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Abstract

This thesis describes the development and implementation multi-user detection
strategies for phase coherent Shallow Water Acoustic Network (SWAN)
communication. Sea-trial experiments were carried out in the North Sea, 8§ km near

Noordwijk, Netherlands.

The present demand for shallow water acoustic networks (SWAN) is driven by the need
for environmental and other data acquisition from fixed and mobile measuring
platforms located in the continental sea. Such networks require new, reliable and
bandwidth-efficient data communication systems, which maximises the use of the
underwater channel for simultaneous transmissions. However, horizontal-link digital

acoustic communication is limited by both environmental and system factors.

Underwater acoustic channels are characterised by multipath propagation, which is due
to the signal reflection from the sea surface and the sea bottom. Due to wave motion,
the multipath components undergo time-varying propagation delays, which result in
signal fading and phase fluctuations in the received signal. Another problem with
horizontal-link communication is that of the Doppler effect that arises as a result of
relative motion between the transmitter and receiver. Receivers employing array
processing with adaptive decision feedback equalisation schemes have been shown to
be effective to tackle these problems. However, in a phase coherent SWAN, the base-
station receiver has the added task of mitigating the effect of co-channel interference
from other users in the network. Although various multiple access protocols can be
implemented to help ease the co-channel interferences, they usually utilises a significant

amount of the limited channel resources.

The constraints of SWAN communication lead to the need for multi-user detection
strategies. The thesis proposes a number of novel multi-user detection strategies and
presents the software architecture and practical implementation of these phase coherent

multi-user receiver structures.

Both simulation data and experimental real data were used to compare the performances
of the proposed receiver structures. Successful implementation of the receiver system

was demonstrated by field trial results for ranges up to Skm.
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Chapter 1 Introduction

1.1 Multi Access Channel

The idea of several transmitters sending information simultaneously via a
communication channel dates back to Thomas A. Edison in 1873, with the invention of
the duplex [1.1]. Simultaneous transmission of two telegraphic messages travelling in
the same direction through the same wire was enabled with this revolutionary system.
The messages were encoded by changing the polarity of one, while a change of absolute

value was performed for the other.

In modern day context, multiple access communication exists in numerous situations.
Mobile telephones transmitting to a base station, local area networks, packet-radio
networks are just few of the examples of multiple access communication. The common
feature in these communications is the use of a common channel through which
transmissions take place. The receiver usually observes a superposition of signals sent

by the active transmitters, as shown in Figure 1-1.

The translation of the concept of multiple access communication to underwater
communications, employing sound propagation, is an ongoing active research area that

is an immense task beset by many problems [1.2].

User 1

User 2

User 3 —————p1 Channel Receiver P Dgicgondat.?d
User 4 ——e——— Noise

User K

Figure 1-1 Multi access communication model
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1.2 Background of Underwater Acoustic Communication

Sound waves are the principal means for long-distance wireless communication in the
ocean. Electromagnetic (EM) waves, carried by wires or fibres on the ocean bottom,
offer high reliability and useful bandwidth. However in wireless mode, EM waves do
not propagate over long distances underwater, except in the Extremely Low Frequency

(ELF).

The history of underwater sound wave propagation can be traced back several centuries
to the fundamental discoveries and accomplishments of scientists in many diverse

fields. Towards the end of the 15" century, Leonardo da Vinci wrote [1.4]:

“If you cause your ship to stop, and place the head of a long tube in the water and place

the outer extremity to your ears, you will hear ships at a great distance from you”.

In 1687, Sir Isaac Newton published the first treatment of the theory of sound, where he
was able to relate the propagation of sound in fluids to measurable physical quantities
such as density and elasticity [1.5]. In 1827, a Swiss physicist, Daniel Colladon, and a
French mathematician, Charles Sturm, measured the speed of sound in water at Lake
Geneva in Switzerland. Although they only used a simple light flash, coupled with the
sounding of an underwater bell, to obtain the measurement, the value obtained was
close to the accepted value today [1.5]. Lord Rayleigh established the basis for acoustic
theory in 1877 [1.6]. His work covered the generation, propagation, and reception of
sound in a rigorous manner. The first practical application of underwater sound came
into use in the late 19" century. Ships employing a submarine bell and by timing the
interval between the sound of the bell and a foghorn, sent off simultaneously in parallel,
a second ship could then determine its position from the ship where the foghorn and bell

were installed.

In the 20™ century, there was considerable progress in improving underwater acoustic
communication both for military and civilian purposes. An extensive historical review
of the development of practical acoustic applications for both World Wars is well
documented in [1.7]-[1.8]. Coverage of underwater acoustic communication prior to
1967 is recorded in [1.9]. A comprehensive review of acoustic telemetry prior to 1983 is

referenced in [1.10].
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1.3 Recent Advances in Underwater Acoustic Communication

1.3.1 Telemetry Systems

Recent techniques that have advanced the field of underwater acoustic communication
are highlighted in this section. One pioneer for an underwater communication system,
which did not employ diversity techniques was the Gertrude system [1.11]. This system
was used for communication with submarines. It used analogue amplitude modulation
(AM), and with careful placement of the hydrophones, compensation for multipath
propagation from distinct angles of arrival was achieved. The single-sideband Gertrude
system is still in operation for diver communication systems [1.12]. These perform well
for vertical or ultra-short horizontal links environments, with negligible multipath
propagation. The development of digital systems, not employing diversity techniques,
was reported as early as 1960 [1.13]-[1.14]. The Benthic digital system described in
[1.15] allows 4800 bps transmission. Since no diversity technique was adopted, data
transmission was performed vertically through the water column in order to minimise

multipath propagation effects.

The above systems were not really suitable for horizontal shallow water channels which
exhibits severely delay spread due to multipath propagation. Alternative systems that
were based on noncoherent digital modulation, Frequency Shift Keying (FSK), had
been traditionally accepted as the only alternative for shallow water channels which
exhibit rapid phase variation. Although noncoherent detection eliminates the need for
carrier phase tracking, it does not solve the problem of multipath propagation. In order
to combat the problem of inter-symbol interference (ISI), the noncoherent FSK system
had to employ guard times, which were inserted between each successive transmitted
data, to ensure that the reverberation effects were kept minimal at the receiver.
Noncoherent receiver systems are usually classified by their explicit diversity technique,
where explicit diversity could be characterised by intentionally transmitting the data
through distinct subchannels in time, frequency, geometric space, or waveform space.
Due to the independence of the subchannel fading processes, the channel error
probability decreases exponentially in the number of transmissions, or diversity order
[1.16]. The digital acoustic telemetry system described in [1.17] was one
communication link that used explicit diversity technique. This system was designed to

operate in frequency-selective multipath fading environments having extreme phase
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instability. Coded data using multiple FSK (M-FSK) was adopted for data transmissions
operating in the 45-55 kHz band. A 30 kHz header tone was used for coarse, word
synchronisation and a continuous 60 kHz pilot tone was used for Doppler tracking. In
one of the implementations of a digital acoustic telemetry system, a 400 bps digital
coded data stream was transmitted with an (8,4) Hamming code. The Hamming
codeword elements were selected from eight tones spanning at 2 kHz per each baud
period. The receiver then performed an estimation of the Doppler shift using a phase-
locked loop (PLL) whose output was used to adapt the down-conversion nominal
carrier, which was at 50 kHz. The hopping pattern was then tracked in order to
determine the frequency span for the current active word and inverse Fast Fourier
Transform (FFT) was used to extract the squared magnitudes of the received gated
tones. Retrieval of the 8-bit code word was achieved with non-coherent soft decision
detection. Apart from this system, several commercial systems following the digital
acoustic telemetry format that allowed reliable transmission through severe reverberant
multipath channels with low system complexity were reported in [1.18]. Provided the
PLL was successful in tracking the pilot tone, such systems could tolerate Doppler shift
for up to 600 Hz. The Doppler compensation performance deteriorated to 20-25 Hz
when the pilot PLL lost lock on the received signal. Another noncoherent M-FSK
telemetry system operating in the 20-30 kHz band with maximum throughput of Skbps
was reported in [1.19]. Here the frequency band was divided into 16 subbands, in each
of these subbands a 4-FSK data signal was transmitted. The system reported successful
implementation for telemetry over a 4 km horizontal shallow water channel and a 3 km

deep ocean vertical path. In the case of a 700 m shallow water path, the error

probabilities for the transmitted uncoded data were recorded in the order of 107 - 107,

With the aim of increasing the usage of the bandwidth-limited underwater channel,
research focus shifted from noncoherent modulation technique to phase-coherent
techniques such as Phase Shift-Keying (PSK) and Quadrature Amplitude Modulation
(QAM). These methods encode data information into the phase as well as the amplitude

of the transmitted signal.

One of the earliest phase-coherent systems for underwater acoustic communication was
reported in [1.20] where ISI was compensated by a coherent echo cancellation
technique. Adaptive equalisation adopted for high-speed underwater acoustic

communication was reported in the early 1990s [1.21]. In a short-range communication
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link of ~60 m the system reported in [1.22] had a throughput of 500 kbps, with an
operating carrier frequency of 1 Mhz. The main application of this system was for
undersea robotic maintenance of submerged platforms. A 16-QAM data format was
used with an adaptive equaliser adopting the Least Mean Square (LMS) algorithm. The
error probability was in the range of 107 which was measured over the averaged
acquired data packets. The vertical link image transmission system developed by [1.23]
used a phase non-coherent differential PSK (DPSK), with Least Mean Square (LMS)
adaptive equalisation, operating at 20 kHz carrier frequency with a data throughput of

16 kbps for surface transmission over 6.5 km. The error probability achieved from field

trials was in the range of 10 with a Signal-to-Noise Ratio (SNR) of 15 dB.

A network telemetry system for shallow water medium ranges was developed in [1.24],
where direct-sequence spread spectrum (DS-SS) technique was adopted to aid rejection
of multipath propagation effects. This system had a data throughput of 600 bps, a
spreading bandwidth of 10 kHz, with a 30 kHz carrier frequency band. Another
development in network telemetry system was reported in [1.25], using a Quadrature
PSK (QPSK) modulation data format with data throughput of 5 kbps. This system was
configured for a six-node network operating with a 15 kHz frequency band. The
problem of ISI was tackled using a decision feedback equaliser using the Recursive

Least Square (RLS) algorithm.

1.3.2 Signal Processing Methods for Multipath and Doppler Compensation

To achieve high data rate transmission, telemetry systems based on phase-coherent data
signalling method had to deal with the ISI problem that result from multipath
propagation effect. One of the earliest records of pure phase-coherent data transmission
with ISI compensation was reported in [1.26]. The signal processing method was based
on joint synchronisation and a fractionally spaced decision-feedback equalisation
technique adopting the RLS adaptive algorithm. This system was demonstrated through
field tests to exhibit a data throughput of 2 kbps over long range channel, 20 km, and 40
kbps in medium range channel, 5 km. Array processing was adopted in [1.27] to
eliminate or reduce multipath propagation. This approach seeks the use of an array of
transmitters to excite a single path of propagation. Rejection of ISI was dealt with by

careful positioning of a long receiving array. The channel medium was deemed rapidly
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changing for an adaptive equaliser to perform tracking in order to achieve the minimum
point of the error performance surface. The system of [1.27] employed a long array of
receiver elements to compensate for possible errors. Both Binary and Quaternary DPSK
data signal were used, with data throughput of 10 kbps and 20 kbps respectively. Error
probability was recorded to be in the range of 10 —107. It was concluded that this
type of configuration was found to be operationally more effective in short range

communication.

An adaptive beamforming method used as a means of ISI rejection was reported in
[1.28]-[1.29]. The adaptive beamformer uses a decision-feedback equaliser operating
with the LMS algorithm to steer towards the signal of interest, while nulling other
interfering signals. This system was tested in shallow water with a data throughput of 10
kbps with error probability in the range of 102 without equalisation and 10~ with
adaptive equalisation. Recently, a Doppler compensation scheme adopting block-based
interpolation with decision-feedback equalisation was proposed in [1.30]. The Doppler
compensation was obtained by measuring the Doppler shift between two a priori known
Linear Frequency Modulated (LFM) ‘chirp’ signals in the received data packet. An
interpolator structure was then used to perform a sampling rate conversion of the input

samples in order to compensate for the Doppler shift. With a data throughput of 10

kbps, an error probability was reported to be in the range of 10° —-107*. However, this
block-based system assumed that Doppler shift variations are relatively small, under
some circumstances this assumption does not stand. An alternative, decision directed
Maximum Likelihood (ML) cost function used to estimate Doppler shift has been
proposed [1.31]. This system offers a real-time signal processing approach compared to
the block based processing as the received signal can be processed immediately whereas
the block-based system requires a buffer to hold the received data between each LFM

signal prior to Doppler compensation.

1.3.3 Signal Processing Methods for Multiuser Interference Cancellation

Network communication research had sparked increased interest in recent years due to
the need for environmental data acquisition from fixed and mobile measuring platforms
located in the continental sea, as shown in Figure 1-2. Apart from resolving the problem

of ISI arising from multipath propagation, Doppler shifts, environmental noise etc, the
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receiver in such scenarios has the additional task of mitigating the effects of co-channel
interference from other users in the network system. Therefore multiuser
communication techniques [1.32] have to be considered for such underwater acoustic
communication applications. Although Frequency Division Multiple Access (FDMA)
or Time Division Multiple Access (TDMA) may be consider for underwater acoustic
communication in such circumstances, both these techniques exhibits their own
problems. In a bandwidth-limited channel, the network users are usually confined to
sharing the same frequency band for data signalling. Therefore, the FDMA technique,
which operates in orthogonal spectrum bands, will be wasting the already limited
channel resources. TDMA technique is subjected to the problem of efficient time-slot
allocation, which arises due to the long propagation delay. One possible solution to
multi-user underwater network communication is to adopt Code Division Multiple
Access (CDMA), where multiple users are allowed to transmit simultaneously both in
frequency and time. However, adopting CDMA technique reduces overall data
throughput. One recent multiuser detection technique adopting CDMA was reported in
[1.33]. The fundamental principle of this multiuser system was an extension from the
system of [1.26], where array processing, joint synchronisation, channel equalisation in
the form of decision-feedback equalisation was adopted. Multiuser interference

cancellation was performed via feedback filters in a cross over manner.
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Figure 1-2 An example of shallow water acoustic network communication
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1.4 Research project objectives

1.4.1 Scope of Research Project

The primary objective of this research work, Shallow Water Acoustic Network
(SWAN), is to advance the understanding of phase coherent communication in shallow
water acoustic networks at the physical layer level in the communication hierarchy of
the Open System Interconnection (OSI) model, as shown in Figure 1-3. This involves
the development and implementation of innovative software based adaptive multi-user
receiver systems for achieving signal separation in the presence of co-channel
interference (CCI) or multiple access interference (MAI) for horizontal-link network
transmission and reception in a time-varying underwater channel medium, as shown in
Figure 1-4. Apart from mitigating the effects of MAI, the base station receiver system
has also, at the same time to resolve the problems that were highlighted in section 1.3.3.
In order to achieve these goals, a study and performance comparison of the adaptive
filtering algorithms adopted in the decision-feedback equaliser (DFE) receiver
structures were carried out. From the foundation of the adaptive DFE receiver
structures, novel methods of phase-coherent multi-user detection strategies were
developed which accomplishes the main aim of this research project. The developed
multi-user receiver systems were tested with both simulated network communication

scenarios and sea-trial experiments, that were carried out in the North Sea, Netherlands.

-
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....--} —— -
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Figure 1-3 Open System Interconnection (OSI) model
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Figure 1-4 Functions of physical layer

1.4.2 Research Project Partnership

Shallow Water Acoustic Network (SWAN) is a collaborated research project between
five working group partners, as listed in Table 1-1. Sponsored by the European

Community MAST III project — SWAN (MAS3-CT97-0107SWAN), the general

structure of the 36 months duration research project concerns:

e Outlining of a communication network

e Modelling of underwater channel response

e Generation of signal for transmission

e On-line data acquisition, quality-check and management from sea-trials

e Network node processing and evaluation by software receiver entailing
- Blind signal processing,
- Supervised signal processing

- Multi User Detection (MUD) strategies
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Partners \ Country \ Project Tasks
Dune Ingegneria dei Italy ¢ General Network Outline
Sistemi Sri
e Signal Processing
(Project Co-ordinator)
- Blind signal processing
- Generation of Transmission signals
Thomson Marconi Sonar | Netherlands ¢ Underwater channel modelling
- Deterministic channel modelling
- Stochastic channel modelling
University of Newcastle United e Signal Processing
Kingdom
- Supervised signal processing
- Generation of Transmission signals
e Multi-user detection strategies
Rijkswatersaat Netherlands e Deployment of Experiment
e Environmental measurement
TNO Institute  of | Netherlands e Data On-line Acquisition

Applied Physics

e Data Quality Check

e Data Management

Table 1-1 List of working group partners
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1.5 Outline of Thesis

Chapter 2 provides a review of underwater communications. Emphasis is placed on the

various natural variables, which affects shallow water acoustic communication.

Chapter 3 considers various methods, for data transmission in a band-width limited
channel. The chapter discusses the advantages and disadvantages of multiple access
techniques and network theory. The second part of the chapter describes the various
signal coding techniques for use in the sea-trials. In the last section, a geometrical
multipath deterministic channel model was used to study the effects of signal multipath
propagation through a shallow water channel. Provided that the channel is slowly
changing, the deterministic channel model can provide a good estimation of

transmission loss during signal propagation through the shallow water medium.

Chapter 4 presents a treatment of both supervised and blind adaptive algorithms. The
use of adaptive filtering algorithms is one of the main driving forces behind successful
retrieval of transmitted signals. These algorithms operate by continuously seeking the
minimum point of the error-performance in order to assure that optimisation is
achieved. However, as the shallow water channel medium is time-variant, the adaptive
algorithm has the added task of tracking the minimum point of an error performance
surface that is not fixed. In this chapter, several of the well established supervised
adaptive algorithms are investigated. An improved version of the RLS algorithm, with
an improved rate of convergence and tracking is presented. In the second part of the
chapter, blind Higher Order Statistics (HOS) algorithms which belongs to a sub-family
of the blind deconvolution algorithms, are investigated [1.34]-[1.35]. Blind algorithms
can be viewed as a self-organised learning processes [1.36], self-organised in the sense

that the deconvolution is performed in the absence of a training sequence.

The last section of the chapter concentrates on making a comparison of the supervised
and blind algorithms by assessing the rate of global convergence and tracking properties

of the adaptive algorithms.

Chapter S describes the design and development of the multi-user detection strategies
for underwater acoustic communications. Adaptive decision feedback equalisation
employing array processing provides the basic building block for single user

communication. From this foundation, several novel methods of multi-user detection
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schemes for multiple access interference cancellation are proposed and developed. The
validity of the multi-user receiver structures is tested via simulations for equal and

unequal power reception scenarios using the channel model of chapter 3.

Chapter 6 describes the experimental, configuration for the both the first and second
sea-trials held in the North Sea, Netherlands. The software design and implementation

for the receiver structures is also presented.

Chapter 7 presents the results obtained from the North Sea trials. The results not only
demonstrate the successful implementation of the software based receiver structures that
were developed, but also highlight various modifications and enhancements to further

improve the system.

Chapter 8 concludes the thesis with a summary and provides a discussion of the
possible practical deployment of SWAN and suggestions to improve future work in

underwater network communication.

12



Chapter 2 Acoustic Signal Transmission in Shallow Water Medium

2.1 Introduction

The boundaries and the volume properties in shallow water form a complex medium for
the propagation of acoustic signals. In the process of transmission, the acoustic signal
arriving at the receiver is delayed, distorted and weakened. Therefore, an understanding
of the transmission of acoustic signals in underwater communication is needed to
facilitate the design and development of novel yet reliable multi-user detection (MUD)

receiver structures as discussed in chapter 6.

In this chapter, emphasis is placed on the effects that are most detrimental to the

successful transmission of acoustic signals for shallow underwater communication.

2.2 Refraction

Sound velocity in the sea varies with the temperature, depth, and salinity [2.1]. From
numerous experimental results and theoretical considerations, the sound velocity can be

expressed as

¢ =1449 +4.6T - 0.055T* +0.0003T* 2.1
+(1.39-0.012T)S -35)+0.017h

where ¢, T, S and h are the sound speed, in ms™, temperature, in °C, salinity, in
parts per thousand and depth, in m, respectively. As the sound velocity varies with the
environmental parameters, the acoustic signals will be refracted according to Snell’s
law. Assuming an acoustic signal is transmitted at angle, 6(h,) from a source at depth,

h, . Upon interacting with a media boundary, the differing acoustic impedance, from the

refracted angle, 6(h,), and depth, h_ can be expressed as

sin(0(h,)) _ c(h,)
sin(6(h,)) c(h,)

2.2)
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2.3 Multipath Propagation

Multipath propagation occurs whenever there is more than one path arriving at the
receiver. This phenomenon is normally caused by channel boundary reflections, both
from the sea surface and sea-bottom, and volume scattering of the acoustic signal by
reflective objects in the sea ocean, as illustrated in Figure 2-1. The effects of multipath
propagation on the transmitted acoustic signals are numerous. The received signals tend
to suffer from fluctuations both in phase and amplitude, resulting in reduced probability
of signal detection during periods of fading. The other problem caused by multipath
propagation is the degradation of phases and amplitudes between array receivers
resulting in a reduced output gain in the arrays. Due to the sweeping by the underwater
current, the movement of the transmitter and receiver causes the multipath components

to undergo frequency broadening which results in Doppler effects.

