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Abstract 

Laboratory batch and long-term column experiments were conducted to investigate the effects 

of wood-chip biochar and coal-derived activated carbon amendment on the microbiology of a 

volatile petroleum hydrocarbon (VPH) - contaminated gravelly sand. First, a stable isotope-

labelled mono aromatic compound – toluene was used as a model VPH to gain insights into 

the mineralization of VPHs by soil microorganisms in the presence and absence of biochar or 

activated carbon. The biodegradation of a mixture of 12 VPHs was subsequently monitored in 

batch microcosms over a duration of 6-19 days by measuring headspace CO2 concentration. 

Further analysis was carried out by characterizing changes in the soil microbial community 

composition using next generation sequencing techniques – 454 pyrosequencing and Ion 

torrent sequencing. Increases in the levels of headspace CO2 in contaminated soil batches as 

compared to live and abiotic controls to which no VPHs were added indicated a stimulation of 

microbial activity in the batches through VPH addition. By fitting a maximum specific growth 

rate of 0.6 h-1 (in line with published rates), it was possible to match model predictions of 

45CO2 and 44CO2 concentrations with the experimentally determined data. Half-saturation 

constants of 4.06 x 103 mgL-1, 7.76 x 102 mgL-1 and 1.83 x 102 mgL-1 were predicted for soil, 

soil & BC and soil & AC respectively, much higher than values reported in the literature. 

Differences in the half-saturation constant suggests that sorbent amendment affects the 

microbial ecology, by making microorganisms which can utilize substrates at lower 

concentrations more competitive. Yield coefficients (g biomass-C relative to g (biomass-C + 

CO2-C)) compared more closely in the nutrient (N & P) amended soils ranging from 

4.83±0.46 in soil and biochar to 7.86±0.72 in unamended soil, than in the batches without 

nutrients, 4.1±3.1 in soil & BC, 17.7±5.2 in soil and 13.7±4.6 in soil & AC. Sorbent 

amendment thus reduced yield coefficients, thereby slowing the growth of VPH degrading 

biomass. Microbial community structure analysis revealed an increase in the relative 

abundance ranking of members of the genera Pseudomonas, Pseudoxanthomonas, and 

Arenimonas by up to 32 folds and in the families Nocardioidaceae and Pseudomonadaceae 

by at least 32 folds in sorbent amended and unamended soil batches and columns compared to 

their initial soil conditions. Consequently, amending soils with 2% BC or AC changed the 

biokinetics of VPH degradation by rendering VPHs less bioavailable, but did not appear to 

have any detrimental effects on the VPH degrading bacteria both in the short- and long-term, 

and may serve as a sustainable, cost-effective approach for enhancing the natural attenuation 

of VPHs in soil, thus addressing the challenge of petroleum hydrocarbon contamination. 
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Chapter 1: Introduction, aim and thesis scope 

 Introduction 

Volatile petroleum hydrocarbons are among the hazardous components of crude oil and 

because of their readily volatile nature, they have the capacity to migrate across 

different environmental compartments once they are released from a source. 

Contaminants released from under the ground due either to leakages from storage tanks 

or groundwater pollution have been reported to intrude into indoor air resulting in 

elevated concentrations of these compounds in buildings (U.S.E.P.A., 2002; U.S.E.P.A., 

2012). Depending on the depth of contaminant source in the subsurface, the 

concentration of the pollutants and the degree of natural attenuation of the pollutants in 

the unsaturated zone, the amount of vapour emanating into the atmosphere may vary 

from low to high concentrations (U.S.E.P.A., 2012). 

Claims from a study by McHugh et al. (2004) shows that vapour intrusion from the 

subsurface is often associated with chlorinated VOCs, at least from the majority of sites 

so far studied. This has been attributed to the poor biodegradability of these compounds 

by indigenous microbial communities at impacted sites (McHugh et al., 2004; McHugh 

et al., 2010). In contrast, VPHs are more readily biodegradable by soil microbial 

communities present at contaminated sites where oxygen is sufficient to support the 

growth of these organisms, thus reducing the potential for indoor vapour intrusion by 

this group of VOCs (McHugh et al., 2010). These claims can be challenged based on 

reports from studies by Hohener et al. (2006) and Pasteris et al. (2002) in which other 

factors such as depth of VPH source underneath the ground and soil porosity were 

shown to affect the level of oxygen that permeates through the unsaturated zone hence 

affecting the amount of oxygen that becomes available to the petroleum hydrocarbon 

degraders at certain depths. Measurements of O2, CO2 and VPH profiles in the 

unsaturated zone of soils containing residual NAPL revealed interesting observations 

where regions closest to the NAPL source had low O2 concentrations and, high amounts 

of CO2 and VPHs while regions that were further away from the NAPL source had low 

concentrations of CO2 and VPHs but high O2 concentrations further highlighting the 

role of biodegradation in the attenuation of VPHs in the unsaturated zone (Hohener et 

al., 2006; Luo et al., 2013). Higher concentrations of non-aqueous phase liquid at the 

point of release may result in a situation where oxygen utilisation by VPH degraders 

occurs at a rate that limits the rate of aerobic degradation thereby elevating the potential 

for indoor VPH intrusion. This may also increase the risk of groundwater contamination 
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as the vapours may also migrate downwards to the water table (Baehr et al., 1999; 

Pasteris et al., 2002). In addition to the amount of pollutants present in the soil 

environment, above the groundwater table, oxygen levels are often sufficiently available 

from the atmosphere via the soil air-filled pore spaces as a result of which inorganic 

nutrients e.g. nitrogen and phosphorous become the limiting factor to the biodegradation 

of VPHs in soil (Hohener et al., 2006; Elazhari-Ali et al., 2013). 

Biodegradation of organic pollutants have been investigated using a variety of 

approaches. One common method that has been employed to study the degradation 

kinetics of organic compounds involves the use of laboratory batch microcosms. 

Meynet et al. (2012) reported the study of short-term effects of powdered and 

granulated (GAC) activated carbon on the soil respiration of a PAH impacted soil using 

batch microcosm experiments. In another study carried out by Bushnaf et al. (2011), the 

first order biodegradation rates of a mixture of 12 volatile petroleum hydrocarbons were 

determined in a batch experiment in which sandy soils were contaminated with the 

pollutant mixture. Elazhari-Ali et al. (2013) conducted a batch as well as mini-lysimeter 

study to investigate the effects of biofuels – ethanol and biodiesel on the biodegradation 

of a VPH mix consisting of straight chain/branched alkanes, cycloalkanes and aromatic 

hydrocarbons. 

In addition to microcosm studies, experiments have been designed in columns to study 

the effects of vapour migration, sorption and biodegradation on the attenuation of 

volatile organic compounds. In a study conducted by Jin et al. (1994), the effects of 

toluene vapour migration through soil columns of different lengths containing sterilized, 

pre-exposed and unexposed soils on the biodegradation of the substrates were 

investigated. In another study by Hohener et al. (2003), volatile petroleum hydrocarbon 

degradation kinetics were determined using laboratory batch and column experiments. 

Other column studies include a short-term and long-term experiment to investigate the 

effect of vapour migration along column lengths, sorbent amendment and microbial 

degradation on the attenuation of a mixture of 12 volatile petroleum hydrocarbons 

(Bushnaf et al., 2011). The use of these approaches (laboratory microcosms and 

columns) as a means of gaining insights into the biodegradation processes taking place 

in the vadose zone have their advantages as well as their limitations. While laboratory 

experiments offer the flexibility of controlled conditions, it does not account for the 

complex and variable environmental conditions under which the attenuation of organic 

pollutants occurs in most cases. 
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 Research motivation  

In dealing with the challenges of contamination of soil and water bodies, Environmental 

Engineers have adopted a number of remediation approaches. Hitherto, the attention has 

been on removing pollutants from the environment, in other words reducing 

concentration of pollutants in the environment. However, there is currently a shift in the 

paradigm of Environmental regulators from a mere reduction of total pollutant 

concentration in the environment to a reduction in transfer of pollutants to sensitive 

ecological receptors (Beesley et al., 2011). This arises from a realization of the 

possibility for onward transfer of toxic organic and inorganic pollutants that persist in 

the environment to receptors like plants and humans. As a result of this, there is an 

increase in the adoption of risk-based approaches in the remediation of organic 

pollutants from the environment in order to mitigate the effects of the pollutants in the 

environment (Fernandez et al., 2005; Beesley et al., 2011).     

In situ stabilization of contaminated soils and sediments which involves the use of 

sorbents to amend polluted environments is one approach that can be used to 

accomplish both a reduction in concentration of pollutants in the environment as well as 

mitigate their effects to receptors within the environment (Ghosh et al., 2011). These 

bind to pollutants thereby reducing bioavailability of pollutants and exposure of such 

pollutants to humans and the environment. Examples of sorbents being considered for 

their sorption capacity are activated carbon (AC) and biochar (Bushnaf et al., 2011; 

Chen and Yuan, 2011; Meynet et al., 2012). 

Quite a number of researches are currently being conducted into the sorption properties 

of biochars and AC with respect to the remediation of soils and sediments contaminated 

with organic compounds. However, not much has been done with regards to the effects 

of sorbent amendment on the microbiology of the soils to which they are being applied, 

particularly with respect to biodegradation of pollutants (Janssen and Beckingham, 

2013). This research therefore intends to investigate the potential trade – offs that may 

or may not exist between the applications of charred materials to soils contaminated 

with petroleum hydrocarbons as a remediation approach viz-a-viz the biodegradation of 

the bioavailable fraction of pollutants in the soil. An attempt is also made at 

understanding the relationship between microbial diversity in the VPH exposed soil 

treatments and their functions with respect to pollutant degradation and nutrient cycling 

(Gray and Head, 2001). Biochar is environmentally friendly in terms of its ability to 

sequester atmospheric C in the aromatic form for several years in the soil (Glaser et al., 
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2001; Lehmann and Joseph, 2009) whereas AC is coal derived and adds to the carbon 

footprint of the soil environment (Sparrevik et al., 2011), but has a higher sorption 

capacity compared to biochar due to the presence of micro-pores and a greater surface 

area. Both sorbent materials would be used in the current study.  

 Research questions 

From the review of literature, there are indications that biochar and activated carbon 

amendment of hydrocarbon polluted soils influences the sorption of some hydrocarbon 

fractions more than others. The aromatic hydrocarbon, toluene, for instance has been 

shown to sorb more to biochar in soils compared to straight chain alkanes e.g. octane 

and cyclic alkanes (cyclohexane) (Bushnaf et al., 2011). This difference in the binding 

affinity of compounds to biochar also affects the choices as well as biodegradation rate 

of the available compounds by soil microorganisms. We therefore hypothesize that by 

amending soils impacted with petroleum hydrocarbons with biochar and activated 

carbon, a better sorption of one or two fractions of hydrocarbons selected for this 

project will be observed and this will likely result in a different biodegradation pattern 

of the soil microbes. Based on this hypothesis, the following research questions will be 

investigated:  

1. Are there strong negative correlations between sorption of organic pollutants in 

the soil and biodegradation of organic pollutants? 

 

2. Does biochar or AC amendment of soil alter the growth kinetics of 

microorganisms in a VPH contaminated soil? 

 

3. What are the effects of biochar or AC amendment and nutrient amendment 

effects on the bacterial community response in aerobic soil? 

 Aim and objectives 

The ultimate aim of this research is to assess and to also gain an improved 

understanding of the effects of biochar and activated carbon amendment of petroleum 

polluted soils on microbiological processes, with specific interest in pollutant 

biodegradation, taking place within the soil. In order to achieve this aim, and to provide 

answers to the aforementioned research questions, the following objectives will be 

considered: 
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1. To determine any correlations between sorption of organic compounds by 

sorbents and biodegradation of organic pollutants in the soil. 

 

2. To determine the effects of biochar and activated carbon amendment on the 

growth kinetics of microorganisms using 13C7-toluene as a model VPH in 

gravelly sand. 

 

3. To determine the effects of biochar and AC amendment as well as nutrient 

amendment effects on the bacterial community response following exposure of 

soil to a VPH NAPL source.      

 Thesis scope and structure 

To start with, the microbiology of petroleum hydrocarbon degradation is reviewed in 

chapter 2. Pathways for the metabolism of different classes of petroleum hydrocarbons 

are discussed and then the chemodynamics of organic pollutants once in the 

environment are also reviewed. The effects of different processes including sorption, 

biodegradation, and diffusion on the fate of organic pollutants in the environment are 

further discussed before considering the conventional remediation approaches. The 

chapter ends by reviewing a novel in situ sorbent amendment as a cost-effective and 

environmentally friendly remediation strategy and their effects on soil biota.  

Chapter 3 presents a chemical analysis of the fate of volatile petroleum hydrocarbons in 

gravelly sand using 13C7 toluene as a model VPH as a  way of gaining improved 

understanding of the effects of sorbent amendment on the growth kinetics of 

microorganisms in VPH contaminated soil. 

As a sequel to Chapter 3, a study of the microbial community structure dynamics upon 

addition of VPHs to sorbent amended soil using batch experiments were conducted. 

Chapter 4 considers the effects of different classes of VPHs on the microbial 

community response in soil without sorbent amendment in the short-term while chapter 

5 factors in the effects of inorganic nutrient (N & P) limitation and amending soil with 

and without biochar and activated carbon on the microbial community response over a 

duration of 6 days in a batch set-up. 

Chapter 6 is a study that investigates the long-term effects of exposure to VPH vapours 

from a NAPL source containing a mixture of VPHs. The chapter is a follow up study to 

a previous study (PhD research) by Bushnaf (2014) in which glass columns were 

packed with soil, or soil & 2% biochar or soil & 2% AC and exposed to pollutant (VPH 
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mixture) vapours over a duration of 430 days and considers the microbial community 

response to VPH exposure using next-generation sequencing approaches. Chapter 7 

presents the conclusions, any remaining research questions that are yet to be answered 

and suggestions for future work.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Schematic of thesis scope and structure 
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Chapter 2: Literature review 

 Petroleum hydrocarbon degrading microbial communities 

Quite a number of bacterial and fungal species have been identified with the capacity to 

utilize petroleum hydrocarbons as their sole source of carbon and energy even though the 

percentage of the overall heterotrophic microbial community represented by these organisms 

(bacteria and fungi) varies according to reports. The most important genera (not an exhaustive 

list) of petroleum hydrocarbon degrading bacteria isolates based on frequency of isolation 

from both marine and soil environments include Achromobacter (Gojgic-Cvijovic et al., 

2012), Acinetobacter (Throne-Host et al., 2007), Nocardia (Colores et al., 2000; Kalme et al., 

2008; Zeinali et al., 2008), Pseudomonas (Asinder and Williams, 1990; Perfumo et al., 2006), 

Bacillus (Gojgic-Cvijovic et al., 2012; Mukherjee and Bordoloi, 2012b) Arthrobacter (Jones 

et al., 1983), Flavobacterium, Micrococcus, Alcaligenes and the Coryneforms (Adebusoye et 

al., 2007). Important fungal genera that have been implicated with petroleum hydrocarbon 

degradation include Rhodotorula, Aureobasidium, Candida and Sporobolomyces from marine 

environments while Mortierella, Trichoderma, Graphium, Talaromyces, Amorphoteca, 

Neosartorya, Candida, Yarrowia and Pichia have been isolated from petroleum hydrocarbon 

contaminated soils (Chaillan et al., 2004). Others are Cephalosporin, Penicillium and 

Aspergillus (Chaillan et al., 2004; Singh, 2006).  

Other important terrestrial and aquatic members of the microbial community are protozoa and 

algae. Hitherto, these have not been implicated with the degradation of petroleum 

hydrocarbons at contaminated sites. Studies by Cerniglia et al. (1980) however indicate the 

capacity of some algae to metabolize the poly-nuclear aromatic hydrocarbon – naphthalene. 

There are no indications that protozoa have the capacity to utilize any class of petroleum 

hydrocarbons. In the final analysis, protozoa and algae do not appear to play any significant 

role in the in situ degradation of petroleum hydrocarbons at contaminated site at least from 

available reports. The table below summarizes some petroleum hydrocarbon degraders along 

with their petroleum hydrocarbon substrates: 
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Substrate              Microorganism 

Saturates: 

n-Pentane              Mycobacterium smegmatis, Norcadia sp. 

n-Hexane            Mycobacterium smegmatis, Norcadia sp.,                Hyalodendron,                                                                    

Varicosporium, Paecilomyces and Cladosporium. 

n-Octane               Pseudomonas , P. putida, Corynebacterium sp. 7EIC, Nocardia spp. 

n-Decane              Corynebacterium 

n-Dodecane          Arthrobacter, Acinetobacter, Pseudomonas putida and yeasts. 

Methylcyclopentane     P. anaerooleophila 

Methylcyclohexane       Nocardia petroleophila 

Isooctane                        Pseudomonas sp., Acinetobacter 

Aromatics: 

Toluene                Bacillus sp., P. putida, Cunninghamella elegans, Pseudomonas aeruginosa, P. mildenbergii, methanogens, anerobes, 

Methylosinus trichosporium OB3b, Pseudomonas spp., Achromobacter sp., P. anaerooleophila, Azoarccu tolulitycus Tol-4 

(anaerobic), Nocardia coralline, P. gladioli BSU 45124, P.putida, Psychrotrophic spp., iron reducing bacteria, 

Phanerochaete chrysosporium, Microcystis aeruginosa, Seanastrum capricornatum and Thauera selenatis (anaerobe) 

m-Xylene                  Pseudomonas putida, Pseudomonas aeruginosa, Phanerochaete chrysosporium,    methanogens and anaerobes. 

1, 2, 4-Trimethylbenzene Yeasts. 

Table 2.1.  Some Petroleum hydrocarbon degraders and their substrates. Source: Riser-

Roberts (1998). 

In addition to PHs serving as carbon and energy sources to microorganisms at contaminated 

sites, other nutrients like nitrogen and phosphorous have been shown to play significant roles 

in the stimulation of PH degraders. Several studies have been conducted to investigate the 

strategies for the delivery of these nutrients as well as the optimum amounts required to 

stimulate microbial activity (Lee, 1995; Boufadel et al., 1999; Obuekwe et al., 2001). 

 Metabolism of petroleum hydrocarbons 

As mentioned earlier, PHs have been categorised into three (3) classes on the basis of their 

structures, viz: alkanes (normal and branched), cycloalkanes and aromatic hydrocarbons. 

Other classes of PHs such as alkenes and alkynes have been reported to occur in trace 

amounts in crude oil (Okoh, 2006; Chandra et al., 2012). Studies reveal that n-alkanes are 

more readily biodegraded than branched (iso) alkanes with the n-alkanes of chain length 

between C10 and C25 being more susceptible to microbial attack. Alkanes of shorter chain 

length (< C10) are volatile and easily evaporate during the weathering process due to their low 

molecular weights and have been reported to be toxic to microbes. Straight chain alkanes of 

chain length between C30 and C40 have been shown to support the growth of Acinetobacter 

calcoaceticus and Nocardioforms respectively (Radwan et al., 1999).  
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Terminal oxidation of methyl groups (terminal) produces a primary alcohol which is 

subsequently oxidised to carboxylic acids and has been reported to occur in Pseudomonas sp. 

and Acinetobacter sp. (May and Katapodis, 1990; Lal and Khanna, 1996). Other organisms 

like Rhodococcus sp. have been shown to carry out sub-terminal oxidation of n-alkanes in 

addition to terminal oxidation in reactions catalysed by monooxygenases. Sub-terminal 

oxidation of n-alkanes produces a secondary alcohol, then a ketone and finally a fatty acid 

(Whyte et al., 1998). This pathway (sub-terminal pathway) is not considered as the primary 

metabolic pathway for most PH degraders (Atlas, 1981). 

  

Figure 2.1. Metabolic pathways highlighting the enzymatic processes involved in the 

metabolism of petroleum hydrocarbons (Das and Chandran, 2010). 

Microbial degradation of aliphatic hydrocarbons proceeds with the oxidation of the substrates 

in a series of reactions catalysed by oxygenases. Oxidation which could either be terminal, 

sub-terminal or diterminal depending on the organism involved results in the formation of 

mono and/or dicarboxylic acids which are subsequently metabolised via the β-oxidation 

pathway of fatty acids. Other minor pathways for the metabolism of PHs are α-oxidation and 

ω-oxidation pathways (Riser-Roberts, 1998).  

In prokaryotes, aromatic hydrocarbons are converted to cis-dihydrodiols by the action of 

dioxygenases, then to dihydroxy compounds such as catechol in the case of benzene. 

Eukaryotes and fungi oxidise aromatic hydrocarbons using an atom of oxygen (O) in a reaction 
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catalysed by monooxygenases to produce trans-dihydrodiols and finally catechol. Ultimately, 

catechol undergoes further oxidation to produce intermediates in the citric acid cycle (Riser-

Roberts, 1998).    
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Substrate           Enzyme             Microorganism        Reference 

C1 – C8 alkanes, alkenes,         Soluble methane            Methylococcus                              (McDonald et al., 2006)             

and cycloalkanes                      Monooxygenases           Methylosinus                                                        

                          Methylocystis           

                         Methylomonas                                                                                                                                                     

C5 – C16 alkanes, fatty acids,          AlkB related alkane Pseudomonas        (Jan et al., 2003)                                                          

alkyl benzenes, cycloalkanes          Hydroxylases  Burkholderia           

        Rhodococcus           

        Mycobacterium                                                                               

C10 – C16 alkanes,           Eukaryotic P450  Candida maltosa       (Iida et al., 2006)                                                  

fatty acids              Candida tropicalis                                                                              

        Yarrowia lipolytica      

C5 – C16 alkanes,           Baterial P450  Acinetobacter        (Van Beilen et al., 2006)     

cycloalkanes            oxygenase system Caulobacter           

        Mycobacterium 

C10 – C30 alkanes           Dioxygenases  Acinetobacter sp.       (Maeng et al., 1996) 

Table 2.2. Some enzymes involved in petroleum hydrocarbon degradation and their substrates.  
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 Environmental risk assessment: Effects of pollutants versus concentration of 

pollutants in   the environment 

 Chemo dynamics of organic pollutants in the environment 

A major factor that determines the concentration and consequently the effects of pollutants in 

the environment is the rate at which their chemical and biological transformation occurs. As 

most pollutants occur in low concentrations in the environment, the process of transformation 

of these compounds proceeds via first order kinetics. Hence,   

    

     𝑅 ∝  [𝐴]    (2.1) 

     𝑅 = 𝐾 ∗ [𝐴]    (2.2) 

            
𝑑[𝐴]

𝑑𝑡
 = 𝐾 ∗ [𝐴]      (2.3)  

          

where R is the rate of reaction/uptake of pollutant, [A] is the concentration of pollutants and 𝐾 

the proportional change per unit time. 

Pollutant uptake by microbial cells occurs via three (3) main mechanisms, namely active 

transport, passive transport and filtration. The mechanism of uptake depends upon the 

solubility of the compounds as well as on the size of the molecules. Microbial cytoplasmic 

membranes serve as barriers to regulate the flux of compounds within the cells. The cell 

membrane is composed of a phospholipid bilayer and forms a matrix in which transport 

proteins and enzymes are localised (Sikkema et al., 1995). Phospholipids are made up of a 

molecule of glycerol attached to two fatty acid moieties and a charged molecule such as 

inositol, choline, ethanolamine or serine (Nelson and Cox, 2005). The proteins embedded in 

the lipid bilayer often occur in a folded form such that they invaginate into the membrane 

forming pores through which compounds can diffuse. Depending on their sizes, neutral 

compounds, particularly if they are lipophilic in nature, traverse the cytoplasmic membrane 

without any obstruction by passive diffusion according to Fick’s law of diffusion (Shane, 

1994). As the molecules increase in size, or become charged, the predominant means of 

transport across the cytoplasmic membranes switches to the active transport which requires 

the expenditure of chemical energy (Shane, 1994). Several mechanisms by which 

hydrocarbons are transported across microbial membranes have been proposed. For example, 

cyclic hydrocarbons can easily diffuse across the lipid bilayer of the membrane due to their 

non-polar nature (Sikkema et al., 1995). The uptake of the non-polar PAH naphthalene in a 

Pseudomonas species did not require ATP or any electrical potential suggesting that passive 
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diffusion was a likely means of transport across the membrane (Bateman et al., 1986). Witholt 

et al. (1990) proposed that the uptake of alkanes was facilitated by the release of the outer 

membrane lipopolysaccharide which encapsulates droplets of hydrocarbons thereby 

enhancing mass transfer efficiency. Other studies observed the inclusion of hydrocarbons in 

bacteria and yeast and in a strain of Pseudomonas (Scott and Finnerty, 1976). 

Persistence of organic compounds in the environment has been related to two main properties 

of such compounds; viz: the inaccessibility of compounds to soil microorganisms for 

biodegradation and their toxicity to soil microbiota. The presence of these persistent 

compounds in high concentrations in the environment thus makes bioremediation of 

contaminated sites a serious challenge. 

Toxicity of most organic compounds is thought to be correlated to their hydrophobicity as 

indicated by the logarithm of partition coefficient of those compounds between octanol and 

water (logP). There are indications that most water-soluble compounds are relatively less 

toxic to microorganisms. At the same time, the much more lipophilic compounds including 

some hydrocarbons have been reported not to be toxic to whole cells. In between these two 

categories are compounds with intermediate hydrophobicity such as alcohols, phenols and 

aromatic compounds which have been applied as antimicrobial agents in food preservatives, 

and disinfectants e.t.c. due to their highly cytotoxic nature (Heipieper et al., 1991a). Studies 

have shown that the toxicity of hydrophobic organic compounds including petroleum 

hydrocarbons is due to a general, nonspecific effects of these compounds on the fluidity of 

microbial cytoplasmic membrane as they accumulate in the lipid bilayer and not due to any 

specific chemical reactions within the bilayer (Cabral, 1991; Saito et al., 1994; Farranate et 

al., 1995).  

In addition to hydrophobicity as a factor that determines toxicity of PHs, highly toxic 

intermediates of the metabolism of some complex aromatic PHs as well as alkanes could also 

accumulate within the cytoplasm of microbial cells (Camara et al., 2004). An example of this 

effect was observed in the biodegradation of n-octane during which a toxic intermediate 1-

octanol was reported to accumulate within the cells (Chen et al., 1995). The preferential    

partitioning of hydrocarbons into the lipid bilayer of microorganisms is reportedly the primary 

cause of toxicity as this process results in the accumulation of the compounds within the lipid 

bilayer and a subsequent increase in non-specific permeability of the membrane. The 

molecular structure of hydrophobic compounds also affects their solubility within the 

membrane. For example, amphiphatic molecules with a similar structure to that of membrane 

phospholipids will solubilise relatively easily compared to other compounds. Because of this 
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property, chlorinated derivatives of aromatic compounds e.g. phenolics and other compounds 

such as alkanols are known to be highly toxic. The composition of membrane phospholipid 

fatty acid has also been shown to influence the toxicity of hydrocarbon compounds in a study 

involving artificial membranes (Antunes-Madeira and Madeira, 1989; Weber and de Bont, 

1996). 

Another mechanism that has been proposed as an explanation for the cytotoxic effects of PHs 

is a reduction of the energy status of microbial cells (Heipieper and Martinez, 2010). From the 

foregoing discussion, increased permeabilization of microbial membranes leads to a flux of 

protons and other ions across the membranes which in turn dissipates the proton motive force 

(PMF) and the electrical potential of the membranes (Sikkema et al., 1994). In a study by 

Uribe et al. (1990), the functions of the enzyme ATPase as well as other proteins embedded in 

the membrane and involved in energy transduction was found to be impaired by the effects of 

organic compounds.     

Table 2.3. Partition coefficient of some petroleum hydrocarbons in octanol/water (logPo/w), 

membrane buffer (logPm/b), solubility in water at 25 °C and the maximum membrane 

concentration of organic compounds. + = toxic; - = not toxic. Source: 

(http://chem.sis.nlm.nih.gov/chemidplus/, 2005).  

  Organic 

Compound 

logPo/w 

(mM)  

logPm/b 

(mM) 

Pm/b 

(mM) 

Solubility 

(mg/L) 

MMC 

(mM) 

Toxicity 

Toluene 2.48 1.77 58.29 6.3 367 + 

n-Octane 4.55 3.77 5,936.08 0.0058 34 - 

p-Xylene 3.17 2.43 272.21 1.2 327 + 

Ethylbenzene 3.03 2.30 199.11 1.6 319 + 

Hexane 3.29 2.55 355.88 0.150 53 - 

Decane 5.61 4.80 63,343.20 0.00035 22 - 

Cyclohexane 3.50 2.76 568.85 0.500 284 + 

1-octanol 2.92 2.19 154.90 3.8 588 + 

1-Decanol 3.97 3.21 1,621.80 0.23 379 + 

1-Hexanol 1.87 1.17 14.80 56.9 841 + 

1-Dodecanol 5.02 4.23 16,982.40 0.015 254 + 

Naphthalene 3.30 2.56 363.92 0.240 87 - 

Phenanthrene 4.46 3.69 4,855.12 0.006 29 - 
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The effect of pollutants, once in the environment, is determined by their dynamics in the four 

(4) main compartments of the ecosphere, viz: air, water, soil/sediments and biota. Inter-

compartmental transfer rates of pollutants is largely dependent upon the transfer rates 

occurring at the interface between two compartments. At equilibrium, the rates of transfer of 

these compounds between the two compartments are equal. Several processes interact in the 

environment to determine the fate of VOCs in the soil subsurface. The dominant processes 

include the following: 

1. Sorption 

2. Volatilisation and 

3. Biodegradation 

According to Schwarzenbach et al. (1993), sorption is defined as “The process by which 

chemicals become associated with solid phases (either adsorption onto a two-dimensional 

surface, or absorption into three-dimensional matrix”. It is a key process that has been 

reported to determine the fate and ecotoxicity of organic pollutants in soils and sediments as 

sorption lengthens the persistence of organic pollutants in the environment. This process 

reduces availability of the pollutants to microorganisms and consequently their 

biodegradability but concurrently also reduces the concentration of the compounds in soil 

pore-water, the ecotoxicity and uptake of the pollutants by soil biota. At equilibrium, the ratio 

of a substance’s total concentration in the sorbed phase (sorbent) to their total concentration in 

solution is denoted by the solid-water distribution coefficient (Kd) (Schwarzenbach et al., 

1993): 

    𝐾𝑑 =
𝐶𝑠

𝐶𝑤
  

(𝑚𝑜𝑙 .  𝐾𝑔−1)

(𝑚𝑜𝑙 .  𝐿−1)
     (2.4) 

where 𝐶𝑠 is the compound concentration in the sorbed phase in moles/Kg, 𝐶𝑤 is the 

concentration in solution in moles/L and 𝐾𝑑 the solid-water distribution coefficient in L/Kg. 

It has been proposed that sorption of organic compounds to soil is a function of the organic 

matter content of soils. The soil-water distribution coefficient was described by Pasteris et al. 

(2002) according to the following equation: 

𝐾𝑑 = 𝑓𝑜𝑐 ∗  𝐾𝑜𝑐     (2.5) 

where 𝐾𝑑  is the solid-water distribution coefficient of the soil or sediment system, 𝑓𝑜𝑐   is the 

mass fraction of the more amorphous soil organic carbon and 𝐾𝑜𝑐 is the sorption coefficient of 

the organic carbon content of soil/sediment. 
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More recently, the solid-water distribution coefficient (𝐾𝑑) of soils and sediments has been 

normalised to the total organic carbon content of the carbonaceous geosorbents present within 

the systems. Hence, for unamended soils and sediments containing pyrogenic carbon-rich 

materials (PyC)(Cornelissen et al., 2005; Hale et al., 2015), equation (2.4) becomes: 

𝐾𝑑 =  𝑓𝑜𝑐 ∗  𝐾𝑜𝑐 +  𝑓𝑃𝑦𝐶 ∗  𝐾𝑃𝑦𝐶   (2.6) 

where 𝑓𝑃𝑦𝐶  and 𝐾𝑃𝑦𝐶 are the mass fraction and sorption coefficient of the native carbonaceous 

geosorbents such as soot, black carbon, and charcoal in soil or sediments. Carbonaceous 

geosorbents  have been shown to possess strong sorption capacities and their presence in soils 

and sediments can enhance the overall sorption capacities by several orders of magnitude in 

comparison to pristine soils and sediments (Cornelissen et al., 2005). 

Upon addition of biochar or activated carbon to soil, the overall sorption to soil becomes 

further modified as follows: 

 𝐾𝑑 =  𝑓𝑜𝑐 ∗  𝐾𝑜𝑐 +  𝑓𝑃𝑦𝐶 ∗  𝐾𝑃𝑦𝐶 + 𝑓𝐴𝐶/𝐵𝐶  ∗  𝐾𝐴𝐶/𝐵𝐶        (2.7) 

where 𝑓𝐴𝐶/𝐵𝐶  is the mass fraction and 𝐾𝐴𝐶/𝐵𝐶  the sorption coefficient of activated carbon or 

biochar.  

The ‘dual-mode’ sorption theory has been proposed. According to this theory, soil organic 

matter  consists of two organic domains; an amorphous organic matter (AOM) domain also 

described as the ‘soft’ domain and the older soil organic matter domain which is also referred 

to as the ‘hard’ or ‘glassy’ domain (Xing and Pignatello, 1997). Both SOM domains have 

been reported to sorb organic compounds differently and with the passage of time, the AOM 

domain have been shown to undergo transformation into the ‘hard’ or ‘glassy’ state through 

changes in composition of elements, polarity, condensation and aromaticity  (Ran et al., 

2007). Worthy of note are the differences between natural organic matter (NOM) and charred 

organic matter e.g. charcoal, biochar, char e.t.c. with respect to their sorption properties 

(Smernik, 2009). The sorption capacity of pyrogenic organic matter is reported to be several 

times higher than that of natural organic matter (Baring et al., 2002; Yang and Sheng, 2003). 

Also, significant differences exist between pyrogenic and non-pyrogenic organic matter in 

terms of the mechanism of sorption of the sorbates, reversibility of sorption and the 

dependence of sorption on the concentration of sorbates. While natural organic matter 

sorption affinity depends to a less extent on the concentration of the sorbate (as shown by the 

linear sorption isotherms) and has been described as absorption or partitioning, the sorption 

affinity of pyrogenic organic matter depends largely on the concentration of sorbates and 
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decreases with a rise in the concentration of sorbates. This phenomenon is described as 

adsorption (Smernik, 2009).  

As a result of the readily volatile nature of most VOCs, the composition of a mixture of 

volatile compounds will vary from time to time (Wang et al., 2003). Gas-phase diffusion has 

been reported to be the predominant process for VOCs migration in the vadose zone (Pasteris 

et al., 2002; Hohener et al., 2006). Diffusive fluxes for each hydrocarbon compound in a 

mixture of 13 petroleum hydrocarbons were determined in a lysimeter study conducted by 

Pasteris et al. (2002) using Fick’s first law of diffusion as given below: 

 

𝐹 =  −𝐷
𝜕𝐶𝑎

𝜕𝑧
                      (2.8)  

   

Where 𝐹 represents the vapour diffusive fluxes at the lysimeter surface (g C m-2 d-1), 𝜕Ca/ 𝜕z 

is the vapour phase concentration gradient at the lysimeter surface (g C m-4), z = 0 and D, the 

effective diffusion coefficient in soil, is the product of the air-filled soil porosity, the 

tortuosity factor and molecular diffusion coefficient in air (m2/d). A derivative of equation 2.8 

can be obtained according to the methods described by Schwarzenbach et al. (1993) assuming 

a spatially constant diffusion coefficient D is taken into account. Equation 2.7 then becomes: 

 
𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2            (2.9)  

                 

where  x and t are distance in meters and time in days. This expression is also known as 

Fick’s second law of diffusion and can be used to describe the transient diffusion of volatile 

compounds in soil (Schwarzenbach et al., 1993). 

A modified version of mathematical model was proposed by Jin et al. (1994) and was used to 

describe the vapour-phase diffusion based on the following assumptions: 

1. Diffusion is the predominant transport process of the vapour phase in the subsurface 

2. The sorbed and the dissolved phases undergo reversible, linear equilibrium sorption 

3. The dissolved and gaseous phases comply with Henry’s law 

4. The biodegradation reactions obey first order kinetics and 

5. Soil diffusion coefficients for the gaseous and dissolved phases are modified from 

their values in air and water by tortuosity factors according to the methods described 

by Millington and Quirk (1961): 
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τa  =  θa  
2.33/ ntot 

2      (2.10) 

τw  =  θw  
2.33/ ntot 

2      (2.11) 

 

where  θa is the volumetric content of soil air (m3 gas m-3), θw is the volumetric content of soil 

water (m3 gas m-3), ntot is the total porosity in the soil. Considering the above equation (2.10 & 

2.11), the vapour-phase transport model from (2.9) then becomes: 

 

 𝑅𝑎
𝜕𝐶𝑎

𝜕𝑡
 = 𝐷

𝜕2𝐶𝑎

𝜕𝑧2  - 𝑟(𝐶𝑎)     (2.12) 

where  𝑅𝑎 is the capacity factor (m3 gas m-3) and D the diffusion coefficient are given by: 

𝑅𝑎 = (𝜌𝑏 𝐾𝑑 + θ𝑤  + θ𝑎𝐻)/𝐻      (2.13) 

𝐷 = (θ𝑎τ𝑎𝐷𝑎𝐻 + θ𝑤τ𝑤𝐷𝑤)/𝐻      (2.14) 

where 𝜌𝑏 is the soil bulk density (kg m-3), 𝐾𝑑 is the distribution between the solid and the 

dissolved phases (m3 kg-1), 𝐻 is the Henry’s law dimensionless coefficient (kg m-3 air/ kg m-3 

water), 𝐷 is the effective diffusion coefficient of any fuel compound in air (m2/d), 𝐷𝑎 is the 

molecular diffusion coefficient in air (m2/d), 𝐷𝑤 is the molecular diffusion coefficient in 

water (m2/d), and 𝑟(𝐶𝑎) is the degradation term (g m-3 d-1). 

The concept of molecular diffusivities has been proposed based on the Brownian motion of 

molecules through a medium of interest. The relationship between molecule sizes and 

diffusivities in different media has also been proposed. According to Schwarzenbach et al. 

(1993), molecules with larger molecular masses and molar volumes both indicative of larger 

sizes tend to have lower diffusivities as a result of reduced mean free path which also reduces 

their ability to move through a crowd of other molecules. Other factors such as the viscosity 

of the medium of interest and the temperature of the molecules have also been suggested to 

affect molecular diffusivities. Several methods have been used for the quantification of 

molecular diffusivities of chemicals in gas and aqueous phases. One of such approaches that 

has been used to estimate the diffusivities of organic molecules in air is the method of Fuller 

et al. (1966): 

𝐷𝑎 = 10−3 𝑇1.75 [(1
𝑚𝑎𝑖𝑟

⁄ )+(1
𝑚⁄ )]1/2

𝑃 [𝑉𝑎𝑖𝑟
1/3 + 𝑉1/3]2

  (cm2 s-1)   (2.15) 

where  

T is the absolute temperature (K) 
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mair is the average molecular mass of air (28.97 g mol-1), 

m is the organic chemical molecular mass (g mol-1), 

P is the gas phase pressure (atm), 

Vair is the average molar volume of the gases in air ( ~  20.1cm3 mol-1) 

V is the molar volume of the chemical of interest (cm3 mol-1) 

 Growth dynamics of heterotrophic microorganisms – The Monod and Contois 

models 

Heterotrophic bacterial growth in soils is a function of the type as well as the diversity of the 

organisms present in the soil. It also depends on the soil organic matter content. In the 

absence of any growth inhibition due to contaminant toxicity, the growth of microorganisms 

can be described by the mathematical model proposed by Monod (1949): 

µ = µ𝑚𝑎𝑥
𝑆

𝐾𝑠+𝑆
      (2.16) 

where µ, and µmax are the specific growth rate (per hour) and maximum specific growth rate 

(per hour), Ks is the half-velocity constant which is equivalent to the concentration of the 

nutrients at half the maximum growth rate (mg g-1) and S is the initial substrate concentration 

(mg g-1soil).  

Reports have suggested that the maximum specific growth rate (µmax) of heterotrophic 

microorganisms depends on the type of organism and the carbon or energy source being 

utilised while the half-velocity constant  is a measure of the affinity of the organism for the 

limiting nutrient and is an indicator of how fast the maximum specific growth rate can be 

attained (Chen et al., 2003). For efficient microbial performance, the half-velocity constant 

must be a minimum value which implies that that the microbes in the soil should be adapted 

to the soil organic matter or carbon source being introduced.  

The Contois equation (Chen et al., 2003) can be used to describe the relationship between 

biomass formation and organic matter or a carbon source depletion in a heterotrophic bacterial 

growth as follows: 

𝜕𝑋

𝜕𝑡
=

𝜇𝑚𝑎𝑥𝑆𝑋

𝐾𝑠+𝑆
−  𝑘𝑑𝑋     (2.17)   

  

𝜕𝑆

𝜕𝑡
= −

1

𝑌
 [ 

𝜇𝑚𝑎𝑥𝑆𝑋

𝐾𝑠+𝑆
 ]     (2.18) 
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where X is the mass of biomass (mg g-1soil, and Kd is the specific microbial decay rate (mg 

biomass h-1, Y is the stoichiometric yield coefficient (mg biomass formed mg-1 carbon 

utilised). Since the amount of biomass formed can be expressed in terms of nutrient 

concentration and vice-versa, it is possible to simulate biomass formation and nutrient 

depletion as a function of time as follows: 

𝑆 = 𝑆0 − (𝑋 − 𝑋0)/𝑌     (2.19) 

𝑋 = 𝑋0 − 𝑌(𝑆0 − 𝑆)     (2.20) 

where S0 and X0 are initial substrate concentration (mg g-1soil) and initial mass of biomass 

(mg g-1soil) respectively. Substituting for S and X in equations 2.17 and 2.18, we have: 

𝜕𝑋

𝜕𝑡
=

𝜇𝑚𝑎𝑥𝑋 [𝑆0− 
𝑋−𝑋0

𝑌
]

𝐾𝑠+[𝑆0− 
𝑋−𝑋0

𝑌
]

−  𝑘𝑑𝑋                 (2.21) 

𝜕𝑆

𝜕𝑡
= −

1

𝑌
 { 

𝜇𝑚𝑎𝑥𝑆[𝑋0−𝑌(𝑆0−𝑆)]

𝐾𝑠+𝑆
}                 (2.22) 

 The Nitrogen cycle  

Nitrogen is the most abundant element in the atmosphere constituting about 78% of the 

atmosphere and as such the most likely to limit ongoing natural processes in the ecosystem. 

Nitrogen in the soil is derived from a range of sources including plants and animal wastes, and 

from incorporation into the soil by nitrogen fixing bacteria which may either be free living or 

living in a mutual association with the root nodules of leguminous plants. Atmospheric nitrogen 

(N2) is quite stable because of the triple bonds between the nitrogen atoms and needs to be 

converted to a form that is more readily utilisable by plants and other organisms. Using the 

energy generated from the oxidation of carbohydrates, and electrons supplied by the nitrogenase 

enzyme complex, a molecule of nitrogen (N2) is reduced to two moles of ammonia (NH3) as 

follows: 

      Nitrogenase enzyme complex 

N2 + 8H+ + 8 eˉ + (16-24) ATP           2NH3 + H2 + (16-24) ADP + (16-24) Pi           (2.23)

         

The process of nitrification coverts ammonia into nitrates via a two-step reaction both mediated 

by nitrifying bacteria. In the first step, ammonia, a chemolithotrophic substrate, is converted to 

nitrites by the bacterial species Nitrosomonas which oxidises ammonia to nitrites followed by 

a second step in which a different group, Nitrospira oxidises nitrites to nitrates as shown below:  
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       ammonia monooxygenase 

NH3 + O2 + 2 H+ + 2 eˉ                                    NH2OH + H2O             (2.24)  

     hydroxylamine oxidoreductase 

NH2OH + H2O                                     NO2ˉ + 5 H+ + 4 e-                   (2.25)  

             nitrite oxidoreductase      

 H2O +  NO2ˉ
                                 NO3ˉ + 2 H+ + 2e-                   (2.26) 

The ammonia monooxygenase enzymes have been implicated in the oxidation of ammonia to 

hydroxyl amines (2) and these enzymes are reported to be integral membrane proteins (Chen et 

al., 2003). In the ammonia oxidation step, two electrons are required for the oxidation process 

and these are generated by the oxidation of hydroxylamines in a reaction catalysed by 

hydroxylamine oxidoreductase. In total, four electrons are produced in this step but only two 

reach the terminal electron acceptor (O2) via the cytochrome oxidases to produce water and 

energy.  

The environmental significance of the nitrogen cycle is the balance created between 

atmospheric nitrogen and soil nitrogen each year by this process. Intensely fertilised soils from 

agricultural activities lead to excess accumulation of ammonia and by implication of nitrites 

and nitrates which are highly water-soluble compounds. These compounds may leach into 

groundwater and react with organic compounds to form toxic products such as nitrosoamines 

(Madigan et al., 2009). There are also reports of a blood disorder, methemoglobinemia, caused 

by the presence of nitrates in drinking water (Slonczewski and Foster, 2014). Amending such 

excessively fertilised soils with charred materials like biochar or activated carbon may reduce 

the amount of inorganic nitrogen in these forms that reach groundwater and by extension 

alleviate any ecotoxicological effects associated with these compounds in solution. 

 Modelling the fate of organic contaminants in the environment 

More recently, the concept of modelling the fate of organic pollutants in soils and sediments 

is gaining wider acceptance. Pasteris et al. (2002) reported the modeling of vapour phase 

transport of a mixture of 13 petroleum hydrocarbon compounds to groundwater and to the 

atmosphere and also monitored the rate of arrival of the persistent components to the 

groundwater. Bushnaf et al. (2011) reported the predictions of a pollutant fate model based on 

first-order rate biodegradation kinetics of volatile petroleum hydrocarbons in soil pore water 

of biochar amended soil which did not match experimental values. As a sequel to this study, a 

more ‘robust’ mathematical model was developed by Meynet et al. (2014) to predict the fate 
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of VPHs in soils amended with and without biochar based on microbial growth dynamics in 

addition to physicochemical properties of soil and biochar used in the previous study by 

Bushnaf et al. (2011). 

It becomes apparent that mathematical models are an invaluable tool for use not only in 

predicting the fate of contaminants in the environment given a set of environmental 

parameters, but can also be used to study several factors and processes that may be interacting 

to produce specific effects that can be observed. More specifically, predicting pollutant 

biodegradation viz-a-viz soil microbiology remains a challenge. The advent of new molecular 

methods empowers us to gain an improved understanding of soil microbial ecology and hence 

to better investigate the biodegradation pollutants in the soil (Guermouche et al., 2013). 

Predictive models may be used to augment results from chemical and ecotoxicological tests as 

it makes room for consideration of the effect of factors that would otherwise not be 

considered in a laboratory or field experiment. 

 Current remediation strategies 

Traditionally, the clean-up of organic contaminants in the environment involves a consortium 

of different approaches depending on the prevailing circumstances. Physical, chemical and 

biological remediation strategies may be used in concert one with another in order to alleviate 

pollutant concentration to an ‘ecologically’ acceptable level (RAAG, 2000). 

Physical remediation approaches range from soil washing to incineration, thermal desorption, 

to soil flushing and encapsulation (Robertson et al., 2003). Soil washing involves cleaning 

contaminated soils using a combination of solvents with water and some mechanical action to 

reduce the concentration of pollutants present in the soil (Khan et al., 2004). The choice of 

solvents used in this approach is based on their potential environmental and health effects and 

their ability to dissolve certain contaminants. Petroleum hydrocarbons bind more readily to 

smaller soil particles such as clay and silt. The process of washing separates smaller particles 

(e.g. silt and clay) from the more coarse particles (e.g. sand), hence, during soil washing, the 

smaller volume of soil composed mainly of clay and silt and containing most of sorbed 

hydrocarbons is collected and can be further treated by more suitable methods such 

bioremediation while the larger faction composed mainly of sand and gravel is considered to 

be non-hazardous as it contains less amount of pollutants and can be used to refill the 

excavated site (USEPA, 1996; RAAG, 2000). Another two-step procedure for treating non-

volatile and semi-volatile organic compounds e.g PAHs, diesel fuel and fuel oils has been 

reported by (McBean and Anderson, 1996). Contaminated soils are excavated and placed on 

polymer linings after which the soil is washed and drained from the bottom (of the polymer 
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lining) in order to extract the hydrocarbons in aqueous solution. The solid phase can be 

returned to the original site while the leachate is further treated with conventional wastewater 

treatment techniques. The merit of this method is that as the two stages are exclusively 

independent of each other, each stage can be optimised to obtain an improved efficiency of 

the overall process. For example, a minimum surfactant concentration of 1% is required 

during the washing process, while concentrations above 2% may affect hydraulic conductivity 

and could also inhibit microbial activity should the two stages be conducted concurrently. The 

wash solution can then be treated with a suitable consortium of microorganisms. The thermal 

desorption process involves the use of heat to treat petroleum-contaminated soils (Molleron, 

1994; USEPA, 1995) in an inert atmosphere (oxygen deficient) in order to elevate the vapour 

pressure of the organic contaminants and cause them to vaporize thereby separating the 

contaminants from the soil matrix (Wilbourn et al., 1994). 

