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ABSTRACT

Each section of the shipping market including the Newbuilding, Freight, Second-hand
and Demolition markets has its own unique structure and individual internal
parameters. Internal parameters can influence one or more parameters in their own
and other markets. This makes the shipping markets, and each of their sections, a
complex environment. Additionally, some external elements, such as inflation,
political issues and economic policies, will affect certain outcomes. In such an
environment, the main problem for creation of a “market model” is to recognise the
most effective and influential input parameters on a set of desired outputs whilst

considering the time-dependant nature of the data.

In this study, the traditional multivariate analysis methods have been implemented to
try and create the best model of the Demolition market and use the created model to
forecast the market. However, the accuracy of the model is poor. Then a new
approach, based on the Artificial Neural Networks (ANN) methodology, has been

implemented to model the market and consequently forecast the market.

Both static and dynamic ANNs were implemented, trained and tested for various
internal and external inputs and the desired outputs of the Demolition market to find
out the best combination of various elements. Performance of the network, in terms of
Mean Square Error (MSE) and correlation coefficient (r), has been measured and
compared for every individual structure and consequently the best functional
relationship has been identified. In addition, the sensitivity of different parameters has

been identified and the effectiveness of the input parameters demonstrated.

The results of the studies indicate that it is feasible to implement a suitable Neural
Network architecture to map the inputs and outputs accurately and establish a usable
“Ship Demolition Model”. The model produced good results and can explain the
complex structure of the Demolition market and identify and validate the main inputs
which can alter market trends. The performance of the model has also been measured

for forecasting three months ahead of the market and it shows a reasonable accuracy.
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1.1 INTRODUCTION

The maritime market, like any other market, is difficult to predict and the number of
variables and unclear relationship between different variables in the market makes it
more complicated to be as simple as a predictable rule, or defined as an equation

together with some inputs and outputs.

In general, the demolition market, as a section of the maritime market, deals with the
ships which are obsolete. Their useful life is over and they can not be employed for
other purposes e.g. conversion or donation. They have to be scrapped in a
shipbreaking yard, usually located in Asia. The condition of these shipbreaking yards
is rather harsh for the-people who are working there and it is also unpleasant for the
environment. Different hazardous substances are released during the process of
scrapping and are devastating to the environment. They damage not only local

environment, but also the whole wider ecosystem. This is a serious threat worldwide.

Currently, most of the scrapping processes are done manually with no particular
attention to serious pollutants and no concern about working health and safety.
Environmental issues are likely to lead toward having a more efficient scrapping
industry. Reforms of the scrapping technology will be necessary to prevent more
pollution and minimise the damage, but they also make the industry more restricted
and controlled. Therefore, a reliable plan is needed to take into account of all aspects
of the demolition including environment, safety, location of the scrapyards and time

management for scrapping activities.

Reforms require investment and a proper action plan can minimise capital investment
and other expenditure. Any information on the future scrapping market could lead to
a more accurate and realistic plan. As an example, if the number of ships which might
be sent to a particular scrapyard could be identified, the volume of hazardous waste
could be calculated for a period of time in the future. It would then be possible to
build a proper storage tank to use as a temporary storage space for those hazardous

wastes.
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Reform of the scrapping industry will affect the whole maritime market. The
demolition market is going to be more structured and consequently the maritime

market will be changed as a result.

This research has aimed to forecast the future of the demolition market which is a
section of the maritime market. The main focus of interest of this research is to
predict the monthly ship scrapping rate and also the price of ship scrapping for up to
three months ahead.

In this respect, various parameters of the maritime market, which may influence the
two above variables, are taken into account to find out a suitable model for the

market.

Firstly, the conventional multivariate statistical methods of prediction are
implemented to investigate the market and produce a suitable model for prediction.
Secondly, the Artificial Neural Networks (ANN), as a powerful computer tool, are
used to learn the fundamentals and relations of the various elements of the market. In
this way, different network architectures with various specifications are trained, tested
and compared to find out the best ANN model for each case. Subsequently, the
performance of the obtained ANN model for future predictions are measured and
compared with previous multivariate methods. Furthermore, sensitivity analyses are
also carried out to identify the most influential parameters to each ANN model

produced.

The first part of this chapter is dedicated to address some of the fundamental issues in
the shipping industry and also to illustrate the position of ship demolition in the
maritime market. This is followed by identification of the main characteristics of ship
scrapping and explanation of the difficulties and its environmental problems in the
second part. It shows the importance of having a proper plan for ship demolition as
well. The third part is provided to explain the overall abilities and flexibility of the
ANNS to tackle such problems and find out how it is suitable to be used, as a tool, to

predict the future of the demolition market.
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1.2 BACKGROUND

The shipping industry is influenced by many factors. Some of these factors are
internal and dependent on physical and technical criteria. Others are external which
can influence the shipping industry but they are not inside the industry, e.g. economic
policies, inflation and political issues. Collating all the factors into a model to predict
the future is complicated and difficult because some of the factors like political issues

are unpredictable.

There are also a few time lag parameters which are notably considerable in the
shipping industry: For a ship owner, the time lag from ordering a new ship to its
delivery is varied and depends on the ship type; for a shipbuilder, the time lag from
ordering a required amount of the steel to the time that it is ready and delivered. In
both situations a realistic estimation of the time lags can determine the success or

failure of the business plan.
The shipping market has been divided into four individual markets (Stopford, 2003):

-~ Newbuilding market
— Freight market
- Sale and purchase market

— Demolition market

Changing a parameter in each of these four markets can not only affect the other
factors in the same market, but also can influence one or more variables in the other
markets. The newbuiding market deals with the orderbooks and new ships, and is
highly dependant on steel production as the basic building material of every ship.
Almost 90% of a ship's weight is steel. Therefore, newbuilding prices can be varied

as a result of the steel price variation.

The current fleet and the number of ships recruited can affect the freight rate itself

and the freight rate market: if there are a limited number of ships to transfer the
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commodities in a particular route, freight rates go up due to lack of cargo space, and

vice versa.

The challenge in the sales and purchase market for the owners is to distinguish the
best time to sell the ship, considering the second-hand prices, freight rate and the
national and international regulations and surveys. Similarly, the challenge for buyers
is to find out the right time to buy a new or a second-hand ship, taking into account of

the time lag, ships’ age and the freight rate.

The demolition market deals with the scrapped steel which is convertible for new
steel production. Therefore, the demolition market can drive the rate of steel
production and, as a result, the steel price. For example, during a recession if the
freight rates are low and the operating cost of the ship is high, due to the bad
economic situation, it is possible that a large number of the owners prefer to send
their ships to the breaking yards to earn money instead of losing it gradually. This
event can increase the production of the scrap steel dramatically. Technical and
economical obsolescence are other reasons to send a ship to a breaking yard, because
an old ship with old technology can not compete with the new high technology ship
in terms of operating costs, cargo space, cargo handling and the time spent in ports to
load and discharge cargo. Therefore, a technology leap in cargo handling or any other

related matter could be a reason to have more ships in the breaking yards.

1.3 PURPOSE

There are two separate reasons for carrying out this study which are both financially
important to all the investors. They are also important for the future environmental

reformation of the demolition industry and scrapyards.

1.3.1 INTHE MARKET

There has been a lift in the underlying long-term growth in the world economy, up
from 3.3 percent per year on average in the 1990s to 3.9 percent so far in this decade

(Platou, 2006). World economy growth can be a reason for the growth of the



Chapter I: Introduction Page: 6

seaborne trade and larger maritime market as a result. Also the distribution of this
growth is in favour of the seaborne trades because of the presence and the location of
countries like China. A significant part of the shipbuilding costs is related to the steel
price which has been booming in the last two years because of the higher demand of
the steel. The price index for heavy steel plates peaked in May 2005 at $667 per ton
and ended the year 15 percent below at $575/mt (Platou, 2006).

Compared to the other shipping markets, the ship demolition market is a less
glamorous but essential part of the business (Stopford, 2003). In 2004, a massive
scrapping rate had been anticipated for 2005, because of the International Maritime
Organisation (IMO) regulation for the cut-off date of Category 1 tankers in April
2005. It did not happen and only 6.4 million dead weight (dwt) were sold for
demolition, compared with 11.8 million dwt in 2004. On the tanker side zero
VLCCs, 3 Suezmaxes and 18 Aframaxes were scrapped compared to 4 VLCCs, 9
Suezmaxes and 27 Aframaxes in 2004. This was because of the strong tanker market,

resulting with many vessels being converted to Category 2 (Platou, 2006).

The shipowners come to the demolition market to offer a ship which they cannot sell
as second-hand for continued trading. The customers, in this market, are shipbreakers
who buy and then transfer the ship to a scrap yard. It is clear that both the shipowner
and the shipbreaker are looking for the most profitable deal and, considering the high
price of the ships, a slight change of the contract could be a big change for the
financial success or failure. They must have extensive knowledge not only about the
demolition market, but also about the other shipping markets, to find out the most

profitable moment for buying or selling the ship.

This needs a comprehensive study in all aspects of the business including the
different parameters of all the markets, then combining all the variables to find out
the results and making the final decision. Furthermore, there are some external factors
that should be considered as well. These parameters are generally unpredictable and

almost impossible to forecast.

In this way, time is also a very important variable. Mostly, there is not much time to

think because the deal will be cancelled. Therefore, it is vital to carry out a decision in
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time. All the people who are engaged in this process must decide as soon as they can,

and the person with the least decision time will win the deal.

In such a competitive environment the winners are people who have more accurate
and quicker tools to calculate all the possibilities in a short time. Furthermore, if they
could have an acceptable estimation for the future of the market, i.e. the price or the
rate of scrapping, they can arrange a more profitable plan for their company. A
shipowner can lay up his/her ship for a few months if he/she knows that there will be
a better price in the coming months, or vice versa. A shipbreaker may be able to wait

a couple of months to get a cheaper deal which can be key to survival in the business.

1.3.2 ENVIRONMENTAL PURPOSE

A ship has a huge structure and its decommissioning generally takes place in different
stages on the shallow water, shore and the beach. Scrap steel represents the largest
recyclable fraction from the vessel and is commonly classed as ferrous scrap. There
are non-ferrous materials as well, e.g. the accommodation which it could be possible

to sell or to be reused.

During the shipbreaking process various chemicals and hazardous wastes are
generated e.g. poly chlorinated biphenyls (PCBs), tributyl tins (TBTs), mercury and
asbestos. All the toxic substances released into the environment cause severe damage

and harm, and pollute the landfill.
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Figure 1-1: A shipbreaking yard in Bangladesh; this picture shows the manual process
of ship scrapping and its harsh working condition. It carries out in a highly polluted
and dangerous site. (October 2005 ©RUBEN DAO/GP/FIDH)

PCBs are a mixture of individual chemicals which are either oily liquids or solids that
are colourless to pale yellow. Some PCBs can exist as a vapour in air. Health effects

that have been associated with exposure to PCBs include acne-like skin conditions in
adults and neurobehavioral and immunological changes in children. PCBs are known

to cause cancer in animals (European Commission, 2003).

TBT is one of the most poisonous substances being released into the aquatic
environment today and has been used in most of the world's marine paints to keep
barnacles, seaweed and other fouling organisms from clinging to ships. It is also used
in wood treatment and preservation, water and refrigeration systems. The following

damages associated with the use of TBTs (European Commission, 2003):

— The reduction in shellfish stocks on a widespread geographic basis around the
world

—  The documented discovery of imposex' in as many as 150 species of marine
snails, with the exact number of organisms affected unknown

— Shell deformity effects and larval mortality in aquatic organisms

' A pseudo-hermaphroditic condition in female gastropods (snails) caused by TBTs.
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— Corresponding financial losses suffered by the aquaculture industry and costs

imposed on the harbour authorities

Mercury is a naturally occurring heavy metal. At ambient temperature and pressure,
mercury is a silvery-white liquid that readily vaporises and may stay in the
atmosphere for up to a year. Mercury is highly toxic, especially when metabolised
into methyl mercury. It may be fatal if inhaled and harmful if absorbed through the
skin. Around 80% of the inhaled mercury vapour is absorbed in the blood through the
lungs. It may cause harmful effects to the nervous, digestive, respiratory, immune
systems and to the kidneys, besides causing lung damage (Agency for Toxic

Substances and Disease Registry, 1999).

Asbestos fibres can enter the air or water from the breakdown of manufactured
asbestos products. Asbestos fibres do not evaporate into air or dissolve in water.
Small diameter fibres and particles may remain suspended in the air for a long time
and be carried long distances by wind or water before settling down. Exposure to
asbestos usually occurs by breathing contaminated air in a shipbreaking yard.
Asbestos exposure can cause serious lung problems and cancer (Agency for Toxic

Substances and Disease Registry, 2001).

The work conditions in a shipbreaking yard, with such a harsh environment, are
commonly below the standard because there are numerous safety issues which are
very difficult to observe and the workers put their life at risk to work in a
shipbreaking yard. Therefore, ships that are ready for scrapping are often sent to
demolition under conditions that would not be accepted in developed countries with
respect to environmental and health and safety conditions of the work. They are sent
to Asian countries like Pakistan, India, Bangladesh or China to dismantle. But the
environmental problems are not local or national problems and hazardous wastes can
move from site to site and move around the globe to contaminate the land, air and
water. If a ship has been transferred to the other part of the world to scrap at its end of
life, it is just like to moving the release point of those hazardous substances but they

still exist.
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Producing steel from the scrap is a sustainable process in terms of energy efficiency
and recycling, but it is a serious threat for the environment and future generations. It
is not rational or possible to stop scrapping activities but something has to be done to
protect the environment and minimise the damaging effect of scrapping on the

environment.

There are various regulations, legislations, national conventions and international
conventions to define a framework to dispose these materials in a proper manner and
also to restrict the dangerous and unnecessary scrapping activities. Because of the
importance of these considerations, there are a growing number of legislations which

are getting tougher and creating more restrictions for the scrapyards.

Demolition technology has to improve and adapt to the present and future
circumstances. Manual scrapping process, as an inefficient and dangerous procedure,
should convert to a set of mechanised and automated demolition procedures. In this
respect, significant reforms have to be carried out to control all aspects of the
demolition process without destruction of the demolition market and the other

maritime markets.

A clear idea about the market and the monthly amount of the scrapping or any other
linked information can be a guiding star throughout this development. It is obvious
that any technical changes or technological reforms require short-term and long-term
investments. But how should investment be done? How is it possible to distinguish
the proper time for investment? Where is the best place to use the capital investment?
In the light of prediction, the answers to such questions are more accurate and precise

i.e. the prediction of the scrapping rate makes it possible to justify the investment.

To tackle the environmental problems of scrapping, it is important to have a clear and
realistic plan for the future of the demolition with respect to the quantity and location
of the demolitions. Supply-demand combination should be studied carefully,
considering the demolition market, scrap prices and the ship’s age. It is vital to look
at the present and the future capacity of the shipbreaking yards, and find out if there is
not a proper balance between the capacity of the shipbreaking yard and the demand

for the demolition. Both sides of the balance cause serious problems for the
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environment. Lack of scrapyards can cause various problems due to storage of the old
ships and the excess of them is hard to control and facilitate. More data and
information about the various parameters, which are affecting the demolition market
and the balance between supply and demand in the market, means a better plan for

scrapping and less environmental problems as a result.

1.4 ARTIFICIAL NEURAL NETWORKS (ANN)

ANN is a technique which can be used as a powerful computational tool in a diversity
of applications including: function approximation, pattern recognition, classification
and time series forecasting. The literature on market forecasting using ANN:Ss falls
into two groups. The first group reports that ANNs were not useful and were unable
to improve the explanation of the residual variance as compared to traditional linear
models (Faber and Sidorowich, 1988). The second group reports that ANNs provided
excellent techniques for enhanced forecasting. In recent years, many studies have
come to a conclusion that the relationship between the financial and economic
variables in a market is nonlinear, and that ANNs can be accurately used to model
problems involving nonlinearities (Abhyankar et al., 1997). Nevertheless, not many
successes were reported in full detail, probably due to commercial reasons or
competitive advantage factors. This study will examine the demolition market, using
ANN methodology, to investigate the market and obtain an appropriate model.
Consequently, the model is evaluated and the performance of this technique

compared against the conventional multivariate statistical methods.

Compared with the traditional statistical prediction methods Artificial Neural
Networks can be applied to time series modelling without assuming a priori function
forms of models. ANNs, with hidden units, are universal approximators which mean
that they are capable of learning an arbitrarily accurate approximation to any
unknown function, provided that they increase in complexity proportional to the size

of the training data (Hu and Hwang, 2003).

In the real world, many time series are generated by nonlinear mechanisms and

therefore in many applications the choice of a nonlinear model may be necessary to
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achieve an acceptable performance. Forecasting of the various parameters in the
demolition market is an example of a nonlinear problem which is challenging due to
the large number of the influential parameters, high noise, non-linearity and non-
stationary environment. Hence, the choice of the model has crucial importance' and
practical applications have shown that nonlinear models can offer a better prediction
performance than their linear counterparts (Mandic and Chambers, 2001). They also
reveal rich dynamical behaviour, such as limit cycles, bifurcations” and fixed points
(points that are mapped to themselves by the functions) that cannot be captured by
linear models (Gershenfeld and Weigend, 1993). The model-free nature of the ANN
besides the essentially nonlinear structure of neural networks is particularly useful for
capturing the complex underlying relationship of the demolition market. ANNs are
versatile methods for forecasting applications in that not only can they find nonlinear

structures in a problem, they can also model linear processes.

The choice of which neural networks to employ to represent a nonlinear physical
process depends on the dynamics and complexity of the network that is best for
representing the problems in such a market. The demolition market is being
influenced by a large number of parameters which are generally unpredictable or very
difficult to forecast. ANN can be a convenient computational tool to model such a
market and find out the relation between the various inputs and outputs but it is
important to choose a correct structure for the neural networks, based on the nature of
the data and the time series. Each ANN has various variables which are sensitive and
need to be adjusted carefully before and during the learning process. Changing these
variables can change the general structure of the neural network and therefore
different outputs will be produced. The variable selection is a critical factor in
maximising a neural network’s forecasting performance. A well trained ANN is also
able to identify dependant and independent variables of the model and compare

sensitivity of the inputs for producing favourable output variables.

! System identification, for instance, consists of choice of the model, model parameter estimation and
model validation.

? Bifurcation occurs when a small smooth change made to the parameter values of a system causes a
change in its long-term dynamical behaviour.
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1.5 OVERVIEW OF THE RESEARCH

The demolition market, like other maritime markets, has its own internal factors and
parameters, e.g. labour costs or scrap price, which directly affect the structure of the
market. In addition, there are external factors that affect the market e.g. the political
issues, inflation or the governmental decisions. The interaction between these internal
and external elements is not the whole system which can define the demolition
market. There are also some additional complex extra factors in the other maritime
markets, including newbuildings, second-hand and freight rate market, which can
affect the demolition market. For example, the freight rates or second-hand prices can
change the scrapping price or the number of newly built tankers could have an effect

on the demolition market.

The IMO regulations and legislations are the other issues that make the maritime
market more complicated. These rules cause more restrictions in all sections of the
market, especially the demolition market, because all scrapyards will face more
pressure, in terms of the environment and safety issues, in the near future. These
kinds of rules are getting tougher as the environmental issues are getting more
serious. Therefore, the interaction between the different complex factors of the
maritime markets and the external parameters make complex connections which are
impossible to model. However it is important to identify the relation between the
various variables to find out the end result. ANNs are a new approach to this sort of ‘
complex problem and their use can be a convenient method to tackle these
difficulties. ANNs can learn the structure of the markets based on the past data. Since
they have learnt the fundamentals, they are capable of prediction. It is important to
use suitable neural networks, with a proper architecture, for every specific reason i.e.

it is not possible to use one ANN, with a particular specification, for any purpose.

The numbers of 33 different time series are used for the investigations and analyses in
this research. They are monthly data from January 1995 to the end of 2004. This
means there are 120 patterns of data available for each analytical method. Inputs and
outputs in each stage are varied and depend on the individual prediction purposes.
The favourable outputs are monthly scrapped tonnage and scrap price in two

locations, Far-East and Subcontinent.
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Conventional multivariate statistical methods are employed to investigate the above
data and produce a suitable model for prediction. Then the Artificial Neural Networks
are used to produce the ANN model for the same data. Both static and dynamic
ANNSs are implemented, trained and their performances tested for various inputs and
the desired outputs, The best designed architecture in each stage is identified and the
performance of the model for forecasting the three months ahead of the market is
measured in terms of Mean Square Error and correlation coefficient. Sensitivity
analysis is also carried out for each model to identify the most influential variables.

Finally the obtained model for both multivariate and ANN methods are compared.



CHAPTER 2

SHIP DISPOSAL
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2.1 INTRODUCTION

In this chapter, the process of the ship scrapping is explained and its various methods
are introduced. Scrap steel, as the main reason for the ship scrapping, has the highest
percentage amongst the other elements in a scrapped ship. There are also some
unwanted materials due to the scrapping activities. For example, there are various
poisonous substances which will be released into the environment due to the
scrapping process and are highly dangerous for both the environment and humans,
including the people who work for the scrapyards. In this chapter, these substances

and their risks are identified and their environmental issues are explained.

The growth of the world economy is related to the seaborne trade and the maritime
market. The maritime market has different sections, including the demolition market.
They are highly intercorrelated and changes in one of them can be a reason for
changes in the others. Fundamental issues of these markets are illustrated separately

and the possibilities of affecting each other are studied in this chapter.

There are some international regulations which can affect the demolition process as
well as the demolition market. For example, these sorts of regulations can force ships
to go for scrapping in a certain time. Therefore, it is important for both the ship
owners and the scrapyards to take these regulations into account. In this chapter some
of the organisations, which can affect the scrapping activities and related regulations

are explained.

2.2 GROWTH OF THE WORLD FLEET

One of the main business areas for the maritime industry is to provide the
transportation services. In the relation between seaborne trade and global economic
growth, maritime transportation has always been the dominant support of global trade
(Figure 2-1).

Different commodities i.e. clothes or toys and bulk shipments like coal, iron ore,

crude oil or grain are transferred all around the world using different types of ships.
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Figure 2-1: World seaborne trade and economic grouth (Platou, 2006).

Global seaborne trade has dramatically changed over the last few decades. According
to the UN review of maritime transport (UNCTAD, 2005), 2,504 million tonnes of
different goods were loaded for international trade in 1970, but this amount was
raised to 5,983 million tonnes, which is more than twice as many as in 1970, in 2000
(Table 2-1). Over the three decades the growth of the seaborne trade averaged 3.1%
annually but the growth continued faster over the last few years and 6,758 million

tonnes traded in 2004.
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Oil
Year Crude Products Dry Cargo Total all goods
1970 1,109 232 1,162 2,504
1980 1,527 344 1,833 3,704
1990 1,287 468 2,253 4,008
2000 1,665 498 3,821 5,983
2001 1,678 499 3,844 6,020
2002 1,637 509 3,981 6,127
2003 1,690 533 4,257 6,480
2004 1,770 546 4,442 6,758
Table 2-1: World Seaborne trade (goods loaded) by types of cargo (million Tonnes)
(UNCTAD 2005).

The distribution of the world economy is also in favour of increasing the seaborne
trades because of the developing economies of East and South-East Asian, countries
like China (Table 2-2). In 2004, 27,635 billion tonne-miles various commodities e.g.
grain, coal, iron oar and oil have been traded all around the world which shows
growth of 1,791 billion of tonne-miles compared with 2003 and a significant growth

more than 10 billion compared with 1999.

Oil
Year | Crude | Products | Iron | Coal | Grain | Main Dry | Other World
ore bulks Dry total
Cargoes
1970 | 5,597 | 890 1,093 | 481 475 2,049 2,118 10,654
1975 | 8,882 | 845 1,471 | 621 734 2,826 2,810 15,363
1980 |8,385 {1,020 1,613 | 952 1,087 | 3,652 3,720 16,777
1985 14,007 | 1,150 1,675 | 1,479 | 1,004 | 4,480 3,428 13,065
1990 {6,261 | 1,560 1,978 | 1,849 | 1,073 | 5,259 4,041 17,121
2000 | 8,180 | 2,085 2,545 12,509 | 1,244 [ 6,638 6,790 23,693
2001 | 8,074 |2,105 2,575 2,552 | 1,322 |6,782 6,930 23,891
2002 | 7,848 | 2,050 2,731 | 2,549 | 1,241 | 6,789 7,395 24,172
2003 |8,390 |2,190 3,025 {2,810 | 1,273 [ 7,454 7,810 25,844
2004 | 8,910 |2,325 3,415 {2,965 | 1,325 | 8,065 8,335 27,635

Table 2-2: World seaborne trade in billion of tonne-miles (Fearnleys Review 2004).

In line with the growth of the seaborne trade, the number and the size of the world
fleet has grown to provide the appropriate support for all types of cargo
transportation. At some points new ship types were needed to fulfil the requirements
of having a suitable transportation pattern. For example, new ship types, like LNG-
tankers or Containerships, were introduced in the 1960s and 1970s and changed the

previous transportation pattern. Since then, the importance of these kinds of ships has
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increased gradually and they have technically changed to meet the new criteria. Later
in 1990s double-hulled oil tankers were introduced and with regard to the
environmental problems of the single-hulled tankers and recent IMO regulations, they
are now gaining in importance. In contrast, other ship types may have gradually been

seen to decline their importance in the new transport pattern.

One of the most outstanding features of the world merchant fleet during the last 30
years, in which particularly there has been a rapid escalation of ship size, is the bulk
sector of the fleet. In the tanker market there was a steady increase in the average size
of tankers until the early 1980s when the size structure stabilised. In the bulk carriers
there was a similar upward movement in ship size, but the pattern was more evenly
spread between the different ship size groups with the fleet of Handy, Panamax and
large bulk carriers over 80,000 dwt all expanding. Larger and more efficient ships
have progressively pushed their way into the market and depressed rates for smaller
sizes. At the same time investment for specialisation, as in the case of car carriers,
and chemical tankers played an important part in the development of the world fleet
(Stopford, 2003b).

The volume of the world fleet in 1995 was 661.5 million dwt. The share of bulk
carriers and tankers were 229.9 million dwt and 270.9 million dwt respectively which
is 75.7% of the world fleet. Ten years later, in 2005, the volume of the world fleet has
been increased to 855 million dwt but the bulk carriers and tankers shares together is
73.1% of the world fleet, which slightly decreased by 2.6%. The volume of the
chemical carriers doubled during this period (Table 2-3).
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Year Tankers Chemical | Bulk Combined | Others Total
carriers carriers carriers
1995 270.9 0 229.9 25.9 134.8 661.5
1996 261.0 9.5 241.3 20.7 140.9 673.4
1997 265.1 10.0 250.0 17.3 149.1 691.5
1998 268.5 11.0 260.7 16.9 155.3 712.4
1999 273.2 11.9 260.4 16.1 160.9 722.6
2000 276.0 13.5 264.8 15.2 166.7 736.2
2001 281.3 15.0 274.0 14.6 169.3 754.3
2002 274.9 15.0 287.4 13.8 174.7 765.9
2003 278.8 15.4 295.0 12.6 181.2 783.0
2004 287.9 17.3 303.3 12.2 189.6 810.3
2005 304.1 18.0 320.7 11.7 200.5 855.0

Table 2-3: World Fleet Development (million dwt) (Platou, 2000).

In the period 2001-2005, the average growth rate for the total dwt tonnage supply was
3.3 percent; this represents in absolute terms an increase of 109.3 million dwt of the

world fleet (ISL, 2006).

In 2005, the world supply tonnage dramatically increased by 5.7%. which is more
than the above average, and shows a quick rise in the world supply of tonnage in the

last year (Figure 2-2).

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

Figure 2-2: Annual tonnage changes in the world merchant fleet (dwt % change)
(ISL, 2004&2006).
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This is just because of the growing economies all over the world in recent years

(Table 2-4). The minimum rate of growth of 1% occured in 1995 and 1999.

2004 2005 2006
USA 4.2 3.6 3.4
Japan 2.3 2.5 23
EU 2.3 1.6 2.1
C. and Europe 6.5 4.3 4.6
Russia 7.2 5.5 5.3
Africa 4.5 5.9 5.5
China 10.1 9.8 8.7
India 6.9 7.6 7.1
Other Asia 6.0 5.7 5.7
M. East 5.5 54 5.0
World 3.1 4.5 43
Table 2-4: : Percentage change of economic growth in real GDP from previous year

(Platou, 2006).

One of the main indicators of operational productivity of the world fleet, tonne-miles

per deadweight tonne, is shown in (Figure 2-3). According to the UNCTAD

calculations thousands of tonne-miles performed per deadweight tonne, after a

significant increase in 2003, increased from 30.2 in 2003 to 3.8 in 2004. This increase

resulted from the increased carriage distance of seaborne trade.
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Figure 2-3: Thousand tonne-miles performed per dwt tonne of total world fleet

(UNCTAD, 2005).
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Tonnes of cargo carried per deadweight tonne is the other indicator of the world fleet
productivity. As shown in Table 2-5, after an increase in 2003 to 7.6 it has slightly

decreased in 2004 to 7.5. This represent the faster fleet expansion relative to the cargo

carried.

Year World fleet Total cargo Total tonne-miles Tonnes carried

Million dwt Million performed (Billion | per dwt
tonnes tonne-miles)

1990 658.4 4,008.0 17,121 6.1

1995 734.9 4,651.0 20,188 6.3

2000 808.4 5,871.0 23,016 7.3

2003 857.0 6,479.5 25,844 7.6

2004 895.8 6,758.3 27,635 7.5

Table 2-5: Cargo carried per deadweight tonne of the total fleet (UNCTAD, 2005).

Each ship has a particular life cycle, it varies between 20 to 50 years (usually 25
years), and it depends on several factors e.g. the ship type. At the end of its life cycle,
the ship should go out of the world fleet and it is usually decided to sell to scrap
yards. Occasionally, it can be donated to a non-profit organisation for use as an
historical memorial or museum. Therefore, the total number of ships in the world
fleet in each year is a reaction between adding the newbuildings and reducing the old
ships. As indicated in Figure 2-4, in 2003 fleet additions, in terms of tonnage,
exceeded demolitions by approx 21.8 million dwt and this amount has been increased
in the next years. During 2005, additions to the merchant fleet reached a volume of
70.1 million dwt, with the number of 1,627 merchant vessels, compared with 62.4
million dwt in 2004, with 1.341 merchant vessels.
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Figure 2-4: : World tonnage addtions and reductions (mill dwt)
(ISL, 20006).

At the beginning of 2006, the tanker fleet for ships of 300 gt and over comprised
10,401 tankers totalling 387.7 million dwt (Figure 2-5). This represents, in terms of
dwt, 5.2 percent increase over 2005. Also, 7,635 tankers equal to 73.4 per cent of all
tankers representing in terms of dwt 15.3 percent of the total world tanker tonnage
were attributable to size classes below 40,000 dwt. The crude oil tanker flect
consisted of 471 VLCC tankers (200.000-320,000 dwt) and 10 ULCC tankers
(320,000 and above) of which 4 units were single-hull tankers. In the period 2002-
2006 the average size of the tanker fleet increased by 3.3 million dwt. Crude oil
tankers showed the highest raise amongst the other ship types from 63.4 to 72.3

million dwt i.e., 8.9 million dwt increase.
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Average growth Average size
2002 2006 rate (million dwt)
Ship type '02-06' m
Number | ™35 | Number | ™ | Number | ™11" | 2002 | 2006
Crude oil 3672 2329 {3556 257.1 [-0.8 2.5 63.4 |72.3
Product 2302 47.6 2467 58.8 1.7 5.4 20.7 |23.9
Oil/Chemical | 1337 22.7 1840 37.6 8.3 13.4 17.0 204
Chemical 1291 8.5 1354 9.9 1.2 4.0 6.6 7.3
Liquid gas 1114 19.0 1184 24.2 1.5 6.3 17.1 |20.5
Total 9716 330.7 | 10401 387.7 | 1.7 4.1 340 |37.3
Figure 2-5: World tanker fleet by type as of January 1st, 2002 and 2006 (1SL, 2006a).

Subsequently, the average ship size of the world merchant fleet is increasing. Within

the last five years period the average size increased from 19,970 to 22,970 dwt. At the
beginning of 2006, about 28,700 ships equal to 75.8 per cent (2002: 74.1 per cent) of
all merchant ships (300 gt and over) belonged to the size segment up to 19,999 dwt.

The majority of ships in these size classes are general cargo ships. Moreover, 9,944 of

all merchant ships and 48.5 per cent of the total deadweight tonnage aggregated to
size classes between 20,000-99,999 dwt (ISL, 2006).

2.3 SHIP RECYCLING

When a ship becomes obsolete for the market it serves or non-compliant for other

reasons it reaches the end of its useful life. There are few alternatives at the end of the

ship’s life:

e Layup

¢ Conversion

¢ Donation

¢ Sold for Scrapping

Essentially, lay up only postpones the scrapping issue. Donation and also Conversion

to other uses presents only a very limited number of alternatives; such as storage

facilities, breakwaters or tourist attractions. Hence, demolition at a scrap yard is the
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most profitable and common option. In principle, the process of ship scrapping

consists of a sequential chain of operations undertaken at different locations at a scrap

yard (Andersen, 2001):

e Offshore. Prior to beaching tanks are discharged and valuables
(uncontaminated oil product and saleables such as electronic equipment) are
removed.

e Inter-tidal zone. The vessel is beached under its own power and demolition is
initiated (in a certain sequence).

o The beach. Further cutting into manageable sizes, extraction of components
and sorting for transport to respective receivers are carried out.

¢ Shore. Supply of second-hand equipment and components to market and

remanufacturing/recycling into new products/components.

From the statistical point of view, the total tonnage removed had a peak in 2001 with
31.7 million dwt. Consequently, first there was a decrease to 25.9 million dwt until

2003 and then it almost halved each year for the next two years (Table 2-6).

It is remarkable that the tankers removal represented 18.9 million dwt in 2003 but the
bulk carrier deletion represented only 3.5 million dwt in this year. This shows a
significant difference between tankers and bulk carriers (or any other ship types)
removal. The same pattern of the elimination repeated in 2005 with 5.1 and 1.0

million dwt removals for tankers and bulk carriers respectively.
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Start Tankers | Bulk Carriers | Combined Carriers | Others | Total
1994 12,4 4,6 3,3 1,1 21,4
1995 10,9 2,6 1,7 0,5 15,7
1996 6,7 8,5 1,9 0,7 17,9
1997 3,6 7,9 2,3 2,5 16,4
1998 7,0 11,8 1,3 3,0 23,1
1999 16,3 9,1 0,9 3,9 30,3
2000 13.9 4,4 0,6 3,1 22,1
2001 19,5 7,2 0,8 4,0 31,7
2002 18,9 6,0 1,2 3,9 30,4
2003 18,9 3,5 0,7 2,8 25,9
2004 10,2 0,8 0,5 1,0 12,7
2005 5,1 1,2 - 1,0 7,6

Table 2-6: Sold for scrapping, lost and other removals (million dwt) (Platou, 2006).

At the end of sailing life, ships are sold for their valuable recyclable steel. The ship
type is important in determining the price offered by the ship breaker. Large ships
with easily accessible surfaces, such as tankers are easier to cut in pieces and are
therefore more valuable and profitable. Generally, Tankers have large flat steel panels
which are easy to cut, so the steel utilisation percentage in a tanker is higher than the
other ship types. Steel scrap obtained from shipbreaking process has comparatively
high quality, especially from tankers because of its large flat panels. All of these
factors make tankers more profitable for scrapping. The scrap steel provides most of
the value of the ship. The percentage of the steel varies and it depends on ship type
and size but there has been an estimate of roughly 74.4% for a standard tanker with
120,000 dwt and 63.15% dwt for a standard bulk carrier with 52,000 dwt (Table 2-7).
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Element Standard Tanker | Standard Bulk Carrier
Steel 74.4 63.15
Copper 0.01 0.04
Zinc 0.03 0.04
Special Bronze 0.03 0.04
Machinery 14 19
Electrical/Electronic Equipment | 2.5 5
Joinery - Related products 5 6
Minerals 0.5 2.5
Plastics 0.5 1.2
Liquids 2 1
Chemicals and gases 0.03 0.03
Other miscellaneous 1 2
Total 100 100

Table 2-7: Percentage of various elements for a standard ship

(DNV, 2001).

In 1980s there was the worst recession in maritime history (Stopford, 2003b). Hence.

the scrapping rate peaked in 1985 with 43.4 million dwt (Figure 2-6). On the supply

side, 61.8 million dwt were delivered in 1975 and shipyards were at the peak of the

1970s fleet replacement cycle in last few years. Actually, it was the last phase of

1970s scrapping with an orderbook of 168.4 million dwt at the beginning of the 2004

(Platou, 2004).
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Figure 2-6: Deliveries and Scrapping rates (million dwt)

(Clarkson research, 2005).
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According to the age profile of the world fleet on January the first 2006, 39.2 million
dwt of tankers and 90.5 million dwt of bulk carriers were built in 1985 or earlier
(Table 2-8). This means they are already almost 20 years old and potentially ready for
scrapping (it will depend on trade and need to have double hull). Moreover, there are
38.0 and 45.2 million dwt of tankers and bulk carriers respectively which were built
between 1986 and 1990 and will be ready for scrapping in the near future.

Tankers -85 86-90 [91-95 |96-00 |01-2005 Total
10-69,999 233 8.9 8.7 13,5 244 78,9
70-119.999 | 6,6 10,6 11,5 15,4 33,5 77,5
120-199,999 | 5.0 46 11,5 12,3 18,1 51,5
200,000+ 42 14,0 36,8 342 49,0 1382
Total 39,2 38,0 68,5 75.4 117,2 346,1
Bulk Carriers | -85 86-90 [91-95 |96-00 |01-2005 Total
10-59,999 534 19,2 13,7 25,3 31,2 142,9
60-79,999 20,1 8,2 11,7 20,8 24.8 85,6
80,000+ 17,0 17,7 19,3 27,8 31,6 1134
Total 90,5 452 44.8 74.0 78,6 341,9

Table 2-8: Tankers and Bulk Carriers age profile in January the first 2006 (million dwt)
(Platou, 2006).

2.4 ENVIRONMENTAL ASPECTS

Shipbreaking is one of the roughest and labour intensive forms of work. Most of the
ship scrapping industry uses manual labour to break ships. Although it is possible to
increase profitability by using mechanised shipbreaking methods, it requires especial

investment which is not easy to manage.

There are a few shipbreaking methods, for example dry dock and afloat (or beaching).
A combination of methods can be used in some cases as well. The dry dock has been
designed primarily for ship construction and repair and it provides more flexibility
and better containment of debris. However, it is an expensive process and needs more

capital assets. In this method, workers immediately begin to remove large sections or
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modules of the ship, transferring them to other project areas for environmental
abatement, separation and cutting. The Afloat or beaching method has lower facility
cost, but presents the greatest challenge in containing debris and controlling ship
stability. With the ship in the water, workers begin by moving through doors and
hatches to extract interior parts and strip out compartments. Then they cut and remove
the ship’s structure above the waterline. As the work progresses the ship gets lighter
and it is gradually pulled onto a beach, or earth ramp, for final dismantling of the

bottom hull (Association of scientist and engineer, 2000).

In environmental terms the hierarchy of demolition waste is (DNV, 2001):

v Re-use
v" Recycle
v" Disposal

First, reusable items should be extracted including pumps, motors, engines, repair
parts, electronic items, cables and any other equipment. Then it is the time to scrap
the residual material. Scrap steel is the most important in recyclables. Steel
production from scrap is a sustainable process in that it achieves a far better
environmental performance in light of energy efficiency and the preservation of non-
renewable resources in comparison with the alternative ore-based production. The
energy balance between the two approaches may differ by up to 70% (DNV, 1999).
Disposals' including asbestos, batteries, plastics, radiation sources, lead and minerals

can cause a threat to human health and the environment.