2.3.1 Reflection Loss at the Sea surface

The propagation of signals in underwater acoustic communications is greatly influenced
by the sea surface, which acts as both a reflector and scatterer of sound. In a calm sea
surface situation, the acoustic signals may be reflected without any scattering. The
lossless reflection is due to the large impedance mismatch of the air to water interface
that give rise to a surface reflection coefficient of nearly —1. In such circumstances the

acoustic signal with intensity, I, suffers no loss from the reflected intensity, I , defined

by the surface loss coefficient, in dB,

I
v, =10log,, (f—j (2.3)

In the case where the sea surface is rough, the acoustic signals are reflected randomly
resulting in a smeared signal reception with intensity loss at the receiver.

The Rayleigh parameter, P, is used as a measurement of the acoustic roughness of the

sea surface and is defined by [2.2]

_ 2ncsind
A

P 2.4)
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Figure 2-1 Acoustic signal undergoing multipath propagation from boundaries and

volume scattering

where 0 is the incident grazing angle, in degrees, of the sound upon the sea surface, A
is the wavelength and o is the r.m.s. wave height (crest to trough), in ft, inter-related by

the windspeed, w, in knots, as [2.3]

o =0.005w"’ (2.5)

It was found empirically that when P <<, that is 6sinB <A/8, the sea surface may be

considered smooth; when P >>1, the sea surface is considered rough [2.4].

Many other authors have also presented investigations on the characterisation of the sea
surface reflection loss. Marsh et al. [2.5] extended the work of the Rayleigh parameter
to account for the scattering from randomly irregular surfaces, the surface reflection loss

was derived assuming a small grazing angle and is expressed as

v, =—10log,,[1 - 0.0234(f 5)"*] (2.6)
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where f, is the carrier frequency, in kHz. However, this model falls short of the

accountability when reflection loss exceeds 3 dB. The Beckmann-Spizzichino surface
reflection loss model [2.6] allows the calculation of acoustic intensity reduction

following reflection from the sea surface,

_ A+ ] (L 00-w))((90-6)Y
U'_mlogw[(1+(fc/f2)2)] (1+ 60 j( 30 j 2.7)

where f, =f,4/10 and f,=378w™. Other works in the characterisation of the sea

surface reflection loss had also been presented. Patterson [2.7] compared the energy of
pulses returned from the surface with that of the direct arrival and measured a sea
surface loss of ~ 1 dB at 8 kHz with grazing angle between 22 and 52 degrees. Using a
similar technique, Urick and Saxton [2.8] measured a sea surface loss of ~ 3 dB at 25
kHz with grazing angle between 4 and 19 degrees. Reports from Libermann [2.9], using

the Lloyd mirror effect and observing the depth of the minima as f, is varied, also

presented similar results as [2.8] for 30 kHz acoustic signal with grazing angle of 8

degrees and wave heights of 0.2-0.8 fi. From the results obtained by these authors, it

appears that the sea surface loss is less than 1 dB at f, <1 kHz and rises to about 3 dB

at 25 and 30 kHz.

2.3.2 Reflection Loss at the Sea Bottom

The sea bottom is in many aspects similar to the sea surface, serving both as a reflector
and scatterer of acoustic signal. However, the analysis of sea bottom reflection loss is
much more complicated due to the fact that the sea bottom is often layered, with a
density and a sound velocity that changes gradually or abruptly with depth. Thus the
impedance mismatch between the water and the sea bottom may see a portion of the
incident acoustic energy being transmitted into the bottom and a portion of the energy
being reflected. The energy that is transmitted into the bottom may encounter layers of
different materials, resulting in reflections and transmission at each boundary.
Eventually, the energy reflected within the bottom returns to the water and recombines
with the acoustic signal reflected from the water-bottom interface. The resultant
reflection coefficient from a layered bottom constitutes losses in energy level and phase

fluctuation relative to the incident wave, as shown in Figure 2-2.
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Reflected signals

Incident signal

Figure 2-2 Effects of reflected acoustic signals from water-bottom interface

Assuming a nonlayered sea bottom, the Rayleigh reflection coefficient, defined by

[2.10], is given as

Do (Z,/Z,)sinB, —sin 6,
(Z,/Z,)sinB, +sin 6,

(2.8)

where Z,/Z, is the ratio of the characteristics impedance of the sea bottom and water,

@, and 0, is the incidence and reflected angle respectively.

Numerous experimental measurements for the acoustic signal loss in the sea bottom

have been made [2.11], and the attenuation coefficient, B, in dB/m, is related to the

carrier frequency by

B=kf’ (2.9)

where k and n are empirical constants.

Due to the multilayered sediments at the sea bottom, the received acoustic signal that
would have undergone multipath propagation via the sea bottom may end up with an
enhanced energy from some angles and frequencies while a diminished energy in
others. Therefore the reflection loss at the sea bottom generally suffers a higher

attenuation than that of the reflection loss from the sea surface.
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2.4 Reverberation

The causes of reverberation have been attributed to several environmental properties as
reported in [2.12]. Urick [2.12] reported three main types of scatterers induced
reverberation in the sea-ocean. The first type, known as volume reverberation, is caused
by the inhomogeneities of the underwater environmental properties that form
discontinuities in the physical properties of the underwater acoustic medium. Therefore
the transmitted acoustic signals are usually intercepted and re-radiated in varying
portions. The second and third type of scatterers induced reverberation are that of the
sea surface and bottom reverberation, where scatterers are located near the boundaries.
Since a two dimensional distribution of scatterers is involved, the two types of

reverberation may be analytically considered together as surface reverberation [2.12].

2.4.1 Boundaries Scattering

The fundamental ratio which reverberation depends on is the scattering strength.
Several methods are used to quantify the scattering strength. Urick and Hoover [2.13]
beamed up short pulses of acoustic signals at 60 kHz via a directional transmitter, to the
sea surface at different grazing angles and the transmitted signals were then observed by
a narrow beam receiver. The method adopted by Chapman and Harris [2.14], using
explosive sound sources with non-directional receiver reception was deemed more
suitable for lower frequencies operation. The results from these experimental
measurements showed a strong variation at low frequencies and grazing angles, where
P <<1, while no variation were observed at higher frequencies and grazing angles,

P >> 1. The work of [2.14] expressed the scattering strength, S, in dB, as

0
S= 3.310g10£—4.24log,0 E+26 (2.10)

where

E =158(wf,)"” (2.11)
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2.5 Ambient Noise

Ambient noises in the ocean are unwanted acoustic signals, which interfere with the
operation of underwater acoustic signal communications. The sources of ambient noise
can be contributed by both nature and man-made activities with different sources
exhibiting different directional and spectral characteristics. Typically, these sources of
shallow water noise are highly variable both in time and place. While the wind and the
biological properties are the main causes for natural noises, man-made noise may be

characterised by shipping and industrial noises.

2.5.1 Turbulence Related Noise

The compendium for the characterisation of ambient noise spectral levels for the open
ocean, published by Wenz [2.15], considered noise effects in terms of their spectral
density and shows the dominant effects in different frequency bands. For operating
frequency, f, <10 Hz, turbulence in the sea can induce pressure fluctuations sensed by
hydrophones. As the noise is pseudo rather than the result of acoustic signal
propagation, its spectral level will depend on the size, shape and motion of the
hydrophone. However, this noise is frequently of little significance to underwater

acoustic communication, which usually operate at much higher frequencies. The

turbulence noise spectrum level, NSL,, for frequency, f, in kHz, may be expressed, in

dB re 1 uPa, empirically as [2.10],

NSL, =17-30(log,f,) (2.12)

2.5.2 Distant Shipping Noise

For frequencies in the range of 10 <f <100Hz, distant shipping noises are in most
cases, the dominant cause. Noise generated by surface ship can be distributed broadly in
frequency [2.16] but is shaped by the low-pass characteristic of the sea when
propagating over long distances [2.17]. The shipping noise spectrum level, NSL,, in

this frequency band may vary up to 10 dB between light (scale 0) and heavy shipping
(scale 1) density, D, and can be expressed as [2.10],

NSL, =40+20(D -0.5) + 26log,, f, — 60log,,(0.03+£)  (2.13)
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2.5.3 Sea Surface Noise

At a higher frequency range of 100<f, <10* Hz, the formation and oscillation of

subsurface air bubbles, generated by the breaking waves, parameterised by wind force,
is the dominant factor for ambient noise in shallow water communication {2.18]. The

noise spectral level decreases at a rate of 15 to 17 dB per decade for f, >100 Hz. The

surface agitated noise spectrum level, NSL;, for wind-speed w, in ms”', may be

expressed as [2.10],

NSL, = 50 +7.5w"2 +20log,, f, — 40log,,(0.4 +£,) (2.14)

2.5.4 Molecular Noise

For frequencies above the range of f, >10* Hz, ambient noise is dominated by the noise

from molecular agitation. This thermal noise level increases at a rate of ~20 dB per

decade and is expressed as [2.10],

NSL, =-15+20log,, (2.15)

[

2.5.5 Noise Spectrum Level

The overall noise spectrum level, NL, or the intensity attributed to a spectrum
measurement bandwidth of 1 Hz, is the power sum of the noise spectrums from (2.12)

to (2.15). To allow for an actual transmission bandwidth of B, Hz, the total noise level

is given by [2.10],

NL = NSL, + NSL, + NSL, + NSL, +10log,, B, (2.16)

2.6 Transmission Loss

In the process of propagating through the shallow water medium, due to transmission
losses, the acoustic signal experiences a decrease in the received power intensity. The
transmission loss can be considered as the sum of the spreading loss and attenuation

loss, which includes absorption and scattering loss.
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2.6.1 Spreading Loss

Spreading loss is associated with the weakening of the acoustic signal as it spreads
outwardly from the source. In an unbounded acoustic communication medium, the
spreading loss of the transmitted acoustic signal is fundamentally associated by the

spherical loss. This type of loss follows an inverse square law where the intensity of the

transmission loss increases at the square of the range. The spherical loss, TL,,,, at
range R, with reference to the intensity, R, at 1m, is expressed as [2.12],
TLspher = 2010g|0(Ri /Ro) (217)

In the case of shallow water acoustic communication where the medium is bounded by
the sea surface and sea floor, resulting in the medium acting as an acoustic waveguide,
the spreading loss is not spherical because the acoustic signal can no longer cross the
boundaries. The spreading loss of this kind which exists between mid-range and long-

ranges, is termed cylindrical loss and the loss, TL is expressed as [2.12],

cylind *

TL,, , =10log, (R, /R,) (2.18)

cylind

2.6.2 Attenuation Loss

When propagating through the shallow water medium, the transmitted acoustic signal
experiences a loss in energy with each unit distance travelled. The attenuation losses are
contributed by several environmental factors [2.19]. Frequencies in excess of 1 MHz
tends to suffer attenuation loss caused mainly by the viscous friction, where the acoustic
energy is converted into heat energy. The ionic relaxation process of the magnesium

sulphates that are present in the sea had been identified as the main cause of attenuation

loss in frequencies, f <100 kHz [2.10]. At frequencies, f, <700 Hz, boric acid

relaxation, despite its smaller concentration in the seawater, also contributes to the

attenuation loss.

The attenuation factor, o, in dBm™

, derived by Fisher and Simmons [2.20] is the
summed contribution from freshwater attenuation, o, magnesium sulphate relaxation,

a., , and boric acid relaxation, «,, and is expressed as
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a=0o;+o, +a, (2.19)

Freshwater attenuation, a; =[(2.1x107°KT - 38)* +(1.3x107)]f’

=5\g2
Magnesium sulphate relaxation, o = S0(T +1)(28 XZIO M,
2500(T +1)? + £

_(1.2x 107 )(IO(T—4)/loo)fcz
= (109102 fcz

Boric acids relaxation, a,

where, S is the salinity, in (%) and T is temperature, in °C.

The total transmission loss, TL,,, in dB, attributed to the spreading and attenuation

loss for range R, in m, is given as [2.12],

TL,,, =xlog,,R+aR (2.20)

where the constant k¥ has a value of 10 or 20 when either the cylindrical or spherical

loss is considered respectively.

The semi-empirical expressions published by Marsh and Schulkin [2.21] provided a

rough prediction for the transmission loss for frequency ranges, 0.1 <f <10 kHz. For

short distances such that R <H, where H is defined by 1/8(h+ L)’ and h, L are the

channel depth and layer depth respectively; the transmission loss, TL in dB, is

Short >

expressed as [2.12],

TL,. = xlog,,R +aR + 60 - (2.21)
where the “near-field anomaly”, B, is dependent on the sea-state and bottom type, given

in Appendix I. At medium distances such that H <R <8H, the transmission loss,

TL ypegium » 1S €Xpressed as [2.12],

TLyegium =1510g) R +aR +b; (% - 1) +5log,, H+60-p  (2.22)
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where b, is the attenuation coefficient in dB, refer to Appendix II. Finally for long

distances such that R > 8H , the transmission loss, TL is expressed as [2.12],

Long *

TL,,,, = 10log,, R + aR + by (%- 1]+ 10log,, H+64.5-p (2.23)

Therefore, while (2.20) gives a generalised equation for the total transmission loss
contributed by spreading loss and attenuation loss, (2.21) to (2.23) take into account the

effects of spherical loss near the source and cylindrical loss at greater distances.

2.7 Sonar Equation for Point-to-Point Transmission

The sonar equation for the single way transmission allows the characterisation of the
power level for the transmitting equipment and the shallow water medium so that the
received acoustic signals can be detected and demodulated [2.4]. The source power
level, SL, is easily obtained by simple considerations of the losses that are described in

section 2.4 to 2.6, and is given by

SL=NL+TL+DT-DI (2.24)

where NL is the summed noise spectrum described in section 2.5; TL is the
transmission loss presented in section 2.6; DT is the detection threshold and DI is the

directivity index of the transmitting hydrophone.

2.8 Summary

The objective of this chapter was to provide a review of the under water communication
environment where emphasis was placed on the various natural variables, which are

detrimental towards shallow water acoustic communication.

The effects of multipath propagation are a major problem that affects the received
acoustic signals. The fluctuations both in phase and amplitude often result in a reduced
probability of signal detection during periods of fading. The other problem posed by
multipath propagation is the degradation of phases and amplitudes between array

receivers resulting in a reduced output gain in the arrays.
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While the effect of transmission loss caused by spreading and attenuation loss can be
rectified by increasing the source power level, the challenging task is to keep the source
power level constant at all transmitting positions, such that the received acoustic signals
are detectable at the furthest distance. This will inevitably lead to the “near-far”
problem in coherent multi-user communication. Therefore in the following chapters of
the thesis methods are developed in order to mitigate the effects of multipath

propagation and MAI for shallow water acoustic network.
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Chapter 3 Network Communication Analysis

3.1 Introduction

The environmental factors in shallow water attribute to the detrimental effects for
reliable transmission of acoustic signals were outlined in chapter 2. Apart from
resolving the problem of intersymbol interference (ISI), caused by multipath
propagation, the base-station receiver had the added task of mitigating the effects of

multiple access interference from other unintended users in the network.

This chapter outlines the network configurations for shallow water acoustic network
(SWAN), which shows that multiple transmissions arriving simultaneously at a receiver
can result in data packet collision. This is followed by highlighting the practical
difficulties of implementing three reported multiple access techniques, which can be
adopted for the enhancement of data transmission in a bandwidth limited SWAN. The
problem engulfing network communication then leads to the resolving of data packet
collision by multiple access interference cancellation techniques, which is the focal
point of chapter 6. The latter part of the chapter is devoted to the discussion and analysis
of signal coding that has been used in the sea-trials. Finally the chapter analysed a
geometrical multipath deterministic channel model that was used to investigate the
effects of signal multipath propagation through a shallow water channel. Provided that
the channel is slowly changing, the deterministic channel model can provide a good
estimation of transmission loss in signal propagation through the shallow water

medium.

3.2 Network Configuration

The shallow water Acoustic Local Area Network (ALAN) topology of [3.1] is in many
aspects, similar to the packet radio network (PRN) of [3.2]. The main difference
between these two topologies is that the PRN uses a single thread forwarding scheme
and a single data channel. The ALAN also adopts a virtual circuit that forwards packets
from the source to destination and multiple frequencies accommodating the use of
selective-repeat, go-back-N and store-and-forward protocols. Transmission of acoustic
signal in water has a propagating velocity which is much slower than that of the EM

waves in air. Therefore adopting the PRN in ALAN would results in delay between data
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packets of up to tens of seconds. Furthermore, the accommodating of multiple
frequencies in the ALAN topology is severely limited by bandwidth limitation.
Therefore a compromise between these topologies need to be addressed. This section
furnishes a discussion of the proposed network configuration for the SWAN project
[3.3], which outlines the presence of multiple users arriving simultaneously at a

receiver.

3.2.1 Packet Relay Network

For an available bandwidth, W, the channel capacity, C, constrained by the Shannon

limit for error-free transmission is defined as [3.4]

p
C=Wl 1+ — 3.1
ng( an 3.1

where P and n are the average received signal power and ambient noise respectively.

And the signal-to-noise ratio (SNR) is defined as

P
SNR =10lo —_— 32
Eio ( WT]) (3.2)

Whilst this definition is viable for system design, the problem of data packet collision
need also to be addressed. Assuming that a data packet originating from node 4 must
reach node G by successive hops through the network nodes of Figure 3-1. Instead of
utilising the multiple frequencies [3.1], which entails a minimum usage of three carrier
frequencies for a similar network layout, the total available bandwidth in the network is

partitioned into two disjoint bands, F, and F,,. Each node always transmits
omnidirectionally either on a band F,, or F,, and receives omnidirectionally via the

other band F,, or F, . The data packet from node 4 at time instant (1), in band F, will

be processed as:

e Transmission by node 4 is received by nodes B and D in band F,, ;
e Node B and D starts transmitting in band F,, at time instant (2);

e Transmission from node B is received by nodes 4 and F;
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e Transmission from node D is received by nodes 4 and E;

e Attime instant (3), node FE starts transmission on F

cl»®

e Data packet transmission from nodes E and F is received by node G

which result in data collision.

In this packet relay network analysis of inter-node data packet transmission, after the
initialisation phase, each node transmits in a continuous mode. Frequency Division

Multiple Access (FDMA) technique is employed using two bands F, and F,, to

discriminate reception from transmission. Time Division Multiple Access (TDMA) is
only employed for interleaving the transmitted packet streams relative to the messages .
Figure 3-1 indicates that a node may receive simultaneous messages from other distinct
nodes resulting in data packet collision. Although adopting the transmission protocols
of [3.2] would decrease the possibilities of simultaneous reception at a node, adopting

the PRN would result in large delay between data packets.

-3 Tx on band F;;— A, Eand F
«««:sppTxonband F.,—B,Dand G

Figure 3-1 Packet relay and star network
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3.2.2 Star Network

A star network is illustrated in Figure 3-2 with one central node, S, and peripheral nodes
A to F. Each of the peripheral nodes may be associated to a Benthic station for data
collection [1.15]. The central node may be equipped with radio frequency (RF)
equipment hosted in a buoy or on a fixed surface platform for data relay to the shore.

The central node S transmits to (receives from) all peripheral nodes on band F, (E,,).

The messages on the circled paths between peripheral nodes cannot be received because

each peripheral node is set to receive only on band F,, .

Reception of simultaneous messages between two peripheral nodes may occur through
the central node S. The central node is then subjected to multiple access interference
(MAI) reception from the peripheral nodes. In Figure 3-2, direct communications

between adjacent peripheral nodes is allowed. Now the central node transmits only

control and command messages on a small service band F,; and receives on bands E,

and F,, .

Legend

—P»-Tx on band F; — B, D, F
= $Txonband F;—A, C E

«+««pTx on service band Fo; - S

Figure 3-2 Star network with nodes-to-centre communications
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3.3 Multiple Access Techniques

3.3.1 Time Division Multiple Access (TDMA) Technique

In a Time Division Multiple Access (TDMA) system, the time plane is divided into K
discrete timeslots in a round-robin fashion, contiguous along the time axis, as shown in
Figure 3-3. Each user in the system transmits signal energy in the allocated timeslots

with low duty cycle.