Chemical remediation method include but is not limited to solidification/stabilisation, 

encapsulation and steam extraction. In situ stabilisation technique aims at reducing the 

amount of organic and inorganic contaminants available for uptake by ecological receptors by 

immobilising hazardous substances through physical and chemical methods. Contaminants 

are converted into less soluble and less toxic forms and encapsulated in a monolithic solid of 

high structural integrity through this technique (Anderson and Mitchell, 2003).The 

encapsulation technique involves physical isolation and containment of a contaminated site 

with the aid of cut-off walls, low permeability caps, grout curtains e.t.c. designed to limit or 

prevent the transfer of contaminants from the source to non-contaminated environment 

(Anderson and Mitchell, 2003).  

Bioremediation is the use of biological agents such as microorganisms (bacteria and fungi), 

green plants or their metabolic capacity to remediate contaminated sites and to restore them to 

their original non-contaminated state (Glazer and Nikaido, 1995). The process of 

bioremediation has several components to it including the following: 

1. Bioattenuation: This is also known as passive remediation or natural attenuation and 

involves the use of ongoing natural processes to transform the contaminants to a less 

harmful form and to reduce the transfer of the contaminants to non-contaminated sites 

(Khan et al., 2004). Natural processes involved in bioattenuation include sorption of 

contaminants to geologic media, biodegradation by microorganisms and in some 

cases, reactions of pollutants with naturally-occurring chemicals in the soils. It is a 

contaminant-specific process and can be used to treat specific compounds e.g. BTEX 

(Atteia and Guillot, 2006) but not many others. Its advantages include its cost-
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effectiveness, non-invasive remediation method and simple technique to perform. On 

the other hand, it is a slow clean-up approach that may lead to migration of pollutants 

with time and whose performance can be difficult to predict.     

2. Biostimulation: In order to attain optimum microbial activity in contaminated soils and 

sediments, certain conditions must be met such as optimum temperature, moisture, pH, 

salinity, oxygen and nutrient availability. Biostimulation is an enhanced form of 

bioattenuation that involves the stimulation of microbial degradation by introducing 

the essential nutrients carbon, nitrogen and phosphorous in the correct proportion in 

order to increase the turnover of chemical pollutants. The proportions of inorganic 

nutrients required for optimum microbial activity has been reported. Wolicka et al. 

(2009) reported a C: N: P ratio of 100:9:2, 100:10:1 or 250:10:3 during an in situ 

remediation of BTEX. Also, a 1-5% N by weight of petroleum with a ratio of N: P 

between 5 and 10:1 was reported by Swannell et al. (1996). The process of 

biostimulation requires the native microbial communities to have the capacity to 

metabolise the contaminant of interest and for the contaminants to be readily available 

to the microbes for biodegradation. As nutrients are delivered to soils in solution, the 

process may increase the chances of pollutant mobility thereby necessitating the 

treatment of the underlying groundwater. Also, microorganisms may colonise the 

injection points of the nutrients, resulting in the clogging of nutrients and the injection 

wells.  

3. Bioaugmentation: In some cases, a very slow microbial response to contamination in 

sites without any prior contamination history might be due to the fact that the 

indigenous microbial communities lack the metabolic capacity to transform the 

pollutants, necessitating the introduction of previously adapted microbial inoculum in 

order to augment the native microorganisms present in the contaminated site. Soils in 

which microorganisms have been adapted by prior exposure to organic contaminants 

such as petroleum hydrocarbons can be used to remediate soils newly contaminated 

with petroleum hydrocarbons. This technique was attempted by Otte et al. (1994) in 

which biomass from a fraction of contaminated soil was cultivated and used as an 

inoculum to remediate soils contaminated with polychlorinated biphenyls (PCBs) and 

poly-aromatic hydrocarbons (PAHs).  

 In situ sorbent amendment – a novel technique for the remediation of volatile 

petroleum hydrocarbon contaminated soils and sediments 

A more recent approach for remediation of soils and sediments contaminated with organic 

compounds builds on the concept of the solidification/stabilisation technique. Sorbent 
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amendment is an in situ soil remediation technique that involves the use of carbon-rich porous 

materials with a high sorption capacity to amend soils and sediments contaminated with 

organic and inorganic compounds. Examples of adsorbents that are been investigated for their 

sorption capacity on organic pollutants are activated carbon (Vasilyeva et al., 2002; Rhodes et 

al., 2008; Vasilyeva et al., 2010; Ghosh et al., 2011) and biochars (Bushnaf et al., 2011; 

Gomez-Eyles et al., 2011). 

Activated carbon is a synthetic form of carbon produced by subjecting carbonaceous materials 

such as coal, lignite and peat (Adib et al., 2000; Murillo et al., 2004) to a limited supply of air 

and subsequently activating by oxidation to eliminate any impurities and to increase total 

surface area to about 1000m2 /g. The resulting material has a complex pore structure and 

surface functional groups making it an excellent sorbent material for hydrophobic organic 

compounds.  

Biochar is the product of pyrolysis of biomass, a carbon-rich solid material obtained when 

plant-derived biomass is heated in a limited supply of oxygen at relatively high temperatures 

(<700°C). It is the term used to describe charred materials of biological origin intended for 

use in improving the quality of soils for agricultural purposes. This distinguishes it from other 

charred products of non-biological origin referred to as agrichar which can also be used for 

the same purpose (Lehmann and Joseph, 2009). 

Organic pollutants may persist in the environment and this is another serious challenge with 

respect to remediation. The sorption properties of biochar and activated carbon make them 

good sorbent materials for immobilising organic pollutants in the soil as indicated by a 

number of studies (Smernik, 2009; Beesley et al., 2011). The mechanism by which the 

sorption of organic compounds to biochar occurs has been documented. For example, poly-

aromatic hydrocarbons are one group of organics that are strongly adsorbed by biochar 

through a specific π – π bonding between the aromatic rings of both the PAH and biochar. In 

addition, the planar structure of PAHs makes it easy for the compound to fit into the pores of 

biochar (Baring et al., 2002; Pignatello and Sander, 2005). Other classes of organic 

compounds that have been shown to be affected by biochar amendment are pesticides (Yu et 

al., 2010; Lou et al., 2011) and organic solvents.   

 Sorbent amendment effect on soil biota 

A high level of prokaryote diversity exists in the soil as a result of the high level of 

heterogeneity and diversity of soil habitats. More specifically, bacteria has been reported to be 

the dominant life form. In like manner, certain species within the prokaryotic community 
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(bacteria and archaea) predominate and are present in large numbers in the soil environment 

because of the presence of nutritional and physico-chemical conditions necessary for their 

growth and establishment. Important functions of soil bacteria include nutrient cycling 

(McLeod and Parkinson, 1997; Katterer and Andren; Dominy and Haynes, 2002; Chen et al., 

2003), and decomposition of soil organic matter (Barrett and Burke, 2000; Spaccini et al., 

2002).  

Even though biochar effects on soil biota has not been thoroughly investigated, there’s a 

number of evidences to demonstrate that biochar addition to soil changes soil properties such 

as pH, water-holding capacity, aeration and nutrient retention capacity. The differences in 

physical properties between soil and biochar is expected to be responsible for the alteration of 

soil properties and by extension, soil biota. Biochar with tensile strength less than those of 

soils can be added to such soils to reduce their tensile strength. Chan et al. (2007) 

demonstrated a reduction in tensile strength of soil from an initial biochar-free value of 

64.4KPa – 31KPa after biochar was added to the soil at an amendment rate of 50t biochar ha-

1. Plant root elongation and seed germination may be facilitated with reduced soil tensile 

strength as this condition reduces mechanical interference by soil particles. 

Another important soil property that could be affected by biochar addition is soil bulk density. 

Biochar has been found to contain micro- and macro-pores both of which have been 

implicated in the reduction of soil bulk density (Downie et al., 2009). 

Biochar surface area has also been reported to influence soil surface areas with attendant 

effects on soil processes like nutrient cycling, water and soil aeration and microbial activity. 

Sandy soils for example are poor in terms of their ability to retain water and nutrients partly 

due to the relatively small surface area of their particles. On the other hand, clay soils have 

very fine particles and a relatively large surface area and therefore able to retain more water 

than sand. By addition of biochar to such soils, it is possible to create a balance in the net 

surface areas of different soil types hence improving the fertility of such soils. Soil pH may 

also increase or decrease depending on the pH and liming value of biochar (Lehmann et al., 

2011). The pH values of biochar have been correlated to the pH values of the original 

feedstock, pyrolysis temperature and the degree of oxidation of the biochar during pyrolysis 

(Cheng et al., 2006; Chan and Xu, 2009). 

The physical properties of biochar such as its porosity and surface areas are thought to create 

a suitable environment for microorganisms to grow and reproduce. Notable microbes known 

to inhabit biochar pores and surfaces are bacteria, actinomycetes and arbuscular mycorrhizal 
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(AM) fungi (Thies and Rillig, 2009). The porous nature of biochar may enhance their capacity 

to retain moisture which may consequently enhance their habitability to microorganisms. In 

addition to moisture, other gases such as O2 and CO2 may also dissolve in biochar pore water 

and depending on the available quantity of these gases, microorganisms would proceed to 

respire aerobically or anerobically (Antal and Gronli, 2003; Thies and Rillig, 2009). Other 

factors that have been reported to affect microbial activity, abundance and diversity in the soil 

are temperature and pH. Studies by Fierer and Jackson (2006) reveals that soil pH played a 

significant role in determining bacterial abundance and diversity with diversity climaxing in 

neutral soils and at a minimum in acidic soils. Fungal strains are more likely to dominate 

under extreme pH conditions because of their ability to tolerate wide pH ranges. As a result of 

this, it is expected that soil pH changes that is brought about by biochar addition to soils 

would alter the overall ratio of bacteria to fungi as well as the abundance and composition of 

these microbes in the soil. 

Several methods have been used to investigate microbial abundance in soils amended with 

biochar. These techniques include total genomic DNA extraction (Grossman et al., 2010), 

substrate induced respiration (SIR) (Steiner et al., 2004), phospholipid fatty-acid (PLFA) 

extraction (Birk et al., 2009), culturing and plate counting (O'Neill et al., 2009) and 

fumigation extraction (Jin, 2010). Studies using some commonly occurring mycorrhizal fungi 

(arbuscular [AM] and ecto-mycchorizal [EM]) showed that there was an increase in the 

abundance of these organisms around plant root tips upon addition of biochar to soils. The 

exact mechanism by which this increase occurs is not fully understood but a number of 

mechanisms have been proposed. These include the sorption of signalling compounds, 

detoxification of allelochemicals (Warnock et al., 2007), protection of microorganisms 

(bacteria and fungi) against dessication and from other biota (Saito and Marumoto, 2002; 

Thies and Rillig, 2009), nutrient and carbon availability (Steiner et al., 2009; Blackwell et al., 

2010) and bacterial adhesion to biochar. Bacteria appear to adhere more readily to biochar 

surfaces than fungi thereby rendering less leachable in soil and consequently increasing their 

abundance in biochar amended soils (Pietikainen et al., 2000). There are indications of the 

variable effects of biochar on microbial biomass with respect to different phylotypes and 

functional groups. Alteration of the soil environmental conditions such as available carbon 

sources, pH and other abiotic factors by biochar has been reported to cause a change in soil 

microbial community structures. Studies on soils amended with biochar have shown 

significant changes in composition and structure of fungal, bacterial and archaeal populations 

(O'Neill et al., 2009; Grossman et al., 2010). 
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Bacterial community composition in biochar-rich soils of the Terra preta were found to vary 

significantly in comparison with communities from unmodified soils both having similar 

minerology (Kim et al., 2007a; O'Neill et al., 2009). About 25% diversity was reported 

amongst bacterial communities in biochar-rich soils against biochar-free soils at the genus, 

species and family levels of taxonomy (Kim et al., 2007a; O'Neill et al., 2009). Other groups 

of microorganisms like the archaea and fungi were observed to have a lower diversity in the 

Terra Preta (biochar amended) in comparison with unamended soils suggesting that different 

groups of microbes respond quiet differently to biochar amendment. The foregoing effects of 

biochar on microbial communities could be due to the long-term enrichment of the Terra 

Preta several hundreds of years with biochar.  

Common soil processes affected by biochar addition to soil include denitrification, methane 

(CH4) oxidation, carbon mineralisation and nutrient transformation. Carbon mineralisation 

increased in non-pyrolysed organic matter as a result of higher microbial abundance (Carney 

and Matson, 2005). Biochars have been reported to contain recalcitrant and labile carbon 

fractions and an increase in soil respiration (indicated by the evolution of CO2) that is 

observed upon the addition of fresh biochars is thought to be due to their highly leachable 

carbon contents. Biochar also influences nutrient transformation by microorganisms within 

the soil. Studies on forest soils showed an increase in the activity of nitrogen metabolising 

enzymes which also resulted in an increased plant uptake of nitrogen from the soil (Lehmann 

et al., 2003; Deenik et al., 2010). Biochar containing a high mineralisable fraction was 

reported to increase the immobilisation of nitrogen and hence reduce the amount of nitrogen 

available for uptake by plants (Deenik et al., 2010). Because of the varying effects of biochars 

on C and N availability in the soil, emission from microbial processes such as CH4 and N2O 

are often ambiguous. Ethylene, a phytohormone forms the non-aromatic portions of fresh 

biochars and is produced by microbes in the presence of biochars (Spokas et al., 2010). This 

is thought to explain the observed reduction of CO2 and N2O emissions from biochar amended 

soils. The exact mechanism by which biochar affects N2O and CH4 emissions from the soil is 

however not clearly understood. 

Activated carbon amendment effect on soil biota has been reported. (Meynet et al., 2012) 

conducted an experiment to investigate the effect of 2% AC amendment of PAH impacted 

urban soils on the soil microbiota. A bacterial community structure analysis of the powdered  

or granular ( activated carbon amended soils revealed the presence of bacterial taxa that have 

been reported to degrade PAHs such as Rhodococcus jostii RHA-1 and Rhodococcus 

erythropolis in all the soils being investigated. Ultimately, amending PAH impacted soils with 
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either PAC or GAC did not appear have any detrimental effect on the soil microbiology as the 

amended soils retained the capacity to degrade PAHs although the degradation effect was 

most notable in unamended soils. Other studies were also conducted to investigate the effect 

of AC amendment on soil macrobiota. McLeod et al. (2007) reported a survival rate of 100% 

for the polychaete Neanthes arenaceodentata but observed a reduction in their growth rate by 

50% following AC amendment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

 



Chapter 3: Effects of biochar and activated carbon amendment on the bio-

kinetics of toluene degradation in gravelly sand 

3.1 Introduction 

Toluene is a monoaromatic volatile petroleum hydrocarbon compound commonly released 

into the environment due to its universal presence in fuel and petroleum products, and for its 

role as a solvent in the manufacture of common products such as plastics, pesticides and 

synthetic fibre (Jindrova et al., 2002). Due to its toxic nature, and potential to contaminate soil 

and groundwater, several studies have been conducted to investigate effective approaches for 

the remediation of this compound from environmental compartments including the use of 

inorganic nutrients to stimulate microbial degradation (Rosenberg et al., 1996) and in situ 

sorbent amendment of contaminated soils (Bushnaf et al., 2011) among others. 

Transformation of VOCs by soil microorganisms also known as biodegradation is 

increasingly becoming a preferred option because of its cost-effective and environmentally 

friendly nature in addition to effectively metabolising these compounds to minimum 

concentrations in the environment.  

Microbial transformations of VPHs is a function of the structure of mixed bacterial 

populations present at contaminated sites as well as their growth kinetics on specific 

substrates. Most degradation kinetics for pure cultures and bacterial consortia growing on 

either single substrates e.g. toluene or complex mixtures e.g. benzene, toluene, ethylbenzene 

and o-xylene (BTEX) have been extensively studied (Schirmer et al., 1999; Abuhamed et al., 

2004; Littlejohns and Daugulis, 2008). Also, most studies involving the attenuation of organic 

pollutants have taken into consideration the effects of key processes such as diffusion and 

sorption of pollutants on biodegradation of the compounds mostly focusing on individual 

processes e.g diffusion or sorption rather than investigating the effects of two or more 

processes on the attenuation of contaminants. Quite a few studies have investigated the 

integrated effects of these processes on the attenuation of contaminants in the environment. 

Karapanagioti et al. (2004) described a model that couples the effects of non-linear sorption 

with intraparticle diffusion, sorption and biodegradation on the attenuation of organic 

contaminants in the environment. Hohener et al. (2003) also conducted a study to determine 

the biodegradation kinetics of a mixture of VPHs and the Monod growth kinetics of microbial 

communities growing on the substrates in batch systems.   In order to advance the design and 

operation of engineered systems, it is imperative to develop growth models that can quantify 

kinetic parameters of microorganisms while growing on organic compounds and concurrently 

considering the complex interactions between chemical processes such as diffusion of 
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pollutants, volatilization and sorption to soil matrix and biological transformation processes as 

they affect microbial growth kinetics. Especially the effect of sorption on VPH biodegradation 

by dynamic microbial communities is still poorly understood. Biochar and activated carbon 

are currently begin investigated for their sorption capacity on volatile organic compounds and 

as an innovative approach to mitigating transfer of volatile compounds to ecological receptors 

and to non-contaminated environments (Bushnaf et al., 2011; Ghosh et al., 2011; 

Kupryianchyk et al., 2013). Not much has been done, however, on the effects of sorbent 

amendment on the indigenous microbial community response in contaminated soils. 

3.2 Aim 

The aim of this study was to investigate for toluene as an exemplary volatile petroleum 

hydrocarbon compound the effects of sorption by biochar and activated carbon on the 

pollutant mineralization to CO2. The insights gained from this study will be used in 

subsequent chapters to further understand the dynamics of VPH degrading bacterial 

communities in soils contaminated with a mixture of volatile organic compounds. 

3.2.1 Objectives 

In line with the above study aim, the following objectives were set to be accomplished in the 

current study: 

1. To more reliably distinguish the end product (13CO2) of toluene mineralization from 

that (12CO2) of other substrates used by the soil microorganisms by introducing into 

different soil systems a fully stable-isotope labelled compound (toluene - 13C7) to 

serve as a model pollutant. 

 

2. To determine the effects of sorption on the biodegradation of 13C7 -toluene in biochar 

and activated carbon amended and unamended sand.  

 

3. To predict the sorption effects of biochar and activated carbon on the 13C7 –toluene 

mineralization with a model that considers growth kinetics of VPH degraders in soil. 

3.2.2 Hypotheses 

Based on the study objectives mentioned earlier, the following hypotheses are proposed: 

1. As microorganisms tend to adapt to changes in environmental conditions, an 

increasing preference for utilisation of the introduced substrate – the stable-isotope 

labelled toluene as carbon source versus other substrates should occur over time. 
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2. Sorption of organic compounds reduces their bioavailability to soil microorganisms, 

hence biochar and activated carbon amendment of contaminated soils is expected to 

slow the rate of toluene mineralization by soil microorganisms.  

 

3. The effect of sorbents can be predicted by assuming that only soil pore water-

dissolved toluene is biodegradable, whereas microbial growth kinetics parameters for 

the substrate toluene would not be altered by addition of biochar or activated carbon.  
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3.3 Materials and methods 

3.3.1 Soil, biochar and activated carbon 

Previously uncontaminated gravelly sand used for the construction of the Law library of the 

Newcastle University was obtained for this study. Wet soil was passed through a 2 mm sieve 

and the resulting soil particle size was mostly in the range of 600 – 2000µm. Total organic 

carbon (TOC) content of the soil was 1.6±0.1%, total nitrate content 3.9±0.6 µg/g dry weight., 

nitrite < 1.0 µg/g dry weight and ammonia nitrogen 6.7±0.3 µg/g dry weight. A soil pH value 

of 7.43 was measured (Bushnaf, 2014). 

Biochar produced by fast pyrolysis of woodchips at a temperature of about 800 °C in a fixed 

bed reactor was obtained from Environmental Power International EPI (Wiltshire, UK) and 

used for this study. Biochar was ground to a particle size below 163 µm with a total organic 

carbon (TOC) content of 85±2% and an alkaline pH of 7.83±0.16. 

A bitumen-derived activated carbon obtained from Chemviron Carbon Ltd (Lancashire, UK) 

was ground to particle size below 163 µm, with total organic carbon content of 73±1% and a 

pH of 7.74±1.00. 

3.3.2 Chemical pollutant 

The chemical preparation consisted of a pure stock (99 atom % isotopic purity) of stable 

isotope-labelled toluene (heavy isotope – 13C7) obtained from Sigma Aldrich (Dorset, UK). 

The chemical had the following properties: molecular weight of 99.08 by atom percent 

calculation, a boiling point of 110 °C and melting point of -93 °C and a density of 0.930 g/mL 

at 25 °C (Sigma Aldrich, UK). The chemical was stored as received in a sealed glass ampule 

at room temperature. 

3.3.3 Batch experiments 

Batch experiments were conducted at room temperature (20±2 °C) in 65 mL amber coloured 

vials in order to prevent photolytic degradation of substrates and/or their metabolites during the 

experiment. Vials were capped with Teflon Mininert caps as illustrated in Figure 3.1. 

Treatments consisted of soil (15 g d.w.; water content: 0.1 g g-1 soil d.w.), soil amended with 

biochar or activated carbon (15 g, 2% amendment on soil d.w.) to which 5 µL of 13C7 toluene 

was injected through the Mininert valve. The amount of sorbent amendments used was chosen 

based upon standard application rates previously used in remediation studies (Bushnaf et al., 

2011; Meynet et al., 2012). Each treatment consisted of a total of six (6) replicates. 

Concurrently, two sets of controls were prepared in order to monitor any background respiration 

that may occur in the course of the experiments. Sterile controls were prepared by autoclaving 
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three vials (triplicates) containing equal amounts of soil (15 g d.w.) each at 115 °C for 10 

minutes while live controls contained only soils also prepared in triplicates. The experiment 

lasted for 19 days. 

 

 

 

 

 

 

 

Figure 3.1. A schematic of the batch systems containing soil, soil & biochar, soil & AC, live 

and sterile soil controls. 

3.3.4 CO2 analysis by GC-MS analysis, microbial respiration 

In order to monitor microbial respiration in the batches over the duration of the experiments, 

the concentration of CO2 in the headspace of each vial was measured using Gas 

Chromatography. Briefly, headspace gas analysis was conducted on a Fisons 8060 GC using 

spilt injection (150 °C) linked to a Fisons MD800MS (electron voltage 70eV, filament current 

3.6 A, emission current 150 µA, source current 600 µA, source temperature 200 °C, multiplier 

voltage 500 V, interface temperature 150 °C). The acquisition of data was controlled by a 

Compaq Deskpro computer using the Xcalibur software in full scan mode (1.0-151.0 

amu/sec). The sample was injected in split mode. Separation was performed on a HP-PLOT-Q 

capillary column (30 mm x 0.32 mm i.d) packed with 20 µm Q phase. The GC was held 

isothermally at 35 °C with helium as the carrier gas (flow rate 1 mL/min, pressure of 60 kPa, 

open split at 100 mls/min). The chromatograms of the headspace gas (CO2) were integrated 

and quantified and the gas concentrations deduced. Theoretical values of oxygen (O2) 

concentrations in the batch headspaces were also calculated before and at the end of the 

experiments to determine whether batches were still aerobic by the end of the biodegradation 

experiments. Calculations were done based on the assumptions of the ideal gas law using the 

following conditions: temperature = 293.15K, atmospheric pressure = 1 atm, volume = 1L and 

a gas constant R = 0.0821 L atm K-1 mol-1. 
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3.3.5 CO2  leakage experiments 

A separate set of batch experiments were conducted in order to quantify an apparent loss of 

CO2 via diffusion through the gap between walls of the vials and the Mininert caps (Figure 

3.2), and also the distribution of CO2 between the headspace air and soil. The batches 

consisted of an empty 65 mL vial, and vials with soil (15 g d.w.), respectively, soil amended 

with 2% biochar or activated carbon (on soil d.w; 15 g) as described in the preceding section 

(3.3.3). Batches were prepared in triplicates and autoclaved at 115 °C for 10 minutes in order 

to prevent CO2 production from soil microorganisms. A set of empty vials were also prepared 

in triplicates and autoclaved to serve as controls. All batches were tightly capped and injected 

with 2 mL of pure CO2 (CP Grade, BOC Gases, Surrey, UK) followed by monitoring of 

headspace CO2 concentrations according to the methods described in section 3.3.4. The 

leakage experiments lasted for 14 days (2 weeks). A leakage factor was determined based on 

the assumptions of gas leakage by diffusion according to Fick’s first law of diffusion as 

follows: 

𝐹 = −𝐷
𝑑𝐶𝑎

𝑑𝑥
            (3.1) 

where F is the CO2 mass flux per unit cross-sectional area (A) per unit time, and D is the 

molecular diffusion coefficient of the moving compound (CO2) in the gas phase and has the 

dimension of length squared per time and 𝑑𝑥 is distance travelled by the gas. 

         

                                                                                            

        dx  

 

 

 

 

 

     

Figure 3.2. An illustration of empty batch vial showing the gap length (dx) and the cross-

sectional area (A) of the assumed gap between the Mininert cap and the wall of the vial. 

    
A 
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3.3.6 Determination of carbon isotope signatures             

The isotopic signature of carbon in each batch was determined by comparing stable isotope 

ratios (13C:12C) of CO2 in the respective batch headspaces with that of the reference material 

VPDB according to the methods described by Diochon and Kellman (2008). Isotopic ratios 

were reported using the δ notation relative to the VPDB standard (Diochon and Kellman, 

2008): 

                                       𝛅 13𝐶 = (
𝑅𝑠𝑎𝑚𝑝𝑙𝑒

𝑅𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
− 1) 1000    (3.2) 

where 𝑅𝑠𝑎𝑚𝑝𝑙𝑒 and 𝑅𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 is the 13C:12C of the measured sample and the reference 

material Vienna Pee Dee Belemnite (VPDB), respectively. The concentrations of 

mineralisable toluene and soil organic matter were calculated based on the peak areas of CO2 

mass ions (45 and 44 respectively) for each batch. 

3.3.7 GC-FID analysis, headspace VPH measurements 

The headspace concentration of volatile petroleum hydrocarbons in the batches was measured 

using a HP-7890A Series Gas Chromatograph (Agilent Technologies, Palo Alto, USA). 

Briefly, 30 µL of samples were injected manually using a Hamilton gas-tight syringe into the 

machine in split mode, the injector set at 200 °C, flame ionisation detector at 300 °C. Prior to 

this, a blank sample containing air was ran to ensure that there had not been any previous 

contamination of the GC columns. This was followed by a calibration of the instrument using 

different volumes of the pure chemical, 13C7 –labelled toluene. Separation of headspace gas 

was performed on a fused silica capillary column (30 m x 0.25 mm i.d) coated with 0.25µm 

dimethyl poly-siloxane (HP-5 phase). The column temperature was maintained at 30 °C for 5 

minutes and raised to 120 °C at a rate of 10 °C min-1 and then held at this temperature for 6 

minutes. The hydrogen carrier gas was set at a flow rate of 1 mL min-1, pressure of 50 kPa and 

split at 10 mls min-1. 

3.3.8 Sample clean up and quantification of strongly sorbed residuals 

At the end of the biodegradation experiments, on day 19, all vials were uncapped in a fume 

cupboard and allowed to stand for 48 hours in order to evacuate any remaining volatile 

petroleum hydrocarbon (toluene - 13C7) present in the batches. Duplicate batches from each 

treatment were then extracted by adding 30mL of the extraction solvent (Dichloromethane: 

Pentane mix; 60:40 by volume) to the soil systems. Prior to the addition of the extraction 

solvents, soils were properly stirred using a clean stirrer each time in order to break up 

aggregates that stick together. 5µL of toluene (12C6) (Sigma Aldrich, UK) was used to spike 

each mixture and to serve as an internal standard and the vials containing the soil-solvent mix 
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were shaken overnight on an orbital shaker. Glass chromatographic columns (45cm x 10mm 

i.d) were set up and the combined extracts from each batch was passed through separate 

columns each of which was plugged with glasswool to prevent silica gel from flowing 

through the columns. Columns were pre-packed with 3.0 g of silica gel topped by a spatula-

full of sodium sulphate (Na2SO4) (Sigma-Aldrich, Dorset, UK). Silica gel removes humic 

substances that is contained in the original soil samples which may accumulate in the GC-FID 

columns while sodium sulphate, a hygroscopic material, removes any water molecules 

contained in the DCM: Pentane mix. Eluents were collected in 40 mL glass vials from which 

1mL of clean extracts were transferred into clean 1mL vials for GC-MS analysis. The 

compounds in the clean samples were analysed on a HP-5890 series II in split less mode, 

injector temperature set at 280 °C. The separation of compounds was performed on an Agilent 

fused silica capillary column (30m x 0.25mm i.d) coated with 0.25 µm dimethyl poly-siloxane 

(HP-5 phase) (Agilent Technologies, Palo Alto, USA). The GC temperature was programmed 

from 50-310 °C at 5 °C and held at the final temperature for 20 minutes with hydrogen as the 

carrier gas (flow rate of 30 mls min-1 and initial pressure of 50 kPa). 

3.3.9 Determination of microbial degradation of poorly available substrate after pollutant 

source removal 

In order to assess the biodegradation of the poorly available substrate at the end of the 

remediation cycle in different treatments, a second batch experiment was conducted as a 

follow-up to the initial biodegradation experiment. After evacuating the volatile compounds 

from the batches over a 48-hours period, duplicate samples from each treatment were pooled 

into amber-coloured crimp-top vials (37.65 mL) followed by the addition of sterile deionised 

water (1 mL) to re-moisten the soil environment for enhanced microbial activity. For the 

sterile and live controls, only one batch each was transferred into the crimp-top vials. The 

vials were sealed and the aluminium stoppers clamped using a tool. Carbon dioxide 

production was monitored in batch headspaces on a weekly basis according to the methods in 

described in section 3.3.4. The experiment lasted for 14 weeks.      

3.3.10 Determination of cation (Ca2+ and Mg2+) concentrations in soil systems, ICP-OES 

analysis 

Soluble cations were extracted from the pore water of different soil systems: soil, soil & 

biochar and soil & AC by adding 20 mL of deionized water to 20 g of soil or soil amended 

with 2% biochar or activated carbon (2% on soil d.w.) in 50 mL ultra-high centrifuge tubes 

with screw caps (VWR Int’l, USA) and shaking the mixtures on an orbital shaker (Stuart, 

SSL1) for three hours. The resulting suspensions were centrifuged in a 3-16P model 

centrifuge (Sigma, Germany) at 3000 rpm for 5 minutes. A clear supernatant from each 



Chapter 3:  Effects of biochar and activated carbon amendment on the bio-kinetics of toluene degradation in gravelly sand 

38 

 

centrifuge tube was further filtered using a 25 mm syringe filter with a sterile, non-pyrogenic 

0.2 µm Supor® membrane in order to remove any suspended particles that might interfere 

with the analysis. Filtrates were analysed for residual individual cation concentrations using a 

Varian Vista MPX axial Inductively Coupled Plasma Optical Emission Spectrometer (ICP-

OES) with CCD, operated according to the British Standards methods for the determination of 

selected elements in the assessment of water quality (Standards, 2007).      

3.3.11 Batch modelling 

A model simulating the kinetic batch sorption and biodegradation test with first-order rate 

kinetic pollutant sorption by soil particles, radial pollutant intraparticle diffusion in biochar, 

Monod kinetic pollutant biodegradation and logistic growth of pollutant degrading biomass 

was used to interpret the batch study data. The model was implemented in Matlab by David 

Werner, and the equations, numerical solutions and the Matlab codes are provided in the 

appendix (Appendix A) as supporting information.  
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3.4 Results and Discussion 

3.4.1 Effects of biochar and activated carbon amendment on biodegradation and sorption 

of 13C7-Toluene 

Soil respiration was monitored in the headspace of batches as an indication of the level of 

biodegradation taking place within the systems, a technique which has been shown to be 

effective and reliable in studying the effects of environmental variables on the mineralisation 

of petroleum hydrocarbons (Pritchard et al., 1992). The heavy isotope containing compound 

(13C7 - toluene) served as the primary carbon source in this study in order to track the source 

of carbon dioxide in the batches. Similarly, radiolabelled 14C-hydrocarbons have been used 

previously in mineralisation studies to monitor the pollutant-derived CO2 since 44CO2 could 

also be generated from soil organic matter (Mueller et al., 1992; Pritchard et al., 1992). More 

recently, carbon-specific isotope analysis (CSIA) have been used to gain insights into the 

various processes involved in the fractionation of carbon isotopes during the biodegradation 

of volatile petroleum hydrocarbons in the unsaturated zone. Bouchard et al. (2008b) 

conducted an investigation into the fractionation of natural carbon isotopes occurring during 

the aerobic biodegradation of n-alkanes and aromatic hydrocarbons in contaminated soils. In a 

separate but related study by Bouchard et al. (2008a), the effects of diffusive transport and 

volatilization of VPHs across a porous medium on the fractionation of carbon isotopes were 

investigated. Both studies resulted in an improved understanding of potential biodegradation 

pathways of compounds containing both light and heavy carbon isotopes and the enzymatic 

processes involved in the transformation of volatile organic compounds. As only a small 

fraction of the total naturally occurring light isotope 12C is represented by the heavy isotope 

13C (ca 1.1%), it is anticipated that most of 44CO2 in the current batch study originates from 

soil organic matter mineralisation, and only a small fraction of the soil organic carbon is 

mineralised into 45CO2. Consequently, most of the 45CO2 produced in the batches is expected 

to originate from the mineralisation of 13C7-toluene.    

Results from the current study showed that there was an increase in the amount of 45CO2 

production in the soil systems to which the 13C7 toluene was added compared to live and 

abiotic controls (Figure 3.3). In the soil only batches, there was an initial lag period of about 8 

days. This was followed by an increase in the levels of 45CO2 to reach a peak concentration of 

0.59 g/L on day 16 before entering into a stationary phase. In the soils amended with 2% 

biochar and activated carbon, there was a shorter lag phase period of about 5-6 days followed 

by an increase in the levels of headspace 45CO2 for the biochar and AC amended soils 

respectively. The level of 45CO2 production was initially higher in the biochar amended soils 

than in the AC amended soils until the 13th day when 45CO2 production in AC amended soils 
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overtook those in the BC amended soils to reach a peak concentration of 0.021g/L on day 19. 

The most intensive biodegradation of VPH that followed the longest lag phase in the 

unamended soils could both be a result of the high concentration of the substrates in the batch 

headspace indicative of good substrate bioavailability during the first 14 days (Figure 3.4) 

which is higher than in the biochar and AC amended soils. Good substrate availability means 

high potential for substrate utilization and growth of substrate degrading microorganisms, but 

also high potential for toxic effects (Aono et al., 1994; Sikkema et al., 1995; Heipieper and 

Martinez, 2010), which may explain the long lag phase in the unamended soil. In the biochar 

and AC amended soil, a short lag phase is likely the result of low substrate concentration 

reducing toxicity and enabling toluene mineralisation from around day 3 (Figure 3.4), an 

indication of sorption of the pollutants in the sorbent amended soils affecting soil 

microbiology.   

The maximum cumulative amount of 45CO2 produced in the unamended soil was higher than 

those produced by the biochar amended soil and AC amended soils by a factor of 4.5 and 3.0 

respectively. Amending soils with carbonaceous sorbents have been shown to enhance the 

sorption of organic pollutants from contaminated soils. Studies by Rhodes et al. (2008) 

demonstrated the strong sorption capacity of activated black carbon to phenanthrene thereby 

reducing its extractability from contaminated soil and to some extent, bioavailability of the 

pollutant to soil microorganisms. AC was also reported to adsorb VPHs more strongly than 

biochars in a long-term column study in which sorbent amended and unamended soils were 

exposed to a NAPL source containing a VPH mixture for over 12 months (Bushnaf, 2014). 

These findings correspond with the results from the current study (Figure 3.4) in which 

activated carbon demonstrated a higher sorption capacity over the duration of the experiment 

compared to biochar amended and unamended soil. This may also explain the lower initial 

concentration of 45CO2 in the AC amended batches. 

Theoretically determined oxygen (O2) levels at the start and the end of the experiments reveal 

that 24.33%, 7.70% and 9.97% of the initial amount of headspace oxygen for soil, soil & BC 

and soil & AC respectively had been used up for the mineralization of the substrate. This 

suggests that the batch systems were in principle, largely aerobic by the end of the 

experiments. Any levelling off of headspace CO2 in the batches may therefore not have been 

as a result of limited supply of oxygen in the batch systems. 

In the live and sterile controls, the level of 45CO2 production was very low and below the limit 

of detection of the GC-MS indicating the absence of the stable isotope-labelled carbon source 

in the control batches. 
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Figure 3.3. Headspace 45CO2 concentrations in different soil systems for live controls, 

unamended soil, soil & biochar and soil & AC. Error bars represent ±1 standard deviation 

from the mean of six replicates. 

 

Sorption profiles for toluene in the different soil systems as indicated by headspace 

concentration are shown in Figure 3.4 below. The initial steady-state in toluene headspace 

concentration of the unamended soil batch from day 3 to around day 11 is an indication of 

sorption to soil organic matter and can be interpreted to mean that sorption equilibrium 

between soil, water and air in the batch is attained within this period. A comparison of the 

effects of sorbent amendment on toluene sorption reveals that amending soils with 2% biochar 

(represented by red bars) reduced toluene headspace concentration by one order of magnitude 

compared to unamended soil batch on day 3 whereas for the soil & activated carbon batch, 

headspace toluene concentration was reduced by up to 2 orders of magnitude right from the 

onset (day 3) and remained near the limit of detection of the instrument throughout the 

experiment. Amending soil with 2% biochar was reported to enhance the solid-water 

distribution coefficient of the soil for toluene by an order of magnitude in a batch study 

(Bushnaf et al., 2011). These observations also correspond with a long-term column study in 

which soil-water distribution coefficient of toluene in soil was increased by a factor of 10 in 

2% biochar amended soil and by a factor of 100 in 2% activated carbon amended soils 

(Bushnaf, 2014). 
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Activated carbon is typically a stronger sorbent than biochar considering a wide range of 

feedstock materials from which both sorbents are made (Hale et al., 2015). The presence of 

pyrogenic carbon-rich materials such as soot, black carbon e.t.c may also influence the 

sorption of organic pollutants in contaminated soils and sediments (Cornelissen et al., 2005), 

although sorption efficiency is dependent on the amount of pyrogenic material present in the 

soil and on the concentration of the pollutants as sorption may be more linear at low pollutant 

concentrations. 

The ‘disappearance’ of headspace gases in batch studies have been linked to other abiotic  

processes such as sorption to rubber seals and to leakage from the vials (Hohener, 2010). In 

order to check the effects of abiotic processes on the ‘disappearance’ of the CO2 produced in 

batch headspaces, leakage experiments were performed and the results are discussed in a 

following section (Section 3.4.4). 

 

 

Figure 3.4. Headspace 13C7-toluene vapour concentrations (g/L) in the batch systems for soil, 

soil & biochar and soil & AC measured at different time points during the experiments. 

3.4.2 Effects of substrate availability on the mineralisation of soil organic matter in a 

batch system 

The lighter isotope – 44CO2 in the headspace of batches was concurrently monitored over a 19 

– day period as an indication of the level of mineralisation of soil organic matter taking place 

in the soil systems. In the soil treatments (i.e. amended and unamended soils), an initial lag 

phase of one day followed by a brief rise in the level of CO2 production on the 3rd day of the 
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experiments is noticed. On day 4, a fall in the level of CO2 production is observed. These 

observed rise and fall in the levels of headspace CO2 at this stage (between day 3 and 4) may 

simply be due to systematic measurement uncertainty, i.e. in the GC-MS calibration as it 

occurs in all treatments. From about day 4, 44CO2 levels start to rise in soils amended with 2% 

biochar and AC. In the unamended soils, 44CO2 production remained approximately constant 

until the 6th day before rising steadily to reach a maximum concentration on the 19th day. In 

the live and abiotic controls, the cumulative amount of 44CO2 produced never rose above a 

minimum level indicating that either microbial activity was not stimulated or the batches were 

sterile (abiotic tests)(Figure 3.5). This shows that 13C7-toluene mineralisation stimulated the 

mineralisation of other 12C-substrates, since 45CO2 concentrations rose broadly in line with 

44CO2 concentrations.  Comparing the maximum cumulative amounts of 44CO2 produced in 

the unamended soils on day 19 with that produced by biochar and AC amended soils reveals 

that 44CO2 levels were twice as high in the unamended soils at the end of the experiment. 

With respect to the controls, 44CO2 levels in unamended soils were higher by a factor of 13 

and 70 in the live and abiotic controls respectively (Figure 3.5). 

 

 

Figure 3.5. Headspace 44CO2 concentrations (g/L) in different soil systems for sterile controls, 

live controls, soil only, soil & biochar and soil & AC. Error bars represent ±1 standard 

deviation from the mean of measurements (6 replicates). 
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The lower organic carbon contents of soil compared to the biochar amended and AC amended 

soils as determined previously (Section 3.3.1) may have been expected to generate a lower 

amount of 44CO2 in the batch headspaces. On the contrary, the maximum cumulative amount 

of 44CO2 produced by soil was twice as much as that produced in the biochar and activated 

carbon amended soils (Figure 3.5) suggesting that the carbon added in the form of biochar and 

activated carbon is largely inert i.e. not biodegradable. Soil organic matter is the product of 

microbial activity on the readily decomposable plant matter (DPM) as well as the recalcitrant 

plant matter (RPM) composed mainly of cellulose and lignin respectively. It is also made up 

of soil microbial biomass as well as the exudates of organic carbon being released from plant 

roots (Standing and Killham, 2007). By percent composition, it is made up of approximately 

50-55% C, 5% H, 4.5% N, 33% O, 1% P and 1% S (Horwath, 2007). Biochar consists mainly 

of a large fraction of stable, aromatised carbon which is not readily biodegradable. Hence, 

microorganisms are not able to utilise the major part of biochar-C as energy source or the N 

present within the carbon structure (Lehmann et al., 2011). A fraction of biocharC has, 

however, been described as labile or volatile and has been shown to readily leach and to be 

easily mineralised by soil microorganisms. In such cases, there has been indications of 

microbial activity stimulation as well as increase in abundance (Steiner et al., 2008; Lehmann 

and Joseph, 2009). The process of mineralisation of soil organic matter releases nutrients such 

as N in the organic forms which can be subsequently utilised by microorganisms to sustain the 

process of decomposition. The growth of microbial populations is a process that is thought to 

be carbon-limited, therefore the introduction of a carbon source to soil systems should 

stimulate the growth and activity of microorganisms until the limiting factor to their growth 

becomes the amount of available nitrogen (Garten and Wullschleger, 1999; Garten Jr and 

Wullschleger, 1999; Garten Jr et al., 2000). Such a situation would result in an intense 

competition for inorganic nutrients by heterotrophic bacteria where carbon availability is high 

(Franko et al., 1995). Biochar used in the current study was produced at high temperature 

(pyrolysis) and therefore would not have contained much labile carbon suggesting that there 

was not a significant stimulation of the soil microorganisms based on the labile carbon 

content in the live soil & biochar batch.  

The continuous rise in the production of 44CO2 on day 19 (Figure 3.5), when the 45CO2 

production in the unamended soil had largely ceased, can be interpreted to mean that 

mineralisation of SOM is not yet limited by other factors such as nitrogen availability but that 

instead, 13C7 toluene has been exhausted as an available carbon source(Figure 3.5). 
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3.4.3 Relationship between VPH biodegradation and SOM mineralisation in batch 

systems 

The 45CO2 : 
44CO2 ratios were determined in each soil system over the duration of the 

experiment as a way of comparing the level of metabolism of carbon sources present in the 

batches. An increase in the isotope ratio is indicative of a higher level of mineralisation of the 

substrate (13C7 - toluene) compared to the mineralisation of soil organic matter as shown in 

Figure 3.6. In the biochar and AC amended soils, a rise in the isotope ratio is observed from 

around day 4 and increases steadily to reach comparable peak values of 1.30±0.03 and 

1.02±0.05 respectively. In the unamended soil, a longer lag phase that corresponds to earlier 

observations made in biodegradation of the substrate (Figure 3.3) is observed. A maximum 

isotope ratio of 2.22±0.05 was attained on day 17 in the unamended soils. There was a 

statistically significant strong positive correlation between substrate biodegradation and 

mineralisation of soil organic matter (r > 0.9, p < 0.01) in the inoculated batches as indicated 

by CO2 production (Figure 3.6) which suggests that toluene degrading microorganisms also 

utilize other carbon substrates to meet their overall growth requirements. The live soil 

controls showed a weaker, yet significant correlation (r = 0.68, p < 0.01) while in the sterile 

controls in which no 45CO2 was detected throughout the experiment, no correlation between 

substrate biodegradation and SOM mineralisation was observed. 

Treatment  Correlation  P-value Isotopic signature δ13C (‰) 

   coefficient (r) 

Live soil  0.682   1.31 x 10-13  -159±89  

Soil   0.982   1.31 x 10-13 199,222±14,624 

Soil & BC  0.992   3.64 x 10-16 86,030±1204 

Soil & AC  0.986   1.46 x 10-13 114,614±3248 

Table 3.1. Pearson correlation coefficient (r) between measured 45CO2 and 44CO2 

concentrations in the respective soil systems along with their corresponding p-values (95% 

confidence level) and isotopic signatures.  

Results from a One-Way Analysis of Variance (ANOVA) reveals that the amendment factor 

had a significant effect (p < 0.05) on the carbon isotope signatures of the different soil 

systems. Considering that the substrate (13C7 toluene) was labelled 100% with the heavy 

carbon isotope (13C), such high values up to four orders of magnitude higher than the carbon 

isotope signatures for naturally occurring toluene is expected (Bouchard et al., 2008a; 

Bouchard et al., 2008b). The process of sorption reduces bioavailability of organic pollutants 

from soils and sediments thereby hindering biodegradation by indigenous microbial 
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communities. The bioavailability of soil organic matter is probably less affected by the 

presence or absence of biochar or AC, since SOM compounds are less mobile than toluene 

and hence less readily bound by the biochar or AC. This can explain the lower isotopic 

signature of CO2-carbon in the biochar and AC amended soil headspace compared to 

unamended soils (Table 3.1).  

 

Figure 3.6. Measured 45CO2:
44CO2 ratios at different time points for the batches sterile controls, 

live controls, soil only, soil & biochar and soil & AC. Error bars represent ±1 standard 

deviation from measurements. 

A comparison of the percentage toluene-13C (g) converted into 45CO2 –C (g) in the different 

soil systems with respect to time reveals that less than 50% of the initial mass of toluene-13C 

(g) was metabolised into 45CO2 – C in all treatments at the end of the experiment (Figure 3.7). 

Total CO2 -C concentration in the batches as determined from headspace CO2 concentrations 

and total soil-pore water- dissolved CO2 revealed that by the 19th day, 28.7±2.4% of toluene-

13C (g) had been mineralised to CO2-C in the unamended soil. In contrast to this, 8.4±1.4% 

toluene-13C (g) in the biochar amended soil and 11.8±0.7% toluene-13C (g) in AC amended 

soils had been converted to CO2-C. Results from quantification of residuals (see Appendix A) 

after a 48 hours volatilisation in the fume hood shows that at the end of the experiments, on 

day 19, 96.20%±0.07, 80.48%±1.81 and 64.04%±0.18 of the initially introduced substrate 

(toluene - 13C7) had in principle been bioavailable for either metabolism to CO2 or biomass 
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formation in soil, soil & biochar and soil & AC batches respectively. The relationship 

between the level of 45CO2 production and the amount of substrate available for 

biodegradation is directly proportional, although the fate of most of the substrate in the 

batches is not thoroughly accounted for. Given that a generally low biomass yield was 

determined for all soil systems, it is reasonable to assume that most of the 45CO2 produced by 

the substrate metabolism was lost to other ongoing abiotic processes in the soil systems. It is 

believed that a significant amount of CO2 was lost through leakage from the Mininert caps 

and this became the motivation for subsequent CO2 leakage experiments in the batches as 

discussed in the section below (section 3.4.4). 

  

Figure 3.7. Percent 45CO2-C (g) relative to 13C7-toluene-C (g) produced at different time points 

for unamended soil, soil & biochar and soil & AC. Percentages represent total 45CO2-C in 

batch headspace and soil pore water assuming that no CO2 was lost in the batches by leakage. 

Calculations were based on the assumption that all of CO2 produced is retained in the batches. 

Error bars represent ±1 standard deviation from mean of four replicates. 

3.4.4 Quantitative estimation of CO2 loss from batch microcosms 

Results from CO2 leakage and dissolution experiments are displayed in the graphs below 

(Figure 3.8; dotted lines). A comparison of the final concentrations of CO2, after 14 days, with 
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a variation in the reduction of CO2. The empty batch vials had the highest percentage of CO2 
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batch and unamended soils, there was a percentage reduction in CO2 concentration of 

59.1±8.6% and 53.8±10.5% respectively from the batch headspaces by day 14. 

A simulation of the leakage process in which the effects of pH on dissolution of CO2 in the 

pore water of the soil systems was also considered is illustrated in Figure 3.8a (solid lines). 

