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Abstract 

The UK government aims to reduce the UK’s carbon emission by at least 80% by 2050. To 

achieve this ambitious target, large quantities of renewable energy generation are being 

connected to UK power networks. Moreover, with the trend towards electrification of heat 

and transport, electric vehicles and heat pumps are expected to proliferate in future networks. 

These low carbon technologies (LCTs) are being connected to distribution networks, which 

results in voltage issues that cannot be catered for with the existing infrastructure. 

Smart grid technologies provide a flexible, economic solution to facilitate the integration of 

LCTs. Advanced voltage control algorithms are required to fully utilize future smart 

distribution networks’ capability to mitigate voltage problems and to enhance the network 

performance. In this PhD study, three different voltage control algorithms have been 

developed, evaluated and contrasted. A cost effective rule-based based voltage control 

algorithm is initially proposed to mitigate the voltage problems due to LCT integration. This 

algorithm is evaluated with simulation and power hardware-in-the-loop emulation. An 

algorithm from a state-of-the-art distribution management system (DMS) is accurately 

modelled and extended to solve more complicated voltage control problems. This algorithm is 

validated against the field trial results in the real distribution networks, in which the DMS is 

deployed. Finally, an algorithm based on a novel metaheuristic algorithm, Cuckoo Search via 

Lévy Flights, is developed. The last two algorithms are evaluated and compared with various 

test cases, which represent different, challenging network scenarios and control preferences 

for current and future distribution networks. 

Evaluation results demonstrate that these algorithms can be utilized for voltage control in 

future smart distribution networks. Furthermore, these algorithms are compared and the 

salient characteristics of these developed algorithms are summarized. The findings from this 

research provide useful information when deploying advanced voltage control algorithms for 

future smart distribution networks. 
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Ŝ Complex conjugate of the apparent power of 

the load 

(VA) 

V̂2 Complex conjugate of the load voltage (V) 

PL Real power of the load (W) 

QL Reactive power of the load (VAr) 

∆V Voltage change from the sending end 

voltage to the receiving end voltage 

(V) 

δ Voltage angle between the sending end 

voltage to the receiving end voltage 

(Radian) 

PG Real power injected by the DG (W) 

QG Reactive power injected by the DG (VAr) 

Vpri Voltage at the primary side of OLTC (V) 

VSec Voltage at the secondary side of OLTC (V) 

Npri Transformer winding number at the primary 

side 

(no unit) 

NSec Transformer winding number at the primary 

side 

(no unit) 

k Winding number change of the OLTC (%) 

QMSC Reactive power injected by the MSC (VAr) 

f Network frequency (Hz) 

CMSC Capacitance of the MSC capacitor (F) 

VMSC Voltage at the MSC (V) 

x Vector of state variables  (no unit) 

u Vector of control variables (no unit) 

f() Optimisation objective function(s) (no unit) 

g() Equality constraints (no unit) 

h() Inequality constraints (no unit) 

T Time for control scheduling (h) 

%VUF Percentage voltage unbalance factor  (%) 

∆θi Voltage phase angle change of busbar i (Radian) 

∆Vi Voltage magnitude change of busbar i (V) 

J
-1

 Jacobian matrix (no unit) 

∆Pi Real power change of busbar i (W) 



  

xii 
 

∆Qi Reactive power change of busbar i (VAr) 

CP, EES Cost of operating EES real power (£/kW) 

CCapital, EES Capital cost of EES  (£) 

NEES Total charge and discharge cycles of EES (no unit) 

PRating, EES Real power rating of EES (kW) 

SOCT Target state-of-charge (SOC) of battery (%) 

SOC State-of-charge (SOC) of battery  (%) 

CQ, EES Cost of operating the EES reactive power  (£/kVAr) 

CCapital, Converter Capital cost of converter system of the EES  (£) 

QRating, EES Reactive power rating of EES (kVAr) 

TLifespan Expected lifespan of converter  (min) 

TControl cycle Control cycle (min) 

NOLTC, Remaining Remaining operation times of the 

tapchanger 

(no unit) 

NOLTC, Total Estimated total operation times of the 

tapchanger 

(no unit) 

LSOLTC, Remaining Remaining lifespan of the tapchanger  (min) 

LSOLTC, Total Total lifespan of the tapchanger  (min) 

COLTC Cost of OLTC tap operation  (£) 

COLTC Replacement Cost of replacing the tapchanger (£) 

VCSFij Voltage cost sensitivity factor of device j to 

node i 

(pu/£) 

∆Vij Voltage change at node i caused by device j (V) 

Cj Cost to operate device j (£) 

VHighest Highest feeder voltage  (pu) 

VLowest Lowest feeder voltage  (pu) 

V- RMW values of the negative sequence 

component 

(no unit) 

V+ RMW values of the positive sequence 

component of the voltage 

(no unit) 

Va Voltage at phase A (V) 

Vb Voltage at phase B (V) 

Vc voltage at phase C (V) 

Vavg average value of the three-phase voltages (V) 

∆Visoln Change in the voltage due to the deployment 

of the FVDF solution 

(V) 

∆Vi Voltage excursion at node i (V) 

∆Vi´ Updated voltage excursion at node i (V) 

∆PEES Required real power change from EES (kW) 

∆QEES Required reactive power change from EES  (KVAr) 

∆Vi,required Required voltage change at node i  (pu) 

VSFi_P,EES Voltage sensitivity factor of node i for the (pu/kW) 



  

xiii 
 

real power of EES  

VSFi_Q,EES Voltage sensitivity factor of node i for the 

reactive power of EES  

(pu/kVAr ) 

∆Tap Required tap position change (%) 

VSFi,OLTC Voltage sensitivity factor of node i for 

OLTC tap position change 

(pu/%) 

Vi Voltage at bus i (V) 

Vj Voltage at bus j (V) 

Yij Element of admittance matrix Y (no unit) 

Pi Net injected real power at busbar i (W) 

Qi Net injected reactive power at busbar i (VAr) 

ui Control variable i (no unit) 

ui
min

 Lowest value of control variable i (no unit) 

ui
max

 Highest value of control variable i (no unit) 

Vi
min

 Lower limit of busbar voltage i (pu) 

Vi
max

 Upper limit of busbar voltage i (pu) 

fi ith objective function (no unit) 

Nobj Number of optimisation objective functions (no unit) 

F
k
 Objective function values before the control 

variable change 

(no unit) 

F
k+1

 Objective function values after the control 

variable change 

(no unit) 

Xi
k
 Control variable value before the control 

variable change  

(no unit) 

Xi
k+1

 Control variable value after the control 

variable change  

(no unit) 

fobj Optimisation objective function (no unit) 

fpenalty Penalty function (no unit) 

F Optimisation objective function added by 

penalty function 

(no unit) 

xi State variable i (no unit) 

xi
max

 Lower limit of state variable i (no unit) 

xi
min

 Upper limit of state variable i (no unit) 

si Penalty coefficient (no unit) 

Nbranch Number of network branches (no unit) 

gij Conductance of the branch between busbar i 

and j 

(S) 

Vi Voltage magnitude of busbar i (V) 

Vj Voltage magnitude of busbar j (V) 

δij The phase angle between the voltages of 

busbar i and busbar j 

(Radian) 

xi
t+1

 New solution generated for CS (no unit) 

xi
t
 Current solution for CS (no unit) 



  

xiv 
 

X A set of solutions in CS (no unit) 

xb Current best solution (no unit) 

pa Nest abandon probability (no unit) 

stepsizei Step size generated by Lévy flights for the 

ith solution 

(no unit) 

Γ Gamma function (no unit) 

β Scale factor for CS (no unit) 

TapPositionOLTC Tap position of the OLTC transformer (%) 

Tap
min

 Minimum tap position of the OLTC 

transformer 

(%) 

Stepsize
OLTC

 Step size of the OLTC transformer (%) 

NTap Total number of the tap positions (no unit) 

StagePositionMSC Stage position of MSC (no unit) 

Stepsize
MSC

 The step size of the MSC (no unit) 

NStage The total number of the MSC stage positions (no unit) 

σ Standard deviation (no unit) 

N Number of runs  (no unit) 

resulti Result of the ith run (no unit) 

resultaverage Average value of the results from the N runs (no unit) 

NCS Number of fitness function evaluations (no unit) 

NGA Numbers of fitness function evaluations for 

GA 

(no unit) 

NPSO Numbers of fitness function evaluations for 

PSO 

(no unit) 

𝑉𝑖
𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

 Reference voltage for busbar i (V) 

CR(A) Ratio of the reference point found for 

solution A 

(%) 

A Solution set A (no unit) 

R Reference set (no unit) 

B Solution set B (no unit) 

C(A, B) Coverage metric of solution set A to 

solution set B 

(%) 

SolutionSet
before

 Solution set achieved before increasing the 

maximum iteration number 

(no unit) 

SolutionSet
after

 Solution set achieved after increasing the 

maximum iteration number 

(no unit) 

Total

SwitchingN  Total number of switching operations for all 

OLTCs and MSCs 

(no unit) 

SwitchingNumberi
OLTC

 Numbers of the switching operations for 

OLTC i 

(no unit) 

SwitchingNumberi
MSC

 Numbers of the switching operations for 

MSC i 

(no unit) 

Position Position of the voltage control device after 

control 

(no unit) 

Position
0
 Position of the voltage control device before 

control 

(no unit) 



  

xv 
 

StepSize Step size of the voltage control device (no unit) 

Tapi Tap position of OLTC i (%) 

Tapi
min

 Lowest tap position of OLTC i (%) 

Tapi
max

 Highest tap position of OLTC i (%) 

NOLTC Number of OLTCs (no unit) 

Capi Stage position of MSC i (no unit) 

Capi
min

 Lowest stage position of MSC i (no unit) 

Capi
max

 Highest stage position of MSC i (no unit) 

NMSC Number of MSCs (no unit) 

𝑁𝐷𝐺
𝑃𝐶𝑜𝑛𝑡𝑟𝑜𝑙  Total number of DGs with real power 

control 

(no unit) 

𝑃𝐷𝐺𝑖
𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 Available real power output of DG i (W) 

𝑃𝐷𝐺𝑖
𝑜𝑢𝑡𝑝𝑢𝑡

 Real power output of DG i (W) 

𝑁𝐷𝐺
𝑄𝐶𝑜𝑛𝑡𝑟𝑜𝑙

 Total number of DGs with reactive power 

control 

(no unit) 

𝑄𝐷𝐺𝑖
𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

 Reference value for the reactive power from 

DG i 

(VAr) 

𝑄𝐷𝐺𝑖
𝑜𝑢𝑡𝑝𝑢𝑡

 Reactive power output of DG i (VAr) 

𝑃𝐷𝐺𝑖
𝑚𝑖𝑛 Lower limit of the real power output of DG 

i; 

(W) 

𝑃𝐷𝐺𝑖
𝑚𝑎𝑥  Upper limit of the real power output of DG 

i; 

(W) 

𝑄𝐷𝐺𝑖
𝑚𝑖𝑛 Lower limit of the reactive power output of 

DG i; 

(VAr) 

𝑄𝐷𝐺𝑖
𝑚𝑎𝑥 Upper limit of the reactive power output of 

DG i; 

(VAr) 

𝑃𝐷𝐺𝑖
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

 Installed capacity of DG i (W) 

φ Power factor of DG output (no unit) 

𝑆𝐸𝐸𝑆
𝑀𝑎𝑥  Limit of the EES apparent power (VA) 

PEES EES real power outputs (W) 

QEES EES reactive power outputs (VAr) 

Iij Current flow for the branch between busbar 

i and busbar j 

(A) 

𝐼𝑖𝑗
max Capacity of the branch between busbar i and 

busbar j 

(A) 

 



  

xvi 
 

  



  

xvii 
 

Table of Contents 

Chapter 1 Introduction ......................................................................................................................... 1 

1.1 Background ............................................................................................................................ 1 

1.2 Theoretical analysis of voltage changes and voltage unbalance in distribution networks

 2 

1.2.1 Steady-state voltage changes in distribution networks ................................................... 2 

1.2.2 Voltage unbalance in distribution networks .................................................................... 5 

1.3 Conventional distribution network voltage control ........................................................... 6 

1.3.1 On load tap changer ........................................................................................................ 6 

1.3.2 Mechanically switched capacitor bank ........................................................................... 7 

1.3.3 In-line voltage regulator ................................................................................................. 9 

1.3.4 Conventional distribution network voltage control architecture .................................... 9 

1.4 Smart grid ............................................................................................................................ 10 

1.5 Research objectives ............................................................................................................. 12 

1.6 Contributions to knowledge ............................................................................................... 12 

1.7 Thesis outline ....................................................................................................................... 13 

Chapter 2 Advanced Distribution Network Voltage Control.......................................................... 15 

2.1 Introduction ......................................................................................................................... 15 

2.2 Advanced voltage control techniques ................................................................................ 15 

2.2.1 Electrical energy storage .............................................................................................. 15 

2.2.2 Distributed generation control ...................................................................................... 16 

2.3 Voltage unbalance control techniques ............................................................................... 17 

2.4 Voltage control problems in future smart distribution networks ................................... 18 

2.5 Voltage control architectures and algorithms .................................................................. 18 

2.5.1 Advanced voltage control architectures ........................................................................ 19 

2.5.2 Rule-based voltage control algorithms ......................................................................... 21 

2.5.3 Voltage optimisation algorithms – problem formulation .............................................. 23 

2.5.4 Deterministic optimisation-based voltage control algorithms ...................................... 25 

2.5.5 Metaheuristic algorithm-based voltage control algorithm ........................................... 26 

2.5.6 Algorithm comparison ................................................................................................... 28 

2.6 Conclusions .......................................................................................................................... 29 

Chapter 3 Development and Evaluation of Voltage Cost Sensitivity Factor based Voltage 

Control Algorithm ............................................................................................................................... 31 

3.1 Introduction ......................................................................................................................... 31 

3.2 Essential definitions in the VCSF based algorithm .......................................................... 31 

3.2.1 Voltage sensitivity factor ............................................................................................... 31 



  

xviii 
 

3.2.2 Cost functions ................................................................................................................ 33 

3.2.3 Voltage-cost sensitivity factor ....................................................................................... 35 

3.2.4 Feeder voltage divergence factor .................................................................................. 35 

3.2.5 Voltage unbalance factor ............................................................................................... 37 

3.3 Development of voltage cost sensitivity factor based voltage control algorithm ........... 37 

3.3.1 Control flow chart ......................................................................................................... 37 

3.3.2 EES and OLTC control .................................................................................................. 39 

3.4 Case study ............................................................................................................................. 40 

3.4.1 Case study network ........................................................................................................ 40 

3.4.2 Windfarm generation profile and demand profile ......................................................... 42 

3.4.3 Smart meter surveys and profile development ............................................................... 43 

3.4.4 Control algorithm implementation ................................................................................ 44 

3.5 Algorithm evaluation results .............................................................................................. 46 

3.5.1 Voltage control algorithm evaluation approaches ........................................................ 46 

3.5.2 Baseline of future network test case .............................................................................. 47 

3.5.3 Desktop implementation and evaluation of the control algorithm ................................ 49 

3.5.4 Laboratory implementation and evaluation of control algorithm ................................. 51 

3.6 Conclusions .......................................................................................................................... 57 

Chapter 4 Development of Oriented Discrete Coordinate Descent Method based Voltage Control 

Algorithm ............................................................................................................................................. 59 

4.1 Introduction ......................................................................................................................... 59 

4.2 Problem formulation for voltage optimisation algorithms .............................................. 59 

4.2.1 Optimisation objective function ..................................................................................... 60 

4.2.2 Equality constraints ....................................................................................................... 60 

4.2.3 Inequality constraints .................................................................................................... 60 

4.3 ODCDM based voltage control algorithm ......................................................................... 61 

4.3.1 Original ODCDM based voltage control algorithm ..................................................... 61 

4.3.2 Application of ODCDM to MINLP problems ................................................................ 64 

4.3.3 Application of ODCDM to Multi-objective optimisation problems ............................... 65 

4.4 Initial evaluation of the ODCDM based voltage control algorithm ................................ 66 

4.4.1 Case study network ........................................................................................................ 66 

4.4.2 Initial case study result .................................................................................................. 67 

4.5 ODCDM validation against field trials .............................................................................. 72 

4.5.1 Sampled field trial ......................................................................................................... 72 

4.5.2 Algorithm validation method ......................................................................................... 73 



  

xix 
 

4.5.3 Sampled validation results ............................................................................................ 75 

4.6 Conclusions .......................................................................................................................... 76 

Chapter 5 Development of Cuckoo Search based Voltage Control Algorithms ............................ 79 

5.1 Introduction ......................................................................................................................... 79 

5.2 Development of Cuckoo Search algorithms ...................................................................... 80 

5.2.1 The principle of Cuckoo Search .................................................................................... 80 

5.2.2 Development of single-objective Cuckoo Search algorithm ......................................... 82 

5.2.3 Development of multi-objective Cuckoo Search algorithm ........................................... 85 

5.3 Development of Cuckoo Search based voltage control algorithm .................................. 86 

5.3.1 Single-objective Cuckoo Search based voltage control algorithm ................................ 86 

5.3.2 Multi-objective Cuckoo Search based voltage control algorithm ................................. 88 

5.4 Initial evaluation of single-objective cuckoo search based voltage control algorithm .. 88 

5.4.1 Initial evaluation of SOCS based voltage control algorithm ........................................ 88 

5.4.2 Implementation of GA and PSO based voltage control algorithms .............................. 91 

5.4.3 Comparing the voltage control algorithms based on CS, GA and PSO ........................ 92 

5.5 Initial evaluation of multi-objective cuckoo search based voltage control algorithm ... 93 

5.5.1 Initial evaluation of MOCS based voltage control algorithm ....................................... 94 

5.5.2 Comparison the voltage control algorithms based on MOCS and NSGA-II ................. 98 

5.6 Conclusions .......................................................................................................................... 99 

Chapter 6 Evaluation of Single-objective Voltage Optimisation Algorithms .............................. 101 

6.1 Introduction ....................................................................................................................... 101 

6.2 Voltage optimisation algorithm evaluation method ....................................................... 101 

6.3 Problem formulation and analysis for conventional distribution networks ................ 102 

6.3.1 Optimisation objective functions ................................................................................. 102 

6.3.2 Equality constraints ..................................................................................................... 104 

6.3.3 Inequality constraints .................................................................................................. 104 

6.4 Test case development and algorithm implementation for conventional distribution 

networks ......................................................................................................................................... 105 

6.4.1 Case study networks .................................................................................................... 106 

6.4.2 Test cases for conventional distribution networks ...................................................... 108 

6.4.3 Algorithm application ................................................................................................. 110 

6.5 Case study results – test cases for conventional distribution networks ........................ 111 

6.5.1 Network loss minimisation .......................................................................................... 111 

6.5.2 Voltage deviation minimisation ................................................................................... 113 

6.5.3 Switching operation minimisation ............................................................................... 114 



  

xx 
 

6.6 Problem formulation and analysis for future distribution networks ............................ 117 

6.6.1 Optimisation objective functions ................................................................................. 117 

6.6.2 Equality constraints ..................................................................................................... 118 

6.6.3 Inequality constraints .................................................................................................. 118 

6.7 Test case development and algorithm implementation for future distribution networks

 119 

6.7.1 Case study networks for algorithm evaluation ............................................................ 120 

6.7.2 Test cases for future distribution networks .................................................................. 121 

6.7.3 Algorithm application .................................................................................................. 122 

6.8 Case study results – test cases for future distribution networks ................................... 123 

6.8.1 Test results for Network D ........................................................................................... 123 

6.8.2 Test results for Network E ........................................................................................... 128 

6.9 Discussions .......................................................................................................................... 132 

6.10 Conclusions ........................................................................................................................ 134 

Chapter 7 Evaluation of Multi-objective Voltage Optimisation Algorithms ............................... 137 

7.1 Introduction ....................................................................................................................... 137 

7.2 Evaluation method of multi-objective voltage optimisation algorithms ....................... 138 

7.3 Test case design and algorithm application for conventional distribution networks .. 139 

7.3.1 Test case design ........................................................................................................... 139 

7.3.2 Algorithm application .................................................................................................. 140 

7.4 Results of conventional distribution network test cases ................................................. 142 

7.4.1 Impact of the step size used for the weighting coefficient variation and the starting 

point for ODCDM ........................................................................................................................ 142 