Many of the vessels currently designated for scrapping were built in the 1950s, 1960s,
and 1970s using dangerous materials in their construction. Many of these materials
are currently classified as hazardous, ¢.g. asbestos, PCBs, lead, chromates, mercury,
and cadmium (Table 2-9). In addition to the above mentioned environmental hazards

due to the scrapping activities, there are numerous safety and security issues for the

! Disposal means that goods which may once have had a residual value when they reach the end of
their working life such as motor vehicles.
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people who work in a scrap yard. These workers are threatening their health and lives

by working in such a harsh condition (Figure 2-7).

"-Alli_ "o B

Figure 2-7: Shipbreaking harsh working condition in Chittagong, Bangladesh 2000
(Picture: Edward Burtynsky).

As explained in chapter one, health effects that have been associated with exposure to
PCBs include acne-like skin conditions in adults and neurobehavioral and
immunological changes in children. Also, TBT, which is one of the most poisonous
substances, has been used in most of the world's marine paints to keep fouling
organisms from clinging to ships. It is also used in wood treatment and preservation,

water and refrigeration systems. TBT paint is due to be phased out of ships by 2008.
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Hazardous or Harmful Factors in Ship Scrapping
Asbestos

Polychlorinated Biphenyls (PCBs)

Lead

Chromates

Mercury

Fumes of welding & cuffing

Radiation

Noise

Vibration

Air pollution

Low-level radium sources

Organic liquids (Benzene etc.)

Battery, Compressed gas cylinders, fire fighting liquids, etc.
Chemical materials

Work using plasma and gas torches

Explosive(s)

Work using cranes and lifting equipment

Saws, Grinders and Abrasive cutting wheels

Accident factors: falling, upsetting, electric shock, etc.

Table 2-9: Identifiable hazards associated with ship-breaking and existing 1LO standards

(Bailey, 2000).

The forecast of annual production for some of the waste materials due to the

scrapping over the period of 2001 — 2015 in OECD countries has shown in Table

2-10.
Waste Stream OECD Europe Geographical Europe
Steel 860,000 1,480,000
Copper 115 197
Zinc 345 591
Special Bronze 345 591
Machinery 161,000 275,800
Electrical/Electronic Equipment | 28,750 49,250
Joinery - related products 57,500 98,500
Minerals 5,750 9,850
Plastics 5,750 9,850
Liquids 23,000 39,400
Chemicals and gases 345 591
Other miscellaneous 11,500 19,700
Total 1,154,400 1,984,320

Table 2-10: The annual production of wastes due to the scrapping over the period of 2001 - 2015
in OECD countries (tonnes) (DNV, 2001).
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In the 1970s shipbreaking activities were concentrated in Europe. They were
performed at docks and were highly mechanised industrial operation. But the costs of
upholding environmental, health and safety standards gradually increased and the
scrapping industry moved to poorer Asian states which had few health and safety
standards (Greenpeace, 2004). First it had been shifted to regions such as Taiwan and
South Korea, but then moved on to new areas within the same region where labour

costs traditionally had been even lower (DNV, 1999).

From a technical point of view, the choice of the location for establishment of
scrapping sites is based upon some prerequisites and it may summarised as follows

(Andersen, 2001):

¢ A long uniform inter-tidal zone with sufficient tidal difference (allowing
vessels of a range of sizes to be dry-beached);

e Minimum exposure (coastal protection) and stable weather conditions;

e Availability of low-cost labour;

e A certain level of infrastructure for disposals.

In 1992 and 1993, half of all ocean going ships were being scrapped in China
(Drewry Shipping Consultant, 1998) but a few years later their share dramatically
decreased to only 1 per cent in 1997 (Table 2-11) and they were nearly eliminated

from the market.
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Scrap Unit | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003* | Y™ | Total
location known
Bangladesh | mdwt 3.1 3.9 4.6 32 5.8 7.2 42 9.5 8.7 4.1 0.0 54.2
Number | 25 31 61 63 66 65 61 123 | 69 39 0 603
India mdwt 6.5 6.1 8.8 7.7 10,0 | 10.6 | 8.1 8.1 11.1 {76 0.1 84.7
Number | 107 148 | 262 293 360 340 | 274 298 | 326 229 1 2,638
Pakistan mdwt 3.7 3.1 2.0 0.9 3.4 4.3 1.2 3.7 1.7 1.0 0.0 249
Number | 19 20 16 14 40 34 16 26 13 14 1 213
China mdwt 2.8 0.9 0.3 0.1 2.1 5.4 5.7 5.7 59 8.2 0.1 37.1
Number | 34 19 13 6 48 72 77 76 90 79 9 523
Vietnam mdwt 0.3 0.4 0.2 0.5 04 0.3 0.1 0.0 0.0 0.0 0.0 2.3
Number | 3 2 6 3 5 5 4 1 i 0 0 30
Other Asia | mdwt 0.0 0.3 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.6
Number | 0 2 1 1 1 4 0 1 ] 1 0 12
EU mdwt 0.0 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.3
Number | 2 1 1 3 7 3 3 2 4 1 0 27
Turkey mdwt 0.0 0.1 0.2 0.2 0.3 0.6 0.2 0.3 0.3 0.1 0.0 2.3
Number | 2 5 10 12 15 18 14 16 21 12 0 125
North mdwt 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.2
America Number ( 0 0 0 0 0 0 0 1 4 1 0 6
South mdwt 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
America Number | 1 1 0 0 2 6 8 1 0 1 0 9
Mexico mdwt 0.0 0.0 0.0 0.0 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.3
Number | 0 1 0 2 6 8 1 0 1 0 0 19
Other mdwt 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Number | 0 0 0 0 2 0 0 0 0 1 0 3
Unknown mdwt 0.8 0.1 1.0 1.1 0.6 1.5 1.7 0.2 0.6 0.7 4.0 12.3
Number | 14 8 22 32 23 41 34 14 24 15 140 367
Total mdwt 18.2 155 1176 {153 239 [30.8 {21.8 {282 [285 [219 4.2 226.0
Number | 213 240 | 401 447 | 599 600 | 492 565 | 556 394 151 4,658

Table 2-11: Ship demolition by location, 1994-2003* (Jan-Sep 03) (European Commission, 2004).

On the contrary, India had a growth in scrapping rate during this period and 7.7

million dwt were being scrapped in 1997 which was more than 50% of the whole

world fleet. According to the statistics for the year 2001, India breaks 42% of the

vessels that are dismantled every year, Bangladesh 7%, Pakistan 6%, china 4% and
the rest of the world 41% (UNEP, 2001). EU, North America and South America did

not scrap ships in this year, a trend that continued in subsequent years.

There have been considerable variations market shares of the major shipbreaking

nations over the years. Nowadays two thirds or more of the old ships are dismantled

on the Indian subcontinent, with Bangladesh currently holding the largest share of the

market. The figure below shows that Bangladesh accounts for the largest share in

2006, while only 5 years back in time India was the world's largest shipbreaking

nation (Figure 2-8).
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Figure 2-8: Market share of main ship-breaking nations, 1994-2006 (Commission of the
European Communities, 2006)

Generally, bulk carriers and tankers have bigger share of the scrapping among the

2006

other ship types. For example, according to DNV studies, during the period of 1992 -

2000, on average the number of 363 vessels have been scrapped each year, averaging

19,570 in terms of dead weight. The Tankers’ share was 50% and the bulk carriers’

share was 31% (Table 2-12). It represents a high percentage of the scrapping market

about 81% of the total sum of demolition of vessels. Therefore, bulk carriers and

tankers are dominant to the scrapping industry.
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Number/ Bulk Gas Other | All
Year dwt/Age Tankers Carriers Combos vessels | dry Vessels
1992 Number 94 67 11 4 64 240
dwt 10,22 |3,913 1,296 0,011 0,775 | 16,215
Age 23,8 23,6 20,8 26,8 24,7 | 23,9
1993 Number 110 50 15 10 129 314
dwt 10,685 | 2,557 2,27 0,111 [ 1,398 | 17,021
Age 23,1 24,2 21,9 24,9 29,4 | 259
1994 Number 87 70 18 7 112 294
dwt 12,558 |4,351 2,421 0,018 | 1,234 | 20,582
Age 22,6 24 21,9 26,3 26,5 | 24,5
1995 Number 93 33 9 1 91 227
dwt 10,794 | 2,093 1,229 0,002 | 1,195 } 15,313
Age 25,2 25,2 22,4 30 27,2 25,9
1996 Number 72 128 15 5 168 388
dwt 6,829 | 7,297 1,904 0,021 [ 1,967 | 18,018
Age 25,3 25 23,1 27,9 27,2 |26
1997 Number 40 161 6 6 187 400
dwt 3,611 7,707 0,746 0,075 {2,596 | 14,735
Age 28,3 25,5 23,6 28,4 26,5 263
1998 Number 52 236 10 6 191 495
dwt 7,547 11,666 | 1,416 0,028 | 3,181 | 23,838
Age 25 25 22.8 27.5 25.5 |25.2
1999 Number 113 194 9 6 226 548
dwt 17,114 |9,385 1,130 0,019 3,185 | 30,833
Age 24.9 24.9 24.3 314 25.2 1251
2000* | Number 55 29 4 1 45 134
dwt 7,234 1,353 393 18 641 9,639
Age 26.1 27.1 25 31.7 25.7 1262
Average Number 83 117 12 6 146 363
92-99 dwt 9,920 ]6,120 1,550 40 1,940 | 19,570
Age 24.4 24.8 224 26.9 263 253

Table 2-12: Vessels (> 10,000 dwt) sold for scrapping 1992 -2000* (Jan-Mar), (000 dwt)
(DNYV, 2001).
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2.5 INTERNATIONAL REGULATIONS

In addition to the national statutes and regulations, which are applicable for the ship
scrapping industry in each particular country, there are also a number of international

agencies which monitor the different aspects of the demolition process and address

the various topics of the ship scrapping activities, including:

e IMO

e ILO

e United Nation Commission on Human Rights

¢ United Nation Environment Programme ~ The Basel Convention

¢ Commission of European community

IMO is responsible for coordinating issues associated with ship recycling. It is
responsible for monitoring issues arising during ship design, building and operation
which might impact on recycling including preparations for recycling onboard. ILO is
responsible for establishing standards of operation in shore-based industries involved
in ship recycling, concentrating on considering the application of its already existing
standards and recommendations to ship recycling and developing guidance for the
ship recycling industry and also, to take the lead on working conditions in and around
vessels once they have been beached for the scrapping (Andersen, 2001). A central
goal of The Basel Convention, under the administration of UNEP is Environmentally
Sound Management (ESM), is to protect human health and the environment by
minimising hazardous waste production whenever possible. ESM means addressing
the issue through an “integrated life-cycle approach” which involves strong controls
from the initial generation of a hazardous waste to its storage, transport, treatment,
reuse, recycling, recovery and final disposal (Basel, 2004). The Basel Convention has
recently been redefined to cover ships being sold “intended to be disposed of”* from
rich nations to developing nations. The broad effect is to make shipowners in
countries that adhere to the convention liable for removing or dealing with toxic

materials, or those that pose a risk to the environment, from the ship before it is sold.
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The International Convention for the Prevention of Marine Pollution (MARPOL
73/78) is a legislation to control the maritime environment and prevent from any kind
of pollution e.g. pollution by oil, sewage, chemicals, harmful substances, noxious
liquid substances and air pollution. MARPOL was initially adopted in 1973 and it has
completed in 1978. IMO held a Conference on Tanker Safety and Pollution
Prevention in February 1978. This conference adopted measures affecting tanker
design and operation which were incorporated into the 1973 International Convention
for the Prevention of Pollution from Ships. MARPOL 73/78 finally entered into force
on October the second 1983 (IMO, 2004). Since then, according to the industrial
progresses and also the environmental conditions, The Marine Environment
Protection Committee (MEPC) of the International Maritime Organization has
adopted additional amendments to the MARPOL 73/78, to keep it efficient, and also
up to date.

One of the amendments which have influenced scrapping industry was the 1992
amendment. According to this amendment and its regulation 13G tankers that are 25
years old and which were not constructed according to the requirements of the 1978
Protocol to MARPOL 73/78 have to be fitted with double sides and double bottoms
(IMO, 2004). In addition, it revised requirements in the 2002 amendment and brings
in a new global timetable for accelerating the phase-out of the single-hull oil tankers.
The timetable will see most single-hull oil tankers eliminated by 2015 or earlier.
Double-hull tankers offer greater protection of the environment from pollution in
certain types of accident. All new oil tankers built since 1996 are required to have
double hulls (IMO, 2004). Although the new phase-out timetable sets 2015 as the
principal cut-off date for all single-hull tankers, the flag state administration may
allow for some newer single hull ships registered in its country that conform to
certain technical specifications to continue trading until the 25th anniversary of their
delivery. The revised regulation identifies three categories of tankers, as follows
(IMO, 2004a):

- "Category 1 oil tanker" means oil tankers of 20,000 tonnes
deadweight and above carrying crude oil, fuel oil, heavy diesel oil or
lubricating oil as cargo, and of 30,000 tonnes deadweight and above

carrying other oils, which do not comply with the requirements for
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protectively located segregated ballast tanks (commonly known as
Pre-MARPOL tankers).
"Category 2 oil tanker" means oil tankers of 20,000 tonnes

deadweight and above carrying crude oil, fuel oil, heavy diesel oil or

lubricating oil as cargo, and of 30,000 tonnes deadweight and above

carrying other oils, which do comply with the protectively located

segregated ballast tank requirements (MARPOL tankers), while

"Category 3 oil tanker" means an oil tanker of 5,000 tonnes

deadweight and above but less than the tonnage specified for

Category 1 and 2 tankers.

The oil tanker phase out original timetable by IMO category including their hull type

and the year of phase out has been shown in Table 2-13

Phase CATI CAT?2 CAT3 Total
out DB/DS | SS | CAT1 |DB/DS | SS | CAT2 | DB/DS | SS | CAT2

year total total total

2003 | 0.6 1.5 |2.0 0.0 0.0 0.0 0.1 1.0 | 1.1 3.1
2004 |03 43 |46 0.0 0.0 10.0 0.2 0.6 0.8 5.4
2005 [ 0.8 84 19.2 0.0 0.0 100 0.1 04105 9.7
2006 (23 9.8 |12.1 0.0 0.0 10.0 0.2 0410.5 12.6
2007 [ 1.8 53 {71 0.0 0.0 (0.0 0.5 05110 8.2
2008 (0.0 0.0 {0.0 1.3 39 (52 0.2 0.310.5 5.7
2009 |[0.0 0.0 10.0 1.2 32 |44 0.3 0.210.5 49
2010 [ 0.0 0.0 0.0 0.7 24 | 3.1 0.3 0.3]10.6 3.7
2011 [0.0 0.0 |10.0 1.3 22 |35 0.4 04 |0.7 43
2012 | 0.0 0.0 {00 1.6 44 |59 0.2 0204 6.3
2013 |0.0 0.0 10.0 1.5 3.1 [4.6 0.1 02103 4.8
2014 0.0 0.0 10.0 1.8 4.1 159 0.1 0.2 03 6.2
2015 {0.0 0.0 10.0 2.8 45.2 | 48.1 0.2 1.1 1.2 49.3
2016 | 0.0 0.0 }0.0 1.6 00 |16 0.2 0.01]0.2 1.7
2017 (0.0 0.0 |10.0 1.8 0.0 |18 0.0 0.010.0 1.9
2018 ]0.0 0.0 ]10.0 1.4 00 |14 0.1 0.0]0.1 1.4
2019 [0.0 0.0 0.0 0.1 0.0 |0.1 0.0 0.010.0 0.1
2020 0.0 0.0 ]10.0 0.1 0.0 10.1 0.0 0.0]0.0 0.2
2021 10.0 0.0 0.0 0.0 0.0 10.0 0.0 0.010.0 0.0
Total |5.7 29.3 | 35.0 17.2 68.6 | 85.7 3.2 56| 8.8 129.5

Table 2-13: Oil tanker phase out by IMO category, (million dwt)
(European Commission, 2004),




Chapter 2: Ship Disposal Page: 39

As it has been noted earlier, tankers and bulkers are dominant to the scrapping
industry. Hence, the phase out of the tankers can change the standards and criteria for
both the scrapping industry and the demolition market. Regulation (EC) No
1726/2003 of the European Parliament and of the Council of European Union of 22
July 2003 amending Regulation (EC) No 417/2002 on the accelerated phasing-in of
double-hull or equivalent design requirements of the MARPOL 73/78 Convention to
single-hull oil tankers. This regulation aims to reduce the risks of accidental oil
pollution in European waters by establishing a scheme for accelerating the phasing in
of double-hull or equivalent design requirements for single-hull oil tankers (European

Union, 2003). In the second paragraph of this amendment it is written that:

"No oil tanker shall be allowed to operate under the flag of a Member
State, nor shall any oil tanker, irrespective of its flag, be allowed to enter
into ports or offshore terminals under the jurisdiction of a Member State
after the anniversary of the date of delivery of the ship in the year
specified hereafter, unless such tanker is a double hull oil tanker:

(a) For category 1 oil tankers:

— 2003 for ships delivered in 1980 or earlier,

— 2004 for ships delivered in 1981,

— 2005 for ships delivered in 1982 or later;

(b) For category 2 and 3 oil tankers:

— 2003 for ships delivered in 1975 or earlier,

— 2004 for ships delivered in 1976,

— 2005 for ships delivered in 1977,

— 2006 for ships delivered in 1978 and 1979,

— 2007 for ships delivered in 1980 and 1981,

— 2008 for ships delivered in 1982,

— 2009 for ships delivered in 1983,

— 2010 for ships delivered in 1984 or later;"

Comparisons of phase out schemes for single hull oil tankers are represented in

Figure 2-9. As it appears in this figure, according to the EC 1726/2003 amendment
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there will be a massive scrap in 2010 with 66.7 million dwt. The next peak for the

scrapping, according to the IMO regulations, will be in 2015 with 49.3 million dwt.
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Figure 2-9: Comparison of phase out schemes for single hull oil tankers. (million dwt)
(European Commission, 2004).

IMO were compiling some guidelines for ship recycling to define procedures for new
ships and also existing ships related to ship recycling. According to these guidelines,
shipowners should prepare the Green Passport for existing ships which is a document
facilitating the application of these guidelines providing information with regard to
materials known to be potentially hazardous utilised in the construction of the ship, its

equipment and systems (IMO, 2004).

2.6 DEMOLITION MARKET

Ship demolition provides a large amount of recyclable materials. Some 95% of an
average merchant ship will be re-used, from the steel to the non-ferrous metals and
pipework of the ship which will be re-used. The scrap price of ships is volatile and
depends upon the demand for steel from this source. A ship is sold on its lightweight
displacement (ldt) on a price per tonne basis. Lightweight is a measure of the weight
of the ship when it does not contain oil, water, fuel, cargo, crew and so on. Scrap steel
price is heavily influenced by the demand for constructional steel from the building
industry. A surge in building, such as has been apparent for the past several years in

China has pushed the price of ship scrap up to very high levels (BIMCO, 2004).
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As mentioned in section 2-1, all the sections of shipping markets are highly
interconnected and changing a parameter in each of these four markets not only affect
other factors in the same market, but also influence one or more variables in the other
markets. This makes the whole shipping market more complex. The demolition
market deals with ships which are generally obsolete, their useful life is over and they
can not be employed for the other purposes. In this market, the price is affected by the
availability of ships for demolition which itself is governed by the freight market
conditions. If freights are high, few ships will be available for scrap, and prices will
be at their highest point. If there are many vessels being offered at a time of poor
freight rates, then the scrap prices will also be low (BIMCO, 2004). It is all a matter
of supply and demand, as the price of ships for demolition decreases shipbreakers will

demand more vessels to scrap and vice versa.

The interaction of the supply and demand curves determines the market price and
quantity of scrapped vessels (Figure 2-10). It means that the equilibrium or balance in
a competitive market is the point where the supply and demand curves cross. This is
the price (p*) and the quantity (q*) of vessels that will be sold for demolition
(European Commission, 2004). A change of price causes a move along the demand

curve. The same goes for the supply side.
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Figure 2-10: Supply and Demand for ship demolition. p is the price and q is the quantity of
vessels that will be sold for demolition (European Commission, 2004).

With the strong tanker and dry bulk market in 2003, the numbers of vessels sold for
demolition were significantly down from the massive 2002 level. At total of 25.9
million dwt were sold for scrapping compared with 30.4 million dwt in 2002 and 31.7
million dwt in 2001 (Platou., 2006). In this year, the strong freight rate and also
increased steel prices pushed scrap prices up to levels never seen before and this
consequently continued to 2004 (Figure 2-11). When the market peaked at about
$460 per 1dt in February 2005, Bangladeshi buyers were by far the most active
buyers, and with the exception of a few sales, paid the highest prices for standard
tonnage. After a short-lived cartel formed by Bangladeshi buyers in June, a new cartel
was formed in September, successfully forcing prices down 10 percent from about
$400/1dt to $360/1dt. The cartel showed signs of weakness towards the end of the
year, with some breakers purchasing outside the cartel (Platou, 2006).



Chapter 2: Ship Disposal Page: 43

500 ——— - —

-
400
300 -
200
100

O T T T T ———— T . T T T

[(o] N~ (e 0] (o] o = N o™ < w

(o] [e)] (o)} (o] o o o o o

[e)] D (o)) ()] o (@) (=) o o o

L b o - (qV] (qV] N N N (9V]

—— Pakistan/India —— Far East

Figure 2-11: Demolition Prices (Idt/$) (Platou, 2006).

Ship demolition prices have been influenced by some internal and external factors.
Internal factors are the variables and parameters inside the demolition market itself
and the external factors are the parameters in the other markets which affecting the
relative parameters in the demolition market, e.g. Freight rates, steel price and
operating costs of ships. In the following sections some of the drivers and the

influential parameters of the demolition market are discussed.

2.6.1 FREIGHT RATES

In the past few years, the tanker fleet increased much more strongly than in many
years, with deliveries of 28 million dwt, while scrapping and other removals
amounted to no more than 5 million dwt in year 2005. The fleet growth was as high
as 7 percent as an annual average, resulting in a drop in the utilisation rate from 91.5
percent in 2004 to 88.5 percent in 2005 (Platou, 2006). Consequently, freight rate in
recent years showed a significant growth comparing to the past years. The year 2003
was the fourth freight market spike of tankers, as the dominant feature of the
scrapping market, subsequent to 1991, 1997 and 2000 (Figure 2-12). Freight rate of
VLCCs achieved an average of $50,000 per day in 2003, lower than $53,000 in 2000.

These two years represented the best years in the tanker market since 1973. Despite
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the high annual average in 2003, there were large fluctuations over the year with
$20,000 per day in July and August and between $80,000 and $90,000 per day in
November and December. In 2004 the average rate was $87,000, which was the best
year since the 1970s, and this reached to its highest peak with $181,000 per day in
November. Since then, freight rates started to decrease but actually 2005 was also a

profitable year for tankers owner and recorded as the second best year since the

1970s.
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Figure 2-12: Tankers Freight rates (1990- Sept. 2005) ($ per day earning)
(Clarkson Research, 2005).

Like tankers, dry bulk market has been through a series of cycles over the last years
(Figure 2-13). In the spike of 2003, the freight rate of Capesizes fluctuated between
$18,000 and $80,000, averaging $35,600 per day in 2003, up from $2.800 in 2002.
Also the average for Panamax rate was $20,300 per day, compared with $8,000 in the
previous year (Platou, 2004). As can be seen in the below figure, average freight rates
for the Capesize in 2005, with $47,200 per day, dropped significantly from the all
time high levels of $62,000 per day in 2004. This trend also happened for the
Panamax and the Handymax in the same period. In 2006 the freight rate of Capesizes
marginally decreased to $43,400 per day but in 2007 it sharply rose to $99,700 per
day.
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Figure 2-13: Bulk carriesr Freight rates (1990- Sept. 2005) ($ per day earning)
(Clarkson Research, 2005).

With the strong tanker and dry bulk market in 2003, the numbers of vessels sold for
demolition were significantly down from the massive 2001 level. A total of 25.9
million dwt were sold for scrapping compared with 30.4 million dwt in 2002 and 31.7

million dwt in 2001 (Platou, 2004).

2.6.2 STEEL PRICES

A significant part of the cost for a shipbuilder is closely linked to the steel market
which has been booming in the past two years following the global economic upturn
which created higher demand for steel (Platou, 2006). Steel scrap obtained from the
shipbreaking process has comparatively high quality, especially from tankers because
of its large flat panels. The scrap steel provides most of the value of the ship. The
crude steel industry and the ship demolition industry have direct interaction because
the scrap steel obtained from shipbreaking process has comparatively high quality.
Moreover, as mentioned earlier, steel production from scrap is a sustainable process
in that it achieves a far better environmental performance and the preservation of non-
renewable resources in comparison with the alternative ore-based production (DNV,

1999).
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Since 2003, world demand for steel has been intense resulting in record growth in
steel output and strong increases in steel prices (Figure 2-14). China has been the
main driver for the upturn in steel demand, because its strong economic growth has
been very steel intensive (Platou, 2006). In October 2004, the steel price reached to

its highest point with $591 per tonne and after a few same months started to decrease

since then.
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Figure 2-14: Steel Price ($/tonne) (Platou, 2006).

2.6.3 NEWBUILDINGS

The constant increase over the years in the size and the number of the world fleet has
led to a general increase in the supply of ships to the ship scrapping industry. The
trend in volumes of ship scrapping has followed the increasing trend in the size of the
fleet. However, it is also evident that there have been large variations over the years.
These variations are determined by the developments in the key drivers of supply and

demand (European Commission, 2004).

The capacity of the ship scrap yards and the size of the world fleet have been shown
in Figure 2-15. Since 1994, the size of the world fleet has always increased year by
year but the capacity of the scrap yards had a peak in 1999 and then decreased to
2000. This also remained constant between 2001 and 2002. In January 2003 the fleet
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size was 776 million dwt and the capacities of the scarp yards were 22 million dwt
which is 2.8% of the fleet size. The capacity and also the location of the shipbreaking
yards are parameters which require careful thought. Lack of scrapyards can cause
ship owners to lay up their obsolete ships and subsequently cause environmental
problems. An excess of scrapyards would cause a crisis because they would not have
enough supply to carry on their business, especially if the scrapyard is highly

mechanised and costs a lot of money to be established.
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Figure 2-15: Ship breaking volumes and the size of the world fleet
(European Commission, 2004).

The obsolete ships of the world fleet are sent to the scrapyards. Obsolescence not
only deals with the aged ships, but also a technological leap can be a cause for a ship
to become obsolete in the market it serves. For example new containers with a very
large capacity compared with the old ones, or a new technology for faster cargo

handling could be a reason to have more obsolete ships in the market.

The prices of the new building ships are other parameters which may affect the
demolition prices indirectly. If the newbuilding prices are too high, the ship owners
may postpone the sale of their ships and this would affect the second hand market and

subsequently the demolition market.
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2.6.4 SHIPS’ AGE PROFILE

The obsolete vessels are the suppliers of the scrapping industry. Obsolete ships are
two types: technologically obsolete and age obsolete. The age profile of the world
fleet has an important role for the demolition market because it represents the number
of the aged vessels and consequently an overview of the future scrapping industry.
The age structure of the world fleet by ship types is represented in Figure 2-16. As it
appears in this figure, 13% of tankers were built in 1985 or before, 30% between
1986 and 1995 and 56% between 1996 and 2005. So, 13% of the tankers have already

20 years or more age and have potential to be sent for the demolition.
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Figure 2-16: Age structure of the world fleet by ship types (dwt percent share) (ISL, 2000).

As of January the 1st, 2006 the following age profiles for major ship types can be

highlighted (ISL 2006):
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v' 7,037 general cargo ships representing 42.5 per cent of all general cargo ships
were older than 25 years (built before 1981).

v' 4,017 oil tankers (including products tankers) equal to a share of 51 per cent
of the total number of oil tankers were older than 15 years.

v’ 28.7 per cent of all container ships were built during the last five years.

2.6.5 OTHER FACTORS

There are also a lot of additional parameters which are capable of making changes to
the demolition market structure, e.g. oil production, oil prices, second-hand ship
prices and operating costs of a ship. The impact of these factors could be either direct
or indirect. Variables like crude oil production and their prices can influence the
tankers’ freight rates and changing the freight rate market and subsequently the
demolition prices. This is an indirect influence. Moreover, the price of the oil can
affect the bunker price, as the main element for the operating cost of a ship, and
change the demolition prices. As an example, if the operating cost of a ship is
relatively high and the freight rates are not able to cover that, the owner may stop

using the ship and then sell the ship to a shipbreaker.

Second-hand prices are the other variables which may change the scrapping prices.
In a strong scrapping market and poor freight market, high scrap prices compared
with the second hand prices could be a reason for selling ships to shipbreakers.
Subsequently, the high number of ships which are ready for scrap could bring the

scrap prices down after a while.

Political issues are the other influential factors in the ship demolition market. These
issues are normally unpredictable and may cause rapid changes to the prices. For
example, a sudden war can easily change the market and cause a rapid decrease or
increase in steel or oil prices and afterwards all the maritime market structure,

including the demolition market, will be changed. Inflation, recession and the
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economic troughs are the other concerns which can affect the maritime market as

well.

2.7 CONCLUSION

The ship demolition process is highly dangerous and causes severe contamination to
the environment, including the land, air and water (See section 2-3). It is also
threatening to the health and lives of the people who work in this industry (See
section 2-4). Therefore, international agencies and organisations are trying to write
more regulations and legislations to monitor the process of ship scrapping and restrict
the industry to protect the environment and people (See section 2-5). In this way,
more accurate information about the future of scrapping, including the volume of
scrapped materials and substances and location of the scrapping activities helps them
to have a realistic plan. Moreover, these regulations cause some difficulties for the
scrapyards and the ship owners which can change the foundation of the industry.
Therefore, the scrapping industry and the international organisations should move

forward carefully with a reasonable plan.

The scrapping industry and demolition market are highly related to each other and as
explained in this chapter (See section 2-2), the demolition market plays an important
role for the maritime market and consequently for the world economy. So, changing
the scrapping process can change the demolition market and world economy as a
result. This shows the importance of having a proper plan to improve the scrapping
industry and demolition market and it explains that the more accurate the information

is, the more realistic the plan will be.



CHAPTER 3

STATISTICAL APPROACHES
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3.1 INTRODUCTION

The fundamentals of time series analysis in a statistical point of view are explained in
this chapter. Both the linear and non-linear regression modelling methods are
illustrated and their equations and parameters explained. Afterwards, univariate and,
more complicated, multivariate forecasting methods are explained. Multivariate
analysis deals with issues related to the observations of many variables on units of a
selected random sample. The different methods of multivariate analysis are
introduced and demonstrated separately. These multivariate statistical analysis
methods are concerned with analysing and understanding data in high dimensions and

can be suitable to model the demolition market.

3.2 TIME SERIES ANALYSIS

A time series is a collection of observations made sequentially in time which is
viewed as a relation of an underlying random (stochastic') process. In a time series,
observations are variables and time intervals between the observations are constants.
In Mathematics, a "variable” often represents an unknown quantity which can be
changed and, in contrast, a "constant" is known and remains steady during the
analysis. Variation in a time series can be decomposed into components or "signals"
(like trend, seasonal variation or cycle changes) and remaining irregular fluctuations
called "noise". Different combinations of these components and noise create various
patterns for time series. Behaviour of a component or combination of components is
often easy to study but the problem is the remaining random fluctuation which is

generally unpredictable.

In general, a trend can be referring to a long term movement in the mean level of a
time series. This movement may be upward or downward. For example, the oil

production of the non-OPEC countries (countries which are not members of OPEC -

! A stochastic process can be described as a statistical phenomenon that evolves in time according to
probabilistic laws.
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the Organization of the Petroleum Exporting Countries- e.g. US, UK, Russia, Mexico,
China and Canada) between February 1995 and December 2004 (Figure 3-1) showed

an upward trend. The black line represents the linear trend of the time series.
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Figure 3-1: Oil Production of the non-OPEC countries shows an upward trend
(Platou R.S. 2006).

Some time series, such as retail sales figures or temperature readings, demonstrate
variations which have any regular fluctuations with a period of less than one year.
These variations, called “seasonality™, are easy to study and can be measured
explicitly. Also, if the period of these kinds of variations is annual they can be
referred to as “seasonal effects”™. Apart from seasonality and seasonal effects some
time series may exhibit other kinds of variations at a fixed period of time. These
cyclical components describe any regular fluctuations which vary in a recognisable
cycle. Furthermore, it is possible for these cycles to occur at different levels in a time
series. In addition to the above mentioned regular mechanism in a time series, there
are some irregular components which can affect a series as well. Some of these
irregularities can be studied and recognised. For example, a special situation, such as
inflation for a financial time series, may affect a time series over a short period and
change its regular pattern. The general level will shift because of special

circumstances over a certain period of time.

Since all the regular components have been removed from a time series, a set of data

including all the residuals will remain. In fact, the main concern in every time series
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is to deal with the irregular fluctuations or residuals. Various methods and techniques
are represented to analyse time series to see if these irregularities may be explained in
terms of probability methods. Regression analysis is used to model relationships
between variables and determine the magnitude of those relationships. These models

can be used to make predictions.

3.3 REGRESSION ANALYSIS

Regression analysis is a statistical tool for the investigation or modelling of
relationships between variables. It is important to determine the causal effect of one
variable on another e.g. the effect of increased demand on freight rate or changes in

second-hand prices on the scrapping rate in the shipping market.

To explore such issues, the data should assemble the underlying variables of interest
and regression employed to estimate the quantitative effect of the causal variables
upon the variable that they influence. Typically, the "statistical significance" of the
estimated relationships should assess, that is the degree of confidence that the real

relationship is close to the estimated relationship.

Regression analysis with a single explanatory variable is termed “simple regression”.
In reality, any effort to quantify the effects of a single explanatory variable upon the
other variables without careful attention to the other factors could create serious
statistical difficulties. At the beginning of any regression study, there are several
hypotheses about the relationship between the variables. To investigate these
hypotheses, the information can be plotted for all of the individuals in the sample
using a two-dimensional diagram, conventionally termed a “scatter diagram”. Figure
3-2 is a sample of scatter diagram and shows the relationship between two variables,
scrap prices in Far-East and Subcontinent, by plotting one against the other. Each
point in the diagram represents an individual in the sample. The value of scrap price
in Far-East for each observation is plotted on the y-axis against the value for scrap

price in Subcontinent on the x-axis.
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Scatterplot of Scrap Price- Far-East vs Scrap Price-Sub-Continent
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Figure 3-2: Scatter diagram for the regression between ship scrap prices in two different
locations

According to this diagram, there might be correlation between the two variables,
resulting in the clustering of data points along a line, so it is possible to determine that
there is a relationship between the two. However, this is not necessarily true because

it is also possible that both could be related to some third variable that explains their

behaviour.

“Multiple regression™ or “multivariate regression™ is a technique that allows
additional factors to enter the analysis separately, so that the effect of cach can be
estimated. Furthermore, with other similar techniques can quantify the impact of
various simultaneous influences upon a single dependent variable'. The bias due to
omitted variables with simple and multiple regressions is often essential even when

researcher is only interested in the effects of one of the independent variables.

Statistical models can be used to describe populations of interest. The models are
defined in terms of parameters and they provide relations between variables of

interest. A very simple model for variables y is:

When there is more than one single dependent variable, then it is called “multivariate multiple
regression”.
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y=u+e G-1)

Where i can be regarded as population mean or average and ¢ is random error.
Generally, y will never be equal to  ; this means that the probability is zero that a

sample will ever arise in which y is exactly equal to .

Once a sample of data is collected the mean u of the population, which is typically
denoted by 1, can be estimated. The estimation of u would be different in each

different sample. However, using results from statistical inference, how much the

estimator of 4 will vary from sample to sample can be quantified.
The sample mean of a random sample of » observations y,, y,,...,y, is given by the

ordinary arithmetic average:

— 1
Y=—2.J)i 3-2)
n

The variance of the population o is defined as the average squared deviation from
the mean and is thus an indication of the extent to which the values of y are spread or
scattered.

i(x,. _)?)2

ol = (3-3)

n

Similarly, the variance of the error term¢ is a measure of spread of the distribution. It

means if &2 is equal to zero, then there will be no variability and the samples will be

exactly the same.

The sample variance is defined as:

2=y’
T — (3-4)
n
The sample variance s° is generally never equal to the population variance o* (the

probability of such an occurrence is zero) but it is an unbiased estimator for o?; that

is E(s*) = o (Rencher, 2002). The notation E(s?)indicates the mean of all possible
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sample variances. The square root of either the population variance or sample

variance is called the “standard deviation”.

When the model in Equation 3-1 has been specified, it concerns the probability
distribution of the random error £ . Often in practice it is assumed that £ has a normal
distribution when the variable y is continuous. Although this normality assumption is
often approximately valid, many times it is not. The data should always be examined
(usually graphically) to verify that the distribution of the error (and hence y) is

approximately normal.

3.4 LINEAR REGRESSION MODEL

Many statistical applications deal with a kind of modelling: how a variable y, called a
response or dependent variable, depends on another variable x which is called the
independent or predictor variable (also called the regressor variable). The simplest

way to model a relation between two variables is via a linear function:

y=p,+px (3-5)

Where S, and S, are the y-intercept and the slope of the line (rate of change in y for

a unit change in x) respectively, so by tuning both of them, y can be found as a linear

function.

The problem with this model is that it is completely deterministic. For the data
collected on any two variables from an experiment, even if there is a linear
relationship between the variables, the data points will not fall exactly on a line. Thus,
a probabilistic model is needed to account for the variability of points about the line.
This can be achieved by adding a random error into the above linear relationship

(Equation 3-6).

There are many reasons for the vast popularity of regression models in statistical

practice. One of the leading reasons is that regression models allow the relation of
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variables together in a mathematical form which can provide insight into the
relationships between variables of interest. Related to this reason, regression models
allow the determination statistically whether a response variable is related to one or
more other explanatory variables.

Y, =B+ Bix, +¢ (3-6)
Jor: i=1,2,.., n

The index i represent the observation number. The error ¢, is a random variable with

zero mean and finite variance o and x is the single predictor variable. It is assumed
that the random errors are independent of each other and that they all have the same
variance. The model given in Equation 3-6 is called the “simple linear regression”
model. The g, is unobservable quantity introduced to the model to account for the
failure of the observed values to fall upon a single straight line. Thex, and y, are

observed and these data are used to obtain estimates of the unknown parameters £,

and 3.

In the simple linear regression equation, the first statistical problem, when analysing

the data, is to estimate the parameters 3, and 3, referred to as a “linear adjustment”.

The estimation problem of these parameters can be motivated by the simple model in
the Equation 3-1 with:
Vi=u+e, G-7N
Jor: i=1,2,.., n

One criterion for estimating x from the data is to determine the value of g that

minimises the sum of squares:
SS=3 .y, -n) G-8)
i=l

The value of x4 that minimises this sum of squares is & = ¥ , the sample mean which
is typically used to estimate the mean. In the simple linear regression framework, the

same criterion is also used, that is finding the values of S, and B, that minimise the

sum of squares:

S =30, - (B + Bix,))} (39

i=l
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This method is known as “least squares”, since finding the estimates of the
parameters that make the sum of squares take the least possible value.

Most practical applications of regression analysis utilises models with more than one
predictor variable. Probabilistic models that include more than one predictor variable
are called “multiple regression” model. General form of the multiple regression
model is:

y=P0+Bx,+fx,+...+ B,x, +¢€ (3-10)

Where, x,,x,,..., x, are predictor variables, and 8, B,...., f, are parameters. Multiple
linear regression attempts to model the relationship between two or more explanatory
variables and a response variable by fitting a linear equation to observed data. Every
value of the independent variable x is associated with a value of the dependent

variable y.