Time Guard

Base Station

B

Frame T
(a) (b)

Figure 3-3Time-Division Multiple Access with time guard between discrete slots

3.3.2 Frequency Division Multiple Access (FDMA) Technique

In a Frequency Division Multiple Access (FDMA) system, the time-frequency plane is
divided into K channels, contiguous along the frequency axis so that the resulting
spectra do not overlap each other, as shown in Figure 3-4(a). Therefore at any particular
time 7, users in the system are able to utilise these allocated frequency channels with a

100% duty cycle, as shown in Figure 3-4(b).
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Base Station
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<+ > < —>
B, Frequency T
(€)) (b)

Figure 3-4 Frequency division multiple access system

3.3.3 Code Division Multiple Access (CDMA) Technique

The non-interfering channel sharing approach in the previous two sections is based on
the philosophy of not letting more than one transmitting user at any one time occupy a
given time-frequency slot. Therefore, any violation in random access to this condition
leads to the receiver being unable to cope with colliding receptions. The FDMA and
TDMA techniques enable users in the network system to operate in separate non-
interfering channels where the signals transmitted by all users are mutually orthogonal.
As discussed in network configuration of section 3.2 and due to non-ideal channel
propagation effects, TDMA technique requires long duration of guard time insertion,
while the FDMA technique adopts wide spectral guard bands between data packets
transmission to avoid co-channel interference. These multiple access technique
strategies waste the bandwidth limited channel resources as the number of users are
greater than the number of co-current active users at any given time. Code Division
Multiple Access (CDMA) technique transmits the data stream by spreading the data
with a set of signature waveform, obtained from pseudo-noise (PN) sequences. The
signature waveforms overlap each other in both time and frequency. Coding
orthogonality ensures that the users are transparent to each other. However, one major
disadvantage of introducing spread spectrum signals in SWAN is at the expense of

reduced data throughput in a bandwidth-limited channel.
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3.4 Pseudo-Noise (PN) Sequences

3.4.1 Maximum-Length Shift Register (MLSR) sequence

The maximum-length shift-register (MLSR) sequences are widely known pseudo noise
(PN) sequences for use in low-rate code [3.5]. The MLSR sequence, of length

n=2" -1 bits, can be generated by an m-stage linear feedback shift register, as

illustrated in Figure 3-5. The MLSR sequence is itself periodic with period n and each

period of the sequence contains 2™ ones and 2™ —1 zeros, Appendix III .

m-stages
< ~
o, P
«— 1 2 < T R m-1 m |4—

Output

Figure 3-5 M-stage shift register with linear feedback

One important characteristic of the periodic PN sequence is its periodic auto-correlation

function, which is defined as

r(j)=i(2bi—1)(2biﬂ—1) 0<j<n-1  (3.3)
i=]

where b, is the element {0,1}. A pseudo-random sequence should have an auto-
correlation function with the property that r(0)=n and r(j)=0 for 1<j<n-1. The

periodic auto-correlation function of the MLSR sequence can be expressed as
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. n j=0
rg)= 34
® {—1 1<j<n-1 G4
It can be seen from (3.4) that for large value of n, the size of the off-peak value relative

to the peak value is small. Therefore the MLSR sequence can be considered to be ideal

in terms of its autocorrelation function.

In order to cater for coherent network communication, the PN sequences for users
should ideally be mutually orthogonal to each other so that the cross-correlation
between the PN sequences is low. Although, the MLSR sequence possesses good
autocorrelation property, it suffers from relatively large peaks between any pair of
MLSR sequence in the cross correlation property [3.6]. Even though there is a
possibility of selecting a small subset of the MLSR sequence that have low cross-
correlation peak values, this subset of sequences is too small for network

communication.

3.4.2 Gold code sequences

A set of periodic PN sequences with good cross-correlation properties were proposed by
Gold [3.7]-[3.8]. Gold proved that for certain MLSR sequences, known as preferred

sequence, exhibits a three-valued cross-correlation function of value existed as:

{-1-v()v() -2} (3.5)
o[22 4 odd j
where v() = { N even | (3.6)

Therefore a total of n+2 sequences can be obtained for a pair of sequences of length

n =2" -1 bits, known as Gold sequence.
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3.5 M-PSK Modulation

3.5.1 Binary Phase-Shift Keying (BPSK) Modulation

In a Binary Phase Shift Keying (BPSK) scheme [3.9], the modulating data signal shifts
the phase of the carrier waveform into one of the two possible state, either n or 0,

corresponding to binary symbols *1.

s;(H) = —%]E—cos[hfct +0,(t)] 3.7
where E, T are the symbol energy and symbol time duration 0 <t<T, and the phase

term ¢,(t) have M discrete values given by,

¢i(t)=-2£i i=1,...M (3.8)

A typical BPSK waveform is shown in Figure 3-6 with abrupt changes at the symbol

transitions.

Binary Data

AALN LA
IRVAUVAVIAVAS

Figure 3-6 Signalling information for Binary Phase Shift Keying

Modulated BPSK signal wave is generated by simply applying the incoming binary
data, in bipolar form, and the sinusoidal carrier to a product modulator, as shown in

Figure 3-7.
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Bipolar BPSK signal
Binary s(t)
waveform i
u(t)

Carrier Frequency
Acos(2nf t)

Figure 3-7 Generation scheme for Binary Phase Shift Keying (BPSK)

3.5.2 Quadrature PSK (QPSK) Modulation

In the BPSK scheme, only one of the two possible signals can be transmitted during
each signalling interval, therefore leading to a theoretical bandwidth efficiency of 1
bps/Hz. The other approach to increase the bandwidth efficiency is then to adopt M-ary
coding. In Quadrature PSK (QPSK) with level M = 2%, one of the four possible signal

waveforms

(Accos(27tfct - %)

Accos(2nfct— 4j
ey

s(t) = (3.9)

is transmitted during each symbol interval with each signal uniquely related to 2
bits/symbol, therefore increasing the efficiency to twice that of the BPSK scheme. In a

general form, s(t) signal wave can be represented in the form

s(t) = A cos[2xf t + ¢(t)] (3.10)

where the phase ¢(t) assumes the values of (3.9) for each input dibit data stream. By

expanding the term of (3.10), the equation can be re-written as

s(t) = A cos[¢(t)]cos (2nf,t) — A sin[¢(t)]sin (2nf.t) (3.11)
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Based on this representation, the QPSK wave, s(t), has an in-phase component that is
equal to A_cos[¢(t)] and a quadrature component that is equal to A sin[¢(t)]. The

representation of (3.11) provides the basis for the block diagram of the QPSK
transmitter, shown in Figure 3-8. Gray coding [3.10] is employed so that adjacent
symbols differ by only one bit position to ensure that only one of the 2 data bits will be

erroneous when a symbol error is detected, as shown in the phasor diagram Figure 3-9.

Accos(2nfct)

Gray
Coding

Serial 00 -> 00

—>
Data Parallel | | 01 - 01
Stream
u(t) Binary | [ 10> 11
ilp

11->10

0 024 049 073
Time (ms)

Acsin(2nfct)

Figure 3-8 Block diagram of a QPSK transmitter

01 00 01 00

10 11 11 10

(a) (b)

Figure 3-9 (a) Binary coded versus (b) Gray-coded phasor diagram
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3.6 Error Performance of M-PSK systems

The demodulation of the BPSK and QPSK coding is carried out in an identical fashion
as to the transmission procedure. The received signal is first passed through a bandpass

filter centred at f_ to remove the unwanted noise and interference spectrum at the cutoff

frequency of the bandwidth boundaries, BW, and BW,. Figure 3-10 shows the
demodulation scheme for a single component for the BPSK scheme, which is multiplied
by a cosine waveform. In the QPSK scheme, the signal is then separated into its In-
Phase and Quadrature components, I(t) and Q(t), by simply multiplying the bandpass
filtered signal with the cosine and sine waveforms, as shown in Figure 3-11. The ouput
from these operations are then passed through a lowpass filter to remove the higher

order components at 2f , cos(4nft), and the output is then sent to the detection

scheme.
Bandpass
Filter
r(t) —_— .
— ) —~ LPF |—p Detection
—_— Schemes
cos 2nf, (t)
Figure 3-10 BPSK demodulation
cos 2xf_(t)
I(t)
Bandpass
Filter LPF }—p In-Phase
Component
r(t) —< |
= Detection
Dol Schemes

Quadrature

LPF % Component
Q(t)
sin2nf, (t)

Figure 3-11 QPSK demodulation
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For the BPSK signals, which is antipodal, the bit error probability, P,, [3.11] is given as

_ol [*Ee
PB_Q[ = ] (3.12)

o

where Q, E, and N_ are the complementary error function, bit energy and noise

power. Since QPSK bit stream is partitioned into I and Q components, with each

stream being modulated at half of the bit rate of the original stream, it can be

characterised as two orthogonal BPSK channels. If the magnitude of the original QPSK
vector has a value of A_, the magnitude of the I and Q components will each has a
value of A /2, as shown in Figure 3-12. Therefore, if the QPSK signals has a bit rate of

R bits/s and an average power of S watts, the individual BPSK components will be half

the bit rate and power.

sin ot

A2

Quadrature
BPSK

cos ot

—
A/~2 In-Phase BPSK

Figure 3-12 In-Phase and Quadrature BPSK components of QPSK scheme

From the ratio of the average signal power to average noise power ratio, SNR, given as

EcgiigSi (gl
S (R] (3.13)

o
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It can be seen from that error probability of the QPSK is equal to that of the BPSK.
However, it was noted by [3.11], that symbol error probability, P,, between BPSK and

QPSK is different. When utilising the Gray code assignment, the bit error probability
for M-ary PSK was shown by [3.13] to be
P

P, ~ S 3.14
oy (3.14)

For large SNR, the symbol error probability for coherently detected M-ary PSK is
expressed as [3.10].

P.(M) ~ 2Q[ 2;: sin%] (3.15)

0

where E, is the energy per symbol, E,(log, M). Therefore, it is seen from this analysis

that QPSK is the preferred signal coding over the BPSK coding technique in a band

limited underwater acoustic channel.

3.7 Geometrical Multipath Channel Model

The underwater medium can be characterised as a time-varying multipath channel
where the amplitude and time of arrival observed at the receiver changes with time.

Considering a unit impulse, 5(t), is being transmitted through a time-varying channel,
at sampling instant t_, the observed signal at the receiver may consists of a series of

train pulses, as shown in Figure 3-13.

1
08
06

I |
e

-06
08
At

0 00016 00032 00043 00065 00081 00097 0011
Time Spread (s)

Figure 3-13 Example of a multipath channel
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The transmitted signal, s(t) , can be expressed in a general form

s(t) = Re[u(t)e’™] (3.16)

As the transmitted signal propagates over the multipath channel, as shown in Figure
3-14, each resultant path will possess an attenuation factor, a, and delay time, 7. For an

infinite number of paths, n = oo, the observed signal at the receiver can be expressed as

x(t) = ian(t)s(t =T:il)) EFEL

n=l|

Extending (3.17) to the case of continuous waveform gives

oo

x(t) = j a(T)s(t — 1)dt (3.18)

—00

where a(t;t) denotes the signal attenuation and time delay T at time t. By substituting

(3.16) into (3.18) yields

x(t) = ReH T a(tt)e ™ u(t - t)dt}ej“"] (3.19)

—c0

Sea Surface

Figure 3-14 Multipath propagation of an underwater acoustic channel model

39



CHAPTER 3 - NETWORK COMMUNICATION ANALYSIS

As the inner term of (3.19) is the response to an equivalent lowpass channel to the

equivalent lowpass signal, s(t), it is apparent that the low-pass time-variant impulse

response, h(t;t) is equal to

h(t;t) = a(t;t)e™* (3.20)

or more formally h(t;t) represents the response of the channel at time t due to an
impulse applied at time (t-t). Therefore the equivalent baseband received signal, x,(t),

is
X, (t) = ian(t)e'j‘”’"(')u(t -1.(1) (3.21)
n=l

In the case when unmodulated carrier is transmitted then u(t) =1 fort, (3.21) is reduced

to

X, () = ian(t)e""”‘"“’ (3.22)
n=1

3.7.1 Simulated Results

From the basis of (3.22), a deterministic geometrical multipath channel model was
analysed [3.14]. Taking the channel geometry, as shown in Figure 3-14, with a uniform

channel depth, h, and constant sound speed, ¢ . The transmitter and receiver depth, D,

and D, respectively are separated by a horizontal transmission distance, L. The

transmitted signal can be classified into the direct path signal and multi-path
components, refer to Appendix V. To investigate the multipath channel effects for a
sample system under various distance conditions, a computer simulation analysis was
performed in Microsoft C++ using the parameters given in Table 3-1. The wind speed
was assumed to 25 knots, which corresponds to a sea state condition 5 [3.16], with

computed reflection coefficient, T =0.32.
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Normalised Amplitude

Normalised Amplitude

System Parameters

Carrier Frequency f.=10 kHz

Frequency Bandwidth B, =8-12kHz

Data rate 4 k symbol/s

Channel Depth 18m

Tx Depth 9m

Rx Depth 9m

Wind Speed 25 knots

Sound Speed 1500 m/s

Distances between Tx and Rx under investigation

500m, 2km, Skm and 10km

Table 3-1 System parameter for channel impulse simulation

Figure 3-15 Channel impulses at (a) 500m (b) 2km (c) 5km (d) 10km
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Figure 3-15 shows the computed impulse response, normalised by the direct path, for
the various distances at 500m, 2km, Skm and 10km. It can be seen from Figure 3-15(a)
that the multipath time spread for the short-range transmission at 500m exhibits severe
ISI which spans for ~28 symbols. The reciprocal of the multipath spread is a measure of
the coherence bandwidth, (Af), of the channel [3.12], which is given as

(Af)~—— (3.23)

multi

where T . is the multipath spread. If (Af) is large in comparison to the transmitted

multi
bandwidth, the signal undergoes frequency non-selective fading. On the other hand,
if (Af) is small, the transmitted signal suffers from frequency selective fading. From the
multipath intensity plots in Figure 3-15, it was observed that as the transmission
distance increases from 500m to 10km, the multipath time spread grew smaller. This
can be explained by the relationship of the delayed time between the direct path and the
multipath components of Appendix Table 4, in Appendix V. As the transmission
distance becomes large enough, the time difference between each successive arrival
becomes, negligibly small. Therefore, it is anticipated that severe ISI tends to occur for
short-range transmission. Although the effect of ISI gets negligibly small with

increasing distance, the receiver will have to cope with the possibility of signal fading.

3.8 Summary

Reviewing network communication system indicates that a network node is subjected to
receiving simultaneous messages from other nodes resulting in MAI. Adopting network
protocols, for example the PRN protocol, can ease this problem. The other option in
solving the problem of MAI encountered in network communication is to adopt
multiple access techniques. However, there are some downsides when adopting these
methodologies. While network protocol may result in long delay between data packets,

multiple access techniques tend to use up much of the limited channel bandwidth,

resulting in poor network efficiency.

The investigation of signal coding was carried out in the second part of the chapter. It
was seen that the error probability of QPSK modulation scheme with Gray-coding is

equal to that of the BPSK, therefore enabling the system to increase its bits transmission
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per second to twice of the available bandwidth. Therefore, QPSK modulation scheme is
the preferred signal coding over the BPSK coding technique in a band limited

underwater acoustic channel.

Finally, a geometrical multipath channel model was descibed for a shallow water
channel depth of 18m. The channel model provided an insight to the effects of ISI on
the transmitted acoustic signal. It is anticipated that severe ISI tends to occur at short-
range transmission. As the effect of ISI gets negligibly small with increasing distance,

the receiver will have to cope with the possibility of signal fading.
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Chapter 4 Supervised and Blind Adaptive Equalisation

4.1 Introduction

The phenomenon of ISI and background noise can deteriorate the performance of the
receiver. Therefore the role of an adaptive equaliser is to resolve distortion introduced
by the channel while minimising the effect of additive noise prior to the detection input.
Adaptive filtering is the main driving force behind successful retrieval of received
signals by continuously seeking the minimum point of the error performance surface in
order to assure that optimisation is achieved. However, as the shallow water channel
medium is time-variant, the adaptive algorithms have the added task of tracking the

minimum point that is no longer fixed.

Two approaches are investigated in this chapter to deal with the time variant channel:

1. Supervised adaptive algorithms: These algorithms uses a priori known training
sequence, embedded before the data sequence, to adjust the equaliser tap weight
coefficients in order to achieve a desired local minima in the error-performance
surface. This unimodal nature can assure convergence of the algorithm. When
switching to the decision-directed mode, the algorithm uses the estimated data to
modify and update the error performance surface in a multimodal nature [4.1]. In
this section, several classical supervised algorithms are investigated. Due to the
instability performance of the standard RLS algorithm in tracking a time-variant
channel, an improved RLS (IRLS) algorithm [4.2] is presented which exhibits good

convergence yet at the same time achieves better tracking properties.

2. Blind deconvolution: This can be viewed as a self-organised learning process [4.9].
Self-organised in the sense that deconvolution is performed in the absence of a prior
known training sequence. A sub-family of the blind deconvolution algorithms,
Implicit Higher Order Statistics (HOS), which exploit the HOS of the received

signal is considered mainly due to its fast computation.

Performance comparison of both supervised and blind adaptive algorithms are presented
in section 4.4, using both simulated and experimental data for a single-user scenario.
The performances of the algorithms are assessed by comparing the rate of convergence

and tracking property for practical implementation. From the results obtained from
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simulation and experimental data, the IRLS algorithm exhibits better convergence and
tracking property as compared to the other classes of algorithms. The last section
discusses the feasibility of the adaptive algorithms for practical implementation in

underwater acoustic communication.

4.2 Supervised Adaptive Equalisations

4.2.1 Stochastic Least Mean Square (LMS) algorithm

The Least Mean Square (LMS) algorithm, first proposed by Widrow and Hoff [4.4], is a
stochastic implementation of the steepest-descent algorithm and is the most widely used
adaptive filtering algorithm in practice due to its simplicity and robustness in signal

processing.

4.2.1.1 Mean Square Error criterion

The concept of a cost function is the optimisation of the filters. It defines the
transformation from a vector space spanned by the elements of the coefficient vector
into the space of a real scalar [4.5]. There are two points that need to be considered

when selecting a cost function:

1. The cost function must be mathematically tractable

2. The cost function should have a single minimum or maximum point, so

that the optimum set of filter parameters could be selected unambiguously

The tractability of the cost function allows the analysis of the filter and also simplifies
the development of the algorithm for adjustment of the filter parameters. The number of
minima (or maxima) points for a cost function is closely related to the filter structure.
The IIR filter involves both feedforward and feedback section, where portions of the
filter output and possibly other internal variables in the filter are fed back to the input

[4.6]. In general, unless it is properly designed, the feedback in IIR filters results in
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many minima (or maxima) points, which give rise to instability with the result of filter
oscillation. On the other hand, FIR filters are inherently stable because the structure
involves the use of only the forward path, which has a single minima (or maxima) point
once the proper cost function is used [4.7],[4.8]. Therefore attention is confined to FIR

filters in this chapter.

A highly popular and simple cost function that satisfies the above two conditions, is the
mean-square error, &, which is defined as the mean-square value of an estimation error

[4.8] expressed as

E=E[le(n)’ [] 4.1)

where E[-] denotes the statistical expectation. The estimation error e(n) is the
difference between the desired response d(n) and the output value y(n) in discrete

time, shown in the basic transversal filter in Figure 4-1 and is expressed as

e(n) =d(n) - y(n) (4.2)
x(n) x(n-1) x(n—=N+1)
=1 -1 > z—l
Wi-i
-] y(n)
e(n)
()

Figure 4-1 Transversal Filter
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4.2.1.2 Optimal Weight Values: Wiener-Hopf Equation

Considering the basic transversal filter shown in Figure 4-1. The sampled filter input,

x(n) and the tap-weights, w, are defined as column vectors

x(n)=[x(n) x(n-1) -+ x(n—-N+DJ 4.3)

and w=[w, w, - wN_l]T (4.4)

where the superscript T stands for transpose. The filter output is

y(n) = Z_:wix(n —i)=w'x(n) = x(n)w" 4.5)

i=0

where N is the number of tap weights used in the filter. Substituting (4.5) in (4.2) yields
e(n) = d(n) - x(m)w" (4.6)
And the cost function in (4.1) can then be expanded to

£ = E[d*(n)]- w " E[x(n)d(n)] - E[d(n)x" (n)]w + w'E[x(n)x" (n)]w (4.7)

Defining the N x 1 cross-correlation vector between the tap inputs of the filter, x(n) and

the desired response d(n) as

P=E[x(n)d(m)]=[p, p, - Puy ]T (4.8)

and the N x N autocorrelation vector of the tap inputs, x(n),

Ty Tn  *° Iyng
o L One
R=E[x(mx'(m)]=| . - lN l 4.9
Inao  Inan 0 Tnaina

Noting that E[d(n)x"(n)]=P" and w'P = P"w, the cost function in (4.1) is obtained as

& =E[d’(n)]-2w'P+w'Rw (4.10)
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The optimal set of weight values, w,,, is obtained when E[d’(n)] is a minimum,

which is achieved by differentiating the cost function of (4.10) with respect to the

weight vector to zero:-

o5
Vi=_2=2Rw,, ~2P=0 (4.11)

where V is the gradient operator defined as the column vector.

— —

0

g

0

o
v=| ow, (4.12)

From which W = R'P (4.13)

is the expression for the Wiener-Hopf equation [4.9].