7.4.2 Test results of 2-objective voltage optimisation test cases .......................................... 145 

7.4.3 Test results of 3-objective voltage optimisation test cases .......................................... 146 

7.5 Test case design and algorithm application for future smart distribution networks .. 147 

7.5.1 Test case design ........................................................................................................... 147 

7.5.2 Algorithm application .................................................................................................. 149 

7.6 Results of conventional distribution network test cases ................................................. 150 

7.6.1 Impact of continuous control variables on ODCDM................................................... 150 

7.6.2 Test results of 2-objective voltage optimisation test cases .......................................... 151 

7.6.3 Test results of 3-objective voltage optimisation test cases .......................................... 153 

7.7 Conclusions ........................................................................................................................ 154 

Chapter 8 Discussion ......................................................................................................................... 157 

8.1 Introduction ....................................................................................................................... 157 

8.2 Comparative algorithm evaluation .................................................................................. 157 



  

xxi 
 

8.2.1 Algorithm development, application and implementation ........................................... 157 

8.2.2 Ability to maintain network voltages within their statutory limits .............................. 159 

8.2.3 Integration of novel voltage control techniques .......................................................... 160 

8.2.4 Secondary control objectives....................................................................................... 162 

8.2.5 Solution optimality ...................................................................................................... 163 

8.2.6 Computation time ........................................................................................................ 164 

8.3 Algorithm selection suggestions ....................................................................................... 165 

Chapter 9 Conclusions and Future Work ....................................................................................... 167 

9.1 Introduction ....................................................................................................................... 167 

9.2 Conclusions ........................................................................................................................ 167 

9.3 Future work ....................................................................................................................... 170 

Reference ............................................................................................................................................ 173 

Appendix A Case Study Network Data ........................................................................................... 183 

Appendix A-1 Network Data of IEEE 33 busbar network .............................................................. 183 

Appendix A-2 Network Data of IEEE 69 busbar network .............................................................. 187 

Appendix B Test Results for Single-objective Voltage Optimisation ........................................... 193 

Appendix B-1: Maximum iteration number of SOCS – Conventional Test Cases ......................... 193 

Appendix B-2: Test results for network loss minimisation – Conventional Test Cases ................. 194 

Appendix B-3: Test results for voltage deviation minimisation – Conventional Test Cases .......... 197 

Appendix B-4 Test results for switching operation minimisation – Conventional Test Cases ....... 200 

Appendix B-5: Impact of step size used for continuous variable discretization – Future Test Cases

 ......................................................................................................................................................... 203 

Appendix B-6 Maximum iteration number of SOCS – Future Test Cases ..................................... 204 

Appendix B-7 Test results for Network D - Future Test Cases ...................................................... 205 

Appendix B-8 Test results for Network E - Future Test Cases ....................................................... 214 

 

  



  

xxii 
 

  



  

xxiii 
 

List of Figures 

Fig. 1 Equivalent circuit for voltage change analysis for conventional distribution networks ............... 2 

Fig. 2 Phasor diagram of sending-end voltage and load voltage for conventional distribution networks3 

Fig. 3 Equivalent circuit for voltage change analysis for distribution networks with DG connection.... 4 

Fig. 4 Phasor diagram of sending end voltage and load voltage for the distribution networks with DG 

connection ............................................................................................................................................... 4 

Fig. 5 Simplified structure of a transformer with OLTC ........................................................................ 6 

Fig. 6  Simple structure of mechanically switched capacitor bank ......................................................... 7 

Fig. 7 Structure of a simple multi-stage MSC ......................................................................................... 8 

Fig. 8 Configuration of in-line voltage regulator .................................................................................... 9 

Fig. 9 Configuration of conventional voltage control architecture ....................................................... 10 

Fig. 10 Configuration of distributed voltage control architecture ......................................................... 20 

Fig. 11 Configuration of centralized voltage control architecture ........................................................ 20 

Fig. 12 Categorization of voltage control algorithms for centralized control architecture ................... 21 

Fig. 13 Structure of voltage optimisation algorithm ............................................................................. 23 

Fig. 14 An example network with uneven distribution of load and generation .................................... 36 

Fig. 15 Voltage profiles of Feeder1 and Feeder2 in the example network ........................................... 36 

Fig. 16  FVDF threshold determination ................................................................................................ 37 

Fig. 17 Flow chart of the VCSF based voltage control algorithm......................................................... 38 

Fig. 18 Case study network and coordinated voltage control algorithm ............................................... 41 

Fig. 19 Daily generation profile of a 5MW windfarm .......................................................................... 42 

Fig. 20. Demand profiles of MV feeders............................................................................................... 42 

Fig. 21 Profiles of domestic demand, EV, ASHP and PV .................................................................... 44 

Fig. 22 Voltage profiles at the remote end of MV Feeders – Baseline ................................................. 48 

Fig. 23 Three-phase voltage profiles at the end of LV Feeder 1 (Laboratory LV Network) - Baseline 48 

Fig. 24 %VUF at the remote end of LV Feeder 1 (Laboratory LV Network) - Baseline ..................... 49 

Fig. 25 Voltage profiles at the remote end of MV feeders .................................................................... 49 

Fig. 26 Tap position of primary transformer tapchanger ...................................................................... 50 

Fig. 27 Real and reactive power import of MV EES ............................................................................ 51 

Fig. 28  Smart Grid Laboratory network diagram ................................................................................. 52 

Fig. 29  Layout of PHIL emulation of case study ................................................................................. 53 

Fig. 30 Three-phase voltage profiles at the remote end of LV Feeder 1 (Laboratory LV Network) .... 55 

Fig. 31 Tap position of secondary tapchanger (RTDS Network Model) .............................................. 55 

Fig. 32 %VUF at the remote end of LV Feeder 1 (Laboratory LV Network)....................................... 56 

Fig. 33 Real power import of LV EES (Laboratory LV Network) ....................................................... 56 

Fig. 34  Flow Chart of GUS Control ..................................................................................................... 63 

Fig. 35 Penalty Function ....................................................................................................................... 64 

Fig. 36 Case Study Network ................................................................................................................. 67 

Fig. 37 Convergence curve of ODCDM – test with SP1 ...................................................................... 69 

Fig. 38 Largest Partial Derivative – test with SP1 ................................................................................ 70 

Fig. 39 Voltage control device position in the optimisation procedure – test with SP1 ....................... 70 

Fig. 40 Convergence Curve of ODCDM with SP2 ............................................................................... 71 

Fig. 41 Largest Partial Derivative – test with SP2 ................................................................................ 71 

Fig. 42 The Voltage control device position in the optimisation procedure for SP2 ............................ 71 

Fig. 43 Case study network model for sampled field trial .................................................................... 72 

Fig. 44 Flow chart of the GUS control system in the sampled trial ...................................................... 74 



  

xxiv 
 

Fig. 45 Voltage profiles and tap position of Mortimer Road on 17
th 

Sep 2014 from field trial results . 75 

Fig. 46 Simulation results for field trial at Mortimer Road on 17
th
 Sep 2014 ....................................... 76 

Fig. 47 Pseudo code of the Cuckoo Search[114] ................................................................................... 81 

Fig. 48 Solution Structure for MINLP SOCS algorithm ....................................................................... 83 

Fig. 49 Flow Chart of Single-Objective Cuckoo Search ....................................................................... 83 

Fig. 50 Flow Chart of Multi-Objective Cuckoo Search ........................................................................ 86 

Fig. 51 Convergence curve of CS based Voltage Control Algorithm ................................................... 91 

Fig. 52 Convergence Curves for Different Runs ................................................................................... 91 

Fig. 53 RRPF for the tests with different nest and maximum iteration numbers .................................. 96 

Fig. 54 Computation times of the tests with different nest and maximum iteration numbers ............... 96 

Fig. 55 MOCS maximum iteration number determination .................................................................... 97 

Fig. 56 Pareto front and test results for the initial multi-objective test case (a) Pareto front found by 

exhaustive search, (b) Results achieved by ODCDM and MOCS ........................................................ 99 

Fig. 57 Results for different runs of MOCS (a) Test 1 (b) Test 2 ......................................................... 99 

Fig. 58 Voltage optimisation problem determination for conventional distribution networks............ 106 

Fig. 59 Case study Network B ............................................................................................................. 107 

Fig. 60 Case study Network C ............................................................................................................. 108 

Fig. 61  Generic load profile from the CLNR project ......................................................................... 109 

Fig. 62 Profile test results - Network loss minimisation (a) Network A (b) Network B (c) Network C

 ............................................................................................................................................................. 112 

Fig. 63 Profile test results – Voltage deviation minimisation (a) Network A (b) Network B (c) 

Network C ........................................................................................................................................... 114 

Fig. 64 Profile test results – Switching number minimisation (a) Network A (b) Network B (c) 

Network C ........................................................................................................................................... 115 

Fig. 65  Voltage optimisation problem determination for future distribution networks ...................... 120 

Fig. 66 Single-DG case study network – Network D .......................................................................... 120 

Fig. 67 Multi-DG case study network – Network E ............................................................................ 121 

Fig. 68 Voltage change during the optimisation progress of ODCDM – Sampled ODCDM failure test 

case (a) highest and lowest voltages (b) highest voltage only (c) lowest voltage only ....................... 126 

Fig. 69 Profile test results – Network D (a) Network loss minimisation (b) Voltage deviation 

minimisation (c) Switching operation minimisation (d) DG real power curtailment minimisation (e) 

DG reactive power usage minimisation ............................................................................................... 128 

Fig. 70 Profile test results – Network E (a) Network loss minimisation (b) Voltage deviation 

minimisation (c) Switching operation minimisation (d) DG real power curtailment minimisation (e) 

DG reactive power usage minimisation ............................................................................................... 132 

Fig. 71  Feasible region of voltage magnitudes ................................................................................... 134 

Fig. 72 Pareto front for CTC1 achieved by exhaustive search ............................................................ 142 

Fig. 73 ODCDM test results for CTC1 (a) Test1, (b) Test2, (c) Test3, (d) Test4. .............................. 144 

Fig. 74 Pareto front and test results for the conventional distribution network test cases with 2 

optimisation objectives. (a) Pareto front for CTC1, (b) Results achieved by ODCDM and MOCS for 

CTC1, (c) Pareto front for CTC2, (d) Results achieved by ODCDM and MOCS for CTC2, (e) Pareto 

front for CTC3, (f) Results achieved by ODCDM and MOCS for CTC3. .......................................... 145 

Fig. 75 Pareto front and test results for CTC4. (a) Pareto front for CTC4, (b) Results achieved by 

ODCDM and MOCS for CTC4. .......................................................................................................... 147 

Fig. 76 Case study network for future distribution network test case generation ............................... 148 

Fig. 77 ODCDM test results for FTC1. (a) Test 1 - step size as 0.01MW/MVAr (b) Test 2 - step size as 

0.05MW/MVAr ................................................................................................................................... 150 



  

xxv 
 

Fig. 78 Results achieved for future distribution network 2-objective voltage optimisation test cases. (a) 

FTC1, (b) FTC2, (c) FTC3, (d) FTC4, (e)FTC5, (d) FTC6. ............................................................... 152 

Fig. 79 Pareto front achieved for 3-objective voltage optimisation for future distribution network test 

cases. (a) FTC7, (b) FTC8, (c) FTC9, (d) FTC10. .............................................................................. 154 

 

  



  

xxvi 
 

  



  

xxvii 
 

List of Tables 

Table 1 The relationships between MSC stage positions and circuit breaker status ............................... 9 

Table 2 Voltage Problem Classification ................................................................................................ 39 

Table 3 Details of the LCT Penetrations in the Future Network Test Case .......................................... 41 

Table 4 Customer Details of the Case Study Network .......................................................................... 43 

Table 5 Voltage sensitivity factors of EES and tapchanger .................................................................. 45 

Table 6 Cost of EES and tapchanger ..................................................................................................... 46 

Table 7 Voltage-cost sensitivity factor .................................................................................................. 46 

Table 8 Voltage Control Devices in the Case Study Network .............................................................. 67 

Table 9 Starting Points used for ODCDM initial evaluation ................................................................ 68 

Table 10 Result Achieved with Two Different Starting Points ............................................................. 69 

Table 11 Global Optimal for This Test Case ........................................................................................ 89 

Table 12 Test results of the SOCS based voltage control algorithm for different maximum iteration 

number................................................................................................................................................... 90 

Table 13 Results achieved with the algorithms based on CS, GA and PSO ......................................... 93 

Table 14 Ratios of the Reference Point found with different β and pa.................................................. 95 

Table 15 Ratios of the reference point found of the results achieved with the multi-objective voltage 

optimisation algorithms based on MOCS and NSGA-II ....................................................................... 98 

Table 16 Relationship between MSC stage position and CB status .................................................... 104 

Table 17 Voltage Control Devices in the Case Study Network B ...................................................... 107 

Table 18 Voltage Control Devices in the Case Study Network C ...................................................... 108 

Table 19 Summary of test cases for conventional distribution networks ............................................ 110 

Table 20 Snapshot test results comparison – Network loss minimisation .......................................... 112 

Table 21 Snapshot test results – Voltage deviation minimisation ....................................................... 113 

Table 22 Snapshot test results – Switching operation minimisation ................................................... 115 

Table 23 Test results – Switching operation minimisation (MSCs with different capacitor bank sizes)

 ............................................................................................................................................................. 116 

Table 24 Summary of test cases for Network D ................................................................................. 122 

Table 25 Summary of test cases for Network E .................................................................................. 122 

Table 26 Snapshot test results of Network D – minimum load and maximum generation ................. 123 

Table 27 Snapshot test results of Network D – maximum load and maximum generation ................ 124 

Table 28 Sampled test case for ODCDM SP study ............................................................................. 126 

Table 29 Number of voltage violation busbars in profile test cases for ODCDM .............................. 127 

Table 30 Snapshot test results of Network E – minimum load and maximum generation ................. 129 

Table 31 Snapshot test results of Network E – maximum load and maximum generation ................. 130 

Table 32 Multi-objective voltage optimisation test cases - conventional distribution networks ........ 140 

Table 33 Starting Points used by ODCDM for CTC1 ......................................................................... 143 

Table 34 Settings for ODCDM Tests – CTC1 .................................................................................... 143 

Table 35 Ratio of the reference point founds and computation times of ODCDM tests for CTC1 .... 144 

Table 36 Ratio of the reference point found and computation time for CTC1 – CTC3 ...................... 146 

Table 37 Ratio of the reference point found and computation time for CTC4 ................................... 147 

Table 38 Multi-objective test cases – Future distribution network ..................................................... 149 

Table 39 Coverage metric C of the results achieved by ODCDM with different step size adopted for 

continuous variable discretisation ....................................................................................................... 151 

Table 40 Coverage metrics of test results and computation for Future Test Case 1-6 ........................ 153 

Table 41 Coverage metrics of test results and computation for Future Test Case 7-10 ...................... 153 



  

xxviii 
 

 

 



  

1 
 

Chapter 1 Introduction 

1.1 Background 

To protect the environment and to achieve a sustainable economy, many countries have set 

demanding carbon reduction targets. The United Kingdom (UK) government aims to reduce 

the UK’s carbon emission by at least 80%, with respect to the baseline from 1990, by 2050 

[1]. To achieve this ambitious target, large quantities of renewable energy generation are 

being connected to UK power systems. Meanwhile, with the trend towards electrification of 

heat and transport, electric vehicles (EVs) and heat pumps are also expected to proliferate in 

future power systems [2]. 

Generally power systems can be divided into three different areas: power generation, power 

transmission and power distribution. Conventionally, electrical power is generated from large 

scale power plants, and transmitted to customer areas by interconnected transmission 

networks. Supplied by transmission networks, distribution networks deliver electricity to the 

domestic and commercial customers. In the UK, distribution networks are operated and 

maintained by fourteen licensed distribution network operators (DNOs) [3]. Each of these 

DNOs covers a separate geographical region of Great Britain. These DNOs need to ensure the 

electricity delivery meets the requirements of the Office of Gas and Electricity Markets 

(Ofgem), which is an independent national regulatory authority of the UK government. One 

of the essential tasks for DNOs is to maintain network voltages within their statutory limits. 

Any voltage violating the limits, especially the upper limits, can pose a hazard to apparatus in 

the network, and could damage the customer’s equipment [4]. In the UK, the steady-state 

voltage should be maintained within ±6% of the nominal voltage in systems between 1kV and 

132kV, and within between +10% and -6% for 400V low-voltage (LV) networks [5]. 

Distribution networks are conventionally planned and operated by DNOs to cope with voltage 

problems under varying load conditions, using the assumption that power flow is 

unidirectional. Renewable energy resources are commonly connected to distribution networks, 

in the form of distributed generation (DG) [6, 7]. Large penetrations of DGs can cause reverse 

power flow and voltage problems, which are seen as one of the key challenges for DG 

connection, especially for rural distribution networks [4, 7, 8]. The significant new demand 

from electric vehicles and heat pumps, also connected to distribution networks, could also 

result in voltage problems [2, 9-11]. The connection of single-phase DGs may also cause 

voltage unbalance problems, especially in LV networks [12]. Conventional voltage control 
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schemes may not be able to cost-effectively solve these voltage problems, which could then 

restrict the connection of low carbon technologies (LCTs) [6, 7], and therefore hinder 

progress towards decarbonisation. 

In the rest of this chapter, the fundamental theories of steady-state voltage problems and 

voltage unbalance problems are introduced. Conventional voltage control techniques and 

schemes are described. The impacts of smart grid approaches to voltage control are 

introduced. The research objectives are proposed, followed by the contributions to knowledge. 

Finally, the thesis outlines are introduced. 

1.2 Theoretical analysis of voltage changes and voltage unbalance in distribution 

networks 

1.2.1 Steady-state voltage changes in distribution networks 

The principle of steady-state voltage changes in conventional distribution networks can be 

explained with the diagram shown in Fig. 1, which represents the equivalent circuit of 

electricity delivery from the sending end to the load end. Here the sending end represents the 

upstream network. 

 

Fig. 1 Equivalent circuit for voltage change analysis for conventional distribution networks 

The relationship between the voltage at the sending end, V1, and the voltage at the load, V2, 

can be represented by (1). 

 1 2V -V =I×(R+jX)    (1) 

where I is the current flowing from the sending end to the load. R and X are the resistance and 

reactance of the branch between the sending end and the load. 

The current I can be represented by (2) with the load power and voltage. 

 L L

2 2

ˆ P -jQS
I= =

ˆ ˆV V
  (2) 

where, 

R+jX

V1

Load
PL+jQL

I
V2
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Ŝ  complex conjugate of the apparent power of the load 

V̂2  complex conjugate of the load voltage 

PL  real power of the load 

QL  reactive power of the load 

If the load voltage is taken as the reference voltage, V2= V0. The voltage change between 

the sending end and load can be represented by (3). 

 
L L L L L L L L

1 2

2 22

(RP +XQ )+j(XP RQ ) RP +XQ XP RQ
V V V =I(R+jX)= = j

ˆ V VV

 
      (3) 

The phasor diagram representing the relationship between V1 and V2 is shown in Fig. 2. It 

should be noted that this diagram is purely qualitative, since in real networks the large voltage 

change depicted in this diagram would not be acceptable [6].  

 

Fig. 2 Phasor diagram of sending-end voltage and load voltage for conventional distribution networks 

In practice, the voltage angle δ between V1 and V2 is actually small, and the voltage change 

can be approximated by (4). 

 
L L

2

RP +XQ
ΔV

V
   (4) 

In distribution networks, the X/R ratio of the branch is small. In other words, X and R are 

usually of similar magnitude. Therefore neither RPL nor XQL are negligible. The voltage at 

the load end depends on the network resistance and reactance, the real and reactive powers of 

the load, and the voltage at the sending end [13]. If the load is too heavy, the voltage change 

could be too large and the voltage at the load end could be lower than its statutory lower limit, 

leading to an undervoltage problem. 

The connection of DG will also affect the power flow and the voltage change, as explained in 

the following. In this example, DG is connected in parallel with the load, as shown in Fig. 3. 

V1

V2

δ 

L L

2

XP RQ

V



L L

2

RP +XQ

V
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PG is the real power injected by the DG, and QG is the reactive power injected or absorbed by 

the DG. 

 

Fig. 3 Equivalent circuit for voltage change analysis for distribution networks with DG connection 

In this case, the voltage change between the sending end and the load, which was represented 

by (4) for conventional distribution networks, can now be represented by (5). 