In order to perform statistical inference using a multiple regression model, several
assumptions are made. It is required that the » observations are independent and that
the variability of the error ¢ is constant for all values of the regressors. In addition, as
mentioned before, many of the statistical tests require that the error distribution is
normal. If the error distribution deviates somewhat from normality, the inference

procedures will remain approximately valid. The slope parameters S, are estimated

using least squares, the same as in simple linear regression, by determining the values
of the f, s that minimise the error sum of squares:

ESS =3 (3, = (o + Bixa + ot By )) @-11)

i=l

A special case of the multivariate regression model useful for situations, where the
relation between a response y and a predictor x appears nonlinear, is a “polynomial
regression” model. It attempts to model a situation where a response y is related to a
single regressor variable x but the relationship is nonlinear:

y=f(x)+e¢ (3-12)

In practice, for some nonlinear functions the functional relationship between x and y
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is unknown. However, if the function fis “well behaved” then f{x) can be

approximated fairly well by a polynomial due to Taylor's theorem'.

Therefore, the following polynomial model often works well in practice:

y=B+Bx+Byx’ +.+Bx" +¢ (3-13)

Note that this is just a special case of a multiple regression model with regressors
x,x2,...,x* . This model is still called a linear model because it is linear in the
parameters S;, f,,..., S, even though the relationship between y and x may be

nonlinear.

3.5 NONLINEAR REGRESSION MODEL

The basic idea of nonlinear regression is the same as that of linear regression which is

to relate a response y to a vector of predictor variables x . Nonlinear regression is

characterised by the fact that the prediction equation depends nonlinearly on one or
more unknown parameters. Whereas linear regression is often used for building a
purely empirical model, nonlinear regression usually arises when there are physical
reasons for believing that the relationship between the response and the predictors
follows a particular functional form (Smyth, 2002). The general form of a nonlinear
regression model is:

y=f(x%0,,.6,)+¢ (3-19)

! The precise statement of Taylor’s theorem is: if # 2 0 is an integer and fis a function which is n
times continuously differentiable on the closed interval [a,x] and n+1 times differentiable on the open
interval (a,x), then:

f(x)=f(a)+—f%(x—a)+1%(—£Q(x--a)2 +...+-f—(:'£1—z(x—a)" +R
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where the response variable y is related to the regressor variable x, via an unknown

nonlinear function £ which depends on unknown parameters 6, ,...,6, . The unknown
parameter vector & in the nonlinear regression model is estimated from the data by
minimising a suitable goodness-of-fit expression with respect to & . The most popular
criterion is the sum of squared residuals:

RSS =3 (3, = £ (%,30,-+6,))’ (3-19)

i=1

The estimation based on this criterion is known as “nonlinear least squares. The
definition of nonlinearity relates to the unknown parameters and not to the
relationship between the covariates and the response. For example, based on Equation

3-13, the quadratic regression model:

y=Ppy+Px+pBx’ +e (3-16)

is considered to be linear rather than nonlinear because the regression function is

linear in the parameters S, and the model can be estimated by using classical linear

regression methods (Ratkowsky, 1983).

One of the most common nonlinear models is the “exponential decay” or
“exponential growth model”:

S (x,0) =6, exp(-6,x) 3-17)

This model can be characterised by the fact that the function f'satisfies the first-order
differential equation, leading to higher-order exponential function models, of the
form:

k

f(x,0)=0,+)0,,exp(-0,,,x) (3-18)

J=l
Where, £ is the order of the differential equation (Smyth, 2002).
Another common form of model is the rational function (the ratio of two

polynomials):

k
Zﬁjxj"
f(x,0)=—L—n (3-19)
1+> 6,

J=l
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Rational functions are very flexible in form and can be used to approximate a wide

variety of functional shapes (Kecman, 2001).

In many applications the systematic part of the response is known to be monotonic
increasing in x, where x might represent time. Nonlinear regression models with this
property are called “growth models”. The simplest growth model is the exponential
growth model (Equation 3-17). A more generally useful growth curve is the logistic
curve:

91

= 3-20)
1+ 0, exp(~6,x)

f(x.6)

Where 8,, 6, and 6, are the parameters. Despite these interpretations, it can often be

difficult in practice to isolate the interpretations of individual parameters in a

nonlinear regression model because of high correlations between the parameter

estimators. After obtaining data (x,,,)s...,(*,,,) from any regression model setup,
the parameters 6,,...,0, can be estimated. Least square is used most frequently for

parameter estimation.

Correlation is a unitless measure of the amount of linear relationship between two
variables. It is computed as the covariance between the two variables divided by the
square root of the product of their variances. It varies from -1 to +1. Positive
correlation indicates a positive link between the two variables, i.e. when one of them
increases, the other has a tendency to increase too. The closer to +1 represents the
stronger positive link between the two variables. Negative correlation indicates a
negative link between the two variables, i.e. when one of them increases, the other
has a tendency to decrease. Similarly, the closer to -1 represents the stronger negative

link between them.

3.6 MULTIVARIATE ANALYSIS

There are two basic types of time series forecasting: univariate and multivariate.

Univariate models, like Box-Jenkins, contain only one variable in their equation.
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Box-Jenkins is a complicated process of fitting data to appropriate model parameters.
Multivariate models are univariate models expanded to discover factors that affect the
behaviour of the data (Van Eyden, 1996). As the name suggests, these models contain
more than one variable in their equations. In fact, multivariate model has been

frequently compared with artificial neural networks (Rencher, 2002).

Multivariate analysis deals with issues related to the observations of many, usually
correlated, variables on units of a selected random sample. The observations are
gathered as vectors, for each selected unit corresponds to a vector of observed
variables (Bilodeau and Brenner, 1999). In multivariate analysis, the variables can be
examined simultaneously in order to access the key features of the process that
produced them. This approach allows firstly exploring the joint performance of the
variables and secondly determining the effect of each variable in the presence of the
others. Multivariate analysis provides either "descriptive" or "inferential" procedures
which mean that the data can search for patterns or test hypotheses about patterns of a

priori interest (Rencher, 2002).

In general, multivariate statistical analysis is concerned with analysing and

n

understanding data in high dimensions. For a given a data set {x, },-,4 of n observations

of a variable vector Xin R”, each observation x; have p dimensions:
X, = (X5 Xip 500 X,

This is an observed value of a variable vector X € %?. Therefore, X is composed of p
random variables:
X =(X,,X;,..X,)
where X, , for j=12,.., p, is a one-dimensional random variable.
Covariance is a measure of dependency between random variables. Given two

random variables X and Y the theoretical covariance is defined by:

o,y =Cov(X,Y) (3-21)
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If X and Y are independent of each other, the covariance Cov(X,Y) is necessarily

equal to zero (the converse is not true). The covariance of X with itself is the

variance;

Oy =Var(X)=Cov(X,X) 3-22)

As it is mentioned above, assume that the random variable X is p-dimensional

multivariate in the form of:

then the theoretical covariance among all the elements are put into another matrix

form, i.e., the covariance matrix:

Oxx, " Oxx,

T = : ., : (3-23)

Oxox, """ Ouxyx,
Empirical versions of these quantities are:

1 - -
Sxr =;Z(xi -X)i-Y) 3-24)

i=l

1 _
S xx =;Z(x, - %) (3-25)

i=l

For small n (n £ 20) the factor % in both above equations should replaced by

% -1 in order to correct for a small bias (Hardle and Simar, 2003). For a p-

dimensional random variable the covariance matrix is:

Sxx, Tt Sxx,
S={ : T (3-26)

Sxpx, 7 Sx,x,

Eigen values and Eigen vectors play an important role in multivariate techniques.
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For every square matrix A, i.e. (p X p) ,ascalar A and a non-zero vector ¥ can be

found such that (Rencher, 2002):
A;/ = ,{}/ 3-27)

A is called an Eigen value of A and y is an Eigen vector of A corresponding to 4.
To find A and y, Equation 3-27 can be written as the form of:

(A-ADy =0 (3-28)
where I is the identity matrix. It can be proven that an Eigen value A4 is a root of the

p-th order polynomial, which means that:
|A-a1,|=0 (3-29)

Therefore, there are up to p Eigen values 4,,4,,...,4, of vector A. For each Eigen
value 1, there exists a corresponding eigenvector j given by Equation 3-27. After
finding 4,,4,,..., 4, , the accompanying eigenvectors y,,7,5...,¥ ,can be found

subsequently.

The eigenvectors are positioned along the directions of greatest data variance. They
are found from the covariance matrix of the input dataset. An Eigen value

A,,i=1,.., P is associated with each eigenvector. Every input data vector is then

represented by a linear combination of eigenvectors (Mandic and Chambers, 2001).
Eigen values measure how much variance of the data set the eigenvectors account for.
The larger the Eigen values, the better the eigenvectors represent the data set. The
Principal Components (PCs) are the vectors that minimise the Mean Square Error
(MSE) between the actual points in the data set and the points described by a smaller

number of components (Kasabov, 1998).

There are sets of methods dedicated to statistical multivariate analysis. These methods
use information in the correlation structure amongst response variables (Y-variables)
which often increases the power of the statistical analysis to detect treatment
difference as compared to the corresponding univariate methods. The correlation Y-
variables can be utilised to potentially increase the power of detecting differences
above univariate statistical procedures. Each response variable Y adds another
dimension to the analysis problem. Many of these techniques were developed recently

because of the existence of modern computers and their high computational
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capabilities. Abdi (2003) classified these methods according to the number of data
sets to analyse: one data set and two (or more) data sets. With two data sets, two cases
have been considered: in the first case, one set of data plays the role of predictors, or
independent, variables (X-variables) and the second set of data corresponds to
measurements or dependent variables (Y-variables). In the second case, the different

sets of data correspond to different sets of Y-variables.

Methods like Principal Component Analysis (PCA), Correspondence Analysis (CA),
Multiple Correspondence Analysis (MCA) and Multidimensional Scaling (MDS) can
be classified as having one data set. If there are two or more data sets techniques like
Multiple Linear Regression analysis (MLR), Partial Least Square (PLS), Partial Least
Square Regression (PLSR), Principal Component Regression (PCR), Multivariate
Analysis of Variance (MANOVA), Discriminant Analysis (DA) and Reduced Rank
Regression (RRR) are suitable for the mentioned first case. In addition, Canonical
Correlation Analysis (CC), Multiple Factor Analysis (MFA), Multiple
Correspondence Analysis (MCA) techniques are appropriate for the mentioned

second case. A few of these techniques are introduced in the following sections.

3.6.1 MULTIPLE LINEAR REGRESSION (MLR)

Multiple Linear Regression (MLR) is a multivariate analysis method which relates
the variations in a response variable (Y-variable) to the variations of several
predictors (X-variables), with explanatory or predictive purposes. In this method,
which is based on ordinary least squares regression, several Y-variables are measured

corresponding to each set of X-variables. Each of y,,y,,:*+,, is to be predicted by
all of x,,x,,--+,x,. The n observed values of the vector of Y-variables can be listed as

rows in the following matrix (Rencher 2002):

I Y M, N
Ya Va7 V| _| N2

yn] yn2 Tt ynp yn
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Each row of Y contains the values of the p dependent variables measured on a

subject. Each column of Y consists of the # observations on one of the p variables.

The n values of x,,x,,-++,x,can be placed in a matrix that turns out to be the same as

the X matrix in the multiple regression formulation:

l xll "es x]q
I x, - Xy
1 x, - Xy

Since each of the p Y-variables will depend on the X-variables in its own way, each

column of Y will need different fs. Thus there is a column of Ss for each column of

Y, and these columns form a matrix B = (,B, B B, ) Therefore, the multivariate

model is:
Y=XB+¢ (3-30)

€ is a noise term for the model which has the same dimensions as Y. The model
coefficient B called the least squares estimator and can be calculated by the equation
(Rencher 2002):

B=(X'X)"'X'Y (3-31)

An assumption for the MLR method is that the X-variables are lincarly independent.
When the X-variables carry common information, problems can arise due to linear
relationship between variables called Collinearity. Two variables are collinear if the
value of one variable can be computed from the other, using a linear relation. Three
or more variables are collinear if one of them can be expressed as a linear function of
the others. The MLR operation involves a matrix inversion, which leads to
collinearity problems if the variables are not linearly independent. This is the reason
why the predictors are called independent variables in this method. The ability to vary
independently of each other is a crucial requirement to variables used as predictors
with this method. MLR also requires more samples than predictors or the matrix

cannot be inverted.



Chapter 3: Statistical Approaches Page; 68

In MLR, all the X-variables are supposed to participate in the model independently of
each other. Their co-variations are not taken into account, so X~variance is not
meaningful in MLR. Thus the only relevant measure of how well the model performs
is provided by the Y-variances. Residual is a measure of the variation that is not taken
into account by the model and the residual variance of a variable is the mean square
of its residuals for all model components. The ratio between explained variance and
residual variance called the F-ratio. It shows how large the effect of the predictor is,
as compared with random noise. The F-ratio associated to every tested effect is
computed as the ratio of mean squared of the model to mean squared of error. These
ratios, which compare structured variance to residual variance, have a statistical
distribution which is used for significance testing. In other words the higher the ratio,

the more important the effect.

3.6.2 PRINCIPAL COMPONENT ANALYSIS (PCA)

In MLR, when the X-variables carry common information, problems can arise due to
exact or approximate collinearity. Variables which are not collinear are called
“linearly independent”. Collinearity, i.e. very strong correlation, is the major cause of
trouble for MLR models, whereas projection methods like PCA, PCR and PLS handle
collinearity well (Abdi, 2003).

The main objective of PCA is to reduce the dimension of the observations or
dimensionality (Everitt & Dunn, 2001; Maddala, 1997). In fact, the goal of PCA is to
decompose a data table with correlated measurements into a new set of uncorrelated
(i.e., orthogonal) variables. These variables are called, depending upon the context,
principal components, factors, eigenvectors, singular vectors, or loadings. Each unit is
also assigned a set of scores which correspond to its projection on the components

(Abdi, 2003).

Principal component analysis is the amount of variance in a variable that is shared by
all the variables in the analysis. The analysis summarises and groups nearly all of the

original information into a smaller number of factors that can then be used for
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estimation purposes. This involves a mathematical procedure that transforms a
number of correlated variables into a smaller number of uncorrelated variables called
“principal components”. The first principal component accounts for as much of the
variability in the data as possible, and each succeeding component accounts for as
much of the remaining variability as possible. The components are chosen based upon

their Eigen values i.e. components with Eigen values greater than the average were

chosen (Rabunal and Dorado, 2006).

In matrix algebra, the transpose of a matrix A, denoted by A’ , is obtained from A by
interchanging rows and columns. Also, a simple function of a p X p matrix A is the

trace, denoted by “tr A” and defined as the sum of the diagonal elements of A; that is:

p
rA=>Ya, (3-32)

i=l

The trace is a scalar.

A matrix H € R? is said to be orthogonal if the columns (or rows) of H form an
orthonormal basis of R, , i.e. H'H =1=HHT. The group of orthogonal matrices in
917 will be denoted by:

0,={He® :HH" =1}

According to the above definitions, the total variance of variable x is defined as

(Bilodeau and Brenner, 1999):

I .2
Elx—,u|2=2varx,. =Zo,.,. =tr), (3-33)

=1 i=]

If 3 >0 can be written as':

Y =HDH’ (3-34)

where H = (h,,...,h,)€ O ,and D =diag(A,...,A,)and A, 2...2 4, are the
ordered Eigen values of X . Since the “var x” is interested, it can be assumed

that £ =0, so:

" In the general case where I is not diagonal, there exists H € O p such

that: X = Hdiag(d,1 ,,...,d,I ,)H" = HDH’

ple=e
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hrxx
y=H"x=| : (3-35)
thx R
vary =D, then
. 4
vary, = Zli =tr) (3-36)
i=l i=1

So x and y have the same “total variance”. Moreover, the variables y; s are

uncorrelated.

cov(h, x,h" x)=h"h, =2 h"h, =26, (3-37)

The variables y, = h,.Tx ,i=1,...,p, are, by definition, the principal components of x.

k
When the ratio )_ 4, /‘r Y isclose to 1, then (y,,...,¥,)" can effectively replace x

i=1

without losing much in terms of “total variance.”

In PCA, the first mode finds a straight line approximation to a given dataset, which
accounts for the maximum amount of variance in the data. In fact, it finds a line

which passes through the "middle" of the data cluster (Hsieh, 2004).

Non Linear PCA, denoted as NLPCA, was introduced by Kramer in 1991(Kramer,
1991). He proposed a model where the straight line is replaced by a continuous open
curve for approximating the data. The fundamental difference between NLPCA and
PCA is that PCA only allows a linear mapping between variable x and the principal

component # while NLPCA allows a nonlinear mapping,.

Principal Component Regression (PCR) is a two-step procedure which first
decomposes the X-matrix by PCA, then fits a MLR model, using the PCs instead of

the original X-variables as predictors.
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In both PCA and PCR weighting of the X-variables has an important role to the
accuracy of the final model. In fact, the weighting determines the effect of each
variable to the model and it can change the influence of variables on the model.

To have equal chances for all X-variables to influence the model the considered
initial weighting for every individual variable can be: 1/ Variable Standard Deviation
(Hsieh, 2004). This gives equal influence to all the X-variables at the beginning of the
modelling. Since the modelling has been completed it is necessary to ensure the
obtained model is accurate. Validation is important to check whether the model will
make a good fit on future data not used in the original computations. A good model
should generally describe data similar to that available when building the model.
Cross Validation (CV) is a method to verify the accuracy of the model and simulate
test set validation. In this method a few samples are left out from the calibration data
set and the model is calibrated on the remaining data points. Then the values for the
left-out samples are predicted and the prediction residuals are computed. There are a
few validating methods inclﬁding: full CV, random CV and Systematic CV. The
difference between these methods is the way that they choose the validation sets
(Hsieh, 2004). For example, Random Cross Validation method picks the samples at
random. It is may be time consuming but it can assesses the stability of the PCR

results.

3.6.3 PARTIAL LEAST SQUARES (PLS)

Partial Least Squares (PLS) regression (World et al., 1984) is an extension of the
mentioned Multiple Linear Regression model (MLR).Therefore, the main purpose of

PLS regression is to build a linear model as the Equation 3-30.

PLS is a method for relating the variations in one or several response variables (Y-
variables) to the variations of several predictors (X-variables), with explanatory or
predictive purposes. PLS is a bilinear modelling method where information in the
original X-data is projected onto a small number of underlying variables, called PLS

components or latent variables or scores (Hsieh, 2004).



Chapter 3: Statistical Approaches Page: 72

PLS, like PCR, reduces the dimension of the observations or dimensionality but the
reduction and regression are performed simultaneously, i.e. PLS outputs the matrix of
least square estimator B (Equation 3-31) as well as the loadings and weight and

latent component matrices.

PLS can be seen as methods to construct a matrix of latent components T as a linear

transformation of X (Boulesteix and Strimmer, 2006):
T=XW (3-38)

where W is a px ¢ matrix of weights. The latent variables are then used for
prediction in place of the original variables. The Y-data are actively used in
estimating the latent variables to ensure that the first components are those that are
most relevant for predicting the Y-variables. Interpretation of the relationship
between X-data and Y-data is then simplified as this relationship in concentrated on
the smallest possible number of components. PLS models both the X- and Y-matrices
simultaneously to find the latent variables in X that will best predict the latent

variables in Y. These PLS components are similar to Principal Components.

Loading weights are specific to PLS (they have no equivalent in previous methods)
and express how the information in each X-variable relates to the variation in Y, To
summarising the variation in the X~ or Y-space, two different sets of components can

be considered in PLS method:

e  t-scores are the new coordinates of the data points in the X-space, computed

in such a way that they capture the part of the structure in X which is most
predictive for Y.
e  y-scores summarise the part of the structure in Y which is explained by X

along a given model component.

In fact, the relationship between t- and u-scores is a summary of the relationship

between X and Y along a specific model component. This method performs
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particularly well when the various X-variables express common information, i.e.

when there is a large amount of correlation, or even collinearity.

There are two versions of the PLS algorithms:

— PLS1: deals with only one response variable at a time;

— PLS2: handles several responses simultaneously.

PCR and PLS regression differ in the methods used in extracting factor scores. PCR
produces the weight matrix reflecting the covariance structure between the predictor
variables, while PLS regression produces the weight matrix reflecting the covariance

structure between the predictor and response variables.

3.6.4 MULTIVARIATE ANALYSIS OF VARIANCE (MANOVA)

The analysis of variance is a classical method to assess the significance of effects by
decomposition of a response’s variance into explained parts, related to variations in
the predictors, and a residual part which summarises the experimental error. It can be
divided into two groups: Univariate Analysis of Variance called ANOVA and
Multivariate Analysis of Variance (MANOVA).

In ANOVA, it is assumed that the average values of the response variable y are
induced by one simple factor. Suppose that this factor takes on p values and that for

each factor level, there are m = n/p observations. The sample is of the form given in

Table 3-1, where all of the observations are independent (Hardle and Simar, 2003).
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Sample Elements Factor Levels /
1 Ju o Y ot Vi,
2 : : :
k Ya 0 Y 2 Ve
m= np Y VYV ymp

Table 3-1: Observation structure of a simple ANOVA (Hardle and Simar, 2003).

The objective of a simple ANOVA is to analyse the observation structure:

Yu =M +&y for k=1,...,m and! =1,..., p. Each factor has a mean value ;. Each
observation y,, is assumed to be a sum of the corresponding factor mean value y,
and a zero mean random error £,, . The linear regression model falls into this scheme
with m = I, p = n (Equation 3-7) and 4, = @ + fx,, where x, is the i-t4 level value

(Hardle and Simar, 2003).

In MANOV A, the X-variables have the same structure as in a standard ANOVA and
are used to predict a set of Y-variables. MANOVA computes a series of ordered
orthogonal linear combinations of the Y-variables with the constraint that the first
factor generates the largest F if used in an ANOVA. The sampling distribution of this
F is adjusted to take into account its construction (Abdi, 2003). There are three basic

variations of MANOVA (Wendorf, 2004):

- Hotelling's T: This is the MANOVA analogue of the two group 7-test
situation; in other words, one dichotomous independent variable and multiple
dependent variables.

- One-Way MANOVA: This is the MANOVA analogue of the one-way F
situation; in other words, one multi-level nominal independent variable and

multiple dependent variables.
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- Factorial MANOVA: This is the MANOVA analogue of the factorial ANOVA
design; in other words, multiple nominal independent variables, and multiple

dependent variables.

All the above methods have one feature in common: they form linear combinations of
the Y-variables which best discriminate among the groups in the particular
experimental design. In other words, MANQOVA is a test of the significance of group
differences in some m-dimensional space where each dimension is defined by linear

combinations of the original set of dependent variables (Wendorf, 2004).

In the multivariate analysis, it is assumed that k independent random samples of size
n are obtained from p-variate normal populations with equal covariance matrices, as
in the following layout (Table 3-2) for one-way multivariate analysis of variance

(Rencher, 2002).

Sample 1 Sample 2 Sample &
from N,(4,,%) from N,(u,,%) " from N,(u,,2)

In Yn Vi
Y2 Y iz
yln y2n et ylm
Total M Ya. Vi
Mean i V. Y.

Table 3-2: the observation structure of a one-way MANOVA (Rencher, 2002) .

Totals and means are defined as follows:

- Total of the i-th sample: y, = Zyu:

J=l

- Overall total: y = izn: Y.

i=l j=i

- Mean of the i-th sample: y, = y%

- Overall mean: y = y/kn
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Also, the model for each observation vector is (Rencher, 2002):

Yy =Hta +Ee,=U+E, (3-39)
for: i=1,....,k and j=1,...,n

The above equation in terms of the p variables in y; becomes:

Vi H a; € M €

y‘.;fz = ;fz + a:,.z + 8?2 = ‘ll:‘z + g’;fz (3-40)

Vip Hp) \Gp Eiip Hip Eip
So that the model for the r-th variable (r = 1,2,..., p) in each vector y, is:

yijr = ﬂr + air + gl'jr = /'lir + gijr (3-41)

3.6.5 CANONICAL CORRELATION ANALYSIS (CCA)

Canonical Correlation Analysis (CCA) technique was originally developed by
Hotelling (1935). The aim of CCA is to identify and quantify the relations between a
p-dimensional random X-variable and a g-dimensional random Y-variable. In fact,
this is a technique that can be used to study the relationship between two sets of
variables, each of which might contain several variables. Its purpose is to summarise
or explain the relationship between two sets of variables by finding a small number of
linear combinations from each set of variables that have the highest correlation
possible between the sets. The associations between two sets of variables may be
identified and quantified by canonical correlation analysis. Canonical correlation
combines the Y-variables to find pairs of new variables (called canonical variables, or
CV, one for each data table) which have the highest correlation. However, the CVs,
even when highly correlated, do not necessarily explain a large portion of the

variance of the original tables. This make the interpretation of the CV sometimes
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difficult but CC is nonetheless an important theoretical tool because most multivariate

techniques can be interpreted as a specific case of canonical correlation (Abdi, 2003).

CCA finds a pair of linear transformations such that the correlation coefficient
between extracted features is maximised (Akaho, 2001) (Figure 3-3). For given two
random variables X € %7 and Y € R, the idea is to find an index describing a link

between X and Y i.e. measure the overall correlation between X and Y.

Figure 3-3: Canonical Correlation Analysis (Akaho, 2001)

CCA is based on linear indices, i.e. linear combinations a” X and 5"Y of the random
variables. It searches for vectors a and b such that the relation of the two indices
a” X and 577 is quantified in some interpretable way. Then the aim is to look for the
"most interesting" projections a and b in the sense that they maximise the below

correlation between the two indices (Hardle and Simar, 2003):

pla,b)= pa” Xb"Y (-42)

To study the correlation p(a,b) between the two projections in more details, suppose

that:
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where the sub-matrices of this covariance structure are given by

var(X)=Z ,,(gxq) (3-43)

var(V) = Zp, (px p) G-49)

VX, 1) = EX ~u)Y =) =%, =El(gxp) (49

Considering general correlation between variables X and Y

cov(X,Y)

Pur = Jvar(X)var(Y) (49

and the facts that

cov(AX,BY) = Acov(X,Y)B" (3-47)

and

a'X,b

ab = ’
A= T (7T, 5"

(3-48)

p(ca,b) = p(a,b) forany c e R*. Given the invariance of scale, rescale projections

a and b can be rescaled and thus it is possible to equally solve (Hardle and Simar,

2003)

max = a’z b (3-49)

under the constraints:

a',a=1

bz, b=1.
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For this problem, define:

k=225 I (3-50)

The matrix x may be decomposed as':

x =TAAT (3-51)
with:

I'= (71""’7k)

A=(5,,...,6,)

A = diag(A?,...,A%)

where 4, > 1, >...> A, are the non-zero Eigen values of N, = xx"and N, = xx”

and y,and J, are the standardised eigenvectors of N, and N, respectively.

Define now fori =1,..., k the vectors:

a, = Z:\'i{'z}' i (3-52)
b, = Zx—/ll'/ ? S, (3-53)

which are called the "canonical correlation vectors". Using these canonical correlation

vectors to define the canonical correlation variables:

m=a'X (3-54)
9, =b'Y (3-55)

The quantities p, = l,.vz for i =1,...,k are called the "canonical correlation

coefficients". For simplicity, if assume that the average of x and y are 0, and the

! Each matrix A(nx p) with rank r can be decomposed as A = TAAT where
['(nxr)and A(pxr).Both I"and A are column orthonormalie. ['T=A"A=1,.
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dimensionality of feature is 1, then by the transformations u = {a,x} andv = {b, y}it is

favourable to find the transformation a, b that maximises (Akaho, 2001)

Eluv]
= —_— (3-56)

£= J var[u]var[v]

where {a,x} represents the inner product. The maximum p is the maximum

canonical correlation.

3.7 CONCLUSION

Multivariate analysis methods have been frequently compared with the ANN methods
(Rencher, 2002 and Abdi, 2003). Therefore, several multivariate analysis methods

have been introduced and their fundamentals have been explained in this chapter.

It has been shown that statistical techniques can model the relation between
dependant and independent variables. Each of them can perform better and more
accurately in a particular situation. There is a problem that there is considerable
difficulty in selecting the appropriate technique. For example, as explained in section
3-6-1, it is considered that MLR performs better when there is not collinearity
between variables but, as explained in section 3-6-2, projection methods like PCR and
PLS are able to handle collinearity. The correct analysis method should be chosen for
each particular situation as the problem of technique selection become significant

when the number of variables is large and the nature of some variables is not clear.

Later in chapter 5, these methods will be used to model the demolition market.



CHAPTER 4

ANN APPROACHES
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4.1 INTRODUCTION

In this chapter, the fundamentals of Biological and Artificial Neural Networks
(ANNSs) are explained and comparisons are made. This is followed by a historic
review of the development of ANNs and an explanation of basic features and
parameters. These are explained in detail to clarify the concepts and structures. In
addition, after demonstrating various network topologies and learning methods, major
applications of ANNSs are introduced and different models and architectures are

demonstrated.

In the last part of this chapter, some case studies are reviewed to show how ANNs are
used in various fields of interest. Furthermore, the disadvantages of using ANNs are

explained and solutions to problems discussed.

4.2 NEURAL NETWORKS CONCEPT

Neural Networks are a network of neurons which are interconnected and operate
together for computation purposes. The neuron, as the fundamental component of the
network, is a processing element and the combination of all the neurons in a network
function together to produce the favourable output. Neurons have the ability to
process individually and each one is connected to a large number of others, hence the
whole information processing in a network is carried out on a parallel basis. This
gives a relatively high progression speed compared with serial systems. Also,
malfunctions of a few neurons would not harm the global procedure. In general,
neural networks are able to learn and then solve the problems if they can be trained

correctly.

4.2.1 BIOLOGICAL NEURAL NETWORKS

The brain, as an information processing system, is a biological neural network which
consists of almost 10 billion processing elements. In fact, nerve cells are the

processing element for a brain, called "neurons". Each neuron is connected to the
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others through synapses. The number of those depends on the local neuroanatomy but
it is roughly around 10,000 synapses for each neuron. Non-nervous cells, such as
muscles, require signals from the nervous system in order to operate. Therefore,
synapses also connect these cells to neurons. This makes an enormous parallel
information system. The brain can learn from the experiences and solve problems that

it has never encountered before (Madan et al. 2003).

Figure 4-1 represents the major components of a typical neuron in the central nervous
system. Four basic components are known by their biological names: dendrites,
soma, axon and synapses. Dendrites are hair-like extensions of the soma which act
like input channels. These input channels receive their inputs through the synapses of
other neurons. The soma then processes these incoming signals over time. The soma

then turns that processed value into an output which is sent out to other neurons.

Input from other Neurons

\ ; Output to other Neurons
97

Cell body
(Soma)

Vo ML
i Axon
™ )y< A
%‘ Terminal branches
(Synapses)

Dendrites

Figure 4-1: The major structures of a typical neuron (Madan et al. 2003)



Chapter 4: ANN Approaches Page: 84

4.2.2 ARTIFICIAL NEURAL NETWORKS

The artificial neurons are elementary information processing units for the ANN. It
may also be called as a unit, node or a Processing Element (PE). The structure is
almost the same as a biological neuron which means a neuron receives a number of
inputs and then sums them to create the desirable output. Compared with the
biological neuron, inputs represent dendrites and outputs represent synapses.
Typically the sum of each neuron is weighted, and the sum is passed through a non-
linear function known as an activation or transfer function. An artificial neuron with a

threshold activation function is shown in Figure 4-2.

The connections (synapses) w, transfer the signals u, into the neuron. Where w; can
be interpreted as a weight representing the “importance™ of that specific input x,.
Inside the neuron the sum of the weighted inputs w,x, is calculated. Given that the

sum x is greater than an externally applied threshold @, the neuron emits an output y.
y which is either continuous or binary valued, depending on the activation function.
In most cases one chooses an activation function that limits the range of the neuron’s

output to the interval [0, 1] or [~1, 1].

Processing Element
W

Xy ————P> lt
‘ y

—_——p Zw,x,—@

v
v

M oemmmmn

n ’
w

n

Figure 4-2: The artificial neuron with a threshold function, (Nygren, 2004)

In mathematical terms the following equations gives a dense description of the neuron
(Haykin, 1994):
u=ywx, -6 @1

i=1

and

y=fu)
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where x is the network input and /() the activation function. There are several

common activation functions like the sigmoid, linear and hyperbolic functions which
are discussed later in this chapter. Individual PEs are linked together in different ways

to create different ANN architectures for various applications.

4.3 FUNDAMENTALS OF ARTIFICIAL NEURAL NETWORKS

4.3.1 HISTORIC REVIEW

ANNSs were gradually created over time and previous research was continuously built
on by scientists. Various types of networks were created during this process and
different methods of operation analysed.

The first step in this direction came in 1943 when neurophysiologist Warren
McCulloch and mathematician Walter Pitts, wrote a paper on how neurons might
work. In fact, they modeled a simple neural network with electrical circuits. They
studied the potential of the interconnection of a model of a neuron and proposed a
computational model based on a simple neuron-like element (McCulloch and Pitts,
1943). Reinforcing this concept of neurons and how they work was a book written in
1949 by Donald Hebb, “The Organization of Behavior: A Neuro-psychological
Theory”. It pointed out that neural pathways are strengthened each time that they are
used. He devised a learning rule for adapting the connections within artificial neurons
(Hebb, 1949). In 1958, Rosenblatt created the name “perceptron”. Based upon the
perceptron, he developed the theory of statistical separability (Rosenblatt, 1958). In
1959, Bernard Widrow and Marcian Hoff of Stanford developed models they called
ADALINE (ADAptive LINear Elements) and MADALINE (Multiple ADAptive
LINear Elements). MADALINE was the first neural network to be applied to a real-
world problem. It was an adaptive switching circuit which eliminated echoes on
phone lines. The next major progress was the new formulation of learning rules by
Widrow and Hoff in their ADALINE model (Widrow and Hoff 1960). In 1969,
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Minsky and Papert provided a rigorous analysis of the perceptron (Minsky and
Papert, 1969).

Grossberg proposed several new architectures of nonlinear dynamical systems and
introduced adaptive resonance theory (ART) (Grossberg, 1974) which is a real-time
ANN that performs supervised and unsupervised learning of categories, pattern
classification and prediction. He continued his previous work in 1976 based on

biological and psychological evidence.

In 1971 Werbos developed a backpropagation learning algorithm which he published
in his doctoral thesis (Werbos, 1974). Rumelhart et al. rediscovered this technique in

1986 (Rumelhart et al. 1986).

The idea of an associative memory network introduced by Kohonen in 1977
(Kohonen, 1977). He used faces to illustrate the potential of a linear autoassociative
network (where the input and output patterns are identical) to act as a parallel
distributed memory for images. Later in 1982 he also introduced Self-Organised
Maps (SOM) network (Kohonen, 1982), which is a type of unsupervised learning, for
pattern recognition (Burr 1993). The first application area of the SOM was speech
recognition, or perhaps more accurately, speech-to-text transformation (Kohonen et

al., 1984).

In the early 1980s, researchers showed renewed interest in neural networks. Recent
work includes Boltzmann machines, Hopfield nets, competitive learning models,
multilayer networks, and adaptive resonance theory models (Burr 1993).

By 1985 the American Institute of Physics began what has become an annual meeting

- Neural Networks for Computing. The historical notes are presented in Figure 4-3.
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ANN progression over time

1943 — McCulloch and Pits:
A Logical Calculus of the Ideas Immanent in Nervous Activity

1949 - Hebb:
The Organization of Behavior: A Neuro-psychological Theory.

1958 - Rosenblatt:
The Perceptron: A Probabilistic Model for Information Storage
and Organization in the Brain.

1960 - Widrow, Hoff:
Adaptive Switching Circuits.

1969 - Minsky, Papert:
Perceptrons.

1974 - Werbos:
Beyond Regression: New Tools for Prediction and Analysis in
the Behavioral Science.

1977 - Kohonen:
Associative Memory - A System
Theoretic Approach.

1982 - Hopfield:
Neural Networks and Physical Systems with Emergent
Collective Computational Abilities.

1984 - Hinton, Sejnowski, Ackley:
Boltzmann Machines: Constraint Satisfaction Networks that
Learn.

1986 - Rumelhart, McClelland:
Parallel Distributed Processing.

Figure 4-3: The Artificial Neural Networks historical notes
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4.3.2 ANN CONSTRUCTION

Artificial Neural Networks exploits an analogy to the human brain. The idea behind
ANN was to transfer the idea of parallel distributed processing, as found in the brain,

to the computer in order to take advantage of the processing features of the brain

(Magnani and Nersessian, 2002).

As mentioned in the previous section, the brain consists of large numbers of neurons
connected to each other by synapses. The output from the neuron is a function of its
inputs from many other neurons, which are “weighted” at the receiving synapses.
This output is a nonlinear function of its input and the strength of the connection in
the synapses can be modified by activity; in other words, the brain (the collection of
neurons) learns (changes its synaptic weights) from experience. This is the behaviour
which an ANN attempts to model algorithmically. The assumption that learning
occurs in the brain when modifications are made to the effective coupling between
one cell and another at a synaptic junction is simulated mathematically in artificial
systems through positive or negative reinforcement of connections (Bailer-Jones,
2001). This forms the basis of the analogy exploited in artificial neural networks. A

schematic pattern of the ANN architecture is shown in Figure 4-4 .
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Figure 4-4: Schematic ANN Architecture (Haykin, 1994).

Neural network units receive weighted inputs from the original data or from an
adjoining unit. Each unit integrates incoming information, usually by computing the
weighted sum of all inputs to determine the level of activation. Formally, if each input

is denoted x,, and each weight w, then the activation is equal to:

a=Zx,w, +60 4-2)

i=l

Where n is the dimension of the input space and @ is the bias. The difference
between the network expected value and the true value of the output being estimated

is called the bias.

The response of the unit is then determined by an activation function f{a). This
transformation involves two steps: First, the activation of the neuron is computed as
the weighted sum of inputs. Second, this activation is transformed into a response by
using a transfer function. Hence the output from each unit is based on the weighted
sum of all inputs, and is ultimately defined by an activation function. Any function
whose domain is within the real numbers can be used as a transfer function (Abdi,
1999), which can be a linear, Gaussian, hyperbolic or sigmoid functions (also called

the logistic function).
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When ANNS are used for data analysis, it is important to distinguish between ANN
models and ANN algorithms. Many ANN models are similar or identical to popular
statistical techniques i.e. generalised linear models or polynomial regression,
especially where the emphasis is on prediction of complicated matter rather than on
explanation. ANNs can be trained more efficiently by standard numerical
optimisation algorithms such as those used for nonlinear regression. Various models
can be displayed as network diagrams (Figure 4-5), which illustrates ANN and
statistical terminology for a simple linear regression model. Neurons are represented

by circles and boxes, while the connections between neurons are shown as arrows.

INPUT OUTPUT TARGET
Independent Predicted Dependent
Variable Value Variable

Figure 4-5: Simple Linear Regression (Warren and Cary, 1994).

Circles represent observed variables, with the names shown inside the circle and
boxes represent values computed as a function of one or more arguments. The symbol
inside the box indicates the type of function e.g. linear. Most boxes also have a
corresponding parameter called a bias. Arrows indicate that the source of the arrow is
an argument of the function computed at the destination of the arrow. Furthermore,
each arrow usually has a corresponding weight or parameter to be estimated. Two
long parallel lines indicate that the values at each end are to be fitted by least squares,
maximum likelihood or some other estimation criterion.

The linear combination of inputs, called the net input, is computed by a perceptron
and then a possibly nonlinear activation function is applied to the net input to produce
the output. An activation function maps any real input into a bounded range, usually 0

to 1 or-1to 1. Some common activation functions are:
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e Linear or identity: act(x) = x

X =2

e e

e Hyperbolic tangent: act(x) = tanh(x) = — -
e +e

e Logistic (Sigmoid): act(x) = (1+e™*)™' = (tanh(x/2) +1)/2
e Threshold: act(x) = 0 if x<0, 1 otherwise

. S |
e Gaussian: act(x) = e * ?