4.2.1.3 Solving of Wiener-Hopf Equation: Least Mean Square algorithm

The optimum set of weight coefficient values, w_ , can be obtained by solving (4.13)

directly. Although straightforward, acquisition of the autocorrelation matrix, R, and
cross-correlation matrix, P, which are not known a priori, requires an offset of
substantial computational load for matrix inversion. Due to the time-variant nature of

the underwater channel, both R and P changes with time and so the optimum weight

vector needs to be updated frequently. Therefore a different approach of finding w,,, is

desirable. While the Newron's algorithm method searches the zeros of a function [4.5].
the steepest-descent method uses a deterministic gradient iterative method of

optimisation for searching the minimum value of the mean squared error [4.10].

According to (4.11), if w(k) is the tap-weight vector at time index n, it can be updated

by:
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w(n+1) = w(n) - pVE(n) (4.14)

where | is a positive step-size parameter. The LMS algorithm simply replaces the cost
function of (4.1) by its instantaneous coarse estimate &(n)=e’(n) [4.4]. Substituting

£(n) = €’(n) into (4.14), the tap-weight vector at time index 7, is obtained as

w(n+1) = w(n) —puVe’(n) (4.15)

The i th element (tap weights) of the gradient vector Ve’(n) is

2
Q%w@ =2e(n)

oe(n)
ow.

(4.16)

Substituting (4.2) for the last factor on the right hand side of (4.16) and noting that d(n)

is independent of w; yields

2
de’(n) _ —2e(n) dy(n) 4.17)

ow, ow,

1 1

And substituting for y(n) from (4.5),

de’(n)
w.

= —2e(n)x(n-1) (4.18)

Using (4.12) and (4.18), the expression in (4.15) is obtained as

w(n +1) = w(n) + 2pe(n)x(n) 4.19)

This is the tap-weight adaptation for the LMS algorithm by which the correction that is
applied to the current estimate of the tap-weight vector, w(n). Using these notations,
the LMS algorithm may be written in complex notation to reflect the data, estimated
error and tap-weight adaptation for MPSK modulation, as depicted in Table 4-1. The

subscripts / and () denote the “in-phase” (real) and “quadrature” (imaginary)
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components respectively. Figure 4-2 shows the cross-coupled signal-flow representation
of the complex error and output signals and Figure 4-3 illustrates the cross-coupled
signal-flow for the tap-weight adaptation. The combination of the pair of signal-flow
diagrams constitutes the canonical model of the complex LMS algorithm that is

equivalent to a set of four real LMS algorithms with cross-coupling between them.

Parameters N = Number of taps for n=0,1,2,.... N -1

p = Step-size parameters

Initial Conditions Tap-Weights

wi(0)=0 wu(0)=0

For each time instant, n = 0,1, 2, ... , N— 1 compute

1. Complex filter output:
y,(n) = Wy ()X, (n)-Wo (n)Xo (n)
Yo(n) = Wi ()Xo (n) + W (n)x, (n)
2. Complex Error Estimation:
e;(n) =d,(n) -y, (n) €q(n) =dqy(n) - yq(n)
3. Complex Tap-weight adaptation:
w (n+1)=w(n) +ple,(n)x,(n) +e,(n)x,(n)]

Wo(n+1) =wo(n) +ple, (n)xq(n)-eo(n)x,(n)]

Table 4-1 Adaptation of the canonical complex LMS algorithm
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di(n)
+
x(n) wi(n) > yi(n)
Wq(n)
Wq(n)
Xq(n) wi(n) » ya(n)
+
da(n)

Figure 4-2 Error and output signal-flow representation of the complex LMS algorithm

x(n)

Xa(N)

Figure 4-3 Tap-weight update signal-flow representation of the complex LMS algorithm
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4.2.2 Normalised Least Mean Square (NLMS) algorithm

The adaptation px(n)e(n) factor, of the LMS algorithm, in (4.19) that is applied to the
weight vector w(n) at time index n+1 is directly proportional to the input-tap vector
x(n). In the instance when x(n) suffers from a sudden large burst of background noise

or strong MAI, the LMS algorithm is susceptible to the problem of gradient noise
amplification. To tackle this problem, the Normalised Least Mean Square (NLMS)
algorithm may be used. The NLMS algorithm can be viewed as a companion to the
LMS algorithm which takes into account the variation in the signal level at the filter
input and selects a normalised step-size parameter which results in a stable as well as
fast converging adaptation algorithm. The NLMS may be developed from several
viewpoints. Nitzberg [4.11] obtained the NLMS recursion by running the LMS
algorithm recursively for every new sample of the input until it converges. The NLMS
recursion may also be derived by solving the constrained optimisation, formulated by

Goodwin and Sin [4.12]:

Given the tap-input weight vector x(n) and the desired output decision d(n), the weight
vector w(n+1) is determined so as to minimise the squared Euclidean norm of the

difference

nn)=w(n+1)—w(n) (4.20)

in the tap-input weight vector w(n +1) with respect to its old value w(n), subject to the

constraint

w'(n+1)x(n) = d(n) 4.21)

The constrained optimisation can be solved by using the method of Lagrange
multipliers [4.13]. The squared norm of the change n(n) of (4.20) in the tap-weight

vector w(n+1) can be expressed as

@ = [w(n+1) - wm)] fwin + 1) — w(n)] (4.22)

N-1
=Zolwk(n+1)—wk(n)|2

k
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From (4.21) and (4.22), the cost function can then be stated as

N-I
&=, (W (n+1)-w,(n))’ (4.23)

k=0

The optimum set of values of w, (n+1) is obtained by differentiating the cost function

and setting the results to zero. Hence (4.23) yields

2[w, (n+1)—w, (n)] = Ax(n — k) (4.24)

where A is the Lagrange multiplier. The unknown A is solved by multiplying both
sides of (4.24) by x(n-k) and summing over the values of k=0 to N —1. The result

from (4.24) is therefore

A =15 2 {Zwk(n+l)x(n k) - Zwk(n)x(n k)} (4.25)
[x(n-k)[" L+

k=0

> [wT (n+1)x(n)-w' (n)x(n)]

- x)

where |x(n)| is the Euclidean norm of the input-tap vector x(n). Applying the

definition of estimation error from (4.6) and the constraint from (4.21) to (4.25),

2
e(n) 4.26
" ol (429

A vector form equivalent can be written by substituting (4.26) into (4.24),

n(n)=w(n+1)-w(n) 4.27)

———e(n)
||()|l

A positive step-size parameter, p, is introduced to (4.27) in order to control the tap-
weight from one iteration to the next without changing its direction. Therefore changing

(4.27)to
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nn)=w(n+1)—w(n) (4.28)

_ K
ST

The recursion for the NLMS algorithm can then be expressed as

w(n+1) = w(n) + —— x(n)e(n) (4.29)
x|

The tap-weight vector w(n+1) computed at time index n+1 is updated in such a way
that the tap-weights exhibit minimum change with respect to the known w(n) at time

index n. Hence the NLMS algorithm can be seen as a manifestation of the principle of
minimal disturbance which states that, in the light of new input data, the parameters of

an adaptive system should be disturbed in a minimal fashion [4.14].

The NLMS algorithm introduces a problem of its own when overcoming the problem of
gradient noise amplification that is associated with the LMS algorithm. In the instance
of a large input-tap vector, x(n), the NLMS algorithm is able to normalise the

correction vector, x(n)e(n), with respect to the squared Euclidean norm of the input-tap

vector, x(n). However in the instance when x(n) is small, numerical difficulties may

arise due to the division by a small value of the squared norm ||x(n)]|2. To ensure that

numerical difficulties does not arises, a slight modification is made to the recursion of

(4.29) by introducing a small scalar value, o, yielding

w(n+1) = wn) + —E—— x(n)e(n) (4.30)
c+ ”x(n)”

Thus, the NLMS algorithm can be seen as a modification of the LMS algorithm that
normalises the tap-weight vector with respect to the squared Euclidean norm of the
input-tap vector. The complex notation of the NLMS adaptive algorithm for a MPSK

modulation scheme is depicted in Table 4-2.
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Parameters N = Number of taps for n=0,1,2,...N-1
| = Step-size parameters

o = Small positive constant a>0

Initial Conditions Tap-Weights

wi(0)=0 wu(0)=0

For each time instant, n = 0.1, 2, ... . N— 1 compute

1. Complex filter output:
yi(0) = W] (m)x, (n)-W(n)xo (n)
Yo(n) = Wi ()Xo (n) + wo (n)x, (n)
2. Complex Error Estimation:
e,(n) =d,(n)-y,(n) eq(n) =dy(n) — yo(n)

3. Complex Tap-weight adaptation:

7 €a (n)xQ (n)

1
e;(n)x,;(n) + m

1
W;(n+1)=W1(n)+M[m

e, (n)xq(n)- > €o(n)x;(n)

1
ouHx, ()

1
wo(n+1)=w,(n)+ “{——aﬂlxo o

Table 4-2 Adaptation of the complex NLMS algorithm
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4.2.3 Variable Step-Size LMS algorithm

The step-size parameter, p, plays a significant part in governing the performances of the
LMS algorithm, by which the rate of convergence changes in proportion to the step-size
parameter. Therefore, a large p is required to minimise the transient time of the LMS
algorithm. However, a small p is needed to achieve a small misadjustment, which is a
measure of the amount of MSE that deviates from the minimum mean-squared error
produced by the Wiener filter. The Variable Step-Size LMS (VSLMS) algorithm, which
is based on the method of steepest descent utilises an independent step-size parameter
for each tap-weight update and is therefore an effective solution to these conflicting

requirements [4.15].

Following the formulation of the LMS tap-weight vector recursion of (4.15), a similar
approach of obtaining the optimum step-size parameter for the VSLMS algorithm can

be expressed as

= 1) — _85_
Ky (n) =p, (n-1) Bﬁuk(n—l) 431

where B is a small positive adaptation parameter. From the analogy of the LMS

algorithm, the stochastic gradient recursion of (4.31) is

de’(n)
n=pnm1)-p——"-— 4.32
)=o) ~p T (432)
Using (4.16), the last factor on the right hand side of (4.32) can be obtained as
de’(n) de(n)
————=2e(n)—————— 4.33
-0 o) (439
ow, (n)
= —2e n)x —_ kN
g -

According to the LMS algorithm, the tap-weight, w _(n), is related to the step-size

recursion, p,(n—1),
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w,(n)=w, (n-1)+2p,(n-De(n-1)x,(n—-1) (4.34)

By differentiating (4.34) with respect to p,(n—1) and substituting to (4.33) yields

de’(n)
S E@E(a =D (4.35)
where g, (n) is defined as
g, (n) = —2e(n)x, (n) (4.36)

By substituting (4.35) to (4.32), the stochastic gradient recursion of the VSLMS

algorithm can be expressed as

H () =p, (n-1)+pg, (n)g, (n—1) 4.37)

where B is a small positive step-size parameter. Although, the optimality of the
VSLMS algorithm may be obtained by solving rigorously for a set of unknown step-size
parameters [4.16]-[4.17], such solutions are lengthy and also require an offset of
substantial computational load. A simple yet effective method of solving the set of

unknown step-size parameters is to initialise a set of upper and lower limits, p_, and

u,.. respectively, for the step-size parameters. This is to ensure that the step-size

parameter does not become too large (resulting in system instability) or too small
(resulting in a slow response to a sudden change to the data due to the time-variant
environment). Table 4-3 summarises the complex implementation of the VSLMS

algorithm.
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Parameters N = Number of taps for n=0,1,2,.. . N—-1
U = Maximum step-size value
U, = Minimum step-size value :L 0 <Kain <Homan

g = Stochastic gradient terms

B = Small positive step-size parameter y>0

Initial Conditions  Tap-Weights

wi(0)=0 w,(0)=0
Step-size parameters

“I(O) =”max ul(0)="lmax

For each time instant, n = 0,1, 2, ..., N — I compute

1. Complex filter output:
y,(n) = W ()x,(n)-Wq,(n)Xq(n)
Yo(n) = W ()X, (1) + Wo (n)x, (n)
2. Complex Error Estimation:
&,(n) = d,(n) - ¥,(n) eo(n) =dg(n) - yo(n)
3. Complex Step-Size adaptation:
g (m)=e(mx’(n-1)
wm=p'(n-1)+pg (mg’(n-1)
Conditions
if W' (0)> B> WD) = Ry,
if (M) <P s B () = Ry
4. Complex Step-Size adaptation:

wi(n+1) =w () + 1 [€,()x,(n) + eo(m)xo(m) ]

Wo(n+1) = wo(m) +p’'[ e, (0)x4(n)-eo(n)x, ()]

Table 4-3 Adaptation of the complex VSLMS
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4.2.4 Kalman algorithm

Applications of Kalman adaptive filtering was first reported in the literature by
Lawrence and Kaufman [4.18], where Kalman filtering was constructed into an
equaliser to provide an estimation of the channel input. This was followed by Godard
[4.19], who used a different approach in formulating the adaptive filtering problem by
which a tap delay-line structure was introduced to estimate a state vector in Gaussian
noise. This prompted other extensive investigations of the application of the Kalman

adaptive algorithm.

A linear, discrete-time dynamical system signal-flow graph is shown in Figure 4-4

[4.20]. The state vector, w(n), is defined as a set of quantities that is used to define the
dynamical behaviour of the system. As w(n) is generally unknown, a set of observation
data, d_(n), is used to estimate it. The Kalman filtering problem for this linear system
can be formulated by two equations: the processing equation, w(n+1), which describes
the dynamics of the system, and the measurement equation, d(n), which describes the

measurement error incurred in the system. From Figure 4-4, the processing and the

measurement equations can be expressed as

wn+1)=x(n+ Ln)w(n) +v (n) (4.38)

and d,(n) =r(n)w(n)+v,_(n) (4.39)

where k(n+1,n) isa NxN transition matrix relating the state of the system at times
n+1 and n, r(n) is the measurement matrix. The N'x1 vectors, v (n) of (4.38), and

v_(n) of (4.39), are the process noise and the measurement noise respectively. The

statistically independent vectors are modelled as a zero-mean, white noise processes

whose correlation matrices are defined as

Efv, (v (k)] = {on(n) 2 : l; (4.40)
and Elv, (v (K)] = {Q"‘O(“) - (441)
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v,(n)  wn+1) w(m) d,(n)

r(n)

Vi ()
Figure 4-4 Signal-flow of a linear, discrete-time dynamical Kalman system

The Kalman filtering problem can be solved by the approach of the innovation process

[4.21], which is defined as
a(n) =d, (n)-d,(n) (4.42)

where d (n) denotes the minimum mean-square estimate of the observed data d_(n)

starting at time n =1 extending to and including time n—1. From the minimum mean-

square estimate of (4.39), the measurement noise vector is zero since v, (n) is

orthogonal to the past observations, which gives

d,(n) = r(n)w(n) (4.43)

Substituting (4.43) to (4.42) gives the innovation process

a(n) =d, (n)-r(n)w(n) (4.44)

The correlation matrix of the innovation process is defined as [4.21]

R(n) =r(mK(n,n-Dr'(n)+Q,,(n) (4.45)

where K(n,n—1) is the predicted state-error correlation matrix, which was derived as

the Riccati difference equation as

K(n)=K(n,n-1)-xk(n,n +1)G(n)r(n)K(n,n—1) (4.46)
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where G(n) is the Kalman gain given as

G(n) = k(n+1,n)K(n,n-Dr (n)R™'(n) (4.47)

The minimum mean-square estimate of (4.38) can be expressed as a linear combination

of the sequence of innovations processes [4.9],

w(i) = Zn:Bi (k)a(k) (4.48)
k=]
where B, (k) is given by
B,(k) = E[w(D)e" (IO]R (k) (4.49)

For i =n+1, and substituting (4.49) to (4.48) yields
wn+1)= zl E[w(n+1a" KR Ka(k)
k=1
+E[w(n + )a" (n)]R' (n)a(n) (4.50)

where the second term on the right hand side of (4.50), excluding the innovation
process, is the raw expression of the Kalman gain of (4.47). It can also be seen that the
summation first term of (4.50) can be rewritten as

n-1

E[w(n +1)a" (k)]R™'(k)a(k) = k(n + 1,n)w(n) 4.51)

k=1

Therefore (4.50) can be expressed as

w(n+1) =x(n+1,n)w(n) + G(n)a(n) (4.52)

The equations in that order of (4.47), (4.45), (4.43), (4.52) and (4.46) then define the
Kalman’s one step prediction algorithm. Implementation of the Kalman algorithm is

summarised in Table 4-4.
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Parameters N = Number of taps for n=0,1,2,...N -1

Qnm. Q= Correlation matrix for measurement and process noise

Initial Conditions Tap-Weights

w,(0)=0 w,(0)=0
Measurement and Process noise

Q. =8"T Q,=x""1 where <y

For each time instant, n = 0.1, 2, ... . N— 1 compute

1. Computation of complex Gain vector:

_ K (n-Dr'(n)
rmK (n-Dr*n)+Q,_(n)

G(n)
2. Complex filter output:
y:(0) = wy () (n)-wo (n)r, (n)
Yo(n) = Wi (g () + o (m)r; ()
3. Complex Error Estimation:
o'(m)=d"(n)-y'(n)

4. Complex Tap-weight adaptation:

w,(n+1) = w,(0) +[G, (ot (n) + Gy (n)ot o ()]

Wo(n+1) =W () +[G,(n)ay(n)-Go(n)o, (n)}]
5. Complex input covariance matrix:

K'®m=Kn-1)-Gor®mKn-1)+Q,

K'@n-1)=K'(n)+Q,

Table 4-4 Adaptation of the complex Kalman algorithm
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4.2.5 Recursive Least Square (RLS) algorithm

The LMS algorithm method of tap-weight update strives to minimise the mean square
of the estimation error, £(n). The tap-weight parameters in the Recursive Least Square
(RLS) algorithm are optimised by utilising information in the input data from time
index, n> 0, till the present sample and minimising the sum of squared values of the
error samples of the filter output such that the cost function, at any time index n>0,

can be minimised

Em) =Y p, (el (K) 4.53)
k=1

where e’(n) is the estimated error as defined in (4.2). The weighting factor, p(k), with

property,

0<p,(k) <1 k=12,..n (4.54)

is used to ensure that the data in the distant past are “forgotten” in order to allow the
filter, when operating in a time-variant environment, the possibility of following the
statistical variations of the input data [4.22]. The exponential weighting or forgetting

factor is one of the commonly used weighting, which is defined by

p. (k) =A"" k=12,..n (4.55)

where A is a positive constant close to, but smaller than, 1.0. When A <1.0, the
forgetting factor defined by (4.55) gives more weight to the recent data samples of the
error estimates compared to the old ones, thus forgetting the past. Roughly speaking, the
inverse of 1-A is a measure of the memory of the algorithm. The case of A=1.0
corresponds to an infinite memory. From the perspective of practical signal processing,
the forgetting factor is kept within a range 0.95 <X <1.0 [4.23]. By substituting (4.55)

in (4.53) and using matrix notation, the cost function is expressed as

&(n) = e’ (n)A(n)e(n) (4.56)

where A(n) is the diagonal matrix consisting of the forgetting factors
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(A" 0 0 ... 0]
0 A" 0 ... 0

An)=| 0 0 A" ... 0 4.57)
0 0 0 1]

The optimum tap-weight vector for which the cost function of (4.56) attains its

minimum is defined by the normal equations written in matrix form

w(n) = ¥;'(n)8, (n) (4.58)
where the N x N correlation vector is defined by

V. (n) = x" (n)A(n)x(n) (4.59)

and the N x1 correlation vector is

0, (n) = x(n)A(n)d(n) (4.60)

Applying the input data vector of (4.3) and expanding the summations in (4.59) and
(4.60)

¥, (n) = x(n)x" (n) + Ax(n-Dx" (n-1) + A7x(n-2)x" (n-2) +---  (4.61)

0, (n) = x(n)d(n) + Ax(n-1)d(n) + A*x(n-2)d(n) + - (4.62)

From the expression of (4.61) and (4.62), the recursion of the autocorrelation

vector, ¥, (n) , and the cross-correlation vector, @, (n), can be obtained recursively as

¥. (n) =AY, (n-1) +x" (n)x(n) (4.63)

and

8,(n) =19, (n—1) +x(n)d(n) (4.64)

64



CHAPTER 4 - SUPERVISED AND BLIND ADAPTIVE EQUALISATION

The resulting two recursions of (4.63) and (4.64) form the basis for the derivation of the
RLS algorithm. In order to compute the tap-weights recursively and to avoid the long
computational load of determining the inverse of the correlation matrix, the tap-weight
vector can be computed by using matrix algebra, and in particular the matrix inversion
lemma [4.24].