 
2 2

L G L G L G L GR(P -P )+X(Q ±Q ) X(P -P ) R(Q ±Q )
V= j

V V


    (5) 

If the real power injected by the DG is larger than the load, and PG-PL is significantly larger 

than QL±QG, the phasor diagrams of the voltages V1 and V2 can be represented by Fig. 4. 

 

Fig. 4 Phasor diagram of sending end voltage and load voltage for the distribution networks with DG 

connection 

As before, in practice, the voltage angle δ between V1 and V2 is small and thus the voltage 

change can be approximated by (6). 

 
2

L G L GR(P -P )+X(Q ±Q )
ΔV

V
   (6) 

It can be seen therefore that if DG real power export is large enough may result in voltages 

that rise above the statutory upper limit. 

It should be noted that in real distribution networks the voltage problems are more 

complicated, especially when DGs are connected, as the network topologies are far more 

complex than the two-node systems shown earlier [4, 8, 14]. Moreover, the load’s real and 

reactive powers, and the DG real power output, are not constant but are continuously varying. 

PG± jQG

R+jX

LoadI Distributed Generation
PL+jQLV2V1

V1

V2

δ L G L G

2

X(P P ) R(Q Q )

V

  

L G L G

2

R(P P ) X(Q Q )

V

  
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1.2.2 Voltage unbalance in distribution networks 

Voltage unbalance is a condition in which the three-phase voltages differ in amplitude or are 

displaced from their normal 120° phase relationship or both [15]. In the UK and Europe, the 

percentage voltage unbalance factor, %VUF, is used to represent the level of voltage 

unbalance in a system [16, 17]. It is defined as the ratio (in percent) between the root mean 

square (RMS) values of the negative sequence component V- and the positive sequence 

component of the voltage V+, as shown by (7). 

 % 100%
V

VUF
V





    (7) 

V- and V+ can be calculated from three phase voltages by (8). 

 
0 1 1 1

1
1 1 120 1 120

3
1 1 120 1 120

a

b

c

V V

V V

V V

 



 



     
     

  
     
           

  (8) 

where Va, Vb and Vc are the three-phase voltages. The %VUF can also be approximated by (9) 

(for values of voltage unbalance of a few percent), as the maximum deviation from the 

average of the three-phase voltages, divided by the average of the three-phase voltages. 

 
 , ,

% 100%
a avg b avg c avg

avg

Max V V V V V V
VUF

V

  
    (9) 

where Vavg is the average value of the three-phase voltages. 

Unbalanced voltages can have adverse effects on the power system and on equipment. 

Voltage unbalance may cause unbalance in the phase currents, leading to increased network 

losses and heating effects [18]. Also, voltage unbalance can reduce the efficiencies and 

decrease lifespans of induction machines, and power electronic converters and drives [18]. 

Therefore, voltage unbalance needs to be maintained below defined limit. The %VUF has a 

regulatory limit of 1.3% in the UK, although short-term deviations (less than one minute) may 

be allowed up to 2%, which is the standard limit used for the maximum steady-state %VUF 

allowed in European networks [16, 17]. 

Conventionally, the uneven distribution of single-phase loads and asymmetrical impedances 

of the network are the major cause of voltage unbalance. When single-phase generations are 

connected to distribution networks, they may also result in unbalanced voltages [12, 19, 20]. 
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It is worth noting that in LV networks, voltage rise has been determined as the first technical 

constraint to be encountered as penetrations of generation increase [20]. However, it is 

anticipated that voltage unbalance may also become a constraint as overvoltage problems 

could be mitigated by three-phase balanced voltage control techniques such as the secondary 

on load tap changer (OLTC) [21]. However these approaches are unable to reduce voltage 

unbalance on these networks. 

1.3 Conventional distribution network voltage control 

To maintain network voltages within their statutory limits, various voltage control techniques 

have been developed and applied in distribution networks. In this work, the term “control 

technique” is used to describe different types of voltage control equipment, and “control 

device” is used to describe individual control equipment of infrastructure. Conventionally, 

OLTC transformers, in-line voltage regulators and mechanically switched capacitor banks 

(MSCs) are used in distribution networks for voltage control. 

1.3.1 On load tap changer 

OLTC is a classic voltage control technique used in distribution networks. The secondary side 

voltage of the transformer can be adjusted by changing the OLTC tap ratio when the 

transformer is energized. The simplified structure of an OLTC transformer is shown in Fig. 5. 

 

Fig. 5 Simplified structure of a transformer with OLTC 

The basic principle of OLTC is explained in the following. For a transformer, the voltage at 

the primary side and the secondary side follows the following relationship represented by (10), 

if the voltage drop across the transformer is neglected. 

Primary Side

VPri

NPri

NSec VSec

Secondary Side
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 Pri Pri

Sec Sec

V N
=

V N
  (10) 

where VPri, VSec are the voltages at the primary and secondary side, and NPri and NSec are the 

transformer winding numbers at the primary and secondary side.  

The secondary side voltage VSec can be seen as a function of primary side voltage VPri, and the 

winding numbers NPri and NSec. Normally, the winding number at the high voltage side of the 

transformer is adjustable. This is because the current on the primary side is normally smaller 

than the current on the secondary side, thereforea more cost-effective design is to change the 

tap position on the high voltage side. If the winding number change for NPri is defined as k 

(%), the relationship can be represented by (11). 

 Pri Pri

Sec Sec

V N (1 )
=

V N

k
  (11) 

Therefore, the secondary voltage can be increased or decreased by varying the tap ratio of 

OLTC. In conventional distribution network design, a transformer with OLTC is only used at 

primary substations. At secondary substations, off load tap changers are used. However, 

OLTCs are beginning to be used at secondary substations, to facilitate the integration of 

renewable energy generation [21]. 

1.3.2 Mechanically switched capacitor bank 

MSCs are also used in distribution networks, to correct power factors, to support network 

voltages, and to reduce network losses. MSC can be located at primary substations for power 

factor correction, and can also be located along long feeders to support voltages. Here the 

MSCs, which are located along feeders and used for voltage control, are studied. A simplified 

MSC, including a capacitor bank and a circuit breaker (CB), is shown in Fig. 6. The reactive 

power injected by the capacitor bank can be controlled by switching the CB on/off.  

 

Fig. 6  Simple structure of mechanically switched capacitor bank 

Circuit Breaker

Capacitor 
Bank
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The amount of reactive power injected by the MSC depends on the capacitance of the 

capacitor bank, the network frequency and the voltage of the busbar, to which the MSC is 

connected, as represented by (12). 

 22MSC MSC MSCQ fC V   (12) 

where: 

QMSC   reactive power injected by the MSC 

f   network frequency 

CMSC   capacitance of the MSC capacitor 

VMSC   voltage at the MSC 

As indicated in section 1.2.1, the reactive power affects the voltage magnitude in distribution 

networks. The MSC is able to affect the reactive power flow in distribution networks, which 

in turn affects the network voltages. In practice, a MSC could include multiple capacitor 

banks and CBs, and the reactive power injected by this MSC has multiple stages. An 

illustration of a simple multi-stage MSC is shown in Fig. 7. 

 

Fig. 7 Structure of a simple multi-stage MSC 

This multi-stage MSC shown in Fig. 7 has three CBs and three capacitors. Using the CBs 

different combinations can be connected to distribution networks resulting in different 

amounts of reactive power injection. These three capacitor banks can have the same or 

different sizes. Normally, the size of the capacitor bank is defined as the reactive power 

provided by the capacitor bank at its rated voltage and at the normal network frequency. It 

should be noted that these reactive power values are only used to represent the stages of the 

MSC. The reactive power injected by the MSC is also affected by the MSC voltage and the 

network frequency, as indicated by (12). These three capacitor banks could also have different 

sizes. For example, the sizes could be 1MVAr, 2MVAr and 4MVAr. In this case, the MSC 

CB1

Stage
Capacitor1

CB2

Stage
Capacitor2

CB3

Stage
Capacitor3
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could provide eight different stages of reactive power, as shown in Table 1. The relationships 

shown in Table 1 are from a real set of MSC from Northern Powergrid, which has been 

trialled in the CLNR project. 

Table 1 The relationships between MSC stage positions and circuit breaker status 

MSC Stage  

Position 

Total  

MVAr 

CB Status 

1MVAr 2MVAr 4MVAr 

1 0MVAr off off off 

2 1MVAr on off off 

3 2MVAr off on off 

4 3MVAr on on off 

5 4MVAr off off on 

6 5MVAr on off on 

7 6MVAr off on on 

8 7MVAr on on on 

 

1.3.3 In-line voltage regulator 

In-line voltage regulators, also known as step voltage regulators, are sometimes used in rural 

networks to help support network voltages for load customers towards the end of a long 

feeder. A typical configuration of the in-line voltage regulator application is illustrated in Fig. 

8. The in-line voltage regulator affects the voltages of the downstream network section. 

Load Load Load Load Load

In-Line Voltage 
Regulator

 

Fig. 8 Configuration of in-line voltage regulator 

Voltage regulators are normally autotransformers with an adjustable transformer ratio. They 

share the same principle as OLTC transformers in terms of voltage control, but only affect 

voltages on a single feeder. 

1.3.4 Conventional distribution network voltage control architecture 
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Voltage control devices, such as OLTC and MSCs, are typically controlled by local 

controllers, which operate on the basis of local measurement only. The configuration of the 

conventional voltage control architecture is illustrated in Fig. 9. As shown in Fig. 9, there is 

no communication infrastructure between these controllers. These voltage control devices 

could be coordinated by setting the target voltages and time delays of their controllers. For 

conventional distribution networks, this local control architecture often provides an acceptable 

solution, if the local controllers are configured appropriately [22]. However, it has been 

shown previously that this conventional voltage control architecture can have limitations 

when large penetrations of DGs are connected [8, 13, 23].  

 

Fig. 9 Configuration of conventional voltage control architecture 

1.4 Smart grid 

Smart grid technologies have the potential to provide a flexible, economic solution to 

facilitate the integration of LCTs [10, 24, 25]. For example, novel control techniques, such as 

DG with real and reactive power controllability and electrical energy storage (EES), could be 

introduced to mitigate the problems caused by the connection of LCTs [26-29]. Information 

and communication technologies (ICTs) enable the application of advanced voltage control 

architectures and algorithms, with which the voltage problems could be mitigated by 

operating voltage control devices cooperatively [30, 31]. Voltage control is expected to 

deliver a broad range of benefits to power systems [24, 27, 31-34]. For example, the smart 

grid devices, such as controllable DG and EES, should be accommodated in voltage control 
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effectively [27]. Also, besides maintaining network voltages within their limits, it is expected 

to achieve various additional objectives with voltage control, which are related to energy 

efficiency improvement, and operational cost reduction [31]. For example, in two recent smart 

grid projects, customer-led network revolution (CLNR) and customer load active system 

services (CLASS), advanced voltage control algorithms are applied and trialled to facilitate 

the connection of LCTs and to manage electricity demand without any discernible impacts on 

customers [35, 36]. 

Therefore, voltage control problems are expected to be more complicated in future smart 

distribution networks, because of the more complex flow of energy across the distribution 

network caused by LCTs, new voltage control devices and various secondary control 

objectives. Advanced voltage control architectures and algorithms are required to solve the 

future voltage control problems, to which conventional voltage control architectures and 

algorithms struggle to provide adequate solutions [27]. Various advanced architectures and 

algorithms have been proposed for voltage control previously [30]. Generally, these 

architectures can be categorized as centralized and distributed control architectures, both of 

which could potentially provide solutions for future voltage control problems [30]. This PhD 

study concentrates on centralized voltage control architecture, with which secondary control 

objectives could be easily considered at the system level, and potentially optimal solutions 

could be achieved with respect to the secondary control objectives. Numerous algorithms 

have been proposed in previous studies based on the centralized voltage control architecture. 

These algorithms have been categorized into three different groups in this PhD study: 

- Rule-based control algorithm; 

- Deterministic optimisation algorithm; 

- Metaheuristic optimisation algorithm; 

For each group, numerous algorithms have been developed and successfully applied for 

distribution network voltage control. However, many of these algorithms were developed and 

evaluated only for conventional distribution networks. The algorithms from these three groups 

have not been evaluated comparatively in terms of voltage control in distribution networks 

before. It is important to develop and evaluate these algorithms regarding the voltage control 

problems in the context of future smart distribution networks. In this thesis, advanced 

algorithms from each algorithm group have been developed, evaluated and compared, to 

develop guidelines when deploying advanced voltage control algorithms for future smart 

distribution networks. 



  

12 
 

1.5 Research objectives 

The primary aim of the research presented in this thesis is to develop and evaluate advanced 

voltage control algorithms for future smart distribution networks. The main research 

objectives are: 

- To investigate the voltage control problems in future smart distribution networks; 

- To develop and evaluate advanced voltage control algorithms from each algorithm 

group regarding voltage control problems in future smart distribution networks; 

- To summarize the salient characteristics of these algorithms by comparing the voltage 

control algorithms from different groups in terms of solving potential voltage control 

problems in future smart distribution networks;  

- To provide guidance to distribution network management product manufactures and 

DNOs, for voltage control algorithm design by understanding the links between 

algorithms and voltage control problems. 

1.6 Contributions to knowledge 

This thesis presents the following contributions to knowledge: 

- A novel rule-based voltage control algorithm has been proposed to solve voltage 

problems and voltage unbalanced problems in future distribution networks. Voltage 

cost sensitivity factor has been defined to represent the cost-effectiveness of network 

interventions in terms of voltage control. Feeder voltage divergence factor has been 

introduced as a network voltage metric for networks with large, clustered distributions 

of LCTs; 

- Representing two different types of optimisation algorithms, ODCDM and CS 

algorithms have been extended and applied to solve mixed integer and multi-objective 

voltage optimisation problems in future smart distribution networks. A novel test 

methodology has been proposed to test, evaluate and compare two different types of 

voltage optimisation algorithms, regarding voltage control problems in conventional 

and future smart distribution networks; 

- The rule-based voltage control algorithm and the two different voltage optimisation 

algorithms have been comparatively evaluated, regarding various aspects of potential 

voltage control problems in future smart distribution networks. The salient 

characteristics of these three algorithms have been summarized and guidelines have 

been proposed to distribution network management product manufactures and DNOs, 

regarding voltage control algorithm selection for future smart distribution networks. 
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The algorithms and findings from this study could provide useful information for practical 

distribution network voltage control algorithm design, and the theoretical studies of voltage 

optimisation. 

1.7 Thesis outline 

The remainder of this thesis is structured as follows: Chapter 2 reviews advanced voltage 

control techniques, architectures and algorithms for distribution networks. Novel voltage 

control techniques, such as EES, are introduced. The voltage control problems for 

conventional and future distribution networks are discussed. Different voltage control 

architectures are reviewed. Typical algorithms based on the centralized voltage control 

architecture are reviewed. 

Chapter 3 proposes a rule-based voltage control algorithm, which could be used to mitigate 

the voltage problems and voltage unbalance problems, caused by the clustered distributions of 

LCTs in terms of both feeder and phase location. Feeder voltage divergence factor and 

percentage voltage unbalance factor are utilized as network voltage metrics for networks with 

large, clustered distributions of LCTs. Voltage cost sensitivity factor is defined to represent 

how cost effective each network intervention is, in terms of voltage control. Voltage 

sensitivity factor is used to determine the required response from each network intervention. 

These metrics and factors are then used in the proposed control algorithm to provide a cost 

effective solution to mitigate voltage problems and voltage unbalance problems. The 

algorithm is evaluated with steady-state simulation and in a laboratory using real time power 

hardware in the loop (PHIL) emulation.  

Chapter 4 introduces a deterministic voltage optimisation algorithm, based on oriented 

discrete coordinate descent method (ODCDM). The implementation of the original ODCDM 

based voltage control algorithm is introduced, and the extensions of this algorithm to solve 

mixed integer nonlinear programming (MINLP) problems and multi-objective problems are 

discussed. A case study is presented to demonstrate the basic mechanism of the developed 

algorithm. The algorithm is then further validated with field trial results from the Customer-

led Network Revolution project, in which the ODCDM based control algorithm is 

implemented in real distribution networks in north east England. 

Chapter 5 proposes novel voltage optimisation algorithms, based on a metaheuristic algorithm, 

Cuckoo Search via Lévy Flights, which is normally referred to as Cuckoo Search (CS). The 

principle of CS is introduced. Single-objective cuckoo search algorithm (SOCS) and multi-
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objective cuckoo search algorithm (MOCS) are developed and applied for voltage 

optimisation. The voltage optimisation algorithm, based on SOCS, is evaluated and compared 

with genetic algorithm (GA) and particle swarm optimisation algorithm (PSO), regarding the 

single-objective test case from Chapter 4. The MOCS based voltage optimisation algorithm is 

also evaluated and compared with non-dominated sorting genetic algorithm ii (NSGA-II), 

regarding a multi-objective test case.  

In Chapter 6 and Chapter 7, the voltage optimisation algorithms are evaluated with respect to 

single-objective and multi-objective voltage optimisation. Evaluation methods are proposed 

based on the analysis of the problem formulation for voltage optimisation, and the voltage 

control problems in conventional and future distribution networks. Test results demonstrating 

this evaluation method are also presented. 

In Chapter 8, these three types of voltage control algorithms are compared based on the 

literature reviewed and the algorithm evaluation results. Based on this evaluation, guidelines 

are proposed to distribution network management product manufactures and DNOs regarding 

voltage control algorithm selection for future distribution networks. Finally, Chapter 9 

summarises the key findings with respect to the research objectives set out in Chapter 1. 

Future work is also proposed.  
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Chapter 2 Advanced Distribution Network Voltage Control 

2.1 Introduction 

As discussed in Chapter 1, the conventional voltage control techniques and architectures may 

not be sufficient to solve these voltage problems and voltage unbalance problems in future 

distribution networks. Novel voltage control techniques, such as EES and DG, have been 

introduced to support voltage control. Advanced voltage control architectures and algorithms 

have been proposed to maintain the distribution network voltages with the application of ICTs. 

In this study, the control architecture is generally seen as the infrastructure of the control 

system (hardware), whereas the control algorithm is seen as the specific method adopted 

within the control architecture (software). Secondary control objectives, such as network loss 

reduction, could also be achieved by these architectures and algorithms. 

In the rest of this chapter, novel voltage control techniques are introduced, followed by the 

introduction of voltage unbalance control techniques. The voltage control problems for 

conventional distribution networks and future distribution networks are discussed. Different 

advanced voltage control architectures and algorithms are reviewed. Conclusions are drawn 

on the basis of this review. 

2.2 Advanced voltage control techniques 

2.2.1 Electrical energy storage 

EES has been introduced to distribution networks for voltage control [23, 37-40]. In [23, 37], 

it has been applied to solve the overvoltage problems caused by PV generation. In [38], a 

distribution network voltage support operation strategy for EES has been proposed, so that the 

real and reactive powers of the EES are operated with reactive power priority. EES is also 

used to solve the undervoltage problems with demand side response in [10]. EES is able to 

inject/absorb both real and reactive power. In other words, it can be operated in all four 

quadrants. 

Besides voltage control, EES has been applied for many other purposes. A comprehensive 

review of the possible benefits of EES has been presented previously [29]. As indicated by 

[29], EES can be used to support a heavily loaded feeder, provide power factor correction, 

reduce the need to constrain DG, minimise OLTC operations and mitigate flicker, sags and 

swells. 
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2.2.2 Distributed generation control 

DG connection could cause voltage problems in distribution networks, which is one of the 

main issues restricting allowable DG penetration, especially in rural distribution networks [7, 

8, 41-43]. This is because the rural distribution networks have long feeders, with high 

impedance, which could lead to large voltage deviation. It is possible to mitigate the voltage 

problems without introducing the DG control. For example, in [44], an advanced voltage 

controller is introduced to control the OLTC at the primary substation and to keep the 

network busbar voltages within their statutory limits. Additional voltage control equipment 

could be installed to mitigate the voltage problems caused by DG connection, such as in-line 

voltage regulators [45] and electrical energy storage [46]. Also, line re-conductoring or 

building a dedicated line is a potential way to facilitate DG integration, although the cost 

could be high [47]. However, the existing voltage control techniques may not be sufficient 

when the DG penetration is significant. Controlling DG can further increase the allowable DG 

penetration without introducing additional voltage control equipment or carrying out network 

reinforcement. Many previous research and projects demonstrate the methods and benefits of 

utilizing DG for voltage control [6, 13, 48]. Different DG control techniques have been 

proposed before, including DG real power control, DG reactive power control, DG power 

factor control and DG busbar voltage control. 