Based upon the assumptions of CO2 reduction in the vials via a small gap between the 

Mininert cap and the glass vial governed by Fick’s first law of diffusion, a leakage factor of 

5.0 x 10-6 m (gap area/gap length) for leaks via the gaps between the wall of the vials and the 

valves in the empty batches (grey lines) was determined in the models by fitting predicted 

values with experimental values using the least sum of squares method. In the unamended soil 

(represented by blue line graphs), the model predictions for headspace concentrations 

considering this leakage factor and CO2 dissolution in soil pore water and at the initial soil pH 

were in line with the experimental measurements indicating that both dissolution and 

diffusion controlled the CO2 concentration in the headspace of the batches. In soils amended 

with 2% biochar and AC represented by red and green line graphs respectively (Figure 3.8a), 

predictions were consistently above the measured values throughout the duration of the 

experiments suggesting that CO2 loss in these soil systems was affected by factors other than 

diffusion and dissolution and leakage. Model predictions of Ca2+ concentrations at equilibrium 

with CaCO3, and CO3
2- in comparison with the measured aqueous Ca2+ concentrations are 

displayed in Table 3.2. Predicted and measured values were comparable for soil and soil & 

AC but not for soil & BC amended batch. A higher measured Ca2+ concentration in the soil & 

BC batch relative to the predicted equilibrium concentration indicates that the pore-water in 

this batch was oversaturated with regards to CO2 at equilibrium with calcium carbonate. 

Further simulations of the leakage experiments assuming that all of the dissolved cations Ca2+ 

and Mg2+ precipitated out of the soil pore water solution as carbonates showed that the 

predictions agreed more closely with the measured values in the soils amended with biochar 

and AC (Figure 3.8b). This could mean that a high concentration of carbonate ion (CO3
2-) 

species present in pore water of the soil systems at higher pH values of soil & BC and soil & 

AC (7.74 and 7.83 respectively) relative to soil pH (7.43) caused a precipitation of carbonate 

ion in the forms of insoluble CaCO3(s) and MgCO3(s) salts thereby further reducing the 

concentration of CO2 in the batch headspaces. In contrast to the soil & biochar and soil & AC 

batches, the model predictions fell below experimental measurements in the unamended soil 

(Figure 3.8b) which may be due to the fact that a relatively low pH value (7.43) in the 

unamended soils did not have any significant effect on carbonate ion speciation in solution 

compared to the other soil treatments. Results from an ICP-OES analysis of the cation 
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concentration in the pore water of the respective soil systems is included in the appendix 

(Appendix A).  

Treatments Ca2+ conc. (aqueous) Equilibrium Ca2+ conc. Sum of squared  

  (g cm-3)  (atmo) (g cm-3)  residuals 

Soil  6.49 x 10-4  8.46 x 10-4   1.98 x 10-4 

Soil & BC 1.10 x 10-3  1.34 x 10-4   1.15 x 10-5 

Soil & AC 4.02 x 10-4  2.03 x 10-4   2.35 x 10-6 

Table 3.2. Measured calcium ion concentration and modelled calcium ion concentration at 

equilibrium with atmospheric CO2 concentrations in different soil systems. 
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Figure 3.8. Effects of a) CO2 dissolution in soil pore water on loss of headspace CO2 and b) 

dissolution and precipitation of CO2 in forms of insoluble salts on the reduction of CO2 

concentrations for an empty batch vial (measured , modelled ), unamended soil 

(measured , modelled ), soil & biochar (measured , modelled ) and soil & AC 

(measured , modelled  ) batches respectively.  
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3.4.5 Predicting biochar and activated carbon amendment effects on the biodegradation 

of stable-isotope labelled toluene (13C7) in gravelly sand 

The biokinetic model fits to the experimental data of headspace toluene concentration, and 

CO2 evolution for soil, soil & biochar and soil & AC are shown in Figure 3.9, Figure 3.10 and 

Figure 3.11 respectively. At the outset, a biomass maximum specific growth rate of 0.6 h-1 in 

line with published rates (Table 3.3) was assumed for all soil systems. Based on this 

assumption, the half-saturation constant was varied for the different systems to obtain best fits 

between experimental and modelled data. Furthermore, the maximum soil biomass carrying 

capacity was adjusted to explain a levelling off of CO2 concentrations in soil & biochar and 

soil & AC systems towards the end of the experiments. Leakage of CO2 and toluene from the 

batches was predicted using the leakage factor determined from the empty batch experiment 

described in the previous section. Growth on 13C toluene and 12C soil organic matter was 

simulated based on a fixed ratio of 13C to 12C assimilation.   

In the soil batches, substrate utilization profiles along with the corresponding predicted 

biomass growth (Figure 3.9 a & b) showed an initial rapid decline in the headspace 

concentration of toluene which is followed by a ‘fairly’ consistent concentration over a period 

of about ten (10) days. This can be interpreted to mean that sorption of pollutant by soil 

organic matter at the onset of the experiment attains equilibrium between the soil solids, the 

soil pore-water and the headspace air quite rapidly. The period between day 1 and 10 (Figure 

3.9a) is interpreted in the model as the lag phase in the biomass growth (Figure 3.9b) after 

which a second dip is observed in the headspace concentration of the substrate due to 

biodegradation. The period from day 10 onwards (Figure 3.9a) represents a phase of intense 

biodegradation of toluene which in the model corresponds with a rapid biomass growth 

(Figure 3.9b) and a concurrent increase in CO2 levels in the batch headspaces (Figure 3.9c & 

Figure 3.9d). The long lag phase could be due to the toxic nature of toluene at high 

concentrations. Toxicity of toluene has been associated with accumulation of the compound 

into bacterial membranes due to its hydrophobicity and ability to preferentially partition into 

bacterial cell membranes thereby increasing membrane fluidity and non-specific 

permeabilization (Aono et al., 1994; Heipieper and Martinez, 2010). This may also explain 

the relatively longer lag phase during which soil microorganisms acclimate to the new 

substrate in the unamended soil batch (Figure 3.9b). With respect to CO2 production in the 

soil batches, the model fits were in line with experimentally determined data indicating a 

fairly accurate description of substrate utilization and biomass formation by the Monod 

kinetics model. A half-saturation constant value of 4.06 x 103 mgL-1 was predicted by the 

model for the unamended soil batch (Table 3.3). The predicted value was higher than the 
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values obtained from most studies on the growth kinetics of toluene degrading 

microorganisms (Table 3.3). One could fit a lower half-saturation constant to the data by 

reducing the value of the maximum growth rate from the literature values used in this study 

(Table 3.3). 

In the soil & biochar batch, the substrate degradation profile as predicted by the model 

(Figure 3.10) reveals a different pattern in which a sharp decline in the headspace 

concentration of toluene due to biochar-enhanced sorption is followed by a stable 

concentration almost below the limit of detection over the duration of the experiment. 

Substrate utilization was slightly over-predicted from around day 10, although this could be 

due to the difficulty of quantifying head-space concentrations near the detection limit.  

Biomass growth, however, showed a pattern that corresponds with the Monod growth model 

but limited by logistic growth (Figure 3.10b). Based upon the model predictions, maximum 

biomass growth in the biochar amended soils was approximately 3 times lower than the 

biomass growth in the unamended soil. Model predictions for the production of CO2 from the 

mineralization of SOM and the mineralization of toluene in the biochar amended batches 

(Figure 3.10c & Figure 3.10d) were comparable. The half-saturation constant in the soil & 

biochar batches had a value of 7.76 x 102 mgL-1 and was lower than the prediction in the 

unamended soil batches by an order of magnitude (Table 3.3). This could be due to sorption 

of toluene in the biochar amended soil which reduces the concentration of bioavailable 

substrate to the microorganisms. Consequently, microorganisms which can more effectively 

utilize low substrate concentrations may have an ecological advantage in the soil & biochar 

batches. The predicted half-saturation constant was however still much higher in the biochar 

amended soil than the values obtained from the literature by up to two orders of magnitude 

(Table 3.3). 

In the soil and activated carbon batch, the predicted toluene degradation profiles followed a 

similar pattern to those in the biochar amended soils (Figure 3.11a). A lower value was 

predicted for the half-saturation constant of toluene in the activated carbon amended soil 

compared to the unamended soil and the biochar amended soil batches (Table 3.3). Activated 

carbon amendment of VPH contaminated soils was shown to enhance the sorption of VPHs 

more than biochar or unamended soils in a recent batch and column study by Bushnaf (2014). 

A relatively shorter lag-phase in the growth cycle of the biomass in the AC amended soil can 

be interpreted to mean that less amount of toluene is bioavailable to soil microorganisms in 

soil pore water, hence less pollutant toxicity and the length of time required for acclimation to 

the substrate. 
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The concurrent increase in the concentrations of both 12C-CO2 and 13C-CO2 is a common trend 

in the batch headspaces of all treatments under investigation (Figure 3.9c&d, Figure 3.10 

c&d, and Figure 3.11 c&d). The level of 12C-CO2 produced in response to the addition of a 

13C substrate is remarkable. The cometabolic activity of soil microorganisms on stable- 
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Model type   Compounds  Parameters   Microorganism  Reference  

Monod    Toluene  𝐾𝑠 = 0.12 ± 0.02𝑚𝑔𝐿−1 Pseudomonas putida F1 (Reardon et al.)   

       µ𝑚𝑎𝑥 = 0.86 ± 0.01ℎ−1          

       𝑌𝑥/𝑠 = 1.28 ± 0.01 𝑔 𝑔−1        

Monod    Toluene  𝐾𝑠 = 12.22𝑚𝑔𝐿−1  Bacterial consortium  (Oh et al.)    

       µ𝑚𝑎𝑥 = 0.68 ℎ−1           

       𝑌𝑥/𝑠 = 0.71 𝑔 𝑔−1             

Cometabolism, SKIP  BTEX   µ𝑚𝑎𝑥,𝑇 = 0.60 ℎ−1  Consortium   (Littlejohns and Daugulis)  

       𝐾𝑠,𝑇 = 34.12𝑚𝑔𝐿−1           

       𝑌𝑥/𝑠,𝑇 = 1.25 𝑔 𝑔−1               

Andrews    Toluene  𝐾𝑠 = 0.42𝑚𝑔𝐿−1  Pseudomonas putida 54G (Mirpuri et al.)   

       µ𝑚𝑎𝑥 = 3.98 ℎ−1           

       𝑌𝑥/𝑠 = 0.9 𝑔 𝑔−1 

Monod    Toluene  µ𝑚𝑎𝑥 = 0.6 ℎ−1  Soil VPH degraders  Current study    

       𝐾𝑠 (𝑠𝑜𝑖𝑙) =4.06 x 103 𝑚𝑔𝐿−1          

       𝑌𝑥/𝑠 (𝑠𝑜𝑖𝑙) = 0.33 𝑔 𝑔−1          

       𝐾𝑠 (𝑠𝑜𝑖𝑙 & 𝐵𝐶) =7.76 x 102 𝑚𝑔𝐿−1         

       𝑌𝑥/𝑠 (𝑠𝑜𝑖𝑙 & 𝐵𝐶) = 0.073 𝑔 𝑔−1          

       𝐾𝑠 (𝑠𝑜𝑖𝑙 & 𝐴𝐶) =1.83 x 102  𝑚𝑔𝐿−1         

       𝑌𝑥/𝑠 (𝑠𝑜𝑖𝑙 & 𝐴𝐶) = 0.26 𝑔 𝑔−1 

Table 3.3. A summary of the biokinetic parameters used to simulate the biodegradation of toluene and biomass growth of associated microorganisms 

from the current study compared to values obtained from some published studies. Biomass yields are expressed as dry weight (g) biomass g-1 substrate. 
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isotope labelled toluene and SOM is a likely explanation for this observation. Similar 

observations were made in studies by Chang et al. (1992) and Littlejohns and Daugulis (2008) 

in which the compound toluene was utilised by microbes as a primary substrate for energy 

while simultaneously metabolising other secondary, non-growth substrates in the presence of 

toluene. 

Biomass yields coefficients (g biomass-C g-1 substrate-C) ranged from 0.073 g biomass g-1 

substrate for soil & biochar to 0.33 g g-1 for soil and 0.26 g g-1 for soil & AC and were much 

lower than values reported by Elazhari-Ali et al. (2013) in a study to investigate the effects of 

nutrient amendment on the biodegradation of a mixture of 12 VPHs. Yields were determined 

assuming a biomass carbon content of 100 fg C/cell (Whitman et al., 1998).    

Treatments bKdec         
bCbmax  aSorption  aLag phase    aC12/ C13  

 (h-1)          (Moles                coefficient (hours)            assimilation  

                      biomass-C m-3) (m3 kg-1)   ratio 

Soil  6.3 x 10-4      400  7.93 x 10-4 240  0.45  

Soil & BC 9.0 x 10-5      11  1.64  96  0.70 

Soil & AC 2.7 x 10-5      25  9.32  142  0.63 

Table 3.4. Fitted and experimentally determined parameters used to run the logistic growth 

model of toluene degrading biomass in different soil systems.           

a)  experimentally determined values    b) fitted values  

Other parameters used to predict microbial growth kinetics on toluene in the batches are 

displayed in Table 3.4. Microbial biomass decay rates (Kdec) ranged from 6.3 x 10-4 in soil to 

9.0 x 10-5 and 2.7 x 10-5 (h-1) for soil & biochar and soil & AC respectively. These values are 

comparable with decay rates of 9.0 x 10-4 (h-1) and 2.1 x 10-3 (h-1) used by (Meynet et al., 

2014) to simulate the biodegradation of a mixture of VPHs in column sand amended with or 

without biochar respectively. In a study by Bauer et al. (2008), a higher value for the decay 

rate, d, of 1.3 x 10-2 (h-1) was used to simulate the biodegradation of petroleum hydrocarbons 

in aquifer material containing Pseudomonas putida strains. Maximum biomass carrying 

capacity (Cbmax) was quite variable and somewhat higher for the unamended soil batches than 

the amended soil batches. This could be due to sorption of nutrients such as NH4
+ by the 

biochar and AC. Sorption capacity as indicated by the sorption coefficient was higher for the 

sorbents (biochar and activated carbon) by about four orders of magnitude compared to soil.   
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Figure 3.9. A graph indicating a) substrate utilisation b) biomass growth in soil pore water c) 

headspace 44CO2 concentration and d) headspace 45CO2 concentration with respect to time in 

a soil batch. Modelled (line graph) and measured (dotted graph). 
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Figure 3.10. A graph indicating a) substrate utilisation b) biomass growth in soil pore water c) 

headspace 44CO2 concentration and d) headspace 45CO2 concentration with respect to time in 

soil + 2%biochar batch. Modelled (line graph) and measured (dotted graph). 
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Figure 3.11. A graph indicating a) substrate utilisation b) biomass growth in soil pore water c) 

headspace 44CO2 concentration and d) headspace 45CO2 concentration with respect to time in 

soil + 2% activated carbon batch. Modelled (line graph) and measured (dotted graph). 
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3.4.6 Predicting the biodegradation of poorly available substrate (13C7 - toluene) by 

microorganisms in different soil systems after evacuation of pollutant source 

Model predictions for the mineralisation of SOM and strongly sorbed toluene post evacuation 

of the pollutant source based on CO2 evolution in the different soil systems are shown in 

Figure 3.12. For the unamended soil (figure 3.12a &b), the experimentally determined 12C-

CO2 production rose slowly in a similar manner to 13C-CO2 production with a short lag phase. 

Although soil microorganisms were expected to have acclimated to soil conditions from the 

previous batch experiments i.e. prior to evacuation of toluene, soil bacteria appeared to 

require a brief period of lag in growth. This was likely due to the processes of pollutant 

removal, transfer of soil into smaller vials, addition of deionised water droplet to moisten soil 

and mixing of soils in order to break up aggregates and to further aerate the soil. 12C and 13C 

CO2 production in unamended soil reached maximum concentrations of 0.014 g/L and 0.010 

g/L respectively by the 14th week. From the residual toluene analysis conducted prior to the 

batch (phase II) experiments (Section 3.3.8), it is evident that only a fraction (3.66±0.07%) of 

the originally introduced substrate was still bound to soil particles after evacuating the batches 

of toluene vapour. The model slightly over-predicted the concentrations of both 12C and 13C -

CO2 in the unamended soil batch. This may be based on the assumption that the sorbed 

toluene to soil is relatively rapidly desorbed back into pore-water than is suggested by the 

experimentally determined values. 

In the soil and biochar batch, model predictions for the mineralisation of SOM and toluene are 

more in line with the measured values (Figure 3.12 c & d). The maximum experimentally 

determined CO2 – C concentrations were 0.008 g/L and 0.004 g/L for 12C and 13C 

respectively. These values are one order of magnitude lower than the values for the 

unamended soils which may be interpreted to mean that the strongly sorbed pollutants to 

biochar is more slowly released into soil pore water for biodegradation by microorganisms 

compared to the soil batches. In the AC amended soil batch, model predictions of 12C and 13C 

CO2 were initially higher than the measured values but were eventually aligned for the most 

part. Maximum 12C and 13C CO2 concentrations in the soil and AC batch as determined 

experimentally were 0.014 g/L and 0.016 g/L respectively. The concurrent increase in the 

concentration of 44CO2 in the headspace of the batches could imply ongoing respiration by 

live microbial biomass from the metabolism of SOM to which they have been previously 

adapted or that biomass decomposition also generates 44CO2 in the respective batches.  
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Figure 3.12. A graph illustrating headspace 44CO2 and 45CO2 concentration with respect to 

time for soil (a & b), soil & biochar (c & d) and soil & activated carbon (e & f) batches. 

Modelled (line graph) and measured (dotted graphs).
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3.5 Conclusions 

The effects of amending soil with and without biochar and activated carbon on the 

biodegradation of stable-isotope labelled toluene and soil organic matter by indigenous soil 

microorganisms was investigated. From the foregoing discussion, addition of stable-isotope 

labelled toluene (13C7) to soil treatments increased the concentrations of headspace 45CO2 

compared to sterile and live soil controls indicating that microbial activity was enhanced by 

addition of a carbon source in the form of VPH. Also, there was an increase in the preference 

for 13C7 toluene as carbon source compared to SOM mineralisation in the different soil systems. 

Carbon-isotope ratios (45CO2 : 
44CO2) in headspace air for soil & biochar and soil & AC were 

1.30±0.03 and 1.02±0.05 (Figure 3.6) respectively as compared to 2.22±0.05 in soil without 

VPH addition further confirming the increase in the utilisation of 13C7 toluene compared to 

other carbon substrates especially in the unamended soil batch. 

Amending soil with either 2% biochar or activated carbon enhanced sorption of the substrate 

13C7 toluene right from the start of the experiment as indicated by the headspace toluene 

concentration in the batches (Figure 3.4). Sorption of the pollutants reduced their availability 

to soil microorganisms and consequently slowed mineralisation of toluene as indicated by the 

lower CO2 concentrations in the sorbent amended soil batches (Figure 3.3). Amending soil with 

activated carbon was previously shown to slow the rate of phenanthrene mineralisation in a 

study by Rhodes et al. (2008). 

Model predictions assuming that only soil pore water-dissolved toluene is biodegradable, 

indicate that biochar and activated carbon amendment also altered the growth kinetics of 

toluene degrading microorganisms contrary to our proposed hypothesis. By fitting a 

maximum specific growth rate of 0.6 h-1 (in line with published rates), it was possible to 

match model predictions of 45CO2 and 44CO2 concentrations with the experimentally 

determined data (Figure 3.9, Figure 3.10, Figure 3.11). Half-saturation constants of 4.06 x 103 

mgL-1, 7.76 x 102 mgL-1
 and 1.83 x 102 mgL-1 were predicted for soil, soil & biochar and soil 

& AC respectively, much higher than values reported in the literature. The difference between 

the treatments suggests that amending the soil with biochar and activated carbon thus 

increased the affinity of microorganisms for the substrate. Differences in the half-saturation 

constant also suggests that sorbent amendment affects the microbial ecology, by making 

microorganisms which can utilize substrates at lower concentrations more competitive. 

Overall, amending soil with 2% biochar or activated carbon hindered the mineralisation of the 

substrate 13C7 toluene due to sorption of the compound and caused a shift in preference for the 

substrate as indicated by the relatively high SOM mineralisation in the sorbent amended soils. 
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Microbial growth kinetics parameters (µmax and Ks) are determined by several environmental 

factors such as soil type, microbial community structure, substrates e.t.c. It is necessary to 

study the effects of these environmental variables on the biokinetics of petroleum 

hydrocarbon contaminated soil. A further study was therefore motivated to investigate the 

effects of VPHs on the microbial community structure and dynamics of the different soil 

systems in the short and long-term in order to gain a better understanding of their effects on 

microbial growth kinetics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4: A comparison of the varying effects of different petroleum 

hydrocarbon classes on the bacteria community response in gravelly 

sand 

4.1 Introduction 

Petroleum hydrocarbons may serve as excellent sources of carbon and energy for the growth 

of microbial biomass in contaminated sites (Galli, 1998). The metabolic pathways for the 

degradation of PHs have been extensively studied (Van Hamme et al., 2003; Das and 

Chandran, 2010). Petroleum hydrocarbons are reported to have varying levels of susceptibility 

to microbial attack and the order of susceptibility of PHs to microbial attack is as follows: 

cyclic alkanes < monoaromatics < branched alkanes < linear alkanes (Ulrici, 2000). At the 

same time, some constituents of petroleum may become persistent and toxic once released 

into the environment. Toxicity of PHs could be a function of their physico-chemical 

properties such as molecular structures e.g. complex poly-aromatic hydrocarbons (PAHs) tend 

to persist in the environment compared to mono-aromatic compounds due to their recalcitrant 

nature, or the solubility of these compounds in aqueous solutions as solubility enhances the 

bioavailability of organic compounds to indigenous microorganisms and hence their 

biodegradability. Sikkema et al. (1995) conducted a study to investigate the relationship 

between the hydrophobicity of cyclic hydrocarbons and their toxicity and reported a 

correlation between compound hydrophobicity and toxicity. In another study by Kabelitz et 

al. (2003), varying chain lengths of aliphatic hydrocarbon metabolites ranging from short 

chain to intermediate chain length compounds were investigated for their toxic effects on 

microorganisms. The antimicrobial effects of these compounds were found to be directly 

proportional to hydrophobic chain length of the molecules underscoring the significance of 

compound lipophilicity in the determination of toxicity. Above a threshold concentration in 

the environment, VPHs may exert some deleterious effects on soil microorganisms. The 

mechanisms by which these effects occur have been previously reviewed (Heipieper et al., 

1991b; Kabelitz et al., 2003; Heipieper and Martinez, 2010). Different organisms are reported 

to show different levels of sensitivities to the same class of compounds. As a result, it is 

critical to develop an understanding of the response of soil bacteria community to 

contamination with different classes of PHs under varying environmental conditions as this 

would enhance the design and development of effective remediation systems.  

The use of culture-independent techniques as a means to gaining improved understanding of 

the microbial community responses to environmental factors is gaining wider acceptance and 

applicability in the ‘ecological’ community. The advancements in molecular biology 

techniques – next-generation sequencing- has enabled an in-depth exploration of large 
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amounts of sequencing data from environmental samples (Shokalla et al., 2012). Such 

sequencing data have been used in a variety of environmental applications including studying 

the effects of soil management types on microbial communities (Nacke et al., 2011) and 

investigating the health status of an ecosystem by analysing its biodiversity (Hajibabaei et al., 

2011). 

454-pyrosequencing platform has been widely used within the last decade to conduct 

metagenomics studies of environmental samples particularly because of the long read lengths 

of sequences and the relatively short run time of the technique (Shokalla et al., 2012) while 

the Ion torrent sequencing platform, which is based upon the real-time detection of hydrogen 

ion concentration, has been developed to utilise one of three different ion chips 314, 316 or 

318 each of which is capable of generating up to 10Mb, 100Mb or 1Gb of sequencing data 

respectively (Shokalla et al., 2012). Such advances may serve as an invaluable tool for 

gaining insights into the effects of petroleum hydrocarbon contamination on soil 

microbiology. 

4.2 Aim 

The aim of this study was to investigate the effects of a non-aqueous phase liquid (NAPL) of 

different VPH classes (in separate mixtures): straight chain alkanes, aromatic hydrocarbons 

and cyclic/branched alkanes on the response of the indigenous micro-organisms in a gravelly 

sand using molecular biology techniques. An aerobic batch experiment was set up in order to 

monitor the level of biodegradation taking place within different soil systems and control. 

4.2.1 Objectives 

In order to accomplish the aforementioned aim, the following objectives were set: 

1. To determine the level of biodegradation of different classes of VPHs compared to an 

uncontaminated soil by indigenous microorganisms under aerobic batch condition. 

 

2. To determine the effects of different VPH classes on the richness and diversity of 

microbial communities present within the soil under investigation. 

 

3. To identify pollutant degrading microorganisms for different VPH classes based on 

their increased abundances in specific treatments. 
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4. To determine any variation in soil microbial community structures that may arise from 

the use of different sequencing platforms – 454 pyrosequencing and Ion torrent 

sequencing to conduct metagenomic studies.   

4.2.2 Hypotheses 

The following hypotheses are proposed: 

1. VPHs are known to serve as a carbon and energy source for the growth of certain 

microorganisms that are able to grow on them. It is therefore expected that the 

addition of a carbon source in the form of different PH classes will result in varying 

bacterial responses with respect to the relative biodegradability of straight versus 

branched/cyclic alkanes versus aromatic hydrocarbons. 

 

2. Also, addition of new substrate (VPH) to the soil should enhance the richness and 

diversity of microbial communities in the contaminated soils compared to soil in 

which no VPH was added. 

 

3. It is expected that microbial communities growing on different VPH classes will differ 

significantly in their species compositions.  

 

4. It is not expected that different sequencing platforms – 454 pyrosequencing and ion 

torrent sequencing will significantly affect the quality of data generated i.e. type of 

microbial communities identified from the soil samples. It is, however, expected that a 

higher amount of data generated by the Ion torrent sequencing platform would result 

in higher richness and diversity indices of microbial communities compared to the 

454-pyrosequencing-derived dataset. 
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4.3 Materials and methods 

4.3.1 Soil and chemical pollutant mixtures 

The soil used in this chapter is the same as the soil used in chapter 3 (Section 3.3.1). The 

chemical preparations are as follows: high purity chemicals (Sigma Aldrich, UK) were mixed 

into three separate classes of petroleum hydrocarbons. The aromatic hydrocarbon mixture 

consisted of 1 mL each of toluene, m-xylene, and 1, 2, 4-trimethylbenzene (I, 2, 4-TMB). 

Straight chain hydrocarbon mixture consisted of 1mL each of n-octane, pentane, hexane, 

decane and dodecane while the cycloalkanes/branched alkane was made up of a mixture of 

iso-octane, cyclohexane, methylcyclohexane and methylcyclopentane (1 mL each). Each PH 

mixture was made in transparent glass vials and stored in the dark at room temperature (20 

±2 °C). 

4.3.2 Batch experiments  

Batch microcosm experiments were performed in amber vials (65 mL, Jencons, a VWR 

Division, Leicestershire, UK) closed with Teflon Mininert caps (Supelco, Bellefonte, USA) 

containing 15 g  of gravelly sand (water content: 0.1 g g-1 soil d.w.) and inoculated with 30 

µL of either aromatic hydrocarbon mix or straight chain hydrocarbon mix or a mixture of 

cycloalkanes/branched alkane. Each treatment was prepared in triplicates and an additional set 

of live soil controls (without petroleum hydrocarbons) was also prepared in triplicates. The 

experiments lasted for 14 days (2 weeks). 

4.3.3 Microbial respiration 

Soil respiration was monitored in the batches over a 14 days period by measuring the 

concentration of headspace CO2 in each vial containing either soil, or soil inoculated with 

aromatic hydrocarbon mixture or soil inoculated with aliphatic hydrocarbon mix or soil and 

alicyclics/branched alkanes. For each soil type, contaminated or non-contaminated, triplicate 

batches were monitored at room temperature (20 °C) and the analysis of headspace CO2 was 

conducted using a Fisons 8060 GC linked to a Fisons MD800 MS with a HP-PLOT-Q 

capillary column. 

4.3.4 Sample collection and storage 

At the end of the batch experiments, the vials were uncovered and samples were collected in 

triplicates and stored at -20 °C in filtered-sterile phosphate buffer saline (PBS, Oxoid) 1:1 

vol/vol for DNA extraction and PCR amplification. Triplicate samples were also collected 

from the unamended soil batch and stored for microbial analysis.  
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4.3.5 DNA extraction and PCR amplification (454 pyrosequencing library preparation) 

Genomic DNA was extracted from 50 mg of soil (wet weight) using the FastDNA Spin kit 

according to the manufacturer’s instructions (MP Biomedicals, UK). The V4 and most of the 

V5 regions of 16S rRNA gene was PCR amplified by multiplex PCR reactions (averagely 15 

reactions per sample), using primer set 515f (5’-GTGNCAGCMGCCGCGGTAA-3’) and 

926r (5’-CCGYCAATTYMTTTRAGTTT-3’) (Wilhelm et al., 2013), with read length of 400 

– 500 base pairs (bp). A unique 8 bp barcode, added to the 5’ –end of both the forward and 

reverse primers through a GA linker, was used to label each sample. The primers were 

attached to the GS FLX Titanium adapter A (5’ - CGTATCGCCTCCCTCGCGCCATCAG – 

3’) and adapter B (5’ – CTATGCGCCTTGCCAGCCCGCTCAG – 3’). Each PCR reaction 

was performed in a total volume of 25 µL containing 0.5 µL of DNA template, 0.4 µmol L-1 

of each universal primer, 0.2mmol L-1 dNTPs (PCR grade Nucleotide Mix, Roche), FastStart 

High Fidelity Enzyme Blend (2.5U/reaction), and a final concentration of 1.8  mM MgCl2 in 

the FastStart High Fidelity Reaction Buffer (Roche Diagnostics GmbH, Mannheim, 

Germany). The following PCR thermal cycling programme was used: an initial denaturation 

step of 95 °C for 4 minutes followed by 25 cycles of denaturation at 95 °C for 1minute, 

annealing of primers at 55 °C for 45 seconds, and elongation at 72 °C for 1 minute. The final 

elongation step was at 72 °C for 7 minutes. Multiplex PCR amplicons were pooled together 

and cleaned using the QIAquick PCR purification kit (QIAGEN, Crawley, UK) according to 

the manufacturer’s instruction. Prior to 454 sequencing of PCR amplicons, the amount of 

DNA present in clean PCR products were quantified using a Qubit® 2.0 Fluorometer 

following the manufacture’s protocol.   

4.3.6 454 pyrosequencing and Ion torrent sequencing 

Clean PCR amplicons were pooled together (in triplicates) in equimolar concentrations and 

sequenced on a Roche 454 GS Junior (Macropathology Ltd., Coventry, UK). Sequencing was 

carried out in a bi-directional manner using unique 8 base-pairs barcoded 515f and 926r 

primers for both forward and reverse runs. The output data from the sequencing runs in the 

standard flowgram format (SFF) was filtered for quality and subsequently denoised on a 16 

core-computer cluster.  

For the ion torrent sequencing, in addition to the sample preparation for PCR, the samples 

were labelled using a unique 12 base pairs Golay barcode, added to the 5’ – end of the 

forward primers through a GAT spacer, and attached to the Ion adapter A (5’- 

CCATCTCATCCCTGCGTGTCTCCGACTCAG-3’) while the reverse primers were attached 

to the Ion adapter trP1 (5’- CCTCTCTATGGGCAGTCGGTGAT-3’). PCR amplicons were 
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cleaned and size selected using double-sided solid-phase reversible immobilisation (SPRI) 

beads (Agencourt AMPure XP system, Beckman Coulter). Clean PCR amplicons from 

samples as described in section 4.3.5 were also pooled in triplicates in equimolar 

concentrations and sequenced on a Personal Genome Machine (PGM) using a 316 ion chip by 

the School of Civil Engineering & Geosciences, Environmental Engineering Dept. Newcastle 

University. 

4.3.7 Microbial community structure analysis 

Briefly, the reads were filtered for quality (filtering criteria: perfect match to sequence 

barcode/primer, 200bp minimum sequencing length). QIIME Denoiser (Reeder and Knight, 

2010) was used to detect and correct sequencing errors and the data were reintegrated into the 

QIIME pipeline by inflation.  The so obtained sequences were clustered into Operational 

Taxonomic Unit (OTU) at 97% sequence similarity level by the uclust algorithm, a 

representative sequence from each OTU was selected and taxonomically identified using 

Greengenes database (McDonald et al., 2012; Werner et al., 2012). Representative sequences 

and correspondent taxonomic assignment were used to build a table of OTU abundances at 

different levels of taxonomy. The QIIME (v.1.8.0) pipeline (Caporaso et al., 2010) was used 

to determine the microbial community diversity within each sample and across the 12 

samples. The resulting OTU table at the class level (L3) of taxonomy was imported into 

PRIMER v6 and log transformed for subsequent beta (β) diversity analysis. The Bray Curtis 

dissimilarity metric was calculated for L3 OTU table and an average pairwise distance and 

standard deviation was determined for each pair of sample (Clarke Robert et al., 2006). The 

resulting Bray Curtis distance matrix was mapped unto a 2 dimensional non-metric 

multidimensional scaling plot (nMDS) using Primer6. 

For alpha diversity analysis in the pyrosequencing-derived dataset, an in silico rarefaction was 

performed using an OTU table generated in QIIME at a minimum rarefaction depth of 100 in a 

series of depth and a step-wise increase of 200 sequences, a total number of 10 replicates 

(multiple rarefactions) at each depth and a maximum rarefaction depth of 8000 in the series of 

depth. For the Ion torrent data analysis, rarefaction was performed at a minimum depth of 4000 

sequences in a series of depths, a step-wise increase of 2000 sequences and a maximum 

rarefaction depth of 21, 000 in the series of depth. For the diversity within each sample (alpha 

diversity), the non-parametric species richness estimator Chao1 and the Faith’s phylogenetic 

diversity (PD) index were determined according to the methods described by Chao (1984) and 

Faith (1992) respectively in QIIME. The Shannon’s diversity index (Hʹ) was also determined 

for each sample as a measure of alpha diversity based on derivations made by Shannon and 
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Weaver (1949). This index of diversity (Shannon and Weaver) is based on the assumption that 

biological systems contain information that can be analysed in a similar manner to some coded 

information and that individual species, if sampled randomly from a large community of species 

are well represented in the samples (Pielou, 1975; Magurran, 2004). Shannon’s index of 

diversity is given by the equation below: 

𝐻′ = − ∑ 𝑝𝑖 ln 𝑝𝑖       (4.1) 

where pi is the proportion of individuals present within the ith species and is estimated based 

on a maximum likelihood estimator ni/N according to Pielou (1969). 

4.3.8 Statistical analysis 

A 2-Way Analysis of Variance (ANOVA) was performed using Minitab-17 Statistical 

software (Minitab Ltd., Coventry, UK) on the alpha diversity indices in order to compare the 

interactive effects of the factors under consideration (VPH classes) on species richness and 

microbial diversity. Analysis of Similarities (ANOSIM) was conducted on the Pearson’ 

product-moment correlation dissimilarity matrix using PRIMER v6. To compare microbial 

community structure across all samples based on the relative abundance of OTUs, the 

dominant genera ( relative abundance > 1.0% of the total number of sequences) were square 

root transformed and a Principal Components Analysis (PCA) performed on the transformed 

data using XLSTAT for Windows (XLSTAT, 2014). A comparison of the relative abundances 

of identified bacterial groups between soil treatments (VPH classes) was conducted using 

Microsoft Excel v2010 (Microsoft, Redmond, USA) for significant effects (p < 0.05). 
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4.4 Results and Discussion 

4.4.1 Biodegradation of volatile petroleum hydrocarbon mixtures in batch systems  

Biodegradation profiles for the different petroleum hydrocarbon classes are shown in Figure 

4.1 below. In the control soil batch, an initial lag phase of approximately 6 days is observed. 

This was followed by a slow rise in the headspace concentration of CO2 from day 7 which 

remained fairly consistent throughout the experiments. Maximum cumulative CO2 

concentration for the control batch was 0.00319 g/L. A similar pattern was observed for the 

aromatic hydrocarbon contaminated soil batch in which headspace CO2 rose slowly to reach a 

comparable maximum concentration of 0.00309 g/L by day 15. In the cyclic and branched 

alkane contaminated soil batch, headspace CO2 concentration was slightly higher than in the 

soil and the aromatic hydrocarbon contaminated batches but never increased by more than one 

order of magnitude above the background level. In the straight-chain alkane contaminated soil 

batch, a relatively faster increase in the biodegradation of the compounds was observed as 

indicated by the rise in headspace CO2 production in the batches (Figure 4.1) suggesting that 

soil microbial activity was stimulated the most by the addition of straight chain alkane class of 

petroleum hydrocarbons in contrast to the other PH classes. CO2 production in the straight 

alkane soil batch rose by up to two orders of magnitude to reach a maximum cumulative 

concentration of 0.112g/L before entering into a stationary phase from around day 13 (Figure 

4.1). 

The biodegradation of n-alkanes depends on their solubility in soil-pore water which is 

proportional to the carbon chain length of the molecule (Sikkema et al., 1995). Alkanes of 

intermediate chain lengths (C5 – C16) are less water soluble than the short-chain length 

compounds (C1 – C4) rendering them less bioavailable for degradation and less toxic at high 

concentrations. Therefore, a relatively high concentration of n-alkanes of intermediate chain 

length such as those used in the current batch study may not have been inhibitory to the 

growth of the microorganisms. More so, they are more readily biodegradable compared to 

other classes of PHs (Ulrici, 2000). Mono-aromatic hydrocarbons on the other hand are 

comparatively more soluble in water than n-alkanes of intermediate chain length 

(http://chem.sis.nlm.nih.gov/chemidplus/, 2005). At equivalent concentrations, a higher 

amount of dissolved aromatic hydrocarbons is expected to result in a more toxic effect than n-

alkanes. Cyclo-alkanes were reported to be less preferable substrates for microbial growth in a 

related laboratory column study by Bushnaf (2014).  
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Figure 4.1. Headspace CO2 concentration (g/L) in different soil batches for a) Soil only b) Soil 

+ aromatic H c) Soil + straight-chain alkanes and d) Soil + cyclic/branched alkanes. Error 

bars represent ± 1 standard deviation from the mean of 3 replicates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.0001

0.001

0.01

0.1

1

0 2 4 6 8 10 12 14 16
C

O
2

co
n

ce
n

tr
at

io
n

 (
Lo

g)
 g

/L

Time (days)

VPH Biodegradation

Soil Soil + aromatics Soil + straight_alkanes Soil + branched_cyclics



Chapter 4:  A comparison of the varying effects of different petroleum hydrocarbon classes on the bacteria community response in 
gravelly sand 

72 

 

4.4.2 Microbial diversity and species richness 

Microbial diversity and species richness across the different samples as determined by the 

non-parametric richness estimator (Chao, 1984) and the Faith’s Phylogenetic diversity (Faith, 

1992) are illustrated in Figure 4.2.  For the pyrosequencing dataset (Figure 4.2a), at an even 

rarefaction depth of 500 sequences, microbial diversity as determined by the Faith’s 

phylogenetic diversity (PD) was the lowest in the Str-alkanes contaminated soil (31.43±0.58). 

The control soil had a PD value of 43.33±1.34 followed by the soil & aromatic H batch 

(39.99±1.43) and the soil & cyclic/branched alkane batch (35.77±0.62). 

The species richness estimator (Chao1) was higher in the control soil samples compared to the 

contaminated soils. Chao1 values for soil, soil & aromatic Hs, soil & Str-alkanes, and soil & 

cyc-alk batches were 797.51±80.14, 733.23±42.01, 580.91±25.33 and 684.49±25.68 

respectively. There was a statistically significant difference (p < 0.05) between different 

petroleum hydrocarbon class species richness as indicated by a one-way analysis of variance 

(ANOVA). A posteriori hypothesis (post-HOC) analysis of the results from the ANOVA 

using the Tukey’s pairwise comparison showed that species richness of the control soils 

differed significantly from that of straight chain alkane contaminated soils (p < 0.05, One way 

ANOVA)  and species richness of straight chain alkane contaminated soils also differed 

significantly from the species richness of aromatic hydrocarbon contaminated soils (p < 0.05, 

One way ANOVA  but was not statistically significantly different from those of the 

cyclic/branched alkane contaminated soils.  

The observed number of species at a 97% sequence similarity level were statistically 

significantly different between the different classes of PH (ANOVA, p < 0.05). More 

specifically, the control soil samples had the highest observed number of species of 320.50 ± 

5.51 followed by the aromatic hydrocarbon contaminated soils with an average observed 

number of species of 289.10 ± 4.73. The straight chain alkane and cyclic or branched 

hydrocarbon contaminated soils had an average observed spp. of 229.70 ± 1.97 and 258.57 ± 

2.46 respectively. This suggests that contamination of soil with an equivalent dose of different 

petroleum hydrocarbon classes impacted soil microbiology negatively by significantly 

reducing bacterial richness with the Str-alkane contaminated soil being the most affected 

(Chao1 and Observe spp.)(Figure 4.2a). Toxicity of petroleum hydrocarbons was reported to 

increase with increasing hydrophobicity of the compounds in water. While n-alkanes are 

reported to be relatively more biodegradable by microorganisms compared to other petroleum 

hydrocarbon classes, a high concentration of the compounds may result in increased uptake of 

the pollutants and consequently an increased cytotoxic effect.  
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With respect to microbial diversity in the pyrosequencing-derived dataset, the Shannon 

Wiener diversity index ranged from 7.08 ± 0.05 in the straight chain alkane contaminated 

soils to 8.04 ± 0.03 in the control soils. These values are in the higher range for most soil 

types as indicated by previous studies (Magurran, 2004; Nacke et al., 2011). 

Species richness and microbial diversity as determined in the ion torrent-derived dataset at an 

even rarefaction depth of 22, 000 sequences across all samples are illustrated in Figure 4.2b. 

In contrast to the pyrosequencing-derived dataset, there was no statistically significant 

difference between the species richness estimator (Chao1) of the different soil treatments (p > 

0.05, One way ANOVA). There was however, a statistically significant difference between 

the observed number of species in the different classes of petroleum hydrocarbons and control 

soils with the control soils having the highest observed number of spp. of 4875 ± 188 and the 

soils contaminated with straight chain alkanes having the least observed number of spp. of 

3711 ± 261. In comparison with the pyrosequencing-derived dataset, the average species 

richness estimator Chao1 in the ion torrent-derived dataset increased by a factor of 

approximately 10 suggesting that sequencing depth significantly affected the species richness 

of the soil samples. A one way-ANOVA also revealed a statistically significant difference (p 

< 0.05) between the average number of observed species obtained from the pyrosequencing 

data (274.5±35.5) and the average value obtained from the ion torrent data (4352 ± 515) 

which was higher by a factor of approximately 15.  
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Figure 4.2. A comparison of alpha diversity indices Chao1, Observed no. of species, Faith’s 

PD and Shannon’s diversity index  for a) 454 sequencing libraries at an even rarefaction depth 

of 500 sequences and b) Ion torrent sequencing library at an even rarefaction depth of 22,000 

sequences. 
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Rarefaction plots of the observed number of species in the pyrosequencing data and the ion 

torrent data are shown in the Figure 4.3 below. The results show that by sampling a higher 

number of sequences, a higher species richness estimate is obtained in both datasets. In the 

pyrosequencing data, the number of OTUs increased with an increase in the sequencing depth 

but never attained saturation indicating that the sequences were not exhaustively sampled. 

Similarly, in the ion torrent data, the rarefaction curve never reached saturation although they 

were less steep compared to the rarefaction curve from the pyrosequencing data. Several 

studies on samples from the environment have highlighted the effects of sequencing efforts on 

the species richness and microbial diversity of such samples (Roesch et al., 2007; Nacke et 

al., 2011).  

 

  

Figure 4.3. Rarefaction plots showing the effects of sequencing efforts on the observed number 

of Species for a) Ion torrent sequencing and b) 454 sequencing platforms.  
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4.4.3 Taxa distribution across samples 

At the phylum level of taxonomy, a total of 39 phyla were identified and classified within the 

bacterial domain and 2 unclassified phyla within this domain. In the archaea domain there 

were 3 classified and 1 unclassified domain. The dominant bacteria phyla representing ≥3.0 % 

of the overall (total) relative abundances in the pyrosequencing-derived data are shown in 

Figure 4.4a. They are the Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, 

Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Verrucomicrobia and the 

Proteobacteria classes Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria, 

Gammaproteobacteria representing 4.64, 13.97, 1.38, 7.16, 10.35, 3.93, 1.59, 8.45, 1.43, 

13.36, 6.18, 5.89, and 15.27% respectively across the different samples under investigation  In 

the archaea domain, the Crenarchaeota was the dominant phyla accounting for 2.64% of the 

total relative abundance across all samples. The rare bacteria phyla accounting for ≤ 1% of the 

total relative abundance were the Armatimonadetes, Chlorobi, GN04, and TM6 representing 

0.25, 0.15, 0.17, 0.25% respectively while the rare archaea phyla were the Euryarchaeota and 

the Parvarchaeota representing 0.13 and 0.33% respectively of total relative abundance 

across all samples.  

Further analysis of the phyla level taxa revealed a variation in the relative abundances of the 

different soil treatments. For instance, the Acidobacteria had a higher relative abundance in 

the uncontaminated soils than in all the treated soil samples (p < 0.05, 2 sample t-tests). 

Actinobacteria were significantly more abundant in the straight alkane contaminated soils 

than they were in the uncontaminated soils but were comparable in the other treated soils. 

Firmicutes were significantly higher in relative abundance in the aromatic hydrocarbon 

contaminated soils than in the uncontaminated and straight alkane and cyclic alkane 

contaminated soil samples while Gemmatimonadetes showed the opposite pattern in which 

uncontaminated soils had a significantly higher relative abundance compared to the straight 

chain alkane and cyclic hydrocarbon contaminated soils but not the aromatic hydrocarbon 

contaminated soil samples. The Alphaproteobacteria class did not show any significant 

variation with respect to their relative abundance across the control and treated soil samples. 

In contrast, the Gammaproteobacteria were significantly more dominant in the Str-alk and 

Cyc-alk contaminated soils than in the control soils and the Aro-H contaminated soil samples 

(p < 0.05, 2 sample t-tests). 

There are no reports to the best our knowledge to indicate that members of the phylum 

Acidobacteria have the potential to degrade any known VPH. On the other hand, members of 

the  phyla Actinobacteria, Firmicutes, Gemmatimonadetes, and Alphaproteobacteria  have 
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been isolated and shown to potentially degrade different classes of PHs including alkanes 

(Engelhardt et al., 2001), o-xylene (Morasch et al., 2004), benzene (Li et al., 2006) and 

gasoline (Robertson et al., 2001). Members of the phylum Alphaproteobacteria and 

Gammaproteobacteria were reported from previous studies to dominate bacteria communities 

in petroleum hydrocarbon contaminated beach sands and marine sediments (Head et al., 2006; 

Yakimov et al., 2007; Kostka et al., 2011). 