For an arbitrary non-singular N x N matrix A, any N x1 vector B and a scalar a, the

identity of the matrix inversion lemma can be expressed as

oA 'BB'A™

A+oBBT)'=A"-22 222
( ) 1+aB'A™'B

(4.65)

Let A=A%,(n-1), B=x(n) and a =1, the inverse of the correlation matrix of (4.63)

can be evaluated as

k’z‘l‘;' (n-Dx(n)x" (n)‘I';l (n-1)

¥;'(n) = A"} (n-1)- 4.66
() LoD A'x(n)¥;' (n-1)x"(n) (4.66)
To simplify computation, a column vector of dimension N x1 is defined
A (n-1
K(n) (n-1)x(n) (4.67)

T 1A X@¥P (n-1)x" (n)

where K(n) known as the gain vector, is the transformation of the input-tap vector from
the inverse of the correlation matrix W, (n). Using these definitions, (4.66) can be

rewritten as
¥ (n)=A"[P; (n-1) - K(n)x" (n)¥;' (n-1)] (4.68)
Using (4.68) in (4.67) and rearranging gives

K(n) = ¥; (n)x(n) (4.69)

The recursive equation for the tap-weight vector of the RLS algorithm can be obtained
by using (4.64) and (4.69) in (4.58)
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w(n) = A'¥; (n)8, (n-1) + ¥; (n)x(n)d(n) (4.70)

=A¥; (n)0, (n-1) + K(n)d(n)
And substituting (4.68) in (4.70),

w(n) = ;' (n-1)0, (n-1)-K(n)x" (n)¥;'(n-1)8, (n-1) + K(n)d(n) (4.71)

=w(n-1)-K®n)x" (mw(n-1)+ K(n)d(n)
=w(n-1)+K(n)e(n)
where €(n) is the innovation defined as

e(n) = [d(n)-x" (m)w(n-1)] 4.72)

Therefore, the amount of change to be made in the tap-weight at the nth iteration is
determined by the product of the innovation, €(n), and the gain vector, K(n). Figure 4-5
depicts a signal-flow diagram of the RLS algorithm and a summary of the complex
RLS algorithm is illustrated in Table 4-5 [4.23].

dw , e S smK@ _ wn) wn-1)
b P !

x'(n)

x (n)w(n-1)

Unity negative feedback

Figure 4-5 Signal flow of the RLS algorithm
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Parameters N = Number of taps forn=0,1,2,...N-1

Initial Conditions Tap-Weights

wi(0)=0 w,(0)=0

For each time instant, n = 0,1, 2, ... ., N— 1 compute

1. Computation of complex Gain vector:
v (n)=x" (¥, (n-1)
k'(n)=A+v (n)x'(n)

v'(n)

K'(n)= m

2. Complex filter output:
¥, (0) = Wy ()X, (n)-wo (n)X, (n)
yo(n) = W] (WX (n) + Wo(n)x,(n)
3. Complex Error Estimation:
g'(n)=d(n)-y'(n)

4. Complex Tap-weight adaptation:

w,(n) = w,(n-1) +[K (n)e,(n) + K, (n)e,(n)]

Wo(n) = wo(n-1) +[K,(n)e,(n)-K(n)e, (n)]
6. Complex correlation matrix:

Wi, (n) = 7[5 (0-1)-K (v’ (n)'¥; (n-1)]

Table 4-5 Adaptation of the standard RLS algorithm
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4.2.6 Improved Recursive Least Square (IRLS) algorithm

The tracking capability of the RLS algorithm in a time-varying channel had been
reported to be more inferior to the LMS and Kalman filtering algorithms {4.25]-[4.27].
Although recognising that the RLS algorithm is a special case of the Kalman filter, the
reason for it not inheriting the good tracking property of the Kalman filter lies in the

fundamental formulation of the cost function.

In formulating the RLS algorithm, the exponential weighting constant, p", from (4.53)

is incorporated into the cost function [4.9]:
& =2 p, (ke (0) (4.73)
k=1

This enables the filter to track the statistical variation in a time-variant environment and
was reported by Sayed and Kailah [4.28]-[4.29] to be the root of the problem. Sayed and

Kailah described the state-space model with a pair of equations given as

wn+1)=A1"’w(n) (4.74)
d, (n) =r(n)w(n)+v_ (n) (4.75)

where A is the forgetting factor and (4.75) is identical to (4.39). Since the transition
matrix, k(n+1,n), of (4.39) is time variant as compared to the transition matrix, 1™,
of (4.74), which is governed by a constant multiple of the identity matrix equal to

A2, it can be seen that (4.74) is not the optimal way to estimate the unknown vector,

w(n), in a time-varying channel.

In order to rectify this problem, an extension from the concept of the Kalman filtering

algorithms is considered. The optimization criterion can be expressed as

{w(‘&ﬁﬂn)}‘f[w(o)’ Vo (0), v, (D)., v, (n)] (4.76)

where the cost function, £, is quadratic in its argument and is given by [4.29],
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& =(w(0) —W)H 15 (W(0)-w)+ > v, (n) Q" (n)v ,(n) + ﬁ'-&% (4.77)
n=0 n=0

In the cost function of (4.77), the unknown factors are the initial weight-vector w(0)
and the process noise sequence, v,(n). The solution for the optimisation of the cost

function in (4.76) was shown in [4.29], which gives an iterative procedure that provides

recursive estimates of the successive weight vectors, w(n).

Assuming that the process and the measurement noises is a zero-mean white noise
sequence with covariance matrix, Q(n), and variance o respectively. The initial state-
vector, w(0), is assumed to be random with mean W and covariance matrix [,

expressed as

E(w(0)-w)(w(0)-w)" =T1, (4.78)

With the assumption that the random variables, {vp(n),vm(n),(w(O)—W)}, are

uncorrelated to each other, the condition in (4.78) may be re-written as

v () v.(n) 7 | Q(n)o(n,m) 0 0
£ v N 0 o (m(nm) 0 (4.79)
(w(O)-%) || (w(©)-%) 3 g ré

where 8(n,m) is the Kronecker delta function, which is

1 n=m
o(n,m)= for 4.80
() {O otherwise (4.80)

In a stationary environment, the measurement noise vector of the input covariance
matrix in Table 4-4, is zero which results in K(n-1)=K(n), and the modified RLS

algorithm is reduced without involving a weighting factor [4.2]. A summary of the
improved RLS algorithm is presented in Table 4-6.
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Parameters N = Number of taps forn=0,1,2,..N-1

Initial Conditions Tap-Weights
wi(0)=0 w,(0)=0

For each time instant, n = 0.1, 2, ... . N— 1 compute

1. Computation of complex Gain vector:
v(n)=x"(n)¥,;;(n—-1)

v'(n)
a+v (n)x (n)

K'(n) =
2. Complex filter output:
y,(m) = W (0)x; (0)-Wo ()Xo (n)
Yo(@) = Wi (m)X4(n) + Wo (n)x,(n)
3. Complex Error Estimation:
g (n)=d(n)~y'(n)

4. Complex Tap-weight adaptation:

w,(n) = w,(n-1) +[K (n)e,(n) + K,(n)e, (n)]

Wo(n) = wo(n-1) +[K, (n)e 4 (n)-K o (n)e, (m)]
7. Complex correlation matrix:

¥ (n) =Y., (n-1)-K(n)x" (n)¥:.!(n-1)

Table 4-6 Adaptation of the improved RLS algorithm
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4.3 Blind Adaptive Equalisation Algorithm

In the instance when the system is unknown and a precise knowledge of the input signal
is not available, the effectiveness of the supervised adaptive equalisation techniques
reduces. In this situation, adaptive blind deconvolution, which does not employ training
sequence for the adjustments of the equaliser’s tap weight may be employed to address
this problem. The implicit Higher-order statistics (HOS) based algorithms is chosen for

investigation due mainly to its computational simplicity.
4.3.1 Implicit Higher-Order Statistics (HOS) Algorithms

4.3.1.1 Decision-Directed Bussgang Algorithm

The fundamental principal of blind deconvolution is to determine an impulse response,

c., of the ideal inverse filter, which can then be related to the impulse response of the

unknown channel, h,, such that

2.ch. =8, (4.81)

where 8, is the Kronecker delta:

1 1=0

The simple inverse filter defined by (4.81) is an “ideal” case in the sense that it is able

to reconstruct the received data correctly,

2 cx@-i)= 2.4 -0 ch,, (4.83)

Theoretically, by applying the definition of (4.81) into (4.83), the desired signal can be

retrieved as

Z ¢x(n-1)=> 8,d(n-¢) (4.84)

=d(n)
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As the underwater channel, h_, is time-variant and unknown, (4.81) cannot be used to
determine the inverse filter in order to retrieve the desired signal. Instead, an iterative
deconvolution procedure can be used to compute the tap weights of the equalisers such

that the convolution of c(n) and the received signal x(n)at time index » may yield a

complete or partial removal of the ISI with a deconvolved sequence [4.30]

y(m) =2 c(mx(n-i) (4.85)

where 2L +1 is the truncated length of the impulse response. Using (4.84), (4.85) is

simplified as

y(n) =d(n) +q(n) (4.86)

where q(n) is the convolved noise that represents the ISI resulting from the use of the

approximate inverse filter. The output y(n)is then fed to a zero-memory non-linear

estimator, which can then produce an estimate a(n) for the data sequence y(n) denoted

by
d(n) = (y(n)) (4.87)

where ¢(.) is some non-linear function. This forms the basis for the discussion of the
subsequent sub-topics of Bussgang algorithms. Assuming that the Bussgang algorithm
has attained convergence in the received signal and the eye pattern has opened up, the
adaptive equaliser can then switch to a decision directed mode of operation, and the

MMSE control of the adaptive tap-weights for the equaliser can be exercised. A

decision device can replace the condition in (4.87)

d(n) = dec(y(n)) (4.88)

The algorithm flow of the decision-directed algorithm is the same as the LMS
algorithms of Table 4-1, with difference being the error estimation, which is updated as

e(n) = d(n) — y(n) (4.89)
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4.3.1.2 Sato Algorithm

The pioneering work of blind equalisation for M-ary systems dates back to the work of
Sato [4.31]. The Sato algorithm utilises a minimisation of the cost function of (4.1) in a
nonconvex manner, meaning that the error performance surface attained by this method
may have local minima in addition to a global minimum. This is in contrast with the
cost function of the LMS algorithm in chapter 4.2.1, which is a convex (quadratic)
function of the adaptive tap-weights and therefore having a well-defined minimum

point. The cost function of the Sato algorithm can be expressed as

& = E[(d(n) - y(n))’] (4.90)

where y(n)is the filter output and E[] denotes the statistical expectation. The zero-

memory non-linear estimator is described as
d(n) = ysgn(y(n) (4.91)

The sgn(.) is the signum function and the constant y sets the gain of the equaliser

defined by

_EX()]
= Bk (4.92)

Using (4.90) and (4.91), the error estimation is updated as

_EX’()]

™= Bl

sgn(y(n)) - y(n) (4.93)

4.3.1.3 Constant Modulus Algorithm

The family of constant modulus algorithms (CMA) was first introduced by Godard
[4.32]. This type of blind equalisation algorithms was introduced for use in M-ary PSK
digital communication systems. The Godard algorithm was designed to counter effect
the deviations of the blind equaliser output from a constant modulus. The algorithm

minimises the nonconvex cost function into the form of
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&(n) = E[(ly(m)-M,)’] (4.94)
where k is an positive integer and M, is a positive real constant defined by

y - Elx@™]

4.95
“ = Efx(@)] (3:99)

The tap-weight vector of the equaliser is adapted in accordance with the LMS
algorithms of Table 4-1 [4.32] and the error update is defined as

e(n) =y(m)|ymf (M, -lym") (4.96)

In the case where k =1, the cost function of (4.94) is deduced as

&(n) = E[(ly(m)-M,)’] (4.97)
_ Ellx(m)’]
where | = Elx(m)] (4.98)

Using (4.98), the error update is given as

(n)
e(n) = ﬁ(Ml ~lym)]) (4.99)

The Godard algorithm, in this case, was viewed as an extension from the Sato
algorithm. When k =2, the Godard algorithm is referred to as the constant modulus
algorithm (CMA) [4.33]. The cost function of (4.94) is deduced as

&(n) = E[(ly(m)I-M,|)’] (4.100)
_ Ellx()f']
where M, E[x()F] (4.101)

And the error update is, using (4.101), given as

e(n) = y@) (M, -y’ (4.102)
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4.4 Performance Comparison of the Adaptive Algorithms

In this section, both the supervised and blind adaptive algorithms are tested using
simulated and sea-trial experimental data. First is the rate of convergence, which is
defined as the required number of iterations by the adaptive algorithm to achieve
convergence to the optimum minimum point in the error performance surface, or the
Wiener solution. As the shallow water channel is time-variant, the adaptive algorithms
have the added task of tracking the minimum point that is no longer fixed. The second
criteria of assessment for the adaptive algorithms is to track statistical variations in the
environment. A common figure of merit that is used to access the tracking capabilities
of the algorithms is the mean-square deviation between the unknown input weight

vector and the adjusted weight vector [4.34].

4.4.1 Decision Feedback Equaliser

An overview description of the receiver structure adopted for the simulation, adaptive
Decision Feedback Equaliser (DFE) [4.35], is covered in this section. A detailed
treatment of the DFE (single user detection) is discussed in sections 5.3 and 5.4, of
chapter 5, respectively. The DFE, shown in Figure 4-6, consist of a feedforward and
feedback filters, a training block and a decision block. Both the feedforward and

feedback filters are realised as transversal finite impulse response (FIR) filters.

The DFE operates first in the training mode, which uses a priori known training
sequence. Once training is completed, any channel characteristic variations are tracked
by the decision directed mode. In decision directed mode, the decision block attempts to
map the sampled data from the FIR filters onto the IQ constellation containing the most
ideal symbol. In the process of mapping the symbol, an error is generated, where the
error is the Euclidean distance between the received signal and the ideal value, of which

the difference represents the complex error signal.

When the current received symbol is estimated, the ISI contribution of this symbol is

removed from future received symbol, which means that once the decision device

quantifies the input sampled data to the closest IQ constellation point, the filter can then

calculate the ISI effect on subsequent symbols and attempt to compensate the input of

the decision block. The output from the decision error is fed into the feedforward FIR

filter, the output of which compensates the decision block. The feedback FIR filter is
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responsible for cancelling the ISI effects on subsequent future symbols due to the

current symbol.

f T Training
Coefficient — s

Update Decision Error

j!
Feedforward FIR R 0/
x(t) > Filter _’C-B _‘:,'— ="

Feedback FIR L, Coefficient I

Filter Update

v

Figure 4-6 Block diagram of a Decision Feedback Equaliser

4.4.2 Simulated Results

Assuming that the channel is slowly changing or time-invariant, then the deterministic
geometrical multipath channel model described in section 3.7 can be used to provide an
estimation of transmission loss, due to multipath propagation, in the signal propagation
through the shallow water medium. Uncorrelated AWGN was superimposed on the

transmitted data packet to give input SNR = 10 dB.

The simulation results were obtained from a vertical 6-element array of equal spacing.
A 511 bits BPSK PN sequence was used for the training of the adaptive equaliser and a
4096 sps QPSK data packet for performance tests. Clock synchronisation was assumed
to have been achieved prior to training and demodulation of the data packet. A sampling
frequency of 65.536 kHz was chosen to approximate with the settings of the receiver
system for the sea-trials, described in chapter 6. The parameters used for the simulation

are depicted in Table 4-7.

Both the forward and feedback filters of the adaptive equaliser uses 15 taps length
respectively, refer to Appendix Figure 2 of Appendix VI for taps length selection. The
tap coefficients of the adaptive algorithms were initially set to zero. The parameter
values used by the adaptive algorithms are listed in Table 4-8, refer to Appendix Figure

3 — Figure 6 of Appendix VI for optimised parameters selection.
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Frequency Bw=8-12kHz

Carrier Frequency F. =10 kHz

Modulation Coherent QPSK

Channel Depth 18 m

Tx Depth for user 9m

Rx Array Depth First element at 6 m ref. to sea surface

No. of Elements

6

Channel Geometrical Multipath Model
Distance 2000 m

Noise AWGN

Training symbols 511

Data packet length

4096 (8192 bits) - Gray coded

Input SNR

10 dB

Table 4-7 Simulation parameters setting

Algorithms Parameters Forward & Feedback values
1. | LMS,NLMS | Stepsize, p 0.007 0.005
2. | NLMS Constant, a 0.0001 0.0001
3 | vSLMS Step size, P 0.009 0.007
Step size, Hmin 0.005 0.003
4 |RLS Forgetting factor, A 0.98 0.98
3 | Sato, Godard | Step size, p 0.006 0.004

Table 4-8 Algorithm parameter settings
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4.4.2.1 Comparison of Supervised Adaptive Algorithms

The rate of convergence in the error performance surface during the training period for
the supervised adaptive algorithms is shown in Figure 4-7. It can be seen that in a steady
channel, most of the supervised algorithms achieves convergence by 150 symbol
iterations, with improved convergence in the mean square error of the error performance
surface occurring after 150 symbol. Both the LMS and normalised LMS algorithms
were observed to be performing in roughly the same manner, both requiring the same
number of symbol iteration to achieve convergence. The VSLMS algorithm, which was
bounded by the upper and lower step-size values assure that convergence is relatively
faster as compared to the LMS and normalised LMS algorithm. Both the Kalman and
RLS algorithm, were also observed to perform roughly in the same manner, as the RLS
can be considered as a class of the Kalman algorithm derived by using a state-space
model that matches the RLS model [4.28]. By omitting the forgetting factor from the
updating of the inverse correlation matrix, the improved RLS was observed to achieve

convergence at 120 symbol iterations.

When switching from the training mode to the decision mode for continuous adjustment
of the parameters of the adaptive filter, the mean-square deviation was used as a figure

of merit for the tracking assessment [4.34], which is defined as
x(0) = E[[%(n)-w, (0)]']

= E[[lem)[’] (4.103)

The computed MSE during the decision mode obtained by the supervised algorithms is
shown in Figure 4-8. The tracking performance of the supervised algorithms was seen
to be in tune with theoretical point-of-view of the algorithms when operating in a time-
invariant channel. Figure 4-9 (a)-(f) shows the demodulated I-Q phase-constellation
obtained by the various adaptive algorithms for the data packet. A packet error rate,
P, =0.0 was obtained by all the supervised adaptive algorithms. The result of the

computation of SINR (Signal to Interfering Noise Ratio), given as

N
SINR(dB)=—1010g.o(§Zei] (4.104)
k=1
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where N denotes the number of symbols per data packet is depicted in Table 4-9. It is
observed that the improved RLS algorithm had achieved a SINR of 16.35 dB, while the
RLS achieves a SINR of 15.56 dB. From the computed SINR, the RLS algorithm had
achieved better results over the LMS, normalised LMS and VSLMS algorithms with
SINR 14.44 dB, 14.23 dB and 15.41 dB respectively. The main reason for this is that
the multipath channel model used was deterministic and the statistical variation in the

signal propagation can be regarded to be in a steady-state condition.

Error Performance Surface
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Figure 4-7 Error performance surface for supervised adaptive algorithms - training

mode
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Figure 4-8 MSE plots for the supervised algorithms - decision directed mode
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Figure 4-9 I-Q constellation for supervised adaptive algorithms
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Supervised Algorithms SINR (dB) Packet Error Rate (P.,)
LMS 14.44 0
NLMS 14.23 0
VSLMS 15.41 0
Kalman 14.70 0
RLS 15.56 0
Improved RLS 16.35 0

Table 4-9 Computed output for supervised adaptive algorithms

4.4.2.2 Comparison of Blind Adaptive Algorithms

In contrast to the supervised adaptive algorithms, the blind algorithm exhibits a much
slower rate of convergence. Convergence was seen from ~230 symbol iteration, with a
higher computed MSE level at the error performance surface, as shown in Figure 4-10.
It is not surprising that the blind algorithms have a slower rate of convergence as
compared to the supervised algorithms [4.37], which is due to the fact that HOS
algorithms requires a much larger sample size for attaining minima at the error

performance surface.

In this simulation where the channel condition is considered to be steady, the Godard
algorithm was able to attain a lower MSE compared to the Sato algorithm, as shown in
Figure 4-11. This is due to the fact that the cost function of the Godard algorithm is

based solely on the amplitude of the received signal.

The steady-state condition of the channel also permits the algorithms to achieved a
relatively high SINR with P, = 0.0, as illustrated in Figure 4-12 (a)~(c) and Table 4-10.
However, in a more hasher underwater environment, as will be discussed in the
following section, the blind algorithm may not have sufficient time to reach a steady

state, therefore it will not be able to track the statistical changes in the environment.
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Error Performance Surface
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Figure 4-10 Error performance surface for blind adaptive algorithms - training mode
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Figure 4-11 MSE plots for the blind algorithms - decision directed mode
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Figure 4-12 [-Q constellation for blind adaptive algorithms

Blind Algorithms | SINR (dB) } Packet Error Rate (Pe)
Sato 11.38 | 0
Godard (k=1) 13.32 0
CMA (k=2) 13193 0 =

Table 4-10 Computed output for blind adaptive algorithms
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4.4.3 Single User Experimental Results

The experimental data was acquired from a sea-trial project that was carried out in June
1998 [4.36]. The receiver array uses a vertical 6-element setup with array spacing 25cm,

(2.51) . The channel was 40m deep, depth of the transmitter and receiver were at 30m

and Sm with reference to the sea-surface. Distance of transmission was 1800m and the

input SNR was observed to be ~20dB.

