinen, 1999). In battery-cage farms the red mite hide under conveyer 

belts and cage supports, whereas in slatted floor systems, such as the ones found 

typically in barn and free-range units, red mite conceal themselves under nest boxes, 

beneath troughs and in cracks in the house walls (Chauve, 1998). However, in recent 
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years research on the prevalence of red mite and its association to certain types of 

housing system has been limited. This is largely due to the fact that in the past 

commercial egg production on a worldwide scale was mainly carried out in battery 

cage systems. Within the EU, less than 1 % of eggs produced in 1995 came from 

systems other than laying cages (Hoglund et al., 1995). However, there has been a 

recent shift towards egg production in extensive systems. For example, the UK 

currently possesses a high proportion of non-cage systems with approximately 25 % 

free-range and 50 % barn (CEAS, 2004). 

Although not wholly conclusive, some research has been conducted to establish the 

preferred housing systems for red mite. A study across a range of farms in Sweden 

revealed that only 4 % of cage systems were parasitized, whereas red mite infections 

were more common and widespread in deep-litter flocks (33 % infested). It has been 

suggested that this can be attributed to the presence of more potential hiding places 

for the mites in these systems (Hoglund et al., 1995). A similar study by Kilpinen 

(1999) revealed that the occurrence of red mite in free-range systems was as high as 

68 %, with only around one third of cage systems showing signs of red mite 

infestation. Studies in the UK substantiate these findings showing the distribution of 

red mite to be approximately 60 % in free-range, 32.5 % in barn and 7.5 % in cage 

systems (Anon, 2003c). 

It is also generally accepted that since the introduction of cages in the 1950's, 

problems with haematophagous mites of laying hens have become less frequent 

(Axtell and Arends, 1990; Hoglund et al., 1995), although this assumption lacks 

statistical justification. However, the recent ban on the use of battery cages 

throughout the EU, under the European Council Directive (1999/74/EC), has been 

observed to indirectly reduce bird welfare. This occurs by promoting the use of 

alternative systems which provide optimal conditions for red mite proliferation, thus 

amplifying the current problem (Chirico and Tauson, 2002). Observations of this 

nature have also been seen in Denmark through the increasing popularity of organic 

systems (Permin and Nansen, 1996). This legislation will be enforced in the 

remaining EU countries, and will take effect in the UK in 2012 (Guy and Edwards, 

2006). 
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2.11 Economic/production impact 

Red mite have been described as one of the most economically important 

ectoparasites of domestic fowl (Nordenfors, 1999). It has been estimated that red 

mite infestations cost the UK egg industry £3.7 million per year (Anon., 2003a), with 

cost of ectoparasitic resistance to acaricides in the US estimated at as much as $1.4 

billion (Lui and Scott, 1998). A well documented effect of red mite infestation is a 

reduction in the economic efficiency of egg producing units due to a decline in egg 

laying capacity (Chauve, 1998; DEFRA, 2001). Red mite infestation can typically lead 

to a drop of 5 to 10% in overall egg production (Anon., 2003b). It has also been 

suggested by Hutchinson et al. (2004) that costs accumulate due to increased 

expenditure on excessive washing to remove red blemishes left by mites on eggs, a 

condition known as 'egg spotting'. However, washing of eggs is permitted in only a 

small number of countries due to infectious risks (Hutchinson et al., 2004). Coupled 

with the implications of a direct downgrading of egg quality, these circumstances 

result in considerable losses for egg production (Anon., 2003b). 

Due to the substantial economic burden and compromise to welfare of hens it is 

important that strategies for controlling red mite are investigated further (Beugnet et 

al., 1997). One possible approach which has shown promise with other ectoparasite 

species is the development of an arthropod vaccine (Willadsen, 2001). However, in 

order to understand and exploit previously implemented vaccine technologies an 

introduction to the immune function of domestic fowl is necessary. 

2.12 Immunology 

2. 12. 1 Immune system function 

The immune system can initially be divided into two distinct categories, innate and 

adaptive. The innate system is composed of the skin, cilia in mucous membranes, 

tears, nasal secretions and saliva and a number of phagocytic cells. Innate immunity 

is directed against any kind of pathogen entering a host. If the pathogen is able to 

evade the innate defences, the body could launch an adaptive or specific attack 

against that specific antigen. The adaptive system is divided into two further sections, 

humeral and cellular. The humoral immune system is associated with the production 

of immunoglobulins to eliminate pathogens and their specific products, whereas the 

cellular system targets pathogens infecting cells directly. The cells which form the 

basis of both types of immune response are lymphocytes which originate in the bone 
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marrow and migrate to different lymphoid organs. All lymphocytes are derived from 

the bone marrow, but their future function is related to their destination for 

subsequent maturation. Those that pass through the thymus become T-Iymphocytes 

(T-cells) and are responsible for cell-mediated immunity. In contrast those which 

pass through the bursa of fabricius in birds and the bursa equivalent in humans, 

thought to be red bone marrow, become B lymphocytes (B-cells) (Abbas et al., 

2003). 

Both humoral and cellular systems work closely with T-helper cells (CD4+T cells), a 

sub-group of lymphocytes involved in the activation and direction of other immune 

cells. However, CD4+T cells are unable to kill infected cells, having no cytotoxic or 

phagocytic capacity. Mature CD4+T cells can differentiate into two major subtypes of 

cells known as Th1 and Th2 cells. These subtypes are defined on the basis of the 

specific cytokines they produce. Cytokines are proteins made and secreted by cells, 

which act as mediators of growth, differentiation and activation, playing a pivotal role 

in the immune system. Th1 cells produce the cytokines interferon-gamma (IFN-V), 

tumor necrosis factor-beta (TNF-I3) and interleukin-12 (IL-12), whilst Th2 cells 

produce the cytokines interleukin-4 (IL-4), interleukin-5 (IL-5) and interleukin-13 (IL-

13) among numerous other cytokines. 

It has been frequently acknowledged that both Th1 and Th2 -type cytokine profiles 

appear to be biased in the type of immune stimulation that they promote. Th1-type 

cytokines tend to produce the pro-inflammatory responses attributed to killing 

intracellular paraSites by increasing proliferation of macrophage and Cytotoxic T cells 

(CDS+ T cells) which are both involved in the cellular immune response (Berger, 

2000). Th2-type cytokines on the other hand are involved in the stimulation of B-cell 

proliferation and also increased antibody class-switching and production. These are 

all functions associated with the humoral immune system (Abbas et al., 2003; Berger, 

2000). Since numerous mechanisms and pathways exist between cytokines and 

other immune molecules, a complex network of both the stimulation and inhibition of 

Th1 and Th2 -type immunity arises. Therefore, the following sections will describe in 

more detail the immune response of hens to pathogens, which is well described in 

the text by Abbas and Litchman (2003). 

2.12.2 Humoral immune response 

Humoral immunity is based around the action of B-Iymphocytes (B-cells). Each B-cell 

contains multiple copies of one kind of antibody in the form of surface receptors that 
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are specific to an epitope on a particular antigen. As one population, 8-cells have a 

vast scope in binding to millions of specific antigens. The 8-cells themselves 

however are not involved in the reaction (Abbas et al., 2003). 

After binding to the correct antigen, 8-cells are stimulated to undergo proliferation 

and differentiation, a process known as colonal selection. The resulting cells then 

develop into one of two types, either short-lived plasma cells, which produce vast 

numbers of identical antibodies and release them into circulation or memory cells, 

which possess the ability to manufacture small amounts of antibody long after the 

initial infection. This process of clonal selection usually requires interaction with T­

helper cells since immunoglobulin receptors on B-cells are capable of recognising 

epitopes on the antigen surface, but unable to proliferate and differentiate unless 

prompted by the action of these CD4+-r cells. Memory cells remain in greater 

numbers than the initial B cells, allowing the body to quickly respond to a second 

exposure of that antigen. However, in the absence of further stimuli, memory cells 

show depletion in numbers over a period of time (Abbas et al., 2003). 

(i) Immunoglobulins 

As stated above, the basic units of humoral immunity are immunoglobulins or 

antibodies, which are glycoproteins found in all the jawed vertebrates. They are 

highly conservative in their overall structure, consisting of 4 peptide chains, 2 heavy 

and 2 light, but differ in their detailed structure and subsequent function (Tizard, 

2002). Antibodies are capable of binding a phenomenal amount of structurally 

different antigen molecules due to the variability of the antigen-binding regions 

between individual antibodies. In mammals every individual is thought to have 

between 107 and 109 different antibody molecules, each having a unique amino acid 

sequence within their antigen-combining sites (Abbas et al., 2003). 

The effector functions of antibodies are exploited for the identification and 

neutralization of foreign objects such as bacteria and viruses. Each antibody 

recognizes a specific antigen unique to its target. By binding to their specific antigens 

antibodies can elicit agglutination/precipitation of antibody-antigen products, promote 

the coating of microorganisms in opsonins (opsonization) for subsequent 

phagocytosis by macrophages and other cells, block viral receptors, and stimulate 

the complement pathway (Abbas et al., 2003). 
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Antibodies are classified on the basis of differences in their heavy chain regions. The 

diversity in structure also allows for an array of alternative functions to be mediated 

by different antibodies through binding of heavy chain regions to a range of cell 

receptors, including phagocytes, natural killer cells and mast cells (Abbas et al., 

2003). In mammals immunoglobulins take the form of one of several isotypes, 

namely IgA, IgD, IgG, IgE or IgM (Abbas et al., 2003). However, the avian immune 

system possesses only three classes of immunoglobulin, namely IgA, IgM and IgY 

(Hamal et al., 2006). Both IgA and IgM are thought to mediate similar functions in 

mammalian and avian immune systems. IgA is a secretory, dimeric immunoglobulin 

(Le. consists of 2 subunits) that appears predominantly that on body surfaces. 

especially mucus membranes in intestinal and respiratory tracts, and is responsible 

for the protection of these surfaces against invasion (Abbas et al., 2003). Antigens 

inducing an IgA response must be deposited on the body surface and ideally invade 

it. For example, live organisms such as parasitic worms. are needed (Tizard, 2002; 

Muleke et al., 2007). 

IgM is a polymeric immunoglobulin consisting of 5 subunits, in theory allows the 

potential binding of 10 antigen epitopes at anyone time. IgM is predominantly 

located in blood serum and is formed during the primary immune response 

immediately after the first exposure to an antigen (Tizard, 2002). However, IgM 

responses rapidly decline within 4-8 days and are replaced by the production of 

monomeric IgY. 

The overall structure of IgY has been determined, through molecular cloning 

techniques, to be the evolutionary ancestor of IgG and also IgE. with several marked 

differences (Warr et al., 1995). For example IgY has a slightly greater molecular 

mass than IgG, 180 kDa vs. 150 kDa (Karlsson et al., 2004). The effector functions of 

IgY include coating antigens for subsequent phagocytosis by neutrophiles, as well as 

complement activation and opsonization (Warr et al., 1995; Karlsson et al., 2004). 

The complement system is a series of serum and membrane proteins which are 

activated in a cascade reaction to bring about degradation of antigens. 

Extensive research has been conducted on IgY and it has recently been recognised 

as having several advantages over mammalian-raised polyclonal antibodies 

(Karlsson et al., 2004). One of the principal advantages of using poultry antibodies in 

immunological research is derived from the simple phylogenic differences between 

mammalian and avian species (DavalOS-Pantoja et al., 2000). This evolutionary gap 
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means that there is no immunological cross-reactivity between chicken IgY and 

mammalian IgG thus enhancing immunogeneity (Karlsson et al., 2004). Some of the 

other advantageous characteristics, such as increased yields and better stability, that 

IgY offers over the use of mammalian IgG are listed in Table 2.3 (Zrein et al., 1988; 

Zhang, 2003; Karlsson et al., 2004). 

Other subtle differences exist between avian and mammalian immune systems 

arising from evolutionary divergence. These include the lack of lymph nodes and 

functional eosinophils in chickens and also interleukin- 5 (IL-5) appears not to have a 

functional role and is actually a pseudogene role (Kaiser et al., 2005). 

Table 2.3. Comparison of /gG and IgYantibodies (modified from Zhang, 2003). 

Features of comparison IgG IgY 

Animal Mammals Birds, reptiles, amphibians 

Sources Blood serum Egg yolk/blood serum 
.-

Molecular weight determined Whole: 150 kDa Whole: 180 kDa 

by SDS-PAGE Light chains: 22 kDa x 2 Light chains: 21 kDa x 2 

Heavy chains: 50 kDa x 2 Heavy chains: 70 kDa x 2 

Basic structure differences Flexible hinge region, shorter Shorter and less flexible 

Fc stem with 2 pairs of hinge, longer Fc region with 3 

carbohydrate groups pairs of carbohydrate groups 

Immune response to Adversely affected by Enhanced by phylogenic 

mammalian antigens phylogenic homology differences 

Quantity (yield per monthl Milligrams with 1-10 % Grams with 2-10 % specific 

per animal) specific antibodies if mice or antibodies 

rabbits used 

Cross reactivity Reaction to mammalian No binding to mammalian 

immunoglobulins and immunoglobulins and 

complement factors complement factors 

Stability Good, stable at pH 3-10, up Good, stable at pH 4-9, up to 

to 70°C 65°C 

Productivity Limited in quantity if mice High with greater quality and 

and rabbits are hosts long duration 

Monoclonal antibodies Have been well developed 2 cases reported, more 

development needed 
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2.12.3 Cellular immune response 

Cell-mediated immunity is particularly effective against fungi, parasites, intracellular 

viral infections, cancer cells and foreign tissue and it is T-Iymphocytes (T-cells) which 

are responsible for this system of defence. Cell-mediated immunity works 

independently of antibodies and involves activation of macrophages and natural killer 

cells (NK), production of antigen-specific CD8+ T cells and release of various 

cytokines in response to antigens, which are typically displayed on the cell surface 

membranes of infected cells (Abbas et al., 2003). 

Macrophages are cells derived from monocytes residing within tissues. Their role is 

to phagocytize (engulf and then digest) a wide variety of particulate molecules and 

pathogens. Not only do they act in specific cell-mediated immunity, but also in non­

specific innate defences. They also act as secretory cells releasing large numbers of 

cytokines, enzymes, inflammatory mediators and microbacterial agents (Herbert et 

al.,1995). 

NK cells are a subset of cytotoxic lymphocytes that function in innate immune 

responses to kill microbe infected cells by direct lytic mechanisms. Activation of NK 

cells is not restricted but due to their strong cytolytic capacity is closely regulated and 

requires stimulation by cytokines, particularly IFNy and cell surface stimulatory and 

inhibitory receptors, which work in close proximity to the Major Histocompatibility 

Complex (MHC), which is a large genomic region found in most vertebrates (Abbas 

et al., 2003). 

CD8+ T cells are also a sub-group of T lymphocytes which can initiate cell death via 

apoptosis (cell death), usually in cells infected with viruses. As with NK cells, CD8+ T 

cells require activation by MHC molecules bound to antigen presenting cells in order 

to carry out their effector function (Herbert et al., 1995). 

Many of the cells involved in cellular immunity require stimulation/activation by 

forming complexes with the MHC. MHC molecules are embedded in the cell 

membrane, where they display short polypeptides which are complementary to T­

cells, via receptors on the T-cell surface. These polypeptides may be self (Le. native 

to the host), which should be ignored by T-cells, or non-self (Le. foreign to the host), 

originating from foreign/pathogenic molecules, which should stimulate the 

appropriate effector response in T-cells. Two structurally distinct types of MHC exist, 
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Class I and Class II, which are present on nucleated cells and antigen presenting 

cells, respectively (Herbert et al., 1995; Abbas et al., 2003). 

2.13 Vaccine development 

Both humoral and cellular-mediated immunity have been observed to play an 

essential role in the successful development of protective responses against 

ectoparasites and subsequent vaccine production (Nisbet and Huntley, 2006). 

However, despite the extreme importance of ectoparasites in disease transmission 

and economic losses, only vaccines against the African cattle tick (Boophilus 

microplus) are commercially available (Willadsen et al., 1999; Nisbet and Huntley, 

2006). This is a reflection of the difficulty which is encountered in isolating suitable 

antigenic targets (Trimnell et al., 2002). However, there is a drive and urgency for this 

to change in the future since there are many problems associated with alternative 

chemical anti-parasitic control methods. Problems largely relate to intrinsic 

characteristics, such as development of parasitic drug-resistance, chemical and 

antibiotic residues in food and concerns over undesirable environmental affects. 

Vaccines on the other hand do not pose such problems and are regarded as a much 

safer means of control, provided there is isolation of an appropriate antigen (Dalton 

and Mulcahy, 2001). 

Two approaches of manipulating the immune system in order to elicit host protection 

to parasitic species have been employed in arthropod vaccine development. Firstly, 

exploration of naturally acquired antigen immunity and secondly vaccination against 

'concealed' antigens (Trim nell et al., 2002). 

2. 13. 1 Naturally acquired immunity 

Naturally acquired immunity is a commonly exploited area and involves exposure of a 

host to repeated antigen stimulus following parasitic engorgement. In some cases 

there is no response at all whilst in others this can result in an elevated immune 

response to subsequent stimulation with the same antigen (Dalton and Mulcahy, 

2001). Typically, in the case of endoparasites these antigens are located on their 

surface, e.g. worms, flukes, protozoa, burrowing mites etc. Alternatively they are 

associated with feeding and often found in saliva, e.g. mites, fleas, ticks, flies etc. 

(Gillespie et al., 2000). On entering the host these antigens can elicit Th1 and/or Th2-

type immune responses, although this is not guaranteed to provide protection (Nisbet 

and Huntley, 2006). There have been a number of attempts to utilize the strategy of 
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naturally acquired immunity to find suitable antigen candidates for both mite and 

other ectoparasitic species, with varying degrees of success. 

The sheep scab mite (Psoroptes ovis) has been the focus of much research in recent 

years, due to the ability of the host to display substantial protective immunity 

following primary infestations (Van den Broek et al., 2000). However, the 

mechanisms behind this protective immunity are poorly understood, although it is 

speculated that they are related to increases in hypersensitive IgE responses. In an 

effort to improve the understanding of the underlying immune mechanisms behind 

protection, Van den Broek et al. (2003) examined isotype-specific antibody 

responses in naturally infested sheep. Antigen-specific ELISA revealed significant 

increases in both IgG and IgM, but not IgA. However, IgA antibody response to 

ectoparasitic antigens has not yet been documented (Van den Broek et al., 2000). 

Western blots on fractionated whole mite proteins indicated that IgG and IgE 

antibodies reacted with a range of immunodominant antigens, with the number 

increasing as the infestations progressed (Van den Broek et al., 2000). A more 

recent study by the same group demonstrated that inhibition of Th2-type 

inflammatory responses with the immunosuppressant drug, cyclosporin A resulted in 

significant (P<0.05) reductions in mite numbers, thus suggesting that inflammation is 

important in parasite survival (Huntley et al., 2005). P. ovis research has also 

demonstrated cross-reactivity of antibodies with several other mite species including, 

swine mange mite (Sarcoptes scabie/) , the bovine mange mite (Chorioptes bovis) 

and the cat mange mite (Notoedres cat/) which is a desired vaccine characteristic 

(Matthes et al., 1995). 

Similarly, infestation with the mange mite (Sarcoptes scabie/) has been observed to 

provoke mite-specific Circulating antibodies leading to subsequent immunological 

memory, reduction of paraSite numbers and failure of re-infestation. S. scabiei 

antigens induce both a Th2-type immune response. characterised by initial increases 

in both IgG and IgE. with pronounced cellular responses during re-infestation. 

marked by rapid increases in mononuclear cells, neutrophils and mast cells. 

paralleled by clearance of mites (Nisbet and Huntley, 2006). 

Immunoglobulin responses of poultry to natural infestations of the Northern fowl mite 

(NFM) (Ornithonyssus sylvia rum) , a closely related species to the poultry red mite, 

have also been characterised. Western blot analysis demonstrated the appearance 

of a mite-specific antibody in chicken blood sera approximately proportional to the 
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time of appearance and intensity of estimated NFM populations (Devaney and 

Augustine, 1987). Mite populations declined significantly (P<0.05) around 3-6 weeks, 

although IgY was detected until the close of the study, suggesting the occurrence of 

antibody-induced protective immunity to natural antigens. Other studies have 

similarly shown the production of antibodies against Northern Fowl mite populations 

to have linear relations with mite numbers so that as the infestation burden increased 

so did the strength of the immunological response of the chicken host (Murano et aI., 

1989). 

In addition to responses observed in mite species, there has also been substantial 

research into the immunological effect of natural exposure to a number of other 

haematophagous ectoparasites. For example, the development of resistance 

following natural exposure to ticks has been demonstrated on a number of occasions 

by several host species, including guinea pigs, rabbits, mice, raccoons and cattle 

(Craig et al., 1996). Often antigens responsible for eliciting protection have been 

isolated from the tick saliva and it appears that mast cells, T-cells and 

immunoglobulins IgG and IgE all play key roles in conferring protection (Craig et al., 

1996). It has also been observed that protection, in terms of reduced survival and 

engorgement weights, in ticks is generally induced under Th1-type cellular immunity. 

Whereas, immune response to tick antigens directed towards Th2-type humoral 

immunity do not develop measurable resistance (Ogden et al., 2002). 

Immunological response of hosts to parasitism by mosquitoes and subsequent 

vaccine development is also a frequently researched topic, a consequence of the 

current human malaria epidemic which infects 300-500 million people per year 

(Greenwood and Mutabingwa, 2002). Studies have investigated the development of 

an anti-mosquito vaccine as a means of control since the mosquito is the vector of 

malaria. It has previously been illustrated that significantly higher (P<0.001) levels of 

both IgG and IgM anti-Anopheles mosquito antibodies can be detected in hosts after 

natural exposure to the parasite (Waitayakul et al., 2006). These increases have 

been observed to induce deleterious effects on feeding, fecundity and survival 

(Gillespie et al., 2000). Subsequent investigation using western blotting and 

immunohistochemical staining showed that antibodies once again reacted specifically 

with components of Anopheles salivary glands (Waitayakul et al., 2006). 

Saliva/salivary glands are regarded as an important component of bloodfeeding 

ectoparasites' artillery in obtaining successful engorgement and consequently have 

been investigated as potential antigenic targets (Schoeler and Wikel, 2001). 
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Despite multiple reports of natural exposure to parasitic species leading to protective 

immunity, other reports have not confirmed this protection. Examples of failed 

resistance include cats and dogs exposed to fleas (Ctenocephalides (elis) , sheep 

parasitized by blowfly (Lucilia cuprina) and infestation of cattle by the warble fly 

(Hypoderma lineatum). In all of these examples strong Th2-type (typically 

immunoglobulin-G) responses are observed. Therefore it is more likely that Th1-type 

cellular immunity would be responsible for protection (Nisbet and Huntley, 2006). 

Therefore, using this kind of naturally acquired immunity as the basis for vaccine 

development does have limitations, in that the hosts are naive to the majority of 

potentially protective ectoparasite antigens with exception to those which are 

secreted during engorgement or are external. The immune responses necessary for 

protection may therefore differ to those generated during natural infection (Dalton 

and Mulcahy, 2001). Recent studies have demonstrated that many ectoparasites 

possess the ability manipulate the hosts immune responses in their favour by 

stimulating/inhibiting expression of cytokines associated with either Th1lTh2-type 

immunity (Schoeler and Wikel, 2001). Consequently natural antigens rarely induce 

complete protective immunity and so much of the recent research into ectoparasitic 

vaccines has been focused on isolating 'concealed' antigens, those to which the host 

is rarely, if ever, exposed (Nisbet and Billingsley, 1999). 

2. 13.2 Concealed immunity 

The second vaccine approach is via the use of internal components, used for critical 

physiological purposes within the parasite, referred to as 'concealed' antigens. 

Concealed antigens are generally proteins located in the internal/gut tissue of the 

parasite, which under normal circumstances are not exposed to the host. However, 

isolation, purification and immunisation of these antigens commonly elicits a strong 

immune response, which often leads to protection (Lee et al., 1999). 

This concept of using 'concealed' antigens was most notably used to form the basis 

of the successful, commercially produced tropical cattle tick (Boophilus microplus) 

vaccine (TickGARD™, Intervet, Australia) with the discovery of the Bm86 antigen. 

The Bm86 antigen is a membrane-bound glycoprotein present in very low abundance 

in extracts of partially-engorged adult female tick guts (Willadsen et al., 1999). The 

uptake of this antigen during feeding by the cattle tick leads to severe damage to the 

parasite gut. Microgram quantities of this antigen have been effective in protecting 
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cattle against the parasite, characterised by a reduction in engorgement weights and 

egg laying capacity of the surviving female ticks. Immunoglobulins to the antigenic 

epitopes bind to the surface of midgut cells of the feeding tick. As a result of the 

reaction with these antibodies, the endocytotic activity of these cells a critical step in 

blood-meal digestion in this tick, is strongly and rapidly inhibited (Willadsen et al., 

1999). Subsequent research into the protective capacity of Bm86 showed promising 

results by reducing engorgement weights and subsequent oviposition of on a range 

of other tick species, including Boophilus decoloratus, Hyalomma anatolicum 

anatolicum and Hyalomma dromedarii (De Vos et al., 2001). An additional study into 

the resistant ability of synthetic oligopeptides derived from different regions of the 

Bm86 glycoprotein was undertaken by Patarroyo et al. (2002). Results showed a 

significant increase (P<0.01) in mean IgG levels following immunisation which 

generated a high vaccine efficacy (81 %), measured as the percentage reduction in 

adult females. Current research continues to exploit the initial success of the Bm86 

vaccine and as such has formed the basis of additional Boophilus microplus vaccines 

namely TickGARD Plus® in Australia and Gavac® in Cuba (Nijhof et al., 2007). 

As shown with the Bm86 antigen located in the midgut section, fractions of the 

digestive systems of invertebrate parasites and pests make excellent potential 

targets for control agents, through the inhibition of digestive enzymes or food 

absorption (Nisbet and Billingsley, 2000). A detailed knowledge of the pest's 

digestive system would therefore be useful in order to exploit such control 

approaches. Nisbet and Billingsley (2000) took extracts of ectoparasitic mites found 

on birds to assess the presence of hydrolytic enzymes used in digestion, including 

red mite. Many of the enzymes identified in this study were found in the principal 

areas of digestion (the ventriculus, diverticulae and cae cae ) and are known to be 

involved in the hydrolysis of food within the digestive tract (Evans, 1992). Red mite 

showed considerable uniformity in their range of phosphatase, esterase and 

aminopeptidase enzymes, in agreement with those seen in several other mite 

species, which suggests that the red mite is highly adapted to an animal parasitic 

lifestyle (Nisbet and Billingsley 2000). The same enzymes had been previously 

isolated in Boophilus microplus, suggesting similar modes of digestion. Therefore, 

immunisation of hosts with these enzymes may potentially induce protective 

immunity by the mechanisms observed previously with successful Boophilus 

microplus vaccines (Nisbet and Billingsley, 2000). 
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More recently, a number of attempts at recreating the success of the Bm86 midgut 

proteins have been made in a range of other invertebrate parasites. Some success 

has been seen with the tick family, for example the bush tick (Haemaphysalis 

longicornis) , where a series of monoclonal IgG antibodies (mAbs) showed cross­

reactivity with a 76 kDa midgut protein in certain mice. Adult ticks feeding on these 

animals immunised with this midgut protein subsequently failed to oviposit (Nakajima 

et al., 2003). Similarly, mAbs raised against mosquito midguts of Plasmodium 

falciparum and P. vivax, both malarial vectors, reduced survival and fecundity as well 

having a parasite transmission-blocking capacity (Lal et al., 2001). 

Progress has also been made in immunological control of the sheep scab mite 

(Psoroptes ovis), with the initial development of a cDNA expression library, allowing 

identification and characterisation of potential target antigens (Lee et al., 1999). This 

was followed by the immuno-Iocalisation of host IgG in engorged mite midgut 

sections examined by cryosectioning, highlighting the potential susceptibility of P. 

ovis to the 'concealed' antigen route of vaccination (Pettit et al., 2000). Subsequently, 

several attempts have been made to immunise sheep against P. ovis using 

concealed antigens. In one study, whole mite proteins were extracted using saline, 

Tween, urea and CHAPS and immunised into sheep, which produced varying 

degrees of success (Smith et al., 2002). All immunised animals showed higher levels 

of increased circulating IgG responses when compared control sheep injected with 

adjuvant only. However, only the saline and Tween extracts stimulated significant 

two-fold reductions in mean lesion areas (P<0.02 and P<0.01, respectively) and 

significant decreases in mite numbers (P<0.01 and P<0.02, respectively). Further 

investigation of immunisation with whole mite extracts purified by both Fast Protein 

Liquid Chromatography (FPLC) and ultrafiltration to increase antigen specificity also 

showed considerable variation between individual sheep (Smith and Pettit, 2004). 

However, animals immunised with more highly purified forms of P. Dvis extract, 

particularly after FPLC showed significantly higher (P-values not given) levels of 

protection than those immunised with whole mite extract, suggesting that there had 

been a concentration of protective components within the extract. SDS-PAGE 

profiles of these fractions displayed that they still showed multiple protein bands at 

different weights, suggesting that further purification is necessary in order to 

determine the protective components (Smith and Pettit, 2004). P. ovis antigens have 

since been observed to share homology and elicit strong IgG and IgE reactions with 

major allergens previously characterised in the house dust mite (Dermatophagoides 

farinae) (Lee st al., 2002; Huntley st al., 2004). These allergens include tropomyosin, 
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paramyosin, apolipophorin and cystine proteases, which have all been seen to show 

promise as vaccine candidates (Nisbet and Huntley, 2006). 

Host resistance to a range of other ectoparasites has also been documented. For 

example, Arlain et al. (1995) observed resistance to the burrowing mite Sarcoptes 

scabiei in rabbits immunised with extracts from whole house dust mites, which had 

previously shown cross-reactivity between the two species. Results indicated that the 

balance between Th1 and Th2-type immunity played a pivotal role in the 

pathogenesis and expression of protection to scabies. It appeared that antigens 

induced a stronger Th1-type response in resistant hosts, illustrated by the increased 

expression of neutrophils. Conversely, the Th2-type response was up-regulated in 

non-resistant hosts, characterised by the immunoglobulin levels. Progress has also 

been made with immunising host species with a range of other concealed antigens 

from Sacrcoptes scabiei, such as, glutathione S-transferase, paramyosin and 

cysteine proteases (Ljunggren, 2005). It has also been observed that eliciting the 

correct type of immune response is essential in providing protection. Tarigan and 

Huntley (2005) reported failure to protect sheep against Sacrcoptes scabiei after 

immunising with extracts purified with ion exchange chromatography. They observed 

a strong increase in IgG, but no significant change in IgE levels, which had been 

previously correlated to a reduction in mite numbers. 

Increased immunoglobulin levels but failure to reduce parasite numbers has also 

been observed in the Northern fowl mite, (Ornithonyssus sylviarum). In a study by 

Minnifield et al. (1993), mite proteins were obtained by affinity chromatography and 

used for immunisation. Western blot analysis identified several proteins that were 

reactive with sera from antigen immunised birds with a particularly immunodominant 

band at 100 kOa, which indicated that serum antibodies to the mite had been 

produced. However, this immunity did not decrease the level of mite infestation on 

birds or reduce survival in an in vitro feeding device. 

Similar observations were made with poultry immunised with red mite extracts (Sam­

Sun et al., 2002). Here, antigen characterisation performed by western blotting 

revealed several prominent proteins recognised by IgY. Subsequently, the immune 

effect of somatic antigens on birds immunised with the whole mite extracts and then 

challenged with red mite was assessed. ELISA optical density readings revealed 

both significantly higher (P<0.05) IgY levels and significantly lower (P<0.05) levels of 
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mites in birds immunised with red mite antigens when compared to control birds 

(Sam-Sun et al., 2002). 

Many more examples of immune response to immunisation with ectoparasitic 

components exist showing a variety of responses, ranging from those which have no 

impact on parasite survival through to those which result in almost complete 

protection. However, it appears that host protection is particularly sensitive to the 

precise characteristics of the immunised antigens and vaccine constituents. For 

example, discreet changes to the tertiary structure of proteins have been attributed to 

the difference between the reduction and non-reduction of a parasitic burden 

(Tellman et al., 2001), as have changes in the type of adjuvant used (Dalton and 

Mulcahy, 2001). Parasites have also become very adept at evading and manipulating 

host immune responses, often through saliva components, in order to obtain a blood­

meal and in turn improve their survival (Gillespie et al., 2000). 

2.13.3 Dual action antigens 

The use of concealed antigens is particularly effective in reducing ectoparasite 

populations in the short term. However, protective immunity can be short-lived, as 

natural infestations do not invoke a response to concealed antigens due to the 

absence of a sustained stimulus. In addition, the greatest problem associated with 

natural antigens is their inability to provoke a substantial protective immunological 

response. Therefore, the ideal ectoparasite vaccine would integrate both the concept 

of the concealed antigen whilst inducing an immune response reflective of natural 

infestation, eliciting a natural booster effect and thus eliminating the need for 

repeated vaccination (Trimnell et al., 2002). Trials for such a vaccine have been 

implemented in a study using a putative tick cement protein (64P) from the African 

brown ear tick (Rhipicephalus appendiculatus). The 64P protein is thought to be 

involved in anchoring the tick mouthparts into the skin of the host during feeding and 

purified forms of the 64P protein have displayed an immunogenic nature (Trimnell et 

al., 2002). 

In order to expose immunogenic regions and also assess the efficacy of these 64P 

antigens, a series of both truncated and full length clones were used to immunise 

guinea pigs parasitized by R. appendiculatus. In addition, antigenic cross reactivity 

between gut sections and 64P were assessed separately through western blotting. It 

was observed that ticks which had consumed blood from guinea pigs immunised with 

versions of the 64P protein showed significantly higher (P<0.001) mortality rates 

40 



ranging between 56-70 % compared to controls. Moreover, antibodies raised against 

R. appendiculatus, cross reacted with antigenic epitopes from salivary glands and 

midgut sections of unfed adult female ticks. Subsequent research by the same group 

also revealed cross-protection against other tick species, Rhipicephalus sanguineus, 

Amblyomma variegatum and Ixodes ricinus (Trimnell et al., 2005). The same authors 

also suggested that protection was invoked due to immunised animals stimulating 

local inflammatory immune responses, involving basophils, eosinophils, lymphocytes, 

mast cells, macrophages and dendritic-like cells. This is a novel approach whereby 

truncation of a recombinant form of secreted/external protein used as an anti­

parasitic vaccine, exposes similar epitopes found on 'concealed' antigens as those 

seen on the internal portion of the ectoparasite. On combining this with the effect of 

the parasite naturally feeding, an innate immune boosting is provided. This enhances 

the effectiveness of a single vaccination by employing a dual action strategy of 

targeting the parasite both externally and internally, through vaccination and natural 

boosting (Trimnell et al., 2002). 

2.14 Summary and conclusions 

The poultry red mite is one of the most important welfare and economic concerns of 

current poultry production, with the situation likely to become more serious after the 

prohibition of cages and continued withdrawal of acaricides. As such, there is the 

need for a new and sustained approach to control this parasite. Previous research in 

other haematophagous ectoparasite species has demonstrated the possibility of 

utilising the host immune system to elicit host protection by way of immunisation. 

Several approaches for the extraction and purification of arthropod antigens for use 

in such immunisation studies have been attempted. Therefore, this thesis aims to 

exploit these techniques in the potential development of a novel poultry red mite 

vaccine. This requires the attainment of a number of objectives including: 

• The evaluation of the relationship between red mite populations, poultry 

production parameters and acaricide application. 

• The development of techniques for the optimum extraction of red mite 

antigens and IgY from egg yolks. 
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• The optimisation and validation of immunological assays to evaluate the 

effect of natural red mite exposure to hens, including ELISA, SDS-PAGE and 

western blotting. 

• The establishment of both in vivo and in vitro red mite feeding systems to 

determine survival and reproductive parameters of red mite. 

• Finally, compile these techniques to assess the effect of immunisation with 

red mite antigens on avian immune response and the subsequent impact on 

survival and fecundity of red mite populations. 
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Chapter 3 

Techniques 

3.1 Poultry red mite antigen extraction 

3. 1. 1 Introduction 

A number of the assays used to evaluate the immunological aspects of vaccine 

development require red mite protein extracts including ELISA, SOS-PAGE and 

western blotting. The same red mite proteins can be used as vaccine antigens which, 

if the vaccine is to be successful, have the primary function of eliciting a sufficient 

protective host immune response. 

Some of the most important technical challenges of proteomics involve overcoming 

the difficulties associated with protein solubilisation and purification. Moreover, 

immunologically relevant proteins frequently represent a minute fraction of a 

pathogen's proteome (Zintl et al., 2006). An additional problem in the isolation of 

antigens from the poultry red mite relate to its size (0.75 x 0.46 mm) which eliminate 

the possible use of dissection of body parts, a strategy used for the successful 

development of other ectoparasite vaccines (Willadsen et al./ 1999). Therefore, this 

study set out to compare less direct whole mite protein extraction methods, which 

have previously been used to induce protection of host species against parasitic 

infections (Jayawardena et al./ 2000; Smith et al., 2002). 

Many different protein extraction methods have been developed and documented 

previously in the literature. These methods are generally based around both physical 

and chemical degradation of ectoparasites and are aimed at the isolation of soluble 

or membrane-bound proteins. 

The initial step in preparation of antigens from ectoparasites commonly involves 

physically collecting samples from the field. Once in the laboratory, these 

ectoparasite samples are generally counted and collected via aspiration (Fletcher 

and Axtell, 1991). A washing step follows, usually in a non-ionic detergent, such as 1-

10 % Sodium Oodecyl Sulfate (SOS) or Tween-20. This allows disruption and 
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removal of loosely bound debris which may contain contaminating polypeptides 

(Huntley et al., 2004; Smith and Pettit, 2004). 

The next step is often a disruptive one which may involve freezing in liquid nitrogen 

(Matthes et al., 1995), sonication (Nakajima et al., 2003) or homogenisation, either 

with a micro-pestle or milling using glass beads (Devaney and Augustine, 1987). This 

disruptive step is typically conducted in the presence of protease inhibitors, which are 

in turn placed in an extraction buffer to prevent excessive denaturation of proteins by 

proteases. Extraction buffers may contain any number of compounds suitable for 

disrupting protein structure such as Triton X, SDS, urea, Tween-20, EDTA, CHAPS, 

although many are simply extracted in saline (Laemmli, 1970; Devaney and 

Augustine, 1987; Ogden et al., 2002; Van den Broek et al., 2003; Huntley et al., 

2004). Samples are then filtered or centrifuged to pellet any remaining debris and the 

protein-containing supernatant can then be used in either immunological assays or 

as a vaccine antigen. 

Occasionally, in order to purify protein fragments further, immunoaffinity columns are 

used. Here specific antigen fragments are bound to columns pre-coated with 

antibody and then eluted for subsequent use (Minnifield et al., 1993; Shelver et al., 

1998; Tarigan and Huntley, 2005). 

Since such an array of extraction protocols exist, the aim of this section is therefore 

to evaluate a number of these to determine the optimal extraction method for red 

mite antigens, both yielding high antigen concentrations and generating an array of 

proteins at different molecular weights. 

3.1.2 Materials and methods 

3. 1.2. 1 Source of poultry red mite 

Red mite were collected using the trap sampling method outlined in Section 4.2.3 

from commercial laying units around Northumberland which had a history of red mite 

infestation. Before being used in any of the extraction procedures, fed red mite were 

left in the dark in sealed polythene bags for approximately 10 days, to allow them to 

digest their previous blood-meals and remove blood proteins which may be a 

potential source of contamination. 
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3. 1.2.2 Chemical extraction 

All methods of both chemical and physical extraction of red mite antigens, outlined in 

this section, were repeated 5 times to ensure reproducibility. 

(i) Urea extraction 

The first chemical protein extraction method used a urea based membrane organelle 

solubilizing kit (Sigma, St. Louis, US) which targets both soluble and membrane 

bound proteins. Some 1,000 unfed poultry red mite were suspended in 1 ml of urea 

solubilizing reagent containing protease inhibitors (4-(2-aminoethyl)benzenesulfonyl 

fluoride (AEBSF), E-64, bestatin, leupeptin, aprotinin, and sodium EDTA; Sigma, St. 

Louis, US), which was immediately reduced using tributylphosphine (final 

concentration 5 mM) and homogenised using a micro-pestle for 10-15 min on ice, 

until no whole mites were detectable microscopically. Proteins were subsequently 

alkylated by adding iodoacetamide (final concentration 15 mM) and the resulting 

suspension was then centrifuged at 14,000 rpm for 10 min, at room temperature. The 

supernatant was then removed, ready for protein concentration measurement using a 

Bradford assay. 

(ii) CelLyltic™ extraction 

The second chemical extraction method used was a CelLyltic™ extraction reagent 

(Sigma, St. Louis, US), which also targets both soluble and membrane bound 

proteins and contains 40 mM Tris-HCI (pH 8.0) and a proprietary formulation of 

zwitterionic detergents (which help to maintain a neutral solution). Again 1,000 unfed 

adult red mite were aspirated into an eppendorf tube and 1 ml extraction reagent 

along with DTT (5 mM final concentration) was added. Red mite were homogenised 

using a micro-pestle and held at room temperature on an orbital shaker for 30 min. 

The lysed red mite cells were centrifuged for 10 min at 14,000 x g, at room 

temperature to pellet the cellular debris. The protein-containing supernatant was 

transferred to a clean tube and stored at -20°C for subsequent use. 

(iii) PBS, SDS and Tween extraction 

All subsequent extraction protocols employed the same general methodology, 

however the buffer in which the protein was extracted varied. As before 1,000 unfed 

red mite were submerged in 1 ml of buffer, containing protease inhibitors (Sigma, St. 

Louis, US) and either PBS, 10 % SOS in PBS or 0.1 % Tween-20 in PBS. The 

suspension was then homogenised on ice, using a micro-pestle for 10-15 min, until 

no whole mites were detectable microscopically. Samples were then centrifuged at 
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14,000 x g for 10 min, at room temperature in order to pellet debris. The supernatant 

was then removed and retained for protein concentration determination using a 

Bradford assay. 

3.1.2.3 Physical extraction 

The two protocols for the chemical extraction which yielded the highest protein 

concentration were evaluated using different physical extraction methods (see Figure 

3.1), namely sonication and freezing in liquid nitrogen. Sonication was performed 

following homogenisation in extraction buffer for 10 min in ice cold water and 60 

Sonics/min (Branson ultrasonic cleaner, model 2210, Branson, Connecticut, USA). 

Freezing with liquid nitrogen, on the other hand was conducted on live red mite after 

being aspirated into eppendorf viles and before homogenisation. Subsequent 

methodology was conducted as previously described in Section 3.1.2.2. 

3. 1.2.4 Protein yield 

The concentration of proteins extracted by all chemical and physical methods was 

compared using a Bradford assay according to the manufacturer's instructions. The 

absorbance values of each extract were read using an eppendorf Biophotometer 

(Eppendorf, Hamburg, Germany). The protein concentration of each sample was 

determined from a standard curve generated by a range of bovine serum albumin 

BSA) (Sigma, St. Louis, US) concentrations from 0.2 to 1.0 mg/ml. 

3.1.2.5 Protein precipitation 

Once optimal conditions for protein extraction had been established, in order to avoid 

contamination, improve purity and generate higher yields, proteins were precipitated 

using both trichloroacetic acid (TCA) and sodium deoxycholate (DOC). Subsequently 

both protein yield and purity of preCipitated proteins were compared with those 

extracted by the standard methods outlined above. 

A sample of 100 ~I protein extract was brought to 1 ml by adding 900 ~I 0.2 % (w/v) 

DOC. This solution was vortexed and incubated at room temperature for 10 min. 

Then 1 00 ~I of 100 % (w/v) TCA was added before further vortexing, after which the 

solution was left to stand for 20 min at 4°C. The solution was then centrifuged at 

14,000 x g for 10 min and the supernatant was decanted. The pellet was dispersed 

by vortexing and washed in 1 ml ice cold acetone solution. This solution was then 

centrifuged at 14,000 x g for 5 min, the supernatant was decanted and the wash 

procedure repeated once again. The remaining pellet was then allowed to dry by 
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exposing it to room temperature for 30 min and the pellet re-dissolved in either PBS 

for protein concentration or in sample buffer for subsequent SDS-PAGE analysis. 