As shown in section 1.2.1, the real power injected by DG is the reason for overvoltage 

problems. Reducing the DG real power, normally named as DG curtailment, could mitigate 

the overvoltage problems. As shown in [49], it is often beneficial to accommodate a larger 

DG capacity and curtail it during extreme situations (such as the coincidence of minimum 

load with maximum generation), the probability of which is generally low. DG curtailment 

can also be used to support distribution network voltage control, when other voltage control 

devices are not available [42]. 

DG reactive power injection can also be used for voltage control. As shown by (5), the 

reactive power from DG can affect the voltage change, and the effectiveness of DG reactive 

power is strongly related to the line reactance X. In [50], the reactive power from DG was 

controlled to mitigate the voltage problems caused by DG connection. DG reactive power can 

be used to control the voltages across the network, and to improve the network control 

performance. For example, the switching operation numbers of OLTC and MSC can be 

reduced by introducing DG reactive power control [51]. In some studies, both the DG real 

power and reactive powers are controlled. The real power reduction is not beneficial for the 
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DG owner, so reactive power is preferable in some studies [52, 53]. In these studies, normally 

the reactive power is controlled first and the real power is controlled when the reactive power 

control is not available.  

Instead of controlling their real and reactive powers directly, we can also control DGs by 

controlling their power factors and terminal voltages. In [54], the DG power factor is 

controlled, while in [55, 56], the DG terminal voltage is controlled. Basically, the DG power 

factor control and DG bus voltage control are also realized by controlling the DG’s real and 

reactive powers. It should also be noted that the control capabilities of DGs depend on the DG 

technology [13, 47, 57]. For example, for synchronous generator-based DGs, real power 

control is achieved by controlling the prime mover of the synchronous generator and reactive 

power control is achieved by controlling the excitation system. For power electronic 

converter-based DGs, the real and reactive powers can be controlled by controlling the 

switching angles of the power electronic converters [6]. 

2.3 Voltage unbalance control techniques 

Voltage unbalance problems can be solved with different techniques. Distribution networks 

can be balanced by changing the network configuration through feeder switching operations 

to transfer loads among circuits [18]. 

Some power electronic devices, such as the static synchronous compensator (STATCOM), 

can be used to compensate for voltage unbalance. For example, as shown in [58], voltage 

unbalance can be almost fully compensated by the STATCOM, with two novel control 

strategies: voltage-controlled current source strategy and modified voltage-controlled voltage 

source strategy. 

The power electronic device of EES can be controlled to mitigate voltage unbalance like 

STATCOM. Three-phase EES is applied to mitigate voltage unbalance with an improved 

fuzzy controller in [59]. Furthermore, EES can be placed at the phase where the generation 

and load are connected, to reduce the voltage unbalance by absorbing the generation or 

compensating the load, as shown in [60].  

Coordinated control of generation and controllable load could also be used for voltage 

unbalance control in LV networks [12]. However, this method may not be suitable for 

medium voltage (MV) networks, as the vast majority of generation load and generation 

connected to MV networks is three-phase. 
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2.4 Voltage control problems in future smart distribution networks 

Normally, multiple devices, using the same or different voltage control techniques, are 

connected to distribution networks for voltage control. The voltage control devices are 

operated to maintain the network voltages within their statutory limits under all network load 

and generation conditions [27]. 

In conventional distribution networks, different network conditions are mainly driven by the 

load variation. Classic distribution network voltage control techniques, including OLTC, 

MSCs and in-line voltage regulators, are used. In future distribution networks, more 

significant load variation is expected, because of the additional load from the electrification of 

transport and heat. More importantly, the DG generation variation will also lead to different 

network conditions. Besides classic voltage control techniques, novel voltage control 

techniques are also expected to be applied, such as DG and EES. Some of these novel voltage 

control techniques could be multifunctional. For example, EES can be applied to mitigate 

both the voltage problem and the voltage unbalance problem. One key requirement for 

voltage control in future smart distribution networks is to accommodate these novel 

techniques effectively [27, 32, 34]. 

Besides maintaining the networks within the limits, voltage control could achieve secondary 

control objectives. In the smart grid era, it is becoming more and more essential to pursue 

various objectives, which are related to different aspects, such as energy efficiency 

improvement, operation cost reduction and so on [27, 31, 33]. For conventional distribution 

networks, some control objectives have been proposed, such as network loss reduction [61]. 

For future distribution networks, new control objectives, such as maximizing the DG real 

power output, could also be considered. 

Therefore, in future distribution networks, voltage control problems are expected to be more 

challenging, with more network load and generation conditions, more voltage control devices 

and more control objectives. 

2.5 Voltage control architectures and algorithms 

To solve the distribution network voltage control problems, different voltage control 

architectures and algorithms have been proposed. Conventional voltage control architecture 

has been introduced in Chapter 1. Based on the conventional control architecture, advanced 

control algorithms can be implemented in the local controllers to mitigate the voltage 

problems caused by the DG connection. For example, a control method, which is 
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implemented in the SuperTAPP n+ relay [62], has been introduced to control the OLTC to 

facilitate the DG connection [63]. This cost-effective method could solve the voltage 

problems caused by DG integration, with local measurements only. However, this method 

only focuses on controlling the OLTC. Generally, it is difficult to achieve secondary control 

objectives with the conventional voltage control architecture [27]. 

Advanced voltage control architectures and algorithms have been proposed with the 

application of ICTs [32, 64, 65]. These advanced architectures and algorithms could provide 

many benefits which the conventional voltage control architecture cannot provide. For 

example, they are able to mitigate voltage problems which cannot be mitigated by the 

conventional voltage control architecture. The distribution network’s hosting capacity for DG 

can also be increased significantly, with these advanced control architectures and algorithms 

[13, 66]. Also, secondary control objectives can easily be achieved and could even be 

optimised. In the following, advanced voltage control architectures and algorithms are 

reviewed. 

2.5.1 Advanced voltage control architectures 

New voltage control architectures are enabled by the application of ICTs. In the new control 

architectures, the controller can receive the measurements across the network, and if there is 

more than one controller, data can be exchanged between the different controllers. The control 

architectures can be generally divided into distributed control architecture and centralized 

control architecture [67, 68]. The configurations of these two control architectures can be 

found in Fig. 10 and Fig. 11. One of the key differences between the distributed control 

architecture and the centralized control architecture is how the control decisions are made for 

all the voltage control devices. For the distributed control architecture shown in Fig. 10, the 

voltage control devices are controlled by their own distributed controllers. These distributed 

controllers make their own control decisions not only with the local measurement, but also 

with the information from the other distributed controllers. For centralized control 

architecture shown in Fig. 11, the control decisions for all the voltage control devices are 

made by a centralized controller. The central controller dispatches the control decisions to the 

remote terminal units (RTUs), and the RTUs operate the voltage control devices depending on 

the received control decisions. Normally, the central controller collects the measurements 

from the network. 
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Fig. 10 Configuration of distributed voltage control architecture 

 

Fig. 11 Configuration of centralized voltage control architecture 

Both of these architectures have their own advantages and disadvantages, which have been 

investigated in previous studies [12, 67]. Generally speaking, the communication 

infrastructure requirement for the distributed control architecture is not as high as that for the 

centralized control architecture. If the communication infrastructure fails, the distributed 

controllers in the distributed control architecture could still operate with local information, 

whereas the centralized controller may fail completely. Also, greater flexibility could be 
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gained by integrating more control devices, without changing the existing distributed 

controllers. The centralized controller needs to be updated if new control devices are 

integrated. On the other hand, the centralized control architecture could easily achieve 

secondary control objectives at the system level, not just at the local level [61]. Potentially, 

the centralized control architecture could provide full network transparency, and optimal 

control solutions, which could not be achieved by the distributed control architecture [67]. 

Local controllers can always be added within the centralized control architecture, as the 

backup solution when the communication infrastructure fails [69, 70]. In addition, as shown 

by recent smart grid projects, DNOs prefer centralized control to distributed control [35, 36]. 

In this study, centralized control architecture is investigated. 

Numerous algorithms have been proposed for the centralized voltage control architecture, and 

they can be classified in different ways. In this PhD study, these algorithms are categorized 

into three different groups: rule-based control algorithms, deterministic optimisation 

algorithms and metaheuristic optimisation algorithms, as shown in Fig. 12. 

 

Fig. 12 Categorization of voltage control algorithms for centralized control architecture 

Optimisation-based voltage control algorithms are also referred to as voltage optimisation 

algorithms or Volt/VAR optimisation algorithms [61]. In this study, the term voltage 

optimisation algorithm is used. In the following, some typical algorithms from these three 

algorithm groups are reviewed. 

2.5.2 Rule-based voltage control algorithms 

In this study, algorithms which are not based on optimisation but on control rules are 

generally seen as rule-based algorithms [68]. 
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network upper and lower voltage limits respectively. The maximum and minimum voltages in 

the network are determined by a network state estimator, which estimates the network 

voltages supplied by the primary substation, using real-time measurement, network data and 

load data. If any voltage violation is found, the algorithm will decide a new target voltage 

value, and send this value to the automatic voltage control (AVC) relay of the OLTC. The 

AVC relay can be seen as the RTU in this case. This algorithm was designed for a single 

OLTC device only, and could not be used to control multiple devices cooperatively. In [71], 

the DG reactive power is also controlled with the OLTC and more sophisticated rules are 

implemented. However, the algorithm is still based on specific combinations of voltage 

control devices. 

In [72], a sensitivity factor-based voltage control algorithm is introduced for voltage profile 

improvement by controlling OLTCs, shunt elements and generator voltages. The control 

devices are ranked with regard to their efficiency, which is measured according to the voltage 

sensitivities, current voltage profile and reserve margin of control variables. The most 

efficient control devices are selected to correct the voltage violations. This algorithm is 

flexible in terms of integrating different voltage control devices. However, it only considers 

the efficiency of the voltage control devices from the technical point of view, which may not 

provide the most cost-efficient solutions in practice. 

In [73], a case based reasoning (CBR) technique is used to mitigate the voltage problems in 

the distribution networks with DG connections by controlling OLTC and the DG’s real and 

reactive powers. The CBR determines the control decisions by comparing the network voltage 

problems with the cases in its case base library. The case base library is populated by 

simulation and can be updated according to the feedback from implementation. Potentially, 

this CBR based algorithm has the chance to provide an optimal or a near-optimal solution 

without running online optimisation calculation. However, building a sufficient case base 

library could be time consuming. 

In [23], an algorithm is proposed to control EESs and OLTCs and mitigate the voltage 

problems caused by PV generation. The following rules are defined within this algorithm. 

During off-peak load time, the OLTC will respond to the voltage rise first and the EES will 

charge to lessen the OLTC operation stress. During peak load time, the EES will discharge to 

shave the peak load. It is shown in [23] that the voltage problems can be mitigated and the 

number of the OLTC tap operations can be expected to be reduced. However, in this paper, 

only the EES real power capability has been utilized. 
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The rule-based voltage control algorithms are normally simple, fast and without any non-

convergence problems. Normally, it is easy to understand the operational principles behind 

these algorithms. However, most of these algorithms are designed for networks with only a 

few control variables. When the number of control variables increases, the determination of 

control rules can become a complex task [13]. If multiple control objectives are considered, 

the rules could also become too complex in practical applications. In addition, when optimal 

solutions are required, rule-based algorithms are not suitable, since they could only guarantee 

feasible solutions. In these cases, voltage optimisation algorithms could be used. 

2.5.3 Voltage optimisation algorithms – problem formulation 

The basic idea of voltage algorithms is to formulate and solve voltage control problems as an 

optimisation problem, which is a subgroup of Optimal Power Flow (OPF) problems [74, 75]. 

As shown in Fig. 13, a voltage optimisation algorithm includes two essential parts: a problem 

formulation and an optimisation algorithm. 

 

Fig. 13 Structure of voltage optimisation algorithm 

Different problem formulations have been proposed for voltage optimisation. These problem 

formulations can be categorized into the formulations for snapshot control and control 

scheduling, according to the timescale of the voltage control. For snapshot control, the 

problem is formulated from a snapshot of the network load and generation condition. As a 

sub-problem of the optimal power flow problem [74, 75], the problem formulation can be 

represented by (13) - (15): 
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where x is the vector of state variables (e.g. the magnitude of busbar voltages), whereas u is 

the vector of control variables (e.g. OLTC tap ratios); f() is the optimisation objective 

function(s), g() and h() are vectors of functions which represent equality and inequality 

constraints. 

The fundamental control objective, maintaining the network voltages within their limits, is 

always considered as a set of inequality constraints. The other control objectives can be 

considered as an optimisation objective function, or as a constraint. For example, the control 

objective, reducing the network losses, is normally formulated as the objective function. 

For control scheduling, the problem formulation is based on the forecast load and generation 

profile for a certain period of time T. The problem formulation of control scheduling can be 

represented by (16) - (18). 

 
0

min ( , , )
T

t t

f t



u

x u   (16) 

subject to 

 ( , , ) 0,g t t x u   (17) 

 ( , , ) 0,h t t x u   (18) 

where t is the time point within T; t0 is the starting time point of T. This control period T 

(normally, T=24hour) is divided into a set of time points, with a fixed time interval (normally 

one hour) [76] or using analysis of the forecast load profile [77]. 

With control scheduling formulation, the time-related control objectives and constraints can 

be considered. For example, the maximum allowable daily switching operation numbers of 

the OLTC and MSCs are considered in [76-78]. However, the computation burden of the 

control scheduling formulation is much heavier than that for the snapshot formulation, 

although longer computation time can be allowed for control scheduling. The strategy used in 

[77], which determines the time point by decomposing a daily load forecast into several 

sequential load levels, could potentially reduce the computation burden. However, when DGs 

are connected, it may be difficult to determine the time point with this strategy, since various 

generation levels of DGs may also need to be considered. Also, the voltage control devices 

can only be operated at the pre-determined time points, and the capability of the voltage 
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control devices may not be fully used. Moreover, it could be a demanding task to obtain 

accurate load and generation forecasts [13]. 

This thesis concentrates on voltage control algorithms that operate in real time and for which 

the snapshot control formulation is normally adopted. 

2.5.4 Deterministic optimisation-based voltage control algorithms 

Since the reduced gradient method was proposed in 1968 [79], a number of different 

deterministic optimisation algorithms have been applied to solve the OPF problems. These 

algorithms, with different characteristics, have been designed for different OPF applications 

[74, 80, 81]. Distribution network voltage optimisation has its own characteristics, which need 

to be considered for the optimisation algorithm selection. As summarized in [61], distribution 

system voltage control is different from transmission system control regarding the following 

two aspects. The problem size, in terms of both the network size and the number of control 

variables, is relatively small. This is because distribution system is divided into electrically 

subnetworks and the voltage control optimisation is applied to a subnetwork. Also, the 

number of control variables in the subnetwork is normally less than transmission networks. 

Most controls in distribution systems are discrete controls and the step sizes of these discrete 

controls are relatively large, which indicates the necessity of treating the control variables in 

distribution systems explicitly as discrete variables. 

In [82], the voltage control problem is formulated as a linear optimisation problem, which is 

then solved with a dual linear programming technique. The network loss is minimised, and 

the network voltages are held within the statutory limits. Linearized sensitivity relationships 

are employed to model the power flow for distribution networks. The original nonlinear 

voltage control problem is simplified as a linear problem, which can then be solved with well-

developed linear optimisation algorithms, such as the simplex method. These linear 

algorithms normally have many advantages, such as short computation speed, high reliability 

and excellent convergence properties [74]. In addition, a global optimal solution can be found 

for the simplified linear problem. However, this global optimal solution is not guaranteed to 

be the global optimum of the original nonlinear voltage control problem. In some cases, it 

may not even be a feasible solution for the original voltage control problem. 

In [61], the voltage control problem is formulated as a combinatorial problem, which only 

includes discrete control variables. This is based on the fact that most of the voltage control 

variables in conventional distribution networks are discrete. Network loss minimisation is 
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defined as the optimisation objective. Oriented discrete coordinate descent method is applied 

to solve this combinatorial problem. The centralized control system, in which the ODCDM is 

used, has been applied in real distribution networks [83, 84]. ODCDM is efficient in terms of 

solving combinatorial problems. However, in future distribution networks, not only discrete 

control variables, but also continuous control variables need to be considered.  

In [75], the problem is formulated as a MINLP problem, in which both discrete and 

continuous control variables are included. Network loss minimisation is defined as the 

optimisation objective. A primal-dual interior point algorithm (PDIP) is used to solve the 

optimisation problem. Discrete control variables are treated as continuous variables in the 

optimisation, and a penalty function is applied to force the discrete control variables to 

converge at their feasible points. However, the optimisation may get trapped in a local 

optimum because of the penalty function [85]. 

Deterministic optimisation algorithms have been successfully applied in voltage control. 

Additional control objectives can be easily addressed and optimal solutions can be guaranteed. 

However, these deterministic optimisation algorithms have some common drawbacks, as 

summarized in previous studies [61, 74, 80, 81, 86-88]. 

- Deterministic algorithms can only guarantee a local optimal solution, when they are 

applied to solve non-convex voltage optimisation problems. 

- Deterministic algorithms usually treat control variables as either continuous or discrete 

variables. They cannot be used to solve MINLP problems directly. Certain methods 

are required to facilitate the application of deterministic algorithms to MINLP 

problems, such as those in [75]. 

- Deterministic algorithms can only consider one optimisation objective. If they are 

used to solve multi-objective optimisation algorithms, these optimisation objectives 

need to be combined into a single objective function [87], or to be converted to a 

single objective function and some additional constraints [88]. Multiple runs are 

required to find results for multi-objective optimisation problems, which is normally 

time-consuming. 

2.5.5 Metaheuristic algorithm-based voltage control algorithm 

To address the issues of deterministic algorithms, non-deterministic optimisation algorithms, 

which are normally referred to as metaheuristic algorithms, have been developed and applied 

in voltage control. Metaheuristic algorithms can be seen as an iterative process which looks 

for the optimal solution by intelligently exploring and exploiting the search space [89]. 
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Exploring the search space means the progress to search in a local solution region to find a 

current good solution in this region. Exploiting the search space means to generate diverse 

solutions to explore the search space globally. Theoretically, metaheuristic algorithms could 

find global optimal solutions. At least, they have the chance to escape from local optimal 

solutions, because of their stochastic nature. Many metaheuristic algorithms can solve MINLP 

optimisation problems directly. As population-based algorithms, metaheuristic algorithms 

could solve multi-objective optimisation problems in a single run [86, 90]. It is worth noting 

here that metaheuristic algorithms are also called as heuristic algorithms in some previous 

studies. However, the idea that metaheuristic algorithms are developed from heuristic 

algorithms is becoming more and more popular. The differences between heuristic algorithms 

and metaheuristic algorithms are discussed in previous studies [91, 92]. A heuristic algorithm 

is seen as a technique (consisting of a rule or a set of rules), which seeks (and hopefully finds) 

good solutions at a reasonable computational cost [92]. Heuristic algorithms could provide a 

good solution but it does not guarantee optimality [92]. Metaheuristic is seen as a top-level 

strategy that guides an underlying heuristic to looks for optimal solutions [92]. Therefore, 

metaheuristic is used in this study. 

In [70], a genetic algorithm is applied to control the OLTC, step voltage regulator and 

different shunt components, and to minimise the network losses and the voltage deviation. 

Imitating the evolution of organisms, a GA employs different operators, such as crossover and 

mutation, to improve the solution as per the calculated fitness function value. Test results 

demonstrate that the network voltages can be kept within their limits with the proposed 

algorithm, and the network loss and voltage deviation can be minimised. In this paper, all the 

control variables were considered as discrete variables by GA. However, for some shunt 

components studied in this paper, such as SVC, the control variables are actually continuous. 