Similarly, the ion torrent-derived phyla level taxa summary for the dominant phyla are 

displayed in the Figure 4.4b below. The taxa distributions reveal an identical pattern to those 

obtained from the pyrosequencing-derived data as the dominant phyla were retained and did 

not show any variation. From a qualitative view point, the bacteria community composition 

did not change between both next-generation sequencing platforms, at least at the phylum 

level (Figure 4.4) highlighting the reproducibility of results from both next-generation 

sequencing platforms. From a quantitative view point, however, there were some variations 

between soil treatments when compared to the taxa distribution from the pyrosequencing-

derived data. The Alphaproteobacteria were significantly more dominant in the Aro-H 

contaminated soils than the uncontaminated soil but were more dominant in the 

uncontaminated soil than in the Str-Alk contaminated soil samples (for both sequencing 

platforms). The Gammaproteobacteria revealed a similar pattern in the ion-torrent generated 

data where the phylum significantly dominated in the Str-alk and the Cyc-alk contaminated 

soils compared to the Aro-H contaminated and the control soil samples. 
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Figure 4.4. Relative abundances of operational taxonomic units (OTUs) accounting for ≥ 3.0% 

in  a) 454 sequencing libraries and b) Ion torrent of all classified sequences obtained from 

control samples and different soil samples amended with or without biochar or activated 

carbon. 
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OTU classification    %Detected   

                                              Control  Aromatics Straight alk. Cyclics/branched          

Actinomycetales  3.5±0.4 3.4±0.3 15.5±0.2 2.7±0.1

 Micrococcaceae 0.6±0.1 0.9±0.1 0.6±0.4 0.6±0.1

 Micromonosporaceae 0.7±0.6 0.9±0.1 0.5±0.3 0.6±0.1

 Mycobacteriaceae 0.1±0.1 0.2±0.1 0.1±0.1 0.1±0.0

 Nocardiaceae  0.1±0.1 0.1±0.1 5.5±0.6 0.1±0.1

 Nocardioidaceae 1.0±0.1 0.4±0.1 8.1±0.6 0.3±0.1

 Pseudonocardiaceae 0.0±0.0 0.0±0.0 0.0±0.0 0.1±0.0

 Streptomycetaceae 0.5±0.1 0.6±0.2 0.6±0.2 0.5±0.0

 Streptosporangiaceae 0.2±0.1 0.1±0.1 0.1±0.1 0.3±0.0  

Bacillales   5.6±0.4 12.1±0.2 3.4±0.8 7.4±1.3

 Bacillaceae  0.1±0.2 0.3±0.1 0.1±0.0 0.2±0.0

 Paenibacillaceae 0.8±0.3 1.6±0.4 0.5±0.3 1.1±0.3

 Planococcaceae 1.6±0.4 2.9±0.6 0.6±0.3 1.9±0.4

 Thermo-  0.2±0.2 0.4±0.2 0.1±0.1 0.3±0.1

 actinomycetaceae 

Pirellulales   4.2±0.2 5.1±0.8 2.3±0.4 3.4±0.2

 Pirellulaceae  4.2±0.2 5.1±0.8 2.3±0.4 3.4±0.2 

 

Rhizobiales   10.6±1.6 12.0±1.4 5.6±1.4 9.3±0.5

 Bradyrhizobiaceae 0.4±0.1 0.3±0.1 0.4±0.2 0.2±0.0

 Hyphomicrobiaceae 8.5±0.4 9.7±0.8 3.6±1.0 7.7±0.6

 Phyllobacteriaceae 0.3±0.3 0.2±0.1 0.1±0.1 0.1±0.0

 Rhizobiaceae  0.2±0.1 0.2±0.2 0.3±0.3 0.1±0.0 

Pseudomonadales  0.5±0.3 0.3±0.0 16.4±1.8 22.2±1.2

 Pseudomonadaceae 0.5±0.3 0.2±0.0 16.3±1.7 22.2±1.2 

Xanthomonadales  3.8±0.6 4.2±0.4 7.2±1.2 2.8±0.3

 Sinobacteraceae 2.4±0.4 2.5±0.4 2.2±0.2 1.8±0.3

 Xanthomonadaceae 1.2±0.4 1.6±0.2 5.0±1.1 1.0±0.0 

Table 4.1. Summary of bacterial order detected in the highest relative abundance obtained from 

DNA-derived 454 pyrosequencing libraries of samples from volatile petroleum hydrocarbon 

contaminated soils.  
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4.4.4 OTU functions in petroleum hydrocarbon degradation 

At the order level, most of the sequences associated with the dominant phyla Actinobacteria, 

Firmicutes, Alphaproteobacteria and Gammaproteobacteria across the control and treated 

soil samples are displayed in Table 4.2. The Actinomycetales showed approximately a 5-fold 

increase in the straight chain alkane contaminated soils compared to the control while the 

Bacillales were twice as high in the aromatic hydrocarbon treated soils than they were in the 

control samples (Table 4.1). Pseudomonadales increased in percentage abundance by a factor 

of approximately 33 and 44 in the straight chain alkane and cyclic alkane contaminated soils 

respectively in comparison with the untreated soils while the Xanthomonadales increased by a 

factor of about 2 in the Str-alk contaminated soils compared to the control soils. Most of the 

sequence affiliated to the order Actinomycetales at the family level were the Micrococcaceae, 

Micromonosporaceae, Mycobacteriaceae, Nocardiaceae, Nocardioidaceae, 

Pseudonocardiaceae, Streptomycetaceae and Streptosporangiaceae. 

At the genus level, there was a significant difference with respect to the relative abundances 

of the OTUs between the controls and the treated soil samples (Table 4.2). The genera 

Rhodococcus,  Desulfosporosinus, Polaromonas, Pseudomonas, Mesorhizobium and 

Methylibium had the highest relative abundances in the Str-Alk treated soils (p < 0.05, 2 

sample t-Tests) followed by the Aro-H treated soils while Azomonas and Lycinibacillus were 

more dominant in the Cyc-alk treated soils than they were in the untreated soils (controls) 

(Table 4.2). Pseudonocardia was more dominant in the aromatic hydrocarbon treated soil 

compared to the untreated soil (p < 0.05, 2 sample t-Tests) (Table 4.2). Members of the genus 

Pseudonocardia were associated with the degradation of the aromatic hydrocarbons toluene 

and benzene in a compost biofilter study by Juteau et al. (1999). Rhodococcus is a Gram-

positive, aerobic genus belonging to the phylum Actinobacteria (Larkin et al., 2010) and has 

been reported to possess a remarkable range of diverse catabolic genes plus a resilient 

physiology which explains why it is able to adapt to a wide range of environmental 

conditions. Other studies by Smits et al. (2001) identified the presence of alkane hydroxylase 

systems within the genome of members of this genus indicating their potential to metabolise 

this class of hydrocarbons. Members of this genus have also demonstrated the capacity to 

biodegrade the Aro-H toluene in a bioreactor study (Malhautier et al., 2014). The genus 

Desulfosporosinus belongs to the phylum Firmicutes (Prince et al., 2010), members are 

Gram-positive anerobes and have the capacity to reduce sulfate ions. They have been reported 

to utilize alternative electron acceptors such as Mn (IV) and Fe (Garten Jr et al.) and to 
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metabolise PHs under anaerobic conditions (Winderl et al., 2010). One study reported the 

complete metabolism of toluene by the members of this genus (Liu et al., 2004). 

Polaromonas are a slow-growing, oligotrophic group of organisms but have been associated 

with the biodegradation of groundwater contaminants including petroleum hydrocarbons 

(Mattes et al., 2008). The genus Pseudomonas comprises of a metabolically versatile category 

of microorganisms that can live aerobically or anaerobically on nitrates as an electron 

acceptor (Palleroni et al., 2010) and are reported to have the potential to metabolise a wide 

range of organic compounds ranging from alkanes (van Beilen et al., 1994; Mukherjee et al., 

2010) to aromatic hydrocarbons – toluene (Assinder and Williams, 1990; Mukherjee et al., 

2010), and benzene (Mukherjee et al., 2010) which have been utilized as sole carbon sources 

under aerobic conditions. Members of this genus are also producers of the biosurfactant, 

rhamnolipids, which enhances the bioavailability of hydrophobic organic compounds in 

contaminated environments (Perfumo et al., 2006). The genus Mesorhizobium was 

statistically significantly higher in relative abundance in the Aro-H treated soil than they were 

in the control soil (p < 0.05). Members of genus demonstrated capacity to utilize BTEX and 

naphthalene in one study (Auffret et al., 2015) and PAHs in another (Jimenez et al., 2011). 

Other bacterial genera such as Azomonas was reported to grow on some metabolites of 

aromatic hydrocarbons such as benzoate, p- Toluate and catechol while simultaneously fixing 

nitrogen and may thus play some role in the overall degradation of petroleum hydrocarbons 

(Chen et al., 1993). There was however a significant decrease in the relative abundance of this 

genus following exposure of soil to all three classes of PHs (Table 4.2) suggesting a likely 

toxic effects of petroleum hydrocarbons to this bacterial genus. Lycinibacillus is a Gram-

negative genus belonging to the phylum Firmicutes. Members of this genus have been 

isolated from a mixture of petroleum hydrocarbons – n-hexane, toluene, n-decane, and xylene 

isomers e.t.c although reported to be less tolerant to PHs compared to other genera (Stancu 

and Grifoll, 2011). 
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Table 4.2.  Summary of statistically significant treatment effects (uncontaminated soil batch 

versus aromatics, straight alkanes and cyclic/branched alkanes soil batches, t-test, two tailed, 

p <0.05) for OTU identified at the genus level, where members of the genus reportedly degrade 

petroleum hydrocarbons. 

Genus Average relative abundances 

(Petroleum hydrocarbon class effects) 

Petroleum hydrocarbon 

degradation potential 

Soil Aromatics Straight 

Alkanes 

Cyclics/bra

nched 

alkanes 

Rhodococcus 5.04E-04 

 

1.20E-03 

 

4.48E-02 

 

9.30E-04 

 

Alkanes, toluene  

Pseudonocardia 5.21E-04 

 

1.78E-03 

 

3.00E-04 

 

9.42E-04 

 

Aliphatic hydrocarbons 

Paenibacillus 6.0E-03 

 

1.4E-02 

 

3.8E-03 

 

9.3E-03 

 

m-Xylene 

Desulfosporosinus 1.06E-03 

 

1.80E-03 

 

1.19E-02 

 

9.95E-04 

 

Toluene 

Polaromonas 8.44E-04 

 

1.24E-03 

 

5.11E-02 

 

1.23E-03 

 

Toluene 

Pseudomonas 1.13E-03 

 

4.21E-03 

 

3.28E-01 

 

2.77E-01 

 

Alkane degradation, 

Aromatics (Juteau et al.), 

hexadecane, benzene and 

toluene  

Mesorhizobium 8.48E-04 

 

4.45E-04 

 

1.24E-03 

 

6.54E-04 

 

Benzene, Toluene, Ethylene, 

m-Xylene. Naphthalene in 

ONE study and PAHs in 

another 

Methylibium 4.72E-05 

 

1.60E-04 

 

1.34E-03 

 

1.07E-04 

 

Toluene, benzene, 

ethylbenzene 

Azomonas 0.00E+00 

 

2.17E-05 

 

5.50E-04 

 

2.45E-04 

 

Some metabolites of 

aromatic PH such as 

benzoate, p-Toluate and 

catechol) while 

simultaneously fixing N2 

and may thus play some role 

in the overall degradation of 

PH 

Lycinibacillus 5.00E-04 

 

6.76E-04 

 

3.51E-04 

 

7.07E-04 

 

Mixture of PHs – n-hexane, 

toluene, n-decane, xylene 

isomers e.t.c although 

reported to be less tolerant 

compared to other genera 
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At the species level (OTU L7), a ranking of OTUs in the control soil batch based on their 

abundances relative to the total OTU abundances and their increases or decreases with the 

addition of different PH classes are shown in Table 4.3. In this context, OTU ranking is 

considered to provide an indication of the competitiveness of OTUs relative to other OTUs in 

the control soil under given conditions (i.e with VPH addition e.t.c.). As microorganisms 

operate by the principle of the ‘survival of the fittest’ where they compete with each other for 

the available resources in their environment (Chen et al., 2003), it is reasonable to infer that 

organisms with a higher ranking are better acclimated to the conditions of the soil 

environment prior to any form of treatments. 

In the mono-aromatic hydrocarbon contaminated soil, most of the ranked OTUs increased in 

relative abundance ranking by 2 folds and by 4 folds in one Pseudomonas species compared 

to their initial abundance in the control. A neighbor joining tree is used to show the 

evolutionary relationship between close and distant relatives of the Pseudomonas 

umsongensis species based on 16S rRNA gene sequence similarity in Figure 4.5. In the soil 

batch contaminated with straight chain alkanes, ranked OTUs increased by up to 640 folds in 

an unidentified Pseudomonas species. Unidentified species within the genera 

Pseudoxanthomonas, Rhodococcus, Pseudomonas, Polaromonas, and the family 

Nocardioidaceae, and Pseudomonadaceae increased in their ranked relative abundances by at 

least 16 folds compared to the initial conditions in the control batch. In the cyclic and 

branched alkane treated soil batch, fewer OTUs increased in their ranked relative abundances 

compared to the straight chain alkane contaminated soil including species within the family 

Pseudomonadaceae and the genus Pseudomonas having an increase of at least 16 folds in 

comparison with the control soil batch (Table 4.3). These results correspond with the 

chemical data analysis (section 4.4.1) where biodegradation profiles as indicated by 

headspace CO2 production were comparable for the control soil and the monoaromatic 

hydrocarbon contaminated soil batches. In contrast to this, headspace CO2 production in the 

straight chain alkane contaminated soil batch was higher than for soil and the monoaromatic 

treated soil batches by approximately two orders of magnitude by the end of the 15-days 

experiment. Headspace CO2 production in the cyclic and branched hydrocarbon treated soil 

batch was slightly higher than for the control soil batch but did not rise by more than one 

order of magnitude. The implication of these results is that the PH degrading microbial 

communities in the soil being investigated responded more positively to the addition of 

straight chain alkane class of PHs than they did to the addition of other classes of PHs in 

separate batch systems. Also, the aromatic hydrocarbons showed lower biodegradability 
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compared to the cyclic and branched chain alkanes. Aromatic hydrocarbons demonstrated a 

longer lag phase in a previous study (toluene batch study, chapter 3) probably due to their 

relatively high solubility in water and toxicity to microorganisms while cyclic/branch alkanes 

have also been shown to have low solubility in water, low biodegradability but high toxicity. 

The straight chain alkanes were apparently degraded by a more diverse consortium of VPH 

degrading organisms, than the branched and cyclic alkanes, which are mainly degraded by the 

Pseudomonadaceae. A number of environmental factors might affect the level of metabolism 

of the different PH classes such as the original soil microbial community composition, soil 

nutrient composition and the concentration of pollutants added to soils. Typically, most soil 

and aquatic environments contain a reasonable amount of hydrocarbon degrading 

microorganisms and have been found to increase significantly in their numbers following 

contamination with PHs (Head et al., 2006; Kostka et al., 2011).  

 Taxon (highest level classification) Relative abundance rank increase for different treatments compared 

to the soil only control + 2-fold, ++ 4-fold, +++ 8-fold, ++++ 16-fold, 

+++++ 32-fold, ++++++ 64-fold,  +++++++ 128-fold, ,  ++++++++ 320-

fold, ++++++++ 640-fold or greater, equivalent decrease for minus 

signs 

Soil Rank Soil+monoaro

matic 

hydrocarbons 

Soil+straight 

chain alkanes 

 

Soil+branched 

and cyclic alkanes 

 

g__Rhodococcus 665 + ++++  

g__Rhodococcus 249 + ++++++ + 

f__Nocardioidaceae 107 + ++++  

s__Desulfosporosinus meridiei 153 + ++++  

g__Tepidibacter 532  +++++  

g__Phenylobacterium 782  +++++  

g__Polaromonas 185 + ++++++ + 

g__Perlucidibaca 749  ++++ + 

f__Pseudomonadaceae 593 + +++++++ ++++++ 

f__Pseudomonadaceae 230  +++++ ++++ 

g__Pseudomonas 428 + +++++++++ ++++++++ 

g__Pseudomonas 232 ++ +++++++ ++++++++ 

s__Pseudomonas umsongensis 264 + ++++ ++++++ 

g__Pseudoxanthomonas 600  ++++  

Table 4.3. Summary of taxons which showed a minimum 16-fold increase in their relative 

abundance rank in one of the batch study treatments. 
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Figure 4.5. Phylogenetic comparison of 16S rRNA gene sequence from an enriched Pseudomonas species (Table 4.3) and closest as well as distant 

relatives from top 50 BLAST hits (16S rRNA sequences). The bootstrapped neighbor-joining tree was generated in the National Center for Bioinformatics 

Information (NCBI; http://blast.ncbi.nlm.nih.gov/Blast.cgi?) based on a maximum sequence dissimilarity of 75%.     

Blast names color map 

     G-proteobacteria 

     Query sequence 
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4.4.5 Inter-relationship between bacterial communities within different soil samples 

A mapping of the Bray-Curtis similarity matrix of the Operational taxonomic units (OTUs) at 

the class level (Square root transformed) is shown in the Figure 4.6 below. Replicate samples 

from the same soil treatment type clustered more closely to each other than they did to 

replicates of samples from other treatments with the exception of a straight-chain alkane 

treated soil sample which clustered more closely with the cyclic/branched alkane treated soil  

samples (Figure 4.6). The pattern of clustering reveals that the petroleum hydrocarbon class 

was an important factor in shaping the microbial communities within the soil samples. 

Microbial communities from all samples under investigation clustered at a percentage 

similarity of 60% while the communities within each replicate clustered at a similarity of 80% 

indicating a significant level of similarity and reproducibility of results. 

 

Figure 4.6.  A Nonmetric Multi-Dimensional Scaling (nMDS) of 16S rRNA 454 -

pyrosequencing libraries obtained from control soil samples, aromatic hydrocarbon treated 

soil, straight-chain alkane treated soils and cyclic/branched alkane treated soils   at day 14. 

Averaged Bray Curtis distance on square root transformed (OTU level 3) data is displayed on 

the plot.  
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An analysis of similarities (ANOSIM) was performed between the microbial communities 

present within each sample based on the Bray-Curtis similarity metric in order to investigate 

the significance of the factor under consideration. The results showed that the petroleum 

hydrocarbon class was a statistically significant factor in shaping the microbial communities 

within different soil treatments (Global R = 0.861, p < 0.01).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7. A heatmap showing the relationship between relative abundances (> 1.0% of total 

OTU abundance) and batch samples using dendograms. Colour codes: Green rectangles = 

high relative abundance, red rectangles = low relative abundance and black rectangles = 

intermediate abundance. Samples are clustered in columns and OTUs in rows. 

Similarly, a clustering of samples based on the most dominant OTUs at the genus level using 

a heatmap shows that the samples clustered according to petroleum hydrocarbon classes again 

highlighting the strong effects of PH classes in shaping microbial community structures in 

contaminated and uncontaminated soils (Figure 4.7). The PH degrading genera Polaromonas, 

Rhodococcus, Desulfosporosinus, Lysobacter, Pseudomonas and Clostridium were more 

dominant in the straight chain alkane contaminated soil (indicated by the green 
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rectangles/squares) but showed the reverse trend in other soil treatments including the control 

samples. Conversely, the genera Bacillus, Nitrospira, Rhodoplanes, Nitrosopumilus, 

Planctomyces, Hyphomicrobium and Candidatus Nitrosospheara most of which have not 

been previously associated with petroleum hydrocarbon degradation were more dominant in 

the aromatic hydrocarbon contaminated soils but less abundant in the straight chain alkane 

contaminated soil (indicated by red rectangles).  

Observations and variables plots of a principal components analysis (PCA) are shown for    

the dominant bacteria genera (>1% of total relative abundance) for the 454 –pyrosequencing 

(Figure 4.8a & b) and the Ion torrent (Figure 4.9a &b) derived 16rRNA sequence libraries. A 

close look at the plots for the pyrosequencing derived data shows a clear pattern of 

demarcation of the soil samples based on the PH class into different quadrants. The 1st 

principal component accounted for 67.21% of the variation of the dataset while the 2nd PC 

accounted for 21.51% variation of the total data. On the 1st PC, the Cyc-alk and Str-alk treated 

soils were partitioned into the positive axis corresponding to the genera Pseudomonas, 

Rhodococcus, Polaromonas and Lysobacter in the variables plot (Figure 4.8b).  The untreated 

soil and Aro-H treated soils, on the other hand partitioned into the negative axis of the 1st PC 

corresponding to the genera Pedomicrobium, Rhodoplanes, and Candidatus nitrososphaera. 

The percentage contribution of individual genus with respect to variation of the data on the 1st 

PC is as follows: an unidentified genus had the highest contribution of 31.92% followed by 

the genus Pseudomonas with a contribution of 24.20%. The genera Rhodococcus and 

Polaromonas contributed 9.33% and 12.93% respectively to the variation of dataset on the 1st 

PC.  More specifically, the increase in the relative abundance of the genus Pseudomonas was 

in the direction of Cyc-alk contaminated soils while Rhodococcus, Polaromonas and 

Lysobacter increased in their relative abundances in the direction of the straight-chain alkane 

contaminated soils as indicated by the vector arrow heads (Figure 4.8). On the 2nd PC, the 

control soil, Aro-H and Straight alkane contaminated soils were partitioned into the negative 

axis while the Cyc-alk contaminated soil was partitioned into the positive axis of the PC. The 

genus Pseudomonas had the highest contribution of 24.14% to the variation of data while   

Polaromonas had the 2nd highest contribution of 17.70% to data variation on the 2nd PC. 

Results of a PCA on the Ion torrent-derived data (Figure 4.9) compared closely with those of 

the 454 –pyrosequencing data.
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Figure 4.8.  A principal components analysis  of 454-pyrosequencing dataset as affected by a) 

petroleum hydrocarbon class b) the relative abundances of dominant OTUs (>1.0% of total 

sequences) at the genus level (square root transformed data). The direction of vectors indicate 

the direction of change of each variable (OTU relative abundance) so that the observation 

samples clustered together have similar microbial communities. 
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Figure 4.9.  A principal components analysis (PCA) of Ion torrent dataset as affected by a) 

petroleum hydrocarbon class b) the relative abundances of dominant OTUs (>1.0% of total 

sequences) at the genus level (square root transformed data). The direction of vectors indicate 

the direction of change of each variable (OTU relative abundance) so that the observation 

samples clustered together have similar microbial communities. 
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4.4.6 General analysis of 454 pyrosequencing and Ion torrent sequencing data output  

Raw pyrosequencing output data from the batch experiments is displayed in Table 4.4. A total 

of 42,924 sequences passed the quality filtering step out of 71,107 sequences representing 

approximately 60% of the input sequences. From the total number of quality-filtered 

sequences, 41,529 sequences were assigned to the domain bacteria out of which 41,305 

sequences were classified representing 99.46%. A total of 1391 sequences were assigned to 

the archaeal domain and below this domain, 1382 sequences were classified representing 

99.35%. 4 sequences were not assigned to any domain. Average read length for the 

pyrosequencing dataset was 378 bp and the number of sequences per sample ranged from 772 

to 8684 sequences. 

With respect to the Ion Torrent sequencing output, 3, 075 520 raw sequences were originally 

generated from which a total of 328,867 sequences passed the quality filtering step 

representing approximately 10% of the input sequences (Appendix B). A total of 286, 085 

sequences were assigned to the bacterial domain representing 86.99% of the quality-filtered 

sequences while 42,691 sequences were assigned to the archaea domain representing 12.98% 

of the total written sequences. Below the bacterial domain, 285,028 sequences were regarded 

as classified representing 99.63% while below the archaea domain, 42,540 sequences were 

classified to represent 99.65% of this domain. Average read length for the Ion torrent 

sequencing dataset was 318 bp and the number of sequences per sample ranged from 22,119 

to 31,792 sequences having an average of 27,405.58± 3020.96 sequences. 

The GS junior system is designed to generate to a 100,000 sequence read capacity with an 

average read length of 400-450bp while the Ion torrent -316 chip platform is reported to 

generate sequences with average read lengths of 100-200bp (Shokalla et al., 2012). A lower 

percentage of filtered sequences from the Ion torrent platform at lower quality thresholds 

(minimum base quality score of 20) compared to the 454 platform (minimum base quality 

score of 30) suggests that the sequences generated from the Ion torrent sequencing platform 

was generally of lower quality than those from the 454 GS junior system. However, the higher 

number of filtered sequences generated by the Ion torrent platform means that microbial 

diversity can be explored at greater sequencing depths and hence, a more reliable estimate of 

the sample species richness and diversity can be obtained using the Ion torrent generated 

sequencing data. 
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Table 4.4. A summary of the number of sequences > 200 base pairs following quality filtering and assigned to the bacterial and archaea domain 

per sample in the 454-pyrosequencing generated dataset.

Sample 
Petroleum 

hydrocarbons 

No of 

sequences > 

200 bp 

No of sequences 

assigned to 

domain bacteria 

No of sequences 

classified below 

bacteria domain 

level 

No of sequences 

assigned to 

domain archaea 

No of 

sequences 

classified 

below archaea 

domain level 

Sequences 

not 

assigned 

to any 

domain 

Soil.1 N/A 772 750 749 22 22 0 

Soil.2 N/A 856 825 818 30 30 1 

Soil.3 N/A 1056 976 972 80 80 0 

Soil_arom.1 Aromatics 1111 1069 1061 42 41 0 

Soil_arom.2 Aromatics 857 839 829 18 18 0 

Soil_arom.3 Aromatics 6867 6775 6732 92 90 0 

Soil_aliph.1 Straight alk. 746 737 736 9 8 0 

Soil_aliph.2 Straight alk. 694 690 689 4 4 0 

Soil_aliph.3 Straight alk. 7976 7839 7810 137 137 0 

Soil_cyclbr.1 

Cyclics/branched 

alkanes 6523 6198 6160 324 323 1 

Soil_cyclbr.2 

Cyclics/branched 

alkanes 8684 8221 8172 462 459 1 

Soil_cyclbr.3 

Cyclics/branched 

alkanes 6782 6610 6577 171 170 1 
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4.5 Conclusions 

An investigation of the effects of different volatile petroleum hydrocarbon classes on the soil 

bacterial community response was conducted in the current chapter. Different classes of PHs 

had varying effects on the biodegradation of the pollutants by soil microorganisms (Figure 

4.1). Headspace CO2 concentrations were comparable for the soil and the aromatic 

hydrocarbon contaminated soil batches while in the cyclic/branched alkane contaminated soil, 

headspace CO2 concentrations was slightly higher than for uncontaminated soil batch but 

never rose by more than one order of magnitude (Figure 4.1; purple dotted graph). In the 

straight chain alkane contaminated soil, CO2 concentrations rose by up to two orders of 

magnitude before entering into a lag phase from day 12. These results indicate that the 

straight-chain alkane class of PHs had the highest stimulatory effect on soil microbial activity 

with respect to biodegradation of VPHs while the aromatic hydrocarbon class had the lowest 

stimulatory effect very likely due to toxicity of this PH class at high concentrations. Hence, 

VPH stimulation of microbial activity varied according to the different PH classes.  

Addition of the different classes of PHs also had significant effects on the bacterial species 

richness and diversity of the control soil batch. A statistically significant decrease in the 

species richness of the straight-chain alkane contaminated soil compared to the control soil 

suggests that addition of this class of PHs may exert some deleterious effects on the soil 

microbial communities. Although microbial activity in the straight-alkane contaminated soil 

was higher than in the control soil, species richness and diversity for the soil & straight-alkane 

batch showed the opposite trend compared to the soil batch in the pyrosequencing generated 

data. Richness and diversity estimates were also lower but not statistically significant (p > 

0.05, One way ANOVA) for the aromatic hydrocarbon and the cyclic/branched alkane 

contaminated soil batches. Contrary to our proposed hypothesis, therefore, addition of the 

different classes of VPHs resulted in a decrease in the microbial species richness and diversity 

in comparison with the control soil. 

Microbial community composition were significantly altered at the species level following 

addition of different petroleum hydrocarbon classes to the soil in line with our proposed 

hypothesis. Most of the VPH degrading communities including the genera Polaromonas, 

Pseudomonas and Rhodococcus showed an increase in their relative abundance ranking by a 

minimum of 16 folds in the n-alkanes contaminated soil batches but by a maximum of 4 folds 

in the aromatic hydrocarbon contaminated soil. These results corresponds with observations 

from the chemical data analysis in which CO2 production was significantly higher in the n-

alkane contaminated soil batch than the aromatic hydrocarbon batch. There was apparently a 
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more diverse consortium of VPH degrading bacteria involved in the degradation of straight 

chain alkanes than the cyclic/branched alkanes in which the Pseudomonadaceae was more 

dominant.  

Although the 454 sequencing platform (Roche 454 GS Junior) generated a considerably lower 

number of sequences compared to the Ion torrent sequencing platform, the dominant OTUs 

contributing to sample similarities as determined by different PH classes that were observed 

from both datasets were identical (Figure 4.8 and Figure 4.9) indicating that the sequencing 

platform did not significantly alter the major petroleum hydrocarbon degrading bacterial 

communities in the samples under investigation.    

Overall, equivalent concentrations of different PH classes exerted varying effects on the 

biodegradation of the pollutants and on the microbial community response in the soil under 

investigation. Sequencing platforms did not appear to significantly alter the microbial 

community structure of the soil being investigated under the same conditions indicating that 

the results were repeatable. Further study needs to be conducted on the effects of PHs of 

different chain lengths such as short, intermediate and long chain alkanes and of different 

concentrations of the petroleum hydrocarbons on the microbial community response in the 

soil currently being investigated.  

 

 

 

 

 

 

 

 

 

 



Chapter 5: Short-term effects of sorbent amendment on the attenuation of 

volatile petroleum hydrocarbons in gravelly sand - a nutrient limiting 

perspective 

 Introduction 

In situ amendment of soils and sediments with strong sorbent materials such as biochar and 

activated carbon is currently being investigated as a cost-effective, environmentally friendly 

approach for the remediation of PAHs (Cornelissen et al., 2006; Rhodes et al., 2008) and 

volatile organic compounds (Bushnaf et al., 2011). Inorganic nutrients are essential 

requirements for microbial growth and survival as they make up biomolecules within the cell. 

More specifically, the elements nitrogen, phosphorous and sulphur have been reported to 

represent about 14%, 3% and 1% respectively of microbial dry weight and are constituents of 

important cell components such as proteins, nucleic acids, and sugars among other 

biomolecules (Ron and Rosenberg, 2010). Although petroleum hydrocarbons are excellent 

sources of carbon for biomass formation and for energy, they are quite poor in nitrogen and 

phosphorous. Hence the need to supplement these nutrients in order to reach the optimum 

concentrations required for effective attenuation of hydrocarbons from contaminated soils 

especially nitrogen which is required in high concentrations and can therefore become 

limiting in the soil subsurface (Hohener et al., 2006; Ron and Rosenberg, 2010).   

The standard proportions of nitrogen and phosphorous relative to carbon required for 

optimum bacterial activity may vary according to different reports: C: N: P ~ 100:10:1 

(Litchfield, 1993; Ron and Rosenberg, 2010; Elazhari-Ali et al., 2013); 93:10:1 (Tischer et 

al., 2014) and 175:13:1 (Fanin et al., 2013). Prolonged presence of petroleum hydrocarbons in 

the environment may lead to anaerobic conditions where oxygen concentrations become 

depleted and the process of denitrification reduces the total amounts of nitrogen in the 

environment making it necessary to introduce the elements for optimum activity (Ron and 

Rosenberg, 2010). Important nitrogen sources that have been used for bio stimulation include 

nitrates, ammonia, urea and N2O (USEPA, 1989). On the other hand, phosphorous is often 

present in soil subsurface in low amounts and where they occur in high concentrations, have 

been reported to occur in forms that make them bio unavailable for uptake by microorganisms 

(USEPA, 1989). The role of microorganisms in the soil phosphorous cycle has been recently 

reviewed by Richardson and Simpson (2011). They have been reported to mediate the release 

of P from the pools or forms in which they exist in the soil thereby enhancing their 

availability for their uptake and utilisation.   
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Batch studies in which soils were amended with or without 2% biochar and activated carbon 

were conducted. Sorbent amended and unamended soils were further amended with and 

without the nutrient solution made of nitrogen and phosphorous and soil respiration was 

monitored over a period of six (6) days. Addition of biochar and AC to soil was shown to 

change the partitioning of volatile petroleum hydrocarbons between air, water and soil matrix 

and this affects the biokinetics of VPH degradation (see Chapter 3 – sorption of 13C7 toluene 

in sorbent amended soil). It is critical to also develop an understanding of the initial effects of 

sorbent amendment and VPH exposure on the microbial community response, which typically 

results in the growth of VPH degrading microorganisms as shown in Chapter 4. 

 Aim 

The main aim of this study was to investigate, using a batch system, the short-term effects of 

amending soil with or without biochar and activated carbon and with or without inorganic 

nutrients on the bacterial community response in a volatile petroleum-hydrocarbon 

contaminated sand.  

 Objectives 

The following objectives were set to be accomplished: 

1. To study the effects of nutrient amendment on the biodegradation of volatile 

petroleum hydrocarbons in soil amended with or without 2% biochar or activated 

carbon. 

  

2. To study the short-term effects of a VPH non-aqueous phase liquid (NAPL) source 

exposure on the bacterial community response by comparing microbial communities 

at time t = 0 prior to pollutant exposure with communities on day 6 after exposure to 

pollutants. 

 

3. To study the short-term effects of inorganic nutrient limitation on microbial 

community response by amending soil with or without the inorganic nitrogen and 

phosphorous in addition to the VPHs which serves as a carbon source. 

 

4. To study the effects of the sorbent amendments, biochar and activated carbon on the 

biodegradation of the VPHs in aerobic sand in the short-term. 

 

5. To study the effects of biochar and activated carbon on the microbial community 

structure in VPH exposed soils by comparing the communities on day 6, at the end of 

the experiment with those of unamended soil on day 0.  
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 Hypotheses 

In line with the above objectives, the following hypotheses are proposed: 

1. Nutrient amendment has been shown to stimulate microbial activity, hence, by 

amending soil with the inorganic nutrients (nitrogen and phosphorous), an increase in 

the biodegradation of VPHs should occur regardless of sorbent amendment of soil. 

  

2. It is expected that soil microbial community composition would change significantly 

following exposure to high concentrations of VPHs at the end of the 6 days 

experiments compared to the initial soil condition on day zero. 

 

3. Nutrient limitation is expected to reduce the rate of metabolism of carbon source 

present within the batches but not necessarily have a significant effect on the 

microbial community response in the batches under investigation. 

 

4. Sorption reduces the bioavailability of organic compounds to indigenous microbial 

communities. Therefore amending soil with 2% biochar or activated carbon should 

slow the biodegradation of the pollutants.  

 

5. Consequent upon the fourth hypothesis, sorbent amendment should also cause a shift 

in soil microbial community structure compared to unamended soil.  
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 Materials and methods 

 Soil, biochar and activated carbon 

Soil, biochar and activated carbon are the same as those used in Chapter 3.0 (Section 3.3.1). 

 Chemical mixture 

A mixture of 12 major constituents of gasoline was prepared from stock (high purity 

chemicals) obtained from Sigma-Aldrich (Dorset, UK) with their percentage weight 

composition chosen based on typical fuel composition. These consisted of three aromatic 

hydrocarbons namely toluene, 1,2,4-trimethylbenzene and m-xylene; five straight chain 

alkanes namely pentane, hexane, n-octane, decane and dodecane; and four branched chain or 

cycloalkanes namely iso-octane, methylcyclohexane, methylcyclopentane and cyclohexane. 

In addition, Sulfur hexafluoride (SF6) (Sigma-Aldrich, Dorset, UK) was used as a 

conservative tracer gas. 

 Batch experiments  

Batch microcosm experiments were conducted to investigate the effects of nutrient 

availability on the biodegradation of VPHs. Amber vials (65 mL, Jencons, a VWR Division, 

Leicestershire, UK) closed with Teflon Mininert valves (Supelco, Bellefonte, USA) contained 

15 g (d.w.) of gravelly sand (water content 10% wet weight) without sorbent amendment 

(soil), and with 2% dry soil weight biochar amendment (live soil & BC) or 2% dry soil weight 

activated carbon amendment (live soil & AC). 0.03 mL of VPH mixture, equivalent to 0.018 g 

VPH-carbon was added to the various soil types with and without the addition of 0.0018 g of 

nitrogen in the form of NH4Cl and/or 0.00018 g of phosphorus in the form of KH2PO4 to 

study the effect of inorganic nutrient availability on VPH biodegradation (i.e. nitrogen and 

phosphorus were added together or separately). 

 Microbial respiration 

Microbial respiration was monitored in the batches over the duration of the experiment (6 

days) by measuring the concentration of headspace CO2 in each vial containing either soil, or 

soil amended with 2% biochar or soil amended with 2% activated carbon. For each soil type 

amended with or without nutrients, triplicate batches were monitored at room temperature 

(20 °C) and the analysis of headspace CO2 was conducted using a Fisons 8060 GC linked to a 

Fisons MD800 MS with a HP-PLOT-Q capillary column. 

 Sample collection and storage 

Samples were collected and stored according to the methods described in Chapter 4 (section 

4.3.4) for DNA extraction and processing. 
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 Total cell counts and biomass yield determination 

5 µl of sample slurry stored in ethanol/PBS mixture was added to 995 µl of filtered-sterile 

phosphate buffer saline (PBS, Oxoid) in 2 mL Eppendorf tubes to make a dilution of 200 

times. In order to stain the cells in the samples, 50 µl of SYBR Gold nucleic acid stain in 100 

times concentrated dimethyl sulfoxide (DMSO) (Invitrogen Ltd., Paisley, UK) and further 

diluted 100 times in filtered-sterile phosphate buffer saline (PBS, Oxoid) was added to the 

sample mixture. The samples were incubated in the dark by wrapping with an aluminium foil 

at room temperature for 30 minutes. A 13 mm polycarbonate membrane filter (pore size 0.2 

µm) (Millipore, Hertfordshire, UK) was aseptically transferred to a sterile Millipore filter 

holder and the stained samples were filtered using suction from a vacuum pump. The filters 

were transferred to a microscope glass slide to which a drop of the antifadent Citifluor 

(Citifluor Ltd., London, UK) was applied for adhesion to the slides. A further drop of 

Citifluor was added to the top of the filter to enhance adhesion after which a coverslip was 

placed over the filter. The slides were labelled and placed in a dark room to prevent 

fluorescence from fading. Viewing of slides was done in immersion oil under a 100 times 

magnification objective lens of an Olympus BX40 Epi-fluorescence microscope. A dilution 

that yielded cell counts in the range of 30 – 300 was chosen at the sample preparation step and 

20 randomly selected fields of view were counted per slide. Carbon-normalised yield 

coefficients (g biomass C g-1 substrate C) were determined based on the assumption that the 

average carbon content of bacterial cells is a 100fg of carbon per cell (Whitman et al., 1998).  

 DNA extraction and PCR amplification 

DNA extraction and purification was performed as described in Chapter 4 (section 4.3.5). 

 454-pyrosequencing 

PCR amplicons from each sample (in duplicates) were pooled together in equimolar amounts 

and sequenced on a Roche 454 GS FLX+ System by The Centre for Genomic Research 

(University of Liverpool, UK). A total number of 362,885 sequences passed the initial quality 

filtering step out of a number of 472,103 sequences that were generated from the 

pyrosequencing. A UCLUST algorithm (Edgar, 2010) was used to cluster the resulting reads 

into operational taxonomic units (OTUs) based on a similarity threshold of 97% and the naïve 

Bayesian RDP classifier of the Ribosomal Database Project was used to assign taxonomy to 

the cluster at an 80% threshold confidence.   

 Microbial community structure analysis 

Sequence analysis was performed in QIIME (v 1.8.0) using the default parameters similar to 

those used in the previous chapter (Chapter 4.0, Section 4.3.7). An in-silico rarefaction of the 
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sequences per sample was performed across all samples using the OTU table constructed at an 

early stage as an input to the QIIME pipeline. A minimum rarefaction depth of 10 in the series 

of depth, a stepwise increase of 400 sequences, a total number of 10 replicates (multiple 

rarefactions) at each depth and a maximum rarefaction depth of 19,610 in the series of depth 

were used to perform the in-silico analysis. For the diversity within each sample (alpha 

diversity), the non-parametric species richness estimator Chao1 and the Faith’s phylogenetic 

diversity (PD) index were determined according to the methods described by Chao (1984) and 

Faith (1992) respectively in QIIME. The Shannon’s diversity index (Hʹ) was also determined 

for each sample as a measure of alpha diversity based on derivations made by Shannon and 

Weaver (1949).  

 Statistical analysis 

Data analysis in this chapter was performed using the statistical software and methods 

described in Chapter 4, Section 4.3.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5: Short-term effects of sorbent amendment on the attenuation of volatile petroleum hydrocarbons in gravelly sand - a nutrient 
limiting perspective 

101 

 

 Results and Discussion 

 Microbial respiration and total cell counts 

Results of monitoring soil respiration over a six-day period are shown in Figure 5.2. In the 

soil batch, an initial lag phase of about 3 days is observed (Figure 5.2). This was followed by 

a rapid increase in the level of headspace CO2 in the soils from day 4 to reach peak 

concentrations of 0.127±0.004 g/L and 0.060±0.026 g/L for soil with nutrients and soil 

without nutrients respectively. In the soil and biochar batch, headspace CO2 production started 

to rise on the second day and also increased rapidly to reach a maximum cumulative 

concentration of 0.132±0.009 g/L for the nutrient amended batch before entering into a 

stationary phase from day 5 (Figure 5.2). In the soil and biochar batch without nutrient, there 

was also an increase in the amount of CO2 production to reach maximum concentrations of 

0.082±0.006 but never entered into a stationary phase. In the AC amended soil batch, increase 

in CO2 production was slower and rose to reach maximum concentrations of 0.074±0.011 g/L 

and 0.029±0.001 g/L for the nutrient amended and unamended soils respectively.   

Statistical analysis shows that maximum cumulative CO2 concentrations in the soil & biochar 

batch differed significantly from that of the soil & AC batch (1-Way ANOVA; Fisher 

pairwise comparison, p < 0.05) but there was no significant difference between the soil and 

soil & biochar or the soil and soil & AC batches. A comparison of the nutrient factor within 

each soil systems reveals that microbial activity was significantly higher in the nutrient 

amended batches than the nutrient unamended batches (2 sample t-tests, p < 0.05 in all cases) 

suggesting that addition of nutrients to the soils stimulated the biodegradation of volatile 

petroleum hydrocarbons. Nutrient and sorbent amendment factors were both significant (2-

Way ANOVA, p < 0.05 in both cases) in influencing the level of microbial activity as 

indicated by the maximum cumulative CO2 concentrations in the respective batches. There 

was also a significant interaction between nutrient and sorbent amendment in the 

determination of microbial activity as indicated by CO2 production in batch headspaces. 

Biostimulation involves the use of stimulants such as inorganic nutrients (e.g. N/P), electron 

acceptors and other amendments to enhance the metabolic activity of indigenous soil 

microorganisms (Jukawar et al., 2010). As mentioned previously (Section 4.1), the inorganic 

nutrients N and P are an essential requirement for the normal growth and functioning of 

microbes and can either be artificially introduced into the soil or released from the 

mineralization of soil organic matter  which is also serves as a reservoir for inorganic 

nutrients (Horwath, 2007; Standing and Killham, 2007). On the other hand, petroleum 

hydrocarbons are excellent sources of carbon for microbial growth but deficient in the 
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essential nutrients required for growth. The increased level of biodegradation observed in the 

nutrient amended treatments indicated by increased CO2 production (Figure 5.2) can be 

interpreted as an enhanced level of microbial metabolic activity in comparison to soil systems 

in which a carbon source was added but not a nitrogen or phosphorous source. Supplementing 

soil systems with inorganic nutrient sources N and P to meet the ratio 100:10:1 (C: N: P) has 

been shown to enhance the level of biodegradation of organic pollutant in previous studies 

(Pritchard et al., 1992; Liebeg and Cutright, 1999; Elazhari-Ali et al., 2013). 

Batches                                   Total cell counts             Yield (Biomass C (g)/Biomass C 

(Treatments)            (Cells/g of soil)  + CO2 C) (g) 

Control (time zero)          

 Soil    (2.7 ± 0.14) x 107  -    

 Soil +2%BC   (7.7 ± 1.50) x 107  -    

 Soil +2%AC   (3.9 ± 0.74) x 107  - 

With   Nutrients          

 Soil             (2.0 ± 0.15) x 108       0.079 ± 0.007   

 Soil +2%BC   (2.5 ± 0.35) x 108  0.062 ± 0.009   

 Soil +2%AC  (1.1 ± 0.09) x 108    0.048 ± 0.005 

Without Nutrients          

 Soil    (1.5 ± 0.21) x 108    0.177 ± 0.052   

 Soil +2%BC  (1.3 ± 0.22) x 108    0.041 ± 0.031   

 Soil +2%AC  (1.5 ± 0.40) x 108    0.137 ± 0.046    

Table 5.1. Average total cell counts and yield measurements. 

Carbon-normalized yield coefficients were calculated from the CO2 production and increase 

in total cell counts over the first six days of the experiments. Calculated yield coefficients (g 

biomass-C relative to g (biomass-C + CO2-C)) compared closely in the nutrient (N & P) 

amended soils ranging from 0.048±0.005 in soil & AC to 0.062±0.009 and 0.079±0.007 in 

soil & BC and unamended soil respectively. Calculated yield coefficients were more variable 

in the batches without nutrients, 0.041±0.031 in soil & BC, 0.177±0.052 in soil and 

0.137±0.046 in soil & AC. Amending soil with 2% biochar or AC apparently reduces the 

yield coefficients for both nutrient amended and unamended batches. 

Total bacterial cell numbers for the different soil treatments with and without nutrient 

amendment are displayed in Table 5.1. Cell numbers ranged from (1.3 ± 0.22) x 108 to (1.5 ± 

0.40) x 108 cells/g (d.w.) of soil in treatments without nutrients and from (1.1 ± 0.09) x 108 to 

(2.5 ± 0.35) x 108 cells/g (d.w.) of soil in nutrients-amended treatments. These values are 

within typical ranges for most soil types (Whitman et al., 1998; Elazhari-Ali et al., 2013). The 



Chapter 5: Short-term effects of sorbent amendment on the attenuation of volatile petroleum hydrocarbons in gravelly sand - a nutrient 
limiting perspective 

103 

 

average microbial biomass carbon/g soil (d.w.) was higher for the nutrient amended soils than 

the nutrient-unamended soils batches with the exception of the soil & activated carbon 

batches. It therefore appears that the growth of microbial biomass was no longer limited by 

nutrients but likely by substrates (VPH) availability by the end of the experiment in the soil & 

AC batch in which the bioavailable substrates would have been greatly reduced due to 

sorption. A comparison of the total cell numbers/g of soil from the nutrient amended and 

unamended soil treatments on day 6, at the end of the experiment, with values from live 

control soils (unamended) at time zero (0), indicates an increase in microbial biomass by a 

factor of 3.9 and 3.0 in the nutrient amended and nutrient unamended soils respectively, 

suggesting that nutrient addition also enhanced the growth of VPH degrading microbial 

biomass regardless of the sorbent amendment. 

 

Figure 5.1. Box plots of total cell counts showing the effects of interactions between nutrients 

and sorbent amendments of soil on cell numbers.  
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Figure 5.2. Effects of nutrient amendment on biodegradation of VPHs in a) Soil b) Soil & Biochar and c) Soil & AC batches. With nutrients (blue line 

graphs), without nutrients (red line graphs). Error bars represent ±1 standard deviation from the mean of duplicate measurements.
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 Soil                 a) 
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 Soil + 2% AC 
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 Soil         b) 

      

 Soil + 2% biochar 

      

 Soil + 2% AC 

                                                                     

Figure 5.3. Cell counts images of samples from VPH contaminated soil batches 

treated a) without nutrients and b) with nutrients. Images were viewed under an 

epiflouresence microscope at a magnification of 100X. 
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 Analysis of pyrosequencing-generated dataset  

A preliminary analysis of the raw dataset generated from the pyrosequencing process reveals 

that out of a total of 362,885 sequences that passed the quality filtering step with a minimum 

read length of 200bp (average read length of 563bp), about 70% of the denoised sequences 

represented a single taxa (OTU level 7) identified as belonging to the family – the 

Pseudomonodacae across all samples including pure biochar and activated carbon. A further 

removal of chimeric sequences was performed using the chimera slayer script in QIIME in 

order to eliminate any chances of the Pseudomonodacae family being chimeric. A total of 112 

chimeric sequences were detected representing 0.02% of the entire dataset. Due to the 

likeliness that this single very abundant OTU represents a contaminant or method artifact, the 

row representing this OTU was manually deleted resulting in a dataset containing 147,882 

sequences and a further re-computing of the OTU relative abundances in QIIME was 

performed using the summarise_taxa.py script. Out of 147,882 sequences, 144,169 sequences 

were assigned to the bacteria domain representing 97.5% of the denoised/filtered dataset. Of 

this fraction, 144,144 sequences (99.6%) were classified below the bacteria domain. A total of 

3180 sequences were assigned to the archaea domain representing 2.1% of the filtered dataset. 

3164 sequences (99.5%) were classified below the archaea domain.  A total number of 11 

sequences were not assigned to any of the domains. Averagely, each sample contained 

12,188.5 sequences (max: 21,044/min: 3333). 

 Microbial diversity and species richness 

The non-parametric species richness indicator Chao1 is based upon the number of uncommon 

species present in a given sample (Chao, 1984) and takes into account the number of 

singletons as well as doubletons in a sample. In the control samples, on day zero, species 

richness as estimated by the average Chao1 index value was 1463.93±10.41 OTUs in live soil, 

891.72±64.12 OTUs in activated carbon and 1106.40±195.47 in pure biochar. 

For the nutrient amended treatments, species richness estimates (Chao1) for soil, soil & 

biochar and soil & AC were 982.83±27.41, 1102.92±18.63, 1279.39±30.06 respectively and 

higher but not significantly different from the estimates for nutrient unamended batches (p > 

0.05, One-way ANOVA). Richness estimates for nutrient unamended batches ranged from 

896.85±194.26 for soil to 1085.37±191.86 for soil & AC. Species richness estimates (Chao1) 

for the sorbent amended or unamended batches showed that there was no significant 

difference between the average richness estimates of the soil & AC batch (1182.38±158.49) 

OTUs and the unamended soil and soil & biochar batches (939.84±123.67 and 1085.19±51.66 

respectively). 
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The number of observed species in the soil controls at time zero had the highest index value 

of 938.7±5.9 followed by biochar having a value of 695.9±101.4. Activated carbon control 

had the lowest observed number of species of 630.7±70.6. With respect to nutrient 

amendment, in the unamended soil batch, the nutrient amended batch had a number of 

observed species of 656.8±4.8 followed by the unamended soil without nutrients 

(556.6±130.6). The AC amended soil with nutrients had the highest number of observed 

species (775.9±12.6) followed by the biochar amended soil with nutrients (762.4±8.0) while 

the biochar amended soil without nutrient had an observed species of 725.2±31.0. Amending 

soil with 2% AC and 2% biochar had a significant effect on the observed species (p < 0.05, 

Fisher’s pairwise test; One-Way ANOVA) and had average values of 721.88±68.04 and 

743.75±28.35 OTUs respectively compared to unamended soil on day 6 (606.73±95.06). 

There was no significant difference in the observed number of species between soil & biochar 

and soil & AC batches. 

The implication of these results may mean that exposing soil at time zero (control) to a high 

concentration of non-aqueous phase liquid (NAPL) of VPHs over the duration of the 

experiment, caused a reduction in the bacterial species richness as indicated by the non-

parametric richness estimators (Chao1 and observed species) due to pollutant toxicity. 