3.1.2.6 Comparison of extraction methods 

Following the determination of yield both antigen extraction and also protein 

precipitation methods were analysed by SDS-PAGE in order to compare protein 

profiles (see Section 3.3). Briefly, 20 Ilg of each red mite protein extract was added to 

sample buffer (NuPAG~ sample buffer, NuPAGE® reducing agent, deionized water; 

Invitrogen, Paisley, UK). Samples were then heated to 70°C for 10 min and loaded 

into Novex 4-12 % Bis-Tris mini-gel lanes. Proteins were fractionated by 

electrophoresis for approximately 1 hour at 200 V and protein bands stained using 

Coomassie Blue stain (Safestain®, Invitrogen, Paisley, UK). A summary of all protein 

extraction protocols is given in Figure 3.1. 

3. 1.2.7 Statistical analysis 

Antigen extraction protocols were assessed by analysis of variance (ANOVA) using 

the statistical package, MINITAB (v14), imputing protein yields of both chemical and 

physical extraction as response variables. 
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Figure 3.1 Summary of poultry red mite protein extraction protocol 

Poultry red mite 

Chemical extraction 

(x 5 replicates) 
SOS 

Urea 

CelLyltic ™ 

Tween-20 

PBS 

SDS-PAGE/Protein yield 

Physical extraction-,---. Sonication ~ SDS-PAGE/Protein yield 

(x 5 replicates) 4 Freezing J 1 
Protein precipitation 

1 
SDS-PAGE 
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3.1.3 Results 

3.1.3.1 Chemical extraction 

Comparison of protein extraction methodologies using SOS-PAGE revealed that 

most, if not all bands, were common to all extracts, although the various proteins 

were represented at different concentrations (Figure 3.2). A number of common 

bands could be seen when comparing lanes, in particular a heavy band was seen at 

around 100 kOa. Resolution of bands was generally good, excluding extraction using 

CelLyltic™, which demonstrated a high degree of smearing, possibly as a result of 

protein degradation. 

The protein banding patterns of the 10 % SOS, 0.1 % Tween-20 and PBS extracts 

were very similar, spread out evenly over the 8 to 220 kOa size range. PBS showed 

the most prominent bands at a series of molecular weights, in particular the heavier 

end of the scale ranging between 100 and 220 kOa. Extraction using urea solution, 

on the other hand, produced several strong bands at lighter molecular weights, 

around 40 to 50 kOa. 

Figure 3.2 Comparison of poultry red mite protein extraction method by SOS-PAGE; 

Lane A: Molecular weight marker (kOa); Lane B: 10 % SOS; Lane C: Urea; Lane 0: 

CelLyltic™; Lane E: O. 1 % Tween-20; Lane F: PBS 
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Significant differences were not observed between chemical extraction methods 

(Table 3.1). However, the PBS extraction method yielded the highest concentration 

of protein giving between 2.1 to 0.4 mg/ml extra total protein compared to the other 

extraction methods. 
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Table 3.1 Comparison of mean poultry red mite protein yields using different 

extraction buffers 

Extraction Method Protein Yield (mQ/ml) S.E. Mean 

PBS 3.2 0.17 

Urea 2.8 0.16 

10% SOS 2.2 0.08 

0.1 % Tween-20 1.4 0.21 

CelLylticTM 1.1 0.15 

Significance NS -
NS: no significant difference 

3.1.3.2 Physical extraction 

The physical process of extracting proteins was compared by SOS-PAGE and 

visualised using Coomassie Blue stain. The resulting protein bands generated 

showed no difference in conformation (Figure 3.3). Extraction by homogenisation, 

freezing in liquid nitrogen and sonication all produced bands ranging from 8 to 220 

kOa, with particularly concentrated bands at around 100 kOa. 

Figure 3.3 Comparison of physical poultry red mite protein extraction method by 

SOS-PAGE; Lane A: Molecular weight marker (kOa); Lane B: PBS homogenisation; 

Lane C: Liquid nitrogen + PBS homogenisation; Lane 0: Sonication + PBS 

homogenisation 
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Surprisingly, neither freezing in liquid nitrogen or sonication yielded significantly 

higher protein levels over those extracted in PBS alone. In fact, sonication resulted in 

the lowest protein concentration numerically (Table 3.2). 
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Table 3.2 Mean poultry red mite protein yields achieved with different physical 

extraction methods 

Extraction Method Protein Yield (mg/ml) S.E. Mean 

PBS 3.2 0 .17 

PBS + Liquid nitrogen 3.2 0.19 

PBS + Sonication 3.0 0.23 

Significance NS -
. . 

NS: no significant difference 

3.1.3.3 Protein precipitation 

Precipitation of proteins did not result in additional purity of protein extracts when 

evaluated by 8DS-PAGE. This was apparent since profiles of precipitated proteins 

appeared to be exact replicates of non-precipitated protein extracts (Figure 3.4) . 

Figure 3.4 Comparison of precipitated poultry red mite proteins by SOS-PAGE, Lane 

A: Molecular weight marker (kOa), Lanes Band C: Non-precipitated proteins (10 and 

1 /1g, respectively), Lanes 0 and E: Precipitated protein (10 and 1 /1g, respectively) 

3. 1.4 Discussion 
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At present there are numerous potential extraction protocols available for preparing 

ectoparasitic proteins for use in immunological experiments (Uhlir, 1992; Minnifield et 

a/., 1993; Jayawardena et al. , 1998; Tarigan and Huntley, 2005). Therefore, the aim 

of this section was to evaluate these methods to determine the optimal extraction 

protocol for red mite antigens, both yielding high antigen concentrations and 

generating an array of proteins at different molecular weights. 
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After performing extraction of proteins, firstly by comparing buffer components, it was 

apparent that extraction with either PBS or SDSfTween-20 generated the greatest 

number and widest range of bands over an extensive range (8 to 220 kDa). However, 

PBS alone produced several additional protein bands, and also gave the highest 

resolution, although this observation was entirely subjective. This configuration of red 

mite protein band patterns has previously been observed over molecular weights 

ranging from 9 to 170 kDa (Sam-Sun et al., 2002). Extraction of red mite proteins 

using the urea buffer also produced a number of concentrated bands between 35 

and 50 kDa which were not present using alternative methods. This perhaps 

contributed to both PBS and urea extraction protocols producing the highest protein 

yields, although not significantly so. 

Isolation of proteins using the CelLyltic™ kit on the other hand produced both fewer 

protein bands and also appeared to cause excessive degradation. This is likely to be 

due to the abrasive nature of the components, Tris-HCI and zwitterionic detergents 

causing extreme disruption to protein structure as previously observed (Zintl et al., 

2006). 

Further analysis of SDS-PAGE gels comparing different physical extraction methods 

and also protein precipitation revealed little improvement over simple chemical 

extraction in terms of the range of proteins detected. Sonication in fact caused a 

slight reduction in the total protein yielded, although this was not significant. Again, 

this is not uncommon and may be indicative of excessive protein disruption (Zintl et 

al.,2006). 

Therefore, it would appear that targeting soluble proteins using PBS extraction alone 

was the most effective method of extraction. Despite the fact that this method 

extracts only soluble proteins it has been observed in other arthropod species to elicit 

greater protection against infestation when compared to membrane-bound antigens 

(Nisbet and Huntley, 2006). 

In conclusion, from these results it appears that using the PBS extraction method 

generated the greatest array and abundance of individual proteins which 

demonstrated suitability for use in immunological assays. Urea extraction of red mite 

antigens also provided a useful alternative by generating high protein yields, and an 

alternative protein profile to PBS. 
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3.2 Enzyme linked immunosorbent assay 

3.2.1 Introduction 

The enzyme-linked immunosorbent assay (ELISA) is a widely used procedure, most 

commonly applied for the recognition/quantification of antibody responses to specific 

pathogens (Mansheim et al., 1980). It is a particularly useful technique and is used 

on both laboratory and commercial scales due to its sensitivity and high throughput 

(Wadhwa et al., 2003). At present several poultry ELISA assays have been 

developed, typically for viral and bacterial pathogens, including Salmonella and 

Mycoplasma infections (Wunderwald and Hoop, 2002). However, availability of 

assays for serological detection of parasitic species such as the poultry red mite, are 

not common. 

Immunoglobulin-Y (lgY) is the predominant antibody produced in poultry against 

prolonged exposure to specific antigens (Hamal et al., 2006), such as chronic 

infestation by red mite. The aim of this section therefore was to describe the process 

of optimisation of a non-competitive, capture ELISA for the detection of anti-poultry 

red mite IgY. The validation experiments reported here were based on a factorial 

design with respect to several features of the assay. 

3.2.2 Mster/sls snd methods 

In order to determine optimum parameters for ELISA using poultry red mite extracts, 

a series of pilot studies were conducted. These allowed the establishment of 

optimum concentrations and dilutions of red mite protein, blocking agent, primary and 

secondary antibodies. These parameters were investigated for both serum- and yolk­

derived IgY as shown in Figure 3.5. Parameters for the current ELISA assay were 

based on several previously documented parasitic ELISA assays (Silber et al., 2002; 

Smith and Pettit, 2004; Cortes et al., 2006; Pokharel et al., 2006). 

3.2.2. 1 Mat8fia/s and reagents 

ELISA was performed using 96-well microtitre plates (Nunc, Denmark), which were 

coated using unfed whole red mite antigen, the extraction of which is described in 

Section 3.1. PBS-Tween-20 (0.15 M NaCI, 0.02 M Na2HP04, 0.01 % Tween-20, pH 

7.2) was used for both washing and dilution (Sigma, St Louis, USA). Bovine serum 
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albumen (BSA), secondary anti-chicken IgY peroxidase conjugated antibody and 

Tetramethylbenzidine (TMB) were also used (Sigma, St Louis, USA). Optical 

densities of wells were read on a microplate reader (Bio-tek Instruments, Winooski, 

USA). 

3.2.2.2 Immunoglobulin samples 

Sources of both positive blood serum and yolk IgY were obtained from birds on farms 

which had previously been determined, via trap sampling, as having high levels of 

poultry red mite infestation. Negative serum on the other hand was collected from 7 

week-old broiler chickens which had previously, to our knowledge, never been 

exposed to red mite. Initial ELISA optimisation was performed using pooled 

serum/yolk extract from both positive and negative birds (n= 15). 

3.2.2.3 Assay design and optimisation 

The 96-well plates were coated with a series of concentrations of unfed whole red 

mite antigen diluted in 0.1 M NaHC03 (pH 9.5) and incubated overnight in an orbital 

shaker at 4°C. The following day, the plates were washed 3 times in 200 IJI PBS­

Tween-20 and then blocked in a series of concentrations of BSA (see Figure 3.5). 

Following another three washes in 200 IJI PBS-Tween-20, 100 IJI of serum/yolk IgY 

was serially diluted in PBS-Tween-20 and left to incubate for 1.5 hours, then 

subsequently washed three times in PBS-Tween-20 as before. Each well then 

received 100 IJI of a known concentration of secondary antibody, diluted in PBS­

Tween-20 (see Figure 3.5) and was incubated for 1 hour and once again washed 

three times in PBS-Tween-20. Finally, 100 IJI of TMB substrate was added to each 

well and the colour allowed to develop, after which optical density (0.0.) was read on 

a microplate reader. Plates were read kinetically at 630 nm, every 2 min for 40 min, 

in order to establish the optimal point of 0.0. 
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Figure 3.5 Schematic diagram of ELISA parameters for optimisation 
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3.2.2.4 Optimisation parameters and replication 

Assay optimisation involved investigating all combinations of various parameters in 

order to establish which ones produced the greatest signal obtained for positive 

samples, minus that of the negative value (Mire-Sluis et al., 2004). IgY binding ratios 

(positive/negative 0.0.) of samples were also employed as determinants for 

optimisation, with higher ratios being preferred (Dubois et al., 2006). This was carried 

out for both blood sera and yolk IgY. Each optical density value expressed in the 

results section is a mean of two duplicate wells, repeated three times over 

successive days, unless otherwise stated. 

3.2.2.5 Cut-off point and normalisation 

The cut-off point of an assay is the level of response of the assay at or above which a 

sample is defined to be positive and below which it is defined to be negative (Mire­

Sluis et al., 2004). It is recommended that the cut-off pOint is set at an upper negative 

limit of around 95 % of the negative optical density value, which is achieved by 

adding 1.645 standard deviations (S.D.) to the mean (Mire-Sluis et al., 2004; Dubois 

et al., 2006). This value was calculated over three independent runs (three separate 

days), in order to compensate for inter-day variability. Also, inter-bird variability was 

accounted for by analysing samples from 15 individual negative samples. Cut-off 

paints were determined for both serum and yolk IgY samples independently. 

In order to standardise plates on consecutive runs, a normalisation factor was 

calculated. This value was determined as the ratio between the mean cut-off point of 
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the negative serum samples (n=15), divided by the mean optical density of a 

negative serum pool plus 1.645 S.D. (Mire-Sluis, et al., 2004). The resulting value 

could subsequently be used for calibration of future assays. 

3.2.3 Results 

3.2.3.1 Optimisation of kinetic parameters 

All combinations of ELISA parameters were subject to kinetic development for a 

period of 40 min with read intervals of 2 min. Table 3.3 displays optical density values 

over this period and shows that at 15 min the binding ratio is at its highest point, 

whilst the positive/negative difference is not maximised, although it is above the 

mean of 1.45. 

Table 3.3 Optimisation of kinetic ELISA parameters for serum /gY (numbers in bold 
represent optimum conditions) 

Negative 00 Positive 00 

Time (min) Mean S.D. Mean S.D. Pos-Neg Binding Ratio 
5 0.112 0.0551 0.506 0.0764 0.39 4.52 
7 0.144 0.0341 0.822 0.0100 0.68 5.71 
9 0.170 0.0578 1.077 0.0420 0.91 6.34 
11 0.211 0.0651 1.321 0.1003 1.11 6.26 
13 0.246 0.0544 1.531 0.0492 1.29 6.22 
15 0.272 0.0438 1.742 0.1025 1.47 6.40 
17 0.324 0.0432 1.879 0.0257 1.55 5.79 
19 0.375 0.0476 1.993 0.0123 1.62 5.31 
21 0.420 0.0487 2.109 0.0596 1.69 5.03 
23 0.464 0.0287 2.200 0.0714 1.74 4.74 
25 0.509 0.0541 2.300 0.0541 1.79 4.52 
27 0.554 0.0341 2.385 0.0368 1.83 4.31 
29 0.598 0.0131 2.461 0.0438 1.86 4.11 
31 0.643 0.0506 2.534 0.0509 1.89 3.94 
33 0.688 0.0487 2.590 0.0099 1.90 3.77 
35 0.733 0.0497 2.640 0.0304 1.91 3.60 
37 0.777 0.0483 2.720 0.0297 1.94 3.50 
39 0.822 0.0488 2.779 0.0564 1.96 3.38 

Figure 3.6 shows the kinetic reaction of positive against negative serum. There is an 

initial rapid increase in optical density of positive serum until approximately 13 min, at 

which point the rate of increase slows, but still continues to rise at a decreased rate 

until time expires at 39 min. Negative serum on the other hand appears to maintain a 

slow, yet constant increase for the duration of the kinetic read. 
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Figure 3.6 Optimisation of kinetic ELISA parameters for serum /gY 
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Table 3.4 also illustrates kinetic optimisation over a read period of 40 min, using IgY 

extracted from egg yolks. Here both optimal binding ratio and a positive-negative 

difference above the mean of 1.26 are observed at 19 min. 

Table 3.4 Optimisation of kinetic ELISA parameters for Yolk /gY (numbers in bold 
represent optimum conditions) 

Negative 00 Positive 00 

Time (min) Mean S.D. Mean S.D. Pos-Neg Binding Ratio 
5 0.129 0.0273 0.188 0.0771 0.06 0.46 
7 0.172 0.0332 0.407 0.0354 0.23 1.36 
9 0.211 0.1096 0.636 0.0693 0.43 2.02 
11 0.244 0.0156 0.876 0.0700 0.63 2.59 
13 0.298 0.0325 1.129 0.0707 0.83 2.78 
15 0.358 0.0064 1.395 0.0304 1.04 2.89 
17 0.412 0.0212 1.626 0.0601 1.21 2.94 
19 0.462 0.0262 1.826 0.0453 1.36 2.95 
21 0.513 0.0283 1.973 0.0757 1.46 2.85 
23 0.583 0.0296 2.169 0.0396 1.59 2.72 
25 0.676 0.0323 2.273 0.0679 1.60 2.37 
27 0.734 0.0346 2.374 0.0608 1.64 2.23 
29 0.783 0.0304 2.491 0.0014 1.71 2.18 
31 0.844 0.0472 2.593 0.1527 1.75 2.07 
33 0.906 0.0306 2.682 0.0474 1.78 1.96 
35 0.967 0.0341 2.772 0.0806 1.81 1.87 
37 1.028 0.0264 2.842 0.0813 1.81 1.76 
39 1.090 0.0198 2.901 0.0141 1.81 1.66 

As for serum, positive yolk IgY samples display an initial rate of optical density 

increase which appears to be exponential with unit time, which subsequently slows, 

but continues to increase at a steady rate until the end of the reaction. Negative yolk 

IgY also maintains a steady rate of increase for the read duration (Figure 3.7). 
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Figure 3.7 Optimisation of kinetic ELISA parameters for Yolk /gY 
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3.2.3.2 Serum IgYoptimisation 

ELISA outputs for serum IgY suggested that protein concentration had a large 

bearing on the subsequent optical densities (see Tables 3.5-3.8). As protein 

concentration rose from 2.5-10 ~g so did the optical density values, but a subsequent 

increase to 15 I-1g caused no further rise. The optimum concentration appeared to be 

at 10 ~g of protein per well (Table 3.7), giving rise to both the largest difference in 

positive and negative values and also greatest binding ratios. There was no further 

increase with addition of protein up to 15 I-1g per well. 

There was a steady decline in optical density values as the blocking concentration, 

primary and secondary antibody dilutions increased. These rises in blocking and 

antibody dilution also had the effect of increasing the positive/negative difference and 

binding ratio until saturation, which appeared to be at an antigen concentration of 10 

I-1g per well. 

Therefore the series of parameters which yielded optimal results was, 1 0 ~g red mite 

antigen per well, blocking with a concentration of 5 % BSA, incubation with primary 

antibody diluted 1:100 and secondary antibody diluted 1:30,000. 
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Table 3.5 Optimisation of ELISA parameters using 2.5 J.lg red mite protein per well 

for serum IgY 

Primary Blocking Secondary Negative 00 Positive 00 Pos- Binding 
Antibody % Antibody Mean S.D. Mean S.D. Neg Ratio 

1:10,000 1.269 0.0177 1.669 0.0269 0.40 1.32 
1 1:30,000 0.964 0.0078 1.492 0.0184 0.52 1.55 

1:10,000 1.012 0.0318 1.484 0.0658 0.48 1.47 
1:50 5 1:30,000 0.887 0.0163 1.477 0.0198 0.59 1.67 

1:10,000 0.865 0.0453 1.475 0.0438 0.61 1.71 
1 1:30,000 0.773 0.0665 1.433 0.0898 0.66 1.85 

1:10,000 0.442 0.0594 1.122 0.0912 0.68 2.54 
1 :100 5 1:30,000 0.313 0.0778 1.113 0.0601 0.80 3.56 

1:10,000 0.599 0.0170 0.969 0.0304 0.37 1.62 
1 1:30,000 0.424 0.0219 0.894 0.0099 0.47 2.11 

1 :10,000 0.366 0.0467 0.886 0.0757 0.52 2.42 
1:1,000 5 1:30,000 0.293 0.0049 0.843 0.0262 0.55 2.88 

Table 3.6 Optimisation of ELISA parameters using 5 I1g red mite protein per well for 
serum IgY 

Primary Blocking Secondary Negative 00 Positive 00 Pos- Binding 
Antibody % Antibody Mean S.D. Mean S.D. Neg Ratio 

1:10,000 1.699 0.0283 2.699 0.0495 1.00 1.59 
1 1:30,000 0.989 0.1096 2.099 0.0092 1.11 2.12 

1 :10,000 1.104 0.0877 2.094 0.0629 0.99 1.90 
1:50 5 1:30,000 1.750 0.0502 2.840 0.0106 1.09 1.62 

1:10,000 0.685 0.0163 1.955 0.0212 1.27 2.85 
1 1:30,000 0.774 0.0085 1.954 0.1633 1.18 2.52 

1 :10,000 0.581 0.0707 1.901 0.0643 1.32 3.27 
1:100 5 1:30,000 0.419 0.0113 1.749 0.0516 1.33 4.17 

1 :10,000 0.863 0.0205 1.643 0.0283 0.78 1.90 
1 1:30,000 0.921 0.1351 1.611 0.0990 0.69 1.75 

1 :10,000 0.537 0.0757 1.307 0.0544 0.77 2.43 
1:1,000 5 1:30,000 0.296 0.0361 1.136 0.0297 0.84 3.84 
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Table 3.7 Optimisation of ELISA parameters using 10 J.1g red mite protein per well for 

serum /gY 

Primary Blocking Secondary Negative 00 Positive 00 Pos- Binding 
Antibody % Antibody Mean S.D. Mean S.D. Neg Ratio 

--

1:10,000 2.519 0.0269 3.499 0.057 0.98 1.39 
1 1:30,000 1.767 0.1937 2.987 0.021 1.22 1.69 

1 :10,000 1.056 0.0544 2.346 0.0389 1.29 2.22 
1:50 5 1:30,000 0.805 0.0764 2.105 0.0587 1.30 2.61 

1 :10,000 0.775 0.0071 2.055 0.0361 1.28 2.65 
1 1:30,000 0.655 0.0049 1.955 0.2475 1.30 2.98 

1:10,000 0.308 0.0467 1.748 0.0417 1.44 5.68 
1:100 5 1:30,000 0.272 0.0438 1.742 0.025 1.47 6.40 

1 :10,000 0.553 0.0311 1.433 0.0028 0.88 2.59 
1 1:30,000 0.685 0.2206 1.405 0.0071 0.72 2.05 

1:10,000 0.534 0.0467 1.374 0.0304 0.84 2.57 
1:1,000 5 1:30,000 0.379 0.0933 1.219 0.0707 0.84 3.22 

-----.~.-

Numbers in bold represent optimum conditions 

Table 3.8 Optimisation of ELISA parameters using 15 J.1g red mite protein per well for 

serum /gY 

Primary Blocking Secondary Negative 00 Positive 00 Pos- Binding 
Antibody % Antibody Mean S.D. Mean S.D. Neg Ratio 

1:10,000 1.722 0.0410 2.732 0.0021 1.01 1.59 
1 1:30,000 1.469 0.2715 2.709 0.0134 1.24 1.84 

1:10,000 1.581 0.0368 2.691 0.0226 1.11 1.70 
1:50 5 1:30,000 1.414 0.1131 2.684 0.0764 1.27 1.90 

1:10,000 1.442 0.0007 2.672 0.0438 1.23 1.85 
1 1:30,000 1.314 0.0113 2.614 0.2970 1.30 1.99 

1:10,000 1.126 0.0255 2.506 0.0304 1.38 2.23 
1:100 5 1:30,000 1.112 0.0771 2.502 0.1294 1.39 2.25 

1:10,000 1.451 0.0453 2.431 0.0042 0.98 1.68 
1 1:30,000 1.359 0.2892 2.359 0.0141 1.00 1.74 

1:10,000 1.224 0.0318 2.244 0.0191 1.02 1.83 
1 :1,000 5 1:30,000 0.866 0.1252 1.986 0.0714 1.12 2.29 

3.2.3.3 Yolk /gY optimisation 

As for blood sera, yolk IgY displayed a continual decline in optical density values as 

the blocking concentration, primary and secondary antibody dilutions increased, with 

increases in optical density resulting from increases of antigen concentration until 

saturation at 10 Ilg of mite protein per well (see Tables 3.9-3.12). Again, the 

difference between positive and negative sera was seen to rise and peak with 

antigen concentration up to 10 Ilg of protein per well at which point a plateau was 

reached. Binding ratios, however, were initially observed to decrease from 2.5 to 5 Ilg 

of mite protein per well, but increase thereafter, with an optimum reached at 10 Ilg 

antigen per well. 
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Converse, to serum IgY, optimal optical density values for yolk IgY were observed 

when blocked with 1 % BSA, followed by incubation with primary antibody at 1: 1 00 

dilution and finally secondary antibody at 1: 10,000 dilution (Table 3.11). 

Table 3.9 Optimisation of ELISA parameters using 2.5 J.1g red mite protein per well 

for yolk IgY 

Primary Blocking Secondary Negative 0.0. Positive 0.0. Pos- Binding 
Antibody % Antibody Mean S.D. Mean S.D. Neg Ratio 

1:10,000 0.827 0.0127 1.167 0.0460 0.34 1.41 
1 1:30,000 0.759 0.0127 1.139 0.0509 0.38 1.50 

1 :10,000 0.630 0.0049 1.020 0.0198 0.39 1.62 
1:50 5 1:30,000 0.447 0.0120 0.877 0.0785 0.43 1.96 

1 :10,000 0.343 0.0304 0.873 0.0276 0.53 2.55 
1 1:30,000 0.391 0.0297 0.801 0.0127 0.41 2.05 

1:10,000 0.263 0.0071 0.763 0.0170 0.50 2.90 
1 :100 5 1:30,000 0.299 0.0495 0.692 0.0226 0.39 2.31 

1 :10,000 0.300 0.0276 0.611 0.0552 0.31 2.04 
1 1:30,000 0.315 0.0170 0.605 0.0622 0.29 1.92 

1:10,000 0.201 0.0120 0.461 0.0311 0.26 2.29 
1:1,000 5 1:30,000 0.179 0.0311 0.449 0.0672 0.27 2.51 

Table 3.10 Optimisation of ELISA parameters using 5 J.1g red mite protein per well for 

yolk IgY 

Primary Blocking Secondary Negative 0.0. Positive 0.0. Pos- Binding 
Antibody % Antibody Mean S.D. Mean S.D. Neg Ratio 

1:10,000 1.394 0.0184 1.944 0.0481 0.55 1.39 
1 1:30,000 1.229 0.0141 1.809 0.0629 0.58 1.47 

1:10,000 1.109 0.0163 1.709 0.0255 0.60 1.54 
1:50 5 1:30,000 0.997 0.0156 1.657 0.0134 0.66 1.66 

1:10,000 0.814 0.0559 1.534 0.0325 0.72 1.88 
1 1:30,000 0.742 0.0665 1.372 0.0156 0.63 1.85 

1:10,000 0.650 0.0332 1.310 0.0212 0.66 2.02 
1 :100 5 1:30,000 0.659 0.0375 1.309 0.0042 0.65 1.99 

1:10,000 0.744 0.0212 1.294 0.0375 0.55 1.74 
1 1:30,000 0.770 0.0148 1.270 0.0643 0.50 1.65 

1 :10,000 0.626 0.0177 1.196 0.0085 0.57 1.91 
1:1,000 5 1:30,000 0.514 0.0120 0.994 0.0007 0.48 1.93 
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Table 3.11 Optimisation of ELISA parameters using 10 /-1g red mite protein per well 

for yolk IgY 

Primary Blocking Secondary Negative 0.0. Positive 0.0. Pos- Binding 
Antibody % Antibody Mean S.D. Mean S.D. Neg Ratio 

1 :10,000 1.155 0.0410 2.045 0.0205 0.89 1.77 --

1 1:30,000 0.951 0.0156 1.941 0.0884 0.99 2.04 
1 :10,000 0.857 0.0283 1.917 0.0240 1.06 2.24 

1:50 5 1:30,000 0.798 0.0064 1.908 0.0049 1.11 2.39 
1 :10,000 0.462 0.0262 1.826 0.0453 1.36 3.96 

1 1:30,000 0.786 0.0771 1.796 0.0177 1.01 2.28 
1 :10,000 0.555 0.0134 1.685 0.0396 1.13 3.04 

1:100 5 1:30,000 0.787 0.0021 1.647 0.0106 0.86 2.09 
1:10,000 0.606 0.0431 1.476 0.0191 0.87 2.44 

1 1:30,000 0.674 0.0163 1.474 0.0940 0.80 2.19 
1 :10,000 0.639 0.0346 1.419 0.0262 0.78 2.22 

1:1,000 5 1:30,000 0.548 0.0106 1.358 0.0106 0.81 2.48 .. 
Numbers In bold represent optimum conditions 

Table 3.12 Optimisation of ELISA parameters using 15 /-1g red mite protein per well 

for yolk IgY 

Primary Blocking Secondary Negative 0.0. Positive 0.0. Pos- Binding 
Antibody % Antibody Mean S.D. Mean S.D. Neg Ratio 

1:10,000 1.126 0.0481 1.946 0.0219 0.82 1.73 
1 1:30,000 0.951 0.0205 1.801 0.0884 0.85 1.89 

1:10,000 0.774 0.0424 1.714 0.0304 0.94 2.21 
1:50 5 1:30,000 0.671 0.0071 1.701 0.0078 1.03 2.54 

1:10,000 0.484 0.0184 1.604 0.0530 1.12 3.31 
1 1:30,000 0.578 0.0948 1.558 0.0255 0.98 2.70 

1:10,000 0.535 0.0269 1.435 0.0495 0.90 2.68 
1 :100 5 1:30,000 0.606 0.0106 1.416 0.0085 0.81 2.34 

1:10,000 0.516 0.0516 1.356 0.0269 0.84 2.63 
1 1:30,000 0.457 0.0240 1.227 0.0813 0.77 2.68 

1:10,000 0.479 0.0460 1.219 0.0389 0.74 2.54 
1:1,000 5 1:30,000 0.378 0.0078 1.008 0.0127 0.63 2.67 

3.2.3.4 Serum IgY cut-off point and normalisation 

The cut-off point or level of response at which a sample is defined as positive or 

negative was determined using serum/yolk IgY samples from birds which had 

previously never been exposed to poultry red mite. This was carried out using 

serum/yolk IgY from 15 individual birds, over three consecutive ELISA runs and both 

mean and standard deviation (S.D.) calculated for each day (see Tables 3.13-3.14). 

For serum IgY (Table 3.13) the mean cut-off value (Mean + 1.645 S.D.), calculated 

as the mean of all serum samples taken across all days, had a moderate variability 

(mean 0.0. 0.333; C.V. 10 %). This fluctuation in 0.0. within the pool of negative 
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samples resulted in the generation of a small number of false-positive results, 

although it encompassed 91 % of samples. 

Table 3.13 Determination of cut-off value for serum IgY (D.O. values in bold exceed 
the cut-off point) 

Sample Day1 Day 2 Day 3 
1 0.184 0.179 0.318 
2 0.205 0.321 0.227 

3 0.277 0.325 0.215 

4 0.167 0.207 0.172 

5 0.419 0.230 0.223 

6 0.245 0.317 0.227 

7 0.212 0.166 0.278 

8 0.175 0.204 0.188 __ 

9 0.198 0.191 0.219 

10 0.204 0.197 0.227 

11 0.214 0.266 0.310 

12 0.263 0.372 0.207 

13 0.137 0.134 0.204 
14 0.209 0.349 0.134 

15 0.207 0.213 0.227 

Mean: 0.221 0.244 0.225 
S.D. 0.065 0.074 0.048 

Mean+ 1.645 S.D. 0.328 0.367 0.304 

Negative pool + 1.645 S.D. 0.315 0.264 0.279 
Normalization factor 1.21 1.39 1.09 

In order to correct the inherent inter-day drift, the cut-off point was normalised by 

comparing it to that of a pool of negative serum. The mean normalisation ratio (mean 

cut-off point/mean negative pool + 1.645 S.D.) for serum IgY was calculated at 1.23± 

0.15. 

3.2.3.5 Yolk IgY cut-off point and normalisation 

In contrast to serum IgY, the variation of mean yolk IgY cut-off values calculated as 

the mean of all samples and successive reads, (Table 3.14) was relatively high 

(mean 0.0. 0.664; C.V. 24 %). There was also the presence of a small number of 

false positives as a result of the discrepancy between negative optical density values, 

but as for serum IgY still managed to account for 91 % of all samples. 
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Table 3.14 Determination of cut-off value for Yolk IgY (0.0. values in bold exceed 

the cut-off paint) 

Sample Day1 Day 2 Day 3 
1 0.278 0.456 0.316 
2 0.372 0.621 0.292 
3 0.364 0.388 0.306 
4 0.259 0.525 0.447 
5 0.392 0.760 0.335 
6 0.278 0.480 0.254 
7 0.281 0.458 0.485 
8 0.306 0.988 0.532 
9 0.588 0.378 0.370 
10 0.294 0.412 0.375 
11 0.360 0.512 0.754 
12 0.205 0.423 0.533 
13 0.237 0.751 0.308 
14 0.359 0.354 0.669 
15 0.488 0.362 0.457 

Mean: 0.337 0.524 0.429 
S.D. 0.099 0.181 0.145 

Mean+ 1.645 S.D. 0.501 0.823 0.668 

Negative pool + 1.645 S.D. 0.531 0.596 0.517 
Normalization factor 0.94 1.38 1.29 

The normalisation factor (mean cut-off pOint/mean negative pool + 1.645 S.D.) for 

yolk IgY was calculated to be slightly lower than that of serum IgY at 1.21 ± 0.23. 

3.2.4 Discussion 

This section was aimed at determining optimum conditions for establishment of blood 

serum and yolk IgY ELISA assays. Results demonstrated that 

concentrations/dilutions and time parameters varied for respective IgY assays. 

Optimisation was determined at the point where both binding ratios were highest and 

also the difference between positive and negative samples was above the mean 

value. For blood serum this was apparent when using 1 0 ~g red mite antigen per 

well, blocking with a concentration of 5 % BSA, incubation with primary antibody 

diluted 1: 1 00 and secondary antibody diluted 1 :30,000 and also subsequent to 15 

min development inTMB. 

The yolk-derived IgY ELISA assay displayed optimal results again when coating 

wells with 10 ~g red mite antigen per well. However, this time blocking with a 

concentration of 1 % BSA. As with serum, incubation with primary antibody diluted 

64 



1: 1 00, but secondary antibody diluted 1: 1 0,000 and finally exposure with TMB for 20 

min displayed highest binding ratios and positive-negative difference. 

Following plate optimisation, validation of the cut-off point for negative samples was 

undertaken on 15 separate serum samples over three successive read pOints. Mire­

Sluis et al. (2004) recommended that the cut-off value is determined as the overall 

mean negative optical density, plus 1.645 S.D., which in the case of the present 

study incorporated 91 % of negative samples for both serum and yolk IgY ELISA. By 

taking this cut-off value and dividing it against a pool of negative serum, a 

normalisation factor can be calculated. In this study the normalisation value was 

optimised at 1.23± 0.15 for serum IgYand 1.21± 0.23 for yolk IgY, both of these 

values can be used as a function to standardise future assays and where necessary 

will be recalculated for subsequent negative standards. 

It was also evident from ELISA plate optimisation that there is a degree of non­

specific binding resulting in a relatively high background optical density. This 

occurred irrespective of the level of blocking or antibody dilution and may result from 

the unusually high affinity of avian serum to plastiC and polystyrene surfaces, and/or 

the nature of the antigen coated in the plate wells (Bauer et al., 1999). 

This section therefore illustrates the development of a functional immunoassay for 

direct screening of immunoglobulin samples. Subsequent studies using this ELISA 

assay, with either blood serum or yolk-derived IgY will employ the optimal 

parameters outlined here. 
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3.3 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (505-

PAGE) 

3.3. 1 Introduction 

SDS-PAGE is a common procedure used for the separation of proteins according to 

their molecular size, which gives rise to specific protein configurations. Once 

fractionated, SDS gels can act as a simple measure of comparing protein profiles 

between samples or can be further applied to immunoblotting/protein sequencing. 

First described by Laemmli (1970), the application of SDS-PAGE is used as the 

foundation of much of the present day proteomics. SDS-PAGE has previously been 

used for the fractionation of proteins of a range of mite species, including those of the 

northern fowl mite (Ornithonyssus sylvia rum, Devaney and Augustine, 1987), house 

dust mite (Dermatophagoides pteronyssinus, Stewart and Fisher, 1986), scabies mite 

(Sarcoptes scabiei, Petterson et al., 2005) and sheep scab mite (Psoroptes ovis, 

Smith et al., 2002). 

Generally, an SOS-PAGE protocol involves initially extracting the desired protein. as 

described previously in Section 3.1. Once the protein of interest has been 

successfully obtained and quantified, a known concentration, typically 5-50 Ilg protein 

(Matthes et al., 1996) is then added to a loading buffer. Loading buffers usually 

consist of 2-mercaptoethanol, SDS, glycine, Tris-Hel and bromophenol blue (Hou et 

al., 2006), components which both reduce and denature proteins to allow their 

progression through gels. The 2-mercaptoethanol reduces the intra and inter­

molecular disulfide bonds, whilst the SDS detergent denatures the proteins and gives 

each subunit an overall negative charge so that they will separate based on size 

along an electric gradient. The bromophenol blue serves as a dye front that runs 

ahead of the proteins and also assists sample visualisation during loading. Finally, 

the glycerol increases the density of the sample so that it will lay in the sample well 

(Sigma, Technical Bulletin, 2006). Samples are then further heat denatured at 

between 70-100°C for 2-10 min. 

At the same time acrylamide-containing gels are constructed, typically conSisting of 4 

% acrylamide stacking gels and 8-20 % acrylamide running gels (Craig et al., 1996; 

Huntley et al., 2004), depending on the assumed size and nature of the proteins 
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being denatured. Once set, after approximately 10-20 min, these gels are submerged 

in an electrophoresis tank containing a running buffer, typically Tris-HCI, Glycine and 

SOS. Samples are then loaded into gel lanes and run at between 100-200 V, until the 

leading dye front reaches the bottom of the gel (Lee et al., 2002). Following this 

electrophoretic separation, protein bands are visualised via staining, which is 

performed using Coomassie Blue or Silver stain, each involving fixing, staining and 

destaining steps. Once protein bands are stained the protein profiles can be 

compared. The aim of this chapter was, therefore, to describe the development of a 

protocol for the fractionation of poultry red mite extracts using SOS-PAGE, and in 

particular the evaluation of a new mini-gel electrophoresis system. 

3.3.2 Materials and methods 

This section describes the comparison of two SOS-PAGE systems, a vertical gel unit 

and a NuPAG~ mini-gel electrophoresis system, as well as the evaluation of both 

staining and loading preparations of protein extracts. Also, SOS-PAGE fractionation 

of proteins was carried out on soluble unfed whole mite proteins extracted in PBS 

buffer, as described previously (see Section 3.1). 

3.3.2.1 Vertical gel unit SOS-PAGE 

For initial electrophoretic separation, a vertical gel unit (Fisher scientific, 

Loughborough, UK) was utilized. In this system 20 x 17 cm 30 % acrylamide­

bisacrylamide (29: 1) gels were used, conSisting of 4 % stacking and 12 % running 

gels. Protein extracts were mixed 2:1 with Laemmli sample buffer (4 % SOS, 20 % 

glycerol, 10 % 2-mercaptoethanol, 0.004 % bromophenol blue and 0.125 M Tris HCI, 

pH approx. 6.8) (Sigma, St. Louis, US) and denatured by boiling for 10 min at 100DC. 

Three different titrations of red mite protein extract, approximately 10, 5 and 1 119, 

were loaded into gel lanes and electrophoretic separation was performed in a running 

buffer (containing 25 mM Tris-HCI, 200 mM Glycine, 0.1 % (w/v) SOS). 

Electrophoresis was performed for 1 hour at 100 V until the dye front had reached 

the stacking/running gel interface. After which gels were run for a further 12 hours at 

250 V at room temperature until the leading dye front reached the bottom of the gel. 

3.3.2.2 NuPAG~ mini-gel electrophoresis system 

This method of SOS-PAGE is a more recently developed system and has been used 

successfully on several occasions for fractionating proteins extracted from 
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ectoparasites (Lee et al., 2002; Huntley et al., 2004; Nisbet et al., 2006a). As before, 

titrations of approximately 10, 5 and 1 I1g mite protein extract were reduced in 

NuPAG~ LOS sample buffer (Invitrogen, Paisley, UK) and denatured for 10 min at 

70°C. Samples were then loaded into pre-cast gradient 8 x 8 cm, NuPAGE® 4-12 % 

Novex Bis-Tris mini-gels (composed of Bis-Tris-HCI (pH 6.4), acrylamide, Bis­

acrylamide, ammonium persulfate and ultrapure water}. These were then run in 

NuPAG~ MOPS SOS (Invitrogen, Paisley, UK) running buffer for approximately 1 

hour at 200 V and room temperature until the leading dye front reached the gel 

bottom. 

3.3.2.3 Comparison of gel staining 

Staining protocols for gels were compared on Novex Bis-Tris mini-gels, using either 

Coomassie Blue (Simplyblue stain, Invitrogen, Paisley, UK), or alternatively using a 

Silver staining kit (Sigma, St. Louis, US). Staining using Coomassie Blue involved 

submerging gels in 100 ml ultrapure water and microwaving for 1 min, which was 

repeated twice. After which gels were incubated with Coomassie Blue stain 

(Invitrogen, USA) for 10 min, at room temperature on an orbital shaker. Destaining 

was performed by placing gels in ultrapure water overnight, at room temperature to 

give optimum resolution. 

Silver staining involved, firstly fixing proteins on gels using fixing solution (10 % 1.5 M 

acetic acid, 40 % ultrapure water, 50 % ethanol). This was followed by a wash step 

using an excess of ultrapure water. Subsequently, gels were washed in a sensitizer 

solution and a wash buffer. Finally, gels were developed using developer solution 

and stopped using 0.1 M HC!. Gel staining techniques were subsequently compared 

for protein profiles, and intensity/resolution of protein bands. 

3.3.2.4 Loading preparations of protein extracts 

After establishing optimum gel and staining conditions, the means by which proteins 

were treated prior to electrophoretic separation, via either reduction or denaturation, 

was investigated. Using the NuPAGE® mini-gel electrophoresis system fractionation 

of red mite protein extracts was carried out under either reduced or non-reduced 

conditions. Non-reduced conditions were established by the emission of NuPAGE 

antioxidant (Invitrogen, Paisley, UK), but were otherwise the same as the reduced 

conditions. As for the comparison of denaturation, red mite protein extracts were 

considered non-denatured if samples were not heated for 10 min at 70°C step and 

samples were instead loaded directly into gel lanes. 
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3.3.3 Results 

3.3.3.1 Vertical gel unit system 

Analysis of gels following migration on 12 % acrylamide gels using the vertical gel 

unit and Coomassie Blue staining generated poor results (Figure 3.8). Gel lanes 

showed heavy smearing of proteins generating no clear bands. However, smearing 

was limited by reducing the concentration of protein per gel lane. 

Figure 3.8 SOS-PAGE gel of different red mite protein concentrations using vertical 

gel unit; Lane A, Molecular weight Marker (kOa); Lanes a, C and 0 unfed mite 

protein (10, 5 and 1 J.1g, respectively) 
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3.3.3.2 NuPAG~ mini-gel electrophoresis system 

For the NuPAGE® mini-gels, the greatest range and resolution of protein bands 

appeared when using 5 ~g of protein per lane. Higher protein concentrations resulted 

in streaking, whereas lower concentrations failed to generate such an array of bands. 

Gel lanes containing 5 ~g protein produced bands with a variety of molecular weights 

ranging from low (8 kDa) to high (220 kDa). At least 20 different sized bands were 

revealed, with several major bands identified at 20, 45, 60 and 120 kDa (Figure 3.9). 
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Figure 3.9 50S-PAGE gel of different red mite protein concentrations using 

NuPAG~ mini-gel electrophoresis system; Lane A, Molecular weight Marker (kOa), 

Lanes B, C and 0 unfed mite protein (10, 5 and 1 j1g, respectively) 
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3.3.3.3 Comparison of gel staining 

Both the Coomassie Blue and Silver stain methods of staining NuPAGE gels 

provided multiple bands at a range of molecular weights (8 to 220 kOa). However, 

several additional bands were recognised when using Silver staining which were not 

revealed by the Coomassie Blue staining. These bands were seen particularly at 

heavy molecular weights, above 100 kOa (Figure 3.10). 

Figure 3.10 Coomassie Blue and Silver staining using 5 j1g of red mite protein on 

NuPAGE gel; Lane A, Molecular weight Marker (kOa), Lanes Band C, Coomassie 

Blue stained, Lanes 0 and E, Silver stained unfed mite protein 
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3.3.3.4 Loading preparations of protein extracts 

Investigation of protein preparation using non-reduced/non-denatured and 

reduced/non-denatured protein resulted in an increase in smearing and reduction in 

the total amount of bands when compared to reduced/denatured protein extracts. 

However, major bands could still be seen at around 20, 45, 60 and 120 kOa (Figure 

3.11 ). 