In [93], the voltage control problem for the distribution networks with DG and microgrids is 

formulated as a MINLP problem. An evolutionary particle swarm optimisation (EPSO) 

algorithm is applied to solve this problem. EPSO is a combination of particle swarm 

optimisation algorithm and evolutionary algorithm. The reactive power from DG, active 

power and reactive power from microgrids, and the OLTC tap positions are controlled, to 

minimise the network loss and microgeneration shedding. In this paper, the total real power 

generation of microgrids have been considered. However, the total real power generation of 

microgrids was simply added with the network active power losses to create the optimisation 

objective function. 
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In [94], the voltage control problem is formulated as a multi-objective optimisation problem, 

with two objectives, network loss minimisation and voltage deviation minimisation. The 

OLTCs are adopted as the control variables. Multi-objective metaheuristic algorithms based 

on the Pareto archived evolution strategy are applied to solve this multi-objective optimisation 

problem directly. In [95], a three-objective optimisation problem is formulated for voltage 

control. Network loss minimisation, voltage deviation minimisation and voltage stability 

index minimisation are considered simultaneously. The generator active power and reactive 

powers, the stage positions of the compensator capacitors, and the tap ratios of the OLTCs are 

considered as the control variables. This problem is solved with the opposition-based self-

adaptive modified gravitational search algorithm.  

The metaheuristic algorithms are normally computationally intensive [90]. Their stochastic 

nature makes them less predictable, compared with deterministic algorithms. In addition, 

normally metaheuristic algorithms contain parameters which may need to be adjusted for 

different problems. 

It should be noted that a few hybrid voltage optimisation algorithms have been proposed 

before [90] and [96], which are combinations of deterministic and metaheuristic optimisation 

algorithms. These hybrid algorithms have the advantages of both deterministic and 

metaheuristic optimisation algorithms. Here these hybrid algorithms are not studied separately, 

because once the stochastic nature from the metaheuristic algorithm is included in the hybrid 

algorithm, it can also be seen as a metaheuristic algorithm. 

2.5.6 Algorithm comparison 

As shown in section 2.5.2, 2.5.4 and 2.5.5, the algorithms from these three algorithm groups 

have their own advantages and disadvantages. Although numerous algorithms have been 

proposed, these algorithms are normally compared with those from the same group. Only a 

few studies compare algorithms from different groups [13, 68, 97]. 

In [97], two deterministic optimisation algorithms are compared with two metaheuristic 

algorithms regarding general optimal power flow (OPF) problems. Total generation cost 

minimisation is used as the optimisation objective. It was found that deterministic 

optimisation algorithms are robust and reliable for medium-size systems (up to 708 buses), 

even for MINLP problems, offering a theoretical advantage over metaheuristics. Test results 

in [97] suggested that, metaheuristics have shown satisfactory behaviour in small scale 

systems, but failed to provide robust solutions in medium-size systems. 
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In [13, 68], one rule-based algorithm from [71] and one optimisation algorithm from 

MATLAB Optimisation Toolbox are proposed for voltage control and compared. These two 

algorithms are evaluated with time domain simulation and long-term evaluation using a 

distribution network planning procedure. Test results suggest that generally both algorithms 

can be used for distribution networks with several distributed energy resources, and the most 

suitable voltage control strategy can be selected by means of statistical distribution network 

planning. A general deterministic optimisation algorithm is used in [13, 68], but is only able 

to deal with continuous control variables. However, in distribution networks, many of the 

control variables are discrete. Although a simple procedure is proposed in [13, 68] to consider 

the tap ratio of the OLTC at the primary substation, this optimisation algorithm is not suitable 

for voltage optimisation problems including multiple discrete control variables. In addition, in 

[13, 68] the optimisation objective is simply defined as the sum of the costs related to network 

losses and DG curtailment. However, there are more optimisation objectives which should be 

considered for distribution network voltage control. Sometimes, more than one objective 

needs to be optimised and these objectives cannot be simply summed together. 

In this PhD, the algorithms are categorized into three different groups, and they are evaluated 

and compared in terms of the voltage control problems discussed in section 2.4. 

2.6 Conclusions 

In this chapter, novel voltage control techniques, such as EES, are introduced, followed by the 

discussion of voltage control problems in conventional and future smart distribution networks. 

Generally, voltage control problems are expected to be more challenging in future distribution 

networks, with more network load and generation conditions, and more control objectives. 

More voltage control techniques could introduce more control combinations, from which 

optimised control solutions could be achieved. 

The conventional voltage control architecture, in which only the local measurement is used, 

may not be sufficient to solve the voltage control problems in future distribution networks. 

Advanced control architectures and algorithms, enabled by ICTs, have been proposed. In this 

study, centralized control architecture is investigated. The algorithms proposed can be 

categorized into three different groups: rule-based algorithms, deterministic voltage 

optimisation algorithms and metaheuristic voltage optimisation algorithms. These three 

algorithms have their own advantages and disadvantages, but potentially they could all be 

used to solve the voltage control problems in future distribution networks. 
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In this PhD study, the algorithms from these three groups are developed, evaluated and 

compared in relation to the voltage control problems in future distribution networks. A 

contribution to knowledge on the design of centralized voltage control algorithms for future 

smart distribution networks is made. 
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Chapter 3 Development and Evaluation of Voltage Cost Sensitivity Factor 

based Voltage Control Algorithm 

3.1 Introduction 

As shown in Chapter 2, different rule based voltage control algorithms have been developed 

before [14, 23, 72, 73]. In this chapter, a novel rule based algorithm is proposed, which 

integrates the control of the primary and secondary transformer OLTCs and EES units located 

at different voltage levels. This algorithm provides a cost-optimised voltage control solution 

for the distribution networks with both generation LCTs and load LCTs. In addition, the 

algorithm provides a holistic solution not only to voltage problems on medium-voltage (MV) 

and low-voltage networks[98, 99], but also to voltage unbalance problems in LV networks. 

Voltage cost sensitivity factor (VCSF) is defined for this algorithm to represent how cost 

effective each network intervention is, in terms of voltage control. Feeder voltage divergence 

factor (FVDF) is defined and used, together with percentage voltage unbalance factor 

(%VUF), as network voltage metrics for networks with large, clustered distributions of LCTs. 

Voltage sensitivity factors (VSFs) are used to determine the required response from each 

network intervention. These metrics and factors are then used in the proposed control 

algorithm to fully realize the capabilities of EES in the system. In the rest of this thesis, this 

algorithm will be referred to as the VCSF based voltage control algorithm. 

This VCSF based voltage control algorithm is evaluated with a real, smart grid enabled case 

study network. Multiple LCT clusters are connected to both the 20kV MV feeders and the 

0.4kV LV feeders of the case study network, to create a  case study. Simulation and Power 

hardware in the loop emulation are utilized to test the operation of the proposed control 

algorithm. 

In the rest of this chapter, the essential definitions used in the VCSF based voltage control 

algorithm are introduced. The flow chart of this algorithm is presented, followed by the 

introduction of a case study network and the implementation of the proposed control 

algorithm in the case study network. The simulation and evaluation results from the 

application of the control algorithm in the case study are presented. Finally, conclusions are 

drawn. 

3.2 Essential definitions in the VCSF based algorithm 

3.2.1 Voltage sensitivity factor 
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VSF describes the sensitivity of network voltage to the real power P or reactive power Q 

injection at a certain network busbar, which can be analysed through the use of the Jacobian 

Matrix [100], as shown by (19). 
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  (19) 

where, 

∆θi   change of voltage phase angle of busbar i 

∆Vi  change of voltage magnitude of busbar i 

J
-1

  inverse of Jacobian matrix 

∆Pi  change of real power injection of busbar i 

∆Qi  change of reactive power injection of busbar i 

As shown by (19), voltage sensitivity factors relate the change in voltage at a network node 

due to a change in real or reactive power at the same node, or a particular load or generation 

node elsewhere in the network. A large voltage sensitivity factor indicates that a variation in 

nodal real or reactive power leads to a large change in voltage at a specified network location. 

The network voltage changes arising from single tap operation of a tapchanger are defined as 

voltage sensitivity factors of the tapchanger. The voltage sensitivity factor of a single tap 

operation depends on multiple parameters, such as the voltage at the primary side, load 

condition, and the tapchanger position before the tap operation. It has been demonstrated by 

simulation that the tapchanger position before the tap operation has a much larger effect on 
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the voltage sensitivity factors of a tapchanger than the other parameters. Thus, a lookup table 

of voltage sensitivity factors based on the tapchanger tap position is used in this voltage 

control algorithm. 

3.2.2 Cost functions 

The cost functions are defined to represent the cost of operating the voltage control devices. 

Here, the cost function of the EES is defined by the capital investment and the cost related to 

the state of charge (SOC). EES has a time limit if the real power is used for voltage control, 

due to the finite energy capacity of the energy storage. A target SOC is defined for future 

application and other functions. Therefore, the cost of the real power for the EES can be 

calculated by (20). 
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where, 

 CP, EES  cost of operating EES real power (£/kW) 

 CCapital, EES capital cost of EES (£) 

 NEES  total charge and discharge cycles of EES 

 PRating, EES  real power rating of EES(kW) 

 SOCT  target state-of-charge (SOC) of battery (%) 

 SOC  state-of-charge (SOC) of battery (%) 

And kEES is a factor relating the deviation of SOC from the target SOC to the cost of 

charging/discharging the EES. The cost becomes larger when the SOC approaches 100% 

during charging of the EES and also when the SOC approaches 0% during discharging. 

Thus, the cost function for real power in an EES is a combination of capital investment and an 

offset to account for a changing SOC. It is assumed that the net power consumption of the 

EES is zero and that the cost of exporting and importing are equal. An approximate cost 

function for the cost of using the reactive power capability of the EES is defined by (21). 
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where, 

 CQ, EES  cost of operating the EES reactive power (£/kVAr) 

 CCapital, Converter capital cost of converter system of the EES (£) 

QRating, EES reactive power rating of EES(kVAr) 

 TLifespan  expected lifespan of converter (min) 

 TControl cycle control cycle (min) 

In (20) and (21), it is assumed that the EES is operated in full power for both real and reactive 

power operation cost calculation. It should be noted that the EES is a multifunction network 

intervention, which means it may be used to provide services in addition to voltage control. 

Therefore, other control functions, such as power flow management, could also be considered 

when evaluating the capability of EES to contribute to the network operation in distribution 

network control systems. 

The cost of tapchanger operation is calculated based on the total and remaining lifespan of the 

tapchanger equipped transformer, the estimated lifetime number of operations and the total 

cost of replacing the OLTC transformer. The remaining number of tapchanger operations is 

defined to be a function of the remaining and total lifespan of the transformer and the 

estimated total number of tapchanger operations, as indicated by (22).  
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where, 

 NOLTC, Remaining remaining operation times of the tapchanger 

 NOLTC, Total estimated total operation times of the tapchanger 

 LSOLTC, Remaining remaining lifespan of the tapchanger (min) 

 LSOLTC, Total total lifespan of the tapchanger (min) 

The cost of each OLTC tap operation can be represented by (23). 
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where, 

 COLTC  cost of OLTC tap operation (£) 

 COLTC Replacement cost of replacing the tapchanger (£) 

Different cost functions can be utilized to represent the costs of operating EES and OLTC, 

based on the control preference of distribution network operators. In addition, the cost 

functions of other voltage control techniques can be defined and this VCSF based algorithm 

can be extended by including these voltage control techniques. 

3.2.3 Voltage-cost sensitivity factor  

VCSF is used to account for the cost associated with the utilization or deployment of a 

network solution within the proposed control algorithm. The VCSF is derived as a function of 

the voltage sensitivities and network intervention operating costs. For example, the VCSF of 

device j to node i, VCSFij is defined by (24). 

 
ijV

VCSF
ij C

j


   (24) 

where VCSFij quantifies the voltage change ∆Vij at node i with a cost of Cj to operate device j 

to achieve the voltage change
ijV at node i. 

3.2.4 Feeder voltage divergence factor 

In distribution networks, the loads are normally not evenly distributed, and the voltage change 

varies with the electrical distance. This may create a network voltage condition, in which 

there are large voltage divergences between the busbars from different feeders, which are 

downstream of a common mode controlled busbar. The connection of DGs may make the load 

distribution more uneven. This is explained with an example network shown in Fig. 14. Two 

MV feeders, Feeder1 and Feeder2, are connected to the same busbar, the voltage of which 

could be controlled by the primary OLTC transformer. One DG is connected to Feeder1. It is 

assumed that Feeder1 is lightly loaded and the DG injects a large amount of power into the 

network, while Feeder2 is heavily loaded. 
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Fig. 14 An example network with uneven distribution of load and generation 

Based on the assumptions made for this example network, the voltage profiles of these two 

feeders are shown in Fig. 15. 

 

Fig. 15 Voltage profiles of Feeder1 and Feeder2 in the example network 

As shown in Fig. 15, there is a large divergence between the busbar voltages at the ends of 

Feeder1 and Feeder2. Potentially, the voltage at the end of Feeder2 may be reduced below the 

lower statutory limit, if the primary OLTC transformer tries to mitigate the overvoltage 

problem at the end of Feeder1 by reducing the voltage at the primary substation. 

FVDF is defined by (25), as the maximum feeder voltage divergence among the voltages (pu 

value) of different feeders, which are downstream of a common mode controlled busbar. 

 
Highest LowestFVDF V V     (25) 

where,  

 VHighest   Highest feeder voltage (pu) 

 VLowest  Lowest feeder voltage (pu) 
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As illustrated in Fig. 16, the threshold of FVDF is determined with the statutory voltage limits, 

the maximum voltage variation at the remote ends of the feeders following the upstream 

tapchanger tap operation and the maximum voltage change at the remote ends of the feeders 

in a control cycle due to load or generation change. Here it is assumed that both the highest 

and lowest feeder voltages are found at the remote ends of the feeders. In practice, offline 

load flow analysis should be utilized to find the locations where the highest and lowest 

voltages exist, and to derive the maximum voltage changes at these locations. 

 

Fig. 16  FVDF threshold determination 

3.2.5 Voltage unbalance factor 

As introduced in Chapter 1, %VUF is used to represent the unbalance conditions in networks. 

Here, it is approximated by (9), and also used as a metric in the VCSF based algorithm. 

3.3 Development of voltage cost sensitivity factor based voltage control algorithm 

Based on the concepts discussed in section 3.2, the control algorithm is now proposed. The 

control methods for EES and OLTC are then introduced. 

3.3.1 Control flow chart 

This algorithm monitors and mitigates voltage problems and voltage unbalance problems of 

the key locations or ‘critical nodes’ of the network. The critical nodes are identified in 

advance using offline load flow analysis, which utilizes the network model and data. The flow 

chart of the proposed control algorithm is illustrated in Fig. 17.  

MV Voltage upper limit

Maximum Voltage Variation due to the 
Upstream OLTC operation

Maximum voltage variation in a control cycle MV and LV Voltage lower limit

LV Voltage upper limit

FVDF Threshold if the 
voltage at the MV 

voltage level is used 
as the highest voltage

FVDF Threshold if the 
voltage at the LV 

voltage level is used as 
the highest voltage
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Fig. 17 Flow chart of the VCSF based voltage control algorithm 

The following sections describe in further detail the operation of each of the phases in the 

VCSF based voltage control algorithm. 

Phase A: The critical voltage nodes of the network are monitored. A set of N critical nodes, 

where sustained voltage problems occur, are identified in this phase. 

Phase B: The voltage problems at each of the N nodes identified in the previous phase are 

classified as per Table 2. 

A: Check steady-state voltages and %VUFs of all critical 
nodes; return the set of N node(s) where sustained 

voltage problem(s) occur

B: Classify the voltage problem(s) at each of the N 
node(s) with respect to steady-state voltage, %VUF and 

FVDF 

C: Select the cost-optimized network intervention(s) for 
each node    , where                   , by utilizing VCSF(s)

Where M is the number of available network 
interventions for node     ;

Use voltage sensitivity factor(s) to determine the 
required response from voltage control intervention(s) 
for all of the N nodes

D: Deploy control solution(s) for 
the set of N node(s)
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Table 2 Voltage Problem Classification 

Node i, i∈N  

Steady-state voltage excursion None/Overvoltage/Undervoltage 

FVDF > Threshold Yes/No 

%VUF > Regulatory Limit Yes/No 

 

Phase C: The cost-optimised voltage control solutions for voltage problems at each node are 

identified in this phase. The solutions available to solve each of these problems are 

determined using the classifications defined in Phase B. The required response from the 

network solution is determined using voltage sensitivity factors. 

For example, if a sustained overvoltage has been detected at node i and the FVDF is above the 

threshold, the set of network solutions available are defined to be those that are located on the 

feeders with the highest and lowest voltages fed from the common mode controlled busbar. 

The solution with the largest VCSF in this set will be selected to decrease the FVDF within 

the threshold. Voltage sensitivity factors will be used to compute the required response from 

the networks solution to reduce the FVDF. 

The change in the voltage ∆Visoln, due to the deployment of the FVDF solution is computed, 

using voltage sensitivity factors, and is added arithmetically to the voltage excursion ∆Vi to 

give ∆Vi´. The network solution with the largest VCSF is selected to mitigate the overvoltage. 

Voltage sensitivity factor is again used to calculate the required response from the second 

network solution deployed which would reduce ∆Vi´ to zero. If more than one solution is 

required then the solution available with the next highest VCSF is also selected and the 

required response calculated using voltage sensitivity factors. 

Phase D: Deploy voltage control solutions for the set of N nodes. 

This voltage control algorithm has been designed to be particularly appropriate for networks 

with large, clustered distributions of LCTs, in terms of feeder and phase location. Moreover, it 

is likely that these clusters become more prevalent, especially in liberalized, unbundled 

electricity markets, due to the consumer-driven and non-centrally planned connection of 

LCTs. 

3.3.2 EES and OLTC control 
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Both real power and reactive power of EES can be controlled. Here the real power and 

reactive power are selected as per the VCSFs, which are based on charging/discharging 

command, the SOC and the predefined target SOC. The import/export power change of the 

EES required is determined with the VSF by using (26) and (27). 

 
, _ ,( ) /EES i required i P EESP V VSF     (26) 

 
, _ ,( ) /EES i required i Q EESQ V VSF     (27) 

where, 

 ∆PEES  required real power change from EES (kW) 

 ∆QEES  required reactive power change from EES (kVAr ) 

 ∆Vi,required  required voltage change at node i (pu) 

 VSFi_P,EES voltage sensitivity factor of node i for the real power of EES 

(pu/kW) 

 VSFi_Q,EES voltage sensitivity factor of node i for the reactive power of 

EES (pu/kVAr ) 

The required tap position change of OLTC is also determined based on the magnitude of 

voltage excursion and the VSFs of the OLTC, as represented by (28). 

 
, ,( ) /i required i OLTCTap V VSF     (28) 

where, 

 ∆Tap  required tap position change 

 VSFi,OLTC  voltage sensitivity factor of node i for OLTC tap position 

change 

It should be noted that the calculated value for tap position change should be rounded up to 

the nearest multiple of OLTC step size, since the OLTC tap position is not continuous. 

3.4 Case study 

3.4.1 Case study network 

A rural network, which is located in the northeast of England, and owned by Northern 

Powergrid, is adopted as the case study network to evaluate the VCSF based algorithm. A 
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single line diagram of this case study network is illustrated in Fig. 18. A central control 

infrastructure has been installed on this network. 

 

Fig. 18 Case study network and coordinated voltage control algorithm 

In order to create a future network test case, a 5MW windfarm has been connected to MV 

Feeder 1, while a 10% domestic penetration rate of EVs and air source heat pumps (ASHPs) 

has been evenly distributed along MV Feeder 2. Furthermore, it has been assumed that a PV 

cluster has been developed on LV Feeder 1, which is one of the LV network feeders 

connected to MV Feeder 3. The distribution of PV generations across this cluster is uneven 

across the phases of the feeder. Specifically, PV penetration rates of 38%, 77% and 33% are 

used for phase A, B and C respectively. The details of the LCT penetrations, which are used 

to create future network test case, can be found in Table 3.  

Table 3 Details of the LCT Penetrations in the Future Network Test Case 

Low Carbon 

Technologies 

Location Penetration level Number of 

LCT 

customers 

EV MV Feeder 2 10% 212 

ASHP MV Feeder 2 10% 212 

PV 

LV Feeder 1 Phase A 38% 9 

LV Feeder 1 Phase B 77% 17 

LV Feeder 1 Phase C 33% 8 

 

Wind Farm

To HV Network V,I

V,I

Central Controller

V,I

EES MV

V,I

MV Feeder 1

V,I

EES LV

Unbalance

PV 

Cluster

V,I

HV

MV

LV

MV

V,I

EV & HPEV & HP

MV Feeder 2

MV Feeder 3

LV Feeder 1
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Furthermore, demand profiles of each MV feeder, windfarm generation data, profiles of 

domestic load and multiple domestic LCTs are used to create the future network test case. 