The Hyperbolic tangent function (tanh) (Equation 4-3) will give an output in the
range [-1, 1].

Px -px

Px

tanh(fx) = J

e” +e”

—-e
4-3)

where € R . For f =1 the behaviour of the hyperbolic tangent function is shown in

Figure 4-6. It compresses the combinations of the inputs within the interval [-1, 1],

rather than [0, 1] in the sigmoid function.

-5 -4 -3 -2 -1 0 1 2 3 4 6

Figure 4-6: Hyperbolic tangent function

A perceptron can have one or more outputs. Each output has a separate bias and set of
weights. Usually the same activation function is used for each output, although it is

possible to use different activation functions.
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Perceptrons are most often trained by least squares i.¢. by attempting to

minimise Y. Y. rj2 , where r, is the error or residual and as noted before it is equal to a
predicted value (output value) p,, subtracted from dependant variable (training
values) y ;. A perceptron with a linear activation function is thus a linear regression

model possibly multiple or multivariate, as shown in Figure 4-7 (Myers, 1986).
INPUT OUTPUT TARGET

Independent Predicted Dependent
Variable Value Variable

Figure 4-7: Simple Linear Perceptron; Multivariate Multiple Linear Regression
{(Warren and Cary, 1994).

A perceptron with a sigmoid activation function is a logistic regression model, Figure
4-8 (Hosmer and Lemeshow, 1989). A perceptron with a threshold activation function
is a linear discriminant function, and if there is only one output, it is also called an
ADALINE. The ADALINE was first studied by Widrow and Hoff in the 1960s and is
the basic building block for many neural networks (Widrow and Hoff, 1988).
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INPUT OUTPUT TARGET

Independent Predicted Dependent
Variable Value Variable

Figure 4-8: Simple Nonlinear Perceptron; Logistic Regression
(Warren and Cary, 1994).

Instead of a threshold activation function, it is often more useful to use a multiple
logistic function to estimate the conditional probabilities of each class (McLachlan,
1992). The activation function in a perceptron is analogous to the inverse of the link
function in a generalised linear model (GLM) (McCullagh and Nelder, 1989).
Polynomial regression can be represented by a diagram of the form shown in Figure
4-8, in which the arrows from the inputs to the polynomial terms would usually be
given a constant weight of 1. In NN terminology, this is a type of functional link
network (Pao, 1989). In general, functional links can be transformations of any type,
that do not require extra parameters, and the activation function for the output is the

identity, so the model is linear in the parameters.

A functional link network introduces an extra hidden layer of neurons, but there is
still only one layer of weights to be estimated. If the model includes estimated
weights between the inputs and the hidden layer, and the hidden layer uses nonlinear
activation functions such as the logistic function, the model becomes nonlinear, i.e.
nonlinear in the parameters. The resulting model is called a Multilayer Perceptron or
MLP. The Multilayer Perceptron was first introduced by Minskey and Papert in 1969.

A multilayer perceptron network has three distinctive characteristics (Haykin, 1994).
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First, the network consists of a set of source nodes that constitute the input layer, one
or more layers of hidden neurons, and the output layer. Second, the model of each
neuron in the MLP includes a differentiable nonlinearity at the output end. A
commonly used form of nonlinearity that satisfies this requirement is a sigmoidal
nonlinearity defined by the logistic (sigmoid) function. Third, the network exhibits a
high degree of connectivity determined by the weights of the network. A change in
the connectivity of the network requires a change in the population of network
weights. Perceptrons are arranged in layers with no connections inside a layer. Each
layer is fully connected to its preceding and following layers. The first layer is the
input layer which just presents the input feature vector (does not perform processing);
the last layer is the output layer and its outputs are the output of the network. Other
layers are hidden layers. The input layer is usually not counted when the number of
layers of a network is specified. Thus, a two-layer perceptron has one hidden and an

output layer. A two-layer MLP for simple nonlinear regression is shown in Figure

4-9.
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INPUT HIDDEN LAYER OUTPUT TARGET

/

HTH

Independent Predicted Dependent
Variable Value Variable

Figure 4-9; Multilayer Perceptron; Simple Nonlinear Regression
(Warren and Cary, 1994),

The MLP can also have multiple inputs and outputs, as shown in Figure 4-10.

MLPs are general-purpose, flexible, nonlinear models that, given enough hidden
neurons and enough data, can approximate virtually any function to any desired
degree of accuracy. MLPs can be used when there is little knowledge about the form

of the relationship between the independent and dependent variables (White, 1992).
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INPUT HIDDEN LAYER OuTPUT TARGET

-

J

Independent Predicted Dependent
Variable Value Variable

“HEHES

Figure 4-10;: Multilayer Perceptron; Multivariate Multiple Nonlinear Regression
(Warren and Cary, 1994).

4.4 NETWORK TOPOLOGIES

The arrangement of neural processing elements (PEs) and their interconnections can
have a profound impact on the processing capabilities of the Artificial Neural
Networks. All neural networks have some set of PEs that receives inputs from the
outside, which was referred to as the input unit before, and many of them also have
one or more layers of hidden PEs that receive inputs only from other processing units.
A layer of processing elements receives a vector of data or the outputs of a previous
layer and processes them in parallel. The set of PEs that represents the final result of

the neural network computation is designated as the output units. There are some
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major connection topologies that define how data flows between the input, hidden,

and output processing elements.

4.4.1 FEED-FORWARD NETWORKS

A network is “feed-forward” if all of the hidden and output neurons receive inputs
from the preceding layer only. Actually, feed-forward is a definition of connection
topology and data flow. The input is presented to the input layer and it is propagated
forwards through the network. Output never forms a part of its own input (Figure

4-11).

Input Hidden Output
Laver Lavyer Laver

Figure 4-11: Data flow in a Feed-forward Artificial Neural Networks.

Each PE combines all of the input signals coming into the unit along with a threshold
value. This total input signal is then passed through an activation function to
determine the actual output of the processing element, which in turn becomes the
input to another layer of units in a multilayer network. Therefore, feed-forward
networks have one-way connections from input to output layers. The most typical
activation function used in neural networks is the sigmoid function (Figure 4-12).

This function converts an input value to an output ranging from 0 to 1.
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0.5

Figure 4-12: The sigmoid activation function which converts an input to an output ranging
between 0 and 1.

The effect of the threshold weights is to shift the curve right or left, thereby making
the output value higher or lower, depending on the sign of the threshold weight. As
shown in Figure 4-11, the data flows from the input layer through zero, one, or more
succeeding hidden layers and then to the output layer. In most networks, the elements
from one layer are fully connected to the elements in the next layer. However, this is
not a requirement of feed-forward neural networks. In some cases, especially when
the neural network connections and weights are constructed from a particular rule,
there could be less connection weights than in a fully connected network. There are
also techniques for pruning unnecessary weights from a neural network after it is
trained. Feed-forward networks are commonly used for prediction, pattern

recognition, and nonlinear function fitting.

The mathematical representation of the feed-forward network with the tanh activation

function is given by the following system (McNelis, 2005):

My =Wieot Z Wi iXiy (4-4)
i
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e"k,l _e—"m
Ny, =T, )=——=— “5)
e™ +e ™
Yo =7o+ 27Ny, (4-6)
k

where T'(n,,)is the mentioned fanh activation function for the input neuron »,, .

The mean of the hyperbolic tangent function is centred around zero. Therefore, in
order to perform efficient prediction, the range of the input data, their mean and
variance, should match the range of the chosen activation function. There are several
operations that could be performed on the input data, such as normalisation, to

achieve this.

4.4.2 PARTIAL/FULLY RECURRENT NETWORKS

In contrast, there is another type of network called “feed-back” networks. Feed-back
networks can have signals travelling in both directions by introducing loops in the
network. Feed-back networks are very powerful and can be extremely complicated.
They are dynamic which means their state is changing continuously until they reach
an equilibrium point. They remain at the equilibrium point until the input changes and
a new equilibrium needs to be found. Feed-back architectures are also referred to as

interactive or recurrent (Bigus, 1996).

Recurrent networks are used in situations when current information exists to give to
the network, but the sequence of inputs is important, and the neural networks need to
store a record of the prior inputs and factor them in with the current data to produce
an answer. In recurrent networks, information about past inputs is fed back into and
mixed with the inputs through recurrent or feed-back connections for hidden or output
units. In this way, the neural network contains a memory of the past inputs via the

activations (Figure 4-13).
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Figure 4-13: Data flow in a Partial recurrent neural networks.

A network can be limited or fully recurrent; two major architectures for limited
recurrent networks are widely used. Elman suggested a recurrent network which
allowed feed-back from the hidden units to a set of additional inputs called “context
units”. The connections are mainly feed-forward but also include a set of carefully
chosen feed-back connections that let the network remember cues from the recent
past. The input layer is divided into two parts: the true input units and the context
units that hold a copy of the activations of the hidden units from the previous time
step. The network is able to recognise sequences and also to produce short
continuations of known sequences (Elman, 1990).

Earlier, Jordan described a network with feed-back from the output units back to a set
of context units. This form of recurrence is a compromise between the simplicity of a
feed-forward network and the complexity of a fully recurrent neural network because
it still allows the popular back propagation training algorithm (described in the
following sections) to be used (Jordan, 1986).

Fully recurrent networks provide two-way connections between all processors in the
neural networks. A subset of the units is designated as the input processors, and they
are assigned or clamped to the specified input values. The data then flows to all
adjacent connected units and circulates back and forth until the activation of the units
stabilises. Figure 4-14 shows the input units feeding into the hidden units and the
output units. The activations of the hidden and output units then are recomputed until

the neural networks stabilise. At this point, the output values can be read from the
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output layer of processing units. Fully recurrent networks are used primarily for

optimisation problems and as associative memories (Bigus, 1996).

Hidden
Layer
Input
Layer
y
y
E— Output
< Layer
e

Figure 4-14: Data flow in a fully recurrent neural networks.

4.5 NETWORK LEARNING

When a network has been structured for a particular application, it is ready to be
trained. To start this process the initial weights are chosen randomly. Then, the

training, or learning, begins. There are three approaches to training:

e Supervised
e Unsupervised

e Reinforcement

Supervised training involves a mechanism of providing the network with the desired
output either by manually grading the performance of the network or by providing the
desired outputs with the inputs (Figure 4-15). In supervised training, both the inputs

and the outputs are provided. The network then processes the inputs and compares its
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resulting outputs against the desired outputs. Errors are then propagated back through
the system, causing the system to adjust the weights which control the network. This
process occurs over and over as the weights are continually adjusted (Demuth and
Beale, 2004). Training of a network proceeds by making weight and bias changes
based on an entire set (batch) of input vectors. Incremental training changes the
weights and biases of a network as needed after presentation of each individual input
vector. The set of data which enables the training is called the “training set”. During
the training of a network the same set of data is processed many times as the
connection weights are ever refined. To monitor the network to determine if the
system is simply memorising its data in some non-significant way, supervised
training needs to hold back a set of data to be used to test the system after it has
undergone its training. Neural networks have been trained to perform complex
functions in various fields of application including pattern recognition and

identification, classification, etc.

Target l
Neural Network

including weights  fe——————1}pp> Compare
Input between neurons Output

Adjust
weights

Figure 4-15: Supervised training of a Neural Network (Demuth and Beale, 2004).

In supervised learning, the learning rule is provided with the training set of proper

network behaviour:

{puti b pasts bl t,
Where p is an input to the network, and ¢ is the corresponding correct output (target).
As the inputs are applied to the network, the network outputs are compared to the

targets. The learning rule is then used to adjust the weights and biases of the network
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in order to move the network outputs closer to the targets. The perceptron learning
rule falls in this supervised learning category (Demuth and Beale, 2004).
Supervised learning assumes the availability of a labelled set of training data made up

of N input-output examples:

T= {xi .4, }IZI @

Where x, is the input vector of the ith example, d, desired (target) response of ith

example, assumed to be scalar for convenience of presentation and N is the sample
size.
Given the training sample 7, the requirement is to compute the free parameters of the

neural networks so that the actual output y, of the neural network due to x; is close
enough to d, for all i in a statistical sense. For example, we may use the Mean Square

Error (MSE) (Haykin, 1999):
N

MSE = 1—1v~2(d, -,)? (4-8)
i=]

as the index of performance to be minimised.

Unsupervised training is where the network has to make sense of the inputs without
outside help, a learning process in which changes in weights of a network and biases
are not due to the intervention of any external teacher. Commonly changes are a
function of the current network input vectors, output vectors, and previous weights
and biases. Actually, unsupervised training is used to perform some initial
characterisation on inputs. In unsupervised training, the network is provided with
inputs but not with desired outputs, and the weights and biases are modified in
response to network inputs only. There are no target outputs available. Most of these
algorithms perform clustering operations. They categorise the input patterns into a
finite number of classes. The system itself must then decide what features it will use
to group the input data. This is often referred to as “self-organisation” or “adaption”.
A famous neural network model based on unsupervised training is the Kohonen
network, named after its inventor, Teuvo Kohonen from University of Helsinki (first
presented in 1982). The Kohonen neural network contains only an input and output

layer of neurons (Figure 4-16).
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Figure 4-16: The Kohonen neural network
(Warren and Cary, 1994).

There is no hidden layer in the network. Output from the network does not consist of
the output of several neurons. When a pattern is presented to a Kohonen network one
of the output neurons is selected as a “winner”. This “winning neuron” is the output
from the network (Heaton, 2003). Unlike supervised networks, the inputs and outputs
are not presented at the same time to the network. The Kohonen network relies on a
type of learning called “competitive learning”, where neurons compete for the

privilege of learning, and the correct output is not known.

Another type of unsupervised learning is found in the “cognitron”, introduced by
Fukushima as early as 1975. This network, with primary applications in pattern
recognition, was improved at a later stage to incorporate scale, rotation, and

translation invariance resulting in the neocognitron (Fukushima, 1988).

The third Neural Network training approach is called reinforcement learning, or
sometimes called reward-penalty learning, which is a combination of the above two
learning approaches. It is based on presenting input vector x to a neural network and
looking at the output vector calculated by the network. If it is considered “good”, then
a “reward” is given to the network in the sense that the existing connection weights
are increased; otherwise the network is “punished”, the connection weights, being
considered as “not appropriately set”, decrease (Kasabov, 1998). Actually, the

reinforcement learning describes a form of “semi-supervised” learning where the
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network is not provided with an explicit form of error at each time step but rather
receives only generalised reinforcement which yields little immediate indication of

how any neuron should change its behaviour (Arbib, 2003).

4.5.1 LEARNING RATE

All training methods discussed above result in an adjustment of the weights of the
connections between units, according to some modification rules. Virtually all
learning rules for models of this type can be considered as a variant of the Hebbian
learning rule suggested by Hebb (Hebb, 1949). The basic idea is that if two units, j
and k, are active simultaneously, their interconnection must be strengthened. If j
receives input from £, the simplest version of Hebbian learning prescribes

modification of the weight W, by the synaptic weight change Aw, (Kros and Van
Der Smagt, 1996). The synaptic weight change Aw , is then calculated as a function
of the product of the two activation values y, and y, of the neuronsj and &:

Awy = 1,5 (4-9)

Where y is a positive constant of proportionality representing the learning rate.
Learning rate is a training parameter that controls the size of weight and bias changes
during the ANN training process and adaptive learning rate is a learning rate that can
be adjusted according to an algorithm during the training to minimise training time
(Rabufial and Dorado, 2006). The general process of learning in neural networks is
described by a characteristic called "convergence". The network reacts better and
better to the same training example x, the more it is introduced to it through training,
eventually ending up with the desired output y. The learning rate of the network is
adjusted during training process and can improve the convergence of the network and

increase the convergence speed.

In the first step, the training coefficient is selected as a large number, so the resulting
error values are large. However, the error will be decreased as the training progresses,

due to the decrease in the learning rate (Zilouchian and Jamshidi, 2001). Also, while
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low values of the learning parameters avoid oscillations, they may unnecessarily

prolong the convergence process (McNelis, 2005).

After the network has stopped learning the training examples, the synaptic weights do

not change any more, that is,Aw, =0 for every connection (j, k) in the network when

training examples from the training set are further presented (Kasabov, 1998).

Another common rule uses not the actual activation of unit & but the difference
between the actual and desired activation for adjusting the weights (Kros and Van
Der Smagt, 1996):

Aw, =w,(d,-y,) (4-10)

In which d, is the desired activation provided by a teacher. This is often called the

Widrow-Hoff rule or the delta rule.
A network can stop learning for two reasons (Kasabov, 1998):

1. The network has learned the training examples, and

2. The network has become saturated.

If the network can learn the training examples it would be a well trained network and
can be used to generate favourable outputs. In contrast, saturation is a serious
condition of a network which must be prevented. According to the Grasberg's
saturation theorem, large input signals saturate a neuron when it is sensitive to small
input signals, but if it is sensitive to large input signals, small signals are ignored as
noise. Small random values introduced as noise during a learning process tend to
increase the robustness of the performance of the neural network. In this case the

Hebbian learning law will take the form of}

AW, =,7, +& (@11)
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where ¢ is a noise signal. When noise is presented during learning, the neural
network reaches a convergence when weights change within the magnitude of the
noise (stochastic equilibrium):

Aw, <¢

The state of convergence may also be reached in a so-called oscillatory mode, that is,

the synaptic weights oscillate between two or more states.

4.5.2 SENSITIVITY ANALYSIS

Sensitivity Analysis is a technique for deriving how and how much the solution to a
given problem depends on data (Castillo et al., 2006). In neural networks, sensitivity
analysis is a tool to explore the embedded knowledge of an ANN model and evaluate
the effectiveness of the network learning. The concept of the sensitivity analysis
comes from a calculus called the chain rule. The chain rule explains how to compute
the partial derivative of a variable with respect to another when a functional form

links the two. If y = f(x) and the goal is to compute dy/dx, the sensitivity of y with

respect to x, as long as fis differentiable, is (Principe et al. 2000):

»_wy -
ox  of ox

Equation 4-12 computes how much a change in x is reflected in y i.e., how sensitive y
is to change in x. The above sensitivity for a single ncuron of an ANN, with multiple

weights connected to its input, is illustrated in Figure 4-17.
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Figure 4-17: Illustration of the sensitivity computation through a non-linear neuron (or PE) of a
neural networks (Principe ef al. 2000).

In order to do the sensitivity analysis for a neural network, after training the network

and fixed the weights w,, each input vector should change around its mean value. The

change in the input is normally done by adding a random value of a known variance
to each sample and computing the output. The sensitivity for input & is expressed as
(Principe et al. 2000):

P o

D220 =5,)

_ p=l =l
Oy

@-13)

where y, is the ith output obtained with the fixed weight for the pth pattern, o is the

number of network outputs, P is the number of patterns and &, is the variance of the

input changes. This is a common way to measure how much a change in a given input
affects the output across the training data set.

Inputs with large sensitivities have more influence in the mapping of the network and
the inputs with small sensitivities have less (or no) importance for the model and can

be discarded.
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4.6 ANN APPLICATIONS

Artificial Neural Networks are used to deal with different kinds of problems such as
classification, approximation, pattern recognition, signal processing, prediction,

feature extraction, etc. Most of them are solved with ANN by learning of the mapping
between the input and output space for given data sets(x,,¥,), (%, ¥ )sees (X5 ¥, ) s
where (x;,y,)is input-output pair. The underlying mapping can be written as
(Jankowski, 1999):

f(x)=y +¢ @-14)
Jor i=1,...,n

where ¢ is a zero mean white noise with variance 5’2 .

Neural network problems can generally be categorised as one of four types:

Classification;
procedure in which individual items are placed into groups based on
quantitative information on one or more characteristics inherent in the
items, including: Target Recognition, Pattern Recognition, Character

Recognition.

Function Approximation;
is using to select a function that closely approximates a target function in
a specific way, including: Process Modelling, Process Control, Data
Modelling, Machine Diagnostics.

o Time Series Prediction;

including: Dynamic Modelling System, Financial Forecasting.

Dara Mining;
involves sorting through large amounts of data and picking out relevant

information including: Clustering, Data visualisation, Data extraction.
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4.6.1 CLASSIFICATION

Classification problems are those where the goal is to label each input pattern as
belonging to a certain class. In statistics and machine learning, classification is a type
of statistical algorithm, which takes a feature representation of an object or concept
and maps it to a classification label. Typically, a classification algorithm computes a
posterior probability: the probability of a class label, given that the feature input was
observed (Fausett, 1994). Traditional statistical classification methods usually try to
find a clear cut boundary to divide the pattern space into some classification regions
based on some pre-defined criterion, such as maximising deviation between groups
divided by deviation within groups in the linear discriminant analysis (Lachenbruch,
1975). However, it is impossible to provide information of degree of uncertainty for a
particular example for this method since the error rate estimate is a statistical result of
the entire sample set (Wang and Archer, 1991). In fact, classification systems are
systems that automatically identify objects based on their measured properties. For
classification problems, the input attributes are mapped to the desired classification
categories. The training of the neural network amounts to setting up the correct set of
discriminate functions to correctly classify the inputs. With this viewpoint, artificial
neural networks also can be a classification system. The existing neural networks that
can be served as classifiers are grouped into several categories or their variations e.g.
Adaptive Resonance Theory (ART), Radial Basis Functions (RBF) and Probabilistic
Neural Networks (PNN).

A simple example of a classification problem is one where the goal of the neural
networks is to label each person as male or female (the two classes) based on their
height and weight. The input into the neural network would be the height and weight
measurements and the desired output would be their gender. For classification of a
large number of objects the unsupervised strategy seems to be more efficient than
supervised one (Kohonen, 1997). Unsupervised neural networks are trained by letting
the network continually adjust itself to new inputs. They find relationships within
data as it is presented and can automatically define classification schemes. There is a
type of unsupervised neural networks employed for classification problems called

Competitive layer recognition. Competitive layers recognise similar groups of input
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vectors. By using these groups, the network automatically sorts the inputs into
categories. It means, after training, the final weights of the “winning neuron” were
proportional to the probabilities of the corresponding classes to which the unknown

object should belong (Kohonen, 1997).

4.6.2 FUNCTION APPROXIMATION

Function approximation is a general class of problem solving where a function is
created that approximates an unknown function. Function approximation methods fall
into two broad categories: global and local. Global approximations can be made with
many different function representations, e.g. polynomials, rational approximation,
and MLP (Farmer and Sidorowich, 1988). To approximate a function £, a model must
be able to represent its many possible variations. The dependence on representation
can be reduced using local approximation where the domain of fis broken into local
neighbourhoods and a separate model is used for each neighbourhood (Farmer and

Sidorowich, 1988).

Atrtificial neural networks can be used as a function approximation system which tries
to produce the desired output for each training input. The task performed by a trained
network to respond to inputs with an approximation of a desired function. The ANN
then creates a map through input data sets to desired data. This map can be a function
between data groups. In the test phase, this map produces function approximation
using adjusted weight coefficients and transfer functions (Quing et. al., 1997).

As with other transfer functions the sigmoid function provides lincar, near-linear, and
non-linear approximations for a given set of inputs (Berry and Linoff, 1997). In the
field of supervised learning, the most popular form of the feed-forward neural
networks, the multi-layer perceptrons (MLP) have been proven to approximate
smooth functions very well (Barron, Yang, and Yu, 1994). Many application
problems use the MLPs as a model for identifying and controlling nonlincar complex

dynamic systems (Fausett, 1994).
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MLPs are suitable for high-dimensional function approximation. MLP network can
be used for a function approximation problem in which the inputs to the network are
equivalent to the predictor variables in the regression model and the output of the
network is equivalent to the predicted value. For a given problem, there is a cost

function ¢, (Haykin, 1994), which is similar to the error sum of squares:

&r = 2.0, = (Bo + By + et %)) (@-15)
i=]

for the regression model, as the measure of training set learning performance. The
objective of the learning process is to adjust the weights of the neural networks to

minimise the least squares output error cost functiong; .

A popular training algorithm known as the back-propagation algorithm is generally
used to adjust the network weights until a stop criterion is reached (Hush and Horne,
1993) e.g. a reasonable error rate. Back-propagation can train multilayer feed-forward
neural networks with differentiable transfer functions to perform function
approximation. The term back-propagation refers to the process by which derivatives
of network error, with respect to network weights and biases, can be computed. This
process can be used with a number of different optimisation strategies which will be

explained in section 4-7-1.

4.6.3 TIME SERIES PREDICTION

A time series is a sequence of vectors, x(¥), for ¢ = 0,1,..., where ¢ represents elapsed
time. Theoretically, x may be a value which varies continuously with ¢, In practice,
for any given physical system, x will be sampled to give a series of discrete data
points, equally spaced in time. The rate at which samples are taken dictates the
maximum resolution of the model; however, it is not always the case that the model
with the highest resolution has the best predictive power. Hence, those superior
results may be obtained by employing only every nth point in the series.

Statistical methods and neural networks are commonly used for time series
prediction. Artificial neural networks are reliable for modelling non-linear and

dynamic signals (Guido, 1994). An ANN attempts to capture the dynamics of the
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system which underlies the data series by training to take as input a representation of
the current state of the system and to output a prediction of the state of the system at
some point in the future. An ANN has concentrated on forecasting future
developments of the time series from values of x up to the current time. Formally this
can be stated as: find a function fto obtain an estimate of x at time ¢ + d, from the N

time steps back from time ¢, so that (Frank, Davey and Hunt, 1997):

x(t+d) = f(x(t),x(t =1),..,x(t = N +1)) @-16)

Forif dis equal to 1, fwill forecast the next value of x.

The standard neural networks method of performing time series prediction is to
induce the function fusing any feed-forward function approximating neural network
architecture. Examples are standard MLP, RBF architecture or a cascade correlation
mode (Gershenfeld and Weigend, 1993), using a set of inputs and a single output as
the target value of the network. This method is often called the sliding window
technique as the input slides over the full training set. Figure 4-18 gives the basic

architecture.

This technique can be seen as an extension of auto-regressive time series modelling,
in which the function f is assumed to be a linear combination of a fixed number of
previous series values. Such a restriction does not apply with the non-lincar ncural
network approach as such networks are general function approximators (Dorffner,

1996).
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Figure 4-18: The standard method of performing time series prediction
(Frank, Davey and Hunt, 1997).

Another type of ANN-based approach to time series forecasting, is to use recurrent
networks. Elman in 1990 showed how an otherwise feed-forward network with a
recurrent context layer which took a copy of the network's hidden layer at time -/
and re-applied it in addition to the input vector at time 7 was able to learn temporal
dependencies. Also extra context layers could be added during training in order to
allow a recurrent network to be trained on several examples of a time series from the

same source system (Swingler, 1994).

A recurrent network with one input unit representing the value of the time series at
time £, one output unit representing the value of the time series at time 7+/ and a
recurrent layer to store and re-apply the state of the hidden layer from time ¢ can
forecast one step ahead along a time series. By taking the network output and feeding

it back in as input, this method can be extended to multiple steps forward.

4.6.4 DATA MINING

Data mining is the process of sifting through and analysing rich sets of domain
specific data and then extracting the information and knowledge in the form of new
relationships, patterns or clusters for decision-making purposes (Watterson, 1995).

Data mining is a form of knowledge discovery essential for solving problems in a
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specific domain (Dankel and Gonzalez, 1993). Many data mining applications make
use of clustering, i.e. the process of finding similarities in the data and then grouping
similar data into identifiable clusters. Cluster detection may be employed through
statistical techniques such as Bayes’ Theorem' (Lwin, and Maritz, 1989) or non-
statistical techniques such as unsupervised neural networks, which form clusters on
the data set without knowing what the output clusters should model (Kohonen, 1990).
Clustering of data is one of the main applications of the SOM (Vesanto and
Alhoniemi, 2000). SOM is an unsupervised neural network model which provides a
mapping from a high-dimensional input space R" onto a two-dimensional map space
(Figure 4-19). This capability allows an intuitive analysis and exploration of unknown

data spaces, with its applications ranging from the analysis of data (Kohonen, 1995).

Self
Input Organising
Space Map

Figure 4-19: Input space and Self Organizing Map (SOM).

The SOM consist of two layers of neurons. The input layer consists of N neurons
corresponding to the real-valued input vector of dimension N. These units are
connected to a second layer of neurons U. By means of lateral connections, the
neurons in U form a lattice structure (output neurons arranged in rows and columns)
of dimensionality M. Typically M is much smaller than N. When an input data vector

is presented to the network, it responds with the location of a unit in U, which

' Bayes' theorem (also known as Bayes' rule or Bayes' law) is a result in probability theory, which
relates the conditional and marginal probability distributions of random variables. In some
interpretations of probability Bayes' theorem tells how to update or revise beliefs in light of new
evidence.
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corresponds most closely to the presented input. This is called the best-matching
neuron. As a result of the learning process, i.e. the presentation of all input vectors
and the adaptation of the weight vectors, the SOM generates a mapping from the
input space " onto the lattice U with the property, that the topological relationships
in input space are preserved in U as well as possible (Ritter and Schulten, 1986;
Kohonen, 1989). Similar input data should correspond to best-matches in U that are
close together on the lattice. The structure of the trained SOM is then visualised by

means of the U Matrix for the purpose of clustering.

4.7 ANN MODELS

Since the 1940s different network types have been initiated and introduced by
scientists and consequently, various network architectures were created over time. In
1990 Kohonen proposed a classification for different neural networks (Kohonen,
1990). According to this classification, network architectures can be categorised to
three main types:

- Feed-forward networks,

- Recurrent networks (feed-back networks),

- Self-organising networks.

Later, in 1994, Haykin divided the neural networks into four classes (Haykin, 1994):

- Single-layer feed-forward networks,
- Multilayer feed-forward networks,
- Recurrent networks, and

- Lattice structures.

A lattice network is a feed-forward network, which has output neurons arranged in

rows and columns.

Nowadays, the varieties of the networks are dramatically increased compared with the

last decade. So, various classifications of the neural networks may be found in
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different literatures. Without considering the classification of the networks, different
models like ART, RBF, PNN and Recurrent Back-propagation Neural Networks are
the examples of the recently developed neural networks. In the following sections

some of related neural networks are introduced and examined.

4.7.1 BACK-PROPAGATION NETWORKS

A back-propagation network uses a feed-forward topology, supervised learning and
the back-propagation learning algorithm which is a general purpose learning
algorithm. In 1986, Rumelhart et. al. popularised the back-propagation algorithm
which they called the generalised delta rule. This algorithm is a learning algorithm
applied on multilayer feed-forward networks consisting of non-linear units. The
learning strategy in this algorithm is to modify the weights of connections between

units towards decreasing the total sum of prediction errors.

Theoretically, the back-propagation algorithm performs gradient descent on the total
error only if the weights are adjusted after the full set of learning patterns has been
presented; more often than not the learning rule is applied to each pattern separately.
The training of an MLP is usually accomplished by using a back-propagation
algorithm that involves two phases (Werbos 1974; Rumelhart et. al. 1986):

o Forward Phase. During this phase the free parameters of the network are
fixed, and the input signal is propagated through the network layer by layer.

The forward phase finishes with the computation of an error signal e, in the

Equation 4-10 as:
e, =d, -y, 4-17)

where d, is the desired response and y, is the actual output produced by the

network in response to the input x,.

¢ Backward Phase. During this second phase, the error signal e, is propagated

through the network in the backward direction, hence the name of the
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algorithm. It is during this phase that adjustments are applied to the free

parameters of the network so as to minimise the error e, in a statistical sense.

The data set is split into a test and a training set. The training set is used to train the
network or to get the optimum weights and later is tested using the test set. Most
ANN studies in the literature use convenient ratio of splitting for training and testing
samples such as 70%:30%, 80%:20%, or 90%:10%. It is important to note that in data
splitting, the issue is not about what proportion of data should be allocated in each
sample but it is about sufficient data points in each sample to ensure adequate
learning, validation, and testing. Granger (1993) suggests that for non-linear
modelling at least 20% of the data should be held back for an out-of-sample
evaluation. Hoptroff (1993) recommends that at least 10 data points should be in the
test sample while Ashley (2003) suggests that a much larger out-of-sample size is
necessary in order to achieve statistically significant improvement for forecasting

problems.

Training starts with random initial values as weights and biases. The network is
activated using activation function and the output is obtained. The output is compared
with the desired values. The difference between the actual and desired output valucs
is measured and the initial weights are changed by back-propagating the error. The
process is continued until the difference reaches the global minimal. Gradient descent
can be used to adjust the gain of the node and increases its learning speed and
subsequently the overall learning speed of the network (Kruschke and Movellan
1991).

There are a few important issues which must be identified for training with the back-
propagation algorithm. For example, it is important to determine the best time to stop
training the network and select the size of individual hidden layers of the MLP, The
answers to these important issues can be found through the use of a statistical

technique known as cross-validation, which proceeds as follows (Haykin 1999):

— The set of training examples is split into two parts:

— The estimation subset is used for training of the model
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— The validation subset is used for evaluating the model performance
— The network is finally tuned by using the entire set of training examples and

then tested on test data not seen before.

To find the weight matrices of a single neuron MLP (Figure 4-20), with two inputs x,
and x, , the output y is to be compared with the desired target value d and their

difference, the error e (Equation 4-17), will be computed.

|
10 —

+
x,o..@_.@—”» &

] h]
%O — L@ j

Figure 4-20: Back-propagation training in a single neuron MLP.

There are two inputs [x,,x,] with corresponding weights w, andw, . The input
labelled with a constant 1 represents the bias term 8 shown in Figure 4-4. Here, the

bias term is labelled w, . The net function is computed as (Hu and Hwang, 2003):

2
u=>y wax, =Wx (4-18)
i=0
where x, =1, W=[w, w, w,]istheweight matrix,and x=[1 x, x,] isthe

input vector.

Given a set of training samples {(x,,d,):l < k < K}, the error back-propagation

training begins by feeding all X inputs through the MLP network and computing the

corresponding output{y ;1 < k < K}.
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Here, an initial guess for the weight matrix W is used. Then a sum of squares (Hu and

Hwang, 2003):

E=Z[ek]2 =Z[dk ~ %) =Z[dk - fWx)) (4-19)
k=1 k=1 k=1

The objective is to adjust the weight matrix # to minimise the error E. This leads to a
non-linear least square optimisation problem. There are numerous non-linear
optimisation algorithms available to solve this problem. Basically, these algorithms

adopt a similar iterative formulation:

w(t) = w(t =1)+ Aw(?) (4-20)

where Aw(t)is the correction made to the current weights w(t). Different algorithms,
e.g. conjugate-gradient method, Newton’s method or steepest descent gradient

method, differ in the form of Aw(¢).

Despite the practical success, the error back-propagation learning algorithm has
training problems and suffers from slow convergence (Specht, 1991). Moreover, it is
known for the possibility of getting stuck in a local minimum on the error surface.
There are a number of techniques designed to overcome this problem. The most
useful technique is to use momentum. Momentum is a technique often used to make
it less likely for a back-propagation ANN to get caught in a shallow minimum. In
fact, one effective solution for speeding up the process of back-propagation toward
convergence is to add a momentum term to the above process. Mathematically, this
happens by inserting a momentum term « to the weights update Equation 4-20 w(t)

to obtain the new form: (Medsker and Jain, 2001):

AW'(t) = aAw(t - 1) + (1 - a)Aw(?) 4-21)

The momentum term keeps the movement over the weight error space for some time,

even if the network has fallen into a local minimum.
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4.7.2 RADIAL BASIS FUNCTION NETWORKS

Radial Basis Function (RBF) networks are feed-forward networks trained using a
supervised learning algorithm. They are typically configured with a single hidden
layer of neurons (whereas MLPs can have any number of hidden layers) whose

activation function is selected from a class of functions called "basis functions"

(Figure 4-21).

Hidden Layer of
Radial Basis Functions

Input Layer Output Layer

Figure 4-21: Radial-basis function network.

The first layer of this network consists of m inputs. They are fully connected to
the neurons in the second layer. A hidden node has a radial basis function as an
activation function. The RBF network generally consists of two weight layers, the
hidden layer and the output layer and they can be described by the following
equation (Hu and Hwang, 2003):

y=wo+ Y wf(x-c] @-22)
i=1
where fis the radial basis functions, w,is the output layer weight, w(-)is the

output offset, x is the input to the network, ¢, is the centre associated with the
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basis functions, m, is the number of the basis functions in the network, and |||

denotes the Euclidean norm (+/ x.x ). Given the vector

X ={%,%; 500X, (4-23)

on R", the Euclidean norm on this space measures the size of the vector in a

general sense and is defined as:

1
=3 | w0

Each input vector x passed to the network is shifted in R” space, according to

some stored parameters (the “centres™) in the network. The Euclidean norm is

computed for each of these shifted vectors x—~¢ ! forj=1,.,n,.Each ¢, isa

vector with the same number of elements as the input vector x. Note that there is

one comparison or shifting operation for each ¢, stored in the network, and one

centre is defined for each radial basis function in the network. Centres which are
closest to the input data vector will have the smallest output, the limiting case
being where a centre exactly coincides with an input vector. In this case, the

Euclidean distance is zero (Hu and Hwang, 2003).

One of the famous radial basis functions is the Gaussian function:

~(x~)?

Sf(x)=e " (425)

where ¢ € N is the centre of the basis function which has radius r. The Gaussian

radial basis function with centre ¢ = 0 and radius » = / is shown in Figure 4-22,
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Figure 4-22: The Gaussian radial basis function with center ¢ =0 and radiusr=1.

4.7.3 RECURRENT BACK-PROPAGATION NETWORKS

As mentioned in section 4.4, a neural network is feed-forward if all of the hidden
and output neurons receive inputs from the preceding layer only. The input is
presented to the input layer and it is propagated forwards through the network.
Output never forms a part of its own input. A recurrent network has at least one
feed-back loop, i.e. cyclic connection, which means that at least one of its neurons
feed its signal back to the inputs of all the other neurons.

Recurrent back-propagation is a back-propagation network with feed-back or the
recurrent connections. Recurrent Neural Networks (RNN) have feedback
connections from neurons in one layer to neurons in a previous layer. Different

modifications of such networks have been developed and explored over time.

A typical recurrent network has concepts bound to the neurons whose output
values feed-back as inputs to the network. So the next state of a network depends
not only on the connection weights and the currently presented input signals but
also on the previous states of the network. The network leaves a trace of its

behaviour, i.e. the network keeps a memory of its previous states. They address
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the temporal relationship of inputs by maintaining internal states that have
memory. Back-propagation through time is one of the popular learning and
training algorithms for RNNs. The behaviour of such networks may be extremely
complex and their training tends to be difficult because of the feedback
connections. The neural networks can employ feed-back at the local or global
level. For detailed treatment of recurrent networks, see Haykin (1999). Two ways
to include recurrent connections in neural networks are activation feed-back and

output feed-back, as shown, respectively, in Figure 4-23(a) and Figure 4-23(b).

x(k)
Dynamic 5: u(k) ® _y_(ﬁ)
R System @ 5
» /V
(a)
x(k) )
- (b)

Figure 4-23: feed-back schemes; (a) Activation feed-back (b) Output feed-back
(Medsker and Jain, 2001).

The output of a neuron shown in Figure 4-23 (a) can be expressed as (Mandic and

Chambers, 2001):

u(k) = i w,, (k)x(k—i)+ ZN: w,, (kyu(k - j) (4-26)

and:
(k) = D(u(k))
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where w,, and w, ; correspond to the weights associated with x and »,

respectively. The transfer function of a neuron shown in Figure 4-23 (b) can be

expressed as (Mandic and Chambers, 2001):

uk) =Y w, ()x(k=i)+ > w, (k) (k- j) (427)

and:
y(k) = O(u(k))

where w, ; correspond to the weights associated with the delayed outputs. A

comprehensive account of types of synapses and short-term memories in dynamical

neural networks is provided by Mozer (1993).