Figure 3.11 NuPAG~ mini-gel electrophoresis comparing protein preparation using 

5 Jig of red mite protein. Lane A, Molecular weight marker (kOa); Lane B, non­

reduced and non-denatured; Lane C, reduced and non-denatured; Lane 0, reduced 

and denatured 

3.3.4 Discussion 
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Since there are numerous potential conditions for the fractionation of proteins using 

SOS-PAGE systems, each producing very different results, it was essential that 

parameters were optimised for use with poultry red mite extracts. In order for this to 

be achieved this section compared 2 different electrophoresis systems, as well as 

methods for both staining and protein preparation. 

3.3.4.1 System comparison 

Two SOS-PAGE electrophoresis systems were compared, both a vertical gel unit and 

a NuPAG~ mini-gel electrophoresis system. On comparison of Coomassie Blue 

stained gels resulting from fractionation using both systems, NuPAG~ mini-gel 

electrophoresis generated the greatest number of bands ranging from 8 to 220 kOa, 

with high resolution and intensity. The vertical gel unit on the other hand generated 

smeared streaks, a likely effect of extensive degradation resulting prolonged 
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electrophoresis running time necessary to achieve sufficient protein fractionation 

(Ortwerth et al., 1988). 

3.3.4.2 Comparison of staining 

Comparison of stained gels revealed that Silver staining improved sensitivity of 

protein recognition as several additional bands were uncovered, particularly at higher 

molecular weights (100 to above 220 kDa). This difference in detection sensitivity is 

frequently observed with Coomassie Blue often failing to detect low-abundance 

proteins (Dzandu et al., 1984; Lopez et al., 2000). Therefore, Silver staining is often 

preferred for proteomic applications which require a high level of sensitivity, such as 

MALDI-TOF protein sequencing (Kang et al., 2002). However, one draw back of 

Silver staining is that it requires a greater intensity of labour and higher cost of 

reagents. 

3.3.4.3 Protein preparation 

In order to achieve prominent, high resolution bands, proteins must be loaded into 

gel lanes in the correct format. Extensive reducing and denaturing often generates 

impressive protein profiles, however, is not always representative of the native 

protein (Pettit et al., 2000). Therefore, it is not uncommon for proteins to be loaded 

into gels in a non-reduced and/or non-denatured form (Pettit et al., 2000; Litman et 

al., 2002). Therefore, these conditions were investigated using poultry red mite 

protein extracts. Contrary to previous research, stained gels revealed that optimal 

parameters for protein preparation appeared to be when proteins were both reduced 

and denatured (Pettit et al., 2000; Litman et al., 2002). Under these conditions the 

greatest array, resolution and intenSity of proteins was observed. 

3.3.5 Conclus/on 

Overall assessment of parameters for SOS-PAGE revealed that optimal conditions 

for fractionation of poultry red mite proteins resulted from using a NuPAGE® mini-gel 

electrophoresis system in combination with Silver staining, as well as reduction and 

denaturation of proteins. 
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3.4 Western blotting 

3.4.1 Introduction 

Western blotting is a fundamental immunological tool used for the screening of 

specific host antibodies against invading antigens. A great deal of research has been 

conducted on the immune response of hosts to either natural or artificial exposure to 

parasitic antigens, for which western blotting has been used widely (Lee et al., 2002; 

Weber et al., 2003). Western blotting is frequently employed in vaccine development, 

in particular for the recognition of potential antigen candidates and has been 

successfully used for the characterisation of a range of ectoparasitic antigens (Arlain 

et al., 1995; Lal et al., 2001; Sam-Sun et al., 2002; Van der Broek et al., 2003). 

Since western blotting forms an integral part of the screening of vaccine candidates, 

a western blot was developed in this study for the analysis of immunogenicity of 

poultry red mite antigens. The methodology set out here was modified from a number 

of previously documented western blot protocols which utilized western blotting for a 

number of different arthropod species (Minnifield et al., 1993; Matthes et al., 1995; 

Lee et al., 2002; Huntley et al., 2004). 

3.4.2 Materials and methods 

3.4.2. 1 Protein transfer and blotting 

Following protein fractionation using SDS-PAGE, as described previously in Section 

3.3, gels were subject to western blotting. Electrophorised protein bands were 

transferred to 7 x 10 cm nitrocellulose membranes (Sigma, St Louis, US) in a mini­

gel transfer unit in ice cold NuPAG~ transfer buffer (Invitrogen, Paisley, UK) at 30 V 

for 50 min at room temperature. They were then submerged in western blocker 

solution (Sigma, St Louis, US), placed on a shaking platform and held overnight at 

4°C. The following day, membranes were cut into strips and placed in blood sera 

diluted 1: 1 00 in western blocker solution and held for 45 min in an orbital shaker at 

room temperature. Blood serum had been previously collected from birds shortly 

after cervical dislocation and bleed directly from the heart. Serum was deemed as 

either negative control serum, i.e. from day-old chicks which had not previously been 

exposed to poultry red mite. Positive serum was collected from 71 week-old laying 

hens which had been previously exposed to red mite infestation. For this experiment 

three replicates were used for both control and positive serum. 
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After incubation with serum, nitrocellulose strips were then washed 3 times with Tris 

Buffered Saline-Tween-20 (TBS-T) (20 mM Tris, pH approx. 7.4, and 0.9 % NaCI) 

(Sigma, St. louis, US) and incubated for a further 45 min with horse radish peroxide 

labelled rabbit anti-chicken IgY (Sigma, St. louis, US) at a series of dilutions 

(1 :15,000, 1 :30,000, 1 :50,000 and 1 :100,000) again at room temperature. Following 

incubation with secondary antibody, nitrocellulose strips were again washed 3 times 

in TBS-T and visualised by one of three staining methods. 

3.4.2.2 Membrane development 

Typically methods are based on either simple colorimetric or chemiluminescent 

detection (Constantine et al., 1994; Cusak et al., 2001; De Bleser et al., 2003; Cepok 

et al., 2005). These were compared here using colorimetric 3,3',5,5'­

Tetramethylbenzidine (TMB; Sigma, St louis, US) and 3,3-diaminobenzidine 

tetrahydrochloride (DAB; Sigma, St louis, US) development and enhanced 

chemiluminescent ECl (Amerham, Buckinghamshire, UK). 

TMB is supplied as a ready to use substrate, which is poured directly onto the 

membrane and the reaction stopped when bands are visible by adding distilled water. 

DAB was prepared by diluting 25 mg of DAB in 2 ml of distilled water. This solution 

was then mixed with 48 ml phosphate buffered saline containing 45 IJI hydrogen 

peroxide. Blots were incubated at room temperature with this solution for 1-3 min 

and the reaction terminated by adding excesses of distilled water (Artuch et al., 

2003). 

ECl detection was carried out by adding equal volumes of pre-formulated developer 

solutions to nitrocellulose membranes for 1 min at room temperature. The membrane 

was removed and placed between 2 sheets of transparent film, which was in turn 

placed inside an x-ray film cassette, protein side up. The next stage was carried out 

under red light, whereby a sheet of autoradiography film (Kodak, Rochester, USA) 

was placed on top of the membrane. The cassette was then closed and the 

autoradiography film exposed for 15 seconds. Exposed films were then submerged in 

a developer solution (Kodak, Rochester, USA) for 5 min, followed by submersion in a 

fixing and replenishing solution (Kodak, Rochester, USA) for 5 min, and a final wash 

in distilled water. 
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3.4.2.3 Non-specific binding of secondary immunoglobulins 

In order to test for non-specific binding of secondary horse radish peroxide labelled 

rabbit anti-chicken IgY, blots were performed with the expulsion of primary serum 

antibodies. Rather than incubating with serum, subsequent to red mite antigen 

fractionation and transfer using both PBS and urea mite extracted protein, 

nitrocellulose membranes were immediately incubated with secondary antibody and 

then developed using TMB. 

3.4.3 Results 

3.4.3. 1 Protein transfer and blotting 

Western blots using serum from red mite exposed birds showed multiple bands 

where mite antigens were recognised by polyclonal serum immunoglobulins (Figure 

3.12). A complex series of bands was observed at a range of 8-220 kDa, with major 

bands at 15, 20, 40, 70 and 120 kDa. Control serum did not display the same 

number of bands, although some non-specific recognition was seen at approximately 

60 and 20 kDa. 

Figure 3.12 Western blot comparing 3 naturally exposed chicken sera (Lanes 8-0) 

against control sera from 3 control birds (Lanes E-G) and molecular weight marker 

(kOa) (lane A) 

220 _ 

., 0 0 _ 

60 _ 

4 15 _ 

30 _ 

20 _ 

12 _ 
e _ 

In order to optimise blotting profiles, decreasing concentrations of HRP labelled 

secondary rabbit anti-chicken IgY immunoglobulins were used (Figure 3.13). The 

effect that this had on band recognition was simply to reduce overall intensity, 

although at higher concentrations this difference was only very slight. 
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Figure 3.13 Western blot showing decreasing concentrations of HRP labelled rabbit 

anti-chicken IgY secondary antibody (lane B: 1:15,000; Lane C: 1:30,000; Lane D: 

1 :50, 000; Lane E: 1: 100,000) with molecular weight marker (kOa) (Lane A) 
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3.4.3.2 Membrane development 

Blots were successfully visualised using TMB and DAB (Figure 3.14), however, Eel 

failed to recognise protein bands and remained blank. Both TMB and DAB allowed 

the detection of major bands at 15, 20, 40, 70 and 120 kDa. However, in order to 

generate sufficient banding using DAB, development was carried out over several 

hours, increasing background staining significantly, which compromised overall 

visualisation. TMB staining generated an overall greater sensitivity with the detection 

of numerous minor bands ranging between 8-220 kDa in comparison to DAB 

development. 

Figure 3.14 Western blots following development using; Lanes A and B were 

visualised with TMB, C and D with DAB with molecular weight marker (kDa) 
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3.4.3.3 Non-specific binding of secondary immunoglobulins 

Western blotting with the expulsion of serum revealed antibodies binding directly to 

mite antigens at 60 and 20 kDa for PBS fractionated protein. Urea fractionated 
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proteins on the other hand revealed a dimmer at approximately 40 kOa and faint 

bands at both 20 and 60 kOa (Figure 3.15) . 

Figure 3.15 Western blot analysis with the elimination of polyclonal serum; Lane A, 

molecular weight marker Lanes B-O (kOa), PBS mite extract; Lanes e-G, urea mite 

extract 
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Western blotting using serum from chickens which had been naturally exposed to the 

poultry red mite was successfully conducted in the current study. Visualisation of 

proteins was improved when using higher concentrations of secondary anti-chicken 

antibodies (1 :15,000-1 :30,000) and TMB colorimetric detection. 

Optimisation of western blotting protocol allowed detection of a series of 

immunodominant bands at 15, 20, 40, 70 and 120 kOa. To date only one other study 

has documented western blotting on whole mite antigens from poultry red mite (Sam­

Sun et al. , 2002). In this study several major antigens were recognised (17 to 110 

kDa) in a similar range to the current study (8 to 220 kDa) . Thus illustrating both the 

reproducibility of the assay and the potential for subsequent use of whole red mite 

extracts as vaccine antigens. 

This study also detected a degree of non-specific antigen recognition, where blots 

were performed without polyclonal serum. Here secondary anti-chicken antibodies 

directly reacted with mite fractions. This has previously been observed and was 

attributed non-specific recognition of chicken blood protein residues present in mite 

extracts from remnants of previous blood-meals (Devaney and Augustine, 1987). 
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Therefore, future analysis using western blotting took this into consideration. 

However, the general methodology outlined in this section was used as the standard 

protocol for subsequent western blots. 
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3.5 Immunoglobulin-Y (lgY) extraction 

3.5.1 Introduction 

IgY is the predominant avian immunoglobulin, equivalent to mammalian IgG. It is 

transferred from serum to egg yolk to confer passive immunity to embryos and 

neonates (Karlsson et al., 2005). The advantages IgY offers over conventional 

antibody production are well documented (Akita and Nakai, 1992; Gee et al., 2003; 

Zhang, 2003: Karlsson et al., 2004: Guang-Ping et al., 2005). Such advantages arise 

largely due to phylogenetic distance between birds and mammals, resulting in 

elimination of cross-reactivity between avian IgY and mammalian IgG (Jensen ius et 

al., 1981: Svensden et al., 1995). IgY is a readily available, easily accessible source 

of antibody, with production levels being much greater than the mammalian 

equivalent, IgG (Schade at al., 1994). Such a high level of production also reduces 

the requirement for large numbers of animals when sampling, and eradicates the 

invasive and painful collection of blood (Schade et al., 1996). In addition the level of 

yolk-derived IgY has been shown to reflect fluctuations found in blood serum and so 

acts as a gauge of humoral immunity (Mohammed et al., 1986; Hagan et al., 2004). 

Numerous methods for the extraction and purification of functionally active avian 

antibodies from egg yolk have been documented all of which differ in the yield, purity 

and material cost (Jensenius et al., 1981; Polson et al., 1985; Akita and Nakai, 1992). 

Several methods are used based on the separation of livetins, proteins which are 

believed to be IgY, from lipoproteins and the rest of the yolk lipids using organic 

solvents such as chloroform (Ntakarutimana et al., 1992). Other methods are based 

on affinity chromatography (Verdoliva et al., 2000), ion exchange chromatography or 

salt precipitations using salts such as ammonium sulfate, polyethylene glycol (PEG), 

dextran sulfate, dextran blue, sodium sulfate, caprylic acid and sodium citrate 

(Bizhanov et al., 2004). 

The requirement for the current study was to create a reproducible, cost effective and 

rapid method of determining IgY level for subsequent use in immunological assays. 

Therefore, two of the most routinely used extraction protocols were explored, 

ammonium sulfate precipitation (Akita and Nakai, 1992) and PBS/chloroform 

extraction (Mohammed et al., 1986). 
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3.5.2 Materials and methods 

3.5.2.1 Ammonium sulfate precipitation of egg yolk IgY 

Antibodies were isolated from egg yolk following a protocol modified from Akita and 

Nakai (1992). All eggs were obtained from a commercial laying flock in 

Northumberland and brought to the laboratory, where they were cracked open to 

allow separation of the yolk from the white, followed by washing with distilled water 

and rolling on Whatman filter paper to remove any adhering albumen. The yolk 

membrane was then punctured using a glass Pasteur pipette and the yolk allowed to 

flow into a graduated centrifuge tube and the yolk membrane disposed. Egg yolk was 

then diluted 6-fold with distilled water (acidified with 0.1 N HCI, to give a pH of 5.0) 

and held for 6 hours at 4°C before centrifugation (10,000 x gfor 1 hour at 4°C). 

The resulting immunoglobulin-containing supernatant was further purified using 

ammonium sulfate precipitation. Here ammonium sulfate was added to the extract at 

60 % saturation (0.370 g/ml ammonium sulfate solution) and held for 30 min at 4°C. 

The antibody preCipitate was spun out (12,000 x g, 30 min, at 4°C). the supernatant 

was discarded and the pellet re-dissolved in an equal volume of 50 % ethanol pre­

cooled to -20°C. The suspension was then held at 4°C for 30 min before being 

centrifuged (10,000 x gfor 20 min at 4°C). The final solution was then added to equal 

volumes of PBS and stored at -20°C until required for subsequent use (see Figure 

3.16). This method of extraction was performed on 10 replicate egg yolk samples. 
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Figure 3.16 Schematic diagram of ammonium sulfate precipitation of yolk IgY 
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Supernatant 
(Discard) 

3.5.2.2 PBS/Chloroform extraction of egg yolk IgY 

This method of antibody extraction was taken from the method developed by 

Mohammed et al. (1986). As before, egg yolk was separated from the white, washed 

in distilled water and rolled on Whatman filter paper to remove adhering albumen. 

The membrane was then punctured using a glass Pasteur pipette and the yolk 

allowed to flow into a graduated centrifuge tube. The yolk was then mixed with an 

equal volume of PBS, agitated in a vortex shaker and held overnight at 4°C. After 

settling, the solution was then mixed with chloroform (2: 1), vortexed until a thick 

paste formed and left at room temperature for 30 min. Following this, the 

homogenate was centrifuged at 1,000 x g for 20 min. The resulting solution 

comprised of three layers, of which the upper immunoglobulin containing layer was 

removed and frozen at -20°C for subsequent use (see Figure 3.17). As with 

ammonium sulfate precipitation, this method of extraction was performed on 10 

replicate egg yolk samples. 
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Figure 3.17 Schematic diagram of PBS/Chloroform antibody extraction of yolk IgY 

Egg Yolk 

Dilute whole yolk 1: 1 with PBS 
Leave to stand for 24 hrs 

Precipitate Supernatant 
(Discard) 

Precipitate 
(Discard) 

3.5.2.3 TotallgY estimation 

Add solution 1:2 with chloroform 
Vortex into a paste, leave to stand for 30 min 
Centrifuge at 1,000 x 9 for 20 min 

Supernatant 1 Remove uppermost aqueous layer 

Freeze (-20°C) 

Concentrations of total IgY were determined for both ammonium sulfate precipitated 

and PBS/chloroform extracted proteins by a Bradford assay according to the 

manufacturer's instructions (Sigma, St. Louis, US). The sample absorbance values 

were read for all 20 samples using an eppendorf Biophotometer (Eppendorf, 

Hamburg, Germany). The protein concentration of each sample was determined from 

a standard curve generated by a range of bovine serum albumin (BSA) 

concentrations (Sigma, St. Louis, US) from 0.2 to 1.0 mg/ml. Sample and BSA 

dilution were prepared in phosphate-buffered saline (PBS). 

3.5.2.4 Determination of /gY purity 

The purity of IgY extracts was compared using SDS-PAGE, as described previously 

(see Section 3.3). Briefly, 20 I.1g of denatured yolk extract in sample buffer were 

loaded into NuPAG~ Novex Bis-Tris mini-gel lanes and run in NuPAGE® MOPS 

running buffer (Invitrogen, Paisley, UK) under reducing conditions for approximately 1 

hour at 200 V and room temperature. Gels were then stained in Coomassie Blue and 

destained in deionised water to allow visual determination of protein profiles. 
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3.5.3 Results 

3.5.3.1 TotallgY estimation 

The concentration of protein generated using both ammonium sulfate precipitation 

and PBS/Chloroform extraction was calculated using the Bradford method. Results 

demonstrated that proteins extracted using the PBS/chloroform method consistently 

generated higher yields, with the mean concentration being almost 5 times greater 

when employing extraction via chloroform. The individual sample variation in terms of 

the S.E. Mean, however, was greater after PBS/chloroform extraction (Table 3.15). 

Table 3.15 Comparison of protein concentrations of IgY extracts using the Bradford 

assay 

Extraction 
Egg No. Ammonium sulfate (mg/ml) PBS/Chloroform (mg/ml) 

1 1.1 5.7 
2 0.7 5.1 
3 0.4 3.7 
4 1.0 4.3 
5 1.5 4.0 
6 0.7 4.2 
7 0.5 4.6 
8 1.3 3.5 
9 0.9 3.8 
10 1.0 4.6 

Mean 0.9 4.4 
S.E. Mean 0.11 0.21 

3.5.3.2 Determination of IgY purity 

Immunoglobulin extraction was compared by SOS-PAGE and subsequently 

visualised using Coomassie Blue stain. When analysing protein bands on stained 

gels it was apparent that the two extraction methods produced similar profiles. With 

bands on both gels visualised at around 20, 40 and 70 kOa. However, it appeared 

that precipitation using ammonium sulfate resulted in the elimination of several 

additional bands at heavier molecular weights, in particular an intense band at 

approximately 220 kOa (see Figure 3.18). 
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Figure 3.18 SOS-PAGE comparison of IgY extraction methods (5111 per lane); Lane 

A: Molecular weight marker (kOa); Lane B: PBS/Chloroform extraction; Lane C: 

Ammonium sulfate extraction 

3.5.4 Discussion 
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Since yolk-derived IgY is an accessible and abundant source of avian antibody, the 

aim of this experiment was to compare two commonly practiced extraction protocols 

for subsequent use in immunological assays. Optimum parameters for extraction 

were determined via the concentration and purity of protein extracts. 

Mean IgY concentrations were observed to be higher for the PBS/chloroform 

extraction than for the ammonium sulfate method (4.4 mg/ml and 0.9 mg/ml , 

respectively) . This remains consistent with previous studies where levels have been 

recorded at between 1.6 and 4.0 mg/ml for the respective extraction methods 

(Bizhanov et al., 2004). However, higher IgY levels have also been observed in other 

studies, particularly for chloroform extraction with levels reaching between 7-9 mg/ml 

(Verdoliva et al., 2000; Bizhanov and Vyshniauskis, 2000) . Nonetheless, the current 

study observed almost a 5-fold increase in total IgY yield when using chloroform over 

ammonium sulfate precipitation. 

In order to determine the purity of IgY extracts, SOS-PAGE was carried out. The two 

methods of extraction produced a similar SOS-PAGE profile and both showed major 

bands at 20, 40 and 70 kOa. These large bands are frequently observed at these 

approximate weights and are regarded as the major bands representing IgY proteins 

(Guang-Ping et aI. , 2005; Bizhanov et al., 2004; Bizhanov and Vyshniauskis, 2000). 

A number of minor protein bands, between 8 and 220 kOa were also present in the 
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current study, particularly when extracting using the PBS/chloroform method. This 

has been identified as a common problem when precipitating with chloroform, which 

often results in up to 20 % protein impurities (Guang-Ping et al., 2005). Precipitation 

via ammonium sulfate on the other hand is generally seen to yield fewer impurities 

(Bizhanov et al., 2004). 

3.5.5 Conclusion 

In conclusion, the results of this experiment are in agreement with previous research, 

in that a much higher yield, but slightly lower purity of IgY was observed when 

precipitating immunoglobulins using the PBS/chloroform method compared to 

ammonium sulfate precipitation. However, it has been suggested that when 

conducting immunoelectrophoretic assays, a high purity is often less important than 

specificity (Bizhanov et al., 2004). In addition, relative labour intensity and cost of the 

two extraction protocols favours that of chloroform extraction which is inexpensive 

and simple to perform. Therefore this method will be used for the extraction of IgY for 

subsequent immunological analysis. 
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3.6 In vitro red mite feeding 

3.6.1 Introduction 

In vitro feeding systems have been successfully developed across a variety of 

arthropod species (Crystal, 1986; Carroll et al., 1992; Waladde, 1996; Patarroyo et 

al., 2002). There are numerous advantages associated with the development of such 

systems, not least the ethical perspective of reducing the number of animals required 

for experiments. They also allow reliable and reproducible testing of therapeutic 

agents, the chance to establish dynamics of pathogen/disease, as well as the 

possibility of biological studies allowing determination of parasite life cycle 

parameters. 

A number of previous studies have attempted to maintain a population of red mite 

under in vitro conditions, with varying degrees of success (Kirkwood, 1971: Zeman, 

1988: Bruneau et al., 2001: McDevitt et al., 2006a and McDevitt et al., 2006b). In 

these studies feeding rates were seen to range from 30-70 %, using similar 

conditions (day-old chick skin, 40°C, 60-95 % RH, and heparinized blood). It was 

therefore essential that optimal and repeatable conditions for feeding and fecundity 

were established in the current study for red mite allowing the rapid comparison of 

the effectiveness of subsequent treatments. 

3.6.2 Materials and methods 

3.6.2.1 Source of poultry red mite 

Samples of red mite used were collected from commercial poultry houses using 

established trapping methodology (Section 4.2.3). Red mite were brought back to the 

laboratory and maintained in an incubator at 30oG, approximately 60-95 % RH and 

total darkness. They were stored under these conditions for a minimum of 7 days to 

allow them to reach an unfed status, characterised by their change of colour from red 

to grey, which allowed elimination of the effects of any previous blood-meals 

(Bruneau et al., 2001). 

3.6.2.2 Feeding membrane 

The feeding membranes used were obtained from a range of sources. Firstly the skin 

of 60 week-old laying hens and one day-old chicks was used. In order to obtain these 

membranes birds were dispatched via cervical dislocation and the desired area of 
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skin plucked and carefully removed using a scalpel and surgical scissors. All 

subcutaneous fat and tissue debris was removed from the underside of the skin , 

washed in saline and dried on paper towel. Skins were then stored at either 4°C or 

frozen at -20°C for subsequent application. Secondly, Parafilm® M (SPI Supplies, 

West Chester, US) was tested as a potential skin replacement. In order to mimic 

chicken skin as closely as possible Parafilm® M was placed in a sealed polythene 

bag and refrigerated overnight at 4°C with chicken skin and used the following day. 

This allowed the potential impregnation of some of the pheromones and skin surface 

lipids which have been demonstrated to playa vital role in host recognition (Zeman, 

1988). 

3.6.2.3 Source of blood 

Blood was taken from broiler birds, which had previously not been exposed to red 

mite. Whole blood was drawn directly from the heart once death had been confirmed 

(dispatched via cervical dislocation) and immediately placed in vacutainers coated 

with lithium heparin (Becton Dickinson vacutainer systems, Oxford, UK). This blood 

was used either immediately or stored at 4°C for use in subsequent feedings. 

3.6.2.4 Feeding system 

The feeding device used was previously described by Bruneau et al. (2001) , and was 

composed of a glass Pasteur pipette, blocked at one end with a fine weave gauze (to 

prevent red mite escaping) into which mites were aspirated. The narrow pipette end 

was then blocked using cotton wool. To allow red mite to feed, the gauze covering 

the large opening was removed and replaced with a substitute membrane, which was 

stretched over the end and secured using a pipette tip. The pipette tip acted dually as 

a blood reservoir and a seal (see Figure 3.19). 

Figure 3.19 In vitro feeding device for the poultry red mite 

Skin Membrane 

Blood 
reservoir 

Pasteur Pipette 

Poultry Red 
Mite 
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3.6.2.5 Feeding trial 

For the purpose of determining optimal feeding and fecundity rates, the three 

different feeding membranes were tested with blood from three separate birds na'ive 

to red mite. These were replicated three times per bird, giving 27 replicates overall. 

A total of 60 red mite (40 female and 20 male) were placed inside each feeding 

device and the blood reservoir filled. The feeding devices were then placed on an 

orbital shaker at 30°C in a dark room for 12 hours, in order to simulate conditions for 

red mite, mimicking those in poultry housing systems. Relative humidity was not 

controlled, but casual readings indicated that it ranged from 65-90 % during this 

experiment. After this feeding period, blood reservoirs were removed, replaced with 

gauze and the ratio of fed to unfed red mite was established, along with total 

mortality of mites. Unfed and dead red mite were removed, whilst fed female mites 

were maintained in an incubator for a further 48 hours to establish oviposition rates 

and eggs were monitored to determine hatching rate (Figure 3.20). The relative 

levels of survival and mortality observed for each feeding device were calculated as 

percentages for separate male/female and fed/unfed mite populations. 

Figure 3.20 Schematic diagram of counting schedule for in vitro feeding of red mite 

Red mite population: 40 unfed female + 20 unfed male (in vivo) 
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3.6.3 Results 

No poultry red mite fed on the skin from either 60 week-old chickens or the Parafilm® 

M. Mites did, however, engorge on day-old chick skin membranes. This feeding 

membrane was therefore used to investigate survival and fecundity of red mite, 

results for which are given in Tables 3.16-3.18. Table 3.16 presents data on the 

number of females recovered and illustrates that 60 % of the female mites fed, with 

individual variation between feeding devices ranging from 46-84 %. Out of the 60 % 

of female red mite which fed, 17 % died, with the total combined mortality of both fed 

and unfed mites of 37 %. 

Table 3.17 on the other hand gives data for male red mite numbers for the duration of 

the feeding trial. Fewer males, 54 %, were observed to feed, in comparison to 

female, with a larger variation (33-71 %), giving an standard error of 13.45 (n = 9), 

compared to 4.52 (n = 9) for females. 20 % of these fed male mites died, generating 

an accumulated mortality the same as for females (37 %), although once again with a 

larger S. E. mean (n = 9) than for females (13.18 and 3.89, respectively). 

Table 3.18 displays results for total red mite survival and fecundity for male and 

female mites. Overall mean engorgement was 58 % (49-80 %), whilst mortality was 

37 % (20-51 %). Full recovery of mites was not observed as some were lost during 

membrane removal and counting procedures, consequently recovery rates were 

varied from 67-100 %, with a mean of 89 %. Finally, mean oviposition rate was 0.5 

per mite, therefore, in theory half of all females laid at least one egg, all of which 

subsequently hatched into larvae. 
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Table 3.16 In vitro sUNival rates for female poultry red mite 48 hours after engorgement (numbers shown are percentages of the total 

female population) 

Total Fed Total Unfed Total Alive Total Dead 
Bird No. Live Fed Live Unfed Dead Fed Dead Unfed (Alive + Dead) (Alive + Dead) (Fed + Unfed) (Fed + Unfed) 

1 23 31 23 23 46 54 54 46 

1 38 8 15 38 54 46 46 54 

1 45 5 16 34 61 39 50 50 

2 38 28 18 15 56 44 67 33 

2 33 44 14 8 47 53 78 22 

2 38 25 13 25 50 50 63 38 

3 66 13 19 3 84 16 78 22 

3 42 19 22 17 64 36 61 39 

3 64 8 15 13 79 21 72 28 

Mean: 43 21 17 19 60 40 63 37 

S.E. Mean 4.64 4.33 1.18 3.85 4.52 4.52 3.89 3.89 
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Table 3.17 In vitro survival rates for male poultry red mite 48 hours after engorgement (numbers shown are percentages of the 

total male population) 

Total Fed Total Unfed Total Alive Total Dead 
Bird No. Live Fed Live Unfed Dead Fed Dead Unfed (Alive + Dead] (Alive + Dead) (Fed + Unfed] ffed + Unfed] 

1 30 25 25 20 55 45 55 45 

1 50 14 21 14 71 29 64 36 

1 26 21 21 32 47 53 47 53 

2 17 56 17 11 33 67 72 28 

2 21 29 29 21 50 50 50 50 

2 35 15 20 30 55 45 50 50 

3 53 29 18 0 71 29 82 18 

3 29 47 12 12 41 59 76 24 

3 53 21 16 11 68 32 74 26 

Mean: 35 28 20 17 54 46 63 37 

S.E. Mean 4.62 _~ ___ 4.74 ___ 1.67 ~ ___ 3.3! ___ ___ 1}.4~ __ 13.45 --- 13.18 13.18 
- - --- - -- -- - -- .. -
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Table 3.18 In vitro survival and fecundity rates for all (female plus male) poultry red mite 48 hours after engorgement (numbers shown 

are percentages of the total population) 

Bird No. % Recovered All Fed All Unfed Total Alive Total Dead Eggs/female % Hatched 

1 98 49 51 54 46 0.8 100 

1 67 60 40 53 48 1.3 100 

1 95 56 44 49 51 0.2 100 

2 95 49 51 68 32 0.4 100 

2 83 48 52 70 30 0.8 100 

2 100 52 48 58 42 0.5 100 

3 82 80 20 80 20 0.4 100 

3 88 57 43 66 34 0.1 100 

3 97 76 24 72 28 0.5 100 

Mean: 89 58 42 63 37 0.5 100 

S.E. Mean 3.17 3.52 3.52 3.08 3.12 0.36 -
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3.6.4 Discussion 

Preliminary experiments using an artificial feeding device revealed that the poultry 

red mite were observed to feed only on day-old chick skin membranes and not on 

skin from 60 week-old chickens or on Parafilm® M. This corresponds with what has 

been previously documented by Bruneau et al. (2001) and Zeman (1988). Zeman 

(1988) suggested that in order for red mite to recognise and feed on particular 

membranes certain surface skin lipids must be present. These lipids are produced in 

the uropygial gland and frequently playa role in pathogen recognition, not only with 

mites, but also bacteria, fungi and worms (Bandyopadhyay and Bhattacharyya, 1996; 

Bandyopadhyay and Bhattacharyya, 1999; Haas and Van de Roemer, 2004). Other 

membrane characteristics, such as texture, elasticity, affinity to lipids, amongst 

others. may also have a role in mite feeding (Zeman. 1988). This might potentially 

explain the failure of red mite to feed on skin from 60 week-old chickens. but 

successful engorgement on day-old chick skin (Bruneau et al., 2001). 

Once the most appropriate skin membrane was established. survival and fecundity 

were assessed. Feeding success varied slightly between replicates, however. on 

average about 58 % of mites were seen to feed (females, 60 % and males. 54 %). 

This rate is higher than those previously recorded where rates of feeding were 39.5 

% and 47.5 % in Zeman (1988) and Bruneau et al. (2001), respectively. However. in 

a recent paper, red mite feeding rates were increased to 70 % following 4°C 

refrigeration of mites for 30 days (McDevitt et al., 2006b). 

In the current study. the mean natural mortality rate was 37 % for all mites, both fed 

and unfed (18.5 % when corrected for only those red mite which had fed). These 

rates are slightly higher than those from previous studies, where mortality was 

observed at only 13 % for all red mite (McDevitt et al., 2006b) and 5-15 % when 

adjusted for engorgement (Bruneau et al., 2001; McDevitt et al., 2006b). 

Oviposition rate is a parameter which has been rarely documented for the poultry red 

mite. The number of eggs laid per female in the current study was 0.5, which was 

slightly lower than that observed previously of 0.7-2.9 eggs per female by Bruneau et 

al. (2001). However, the same authors reported that the higher levels of egg laying 

were due to repeated blood-meals offered 4 times at 24 hour intervals. 
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In conclusion, a reliable in vitro feeding system for the poultry red mite has been 

developed. A baseline of red mite survival and fecundity has been determined, 

against which subsequent treatments can be compared, including the screening of 

potential antigens for use in vaccine development. 
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3.7 Taqman RT-PCR 

TaqMan reverse transcription polymerase chain reaction (RT-PCR) is a recently 

developed technique which allows the measurement of an accumulating PCR 

product in real time (Medhurst et al., 2000). It can be used to determine the level of 

expression of any gene provided that both RNA and suitable primers are available. 

Taqman RT-PCR has been used to assess the vector capacity of ectoparasites, 

including the red mite (Mumcuoglu et al., 2006), and also investigate host immune 

response to parasitic invasion (Goodridge et al., 2001). As such it was used in the 

current study to evaluate the levels of specific cytokines expressed in spleen tissue 

of poultry exposed to red mite antigens. 

3.7. 1 Introduction 

TaqMan PCR assays were performed in triplicate on cDNA samples in 96-well optical 

plates using an ASI PAISM™ 7700 sequence selection system (Applied Siosystems). 

The ASI Prism 7700 directly detects AT -PCR products by monitoring the 

fluorescence of a target-specific dye-labelled probe. The probe anneals to a target 

sequence amplified by forward and reverse primers during the PCR. As the probe is 

displaced during the PCA when the 5' end is cleaved by the 5' nuclease activity of 

DNA polymerase, causing separation of a reporter and quencher dye, resulting in 

increased fluorescence. The fluorescent accumulation of PCA product is expressed 

as a cycle threshold value (Ct), which is a value assigned manually to a level above 

the baseline in the exponential phase of PCR. The Ct value sets the point at which 

the sample amplification plot crosses the threshold. These Ct values are 

subsequently correlated with the initial amount of specific template (Barrachina et al., 

2006). 

3.7.2 Materlsls and methods 

3.7.2. 1 RNA extraction 

RNA was extracted from ANA/ater (QIAGEN, West Sussex UK) stabilised spleens 

from red mite exposed poultry using the RNeasy mini kit (QIAGEN, West Sussex 

UK). Frozen spleens were thawed for 30 min at room temperature and 30 mg of each 

spleen sample removed and placed in a sterile vile where RNA extraction would take 

place. Spleens were homogenised in a 2 ml safe-lock eppendorf tube (sterile and 
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RNase-free) with 600 III RL T lysis buffer (containing 2-mercaptoethanol) using a 

bead mill (Retsch MM 300), for 4 min at 20 Hz. 

The lysate was then centrifuged at 14,000 x 9 for 10 min and the supernatant 

carefully removed by pipetting and transferred to a new microcentrifuge tube. One 

volume of 70 % ethanol was added to the lysate and mixed immediately by pipetting. 

The sample was then transferred to an RNeasy spin column placed in a 2 ml 

collection tube and centrifuged at 8,000 x 9 for 15 seconds, and the flow through 

discarded. 

The next step was to add 700 IJI wash buffer to the spin column and centrifuge for 15 

s at 8,000 x g, to wash the spin column membrane and the flow through was 

discarded. Next, 500 IJI of wash buffer containing ethanol was added to the RNeasy 

spin column and centrifuged for 15 s at 8,000 x 9 to once again wash the spin 

column membrane and the flow through was discarded, this process was repeated 

twice. 

Finally RNA was eluted by placing the RNeasy spin column in a new 1.5 ml collection 

tube and then adding 50 IJI RNase-free water directly to the spin column membrane. 

This was then centrifuged for 1 min at 8,000 x 9 to elute the RNA, which was 

immediately used in a TaqMan PCR assay. It should be noted that all reactions were 

carried out on ice to prevent RNA degradation. 

3.7.2.2 TaqMan peR assay 

Firstly, the reaction mix was prepared containing 12.5 IJI PCR master mix 

(Eurogentec, Hampshire, UK), 1 IJI reverse transcriptase qPCR primer mix (gene­

specific primers, 100 IJM in DEPC-H20; and fluorescent-labelled probe, 5 IJM in 

DEPC-H20), 0.5 IJI probe, 0.125 IJI "Euroscript" enzyme kit (Eurogentec, Hampshire, 

UK) and 5.9 IJI DEPC H20. Primers used were specific to cytokines expressed during 

both Th1- (IL-120, IFNy) and Th2-type immune responses (IL-4, IL-13, IL-5). 

A thermofast 96-well plate was then placed in a rack on ice and 5.0 IJI DEPC-H20 

was added per control well, followed by 20 IJI master mix and then capped off to 

prevent contamination. Previously extracted RNA from spleen samples was then 

thawed on ice and diluted 1: 1 0 for cytokine expression analysis. 15 IJI (5 IJl/well, 

triplicate wells) of each unknown sample of diluted RNA was required, therefore for 

the 1: 10 dilution 1.6 IJI RNA was pi petted into 14.4 IJI DEPC H20. This was then 
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mixed by vortexing and placed on ice. Positive RNA standards were then thawed and 

placed on ice and serially diluted. The first dilution was 1 :100 and followed by 5 

successive 10-fold dilutions. This was achieved by pipetting 0.6 IJI RNA into 5.4 IJI 

DEPC H20, and then mixed thoroughly by vortexing. 0.6 IJI of this dilution was then 

transferred to a new tube containing 5.4 IJI DEPC H20, and repeated by mixing serial 

dilutions in the same way. All tubes were then placed on ice. 

20 IJI of the master mix and 5.0 IJI vortexed RNA was then added to all wells being 

used. These wells were then capped off and the plate spun down briefly before being 

loaded into the Taqman machine. Once loaded, samples underwent the following 

thermal cycling patterns. The initial cycle was 1 x 50°C, 2 min; 96°C, 5 min; 60°C, 30 

min; 95°C, 5 min followed by melting and annealing/extension cycles (40 x 94°C, 20 

s; 59°C 1 min). Results were interpreted by comparing unknown samples against 

standard curves generated with a 288 housekeeping gene to give a quantitative 

result. 

Figure 3.21 Example of Taqman output after typical amplification of samples from a 

dilution series (reporter Signal against cycle number) 
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Figure 3.21 shows the typical output from a Taqman assay whereby fluorescence of 

reporter signal is plotted against cycle number. The cycle threshold value is marked 

by the dark horizontal line and any value detected above this threshold is significant. 

In conclusion , TaqMan RT-PCR assays provide a rapid and reliable method for semi­

quantitative analysis of gene expression of specific cytokines (Medhurst et al. , 2000) 

and as such were used to determine the levels of specific cytokines expressed in 

spleen tissue of either naturally infested or red mite immunised poultry. 
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3.8 Determination of Mycobacterial presence 

3.8.1 Introduction 

The experiments outlined in this section were performed following the initial 

immunisation trial (Chapter 6) and provide a link to the second immunisation trial 

(Chapter 7). It was concluded in Chapter 6 that perhaps the presence of 

Mycobacterium in both Complete Freund's adjuvant (CFA) and poultry red mite 

extracts was the reason that a large degree of non-specific binding was observed in 

both treatment groups, thus resulting in no apparent differences in western blot 

profiles between control and antigen immunised birds. 

Therefore, in this section PCR and DNA sequencing were carried out to determine 

the possible presence of Mycobacterium species or their bacterial enzymes within 

the poultry red mite. Also, in order to determine whether that bacteria were alive by 

verification of the expression of these bacterial genes, RNA was extracted from red 

mite and subject to reverse-transcription PCR analysis. 

Thus the hypothesis that the poultry red mite share homology with Mycobacterium 

found in CFA or alternatively act as a carrier of Mycobacterial species was tested. 

3.8.2 Materials and methods 

3.8.2.1 DNA extraction 

DNA was extracted using a tissue extraction kit (QIAGEN, West Sussex, UK). Firstly, 

25 mg unfed red mite were homogenized in a microcentrifuge tube, using lysis buffer. 

Proteinase K was then added, mixed by vortexing and incubated at 55°C overnight 

until the tissue was completely lysed. This was followed by a second lysiS step by the 

addition of 200 ~I more lysis buffer to the sample, which was mixed by vortexing and 

incubated at 70°C for 10 min. 200 ~I ethanol (99 %) was then added to the sample 

and mixed thoroughly by vortexing. The mixture was then pippetted into a mini-spin 

column, placed inside a 2 ml collection tube and centrifuged for 1 min at 6,000 x g. 

The flow through and collection tube was discarded as the DNA was retained on the 

silica membrane inside the mini-spin column. 
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The spin column was placed in a new 2 ml collection tube, and 500 1-11 wash buffer 

was added and centrifuged for 1 min at 6,000 x g. The flow through and collection 

tube was discarded. 

Again the mini-spin column was placed in a new 2 ml collection tube and 500 1-11 wash 

buffer added and centrifuged for 3 min at 20,000 x 9 to dry the membrane. The flow 

through and collection tube was discarded. 

Finally, the column was placed in a clean 2 ml microcentrifuge tube and 200 1-11 of 

elution buffer was added directly onto the membrane. This was incubated at room 

temperature for 1 min and then centrifuged at 6,000 x 9 to elute. This elution step 

was repeated again into the same tube and the final product was then stored at . 

20°C until used in PCR. 

3.8.2.2 Polymerase Chain Reaction (PCR) 

(i) Gene specific primers 

Primers were used for the detection of two genes, the first were for a 1,030 base pair 

16S Mycobacterium genus gene. Primers were designed from those described by 

Parra et al. (2006). The sequence for the forward primer was 5'-AGA GTT TGA Tee 

TGG CTC AG-3' (Tm = 56.0°C) and for the reverse primer was 5'-TGC ACA CAG 

GeC ACA AGG GA-3' (Tm = 72.5°C). 

The second set of primers coded for a 13.8 kDa bacteriolytic enzyme according to 

Mathaba et al. (2002). Two separate forward primers were used, one coding for 411 

base pairs 5'-CT ATI ATG AAA TIC TIC TTC ACT TIA GCT-3' (Tm = 60A°C) and 

the second coding for 345 base pairs 5'-AAT GGT GCC GCT ATT GTA TCG GCT·3' 

(Tm= 71.5°C). One reverse primer was used, with the sequence 5'-TTA CCA ACA 

TCG TGC AAC A TT AGC-3' (Tm= 66.5°C). Samples were compared for size against 

a 50 base pair (bp) DNA ladder (Amersham Biosciences, UK). 

(ii) peR reaction 

Following standard manufacturers protocols the PCR samples were amplified as 50 

IJI volumes in 500 1-11 microcentrifuge tubes. Each reaction tube contained 25 pMole 

of each primer (0.25 IJI), 25 1-11 of REDTaq ReadyMix with 3 mM MgCI2 (Sigma, St 

Louis, USA), 19.5 IJI of molecular water and 5 IJI of DNA extract (to be used as a 

DNA template). The PCR reactions were run in a thermocycler (Eppendorf 
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mastercycler) under a denaturation, annealing and extension program of 35 cycles. 

Annealing steps were run at 5°C below the lowest primer melting temperature (Tm) 

of the primers involved in each particular reaction. The specific PCR cycle included 1 

cycle at 94°C for 10 min, followed by 35 cycles of 30 seconds at 94°C for 

denaturation, 30 seconds at 55°C +- 5°C for primers annealing and 60 seconds at 

72°C for DNA extension. The final extension step was run at 72°C for 5 min, after 

which samples were held at 4°C until being loaded into agarose gel lanes for 

electrophoresis. 

The PCR products were detected on a 1 % agarose gel (1.25 g of agarose in 125 ml 

of TAE buffer) mixed with ethidium bromide (1.51J1 of ethidium). Gels were run at 105 

V for approximately 1 hour and were observed under UV light for potential bands. 