The data packet consists of a header using Linear Frequency Modulation (LFM) chirp
signal which is 1000 samples long, a 511 bit BPSK training sequence and a 10ksps
QPSK data packet. Time synchronisation was achieved by cross-correlating the chirp
signal with a local signal at the receiver. In this case, the blind algorithms were
considered to be semi-blind as time synchronisation was achieved prior to the

convergence and data demodulation. A summary of the experimental setup is given

Table 4-11.

Frequency Bw =10-20 kHz

Carrier Frequency F.=15kHz

Modulation Coherent QPSK

Channel Depth 40 m

Tx Depth 30m

Rx Array Depth First element at 5 m ref. to sea surface
No. of Elements 6

Element Spacing 25 cm

Channel North Sea (U. K.)

Header Linear FM of length 1000
Training symbols 511

Data packet length 4096 (8192 bits) — Gray Coded
Distance 1800 m

Input SNR 20dB

Table 4-11 Experimental parameters setting
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The channel impulses shown in Figure 4-13 exhibit multipath spread of ~3.5ms,
corresponding to an ISI of ~35 symbols. Therefore suggesting a longer feedback tap
length to remove residual ISI. A 20 and 40 taps were used for the forward and feedback
filters respectively for the adaptive equaliser, refer to Appendix Table 6 of Appendix
VII for taps length selection. The tap coefficients of the adaptive algorithms were
initially set to zero. The parameters used for the simulation are depicted in Table 4-12,

refer to Appendix Table 7 of Appendix VII for optimised parameters selection.

N b O W =

Normalised Amplitude
o O O O

o

Element (k)

Time Spread (s)

Figure 4-13 Channel impulses observed for k elements

Algorithms

Parameters ‘ Forward & Feedback values

1. | LMS,NLMS Step size, u 0.005 0.003
25 5 INLVIS Constant, o 0.0001 0.0001
3. | VSLMS Step SiZe, Jlapix 0.007 0.005
Step size, Umin 0.003 0.001
4.5 | RLS Forgetting factor, A 0.98 0.98
5y Sato, Godard Step size, u 0.004 0.002

Table 4-12 Algorithm parameter settings
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4.4.3.1 Comparison of Supervised Adaptive Algorithms

From the results obtained for the rate of convergence, as shown in Figure 4-14, it is seen
that the RLS algorithm has a better convergence than over the LMS and normalised
LMS algorithms. However, the RLS algorithm has poor tracking capability compared to
the LMS algorithms, as shown in Figure 4-15. Although the RLS algorithm has a better
convergence in the transient state, it does not necessary imply that it will give good
tracking performance in the steady state. This is due to the fact that the tracking
performance of the adaptive filtering algorithms is not influenced just by the rate of
convergence, but also due to the measurement noise and algorithm noise during the
steady-state performance. Both the VSLMS and the improved RLS algorithm were
observed to perform better than the other algorithms in terms of their rate of
convergence and tracking in the steady state with the improved RLS algorithm being the
better of the two algorithms.

The [-Q constellation and computed P, for each of the supervised adaptive algorithms
are shown in Figure 4-16 (a)-(f) and Table 4-13. The performance for both the LMS and
normalised LMS algorithms are almost identical, with SINR =10.48dB

(P, =7.32x10™) and SINR =10.47dB (P, =6.11x 107) respectively. This deduces

that the LMS does not suffer from much gradient noise amplification in the input signal.
The upper and lower bound step-size values ensure that the VSLMS achieves better
SINR =11.65dB (P, =2.44x107*). The RLS algorithm exhibited a poorer tracking
property as compared to the Kalman algorithm, which reinforces the arguments in
[4.28]. The computed SINR for both RLS and Kalman algorithm are 9.2dB
(P, =3.42x10™) and 10.76dB (P, =3.66x107") respectively. The computed SINR

obtained by the improved RLS algorithm was 12.91 dB with P, =0.0.
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Figure 4-14 Error performance surface for blind adaptive algorithms - training mode
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Figure 4-15 MSE plots for the supervised algorithms - decision directed mode
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Figure 4-16 1-Q constellation for supervised adaptive algorithms
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Supervised Algorithms SINR (dB) Packet Error Rate (Pe/)
LMS 10.48 732%x107*
NLMS 10.47 6.11x10~
VSLMS 11.65 244 %10
Kalman 10.76 3.66x10™
RLS 9.20 3.42x107
Improved RLS 12.91 0

Table 4-13 Computed output for supervised adaptive algorithms

4.4.3.2 Comparison of Blind Adaptive Algorithms

In general, the cost function of the Bussgang algorithms which operate with a finite
length filter and no training sequences, is non-convex, as shown in the rate of
convergence of Figure 4-17. Therefore, false local minima can be generated, hence the
result of non-convex rate of convergence. The blind algorithms with poor convergence

were not able to achieve good tracking in the decision mode, as shown in Figure 4-18.

Thus resulting in a relatively low SINR of 7.65dB (P, =1.36x107?), 8.08dB

(P, =8.67x107) and 8.6dB (P, =4.88x10™) for the Sato and Godard and CMA

algorithms respectively, as illustrated in Figure 4-19 and Table 4-14.
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Figure 4-17 Error performance surface for blind adaptive algorithms - training mode
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Figure 4-18 MSE plots for the supervised algorithms - decision directed mode
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2-D Eye Pattern - SATO 2-D Eye Pattern - GODARD |

Blind Algorithms

Sato 7.65 1.36x1072
Godard (k=2) CMA 8.60 4.88x107

Table 4-14 Computed output for blind adaptive algorithms
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4.5 Summary

This chapter reviewed the classes of supervised and blind adaptive algorithms for
underwater acoustic communication. The capability of the supervised and blind
adaptive algorithms was demonstrated with both simulated and experimental data. In a
time-invariant channel simulation, the blind algorithms have comparable performances
to the supervised algorithms. However, when operating in a time-variant channel using
experimental data, the poor rate of convergence and tracking performance of the blind
algorithms falls far short from the supervised algorithms. The poor rate of convergence

in the training mode was not acceptable to provide a good transient into the decision

directed mode.

From the results obtained from the experimental data set, it was concluded that time-
varying channel, especially that of an underwater communication channel, the classes of
LMS, normalised LMS and VSLMS algorithms proved to be of a better choice as
compared to the standard RLS algorithm. An improved RLS algorithm, which was an
extension from the Kalman and the RLS algorithms, was proposed in this chapter and
its performance was observed to surpass the other classes of algorithms. Generally, the
class of LMS algorithms are attractive in real-time operation while the improved RLS

algorithm is desirable when off-line data analysis is required.
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Chapter S Design of Multi User Detection Strategies

5.1 Introduction

Initial work on multi-user detection strategies was demonstrated from the optimal multi-
user receiver and its potential improvements in network system capacity and near-far
resistance [5.1]. However, the optimal multi-user receiver was deemed far to complex to
be implemented in a practical system, which has led to much research in alternative sub-
optimal multi-user detection approaches. This chapter presents the design and
development of novel multi-user detection strategies for the base-station receiver in
underwater acoustic communications. Receiver structures adopting array processing
with adaptive decision feedback equalisation (DFE) scheme provide the basic building
block for single user communication. From here, several methods of multi-user
detection (MUD) schemes for multiple access interference cancellation are proposed
and developed. A new novel MUD strategy based on Recursive Successive Interference
Cancellation (RSIC) technique, which offer better performance over other MUD

strategies is being proposed in this chapter.

The validity of the multi-user receiver structures are then analysed from simulations for

multi-user reception scenarios, which involve equal and unequal power reception.

The results from the simulated analysis not only highlighted the effectiveness of these
multi-user detection schemes, but also pointed out the potential areas of weakness,

which may exist in some of these multi-user detection schemes.

52 System Model

In the uplink communication model, shown in Figure 5-1, each user is observed to be
arriving at the base station asynchronously. The data field of the transmitted data
consists of a header, H, , training sequence, TS, , and variable data length. The header
is used for initial “coarse” time synchronisation or clock recovery, and the training

sequence is used to provide initial training to adapt the equaliser tap weights.

The received signal at the base-station can be expressed in complex form, x(t) where
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x()=Y Ahb, (t—1)+n() (5.1
k=1

where A, (t), h (), b () and T, denote, for each user k, the received amplitude,
channel transfer function, transmitted bit sequence and time delay respectively, and n(t)
is the Additive White Gaussian Noise (AWGN). In order to model an asynchronous
reception, consideration is given to the transmitted bit stream, b, , of the kth user which

takes the form

b, e {+1/v2;21/V2:} (5.2)
Thus generalising (5.1) becomes

K M
x()=Y Y Ahbl(t-jT-1,)+n(t) (5.3)

k=1 j=—M

where T is the symbol duration. Symbol-epoch offsets are defined with respect to an

arbitrary origin, 1, =0, which is the time origin of the first detected user at the base-

station, as shown in Figure 5-1.
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Figure 5-1 Observation window for the different time of arrival for uplink signal

transmission
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5.3 Receiver System Synchronisation

In a practical acoustic communication scenario, neither the PN code alignment nor the
carrier frequency/phase can be known a priori, therefore this information has to be
extracted by the receiver system from the received signal. Furthermore drifting of the
clock causes inaccurate PN code alignment. Although stable time clocks can be used to
synchronise the timing between the transmitter and receiver, there is always an initial
timing uncertainty due to the range uncertainty. The other uncertainty in the carrier
frequency/phase can be caused by a frequency drift in the transmitter/receiver oscillator
or Doppler shift caused by the relative physical motion of the transmitter and receiver.
Therefore the fundamental problem of coherent M-PSK receiver system is to perform
both clock and carrier recovery for the transmitted signal. While clock recovery is
needed to ensure synchronisation between the receiver and transmitter clocks, carrier
recovery endeavours to align the receiver local oscillator with the transmitted carrier

frequency that had been changed by the channel medium.

5.3.1 Clock Synchronisation

One of the most fundamental self-synchronising clock recovery systems is the squaring
or times-two system [5.2]. When the down converted signal is squared, or passed
through a non-linear rectifier, it possesses a periodic frequency domain component at
the symbol rate. A tuned bandpass filter close to the symbol rate is then used to extract
the periodic signal at the symbol rate. The early-late technique exploits the peaks of the
received signal [5.3]. This clock recovery system squares the received signal so that all
peaks are positive. Based on two equi-spaced samples taken from the predicted
sampling instant, if the predicted sampling instant is aligned with the correct sample
point, the early sample will be identical to the late sample taken after the sampling
instant. An indication of late sampling is made if the early sample is larger than the late
sample and vice versa. The difference between the pair of samples is low-pass filtered
to reduce the effect of random noise. The filtered difference signal is then used to adjust
a voltage-controlled oscillator (VCO) in order to delay or advance the arrival of the next
clock impulse. Although these two self-synchronisation systems work well for binary

modulation scheme, their main problem is the added complexity to the receiver design.
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The other option for clock recovery is to transmit a separate short synchronising signal
before the data packet itself. The process for achieving clock synchronisation is to
transmit a priori known PN sequence to the receiver. The receiver then performs a
cross-correlation of the known PN sequence with the received signal and then compares
the output with a reference threshold, as shown in Figure 5-2. When the filtered output
exceeds the reference threshold the receiver is then locked on to the received signal and
clock synchronisation is accomplished. The receiver can then switch to the

demodulation of the data, as illustrated in Figure 5-3.

Matched Filter /
X« (t) ak(t) v

Figure 5-2 Matched filter time acquisition

Transmitted Data

Synchronised
Filter output

Figure 5-3 Data time synchronisation with preamble

5.3.2 Carrier and Doppler Compensation

A common problem related to the carrier frequency is the receiver’s inability to solve
phase ambiguities in the case of rotational symmetry. Although phase locking can be
established for the QPSK modulation scheme at multiples of 90°, but without additional
transmitted signal information it is not possible to resolve the angle at which phase lock
has been achieved. The effect of coherent detection suffering from inaccurate carrier
recovery is shown in Figure 5-4. This problem can be rectified with the transmission of

a preamble signal to indicate the initial phase of the transmitted data.
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Figure 5-4 Coherent detection suffering from inaccurate carrier recovery

Carrier recovery techniques adopting decision-directed tracking was first described by
Proakis [5.4]. A discrete time approach to the Maximum Likelihood (ML) joint

estimation of carrier phase and symbol timing proposed by Sharif [5.5] reported an error
probability in the range of 10 —107" with a data throughput of 10kbps. At time nT,

where T, <1/B,, for M-ary PSK modulation, the ML joint estimation of phase, ¢, and

symbol timing, T, can be express by the log-likelihood function [5.4] given as

i
A (0,7) = Re[;—zl;yn(‘t)] (5.4)

where I and y, are the complex decision and complex filter output. The ML estimate

of ¢ can be found by differentiating the log-likelihood of (5.4),
1 1
AL(¢)=ReI:N—ZInyn:lCOSQ)—Im[N—ZInyn}sind) (5.5)

with respect to ¢ and equating the derivative to zero, giving

(5.6)

The solution to the symbol estimation, T, , is given as

= . 0
Tu = 2 I3 g[Yn (D]=0 (5.7)
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5.4 Single-User Detection Technique

5.4.1 Adaptive Spatial Combiner

A phase-coherent receiver structure adopting adaptive decision feedback equalisation
(DFE) for underwater acoustic communication was first documented in [5.6]. The
primary task of the phase-coherent DFE for single-user detection (SUD), shown in
Figure 5-5, is to equalise the ISI and perform phase tracking which result from
multipath propagation and phase fluctuations. The multi-element feedforward equalisers
are used to remove ISI and provide phase compensation. The feedback equaliser uses

past decisions to update the tap weights to remove residual ISI.

The operation of the adaptive DFE is divided into two phases — the training mode and
decision directed mode. In the training mode, a priori known training sequence which is
embedded in the receiver system is used as the desired signals to provide initial training
for adapting the equaliser tap weights. At the end of the training mode, the equaliser
would have attained convergence close to the optimal values. The receiver then
switches to the decision directed mode where the detected symbols are treated as the
desired signal for further adaptation and equalisation so that variations in the channel

can be tracked.

At time nT,, where T, <1/B,, the output at the forward equalisers of the adaptive DFE

(used for removal of precursor ISI), for user K, after phase correction is

L af
ag(n) = ) fexg (me ™™ (5.8)

where f., xt and 6! are the filter coefficients, nT,-spaced samples buffered in the

feedforward filters and phase correction for user K at time nT, and receiver element L.

The output from the feedback filter, which suppresses the residual causal ISI, can then

be expressed as

cx(n) =dyqy (n) (5.9
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where d,(n) and q(n) are the row vector contents of the M most recent estimated
symbol decisions and column vector coefficients of the feedback filters respectively.

When the symbol is known by the receiver in the training mode, d, (n) is expressed as

d () =[dy(n-1) - de(-M)]T (5.10)

and de(m=[de(m=1) - de(-M)T (5.11)

when the receiver switches over to the decision directed mode. The symbol error

estimation can then be defined as

e (n) = d5 (n)-dy (n) (5.12)

where a; (n) is the pre-decision variable. The corresponding mean square error (MSE)

is depicted as

MSE, = E{ex (n)[} (5.13)

The main difference between an adaptive combiner and a beamformer is that the
combiner seeks to minimise the error in the received data symbols while the
beamformer seeks to null out interfering user’s signal from the signal of interests [5.7].
The adaptive beamformer achieve improvements in the output signal-to-interference
noise ratio (SINR) by manipulating nulls, or coherent cancellation, in the direction of
the interfering signal whilst maintaining a lobe, or coherent summation, in the direction

of the intended signal.
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5.5 Multi-User Detection (MUD) Strategies

Apart from the problems accrued from time-varying multipath propagation and Doppler
fluctuations, the capacity and performance of a network system is also limited by
multiple access interference (MAI). As the SUD detection strategy in section 5.4 does
not take into account the existence of MAI from other users, by which each user in the
system is detected separately without regard for other users. The effect of MAI will
become substantial as the number of interferences or power differences increases in the
network system. A better detection strategy over the SUD detection strategy is one of
multi-user detection (MUD). Here, the information of multiple users is used jointly in
order to better detect each individual user in the system. By utilising MUD algorithms,
there will be potential significant added benefits in providing reliable communication in

a network system.

In this section, a review of the available MUD strategy is made for underwater acoustic
communication. By extending from the SUD strategy, several methods of multi-user
detection (MUD) schemes for multiple access interference cancellation are proposed
and developed, which involve a novel MUD strategy based on Recursive Successive

Interference Cancellation (RSIC) technique.

5.5.1 “Cross-Over” MUD strategy

The MUD strategy of [5.8] bears similarity to the SUD strategy. This “cross-over”
MUD receiver consist of a bank of fractionally spaced feedforward filters and »T,

symbol-spaced feedback filters for each of the K users in the network system. The main
exception of this MUD strategy is that of a bank of “cross-over” feedback filters, which
performs the MAI suppression between interfering users. The “cross-over” MUD
structure adopting a class of the RLS algorithms was reported in [5.8] with packet error
of P, =0 at a symbol rate of 2 ksps using BPSK modulation scheme. The complexity of

the “cross-over” MUD structure is summarised as follows:
1.) Complexity of the structure increases with the increase of number of array sensor

2.) Time complexity per bit is linear to the number of users in the network system
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5.5.2 Parallel Interference Cancellation (PIC) MUD strategy

Multi-user receiver structure based on parallel interference cancellation (PIC) estimates
and subtracts all the MAI for & users concurrently [5.9]-[5.10]. Recent work in mobile
communication has shown that the performance of PIC can be improved by performing
an initial partial cancellation [5.11]-[5.13]. The partial cancellation involves multiplying
the estimated symbol of each user with a factor less than unity prior to any interference
cancellation. This takes into account the fact that the tentative decisions made in the
earlier stages are less reliable than those of the later stages. However, employing these
PIC schemes in underwater acoustic communications is unrealistic since these MUD
structures, developed in mobile communications, do not take into account the
predominant effects of ISI, phase fluctuations and Doppler effects encountered in the

underwater acoustic environment.

To enhance the capability of the basic PIC structure, an Mth-stage MUD receiver
structure based on weighted parallel interference cancellation (PIC) with adaptive DFE
was proposed [5.14], as shown in Figure 5-6. The contents of each DFE block in Figure
5-6 are as depicted in Figure 5-5. The heavy lines (== ) in Figure 5-6 represent the

repeated structures for each element of the receiver array.

In stage 1 of the PIC structure, the initial bits/symbols for all users k =1,2,3,..K, are
estimated from the corresponding DFE units. The estimated bit decisions are then
regenerated with a weighting factor and phase correction. The regenerated signal is then
subtracted from the received signal at the receiver array elements. The modified
received signal, having one fewer interfering signals, is then passed to the next stage for
processing and the removal of a further user signal. This process of parallel decision
estimation, regeneration, weighting and interference cancellation is repeated for M

stages, where the last stage assumes that all MAI have been removed between users.
The t™" term in Figure 5-6 denotes the time delay of the received signal to be summed

with the regenerated MAI signals of other users at the (M-1)th stage.

Assuming perfect delay estimation, (a buffer window is used to store the time reference
for asynchronous reception), the signal that is fed to element { of user K, at stage 2,

after subtracting all MAI from other users in the interference cancellation unit (ICU) in

stage 1, is expressed as:
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K o, ka e
Xy, ()= D Aby(me™ ~ Y d, jof e +p(n) (5.14)
k=1 k=1

where the second term and third term are the regenerated MAI signal for all users,
k=1,2,3,..(K-1), and the residual noise, respectively. éél and o, are the phase

correction and scaled amplitude at element, £, at stage 1.

Assuming perfect interference cancellation, the retrieved information from the adaptive

DFE for user K from the output of stage M is decoded as,

A

dy M = 8gN(Xg (M) (5.15)

where the individual signal, that is fed to element ¢ of user K, is
SN R o -j6
xK,(M-l)(n) = ZAkbk (me™ - de,(M-l)afc.(M-l)(n)e Mo (5.16)
k=1 k=1

The retrieved information symbol from the output of the adaptive DFE for user K at
stage M is decoded as

~ L Af

dK,M (n)= Sgn([z]:flé,(M-l)xlli,(M-l)(n)'e_JeK'(M-H - cK,(M-l)(n)] (5.17)
In order for a new set of signals to be regenerated for better data estimation in the next
stage, the PIC structure assumes that the decision of the previous stage has been
estimated correctly. Therefore any estimation error, contributed by any user, will
degenerate the removal of MAI for other users. This problem arises in a “near-far”
scenario, where the received signal for the weak user, coupled with the strong MAI
from the other users that are fed into the DFE structure, will encounter difficulties in
estimating the data correctly. Therefore, it can be seen that the PIC receiver structure is

more superior in a well-power-controlled channel, where all signals from separate users

are at an almost equal power level.
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5.5.3 Successive Interference Cancellation (SIC) MUD strategy

In contrast to the adaptive PIC DFE receiver structure, the successive interference
cancellation (SIC) strategy uses a successive approach towards MAI cancellation [5.15]
- [5.17]. The approach for SIC is based on a simple but elegant idea [5.15]. If a decision
has been made about the interfering strong user’s bit, then the interfering signal can be
regenerated at the receiver and subtracted from the received signal. The resulting
subtracted signal should then be free from the strong interfering signal. However, this
assumption relies greatly on the accuracy of the decision made for the interfering signal;
if this decision is incorrect it will double the contribution of the interfering weaker
signal. Once the interfering signal is stripped away from the received signal, the signal
processing side of the receiver takes the view that the resulting signal contains one
fewer users. The process is then repeated with the other weaker users, until the last user
(weakest user) has been demodulated. The SIC structure of [5.15] uses decisions
produced by single-user matched filters, which neglects the presence of the interfering
signals. This approach has been reported to perform well in a near-far situation under

AWGN.