4.8 NN ARCHITECTURES

Artificial Neural Networks can be divided into two classes: static and dynamic
networks. Static neural networks are those whose outputs are linear, or non-linear,
functions of its inputs, and for a given input vector, the network always generate the
same output vector. In static networks, a given set of input variables at time ¢ are used
to forecast a target output variable at time £. These networks are suitable to identify
input-output relationships and also categorise the input-output maps to find out the
most accurate one. In contrast, dynamic neural networks are capable of implementing
memories which give them the possibility of retaining information to be used later.
The dynamic neural networks can generate diverse output vectors in response to the
same input vector. The response may also depend on the actual state of the existing
memories, by their inherent characteristic of memorising past information, for long or
short-term periods. Moreover, from the perspective of the network connection
patterns, static networks have no loops but in dynamic networks loops occur because

of the feedback connections in the networks architecture.

The Multilayer Perceptron (MLP) networks (Haykin, 1999) are widespread examples

of static neural networks architecture. They carry no memory but their universal
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approximation capability has been proved (Hornik et al, 1989). The choice of which
neural networks to employ to represent a nonlinear physical process depends on the
dynamics and complexity of the network that is best for representing the problems.
The Multilayer Perceptron (Figure 4-24) and RBF based neural networks (see section
4-6-2) are the two most commonly used types of static feed-forward networks. A
fundamental difference between the two is the way in which hidden units combine
values at their inputs. Feed-forward networks might not be powerful enough to
capture the dynamic of the underlying non-linear dynamical system but the non-linear
static map generated by the static network can adequately represent the system's
dynamical behaviour in the ranges of interest for a particular application (Mandic and
Chambers, 2001). However, wherever possible the material has been presented

starting from feed-forward networks and building up to the dynamic ANN.
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Figure 4-24: A static multilayer feed-forward neural networks.

The traditional multilayer perceptron neural network can only learn a static mapping
of input variables to a forecast value. This means that MLP alone cannot modecl the
temporal or dynamic aspects of the system where the time is not a constant. For
example, if data in the sample are not homogeneous or the underlying data generating
process in a time series changes over time, then a larger sample may damage the
performance of the static neural networks as well as other traditional methods. But the
output of a dynamic neural unit depends on the present inputs as well as the past
neural states and lets the information be temporally memorised by the networks

(Kung and Hwang, 1998).
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Dynamic neural network architectures were categorised by Tsoi and Back in 1997.
Earlier, Werbos introduced the back-propagation through time approach,
approximating the time evolution of a dynamic neural network as a sequence of static

networks using gradient methods (Werbos, 1990).

There are also other similar architectures able to process dynamic data, usually by
inducing dynamics in existing static models with recurrent connections among
neurons (global memory) or implementing dynamics in neurons. The latter types of
architectures vary with regard to the place of the dynamics in the weights, in the

activation function, or both (Lawrence, 1995; Tsoi, 1994).

The provision of feedback, with delay, introduces memory to the network and so is
appropriate for prediction. The feedback within dynamic neural networks can be
achieved in a global manner (Figure 4-25). The global feedback is produced by the
connection of the network output to the network input. Inter-neuron connections can

also exist in the hidden layers.

The Time Lagged Recurrent Network (TLRN) closely resembles a MLP extended
with memory structures. In fact, TLRNs have been shown to be appropriate models
for processing time-varying information (Principe et al. 2000). Moreover, a
sequential framework can be added to the MLP feed-forward networks by adding
short-term memory in the form of a delay line. A section of the time series (called the
time window) of the form [x(k), x(k - 1),..., x(k — p)], and [y(k), y(k =1),..., y(k - p)]
are used as input for the feed-forward network. The delay line is in order of p, and the
desired output is y(k+1). This network can be referred to as the Time Delay Neural
Network (TDNN). Furthermore, the final choice of structure for each case depends
upon the dynamics of the signal, learning algorithm and ultimately the prediction
performance. There is no rule as to the best structure to use for a particular problem

(Personnaz and Dreyfus 1998).
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Figure 4-25: The Structure of a dynamic neural networks with global feedback
(Mandic and Chambers, 2001).

The correlation coefficient (r) is a method to measure the performance of the above
neural networks. By definition, the correlation coefficient between a network output y

and a desired output d is:

2., =), -d)

r= __N (4-28)
S, -a7 [R5

N N

The correlation coefficient is confined to the range [-1, 1]. When r =1 there is a
perfect positive correlation between x and d and r = -1 represents a perfectly negative

correlation between x and d. Also, when r = 0 there is no correlation between x and d.

4.8.1 WEIGHT UPDATING



Chapter 4: ANN Approaches Page: 129

As mentioned in section 4-7-1, in back-propagation algorithm, the error signal ¢,

propagates back layer by layer from the output units. So, for example, unit i receives
error propagated back from the next unit k to the extent to which i affects k. Then

Aw,; will be calculated and taken into account to adjust the weights. There are two

rules for updating weights: on-line and batch.

The batch version of the algorithm cycles through a complete training set of input-
output pairs (x;, ¥, ), (X, ¥, )s-s (X, ¥y ) With gradient decent applied to the
cumulative error of each cycle, until no further changes are required. On the contrary,
on-line back-propagation algorithm adjusts the weights in response to each single
input pattern, using the local error of the network with its current weight settings for
that input (Arbib, 2003). So, the batch weight updating method updates the weights

after iteration.

4.9 CASE STUDIES

It is important to point out that building successful ANN is a combination of art and
science; software alone is not sufficient to solve all problems in the process (Zhang,
2004). There are no precise rules to find the best architecture of an ANN. It is critical
to understand the key issues surrounding the model-building process. There are
different parameters and connections (how the neurons in each layer are connected to
neurons in adjacent layers) which need to be identified in each particular case.
Parameters like the number of hidden layers, the number of neurons (or processing
elements) in each layer, the activation functions and the learning rate of the nctworks
have to be identified carefully. For both ANN models, static and recurrent, the
existence of a vast amount of design possibilities allows experimentation but also sets
out the doubt about which might be the best of combinations among design and
training parameters. Unfortunately, there is not a mathematical basis that might back
the selection of a specific architecture, and only few works (Lapedes & Farber, 1987;
Cybenko, 1989) have shown lower and upper limits for PE number at some modcls

and with restricted types of problems (Rabuiial and Dorado, 2006).
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The major decisions a neural networks forecaster must make include data preparation,
input variable selection, choice of network type and architecture, transfer function,
and training algorithm, as well as model validation, evaluation and selection. Some of
these can be solved during the model building process while others must be
considered before actual modelling starts (Zhang, 2004). Moreover, the types of
connections also play an important role for the performance of the networks. Because
of the problems such as over-fitting or over-training of the neural networks (see

section 4-9) the strategies to train and consequently test the network need to be

chosen carefully.

A few examples of using artificial neural networks in different areas are presented in
Table 4-1. The first four rows are networks which are implemented to predict
different stock markets. As it appears in the table there is not a unique architecture for
the purpose of the forecasting. There are some common characteristics but different
types of activations, various numbers of layers, various numbers of neurons in each
layer and some other factors that make different prediction abilities. The challenge is
to find out the special type of ANN and its specifications for each particular purpose.
For example, the specifications of the networks for the two studies of the Swedish
stock market, which used different delay strategy, are different from the Tokyo or
Australia stock market networks. There are some common characteristics between an
ANN to predict the stock market and the river system in Spain or the number of the
Iynx in Canada (Table 4-1). When a network is properly configured, it offers
outstanding abilities that can be used for prediction. But ANNs have numerous
parameters and architectures, and no confirmed theory has been established for
specifying the optimal network architecture. This can be observed by a wide variety

of research methods reported in the literature,
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Application

Time Series

Chapter 4: ANN Approaches

Training Algorithm NN Architecture Inputs Outputs Success Software

Stock Market Internal: Highest Price

Prediction - Daily Data; Back-propagation ECNN Lowest Price Closing Price Swedish Stock Index SENN (Simiulation
Swedish Stock January 1993 - 30 Daps &,ali dowin (Error Correction Volume External: Intrest Rate (SXGE) 56.8% Environmentfor
Exchange June 2000 Y % | Neural Network) DowlJonesInd.Gold Price Neural Networks)
(Nygren, K.2004) (Total Ext.10)

3:;;?;:2;5 Two ) Internal: Highest l?rice ) o
Erricsson B and Weekly Data; Back-propagation ECNN ) Lowest Price Closing Price Erricsson B and Volvo SENN (Simiulation
Volvo B - Swedish January 1993 - 12‘Weeks (Error Correction Volume External: Intrest Rate B Indices Good Environmentfor
Stock Exch December 1999 Windowing Neural Network) DowlJonesInd.Swedish Ind. Neural Networks)

ek =x¢ ‘;“Og&) (Total Ext.6)

(Nygren, K.

Prediction of the Back-propagation Recurrent - MNN | Tumover, Interest Rate,

Tokyo Stock Daily Data; (Movil; fh char ot (Modular Neural Foreign Exchange rate, Tokyo Stock Exchange 93 8% N/A

Exchange Prices Over 33 Months Leaming) & Network; 4 BP New York DowJones Prices Index (TOPIX) e
(Kulkarni, 1998) & Modules) Average (Total 7)

Security Selection 1,994 5003, (22,944 . Feed-forward P/E Ratio, Payout Ratio, Total | Securities (determine

in the Australian R 3 Y. Back-propagation (Various Number of | C t Assets. Earni which i

Stock market ov-v). ear (Logistical Sigmoid arious Number o urrent Assets, Earnings per vhich securities are Very Good | N/A

(Vanstone et al., Training and Function) N.eurons Tested Sh.are, Year End Share likely to have the best

2004) 2 Years Test Finally used 7) Price (Total 14) chances)

MLP

Modelling for the Feed-forward (With

simulation of . an added

Managing the upper | Monthly Data; ?I;Ck-gr ogiagat(:(i); Multivariate Stream Flow for 7 Different Generation of Very Good | N/A

Tagus River system | For 53 years Furf’;ion) gm Random River Station (Total 14) Discharge Data Series i

in Spain. (Ocho- component)

Rivera et al., 2003) (3 Layer, 6 Hidden

Nodes; {14-6-7])

Ecological research

- Lynx Population

in North-West Annual Data; . Feed-forward Magnitude of the Lynx SPSS; Neural
Canada. 1820 - 1934 Back-propagation | 1y » 5y Numbers of Lynx Trapped | p0 | 12tion Very Good | i nnection
(Katijani et al.,

2005)

Table 4-1: Neural Networks application in some related studies.
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4.10 ANN DISADVANTAGES

Besides all the positive aspects of the ANNS there are also some disadvantages.

In general, neural networks are data-driven techniques. Therefore, data preparation is
a critical step in building a successful neural networks model. Without an adequate
and representative data set, it is impossible to develop a useful, predictive ANN
model (Zhang, 2004). Thus, the reliability of ANN models depends to a large extent
on the quality of data.

The functioning of ANNS is also hardly transparent. This limitation is due to the fact
that they function as a black box. The knowledge acquired during network training is
encoded within the internal structure of the ANNs. Currently, there is no explicit
technique to extract the relationship between input and output variables, causing
difficulty in interpreting results from the networks (Zhang, 2004). It is suggested that
a careful modelling decision for training and testing should have been made based on

a particular problem.

Another common problem which is associated with the neural networks in general is
the over-fitting problem. ANN training should stop at an appropriate point to avoid
over-training. Over-training of the networks causes the over-fitting of the network
and consequently lack of accuracy of the networks. Figure 4-26 explains this issue
and, as it appears in the plot, the best point to stop training is the minimum of the test
error curve. There are also some other reasons for the over-fitting problem e.g. noise

in the data, insufficient data or too many inputs,
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Test error

Training error

»
»

Stop training
[terations

Figure 4-26: Over-training problem.

The performance of ANNs is usually not very stable since the training process may
depend on the choice of a random start. The degree of success may fluctuate from one
training pass to another. This needs a careful training strategy and subsequently a
reliable procedure to handle the produced data and the obtained information of each

network.

One of the disadvantages of back-propagation algorithm, which has been used for this
study, is that the training phase is very time consuming. This issue is getting worse
when the number of neurons in different layers increases and sometimes it needs few
hours to train the networks depending on the abilities of the computer. As it is
explained before in this chapter, a solution for speeding up the process of back-
propagation toward convergence is to add a momentum term to the above process.
The extensions of the back-propagation method also allow different learning rates for
different parameters. However, efficient as back-propagation may be, it still suffers
from the trap of local rather than global minima, or saddle point convergence.
Moreover, while low values of the learning parameters avoid oscillations, they may
unnecessarily prolong the convergence process (McNelis, 2005). Therefore, one of
the problems with back-propagation is that both convergence speed toward the
solution and the possibility of reaching a solution depend on the choice of the

learning rate y and the proportionality constant of momentum« .
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4.11 CONCLUSION

The different ANN models and architectures have been demonstrated and their
variables introduced and explained in detail in this chapter. It has been shown that
ANNES are able to capture the dynamics of the data (see section 4-6-3 and 4-8) and
identify the most effective inputs on a set of desired outputs (see section 4-5-2).
These criteria make them a proper tool to analyse complex environments, like the
shipping market, and establish a proper model to map the inputs and the outputs
accurately (see section 4-6-2). In parallel, considering the fast growth of computers,
in terms of speed and the power of calculations, ANNs can now perform more
accurate and faster. Therefore, using ANN methodology to model and consequently
forecast markets is a growing topic and the shipping market is not an exception.
Implementing the ANN for a specific market is a high maintenance process and needs
intensive study. The structure and architecture of ANNs vary for every network (see
section 4-9). There are different factors and parameters which need to be identified
and evaluated accurately to achieve realistic results as a lack of accuracy can cause

convergence to irrational results,
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5.1 INTRODUCTION

In this chapter, different statistical analytical methods, which are generally
multivariate analysis methods, are using to model the demolition market. The scrap
price and the scrapped tonnage, as the main pillars of the demolition market, are
investigated and consequently predicted in each method. The MLR, PCR and PLS
modelling methods are used to model these variables using The Unscrambler® 9.1
and SPSS® 13.0 software. Firstly, the mathematical structure of the demolition
market is investigated and secondly, the future of the market is predicted using the
above statistical methods. It means these three statistical approaches have been used
to forecast the future of the demolition market for a given period of time. The focus
of the study is on the tanker market as one of the main drivers of the demolition
market. As mentioned before, tankers have big flat panels which are generally easy to
access and subsequently cut into small pieces and these criteria make them favourable
for scrap yards. Hence, the objective is to predict: first monthly scrapped tonnage and
second monthly demolition prices (in two different locations i.e. Subcontinent and
Far-East scrapyards) based on the tanker market. In fact, the prediction of these two

parameters plays an important role having a realistic plan for the future of the ship

scrapping.

In addition to the internal market inputs there are also some external factors which
have influence over the demolition market including importantly steel price and oil
production. To obtain the most accurate models for each method both the internal and

external factors are taken into account for the modelling.

5.2 DATA STRUCTURE

The data, which have been used for this study, are monthly data from January 1995
till December 2004. This means each time series has 120 variables. A total number of
33 inputs/outputs have been considered for this study which was split into two
different groups of internal and external factors. Internal factors are variables which

are applicable to the tanker market including tanker new building prices, second-hand
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tanker market values, tanker freight rates and tanker fleet supply and demand.
External factors are variables which may influence the tanker market but they are not
in the tanker market itself including oil production, steel production, steel price and

exchange rates. A list of all variables can be found in Table 5-1.

There are also important variables which can directly influence the market. For
example, the old tanker fleet (about 25 years old or more) are likely to be scrapped in
near future and, as demolition is labour intensive, wages also play an important role
to determine scrap prices. In general, the price which has been offered for scrapping a

ship will be estimated as a function of (Buxton, 1991):

o value of realisable materials (tonnage outturn of various material categories),
o delivery cost to scrapyard and

o cost of demolition.

Hence, labour cost can determine the cost of demolition. In addition to the above, the
second-hand values for the older ships would also be beneficial to the model. In this
research, however, none of the above variables were available on a monthly scale to

be entered into the ANN.

All timeseries are based on monthly data, so the prediction of the final model will be
based on monthly forecasting as well. The aim of the research, as explained before, is
to predict three steps ahead of the market which means 3 months ahead. It was
possible to use data in, for example, the average of quarterly period to have a
smoother graph but the number of patterns for the neural networks would decrease by

three quarters and therefore there will not be enough patterns for accurate modelling.

In order to use this model for the period longer than 3 months, mean 6 or 9 months, it
is possible to use the produced model for 3 months and put them in the model for a
second time. However, it is not recommended as the error will increase for the

secondary and any subsequent modelling.
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No. | External Variables Unit
1 | Crude Steel Production- USA million tonnes
2 { Crude Steel Production- EU million tonnes
3 | Crude Steel Production- China million tonnes
4 | Crude Steel Production- Japan million tonnes
5 | Crude Steel Production- S. Korea million tonnes
6 | Average Steel Price USD per tonne
7 | Scrap Price- Subcontinent USD per 1dt
8 | Scrap Price- Far-East USD per 1dt
9 | Oil Production- OPEC million Barrel per day
10 | Qil Production- non-OPEC million Barrel per day
11 | Oil World Trade million Barrel per day
12 | Exchange Rate- Euro/USD Index 1995/1=100
13 | Exchange Rate- Won/USD Index 1995/1=100
14 | Exchange Rate- YEN/$ Index 1995/1=100
15 | Bunkers- 380 CST in Rotterdam USD per million tonnes
No. [ Internal Variables Unit
1 [ MR Product Tankers' Building Price million USD
2 | Aframax Tanker DH Building Price million USD
3 | Suezmax Tanker DH Building Price million USD
4 | VLCC DH Building Price million USD
5 Crude Carrier 105000 dwt- kUSD per day
Freight Rate Single Voyage
6 Crude Carrier 150000 dwt- kUSD per day
Freight Rate Single Voyage
7 Crude Carrier 300000 dwt- kUSD per day
Freight Rate Single Voyage
g Clean Carrier 70/85000 dwt- kUSD per day
Freight Rate Single Voyage
9 MR Product Tanker DS/DH- million USD
5Years Market Value
10 Aframax Tanker DS/DH- million USD
5Years Market Value
1 Suezmax Tanker SH/DH- million USD
5Years Market Value
12 VLCC SH/DH- million USD
5Years Market Value
13 Clean Carrier 40/45000 dwt DB/DH- million USD
10 Years SH Value
14 | Tanker Fleet 10000+ dwt Supply million dwt
15 | Tanker Fleet 10000+ dwt Demand million dwt
16 | Tanker Fleet 10000+ dwt Utilisation Rate percent
17 | Tanker Order Book in Percent of Existing Fleet percent
18 | Tankers Sold for Scrapping million dwt

Table 5-1: List of all the variables used in the following studies
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5.3 STATISTICAL ANALYSIS OF THE DATA

In this section, multivariate statistical methods, as explained in Chapter 3, have been
used to investigate the time series. The main objective, in each method, is to find out

the structure of the inputs and favourable output (or outputs) and consequently model

the demolition market.

To distinguish the character of all the variables in this study, standard deviation and
mean for every individual time series is shown in (Figure 5-1).This plot displays the
average value and the standard deviation of all the variables together. The vertical bar
is the average value for the time series, and the standard deviation is shown as an
error bar around the average. The standard deviation is a measure of the spread of the
variable around that average. Comparing the standard deviations confirms that they
vary a lot from one variable to another, so it is recommended to pre-process the data
and standardise the variables before the examination in some of the multivariate

analyses e.g. PCA, PCR or PLS.

The Box-plots which correspond to all the variables are also shown in Figure 5-2.
This plot contains one Box-plot for each variable, either over the whole sample set, or
for different subgroups. It shows the minimum, the 25% percentile' (lower quartile),
the median, the 75% percentile (upper quartile) and the maximum. This plot is a good
summary of the distributions of all variables. It demonstrates the total range of
variation of each variable, and act as a check whether all variables are within the
expected range, The distance between minimum and maximum shows the spread of

the variable.

! The X% percentile of an observed distribution is the variable value that splits the observations into
X% lower values, and 100-X% higher values.
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Figure 5-1: Standard deviation and Mean for every individual variable. Standard deviation varies a lot from one variable to another.
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5.3.1 MLR

The fundamental of the MLR method is explained in Chapter 3. The aim of this
section is to model the monthly scrapped ships and scrap prices for two different
locations, the Subcontinent and Far-East, based on the MLR modelling method.

The first part of this section is dedicated to the scrap tonnage prediction and the

second part to the scrapping prices prediction.

5.3.1.1 SCRAP TONNAGE PREDICTION USING MLR

There are 32 X-variables for this part of the study and the only Y-variable is the
scrapped tanker tonnage (Figure 5-3). The overall correlation for all the raw variables
of the study is shown in Table 5-2. As it appears, the correlation between the
scrapped tanker tonnage, as the only Y-variable, and the rest of the variables, as X-
variables, shows a small correlation. The highest correlation in the table (which is a
negative correlation) belongs to the OPEC oil production with -0.6. Also, Won/USD
and Yen/USD exchange rates have the highest positive correlation with 0.4. As
mentioned in section 3-5-1, generally, the MLR method can be used when the X-
variables are not correlated or they have only a small correlation. Hence, MLR seems

to be a proper method to model the scrapped tanker tonnage.
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USA Steel Production

EU Steel Production

China Steel Production

Japan Steel Production

South Korea Steel Production

Steel Price

Subcontinent Scrap Price

Far-East Scrap Price

OPEC Qil Production

Non-OPEC Oil Production

Oil World Trade

EUR/$ Ex. Rate

WON/$ Ex. Rate

YEN/$ Ex. Rate

Bunkers Price

Product Tankers Building Price

Aframax DH Building Price

Suezmax DH Building Price

VLCC DH Building Price

Crude Carrier 105000dwt FRSingle Voyage
Crude Carrier 150000dwt FRSingle Voyage
Crude Carrier 300000dwt FRSingle Voyage
Clean Carrier 70/85000dwt FRSingle Voyage
Product Tankers DS/DH SYears Market Value
Aframax DS/DH §Years Market Value
Suezmax SH/DH SYears Market Value
VLCC SH/DH §Years Market Value

Clean Carrier- 40/45000dwt DB/DH 10 Years
Tanker Fleet- 10000 DWT+ Supply

Tanker Fleet- 10000 DWT+ Demand
Tanker Ficet- 10000 DWT+ Util. Rate

Tanker Order Book in Percent of Existing Fleet

Scrapped Tankers

Figure §-3: All the X and Y-variables of the model for the scrapping tonnage
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A model based on MLR has been made (Figure 5-4) and subsequently the full cross
validation method has been chosen to validate the accuracy of the model. In addition,
as explained in section 3-6-2, all the weights are set to 1/Stdv for each X-variable. The

prediction of the mentioned model is shown in Figure 5-5.
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scrapping tonnage )

Figure 5-4: the MLR model for the monthly scrapped tonnage
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Table 5-2: Correlation between all variables. Negative numbers are in blue cells.
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The model and its Analysis Of Variance (ANOVA) are shown in Table 5-3 . This
table includes Sum of Squares (SS), number of Degrees of Freedom (DF), Mean
Square (MS=SS/DF), F-value, p-value, B-coefficient and Standard Error of the b-
coefficients (STDerr).

F- p- B-

SS DF MS ratio value | coefficient STDerr
Summary
Model 91.145 32 2.848 5.111 0
Error 48.482 87 0.557
Adjusted Total 139.627 | 119 1.173
Variable
Intercept 0.681 1 0.681 1.222 0.2719 | 29.357 26.552
USA Steel Prod. 5.08E-02 | 1 5.08E-02 | 9.12E-02 ] 0.7634 | -0.218 0.723
EU Steel Prod. 1.129 1 1.129 2.026 0.1582 | -0.659 0.463
ChinaSteel Prod. 1.389 1 1.389 2.492 0.1181 | 0.464 0.294
Japn Steel Prod. 6.18E-02 | 1 6.18E-02 | 0.111 0.74 0.245 0.735
S.Korea Steel Pr 0.394 1 0.394 0.707 0.4026 | 1.382 1.644
Steel Price 0.802 1 0.802 1.44 0.2334 | 5.18E-03 4.31E-03
Sub Continent Sc 7.29E-02 | 1 7.29E-02 | 0.131 0.7184 | 2.92E-03 8.06E-03
FarEast Scrap Pr 0.373 1 0.373 0.669 0.4155 | 5.41E-03 6.62E-03
OPEC Qil Prod. 1.24E-02 | 1 1.24E-02 | 2.23E-02 | 0.8818 | 5.29E-02 0.355
non-OPEC Qil Pro 1.954 1 1.954 3.507 0.0645 | -0.705 0.376
QOil World Trade 5.371 1 5.371 9.638 0.0026 | -1.055 0.34
EUR/$ Ex. Rate 9.93E-02 | 1 9.93E-02 | 0.178 0.674 -1.67E-02 3.71E-02
WON/$ Ex. Rate 5.17E-02 | 1 5.17E-02 | 9.28E-02 | 0.7614 | -8.45E-03 2.77E-02
YEN/$ Ex. Rate 2.519 1 2.519 4.521 0.0363 | 5.78E-02 2.72E-02
Bunkers Price 1.67E-02 | 1 1.67E-02 | 3.00E-02 | 0.8628 [ -1.30E-03 7.50E-03
Product Tankers 1.351 1 1.351 2.424 0.1231 | 0.427 0.274
Aframax DH Build 1.274 1 1.274 2.285 0.1342 | -0.524 0.347
Suezmax DH Build 0.282 1 0.282 0.507 0.4785 | -0.187 0.263
VLCC DH Building 0.257 1 0.257 0.461 0.4987 | 0.122 0.179
Crude Carrier 10 0.182 1 0.182 0.326 0.5694 | 1.40E-02 2.46E-02
Crude Carrier 15 0.489 1 0.489 0.878 0.3512 | 1.67E-02 1.78E-02
Crude Carrier 30 2.769 1 2.769 4.968 0.0284 | -2.26E-02 1.01E-02
Clean Carrier 70 0.334 1 0.334 0.6 0.4408 | 1.48E-02 1.91E-02
Product Tankers 1.78 1 1.78 3.194 0.0774 | -0.307 0.172
Aframax DS/DH 5Y 1.632 1 1.632 2.929 0.0905 | 0.214 0.125
Suezmax SH/DH 5Y | 1.158 1 1.158 2.079 0.153 -0.174 0.121
VLCC SH/DH 5Year | 0.33 1 0.33 0.5692 0.4436 | 7.05E-02 9,16E-02
Clean Carrier- 4 3.37E-02 |1 3.37E-02 | 6.06E-02 | 0.8062 | 6.18E-02 0.251
Fleet- Supply 1.558 1 1.558 2.796 0.0981 | 0.105 6.28E-02
Fleet-Demand 2.817 1 2.817 5.055 0.0271 | 9.26E-02 4.12E-02
Fleet- Util. Rate 0.151 1 0.151 0.271 0.6037 | -9.51E-02 0.183
Tanker Order Book 1.563 1 1.563 2.805 0.0976 | 0.157 9.37E-02

Table 5-3: the Analysis of variance for the scrapped tonnage MLR model
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The b-coefficients are the values of the regression coefficients are displayed for each
variable of the model and each regression coefficient is estimated with a certain

precision, measured as a standard error (STDerr in the table).

pvalues Regression Coefficients
09 T OE [0 N R R IR R . ..............................
- : [ ]
L ] °
L ]
06 cmmad B i e mom oo e s e er e e e e el et e ey om e e e 16 e E e e (6 5 E Oboe e W0 W e e B e e
% [ ]
8| : .
. . .
= ° 4
. @
03 | e eier e e e e e e e e 7 e e e e e e (e e 8 e i T e @ el e e e e e w0 el e e @ e e e e G e e e
i g ®
:o. : OiITrade:.. : @ :
il i . wd . ; aw  ® &
0 — : : Py » Yanl§ ® Cryde Carmmer 30 ° ® Tanker Demarid
X-vanables
] T T L] Ll T T I T T ¥ T T T I T T T T T T I T Ll T T Ll T I T T T T T T I
USA Ste FarEast Bunkers Crude C Tanker

RESULT1, Y-var: Tankers Sold for

Figure 5-6: The p-values correspond to each X-variable.

As mentioned in section 3-5-1, the only relevant measure of how well the model
performs is provided by the Y-variances. Residual Y-variance for the present model is

shown in Figure 5-7 as well.
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Figure 5-7: The residuals versus sample number for selected variables for the MLR model, used to detect outliers and lack of model fit.
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5.3.1.2 SCRAP PRICE PREDICTION USING MLR

For this part of the study, similarly, a model is implemented to forecast the scrap
prices for both Subcontinent and Far-East scrapyards. There are two Y-variables

compared with the one Y-variable for the previous model (Figure 5-8).
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X-variables

x,(1):
x,(1):
x3():
x,(1):
x5(1):
x,(1):
x,(1):
X (1)
Xy (1)
X,
xp(0):
X (1)
x3(0):
X, (1)
%s(0):
X6
X (1)
x5(0):
X ()
X0 ():
X (1)
Xp(t):
X (t):
Xy (t):
Xys()
X (1) :
Xy (£):
X5 (1)
X9 (t):
X3 ()

USA Steel Production

EU Steel Production

China Steel Production

Japan Steel Production

South Korea Steel Production

Steel Price

OPEC Oil Production

Non-OPEC Oil Production

Oil World Trade

EUR/S$ Ex. Rate

WON/$ Ex. Rate

YEN/$ Ex. Rate

Bunkers Price

Product Tankers Building Price

Aframax DH Building Price

Suezmax DH Building Price

VLCC DH Building Price

Crude Carrier 105000dwt FRSingle Voyage
Crude Carrier 150000dwt FRSingle Voyage
Crude Carrier 300000dwt FRSingle Voyage
Clean Carrier 70/85000dwt FRSingle Voyage
Product Tankers DS/DH §Years Market Value
Aframax DS/DH 5Years Market Value
Suezmax SH/DH 5Years Market Value
VLCC SH/DH 5Years Market Value

Clean Carrier- 40/45000dwt DB/DH 10 Years
Tanker Fleet- 10000 DWT+ Supply

Tanker Fleet- 10000 DWT+ Demand

Tanker Fleet- 10000 DWT+ Util. Rate

Tanker Order Book in Percent of Existing Fleet

X31 (t) " Scrapped Tankers

Y-variable

Y3 (£) : Subcontinent Scrap Price
¥, (#) :Far-East Scrap Price

Figure 5-8: All the X and Y-variables of the model for the scrapping price
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The rest of the parameters remain the same i.e. weights and cross validation method.
The overall model connections is represented in Figure 5-9. The prediction curves of

this model are shown in Figure 5-10 and Figure 5-11 beside the actual measured

samples for both regions.

A\ MLR model for

scrapping price 10

MLR model for

scrapping price 210

Figure 5-9: the MLR model structure for the monthly scrap prices
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Figure 5-10: Subcontinent scrap price prediction using MLR
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Figure 5-11: Far-East scrap prices prediction using MLR
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Consequently, the analysis of variance of this model is shown in Table 5-4 and Table

5-5.
F- - B-
SS DF MS ratio va[:ue coefficient STDerr
Summary
Model 6.74E+05 31| 2.17E+04 144.586 0
Error 1.32E+04 88 150.348
Adjusted Total 6.87E+05 119 | 5.77E+03
Variable
Intercept 528.002 1 528.002 3.512 | 0.0642 805.308 | 429.727
USA Steel Prod. 90.228 1 90.228 0.6 | 0.4406 -9.175 11.844
EU Steel Prod. 9.488 1 0.488 | 6.31E-02 | 0.8022 1.929 7.678
ChinaSteel Prod. 1.15E+03 1 1.15E+03 7.677 { 0.0068 12.96 4678
Japn Steel Prod. 642.842 1 642.842 4.276 | 0.0416 -24.302 11.753
S.Korea Steel Pr 178.901 1 178.901 1.19 | 0.2783 -29.29 26.851
Steel Price 1.87E+03 111.87E+03 12.435 § 0.0007 0.229 | 6.49E-02
OPEC Qil Prod. 351.186 1 351.186 2.336 0.13 8.788 5.75
non-OPEC Oil Pro 306.025 1 306.025 2.035} 0.1572 -8.883 6.227
Oil World Trade 2.661 1 2.661 | 1.77E-02 | 0.8945 -0.757 5.693
EUR/$ Ex. Rate 5.693 1 5.693 | 3.79E-02 | 0.8462 -0.119 0.61
WON/$ EX. Rate 0.161 1 0.161 | 1.07E-03 0.974 -1.49E-02 0.456
YEN/$ Ex. Rate 3.714 1 3.714 | 2.47E-02 | 0.8755 7.16E-02 0.456
Bunkers Price 456.362 1 456.362 3.035 0.085 0.208 0.119
Product Tankers 287.953 1 287.953 1.915| 0.1699 -6.241 4.51
Aframax DH Build 1.31E+03 1| 1.31E+03 8.68 | 0.0041 16.106 5.467
Suezmax DH Build 41.003 1 41.003 0.273 | 0.6028 -2.183 4.18
VLCC DH Building 227.384 1 227.384 1.512 | 0.2221 -3.595 2.923
Crude Carrier 10 30.223 1 30.223 0.201 0.655 0.18 0.401
Crude Carrier 15 13.862 1 13.862 | 9.22E-02 | 0.7621 8.87E-02 0.292
Crude Carrier 30 461.65 1 461.65 3.071 | 0.0832 -0.293 0.167
Clean Carrier 70 60.231 1 60.231 0.401 | 0.5284 -0.197 0.312
Product Tankers 960.659 1 960.659 6.39 | 0.0133 6.963 2.755
Aframax DS/DH 5Y 848.8 1 848.8 5.646 | 0.0197 4.794 2.018
Suezmax SH/DH 5Y 679.216 1 679.216 4518 ) 0.0363 -4.137 1.947
VLCC SH/DH 5Year 467.058 1 467.058 3.107 | 0.0815 -2.606 1.479
Clean Carrier- 4 57.805 1 57.805 0.384 | 0.5368 2.523 4.069
Tanker Fleet- 10 678.889 1 678.889 4.515 | 0.0364 -2.161 1.017
Tanker Fleet- 10 1.44E+03 1 | 1.44E+03 9.589 | 0.0026 2.045 0.66
Tanker Fleet- 10 192.493 1 192.493 128 | 0.2609 -3.37 2.978
Tanker Order Boo 4,222 1 4222 | 2.81E-02 ] 0.8673 0.262 1.663
Tankers Sold for 171.505 1 171.508 1.141 | 0.2884 1.862 1.743

Table 5-4: The analysis of variance for the Subcontinent MLR model
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F- - B-

S DF MS ratio vaﬁue coefficient STDerr
Summary
Model 5.40E+05 31| 1.74E+04 78.535 0
Error 1.95E+04 88 221.848
Adjusted Total 5.60E+05 119 | 4.70E+03
Variable
Intercept 80.853 1 80.853 0.364 | 0.5476 315.132 | 522.001
USA Steel Prod. 43.94 1 43.94 0.198 | 0.6574 -6.403 14.387
EU Steel Prod. 78.745 1 78.745 0.355 | 0.5529 5.556 9.326
China Steel Prod. 238.456 1 238.456 1.075 | 0.3027 5.891 5.682
Japan Steel Prod. 793.096 1 793.096 3.575 | 0.0619 -26.993 14.276
S.Korea Steel Prod. 329.84 1 329.84 1.487 0.226 -39.77 32.616
Steel Price 2.962 1 2.962 | 1.34E-02 | 0.9083 9.11E-03 | 7.89E-02
OPEC Oil Prod. 305.726 1 305.726 1.378 { 0.2436 8.2 6.985
non-QPEC Qil Pro 57.542 1 57.542 0.259 | 0.6118 -3.852 7.564
Oil World Trade 798.331 1 798.331 3.599 | 0.0611 13.118 6.915
EUR/$ Ex. Rate 2.054 1 2.054 | 9.26E-03 | 0.9236 -7.13E-02 0.741
WON/$ Ex. Rate 0.856 1 0.856 | 3.86E-03 | 0.9506 3.44E-02 0.554
YEN/$ Ex. Rate 137.011 1 137.011 0.618 | 0.4341 0.435 0.554
Bunkers Price 1.35E+03 1| 1.35E+03 6.075 | 0.0156 0.357 0.145
Product Tankers 34.603 1 34.603 0.156 | 0.6938 -2.163 5.478
Aframax DH Build 161.975 1 161.975 0.73 | 0.3952 5674 6.641
Suezmax DH Build 656.388 1 656.388 2.959 | 0.0889 8.734 5.077
VLCC DH Building 284.263 1 284.263 1.281 | 0.2607 -4.02 3.551
Crude Carrier 10 249.307 1 249.307 1.124 0.292 0.517 0.488
Crude Carrier 15 47.973 1 47.973 0.216 | 0.6431 -0.165 0.355
Crude Carrier 30 3.787 1 3.787 | 1.71E-02 | 0.8964 -2.65E-02 0.203
Clean Carrier 70 97.262 1 97.262 0.438 | 0.5096 0.251 0.379
Product Tankers 1.35E+03 11 1.356+03 6.097 | 0.0155 8.263 3.346
Aframax DS/DH 5Y 151.377 1 151.377 0.682 0.411 2.025 2.451
Suezmax SH/DH 5Y | 1.07E+03 1| 1.07E+03 4.843 ] 0.0304 -5.204 2.365
VLCC SH/DH 5Year 38.578 1 38.578 0.174 | 0.6777 -0.749 1.796
Clean Carrier- 4 146.08 1 146.08 0.658 | 0.4193 -4.011 4.942
Tanker Fleet- 10 952,127 1 952.127 4292 |1 0.0412 -2.559 1.235
Tanker Fleet- 10 555.467 1 555.467 2.504 | 0.1172 1.269 0.802
Tanker Fleet- 10 236.539 1 236.539 1.066 | 0.3046 -3.735 3.618
Tanker Order Boo 17.167 1 17.167 | 7.74E-02 | 0.7815 0.528 1.898
Tankers Sold for 375.291 1 375.291 1.692 ) 0.1968 2.754 2.117

Table 5-5: The analysis of variance for the Far-East MLR model

Residual Y-variance for the present model for Subcontinent and Far-East scrap prices

are shown in Figure 5-12 and Figure 5-13 respectively.
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Figure 5-12: Subcontinent residual for MLR model
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5.3.1.3 MLR MODELLING RESULTS

5.3.1.3.1 SCRAPED TONNAGE

For the MLR modelling which is carried out for the monthly scrapped tonnage, the
first part of the analysis of variance table (Table 5-3) is a summary of the significance
of the global model. The p-value for the global model is 0.00 which is far smaller than
0.05. This means that the model explains more of the variations of the response
variable than could be expected from random phenomena. In other words, the model
is significant at the 5% level. The second part of this table deals with each X-variable
of the model separately. If the p-value for an individual X-value is smaller than 0.05,
it means that the corresponding source of variation explains more of the variations of
the response variable than could be expected from random phenomena or the effect is
significant at the 5% level. The p-values are also shown in Figure 5-6 and as it
appears, oil world trade, Yen/USD exchange rate, crude carrier 300k dwt freight rate
(single voyage) and tanker fleet demand have the lowest p-values amongst the other
X-variables for the model. The F-ratios can confirm the previous p-value analysis
results. The F-ratio for the world oil trade shows the maximum value with 9.6 and
then 5.0, 4.9 and 4.5 for the Yen/USD exchange rate, crude carrier 300k dwt freight

rate (single voyage) and tanker fleet demand respectively.

In general, all the B-coefficients, in the table, have small values. The X-values with
higher regression coefficients have more influence on the obtained model, so this

model is a function of mainly:

o South Korean steel production
o Oil world trade
o Non-OPEC oil production

o EU steel production
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The highest positive regression belongs to South Korean steel production with 1.382
which represents a small regression between this input and the final MLR model. The
highest negative regression belongs to oil world trade with 1.055. Based on this
model, there is no significant difference between inputs and it is not possible to reduce

the dimension of the input space in order to analyse the market.

