
SOME PROBLEMS IN THE COMPUTATION 
OF SOCIOLINGUISTIC DATA 

BY 

VALERIE M. JONES 

Thesis submitted for the degree 

of Doctor of Philosophy in the 

University of Newcastle upon Tyne. 

AUGUST 1978. 



IMAGING SERVICES NORTU 
Boston Spa, Wetherby 
West Yorkshire, lS23 7BQ 
www.bl,uk 

BEST COPY AVAILABLE. 

VARIABLE PRINT QUALITY 



Acknowledgements 

List of Figures 

List of Tables 

Abbreviations 

Chapter 

Chapter 2 

Chapter 3 

Chapter 4 

Chapter 5 

Chapter 6 

Chapter 7 

Chapter 8 

Appendix A 

Appendix B 

CON TEN T S 

o 0 o 0 o 0 o 0 

o 0 

o 0 

.0 
Introduction o 0 o 0 o 0 

The model of the Tyneside 
Linguistic Survey 00 

Problems arising from TLS 
model 

Programming and data 
processing 

Social classification 

Linguistic classification 

• 0 

• 0 

o • 

• • 

Diagnosis of linguistic groups 
by social features 00 

Conclusion, summary and 
prospect 00 00 00 o • 

Linguistic variables 

Social coding frame o • 

References o 0 o 0 o 0 o 0 o 0 • • o • 

Appendix T Transpa-rencies of cluster 
topol-;;gy 00 .0 

Appendix X Program listings and output · . 

-0000000-

Page(s) 

i 

ii 

v 

viii 

1-24 

25-46 

47-62 

63-157 

158-193 

194-246 

247-287 

288-294 

295-302 

303-308 

309-312 

Separate 
folder 

Separate 
folder 



ACKNOWLEDGEMENTS 

The research reported upon here was undertake~whilst the 

author was in receipt of a grant from the Department of Education and 

Science. 

i 

I am very grateful for the computing facilities made available 

by the Computing Laboratory of the University of Newcastle upon Tyne and 

for the help given me by its members of staff. Dr. John Leece was help­

ful in interpreting some of the early difficulties in using the CLUSTAN 

package. 

Various parts of this work have been reported to Research 

Seminars in the School of English, Newcastle upon Tyne and I am grateful 

for the reactions of its members. Parts of Chapters 4, 5 and 6 have been 

reported to the International Summer School on Computational Linguistics 

(Pisa 1977) and the International Symposium on Literary and Linguistic 

Computing (Birmingham 1978). 

I am indebted to Vince McNeany for the collection and basic 

linguistic analysis of the data which are discussed here. 

Finally, I am grateful to my supervisor, Mr. John Pel lowe, for 

his interest in, and support of, my research. 



LIST OF FIGURES 

1. Hypothetical dendrogram. 

2. Breakdown of OUI into PDVs and states. 

3. A consonantal OU. 

4. Structure of sociolinguistic profile of one 
informant - TLS coding frame. 

5. Flowchart - sequence of processes applied to 
segmental phonological data 

6. An array. 

7. An example of a structure used to store information. 

8. Traversing a structure holding segmental data 

9. Listing of VALl search program. 

10. The structure CODECOUNT. 

11. 'LIST'. 

12. % representation of OUs in corpus. 

12A. Listing of program RAT: within-OU ratios computed. 

13. The transposed matrix. 

14. Listing of program POSE. 

15. Listing of program PROF. 

16. Dendrogram based on Similarity Ratio Coefficient 
& Single Link clustering. 

17. Single link clusters. 

18a. Spurious chaining with single linkage. 

18b. Genuine chaining 

19. Dendrogram based on Similarity Ratio Coefficient 
& Average Linkage Clustering. 

20. Dendrogram based on Squared Euclidean Distance and 
Ward's method of clustering. 

21. Scatterplot of state 35. 

22. Scatterplot of state 17. 

23. Scatterplot of state 77. 

24. Scatterplot of state 3. 

ii 

Page(s) 

34 

40 

42 

44 

64 

66 

68 

70 

81 - 84 

79 

87 

95 

98 

100 

101 

103 - 4 

110 

112 

112 

112 

1 14 

I 15 

118 

120 

122 

123 



Figs. cont. 

25. Scatterplot of state 14. 124 

26. Scatterplot of state 21. 125 

27. Scatterplot of state 479. 126 

28. Scatterplot of state 99. 127 

29. Scatterplot of state 469. 128 

30. Scatterplot of state 72. 129 

31. Listing of program TRAN. 132 

31A. Output from program TRAN. 133 

32. Listing of program COLLAPSE. 135 

33. Binarisation of an unordered multistate variable. 137 

34. Age: an OM variable. 138 

35. Distance on an unordered multistate variable. 139 

36. % frequency representation of age groups in the 
sample 160 

37. % frequency representation of education index categories 
in the sample 160 

38. % frequency representation of occupation groups in 
the sample 160 

39. Dendrogram of sample clustered on social attributes 164 

40. Number of clusters present at given levels of D. 
plotted against ascending values of D. 166 

41. % frequencies of representation of age groups across 
social clusters 168 

42. % deviations from sample expectation of age 
distribution. 168 

43. % frequencies of representation of education index 
categories across 3 social clusters 172 

44. % deviations from sample expectation for 
distribution of education index categories across 

3 social clusters. 172 

45. % frequency representation of occupation groups 
across 3 social clusters 175 

46. % deviations from sample expectation of distributions 
of occupation groups across 3 social clusters. 175 

47. Dendrogram for %FONI (monophthongs). 197 

48. Dendrogram for %FON2 (diphthongs etc.). 198 

iii 



Figs. cant. 

49. 

50. 

51. 

52. 

53. 

54. 

Dendrogram for %FON) (consonants). 

Number of clusters against ascending D2 for %FON]. 

Number of clusters against ascending D2 for %FON2. 

Nurrber of clusters against ascending D2 for %FON3. 

Unstressed vowels. 

Distribution of age groups across clusters. 

55. % differences between cluster and sample means 
on age. 

57. % differences between cluster and sample means 
on education. 

58. Distribution of occupation groups across clusters. 

59. % differences between cluster and sample means 
on occupation. 

iv 

]99 

200 

20] 

20] 

23] 

26] 

261 

26] 

262 

262 



I • 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

I I • 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

LIST OF TABLES 

Values of CLUSTAN binary variable codes and 
response codes for social variables. 

Number of coding categories in originallreduced 
social coding frame, by Q.no. 

Response rates on social questions. 

Raw and % frequencies for age groups across 
clusters x, y, z and sample. 

% difference between cluster and sample frequencies 
for age groups. 

Raw and % frequencies for education index 
categories across social clusters. .. 

% difference between cluster and sample frequencies 
for education index categories. 

Raw and % frequencies for occupation groups across 
social c 1 us ters. 

% difference between cluster and sample frequencies 
on occuational groups. 

High positive diagnostics - SocKx. 

High positive diagnostics - SocKy. 

High positive diagnostics - SocKz. 

Linguistic diagnostics %FONI KI. 

Linguistic diagnostics %FONI K2. 

Linguistic diagnostics %FON] K3 

Cluster mean frequencies of state and PDVs used 
by members of K], K2, K3 - out i: 

Di tto - OU2 1. 

Ditto - OU3 £ 

Ditto - OU4 
L-

a! .. 
L 

Ditto - OU5 ct. 

Ditto - OU6 '"C'L. 

Ditto - OU7 :>: 

Ditto - OU8 ~ 

Di tto - OU9 "'()-

Ditto - OU]O u.. 

v 

Page (s) 

142-146 

147 

148 

169 

]69 

173 

]73 

]76 

176 

180-1 

]84-5 

]9]-2 

209 

2]0 

210 

2]5 

215 

2]6 

216 

2]6 

217 

2]7 

2]7 

218 

2]8 



Tables cont. 

26. 

27. 

28. 

29. 

30. 

31. 

32. 

33. 

34. 

35. 

36. 

37. 

38. 

39. 

40. 

4 I. 

42. 

43. 

44. 

45. 

46. 

47. 

48. 

49. 

50. 

5 I. 

52. 

53. 

54. 

Linguistic diagnostics % FON2 KA. 

Linguistic diagnostics %FON2 KB. 

Linguistic diagnostics %FON2 KC. 

Cluster mean frequencies of states and PDVs used 
by members of KA, KB, KC (%FON2). 

Ditto - OUI2 av-

Ditto - OUI3 a1 

Ditto - OUI5 a~ 

Di tto - OUI6 :::n 

Ditto - OUI7 3 

Ditto - OUI8 Ia 

Ditto - OU19 £~ 

Ditto - OU21 d3final open. 

Di t to - oun ;a Jt-"-

Ditto - OU23 d 2 .d] 

Ditto - OU24 II 

Ditto - OU25 12 

- OUI I e1 

Linguis tic diagnostics %FON3, K ~ 

Linguis~ic diagnostics %FON3, K ~ 

Linguistic diagnostics %FON3, K ¥ 
Cluster mean frequencies of states and PDVs used 

by members of K<x, Kp , K¥ (%FON3) - OU30 d 

Ditto - OU31 K 

Ditto - OU32 g 

Ditto - OU38 € 
Ditto - OU39 s 

Ditto - OU40 z 

Ditto - OU43 h 

Di tto - OU46 ~ (free) 

Ditto - OU47 1 

Ditto - OU47 1 (cont.) 

vi 

222 

223 

223 

226 

226 

226 

227 

227 

227 

228 

228 

228 

229 

229 

229 

229 

237 

238 

239 

239 

240 

240 

240 

241 

241 

241 

241 

241 

242 



Table cont. 

55. Ditto - OU48 r 

56. Ditto - OU50 w 

57. Ditto - OU51 -ing-(bound) 

58, 59, 60, 61 
Correspondences in K-membership between the social and 

linguistic spaces 

58. %FON 1 : SocSp. 

59. %FON2 :SocSp. 

60. %FON3 :SocSp. 

61. 'Derived' clusters: SocSp. 

62, 63, 64 
The social characteristics of linguistic clusters KA,KB,KC. 

62. The distribution of age groups across clusters. 

63. The distribution of education index categories, 
across clusters~ 

64. The distribution of occupation groups across clusters. 

65. Social diagnostics for %FON2, KA,KB,KC, which 
are uniform for, or exclusive to, a given cluster. 

66. Cluster diagnostics (social) for KA. 

67. Cluster diagnostics (social) for KB. 

68. Cluster diagnostics (social) for KC 

vii 

242 

242 

242 

250 

250 

250 

250 

259 

260 

260 

266 

271-2 

276-7 

281-2 



BIN VAR 

BIT 

BIT string 

BPFR 

CLU{S) VAR 

dig. 

f. e. 

K 

L 

LK 

LDP 

1. m. a. 

NC 

NL 

NPL 

Num. 

NUMAC 

MC 

MTS 

OM 

OU 

PDV 

PL/1 

Q 

SocSp 

SC 

viii 

ABBREVIATIONS 

(CLUSTAN) binary variable 

Binary Digit 

sequence of binary digits 

Binary Percentage Frequency Ratio 

CLUSTAN Variable 

Binary Euclidean Distance coefficient 

Squared Euclidian Distance coefficient (numeric data) 

digit 

further education ... 

cluster (e.g. KA = cluster A) 

localised 

linguistic cluster (at 2-K level) 

linguistic data processing (Lamb: 1965) 

legal minimum (school leaving) age 

non-comparable (missing data) 

non-localised 

New Programming Language (later called PL/t) 

numeric (CLUSTAN term for quantitative rather than 
binary data) 

- Northumbrian Universitie~ Multiple Access Computer 

mUltiple coding 

Michigan Terminal System 

ordered multistate 

overall unit 

Putative Diasystemic Variant 

Programming Language 

question 

social space 

social class 



SES 

SocK 

TLS 

UM 

RRR 

V.VAR.Var. 

x-Unguis tic 

%FONI 

%FON2 

%FON3 

Socio-economic status 

Social clus ter 

Tyneside Linguistic Survey 

unordered multistate 

reading. writing and arithmetic 

variable 

extra-linguistic (social) 

segmental phonological subspace !. 
(Monophthong vowel OUs) 

segmental phonological subspace 1L 
(Dipthong. triphthong and reduced vowel OUs) 

~ 

segmental p'honological subspace 1. . 
(consonant OUs) 

ix 



CHAPTER ] 



INTRODUCTION 

The research described in this thesis is concerned with some of the 

I'lublerr.s encountered in the processing of sociolinguistic data. 

Diffprent methodologies are seen as different sets of strategies for 

coping with the problems which arise from investigations of sociolin£uistic 

variability within any speech community. 

One early approach to the analysis of sociolinguistic variation 

(that of Labov: 1963, 1966) 1S discussed, and some of the difficulties 

raised by this approach are indicated. One investigation of sociolinguistic 

variability in a British urban setting (Trudgill: 1974) is also described 

(Trudgi 11' s study is based on Labov's (J 966) general methodology). 

FN 
The Tyneside Linguistic Survey (T.L.S.) is offered as an alternative 

approach, which overcomes some of the problems inherent in Labov's methods. 

~. Department of English Language, University of Newcastle upon Tyne, U.K. 

The T.L.S. methodology embodies a set of heuristic strategies whereby 

the social and linguistic configurations within the speech community are 

empirically determined. As such, the T.L.S. represents an attempt to 

wodel dynamically the sociolinguistic ecology of the community under study. 

The model and methodology of the T.L.S. are described in detail. 

Not surprisingly, the radical approach of the T.L.S. generates a new 

set of problerr.s for sociolinguistics. These problems highlight issues of 

significance to linguists and sociolinguists alike, which, however, have 

been ignored, or glossed over in previous work. 

Some of the problems are concerned with linguistic analysis, and with 

the design of an adequate linguistic coding frame. Some are concerned with 

adequate representation of social differentiation within a conwunity. Soce 

of the problerr.s are specific to the n1ethods employed within the T.L.S., 

(e.g. problems in classificatory theory, difficulties in interpretatic;, cf 



the results produced by cluster analysis). 

Linguistic and social data collected by means of tape-recorded 

interviews are processed by various computational techniques. The computer 

programs writt~n to process this data are described, and the results of 

the sociolinguistic classification are presented. The findings have 

important theoretical and practical consequences for the discipline of 

sociolinguistics. 

The prime focus of this thesis is the problems inherent in the 

analysis of sociolinguistic data. A complete survey of the history of 

sociolinguistics is not atten~ted: rather, two contrasting methodological 

approaches are described, and compared as alternative strategies for 

dealing with the problems identified. 

Labov's approach to sociolinguistic modelling is now described briefly. 



The Labov ian socio}inguis tic-'y1€ thod~l_?£L 
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Labov (1 96 6), in his study of " The sClc i Al s t r ;1t i f i cA ti on of En gli sh 

J I : :, .. "'. Yo r}.: Ci ty' a tt f'I :lr t ed to dCi'l l ""i th 'th e "str uc tured he t e ro ge ne ity" 

~Ll ,- ,- h , L Ibov & Her zog : 1968) of l AJ1'u"gC' ;ln d SP(j('ly, by eli sc V(· r ing 

co r r e lRtion s between linguist ic and social fac tors , a nd dete rmining the 

n~ cl an isms unde rlying synchronic, and possibly diachr onic, variation. 

Labov des c rib e s his study as "an i nve sti ga tion of l angu age wi t hin the 

sor ial con text of the con:nuunity in which it is spoken." (Labov, 1966, p.3) 

""hich aims at discovering and defining "a consistent and coherent structure 

f o r the spee ch of this community." (Labov, 1966, p.9). 

Lobov 's a i ms \Jere t o meA sure t he l illguistic beh av i our of a s d'nple of 

na t i' e ' e ~ Yorkers living 1n the Lower East Side, mai nly with r espect to 

five phono logi ca l va riables: 

(r) (oh) (eh) ( th) (dh) , 

t o quantify the frequency of usage of sti gma tised and prestige variants 

of each across a range of speech styles, and eventually to "deal with the 

ew York vowel system as a whole." (Labov , 1966, p.5). Labov's interviews 

we re s t ructured to elicit samples of speech ranging from 'f or ma l' to 

' cas ual' speech styles, and included a subjective evaluation test designed 

t o discover the oplnlon of each informant as to the 'correct' version of 

each variable, and also the variant which he claimed to r ealise most frequently. 

Informants from 5 ethnic groups were classi f ied socially a ccording to 

a s ocia-economic class index based on information derived from a pre vious, 

in de penden tly motivated, survey (conducted by Mobilisation for Youth). Th is 

~urvey provided sociological information on the entire p opulati on of the 

area un de r investigation. This s oc ial in forma tion was reduced to a ten-

po i nt scale bRsed on t hree f ac t o rs: oc cupation , f ilrr ily in come and e du car i r n. 

Lab ov conune n ts , (Labov , 1966 , p.l/l), that this sca le was "a u 'ef ul device 

f or d i vid ing the popU lation a l ong the socia- economic s ca le into t h r ee units 

of ap r oxirr.a tely qua l size ." 

The soc ial cl as sif i cati o CL' ll"( ' p ' . L S to the g r ups d \~s j gl1.1 tPd~: i k il ib 
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class, lower middle class, and middle class, occupying the categories on 

the la-point scale 0-2, 3-5 and 6-9 respectively. In ('x;lminlng the 

distrihution of different realisations of the sound fpatuTes across thrse 

groups, I.abov found evici'nce of awareness of the prl'f'ti~e vctlue 01 the 

middle class variants througl,,:mt all but the lowest of the ,,'orking class 

strata. Generally tte frequency of the prestigious alternant increased 

~ith forITality of style, and with increase of socia-economic cJass. An 

unusual phenorr,enon was observed in the case of the variant presence of 

post-vocalic /r/:the usual distribution pattern \..'as disrupted for 101.o:er 

rriddle class sp€2kers. In careful speech this group tend to use this 

(pn-stige) featun: ,,-ith hifhEr frequency thrtn the middle class gr0\1p, ,H1d 

this crc'ssover effect is intf'rpreted by Labov as evidence tluH this feature 

is ~ndergoing diachronic change in New York speech, and tl;erefore functions 

more overtly as a s0cial marker. 

The relationship between the incidence of prestige forms and the social 

stratification was found not to be linear: social mobility was concluded to 

be the most significant factor determining the social value attributed to 

variants of features by informants. Thoseinformants showing upward social 

FN mobility (shown to be linguistically insecure as well as soclally mobile), 

appeared to be more wary of using stigmatised forms. 

FN. The lower middle class group (categories 6-8 on the Nobilisation for 
Youth IO-point SEC scale) have the highest scores on Labov's Index of 
Linguistic Insecurity. (Labov: 1966, p.477). 

Trudgill, (1974), in his study of sociolinguistic variation in Norwich 

English, adopts Labov's general methodology. He quotes (p.33 fn.) Shuy 

et a1. (1968), on the construction of models of socip.l and linguistic 

diversification: "The correlation of social status and linguistic perfonr:al'ce 

first requires a careful delineation of €2ch" and points out, (p.33), 

"for a linguistic study of any large cQP~unity within a cl~ss society to ~e 
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in any ~ay significant the class continuum must be objectively measured 

?f,ilinst the lif'guistic continuum, and vice versa." 

Tr\ldgi 11 uses a more cOTPprehensive sod al class index than Labov's 

/ (1966) one, taking into account six factors: occupation, income, education, 

focusing, locality and father's occupation. Informants are stratified along 

this index into five social groups, based ultimately on the Registrar General's 

n;><;sification of Occupations (1966 Sample Census). 

These 5 social classes are established on the basis of a test variable, 

presence/absence of the localised grammatical feature, non-marked third 

person singular, (e.g. 'he corne'). 

~~en the percentage frequency of this localised feature (non-marked 

\'erb form) ".;as plotted against the class continuum for formal and casual 

styles, there ~as a quite clear-cut break point (a difference of 67% in 

frf'quency of usage of localised verb form) between the working-class groups 

and the middle-class groups, and other less well defined break points which 

Trudgill used in the division of the social continuum into five sections. 

These five classes Trudgill characterises in terms of typical occupational 

status, and in terms of rank in the familiar class hierarchy, ranging from 

middle middle class, (Class I) to Class V, lower working class, although, 

as he points out, occupation is only one of the six features contributing to 

the index. 

Like Labov, Trudgill carefully structures the interview questions to 

elicit realisations of the variables under investigation. Trudgill takes 

sixteen phonological features into account, (three consonants, and thirteen 

F1\ vo~els .), through a series of speech styles ranging from rea,'ing styles 

(""ord lists, and continuous passages), and formal conversational style, to 

casu~l cor.versational style. 

F:\. The consonants are (h) (nb) (t), and the vo""els are (a) (a) (a:) (e) 
(er) (£ r) (I) (ir) (0) (au) (~) (u) (yu). 

- - - ------------_. -------------,--'----- -'--------
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The last of these is claimed to be the closest approximation to 'spontaneous 

speech' (Labov, 1966, p.l00), .... 'hich it is possihle to eEdt in the intervie .... ' 

situation. Trudgill splits the range of continuous phonetic variation for 

each vo,alie phoneme into a practical number of di~cTete states along a 

spectrum ranging from standard to non-standard localised (Norwich) speech, 

and each informant's score for each variable represents a conflation of 

two parameters, degree of localisation, and frequency of local ised variants. 

Realisations of the variable (a), for example, as in 'bad', 'cap' etc., 

are divided into five easily perceptible phonetic 'types', which cover the 

total range of differentiation in Norwich English, thus: 

(a) - ( ~ ] 

(a) 2 [ ce: ] 

(a) - 3 [ce:£ ] 

(a) - 4 [ £: J 
(a) - S [£:e ] (Trudgill: 1974, p.8S£) 

Each realisation of (a) - 1 scores 1, (a) - 2, scores 2, etc., and the total 

is divided by the nutrber of instances of the variable to give an average 

value per informant per style. Thus exclusive realisation with variant 

(a) - S gives the maximum score 400, and exclusive use of the standard form, 

(a) - 1, gives the minimum score, zero. However, scores in between these 

extreme values represent a combination of two measures. The 2 'measures which 

have been combined are the degree of localisation, and the relative frequency 

of use of localised variants. Thus it is impossible to distinguish, on the 

basis of their scores, e.g. an informant who consistently uses a moderately 

localised variant, (100% incidence of (a) - 3), and another informant who 

is not self consistent, but uses all variants in eq\lal proportions. Both 

score 200 overall on this variable, (in the particular style under scrutiny). 

~nether such extreme individual variation within one style is likely or not, 

this hypothetical example demonstrates the blurring effect such a composite 

index can have on the intrinsic variability within the data. Because 



7 

individual variation within one spepch style is !eve]~-i to an average 

S('L're, which is itself a composite measure, it is impossible to abstrAct 

inf0Tmation on a~ individual's operational self-consistency within styles. 

Th?lt'fI)T£' the Assumption that style is the single si~nific;mt control factor 

in variation cannot be tested. (I.e. the d~rived scores are non-homologous 

across the population). By the same argument, it is also impossible to 

extract information on the incidence of variants at a given degree of localis­

ation, without going back to the raw data from which the within-style scores 

were derived. 

By conflating these two measures, then, the initial hypothesis that 

vari~tion occurs at significant levels between, but not within, styles 

cannot be contradiced by the data, structured as it is. Thus a certain 

class of important outcomes are precluded from emerging from the data. 

Selectivity and Atomism 

Given that both social structure and linguistic variability within a 

conmunity are complex, and involve many parameters of variation, any socio­

linguistic model must be built on some simplifying assumptions. Ideally 

the least damaging assumptions (in terms of distortion of the data) should 

be found. It is just as important, however, that those assumptions should 

be borne in mind when conclusions are dra~~ from the results. Two strategies 

for reducing the complexity of social and linguistic classifications used 

in the investigations described above should be pointed out. The first is the 

policy of restrictive selection of variables, (linguistic, and social), 

the second is that approach which I call the 'atomistic' approach. Restrictive 

selection involves operating with a policy of studying only a small sub-set 

of available, (and potentially relevant) variables. Atomism involves looking 

at each of those variables in isolation, i.e. treating variables singly as if 

they behave independently, and their distributions do not interact. These 

ki nds of experinJent al .<1ssumpti ons are perfect ly val i d, providi ng they are 
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ITlride explicit. and are taken into account when interpretations are assigned 

to results. 

Assessing the adequacy of a social classification is so~ehow more 

difficult than assessing a linguistic classification. Social class as a 

notion, and in reality, is amorphous. The sociolinguist is hampered by the 

lack of definition. (or rather the multiplicity of definitions) of the 

concept in the sociological literature. which itself results from the 

FN 'fuzzy' delineation of social and cultural sub-groups. 

-------------------------
FN. Zadeh's theory of fuzzy sets (Zadeh, 1972, 1973a, 1973b) is an interest­

ing attempt at providing a mathematic framework for representing . 
'humanistic' systems such as linguistic and social variability, which 
are characteristically "impervious to mathematical analysis and computer 
simulation" (Zadeh: J 973b, p. 2). 

The principle of restrictive selection of variables lies behind the 

abstract social class indices employed by most sociolinguistic researchers. 

Trudgill, stratifying his popUlation on the basis of a derivative of the 

Registrar General's classification, and Labov, with his tripartite linear 

social index, make the assumption that the set of social variables 

incorporated, (six, and three respectively) are sufficient, and relevant 

social indicators to categorise their sample popUlations in a way suitable 

to their purposes. Obviously, an exhaustive social classification is a 

theoretical, as well as practical impossibility. I$ome classification 

theorists claim, with good reason, that no classification can exhaust the 

f I FN d' • f ... 1 . range 0 re evant ImenSlons 0 varIatIon, SInce we samp e from an Infinite 

universe of 'potentially relevant' variables. 

FN. Cri teria for 're levance', of course presuppose sped fi c purposes. 

Loevinger (J957) ffiakes the stronger claim that 'content validity' of a 
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fficasuren~nt space must be arbitrary, as our definition of 'universes' of 

variables, as ,,:ell as selected sub-domains of these, must be ad hoc. She 

concllldes that theory should be the prime generator of items for inclusion 

in any measurer.-,<ont space. For soci olingui s ti c classi fications. the social and 

linguistic theories on which the model is based must determine the definition 

of dimensions of measurement. These theories must be adequate for the 

classification to be satisfactory. 

The important issue is not whether all the social information has been 

included, but whether enough factors have been taken into account, and whether 

they are the most useful ones. It is impossible to know, in advance, which 

are the most useful ones, but we can formulate an operational definition of 

'useful' in this context, as those social measures which, singly, or in 

groups, divide the sample population in a way which bears some at least 

partially systenatic relationship to the linguistic diversity evidenced in 

that sample population. We do not know, a priori, which social variables 

we can afford to exclude. The non-relevance of all the social variables 

which are effectively ~nd tacitly) excluded by Labov and Trudgill has ~ 

been established. 

Trudgill's social index includes the three factors Labov uses: occupation, 

education and income, and adds three more: housing, locality, and father's 

occupation. Esling, (1976), uses a similar index to that of Trudgill, but 

omits incomes. Reid, (1976), classifies Edinburgh schoolboys on one factor, 

father's occupation, and finds the attribution of social status on the 

strength of this single dimension unsatisfactory. Amongst those who use the 

rr~thods developed by Labov, there exists no agreement on what the composition 

of a useful social index should be. Reid finds the set of methods which he 

calls the Labovian "research paradigm" inadequate in several ways, e.g. in 

"the minor place given to the study of motivation for variation," and the lack 

of attention given to "ways in ,,-'hich individuals "break" sociolinguistic 

rules to create social meanings" (Reid: 1976, p.16)FN. 
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FN. See also Pe1lowe & Jones: 1978 (p.l0Iff.), on the intentional 
manipulation by speakers of their linguistic patterns in order to con~ey 
specific extra-linguistic information. 

Douglas (1976), in her study of a Northern Irish rural community, 

finds that "linguistic variation and switching in Articlave are most easily 

explained in terms of informants' social aspirations," as in the case of 

"two informants, who are shop assistants but have the highest social ambi tion," 

who "show some of the most standard linguistic behaviour." (p.9) It seems 

that scalar measures of social class obscure an important part of the 

picture, viz. the effect an informant's self-image (as he thinks he is, or 

wishes he were), has on his language behaviour. Central to Labov's notion 

of 'style' is the hypothesised cause/effect relation between one kind of 

self-awareness, (monitoring of one's own speec~, the Attention Principle, 

Labov (1972»FN, and its effect on realisations of segments. 

FN. "Styles can be ordered along a single dimension measured by the amount 
of attention paid to speech." (Labov, 19?2, p.112). 

1n speech style towards the more prestigious variant realisation of a segment, 

(interpreted as the informant increasing his efforts to realise the target 

of the socially favoured variant), are claimed to correspond to increases 

in the level of attention which the speaker pays to his speech. 

Several assumptions are being made here; they are questionable on the 

following grounds: 

I. that all informants are aware of the same (~nique) target; 

2. that all informants are socially ambitious, and in the same 

direction; and that this (social ambition) is the only social 

psychological factor affecting speech behaviour in the interviews; 

3. that style can be realistically treated uni-dimensionally; 

4. that attention level is the single factor controlling style. 



II 

Informants may have different linguistic targets, ~hether on a prestige­

stig~atised dimension, or otherwise. Data from the Tyneside Linguistic 

Survey shows that it is usually the case that one informant uses several 

lju?litatively different phonetic realisations of the same speech sound 

(see below, Chap. 6 ). It is difficult to see how to assign relative 

prestige values to the range of localised variants used by one speaker. 

t-;\)reover, there is no reason in principle to expect that all members of an 

urban population have the same linguistic variant as their prestige target, 

(since prestige itself is not a single simple dimension). 

A feature ~hich functions as a marker of social prestige for one group 

or subculture may be stigmatised by ~ther groups. (I have heard the phrase 

"he wears a suit and tie" used by one speaker wi th approval, by another 

with extreme contempt). 

Nonod (1967) cites an example from his study of adolescent gangs in 

Paris, ~here 2 different sub-culture groups ~ho, to an out-group member, 

are practically indistinguishable, are actually differentiated among 

themselves (amongst other things) by whether their hair is parted on the left 

or on the right. (Both groups have long hair). This example demons trates 

at least two important facts about markers of social prestige: 

i) features which are highly significant social markers for some 

sub-groups do not carry any signification for members of other groups. 

(Features which are prestigious for some, are neutral for others). 

ii) social markers (in this case hairstyle) are discriminated to 

differential degrees of fineness by in-group, and out-group merr.bers. 

(To outgroup members, these two groups are long-haired: to in-group 

members, the side of the parting is a significant discriminator).FN 

FN. I am indebted to Joan Beal for drawing my attention to this reference. 

There is no reason to suppose that linguistic forms do not also have 
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differential prestige values for different sub-groups within a community. 

Labov (1972, p.113) states, in his Principle of Formality, that: 

"any systematical observation of a speaker defines a formal context in which 

nHC than the ~inimum of at tention is paid to speech." 

Theoretically, by manipulating the degree of formality of the interaction, 

the interviewer creates differential degrees of linguistic self-awareness, 

and thereby elicits samples of speech ranging through contexts from casual 

to formal. 

However, interaction phenomena other than this one may engender changes 

in speech style. Giles (1973b), indicates that such style changes may be 

"person based rather than context bas~d" (p. 88), and enlarges on this possibili ty 

wi th reference to Interpersonal Acconnnodation Theory (Gi les, 1973a," 1973b). 

Changes in the interviewer's manner, designed to contral the formality of 

context, might cue the informant to respond by acconnnodating to what he 

interprets as the new rules of the interaction which the interviewer is 

signalling. (E.g. the informant may be responding to his own impression 

that he has offended the intenieW'!r, or that the interviewer is 'warming' 

to him). A register switch may be triggered, which does not necessarily 

involve either a change in level of attention, or a consequent (according to 

Labov) movement along some more-vernacular to less-vernacular scale. (Accord­

ing to Labov, increase in vernacularness corresponds to decreasing attention 

being paid to speech). 

In the Vernacular Principle, Labov (1972, p.112) asserts that "the 

style ~hich is most regular in its structure and in its relation to the 

evolution of the language is the vernacular." This principle discounts 

the possibility of speakers having a range of equally natural styles, each 

0f ~hich is (norrr.ally) produced in the appropriate interactional circumstances. 

(Cf. Giles' (J973b) notion of "accent repertoire" (p.89». 

Labov, however, treats different styles as differential degrees of 

deviation from the norm of the individual's vernacular, along a linear scale 
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from natural to less natural styles. 

The linguistic effects of having different social intentions (apart from 

'correcting' one's speech) can then be safely ignored, and individual 

variability can be called "linguistic insecurity". 

Smith (1976) argues for a sounder social psychological basis for 

sociolinguistic theory than has been evident to date. He cites Giles' 

Interpersonal Accommodation Theory as providing a more satisfactory framework 

to account for some strategies used by speakers to realise social intentions. 

This theory embodies the notions of "convergence" and "divergence", which 

refer respectively to style changes towards, or away from, the interlocutor's 

speech patterns. Interpersonal Accommodation Theory also accounts for the 

effectiveness of strategies used by a speaker, in terms of the hearer's 

evaluation of the extra-linguistic information signalled by the speaker, 

and how far those signals fulfil the hearer's expectations. In this 

approach it is the interaction, and not the speaker's behaviour in isolation, 

that is the prime focus. 

Certainly many more intentions than can be subsumed under the heading 

of social ambitiousness are involved. Smith, referring to Giles' (1973b) 

notion of divergence, notes one social function fulfilled by maintaining, or 

increasing one's linguistic distance: "since speech style is for many groups 

an important clue to group membership, we can argue that divergence may be 

an important strategy for maintaining positive distictness in many circum­

stances." (p.31). 

This may well be the case with the lowest working class strata in Labov's 

(1966) New York study. Labov, interprets this group's reluctance to shift 

towards middle class norms as lack of awareness of the prestige variants. 

Another possibility is that ffiembers of this group are aware of the prestige 

form, but fail to use it, either because they are not socially ambitious 

in the way Labov suggests other groups are, or they shun these forms as 

characteristic of a social class to which they are hostile, (or, at least, wish 
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to maintain their distinctness from). 

An event which cannot be represented on a scale ~hich has the vernacular 

at one extreme is that of hypercorrection towards, and beyond, the vernacular, 

~nd B~ay from the prestige form. Divergence away from an interlocutor's 

'superior' speech variety can be used to signal class (or personal) hostility. 

This shift may produce an exaggeratedly localised variety, ~hich would 

presumably co-occur with increased attention level. By I.abov's model, 

increase in attention co-varies with movement towards prestige forms; in 

this hypothetical but not unlikely case the reverse is true, demonstrating 

that attention to speech and prestige value are not simple covariates. 

That such a uni-dimensional scale is an unsatisfactory artifact is 

highlighted by Smith's (1976, p.31) reference to: "convergence and divergence 

simultaneously along two or more descriptive dimensions that are different­

ially recognised by the ingroup and the outgroup." Two points are signifi­

cant here; firstly that certain social and linguistic functions may be 

realised with, and recognised by, different token forms by differertt groups, 

(cf. my comments on the non-ubiquity of linguistic targets). Secondly, 

speakers do not move towards, or away from each other linguistically in any 

simple fashion at all. I have observed a LiverpUdlian in conversation 

with a localised Tynesider shift towards a more localised Liverpudlian 

variety, which was as different from Tyneside speech as the less-localised 

variety used by the Liverpudlian at the start of the interaction. This could 

have been an instance of convergence along some abstract RP-to-undefined 

dimension, or divergence signalling identification with another region, or 

both at once. }!oreover, while segmental phonology shifted towards Liverpool 

forms, non-segmental phonological patterns moved towards Tyneside systems 

(possibly favouring the interpretation of interactive convergence); thus in 

the same speaker ~e have.divergent (in one sense) segmental phonology, and, 

simultaneously, convergent prosody. Nothing like this is accounted for in 

Labov's model. 

The Labovian model does not incorporate any social attitudinal data. 
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Only one motivation factor, social ambition,is discussed, and it is not 

rr,easured; it is merely assumed to be causal. I.abov has not demonstrated 

social ambitiousness to be the central cause of variation, yet his method­

ology is based on assuming that it is. In addition, the factors on which 

the linear scale of styles is built are non-measurable. Labov (1972) 

states; "At present we can control some of the factors which cause attention 

to be paid to speech, •••• ~but we have not yet quantified the actual behavioral 

feature: attention to or monitoring of speech." (p.112) It is, of course, 

possible to measure levels of physiological arousal in a subject, however, 

the application of a dynamometer and ECG machine to the informant might lessen 

the chances of eliciting his most relaxed vernacular style. If, ho~ever, 

by 'attention' Labov refers to some form of cognitive feedback loop, it is 

difficult to foresee how this feature could ever be measured. The notion 

of self-monitoring seems intuitively satisfactory: the problem is that it 

has not been demonstrated to co-vary with speech changes. Moreover, factors 

other than conscious, and variably successful, attempts to reach a self­

imposed goal are operating. 

Unfortunately, formality of context is also difficult to quantify 

absolutely. Herein lies a methodological paradox: stylistic variation is 

projected onto a linear scale calibrated by an unmeasurable parameter, 

attention, which 1S claimed to vary with formality of context. Labov has 

asserted earlier in the article dealing with principles of linguistic 

methodology, (Labov 1972), that hypotheses should be formulated in such a 

way as to be easily disproved. He also indicates that many empirical 

red herrings are consequent on "an initial misapprehension of the data." 

(p.104) It seems that Labov's theoretical standpoint has not adequately 

determined his methodological choices. 

Trudgi1l acknowledges the complexity of social diversity in a community, 

and the fluidi ty and flexibi Ii ty of "class boundaries and barriers" (Trudgill: 

1974, p.32f). I have already mentioned that he establishes the validity of 
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his social stratifying principle by the use of a test variable, presencei 
I 

absence of non-marked third person singular. We cannot assume that different 

variables in the same systems show linear correlation in their distribution 

patt~rns across a population, still less that informants will be ranked in 

the same way across variables from different systems, (here syntactic and 

segmental). 

~e must be suspicious, then of the practice of applying a social 

stratification which applied to one grammatical feature to distributions of 

phonological features. 

Wolfram (1969) has shown that grammatical variables tend to show more 

sharp stratification along a social status index, whereas phonological 

variables tend to show "gradient stratification': "By sharp stratification 

is meant a quite definite break in the frequency at particular variants 

between contigious social classes in the sample; by gradient stratification 

is meant a progressive difference in the frequency of particular variants 

between the different social classes in the sample." (Wolfram: 1969, pp.120f.). 

For example, post-vocalic Irl shows gradient stratification in Detroit Negro 

speech, whilst mUltiple negation shows sharp stratification. (This is a 

function of the type of variation, the former being in some sense discrete, 

the latter being continuous). Grammatical features, because of the discrete 

nature of their variants, may be easier to 'correct' in monitored speech. 

Garvey and Dickstein (1972) produced experimental results which indicate 

amongst other things, that a corpus of speech analysed at one linguistic 

level, (incidence of standard versus non-standard verb forms) produces 

different frequency distributions across a social index than when analysed 

at a different level, ~e.g. lexical choice, and choice of predication type). 

Grammatical form (standard/non-standard verb-form), was found to vary 

significantly with the social measures sex, race, and socia-economic status 

(henceforth S.E.S.), whilst lexical choice varied only with SESe At the 

'referential'level, (incidence of choice of predication type), variation was 

attributable only to the type of task performed in the experimental situation, 
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and failed to distinguish informants according to any social parameters. 

Garvey and Dickstein point out: "In none of the studies cited ••• has 

there been an examination of the effect of th~ linguistic level of analysis 

on the (potential) socially diagnostic significance of the findings" (p.376) 

and warn of "the need for distinguishing among levels of linguistic 

differences which interact with situational factors on the one hand, and 

with social status differences on the other. Tne findings demonstrate tnat 

SES and race differences in speech behaviour discovered at one level of 

linguistic analysis cannot be directly adduced as evidence that similar 

status differences exist at another leve1." (p.384) 

It follows, then, that the social groupings established by Trudgill 

on the basis of the distribution of a grammatical feature do not necessarily 

comprise a valid division of the social continuum with which to correlate 

the distributions of phonological variables. Though he attempted to establish 

the validity of his social class index empirically, the level of analysis at 

which the selected variable operates may be irrelevant to the material of 

the survey, as the behaviour of his test variable is not likely to be 

paralleled by that of the experimental variables. 

Garvey and Dickstein's thesis has wider general import for sociolinguistic 

d f · " survey design. In order to e lne a coherent and systematic structure for 

the speech pattern of this neighbourhood" (Labov (1966) p.l77), all levels 

of linguistic structure should be taken into consideration, not just the 

seg~ental'phonological one. In practice a completely exhaustive linguistic 

analysis of the material may not be possible, but certain ·classes of variation 

other than segmental phonology can be incorporated to give a more compre­

hensive profile of speakers' varieties. (The TLS includes analysis at 

several levels of linguistic structure - see below, ch. 2). 

The development of a more adequate social classification than has 

hitherto been in evidence in the discipline is a difficult task. Given that 

many more social factors than those used by the Labovian school may be 

relevant, e.g. attitudinal measures, and that it is impossible to reduce the 
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social profiles of speakers to a unidimensional scale ~ithout gross 

distortion of the data, then some kind of multi-dimensional model must 

be constructed. There are many problems here; ~hich variables should be 

included, how many, and how should they be structured ~ith respect to each 

other in a multidimensional scheme? The TLS methodology embodies a set of 

heuristic strategies for ans~ering some of these questions empirically, and 

thereby converging on an optimal model of social variability in relation to 

language variation. A multi-dimensional model avoids the shortcomings of the 

selective and atomistic approaches, by initial inclusion of all potential 

diagnostic dimensions, (or as many as is practically possible), and by 

permitting scores for separate variables to be represented without being lost 

in an overall composite index; thus the effects of individual variables 

may be assessed, and non-co-variate ones eliminated. Also, dependency 

effects between variables in the social classification, (and in the 

linguistic one) can be empirically quantified. These matters are dealt with 

in full below chs. 5, 6, 7). 

Problems in linguistic classification. 

The Labovian model invokes the principle of restrictive selection in 

variable sampling in the linguistic as ~ell as the social classification; 

firstly by selecting one sub-domain, (segmental phonological), secondly by 

taking into account a small sub-set of variables from this sub-domain. In 

the Martha's Vineyard study, Labov (1963) examines the distribution of one 

sound feature, and asserts he has found it "possible to assign a single 

social meaning to the linguistic feature in question" (Labov: 1963, pp.3f). 

This study is not designed, like the New York survey, to discover "a coherent 

and systematic structure for the speech pattern of this neighborhood" 

(Labov : 1966, p.I-7). In the Martha's Vineyard study, Labov is investigating 

one sound change in its social context. However, the principle of atomism 

operates in both studies, where linguistic and social features are studied 
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in isolation, and one-to-one correlations between linguistic and social 

factors are sought. Five phonological features are examined in the New 

York survey: (r) (oh) (eh) (th) (dh). Trudgill acknowledges that "the 

m~jority of segmental phonological elements in Norwich English are involved 

in variation of some social significance", (Trudgill: i974, p.79), but claims 

that his selection of sixteen variables (three consonants and thirteen 

vo\,;els), is valid, firstly because of a greater "amount of apparent social 

significance in the pronunciation of the segment or segments involved", and, 

secondly, on the grounds of "the amount of phonetic differentiation involved." 

(p. 80). 

Regarding the first criterion, the selection of variables rests on 

a subjective assessment by the investigator, of the relative degrees of 

social significance attached to all the variable elements in the segmental 

sound system. (Admittedly, this is the assessment of a linguistically 

trained native speaker). Moreover, the possibility of excluding many 

relevant parameters of linguistic variation remains. If, as Ringaard (]965) 

claims, "the transcriptions of phoneticians do not tell us so much about the 

speech of the areas they are studying as about the phoneticians themselves", 

it is also conceivable that the evaluation of relative social significance 

upon which a restricted selection of variables rests tells us more about the 

investigator's personal social frame than about the social meanings of 

variables for the population at large. This is statistically equivalent 

to assigning infinite weight to the results of a hearer 

judgment test applied to one informant, and zero weight to scores for the 

reffiainder of the sample. (Cf. also my remarks above (p.]O ) concerning 

variable targets and variable group affiliation). 

Concerning the principle of restrictive selection; it is difficult to 

envisage how "the class continuum" can be "objectively measured against 

the linguistic continuum' (Trudgill: ]974, p.33) when large sections of the 

latter are excluded from the study, and the former is measured on an artificial 

linear scale of dubious validity. 
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The strategy of atomism is ~lso used in the rerresentation of the 

linguistic material. In the Labovian methodology inform~nts ~re assigned 

to social strata, and the incidence of each variable is plotted for each 

strRturn. independently of the other variables. Sociolinguistic general­

isations are made from the distribution patterns of single features. on the 

basis of trends found to be shared by several variables. One consequence 

of the atomistic approach is that. by treating variables independently. 

a certain class of coutcomes is precluded from emerging. for instance 

dependencies between variables are not accounted for. Moreover. language 

features interact between. as well as within systems. Consider. for example. 

the differing phonetic consequences of word-stress position in lexemes which' 

have alternative possibilities for placement of inherent stress, (e.g. 

Car'ibbean/Cari'bbean). The investigator may not be centrally concerned 

with these intra-and inter-systematic dependences, but the fact that they 

exist, and are not accounted for in the model may result in undetected 

interference effects. 

Certain errors of interpretation may arise from combining the 

strategies of restrictive selection and atomism, if their consequences are 

not borne in mind. ~~en several features show similar patterning the conclusion 

may be drawn that a general rule has been discovered, which applied to most 

members of the variable paradigm. The chances are that a sub-set of 

variables selected on intuitive grounds represent a more homogeneous class 

than the whole paradigm, (e.g. the similarity between Labov's (1966) 

variables (dh)/(th); and between (oh)/(eh). ) Rarer patterns may be regarded 

as 'deviant', rather than providing evidence that different variables have 

non-homologous distribution patterns. Trudgill, out of sixteen sound features, 

finds only three which display what he calls the 'typical' pattern. Trudgill 

(1974, p.9S) states: "The pattern of class, sex and style 

differentiation illustrated in the case of (ng) is the typical pattern 

associated with a normal linguistic variable" (my underlining), 

The use of 'typical' here is puzzling. 
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If indeed the cultural patterning within a speech community can be 

modelled meaningfully by use of a social stratifying principle, then an 

atomistic, and selective, approach can reveal information concerning the 

hehaviour of single variables in relation to social class. However, general 

so' iolinguistic deductions cannot be made from partial data. Trudgill, like 

Labov, formulates his aims (and claims), in broad, general terms': "to 

investigate the nature and extent of the correlation between and co-variation 

of linguistic and social parameters in the city of Norwich" (Trudgill: 

1974, p.31). (eL Labov's aim of defining "a coherent and systematic structure 

for the speech pattern of this neighbomood!' Labov , (l966), p. 177). 

In the light of these stated aims, we must consider the discrepancy 

between objectives and methods. Methodology delimits the range, and type, 

of discoveries which can be made; the scope of the data, and the analytic 

frame applied,place corresponding constraints on the sorts of deductions 

which it is possible to make. Assumptions which are implicit in the strategies 

which have been used must be taken into account at the stage of interpreting 

results. Both Labov and Trudgill seek to draw conclusions concerning the 

overall sociolinguistic configurations of their respective sample popUlations 

on the basis of a small number of variables. This can only validly be done 

if it can be demonstrated that these select few are statistically representative 

of the whole popUlation of variables. Results from the TLS, presented later, 

show that this is an improbable hope where so few variables are concerned. 

Trudgill's own results demonstrate this; as thirteen of his variables show 

divergent distribution trends. 

The initial dramatic find~s and claims of sociolinguistic surveys of 

urban speech now need to undergo critical methodological assessment if the 

theoretical contribution of the subject is not to be seriously vitiated. 

Methods are now available for the implementation of more refined, and 

theoretically adequate models of sociolinguistic variation, which avoid 

the shortcomings outlined above. 
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Recent advances by theorists of numerical taxonomy and of classification, 

stimulated by the availability of high speed electronic processors, have 

resulted in the development of numerical techniques for the handling of 

large copora of multivariate data. Multivariate methods (see Sokal & Sneath 

1963) have been adapted for use in many disciplines, including: linguistics 

(e.g. Kroeber 1960; Needham 1967; Ross 1950); ecology (e.g. Anderson 1971); 

anthropology (e.g. Ihm 1965); archaeology (e.g. Hodson, Sneath & Doran 1966); 

social sciences (e.g. Ball 1965); biology (e.g. Williams & Lambert 1959; 

Williams & Dale 1965); psychology (e.g. Cattell & Coulter 1966) and 

psychiatry (e.g. Strauss, Bartko & Carpenter 1972). 

Multivariate techniques are appropriate to apply to sociolinguistic data 

on two important counts. 

Firstly, both linguistic, and social, differentiation involve 

variability along very many parameters. By using multivariate techniques, 

a sample can be analysed with respect to many social, and linguistic 

variables simultaneously. Thus the constraints imposed by both the 

approaches of selectivity and atomism can be avoided. 

Secondly, sociolinguistic groups can be more usefully treated as 

"polythetic" classes than as "analytic" classes. The sociolinguistic 

investigations cited above (Labov: 1963; Labov : 1966; Trudgill: 1974) 

treated sociolinguistic groups as "analytic" classes (in the Aristotelian 

sense). Analytic classes are those which are defined by 'essences' or key 

features. These features are necessary and sufficient criteria for group 

membership. (This definition is also a reasonable gloss for "monothetic" 

groups) • 

Neither organisms, nor language, nor social behaviour can be 

successfully classified according to an 'analytic' scheme. If this kind 

of frame is adopted, many anomalies arise. For example, In biological 

taxonomy, if the presence of red blood corpuscles is set up as a definitive 

characteristic feature of vertebrates, then the classification founders 
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when cases such as that cited by Ruud (1954) are encountered. Ruud gives 

the example of certain species of fish, which do not have red blood corpuscles, 

yet we would want to classify them as vertebrates. Yet presence of red 

blood corpuscles is certainly a characteristic of most vertebrates, and 

generally uncharacteristic of non-vertebrates. Syllogistic proofs do not 

apply: the strongest prediction which can be made is a probabilistic one. 

The 6ame situation holds for many characteristics of biologically related 

groups (See Sokal & Sneath: 1963). 

Such characteristics are paralleled in the patternings of linguistic 

behaviour. FN 

FN. Zadeh (1973b) demonstrates the probabilistic nature of linguistic 
classes in terms of his fuzzy set theory. 

This is shown by the need to provide a theory which accounts for a degree 

of non-determinacy in usage of variant forms, such a system is formulated by 

Labov in terms of variable rules (Labov: 1969) and by Bickerton in terms of 

implicational scales (Bickerton: 1975). 

A more useful classificatory strategy than the Aristotelian one is due 

to Wittgenstein. The .concept of 'taxonomic affinity' developed by biological 

taxonomists (see Sokal & Sneath: 1963) has strong affinities with Wittgenstein's 

notion of 'family resemblance." His thesis is that certain classes of 

entities are related by shared features, but that none of those shared 

features is necessarily universally possessed by all members of the group. 

Thus there are no necessary attributes for testing for group membership. 

Moreover, characteristic features of a group may not be exclusive to 

that group. Therefore typical features of a group are neither necessary 

nor sufficient criteria for group membership. Such groups are termed 

'polythetic' classes. 

The list of shared features might vary quite radically across different 

pairs within the same group. The internal structure of a group is 
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determined by the number, and range, of attributes shared by its members. 

By the use of multivariate techniques we can discover polythetic classes 

based on a large range of social and linguistic variables. These techniques, 

then, provide a useful set of strategies for eliciting the complex (and 

very probably) polythetic relationships within the fluid and flexible 

social structure of the community {see quote from Trudgill above, p.lS 

and within linguistic variability. 

The T.L.S. exploits multivariate strategies in order to search for 

natural polythetic social and linguistic groupings within the sample 

population. Thus, no variables are predicted by the model as being key, 

or defining characteristics of groups. Rather, the natural groups emerge 

from the classification process. (Cf. e.g. Labov's approach, where 

definitive characteristics, such as salient linguistic markers, and social 

indicators are selected in advance, so that the groupings which are discovered 

are determined by this selection). 

The T.L.S. methods do not preclude the possibility of monothetic classes 

emerging; if sociolinguistic groups ~ discriminated absolutely by a short­

list of definitive social and linguistic features, then this will emerge 

from the classification. 

By avoiding certain pre-empting assumptions which have characterised 

previous sociolinguistic research, we can a) test those assumptions; and 

b) approach more closely the goal of coping with the "structured 

heterogeneity" of social interaction and linguistic variability. 



CHAPTER 2 



THE }lETHODOLOGY AND HODEL OF THE TYNESIDE 

LINGUISTIC Sl~\~Y 
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To date there has been no adequate attempt to model the overall 

lirguistic variability of an urban community, and given the total ignorance 

of the mathematical properties underlying language variation, the Tyneside 

Linguistic Survey was conceived as a set of methods whereby the salient 

features of linguistic and social diversity are empirically determined by, 

rather than presupposed in, the model. The model is designed to generate 

different sets of possible results, by processing the data in different 

~ays, and the model itself is subject to modification in the light of these 

results. To borrow a term from mathematics, the model is a 'machine' for 

generating hypotheses, in that it is capable of generating a number of 

possible solutions to the problems under investigation, all of which must 

be regarded as valid representations of the data, but which will vary in 

their degree of utility with respect to the purposes of the Survey. The 

'usefulness' of the different sets of results so generated cannot be 

predicted in advance, for the process must be a cyclic one of self-evaluation: 

the design of the model must be constrained by its own products as these 

progressively illuminate the nature and structure of the raw data. In 

this sense (and in other ways, see below, pp.18ff), the model is 'dynamic'. 

The aims, in general, of the Survey are as follows: 

1. to identify, and exhaustively characterise, the varieties of speech 

which co-occur in the area under consideration, (initially the Tyneside 

conurbation), 

2. to determine the distribution of both the speech varieties and 

their constituent elements across the relevant social sub-groups (which must 

also be empirically discovered by the model), 

3. to extend the model to cope with a wider geographical compass; 

a. by successive inclusion of more of the conurbation 

b. by including neighbouring conurbations, 
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c. by eventually adapting the model to account for other urban 

varieties of English, 

4. to extend the investigation onto a diachronic basis, so that changes 

FN through time in these distributions, (see 2.), may be measured. 