The SIC MUD receiver structure, proposed here [S.14] employs the adaptive DFE in
combination with weighted interference cancellation units (ICU), as shown in Figure
5-7. It is assumed, without loss of generality, that the powers of k = 1,2, ...,K users are
in descending order and that perfect delay estimation is achieved. In this case, the
strongest user, k = 1, correct bit decision is regenerated by multiplying with a weight

factor, «,, with phase correction and is then subtracted from the received signal.

Therefore, this approach aims to remove the strongest MAI from the received signal.
The detector then makes a decision for the next strongest user (k = 2) from the
subtracted signal. This process of decision-making, regeneration, weighting, phase
correction, and cancellation from the received signal continues until the weakest or last
user, K, has been decoded. The retrieved information symbol from the output of user K
adaptive DFE in stage M can also be determined from (5.15) to (5.17), however, it

should be noted that the MAI reductions are performed successively.

The technique of removing the MAI of the strongest user from the received signal aids
in the estimation of signals for weaker users. Therefore SIC can be seen to be superior
in a non-well-power-controlled channel. However, one prime disadvantage of such
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system is that the strongest user does not benefit from the reduction of MAI, which
means that the summed MAI effects from all other weaker users will, to a certain
degree, affects the correct data estimation for the strongest user. The adaptive SIC MUD

strategy can be described in the following algorithmic form:
1.) Obtain energy statistics from the received signal to rank users in descending power.
2.) Perform adaptive symbol estimation of strongest user (amplitude and phase).

3.) Estimated result is regenerated and cancelled from received signal.

4.) Subtracted received signal is passed to next weaker user for decoding.
5.) Repeat 1) to 4) until the last or weakest user K is decoded.
The practical implementation features of the SIC MUD can be summarised as follows:

1. Prior to adaptive signal processing, knowledge of the received power for all users
in the network cell is required so that interference cancellation can be performed
successively. Any errors in the estimation translates directly into additive

interference for further decision making for weaker users.
2. Users weaker than the intended user are neglected for SIC.
3. The delay time for demodulation for SIC grows linearly with the number of users.
4. Time complexity per bit is linearly related to the number of users in the system.

The advantages of adopting the SIC strategy are straightforward [5.18]-[5.19]. Firstly,
the receiver has the best chance of estimating the correct decision for the strongest user
in the system. Secondly, removing the strongest user in the system gives the most
benefit to the remaining weaker users. The SIC structure can be considered to be
effective if the received power for users are widely variable. A major shortcoming of
the adaptive SIC processor is that its performance is asymmetric, where users of equal
received power are demodulated with disparate reliability. This is the opposite of the
adaptive PIC, which means that the summed MALI effects from all other weaker users

will, to a certain degree, affect correct data estimation.
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5.5.4 Recursive Successive Interference Cancellation (RSIC) MUD strategy

In order to circumvent the short falls of the PIC and SIC structures, a new MUD
technique of MAI cancellation based on recursive successive interference cancellation
(RSIC) has been proposed in [5.20]-[5.21]. This RSIC structure is shown in Figure 5-8.
In the case of unequal power reception, the receiver, having a priori knowledge of K

users, first detects and obtains statistics from the received signal, x(t), to rank the users

in order of descending power. The selector then switches to the corresponding adaptive
DFE of the detected strongest user. Subsequently, the output decision of the strongest
user is regenerated, multiplied by the weighting factor, o, with phase correction and is
then cancelled from the received signal. The subtracted received signal is then passed to
the next strongest user for decoding as if the received signal consists of K — I users.
This process is repeated until the last (weakest) user has been decoded. The distinctive
feature of the RSIC structure, as compared to the SIC structure, is the feedback loop
labelled (o) in Figure 5-8. This allows the strongest user to cancel out the summed
effects from other users. The output decisions from all other users are summed,
regenerated, weighted with phase correction and cancelled from the received signal.
With the subtracted signal, the strongest user is decoded again, with the assumption that
only background noise is present. Decoding for the rest of the users is then performed

for a predefined number of loops.

In the case of equal power reception, all users are placed with the same priority and the
selector switches to the first available user for adaptive DFE estimation. The procedure
of decoding of K equal power users is the same as that of unequal power reception,

except there is now only an arbitrary priority between users.

Assuming again that the power of k = I, 2, ..., K users are in descending order and there
is perfect delay estimation. The information symbols for user K are retrieved
successively as described in (5.15) to (5.17), this aspect is identical to the SIC structure.
During the loop back, the output symbol decisions for users k = 2, 3, ..., K, are summed,
regenerated and cancelled from the received signal. The subtracted signal that is fed-
back to user 1 can then be decoded free from MAI of other users. The output from the
adaptive DFE of user 1 at (M+1)th stage can be expressed as
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~

d; vy = S80(X, (D)) (5.18)
where the signal, that is fed to element ¢ of user 1, is
K il K ~ SAf
where X m(0) = D Agby(n)e™™ = > d, o (n)e (5.19)
k=1 k=2
Expanding (5.18) leads to

o L ™
d; Moy () = Sgn(fofo,M (n).e P™-c (n)) (5.20)
£=1

where ¢, (n) is for the removal of postcursor ISI for user 1 at stage (M + 1). At stage

2M, for a single loop-back, the retrieved information for user X is depicted as:

A L _ Y
dy om(n) = sgn[Zf;m_,)x,‘(w_,)(n).e Brawn_ cK,(ZM_l)(n)) (5.21)
£=1

where the input signal at element £, for user X, is

K K-l .
PN -i6f P ¢ - 0L am.
Xg omn(D) = ZAkbk (n)e™ - de,(ZM-l)ak,(ZM-l)(n)e Peam (5.22)
k=1 k=l

Operation of this detector can be described in the following algorithmic form:

i) Obtain statistics from the received signal to rank users in descending
power. If the received powers are equal, switch to the DFE for the first

available user. Process steps ii) to vii) of the algorithmic flow.

ii) Perform adaptive DFE symbol estimation of the strongest/first user
(amplitude and phase).

iii) Estimated result is regenerated and cancelled from received signal.

iv) Subtracted received signal is passed to the next strongest user DFE for

decoding.
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v) Repeat i) to iv) until the last or weakest user K is decoded.

vi) Decisions of all subsequent users are then summed, regenerated, cancelled
from the received signal and fed back to the strongest user for MAI

cancellation.

vii) Repeat ii) to v) where regeneration and MAI cancellation is performed for
the next weaker user, k = 2, 3, 4, ...... K for a pre-defined number of

iterations.

The advantages of implementing the adaptive RSIC structure are threefold. Firstly, the
RSIC structure offers the flexibility to self-adapt to handle equal or unequal power
reception. In the case of equal power reception, the RSIC structure operates identically
as the PIC structure. Whereas in an unequal power reception, the recursive loop back
feature allows the strongest user to benefit from the reduction of MAI from other users.
Secondly, with the MAI reduced, the adaptive DFE block that is incorporated for each
user can then effectively cope with the multipath fading propagation and inter-symbol
interference (ISI). And finally, implementing the RSIC structure can effectively tackle
the problem of power control inefficiency in horizontal-link SWAN communication.
Therefore, the adaptive RSIC MUD structure manifests itself to be a superior candidate
for implementation in SWAN for both well-power-controlled and non-well-power-
controlled channels. From the analysis, the adaptive PIC receiver structure has a
processing load of (K x M), whereas the adaptive SIC receiver structure has only a
processing load of M. Although the adaptive RSIC receiver structure has an increased
load, (2M), compared to the SIC structure, it requires a much lower computational load
than the PIC structure. One major gain of the RSIC over the SIC MUD structure is that

users weaker than the intended user are accounted for by the loop-back feature.
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5.6 Comparison of the adaptive MUD strategies

The performances of the adaptive MUD strategies are tested against the single user
detection strategy and the “cross-over” MUD detection strategy of [5.8]. Scenarios of a
multi-user network which involves unequal-power (“near-far” effect) and equal power
reception are considered here. The multipath channel model, consisting of the direct
path and boundaries reflection paths, described in chapter 3.7 was used in the
simulation. The simulation was carried out with a software receiver, written in
Microsoft C++ and Matlab 5.0 for output visualisation. The channel was assumed to be
uniform with depth of 18m. A common bandwidth of 8—12kHz with carrier frequency
10kHz was used for the scenarios. The time delay factor between received data packets
was assumed to be zero. The data structure consists of a set of 1023 bits BPSK training
sequence, and 4096 symbols (8192 bits) QPSK data with no spreading factor. A 6-

element vertical receiver array was used at the front end of the receiver system.

5.6.1 Equal Power Reception

5.6.1.1 Performance in Multipath Propagation Channel

The user’s parameter setting for equal power reception is illustrated in Table 5-1. The
feedforward and feedback tap length for both users are 20 and 40 respectively, refer to
Appendix Figure 7 of Appendix VIII for tap length selection. The step-size values for
the canonical complex LMS adaptive algorithm, used because of faster computational
purposes, was set at 0.008 and 0.006 for the feedforward and feedback filter taps
respectively, refer to Appendix Figure 8 of Appendix VIII for stepsize selection.

The error performance surface for both users, using the single user detection strategy,

was observed to converge during the training period of ~500 symbols, as shown in

Figure 5-9. The SINR obtained for users 1 and 2 were 9.58 dB with P, =3.7x10 and

10.01 dB with P_ =2.4x107 respectively. There was a slight improvement when the
“cross-over” MUD strategy was used. The slight improvement in results was largely
limited by the eigenvalue spread when using the LMS algorithm and was deemed to be
unsatisfactory. The computed SINR obtained by the “cross-over” MUD strategy for

user 1 and user 2 was 9.95 dB with P, =2.2x10™ and 10.15 dB with P_ =1.95x10™
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respectively, as shown in Figure 5-10. By removing interference concurrently before
feeding the subtracted data to the next stage, the PIC strategy was able to take

advantage of estimating the interference mitigated data. An improved SINR and P,,

were observed for both users 1 and 2 with 10.78 dB, P, =4.9x10™ and 10.81 dB,

P, =2.4x107 respectively, as shown in Figure 5-11. Since the SIC strategy cancels co-

channel interference successively, users of equal power tends to be decoded with
disparate reliability. As the power for both users are equal, the SIC strategy switches to

the first available user, user 1, for data estimation. Although an improvement was

observed for user 2, with computed SINR 10.25 dB with P_=15x10", the

interference contributed by user 2 hinders the data estimation for user 1, since no
interference cancellation was performed for user 1. Thus the computed result for user 1
is identical to the results obtained by the single user detection strategy, as shown in
Figure 5-12. By performing a single loop-back interference cancellation, the RSIC was

able to obtain a better result as compared to the other MUD strategies for both user 1

and 2 with SINR of 11.36 dB with P, =1.2x10™ and 11.22 dB with P, =1.1x10™

respectively, as shown in Figure 5-13. A summary of the computed SINR and P, for

the various receiver structures is summarised in Table 5-2.

Figure 5-14 shows a plot of the computed SINR for user 2, of the various detection
strategies as a function of diversity order. It was noted as the number of element
increases, the computed SINR gap between the different structures begins to widen. At
L =6, the RSIC strategy gained an improvement of ~1.2 dB over the single user
detection strategy, and ~0.4 dB over the PIC strategy. Thus, it is suggested that both the
PIC and RSIC strategies are suitable candidates for network communication where

equal power reception can be ensured.

Tx Depth for both |Userl-9mandUser2-12m
Rx Array Depth First element at 8 m ref. to seabed
Channel Multipath Channel Model
User1 | Distance 2000 m

I/P SNR 13dB
User2 | Distance 2000 m

I/P SNR 13dB

Table 5-1 Parameters for 2-user equal power reception
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Figure 5-9 Single user detection strategy for equal power reception
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Figure 5-11 PIC MUD strategy for equal power reception
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Figure 5-12 SIC MUD strategy for equal power reception
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Figure 5-13 RSIC MUD strategy for equal power reception
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dB dB D
17§ SUD 9.58 956107 10.01 2 4%107
2. | Cross-Over MUD 9.95 22%107 10.15 1.95%10°
3. | PICMUD 10.78 49x%x10™ 10.81 45107
4. | SICMUD 9.58 3.7%x107 10.25 1.5%10°
5. | RSICMUD 11.36 1.2%10™ 11.22 1.1x10™

Table 5-2 Summary of computed SINR and packet error rate, P, for the receiver

structures
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Figure 5-14 Performance of the computed SINR, user 2, as a function of diversity order

15R°)



CHAPTER 5 - DESIGN OF MULTI USER DETECTION STRATEGIES

5.6.1.2 BER Analysis in AWGN Channel

A 3-user equal power reception is considered when operating in an Additive White
Gaussian Noise (AWGN) channel. The received amplitude difference between the users
is set such that 10log,,(A,/A,,,)’ =AdB, k=12.3. In the equal power reception, the
power difference is A=0 dB. The BER obtained by the single user detection strategy
falls short from the BER for a single user bound, as shown in Figure 5-15. It was
observed that the “cross-over” strategy did not perform well, with its BER performance
slightly lower than the single user detection strategy. Both the PIC and RSIC strategies
were observed to have BER performances that are closer to the single user bound. At
the BER of 107, the RSIC had a gain of ~1.2 dB over the PIC strategy, which had in

turn a gain of ~1 dB over the SIC strategy.

4 -

1 0—5 || —+— SUD .
t| —— Cross-over f:

| —— PIC

| & SIC

[| =6— RSIC

4 5 6

10

Figure 5-15 BER versus SNR for equal power reception, A=0dB
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5.6.2 Unequal power (Near-Far) reception

5.6.2.1 Performance in Multipath Propagation Channel

A 2-users unequal power reception is considered here. The user’s parameter settings are
illustrated in Table 5-3. The feedforward and feedback tap length for both users are 20
and 40 respectively, refer to Appendix Figure 9 of Appendix IX for tap length selection.
The step-size values for the canonical complex LMS adaptive algorithm was set at

0.006 and 0.004 for the feedforward and feedback filter taps respectively, refer to
Appendix Figure 10 of Appendix IX for optimised stepsize values selection.

Figure 5-16 shows the computed output results for both users by using the single user
detection strategy. As user 1 has a higher SNR difference of 8dB, data estimation was

not significantly affected much by the interference of user 2, with computed SINR =
10.49 dB with P, =2.4x107*. However, user 2, being the weaker user was affected by
strong co-channel interference from user 1. The rate of convergence for user 2, as

shown in Figure 5-16, was observed to be slow and the SUD receiver structure for user

2 was not able to extract useful information from the received data. Computed SINR for

user 2 is 4.72 dB with P_ =3.2x10™". The “cross-over ” MUD strategy was observed to

offer little help in mitigating the effects of the co-channel interference with computed

SINR, for user 1 and 2, 1035 dB with P, =48x10" and 4.91 dB with

P =3.0x 107" respectively, as shown in Figure 5-17.

Although improvement was observed in user 2, (6.99 dB with P, =2.9x10), when
adopting the PIC strategy, the computed SINR for user 1 was slightly affected by the
interference from user 2, (10.19 dB with P, =2.8x10™), as shown in Figure 5-18. This
is due to the fact that there is an open-loop interference cancellation prior the final stage
of data estimation, therefore the erroneous estimation of user 2 adds negatively to the

interference cancellation for user 1. By correctly estimating the data for the stronger

user, the SIC structure was able to improve the computed SINR for user 2 to 8.12 dB
with P, =5.6x 1073, Since no interference cancellation consideration is made for user 1,
the computed result for user 1 is identical to the single user detection strategy, as shown

in Figure 5-19.
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Significant improvement was observed when the RSIC strategy was used. By

performing a single loop-back from the weak user to the stronger user, the output SINR

of user 1 shown in Figure 5-20, was improved to 11.45 dB with P, =0.0. The

computed SINR for user 2 was 9.62 dB with P, =2.1x10™, which has a major
improvement of ~5.1 dB from the single user detection strategy. A summary of the
computed SINR and packet error rate, P, for the various receiver structures is

summarised in Table 5-4.

Figure 5-21 shows a plot of the computed SINR for user 2, by the various detection
strategies as a function of diversity order. With the increased use of diversity order, the
single user detection strategy still performs poorly. As L >2, the performance of the

RSIC structure outweighs the other MUD strategies.

Tx Depth for both |[Userl-9mandUser2—-9m
Rx Array Depth First element at 8 m ref. to seabed
Channel Multipath Channel Model
User1 [ Distance 2000 m

I/P SNR 14 dB
User2 | Distance 5000 m

I/P SNR 6 dB

Table 5-3 Parameters for 2-user near-far scenario

122



CHAPTER 5 - DESIGN OF MULTI USER DETECTION STRATEGIES
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Figure 5-16 Single-user detection strategy for unequal power reception
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Figure 5-17 Cross-over MUD strategy for unequal power reception

124




CHAPTER 5 - DESIGN OF MULTI USER DETECTION STRATEGIES

Error Performang

Surtace - Tra

Surtace - Training LMS - PIC => User1

Y e o
0 .
200 400 500 1] 001
Symbol Intervals]
-Q Constellanon Channel mpulse Response
5

c 0 |
01
2 1 ) f 2 2 4 ¢ g
Time Spread (ms) A
LMS - PIC bt User 2 Output Sequence
08 i

wo [\ 2
"l \ y
5 a
04 Vh A £
Wi,
v
02 o\ A > sl
\} NV A A

[Symbol Intervals)

HQ Constellabon Chennel Impulse Response

04 ]
003 4
°
00 3
i,
7 01
, : A I M
2 1 0 1 2 0 2 4 8
| Time Spread (ms)
x 10

Figure 5-18 PIC MUD strategy for unequal power reception
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Receiver
Structures SINR (dB) SINR (dB) P,
1. | SUD 10.49 24%10™ 4.72 39%10™
2. | Cross-Over MUD 10.35 4.8%x107 491 3.0x10™"
3 [{RIC VUL 10.19 2.8x107 6.99 29%1072
4. | SICMUD 10.49 2.4x%x107 8.12 5.6x107
5. | RSICMUD 11.45 0.0 9.62 2 1x107

Table 5-4 Summary of computed SINR and packet error rate, P, for the receiver

structures

[N it aladbetd. et St R T S T e i B
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No. of Elements (l)

Figure 5-21 Performance of the computed SINR, user 2, as a function of diversity order
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5.6.2.2 BER Analysis in AWGN channel

The received amplitude difference between the 3-users unequal power reception is set
10log,,(A,/A,,,)’ = AdB, where power difference is A =4dB. Figure 5-22 shows the
BER versus SNR for the weakest user in an unequal power reception scenario. It is
observed that the BER obtained by the single user detection and ‘‘cross-over” MUD
strategy is much higher than the single user bound. As opposed to the equal power
reception, the SIC had a better performance over the PIC when operating with unequal
power reception. However, the loop-back feature of the RSIC strategy offers the

advantage of gaining an extra improvement for the strong and weakest user. At the

BER of 107, the RSIC had a gain of ~1.6 dB over the SIC strategy, which had in turn a

gain of ~2 dB over the PIC strategy.
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Figure 5-22 BER versus SNR for the weakest user
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5.7 Summary

The design of novel multi-user detection strategies is described in this chapter with the
aim of mitigating the effects of co-channel interference. Both single and multiuser user
systems were tested in scenarios considering equal and unequal power receptions. It was
observed from the simulated results that the multi-user detection strategies offer better
performance over the single user detection strategy. However, the results achieved by
the multi-user strategies exhibit different characteristics. It was observed and suggested
that the PIC strategy is more suitable when operating in an equal power reception
whereas the SIC was shown to perform better in an unequal power reception. With a
slight increase in complexity, the RSIC strategy manifested itself to be a suitable
candidate in extracting useful data for users when operating in various types of power

reception scenario.
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Chapter 6 Experimental Setup and Receiver Software Design

6.1 Introduction

This chapter describes the general organisation for the SWAN-MAST III project field
trials that were carried out in both May, 1999 and 2000. The main objective of the sea-

trial is to acquire experimental data to enable experimental validation of the MUD

strategies.

The multi-user detection strategies described in chapter 5 were developed into a GUI
(Graphical User Interface) software based receiver system using the Microsoft Visual

C++ 5.0 Studio suite.