3.8.2.3 DNA sequencing 

Subsequent to migration and detection of positive bands through electrophoresis, 

DNA was excised from agarose gels using a gel extraction kit (Sigma, St Louis, 

USA). These specific fragments were subsequently sent for DNA sequencing 

(Macrogen, Korea). Upon receipt of DNA sequences, these were aligned against 

available genes in the National Centre for Biotechnology Information Nucleotide 

Database (NCBI; http://www.ncbLnlm.nih.gov). 

3.8.2.4 RNA extraction 

Bacterial RNA was extracted from poultry red mite using the GenElute™ Total RNA 

Purification Kit (Sigma, St Louis, USA). 30 mg of unfed red mite were aspirated into a 

Pasteur pipette and transferred to a sterile vile where RNA extraction took place. Red 

mite were homogenised in 200 III working bacterial digestion solution in order to lyse 

cell walls (180 III bacterial lysis solution, plus 20 III bacterial enzyme stOCk). The 

homogenate was incubated for 10 min at room temperature and then mixed with a 

cellular lysis and RNAse 2-mercaptoethanol solution. The remaining lysate was then 

pi petted into a 2 ml GenElute filtration column and centrifuged at 14,000 x 9 for 2 

min, a process used to remove cellular debris and shear the DNA. The supernatant 

was retained and mixed with 350 III 99 % ethanol by vortexing. This lysate/ethanol 

mixture was then bound to a GenElute binding column, washed and centrifuged at 

14,000 x 9 for 2 min three times in order to remove ethanol to prepare for elution. 

RNA elution was achieved by pipetting 50 III elution solution into the binding column 

and centrifuged at 14,000 x 9 for 1 min. The resulting RNA containing elution was 
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either used immediately or stored at _20DC. All steps in this process were carried out 

on ice as RNA is very unstable at higher temperatures. 

3.8.2.5 RT-PCR 

Reverse transcription was performed using an Omniscript® Reverse Transcription kit 

(QIAGEN, West Sussex, UK). A master mix was prepared on ice according to Table 

3.19. 

Table 3.19 Reverse-transcription reaction components 

Master Mix Component Volume/reaction Final concentration 

10 x Buffer RT 21..11 1 x 

dNTP Master Mix 21..11 0.5 mM each dNTP 

Mycobacterium genus primer 21..11 1 11M 

Omniscript Reverse 

Transcription 11..11 4 units (per 20 1..11 reaction) 

RNase-free water 81..11 -
Template RNA 51..11 -

Total volume 20jJi -

Following preparation of the reaction master mix components were mixed by 

vortexing and then incubated for 60 min at 3rC. An aliquot of this reverse­

transcription mix was subsequently added to the PCR mix and underwent PCR as 

described earlier in this section. 

3.8.2.6 Comparison of red mite samples for the presence of Mycobacterium 

In order to avoid contamination from DNA in the previous blood-meals of red mite, 

PCR was run on unfed mite DNA samples only. The presence of Mycobacterium in 

red mite across different farms (n = 3) and also red mite life-stages (adults, larvae 

and eggs) was also investigated. In addition, to determine whether Mycobacterium 

was either contained internally or on external surfaces, red mite were washed 

extenSively in PBS or 10 % SDS and PCR was conducted on both washed mites and 

the used wash solution. 
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3.8.3 Results 

3.B.3.1 peR 

Initial PCR showed that DNA extracted from unfed poultry red mite gave a positive 

band at approximately 1,000 base pairs when using Mycobacterium genus primers 

(Figure 3.22). However, this was not the case after PCR using primers coding for 

bacteriolytic enzymes, since no bands were seen. Therefore, subsequent analysis 

was performed using Mycobacterium genus primers only. 

Figure 3.22 peR of unfed poultry red mite using gene specific primers. Lane 1, DNA 

Ladder (bp); Lane 2, bacteriolytic enzyme primer; Lane 3, Mycobacterium genus 

primer; Lane 4, Negative control 
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PCR using Mycobacterium genus primers on DNA extracted from unfed mites on 

three independent poultry farms showed that Mycobacterium was present in all three 

red mite populations (Figure 3.23). 

Figure 3.23 peR of unfed red mite collected on three poultry farms using primers for 

Mycobacterium genus. Lane 1, DNA Ladder (bp); Lane 2, farm 1; Lane 3, farm 2; 

Lane 4, farm 3; Lane 5, Negative control 
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Similarly, red mite adults, larvae and eggs all possessed Mycobacterium (Figure 

3.24), confirmed by the presence of a band at around 1,000 base pairs. 
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Figure 3.24 peR of poultry red mite stages using primers for Mycobacterium genus. 

Lane 1, DNA Ladder (bp); Lane 2, Unfed adult mite; Lane 3, Red mite larvae; Lane 4, 

Red mite eggs; Lane 5, Negative control 
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It would appear from Figure 3.25 that after washing in PBS alone, Mycobacteria are 

present solely inside the mite, as no band was detected from the spent PBS wash 

buffer. However, after using a more aggressive washing agent (10 % SOS), 

Mycobacteria appear to be both present on both the surface and also inside the mite. 

Figure 3.25 peR of washed poultry red mite using primers for Mycobacterium genus. 

Lane 1, DNA Ladder (bp); Lane 2, PBS washed red mite; Lane 3, Used PBS buffer; 

Lane 4, SDS washed red mite; Lane 5, Used SDS buffer; Lane 6, Negative control 
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3.8.3.2 RT-peR 

Products amplified by AT -PCA for the Mycobacterium genus gave rise to bands at 

around 300 base pairs for the forward primer and a band at 400 base pairs for the 

reverse primer. This was unexpected since the presence of Mycobacterium should 

yield bands at 100 bp as no splicing occurs during translation of DNA in prokaryotic 

cells. Also, you would not expect both forward and reverse primers to produce bands, 

and so must be put down to non-specific reactions. Therefore, care must be taken 

when interpreting these results. 
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Figure 3.26 PCR and RT-PCR using primers for Mycobacterium genus for adult 

unfed poultry red mite. Lane 1, DNA Ladder (bp); Lane 2, Unfed mite PCR products; 

Lane 3, RT-PCR forward primer; Lane 4, RT-PCR reverse primer; Lane 5, Negative 

control 
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3.8.3.3 DNA sequencing 

Following amplification and electrophoresis, bands generated from PCR products 

were sequenced by an external laboratory. Alignment of results of this sequencing 

within GenBank (www.ncbi.nlm.nih.gov/Genbank) failed to produce sequence 

homology with previously entered genes. It is apparent from DNA traces (Figure 

3.27) that multiple bands are observed at every position along the length of the 

sequence, therefore making it difficult to assign individual nucleotides. 

Figure 3.27 Example of the DNA trace readout 

g e ' 0 , J(J III • 0" ~ 7 e 11 17 7 MIl e 87 8 8 I II t eo g t 9 77 , e 61 >e e e e 

I I I I 1 11 1 I I I I I I I I I I I I II I I I I I I I I I I I I I I I I I II I I II I 

3.8.4 Discussion 
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PCR was conducted to test the hypothesis that the poultry red mite shares genetiC 

homology or acts as a carrier of Mycobacterium found in CFA. Thus explain why 

control birds injected with CFA showed an increase in specific red mite antibody 

levels and also generated non-specific bands on western blots in Chapter 6. Bacterial 

homology to red mite was assessed using two sets of primers. The first set for the 
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Mycobacterium genus and the second for a bacteriolytic enzyme gene previously 

found in mite species (Mathaba et al., 2002). 

The results indicated that red mite DNA was homologous to Mycobacteria, as a 

strong positive band was observed when red mite DNA was amplified using 

Mycobacterium genus primers. However, homology was not seen between red mite 

and bacteriolytic enzyme primers, as no bands were detected. Therefore, red mite 

did not possess bacteriolytic enzymes as previously observed in other species 

(Mathaba et al., 2002). Mycobacterium expression was confirmed when reverse­

transcription was performed on mRNA, thus verifying that live Mycobacteria were 

present on the red mite. Their origin was also assessed by extensively washing red 

mite and then performing PCR on both washed mites and used wash buffer. It 

appeared from results that after washing in SDS, but not PBS, Mycobacteria actually 

reside both on the surface and also inside the mite as PCR was positive for both 

fragments. This was not surprising as the poultry red mite has been implicated 

previously as a vector for several pathogens (Chauve, 1998). It is likely that washing 

in SDS was more successful at removing Mycobacterium as it is an ionic surfactant 

which works by disrupting non-covalent bonds in the proteins. This is a process 

which has been previously exploited for the removal of debris bound to the surface of 

the sheep scab mite (Pettit et al., 2000; Huntley et al., 2004; Smith and Pettit, 2004). 

Sequencing of excised DNA bands from agarose gels, however, did not confirm the 

Mycobacterial species present. Scrutiny of DNA traces did not allow nucleotide 

sequences to be assigned as numerous peaks were observed at each point. It is 

possible that this was due to the presence of multiple species of Mycobacterium, as 

primers used were specific only at a genus level, which would make individual 

Mycobacteria species indistinguishable. Further analysis is therefore required at a 

species level. 

3.8.5 Conclusion 

The discovery of Mycobacterium in red mite obtained from commercial farms means 

that care must be taken when interpreting future immunological results. It may indeed 

be advisable to use an alternative to CFA in immunisation trials to avoid the 

occurrence of false-positive results. Alternatively, future research should concentrate 

on the possibility of eliminating Mycobacterial protein from poultry red mite protein 

antigens using different protein extraction procedures. 
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Chapter 4 

Poultry red mite population dynamics in relation to acaricide application 

and egg production on a commercial free-range laying unit 

4. 1 Introduction 

The poultry red mite is a ubiquitous ectoparasite of laying hens, causing numerous 

problems for welfare and production, which were outlined in Chapter 2. The 

predominant methods of control for red mite are to use a combination of house 

sanitisation along with application of a range of acaricides (McDevitt et al., 2006a). 

However, acaricide application is an expensive process and has been estimated to 

cost the UK poultry industry approximately of £3.7 m per annum (Anon, 2003a). 

Control of the poultry red mite is difficult for a number of reasons. Firstly, typical 

poultry layer housing consists of a wide range of furniture including, perches, nest 

boxes, egg belts, feeders, drinkers, amongst others, which provide ideal harbourages 

for red mite and render them almost completely inaccessible to both birds and 

acaricides (Nordenfors and Hoglund, 2000). Extensive free-range and barn systems 

offer a greater array of these hiding places and therefore typically have higher levels 

of mite infestation when compared to caged birds (Hamscher et al., 2003). 

There is also evidence that the poultry red mite has developed heritable resistance to 

a number of acaricides, including pyrethroids, OTT, permethrin, tetramethrin, 

trichlorifon and organophosphates, which exacerbates the problem of control further 

(Beugnet et al., 1997). Resistance to chemical acaricides has been observed across 

a range of other parasitic species and is often associated with the prolonged and 

high level use of chemicals (Beugnet and Chardonnet, 1995; Chauve, 1998). 

Therefore, the optimal chemical for use as an acaricide would overcome both the 

innate biology (i.e. withdrawing into harbourages after feeding) and resistant capacity 

of the red mite. In addition, it would not compromise the health of the bird or result in 

harmful residues (Hamscher et al., 2003). 

Amongst chemicals currently approved by the UK government, carbamates, and in 

particular Bendiocarb, have proved to be effective at controlling a range of parasites 
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(Scharf et al., 1997; Villatte et al., 1999; Yu, 2006; Fiddes et al., 2006; Vatandoost et 

al., 2006). The effectiveness of Bendiocarb stems from its properties as a 

cholinesterase inhibitor, which prevents the breakdown of the neurotransmitter, 

acetylcholine. This inhibition causes prolonged and repeated synaptic stimulation 

resulting in muscle spasm, paralysis and eventually death (Vatandoost et al., 2006) 

The aim of this study was to gain an insight into the effectiveness of regular spraying 

of a Bendiocarb based acaricide (Ficam® W, AgrEvo, Berlin) on controlling poultry 

red mite populations in a commercial free-range system for laying hens, whilst 

evaluating the impact of red mite populations on a series of production parameters. 

4.2 Materials and methods 

4.2. 1 Animals and housing 

The trial took place on a commercial free-range laying flock. The site consisted of a 

single building, housing 4,000 laying hens of a commercial genotype. At the 

beginning of the trial the birds were 51 weeks of age and were monitored over a 17 

week period. Stocking density, feed and water provisions were in line with standard 

commercial practice (Rose, 2001). Stocking density inside the building was 11 birds/ 

m2
, whereas outside it was 1,000 birds per hectare. Feed provisions were of a 

standard commercial ration (15 % protein, 3.5 % oil, 3.5 % fibre, 13.3 % ash, 0.34 % 

methionine, 6,000 IUlkg vitamin A, 3,000 iu/kg vitamin 03, 6.00 iu/kg vitamin E and 

15 mg/kg copper) and birds were fed hourly using a chain driven system. Water was 

supplied ad libitum in bell-shaped drinkers. Birds were on a 16:8 L:O illumination 

programme and the building was naturally ventilated through Yorkshire boarding. 

Eggs were collected via an automated belt system. The trial was conducted in 2003, 

from August to December. 

4.2.2 Acaricide spraying 

The poultry house was sprayed with the carbamate acaricide Ficam® W, (80 % w/w 

Bendiocarb, AgrEvo, Berlin). This is a commercially available product and comes in 

the form of a water dispersible powder, with inclusion at 3 grams per 1 litre water. 

The solution was sprayed on all exposed surfaces within the house, using a 

knapsack sprayer. Spraying was carried out once every six weeks, starting from 

week 4 of the trial when the birds were 54 weeks of age. Spraying was performed 

over the 17 week trial duration and was repeated twice when birds were 60 and 66 

weeks of age. 
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4.2.3 Trap design and placement 

A simple trap design, modified from Nordenfors and Chirico (2001) was employed. 

This consisted of a rectangular section of cardboard (30 x 100 mm) to which two 

drinking straws were fixed (to act as a harbourage). The traps were secured to the 

underside of the perches using Velcro and plastic cable-ties. A total of 20 traps were 

secured under the perches at intervals along the length of the building, in Areas 1, 2 

and 3, respectively. Traps were numbered 1 to 20 and placed in a specific region of 

the shed. 10 traps were secured to perches along one side of the building where pop 

holes gave access to pasture and 10 traps fastened to perches along the side 

adjacent to a wall with no external access (Figure 4.1). 

On a weekly basis the traps were removed, placed into individual sealable polythene 

bags to prevent mites from escaping and transported to the laboratory. New traps 

were placed at each of the same 20 positions, whilst old traps were subject to 

filtration and counting of red mite life-stages 

Figure 4.1 Diagram of house layout and trap placement 
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4.2.4 Red mite filtration and counting 

In the laboratory, individual bags containing live mites were submerged in 

approximately 25 ml of 70 % ethanol, which killed and preserved the red mite. Mites 
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remained in alcohol for approximately 2-3 hours to ensure that they were all dead, 

after which traps were dismantled and washed with distilled water through a water 

driven vacuum pump and Buckner funnel. Red mite collected on the filter paper were 

then transferred to a plastic storage container by washing with a further 25 ml of 70 

% ethanol. 

Red mite numbers were estimated by withdrawing 500 III sub-samples of the 

ethanol/mite suspension, counting under a light microscope and then multiplying up 

to estimate the total population in the 25 ml volume. A series of life-stages were 

recorded, including adult and nymph (both fed and unfed), larvae, egg and total mite 

numbers. Each sample taken was counted and recorded by two separate individuals. 

4.2.5 Production data 

A number of production parameters were recorded on a weekly basis in order to 

assess the influence of the poultry red mite on egg production. The production 

parameters which were recorded included, mortality, egg production, water 

consumption and daily building temperature. 

4.2.6 Statistical analysis 

Poultry red mite population numbers were analysed using analysis of variance 

(ANOVA) in MINITAB (Version 14) fitting week, trap position and observer as factors 

in the model. Similarly, egg production parameters were evaluated using ANOVA 

fitting mortality, egg production, water consumption and daily building temperature 

against week. Variables which were not normally distributed were assessed using a 

non-parametric, Kruskal-Wallis test. 

In addition, the impact of red mite populations on egg production was assessed by 

performing a series of correlations between both egg production and red mite 

population data using a Pearson's correlation. If these correlations were significant, 

they were subsequently analysed by stepwise regression to establish the greatest 

determinant of variability within that model, i.e. the most important predictor affecting 

a particular response variable. 
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4.3 Results 

4.3. 1 Population of poultry red mite over time 

It is evident form Table 4.1 that there were significant differences in red mite 

populations based on mean weekly count results. A gradual decline in red mite 

populations was seen over the course of the experiment and by the end of the 

experiment numbers were extremely low. 

Spraying of the acaricide resulted in a reduction in red mite population levels in the 

following weeks, with the exception of the initial spray (week 4) where red mite 

numbers increased directly after spraying and was in fact higher than that observed 

in the weeks prior to spraying (see Table 4.1). 

Table 4.1 Mean weekly red mite population of different life-stages (mean per trap, 

rows in bold were when bendiocarb was applied) 

Fed Adult 
Age and Unfed Adult Larvae Mite egg Total Mite 

Week (weeks) Nymph and Nymph No. No. Population 

1 51 880.0a 244.8a 123.6ace 380.7ac 1628.9
a 

---~ 

2 52 660.2aco 158.4
ac 80.7ao 377.3

c 1276.5
ac 

3 53 373.6DC 95.3bC 70.4
ac 139.9acd 779.1oC 

4 54 209.0° 53.5°0 58. Sac 163.3
8ca 484.1 008 

5 55 487.8ao 97.3OCO 178.1 8 285.8
acd 1048.8

aer 

6 56 364.1
DC 62.8M 29.1

00 253.8
acd 709.9OCelf 

7 57 170.9° 79.00Cd 18.300 168.6
acd 436.8bdf 

8 58 211.0° 19.8
00 8.50 91.9ad 331.2

bdf 

9 59 367.60 16.4l>d 12.5b 203.7
aca 600. 1 bcdf 

10 60 338.0DC 7.3M 1.81> 103.7ad 450.81>dt 

11 61 117.30C 13.31>d 0.2° 67.7bd 198 . .f5af 
12 62 236.60 0.1 0 9.3° 24.1 bO 270.1DOf 

13 63 349.6bc 7.6M 22.01>d 241.5ac 620.6bCdf 

14 64 94.50 2.6bd 0.20 22.1 bd 119.3bdf 

15 65 48.2b 2.6M 2.7b 12.200 65.lOaf 

16 66 49.9b 
5.9bd 3.0b 6.200 65.00ar 

17 67 15.00 0.1 0 0.2b 8.20d 23.40 
P-Value - *** *** *** *** *** 

SE Mean - 23.60 5.48 3.68 14.80 41.80 
***= P<O.001 
Means within a column followed by a different superscript letter are significantly 
different at P<0.05. 

Red mite populations also fluctuated between weeks, irrespective of acaricide 

application. Prior to both the first and second spray dates red mite numbers were 
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declining, therefore suggesting that other factors are involved in red mite survival and 

proliferation. This is made particularly apparent in Figure 4.2. 

Figure 4.2 Mean weekly red mite population of different life-stages per trap 
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4.3.2 Consistency of counting between observers 

Apart from mean egg number, there was no significant difference between the two 

observers in the estimation of the number of red mite found per trap (Table 4.2). 

Table 4.2 Comparison of mean red mite populations between observers 

Observer 1 Observer 2 SE Mean Sianificance 
Fed Adults and Nymphs 242.7 321.2 33.56 NS 
Unfed Adults and Nymphs 60.0 27.3 7.65 NS 
Larvae No. 27.1 32.8 5.25 NS 
Egg No. 140.8 146.1 21.11 * 

Total Mite Population 470.5 518.2 59.52 NS 
. . 

NS= not Significantly different; *= significantly different at P<0.05 

4.3.3 Distribution of mean red mite population 

Table 4.3 shows the distribution of red mite between the two different sides of the 

house. With the exception of larvae number, traps situated on the side of the house 

with pop holes, enabling access to pasture had significantly higher numbers of each 

of the red mite life-stages. 
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Table 4.3 Distribution of mean red mite population per house side (mean population 

per trap) 

Side 1 Side 2 SE Mean Significance 
Fed Adults and Nymphs 169.0 383.4 33.02 *** 
Unfed Adults and Nymphs 31.5 55.6 7.68 * 
Larvae No. 24.6 35.1 5.20 NS 
Egg No. 99.9 186.0 21.0 ** 
Total Mite Population 324.9 660.1 58.7 *** .. 
NS= not slgmflcantly different; *= significantly different at P<O.05; **= P<O.01; ***= 
P<O.001 

Analysis of data, comparing trap placement along the length of the building showed 

no significant difference in mite numbers between the three locations (Table 4.4), 

apart from the population of fed adult and nymphs, which were significantly lower in 

Area 3 of the house. Numbers of other mite stages were also lower Area 3 of the 

house compared to the Areas 1 and 2, although these differences were not 

significant. 

Table 4.4 Distribution of mean red mite populations in the poultry house 

Area 1 Area 2 Area 3 SE Mean Significance 

Fed Adults and Nymphs 348.088 286.988b 205.16b 49.132 * 
Unfed Adults and Nymphs 48.31 51.41 35.39 9.787 NS 
Larvae No. 39.94 20.92 24.83 6.617 NS 
Egg No. 149.41 153.01 132.90 26.827 NS 
Total Mite Population 585.71 512.30 398.25 75.398 NS .. 
*= P<O.001; NS = not slgmflcantly different 
Means within a row followed by a different superscript letter are significantly different 
at P<O.05. 

4.3.4 Egg production and temperature parameters 

Table 4.5 gives mean values for a number of production parameters and shows a 

steady decline in mean egg output per hen, which is significantly lower in week 16 

(P<O.05). There was a small reduction in water consumption as the birds' aged, 

although this was not significant. There was also a significant drop in mean building 

temperature over the course of the experiment from approximately 22°C to 12°C 

(P<O.001). Conversely, a steady and significant increase (p<O.001) in bird mortality 

was observed. 
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Table 4.5 Mean weekly egg production, mortality and building temperature 

Age Egglbirdl Water Hen Mean Temp. 
Week (weeks) week /bird Mortality % (Oe) 

1 51 O.77a 0.24 0.06a 22.21a 
2 52 0.75ao 0.24 0.12a 21.21a 
3 53 O.77a 0.25 0.30au 20.86ao 

4 54 O.77a 0.24 0.41 0 19.86aca 

5 55 0.74ao 0.25 0.52u 21.00a 
6 56 0.76ao 0.28 0.84c 18.50oce 

7 57 0.72ao 0.28 1.190 17.79oe 

8 58 0.74ao 0.23 1.43e 16.14el 

9 59 0.73ao 0.25 1.63e 14.641 
10 60 0.72ao 0.24 1.89 14.57 9 

11 61 0.73ao 0.23 2.07 9 14.1419 
12 62 0.73ao 0.23 2.179 14.43 9 

13 63 0.74ao 0.27 2.229n 14.00 9 

14 64 0.73ao 0.26 2.2991 14.50 9 

15 65 0.71au 0.21 2.44' 12.439 

16 66 0.67° 0.21 2.7<Y 13.4319 

17 67 0.70ao 0.24 3.91K 13.86 9 

PValue * NS *** **. -
SE Mean - 0.019 0.018 0.0960 0.478 .. 

*= P<0.05; ***= P<0.001, NS= not significantly different 
Means within a column followed by a different superscript letter are significantly 
different at P<0.05. 

4.3.5 Correlations of red mite population and production parameters 

Pearson correlations were performed using both mean weekly red mite populations 

and production parameters as response variables (Table 4.6). Most parameters were 

significantly correlated with each other, with the exception of water consumption 

which was only found to be significantly correlated to egg production. Mean daily 

building temperature had a strong negative correlation with hen mortality (r = -0.91; 

P<0.001). Mean building temperature also had a significant relationship with egg 

output, although on this occasion it was positive (r = 0.74; P<O.OOl). Correlations 

between production and red mite population variables produced a series of 

significant results. For example, total red mite population was positively correlated 

with both daily building temperature (r = 0.86; P<0.001) and mean egg production (r 

= 0.70; P<0.01), but negatively correlated with hen mortality (r = -0.82; P<0.001). 
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Table 4.6 Correlations between production parameters and mite population (P-value, followed by r) 

Egglblrdl Mean temp. Hen mortality Fed adult and Unfed adult 
Age week WaterJblrd eC) (%) nymph and nymph Larvae no. Mite egg no. 

Egg/birdlweek 0.000 (-0.821) 

WaterJblrd 0.192(-0.333) 0.040 (0.502) 

Mean temp. (oC) 0.000 (-0.938) 0.001 (0.741) 0.197(0.329) 

Hen mortality (%) 0.000 (0.974) 0.000 (-0.805) 0.220(-0.314) 0.000 (-0.909) 

I 

Fed adult and nymph 0.000 (-0.795) 0.004 (0.666) 0.319 (0.257) 0.000 (0.855) 0.000 (-0.763) 

Unfed adult and nymph 0.000 (-0.830~ 0.013 (0.590) 0.469 (0.188) 0.000 (0.883) 0.000 (-0.7911 0.000 JO.872) 

Larvae no. 0.001 (-0.707) 0.027 (0.535) 0.556 (0.154) 0.000 (0.831) 0.001 (-0.715) 0.001 (0.730) 0.000 (0.761) 

Mite egg no. 0.000 (-0.852) 0.001 (0.722) 0.064 (0.458) 0.000 (0.843) 0.000 (-0.833) 0.000 (0.912) 0.000 (0.847) 0.000 (0.763) 

Total mite population 0.000 (-0.850) 0.002 (0.697) 0.222 (0.313) 0.000 (0.855) 0.000 (-0.824) 0.000 (0.979) 0.000 iQ.9jB) 0.000 (0.820) 0.000 (0.958) 
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4.3.6 Stepwise regression 

Stepwise regression was used to determine the proportion of variation of a particular 

production or red mite population parameter which could be accounted for by a 

number of predicting variables. Table 4.7 shows that the most predominant predictor 

for egg production parameters was age, which explains most of the variation for egg 

output, mean daily building temperature and mortality (~ = 67.2, 87.3 and 94.5, 

respectively). The population of red mite larvae were seen to have a lesser, but still 

significant relationship with building temperature (~ = 5.5) 

Table 4.7 Stepwise regression showing factors affecting production parameters 

Response Predictor Significance r 
Eggs/blrd age *** 67.2 
Total: 67.2 
Water/Bird Eggs/bird * 20.2 
Total: 20.2 
Mean Temp. (OC) age *** 87.3 

Larvae No. ** 5.5 
Total: 92.7 
Hen mortality % age *** 94.5 
Total: 94.5 

.. 
*= slgmflcant predictor at P<O.05; **= P<O.01; ***= P<O.001 

When considering factors affecting the population of different red mite life-stages, 

relationships between those different stages were the largest predisposing factors 

(Table 4.8). However, after this the second greatest explanatory factor of variation 

was frequently the effect of building temperature. Excluding red mite eggs, building 

temperature had a significant effect on all life-stages, with the largest effect being 

with that of larval numbers (~ = 68.1). 
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Table 4.8 Stepwise regression showing factors affecting red mite populations 

Response Predictor Significance r" 
Total Mite Population Fed Adult and Nymph *** 95.6 

Mean Temp. (0C) *** 2.8 
Mite egg No. ** 0.7 
Larvae No. ** 0.5 

Unfed Adult and Nymph * 0.4 
Total: 99.9 
Fed Adult and Nymph Total Mite Population *** 95.6 

Mean Temp. (0C) ** 1.9 
Larvae No. NS 0.5 

Mite egg No. * 0.9 
Unfed Adult and Nymph *** 0.8 

Total: 99.6 
Unfed Adult and Nymph Total Mite Population *** 83.2 

Mean Temp. (0C) * 3.6 

Mite egg No. NS 1.2 
Total: 88.1 
Larvae No. Mean Temp. (0C) *** 68.1 

Total Mite Population * 7.3 

age NS 3.3 
Total: 78.7 
Mite egg No. Total Mite Population 91.3 

Total: 91.3 
.. * NS= not significantly different; *= significant predictor at P<0.05; **= P<0.01; ** = 

P<0.001 

4.4 Discussion 

The current situation in Europe regarding the control of poultry red mite is very limited 

as the range of registered or recommended compounds available is severely 

restricted (Chauve, 1998). Many of the most effective chemicals previously available 

have been, or are soon to be, withdrawn from the commercial use due to concerns 

over toxicity to both animal and man (Chirico and Tauson, 2002). This is particularly 

apparent in several of the Scandinavian countries, where there are currently no 

acaricides registered for the control of red mite in poultry systems (Chirico et al., 

2003). Few alternative control methods have been documented and those available 

have been seen to have limited success in eradicating red mite populations (Downing 

et al., 1990; Carroll, 1994; Costa et al., 1994; Kim et al., 2004). Therefore the aim of 

this study was to gain an inSight into the effectiveness of the regular application of a 

commercially available acaricide (Bendiocarb) on poultry red mite populations in a 

commercial free-range system for laying hens, whilst evaluating the impact of red 

mite populations on a series of production parameters. 
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4.4. 1 Red mite population 

Monitoring red mite populations using cardboard traps showed that there was 

significant reduction in their size over the course of the experiment, with almost a 

complete suppression of red mite population by the end of the study. However, the 

cause of this reduction is not obvious, particularly with the lack of a control hen 

population. Therefore, it is uncertain whether the reduced mite population was as a 

direct result of the application of Bendiocarb or alternatively related to inherent 

population dynamics of red mite in response to environmental variables. It is 

commonly accepted that temperature has a profound impact on, and is often the 

predominant driving force behind red mite survival and proliferation, with optimal 

temperatures for mite survival and reproduction at approximately 20-25°C (Maurer 

and Baumgartner, 1994; Nordenfors et al., 1999). This trial was initiated in the 

summer months (August) and continued until winter (December), over which time a 

significant (p<0.001) fall in mean daily building temperature was seen, from 

approximately 22°C to a low of 12°C. Therefore, it is highly probable that ambient 

temperature had a significant influence on the population of poultry red in this 

housing system, as has been previously demonstrated by Nordenfors and Hoglund 

(2000). 

Alternatively, it is possible that acaricide spraying had a direct impact on red mite 

numbers, since after spraying in the weeks 10 and 16 reductions in red mite numbers 

were seen. The product used (Ficam® W, AgrEvo, Berlin) contains a carbamate 

derivative, Bendiocarb. The high toxicity of Bendiocarb and particularly that of 

carbamate itself has been well documented, in some cases showing complete 

eradication of parasites (Zeman and Zelezny, 1985; Fletcher and Axtell, 1991; Fiddes 

et al., 2006). Reduced red mite populations following the application of acaricides 

has also previously been observed, although it is suggested that these are only 

temporal effects, and resurgence of red mite populations after such application is 

common (Nordenfors and Hoglund, 2000). This was seen to some extent in the 

current experiment, with red mite numbers fluctuating between spray dates. 

However, the site used in this experiment did not have a particularly heavy red mite 

burden in relation to previous studies. Several experiments by a group in Sweden, 

involving the trapping of red mite observed populations to range from approximately 

3,700 to 67,600 per trap (Nordenfors and Hoglund, 2000; Nordenfors et al., 2001; 

Nordenfors and Chirico, 2001; ChiriCO and Tauson, 2002). In this study initial total 

mite infestation levels per trap started at just over 1,500, between 2.5 and 45 times 
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lower than that of previous research. Therefore, the potential for successful red mite 

eradication in the current study was much greater, requiring less time to reduce the 

parasite population (Chirico and Tauson, 2002). 

4.4.2 Distribution of mean red mite population 

Trapping of red mite is frequently carried out using the technique outlined here and in 

previous research e.g. Hoglund et al. 1995 and Nordenfors and Chirico, 2001. 

However, there is limited information available regarding the influence of placement 

of traps within a housing system on the estimation of mite population. In the current 

experiment, the red mite population was significantly higher on the side of the house 

located adjacent to pasture access. This effect is possibly due to the unequal 

distribution of birds within the system. Unfortunately, no formal records of spatial 

distribution of hens were made in this study. However, casual observations did see 

that upon re-entry into the house from the pasture, birds were drawn to the feeders or 

nest boxes within closest proximity and as a result red mite would aggregate in this 

area to increase the probability of obtaining a blood-meal. Similar unequal red mite 

distribution was reported by Nordenfors and Hoglund (2000), where the spread of red 

mite was seen to mimic the perching behaviour of the poultry breeds. 

As for horizontal distribution of red mite along the length of the house, little significant 

difference was seen in the present study. However, higher populations of red mite 

were observed to accumulate towards the left and middle of the building, although 

this was not a significant effect. Again, this is likely to be due to both bird 

characteristics and building design, as towards the left/middle of the house there was 

access to pasture and a large open feeding region, where a higher number of birds 

were found. Previous research showed similar observations in horizontal distribution, 

with mites showing preference to certain regions within the house, which was 

interpreted as being linked to specific differences in the birds choice of perching 

places (Nordenfors and Hoglund, 2000). In addition to variation in red mite 

populations within the poultry house, there was also observed to be large fluctuation 

between mite numbers in the traps themselves, as previously reported by Nordenfors 

et al. (2001). 

Although it is not possible from trap data to estimate the actual population of red mite 

present in a poultry house these findings may be of use when considering 

experimental design for further research (Nordenfors and Chirico, 2001). It has been 

established that building design and hen genotype significantly affect distribution of 
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birds within a particular house (Abrahamsson and Tauson, 1995), which in turn is 

likely to determine the distribution of the red mite population (Nordenfors and 

Hoglund, 2000). 

4.4.3 Egg production and temperature parameters 

Production figures demonstrated a steady decline in egg output per hen over the 

course of the experiment, which was significantly lower in week 16 (P<0.05). This 

reduced productivity is typical of laying hens as they move through their laying period 

and near the end of their commercial life. The reduction in mean building temperature 

recorded within the building can be accounted for by the change in ambient 

temperature, since the trial started in the summer months and terminated during the 

winter, which would in turn reduce water consumption (Nix, 2000; Rose, 2001). 

4.4.4 Correlations of red mite population and production parameters 

One of the objectives of this study was to investigate the relationship between mite 

population and production parameters. Correlation of variables resulted in a number 

of significant relationships, although several of these were unexpected. In previous 

studies, increased red mite numbers were seen to actively reduce production both in 

terms of eggs laid and increase in mortality of birds. For example, a fall in egg 

production of between 10-15 % and rise in hen mortality of 5-47 % were seen by 

Wojcik et al. (2000) and Cosoroaba (2001), respectively. However, in the present 

study the opposite effects were seen, namely a significant positive relationship 

between red mite population and egg output per bird. Also, there was a significant 

negative correlation between hen mortality and red mite population. The reasons for 

this are unclear, with the absence of a control hen population, although it might be 

explained once again by the relatively low infestation levels observed in the current 

study, meaning that the red mite were not able to impact significantly on natural 

levels of hen mortality and egg production. 

Building temperature was one parameter which was closely linked to each of the red 

mite life-stages, as might be expected from results seen in previous research 

(Nordenfors et al., 1999). Positive correl~tions with mean building temperature were 

observed for red mite adults, larvae and eggs. This remains consistent with previous 

investigations into the effect of temperature on red mite numbers, which have shown 

that increases in temperature within an optimum range (20-25°C) result in a 

simultaneous increase in red mite survival and reproduction (Maurer and 

Baumgartner, 1994; Kilpinen, 2001; Kilpinen, 2004). Temperatures in this study 
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gradually declined from 22°C to 12°C as the season passed from summer into winter, 

which was closely related to the decline in red mite numbers. Commercial egg 

producers with experience of red mite report this recurring seasonal pattern, with an 

increase in mite numbers in early summer and decrease in late autumn (Nordenfors 

and Hoglund, 2000). Indeed the close relationship which exists between 

environmental temperature and red mite population may be considered as a future 

possible control method since extremes of hot or cold temperature (>45°C and <-

20°C) are detrimental to red mite survival (Nordenfors et al., 1999). 

Stepwise regression was carried out on all egg production and red mite population 

parameters to determine how much of the variation observed could be counted for by 

one another. It was revealed that the majority of ~he variation observed within any 

particular red mite life-stage could, in fact, be attributed to other red mite stages. 

However, after mite parameters, mean building temperature had the next largest 

effect, with ~ ranging between 1.9 and 68.1. Again, this is a frequently documented 

occurrence and has been seen to be a critical predicting determinant when modelling 

population dynamics of the poultry red mite (Maurer and Baumgartner, 1994). Egg 

production parameters on the other hand were solely explained by week, with the 

exception of mean building temperature which had a significant relationship with the 

population of red mite larvae (~= 5.5). 

4.5 Conclusions 

In conclusion, this experiment observed the apparent effects of acaricide spraying on 

red mite populations in a commercial free-range system over a 17 week laying 

period. Despite there being no control population used, results observed a significant 

reduction, to almost complete eradication of red mite populations which appeared to 

be as a result of acaricide application. 

The importance of trap placement when estimating red mite populations in poultry 

houses was also highlighted, establishing the need for careful consideration 

regarding house design and also genotype of the hen. However, this method of 

trapping merely provides an approximate guide into red mite population levels within 

a system and can by no means be used as an accurate measure to determine 

precise levels of infestation. 
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It has also shown a number of potentially important relationships between red mite 

and production variables, in particular the level of seasonal fluctuation as a result of 

changes in building temperature. 

Despite the promising results seen with this carbamate-derived acaricide, as with 

most other compounds used for red mite control, it lacks sustainability due too 

limitations including, carbamate resistance (Chandre et al., 1997; Oakeshott et al., 

2005; Fiddes et al., 2006; Liming et al., 2006;) and also the possibility of their link 

with human diseases (Zheng et al., 2001). For these reasons it is recommended that 

this product should only be applied to an empty house and not in the presence of 

birds, as in the current study (ADAS, 2006). 
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Chapter 5 

Effects of poultry red mite infestation on production and immunological 

parameters of laying hens 

5. 1 Introduction 

As described in Chapter 2, the poultry red mite is generally accepted as the principal 

parasite affecting laying hens in European egg production (Hoglund et al., 1995; 

Kilpinen, 2000). Since current poultry production has progressed into large scale 

integrated systems, this has led to the evolution of very uniform and controlled 

environments. Consequently, the ecology of the poultry red mite has evolved from a 

wild type, nest dwelling parasite, to one which flourishes in this wholly synthetic 

environment (Axtell and Arends, 1990). 

It is believed that the poultry red mite has a predilection for environments which offer 

the greatest number of potential hiding places (Hoglund et al., 1995). Hence red mite 

are seen in greater numbers in alternative free-range and barn systems, compared 

with conventional cage systems (Kilpinen, 1999; Guy and Edwards, 2006). 

Therefore, the impending ban on battery cages in the EU (European Council 

Directive 1999n4/EC) which takes effect in the UK in 2012 will result in a greater 

number of hens being housed in alternative, non-cage systems. This will indirectly 

reduce welfare of hens by promoting environments suitable for red mite proliferation 

(Hoglund et al., 1995). 

Since the control of red mite using conventional methods of acaricide spraying is 

becoming increasingly difficult (see Section 2.4), it has been proposed that the 

development of alternative means of control are needed (Chauve, 1998). In order for 

this to be achieved, it is important to broaden the understanding of the relationship 

between the red mite, the chicken and the poultry house environment. 

Attempts have been made previously at formulating population models for the poultry 

red mite in order to identify gaps in the current ecological understanding. This 

information would form the solid basis for planning calculated and tactical control 

strategies by the manipulation of the poultry house environment (Maurer and 

Baumgartner, 1994). However, many of these studies have been constructed in an 
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artificial laboratory environment and not in a real, commercial setting (Maurer and 

Baumgartner, 1994; Nordenfors et al., 1999; Kilpinen, 2001; Kilpinen, 2005). 

An alternative control method for the poultry red mite which has been suggested is 

the development of a novel vaccine as described in Section 2.13, which has shown 

previous success in the cattle tick, Boophilus microplus (Willadsen et al., 1997). 

However, little is known regarding the immune response of birds to natural red mite 

exposure, which is an essential first step for vaccine development. 

The aim of this study was therefore to monitor a number of egg production, 

environmental and immunological parameters between laying hens and poultry red 

mite populations over the flock laying cycle of several commercial laying farms to 

distinguish relationships and potential areas for future control. 

5.2 Materials and methods 

5.2. 1 Study sites 

This experiment followed 7 different populations of laying hens located on various 

sites around the North of England and Scottish Borders, all of which were known to 

have a history of red mite infestation. All sites were managed according to 

commercial husbandry guidelines and the housing systems chosen were considered 

to be typical of commercial practice in the UK (Rose, 2001). Sites 1, 2 and 3 

consisted of a cage, free-range and barn systems, respectively and provided 

samples of poultry red mite and hens' eggs for IgY extraction, as well as production 

data. Site 4 was a barn system and provided poultry red mite and yolk IgY samples 

only. Site 5 was a free-range unit, used to monitor poultry red mite population and 

also for serological analysis of blood serum and egg yolk. Sites 6 and 7 were both 

free-range units, from which blood serum, red mite and production data were 

obtained (see Table 5.1). Not all sites yielded the same data series due to inherent 

problems with obtaining the full data set, such as human error, changes to staff on 

sites and simple failure to record the required information. 
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Table 5.1 Summary of sample collection from different study sites 

Production Data Immunological data 
Site Housing Water 
No. system Red mite Feed Intake Consumption % Lay Hen mortality Temperature Yolk IgY Serum IgY Cytokine 

1 Cage './ './ './ './ './ './ '>/ 

2 Free-range '>/ '>/ '>/ './ './ '>/ 

3 Barn '>/ '>/ './ '>/ '>/ '>/ 

4 Barn '>/ '>/ '>/ '>/ 

5 Free-ranJle '>/ '>/ '>/ '>/ '>/ '>/ 

6 Free-range '>/ '>/ '>/ '>/ '>/ '>/ '>/ 

7 Free-range .. '>/ '>/ '>/ '>/ '>/ '>/ '>/ ----
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5.2.2 Poultry red mite sampling 

Samples of poultry red mite were collected at monthly intervals from the point of lay 

until subsequent depopulation of the flocks (approximately 75 weeks of age). Red 

mite were trapped using the procedure described in Section 4.2.3, this time using 

rectangular pieces of box-section plastic sheet (30 x 100 mm) to provide a red mite 

harbourage. On free-range and barn sites, 10 traps were placed at the front edge of 

nest boxes at regular intervals along the length of both sides of the building. In the 

cage system, traps were secured with plastic ties under the feed troughs where red 

mite had previously been observed in abundance. Traps were replaced with new 

ones every month, which would subsequently remain in position until the following 

sampling date. Upon removal, each trap was placed inside a separate plastic bag 

containing approximately 25 ml of 70 % ethanol, sealed and sent to the laboratory for 

quantification of the number of red mite per trap. The protocol for quantification of red 

mite population was previously described in Section 4.2.4. 

5.2.3IgY collection and extraction 

Hen eggs were collected as a means of determining IgY concentration. On each 

separate sampling date, 20 eggs were collected and delivered overnight to the 

laboratory where the yolks were separated from albumen and processed using PBS­

chloroform precipitation. IgY extraction was followed by ELISA, which was performed 

on each IgY sample separately, as described in Sections 3.5 and 3.2, respectively. 

5.2.4 Blood serum sampling 

Blood serum was also collected on a monthly basis (from Sites 5, 6 and 7) in order to 

determine IgY response to natural red mite exposure. On Site 5, blood serum was 

obtained from 5 randomly selected birds at the time of routine veterinary sampling by 

pricking the brachial/wing vein with a needle and allowing approximately 500 III of 

blood to flow into a 1.5 ml Eppendorf tube. On both Sites 6 and 7, blood was 

collected directly from the heart of hens shortly after cervical dislocation removing a 

volume of up to 5 ml. On these two Sites 5 randomly selected birds were bled at 

each sampling date. Blood collected from all sites was allowed to clot for a minimum 

of 2 hours, after which samples were sent to the laboratory, centrifuged at 3,000 x g 

for 10 min and serum removed. After serum removal all samples were analysed 

separately using an IgY specific ELISA assay (see Section 3.2). 

5.2.5 Spleen samples 

In order to establish cytokine responses on Sites 6 and 7 the spleen of each of 5 
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randomly selected birds were removed after cervical dislocation and previous blood 

sample removal. Birds were abdominally dissected, the spleen removed and a 

section of approximately one third taken and immediately stored in RNALate~ 

(QIAGEN, West Sussex, UK) for subsequent RNA extraction and cytokine analysis at 

the Institute for Animal Health, Compton, UK. 