FN. The discussion in this chapter is based on the following T.L.S. 
publications: 
Pellowe: 1970a; 1970b; 1970c; 1970d; 1973; 1976; 
Pellowe, Nixon & HcNeany: 1972b; 1972a; 
Pellowe, Nixon, Strang & McNeany: 1972 
(henceforth Pellowe et al: 1972); 
in particular, the latter two • 

The T.L.S. represents an effort to avoid several methodological pitfalls 

mentioned in chapter 1. These include unrepresentativeness in selection of 

variables, and the problems inherent in an atomistic approach. The T.L.S. 

methodology is also designed to avoid the kind of reduction and misrepresentation 

of the social fabric of an urban community which results from the attempt to 

express social differentiation by means of a pre-conceived linear social index. 

Sampling of informants 

The ~ample must be large enough to adequately represent all speech 

varieties occurring on Tyneside, in other words, for the entire spectrum of 

(local) linguistic differentiation to be captured. For each type to be 

represented proportinately, the sample must be random. However, it was 

anticipated that a sociolinguistically influential and interesting group of 

speakers would be very sparsely represented, if at all, in a random sample, 

due to their relative rarity across the population, namely speakers of 

'non-localised' (NL) varieties, that is those speakers, who are typically 

middle-class, well-educatpd and in high income groups, whose speech gives 

no indication of their geographic origin. With this fact in mind, the 

original sample was drawn as follows: 

Phase 1 samp Ie: 
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a. a handpicked sub-sample of 40 speakers known to have NL varieties; 

b. 60 speakers, resident in a street intuitively judged to be 'middle-

class'; 

c. ISO speakers chosen from the Electoral Register, by wards and 

polling districts. The selection was normalised according to size of ward 

or polling district, thus giving every member of the popUlation an equal 

and calculable probability of selection. 

Phase 2 sample. 

To test the reliability of this sampling programme a second sample was 

drawn from the base population. By this means it is possible to ascertain 

whether the original sample succeeded in exhausting the number of speech 

types occurring in the total population, and if they are represented 

proportionally. Also, the estimates, based on the first sample, of the 

population frequencies for each type, and the estimate of the nU~Der of 

new types likely to be revealed by a new sample, can be verified (Using 

Good's (1953) technique). Noreover, the randomness of the source list, 

(Electoral Register) with respect to the study was tested by drawing a 

sample by a different method, namely by imposing on the area "a grid of 

intersections whose scale at any point is an inverse function of the 

1 . d . h " popu atlon enslty t ere (Pellowe et a1: 1972). 

Phase 3 sample. 

As a further test of reliability of informant sampling methods, a 

stratified sample of ISO informants was drawn from the conurbation south 

of the Tyne, (Gateshead), the stratifying factor being 'rateable value per 

dwelling by polling district'. Furthermore, this sample provides informa-

tion on the exhaustiveness or otherwise of the contents of the classificatory 

scheme in terms of inclusiveness of variables and of types of speech 

varieties. This sample also represents a latitudinal extension of the 

survey, whereby linguistic distinctions as a function of areal differences, 

may be measured. 
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Representativeness in the selection of lineuistic variables. 

As Trudgill (1974, p.79) points out, most segmental features displayed 

variability across the speech community which he is studying: 

"the majority of segmental phonological elpments in Norwich English 

are involved in variation of some social significance.'" 

This comment has general relevance to any study of sociolinguistic variation. 

Trudgill, however, restricts his selection of linguistic variables to 

sixteen phonemes, whereas the T.L.S. operates on the principle of exhaustive 

inclusion of variables. Thus, the biassing effects of an approach based on 

a restrictive selection of variables (see above, pp.7ff. ), is 

avoided. No assumptions are made, a priori, concerning the relative 

sociolinguistic significance of different variables. 

One of the most distinctive characteristics of the T.L.S., then, is 

that the model is designed to exhaustively characterise all measurable 

dimensions of language variation in an urban community. Although this is 

an ambitious goal, when it is achieved there will exist a corpus of data 

which comprehensively characterises the patterns of linguistic variability 

in the Tyneside speech community. By minimising the loss of information, 

the model allows for a wide range of hypotheses to be tested, and by avoiding 

pre-empting assumptions, such as which variables are relevant, it also 

allows for non-predetermined results to emerge. 

For example, Pellowe et a1. (1972, p.9) claim: 

"our model will not only generate Labov's variables analytically, but 

will indicate the extent to which, and reasons why, other parts of the 

linguistic structure are candidates from this role," (i.e. the role of 

sociolinguistically salient variables). 

It is of vital importance that the data is not represented in such a 

way that the results' are pre-determined by the strictures imposed by the 

model. FN 
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FN. An over-simplified model at best limits the range of possible outcomes. 
At worst, it predetermines the outcome by generating results which are 
a direct projection of the simplifying assumptions made. For example, 
Pellowe 1967; attenpted, in a pilot run, to quantify the correlation 
between non-working class status' (defined by membership of the Registrar 
General's social classes I-Ill) and NL speech. Pellowe et a1 (1972, 
p.3f) report that this framework was "insufficiently sensitive", and, 
moreover, that "such samples could not provide an adequate classificatory 
base upon which to identify the V's," (varieties). 
" ••• the varieties which one identified were rather directly dependent 
upon the variables which one had chosen in order to identify these 
varieties (in other words the Vs which were classified were direct 
projections of the gross sociolinguistic perceptions of the analyst 
as an ordinary hearer)." 

We cannot predict, in advance, which linguistic, and social, features 

discriminate sociolinguistic sub-groups. 

In the urban situation population density is high, and social role 

structure is complex and multidimensional, and characterised by loose, 

symbolically mediated social bonding (Goffman: 1961, 1963;- Pah1: 1968). 

A linear social index cannot adequately represent this social differentiation, 

and it is unlikely that the relationships between configurations of linguistic 

and social variables are capable of expression in terms of simple functions 

or one-to-one relationships. {See my comments on selectivity and atomism, 

above, ch.l, p.7 ff.} 

Hence the need for a model which exhaustively characterises social and 

linguistic differentiation, and which generates groupings on the basis of 

complexes of features from both domains. 

Thus we can determine empirically which variables, or variable complexes 

(both linguistic and social) characterise sub-groups of Tyneside speakers. 

The data, which is collected in the form of tape recorded interviews 

with members of the sample, is analysed, and coded exhaustively in terms of 

all measurable variables from the linguistic systems of seemental phonology, 

syntax, intonation and pitch range. Also, various paralinguistic and 

collocational variables are coded. (For a description of the linguistic 

coding frame, see below, pp. 37ff., and Appendix A). 
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A wide range of x-linguistic (extra-linguistic or social) information 

,,:as requested in the interviews, which provides a comprehensive social 

profile of each informant with respect to a variety of sociological variables 

(analytic information), also attitudinal and other kinds of data are 

elicited. (For a full description of the social coding frame see below, 

p. 45ff. and Appendix B). 

Speech varieties, and their defining linguistic characteristics, are then 

identified by multi-variate methods. If each linguistic variable is conceived 

as an axis in a multi-dimensionsal linguistic variety space, then each 

informant's scores on all linguistic variables place him in a unique multi­

coordinate locus in that space. This locus defines that informant's 

linguistic profile~with respect to the sum total of dimensions of the space. 

Groups of speakers with similar linguistic profiles (with respect to the 

definition of the space) are evidenced by swarms (or clusters) of informants 

(sample points) occupying certain areas of the space. (See ch. 6 for a 

description of the derivations of linguistic variety clusters). 

The same informants are then dispersed through the social space (SocSp), 

the dimensions of which are defined by the sum total of social variables 

which are included in the social coding frame. Each informant's social 

profile (with respect to all the social variables) determines his position 

in SocSp. Clusters of sample points in SocSp represent social groupings 

of the sample. (See ch. 5 for a descri,tyion of the derivation of social 

clusters). 

From both the linguistic, and social, spaces, we can then extract those 

dimensions (variables) which participate most actively in binding these 

groupings together. Those dimensions, if found, will indicate variables 

which are key diagnostics for the groupings obtained. These are variables, 

then, whose salience is empirically demonstrated. 

The model, then, generates linguistic variety clusters whose internal 

structure is dependent not on a selected sub-set of variables, but on an 
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exhaustive linguistic analysis of the speech output of members of the sample. 

It also generates social groupings which are based on a large number of social 

variables (which include those sociological measures used in previous 

sociolinguistic surveys - see citations in ch. 1. 

Therefore the T.L.S. aim of exhaustive characterisation of varieties is 

fulfilled, and so is the aim of discovering the social sub-groups relevant 

to the popUlation under investigation. 

Moreover, the adequacy, or otherwise, of a restrictively selected sub­

set of variables (linguistic and social) can be tested. 

Firstly, if a sub-set of key-diagnostic variables does not emerge, 

then we can say that a classification based on any sub-set alone would not 

recover the relevant groupings of the sample. 

Secondly, we can analyse the clusters obtained with respect to, e.g. 

the classic social indices (socio-economic status, (SES), social class (SC), 

occupation groups) and determine whether clusters are discriminated by 

these indices. 

(This is done in ch. 5 for social clusters, and ch. 7 for linguistic 

clusters). 

The second aim of the T.L.S. (to determine the distribution of both the 

speech varieties and their constituent elements across the relevant social 

sub-groups) is achieved by examining the relationships between linguistic 

clusters (and their key diagnostics), and the social clusters. Providing 

reliable linguistic diagnostics emerge, it will be possible to quantify a 

function to express the mapping from linguistic diagnostics to social 

clusters. Thus the role played by single linguistic features (or complexes 

of features) in marking social groups can be empirically determined, and their 

predictive power (i.e. the level of probability attached to these variables 

in allocating individuals to social groups) can be measured. 

The results mayor may not support, e.g. Labov's selection of salient 

sociolinguistic discriminators, or, it may be demonstrated that single 
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linguistic features cannot be reliably correlated with social groups. As 

both social and linguistic diversity are treated by the T.L.S. model as 

complex and multidimensional, it is probable that simple correspondences 

bet~een linguistic varieties and social groups will ~ emerge. Only in 

the unlikely case of variety cluster membership being identical with social 

cluster membership will linguistic diagnostics bear a straightforward 

relationship to social groupings, and have simple predictive values. It is 

probable that the sample will be distributed differently across the two 

spaces, and members of each social cluster will be dispersed across several 

variety clusters, and vice versa. The mapping function of one linguistic 

diagnostic to one social cluster, then, will be a complex function of the 

number of ~riety clusters represented in the social cluster, the fraction of 

the social cluster represented by each variety cluster, and the proportion 

of each variety cluster which appears in the social cluster, as well as the 

linguistic variable's diagnostic value (if it is less than absolute) in 

predicting membership of the variety cluster of which it is a diagnostic. 

The multi-variate technique which is used to classify informants into 

groups is known as 'cluster analysis'. The term covers a number of techniques 

for analysing multi-variate data 

"which attempt to solve the following problem: 

Given a sample of N objects or individuals, each of which is measured 

on each of p variables, devise a classification scheme for grouping the 

objects into g classes. The number of classes and the characteristics of 

the classes to be determined." (Everitt: 1974, p. 1). 

We want to determine the number of social, and linguistic groups in 

the sample, and determine the characteristics of these groupings. 

"The techniques of cluster analysis ••• are useful tools for data analysis 

in several different situations. They may be used to search for natural 

groupings in the data, to simplify the discription of a large set of 

multivariate data, to generate hypotheses to be tested on future samples ••• " 
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(Everitt: 1974, p.5). 

Each of these applications is of interest: we want to discover the 

~attlral sociolinguistic groupings within the sample, to simplify the 

description of a large corpus of sociolinguistic data, and to generate 

hypotheses concerning interactions between social, and linguistic, variables. 

The clustering process used here (hierarchic fusion) involves the following 

steps: 

1. each informant's scores for all variables in the coding frame 

(social and linguistic) are input to the clustering program; 

2. all possible pairs in the sample are compared, with respect to 

each variable; 

3. a measure of mutual similarity (or distance) is computed bet~een 

each pair, taking into account scores for all variables; 

4. the construction of a similarity matrix from 3; 

5. on the basis of the similarity matrix, clusters of similar individuals 

are built. (See fuller description, ch.4). 

5. is achievedby a series of scans through the similarity matrix. 

On each scan, the pair with the highest level of similarity i.e. with the 

most similar profiles, are fused, and thereafter treated as one individual. 

After each fusion, the similarity matrix is shrunk by one row and column, 

and all the paired. similarity rr.easures are recomputed. 

The process of scanning and fusion is repeated until a pre-set 

similarity threshold (or number of clusters) is reached, otherwise the process 

continues until there is one cluster containing all the individuals. The 

classification can be examined at different stages (e.g. ~hen there are 4, 

3 and 2 clusters respectively) and cluster diagnostics can be printed for 

all variables, across the clusters which exist at those selected points in 

the fusion process. Thus, the sample can be examined at any level of 

internal structure. 

Fig. shows a (hypothetical) dendrogram (a diagram which summarises 

the steps in the fusion process). This diagram shows that, in a hierarchical 
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clustering of 10 informants there are different numbers of groupings at 

different stages in the process, which can be conceived of as a classif-· 

icatory hierarchy, (groups contain sub-groups). The crosses represent 

individuals, the tree shows the fusion steps which occur at decreasing 

levels of similarity (from bottom to top). The broken lines show three 

levels at which the classification could be examined. The number of 

branches of the tree crossed by the broken line indicates the number of 

clusters present at that stage of the process. Thus at level a, there are 

2 clusters, at b, 3, and at c, 5. Level c represents a finer classification 

into sub-groups than b, and b than a. 

0.. -f I-
V - T - -
c. -~- 11-

n n 
+++-t + + + + ++ informants 

Fig. Hypothetical dendrogram. 

So, we can obtain information on linguistic and social groups at any 

desired level of fineness of the classification. 

A dynami c mode 1. 

This is one way in which the model generates multiple solutions. 

Alternative solutions can be viewed as alternative realities: they can also 

be seen as competing realities, in the sense that the preferred solutions 

will be those which optimally structure the data in respect of the purposes 

of the classification. This is one form of dynamism. A related form of 

dynamism is a consequence of the range of clustering methods available. 

There are many different similarity coefficients, and clustering algorithms, 

which have different mathematical properties. Each elicits a different set 
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of structural properties from the data. By systematically varying the 

mathematical measures applied, a series of different classifications can 

be obtained from the same data. Thus we can converge on an optimal 

structuring of the ,data in terms of the naturalness of the classification. 

To return to the mechanistic metaphor, if the T.L.S. model is a machine 

for generating hypotheses, it is also a servo-mechanism, incorporating, 

as it does, self-evaluation procedures in terms of internal and external 

feedback. On the basis of this feedback, ongoing modifications to the model 

are implemented. External evaluation relies on hearer judgments concerning 

the groupability of speakers on the basis of naive perceptions of overall 

output by speakers. 

Internal evaluation is achieved by comparing the classifications 

obtained under different circumstances: 

e.g. by 

1 • 

2. 

3. 

4. 

5. 

partitioning the data according to level of linguistic analysis; 

masking out (effectively obliterating) different groups of informants; 

using different similarity measures; 

using different clustering algorithms; 

varying the method of extracting cluster diagnostics; 

6. examining different stages of the fusion process for a given 

classification. 

6. has been discussed above (pp.33-34). 

I. We can section off the analyses pertaining to different levels of 

linguistic structure (e.g. segmental phonology, syntax, prosodies), and 

generate independent classifications at these different levels. An analysis 

of the differential distributional patterns of the sample across clusterings 

thus produced will complement and extend Garvey and Dickstein's (1972) study. 

(This paper demonstrates the dependency of sociological correlates of language 

variation on the linguistic level of analysis). These findings will be 

tested over a wider range of variables. {Garvey and Dickstein examined the 

behaviour of only ~ grammatical ccnstruction analysed at the levels of 
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grammatical form, lexical choice and choice of predication type). 

2. We can mask out different groups of speakers. For example, by 

masking NL speakers, we can achieve a finer reticulation of the L speakers in 

the sample. 

3, 4, 5. By varying similarity coefficients, clustering algorithms, 

and the method of extracting cluster diagnostics, we can discover an 

optimal set of mathematical measures. These will a) produce an optimal 

classification, and b) tell us so~thing about the mathematical patterning 

underlying sociolinguistic variation. 

Evaluation of these alternative classifications will take into 

consideration 

a) the stability of clusters (when the classification reaches a 

state of equilibrium, i.e. when additional data does not radically effect 

the cluster patterning, it is reasonable to assume that the classification 

is tending towards an optirr~l representation; 

b) investigator intuition based on knowledge of the sociolinguistic 

makeup of the community. 

A different sense in which the model is dynamic involves the incorporation 

of 'new' variants. As, and when, a variant realisation occurs in the data 

for which no coding category exists, a new coding category can be created 

for that variant, and incorporated into the coding frame by an additive 

process. Brennan (I 972 p. 31) refers to this procedure as '" sequential ' 

f . b " development 0 attrl ute sets. 

Several new linguistic variants have, in fact, been identified during 

analysis of the tape recordings. (Two examplesare given in ch.4). 

The inclusion of these 'new' variants caused some (trivial) computational 

problems, which are deal with in ch. 4. 

~~en optimal social, and linguistic cla~sifications of the sample are 

obtained, and the correspondences between the two are determined, Pellowe 

et a1 (1972) claim that the process whereby hearers derive X-linguistic 
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information (i.e. information extraneous to the overt message content) 

from speech will be modelled. Hearers draw many kinds of inferences from 

linguistic input concerning, for instance, the speaker's geographical 

origins, social class and/o~ social class ~egiances, personality, attitude 

to the situation of the utterance, etc. 

The hearer is likely to be more aware of features which differ 

greatly from his own realisation norms, and frame his perceptions in terms 

of 'distance' from himself. He may perceive speaker (a) as more different 

(further away) from himself, than speaker (b). 

FN 
Hence the utility of the spatial metaphor incorporated into the model , 

which accounts for differences between speakers in terms of distance and 

orientation. 

FN. And the appropriateness of the Euclidean distance metric - see ch. 4 
p.94 for an account of this distance coefficient. 

The mapping function from linguistic to social space provides an analytic 

analogue to the process of derivation of X-linguistic information by hearers. 

Coding of linguistic variables. 

There are problems in formulating a framework to represent grammatical 

variation: this is an area of linguistic variability which is less well 

developed in the T.L.S. coding frame at present. 

Lexical variability presents problems too: in order to ensure comparability 

between informants, it is essential that all variables have a good chance of 

being elicited during the interview. rn Unless word lists or reading passages 

are included in the interview regime, the lexical content of the interview 

cannot be controlled, and therefore we cannot be certain that all lexical 

items of interest will occur in all interviews. Lexical variables included, 

then, are few in number, and frequent in occurrence in interactive situations, 

e.g. 'yes'. 
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FN. The T.L.S. interviews are as informal as possible: the use of reading 
passages and word lists might introduce constraints on informants' 
speech behaviour according to global parameters (context, formality, 
register) which are not of central interest here. 

The area of lexical variability, then is underepresented in the T.L.S. 

coding frame. 

The T.L.S. coding frame. 

1. The Linguistic coding frame. 

A full account of the linguistic variables is given in Pellowe, 

Nixon & McNeany (197~. As originally defined, the variables fall under the 

following 9 categories: (Pellowe et a1: 197~ p.21). 

"(a) paralinguistic & prosodic (sensu Crystal & Quirk 1964) 

(b) vowel stressed 

- environment /Vr/ 

weak forms of stressed syllables 

forms always unstressed 

(c) consonant 

(d) miscellaneous properties of syllable and word in 
continuous speech 

(e) grammatical complexity 

(f) fluency (hesitation phenomena etc.) 

(g) localised lexis (recognition & usage) 

(h) localised syntax (acceptability & usage) 

(i) lexical 'resource' 

. . 58 

68 

22 

8 

7 

45 

33 

36 

9 

2 

14 

1" • 

(b), (c) and (d) are hierarchical qualitative multistate variables. The others 

are quantitative variables. 

An example of a quantitative variable (Pellowe, Nixon & McNeany: 1972\ 

p.21), is: 

"% tone units wholly or partially marked by the paralinguistic feature 

of huskiness (Crystal & Quirk 1964; Crystal 1969)" 
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The nature of hierarchical qualitative multistate variables is explained 

below, under segmental phonological variables. 

Segmental phonological variables. 

The segmental phonological variables (categories (b) and (c) ) are 

arranged as 3, or 2, level hierarchies. These hierarchies require some 

explanation. 

The superordinate level is the overall unit (OU) , defined as "an 

abstract phonological symbol which encapsulates the complete lexical set 

in which it occurs." (Pellowe, Nixon & McNeany: 197J3, p.2). 

That is, there is a lexical set subsumed, for exaffiple, by the 

phonological entity i:, (week, treat, seed, eel ••• ), and another by the 

phonological entity eI, (pay, raid, del~, make ••• ). 

All members of the lexical set subsumed by i:, then, will have the 

realisation of the seg~ent 'i:' coded under OU i:, whatever phonetic form 

that realisation takes. The form that the realisation takes is coded according 

to the subordinate levels of coding structure. These are the PDV 

(putative diasystemic variant) and the state levels. 

A state is a "symbol representing a phonetic realisation which is 

audi torily discriminable from all other state;." "and a PDV is defined 

as "a class of states which is sociolinguistically discriminable as a class 

from all other such classes ••• within a particular overall unit" (Pellowe, 

Nixon & McNeany, (]97~, p.2). 

Fig. 2 shows the organisation of OU i: in terms of PDVs and states. 

By this scheme, the vowel in 'treat', for example, will always be 

coded under OU i: regardless of its particular phonetic realisation. If 

that vowel is realised as I5.] ,(ltr £. t/ is a fairly common localised 

realisation for this lexeme), the vowel will be coded under the third PDV 

of this OU, PDV/E/, and the second state of that PDV, state (gl 
The OU is set up "to normalise the distribution of systemic variants 
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without characterising them (in the VSpFN) as 'deviants' from centrality .•• 

Regardless of what variant value a segment in a word (or syllable) carries, 

we know t~ lexical set membership of the word as a word, 'in terms of the set 

of OUs. It is important to stress that the OU is a categorial label whose 

function is to ensure an undistorted comparability: it contributes no values 

to the calssification." (Pellowe et al: 1972, pp.23f.) 

FN. VSp = Variety Space. 

Fig. 3 shows an example of a consonantal OU, r. This au does not 

have the PDV level: all variants are coded at state level only. This is 

true of some of the consonantal OUs. au i: is an example of a 3-level coding 

structure, au r is.an example of a 2-level coding structure. 

Appendix (A) gives a full specification of the 51 OUs, with their 

subordinate PDVs and states (derived from Pellowe, Nixon & McNeany: 197~. 

Category (b) variables cover the following OUs: 
i : I t, -ae. a '1? ::> : A. -u-- u e:r 

Cl:r a-o- 3 I~ 

and four types of the reduced vowel schwa (in different phonetic environments -

see Pellowe, Nixon and McNeany: 1972, p.18ff), and two types of a reduced 

form of the vowel I. 

Category (c) variables (consonants) are coded under an au scheme, but 

the PDV level is not always applicable. ~ben it is, it is differently 

defined than for vowels. 

Category (c) covers the following OUs: 

p b t d k g s z f 3 h m n 'J 1 

r j w, also realisations of ~ in bound morphemes (-ing). au's 

p, b, t, d, k and g have, at PDV level, the distinctions syllable initial/ 

medial/final. (See Appendix (A) ). 

Each speech segment elicited in the interviews is coded according to 

the OU/PDV/state scheme. Numeric codes are used, each PDV is designated by 
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Fig. 3 

A consonantal OU, (with no PDV level of structure.) 
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a 4-digit code, (PDV codes are even-numbered from 0002 upwards) and the state 

with which the segment is realised is designated by a fifth digit. Thus 

all instances from the lexical set subsumed by i: (the first OU), which are 

(realised by the state i (the first state of the first PDV of OU i:) are 

coded 0002]. (See firs t page of Appendix (A).) 

Co-occurence phenomena. 

Category (a), prosodic data (intonation and pitch range features) are 

coded by 3-p1ace alphabetic codes. The first character represents the tone 

type, the third represents the pitch range feature, and the second 

represents the grammatical form clas·s on which the tone and pi tch range 

feature fall. (Zero can be coded for each of these 3 classes of feature). 

This data is known as the 3-alpha data. Any combination of features from 

these three systems can be recovered (e.g. falling tone, preceded by booster, 

on COllUDon noun). (See Pellowe and Jones: ]978). 

Other linguistic variables. 

Categories (d) through (i) are coded by 2-place alphabetic codes. 

These variables are not dealt with here. (See Pel lowe, Nixon & McNeany: 

1972~ for a full description of these variables). 

Fig. 4 illustrates the structure of the T.L.S. coding frame. Each 

informant's sociolinguistic profile can be thought of as his scores across 

all variables as depicted in this structure. The 2-alpha data is a list of 

values: the 3-alpha data consists of a 3-way co-occurrence table, and the 

segmental phonological data is structured according to the OU hierarchy. 

In addition, the social profile of the informants is coded according to the 

social coding frame. This coding frame is now described. 
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The social coding frame. 

Appendix (B) shows the social coding sheets, which are in the form of 

a mUltiple choice questionnaire. There are 38 sections (questions). The 

coding categories shown constitute a definition of the dimensions of the 

social space (SocSp). 

These sheets constitute a guide for elicitation of sociological inform-

ation in the interviews. The interviews are informal: an atmosphere of 

free conversation is encouraged, but the interviewer keeps the questions on 

the coding sheets in mind, and attempts to cover them all during the inter-

view. So a "formal ques tionnaire" (in the sense used by Oppenheim (1966» 

is not administered. 

The components of the SocSp, i.e. the coding slots' provided for 

informants' responses to the 38 questions, representing a range of 

social features Which, taken together, furnish a detailed social profile 

of informants. From these social profiles, we can determine which social 

factors, and groups of factors, display some regularity with respect to 

the way the sample is dispersed across linguistic space. (I.e. which social 

features are sociolinguistically salient). 

Scores across these parameters are used as the basis for a clustering 

of informants in the SocSp. The social groupings thus derived are compared 

with the linguistic variety clusters. (See below, chs. 6, 7). 

The areas covered by the questions on the social coding sheets are 

as follows: 

Questions (Qs) 1-5: regional background and geographical mobility 

(of informant, and informant's parents); 

Qs 6-7: age, and sex of informant; 

Qs 8-14: education; 

Q. 15: marital status; 

Q. 16: religion; 
, 

Qs 17-20: characteristics of informant'snuclear family; 

Qs 23-24: the physical environment (the home); 
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Qs 21-22, 25-27: informant's attitude to the micro- and macro­

environments (local community/the region); 

Qs 28-32: occupational status (of informant, and informant's 

father), also job preferences, job satisfaction; 

Qs 33-36: leisure activities, also degree of leisure satisfaction; 

Qs 37-38: political allegiance. 

There are two kinds of information here: a) analytic, and b) attitudinal. 

a) Analytic information is either quantitative. e.g. age, or size 

of nuclear family, or qualitative, e.g. sex, or marital status. 

b) Attitudinal data is coded either by an ordered rating scale 

(quasi-quantitative), or is qualitative. An example of an ordered rating 

scale is found in Q35, 'leisure satisfaction', where there is an ordinal 

reLtionship between the coding categories: 

satisfied/partially satisfied/disgruntled. 

QIO, however, 'attitude to education', has response categories which are 

qualitatively different, and bear no ordinal relationship to one another: 

negative/basic skills (RRR)/liberal/job oriented/job oriented and 

liberal. 

This variable is treated as a qualitative multistate variable. 

Chapter 4 describes the categories on the social coding sheets in 

greater detail, and indicates the way in which this coding frame was applied 

to the sub-sample of 52 Tyneside informants dealt with here. 



CHAPTER 3 
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SOME NEW PROBLEMS RAISED 

In the previous chapter I described the T.L.S. model. The design of 

this model reflects a rejection of some of the assumptions made in previous 

sociolinguistic studies, and represents an attempt to overcome some of the 

problems outlined in ch. 1. 

The T.L.S. approach has, however, generated a new set of problems in 

sociolinguistic research, which are of theoretical and practical interest. 

The chapter deals with several kinds of problems which have arisen. 

They are concerned with: 

a) the possibility of full implementation of (specifically) the T.L.S 

model; 

b) general problems associated with linguistic analysis; 

c) general problems associated with classificatory procedures. 

It is demonstrated here that firstly, given the way in which the 

T.L.S. coding frame was applied to the data, and also for reasons under b) 

above, it is not possible to entirely fulfil all of the original objectives 

of the T.L.S. as set out by Pellowe et al (1972, pp.lf). Secondly, it is 

shown that ad hoc decisions still have to be taken at various stages of the 

process, and, thirdly, that the use· of multivariate analysis created its 

own problems, and introduces new sources of bias. The specifically 

computational problems which have arisen are dealt with below (ch. 4). 
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I have said that the T.L.S. aims to generate a classification of the 

Tyneside speech community which satisfies the empirical objectives of 

exhaustive representation of linguistic varieties, repeatability, and 

statistical adequacy. For a comprehensive picture of the mathematical 

characteristics of linguistic and social variability to be built up, the 

speech of a representative sample of the population must be plotted along 

all relevant dimensions of variation. Statistical techniques, and the 

capacity of the electronic computer to process large bodies of data provide 

the linguist with opportunities to attack problems of this magnitude and 

complexity. Thus a classification of 200 informants on the basis of 690 

linguistic, and 38 social variables is feasible. However, multivariate 

techniques applied to this kind of data pose methodological problems of a 

different order to those faced in traditional dialectological surveys, or 

the statistically simpler Labovian sociolinguistic classifications, which 

deal with variables singly at the analytical stage. Some, but not all, 

of these problems have been encountered in other disciplines, e.g. by 

biologists using multivariate analysis techniques to generate taxonomies 

of animal species. 

In general, the reliability and usefulness of a classification depends 

on: 

1. inclusion of as many variables relevant to the classification as 

possible, (absence of relevant variables effectively attributes zero weight 

to them, thereby skewing the results); 

2. exclusion of irrelevant variables, (whose presence would artificially 

depress, or inflate, similarity between individuals); 

3. exclusion of logically dependent variables, (their inclusion would 

boost similarity levels); 

4. differential weighting of variables, where appropriate (i.e. 

according to their relative importance in assigning individuals to classes). 

Given only these general constraints (there are others too), to ~~at 



extent can the objective of an exhaustive and unbiassed classification be 

realised in practical terms? 

Clearly,ad hoc decisions must be taken by the investigator at an 

early stage concerning which of all the possible variables are relevant to 

the purposes of the classification, which variables are logically inte~ 

dependent, and which variables, if any, are to be given a more significant 

role in assigning entities to classes. So the investigator must, by 

observation, try to discover all the features which have variant realisations 

across the sample under study, (i.e. determine which features are variable). 

He must then attempt to isolate, and exclude, any variables which are 

logically dependent on other variables. He must then evolve a system of 

scoring for each variable. Similarity between individuals will be derived 

from a function of comparative scores over all these features. 

The first problem, then, concerns the selection of variables. This is 

limited by the extent of the investigator's knowledge derived from 

observation of the entities under study. In biological taxonomy, for instance, 

certain facts will be known about the anatomical structure of specimens, and 

some of the characteristics of their biochemical and neurophysiological 

processes, and these may all be incorporated. However, there is always the 

possibility that new facts will come to light in future studies, and perhaps 

a completely new level at which to study the subject, just as the discovery 

of the atom opened up a whole new perspective from which to view the 

physical world. The range of potentially discoverable facts, and levels at 

which analysis can occur, is open-ended for social and linguistic character­

istics, and no survey can claim to finally exhaust all possible analytical 

distinctions and perspectives. So any classification will reflect, and be 

a projection of, the extent of current knowledge in the field of study. 

Out of the data currently available, the investigator will select only 

those variables which he considers relevant to his classification. For 

example, a classification of psychological disorders amongst middle aged 
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men may not take into account eye colour or father's birth place as relevant 

variables. In the case of such specialised classifications, with a 

restricted utility, (i.e. the range of questions which the investigator 

wishes to pose is limited), grounds for exclusion of certain variables are 

often fairly obvious. However, in a more general classification, where it is 

desirable that the data base should be capable of interrogation in many 

different ways, and the type of covariances or correlations to be sought cannot 

be predicted in advance, then as many variables as possible should be 

included, as each is potentially relevant to some question of distribution 

or co-occurrence. As Everitt (1974, p.48) points out, 
-. 

"the initial choice of variables is itself a categorisation of the 

data which has no mathematical or statistical guidelines, and which reflects 

the investigator's judgement of relevance for the purpose of the classif-

ication. (This of course could also be said of the entities chosen for 

study)." 

With a general classification in mind, the T.L.S. investigators consider 

all discriminable linguistic variables as potentially relevant, and aim to 

be as exhaustive as possible in the selection of variables in order to 

minimise the possibility of an a priori categorisation of the data. 

Nevertheless, there are practical constraints on the range of variables 

included. Firstly, variables must have a high probability of occurring, or 

being encouraged to occur (elicitation) in an interview. Non-incidence of a 

variable in one interview precludes comparisons between that informant and 

every other informant with respect to that criterion. Thus, for each variable 

which is not elicited in an interview, the VSp is effectively reduced by 

one dimension for that individual. If many variables with a low probability 

of elicitation were included, the VSp, and mutual similarity indices between 

pairs of individuals, hence their locations in the space, would be grossly 

distorted. So certain lexical items, for example, though intuitively known 

to be characteristic features of the speech of some Tynesiders, are not 
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included as they or their alternants are not likely to be produced by all, 

or nearly all, informants in an interview. Thus lexical variables are 

underrepresented in the model, as compared to phonological ones, which 

have a greater probability of occurrence. This of course means that the 

clusters generated will be determined largely by phonological variables as 

these are more numerous than syntactic and lexical variables. It has 

been demonstrated, (Garvey & Dickstein: 1972) that linguistic features co­

vary with social criteria differently, depending on the level at which 

analysis is implemented: in view of this, the disproportion between the 

number of variables included at the different levels of analysis, (phonolo­

gical, grammatical, lexical) may not only make the classification more remote 

from the hearer's scheme of sociolinguistic variation, but also skew it 

towards the behaviour of phonological features at the expense of the other 

levels of variability. 

As I have remarked above, variables must initially be identified by 

observation of speech. This raises a special problem for linguistic 

classifications. The analysts are themselves hearers and speakers, and as 

such their perceptions of realisations of different features will be 

variably skewed, relative to their own place in the VSp. Each analyst 

will discriminate a slightly different sub-set of the total set of (in 

theory) discriminable variables. Pellowe et a1 (1972, p.19f) acknowledge 

this, but express their expectation that as more analysts joint the team, 

their diverse linguistic backgrounds and perceptions will result in the 

recognition and inclusion of more variables: hence the number of excluded 

variables will tend to decrease. This is described as a progressive reduction 

of distortion in the VSp: 

"as the number of investigators increases we find that an increasing 

number of topological deformations is contributed. However, because of the 

different types and directions of deformation, we find that conflation of 

different selections of criteria tends to a regular (i.e. undeformed) VSp " 
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(Pellowe et al: 1972, p.20). 

As far as exhaustiveness of criteria is concerned, obviously the number 

of possibly relevant criteria included will tend to increase. In this way, 

the VSp itself will be filled out with added dimensions, and will therefore 

be less distorted by omissions. But, although the model is described as 

dynamic in the sense that 'new' variables can be incorporated as they are 

discovered during the process of analysis, (and this is the stage at which 

'new' variables are likely to be discovered)the addition of new variables 

whilst analysis is ongoing means that, although the space is improved, 

informants already analysed have not been coded on the new criteria, and 

are therefore treated as NC (non-comparable) on these variables. (I.e. 

in effect, they score zero on these features). 

The fact that a variable has not been observed before does not necessarily 

mean that it has not occurred in the data already examined, only that it 

has not been perceived by an analyst before. So an NC score on new criteria 

for informants alrea4y analysed may in some cases be erroneous. Once a 

variable has been established and incorporated into the coding frame, 

instances are more likely to be perceived in subsequent analysis. It is 

a well attested fact that sensory perception is channelled according to the 

constructs which exist for the perceiver. The existence of terminological 

labels aids perceptual discriminations. For instance, a knowledge of the 

terminology of wine tasting not only provides a descriptive vocabulary, but 

a set of reference points from which finer distinctions can be perceived. 

Therefore, as analysis proceeds, and new variables are accumulated, informants 

may be coded to a greater degree of fineness. 

S~ although the VSp itself is progressively improved, its contents 

are retrogressively distorted. 

It would be possible, if very time consuming, to reanalyse all the 

data a second time, incorporating the new variables, (although it would 

be impossible to say finally that no more criteria could be discovered). 
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This would optimise both the VSp, and the scatter of informants through it. 

Alternatively the new variables could be added as they crop up during 

analysis, and their effect on the composition of clusters could be determined 

by computing the similarity matrix and implementing the clustering program 

twice, masking the added variables on the second run. If the two sets of 

results differed only negligibly, then the added variables could be 

discounted as significant discriminators of sociolinguistic sub-groups. 

As far as the dimensions of the space are concerned, then, the addition 

of new analysts will, as Pellowe et al. claim, reduce 'topological deformation.' 

However, this is not the case at the stage of analysing and coding informants 

according to these dimensions. Here analysts' perceptual differences will 

still operate despite the existence of an improved VSp. There is evidence 

to suggest that analysts will hear, and therefore code, realisations 

differently. As Ringaard (1965) unhappily notes: 

"We must come to the sad conclusion that the transcriptions of 

phoneticians do not tell us so much about the speech of the area they are 

studying as about the phoneticians themselves." 

Ladefoged (1960) has demonstrated the difficulty of establishing 

. a standardised phonetic system whereby different analysts can be certain of 

reaching a reasonable degree of agreement in transcribing the same stretch 

of taped speech, and warns us that 

" a phonetic statement can be considered to be ad~quate only if it 

has the same meaning for all who use it." Similarly, the coding of phonetic 

criteria is only of use insofar as all analysts agree closely in their 

perceptions and coding habits, which is unlikely. The problem extends to 

prosodic criteria also: analyses of level tone, for example, vary significantly 

with the tone patterns of the analyst. Even syntactic analysis is influenced 

by the analyst's own norms. (E.g. complementizing quantifiers and post 

modifiers are coded differently by analysts who themselve use non-standard 

forms of these features.) 
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So if we accept that the coding of informants will be biassed according 

to which investigator analyses which informants' data, then each analyst's 

section of the VSp will be distorted in a different direction and to a 

different degree. The notion that a multiplicity of personal deformations 

. will have a mutually compensatory effect in this sense is a little 

unrealistic. 

However, with several sources of bias, these can be quantified with 

respect to each other in a way that is not possible if only one analyst is 

concerned. The contributions of different analysts can be masked out in 

turn, and the clusters recomputed, or different analysts can cvde the same 
. 

sub-set of data (duplication), and the effects of analyst bias can be 

calibrated. It will then be possible not only to measure the degree of 

deformation attributable to each analyst, but also, the linguistic features 

which are relatively more susceptible to differential distortion by analysts 

can be identified. 

Once the variables have been selected, it then remains to work out a 

system of coding the variant forms of each. (For a description of the 

coding of variables see chapters 2, 4 and appendix x). It will be seen 

that in the OU scheme, ~he number of states (variant realisations), of P.D.V.s 

varies between one and eleven. The probability of occurrence, then, of any 

one state differs greatly from one P.D.V. to another. This means that the 

occurrence of one state is automatically weighted by the range of 

possibilities within its superordinate unit (its PDV). Is this a source of 

bias? Providing the variables are real and natural, (i.e. not artificially 

structured by the coding frame) and the paradigm of states associated with 

each PDV genuinely reflects the range and number of discriminable realisations 

of that segment, then this may be a reasonable source of inherent weighting 

of variables. 

One shortcoming of the T.l.S. coding frame is that only certain kinds 

of co-occurrences can be automatically retrieved (viz. those features coded 
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in the 3-alpha data). Features analysed at one level (e.g. segmentals) 

cannot be related to those operating simultaneously at another level (e.g. 

lexis);so, for example, it is impossible to discover the lexical item in 

which a certain segment appears, or to identify, in every case, the 

syntactic function, or sentence position of a word carrying a certain tone. 

This kind of information is crucial, as the different levels interact 

hierarchically and simultaneously in a speech situation, and it is the combined 

effect of context and intra-systemic contrasts (e.g. changes in pitch range 

relative to immediately preceding pitch patterns) that endow features of 

these systems with signification. For instance, the abstraction of a total 

of rising tones from a stretch of utterance tells us something, but 

additional information about e.g. sentence position of tones would be 

useful. Rising tone in final position in many varieties of English indicates 

the interrogative mood, but on Tyneside this is often found to be a feature 

of indicative clauses. We know that this particular interaction between 

features of different linguistic systems (intonation/syntax) is a marked 

localised characteristic, but there are many cases where a nested coding 

system pernUtting complete retrievability would facilitate the discovery 

of hitherto unnot~ced co-occurrences between systems. In this respect 

the T.L.S. model oversimplifies the hearer's competence in simultaneously 

perceiving and interpreting bundles of features operating at different levels. 

Non-retrievability of context is a particularly serious handicap with 

prosodics because they operate at word and syllable level, ( e.g. tonicity) 

and clause level (tonality etc.) and they affect the meaning of whole 

utterances as well as the lexical item carrying them. And neither lexical 

nor whole utterance context is retrievable from machine store, so the 

semantic function of prosodics cannot be deduced except by manual means 

i.e. going back to the raw data and checking through for the locations of 

particular features. This obviously defeats one of the objects of a mechanised 

information store, and precludes some of the possibilities for recognising 
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new interactions between elements of different linguistic systems. 

In the initial survey design stage, certain a priori decisions must 

be taken, concerning relevance of variables to the classification, concerning 

relative probabilities of elicitation, and concerning the degree of finene~s 

to which variables should be coded. All these decisions will affect central 

statistical parameters, and hence will have a deterministic effect on the 

structuring of the data. The best that can be hoped is that these decisions 

will be taken in such a way as to minimise bias. 

Once the coding frame is worked out, there are still more decisions to 

be taken which will affect the classification. The investigator must select 

from all the statistical techniques available those he considers most 

appropriate for producing the kind of classification he desires. At each 

stage of the statistical and computational processes there are several 

options open, each of which treats the data differently, and will elicit 

a different structure from the data. There may be clear criteria for 

assigning more weight to certain variables, (i.e. assignation of individuals 

to classes is to rely more heavily on some features than others). Such 

a weighting scheme can be easily incorporated into the computation of similarity 

coefficients, but this reflects either a) an assumption that those features 

will discriminate existing groups more efficiently, or b) that it is the 

investigator's intention to base the arrangement of the data with respect 

to those features especially. 

There are no such reasons for assigning differential weights to criteria 

on the T.L.S., firstly because it is not known in advance which features 

will turn out to be diagnostic of linguistic and social clusters, and secondly 

because the desired classification is to be a general one. So, all variables 

are treated as homologous, and carry equal weight in the calculation of 

similarity between pairs of individuals. A problem arises with negative 

matches - shared absence of a feature must be significant, but perhaps not 

as significant as shared presence of features, and a decision to assign half 
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FN. Or, negative matches may be excluded altogether. See below (ch.4 ) 
for a description of a similarity coefficient which excludes the effects 
of negative matches. 

Such a weighting is of course not known to accurately reflect (numerically) 

the degree of significance which hearers attach to this kind of negative 

similarity, nor can it be known in advance whether the contribution made 

by negative matches to the similarity matrix will be a helpful one in 

generating clusters which represent real groups of related varieties across 

the population. But this is an instance of the sort of arbitrary mathe-

matical strictures which classificatory techniques must impose on the data. 

With a sociolinguistic survey, it is impossible to devise, a priori, 

a system of weighting for variables: even in biological taxonomy, where the 

degree of phenetic relationship between specimens can be estimated by 

observation with reference to already existent taxouomic schemes, it is not 

advisable to adopt a system of a priori weighting (Sneath: 1957). Sneath 

recommends a posteriori weighting if "certain characters~ have a proven 

discriminatory function for desired groupings." ~~en variety clusters, and 

their diagnostic features have been established it may then be possible to 

apply a differential weighting system to data collected (or reprocessed) 

subsequently on the strength of this. 

FN. 'character' in biological taxonomy is the equivalent term to 'criterion' 
on the T.L.S. 

Sneath discusses hypermultivariate and oligo-variate strategies, (the 

latter being multivariate, but with only a few variates) and points out that 

a reduction in the number of characters increases the effects of sampling 

error. Moreover, oligo-variate techniques are only powerful enough to 

discriminate between already established groups. Hence the need for inclusion 

of as many variables as possible in the Survey. However, Sneath considers 
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it essential that individuals missing any of the quantitative variables, 

(and all linguistic variables on the T.L.S. are treated as 

quantitative at the analysis stage as comparisons between individuals' 

profiles are made on the basis of continuous numeric quantities) should be 

eliminated from the classification. If this was done, probably all informants 

would be eliminated, or if not all, the elimination of some would disrupt 

the randomness of the sample. So although it is statistically important 

to include as many variables as possible, it is also essential (according 

to Sneath) to ensure that all criteria, (not~, as. claimed by the T.L.S. 

researchers) are going to appear in the speech sample of every informant, if 

Sneath's argument applies to sociolinguistic data. 

The next problem is the choice of the most appropriate measure of 

resemblance between individuals according to their scores across all criteria. 

Here again there are many different statistics available each of which 

represents the data in a different way, and the one which produces the 

optimal representation with respect to the type of data and the required 

classification must be sought. The most appropriate measure to use on the 

T.L.S. project is not immediately obvious. Using, for instance, Euclidean 

~istance measures, different clustering algorithms produce different results 

depending on whether the data is ~ or standardised FN (Everitt: 1974, p.48). 

FN. Scores on states, for example, could be standardised to zero mean, and 
unit variance. This means that the sample mean score on that state 
would be expressed as zero, and the range of scores across the sample 
would range from -1 to +1. 

Everitt also points out that if raw data is used, the clustering patterns 

which emerge are dependent on the scaling of the parameters. (E.g. 

radically different results would be obtained if, e.g. height was expressed 

in inches, instead of feet). This is not a problem for the T.L.S., as 

social data is coded in binary not quantitative form, and linguistic 

parameters are mutually comparable. (I.e. the scaling problem does not apply 
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to linguistic variables, as all variants are scored according to their 

relative frequency of usage, and scales of measurement are not mixed. FN ) 

FN. Problems of mixed scaling would occur, e.g. in biological taxonomy, 
where one variable might represent weight of specimen, and another, 
length of specimen. Here, measurements are made with different kinds 
of units. 

Even if there is no scaling problem, however, different coefficients 

still impose their own constraints on the data. Even if a variable 

weighting scheme is not adopted, many similarity coefficients do not 

even preserve the original equal weighting of variables. As Burnaby (1966) 

remarks: 

"the consequence of choosing one or other of a plethora of similarity 

indices is in many cases equivalent to the adoption of different schemes 

of variable weighting, and so the concept of 'equal weighting' is not as 

simple as it seems at first sight." 

He points out furthermore that variables not included in the analysis 

are effectively assigned zero weight, which is a persuasive argument for 

exhaustive sampling of variables. 

Cormack ( 1971 ) demonstrates that different coefficients yield 

widely differing results for the same set of data, and, the more damaging 

fact that the values for all paired comparisons over the different coefficients 

are not jointly monotonic, i.e. the ranking of individuals according to 

degree of association varies between coefficients, as well as the values 

of the association coefficients. This may be explained as the creation of 

different data sets according to which coefficient is selected, however 

it emphasises the critical nature of the decision to use a certain similarity 

or distance measure. 

According to Everitt (1974), the choice of similarity index must rely 

on investigator intuition. He says of distance measures: 

"In brief, the choice of the correct distance measure to use would 
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be much simpler if we had prior knowledge of the structure of the data ••• " 

That is, some measures will come closer to eliciting the real structure of the 

data in question than others. But this is circular, for it is the 

classification techniques which organise the data into a structure which is 

more, or less, relevant to the purposes to which the data configuration is to 

be put. The naturalness of a classification, providing the sampling 

procedures are valid, is relative to the purposes of the investigator; it is 

doubtful whether absolute objectivity in a classification, (c.f. Labov's 

(1972, p.98) 'first and right' principle) is realistic, or attainable. 

The optimal similarity measure (or measures) must be found by trial 

and error, which will involve the investigator in comparing the results 

produced by using a number of different measures, and taking a decision as 

to which yields the best results. 

There are also many kinds of clustering techniques available, each of 

which predisposes the data in a certain way. It is possible to rearrange 

clusters using optimisation techniques, but these require a great deal of 

computer time, and "are probably not suitable to use with very large data 

sets" (Everitt: 1974, p.64). According to Everitt, clustering techniques 

are useful for da~a reduction or dissection, but if the search is for real, 

discrete sub-types, there is a danger of getting spurious solutions as most 

are biassed towards producing spherical clusters. If the variety clusters 

within the Tyneside community do not naturally resolve themselves into the 

kind of patterns discovered by certain clustering methods, then the application 

of such techniques must result in distortion of the data and considerable 

loss of information. And there is no reason for assuming that the variation 

in Tyneside speech groups will be reasonably accurately characterised by 

well-defined clusters: it may be a variably dense, but non-divisible 

continuum which would nevertheless be forced into a cluster pattern by the 

techniques applied to it. Some index of naturalness based on other criteria 

than the properties of the clusters needs to be devised, by which the results 
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of different clustering techniques can be assessed. One possibility 

is 'cross-validation' by hearer judgments. 

Wishart (1969) has demonstrated that, of agglomerative techniques, 

single linkage is very sensitive to 'noise points', i.e. outlying individuals 

interfere with the clusters they are close to. Everitt suggests the detection 

and obliteration of these 'outriders', but this would be unsatisfactory on 

the T.L.S. Firstly, many of the informants are likely to be outriders, and 

their removal would disrupt the balance of the sample, secondly, outriders' 

speech is of interest to the survey. 

Even amongst classification experts there is a great diversity of 

opinion concerning the relative merits of various clustering algorithms. 

Lance and Williams (1967) declare that nearest neighbour sorting (single 

linkage) should be 'regarded as obsolete' whilst Sibson and Jardine regard 

single linkage as 'the only agglomerative technique to be recommended.' 

(See ch.4, pp.94ff.) 

Once again the only solution is to try several techniques and compare 

their results. 

The other way of assessing the relative merits of the different 

similarity measures and clustering techniques is by the external evaluation 

procedures mentioned in Pellowe et al. 1972, namely by hearer judgement 

tests. However, hearer judgement tests are notoriously difficult to design 

and apply, and results are often erratic and difficult to interpret, and 

it would appear that, for this sort of test to be useful some sort of training 

of hearers would be requisite. 

The question still remains, how natural will such a classification be, 

given the new sources of bias introduced by classification techniques and 

those introduced at certain stages of the analysis and computation? And 

how far can the precepts of exhaustiveness and inclusiveness of variables 

be sacrificed to 'the exigencies of definition and computation' before all 

hope of achieving a natural classification is lost? 
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These questions may only be answered by inspection of the results 

of processing the data. 



CHAPTER 4 
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PROGRAMMING AND DATA PROCESSING 

This chapter describes the computational processes applied to a 

sub-set of the T.L.S. data. This sub-set consists of: 

a) The segmental phonological data of 52 informants; 

b) The social data ( for the same 52 informants). 

The programming language used is PL/I FN , (Programming Language I, 

originally to be called N.P.L. - New Programming Language.) 

FN. The PL/I compiler supported at NUMAC is the F-level compiler. 

All programs referred to, with the exception of the CLUSTAN suite, 

were written by the author, and implemented at ~~Ct (Northumbrian 

Universities' Multiple Access Computer,) under the MTS, (Michigan Terminal 

System) operating system. 

The sequence of processes which are applied to the segmental phonological 

data which is analysed here is given in flow chart form in Fig.5. 
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(a) Linguistic data - processing of. 

The programs described below (pp. 79ff. ) were designed to transform 

the raw data into a form suitable for input to CLUSTAN, the cluster analysis 

program package used. 

Before these programs are described, I will give a brief account of 

the rationale behind the choice of PL/J as a programming language suitable 

for processing the T.L.S. data, structured as it is. (See above, p.37ff. and 

Appxs. A and B). 

The choice of programming language. 

PL/J is a sophisticated high level programming language, embodying 

powerful techniques for the manipulation of data collection. Of all the 

programming languages available, PL/J was selected in the light of three 

principle considerations. 

Firstly, PL/J is particularly suited to linguistic data processing, 

having sophisticated string handling facilities. (See below, p.7J ). 

Secondly, PL/I has powerful array (matrix) manipulation features. 

Thirdly, there is a facility in PL/I known as the 'structure' facility, 

which provides ways of storing and manipulating collections of data (data 

aggregates) which are more flexible than those provided by array storage. 

(The following discussion draws on Roper: 1973) 

In order to contrast the use of arrays and structures in PL/J, it is 

necessary to give a brief account of the specifications for PL/J variables. 

PL/ J provides for the following kinds of variables: 

i) ari thme ti c 

ii) character string 

iii) bit string (!inary digit) 

iv) label 

i) Arithmetic variables. 

The data st0red in an arithmetic variable has four basic attributes: 

scale, base, mode and precision. 

"The scale of an arithmetic data item is either fixed-point or floating-
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point. In fixed-point data the position of the decimal or binary point 

is specified, e.g. 1.234. In floating-point data a fixed point number is 

followed by an exponent which specifies the true position of the point relative 

to the position in which it appears, e.g. ].234E4 is equivalent to 12340.0. 

"The base of an arithmetic data item is either decimal or binary ••• " 

" ••• mode ••• is either real or complex ••• " 

"precision ••• is the number of digits (either binary or decimal) a 

fixed point data item may contain or the number of significant digits 

(excluding the exponent) in a floating-point data item" (Roper: ]973, 

section 3.2). 

ii) Character string variables. 

A character string is a connected sequence of characters consisting 

of alphabetic, numeric or 'special' characters, (e.g. quotes, stops, commas, 

do llar signs.) 

iii) Bit string variables, and iv) Label variables: 

these variable types will not be discussed here. 

Arrays 

Arrays (or matrices) are "'collections' of data (or data aggregates) 

that can be referred to by a single name" (Roper: 1973, section 3.]2). 

Array manipUlation comprises a powerful set of techniques for handling 

collections of data arranged according to one or more dimensions. 

In ptfl, a one-dimensional array is called a 'list'. 

One of the uses of arrays in some of the programs described below 

(pp. 79ff. ) involves setting up a two-dimensional array to hold scores 

across states for a number of informants (or 'cases') (See Fig. 6 ) 

cases 

1 

2 

3 

52 

states ---
I 2 3 •••• 690 

I Fig. 6 
I 

An array. 