3.4.2 Windfarm generation profile and demand profile 

Wind data from 30 windfarms connected to the Northern Powergrid distribution network have 

been analysed to generate a set of windfarm daily profiles for this work. A typical daily 

generation profile for the windfarm connected to MV Feeder 1 is derived from this data, as 

illustrated in Fig. 19. 

 

Fig. 19 Daily generation profile of a 5MW windfarm 

Typical winter weekday daily demand profiles, from supervisory control and data acquisition 

(SCADA) data on the case study network, of the MV feeders are illustrated in Fig. 20. 

 

Fig. 20. Demand profiles of MV feeders 
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It can be seen from Fig. 20 that there are already significant differences between the demands 

of the three MV feeders, especially between the demand of MV Feeder 1 and that of MV 

Feeder 2. This is due to the distribution of customers supplied by each feeder. The customer 

details of each MV feeder are shown in Table 4. It can be seen that 90% of the customers on 

MV Feeder 1 are domestic customers, and 47% of these domestic customers are Super Tariff 

Customers. Super Tariff, which gives cheap-rate electricity for 5-6 hours overnight and 2 

hours at lunchtime, is popular with customers in the case study area due to the prevalence of 

electric storage heating. 

Table 4 Customer Details of the Case Study Network 

MV Feeder Domestic Customer (%) Super Tariff Domestic Customer (%) 

Feeder 1 90.00% 46.86% 

Feeder 2 76.24% 24.68% 

Feeder 3 84.59% 26.38% 

 

3.4.3 Smart meter surveys and profile development  

Historical data from over 5000 domestic customers, covering the period May 2011 to May 

2012 was used to derive typical domestic profiles in the CLNR project. A typical domestic 

demand profile is used here, as shown in Fig. 21 [101]. 

The PV generation profile, load profiles of electrical vehicles and heat pumps are also shown 

in Fig. 21. The PV generation profile is derived from disaggregated enhanced metering data 

available from CLNR project. The electrical profiles of ASHPs in detached and semi-

detached houses are generated based on the thermal profiles, which are derived and 

aggregated in previous work [102]. A coefficient of performance (COP) value of 2.5 has been 

assumed. This value has been selected to be in the middle of the range of COP values, which 

are from 2 to 3, as per previous work [11, 103, 104]. The EV consumer model used in this 

work was based on profiles developed and reported previously [105]. 
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Fig. 21 Profiles of domestic demand, EV, ASHP and PV 

It should be noted that the profiles illustrated in Fig. 21 are for individual customers. These 

profiles are utilized together with the customer numbers from Table 3 and the current demand 

profiles from Fig. 20 to create the total demand profiles for the case study network shown in 

Fig. 18. 

3.4.4 Control algorithm implementation 

As shown in Fig. 18, the central controller, in which this VCSF based algorithm is 

implemented, monitors the voltages at the ends of MV feeders and critical LV feeders, and 

sends control commands to network interventions. In this case study, the network solutions 

include the tapchangers located at the primary substation and the secondary substation to 

which the PV cluster is connected, as well as the EES units located at the end of MV Feeder 1 

and at the end of LV Feeder 1, MV EES and LV EES respectively. The rated power and 

capacity are 2.5MW and 5MWh for MV EES, and 0.05MW and 0.1MWh for LV EES. It 

should be noted here that the maximum reactive power of each EES is 0.8 times of the rated 

power, as per the EES units, which have been installed for the CLNR project. 

The VSFs of the EESs and tapchangers were calculated by running an offline load flow 

analysis with IPSA on a validated network model. The VSFs for critical nodes due to the 

operation of multiple network interventions are expressed in Table 5. The VSFs of EES are 

expressed in 1×10
-3

pu/50kVA. The VSFs of tapchangers are expressed in 1×10
-3

pu/tap step 

and are calculated by increasing one tap step from the middle tap position.  
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Table 5 Voltage sensitivity factors of EES and tapchanger  

 MV Feeder 1 End MV Feeder 2 End LV Feeder 1 End 

MV EES (1x10-

3pu/50kVA) 

1.092 0.110 0.115 

LV EES (1x10-

3pu/50kVA) 

0.106 0.106 36.577 

Primary tapchanger 

(1x10-3 pu/tap step) 

15.000 15.700 16.900 

Secondary tapchanger 

(1x10-3 pu/tap step) 

N/A N/A 21.300 

 

The cost of different network interventions are calculated based on the real information from 

the case study network in the CLNR project [35], with the approach specified in previous 

sections. In this case study network, the transformers at the primary substation have been in 

service for 46 years since their installation in 1966. Therefore, the estimated remaining 

number of tap change operations is substantially less than that of the new on load tapchanger 

transformer, which has been recently installed at the secondary substation. In this work, it is 

assumed that the lifespan and the total estimated number of tap change operations of each 

transformer are 50 years and 80,000 operations, respectively. Furthermore, the indicative cost 

of replacing the current primary on load tapchanger equipped transformer is composed of the 

capital costs of two transformers and all other enabling works, including the costs of civil, 

installation, commission and protection. The cost of replacing the secondary transformer 

tapchanger is assumed to be its capital investment. The capital investments and total charge 

discharge cycles for the storage systems are also from the CLNR project. Therefore, the cost 

of operating EES and using the tapchanger are detailed in Table 6. The cost of EES real 

power is based on 50kW and when SOC is at target SOC. 

It can be seen from Table 6 that the cost per kW of the MV EES is much smaller than that of 

the LV EES. That is because the cost per kW of the EES is decreasing with the increasing size. 

It can also be found that the cost per operation of the primary tapchanger is much greater than 

that of the secondary tapchanger. This is due to the primary tapchanger being in service for 46 

years, while the secondary tapchanger has been recently installed. Therefore the secondary 

tapchanger has larger numbers of tap change operations remaining than the primary 
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tapchanger. Additionally, the capital cost of the primary transformer tapchanger is much 

greater than that of the secondary tapchanger. 

Table 6 Cost of EES and tapchanger  

Network intervention Cost 

MV EES (£/50kW) 18.31 

LV EES (£/50kW) 102.90 

Primary tapchanger (£/tap step operation) 218.75 

Secondary tapchanger (£/tap step operation) 0.33 

 

The VCSFs in this case study were calculated using (24) and the values in Table 5 and Table 

6. The resultant VCSFs are detailed in Table 7. 

Table 7 Voltage-cost sensitivity factor  

 MV Feeder 1 End MV Feeder 2 End LV Feeder 1 End 

(1×10
-6

 pu/£) 

MV EES 59.62 5.98 6.29 

LV EES 1.03 1.03 355.47 

Primary tapchanger 68.79 71.68 77.18 

Secondary tapchanger 0.36 0.72 64,212.00 

 

All loads in the case study area are assumed to be constant power loads. Changes in load have 

been found to have minimal effect on voltage sensitivities [106]. Therefore, the use of offline 

analysis for calculation of the VCSFs was thought to be valid. 

3.5 Algorithm evaluation results 

3.5.1 Voltage control algorithm evaluation approaches 

In order to evaluate this voltage control algorithm comprehensively, two approaches, IPSA2 

simulation and network in the loop emulation, have been adopted. 

A detailed model of the case study MV network has been developed in IPSA2 and validated 

against the field trial results from the CLNR project. Annual load flow, which can be 

performed by scripting in Python, provides the flexibility of long term evaluation. The long 

term benefits of the EES and this proposed control algorithm can be evaluated by running 
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annual load flow, using the annual SCADA load data and windfarm generation data from 

Northern Powergrid. 

This voltage control algorithm is also verified and evaluated with the PHIL emulation 

platform at a smart grid laboratory. With its features of real-time simulation and real LV 

network, this evaluation approach is able to address many practical issues of the control 

algorithm, such as tolerance of communication delay or loss. Additionally, the three-phase 

four wire network representation of the PHIL system can provide a more realistic 

representation of LV networks than the three-phase representation in IPSA2. 

3.5.2 Baseline of future network test case 

The simulation results shown in Fig. 22 and the laboratory emulation results in Fig. 23 and 

Fig. 24, represent the baseline of the future network test case. In this baseline study, two 

sustained voltage problems and a voltage unbalance problem can be observed to occur 

concurrently on the network.  As shown in Fig. 22, an overvoltage problem, caused by the 

wind farm, is found on MV Feeder1. This overvoltage problem cannot be solved by the 

primary transformer tapchanger, without causing undervoltage problem on MV Feeder2. An 

overvoltage problem and a voltage unbalance problem are found on LV Feeder1, as shown in 

Fig. 23. The overvoltage and voltage unbalance problems are caused by the high 

concentrations of unevenly distributed PV generation. 

It can be seen from Fig. 22 that during the period where the voltage at the end of MV Feeder 1 

is exceeding the upper voltage limit because of the windfarm generation, the voltage at the 

end of MV Feeder 2 is also close to the lower limit due to the heavy load on this feeder. If a 

conventional tapchanger based control algorithm with remote end measurements is applied, 

the primary substation tapchanger will be actuated to mitigate the overvoltage at the end of 

MV Feeder 1, resulting in voltage violation of the lower limit at the end of MV Feeder 2. 
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Fig. 22 Voltage profiles at the remote end of MV Feeders – Baseline 

Concurrently, in the laboratory, voltage rise and voltage unbalance problems are occurring at 

the end of LV Feeder 1, where the unbalanced PV cluster is connected, as illustrated in Fig. 

23 and Fig. 24. The tapchanger could be operated to mitigate the overvoltage problem at the 

end of LV Feeder1, but it could not mitigate the voltage unbalance problems. 

 

Fig. 23 Three-phase voltage profiles at the end of LV Feeder 1 (Laboratory LV Network) - Baseline 
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Fig. 24 %VUF at the remote end of LV Feeder 1 (Laboratory LV Network) - Baseline 

3.5.3 Desktop implementation and evaluation of the control algorithm 

The proposed control algorithm was realized in Python script in conjunction with the 

validated network model of the case study network in IPSA2. It should be noted here that in 

IPSA2, the simulation is three-phase balanced, which means the %VUF is not considered in 

the simulation approach. The simulation results of the proposed control algorithm are shown 

in Fig. 25, Fig. 26 and Fig. 27. The MV feeder end voltages are illustrated in Fig. 25. The tap 

position of the primary transformer tapchanger and the power import/export of the MV EES 

are shown in Fig. 26 and Fig. 27 respectively. 

 

Fig. 25 Voltage profiles at the remote end of MV feeders 

It can be seen from Fig. 25 that at 08:00, the voltage at the end of MV Feeder 1 reaches the 

MV upper statutory voltage limit. This voltage problem is classified, and all the voltage 

control solutions are available since the FVDF is less than the threshold. Then the voltage 
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control solution with the largest VCSF is selected, which is the primary tapchanger in this 

case. The tap position of the primary tapchanger against time is shown in Fig. 26.  

At 09:00, the voltage at the end of MV Feeder 1 rises above the MV upper statutory voltage 

limit. This voltage problem is classified by FVDF being greater than the threshold. As per the 

control algorithm flowchart in Fig. 17, the MV EES is operated to decrease the FVDF. The 

overvoltage problem is mitigated at the same time when reducing the FVDF. 

At 09:10, the voltage at the end of MV Feeder 2 falls below the MV lower statutory voltage 

limit. This voltage problem is classified by the FVDF being greater than the threshold. As per 

the control algorithm flowchart in Fig. 17 the MV EES is operated to decrease the FVDF. The 

primary transformer tapchanger is used to increase the voltage at the end of MV Feeder 2 as it 

has the largest VCSF. It should be noted here that this undervoltage at the end of MV Feeder 

2 does not happen in the baseline, due to the windfarm generation. If the windfarm generation 

reduces or is compensated by the EES, an undervoltage is likely to occur. 

At 17:10, a similar undervoltage issue is solved. However, between 17:10 and 19:00, the real 

power is also required as the MV EES is no longer able to reduce FVDF using reactive power 

only. 

 

Fig. 26 Tap position of primary transformer tapchanger 
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Fig. 27 Real and reactive power import of MV EES 

In this test case, the target SOC and the initial SOC of the MV EES are both set to 50%. 

Therefore the VCSF of reactive power is larger than the VCSF of real power in the test case. 

As a result, reactive power is selected more frequently than real power, which is illustrated in 

Fig. 27. This is because the cost of operating the reactive power will not charge/discharge the 

batteries in the EES, which is cheaper than operating the real power. 

At 20:30, the FVDF drops below the threshold. The primary tapchanger lowers the voltage 

across the feeders, since the primary tapchanger has the largest VCSF at this stage, and thus 

MV EES is not required. 

At 22:50, the voltage at the end of MV Feeder 1 reaches the limit again. At this time, the 

FVDF is smaller than the FVDF threshold and all the voltage control solutions are available. 

Then the primary tapchanger is selected to control the voltage. 

3.5.4 Laboratory implementation and evaluation of control algorithm 

Smart Grid Laboratory Facility 

The network diagram of the smart grid laboratory used in this work is shown in Fig. 28. This 

laboratory hosts an experimental LV network and a Real Time Digital Simulator (RTDS). The 

experimental network includes multiple LCTs and smart grid technologies. Specifically, a PV 

generation emulator, a wind generation emulator, an EES unit, a Mitsubishi i-MIEV EV, a 

Mitsubishi Ecodan ASHP, and controllable load banks are connected to the four wire three-

phase experimental network. In addition, the RTDS is connected to the experimental network 

via a three-phase power amplifier. This arrangement provides the PHIL emulation platform, 

which enables the real experimental LV network to interact with the large scale network 
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model simulated by RTDS in real-time. Furthermore, the system is fully instrumented with 

precise measurement boards, high-speed data communication network, and human-machine 

graphical interface. 

 

Fig. 28  Smart Grid Laboratory network diagram 
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Implementation of Power Hardware in the Loop Emulation 

The layout of the PHIL emulation platform for this work is shown in Fig. 29. It consists of the 

PV emulator, the EES unit, the power amplifier, the LV network, the RTDS and the computer. 

Solar 
inverter

Controllable 
DC source

Battery 
inverter

Lead-acid 
battery bank

PV emulator EES

RTDS

Power 
Amplifier

Laboratory low-voltage network

+/- 10V

+/- 10V
LabVIEW

Computer

NI DAQ
+/- 10V

SMA Net

DC

Central 
controller

Network
model

OPC server

 

Fig. 29  Layout of PHIL emulation of case study 

To realize the interaction between the network model in RTDS and the real LV network, the 

RTDS transmits ±10V signals, which reflect the instantaneous voltages of the real-time 

network model, to the three-phase power amplifier. Then the three-phase power powers up the 

experimental LV network. Simultaneously, instantaneous current monitoring signals from the 

amplifier are fed back to the RTDS. These current signals are used as inputs of the 

controllable current source in the RTDS model, to reflect the power exchange between the 

experimental LV network and the network model in RTDS. 

To represent the case study network, the simplified MV network are modelled in RSCAD and 

validated against the IPSA2 model used in desktop simulation. The majority of the PV cluster 

feeder, LV Feeder 1, is also modelled in RSCAD, while the remainder of the PV cluster 

feeder is emulated in the experimental LV network. In total there are 122 customers on the PV 

cluster feeder. 120 customers are modelled in RSCAD and the two customers at the end of LV 

Feeder 1 are emulated by the PV emulator in the experimental LV network. Specifically, the 

PV emulator comprises of a 1.7kW programmable DC power source and an SMA Sunny Boy 

inverter. The DC power source is interfaced with LabVIEW from National Instruments, 

which allows it to model the PV generation profile. The PV generation profile modelled in 

LabVIEW is then used to control the DC power source to emulate the output of a PV array 

under varying solar irradiance. Here the PV generation profile represents the net PV 
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generation of two domestic PV customers at the end of LV Feeder 1, which is derived from 

the PV data and domestic demand data shown in Fig. 21. The laboratory EES is used to 

emulate the LV EES located at the end of LV Feeder 1. It consists of a 13kWh lead-acid 

battery bank and a 5kW SMA Sunny Island single-phase converter. This unit is controllable 

in terms of real and reactive power import/export via LabVIEW. 

The proposed control algorithm has also been developed in RSCAD in conjunction with 

LabVIEW. The developed control algorithm can control the tapchanger in the model 

simulated in RTDS directly, and it is also able to control the import/export of real and reactive 

power from the laboratory EES with the help of LabVIEW. 

Emulation Results 

Concurrently with the voltage problems that are observed on the MV network in simulation, 

described in the previous section, phase B exceeds the statutory voltage limit in the laboratory 

at approximately 09:00 as illustrated in Fig. 23. This is due to an increase in PV generation in 

the model and in the laboratory. Three-phase voltages at the end of LV Feeder 1 in the 

laboratory are shown in Fig. 30. All the voltage control solutions are identified within the set 

of available solutions since the calculated %VUF and FVDF are within the threshold. The 

voltage control solution with the largest VCSF, which is the secondary tapchanger in this case, 

is selected and deployed. The tap position of the secondary tapchanger, which is realized in 

the RTDS network model, with respect to time is illustrated in Fig. 31. It should be noted that 

there are mismatches between simulation and emulation, since three-phase balanced network 

is modelled in IPSA but four-wire system is adopted in the PHIL emulation. 
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Fig. 30 Three-phase voltage profiles at the remote end of LV Feeder 1 (Laboratory LV Network) 

 

Fig. 31 Tap position of secondary tapchanger (RTDS Network Model) 

It can be seen from Fig. 24 that %VUF reaches the regulatory limit at approximately 10:00 

due to the uneven distribution of PV generation across the phases on the feeder. The 

coordinated voltage control algorithm classifies this voltage problem. Phase voltage control 

solutions, which enable phase voltage control, are available for deployment since the %VUF 

is greater than the threshold. The LV EES is selected and deployed, which has the largest 

VCSF among all the phase voltage control solutions. The LV EES in the laboratory begins to 

import real power, charging the battery, to reduce the %VUF under the limit, as shown in Fig. 

32 and Fig. 33. 
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Fig. 32 %VUF at the remote end of LV Feeder 1 (Laboratory LV Network) 

 

Fig. 33 Real power import of LV EES (Laboratory LV Network) 

It should be noted here that in the emulation, only real power of the EES is controlled, since 

the effect of the reactive power is not significant in the experimental LV network and the 

VCSF of reactive power is relatively low for this solution. This is due to the low X/R ratio in 

the experimental LV network. Also, 1.2% is adopted as the %VUF limit in the emulation, 

instead of 1.3% (the regulatory limit). This is because the EES converter used in the 

emulation, the SMA Sunny Island converter, is not designed for real time remote control. 

There is a time delay between the EES converter and the computer, in which the control 

algorithm is implemented. The time delays can be over 5 minutes. To prevent the %VUF 

exceeding the regulatory limit, a safe margin of 0.1% is applied in this case. Of course, this is 

not necessary if the time delays can be reduced. 
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3.6 Conclusions 

A rule based voltage control algorithm is proposed in this chapter for future distribution 

networks with large, clustered distributions of LCTs, in terms of both feeder and phase 

location. This proposed control algorithm can control OLTCs and EESs to solve the voltage 

problems caused by the large, clustered distributions of LCTs. It can determine and deploy 

cost optimised solutions for concurrent MV and LV voltage problems, across a range of 

classifications, simultaneously.  

This algorithm is based on a range of network factors and metrics (VSF, VCSF, FVDF 

and %VUF). VCSF is derived from voltage sensitivity factors and cost functions for EES and 

OLTC equipped transformers. VCSF is used to select the cost-optimised voltage control 

solution, while VSF is utilized to determine the required response of the selected solution. 

FVDF is introduced in this work as a metric for the maximum voltage difference between 

feeders downstream of a common controlled busbar. FVDF is used in conjunction 

with %VUF in the proposed control algorithm to classify the voltage problems and identify 

available voltage control solutions.  

A case study, in which a credible future network test case is proposed using a validated model 

of a real GB smart grid trial distribution network, equipped with multiple EES units, OLTC 

equipped transformers under supervisory control, is used to evaluate the algorithm. In this 

future network test case, clustered concentrations of load and generation LCTs, in terms of 

both feeder and phase location, are deployed on the case study network. Desktop simulation 

and laboratory based PHIL emulation are jointly conducted to evaluate the control algorithm. 