Alternatively, the growth of degrading microorganisms leads to their predominance in the 

community, meaning that rare species, although still present may not be detected in the 

analysis.  

Statistical analysis of the bacterial richness indices shows that with respect to the indices 

Chao1 and observed number of species, there was no statistically significant difference 

between the controls and the soils amended with or without biochar or AC and with or 

without nutrients (1-Way ANOVA, Tukey Kramer’s pair-wise comparison, (p > 0.05) (Table 

5.2). A comparison of soil treatments at the end of the experiment, showed that amendment 

was a significant factor in the determination of bacterial species richness. There was thus a 

significant difference between the unamended soil (with and without nutrients) and soil & 

activated carbon soil (with and without nutrients) for Chao1 and (1-Way ANOVA, Tukey’s 

pair-wise comparison, p < 0.05) observed species (Fisher’s pair-wise comparison, p < 0.05). 

Strong sorption of VPHs to the AC amended soil would reduce the amount of bioavailable 

pollutants to the indigenous microbes in the AC amended soil and consequently their toxicity 

at high concentrations. On the other hand, in the unamended soil batches (with and without 

nutrients) by the end of the experiments, there was increased bioavailability of the VPHs 

leading to increased toxicity at higher concentrations and hence a lower species richness.  
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Microbial diversity as indicated by the Faith’s phylogenetic diversity showed that the control 

soil (time zero) had the highest diversity with an index of 86.33±0.03. In the biochar and AC 

controls, the PD index values were 78.95±9.99 and 73.95±8.17 respectively. Amending soil 

treatments with or without nutrients did not have any significant effect (p > 0.05, 2-Way 

ANOVA) on the sample diversity as indicated by the Faith’s PD. The nutrient amended 

treatments for soil, soil & biochar and soil & AC had PD values of 71.46±0.16, 78.94±0.22 

and 75.50±0.21 respectively and were higher than the values for the nutrient unamended 

treatments (Table 5.2). With respect to sorbent amendment, soil & biochar batch had the 

highest PD index with a value of 78.53±2.22 followed by the soil & AC batch (73.37±2.47) 

and the unamended soil batch (67.30±8.40). There was a significant effect of sorbent 

amendment on microbial diversity (p < 0.05, 1-Way ANOVA) between soil and soil & 

biochar batch. There was no significant difference between soil & biochar and soil & AC 

batches (p > 0.05, 1-Way ANOVA). 

A similar trend to the Faith’s PD was observed in the Shannon’s diversity index with respect 

to the controls and the sorbent amended soils (with and without nutrient amendment) (Table 

5.2). 

A 2-Way analysis of variance (ANOVA) of the soil treatments (soil amended with or without 

the sorbents or nutrients) shows that the amendment factor was a significant factor but not the 

nutrient factor in determining the species richness (Chao1 and observed species) and 

microbial diversity (Faith’s PD and Shannon’s diversity) in the different soil systems. 

Although there were increases in the richness and diversity indices of all nutrient amended 

soils compared to nutrient unamended soils (Table 5.2) indicating that the addition of 

nutrients had a positive effect on the bacterial richness and diversity, these increases were not 

statistically significant (p < 0.05). There was also no significant interaction between the 

nutrient factor and the amendment factor as it relates to the richness and diversity indices in 

the different treatments.    
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Sample I.D Treatment  Chao1   Observed no of species Faith’s PD Shannon’s 

Soil (time 0)  Live control  1463.93±10.41 938.7±5.9   86.33±0.03 8.83±0.04    

Biochar   Control  1106.40±195.47 695.9±101.4   78.95±9.99 7.46±0.83    

Activated carbon Control  891.72±64.12  630.7±70.6   73.95±8.17 7.08±1.22    

Soil_WON  Without nutrients 896.85±194.26            556.6±130.6   63.14±11.93 5.74±1.29    

Soil_WN  With nutrients  982.83±27.41             656.8±4.8   71.46±0.16 7.15±0.02    

Soil_2%BC_WON Without nutrients 1067.46±80.01            725.2±31.0   78.11±3.76 8.24±0.10    

Soil_2%BC_WN With nutrients  1102.92±18.63            762.4±8.0   78.94±0.22 8.47±0.02    

Soil_2%AC_WON Without nutrients 1085.37±191.86          667.9±45.3   71.24±0.17 6.32±0.30    

Soil_2%AC_WN With nutrients  1279.39±30.06            775.9±12.6   75.50±0.21 7.11±0.04 

Table 5.2. Average species richness as assessed by the non-parametric estimator Chao1, and Observed number of species and bacterial diversity 

indices Faith’s phylogenetic diversity and Shannon’s index (Hʹ) determined for the controls (soil, biochar and activated carbon) at time zero and soil 

treatments with or without biochar or AC and with or without nutrient amendment at the end of the experiment on day 6. Diversity indices were 

determined at a fixed rarefaction depth of 3210 sequences. Error ranges are calculated as standard deviation from the mean of duplicate 

measurements.
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 Effects of sorbent and nutrient amendment on phylum level taxa distribution across 

soil samples 

A variation in the relative abundances of the OTUs between the different soil systems is 

shown in (Figure 5.4). The dominant taxa (OTUs ≥3.0% of all classified sequences) across all 

soil samples include Actinobacteria, Acidobacteria, Bacteroidetes, Chloroflexi, Firmicutes, 

Proteobacteria, Planctomycetes and Gemmatimonadetes representing 8.7, 4.6, 4.0, 5.1, 5.9, 

54.4, 5.8, and 3.5% of the total OTU abundance in the dataset. 

In the initial soil on day 0, the most dominant bacterial phyla were the Gammaproteobacteria 

(11.7±0.9%), Alphaproteobacteria (11.35±0.3%) followed by Actinobacteria (11.2±1.7%, 

and Firmicutes (8.2±1.3%).  In the unamended soils (without biochar or AC), at the end of the 

experiment on day 6, the most abundant taxa were the Gammaproteobacteria (39.4±16.9%), 

Betaproteobacteria (15.7±11.4%), Alphaproteobacteria (6.1±2.0%), Actinobacteria 

(5.6±2.0%), and Planctomycetes (4.5±1.4%) while in the biochar amended soils, the dominant 

phyla and Proteobacterial classes were Gammaproteobacteria (16.1±1.7%), 

Betaproteobacteria (12.1±1.6%), followed by Alphaproteobacteria (12.0±0.8%), 

Actinobacteria (10.6±1.2%) and Planctomycetes (7.0±0.6%). In the activated carbon amended 

soils, the dominant taxa were the Gammaproteobacteria (38.6±5.8%), Actinobacteria 

(12.7±4.1%), Alphaproteobacteria (7.0±1.0%) and Betaproteobacteria (5.8±0.6%). Most of 

the dominant bacterial phyla identified in the sorbent amended and unamended soil have been 

previously detected in soil samples (Kostka et al., 2011; Nacke et al., 2011) and did not 

appear to vary significantly from the phylum level taxa distribution in the initial soil at time 

zero. With respect to nutrient amendment, in the unamended soil on day 6, the most dominant 

phyla in the batches without nutrient were the Gammaproteobacteria  (40.3±29.2%) followed 

by the Betaproteobacteria (22.3±14.6%), Alphaproteobacteria (4.8±2.0%) and 

Actinobacteria (4.2±1.5%) while in the soil batches with nutrients, the most dominant phyla 

(>3.0% of total OTU abundance) were Gammaproteobacteria (38.6±1.0%), 

Betaproteobacteria (9.1±0.8%), Alphaproteobacteria (7.4±0.6%) and Actinobacteria 

(6.9±1.5%). In the soil & biochar batch without nutrients, the most dominant Proteobacterial 

class was the Gammaproteobacteria (16.7±2.4%) followed by the Betaproteobacteria 

(13.4±1.0%), while in the batches with nutrients the predominant OTUs were 

Gammaproteobacteria (15.6±1.3%) and Alphaproteobacteria (11.4±0.3%). In soils amended 

with 2% activated carbon without nutrients, the most dominant OTUs at the phylum level was 

the Gammaproteobacteria (35.5±0.4%) while in the AC amended soil with nutrients, the most 

abundant OTUs were Gammaproteobacteria (41.8±7.8%) and Actinobacteria (12.4±0.4%). 
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Figure 5.4. Relative abundances of operational taxonomic units (OTUs) accounting for a) ≥ 

3.0% and b) ≤ 3.0% of all classified sequences obtained from control samples and different 

soil samples amended with or without biochar or activated carbon. 

At the order level, the most dominant OTU belonging to the Gammaproteobacteria in the 

control soil on day zero was the Xanthomonadales. In the biochar and activated carbon 

controls, the most abundant OTU was the Pseudomonadales. Most of the sequences 

belonging to the most abundant phylum in the unamended soils and to the soil& AC batches 

(Gammaproteobacteria) were related to the Pseudomonadales and to Xanthomonadales 
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(Gamaproteobacteria) in the biochar amended soils. Members of the order Xanthomonadales 

were reported to grow on toluene and the alkanes as typical growth substrates (Palleroni et al., 

2004) while members of the order Pseudomonadales have the potential to utilize alkanes as 

carbon source (Bogan et al., 2003). Actinobacteria has also been reported to grow on alkanes 

(Mikolasch et al., 2003; Dashti et al., 2009). 

At the genus level, the most dominant OTU in the soil at time zero was an unidentified 

member of the order Bacillales (3.64±0.46%). In the biochar and AC controls, the most 

dominant OTUs at the genus level was Pseudomonas representing 17.30±10.08% and 

22.52±16.87% of the total OTU abundances respectively. In the unamended soil on day 6, at 

the end of the experiment, the most abundant OTU was Pseudomonas representing 

19.59±14.95%. In the soil & biochar batch and the soil & AC batch on day 6, the most 

abundant OTU at the genus level was Lysobacter and an unidentified member of the 

Nocardioidaceae family representing 4.24±0.62% and 9.34±4.73% respectively. 

The different factors under investigation (time, nutrient and amendments) had a significant 

effect on the relative abundances of the operational taxonomic units. In the unamended soil 

without nutrients on day 6, the genera Lamia and Mesorhizobium were more abundant than in 

the soil on day zero. In the unamended soil with nutrients, the genera Alicyclobacillus, and 

Lysobacter were significantly more abundant than in soil on day 0 while and Achromobacter 

showed the opposite pattern (p < 0.05). In the soil & biochar batch, the genera Arenimonas 

and Achromobacter were relatively more abundant in the batches without nutrient than in the 

control soil on day zero while Roseomonas and Steroidobacter showed the reverse pattern. In 

the soil & biochar with nutrients, Nocardia, Rhodoplanes and Phenylobacterium were 

significantly more dominant than in the soil at time zero while Nitrosopumilus were more 

abundant in the soil at time zero than in the soil & biochar with nutrients on day 6. In the soil 

& AC batch without nutrients, the genus Flavobacterium, Streptomyces and 

Phenylobacterium had a significantly higher relative abundance than on day zero while 

Nitrospira had a higher relative abundance on day zero than on day 6. In the AC amended soil 

batch with nutrients the genera Nocardia, Roseomonas and Phenylobacterium were 

significantly higher in relative abundance on day 6 than in soil on day zero.  

With respect to sorbent amendments, the genera Flavobacterium, Clostridium, Nitrospira, 

Hyphomicrobium, Polaromonas, and Arenimonas showed significantly higher relative 

abundances in the biochar amended soils than the unamended soils (2 sample t-tests; p < 0.05) 

while the genus Mycoplana showed the opposite pattern (Table 5.3). Polaromonas and 

Nitrospira were significantly higher in activated carbon amended soils than they were in the 
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unamended soils (2 sample t-tests; p < 0.05) whereas Clostridium was more dominant in 

unamended soils than AC amended soils. 

 OTU functions viz-a-viz petroleum hydrocarbon degradation 

Paenibacillus is a phylogenetically distinct genera from the rod shaped Bacillus. Members of 

this group are reported to have a Gram-positive structure but stain negatively in a Gram 

reaction. There are indications from documented reports that members of this genus have the 

potential to degrade m-xylene (Ash et al., 1993; Khomenkov et al., 2005; Xie et al., 2010). 

Mycoplana is a Gram negative, non-spore forming aerobic member of the Brucellaceae family 

with a strictly respiratory type of metabolism (Garrity et al., 2005). Members of this genera 

have the ability to grow on L-arabinose, xylose, D-glucose, D-mannose and D-fructose as 

their sole carbon sources and have been reported to degrade the aromatic PH toluene (Garrity 

et al., 2005; Velam et al., 2012). Most of the PH degrading bacteria were more dominant in 

the biochar amended soils than the activated carbon amended soils (Table 5.3). Activated 

carbon is typically a stronger sorbent material than biochar, it is therefore expected that VPHs 

are less bioavailable in the AC amended soil, hence less growth of VPH degrading bacteria. 

Amending soils with biochars have been reported to cause an increase in microbial 

abundance. Little is known about the mechanisms of action of biochars on microbial 

composition and abundance although a few proposals have been reviewed in the literature. 

Lehmann et al. (2011) reported that the pH and liming value of biochar may play a significant 

role in determining soil pH which in turn affects bacterial community composition and 

structure. In the current study, the pH range between the soil and biochar used was small (ca. 

1.82) and hence pH may not be a significant factor affecting microbial abundance in the 

biochar amended soils. Clostridium is a Gram-positive, obligately anerobic, endospore 

forming bacterial genus and do not carry out dissimilatory sulfate reduction (Collins et al., 

1994). There is not much information linking this genus with the potential to degrade 

petroleum hydrocarbons although some reports suggest that members of this genus were 

involved in the degradation of toluene in a bioreactor study (Gao et al., 2011). The genus 

Hyphomicrobium is a Gram-negative, facultative methylotrophic and non-spore forming 

genus belonging to the Alphaproteobacterial class (Urakami et al., 1995; Kanamori et al., 

2002). Very few reports (just one) indicate the possibility of their involvement in petroleum 

hydrocarbon degradation (Li et al., 2000). In a study by Young et al. (2007), members of the 

genus Arenimonas, a Gram-negative, aerobic genus belonging to the Gammaproteobacterial 

class were isolated from a diesel-oil contaminated soil. No reference was made to their 

capacity to degrade specific petroleum hydrocarbon compounds.  
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With respect to nutrient amendment in the soil batch without biochar or activated carbon, 

Streptomyces, Geobacter and Bacillus were significantly higher in relative abundance (p < 

0.05, 2 sample t-test) in nutrient unamended soils than in nutrient amended soils while 

Agromyces was more dominant in soils amended with 2%BC and inorganic nutrients than in 

biochar amended soils without nutrients. In the activated carbon amended soils, 

Hyphomicrobium, Cupriavidus, and Arenimonas were more dominant in the nutrient amended 

soils than the nutrient unamended soils (2 sample t-tests; p < 0.05). Members of the Bacillus 

genus are endospore-forming aerobes or facultatively aerobic species that have been reported 

to possess a wide range of physiologic properties which allows them to thrive in diverse 

environments (Peter and Turnbull, 1996). Members of this genus have also been shown to 

degrade the BTEX compounds (Mukherjee and Bordoloi, 2012a). Cupriavidus is a Gram-

negative, chemolitothrophic group of bacteria in which the ability to nodulate and to fix 

atmospheric nitrogen (N2) has been reported (Vandamme and Coenye, 2004; da Silva et al., 

2012) but  
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Table 5.3. Summary of statistically significant treatment effects (with and without sorbent 

amendment, t-test, two tailed, p <0.05) for OTU identified at the genus level, where 

members of the genus reportedly degrade petroleum hydrocarbons. 

 

 

 

S.n Bacteria (Genus) Average relative abundances   

(Amendment     effects) 

Petroleum hydrocarbon 

degrading potential 

Soil 2% 

Biochar 

2% AC 

1 Brevibacillus 2.69E-04 

 

1.14E-03 

 

2.25E-04 

 

Polyethylene 

2 Flavobacterium 4.53E-04 

 

1.24E-03 

 

5.29E-04 

 

Toluene, Xylene, 

benzene and hexane 

3 Mycoplana 5.02E-04 

 

2.20E-04 

 

1.48E-04 

 

Toluene 

4 Paenibacillus 3.01E-03 

 

6.48E-03 

 

2.60E-03 

 

m-xylene 

5 Achromobacter 1.17E-01 

 

2.83E-02 

 

6.02E-04 

 

Alkanes 

6 Clostridium 6.34E-05 

 

1.18E-03 

 

4.28E-04 

 

Toluene 

7 Hyphomicrobium 1.89E-03 

 

4.06E-03 

 

2.11E-03 

 

Petroleum hydrocarbons 

8 Nitrospira 5.48E-03 

 

8.48E-03 

 

7.03E-03 

 

- 

9 Sphyngopyxis 

 

 

1.43E-03 

 

3.37E-04 

 

7.70E-04 

 

Benzene, Toluene, 

Ethyl-benzene and 

xylene. 

10 Polaromonas 6.65E-04 

 

7.14E-03 

 

5.44E-03 

 

Heptane, octane and 

toluene 

11 Hydrogenophaga 2.82E-04 

 

1.17E-02 

 

1.91E-03 

 

Benzene, toluene, xylene 

12 Arenimonas 6.35E-04 

 

2.07E-03 

 

4.96E-04 

 

Diesel oil 

13 Pseudomonas 1.67E-01 

 

2.91E-02 

 

8.45E-03 

 

Alkanes, aromatics, 

hexane 
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not the potential to degrade petroleum hydrocarbons while members of the Bdellovibrio genus 

were isolated from a BTEX-fed reactor (Li and Goel, 2012).  

At the species level (OTU L7, ranking of OTUs in the control soil at day zero based on their 

abundances relative to the total OTU abundance in the overall dataset and their corresponding 

increases or decreases with addition of VPHs and/or nutrients is shown in Table 5.4. Changes 

in the ranking of the OTUs following VPH addition to soil reveals that bacterial species 

within the genera Pseudomonas and Achromobacter and the family Nocardioidaceae were 

higher in ranks amongst the group of known petroleum hydrocarbon degraders.  

An increase in the absolute abundances of VPH degrading biomass across all soil treatments 

(with and without nutrients and sorbent amendment) following exposure of initial soil at time 

zero to VPH mixture is an indication of growth of soil microorganisms on a carbon source. 

Most notable VPH degraders were the Pseudomonas and the Polaromonas genera that 

showed increases of over a 100 percent in absolute abundances relative to the control to which 

no VPH was added in all soil treatments (See appendix B; Table 9.9). In addition, the genus 

Nitrospira also demonstrated over 100% increase in absolute abundance in all soil treatments 

(with or without nutrient or sorbent amendment). The genus Achromobacter showed over a 

100% increase in absolute abundance compared to their abundance in the control at time zero 

in all soil treatments except soil & AC batch with nutrients in which they decreased by an 

order of magnitude (Table 9.9). On the contrary, the genus Cupriavidus showed no growth in 

absolute abundance (absolute abundance = 0.00) following exposure of soil and soil & 

biochar treatments to VPHs. There was however an increase in absolute abundance by up to 

two orders of magnitude of this bacterial genus in the soil & AC batch.    

Upon amending soil with or without 2% biochar and activated carbon followed by addition of 

volatile petroleum hydrocarbon mixtures and/or inorganic nutrients to the soil, varying 

responses of the OTUs relative abundance ranking was observed. Bacterial species belonging 

to the family Nocardioidaceae was shown to increase in relative abundance ranking in the AC 

amended soils with VPHs with and without nutrients by at least 64 folds but did not show any 

increase in the soil only or soil & biochar batches. A few bacterial genera belonging to this 

family were reported to participate in the degradation of petroleum hydrocarbons including 

the Nocardiodes in the degradation of alkanes and crude oil components (Hamamura and Arp, 

2000; Hamamura et al., 2006) and the aerobic hydrocarbon degrading genus Aeromicrobium 

(Chaillan et al., 2004). Species within the genus Achromobacter also increased in relative 

abundance ranking by up to 64 folds in the soil and soil & biochar batches relative to the 

control but never showed any increase in relative abundance ranking in the AC amended soil 
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batch. One report suggest that an Achromobacter species was isolated from a crude-oil 

contaminated seawater and was also shown to effectively degrade total n-alkanes and to 

readily utilize polyaromatic hydrocarbons when incubated at optimum growth conditions 

(Deng et al., 2014). In another study by Gojgic-Cvijovic et al. (2012), members of this genus 

were part of a consortium of bacteria isolated from a petroleum sludge. Two Pseudomonas 

species were found to increase in their relative abundance ranking relative to the control by at 

least 16 folds in the soil and VPHs with or without nutrients and by up to 4 folds in the 

biochar amended soil batches. The genus Pseudomonas comprises of a metabolically versatile 

category of microorganisms that can live aerobically or anerobically on nitrates as an electron 

acceptor (Palleroni et al., 2010) and are reported to have the potential to metabolise a wide 

range of organic compounds including alkanes and aromatic hydrocarbon compounds. A 

Sphingopyxis species increased by at least 2 folds in all the soil and soil & biochar batches but 

not in the soil & AC batch while a Hydrogenophaga species demonstrated up to 16 folds 

increase in the soil & biochar and the soil & AC batches but did not increase in relative 

abundance in the unamended soil batch, with or without VPH and nutrient addition. Members 

of the genus Hydrogenophaga are reported to have the potential for the degradation of 

benzene, toluene and to partially degrade m- and p- xylene (Fahy et al., 2006).  Most of the 

OTUs at the species level of taxonomy that demonstrated a strong response to the addition of 

VPHs or nutrients were unidentified and may thus be necessary to conduct further analysis by 

comparing OTU sequences with those of reference databases using other bioinformatics 

software such as the basic local alignments search tool (BLAST) and the ribosomal database 

project (RDP). 
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Table 5.4. Summary of taxons which showed a minimum 8-fold increase in their relative abundance rank in one of the batch study treatments. 

 

     Taxon (highest level classification) Relative abundance rank increase for different treatments compared to the soil only control 
+ 2-fold, ++ 4-fold, +++ 8-fold, ++++ 16-fold, +++++ 32-fold, ++++++ 64-fold or greater, equivalent decrease for minus 
signs 

Soil d0 
Rank 

Soil+VPHs  
 

Soil+VPHs 
+nutrients 

Soil+BC+VPHs  
 

Soil+BC+VPHs+ 
nutrients 

Soil+AC+VPHs  
 

Soil+AC+VPHs
+ 
nutrients 

f__Nocardioidaceae 65   -  ++++++ ++++++ 

g__Paenisporosarcina 615 +++++ +++++ ++++ ++++ +++  

g__Sphingopyxis 615 + +++ + +   

o__Burkholderiales 615 ++ ++ +++ +++ +++ + 

g__Achromobacter 93 ++++++ ++++++ +++++++ ++  -- 

g__Acidovorax 615 ++ +++++ ++++ ++++ ++++ + 

g__Hydrogenophaga 222   ++++ +++ ++ + 

g__Cupriavidus 562 + + +  + +++ 

f__Pseudomonadaceae 615 + ++++ +++ + +  

g__Pseudomonas 24 +++++ +++++ + ++ + - 

s__Pseudomonas__umsongensis 139 +++++ ++++ ++ ++ + - 

g__Arenimonas 615 ++ ++ +++ +++ +  
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 Relationship between microbial communities in different samples  

A nearest-neighbour joining algorithm was used to cluster the samples into a dendogram 

(Figure 5.5) based on similarities between bacterial communities in the sorbent and nutrient 

amended and unamended soil samples. The results revealed that samples from the same 

treatments (i.e. same nutrients and sorbent amendment) clustered closely to each other than 

they did to samples from other treatments. This implies that bacterial communities in the 

samples shifted in response to nutrient and sorbent amendment (ANOSIM test for difference 

between sorbent amendments, Global R = 0.364, p < 0.05; for difference between nutrient 

amendment, Global R = 0.219, p < 0.05; for difference between time on day zero and day 6, 

Global R = 0.778, p < 0.05). Summary statistics of the pair-wise significance between the 

different samples is included in the (Appendix B). The overall similarity between bacterial 

communities as determined by the Pearson correlation coefficients was greater than 80% 

(Figure 5.5) and similarity between duplicate DNA samples from the same treatments 

(nutrients and sorbent amendment) was even greater (>90% overall similarity) indicating that 

the methods used are fairly reproducible. 

 

Figure 5.5. A dendogram showing cluster analysis of the similarities (Pearson product-

moment correlation coefficient) between the bacterial community compositions of the 

different samples. OTUs were clustered at class level of taxonomy and square root 

transformed prior to clustering.   

The high percentage similarity between the different treatments and the initial unamended 

soils (>90%) suggests that amending the soils with inorganic nutrients and either 2% biochar 

or 2% activated carbon did not have a deleterious impact on the bacterial community 
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composition of the soil. As the dominant microbial groups at any given point in time and in 

any particular environment are reported to provide an indication of the key soil processes 

occurring within that environment, it follows from the results of this study that amending soils 

with biochar and activated carbon may not have had any potentially strong side effects on soil 

microbial communities. These observations correspond with findings from other studies in 

which AC had only minor effects on the soil microbial community response in contaminated 

soils and sediments (Cho et al., 2009; Cornelissen et al., 2011; Meynet et al., 2012). 

Results from a principal components analysis of the most abundant OTUs (>1.0% of total 

number of sequences) reveals a definite pattern of the samples partitioning into the positive 

and negative axis of the 1st and 2nd principal components (F1 and F2) with the first principal 

component accounting for 47.16% and the 2nd principal component accounting for 29.22% of 

the variability in the entire dataset (Figure 5.6). A close look at the observations (samples) 

plots viz-a-viz the variables (OTUs relative abundances) plots shows that the genera 

Pseudomonas, Achromobacter, and an unidentified OTU contributed positively to the 1st 

principal component which corresponds to the soils amended with or without nutrients 

(SoilWN & SoilWON) and the AC and BC controls  while Candidatus Nitrosophaera, 

Lysobacter, kaistobacter, and unidentified genera contributed negatively to the 1st PC 

corresponding to soils amended with or without BC and AC and with or without nutrients 

(Figure 5.6). On the other hand, with respect to the second principal component (F2), 

Pseudomonas contributed positively while Achromobacter, Candidatus Nitrosophaera, 

Lysobacter, and Kaistobacter contributed negatively to F2. The highest percentage variation 

on PC1 was accounted for by the genus Pseudomonas (46.45%) followed by Achromobacter 

(18.25%). On PC2, an unidentified OTU accounted for the highest percentage variation on 

74.03% followed by the genus Pseudomonas accounting for 6.87% of the variation on this 

PC. 
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Figure 5.6. Principal Components Analysis of microbial communities as affected by a) 

sorbent amendment and nutrient amendment based on b) the relative abundances of dominant 

OTUs (>1.0% of total sequences) at the highest level taxononomy (square root transformed 

data). The direction of vectors indicate the direction of change of each variable (OTU relative 

abundance) so that the observation samples clustered together have similar microbial 

communities. 
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 Conclusions 

The current chapter investigated the short-term effects of amending soil with or without 

biochar and activated carbon and with or without inorganic nutrients (N and P) on the 

biodegradation of a mixture of VPHs in sand. 

Addition of nutrients to soil batches resulted in an increased evolution of CO2 compared to 

batches in which no nutrients were added regardless of sorbent amendment (Figure 5.2). This 

indicates that soil microbial activity was stimulated by the addition of the inorganic nutrients 

N and P thereby validating our first hypothesis.  

Following exposure to a VPH non-aqueous phase liquid (NAPL) source over a short-term 

duration of 6 days, results indicated that there was a significant increase in the relative 

abundances of soil bacterial communities compared to the initial soil conditions on day zero. 

The genera Nocardia, Rhodoplanes, and Sphyngopixis were significantly higher in relative 

abundance on day 6, at the end of the experiment compared to the initial soil (day 0) while 

Lysobacter, Arenimonas and Flavobacterium were more abundant in the nutrient unamended 

batches on day 6 than in the control soil on day zero. Relative abundance ranking of OTUs in 

the control soil and increase in the ranking of OTUs also indicated an increase in the ranking 

of bacterial species within the VPH degrading genera Pseudomonas and Sphyngopixis and 

within the families Nocardioidaceae and Pseudomonadaceae by at least two folds, indicating 

that over time, exposure to VPH (NAPL) source caused an increase in the relative abundance 

ranking of respective OTUs. Therefore, over the duration of the experiment, and in line with 

our proposed hypothesis, microbial community composition was significantly altered 

following exposure of different soil treatments to VPHs. 

Although nutrient limitation affected the rate of metabolism of the carbon source (VPHs) 

present in the batches as proposed (Section 5.2.2) and as indicated by the concentrations of 

CO2 in batch headspaces (Figure 5.2), nutrient amendment also had significant effect on the 

bacterial community structures (ANOSIM test for difference between nutrient amendment, 

Global R = 0.218, p < 0.01). There was also an increase in the relative abundance ranking of 

the OTUs in the soil on day 0 following amendment with or without nutrient (Table 5.4) by 

up to 64 folds. Thus, contrary to our hypothesis, the nutrient limited batches also showed an 

increase in relative abundance of the VPH degrading bacterial communities suggesting that 

the microbial community response was affected by factors other than inorganic nutrient 

limitations. 
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Maximum cumulative headspace CO2 concentrations were comparable for the soil and the 

soil & biochar batches (Figure 5.2). Headspace CO2 concentrations in the soil & AC batch 

was, however,  lower than for soil by up to one order of magnitude indicating the likely 

effects of low substrate availability on biodegradation of VPHs in the AC amended soil. This 

confirms the proposed hypothesis that sorbent amendment slows the mineralization of VPHs 

due to pollutant sorption, especially in the AC amended soil batches. 

Amending soils with 2% biochar or AC caused a significant shift in the bacterial community 

structure as the communities also shifted strongly with sorbent amendment (ANOSIM test for 

difference between sorbent amendments, Global R = 0.364, p < 0.01). PH degrading bacterial 

genera such as Paenibacillus and Flavobacterium were significantly more abundant in the soil 

& biochar batches while Pseudomonas was more dominant in the unamended soil batch than 

in the soil & biochar and the soil & AC batches further highlighting the effects of sorbent 

amendment on the microbial community response on the short term and also validating the 

fifth proposed hypothesis.  

Ultimately, exposing soil to high concentrations of VPHs NAPL source enhanced the 

biodegradation of petroleum hydrocarbons but also caused a decrease in soil microbial 

diversity and species richness in the sorbent unamended soil compared to biochar and AC 

amended soils likely due to toxicity of pollutants at high concentrations. The metabolically 

versatile bacterial genus Pseudomonas appeared to thrive in the unamended soil with VPHs at 

high concentrations as shown by higher relative abundances than in the sorbent amended 

batches (Table 5.3) in the short term. Amending soil with biochar and AC clearly had an 

effect (positive and negative) on the relative abundance ranking of the PH degraders. Further 

research needs to be conducted on the effects of sorbent materials sourced from different 

feedstocks on the biodegradation of VPHs in other soil types in order to ascertain the 

mechanisms by which sorbent amendment affects soil microbial community dynamics in the 

short term. 

 

 



Chapter 6: Effects of volatile petroleum hydrocarbon vapour migration on 

the microbial community composition in a biochar and activated carbon 

amended sand – a long term study 

6.1 Introduction 

The fate of volatile petroleum hydrocarbons in the unsaturated zone is currently been 

investigated. Monitoring the in situ biodegradation of VPHs in the unsaturated zone still 

remains a challenge as contaminated sites may have to be disturbed thereby disrupting 

ongoing microbiological processes such as biofilm formation on soil surfaces, alterations in 

nutrient concentrations and redox conditions e.t.c. Several approaches have been employed to 

surmount these challenges and to gain an improved understanding of the chemo-dynamics of 

pollutants in the environment including the use of laboratory batch microcosm and column 

experiments, and field lysimeter studies. 

Batch microcosms have been used previously to study the biodegradation of petroleum 

hydrocarbons in the unsaturated zone (Hohener et al., 2003; Ostendorf et al., 2007) although a 

number of limitations have been associated with the use of this approach. One main advantage 

of laboratory batch experiments is that it offers the flexibility of studying systems in replicates 

and also to study single and or mixed compound systems (Hohener, 2010). It also allows for 

the determination of VPH biodegradation rates in moist soils. A major limitation of the batch 

system is that it is mostly suitable for soils with a high level of petroleum hydrocarbon 

degradation activities and for compounds whose sorption and partitioning dynamics are 

properly understood (Hohener, 2010). On the other hand, the use of laboratory columns to 

study the biodegradation of VPHs is also gaining widespread application particularly for the 

simulation of vapour migration and attenuation of VPHs in the unsaturated zone (Hohener et 

al., 2003; Hohener et al., 2006; Bouchard et al., 2008a; Bushnaf et al., 2011). Laboratory 

column experiments are considered to provide a more reliable simulation of the natural 

environment with respect to vapour migration in the unsaturated zone of contaminated soils 

(Kelly et al., 1996). 

More recently, in situ sorbent amendment of soils and sediments contaminated with organic 

pollutants is being considered as an innovative approach for mitigating pollutant effects on 

ecological receptors (Ghosh et al., 2011; Meynet et al., 2012). Laboratory batch microcosms 

and column studies were also conducted by Bushnaf et al. (2011) to investigate the effects of 

2% biochar amendment of volatile petroleum hydrocarbon contaminated soil on the 

attenuation of the pollutants and to determine the sorption and degradation kinetics of volatile 

compounds. Quite a number of research has been carried out with respect to the 
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chemodynamics of VPHs in contaminated soils including the determination of biodegradation 

rates and microbial growth kinetics (Pasteris et al., 2002; Hohener et al., 2003). There are few 

reports, however, on the effects of organic pollutants on the indigenous microbial community 

structures present at contaminated sites (Kostka et al., 2011; Guermouche et al., 2013). Fewer 

reports exist on the effects of sorbent amendment on microbial community structure changes 

of petroleum hydrocarbon contaminated sites. Sorption reduces the bioavailability of organic 

pollutants to microorganisms and consequently their rate of biodegradation. It is critical to 

develop an understanding of the dynamics of microbial communities at contaminated sites as 

this will further improve the understanding of the behaviour of organic compounds especially 

as it relates to the use of sorbents for the remediation of VPH contaminated soils.    

In a recently concluded laboratory column study by Bushnaf (2014), gravelly sand was 

amended with and without 2% biochar and activated carbon in separate glass columns in 

order to investigate the effects of vapour migration along column lengths and sorption to the 

amendments on biodegradation of a mixture of VPHs. Soil respiration rates at different 

locations along the column lengths were also monitored during the experiments which lasted 

for 430 days. 

6.2 Aim 

The main aim of this study was therefore to investigate the long-term effects of vapour 

exposure and sorbent amendment on the microbiological communities within the different soil 

systems. As a follow up to the study by Bushnaf (2014) on the fate and transport of VPHs in 

long-term column experiments, microbiological analysis was conducted in order to gain an 

improved understanding of the underpinning phenomena such as changes in microbial 

community composition in response to VPH exposure and sorbent amendment. 

6.2.1 Objectives 

The following objectives were set in order to accomplish the study aim: 

1. To study the long-term effects of VPH exposure on microbial community shifts by 

comparing microbial communities at time t = 0 prior to pollutant exposure with 

communities at day 430 after long-term exposure to pollutants. 

 

2. To study the long-term effects of location along column length on microbial 

communities by comparing locations of the column nearer the NAPL source with 

locations in the middle and at the end of the column. 
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3. To study the effects of amendments biochar and activated carbon on the microbial 

community structure in VPH exposed soils by comparing the communities with those 

of unamended soil at day 430.  

6.2.2 Hypotheses 

In line with the aim and objectives of this study, the following hypotheses are proposed:  

1. Soil microbial communities are expected to change significantly at the end of 

experiment duration of 430 days following exposure to VPHs even after the source has 

been exhausted. 

 

2. It is expected that a higher concentration of VPH vapour at the sections of the column 

nearer the NAPL source (described as column source) would stimulate a higher level 

of microbial activity and also result in a significantly higher relative abundance of 

VPH degrading microbial communities at this location across all columns compared to 

the atmosphere-soil boundary sections of the column. 

 

3. It is also proposed that amending soil with biochar or activated carbon would cause a 

significant shift in the soil bacterial community structure of the amended soils 

compared to the unamended soil at the end of the 430 days column study. 
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6.3 Materials and methods 

6.3.1 Soil, biochar and activated carbon 

Gravelly construction sand used for the construction of the Law library of the Newcastle 

University was obtained for this study. Biochar obtained from Environmental Power 

International EPI (Wiltshire, UK) and a bitumen-derived activated carbon obtained from 

Chemviron Carbon Ltd (Lancashire,UK) as described in Chapter 3, Section 3.3.1 were used to 

conduct this study. 

6.3.2 Chemical mixture 

The pollutant mixture used in this chapter is the same as the one used in Chapter 5 (Section 

5.3.2). 

6.3.3 Column experiments 

The columns described in this section were set up by a previous PhD student (Bushnaf, K 2014) as part of his 

research. Soil amendments with or without biochar or activated carbon were investigated for their effects on the 

biodegradation of a VPH NAPL source over the duration of the experiment. 

Three glass columns were homogenously packed with gravelly sand, gravelly sand amended 

with 2% biochar (on soil d.w.), and gravelly sand amended with 2% activated carbon and 

positioned horizontally at room temperature (Figure 6.1). Each column measured 120 cm in 

length and had an internal diameter of 7.8 cm. During the first five days after packing, the 

columns were left undisturbed to monitor background soil respiration after which each 

column was connected through a curved glass tube of internal diameter 1.1 cm at one end of 

the column to a 40 mL Teflon vial containing a 20 mL mixture of 12 volatile petroleum 

hydrocarbons (source). 

At the other end of the columns, moist air flowing at a rate of 5±1 mL per minute was used to 

evacuate the VPH vapours into a fume cupboard in order to attain a near-zero concentration 

scenario at this end of the columns. Columns were equipped with 7 sampling ports running 

along the length of the columns and separated from each other by a 15cm distance from where 

soil pore gases (VPHs and CO2) were taken and measured as an indication of VPH vapour 

migration and soil respiration. Sampling ports were sealed with gas chromatography septa 

(Thermogreen LB-2, Supelco, Bellefonte, USA). The experiment lasted for 430 days. 
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Figure 6.1. A schematic illustration of the column study set-up. VPH and CO2 concentrations 

were monitored at the different sampling ports for 430 days. 

6.3.4 Sample collection and storage 

At the end of the column experiments, on day 430, the columns were taken apart and samples 

were collected from three different sections (of equal length) of each column designated as 

the column source (nearest the NAPL source), column mid (middle part) and the near zero 

concentration boundary (atmosphere) section corresponding to the part of the column farthest 

from the NAPL source but nearest the moist air. Samples were collected in duplicates and 

stored at -20 °C in absolute ethanol: filtered-sterile phosphate buffer saline (PBS, Oxoid) 

mixed in the ratio 1:1 vol/vol for total cell counts and in filtered-sterile phosphate buffer 

saline (PBS, Oxoid) 1:1 vol/vol for DNA extraction and PCR amplification. Duplicate 

samples were also collected from initially unamended soil at time 0 prior to the start of the 

column experiments and stored as described previously for total cell counts and microbial 

analysis.  

6.3.5 Total cell counts and biomass growth 

Total cell counts and biomass growth determinations were performed using the same 

approach as described in Chapter 5, Section 5.3.6. 

6.3.6 DNA extraction and PCR amplification 

DNA extraction, PCR amplification and purification of amplicons were performed according 

to the methods described in Chapter 5, Section 5.3.7. 
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6.3.7 454-pyrosequencing 

PCR amplicons from each sample (in duplicates) were pooled together in equimolar amounts 

and sequenced on a Roche 454 GS FLX+ System by NewGene Ltd (International Centre for 

Life, Newcastle upon Tyne, UK). Quality filtering and clustering of sequences into 

operational taxonomic units (OTUs) were performed as described in Chapter 4, Section 4.3.7. 

6.3.8 Microbial community structure analysis 

The raw sequences were processed using QIIME (v.1.7.0) bioinformatics pipeline using the 

default parameters described in a previous chapter (Chapter 4, Section 4.3.7). For 

determination of alpha diversity indices, an in-silico rarefaction of the sequences per sample 

was performed across all samples using the OTU table constructed at an early stage as an 

input to the QIIME pipeline. A minimum rarefaction depth of 10 in the series of depth, a 

stepwise increase of 1842 sequences, a total number of 10 replicates (multiple rarefactions) at 

each depth and a maximum rarefaction depth of 18,430 in the series of depth were used to 

perform the in-silico analysis. For the diversity within each sample (alpha diversity), the non-

parametric species richness estimator Chao1 and the Faith’s phylogenetic diversity (PD) index 

were determined according to the methods described by Chao (1984) and Faith (1992) 

respectively in QIIME. The Shannon’s diversity index (Hʹ) was also determined for each 

sample as a measure of alpha diversity based on derivations made by Shannon and Weaver 

(1949).  

6.3.9 Statistical analysis 

Data analysis in this chapter was performed using the statistical software and methods 

described in Chapter 4, Section 4.3.8. 
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6.4 Results and Discussion 

6.4.1 Summary of chemical monitoring results from previous column studies (Bushnaf, 

K., 2014) 

The data used to discuss this section was provided from experiments conducted by Bushnaf (2014). It is included 

in this chapter to provide background chemical analysis information in order to have a better understanding of 

the microbiology discussion in the subsequent sections of this chapter. 

Results from monitoring cumulative VPH and CO2 emanation at the near zero concentration 

boundaries of each column over a period of 430 days are shown in Figure 6.2. A breakthrough 

of the VPHs at this side of the columns was used as an indication of incomplete attenuation of 

the pollutants while a breakthrough of CO2 from this end of the column was considered as an 

indication of VPH attenuation arising from biodegradation by soil microorganisms. CO2 

fluxes were monitored for the first five days during the experiment and was found to be well 

below the levels observed after the NAPL sources were connected to the columns, suggesting 

that the observed CO2 increase must have been mainly the result of biodegradation of the 

VPHs. 

In the unamended soil and soil & BC columns, there was an initial increase in the emanation 

of VPH-C at the end of the columns from day 0 to about day 100 after which no further 

increase in the emanation of VPH-C was observed from around day 100 (Figure 6.2) whereas 

in the soil & AC column, the VPH-C emanation never rose above a minimum concentration 

throughout the duration of the experiment. In the soil & activated carbon column (soil & AC), 

cumulative VPH emanation at the near zero concentration boundary were much lower 

compared to the soil only and the soil & biochar columns. This can be explained by the higher 

sorption of VPHs in the soil & AC columns, which corresponds with a higher soil-water 

partition coefficient in the AC amended soils as determined during this study. With respect to 

CO2 emanation fluxes, the soil & AC column initially had the lowest amounts of cumulative 

CO2 during the first 200 days of the experiment after which there was a more steady increase 

in the flux of CO2 to eventually overtake production levels in the soil and soil & biochar 

columns by day 430 (Figure 6.2).  

By day 430, most constituents of the NAPL sources had been largely exhausted and was 

remaining mainly the least volatile compounds namely 1,2,4-TMB (0.2-5%), decane (11-

31%) and dodecane (56-89%). The soil and activated carbon column had the lowest amount 

of VPHs remaining in the NAPL source which may imply that the readily volatile VPH 

constituents sorbed strongly to the activated carbon amended soil due to its higher sorption 

capacity compared to the soil and soil and biochar columns, thereby enhancing the 

volatilization of VPHs from the NAPL source. Extractible VPHs from within the columns 
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were the highest for the soil and activated carbon column and this was dominated by the 

compound isooctane, making up approximately 84% of the VPH extract from this column. 

Isooctane was reported as one of the most recalcitrant VPH compounds in a previously 

conducted soil column study (Hohener et al., 2003). 

 

Figure 6.2. Cumulative diffusive VPH and CO2 carbon flux between ports 6 and 7 (near the 

zero-concentration boundary side of the soil columns). The cumulative VPH-C flux is a measure 

for the amount of VPH pollution which has not been attenuated between the source and the 

measurement point, whereas the cumulative CO2-C flux is an indicator for the extent of VPH 

pollution biodegradation within the columns. 

A comparison of the amounts of readily available inorganic nutrients at the end of the 

experiment on day 430 reveals that there was a decrease in the amounts of extractible 

nutrients compared to the initial soil conditions in all soil systems (Table 6.1). The soil and 

activated carbon columns were the most depleted in nutrients in comparison with the other 

soil treatments. Also, ammonium-N, which is more readily assimilated than nitrate-N, was the 

most depleted inorganic nutrient (>90%) compared to the initial condition in all three 

columns. It is reasonable to conclude that the observed nutrient depletion in the columns at the 

end of the experiments can be accounted for by the corresponding growth in microbial 

biomass when compared with the soil systems at the start of the experiment (Figure 6.3). 
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Column Ammonium Nitrate  Phosphate     NAPLsource  Retained as  

µgNH4
+-N g-1 µgNO3

--N g-1 µgH2PO4
--P g-1    (g)                VPH in soil (g) 

                Before column experiments                      

Soil  2.9±0.2 8.2±2.0 0.8±0.1       -      -  

Soil & 2%BC 5.8±0.5 5.5±0.6 0.2±0.0       -      -                       

Soil & 2%AC 6.1±1.2 6.5±1.0 0.3±0.0       -      -         

                         After column experiments                            

Soil  0.2±0.0 5.8±1.5 0.4±0.3      1.15±0.09     0.00±0.00                      

Soil & 2%BC 0.05±0.01 1.8±0.6 0.1±0.0      1.36±0.10     0.01±0.01              

Soil & 2%AC 0.05±0.01 0.86±1.30 0.15±0.03      0.65±0.03     0.40±0.05  

Table 6.1. Water extractable inorganic soil nutrients and VPH carbon mass balance (in NAPL 

source and retained as VPH in soil) per gram of soil before and after column experiments on 

day 430. Initially, 12.5 g VPH-C was present in each source. 

6.4.2 Total cell counts 

Results from total bacterial cell counts are shown in Figure 6.3. There was an increase in total 

cell numbers in all three columns compared with the initial soil conditions at time zero 

(represented by purple coloured bars in Figure 6.3) which corresponded with a decrease in the 

readily available nutrients at the end of the 430 days experiment (Table 6.1). Biomass growth 

as indicated by cell carbon per column increased by a factor of 6.26, 1.95 and 4.17 in soil, soil 

& biochar and soil & activated carbon in comparison with the  control soil at time zero. There 

was a statistically significant difference between the total cell numbers at time zero and day 

430 for the unamended soil and soil & activated carbon columns (p < 0.05, One-way 

ANOVA; Tukey’s test) but not for the soil & biochar column (p > 0.05, One-way ANOVA; 

Tukey’s test). Average cell numbers per gram of soil on day 430 was comparable for soil 

(1.71 x 108 ± 5.10 x 107), soil & biochar (1.51 x 108 ± 4.64 x 107) and soil & activated carbon 

(1.61 x 108 ± 3.16 x 107) and broadly consistent with the idea of a comparable soil biomass 

carrying capacity in gravelly sand with and without biochar and activated carbon amendment. 

Biomass growth have been demonstrated by cells in soil systems to which carbon sources 

were introduced in the form of volatile petroleum hydrocarbons (Elazhari-Ali et al., 2013). 

With respect to column locations, there was no observed definite pattern in the variation of 

cell numbers and this may be due to experimental uncertainties.  
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Figure 6.3. Total bacterial cell numbers per gram of soil (d.w.) determined for controls prior 

to experiments (purple bars) and for each section of the different amendments indicated by blue 

bars for the source section of the columns, red bars representing the mid- section of columns 

and green bars representing the atmosphere side of columns. Error bars represent ± 1 standard 

deviation from the mean of duplicate samples.   

6.4.3 Preliminary analysis of pyrosequencing dataset 

A total of 365,166 sequences passed the initial quality filtering step with a minimum read 

length of 200bp (average read length of 447 bp per read), representing approximately 60% of 

the original number of reads generated from the pyrosequencing process. Out of this number, 

357,892 sequences were assigned to the bacterial domain representing 98.01% while 7086 

sequences were assigned to the archaea domain representing 1.94%. 324,035 sequences were 

classified below the bacterial domain (91%) while 6921 sequences were classified below the 

archaea domain (98%). A total of 188 sequences did not fall into any domain. On the average, 

each sample contained 18,258 sequences (min: 4068/max: 24,176). A total of 12,265 OTUs 

were generated from the OTU picking step. 
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6.4.4 Microbial diversity and species richness 

Microbial diversity and species richness index values are displayed in Table 6.2. Species 

richness as determined by the non-parametric richness estimator, Chao1, ranged from 4805.48 

to 4774.34 in the control soils on day 0. 

With respect to column locations, in the unamended soil column, samples from the column 

source section had the highest species richness value of 5520.24±812.31 OTUs when a 

comparison of averages is done followed by samples from the column near zero concentration 

boundary of the unamended soil (4313.17±75.91). In the biochar amended soil column, the 

atmosphere side of the column had a higher richness index of (4956.67±190.35) compared to 

the source section of the column (4418.94±19.90) while in the soil & AC column, samples 

from the near zero concentration boundary section of the column had a lower species richness 

estimate of 3797.69±2.32 compared to the source section of the soil & AC column 

(4453.58±125.59).  