. 
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If the array is called 'ARR'. single cells may be accessed by the 

use of subscripts thus: 

ARR (1,1) refers to the score recorded for the first case on the first 

state. The following constraints are imposed by the standard array form: 
• 

firstly, data items stored in an array must be homogeneous in terms of their 

attributes, and, secondly, the array must be symmetrical. 

Homogeneous data items share (in PL/) terminology) the same data type 

(character or arithmetic), and the same scale, base, mode and precision. 

Symmetryof dimensions requires that all rows must have the same number 

of columns, and all columns the same number of rows, (rectangularity). 

PLf) Structures 

Structures in PL/) permit the storage and manipulation of data aggregates, 

but are not subject to the constraints imposed by the array form mentioned 

above (p.66 ). 

PLf) structures are defined thus: 

"A structure is a hierarchical collection of names. At the bottom of 

the hierarchy is a collection of elements, each of which represents either 

a single data item or an array." (Roper: 1973, section 6.2). 

These elements at the bottom of the hierarchy are known as 'terminal 

elements'. Because a structure has a tree form, the constraint of rectangular 

symmetry obviously does not apply. Moreover, mixed attribute data may be 

stored in a structure. 

Very complex forms can be constructed: structures may contain substructures 

consisting of arrays, or arrays of structures, related at different levels. 

For instance, in an automated library cataloguing system, the catalogue 

entry for each document may include information such as author's name, title, 

accession number, Dewey classification number, and possibly a series of 

keywords describing the subject and content of the document. Some of these 

data are of character string type, some are numeric. A structure such as 

that shown in Fig. 7 could hold this information. (K - keyword). 
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Fig. 7. 
An example of a structure used to store information. 

K4 

array holding keywords 

Referring back to Fig. 4 ,(coding frame structure - ch. 2 ) it 

appears that each informant's sociolinguistic profile, as analysed according 

to the T.L.S. coding frame, could be usefully stored in a PL/l structure. 

The cases analysed could be stored in an array of such structures, with one 

structure per case. For reasons explained below (p.J36~, the social data 

is treated as binary (bit) (presence/absence) and the linguistic data as 

floating point decimal. As noted above (p.67 ), data attributes can be 

mixed within a structure. Moreover, the non-symmetry of the segmental 

phonological scheme would present no problems. (It is asymmetrical because 

different OU's have different numbers of PDV's, and PDV~s different 

numbers of states. Also the PDV level does not exist for many of the 

consonantal OU's.) 

Each informant's profile would consist of a multi-level structure, 

formally identical to that shown in Fig.4 (p.44): 

Level - structure name, 'PROFILE' 

Level 2 - would be divided into linguistic, and x-linguistic (social) 
data. 

At level 3 the linguistic data would split into segmental phonological, 2~ and 

)X data. 

The segmental data substructure would consist of a 3-level hierarchy: OUrs 

at level 4, PDV's at level 5, and states at level 6. The last of these levels, 
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(the 'terminal' elements of the structure, (see above, p.67 ) ) would hold 

the actual frequency scores for states. 

The 2-alpha data could be stored in a one-dimensional array (or 'list') 

and the 3-alpha data as a 3-dimensional array, each cell of which represents 

a specific combination of terms from the three linguistic systems, intonation, 

pitch range, and grammatical form class. 

(E.g. PROFILE. LING. 3-ALPHA (2,2,t»would contain the frequency of 

occurrence, in one informant's interview, of the combination: falling tone, 

on cornmon noon, preceeded by booster). 

This plan, however, proved to be impractical. 

Firstly,(a consequence of the history of the development of the coding 

frame), the organisation of codes does not completely reflect the hier-

archical nature of the segmental variables. If it did, the accumulation 

of state scores could be efficiently managed. 

If, for instance, the five digit codes were structured in such a way as 

to reflect the 3 level hierarchy of au's, PDV's, and states, the use of the 

PL/t structure could have been an effective programming tool. 

For instance, the first programming task is to count up all the 

instances of each state type in each informant's raw data file. 

If the first 5-digit code in the file represents the 3rd state of the 

FN 
2nd PDV of the 2nd au, the program must find the corresponding counter 

in the structure, and increment it by one. 

FN. The 'terminal elements' at state level are storage locations to hold 
number of occurrences - i.e •• they can be used to count. 

If, for instance, the codes used consisted of an au field, a PDV field, and 

a state field, thus; 02203 

o~l~ate 
field field field 



70 

then the S-digit code could be segmented into 2, I and 2 characters from 

FN left to right, the 3 resulting values then being used to traverse the 

structure to reach the correct counter. 

FN. 'Traversing' means following a path down through the structure, via 
the appropriate nodes specified. 

'02203' would be segmented into 02 = OU2 

2 = PDV2 of OU2 

03 = state 3 of PDV2 of OU2 

(See Fig. 8 ) 

Fig. 8. 

Traversing a structure holding the segmental data. 

In fact, however, the nDeration of the S-digit codes only reflects the 

hierarchy from PDV level downwards. 

The 6 PDV's of OU1, for instance, are coded 

0002, 0004, 0006, 0008, 0010, 0012, respectively. (The fifth digit, 

as in 0002l, represents the state of the PDV). 

The PDV's in OU2 then carry on with the even numbering, from 0014, onwards. 

Thus, members of a given OU have no unique string associated with 

their codes. (Cf. my post hoc suggestion above (p.69 ) wLlere the first 2 

characters identify the 2£.) 
The hierarchy is reflected from PDV level downwards: all states which 
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are members of the same PDV share their first four digits, the fifth 

designating the particular state of that PDV. 

ego 00021 
2 
3 
4 etc. 

1 states of PDVI of QUI. 

If the coding strategy suggested above (p. 69) had been adopted, then 

all states would have been uniquely identified with reference to their 

superordinate PDV and OU. 

Input would have been treated as character string rather than arithmetic 

data. (See below (p.79 ) for a description of the actual implementation of 

the search program, VALl.) The PL/I SUBSTRFN (substring) function would then 

have been used to segment each 5-digit code into its au, PDU, and state 

components. 

FN. "SUBSTR extra::ts a substring of user-defined length from a given string 
and returns the substring to the point of invocation." (IBM System 

360 Ope-rating System:PL/) (F) Language Reference Manua1.) 
Thus if CODE(I) is a string variable, and has the value 'OlIO)' assigned 
to it, then SUBSTR (CODE (1), 1, 2) will return the value '0)', which 
would refer to OUI, and could be used to point to the corresponding 
n~de (aU) in the structure. 

. 
This method (allocation of codes to structure elements by segmentation 

of the 5-digit codes) I, in fact, attempted (on one OU only). However, 

the logic of the numbering of 5-digit codes, as it stands, made the programming 

too unwieldy in terms of the amount of program code to be written, and in 

te~ of central processing time. This is)because, for any 5-digit string 

input, in order to take the path to the appropriate au node in the structure, 

the program must recognise not ~, but a set of substrings associated with 

that OU. ("Members of a given OU have no unique string associated with 

their codes". See above, p. 70 ) • 

For example, the section of program which causes a move along the path 

to OUI (see Appx. A and discussion of Program VAL ) below} must 

recognise 6 different substrings, which must be specified explicitly in the 
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program. (The six are 0002, 0004, 0006, 0008, 0010, 0012.) 

Similar specifications must be built into the program for each of the 

52 OUSt Obviously this would have resulted in a very messy and uneconomical 

program. 

Program VALl (see below, p. 79) provides a simpler solution to the 

frequency counting problem, without embodying the coding frame hierarchy 

in a PL/l structure. 

So, because of the numbering convention adopted in the coding of 

segmental variables, the PLll structure facility could not be exploited in 

the search program as was originally anticipated in the early 1970s. 

It had also been hoped to use the flexibility of PLII structures to e~dtte the 

iterative application of some general process to the contents of successive 

sub-parts of the structure. For example, Program RAT (described below, p.96 ) 

converts state scores from raw frequencies to within -OU percentages. This 

process of conversion to %ages can be expressed in a general algorithm, 

Which could be applied to the sections of the structure 'Profile' subordinated 

by each OU node, in turn. It is easy to apply a process iteratively to 

parts of arrays. 

It is possible to access elements of arrays iteratively, by using a 

control variable and altering its value. For instance, a one-dimensional 

array can be set up, called, say, RA, and containing 10 elements, RA(I), RA(2) • 

••• RA(IO). The bracketted subscript '(I)' refers to the first element of 

the array, and so on. If, instead of referring to a specific element, a 

control variable N is used, the elements of the array can be accessed in 

turn by specifying RA(N) , and changing the value of N. N can be given an 

initial value of 1, and then incremented by steps of 1 until it reaches the 

value 10. 

Thus, if we want to perform the same operation on the contents of 

each of the array elements, it is only necessary to write one piece of 

program using the subscript N instead of a specific number, and LOOP through 

it )0 times, once for each value of N from one to ten. 
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If the array contains 10 numbers, we can, for instance, double each of 

these numbers using a loop. (In PLfl, a DO loop may be used, or a GOTO state­

ment). 

The following 3 lines of program would perform this operation 10 times: 

i.e. on the contents of each array element in turn: 

a) DO N = 1 TO 10; 

RA(N) = RA(N)*2; 

END; 

The '=' is the assignment operator (equivalent to := in Algol ). 

The same symbol functions as the equals sign: the 2 functions are disambiguated 

by the syntactic context of the PLfl statement containing the symbol. 

The '*' is the mUltiplication operator. This symbol is also used to 

designate ~ elements of an array, and is known as the 'asterisk function'. 

b) RA(*) = RA(*)*2; 

performs the same operations as a) above. 

(Once again, the syntax of a PLft statement determines which meaning 

'*' ha in a given context.) This technique of accessing the contents of 

an array iteratively is a powerful and useful programming tool. However, 

arrays have limitations which structures do not have, (see discussion of 

symmetry and homogeneity above, (p.66 ). 

However, it is not possible to access sub-structrues of a structure 

iteratively in the same way as the elements of an array can be accessed. 

To return to the problem introduced above (p.72 ) (see also p.92ff.) 

it would be useful to be able to take the sub-structure subordinate to each 

OU node in turn, and apply to it a piece of program which converts raw 

state frequencies to within-OU percentages. This would require a loop of 

the form: 

step 1. Set up a DO loop in which N takes the values (1,2,3 ••• 52); 

step 2. For each value of N, sum the contents of the state counters 

subordinate to OU(N); 
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step 3. Store sum 1n variable (eg. OU. TOTAL),divide the contents of 

each state counter by OU.TOTAL x 100. 

This would be an economical method of performing the operation of conversio~ 

to percentages, requiring only a few lines of program code. 

However, it is not possible to access parts of structures in the same 

way as one can access elements of arrays. Unlike array elements, nodes in 

a structure are names, which cannot carry subscripts. i.e. 'OUI' is a 

string which names a node in the structure, but it is not possible to 

substitute a control variable, ego as in OU(N). This kind of strategy 

was attempted, and was rejected by the PLII compiler. On the failure of 

this strategy, another was attempte9' This involved building the strings, 
FN 

OUl, OU2 ••• etc. by concatenating the string 'Ou' with the current 

value of a string variable va11ed N, which, by a D loop, took the values 

I, 2, 3 ••• 52. 

FN. "Concatenation of strings is a device for building longer strings from 
shorter strings by joining them end to end." (Roper: 1973, Section 3.8A). 
Thus if STRING I has the value 'BRAIN' 

and STRING 2 has the value 'STORM' 
the as!igru.nent statement, (' II ' is the concatenation operator) 
STRING3 = STRINGI II STRING2; 
will assign to the variable STRING3 the value 'BRAINSTORM~. 

This program step was: 

DO N = I BY I TO 52; 

OU. TOTAL - SUM,(OU ~ N) ; 

This kind of strategy is also rejected by the compiler. 

The team who designed the FLII language stated six objectives: objective 

(1) :"Nothing to be illegal which makes clear and unambiguous sens~' has 

perhaps not been fully implemented in practice (Radin & Rogoway : 1965). 

Parts of a FLII structure, then, have to be specified explicitly. A 

whole structure can be compared with another whole structure, if the two 

are morphologically identical: thus informants' profiles could be compared 

as wholes. However, operations on parts of structures require the specific 
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naming of the part of the structure. Therefore, the percentage conversion 

program could only operate on an informant's data stored in structure form 

if each OU is specified and processed individually. This is not economical 

from a programming viewpoint. An alternative strategy (described below p.96 

- Prog. RAT) had to be found. 

The original expectation that the structure facility of PL/I could be 

usefully applied to the data processing problems of the T.L.S. was an 

expectation that could not be realised because the design of the coding 

frame failed to take account of these limitations on the manipulation of 

structures. A further difficulty pertaining to the use of structures 

relates to the PL/I/CLUSTAN interface (see below, p.IOSf£). Firstly, CLUSTAN 

operates on a 2-dimensional array of cases (informants) x variables. Data 

stored and processed in a PL/I structure would have to be reduced to 2-D 

array form for input to CLUSTAN. 

Secondly, constraints on CLUSTAN IA as implemented at Nu}~C include a 

limit on the maximum number of variables. No more than 200 'numeric' 

variables, or 400 'binary,FN variables can be processed in one CLUSTAN run. 

FN. In CLUSTAN terminology, 'numeric' variables take continuous arithmetic 
values, either integer or decimal; and 'binary' variables represent 
simply presence/absence of features. An example of a numeric variable 
is falling tone as a percentage of all tones realised; an example of a 
binary variable is, SEX, where MALE is coded I, and female, ~. 

Thus, the information contained by the hypothetical structure of Fig.4 (p. 

44) could not be processed in one CLUSTAN run. The segmental phonological 

substructure alone holds 690 values, one for each state type. 

The 3-alpha matrix, representing co-occurrences of 8 intonational 

features, with 9 grammatical form classes, with 7 pitch range features, 

yields a total of 504 combinations. The 2-alpha array holds 188 variables. 

These last 2 data collections (2-a1pha and 3-a1pha) are the basis for the 

calculation of various ratios, but the final number of variables derived 

from them is still quite large. 
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The segmental phonological data, then, cannot be processed altogether 

in one CLUSTAN run, but must be split up into several batches of variables. 

(Reasons for treating the segmental data as numeric rather than binary 

are given below, p.117ff.). 

This separation of the segmental variables into several batches 

produces some interesting results (see below, Ch. 6 ), as several 

classifications of the sample are generated, each based on a different 

sub-set of variables. 

To summarise, the reasons underlying the choice of PL/I as the programming 

language to use included: 

I. the sophistication of the language; its powerful data manipulation 

techniques, built in functions, especially string handling 

facilities; 
, 

2. its powerful array manipulation features; 

3. the structure facility. 

As explained in the foregoing, the structure facility proved to be 

less useful than was anticipated. Limited use, is, however, made of structures. 

(e.g. see VALl, below, p.79). 

Regarding string handling features: some use is made of strings, 

however, the computer programming phase of the T.L. S. data analysis 

involves mainly numerical data. Lamb (1965) recognises 3 categories of 

linguistic data processing (L.D.P.) 

"I. processing of linguistic data (whether for linguistic 

or non-linguistic purposes) 

2. processing of data (whether verbal or not) for linguistic 

purposes (LDP 2) ; 

3. linguistic processing of data (i.e. operating on data with 

linguistic processes.) (LDP 3)." 

The T.L.S. involves activities covered by LDP I and LDP
2

, but only the second 

type is automated. 



The initial analysis and coding of data is related to LDP
1

, but 

at this stage the human analyst is in charge, (e.g. auditory phonetic 
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transcription) and at that stage the transcriptions are converted into 

numeric codings. 

The programming stage, therefore, involves essentially arithmetic 

operations performed on numeric data. The automated processes do not 

involve handling data which is linguistic in nature, although it represents 

linguistic material. This is Lamb's LDP2• Thus the advantages of PL/l 

string handling facilities are not of central importance. FN 

FN. Some use is made of PL/l strinimanipulation, especially with 3-alpha 
data. 

Regarding array manipUlation: several of the programs which I have 

written take advantage of the PL/l array manipulation facilities. Many 

features unique to PL/l, such as the INITial function, and the DEFINEDFN 

function, also the asterisk function (see above, p.73 ), have been used, 

with the advantages of programming convenience, and compactness of program 

code. 

FN. The IN!T function assigns an initial value to a variable (or the 
contents of an array), e.g. zero, at the time of declaration. 
(Variables to be used in a program ar~ declared at the beginning, by 
their identifier or name, and their data attributes are specified. A 
DECLARE statement announces the existence, of a variable, and causes 
storage space to be set aside for it.1 Use of the DEFI~~D function 
avoids duplicating attribute specifications where one variable is part 
of (overlays) another. E.g. if a substring of a string is to be used 
as a variable. for instance. if the initial letter of a word is to be 
extracted and processed. a string variable is declared to hold the 
word. and another to hold the initial letter of the word; the latter 
variable can be declared as DEFINED by the former variable. 

Other features of PL/l proved to be useful, for instance. the option 

of 'implicit declaration.' This is one example of the exploitation of 

PL/l default mechanisms. In the absence of explicit specifications in the 

program, the PL/l compiler takes certain default actions. ~~ere a variable 
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is not declared explicitly, the first usage of that variable in the program 

triggers the compiler to recognise and define it. It is defined according 

to the default attributes associated with its form. For instance, an 

undeclared variable identifier whose initial character is in the range 

I, J ••• N, is defined by default as having the attributes: arithmetic, fixed 

point, binary, real, and precision of 15 binary digits (on an IBM machine). 

If the initial character of the variable identifier is in the ranges 

A - H, or 0 - Z, then the variable is defined by default as arithmetic, 

float, decimal, real, with precision of 6 significant decimal digits (on 

an IBM machine). 

Even where variables are explicitly declared, unspecified attributes 

are supplied by default. Providing the relevant rules for default 

specifications are borne in mind, the use of default specifications saves 

the programmer time and program code. 

The following section describes the sequence of processes applied to 

the TLS segmental phonological data, and describes the operation of my 

programs in detail. 

Fig.5(p.60charts the sequence of processes applied to the segmental 

phonological data, from the phonetic analysis through to the derivation 

of variety clusters and associated diagnostic statistics. 

The input data for each informant consists of a deck of punched cards 

bearing a continuous string of 5-digit codes. Each 5-digit code represents 

a token of a state type. The stream of codes represents the order of 

occurence of segments, through time, in the interview. Each informant's 

deck is read into disk files. MTS line files are used. (Line files consist 

of a series of numbered lines, each of which holds a punched-card image.) 

The first programming task consists of searching each informant's file 

and accumulating the absolute number of occurrences of tokens of each state 

type. 
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Program VALl 
. 

Program VALl performs this searching and counting operation. 

Fig. 9 (pp.81 - 84) reproduces part of the program VALl for convenience 

in the text. (The full specification appears as the first program in 

Appendix X.) The figure shows (lines 8 -10) the variables for use in the 

program, and (lines 13 - 15) how a structure called CODECOUNT is set 

FN up. 

FN. In the full program listing Appx. X of VALl, all lines of program 
code are numbered. Regrettably this is not reproducible in the 
extract in Fig.9. 

The structure CODE COUNT had two substructures, called CODE and COUNT 

respectively: each of these is a one-dimensional array consisting of 

690 elements. 

See Fig. 10. 

CODE (I) 

(2) 

(3) 

11 
CODE (690)0 

COUNT(I) 

(2) 

(3) 

cOUNT(690)8 

Fig. 10. 

The structure CODE COUNT , 

(Program VAL I) 
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Each element of the array CODE is assigned the value of one of the 

5-digit codes; the 5-digit codes are assigned in ascending numeric order 

to the elements of array CODE from CODE(I) to CODE(690). This is performed 

by the assignment statements (lines 24 to 713 of the program listing). 

NB. '00021' appears as '21', as the PL/l compiler removes non-significant 

zeros. 

The array COUNT is used to accumulate the number of occurrences (tokens) 

of each 5-digit code type in aninformant's raw data file. 

COUNT(I) is the counter for the 5-digit code type stored in CODE(I) , 

and so on. For every instance of the 5-digit code 00021 which is 

encountered in an informant's input~file, COUNT(I) is incremented by I.FN 

FN. Text resumes on p.85. 
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CL 'J 1)rF j 'JNr, H IT(1),(X.CA k D' FIXI:D AI"! ~:; AL, 
( " IJ T,'q '),T ") • .» 1 IX ~ r. ~ I~ ~ C" A L .C HU N K FIX E n ~ 1"!(17): 

DC L \I '\ \.4 :: C rl A l ( ~ ) : 

/_ 5rc~ UCT ' J~ F n ~ CLA 'U I) Tn H LJ LD 5-r:llGIT con E TYP ~ S. AND F REG U E NCY C QU"I i 
I")C L 1 C 'l D::: C U"IT. 

~ C nF (~9C) FIX E D 8I~(17). 
2 C~U~T(~~ O ) FIXED BIN: 

r:~I)E C ' 1UNT .C f1 U"JT(.' =1): 
IN E o ,DR PUT I) ~,\TA; 

/M As s tG"!~ EN T U F 5 -0tGIT C OD E S TC CanE(N) FOR ~ATCHING */ 
/- NIT ~ l"lPur J T ~ t~G 5 */ 

C ") c: ( 1 )= 2 1 : 
C I'1~ ( 2 )-= 2? ; 
Cl')::. (3)=? 3 ; 
c n ':: (4)=?4; 
C-JI)r.: (5)=2~: 

C ' J D ~ ( 6 )= ~6 ; 
Cl,) ~ ( 7)=41; 
C')O=::(Q)=42: 
C'1r) = (')=~3; 
C '1DE ( 1 J , = 44 ; 
C:)I) = (II)=45; 
conr:(12)= -; I: 
CJO=::(11)=62: 
C QDE (1~)= 6 1; 
C -11) E ( 1 5 ) -= f) 4 : 
C1D ~ (1'j)= "31; 
C 'lD'= (1 7) -=82 ; 
C 'lD::: (19)='33; 
( 'l ,) c ( 1 9 )=g4; 
Cll) C: (~(\)=101 

U l') E (21) -= 1 ~? 
C 1D~ (:> 2 )=10 3 
C'JD E ( 23 )=12t 
C J OE ( ? 4) = 1 2? 
C]I)~(2'5)=1~3 
C ') D ~(25)~141 
CrJi)E(27)=14? 
C O r)c(~q)=143. 
C,)O E (~q)=144 
CJO E ( ~O)=145 
C10~(31}=161 
CJ f) c ( 1 ~ ) = 1 A 2 
C.JD E (33)-=163 
C 'lD C::(14)=164 
C'10=::(1S)=165 
C '')'1 E ( 36) =166 
C 'J D =:: ( "3 7 ) = 1 '3 1 

(most of the declarations. of which there are 690 for the elements 

of array CODE. are omitted.} 



Fig.9. cont. 

C)IJ -:: ( S 7 >1 ) =2°"3 : 
C 1f) ':: C :; 7 .::J ) = ~ Q ..... [1 ; 

c r)l") -o ( ':) nO ) = 2 0.; ''', : 
C1n ;:: ( C)8 1) =2'l f, ; 
CJ n;::: C ~82 ) =?q21 ; 
C1') c: C ~ 13 ) = 2 ~2;-> : 
C 1') = C ~ 8 4 ) = ?'l?3 ; 
C J IJ:: ( 5 d5 ) = ~ ~?4 ; 
C1n E ( S86 )-=?'3?C) 
C ·1 D C ( C) ~ 7 ) = 2 ~ 4 1 
C1r> E (S ·9A)=?842 
C 'lc>E ( 589' = 2 a 4 3 
C )1") '= C 5 gO ) ::2844 
C ."1D'= ( 59 1 ) =2845 
C 1IJECS92)=28f,1 
C'11") E ( 5 '}3 ) =? ~6? 
C1') '::: C 5~ 4)=? e61 
C l'):: C5~S )::2 ~64 

elf');:: ( ") 96) = ~ £lAS 
CJf')':: ( 59 7) ::?c6h 
C 'JD o;: ( S98 )= 2eI', 7 
C 10-: ( SYQ ) =?e6d 
Cl 0:;: ( 500 ) =28flQ 
C) f')~ ( ~O l ) =28~ 1. 

C )O E C 6(2 ) =?E92 ; 
Cl')E. ( 60:1 ):: Z8'31 ; 
C ')l")c(,,>04 )= 2 9('1; 
Cll)~(~O,,»::2g"2; 

C )oe:: ( 606 ' :: 2 9('1 ; 
Clf)E(607'=2Q2t; 
C)DE(6I)d)::292Z; 
C10 E (6 0Q )::29?3; 
C '10F (I; 1 ')=2941 ; 
C1D E (611 ) =294?; 
C If)E ( 6 1 2 , :: 2 94 1 ; 
C'JD E(613'=2Q44; 
C)I) '= ( 6 14)= 29 4 5 : 
C )f)E(f>lS)=2 0 4 6 ; 
CQOc(;;16)=~ q 47; 

Clf)= (S17' =2~4S ; 
C lnE Cf,lB)=4 32 1 : 
C .J IJ t: ( 6 1 9 ) :: 4 3 2 2 ; 
C f)n EC6 2 0)=43?3; 
C10E( 62 1 )=4 324; 
C 'I f') E ( '" 2 2 ) = 4 ,~ 2 5 ; 
C'10E(623) ::4341: 
C lDE (~24) =4 .)-42; 
CQI")E(625'=4 36 1 ; 
C']O= ( ~ 2~ , =4 J6? ; 
C1J -: (627' ::4~f."' ; 
C If)E (628)::4 ~64 ; 
C 'J I) ~ ( 6 2 9 ) = 4 3 13 1 ; 
C QOE ( 630 )=43 R? : 
C Of)~ (611'::439 ~ ; 
C OO~ C 632) =4184 ; 
C l l)E ( 63.3 , :: 4'3 'l5 ; 
C ,)DI::' ( 634 ) =43 86 ; 
C,)')E (I')3S)=11 ?O l ; 
C ') De C f, .3 '" ) :: 1 1 ? C 2 ; 
C '1 'J E ( 6 .3 7 ) :: 1 t 2 ':' 3 : 
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Fig. 9. c~nt. 

C , f", = ( ~ "', M l '" 11 ?(" 4. : 
C v, .: ( .:, 1 ~ ) = 1 I lH ' 1 ; 
C J ) ::: ( I 4 ~ ) = 1 1 4 ,- ,'" ; , 
c ~'1 ':: ( ... ~ 1 ) = I 2 f, r' 1 ; 
C 1 Y ':' ( ')~~ ) = 1 2J'" , ? ; 
r: Jf" .= ( '" ~ 3 ) -== 1 4 0 " 1 ; 
C}') C' ( -') /1'4) -== 1 4('\ "' ? : 
c 10) ;::: ( '" -l :') ) = 1 4 'J ~ 3 ; 
C ' l') ':;: ( ':> 4 ,) =14 C 4 
C'JI) = ( ')4 7)=1 4 40 1 
C ) ,:1::: ( .., 4. -3 ) = 1 4. 4. C 2 
C 'J 0 ":: ( .:, 4 ~ ) = 1 4. ~(' 1 
C'l f) E ( 6 5~)=146 _ 2 
C )f' ~ ( ? c:; 1 ) = 1 501) 1 
C'O :: ( f.:' 2)=15C02 
r: ~ Dc ("'53)=1 5J,)3 . 
C'~~ ( ~C:;4 )=15 C ~ 4.; 
Cl'1;:: ( 'l5S) = 1 52" 1 ; 
C )'J~ ( -:'51) = 1 52(' ,~ ; 

C f):: ( C,,7 )=I ~O(, 1; 

C ' OC: ( ">S~ )=1 f.00~ ; 
CO E ( 'l5~ ) = 1 6 1)r: 3 ; 
C ) f) ~ ( r. I) (" ) = t "' .J 0 4. ; 
r: 1")::: c ... "' ) )=t 6) ~S; 

C'lf)C ( ~ "'Z ) = 17 2C l ; 
C ),) F.:: ( ., ') j ) = 1 1 ?f"I 2 ; 
elf) ':: ( ') <:> 4. ) = 1 7 '" t~ 1 ; 
C ln~( 6 ">5 )=17 ~('\2 ; 

C f'lOE ( "'5? )=17 ~ ,,; 
C ' JnE ( ">n7 ) =.~C)1"\ 1 ; 
C'I) E ( 6 ~ 'q=2~ "1; 
C'V) ::: ( ? ') ~ ) = '24. 21 ('l ; 

C 1Df: (..,7 " )= ~ 7 ,) i'\1 ; 
C I'luE ( ~7 1 )= ,2 7 "'0:",2; 
C l 'J c ( ~ 72) = 2 7 ~(,\ l : 
C'lf) f. (')71) =29~ 1 0 ; 
C l f)C: ( ?74. )= 2~6 11 ; 
C'l O= (,)75)= 2~~(' 1 ; 
C )f)::: ( ~ 71',) =28 ·10:l ; 
Cl,) ~ ( ,) 77) =28'3':' 3 ; 
Clf) E ( 6 7 ~ ) =2p.e('\4 ; 

C' O~ ( ~ 7f)=4 390 1 ; 
C)') ~ ( 6'30 ) =43 ~ 2 ; 

C'll)-:: ( ") ':n ) =4~90 l; 

C1D~ ( '; ~ ) =56 'H; 
CJI) E ( n " 3 ) = 5 f: ')t. ~ ; 
C 1 9~ ( ') -34) = '56() r ~ ; 
C n~E ( ~3S ) =5A0n\ ; 
C )'1;:: ( ,:> db )= S6 0L C) ; 
Clf) E ( ~~ 7)=3R O~ 1; 

C )Of' ( "> =1'3 ) =5~ Of\ 2 ; 
C ,oE (~, -j q ) =5 8')(' '3 ; 

1. \'3 C ) '1:: ( S .J 0 ) = :; A ' (' 4. ; 

I '" I '\I >IJT. I\Nr) O UTP1'T. y,.... .. . h~ A~T·5 r.'NEr.lJNIC *1 
G'=" T LIST ('\I~""' C ); P UT LJSTCl'.IA\1E); 
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Fig . 9 . c n t. 
/ ' ')' .. \' " , I ' . : r (' , ~ Ill 

I . r l' J V f " ,) 1 " . ~ - " 1 " ; 
C., '1) =', 11 1.") . 1 ; 
" , 1 , • I I , J " " ; " " ...., ; 
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/ - • J J " ') . L ( ~ , I' I' J , ' 1 J T ,; r' t., T /I. /'.1'- 1' I t. r 1 I , ' ) ', n I N ' ... ,l Y c:; r A I C H ~ / 
/ • T ,, ' I ',J C. ~ F I,' 1 ' , T :... ) : ~ : ' '1 ') ; I 1\ 1 r ( :l U" 1 r', ~ I 
/ • i ) ) J ' J 1 [ ~ '> ' J ' . I '. , > 1 " 1\" , 'V C. r l. r ( • -, it 1 T ' • • /.~ 1 r. '. 'T n ~ , • / 

J , J .1 ): ''' ' J " , :: 1 " Y ,; 
~ fl T = 1 : 

T " =~ ~ ; 
01 ") = J ; 
I I ' >:=1 1 T>-i " I ) ""' ; 

I( = 1 ; 
..:: l4 ~ ) -= C ~ < ') +, : 
"': '1'1; 

/. l'l~ T O N F ~ -OI G IT ST~lNG TO V~RIA B L~ 
G'" T f Dl T (CHUI\K) (COLU""t'\( X) .F( 5 )): 

'.j J T Ffl J"J')= ' () ' l; 

/'" T <;T F'J ~ ~Un-OF-FILF ,..'ARKfR ~/ 

'CH' II\jK' 

/- C; l' (~ ' to.) ,JTFJU'I n ' S rT CFF UNTIL COD E I S "A.TCH t:: l)./ 

1= CH I " ,J I( =-a ::l ~ TH I. n'J ;Y=l;G LJT~ F ll\1 5 H;lI\j D ; 
:::: L S :::: ') ) 0( = 1 I I Y 1 ~I t- I L E ( N IJ T F r1 U N r = , r , ~ ,\ TOP > = n n T ) ; 

I ~ C ~ U <=c~n = ( RCTJ TH~~ 0[ ; 
( C ' J I ~ T ( ' .3 U T ) = C r I , I Jl ( 8 C', T ) .. 1 
"J j T" 1) l' r.=',' F : 

:=~i' ; 

t-l ~ 1 I=' ,.... , i . I ~ ., ~ = C IJ n c ( r ' .:» 1 r- ~ f\ r -, : 
C 'JU'j ( TC-~ )= CCU·..: T(T~ ") "l 

t-.JlJTI 'l U ND=' 1 • P ; 
X ='I( + ", ; 
E '\I I) : 

r LSC: T i: C I-'UI\",=r nn[ (VI D ) T H~'" or : 
(.1 'U'o/ T ( .~ T [, ) = le i J" T ( lot I r) .. 1 ; 
· ~ ' I T F l) lI'. r, =' 1' ~ : 

Y = X+"': 
C:: N~ ; 

E LS I F (TO ;:> - ~O T)<2 & NOTFOUl\,ln=· .... · r; THrl\ QO ; 
-.:=X+5; 
Gfl TO JU"'P; 
~ "'If); 

/ ~D ""I"'Il f'R S ""UV t.D IJN T IL C ORq ECT C CD[ 
F L'3 !:: 0 0 ; 

eN') ; 

Mlr=(9 C T+T CP)/ ? ; 
1 :- CHIli" K > Co'):: ( r-q r.:) 1 I-' E t­
~LSE Jf:' CHlINK<C O f E ("'ID) 
C:-Nf) ; 

I e:: CQ10lV CRGE D C '" 

pn T=M1D; 
1 HE N Tll P= M 11''1 ; 

11(" ':: :,,1) ; 

/ oc ~ ... ~ k""QU !:: t JC T FS tlU lrJ L T I N ASC f l\Clt\:G NU '-1l IC Of, OF? H V cen t:. TY;:Jr 
I *' )JT=>.)T DI ~ I C T E r~ T G SI:: PA ,, ~T E F1LES It :3~ TCH t' S ~~ ./ 
/" 2" ~ VA ~ lA g l E S FOO Ph IJCE~clt\C: ElY C L USTA" i/ 

FI"-II SH:D l J=l TO 2 (') ,); 
)( = 1: ."'l U T '= D I T (N ~ ,.' r- ) ( C () L ( )() • t. ( 13) ) 
DJT 1 T( COUI\jT (J) ••• ' ) (COLUMI\:(X). t= (3) .~( 1) 
X= lt'+ll: 
t ;: ,<>74 T'-i~"" X-= l; 
c"l~ ; 

)'~ l: =>UT F ' » T ( N A r-1E)(CCLLlvN(X).~U~») 
;" J J = .., ,... 1 T n IJ ,' n ; 
0\.Jl : ,,,\ I T ( ( :) U"J T 

( J) .' • • ) (C J LU""~ ( )() • F ( ~) • A ( 1 ) ) 
x=x + 'J ; JC' )(>74 Ih ,:' r. 1(=1; E Nn ; 

x -= I ; .' UTI-' r) I T ( N A" I- ) ( C ~1 L U v t\ ( 'I ) • tl ( Q ) ) ; 

' ) 1 J ::. L. ( 1 T 'J (. r r : 
nu r ': "'" I T ( C " U' , T ( .I) • • • • ) ( (, fl U J '.'" ( l( ) • r- ( ! ) • A ( 1 ) ) 
y = .. + 4 : 1 F" X" 7 4 T H :: t J x = 1 ; ':: f\:') ; 

~ = J; .., 'J T -;- r ) I T ( I, ,, '~ [ » ( C C L lJ " N ( )C ) • ,. ( '? ) ) 
,..., ') J "> n IT I') ~ , ) , ~ ; 

~ J T "\ J T ( C '~ OJ "J 1 ( J ) • • • ' ) (C ) L U " r ~ ( )( ) . ... ( 3 » • ~ ( ) ) ) 
x=\( + T r >< > ;'4 TI~r:~ 1 )(=1; ::",n ; 
" J ') ; 
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Line ]6 shows the use of the asterisk function. This statement: 

CODECOUNT. COUNT(*) = 0 ; 

initialises the value of each element of the array COUNT to zero. This 

is necessary because when storage space is set aside for the structure 
, 

CODECOUNT, there may be values already stored which must be removed. 

Otherwise, the accumulation of the number of instances of 5-digit codes 

would produce spurious results. 

It is not necessary to initialise the contents of array CODE, as the 

assignment statements (lines 24-7]3) give the correct values to elements 

of this array. (The process of assigning avalue to a variable effectively 

overwrites the previous contents stored in that variable's storage space. 

The process of incrementing the value of a variable, however, adds on to 

the previous contents of the storage space associated with that variable.) 

The program so far (lines 1-7]3) has set up the structure CODECOUNT, 

and allocated a unique five-digit code type to each element of the array 

CODE. Each element of the array COUNT has the value zero. The processes 

of inputting an informant's file, and counting the number of tokens of each 

state type found therein occupies lines 716-776 on the program listing. 

Two strategies could be adopted. As mentioned above (p. 78), the 

stream of 5-digit strings on an informant's deck of punched cards (and 

therefore, in his input file), represents the order of occurrence of segments 

through time during the interview. One strategy which suggests itself as 

a method of counting the number of instances of each code type is to take 

each code type in turn, and search through the file for instances of it. 

This would be very uneconomical, as the file would have to be input, and 

searched, 690 times, once for each code-type. 

The strategy used in VALl involves a search of the array CODE, rather 

than a search of the input file. 

The first five-digit code to~en in the file is input to a variable 

called 'CHUNK'. (line 741) This input string is matched with values stored 

in the array CODE. When the match is successful, the correct code has been 
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identified, CODE(n) and the corresponding counter COUNT(n) is incremented 

by I. The process is then repeated with the next 5-digit string in the 

input file. 

The simplest way to program this search is to attempt to match the 

input string with the contents of CODE{I), and throCODE(2), and so on, until 

the match is successful. This is a 'sequential' search. However, this is 

not an efficient method of programming. If, for the purposes of the 

argument, we make the assumption (which is actually untrue) that all 

5-digit code types occur with the same relative frequency, then for each 

input string in the informant's file there will be, on average, 690/2 = 345 

attempted matches, before the input string is successfully matched with 

the correct cell of the array CODE. 

As each of the 52 informants processed so far has, on average, 2349 

5-digit code tokens in their input file, a search based on this principle 

would require something like 2349 x 345 a 810405 matches per informant. 

The strategy used is that of the 'binary search', also known as the 

'split-half search'. The use of this technique depends on the list of 

items to be searched being arranged in ascending numeric order. (See 

above, p. 79). 

A given input value is compared with the item in the middle of the 

list: if the input value has a greater numerical value than this item, then 

the search can be restricted to the second half of the list. If the input 

value has a smaller numerical value, the search can be restricted to the 

first half of the list. If the input value has the same numerical value, 

then a successful match has been made. 

If, e.g., this input value is smaller than the middle item in the list, 

the process is repeated on the first half of the list. A match is attempted 

with the item half way through the first half of the list: if the match is 

unsuccessful the range of the search is restricted to half of the first 

half of the list. This process of halving is continued until the correct 
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item is converged upon. 

For example, the first nine numbers of the series of even numbers can 

be stored in a one dimensional array called LIST. If we want to attempt 

to match the value stored in a variable N with this sub-set of the series 

of even numbers, in order to determine whether the number stored in N is 

a positive even number, less than 20, we can do this by means of a binary 

search. 

LIST is set up as an array of 9 elements: LIST(I) ~ 2, LIST(2) = 4, 

etc. A 'pointer' variable, I, is set to the value 5, and thus LIST{I) 

points to the middle item in the list. See Fig.ll. 

Fig. II • 

LIST(I) 

LIST(2) 

LIST(9) 

'LIST' 

2 

~1 = 2 

3 

10 (:-1 ~ 5 

12 

The value of N, (4), is compared with the value showed in LIST(I). 

As it is smaller, the search is restricted to the first half of the list, 

and the pointer is moved to the middle item of the first half of the list 

(I = 3). 

Once again, the first half of this section of the list is identified 

as the search domain ,and when the pointer is moved to the new mid-point 

(I = 2), the input item (N = 4) is matched with the contents of the array 

element. (L1ST(2) = 4). 

This technique is used in VALl (lines 748-776) to match each 5-digit 

code input with the 5-digit code types stored in the array CODE. 
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Three pointers are used: 'BOT', 'MID', and 'TOP'. BOT has the 

initial value], TOP, 690, and MID = TOP + BOT/2. (It is necessary to 

have 3 counters, as each new value taken by MID is calculated as half of 

the sum of the current values of TOP and BOT, which define the highest, 

and lowest, points in the sub-list currently being looked at.) 

This binary search technique is more efficient than a sequential 

search through each element of the array in turn. (See above, pp.85 - 86). 

For each 5-digit to~en input, the DO loop (lines 748-755) is executed no 

more than 9 times. If the loop is executed, on average, 5 times for each 

5-digit string input, then the expected average number of passes through 

the loop, per informant, is ]],745. ~ (Cf. the expected average of 8]0,405 

iterations with a sequential search - see above, p.86 ). 

The binary search is executed for each 5-digit string input from the 

informants data file. When the match is made, the counter in array COUNT, 

corresponding to the element of array CODE which the pointer points at, is 

incremented by]. ~~en all input has been processed in this way, the array 

COUNT holds the raw total number of occurrences of each CODE type. 

The list now held in array COUNT is output to four separate files, 

for. processing by CLUSTAN. (See above, pp.56 - 6] and below pp.]04ff.). 

It has already been mentioned (p. 52) that provision was made for 

'new' states, and PDV's, to be incorporated into the coding frame, when and 

where an item appears in the data for which there exists no coding category. 

For example, the original specification for OU46, D ' involved one 

PDV, with 6 states: 

(j , ~ g, 5, n, ng, nk ) • 

During linguistic analysis of the tape recordings, another realisation 

of this item occurred: viz. [k] A seventh state, k,. therefore, was 

added to the state list associated with this OU. An extra five-digit code 

was created for this state, expanding the state list 

from 0276] through 02766, 

to 0276] through 02767. 
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This addition does not disrupt the sequential ordering of codes; 

however, when PDV's are inserted, the logic of the numeration of the codes 

is disrupted. This poses a computational problem. 

The five-digit codes were designed so that the first four digits 

represent a unique PDV, and the fifth digit specifies the state of the 

superordinate PDV with which a segment is realised. (See coding frame specific-

ations above, p. 37) PDV codes are arranged in ascending numeric order in 

increments of two. (Even numbers only. The first PDV is coded 0002, the 

second 0004 •••• ). 

This convention (even numbering) was adopted with the use of Lector 

machine readable sheets in mind. Thus, when a new PDV was inserted into 

the coding frame, the odd number in between the two existent PDV codes 

was not used. Instead, a left-shift was used. For example, a new PDV 

value was invented to cope with realisations encounted in the data which 

merited the inclusion of an extra PDV associated with OU j This 

new PDV /j/FN, was inserted between PDVs coded 0286 and 0288 respectively. 

Rather than creating a code of 0289 in between, the new pm, was given the 

code 2880. 

FN. Actually, j / alveolar f~~~~ativeJ---- u ••• 

i.e. j, preceded by alveolar stop or fricative, followed by u, "which 
have a potential for affricationor deletion." (Pellowe, Nixon & McNeany, 
1972a p.29). 

In the event, the Lector was not used, so it would have been feasible 

(although this is only clear in retrospect) to use the intervening odd number 

as the code for newly inserted PDV's.This would not have presented any 

problems for the binary search program. However, as noted above (p.86 ), 

the binary search strategy requires that the values of items in the list to 

be searched must be in ascending numerical order. Because of the 

policy adopted of left-shifting the PDV digits by one place, the inserted 

PDV code is numerically greater than the preceding PDV code by a factor of 
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10; for example, the sequence of PDV's 0286, 2880, 0288. Thus, in the 

assignment of values to elements of the array CODE in program VALl (see 

above p.79 ) the five-digit codes associated with the inserted PDV's appear 

at the end of the list, and not in sequence with the codes belonging to 

the same au as they do. 

For example, the states of the inserted PDV discussed above, PDV 2880, 

must be placed lower down in the array CODE than the states of the other 

PDV's in the same OU,i.e. lines 698-701 of the program listing of VALl would 

be more in place (in terms of the linguistic logic of the coding frame,) 

between lines 623 and 624. In the example of an inserted state (see above, 

p. 88), this disruption does not occur. 

However, in two instances, there are more than 9 states in one PDV. 

PDV 0242 has 10 states, and PDV 0286 has eleven states. As state ~ero 

was not used, only 9 digits (1-9) are available to refer to the state of 

a PDV. Only one digit position is allocated to the designation of the 

state in the five digit code, and where state 10 or state II of a PDV is 

concerned, this one byteFNI range is overflowed. FN2 

FNI. A 'byte' is an 8-bit (binary digit) quantity, capable of holding one 
character (e.g. 1 decimal digit)~ 

FN2. If the coding scheme suggested above (p.69 ) had been used, with a 
2-byte state field, this problem would not have arisen. 

In these two cases, the policy of left-shifting was again adopted, 

thus the codes of the state list of PDV 0286, for example, are: 02861 

through 02869, 28610, 28611. Thus, with the five digit codes organised 

in numerically ascending order, there are not only displaced PDVs, but 

also displaced states of PDVs. Because output from VALl is later processed 
, 

au by au (see below p.96 RAT) , this disruption of the linguistically 

logical sequence of codes presents computational problems. For the 

purposes of program RAT (see below, p.96 ) it is necessary to restore the 
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ordering of scores with respect to the OU scheme. 

Another program was written to perform this reordering of the output 

of VALl. 

Program Shuffle 

FN Program SHUFFLE takes the output from VALl for each informant, and 

reorders the list of state scores to correspond with the ordering of states, 

within PDVS, within OUs, i.e. (OUI. PDVI, state I); (OUI. PDVI, state 2); •••• 

etc. 

FN. This program, and programELI}lare not reproduced here, as the (late) 
version of program RAT shown here combines the functions of these 
programs. 

The reordering is performed by the application of a lengthy series of 

control variable specifications in a DO loop. This is a simple programming 

exercise: however all such minor reshufflings of the data increase the 

likelihood of programming errors. Anticipation of such technical 

considerations at the initial stage of coding frame design could have avoided 

this problem, (although such problems often only emerge clearly in retrospect.) 

The importance of close collaboration from the outset between linguists and 

programmers is highlighted by this issue. 

Comparison of informants on the basis of their respective raw total 

scores (number of realisations of each state type) is not very useful. There 

are two reasons for this which I deal with at length, in turn: 

i) individual informants varied in terms of their overall 

productivity (total number of segments realised during the 

interview). (Some informants are more loquacious than others). 

ii) OU's have different relative frequencies of occurrence in the 

sample. 

i) On average, each member of the sub-sample of informants dealt with here 



92 

(52 Tyneside speakers), produced 2349 segments during the interview. 

However, the least productive speaker (ELIOT) and the most productive 

speaker (MARSH) produced 1084, and 3571 segments respectively. Even if 

these 2 speakers had identical linguistic profiles (i.e. their realisation 

of sound features were distributed across the same states, in the same 

proportions) ~~RSH's raw scores would exceed ELIOT's by a factor of 3. 

In order for their linguistic profiles to be compared, some kind of 

standardisation technique must be applied to the raw data, in order to 

compensate for informants' variable productivity. 

Standardisation Statistic - SI 

This problem can be overcome by transforming raw scores with 

reference to the population mean value for total number of segments elicited 

per interview. The following formula would achieve this standardisation: 

score(Uij)S 
1 

= Score(Uij) 
r 

x popn. mean total segments 
total segments realised i 

for the ith informant, on the jth variable, (variables being state scores', 

where 

and 

(Uij) 
r 

= 

= 

indiv. i's standardised score on jth variable 
by 'standardisation statistic.' 

indiv. i's raw score on jth variable. 

This formula multiplies all one informant's state scores by a constant 

multiple (i.e. a mono.tonic transformation.) Comparability between individuals 

in terms of their relative overall productivity is thus ensured. 

However, this measure accounts for variation only at the level of 

representation of the state, without reference to the superordinate structure 

of OU's and PDV's, of which state scores form the terminal elements (see 

above, p.67 ). 

OU's are, in a sense, the variables, and the list of states associated 

with each OU is the paradigm of its variants, grouped under the intermediate 

level of structure, the PDV level. 
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However, it is not simply a question of which states an informant 

uses to realise an abstract phonological entity (represented by an OU) 

but in what relative proportions he used the states which he uses. 

As Labov (1966) points out, (p.129 f.), speakers' usages of variant 

realisations of phonological features are contrastive in terms of relative 

frequency of occu~nce, and not in terms of "all-or-none" signals. Whether 

or not we give assent to Labov's notion of style, his further observation 

is pertinen t: 

"whether or not we consider stylistic variation to be a continuum 

of expressive behavior, or a subtle type of discrete alternation, 

it is clear that it must be approached through quantitative 

methods ••• " 

Thus, states are themselves quantitative variables, as well as being variants 

of the superordinate variables, OU's. 

A measure of normalisation to be applied to state scores, then, must 

normalise with respect to the internal structure of the OU. 

The 'standardisation statistic' was therefore rejected in favour of 

the within-OU percentage ratio. 

Within OU-percentage ratio 

The raw score for each state is converted to a percentage of the sum 

total of occurrences of state variants within the superordinate OU. This 

gives a picture of the proportional distribution of state variants used 

for each OU. 

- (Uin) x 100 
= 1 

where there are m states in the superordinate OU, (Uij)r is informant i's 

raw score on state j. 

Because raw scores are transformed to percentages, differential overall 

productivity between informants is automatically compensated for. 
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Regarding the second reason for transforming raw scores, the within-OU 

percentage ratio measure represents ~ solution to the difficulties raised 

here. 

ii) OU's have different relative frequencies of occurrence in the sample. 

Figure 12 shows the relative. proportions (by percentage) with which 

the sum of variant states of each OU are represented in the corpus. (Data 

analysed for 52 informants). (OU's 1-51 are shown, from left to right 

iheir specifications appear in Ap'px. A.) 

8.10% of the speech segments recorded (in total the 52 informants 

produced 122184 segments) are phonetic variants of the abstract phonological 

entity, OU29, t. This phonological entity has the highest relative 

frequency of all the OU's. Three OU's are tied in the lowest position, 

wi th a relative frequency of 0.05%. These are the OU's (-o-(), d4b and aI~ ). 
In the total corpus, then, the proportion of segments coded under 

e.g. ou~a, to those coded under OU t, is 8.10:0.05 = 1:162. 

As this inequality, in terms of frequency, is reflected in the scores 

at ~ level, we find that the popUlation mean frequencies for statesof 

OU t are very much large/numerically than scores on states of OU ~o. 

This means that the range of absolute numeric values is much larger for 

states of OU t ,than, say, for states of OU ",a. 

The distance coefficient used in the CLUSTAN classificationFN computes 

distance between individuals with respect to their scores on a give state 

using the square of the difference between their scores. 

FN. The coefficient used here is Squared Euclidean Distance: 

= M 
(Ujp - Ujq)2 

where p,q are informants (cases~ compared on a total of M variables 
(state scores) and U is the score on the jth variable. 

This means that states whose range of values across the population is larger 
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carry more weight in the classification, and by a geometric increment 

i.e. the distance between individua~increases geometrically as the numeric 

difference between their scores increases linearly. (This is true even if 

the standardisation statistic is applied). 

This results in an inherentweighting of variables. 

The question is, does the relative commonness or rarity of a phonological 

entity in the language, and hence the absolute magnitude of the range of 

state scores associated with an OU, reflect any desirable ranking of the 

relative importance of different OU's to the classification? 

Possibly it may, but only if we are more interested in the commoner 

OU's than the rarer OU's. The fact is that there is as much variability 

internal to the rarer OU's as is found in the commoner ones. This is true 

both of the number of different state variants used by individuals, and by 

the sample as a whole; and in terms of the different proportions in which 

different states are used. 

If raw scores are used as a basis for the classification of speakers, 

or even scores transformed by the standardisation statisti~ then the impact 

on the classification of realisational variability with respect to the rarer 

OU's will be negligible, (simply because of the relatively small numbers 

involved). 

The within-OU percentage measure. then. ensures equal weighiingof OU's, 

as the state scores within one OU sum to 100. The possible range for all 

states is 0 - 100, {whereas the upper limit of unstandardised scores, or 

scores transformed by the standardisation statistic, is indeterminate}. 

Comparability between informants is based on the unit of the OU. 

Comparisons are made on the basis of which state variants are used. and in 

what relative proportions. 

Program RAT (RATio) 

Program RAT converts raw state scores to within-OU percentages. Each 

informant's data {raw scores for each state type} is input to an array 
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called 'CODE'. Another array, called 'N' stores the number of states in 

each OU.FN (Program RAT is given in Fig. 12A and Appx. X.) 

FN. Because the data is not held in a structure which reflects the morphology 
of the coding frame, the structure of the data has to be embedded in 
the programming, as in the DO loop which operates under the control of 
the contents of array N. (line 57 of program RAT) which specifies 
the extent of each OU, in terms of state scores in the array CODE. 

A variable called OUT (Q£:!0tal) is used to hold the result of summing all 

the scores for states within one OU. The loop 'NEWOU' is executed once 

for each of the 52 OU's, and this loop performs the conversion of each raw 

state score to a within-OU percentage score. Lines 56-68 of the program 

listing show the application of the within OU-percentage transformation 
, 

formula shown above, (p. 93). 

(Lines 34-51 of this version of program RAT actually perform the 

reo~ring operation described above (p.91), under program SHUFFLE). 

The percentage frequencies are stored in an array called STATE. 

Thus if a given informant always realises the abstract phonological entity i: 

(OUI), with the third state of the first PDV of that OU, PDV i:,state i, 
(CODE (3) - 00023), then the third element of the array STATE will hold the 

value 100. (100% of instances of segments coded under OUI are realised by 

state 3). 

If, however, that informant distributes his realisations across the 

first three states in the proportions 2:1:1, then 

STATE (J) .. 50 

STATE (2) .. 25 

STATE (3) .. 25 

Thus the actual magnitude of the raw frequencies does not skew the 

results, and the problems associated with different speakers having different 

overall productivity, and OU's being variably represented, are by-passed. 

Output consists of a list of state scores, as within OU percentages, 
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for each informant. 

This collection of data can be thought of as a 2-dimensional matrix, 

where each column represents a state type , and each row, an informant. 

Thus row I, column I, contains :the first informant's score on the first 

state: row J column 2 contains the same informant's score on state 2, and 

so on. (See Fig. 6, p.66.) 

This matrix holds the data in a form which can be input to CLUSTAN, 

for a classification of informants. 

Before cluster analysis is performed, however, there are several 

strategies which can be used to improve the classificatory scheme. Two 

of these are described here. 