In order to quantify the level of expression of specific cytokines in RNA extracted 

from spleen samples a Taqman assay was used, the protocol for which was outlined 

in Section 3.7. The presence of RNA from cytokines which are classical indicators of 

both Th1-type and Th2-type immune responses were investigated using gene 

specific primers. Th1-type immunity was determined by the expression of interleukin-

120 (IL-120) and interferon-y (IFNy), whilst Th2-type immunity was determined by the 

expression interleukin-4 (IL-4), interleukin-13 (IL-13) and interleukin-5 (IL-5). 

5.2.6 Production data 

A series of production parameters were recorded at intervals during the study, to take 

account of egg production, hen mortality, feed/water consumption and mean building 

temperature (see Table 5.1). These were recorded on either a daily or weekly basis 

by staff working on study sites. Mean monthly values were then calculated for dates 

corresponding to when samples of red mite and yolk- or serum-lgY were obtained. 

5.2.7 Statistical analysis 

Data were analysed by ANOVA in the statistical package MINITAB (V14) to 

determine the effect of site on red mite population, egg production parameters and 

IgY levels. Also, values for Pearson's correlation were calculated to measure the 

relationships between different parameters including yolk- and serum-lgY levels, 

poultry red mite population and production variables. Significant correlations were 

subsequently assessed by stepwise regression in order to establish the greatest 

determinant of variability within that model. Analysis was initially performed on data 

from individual sites and later carried out on the overall mean values for all sites. 

5.3 Results 

5.3. 1 Production parameters, poultry red mite population and immune response for 

all sites over the entire laying period 

Mean egg production, red mite population and IgY levels are shown in Table 5.2, 

which illustrates the variability in the data collected. With uneven red mite and hen 
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populations in each category it is inappropriate to make generalisations about one 

particular housing system, so instead comments will be restricted to observations 

about the range of data presented. Also, as this data was seen to be particularly 

variable in the previous chapter, care must be taken when interpreting them as 

overall means. Nonetheless the average number of birds in a flock was considerably 

larger in the cage system compared to the other two systems. However, even within 

the free-range system the population of hens varied considerably, from 5,000 in Site 

5 to 27,000 in Site 2. Feed intake (for the four sites for which data were available) 

varied from 98 g/bird to 129 g/day, water consumption from 153.1 ml/bird to 218.7 

ml/bird and mean building temperature from 18 to 22°C. Mean egg production also 

showed a range in performance, with % lay values from 71.6 to 88.1 %. There were 

significant differences between sites for hen mortality which ranged from a low of 1.3 

% in Site 1 to a high of 6.7 % in Site 2. 

Significant differences were also observed for mean poultry red mite population and 

immunoglobulin levels. The lowest values for both red mite population and yolk IgY 

optical density (means = 1 and 0.36, respectively) were observed on Site 1, with the 

highest values seen on Site 4 (mean = 10365 and 0.78, respectively). Mean red mite 

population on other sites was intermediate but nonetheless appeared to have a 

degree of correlation to mean yolk IgY levels, with the exception of Site 5 which had 

a comparatively high red mite infestation, but low yolk IgY level. Variation observed in 

mean red mite population between sites was considerable, with an overall mean of 

5,843 and a coefficient of variation (C.V.) of 137 %. Mean yolk IgY optical density 

also showed a relatively high variation between sites (mean 0.66; C.V. 55 %). With 

regard to serum IgY levels, Site 5 had a significantly lower antibody level (p<0.001) 

in comparison to Sites 6 and 7. Variability between mean serum IgY levels was also 

relatively high (mean = 0.69; C.V. of 56 %). 

Data for individual sites is displayed in Tables 5.3-5.9, showing how mean 

parameters change during the course of the laying period. Several general 

observations can be made. Firstly, a low, yet persistent level of hen mortality was 

apparent across all f~ums. Secondly, there was a common tendency for production 

levels to reduce, whilst feed intakes progressively increased. On each of the sites the 

population of red mite was seen to fluctuate considerably during the laying period, 

whilst maintaining an endemic red mite level relative to each site. However, there 

were no obvious trends in either yolk or serum IgY levels over the course of the 

experiment. 
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Table 5.2 Summary of production parameters, poultry red mite population and IgY level for all sites 

Site 

1 2 3 4 5 6 7 S.E. Mean Significance 

Housing system Cage Free-range Barn Barn Free-range Free-ran~e Free·range - -
Hen population (birds) 44608 27000 6528 5000 5000 11923 6000 - -

Feed intake (g/bird/day) 119.5 - 128.7 - 119.3 - 98.0 11.80 NS 

Water consumption (mllbird/day) 213.2 218.7 185.4 153.1 - 215.5 - 6.96 NS 

% Lay 88.1 76.5 71.6 - 75.1 84.8 78.3 1.96 NS 

Hen mortality % 1.38 6.7b 1.58 - 3.68b 5.4bd 2.48d 0.40 ••• 

Mean house temperature (OC) 228 19bd - 21 ac - 20bc 18d 0.21 *** 

Total poultry red mite (per trap) 18 23338 6448 10365bc 4644ac 42038d 9444bcd 641 *** 

Yolk IgY (Optical Density) 0.36b 0.708b 0.52ab 0.78a 0.44ab - - 0.057 ** 

Serum IgY (Optical Density) - - - - 0.28a 0.99b 0.76b 0.068 *** 
*= P<O.05; **= P<O.01; ***= P<O.001; NS= no significant difference; - = Missing value 
Means within a row followed by a different superscript letter are significantly different at P<O.05 
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Table 5.3 Mean production and poultry red mite data over the laying period for Site 1 

Poultry Red Mite Parameters Immuno ~Iobulln Production Parameters 
Age Egg Adult and Adult and Total Yolk Serum Hen mortality Feed Intake Water Consumption Temp. 

{weeks) no. Larvae no. nymph fed nymph unfed Population IgY IgY % Lay (%) (g/b/d) (mllb/d) (Oe) 

20 0 0 7 1 7 - - 73 0.17 88 172 21 

22 0 0 0 0 0 - - 93 0.32 108 214 21 

23 0 0 0 0 0 - - 94 0.38 107 231 21 

25 0 0 0 0 0 0.17 - 95 0.54 129 217 21 

28 0 0 0 0 0 0.25 - 95 0.65 130 238 23 

30 0 0 0 0 0 0.33 - 95 0.73 121 221 21 

32 0 0 1 0 2 0.18 - 95 0.83 133 222 21 

35 0 0 1 0 2 0.11 - 93 0.96 123 251 23 

39 0 0 0 0 0 0.01 - 92 1.18 126 217 21 

43 0 0 0 1 0 0.28 - 87 1.45 124 226 20 

47 0 0 0 0 2 0.42 - 85 1.75 118 211 20 

51 0 0 0 0 1 0.73 - 83 2.14 118 211 20 

55 0 0 0 1 1 0.68 - 84 2.52 126 219 20 

62 0 0 0 0 1 0.96 - 81 3.02 131 219 20 

65 0 _0 ___ 1 0 1 0.16 - 76 3.23 110 212 20 - -- - -
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Table 5.4 Mean production and poultry red mite data over the laying period for Site 2 

Poultry Red Mite Parameters Immuno lobulln Production Parameters 
Age Egg Adult and Adult and Total Yolk Serum Hen mortality Feed intake Water Consumption Temp. 

~weeksj no. Larvae no. nymph fed nymph unfed Population IgY IgY % Lay (%) (gIb/d) (mllb/d) CC) 

25 0 0 I 1 0 1 - - 66 1.64 - 195 18 

26 43 3 49 3 98 1.26 - 90 2.51 - 225 20 

28 398 330 342 307 1377 0.69 - 91 2.77 - 220 19 

31 2991 1370 3778 348 8487 0.87 - 89 3.27 - 229 18 

34 428 29 338 30 825 0.39 - 80 4.25 - 220 20 

38 102 153 85 27 366 0.85 - 70 4.81 - 201 21 

42 2126 1834 1399 954 6313 0.71 - 75 6.26 - 200 21 

46 1719 1738 1203 613 5272 0.29 - 77 7.61 - 210 19 

50 426 310 370 46 1153 0.58 - 68 8 - 199 17 

54 515 678 640 58 1891 0.08 - 74 9.19 - 220 20 

61 809 341 679 93 1921 1.10 - 77 10.27 - 202 18 

64 23 815 425 70 1333 0.98 - 71 12.77 - 225 18 

67 645 125 38EL _ _ ~_14L_ 1297 0.64 - 67 14.3 - 225 18 - - '--- - -
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Table 5.5 Mean production and poultry red mite data over the laying period for Site 3 

Poultry Red Mite Parameters Immuno Ilobulin Production Parameters 
Age Egg Adult and Adult and Total Yolk Serum Hen mortality Feed intake Water Consumption Temp. 

(weeks) no. Larvae no. nymph fed nymph unfed Population IgY IgY % Lay (%) (g/b/d) (mllb/d) eCl 

20 152 20 377 5 553 - - 28 0.28 89 162 -
21 195 16 124 151 486 - - 65 0.31 99 194 -
23 108 68 194 38 408 0.42 - 83 0.35 132 193 -
26 129 237 203 80 648 0.28 - 85 0.44 131 214 -
28 387 391 305 21 1104 0.75 - 85 0.54 132 179 -
30 26 7 48 2 83 0.48 - 86 0.83 139 171 -
33 232 230 321 51 834 0.31 - 85 1.55 122 219 -
42 565 136 625 110 1436 0.77 - 83 2.16 119 200 -
45 1 1 2 0 4 0.62 - 38 2.34 113 135 -
54 256 767 572 55 1650 0.83 - 75 2.77 188 192 -
63 53 15 106 13 186 0.68 - 74 3.28 156 192 -
72 40 76 181 35 333 0.08 - 72 3.69 124 174 ---
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Table 5.6 Mean production and poultry red mite data over the laying period for Site 4 

Poultry Red Mite Parameters Immuno ~Iobulln Production Parameters 
Age Egg Adult and Adult and Total Yolk Serum Hen mortality Feed Intake Water Consumption Temp. 

(weeks) no. Larvaeno. nymph fed nymph unfed Population IgY IgY % Lay (%) (g/b/d) (ml/b/d) (OC) 

20 12 4 2 13 32 1.11 - - - - 124 23 

23 51 16 18 37 122 1.02 - - - - 126 24 

25 * - - - - 1.09 - - - - 129 24 

27 722 358 251 1697 3029 1.07 - - - - 132 23 

28 * - - - - 0.48 - - - - 134 19 

29 * - - - - 0.80 - - - - 136 21 

31 1485 710 713 2808 5715 - - - - - 138 20 

32 1663 844 506 3325 6338 1.01 - - - - 140 19 

34 1683 1100 808 3514 7106 0.80 - - - - 142 19 

50 2616 1484 2425 1981 8506 1.18 - - - - - 20 

55 3458 2825 7608 3128 17019 1.08 - - - - - 21 

61 4242 1842 5936 3478 15497 0.05 - - - - 180 20 
, 

62 * - - - - - - - - - 182 22 

66 4165 3508 10380 15490 33543 0.04 - - - - 187 27 

70 3478 2083 8935 2615 17110 0.77 - - - - 193 21 

75 * - - - - 0.45 - - - - 199 22 I 
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Table 5.7 Mean production and poultry red mite data over the laying period for Site 5 

Poultry Red Mite Parameters Immuno Ilobulin Production Parameters 
Age Egg Adult and Adult and Total Yolk Serum Hen mortality Feed intake Water Consumption Temp. 

(weeks) no. Larvae no. nymph fed nymph unfed Population IgY IgY % Lay (%) (g/b/d) (mllb/d) (OC) 

21 21 171 148 58 398 1.04 0.05 68.45 0.54 87.1 - -

25 90 258 350 23 721 0.63 0.04 87.33 0.88 126.4 - -
29 470 1527 1177 196 3370 0.53 0.15 88.89 1.68 114.5 - -

33 1273 1573 2486 273 5604 0.75 0.09 92.23 2.42 121.7 - -

37 697 733 1421 83 2933 0.23 0.12 91.46 2.88 109.9 I - -

41 1404 2161 2536 246 6347 0.20 0.10 90.06 3.32 114.1 - -

45 1344 1012 2311 89 4756 0.16 0.13 86.36 4.14 117.5 - -

49 1878 1739 3050 167 6833 0.20 0.35 78.33 5.82 130.4 - -

53 3052 1870 3620 2295 10839 ~~2_1 _0.32 67.38 14.72 126.3 - -
- - ~- - _.- -- - -
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Table 5.8 Mean production and poultry red mite data over the laying period for Site 6 

Poultry Red Mite Parameters Immuno llobulln Production Parameters 
Age Egg Adult and Adult and Total Yolk Serum Hen Feed Intake Water Consumption Temp. 

(weeks) no. Larvae no. nymph fed nymph unfed Population IgY IgY % Lay mortali!yJ%) (glb/d) (ml/b/d) ee) 
27 2 1 3 2 8 0.85 - 91 1.88 - 196 19 

32 275 278 1012 33 1597 1.03 - 79 2.54 - 328 19 

37 686 724 3179 240 4829 0.99 - 92 3.34 - 233 19 

41 1005 735 4639 124 6502 0.72 - 92 3.74 - 215 18 

45 1735 667 3362 25 5789 1.22 - 90 4.09 - 195 19 

49 33 68 276 6 383 1.31 - 82 4.72 - 212 20 

54 60 110 190 11 371 0.80 - 96 5.29 - 195 19 

58 1673 776 2284 26 4759 0.47 - 87 6.08 - 212 19 I 

62 2130 836 2871 32 5869 0.77 - 82 7.06 - 197 20 

67 1001 676 2200 22 3900 1.34 - 74 9.08 - 204 20 

71 3583 3153 5229 261 12226 1.43 - 68 11.63 - 183 22 
- - _.- -
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Table 5.9 Mean production and poultry red mite data over the laying period for Site 7 

Poultry_ Red Mite Parameters Immuno illobulln Production Parameters 
Age Egg Adult and Adult and Total Yolk Serum Hen Feed Intake Water Consumption Temp. 

(weeks) no. Larvae no. nymph fed nymph unfed Population IgY IgY % Lay mortality (%) (glb/d) (mllb/d) (0C) 

22 2549 490 4029 112 7180 0.99 - 25.04 0.03 - - 18.7 

27 1125 1291 3449 318 6183 0.82 - 81.67 0.3 105.32 - 18.6 

31 1509 1509 5093 67 8178 0.32 - - 0.62 103.64 - 18 

36 5588 2520 10174 255 18537 0.63 - 83.01 0.99 - - 17.8 

40 2869 2244 11679 288 17080 0.94 - 81.69 1.21 102.9 - 18.2 

45 2364 1361 7090 36 10850 0.90 - 81.93 2.01 86.03 - 17.6 

48 574 485 3523 163 4744 0.76 - 81.02 2.37 102.37 - 17 

53 2475 1668 6007 371 10521 0.76 - 83.08 2.9 103.24 - 17.8 

58 1095 1275 4935 215 7520 0.88 - 74.79 3.5 105.57 - 17.6 
I 

62 3346 3321 9433 296 16396 1.22 - 82.99 4.08 103.38 - -
67 663 625 2041 75 3403 0.42 - 83.47 4.68 69.09 - -

72 1071 343 L _ !1~6_ 186 2736 0.48 - 82.03 5.56 . - -
- - - -
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5.3.2 Comparison of yolk and serum IgY levels 

On Site 5 samples of both yolk and serum IgY were taken in order to establish the 

association between the level of IgY in these two sampling methods. There were 

significant differences in the level of antibody detected. Mean serum IgY had a 

significantly lower level compared to mean yolk IgY level (mean = 0.15 vs. 0.44; 

P<0.05). When plotted over the course of the experiment, it also appears that there 

was no obvious relationship between serum and yolk IgY levels (Figure 5.1). The 

Pearson's correlation value confirms this (r = -0.58; P = 0.10). 

Figure 5.1 Comparison of yolk and serum IgY levels (optical density) during the 

laying period (Site 5) 
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However, immunoglobulins are deposited in the egg over a period of time (about 21 

days). Therefore, if the effects of IgY accumulation are removed from yolk IgY so that 

the value for serum IgY is plotted against the value for yolk IgY 4 weeks prior to that 

pOint, some degree of association between serum and yolk IgY levels is shown 

(Figure 5.2). Fluctuations between weeks follow a similar trend i.e. at each sampling 

point, as the value for serum IgY increases/decreases so does that of yolk IgY and 

vice versa. 
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Figure 5.2 Comparison of yolk and serum IgY levels during the laying period, 

corrected for lag effect of IgY deposition (Site 5) 
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5.3.3 Relationships between egg production, red mite population and IgY levels. 

(i) Site 1 

Despite having a very low mite infestation level, several significant relationships were 

found for Site 1 (Table 5.10). Red mite population was observed to have negative 

correlations with feed and water consumption (r = -0.63 and -0.68, respectively) and 

egg production (r = -0.59, P<0.05). On this site it was also found that the hen 

mortality was positively correlated with mean yolk IgY level (r = 0.60, P<0.05). 

(ii) Site 2 

On Site 2 there were no significant correlations, apart from those within the red mite 

life-stage estimates (Table 5.11). 

(iii) Site 3 

Site 3 also showed a comparatively low level of red mite infestation, but still 

generated a number of significant correlations amongst the data collected (Table 

5.12). These were observed between both larval numbers and feed intake, and also 

unfed adults/nymphs and water consumption. These correlations were both positive, 

suggesting that increases in red mite levels resulted in greater feed/water 

consumption, although these associations were only moderate (r = 0.68 and 0.59, 

respectively) . 
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(iv) Site 4 

Site 4 was observed to have the highest red mite population of all the units sampled. 

However, the only production data available for this site was water consumption, 

which was observed to have a significant positive relationship with all red mite 

variables (Table 5.13). Yolk IgY level was also negatively correlated to all of the red 

mite population parameters, with the exception of larvae. 

(v) Site 5 

Site 5 was sampled for both yolk and serum IgY and showed a number of significant 

correlations (Table 5.14). Interestingly both yolk and serum IgY levels were 

significantly correlated with age of the birds, although this correlation was negative 

for yolk IgY (r = -0.80; P<0.01) levels and positive for serum IgY levels (r = 0.86; 

P<0.001). Levels of both yolk and serum IgY were also correlated with a number of 

the red mite life-stage estimates. Site 5 was the only site observed to demonstrate 

this positive correlation between humoral immunity and red mite population (r = 0.78; 

P<0.01). Significant correlations were also observed between various red mite life­

stages and hen mortality (e.g. total red mite r = 0.88; P<0.01), suggesting that an 

increase in mortality of hens was observed with a concurrent increase in red mite 

population. 

(vi) Site 6 

On Site 6, there was a significant relationship between age of the flock and red mite 

egg (r = 0.67; P<0.05) and larvae (r = 0.60; P<0.05) estimates (Table 5.15). These 

two indicators of the level of red mite population were in turn positively correlated to 

hen mortality (r = 0.76 and 0.78, respectively). In addition, the number of red mite 

eggs and larvae also showed a significant relationship with building temperature (r = 

0.66 and 0.77, respectively). Egg production of birds also had a negative relationship 

with building temperature (r = -0.82; P<0.01) and larval numbers (r = -0.64; P<0.05). 

Several correlations within production parameters were also seen, such as an 

increase in hen mortality with age (r = 0.95; P<0.001) and a decrease in egg output 

with increased hen mortality (r = -0.74; P<0.01). 

(vii) Site 7 

On site 7, no significant correlations were observed between any of the egg 

production and red mite parameters (Table 5.16). However, significant correlations 

were observed between building temperature and hen mortality (r = 0.81; P<0.01), 

where reductions in building temperature caused increases in hen mortality. 
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(viii) Relationships between egg production, red mite population and yolk IgY levels 

from all sites 

When the data from those sites providing yolk IgY were combined (n = 5), significant 

relationships observed were between hen mortality and red mite population 

estimates (Table 5.17). Here, rises in red mite infestation caused a significant rise in 

the proportion of bird deaths (e.g. total red mite r = 0.48; P<0.001). Few other 

significant correlations were observed, with the exception of a positive relationship 

between increased bird age and that of all red mite life-stages, excluding larvae and 

eggs. 

(ix) Relationships between egg production, red mite population and serum IgY levels 

from all sites 

Combining data from three sites sampled for blood serum showed hen mortality was 

significantly correlated to both building temperature and also the number of unfed red 

mite adults and nymphs (Table 5.18). Serum IgY levels on the other hand were seen 

to be significantly correlated to both hen mortality (r = 0.36; P<0.01) and building 

temperature (r = 0.61; P<0.01). 

(x) Relationships between egg production and red mite population from al/ sites. 

Finally, data from all sites were combined in one dataset to investigate the 

relationship between production parameters and red mite populations, with the 

exclusion of immunological data. Significant correlations found here confirmed those 

previously observed on individual sites with hen mortality, feed intake and building 

temperature all showing significant and positive interactions with various red mite life­

stages (Table 5.19). 
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Table 5.10 Correlations between poultry red mite population, production parameters and immune response for Site 1 (P-value, followed 

byr) 

Water 
Hen mortality Feed intake consumption Temperature Mite egg Larvae Fed adult Unfed adult Total mite 

Age (weeks) (%) %La~ . (glbjd) (mVb/d) eej number number and nymJ)h and Il}'mph Population 

Hen mortality (%) 0.000(0.993) 

%Lav 0.037(-0.541 ) 0.027(-0.569) 

Feed intake (~d) 0.284(0.296) 0.35110.259) 0.048(0.518) 

Water consumj)tion 0.902(0.035) 0.997(0.001 ) 0.OO5{0.684) 0.009(0.646) 

Temperature (0C) 0.022(-0.587) 0.019(-0.597) 0.035{0.547) 0.702(0.108) 0.057(0.501 ) 

Mite egg number 0.936(-0.023) 0.824(0.063) 0.214(-340) 0.206(-0.346) 0.4781-0.199) 0.873(0.045) 

Larvae number 0.846(0.055) 0.984(0.006) 0.307(-0.283) 0.888.1-0.040) 0.725.1-0.990) 0.957(0.015) 0.002(0.738) 

Fed adult and nymph 0.279(-0.299) 0.307.1. -O.283~ 0.041 (-0.5331. 0.011 (-0.636.1 0.007{-0.66D.. 0.648.10.128l. 0.087(0.457) 0.074(0.475) 

Unfed adult and nymph 0.992(-0.003) 0.954(0.016) 0.048(-0.518) 0.105(-0.435) 0.087(-0.457) 0.307(-0.283) 0.392(0.238) 0.208(0.345) 0.079(0.468) 

Total mite population 0.465(-0.204) 0.481 (-0. 197} 0.022(-0.586) 0.012(-0.626) 0.006(-0.6751. 0.848(0.054} 0.045(0.524) 0.034(0.034) 0.000(0.958) 0.083(0.462) 

Yolk IgY 0.048(0.580) 0.038(0.603) 0.074(-0.534) 0.826(0.071 L 0~(-Q.327..l. 0.090(-0.511 ) 0.648(0.147) 0.648(0.147) 0.467(-233) 0.555(0.190) 0.787(0.0871 
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Table 5.11 Correlations between poultry red mite population, production parameters and immune response for Site 2 (P-value, followed 

byr) 

Water 
Hen mortality Temperature consumption Mite egg Larvae Fed adult Unfed adult Total mite 

Age (weeks) (%) % Lay (oG) (mVb/d) number number and nymph and nymph Population 

Hen mortality (%) 0.000(0.997) 

% Lay 0.067(-0.5221 0.070(-0.518) 

Temperature (0C) 0.276(-0.327) 0.284(-0.322) 0.498(0.207) 

Water consumption 0.687(0.1241 0.6113{0.153) 0.058(0.537) 0.905(-0.037) 

Mite egg number 0.783(-0.085) 0.812(-0.073) 0.285(0.321 ) 0.978(0.009) 0.714(0.113) 

Larvae number 0.758{0.095) 0.737(0.103) 0.668(0.132) 0.650(0.139) 0.991(0.003) 0.001(0.815) 

Fed adult and nymph 0.710(-0.114) 0.717(-0.112) 0.185(0.393) 0.672(-0.130) 0.332(0.293) 0.()()()(0.928) 0.010{O.683) 

Unfed adult and nymph 0.848{-0.059) 0.909{-o.035) 0.561 (O.178) 0.328{O.295) 0.656(-0.137) 0.004(0.743) 0.000(0.870) 0.086(0.494) 

Total mite population 0.856(-0.0561 0.881 (-0.046) 0.298(0.313) 0.948(0.020) 0.657(0.137) 0.000(0.985) 0.000(0.887) 0.000(0.927) 0.002(0.772) 

Yolk IgY 0.703(-0.123) 0.696(-0.126) 0.367(0.287} 0.701(-0.124) 0.877(0.050) 0.742(-0.106) 0.470(-0.231) 0.997(0.001 ) 0.593(-0.172) 0.727(-0.113) 
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Table 5.12 Correlations between poultry red mite population, production parameters and immune response for Site 3 (P-value, followed 

byr) 

Water 
Hen mortality Feed Intake consumption Mite egg Larvae Fed adult and Unfed adult Total mite 

~_(weekst ("lot % Lay (gIb/d) imVb/d) number number nymph and nymph POj)ulation 

Hen mortality ("Io) 0.000(0.983) 

% Lay 0.874(0.051 ) 0.994(0.002) 

Feedintake_~d) 0.107{0.489) 0.139(0.453) 0.090(0.510) 

Water consumption 0.680(-0.133) 0.692(-0.128) 0.009{0.712) 0.429(0.252) 

Mite egg number 0.579(-0.178) 0.713(-0.119) 0.313(0.319) 0.991 (-0.004) 0.181.{0.414) 

Larvae number 0.663(0.140) 0.671 (0.137) 0.300(0.326) 0.014(0.684} 0.311 (0.320) 0.165(0.428) 

Fed adult and nymph 0.938(0.025) 0.789(0.087) 0.64~{O.1481 0.504(0.214} 0.216(0.386) 0.001(0.815) 0.029(0.627) 

Unfed adult and nymph 0.508(-0.212) 0.576(-0.180) 0.378{0.280) 0.601 (-0.168) 0.045(0.587) 0.095(0.504) 0.745(0.105) 0.310(0.320) 

I Total mite .QOj)ulation 0.988(-0.005) 0.906(0.038) 0.307(0.322) 0.252(0.359) 0.128(0.465) 0.000(0.849) 0.001 (-0.809) 0.000(0.929) 0.182(0.413) 

Yolk IgY 0.954(-0.021} 0.897(0.047) 0.7221-O·12!!) 0.206(0.438) 0.628(-0.175) 0.139(0.50~ 0.248tOA03) 0.220(0.426) 0.972(0.013) 0.160(0.480) 
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Table 5.13 Correlations between poultry red mite population, production parameters and immune response for Site 4 (P-value, followed 

byr) 

Water consumption Mite egg Unfed adult and Total mite 
A~e~week& JmVb/dJ number Larvae number Fed adult and nymph nymph Population 

Water consumption 0.000(1.000) 

Mite eQQ number 0 __ ~0.959) 0.000(0.957) 

Larvae number 0 __ ()O()(O.899) 0.001(0.913) 0.000(0.920) 

I 

Fed adult and n~~ O __ ()O()(O.940) 0.000(0.966) 0.000(0.888) 0.000(0.935) 

Unfed adult and nymph 0.074(0.559) 0.081 (0.61 0) 0.046(0.610) 0.007(0.759) 0.027l0·6601 

Total mite population 0.000(0.873) 0.002(0.885) 0.000(0.883) 0.000(0.961) 0.000(0.933) 0.000(0.876) 

Yolk IgY 0.121(-0.434) 0.064(-0.549) 0.030(..Q.681) O. 073( -0.590) O.052(..Q.628) 0.018(..Q.722) O.015(..Q.736) 
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Table 5.14 Correlations between poultry red mite population, production parameters and immune response for Site 5 (P-value, followed 

byr) 

Hen mortality Feed Intake Mite egg Larvae Fed adult and Unfed adult Total mite 
Age (weeks) ("!o) "!oLay (g/b/d) number number nymph and nymph Population Yolk IqY 

Hen mortality (%) 0;00110.8811 

"!oLay 0.333_{0.342} 0.754(0.114) 

Feed intake (Q/b/d) 0.801 (0.099) 0.895(0.052) 0.467(0.279) 

Mite eqq number 0.000(0.954) 0.000(0.927) 0.364(-0.344) 0.662(-0.184) 

Larvae number 0.045(0.678) 0.141(0.531 ) 0.803(0.097) 0.526(-0.265) 0.022jO.743) 

Fed adult and nymph 0.000(0.931 ) 0.013(0.783) 0.n1(-O.113) 0.609(-0.265) 0.000(0.957) 0.004(0.844) 

Unfed adult and nymph 0.053(0.659) 0.000(0.934) 0.103(-0.578) 0.347(-0.385) 0.011 (O.792) 0.242(0.435) 0.085(0.604) 

Total mite population 0.001 (O.917) O.OO2{O.883) 0.517(-0.250) 0.570( -0.238) O.OOO{-O.983) 0.004(0.844) 0.000(0.967) 0.015{0.n2) 

Yolk lOY 0.010(-0.797) 0.132(-0.542) 0.654(-0.174) 0.873(-0.068) 0.065(-0.636) 0.112(-0.566) 0.041 (-O.687) 0.454(-0.287) 0.071 (-0.627) 

Serum IllY 0.001 (O.858) 0.005{0.806) 0.764(0.109) 0.624(-0.190) 0.009(0.806) 0.094(0.591 } 0.019(0.755) 0.090(0.596) 0.014{0.nS) 0.1 02( -0.580) 
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Table 5.15 Correlations between poultry red mite population, production parameters and immune response for Site 6 (P-value, followed 

by r) 

Water 
Hen mortality Temperature consumption Mite egg Larvae Fed adult Unfed adult Total mite 

Age (weeks) (%) %I~ i°C} lmVb/d) number number and nymph and nymph Population 

Hen mortality (%) 0.000(0.949) 

%LaL 0·06OL-O·583) 0.01 0('().735) 

Temperature (0C) 0.024(0.671) 0.002(0.814) 0.002(-0.815) 

Water consumption 0.111 (-0.507) 0.153(-0.461 ) 0.820(-0.078) 0.451 (-O.254t 

Mite egg number 0.023(0.0674) 0.00710.75E;) 0.075{-O.557) 0.028(0.656) 0.248(-0.380) 

Larvae number 0.1l5O{0.603J 0.005(0.776) 0.035(0-0.638) 0.006(0.765) 0.381 (-0.294) 0.~0.905) 

Fed adult and nymph 0.246(0.383) 0.133(0.482) 0.375(-0.297) 0.453(0.253) 0.496(-0.230) 0.003(0.805) 0.005(0780) 

Unfed adult and QYTTl~h 0.670(0.145) 0.309(0.338) 0.471 (-0.243) 0.258(0.373) 0.853(-0.064) 0.101 (0.521) 0.009(0.743) 0.011 (0.729) 

Total mite population 0.083iO.545) 0.02~O.66n 0.137(-0.478) 0.100(0.521 ) 0.365(-0.303) 0.000(0.938» 0.000(0.925) 0.000(0.950) 0.01110.726) 

Serum IgY 0.475(0.241 ) 0.221 (0.401) 0.034('().640) 0'()~4{0.615) 0.898(-0.044) 0.531 (0.212) 0.253{0.377) 0.641 (0.159) 0.434(0.263) 0.475(0.241 ) 
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Table 5.16 Correlations between poultry red mite population, production parameters and immune response for Site 7 (P-value, followed 

byr) 

Hen mortality Feed Intake Temperature Mite egg Larvae Fed adult Unfed adult Total mite 
Age (weeks) ('Yo) %Iav (g/b/d) (OC) number number and nymph and nymph Population 

Hen mortality ('Yo) 0.000(0.991 ) 

'YoLaV 0.222(0.491 ) 0.343(0.317} 

Feed intake (gnyd) 0.124(-0.552) 0.111(-0.568) 0.375(-0.365) 

Temperature (OC) 0.01M-O·781t 0.017(-0.763) 0.212(-0.495) 0.401 (0.379) 

Mite egg number 0.367(-0.286) 0.306(-0.323) 0.541 (0.207) 0.536(0.239) 0.722(0.139) 

Larvae number 0.869(-0.054) 0.706(-0.122) 0.181 (0.435) 0.329(0.368) 0.880(0.059) 0.008(0.725) 

Fed adult and nymph 0.463(-0.235i 0.304(-0.324) 0.367(0.3O~ 0.379t0.334) 0.991 (-0.005) 0.002(0.795) 0.000(0.868) 

Unfed adult and n~Qh 0.897(0.0421 0.985l0.006) 0.330(0.3251 0.09810.585) 0.710{0.145) 0.305(0.324) 0.086(0.517) 0.225(0.378) 

i Total mite population 0.475( -0.229) 0.334( -0.305) 0.337(0.320) 0.364(0.345) 0.894(0.052) 0.000(0.884) 0.000(0.906) 0.000(0.981) 0.167(0.427) 
I 

Serul!l~ 0.700(-0.124) 0.658(-0.143) 0.288(-0.352) 0.371 (0.340) 0.619(0.193) 0.329(0.309) 0.145(0.447) 0.108(0.487) 0.210(0.390) 0.128(0.465) 
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Table 5.17 Correlations between poultry red mite population, production parameters and yolk IgY immune response for Sites 1-5 (P­

value, followed by r) 

Hen mortality Feed Intake Mite egg Fed adult and Unfed adult Total mite 
Age (weeks) (%) % Lay (g/b/d) number Larvae number rlYmph and nymph Population 

Hen mortality (%) 0.000(0.665) 

% Lay 0.979(0.004) . 0.380(-0.127) 

Feed intake (glb/d) 0.532(0.106) 0.628(0.082) 0.204(0.214) 

Mite eQg number 0.064(0.266) 0.~0.499J 0.949(-0.009)) 0.66910.0742 

Larvae number 0.059(0.272) 0.002(0.432) 0.716(0.053) 0.637(0.081 ) 0.000{0.896) 

Fed adult and nymph 0.051(0.281) 0.005(0.395} 0.728(0.051) 0.612(0.087) 0.000{0.895) 0.000(0.872) 

Unfed adult and nymph 0.048(0.284) 0.000(0.536) 0.417(-0.119) 0.853(-0.032) 0.()()()(0.678) 0.Q()O(O.665) 0.000(0.735) 

Total mite population 0.039(0.295) 0.000(0.484) 0.926{0.014) 0.642{0.080} 0_000(0.917} 0.000(0.898) 0'()()0(0.954J 0.000(0.882) 

Yolk IgY 0.511 (-0.511) 0.461 (0.115) 0.129(-0235) 0.944(0.013) 0.885(-0.020) 0.653( -0.063) 0.545(-0.085) 0.477(-0.100) 0.556(-0.083) 
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Table 5.18 Correlations between poultry red mite population, production parameters and blood serum IgY immune response for Sites 

5-7 (P-value, followed by r) 

Hen mortality Feed Intake Temperature Mite egg Larvae Fed adult Unfed adult Total mite 
Age (weeks) ('Yo) 'Yo lay (g/b/d) COG) number number and nymph and nymph Population 

Hen mortality('YoJ 0.0C)()(0.829) 

'Yo Lay 0.169(0.249) 0.652(0.083) 

Feed intake (g/b/d) 0.901 (-0.031) 0.942(0.019) 0.362(0.236) 

Temperature eG) 0.071(..0.412) 0.000(0.762) 0.527(-0.155) 0.573{D.260) 

Mite egg number 0.147(..0.262) 0.228(0.219) 0.502(-0.125) ..0.409(-0.214) 0.865(-0.041 ) 

Larvae number 0.115{..o.284) 0.246(0.211 ) ..0.840(0.038) 0.426(-0.207) 0.840(0.048) 0.000(0.782) 

, Fed adult and nymph 0.636(..0.087) 0.613(-0.093) ..o.963{-O.OO9) ..0.351 (-O.241) 0 . ..071 (-O.412) ..0.000(0.814) 0.000(0.743) 

Unfed adult and n..1"1~h 0.079(0.315 0.001(0.5631 0.318{-0.186) 0.325(-..0.254) ..0.3..01 (-0.243) 0.049(0.351) 0.054(0.3441 0.35\!(0.168} 

Total mite population ..0.278(..0.198) ..0.64..0(..0.083) ..0.804(-0.046) ..0.343(-..0.245) ..0.272(-0.2581 0.()()()(0.920) 0.000(0.850) 0.000(0.961) ..0 . ..059(..0.337) 

SerufTl 19'!'__ __ 0.06..0(..0.331 ) 0.037(0.364) ..0.943(..0 . ..013) ..0.308(-0.255) 0.005(0.605) ..0.147(..0.262) ..0.441 (0.141) o . ..086(0. 30.§L Q.994(0.OO1) ..0.122(0.279) 
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Table 5.19 Correlations between poultry red mite population and production parameters for all sites (P-value, followed by r) 

Hen mortality Feed Intake Temperature Mite egg Larvae Fed adult and Unfed adult 
Age (weeks) (%) % lay (glb/d) eC) number number nymph and nymph 

Hen mortality (%) 0.000(0.695) 

% Lay 0.648{0.055) 0.488{ -0.083) 

Feed intake (glb/d) 0.777(0.043) 0.722(0.054) 0.185(0.201 ) 

Temperature (OC) 0.258(-0.166) 0.197(-0.190) 0.120{0.230) 0.019(0.484~ 

Mite egg number 0.030(0.256) 0.022(0.271 ) 0.926(-0.011 ) O.547(-0.092i 0.355(-0.132) 

Larvae number 0.010(0.302) 0.010(0.302) 0.651(0.055) 0.733(-0.0521 0.720(-0.051 ) 0.000(0.880) 

Fed adult and nymp_h 0.093(0.199} 0.59710.063) 0.652(0.054) 0.423(-O.12~ 0.120j-0.220J_ O.OOO{O.866J 0.000(0.846) 

Unfed adult and nymph 0.056(0.277) 0.()()()(0.444 } 0.433(-0.095) 0.461 (-0.133) 0.012(0.349) 0.000(0.481 ) 0.000(0.496) 0.000(0.420) 

Total mite population 0.033(0.252) 0.106(0.192) 0.792(0.032) 0.484(-O.107J 0.883(-0.021 ) 0.000(0.916) 0.000(0.904) 0.000(0.926) 0.000(699) 

149 



5.3.4 Stepwise regression 

Production, red mite and immunological data which were seen to be significantly 

correlated with one another, were subsequently analysed by stepwise regression in 

order to establish the greatest determinant of variability within that model, i.e. the 

most important predictor affecting a particular response variable (Table 5.20). 

Table 5.20 Stepwise regression showing factors affecting red mite populations, 

production parameters and IgY levels 

? 
----~-----

Significance Source table 
Response Predictor Site In _~~n<!!!l 

Mite egg number Aoe (weeks) *** 90.8 4 8 ---

Unfed adult and nymph %Lav * 21.2 1 2 

Water consumption * 27.9 2 4 

Hen mortality (%) * •• 85.4 5 10 

Aoe (weeks) * •• 12.1 5 10 
--~-----

Total mite population *. 1.95 5 10 

Larvae number. .*. 23.4 All 20 
-~----.-

Hen mortality (%) H 8.7 All 20 

-------------

Fed adult and nymph Total mite oooulation .. * 92.6 5 10 

Hen mortalitv (%) NS 1.8 5 10 

Mite egg number .. 4.4 5 10 

--

Yolk IgY Total mite population * 48.5 4 _J _________ L ___ 

--
Hen mortality (%) Unfed adult and nymph 

... 85.4 5 9 ---

Aoe (weeks) * •• 13.6 5 9 ----
Total mite population 

._. 0.8 5 9 -----
Mite eoc number 

. 0.1 5 9 
- --

Ace (weeks) H* 89.0 6 11 

Larvae number. .- 6.8 6 11 

% Lav . 1.57 6 11 

Age (weeks) .. - 46.9 6 11 

Unfed adult and nvmoh * •• 8.2 All 19 

Water consumption % Lay .. 42.7 1 1 --
Fed adult and nymph NS 10.1 1 1 

%Lav ** 45.8 2 3 

Unfed adult and nymph * 13.9 2 3 

Feed intake (a/b/d) Larvae number - 41.5 2 3 

Temperature (OC) Unfed adult and nymph _.- 40.4 r~_~~ ____ 
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The values displayed in Table 5.20 are those which were considered important when 

investigating relationships between red mite populations, production parameters and 

IgY levels, the remaining data is presented in Appendix I. 

For red mite stages the predominant determinants of variability in the vast number of 

cases were other red mite stages (Appendix I), although on several occasions these 

predicting variables were in fact production parameters, as illustrated in Table 5.20. 

The production variable most frequently seen to be accountable for a significant 

proportion of variation of red mite stages was hen mortality (r = 1.8 to 85.4), with the 

bird age also having a significant effect (r = 12.1 to 90.8), as did hen egg production 

on one occasion (r = 21.2). 

Similarly, the greatest significant determinants of variability for individual production 

parameters were largely seen to be other production parameters (Appendix I). 

However, occasionally variability could be accounted for by red mite stages. Unfed 

red mite adult and nymph numbers was the most common parameter to account 

significantly for productive variability and did so for hen mortality (r = 8.2 to 85.4), 

water consumption (r = 13.9) and were also related to building temperature (r = 
40.4). Fed adult and nymph red mite (r = 10.1), larvae (r = 41.5) and mite eggs (r = 
0.1) also significantly predicted some of the variability seen in water consumption, fed 

intake and hen mortality, respectively. 

Correlation analysis showed few relationships between IgY and other variables and 

as such was entered rarely into stepwise regression. However, total mite population 

was observed to account for some of the variability in IgY on Site 3 (r = 48.5). 

5.3.5 Relationship between red mite populations and cytokine expression 

Table 5.21 gives data for total red mite population against serum IgY, humoral (IL-4, 

11-5 and IL-13) and cellular (IL-12a and IFNV) cytokine expression for Site 6. No 

significant correlations were observed between any of the parameters recorded. 

However, trends were observed between serum IgY levels, IL-4 and IL-5 (see 

Figures 5.3 and 5.4), with fluctuations in serum IgY levels being closely followed by 

changes in both IL-4 and IL-5 levels. Table 5.21 also highlights the large variability 

observed for mean red mite population (Mean 3,345; C.V. 81%) and each of the 

immune parameters measured. 
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Table 5.21 Mean red mite population, serum IgY and cytokine levels for Site 6 
- . 

Age Total Mite 
Cytoklnes -------

(weeks) Population Serum IgY IL-12a IFNv IL-4 IL-5 IL~~ 

27 8 0.847 0.000 9.010 11.470 18.656 1.792 . __ ._.-

32 1597 1.031 0.000 9.738 13.518 20.595 3.655 ._-_._---

37 4829 0.999 0.000 10.221 14.101 20.272 3.254 

41 6502 0.717 1.598 9.718 11.120 19.433 2.757 ---

45 5789 1.220 1.452 11.799 15.161 20.921 1.516 

49 383 1.313 1.082 9.959 13.474 20.831 3.119 -_ .. _-_.-

54 371 0.752 3.844 10.966 14.303 21.364 4.646 
-----

58 4759 0.608 0.753 11.203 13.540 21.023 3.751 

62 5869 0.770 4.410 11.769 15.020 21.735 5.242 

Mean: 3345 0.9174 1.460 10.487 13.523 20.537 3.304 .... __ .. -
S.E. Mean: 900 0.0797 0.546 0.329 0.469 0.321 0.403_ 

C.V. (%): 80.72 26.07 112.13 9.41 10.41 4.69 36.60 

Figure 5.3 Plot of serum IgY and IL-4 over time for Site 6 
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Figure 5.4 Plot of serum IgY and IL-5 over time for Site 6 
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As with the previous table, Table 5.22 presents data for red mite population, serum 

IgY levels and cytokine expression, but this time for Site 7. On this occasion, a 

significant negative relationship between IL-4 and serum IgY levels was observed 

(p= 0.032; r = -0.705). None of the other correlations were significant, although a 

trend was observed between serum IgY levels and IL-12a (Figure 5.5), with 

fluctuations in both serum IgY levels and IL-12a mimicking one another over time. 