6.2 System Configuration Outline

6.2.1 Transmission and Reception

For both sea-trials, the “MeetPost Noordwijk” - MPN, a research and monitoring

platform which is positioned at 8 km off the coast of Noordwijk, Netherlands, served as

the base station for data reception during the sea-trials, shown in Figure 6-1.

Figure 6-1 Side view of MPN with receiver array attached within the red circle
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6.2.2 Configuration for the First Sea-Trial

The experimental setup for the first sea-trial, which was carried out in May 1999,

consists of two installations:

L. A fixed installation of the receiver array (Rx) was moored on the MPN

[6.1]. Six receiving transducers were immersed, moored, powered and
connected to the data acquisition hardware and the signals acquired were

pre-processed and stored on the MPN.

A mobile installation, onboard a support ship, where a transmitter (Tx1) and
its driving equipment were installed, deployed underwater at each ship stop
for each single measurement and recovered after completion of

measurement.

The first sea-trial experiment only entailed one transmitter (this is to cater to the needs
for other project partner, DUNE, who were investigating on single user blind signal
processing algorithms). Measurements with simultaneous transmitted signals were

simulated from data obtained from a single source at different positions.

6.2.2.1 Location of Transmitters

Data were gathered at 8 ship locations corresponding to the ranges shown in Figure 6-2
and Table 6-1 respectively. The numbers at each transmission point denotes the

individual user transmission in the system [6.2].

6.2.2.2 Receiver Array Geometry

The receiving array consists of 6 hydrophones that were mounted to the MPN [6.2]. The
hydrophones were in a 3x2 configuration, with 3 horizontal rows of 2 hydrophones per
row. The horizontal spacing is 15 cm or one A wavelength, and the vertical spacing
between the rows is 4 m. The bottom pair of elements were 3 m from the sea bottom.
The position of the six hydrophones is shown schematically in Figure 6-3. The
hydrophones were fixed onto a frame, which was attached to the sensor pole at the

South West corner of the MPN so that the hydrophones were directed to the west of the
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platform. The sensor pole was in turn tilted out of the water along the south side of the
platform and fixated to allow minimal movement. The relationship between the

transmitter and the receiver array fixation is illustrated in Figure 6-4.

Salt

Figure 6-2 Transmitter positions (), with respect to MPN

Parameter Unit Value
Distance Tx — Rx m 50
500
2000
5000
Angle with respect to West of MPN deg +30" and -30°
Vertical Position of Tx, with ref. to seabed m 9

Table 6-1 Transmitter positions specifications
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Figure 6-3 Position of hydrophones in receiving array at MPN

ALalos 100-5000m range, £30° MM

s bouy 4/
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Omnidirectional Receiver \
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Liting = @ —
cable—.
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Figure 6-4 Side view configuration of transmitter and receiver array
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6.2.3 Configuration for the Second Sea-Trial

In the second sea-trial, which was carried out in May 2000, the experimental set-up

consisted of three installations at sea:

1. A fixed installation of the receiver array (Rx) was moored on the MPN
[6.1]. Six receiving transducers of different array configuration to the first

sea-trial was adopted.
2. One mobile installation in the fresh water region.

3.  Two mobile installations, onboard two support ships, where transmitter
(Tx1) was fixed at one location while transmitter Tx2 was mobile. At each

ship stop, data transmissions were simultaneous.

The second sea-trial experiment entailed both single and multi-user transmission [6.3].
The purpose for the single user transmission was to allow the investigation of system
behaviour in the presence of fresh-water to salt-water interface. Measurements with
simultaneous transmission were achieved with one mobile installation while the other

had a fixed installation.

6.2.3.1 Location of Transmitters

The network configuration for the second field trial is shown in Figure 6-5 [6.3]. The
numbers within the dots () denote the points of transmission. Single transmissions were
from points 2, 4 and 5 with distances corresponding to Table 6-2. Multi-user
transmissions were from 1, 2, 3 and 6 with point 6 installed as a fixed point, as indicated

in Table 6-3.

6.2.3.2 Receiver Array Geometry

The receiving array consists of six hydrophones that were mounted to the MPN. The
array geometry, shown in Figure 6-6 allows spatial diversity technique to be adopted, by
vertical spacing of 4m apart, and at the same time achieving beamforming technique
with three horizontal hydrophones, of 0.5A apart, across the middle plane of the

geometry. The relationship between the transmitter and the receiver array fixation is

illustrated in Figure 6-7.
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Figure 6-5 Transmitter positions (®), with respect to MPN

Single User Transmission

Parameter Unit Value
Distance Tx — Rx m 2000
4000
5000
Angle with respect to North of MPN deg -150° and -210°
Vertical Position of Tx, with ref. to seabed m 9and 2

Table 6-2 Transmitter positions specifications for single user transmission

Multi User Transmission

Paramter Unit Value
Distance Tx — Rx m 500
2000
5000
Angle with respect to North of MPN deg -180% and —210°
Vertical Position of Tx, with ref. to seabed m 9

Table 6-3 Transmitter positions specifications for multi-user transmission
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Figure 6-6 Position of hydrophones in receiving array at MPN

0.5-5km range, 210° clockwise w.r.t. MPN
< —> MPN
2km range, 180° clockwise w.r.t. MPN

<+ »ﬁ/

bouys

/

“Albatros”

0.07m

18m L.z 1

e & :

depressor
\/ —

Figure 6-7 Side view configuration of transmitter and receiver array

137



CHAPTER 6 - EXPERIMENTAL SETUP AND RECEIVER SOFTWARE DESIGN

6.3 Transmission Signal Specification

Specifications of the transmission signals [6.1] that are relevant to the transmitting

hardware are given in Table 6-4.

Parameter ‘ Symbol ‘ Unit ’ Value
Carrier Frequency f. kHz 10
Transmission Bandwidth B, kHz 4
Tx Sampling rate f. kHz 44.1
Frame total Duration i b s 48
Guard time between subsequent frames T, s 2

Table 6-4 Specifications for transmission data frames

6.3.1 Data Frame Definition

For each user, the transmitted signals were grouped in fixed-length frames, T, (of 48s),

where different modulation schemes are transmitted within the frames. Between

successive frames, a guard time, T,, of 2s was introduced (to safe guard data of
different coding technique). The definition of both T, and T, are depicted in the frame

series shown in Figure 6-8 [6.1].

Frame Modulation tior Frame Modulation
Type 1 / e Type 3
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6.3.2 Data Packet Definition

To fully utilize the 4 kHz of bandwidth, coherent modulation was employed for all
users. The data structure consists of a header (synchronizer), a training sequence
followed by a variable data sequence, as illustrated in Figure 6-9. The next header of
subsequent data packet was used as the trailer to detect if the data sequence was

transmitted successively [6.1].

One data packet

Training Variable Data Hattles Training
Sequence Sequence Sequence

Header

Figure 6-9 Structure of the individual data packets

6.3.3 Signal for Data Quality Check (DQC)

A subset of data quality check (DQC) signals were transmitted prior to any transmission
of the data packets [6.4-6.5]. The structure of the DQC signal consists of a 10 kHz pure
tone, a Linear Frequency Modulation (LFM) signal and silent period. The purpose of
the pure tone served as an observation for harmonic distortion at the receiver end. The
usage of the LFM signal is twofold, to observe the frequency response of the received
data packet and also to observe the channel impulse history. The structural layout of the

DQC signals for both sea-trials are given in Table 6-5 and Table 6-6 respectively.
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Duration (s)

[1.] |Silent 10
[2.] |10 KHz pure tone 5
[3.] |Silent 10
[4.] |Linear FM (6 — 14 KHz) 10
[5.] |Silent 10
Total Duration 45s

Table 6-5 Layout of DQC signal for the first sea-trial

Signal Duration (s)

[1-1| 10 KHz pure tone 55
[2.] Silent 10
31| Linear FM 55

Total Duration 120

Table 6-6 Layout of DQC signal for the second sea-trial
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6.3.4 Signal Generation Specifications

During data acquisition, the primary aim is to accommodate the conditions for
sampling, carrier and symbol frequencies, in order to achieve for each symbol an integer
number of both the samples and the carrier periods. The first of these conditions is
important for the equalisation as it allows data sample extraction in a straightforward
manner from the recorded sequences. The definitions and overview of the data signals

that were transmitted in both sea-trial are described in the following sections.

6.3.4.1 Data Structure for Transmission — First Sea-Trial

The total number of frames to be transmitted at each ship stop is given in Table 6-7,

which corresponds to a 10 min continuous transmission [6.6].

Modulation Bit Rate No. of Total No. of Tx  Coding

(bps) Frames bits/symbol

1. |BPSK 2048 1 96709 -
2. |BPSK 4096 1 193719 -
3. | BPSK (MTS) 4096 1 193719 -
4. | QPSK (255 SYN) 4096 3 581157 Gray
5. | QPSK (511 SYN) 4096 3 575793 Gray
6. | QPSK (128 SYN) 4096 1 194267 Gray
7. | QPSK (MTS) 4096 1 193719 Gray
8. | QPSK (SS) 4096 1 194735 Gray

Table 6-7 Layout of data structure

141



CHAPTER 6 - EXPERIMENTAL SETUP AND RECEIVER SOFTWARE DESIGN

6.3.4.2 Data Structure for Transmission — Second Sea-Trial

In the second sea-trial, JPEG (QPSK modulation) data files were adopted, as shown in
Figure 6-10(a)-(c) where the compression ratio used for the JPEG encoding was 12:1
with respect to the original JPEG file. Coded Division Multiple Access (CDMA)
technique with spreading ratio of 7 was also included for the data transmission. A total
of 12 frames were transmitted for each data set, with each frame having a duration of
50s, with a 10s guard time between frames [6.7]. The data layout for the various

schemes is depicted in Table 6-8.

(b) (c)

Modulation l Bit Rate : Total No. of Tx | Coding
i bits/symbol
1. |QPSK 2048 1 96709 Gray
2. | QPSK (JPEG) 4096 3 161262 Gray
3. | 7-bit BPSK 585.14 2 167760 =
4. | 7-bit QPSK 1170.28 <) 167760 Gray

Table 6-8 Time duration of various modulation schemes
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6.4 Hardware Equipment for the Sea-Trial

6.4.1 Receiver Acquisition Hardware

The set up of the hardware [6.2] at the receiving end is depicted in depicted in Figure
6-11.

HP 35651C
Signal

HP35655 | [

Input
SCSI =
Interface :@

Module
HP 3566A

HD
@: ho PC g CD-ROM

~ Amplifier

Figure 6-11 Receiver hardware setup

6.4.1.1 Hydrophones

The six receiver hydrophones were of type B&K 8101, which is a wide range
waterborne-sound transducer for making absolute sound measurements over the
frequency range of 1 Hz to 120 kHz with a receiving sensitivity of —184 dB re 1V/uPa.
A built in high quality low-noise preamplifier acts an impedance converter to provide a

signal suitable for transmission over long distances.
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6.4.1.2 Data Acquisition and Backup system

The HP 3566A signal analyser contains several modules including a 8-channel input
module (HP 35655) and a Signal Processing module (HP 35651C). The HP 35655
provides eight separate analogue input channels. The input channels are equipped with
an anti-aliasing filter, ADC and digital filter. They are sampled simultaneously to
maintain cross-channel phase match. The HP 35651C signal processing module, which
has a in-built memory of 16 MB to perform calculations and control tasks. It also
provides the interface for transferring acquired data from the input modules to the host
computer. The HP 35659A SCSI interface module offers high-speed data transfer
throughput capability. By taking data from the internal high-speed system bus and
transfering it directly to the selected SCSI storage device, it bypasses additional signal
processing from the main HP unit. Upon the completion of storing 2Gb of data, the host

PC is connected to the SCSI hard disk and backup of the data was then downloaded
onto CD-ROMs.

6.5 Receiver Software Design
6.5.1 Channel Impulse Generator

An easy to use Graphic User Interface (GUI) - Impulse Response Generator, was
developed under Microsoft Visual C++ 5.0 is shown in Figure 6-12. This impulse
response generator software allows an immediate first check of the channel property for
each data transmission performed. Dialog boxes which involve editing of the system
parameters and systems files are shown in Figure 6-13, are invoked from the main GUI
of Figure 6-12. An example of the computed output for a 2-user reception is shown in

Figure 6-14. The flowchart for the channel impulse generator is shown in Figure 6-15.
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Figure 6-12 GUI display for the channel impulse generator
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Figure 6-13 System and files parameters
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Figure 6-14 Example of a computed output from software
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Figure 6-15 Flowchart operation of impulse response generation
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6.5.2 Receiver Structures

The adaptive algorithms and multi-user receiver structures described in chapter 4 and 5
were developed into a single GUI platform, as shown in Figure 6-16. The 32-bit
platform of the program offers the advantage of faster computation as compared to
previous C programs that were developed in the 16-bit platform (receiver software
written for the research programme), as reported in [6.8]. The RLS - v.1 and RLS - v.2
algorithms in Figure 6-16 refers to the standard RLS algorithm and the improved RLS
(IRLS) algorithm respectively. Both the dialog boxes for editing the system parameters
and file locations for the various algorithms, SUD and MUD receiver structures are
depicted in Figure 6-17 and Figure 6-18. Upon completion of data demodulation, the
GUI displays the end-result of the calculated BER and output SINR of the users, as
shown in Figure 6-19, (example for a 2 user reception). The flowchart for the receiver

structure is shown in Figure 6-20.

w =1
Algorithms
C LMS € RLS-v.1 CRLS=LMS KALMAN ‘
C NLMS € RLS-v.2 € RLS=>NLMS ¢ UDU ‘

System Parameters
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No. of samples read IU Doppler Comp : OFF
Data Format ["'_ I_—
o Scale_ul: 0 Scale_u2 : 0 |
£ t Dat C INT16 Dat {
fryeli o AGC: OFF JPEG : |OFF ‘
Structures Detecton
User1=> Start [0 Peak |0 End [0 Peak |0
[ SingleUser [ Single Async
BL ID Dopp IU Interpol. fadorlU
I CrossOver [ PIC
User 2 => Stan IU Peak IO End IU Peak IO
[ :SIC I RSIC
BL IO Dopp [0 Interpol factor 0
Display I Symbol difference between users
Ditterence [N/ Received Power [Nl
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Clear J Ext I Output
Phase Track . [OFF User1 > SINR (a8 [0 B BER [0/0

J|

Chip 0 User 2 => SINR (dB) [oeB BER [0/0

Copyright @ 2000 by H. K ‘Yeo

Figure 6-16 GUI display of the various detection strategies with adaptive algorithms
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Figure 6-17 System parameters dialog box
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Figure 6-19 Example of a computed output from software
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Figure 6-20 Flowchart operation for the receiver structures
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6.6 Summary

This chapter outline the system specification for the sea trials conducted in both May
1999 and May 2000 respectively, where the network topologies, positions of

transmissions and the receiver array geometry were described.

The signals for transmission were grouped into two classes. The first set was used as a
data quality checking (DQC) metric as well as analysing the channel properties. In the
second set of data, both BPSK (Binary Phase Shift Keying) and QPSK (Quadrature
Phase Shift Keying) were considered from the available modulation schemes because of
the advantage of higher bandwidth efficiency and increased data rate with M-ary
modulation techniques. In the second sea-trial where multi-user transmission was
deployed, both JPEG transmission and spread spectrum were used with QPSK

modulation scheme.

The receiver front-end hardware was described and the interface between the front-end
hardware was supported by two GUI software-based receivers. The first GUI software-
based receiver was written to support the DQC analysis. A second GUI software
platform was written to support the demodulation of received signals. The single-user
detection (SUD), multi-user detection (MUD) strategies and the adaptive algorithms
were embedded within the GUI software.
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Chapter 7 Field Trial Results of the Multi-User Detection Strategies

7.1 Introduction

In horizontal underwater network communication, the base-station detector tends to
receive a signal composed of the summed signals from multiple users, which overlap in
time and frequency. Due to the path-distance difference between users with respect to
the base station, there is likelihood that there will be equal or unequal (“near-far™)
power reception difference between users. Therefore, both equal and unequal power
reception scenarios were considered in the sea-trials where the effectiveness of the

proposed MUD strategies was validated with data from two separate ocean sea-trials.

As part of the European Community MAST III project — SWAN (MAS3-CT97-
0107SWAN), two sea-trials were conducted in May 1999 and May 2000 respectively.
The experiments were carried out in the North Sea, 8km from the coast near Noordwijk,
in the Netherlands. The measuring platform “MeetPost Noordwijk” (MPN) at position
52°16°25.9”N, 04°17°45.2”E, acted as the base station for all data reception. The SUD
and the proposed MUD receiver systems, discussed in chapter 5, were tested with the
acquired data from the two experimental trials and a performance analysis for the

receiver structures are being carried out in this chapter.

In the equal power reception scenario, a performance analysis for the receiver structures
was undertaken for a two user asynchronous reception. As “near-far” effect is
considered to be a more predominant issue in network communication, two class of
scenarios were considered to study the implication of interferences caused by the
stronger users towards weaker users and vice versa. While the first scenario investigates
the effects of interference when the stronger user arrives before weaker user during the
training mode, the second scenario investigates the effects of interference when the

stronger user arrives during the decision mode of the weaker users.

The results from the performance analysis between the SUD and MUD strategies
proved useful not only to highlight the benefits to be gained from adopting the MUD

strategies but also to bring to light potential weaknesses which may exist within the

systems.
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The last section of the chapter addresses the performances of the proposed improved
RLS algorithm against other adaptive algorithms for adaptation to the proposed RSIC
MUD receiver structure. The algorithms are accessed for their rate of convergence,

tracking performance and computational complexity.

7.2 Equal Power Reception

The network configuration for the 2 users simultaneous transmission is shown in Figure

7-1. The transmission positions for both users 1 and 2 were 2km from the MPN with

direction of transmission at 180° and 210° w.r.t. North of MPN respectively. The
observed time of arrival for user 1 and 2 is depicted in Figure 7-2, where the data frames
of user 1 were detected ~800 symbols earlier than user 2. The input SNR for both users
were observed to be at ~16dB. A summary of the network configuration and system
parameters for the sea-trial experiment (May 2000) is illustrated in Table 7-1 with the

receiver array as described in Figure 6-6 of chapter 6.2.3.2.

The channel impulse responses observed from the receiver array for both users 1 and 2,
are shown in Figure 7-3 and Figure 7-4 respectively. It can be seen from the channel
impulse responses that the transmitted signal was underspread. Therefore short filters
using 15 and 20 taps were used for the feedforward and feedback filters respectively,
refer to Appendix Table 8 of Appendix X for tap length selection. The values of the
step-size parameters used by the LMS algorithms are 0.006 and 0.003 for the
feedforward and feedback taps respectively, refer to Appendix Table 9 of Appendix X

for optimised stepsize values selection.

Being an equal power reception, the SUD receiver structure was able to achieve
convergence during the training period, as shown in the error performance surface of
Figure 7-5. A small surge in the MSE level was observed at ~800 iteration of user 1,
which indicated the introduction of user 2 in the system, but this rise of MSE quickly
converges down again within 20 symbol iterations. The computed SINR for both users
were 15.17 dB and 14.87 dB with P; of 9.1x10™* and 1.1x10 respectively. For the

cross-over MUD receiver structure, the computed SINR for both users 1 and 2 were

15.42 dB and 14.34 dB with P,; of 8.2x10™ and 2.1x107, as shown in Figure 7-6. The
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performance of the PIC MUD receiver structure manifests itself to be effective in an
equal power reception over the SUD receiver structure, where the computed SINR for
both users are 16.41 dB and 15.63 dB, both of which are ~1 dB higher, with P, of 0.0
respectively, as shown in Figure 7-7. The result obtained by the SIC MUD receiver
structure further confirmed that SIC MUD described in chapter 5.5.3 is not as effective
as the PIC in an environment where the received signal powers are equal. While an

improvement was noticed in the computed SINR of user 2, 15.59 dB with P, =0.0, the

results obtained for user 1 was the same as the one obtained by the SUD receiver
structure, as shown in Figure 7-8. Finally, the loop-back feature of the RSIC MUD
receiver structure obtained an almost identical result as the PIC strategy, with computed
SINR 16.41 dB and 15.64 dB with P, 0.0 for user 1 and 2 respectively, as shown in
Figure 7-9. A summary of the computed SINR and Py, for the various receiver structures

is summarised in Table 7-2.

Salt

Figure 7-1 Network configuration for a 2 user simultaneous transmission
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Figure 7-2 Observation window for asynchronous reception

Frequency Bandwidth Bw =8-12 kHz
Carrier Frequency F. =10 kHz
Modulation Coherent QPSK
Channel Depth 18 m
Tx Depth for both user 9m
Rx Array Depth First element at 8 m ref. to seabed
No. of Elements 5
Training symbols 1700
Data symbols 6664 (12238 bits)
Data Packet Duration 1.62s
Symbol rate 4096 sps
User 1 Distance 2000 m
I/P SNR ~16 dB
Direction 210° w.r.t. to North of MPN
User 2 Distance 2000 m
I/P SNR ~16 dB
Direction 180” w.r.t. to North of MPN

Table 7-1 System parameters for 2-user equal power reception
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Channel Impulse Response - User 1
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