It is possible that some of the variables (state scores) to be input 

to CLUSTAN do not, in fact, vary across the particular sample of speakers 

which is here dealt with. Any variables which have zero variance across 

this sample are redundant, and will inhibit the discrimination of groups 

(clusters). 

That is, the discriminating effect of anyone variable which Goes .......... 
display variation across the population is an inverse function of the total 

number of variables included in the classification. If many redundant 

variables are included, the discriminating effect of truly varying variables 

is proportionally reduced, and the measure of similarity between individuals 

is artificially inflated. 

Therefore, it is advantageous to identify, and eliminate, zero variance 

variables before the classificatory process is applied. 

A second source of classificatory distortion occurs if variables are 

interdependent, or correlated. If two, or more, variables are logically 

interdependent, then they will always co-occur. They will cluster together 

as a group of variables, and will perhaps distort the classification, by 

inflating the similarity levels between all pairs of individuals which have 

realisations of them. 
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In order to identify zero-variance variables, a program was written to 

compute sample statistics, including means, and standard deviations, for 

each variable (i.e. each state). This is program PROF, which stand for 

profile, and the output constitutes a profile of the sample with respect 

to all states. 

In order to discover dependencies between variables, an R-analysis 

was planned. In an R-analysis, variables are clustered, rather than cases. 

Where variables cluster tightly together, correlations or covariances 

between variables are evidenced: if this occurs, there may be grounds for 

eliminating dependent variables. In order to perform these two processes, 

identification of zero variance variables, and identification of correlations 

between variables, the 2-dimensional matrix was transposed. For an R-analysis, 

input consists of a list of values taken by each variable, across cases, 

rather than a list of values for each case, across all variables. Trans-

position of the matrix, then, involves turning it through ninety degrees, 

so that, instead of rows representing cases, and columns, variables, now 

rows represent variables and columns cases. 

C.f. Fig. 13 with Fig. 6 

cases--- 1 2 3 

1 
2 

states 3 

690 

• t 52 
I 

- p.66 above). 

Fig. 13 • 

The transposed matrix. 

This transposition of the matrix is performed by program POSE. (See 

program listing. F~g. 14 (p.IOI) and Appx. A.) 

The transposition is achieved by inputting the matrix in row major order, 

and outputting in column major order. (L e. (row I, col. I),· (row I col 2) , . 
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and so on, and (row 1, col. I); (row 2, col. 1) ) (lines 11 and 16 of listing 

for input, lines 25 and 28 for output). 
. 

The transposed matrix is now input to program PROF. 

Program PROF 

One row of the matrix is input at a time. This row holds the scores 

on one variable (state scores) for each of the 52 cases. The sample mean, and 

standard deviation, is calculated for that variable. FN 

FN. The program listing shown here (p.I03) also calculates cluster means, 
and standard deviations for each variable. This version of the program 
was run after the clustering programs had been implement, and cluster 
membership was known. The clusters, (shown here as 'X' and 'V', 
represent the 2 groups discovered by the linguistic classifications 
described below, ch. 6.(Se~ below pp. 196ff.) taken at the 2-K (2-
cluster) level. Output from PROF appears in Appx. X. 

Output from program PROF showed that 113 of the 690 states were zero-

variance variables. These were eliminated from the classification. 

A CLUSTAN R-analysis was then attempted, using the transposed matrix 

as input. In an R-analysis, variables are treated as 'cases', and cases 

as 'variables', as far as the program is concerned. 

The implementation restrictions on the data file input to CLUSTAN 

require that no more than 200 variables, and 999 cases, be processed. 

For the R-analysis, the 690 variables are treated as 'cases', and the 

52 cases as 'variables'; thus it is possible, in theory, to cluster all the 

variables in one run. For technical reasons two different attempts to 

compute these dependencies both failed. FN 

FN. The temporary data files created by CLUSTAN to hold 
intermediate data sets exceeded the NL~C system maximum file size. 
That is, the MTS maximum limit (for line files) of 25S disk pages 
was overflowed I disk page = 4096 bytes, I byte = 8 bits, ] di~k 
page can hold 4096 characters. An attempt was made to specifically 
create the file (normally created automatically by CLUSTAN), and to 
create it as a sequential file (sequential files have larger maximum 
size limits) but this also resulted in program failure, as CLUSTAN 
performs indexed operations on this file, and sequential files can 

(Text resumes at p.IOS.) 
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only be accessed sequentially. 'Indexed' read, or write, operations 
involve a line number specification in the I/O subroutine call. 
Thus the CLUSTAN read operation must access a line file, and the 
restriction of maximum file size = 255 pages holds. 

Thus the pathway shown on the flowchart, (Fig. 5 ,p.64) from POSE 

through CLUSTAN R-analysis was not successfully implemented. 

So input to CLUSTAN consists of informants' state scores (transformed 

to within-OU percentages), on 577 of the 690 original state types. Zero-

varian~~states ~ eliminated, but the attempt to identify correlated 
I 

variables was not successful, therefore no variables were eliminated on 

the grounds of mutual dependency. 

In the CLUSTAN runs discussed here, (see below, ch. 6 ), OU52 

was not included, as this OU is not strictly a segmental phonological 

variable, but a lexical item (OU52 covers variant realisations of the lexical 

item 'yes', (See Appendix A ). 

With this OU eliminated, the segmental phonological variables input to 

CLUSTAN number 542. As a maximum of 200 variables (of the 'numeric' type, 

(see FN. above, p.75 ) can be used in a CLUSTAN run, the data was ~lit up 

into 3 sections, corresponding to 

1) mnoplthongal vowel OU' s, OUI - OUIO, 

2) diphthonga\, triphthOlgal and reduced vowel OU's, OUII - OU26, 

and 3) consonantalOU's, OU27 - OU51. 

These three segmental phonological subspaces are designated %FONI, %FON2, 

and %FON3 respectively, and account for 154, 189 and 199 states respectively. 

The output for classifications of informants in each of these subspaces 

is the result of taking a path through the flowchart (Fig.5. p.64), from VALl, 

through SHUFFLE, RAT, POSE, PROF, and into CLUSTAN, from a Q-analysis. 

(i.e. informants are clustered on the basis of their scores on states.) 

The sequence of CLUSTAN programs used was: 

I. FILE 

2. CORREL 



106 

3. HIERAR 

4. ~S~T 

5. PLINK 

(A full description of these programs is found in NUMAC Document 37: Cluster 

Analysis in MIS: CLUSTAN IA User Manual). 

1. The CLUSTAN progam FILE reads in the data, and sets up a data file for 

the succeeding programs to process. Permitted maxima are: number of cases 

~ 999; number of numeric variables ~200; number of binary variables 

~ 400. 

2. Program COR~L compute$ the similarity (or distance) between all pairs 

of cases, and stores these similarity (or distance) measures in the 

similarity matrix. 38 differently defined coefficients are available for 

computing similarity or distances. 

The coefficient used in the CLUSTAN runs on the T.L.S. data is Squared 

Euclidean Distance, (see FN. p.94 ). 

3. Program HIERAR operates on the similarity matrix, and builds clusters 

of indiviuals, on the basis of the mutual similarity levels between pairs. 

Initially, for n cases, there are n(n-l)/2 pairs. The most similar pair 

(those with the highest measure qf mutual similarity) are fused, and 

thereafter treated as one case. The similarity matrix is correspondingly 
\ 

shrunk by one row, and all the similarity measures are recomputed. This 

process of fusion and recomputation of similarity measures continues for 

n-l cycles (i.e. until all cases are fused into one cluster). 

Of the 8 clustering methods available under HIERAR. Ward's algorithm 

was used in the CLUSTAN runs dealt with here (Ward: 1963). Everitt (1974) 

describes this method as follows: 

"Ward (1963) proposes that at any stage of an analysis the Dss of 

information which results from the grouping of individuals into 

clusters can be measured by the total sum of squared deviations of 

every point from the mean of the cluster to which it belongs. At 
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each step in the analysis, union of every possible pair of clusters 

is considered and the two clusters whose fusion results in the minimum 

increase in the error sum of squares are combined." (p. 15)FN~. 

FN. WARD'S ALGORITHM 
If clusters P and Q were fused, then the similarity between any cluster 
R and the new cluster (P+Q) i~. S(R,P+Q) is obtained from this formula: 

( ) NR+NP () NR+NQ () NR () 
S R,P+Q = NR+NP+NQ x S R,P + NR+NP+NQ x S R,Q - NR+NP+NQ x S P,Q , 

where N stands for the number of members in a given cluster, so that 
NP is the size of cluster p. 

4. Program RESULT prints out a summary of the classification process, and 

classification arrays from selected points in that process, (e.g. the 3-cluster 

level.) Print Options which can be selected include; printout of raw data, 

printout of similarity matrix, printout of selected classification arrays 

(which show cluster membership at given levels of the fusiun process), and 

listing of cluster diagnostic statistics on variables. 

5. Program PLINK takes output from program HIERAR, and draws a dendrogram, 

or fusion tree, on the graph plotter, which shows graphically the steps in 

the fusion process. 

The results of the CLUSTAN runs on the segmental phonological data, and 

the social data are presented below (see Chs. 5 & 6 ). 

The choice of distance coefficient, and clustering algorithm used was 

based on the results produced by a series of pilot runs on one section of 

the raw data: vocalic variables: CODE(I) to CODE(200), for the Gateshead 

subsample (45 speakers) • 

Several combinations of CLUSTAN options for similarity coefficients 

and clustering algorithms were tried out on the raw data, and their 

performance was observed. Three of these runs are described here. 

The similarity coefficient used first was CLUSTAN coefficient number 

28, the Similarity Ratio measure. 

This coefficient was originally chosen in the light of the problem of 
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'sparse matrices'. That is, the 2-dimensional matrix (cases x variables) 

contains a high proportion of empty cells. (Although 557/690 state types 

are used at least once across the whole sample of 52 speakers, each single 

speaker uses only 150 to 250 different state types altogether). 

Thus, approximately 2/3 of the cells of the matrix input to CLUSTAN 

contain scores of zero. 

These zeros represent states which are not realised at all by the 

informant in question. We may choo~e to regard these states as irrelevant 

variables, for that case. If this line is adopted, then when the distance 

or similarity measure between a pair of cases is compute~we want the value 

of the measure to depend more on the" states which ~ realised (by one, or 

by both of the cases), than on those states which are not realised by either. 

Take, for example, the hypothetical situation where two cases are compared: 

each case realises 200 state types, but there is no intersection between the 

list of states used by the first case, and that used by the second case. 

We may want to say, seeing these two cases always use a different state 

realisation for _ a given phonological entity, that they are maximally 

different, as speakers. The similarity measure should reflect this 

difference. The (200+200) st.ates actually realised by one or other of these 

cases will contribute to the overall measure of similarity by distancing 

there 2 cases from each other. However, for the remaining 290 variables (out 

of the total of 690), these two cases will have identical scores (i.e. each 

case scores ~.) These variables (shared zeros) will artificially inflate 

the degree of similarity between these two cases. (With quantitative 

data, the quanti ty ~ is treated just like any other numeric quantity. 

Zero minus zero equals zero: which signifies zero distance (or maximal 

similarity) with respect to the variable in question, if these zero 

matches are not excluded by the coefficient used.) 

The Similarity Ratio coefficient was chosen because zero matches on 

variables are discounted, the similarity between a given pair being computed 
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on the basis of only those variables which take a non-zero value for either 

one or both of the cases compared. 

Sim.Rat. 
~ Ujp Ujg 

where p,q are cases, and Uj is the score on the jth variable. 

When Ujp and Ujq are both zero, no contribution is made to the sums of 

either the numerator or denominator. Thus summation occurs only over those 

variables which have a non-zero value for at least one of the pair. 

Fig. 16 shows the dendrogram produced by CLUSTAN program PLINK, 

showing the fusion process which results from the application of the 

Similarity Ratio coefficient to the "test data. (See above, p.IOS). The 

clustering method used here is Single Link or Nearest Neighbour (Sneath: 

1957). With this technique, the criterion for a sample point (case) joining 

a cluster depends on the proximity of that sample point to anyone member 

of the cluster. The newly joining sample point may be quite dissimilar to 

other members of the cluster, but the internal structure of the cluster 

depends on continuous inter-connectedness between adjacent points. 

Fig. 17 (p.112) shows how sample points are joined into clusters by 

the single linkage method. (Clusters are depicted here in 2-dimensional 

space.) Members of clusters are 'chained' together by pair-wise links. 

Note that point B is closer to a point in a different cluster (Point C) 

than to point A, which is in the same cluster. However, the distance 

between point B and point C is greater than the distance between any 

adjacent pair in either cluster. 

Where the nature of the data corresponds to this type of 'straggly' 

cluster, or 'segregate' (Cattell and Coulter: 1966), then single linkage 

is an appropriate method for recovering the natural structure inherent in 

the data. 

However, problems arise when clusters are not separated by interpoint 

distances larger than the maximum distance threshold which is the criterion 



110 

Fig. 16. Dendrogram based on Similarity Ratio Coefficient and Single 

Link Clustering. 
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for linkage of points. 

Fig.18a(p.112) shows 2 clusters which ought to be separated, but which 

will not be discriminated by single link methods. The three 'outriders' 

Or 'noise points' (Wishart: 1969b), x, y, z will result in the 2 clusters 

which should be found being linked together and emerging as one cluster. 

Moreover, if the interpoint distances within cluster 2 are slightly 

greater than d(x,y) and d(y,z), which are in turn greater than the interpoint 

distances in cluster I, then the pattern of fusion will be similar to that 

of the data shown in Fig.18b{p.ll~. Both of these sets of data will 

chain, and will produce similar fusion trees. 

Fig.16 illustrates this chaining effect. The staircase effect 

shows that individuals are being absorbed into the one main cluster one by 

one. The problem is that it is impossible to detect whether the underlying 

structure of the data resembles Fig. 18a or b , or even a random dispersal 

of points through the measurement space. It may, in fact, be the case that 

the sample is dispersed throughout the space not randomly, but with variable 

density, and types exist, but are not separated by uninhabited tracts of 

space. Or, types may overlap (non-discrete groups.) 

Because of the difficulty in interpreting the chained pattern, and also 

because no clusters are discriminated (therefore cluster diagnostics cannot 

be obtained) the results produced by single linkage clustering on this type 

of data cannot be further analysed to much effect. 

The second clustering algorithm applied was Average Linkage (Sokal and 

Michener: 1958). This teChnique takes into account the average of distances 

between an individual and all members of a group, and is more suited to 

data which resolves naturally into 'homostats ,FN (Cattell and Coulter: 1966). 

FN. 'Homostatst are groups characterised by high internal homogeneity. 

Since there are no sound reasons for predicting that this data is 

naturally structured, (with respect to the variables chosen,) either by 
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homostat or segregate types. it is important to investigate the effects of 

techniques designed to discover both types of groupings. 

Fig.19(p.114} shows the fusion process resulting from the application 

of the similarity ratio coefficient. and the average linkage clustering 

method, to the set of test data. (Cf. Fig. 16.) 

With average linkage, small clusters begin to form. but these clusters 

chain together (as compared to the single linkage run. where individuals 

chain onto the main cluster). 

Once again. there are no significant break points in the fusion tree 

(signifying distinct groupings). and. because of the chaining effect. there 

is no point on the similarity level'scale at which the whole population is 

classified into groups. With this method also, then. a clear classification 

has not emerged, and the analysis cannot usefully proceed further. 

Fig. 20 (p.llS) shows the same test data clustered by Ward's method. 

(See above. p.106). This method is incompatible with similarity coefficients. 

therefore a distance coefficient was used (Squared Euclidean Distance. see 
, 

above. p.94 , FN.) This coefficient was chosen because all the information 

FN in the similarity matrix is retained. i.e. shape. elevation and scatter. 

FN. 'Shape' refers to the contours of the indiviudal's profile across the 
variables; 'elevation' is an individual's mean score across all 
variables; and 'scatter' is a measure of each individual's deviation 
from the profile mean. 

Of the other distance coefficients available. some are sensitive to the 

position of the origin, (e.g. Canberra (or non-metric) coefficient, size 

difference, shape difference}, and the others reduce to Squared Euclidean 

Distance when used in combination with Ward's method (average distance. 

error sum. variance coefficients.) 
f 

As remarked above (pp.l07-109) the Similarity Ratio excludes the effects 

of zero matches. and thereby avoids the artificial inflation of inter-case 

similarity. The Squared Euclidean Distance coefficient does not exclude 
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Fig . 19. Dendrogram bas ed on Sini l ari ty Ra tio coeffi cient and Ave r age 
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Dendrogram based on Squared Euclidean Distance and Ward's 
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these zero mathes; however, because the numeric difference between two 

individuals' scores on a given variable is squared, this coefficient 

exaggerates inter-individual differences. Thus the spurious increase in 

similarity caused by zero matches is offset. 

Fig. 20 shows that a combination of Squared Euclidean Distance and 

Ward's method structures this kind of data into distinct clusters. Using 

this combination of options, then, it is possible to extract cluster 

diagnostics, and investigate the characteristics of the sample with respect 

to these groupings. This combination of options was used for the main 

CLUSTAN runs. 

It must be borne in mind that different statistical techniques mould the 

data into different kinds of structure: Ward's method, for instance, and 

average linkage, are designed to generate spherical clusters of the 

homos tat kind, whereas single linkage, for instance, produces segregate 

type groupings. It must be stressed again that we cannot know, a priori, 

which kinds of cluster patterning optimally represent the underlying structure 

of data such as ours: the processes of analysing the data described here 

are designed to discover this. 

Given the results obtained in the pilot runs, the combination of 

Squared Euclidean Distance and Ward's method offer the only opportunity for 

further investigation of groupings. The possibility is left open that the 

chain-like configurations produced by single link and average link methods 

may be equally valid representations of the patterning of linguistic 

varieties within this sample. 

Clusters generated by the combination of options finally chosen are 

analysed in detail, and discussed below (chs.5,6,7). 

In addition to the programs shown on the flowchart (Fig.S, p.64), two 

other programs are of interest. 

Program SCATTER (See listing, Appendix (X).) 

This program inputs the transposed matrix 
, and produces graphic output 
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FN on the line printer. showing the distribution of values for a given state 

across the sample, in ascending numeric order. 

FN. Scores are within-OU percentages. 

The curves produced for state scores reinforce the significance of 

Labov's ()966) remarks concerning the necessity of the quantitative approach 

to linguistic variables. 

Several interesting points emerge from an. examination of the scatter 

plots. Regrettably, space does not permit the inclusion of all 577 here, 

however a selection are reproduced,~and discussed briefly in the following 

pages. 

FN There are many different shapes .of curve amongst the 577; three types 

of curve shapes which occur frequently are discussed. 

FN. Although several classes of curve shapes can be identified, the 
pattern of distribution of the sample across curves of similar shape 
differs, i.e. the sample is grouped differently by curves with the same 
formal properties. Thus these curve types have nothing to do with the 
'typical patterns' referred to by, e.g. Trudgill (1974). See above 
(p. 20). 

The distributions of informants' scores across these variables raises 

some important issues concerning how phonological variables should be treated. 

The reasons for treating states as numeric rather than binary variables 

becomes clear when one examines the scatterplots showing the distribution of 

state scores across the sample. 

state 

Fig.2) (p.) )8) shows the distribution of state (35), (OU £., PDV E, 

r) across the 52 informants. If informants were compared in binary .. 
terms (i.e. presence or absence of realisations of this OU with this state) 

then the first five cases (from the top of the diagram) would score 0 for 

absence, and the remainder 1 for presence, of this state. Clearly this kind 

of approach is not satisfactory. CLARK (2%), and XSHAW(96%) would be counted 
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Fig. 21. Scatterplot o f S tate 35. 
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similar, and CLARK (2%) and ORMST (0%) would be counted dissimilar, on this 

variable. Clearly, we would want the difference between CLARK and XSHAW 

to be reflected by the contribution this variable makes to the overall 

similarity or distance measure: also, we would want informants whose scores 

are close to be grouped more closely together than those whose scores differ 

by a larger magnitude. This will be reflected in similarity or distance 

measures calculated on the basis of quantitative (numeric) data, but not 

with measures calculated on the basis of binarised data. 

Similarly, a binary analysis would give a distorted view of the speech 

behaviour of this sample, where e.g. state 17 is concerned. (See Fig.22 

OU I, PDU I, state i). 
« 

Here there are two clear groups: those who use this state realisation 

for less than 4% of instances of OU I, and those who use this state for 

more than 65% of instances. 

A binary scheme would separate the non-users of this state from the 

FN users of this state, irrespective of the actual frequency of usage. 

FN. It could be argued that there is an important distinction between 
informants who have low frequency of realisations of a state type, and 
informants who never have realisations of it. However, it is difficult 
to imagine how the advantages of binary and quantitative methods could 
be combined in order to preserve both kinds of distinction. (Presence/ 
absence, and frequency of usage.) 

This state (state ]7) appears to be a good discriminating variable: 

in this sample,FN at least, there is a polarisation of the distribution of 

frequencies of usage. Interestingly, the high scorers are members of the 

Newcastle sub-sample, and the low (and zero) scorers are the members of 

the Gateshead' sue-sample. 

FN. With a larger sample, however, the gap between the two distinct groups 
might be completely filled in, or not as distinct. 

However, these two sub-samples are not distinguished by all variables. 
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Fig. 22. Scatte rplot of State 17. 
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Fig. 23 (p. 1 22) shO\Js the distribution of state 77, (OU P , PDV b, 

state DC). Here the Newcastle sub-sample (whose members can be distinguished •• . 
by the X-prefix in the mnemonics) are interspersed with the Gateshead 

sub-sample. So, informants are distributed differently with respect to 

different variables. 

This state also demonstrates the phenomenmof continuity: many of the 

scatter plots are continuous curves showing no break points between groups. 

There is a large range of variability with respect to scores on this state 

(0 - 487.), but there are no boundaries between groupings. Many of the 

variables (see also Figs. 24 25 26 , 27 ) suggest that the speech 

of informants is certainly variab1e~in terms of frequency of usage of 

phonological variants, but also that there are no grounds for stratification 

of the sample where these variables are concerned. 

So some variables show clear divisions between sub-groups within 

the sample, others show a continuum of frequency of usage. 

A third type of curve shows minority usage of a state; i.e. it is 

realised by only a small sub-set of the sample, the majority scoring zero. 

Fig. 28 (p.127) shows this kind of distribution pattern for state 99, 

(OU:' , PDV ~, state ,:». Only 8/52 informants use this state: seven use it 
« 

with frequencies between 1% and 13%, but one informant realises 46% of 

instances of OU ~ with this state. (Cf. the reverse situation (Fig.29, p.128.) 

where most informants use a state for 98-100% of instances of this OU, 

although the sample range is 42-100%). 

State 72, (OU a, PDU ae, state !) is'a more extreme example of this . 
kind of distribution pattern. (Fig.30, p.129.) 

Here only 2/52 informants have realisations of a with this state, a, but .. 
the actual frequencies for these two cases are relatively high (20% and 

66%). 

For the latter informant, this state is the major variant. Clearly 

this informant, (ELLIO) is in a class of her own, with respect to this 

(NOTE: Text resumes on p.130.) 
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Fig. 23. Scatterplot of State 77. 
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Fig. 24. Scatterplot of State 3. 
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Fig. 25. Scatterplot of State 14. 
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Fig. 26. Scatte rplot of State 21. 
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Fig. 27. Scatterplot of Sta t e 479. 
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F · 28 Scatterplot of State 99. 19. . 
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Fig. 29. Scatterplot o f State 469. 
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Fig. 30. Scatterplot of State 72 . 
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state. XLA~S, too with 20%, has a score sufficiently different from both 

ELLIO, and the remainder of the sample, to constitute a group of one, with 

respect to this state. Thus, on this variable, the sample is clearly 

partitioned into three groups of 50, I and I. It is becoming evident that 

even those variables which do divide the population into discrete groupings 

do not produce the same groupings in terms of members. Many researchers 

have ignored this possibility, (e.g. Labov, Trudgill) in their search for 

typical patterns for phonological variables. 

Three main points emerge from an examination of these scatterplots. 

1. As Labov (1966) (see above p.93 ) points out, speakers are distinguished not 

only by which phonological variants they use, but by the relative frequency 

with which they use them. 

2. Many phonological variables are highly variable, yet that variability 

takes the form of a continuum. Thus speakers are differentiated from 

each other, but are not grouped or stratified by their scores on these 

variables. FN 

FN. This fact may be invonvenient in relation to some methodologies; however 
such variables should play an important role in an exhaustive representation 
of speakers. The techniques employed in the T.L.S. (multi-variate 
analysis) avoid the problems caused by non-stratifying variables, as 
the basis of the process of grouping individuals relies on paired 
comparisons. 

3. Where certain variables do discriminate groups of speakers, those 

groupings which are found differ across different variables. (i.e. 

distribution patterns of informants are non-homologous across different 

variables, and across different variants of the same variable). 

An examination of these selected scatterplots provides some useful 

insights. into the behaviour of the sample with respect to single phonological 

variants, and what forms of distribution the scores of single states show 

across the sample. 

However, for the purposes of an inclusive and exhaustive classification 
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of speakers, the distribution of state scores across the superordinate OU, 

from all OUs, is the frame of reference. 

Program TRAN 

Given the complications which have arisen in the referencing of variables 

(e.g. re-ordering operations, elimination operations, see above, pp.79-

92 ) , the original 5-digit code types are referred to by different 

variable names at different stages of the processing. Each 5-digit code 

type is referred to by a subscript in the array CODE, and by a different 

subscript in the array STATE, (after the re-ordering and elimination processes). 

Then, in a CLUSTAN run, variables are numbered sequentially from I, so that 

the CLUSTAN variable numbers correspond to the STATE ( n) sUbscript only 

in the first subspace (%FONI ). fu, e.g. STATE (155), the first state 

input to the %FON2 classification, is called VARIABLE I by CLUSTAN, 

and so on. {Program TRAN listing shown in Fig.31. p.132 & Appx. X.> 

Program TRAN was written to produce a table to reference, showing, 

for each 5-digit code, which subscripts are used at different points 

in the processing. (See TRAN TABLE output - Fig.31A, p.133; als Appx. X.) 

Thus CODELIST (I) (sameas CODE(I», corresponds to the 5-digit 

code 00021, and STATE(I), and %FONI variable(I). This table gives complete 

cross-references between the original coding frame specifications, the 

output of the PL/I programs, and the CLUSTAN output. 

The PDV level of representation may also be a useful analytic level 

on which to base a classification, (i.e. one level higher in the structure). 

By comparing clusterings of the sample based on state scores, with a 

clustering based on PDV scores, we can test whether the fine phonetic 

distinctions made at the level of the state are !£2 delicate to form the 

basis for a useful linguistic classification. (e.g. distinctions between 

one or two degrees of advancement: e.g. the third and fifth states of 

ou a, PDV 4, which are +<:l. and 'fJ. For this OU, distinctions at 
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P TRAN t o show names of variables at Output from rogram 

different stages of processing. 

~ I ,-: 1 1 -T ( 
n --L I ; r ( 

C J )~_I _ I .5T ( 
C'lr)-' ,-'ST( 
Cl) -'L l S T( 
r)q '- Lr~T( 

: ,) , ' LYS T( 
Cl ') ;: LI:>T( 
: I~) __ L I S T ( 
C f , ") ,': 1. r .:; T ( 
r: ' ) '") ,,_ I ::) T ( 
:)"f L I S T( 
:: ' l'"'l ' _L l S T( 
,- ) '; LIS r ( 
C )') p::, '_ I S T( 
:-: )·"')-:Lf3 T( 
: )l <=: LI~T( 

C ) : ) CL I -; T ( 
,- ,') ": Ll S T( 
r ' )')=: L I :; T ( 
C n =: L I S T( 
C lO ': L r -;r( 
.: 1'1 E L r S T ( 
( ) r:: L I '";T( 
: 1 ) ..: ,_ I ) T ( 
C ·l i::: LJ,T( 
Clf) t '_I ~r ( 
C i~I)ELIST( 

C l,) =: L 1ST( 
: ~')'7:L I 3 T ( 
C Y) ':: L 1 S T( 
_ l :) :::' L t T ( 
CT ::::L IST( 
Cn=L I S T( 
C JJ r: L 1ST ( 
C t') f) i:: L[ST( 
Clf)C::LIC;T( 
Clr) '= LIST( 
:lOEL 1ST( 
C'1r) ELI ; T( 
CJ') ':: LIST( 
C n :; ,_ I r r ( 
CJ)t." LIST( 
C'l ')FL 1<;1 ( 
(flI') E LISTf 
:&j')::LIsr( 
:'')c:.LIST( 
C ) ) c:. ,_ r T ( 
-:l :) " II S T( 
r: ,l l) ' - L lC;T( 
(I1 ') L L r -; T ( 
C 'lf) ::L IST( 
Cl"l C::: LtST( 
C )) f' L I;T( 
Clf) ,lTC:T( 
C , )f) -~ L I '"; r ( 
C'1") ~ L'jT( 
C)) l ' 11 1 ( 

". 

1 ) = .., 1 
? ) =~~ 

n =2i 
-l) =24 
"; )= 25 
F.., )=?6 

) ~" ') 

l C )-: l44 

l .-: ) =R l 
17) =~.::' 

1'1)=13 
1 , ~ ) = 3 q. 

"'~ ) = I?1 
?4 ) = 1 2 .' 
? c:, ) = I? ,"l 
:>'-:' )=141 
~7)-=14? 

;~ ~) =14:l 
?'l ) = 1/~4 

')=1 /.'3 
3 1)-:=1 (-, 1 
") = 1'-:'') 

:! ~)=1~ 3 

". ) = 1 6 4 
3 5 )=lf 5 
3F.., )=I ·', r. 
.3 7)=lRl 
3 )=lq3 
4"')=2 0 1 
1. 2 )=2013 
44)=;:>22 
~ - )= 24 1 
4 "» = 2 42 
47)=243 
4'\)=?44 
4 ,) = 'lS 
~:')= ? 4 6 

:- 1 ) =26 1 
5 ?)-=2f'. 2 
<::3 )= :>~3 

5f.)=~r'\1 

C.7)="f-I? 
r;9 )=21-i~ 
"}=l )=-" '~4 

")=:'~5 
"' 1)-301 
":? )=lO? 
f l) =3') 3 
r' ,}I=.3"5 
F. ') ) =~ ? 1 
~7)=J?'? 
F3) =11\1 
~n=)'\? 

" " )=1;i~ 

71)=144 
7 2 )=14 r ) 
7 C" ) -:: ~ ~ 1 

, -'-, ) .: 1 t , , 

=; r4T C ( 
=5 TAT F ( 
-= s r\T ~ ( 
-= -:;rI\T('7( 
=<;TI\T£"C 
=<;T,\Tl( 
=STo\TF:C 
=ST4T "": ( 
-=-;T O\T t: ( 
=; TAT E ( 
=3T\T F ( 
=;T O\T F ( 
-:")T.\TF( 
= :;T~T r ( 
= <; 'f-o.'\ T r: c 
=jTAT r:: ( 
=-T 4TF( 
=<;TAT E ( 
='5TAT F ( 
=STI\T ':: ( 
::5T AH, ( 
=;TAT ':: ( 
=STATf"( 
=C;Ti\Tr( 
=SfAT F. ( 
=ST4T( 
=STATE( 
=STATF( 
=5TATF:.( 
=:>TATr:( 
=5TATJ;( 
=STATf'( 
= :> TATE:( 
=ST,\TF-( 
=S TATt: ( 
=STATE'( 
= S T A TF , 
=STAT F ( 
=5TAT _ ( 
= '-;4fAT F. ( 
=5T o\TF ( 
=STATI ( 
=STI\TFf 
=';TATf ( 
=STATr( 
=.,TATr ( 
=SJATF( 
=S TAff ( 
=STI\TF( 
=S'O\TF-( 
= ';rAT F ( 
= c:; T A Tr ( 
=s rATF ( 
=5 fo\T! ( 
= 5 fI\Tf- ( 
=<;T\Tt:( 
:- ; T .\ T I ( 

= , rl\,1£ ( 

1) =;; 1 
2)=?2 
"! , = 2 ~ 
4)=') .,\ 
'3)=25 
~ )=2F. 
7) =4 ~ 
R ) = 44 · 
1):: ~ 1 

1 0 )="12 
11) -=°3 
1 2 )= 84 
13) = 1 ; 1 
1~) = 1 '?2 
1 5 ) = 12 3 
1 ~ )=141 

17)=142 
1~)=14) 

1 ':; )=14~ 

"""' )=14': 
~ l)=l h l 
'~? ) -= 1 62 
!J)=IAJ 
~ 4)=1f.4 

25 )=1~5 
2 F,)=16t 
27)=1P.t 
~ .;n=Ip.3 

29)=2 '11 
31'1)=? 3 
.31 )=2 22 
:2 )=241 
33)=242 
! II ) = 2 / ; ~ 

~5 )=244 
3', )= 245 
.37 )= 24e 
J .~ ,= 2 1 
~q ) =26? 
'I "" = 6 3 
41)=2 ;: 1 
42 )=2 2 
41)=2':3 
~4)=',)94 

4'= ) -=2C:~ 
41')= 2::'1 1 
47)= 30 2 
49)= 3 03 
4~)=~O~ 
50)=~21 

"Jl )=~?? 
f 2)=341 
~. "! , = .3 4 2 
~ 4' -=:!4~ 
55 ) = ,'16 0'\ 
"'ii, , ::.3 ~:'5 
"i 7 ) -= , , .. 
. ~~ ) : · 3( 4 

=~FO"ll-VI\R( 
=·~r.()~I-V·HH 
=,,<FONI-VAC1( 
=~FO~I-VA~( 
="'FU~l-VO\R( 
='(F(J:-.Il-VAK( 
=~FC:NI-VAR( 
~"F O NI-V~q( 
="F['....,l-V.\~C 
='Y.F a NI-V ,~ R ( 
=V.F NI-V~q( 
=Y.FCN I-VA R ( 
= ,~C:- ,l~ l-V~ R ( 

= ·~F,.N I-V'\ R ( 
~ r. r-O '.n-V-\1( 
= ~ ~ r. ~l-V~R( 

=~FON I-VAP( 

="F.]·\j l-VtoR( 
-=:<FCN I-V..\ R ( 
-=~F ONI-VA ~ ( 
=~FC~ I-VO\~( 
=Xr:lNI-VA~( 
=Y.F JrJI-V~R( 
-=v.FLiN I-VI\ R ( 
=-.:FrJ ""'I-Vo\Q( 
=~;:nNI-VA~( 
=~FONI-V~R( 
=~FON1-VAR( 
='Y.FO"ll-Vo\....!( 
~ y.F ON 1 - V!4. -::J ( 

=":FJNI-V~1( 
= Yo FC:-.Il - V ·\.~ ( 
=~FONI -v-VH 
~Y.Ff)N I-V"..( 
=~FLJNI-VO\R( 
=Y.F "Il-V~l( 
:.. ~FO""U -V'\ K ( 
-:~I= ' .t-vto~( 
-= I - O "'I-V.\~( 
-= "t- IJ ··.u-V\R( 
::. ~F ""'-Vo\ ( 
.;: ,F 0 ru - V ~ ~ ( 
=~r(lNl-V~R( = ~FOln -V A, ( 
=y.Fr \jl-V\ ( 
="r:'l~I-V~~( = ~ f n~n -V O\R ( 
=XF~N I-Vo\~( = ~F ON l -V ~~ ( 
=XF.)""I-VA,R( 
=XFONI-VA~( 
="'FONI-V~Q( 
=~FONI-V \ \~ ( 
=~F'lNI-V\Fd 
=~rCNI-V~H 
=XFO N1 -" \ ? ( 
.;:;~t- ~,'\jl-V'\ H 
..:: ":t=O:'ll-V' : ( 

1 ) 
2 ) 
'3 ) 
4 ) 
5 ) 
6 ) 
7 ) 
'3 ) 
~ ) 

1 () ) 
1 1 ) 
12) 
1 3 ) 
14) 
1 :; ) 
1 5 ) 
17) 
1 q ) 
1 ~ , 
2'J ) 
C 1 ) 
2") 
?J) 
24) 
25) 
26) 
? 7) 
2:3 ) 
2 ~) 
:3 ~ ) 
H) 
1..') 
31) 
.3 4 ) 
35 ) 
"H) ) 

:37) 
3n 
.3q, 
4 .. ) 

41 ) 
4 2 ) 
4 '3 ) 
44) 
A C:: ) 

4A) 
47) 
4 ~ ) 
4g) 
50 ) 
51 , 
52) 
53) 
5'\) 
"}~ ) 
5 0) 
Cj 7 ) 

' \ ) 



134 

PDV level, between PDV's ~, ~,and ae might prove to be more 

revealing as a basis for comparison between speakers. 

On the other hand, its may prove to be the case that PDV distinctions 

are too gross to discriminate sub-groups of an urban speech community. 

A classification based on PDV scores is, at present, being implemented. 

The results will not be presented here. It is anticipated, however, that 

interesting comparisons or contrasts may emerge. 

Program COLLAPSE 

This program reduces the array of state scores to PDV scores. 

2 arrays are declared STARR (~ate ~ay), and PARR (!DV ~ay). 

For each case, the state arrayFN, is taken in sections which 

correspond to the extent of one PDV, and the state scores within that 

section are summed. 

FN. This sectioning applies to the vowel outs only, as for 
outs, the PDV level does not exist. Hence 343 states - see program 
COLLAPSE listing (Fig.32, p.135 and Appx. X.) 

For example, the first PDV. of OUI has 6 states (after elimination of zero-

variance states), so the first six states are summed, and the result is 

copied into the first element of array PARR. 

The contents of array PARR are output: each element of this array 

represents a ~ score (expressed as a within-OU percentage). 

As with program RAT, (cf. footnote, p.97 ), the structure of the 

linguistic coding frame, in terms of hierarchical organisation, is not 

represented in PLfl structure form: hence, where the programming needs 

to operate according to the structuring of PDVs and states within OUs, 

this structure must be embedded in the program. (I.e. the DO loop, 

(lines 25-28 ), in effect imposes the PDV level of representation on 

the state array). 
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(b) Social Data - Processing of. 

(See above, chapter 2 and Appx. B, for a description of the social 

data collected on the informants). 

The social data is transformed into a binary coding scheme for processing 

by CLUSTAN. 

The reasons for this are that: 

a) the data can be expressed numerically in binarised form as easily as 

in any other form (e.g. quantitative). 

b) CLUSTAN permits mixed mode data input i.e. a mixture of binary and 

nureeric data. Thus the 'numeric data' (in CLUSTAN terminology 

(see FN. above p.75 ) ) representing scores on linguistic variables, 

and the social data, represented in binarised form, can be processed 

simultaneously in a CLUSTAN run. 

~bere mixed mode data is used, only one data mode can be used in the 

clustering process: however, diagnostic statistics can be generated for 

both data modes. 

Thus it is possible to input a file of linguistic ~ social data 

for each informant, mask out the social data from the clustering process 

by generating a linguistic classification), and obtain social diagnostics 

directly for the linguistic clusters obtained. 

Similarly, the same data file can be input, for a clustering on 

social variables, and linguistic diagnostics of social cluste~ can be 

obtained. {In the CLUSTAN runs described below (Ch. 7 ) the mixed 

mode data facility was used. There social diagnostics of linguistic 

clusters were analysed and are discussed.) 

The following section describes the process by which the social 

coding frame was converted to a binarised form. 

A binarised version of the social coding frame was constructed, 

where each possible response to a mUltiple choice question is represented 

by one binary variable. If the response is positive to a given category, 
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the variable takes the value) (true), otherwise zero (false). 

Thus QI6 ('religion'), has three possible response categories, (which 

are mutually exclusive), so all responses given to this question (in terms 

of the categories available on the pink sheets) can be expressed using 

3 binary variables. 

e.g. Case (I) claims to be 'religiously active', 

FN. 

Case (2) " " " inactive, 

Case (3) " " " anti-religious 

Case (4) is coded 'NC 1N(i.e. data is missing.) 

The 
for 
a) 
b) 

code of NC ('non-comparable'), means that data is missing, 
this informant, on this question, because: 

the question was not asked, or 
the question was not answered. 

Fig. 33 shows how these four cases would be coded according to their 

responses to this question. 

Fig.i3. Binarisation of an unordered multistate variable. 

'Religion' 

active inactive anti 

Case " " 
2 " " 
3 " " 
4 0 0 " 

There is no need to have a binary variable for NC codes, as non-

respondents are distinguished from respondents on at least 1 binary 

variable. 

We are treating the three possible responses to this question as 

bearing no ordinal relationship to each other; that is to say, the three 

responses are not treated as points on a continuum from positive religiosit 

to hostility to religion, but as three distinct attitudinal states which 

are, socially, qualitatively different from each other. In other words, 
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the variable 'religion', is an unordered multistate (UM) variable. 

Wishart (1969 (pp.3-4»gives the example of hair-colour as an 

unordered multistate va~iable. If four qualitatively different categories 

are chosen (for coding purposes) out of the spectrum of possible shades: 

say, 

white I red I brown I black, 

then it must be made certain that no ordinal relationship is implied by 

the codes chosen to represent the four categories. If, for example, the 

numeric codes I, 2, 3, 4, are used, then a stronger numeric relationship 

is implied between 1:2, than 1:4. But there is no stronger relationship 

between white:red, than white:black: 

The coding scheme shown for the variable 'religion' does not imply 

any such ordinal relationship. 

However, with quantitativeFN variables, there is an ordinal relationship 

between the categories, e.g. age - 17-21 is more closely related to 

age = 21-30 than to age = 71-80. 

FN. Here we are reducing a continuous scale to a series of binary variables, 
which correspond to '~o~nded classes', e.g. age bands, 17-21 etc. 

This type of variable is ordered multistate (OM). Using a similar binary 

scheme (i.e. one binary variable for each coding category) we can preserve 

the ordinal relationships by coding a 1 for all binary variables up to 

the category in which the response is coded. Fig.34 shows how 3 cases, 

aged 18, 22 and 73 respectively, are coded on age as an ordered multistate 

variable. 

Fig. 34 Age: an OM variable 

17-20 21-30 31-40 41-50 51-60 61-70 71-80 80+ 

Case 1 0 0 0 0 0 0 0 age=18 
2 0 0 0 0 0 0 age=22 
3 0 age=73 
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If there was a 1 only in the category in which the response falls, 

then these 3 cases would be equally similar in terms of matches and 

mismatches across these 8 binary variables (2 matches and 6 mismatches 

between each pair FN). 

FN. A match is where both cases have a I, or both have a zero,on a given 
variable. A mismatch is 1,0, or 0,1. 

However, if the variable is treated as OM, as shown here, then the 

differences between the pairs is preserved. i.e. Case I and Case 2 are 

different, but more similar to each other than to Case 3. And Case 3 

is further from Case 1 than Case 2. 

Case I: Case 2 (l mismatch, 7 matches) 

Case I:Case 3 (6 mismatches, 2 matches) 

Case 2:Case 3 (5 mismatches, 3 matches) 

This convention. then. preserves the relative distance between the 

pairs, on the grounds of e.g. age differences (See fig.35.) 

Case 1 ~case3 

Case 2 

Fig.35. Distance on an ordered multistate variable. 

N.B. With OM variables, the meaning of each binary variable can be 
reinterpreted as 'greater than'. 

E.g. Age: the eight binary variables sho~in Fig. 34 can be reinterpreted 

as: 

)J6, )20, )30, and so on, 

so Case I and Case 2 are matched on the first variable ( > 16) 

score a mismatch on the second ( > 20) and are matched on the remaining 

six ( ...,) 30, '"') 40 etc.). 
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Multiple Coding (MC) 

To return to the hair colour example, the coding categories for this 

variable are mutually exclusive, (i.e. we assume that a redhead by definition 

does not have black hair). 

However, in some unordered multistate variables, more than one 

category may be applicable simultaneously. 

For example, the (hypothetical) variable 'countries resided in for 

at least one year' could have as many responses as the informant has years. 

Here we can use mUltiple coding, that is, enter a 1 under as many categories 

as are appropriate. 

QI 'cityness of informant' is an MC variable. 
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The application of the social space to the sample. 

Each possible response to the questions shown on the social coding 

sheets was treated as one binary variable. So, 1 is scored for every response 

which is coded positively, and zero is scored for each coding category to 

which the informant does not respond positively. There are, in total, 297 

possible responses across the 38 questions, giving a total of 297 binary 

variables. Approximately half of these responses were coded at least once 

for this sample, (153 altogether). The remaining 144 categories are redundant 

for this sample. (A coding category is redundant for a given sample if all 

members of that sample score zero on it. E.g., if there is no case 

(informant) in the sample who has resided in UK Wales, response 6 of Q2 is 

redundant. (All cases score zero.) This coding category produces 'noise' 

in the classification, as all cases will score spurious amilarity on this 

irrelevant variable. The inclusion of many redundant coding categories such 

as this leads to similarity levels across the whole sample being artificially 

inflated. There are two ways of avoiding this: 

1. by omitting redundant variables; 

2. by including them, but masking them from the clustering process. 

The first option has the advantage of reducing the dimensionality of 

the measurement space, in that the total number of variables is reduced. 

,bus input data files are smaller, processing time is reduced, and only 

relevant diagnostics are produced. (The cluster analysis program used here, 

CLUSTAN, prints diagnostics for all variables, regardless of whether some 

of them have been masked.) If initial analysis shows that a number of 

variables are redundant, and will therefore contribute nothing to the 

classification process, then it is more convenient to have diagnostic infor­

mation printed only for those variables which are actually used in the 

clustering. Thus the choice may be made to eliminate the redundant variables 

from the data, as far as that sample is concerned. 

However, if one wishes to introduce more cases at a later date, and 
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cluster a larger sample, it may turn out that variables which were redundant 

for the original sample are not redundant for the new sample. Exclusion of 

these variables will then cause difficulties. The space, which was reduced, 

will then have to be ex~ended to include these variables, or else the 

information contained by them will have to be discarded. However, this is 

not a very serious problem; it is possible to include new coding categories 

(actually old discarded ones) by a similar process to that used to incorporate 

'new' variables into the linguistic coding frame. There is no problem of 

comparability between the original, and the new members of the sample, as 

it is known that the original members all scored zero for these variables. 

I decided, then, to take the first option, and omit those variables 

which were redundant for this sample. 

So, the sample was classified socially on the basis of the 153 binary 

variables derived from a reduced version of the coding scheme shown in 

appendix B. Table I (pp.142-146) lists the variables in this reduced coding 

frame, following the elimination of redundant coding slots. The leftmost 

column shows the question number, corresponding to the social coding sheets 

(appendix B), the next column shows the response code, then the CLUSTAN 

variable code is given, and then the definition of the response category is 

given in the right-hand column. Table 2 (p.147) shows the number of coding 

categories in the original coding fra~ and the reduced coding frame, for 

each of the questions. 

Questions 13, 16, 19 and 24 were also eliminated, as response rates 

for these questions were less than 20 (out of 52). Low response rates cause 

similar classificatory problems to those caused by redundant variables, in 

that informants are mis-classified as similar on the pasis of absence of 

the same response. ('Zero matches'.) The lower the response rate, the more 

distortion is introduced. Table 3 (p.148) shows the response rates for this 

sample, for the 38 questions. 
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~able showing values of CLU3TAN binary variable codes (social 

classification), and corresponding responses (social coding sheets.) 

Questionaire 
number 

1. 

Citiness of 

informant 

2. 

Regionality 

of informant 

3· 
Regionality 

of both 

parents 

4. No. moves per 

5 yr. period 

before marriage 

5. ditto 

(after marriage) 

6. 
age 

resp- bin. re~ponse value 
onse code 
code CLUS 

T 

L 

3 
4 

1 Tyneside 

2 London 

3 Harket town 

4 other 

M 144 Herseyside 

LS 145 Leeds 

1 

2 

3 

5 UK Northern 

146 UK E & W Ridings 

148 UK NW 

5 147 UK Midland 

8 6 UK London, SE 

1 

2 

3 
4 

7 UK Northern 

8 UK E & W Ridings 

149 UK NW 

9 UK N Nidland 

5 10 UK Midland 

8 11 UK London, SE 

11 12 UK Lowlands 

1 

2 

7 

1 

2 

3 

1 

2 

13 none 

14 less than five 

15 five or more 

16 none 

. 17 one 

18 two or more 

19 17-20 

20 21-30 

3 21 31-40 

~ 22 41-50 

5 23 51-60 
6 24 61-70 
7 25 71+ 

1 26 male 

2 - female 



Table 1 cont. 

Questionaire 
number 

8. 
School 

leaving 

age 

Tertiary 

and further 

education 

10.Attitude to 

education (of 

self) 

11.Attitude to 

education (of 

children) 

12.Distinction 

education boysl 
girls. 

14. 

Parental 

control 

of children 

marital 

status 

nuclear 

family 

size 

resp- bin. response value 
onse code 
code CLUS 

2 

3 
4 

5 

7 

27 

28 

29 

30 

31 

legal minimum 

" " 
" " 
" " 
" " 

32 none 

+ 1 yr. 

+ 2 yrtS. 

+ 3 yrs. 

+ 5 yrs. 

33 Uni/Poly. full time 
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1 

2 

3 

4 

6 

7 

34 Tech./nursing/secretarial, full time 

35 Coll. Ed. 

1 

2 

3 
4 

1 

2 

3 

36 day release 

37 night school 

38 negative 

39 RRR, basic skills 

40 liberal 

41 job orjented 

42 negative 

43 RRR, basic skills 

44 liberal 

4 45 job oriented 

y 

Ii 

1 

2 

3 
4 

1 

2 

5 

1 

2 

3 

4 

46 distinction made 

47 no distinction made 

48 direct verbal 

49 indirect verbal 

50 direct physical 

51 indirect physical 

52 married 

53 single 

54 widow 

55 1 

56 1+ 

57 2+ 

58 3+ 

5 59 4+ 

6 60 5+ 

7 61 6+ 



Table ) cont. 

Questionaire 
number 

18. sex 

distribution 

of children 

20.distance of 

spouse's prim­

ary regionality 

21. mic. envir. 

preference 

(sentiment) 

22. ditto 

(housing) 

23a. decor 

'taste aspiration 

23b. financial 

commitment to 

23a. 

25a. env. pref. 

(type/size) 

25b. ditto 

(location) 

resp- bin. response value 
onse code 
code CLUS 

1 

2 

3 

1 

2 

3 

1 

2 

4 

1 

2 

3 

62 zero l;>ias 

63 F bias 

64 1-1 bias 

65 same local authority 

66 less than 50 miles 

67 50+ miles 

68 neutral 

69 dissatisfied 

70 satisfied stable 

71 neutral 

~2_ dissatisfied 

73 satisfied ambitious 

4 74 satisfied stable 

1 

2-
75 

76 

good 

bad 

3 77 indifferent 

1 

2-3 

4-5 

6-7 

8-10 

1 

2 

3 

1 

2 

78 

79 

80 

81 

82 

83 

84 

85 

86 

87 

low 

I 
high 

rural 

smaller town 

same size 

south .... 

north 

3 88 nowhere else 

5 89 abroad 

26. positively Y 

Tyneside conscious N 

90 yes 

no 

27. 1 

social 2 

integration 3 

with 4 

neighbours 5 

91 

92 

93 

94 

95 

non-existent, unknown 

" , known 

antagonistic 

minimal, pleasant 

cordial 

6 96 intimate 

144 



Table I cont. 

Questionaire 
number 

28. 

father's 

occupation 

informant's 

present 

occupation 

30. 

informant's 

first 

occupation 

31. job 

preference 

32. 

job 

satisfaction 

33a.daily 

exposure to 

TV, radio 

33b. ditto 

intensity/ 

selectivity 

resp- bin. response value 
onse code 
code CLUS 

145 

3 97 inspectional, supervisory, non­
manual, higher grade 

4 

5 

98 ditto, lower grade 

99 skilled manual, routine non-manual 

6 100 semi-skilled manual 

7 101 unskilled manual 

2 

3 
4 

5 
6 

152 

102 

103 

104 

105 

managerial & executive 

~ ____ (see same re~ponse codes -

Q. 28) 

7 106 

2 

3 
4 

5 
6 

7 

I 

R 

1 

2 

3 

1 

2 

4 

... 
153 

197 

108 

109 

110 

111 -
112 prospects/thinking/self-deciding 

113 immediate gain/learnt/supervised 

114 high 

115 ! 
116 fairly low 

117 predom. radio 

118 " TV 

119 TV only 

5 120 non-own 

1 

2 

3 

121 intense/non-selective 

122 intense/selective 

123 non-intense/non-selective 

34. hobby-drinking Y 124 yes 

125 yes " housework Y 

35. leisure 

satisfaction 

1 

2 

3 

126 satisfied 

127 partially" 

128 disgruntled 
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Table 1 cont. 

Questionaire resp- bin. response value 
number onse code 

code CLUS 

36. 1 150 I .... 

hobbies 4 129 

5 130 

7 131 

8 132 (see social coding 
10 151 sheets) 

12 133 

15 134 

16 135 

22 136 -
37.connection 1 

, 
137 approve 

occupation/ 2 138 accept 

voting behaviour 3 139 dissaprove 

38. 1 140 Conservative 

voting 2 141 Labour 

preference 6 142 refusal 

7 143 floater 
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Table 2. 

Table showing the number of coding categories in the original 
social coding frame, (0), and the number of binary variable& 
in the reduced codin, frame, (r), by questioll. .umber (q), as 
on the social coding &heets. /' 

.\ 

q 0 r q 0 r 

1 5 6 24 6 
2 26 5 25a 4 3 

3 26 7 25b 4 4 

4 8 3 26 3 1 

5 8 3 27 , 7 6 

6 8 7 28 8 5 
7 2 1 29 8 6 

8 8 5 .. 30 8 6 

9 9 6 31 9 2 
10 6 4 32 5 3 
11 6 4 33a 6 4 
12 3 2 33b 4 3 

13 3 34 3 2 

14 5 4 35 4 3 
15 5 3 36 25 10 

16 4 37 4 3 
17 8 7 38 8 4 

18 4 3 TOT 297 153 
19 7 
20 4 3 
21 5 3 
22 5 4 
23a 4 3 
23b 11 5 



Table 3. 

Response rates on social questions. 

Q RR Q RR 

1 52 23a 44 

2 52 23b 44 

3 51 24 16 • 
4 48 25a 45 

5 42 25b 47 

6 52 26 43 

7 52 27 45 

8 50 28 46 

9 51 29 45 

10 48 30 49 

11 46 31a ~ 16 

12 22 31b 16 

13 16 • 31c 11 

14 32 32 37 

15 52 33a 45 

16 10 • 33b 45 

17 52 34 40 

18 38 35 47 

19 19 • 36 52 

20 38 37 29 

21 51 38 37 

22 49 

Q= question number (see social coding sheets.) 