With respect to sorbent amendment, the unamended soil column had an average richness 

index (Chao1) value of 4916.70±841.16 while soils amended with 2% biochar had an average 

index value of 4687.80±329.54. For the soil and activated carbon column, the average species 

richness value was 4125.64±385. There was no statistically significant difference (p > 0.05, 

Tukey’s HSD test) between species richness index (Chao1) of the control soil at time zero and 

the soils from the columns on day430 suggesting that exposure to VPHs in the long term did 

not negatively impact on the species richness of the initial soil condition. Neither location nor 

amendment was a significant factor in the determination of species richness based on the non-

parametric estimator Chao1 (p > 0.05, Tukey’s HSD test). 

Average number of observed species for initial soil at time zero was 2689.75±24.11 OTUs. In 

the unamended soil column on day 430, average number of observed species in source section 

of the column was 3049.45±30.88 followed by the atmosphere side of the column 

(2326.35±70.22). In the soil & biochar column, average number of observed species for the 

source and atmosphere sides of the column were 2476.35±21.85 and 2620.50±26.16 

respectively. The number of observed species were however lower for the soil & activated 

carbon columns source (2385.9±53.88) and atmosphere (2093.25±50.70) sides at the end of 

the experiment on day 430. Statistical analysis of the results showed that there was no 

significant difference between the number of observed species at time zero and on day 430 for 

the treated soil columns. With respect to sorbent amendment, the number of observed species 

in the unamended soil column on day 430 was 2687.90±453.77 OTUs while in the soil and 

biochar column on day 430, there were 2548.43±85.52 OTUs on the average. Species richness 



Chapter 6: Effects of volatile petroleum hydrocarbon vapour migration on the microbial community composition in a biochar and activated 
carbon amended sand – a long term study 

136 

 

as determined by the number of observed species revealed that there was an average of 

2239.58±174.28 OTUs in the soil and AC column. Amending soil with 2% biochar or 

activated carbon did not have a significant effect on the species richness as determined by 

observed species richness estimator (p > 0.05, One-way ANOVA). 

Microbial diversity within different soil samples were determined based on the Shannon’s 

index of diversity. Results show that soil samples at time zero had an average index of 

9.43±0.05. For the different soil treatments unamended soil column, the source side of the 

unamended soil column had a Shannon’s index of diversity 9.72±0.19 followed by the 

atmosphere side of the unamended soil column (9.04±0.19). In the soil & biochar column, the 

source side of column had a higher diversity index of 9.22±0.04 compared to the atmosphere 

side of the soil & biochar column (9.21±0.11) while the soil & AC column source and 

atmosphere sides had average diversity index values of 8.97±0.06 and 8.48±0.14 respectively. 

With respect to sorbent amendment, the average Shannon’s diversity index values for 

unamended soil, soil & biochar and soil & AC on day 430 were 9.38±0.42, 9.21±0.07 and 

8.72±0.30 respectively. There was no statistically significant difference (p > 0.05, One Way 

ANOVA) between the diversity index of the treated soils (amendments) at the end of the 430 

days experiment with the diversity in soil at time zero. Column location did not also have a 

significant effect on microbial diversity as in dicated by the Shannon’s index of diversity (p > 

0.05, One Way ANOVA). Sorbent amendment, however, had a significant effect on the 

Shannon’s index of diversity between the unamended soil and the soil & AC treatments on 

day 430 (p < 0.05, Tukey’s pair-wise comparison).  
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Amendment Sample   Chao1   Observed spp.  Faith’s PD  Shannon’s index 

NA Soil_time0  4789.91±22.02 2689.75±24.11 221.76±0.31  9.43±0.05          

Unamended Soil_source  5520.24±812.31 3049.45±30.88 260.32±29.55  9.72±0.19     

Unamended Soil_atm   4313.17±75.91 2326.35±70.22 203.14±2.40  9.04±0.19     

Biochar Soil+2%BC_source 4418.94±19.90 2476.35±21.85 213.48±0.36  9.22±0.04    

Biochar Soil+2%BC_atm 4956.67±190.35 2620.50±26.16 229.17±1.02  9.21±0.11    

Activated carbon Soil+2%AC_source 4453.58±125.59 2385.9±53.88  203.35±2.34  8.97±0.06 

Activated carbon Soil+2%AC_atm 3797.69±2.32  2093.25±50.70 182.47±5.35  8.48±0.14  

   

Table 6.2. Average species richness as assessed by the non-parametric estimator Chao1, and Observed number of species and bacterial diversity indices 

Faith’s phylogenetic diversity and Shannon’s index (Hʹ) determined for the source and near-zero concentration sections of the columns containing soil, 

soil & biochar and soil & AC. Diversity indices were determined at a fixed rarefaction depth of 16,588 sequences. Error ranges are calculated as 

standard deviation from the mean of duplicate samples. 
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Results of the Faith’s phylogenetic diversity index for samples from the source and near zero 

concentration boundary sections of all three columns as determined in QIIME are displayed in 

Table 6.2. Average Faith’s PD index for initial soil at time zero was 221.76±0.31. In the 

unamended soil columns at the end of the experiment on day 430, average PD index for the 

column source section was 260.32±29.55 and higher than for the atmosphere side of the 

column (203.14±2.40). For samples from the soil and biochar columns on day 430, average 

PD index for the source and atmosphere sides of the column were 213.48±0.36 and 

229.17±1.02 respectively. Soil samples from the soil and activated carbon column atmosphere 

side had the lowest PD index value of 182.47±5.35 compared to the initial soil at time zero.  

Average Faith’s PD index values for the unamended soil, soil & biochar and the soil & AC 

columns were 231.73±37.19, 221.33±9.08 and 192.91±12.52 respectively. There was no 

statistically significant difference between the PD index for soils at time zero and soils from 

the treated columns on day 430. There was also no significant difference between soil, soil & 

biochar and soil & activated carbon columns with respect to their PD index values (p > 0.05 

in all cases, One-way ANOVA). 

Phylogenetic diversity is a measure of alpha diversity that takes into account the sum of the 

entire branch lengths in a phylogenetic tree leading to each taxa within a sample community. 

As a measure of diversity, it is not sensitive to changes in the number of a particular species in 

a dataset. In order words, addition of a new individual to the community does not affect the 

index value. It is however, sensitive to sequencing effort and increasing the sequencing depth 

of a given sample tends to affect the PD index of that community (Lozupone and Knight, 

2007). This is consistent with findings from the current study in which phylogenetic diversity 

increases correspondingly with increase in sequencing depth of samples. Rarefaction curves 

of the PD index did not level off (Figure 6.4) indicating that the sequences were not 

exhaustively sampled and the introduction of a new sequence would have resulted in an 

increase in the average branch length of the tree of sequences leading from that OTU.   

A comparison of the mean values for the species richness estimators (Chao1 and Observed 

spp) and bacterial diversity (Faith’s PD and Shannon’s diversity index) of the different 

column locations showed that location was a significant factor in determining bacterial 

diversity (p < 0.05, 2 Way-ANOVA) but was not a statistically significant factor in the  
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Figure 6.4. Rarefaction curves indicating the effects of sequencing efforts (depth) on the 

phylogenetic diversity of a) unamended soil and control soils at time t = 0 b) soils amended 

with 2%BC and c) soils amended with 2%AC.  

0

50

100

150

200

250

300

10 1852 3694 5536 7378 9220 11062 12904 14746 16588 18430

P
h

yl
o

ge
n

et
ic

 d
iv

er
si

ty

Rarefaction depth

Soil.time0_1a

Soil.time0_2a

Soil_Source1a

Soil_Source1b

Soil_mid1a

Soil_mid1b

Soil_atm1a

Soil_atm1b

a)

0

50

100

150

200

250

300

P
h

yl
o

ge
n

et
ic

 d
iv

er
si

ty

Rarefaction depth

Soil.2%BC_Source1a

Soil.2%BC_Source1a

Soil.2%BC_mid1a

Soil.2%BC_mid1b

Soil.2%BC_atm1a

Soil.2%BC_atm1b

0

50

100

150

200

250

P
h

yl
o

ge
n

et
ic

 d
iv

er
si

ty

Rarefaction depth

Soil.2%AC_Source1a

Soil.2%AC_Source1b

Soil.2%AC_mid1a

Soil.2%AC_mid1b

Soil.2%AC_atm1a

Soil.2%AC_atm1b

b) 

c) 



Chapter 6: Effects of volatile petroleum hydrocarbon vapour migration on the microbial community composition in a biochar and activated carbon amended sand – a long term study 

140 

 

a)                                                                                                                                           b)     

Amendment

Location

No2%Biochar2%Activated carbon

SourceAtmSourceAtmSourceAtm

6000

5500

5000

4500

4000

Ch
ao

1

Boxplot of Chao1

             
Amendment

Location

No2%Biochar2%Activated carbon

SourceAtmSourceAtmSourceAtm

3400

3200

3000

2800

2600

2400

2200

2000

O
bs

e
rv

e
d 

sp
p

Boxplot of Observed spp

 

c)                                                                                        d) 

Amendment

Location

No2%Biochar2%Activated carbon

SourceAtmSourceAtmSourceAtm

280

260

240

220

200

180

PD

Boxplot of PD

             
Amendment

Location

No2%Biochar2%Activated carbon

SourceAtmSourceAtmSourceAtm

10.00

9.75

9.50

9.25

9.00

8.75

8.50

Sh
an

n
on

s 
in

de
x

Boxplot of Shannons index

 

Figure 6.5. Boxplots of bacterial diversity and species richness indicating data spread within replicates, comparing the mean values of replicates from 

each treatment and showing the effects of interaction of column locations and sorbent amendment on the diversity indices.                          
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estimation of species richness as predicted by the non-parametric estimator Chao1 (2 Way-

ANOVA, p > 0.05). There was also a significant effect of the interaction of the factors, 

amendment and location along the columns on the species richness estimators and diversity 

indices (2 Way-ANOVA, p < 0.05).    

6.4.5 Taxa distribution across different samples 

A total of 50 phyla were identified from the classified sequences and 2 unidentified phyla 

within the bacterial domain. In the archaea domain, there were 2 identified phyla and 1 

unidentified phylum. The dominant bacterial phyla (> 1% of total relative abundance) were 

the Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, 

Gemmatimonadetes, Nitrospirae, Planctomycetes, Verrucomicrobia and the Proteobacterial 

classes  Alphaproteobacteria, Betaproteobacteria, Deltaproteobacteria, 

Gammaproteobacteria  representing 5.16, 8.93, 5.75, 5.70, 4.39, 4.16, 1.92, 7.51, 1.89, 14.85, 

11.59, 9.72, and 12.80% respectively of the abundance across all samples. These phyla have 

been regularly identified in soil microbial communities from previous studies (Janssen, 2006; 

Roesch et al., 2007). In the archaea domain, the most abundant phyla was the Crenarchaeota 

representing 1.64% of total relative abundance across all samples. The rare phyla (< 1.0%) 

were the Armatimonadetes, Chlorobi, Cyanobacteria, Elusimicrobia, TM6, and WS3 

representing 0.27, 0.37, 0.10, 0.14, 0.21 and 0.89 % of the total abundance respectively across 

all samples and within the archaea domain, Euryarchaeota representing 0.31% of the total 

abundance.  

In the control soil, at time zero, the most dominant Proteobacterial OTU at the class level was 

Alphaproteobacteria representing 13.15%. The second most dominant taxa was 

Gammaproteobacteria constituting 11.60% and Deltaproteobacteria making up 8.68% of the 

total abundance. In the unamended soil column, the most abundant OTU was the 

Alphaproteobacteria representing 15.07% of total OTU abundance on day 430. In the soil & 

biochar column and soil & activated carbon, the most abundant OTU representing 15.61% 

and 14.42% respectively of the total OTU abundance was the Alphaproteobacteria in the 

respective columns.   

With respect to column location in the unamended soils, the most dominant taxa was 

Alphaproteobacteria from the near zero concentration boundary of the columns representing 

20.27% of the relative abundances from this column. For soils amended with 2% biochar and 

2% activated carbon, the most dominant taxa was Alphaproteobacteria from the column 

source (16.43%) and column near zero concentration boundary (16.57%) sections 

respectively. The most abundant taxa across all samples investigated during this study was the 
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Proteobacterial class – Alphaproteobacteria constituting 14.85% followed by 

Gammaproteobacteria which accounted for 12.81% of the total relative abundance across all 

samples.  

The most dominant OTUs with respect to amendment for the unamended soil and the soil & 

biochar columns was the Alphaproteobacteria representing 15.07±4.50 and 15.61±0.80% of 

the total OTU abundance while in the soil & AC column, the most dominant OTU was the 

Betaproteobacteria representing 15.50± 0.87 of the total OTU abundance in the dataset. 

There was a variation in the relative abundances of the dominant phyla between different 

amendments. Acidobacteria showed a significantly higher relative abundance in the 

unamended soils than biochar amended soils while Actinobacteria showed the opposite 

pattern. Euryarchaeota, Actinobacteria, Armatimonadetes, Bacteriodetes, and 

Gemmatimonadetes were significantly higher in relative abundance in biochar amended soils 

compared to the activated carbon amended soils. Acidobateria, Armatimonadetes, 

Bacteriodetes, Chloroflexi, Cyanobacteria, Elusimicrobia, Firmicutes, and Fusobacteria had 

significantly higher relative abundance in the unamended soils compared to the activated 

carbon amended soil while Actinobacteria showed the opposite pattern (p < 0.05 in all cases, 

2 sample t-tests). 
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Figure 6.6. Relative abundances of dominant phyla and proteobacterial classes from a) soil b) 

soil & biochar and c) soil & AC libraries in which 16S rDNA sequences were classified based 

on nearest neighbour in Greengenes database (greengenes.secondgenome.com). 
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6.4.6 Relationship between microbial communities in different samples 

A mapping of the average Bray Curtis dissimilarity matrix (log transformed data) unto a 2D 

ordination space shows a pattern of the microbial community response to the environmental 

factors under investigation (Figure 6.7). The pattern of grouping of the samples (78% 

similarity) reveal a pronounced response of microbial communities to the amendments with 

the biochar amended soil samples clustering more closely to each other than to the activated 

carbon amended soils and vice versa. The unamended soils clustered more closely with the 

control samples (initial soil at time 0) with the exception of samples from the near zero 

concentration boundary of the unamended soils. Clustering of all samples was performed at a 

60% similarity.  

 

Figure 6.7. Multidimensional Scaling plot of 16S rRNA pyrosequence libraries obtained from 

control soil samples, unamended soil, soil & BC and soil & AC at day 430. Averaged Bray 

Curtis distance on log (x+1) transformed data at the OTU level 3 (class level of taxonomy) is 

displayed on the plot. 

An analysis of similarity (ANOSIM) was carried out to investigate the statistically significant 

factors that contributed to the shaping of the microbial communities. At higher levels of 

taxonomy (class level), the results showed that neither location along the columns nor time 

had any significant effect on the microbial communities within the different samples. There 

was nevertheless a detectable effect of sorbent amendment on the
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relative abundance distribution of operational taxonomic units between the treatments 

(ANOSIM test for difference between amendments, Global R= 0.631,  p < 0.05). 

A further analysis of sample similarities was performed using a principal components analysis 

(PCA) to investigate the effects of the relative abundances of the OTUs on similarities 

between different samples. At the species level, a comparison of the column locations with 

respect to relative abundances of the most abundant OTUs (> 1.0% of total relative 

abundance) revealed distinct patterns in which samples were partitioned into both positive and 

negative axis of the 1st and 2nd principal components (accounting for 74.87% variability of all 

samples) (Figure 6.8).  
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Figure 6.8. Principal Components Analysis of microbial communities as affected by a) 

sorbent amendment and column locations based on b) the relative abundances of dominant 

OTUs (>1.0% of total sequences) at the species level (square root transformed data). The 

direction of vectors indicate the direction of change of each variable (OTU relative 

abundance) so that the observation samples clustered together have similar microbial 

communities. 
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The samples partitioned according to column locations suggesting a significant relationship 

between microbial communities from the same locations than from other locations. In terms 

of percentage contribution of each OTU relative abundance to the principal components, the 

genus Pseudonocardia had the highest contribution of 30.19% to the first principal 

component followed by an unidentified genus representing 16.18% of the first principal 

component. The genera Bradyrhizobium, Paedomicrobium, Rhodoplanes and 

Hydrogenophaga represented 3.18, 1.41, 0.002 and 12.52% of the first PC and 0.95, 0.89, 

2.11 and 9.15% of the second PC respectively. A principal components analysis of the most 

abundant OTUs (variables) also showed a pattern that corresponds to the pattern on the PCA 

of the samples (observations). Based upon a 2-sample t-Test, the genera Pseudonocardia and 

Bradyrhizobium were more abundant in the activated carbon amended soils than in the 

biochar amended or unamended soils (p < 0.05). The genus Bradyrhizobium is a nitrogen – 

fixing root nodule bacteria and was among several genera isolated from a biologically active 

granular activated carbon filter following filtration of disinfected drinking water in studies 

conducted by Niemi et al. (2009).  

6.4.7 Microbial functions, petroleum hydrocarbon degradation and nitrogen cycling 

At the order level of taxonomy, the most abundant OTU in the control soil at time zero was 

the Xanthomonadales with a percentage abundance of 9.59% followed by the Rhizobiales 

with an abundance of 7.27%. The most abundant OTU in the source side and middle of the 

unamended soil column was the Rhizobiales representing 7.06 and 7.39% respectively of the 

total abundance in the soil column while at the soil-atmosphere boundary of the column, the 

most dominant OTU was the Xanthomonadales representing 9.42% of total abundance. In the 

unamended soil column, most of sequences belonging to the Alphaproteobacteria were 

affiliated to Rhizobiales. Members of this order have been reported to possess the potential to 

degrade toluene (Zengler et al., 1999), straight-chain alkanes (Schleheck et al., 2004) and 

gasoline (Prantera et al., 2002). 

In the biochar amended soil column, the most dominant OTU at the order level from the 

source, middle and atmospheric sides of the column was the Xanthomonadales representing 

9.97%, 9.03%, and 9.34% respectively.  

In the activated carbon amended soil column, the most abundant OTU from the source and 

middle sides of the column was the Xanthomonadales representing 10.07% and 10.22% of the 

total OTU abundance in this column while in the atmosphere side of the column, the 

dominant OTU was the Rhizobiales representing 10.34% of the total abundance. In the 

biochar and activated carbon amended soil columns, the dominant order within the 



Chapter 6: Effects of volatile petroleum hydrocarbon vapour migration on the microbial community composition in a biochar and activated 
carbon amended sand – a long term study 

148 

 

Gammaproteobacteria was the Xanthomonadales which appear to play a significant role in 

the biodegradation of petroleum hydrocarbons particularly of linear alkanes and aromatic HC. 

They have been reported to thrive on hexane (Friedrich and Lipski, 2008), toluene (Juteau et 

al., 1999; Kim et al., 2007b), alkanes (Yutse et al., 2000; Palleroni et al., 2004) and 

polyaromatic hydrocarbons (Hamann et al., 1999; Juhasz et al., 2000).  

At the genus level, an unidentified OTU belonging to the Gammaproteobacteria had the 

highest total relative abundance of 5.08% across all samples. Correspondingly, members of 

the dominant Proteobacterial subclasses - Alphaproteobacteria and Gammaproteobacteria 

were reported to be key players in the biodegradation of petroleum hydrocarbons in a meta-

analysis of 16S rDNA gene libraries obtained from the oiled Pensacola beach samples of the 

Deep-water Horizon spill in the Gulf of Mexico (Kostka et al., 2011). Both classes are 

predominantly made up of Gram-negative organisms and have been reported to contain 

hydrocarbon-degrading bacterial genera (Kostka et al., 2011).  

A comparison of the relative abundances of the operational taxonomic units at the genus level 

revealed that the factors under consideration (column location and amendment) had a 

significant effect on the relative abundances of the OTUs. With respect to location along 

column lengths, the genera Sphingobium, Sphingopyxis, Norcadioides, Pseudonocardia, and 

Methylibium were relatively higher (p < 0.05, 2 sample t-test) at the column source (across all 

three columns) than they were at the near zero concentration boundary side of the columns 

whereas Polaromonas and Alkanindiges showed the opposite pattern (Table 6.3). 

Sphingomonads are a group of Gram-negative obligate aerobes that are reported to exist in a 

wide range of different environments and have been shown to degrade mono- and particularly 

poly-aromatic hydrocarbon compounds (Kawasaki and Kertesz, 2012). The ability to degrade 

hexane by a Sphingobium species has also been demonstrated (Liang and Lloyd-Jones, 2010). 

Norcadioides, a Gram-positive bacterial genus is reported to
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contain two distinct monooxygenase genes required for the oxidation of alkanes and genus 

members have been shown to be involved in decane degradation (Hamamura et al., 2001). 

Members of the genus Pseudonocardia have a high G+C content according to documented 

reports and have also been implicated with the degradation of the aromatics - toluene, benzene 

and 1,4-dioxane (Juteau et al., 1999). Other reports indicate the potential of members to 

degrade aliphatic hydrocarbons (Balows et al., 1992). Polaromonas is an oligotrophic group, 

moderately psychrophilic and slow growing. Members of genus have been reported to grow 

on the n-alkanes heptane and octane. There are also evidences to show their ability to 

metabolise the aromatic HC – toluene from a microcosm experiment (Sun et al., 2010). 

Alkanindiges are aerobic cocci that thrive on straight-chain aliphatic hydrocarbons such as 

hexadecane and heptadecane although growth is not supported by short-chain compounds 

(<C15) with decane as an exception according to documented reports (Ron and Rosenberg, 

2010). Amending the soils with 2% biochar or activated carbon had a significant effect on the 

relative abundances of the operational taxonomic units at the genus level (p < 0.05; t tests). 

The genera Pseudonocardia and Streptomyces differed significantly in relative abundance in 

the following order (Soil < BC < AC) (Table 6.3) while the genera Nitrosopumilus and 

Clostridium showed the reverse pattern (Soil > BC > AC) in their relative abundances.  

With regards to column locations, the VPH concentrations were expected to be higher at the 

side of the column nearer the NAPL source for soil, soil & biochar and soil & AC. It was 

therefore expected that a relatively higher abundance of VPH degraders would be detected at 

this side of the columns. This coincided with the results from this study in which most VPH 

degraders were significantly more dominant at the source side of all three columns than at the 

atmosphere boundaries of the respective columns. From the chemical analysis results (Table 

6.1), the soil and AC column had the highest amount of VPH residual which may account for 

the relatively high amount of cumulative CO2 in this column. Concurrently, most of the 

measured VPH residuals might have been strongly sorbed to the AC particles, thus rendering 

them unavailable to microorganisms for biodegradation. Nevertheless, there was a 

preponderance of petroleum hydrocarbon degrading bacterial communities in the AC 

amended soil at the end of the experiment (Table 6.3). 

A summary of OTU absolute abundance increase or decrease relative to controls (soil at time 

zero) are displayed on table 9.17 & 9.18 (Appendix B). The Nocardioides grew in absolute 

abundance by upto an order of magnitude in all column locations (soil, soil & BC and soil 

&AC) following exposure to VPHs and after 430 days compared to the initial condition  
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Table 6.3. Summary of statistically significant treatment effects (location source vs. 

atmospheric boundary side and/or sorbent amendment, t-test, two tailed, p < 0.05) for OTU 

identified at the genus level, where members of the genus reportedly degrade petroleum 

hydrocarbons. 

 

Genus Average relative 

abundances (location 

effects) 

Average relative abundances 

(amendment effects) 

Petroleum hydrocarbon 

degradation potential of 

genus members 

Source Atmo Soil 2% BC 2% AC 

Nitrosopumilus - - 9.01E-03 

 

2.24E-03 

 

4.21E-04 

 

Naphthalene, xylene, 

toluene,  

Sphingomonads 

- Sphingomonas 

- Sphingobium 

- Sphingopyxis 

 

- 

1.2E-02 

1.4E-03 

 

 

- 

4.2E-05 

1.3E-04 

 

 

9.93E-05 

8.83E-03 

3.97E-04 

 

 

4.23E-04 

1.71E-03 

6.70E-04 

 

 

1.59E-04 

1.97E-03 

7.51E-04 

 

 

BTEX, naphthalene, 

anthracene, phenyl 

Ability to degrade 

hexane 

Nocardioides 4.4E-03 

 

1.9E-03 

 

- - - Alkanes 

 

Pseudonocardia 1.9E-02 

 

1.1E-02 

 

4.48E-03 

 

5.39E-03 

 

3.31E-02 

 

Toluene, benzene 

Aliphatic hydrocarbons 

Streptomyces - - 2.39E-03 

 

3.63E-03 

 

4.87E-03 

 

Alkanes, PAHs, 

benzene, xylene, 

cyclohexane, 

Flavobacterium - - 6.08E-04 

 

1.04E-03 

 

3.91E-04 

 

Toluene, xylene, 

benzene, hexane, crude 

oil, gasoline, kerosene 

Paenibacillus - - 2.75E-03 2.23E-03 1.66E-03 m-Xylene 

Methylibium 5.3E-03 

 

3.1E-03 

 

- - - Toluene, benzene, 

ethylbenzene 

Clostridium - - 5.09E-03 4.95E-03 2.38E-03 Toluene 

Polaromonas 2.7E-03 

 

5.0E-03 

 

- - - n-alkanes, heptanes, 

octane, toluene 

Alkanindiges 

 

2.4E-05 

 

1.2E-04 

 

- - - Decane, hexadecane 

and heptadecane 

Pseudoxanthom

onas 

- - 4.06E-03 

 

2.30E-03 

 

3.19E-03 

 

BTEX (benzene, 

toluene, ethylbenzene, 

o-, m-, and p- xylene) 

compounds. 
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(Table 9.17). Sphingomonas showed an increase in absolute abundance compared to soil on 

day 0 by at least one order of magnitude in all column locations and amendments with the 

exception of the soil & AC column (atmosphere side) in which no growth of the VPH 

degrading biomass was observed (Table 9.17). Pseudoxanthomonas also demonstrated growth 

in absolute abundance in all soil columns (locations and amendments) by at least an order of 

magnitude. On the other hand, the genera Pseudonocardia and Flavobacterium only increased 

by 3 orders of magnitude in the soil & BC columns atmosphere and mid locations respectively 

but did not show any growth in the other column locations (for sorbent amended and 

unamended soil). 

In addition to the nitrifying bacteria Nitrosomonas and Nitrobacter, there are confirmed 

reports that the Nitrosopumilus genus within the Archaea domain also contain the ammonia 

monooxygenase (AMO) genes (Könneke et al., 2005). The Nitrosopumilus are a group of 

Gram-negative, chemolithotrophic organisms that are mesophilic in nature (Yagi et al., 2010). 

Results from the current study revealed a significant effect (p < 0.05, 2 sample t-test) of 

sorbent amendment on the relative abundance of this genus (Table 6.3). Table 6.1 shows 

measurements of the inorganic nitrogen contents of the different soil systems in the forms of 

NH4
+ and NO3ˉ as measured before and after the column experiments. Results from these 

experiments showed a reduction in the amounts of inorganic nitrogen (NH4
+) at the end of the 

experiment (at day 430) in the following order: Soil < Soil & BC < Soil & AC indicative of 

sorption effects in the amended soil systems. Correspondingly, the ammonia oxidising 

archaea (AOA) were significantly higher in relative abundance in the initial unamended soil 

(time zero) as well as the unamended soil (day 430) compared to soils amended with 2% 

biochar or activated carbon on day 430 (Figure 6.9a).  

A close look at the absolute abundances (Figure 6.9b) of the members of the archeae domain 

reveals that there was significant growth in the abundance of the species on day 430 

especially in the soil only column compared to the soil at time 0. This may imply that while 

amending soil with biochar or AC hindered the growth of the organisms in comparison with 

unamended soil due to sorption of inorganic nutrients N & P, exposing the soil systems to the 

VPH mixture also enhanced their growth especially in the unamended soil column.  
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Figure 6.9. Biochar (BC) and activated carbon (AC) effects on the a) relative abundances and 

b) absolute abundances of ammonia-oxidizing archaea (AOA) in pyrosequencing generated 

16S sequence libraries of column studies, average of two replicates for soil, day 0, and six 

replicates for the other samples. AOA were much more abundant in the 16S sequence libraries 

than ammonia oxidizing bacteria (i.e. total relative abundance for all bacteria from the order 

of Nitrosomonadales was < 0.0001 in all soils). 
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A ranking of operational taxonomic units (OTUs) at the species level of taxonomy in the 

control soil on day zero (Soil d0) based on their abundances relative to the total OTU 

abundance in the overall dataset and their increase or decrease with respect to sorbent 

amendment or column locations is displayed in the table below (Table 6.4). The results reveal 

that species within the genus Nitrosopumilus, increased in their relative abundance ranking by 

16 folds at the source side of the unamended soil column in comparison with the initial soil 

condition but decreased by up to 4 folds in the biochar or AC amended soil columns. This 

observation may be due to inorganic nutrient availability (ammonia, nitrates and phosphates) 

in the unamended soil column compared to the sorbent amended soil columns as discussed 

above. Bacterial species within the Norcadioidaceae family increased by up to 8 folds in the 

AC amended soil and 2 folds increase in the unamended and the biochar amended soils 

respectively. A Pseudonocardia species increased by at least 2, 4 and 32 folds in relative 

abundance ranking in the unamended soil, biochar amended and AC amended soils 

respectively. Members of this genus were previously associated with the degradation of 

aromatic and aliphatic hydrocarbons (Juteau et al., 1999). A relatively high cumulative CO2 

production in the AC amended soil column (Figure 6.2) may also be attributed to the 

abundance of this OTU compared to the other soil treatments as they have been reported to 

demonstrate potential to degrade different classes of petroleum hydrocarbons (Table 6.3). 

Within the order Bacteroidales, an opposite pattern to the Pseudonocardia species is observed 

in which at least 8 folds increase in relative abundance ranking of OTU and up to 32 folds 

increases in the unamended soil and the biochar amended soils was observed and a maximum 

2-folds increase in the AC amended soil. Chloroflexi species increased by minimum 4-folds in 

the soil and soil & biochar columns and by 8 folds in the soil & AC column in their relative 

abundance ranking. Species within the family Comamonadaceae and the genus 

Hydrogenophaga also increased in their relative abundance ranking by a minimum of 2 folds 

in all the column locations being considered during this study indicating a positive response to 

the exposure of the VPHs regardless of locations (and sorbent amendment) of the columns. 

Members of the Comamonadaceae family were reported to harbour aerobic toluene degraders 

particularly within the genus Methylibium (Nakatsu et al., 2006). Other species within the 

Chromatiaceae increased by maximum of 16 folds in the unamended soil and the soil & 

biochar columns but increased by only 2 folds in the AC amended soils while within the 

Pseudomonadaceae family, there was also an increase in species relative abundance ranking a 

by maximum of 8 and 32 folds in the unamended soil and the biochar amended soils 

respectively and a 2 folds decrease in relative abundance ranking in the AC amended soil.  
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 Table 6.4. Summary of taxons which showed a minimum 8-fold increase in their relative abundance rank in one of the column study treatments. 

Taxon (highest level 
classification) 

Relative abundance rank increase for different treatments compared to the soil only control 
+ 2-fold, ++ 4-fold, +++ 8-fold, ++++ 16-fold, +++++ 32-fold, ++++++ 64-fold or greater, equivalent decrease for minus signs 

Soil d0 
Rank 

Soil+VPHs 
d430 
source 

Soil+VPHs 
d430 
middle 

Soil+VPHs 
d430 
atmos 

Soil+BC+
VPHs 
d430 
source 

Soil+BC+
VPHs 
d430 
middle 

Soil+BC+
VPHs 
d430 
atmos 

Soil+AC+
VPHs 
d430 
source 

Soil+AC+
VPHs 
d430 
middle 

Soil+AC+ 
VPHs  
d430 
atmos 

g__Nitrosopumilus 72 ++++  ---   - - -- -- 

g__Microbacterium 458   +++ +  +    

f__Nocardioidaceae 94   +   + +++  + 

g__Aeromicrobium 495   + + + +  + +++ 

g__Pseudonocardia 204 + + ++ ++ ++ +++ +++++ +++++ ++++++ 

o__Bacteroidales 629 +++++ +++ +++ +++ ++++++ +++++ + +  

f__Chitinophagaceae 86   ++++  +    + 

f__Flammeovirgaceae 9   +++ + ++ + +  + 

c__Chloroflexi 458 ++ ++ ++ ++ ++ ++ +++ +++ +++ 

f__Phyllobacteriaceae 131   +++   +  + ++ 

g__Oleomonas 629   +++++      + 

g__Sphingobium 80 --- -- ++++ --- --- + --- --- + 

f__Comamonadaceae 79 ++ ++ +++ + ++ ++ ++ +++ +++ 

g__Hydrogenophaga 116 + ++ ++++ ++++ ++++ +++++ ++ +++ +++++ 

o__Myxococcales 17   +++ - -   ++ ++++ 

f__Haliangiaceae 36    + + ++ ++ ++ +++ 

g__Nannocystis 420 + +  - - - ++++ +++ ++ 

f__Alteromonadaceae 629 + +  + ++ +++  ++ + 

g__HB2-32-21 272 ++ ++++ ++ +++ ++++ ++++ + ++++ +++++ 

f__Chromatiaceae 629 ++++ +++ ++ ++ ++++ ++++ +   

o__PYR10d3 181   +++  + +++++    

f__Pseudomonadaceae 166 + +++ + +++ +++++ ++++ - -  

f__Sinobacteraceae 105   ++++ + +  + ++ + 

g__Pseudoxanthomonas 235   +++ + + ++ + ++ ++ 



Chapter 6: Effects of volatile petroleum hydrocarbon vapour migration on the microbial community composition in a biochar and activated 
carbon amended sand – a long term study 

155 

 

A species within the genus Pseudoxanthomonas increased in their relative abundance ranking 

by 8 folds in the unamended soil and by a maximum of 4 folds in the biochar and AC 

amended soils.  

Results from the species level correspond with the variation in the OTU relative abundances 

at the genus level (Table 6.4). Although most of the species that showed an increase in their 

relative abundances compared to the day zero (Soil d0) soil ranking are unidentified, the 

results reveal a pattern in which the dominant OTUs at the species level of taxonomy are 

linked to the dominant OTUs at the genus level. 
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6.5 Conclusions 

A long-term column study was conducted to investigate the effects of sorption and 

biodegradation on the attenuation of volatile petroleum hydrocarbons in sand. Results from 

microbiological analysis shows that bacterial communities responded to the factors (i.e. time, 

location and amendment) under investigation.  

A ranking of the relative abundances of the OTUs in the control soil at time zero revealed an 

increase following exposure to VPH vapour from a NAPL source over the duration of the 

experiment (430 days). Most VPH degrading OTUs including species from the family 

Nocardioidaceae, Comamonadaceae, Pseudomonadaceae and the from genera Sphingobium, 

Pseudoxanthomonas and Pseudonocardia increased in their relative abundance rankings by a 

minimum 2 folds upon exposure to VPH vapours after 430 days in the respective soil 

treatments suggesting that with time, there was an increase not just in the activity of 

microorganisms but also in their relative abundances. 

With respect to column locations, the genera Sphingomonads, Nocardiodes, Pseudonocardia 

and Methylibium were significantly higher in relative abundances at the column locations 

nearer the NAPL source than at the near zero concentration boundary side of the columns 

while Polaromonas and Alkanindiges showed the reverse pattern. Contrary to our proposed 

hypothesis, VPH degrading OTUs also increased significantly in their relative abundances at 

the atmosphere side of the columns. 

Similarly, amending soil with 2% biochar or AC significantly affected microbial communities 

in the respective columns. The genera Paenibacillus, Clostridium, and Pseudoxanthomonas 

were significantly more dominant in the unamended soil column than in the sorbent amended 

soil columns. The genera Pseudonocardia and Streptomyces were significantly higher in 

relative abundance in the soil & AC column than in the unamended soil or soil & biochar 

columns. At the class level of taxonomy (OTU level 3), a one way analysis of similarities 

(ANOSIM) revealed that the amendment factor had a significant effect on shaping the 

microbial communities in the respective columns. At the species level, OTU relative 

abundance ranking also increased in the sorbent amended columns following exposure to 

VPH vapours in the genera Pseudonocardia and Hydrogenophaga both of which have been 

reported to degrade petroleum hydrocarbons from previous studies. In addition to the effect 

on the relative abundances of VPH degrading OTUs, sorbent amendment also significantly 

reduced the amounts of inorganic nutrients ammonium  
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(NH4
+), nitrates (NO3

-), and phosphates (PO4
2-) in the respective soil columns compared to the 

initial soil concentrations. These reductions coincided with a reduction in the relative 

abundances of ammonia oxidising archaea (AOA) in the sorbent amended soil columns. 

Hence, sorbent amendment significantly altered the microbial communities of the different 

soil systems with respect to VPH degradation and nutrient cycling.  

Overall, amending soil with 2% biochar or activated carbon over a long term altered the 

microbial community composition of soil by causing an increase in the relative abundance 

ranking of most of the VPH degrading OTUs and did not appear to negatively impact soils 

with regards to bacterial community dynamics of VPH degradation in the long term. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 7: Overall conclusions and recommendations for future work 

7.1 Effects of biochar and activated carbon amendment on pollutant toxicity to soil 

VPH degrading bacteria 

Amending soil with 2% biochar or activated carbon enhanced the sorption of the pollutants 

thereby reducing their bioavailability to soil microorganisms for biodegradation and their 

mobility in soil. At higher VPH (13C7 – toluene) concentrations, therefore, reduced pollutant 

bioavailability in the sorbent amended soil batches was observed to shorten the lag phase in 

the growth cycle of soil bacteria in comparison with the unamended soil batch in which a lag 

phase twice as long was observed. In contrast, addition of different VPH classes to soil 

batches without sorbent amendment revealed that straight chain alkanes had the highest 

stimulatory effect on soil bacteria as indicated by CO2 production while the aromatic 

hydrocarbons had the lowest stimulatory effect on microbial activity suggesting that barring 

any sorption effects, at equivalent concentrations of VPH, aromatic hydrocarbons exerted the 

most toxic effects on soil microorganisms the straight chain or cylic/branched alkane class of 

VPHs. Sorbent amendment apparently reduces pollutant toxicity, based on the CO2 levels in 

batch headspaces, to soil bacteria especially for the mono-aromatic hydrocarbons by reducing 

the concentration of VPH that ultimately becomes available to soil VPH degraders. Amending 

soil with biochar or AC therefore enhanced sorption of the pollutants, and reduced their 

bioavailability to microbial activity thereby reducing their toxicity at high concentrations on 

the short-term. 

7.2 Effects of biochar and activated carbon amendment on the growth of VPH 

degrading bacteria 

Growth of VPH degrading bacteria as indicated by the evolution of CO2 was slowed with 

biochar or activated carbon amendment in the short-term batch study. In a batch study in 

which soil was amended with or without 2% biochar or AC and with or without nutrients, 

microbial growth was slowed in the sorbent amended batches especially in the soil & AC 

batches with nutrients. Maximum cumulative headspace CO2 concentration was the least in 

the soil & AC batch compared to unamended soil and the soil & biochar batches on the short 

term. Total bacterial cell numbers were the lowest in the soil & AC batch with nutrients 

suggesting that microbial growth was no longer limited by the nutrient availability, but likely 

by the substrate (VPH) availability, which has been greatly reduced due to sorption by the 

AC. On the long-term, sorbent amendment was observed to initially slow the metabolism of 

VPHs especially in the soil & AC column. CO2 concentrations rose steadily in the soil & AC 

column to reach similar levels as in the unamended soil column by day 430. This can be 

interpreted to mean that higher sorption of VPH by AC retained a higher concentration of the 
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pollutant in the soil & AC pores. Desorption of pollutants back into pore water over time 

would result in a higher level of biodegradation of the pollutants in the soil & AC column. 

On the other hand, an increase in absolute abundances (by over a 100%) of the petroleum 

hydrocarbon degrading bacterial genera Nocardioides, Methylibium, Alkanindiges and 

Pseudoxanthomonas in the long-term column studies and the genera Pseudomonas, 

Arenimonas and Polaromonas in the batch studies following exposure of the control (soil at 

time 0) to VPHs suggested that VPH exposure enhanced the growth of petroleum 

hydrocarbon degraders in the long and short term respectively. 

7.3 Effects of biochar and activated carbon amendment on microbial ecology in 

VPH-contaminated gravelly sand 

The effects of sorbent amendment on soil microbial ecology was also observed. Different 

VPH degrading bacteria were observed to thrive in the batch and column soils amended with 

or without sorbent and/or nutrient amendment. In the short-term batch study with AC 

amendment and with or without nutrient amendment, bacterial species within the family 

Nocardioidaceae showed a 64-fold increase in their relative abundance ranking following 

addition of VPHs over a 6-days duration. Other species within the family Pseudomonadaceae 

and the genera Pseudomonas and Achromobacter also showed a minimum 2-fold increase in 

soil batches amended with or without biochar or AC and in the nutrient amended or 

unamended soil. Yield coefficients (g biomass-C g-1 substrate) as determined for the VPH 

degrading bacterial biomass at the end of the batch study following VPH addition showed that 

sorbent amendment reduced biomass yields for both nutrient amended and unamended 

batches suggesting that soil bacteria had a limited amount of VPHs to metabolise in the 

sorbent amended batches compared to the unamended soil batches. In the column study, 

species within the family Nocardioidaceae increased in their relative abundance ranking by a 

maximum of 8-folds in the soil & AC column. Members of the Pseudomonadaceae family 

also increased in relative abundance ranking by up to 32 folds in the soil & biochar column 

while members of the genera Pseudonocardia, Pseudoxanthomonas and Hydrogenophaga 

increased in their abundance ranking in the soil, soil & biochar and soil & AC columns 

following exposure to VPHs over the duration of the experiment (430days). In addition to 

changes in the microbial community structure, sorbent amendment also affected the amount 

of available inorganic nutrients in soil at the end of the column studies. A decrease in nutrient 

concentrations of NH4
+, NO3

-, and PO4
2- from their initial conditions on day 0 (Table 6.1) 

notably in biochar and AC amended soil columns coincided with a decrease in the relative 

abundances of the ammonia oxidizing archaea (AOA) group organisms. Hence, although 

sorbent amendment reduces the bioavailability of VPHs to soil bacteria, they did not appear to 
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have any negative effect on the growth of VPH degrading bacteria both in the short- and long-

term. Sorption, however, reduces the yields of VPH degrading biomass and exerts a growth 

limiting effect on microorganisms involved in nutrient cycling on the long-term. 

7.4 Broader implications of the current research 

Amending soil with biochar and AC mitigated the biodegradation of VPHs as demonstrated 

by sorption of toluene (13C7) compared to unamended soil. This observation was in line with 

observations from a subsequent batch study in which sorbent amendment especially with AC 

reduced the level of biodegradation of a consortium of VPHs in the short term. On the 

contrary, biodegradation as indicated by CO2 production was higher in the soil & AC 

treatments than in the unamended and soil & biochar batches at the end of the long term 

column studies. The implications of these observations could mean that sorption of VPHs to 

sorbent in the short term reduces their availability for biodegradation while in the long term, 

strongly bound pollutants to biochar and particularly to AC amended soils, slowly desorbs 

back into soil pore water as previously described, thereby enhancing their availability to 

microorganisms for biodegradation. In the short term batch studies, amending soil with 2% 

biochar or AC also affected microbial ecology by exerting varying effects on microbial 

biomass yield coefficients. Average yield coefficients were lower for AC amended soil than 

the unamended soil and soil & biochar with or without nutrient amendments. From the 

microbiological viewpoint, a more diverse consortium of bacteria was involved in the 

degradation of straight chain and cyclic alkanes than was required for the degradation of 

aromatic hydrocarbons in batch systems without sorbent amendment. In the short term batch 

study systems, members of the genus Pseudomonas and the species Pseudomonas 

umsongensis were enriched across all treatments that were exposed to VPHs but not in the 

long-term column studies. This observation is likely to imply that at high pollutant 

concentration and in the short term, members of the genus Pseudomonas have the capacity to 

thrive on the selection of VPHs used in the current study. Petroleum hydrocarbon degrading 

members of the family Nocardioidaceae and Pseudomonadaceae and the genus 

Pseudoxanthomonas were enriched in all treatments (with or without sorbent/nutrient 

amendment) relative to their abundances in the controls in both short term batch and long 

term column studies indicating their potential to grow both in the short term and in the long 

term when most of the VPHs in the NAPL source has been largely exhausted. In the column 

studies, the increase in absolute abundances of the species within the ammonia oxidizing 

archeae (AOA) compared to soil at time zero especially in the unamended soil column 

suggested that exposing this group of microbes to VPHs over the duration of 430 days 

enhanced their growth although growth was apparently limited by inorganic nutrient 
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availability as demonstrated in the soil & biochar and soil & AC columns at the end of the 

experiment. 

Ultimately, although amending soil with biochar or activated carbon apparently reduces the 

amount of pollutant that is available for biodegradation by soil microorganisms as shown by 

CO2 production in the short term, in the long term, a slow release of adsorbed pollutants into 

soil pore water may imply that pollutants increasingly become available thereby stimulating 

biodegradation of pollutants in soil pore water. An increase in absolute abundances and 

relative abundance ranking of VPH degraders in biochar and AC amended soils from both 

batch and column studies following exposure to VPHs suggests that sorbent amendment may 

not significantly limit the growth of microorganisms with respect to PH degradation.     

7.5 Recommendations for future work 

From the foregoing study, a number of questions are yet to be answered and should form a 

basis for future research in the area of in situ sorbent (biochar and activated carbon) 

amendment as an innovative approach for the remediation of soils contaminated volatile 

petroleum hydrocarbons. 

Further considerations should be given to the effects of other VPHs, as single compounds on 

the growth kinetics of microorganisms in the soil under investigation. Biomass yields can be 

determined for the growth of soil microorganisms on single VPH substrates and a comparison 

with growth on complex substrate mixtures conducted. Also, dual combinations of the PHs 

e.g toluene and 1,2,4-TMB, n-octane and hexane e.t.c. can be studied to deduce the effects of 

interactions such as enhancements, inhibition and other types of interactions on the growth 

kinetics parameters of the organisms in the soil being studied. Finally, a mixture of all 12 

VPHs and the effects of their interactions on the kinetics of VPH degrading bacteria would be 

an interesting means of gaining a better understanding of how the microbial community 

dynamics affect kinetic parameters of microorganisms growing on the pollutant mixture. 

To further understand the effects of nutrient availability and sorbent amendment on the 

microbial community response, more work should be done to investigate the effects of other 

inorganic nitrogen and phosphorous sources on the biodegradation of the pollutants. Also, 

varying concentrations of the nutrients should be used to assess their stimulatory or inhibitory 

effects on soil microbial activity. In addition, varying concentrations of different classes of 

VPHs should be used to ascertain a threshold for toxicity of pollutants to microbial 

communities in the soil. Consideration should also be given to the effects of other chemical 

properties such as structural formulae of compounds. For instance, hydrophobicity of straight 
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chain alkanes is a function of the carbon chain lengths which in turn determines the solubility 

and bioavailability of the compounds in soil pore water.  

For long-term studies, sampling intermittently would be challenging and also disrupt ongoing 

soil processes but may also give more insight into community dynamics at intervals during 

the long term experiments. Samples of the different soil treatments collected at different time 

intervals can be used to assess processes such as nutrient and VPH availability and how these 

affect the dynamics of microbial communities at such time intervals. 
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Appendix 

 

Appendix A 

Batch biodegradation model: 

The batch experiments were simulated by assuming Monod kinetic growth of microbial 

biomass following the addition of a fully substituted 13C substrate (13C7 toluene). 