The F-ratio represents a small value for the global MLR model. Based on this model,
there is no significant difference between all the influences of the inputs. It means that

we cannot highlight the most influential inputs to the model.

Residual Y-variance for this model is shown in Figure 5-7 which is the variance of the
Y-residuals and expresses how much variation remains in the observed response if the
modelled part has been take out. It is an overall measure of the misfit. In overview,
since September 2001 the variation of the residuals has increased and May 2003, May
2002 and August 2003 represent the highest residuals respectively. There is a
possibility that there are some special events which happened in those months to
influence the market but in general model shows the maximum misfit in these

particular dates.

5.3.1.3.2 SCRAP PRICES

For the MLR modelling which is carried out for the monthly scrap prices, the first part
of analysis of variance table (Table 5-4) shows a summary of the significance of the
global model. The p-value for the global model is 0.00 which is far smaller than 0.05.
This means that the model explains more of the variations of the response variable
than could be expected from random phenomena. In other words, the model is
significant at the 5% level. The second part of the table deals with each X-variable.
Similarly, if the p-value for an individual X-value is smaller than 0.05, it means that
the correspondent source of variation explains more of the variations of the response
variable than could be expected from random phenomena or the effect is significant at

the 5% level.
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The p-values for the Subcontinent X-variables represent small p-values for China and
Japan Steel Production, Steel price, Aframax Double Hull building price, Suezmax

Single/Double Hull 5 years old market value, Tanker Fleet supply and demand.

The X-values with higher regression coefficients have more influence on this model,

so this model is a function of mainly:

o South Korean steel production

o Japan steel production

o Aframax double hull building price
o China steel production

o USA steel production

South Korea and Japan steel production have the highest and second highest negative
regressions respectively. China steel production has the second highest positive
regression. It means that the increment of steel production in China will increases the
scrap prices in Subcontinent scrap yards but the increment of steel production in
either South Korea or Japan decreases the prices significantly. The Aframax double
hull building price is also represents a high influence to the final MLR model as its B-

coefficient is calculated 16.106.

Similarly, based on Table 5-5 for the Far-East X-variables, Bunkers Price, Product
tankers, Suezmax Single/Double Hull 5 years old market value and tankers supply

have small p-values. This model is a function of mainly:

o South Korean steel production
o Japan steel production
o Oil world trade

o Suezmax double hull building price

Similar to the previous model, the highest negative regressions belong to South Korea
with 39.77 and the second highest is Japan steel production with 26.99. It means that
the increment of production in each of these countries will decrease the scrap prices

sharply. The highest positive regression belongs to the oil world trade with 13.11
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which is far smaller than the previous two. China steel production has a positive value

of 5.89 to this model.

The F-ratio of the global model for both modelling is relatively high with 144.6 and
78.5 respectively. As mentioned earlier, the F-ratio compares structured variance to
residual variance and has a statistical distribution which is used for significance
testing. Hence, the first model for Subcontinent is more effective than the second one
for Far-East. Furthermore, these models are much more effective compared with the

monthly scrapped tonnage model in the last section.

Based on these models for both locations, Korean steel production plays the most

important role to determine the prices. It also shows that higher steel production in
South Korea decreases the scrap prices but an increase in steel production in China
increases the scrap prices. These negative and positive effects on scrap price due to

the increment of the steel production in different counties are not rational.

Based on the residual Y-variance of the MLR model for both Subcontinent and Far-
East scrap prices, which are shown in Figure 5-12 and Figure 5-13 respectively, the
highest variation for both prices happened in February 2004 which represents the
most misfit of the model for this month. There is also a relatively high misfit in
December and June 2004 for the Subcontinent prices and in May and December for
the Far-East prices. There is a possibility that there are some special events which
happened in those months to influence the market but in general model shows the

maximum misfit in these particular dates.

5.3.2 PCA AND PCR

The fundamentals of the PCA and PCR methods are explained in Chapter 3. In this
section different models, based on these two methods, are built and their
performances are tested. The first part of this section is the modelling of the monthly
scrapped tonnage and the second part is the modelling of the monthly scrap prices for

Subcontinent and Far-East.
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5.3.2.1 SCRAP TONNAGE PREDICTION USING PCR

Similar to the previous study of the MLR method, there are 32 X-variables and the
only Y-variable is the scrapped tanker tonnage (Figure 5-3). The connections of the

variables with the PCR model are illustrated in Figure 5-14.
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PC model fbr

scrapping tonnage )

Figure 5-14: The PCR model for the monthly scrapped tonnage
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The first step of this modelling is to find out the number of the processing components
for the model. For this reason various numbers of PCs are considered to identify the
most efficient combination. The variance curve (Figure 5-15) explains how much

information is being modelled for various numbers of PCs.

100 X-variance Explained VVariance
50 e e e e e e R e A e 0 e e R S S ] e S e e e e e B e e e e n e e
0 pm—
FCs
I ¥ 1 ¥ T i I = I U I
PC_00 PC_02 PC_04 PC_06 PC_08 PC_10

RESULT1, Variable: ¢.7otal v.Total

Figure 5-15: Variance curve for different numbers of PCs of the PCR model for the
monthly scrapped tonnage

A model with one PC is able to explain 81.5% of the information in the data table and
the model with four PCs explain about 96% of the information in the data table. The
models including five PCs or more show saturation i.e. increasing 4 PCs to 5 PCs
over-fits the model. Thus, a model including 4 PCs seems to be the most accurate
choice and consequently its prediction will be the most accurate prediction amongst
the others. Figure 5-16 shows the predicted tonnage of the scrapped tankers versus the

actual measurements based on a PCR model with 4 PCs.
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Figure 5-16: Monthly prediction of the scrapped tanker versus actual measurements based on PCR model with four Processing
Components (PCs)
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As explained in section 3-6-2, random Cross Validation (CV) method is used to
simulate test set validation for this model. It is may be time consuming but it can

assesses the stability of the PCR results. Validation curve is shown in red in Figure

5-16.

The average error of the model for different stages is shown in (Figure 5-17). This is a
plot of the average prediction error, for either the calibration or the validation
samples. In this plot the Root Mean Square Error of Calibration (RMSEC) and Root
Mean Square Error of Prediction (RMSEP) plotted against the number of components
used in the model. The average modelling error for a model with 4 PCs is 0.881 and

the average prediction error that can expect for future prediction is 0.916.
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Figure 5-17: The RMSE for prediction with the model with different number of PCs.

The regression analysis can explain which X-variables are most important to predict
the Y-variable for a model. The scrapped tanker tonnage is the only Y-variable of this
model. The regression coefficients of all the X-variables for the above model are

represented in Figure 5-18.
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Figure 5-18: Regression Coefficient analysis of the scrapped tanker tonnage.

To increase the accuracy of the model using recent obtained results for regression
coefficients, the model can be recalculated with only the X-variables which have the
highest coefficients.

The new RMSE results (Figure 5-19) illustrate that the average modelling error is
0.894 which is almost the same for the recalculated model. It means that there is no

significant different between the two models.
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Figure 5-19: RMSE results for recalculated model
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5.3.2.2 SCRAP PRICE PREDICTION USING PCR

To model the scrap prices, there are 31 X-variables and two Y-variables, Far-East and
Subcontinent scrap prices, as illustrated in Figure 5-8. All the X and Y-variables are
monthly data so they are functions of time. The fundamental of this modelling is
similar to the previous method but this time PCR is used to model the prices. The X

and Y-variables and their connections to the PCR model are represented in Figure

5-20.
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Figure 5-20: The PCR model structure for the monthly scrap prices in
Subcontinent and Far-East

The first step is to distinguish the best combination of the PCs for this model. The
variance curve is shown in Figure 5-21 which explains how much information is

being modelled for various numbers of PCs. As it appears in this figure, the model
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with 6 PCs represents the value of 93.38 which means, 93% of the information in the
data table has been explained with this model. Similarly, it can be found that the
model with 5 PCs is able to explain 84% of the information in the data table. Models
with 7 PCs or more are shown saturation which represent over-fitted models.

Therefore, the model with 6 PCs is the best choice.

- Y-variance Explained Variance .
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Figure 5-21: Variance curve for different number of PCs for the PCR model of the
monthly scrap prices

The prediction of the mentioned model is represented in Figure 5-22 and Figure 5-23

for the scrap prices in Far-East and Subcontinent respectively.
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Figure 5-22: Far-East scrap price predictions based on the PCR model
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Figure 5-23: Subcontinent scrap price predictions based on the PCR model
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To identify the average prediction error for both Y-variables in the above model,

RMSE results are presented in Figure 5-24.
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Figure 5-24: RMSE for the prediction of the PCR model with 6 PCs.

Regression analyses for both models are represented in Figure 5-25 and Figure 5-26.
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Figure 5-25: Regression Coefficient analysis of the scrap price in Far-East
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Regression Coefficients
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Figure 5-26: Regression Coefficient analysis of the scrap price in Subcontinent

5.3.2.3 PCR MODELLING RESULTS

5.3.2.3.1 SCRAP TONNAGE

For the PCR modelling, which is carried out for the monthly scrap tonnage, Figure
5-16 represents that the overall model is not able to analyse the variation of the data.
Regression analysis of the obtained model illustrates which variables are most
important to predict the Y-variable (Figure 5-18). The X-values with higher regression
coefficients have more influence on the obtained PCR model, so this model is a

function of mainly:

o Steel price

o Subcontinent scrap price

o Crude carrier 300k dwt freight rates
o  Won/USD exchange rate
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o Bunker price

Regression coefficients is also summarise the modelled relationships between
scrapped tanker tonnage and each X-variable of this model. All the above variables
have relatively higher coefficient than the others. Freight rates, in general, have the
negative influences to the model. Crude carrier 300k dwt freight rate has the most
value amongst the others. Steel price also shows a negative regression but its value is
less than the freight rates. Bunker price has the most positive influence to the model
and Won/USD exchange rate and Subcontinent scrap price have the second and third

highest positive values.

The average modelling error (Figure 5-17) for the PCR model with 4 PCs is 0.881
and the average prediction error that can expect for future prediction is 0.916. It

means error has increased for the prediction stage.

5.3.2.3.2 SCRAP PRICES

For the PCR modelling of the monthly scrap prices, the regression analysis is carried
out separately for each location. Regression analysis of the model for the Far-East

location (Figure 5-25) shows that the model is a function of mainly:

o Euro/USD exchange rate
Yen/USD exchange rate
Tanker fleet supply
Tankers fleet demand
China steel production
Tankers order book

O O O o

o

Similarly, for the Subcontinent’s model (Figure 5-26) the model is a function of

mainly:

o Euro/USD exchange rate
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o Yen/USD exchange rate
o Tankers fleet supply
o Tankers fleet demand

Both the above PCR models represent that Euro/USD and Yen/USD exchange rates
have the most positive influence to the model. It means that a change in these
exchange rates can significantly change the scrap prices in both locations. Moreover,
tankers fleet supply and demand are the next influential variables to the model. These
results do not reflect the importance of some internal or external variables and do not
include the variables which are the fundamentals of the demolition market. Hence,

this model is not reliable to analyse the structure of the demolition market.

The average error of the model, for both the prediction and the modelling stages, is
represented in Figure 5-24. For Subcontinent scrap prices the average modelling error
is 19.04 and the average prediction error that can expect for future prediction is 20.53.
For Far-East prices the average modelling error is 18.00 and the average prediction

error is 19.72.

5.3.3 PLS

As explained in Chapter 3, there are two types of PLS modelling. In the following
sections the PLS1 modelling is used to model the scrapped tanker tonnage and the

PLS2 modelling is employed to model the scrap prices in Subcontinent and Far-East.

5.3.3.1 SCRAP TONNAGE PREDICTION USING PLS1

The X and Y-variables remain the same as previous modelling (Figure 5-3). It means
that there are 32 X-variables and one Y-variable for this modcl. The structure of the

model is same but the PLS1 method is used to model the data (Figure 5-27).
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Figure 5-27: ThePLS1 model structure for the monthly scrapped tonnage
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The first step of this modelling is to find out the best combination of PCs for the
model. For this reason different number of PCs has been studied and the variance

curve is prepared to distinguish the best model (Figure 5-28).

A model with only one PC can explain 80.7% of the information in the data table.
This percentage increases to 96.5% for 4 PCs which shows better data explanation,
but it is leading to over fit the model. Hence, the model including 3 PCs is chosen

which covers 91.1% information of the data table.
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Figure 5-28: Variance curve for different PCs of the PLS1 model for the
monthly scrapped tonnage

The residual variance curve (Figure 5-29) can confirm the above decision. The
residual variance of a variable is the mean square of its residuals for all model
components. It differs from the residual variation by a factor which takes into account
the remaining degrees of freedom in the data, thus making it a valid expression of the

modelling error for that variable.
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PC_00 PC_02 PC_04 PC_06 PC_08 PC_10
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Figure 5-29: Residual variance curve for the PLS1 modelling of the monthly scrapped tonnage

The corresponding residual value for the model including 3 PCs is 0.83 which shows
a smaller value compared with the model including 4 PCs with 0.85. Moreover, 3 PCs
show the minimum value of the residual variance amongst all the other models.

The prediction of this model for scrapped tankers is shown in Figure 5-30 besides the

actual measurements.
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Figure 5-30: Monthly prediction of the scrapped tanker versus actual measurements based on PLS1 modelling.
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Root Mean Square Error is used to discover the error of the above PLS model for the
monthly scrapped tonnage. The average error of the model for different stages is

shown in (Figure 5-31).

RMSE Root Mean Square Error

-
N

—_
o

o
©

o
@

lllILllllllllllllllllllllllllllIlllllllll

o
-4

PC_0D1 PC_03 PC_05 PC_07 PC_08
RESULT1, Variahle: ¢c.Tankers Sold forv.Tankers Sold for

Figure 5-31: Root Mean Square Error of the PSLImodel for the scrapped tanker tonnage

As mentioned earlier in Chapter 3, u-scores are the scores found by PLS in the Y-
matrix and t-scores are the scores found by PLS (and also in PCA and PCR) in the X-
matrix. Also, as explained in section 3-6-3, the relationship between t- and u-scores is
a summary of the relationship between X and Y along a specific model component.
Figure 5-32 shows u- and t-scores relationship for the 3 PCs model. The samples
should lie as close to each other as possible along a straight line through most of the
samples. Samples that stick out from this line are possible outliers. To interpret this
plot a regression line is also drawn between the data points using the least squares
algorithm. The slope of the line is 0.005 and the offset (or intercept) is 8.9¢-8. The

value of the correlation for the samples in this model is 0.15 which is quite small.
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Figure 5-32: u- and t-scores relationship for the PLS1 model with 3 PCs

The Y-residual curve can give a better overview of the possible outliers (Figure 5-33).
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Figure 5-33: Y-residuals of the PLS1 model for all the samples

To indicate the sensitivity of different X-variables for this particular model, regression

coefficients are shown in Figure 5-34.
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Regression Coefficients
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Figure 5-34: Regression coefficient analysis of the scrapped tanker model

5.3.3.2 SCRAP PRICE PREDICTION USING PLS2

PLS?2 handles several responses simultaneously so in this modelling a model is built

for two Y-variables, i.e. Far-East and Subcontinent scrap prices, simultaneously

(Figure 5-8). The structure of this modelling is illustrated in Figure 5-35. To find out
the most effective model for the sake of this study, different combination of principal

components are implemented and subsequently the variance of each combination is

measured (Figure 5-36).

Page:185
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Figure 5-35: The PLS2 model structure for the monthly scrap prices

As represented in the variance curve, a model includes 4 PCs shows the best sample
variance with the value of 93.38. It means that this model is able to explain 93.4% of
the information of the data table. The models with 5 PCs, or more, clearly show the

over-fit for the correspondent model.
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Figure 5-36: Variance curve for different PCs of the PLS2 model for the
monthly scrap prices

The prediction of the model versus the actual measurements is shown in Figure 5-37

and Figure 5-38 for the Subcontinent and Far-East prices respectively.
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Figure 5-37: PLS2 model predictions for the Subcontinent scrap prices
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Figure 5-38: PLS2 model predictions for the Far-East scrap prices
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RMSE values of the above PLS2 model are represented in Figure 5-39. It includes the

average prediction error for the model for either the calibration or the validation

samples.
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Figure 5-39: Root Mean Square Error for the prediction of the model

The u-scores and t-scores relationship for the above 4 PCs model, based on PLS2

method, is represented in Figure 5-40.
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Figure 5-40: u- and t-scores relationship for the model based on PLS2 with 4 PCs

The regression coefficients, which represent the sensitivity of the X-variables, are

shown in Figure 5-41 and Figure 5-42 for the two Y-variables.
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Figure 5-41: Regression Coefficient of the Subcontinent PLS2 model
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Figure 5-42: Regression Coefficient of the Far-East PLS2 model

The Y-residuals plot for the above model is shown in Figure 5-16.
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Figure 5-43: Residuals of the PLS2 model
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5.3.3.3 PLS MODELLING RESULTS

5.3.3.3.1 SCRAP TONNAGE

For the PLS1 modelling of the monthly scrapped tonnage, as it appears in Figure
5-30, the obtained model is not able to analyse the variation in the data accurately.
According to Figure 5-29, the average modelling error is 0.86 and the average
prediction error that can expect for future prediction is 0.91. Regression analysis of
the model (Figure 5-34) shows that below variables have the highest sensitivities for

the obtained model:

o Crude carrier 300k dwt freight rate
o Bunker price

o Won/USD exchange rate

o Yen/USD exchange rate

Crude carrier 300k dwt freight rate have the highest regression value amongst the
others. It has a negative regression but the others have positive regressions. Bunker
price has the maximum value of positive regression to the model. The influence of the
steel production and steel price is negligible (near zero) in the obtained model. Hence,
the relation between the scrap steel (obtained from the demolished tankers) and steel

production does not take into account in this model which is not sensible.

Figure 5-32 represents that the modelling is not effective as the correlation is 0.155.
There are also a few outliers for the model. Figure 5-33 represents the Y-residuals of
the model and confirms the existence of the outliers e.g. May 2003 or November

2001.
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5.3.3.3.2 SCRAP PRICES

For the PLS2 modelling for the scrap prices, Figure 5-39 illustrates that the average
modelling error is 17.89 and the average prediction error that can expect for future
prediction is 19.30 for the Subcontinent scrap prices. Similarly, for Far-East scrap
prices the average modelling error is 19.60 and the average prediction error is 21.26.
Hence, there are no significant differences in prediction between the two variables in

the model. In addition, the error in prediction mode is higher than the modelling stage

for both variables.

Figure 5-40 illustrates t and u scores relationships. The slope of the regression line
and the intercept is measured by is 1.0 and -2.36e-06 respectively. The value of the
correlation for all the samples is 0.72 which represents more accurate modelling
compared with the previous PLS1 model (for scrap tonnage). According to this plot
the samples in February, March, April and December 2004 are outliers of the model.
Regression analysis of the model for both locations, Figure 5-41 and Figure 5-42,

show that the below variables have the most values amongst the other X-variables:

o Euro/USD exchange rate
o Tankers fleet demand

o Tankers fleet supply

o Tankers order book

Based on the obtained model, Euro/USD exchange rate has the most influence to the
scrap prices. Tankers fleet demand and supply have the second and third highest
regressions. This model does not take into account of the other fundamental variables

to the demolition market,

The Y-residuals plot of this model (Figure 5-43) explains that the misfit rate of the
PLS2 model is getting bigger in recent data i.e. 2004. This is just because of the

higher variation of the data in this period compared with the previous years.
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5.4 DISCUSSION AND COMPARISON BETWEEN THE THREE METHODS

Three different modelling methods (MLR, PCR, PLS) were used to investigate the
demolition market and their prediction abilities for two different purposes, monthly
scrapped tonnage and scrap prices, are tested. In this section the three discrete

methods, which discussed independently earlier, will be compared.

To investigate accuracy of the modelling for the examined methods, Root Mean
Square Error (RMSE) of the modelling and standard error of the prediction for each
individual model has been calculated. Standard error of prediction is computed as the
standard deviation of the residuals. The RMSE values show the average uncertainty
that can be expected when predicting Y-values for new samples, expressed in the
same units as the Y-variable. The results of future predictions can then be presented
as: Predicted values + 2 * RMSE. This measure is valid provided that the new
samples are similar to the ones used for calibration, otherwise, the prediction error

might be much higher.

The performances of the three modelling methods for the monthly scrapped tonnage
are represented in Table 5-6. The modelling error for MLR is lower than the others
with 0.83 (million dwt) which shows more accurate modelling than PCR and PLS.
Standard error for MLR is also shown a smaller value than the others which confirms
the RMSE results. The PCR method is slightly more accurate than the PLS method in

this case.
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Modelling Method | RMSE | Stde | Key Variables

MLR 0.83 0.94 | South Korean steel production
Oil world trade

Non-OPEC oil production

EU steel production

PCR 0.90 0.97 | Steel price

Subcontinent scrap price

Crude carrier 300k dwt freight rate
Won/USD exchange rate

Bunker price

PLS 0.92 0.98 | Crude carrier 300k dw freight rate
Bunker price

Won/USD exchange rate
Yen/USD exchange rate

Table 5-6: Comparison of the three modelling methods for the
monthly scrapped tonnage

Table 5-6 is also represents the key variables in each of the modelling methods. As
the MLR model is performed more accurate than the others, this suggests that its key
variables are more reliable. As explained in section 5-3-3-3-1, key variables in the
PLS model do not include some fundamental variables of the demolition market e.g.

steel production or steel price. Hence, the error of the PLS model is greater than the

others.

Similarly, the performances of the three modelling methods for the monthly scrap
prices are represented in Table 5-7. For the scrap prices in Subcontinent RMSE
comparison shows more accuracy for the PLS method with 19.30. For the Far-East
prices the PCR method shows more accuracy with 19.72. Therefore, the PLS model is
slightly performs better than the PCR in Subcontinent prices but PCR model performs

better for the Far-East prices.
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Modelling Method | RMSE | Stde

| Key Variables

[ Subcontinent

MLR

20.50

28.79

S Korean steel Production
Japan steel production
Aframax DH building price
China steel production
USA steel production

PCR

20.53

29.59

Euro/USD exchange rate
Yen/USD exchange rate
Tankers fleet supply
Tankers fleet demand

PLS

19.30

25.26

Euro/USD exchange rate
Tankers fleet demand
Tankers fleet supply
Tankers order book

r Far-East

MLR

22.75

26.75

South Korean steel production
Japan steel production

Oil world trade

Suezmax DH building price

PCR

19.72

24.51

Euro/USD exchange rate
Yen/USD exchange rate
Tanker fleet supply
Tankers fleet demand
China steel production
Tankers order book

PLS

21.26

25.01

Euro/USD exchange rate
Tankers fleet demand
Tankers fleet supply
Tankers order book

Table 5-7: Comparison of the three modelling methods for the scrapping prices

in Subcontinent and Far-East

As represented in Table 5-7, the most influential variables to the model for both PCR
and PLS methods, for both locations, are Euro/USD exchange rate. This can be true

but the decision making of the model is based on a variable which, in reality, can not

influence the demolition market that much. Exchange rates can influence the prices

but not as the main influential variable to the model. The combination of the key

variables for the MLR method is better than the other two but the modelling error is

greater this time.
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6.1 INTRODUCTION

In the previous chapter the demolition market was analysed and investigated using
statistical methodology. Different statistical multivariate methods were

implemented, tested and subsequently compared with each other to evaluate each

method.

The aim of this chapter is to re-evaluate the modelling and the issues identified in
the previous chapter, concerning the demolition market, using Artificial Neural
Networks methodology. Tonnage of the monthly scrapped ships and their prices for
two locations are favourable for this study. To model each of these parameters,
“various architectures are designed and their specifications identified. Subsequently,
ANN:S are trained and their performances tested to find out the best neural networks
layouts to model the market. Both static and dynamic networks are created for each
study, using NeuroSolutions 5.0 software, in order to analyse the model inputs and
build the most accurate model for the demolition market. Then the prediction
abilities of each ANN are measured by forecasting three months ahead of the
market and compared with each other. The main objectives of the above procedures

are summarised below:

~ Model the monthly scrapped tonnage using ANNs
— Model the monthly scrap prices for Subcontinent and Far-East scrap yards
— Identify the most influential inputs to the above models

— Use the obtained models to forecast the market

6.2 DEVELOPMENT OF THE ANN MODELS FOR SCRAPPED TONNAGE

As mentioned in the last chapter, the data, which are used for this study, are monthly
data from January 1995 till December 2004 (120 patterns). Two different types of
inputs are considered for this study, Internal and External. Internal inputs are
variables which are applicable to the tanker market. External inputs are variables

which may influence the tanker market but they are not in the tanker market itself like
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oil production, steel production, steel price and exchange rates. All the inputs are

listed below:

x,(t) : USA Steel Production

x,(#) : EU Steel Production

x,(t) : China Steel Production

x, () : Japan Steel Production

x,(#) : South Korea Steel Production

X¢(t) : Steel Price

x,(t) : Subcontinent Scrap Price

Xg(¢) : Far-East Scrap Price

x,(f) : OPEC Oil Production

x4 (f) : Non-OPEC Oil Production

x,; (1) : Oil World Trade

%, (#): EUR/$ Ex. Rate

x,;(f) : WON/$ Ex. Rate

x,,(¢): YEN/§ Ex. Rate

x,s(t) : Bunkers Price

X6 (1) : Product Tankers Building Price

x,,(t) : Aframax DH Building Price

X,5 () : Suezmax DH Building Price

X,4(t): VLCC DH Building Price

X, (#) : Crude Carrier 105000dwt FRSingle Voyage
X,,(t) : Crude Carrier 150000dwt FRSingle Voyage
X,,(#) : Crude Carrier 300000dwt FRSingle Voyage
X, (¢) : Clean Carrier 70/85000dwt FRSingle Voyage
X,, (1) : Product Tankers DS/DH 5Years Market Value
x,5(t) : Aframax DS/DH 5Years Market Value

X, (t) : Suezmax SH/DH 5Years Market Value

X, (t): VLCC SH/DH 5Years Market Value

X, (1) : Clean Carrier- 40/45000dwt DB/DII 10 Years
X, (f) : Tanker Fleet- 10000 DWT+ Supply

X3, (f) : Tanker Fleet- 10000 DWT+ Demand

%, (£) : Tanker Fleet- 10000 DWT+ Util. Rate

X3, (£) : Tanker Order Book in Percent of Existing Fleet

The structure of the inputs, output and patterns are represented in Table 6-1 and Table

6-2. To increase the accuracy of the result, all the time series are gathered from
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various resources in R.S. Platou Economic Research and they are sometimes obtained

by digitising in graphical form.

To find out the most accurate ANN model in the following section, the number of
neurons and consequently the best point to stop the training of the network, i.e. the
iteration number, are identified. Then the learning rates of the hidden and the output
layers are identified and finally the momentum is added to the neural network to

obtain the most accurate network. The schematic diagram (Figure 6-1) represents the

above stages.

Identify the number of neurons

Identify the best iteration

Identify the best learning rates

Identify the best value of the momentum

The most accurate neural networks

Figure 6-1: The schematic diagram of the diffcrent stages of the modelling
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01 | January 1995 773 | 1399 | 736 856| 3.04| 25870 | 175.00 | 151.56 | 24.78 | 42.72 31.74 | 100.00 | 100.00 | 100.00 [ 10433 3222 | 41.94
02 | February 1995 773 | 1417 | 736 | 8561 3.04| 25870 | 179.69 | 15156 | 24.78 | 4261 31.85 | 10246 | 100.00 | 101.85 | 10630 | 3278 | 42.22
03 | March 1995 791 | 1426 | 764 | 865| 3.04| 25870 | 187.50 | 15156 | 2489 | 4239 | 3196 | 107.38 | 101.85 | 108.62 | 105.32 33.06 | 42.50
04 | April 1995 791 | 1426 | 764 856 | 3.13 | 26957 | 187.50 | 15625 | 2489 | 4217 | 32.07 | 107.08 | 103.38 | 120.00 | 107.28 3333 | 4278
05 | May 1995 791 | 1445 764 865 3.13 | 26957 | 187.50 | 153.13 | 2500 | 4228 | 32.50 | 10523 | 104.00 | 117.23 9449 | 3333 4278
06 | June 1995 791 | 1463 | 764 | 865 | 3.13 | 29565| 187.50 | 153.13 | 2500 | 4239 | 3283 | 10738 | 104.00 | 118.77 | 82.68 | 33.33 | 42.78
07 | July 1995 782 | 1445 | 773 | 865| 3.3 | 29565 | 187.50 | 153.13 | 25.11 4261 3337 | 108.00 | 104.00 | 11446 | 85.63 3333 | 4278
08 | August 1995 782 | 1436 | 773 | 865| 3.13 | 28478 | 187.50 | 153.13 | 2522 | 4272 | 33.15| 103.08 | 102.15 | 10492 | 8760 | 33.06 | 42.78
09 | September 1995 782 | 1426 | 7.73 | 8.56 | 3.13 | 28043 | 190.63 | 151.56 | 2522 | 4272 | 3293 | 104.62 | 103.08 9938 | 85.63 3278 | 4278
10 | October 1995 782 | 1426 | 7.73 | 847 | 3.13 | 269.57 | 193.75 | 146.88 | 2522 | 42383 3261 | 104.92 | 103.38 9938 | 8760 | 32.78 | 4278
11| November 1995 782 | 1390 | 773 | 837 3.3 | 26522 | 18438 | 143.75| 2543 42.93 33.04 | 10277 | 102.46 | 97.85 | 104.33 3250 | 42.50
12| December 1995 782 | 1344 782 | 837 | 3.3 | 25435 | 179.69 | 143.75 | 2565 | 43.15| 3348 | 103.08 | 102.15 96.92 | 10138 | 3222 | 4222
13 | January 1996 791 | 1334 791 | 828 | 3.22 | 25435| 189.06 | 143.75 | 2598 | 4337 | 34.02 9938 100.31 9354 | 9744 | 3222 4194
14 | February 1996 791 | 1334 791 | 8.10] 322 25000 | 190.63 | 143.75 | 2587 | 4337| 3402 | 10123 | 100.62 96.00 | 107.28 | 3222 | 4167
115 | July 2004 810 | 1592 | 2089 ] 929 4.05] 56957 | 387.50 | 343.75 | 2880 | 4989 ] 4467 ] 97.23 67.38 8892 | 161.42 3417 | 50.00
116 | August 2004 837 | 1574 | 2153 | 939 | 396 | 56957 | 42500 | 371.88| 29.13| 4978 | 4500 | 97.23 68.31 90.77 | 173.23 3444 | 5167
117 | September 2004 837 | 1574 | 2190 | 939 | 396 | 589.13 | 41563 | 33750 | 2957 | 4967 | 45.11 98.77 68.31 8985 | 14370 | 3472 | 5278
118 | October 2004 847 | 1574 | 2264 | 948 | 396 | 589.13 | 404.69 | 368.75 2967 | 4989 | 4533 | 102.15 70.15 9354 | 15453 3639 | 55.00
119 | November 2004 847 | 1574 | 2337 | 948 | 405 | 589.13 | 42188 | 37500 | 29.89 5000 | 4543 | 107.38 75.38 96.92 | 163.39 3750 | 56.94
120 | December 2004 847 | 1564 | 2420 | 948 | 405| 589.13 | 43438 | 356.25 30.00 | 5022 | 4554 | 10892 76.00 96.92 | 174.21 3944 | 5972
Maximum 883 | 1592 | 2420 | 948 | 405 | 589.13 | 43438 | 38594 30.00 | 5022 | 4554 | 10892 | 104.00 | 120.00 | 17421 3944 | 5972
Minimum 6.99 | 1325| 736 | 736 3.04] 19348 10938 | 106.25 2457 | 4217 | 31.74 68.00 | 47.08 69.54 5217 | 25.00 | 33.33

Table 6-1: The scrapped tonnage model inputs (1 to 17)
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01 January 1995 53.06 86.11 14.81 14.81 11.11 17.83 21.89 29.81 33.21 52.22 16.76 260.87 218.48 83.91 9.2 4.18
02 February 1995 53.33 86.11 12.96 12.96 8.02 16.59 22.26 29.81 33.96 51.85 17.31 259.78 216.30 83.48 9.1 4.18
03 March 1995 53.61 86.11 12.35 13.58 9.88 16.10 22.64 29.81 34.34 51.85 17.85 258.70 215.22 83.04 9.0 4.18
04 April 1995 53.89 86.11 14.20 12.35 8.02 13.87 23.02 29.81 34.34 51.85 18.18 258.70 213.04 8261 8.8 3.98
05 May 1995 53.89 86.11 11.73 12.96 6.79 13.37 23.77 29.81 34.34 51.85 18.73 258.70 215.22 83.91 8.6 3.98
06 June 1995 53.89 86.11 12.96 13.58 13.58 17.34 24.15 29.81 34.34 51.85 19.05 258.70 218.48 85.00 8.4 3.98
07 July 1995 53.61 86.11 14.20 19.75 19.14 19.32 2415 29.81 34.72 52.22 19.05 258.70 220.65 85.87 8.1 1.02
08 August 1995 53.33 86.67 14.20 14.81 18.52 18.82 24.15 30.19 35.47 53.33 19.05 258.70 220.65 85.87 7.9 1.02
09 September 1995 53.06 86.94 14.20 14.81 14.81 18.33 24.15 30.57 36.23 53.70 19.05 258.70 220.65 85.87 7.6 1.02
10 October 1995 52.78 87.50 14.20 14.81 11.11 20.06 24.15 30.57 36.23 53.70 19.05 258.70 220.65 86.09 7.2 1.55
11 November 1995 52.50 86.67 13.58 16.05 16.67 21.80 24.15 30.57 36.23 53.70 19.05 258.70 221.74 86.52 7.0 1.55
12 December 1995 52.50 85.83 14.81 16.05 16.67 22.04 2415 30.57 36.23 53.70 19.05 258.70 222.83 86.96 6.8 1.55
13 January 1996 5222 85.00 17.90 17.28 16.05 21.05 24.15 30.94 37.36 54.81 19.05 258.70 223.91 87.39 6.5 0.89
14 February 1996 51.94 84.72 17.28 17.28 19.75 20.06 24.15 30.94 38.49 55.93 19.05 259.78 230.43 86.96 6.3 0.89
115 | July 2004 61.11 93.33 32.72 5247 79.01 30.71 32.45 49.81 60.00 87.41 23.31 301.09 271.74 90.43 26.8 0.67
116 | August 2004 63.89 96.94 32.10 45.68 62.35 26.75 33.58 51.32 62.26 90.74 24.07 302.17 275.00 91.30 26.9 0.65
117 | September 2004 66.39 99.72 32.72 46.30 63.58 26.75 34.72 53.21 66.79 93.33 25.71 303.26 278.26 92.17 27.0 0.40
118 | October 2004 68.06 | 103.06 80.25 107.41 136.42 4037 36.60 54.72 71.32 101.48 2691 304.35 280.43 93.04 27.1 0.10
119 | November 2004 68.89 106.11 85.19 125.93 189.51 56.97 39.62 56.98 72.45 105.19 28.11 305.43 282.61 93.70 26.9 0.44
120 | December 2004 69.72 109.44 68.52 77.78 125.31 53.00 39.62 56.98 72.45 105.19 28.11 306.52 284.78 94.35 26.5 0.29
Maximum 69.72 109.44 85.19 | 12593 189.51 60.43 39.62 56.98 72.45 105.19 28.11 306.52 284.78 94.35 27.14 446
Minimum 41.94 63.89 9.88 9.26 6.79 10.15 17.36 23.02 33.21 48.89 12.07 258.70 213.04 82.61 6.02 0.10

Table 6-2: The scrapped tonnage model inputs (18 to 32) and the output
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6.2.1 APPLICATION OF STATIC ANNS FOR MODELLING OF THE

MONTHLY SCRAPPED TONNAGE

A feed-forward MLP network with error back-propagation learning algorithm and the

batch weight updating method has been implemented to model the data.

As explained in section 4-7-1, regarding the data splitting, it is important to note that
the accuracy is not about what proportion of data should be allocated in each sample.
But it is about sufficient data points in each sample to ensure adequate learning,
validation, and testing. For this study as Granger (1993) suggests 20% of the data is
used for testing the network. Therefore, the data is randomised in first place and then
70% of the patterns (84 months observation) in each time series is used to train the
neural networks.10% of the patterns (12 months observation) are used to validate the
networks. After the training and validation, the rest of the data, i.e. 20% of the
patterns (24 months observation), is used to test the performance of each particular

neural networks.

This network includes one hidden layer with the hyperbolic tangent activation
function (Equation 4-3), which will give an output in the range [-1, 1]. As explained
in section 4-3-2, to achieve to an accurate prediction, normalisation has been
performed as the pre-processing of the data. Figure 6-2 illustrates the general
structure of the ANN and the system of inputs to the ANN and the corresponding

output.
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Figure 6-2: The static ANN model for the monthly scrapped tonnage
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At the beginning of the modelling, initial weights are randomised but, after each
stage, the current weight settings are stored along with the components to be re-
loaded for the next stage of training. Also, because the variation in model
performance, caused by different initial weights, all network configurations have been
run for at least five times and each network parameter and network architecture has

been optimised based on the average of the five random starts.

To start the modelling process and identify the number of neurons in the hidden layer,
a different number of neurons have been considered and consequently the mean
square error (MSE) of the network has been measured to identify the best
combination. Figure 6-3 suggests that the most accurate number of neurons is three,
because the MSE has the least value (0.161) in this plot. The size of the MSE can be
used to determine how well the network output fits the desired output, but it does not
necessarily reflect whether the two sets of data move in the same direction. Hence, In
addition to the MSE, the correlation coefficient has also been measured. In this figure,
the correlation coefficient of the similar experiment confirms that the hidden layer
including three neurons have the highest positive coefficient amongst the others. The
value of 0.928 is the maximum of the plot which represents a relatively high positive

correlation between the model and the actual data.
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Figure 6-3: Impact of the neurons on the static ANN model for scrapped tonnage

To find out the best point in time to stop the training of the above network various
iterations have been tried and their performances are tested. The training error
measures how well the ANN models the data and the testing error is a measure of
how well the model follows the common pattern. Figure 6-4 illustrates both training
and testing error of the above model. In the first section of the plot the testing error
begins to learn the pattern in the time series, indicated by the decreasing error. At the
point which the testing error is minimal the training of the ANN is in its optimal
level. Beyond this minimum in the next section, the training error continues to

decrease but the testing error increases.
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Figure 6-4: Mean Square Error of the training and testing stages of the
model for different iterations

As it appears in this figure, there is a global minimum for the error of the model at the
iteration 5500 which shows the most adequate training. There is also a local minimum

at the iteration 7000.

So far, the best number of neurons and iterations of the network has been identified.
At this point, the different learning rates y are examined to find out the best values
for each layers of the network. Various learning rates are considered for both hidden
and output layers and subsequently the error and the correlation coefficient are
measured. Figure 6-5-a represents the measured learning rates for the hidden layer
and similarly Figure 6-5-b plots various learning rates for the output layer. The first
plot suggests that the most accurate model with the lowest error and also the highest
positive correlation coefficient takes place at the value of 0.02 for the output layer.
Subsequently, the second plot suggests that the most accurate model, corresponding
to the previous 0.02 value of the output layer, happens at 0.2 for the hidden layer.
Therefore, the final decision about the learning rates in both mentioned layer would

be 0.02 and 0.2 respectively.
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Figure 6-5: a) Impact of different learning rates in the output layer on MSE
and correlation coefficient for the static ANN for scrapped tonnage
b) Impact of different learning rates in the hidden layer on MSE

and correlation coefficient for the static ANN for the scrapped tonnage

The last part of the modelling identifies the momentum & of the network. Different

momentums are tried and then the error of the modelling is measured to see the

behaviour of changing momentum on the ANN (Figure 6-6). In addition, the

correlation coefficient is calculated in each stage to clarify the corresponding MSE

results. The minimum error of 0.069 occurs whena = 0.7 . The error value is also

quiet near to the global minimum whena = 0.9, with 0.084. The corresponding

correlation coefficient values are 0.963 and 0.962 respectively which are shown a

relatively high positive correlation between the model and the actual numbers.