RR= response rate out of 52. 
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• signifies questions with RR<20 t which were eliminated • 

(Q1s 31a, 31b t 31c were not eliminated. For explanation 

see p. ). 
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The application of the social coding frame to the sample. 

{Unless otherwise specified, the coding categories shown in appendix B 

are unchanged for the reduced SocSp, apart from NC slots: (see below 

QQ. (Cityness. (UM, MC) This variable refers to the size and type of 

community to which the informant belongs, and has belonged in the past. 

There were originally 5 coding categories for this variable: 

1. city 2. big town 3. market town 4. other ? NC. 

In the sample under study, 49/52 were coded on the first category. However, 

these informants had resided in different cities, including Tyneside {the 

majorityXalso London, Merseyside and Leeds. The original coding scheme for 

this variable was therefore extended to cover these distinctions. The 

variable now includes two kinds of information; that specified by the 

original definition of its variants, and also information concerning the 

particular cities which informants have resided in. Those variables in the 
, 

original paradigm which were not taken up by any members of the sample are 

eliminated (big town). The variants are now defined as: citiness - city 

(sub-categorised into Tyneside, London, Merseyside and Leeds), market 

town/other. 

There is no need to include the NC {non-comparable)category. If it 

were included, then absurd matches would occur. Informants for whom this 

data was not available would score a positive match on the NC category, if 

it was included: this is obviously unnecessary and biassing. (This 

elimination of the NC slot applies to all questions). 

Q2. Regionality. (UM, MC) Informants are coded according to the regions 

(of UK, and abroad) in which they have lived (for at least 2 years of their 

life). Some of this information will overlap with the categories added to 

QI, however, information on particular cities which have been resided in 

could provide a finer classification than those regions specified under 

regionality. 
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Q3. covers the same information as Q2, but for the parents of the informant. 

(UM. Me). 

Qs. 4,5. Number of moves per 5-year period before (and after) marriage. (OM) 

This information provides a measure of the geographic mobility of informants. 

There is a problem of logical dependency with this variable. Any positive 

responses on this variable must correlate with some variants of marital . 

status (married, widowed, divorced) as single informants will not be coded 

on this variable. (One way round this problem is to reinterpret these two 

questions for single informants. e.g. by taking some comparable period such 

as the ten years after they left school). 

There were originally 8 coding categories for both Qs 4 and 5. The 

only categories which were coded positively for any members of this sample 

were (Q4) number of moves = none, = 2, and - 5+. Q4 was restructured (for 

this sample) with 3 coding slots: zero moves/I - 3/3+ moves. Q5 had 3 

positively coded variants, number of moves - none, - 1, and - 2+. 3 

categories were defined for this sample, then, which are zero moves/I move/2+ 

moves. 

Q6. Age. (OM) For the 7 age groups defined (see appendix B) we need only 

6 binary variables to express all the distinctions. This is because age is 

an ordinal scale, which is coded as an ordered multistate variable (see 

above, p. J38) Since all members of the sample are over J6, the first 

variable (17-20) is redundant (i.e. everyone will score a ] on this state). 

The 6 binary variables can be interpreted as 20+, 30+, 40+ etc. So, an 

informant in his thirties will be coded positively on 20+ and 30+, but 

will be coded zero on the remaining categories. Informants aged 17-20 are 

distinguished by scoring zeros across all age categories. 

Q7. Sex. One binary variable is used, 1 is coded for male, 0 for female. 
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Q8. School leaving age. (OM) This variable indicates whether informants 

left school before the legal minimum age (Ima), at the Ima, or for how many 

years they stayed on at school beyond this point. 

Q9. Tertiary and further education. (OM) This information, combined with 

that coded under Q3, provides a fuller picture of educational history than 

would, for example, an education index which only takes into account the 

point at which education ceased. 

Qs. 10, 11. provide attitudinal data concerning the informant's attitude 

to his own education and to the education of his children. (UM, MC). 

Q12. Distinction between education of boys and girls. 

It is considered that the responses 'yes' and 'no' both indicate positive 

attitudes which differ qualitatively from the response 'don't know' (= in­

difference?), and from each other. Two binary variables are sufficient to 

express these 3 distinctions, which are coded thus: 

Yes No 

o (yes) 

o 

o o 

(no) 

(don't know) 

Q13. Positive distinction between parental and school roles. With a response 

rate of only IS/52, this variable was not included for this sample. 

Q14. Parental control of children. 'Direct verbal' control means, for 

example, 'don't do that!', whilst indirect verbal control involves, e.g. 

explanation of why 'doing that' is not a good idea. 'Direct physical' covers 

slapping, smacking, etc., whilst 'indirect physical' includes, e.g. not 

allowing the child to go out to play. "(UM, MC). 
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Q15. Marital status. The only categories applicable to this sample are: 

married/single/widowed. (UM). 

Q16. Religion. This variable was omitted. 
, 

(Response rate" 10/52). 

Q17. Nuclear family size. (OM) This factor is of sociological interest: 

social behaviour and psychology are affected by family structure. It may 

be that language behaviour is affected by the size and constitution of the 

family group. For instance, parents may have a qualitatively different 

lifestyle than childless couples of similar age; this may influence speech 

behaviour in ways which can be traced. Additionally, (apart from the inter-

influence of the generations), members of large families may behave 

differently (linguistically) from, e.g., those living alone. 

Q18. Sex distribution of offspring. (UM) Parents of girls may be differently 

influenced by interactions with their children than parents of boys. 

Q19. Average age gap between offspring. This variable combined with information 

from Qs 15 and 17 gives a measure of the duration of parents' exposu~e to 

members of the younger generation within their own household. This variable 

was not included, however, as the response rate for this sample was only 

19/52. 

Q20. Distance of spouse's primary regionality. (OM) Marriage to someone 

from a different geographical background/speech community may influence the 

informant's speech behaviour. This information may also relate to the 

informant's (or spouse's) degree of entrenchment in the local community, or 

their geographical mobility, in the past. 

Q21. Micro-environmental preference in terms of sentiment. (UM) The 
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informant is requested to indicate his response to the locale, the 

neighbours, and his degree of identification with the local community, or 

his aspirations towards a different (better?) local environment. (The 

facts concerning local environment are sociologically significant; so too 

are the informants response5to his situation). 

Q22. relates specifically to the informant's response to his environment 

in terms of his satisfaction, or otherwise, with his housing conditions. (UM) 

Q23. Interviewer's assessment of decoration, furnishing and domestic equipment. 

Section (b) of this question (see appendix B) originally provided a 10-

point rating scale to represent informants' financial commitment to their 

'taste aspiration'. If all these categories were included then we would 

need 10 binary variables to express these distinctions. Such a large number 

of binary variables for only ~ social feature would assign excessive 

weight to it in the classification; therefore this variable was reduced to 

a 5-point scale. These 5 distinctions cover the categories shown on the 

coding sheets as I, 2-3, 4-5, 6-7, 8-10. 

Q24. Rateable value of dwelling. This variable provides information relating 

to social status. However, the response rate was 16/52, and it was therefore 

not included in the classification of this sample. 

Q25. Macro-environmental preference. (UM) Informants are asked what size/ 

type of community they would prefer to live in, and also which part of the 

country they prefer. Several informants responded to section (b) by stating 

they would prefer to live abroad. This is a sufficiently different response 

to, e.g. the 'north', or 'nowhere else', to warrant the inclusion of an 

additional coding slot here. 

Q26. Informants are coded on presence or absence of positive Tyneside 
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consciousness. A sense of identification with the (wider) community of the 

conurbation (cf. Qs 2], 22, 25, 27), may be a significant social psychological 

factor influencing degree of localisation of speech. 

Q27. concerns the nature, and degree, of the informant's social involvment 

with his neighbours. (UM, Me). 

Qs 28, 29, 30. occupation. (UM) The informant's present occupation, and 

his first occupation after leaving school, and also his father's occupation 

are coded according to Hall and Jones' (]950) 'Social Grading of Occupations', 

which correspond to the Registrar General's Occupational Gradings thus: 

Hall and Jones Registrar General 

]-2 I upper and middle class 

3-4 

5 

6 

7 

(Stevenson: 1911). 

II 

III 

IV 

V 

intermediate 

skilled workmen 

intermediate 

unskilled workmen 

(See co~ing sheets (appendix B) for full definitions of Hall & Jones' 

categories) • 

These codings give a detailed pi cture of the informant's present 

occupational status, and whether this represents an increase, or a decroo~ or 

stability in relation to first occupation, and in relation to his father's 

occupational status. 

Occupation group ] was not represented in this sample, therefore this 

category was not included in the classification. 

Q3]. Job preference. This question complements the analytic sociological 

information derived in Q28, by soliciting the informant's occupational 

desiderata. There were 3 polar distinctions specified in the original 



coding scheme: 

(a) prospects versus immediate gain; 

(b) thin~ing (new elements) versus learned (no new elements); 

and (c) supervised versus self-deciding. 
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These represent qualitatively different aspects of a job situation, concerning, 

respectively, motivation for work being related to career ambitions or 

financial returns; the degree of intellectual challenge preferred; and the 

desired degree of initiative attached to a job. However, the response rates 

on these 3 subsections were quite low: 16/52; 16/52 and II/52 respectively. 

As more informants (24) responded to at least one of these sub-questions, 

though, it was possible to devise a single variable which represents a 

reduction of this information, but which avoids dispensing with it altogether. 

This variable was defined on the basis of the expectation that there would 

be an association between the first responses to sections (a) and (b), 

and the second response to section (c). I.e., informants who cite prospects 

rather than immediate gain as motivation are also likely to prefer a job 

which involves thinking and a degree of autonomy, to one which is routine, 

and supervised. The combination of responses (a)I/(b)I/(c)2 was arbitrarily 

labelled 'I' (for initiati~e), and the combination (a)2/(b)2/(c)1 was 

labelled 'R' (routine). 

Criteria for assigning informants to categories 'I' or 'R' on the grounds 

of their responses to Q31 (a), (b) and (c) were then laid down thus: if 

all 3, or 2 out of 3 of the responses coded fit in with the typical 'I' 

pattern, then this informant is coded 'I', (and similarly for the typical 

'R' pattern). If only 2 responses are coded (the 3rd being NC), and the 

responses conflict with the typical patterns, then the informant is assigned 

to 'I' or 'R' on a priority basis, where (b) takes precedence over (c), 

which takes precedence over (a). If 3 responses are coded, and there is a 

conflict between typical 'I' and 'R' responses, then the category ('I' 

or 'R') which is represented by 2 of the 3 codings is selected. If only one 
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response is coded across the 3 sections, then if that response is a typical 

'I' response the informant is coded 'I'. otherwise 'R'. 

This scheme does not fulfil the original intentions embodied in the 

structure of Q3J; however, it is a preferable alternative to omitting the 

information which was elicited. 

Q32. extends the general attitudinal information derived from Q31 with 

respect to the informant's actual job situation. Job satisfaction, then, 

shows how far the informant's occupation as coded under Q29 fulfils his 

job preferences coded under Q31. (OM) 

Qs 33. 34 and 36 (UM, Me) deal with leisure activities and hobbies. Given 

the immense range of possible responses to Q36, a classification was devised 

which includes all combinations of the following distinctions: active/ 

sedentary; expensive/cheap; rule-based/non-rule-based; and club/non-club. 

Also the attribute 'collecting' is included. These distinctions yield 24 

combinations. Examples of the way in which various hobbies are classified 

according to this scheme are shown under Q36, social coding sheets (appendix 

B). 

Q35. Leisure satisfaction, shows how far the informant is satisfied with 

his leisure activities. (OM) 

Q37. shows whether the informant believes that political allegiance should 

be associated with occupational group membership. (UM) 

Q38. Voting preference. In addition to indicating informants' political 

allegiances, this question, taken together with the previous one, and with 

Q29 shows whether the belief that occupation (or class membership) should 

be connected with voting behaviour is associated with particular levels of 
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occupational status in the sample, and whether, for instance, approval of 

such a connection is more strongly associated with the Labour than the 

Conservative vote. (UM) 

The social coding frame which was applied to the present sample of 52 

Tyneside informants, then,is defined by social features shown in appendix B, 

subject to the modifications outlined above. To summarise these modifications; 

1. 4 questions were eliminated because of low response rates; 

2. redundant categories were eliminated; 

3. some questions were restructured, e.g. Q23b was reduced from a 

10- to a 5-point scale, as the original distinctions were over­

differentiated, and too much classificatory weight would have been 

assigned to this feature if all the 10 distinctions had been preserved; 

4. the 3 distinctions in Q31 were collapsed into one, as response 

rates were too low on the separate sections of this question; 

5. new categories were incoporated, where relevant, (e.g. to 

accommodate the response 'abroad' (Q25 - macro-environmental preference). 

These modifications were made specifically for this sample: they do not 

represent a restructuring of the TLS coding frame per se, but just a fitting 

of this coding frame to the particular sample under study. 

The social data for the sample of 52 informants was coded with respect 

to the 153 binary variables of the reduced SocSp, according to the OM, UM 

and MCmnventions (see above, pp. 136 - 140) punched on cards, and 

input to MIS line files. 

The social data file was then appended to the processed linguistic data 

file for each informant, to be used in the CLUSTAN mixed mode data runs. 



CHAPTER 5 
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THE SOCIAL CHARACTERISTICS OF THE SUB-SAMPLE 

The sub-sample of 52 consists of 45 informants resident in Cateshead, 

(the largest centre of population on the south bank of the Tyne) , and 7 

informants from Newcastle upon Tyne, (north bank). 

The Cateshead (Phase 3) sample was drawn as a stratified sample, the 

stratifying factor which was used is "rateable value per dwelling by polling 

district" (Pellowe, Nixon, Strang & McNeany (1972: p.27». 150 informants 

were selected, from 5 strata. The 45 Gateshead informants (in the sub­

sample of 52 under investigation here) exhaust the 2 lowest strata of the 

sample in terms of this stratifying factor. These strata are defined 

thus: 

Stratum 4: rent K £4+ per week (11 informants), 

Stratum 5: other council house (34 informants). 

Our expectation, then, is that these 45 informants will display some 

characteristically working class social attributes, if the stratifying 

factor is a reliable index in relation to social class. 

The other 7 informants (distinguished by the 'X, prefix to their 

mnemonics, e.g. 'XFULT'), are part of the Phase 2 sample, drawn from the 

C.B. of Newcastle upon Tyne. Unfortunately, the data for the entire 

Newcastle sample was not available for processing when this research was 

begun. 

The Newcastle sample was drawn by the 'clustering method' of sampling, 

(Moser: 1958), where every ~th name from some relevant list, (in this case, 

the Electoral Register) is selected. 

The sub-sample of 52 informants dealt with here, then, in no way 

constitutes a random or representative sample of the statistical population. 

This investigation is concerned with sociolinguistic variability within 

one (broad) social class, (as defined by the index used). 

The informants from Newcastle are included as a test component, for 

2 reasons: 
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i) by introducing informants from the other side of the Tyne, we 

can test for geographical correlates of linguistic variation, 
. 

and ii) by introducing an element which is partially non-working class, 

we can discover whether and how far, the different social classes 

tend to cluster separately (on social, and linguistic features).FN 

FN. If, for instance, the working class element of the Newcastle sample 
clusters with the Gateshead informants, then we can surmise that 
geographical factors are less significant than social class factors 
in this case. 

The following section gives a brief account of the social profile of 

the sub-sample of 52 informants, in terms of sex, age, education and 

occupation. 

h b 1 f 52 . f FN . f 25 f 1 d 27 T e su -samp e 0 1n ormants, conslsts 0 ema es an 

males, ranging in age from 17-21, to 80+ years, and ranging in educational 

background from those who left school at the legal minimu~ age (and have 

undergone no further education), to informants having taken full time 

university or polytechnic courses. 

FN. Hereafter referred to as 'the sample'. 

Six occupational groups are represented, groups 2 through 7. (See 

above p. 154 for definitions of occupational groups). 

The shaded histograms (Figs. 36, 37, 38 (p.160». 

show the distribution of the sample with respect to age groups, education 

level, and occupational groups respectively, in terms of the proportion (%) 

of the sample belonging to each category. 

Thus, 10% of the sample belong to age group I, (17-20), 25% to age 

group 2 (21-30), and so on. 
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The age distribution of the sample. (Fig. 36). 

The age distribution for the sample is positively skewed, with m6d~ 

at age groups 2 and 4 (21-30, 41-50). 67% of the sample fall into age 

groups 2 through 4, i.e. are in between the ages of 21 and 50. 

The distribution of the sample across education index categories. 

The education categories (as in Fig. 37 ) require some explanation, 

as these represent a collapsed form of the categories shown on the social 

,coding sheets. (See above,p.1S1 & ~x.B). The coding sheet categories 

were used for the CLUSTAN runs, but for the purposes of these diagrams I 

have used a simpler index of educational attainment. This index is based 

on the terminal point at which the informan~s education ceased, thus the 

categories are to be interpreted as.: 

a - left school at legal minimum age (l.m.a.), no further education 

(henceforth 'f.e.'); 

b extended secondary education: no f.e. (i.e. stayed on at school 

beyond legal minimum leaving age); 

c - education continued into working life, (block release, day release, 

self-taught, correspondence courses, night school); 

d full time technical college, nursing, secretarial college; 

e - full time academic training: college of education, university, 

polytechnic. 

This index covers the information derived in Q's. 8 and 9 (see 

social coding sheets, Appx. B. 

information in 2 ways 

) but represents a reduction of that 

i) categories have been conflated; 

ii) intermediate educational history is ignored. 

In the social space which is the basis for the CLUSTAN classifications, 

important distinctions which are m.st to this index are retained. For 

example (see ii) above), there may be a significant distinction between 

ORMST, who left school at the legal minimum age, but proceeded to study 
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at night school, and through day release, and TURRL who also proceeded to 

further study (night school), but who had stayed on at school two years 

beyond the legal minimum leaving age. This distinction is preserved in 

the social space, but such distinctions are ignored here for the sake of 

graphic simplicity. 

The shaded histogram (Fig. 37 ) shows that the majority of informants 

in the sample left school at the legal minimum age (63%). Category b, 

(extended secondary education) has 0% representation because all informants 

who stayed on at school ~ proceeded to f.e. of some description. Thus, 

one or more extra years at school was not, in any case, the terminal point 

in an informant's educational history. 

Of the 37% who were educated beyond the legal udnimum requirements, 

25% furthered their education by block release, day release, correspondence 

courses, night school, or were self-taught. 

6% were trained full time at technical or secretarial college, or 

in nursing. 

6% attended college of education, university or polytechnic (full time). 

The distribution of the sample across occupation groups. 

The shaded histogram (Fig~~160)shows the distribution of the sample 

across occupation groups 2 through 7. 

Here there is a negative skew, with group 5, (skilled manual and 

routine non-manual) and group 7, (unskilled manual) showing modal tendencies. 

This bias in the sample results from the fact that, of the 200 informants 

(drawn originally as a representative sample), 45 of the 52 whose data 

were aveilable for processing are overly representative of the working 

c1,ass strata of the Gateshead sub-sample. 

Given that these 52 do not constitute a random sample of the population 

of Tyneside, then the social characteristics of sub-groups (clusters) 

must be constructed on the basis of expected values based on the characteristics 
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of this whole sub-sample. 

Thus the histograms showing the within-cluster distributions across 

coding categories (for age, education and occupation) are meaningful in 

relation to the sample distribution across the same attributes. " (See 
I 

I 

below, PP.h67ff .) 

The Social Space: a clustering of 52 informants. 

The sample of 52 informants was analysed by clustering methods, in 

terms of the social attributes outlined above, (pp. (49-157). 

(See above, pp. 105ff. for a description of CLUSTAN). The CLUSTAN options 
used were: 

(i) Distance coefficient: Binary Euclidean Distance (hereafter D), 

defined as: 

D = b + c I a + b + c + d, 

i.e. total number of mismatches in each pair-wise comparison, over the 

total number of attributes;FN 

FN. where a, b, c, d refer to the standard 2-way contingency table, i.e. 

+ 

+~ 
-~ 

(ii) Clustering algorithm: Ward's method, (minimisation of Error Sum of 
t 

Squares between clusters - see above, pp. 106-107). 

Fig. 39 (p.164) shows the fusion tree output by CLUSTAN, and summarises 

the fusion process resulting from the classification of the sample on 

social attributes. 

The first decision to be taken involves the question of how many 

clusters are present. 

In other words, which point on the scale of increasing values of D 

should be taken as the cut-off point, (which defines the number of clusters 
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identified, and the membership of those clusters). 

Given the known characteristics of the sample (see above pp.J58ff.) 

with respect to the selection criterion for the Gateshead sub-sample, we 

may expect that these 45 informants will cluster into two groups. The 

inclusion of the Newcastle sub-sample may produce a third cluster. So, 

the 3-cluster (hereafter, 3-K) level may be a useful level at which to 

examine the constitution of clusters, (in terms of cluster membership, 

and diagnostic statistics for variables with respect to these clusters). 

The optimum cut-off point may be identified where the number of 

clusters does not change across a wide range of increasing values of D, 

that is, the threshold value of D i;creases sharply before another entity 

(or cluster) can join any of the clusters currently existing. Fig.40(p.166) 

plots the number of clusters present for increasing values of D. It will 

be seen that the first plateau (indicating stability of the number of 

clusters currently present) occurs at the 3-K level. There is, then, a 

relatively large jump in the value of D, between the fusion resulting in 

3 clusters, and that resulting in 2 clusters (0.J34). This region, then, 

is the first break point in the dengrogram, (cf. Fig. 39 (p.164». 

There is also a significant plateau at the 2K level. This division 

of the sample into 2 groups, then, must also be considered as a potentially 

useful division. However, as will become apparent in the discussion of 

the properties of the social clusters, the two groups which fuse into 

one at the 2-K level ( SocKy and SocKz) (see below, pp. 167ff. ) display 

very different distributions with respect to age, occupation and education. 

These distinctions would be levelled if these 2 clusters are allowed to 

merge (i.e. at the 2K, rather than the 3K, level), and the distinctions 

of these two groups from each other, and from the other social cluster, 

would be submerged. So the 3-K cut-off point was chosen. 

The 3 clusters are designated SocKx (~ial ~~), SocKy, and 

SocKz respecively. (See Fig. 39 ). There are 27, J5 and 10 informants 
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respectively in thepe three clusters. 

These three clusters are now analysed with respect to their distributions 

across age and occupation groups, sex, and education (education index) as was 

the total sample (see above, pp. 1159-163). 

FN The distribution of age groups across clusters. 

FN. See my remarks above (pp. 8ff. ) on the inadequacy of social 
indices based on single (or few) social factors. The distributions 
of social attributes across the clusters identified shows that these 
remarks were well founded, in that different social variables divide 
the sample differently, and clusters are not discriminated by any 
of them absolutely. .. 

Fig. 41 derived from Table 4 p.169) shows the percentage frequency 

representation of each age group across the three social clusters (x, y, z). 

When compared with the age profile of the whole sample (Fig.36 p.160) 

these distributions suggest that the variable ~ must be associated with 

other variables in the social space. 

Fig. 42 (derived from Table 5 ) shows the percentage difference 

between the sample expectation and the observed frequencies in each cluster, 
. 

for each age group. 

(Bars above the horizontal axis indicate that there is a higher 

percentage of members of that age group within the cluster, than in the 

whole sample; bars below the horizontal axis show that there are relatively 

fewer members of this age group in the cluster than in the sample.) 

We find that SocKx is relatively deficient in younger informants, 

(17-40). and has a higher concentration of 41-50 year olds than sample 

expectation, (10% more 41-50 year olds than the whole sample). 

SocKy, on the other hand, is biased towards younger informants, 

particularly age gro~ps 2 and 3, (21-40). All but one of the informants 

in SocKy is under 41 years old. (Actual frequencies, percentage frequencies 

and percentage differences are shown in Tables 4 & 5.) 
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Table 4. 

Raw and %a~e freguencies for age grouEs across social clusters l 

(X,Y,Z)I and across sample (52 speakers. ) 

Age SocKX SocKY SocKZ. sample 

gpo t Of 
70 r ~ r % r 01 

10 

1 2 7.5 2 13 1 10 5 10 

2 6 22 6 40 1 10 13 25 

3 3 11 6 40 1 10 10 19 

4 9 33 3 30 12 23 

5 4 15 1 7 1 10 6 12 

6 2 7.5 2 20 4 8 

7 1 4 1 2 

8 1 10 1 2 .. 
Ne 

TOT 27 15 10 52 

Table 5. 

~age difference between cluster and s8mE1e freguencies for 

age groups. 

age SocKX SocKY . SocKZ 
gpo % dirt. % dirt. % dirt. 

1 -2.5 +3 0 

2 -3 +15 -15 

3 -8 +21 -9 

4 +10 -23 +7 

5 +3 -5 -2 

6 -0.5 -8 +12 

7 +2 -2 -2 

8 -2 -2 +8 



) 70 

There is a general dearth of octogenarians in the sample: the only 

one is found in SocKz, which cluster is relatively deficient in age groups 

2 and 3, (2)-40s, who tend to congregate in SocKy). SocKz has relatively 
. ~ 

more informants in their forties and sixties than statistically expected. 

Generally, then, SocKx is characteristically middle aged, SocKy is a 

more youthful group, and SocKz is mixe~ tending towards the middle aged, 

and the old, yet with a relative frequency higher than the sample frequency 

for age group ), ()7-20). 

SocKy and SocKz show distinctly different age distributions. The 

decision to take the J-K rather than the 2-K-level (at which point these 

two would have become one cluster) is supported by these age distributions. 

SocKz, unlike the other two clusters, does not show a clear age 

trend: the shape of the histogram (Fig. 42 ) is quite chaotic. It is 

noteworthy that all age groups (except 7) are represented in this cluster; 

it may be that SocKz is a more socially heterogeneous group. 

Evidently, though, for SocKx and SocKy, age trends do exist: thus 

we can conclude that responses to questions in the interview differed on 

the grounds of age, for these two groups, but did not differ so clearly 

for members of SocKz. 

Sex distributions across clusters. 

Of the 25 females in the sub-sample, 19 are found in SocKx, 3 in 

SocKY and 3 in SocKz. 

Thus we have the sex = male ratios: 

SocKx 
8 30% n = 
12 80% y 15 "" 

7 70% z 10 "" 

There is a clear sex distinction here, between SocKx, and SocKy, SocKz. 

Evidently the sociological facts, and social attitudes elicited in the 

interviews are to some extent sex differentiated as well as age differentiated. 



171 

Distribution of education index categories across clusters. 

Fig.43 p.l72 shows the percentage representation of education 

categories across clusters (see also Table 6 p.173). 

Fig. 44 shows, for each cluster, the magnitude of deviations 

from the sample percentage frequencies, for each education index category. 

(This is the simplified education index: see above, p. 161 , 
This graph is derived from Table 7 (p.173). 

We see that SocKx is predominated by the minimally educated (category 

a, 21/27). 

SocKy is split into the minimally educated, those with occupationally 

oriented further training, and those with higher academic education. 

(5/15 left school at legal minimum age, (a);8/15 continued study into 

working life (c);2/15 studied full time at university, polytechnic, or 

colleges of education (e) • ) 

SodKz splits into the minimally educated, and those who have undergone 

full time tertiary education. (A bi-modal distribution). 

(6/10 in category a, 2/10 in category d, 1/10 in category e).FN 

FN. One informant (XSMIT) was coded NC on Q's 8 and 9. 

Fig. 44 shows that SodKx has a higher proportion of informants 

(than the sample) in category a (minimally educated). This is also true 

(to a lesser degree) of SocKz, but this cluster also contains a relatively 

higher proportion of more highly educated informants, (categories d and e). 

It is perhaps significant that SodKx is predominantly female. (All 

informants in SodKx left school at the legal minimum age, 6 resumed their 

education later, 5 in category c, 1 in d). 

SocKy has relatively fewer informants in category a. Those with 

in-job training (c) are highly represented, as is category e. 

Thus, each of the three clusters is m~ed with respect to the 

categories of this education index, but we can say generally that the 
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Table 6. 
Raw and %age frequencies for education index categories 

across social clusters (X,Y,Z), and across sarnnle. 

Educ. SocKX SocKY SocKZ sample 

index t % f % f % f % 

• 21 78 5 33 6 67 32 63 
b 

c 5 19 8 54 13 25 
d 1 4 2 22 3 6 

e 2 13 1 11 3 6 

NC 1 1 

TOT 27 15 10 52 .. 

Table 7. 

%age difference between cluster and sample frequencies 

for education i.dex categories. 

Educ. SocX SocKY SocKZ 

index % di~f. % diff. % diff. 

• +15 -30 +4 
b 

c -6 +29 -25 
d -2 -6 +16 

e -6 +7 +5 



174 

membership of SocKx tends towards the lower educated, whilst SocKy and 

SocKz tend towards the further educated, with full time academic training 

more highly represented in the latter, and vocational training in the 

former. 

The distribution of occupation groups across clusters. 

If we look at the variable, 'informant's present occupation', we find 

a situation analogous to that which emerged from the data on education. 

Consideration of Fig. 45 & Table 9 (pp.175, 176), shows that 

SocKx (predominantly female, lower educated, and middle aged) 

has the lowest occupation group modal, (7:unskilled manual). 

Note that this does not mean that there is an interference effect due 

to the typical career history of women in this age group: (fewer opportunities, 

careers disrupted by child rearing etc.) as this question (Q.29) refers 

to primary breadwinner's occupation. 

Occupation group 5 is modal for the total sample. This is also the 

modal value for SocKy. 

SocKz has again a bi-modal distribution, splitting between groups 

5 and 7, (although the cluster membership is spread over all occupational 

groups except 6). 

If we compare the percentage frequencies in occupation groups in each 

cluster, with the total sample values for each occupation group, (see 

Fig. 46 derived from Table 9 ), we find that the cluster characterised 

by the lower educated (SocKx) shows a trend towards lower occupational 

status, (occupation group 7). In contrast, SocKy, predominantly male, and 

highest on vocational training, ten~towards occupation group 5 and higher. 

SocKz shows a clear trend towards higher occupational status in comparison 

to total sample values, but again, characteristically, is spread out 

across the whole span of categories. 

With this variable, as well as with those already examined, we find 

that clusters display modal tendencies, but their membership is mixed with 
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Table 8. 

Raw and %age frequencies for occupational groups across 

social clusters (X,Y,Z), and acros~ sample. 

OCC. SocKX SocKY SocKZ sample 

gp. t % t % t % ! % 

2 1 10 1 2 

3 2 13 1 10 3 6 

4 2 8.5 1 6.5 1 10 4 8 

5 6 25 10 67 3 30 19 40 
6 5 21 1 6.5 6 13 
7 11 46 1 6.5 3 30 15 31 

NC 3 -~ 1 4 

TOT 27 15 10 52 

Table 9. 

%age difference between clu~ter .nd sample treguencies 

on occupational groups. 

OCC. SocKX SocKY SocKZ 

gp. % dift. % dift. % dift. 

2 -2 -2 +8 

3 -6 +7 +4 

4 +0.5 -1.5 
,; 

+2 

5 -15 +27 -10 
6 +8 -6.5 -13 

7 +15 -24.5 -1 
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respect to the categories belonging to this variable. A social classification 

based on the entire range of attributes covered by the social coding frame, 

then, produces groupingswhich could not be discovered if a single social 

variable (or a small number of variables) were used to place informants 
• 

in social strata, or classes. (See FN., p.167, above, and my remarks 

above (pp. 7ff. ) on selectivity and atomism). 

We can now summarise the overall impression of the social status of 

the membership of the 3 clusters given by the age, sex, education, 

occupation distributions. 

SodKx tends towards the middle aged groups (41-60), is overwhelmingly 

female, tends towards low education~l status, and low occupational status. 

SodKy tends towards youth, is predominantly male, further education is 

vocational/technical, and occupation group 5 (skilled manual and routine 

non-manual) is relatively highly represented. 

SocKz, also predominantly male, shows a mixed age distribution (with 

only the 71-80's not represented), and splits into the 2 educational 

extremes: those who left school at the legal minimum age (and did not 

proceed to further education) and those who attended full time college, 

uni~ersity or polytechnic courses. 

Other components of the social space, then, are the basis for 

intra-cluster similarity here. A closer look at the other social attributes 

~asured will reveal which social factors bind this group together. And not 

only this apparently heterogeneous group (heterogenous are the basis of 

4 classic sociological variables: age; sex; education; occupation), 

the two other clusters, SocKx, and SodKy, though eXhibiting trends, 

(discussed in the foregoing), are also by no means homogeneous with respect 

to any of these standard measures. (This can be seen from Tables 4,5 & 6.) 

With this in mind we now undertake an analysis of the diagnostic 

statistics from the 3 clusters which were supplied by CLUSTAN. 

The statistic is a 'binary percentage frequency ratio', defined as: 
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Pcj / Pj 

where Pj is the percentage occurrence of the jth variable in the total 

sample input to CLUSTAN, and Pcj is the percentage occurrence of the 

jth variable in cluster c. (Thus if variable j is positive for 50i. of 

the population, and 75% of cluster c have this variable, then the level of 

diagnosticity of variable j for cluster c will be 1.5). 

The maximum possible diagnostic level isthe inverse of the ratio: 

no. of cluster members 
N 

where N is the number of cases {informant~ input to CLUSTAN. 

E.G. a population of 100, split into clusters, one of which has 50 

members (cluster c), has as the highest possible diagnostic value 2. 

(I.e. where cluster c has a monopoly on one variable, the percentage 

occurrence in the cluster will be double that in the total population. 

Thus if total occurrences of variable j = 20 and total occurrences of 

variable j in cluster c - 20, 

20 - 40% of 50 (50 members in cluster c) 

20 = 20% of 100 (total cases in sample) 

Thus 

Binary frequency % age ratio on Vj - Pcj/Pj 
• 

= 40/20 = 2, 

where V = variable. 

This will be true whether there are 20 instances or one instance of the 

variable in question, where that variable is exclusive to the cluster. So 

actual raw frequencies of variables in the sample under investigation must 

be borne in mind when assessing the importance of diagnosticity levels from 

different variables. 

A binary percentage frequency ratio of 1 means that the variable in 

question is represented in the cluster in the same proportion as in the 

whole sample. Thus this variable is ~ diagnostic for this cluster. 

If the ratio is lower than 1, this means that this variable is less 
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frequently represented in the cluster than in the whole sample: it is 

thus a negative diagnostic (i.e. this cluster is characterised by the 

absence (or lower frequency of) this variable). 

Cluster diagnostics - SocKx. 

Table 10 lists the positively diagnostic variables for SocKx down 

to the value of 1.30 of the binary percentage frequency ratio, and the 

negative diagnostics from 0 to the 0.55 level. (The lowest possible 

diagnostic value a variable can take is zero, which means that this variable 

does not occur for any member of the cluster). The table shows the code 

of the binary variable. {which can be referred back to Table 1 (pp.142ff), 

the level of diagnosticity, the number of occurrences of the variable in 

question in the cluster, and in the total sample input to CLUSTAN (i.e. the 

T.L.S. sub-sample of 52 informants). 

The maximum possible diagnostic level for SocKx is 52/27 K 1.93, 

as there are 27 cases (CLUSTAN's term for experimental entities i.e. 

informants) in cluster SocKx. 

Eleven variables have the highest variable diagnostic value, 1.93, 

these variables occur exclusively in SocKx. More weight, however, attac~es 

to those whose frequency in the total sample is higher, e.g.V66, (variable 

66) distance of spouse's primary regionality < 50 miles, and > same 

local authority. All 8 instances of presence of this variable occur in 

Cluster SocKx. 

Though not as significant numerically, we must note the presence of 

3 occurrences of one parent of Midland regionality, and one of a Lowland 

mother or father, i.e. possible first general in-migrants to Tyneside. 

At the next lowest level of diagnosticity (1.72) we have 8/9 of the 

positive responses to'housework as a hobby~ obviously connected with the 

concentration of women in this cluster. 

V 137 is a significant social marker. 8 informants in this cluster 
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Table 10 High positive diagnostics·~ SocKx. 

Var. 

128 

131 

136 

134 

3 

66 

4 

9 

10 

12 

117 

125 

137 

101 

111 

105 

77 

141 

46 

92 

72 

64 

106 

50 

51 

91 

121 

48 

90 

No. in No. in 

K 

1 

2 

2 

2 

1 

8 

2 

2 

1 

1 

1 

8 

8 

12 

17 

5 

20 

19 

·6 

3 

9 

9 

11 

16 

5 

5 

7 

7 

17 

sample 

1 

2 

2 

2 

1 

8 

2 

2 

1 

1 

1 

9 

9 

14 

20 

6 

25 

24 

8 

4 

12 

12 

15 

22 

7 

7 

10 

10 

25 

level 

.* 
1.93 

" 
" 
" 
" 
" 
" 
" 

" 

" ,. 

" 
1.72 

" 
1.66 

1.64 

1.61 

1.55 

1.53 

1.45 

" 
" 
" 

1.42 

1.41 

1. 38 

" 
1.35 

" 
1.31 

I . 

defini tion 

leisure satisfaction=disgruntled 

hobbies=? (see social coding sheet> 

hobbies=22 

hobbies=l5 

citiness=market town 

dist. spouse ( 5Cm > local authority 

citiness=other 

parent's reg.=UK N Midland 

" " =UK Midland 

" " =UK Lowland 

TV,radio?=predom. radio 

housework as hobby 

connection occup./voting behaviour 

father's occup.=7 

info's 1st occup.=? 

"present " =6 

'taste aspir'n'= indifferent 

vote Labour 

distinction educe boys/girls 

neighbours (integr) non-existent/known 

mic. env. (housing>, dissatisfied . 
sex bias of chi1dren= M 

occupation=? 

parental control=direct physical 

" " =indirect physical 

neighbours (integ.)=non-exist./unknown 

TV viewing =intense,non-selective 

parental control=direct verbal 

+ Tyneside consciousness 

* level of CLUSTAN diagnostic statistic 'binary percentage 

fre1uency ratio 
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Table 10 cont. Negative- diagnostics - 'SocKx. 

Val'. No. in N'o. in level definition 

K sample 

97 0 2 0 father's occup.=3 

86 0 5 0 mac. env. pref. = south 

102 0 3 0 occup.=3 

28 0 11 0 1ma+1 year ** 

108 0 3 0 occup.=4 

33 0 2 0 university/polytechnic 

30 0 2 0 lma+3 years 

124 2 12 ... 0.33 drinking as hobby 

112 3 16 0.37 job preference= 'I' 
36 1 5 0.39 fe=day release , 

41 4 16 0.49 attit. educ,= job oriented 

26 7 27 0.52 sez=M 

**lma=lega1 minimum school leaving age. 
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(out of 9 in the sample) claimed to approve of a connection between 

occupation and voting behaviour: this fact tells us something about the 

belief that political allegiance is part of one's class loyalty. 

Significantly perhaps, in this predominantly lower occupation/education 

group, i.e. lower working class, we find the tendency to vote Labour 

dominating (V 141). (19 out of the 27 informants in this cluster said 

they vote Labour as compared to only 5 others in the rest of this 

sample). 

Next on the list of diagnostics are variables lQl, 1l! and !Q1, 

informant's father's occupation - group 7 (unskilled manual); informant's 

first occupation = group 7; and informant's present occupation = 6. 

(semi-skilled manual). 

(Registrar General's Soc. Classes V and IV respectively) 

Contrary to the working class stereotype, perhaps, (or possibly a 

consequence of rehousing schemes), 8 informants claim to have little or 

no contact with neighbours (3 cases of Social Integration with neightbours • 

non-existent/known, i.e. neighbours are known, but there is no social 

intercourse, ~; and 5 cases (V 91) where informants do not even know 

their neighbours). 

Regarding parental approach to controlling children, there were 16 

positive responses to 'direct physical' measures, 5 to 'indirect physical', 

7 to 'direct verbal', and only 3 to 'indirect verbal', i.e. reasoning with 

the child. 

V 121. 7 out of the ]0 in the sample whose daily exposure to radio 

and T.V. was coded as 'intense, non-selective' are found in this group. 

V 90 • Identification with the area is strongly positive in ]7 of .......... 
the members of cluster SocKx, out of 25 in the total sample. 

Negative Diagnostics. 

Of the significant negative diagnostics, V 1]2 (job preference • 'I', 

(shorthand for prospects, thinking and self-deciding - see above p. ]54f£.» 



183 

occurs only 3 times in this cluster. i.e. 'R' is predominant (immediate 

gain, learned, supervised). 

V's 124, 26. (drinking as a regular hobby, and sex eM), are untypical 

of this group, (2/12, and 7/27 respectively). 

None of the informants expressed a desire to move to the south (5 

did in the rest of the sample). 

V.28. No one in this cluster stayed on at school 1 year after the 

legal minimum age (i.e. as this is an ordered multistate variable, this 

can be interpreted as: all 27 left school at the legal minimum school 

leaving age). 

These diagnostics taken together present a fairly stereotyped lower 

working class group profile. However, it is evident from the actual 

frequencies of occurrence of variables (Table 10 and Tables 4, 5, 6) 

• that the group is far from homoge~ous. There is a range of occupational 

groups, and level of educational attainment, and individuals themselves 

do not display uniformly stereotypic responses to the social questionnaire 

It is the summation of the social facts about, and social opinions of, 

one individual which place him with respect to the dimensions of the social 

space, and which 'fill out' his social profile in a mare comprehensive 

way than any SES or class index can do. 

Cluster diagnostics - SocKy 

The maximum diagnostic level for SocKy, which has 15 cases, is 

52/15 - 3.47, the minimum is zero. 

Table 11 shows the positive diagnostics for this cluster, down to 

the 1.50 cutoff point, and a selection of the negative diagnostics. 

V's 28, 29, 30 and 31 show that there is a higher average school 

leaving age for members of this cluster than for the whole sample. 

3 stayed on year, 

stayed on 2 years, 

stayed on 3 years, 
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Table (I High positive diagnostics - SocKV. 

Var. No. in No. in 

107 

82 

35 

30 

11 

8 

31 

36 

29 

133 

43 

75 

lQ2 

140 

93 

143 

86 

124 

37 

49 

28 

81 

104 

109 

129 

96 

112 

6 

142 

33 

120 

62 

97 

98 

119 

99 

K sample 

1 

2 

1 

2 

1 

1 

1 

4 

3 

3 

3 

11. 

2 

4 

3 

3 

3 

7 

5 

5 

6 

7 

10 

10 

1 

1 

8 

1 

1 

1 

1 

4 

1 

2 

1 

8 

1 

2 

1 

2 

1 

1 

1 

5 

4 

4 

4 

15 

3 

6 

5 

5 

5 

12 

.9 

9 

11 

13 

19 
19 

2 

2 

16 

2 

2 

2 

2 

8 

2 

4 

2 

17 

level 

3.47 

" 
" 
" 
" 
" 
" 

2.78 

2.6{) 

" 
" 

2.55 

2.32 

" 
2.08 

" 
" 

2.03 

1.93 

" 
1.90 

1.87 

1.83 

" 
1.74 

" 
" 
" 
" 
" 
" 
" 
" 
" 
" 

1.64 

definition 

info's 1st occup.=3 

financial commit. (taste)=10 

fe= college of education 

1ma+3 years 

parent's reg.= UK Lowland 

" "= UK E & W Ridings 

lma+5 years 

fe= day release .. 
Ima+ 2 years 

hobbies=12 

attit. educe (children)=RRR 

taste aspiration= good 

occup.=3 

vote=Conservative 

neighbours (integr.) = antagonistic 

voting preference=f1oater 

mac. env. preference=south 

drinking as hobby 

fe= night school 

parental control=indirect/verbal 

lma+ 1 year 

financial commit. (taste)=6-7 

occup.=5 

info's 1st occup.=5 

hobbies=lt 

neighbours (integ.) = intimate 

job preference ='I' 

reg= UK London SE 

voting preference=refusal 

fe= university/polytechnic 

TV/radio=non-own 

sex bias of children=zero 

father's occup.=3 

" "=4 

TV only 

father's occup.=5 
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Var. No. in No. in level 

40 

26 

17 

123 

139 

41 

65 

84 

73 

114 

67 

K sample 

7 

12 

5 

10 

4 

7 

10 

2 

5 

13 

2 

15 

26 

11 

22 

9 

16 

23 

7 

12 

37 

6 

1.62 

1.60 

1.58 

" 
1.55 

1.52 

1.51 

1.49 

1.45 

1.22 

1.t6 

Negative diagnostics - SocKy. 

Va~. No. in No. in level 

22 

23 

90 

K sample 

1 

1 

5 

24 

12 

25 

o 
o 

0.70 

definition 

attit. educ.=libera1 

sex=M 

] 85 

no. of moves in 5 yrs. after marriage=l 

TV viewing=non-i~tense.non-se1ective 

disapprove connect. occ./vot~ 

attit. educ.=job oriented 

dist. spouse's reg.= same local auth. 

mac. env. pref.=sma11er town 

mic. env.(housing)=satisfied ambitious 

job satisfaction=high 

spouse's reg. ~ 50m 

definition 

age=40+ 

age=50+ 

+Tyneside consciousness 
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1 stayed on 5 years. 

(NB. Binary variable frequencies for V.s 28 through 31 are 6, 3, 2, I, 

respectively, as this is an ordered multistate variable. (Se~ above (p.138).) 

4 informants proceeded to further education in the form of day release 

(out of 5 in the total sample) , and 5 by attending night school. 

Actual figures for t£rtiary education categories for this cluster 

are: (Q9, Tertiary and further education). 
fre9uenc~ 

v. 32 none 5 

V. 33 full time Univ/Poly. 

V. 34 full time nursing, secretarial, 
tech. colI. 0 

~ 

V. 35 ColI. educ~tion . 1 

v. 36 Day release 4 

v. 37 Night school 5 

Attitudes to education 

6 cases had a negative attitude to their own education, but all but 

one of the 15 in this cluster had a positive attitude to their children's 

education. 

Multiple coding is permissable on Q.IO (attitude to education). 5 

informants were coded on responses 3 and 4 (liberal, and job-oriented). 

2 were coded 'liberal' only, and 2 'job-oriented' only. 

With respect to their children's education, informants' attitudes 

were generally more positive, (14/15), and (for individuals) did not always 

correspond to the codings for attitudes to their own education. 

This could mean that some parents, though retrospectively disillusioned 

with their own educational experience, nevertheless retain a belief in 

the positive value of education for their children; or, that some of these 

informants are unconcerned with taking their own education further now, 

but are concerned with the academic and/or occupational success of their 

children. 
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e.g. TEASD. who felt negatively about his own education. but positively 

(in utilitarian terms) about his children. (Coded 2 + 4 ~ RRR and job 

oriented. with respect to his attitude to his children's education 

V's 43. 45.) 

In contrast.FRENC had a liberal ~ job oriented attitude to his own 

education. but a negative attitude to the education of his children. 

In SocKy, 5 were coded liberal and job oriented, 

was coded liberal, 

5 were coded job oriented. 

2 were coded job oriented and RRR, 

was coded RRR, 

was coded negative. 

occupation g~oups have already been discussed, but it is worth 

repeating that occupation group 5 (skilled manual and routine non-manual) 

is the modal value for this cluster. (This group corresponds to the 

Registrar General's Class III). 

10 members of this cluster belong in this occupational group: 10, 

moreover, have their first occupation coded under this group. 

Regarding job preferences: 8 informants in this cluster were coded 'I', 

(prospects, thinking, self-deciding); was coded 'R', (immediate gain, 

learnt, supervised) and 6 were coded NC. Here there is a strong contrast 

with SocKx, where 'R' predominates. 

Voting behaviour
FN

• 

FN. As explained above (pp.J40. 146) only 4 of the original 7 categories 
were coded positively for any members of the sample. Thus only 
these 4 categories are discussed. 

Voting preferences, Conservative, floater, and refusal, emerge 

as positively diagnostic for this cluster, whilst the Labour vote is 

lower than the sample expectation. 

In this cluster, there is a relatively high proportion of those who 
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disapprove of voting behaviour being tied to occupational status. 

Regarding macro-environmental preference, 3 informants in this 

cluster expressed a preference for the south of England, and one would 

choose to live abroad. 

13/15 in this cluster (out of 37 in the sample), claim high job 

satisfaction. 

~ 12/15 informants are male. 

Of the negative diagnostics, V's 22 and 23 show that all informants, 

except one, are younger than 40. 

Only 5/15 (lower than the sample proportion) claim to have a positive 

sense of identification with Tyneside. 

Parental control is effected more often by indirect verbal means 

(reasoning, explanation) than in SocKx. 

The overall impression of this cluster is one of predominantly upper 

working class group, (cf. Registrar General's class II; or Hall and Jones' 

(1950) occupational grade 5 (skilled workmen». Predominantly male, and 

youns~r than 40, this group tends towards further training of the vocational 

or technical kind. 

Job satisfaction is generally higher, and job prefere~ces involve the 

freedom to take initiative, the challenge of non-routine work, and the 

opportunity for career advancement. (Q.31). 

Political allegiance is not class-entrenched, (cf. SocKx), in that 

voting behaviour is spread over 2 major parties; and only one informant 

believe that voting behaviour should be determined by occupational status. 

Attitudes to education are generally more positive than those of 

members of SocKx, and a higher proportion of informants in this cluster 

have taken up opportunities to further their education after leaving school. 

Positive Tyneside consciousness is rarer than in SocKx. Three 

informants would prefer to move south, one to move abroad, and one to move 

to a smaller town. 
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The general trend (in comparison to SoCKx) , is that members of this 

cluster are more career oriented. Occupational status is higher (and 
o 

rising rather than static); members have a slightly less conservative 

attitude to education, ethnicity, social class affiliation and politics. 

However, it must again be stressed that modal values for social 

variables have only limited predictive power: there is a considerable 

amount of overlap with respect to social attributes across the 3 social 

clusters, (i.e. particular attributes tend not to be the exclusive 

property of one cluster), and social attributes are variable within, 

cluste~ (i.e. very few attributes are shared by ~ members of a cluster). 

This is not unexpected: as predictea, we have not discovered any key 

diagnostics defining exclusively (and exhaustively) the membership of any 

FN one cluster. 

FN. I.e. we have found no 'necessary and sufficient' criteria for group 
membership. 

It may be possible to use single social dimensions to divide the 

population into convenient categories (e.g. occupational groups), but this 

achieves a one-dimensional, and severely limited, foundation for grouping 

a sample. The social attribute-set composing the dimensions of the social 

space implemented here provide, on aggregate, a fuller profile of an 

individual's social set, which inevitably, (and realistically), proves to 

be non-stereotYPed. 

The two clusters, SocKx, and SocKy, together include 42 of the 4S 

Gateshead informants. As expected, there has emerged one predominantly 

lower, and one upper, class group. although these two groupings are not 

discrete with respect to any of the single social variables discussed above. 

Cluster diagnostics - SocKz 

As indicated in the foregoing, those informants with an 'X' prefiX!d 
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to their mnemonics are the 7 from the Newcastle sample. SocKz encapsulates 

all 7 of these,togetherwith 3 Gateshead informants: BRUCE, WILKN, MARCH. 

This cluster is a more heterogeneous collection of informants than 

the rest of the sample; as mentioned earlier (p.170), there is a much wider 

range of values for the social variables analysed in detail. Or, put 

anothe~ way, intra-cluster distanc~are higher, as can be seen from the 

distance levels at which fusions occur within this cluster. (See Fig.39,p.164.) 

Consequently the diagnostics supplied by CLUSTAN (Table 12) are 

generally of lower numeric significance (although the diagnosticity level 

may apparently be as high as 5.20: as explained earlier this is a consequence 

of the cluster/sample ratio in term! of numbers of cases). 

e.g. V 149 - diag. level = 5.20, actual number of occurrences in 

cluster - 1. 

The lower frequency of occurrence is not only due to the low number 

of cases in this cluster (10), but also to its heterogeneity. 

Seven of the eight age groups, and five of the six occupation groups 

are represented. Values for the education index are spread across the 

categories, with modal tendencies at the two extremes (categories a and e). 

However, these ten informants have clustered together, though somewhat 

more loosely than is the case with the other clusters. This cluster has. 

no general characteristics which can be deduced from an examination of 

Table 12. This is not inconsistent with thenotDn,of a 'polythetic' 

class (see above, p.23 ), and the classificatory theory underlying the 

techniques implemented here allows for the possibility of obtaining well­

formed cluster~ without any definitive, or even highly predictive, 

diagnostics emerging. (See above, pp.177ff.) 

Pairs of individuals are deemed similar on the strength of the 

attributes they share: however, these need not be the same attributes 

across different pairs. 

Having identified and, as far as possible, outlined the characteristics 

of the three social clusters, the next phase in the analysis involves 
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Table 12 High positive "diagnostics - SocKz. 

Var. No. in No. in level definition 

149 

152 

153 

148 

147 

145 

151 

150 

144 

146 

71 

87 

61 

2 

34 

lOB 

6 

120 

15 

18 

24 

33 

119 

25 

54 

97 

2B 

110 

86 

60 

116 

130 

42 

102 

23 

68 

K sample 

1 

1 

1 

2 

1 

1 

1 

1 

2 

2 

3 

3 

2 

2 

2 

2 

1 

1 

1 

1 

3 

1 

1 

1 

4 

1 

5 

2 

2 

2 

4 

1 

1 

1 

4 

5 

1 

1 

1 

2 

1 

1 

1 

1 

2 

2 

4 

4 

3 

3 

3 

3 

2 

2 

2 

2 

6 

2 

2 

2 

8 

2 

11 

5 

5 

5 

10 

3 

3 

3 

12 

15 

5.20 

" 
" 
" 
" 
" 
" 
" 
" 
" 

3.90 

" 
3.47 

" 

" 
" 
" 
" 
" 
" 
" 
" 
" 
" 
" 
" 

2.37 

2.08 

" 
" 
" 

1. 74 

" 
" 
" 
" 

.. 

parent's reg.= UK NW 

occup.=3 

info's 1st occup.=3 

reg.= UK NW 

" = UK Midland 

" =Leeds 

hobbies=10 

hobbies=2 

citiness=Merseyside 

reg. =UK E & W Ridings 

mic. env. (housing)=neutral 

mac.env.pref.=north 

nuclear family size=6+ 

citiness= London 

fe=tech./nursing/secretarial 

info's 1st occup.=4 

reg.= UK London SE 

TV viewing - non-owm 

no. moves before marriage 5 

" " after" 2 

age =60+ 

fe= university/polytechnic 

TV only 

age=70+ 

marital status=widow 

father's occup.=3 

lma+l year 

info's 1st occup.=6 

mac. env. pref.=south 

nuclear family size=5+ 

job 'satisfaction=fair1y low 

hobbies=5 

attit. ed. (of chi1dren)=negative 

occup.=3 

age=50+ 

mic. env. pref. (sentiment)=neutral 
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Table 12 cont. 