Table 5.22 Mean red mite population, serum IgY and cytokine levels for Site 7 
-

Cvtoklnes 
Age Total Mite 

(weeks) Population Serum IgY IL-12a IFNV IL-4 IL-5 IL-13 

22 7180 0.992 1.147 8.617 12.783 19.703 0.000 

---

--~-.-.----

27 6183 0.820 0.000 10.470 14.700 21.143 2.487 -------

31 8178 0.318 5.117 11.519 17.006 22.767 1.831 

36 18537 0.627 0.000 9.144 13.282 20.434 3.715 

40 17080 0.940 1.859 10.757 13.508 20.233 2.014 

45 10850 0.903 1.702 10.526 13.676 21.087 4.779 ---

48 4744 0.755 1.201 10.797 14.989 21.837 3.092 

53 10521 0.755 1.272 11.311 12.333 19.605 5.283 __ 

58 7520 0.877 1.847 10.099 13.979 21.280 2.434 

Mean: 10088 0.7763 1.572 10.360 14.028 20.899 2.848 

S.E. Mean: 1597 0.0682 0.501 0.317 0.466 0.341 0.535 

C.V. (%): 47.48 26.35 95.66 9.17 9.96 4.90 56.36 

Figure 5.5 Plot of serum /gY and IL-12a over time for Site 7 
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5.4 Discussion 
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The aim of this study was to monitor a number of egg production, environmental and 

immunological parameters between laying hens and poultry red mite populations 

over the flock laying cycle of several commercial laying farms to distinguish 

relationships and potential areas for future control. 
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5.4. 1 Productive performance and red mite infestation levels 

The productive performance of laying hens used in this study was equivalent to 

commercial egg production levels in the UK, in terms of feed/water consumption, hen 

mortality and eggs output (e.g. Nix, 2005). Similarly, the level of poultry red mite 

infestation observed across the three different housing systems was comparable to 

that previously recorded at between approximately 3,700 to 67,600 red mite per trap 

(Nordenfors and Hoglund, 2000; Nordenfors et al., 2001; Nordenfors and Chirico. 

2001; Chirico and Tauson, 2002). Generally free-range systems had the largest red 

mite populations, followed by barn and finally cage systems. The exception to this 

was the barn unit, Site 4, which had the highest red mite population of any of the 

sites recorded. This distribution of mites between systems is frequently reported 

within Europe and is attributed to the greater number of potential mite hiding places 

in the barn and free-range systems (Chauve, 1998; Kilpinen, 2001). However, from 

this experiment it is difficult to make any conclusions about system differences due to 

the relatively small number of sites sampled per system. However, elucidating 

differences between housing systems was not the primary aim of the current study. 

5.4.2 Relationship between production parameters and poultry red mite population 

In this experiment, at some stage across every site, all production parameters were 

seen to have a significant relationship with poultry red mite population. The most 

frequent association seen was the significant positive relationship between poultry 

red mite population and mortality of hens, showing that an increased poultry red mite 

burden led to a rise in bird mortality. It is likely that this mortality is due, in part, to 

blood loss from feeding mites, since infestation by the poultry red mite often leads to 

hens becoming anaemic (Kirkwood, 1967; Kilpinen, 2001). This strengthens the 

argument that predation by this paraSite is the real economic and welfare threat. 

Wojcik et al. (2000) for example, estimated that poultry red mite infestation could 

increase hen mortality by between 4 and 50 %. 

It has also previously been reported that the poultry red mite can be responsible for 

reduced egg production, by as much as 20 % (Cosoroaba, 2001). Given this 

background, it is perhaps surprising that significant correlations between egg 

production and poultry red mite populations were detected on only 2 sites in the 

current study. 

Existing research has also shown that the optimal temperatures for development of 

the poultry red mite ranges between 20-37°C, with lethal temperatures at extremes of 
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-20°C to 45°C (Maurer and Baumgartner, 1992; Nordenfors et al., 1999; Nordenfors 

and Hoglund, 2000). In the present study, building temperatures fluctuated between 

16-26°C across all sites over the laying period, thus providing almost ideal conditions 

for survival and proliferation of red mite. Since survival was not challenged by 

extreme fluctuations in building temperature in this study, it is perhaps not surprising 

that red mite was only correlated to building temperature on one site. However, it 

may also be that the large variability seen in red mite populations per trap resulted in 

a loss of sensitivity to detect small changes in population size in response to external 

variables such as building temperature. 

As with egg production and building temperature described above, both feed and 

water consumption demonstrated only weak associations to red mite population 

levels. Significant positive and negative relationships were observed between both 

feed/water consumption and red mite population levels, although explanations for 

both exist. In commercial poultry production, feed and water are both seen to 

increase steadily with hen age, until they reach a peak which coincides at 

approximately the same time as peak lay and then they slowly decline (Rose, 2001). 

Therefore, if red mite population levels increased/decreased simultaneously with egg 

production, as birds age then positive/negative correlations may be observed, 

although these would not be directly caused by red mite infestation. It has also been 

suggested that infestation by red mite increases stress levels of birds, which leads to 

increased movement/energy usage and in order to compensate for this birds 

increase their feed consumption, providing that their feed supply allows for this (Axtel 

and Arends, 1990; Kilpinen et al., 2005). 

In addition, both feed/water consumption and red mite populations are also said to 

bear a close relationship with environmental temperature (Maurer and Baumgartner, 

1992; Teeter, 1996). Therefore if both feed/water consumption and red mite 

populations increased in response to a rise in temperature then this would lead to the 

occurrence of indirect correlations between parameters. Indirect relationships of this 

type were observed in the current study between all the production parameters and 

red mite populations on individual sites throughout this study. Perhaps the reason 

why these not detected as direct correlations was due to large variation in sampling. 

Since variability between production parameters and red mite populations in any 

laying system is naturally high, it is difficult to attribute productive losses to changes 

in red mite populations, as Wojcik et al. (2000) assumed previously. Poultry red mite 
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can only realistically be associated with reduced production where all external 

parameters are controlled and variability limited, thus creating an artificial 

environment. One such study by Kilpinen (2005) on small groups of birds (n = 15) 

housed in 3.4 x 1.5 m pens allowed red mite infestations to be held directly 

responsible for both reductions in weight gain and an increase in behavioural 

stereotypes (self-grooming/head scratching). However, using artificial environments 

limits the usefulness of data, as in natural circumstances there is input from multiple 

integrated variables. 

In the current study, stepwise regression was used to help determine which were the 

predominant factors contributing to the variation in both production performance of 

hens and red mite populations. Generally, the predictors of these parameters were 

as might be expected from the literature, i.e. production parameters were 

predominantly responsible for other productive variables (such as temperature, which 

was responsible for 64 % of the variation in egg out put per bird). On a number of 

occasions a significant proportion of the variability in red mite population could be 

accounted for by production parameters. The most common predictor was hen 

mortality, although building temperature, egg output and water consumption all 

contributed significantly to red mite population. These findings are in agreement with 

other research which has highlighted the relationship between red mite population 

and production performance of laying hens. 

5.4.3 Relationship between IgY and poultry red mite populations 

Prior to statistical analysis it appeared that there was a trend between the overall 

total means for IgY levels and poultry red mite populations, a trend previously 

documented by Sam-Sun et al. (2002). However, subsequent correlation of data 

showed that these relationships were not significant, with the exception of Site 5 

where a significant, positive correlation between serum IgY levels and red mite 

population was seen. In addition, two significant, yet negative, correlations were 

observed between yolk IgY levels and red mite population. This is perhaps not an 

obvious correlation, since a negative relationship would imply that as the red mite 

population levels increase the yolk IgY levels fall suggesting the occurrence of 

immunosuppression. However, immunosuppression is entirely plausible since 

haematophagous paraSites often use this as a means of obtaining a blood-meal 

(Gillespie et al., 2000; Schoeler and Wikel, 2001). Ectoparasites have evolved 

several methods to induce immunosuppression in host species. The predominant 

mode is by reducing antigen presentation capabilities by the modulation of immune 
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components, such as macrophages or natural killer cells through secretion of 

compounds in the saliva during feeding (Authie et al., 2001; Earnhart et al., 2003; 

Okoko et al., 2003). However, since the negative correlation found in the current 

study between IgY levels and red mite populations was observed on only one site, it 

remains difficult to draw definitive conclusions. 

This lack of correlation is again perhaps not surprising since blood and yolk IgY 

samples were taken on a flock basis. In general, successful correlations between 

antibody responses and ectoparasite infestation levels were reported previously after 

repeated sampling of the same animals, thus reducing sampling variation (Sam-Sun 

et al., 2002; Pruett et al., 2006). However, as in the current study, Maurer (1993) also 

observed no difference in IgY level (mean O.D. = 0.50 and 0.51) to natural exposure 

of hens (approximately 2,500 to 75,000 mites per hen) to different levels of red mite. 

Maurer (1993) suggested that there may have been failure to generate any direct 

humoral response to red mite antigens, something which has been reported in other 

parasite species (Heller-Haupt et al., 1996; Khokhlova et al .• 2004). It may also be 

that the ELISA assay used was not sensitive enough to detect small differences in 

antibody levels since even on sites where very low level mite infestation was 

observed, a relatively high level of IgY was observed. 

5.4.4 Relationship between serum and yolk IgY levels 

An additional aim of this study was to evaluate the relationship between yolk and 

serum IgY levels. It has previously been documented that yolk IgY can be used as a 

tool to determine serum immunoglobulin levels in response to exposure to particular 

antigens (Woolley and Landen, 1995). Therefore both yolk and serum IgY were 

collected on Site 5, although repeat samples were not taken from the same individual 

birds. 

Previous research by Mohammed et al. (1986) comparing yolk and serum 

immunoglobulin levels suggested that there was no significant difference between 

the levels of these two parameters i.e. a very close relationship. Results of the 

current study contradict this, as yolk IgY optical density levels were significantly 

higher than serum IgY levels (P<0.05). This may be a result of an increased 

concentration of yolk IgY through the extraction process or alternatively because 

antibodies in egg yolk are an accumulation of IgY from the hen over a 21 day period 

(the duration needed for the complete formation of an egg yolk, Mohammed et al., 

1986). Furthermore, ELISA is a combined measure of both concentration and affinity 
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which are likely to differ between the two samples despite assay optimisation with 

respective immunoglobulins (Butler et al., 1978). 

In addition to there being a significant difference between the levels of IgY obtained 

from serum and yolk antibodies, no significant correlation was observed between 

these two sources either. This is true even when taking into account the delay 

between the formation of IgY in the blood and its deposition in the egg yolk 

(Mohammed et al., 1986). although a non-significant trend was observed. Previously, 

although Mohammed et al. (1986) reported no significant difference between yolk 

and serum IgY levels, they did not document the presence of any significant 

correlation between yolk and serum IgY. In the present study the reason for this 

failure to generate a significant correlation is once again likely to be due to a large 

variability between mean optical density values for serum and yolk IgY (Mean 0.69 

and C.V. 56 %; Mean 0.75 and C.V. 48 %, respectively), which could be potentially 

reduced by increasing sample replication or by obtaining yolk and serum IgY from the 

same individual. 

5.4.5 Relationship between red mite populations and cytokine expression 

Previously, research has observed changes in cytokine expression as a result of 

engorgement by haematophagous ectoparasites (Gillespie et al., 2000; Mbow et al., 

1994; Arlain et al., 2003; Rohousova et al., 2005). Depending on the parasitic 

infection, cytokine expression can be skewed towards either a Th1 (cellular) or Th2 

(humoral) response (Maldonado et al., 2005). For example, Th1-type responses were 

induced in both tick and sand fly infestations as a result of increases in IFNV. IL-12 

and T-cell proliferation (Gillespie et al., 2000; Rohousova et al., 2005). Whereas 

mosquitoes have been observed to shift immunity away from Th1-type and towards 

eliciting Th2-type immunity, characterised by high IL-5 and IL-10 cytokine levels (Foy 

et al., 2003). However, this increased expression is not necessarily associated with 

protective immunity, as has been previously documented, where parasites exhibited 

no increase in mortality subsequent to feeding (Mbow et al., 1994; Foy et al., 2003). 

As a result of this increased host cytokine expression. many parasites have 

developed evasion strategies with the ability to modulate certain host immune 

mechanisms through salivary secretions, for improved feeding (Schoeler and Wikel, 

2001 ). 

In the current study, spleen samples were dissected from birds on Sites 6 and 7, to 

determine the impact of poultry red mite infestation on specific Th1rrh2-type cytokine 
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expression. As with other parameters there were no significant correlations between 

cytokine expression and red mite population, but there was a significant negative 

relationship between IL-4 and serum IgY levels on Site 7. This is surprising, since IL-

4 is a key regulator in Th2-type humoral immunity, stimulating the proliferation of B­

cells and thus antibody production, particularly against parasitic infection and a 

positive relationship might have been expected (Berger, 2000). However, on Site 6 

IL-4 and IL-5 displayed a positive trend with IgY, as did IL-12a also on Site 7, which 

would not be unexpected since IL-5 also functions to stimulate Th2-type humoral 

immunity, increasing 8-cell growth and immunoglobulin secretion. IL-12a on the other 

hand is involved in the differentiation of naive T-cells into Th1 cells, which is 

important in resistance against pathogens. However, these relationships were not 

significant and it would appear from the current study that there is little evidence of 

an association between red mite population levels and cytokine expression. This 

apparent lack of correlation may be due to the failure to stimulate the immune system 

to elicit cytokine responses to red mite antigens, as has previously been observed in 

other parasite species (Cross et a/., 1994). Alternatively, as with antibody 

determination, correlative failure may once again be as a result of the large variability 

observed between parameters. 

5.5 Conclusion 

In conclusion, a number of correlations were observed between red mite population 

levels, egg production and immunological parameters on individual sites. However, 

when data from all sites was analysed as one dataset these relationships generally 

failed to show consistency, with the exception of hen mortality which was related to 

red mite population. This failing was predominantly attributed to the large variation 

observed in each one of these parameters, both between separate sites and within 

individual birds in the same site. Red mite population estimates in particular showed 

a very high variation between sampling dates and sites. 

In order to limit variability, sampling must be carried out repeatedly on the same 

individual, something which has been done previously (Kilpinen, 2005). However, 

using artificial environments limits the usefulness of data, as in natural circumstances 

there is input from multiple integrated variables. Thus it remains innately difficult to 

establish and attribute the cause of productive, immunological or red mite population 

variability to anyone individual parameter within a flock and care should be taken 

when considering these relationships. 
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Also, irrespective of correlative absence between red mite populations and IgY 

levels, ELISA analysis observed that birds were capable of producing a response to 

red mite infestation which differed significantly between sites. In addition, cytokine 

expression was negatively correlated to IgY levels, which was indicative of 

immunosupression. 

Finally, this study supports the present understanding that current poultry housing 

provides an ideal environment for red mite proliferation, as the climatic conditions 

observed across all sites sampled were within the optimal limits, as previously 

described (Axtel and Arends, 1990; Maurer and Baumgartner, 1994; Hoglund et al., 

1995; Chauve, 1999; Kilpinen et al., 2005). 
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Chapter 6 

Effect of immunisation with whole poultry red mite antigen on immune 

response of laying hens and survival of poultry red mite 

6. 1 Introduction 

Previously in Chapter 5 the immune response of poultry when faced with natural 

exposure to the red mite was explored. Despite birds on different sites mounting 

different levels of IgY response to red mite infestation, statistical analysis showed no 

apparent relationship between these two parameters at a mean flock level. As a 

result, it would appear that birds showed no natural immune resistance to the red 

mite. However, since the previous chapter looked at natural exposure, it lacked a 

degree of control and resulted in wide-scale variability between individual birds and 

red mite population estimates. Therefore, this experiment looked at artificial and 

controlled exposure of hens to red mite antigens using immunisation. Since there is 

little information available in the literature regarding the immunological response of 

domestic fowl to the poultry red mite, parallels were drawn from research conducted 

on related ectoparasitic species. 

Progress has been made with isolating potential antigens which elicit host protection 

to a range of mite species following immunisation with soluble whole mite extracts. 

These include the house dust mite (Dermatophagoides pteronyssinus and 

Dermatophagoides farinae; Mathaba et al., 2002), sheep scab mite (Psoroptes o vis; 

Smith et al., 2002), scabies mite (Sarcoptes scabiei; Tarigan and Huntley, 2005) and 

northern fowl mite (Ornithonyssus sylviarum; Minnifield et al., 1993), amongst others. 

Protective immunity developed against these ectoparasites is generally observed 

with an increase in the Th2-type immune response which drives humoral antibody 

production. However, it can also be associated with increases in Th1-type immunity, 

which is largely accountable for cellular responses, mediated by the expression of 

specific cytokines (Saguet and Six 2004; Zhang et al., 2006). 

Using such vaccination strategies has a direct advantage over traditional controls, 

such as the application of acaricides, since they do not result in environmental 

contamination or residues in foodstuffs, they have no withdrawal periods or reduce 

the possibility of arthropod resistance, etc. (Dalton and Mulcahy, 2001; Nisbet and 
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Huntley, 2006). However, the development of a successful anti-parasite vaccine has 

several steps. The first of these steps is to evaluate the mechanisms involved in the 

host-parasite relationship, in terms of the host-immune response to immunisation 

with parasitic antigens and its subsequent effect on parasite survival. This is followed 

by the identification and characterisation of protective antigens, the production of 

those protective antigens as effective recombinant proteins, and finally the 

formulation of those recombinant antigens into a vaccine able to generate a 

sustainable and appropriate immunological response (Tarigan and Huntley, 2005). 

The aim of this experiment therefore was to evaluate the effect of immunisation with 

whole poultry red mite antigens on the humoral and cellular immune response of 

laying hens and the effect of this on survival and fecundity of mites using both in vitro 

and in vivo feeding systems. The null hypothesis was that immunisation with poultry 

red mite antigen would lead to the development of elevated immunoglobulin and 

cytokine levels in the hen, which when ingested by feeding mites would be 

detrimental to their health resulting in protection for the hen via reduced mite survival 

and fecundity. 

6.2 Materials and methods 

6.2. 1 Experimental treatments 

There were two experimental treatment groups: a Control which received an 

immunisation with saline plus Complete Freund's adjuvant (CFA) which contains 

Mycobacterium tuberculosis, at 6 weeks of age, followed by two immunisations with 

saline plus Incomplete Freund's adjuvant (IFA), which is a simple oil-in-water 

emulsion, at 9 and 12 weeks of age. Recommendations for the volume of material 

subcutaneously injected were taken from Morton et al. (2001) and did not exceed 5 

ml per kg bodyweight. 

A second Antigen treatment received an immunisation with red mite antigen extract 

plus CFA for the initial immunisation at 6 weeks of age, replaced by IFA plus red mite 

antigen extract for two subsequent immunisations. Each immunisation consisted of 1 

mg mite protein, which was administered with equal volumes of either CFA or IFA. 

The volumes injected in both Control and Antigen treatments were equal. 
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6.2.2 Animals and housing 

A total of 39 female domestic fowl of a commercial egg-laying strain (Shaver-579) 

were used. The birds were reared from day-old in a group using a brooder lamp and 

floor pen with wood-shavings. At 5 weeks of age they were separated and placed in 

2 floor pens, 1 pen per room in 2 adjacent rooms. Standard commercial starter and 

subsequently grower diets, as well as water were available ad libitum. Ambient 

temperature was gradually reduced from approximately 26°C for day-old chicks, to 

approximately 17°C by 20 weeks of age to meet birds' thermostatic requirements. 

The illumination program used followed the standard for commercial production (Nix, 

2000), designed to bring birds to the point of lay at 20 weeks of age. Leg rings were 

used to identify individual birds within a treatment. Birds were monitored daily 

following immunisation for signs of ill health. During the in vivo mite feeding test, 

birds were also monitored for clinical signs of anaemia, which include pale mucous 

membranes of the conjunctiva or inside the mouth, pale tongue, gums, intolerance to 

exercise and, at a more extreme level, an increased respiratory rate (Morton et al., 

1993). Mean weekly body weight, feed intake and daily room temperature were 

recorded for the duration of the study. At the end of the experiment, remaining birds 

were killed by cervical dislocation. 

6.2.3 Sampling and immunisation schedule 

Immunisations were administered via the subcutaneous route and took place on 

three separate occasions at 6, 9 and 12 weeks of age (Table 6.1). Each treatment 

comprised of 18 birds, with 3 naive birds sacrificed at the start of the trial to establish 

baseline parameters. 

Table 6.1 Schedule for administration of substances and sampling 
-----_ .. 

Study Age Approximate Sampling 

Week (Weeks) Weight (kg) Treatment 
--=---,-::--------

Serum Spleen 

1 6 0.45 Immunise (1) (Complete Freund's) All" 3 Birds" 

4 9 0.69 Immunise (2) (Incomplete Freund's) All" 6 Birds" 

7 12 0.94 Immunise (3) (Incomplete Freund's) All" 6 Birdsll-

10 15 1.20 Infestation AII# 6 Birdsll 

12 17 1.40 END All All 
--/I, Samples were taken 1 day pnor to subsequent ImmUnisation or Infestation 

Blood samples were taken at 6, 9, 12, 15 and 17 weeks of age, 1 day prior to 

immunisation or infestation, from the brachial (wing) vein, removing a volume of 

163 



approximately 1 ml. At the end of the experiment, the remaining birds were 

dispatched via cervical dislocation and a sample of blood (up to 5 ml) taken directly 

from the heart. A sub-sample of this blood (about 2.5 ml) was taken and allowed to 

clot to yield serum which was removed for subsequent IgY analysis. The remaining 

blood (about 2.5 ml) was placed in vacutainers coated with the anticoagulant lithium 

heparin (Becton Dickinson vacutainer systems, Oxford, UK) and subsequently tested 

in an in vitro mite feeding system to determine efficacy of the antigen. 

Spleen samples were also taken 1 day prior to immunisation from randomly selected 

birds (3 per treatment), sacrificed at 6, 9, 12, and 15 weeks of age. At the end of the 

experiment (week 17) the spleens from all remaining birds were taken shortly after 

cervical dislocation and abdominal dissection. A proportion of the spleen was 

removed immediately, placed in RNALate~ (QIAGEN, West Sussex, UK) and 

subsequently used for cytokine analysis, using a Taqman assay described in Section 

3.7, at the Institute for Animal Health, Compton, UK. 

6.2.4 Preparation of red mite antigen 

Soluble, unfed whole red mite antigens were extracted in a PBS buffer, as described 

previously (Section 3.1). On the day of immunisation, antigens were defrosted for 

approximately 30 min at room temperature and mixed with the appropriate volume of 

adjuvant before being administered. 

6.2.5 ELISA, SDS-PAGE and western blotting 

Serum samples obtained from birds were subject to an ELISA assay to determine 

IgY levels, using the protocol outlined in Section 3.2. The cut-off point threshold was 

calculated as the negative plus 1.645 S.D. as recommended by Mire-Sluis et al. 

(2004) and optical density values of samples were standardised using a 

normalisation factor set as the ratio between negative standards (see Section 3.2). 

Specific antibody binding to individual red mite antigens was also assessed via SDS­

PAGE and western blotting (Section 3.3). This was performed on serum from the five 

most immunodominant birds in each treatment (Le. birds which displayed the highest 

IgY levels in ELISA), both before immunisation and after three immunisations. 

6.2.6 Cytokine analysis 

The Taqman assay was used to determine specific cytokine levels being expressed 

in RNA extracted from spleen samples, the protocol for which was outlined in Section 

3.7. The presence of RNA coding for a number of cytokines was investigated using 
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gene specific primers. The Th1-type response was determined using a primer for the 

classical Th1 cytokine, interferon-y (IFNy). Th2-type cytokine expression on the other 

hand was assessed by levels of interleukin-10 (1L10), a regulatory cytokine involved 

with anti-inflammatory responses; interleukin-4 (IL4) and interleukin-13 (1L13), which 

are primarily involved in anti-helminthic protection and finally, interleukin-5 (IL5), 

which causes eosinophil activation to allow parasitic protection and also mediates 

allergic reactions. 

6.2. 71n vivo red mite feeding challenge 

In order to establish the efficacy of the immunisation, an artificial infestation of red 

mite was created. This required the transfer of birds at 15 weeks of age to individual 

metabolism cages which contained a perch and troughs providing ad libitum feed and 

water. The red mite were exposed to the hens by placing the mites in a simple plastic 

chamber fixed to the back of the bird using tissue adhesive. The chamber contained 

150 unfed red mite (100 female and 50 male) and a small trap for the red mite to 

reside in when not feeding. The chamber remained in place on the bird for a period of 

24 hours, after which it was removed along with all mites which could be recovered. 

The chambers were incubated at room temperature in the dark for 48 hours to allow 

for egg deposition. The chambers were then emptied, the red mite counted and the 

number of fed mites established, along with total mortality and oviposition rates. Fed 

and unfed mites were separated and the unfed mites discarded. The fed mites 

(determined by their characteristic red appearance) were maintained in an incubator 

at 20°C for a further 10 days to establish further oviposition and survival rates and 

also allowing the fed red mite time to digest their blood-meal and return to an unfed 

status. Eggs were in turn monitored to determine hatching rate. After this period of 10 

days, the remaining live adult mites were then placed back inside chambers which 

were secured on the same bird for a further period of 24 hours to allow a second 

feeding. After removing the chambers, red mite were then subject to the same 

procedure of incubation for 10 days, before identification and counting. At this point 

all remaining mites were disposed of. A summary of this procedure is given in Figure 

6.1. 

6.2.8 In vitro red mite feeding challenge 

As a means of comparison with the in vivo feeding system, an in vitro method was 

devised to allow the rapid testing of red mite feeding on whole blood using a method 

modified from Bruneau et al. (2001). The feeding system is described in Section 3.6. 
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A similar protocol to the in vivo mite feeding system was used, except that only 60 

red mite (40 female and 20 male) were placed inside the feeding systems and the 

blood reservoirs filled. These were then placed on an orbital shaker at 30°C in a dark 

room for 12 hours in order to simulate natural feeding conditions of the red mite. After 

this feeding period, the blood reservoirs were removed and the remaining red mite 

containing portion of each system placed in an incubator at 20°C, in the dark for a 

further 48 hours to allow for oviposition. The following part of the in vitro feeding was 

the same as described previously for in vivo feeding, where survival, oviposition and 

hatching of the relevant mite stages were recorded and fed red mite were subject to 

a second feed. 

Figure 6.1 Schedule for in vivo and in vitro feeding of poultry red mite 

Red mite population: 100 unfed female + 50 unfed male (in vivo) t 40 unfed female + 20 unfed male (in vitro) 

Placed in chamber + feed 
(24 hrs) 

~ 
Removed + Incubated (48 hrs) 

(Count) 
I 

I"" Fed tamale Fed f1male + (Alive) (Dead) 

Eggs 
Laid 

t 
Eggs 
hatched 

I 

1 
Incubate 10 days 

(Count) 

t 

l 
Fed male 

(Alive) 
I 

Removed + Incubated (48 hrs) 

~ 
I"" Fed female + (Alive) 

Eggs 
Laid 

t 
Eggs 
hatched 

I 

(co}n!) 
l 

Fed female Fed male 
(Dead) (Alive) 

l 
Incubate 10 days 

(cor) 

I 

END: Dispose of all mites 

l 
Fed male 

1 
Unfed 

(Dead) (Alive/Dead) 

l 
Fed male 

1 
Unfed 

(Dead) (Alive/Dead) 
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6.2.9 Statistical analysis 

Statistical analysis of the effect of treatment on hen parameters and optical density 

was performed using ANOVA in MINITAB (V14), with response variables including 

weekly hen bodyweight, IgY optical density and cytokine levels. The change in 

optical density over time for repeat samples on the same bird was also analysed 

using repeated measures analysis of variance (MANOVA) in GenStat®. Finally, all 

red mite survival and fecundity data for treatment (Control and Antigen), sampling 

point (2 and 10 days post 1 st infestation and 2 days post 2nd infestation) and feeding 

system used (in vivo and in vitro) was entered into MINITAB as one dataset and 

analysed by ANOVA as a multi-factorial design to determine differences between 

each of these parameters. 

6.3 Results 

6.3.1 Bodyweight and feed intake 

Mean weekly records for both Control and Antigen treatments showed a steady 

increase in both bird weight and feed consumption (Table 6.2). No significant 

differences were seen between treatments for mean bodyweight. However, since 

feed consumption was recorded on a mean pen basis ANOVA was not possible, 

although it appeared that there was no numeric difference between treatments. 

Table 6.2 Mean weekly bodyweight and feed records for both Control and Antigen 

treatments 

Bodywelght (g) 
Control Antigen 

Age (Week) Mean SE Mean Mean SE Mean 
5 491.0 18.38 495.2 18.38 
6 584.2 21.59 585.7 21.59 
9 887.6 23.5 877 23.5 
12 1135 36.62 1106 36.62 
15 1359 39.09 1348 39.09 
17 1499 42.55 1513 42.55 

Feed consumption (glblrdlweek) 
6 37.0 - 37.0 -
9 50.9 - 48.2 -
12 70.0 - 56.8 -
15 76.7 - 62.1 -
17 89.1 - 90.9 -.. 

NS- values within rows not Significantly different 

-= Missing value 

Significance 
NS 
NS 
NS 
NS 
NS 
NS 

-
-
-
-
-
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6.3.2 Immunological response 

Prior to immunisation at 6 weeks of age, there was no difference in mean optical 

density values between treatments and the level for both Control and Antigen birds 

was below the negative cut-off point (Figure 6.2). However, after the first 

immunisation, both treatments showed a broad range of optical densities, with 

considerable variation between the responses of individual birds (see Table 6.3). At 

this point, 89 % of birds (8 out of 9 birds) in the Control treatment displayed IgY 

levels which were above that of the negative cut-off point. in comparison to 67 % (6 

out of 9 birds) in the Antigen treatment (Figure 6.2). The mean optical density of the 

Control treatment was actually above that of the Antigen treatment at this point (1.02 

vs. 0.63, respectively). although this difference was not statistically significant (see 

Table 6.4). 

After the second immunisation. all but 4 birds (No's. 2, 5, 8 and 9) in the Control 

treatment had optical densities which were lower than those in the Antigen treatment. 

However, birds in both treatments had IgY levels which were above the negative cut­

off point (Figure 6.2). Mean optical density in the Antigen treatment was greater than 

that of the Control treatment (1.73 vs. 1.50, respectively), although again this 

difference was not significant (Table 6.3). 

After the third and final immunisation, mean IgY levels were maintained in the Control 

treatment but increased in the Antigen treatment so that the difference between 

treatments was significant (1.53 vs. 2.05, respectively) 

Most birds showed a consistent increase in IgY level after successive immunisations. 

although post infestation there was a slight decrease in mean optical density levels. 

However, 44 % of birds (4 out of 9 birds) in the Antigen treatment and 22 % of birds 

(2 out of 9 birds) in the Control treatment showed a continued rise after red mite 

infestation (Table 6.3). 
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Table 6.3 Mean ELISA optical density results for Control and Antigen treated birds 

Bird No. 
Pre-

Immunisation 
1 0.38 
2 0.34 
3 0.27 
4 0.24 
5 0.20 

6 0.38 
7 0.36 
8 0.27 
9 0.21 

Mean 0.29 
SE Mean 0.024 

1 0.38 
2 0.28 
3 0.58 
4 0.28 
5 0.27 
6 0.22 
7 0.30 
8 0.24 
9 0.30 

Mean 0.32 
SE Mean 0.036 

-ImmUnisation with CFA 
#Immunisation with IFA 

Control 

Post Post 
Immunise 1- Immunlse 2# 

0.84 1.28 
1.63 2.12 
0.40 0.98 
1.44 1.76 
1.48 1.82 
0.50 1.09 
0.65 0.86 
0.58 1.40 
1.66 2.19 
1.02 1.50 

0.175 0.164 
Antigen 

1.38 2.22 
0.60 1.65 
0.69 1.86 
0.42 1.44 
0.78 1.84 
0.33 1.52 
0.45 1.85 
0.56 1.56 
0.50 1.59 
0.63 1.73 
0.104 0.081 

---
Post Post 

Immunlse 3# Infestation 
1.19 0.97 

--

2.16 2.12 
--

0.98 0.80 
1.55 1.11 .-
2.19 2.03 

.. ~--

1.11 1.18 
.-

0.84 0.74 
1.53 1.55 

--
2.26 1.73 

---~--------.-. 

1.53 1.36 
-

0.184 0.173 
--

-~ 

2.37 2.27 
2.30 2.92 

.. _----
2.34 2.24 

----

1.72 1.80 .. --~ 
2.05 1.79 
1.58 1.71 --
2.09 1.74 
2.47 2.13 
1.57 1.80 
2.05 2.04 

.. -

0.117 0.132 

Table 6.4 Comparison of mean optical density values between treatments 

Sampling point Replicates Control Antigen 
--

per group Mean SE Mean Mean SE Mean Significance ------
Pre-Immunisation 18 0.29 0.031 0.32 0.031 NS 

Immunisation 1 15 1.02 0.144 0.63 0.144 NS - .~---~-~-~~ 
Immunisation 2 12 1.50 0.129 1.73 0.129 NS -------_.-

Immunisation 3 9 1.53 0.154 2.05 0.154 . 
Infestation 9 1.36 0.154 2.04 0.154 .. 

.. 
*= P<O.05; **= P<O.01; NS= no slgmflcant difference; - = MIssing value 
Means within a row followed by a different superscript letter are significantly different 
at P<O.05 

Figure 6.2 illustrates the effect of immunisation on the IgY kinetics over the course of 

the experiment. Both treatments show a continual rise in IgY levels as a result of 

immunisation, with the initial response in Control birds being greater than the Antigen 

treatment. However, after the second and third immunisations the IgY level in the 

Antigen treatment surpasses that of the Control, but following infestation the IgY level 

plateaus in the Antigen treatment, and falls in the Control treatment. 
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Figure 6.2 Comparison of mean optical density per treatment by ELISA 

~ 
----

~ 
~ 
~ 

2 .500 

* 
2 .000 

1.500 _Control 

-a-- Ant igen 

--Cut-off 
1.000 

0 .500 

0 .000 l T- .....,-- --.- ,--

6 9 12 15 17 
Age (week) 

*= Significantly different at P<O.05; **= Significantly different at P<O.01 

A repeated measure function in GenStat® was used to assess the effect 

immunisation on IgY level over time and showed that there were weekly differences 

between treatments (see Table 6.5). For the Control treatment, mean IgY level was 

significantly increased after both the first and second immunisations but did not 

significantly increase after this point. In the Antigen treatment mean IgY level was 

similar between pre-immunisation and after the first immunisation. However, there 

was a significant increase in IgY level after the second immunisation, but again no 

significant change thereafter. 

Table 6.5 Comparison of mean weekly optical density within treatment 

Sampling point Age (Weeks) Control AntlQen 

Pre-Immunisation 6 0.293 0.32a 

Immunisation 1 9 1.02b 0.633 

Immunisation 2 12 1.45c 1.73b 

Immunisation 3 15 1.53c 2.05b 

Infestation 17 1.36c 2.04b 

P Value - ... **. 

***= P<0.001; Means within a column followed by a different superscript letter are 
significantly different at P<0.05 

6.3.3 Western blotting 

Figure 6.3 illustrates that in both treatments there was some non-specific recognition 

of antigens prior to immunisation, as described in Section 3.4, with antibodies 

recognising proteins at approximately 20 and 60 kOa (Lanes 2 and 3) . After three 
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immunisations, numerous additional bands were observed in both treatments. 

However, there was no distinguishable difference between bands produced with sera 

from the two different treatments. 

Figure 6.3 Western blot of serum from Control and Antigen treatments. Lane 1, 

Molecular weight marker (kOa). Lane 2, Control treatment pre-immunisation; Lane 3, 

Antigen treatment pre-immunisation. Lane 4, Control treatment post-immunisation; 

Lane 5, Antigen treatment post-immunisation 

100 _ 

60 -

45 -

30 -

20 _ 

12 _ 
8 -

6.3.4 Cytokine analysis 

3 4 
.--_ ...... A ___ ----. .__-...... A __ -----. 

RT -PCR was carried out on spleen samples allow the determination of a number of 

cytokine responses involved in both Th1- and Th2-type responses. The results are 

shown Table 6.6, demonstrating that there is no real trend over time, with individual 

values fluctuating considerably. When looking at overall means it is possible to 

observe that, excluding I L-1 0, cytokine levels tend to be higher in the Control 

treatment. 

Analysis of variance of cytokine levels was only performed on data following 

infestation, as prior to this insufficient sample numbers were available. Results are 

displayed in Table 6.7 and show significantly higher (P<0.05) levels of IL-10 present 

in the Antigen treatment. Conversely both IL-4 and IL-5 were seen to be significantly 

higher in the Control treatment, whilst IFN-y and IL-13 did not display any significant 

differences between treatments. 

171 



Table 6.6 Weekly mean cytokine levels between treatments 

Control 
Week of age IFNy IL-10 IL-4 IL-S IL-13 

9 9.30 1.73 8.54 14.82 2.87 
12 9.01 1.91 2.23 11.24 3.29 
14 8.62 1.33 4.89 13.21 2.24 
20 9.03 1.93 6.99 13.88 2.55 

Mean 8.99 1.72 5.66 13.29 2.74 
S.E. Mean 0.150 0.304 0.838 0.483 0.403 

Antigen 
9 9.40 1.84 6.38 13.49 2.60 
12 9.48 3.05 4.26 13.04 2.70 
14 8.60 0.00 8.36 15.66 3.25 
20 8.89 0.59 10.14 16.77 3.63 

Mean 9.09 1.37 7.29 14.74 3.05 
S.E. Mean 0.138 0.332 0.778 0.578 0.353 

Table 6.7 Comparison of cytokine levels between treatments after infestation 

Replicates Control Antigen 
Cytoklne per group Mean S.E. Mean Mean S.E. Mean Significance 

IFNv 9 8.89 0.164 9.03 0.164 NS ----

IL-4 9 10.14 0.947 6.99 0.947 • 

IL-S 9 16.77 0.680 13.88 0.680 .. 
--~.-~---

IL-10 9 0.59 0.430 1.93 0.430 • 
._--_. 

IL-13 9 3.63 0.669 2.55 0.669 NS -.. 
*= P<0.05; **= P<0.01; NS= no significant difference; 
Means within a row followed by a different superscript letter are significantly different 
at P<0.05 

6.3.5 Red mite feeding challenge 

In order to standardise values between replicates and feeding system, red mite 

survival and fecundity were calculated as a percentage of the population within that 

replicate, rather than the actual number of red mite recovered. This was because 

different starting populations of red mite were used in the two feeding devices and 

there were also different recovery rates of red mite between replicates. It should also 

be noted that values expressed are for fed and not unfed mite, therefore data does 

not always total 100 % in Tables 6.8-6.10. 

There were no significant differences in mite survival or fecundity rates between 

treatments (Table 6.8). However, there was a consistent trend in the data which 

suggested that there was a higher mortality of red mite in the Antigen treatment when 

compared to the Control treatment. 
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Reproductive success showed similar responses between treatments with no 

significant differences, although oviposition rates were higher in the Control treatment 

than in the Antigen treatment. 

Table 6.8 Effect of treatment on mean red mite populations 
-.-.~-.----

Treatment 
Control Antigen 

Mean S.E. Mean Mean S.E. Mean Significance 
Alive Female 47.1 3.20 44.6 3.26 NS 

-~ 

Alive Male 50.6 3.99 44.2 4.07 NS 
Total Alive 48.1 2.67 44.3 2.72 NS 

--

Dead Female 33.9 2.84 36.9 2.89 NS 
Dead Male 31.9 3.96 36.9 4.04 NS 

------~ 

Total Mortality 33.4 2.42 37.1 2.46 NS 
Eggs/Female 0.3 0.05 0.1 0.05 NS 
% Eggs Hatched 98.3 1.48 98.3 1.68 NS 

-----~. .. 
NS= values within rows are not significantly different 

Significant differences between sampling point were seen for mortality, but not for 

survival rates of red mite populations (Table 6.9). It was observed that mortality for 

male, female and total red mite populations was significantly higher 10 days post first 

infestation than 2 days post first infestation, with male mortality not changing 

thereafter. However, both female and total red mite mortality was significantly higher 

2 days post second infestation than 10 days post first infestation. 

Table 6.9 Effect of sampling point on mean red mite populations 

Sampling point 
2 days post 18

• 10 days post 18
• 2 days post 2na 

Infestation Infestation Infestation 
S.E. S.E. S.E. 

Mean Mean Mean Mean Mean Mean Significance 
Alive Female 51.8 3.92 41.7 3.92 44.1 4.03 NS 
Alive Male 49.3 4.89 43.3 4.89 49.7 5.03 NS 
Total Alive 51.2 3.26 42.1 3.26 45.2 3.36 NS 
Dead Female 4.38 3.48 58.3b 3.48 43.5c 3.58 

_ .. 
--

Dead Male 5.88 4.85 55.9b 4.85 41.5b 5.00 ---
Total Mortality 4.88 2.96 57.9b 2.96 43.1 c 3.05 ---.. 

***= P<0.001; NS= no significant difference; 
Means within a row followed by a different superscript letter are significantly different 
at P<O.05 

Comparing red mite population and fecundity values shows that there were no 

significant differences between the two different feeding systems (Table 6.10). There 

were also no apparent trends between red mite survival and mortality parameters. 

However, there did appear to be a higher hatching rate in the in vitro system, 

although this was not significant. 
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Table 6.10 Effect of feeding system on mean red mite populations 
.. _,. 

Feeding system 
In vivo In vitro 

Mean S.E. Mean Mean S.E. Mean Slgnlflcan~f! 

Alive Female 44.6 3.23 47.2 3.23 NS 
.--

Alive Male 50.6 4.03 44.2 4.03 NS 
----

Total Alive 46.1 2.69 46.3 2.69 NS 
--

Dead Female 35.9 2.87 34.8 2.87 NS 
Dead Male 33.9 4.00 34.8 4.00 NS 

--

Total Mortality 35.6 2.44 34.9 2.44 NS 
Eggs/Female 0.2 0.05 0.2 0.05 NS 
% Eggs Hatched 96.6 1.61 100.0 1.55 NS 

NS= values within rows are not significantly different 

6.4 Discussion 

The aim of this experiment was to evaluate the effect of immunisation with whole 

poultry red mite antigens on the humoral and cellular immune response of laying 

hens and the effect of this on survival and fecundity of mites using both in vitro and in 

vivo feeding systems. 

6.4. 1 Bodyweight and feed intake 

The study used birds of a commercial genotype housing them under similar 

conditions to that of a commercial pullet rearing environment, except these birds 

were not vaccinated against any disease. Data on bodyweight and feed consumption 

showed that birds performed within commercial recommendations, reaching the 

appropriate weight for age (Nix, 2000; Rose, 2001). Birds were also observed to be 

in good health for the duration of the experiment with treatment having no significant 

effect on either bodyweight or feed intake. 

6.4.2 Immune response-ELISA 

The immune response of birds to vaccination was monitored using an IgY specific 

ELISA. Primary and secondary immunisations did not result in a significant difference 

in serum optical density between treatments. However, after the third immunisation 

the Antigen treatment had a significantly higher IgY level (P<0.05), a difference was 

maintained following infestation with red mite (P<0.01), suggesting that birds were 

manufacturing IgY directly against vaccine constituents. Increases in circulating IgY, 

in response to immunisation with both mite and other ectoparasitic antigens is an 

effect which has been widely documented (Devaney and Augustine; 1987; Wikel et 

al., 1989; Minnifield et al., 1993; Lee et al., 2002). 
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There was also a significant effect of successive immunisations over time on optical 

density values. In both treatments, initial IgY levels were significantly lower than 

succeeding observations (P<0.001). This boosting effect induced by routine 

immunisation is as a result of the formation of memory 8-cells which are synthesised 

against specific antigens following primary infection. Upon subsequent exposure to 

the same antigens, memory 8-cells recognize them and quickly proliferate to enable 

an elevated and more rapid response, thus preventing recurrent infection (Smith et 

al., 2004). As with the present study, it is not uncommon to find that at least three 

immunisations are necessary to elicit a response which causes a significant 

difference between treatments (Patarroyo et al., 2002). 

When considering IgY levels for individual birds, it was observed that prior to 

immunisation all birds were below the negative cut-off point i.e. were not producing 

antibodies against red mite antigens, as expected. However, following the initial 

immunisation all birds in the Control treatment reacted unexpectedly showing an 

increase in the production of IgY specific to red mite antigens. IgY levels were in fact 

higher in the Control treatment than in the Antigen treatment, although not 

significantly so. There was also a higher degree of variation observed between 

individual birds in the Control treatment in comparison to the Antigen treatment. This 

high variability remained apparent throughout, with several birds from the Control 

treatment maintaining IgY levels equivalent to those seen in the Antigen group. 

Control animals displaying an increased antibody production following immunisation 

is not altogether uncommon, as has been previously observed on numerous 

occasions, although these increases are generally not rationalized (Devaney and 

Augustine, 1987; Wikel et al., 1989; Minnifield et al., 1993; Sam-Sun et al., 2002; 

Smith et al., 2004; Hou et al., 2006). 