Correlation coefficient

Correlation coefficient
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Figure 6-6: Impact of adding different momentums to the static ANN model for monthly

scrapped tonnage

According to the above studies for various static ANN model parameters, the best

ANN model and the training is the one which includes:

one hidden layer
three neurons (or PEs)

the hyperbolic tangent activation function.

the learning rate of 0.2 for the hidden layer(y = 0.2)
the learning rate of 0.02 for the output layer (y = 0.02)

the momentum of 0.7 for the networks (a = 0.7)

6.2.1.1 SENSITIVITY ANALYSIS OF THE STATIC ANN MODEL FOR THE

MONTHLY SCRAPPED TONNAGE

As the architecture of the static ANN for the monthly scrapped tonnage is identified

and the training of the neural networks is completed (see section 6-2-1), it is possible

to determine the sensitivity of the out put with respect to each individual input.

Sensitivity analysis can determine the effect that each of the network inputs is having
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on the network output. The sensitivity analysis, which is employed for this model, has
been explained in section 4-5-2. Figure 6-7 represents the sensitivity analysis of the

static ANN model for the monthly scrapped tonnage.
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Figure 6-7: Sensitivity about the mean for all the inputs to the static ANN for the monthly

scrapped tonnage

Figure 6-7 explains that steel production, in general, has the most influence to the
model. South-Korean steel production has the highest value (0.542), and USA’s steel
production (0.525) is the second most valuable. EU’s and Japan’s have the third and
forth highest values respectively (0.413 and 0.220) but China’s steel production does
not have a significant influence on the model (0.004). There are a few possibilities to
justify these results. Firstly, it is possible that the public intuition about the influence
of the Chinese steel production is incorrect as the model shows its influence is quite
low. Secondly, the low influence of the Chinese steel production is due to the fact that
the steel demand inside the country is quiet high because of the booming economy of
China i.e. consumers use most of the steel production inside China and the rate of the
exportation is not enough to affect the demolition market. On the contrary, USA

affects the market because they send their steel production to the international market.
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Alternatively, it is possible that the necessary data is not accessible for the model to

carry on the accurate sensitivity analysis.

Oil world trade has also shown a relatively high influence on the model. Compared
with the above steel production sensitivities oil production sensitivities are small but
non-OPEC oil production shows a slightly more influence. Product Tanker building
prices and the tanker fleet utilisation rate have shown a small influence on the model.
On the contrary, freight rates, bunker price (as the operating cost of the ship), second-
hand prices and exchange rates have very small impacts on the model. There are a
few reasons for the low influence of the above variables, like freight rates, to the
model. Firstly, it is possible that their influence is offset by influence of another
variable to the model or, secondly, there is not enough data to carry out an accurate

sensitivity analysis.

Based on the above static ANN studies for the monthly scrapped tonnage, the most

sensitive parameters that drive the output for this model, as Figure 6-7 explains, are:

x, : South Korea steel production
x, : USA steel production

x, : EU steel production

:Oil world trade

x, : Japan steel production

X, : Product tankers building price
x,, : Tanker fleet utilisation rate

N AEWYD -
X

There are also few parameters with negligible inputs to the model including:

x, : China steel production

x, - Steel price

: Subcontinent scrap price

x, : Far-East scrap price

x,s : Bunker price (represents the operating cost for this study)

B
=
~

The obtained static ANN model is based on the sensitive inputs and the inputs with
the low number of sensitivities are not taken into account to produce the desire

output.
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6.2.2 DEVELOPMENT OF THE DYNAMIC ANN MODEL FOR THE

SCRAPPED TONNAGE PREDICTION

For this part of the study, a dynamic ANN is implemented to forecast the monthly
demolition tonnage. The architecture of a dynamic network is different from a static
network (see section 4-7). For example, setting the parameters such as learning rate,
activations or weight updates might result in a significant difference compared to the
static ANN training. Figure 6-8 illustrates the system of inputs to the dynamic ANN

and the corresponding output.

A feed-forward MLP neural network with an error back- propagation learning
algorithm has been created. Then a sequential framework has been added to the
network by adding a short-term memory mechanism in the form of a delay line. A
section of the time series of the form [x(¢), x(¢t - 1),..., x(t - p)], and

[y(t =1),..., y(t — p)] are used as inputs for the network. The delay line in order of p,
and the desired output is y(¢#) . An integer value is substituted for p and several ANNs
have been trained. The best performing ANN is noted and then the process is repcated
with a different integer value for p. When sufficient p values have been investigated
the MSE values are compared and the minimum is chosen. Consequently, forecast
errors are measured in order to judge how good that model is in terms of its prediction

abilities.

Similar to the previous study, as illustrated in Figure 6-1, the number of neurons and
iterations of the neural networks are identified. Then, learning rates and momentum

are measured.

Unlike the static mode, data is split into two groups, one of training and the other
validating data. As explained in the previous section and as Granger (1993) suggests
80% of the patterns (94 observations) in each time series is used to train the neural
networks and 20% (23 observations) to validate the networks. The three last months,

in each time series, are not taken into account for the training purposes because their
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data is needed to check the prediction performance of the final ANN. All neural
networks which are considered in this part of the study are included one hidden layer
with the hyperbolic tangent activation function (fanh), Equation 4-3, in their hidden

layers.
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In order to start the modelling and thus investigate the performance of the different
dynamic ANN configurations, various numbers of neurons and iterations have been
changed simultaneously. Then the mean square error of the testing stage for each
ANN has been measured to find out the most accurate combination.

Figure 6-9 represents the error surface of the above analysis. The minimum measured
MSE of the error surface, which is shown in Figure 6-9, is 0.167 and it occurs at

iteration 16000 and at a number of neurons of 9.

MSE vs Iteration, PEs

MSE
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0™ 1terat
terat
000 ol
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Figure 6-9: The error surface of the designed dynamic ANN for the monthly scrapped tonnage
with one month delay (p=1).

Two cross sections of the above figure are represented in Figure 6-10 and Figure

6-11 to clarify these results.
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Figure 6-10: MSE against PEs (Neurons) for iteration 16000
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Figure 6-11: MSE against iteration for 9 PEs (Neurons)

It is important to note that the mean square error of the training stage is quite
satisfactory. The average MSE of the training stage for the above dynamic ANN is
measured 0.00141. Also, the standard deviation of this training error is 0.000100.
Figure 6-12 is shown the mean square error of the network in training stage for

different iterations.
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Figure 6-12: Training error of the chosen dynamic ANN for the monthly scrapped
tonnage in its best run

The above result can also be confirmed with the correlation coefficient values. Figure
6-13 shows the correlation surface of the same experiment. As it appears, the

maximum of 0.95 occurs at iteration 16000 and at a number of neurons of 9.

Correlation coefficient vs Iteration, PEs
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Figure 6-13: The correlation surface of the designed dynamic ANN for the monthly scrapped
tonnage with one month delay (p=1)
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Two cross sections of the above figure are represented in Figure 6-14 and Figure

6-15 to clarify these results.
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Figure 6-14: Correlation coefficient against PEs (Neurons) for iteration 16000

Correlation coefficient
o e o
H [o)] [o]

o
()

0 T T - N T
0 5000 10000 15000 20000 25000 30000

Iteration

Figure 6-15: Correlation coefficient against iteration for 9 PEs (Neurons)

These two surfaces suggest that the most accurate network is a network with 9

neurons in the hidden layer which is trained for 16000 iterations.

To identify the best learning rate y for the network training, the mean square error is
measured for different rates. The criterion to choose the best learning rate for this
network is to measure MSE of the testing stage. Figure 6-16 represents the MSE (and

also the corresponding correlation coefficient) for various learning rates. It is shown
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that the minimum MSE occurs at y = 0.1 with the value of 0.167. Simultaneously,

correlation coefficient has the maximum of its value with 0.957 in the same point.

—— MSE —— Correlation coefficient

Correlation coefficient

o T T T r 0

T T

0 0.05 0.1 0.15 0.2 0.25
Learning Rate

Figure 6-16: Impact of the different learning rate on the dynamic ANN for the monthly scrapped
tonnage with one month delay

To investigate the effect of adding momentum e to the neural networks, different
momentums added and subsequently the testing errors are calculated to find out the
best performing dynamic ANN model. Figure 6-17 represents the performance of the
network with different momentums and it suggests that the best performance happens
at momentum 0.01. The value of the error is 0.080 and the corresponding correlation

coefficient is 0.971 which explains a high positive correlation for the model.
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Figure 6-17: Impact of the different momentums on the dynamic ANN for the monthly scrapped
tonnage with one month delay (t-1)

So far, the parameters of the dynamic ANN model with one month time delay (p=1)

are specified.

— one hidden layer

— nine neurons (or PEs)

— 16000 iterations for the network

— the hyperbolic tangent activation function

— the learning rate of 0.1 for both layers (y =0.1)

— the momentum of 0.01 for the networks (a = 0.01)

The next step is to expand the time delay (p=2, 3 ...) and investigate the possibility
of reaching more accuracy (Figure 6-18). Expanding the delay window can increases
the experience and the power of the decision making of the network because it has
access to earlier data as well as data from one month previous. This may give more
accuracy to the networks. According to the system of inputs to the above dynamic
ANN and the corresponding output (Figure 6-8), which is explained earlier in this
section, changing the value of the delay p will change the structure of the neural

network. A bigger value of p means more accessibility to the past data.
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Figure 6-18: The time delay window for the ship demolition tonnage time series. The size of the
window can be varied by changing the structure of the neural networks.

Based on the previous analysis and the dynamic ANN models, new models are
implemented to investigate the impact of increasing the delay windows to two, three,
four and five months, i.e p=2, p=3, p=4 and p=5. The number of iterations and
neurons are changed simultaneously to obtain the error surface of each neural
network. The MSE results of these analyses, for the best ANN chosen for each delay,
are represented in Figure 6-19. This figure indicates that ANN’s with 2 and 4 months
delays have more accuracy than ANNs with 1, 3 or 5 months delay but as there is no

correlation between the networks in each time delay this is just a random behaviour of

the model.
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Figure 6-19: MSE against time delay of the best obtained dynamic ANN model for the monthly
scrapped tonnage. Box annotations indicate the specification of the ANN for each time delay.

Table 6-3 is a comparison between the best performing dynamic ANNs in each
particular time delay. It is shown that the minimum mean square error happens for the

neural networks with four months time delay (7-4).

Delay window PEs | Iteration MSE
One month (#-1) 9 16,000 0.080
Two months (#-2) 18 16,000 0.010
Three months (7-3) 24 24,000 0.075
Four months (7-4) 21 35,000 0.003
Five months (7-5) 30 24,000 0.077

Table 6-3: The comparison between different window sizes for training and development of a
Dynamic ANN model.
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6.2.2.1 MONTHLY SCRAPPED TONNAGE PREDICTION USING DYNAMIC

ANN MODEL

The best performing dynamic ANN model for the monthly scrapped tonnage is
identified in previous section. In this section, the performance of the above neural
networks is analysed. Unseen data is used to evaluate and verify the predictability of
this ANN model. As explained before (see section 6-2-2), in the beginning of the
modelling process the last three months of data is pulled out of the training and
testing stages. Therefore, these data are available to put in the dynamic ANN model
and check the performance of that model by comparing the prediction with the real

values.

Figure 6-20 represents the actual measurements versus prediction of the dynamic

ANN model for monthly scrapped tonnage in October, November and December.
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Figure 6-20: Forecast vs. Actual scrapped tonnage for three months period.

Calculated RMSE for the above prediction is 0.097 which represents the certainty of
the model for the future prediction. The correlation coefficient between predicted and
actual value for the above ANN models is 0.961, which shows a relatively high value

of correlation for the model prediction. Therefore, the ANN approach is effective.
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6.3 DEVELOPMENT OF THE ANN MODELS FOR SCRAP PRICES

For this part of the study, the structure of the data and the time series are similar to
the previous study but the inputs and outputs have changed. The scrapped tanker
tonnage was the only output in the previous model but there are two outputs now: the

scrap prices in two different locations, Subcontinent and Far-East. All the inputs are

listed below:

x():
x,():
x,(1):
X, (8):
xs(t):
x.(1):
x, (1)
xg (1)
x, (1)
x,,(t):
X (1)
x(0):
x5(1):
x,(0):
x,s(t):
x6(f):
X (f):
x5(f):
x9(f)
X0 (t)
xu(f):
xp(1):
X5 (1)
X5 (1)
X5(2)
X (1)
Xy (1):
X5 (1)

USA Steel Production
EU Steel Production
China Steel Production
Japan Steel Production
South Korea Steel Production
Steel Price
OPEC Oil Production
Non-OPEC Oil Production
Oil World Trade
EUR/$ Ex. Rate
WON/$ Ex. Rate
YEN/$ Ex. Rate
Bunkers Price
Product Tankers Building Price
Aframax DH Building Price
Suezmax DH Building Price
VLCC DH Building Price
Crude Carrier 105000dwt FRSingle Voyage
Crude Carrier 150000dwt FRSingle Voyage
Crude Carrier 300000dwt FRSingle Voyage
Clean Carrier 70/85000dwt FRSingle Voyage

Product Tankers DS/DH 5Years Market Value

Aframax DS/DH 5Years Market Value
Suezmax SH/DH 5Years Market Value
VLCC SH/DH S5Years Market Value
Clean Carrier- 40/45000dwt DB/DH 10 Years
Tanker Fleet- 10000 DWT+ Supply
Tanker Fleet- 10000 DWT+ Demand
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X, (t) : Tanker Fleet- 10000 DWT+ Util. Rate
%30 (t) : Tanker Order Book in Percent of Existing Fleet
x5, (t) : Scrapped Tankers

The structure of the inputs, outputs and patterns are represented in Table 6-4 and

Table 6-5.

Similarly, to find out the best performing ANN models and training procedure in each
section, the number of neurons and the best number of iterations are identified in the
first place. Then learning rates of layers are identified and finally the momentum is

added to obtain the most accurate network. Figure 6-1 illustrates the above stages.
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01 | January 1995 773 | 13.99 | 7.6 | 856 | 3.04| 25870 | 2478 | 4272 | 31.74 | 100.00 | 100.00 | 100.00 | 10433 | 3222 | 4194 | 53.06 | 86.11
02 | February 1995 773 | 1417 | 736 | 856 | 3.04| 258.70| 2478 | 42.61 | 3185 | 10246 | 100.00 | 101.85| 10630 | 32.78 | 4222 | 5333 | 86.11
03 March 1995 7.91 14.26 7.64 8.65 3.04 258.70 24.89 42.39 31.96 107.38 101.85 108.62 105.32 33.06 42.50 53.61 86.11
04 April 1995 7.91 14.26 7.64 8.56 3.13 269.57 2489 42.17 32.07 107.08 103.38 120.00 107.28 33.33 42.78 53.89 86.11
05 | May 1995 791 | 1445 | 764 | 865 | 3.13| 26957 | 2500 | 4228 | 3250 | 10523 | 10400 | 11723 | 9449 | 3333 | 4278 | 5389 | 86.11
06 June 1995 7.91 14.63 7.64 8.65 3.13 295.65 25.00 42.39 32.83 107.38 104.00 118.77 82.68 33.33 42.78 53.89 86.11
07 July 1995 7.82 14.45 7.73 8.65 3:13 295.65 25.11 42.61 33.37 108.00 104.00 11446 85.63 33.33 42.78 53.61 86.11
08 | August 1995 782 | 1436 | 7.3 | 865 | 3.3 | 28478 | 2522 | 42.72| 33.15| 103.08| 102.15| 10492 | 8760 | 33.06| 4278 | 5333 | 86.67
09 September 1995 7.82 14.26 7.73 8.56 3.13 280.43 25.22 42.72 3293 104.62 103.08 99.38 85.63 32.78 42.78 53.06 86.94
10 October 1995 7.82 14.26 7.73 8.47 3:13 269.57 25.22 42.83 32.61 104.92 103.38 99.38 87.60 32.78 42.78 52.78 87.50
11 November 1995 7.82 13.90 T3 8.37 3.13 265.22 2543 42.93 33.04 102.77 102.46 97.85 104.33 32.50 42.50 52.50 86.67
12| December 1995 782 | 13.44 782 | 837 | 3.13| 25435| 2565 | 43.15| 3348 | 103.08 | 102.15| 9692 | 10138 | 3222 | 4222 | 52.50| 8583
13 | January 1996 791 | 1334 791 | 828 | 322 | 25435 | 2598 | 4337| 3402 | 9938 | 10031 | 9354 9744 | 3222 | 4194 | 5222 | 8500
14 | February 1996 791 | 1334 | 791 | 8.10| 3.22| 25000 | 2587 | 4337 | 3402 | 10123 | 100.62 | 9600 107.28 | 3222 | 4167 | 5194 | 84.72
115 | July 2004 810 | 1592 ] 2089 ] 929 ] 4.05] 569.57 | 2880] 4989 | 4467 ] 9723 | 6738 8892 | 16142 3417] 5000] 61.11] 9333
116 | August 2004 8.37 15.74 21.53 9.39 3.96 569.57 29.13 49.78 45.00 97.23 68.31 90.77 173.23 34.44 51.67 63.89 96.94
117 | September 2004 837 | 1574 | 2190 | 939 | 396 | 589.13 | 2957 | 4967 | 4511 | 98.77| 6831 | 89.85| 143.70| 34.72| 5278 | 6639 | 99.72
118 | October 2004 847 | 1574 | 22.64 | 948 | 3.96| 589.13 | 29.67 | 4989 | 4533 | 102.15| 70.15| 93.54 | 15453 | 3639 | 5500 | 68.06 | 103.06
119 | November 2004 8.47 15.74 23.37 948 4.05 589.13 29.89 50.00 4543 107.38 75.38 96.92 163.39 37.50 56.94 68.89 106.11
120 | December 2004 8.47 15.64 2420 948 4.05 589.13 30.00 50.22 45.54 108.92 76.00 96.92 174.21 3944 59.72 69.72 109.44
Maximum 883 | 1592 | 2420 | 948 | 405 | 589.13 | 30.00| 5022 | 4554 | 10892 | 104.00 | 120.00 | 174.21 3944 | 5972 | 69.72 | 109.44
Minimum 699 | 1325 | 736 | 736 3.04| 19348 | 2457| 42.17| 31.74| 6800| 4708 | 6954 | 5217 | 2500 3333 | 41.94| 63.89

Table 6-4: The scrap price model inputs (1 to 17)
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01 | January 1995 14.81 14.81 11.11 17.83 21.89 29.81 33.21 52.22 16.76 260.87 218.48 83.91 9.2 4.18 175.00 151.56
02 | February 1995 12.96 12.96 8.02 16.59 22.26 29.81 33.96 51.85 17.31 259.78 216.30 83.48 9.1 4.18 179.69 151.56
03 | March 1995 12.35 13.58 9.88 16.10 22.64 29.81 34.34 51.85 17.85 258.70 215.22 83.04 9.0 4.18 187.50 151.56
04 | April 1995 14.20 12.35 8.02 13.87 23.02 29.81 3434 51.85 18.18 258.70 213.04 82.61 8.8 3.98 187.50 156.25
05 | May 1995 11.73 12.96 6.79 13.37 23.77 29.81 34.34 51.85 18.73 258.70 215.22 8391 8.6 3.98 187.50 153.13
06 | June 1995 12.96 13.58 13.58 17.34 24.15 29.81 34.34 51.85 19.05 258.70 218.48 85.00 8.4 3.98 187.50 153.13
07 | July 1995 14.20 19.75 19.14 19.32 24.15 29.81 34.72 52.22 19.05 258.70 220.65 85.87 8.1 1.02 187.50 153.13
08 | August 1995 14.20 14.81 18.52 18.82 24.15 30.19 3547 53.33 19.05 258.70 220.65 85.87 7.9 1.02 187.50 153.13
09 | September 1995 14.20 14.81 14.81 18.33 24.15 30.57 36.23 53.70 19.05 258.70 220.65 85.87 7.6 1.02 190.63 151.56
10 | October 1995 14.20 14.81 11.11 20.06 24.15 30.57 36.23 53.70 19.05 258.70 220.65 86.09 72 1.55 193.75 146.88
11 | November 1995 13.58 16.05 16.67 21.80 24.15 30.57 36.23 53.70 19.05 258.70 221.74 86.52 7.0 1.55 184.38 143.75
12 | December 1995 14.81 16.05 16.67 22.04 24.15 30.57 36.23 53.70 19.05 258.70 222.83 86.96 6.8 1.55 179.69 143.75
13 | January 1996 17.90 17.28 16.05 21.05 24.15 30.94 37.36 54.81 19.05 258.70 223.91 87.39 6.5 0.89 189.06 143.75
14 | February 1996 17.28 17.28 19.75 20.06 24.15 30.94 38.49 55.93 19.05 259.78 230.43 86.96 6.3 0.89 190.63 143.75
115 | July 2004 32.72 5247 | 79.01 30.71 32.45 49.81 60.00 87.41 23.31 301.09 271.74 90.43 26.8 0.67 387.50 343.75
116 | August 2004 32.10 45.68 | 6235 26.75 33.58 51.32 62.26 90.74 24.07 302.17 275.00 91.30 26.9 0.65 425.00 371.88
117 | September 2004 32.72 46.30 | 63.58 26.75 34.72 53.21 66.79 93.33 25.71 303.26 278.26 92.17 27.0 0.40 415.63 337.50
118 | October 2004 80.25 | 107.41 | 136.42 40.37 36.60 54.72 71.32 101.48 26.91 304.35 280.43 93.04 27.1 0.01 404.69 368.75
119 | November 2004 85.19 | 125.93 | 189.51 56.97 39.62 56.98 72.45 105.19 28.11 305.43 282.61 93.70 26.9 0.44 421.88 375.00
120 | December 2004 68.52 77.78 | 125.31 53.00 39.62 56.98 72.45 105.19 28.11 306.52 284.78 94.35 26.5 0.29 434.38 356.25
Maximum 85.19 | 125.93 | 189.51 60.43 39.62 56.98 7245 105.19 28.11 306.52 284.78 94.35 27.14 4.46 434.38 385.94
Minimum 9.88 9.26 6.79 10.15 17.36 23.02 33.21 48.89 12.07 258.70 213.04 82.61 6.02 0.01 109.38 106.25

Table 6-5: The scrap price model inputs (18 to 31) and the two outputs
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6.3.1 APPLICATION OF STATIC ANNS FOR MODELLING OF THE

MONTHLY SCRAP PRICES

To implement the first part of this study, a feed-forward MLP network with error
back- propagation learning algorithm has been developed to model the monthly scrap
prices for both Subcontinent and Far-East scrapyards. Therefore, there are 31 inputs
to this ANN model and 2 outputs. Figure 6-21 illustrates the system of inputs to the
above ANN and the corresponding outputs.

After initial randomisation of the patterns, with the same argument as section 6-2-1,
20% of the patterns (24 months observation) in each time series are used to test the
performance of each particular neural network and 70% of the patterns (84 months
observation) in each time series are used to train the ANN. The rest of the patterns
10% (12 months observation) are used to validate the networks. This network
includes one hidden layer. The activation function is used for this study is hyperbolic
tangent function (tanh), Equation 4-3, which will give an output in the range [-1, 1].

For this study, normalisation has been performed as the pre-processing of the data.
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Figure 6-21: The static ANN model for the monthly scrap prices
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Similarly, at the beginning of the modelling initial weights are randomised but, after
each stage, the current weight settings are stored along with the components to be re-
loaded for the next stage of training. All the ANN architectures and their

configurations have been optimised based on the average of the five random starts.

To decide the number of neurons in the hidden layer of the static ANN, various
numbers of neurons have been considered and subsequently the mean square error of
each neural network has been measured to identify the most accurate model.
According to Figure 6-22, the minimum testing MSE of 32.067 happens in the static
ANN model which has 5 neurons in its hidden layer. The value of the corresponding

correlation coefficient for this network is 0.997.
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Figure 6-22: Impact of the neurons on the static ANN model for scrap prices

The next step is to find out the best point in time to stop the training of the ANN. To
ensure the best performing ANN model, various iterations have been tried and their
performances tested. The error of the model and its corresponding correlation
coefficient for different iterations is presented in Figure 6-23. As this plot suggests,
the overall positive correlation coefficient of the model is relatively high. The
maximum value of this coefficient belongs to iteration 9000. Simultaneously, the

minimum MSE has happened in this point. The MSE of the training stage is measured
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as 0.000662 and the standard deviation is measured as 0.00030 for the above static
ANN.
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Figure 6-23: Impact of the different iterations to the static ANN model for monthly scrap prices

So far, the most accurate ANN is the one with 5 neurons in the hidden layer which is
trained for 9000 iterations. Figure 6-24 represents the impact of the learning rate y
variations for both hidden and output layer. MSE and correlation coefficient are
measured simultaneously in each particular rate for both layers. These plots suggest
that the most accurate learning rate for the output layer occurs at 0.02 and the best

learning rate for the hidden layer happens at 0.01.
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Figure 6-24: a) Impact of different learning rates in the output layer on MSE
and correlation coefficient for the static ANN model for scrap prices

b) Impact of different learning rates in the hidden layer on MSE
and correlation coefficient for the static ANN model for scrap prices

The last variable of the above ANN, which needs to be adjusted correctly, is the
momentum « . For this reason, various momentums are considered, for the above
static ANN model, and their performances tested. Figure 6-25 explains the variation
of the mean square errors and the correlation coefficients for different momentum

values. As the plot suggests the best momentum for the networks occur at 0.7.

Correlation coefficient

Correlation coefficient
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Figure 6-25: Impact of adding different momentums to the static ANN model for monthly scrap
prices

According to the above studies for various static ANN model parameters, the best

ANN model and the training is the one which includes:

— one hidden layer
— five neurons (or PEs)
— the hyperbolic tangent activation function.

— the learning rate of 0.01 for the hidden layer (y = 0.01)
— the learning rate of 0.02 for the output layer (¥ = 0.02)

— the momentum of 0.7 for the networks (a = 0.7)

6.3.1.1 SENSITIVITY ANALYSIS OF THE STATIC ANN MODEL FOR THE

MONTHLY SCRAP PRICES

As the architecture of the static ANN for the monthly scrap prices is identified and
the training of the neural networks are completed (see section 6-3-1), it is possible to
determine the sensitivity of the outputs with respect to each individual input. The
sensitivity analysis (see section 4-5-2), which is employed for this model, is based on

Equation 4-13.
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Figure 6-26 represents the sensitivity analysis of the static ANN model for the
monthly scrap prices. It explains that steel production has the most influence on the
model. For the Subcontinent prices, South-Korean steel production has the highest
value, and Japan’s steel production is the second most valuable. EU’s and China’s
have the third and forth highest values respectively but USA’s steel production does
not have a significant influence on the model. For the Far-East prices, the pattern is
almost the same but the EU’s steel production is the second most valuable and
Japan’s steel production is the third. In both case, the South-Korea’s steel production

is more than double that of Japan’s steel production.
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Figure 6-26: Sensitivity about the mean for all the inputs to the static ANN model for the
monthly scrap prices

OPEC and non-OPEC oil production have also shown an influence on the model. The
influence of the OPEC is slightly higher than the non-OPEC oil production for the

Subcontinent prices but it is lower for the Far-East prices. Product Tanker building
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prices and the tanker fleet utilisation rate have shown an influence on the model for
Subcontinent. Suezmax (double hull) Tanker building prices and Clean Carrier
(40/45000 dwt) 10 years Second-hand values have shown an influence on the model
for Far-East. On the contrary, tankers sold for scrapping, freight rates, bunker price
(as the operating cost of the ship) and exchange rates have very small impacts on the
model. There are a few reasons for the low influence of the above variables, like
freight rates or steel price, to the model. Firstly, it is possible that their influence is
offset by influence of another variable to the model or, secondly, there is not enough

data to carry out an accurate sensitivity analysis.

Similarly, according to the studies which are carried out for the static ANN model for
the monthly scrap prices, the most sensitive parameters of the model for the

Subcontinent prices are (Figure 6-26):

x5 : South Korea steel production

x, : Japan steel production

x, : EU steel production

x; : China steel production

x, :OPEC oil production

xg : Non-OPEC oil production

x,, « Tanker fleet utilisation rate

X,, : Product tankers 5 years market value

N R SR

and for the Far-East prices are:

x4 : South Korea steel production

x, : EU steel production

x, : Japan steel production

x, : China steel production

: Non-OPEC oil production

x, : Oil world trade

x,s * Suezmax Double Hull building price

©NAUL AW~
=
- -]

x,, : Clean carriers 10 years market value

Negligible inputs to the above models are:

1. x, : Steel price



Chapter 6: ANN Modelling of the Demolition Market Page: 237

X3 to x,, : Freight rates

X, t0 X, : Exchange rates (a small sensitivity for Yen/USD)
X, + Bunker price

x5, : Tankers sold for scrapping

X,g : Tankers demand

NN

6.3.2 DEVELOPMENT OF THE DYNAMIC ANN MODEL FOR THE SCRAP

PRICE PREDICTION

A dynamic ANN is implemented to forecast the monthly scrap prices for both
Subcontinent and Far-East scrapyards. The overall structure of the dynamic neural
networks for this study is illustrated in Figure 6-27. It also explains the system of

inputs to the network and the corresponding outputs.
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Figure 6-27: The system of inputs to the dynamic ANN and the corresponding output
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To develop this dynamic ANN model, a feed-forward MLP network with error back-
propagation learning algorithm has been created. Then a sequential framework has
been added to that by adding short-term memory in the form of a delay line, as
before. A section of the time series of the form [x(¢), x(t - 1),...,x(t - p)], and

[y(t ~1),...,y(t — p)] are used as input for the network. The delay line is order of p,
and the desired outputs are y(f) for each output. Similar to the previous modelling, an

integer value is substituted for p and several ANNs have been trained. The best
performing ANN is noted and then the process is repeated with a different integer
value for p. When sufficient p values have been investigated the MSE are compared
and the minimum is chosen. Consequently, forecast errors are measured in order to

judge how good that models are in terms of their prediction abilities.

To start the modelling, the data has been split into two groups: training and
validation. In the previous dynamic ANN study, section 6-2-2, 80% of the data (94
months) in each time series had been chosen to train the neural networks and 20% (23
months) for validation. But for this dynamic ANN, the above combination of the
categories could not produce an accurate and well performing modecl because of the
special condition in the last part of the output time series (Figure 6-28). The training
set is extended to cover a part of the significant changes of the last part of the output
time series (point T in the figure). Using an 85% training (100 patterns) and 15%
validation (17 months) combination puts the sharp increase in the training scction and
the ANN can learn the process of such an increase. This can also provide a visible
indication of the quality of training because if this was poor, the sharp increase would

not materialise.
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Figure 6-28: The actual outputs (scrap price in Subcontinent and Far-East) time series for the
dynamic ANN investigations. They are split into two sets of Training and Cross Validation.

Three last months, in each time series, are not taken into account for the training

purposes because their data is needed to check the prediction performance of the final

neural networks.

All the dynamic ANNs which are considered for this modelling are included one
hidden layer with the hyperbolic tangent (tanh) activation function, Equation 4-3, in

their hidden layers. The procedure of this modelling is illustrated in Figure 6-1.

To investigate the performance of the different dynamic ANN configurations, various
numbers of neurons and iterations, for a network with one month delay (7-1), have
been changed simultaneously. Then the mean square error of the testing stage for
each ANN has been measured to find out the most accurate combination. Figure 6-29

and Figure 6-30 represent the mean square error surface of the above measurements.
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Figure 6-29: The error surface of the designed dynamic ANN for the Subcontinent price with
one month delay (p=1)
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Figure 6-30: The error surface of the designed dynamic ANN for the Far-East scrap price with
one month delay (p=1)
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For the Subcontinent scrap prices, the minimum measured MSE of the error
surface, which is shown in Figure 6-29, is 3.150 and it occurs at iteration 9000 and
at a number of neurons of 11. Two cross sections of the Figure 6-29 are represented

in Figure 6-31 and Figure 6-32 to clarify these results.
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Figure 6-31: MSE against iteration on a logarithmic scale for 9 PEs (Neurons)
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Figure 6-32: MSE against PEs (Neurons) on a logarithmic scale for iteration 9000

For the Far-East scrap prices, the minimum measured MSE of the error surface,

which is shown in Figure 6-30, is 3.519 and it occurs at iteration 12000 and at a
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number of neurons of 5. Similarly, two cross sections of the Figure 6-30 are

represented in Figure 5-33 and Figure 5-34 to clarify these results.
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Figure 6-33: MSE against iteration on a logarithmic scale for 5 PEs (Neurons)
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Figure 6-34: MSE against PEs (Neurons) on a logarithmic scale for iteration 12000

The average MSE of the training stage for the above ANNSs are measured 0.030 and

0.0007 respectively. Also, the standard deviations of these training errors are 0.052
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and 0.0002. These values suggest that the second ANN has lower training error than

the first one.

To identify the best learning rate y for the training of the above dynamic ANN,
different rates are set and consequently the mean square errors of the testing stages
are measured. Figure 6-35 and Figure 6-36 are shown that the minimum error occur at

y = 0.1 which means the best learning rate, for both outputs, is 0.1.
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Figure 6-35: Impact of the different learning rate on the dynamic ANN with one month
delay for the Subcontinent scrap prices

— MSE —— Correlation coefficient

100 — 1
8 098 &
E
60 - 096 @
w (]
) (3]
E | —
40 0.94 .g
o
[
20 0.92 §

0 ; o , 09
0.05 0.1 0.15 0.2

Learning Rate

Figure 6-36: Impact of the different learning rate on the dynamic ANN with one month
delay for the Far-East scrap prices
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To investigate the effect of adding momentum to the above neural networks, different

momentums are added and subsequently the mean square error of the trainings

calculated to find out the best performing dynamic ANN. Figure 6-37 and Figure

6-38 represent the behaviour of the networks with different momentums and they

suggest that the best networks happens at momentum zero for both Subcontinent and

Far-East.
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Figure 6-37: Various Momentums of the dynamic ANN model with one month
delay for the Subcontinent scrap prices
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Figure 6-38: Various Momentums of the dynamic ANN model with one month
delay for the Far-East scrap prices
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The values of the mean square errors are 3.150 and 3.519 and the corresponding
correlation coefficients are 0.997 and 0.996 respectively which explain a high

positive correlation for these models.

So far, the parameters of the dynamic ANN model and training specifications with
one month time delay (p=1) for each location are specified. The ANN model and

training specifications for the Subcontinent prices are:

-~ one hidden layer

~ 11 neurons (or PEs)

— 9000 iterations for the network

— the hyperbolic tangent activation function

~ the learning rate of 0.1 for both layers (y =0.1)

~ the momentum of zero for the networks (a = 0)

and the ANN model and training specifications for the Far-East scrap prices are:

~ one hidden layer

— 5 neurons (or PEs)

~ 12000 iterations for the network

— the hyperbolic tangent activation function

~ the learning rate of 0.1 for both layers (y = 0.1)

~— the momentum of zero for the networks (@ = 0)

In the next section, the impacts of different time delays for each of the above ANN
models are analysed to understand if there is a possibility to achieve better
performance (Figure 6-39). As explained earlier in this scction, expanding the delay
window can increases the experience and the power of the decision making of the
network because it has access to earlier data as well as data from onc month previous.
Therefore, according to the system of inputs to the above dynamic ANN and the

corresponding outputs (Figure 6-27) changing the value of the delay p will change the
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structure of the neural network. A bigger value of p means more accessibility to the

past data.
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Figure 6-39: The time delay window for the dynamic ANN models of the scrap prices. The size of
the delay window can be varied by changing the structure of the neural networks.

Based on the previous analysis, new dynamic ANN models are implemented to
analyse the impact of 2, 3, 4, 5 and 6 months delay (p=2, p=3, p=4, p=5 and p=0).
The number of iterations and neurons are changed simultaneously to plot the mean
square error surface of each dynamic ANN for both locations. The MSE results of
these analyses, for the best ANN chosen for each delay, are represented in Figure
6-40 and Figure 6-41 for the Subcontinent and Far-East prices respectively. These
figures indicate that ANN with 5 months delays has more accuracy than the others in
both locations. There is no correlation between the most accurate ANN in each time
delay and other ANNSs as their specifications, e.g. the number of PEs or iterations, are

different.
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Figure 6-40: MSE against time delay of the best obtained dynamic ANN model for the monthly
scrap prices in the Subcontinent scrapyards. Box annotations indicate the specification of the
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Figure 6-41: MSE against time delay of the best obtained dynamic ANN model for the monthly
scrap prices in the Far-East scrapyards. Box annotations indicate the specification of the ANN
for each time delay.
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Table 6-6 illustrates the specifications of the best neural network for each time delay.
It is also a comparison between the most accurate ANNSs in each particular time dclay
model for Subcontinent scrap prices. It is shown that the minimum mcan square error

happens for the neural networks with five months time delay i.e. p=S.

Delay window PEs | lteration MSE
One month (¢-1) 11 9,000 3.1501
Two months (¢ - 2) 7 15,000 2.4548
Three months (¢ - 3) 7 10,000 2.6359
Four months (7 - 4) 9 30,000 0.3927
Five months (- 5) 11 40,000 0.2422
Six months (7 - 6) 17 60,000 1.16788

Table 6-6: Comparison between different ANN models for the Subcontinent prices with various
delay windows

Similarly, for the Far-East scrap prices, Table 6-7 shows that the minimum mean

square error happens for the neural networks with five months time delay i.e. p=5.

Delay window PEs Iteration MSE
One month (¢-1) 5 12,000 3.5193
Two months (¢ - 2) 7 15,000 2.5681
Three months (¢ - 3) 13 23,000 1.7238
Four months (¢ - 4) 9 30,000 0.9345
Five months (¢ - 5) 11 40,000 0.2844
Six months (¢ - 6) 13 55,000 0.7323

Table 6-7: Comparison between different dynamic ANN modcls for the Far-East prices with
various delay windows

6.3.2.1 MONTHLY SCRAP PRICES PREDICTION USING DYNAMIC ANN

MODEL

The best performing dynamic ANN model for the monthly scrap prices (in

Subcontinent and Far-East scrapyards) is identified in previous scction. In this
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section, the performance of the above neural networks is analysed. Similar to the
section 6-2-2-1, for the scrapped tonnage modelling, unseen data is used to evaluate

and verify the predictability of this ANN model.

As explained before (see section 6-3-2), in the beginning of the modelling process the
last three months of data is pulled out of the training and testing stages. Therefore,
these data are available to put in the obtained dynamic ANN model and check the

performance of the model by comparing the prediction with the real values.

Figure 6-42 and Figure 6-43 represent the actual measurements versus prediction of

the dynamic ANN model of scrap prices for both locations, Subcontinent and Far-

East respectively.
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Figure 6-42: The Subcontinent Forecast vs. Actual scrap price for three months period
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Figure 6-43: The Far-East Forecast vs. Actual scrap price for three months period
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Similarly, for the obtained dynamic ANN model for the scrap prices in Subcontinent
and Far-East, calculated RMSEs are 15.57 and 15.61 respectively. These numbers
show that the above model is slightly more accurate when it predicts the Far-East
prices. To have a better understanding of how accurate the model is, for both

locations, percentage prediction error is calculated.

The correlation coefficients between predicted and actual values for both models are
0.996 and 0.992 respectively, which show relatively high values of correlation for the

model predictions.

6.4 CONCLUSION

Two different Artificial Neural Networks (ANN) approaches have been used, in this
chapter, to:

1- Identify the most influential parameters of the demolition market,

2- Build a model to predict three months ahead of the market.

The static and dynamic ANN methods are employed to meet these criteria.