Var. no. in no. in level definition 

K sample 

14 4 12 1. 74 no. moves before marriage=1-3 

122 4 12 " TV - intense/selective 

41 5 16- 1.63 attit. edt = job oriented 

112 5 16 " job pref.='I' 

83 3 10 1.56 mac.env. pref. =rura1 

22 7 24 1.52 age=40+ 

84 2 7 1.49 mac.env.pref.=smaller town 

132 7 25 1.46 hobbies=8 ... 
63 5 18 1.45 sex bias of children=F 

113 3 11 1.42 job preference= 'R' 
115 7 26 1.40 job satisfaction=medium 

26 7 26 " sex=M 

29 1 4 1.30 1ma+2 years 

124 3 12 " drinking as hobby 

73 3 12 " mic.env.pref.(housing)=satisfied 

21 8 34 1.23 age=30+ 

Negative diagnostics - SocKz. 

Yare no. in no. in level definition 

90 

57 

K sample 

3 

6 

25 

40 

0.63 

0.78 

+Tyneside consciousness 

nuclear family size=2+ 

ambitious 
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the derivation of clusters, (from the same sample), on the basis of scores 

on linguistic variables. 



CHAPTER 6 



THE LINGUISTIC CLASSIFICATION 

The results of classifying the sample, by cl~ster analysis, on 

the basis of linguistic variables are presented here. 

J94 

The classifications described here involve the variables from the 

segmental phonological sub-space only. 
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The organisation of the linguistic coding frame, and in particular, 

the segmental phonological data, has been discussed above. (Chapter 2 pp.37ff.) 

A complete specification of segmental variables, by their 5-digit codes, . 

and their CLUSTAN variable numbers, can be found in Appendix X (This 

is the translation table output by Program TRAN, described above, pp.13Jff.) 

For reasons explained above, (p.J05), the 542 segmental variables 

(state scores expressed as within-OU percentages, see above, ·p.93£.) 

are split into three separate batches, and processed in three CLUSTAN runs. 

Each of the three sub-spaces of the segmental phonological space thus 

covers a subset of phonological variables. These three subspaces are 

designated %FONJ, %FON2, and %FON3 respectively, and cover the states 

subordinate to the OU's shown here: 

%FON J: h I € ~ a p :>~ h. 'It U (100Us, 154 states); 

%FON2: eL a~ at aI~ a1)' :ll: '3 :t.~ ea 1.>"a 

()) 01... ~'l.d. 'I, 1:~ d4~ (16 OUs, 189 states); 

%FON3: p b t tl k:} tj cJ5 f V e g s % 

J ~ h h"'\ n J L r 
. 
J \IJ ., (in bound morpheme -ing) 

(25 OU's, 199 states). 

Thus %FONI covers monophthongs, 

%FON2 covers diphthongs, triphthongs and reduced vowels; 

and %FON3 covers consonants. 

By classifying the sample on the basis of these three subspaces, 

taken independently, we can test whether the sample behaves differently 

with respect to different sub-sets of variables from the same linguistic 

system (segmental phonology). 

If the three classifications produce similar distributions of 

informants across clusters, then it will be demonstrated that (at least, 

a large) subset of variables is an adequate basis for representing linguistic 

variability, and an exhaustive inclusion of variables means the inclusion 

of redundant information. 
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If, however, the sample clusters differently with respect to the three 

subsets of variables, we can say, with confidence, that the sub-sets of 

variables chosen produce only partial classifications, and cannot be taken 

as representing overall linguistic (segmental phonological) variability. 

This outcome would have important consequences in relation to the 

practise of selective variable sampling. (See above for a discussion of 

selectivity in sampling of variables, (pp. 7ff.) 

We have already seen, (pp. 116ff. ), that the members of the 

sample are ranked differently on their scores on single states: we may 

expect, then, that classifications based on different sub-sets of state scores 

will ~ produce similar distributlons of informants across clusters. 

Three cluster analyses were performed on the sample of 52 informants, 

using the same CLUSTAN options applied to the data from the three segmental 

subspaces, %FONl, %FON2, and %FON3. 

The distance coefficient used, in each case, was Squared Euclidean 

Distance, and the clustering algorithm used was Ward's Method (see above, 

pp. 1 06ff.) 

Figs.47,48,49 show the fusion trees (dendrograms) output by 

CLUSTAN Program PLINK, summarising the f4sion steps occurring in the three 

CLUSTAN runs, (i.FONI, %FON2 and %FON3, respectively). 

Figs. 50,51,52 show the number of clusters plotted against the 

2 value of D , for these 3 CLUSTAN runs. For %FONI and %FON3, the first 

considerable plateau (indicating no change in the number of clusters, 

2 therefore no change in K-membership over a range of D values), occurs 

at the 3K level. Therefore K c 3 would seem to be a useful level to take 

as the basis of the classification. %FON2 has a more extensive plateau at 

K ~ 4, but for the purposes of comparability between the 3 subspaces, 

K c 3 was taken as the significant level, especially as we have identified 
J , I 

3 social clusters fpr/~this sample. 

The 2-K level may also be significant: however, if for the moment we 



Fig. 

f:1U1ER6F3 
FIN ... Y6F3 
(LA~K-F5 

MC(OrS!'12 
PH I LP7fij 
STEPHSM3 
ARKLE-fij 
BRUCE7M6 
Ao.~SL7FS 

OIXON7Fl 
MULHRSfij 
THCHPSF2 
HERTH6FS 
WRRDISMl 
WHITW5!'12 
I1NDIS'lM3 
FORESllH2 
NQRH"'7H2 
NICHlI~M3 

GRRHHGHIl 
GARDN7H6 
HEOLY7M3 
OAMSTSMS 
WEIGHSP12 
SAVORSH6 
TERSD7M3 
GARrNSF2 
CAR I GSM.'i 
THUAM7Fij 
HRLU17Fij 
LOrlER7Fll 
HEWIT6Mll 
CRHI>L-f7 
WILK~nH6 

BOYLNSF2 
FAENC6H2 
M'l.'1SH3MS 
TUAALSF3 
ARMS~F2 

ORUMG3F2 
J~r1E57FS 

HII LR5rl 
SUGGTSFij 
NRYL03'12 
Ell I07F1 
XrULT4Fij 
XLRWSSHl 
XSf'RI7M2 
XNONRSF8 
XS"II TSFll 
XSHAW2H4 
XI.!RIT-H.3 

47. Dendrogram for % FON! (monophthongs). 

I .- I\) - I\.l -.I I\.l 0> 
to -.I .z= .- Cl) U1 
w (J) 0> (J) -.I -.I . 
to UJ (J) tD .c 
Ul W 0 to -.I 
-...J 0 -..J .z= to 

.----

1. 

52 CASES VARS 1-15ij EUC orWAROS %FONl 
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I\.l W W -'= -'= 
0> 0 Ul 0 lJl 
I\.l to (J) W o· 
-.I co co co CX> 

-...J 0 UJ 0> to 
()') U1 .c I\.l 
(J) W 0 -.I -'= 

• 
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Fig. 48. Dendrogram for 7. FON2 (diphthongs etc.) 

I 
.- Ul 

f\.) I'\) Ul Ul .c .c 
-.J f\) -.J m Lfl ' 0 U1 

Ul I'\) 

-.J 0") 
I.D Ul CD .c -.J .c 0 

Ul to .c (Xl Ul -.J m . 
....., m 
I'\) m 

0 .c CD I'\) m 0 ,I=: -..J 
U1 .c Ul f\.) r.J 0 to CD 

<.c,. Ul Ul en CD <.0 Ul .c en -.J 

RLDERSF3 
FOAES4H2 
ANOISSM3 
FAENC6H2 
WE1GHsH2 
NORHN7M2 
WARDI5Hl 
BRUCE7H6 
SRVORSH6 
THURM7Fij 
CRRIGSH3 
GARDN7M6 
ORHSTSHS 
HEDLY7",3 
GRRYNSF2 =:=t WHlTh'SH2 
NICHLijH3 
GRRHMSHij 
TEASD7M3 
ARKLE-fij 
OIXON7Fl 
CR!'IPL-n 
JA"IES7FS 
ARMSL7FS 
CLRRK-FS 
HGLU17Fij 
THOHPSF2 
WILKN7M6 
HEATH6fS 
ELL I07F1 
HEWIT6HY 
FINLY6F='3 
LOWER7fij 
PH1LP7fij 
HCCOYSH2 
MUlHRSFY 
BO'tLNSF2 • 
AA!'1SNijF2 
HILLRSFl 
STEPHSM3 
DRUH03F2 
TURALSr3 
HARSH.~"'S 
NH'tU13H2 
SUGGTSr" 
XFU!.. T4F4 
XLi1~SSMl 

XNONRSrS I 

XSMrTSFY 
X5f'RI7M2 
x S!~A"l2Mlj 

1------ ~~~~I-------------------------------------------~ 
I 

X~RIT-M3 

" 52 CASES VARS 155-3Y3 EUC 0 i~~RDS t.FON2 
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F 'g 49 Dendrogram for % FON3 (consonants). 1. • 

-

I W Ul o-.J (!) W Ul --.J (!) 
-.I N I'\) N T\) T\) N I'\) f\.) T\) I'\J 
Ul ~ Ul Ul lJj 0) 0) -.I -...J ---J (Xl . . . . . . . . . 
w (!) w 0) (!) w en 0 w o-.J a 
;,D Ul 0 ,I::: (!) ~ CD W CD W --.J 
I'\) .c CD Ul N W en w a -.J 

ALOERSF3 
OR"ISTSI1S 
A'1KLE-Fij 
STEPHSI13 
GRRHM611ij 
OIXON7Fl 
NICHllm3 
NORMN7H2 
FORE:,l,\t12 
TERSD7H3 
LDo.lER7Fij 
ELLlO7Fl 
ANOIS,)H3 
I1CCO'l'5112 0. 
NR'I'L03112 

I MILLR5fl 
TURRLSF3 
BO'l'LNSF2 I 
FRENC6112 
MR.9SH3H5 " I RRMSmF2 
nRUH03F2 
HEATt£FS 
RR~SL7FS 

HEWIT6Hij 
PHI LP7FY 
BRUCE7M6 I SAVORSM6 
frNLY613 

'" 
JR"IES7F5 
HRLLH7FY 
WILKN7M6 
HULHRSfij 
SUGGTSFij 
CLARK-fS • 
HEOL17H3 
WE1GHSM2 
Wl1lTlolSH2 K(tl 
CRAIG5H3 

3: WA~DISHl 

HiURH7Fij 
GR'lYNSF2 
CAMPL-f7 
THOH"'SF"2 
(.HRON7116 
XiUi.. Tijfij 

I I XSHQJ.l2H14 I 
xwRIT-m 
XLRWS'l111 IK'~ 
XNQNR!:irS 
X3"1ITSf'I, 
XSPA17H2 

52 CRSES VRRS 344-542 EUC ~ l'lAADS %FON3 . 
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retain the division of the sample into 3 clusters, in each subspace, we 

can compare and contrast the 2 clusters which would fuse together at the 

2-K level. Thus we can ascertain whether they are similar enough to be 

treated as 1 cluster (i.e. whether the 2-K level is more appropriate).FN 

FN. If the 2-K level is taken as the starting point for further analysis, 
it is more difficult to separate the two clusters which fused 
together: thus it would be more difficult to decide between the 2-K 
and 3-K levels. 

A comparison of the 3 dendrograms (Figs. 47, 48, 49 ) reveals 

the following interesting facts: 

1. At the 3-K level, informants cluster very differently in the 3 

subspaces, i.e. on the basis of different subsets of linguistic variables, 

even though these subsets of variables are from the same linguistic system, 

(segmental phonology), and are at the same analytical level, (distribution 

of phonetic states across OUs). 

Informants cluster differently in two ways: firstly, the order of 

fusion of individuals differs between the three classifications; and 

secondly, cluster membership varies across the three classifications. So, 

the constitution of clusters, (in terms of which informants are found in 

them) differs between the consonantal subspace and the two vocalic 

FN 
subspaces. 

FN. K3 = KC = K¥ is the exception: these clusters are identical in 
terms of K-membership. The 7 informants found here cluster together 
in each of the.3 classifieations, and they are always widely separated 
from the remaining 45 informants. Interestingly, this group is 
exclusively, and exhaustively, populated by the Newcastle sub-sample, 
who are apparently distinct from the rest of the sample on linguistic, 
but not on social grounds. (See above p.J89ff.) 

2. The 3 sub-spaces have relatively different discriminating power: 

at the dissimilarity level of D2 = 700, %FONJ and %FON3 show 3 clusters, 

whereas %FON2 has I clusters. The 3-cluster cutoff point for %FON2 
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(diphthongs, triphthongs and reduced vowels) is much higher: D2 - 1220. 

This subspace would appear to contain more highly discriminating dimensions, 

as informants and clusters are more clearly separated, and individuals 

are distanced further from each other, on the basis of these variables. 

The different overall ranges of dissimilarity levels within which 

the n-I fusions occur (n - the number in the sample - 52), show, in 

addition, that the maximum distance between pairs in the consonantal 

sub-space (%FON3) is relatively lower. 

(K=n-I) first fusion 2 level(D ) (K=1 ) last fusion 2 level (D ) 

%FONI 19.806 4295.148 ... 

%FON2 73.335 4295.102 

%FON3 15.674 1837.010 

So, the outlying group, K3 = KC = K~ ,though well separated from 

the rest of the sample in each of the 3 subspaces, is relatively closer 

to the rest in the consonantal subspace than in the vocalic subspaces. 

(Here we see %FON2 encapsulates more variability: the close~pair are 

73.335 units of dUtance apart). 

This would app~ar to suggest that consonantal features are less 

variable than vocalic ones; also that dipthongal and triphthonal OU's . 
display more variability than monophthongal OUs. 

The differences between the 3 classifications, in terms of cluster 

membership, is illustrated by slides 1 to 4.(Appendix T, comprising six 

transparencies, numbered 'Slide l' etc., is contained in a separate folder.) 

Slide 1 shows the sample population of 52 informants represented by 

3-,4~, and 5-, character mnemonics. 

Slide 2 shows the outlines of the cluster groupings obtained from 

the classification of %FONI (subspace I). li Slide 2 is superimposed over 
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Slide 1, the division of the sample into the 3 clusters (cf. Fig.47, p.197) 

FN is shown. 

FN. The spatial locations of the informants are not plotted according 
to geometric relationships. This is impossible to project from 154 
to 2 dimensions. And the relative spatial locations of the cases 
differ between the 3 subspaces. I am concerned with the topological 
relationships between clusters, both within, and across the 3 
classifications. 

Similarly, Slide 3,and Slide 4, superimposed on Slide 1 show the 

division of the sample at the 3K level in the classification based on 

%FON2 (subspace 2), and %FON3, res~ectively. 

If all the slides are superimposed, (Slides 1 through 4), the 

complexity of the relationships between the 3 segmental subspaces is 

evident: the distribution of informants across clusters is very different 

in the 3 subspaces. 

As observed already, one cluster maintains its identity across the 

3 subspaces: K3 - KC = KK • This phenomenon will be descussed more fully 

below (p. 213, passim). 

As far as the other 45 cases are concerned, the membership of Kl 

(Subspace I), is split across'2 clusters (KA, KB), in subspace 2. 18 

members of Kl are found in KA, the remaining 16 in KB. K2 is also 

split across those 2 clusters: 3 members join KA, and the remaining 8, KB. 

Comparing the cluster membership of subspace 1 with subspace 3, 

the membership of KI splits across K~ and KF in the proportion 14:20, and 

K2 has 9 members in KCIIo , and 2 in Kp. 

And the mapping for subspace 2 to subspace 3 is equally complex: 

KA aplits across K~ , K~ 

KB splits across KoI. , K{3 

(9: 12) 

(14:10) 

The fact that the patterning within the groupings derived by the 

clustering process differs between the 3 segmental subspaces has important 

consequences on the issue of sampling of variables. (See above pn 7ff & 50ff ) , r· • , • 
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I. Selection of a sub-set of linguistic variables at the segmental 

level, (and therefore exclusion of the rest of the set) depletes the 

linguistic profiles of speakers. These results demonstrate that, by 

choosing different sub-sets of variables, one obtains different classifications, 

each of which is based on a partial linguistic profile. 

Until it is known which dimensions (variables) covary significantly 

with social features, there can be no grounds for excluding any of these 

variables (or sub-sets of these variables), from a sociolinguistic class­

ification. 

2. Each of the 3 subspaces is capable of generating variety clusters 

(though each subspace represents a~depleted and distorted domain of 

measurement in its selection of variables). 

Each subspace, then, must contain variables which are (analytic) 

linguistic diagnostics, some or all of which may be sociolinguistically 

salient. 

Although individuals are not dispersed so widely in the consonantal 

subspace, sub-groups.!!! distinguished in it: consonants as well as 

vowels display considerable variation across the sample, and contribute 

to the structure of linguistic diversifica~ion within a speech community. 

The fact that the distributions of speakers are non-isomorphous 

between the 3 subspaces strengthens the argument: if, e.g. the consonants 

were omitted, linguistic profiles of speakers would be correspondingly 

depleted and distorted, seeing that the distinct contribution made by 

these variables would be excluded. 

If the 3 subspaces are conflated, we find that certain groups of 

informants belong to the same cluster as each other across the 3 

classifications. For example, six informants are found together in 

%FONI, KI; 

and %FON2, KB; 

and %FON3, Kl4j 
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(they are MCCOY, STEPH , ARKLE, DIXON, HEATH and LOWER). 

This group constitues a, 'derived cluster', which represents a variety 

cluster based on the whole segmental space. This derived cluster can be 

called KJB~. If we superimpose the cluster pictures derived from the 

3 classifications, we see that there are 8 such derived clusters. If 

slide 5 is placed over slide J the distribution of the 52 speakers 

across the whole segmented space is shown. (See Appx. T.) 

The presence of these groups could not be deduced from a clustering 

based on anyone subspace alone. The claim is demonstrated that, although 

a sample can be clustered on any subset of segmental variables; because 
.. 

different variables have different distribution patterns across a population, 

these partial classifications will differ. Different subsets of variables 

divide the sample differently, and therefore no restrictively selected 

sub-set of variables could produce a complete and coherent account of 

linguistic variation in a speech community. We would expect also, in 

the light of this evidence, that no subset of linguistic variables would 

be an adequate base for a realistic and undistorted sociolinguistic 

classification. 

Having established the clusters in the ~ subspaces, it is now 

possible to examine the relative degrees of diagnosticity of the variables 

making up the dimensions of each subspace in terms of predicting cluster 

membership. Thus we can discover which variables are more powerful 

discriminators between variety clusters. Pellowe, Nixon & MCNeany (1972), 

define a diagnostic feature as: 

"Some value of any given variable which is interpreted 

as a characteristic of a particular variety cluster (rather 

than an axial property of the spaceY' (p.5) 

A variable can have a value characteristic of a cluster in at least 2 ways: 

i) The cluster-mean value for the variable differs for. the 

sample-mean value. 
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ii) The within-K variance of that variable differs from the sample 

variance. 

A linguistic feature can be said to be positively characteristic of 

a given cluster when: 

a) K-mean is higher than sample mean; 

or b) within-K variance is lower than sample variance; 

or, better still, where both apply. 

And, to extend the argument in quantitative terms, a particular 

frequency of usage (or range of frequencies of usage) of a given variable 

distinguishes a given cluster when: 

• 
i) K-mean differs from sample mean (by being greater ~ less); 

and ii) intra-K variance is lower than inter-K variance. 

CLUSTAN provides diagnostic information on numeric (quantitative) 

variables, in the form of F-Ratios, and T-values, cluster means and 

standard deviations, for all variables used in the CLUSTAN run. 

The F-Ratio is defined thus (Wishart: 1969): 

Fj - Scj!Sj, 

where S = standard deviation, on the jth variable, 

and c - the cluster in question. 

The T-value is defined thus: 

Tj K (Xcj - Xj)!Sj, 

where Xcj is the cluster mean value for variable j. 

Low F-Ratios, ( < I), indicate that the within-K variance "is lower than 

sample variance, for the variable in question, and deviations from zero 

for T-values indicate that the within-K mean for that variable differs 

from the sample mean value. Positive deviations indicate a higher mean 

frequency within the cluster; negative T-Values indicate lower within-K 

mean values. 

Variables with positive T-Values are positive diagnostics in the sense 

that they occur with relatively higher mean frequency: i.e. they are the 
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states which are preferred relatively more often by members of this cluster, 

than by the rest of the sample. High positive T-Values, when co-occurring 

with low F-Ratios, indicate that the actual value of the variable is 

fairly stable for members of the cluster, as well as being used relatively 

more frequenty by members of this cluster. 

E.G. Table 15 (p.210), VAR 17; (VAR. variable); 

°K3 has a cluster mean frequency for VAR 17 of 82.6% Sample mean for 

this state is 11.6,T-Value = 2.5155. 

Members of this cluster, on average, for 82.6% of instances of the 

lexical set associated with the phonological entity I, realised the 

t OtO 0 (e.g. as ''In 'flOt'). sequen ln ques lon as 1 

" 
Not only is this state the major partition for OU I , for this 

" 

cluster; we know also from the E-ratio that the within-K variance for this 
1(\ . 

variable is low, (F-Ratio = 0.1465)., and therefore, that this particular 
d\ 

value of the variable (around 80%) is a stable characteristic of the 

cluster (relative to the whole sample). 

Table 13,14,15 (pp. 209 .• 21 0) show a selectionFN of the cluster diagnostics 

produced by CLUSTAN. and the phonetic transcription of the states which 

the CLUSTAN variables represent. The superordinate PDV ~nd OU are also 

shown for each state. Only those variables with positive T-Values, and 

F-Ratios less than 1 are shown, and these are listed by descending value 

of T-Value. 

FN. CLUSTAN produces diagnostic statistics for all variables, i.e. a 
total of 542 sets of statistics for the 3 classifications: hence the 
need to select variables with the most significant F-Ratios and T­
Values. as cluster diagnostics. The criteria for this selection 
imply one definition of diagnosticity. 
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Table 13. 

Lin!-uistic dia~J\osticst 7~FOH1, Kl. 

CLU F T St. 5-dig OU PDV state K-mean sample 

VAR RATIO VALUE code 01 
II) mean $~ 

134 .1465 .6259 134 00843 '\r v 1H 87.8 65.6 c 

114 .2493 .5948 114 00742 h ~ 0< 61.9 46.0 
+ 

123 .7253 .4846 123 00801 h I ~ 17.5 12.4 
64 .4400 .4217 64 00421 0.. ().. Q. 79.0 66.3 

+ 
21 .7042 .4131 21 00161 1 e a 24.7 19.0 .. --
14 .7333 .4044 14 00122 i: Ii ii 31.2 25.1 .. 
33 .6042 .3(:)55 33 00242 e.. e. ~ 36.4 30.7 

146 .7693 .3600 146 00904 u u I 14.7 10.9 

3 .3438 .3543 3 00023 i: i: i 59.3 50.7 

53 .2396 .3514 53 00342 re re a 73.5 65.0 
T 

56 .8096 .3041 56 00345 re re a 11.5 9.5 
77 .8638 .2920 77 00504 0 D 0, 22.8 19.2 

+. 
101 .4033 .2714 101 0062b :>: ;:) ;:) 57.9 50.9 

+ 
19 .2762 .2722 19 00144 1 I i 60.3 53.8 

~ 

37 .4667 .2723 37 00246 € E. E. 26.5 22.b 

74 .5232 .21.96 74 00501 D D D 
+ 

45.9 41.4 
148 .8725 .1842 148 00906 u u d3.H 34.9 31.1 

'--

32 .8897 .1393 32 00241 E. e: f 19.0 17.4 
143 .8511 .1283 143 00901 u u u 

+ 
23.2 21.5 



Table 14. 

Lingui Gtic diagnostics, ~WON1, K2. 

CLU F T St. 5-dig OU 
VAR L<ATIO VA LUE code 

19 .2771 . 5549 19 00144 I 

74 .4500 .4997 74 00501 b 

32 . 6659 .3668 32 00241 ~ 

148 .4592 .3534 148 00906 u 

30 .6537 .3394 30 00203 I 

76 .3014 .2561 76 00503 0 

66 .8146 .2449 66 00423 0.. 

143 .6678 .1812 143 00901 u 

3 .9956 .1022 3 00023 i: 

101 .8430 .0961 101 00626 ~~ 

55 .5709 .0731 55 00344 CE 

97 . 6799 .0506 97 00622 ::>: 

Li ngui st ic diagno s tics, %FONl, K3. 

CLU F T St. 5-dig OU 
VAR RATIO VALUE code 

17 .1031 2.516 17 00142 I 

75 .1753 2.449 75 00502 0 

PDV state 

I i 
n 

[) ~ 
E. E 

u c)~\:l 
'-" 

3: e 
~ 

. 0 O( 
+ 

a. 0.. 
-++ 

u u 
+ 

i: i -
:> ,:) 

+ 
re CE 

.~ 

::> :> 
-t •• 

PDV state 

I i .. 
0 b> 

++. 

K-mean 
% 

67.1 

51.6 

21.6 

38.5 

13.7 

24.5 

13.5 

23.8 

53.2 

53.4 

1.4 

15.9 

K-r.lean 
(I 
, ~ 

82 .6 

77.7 

210 

sample 
( 1 nea n /_' 

53.3 

41.4 

17.4 

31.1 

10 . 8 

21.1 

8.9 

21.5 

50.7 

50.9 

1.2 

15.1 
--

sa 
me 

m!11e 
a n c.. 

11 . 6 
t-1 L~ 
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%FONI - Cluster Diagnostics 

Table 13 shows the cluster diagnostics for KI in the first subspace 

(7.FON I) • 

The first column shows the number assigned to the variable by CLUSTAN; 

this is followed by F-RATIO, T-VALUE, and the identifier of the variable 

by STATE (subscript). (This is the same as the CLUSTAN variable number 

for %FONI, but not for %FON2 and %FON3). Cf. the remarks above on 

variable names, (Ch.4 & Appx. X TRAN output) • 
. 

The 5-digit code with which the state is recorded for input is in the 

next column (for ease of reference in the specification list. 

The next three columns show the OU, PDV and the state of that PDV 

which the variable represents: 

thus VAR 134 (STATE (134», represents the third state of the 

1st PDV of OU9,1t. which is ["lC]. 
Kl has a mean value for this state of 87.87.: i.e. on average, 87.8% 

of instances belonging to the lexical set subsumed by ~ (in non-localised 

English) are realised, by members of this cluster, by tf~, (open spread). 

The mean for the whole sample is 65.6%. 

Although all OU's are represented in Table 13 ,and for each OU, 

the major partftim(the variant state with the highest frequency, e.g. 

STATE (134) for OU9.~ ) appears as a diagnostic, neither of these 

facts will necessarily be the case in all such tables. Thus, OUs 

are not represented at all in the diagnostic list for K2. 

And the major partition of a for this cluster, which is STATE (64) , 

[~.] (as in, e.g. 'f~ther'), (62.8%) does not appear in the list. This 

is because the. sample mean frequency for this state is 66.3%, and therefore 

this state has a negative T-value. 

The definition of diagnosticity becomes more difficult if we consider 

variables such as this, (STATE(64», for K2. 

This state is the majority partition of OU at for K2; thus in one 

sense it could be said to be a positive cluster diagnostic for K2, despite 
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its negative T-Va1ue. If we select as significant only those variables 

with positive T-Va1ues, then, in cases such as this, we ignore the major 

phonetic variant of the phonologicalentity in question. 

In order then to characterise the linguistic profiles of clusters, 

as well as focus on those states which show positive deviations from sample 

frequencies, we need to examine variables with negative, as well as 

positive, T-Values. 

By the definition of diagnosticity which depends on relatively 

lower intra- than inter-cluster variance, together with higher cluster 

than sample mean frequency, we find that the third cluster only has 

2 cluster diagnostics. 

Table 15 (K3)- only has 2 entries, as there are only 2 states for K3 

with F-ratios < I, i.e. with lower intra- than inter- cluster variance, 

which also have positive T-values. This does not give a very full picture 

of the linguistic characteristics of the clusters. 

, . . 
I have therefore supplemented the 1nformat10n in tables 13, 14, 15 

with tables showing, for each ou, the distribution of states realised with 

FN high frequency by members of each cluster. (Tables 16-25.) 

FN. Abbreviated to "Kl use" etc. 

('High frequency' is arbitrarily defined as state scores of 10%, or more.) 

Where more than one PDV is represented, I have totalled the mean state 

scores by PDV: thus Table 16 shows not only which states are used, and 

in what proportions, by members of the 3 clusters, but also the proportions 

in which the 2 PDV's which are used are used. (Frequencies below 10% are not shown), 

OU] [!J NL (See Table 16 p.215) 

PDV i: is the major partition for all 3 clusters, PDV Ii accounting 

for most other realisations. These 2 PDV's account for 91%, 89%, 87% of all 

realisations for the three clusters respectively. Clusters are distinct 
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at PDV level only by the proportions in which the PDV's are used. PDV 

ratios i:/Ii are approximately 6:3, 7:2, 5:3 respectively for KI, K2, K3. 

Clusters are distinguished qualitatively at state level, as well as 

quantitatively. 

!l's realisations are distributed across state 3 [i], (e.g. 'field') 

and state 14 [il1' (as in 'se..!.'). K2 - state 3, state 4 [~) and state 14. 

K3 - state 2 li1' state 4 [!] and state 13 [iiJ. Where clusters share 

the same state, the proportional representation for that state differs. 

State 3:KI (60%), K2 (53%), K3 (0%). 

K3 is more distinct from the other 2 clusters than they are from 

each other, in terms of states used (I match with K2 = state 4). 

It is known that this cluster is relatively distant from the other 

2 clusters: (Fig.47p.197) shows a large gap in distance level before K3 

fuses with the rest of the sample). 

This relationship: 

KI ~ ... K3 
K2'-------~ 

also holds for this set of variables (OUI), at state level, in that 

KI:K2 have 2 matches and I mismatch in terms of states used 

KI:states 3,14 

K2:states 3,4,14. 

K2:K3 have I match and 4 mismatches: 

K2 3,4,14 

K3 : 2,4,13. 

KI:K3 have 5 mismatches: 

KI 3, 14 

K3 2, 4, 13 
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However, the relationships between the 3 clusters are different at PDV 

level for this OU: 

total percentage representation of PDV i: 

ranks K2 highest 69% 

Kl middle 60% 

K3 lowest 54% 

with (Kl : K3) (K2: Kl) (K2 K3). 

At this level of representation, we have 

PDV i: 

(This ranking is reversed for PDV Ii as these 2 PDVs function as alternants 

for this sample). 

So, even taking ~ speech sound, i:," we find that the level of 

representation (degree of delicacy of linguistic analysis) crucially 

affects the relationships between clusters. The PDV level produces a 

different classification of the clusters than does the state level, and 

it is therefore likely that a clustering based on PDV scores throughout 

the whole segmental space would structure the sample very differently. 
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~ble 16. 

~h ~ r.1.c: G-.!:. .£r_,=--~c.n ~ PDV.!:)_., __ ~ t_.:.l_t.e_s __ oX .O~1 . _ .. i :_-.E..~<: c _b ... ':. .12c.r'l.L.' :-.==: 

:.; t a te K1 K2 K3 PDV K1 K2 K3 
1- - --------- f--- .- . -- ---------

2 i 44 
c 

3 i 60 53 i: 60 69 54 

4 i 16 10 , 
13 ii 33 

Ii 31 20 33 
14 ii 31 20 

( 

Table 17. 

Cluster mean frequencies of sta tes and PDVs use d by members of 

K1,K2, and K3. OU2 I • 

state K1 K2 K3 PDV K1 K2 K3 

17 i 83 
1\ 

I 60 67 83 
19 i 60 67 

" 
21 Q 25 14 'V 25 14 

30 E \ 14 3: 14 . 



Table 18. 

OU3 E. K 

state 

32 ~ 
c 

" £ 
= 

34 td -
35 e -. 
37 E. 

Table 19. 

ou4 

state 

52 a 
• 

53 a 
". 

54 a 
+. 

56 a 

Table 20. 
L 

OU5 0.. 

state 

64 :: 

65 d) •• 
66 0. 

+to 

K1 

19 

36 

27 

K1 

74 

12 

K1 

79 

13 

K2 K3 

21 

28 

24 

14 57 

26 

K2 K3 

30 

51 46 

38 

K2 .K3 

63 

14 

10 

59 

15 

PDV 

PDV . 

2!e 

PDV 

a. 

216 

K1 K2 K3 

82 83 81 

K1 K2 K3 

86 81 84 

K1 K2 K3 

92 77 84 



Table 21. 

ou6 p L 

state 

74 p 
+ 

75 tD 
'he 

76 D( 
+ 

77 b' ..... 

Table 22. 

OU7 :l: 

etate 

97 ::> + •• 

98 :) 

• 
100 :) .... 
101 ::> 

+ 

102 :>c 
( 

Table 23. 

ou8 A 

state 

113 ue 
#~ 

114 ~( 

115 oc ..... . 
123 + 

128 a 
.. 

130 ~ 

131 ii 

K1 

46 

23 

23 

K1 

12 

.58 

K1 

62 

18 

217 

K2 K3. PDV K1 K2 K3 

.52 

78 
92 95 87 

25 9 

18 

K2 K3 PDV K1 K2 K3 

16 27 

1.5 

9 70 69 84 

.53 13 

20 

K2 K3 PDV K1 K2 K3 

26 

26 -V- 62 35 26 

9 

I 18 

24 

39 ;> 39 45 

21 



Table 24. 

OU9 '\1 

state 

132 -V , 
134 -Q, , 
135 u c 

*. 
136 u 

C~ 

137 Uc 
+-

Table 25. 

OU10 u 

state 

143 u 
""" 

144 Ul 
~c. 

145 Ul 
+' 

146 'I -
147 ~)U 

+- 04-
'-" 

148 ~~* --

K1 

88 

K1 

23 

15 

16 

35 

2)8 

K2 K3 PDV K1 K2 K3 

28 

35 -Q" 88 64 46 

29 18 

12 
U 27 

15 

K2 K3 PDV K1 K2 K3 

24 10 

14 11 

26 
U 89 85 go 

8 43 

39 
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OU2 NL (Table 17 (p.2IS» 

KI, K2, are distinguished from K3 by their use of central vowels 

as variants of I. (PDV'B state 'd (KI, K2) and PDV ~: state ~ (K2» • 
• 

KI, K2 are distinct from each other in that K2 uses e. and KI does 
:a . 

not, and also by the ratio of usage of states. 

OU3 [fJNL (Table 18) ,('head', 'bread', ...... ) 

All clusters use variant state of PDV E predominantly (82%, 83%, 81% 

respectively). 

K3 alone used the centralised diphthong ~a. Other distinctions depend 

on precise articulatory position: (e.g. retraction, lowering): _f a £ E ~ , _,_,c;. , - . 
OU4 (;;] L (Table 19 (p.216).) 

All clusters have state 53 a as the most frequent phonetic state. 
r 

(E.G. as in, 'path', 'gr.!ss' •••• ) 

PDV ~ is the main partition for all clusters. 

OUS ~ L ('f~ther'. 'b.!rn' •••• ) [Table 20 (p.216).) 

Table 20 shows again that clusters are distinguished, as far as 

this OU (a ) is concerned) by fine phonetic differentiation within 
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the major PDV, PDV ll, and by the proportions with which the states of 

this PDV are used. Distinguishing parameters are degree of lip-rounding, 

degree of fronting, and degree of raising from cardinal vowel 5 position. 

OU6@] L ('.£.ff', 'bec~se' ••• ), OU7§NL, ('w.!r', 'talk' ••• ) 

(similar to OU5). (Tables 21,22 (p.217).) 

Table 23 OU7 ~NL is an interesting case: the phoneme IIlI as in 

'm~ther, c~~ l£ve ••• ' is generally not used by localised northern speakers. 

The lexical set associated with the phonological entity ~ is split up by 

this sample, and distributed across 3 PDVs, -V-, I, a. 
KI use predominantly an advanced version of cardinal vowel 7 (0) 

. 
with lip spreading, (62%), and also the centralised high vowel + (18%). 

K2 and K3 use a lower proportion· of mid-high and high back vowels, 

and a higher proportion of central vowels (~ (K2), and (») A (K3» than 

KI. K2 and K3's central vowels are lower than KI's • 

. OU9GaNL (Table 24 ) ('p~l1', 'book' ••• ) KI, K2 use PDV."t)"" 

predominantly, whilst K3 uses PDV u for 27% of realisations. 

OUIO ~ NL (Table 25 ), ('m~n', 'b~tiful' ••• ) All states 

used by each of the 3 clusters are state of PDV u. 

Within this, there is a range of phoneti.c dis~inctions, covering the 

high back vowel region (u) (states 143, 144, 145); and centralised or 

fronted variants (state 140 is retracted variant of secondary cardinal 

vowel I, r , used by KI (15%); state 147 is a high back offglide from -
advanced variants of secondary cardinal vowel 7(1' and primary cardinal 

vowel 8 (u) with less lip spreading, state 147 is used by KI (16%), 

K2 (8%), K3 (43%).). 

KI and K2 use also a laxer variant of this state (state 148) 35%, 

39% respectively. 

To summarise, then, the monophthongic vowel subspace (%FONI) tends 

towards variability at state level more than at PDV level. ,(Cf. %FON2, see 

below, pp.22Iff.) 
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%FONI - Key Diagnostics 

The major diagnostics are the variants of OUB. A.. This 

OU distinguishes the three clusters on the basis of their choice between 

PDV' s ~ , I and ~. 

OU9~ shows K3 to be distinct in the use of variants of PDV u. 

OU2 I distinguishes all three clusters on the basis of their distributions 

across PDVs 1. , , 

%FON2 Cluster Diagnostics 

Tables 26 through 2B 

• 

show diagnostic lists similar to those 

given for the first subspace (%FON1), derived from the CLUSTAN diagnostics, 

for each of the 3 clusters in this space. These are called KA , KB , KC 

respectively. These clusters are NOT, of course, the same 3 clusters as 

in the previous subspace, except for KC - K3, the Newcastle subsample. 

The (working class) Gateshead subs amp Ie represented in Kl, K2 is variably 

distributed across KA and KB. 

Once again we see that these diagnostics (selected on the basis of 

F-Ratio (1 and T-Value > 0, arranged in descending T-Value) do not provide 

an adequate picture of the distributional characteristics of state values 

for clusters. This is partially due to the fact that state scores are 

treated as independent and unrelated variables in the classification 

procedures (i.e. the structuring of the coding frame cannot be reflected 

in the definition of variables for CLUSTAN). 

In addition, however, the definition of 'diagnosticity' on the basis 

of which these statistics (F-Ratio and T-Value) are based are not the only 

possibly useful ones. 

Once again this information is supplemented by tables showing 

distributions of cluster-mean scores across PDV's and states of OU's 

in this subspace. (See Tables 29-41, pp.226-229.) 

The most immediately striking feature of these tables concerns the 
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Table 26. 

Linguistic diagnostics , %FON2, KA. 

CLU F T St. 5-dig OU PDV state K-mean sample 
VAR RATIO VALUE code % mean % 

86 .9616 .9635 240 14601 a.'\)'" ~G) ,:)Q 34.8 14.6 

129 .9065 .7613 283 01688 3 ~ S 15.2 7.9 -
16 .7677 .6743 170 11202 e.I let ~a 30.3 16.7 

178 .4799 .5259 332 02081 I. r~J..la) 3. 77.3 61.0 

118 .7750 .3500 272 01641 3 ~(') E.. (~) 19.6 14,6 -
149 .1731 .3122 303 01822 E~ £ ~ 81.6 72.9 

185 .0288 .3077 339 02123 T.,. 
. 

97.6 91.7 L 

173 .2925 .2502 327 02021 ~~~, rttJ. a. 77.6 70.5 

34 .4102 .1607 188 01204 3<0- u: 0,· 8.5 6.4 ... 
176 .7915 .0630 330 02042 aa~, t\on- ::I 7.1 6.6 r~A. " 
54 .2897 .0011 208 01304 al ~~ C). 51.7 51.6 ~ 
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Table 27. 

Lingui~tic diagnol5tics , $£FON2, KB. 

. 
CLU F T St. 5-dig OU PDV !State K-mean sample 
VAR RATIO VALUE code % mean ~~ 

27 .3902 .7360 181 01181 av- ~: 0, 
+ 73.2 47.9 

163 .5865 .6098 317 01961 03 "0'\· ~ 63.9 46.8 red. 

117 .6967 .5552 271 01623 ~ J!J 9c 55.7 39.7 
+r 

13 .6106 .5131 167 01123 e.I i: ! 77.9 61.8 
" 

78 .9271 .4746 232 01143 ~ £'U" E,Q- 56.0 39.9 -
173 • 3336 .3111 327 02021 a~~, reel . 0, 79.3 70.5 

54 .5115 .2874 208 01304 a1. a.: a. 56.2 51.6 
~ 

142 .9306 .2543 296 17801 Ie 1£ if. 54.4 47.0 

149 .5634 .2200 303 01822 e2> e. ~ 79.0 72.9 

103 .9361 .1396 257 15201 :::>1 Dl p\ 44.8 39.6 

185 .1162 .1390 339 02123 I2- i 94.4 91.7 

180 .5567 .1122 334 02083 I. n"t~) I 14.1 13.0 

178 .5451 .1037 332 02081 I. r~(a) d, 64.2 61.0 

169 .8733 .0760 323 02001 ~4o. non. E. 40.8 37.9 re.cl. -
175 .7584 • 0036 329 02041 C,d • "0"· 'I 10.0 9.7 

r"fcl. 

Linguistic diagnostics, %FON2. KC. 

CLU F T St. 5-dig OU PDV state K-mes.n ~ample 

VAR RATIO VALUE code % mes.n % 
ftO,,· . 

182 .6906 2.362 336 02102 1, ,.~(.t.ct) l~ 68.6 15.0 

161 .0320 2.274 315 01941 ~3 rttl. ;'3 92.1 22.0 

167 .0120 2.632 321 01981 04. ~. d3 95.9 21.2 

6 .2884 .2011 160 01062 et £ e 4.6 2.3 -
62 .7328 .1934 216 01362 a'I~ ala aI.~ 

T 9.6 5.6 

74 .8464 .1574 228 01424 * at>- at)- 16.7 12.8 = 
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range of PDV values taken up by the sample from each OU. In the monophthongal 

subspace, cluster mean values tend to be highly concentrated within 

fewer PDVs for each OU. 
. 

Reilisations of OU ,: are distributed mainly across 2 PDVs, 

OU's I , and -0- have realisations spread over 3 PDVs each, but 

for the remaining 6 OU's state realisations are heavily concentrated on 

one PDV only. 

In the second subspace (%FON2), however, all diphthongal OU's have 

relatively high mean frequencies spread over 3 or 4 PDV's. The reduced 

vowels, whose variants are structured differently, (into reduced and 

non-reduced realisations), all display dispersions across these 2 categories. 

In other words, majority partitions into PDV's of the lexical sets 

associated with OUs in the first subspace tend more towards uniformity 

for the whole sample, whereas majority partitions in the second subspace 

tend to be cluster based, and spread across different PDV's. 

In other words, clusters in the second subspace are distinguished more 

often by variability at PDV level of representation. This means that for 

this sample of informants, diphthongal and reduced vowels carry variability 

at a structur~lly higher level than monophthongs (phoneme-like distinctions, 

as opposed to fine phonetic distinctions within one PDV). Hence, perhaps, 

the higher initial fusion level of this subspace\ 73.335 (%FONI - 19.806, 

%FON3 - 15.676). (D
2
). 

Tables 29 to 41 ~.2Z,ff,) show distributions of cluster mean state 

scores across PDV's and states. 

I shall limit my discussion of these tables to those OU's which display 

the more striking distributional patterns, and which apparently carry 

relatively more diagnostic power. (Here I apply a stronger operational 

definition of ~key diagnostic' than could be applied to %FONI). 

The choice of this selection of OU's and their variants is made on 

the basis of 2 considerations: 
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i) that variants of a OU (states) satisfy the criteria implied by 

the CLUSTAN T-Value and F-Ratio statistics; namely cluster mean differs 

from sample mean (in this case by exceeding it), and cluster variance is 

lower than sample variance. 

ii) that variants (either state scores or PDV scores) of an OU 

discriminate all three clusters from each other. 

Working with these 2 criteria, a short-list of 6 outs from this 

subspace is arrived at. These abstract phonological entities display 

patternings of variant realisations across this sample which demonstrate 

these items to be salient linguistic variables (in terms of the definition 

of the space). 

The outs in question are: 

aI. 

Each of these outs appears in the lists of diagnostics derived from 

the CLUSTAN output, and each of thall'subsumes at least one dimension 

(either of PDV or state scores) which discriminates all 3 clusters from 

each other, in terms of cluster mean frequencies. 

OU fi!l (See Table 29 ) ('!ight', 'railway' ••• ) (As in the previous 

section, these tables show mean state frequencies by clusters: the left­

most column shows the STATE( ) subscript for reference by TRAN table 

(Appendix X), next right is the phonetic description of the state. Totals 

for states belonging to the same PDV are shown. 

PDV eI was predicted as the majority partition of this lexical set for 

non-localised speakers (Pellowe, Nixon & McNeany: 1972, p.12f.). 

PDVs i: and ia were postulated as majority partitions for localised 

Tyneside speakers. 

The K-mean scores fori: and ia show that KA has realisations heavily 

conccntrated on the localised variants, KB also, but with a few realisations 

(5%) as the state ~I, a variant of the NL (non-localised) PDV, (PDV eI). 

(Text resumes,on'p.230.) 
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Tables 29 - 41. 

Cluster mean frequencies of states and PDVs used (high frequencies 

only) by members of KA, KB, and KC, (%FON2). 

Table 29. 

OU11, eI. 

state 

3 ~t . 
13 I 

i4 

16 e."b 

20 f.t. 
-:' 

Table 30. 
OU12, )1)" 

sta.te 

26 0(1T 
~~ ( 

27 0 
+( 

34 0'" ... 
0' 35 +c, 

36 ~ 
39 ~ 

Table 31. 
OU13, at 

state 

48 §1 

49 ~i 

53 a. 
• 

54 a .. 
58 ti -, 

KA KB 

5 

61 78 

30 4 

KA KB 

1 6 

29 73 

9 1 

15 4 

17 1 
" 

21 3 

KA KB 

3 

5 9 

52 56 

40 25 

KC PDV KA 

28 e.x 
• 61 5 l: 

26 ·Ia 30 

16 £.1 

KC PDV KA 

67 ~-o- 1 

4 :)~ 29 

20 
u: 24 

• a.: • 

I J.38 

KC PDV KA 

15 at 
5 

27 

9 

34 
0..: 52 

3 et. 40 

KB KC 

5 28 

78 5 

4 26 

16 

KB KC 

6 67 

73 4 

5 20 

4 

KB KC 

12 42 

56 43 

25 3 



Table 32. 

OU15! a-o-

state 

73 a-o--
74 ~'tt 

77 E~ 
":" 

78 E."O" -
86 .::>(1) 

87 AQ 

Table 33. 
oU16, ~I 

state 

100 ~I . . 
102 ':)1. 

• 
103 IH! ., 
104 0'1 .. , 
105 ~1: 

106 aI 
" 

Table 34. 
OU17, 3 

state 

111 " ." 
116 e( 

+ 

117 e' 
it 

118 ~ (71) 

129 e 
:: 

KA KB 

1 3 

3 19 

1 4 

24 56 

35 4 

16 2 

KA KB 

1 9 

11 

44 45 

6 3 

10 6 

15 3 

KA KB 

1 7 

6 7 

33 56 

20 12 

15 5 
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KC PDV KA KB KC 

15 
(i1}- 4 22 32 

17 

35 
£"11 25 60 58 

23 

:)(A:) 51 6 

KC PDV KA KB KC 

~I 1 20 7 
7 

7 
50 48 21 "'\)'l 

14 

~1. 25 9 

KC PDV KA KB KC 

65 3~ 1 7 65 

13 
121 39 63 13 

12 e. ()) 20 12 12 

:;) 15 5 



Table 35. 
OU18, Io. 

3tate 

132 ~?> 
. 

138 I: 

142 iE 
. 

143 ,-at 
.. 

144 La 

Table 36. 
OU19, e.~ 

etate 

146 f() 
to 

147 [ 

148 e 
C\ 

149 ~ 

150 E -, 
152 ~ 

Table 37. 

KA KB 

1 9 

24 24 

44 54 

3 2 

24 1 

KA KB 

1 1 

7 13 

82 79 

8 5 

OU21 , 0 3 final open. 

state KA KB 

161 a3 11 11 

162 a4 10 15 

163 f 40 64 -
-

166 0. 36 7 

228 

KC PDV KA KB KC 

29 1'a 1 9 29 
. 24 3 , : 24 3 

27 

32 iE 71 57 59 

KC PDV KA KB KC 

38 
E.~ 1 1 55 

17 

3 

26 E. 97 97 29 

12 3: 12 

KC PDV KA KB KC 

92 
red. 21 26 97 

5 

1 
nOH-re • 76 71 1 



Table 38. 

OU22 , 

state KA KB KC PDV 

167 QJ 7 12 96 
red. 

168 ~4 5 28 3 

169 E. 48 41 1 -
170 Q.. 17 2 ¥~R: 

Table 39 
OU23, ~ 2 ~1 I[non-fortie] __ 

state KA 

173 a. 7 

175 I 13 

176 I 
'" 

7 

etate KA 

178 ), 77 

179 d~ 8 

180 I 8 

182 i: 5 

Table 41. 
OU25 , 12 / 

state KA 

183 1 2 
.. 

185 l 

KB 

79 

10 

8 

KB 

64 

12 

14 

8 

KB 

3 

94 

KC PDV 

18 red. 

noa-re • 

KC PDV 

5 

2 red. (a) 

22 

69 pga:{I) 

KC 

16 

66 

229 

KA KB KC 

12 40 99 

65 43 1 

KA KB KC 

78 79 18 

20 18 

KA KB KC 

93 90 29 

5 8 69 
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KC shows realisations spread over 4 PDVs, with higher frequencies for 

PDV's eI and iu , a NL, and a L, variant respectively. 

KA and KB, then, fairly consistently use localised variants, with 

KA using them slightly more frequently (91%:82%). KB, however, favours 

the localised PDV i:, a monophthongised variant of this OU, whi Ie KA also 

has a fairly high percentage (30%) for PDV i8, the centralising dipthong. 

KC shows heterogeneous tendencies. 

The monophthongal variant, state i of PDV i: discriminates all 3 
" 

clusters, having 61, 78 and 5% as their~spective K-means. 

OU fEB Table 30 ('phone' - , , , ) go ••• 4 PDV's are represented here, 

the NL PDV, aV , and 2 majority partitions for L varieties, PDV's 

~: and u: (Pellowe, Nixon and McNeany: 1972, p.13). 

PDV a: also appears (localised realisation for lexical items such 

as 'old', 'know', 'no', 'cold'). 

In this case KC has realisations of this item concentrated heavily on 

the NL PDV (67%), (cf. the spread of KC's distribution across the variants 

of the previous OU's.) For this OU, KA shows a heterogeneous spread of 

realisations, across 6 states, with state ~ represented slightly more 

frcq~~ntly. However, at PDV level, KA is seen to be slightly more 

concentrated on the L PDV Q:, (38%) while KB has the localised PDV ~:, 

rs~', 's~ke' ••• ) as the overwhelming majority partition (73%). 

Summed state frequencies for PDV ~: discriminate the 3 clusters 

from cach other: 29, 73 and 4% respectively. 

OU @ (Table 31), ('side', 'five' ... ) 

Once again KC displays a heterogeneous distribution across states of 

the NL PDV, aI, and the L PDV a:. ('I', 'five' ••• ) 

KA divides its realisations across 2 L PDVs, ~: and eX (e.g. 'mine') 

(52%, 40% respectively), whilst KB has ~: as the major partition, (but 

also has eI as a large minor partition - 25%) • 
. 

The state E' , of PDV eI discriminates all 3 clusters, with 40, -, 



231 

25 and 3% respectively. 

OU ~NL Table 34 ('bird', 'earth' ••• ). PDV's highly represented 

()) 
are 3:, '" , E and:>. 

PDV's 3: and 0, (e.g. 'y!!r'), are both postulated as majority 

partitions for some NL varieties, the latter also being predicted as a 

majority partition of the lexical set for some L varieties.KC favours PDV 3: 

state ~) • (65%) a centralised variant of this NL PDV. 

KB has a high concentration of realisations under PDV 0, 63%, and 

KB a slightly lower concentration, 39%. All clusters have a fronted 

• t" (~) • h 1· h hI· . 1 var1ant, ~ . W1t a s 19 t sc wa co ourat10n - 20, 12, 12% respect1ve y. 

KA and KB use a variant of PDV :>, (e.g. 'birth') (~) 15, and 5% 

respectively, whilst KC do not use this state at all. 

The 3 clusters are discriminated at the PDV level, for PDV 0, 39, 

63, 13% respectively. However, as mentioned above, this PDV is a majority 

partition for some L and some NL varieties, so the interpretation of this 

distribution pattern is tricky, in relation to Land NL categories. 

,Empirically, however, we can say that. for this sample of informants, 

frequencies of realisations from the lexical set associated with OU ~ 

as ... ariants of PDV " do have discriminatory power for': the clustelS obtained. 

Unstressed Centralised Vowels 

"These criteria cover the vowel of unstressed syllables" (Pellowe, 

Nixon and McNeany,: 1972, p.IS), and represent positions in the articulatory 

space as shown below, (Fig. 53 (taken from Pellowe,Nixon & McNeany, 1972). 

Fig. 53 
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State realisations for central vowels (unstressed syllables) are 

divided into reduced and non-reduced, as this distinction has been shown 

to be significant for individual Tyneside speakers. 

"PDV's are defined in terms of the dichotomy reduced/unreduced, since 

these seem to represent the major distinctions between S's.[speakers] 

Evidence for this was found in a pilot study (McNeany: unpub.) in which 

we found that whilst intra-speaker mixing of what we represent as states 

was possible, intra-speaker mixing of reduced and unreduced forms was 

rare" (Pellowe, Nixon and McNeany: ]972, p. ]9). 

For example o! final open, (Daniel Jon es' notation) can be realised 

with 03 or ~4 , or as one of the following unreduced vowels: 

1. , 
e.g. (china). 

Such realisations of unstressed syllable vowels as non-reduced vowels 

feature frequently in Tyneside varieties. 