However, there are several potential explanations for this phenomenon. Firstly, it 

may be possible that there is a high degree of non-specific binding of antibodies in 

ELISA causing false positive results. For example, failure to distinguish self from non­

self by the presence of serum anti-chicken IgY antibodies, equivalent to rheumatoid 

factor (RF) or human anti-mouse antibody (HAMA). would result in generation of non­

specific binding (Johnson and Faulk, 1976; Larsson et al., 1992). Alternatively, a 

false positive could arise from the presence of endogenous antibodies, which are 

non-specific polyclonal serum antibodies capable of recognising multiple epitopes on 

antigens (Ismail, 2005). Previous research suggests that serum concentrations of 
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endogenous antibodies are found to fluctuate widely from one individual to another, 

with differing affinity/avidity to various antigens. Endogenous antibodies are capable 

of mimicking antigens/antibodies and often have multiple paratopes (binding sites), 

so therefore can also disrupt reaction kinetics (Wingren et al., 1995). The innate 

characteristics of endogenous antibodies cause various levels of interference and 

thus could potentially explain the wide variation observed between individual birds in 

the present study. However, such extensive non-specific and varied binding was not 

observed during assay validation (see Section 3.2). 

An alternative suggestion to the occurrence of non-specific binding could be the 

maternal transfer of immunoglobulins (Fahey et al., 1987; AI-Natour et al., 2004). 

However, for this to be applicable one would expect to see birds mounting an 

immune response to red mite from the beginning of the experiment. Since this did not 

happen in the current experiment this explanation in unlikely. 

A fourth and final explanation for the occurrence of non-specific binding concerns the 

constituents of the vaccine, which differed between the three immunisations. The first 

immunisation for each treatment was prepared using CFA which contains 

Mycobacterium tuberculosis, whereas subsequent immunisations used IFA, which is 

simply an oil-in-water emulsion. It was previously found by Mathaba et al. (2002) that 

the house dust mite (Dermatophagoides farinae) contains lytic enzymes which share 

sequence homology with specific prokaryotic proteins suggesting that they may be 

bacterially derived. Most interestingly for the purpose of the current study, this 

homology was seen with Mycobacterium tuberculosis. Mathaba et al. (2002) 

hypothesized that bacteriolytic enzymes may be utilized by mites for the digestion of 

bacteria, which form a part of their diet. It may therefore be possible to make the 

assumption that other mite species, including the poultry red mite, will show a similar 

sequence homology to bacteria by containing bacteriolytic enzymes. If this was the 

case then the red mite extracts administered in the current study might contain a 

series of proteins similar to those found in the Mycobacterium contained within the 

CFA. In the current study both Control and Antigen treatments received CFA in the 

first immunisation and IFA, which does not contain Mycobacterium, for second and 

third immunisations. Therefore, birds in both treatments would be expected too 

mount an initial antibody defence against Mycobacterium. However, after subsequent 

immunisation with IFA antibody production would slow in the Control treatment, whilst 

continuing to increase in the Antigen treatment and was in fact the case in the current 

study. The theory of mites coexisting with other pathogens (Chauve, 1998; Moro et 
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al., 2005), not only Mycobacterium, may be an additional source of non-specific 

binding in immunological studies. Since, if control birds are naturally exposed to 

similar environmental pathogens to those immunised in vaccines containing 

arthropod antigens, a similar immune response will be initiated between treatments. 

Purification and immunisation of specific red mite proteins may be one way to avoid 

this problem and has been shown to work previously (Willadsen et al., 1999). 

6.4.3 Western blotting 

Results of the western blotting also produced unexpected results, antibody 

responses when using post immunisation sera revealed little difference between the 

Antigen and Control treatments, both displaying multiple bands and similar profiles. 

The same possible explanations for this binding can be applied as were discussed 

for the ELISA results. The suggestion that Mycobacterium shares sequence 

homology with mite protein is one possible theory, which assumes that protein 

extracted and fractionated would have a direct association with Mycobacterium in 

order to be recognised by antibodies from both treatments. 

Additionally, as with the ELISA assay, there is the possibility of non-specific binding 

by endogenous antibodies, which increase with antigenic exposure, both with age 

and following vaccination (Wingren et al., 1995). 

Several other authors have observed that serum from birds which had never been 

exposed to mites produced multiple bands after western blotting, with similar profiles 

to those of birds which had faced either artificial or natural mite antigens (Devaney 

and Augustine, 1987; Wikel et al., 1989; Minnifield et al., 1993). Devaney and 

Augustine (1987) proposed that this was due to the secondary anti-chicken IgY 

antibody binding directly to chicken blood antigens present in the mite extract, rather 

than actual mite components. This was observed to some extent in the present 

study, where secondary anti-lgY antibody bound directly to fractionated mite extracts 

prior to immunisation (Section 3.4). However, this was only apparent to 20 and 60 

kDa fragments and not the full spectrum. Wikel et al. (1989) simply attributed non­

specific binding to the presence of cross-reactive natural immunoglobulins. 

6.4.4 Cytokine analysis 

Treatment appeared to have little impact upon the Th1-type immune response of 

birds, as no differences in IFN-y levels were apparent between the Control or Antigen 
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treatments. Wakugawa et al. (2001) also observed no change in IFN-y levels after 

spiking peripheral blood mononuclear cells with dust mite antigens. Lack of Th1-type 

response may also have been due to the inability of red mite antigen to penetrate into 

the spleen tissue, as it is more likely that any immune response would be much more 

localised (Wikel, 1982). In addition, the timing of the spleen sampling, three weeks 

post immunisation, may have missed any cytokine response that occurred, since 

optimal sampling time to detect Th2-type immune response is usually around 4-10 

days after antigen exposure (Zeidner et al., 1999). 

Prior to red mite infestation there were significant changes to IL-10, IL-4 and IL-5 

levels. IL-10 expression was significantly higher in the Antigen treatment when 

compared to the Controls. Since IL-10 is an anti-inflammatory cytokine, it is perhaps 

not surprising that increased levels were observed, since mite antigens have a 

history of evoking pro-inflammatory responses, although generally as a result of 

direct feeding (Van Den Broek et al., 2000). IL-10 is also known as the cytokine 

synthesis inhibitory factor (CSIF) and has pleiotropic attributes, enabling it to inhibit 

the production of many other cytokines, in particular Th1-type stimulatory IFN-y 

(Waal Malefyt et al., 1991). This may explain why no increase in the level of IFN-y 

was seen in the antigen treatment. Yang et al. (2001) reported that immunisation with 

dust mite antigens again stimulated a significant rise in IL-10 causing a significant 

drop in IFN-y levels. These apparent differences between studies are likely to be as a 

result of the nature of the antigens immunised, in terms of structure (Schoeler and 

Wickel, 2001). 

On the other hand, levels of both Th2-type cytokines IL-4, an anti-helminthic cytokine 

and IL-5, an anti-parasitic and allergen mediating cytokine were lower in the Antigen 

treatment after red mite infestation. The reasons for this are unclear, although it may 

possibly be as a result of immunosuppression in the Antigen treatment by a 

component of the red mite extract, as described in the previous chapter. Extracts 

from haematophagous arthropods have been associated with down-regulation of 

numerous cytokines, including both IL-4 and IL-5 (Schoeler and Wikel, 2001). The 

antigen elements causing this reduction are generally associated with salivary gland 

extracts and are important during the feeding process (Gillespie et al./ 2000). 

Therefore, if similar components were included in the antigen extract injected into 

birds in the present study, then this could explain the reduced cytokine expression. 

Contrary to this, other authors have reported arthropod saliva to up-regulate 
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cytokines associated with Th2-type response, whilst down-regulating the Th1-type 

response (Schoeler and Wikel, 2001). 

With these conflicting views it is therefore difficult to draw definite conclusions about 

the cytokine response following immunisation. However, it would seem that the red 

mite extracts administered here have the capacity to manipulate the immune system 

in the favour of the feeding mite. Extracts appeared to avoid eliciting Th1-type IFN-y, 

as well as up-regulating IL-10 cytokines which would assist feeding by reducing 

inflammation and also suppress Th1-type responses. Additionally, there was an 

apparent down-regulation of anti-parasitic/helminthic Th2-type responses. However, 

a significant increase in the levels of immunoglobulin-Y, which is driven by Th2-type 

immunity, was observed from ELISA assays. These findings remain consistent with 

results presented after natural red mite exposure in Chapter 5 and with numerous 

reports in the literature (Gillespie et al., 2000). Ogden et al. (2002) demonstrated a 

similar response when low level infestation by ticks was met by protective Th1-type 

host immunity. However, an increase in the tick burden was seen to push immunity in 

the direction of a non-protective Th2-type response. Foy et al. (2003) also observed 

significant changes in cytokine expression away from those of the Th1-type and 

towards those of the Th2-type, with significantly higher antibody titres and IL-10 

levels as a result of immunisation with mosquito midgut antigens. 

6.4.5 Red mite feeding challenge 

There were no significant effects of treatment on red mite feeding and fecundity 

parameters. However, there was a trend for lower survival and both higher mortality 

and oviposition rates for red mite in the Antigen treatment, although this was not 

significant. Immunisation against other mite species (Ornithonyssus sylvia rum and 

Sarcoptes scabiei), as well as the mosqUito (Anopheles gambie) have also failed to 

generate clear protective responses in previous studies, where paraSites survived 

despite increased antibody levels (Minnifield et al., 1993; Foy et al., 2003; Tarigan 

and Huntley, 2005). Although birds in the Antigen treatment showed significant 

increases in the production of antibodies against red mite proteins, they might not 

have been presented in the optimum fashion to evoke a Significant reduction in red 

mite numbers after feeding. This may have resulted from damage to the tertiary 

structure of proteins during the extraction process, a structure which may be 

important in eliciting protective responses (Lee et al., 2002). Wikel et al. (1989) 

reported that birds generated a significant IgY response to northern fowl mite 

antigens, although this did not elicit a protective response by reducing mite numbers. 
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The same author suggested that exposure to mite antigens which contained 

immunodominant epitopes may stimulate antibody responses unrelated to protection, 

and that actually resistance to infestation could be induced by antigens which do not 

show immunodominance. It is also possible that potential protective epitopes become 

denatured during the extraction procedure, thus inhibiting antibody binding (Tarigan 

and Huntley, 2005). 

Alternatively, the red mite antigens used in the current study may have induced the 

'wrong type' of immune response. In some parasitic mite species there is evidence 

that there is an insignificant or limited role for IgG antibodies in protecting hosts from 

blood-feeding ectoparasites and they have actually been inversely related to 

protection (Dubois et al., 1993; Tarigan and Huntley, 2005). In these instances, other 

antibody isotypes, such as IgE, or even Th1-type cellular responses have been 

demonstrated to be more important in host immunity (Nisbet and Huntley, 2006). 

Despite there being no significant difference between treatments in the current study, 

sampling point did have a significant effect on red mite mortality, with the number of 

dead mites increasing significantly from 2 to 10 days post first infestation and 

decreasing thereafter. In contrast, Bruneau et al. (2001) saw high levels of mortality 

after initial infestations and suggested that this was due to natural selection, with red 

mite which are unable to feed in the experimental system dying, whilst red mite which 

adapt continue to feed and reproduce. However, it is likely that the higher mortality 

seen in the current study was simply due to the longer incubation period between 

counting points (i.e. 2 versus 10 days) allowing the greater accumulation of dead 

mites. 

This study also revealed there were no significant differences in red mite survival and 

fecundity parameters between in vivo and in vitro feeding systems. This development 

of an in vitro feeding system is promising in the quest for a reliable, non-animal 

model to test protection against parasitism conferred to the host. It offers a controlled 

method for testing therapeutic compounds, whilst allowing for a reduction in the 

requirement of animals (Carroll et al., 1992; Voigt et al., 1993; McDevitt et al., 

2006a). 
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6.5 Conclusions 

Immunisation with an antigen extracted from the poultry red mite resulted in a 

significantly greater antibody response compared to Control treated birds. However, 

birds in the Control treatment also showed an increase in the level of circulating IgY, 

which was thought to be due to the occurrence of non-specific antigen recognition. 

Western blotting showed few differences in specific antibody binding between 

treatments and confirmed ELISA results suggesting non-specific antigen recognition. 

Several explanations were given for this effect, such as the presence of 

Mycobacterium or other red mite dwelling pathogens and/or cross-reactivity of natural 

endogenous antibodies as well as antibody recognition of poultry blood proteins 

present in the mite, although it is likely to be a combined effect of several of them. 

Analysis of cytokine expression revealed that immunised red mite extracts appeared 

to have the capacity to manipulate production in the favour of the feeding mite. There 

was no change in the Th1-type cytokine expression as a result of immunisation, but 

increases in the levels of Th1-inhibitory and anti-inflammatory IL-10 cytokine were 

seen in the antigen treatment. In addition, there appeared to be some 

immunosuppression of anti-parasitic/helminthic Th2-type IL-5/IL-4 cytokines. 

Red mite survival and fecundity appeared to be reduced following immunisation with 

mite extract, although these differences were not significantly different to the Control 

treatment. It was suggested that this protective failure may be as a result of 

insufficient antigen levels or improper presentation of mite antigens. 

This study also resulted in the development of an in vitro feeding system using skin 

membranes, which was validated against an in vivo feeding system and will assist in 

future refinement of the immunisation strategy by providing a means for rapid and 

reproducible testing, without recourse to testing on live birds. 

181 



Chapter 7 

The effect of immunisation with different poultry red mite extracts on 

humoral immunity and subsequent efficacy 

7. 1 Introduction 

In the previous chapter immunisation of birds with an antigen prepared from whole 

red mite crushed in a PBS buffer resulted in a significant increase in IgY levels. 

However, the same antigen showed apparent cross-reactivity with Mycobacterium 

found in both the adjuvant used (CFA) and red mite extracts, which was confirmed by 

PCR analysis in Section 3.8. Despite increases in red mite specific IgY, immunisation 

failed to generate a significant protective response against red mite parasitism, which 

was revealed after the development of a robust in vitro feeding system for estimating 

the survival and fecundity of red mite. In addition, the previous chapter showed some 

apparent changes in the levels of cytokine expression, although overall effects on 

this type of the immune response were modest. 

Since red mite antigens were observed to clearly facilitate humoral immunoglobulin 

responses, it would therefore be beneficial to quantify additional humoral antibody 

response in the form of immunoglobulin-M (lgM). IgM is a pentameric molecule 

binding less specifically than IgY which makes it ideal for defence against primary 

pathogen invasion (Abbas et a/., 2003). Despite having a short lifespan IgM is 

capable of producing protective immunity as it can recognise different epitopes to IgY 

and utilize alternative mechanisms for the elimination of parasites (Tizard, 2002; 

Ligas et a/., 2003). 

Therefore this study had several aims, firstly was the eradication/limitation of the 

apparent Mycobacterial effect observed in the previous trial, allowing the 

establishment of a true negative. The second aim was to determine the effect of 

immunisation with red mite antigens on the level of IgM response. Finally, an in vitro 

feeding system was used to evaluate the survival and reproductive parameters of red 

mite after immunisation of pullets with different red mite antigen extracts. 
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7.2 Materials and methods 

7.2. 1 Experimental treatments 

Birds were subject to one of 4 immunisation treatments; Treatment 1 was a true 

negative with birds receiving PBS only; Treatment 2 was a second control treatment, 

with birds receiving Incomplete Freund's adjuvant (IFA) only; Treatment 3 was an 

antigen treatment, with birds receiving the same PBS-extracted red mite antigen as 

used in the previous chapter (PBS Antigen); Treatment 4 was another antigen 

treatment, with birds receiving a red mite antigen extracted in a urea buffer (Urea 

Antigen). Treatments 3 and 4 both received antigen in IFA. Each treatment had 20 

replicate birds, with 3 naive birds sacrificed at the start of the trial to generate 

baseline parameters giving a total of 83 birds (see Table 7.1). 

Table 7.1 Summary of experimental treatments 

Treatment No. Immunisation constituents 

1 1 ml PBS 

2 Incomplete Freund's adjuvant + PBS 

3 0.5 mllncomplete Freund's adjuvant + 0.5 ml PBS Antigen (1 mg) 

4 0.5 mllncomplete Freund's adjuvant + 0.5 ml Urea Antigen (1 mg) 

7.2.2 Birds and housing 

Female domestic fowl of a commercial egg-laying strain were used in this experiment 

(Shaver-579), housed according to recommendations for floor pens (OEFRA, 2001). 

Birds were purchased at day-old and maintained in a floor pen, using a brooder lamp 

and wood-shavings for bedding. At 5 weeks of age the birds were allocated to 4 

separate floor pens located in the same room. For the duration of the trial they were 

provided with ad libitum water and standard commercial feed for growing and 

subsequently laying hens. Ambient temperature was adjusted to maintain birds within 

their thermal comfort zone, which is approximately 32°C at day-old and falling to 

18°C when they became fully feathered adults (Rose, 2001). The illumination 

program followed the standard for commercial production using a ratio of light to dark 

of 14L: 100 designed to bring birds to the point of lay at 20 weeks of age. Leg rings 

were used to identify individual birds within a group. Birds were monitored daily for 

signs of ill health following immunisation, which included intolerance to exercise and 

at a more extreme level, an increased respiratory rate (Morton et al., 1993). 

Individual bodyweight, mean weekly feed intake and room temperature were all 

recorded for the duration of the study. 
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7.2.3 Preparation of red mite antigen 

Soluble, unfed whole red mite antigens were extracted using either a PBS or urea 

buffer, as described in Section 3.1 and were either immunised into birds or used in 

ELISA/western blotting. Antigens were defrosted for approximately 30 min at room 

temperature on the day in which they were required. 

7.2.4 Immunisation and sampling schedule 

Birds were immunised subcutaneously on the back, between the wings, on three 

separate occasions at 5, 8 and 11 weeks of age (Table 7.2). The volume of injectate 

in all four treatments was approximately 1 ml and so did not exceed the 

recommendations i.e. 2 to 5 ml/kg (Morton et al., 2001). 

Blood samples were taken at 5 weeks of age, prior to the first immunisation and then 

at 8, 11 and 14 weeks of age, one day prior to subsequent immunisations. A blood 

sample was taken from the brachial (wing) vein, removing a volume of approximately 

1 ml. At the end of the experiment the remaining birds were dispatched humanely via 

cervical dislocation and bled directly from the heart, removing approximately 5 ml of 

blood. This blood was divided equally and either allowed to clot and serum removed 

for subsequent immunological analysis, or placed inside lithium heparinised 

vacutainers (Becton Dickinson vacutainer systems, Oxford, UK) to yield full blood for 

use in an in vitro red mite feeding system. 

Table 7.2 Schedule of immunisation and sampling 

Week Age (weeks) Treatment Sampling 

1 5 Immunise 1 #Serum (All) 

4 8 Immunise 2 #Serum (All) 

7 11 Immunise 3 #Serum (All) 

10 14 In vitro mite feeding IISerum and full blood (All) 
/I All samples were taken 1 day pnor to that of treatment from all birds 

7.2.5 ELISA 

Both IgY and IgM specific ELISA's were conducted on serum from all birds at each 

sampling point to quantify the relative levels of antibody. The ELISA's were carried 

out using only PBS-extracted mite antigens to coat the plates, as a pilot validation 

assay performed comparing both plates coated with PBS/urea-extracted antigens 

and sera from birds immunised with both PBS/urea-extracted antigens showed no 

significant difference between the optical density for the two methods (see Tables 21-
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22, Appendix II). The protocol for IgM ELISA is outlined below, however, for IgY 

ELISA protocol see Section 3.2. 

7.2.5. 1 IgM ELISA 

An ELISA assay for the determination of red mite IgM levels in poultry serum was 

developed as follows. Firstly, 10 ~g of PBS extracted red mite antigen (Section 3.1), 

diluted in 0.1 M NaHC03 (pH 9.5) was used to coat Nunc flat-bottomed 96-well ELISA 

plates (Nunc, Denmark) and left overnight in an orbital shaker at 4 DC. The following 

day, the plates were washed 3 times in 200 IJI PBS-Tween-20 (0.15 M NaCI, 0.02 M 

Na2HP04, 0.01 % Tween-20, pH 7.2) and then blocked in 100 ~I of 1 % milk powder 

and incubated at 37DC for 45 min. Plates were washed again using 200 IJI PBS­

Tween-20 and then 1 00 ~I of serum, diluted 1 :500 in PBS-Twas added and 

incubated at 37DC for 1.5 hours. After another three washes with 200 IJI PBS-Tween-

20, each well received 1 00 ~I of goat anti-chicken IgM antibody (Serotec, Oxford, 

UK), diluted 1 :8,000 in PBS-T and 1 % milk powder and incubated for a final time at 

37DC for 1 hour. Plates were once again washed in 200 IJI PBS-Tween-20 and 

developed using TMB substrate (Sigma, St. Louis, USA). Plates were held at room 

temperature for 17.5 min, after which the reaction was stopped by adding 100 ~I 1 N 

HCI to each well and plates read immediately at 450 nm using a microplate reader 

(Bio-tek Instruments, Winooski, USA) to determine optical density. 

7.2.6 SDS-PAGE and western blotting 

In order to establish specific antibody binding, SOS-PAGE/western blotting for IgY 

was carried out on serum samples both pre- and post- immUnisation on samples 

from the 5 most immunogenic birds (Le. birds which displayed the highest antibody 

levels in ELISA) in each treatment. Blotting was done using both PBS and urea 

extracted antigens to allow visualisation of binding differences. The full protocols for 

both SOS-PAGE and western blotting were described previously in Section 3.4. 

7.2. 71n vitro red mite feeding challenge 

The survival and fecundity of red mite feeding on blood from the four treatments was 

assessed using an in vitro feeding system. The protocol for feeding was described in 

Section 3.6. Mites were fed using day-old chick skin membranes and lithium 

heparinised full blood taken from the experimental birds. After feeding, blood 

reservoirs were removed and the number of fed mites established, along with 

mortality, oviposition and subsequent hatching rates. In contrast to the previous 

experiment (Chapter 6) red mite were only subject to one round of feeding. It is also 
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important to note that data for mite survival and fecundity was expressed as 

percentages, due to differing mite recovery rates between replicates and treatments. 

7.2.8 Statistical analysis 

Statistical analysis of the effect of treatment on hen parameters, humoral immune 

response and mite infestation was performed using ANOVA in MINITAB (V14). 

Response variables including weekly hen bodyweight, IgY and IgM optical density 

and red mite survival and fecundity, were analysed against the effect of treatment. 

Also, ANOVA for hen bodyweight was performed using the initial starting weight as a 

covariate to determine whether this had an effect on subsequent bodyweight after 

immunisation. 

7.3 Results 

7.3.1 Bodyweight and feed intake 

When comparing mean weekly weights of experimental birds per treatment it was 

obvious that Treatment 4 was consistently lower than other treatments. This 

difference was apparent before birds received any immunisation, although not 

significantly so at this point (Table 7.3) and maintained throughout the duration of the 

trial. However, this initial weight difference did not have a significant impact on 

subsequent bodyweight (see Appendix II). 

Table 7.3 Effect of treatment on mean weekly bodyweight (g) (20 birds/group) 

Age Treatment Treatment Treatment Treatment S.E. 
(Weeks) 1 2 3 4 Mean Significance 

5 338.5 333.9 375.9 345.6 6.25 NS 
6 419.7a 416.4ao 425.4ab 383.2b 7.81 • 

7 511.7a 525.1 ac 566.5ac 520.3c 9.79 • 

8 629.1 ao 632.5ao 683.9a 637.6b 10.39 · 
9 777.0ab 785.9a 823.1 a 781.2b 14.44 • 
10 909.0 896.7 957.1 892.1 14.99 NS 
11 1015.4ao 1008.9ab 1102.2a 1004.6b 

15.79 · 
12 1107.9 1122.9 1220.6 1207.1 27.58 NS 
13 1238.6 1264.8 1372.5 1338.7 30.55 NS 
14 1355.0 1417.0 1491.0 1493.0 19.86 NS .. 

*= P<O.05; NS= no Significant difference; 
Means within a row followed by a different superscript letter are significantly different 
at P<O.05 

Statistical analysis was not possible on feed intake as it was recorded on a mean pen 

basis. However, there appeared to be no difference in mean weekly feed intake 

between treatments (Table 7.4), although a lull in intake was seen for all treatments 
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after the first immunisation (6 weeks of age). No decreases were observed after 

further immunisation, although there was a degree of fluctuation between weeks. 

Overall means suggest that Treatment 4 consumed the most feed, yet on average 

weighed less (Table 7.3). 

Table 7.4 Effect of treatment on mean weekly feed consumption (20 birds/group) 

Treatment 1 Treatment 2 Treatment 3 Treatment 4 
Age (Weeks) (glblrdlweek) (glblrd/week) (glblrd/week) (g/blrd/week) 

5 71.4 62.5 65.2 69.4 
6 40.8 53.6 37.3 42.9 
7 70.4 59.5 65.2 53.6 
8 61.2 56.5 58.0 64.3 
9 62.9 56.5 77.9 67.9 
10 74.8 77.4 74.7 57.1 
11 68.0 65.5 67.4 89.3 
12 79.9 68.5 78.2 82.1 
13 66.3 74.4 66.3 92.9 

Mean: 66.2 63.8 65.6 68.8 

7.3.2 Immunoglobulin-Y response 

Immunoglobulin-Y levels are given in Table 7.5 and show that prior to immunisation, 

there was no significant difference between treatment optical densities. However, 

after the first immunisation, Treatments 3 and 4 had a significantly higher optical 

density than Treatment 2, which in turn had a significantly higher optical density than 

Treatment 1, these differences between treatments were maintained for the 

remaining duration of the trial. 

Table 7.5 Effect of treatment on mean IgY optical density (20 birds/group) 

Age S.E. 
Sampling point (Weeks) Treat. 1 Treat. 2 Treat. 3 Treat. 4 Mean Significance 
Pre-immunisation 5 0.27 0.28 0.24 0.25 0.017 NS 
Immunisation 1 8 0.438 0.81b 1.64c 1.67c 0.064 ---
Immunisation 2 11 0.438 0.7Sb 2.06c 2.14c 0.055 -.-
Immunisation 3 14 0.548 0.79b 2.57" 2.58c 0.057 ... 

.. 
***= P<O.001; NS= no Significant difference; 
Means within a row followed by a different superscript letter are significantly different 
at P<O.OS 

Figure 7.1 illustrates the kinetics of the IgY response over the sampling period. Both 

Treatments 1 and 2 show a low level of immune response, with only minor 

fluctuations in optical density after immunisation. However, both Treatments 3 and 4 

show a large rise in IgY levels following the first immunisation and a steady increase 

thereafter. All treatments, excluding Treatment 1, were observed to exceed the 
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negative cut-off point following the first immunisation and remain above this level for 

the duration of the trial. 

Figure 7.1 Effect of treatment on mean IgY optical density kinetics 
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7.3.3Immunoglobulin-M response 
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Table 7.6 shows that IgM optical density values were not significantly different 

between treatments before immunisation. After the first immunisation, Treatments 3 

and 4 had a significantly higher optical density than Treatment 1, with an 

intermediate value for Treatment 2. After the second immunisation, Treatment 4 was 

significantly higher than Treatments 3 and 1, but not 2. Treatment 3 was also not 

significantly different to Treatment 2, but was significantly higher than Treatment 1. 

Following the final immunisation Treatment 4 was significantly higher than 

Treatments 1 and 2, with an intermediate value for Treatment 3. 

Table 7.6 Effect of treatment on mean IgM optical density (20 birds/group) 

Age SE 
Sampling point (Weeks) Treat. 1 Treat. 2 Treat. 3 Treat. 4 Mean Significance 
Pre-immunisation 5 0.35 0.39 0.36 0.31 0.024 NS 
Immunisation 1 8 0.378 0.49ac 0.59bc 0.64b 0.032 ... 
Immunisation 2 11 0.508 0.69bc 0.64b 0.79c 0.031 ... 
Immunisation 3 14 0.81 8 0.838 0.858b O.96b 0.033 • .. 
*= P<O.05; ***= P<O.001; NS= not significantly different; 
Means within a row followed by a different superscript letter are significantly different 
at P<O.05 

The reaction kinetics of IgM in all treatments showed a steady increase after each 

immunisation (Figure 7.2) . Prior to the third immunisation, IgM levels in all treatments 
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were lower than the cut-off point, with the exception of Treatment 4 which passed 

after the second immunisation, after which all treatments exceeded the negative cut­

off value. 

Figure 7.2 Effect of treatment on mean IgM optical density kinetics 
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7.3.4 Western blotting 
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Figure 7.3 shows images of western blots on PBS-fractionated red mite antigens, for 

Treatments 1 and 2, using both pre-immunisation serum (Lanes 2 and 4) and serum 

after three inoculations (Lanes 3 and 5). In all lanes there is a degree of non-specific 

binding, with the presence of a band at around 20 kOa. There is also the appearance 

of a faint band at approximately 60 kDa for the birds in Treatment 2. 

Figure 7.3 Western blot using PBS mite protein extract. Lane 1, molecular weight 

marker (kOa); Treatment 1: Lane 2, Pre-immunisation; Lane 3, Post:Jd immunisation; 

Treatment 2: Lane 4, Pre-immunisation; Lane 5, Post 3d immunisation 
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Pre-immunisation serum from Treatments, 3 and 4 generated only minor non-specific 

binding (Figure 7.4, Lanes 2 and 4) with faint bands at around 20 kDa and 60 kDa. 

Treatments 3 and 4 also recognised an additional dominant band at around 80 kDa 

after incubating blots with post immunisation sera. In addition, birds in Treatment 3 

generated a faint band at approximately 55 kDa, whilst sera from birds in both 

Treatments 3 and 4 occasionally produced a band at 18 kDa. Also, there appeared to 

be little or no difference between bands recognised after incubation with serum from 

either Treatment 3 or 4. 

Figure 7.4 Western blot using PBS mite protein extract. Lane 1, molecular weight 

marker (kOa); Treatment 3: Lane 2, Pre-immunisation; Lane 3, Post:Jd immunisation; 

Treatment 4: Lane 4, Pre-immunisation; Lane 5, Post :1d immunisation 
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Western blotting was also performed using urea-fractionated red mite antigens as 

shown in Figure 7.5-7.6. Blots using serum from Treatments 1 and 2 consistently 

showed the presence of two bands at around 40 kDa, both pre-immunisation (Lanes 

2 and 4) and subsequent to three immunisations (Lanes 3 and 5). These bands are 

particularly faint in blots using pre-immunisation serum from Treatment 1 (Lane 2) . 
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Figure 7.5 Western blot using urea mite protein extract. Lane 1, molecular weight 

marker (kOa); Treatment 1: Lane 2, Pre-immunisation; Lane 3, Post:Jr1 immunisation; 

Treatment 2: Lane 4, Pre-immunisation; Lane 5, Post:;rd immunisation 
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Blots performed using serum from birds in Treatments 3 and 4 taken prior to 

immunisation (Figure 7.6, Lanes 2 and 4) displayed a 40 kDa dimeric band. 

However, following three immunisations additional bands were visualised at 

approximately 20 and 60 kDa in both Treatments 3 and 4. Also, in Treatment 4 (Lane 

5) an additional band was observed at approximately 80 kDa. Once again the 

number of bands and degree of staining varied between individual blots using serum 

from different birds. 

Figure 7.6 Western blot using urea mite protein extract. Lane 1, molecular weight 

marker (kOa); Treatment 3: Lane 2, Pre-immunisation; Lane 3, Post:Jr1 immunisation; 

Treatment 4: Lane 4, Pre-immunisation; Lane 5, Post:;rd immunisation 
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7.3.Sln vitro red mite feeding challenge 

No significant differences were observed between treatments for red mite survival 

parameters 48 hours after infestation (Table 7.7). Similarly, the number of eggs laid 

and hatched was not significantly different between treatments. 

Table 7.7 Effect of treatment on in vitro feeding for fed mite 48 hrs post feeding 

Treatment Treatment Treatment 
1 2 3 

Alive Female 68.1 69.3 72.7 

Alive Male 60.2 55.1 56.0 

Total Alive 66.0 65.1 67.6 

Dead Female 11.3 14.0 11.4 

Dead Male 18.8 13.7 19.5 

Total Mortality 13.2 14.8 14.6 
Hatched % 99.4 97.7 97.8 

Egg/Female 0.8 0.7 0.7 
NS= values within rows are not significantly different 
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There were also no significant differences between treatments for parameters 

effecting mite survival 10 days after feeing (see Table 7.8). Red mite in Treatment 4 

had both lower total survival and higher mortality, although this was not significantly 

different from the other treatments. 

Table 7.8 Effect of treatment on in vitro feeding for fed mite 10 days post feeding 
-~---

Treatment Treatment Treatment Treatment S.E. 
1 2 3 4 Mean Significance __ 

Alive Female 73.9 75.0 75.6 65.3 4.33 NS 
Alive Male 66.5 69.0 69.3 67.7 5.96 NS 
Total Alive 71.1 73.0 73.4 66.7 4.33 NS 
Dead Female 27.5 25.9 25.7 35.3 5.61 NS 
Dead Male 34.2 31.3 31.1 33.6 3.17 NS 
Total Mortality 29.8 27.7 17.9 34.4 3.17 NS 

NS= values within rows are not significantly different 

7.4 Discussion 

This study had several aims, firstly was the eradication/limitation of the apparent 

Mycobacterial effect observed in the previous trial, allowing the establishment of a 

true negative. The second aim was to determine the effect of immunisation with red 

mite antigens on the level of IgM response. Finally, an in vitro feeding system was 
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used to evaluate the survival and reproductive parameters of red mite after 

immunisation of poultry with different red mite antigen extracts. 

7.4. 1 Bodyweight and feed intake 

As with the immunisation experiment in the previous chapter, birds used were of a 

commercial genotype, growing and consuming food within commercial 

recommendations (Nix, 2000; Rose, 2001). However, there was a significant 

difference in bodyweight with Treatment 4 being lighter than other treatments after 

the first immunisation. This appeared to be as a direct result of immunisation, since 

starting weight was eliminated as possible factor after statistical analysis and also 

birds in this group displayed some mild clinical signs of ill health. However, 

examination by a veterinary practitioner confirmed that these symptoms not severe 

and birds recovered soon after with no significant differences in bodyweight observed 

by week 12 of the experiment. 

7.4.2 Immunoglobulin response 

In order to satisfy the primary objective, Mycobacterium containing CFA was 

replaced with IFA. Also an additional saline only treatment was included to allow 

determination of the adjuvant effect. Since the generation of false positives from non­

specific Mycobacteral binding should have been eliminated it would be reasonable to 

assume that there would be no difference in antibody levels between control 

Treatments 1 and 2. However, inoculation with IFA plus saline in Treatment 2 did 

elicit a significantly higher IgY response when compared to saline alone (Treatment 

1). The reasons for this are unclear and may simply be as a result of a greater 

proportion of non-specific endogenous antibodies produced following stimulation of 

the birds' immune system due to the use of IFA rather than just saline. Similar effects 

can be seen with age (Meulemans and Halen, 1982), as birds are continually 

challenged by numerous environmental pathogens birds increase the number and 

diversity of Circulating endogenous antibodies, which results in a greater non-specific 

cross-reactivity (Tizard, 2002). In the current study, even in the saline immunised 

control treatment there is a small, progressive increase in optical density as time 

elapsed. Previously, Nobrega et al. (1996) also reported an age related increase in 

the production of non-specific mouse serum immunoglobulins reactive to several 

autoantigens. 

IgM ELISA showed a much higher degree of non-specific binding than for IgY in both 

control Treatments 1 and 2. This was not an unexpected result, since IgM molecules 
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are pentameric with ten potential antigen binding sites and therefore the capacity for 

non-specific binding compared to IgY in much greater (Tizard, 2002). Previous 

research has demonstrated similar problems with IgM ELISA generating false 

positive results as a consequence of non-specific antigen binding (Liesenfeld et al., 

1997; Miyakawa et al., 2001). In addition, some of this background activity may be 

accounted for by the unusually high affinity of avian immunoglobulins to plastic and 

polystyrene surfaces, and also the nature of the antigen coated in the plate wells 

(Bauer et al., 1999). In current study, since antigens were extracted from whole 

crushed mites, it is likely that non-specific cross reactivity would result from impurities 

such as the presence of carbohydrates/glycoproteins or blood protein residues from 

feeding. Also, as suggested in Chapter 5, mites could potentially contain any number 

of pathogens which control birds may have been inadvertently exposed too, including 

Salmonella, Mycobacterium. smallpox, cholera spirochetes, amongst others (Zeman 

et al., 1982; Durden and Turell, 1993; Chirico et al., 2003). If pathogenic residues 

remain inside the mites and are subsequently immunised into hosts, then these may 

be potential sources of false positive results. 

Several methods for reducing non-specific antibody binding have been suggested, 

including replacement of non-ionic detergents (Tween-20), with non-reactive protein 

blocking buffer (Bovine Serum Albumen) and also by increasing both primary and 

secondary antibody dilutions (Kenna et al., 1985; Miyakawa et al., 2001). However. 

preliminary ELISA validation tests described in Section 3.2 showed that changes to 

these parameters did not induce significant differences in optical density or reaction 

kinetics. The replacement of Mycobacterium containing CFA with IFA in the current 

study did, however, appear to reduce non-specific binding. 

Irrespective of the degree of non-specific binding a significant increase in IgY levels 

(P<0.001) was seen in both PBS and urea treatments, compared to the controls. 

These same differences were present but not at the same magnitude with IgM 

ELISA, possibly due to the timing of the sampling in this study which may have 

missed the optimal IgM response, which is produced as early as 72 hours after 

immunisation, peaks between 4 and 8 days and declines thereafter (Tizard, 2002). 

ELISA did not however show any quantitative differences between the level of IgY in 

the two antigen treatments and no clear-cut differences in IgM response. Therefore, it 

appeared that the differences in protein profiles seen when conducting preliminary 

SOS-PAGE analysis in Section 3.3 were not reflected in the humoral immune 
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response. Failure to generate significant antibody responses after immunisation with 

different arthropod fractions has been documented before (e.g. Lee et al., 2002; 

Patarroyo et al., 2002; Smith and Pettit, 2004). Previously studies which have been 

successful in displaying significant differences between the protective capacities of 

antigen fragments were performed using salivary glands and midgut sections. 

against whole extracts of ticks, mosquitoes and sandflies (Ingonga et al., 1996; Foy 

et al., 2003; Jittapalapong et al., 2004). The inherent problem with red mite is their 

size, which is approximately 0.75 mm in length (Wood, 1917), compared to ticks 

which can range from 2-13 mm depending on their fed status (Stafford, 2004). 

Consequently this precluded using dissection to determine whether this approach to 

immunisation was a feasible proposition for red mite. Similar problems with size have 

been encountered with obtaining gut antigens from the sheep scab mite (Smith et al .. 

2004). Therefore less direct methods were adopted for extracting antigens, bearing in 

mind the difficulty and expense in obtaining large enough quantities of clean mites as 

starting material. Thus the present study set about comparing two whole mite protein 

extractions. However, it is important to highlight that not using dissection was not 

necessarily a problem since previous reports have observed that, in fact, 

preparations of soluble mite proteins induced a greater level of protection than 

concealed antigens (Jayawardena et al., 2000; Smith et al., 2002). 

PBS-extracted red mite proteins were therefore used since it was seen to 

significantly increase IgY levels and showed a trend towards the reduction of red mite 

survival in the previous trial (Chapter 6). Also, PBS-antigen extracts have previously 

been observed to show protective immunity against the sheep scab mite causing 

significant reductions (P<0.01) in populations (Nisbet and Huntley, 2006). However, 

PBS isolates only soluble antigens and lacks the ability to penetrate membrane 

proteins, such as the extracellular peritrophic matrix (Tellman et al., 1999), which 

lines the gut lumen and has evoked protection in the blowfly (Lucillia cuprina) causing 

50 % reductions in larval growth (Casu et al., 1997). Such proteins can be solubilized 

using strong denaturants such as urea (Smith et al., 2002). This was therefore the 

second extraction method used in the current study. However, since no significant 

increase in immune response was observed when using urea-extracted red mite 

antigens compared to PBS-extracted antigens, it appears that solubilization of 

epithelial membranes had no additive effect. Smith et al. (2002) made similar 

observations where whole Psoroptes ovis antigens extracted using urea showed no 

difference in IgG response and in fact showed poorer protection in comparison to 

saline antigen extracts. The reason for this is unclear, but it is possible that during the 
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extraction process the more aggressive disruption using urea alters the tertiary 

structure of the antigen, thus damaging or blocking potentially protective epitopes 

(Lee et a/., 2002). 

7.4.3 Western blotting 

Western blotting analysis substantiated findings from ELISA results, as there was a 

reduction in the degree of non-specific binding of control sera reported in the 

previous experiment (Chapter 6). In addition an increase in the number of bands 

observed between control and antigen treatments and also between serum pre- and 

post- immunisation was seen in this experiment. Pre-immunisation and control 

treatment serum was observed to generate some non-specific bands, which can be 

attributed to secondary anti-chicken antibodies binding directly to chicken blood 

antigens (Devaney and Augustine, 1987), as was described earlier (Chapter 6). 

Serum recognised bands as a result of immunisation at 80, 55 and 18 kDa on blots 

using PBS-fractionated proteins and at 80, 60 and 20 kDa when using urea­

fractionated antigens. The fact that control treatment birds did not generate bands 

reactive to protein fractions at these weights would indicate that antibody responses 

were targeted directly at poultry red mite antigens. The next step in this research 

would be to purify these proteins from the red mite in sufficient quantities and 

immunise birds with a higher concentration of these particular antigens. If this 

subsequently lowered survivability of mites, this would indicate that these antigens 

would be suitable as vaccine candidates (Minnifield et a/., 1993). 

Western blotting also demonstrated the lack of IgY differentiation between 

fractionated proteins following immunisation with either PBS or Urea-extracted mite 

protein. As with the ELISA results it is perhaps not surprising that no obvious 

differences were seen between blots comparing antigen treatments, since previous 

research has observed the same effect where extraction using urea offered no 

additional immune response (Smith et a/., 2002). 

7.4.4 In vitro red mite feeding challenge 

Efficacy assessment of immunisation using an in vitro feeding device revealed no 

significant differences between treatments. It is possible that this is simply due to the 

absence of antigens capable of eliciting protective responses as previously 

discussed (see Chapter 6). Alternatively, it could be due to the failure of red mite to 

ingest a sufficient quantity of immunoglobulins to induce protection. It has been 
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documented that red mite feed relatively quickly and infrequently, with engorgement 

taking place for approximately 0.5 to 2 hours at intervals of 1 to 4 days, allowing the 

consumption of as little as 0.2 III of blood (Sikes and Chamberlain, 1954; Chauve, 

1998; DEFRA, 2001; Kilpinen, 2001). Previously a successful ectoparasite vaccine 

was developed against the African cattle tick (Boophilus microplus, Willadsen et aI., 

1996) which have been estimated to consume as much as 15 ml blood whilst 

continuously attached to their host for 10 days or more (Nuttall, 1998). Red mite have 

been observed to consume IgY molecules during feeding, although the quantity and 

consequential effect on the mite is unknown (Nisbet et al., 2006b). 

Western blotting analysis identified several red mite antigens which elicited specific 

antibody responses. It may be that if these were to be isolated and re-injected into 

birds in a recombinant form, as suggested by Minnifield et al. (1993), then they might 

display protective properties. Employing similar methods, Trimnell et al. (2002) 

observed nearly 50 % reductions (P<0.001) in tick survival after immunisation with a 

specific tick cement protein. Also, Hartmann et al. (1997) induced immune responses 

in rodents causing more than 60 % reduction in nematode burdens when 

administering an allergenic actin-binding protein. Many other examples of protective 

immune response exist as a result of immunising with specific antigens. However, 

much of the currenVfuture research aims at characterising antigens which share 

genetic homology to previously determined protective antigens in other parasitic 

species. One example of this is the protein tropomyosin, which has previously been 

shown to be present in house dust mite (Saarne at al., 2003), sheep scab (Huntley et 

al., 2004) and several species of shellfish (Shanti et al., 1993) and has been 

observed to produce protective immunoglobulins in host species. More recently, a 

red mite tropomyosin homologue was identified and assessed for its immunogenic 

characteristics in poultry by Nisbet et al. (2006a). These authors found that natural 

red mite exposure was not sufficient to generate tropomyosin specific antibodies, 

indicating that hens are not directly exposed to this antigen. However, both western 

blotting and immunolocalization using dissected red mite antigens and serum raised 

specifically for tropomyosin in mice recognised tropomyosin antigens. This kind of 

approach is worthy of further exploration as molecules such as tropomyosin may 

represent candidates for the 'concealed antigen' approach to vaccination (Nisbet et 

al., 2006a). 
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7.5 Conclusions 

As with Chapter 6, a significant increase in IgY levels was observed after immunising 

birds with red mite extracts when compared to control treatments. Similarly, but to a 

lesser magnitude, the levels of circulating IgM were observed to be significantly 

higher in birds in the antigen treatment. However, ELISA did not demonstrate 

differences in IgY responses between birds immunised with different red mite antigen 

extracts. 