Parameters are expressed in SI units of mole, second, kg, meters, except for the hydrogen ion 

concentration [H+] which is expressed in moles per litre. Substrate, biomass and CO2 

concentrations are expressed on a carbon-normalized basis (mole substrate C per m3 or kg, 

mole biomass C per m3, mole CO2 C per m3).  

t (s) Time 

r (m) Radial distance from the BC particle centre 

Csub
air (moles C m-3) Substrate concentration in soil air and headspace air 

Csub
water (moles C m-3) Substrate concentration in soil porewater 

Csub
soil (moles C kg-1) Substrate concentration associated with soil solids 

Csub
BC (moles C kg-1) Substrate concentration associated with the BC solid matrix 

Csub
BC,ippw (moles C m-3) Substrate concentration in the BC intraparticle porewater 

Cbio
water (moles C m-3) Biomass concentration in soil porewater 

CCO2
air (moles C m-3) CO2 concentration in soil and headspace air 

CCO2
water (moles C m-3) CO2 concentration in water 

CH2CO3
water (moles C m-3) Carbonic acid concentration in water 

CH2CO3*
water (moles C m-3) Apparent carbonic acid concentration in water 

CHCO3-
water (moles C m-3) Hydrogen carbonate concentration in water 

CCO3--
water (moles C m-3) Carbonate concentration in water 

[H+] (moles per litre) Hydrogen ion concentration in water 

CCO2,13C
air (moles C m-3) 13C-CO2 concentration in soil and headspace air 

CCO2,12C
air (moles C m-3) 12C-CO2 concentration in soil and headspace air 

CCO2,13C
atmos (moles C m-3) 13C-CO2 concentration in the atmosphere 

CCO2,12C
atmos (moles C m-3) 12C-CO2 concentration in the atmosphere 

Hsub (-) Dimensionless Henry constant for the substrate 

Ksub
soil (m

3kg-1) Soil solid-water partitioning coefficient for the substrate 

Ksub
BC (m

3kg-1) BC solid-water partitioning coefficient for the substrate 

HCO2 (-) Dimensionless Henry constant for CO2 

KCO2
h (-) Hydration constant for CO2 

HCO2
* (-) Apparent dimensionless Henry constant for CO2 
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K1 (moles per litre) Apparent carbonic acid dissociation constant 

K2 (moles per litre) Hydrogen carbonate dissociation constant 

Vw (m
3) Soil porewater volume in the batch 

Msoil (kg) Dry soil mass in the batch 

MBC (kg) Dry BC mass in the batch 

RBC (-) BC particle radius 

Np,BC (-) Number of BC particles in the batch 

θw (-) Water-filled BC intraparticle porosity 

dBC (kg m-3) Solid density of the BC skeleton 

τ (-) BC pore network tortuosity factor 

Dsub
eff,BC (m2s-1) The effective diffusion coefficient of the substrate in the 

water-filled BC pore network 

Dsub
aq (m

2s-1) The molecular diffusion coefficient of the substrate in water 

Dsub
air (m

2s-1) The molecular diffusion coefficient of the substrate in air 

DCO2,13C
air (m

2s-1) The molecular diffusion coefficient of 13C CO2 in air 

DCO2,12C
air (m

2s-1) The molecular diffusion coefficient of 12C CO2 in air 

ksorb (s
-1) First-order kinetic sorption rate 

Lf (m) Leakage factor, gap area divided by the gap length 

μsub
max (s

-1) Maximum specific biomass growth rate 

Ksub
S (moles C m-3) The half-velocity constant 

Ysub (moles C moles-1 C) Yield coefficient 

Cbio
water,max (moles C m-3) Maximum biomass concentration in soil porewater 

dec (s-1) First-order biomass decay rate 

f (-) 12C to 13C assimilation ratio 

BGRCO2,12C 
soil (moles C kg-

1s-1) 

Background soil respiration rate 

nbc Number of BC shells (discretization) 

VBC,i (m
3) Volume of BC shell i 

CFi=1..nbc (m
3) Capacity factor for the substrate concentration in BC 

intraparticle porewater 

CFi=nbc+1 (m
3) Capacity factor for the substrate concentration in soil 

porewater 

CFi=nbc+2 (kg) Capacity factor for the substrate concentration in soil solids 

CFi=nbc+3 (m
3) Capacity factor for the biomass concentration in soil porewater 
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CFi=nbc+4 (m
3) Capacity factor for the 12C CO2 concentration in soil porewater 

CFi=nbc+5 (m
3) Capacity factor for the 13C CO2 concentration in soil porewater 

Table 9.1. Independent and dependant variables and parameters and their dimensions 

 

Description of the thermodynamic equilibrium in the batch system: 

1. Substrate 

The substrate concentration in the batch headspace, Csub
air, is related to the substrate 

concentration in soil pore water, Csub
water, by Henry’s law 

𝐻𝑠𝑢𝑏 =
𝐶𝑎𝑖𝑟

𝑠𝑢𝑏

𝐶𝑤𝑎𝑡𝑒𝑟
𝑠𝑢𝑏             

(9.1) 

 

where Hsub is the dimensionless Henry’s law constant. 

When sorption equilibrium has been established, the substrate concentration in soil pore water 

is related to the substrate concentration of the soil particles, Csub
soil, by the partitioning 

coefficient, Ksub
soil, 

𝐾𝑠𝑜𝑖𝑙
𝑠𝑢𝑏 =

𝐶𝑠𝑜𝑖𝑙
𝑠𝑢𝑏

𝐶𝑤𝑎𝑡𝑒𝑟
𝑠𝑢𝑏            

 (9.2) 

The model also considers soil amendment with a porous black carbon (BC) sorbent material 

such as biochar or activated carbon. Within BC particles, the substrate concentration in the 

intraparticle pore water, Csub
ippw, is related to the substrate concentration of the BC solid 

matrix, Csub
BC, by the partitioning coefficient, Ksub

BC, 

𝐾𝐵𝐶
𝑠𝑢𝑏 =

𝐶𝐵𝐶
𝑠𝑢𝑏

𝐶𝑖𝑝𝑝𝑤
𝑠𝑢𝑏           

 (9.3) 

2. CO2 

The CO2 concentration in the batch headspace air, CCO2
air, is related to the dissolved CO2 

concentration in soil pore water, CCO2
water, by Henry’s law 

𝐻𝐶𝑂2 =
𝐶𝑎𝑖𝑟

𝐶𝑂2

𝐶𝑤𝑎𝑡𝑒𝑟
𝐶𝑂2           (9.4) 
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The equilibrium between dissolved CO2 and carbonic acid (H2CO3) is described by a 

hydration equilibrium constant, KCO2
h, 

𝐾ℎ
𝐶𝑂2 =

𝐶𝑎𝑖𝑟
𝐶𝑂2

𝐶𝑤𝑎𝑡𝑒𝑟
𝐶𝑂2           (9.5) 

The sum of dissolved CO2 and H2CO3 concentrations will be referred to as the apparent 

carbonic acid concentration in water, CH2CO3*
water,

 

𝐶𝑤𝑎𝑡𝑒𝑟
𝐻2𝐶𝑂3∗ =  𝐶𝑤𝑎𝑡𝑒𝑟

𝐻2𝐶𝑂3 + 𝐶𝑤𝑎𝑡𝑒𝑟
𝐶𝑂2          (9.6) 

and the modified Henry’s law constant relates the CO2 concentration in the batch headspace 

air to the apparent carbonic acid concentration in soil pore water 

𝐻∗
𝐶𝑂2 =

𝐶𝑎𝑖𝑟
𝐶𝑂2

𝐶𝑤𝑎𝑡𝑒𝑟
𝐻2𝐶𝑂3∗         (9.7) 

The apparent carbonic acid dissociation constant, K1, relates the apparent carbonic acid 

concentration in soil pore water to the hydrogen carbonate (or bicarbonate) concentration in 

soil pore water, CHCO3-
water,  

𝐾1 =
𝐶𝑤𝑎𝑡𝑒𝑟

𝐻𝐶𝑂3−∙[𝐻+]

𝐶𝑤𝑎𝑡𝑒𝑟
𝐻2𝐶𝑂3∗           (9.8) 

where [H+] is the molar hydrogen ion concentration, or 10-pH. 

The hydrogen carbonate dissociation constant, K2, relates the hydrogen carbonate 

concentration in soil pore water to the carbonate concentration in soil pore water, CCO3—
water, 

𝐾2 =
𝐶𝑤𝑎𝑡𝑒𝑟

𝐶𝑂3−−[𝐻+]

𝐶𝑤𝑎𝑡𝑒𝑟
𝐻𝐶𝑂3−          (9.9) 

Differential equations: 

1. Substrate 

The following partial differential equation governs the substrate concentration in BC 

intraparticle pore water 

(𝜃𝑤 + (1 − 𝜃𝑤)𝑑𝐵𝐶𝐾𝐵𝐶
𝑠𝑢𝑏) 𝑑

𝑑𝑡⁄ 𝐶𝐵𝐶,𝑖𝑝𝑝𝑤
𝑠𝑢𝑏 =

𝐷𝑒𝑓𝑓,𝐵𝐶
𝑠𝑢𝑏

𝑟2 ∙ 𝜕
𝜕𝑟⁄ 𝑟2 𝜕

𝜕𝑟⁄ 𝐶𝐵𝐶,𝑖𝑝𝑝𝑤
𝑠𝑢𝑏   (9.10) 

where θw is the water-filled intraparticle BC porosity, dBC is the skeletal solid density of the 

BC, r is the radial distance from the BC particle centre, and t the time. 

The effective diffusion coefficient of the substrate in the BC pore network is defined as 
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𝐷𝑒𝑓𝑓,𝐵𝐶
𝑠𝑢𝑏 = 𝜃𝑤𝜏𝐷𝑎𝑞

𝑠𝑢𝑏         (9.11) 

where τ is the BC pore network tortuosity factor, and Dsub
aq is the molecular diffusion 

coefficient of the substrate in water. 

Boundary conditions: 

A no net flux boundary condition is enforced at r=0 in the BC particle core 

𝜕
𝜕𝑟⁄ 𝐶𝐵𝐶,𝑖𝑝𝑝𝑤

𝑠𝑢𝑏 |
𝑟=0

= 0        

 (9.12) 

and the substrate concentration in BC intraparticle pore water on the BC particle surface is 

equal to the substrate concentration in soil porewater (no external aqueous film mass transfer 

resistance) 

𝐶𝐵𝐶,𝑖𝑝𝑝𝑤
𝑠𝑢𝑏 |

𝑟=𝑅𝐵𝐶
= 𝐶𝑤𝑎𝑡𝑒𝑟

𝑠𝑢𝑏         

 (9.13) 

Assuming instantaneous exchange of the substrate between headspace air and soil pore water, 

the following differential equation governs the substrate concentration in soil pore water: 

(𝑉𝑎𝑖𝑟𝐻𝑠𝑢𝑏 + 𝑉𝑤𝑎𝑡𝑒𝑟) ∙ 𝑑
𝑑𝑡⁄ 𝐶𝑤𝑎𝑡𝑒𝑟

𝑠𝑢𝑏 = +𝑟 1 − 𝑟2 − 𝑟3 − 𝑟4    

 (9.14) 

where Vair is the volume of air in the batch and Vw is the volume of water in the batch. 

The BC particle to soil porewater mass transfer rate, r1, is described by  

𝑟1 = −𝑁𝑝,𝐵𝐶 ∙ 4𝜋𝑅𝐵𝐶
2 ∙ 𝐷𝑒𝑓𝑓,𝐵𝐶

𝑠𝑢𝑏 ∙ 𝜕
𝜕𝑟⁄ 𝐶𝐵𝐶,𝑖𝑝𝑝𝑤

𝑠𝑢𝑏 |
𝑟=𝑅𝐵𝐶

    

 (9.15) 

where Np,BC is the number of BC particles, and RBC is the BC particle radius. 

The soil pore water to soil particles mass transfer rate, r2, is described by 

𝑟2 = −𝑉𝑤𝑘𝑠𝑜𝑟𝑏 (
𝐶𝑠𝑜𝑖𝑙

𝑠𝑢𝑏

𝐾𝑠𝑜𝑖𝑙
𝑠𝑢𝑏 − 𝐶𝑤𝑎𝑡𝑒𝑟

𝑠𝑢𝑏 )       

 (9.16) 

where ksorb is a first-order kinetic sorption rate. 



Appendix 

198 

 

The batch air to outside air mass transfer rate, r3, which is assumed to be due to leakage 

through a small gap between the cap and the glass vial is described by 

𝑟3 = −𝐿𝑓 ∙ 𝐷𝑎𝑖𝑟
𝑠𝑢𝑏 ∙ 𝐻𝑠𝑢𝑏 ∙ (0 − 𝐶𝑤𝑎𝑡𝑒𝑟

𝑠𝑢𝑏 )       

 (9.17) 

where Lf is a leakage factor approximately equal to the cross-sectional area of the gap divided 

by the gap length, and Dsub
air is the molecular diffusion coefficient of the substrate in air. 

The substrate mass utilization rate due to biodegradation, r4, is described by assuming Monod 

kinetics limited by logistic growth according to 

𝑟4 = 𝑉𝑤𝜇𝑚𝑎𝑥
𝑠𝑢𝑏 ∙

𝐶𝑤𝑎𝑡𝑒𝑟
𝑠𝑢𝑏

𝐾𝑆
𝑠𝑢𝑏+𝐶𝑤𝑎𝑡𝑒𝑟

𝑠𝑢𝑏 ∙
1

𝑌𝑠𝑢𝑏
∙

𝐶𝑤𝑎𝑡𝑒𝑟,𝑚𝑎𝑥
𝑏𝑖𝑜𝑚𝑎𝑠𝑠 −𝐶𝑤𝑎𝑡𝑒𝑟

𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝐶𝑤𝑎𝑡𝑒𝑟,𝑚𝑎𝑥
𝑏𝑖𝑜𝑚𝑎𝑠𝑠 ∙ 𝐶𝑤𝑎𝑡𝑒𝑟

𝑏𝑖𝑜𝑚𝑎𝑠𝑠   

 (9.18) 

where μsub
max is the maximum specific growth rate, Ksub

S is the half-velocity constant, Ysub is 

the yield coefficient, Cbiomass
water is the concentration of the biomass in soil pore water, and 

Cbiomass
water,max is the maximum concentration of the biomass in soil pore water. Equation 18 

assumes that only substrate dissolved in soil pore water is biodegradable, and the substrate 

degrading biomass is dissolved in or in direct contact with the soil pore water. 

The following differential equation governs the substrate concentration in soil particles 

𝑀𝑠𝑜𝑖𝑙 ∙ 𝑑
𝑑𝑡⁄ 𝐶𝑠𝑜𝑖𝑙

𝑠𝑢𝑏 = +𝑟 2        

 (9.19) 

where Msoil is the dry mass of soil in the batch. The soil pore water to soil particles mass 

transfer rate r2 has been describe above. 

2. Biomass 

The following differential equation governs the growth and decay of 13C biomass on the 13C  

substrate 

𝑉𝑤
𝑑

𝑑𝑡⁄ 𝐶𝑤𝑎𝑡𝑒𝑟
𝑏𝑖𝑜𝑚𝑎𝑠𝑠,13𝐶 = 𝑉𝑤 (𝜇𝑚𝑎𝑥

𝑠𝑢𝑏 ∙
𝐶𝑤𝑎𝑡𝑒𝑟

𝑠𝑢𝑏

𝐾𝑆
𝑠𝑢𝑏+𝐶𝑤𝑎𝑡𝑒𝑟

𝑠𝑢𝑏 ∙
𝐶𝑤𝑎𝑡𝑒𝑟,𝑚𝑎𝑥

𝑏𝑖𝑜𝑚𝑎𝑠𝑠 −𝐶𝑤𝑎𝑡𝑒𝑟
𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝐶𝑤𝑎𝑡𝑒𝑟,𝑚𝑎𝑥
𝑏𝑖𝑜𝑚𝑎𝑠𝑠 − 𝑑𝑒𝑐) ∙ 𝐶𝑤𝑎𝑡𝑒𝑟

𝑏𝑖𝑜𝑚𝑎𝑠𝑠

 (9.20) 

where dec is the biomass first-order decay rate.  
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Based on the assumption that the assimilation of 13C from the 13C substrate enables a 

proportional assimilation of 12C from other carbon substrates, the growth and decay of 12C 

biomass is described by 

𝑉𝑤
𝑑

𝑑𝑡⁄ 𝐶𝑤𝑎𝑡𝑒𝑟
𝑏𝑖𝑜𝑚𝑎𝑠𝑠,12𝐶 = 𝑓 ∙ 𝑉𝑤

𝑑
𝑑𝑡⁄ 𝐶𝑤𝑎𝑡𝑒𝑟

𝑏𝑖𝑜𝑚𝑎𝑠𝑠,13𝐶
     

 (9.21) 

where f is the 12C to 13C assimilation ratio.  

The total biomass concentration then changes according to 

𝑉𝑤
𝑑

𝑑𝑡⁄ 𝐶𝑤𝑎𝑡𝑒𝑟
𝑏𝑖𝑜𝑚𝑎𝑠𝑠 = (1 + 𝑓) ∙ 𝑉𝑤 (𝜇𝑚𝑎𝑥

𝑠𝑢𝑏 ∙
𝐶𝑤𝑎𝑡𝑒𝑟

𝑠𝑢𝑏

𝐾𝑆
𝑠𝑢𝑏+𝐶𝑤𝑎𝑡𝑒𝑟

𝑠𝑢𝑏 ∙
𝐶𝑤𝑎𝑡𝑒𝑟,𝑚𝑎𝑥

𝑏𝑖𝑜𝑚𝑎𝑠𝑠 −𝐶𝑤𝑎𝑡𝑒𝑟
𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝐶𝑤𝑎𝑡𝑒𝑟,𝑚𝑎𝑥
𝑏𝑖𝑜𝑚𝑎𝑠𝑠 − 𝑑𝑒𝑐) ∙ 𝐶𝑤𝑎𝑡𝑒𝑟

𝑏𝑖𝑜𝑚𝑎𝑠𝑠

 eq 22. 

3. CO2 

Assuming instantaneous exchange of CO2 between headspace air and soil pore water, a 

constant soil pH, no carbonate dissolution or precipitation, and a constant background soil 

respiration by microorganisms other than the substrate degraders releasing additional 12C CO2 

from soil organic carbon metabolization, the following differential equations govern the 

concentration of 13C CO2 and 12C CO2 in batch headspace air 

(𝑉𝑎 + 𝑉𝑤 ∙
1

𝐻∗
𝐶𝑂2 (1 +

𝐾1

10−𝑝𝐻 +
𝐾1𝐾2

10−2𝑝𝐻)) 𝑑
𝑑𝑡⁄ 𝐶𝑎𝑖𝑟

𝐶𝑂2,13 = +𝑟5
13𝐶 − 𝑟6

13𝐶   

 (9.23) 

(𝑉𝑎 + 𝑉𝑤 ∙
1

𝐻∗
𝐶𝑂2 (1 +

𝐾1

10−𝑝𝐻 +
𝐾1𝐾2

10−2𝑝𝐻)) 𝑑
𝑑𝑡⁄ 𝐶𝑎𝑖𝑟

𝐶𝑂2,12𝐶 = +𝑟5
12𝐶 − 𝑟6

12𝐶 + 𝑟7
12𝐶 

 (9.24) 

For 13C-CO2, the net 13C-CO2 mass production rate, r5, is described by 

𝑟5
13𝐶 = 𝑉𝑤 (𝜇𝑚𝑎𝑥

𝑠𝑢𝑏 ∙
𝐶𝑤𝑎𝑡𝑒𝑟

𝑠𝑢𝑏

𝐾𝑆
𝑠𝑢𝑏+𝐶𝑤𝑎𝑡𝑒𝑟

𝑠𝑢𝑏 ∙
𝐶𝑤𝑎𝑡𝑒𝑟,𝑚𝑎𝑥

𝑏𝑖𝑜𝑚𝑎𝑠𝑠 −𝐶𝑤𝑎𝑡𝑒𝑟
𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝐶𝑤𝑎𝑡𝑒𝑟,𝑚𝑎𝑥
𝑏𝑖𝑜𝑚𝑎𝑠𝑠 ∙

1−𝑌𝑠𝑢𝑏

𝑌𝑠𝑢𝑏
−

1

1+𝑓
∙ 𝑑𝑒𝑐) ∙ 𝐶𝑤𝑎𝑡𝑒𝑟

𝑏𝑖𝑜𝑚𝑎𝑠𝑠 

 (9.25) 

Based on the assumption that the 12C substrates are assimilated with the same yield as the 13C 

substrate, the net 12C-CO2 mass production rate is described by 

𝑟5
12𝐶 = 𝑓 ∙ 𝑟5

13𝐶         

 (9.26) 
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The batch air to outside air mass transfer rate, r6, which is assumed to be due to leakage 

through a small gap between the cap and the glass vial is described by 

𝑟6
13𝐶 = −𝐿𝑓 ∙ 𝐷𝑎𝑖𝑟

𝐶𝑂2,13𝐶 ∙ (𝐶𝑎𝑡𝑚𝑜𝑠
𝐶𝑂2,13𝐶 − 𝐶𝑎𝑖𝑟

𝐶𝑂2,12𝐶)     

 (9.27) 

𝑟6
12𝐶 = −𝐿𝑓 ∙ 𝐷𝑎𝑖𝑟

𝐶𝑂2,12𝐶 ∙ (𝐶𝑎𝑡𝑚𝑜𝑠
𝐶𝑂2,12𝐶 − 𝐶𝑎𝑖𝑟

𝐶𝑂2,12𝐶)     

 (9.28) 

for 13C-CO2 and 12C-CO2 respectively, where CCO2,13C
atmos and CCO2,12C

atmos is the 13CO2 and 

12CO2 concentration in the atmosphere respectively. 

The additional 12C-CO2 mass production by the respiration of soil microorganisms other than 

the substrate degraders is described by 

𝑟7
12𝐶 = 𝑀𝑠𝑜𝑖𝑙 ∙ 𝐵𝐺𝑅𝑠𝑜𝑖𝑙

𝐶𝑂2,12𝐶
        

 (9.28) 

where BGRCO2,12C 
soil is the background soil respiration rate. 

Numerical solution: 

The differential equations are solved with Matlab © using the differential equation solver 

ode15. In order to use this solver, the system of partial and ordinary differential equations is 

transformed into a system of only time-dependant ordinary differential equations using the 

method of lines. The BC particles are discretized into nbc concentric shells, where C1 is the 

substrate concentration in the BC intraparticle porewater in the BC particle core, and Cnbc is 

the substrate concentration in the BC intraparticle porewater in the outermost BC shell (Figure 

1a).  

Cnbc+1 is the substrate concentration in soil porewater (Figure 1b). Cnbc+2 is the substrate 

concentration for the soil solids. Cnbc+3 is the biomass concentration in soil porewater. Cnbc+4 is 

the 13C-CO2 concentration in headspace and soil air. Cnbc+5 is the 12C-CO2 concentration in 

headspace and soil air. 
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Figure 9.1. Discretization of the BC particles and concentration vector 

For each BC shell i, the shell volume VBC,i is  

𝑉𝐵𝐶,𝑖 =
4

3
𝜋 ((𝑖𝑑𝑟)3 − ((𝑖 − 1)𝑑𝑟)

3
) =

4

3
𝜋𝑑𝑟3(3𝑖2 − 3𝑖 + 1) =

4

3
𝜋𝑅𝐵𝐶

3 (3𝑖2−3𝑖+1)

𝑛𝑏𝑐3    

(9.29) 

For each BC shell i, the outer shell surface area is  

𝐴𝐵𝐶,𝑖 = 4𝜋𝑖2𝑑𝑟2 = 4𝜋
𝑖2

𝑛𝑏𝑐2 𝑅𝐵𝐶
2      

 (9.30) 

The total number of BC particles, Np,BC, can be calculated from the mass of BC in the batch, 

MBC, 

𝑁𝑝,𝐵𝐶 =
𝑀𝐵𝐶

(1−𝜃𝐵𝐶)𝑑𝐵𝐶
∙

1
4

3
𝜋𝑅𝐵𝐶

3         

 (9.31) 

The capacity factor CFi for the substrate concentration in intraparticle porewater of the shells i 

of all BC particles is 

𝐶𝐹𝑖 = 𝑁𝑝,𝐵𝐶𝑉𝐵𝐶,𝑖(𝜃𝐵𝐶 + (1 − 𝜃𝐵𝐶)𝑑𝐵𝐶𝐾𝐵𝐶)      

 (9.32) 

The total substrate mass transfer rate from all BC shells i to shells i+1 due to substrate 

diffusion in intraparticle porewater is 
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𝑟𝑖𝑝𝑑,𝑖 = −
𝑁𝑝,𝐵𝐶𝐴𝐵𝐶,𝑖𝐷𝑒𝑓𝑓,𝐵𝐶

𝑠𝑢𝑏

𝑑𝑟
(𝐶𝑖+1 − 𝐶𝑖) = −

𝑛𝑏𝑐∙𝑁𝑝,𝐵𝐶𝐴𝐵𝐶,𝑖𝐷𝑒𝑓𝑓,𝐵𝐶
𝑠𝑢𝑏

𝑅𝐵𝐶
(𝐶𝑖+1 − 𝐶𝑖)  

 (9.33) 

For the outermost shell surface areas, it has been assumed that there is no aqueous film mass 

transfer resistance, and the substrate concentration at the interface is equal to the soil 

porewater concentration, thus the diffusion distance dr is reduced by half  

𝑟𝑖𝑝𝑑,𝑛𝑏𝑐 = −2 ∙
𝑛𝑏𝑐∙𝑁𝑡,𝐵𝐶𝐴𝐵𝐶,𝑖𝐷𝑒𝑓𝑓,𝐵𝐶

𝑠𝑢𝑏

𝑅𝐵𝐶
(𝐶𝑛𝑏𝑐+1 − 𝐶𝑛𝑏𝑐)     

 (9.34) 

The following ordinary differential equations describes the concentration changes in the 

intraparticle BC porewater in the particle core which are due to the substrate intraparticle 

diffusion 

𝑑
𝑑𝑡⁄ 𝐶1 = −

𝑟𝑖𝑝𝑑,1

𝐶𝐹1
          

 (9.35) 

and for i=2 … nbc 

𝑑
𝑑𝑡⁄ 𝐶𝑖 = −

𝑟𝑖𝑝𝑑,𝑖−𝑟𝑖𝑝𝑑,𝑖−1

𝐶𝐹𝑖
        

 (9.36) 

The capacity factor CF for the substrate concentration in soil pore water, which is assumed to 

be in instantaneous equilibrium with the substrate concentration in soil air and headspace air, 

is 

𝐶𝐹𝑛𝑏𝑐+1 = (𝑉𝑎𝑖𝑟𝐻𝑠𝑢𝑏 + 𝑉𝑤𝑎𝑡𝑒𝑟)       

 (9.37) 

The substrate mass transfer rate from soil porewater to soil solids is 

𝑟𝑠𝑜𝑟𝑏 = −𝑉𝑤𝑘𝑠𝑜𝑟𝑏 (
𝐶𝑛𝑏𝑐+2

𝐾𝑠𝑜𝑖𝑙
𝑠𝑢𝑏 − 𝐶𝑛𝑏𝑐+1)       

 (9.38) 

The batch air to outside air mass transfer rate, rleak, which is assumed to be due to leakage 

through a small gap between the cap and the glass vial is described by 

𝑟𝑙𝑒𝑎𝑘,𝑠𝑢𝑏 = 𝐿𝑓 ∙ 𝐷𝑎𝑖𝑟
𝑠𝑢𝑏 ∙ 𝐻𝑠𝑢𝑏 ∙ 𝐶𝑛𝑏𝑐+1        

 (9.39) 
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The substrate mass removal rate from the soil pore water due to biodegradation is 

𝑟𝑑𝑒𝑔 = 𝑉𝑤𝜇𝑚𝑎𝑥
𝑠𝑢𝑏 ∙

𝐶𝑛𝑏𝑐+1

𝐾𝑆
𝑠𝑢𝑏+𝐶𝑛𝑏𝑐+1

∙
𝐶𝑤𝑎𝑡𝑒𝑟,𝑚𝑎𝑥

𝑏𝑖𝑜𝑚𝑎𝑠𝑠 −𝐶𝑛𝑏𝑐+3

𝐶𝑤𝑎𝑡𝑒𝑟,𝑚𝑎𝑥
𝑏𝑖𝑜𝑚𝑎𝑠𝑠 ∙

1

𝑌𝑠𝑢𝑏
∙ 𝐶𝑛𝑏𝑐+3   

 (9.40). 

The following ordinary differential equation describes the concentration changes in the soil 

porewater  

𝑑
𝑑𝑡⁄ 𝐶𝑛𝑏𝑐+1 =

𝑟𝑖𝑝𝑑,𝑛𝑏𝑐−𝑟𝑙𝑒𝑎𝑘,𝑠𝑢𝑏−𝑟𝑠𝑜𝑟𝑏−𝑟𝑑𝑒𝑔

𝐶𝐹𝑛𝑏𝑐+1
      

 (9.41) 

The capacity factor CFnbc+2 for the substrate concentration in soil solids is 

𝐶𝐹𝑛𝑏𝑐+2 = 𝑀𝑠𝑜𝑖𝑙          

 (9.42). 

The following ordinary differential equation describes the concentration changes in the soil 

solids  

𝑑
𝑑𝑡⁄ 𝐶𝑛𝑏𝑐+2 =

+𝑟𝑠𝑜𝑟𝑏

𝐶𝐹𝑛𝑏𝑐+2
        

 (9.43) 

The capacity factor CFnbc+3 for the biomass concentration in soil porewater is 

𝐶𝐹𝑛𝑏𝑐+3 = 𝑉𝑤          

 (9.44) 

The net biomass mass production rate is 

𝑟𝑝𝑟𝑜𝑑,𝑏𝑖𝑜𝑚𝑎𝑠𝑠 = 𝑉𝑤 ((1 + 𝑓) ∙ 𝜇𝑚𝑎𝑥
𝑠𝑢𝑏 ∙

𝐶𝑛𝑏𝑐+1

𝐾𝑆
𝑠𝑢𝑏+𝐶𝑛𝑏𝑐+1

∙
𝐶𝑤𝑎𝑡𝑒𝑟,𝑚𝑎𝑥

𝑏𝑖𝑜𝑚𝑎𝑠𝑠 −𝐶𝑛𝑏𝑐+3

𝐶𝑤𝑎𝑡𝑒𝑟,𝑚𝑎𝑥
𝑏𝑖𝑜𝑚𝑎𝑠𝑠 − 𝑑𝑒𝑐) ∙ 𝐶𝑛𝑏𝑐+3

 (9.45) 

The following ordinary differential equation describes the biomass concentration change in 

the soil porewater  

𝑑
𝑑𝑡⁄ 𝐶𝑛𝑏𝑐+3 =

+𝑟𝑝𝑟𝑜𝑑,𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝐶𝐹𝑛𝑏𝑐+3
        (9.46) 

Assuming instantaneous equilibrium between soil porewater, soil air and headspace air, and 

instantaneous CO2 hydration and proton exchange, stable soil pH, and no formation or 

dissolution of carbonates, the capacity factor CFnbc+4 for the 13C-CO2 concentration in soil air 

and headspace air is 



Appendix 

204 

 

𝐶𝐹𝑛𝑏𝑐+4 = 𝑉𝑎 + 𝑉𝑤 ∙
1

𝐻∗
𝐶𝑂2 (1 +

𝐾1

10−𝑝𝐻
+

𝐾1𝐾2

10−2𝑝𝐻
)     (9.47) 

The batch air to outside air mass transfer rate, rleak,CO2 is 

𝑟𝑙𝑒𝑎𝑘,𝐶𝑂2,𝐶13 = −𝐿𝑓 ∙ 𝐷𝑎𝑖𝑟
𝐶𝑂2,𝐶13 ∙ (𝐶𝑎𝑡𝑚𝑜𝑠

𝐶𝑂2,13𝐶 − 𝐶𝑛𝑏𝑐+4)     (9.48) 

The 13C-CO2 mass production rate is 

𝑟𝑝𝑟𝑜𝑑,𝐶𝑂2,𝐶13 = 𝑉𝑤 (𝜇𝑚𝑎𝑥
𝑠𝑢𝑏 ∙

𝐶𝑛𝑏𝑐+1

𝐾𝑆
𝑠𝑢𝑏+𝐶𝑛𝑏𝑐+1

∙
𝐶𝑤𝑎𝑡𝑒𝑟,𝑚𝑎𝑥

𝑏𝑖𝑜𝑚𝑎𝑠𝑠 −𝐶𝑛𝑏𝑐+3

𝐶𝑤𝑎𝑡𝑒𝑟,𝑚𝑎𝑥
𝑏𝑖𝑜𝑚𝑎𝑠𝑠 ∙

1−𝑌𝑠𝑢𝑏

𝑌𝑠𝑢𝑏 −
1

1+𝑓
∙ 𝑑𝑒𝑐) ∙ 𝐶𝑛𝑏𝑐+3  

(9.49). 

The following ordinary differential equation describes the 13C-CO2 concentration change in 

the soil air and headspace air  

𝑑
𝑑𝑡⁄ 𝐶𝑛𝑏𝑐+4 =

+𝑟𝑝𝑟𝑜𝑑,𝐶𝑂2,13𝐶−𝑟𝑙𝑒𝑎𝑘,𝐶𝑂2,13𝐶

𝐶𝐹𝑛𝑏𝑐+4
      (9.50) 

The capacity factor CFnbc+5 for the 12C-CO2 concentration in soil air and headspace air is 

𝐶𝐹𝑛𝑏𝑐+5 = 𝑉𝑎 + 𝑉𝑤 ∙
1

𝐻∗
𝐶𝑂2 (1 +

𝐾1

10−𝑝𝐻 +
𝐾1𝐾2

10−2𝑝𝐻)      (9.51) 

The batch air to outside air mass transfer rate, rleak,CO2, which is assumed to be due to leakage 

through a small gap between the cap and the glass vial is 

𝑟𝑙𝑒𝑎𝑘,𝐶𝑂2,𝐶12 = −𝐿𝑓 ∙ 𝐷𝑎𝑖𝑟
𝐶𝑂2,𝐶12 ∙ (𝐶𝑎𝑡𝑚𝑜𝑠

𝐶𝑂2,12𝐶 − 𝐶𝑛𝑏𝑐+5)     (9.52). 

The 12C-CO2 mass production rate from the substrate degrading biomass is 

𝑟𝑝𝑟𝑜𝑑,𝐶𝑂2,𝐶12 = 𝑓 ∙ 𝑉𝑤 (𝜇𝑚𝑎𝑥
𝑠𝑢𝑏 ∙

𝐶𝑛𝑏𝑐+1

𝐾𝑆
𝑠𝑢𝑏+𝐶𝑛𝑏𝑐+1

∙
𝐶𝑤𝑎𝑡𝑒𝑟,𝑚𝑎𝑥

𝑏𝑖𝑜𝑚𝑎𝑠𝑠 −𝐶𝑛𝑏𝑐+3

𝐶𝑤𝑎𝑡𝑒𝑟,𝑚𝑎𝑥
𝑏𝑖𝑜𝑚𝑎𝑠𝑠 ∙

1−𝑌𝑠𝑢𝑏

𝑌𝑠𝑢𝑏
−

1

1+𝑓
∙ 𝑑𝑒𝑐) ∙ 𝐶𝑛𝑏𝑐+3  

(9.53). 

The 12C-CO2 mass production rate from the rest of the soil biomass is 

𝑟𝑏𝑔𝑟,𝐶𝑂2,𝐶12 = 𝑀𝑠𝑜𝑖𝑙 ∙ 𝐵𝐺𝑅𝑠𝑜𝑖𝑙
𝐶𝑂2,12𝐶

         (9.54). 

The following ordinary differential equation describes the 12C-CO2 concentration change in 

the soil air and headspace air  

𝑑
𝑑𝑡⁄ 𝐶𝑛𝑏𝑐+5 =

+𝑟𝑝𝑟𝑜𝑑,𝐶𝑂2,12𝐶−𝑟𝑙𝑒𝑎𝑘,𝐶𝑂2,12𝐶+𝑟𝑏𝑔𝑟,𝐶𝑂2,𝐶12

𝐶𝐹𝑛𝑏𝑐+5
      (9.55). 

This system of ordinary differential equations 35,36,41,43,46,50,55 describes the temporal 

change in the concentrations, d/dt Ci=1..nbc+5 as a function of the concentrations Ci=1..nbc+5. 

Matlab © implementation: 
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1. Batch model script (for AC amended soil) 

clear all 

close all 

clc 

  

% Simulates a kinetic batch sorption and biodegradation test with radial  

% intraparticle diffusion for porous black carbon particles (biochar or AC) 

% first-order kinetic sorption for soil, and Monod kinetic growth of  

% pollutant degrading biomass on a 13C substrate.  

% t: Time [s] 

% c: Vector of dependant variables  

%   1: Substrate conc in porewater, BC particle core [moles substrate C/m3] 

%   2: Substrate conc in porewater, next BC shell [moles substrate C/m3] 

%    ... 

%   nbc: Substrate concentration in porewater, outermost BC shell 

%   nbc+1: Substrate concentration in soil porewater [moles substrate C/m3] 

%   nbc+2: Substrate concentration in soil solids [moles substrate C/g] 

%   nbc+3: Biomass concentration in soil porewater [moles biomass C/m3] 

%   nbc+4: 13CO2 concentration in headspace air [moles CO2 13C/m3] 

%   nbc+5: 12CO2 concentration in headspace air [moles CO2 12C/m3] 

  

%% Set parameters 

  

% Batch 

% Total volume batch, Vbatch [m3] 

Vbatch = 65/10^6; 

% Leakage factor (gap area/gap length) [m] 

Lf = 5.3*10^-6; 

% Soil 

% Dry soil mass in batch, Msoil [kg] 

Msoil = 15/1000; 

% Soil water content, WCsoil [m3 water per kg dry soil] 

WCsoil  = 0.1*1000/10^6; 

% Solid density soil particles, dsoil [kg/m3] 

dsoil = 2.5/1000*10^6; 
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% BC (Biochar/AC)    

% Mass of biochar added, Mbc [kg] 

Mbc = 0.02*Msoil; 

% Radius of the particles, Rbc [m] 

Rbc = 50*10^-6; 

% Solid density of the particles, dbc [kg/m3] 

dbc = 1.8/1000*10^6; 

% Intraparticle porosity of the particles, pbc [m3/m3] 

pbc = 0.57; 

% Tortuosity factor of the particles, tortbc [-] 

tortbc = pbc; 

  

% Soil pH (with BC amendment if present) 

pH = 7.74; 

  

% Pollutant    

% Molecular diffusion coefficient of the pollutant in water, Daq [m2/s] 

Daq = 0.00027/106^0.71/10^4; 

% Molecular diffusion coefficient of the pollutant in air, Dair [m2/s] 

Dair = 0.078/10^4; 

% Soil sorption coefficient, Ksoil [m3/kg] 

Ksoil =7.9*10^-4; 

% Soil sorption first-order uptake rate water, ksoil -> solid [1/s] 

ksoil = 0.001; 

% BC sorption coefficient Kbc [m3/kg] 

Kbc = 9.32; 

% Dimensionless Henry coefficient H  

% [moles substrate C per m3 air/moles substrate C per m3 water] 

H = 0.26; 

  

% Biomass and biodegradation 

% Monod half-rate constant, KS [moles/m3] 

KS = 11.9415; 

% Monod maximum growth rate, umax [1/s] 
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umax = 0.6/3600; 

% Yield coefficient, Y [moles biomass C/moles substrate C] 

Y = 0.135; 

%   Decay rate, kdec [1/s] 

kdec = 7.50e-09; 

%   Lag phase, lag [s] 

lag = 6*24*3600; 

%   Maximum soil biomass carrying capacity, Cbmax [moles biomass C/m3 soil water] 

Cbmax = 25; 

% Cell carbon content [moles biomass C/cell] 

Ccell = 100*10^-15/12; 

% C12/C13 assimilation ratio [-] 

C12_C13_ratio = 0.68; 

  

% CO2 

% Atmospheric concentration [moles CO2-C/m3] 

C12_atm = 400*10^-6/0.0224; 

C13_atm = 400*10^-6/0.0224*0.013; 

% Acid constants CO2 [moles/L] 

K1 = 4.45*10^-7; 

K2 = 4.69*10^-11; 

% Dimensionless Henry constant air-water CO2 

% [moles CO2 C per m3 air/moles CO2 C per m3 water] 

H_CO2 = 0.034/0.0404; 

% Molecular diffusion coefficient in air [m2/s] 

Dair_12CO2 = 0.17/10^4; 

Dair_13CO2 = 0.17/10^4; 

% Background soil respiration [moles CO2-C/s] 

BGResp = 10^-11; 

  

% Discretization 

%   Number of particle shells, nbc [-]  

nbc = 31; 

 %% Initial conditions and duration 
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% Mass of substrate added to the batch [moles substrate C] 

MP0 = 0.867*0.005/12; 

% Initial substrate concentration in soil pore water [moles/m3] 

Cw0 = MP0/(WCsoil*Msoil+(Vbatch-WCsoil*Msoil-Msoil/dsoil)*H); 

% Initial cell count [cells/kg of wet soil] 

CC0 = 2.7*10^10; 

% Initial biomass [moles biomass C/m3 of soil pore water] 

Cb0 = CC0*(1+WCsoil/1000)/WCsoil*Ccell; 

  

c0 = zeros(nbc+5,1); 

c0(nbc+1,1)=Cw0; 

c0(nbc+3,1)=Cb0; 

c0(nbc+4,1)=C13_atm; 

c0(nbc+5,1)=C12_atm; 

  

% Duration of the experiment [s] 

duration = 20*24*60*60; 

tspan = [0 duration]; 

  

%% Calculated parameters 

  

% Leakage multiplier for the substrate (Gap area/Gap length*Dair*H) [m3/s] 

Lm_Substrate = Lf*Dair*H; 

% Leakage factor for CO2 (Gap area/Gap length*Dair) [m3/s] 

Lm_12CO2 = Lf*Dair_12CO2; 

Lm_13CO2 = Lf*Dair_13CO2; 

  

% Effective diffusivity [m2/s] 

Deffbc = tortbc*pbc*Daq; 

% Shell thickness [m] 

drbc = Rbc/nbc; 

% Number of particles [-] 

Np = Mbc/dbc/(1-pbc)/4*3/pi/Rbc^3; 

% Extraparticular soil water volume [m3] 

Vwsoil = WCsoil*Msoil; 
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% Extraparticular soil air volume [m3] 

Vasoil = Vbatch-Vwsoil-Msoil/dsoil; 

  

%% Calculate areas, volumes and capacities 

% Radii of the biochar shells, including the innermost radius of zero 

rvec=[0:nbc]'*drbc; 

% Corresponding areas times the number of particles [m2] 

Avec=4*pi*rvec.^2*Np; 

% Volumes of the shells times the number of particles [m3] 

Vshell=4/3*pi*(rvec(2:end).^3-rvec(1:end-1).^3)*Np; 

% Volume of water in the shells [m3] 

Vwshell=Vshell*pbc; 

% Compute the mass of solids for all shells [kg] 

Mshell=Vshell*(1-pbc)*dbc; 

% Compute the capacity for each element [m3] or [kg] 

Capacity=[Vwshell+Mshell*Kbc;Vwsoil+Vasoil*H;Msoil;Vwsoil;... 

Vasoil+Vwsoil/H_CO2*(1+K1/10^-pH+K1*K2/10^-(2*pH));... 

Vasoil+Vwsoil/H_CO2*(1+K1/10^-pH+K1*K2/10^-(2*pH))]; 

  

%% determine sparsity pattern 

ivec=nan(nbc+5+2*nbc+8,1); 

jvec=nan(nbc+5+2*nbc+8,1); 

avec=ones(nbc+5+2*nbc+8,1); 

% self relationship 

index = 0; 

add = nbc+5; 

ivec(index+1:index+add)=1:nbc+5; 

jvec(index+1:index+add)=1:nbc+5; 

index = index+add; 

% biochar shell relationships to outer neighbor and soil porewater 

add = nbc; 

ivec(index+1:index+add)=1:nbc; 

jvec(index+1:index+add)=2:nbc+1; 

index = index+add; 

% biochar shell relationships to inner neighbor and soil porewater 
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add = nbc; 

ivec(index+1:index+add)=2:nbc+1; 

jvec(index+1:index+add)=1:nbc; 

index = index+add; 

% soil porewater -> solid relationship 

add = 1; 

ivec(index+1:index+add)=nbc+1; 

jvec(index+1:index+add)=nbc+2; 

index = index+add; 

% soil solid -> soil porewater relationship 

add = 1; 

ivec(index+1:index+add)=nbc+2; 

jvec(index+1:index+add)=nbc+1; 

index = index+add; 

% soil porewater -> biomass relationship 

add = 1; 

ivec(index+1:index+add)=nbc+1; 

jvec(index+1:index+add)=nbc+3; 

index = index+add; 

% biomass -> soil porewater relationship 

add = 1; 

ivec(index+1:index+add)=nbc+3; 

jvec(index+1:index+add)=nbc+1; 

index = index+add; 

% additional relationship 13CO2 -> pollutant in soil water 

add = 1; 

ivec(index+1:index+add)=nbc+4; 

jvec(index+1:index+add)=nbc+1; 

index = index+add; 

% additional relationship 13CO2 -> biomass in soil water 

add = 1; 

ivec(index+1:index+add)=nbc+4; 

jvec(index+1:index+add)=nbc+3; 

index = index+add; 

% additional relationship 12CO2 -> pollutant in soil water 
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add = 1; 

ivec(index+1:index+add)=nbc+5; 

jvec(index+1:index+add)=nbc+1; 

index = index+add; 

% additional relationship 12CO2 -> biomass in soil water 

add = 1; 

ivec(index+1:index+add)=nbc+5; 

jvec(index+1:index+add)=nbc+3; 

index = index+add; 

% make a sparse matrix of that 

sparsepat=sparse(ivec,jvec,avec); 

  

% set options (absolute and relative tolerance, sparsity pattern,  

%              enforce non-negativity for all concentrations) 

options=odeset('abstol',1e-13,'reltol',1e-7,'Jpattern',sparsepat,... 

               'nonnegative',[1:nbc+5]); 

  

%% Solving the system of differential equations 

[time,concentrations] = ode15s(@GeorgeBatchDGLV3,tspan,c0,options,... 

    Lm_Substrate,Lm_13CO2,Lm_12CO2,C12_atm,C13_atm,drbc,Deffbc,Avec,... 

    Vwsoil,ksoil,Ksoil,lag,umax,KS,Y,kdec,Cbmax,C12_C13_ratio,BGResp,... 

    Capacity,nbc); 

  

%% Extracting solutions and plotting 

% Toluene prediction water [g C/L] 

Cw=concentrations(:,nbc+1)*12/1000; 

% Toluene prediction air [g C/cm3] 

Ca=concentrations(:,nbc+1)*H*12/1000; 

% Toluene prediction BC intraparticle porewater concentration [g C/L] 

IntraPartCw=concentrations(:,1:nbc)*12/1000; 

% Toluene prediction concentration soil [g C/kg] 

Csoil=concentrations(:,nbc+2)*12; 

% Biomass prediction [g C/L] 

Cb=concentrations(:,nbc+3)*12/1000; 

% 13C CO2 prediction concentration in air [g C/L] 
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C13co2=concentrations(:,nbc+4)*12/1000; 

% 12C CO2 prediction concentration in air [g C/L] 

C12co2=concentrations(:,nbc+5)*12/1000; 

  

% Experimental data 

% Toluene data [time in s Conc in Toluene-C g/cm3] 

Tol_data = [3*24*3600 0.000126333;... 

    11*24*3600 0.0000162357;... 

    14*24*3600 0.0000364628;... 

    17*24*3600 0.0000572168]; 

  

% 13C CO2 data [time in s Conc in CO2 13-C g/cm3] 

C13co2_data = [2*24*3600 0.0000000000;... 

    3*24*3600 0.0000136668;... 

    4*24*3600 0.0000165964;... 

    5*24*3600 0.0000492275;... 

    6*24*3600 0.000144001;... 

    7*24*3600 0.000318779;... 

    8*24*3600 0.000616431;... 

    9*24*3600 0.001024461;... 

    10*24*3600 0.001423464;... 

    11*24*3600 0.001533097;... 

    12*24*3600 0.002824531;... 

    13*24*3600 0.003461073;... 

    14*24*3600 0.003516627;... 

    15*24*3600 0.004348111;... 

    16*24*3600 0.005053128;... 

    17*24*3600 0.0053148;... 

    18*24*3600 0.005533387;... 

    19*24*3600 0.006039331]; 

  

% 12C CO2 data [time in s Conc in CO2 12-C g/cm3] 

C12co2_data = [2*24*3600 0.000345635;... 

    3*24*3600 0.000914131;... 

    4*24*3600 0.000603741;... 
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    5*24*3600 0.000623199;... 

    6*24*3600 0.000798527;... 

    7*24*3600 0.001100869;... 

    8*24*3600 0.001420499;... 

    9*24*3600 0.001808232;... 

    10*24*3600 0.002063057;... 

    11*24*3600 0.002084425;... 

    12*24*3600 0.002975414;... 

    13*24*3600 0.003382422;... 

    14*24*3600 0.003408841;... 

    15*24*3600 0.003544204;... 

    16*24*3600 0.004225365;... 

    17*24*3600 0.003853549;... 

    18*24*3600 0.004315954;... 

    19*24*3600 0.00468257]; 

  

% Calculate the sum of squared residuals for data fitting 

PredictionsToluene = interp1(time,Ca,Tol_data(:,1)); 

ResidualsToluene = PredictionsToluene-Tol_data(:,2); 

SquaredResidualsToluene = ResidualsToluene.*ResidualsToluene; 

  

PredictionsC13co2 = interp1(time,C13co2,C13co2_data(:,1)); 

ResidualsC13co2 = PredictionsC13co2-C13co2_data(:,2); 

SquaredResidualsC13co2 = ResidualsC13co2.*ResidualsC13co2; 

  

PredictionsC12co2 = interp1(time,C12co2,C12co2_data(:,1)); 

ResidualsC12co2 = PredictionsC12co2-C12co2_data(:,2); 

SquaredResidualsC12co2 = ResidualsC12co2.*ResidualsC12co2; 

  

SumSquaredResiduals = sum(SquaredResidualsToluene)+... 

    sum(SquaredResidualsC12co2)+sum(SquaredResidualsC13co2) 

  

subplot(2,2,1); 

plot(time/86400,Ca,Tol_data(:,1)/86400,Tol_data(:,2),'d'); 

xlabel('t [d]'); 
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ylabel('c [g/L]'); 

title('Substrate C concentration in soil air') 

  

subplot(2,2,2); 

plot(time/86400,Cb); 

xlabel('t [d]'); 

ylabel('c [g/L]'); 

title('Biomass C concentration in soil water') 

  

subplot(2,2,3); 

plot(time/86400,C13co2,C13co2_data(:,1)/86400,C13co2_data(:,2),'d'); 

xlabel('t [d]'); 

ylabel('c [g/L]'); 

title('Carbon dioxide 13C concentration') 

  

subplot(2,2,4); 

plot(time/86400,C12co2,C12co2_data(:,1)/86400,C12co2_data(:,2),'d'); 

xlabel('t [d]'); 

ylabel('c [g/L]'); 

title('Carbon dioxide 12C concentration') 

 

2. Function 

function dcdt = GeorgeBatchDGLV3(t,c, Lm_Substrate,Lm_13CO2,Lm_12CO2,... 