For this particular OU, (Table 37 ), we find KC favouring the reduced 

form, state a~,for 927. of realisations, whereas KA and KB favour the non­

reduced states f and q. -
At the level of the reduced/. unreduced dist~nction, we find KC almost 

exclusively using reduced (NL) forms, and KA and KB using very high 

frequencies of non-reduced forms. 
KA KB KC 

red. 2] 26 97 

non-red. 76 7] 

KA shows a slightly greater- tendency towards the localised (non-reduced) 

forms, with similar proportions for states ~ and ~ (40 and 36%), with KB 

concentrated mainly on state ! (64%). 

KC is distinguished sharply from the rest of the sample then, on this 

OU, in terms of vowel reduction. The three clusters are mutually distinct 

in terms of mean frequencies of usage only at the state leveljfor state e. , -
40, 64 and 1% respectively. 
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An analogous situation holds from the OU ~4A • (e.g. 'standard'. 

'interview' ••• ). 

Table 38 shows that KC once again favours reduced forms (99%), 

whilst KA and KB use both reduced and non-reduced forms, but use the latter 

wi th higher mean frequencies. 

Once again KA realises 'central' unstressed vowels with non-reduced 

forms e. and a , whilst KB favours E. • - -
The 3 clusters, however, are not mutually distinct at any state level. 

but at the level of distinction reduced I non-reduced. KA favours non-

reduced forms (12%:65%). whilst KB uses both in approx. equal proportions. 

(40:43%) and KC uses reduced variants (99%). 

On this OU, we have a ranking of clusters from L to NL, 

~ee text) L ~~~KA..:.....-___ ....;.k..:...:B,,--___ -,,-K......;;C,,---..,) WL 

It appears that members of KC have stability of realisation according 

to the distinctions reduced/non-reduced for unstressed vowels: these 

categories. then. are powerful diagnostics for this cluster. (Cf. the 

heterogeneous distributions displayed by this group for dipthongal OU's). 

If it is true that "intra-speaker mixing of reduced and unreduced 

fcr:ns[is]rare". (Pellowe, Nixon and McNeany: 1972, p.19). then the 

question must be posed, why do we find the phenomenon (e.g. in d3 

and a4~ ) of cluster mean frequencies being spread across both categories fir 

KA and KB. Either individuals ~ use a mixture of reduced and unreduced 

fo~ for one OU, or each of these clusters contains 2 sub-groups, one 

of which habitually uses reduced forms, the other consistently using 

non-reduced variants. 

In this case. we have clus ters which ar,e heterogenous with respect 

to the reduced vowel OUs; in other words, scores for states of the dipthongal , 

OUs in this subspace have overwhelmed the unstressed vowel OUs. This 

is very probable. given the number of variables (states). yielded by 

these 2 categories respectively. 

(dipthongs - 160, central vowels. 29). 
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This can be tested by checking the realisations of individual 

informants with respect to the unstressed vowel OU's only. Since the vowel 

reduction phenomena may constitute useful diagnostic criteria, there may be 

grounds for either: 

a) assigning these features more weight in the classification; 

or b) reducing the number of dimensions associated with the other OU's 

in this subspace. 

b) could be achieved by clustering informants on PDV scores rather than 

state scores. Interestingly, the distributional picture is reverse~ for 

the unstressed vowel ~. KA, KB use predominantly the central reduced 
------------------~ 

form, (e.g. for hous!.s, stupid), ~,-., whereas KC use (69%) statei: (non-

reduced), most frequently. 

There appears, then. to be a reversal operating between (KA + KB ) : KC. 

with respect to reduction of unstressed vowels. For KA and KB, schwa type 

out s tend to be fronted to [t] , or lowered and retracted to (4] , whilst 

KC uses central variants. But for OU II (I unstressed followed by 

consonant), KAand KB centralise, whilst KC favours the raised. fronted 

variant [i~ 

To summarise, the~, the second subspace (%FON2). covering diphthongs 

and unstressed vowel OU's, appears to contain more variability than subspace I. 

This is attested by the fact that clusters are distinguished in some 

instances by frequency of state realisations. but very often by distributions 

of cluster mean scores between different PDV's of a given OU. Level of 

representation obviously crucially affects the resultant classification. 

Although an opposition emerges between (KA + KB) and KC in many of 

the variables discussed, this relation is not reflected for all variablesr 

e.g.OUl!21(Table 32 p.227.). 
, 

state!~. where KA and KC are similar, and differ from KB. with 

24. 56 and 23% respectively. 

However, at the PDV level (the PDV of which this state is a variant), 
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KB and KC are opposed to KA. 

PDV t1F of au atr has frequencies 25, 59 and 58% for KA, KB, KC 

respectively. 

Detailed analysis of these distributions shows then that: 

1. Different variables do not diplay isomorphous distribution patterns 

across the 3 clusters; 

2. different distinctions between clusters exist at different levels of 

representation; 

3. classifications of a given sample are dependent on the level of 

representation (fineness of analysis) selected as the basis of 

definition of variables. 

Although I have examined cluster mean scores at state, and PDV level 

in the foregoing, it must be noted that t~classification which produced 

these clusters was performed using variables at state level. 

It is hypothesised that a recomputation of clusters using PDV 

frequencies will produce a different classification of this sub-sample. 

This exercise is proposed as a future extension to the present research, 

in order to test the hypothesis that the analytic level of representation 

sclccted as a basis for measurement and comparison of the speech output 

of informants partially determines the nature of the results obtained. 

The phonological entities which emerge from this classification as 

the more significant diagnostic dimensions are the following: 

(~y realised by PDV i: 

or ia 

1~ realised by PDV eI 

~ realised by PDV ~: 

or u: 

rn realised by PDV 0 

1~4d and ~31 realised with reduced or non-reduced forms. 
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%FON3 - Consonantal Subspace - Diagnostic Features 

As for the 2 other subspaces,selected diagnostics derived from the 

CLUSTAN output are tabulated (Tables 42.43.44 ), by clusters (K CI..,KAK ~, 

This information is supplemented in tables 45 through 57 

which display distributions of scores across variants of OU's, by clusters. 

NB. OU's p, b, t, d, k, g are divided at 'PDV' level, into positional 

variants, initial, medial and final.FN(Tables 42-57 appear below pp.237-242.) 

FN. Where 'initial' includes appearance in a prevocalic cluster, 'medial' 
means intervocalic, or appearing before a syllabic consonant. 
'final' means appearance in a post-vocalic cluster. These distinctions 
apply to the syllable, except for 'medial', "which applies in the 
absence of free morpheme boundary" (Pellowe, Nixon and McNeany: 
]972, p.22ff). 

Percentage representations of states are computed, (for each individual), 

as for.' other OU's, on the basis of state score as a percentage of the sum 

of all state scores coded under the OU in question. 

Assuming stable distribution of lexical sub-sets defined by d-init, . 

d-medial, d-final, across the lexical set associated with d, then these 

'PDV' level distributions reflect accurately relative frequencies of usage 
. 

of variant states of a sound feature in a given position. 

Plosive and Stop Consonants 

OU· rn ('!octor', 'el!er', 'ma!') Table 45 (p.239) displa~an 

interesting opposition between K Cit + Kf3 , and K~ • 

K~ and Kfo tend to use predominantly a weak voiceless plosive 

for d in initial position (27, 28%); K~ use this variant more often in 

final position 24% (also using [d) with nearly as high frequency. ]9%). 

For d-init, K~ use an advanced d in the majority of instances, 

(2]%). 

K~ and Kfo also use a weak, voiceless plosive for g in initial 

position, but the major realisation for each is (g) (Table 47 ). 

(TeJlt resumes on p.243~) 
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Table 42. 
Linguistic diacnostics, ~~FON3, Kal. 

CLU F T St. 5-dig au PDV state K-mean sample 
VAR RATIO VALUE code % mean .ro 

134 .5057 .9894 477 02681 .3 3 84.3 37.3 

173 .5114 .4853 516 02861 r ~ 90.7 84.8 

154 .3746 .4052 497 02781 l /(v>-{ji l 40.0 33.9 

143 .0268 .3272 486 02741 t'\ n 99.6 98.0 

130 .3243 .3190 473 02641 Z'~ Z. 81.3 73.2 

79 .7129 .2634 422 02421 k fina.l -k 36.2 33.2 

136 .4318 .2570 479 02701 h h 92.6 89.5 

192 .0031 .2516 535 ()2941 VI 'vJ 99.1 95.3 
I 

159 .4527 .2442 502 02801 l' Ie )C_" L 13.2 11.8 

53 .2208 .2430 396 02322 d ini'HCl I d(4) 26.5 24.2 

63 .4355 .2262 406 02363 q fin~' d 40.0 37.4 

44 .5250 .1863 387 02301 t .fjno..\ t 33.9 32.0 

112 .3833: .1305 455 02561 V: V·, 98.0 97.5 

69 .429.5 .1097 412 02383 K ;ni+to.\ k" 27.4 26.2 

107 .3283 .1073 450 02541 f: of. 97.2 96.6 

186 .6254 .0844 529 02881 j Ini·HoJ . 94.2 93.7 J 
115 .5956 .0710 458 02581 e 9- 83.4 82.3 

126 .6778 .0631 469 02621 S S 95.0 94.2 

99 .7393 .0484 442 02501 ~ tf 94.7 94.1 

93 .4816 .0300 436 02461 .9 meJ.lo.\ 5 14,.5 14.3 

152 .4527 .0112 495 02766 .!) ...!)k' 3.6 3.5 
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Table 43. 

Linguistic diagnostics - %FON3, K (3. 

CLU F T St. 5-dig OU PDV state K-mean sample 
VAR RATIO VALUE code % mean % 

199 .0548 .5925 542 27603 -iJ'\~ 
(bou,,~) n 94.9 73.9 

164 .5167 .5328 507 02822 l ,,,- £:1 ~ 19.3 14.8 

167 .6320 .4827 510 02825 l Iv-{~l e.. 17.5 13.6 

53 .2898 .4208 396 02322 cl ina· • d(~) 28.1 24.2 

69 • 6780 .4003 412 02383 k' init. kh 30.7 26.2 

159 .3642 .3898 502 02801 l lOt." l 14.0 11.8 

44 .5290 .3768 387 02301 \: fi,,~\ t 35.9 32.0 

143 .0068 .3720 486 ~ 02741 n n 99.8 98.1 

19 .3760 .3438 362 02201 b i",t . b 68.8 63.8 

112 .5539 .2857 455 02561 " " 98.6 97.5 

130 .3029 .2855 473 02641 z. Z. 80.5 73.2 

192 .0030 .2816 535 02941 W· W 99.6 95.3 

79 .4525 .2760 422 02421 K flO. \< 36.3 33.2 

63 .5163 .2747 406 02363 a fir. . d 40.5 37.4 

154 .3848 .2327 497 02781 l k..,).{l! l 37.4 33.9 

2 • 7559 .1632 345 02142 P ,nit . p 49.4 47.3 

10 .8239 .1166 353 02164 P ~. P 10.2 9.2 

104 .6292 .1137 447 2521 J~ d3 98.5 98.0 

132 .0479 .1121 475 02661 r s(f) 99.6 98.1 

126 .8147 .1003 469 02621 S S 95.5 94.2 

136 .8210 .0902 479 02701 h h 90.6 87.5 

55 .7149 .0764 398 02341 d fid. el 14.6 14.1 

140 .5447 .0450 483 02721 f(\ in 99.8 99.8 
-

33 • 3529 .0433 376 02263 t i",t . t~ 14.4 14.2. 
-

89 .6292 .0362 432 02441 B i"i-\: . ~ 62.9 62.3 -



2l9. 

Table 44. 

Linguistic diagnostics - %FON3, K t . 

(CLU F T St. 5-dig OU PDV state K-mean sample 
VAR RATIO VALUE code % mean ~~ 

165 .3725 2.466 508 02823 l A/-f~l l 32.4 4.7 

47 .4189 2.444 390 02304 t +;n. l' 27.1 4.5 

174 .8935 2.019 517 02862 r .t 34.3 10.4 

121 .3627 1.509 464 02601 f f 94.7 62.3 

89 .5758 1.245 432 02441 ~ in,-\: . 9 83.0 62.3 

107 .0594 .4997 450 02541 + f 99.4 96.6 

140 .0000 .3199 483 02721 Wl m 100.0 99.8 

132 .0000 .1808 475 02661 s 5(n 100.0 98.9 

':Tables 45-57. 
Cluster mean frequencies of states and .PDVs used (high 

frequencies only) by members of~, K~, and K¥. (%FON3). 

Table 45. 
OU30 d. 



Table 46. 
OU31, k. 

state 

67 k 

69 kh 

79 k 

84 k' 

Table 47. 
OU32, g. 

state 

89 g 

• 90 g 

Table 48. 
OUSS, f 

state 

121 g 

123 tAf 

124 ... 
n 
,.., 

125 i 

Table 49. 
OU39. s. 

state 

126 s 

128 s , 

KoC. 

6 

27 

36 

. 
1 

KaL. 

55 

27 

KoC 

61 

8 

6 

22 

95 

4 

240 

K~ K~ 

6 31 
initial 

31 8 

36 13 
final 

12 

Kt 
63 83 

initial 
16 1 

Kfo Kr 

53 95 

13 4 

7 

24 1 

K~ K¥ 

96 88 

11 

4 1 



Table 50. 
OU40, z. 

state 

130 z 

131 s(:1) ., 

Table 51. 
OU43, h. 

state 

136 h 

139 " 
Table 52. 

K~ 

81 

19 

KCIIC. 

93 

7 

OU46 I !) (free). 

state Kc(. 

148 ~ 92 

151 n 3 

152 ng 4 

153 k 1 

Table 53. 
OU47. 1. 

state KoC. 

154 1 40 

155 1 

156 1 

159 1 13 

160 1 

161 1 

241 

K~ K¥ 

80 24 

20 76 

Kfo K), 

91 76 

9 24 

Kia Kt 
93 92 

6 

5 

2 

K(3 K~ PDV 

~ 3 

29 1/(V)~! 
14 

14 

8 1/C )C V -
6 



Table 54. 
OU47, 1 (cont.) 

state 

164 ~ 

165 + 
167 e 

168 + 
170 1 

171 q 

Table 55. 
OU48. 

state 

173 '" 

17~ f 

r. 

Table 56. 
OUSO, w. 

state 

192 W 

194 M 

Table 57. 

Ke(. K~ 

15 19 

1 

14 18 

3 

5 4 

4 4 

91 85 

5 9 

KS 

99 100 

OUSl, -ing (bound). 

state Kot 

197 ;, 32 5 

199 n 68 95 

242 

, 
Kr PDV 

32 1/V_ c 

7 

1/( ) 

K.Y 

65 

34 

K1 

69 

27 

56 

28 
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Table 46 (p.240). ('.slassic', 'anchor', 'make'). KoI... and K/J 

favour an aspirated k in initial position; K~ have almost equal proportions 

of k and k' ( ej ecti ve), in final position. 

Fricatives and Sibilants 

ou 00 Table 48 ('there' 'that'). - , 
Kt uses f predominantly; K.,c. and Kfo have this state as their 

most frequent realisation (61, 53%), but also nasalise, 5 , 22 and 24% 

of realisations respectively, and use the affricate d5 (8 and 13% 

respectively) • 

A dentalised n is used by Ko( -. and K/J (6 and 7% respectively). 

e.g •. in' them'. 

ou 0 Table 50 ('.!a00', 'oo!.e' ••• ) 

All 3 clusters have 2 variants, the states 

reversed proportions for. K ~ : (K.c. + K f3 ). 

use z most frequently :81, 80%; 'K~ use s (Ss)- 76%. ., 

Liquids, Semivowels, and Miscellaneous 

otJ ffi1 ('hope~ul', 'happy' ••• )(Table 51) 

K~ ,~ use the NL variant h for 93% and 91% of realisations, 

and K~ slightly less often (76%). Kr delete h more often than the rest 

of the sample (24%). 

OU's !) (free) ('sa~') and -~~)oun~ ('eati~') Tables 52 & 57 

For ~ morphemes, all clusters use ~ with very high frequency (92, 

93, 92%). In bound morphemes, however, I~I is realised almost exclusively 

as n by KP (95%), whereas K~ uses -' and n in the ratio 32:68, 

and Kt in the ratio 56:28. 

OU [!) (Table 53 (p.241 ). ('leaf', 'pu.!.!.' ••• ) 

4 PDV's are defined for this OU on the basis of phonetic environment. 

(Pellowe, Nixon and MCNeany :1972, p.28). These are: 



244 

A) I(v)- fjj .... c III followed by vowel, or Ij/, and optionally 

preceded by a vowel. e.g. like, filling 

B) I() CO - V •• a 1 following a consonant in a syllable-initial 

cluster, and followed by a vowel (e.g. 'c!oud'.) 

These two cover the cases (in English) of phonetic environment 

typically producing 'clear' 1. The other ~ PDV's cover environments 

typically conditioning 1 as 'dark' 1. 

C) Iv -{~J - 1 preceded by vowel, followed by consonant or 

d b d ( 'old') wor oun ary, e.g. 

D) I( ) - i = word final syllabic 1 (e.g. 'bottle'). 

For AandB, (intervocalic 1 and syllable initial consonant cluster with 1 

followed by vowel), K~ and K~ use 1 ,whereas KK shows a marked 

tendency to retraction 1 or even 1.. -
For C and D, Kt uses dark 1, t , exclusively (post-vocalic I, 

followed by consonant or word boundary, or syllabic 1), whereas ~ and 

K~ use " and e for C, and land ~ for D. In addition, Ko(. 

uses 1- for D. 

Apparently, for some Tynesiders, in this case the Gateshead subsamp1e, 

clear 1 can be used in an environment (word-final syllabic 1), which is 

supposed, for English, to produce dark 1. The allophonic status of the 

clear/dark ldistip~tion may not then exist for Tynesiders, or it may 

involve different rules of contextual conditioning. 

Use of the :voiced fricative ~ ,for K"'- a~d KID (the Gateshead 

subsample) is also interesting in the 'dark l' contexts of C and D. 

ou 0 Table 55 ('Leek', 'Ha!!y', 't~ibe'). All 3 clusters use states 

jl (lingual frictionless r) and Jt (flapped r), for most realisations, 

wi th J as the major, and .£ as the minor variant. However, the proportions 

vary, thus: 

18:1 9: 1 2: 1 (approx.) 
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OU tW. Table 56 ('~ind', 'when', 'a~ay'). 

Here again we have a contrast between the Newcastle and Gateshead 

subsamples. The latter, (K~ + K~), use w predominantly, while the 

former (K ~ ) use w , and also the voiceless fricative fA. ( 'RP' 

realisation for orthographic 'wh', e.g. '~hich', (Strang: 1969, p~49).) 

roughly in the proportion 7:3. 

In the consonantal subspace, there are six states only which satisfy 

the stronger definition of diagnosticity (one sense of 'key' diagnostic) 

proposed earlier, (p. 225 ) namely, that, in addition to the CLUSTAN 

defined statistics, the 3 clusters ~re each distinguished from the other 

2 on the basis of their scores for these variables. (In other words, 

given the mean score of a cluster for one of those 'key' diagnostics, one 

could identify the cluster as Ko<. , KfJ or K ~ ). 

These 6 states are the following 

PDV State 
. 
0( 13 't OU - -

[!J g init g 55 63 83 

0 
27 16 1 g 

[!) ~ 91 85 65 

.r 5 9 34 

I-inij (bound :) 32 5 56 . 
n 68 95 28 

Summary 

The 3 classifications of the subsample of 52 Tyneside informants have 

been examined, at the 3-K level, in terms of their cluster-mean state 

scores, as distributed across outs, and PDV's of outs. 

It has been demonstrated that each of these subspaces contains 

dimensions of measurement which discriminate either: 

(a) one cluster from the rest of the sample 

or (b) all 3 clusters from each other. 

Some problems in the definition of the diagnosticity of variable~ in 
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terms of cluster identification, have been discussed. 

It has also been demonstrated that the level of representation of 

variation significantly affects the diagnostic status of variants of an 

OU. Some OUrs have variants which discriminate between clusters only at 

state level, some at PDV level. It may be concluded, then, that a very 

different classification of a given sample will be arrived at if the level 

of representation is changed. 

An extension to the present research will involve a classification 

J 
of the same subsample, under the same clustering conditions, at the level 

of PDV scores. 

Variability of realisation, in terms of which states are used, and 

with what relative frequency, is evidenced for all OU's, in each subspace. 

However, this subsamp1e apparently displays more variation with respect 

to %FON2, (dipthongal and unstressed vowel OU's), than with respect to 

the other 2 subspaces. For this sample, then, we can tentatively suggest 

that the abstract phonological entities subsumed ~y %FON2 carry relatively 

more realisational variation than the contents of the 2 other subspaces, 

and some of these items, therefore, may be more salient sociolinguistic 

marke~s. 

This is not to suggest that the subspaces %FONl, %FON3 do not also 

encapsulate items carrying sociolinguistic salience. 

Given the scope of the present research, however, it is not possible 

to investigate the social correlates of all clusters from the 3 subspaces. 

In view of the remarks above, the following chapter will examine the 

relationship between the 2nd linguistic subspace, and the social classification, 

in terms of a comparison of the membership of the social, and linguistic, 

clusters, and also in terms of the diagnosticity of dimensions of the 

social space for this set of linguistic clusters (KA, KB, KC). 



CHAPTER 7 
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THE RELATIONSHIPS BETWEEN THE SOCIAL SPACE AND THE LINGUISTIC SPACE 

AN ANALYSIS OF THE SOCIAL CHARACTERISTICS OF LINGUISTIC CLUSTERS. 

As demonstrated above, (in chapter 6 ), the relationships between 

the 3 linguistic subspaces, in terms of the manner in which the sample 

under investigation is variably dispersed through them, is far from simple. 

In this chapter, I shall examine the relationships between the social 

classification of this sample (see chapter 5 ) and the linguistic 

classifications, (with special reference to that based on %FON2, which 

covers diphthongal vowel, and reduced vowel OUs) • 

. Several approaches would be possible: two are taken here: 

i) the constitution of clusters (in terms of member9 in the Social 
\ 

Space (SocSp) is compared with the constitution of clusters across 

the 3 linguistic subspaces; 

ii) the social diagnostics of the linguistic clusters are examined 

(for the %FON2 clusters only). 

The second approach is made feasible by the possibility of running 'mixed 

mode' CLUSTAN jobs. (see above, ch.4 ) With mixed mode data, 2 types 

of data are input to CLUSTAN, (i.e. numeric, and binary data). 

In the CLUSTAN run described here, each informant's data consists of 

a file containing: 

a) linguistic data (the same data as was used in the %FON2 run 

described in the chapter on the linguistic classifications, ch.6 ), which 

is of numeric type, (i.e. continuous quantitative values), 

and b) social data (the same data which was used in the social classification 

(see ch. 5 ) ), which is in binary form, (i.e. informants are coded for 

presence or absence of social attributes). 

One or other data mode must be masked from the clustering process, 

but diagnostic statistics can be derived for all variables from both data 

modes. 

In this run, the sample was classified on the linguistic data (numeric 
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mode) (%FON2 subspace), whilst the social data (binary mode) was masked 

out from the computation of the similarity matrix, and from the clustering 

process. Thus the clustering obtained is identical to that des~ribed 

above (ch. 6 subspace 2, %FON2) So that the 3 clusters KA, KB and KC 

are obtained from a classification based on diphthongal vowel OU's and 

reduced vowel OU's. However, in this CLUSTAN run, diagnostic statistics 

are produced for all the social variables, in respect of the linguistic 

clusters. Thus the social diagnostics of linguistic clusters are obtained 

d
• FN lrect. 

FN. It would also be possible to mask out the linguistic data, cluster 
on the social data, and obtain linguistic diagnostics for social 
clusters. I plan to implement this procedure at a later date. 

Firstly, however, the distribution of informants across the SocSp 

is compared with their distribution across the 3 linguistic subspaces, 

(the first approach, i. - see p.2LJabove). 
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i) The Relationships between the Classifications based on the Linguistic 
Subspaces and the Social Space. 

Chapter 4,5 described th~ definition of dimensions of the social space, 

and presented the results of a CLUSTAN run based on the social variables 

constituting this space. 

Three social clusters were obtained, which were designated SocKx, 
I 

SocKy, SocKz. Slide 6 superimposed on slide J shows the distribution of 

the sample (52 informants) across these 3 social clusters. SocKx is 

shaded red, SocKy, green, and SocKz, brown. They have 27, 15 and 10 members 

respectively. (The slides are in Appx. T.) 

If slide 2 is now placed on top of slides 6 and I, the distribution 

of members of the 3 social clusters across the linguistic clusters based 

on %FONJ is shown. 

It is obvious that there is no simple relationship between the social 

classification and this linguistic classification. 

KJ and K2 are both made up of members of each of the 3 social clusters. 

K3 is made up exclusively of members of SocKz, but there are 3 members 

of SocKz not contained by the linguistic cluster K3. 2 are found in KI, I 

in K2. 

Table 58 shows a breakdown of the overlap in cluster membership from 

%FONI to the social classification. 

Members of KI are split between SocKx and SocKy in the ratio of 2:1 

(approx), and K2 across SocKx, SocKy in the ratio of exactly 1:1. 

SocKx is split across KI, K2 in the ratio 4:1 (approx); 

SocKy is split across KI, K2 in the ratio 2:1. 

K3 is contained by SocKz, but the reverse is not true. 

The most marked relationship existing, then is between SocKz and K3, 

but even here there is some overlap. 

If slide 3 is placed over slides 1 and 6, it is evident that a similar 

situation holds for the 2nd linguistic subspace. Table 59 shows a 

breakdown of the figures. 
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Correspondences in K-rnernbership between the social, and linguistic 

spaces. 

K SocKx 

1 22 

2 5 

3 

Tot. 27 

K SocKx 

0<.. 11 

(d. 16 

0 

Tot. 27 . 

Table 58. 
%FON1:SocSp. 

SocK,. SocKz 

10 2 

5 1 

7 

15 10 

Table 60. 

%FON3:SocSp. 

SocK,. SocKz 

11 1 

4 2 

7 

15 10 

Tot. 

34 

11 

7 

52 

Tot. 

23 

22 

7 

52 

Table 59. 

%FON2:SocSp. 

K SocKx SocK,. SocKz Tot. 

A 11 9 1 21 

B 16 6 2 24 

C 7 7 

Tot. 27 15 10 52 

Table 61. 

'Derived' clustera:SocSp. 

K SocKx SocK,. SocKz Tot. 

1Ao(. 4 4 8 

1Afo 5 4 1 10 

1B()(. 4 2 6 

1B,8 9 1 10 

2A~ 1 1 

2A(3 2 2 

2B.:>( 3 4 1 8 

3C'( 7 7 

Tot. 27 15 10 52 
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Slide 4 placed over slides 1 and 6 shows a similar situation yet 

again, for the consonantal subspace (%FON3). (See Table 60.) 

In all 3 cases, SocKz contains the 3rd linguistic cluster (K3 K KC - Kg ), 

but is not contained by it. The 3rd cluster in each of the linguistic 

subspaces, as mentioned earlier (chapters 5,6 ), consists exclusively of 

the Newcastle subsample. This group is very distinct from the rest of 

the sample in all 3 linguistic subspaces: however, they are joined by 

3 informants from the Gateshead subs ample on the social classification. 

Despite this partial equivalence relationship between the linguistic 

clusters K3 - KC = Kt ,and the social cluster SocKz, the mapping from 

the social space to anyone of the linguistic subspaces is complex, and 

non-discrete in terms of cluster membership. However, it must be remembered 

that each of the 3 linguistic classifications is a partial classification, 

based on a subset of phonological variables. It is possible that a 

superspace containing all. the variables from the 3 subspaces would produce 

an overall (segmental phonological) linguistic classifiation of this 

sample which would map onto the social classification in some less 

complex way. 

For reasons given above, (chapters 4, 6 ), it is not possible to 

cluster the sample on all segmental variables at once (at least at state 

level). 

However, I have isolated groupings ('derived' clusters) which 

are maintained across all 3 segmental subspaces, and which, therefore, 

represent in some sense, clusters of informants derived on the basis of 

the whole segmental space. 

If slide 5 is placed over slides 1 and 6, it is apparent that the 

relationship between these 8 'derived' linguistic clusters, and the social 

classification is no more straightforward than the relationship between the 

social classification and anyone of the linguistic classifications based 

on one subspace. 
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All linguistic clusters (except 3C~ ,and those with 2 or less 

members), overlap with two, or all three, of the social clusters. The 

figures for membership of 'derivedrlinguistic clusters by social cluster 

are shown in Table 61 (p.250). 

There are many possible explanations for the complexity of the results 

obtained here. 

Four issues are discussed here, which must be borne in mind in 

assessing the significance of these results. 

1. The first issue concerns the operational definition of the sociolinguistic 

measurement space. 

(a) Classificatory bias may have been introduced by the presence 

of redundant (correlated) variables. For instance, in the SocSp, we 

have seen that clusters tend to be sex differentiated. Only ~ binary 

variable (Sex K M - I, sex - F = 0) is overtly concerned with sex: the 

effect on the clustering of the value of this one variable is very small. 

Thus we can conclude that other dimensions of the SocSp are sex differentiated. 

In other words, the social variable sex is empirically highly correlated 

with other social attributes. (This is hardly surprising). 

Some researchers, (e.g. Brennan: 1972, ch.2) suggest that empirically 

correlated variables skew the classification, and should be omitted, or 

replaced by a factor. 

However, it can be argued that empirically (as apposed to logically) 

correlated variables reflect real structural properties of the social 

orientation of members of the sample. In other words, if responses to 

other social questions are conditioned (or influenced) by the sex of 

the informant, then sex is a valid key diagnostic, and represents a f~ct 

about the social organisation and beliefs of the community under investig-

ation. This is the kind of information we are seeking, and should not 

be eliminated. 
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Logically correlated variables are a different matter. For instance, 

if one variable represents marital status, and another, number of children, 

there will be a partial association between the two, which will introduce 

bias. This is why 'number of children' is not included as a category on 

the social questionnaire: nuclear family size is included, which tells us 

how many children live at home when the informant is a parent, but which 

does not cause bias due to correlation of variables. 

Logical correlation of variables is more difficult to anticipate 

where the linguistic space is concerned. For instance, allophonic variation 

may produce a negative association between states which function as 

albphonic variants for individuals. (See comments on vowel reduction above, 

ch. 6.) Moreover, certain states may show a degree of association 

due to phonetic contextualisation. 

(b) Certain variables may be subject to effective weighting , as a 

consequence of the design of the coding frame. This may be true in the 

SocSp, where the magnitude of the effect of a social attribute on the 

classification depends on the numebr of binary variables which are needed 

in order to express the range of responses to the question. This is 

particularly true of ordered multistate variables such as age. (See 

above, ch. 5.) 

(c) Irrelevant categories produce noise in the classification, 

and tend to blur the relevant distinctions which are inherent in the data. 

Here we have a paradox: we do not know, a priori, which categories are 

relevant, and which are not. One of the purposes of classifying is to 

discover this. However, the classification itself may be skewed if many 

irrelevant variables are included. This is a non-trivial problem. 

(d) The level of analytic representation of variables, as we have 



seen, radically affects the classification. (See above, ch. 6). It 

has been demonstrated that, for single OU's, the sample is grouped differently, 

depending on whether the PDV level, 'or the state level, is examined. 

Although these two levels may produce equally valid classifications, we 

may want to decide which is more useful for our purposes, in terms of 

discovering patterns of interaction between components of the linguistic, 

and social spaces. 

The output from Program COLLAPSE (see Appx. X ), i.e. a reduction 

of the state scores to PDV scores, will be used as a basis for further 

classifications, and these two levels of analytic representation can then 

be compared. • 

An incidental consequence of coding speech at the level of the state 

introduces the problem of sparse matrices. Where the paradigm of variables 

is so great (542 states), in order to accommodate very fine phonetic 

distinctions, we find that more cells in the case x state matrix contain 

zeros than contain positive values. Hence cluster gorupings may be 

determined as much by shared zero state scores between individuals, as 

by similar scores on states which ~ used, and used with similar frequency, 

by pairs of individuals. This gives a further reason for classifying at 

PDV level, where fewer zero scores will be found in the matrix. 

2. Inadequate data. 

The problems outlined above (under 1) concern the definition of the 

measurement space. This problem (inadequacy of data) concerns the availability 

of data in relation to the definition of this measurement space. CLUSTAN 

IA has no facilities for compensating for the biassing effects of missing 

data (e.g. NC scores in SocSp).FN - -

FN. CLUSTAN IC, which is not yet available at NUMAC, can handle missing data • 
. Other improvements to this version of CLUSTAN include a higher maximum 
number of variables, which would be useful for the T.L.S. as the 
whole segmental subspace could be processed in one run, at state level, 
instead of being split into batches not exceeding 200 variables. 
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As far as the social classification is concerned, the problems under 

2, and 1 (above),regarding the definition of the space, and the adequacy 

of the data collected, can be to some extent bypassed. Seeing we can 

obtain socially diagnostic information direct for linguistic clusters, 

any bias (e.g. spurious weighting) resulting from the implementation of 

the social space per se becomes irrelevant, as this classification 

(the mixed mode run) depends only on the linguistic space for the generation 

of cluster groupings. 

3. Assessing the validity of the classification, in terms of the effects 

of the methods used. 

As remarked above (chs. 3,4 ), different clustering methods produce 

different results on the same set of data. Everritt (1974, pp.8-18) discusses 

the differential effects of various hierarchical clustering algorithms, 

in terms of the kinds of fusion patterns, and morphology of clusters, which 

they typically generate. The question must be asked, how far does any 

combination of clustering methods produce results which reflect one of a 

range of valid (i.e. reflecting some kind of reality) structurings of 

the data. Or, are the clusters obtained merely an artifact of the 

mathematical procedures applied. 

Internal evaluation·of the validity of a classification must rely 

on similar mithematical criteria to those used to generate the clusters. FN 

FN. e.g. various optimisation techniques improve the configuration of 
points in the space with respect to some measure of intra-cluster 
homogeneity, such as within-group Error Sum of Squares. 

Cross validation (reclassifying using different clustering methods) works 

well with artificial data, where discrete and well-defined groupings are 

built into the data, but this is not the case with the TLS data. (See 

above,p~ll~f~ where different distance coefficients and clustering 

algorithms were tested on one set of linguistic data). We must keep 
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open the possibility that the chaining effect produced by single linkage, 

for example, represents an equal~y (or more) valid structuring of the 

sample. 

4. The fourth explanation for the complexity of the results obtained is 

that the cluster patterns across the 3 linguistic spaces. and the social 

space, are related in no less complex a way than are the social and 

linguistic behaviour of the sample. The expectation of discovering simple 

sociolinguistic phenomena, in terms of the relationships between social 

and linguistic features, and groups, is less Enable than the position 

adopted here: viz. that these relationships. though possibly systematic and 

regular. are likely to be extremely complex. The results presented so 

far indicate that this is, in fact, the case. 

Having discussed the correspondences (and non-correspondences) 

between the social and linguistic spaces in terms of the distribution 

of members of the sample across clusters. I now turn to an analysis of the 

social diagnostics derived for the linguistic clusters using the CLUSTAN 

mixed mode facility. 
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ii) The Social Characteristics of Linguistic Clusters. 

For the reasons given in the foregoing, (ch.6 summary ), the 

subspace %FON2 was selected for analysis in terms of all social variables. 

The procedure adopted for analysing the social characteristics of 

the three linguistic clusters in this segmental subspace is the same as 

that found in ch. 5 That is, cluster frequencies for age, occupation, 

and education index categories are tabulated, and presented in histogram 

form, and then the list of CLUSTAN diagnostics is analysed. The difference 

is, of course, that the clusters analysed in ch.5 are social clusters: 

the analysis in that chapter was an investigation of the properties of the 

social space, and the characteristics of the social clusters generated 

by it. Here I am taking clusters generated from linguistic data, and 

applying similar methods of analysis in terms of social attributes. The 

clusters themselves,KA, KB, and KC, are those described in ch.6 - the 

clusters generated by the 2nd linguistic subspace, %FON2; covering the following 

OU's: 

and (in unstressed syllables) four types of schwa (in different phonetic 

contexts), and two types of the vowel I. 

These clusters are depicted on the transparencies: (Slide 1 plus 

slide 3 Appx. T.) 

Cluster sizes are: 

KA - 19 informants 

KB - 26 " 

KC - 7 " 

SEX -
KA and KB are strongly polarised on sex: 16/19 in KA are male, 

20/26 in KB are female. KC has 4 male, 3 female. 

AGE 

Table 62 shows raw, and percentage frequencies for age categories, 

by cluster. The sample frequencies are also shown, and the differences 
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between sample and cluster percentages for each age group. Fig. 54 

shows percent representation of age groups for each cluster, and Fig. 55 

shows % differences between cluster frequencies and sample frequencies 

for each age group. 

Age groups are defined as follows: 

1 - 17-21 yrs. 

2 - 21-30 yrs. 

3 - 31-40 yrs. 

4 - 41-50 yrs. 

5 - 51-60 yrs. 

6 61-70 yrs. 

7 - 71-80 yrs. 

8 - 80+ yrs. 

Figs. 54 & 55 and Table 62 show that: 

63% of KA are between 21 and 40 yrs. Age groups 2, 3 and 6, (21-40, 

61-70), are more highly represented in this K than in the whole sample. 

!!. spans the whole age range (with the exception of 71-80), with 

frequencies for ages 17-30, 41-60, exceeding the sample expectation. 

KC is too small (7 members) for statistical generalisations to be 

made about it. 

EDUCATION INDEX . 
This is the index applied in ch.~\ to the social clusters: it represents 

a reduction of the information on educational background stored in the 

social files. 

The categories mean: 

a) left school at legal minimum age, no f.e., 

b) extended secondary education, no f.e., 

c) education continued into working life (night school, day release), 

d) full time technical college/nursing/secretarial training, 
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Tables 62, 63, 64. 

The social characteristics of lineuistic clusters KA, KB, KC. 

Table 62. 
The distribution of age groupe across the clusters. 

Age sample KA 
gp. f % f % 

1 5 10 1 5 

2 13 25 6 32 

3 10 19 6 32 

4 12 23 2 11 

5 6 12 1 5 

6 4 8 3 16 

7 1 2 -
8 1 2 -
N(: - -
Tot. 52 19 

Age group: 

1 = 17-20 

2 = 21-30 

3 = 31-40 

4 = 41-50 

5 = 51-60 

6 = 61-70 

7 = 71-80 

8 = 80+ 

f 

3 

6 

3 

7 

5 

1 

-
1 

-
26 

KB KC % differences (K-sample) 
% f -% KA KB KC 

12 1 14 -5 +2 +4 

23 1 14 +7 +2 -11 

12 1 14 +13 -7 -5 

27 3 43 -12 +4 .20 

19 - -7 +7 -12 

4 - +8 -4 -8 

- -2 -2 -2 

4 1 14 -2 +2 +12 

-
7 
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Table 63. 
The distribution of education index categories across clusters, 

(sample frequencies and %differences (cluster - sample) shown.) 

educe sample KA KB KC ~diffs. 
index f c' 10 f '0 f ~o f % KA KB KC 

a 32 63 13 68 16 62 3 50 +5 -1 -13 

b - - - -
c 13 25 6 32 7 27 - +7 +2 -25 

d 3 6 - 1 4 2 23 -6 -2 +27 

e 3 6 - 2 8 1 17 -6 +2 +11 

NC 1 - - 1 

Tot. 52 19 26 7 

a = left school lma. no fee 

b = extended secondary educ., no fee 

c = education continued into working life (not full time.) 

d = full time technical/secretarial college! nursing. 

e = College of education / uni versi ty/polytechnic 

Table 64. 
The distribution of occupation groups across clusters, and sample. 

oce. sample KA KB KC %diffs. 
gp. f % f % f % f % KA KB KC 

2 1 2 - - 1 17 -2 -2 +15 

3 3 6 - 3 13 - -6 +7 -6 

4 4 8 2 11 1 4 1 17 +3 -4 +9 

5 19 40 8 42 8 35 3 50 +2 -5 +10 

6 6 13 3 16 3 13 - +3 0 -13 

7 15 31 6 32 8 35 1 17 +1 +4 -14 

NC 4 - 3 1 

Tot 52 19 26 7 
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e) College of Education, University, Polytechnic (full time). 

Table 63 ,and Figs.56, 57 show the raw and percent frequencies 

for each education index category by cluster. 

KA 

13/19 left school at legal minimum age, and have not proceeded to 

any kind of further education. The remaining 6 come under category c 

(night school, day release). 

KB 

Of the 26 members of this K, 16 are in category a, 7 in c, and 1 and 

2 in d and e respectively. This cluster includes 3 of the 6 cases in the 

sample who have undergone full time teriary education. However, the 

percentages in the categories a and c (b is a null category for this 

sample), are very close to the sample expectation. 

KC shows polarising tendencies:given its small size, however, 

discussion of its distribution will not be entered into, except to point 

out that this group is rather heterogeneous with respect to most social 

attributes. 

Apparently, KA is marked by an absence of the higher educated: 

however, the sample as a whole is so heavily skewed towards the lower 

education categories (a and c), (See Figs. 43, 44 p.172), that the 

rarity of instances of the higher categories makes it impossible to make 

any positive assertions about these distributions. (If the situation had 

arisen, for example, where one cluster was exclusively composed of category 

a, or categories d and e cases, then this index would have been more 

useful). However, it can be stated that KA differs from KB with respect 

to thls index, by KA exceeding example expectation on categories a, c and 

having no instances of any other categories, while KB exceeds sample 

expectation on categories c and e. 
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OCCUPATION 

A parallel trend is evident when education index is compared to 

occupation groups. Cf. Table 64 (p.260)." 

Members of KA all belong to occupation categories 4 down to 7, with 

sample expectation exceeded for all these categories, but especially for 

groups 5 and 7. 

Members of KB span the categories 3 to 7. This cluster contains the 

only 3 cases in the sample who belong to occupation group 3. There is also 

a higher proportion of occupation group 7 in this K, than in the whole 

sample. These linguistic groupings, then, do not covary simply with level 

of education, or occupational status. There are large areas of overlap 

(KA and KB share education categories a and c and occupation groups 4-7), and 

even within single clusters we find polar tendencies. (KB - exceeds 

sample expectation for frequencies for occupation groups 3 and 7). 

KC, (- K3 = K~ >, the most distinct grouping in each linguistic 

subspace, shows great heterogeneity with respect to each of the social 

measures discussed so far. (Sex, age, education, occupation). It is 

important to bear in mind that these are precisely the kind of measures 

on which many sociolinguistic investigations focus. (See above, ch.l.) 

The only social correlate of this linguistic classification which has 

emerged as a discriminating factor so far is sex: this feature distinguishes 

KA and KB, (but not KC). And even here the distinction is one of relative 

frequency, not an absolute and definitive characteristic. (Sex was also 

a major discriminating factor in the social classification (ch. 5 ). 

This can be explained in terms of many values of variables in the 
, 

SocSp covarying with sex. Apparently, some of the dimensions of this 

linguistic space also covary with sex: a very different, and socio-

linguistically more interesting phenomenon • 

Having examined the distribution of some classic sociological indices 

across the linguistic clusters, I now turn to the diagnostic statistics 

generated by CLUSTAN, for all variables in the social classification, 
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applied to the linguistic clusters. 

I take first the most rigorous definition of a diagnostic; viz. a 

value of a variabie which is uniform for~and exclusive to, a given cluster. 

That value of that variable will be, then, an absolute predictor of 

group membership for the sample under study. (The possibility must, 

however, be borne in mind that the inclusion of ~ data, i.e. new 

cases, may alter the diagnostic status of any variable, e.g. to take 

the simplest instance, the addition of one new case may not alter the 

cluster groupings (except that the new case joins an existing cluster) but 

this new case may not score positively on a variable which previously was 

positive for all members of that cluster. Thus that variable is no longer a 

100% certain predictor of membership of that cluster.) 

Table 65 shows all variables which are either a) uniform for a given 

cluster (i.e. ~ members of a given cluster share that attribute: shown in 

CLUSTAN output as, 'fercentage Occurrence for Binary Variable" • 100.> or, 

b) exclusive to a given cluster. (Possession of that attribute is unique 

to cluster). 

Table 65 shows that one binary variable satisfies condition ~, and 

21 binary variables satisfy condition ~, but no binary variabl~s satisfy 

both a) and b). 

(Value - for a binary variable means that an individual has a 

certain value for a certain social feature). 

Thus, a value of 1 for Bin.Var. 5 means that the response to the 

question concerning the informant's regionality was coded under the 

category 'U.K. Northern'. 

This is the only binary variable which satisfies condition a). 

However, this variable is uniform for both KA and KB (100% of informants 

in each K were coded as 'U.K. Northern' regionality). Thus these 2 

clusters are not discriminated by this variable. 

Even if we take the 2K level, (where KA and KB fuse, and are in 
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Table 65. 

Social diacnostics for %FON2, KA, KB, KC, which are uniform 

for, or exclusive to, a given cluster. 

VAR 

5· 

12 

102 

3 

35 

31 

10 

11 

8 

9 

30 

107 

152 

153 

150 

151 

147 

145 

144 

.149 

148 

146 

Variables which are uniform for a cluster are marked • , . 

the rest are exclusive to a given cluster. 

KA KB KC sample I definition 
f ~o f ~o f % f 

19 100 26 100 6 86 51 reg.-UK Northern 

1 5 1 parent's reg.=UK Lowland 

3 12 3 occ.=3 

1 4 4 citiness=market town 

1 4 1 college of education 

1 4 1 lma+5 years 

1 4 1 parent's reg.=UK ~adland 

1 4 1 " " =London SE 

1 4 .1 " " =E and W Ridings 

2 8 2 " " =N Midland 

2 8 2 lma+3 years 

1 4 1 info.rmant's 1st occup.=3 

1 14 1 occup.=2 
-

1 14 1 1st occup.=2 

1 14 1 hobbies=1 (golf) 

1 14 1 " =10 (bridge). 

1 14 1 reg.=UK Midland 

1 14 1 citiness=Leeds 

2 18 2 " =Merseyside 

1 14 1 parent's reg.=UK NW 

2 28 2 reg.=UK NW 

2 28 .2 " =UK E and W Ridings 

D KA; 

-

KB 

, .. -

1< 
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opposition to KC) we find that 86% of KC (6/7) are also coded positive 

in this variable. 

In other words, the only social variable which satisfies condition a), 

does so because it is very nearly uniform for the whole sample. 

Concerning criterion b); 

binary variable is exclusive to KA 

10 " variables are exclusive to KB 

)0 " " " " " KC 
. 

However, when we examine the frequency of occurrence of these binary 

variables we find that each of them is positive for only a small minority 

of members of the given cluster; thus cannot be claimed to typify the goup. 

For instance, the only Bin.Var. exclusive to KA is Var. 102:'parents' 

regionality - U.K. Lowland, and this accounts for the only positive 

instance of this category in the whole sample. By CLUSTAN's Binary 

Percentage Frequency Ratio (BPFR) (% in K/% in sample), this feature has 

the maximum level of diagnosticity for this cluster. (This value will 

be equal to the ratio:total number of cases in sample/ total number of 

cases in K, when a bin.var. is exclusive to a K). 

The BPFR has a maximum value for all variables which are exclusiv~ 

to a cluster, regardless of the actual frequency, which may range from 1 

to n, where n is the number of cases in the cluster. 

Thus, the BPFR statistic does not provide a satisfactory definition 

of cluster diagnostics, taken alone. It must be considered together with 

the within-cluster percentage occurrence of a given bin.var. 

However, though actual (and percentage) frequencies for all these 

(single) binary variables which are exclusive to anyone cluster are 

very low, there are groups of bin.vars. which are related, and which 

may together be informative about the extra-linguistic characteristics 

of these linguistic clusters. 

KB has 5 instances of informants with a parent of regionality other 
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than Tyneside (3 Midland, 1 S.E. England, 1 E and W. Ridings). KC has 

one instance of parent's regionality - UK N.W. 

There are also other cases, e.g. where 

informant's regionality 

" 

" 

= UK Midland (I) 

= UK N.W. (2) 

= UK E and W. Ridings (2) 

And 3 cases of citiness being other than Tyneside: 

Citiness = Leeds (I) 

" - Merseyside (2) 

Collating this information, it is found that KA consists of informants 

who are all indigenous Tynesiders (i.e. have never lived anywhere other 

than on Tyneside (for 5 years or longer); and whose regionality is U.K. 

Northern (2 year criterion) - see Q's 1 and 2 on social space coding 

sheets Appx. B). 

Moreover all members of KA, with the exception of one case, have 

both parents coded as Regionality = U.K. Northern. 

Thus KA is made up exclusively of informants having lived all their 

lives on Tyneside, and whose parents were also northerners. 

All members of KB are also i?digenous Tynesiders: however, there are 4 

instances of parents regiona1ity being other than U.K. Northern. cr.he 

frequencies number 5: this is due to the fact that one informant's parents 

were both coded under regionality other than U.K. Northern: mUltiple 

coding is permitted here to account for both parents, also to allow for the 

possibility of one parent having lived in more than one region). 

So KB contains exclusively Tyneside informants, but some have non­

Tyneside (and non-Northern) parents. This fact may well have influenced 

the language of the informants in question. 

KC contains 3 (out of 7) cases who (amongst them) account for the 

instances of Var's. 144-149 shown on Table 65 (p.266). 

These variables include 1 instance of parents' regionality in U.K. N.W. 
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In addition, these 3 cases ha~non-Tyneside backgrounds: one has 

lived on Merseyside, one on Merseyside and in London, and one in Teesside 

and Leeds, though all were resident on Tyneside when the survey was 

conducted. 

So, KA consists of indigenous Tynesiders, born of indigenous northerners; 

KB consists of indigenous Tynesiders, some of whom had non-northern 

parents; 

KC contains some indigenous Tynesiders, and some in-migrants from 

other parts of U.K. 

The other cluster-exclusive variables which are of interest have 

already been discussed (p.264, occupation) •. KB' contains the only informants 
\ 

in occupation group 3 (3 cases), and KC contains the only informant in 

occupation group 2. (The highest group represented in this sample). 

This informant XSHAW, is extraordinary (in relation to this sample) 

in that not only does he belong to occupation group 2 (managerial and 

executive) but his first occupation was also of this category. 

(This group also contains one informant XFULT , whose hobbies include 

playing golf and bridge). 

As indicated in the foregoing, this group is socially heterogeneous and 

spans a wide range of occupation, education and age groups, and is not 

sex-differentiated as are the other 2 clusters. We must consider the 

possibility that one of the strongest influences on language behaviour is 

that of geography: this cluster (K3 - KC = K¥ ) is differentiated from the 

remainder of the sample in all 3 linguistic subspaces, but not in the 

social space. The one non-linguistic factor which unites this group is 

the fact that all members live north of the Tyne, in Newcastle, whilst the 

rest of the sample are resident south of the Tyne, in Gateshead. 

Tables 66 through 68 list the positive social diagnostics for the 

3 linguistic clusters computed by CLUSTAN (Program RESULT), in descending 

order of BPFR levels. 
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The first column shows the index number of the binary variable, 

the 2nd and 3rd show the raw frequency for presence of each variable in 

the K, and in the whole sample respectively. The 4th column shows the 

BPFR value for the binary variable in question. The 5th column gives the 

definition of the variable. 

KA - Diagnosticity of Binary (Social) Variables 

Table 66 shows the diagnostics for KA. (Pp.27]-2.) 

To summarise information given above, this is a predominantly male 

cluster, (16/19), with 63% of members between 21-40 yearp of age. No 

members underwent Tertiary or further education, and occupation groups 2 

and 3 are ~ represented at all. All informants are indigenous Tynesiders, 

whose parents were northerners (except I case, having a U.K. Lowland parent). 

The more significant diagnostics are.discussed (i.e. those with 

BPFR values of more than ], and relatively high within-K percentage 

frequency). 

VAR.124. The highest BPFR level, and a high within K percentage (53%). 

'Drinking as a hobby.' 12 informants in the sample responded positively, 

]0 of those 12 are found in KA. This is evidently related to the sex 

distribution, but not completely accounted for by this. 

(62.5% of the males in this K responded positively, whilst only 20% of 

the males in the rest of the sample did). 

Regarding education: ]1 members of KA have a negative attitude to 

their own education; 2 have a negative attitude to their children's 

education; 3 regard the education of their children as the acquisition of 

basic skills (RRR), 4 consider there should be a distinction between the 

type of education received by their male and female children, 5 think not. 

3 have furthered their training through day release, 4 by attending night 

school. None underwent tertiary (full-time) education (VAR.32). 

VAR 26 Sex - male: ]6/]9 (in K) are male, out of 26 males in the 

sample. 
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Table 66. 

Cluster dia~nostics (social) for linguistic cluster KA. 

VARJ no. Ki.n_-l_:::..~a.::.:.o m_· P~l:::..i~-=-+ __ B_P_F_R-+-_d_e_f_i_n_i_t_l._· o_n ___________________ _ 

124 10 12 

93 

43 

84 

42 

130 

89 

76 

26 

36 

109 

49 

115 

121 

24 

133 

18 

97 

120 

105 

129 

15 

103 

82 

136 

112 

131 

4 

3 

5 

2 

2 

2 

2 

16 

3 

11 

5 

14 

5 

3 

2 

1 

1 

1 

3 

1 

1 

2 

1 

1 

8 

1 

5 

4 

7 

3 

3 

3 

3 

26 

5 

19 

9 

26 

10 

6 

4 

2 

2 

2 

6 

2 

2 

4 

2 

2 

16 

2 

2.29 

2.19 

2.06 

1.96 

1.83 

1.83 

" 
" 

1.69 

1.65 

1.59 

1.53 

1.48 

1.37 

" 

" 

" 

" 
" 

" 
" 

" 
" 
" 
" 
" 
" 

drinking as hobby 

social integr. with neighbours=antagonistic 

attit. to children's ed.=RRR 
, 

mac. env. pref.=smaller town 

attit. to children's ed.=neeative 

hobbies=5 

mac. env. pref.=abroad 

,taste aspir='bad' 

sex=M 

fe by day release 

1st occup.=5 

parental control=indirect verbal 

job satisfaction=medium 

TV (intense, non-selective) 

age=60+ 

hobbies=12 

2+ moves before marriage 

father's occup.=3 

non-own (TV,radio) 

occup.=6 

hobbies=4 

5+ moves before marriage 

occup.=4 

financial commit. =high 

hobbies=2 

job pref.=I 

hobbies=7 
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VAR No. 
in K 

46 

95 

96 

4 

142 

92 

69 

72 

38 

99 

75 

141 

137 

37 

65 

51 

91 

101 

52 

104 

64 

32 

48 

60 

4 

4 

1 

1 

1 

2 

9 

6 

11 

8 

7 

11 

4 

4 

10 

3 

3 

6 

16 

8 

5 

13 

4 

2 
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no. in BPFR definition 
sample 

8 

8 

2 

2 

2 

8 

18 

12 

23 

17 

15 

24 

9 

9 

23 

7 

7 

14 

38 

19 

12 

32 

10 

5 

1.37 distinction in education boys/girls 

" 
" 
tt 

" 

" 
" 
" 

1.29 

1.28 

1.26 

1.22 

" 
1.19 

1.18 

" 

" 
1.16 

" 
1.15 

1.12 

1.10 

" 

soc. integr. with neighbours=cordial 

" " " " =intimate 

citiness=other 

voting preference=~efusal 

soc. integr. with neighbours=nonk-existent/ nown 

mic. env. pref.=dissatisfied 

" " " (housing)=dissatisfied .. 
Attit. to educ.(self)=negative 

father's occup.=5 

taste aspir.='good' 

vote=Labour 

approve connection occup./voting behaviour 

fe=night school 

distance spous&s reg.=same local authority 

parental control=indirect physical 

soc. integr. with neighbours=non-existent/ UnKnown 

father's occup.=7 

married 

occup.=5 

sex distrib. of children=M bias 

no tertiary educe 

parental control=direct verbal 

nuclear family size=5+ 
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Environmental Preference 

VAR 84, 89. 5 (out of 7 in total in the sample) would prefer to 

live in a smaller town, 2 would like to move abro~d. VARs 69, 72. 6 

informants are dissatisfied with their micro-environment in terms of housing, 

and 9 in terms of sentiment. (cf. responses to Social Integration with 

neighbours: VARS 91 - 96). 