The analysis and results from complementary simulation and PHIL emulation show that this 

VCSF based algorithm can provide cost-optimised voltage control solutions for the 

distribution networks with highly clustered distributions of load and generation LCTs. This 

control algorithm can solve steady-state voltage excursions and %VUF excursions, which are 

occurring concurrently at two MV nodes and a LV node in the case study network. In addition, 

as the algorithm is cognizant of the costs associated with deploying each network solution, it 

could reduce costs and increase the operating life of equipment. For example, tapchanger 

operations are likely to be reduced under this algorithm as the cost functions can reflect the 

age of the devices. 

This proposed VCSF based algorithm is relatively simple and fast, and it does not have the 

problems of non-convergence. However, the VCSF based algorithm also has some drawbacks. 

It relies on voltage sensitivity factor, which is not constant but varies with the network 
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topology change, and the change of network voltage and load conditions. This could be 

solved with the application of VSF lookup tables, which can be developed via offline analysis, 

or real time sensitivity calculation. 

The VCSF based algorithm cannot guarantee optimal solutions, although it is able to reduce 

the control costs. In addition, if multiple control objectives need to be considered, the rules 

could become too complex. Voltage optimisation algorithms, which are able to address these 

problems, will be discussed from next chapter.  
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Chapter 4 Development of Oriented Discrete Coordinate Descent Method 

based Voltage Control Algorithm 

4.1 Introduction 

In this chapter, a deterministic voltage optimisation algorithm, based on oriented discrete 

coordinate descent method, is introduced. ODCDM was proposed to control voltage for 

conventional distribution networks in [61]. However, only conventional voltage control 

techniques and network loss minimisation were considered before. In this PhD study, 

ODCDM has been extended to control voltage for future distribution networks. Specifically, 

both conventional and novel voltage control techniques have been considered. In addition, 

multiple optimisation objectives have been studied. .  

In the rest of this chapter, the problem formulation for voltage optimisation is described. The 

implementation of the original ODCDM based voltage control algorithm is introduced, and 

the extensions of this algorithm to solve MINLP problems and multi-objective problems are 

discussed. A simple case study is presented to demonstrate the basic mechanism of the 

developed algorithm. The algorithm is then further validated with field trial results from the 

Customer-led Network Revolution Project, in which the ODCDM based control algorithm is 

applied in real networks. Finally, conclusions are drawn. 

4.2 Problem formulation for voltage optimisation algorithms 

The general problem formulation for voltage optimisation, which is shown in Chapter 2, can 

be specified by (29) - (32), for distribution network voltage optimisation. 

 min ( , )f
u

x u   (29) 

s.t. 

 
1

, 1,...,
busbarN

i ij j i i busbar

j

V Y V P jQ i N


     (30) 

 
min max , 1,...,i i i uu u u i N     (31) 

 min max , 1,...,i i i busbarV V V i N     (32) 

where 

Vi  voltage at bus i 
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Vj  voltage at bus j 

Yij  element of admittance matrix Y 

Pi  net injected real power at busbar i 

Qi  net injected reactive power at busbar i 

ui  control variable i 

ui
min

  lowest value of control variable i 

ui
max

  highest value of control variable i 

Vi
min

  lowest limit of busbar voltage i 

Vi
max

  upper limit of busbar voltage i 

The components in this problem formulation are discussed in the following. 

4.2.1 Optimisation objective function 

The optimisation objective function(s) is represented by (29), formulated to represent 

secondary control objective(s). Regarding the number of optimisation objective functions, 

voltage optimisation can be classified as single-objective voltage optimisation or multi-

objective voltage optimisation. The optimisation objective function is a scalar function for a 

single-objective optimisation problem, while for a multi-objective optimisation problem, the 

optimisation objective function is a vector, which includes a set of scalar functions, as shown 

by (33). 

 min , 1,...,i Objf f i N    (33) 

where fi is the ith objective function and NObj is the number of optimisation objective 

functions. 

4.2.2 Equality constraints 

The equality constraints for voltage optimisation are the network flow equations, which are 

used to model the relationship between the network voltages and the net injected real and 

reactive powers at different busbars. Nonlinear node power equations are normally used, as 

represented by (30) [107]. 

4.2.3 Inequality constraints 
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The inequality constraints include the limits for control variables and state variables. Control 

variables are the variables which can be controlled directly, such as OLTC tap positions. The 

operation constraints of the control variables, which depend on specific networks, are 

generally represented by (31). Network voltages and their limits, are also formulated as a set 

of inequality constraints, as represented by (32), to represent the fundamental control 

objective, maintaining network voltages within their statutory limits. It should be noted that 

besides network voltages, some other state variables and control objectives could also be 

considered as inequality constraints. For example, maintaining the current flowing through 

network branches within the thermal limits can also be considered as a set of inequality 

constraints. This PhD study concentrates on voltage control, and thus only voltage constraints 

represented by (32) are considered. 

Voltage optimisation algorithms are desired to find feasible solutions, with that all the 

equality and inequality constraints can be met. Also, the solutions are also expected to 

minimise the optimisation objective functions. 

4.3 ODCDM based voltage control algorithm 

4.3.1 Original ODCDM based voltage control algorithm 

The original ODCDM based voltage control algorithm is introduced here. The flow chart of 

this algorithm is shown in Fig. 34. As per the flow chart in Fig. 34, the key procedures of the 

ODCDM based voltage control algorithm are discussed as follows: 

- The initial value of the optimisation objective function is computed based on a starting 

point (SP). Normally load flow calculation is needed to calculate the state variables, 

which are used to formulate the objective function and constraints, such as busbar 

voltages. In practice, the starting point is normally the settings of the voltage control 

devices before the optimisation; 

- An internal iteration loop is performed, to compute the partial derivatives of the 

objective function with respect to all n control variables individually and to find the 

largest partial derivative. The largest partial derivative then decides how the solution 

will be changed; 

- Another iteration loop (outer loop) is conducted outside the internal iteration loop, to 

keep improving the objective function until the pre-defined stop criteria are met. 

It should be noted that for ODCDM, the SP only includes control variables. This is contrast to 

some other algorithms, for which the SP could also include the initial values of the state 
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variables in the power flow equations [108]. For ODCDM, these values are not required 

because the load flow equations are solved with a given set of control variables, and the initial 

values for the state variables do not affect the optimisation progress. 

It should also be noted that the partial derivative used here is different from that from calculus, 

which is used for continuous variables. Here the partial derivatives are calculated directly by 

changing the control variable by one step size and calculating the difference between the 

objective functions. The calculation procedure can be represented by (34): 
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k k k

k k k

i i

F F F

X X X


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

 
  (34) 

where 

 F
k
, F

k+1
  objective function values before and after the control variable 

change; 

 Xi
k
, Xi

k+1
  control variable value before and after the control variable 

change, normally the difference between Xi
k
 and Xi

k+1
 is the step size of the control variable 

Xi. 
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Fig. 34  Flow Chart of GUS Control 

As specified in section 4.2.3, different inequality constraints need to be considered for the 

network safe operation, such as the statutory voltage limits. For ODCDM, the constraints are 

integrated into the objective function as a penalty function. Therefore, the objective function F 

is actually the sum of the optimisation objective function fobj and the penalty function fpenalty, 

as demonstrated by (35): 
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obj penaltyF f f    (35) 

Different penalty functions can be adopted to represent the penalty caused due to the violation 

of the inequality constraints. The basic idea, as shown by Fig. 35, is to add a large penalty 

value to the objective function if the constraint of variable x is violated, while add zero 

penalty if the constraint is not violated. 

 

Fig. 35 Penalty Function 

Here, a sum of quadratic function based step functions are used to represent the penalty, as 

shown by (36).  
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Where xi is a variable which needs to be kept within certain limits, xi
max

 and xi
min

 are the upper 

and lower limits for xi, and si is the penalty coefficient, which reflects the importance of the 

constraint related to xi. For example, xi can be the voltage magnitude of one busbar, while 

xi
max

 and xi
min

 can be the statutory voltage limits for this busbar. The constraint can also be a 

function of xi. The same idea shown by (36) and Fig. 35 can still be used. 

4.3.2 Application of ODCDM to MINLP problems 

As discussed before, the optimisation problem formulated for distribution network voltage 

control could be a MINLP problem, in which both discrete control variables and continuous 

control variables are involved. Normally, mathematical optimisation algorithms are designed 

x
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for problems with only continuous control variables or with only discrete control variables, 

and cannot be used to solve MINLP problems directly. 

To apply ODCDM to MINLP problems, one possible approach is to discretize the continuous 

variables with certain step size, which is adopted in the CLNR project [109]. The selection of 

the step size may affect the partial derivative defined in (34), and in turn affect the 

performance of the ODCDM algorithm. This will be demonstrated and further discussed with 

the test results in Chapter 6. 

4.3.3 Application of ODCDM to Multi-objective optimisation problems 

Sometimes, multiple objectives need to be optimised simultaneously in distribution network 

voltage control. The optimisation objective functions are represented by (33). For a multi-

objective optimisation problem, any two solutions x1 and x2 can have one of the following 

two possible relationships: one solution dominates the other solution or none solution 

dominates the other solution. Solution x1 is said to dominate another solution x2 if the 

conditions defined by (36) are satisfied, which are: 

- At least one objective for x1 is better than that for x2; 

- For all objectives, x1 is as good as x2. 

    1 2 1 21, , ( ) , ( )Obj i i j ji N f x f x and j f x f x         (36) 

The solutions, which are not dominated by any other solution in the entire solution space, are 

Pareto optimal solutions and constitute the Pareto set. The image of the Pareto set, i.e., the 

image of all the Pareto optimal solutions, is called Pareto front. 

Deterministic algorithms, such as ODCDM, are single objective optimisation algorithm, and 

they can only find a solution in a single run. As summarized in [110], different methods have 

been developed to facilitate deterministic algorithms to solve the multi-objective optimisation 

problems. One popular method, the weighted sum method, is introduced in the following. The 

basic idea of the weighted sum method is to convert the multiple objectives from (33) into a 

single objective with a linear function, as specified by (37). 

 
1

ObjN

i i

i

f w f


   (37) 

where wi is the weighting coefficient, representing the priority of the objective function fi. 
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The weighted sum method has been adopted in many previous voltage control studies. For 

example, the objectives, network loss minimisation and voltage deviation minimisation, are 

summed together in [70], with the weighting coefficients decided by trial and error. In [111], 

three non-negative weighting coefficients are selected to combine three different optimisation 

objectives into a single objective function. In this PhD study, weighted sum method is also 

applied with ODCDM to solve multi-objective optimisation problems. Of course, there are 

some other methods, which can also be used with ODCDM to solve the multi-objective 

optimisation problems efficiently. For example, it is possible to minimise one of the 

objectives from f, and leave the rest of objectives as constraints. This approach has been 

applied to minimise the network loss and generator reactive power utilization for transmission 

network reactive power management [88]. Although some of them may be more efficient than 

weighted sum method in some applications, these methods are not studied here. This is 

because weighted sum method is the most widely used method for voltage control. Moreover, 

weighted sum method is able to represent the basic principle behind these methods, which is 

to convert the multi-objective optimisation problems into a single-objective optimisation 

problem [86]. This means to find the Pareto front, multiple runs are required. 

Another issue that should be noted here is that if switching number minimisation is 

considered as one optimisation objective, sometimes ODCDM may be able to consider it as a 

constraint instead of one objective naturally. This is because for ODCDM, only one switching 

operation is carried out in each iteration. This will be further explained in the case study 

chapter. 

4.4 Initial evaluation of the ODCDM based voltage control algorithm 

4.4.1 Case study network 

A case study network is adopted here to demonstrate the principle of the ODCDM algorithm, 

based on the IEEE 33 bubsar network  from [112]. The network data can be found in 

Appendix A-1. In this case study network, one OLTC transformer and five MSCs are applied 

to the original network. The details of these voltage control devices are shown in Table 8. 

Here a standard network is used due to the following reasons. Standard networks are normally 

used for voltage optimisation studies, since it is easy for other researchers to duplicate the test 

cases and then evaluate and compare different algorithms with same test cases. Also, standard 

networks have multiple voltage control devices, which make it more necessary and potentially 

more beneficial to apply voltage optimisation algorithms.  
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Table 8 Voltage Control Devices in the Case Study Network 

Control 

Device 

Location Step size Range Total step 

number 

OLTC From busbar 1 to busbar 2 1.25% -5% - +5% 9 

MSC1 Busbar 8 0.1MVAr 0-0.7MVAr 8 

MSC2 Busbar 15 0.1MVAr 0-0.7MVAr 8 

MSC3 Busbar 24 0.1MVAr 0-0.7MVAr 8 

MSC4 Busbar 29 0.1MVAr 0-0.7MVAr 8 

MSC5 Busbar 33 0.1MVAr 0-0.7MVAr 8 

 

The network diagram is shown in Fig. 36. 

 

Fig. 36 Case Study Network 

The case study network is modelled in IPSA2. The ODCDM algorithm is developed with 

Python and the load flow engine in IPSA2, based on the flow chart shown in Fig. 34. 

4.4.2 Initial case study result 

The original load of the case study network is used. In the initial study, network loss 

minimisation is selected as the optimisation objective and voltage limits, 0.94pu and 1.06pu, 

are adopted. Network loss minimisation is one widely used optimisation objective for voltage 

optimisation in conventional distribution networks [52, 56, 61, 113]. The network loss is the 

sum of the real power losses on all the network branches, as represented by(38).  
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where, 

Nbranch  Number of network branches 

gij  Conductance of the branch between busbar i and j 

Vi  Voltage magnitude of busbar i 

Vj  Voltage magnitude of busbar j 

δij  The phase angle between the voltages of busbar i and busbar j 

 

As mentioned previously, a SP is needed for the ODCDM based control algorithm and 

different SP may lead to a different final result. Two starting points, shown in Table 9, are 

used to demonstrate how SP affects the algorithm performance. In practice, the SP is selected 

as the current positions of the voltage control devices, such as the tap position of the OLTC 

transformer and the stage position of the MSC. 

Table 9 Starting Points used for ODCDM initial evaluation 

Starting 

Point 

Index 

Starting Point 

OLTC MSC1 MSC2 MSC3 MSC4 MSC5 

Unit: % Unit: MVAr 

SP1 0 0 0 0 0 0 

SP2 -2.5 0 0.4 0.5 0.3 0.3 

 

For the SP1, the convergence curve of the objective function is shown in Fig. 37. As shown in 

Fig. 37, the sum of the objective function and penalty is decreased significantly at the first 

two iterations. This is because in the first two iterations, there are voltage constraints 

violations in the network, which add a large penalty number to the objective function.  
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Fig. 37 Convergence curve of ODCDM – test with SP1 

 

Table 10 Result Achieved with Two Different Starting Points 

Starting 

Point 

Index 

Final Solution Network 

Loss OLTC MSC1 MSC2 MSC3 MSC4 MSC5 

Unit: % Unit: MVAr MW 

SP1 -5 0.4 0.2 0.5 0.6 0.3 0.11793 

SP2 -5 0.3 0.3 0.5 0.6 0.3 0.11803 

 

The largest partial derivative, which stands for the largest objective improvement, is shown in 

Fig. 38, and the corresponding control variable change during the optimisation process is 

shown in Fig. 39. 
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Fig. 38 Largest Partial Derivative – test with SP1 

 

Fig. 39 Voltage control device position in the optimisation procedure – test with SP1 

As shown in Fig. 39, the OLTC tap position is moved in the first two iterations. Then MSC5 

is moved in the following three iterations. After 24 iterations, the optimal solution is achieved 

and the objective function cannot be further improved, as shown in Fig. 37.  

SP2, which is generated randomly, is also used for test. For the SP2, the convergence curve is 

shown in Fig. 40. The largest partial derivative is shown in Fig. 41. The control variable 

change during the optimisation process is shown in Fig. 42. 

The final results achieved with the ODCDM based algorithm are different for SP1 and SP2.  
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Fig. 40 Convergence Curve of ODCDM with SP2 

 

Fig. 41 Largest Partial Derivative – test with SP2 

 

Fig. 42 The Voltage control device position in the optimisation procedure for SP2 
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4.5 ODCDM validation against field trials 

As a robust and efficient algorithm, ODCDM has been adopted by commercial distribution 

management systems and applied in real distribution networks [83, 84]. In the CLNR project, 

ODCDM has also been applied in a distribution network control system, named as Grand 

Unified Scheme (GUS) [69, 109]. This GUS system has been applied and trialled in different 

distribution networks owned by Northern Powergrid. Some of the field trials have been used 

to further validate the ODCDM based algorithm developed in this PhD thesis. Here, the 

ODCDM based algorithm developed in this PhD thesis is named as ODCDM algorithm, while 

the ODCDM based algorithm implemented in the field trial is named as GUS algorithm. The 

validation is carried out by applying the ODCDM algorithm in the same way as the way the 

GUS algorithm applied in field trials, and comparing the simulation results against the 

measured field trial results. In the following, the method and results for a sampled validation 

study are presented. 

4.5.1 Sampled field trial 

A field trial of controlling secondary OLTC with the GUS algorithm is adopted here to 

demonstrate the validation process. This field trial was carried out on a low voltage network, 

the IPSA2 model of which is shown in Fig. 43. Here a UK network from the CLNR project, 

to which the GUS control system has been applied, is used for validation [69]. 

 

Fig. 43 Case study network model for sampled field trial 
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During the field trial, one electrical energy storage system, denoted by EES3 in the CLNR 

project, injected real power into the network, causing voltage problems in the network. The 

OLTC transformer at the secondary substation was controlled by the GUS algorithm to 

control the voltages within this LV network. The flowchart of this control system is illustrated 

in Fig. 44 and will be explained in section 4.5.2. The details of the field trial network and the 

field trial procedure can be found in [69]. 

4.5.2 Algorithm validation method 

The application of the developed algorithm in simulation follows the flow chart of GUS 

system. In the CLNR project, the GUS algorithm is applied based on the requirements from 

NPG for different trials. Fig. 44 illustrates the flow chart of the GUS system. As per the flow 

chart shown in Fig. 44, the control system in GUS includes the following steps: 

1) Distribution system state estimator (DSSE) takes measurement across the network, 

and estimates the network load condition based on the measurement and the network 

model within the control system. During the field trial, the state estimator is executed 

periodically every 5 minutes. The state estimator passes the estimated network load 

and generation condition, to Voltage Var Control (VVC); 

2) Voltage VAr Control includes two parts. The first part is the ODCDM based voltage 

control algorithm, while the second part is a method adopted in the customer-led 

network revolution project to convert the optimal control solution to target voltage for 

the automatic voltage control (AVC) relay. In this field trial, no optimisation objective 

is defined, and the optimisation algorithm only solves voltage constraints violation; 

3) The automatic voltage control relay operates the tapchanger in response to the 

calculated target voltage. A standard AVC algorithm is implemented here and is 

modelled as detailed previously, which means tap operation will be executed if the 

transformer secondary voltage is out of the new voltage range for over 2 minutes. 
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Fig. 44 Flow chart of the GUS control system in the sampled trial 

It should be noted that here the network model developed in IPSA2 is used to represent both 

the real network and the network model in the control system for simulation. The trial results 

from the CLNR project demonstrated that the network model and the estimation result from 

DSSE are accurate enough. Therefore, the state estimator of the GUS control system is not 

modelled in simulation. 

Then, the algorithm validation is carried out by applying the developed algorithm to the 

validated network model shown in Fig. 43. The load and EES3 real power injection from the 

field trial are used in the simulation, to create the same field trial network conditions. The 

details of the validation procedure can be found in [69]. 
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4.5.3 Sampled validation results 

The field trial results are shown in Fig. 45, including the voltage profiles at the secondary 

substation and at the EES3 connection busbar, EES3 real power output, and OLTC target 

voltage and tap position. It can also be seen that in this field trial, 1.04pu and 1pu are used as 

the upper and lower limits for network voltages.  

The simulation results for the same variables are shown in Fig. 46. It can be seen that the 

simulation results are consistent with the trial results shown in Fig. 45. As shown in both the 

trial results and the simulation results, the control algorithm changes the target voltage for 

OLTC, responding to voltage constraints violation across the network. The EES3 connection 

point is the node where the lowest/highest voltages are most likely to be found due to its 

location deep within the LV network. This node can be seen as the remote end node for this 

analysis. The AVC relay changes the tap position in response to the new target voltage and 

the voltage measurement at the transformer secondary side. It should be noted that there is a 

target voltage change after 16:45, which does not lead to tap operation. This is due to a short 

duration voltage limits violation, which happens at other busbars. 