It appeared that by replacing Mycobacterium containing CFA with IFA, that there was 

a reduction in the level of non-specific binding in both IgY specific ELISA and western 

blotting, allowing significant differences between treatments after just one 

immunisation. 

Immunoblotting revealed several bands in the antigen treatments which were not 

observed in control animals. These antigens are worthy of further investigation since 

they appear to elicit immunoglobulin responses directly as a result of immunisation 

with red mite extracts. However, as for ELISA, immunising with different red mite 

antigen extracts did not result in differences in IgY responses to these fractionated 

antigens. 

There was no difference between survival and fecundity of red mite observed 

between treatments after the in vitro feeding challenge, which posed several 

questions regarding the structural and protective qualities of the antigen, the volume 

of the blood ingested and the sensitivity of the assays used. 
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Chapter 8 

General Discussion 

8. 1 Introduction 

The aim of this thesis was to develop a vaccine against the poultry red mite 

(Dermanyssus gallinae). In order for this to be accomplished it was necessary to 

achieve a number of underlying milestones. This involved firstly undertaking a review 

of the literature to consider the biology of the red mite, assess current control 

practices and investigate the immune mechanisms of host species which have 

previously been exploited for development of other haematophagous ectoparasite 

vaccines. This was then followed by experiments to evaluate the relationship 

between red mite population, poultry production parameters and acaricide 

application, as well as the concurrent development of a series of immunological, 

proteomic and genetic laboratory techniques. These techniques included the 

optimisation of extraction of IgY from egg yolk and red mite antigens, followed by the 

validation of IgY-specific ELISA, SDS-PAGE and western blotting protocols. In 

addition in vivo and in vitro red mite feeding systems were designed as a means of 

testing the impact of natural red mite exposure on both immunological and productive 

parameters. Finally, these techniques were used in a pair of experiments to 

determine the effect of immunisation with red mite antigens on avian immune 

response and subsequent impact on survival and fecundity of red mite populations. 

8.2 Poultry red mite populatIon dynamics In relation to acaricide application 

An experiment was designed to investigate the impact of several environmental 

parameters on red mite population dynamics, amongst which was the application of 

the commercially available acaricide Bendiocarb (Ficam® W, AgrEvo, Berlin) on a 

commercial free-range system. After repeated application of Bendiocarb, significant 

reductions in mite numbers were observed, to a point where the red mite population 

were almost completely eradicated. However, this chemical has only a limited 

sustainability since resistance to carbamate compounds has been repeatedly 

observed (Fiddes et al., 2006). It has also been frequently seen that following 

acaricide application, the population of red mite soon returns to the level of 

parasitism observed prior to spraying, which has been attributed to insufficient 
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exposure of mites to the acaricide during application (Nordenfors and Hoglund, 

2000). In addition, as with many previously available and now withdrawn compounds, 

Bendiocarb has been linked to potential human/animal health issues (Zheng et al., 

2001). For these reasons, it can be argued that the application of acaricides is 

therefore only a temporary measure (Nordenfors and Hoglund, 2000). 

8.3 Estimation of the level of poultry red mite infestation using trap sampling 

Research undertaken in experiment 1 to develop a means of monitoring red mite 

populations in laying hen housing systems illustrated the importance of trap 

placement. Previously, it has been suggested that red mite are sensitive to both 

genotype of the hen and physical positioning of traps within the house (Nordenfors 

and Hoglund, 2000). Results from Section 4.2.3 support this and displayed unequal 

red mite distribution resulting from the design of the building, which has in turn been 

shown to have a significant effect on bird distribution within the house (Abrahamsson 

and Tauson, 1995). Red mite were found in greater abundance in the part of the 

house which permitted access to pasture, where birds were more likely to dwell upon 

re-entry into the house. This extensive variation in red mite distribution between trap 

positioning leads to problems associated with reproducibility of the data when 

estimating the red mite population in different houses/systems. In the current 

research, this often meant that significant differences or correlations between red 

mite and other parameters could not be established. It was therefore recommend that 

careful consideration is given to trap placement in order to obtain a more reliable 

estimate of red mite numbers. 

8.4 Effect of the poultry red mite on egg production parameters 

Part of this research programme focused on quantifying the effect of red mite on 

productive parameters, since it has previously been suggested that infestation with 

this paraSite may cause a reduction in egg production and quality and an increase in 

mortality of the hens (Wojcik et al., 2000; Cosoroaba, 2001). Therefore several 

separate laying units were sampled, representing free-range, barn and cage 

systems. Records were made at regular intervals of the population of red mite and 

hen production parameters, including mean egg output per bird, hen mortality, feed 

and water consumption and building temperature. 

200 



Relationships between red mite population and each one of these production 

variables were found at some pOint on one of the individual laying units, displaying 

both positive and negative correlations. However, few of these observations were 

consistent when all laying units were analysed as one dataset. By far the most 

predominant observation was the positive relationship between poultry red mite 

population and mortality of hens. As the red mite burden increased, there was a 

significant rise in bird mortality. Increases in hen mortality as a result of red mite­

induced anaemia have previously been observed to be as high as 50 % (Wojcik et 

al., 2000). An additional observation which showed some consistency across laying 

units was a positive relationship between red mite population and building 

temperature. Here an increase or decrease in building temperature had an equivalent 

effect on red mite population. These findings are consistent with previous 

investigations into the effect of temperature fluctuations on mite populations (Maurer 

and Baumgartner, 1994; Kilpinen, 2001; Kilpinen, 2004). However, it has been 

previously suggested that it is in fact the rate of change in temperature which has a 

greater effect on red mite, than temperature alone (Kilpinen, 2004). 

Failure to demonstrate consistent relationships between production parameters and 

red mite population levels across all farms was again attributed to the high variability 

observed in the data collected, particularly with red mite numbers in traps. It was 

therefore suggested that in order to limit this variability more controlled experiments 

were necessary to eliminate the influence of external variables, as was previously 

achieved by Kilpinen (2005). This may, however, limit the application of results from 

such studies to the commercial situation of egg production, where multiple integrated 

variables exist. 

In an attempt to establish the greatest determinant of variability between red mite 

population and production parameters in the current research, values which 

generated significant correlations were subject to regression analysis. It was 

revealed that actually many of the apparent significant associations between red mite 

populations and production data were affected by other external variables. In reality it 

was observed that parasitism by red mite was not generally the predominant 

predisposing factor effecting production, but this was in fact other production 

variables including. However, red mite parameters were often the second largest 

explanatory variable, particularly for hen mortality and building temperature. 

Therefore, it was concluded that whilst the population of red mite may not be the 
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exclusive driving force behind variation in the levels of egg production, they may 

serve to amplify existing trends and problems. 

8.5 Effect of the poultry red mite on immunoglobulin production 

Previous vaccines which have displayed protective immunity against ectoparasites 

often did so as a result of increased immunoglobulin production, particularly IgG 

(Minnifield et al., 1993; Tarigan and Huntley, 2005; Nisbet and Huntley 2006). 

Therefore, considerable effort was directed at developing protocols to quantify levels 

of IgY (the avian equivalent to mammalian IgG) raised against the poultry red mite for 

both naturally and artificially exposed birds. This was achieved by the development of 

red mite specific ELISA and western blotting assays. 

B.S. 1 Natural red mite exposure 

An ELISA assay was used to quantify the presence of naturally Circulating red mite 

antibodies from birds exposed to varying degrees of red mite parasitism across a 

range of different commercial egg production systems. Prior to statistical analysis, 

examination of the data on a mean site level suggested a numerical association 

between the estimated population of red mite and levels of IgY, a trend previously 

documented by Lee et al. (2002). However, when performing correlation analysis 

between red mite populations and IgY levels using sampling data from all laying 

systems, a significant relationship was only found on one site. The same problem 

was described by Maurer (1993), who found that antibody response did not appear to 

be linked to red mite infestation levels. In the current study the reasons for this lack of 

relationship were once again attributed to the large variation observed, not only in the 

population of red mite in traps, but also in IgY levels. In general, relationships 

between red mite population and IgY levels which have been reported in the 

literature followed repeated sampling of the same animals, thus reducing sampling 

variation (Lee et al., 2002; Pruett et al., 2006). However, in the present study, IgY 

was collected from commercial laying systems which meant that successive samples 

could not be collect from the same individual bird, thus resulting in further variability. 

Sampling commercial laying systems also gave the opportunity to obtain both serum 

and yolk IgY to evaluate the relationship between these two sources. It has 

previously been documented that yolk IgY can be used as a tool to determine serum 

immunoglobulin levels in response to exposure to particular antigens (Woolley and 

Landen, 1995). However, in the current research program this was not found to be 
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true since correlations between yolk and serum were absent. In fact significantly 

higher IgY levels were observed in yolk samples. One possible explanation for this 

was the deposition of yolk IgY over a 21 day period, whereas serum antibody levels 

are representative of the level of circulating antibodies at any given time point 

(Mohammed et al., 1986). When correcting data for this delay in the current research 

an apparent relationship was seen between the two IgY sources, although this was 

not significant. However, as before, samples were collected on a mean flock basis, 

not from repeat samples on the same individual bird, therefore the variability between 

samples was high. Irrespective of this variation, it does raise the question whether 

indeed yolk-derived IgY is a reliable predictor of serum IgY levels, even though it 

reduces the need for procedures to be undertaken on birds. 

8.5.2 Immunisation with red mite antigens 

Despite the lack of direct correlation between red mite population numbers and IgY 

response, monitoring of commercial flocks did demonstrate the ability of birds to elicit 

varying degrees of immune response to infestation by the poultry red mite. This 

provided justification to progress with the immunisation of birds with red mite antigen 

extracts. In the first immunisation experiment, birds were initially immunised with a 

phosphate buffered saline (PBS) red mite protein extract using Complete Freund's 

adjuvant (CFA), subsequently replaced with Incomplete Freund's adjuvant (IFA) in 

the second and third immunisations. This was compared to a control treatment which 

was immunised with PBS and CFA and subsequently IFA. 

Analysis by ELISA revealed that antigen immunised birds produced significantly 

higher IgY levels when compared to the controls. However, there was also an 

increase in IgY in control birds over the course of the study, which after western 

blotting analysis was seen to give the same degree of specific red mite protein 

binding as the antigen birds. A number of potential explanations could be given for 

this lack of difference in specific binding, including the increased level of endogenous 

antibodies with age and exposure to environmental pathogens. An alternative reason 

was that there had been maternal transfer of immunoglobulins or the presence of 

serum anti-chicken IgY antibodies equivalent to RF and HAMA, found in humans. 

However, after analysis by PCR and RT-PCR using gene specific primers, it was 

suggested that this non-specific binding could be largely be attributed to the 

presence of Mycobacterium which was found to be present not only in CFA but also 

in red mite. A similar situation was described by Hou et al. (2006), who reported the 

presence of antigen specific IgG in both control and house dust mite 
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(Dermatophagoides farinae) infested dogs. Hou et al. (2006) suggested that the 

reason for this apparent non-specific antigen recognition in control animals was due 

to IgG responses being directed towards environmental proteins or allergens similar 

to, but not those of D. farinae, which both control and mite infested animals had been 

exposed too. 

After highlighting this homology between CFA and red mite extracts, a second 

immunisation experiment was carried out. This time the Mycobacterium-containing 

CFA was replaced with IFA, which had a positive effect in reducing non-specific 

binding, since even after the first immunisation with red mite antigens, a significant 

increase in IgY levels were observed compared to the control group. A degree of 

non-specific binding was still apparent, but this may have been due either to 

homology of red mite with other environmental antigens (Hou et al., 2006) or 

circulating host endogenous antibodies which are capable of mimicking other 

antigens/antibodies (Wingren et al., 1995). Western blotting analysis of sera from 

antigen immunised birds also confirmed a reduction in the degree of non-specific 

binding. In addition, blotting revealed several fractionated proteins which were 

recognised only in groups receiving red mite antigen and not controls. These proteins 

require characterisation in order to determine their potential as vaccine candidates 

and justify their use in further research. 

8.5.3 Immunisation with different poultry red mite extracts 

An additional aim of the second immunisation experiment was to determine the effect 

of immunisation on immune response using different poultry red mite extracts. Two 

extraction buffers were used, firstly PBS which targets only soluble proteins (Huntley 

et al., 2004), and secondly urea, which has the capacity to penetrate and release 

membrane bound proteins (Tellman et al., 1999). However, no significant differences 

in the level of IgY were found between the two extraction methods and only minor, 

though significant differences in the level of IgM. Therefore, it was suggested that 

solubilization with urea offered little additive effect, as observed previously by Smith 

et al. (2002). Western blot analysis confirmed these observations, with no difference 

in the array of fractionated proteins being recognised by serum from either PBS- or 

urea-antigen immunised birds. 

8.5.4 Immunoglobulin-M response 

In addition to promoting an IgY response, several studies have reported increases in 

circulation of other antibody serotypes, such as IgM, after exposure to arthropod 
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antigens (Nisbet and Huntley, 2006). IgM has a lifespan of only several days (Tizard, 

2002) but despite this is capable of producing protective immunity recognizing 

different epitopes to IgY and also utilizing alternative mechanisms for the elimination 

of parasites (Ligas et al., 2003). Therefore, an ELISA was used to determine the 

specific IgM response to immunisation with red mite extracts. Significantly higher 

levels of IgM were found in the two antigen treatments when compared to controls, 

although these were not of the same magnitude as for IgY. This was perhaps due to 

the timing of the post-immunisation sampling in this study which may have missed 

the optimal IgM response, said to occur around 4-8 days after immunisation and 

declining thereafter (Tizard, 2002). Also, the pentameric structure of IgM molecules, 

providing 10 potential binding sites, leads to a higher degree of non-specific binding 

(Tizard, 2002) which may also determine why clear differences between treatments 

were not apparent. 

8.6 Effect of the poultry red mite on cytoklne expression 

In the assessment of the effect of exposure to red mite antigens, either naturally or 

through immunisation, on the host's immune system, this study also evaluated the 

expression of certain classical Th 1- and Th2-type cytokines. Th 1-type responses 

were determined by screening RNA from spleen samples for the cytokines IL 120 and 

IFNy, which are typically associated with the cellular immune response. Th2-type 

cytokine production on the other hand was assessed by levels of expressed IL-4, IL-

13, IL-10 and IL-5, which are typically associated with humoral immune responses. 

8.6.1 Effect of natural red mite exposure on cytokine expression 

Using samples collected from commercial poultry farms, it was found that natural 

exposure to red mite did not produce any significant correlations with the levels of 

cytokines expressed. Despite this, there were both numeric and statistically 

significant associations between IgY and cytokine levels. However, even these 

results lacked consistency. For example, IL-4 was found to be up-regulated on some 

farms and down-regulated on others. Although not significant, there was also some 

suggestion of a relationship between IgY levels and IL-5 and IL-120 expression, 

which would be rational since IL-5 is involved in increasing B-cell and 

immunoglobulin secretion (Harriman et al., 1988), whilst IL-12a is important in 

resistance against pathogens (Trinchieri, 2003). However, these correlations were 

not significant, a result of either failure to stimulate the immune system to elicit a 
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cytokine response to red mite antigens (Cross et al., 1994) or alternatively due to the 

large variability observed within parameters. 

8.6.2 Effect of immunisation with red mite extracts on cytokine expression 

Immunisation with red mite extracts gave rise to significant differences in cytokine 

expression between treatments. These differences were seen between cytokines 

associated with the Th2-type response, but not for cytokines associated with the Th 1-

type. The possible explanation for this was attributed to the significantly higher levels 

of IL-10 found in the antigen treatment. IL-10 is known as the cytokine synthesis 

inhibitory factor (CSIF) and is capable of suppressing expression of other cytokines, 

in particular those of the Th1-type (Waal Malefyt et al., 1991). Therefore, it would 

appear that an increase in IL-10 production was induced by a fragment of the 

immunised red mite antigen, which in turn reduced Th1-type immunity as indicated 

by levels of IFNV. 

Significant differences were also observed for IL-4 and IL-5, although surprisingly 

antigen immunised birds had lower levels. It was suggested that perhaps the 

immunised red mite antigen extracts contained an element which had an 

immunosuppressive ability, such as molecules found in the saliva (Schoeler and 

Wikel, 2001). However, it has been frequently documented that arthropod 

components typically act by up-regulating cytokines associated with Th2-type 

response, whilst driving down Th1-type response (Schoeler and Wikel, 2001). This 

was not completely true in the present research as Th2-type cytokine expression was 

lower in the antigen treatment, although IgY production, which is a facet of the Th2-

type response, showed the opposite effect. It is difficult to draw further conclusions 

about cytokine expression without conducting more refined experiments which solely 

target changes to cytokine response. It was perhaps true of the current study that 

only limited differences in cytokine expression were observed due to the locality and 

timing of the response (Zeidner et al" 1999). 

8.7 Efficacy of poultry red mite Immunlsatlons 

In order to determine the effects of immunisation with red mite antigen on the survival 

and fecundity of live red mite, an in vitro feeding system was developed. In the first 

immunisation experiment the in vitro system was compared against an in vivo 

feeding system and since few significant differences were observed for red mite 
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survival and fecundity parameters between the two systems, the in vitro system 

alone was used for the second immunisation experiment. 

Immunisation with poultry red mite extracts did not have any significant effect on the 

survival or fecundity of red mite in either in vivo or in vitro feeding system. Although in 

the first immunisation experiment mite mortality was greater in the antigen treatment, 

this difference was not significant from the control treatment. Similarly, there was no 

evidence of protection against parasitism by the red mite following immunisation in 

the second experiment. There are several explanations for this. Firstly, it has been 

suggested that red mite are able to consume IgY (Nisbet et al., 2006a), but the 

question remains whether IgY can cross the gut epithelium without being destroyed. 

However, even if the IgY is fragmented in the gut, protection can still be induced 

provided that the relative F(ab) and Fc antibody fragments remain intact (Silver et 

al., 2002). Perhaps an important question is whether red mite are able to ingest 

sufficient quantities of IgY to provide protection to the bird (Sikes and Chamberlain 

1954). 

Another possible explanation for the failure to generate protection could be that the 

antigen treatment elicits the wrong type of immune response, towards the Th2-type 

rather than the Th1-type response (Nisbet and Huntley, 2006). However, the most 

likely explanation for the inability to induce protection that has been suggested 

concerns the antigenic structure. It is possible that protective antigen epitopes are 

denatured during the extraction procedure (Tarigan and Huntley, 2005) causing 

damage to their tertiary structure (Lee et al., 2002). Tellman et al. (2001) emphasised 

the importance of antigenic structure when inoculating sheep with the glycoprotein, 

peritrophin-95, isolated from blowfly (Lucilia cuprina) larval peritrophic matrix. They 

discovered that immunisation with the native protein induced a strong, protective IgG 

response causing a 50 % reduction in larval growth, whereas immunisation with 

recombinant forms of the proteins raised in bacteria and baculovirus-infected insect 

cells generated no significant reductions in larval growth. Tellman et al. (2001) later 

showed that these recombinant proteins were not glycosylated and were incorrectly 

foldeet. Thus Tellman et al. (2001) concluded that the oligosaccharides attached to 

native peritrophin and its unique polypeptide structure were essential for the 

induction of larval growth inhibitory activity in the sera of sheep vaccinated with this 

antigen. Therefore, it is essential for future isolation and characterisation of potential 

protective red mite antigens that all of these suggestions are taken into 

consideration. 
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B.B Future poultry red mite research 

As with other ectoparasite vaccines, the development of a vaccine against the poultry 

red mite is in its infancy. According to Nisbet and Huntley (2006), the approaches 

used thus far in developing anti-parasitic vaccines across most species have been 

met with little or no success. These authors maintain that despite more than 20 years 

of research into the development of ectoparasitic vaccines, using ever increasingly 

sophisticated biochemical and molecular tools, TickGARD™ (lntervet, Australia) and 

Gavacv™ (Heber Biotec, Cuba) vaccines against the tropical cattle tick Boophilus 

microplus, remain the only commercially available ectoparasitic vaccines. Following 

this success, strategies adopted for the development of vaccines against 

ectoparasites have largely employed methods based on these two vaccines 

(Willadsen et al., 1996). The approach used against Boophilus microplus is based 

around immunising hosts with gut protein fragments which induce immunoglobulin 

production. As the parasite subsequently engorges, it ingests host antibodies as part 

of a large blood-meal which target antigenic sites in the gut and result in death. 

Research on development of vaccines in alternative ectoparasitic species has had to 

make the assumption that they display physiological similarity with the tropical cattle 

tick and also share similar protective traits. However, these assumptions may not be 

valid, which may then partly explain why progress with alternative haematophagous 

arthropod vaccines has been slow. Not only this, but direct assumptions have been 

made regarding the avian immune pathways, with parallels being drawn from 

mammalian species (Sam-Sun et al., 2002; McDevitt et al., 2006b). Care must be 

taken when making such assumptions, since the avian immune system displays 

evolutionary differences to the mammalian equivalent, such as the presence of IgY, 

rather than IgG or IgE (Tizzard, 2002; Karlsson et al., 2005). Success in developing 

alternative ectoparasitic vaccines will depend upon a better understanding of their 

digestive immunology and its critical protective antigens (Raynard et al., 2002). 

The current research, like much of that previously published, has focused on 

identification of the mechanisms of protection operating in naturally-acquired 

immunity and cQmparing these to the mechanisms functioning after vaccination with 

native proteins. This may subsequently offer direction to the selection of isolated 

protective antigens for use in vaccine development against ectoparasites (Nisbet and 

Huntley, 2006). An alternative and more recent approach is to use genetic 

technologies, more specifically the informed identification of antigens by investigating 
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genetic data using immunoscreening and/or expressed sequence tags (EST's) 

(Schoeler and Wikel, 2001). 

8.8.1 Complementary DNA libraries and immunoscreening 

Both immunoscreening and EST's rely on information from complementary DNA 

(cDNA) libraries, which represent the data encoded in the mRNA of a specific 

organism. However, since RNA molecules in their natural form are very unstable, the 

encoded information is converted in to stable double-stranded cDNA and 

subsequently used for screening applications (Ljunggren, 2005). Immunoscreening 

itself is a technique where antibodies are used to screen a cDNA library for 

identification of polypeptides with antigenic properties (Ljunggren, 2005). This 

method can be used to identify molecules at the host-parasite interface, with the 

potential of discovering candidate antigens for use as vaccine components. 

Screening of cDNA in this fashion has led to the identification and characterisation of 

antigenic proteins from a range of paraSites, including Sarcoptes scabiei antigens -1 

and -2 (Ssag1 and Ssag2, Harumal et al., 2003), Psoroptes ovis (Nisbet and Huntley, 

2006) and Dermatophagoides farinae (Fujikawa et al., 1996). However, the function 

of immunoscreening is restricted, since it can only recognize naturally exposed and 

not 'concealed' antigens. 

8.8.2 Expressed sequence tags 

Unlike immunoscreening, EST technology can be used to screen cDNA for both 

natural and/or concealed antigens. First reported by Adams et al. (1991), EST's are 

partial nucleic-acid sequences (300-500 bp) derived from cDNA generated from the 

mRNA present in the tissue of interest (Ljunggren, 2005). Since EST's are generated 

from cDNA, they represent expressed and thus frequently utilized genes. EST's can 

be generated on a relatively large scale. A recent estimate suggested that up to 

2,000 EST's could be produced by a single researcher per month (Whitton et al., 

2004). The use of EST's is dependant upon information entered into public 

databases, which is subsequently used to compare gene sequences and is the 

fastest growing division of this type of research (Schoeler and Wikel, 2001). 

t:iowever, since this is a relatively novel approach in arthropod vaccination strategies, 

the number of EST's available in this area is limited. Nonetheless, as interest in this 

technology grows so does the database and to date includes sequence data for 

several blood feeding arthropods including mites such as P. ovis and S. scabiei 

(Kenyon et al., 2003; Ljunggren et al., 2003), ticks such as B. microplus, R. 

appendiculatus and D. variabilis (Nene et al., 2004; Simser et al., 2004; Guerrero et 
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al., 2005), mosquitoes, Aedes aegypti and Anopheles gambiae (Dimopoulos et al., 

2000; Sanders et al., 2003), as well as several other parasites, worms and 

protazoans (Ljunggren, 2005). As a consequence of the limited repertoire of 

heamatophagous ectoparasite EST's, unique genes might not be encountered in 

public databases. However, there are currently several protective antigens which 

have shown genetic homology across a number of parasitic species as a result of 

EST technology, examples of these include tropomyosin, peritrophic matrix (PM) 

proteins and glutathione S-transferase (GST) (Hartman et al., 1997; Wang and 

Granados, 1997; Pettersson et al., 2005). 

8.8.3 Exploiting recombinant genetic technology in poultry red mite research 

It would be logical that the next step in developing a vaccine against the poultry red 

mite would be firstly to construct a comprehensive cDNA library similar to that 

created for other mite species (Ljunggren, 2005; Nisbet and Huntley, 2006). This 

could subsequently be screened in the EST database (dbEST, GenBank) in order to 

confer sequence homology to other EST's. Alternatively, cDNA could be probed 

using gene specific primers to previously submitted protective parasitic antigens, 

such as tropomyosin, PM proteins or GST's to determine homology. The next step in 

this research programme would depend on the outcome of this genetic screening. If 

homology was observed then a decision might be made to immunise birds with 

specific recombinant DNA vaccines. In the absence of EST homology, an alternative 

approach would be required such as micro-dissection and subsequent immunisation 

of known mite fractions. 

8.9 Summary and conclusions 

• In conclusion, this research programme has demonstrated that the application 

of acaricides was an effective short-term control for the poultry red mite. 

However, multiple reports of red mite resistance to acaricides, as well as the 

rapid recovery of red mite after application and concerns over acaricide 

toxicity to hens' means that this method is not sustainable and alternative 

methods must be sought. 

• A number of significant correlations were observed between red mite 

populations and production parameters on individual laying sites, including 

egg output, feed intake and water consumption. However, red mite 

populations were observed to have the strongest relationships with hen 
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mortality and building temperature. These experiments also highlighted the 

large variation in red mite distribution throughout laying systems, which was 

attributed to building design and hen genotype. 

• Natural exposure of laying hens to red mite populations was rarely 

significantly correlated with IgY levels, the high degree of variation seen for 

both of these parameters was thought to be the cause of this. Similarly, 

natural red mite infestation showed no significant relationship with cytokine 

expression, although the cytokine IL-4 was negatively correlated to serum IgY 

indicating immunosupression 

• Immunisation experiments evaluated the IgY and cytokine responses of hens 

immunised with red mite antigen extracts and also assessed the effect that 

this had on the survival and fecundity of red mite using in vivo and in vitro 

feeding systems. In the first immunisation experiment a significant increase in 

IgY levels was seen in antigen immunised birds. However, a high degree of 

non-specific antibody recognition of red mite antigens was found in controls 

and later attributed to the presence of Mycobacterium in CFA which shared 

direct homology with that of red mite extracts. Significantly higher levels of the 

cytokine IL-10 were found in the antigen treatment which was thought to be 

responsible for the significant inhibition observed in IL-4 and IL-5. Both, in 

vivo and in vitro feeding systems showed no significant difference in survival 

or fecundity of red mite between treatments or between feeding systems 

suggesting that no protection was induced in hens following immunisation. 

• The second immunisation trial eliminated the confounding effect of 

Mycobacterium in the adjuvant and demonstrated significant increases in the 

levels of IgY and IgM. However, no significant difference in antibody response 

was observed between the different red mite antigen extracts. However, as 

with the first immunisation experiment there were no significant effects of 

treatment on survival or fecundity of red mite, once again confirming that 

immunisation with red mite antigens did not elicit a protective response. 

Further research therefore is needed to identify a suitable antigen which does 

elicit protection to laying hens from predation by the poultry red mite. 
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Appendix I 

Table 1 Stepwise regression of factors affecting production parameters on site 1. 

Response Predictor Significance r;.! 

Mortality cumulative (%) Age(Weeks) *** 98.44 
Total: 98.44 

Feed intake (g/b/d) Water consumption •• 37.21 
Total: 37.21 

Water consumption % Lay .* 42.68 
Fed Adult and Nymph NS 10.10 

Total: 52.78 
Temperature(°C) Mortalitycumulative (%1 * 30.75 

Total: 30.75 
Yolk 0.0. Mortality cumulative (%) • 29.99 

Total: 29.99 
In this and subsequent tables values with different superscripts are significantly 
different at *(P<O.05) **(P<0.01) ***(P<0.001) NS: no significant difference 

Table 2 Stepwise regression of factors affecting mite populations on site 1. 

Response Predictor Significance r;.! 

Total Mite Papin Fed Adult and Nymph **. 91.22 
Total: 91.22 

Fed Adult and Nymph Total Mite Papin *** 91.22 
Total: 91.22 

Unfed Adult and Nymph % Lay • 21.17 
Total: 21.17 

Larvae No. Mite egg No. •• 50.99 
Total: 50.99 

Mite egg No. Larvae No. •• 50.99 
Total: 50.99 

Table 3 Stepwise regression of factors affecting production parameters on site 2. 

Response Predictor Significance r;.! 

Mortality cumulative (%) Age(Weeks) *** 99.31 
Total: 99.31 
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Table 4 Stepwise regression of factors affecting mite populations on site 2. 

Response Predictor Significance r" 
--

Total Mite Papin Mite egg No. **' 96.7 
Larvae No. '" 2.21 

Fed Adult and Nymph '" 0.96 
Unfed Adult and Nymph , .. 0.13 

Total: 100.00 
Fed Adult and Nymph Mitee~No. '" 84.87 

Total: 84.87 --------

Unfed Adult and Nymph Larvae No. ,., 
73.41 

Total: 73.41 
Larvae No. Total Mite Papin '** 76.71 

Fed Adult and Nymph ** 14.14 
Mite egg No. . .. 7.80 

Unfed Adult and Nymph ... 1.35 
Total: 100.00 

Mite egg No. Total Mite P<?~ln ... 96.7 
Larvae No. ** 1.58 

Fed Adult and N~J~h ... 1.21 
Unfed Adult and Nymph ... 0.51 

Total: 100.00 

Table 5 Stepwise regression of factors affecting production parameters on site 3. 

Response Predictor Significance rill: 

Mortality cumulative (%) Age(Weeks) ... 96.22 
Total: 96.22 
% Lay Water consumption .. 45.76 
Total: 45.76 

Feed intake Jg/b/d) Larvae No. . 41.53 
Total: 41.53 

Water consumption % Lay •• 45.76 
Unfed Adult and Nymph • 13.90 

Total: 59.6~ 
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Table 6 Stepwise regression of factors affecting mite populations on site 3. 

Response Predictor Significance r2 

Total Mite Pooln Fed Adult and Ny_mph ... 84.94 
Larvae No. .. 8.67 

Mite eaa No. . .. 5.60 
Total: ~~~~ 

Fed Adult and Nymph Total Mite Papin ... 84.94 
Larvae No. NS 3.82 

Mite egg No. •• 5.90 
Total: 94.66 

Unfed Adult and Nymph Water consumption • 27.92 

Total: 27.92 

Larvae No. Total Mite Popln . .. 62.04 
Fed Adult and Nymph NS 9.64 

Total: 71.68 

Mite eag No. Total Mite Papin ••• 69.29 

Total: 69.29 

Table 7 Stepwise regression of factors affecting production parameters on site 4 

Response Predictor Significance r" 

Water consumption Aae(Weeks) ••• 99.97 

Total: 99.97 

VolkO.D. Total Mite Popln • 48.46 

Total: 48.46 
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Table 8 Stepwise regression of factors affecting mite populations on site 4. 

Response Predictor Significance r': 

Total Mite Popln Larvae No. ... 98.4 
Unfed Adult and Nymph NS 0.53 
Fed Adult and Nymph .. 0.88 

Mite egg No. ... 0.19 
Total: 100.00 

Fed Adult and Nymph Larvae No. ... 86.02 
Total: 86.02 

Unfed Adult and 
Nymph Total Mite Popln .* 79.71 

Water consumption .*. 19.43 
Fed Adult and Nymph 

, 
0.60 

Mite egg No. *. 0.23 
Larvae No. ... 0.03 

Total: 100.00 
Larvae No. Total Mite PQQin ". 98.40 

Mite eqq No. 
, 

0.66 
Total: 99.06 

Mite egg No. Age(Weeks) ... 90.75 
Yolk 0.0. NS 4.29 

Fed Adult and Nymph NS 1.78 
Total Mite Papin NS 1.72 

Unfed Adult and Nymph NS 0.97 
Larvae No. NS 0.15 

Total: 99.66 

Table 9 Stepwise regression of factors affecting production parameters on site 5. 

Response Predictor SIgnificance r~ 

Mortality cumulative (%) Unfed Adult and Nymph ... 85.39 
Age(Weeks) .. , 13.58 

Total Mite Papin ,,* 0.76 
Serum 0.0. NS 0.10 
Mite~No. 

. 0.12 
Total: 99.95 

Yolk 0.0. Age(Weeks) ... 58.37 
Total: 58.37 

Serum 0.0. Age(Weeks) .... 69.64 
Total: 69.64 
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Table 10 Stepwise regression of factors affecting mite populations on site 5. 

Response Predictor Significance r~ 

Total Mite Popln Mite egg No. .*. 96.25 
Larvae No. .*. 3.18 

Unfed Adult and Nymph .* 0.38 
Fed Adult and Nymph **. 0.19 

Total: 100.00 
Fed Adult and Nymph Total Mite Popln .*. 92.58 

Mortality cumulative (%) NS 1.83 
Mite egg No. .. 4.36 

Yolk 0.0. NS 0.06 
Total: 98.83 

Unfed Adult and 
Nymph Mortality cumulative J%t .*. 85.39 

AgelWeek~ ••• 12.11 
Total Mite Popln •• 1.95 

Total: 99.45 
Larvae No. Fed Adult and Nymph •• 67.06 

Total: 67.06 
Mite egg No. Total Mite Popln .*. 96.25 

Larvae No. .. 2.86 
Age(Week~ * 0.53 

Total: 99.64 

Table 11 Stepwise regression of factors affecting production parameters on site 6. 

Response Predictor Significance r" 
Mortality cumulative (%) Age(Weeks} ... 88.99 

Larvae No. .. 6.77 
% La}' • 1.57 

Mite~No. NS 0.76 
Total: 98.09 
% Lay Temperature (OC) ** 64.94 
Total: 64.94 

Temperature rC) % Lay .. 64.94 
Mortality cumulative (%) NS 8.50 

Total: 73.44 
Serum 0.0. Temperature _eC) * 34.57 

Total: 34.57 
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Table 12 Stepwise regression of factors affecting mite populations on site 6. 

Response Predictor Significance r2 

Total Mite Popln Fed Adult and Nymph *** 89.1 
Larvae No. *** 9.40 

Mite eoo No. *** 1.48 
Unfed Adult and Nymph *** 0.02 

Total: 100.00 
Fed Adult and Nymph Total Mite Popln *** 89.10 

Larvae No. ** 6.85 
Mite egg No. *** 3.99 

Unfed Adult and Nymph *** 0.06 
Total: 100.00 

Unfed Adult and 
Nymph Larvae No. *. 50.18 

Total: 50.18 
Larvae No. Total Mite Popln *** 83.87 

Fed Adult and Nymph *. 10.14 
Mite egQ No. *** 5.78 

Unfed Adult and Nymph *** 0.21 

Total: 100.00 

Mite eoa No. Total Mite Popln *** 86.55 
Fed Adult and Nymph ** 7.54 

Larvae No. *** 5.70 

Total: 99.79 

Table 13 Stepwise regression of factors affecting production parameters on site 7. 

Response Predictor Significance r2 

Mortality cumulative (%) Aae(Weeks) *** 97.57 

Total: 97.57 
Temperature (OC) Age(Weeks) * 53.43 

Total: 53.43 

Table 14 Stepwise regression of factors affecting mite populations on site 7. 

Response Predictor Significance rz 
Total Mite Popln Fed Adult and Nymph *** 95.78 

Mite egg No. *** 3.16 

Larvae No. *** 1.02 

Total: 99.96 
Fed Adult and Nymph Total Mite Popln *** 95.78 

Mite eaa No. ** 2.44 
Larvae No. *** 1.67 

Total: 99.89 
Larvae No. Total Mite Popln *** 80.38 

Total: 80.38 
Mite egg No. Total Mite Popln *** 75.92 

Fed Adult and Nymph ** 13.91 
Larvae No. *** 9.59 

Total: 99.42 
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Table 15 Stepwise regression of factors affecting production parameters on all sites 

for yolk IgY. 

Response Predictor Significance r2 

Mortality cumulative (%) Age(Weeks) ... 43.28 
Unfed Adult and Nymph ... 13.28 

Total: 56.56 

Table 16 Stepwise regression of factors affecting mite populations on all Sites for 

yolk IgY. 

Response Predictor Significance rO! 

Total Mite Papin Mite egg No. ... 94.67 
Larvae No. • •• 3.60 

Fed Adult and Nymph •• * 0.93 
Unfed Adult and Nymph •• * 0.80 

Total: 100.00 
Fed Adult and Nymph Total Mite Papin .. * 90.80 

Unfed Adult and Nymph ... 5.12 
Mite egg No. .** 2.22 
Larvae No. . .. 1.86 

Total: 100.00 
Unfed Adult and Nymj!h Total Mite Popln *** 56.97 

Fed Adult and Nvmph *** 19.57 
Larvae No. *** 10.99 

Mite egg No. •• * 12.47 
Total: 100.00 

Larvae No. Total Mite Popln ... 85.06 
Mite eoo No. ..* 5.48 

Fed Adult and Nymph *** 1.86 
Unfed Adult and Nymph *** 7.60 

Total: 100.00 
Mite egg No. Total Mite Popln *** 94.67 

Larvae No. *** 1.95 
Fed Adult and Nymph ** 0.58 

Unfed Adult and Nymph *** 2.80 
Total: 100.00 

Table 17 Stepwise regression of factors affecting production parameters on all sites 

for serum Ig Y. 

Response Predictor Significance rO! 

Mortality cumulative (%} A....9..e(Weeks) *** 75.36 
Temperature (DC) *** 20.17 

Total: 95.53 
Temperature (DC) . Mortall!}' cumulative (%) *** 55.69 

Serum 0.0. NS 5.08 
Total: 60.77 

Serum 0.0. Mortali!y cumulative (%) •• 33.14 
Total: 33.14 
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Table 18 Stepwise regression of factors affecting mite populations on all sites for 

serum IgY. 

Response Predictor Significance r" 
Total Mite Popln Fed Adult and Nymph ... 92.08 

Mite egg No. ••• 5.74 
Larvae No. ... 1.58 

Total: 99.40 
Fed Adult and Nymph Total Mite Popln ... 92.0B 

Mite egg No. ... 3.13 
Larvae No. ••• 3.00 

Total: 98.21 
Unfed Adult and NymQh Mortality cumulative (%) ••• 29.47 

Total: 29.47 
Larvae No. Total Mite PQpln ••• 72.99 

Fed Adult and Nymph ... 8.55 
Mite egg No. ••• 8.02 

Unfed Adult and Nym~h ••• 10.44 
Total: 100.00 

Mite egg No. Total Mite PQQln ••• 84.11 
Fed Adult and Nymph ... 6.28 

Larvae No. . .. 4.17 
Unfed Adult and Nymph ••• 5.44 

Total: 100.00 

Table 19 Stepwise regression of factors affecting production parameters on all sites. 

Response Predictor Significance r" 
Mortality cumulative (%) Age(Weeks) ... 46.86 

Unfed Adult and t-!Y.m~h ... 8.21 
Total: 55.07 

Feed intake (g/b/d) Temperature (0G) . 19.74 
Total: 19.74 

Temperature (Oe) Unfed Adult and N1mJ~h ... 40.36 
Total: 40.36 
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Table 20 Stepwise regression of factors affecting mite populations on all sites. 

Response Predictor Significance rOl 
--

Total Mite Papin Fed Adult and Nymph *** 93.71 
Mite egg No. *** 4.83 
Larvae No. *** 1.15 

Unfed Adult and Nymph *** 0.31 
Total: 100.00 

Fed Adult and Nymph Total Mite Papin *** 85.64 
Unfed Adult and Nymph *** 10.24 

Mite egg No. *** 2.61 
Larvae No. *** 1.51 

Total: 100.00 

Unfed Adult and Nymph Larvae No. *** 23.42 
Mortality cumulative _(%) ** 8.72 

Total: 32.14 

Larvae No. Total Mite Papin *** 82.14 
Fed Adult and Nymph *** 7.13 

Mite egg No. *** 5.50 
Unfed Adult and Nymph *** 5.23 

Total: 100.00 

Mite egg No. Total Mite Popln *** 89.21 
Fed Adult and Nymph * .. 4.62 

Larvae No. *** 3.12 

Unfed Adult and Nymph * .. 3.05 

Total: 100.00 
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Appendix II 

Table 21 Validation of capture antigen between antigen treatments. 

PBS antl~ en coated Urea antl~ en coated 
Bird PBS antigen Urea antigen PBS antigen Urea antigen 
No. Immunlsed Immunlsed Immunlsed Immunlsed 
1 0.93 0.65 0.77 0.89 
2 0.71 0.64 0.68 0.71 
3 0.92 0.64 0.66 0.68 
4 0.79 0.82 0.84 0.86 
5 0.41 0.60 0.49 0.38 
6 0.50 0.61 0.61 0.62 
7 0.87 0.67 0.66 0.66 
8 0.37 0.34 0.31 0.37 
9 0.31 0.36 0.31 0.36 
10 0.47 0.73 0.69 0.64 
11 0.43 0.52 0.62 0.71 
12 0.39 0.59 0.59 0.59 
13 0.71 0.77 0.82 0.88 
14 0.54 0.59 0.65 0.70 

15 0.47 0.45 0.44 0.42 

16 0.40 0.45 0.50 0.55 

17 0.44 0.51 0.57 0.63 

18 0.56 0.52 0.49 0.46 

19 0.72 0.76 0.79 0.82 
20 0.52 0.71 0.60 0.49 

Mean: 0.57 0.60 0.60 0.62 

STDEV: 0.193 0.131 1.131 2.131 
NB: Validation was performed using serum from birds Immunlsed three times with either PBS 
or Urea-extracted antigens, as described in Chapter 7. 

Table 22 Validation of capture antigen between antigen treatments. 
--------_._--

PBS coated Urea coated 
Bird PBS Urea PBS Urea 
No. Immunlsed Immunlsed Immunlsed Immunlsed Significance 

Mean: 0.57 0.60 0.60 0.62 NS 
STDEV: 0.193 0.131 1.131 2.131 -
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Table 23 Effect of treatment on mean weekly bodyweight of birds, corrected for 

differences in initial starting weights 

Age S.E. 
(Weeks) Treat. 1 Treat. 2 Treat. 3 Treat. 4 Mean Significance 

5 338.5 333.9 375.9 345.6 6.25 NS 
6 419.7a 416.4ao 

425.4ao 383.2° 7.81 * 
adjusted 361.18 357.ft° 330 . .(1D 307~ 4.49 * 

7 511.7a 525.1 ac 566.5ac 520.3c 
9.79 * 

adjusted 453.:1 456 . .fc 451.ctC 430.4c 
6.99 * 

8 629.1 ao 632.5ao 683.9a 637.6° 10.39 * 
adjusted 547.:/° 556.180 557.£f 527.cf 8.65 * 

9 777.0ao 785.9a 823.1 a 781.2° 14.44 * 
adjusted 667 . .(10 683.£f 674.18 636.:f1 11.65 • 

10 909.0 896.7 957.1 892.1 14.99 NS 
adjusted 776.2 781.7 786.9 760.6 46.85 NS 

11 1015.4
ao 1008.9

ao 
1102.2

a 1004.00 
15.79 * 

adjusted 887. ti~ 897.cf° 910.tI 866.40 
13.4 NS 

12 1107.9 1122.9 1220.6 1207.1 27.58 NS 
adjusted 1009.7 978.1 1037.0 972.8 27.32 NS 

13 1238.6 1264.8 1372.5 1338.7 30.55 NS 
adjusted 1076.0 1138.0 1154.0 1111.0 27.65 NS 

14 1355.0 1417.0 1491.0 1493.0 19.86 NS 
adjusted 1222.0 1242.0 1279.0 1239.0 16.89 NS 

Values with different superscripts are Significantly different at *(P<0.05) **(P<0.01) 
***(P<0.001) NS: no significant difference 
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