VAR 109. For II of the 19 members of this cluster, their first 

occupation after leaving school was in category 5 (skilled manual/routine 

non-manual). (This group is one of the 2 modal values for present 

occupation, the other being group 7). 

VAR 105. Occupation group 6 (for informant's present occupation) has 

a frequency in KA higher than expectation based on the whole sample. 

VAR 103, 104. Similarly, occupation groups 4 and 5 are more highly 

represented in this K, than in the sample. 

VAR 112. This is the 'I' coding of the composite index for job 

preference. (Q31 on the social coding sheets). 

'I' represents a combination of preferences involving: 

a) "prospects", as opposed to "immediate gain"; 

b) "thinking (new elements)" as opposed to "learnt"; 

and c) "self deciding" as opposed to "supervised". 

(See ch. 5.) 

8 members of KA are coded 'I' under job preference. 3 are coded 'R' 

(the reverse of the preferences above), and 8 are coded N.C. 

The frequency of 'I' codings is higher for this K than for the total 

sample. 

Voting Behaviour 

11/19 in KA vote Labour, a higher proportion than for the whole 

sample (24/52). (I votes CONS) .• 

4 cases approve of voting preference being connected with occupation: 
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i.e. political allegiance should be linked to occupational ~las~) status. 

Leisure pastimes 

Hobbies (classified by types 4, 5, 7, 12, 22 - see social coding 

sheets) emerge as diagnostic of this cluster according to BPFR, but 

actual in-K frequencies are low for all of these (lor 2). 

T.V. viewing habits = intense, non-selective (VAR 121), has a frequency 

of 5 in this cluster, a higher proportion than in the total sample. 

VAR 124. 'drinking as a hobby' emerges as the only variant concerning 

leisure activities which is diagnostic for this K both in terms of raw 

frequency (10/19), and BPFR. 

To summarise the characteristics of KA as revealed by the foregoing 

analysis; 

KA is very predominantly MALE, has a relatively high concentration of 

21-40 year old members; 

18/19 left school at legal minimum age; (the other 1 stayed on 1 

year); 

and the 6/19 from this K who proceeded to further training did so 

during their working life, through day release (vocational training), or 

night school. 

This K then, is characterised by a lower level of academic education, 

with attitudes to education correspondingly negative (though less so with 

respect to aspirations for their children's educational lives). KA as 

a cluster sho~s a tendency towards occupation groups 5 and 7; 17/19 are 

in groups 5, 6 and 7. 

Viz: skilled manual and routine non-manual, 

semi-skilled manual, 

unskilled manual. 

However, 8/19 have job preferences which contradict a working 

class stereotype. (Coded'~' rather than 'R'). 
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A high proportion vote Labour. 

Drinking, and non-discriminating and intense T.V. viewing emerge 

as the most frequent leisure activities for this K. 

(~ the low frequency with which other hobbies are respresented may 

be a consequence of the way in which the coding categories of Q36 (Soc.sp.) 

are set up). 

KB - Diagnosticity of Binary (Social) Variables 

KB, predominantly female, with a mixed age distribution, has a high 

concentration of informants having left school at l.m.a., and who had no 

further education (16/26). Of the other 10, 7 attended courses of further 

training/education through day release/night school, (so far, KB is quite 

similar to KA); the other 3 underwent full-time tertiary education, 

(here there is a divergence from KA's profile). Occupation group 3 is 

exclusive to this K, though the highest group (2) is represented elsewhere 

(KC has (only) I instance of occupation group 2). 

Occupational trends are mixed for this K - groups 3 and 7 are represented 

more highly than expected on overall sample distribution. 

Table 67 shows the diagnosticity levels of dimensions of the social 

space, for this linguistic cluster (KB) (pp.276-7). 

Occupation has already been discussed: these diagnostics show additional 

information concerning, e.g. comparisons between informant's present 

occupation and informant's 1st occupation; and also with informant's 

father's occupation.Parallel trends exist for these 3 criteria, tending in 

each case towards low occupational status (6 and 7), and relatively 

high (3 and 4); for informant's first occupation, and informant's father's 

occupation, as well as informant's present occupation. 

In addition, it is clear that some (but not all) informants in this K 

are upwardly mobile with respect to occupational status: 13 started their 

working life in group 7, only 8 were in this group at the time the 



276 

Table 67. 

Social diagnostic for lin;,uistic cluster KB. 

VAR no. no. in BPFR definition 
in K sample 

102 

3 

35 

128 

134 

117 

31 

10 

11 

8 

9 

30 

107 

125 

140 

98 

39 

29 

44 

94 

50 

138 

100 

40 

111 

47 

·80 

123 

3 

1 

1 

1 

2 

1 

1 

1 

1 

1 

2 

2 

1 

8 

5 

3 

3 

3 

14 

14 

15 

6 

6 

10 

13 

9 

23 

14 

3 

1 

1 

. 1 

2 

1 

1 

1 

1 

1 

2 

2 

1 

9 

6 

4 

4 

4 

19 

19 

22 

9 

9 

15 

20 

14 

22 

2.00 

" 

" 
" 

" 

" 
" 
11 

" 
" 
" 

" 

" 

" 

" 
1.48 

" 

" 
" 

1.30 

1.29 

1.28 

" 

occup.=3 

citiness=market town 

fe=college of education 

leisure satisfaction=disgruntled 

hobbies=15 

viewing habits=pred. minantly radio 

lma+5 yrs. 

parent's reg.=UK Midland 

" " ~London,SE 

" " =E and W Ridings 

" " =UK N Hidland 

Ima+3 yrs. 

1st occup.=3 

housework as hobby 

vote=Conservative 

father's occup.=4 

attit. to educ.=RRR 

lma+ 2 yrs. 

attit. to ed. of children=liberal 

soc. integr. with neighbours=minimal,pleasant 

parental control=direct, physical 

accept connection occup./voting behaviour 

father's occup.=6 

attit. to ed. =liberal 

1st occup.=7 

no distinction ed. boys/girls 

financial commit.=4-5 

TV non-intense, non-selective 
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Table 67 (cont.). 

VAR no. no. in BPFR definition 
in K sample 

54 

66 

63 

77 

48 

110 

90 

143 

85 

23 

22 

45 

135 

51 

101 

88 

79 

78 

37 

139 

137 

57 

74 

28 

59 

5 

5 

11 

15 

6 

3 

15 

3 

17 

7 

14 

22 

22 

4 

8 

20 

2} 

24 

5 

5 

5 

22 

11 

6 

6 

8 

8 

18 

25 

10 

5 

25 

5 

29 

12 

24 

38 

38 

7 

14 

35 

41 

43 

9 

9 

9 

40 

20 

11 

11 

widowed 

II spouse' 6 reg. < 50m> local authority 

1.23 sex distrib. of children=F bias 

1.20 taste aspir.='indifferent' 

II parental control=direct verbal 

" 1st occup.=6 

" + positive Tyneside consciousness 

" vote=floater 

1.18 mac. env. pref.= town of same size 

-1.17 age=50+ 

" age=40+ 

1.16 attit. to children's ed.=job oriented 

II hobbies=16 

parental control=indirect physical 

II father's occup.=7 

II mao.env. pref.=nowhere else 

II financial commit. =low + (OM) 

1.12 " ; " =low (OM) 

II fe=night school 

II disapprove connection occup./voting behaviour 

" approve " II " " 
1.10 nuclear family size=2+ 

II mic. env. pref. (housing)=satisfied stable 

II lma+1 yr. 

" nuclear family size=4+ 
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interviews were conducted: evidently there has been upward movement for 

some. 

Regarding attitudes to education (informant's ~ education), JO 

have a liberal attitude, whilst 3 regarded their education as utilitarian 

(acquisition of basic skills, RRR). 

With respect to the education of their children, J4 have a liberal 

attitude, and 22 think their children's education should be job-oriented. 

(NB. These figures, summed, exceed the number of cases in the K- this is 

because Me is possible for this set of features - QJJ). 

4 agree with the notion of giving a different kind of education to 

their sons than their daughters, whilst 9 disagree. (The remainder are 

neutral with respect to this Q.). 

In KA, almost equal proportions (4:5) claimed that there should, and 

should not be (respectively) a difference in the way boys and girls are 

educated. 

In KB, the ratio is 4:9. i.e. in KB, the belief that girls and boys 

should be given equal education opportunities is held by twice as many than 

is the reverse opinion. Attitudes to education tend to be more positive in 

this K, than in ~. 

VAR J25. 20/26 of KB are female (this fact is not evidencooin the 

part of the CLUSTAN diagnostic list shown in Table 67 ,as sex is treated 

as a binary variable: 1 = Male, 0 = Female: thus it appears only as a 

negative diagnostic). 

Var 125 - 'housework as a hobby' is evidently related to the sex 

distribution across the clusters. Like KA's high frequency for 'drinking 

as a hobby', however, the sex distribution only partially accounts for 

the high frequency. 

40% of women in KB responded positively to 'housework as a hobby', 

whilst only 35% of women in the total sample did so. 

(The difference between within-K: sample frequencies, however, is 
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much greater for the former example of the sex-correlated variable, 

'drinking as a hobby', than for this variable). 
, 

Regarding satisfaction with environment, KA showed a high rate of 

dissatisfaction: in contrast, KB is characterised by relatively higher 

frequencies for binary variables denoting satisfaction with both macro-

and micro-environment. 

VAR 85. (Macro-environemntal preference (type/size» means a town 

of the same size as Tyneside is preferred.) (17). 

VAR 88. Macro-environmental preference (location) - nowhere else. (20). 

VAR 74. Micro-environmental preference (housing) - satisfied stable. 

(11). Moreover, 

VAR 90. 'Positive Tyneside consciousness' emerges as diagnostic for 

this K. 15/26 (in K), out of a total of 25 positive responses in the 

sample. 

Voting behaviour 

In KE, 5 informants ~ut of a total of 6 in the sample) vote Conservative, 

and 13 Labour. (As opposed to 1:11 in KA). 

5 informants from KB disapprove of the notion that there should be 

a connection between occupation and voting behaviour: whilst 11 accept, 

or approve of this. 

Hobbies 

T.V. viewing is cited as a leisure pastime by members of this K: 

Var 123 emerging as diagnostic: 

i.e. viewing habits = non-intense and non-selective (cf. KA's 

intense I non-selective frequency). 

To summarise, the membership of KB is distinct from that of KA 

mainly in sex distribution. KB also contains individuals of higher 

occupational and education status than KA, though there is overlap between 
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the 2 K's in terms of most of these categories. 

KB generally has greater tendencies towards social stability: some 

members of KA are ambitious to move elsewhere (on a local, or larger, 

scal~ whilst members of KB are apparently more satisfied with their 

living environment, and apparently more integrated into the local (micro) 

community. (See KB's diagnostics for social integration with neighbours). 

KB also has a higher frequency of + Positive Tyneside consciousness. 

KC - Diagnosticity of Binary (Social) Variables 

(NB. The magnitude of the values for BPFR's is a consequence of the 

small size of this K in relation to' the size of the whole sample; 7:52). 

Table 68 lists the positive CLUSTAN diagnostics (in descending 

BPFR order, to the level of 1.10). 

KC is made up of 4 males, 3 females. 

3 informants in KC have backgrounds of mixed regionality. (Only 

other informant, STEPH, (KB), has regionality other than (as well as) 

UK. Northern. STEPH has also lived in UK LOndon/SE (for at least 2 years). 

In KC, XSHAW has lived in UK. N.W., as well as UK. Northern (the norm 

for this &rnple). 

XSPRIG has UK. N.W., and UK. London/SE, 

XWAIT has UK. E and W. Ridings,and UK. Midland, as well as UK. Northern. 

(See also the variables concerning number of moves per 5 year period 

before/after marraige, for an indication of a higher rate of geographical 

mobility in this K. See also those variables relating to distance of 

spous~s primary regionality). 

This cluster, as well as including informants with mixed geographical 

background, shows tendencies to heterogeneity with respect to the social 

indices (education, occupation, age, sex) discussed in the foregoing. 

Environmental Preferences 

From the CLUSTAN diagnostics shown in Table 68 , we see that KC 



Table 68. 

Social dia~nostics for lineuisti~ cluster KC. 

VAR no. no. in' BPFR definition 
in K sample 

153 

152 

151 

150 

147 

145 

144 

149 

148 

146 

87 

61 

1 

1 

1 

1 

1 

1 

2 

1 

2 

2 

3 

2 

1 

1 

1 

1 

1 

1 

2 

1 

2 

2 

4 

7.43 1st occup.=2 

" occup.=2 

" hobbies=10 (bridge') 

" " =1 (golf) 

II reg.=Hidland 

" citiness=Leeds 

" " =Herseyside 

II pirent's reg.=NW 

" reg.=NW 

" " =E and W Ridings 

5.58 mac. env. pref.=North 

4.96 nuclear family size=6+ 
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34 2 

3 

3 

3 

3 

" fe= tech/secretarial college, nursing 

2 

108 

15 

18 

6 

119 

71 

97 

25 

33 

60 

28 

130 

42 

83 

2 

2 

1 

1 

1 

1 

2 

1 

1 

1 

2 

4 

1 

1 

3 

2 

2 

2 

2 

4 

2 

2 

2 

5 

11 

3 

3 

10 

" citiness=London 

" 1st occup.=4 

3.72 no •. moves before marriage=5+ 

" 

" 
" 

" 
" 
" 
" 

2.71 

2.48 

" 
2.23 

" " after n =2+ 

reg.=London SE 

TV only 

mic. env. pref.(housing)=neutral 

father's occup.=3 

age=70+ 

fe=university/polytechnic 

nuclear family size=5+ 

lma+1 yr. 

hobbies=5 

attit. ed. of children=negative 

mac. env. pref.=rural 
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VAR No. 
in K 

113 3 

68 4 

98 1 

103 1 

29 1 

54 2 

122 3 

73 3 

116 

110 

132 

59 

17 

127 

64 

22 

24 

67 

53 

104 

115 

26 

21 

2 

1 

5 

2 

2 

4 

2 

4 

4 

2 

1 

1 

1 

3 

4 

4 

5 

no. in BPFR definition 
sample 

11 2.03 job preference= R 

15 1.99 mic. env. pref. (sentiment)=ne~tral 

4 1.86 father's occup.=4 

4 II occup.=4 

4 " lma+2 yrs. 

8 " widowed 

12 " TV intense/ selective 

12 " mic. env. pref. (housing)=satisfied ambitious 

10 

5 

25 

11 

11 

23 

12 

24 

24 

12 

6 

6 

6 

19 

26 

26 

34 

" 
" 

" 

" 
1.30 

1.24 

" 

" 
" 
" 

" 
" 

1.15 

" 
~.10 

job satisfaction=fairly low (OM) 

1st occup.=6 

hobbies=8 

nuclear f~mily size=4+ 

no. moves after marriage=1+ 

lma 

sex distrib. of children=M bias 

age=40+ 

nuclear family size=3+ 

no. moves before marriage=1-3 

age=60+ 

distance spouse's reg.=50m+ 

marital status=single 

occup.=5 

job satisfaction=med um (OM) 

sex=M 

age=30+ 
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has 3 members definitely preferring to live in the North 

out of a total of 4 in the whole sample). 

(VAR 87), J 

3 informants would prefer rural to urban living (VAR 83). 

3 are coded as 'satisfied ambitious'. and 2 'neutral'. with respect 

to micro-environmental preference in terms of housing; 

4 are coded neutral with respect to micro-environmental preference in 

terms of sentiment. 

Education 

4/7 informants stayed on at school at least one extra year. 

3 underwent full-time tertia ry .. education, one at university or 

polytechnic. 

J informant has a .negative attitude to his children's education. 

Occupation 

Groups 2. 4. 5 and 7 are represented in KC. 3 of the 7 informants are 

coded 'R' in job preference criteria. (Combinations of "immediate gain". 

"learnt/no new elements". and "supervised"). 

2 are coded 'I'. 

On T.V. viewing habits. 3 are coded "intense/selective". (CL KA: 

intense/non-selective, and KB: non-intense/non-selective). 

Sunnnary(KC) 

In view of the heterogeneous nature of this cluster. with respect to 

the dimensions of SocSp, it is difficult to make any generalisations concerning 

the social characteristics of this group as a group. This exercise is 

rendered even less useful by the small size of KC, (7 cases). 

However, it can be said that there is a greater affinity between KB 

and KC than KA and KC with respect to age distribution, and education index, 

«KB + KC) account for all 6 informants who have undergone full-time 

teriary education). and on distributions across occupation groups. 
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KA consists of informants drawn from the lower educational and 

occupational groups, whilst KB and KC overlap with KA, but also include 

the (few) informants with higher educational attainment, and occupational 

status. 

The discreteness of KC as a group, in each of the 3 linguistic 

spaces, must be accountable for (if accountable at all according to non-

linguistic parameters), by geographic criteria:ie.themajor division of the 

population in linguistic space corresponds to the geographical divide of 

the River Tyne. 

The question arises then , is the 2K level a more appropriate cutoff 

point for the sociolinguistic classification of this subsample? 

Several considerations make this possibility reasonable: 

I. For the 3 phonological classifications, the 2K level extends across 

2 a wide range of values for D. (See Figs. 50, 51, 52 (pp.200-201) 

. h 1 h b f K' by D2 values). WhlC p ot t e num er 0 s present This is evidence! on 

the graphs by the extension of theplateaus at K = 2. (%FON2 also shows a 

plateau at K K 4). It is clear also from the dendrograms, (Figs.50-52) 

that the 2-K level may be significant. 

2. This division of the sample at the 2K level shows stability of K-

membership across all 3 linguistic subspaces. (Kl + K2) ~ (KA + KB) ~ 

(K- + K~) and, K3 = KC = K't. 

If we call Kl + K2 LKI (linguistic Kl) 

KA+KB 

Ko(. + Kf; 

and K3 = KC = K¥ LK2, 

then LK1:LK2 corresponds to the social criteria: residence south, and 

north, of the Tyne respectively. 

We have, then, one non-linguistic factor correlating perfectly with 

the division of the sample in each of the 3 linguistic subspaces. 

There are, however, several cogent reasons for preferring the 3K to 
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the 2K level. 

1. For reasons enumerated above, in the description of the sample under 

investigation, (ch. 5 ), the 3-K level is preferabl~ ~iefly: from our 

knowledge of the makeup of the Gateshead subsample (KA + KB etc.), we 

can predict that there are 2 social strata represented within this 

component of the sample: we also know that the 2 are quite closely related 

socially (in terms of the social measure "rateable value per dwelling by 

polling district"). Therefore it is to be expected that there may be 

overlap between the 2 strata with respect to non-linguistic indices. 

Nor is it surprising that we find overlap, and interchange of K-

membership, between these 2 strata across the 3 linguistic subspaces. This 

is precisely the kind of variability that is of interest to the sociolinguist. 

Given our knowledge of the closer relationship between members of 

these 2 strata, than between the 2 taken together in comparison to the 

Newcastle component, than we expect to find 3 clusters related thus: 

G11 2 Gateshead strata 
G2J 

N Newcastle subsample 

2. For the linguistic subspace examined, (%FON2) gradations in frequency 

of social variables have been demonstrated between the 3 linguistic K's, 

which show KA and KB to be closer to each other than to KC, and KA to be 

further from KC than KB is, thus: 

~----~) KB~(--------------~ 

Gateshead Gateshead Newcastle 

(E.G. with respect to occupation groups, and level of education). These 
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gradations would be submerged at the 2K level. 

More importantly, the sex trends discovered between KA, and KB would 

be lost, if these 2 groups were fused into one. 

Regarding the social clusters, the 2K level was discussed in ch. 5 

and a similar situation was shown to hold for the social classification. 

At the 2K level, there are significant distinctions between the 3 clusters 

(SocKx, SocKy, and SocKz), which are levelled at the 2K level. (SocKx: 

(SodKy + SocKz». 

3. In the social classification, at the 2K level, the sample is ~ divided 

into Newcastle and Gateshead residents. (At 2-K, SocKz joins SocKy. 

SodKz contains the Newcastle subsample). 

Therefore, to take the 2K level does not actually simplify the 

mapping from the linguistic spaces to the social space. 

The 2-K level only apparently implifies the picture of overlap of 

cluster membership: this is because the number of clusters is smaller, 

therefore the combinations are fewer. 

If n is the number of clusters (2K or 3K), 

and x is the number of classifications (1 soc. + 3 ling. • 4), 

then nX gives the maximum number of 'derived' clusters of the type 

SocKx, KIA , SocKx,KIA~ ,etc. (A measure of degree of overlap between 

classifications.) For 3 clusters per classification, (3K level), 

x n = 71 

For 2 clusters per classification (2K level), 

x 
n = 16. 

Slide 1 plus slide 5 and slide 6 show that the four classifications 

superimposed at the 3K level gives 15 combinations (derived clusters) 

out of a possible 71. 

Slide 1 plus slide 7 show that the four classifications superimposed 

at the 2K level generates 3 combinations, out of a possible 16. 

The ratios 3/J6 (2K) and 15/71 (3K) are quite similar in magnitude; 
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(0.1875 and 0.2113 respectivel~. Thus, in terms of the potential number of 

overlaps between classifications, the situation at the 2K level is 

approximately as complex as that at the 3K level. 

At the 2K level, the apparent simplicity in the distribution of 

informants across clusters in the 4 classifications (SocSp, and 3 

phonological subspaces), cannot be adduced as an argument for taking the 

2K level as the most useful division of the popUlation under study. 

The notion of finding a single social variable which accounts for 

linguistic groupings of the sample is an attractively simple one, however, 

for the reasons given above the argument for taking the 2K rather than the 

3K level is not sufficiently stron~. It may be the case that the Newcastlel 

Gateshead distinction in the linguistic spaces has a purely geographical 

sociolinguistic cause. Or, the different sampling methods by which the 

Gateshead and Newcastle subsamples were drawn may have been influential. 

As far as the Gateshead subs ample is concerned: it must be stressed 

again that social and behavioural reality within a community is fluid, 

complex and non-discrete (see Trudgill's (1974) remarks on the nature of 

sociolinguistic diversity, quoted above, ch. 1 , and see also the 

discussion of polythetism (ch. 2) and my remarks on well-formed clusters 

which do not display definitive characteristics 

In the light of these considerations, we do not expect to find 

discrete groupings, characterised by definitive social and linguistic 

features, within an urban community,. unless we operate at the level of 

the stereotype. 



CHAPTER 8 
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CONCLUSION AND SUMMARY 

Some shortcomings,inherent in the methodology of some first generation 

sociolinguistic investigations were indicated in the first chapter. It is 

important for the discipline that these shortcomings are understood, and 

that alternative approaches, which avoid these problems, are developed. 

The T.L.S. provides one alternative approach to modelling sociolinguistic 

variability in the urban setting. The T.L.S. objectives, which include 

exhaustive representation of speech varieties and adequate characterisation of 

social networks within the sample popUlation were stated. The strategies 

whereby these objectives are fulfilled were described (T.L.S. model: the 

coding frame, multivariate analysis). 

The T.L.S. approach, however, raises some new problems for socio­

linguistics: these were discussed, and so was the issue of how far the T.L.S. 

model succeeds in fulfilling the aims stated by Pellowe et al (1972). Some 

of these problems are specific to the T.L.S. (relating to the coding frame 

design itself, and the computational difficulties which were consequent on 

its implementation). Some are general problems in linguistics (e.g. analyst 

variability), and some problems are specifically concerned with clas~ication 

theory. 

The computational processes which were applied to the data are described 

(search programs, standardisation procedures, reorganisation of data collections, 

cluster analysis). 

The results obtained from the clustering procedures are discussed in 

detail. Classifications of the sample based on linguistic data, and on 

social data are described, and the linguistic, and social, diagnostics 

of the groupings derived are examined. The relationships between these 

classifications are discussed, in terms of the distribution of the sample 

across clusters, and in terms of the power of diagnostic features to 

discriminate clusters. 

Some problems in defining a key diagnostic feature were encountered: 
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several definitions were discussed, in relation to the diagnostic statistics 

derived on social variables. 

In addition to deriving a social classification. I arranged for social 

diagnostics to be generated directly for linguistic clusters. This procedure 

bypasses any distortion inherent in the definition of the dimensions of the 

social space (e.g. caused by inclusion of irrelevant variables, or by 

variables being effectively weighted because of the number of binary 

variables needed to express the range of variants). 

The findings described have important theoretical and practical 

consequences for sociolinguistics. 

Several points are worth emphasising again: 

1. A single phonological variable is often-realised by several 

qualitatively different states, or PDVs. This is true for single informants 

as well as across the sample of Tynesiders. There is therefore a multi­

plicity of localised variants of phonological entities. This variability 

cannot be adequately represented on a unidimen~ional prestige to 

stigmatised scale. 

2. The scatterplots discussed above (ch.4 ) plot the relative 

frequency of usage of states (as variants of OUs) across the sample. For 

some states, the sample is continuously distributed across the whole range 

of values from 0 to 100%, with no breaks in the curve. With respect to some 

phonological variants, then, the sample displays continuity of variability, 

and it is not possible to divide the sample into groups, discrete or other­

wise, on the basis of those variants. A large class of states display this 

kind of continuity of variability. 

3. The scatterplots show, in addition, that there are several kinds 

of distribution pattern: that mentioned under 2 above is one type. However, 

even for scatterplot curves with similar forms, the ranking of informants 

with respect to relative frequencies of usage of states differs. Even where 

groupings emerge from the scatterplots, those groupings are differently 
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constituted (in terms of members) for different states. 

This fact suggests that isomorphous distribution patterns {cf • 
. 

Trudgill's (1974, p.95) "typical" patterns) arethe exception rather than 

the rule: certainly at the level of analysis of the state. 

4. No diagnostics emerged, either for social, or linguistic, 

clusters, which have the power to assign individuals to groups with a 

success probability of 1. That is, there were no features whatsoever 

which were exclusive to, and uniform for, a given cluster. 

In other words, the groupings obtained are polythetic classes: there 

are no necessary and sufficient criteria for group membership. Clusters 

are, however, bound together by mutual similarity between members across 

the range of variables included. 

5. By partitioning off 3 different subsets of the phonological 

variables, and processing them separately, some interesting results were 

obtained. 

(a) a selected sub-set of variables determines the classification 

obtained. Classifications of the same sample vary across the 3 segmental 

phonological subspaces, in terms of cluster membership. Each of these 

sub-sets of variables produces a partial classification. This must be taken 

into account if an investigator chooses to restrict his study to only a few 

variables. 

(b) The different range of D2 values (distancing of clusters, and 

individuals) varied across the 3 subspaces. 

Thus we can conclude that for this sample population, dipthongal and 

triphthongal vowel OUs (%FON2) are more variable than monophthongal vowel 

OUs (%FONl). These in turn are more variable than consonantal OUs (%FON3). 

However, all three subspaces demonstrate variability: all 51 OUs are 

shown to be variable features, and t~erefore potentially sociolinguistically 

salient. 

(c) Those diagnostics which did emerge show that groupings are 
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discriminated by different phonological variables at different depths of 

analytic delicacy. 

Clusters are discriminated at PDV level by OUs 

A I 

and at state level by OUs 

"1r ar 3 ~ T ~ (bound morpheme) 

It seems, then, that the level of delicacy of linguistic analysis 

influences the groupings into which the sample falls. This too is an 

important issue for linguists and sociolinguists. 

6. A comparison of the linguistic clusters and the social clusters 

shows that linguistic variety clusters are not co-exteJsive with social 

clusters. This is true of the 3 subspac~(sub-sets of segmental variables) 

and of the 'derived' clusters, which represent the Whole segmental subspace. 

The relationships between linguistic behaviour and social group membership 

are not simple. (This was found to be true at the 3K and the 2K level). 

Therefore to seek relationships between single linguistic features and single 

social factors (or social indices based on a small number of sociological 

variables) bypasses completely the complexity of sociolinguistic different-

iaticn. 

It must be remembered that the clustering methods applied represent 

only one combination of the statistical techniques available. Different 

classifications could be generated by using different distance measures and 

clustering algorithms. However, although this would produce a different 

set of clusters from the same data, it is surmised that the general 

conclusions drawn here would not be contradicted by the use of different 

statistical measures. It is hypothesised that the findings outlined above 

are unaffected by now far this classification approaches optimality. 

One extension to the present research will involve testing a variety 

of similarity coefficients, combined with different clustering algorithms, 

in order to test this hypothesis. 
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Another extension to this research has already been mentioned (ch.~. 

As indicated above, the present findings show that some phonological features 

are variable at state level, and some at PDV level, for this sample. The 

sample will be re-classified on the basis of PDV scores rather than state 

scores. It will then be possible to discover whether linguistic clusters 

based on scores for variants at a higher level of analytic representation 

are more simply correlated with social group membership. 

Furthermore, we can also discover whether clearer linguistic diagnostics 

emerge at the PDV level, than at the 'state level. 

When the new version of CLUSTAN(CLUSTAN IC) becomes available, it 

will also be possible to run the R-analysis which was planned. Hence we 

can discover dependencies between variables. 

These strategies will provide useful indications as to how the 

measurement space can be refined, (e.g. we can select the most significant 

analytic level at which to code realisations of a given OU). 

Another opportunity for further research is the possibility of investi-

gating analyst variability. This can be achieved by analyst (b) duplicating 
, 

the analyses made by analyst (a), and by clustering the two versions of the 

same set of informants as if they were different individuals. If case (Ia) 

and case (lb) "(the same case analysed by the two researchers) do not occupy 

the same place in the classificatory space, then we can calibrate analyst 

differences with respect to all variables (i.e. all dimensions of the space). 

TIle fact that the sequence of 5-digit codes in the raw data files 

corresponds to the sequence of speech segments realised through time in the 

interview makes several other lines of research possible. Two are mentioned 

here. 

Firstly, we can look at the effects of linear phonetic/emic context 

on phonetic realisations, by classifying PDVS (or states) according to 

preceding· and following context. Secondly, we can test whether the speech 

of informa~s changes throughout the interview. (I.e. without the inter-
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• 
vention of the intervie~er provoki~g style changes). 

This can be achieved by taking successive sections of each informant's 
. 

raw data file, and computing relative frequencies of usage of variants of 

each OU for each section. If the relative frequencies of variants do not 

change across successive sections of the raw data file, we will know that 

the informant in question maintained his speech variety consistently through-

out the interview. 
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This piece of research deals only with a sub-sample of the T.L.S. 

informants, investigated on segmental phonological data and social data. 

Research will continue along two major lines: firstly, the whole T.L.S. 

sample will be analysed, and, secondly, the data,from other linguistic 

systems (2-alpha and 3-alpha data) will be incorporated into the 

investigation. 

When the T.L.S. model is fully implemented and refined, we will 

have established a comprehensive, and empirically determined, model of 

sociolinguistic variation on Tyneside. 



APPENDIX A 
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Appendix (A) 
Specification of segmental phonological variables. 

OU PDV (code) states lexical examEles - -
""I.. 

1 EJ i: 0002 i i i i 4 i week, treat, see 
& - '( ~ 

I 0004 i i i i 4- week, relief . 
- c - .. 

( 0006 e !. e £ beat - T , 
eI 0008 !, C)+ e\ (.i see 

" -: 
I~ 0010 i E' it ia feed I" .... " -: r 
Ii 0012 ii(back) ii(low) i - we, see 

.... 1.. 

2 [U I 0014 i i i i ~ fit, big, till - H = -." 
~ 0016 d - () # l( lC shilling 

H " • ~ 

:r~ 0018 ia i~ id did c:= .. 
3: 0020 3 ~ L shilling - I =='-. Eo 0022 e.t - l.~ miss, big 

3 [§] .... \.. £. 0024 f ! f.~ ~ ~ f well, men 
7' - , 

i: 0026 'a. i i 4- i~ head, bread ~ 
'T - - "'i .. 

I 0028 4, i i i i centre, never 
= t( - « 

a 0030 a d.) a\ d d well, many 
.i' '( +, 

ea 0032 ea e(~) , men, embassy 

4~\.. 0034 
":'I path ,grass ae. a a a a CL 

::=- - . .. , 

E. 0036 a ~ ~ E. have, after ... II • , 
0.. 0039 0.. ~') ~ 0.. 0- path, grass 

+. t· .+' ~ 

:> 0040 ~ ~ t7 ~ J "II ~, ? alsation 
-t' , +, +. ~ 

SGL 
~ 0042 ~ (U d (L ~ father, card, half 

+. ... 4+ .. 
::> 0044 ~ t' " ? :>,~ ?' ;) farm, card +, . . , +. ,., 

~ 

ae. 0046 a a a a half, rather 
:;:0 -:- , . , 

NL=non-localised, L=localised. 
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6 0~ P 0050 t:1 I» fJ( 17 1:7 off ,one, along .. + ... + ." 
::> 0052 ::> :) ,:" :> :> ::> often, involved '+' -t ( t' ... ... . 
a 0054 a a a ~ ~ swan, holiday ::: -;- " , 
a 0056 a cP a ~ ~ because ., .c i- te. 

E.. 0058 E e wash, long 
'( 

A 5800 :> ::> ~ a one, none ., •• + 
(. 

.".. 5600 U( Ot 0' Or once, because 
+-f! ... ... .+ • 

7 GNL a 0060 a a a E. I. all, talk = -:- ,. - \" 

:> 0062 ~ :> ?) :> ~ !:) ;:)c or, four . ~ .. , .... .. ) 

~ 

" 0064 r:> 0' l'}c pc ~ auction .. -t.t .. +' 

€. 0066 E. £~ f more, sore . . . 
. , 

aQ- 0068 8'U'" Cli>' four, more .... 
"U"c 0070 ~(o) 1..t~ a."\)"~ a()-d door, course - ., (. ":"'+ 

8 IJ\. r~ ., 
h 0072 :)( j( a. a cup, onion ... ..... t· 

.v 0074 Uc Ot O( Ot U c pub, cup +,. .. +t + .... .... 
• # 

t> 0076 17> 1:» t', p<. J:> hurry, onion ++ ... .... ., + ., 

::> 0078 "=> j) ') .(t 7 pub ..... c + 
, . . . 

I 0080 + , \ 
, ,l.... mother. just - I( - cc. 

~ g " 2i X d cup, onion 0082 1M 
.. " 

E]NL 1)- ~ 1)"' ~( uc pull, put 9 1J- 0084 .. " .. ! 

"" 0086 l.4 U, U book, cook 
-.. .- + .. 

0 0088 v..t ~ li X C) good, butcher (4 

10 ~t"'. U 0090 l.4. lH UC ':J ~)U ~lU moon, two, suit 
"" •• -+( - .. . '-' c.. -I 0092 i (Od 3' 11· do, you, who 1 I , 

C --
ooQ' 0094 ~4 -o-et. '11.0- boot, school .... +~ 

1.0 
. . 

1. 0102 l' , , \ tune - , .. ,c.. 
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110 eI 0104 t.t t.I. £1 £.:t eight, &reat - -:- -: 

£. 0106 t.( e. f E take, make 
~ - C( . 

~I:~ 0108 e.'a f.+() shape, railway -s -( ~ 

'do 0110 a a ~ €: £ take, halfpenny .. ~ --. 
; '" . , 0112 , ce, great, brains - 1 -&c. .. 

'11 1120 i_ e,) i~ ·la great, brains or; - tc. .. 
£t 0114 ~l (.t eight, straight 

"i:" -:-

~ 1140 "2l l' Mond~, holid~ 

~~L 12 .)-V- 0"0- 0116 01>( a~ E"," O(Q- Ct«.t" so, phone, nose 
+~ .. 

al 1160 ~I l\ ,: so, no -
?: 0118 0 ':)C ? , ~ so, smoke 

tc C\ • • 
0120 \.\~ ~ u: U( U 0' O( go, nose 

~, 'o. .. ~+ 4' 

a.: 0122 a Q. 
0::: ...... " «-

'.' • 
old, know, no, cold 

:I~ 0124 '~ J .. If jp ~~ ~~ ld stone, home 
"i 

tv 0126 £'0' e.'U"~ at>- !~i bolt, hope - -. • 
~ 1260 ~ I pillow, yellow 

130~l aI 0128 ~ 0..' a1. at. a~ I, side, china + .. .0 -= 
~: 0130 (l t\ ~ !\. I, five .. + , : 0132 'G \ , 1: blind, right l 

~ -0 . , . eI 0134 f.\ ~! ~, knife, mine -- -. .. ,,-

l41al ~I"I 'a1.i> 0136 a-ra ~a ~Ij) pja sl'-e fire, tyre .:: 
., 

a:~ ao reliable 8) 0138 tyre, 

a~ 
.. a fire, trial 0140 0.. 

-= . 
e.i~ 

. 
£.,~ f\,£, E..r~ 1400 ,-,a tyre. reliable 
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til 

15 E1 au- 0142 a: Q- «..t> !O' o1v Q.~ house, now, croud 
" .. • .... 

£,U' 0144 e1.>- ~i>" ~v house. crowd - . 
'IV'- 1440 11.1- 1".. now, cow 

U·. 0146 1)- Uc. 'u c U' mouse. round 
~ ... .., ." ::>'Q- 1460 ;>0- ~Q- loud, down 

~1>'~ 0148 f1)-a C1U'~ ~""'z, flower, our -:: +-
., 

Q.~ o..~ 4: 0150 c1 C1 our, tower 4,+ .~ .. 
!<Q'o 1500 t:""~ e~t fi>'~ t~(l our 

ilL 

16@] ~ 0152 pI ~ 0 o..t .n 1)'1 otl bouy, toil 
.... ~ ~ .. .... tc 

01. 1520 1)"1. oct noise, toy ., .c, 

aI 0154 "I ~r buoy,noise 

oIa 0156 t;)I~ t)I~ boil, toil 
... .... 

0158 ~~ ., ., .. 'j: boil, boy :>:.) .. 
·h " ... ~ 

.,L 
1:' 

17 0 3: 0160 a e' a' ~, <:t 3: bird, fur, curl .... 'f" .. 1-

1:.0 1600 e~ .+a e.C!) , '3: year 
":" - -

g 0162 eI at G' bird, fur -' ... .... 
£l~) 0164 f (i) e(t) 

~ girl, curl -. -
'e 0166 e -e UA , bird, girl --. +.1-

:>' 0''':) 
) 9 & 

j 0168 a :> ~ -b!rth, worth +. .. .. ....... 't • 

'1>'~ 0170 "1)0 \.\~ burner, earth ... , 

NL 

1811.~1 I.~ ~~ '+~ {~ 
. 

'3: 0172 1. here, really 

e 1720 ~ e serious 
c. . . . 

'\: 0176 I: , I really, serious , 
j :>~ 0178 (j)~ ('), J ... "1) 

~ 
here, beer 

1..£ 1780 IE. I.\b ia here, fear, beer 

toiL 

19 1 £) I E..d 0180 e~ £0 £" hair, pair 
" t -
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e 0182 e ~ ( t. care. there -,,, c. ~ 

3: 0184 "!> 3 pair, hair 
~ 

20 l'tr~ rL -Ca 0186 -o,~ ~~ your. moor 

U'd 0188 u~ "'c~ uC.a U( poor. moor , , +( .' 
:> 0190 !)~ ~: more • poor • ... 

lJ'we.. 0192 1>wf .v~£. ~~£ brewer. sewer .. (.. 

21 I~h final openl ~ 

reduced 0194 D'l ()I. bak~.r • china 

non-red. 0196 t. I. t? Cl china. Sandra 

22 D 0.' _c # 4, lfortis]_(r)#coV •• 

reduced 0198 c~ ()It standard. interview 

non-red. 0200 f ~ ~ £. standard. interview 

hammock. pavement. accent 

non-red. 0204 pavement. almond 

non-red. 0206 accent 

red. La) 020B hous!;.s. places 

non-red.it) 0210 
. , : !;.xpect. perf~ct 
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25 112 / ##1 
. e(~) 0.212 ~ 1\ , "1 party, city 

26 ~4b (.+10W J CC [1 str1 +tense 

r.ul. 20.0.0. ~ observe -
"'Ot"l·~J. 20.0.2 P observe -

-
27 0 P init. 0.214 p ......... P" P b b p' pot. spy 

0 -pft P med. 0.216 b b P p(ingr) happy. capital 
• 

p fin. 0.218 b ?p 
, ~ w p(ingr) , dip P P p P • "" 

28 0 b init. 0.220. b b" p( .bo ) bag. bin. bring 
• 

"t 
robber. ribbon b ~ed. 0.222 b b b 

0 

~ )( 

b fin. 0.224 b b b dab. rub 
• 

29 G t init. 0.226 t d t h toss. stint 
0 

t med. 0.228 t . t t~ d d ~ 'e .II letter. matter 
• 

t fin. 0.230. t t" t t' d l 1 hat. sit 
1"\ 

30.0 d init. 0.232 d d(d) dish 
~ 0 

d med. 0.234 d d t 1£ rudder, window 
• 

d fin. 0.236 d'i d d d . t(h) red. stupid 
'" 0 

31 GJ k init. 0.238 k c'i k'-' k 0 
ki t, cope - g 

k med. 0.240. k k" k 2k /II" friction. Byker 
• 0 .... i-

k fin. 
0 

k' " ~k 1 0.242 k k 'X g i sack ,. .... ..... 

32 0 g init. • 1( 0.244 g g ground. gape 

g med. 0.246 
,.. 

~ g .g g bigger 
.. 
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g fin. 0248 - 0 
log. fig g g g 

338J tj 0250 tS \~ t~J is J church. French 

34 1 d31 d~ 0252 d~ ~j d%~ jury 

35 0 f 0254 fr'eS " i fetch. half 

36 [!] v 0256 " of W very, drove 

37 rm 9 ~e tt1 -
0258 e e f r'\ thing. Arthur ... n " 

38 [I] § 0260 i e J.J " f\ 1 them, with n 

39 0 s 0262 s SS t> z soup. bus iness 

40 GJ z 0264 z s rose. hose 

4lITJ S 0266 J (S) SS(s) ship. rush 
.... 

42 [] .3 0268 j JJ ~3 garage. pleasure 

43 0 h 0270 h ~ h fo ~ happy 

44~ 0272 
.... 

hammer. Mary m m m ~ . 

4SGJ 0274 
~ 

nice. rain n n m n m ~lJ !) 

46 b (free) I 
., 

k 
~ -, 0276 b~ ~ t1 nj Jk sing. singer, something 

47 [!] " 
I(V)i~l· 0278 

, t , , L ~ fa' like. filling - " 
I( ) Co_V •• 0280 I 1 \ I 1 2- cloud. acclimatise - "" 

IV~! 0282 l V ~ z I old. cold 

I( ) -~ 0284 "\.1 I ~Rf bottle 
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48 GJ r 0286 Jr~l:S r r'r0'~fV' rich. Harry • 

49 OJ 
/ fstop ~ alveolar f 0 to u •• 

r~ca ~v 2800 J! j F FN 
J tulip, dew, issue -

0 of .d other contexts 0288 J J pure. furious 

soG w 0294 w hw '" w w' v'll" wind, when, will 0 

51 I:> (bound) / 

2760 n ng n walking. eating 
... 

FN Where F= voiced/voiceless alveolar fricative. and j*=F+j 
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Social coding sheets. 
Apnendix (B) 

T.L.S. INFORMANT PAGE 1 (SOCIAL) 

(NOTE: !!£ refers only to missing data.) 

1. City.ness of informant [multiple coding;5 year criterion for 
'immobile' informants] 

/1 city 
Tyneside 
Teeside 
Merseyside 
C1ydeside 
London 
Manchester 
Birmingham 
Sheffield 
Leeds 
Stoke 
Solentside 
Belfast 
Dublin 

/2 big town 
e.go 
Bristol 
Nottingham 
Leicester 
Swansea 
Edinburgh 
Cardiff 
Chelmsford 
Peterborough 
Reading 
Oxford 

/3 market town 

e.g. 
Grantham 
Hexham 
Taunton 
Shrewsbury 
Cambridge 

/4 other /5!!£ 

2. Regionallty of informant [multiple codingJ 2 year criterion 
for immobile informants] 

/1 U.K. Northern /2 U.K. E& W Ridin~s /3 U.K. N.W. 
/4 U.K. N. Midland /5 U.K. Midland /6 U.K. Wales 
/7 U.K. Eastern /8 U.K. London S.E. /9 U.K. Southern 
/10 U.K. S.\'I1. /11 U.K. Lowlands /12 U.K. Highlands 
/13 U.K. Ulster /14 Eire /15 New World /16 Antipodes 
/17 Indian S-C. /18 Hamitic At:rica /19 Germanic Europe 
/20 Caribbean /21 S.E. Asia /22 Arab Africa /23 Romance 
Europe /24 Slavic Europe /25 s. Ameri~a /26 ~ 

3. Regionality of ~ parents [multiple coding; 2 year criterion] 

/1 
/11 
/20 

/2 
/12 
/21 

/3 
/13 
/22 

/4 /5 
/14 
/23 

/6 
/15 

/24 

/7 
/16 
/25 

/8 
/17 
/26E£ 

/9 
/18 

/10 
/19 

4. No. of moves per 5 year period before marriage. 

/(1) Q /(2) ! /0) ~ /(4) 1 /(5) ~ /(6) .2 
/(1) 5+/(8) NC -

5. No. of moves per 5 year period after marriage. 

/(1) Q /(2) ! /(3) .:. /(4) 1 /(S'} !i /(6) Z 
/(7) .5+' /(8) ~ 

6. Age (1) 17-20 /(2) 21-30 /(3) 31-40 /(4) 41-50 
/(5) 51-60 /(6) 61-70 /(7) 71-80 /(8) 81+-

1. Sex M / F 
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T.L.S. INFORMANT PAGE 2 (3) CIAL) 

8. School leaving age. 

1(1) before legal 1(2) legal minimum 1(3) i-l 1(4) + 2 

1(5) -t 3 1(6) 1" 4 1(7) + 5 1(8) NC -
(LeGal minima: Age 82;-

67-82 
42-67 
..::: 42 

9. Tertiary and further education. 

chaotic 
13 
14 
15 ) 

1(1) none 1(2) full-time univ. & poly. /(3) full-time 
tech. & nursing & secretarial /(4) full-time college of ed. 
1(5) block release /(6) day-release /(7) night school 
/(8) self-taught & corres. /(9)!£ 

10. Attitude to education (self) [multiple coding] 

1(1) negative /(2) basic skills rum /(3) liberal 

I(l:) job-oriented 1(5) job-oriented & liberal /(6}!!£ 

11. Attitude to education (offspring) [multiple coding] 
(States as above) 

I(I} 1(2 ) 1(3) 1(4) 1(5} 1(6) NO -
12. Distinction between education of boys & girls. 

tel) Yes 1(2) No 1(3)!!£ 

13. Positive distinction between parental & school roles 

1(1) Yes 1(2) No (3)!!Q. 

14. Parental control of children [multiple coding] 

1(1) Direct verbal /(2) Indirect verbal 1{3} Direct physical 

1(4) Indirect physical /(,) NC -
15. Marl tal status 

1(1) Married 1(2) Single 1(3) Divorced 1(4) Separated 

/(,) Widowed 

16. Religion 

1(1) active 1(2) inactive 1(3) anti 1(4) NC 
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17. Nuclear family size [i.e. including breadwinner(s) & spouse] 

/(1) 1 /(2) 2 /(3) 3 /(4) 4 /(5) 5 /(6) 6 
/(,) 6 +- /(8) NC 

Note: Unmarrieds living at home with 2 parents are coded 
"[j"J; unmarrieds living alone coded (1); married with no 
offspring coded (2). 

18. Sex distribution of offspring (absolute numerical). 

/(1) 0 bias /(2) F bias /(3) M bias 

(!!£ includes ~) 
/(4) NC -. 

19. Average age gap between offspring 

/(1) 1 year /(2) 2 years 

/(5) 7-8 years /(6) 9+ years 

(NC includes NA) - -

/(3) 3-4 years 

/(7) !!£. 
/(4) 5-6years 

20. Distance of spouse's primary regionality. 

/( 1) same local au thor! ty / (2) < 50 miles / (3) .> 50 mUes 

/(4) !!£ 
(NC includes NA) - -

21. Micro-ervironmental preference in terms of sentiment. 

22. 

/(1) neutral /(2) dissatisfied /(3) satisfied ambitious 

/(4) satisfied stable /(5) !!£ 

Micro-environmental preference in terms of housing. 
(Same states as above) 

/(1) /(2) /(3) 1(4) /(5) 

23. Interviewer's assessment of decoration, furnishing & domestic 
equipnent. 

(a) 'Taste' aspirations 

/(1) good /(2) bad /(3) indifferent /(4) NC 

(b) 

/J. 

Financial commi tIilent to this taste: 

/2 /3 /4 /5 /6 /7 /8 /9 /10 
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25. Macro-environmental preference (finance &lor occupation 
no object). 

(a)/(l) rural /(2) smaller town /(3) same size / 

(b)/(l) south /(2) north /(3) nowhere else /(4) NO 

26. FUsitive Tyneside consciousness. 

Yes/Nol!!£ 

27. Social integration with neighbours (as claimed by informant). 
[nroltiple coding] 

/(1) non-existent & unlalOwn /(2) non-existent & lalown 

/(3) antagonistic /(4) minimal, pleasant /(,~ cordial 

/(6) intimate /(7) NO 

28. Father's occupation. 

29. 

30. 

!l. 

/(1) Professional & high administrative /(2) Managerial & 
executive /(3) Ihspectional, supervisory & other non~anual, 

higher grade /(4) Inspectional, supervisory & other non­

manual, lower grade /(,) Skilled manual & routine non-manual 

/(6) Semi-skilled manual /(7) Unskilled manual /(8) Nl! 

[cf. Hall & J~nes Brit. ~n1. Sociol. 1, ~9'O pp.31 ff] 

Informant's p~esent-occupation(or spouse's, if informant is 
not primary breadwinner). 
(States as above). 

/(1) /(2) /0) /(4) /(5) /(6) /(7) /(8) 

Informant's first occupation. 
(States as above). 

NO 

/(1) /(2) /0) Ie!: ) /(5) /(6) /(7) /(8) !E 

Job preference 

(a) ~osp~cta/1mmediate gain/NO 

(b; thinking (new elemental/learned (no new elemental/NO 

(c) supervised! s elf-dec iding/NO 
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32. Job satisfaction (match between 31 & 29) 

/(1) 3 lea) 2 /(3) 1 /(4) 0 /(5) NC 

33. Daily exposure to radio & television. 

(a)/(l) predominantly radio /(2) predominantly television 

/0) radio only /(4) televis~nnon1~/(5) non 0'<1,,/(6) Ne 
. -

(b)/(l) intense, non-selective 
/(3) non-intense, non-selective 
(NC includes !!!) 

/(2) intense, selective 

/(4) !!£ 

34. Regular drinking habit; housework as hobby. 

Yes/No~ 

35~ Leisure satisfaction. 

36. 

satisfied/partia11y satisfied/disgrunt1ed/!£ 

Hobbies. 

/(1) active, 

/(2) active, 

/(3) active, 
/(4) active, 

/(5) active, 

/(6) active, 

/(7) active, 

/(8) active, 

expensive, rule-based, club (rackets hazard tennis) 
expensive, rule-based, non-club 
expensive, non-rule-based, club (hunting) 
expensive, non-rule-based, non-club (D.I.Y.; 

Veteran car driving) 
cheap, rule-based, club (amateur football) 
cheap, rule-based, non-club (roUnders.. ) 

cheap, non-rule-based, club (X-countr,y) 

cheap, non-rule-based, non-club (fe11-walking, 
gardening) 

/(9) se~entary, expens~reJ rule-based, club (rOulette) 

/(10) sedentary, expensive, rule-based, non-c1u~ (bridge, for stakes) 

/(U) sedentary, expensive, non-role-based, club (stud fann) 

/(12) sedentary, expensive, non-ru1e-based, non-club (punter) 

/(1) sedentary, cheap, rule-based, club (whist) 

/(14) sedentar,y, cheap, rule-based, no~-c1ub (patience, scrabble) 

/(15) sedentar,y, cheap, non-role-based, club (potting, drama) 
/(16) sedentary, cheap, non-rule-based, non-club (reading pa~ers, 

painting) 
/(17) active, expensive, club, collecting 
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1(21} 

1(22} 

1(2.3) 
1(24) 

PAGE 6 

active, expensive, ~on-club, collecting 

active, cheap, club, collecting 
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active, cheap, non-club, collecting (sea shells) 
sedentary, expensive, club, collecting (book clubs, 

picture clubs) 

sedentary, expensive, non-club, collecting (stamps, 
antiques) 

sedentary, cheap, club, collecting 
sedentary, cheap, non-club, collecting (Shell cards, newsworthy 

faces, etc., green 
shield stamps?) 

1(25} !E 
37. Connection between occupation and voting behaviour 

/(1) approve 1(2) accept 1(3) disapprove 1(4} ~ 

38. Vo'd.ng preference (usually iast eleotion). 

1(1) Cons. 1(2) Lab. 1(3) Lib. 1(4) other 1(5) Camm. 
1(6} Refusal 1(7} F1oater~ 1(tJ..) NC 
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