To meet the first goal, two different static ANN models were built for the monthly
scrapped tonnage and scrap price and the order of the influential parameters for each
model identified separately (sections 6-2-1-1 and 6-3-1-1). At the beginning of the
study, all the possible variables (inputs) which might influence the demolition market
were considered for the modelling (33 inputs). The results obtained identify the most
influential inputs to the ANN models, in order of importance, for each particular
model. These orders are deduced using sensitivity analyses. Each input is assigned a

number (or factor) which reflects its importance relative to the other inputs,

As explained before (see section 2-5), the demolition market is a section of the
maritime market which can be affected by the other parameters in other markets
sections e.g. newbuildings, second-hand and freight rate market. In such a complex
environment, the considerable reduction in the number of inputs to the ANN models

causes a consequent reduction of the free parameters which can affect the demolition
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market. Based on the above static ANN investigations, the dimension of the input

space for the monthly scrapped tonnage reduces to 7 inputs. Similarly, for the

monthly scrap prices in the Subcontinent and Far-East, the dimensions of the input

space reduce to 8 and 9 respectively.

It is also shown that if a dynamic ANN is trained properly for a specific purpose in

the demolition market, it is able to predict accurately even in situations with complex

data. As explained in section 6-2-2, the most accurate ANN model for prediction of

the monthly scrapped volume is as follows:

o

one hidden layer

9 neurons (or PEs)

16000 iterations for the network

the hyperbolic tangent activation function

the learning rate of 0.1 for both layers (y =0.1)

the momentum of 0.01 for the networks (a = 0.01)

4 months time delay (p =4)

Also, the specification of the most accurate dynamic ANN for price prediction in

Subcontinent scrapyards is as follows:

one hidden layer

11 neurons (or PEs)

9000 iterations for the network

the hyperbolic tangent activation function

the learning rate of 0.1 for both layers (y = 0.1)
the momentum of zero for the networks (a = 0)

5 months time delay (p = 5)

For the Far-East scrapyards the structure of the most accurate ANN is:

o

o)

one hidden layer

5 neurons (or PEs)
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o 12000 iterations for the network
o the hyperbolic tangent activation function
o the learning rate of 0.1 for both layers (¥ = 0.1)

o the momentum of zero for the networks (a = 0)

o 5 months time delay (p = 3)

The prediction of the monthly scrapped tonnage is more accurate than the previous
multivariate predictions. Compared wit the results obtained from the statistical
multivariate methods in Chapter 5, for the monthly scrapped tonnage, (Table 5-6), the

ANN model shows smaller value of RMSE which represents more accuracy for the

prediction, Table 6-8.

Modelling Method RMSE Key Variables

MLR 0.83 South Korean steel production
Oil world trade
Non-OPEC oil production
EU steel production

PCR 0.90 Steel price

Subcontinent scrap price

Crude carrier 300k dwt freight rate
Won/USD exchange rate

Bunker price

PLS 0.92 Crude carrier 300k dw freight rate
Bunker price

Won/USD exchange rate
Yen/USD exchange rate

ANN 0.12 South Korea stecl production
USA steel production

EU steel production

Oil world trade

Japan steel production

Product tankers building price
Tanker flect utilisation rate

Table 6-8: Performance comparison of the different modclling methods for the monthly
scrapped tonnage

The predictions of the ANN dynamic models for the scrap prices in both locations are

satisfactory. The prediction of the ANN for the monthly scrap price in Far-East
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scrapyards is slightly more accurate than the model for the Subcontinents scrap yards
in terms of the error and the correlation coefficient. Similarly, compared with the
obtained results for the monthly scrap prices using multivariate analysis in Chapter 5,
(Table 5-7), the ANN models show smaller error for the prediction in terms of

RMSE, Table 6-9.
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Modelling Method | RMSE | Key Variables

Subcontinent

MLR

20.50

South Korea steel Production
Japan steel production
Aframax DH building price
China steel production

USA steel production

PCR

20.53

Euro/USD exchange rate
Yen/USD exchange rate
Tankers fleet supply
Tankers fleet demand

PLS

19.30

Euro/USD exchange rate
Tankers fleet demand
Tankers fleet supply
Tankers order book

ANN

15.75

South Korea steel production

Japan steel production

EU steel production

China steel production

OPEC oil production

Non-OPEC oil production

Tanker fleet utilisation rate

Product tankers 5 years market value

Far-East

MLR

22.75

South Korea steel production
Japan steel production

Oil world trade

Suezmax DH building price

PCR

19.72

Euro/USD exchange rate
Yen/USD exchange rate
Tanker flect supply
Tankers fleet demand
China steel production
Tankers order book

PLS

21.26

Euro/USD exchange rate
Tankers fleet demand
Tankers flcet supply
Tankers order book

ANN

15.61

South Korea steel production

Japan steel production

EU steel production

China steel production

OPEC oil production

Non-OPEC oil production

Tanker fleet utilisation rate

Product tankers 5 ycars market value

Table 6-9: Performance comparison of the different modelling methods for the
monthly scrap prices
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7.1 CONCLUSION

Forecasting the demolition market is essential for investors and environmental policy
makers. Investors and financial decision makers want to be able to predict the market
to aid financial planning. It is also important to predict the demolition market so that
environmental policy makers can employ adaptive management to changes in the
market and act upon environmental concerns and thereby minimise the environmental
impacts of ship demolition. However, the identification of the main inputs to the
demolition market that can alter market trends is complicated because of the range of
variables, which have an influence on the demolition market. Also the complex
situation of the whole shipping market including the Newbuilding, Freight, Second-
hand and Demolition markets adds to difficulties in predicting the market. In addition,
external elements such as inflation, political issues and economic policies can also
affect the market. This complex situation can be a reason for the uncertainty of the
conventional forecasting analysis methods to model the Demolition market as they

can not take into account of all the variables.

This research is expected to be beneficial for investors in ship demolition market. An
investor needs to make a decision about buying or selling a ship in a short time and
the ANN model, as shown in this research, can help him/her to have a realistic plan
about the future which can be key to survival in the business. The produced ANN
model is also beneficial for financial decision makers who are focusing on the
shipping markets (specially the demolition market) and its related variablcs to
minimise the capital investments. It is also beneficial for the environmental policy
makers like people who are writing new legislations and regulations surrounding the
environmental aspects of shipping market, specially the demolition market. They can
have a realistic prospect of the demolition market using the ANN modcl. They can
create an ANN based on their needs and the time lag they are looking to the market

€.g. six months or annual.
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This research aimed to model the demolition market and forecast the short-term trend
of prices and the volume of the scrapped ships for scrapyards in the Far-Cast and

Subcontinent. The main objectives of this thesis are:

e Implement and validate the conventional multivariate analysis method to
produce a model for the demolition market and forecasting the demolition
market using the obtained models.

e Implement various ANN techniques to model the demolition market and
consequently forecast the demolition market using the obtained models.

e Measure the performance of the obtained model for both the conventional
and ANN modelling methods in order to identify the most accurate model.

e Analyse the structure of the demolition market using the best obtained
model and identify the inputs that can alter the market trends.

e TForecast three steps ahead of the market using obtained ANN modcls for
both volume and prices of the scrapped ships for scrapyards in the Far-East

and Subcontinent separately.

All the above objectives have been met within the chapter 1 to 6 of this thesis and the

following main conclusions are acquired:

e the accuracy of the obtained ANN models for both the volume and price
are greater than the conventional multivariate statistical forecasting
methods but ANNs can only accurately predict the demolition market if
they train correctly and also given the proper data upon which to train.

e  The large number of internal and external variables (inputs) to the
demolition market is a reason for the uncertainty of the conventional
statistical methods. They are not able to perform accurately and model the
market accurately in comparison to the new ANN modeclling approach.

e  When compared to multivariate analysis methods, ANNSs are a better tool

for the following main reasons:

— When using multivariate methods, the governing regression

assumptions must be true and, because of the large amount of variables
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in the demolition market, it is difficult to have a correct assumption
which covers all the variables and conditions. The lincarity assumption
itself may not hold in many cases. ANNs can model both lincar and
non-linear systems and does not need any initial assumptions.

When using multivariate analysis methods, the researcher must have a
deep understanding of statistics to ensure only the necessary
independent variables are used but it is not possible to distinguish the
dependant and independent variables in such a complex market. There
are also other considerations which can affect the multivariate model
and some of them are not easy to discover especially when the number
of variables is large.

For the models studied in this research, ANNs are significantly more
accurate than multivariate analysis methods because they can capture
the dynamics of the demolition market, which is non-lincar in reality,
trough time and identify the input-output maps in order to find the

main inputs to the market.

Considering the complex situation of the shipping market, implementing
ANN s are high maintenance and needs an in depth understanding of various
network parameters. Small changes of a parametcr within a network can

significantly change the model and consequently the results.

There are also some conclusions regarding the design of the static and dynamic

ANN:Ss for the demolition market. The specifications of different ANNSs in cach stage

have been identified in detail throughout the 6" chapter but it is important to note

that:

o Normalisation of the data, as pre-processing, is necessary to equalisc the

effects of various input data on the model and consequently achicve the
adequate model.

To identify the input-output maps, hyperbolic tangent (tanh), which gives an
output in the range between [-1, +1], is performing better than sigmoid

activation which gives an output in the range between [0, +1]. With the
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sigmoid activation function ANN do not perform well when it is working
close to the lower limit, zero, and it seems that the network is down for half
of the training period.

o There is no need to increase the complexity of the networks in both static
and dynamic modes by adding hidden layers. ANNs with one hidden laycrs
can analyse the data in the market.

o In static ANNs, different learning rates for different layers increases the
accuracy of the networks but it is not the case for the dynamic ANNs and
equal learning rates can be considered for all the layers.

o Indynamic ANNs the amount of the added momentum to the networks is
very low (near zero). ANNs with greater momentums can not converge
properly and therefore the network will not be stable and the level of the
error rises significantly.

o The batch learning method performs more accurately than the on-line
method.

o The amount of the data in each data set is important when dividing the data
into separate train, cross validation and test sets. It depends on the data
variations for example; there should be some data in the train sct to
represent peaks and troughs to let ANNs learn the different situations on the
market.

o A dynamic ANN should have access the past data to capturc the dynamics
of the market but there is a limitation in using past data. Having more
patterns than needed inhibits the decision making process of the network.
The network requires no more than 4 months data to predict the volume of
the scrapped ship and 5 months data to predict the scrap prices.

o MSE and MAE are the best criteria for measuring the performance of the
ANNSs in both static and dynamic modes. Some other criteria are confusing

and misleading e.g. percentage error.
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7.2 RECOMMENDATIONS FOR FUTURE WORKS

The ANN forecasting methods demonstrated in this research might be extended in the
future to predict the shipping markets and provide a means of adapting to unforescen
events and, thereby, provide stability. The development of these techniques for every
section of the shipping market, especially the demolition market because of the
importance of this particular market, is recommended by the author. In addition,
recent progress of the computers processors is also help the abilities of the ANNSs to

achieve better performances and results.

There are some considerations for the continuation of this research to increase the

accuracy of the obtained models and develop the employed techniques:

e The quality of the obtained ANN model is highly related to the quality of
the data so the quality of the model will significantly change to a more

precise model if more accurate or more specific data is available.

e Based on the sensitivity analysis of the demolition market, it is possible to
implement another ANN and ignore the inputs with low sensitivitics. This

makes the ANN perform faster and sometimes more accurately,

o Itis possible to estimate the trend of the most influential inputs to the
ANN model and extend the steps of the forecasting. The accuracy of the

new model depends on the number of high sensitivity inputs,

e Regarding the recent progresses in processor speed and calculation power
and also the invention of new CPU gencrations of Duo and Quadra, it is
possible to use the ANN models real time. This gives enough power to
calculate the more complicated ANN algorithms in a shorter time. To
implement such a real time system, it is critical to have access to the

accurate data so a reliable source of data is nceded.
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ANNSs have been more accurate than the conventional multivariate
methods in the demolition market but ANNS techniques have their own
limitations and it is also important to point out that they easily can produce
wrong models and subsequently wrong results. Therefore, not only the
ANN model should be used and it is recommended that the uscr verify the
network outputs with other present indicators in the market before using

the network results produced by each particular model.

A number of practical considerations which may benefit others researching ANNs in

the future are listed below:

o ANN modelling is a black-box modelling method so the model itself, as a

mathematical relation between the inputs and outputs, is not accessible.
Weight matrices are the only windows to the model and sometimes
because they are significantly high dimensional matrices it is difficult to
use the normal matrix mathematics to calculate the numbers that are

needed.

Maintenance of the obtained ANN models in each stage is difficult. At the
beginning of the learning process all the weights are designated randomly
to the inputs and as long as the ANN learns trough time they will be
changed. Hence, the new settings of weights should be saved in order to
continue the learning process for the next stage if a break is taken during
the ANN learning process. If the weights are not saved the learning begins
again from another random allocation of weights and the same point

reached previously may not be achieved.

If there has been a problem with the data it will affect the ANN and
subsequently the quality of the model. Therefore, preparation of the data is
needed, however choosing the best method to prepare the data is crucial

and plays an important role.
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This thesis can be used to aid other researchers looking to predict future shipping
markets. They can use the methodology of this research to design and adjust the ANN
for their interests. For example, implementing an ANN for predicting bulk carriers®
freight rates is different but it is possible to use the same methodology, as it is shown

in this research, to identify the unique structure of the ANN,
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December 98 | 880 [ 610 258 {342 /433 686] 179 216/ 296 12.3] 18s] 257] 374
January 99 862 | 561 | 25813421431 e686( 198| 198 290 151 200] 230] 374
February 99 840 | 699 | 258 [342]425] 683 | 148] 222 309] 121 200] 230] 374
March 99 840 | 699 | 2531339 [422] 68.1 160 198 2841 109 200] 230! 374
April 99 8371 787 250[336[419] 678 148{ 167] 148 104] 200] 230/ 36.2
May 99 825 876 2503330419 678 11.7) 136/ 173] 129) 200 230] 362
June 99 82511033 | 250(336(422( 678 99| 1301 241 146 200 253] 362
July 99 874 | 1132 ] 250[3391425] 678 99| 148 160] 144 200 253] 358
August 99 90.5 [ 117.1 | 250 ]33.9[428] 681 10.5 93] 136] 136] 196 249 1355
September 99 | 93.5 | 125.0 | 253 | 342 | 42.8 | 683 99| 17| 173 130 ] 196] 249] 355
October 99 957 [ 1280 ] 256 [342[428] 686] 105 136 173 126 196 253 [ 355
November99 | 978 | 1250 258 [ 342428 689 1231 136 136 102] 192 245]| 355
December99 | 978 [ 1299 | 261 [3471436| 69.7] 179 235| 167 129 192] 245] 355
January 00 9291407 26713501444 703]| 185] 2100 204 159 196 257 366
February 00 902 | 1467 26913564531 710 | 241 241 235 173] 200{ 279 381
March 00 963 [ 121.1 | 269 (361 458! 717( 284 272] 290 176 208] 294} 396
April 00 920 | 1407 272136714641 7221 2471 2901} 389[ 190 223 [ 306] 411
May 00 926 | 1348 272 (3691467 728 27.8{ 302 457 194 ] 223{ 31.3[ 41
June 00 938 [ 1309 2753751475 733 3831 370 s06f 230 223] 3251 430
July 00 908 [ 1486 | 275 (381481 | 736 426] 494 s06| 263] 223 | 3361 438
August 00 935 [ 1585 278 (386 {486 739 4sa1| 426 685| 275] 249! 366 491
September 00 | 92.3 [ 1506 | 278 [ 394 | 492 | 744 | 333] 475] 69| 285 | 240 381 | 498
October 00 914 | 1319 ] 278400497 750 500[ 556 679 295] 249{ 400 s02
November 00 | 905 | 1073 | 278 | 406 {500 753 494 5311 852 327 249 408] s02
December 00 | 877 1 1181 278 [ 40314971 753 556 599 8271 s05] 260] 415 502
January 01 85511230 27.8{400{497] 750] 4751 593 642] 604] 260] 41.1] 494
February 01 849 | 1191 | 2781397497 747 475] 352 so6| s85| 260[ 400 483
March 01 788 | 1171 ] 27813971497 747 519 4691 s56] 389 260] 400 483
April 01 809 | 1230 27813971497 747 383[ 389 444 | 280 2600 400]| 483
May 01 8371201 ] 2783974971 747 296( 340 315{ 292 257 410 an3
June 01 800 [ 1161 ] 275(397]497! 747 235] 259] 228 315| 253 408] 487
July 01 80.0 | 1289 | 27513941497 747 2531 302] 253[ 290 249] 396| 479
August 01 837 | 1132 ] 2721039201497 747 265] 278| 2471 270| 248| 37.7| 4s7
September 01 [ 83.4 | 1004 | 269386486 | 7361 222 2471 395 238 238 362 445
October 01 8151024 | 267 (37814781 722 2531 272 321 258| 26| 351] 430
November 01 | 809 | 1053 | 264 [367]467] 706 2221 198] 148 181 21.9] 343] 4Ls
December 01 | 760 [ 1073 | 261 (3601458 69.7) 23.5] 191 ] 160] 144( 208 28] 400
January 02 742 11171 25813581453 694 | 154 1723] 98] 141 ] 200] 313] 389
February 02 74511309 | 2531356450 692 1361 1723 185 166 200] 306 389
March 02 748 | 1398 | 253 (3531447 686 136 194 ] 130 170 200 306 389
April 02 77.5 | 1348 [ 253 {350 | 447] 6.5 16.0 19.1 861 139 200] 306] 389
May 02 803 | 140.7 | 253 1347|4471 664 16.0 16,71 191 ] 141 ] 200] 306 389
June 02 83.4 [ 1457 ] 25303471447 656 1791 179 na ] 159l 200] 306 396
July 02 83.1 {1594 | 253 344|444 653 1601 167] 1421 171 200 306 396
August 02 843 | 1467 | 253 (342 ]444] 650 123 1541 99 181 200] 306] e
September 02 | 822 1260 { 253 {342 | 444 | 647 12.3 1541 117 190 200{ w71 317
October 02 8151348 | 256 342|442 644 179 235 383 181 215 287 317
November 02 | 81.5 | 1663 | 256 342439 642 ] 309( 358] 444{ 203 218 27| 3717
December 02 | 84.0 [ 1732 | 258 [ 342|442 639 2961 432 654 298| 215 287| 381
January 03 83.7 11467 264 (34714471 644 | 302 549 7161 3151 234 3171 419
February 03 84.6 | 1280 2671353 {453 650{ 463| 568 | 574 290 245]| 325| 438
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March 03 84.0 | 136.8 | 269 | 358 | 45.8 65.6 50.6 54.3 722 32.7 24.5 32,8 418
April 03 83.7 1 146.7 | 269 | 358 | 45.8 65.6 37.0 333 48.1 359 | 24.5 328 41.8
May 03 84.0 | 163.4] 269|356 1458 65.6 284 3891 426 | 312 ] 245 33.6 431.8
June 03 834 | 1575 269 | 358 | 46.1 65.6 27.8 3771 346 | 228 | 245 336 431.8
July 03 828 | 1476 | 27.5] 36.7 | 46.7 66.4 20.4 17.9 204 26.3 24.5 336 43.8
August 03 846 | 153.51 28.1 | 372 | 47.5 67.2 16.7 17.9 204 | 31.2 24.5 33.6 43.8
September 03 898 | 1496 { 28.6 | 38.1 | 48.3 68.3 19.8 24.1 54.3 26.7 245 33.6 4318
October 03 914 | 1378 | 29.7 ] 40.0 | 50.0 71.7 28.4 34.6 284 | 21.1 26.4 35.1 45.3
November 03 914 | 1398 | 303 | 417 | 51.7 74.7 35.8 42.0 82.7 16.6 | 27.5 37.0 47.2
December 03 929 (1378 | 314|433 53.3 77.8 50.6 66.0 8701 240 294 38.9 498
January 04 942 | 14671 31.7 | 444 | 54.2 79.4 57.4 88.3 79.6 26.0 31.3 39.2 52.1
February 04 91.1 | 1545 ] 322 ] 458 | 55.0 81.4 46.9 50.0 76.5 | 34.7 313 41.5 52.1
March 04 96.0 | 167.3 | 32.8 | 46.9 | 56.1 83.6 37.7 512} 636 33.7) 313 44.2 52.8
April 04 90.2 | 1594 | 33.1 1475 56.7 85.6 27.8 40.1 53.1 21.5 | 313 44.2 52.8
May 04 898 | 163.4 | 33.6 [ 483 { §7.2 88.1 28.4 444 | 568} 21.5] 313 45.7 54.3
June 04 914 | 1654 | 33.9 | 489 | 58.1 90.0 34.6 46.9 74.1 28.0 32.1 47.5 58.5
July 04 889 | 1614 | 342 | 50.0 | 61.1 93.3 32.7 52.5 79.0 30.7 32.5 49.8 60.0
August 04 908 11732 | 344 | 51.7 | 63.9 96.9 32.1 45.7 623 ] 2671 336 51.3 62.3
September 04 898 | 143.7 | 34.7 | 528 | 66.4 99.7 32.7 46.3 636 | 2671 347 53.2 66.8
October 04 935 1545 ] 3641 550 | 68.1 103.1 80.2 1074 { 1364 | 404 36.6 54.7 71.3
November 04 969 | 1634 ] 375 | 569 | 68.9 106.1 §5.2 1259 1 1895 { 570 | 39.6 57.0 72.5
December 04 969 | 1742 | 394 | 59.7 | 69.7 109.4 68.5 778 | 125.3 5301 396 57.0 72.5
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January 95 522 16.8 260.9 218.5 83.9 9.2 42
February 95 51.9 17.3 259.8 2163 83.5 9.1 4.2
March 95 51.9 17.9 258.7 215.2 83.0 9.0 4.2
April 95 51.9 18.2 258.7 213.0 82.6 8.8 4.0
May 95 51.9 18.7 258.7 215.2 83.9 8.6 4.0
June 95 51.9 19.1 258.7 218.5 85.0 8.4 4.0
July 95 522 19.1 258.7 220.7 85.9 8.1 1.0
August 95 53.3 19.1 258.7 220.7 85.9 7.9 1.0
September 95 53.7 19.1 258.7 220.7 85.9 1.6 1.0
October 95 53.7 19.1 258.7 220.7 86.1 7.2 1.5
November 95 53.7 19.1 258.7 221.7 86.5 7.0 1.5
December 95 53.7 19.1 258.7 222.8 87.0 6.8 1.5
January 96 54.8 19.1 2587 2239 87.4 6.5 0.9
February 96 55.9 19.1 259.8 230.4 87.0 6.3 0.9
March 96 56.7 19.1 260.9 237.0 86.5 6.0 0.9
April 96 56.7 19.1 262.0 242.4 86.3 6.1 3.5
May 96 56.7 19.1 263.0 237.0 86.1 6.3 3.5
June 96 57.0 19.1 264.1 231.5 86.1 6.5 3.5
July 96 574 19.1 264.1 226.1 86.1 6.8 1.3
August 96 57.4 19.1 264.1 2272 86.3 7.0 1.3
September 96 57.8 19.1 264.1 228.3 86.5 7.4 1.3
October 96 58.9 19.6 264.1 229.3 86.7 7.6 1.1
November 96 59.3 19.6 265.2 229.3 86.7 1.6 1.}
December 96 60.0 20.3 266.3 229.3 86.7 7.6 1.1
January 97 619 21.0 267.4 229.3 86.7 7.6 1.2
February 97 62.6 21.0 267.4 230.4 87.0 9.2 1.2
March 97 62.6 21.0 266.3 230.4 87.2 10.4 1.2
April 97 619 21.0 266.3 231.5 87.2 1.3 1.3
May 97 61.9 21.0 265.2 231.5 87.6 12.0 1.3
June 97 619 21.0 265.2 232.6 88.3 12,6 1.3
[ July 97 61.9 210 2652 2337 88.9 13.6 0.3
August 97 619 21.0 265.2 234.8 89.6 14.2 0.3
September 97 63.7 21.0 265.2 237.0 90.0 14.7 0.3
October 97 64.8 20.6 265.2 239.1 90.9 15.2 0.8
November 97 65.6 20.0 265.2 239.1 90.4 15.2 0.8
December 97 64.4 19.6 266.3 238.0 90.0 15.2 0.8
January 98 63.0 18.9 267.4 237.0 89.1 15.4 0.1
February 98 61.9 18.5 268.5 238.0 89.3 15.4 0.1
March 98 60.7 17.6 268.5 239.1 89.6 15.4 0.3
April 98 60.0 17.0 269.6 240.2 89.8 15.5 0.5
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May 98 58.5 16.5 269.6 239.1 89.3 15.5 0.7
June 98 57.4 16.0 270.7 238.0 88.5 15.5 0.7
July 98 55.6 15.0 270.7 237.0 87.8 15.6 0.3
August 93 52.6 13.6 271.7 235.9 87.4 15.8 0.0
September 98 489 13.1 2717 235.9 87.0 16.5 0.9
October 98 48.9 13.1 272.8 235.9 86.7 16.2 1.3
November 98 489 12.6 272.8 235.9 86.5 15.8 0.8
December 98 51.5 12.1 273.9 235.9 86.5 15.2 1.0
January 99 54.8 13.9 275.0 237.0 86.5 14.7 0.1
February 99 54.8 13.9 276.1 235.9 86.1 14.6 1.0
March 99 54.8 13.9 2772 234.8 85.4 14.4 1.2
April 99 53.7 13.9 277.2 231.5 84.3 14.1 1.9
May 99 53.7 13.8 271.2 230.4 83.7 13.9 0.7
June 99 53.7 13.8 2712 229.3 83.3 13.6 0.7
July 99 53.7 13.5 277.2 228.3 82.8 13.4 0.8
August 99 53.7 13.5 277.2 227.2 82.6 13.1 0.9
September 99 53.7 13.5 278.3 228.3 82.6 12.8 1.7
October 99 53.7 13.5 278.3 229.3 82.8 12.6 0.9
November 99 52.6 13.5 279.3 231.5 83.0 12.9 33
December 99 52.6 13.8 279.3 234.8 84.1 13.1 2.4
January 00 54.8 144 279.3 237.0 85.0 13.3 2.5
February 00 56.7 14.9 280.4 240.2 86.1 13.5 3.2
March 00 60.0 15.9 280.4 244.6 87.4 13.9 1.3
April 00 61.9 17.2 281.5 250.0 88.9 14.4 1.5
May 00 62.2 17.2 281.5 252.2 90.0 15.0 0.5
June 00 63.0 17.2 281.5 253.3 90.4 15.6 0.8
July 00 64.1 17.5 281.5 254.3 90.9 16.1 1.9
August 00 70.0 18.1 281.5 255.4 91.3 16.3 0.2
September 00 70.0 18.1 282.6 258.7 92.2 16.6 0.1
October 00 70.0 18.1 282.6 262.0 92.8 16.9 1.1
November 00 70.0 18.6 282.6 264.1 93.5 17.2 0.6
December 00 70.0 19.1 283.7 260.9 92.6 17.6 0.0
January 01 70.0 19.1 283.7 258.7 91.5 17.8 0.3
February 01 67.8 19.1 284.8 255.4 90.7 18.2 0.5
March 01 67.8 19.1 284.8 253.3 89.6 18.9 1.2
April 01 67.8 19.1 284.8 251.1 88.9 19.4 0.7
May 01 67.8 19.1 284.8 250.0 88.0 20.3 1.4
June 01 67.8 19.1 284.8 248.9 87.8 21.1 1.0
July 01 66.3 18.8 284.8 248.9 87.6 224 1.0
August 01 64.8 18.0 284.8 247.8 87.4 222 0.8
September 01 63.3 17.4 284.8 246.7 87.2 21.7 1.2
October 01 62.6 16.7 284.8 246.7 87.0 21.4 1.4
November 01 61.5 16.0 284 8 246.7 87.0 21.0 4.0
December 01 60.0 15.5 284.8 242.4 85.7 20.6 1.5
January 02 58.5 15.1 283.7 235.9 83.9 20.3 1.7
February 02 58.5 15.1 282.6 231.5 82.6 20.5 2.7
March 02 574 14.1 281.5 231.5 82.6 20.8 1.3
April 02 56.3 14.1 281.5 232.6 82.8 21.0 2.3
May 02 54.8 14.1 281.5 232.6 83.0 20.6 36
June 02 54.8 14.1 281.5 233.7 81.5 20.0 0.3
July 02 54.8 14.1 280.4 234.8 84.3 19.5 0.4
August 02 54.8 14.1 280.4 235.9 85.2 19.5 1.3
September 02 51.9 14.1 280.4 240.2 86.3 19.5 1.9
October 02 51.9 14.1 280.4 244.6 87.6 19.5 0.9
November 02 51.9 14.1 281.5 248.9 88.9 19.8 0.7
December 02 51.9 15.0 281.5 252.2 90.0 20.1 1.2
January 03 57.8 16.1 282.6 254.3 90.4 20.6 1.1

| February 03 58.5 16.1 283.7 255.4 91.1 21.1 0.4
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March 03 58.5 16.1 284.8 257.6 90.9 21.5 0.8
April 03 58.5 16.1 285.9 257.6 90.4 219 1.6
May 03 60.0 16.1 288.0 257.6 90.0 22.2 4.5
June 03 60.0 16.1 289.1 256.5 89.3 22.7 1.6
July 03 60.0 16.1 290.2 255.4 88.9 23.1 1.8
August 03 60.0 16.1 290.2 254.3 88.5 23.5 3.5
September 03 60.0 16.1 291.3 255.4 88.3 23.9 0.6
October 03 62.6 16.1 291.3 259.8 89.3 244 1.0
November 03 68.1 17.4 292.4 264.1 90.4 24.8 0.6
December 03 72.6 19.1 292.4 265.2 91.3 25.7 0.6
January 04 75.2 19.1 292.4 266.3 91.5 26.5 0.6
February 04 75.6 21.1 293.5 267.4 91.7 264 0.4
March 04 75.9 21.1 293.5 267.4 92.0 26.4 1.5
April 04 75.9 21.1 296.7 266.3 91.1 26.4 1.3
May 04 81.5 21.1 298.9 266.3 90.4 26.5 0.8
June 04 84.8 21.2 300.0 268.5 89.6 26.6 1.0
July 04 87.4 233 301.1 271.7 90.4 26.8 0.7
August 04 90.7 24.1 302.2 275.0 91.3 26.9 0.6
September 04 93.3 25.7 303.3 278.3 92.2 27.0 0.4
October 04 101.5 26.9 3043 280.4 93.0 27.1 0.1
November 04 105.2 28.1 3054 282.6 93.7 269 0.4
December 04 105.2 28.1 306.5 284.8 94.3 26.5 0.3




LIST OF ABBREVIATIONS



Abbreviation Term

ADALINE ADAptive LINear Elements

ANN Artificial Neural Networks

ANOVA Analysis of Variance

ART Adaptive Resonance Theory

BIMCO Baltic and International Maritime Council
CA Correspondence Analysis

CAT Category

CC Canonical Correlation

CCA Canonical Correlation Analysis

Cov Covariance

cVvV Cross Validation

DA Discriminant Analysis

DF Degrees of Freedom

DNV Det Norske Veritas

DWT Deadweight Tonnage

EC European Commission

ESM Environmentally Sound Management

ESS Error Sum of Squares

GLM Generalised Linear Model

GT Gross Tonnage

1LO International Labour Organisation

IMO International Maritime Organisation

ISL Institute of Shipping Economics and Logistics
LDT Light displacement tonnes or Lightweight
LNG Liquefied Natural Gas

MADALINE Multiple ADAptive LINear Elements

MAE Mean Absolute Error

MANOVA Multivariate Analysis of Variance
MARPOL Marine Pollution (The International Convention)
MEPC Marine Environment Protection Committee
MCA Multiple Correspondence Analysis

MDS Multidimensional Scaling _

MFA Multiple Factor Analysis

MLP Multi Layer Perceptron

MLR Multiple linear regression

MSE Mean Square Error

NLPCA Non Linear PCA

OECD Organisation for Economic Co-operation and Development
OPEC Organisation of the Petroleum Exporting Countries
PC Principal Componenet

PCA Principal Component Analysis

PCBs Polychlorinated Biphenyls

PCR Principal Component Regression

PE Processing Element

PLS Partial Least Squares

PLSR Partial Least Square Regression

PNN Probabilistic Neural Networks

RBF Radial Basis Functions

RNN Recurrent Neural Networks
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Abbreviation

Term

RRR Reduced Rank Regression

RSS Residual Sum of Squares

RMSE Root Mean Square Error

RMSEC Root Mean Square Error of Calibration
RMSEP Mean Square Error of Prediction

SOM Self-Organised Maps

SS Sum of Squares

78T Tributyltin

TDNN Time Delay Neural Network

TEU Twenty-foot Equivalent Unit

TLRN Time Lagged Recurrent Network
UNCTAD United Nations Conference on Trade and Development
ULCC Ultra Large Crude Carrier

UNEP United Nations Environment Programme
VLCC Very Large Crude Carrier
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ABBREVIATION

TERM / ACRONYM EXPLANATION

ACTIVATION A mathematical function that a neuron uses to produce

FUNCTION an output referring to its input value. Usually this input
value has to exceed a specified threshold value that
determines, if an output to other neurons should be
generated.

AFRAMAX Tankers generally 80,000-119,000 DWT

ARTIFICIAL NEURAL | ANN A mathematical or computational modelling based on

NETWORKS the biological neural networks.

BACKPROPAGATION A learning algorithm used by artificial neural networks
with supervised learning. Special form of the delta
learning rule.

BACKPROPAGATION A feedforward type of artificial neural networks. They

NETWORKS have one input layer, one output layer and at least one
hidden layer.

BALLAST Seawater taken into a vessel's tanks in order to
submerge the vessel to proper trim.

BALTIC AND BIMCO Trade organisation representing shipowners,

INTERNATIONAL shipbrokers and agents, and other members

MARITIME COUNCIL

BULK CARGO Usually a homogeneous cargo stowed in bulk, and not
enclosed in any container.

CANONICAL CCA A tecnique for identifying and quantifying the

CORRELATION relations between a p-dimensional random X-variable

ANALYSIS and a g-dimensional random Y-variable.

DEADWEIGHT DEADWEIGHT, The lifting or carrying capacity of a ship when fully

TONNAGE DWT loaded. The deadweight is the difference, in tonnes,
between the displacement and the lightweight. It
includes cargo, bunkers, water (potable, boiler, and
ballast), stores, passengers and crew.

DELTA LEARNING A learning algorithm used by artificial neural nctworks

RULE with supervised learning. Effects the changing of
weights by multiplying a neuron's input with the
difference of its output and the desired output and the
learning rate.

DET NORSKE DNV One of several Classification Societies - The

VERITAS professional organisations which class and certify the
strength and seaworthiness of vessel construction.
Class and certification issued to each vesscl may be
required for insurance purposes. DNV and Lloyds
Register of Shipping are two well known classification
societies in the world today.

FEED BACK A specific connection structure of the artificia) neural
networks, where neurons of one layer may have
connections to neurons of other layers and also to
neurons of the same layer,

FEED FORWARD A specific connection structure of the artificial neural
networks where neurons of one layer may only have
connections to neurons of the next layer,

GROSS TONNAGE GT The internal capacity of a vessel measured in units of
100 cubic feet.

HIDDEN LAYER A type of layer that lies between the artificial ncural
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networks' input and output layers, Called "hidden",
because its neuron values are not visible outside the
network. The usage of hidden layers extends the neural
networks' abilities to learn logical operations.

INTERNATIONAL iILO The UN agency seeking the promotion of social justice
LABOUR and internationally recognized human and labour
ORGANISATION rights

INTERNATIONAL IMO The United Nations' agency responsible for improving

MARITIME maritime safety and preventing pollution from ships.

ORGANISATION

INPUT A set of values, called "pattern”, that is passed to the
artificial neural networks' input layer.

INPUT LAYER The first layer of the artificial neural networks that
accepts certain input patterns and generates output
values to the successing weight matrix.

LIGHT LDT The lightweight is the displacement, in t, without

DISPLACEMENT cargo, fuel, lubricating oil, ballast water, fresh water

TONNES OR and feed water, consumable stores and passengers and

LIGHTWEIGHT crew and their effects, but including liquids in piping,

LEARNING A mathematical algorithm that the artificial ncural

ALGORITHM networks use to learn specific problems.

LEARNING RATE A changeable value used by several learning
algorithms, which effects the changing of weight
values. The greater the learning rate, the more the
weight values are changed. Is usually decreased during
the learning process.

MULTIVARIATE MANOVA A classical statistical analysis method to assess the

ANALYSIS OF significance of effects by decomposition of a

VARIANCE response's variance into explained parts.

MARPOL International Convention for the Prevention of
Pollution from Ships, 1973, as modified by the
Protocol of 1978 relating thereto (MARPOL, 73/78).

MARINE MEPC IMO's senior technical body on marine pollution

ENVIRONMENT related matters.

PROTECTION

COMMITTEE

MULTI LAYER MLP A feedforward type of artificial neural nctworks. Built

PERCEPTRON of an input layer, at least one hidden layer and one
output layer.

MULTIPLE LINEAR MLR A multivariate analysis method which relates the

REGRESSION variations in a response variable (Y-variable) to the
variations of several predictors (X-variablcs),

NEURON An element of the artificial neural networks' layers,

ORGANISATION FOR | OECD An international organisation of those developed

EconoMmic Co- countries that accept the principles of representative

OPERATION AND democracy and a free market economy

DEVELOPMENT

OuTPUT A value or a set of values (pattern), gencrated by the
neurons of the artificial ncural networks' output layer,
Used to calculate the current error value of the net,

OUTPUT LAYER The last layer of the artificial ncural nctwork that
produces the output value of the net.

PANAMAX. The maximum size ship that can fit through the
Panama Canal in terms of width, length and draught
generally about 80,000 DWT

PRINCIPAL PCA The amount of variance in a variable that is shared by

COMPONENT all the variables in the analysis.

ANALYSIS

POLYCHLORINATED | PCBs A mixture of individual chemicals which are cither
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oily liquids or solids that is colourless to light yellow.

BIPHENYLS

PRINCIPAL PCR A regression analysis method including two-step

COMPONENT procedure which first decomposes the X-matrix by

REGRESSION PCA, then fits a MLR model.

PROCESSING PE An element of the artificial neural networks' layers,

ELEMENT

PERCEPTRON A feedforward type of the artificial neural networks,
Built of one input layer and one output layer.

PARTIAL LEAST PLS A regression analysis method which is the extension of

SQUARES the MLR.

PROPAGATION The passing of values and errors through the different
layers of the artificial neural networks during its
learning process.

SUEZMAX The maximum size ship that can sail through the Suez
canal generally considered to be between 150-200,000
DWT depending on ships dimensions and draught,

SUPERVISED A specific type of a learning algorithm. The output

LEARNING (pattern) of the network is compared with a target
output (pattern). Depending on the difference between
these patterns, the network error is computed.

TRIBUTYLTIN TBT One of the most poisonous substances to be released to
the aquatic environment.

TWENTY-FOOT TEU Standard unit for counting containers of various

EQUIVALENT UNIT capacities and for describing the capacities of
container ships or terminals. One 20 Foot ISO
container equals 1 TEU.

THRESHOLD A specific value that must be exceeded by a neuron's
activation function, before this neuron generates an
output.

ULTRA LARGE ULCC Tanker of 320,000 DWT & above

CRUDE CARRIER

UNSUPERVISED A specific type of a learning algorithm. Unlike

L.LEARNING supervised learning, no target patterns exist.

VERY LARGE CRUDE | VLCC Tanker of 160,000-320,000 DWT

CARRIER

WEIGHT An element of a weight matrix. A connection between
two neurons with a value that is dynamically changed
during the artificial neural networks’ learning process.

WEIGHT MATRIX The connection structure between two layers of the

artificial neural networks. Its elements, the weights,
are changed during the network's learning process.