    C12_atm,C13_atm,drbc,Deffbc,Avec,Vwsoil,ksoil,Ksoil,lag,umax,KS,Y,... 

    kdec,Cbmax,C12_C13_ratio,BGResp,Capacity,nbc) 

  

% Compute the leakage mass transfer rates 

r_leak_substrate = Lm_Substrate*c(nbc+1); 

r_leak_13C = -Lm_13CO2*(C13_atm-c(nbc+4)); 

r_leak_12C = -Lm_12CO2*(C12_atm-c(nbc+5)); 

if Capacity(nbc) > 0 

% Extend the BC porewater concentration vector at the inside 

cext=[c(1);c(1:nbc+1)]; 

% Compute the total diffusive mass transfer rate at all BC interfaces 
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r_ipd = -diff(cext)/drbc*Deffbc.*Avec; 

% For mass transfer from the the outermost shell to the free water, you  

% only have to cover half the distance 

r_ipd(end)=r_ipd(end)*2; 

else 

r_ipd = zeros(nbc+1,1);     

end 

if Capacity(nbc+2) > 0 

% Sorption by the soil with first order kinetics 

r_sorption = -ksoil*Vwsoil*(c(nbc+2)./Ksoil-c(nbc+1)); 

else 

r_sorption = 0; 

end 

% Biomass-C production rate, Monod, Logistic 

r_prod_13C = 0; 

r_prod_12C = 0; 

if t > lag 

r_prod_13C = umax*c(nbc+1)/(KS+c(nbc+1))*c(nbc+3)*(Cbmax-c(nbc+3))/... 

    Cbmax*Vwsoil; 

r_prod_12C = C12_C13_ratio*r_prod_13C; 

end 

% Biomass-C decay rate 

r_dec_13C = 1/(1+C12_C13_ratio)*kdec*c(nbc+3)*Vwsoil; 

r_dec_12C = C12_C13_ratio/(1+C12_C13_ratio)*kdec*c(nbc+3)*Vwsoil; 

% Substrate-C mass removal by degradation rate 

r_deg_13C = r_prod_13C/Y; 

% CO2-C production 

r_prod_13C_CO2 = r_prod_13C/Y*(1-Y)+r_dec_13C; 

r_prod_12C_CO2 = r_prod_12C/Y*(1-Y)+r_dec_12C+BGResp; 

% Mass balance for all shells and the extraparticular water 

if Capacity(nbc) > 0 && Capacity(nbc+2) > 0 

dcdt=[-diff(r_ipd);r_ipd(end)-r_deg_13C-r_sorption-r_leak_substrate;... 

    r_sorption;r_prod_13C-r_dec_13C+r_prod_12C-r_dec_12C;... 

    r_prod_13C_CO2-r_leak_13C;r_prod_12C_CO2-r_leak_12C]./Capacity; 

elseif Capacity(nbc) == 0 && Capacity(nbc+2) > 0   
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dcdt=[zeros(nbc,1);-r_deg_13C-r_sorption-r_leak_substrate;r_sorption;... 

    r_prod_13C-r_dec_13C+r_prod_12C-r_dec_12C;r_prod_13C_CO2-r_leak_13C;... 

    r_prod_12C_CO2-r_leak_12C]./[ones(nbc,1);Capacity(nbc+1:nbc+5)]; 

elseif Capacity(nbc) > 0 && Capacity(nbc+2) == 0   

dcdt=[-diff(r_ipd);-r_deg_13C-r_leak_substrate;0;... 

    r_prod_13C-r_dec_13C+r_prod_12C-r_dec_12C;r_prod_13C_CO2-r_leak_13C;... 

    r_prod_12C_CO2-r_leak_12C]./[Capacity(1:nbc+1);1;... 

    Capacity(nbc+3:nbc+5)]; 

else 

dcdt=[zeros(nbc+3,1);-r_leak_13C;-r_leak_12C]./[ones(nbc+3,1);... 

    Capacity(nbc+4:nbc+5)];    

end 
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Figure 9.2. Gas Chromatography Mass Spectrometry peaks of 12C6 toluene internal standard 

extracts for a) ion 91 b) ion 92 and 13C7 toluene c) ion 98 from soil batch (1) at the end of 

biodegradation experiments. 

a) Peak area = 422,956 

 

b) Peak area = 250,435 

c) Peak area = 25,916 
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Figure 9.3. Gas Chromatography Mass Spectrometry peaks of 12C6 toluene internal standard 

extracts for a) ion 91 b) ion 92 and 13C7 toluene c) ion 98 from soil batch (1) at the end of 

biodegradation experiments. 

a) Peak area = 419,194 

 

b) Peak area = 250,474 

c) Peak area = 25,091 
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Figure 9.4. Gas Chromatography Mass Spectrometry peaks of 12C6 toluene internal standard 

extracts for a) ion 91 b) ion 92 and 13C7 toluene c) ion 98 from soil & biochar batch (1) at the 

end of biodegradation experiments. 

a) Peak area = 393,381 

 

b) Peak area = 235,734 

c) Peak area = 130,839 
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Figure 9.5. Gas Chromatography Mass Spectrometry peaks of 12C6 toluene internal standard 

extracts for a) ion 91 b) ion 92 and 13C7 toluene c) ion 98 from soil & biochar batch (2) at the 

end of biodegradation experiments. 

a) Peak area = 465,692 

 

b) Peak area = 279,250 

c) Peak area = 135,901 
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Figure 9.6. Gas Chromatography Mass Spectrometry peaks of 12C6 toluene internal standard 

extracts for a) ion 91 b) ion 92 and 13C7 toluene c) ion 98 from soil & activated carbon batch 

(1) at the end of biodegradation experiments. 

a) Peak area = 489,531 

 

b) Peak area = 292,061 

c) Peak area = 280,080 
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Figure 9.7. Gas Chromatography Mass Spectrometry peaks of 12C6 toluene internal standard 

extracts for a) ion 91 b) ion 92 and 13C7 toluene c) ion 98 from soil & activated carbon batch 

(2) at the end of biodegradation experiments. 

 

a) Peak area = 403,274 

 

b) Peak area = 242,446 

c) Peak area = 233,030  
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Sample label  Calcium Magnesium Sodium Potassium Zinc  Aluminium Silicon 

Blank   0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0     

Standard  60.0±36.1 20.0±10.0 10.0±5.0 20.0±10.0 4.0±2.0 2.0±1.0 10.0±5.0    

Soil   64.9±0.5 9.6±0.1 15.4±0.4 4.3±0.0 0.0±0.0 0.0±0.0 6.3±0.1    

Soil + 2%Biochar 113.5±15.2 13.4±2.2 15.6±1.8 6.2±0.4 0.0±0.0 0.0±0.0 5.4±0.8    

Soil + 2%AC  40.2±0.3 6.1±0.0 12.9±0.0 3.4±0.0 0.0±0.0 0.0±0.0 5.9±0.0 

Table 9.2. Metal ion concentrations (mg/L) in pore-water extracted from soil, soil & biochar and soil & AC. Measurements were determined using an 

Inductively Coupled Plasma- Optical Emission Spectrometer (ICP-OES).
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Appendix B 

Sample Petroleum 

hydrocarbons 

No of 

sequences 

> 200 bp 

No of 

sequences 

assigned to 

domain 

bacteria 

No of 

sequences 

classified below 

domain level 

No of sequences 

assigned to 

domain archaea 

No of sequences 

classified below 

domain level 

Sequences 

not assigned 

to any 

domain 

Soil.1 N/A 28509 24361 24246 4146 4120 2 

Soil.2 N/A 27360 22114 21984 5224 5190 22 

Soil.3 N/A 31792 26846 26627 4938 4925 8 

Arom.1 Aromatics 26042 20359 20266 5669 5647 14 

Arom.2 Aromatics 30756 24957 24823 5792 5781 7 

Arom.3 Aromatics 23758 19923 19876 3830 3824 5 

Straightalk.1 Straight alkanes 29687 28219 28170 1467 1467 1 

Straightalk.2 Straight alkanes 22119 21114 21078 1000 998 5 

Straightalk.3 Straight alkanes 29937 28773 28712 1160 1160 4 

Cyclbr.1 Cyc/branched alks 26116 23168 23101 2947 2935 1 

Cyclbr.2 Cyc/branched alk 24129 21393 21347 2723 2709 13 

Cyclbr.3 Cyc/branched alk 28662 24858 24798 3795 3784 9 

Table 9.3.A summary of the number of sequences > 200 base pairs following quality filtering and assigned to the bacterial and archaea domain per 

sample in the Ion torrent (PGM) - generated dataset.
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            a) 

Taxon level OTU Soil Soil & 

aromatics 

Soil & Str. 

alkanes 

Soil & 

cyc/branched  

Acidobacteria 7.5±1.0 3.0±0.9 3.8±0.5 4.3±0.1 

Actinobacteria 11.51.3 13.3±1.3 21.1±1.3 10.0±0.8 

Chloroflexi 8.5±0.1 8.3±1.1 5.3±0.9 6.5±0.4 

Firmicutes 8.0±1.4 15.7±0.5 7.4±0.7 10.3±1.6 

Gemmatimonadetes 5.3±0.4 4.6±0.3 2.1±0.1 3.7±0.2 

Planctomycetes 11.2±1.3 10.2±0.8 5.3±0.5 7.0±0.3 

Alphaproteobacteria 14.3±1.8 16.3±1.1 10.6±1.6 12.2±0.4 

Betaproteobacteria 5.3±0.4 5.7±0.5 10.4±0.8 3.2±0.5 

Deltaproteobacteria 9.2±0.2 5.2±0.8 3.8±0.6 5.3±0.1 

Gammaproteobacteria 5.1±0.8 5.8±0.4 24.3±2.9 25.9±1.4 

            b) 

Taxon level OTU Soil Soil & 

aromatics 

Soil & Str. 

alkanes 

Soil & 

cyc/branched  

Crenarchaeota 12.3±1.6 15.9±2.2 3.7±0.5 10.2±1.2 

Acidobacteria 8.1±0.2 4.0±0.6 3.0±0.6 3.4±0.4 

Actinobacteria 8.0±0.2 11.2±0.4 12.1±1.1 7.1±0.8 

Chloroflexi 6.5±0.3 6.4±0.3 2.8±0.2 4.8±0.0 

Firmicutes 8.0±1.2 13.1±0.7 7.8±0.4 10.5±0.6 

Gemmatimonadetes 4.4±0.5 3.7±0.6 1.6±0.1 2.9±0.2 

Planctomycetes 8.1±0.4 5.9±0.3 2.5±0.2 4.1±0.3 

Alphaproteobacteria 8.6±0.2 12.7±2.7 6.0±0.4 9.8±0.1 

Betaproteobacteria 5.2±0.9 4.4±0.3 7.7±1.1 2.3±0.3 

Deltaproteobacteria 7.2±0.4 3.6±0.7 2.4±0.2 3.2±0.3 

Gammaproteobacteria 7.2±1.1 6.8±1.2 45.5±1.1 34.3±2.6 

Table 9.4. A summary of the percentage abundances of dominant OTUs (>3.0% of total 

relative abundance) at the phylum level of taxonomy for the different soil treatments for a) 

454-pyrosequencing data and b) Ion torrent datasets respectively. 
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Figure 9.8. A graph showing the increase in OTU relative abundances versus their relative 

abundance ranking in the control (uncontaminated soil) following addition of different 

petroleum hydrocarbon classes to soil.  
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Figure 9.9. Phylogenetic comparison of 16S rRNA gene sequence from an enriched Desulfosporosinus meridiei (Table 4.3) and closest as well as 

distant relatives from top 50 BLAST hits (16S rRNA sequences).

Blast names color map 

 Query sequence 

     Firmicutes 
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Table 9.5. A summary of BLAST returned hits (close and distant relatives) of the enriched 

Pseudomonas umsongensis and Desulfosporosinus meridiei from one of the batch studies.

Target organisms 

(Species) 

Strain % Similarity Ribosomal RNA gene 

sequence 

Source/Reference 

Pseudomonas 

corrugata 

- 94 Partial sequence Myung et al. 

(2010) 

Psuedomonas mohnii  IpA-2 94 Partial sequence Camara et al. 

(2007) 

Psuedomonas moorei  RW10 94 Partial sequence Camara et al. 

(2007) 

Psuedomonas 

jessenii  

CIP 105274 94 Partial sequence Verhille et al. 

(1999) 

Psuedomonas 

kilonensis  

520-20 94 Complete sequence Sikorski et al. 

(2001) 

Psuedomonas 

mucidolens 

IAM 12406 95 Complete sequence Anzai et al. (1997) 

P. saponiphila DSM 9751 95 Complete sequence Lang et al. (2010) 

Pseudomonas 

cuatrocienegasensis 

1N 93 Partial sequence Escalante et al. 

(2009) 

Pseudomonas 

fluorescens 

Pf0-1 93 Complete sequence Silby et al. (2009) 

Pseudomonas 

fluorescens 

NBRC 14160 93 Partial sequence Unpublished 

Desulfosporosinus 

burensis  

BSREI1 98 Partial sequence Mayeux et al. 

(2013) 

Desulfosporosinus 

meridiei 

DSM 13257 98 Complete sequence Pester et al. (2012) 

Desulfosporosinus 

lacus 

STP12 98 Complete sequence Ramamoorthy et 

al. (2006) 

D. orientis  DSM 765 98 Complete sequence Pester et al. (2012) 

Desulfosporosinus 

youngiae  

JW/YJL-B18 98 Partial sequence Lee et al. (2009) 

Bacillus 

pseudofirmus  

DSM 8715 91 Partial sequence Nielsen et al. 

(1994) 

Bacillus akibai  1139 90 Complete sequence Nogi et al. (2005) 

Bacillus alcalophilus  DSM 485 90 Partial sequence Ash et al. (1991) 

Salinibacillus 

xinjiangensis  

J4 90 Partial sequence Yang et al. (2009) 

Virgibacillus albus  YIM 93624 90 Partial sequence Zang et al. (2012) 
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Taxon level OTU Soil Biochar Activated carbon 

Acidobacteria 6.3±0.3 2.4±0.4 1.9±0.5 

Actinobacteria 11.2±1.7 4.1±0.3 5.0±0.7 

Bacteriodetes 3.3±0.4 10.8±2.4 7.7±6.0 

Chloroflexi 6.5±0.6 5.1±2.2 5.4±2.0 

Firmicutes 8.2±1.3 11.0±2.2 8.2±4.0 

Gemmatimonadetes 5.1±0.4 1.0±0.0 1.4±0.2 

Planctomycetes 13.8±7.0 2.4±04 3.0±0.5 

Alphaproteobacteria 11.4±0.3 3.5±0.1 3.5±0.2 

Betaproteobacteria 6.8±0.2 11.9±1.1 11.8±1.7 

Deltaproteobacteria 6.9±0.7 10.1±4.8 10.6±5.3 

Gammaproteobacteria 11.7±0.9 29.5±13.4 33.0±16.1 

Table 9.6. A summary of the percentage abundances of dominant OTUs (>1.0% of total 

relative abundance) at the phylum level of taxonomy for the batch study controls: soil, pure 

biochar (BC) and activated carbon (AC) for 454-pyrosequencing data.
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Table 9.7. A summary of the percentage abundances of dominant OTUs (>1.0% of total relative abundance) at the phylum level of taxonomy for the 

different soil treatments, with and without sorbent and nutrient amendment for a batch study 454-pyrosequencing data. 

 

Taxon level OTU SoilWON SoilWN Soil & 

BCWON 

Soil &  BCWN Soil & ACWON Soil &  ACWN 

Acidobacteria 3.7±1.5 5.0±0.4 5.9±0.5 6.4±0.2 4.4±0.2 5.6±0.1 

Actinobacteria 4.2±1.5 6.9±1.5 10.5±2.1 10.7±0.3 13.0±7.1 12.4±0.4 

Bacteriodetes 1.8±0.2 1.6±0.0 3.0±0.3 2.8±0.4 2.6±0.2 2.6±0.1 

Chloroflexi 3.3±1.6 4.4±0.1 6.4±0.2 5.9±0.4 4.1±0.3 4.6±0.5 

Firmicutes 3.3±1.1 4.6±0.3 5.8±0.9 6.2±0.8 2.5±0.7 3.0±0.4 

Gemmatimonadetes 2.6±1.0 3.5±0.1 4.4±0.7 5.7±0.6 3.3±0.3 4.1±0.7 

Planctomycetes 3.3±0.5 5.6±0.7 7.4±0.7 6.6±0.3 4.5±0.3 5.7±0.3 

Alphaproteobacteria 4.8±2.0 7.4±0.6 11.4±0.3 12.5±0.5 7.8±0.1 6.1±0.3 

Betaproteobacteria 22.3±14.6 9.0±0.8 13.4±1.0 10.7±0.0 6.0±0.9 5.6±0.3 

Deltaproteobacteria 3.7±1.6 4.8±0.2 6.6±0.8 6.7±0.0 5.0±0.2 4.5±0.3 

Gammaproteobacteria 40.3±29.2 38.6±1.0 16.7±2.4 15.6±1.3 35.5±0.4 41.8±7.7 
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OTU classification     %Detected   

                                                          Soil  Biochar Activated carbon.           

Actinomycetales   3.7±0.6 2.0±0.1 2.1±0.3 

 Micrococcaceae  0.7±0.1 0.3±0.1 0.1±0.0 

 Micromonosporaceae  0.6±0.1 0.2±0.1 0.1±0.1 

 Mycobacteriaceae  0.2±0.1 0.6±0.2 0.4±0.1  

 Nocardioidaceae  8.0±0.1 0.2±0.0 0.3±0.2  

 Streptomycetaceae  0.6±0.2 0.1±0.0 0.2±0.1  

  

Bacillales    6.0±1.0 1.2±0.6 0.8±0.2 

 Bacillaceae   0.4±0.1 0.5±0.5 0.1±0.1 

 Paenibacillaceae  1.1±0.2 0.1±0.1 0.2±0.1 

 Planococcaceae  0.3±0.1 0.1±0.0 0.1±0.0 

 Thermoactinomycetaceae 0.4±0.1 0.1±0.1 0.0±0.1  

Pirellulales    5.9±2.8 1.2±0.1 1.1±0.3 

 Pirellulaceae   5.9±2.8 1.2±0.1 1.1±0.3  

 

Rhizobiales    5.3±0.5 1.4±0.1 1.4±0.1 

 Bradyrhizobiaceae  0.5±0.1 0.2±0.1 0.2±0.1 

 Hyphomicrobiaceae  3.3±0.4 0.6±0.0 0.5±0.2 

 Phyllobacteriaceae  0.2±0.0 0.2±0.1 0.1±0.1   

Pseudomonadales   2.5±0.1 24.0±13.6 26.0±14.7 

 Pseudomonadaceae  0.5±0.3 23.9±13.3 25.9±14.6  

 Moraxellaceae  0.0±0.0 0.2±0.1 0.1±0.1 

Xanthomonadales   8.2±0.7 2.2±0.7 2.7±0.8 

 Sinobacteraceae  2.4±0.4 1.2±0.2 2.2±0.2 

 Xanthomonadaceae  1.2±0.4 0.9±0.6 5.0±1.1     

Syntrophobacterales   3.2±0.3 3.4±2.0 3.4±1.7  

 Syntrophaceae   0.0±0.0 1.8±1.2 1.6±1.3  

 Syntrophobacteraceae 3.2±0.3 1.0±0.4 1.3±0.1  

 Syntrophorhabdaceae  0.0±0.0 0.6±0.4 0.5±0.5 

Table 9.8. Summary of bacterial order detected in the highest relative abundance obtained 

from DNA-derived pyrosequencing libraries of samples from control samples a) Soil b) 

Biochar and c) Activated carbon. 
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OTU classification       %Detected   

                                                           SoilWON SoilWN SoilBCWON SoilBCWN SoilACWON SoilACWN .           

Actinomycetales   1.9±0.8 2.1±1.3 5.0±1.4 4.5±0.2 9.4±6.7 8.5±0.8  

 Micrococcaceae  0.5±0.3 0.5±0.4 2.7±1.1 2.1±0.3 0.5±0.1 0.6±0.1  

 Micromonosporaceae  0.4±0.1 0.4±0.1 0.5±0.2 0.5±0.1 0.2±0.0 0.4±0.1  

 Micobacteriaceae  0.1±0.0 0.2±0.0 0.2±0.0 0.2±0.0 0.1±0.0 0.1±0.1  

 Nocardioidaceae  0.3±0.0 1.0±0.6 0.5±0.0 0.8±0.1 7.9±6.6 6.6±0.9  

 Streptomycetaceae  0.4±0.3 0.3±0.1 0.5±0.1 0.7±0.1 0.3±0.2 0.4±0.0  

Bacillales    2.5±1.0 3.5±0.3 4.4±0.7 4.8±0.5 1.9±0.6 2.0±0.2  

 Bacillaceae   0.1±0.0 0.0±0.0 0.1±0.0 0.1±0.0 0.1±0.0 0.2±0.1  

 Paenibacillaceae  0.4±0.1 0.7±0.0 0.8±0.3 1.0±0.1 0.4±0.0 0.4±0.1  

 Planococcaceae  0.8±0.3 1.1±0.1 1.0±0.1 1.1±0.0 0.3±0.3 0.1±0.0 

 Thermoactinomycetaceae 0.1±0.0 0.2±0.1 0.3±0.0 0.2±0.0 0.1±0.0 0.1±0.0 

Pirellulales    1.6±0.4 2.7±0.5 3.6±0.6 3.2±0.1 2.0±0.3 2.2±0.2  

 Pirellulaceae   1.6±0.4 2.6±0.4 3.6±0.6 3.2±0.1 2.0±0.3 2.2±0.2 

 

Rhizobiales    2.4±0.7 3.6±0.4 5.1±0.0 5.4±0.1 3.0±0.3 4.2±0.2  

 Bradyrhizobiaceae  0.3±0.1 0.2±0.1 0.7±0.2 0.5±0.0 0.4±0.1 0.4±0.1  

 Hyphomicrobiaceae  1.4±0.4 2.2±0.6 2.4±0.3 3.4±0.1 1.8±0.4 2.4±0.1  

 Phyllobacteriaceae  0.1±0.0 0.1±0.1 0.3±0.0 0.1±0.1 0.1±0.1 0.2±0.0 

Pseudomonadales   35.6±30.8 31.75±0.4 7.9±2.9 5.7±0.7 35.2±8.7 24.5±1.0  

 Pseudomonadaceae  35.6±30.8 31.7±0.3 7.8±2.9 5.7±0.8 34.5±9.6 24.4±1.1  

 Moraxellaceae  0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.7±0.9 0.2±0.1 

Xanthomonadales   4.0±1.2 6.0±0.6 7.9±0.8 8.8±0.5 5.7±0.7 9.9±0.5  

 Sinobacteraceae  1.9±0.5 2.6±0.9 3.0±0.3 3.9±0.2 3.0±0.5 7.0±0.2  

 Xanthomonadaceae  1.9±0.6 3.2±0.4 4.8±0.9    4.6±0.7  2.6±0.1 2.7±0.4 
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Syntrophobacterales   2.1±0.9 2.6±0.1 3.5±0.2 3.4±0.2 2.3±0.2 2.7±0.0  

 Syntrophaceae   0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0  

 Syntrophobacteraceae 2.1±0.9 2.6±0.1 3.5±0.2 3.4±0.2 2.3±0.2 2.7±0.0  

 Syntrophorhabdaceae  0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 

Table 9.9. Summary of bacterial order detected in the highest relative abundance obtained from DNA-derived pyrosequencing libraries of samples 

from volatile petroleum hydrocarbon contaminated soil batches with and without sorbent amendment and with or without nutrient amendment.  
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Table 9.10. Absolute abundance data of OTUs where there was statistically significant difference between different treatments (sorbent and 

nutrient amendments) and increase in relative abundance ranking by at least 2 folds. 

Taxon (Genus level 
classification) 

Absolute abundance increase/decrease for different treatments compared to the soil only control 

Soil d0 
Rank 

Soil+VPHs  
 

Soil+VPHs 
+nutrients 

Soil+BC+VPHs  
 

Soil+BC+VPHs+ 
nutrients 

Soil+AC+VPHs  
 

Soil+AC+VPH
s+ 
nutrients 

Brevibacillus 3.18E+04 
 

4.15E+04 
 

6.12E+04 
 

1.77E+05 
 

2.49E+05 
 

8.54E+04 
 

1.49E+04 
 

Sphingopyxis 4.64E+03 
 

0.00E+00 
 

5.79E+05 
 

4.21E+04 
 

9.52E+04 
 

1.55E+05 
 

1.19E+05 
 

Flavobacterium 1.93E+04 
 
  

1.03E+05 
 

6.12E+04 
 

1.52E+05 
 

3.51E+05 
 

1.56E+05 
 

5.16E+04 
 

Achromobacter 6.50E+04 
 

3.10E+07 
 

9.54E+06 
 

5.77E+06 
 

3.72E+06 
 

2.69E+05 
 

5.43E+03 
 

Acidovorax 0.00E+00 
 

8.07E+04 
 

1.38E+06 
 

8.56E+05 
 

1.98E+06 
 

6.39E+05 
 

1.56E+04 
 

Hydrogenophaga 1.59E+04 
 

4.15E+04 
 

6.44E+04 
 

1.72E+06 
 

2.78E+06 
 

5.18E+05 
 

2.05E+05 
 

Cupriavidus 6.60E+02 
 

0.00E+00 
 

0.00E+00 
 

0.00E+00 
 

0.00E+00 
 

4.75E+04 
 

3.53E+05 
 

Mycoplana 5.32E+03 
 

4.15E+04 
 

1.59E+05 
 

0.00E+00 
 

1.12E+05 
 

4.75E+04 
 

1.49E+04 
 

Pseudomonas 3.28E+05 
 

3.54E+07 
 

3.05E+07 
 

3.88E+06 
 

7.66E+06 
 

3.14E+06 
 

4.24E+05 
 

Paenibacillus 1.83E+05 
 

4.03E+05 
 

7.51E+05 
 

7.64E+05 
 

1.87E+06 
 

5.89E+05 
 

3.71E+05 
 

Arenimonas 3.06E+04 
 

8.29E+04 
 

1.62E+05 
 

2.95E+05 
 

5.05E+05 
 

9.12E+04 
 

8.21E+04 
 

Polaromonas 4.58E+04 
 

1.20E+05 
 

1.28E+05 
 

1.13E+06 
 

1.54E+06 
 

8.03E+05 
 

1.03E+06 
 

Hyphomicrobium 9.50E+04 
 

2.93E+05 
 

4.46E+05 
 

4.18E+05 
 

1.29E+06 
 

3.54E+05 
 

3.89E+05 
 

Nitrospira 1.54E+05 
 

8.47E+05 
 

1.27E+06 
 

1.18E+06 
 

2.12E+06 
 

1.52E+06 
 

1.03E+06 
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Factors     R Statistic  Significance level (%) 

Time               

Global test    0.778   0.01                  

Pair-wise test          

 Soil_d6, SoilBC_d6  0.625   0.03    

 Soil_d6, SoilAC_d6  0.406   0.03    

 SoilBC_d6, SoilAC_d6 1.000   0.03 

Nutrient              

Global test    0.218   0.01          

Pair-wise test           

 NA, No_nutrients  0.298   0.04    

 NA, Nutrients   0.359   0.02                         

Amendment              

Global test    0.349   0.00     

Pair-wise test           

 No amendment, BC  0.625   0.03    

 No amendment, AC  0.406   0.03    

 Biochar, AC   1.000   0.03   

Table 9.11. A summary of analysis of similarities (ANOSIM) R statistic and significance level 

for the factors time, nutrient and sorbent amendment in a short-term batch study on the effects 

of nutrients and sorbent amendment on microbial communities in VPH contaminated sand. 
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Figure 9.10. A graph showing biomass carbon (g) per batch of soil (g) in the respective 

batches with or without biochar or AC and with or without nutrient amendment. 
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Figure 9.11. Relative operational taxonomic unit (OTU) abundance distribution and phyla associations in ranked order for a) controls b) VPH + 

nutrient effects c) Biochar, VPHs & nutrient effects and d) AC, VPHs & nutrient effects. 
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Figure 9.12. Rarefaction curves indicating the effects of sequencing efforts (depth) on the 

species richness (Chao1) of a) unamended soil and control soils at time t = 0 b) soils amended 

with 2%BC and c) soils amended with 2%AC.  
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Taxon level OTU Soil Soil_source Soil_mid Soil_atmos 

p__Crenarchaeota 2.7±0.0 4.7±0.1 3.1±0.9 0.3±0.1 

p__Acidobacteria 8.4±0.8 6.8±0.7 7.2±0.1 5.1±0.3 

p__Actinobacteria 8.2±0.6 6.8±0.2 6.7±0.5 7.5±0.3 

P__Bacteriodetes 4.0±0.1 5.3±0.7 5.7±0.8 9.3±1.8 

p__Chloroflexi 6.3±0.3 6.3±0.6 6.7±0.1 5.4±0.1 

p__Firmicutes 5.1±0.3 5.7±0.5 5.7±0.0 4.4±0.0 

p__Gemmatimonadetes 6.2±1.1 5.3±0.4 5.2±0.2 2.5±0.2 

p__Nitrospirae 3.1±0.1 2.4±0.0 2.3±0.1 1.0±0.1 

p__Planctomycetes 8.3±0.5 8.8±0.9 9.4±0.4 9.7±2.2 

c__Alphaproteobacteria 13.1±0.6 12.5±1.8 12.4±0.8 20.3±2.2 

c__Betaproteobacteria 7.9±1.4 9.7±1.3 9.7±0.8 8.2±0.6 

c__Deltaproteobacteria 8.7±0.6 8.7±0.1 8.7±0.0 7.5±0.7 

c__Gammaproteobacteri

a 

11.6±0.3 8.2±0.8 9.7±1.0 12.7±0.6 

p__Verrucomicrobia 2.1±0.3 2.1±0.2 2.0±0.5 3.7±0.3 

Table 9.12. A summary of the percentage abundances of dominant OTUs (>1.0% of total 

relative abundance) at the phylum level of taxonomy for the different soil column locations 

and control at time zero. 

Taxon level OTU Soil & BC_source Soil & BC_mid Soil & BC_atmos 

Crenarchaeota 0.9±0.5 1.2±0.1 1.3±0.1 

Acidobacteria 4.8±0.4 4.3±0.8 3.8±0.0 

Actinobacteria 8.9±1.1 7.8±0.7 9.8±0.9 

Bacteriodetes 5.5±0.0 7.3±2.1 6.8±0.7 

Chloroflexi 6.5±0.1 6.0±0.2 6.1±0.3 

Firmicutes 3.9±0.3 5.1±1.0 4.2±0.2 

Gemmatimonadetes 4.9±0.2 3.9±0.7 3.7±0.2 

Nitrospirae 2.2±0.1 1.5±0.2 1.5±0.3 

Planctomycetes 7.5±0.6 5.4±1.2 5.7±0.7 

Alphaproteobacteria 16.4±0.8 14.8±2.6 15.6±0.6 

Betaproteobacteria 11.2±0.9 11.8±1.3 10.9±1.5 
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Deltaproteobacteria 7.9±0.1 8.9±0.3 9.0±0.0 

Gammaproteobacteria 13.8±1.3 15.9±0.5 16.9±0.9 

Verrucomicrobia 2.0±0.3 1.7±0.2 1.0±0.0 

Table 9.13. A summary of the percentage abundances of dominant OTUs (>1.0% of total 

relative abundance) at the phylum level of taxonomy for the different soil & biochar column 

locations. 

Taxon level OTU Soil & AC_source Soil & AC_mid Soil & AC_atmos 

Crenarchaeota 1.1±0.2 0.5±0.2 0.7±0.3 

Acidobacteria 4.6±0.2 3.6±0.7 3.2±0.2 

Actinobacteria 13.2±0.4 10.0±0.5 10.5±0.2 

Bacteriodetes 4.1±0.3 4.3±0.3 5.3±1.1 

Chloroflexi 4.5±0.2 4.4±0.3 4.9±0.5 

Firmicutes 4.0±0.1 3.3±0.7 2.5±0.1 

Gemmatimonadetes 3.9±0.2 3.1±0.3 2.9±0.1 

Nitrospirae 2.8±0.2 1.5±0.1 1.0±0.2 

Planctomycetes 5.8±0.1 8.1±4.0 6.3±1.2 

Alphaproteobacteria 12.5±0.4 14.2±0.1 16.6±1.0 

Betaproteobacteria 14.9±0.0 16.5±0.9 15.1±0.8 

Deltaproteobacteria 11.3±0.8 12.6±1.6 13.8±0.6 

Gammaproteobacteria 12.6±0.3 13.1±0.8 13.4±1.1 

Verrucomicrobia 1.5±0.1 1.7±0.2 1.2±0.2 

Table 9.14. A summary of the percentage abundances of dominant OTUs (>1.0% of total 

relative abundance) at the phylum level of taxonomy for the different soil & activated 

carbon column locations. 
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Figure 9.13. Relative operational taxonomic unit (OTU) abundance distribution and phyla 

associations in ranked order for a) Soil b) Soil & Biochar and c) Soil & activated carbon 

columns. 
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OTU classification     %Detected   

                                                          Soil (d0) Source  Mid            Atmosphere          

Actinomycetales   2.5±0.3 2.7±0.1 2.7±0.3 4.4±0.0

 Micrococcaceae  0.6±0.1 0.8±0.0 0.6±0.1 0.5±0.0

 Micromonosporaceae  0.4±0.0 0.3±0.0 0.2±0.1 0.3±0.1

 Mycobacteriaceae  0.1±0.0 0.1±0.0 0.1±0.1 0.8±0.1

 Nocardioidaceae  0.5±0.1 0.4±0.1 0.6±0.0 1.1±0.0

 Streptomycetaceae  0.5±0.0 0.3 ±0.0 0.3±0.0 0.3±0.1

 Streptosporangiaceae  0.1±0.0 0.1±0.0 0.1±0.1 0.1±0.0

  

Sphingobacteriales   3.8±0.1 4.0±0.5 5.0±0.1 8.5±1.6

 Chitinophagaceae  1.4±0.1 1.8±0.3 2.6±0.3 3.7±0.6

 Flammeovirgaceae  2.1±0.0 1.7±0.1 1.9±0.1 4.2±0.9 

Pirellulales    3.4±0.6 3.4±0.4 3.4±0.4 3.9±0.7

 Pirellulaceae   3.4±0.6 3.4±0.4 3.4±0.4 3.9±0.7

  

 

Rhizobiales    7.3±0.6 7.1±1.4 7.4±0.2 8.5±1.1

 Bradyrhizobiaceae  0.5±0.1 0.9±0.2 1.6±0.5 0.9±0.1

 Hyphomicrobiaceae  4.4±0.3 4.0±0.6 4.4±0.5 3.4±0.2

 Phyllobacteriaceae  0.2±0.1 0.1±0.1 0.3±0.0 1.4±0.2

 Rhodobiaceae   0.2±0.1 0.3±0.1 0.3±0.1 0.2±0.0 

Burkholderiales   1.4±0.3 3.5±0.7 3.5±0.1 4.9±0.1

 Alcaligenaceae  0.2±0.0 0.3±0.1 0.2±0.1 0.3±0.0

 Comamonadaceae  0.9±0.2 3.0±0.5 2.9±0.1 4.4±0.2

 Oxalobacteraceae  0.3±0.1 0.3±0.1 0.3±0.1 0.1±0.0 

Myxococcales    2.7±0.3 2.8±0.3 3.0±0.2 4.4±0.3

 Haliangiaceae   0.7±0.1 0.6±0.2 0.7±0.0 0.9±0.2

 Nannocystaceae  0.2±0.1 0.3±0.0 0.3±0.0 0.2±0.0

 Polyangiaceae   0.1±0.0 0.1±0.0 0.1±0.1 0.1±0.0 

Xanthomonadales   9.6±0.9 4.8±0.1 4.9±0.8 9.4±0.2

 Sinobacteraceae  5.1±0.6 3.1±0.3 2.9±0.4 5.4±0.4

 Xanthomonadaceae  3.4±0.2 0.9±0.2 1.2±0.4 3.8±0.7     

Syntrophobacterales   4.5±0.2 3.8±0.0 3.7±0.1 2.2±0.2

 Syntrophaceae   0.0±0.0 0.1±0.1 0.0±0.1 0.0±0.0

 Syntrophobacteraceae 4.5±0.2 3.7±0.2 3.7±0.2 2.1±0.2

 Desulfobacteraceae  0.0±0.0 0.1±0.1 0.0±0.1 0.0±0.0 

Table 9.15. Bacterial order detected in the highest relative abundance from DNA-derived 

pyrosequencing libraries of samples from soil (day 0) and VPH contaminated soil column 

(d430). 
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OTU classification     %Detected   

                                                          Source  Mid  Atmosphere           

Actinomycetales   3.5±0.3 5.2±0.6 7.3±0.3

 Micrococcaceae  0.9±0.3 0.8±0.2 0.8±0.1 

 Micromonosporaceae  0.4±0.0 0.3±0.1 0.4±0.2 

 Mycobacteriaceae  0.1±0.0 0.1±0.0 0.2±0.1 

 Nocardioidaceae  0.6±0.0 0.7±0.0 1.3±0.1 

 Streptomycetaceae  0.4±0.1 0.4±0.1 0.4±0.0 

 Streptosporangiaceae  0.0±0.0 0.1±0.0 0.1±0.0  

Sphingobacteriales   5.1±0.6 5.3±0.7 3.9±0.4 

 Chitinophagaceae  1.7±0.2 1.9±0.2 2.5±0.3 

 Flammeovirgaceae  3.1±0.2 2.8±0.9 2.4±0.4 

Pirellulales    3.2±0.1 2.5±0.6 2.6±0.3 

 Pirellulaceae   3.2±0.1 2.5±0.6 2.6±0.3  

 

Rhizobiales    6.2±1.2 6.7±0.6 7.8±0.4

 Bradyrhizobiaceae  0.9±0.1 0.8±0.2 0.8±0.0 

 Hyphomicrobiaceae  4.1±0.0 3.4±0.7 3.7±0.2 

 Phyllobacteriaceae  0.2±0.0 0.3±0.1 0.5±0.1 

 Rhodobiaceae   0.3±0.0 0.2±0.0 0.2±0.0 

Burkholderiales   4.9±1.4 5.0±1.0 3.5±0.1 

 Alcaligenaceae  0.3±0.0 0.3±0.1 0.2±0.0 

 Comamonadaceae  3.4±0.5 4.3±1.4 4.4±0.1 

 Oxalobacteraceae  0.3±0.0 0.4±0.1 0.3±0.0 

Myxococcales    2.7±0.3 3.3±0.1 5.2±0.2 

 Haliangiaceae   1.3±0.0 1.4±0.2 1.5±0.3 

 Nannocystaceae  0.1±0.0 0.1±0.1 0.1±0.0 

 Polyangiaceae   0.1±0.1 0.1±0.0 0.0±0.0 

Xanthomonadales   9.0±0.4 9.3±1.1 10.1±0.2

 Sinobacteraceae  7.2±0.5 6.4±0.1 6.3±0.7 

 Xanthomonadaceae  1.6±0.1 1.6±0.1 2.1±0.2     

Syntrophobacterales   4.5±0.1 4.5±0.2 4.8±0.4 

 Syntrophaceae   0.0±0.0 0.1±0.2 0.1±0.0 

 Syntrophobacteraceae 3.8±0.1 4.2±0.3 4.3±0.1 

 Desulfobacteraceae  0.0±0.0 0.1±0.2 0.1±0.0 

Table 9.16. Bacterial order detected in the highest relative abundance from DNA-derived 

pyrosequencing libraries of samples from VPH contaminated soil & biochar column (day 

430). 
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OTU classification     %Detected   

                                                          Source  Mid  Atmosphere           

Actinomycetales   7.3±0.3 6.0±0.4 7.2±0.2

 Micrococcaceae  0.5±0.1 0.3±0.1 0.4±0.0 

 Micromonosporaceae  0.5±0.1 0.7±0.2 0.5±0.0 

 Mycobacteriaceae  0.1±0.0 0.1±0.0 0.2±0.1 

 Nocardioidaceae  2.3±0.1 0.6±0.0 1.1±0.2 

 Streptomycetaceae  0.6±0.1 0.5±0.1 0.5±0.1 

 Streptosporangiaceae  0.1±0.0 0.0±0.0 0.1±0.0  

Sphingobacteriales   3.9±0.4 4.2±0.4 5.1±1.1 

 Chitinophagaceae  1.4±0.3 1.5±0.1 1.8±0.4 

 Flammeovirgaceae  2.2±0.1 2.4±0.2 3.0±0.6 

Pirellulales    2.3±0.2 3.1±1.6 2.6±0.6 

 Pirellulaceae   2.3±0.2 3.1±1.6 2.6±0.6  

 

Rhizobiales    7.8±0.4 9.3±0.6 10.3±0.6

 Bradyrhizobiaceae  1.2±0.1 1.6±0.1 1.9±0.2 

 Hyphomicrobiaceae  4.4±0.4 5.3±0.0 5.7±0.4 

 Phyllobacteriaceae  0.2±0.0 0.3±0.0 0.9±0.1 

 Rhodobiaceae   0.2±0.1 0.2±0.0 0.2±0.0 

Burkholderiales   3.5±0.1 6.4±0.1 8.0±0.8 

 Alcaligenaceae  0.2±0.0 0.2±0.0 0.1±0.0 

 Comamonadaceae  3.0±0.1 5.9±0.1 7.7±0.7 

 Oxalobacteraceae  0.3±0.0 0.2±0.0 0.1±0.0 

Myxococcales    5.2±0.2 7.6±0.7 10.3±0.3 

 Haliangiaceae   1.9±0.0 3.0±0.4 3.3±0.0 

 Nannocystaceae  0.8±0.2 0.4±0.0 0.4±0.0 

 Polyangiaceae   0.1±0.0 0.2±0.0 0.1±0.0 

Xanthomonadales   10.1±0.2 10.2±0.4 9.4±0.8

 Sinobacteraceae  7.5±0.4 8.0±0.5 6.8±0.2 

 Xanthomonadaceae  2.1±0.2 1.7±0.2 2.3±0.6     

Syntrophobacterales   4.8±0.4 3.4±0.6 1.7±0.1 

 Syntrophaceae   0.0±0.0 0.0±0.0 0.0±0.0 

 Syntrophobacteraceae 4.7±0.4 3.3±0.6 1.7±0.1 

 Desulfobacteraceae  0.0±0.0 0.0±0.0 0.0±0.0 

Table 9.17. Bacterial order detected in the highest relative abundance obtained from DNA-

derived pyrosequencing libraries of samples from VPH contaminated soil & AC column (day 

430). 

 



Appendix 

245 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                       

Table 9.18. Absolute abundance data of OTUs where there was statistically significant difference between different treatments (column 

locations) and increase in relative abundance ranking by at least 2 folds. 

Taxon (Genus level 
classification) 

Average absolute abundances for different treatments compared to the soil only @ time t = 0 following exposure to VPHs  

Soil d0  Soil+VPHs 
d430 
source 

Soil+VPHs 
d430 
middle 

Soil+VPHs 
d430 
atmos 

Soil+BC+V
PHs d430 
source 

Soil+BC+V
PHs d430 
middle 

Soil+BC+V
PHs d430 
atmos 

Soil+AC+V
PHs d430 
source 

Soil+AC+V
PHs d430 
middle 

Soil+AC+ 
VPHs  
d430 
atmos 

Nitrosopumilus 1.01E+05 
 

4.68E+06 
 

5.85E+05 
 

9.53E+03 
 

5.44E+05 
 

4.17E+05 
 

1.17E+05 
 

1.52E+05 
 

3.53E+04 
 

2.46E+04 
 

Sphingomonas 6.99E+02 
 

2.34E+04 
 

3.35E+04 
 

4.77E+03 
 

1.50E+04 
 

2.55E+04 
 

2.75E+03 
 

3.49E+04 
 

5.88E+03 
 

0.00E+00 
 

Sphingobium 0.00E+00 
 

0.00E+00 
 

4.15E+03 
 

2.62E+06 
 

0.00E+00 
 

0.00E+00 
 

0.00E+00 
 

0.00E+00 
 

0.00E+00 
 

1.47E+04 
 

Sphingopyxis 1.38E+03 
 

3.47E+04 
 

8.30E+03 
 

2.04E+04 
 

2.04E+04 
 

8.67E+03 
 

1.02E+04 
 

1.43E+04 
 

2.94E+03 
 

9.81E+03 
 

Nocardioides 8.24E+03 
 

4.64E+04 
 

1.66E+04 
 

4.83E+04 
 

7.45E+04 
 

5.95E+04 
 

4.89E+04 
 

9.22E+04 
 

3.49E+04 
 

9.82E+04 
 

Pseudonocardia 0.00E+00 
 

0.00E+00 
 

0.00E+00 
 

0.00E+00 
 

0.00E+00 
 

0.00E+00 
 

2.75E+03 
 

0.00E+00 
 

0.00E+00 
 

0.00E+00 
 

Flavobacterium 0.00E+00 
 

0.00E+00 
 

0.00E+00 
 

0.00E+00 
 

0.00E+00 
 

4.33E+03 
 

0.00E+00 
 

0.00E+00 
 

0.00E+00 
 

0.00E+00 
 

Paenibacillus 2.27E+04 
 

4.04E+04 
 

1.66E+04 
 

5.24E+04 
 

2.59E+04 
 

2.55E+04 
 

1.81E+04 
 

2.01E+04 
 

5.88E+03 
 

3.44E+04 
 

Methylibium 4.15E+03 
 

5.87E+03 
 

0.00E+00 
 

2.16E+05 
 

3.61E+04 
 

7.23E+04 
 

1.47E+05 
 

3.44E+04 
 

3.46E+04 
 

3.19E+05 
 

Clostridium 6.78E+02 
 

1.16E+04 
 

0.00E+00 
 

0.00E+00 
 

4.80E+03 
 

8.44E+03 
 

2.47E+03 
 

1.49E+04 
 

0.00E+00 
 

4.90E+03 
 

Polaromonas 0.00E+00 
 

1.17E+04 
 

0.00E+00 
 

0.00E+00 
 

0.00E+00 
 

8.20E+03 
 

2.47E+03 
 

0.00E+00 
 

0.00E+00 
 

0.00E+00 
 

Alkanindiges 
 

6.78E+02 
 

2.94E+04 
 

8.30E+03 
 

4.77E+03 
 

0.00E+00 
 

8.20E+03 
 

0.00E+00 
 

0.00E+00 
 

1.14E+04 
 

0.00E+00 
 

Pseudoxanthomonas 7.26E+04 
 

5.82E+05 
 

4.10E+05 
 

2.67E+05 
 

2.54E+05 
 

4.55E+05 
 

3.16E+05 
 

2.96E+05 
 

7.28E+04 
 

2.40E+05 
 

Nannocystis 0.00E+00 
 

1.76E+04 
 

0.00E+00 
 

9.53E+03 
 

0.00E+00 
 

1.23E+04 
 

5.51E+03 
 

0.00E+00 
 

0.00E+00 
 

0.00E+00 
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Table 9.19. Absolute abundance data of OTUs where there was statistically significant  

difference between different treatments (amendments) and increase in relative abundance 

ranking by at least 2 folds.) 

 Genus Average 

absolute 

abundances  

Average absolute abundances following exposure of soil treatments to 

VPHs at the end of the experiment (amendment effects) 

Soil_day0 

(Control) 

Soil_day430 Soil + 2% 

BC_day430 

Soil + 2% AC_day430 

Nitrosopumilus 1.01E+05 

 

1.76E+06 

 

3.59E+05 

 

7.05E+04 

 

Candidatus 

Nitrososphaera 

5.98E+05 

 

2.75E+06 

 

1.24E+06 

 

1.14E+06 

 

Sphingomonads 

- Sphingomonas 

- Sphingobium 

- Sphingopyxis 

 

6.99E+02 

 

0.00E+00 

1.38E+03 

 

 

2.05E+04 

8.73E+05 

2.11E+04 

 

 

1.44E+04 

0.00E+00 

1.31E+04 

 

 

1.36E+04 

4.91E+03 

9.02E+03 

 

Nocardioides 8.24E+03 

 

3.71E+04 

 

6.10E+04 

 

7.51E+04 

 

Pseudonocardia 0.00E+00 

 

0.00E+00 

 

9.18E+02 

 

0.00E+00 

 

Streptomyces 0.00E+00 

 

9.79E+03 

 

8.61E+04 

 

4.97E+04 

 

Flavobacterium 0.00E+00 

 

0.00E+00 

 

1.44E+03 

 

0.00E+00 

 

Paenibacillus 2.27E+04 

 

3.65E+04 

 

2.32E+04 

 

2.01E+04 

 

Methylibium 4.15E+03 

 

7.41E+04 

 

8.51E+04 

 

1.29E+05 

 

Clostridium 6.78E+02 

 

3.87E+03 

 

5.24E+03 

 

6.60E+03 

 

Polaromonas 0.00E+00 

 

3.92E+03 

 

3.56E+03 

 

0.00E+00 

 

Alkanindiges 

 

6.78E+02 

 

1.41E+04 

 

2.73E+03 

 

3.81E+03 

 

Pseudoxanthom

onas 

7.26E+04 

 

4.19E+05 

 

3.42E+05 

 

2.03E+05 

 