 

Fig. 45 Voltage profiles and tap position of Mortimer Road on 17
th 

Sep 2014 from field trial results 
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Fig. 46 Simulation results for field trial at Mortimer Road on 17
th
 Sep 2014 

It should be noted that the field trial results have a different data resolution than the 

simulation results. In the field trial results, different variables have different data resolution 

values and these values are changing from time to time, responding to the data variation. The 

data resolution can be less than 1 minute. For the simulation results, the data resolution is 

constant as 1 minute for all the variables.  

The validation results shown in Fig. 45 and Fig. 46 demonstrate that the ODCDM algorithm 

developed in this PhD thesis is able to represent the ODCDM algorithm implemented in the 

GUS system, which is a state-of-the-art distribution network management system used in real 

distribution networks. 

4.6 Conclusions 

In this chapter, a voltage control algorithm based on ODCDM is introduced. The problem 

formulation for voltage optimisation is specified at the beginning. Then the development of an 

ODCDM based voltage control algorithm, as per previous study [61], is presented. The 

ODCDM based voltage control algorithm is extended in this PhD study to solve MINLP 

problems and multi-objective voltage control problems. The mechanism of the original 

ODCDM algorithm is demonstrated by the test results from a simple case study network. 

Sampled field trial results, from the CLNR project, are used to further validate the original 

ODCDM algorithm. It is proved with the validation results that the ODCDM algorithm 

developed in this PhD study is able to represent the voltage control algorithm used in a state-

of-the-art distribution network management system used in real distribution networks. 



  

77 
 

Deterministic algorithms, such as ODCDM, which has been proven to be fast and effective in 

real distribution networks, share several common drawbacks. Specifically, they are all local 

solvers, and have the difficulties to deal with MINLP problems and multi-objective problems. 

In next chapter, metaheuristic algorithms, with the theoretical advantages in these aspects, 

will be applied for voltage control. 
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Chapter 5 Development of Cuckoo Search based Voltage Control 

Algorithms 

5.1 Introduction 

In Chapter 4, oriented discrete coordinate descent method was applied to solve the 

optimisation problem, which is formulated for distribution network voltage control. Initial 

simulation results demonstrated that this algorithm was able to minimise network losses and 

maintain network voltages within the limits. However, as a deterministic optimisation 

algorithm, ODCDM is only able to guarantee a local optimum when the optimisation problem 

is nonconvex. Also, it cannot be used to solve MINLP problems and multi-objective problems 

directly. 

This chapter introduces two voltage control algorithms, based on Cuckoo Search via Lévy 

Flights, normally referred to as Cuckoo Search. CS was firstly proposed in 2009, inspired by 

the breading behaviour such as brood parasitism of certain species of cuckoos [114]. As a 

novel metaheuristic algorithm, CS attracts a lot of attention and has been successfully applied 

to solve different optimisation problems in many areas [115, 116]. Previous research 

demonstrated that CS outperforms many other popular meta-heuristic algorithms, such as 

genetic algorithm and particle swarm optimisation algorithm [116-118]. Also, CS is proved to 

be less sensitive to parameter tuning to some extent [114], while parameter tuning is normally 

seen as one of the main drawbacks of many metaheuristic algorithms. In addition, it has been 

proved that CS satisfies the requirements for global convergence with the development and 

analysis of the Markov chain model for CS in [119]. CS has also been extended to solve 

multi-objective optimisation problems in different areas [120-125]. In [121], a multi-objective 

cuckoo search algorithm was proposed and tested against a set of well-chosen test functions, 

as well as the design problems in structural engineering. Test results demonstrated that CS 

can be extended to be an efficient multi-objective optimiser. Additionally, the proposed 

algorithm was in comparison with other established multi-objective metaheuristic algorithms 

and the results showed that the proposed algorithm performed well for almost all the selected 

test problems [121]. 

CS has been applied to solve the optimisation problems from power system. For instance, CS 

is adopted to solve capacitor placement problem in [126] and DG allocation problem in [127]. 

CS is applied to solve economic dispatch problems in [128, 129], and multi-objective unit 

commitment problem in [120]. In this PhD study, CS has been extended to solve MINLP and 
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Multi-objective optimisation problems, and applied to solve voltage optimisation problems in 

conventional and future distribution networks. 

In the rest of this chapter, the principle of CS is reviewed, followed by the development of 

single-objective cuckoo search algorithm (SOCS) and multi-objective cuckoo search 

algorithm (MOCS). Voltage optimisation algorithms, based on SOCS and MOCS, are 

presented. A simple test case is used to demonstrate the mechanism of the SOCS based 

voltage control algorithm. Two popular metaheuristic algorithms, GA and PSO, have been 

applied for voltage control and tested with the same test case. The results achieved by SOCS, 

GA and PSO are compared. Similarly, the MOCS based voltage control algorithm is tested 

with a simple multi-objective test case. One widely-used multi-objective metaheuristic 

algorithm, non-dominated sorting genetic algorithm II (NSGA-II), is applied for multi-

objective voltage optimisation, and tested with the same multi-objective test case. The results 

achieved by MOCS and NSGA-II are compared. Finally, conclusions are drawn. 

5.2 Development of Cuckoo Search algorithms 

5.2.1 The principle of Cuckoo Search 

CS is inspired by the obligate brood parasitism of some cuckoo species, such as the Ani and 

Guira Cuckoos [114]. These cuckoo species lay their eggs in the nests of the host birds from 

other species. Some host birds are able to discover the eggs from the intruding cuckoos with a 

certain possibility. Once a host bird discovers the eggs are not its own eggs, they will either 

throw these alien eggs away or simply abandon its nest and build a new nest elsewhere [130]. 

The above characteristics of the breeding process of these cuckoos and the conflict between 

cuckoos and host birds are adopted as the fundamental idea for CS. Three idealized rules are 

defined in the original CS algorithm [114]: 

- Each cuckoo lays one egg at a time, and dumps this egg in a randomly chosen nest; 

- Only the best nests with high quality of cuckoo eggs will carry over to the next 

generations; 

- The number of available host nests is fixed. The egg laid by a cuckoo may be 

discovered by the host bird with a probability pa ∈ [0, 1]. If the egg is discovered, this 

nest will be replaced with a new nest. 

It should be noted that the first assumption will be changed for multi-objective cuckoo search 

algorithms. Multiple eggs will be laid. This will be further discussed in section 5.2.3. 
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The application of Lévy Flights is another important reason for the good performance of CS. 

A Lévy Flight is a random walk in which the step-lengths have a probability distribution that 

is heavy-tailed [114]. Lévy Flights have been widely observed in nature, for example, the 

foraging behaviour of bacteria and higher animals relies on the advantages of Lévy distributed 

excursion lengths [131]. Lévy Flight has been successfully applied to optimal search and the 

results show its promising capability [131, 132]. 

The Pseudo code of CS, proposed in [114], is shown in Fig. 47. The principle of CS is 

explained as per this pseudo code. A group of solutions (nests) are generated initially, and 

evaluated as per the objective function (egg). The following procedure is then repeated until 

the maximum generation (iteration) is reached or the predefined stop criterion is met: new 

solution is generated by Lévy Flights and compared with a randomly selected solution. If this 

new solution is better, it will replace the randomly selected one. Then a portion of worst 

solutions are abandoned and new solutions are generated based on the current best solution. 

Once maximum iteration is reached or the stop criterion is met, the iteration will stop and the 

best result will be returned. Different stop criterion can be defined. For example, it can be 

defined as when the objective cannot be further improved over a certain number of iterations, 

or the improved objective value is smaller than a threshold. 

 

Fig. 47 Pseudo code of the Cuckoo Search[114] 

As indicated in the Pseudo code, Lévy Flights play an important role in new solution 

generation. The specific solution generation procedure is shown by (39). 
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Where xi
t+1

 is the new solution generated, while xi
t
 is current solution. And α0>0 is the step 

size scale factor which should be related to the scales of the specific problems. The product ○+  

represents entrywise multiplications. Lévy (λ) stands for the step size, which is drawn from a 

Lévy Flights distribution. The Lévy distribution, which has an infinite variance with an 

infinite mean, can be represented by (40). 

 ,1 3L vy u té
 

     (40) 

Compared to normal distribution, Lévy distribution is able to generate a very large step size 

with a certain possibility, which allows a large space search area [131]. As indicated by (39), 

new solution is generated with the step size generated from Lévy Flights and the previous 

solutions. Some of the new solutions are generated based on the current best solution, in order 

to speed up the local search. Also, some new solutions should be generated, which are far 

enough from the current best solution. This will ensure the algorithm could escape from a 

local optimum. 

5.2.2 Development of single-objective Cuckoo Search algorithm 

The SOCS algorithm was developed in Python according to the principle stated in last section. 

CS is originally proposed to solve continuous-variable-only problems. Here, the developed 

algorithm is extended to solve mixed integer problems, by introducing discrete control 

variables into the algorithm. Specifically, the solution in the developed SOCS algorithm is 

divided into a discrete variable section and a continuous variable section, as shown by Fig. 48. 

Initial solution is created as a combination of discrete variable section and the continuous 

variable section, which are generated separately. When new solution is generated with Lévy 

flights, the continuous variable section of the new solution is still generated by (40). And for 

discrete variable section of the new solution, the step size is rounded to an integer. The 

discrete variables are modelled as integers for the sake of generality, and the discrete variables 

from the specific problems can be represented by integers. The details are shown in section 

5.3.1. Combinatorial problems can also be solved with this developed algorithm, by defining 

the number of continuous variable as zero. 
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Fig. 48 Solution Structure for MINLP SOCS algorithm 

The flow chart of the developed SOCS algorithm is shown in Fig. 49.  

 

Fig. 49 Flow Chart of Single-Objective Cuckoo Search 

As per the flow chart, the procedure of the developed algorithm is explained as follows: 

Start

Generate initial population of n host nests (solutions): X

Yes

No

Evaluate these nests (solutions) regarding the fitness function (egg) and 
find the best nest (solution) xb

Generate new nests (solutions) by Lévy flights

Evaluate the new nests (solutions), replace the current solutions if the 
new generated solutions are better. Update the best nest (solution) xb

Abandon a fraction (pa) of nests (solutions) and generate the same 
number of new nests (solutions)

Evaluate these nests (solutions) and update the best nest (solution) xb

Stop criterion ?

Return the best solution

End
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1) Initially, a set of solutions, nominated as X, are generated randomly. X is a n×m 

dimension vector. The value n is the nest number, representing the number of 

solutions, while m is the number of variables in each solution; 

2) These solutions are evaluated regarding the fitness function, and the current best 

solution xb is found. The fitness function is normally formulated as a combination of 

the optimisation objective function and the penalty function defined for constraint 

violation; 

3) New solutions are generated with Lévy flights, based on current solutions; 

4) New generated solutions are evaluated and compared with current solutions. Current 

solutions will be replaced with new generated solutions if the new generated solutions 

are better. Update the current best solution xb; 

5) A fraction of solutions, with the probability of pa, are abandoned and the same number 

of new solutions are generated; 

6) Evaluate the new generated solutions and update the current best solution xb; 

7) If the stop criterion is met, return the current best solution xb. Otherwise go back to 

step 3). Here the algorithm will stop once the predefined maximum iteration number is 

reached or the optimal result, if known, is found. 

The method of generating new solutions wth Lévy flights in step 3) is specified in the 

following. New solutions are generated based on current solutions by (41). 

 
1 ()t t

i i istepsize randn   x x   (41) 

Where xi
t+1

 is the new solution generated for the ith solution in (t+1)th generation (t+1), while 

xi
t
 is solution in generation t. randn() is a function which generates a random scalar drawn 

from the standard normal distribution. stepsizei is the step size generated by Lévy flights in 

the ith solution, which can be calculated by (42). 

 

1

0 ( )t ti
i i b

i

u
stepsize a

v

 
     

 
x x   (42) 

Where xb
t
 is the best solution found so far. α0 is the scale factor applied to avoid the Lévy 

flight becoming too aggressive and makes new solutions jump out side of the design domain. 

β is an index used in Lévy distribution. ui and vi are values drawn from normal distributions, 

as shown by (43) and (44). 

 ()iu randn    (43) 
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 ()iv randn   (44) 

ϕ is used to scale the value generated with randn(), and it is calculated by (45). 
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  (45) 

Γ represents gamma function and β is the scale factor indicated before.  

For discrete variables in the solution, (41) is revised to make sure the new solution is feasible. 

 
1 ( ())t t

i i ix x roundoff stepsize randn      (46) 

It should be noted that for CS the solutions are evaluated twice in one iteration, while for 

many other metaheuristic algorithms, the solutions are normally evaluated once in one 

iteration. Therefore, when CS is compared with other metaheuristic algorithms, the same 

fitness function evaluation number should be used instead of same iteration number. This is 

further discussed in section 5.4.2, when CS is compared with GA and PSO. 

5.2.3 Development of multi-objective Cuckoo Search algorithm 

When deterministic algorithms are applied to solve the multi-objective optimisation problems, 

multiple objectives need to be converted into a single-objective with certain methods. The 

same approach can also be adopted by metaheuristic algorithms. There are some drawbacks of 

this approach: it is sensitive to the shape of the Pareto front, and multiple runs are required to 

find the Pareto front. In addition, when deterministic algorithm is applied, the solutions in the 

achieved result may be a local optimum. 

With the ability to find multiple Pareto-optimal solutions in a single run, various multi-

objective metaheuristic algorithms have been developed in the last two decades [133, 134]. 

The following text proposes a multi-objective cuckoo search algorithm. As mentioned before, 

it is assumed that each nest (solution) hosts one egg (objective) in SOCS. For MOCS, each 

nest contains k eggs, representing k different objectives to be optimised. The solutions, which 

are not dominated by any other solutions, are stored and updated during the optimisation. The 

flow chart of MOCS is shown in Fig. 50. The procedures of MOCS are similar to that of 

SOCS, which are specified in section 5.2.2. For MOCS, a set of non-dominated solutions, 
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instead of a single best solution in SOCS, are found and used for new solution generation. As 

shown in section 5.2.2, a current best solution is needed for new solution generation. Here, 

one solution is selected randomly from the current set of non-dominated solutions every time 

when the current best solution is needed.  

 

Fig. 50 Flow Chart of Multi-Objective Cuckoo Search 

5.3 Development of Cuckoo Search based voltage control algorithm 

5.3.1 Single-objective Cuckoo Search based voltage control algorithm 

Yes

No

Start

Generate initial population of n host nests (solutions): X

Yes

No

Evaluate these nests (solutions) regarding the fitness functions (eggs), find and 
save the non-dominated solutions

Is there any non-dominated solution?

Generate a new population of solutions by Levy flights 

Abandon a fraction (pa) of nests (solutions) and generate the same number of 
new nests (solutions)

Evaluate these nests (solutions) regarding the fitness functions (eggs), Find and 
store the non-dominated solutions

Evaluate these nests (solutions) regarding the fitness functions (eggs), find and 
store the non-dominated solutions

Update the non-dominated solutions

Stop criterion ?

Return the non-dominated solution set 

End
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The basic idea of the CS based voltage control algorithms is to apply SOCS and MOCS to 

solve the optimisation problem, which is formulated for distribution network voltage control. 

The control variables, which are continuous values and integers, can be considered directly in 

the developed algorithms. However, if the control variables are non-integer discrete values, 

they need to be converted into integers first. For example, the tap position of on load tap 

changer is normally represented as a percentage value, which is normally not integer. In order 

to be considered in the CS based algorithms, the OLTC tap position is formulated as a 

function of an integer i, whose range is between 0 and NTap-1, as shown by (47). 

 , 0,1,2,..., 1min OLTC

OLTC TapTapPosition Tap i Stepsize i N       (47) 

where, 

 TapPositionOLTC The tap position of the OLTC transformer 

 Tap
min

   The minimum tap position of the OLTC transformer 

 Stepsize
OLTC

  The step size of the OLTC transformer 

 NTap   The total number of the tap positions 

Similarly, the stage position of the mechanically switched capacitor bank (MSC) can also be 

represented with an integer i by (48). 

 , 0,1,2,..., 1MSC

MSC StageStagePosition i Stepsize i N      (48) 

where, 

StagePositionMSC The stage position of MSC 

 Stepsize
MSC

  The step size of the MSC 

 NStage   The total number of the MSC stage positions 

The fitness function is formulated as a sum of the objective function and the penalty function. 

The objective function can be network loss minimisation or any other optimisation objective. 

The same penalty function from the ODCDM based voltage control algorithm is adopted here 

and added to the objective function. Load flow calculation is normally required to calculate 

the fitness function. In this study, load flow calculation is carried out with the load flow 

engine from IPSA2 and PyPower, while the rest of the algorithm is implemented in Python. 
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5.3.2 Multi-objective Cuckoo Search based voltage control algorithm 

The same approach from last section is adopted to deal with the control variables in the 

MOCS based voltage control algorithm. Assuming there are Nobj optimisation objectives, then 

Nobj fitness functions should be formulated. These fitness functions are calculated with the 

corresponding objective functions and the penalty function defined for constraint violation, as 

represented by (49). 

 

1

NObj

penalty

penalty

f f

F

f f

 


 
 


  (49) 

The result achieved by MOCS is normally a set of non-dominated solutions. In practice only 

one solution can be applied for voltage control. Therefore, a solution needs to be selected 

from the result achieved by MOCS manually or automatically with a decision making method. 

In this PhD, the ability of Pareto front search is investigated, and the solution selection 

therefore is not studied.  

5.4 Initial evaluation of single-objective cuckoo search based voltage control algorithm 

The SOCS based voltage control algorithm is evaluated with the case study network 

introduced in section 4.4.1. Initial evaluation results are presented in this section to 

demonstrate the performance of the developed SOCS based voltage control algorithm. 

Additionally, two popular metaheuristic algorithms, GA and PSO, are implemented for 

voltage control, and compared with the SOCS based voltage control algorithm. 

5.4.1 Initial evaluation of SOCS based voltage control algorithm 

Similarly to the initial evaluation of the ODCDM based voltage control algorithm, network 

loss minimisation is adopted as the optimisation objective here to evaluate the performance of 

the SOCS based voltage control algorithm. The fitness function is a combination of network 

loss and the penalty from voltage constraints violation. For this test case, the global optimum, 

which is founds via exhaustive search, is shown in Table 11.  
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Table 11 Global Optimal for This Test Case 

 OLTC MSC1 MSC2 MSC3 MSC4 MSC5 Network 

Loss 

 Unit: % Unit: MVAr MW 

Global 

Optimal 

-5 0.4 0.2 0.5 0.6 0.3 0.1179 

 

As shown in section 5.2.2, in SOCS there are several parameters, which could be tuned 

regarding each individual optimisation problem. As suggested by [135], it is sufficient to 

choose a number from 15 to 25 as the nest number, and pa can be selected as 0.25. pa is the 

possibility with which the nest (solution) will be abandoned. In addition, α0 is recommended 

to be 0.01 in [136]. Here the nest number is selected as 25. The maximum iteration number 

can be determined by increasing the maximum iteration number gradually until a stable result 

can always be achieved. For this test case, the required maximum iteration number is found as 

100, with the procedure specified in the following. 

The SOCS based voltage control algorithm is tested with different maximum iteration 

numbers, increasing from 10 to 100, with the interval as 10. 100 runs are carried out for each 

maximum iteration number for the same test case. Due to the stochastic nature of SOCS, 

different results may be achieved every time the algorithm is run. Table 12 summarizes the 

final results for the tests with varying maximum iteration number, including the maximum, 

minimum, average and the standard deviation. The maximum value represents the worst result 

achieved with a maximum iteration number over 100 runs, while the minimum value 

represents the best result achieved correspondingly. The average represents the average result 

achieved over the 100 runs, and the standard deviation is calculated using (50). 

 2

1

1
( )

N

i average

i

result result
N




    (50) 

In (50), N standards for the number of runs conducted for each maximum iteration number, 

and it is found that N=100 is sufficient in this case. resulti standards for the ith result achieved 

and resultaverage standards for the average value of the results from the N runs. 

It can be seen from Table 12 that sometimes, the result achieved with a small maximum 

iteration number may be better than that achieved with a large maximum iteration number. 

For example, the best result achieved with the maximum iteration number as 20 is better than 
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the worst result achieved with the maximum iteration number as 50. But generally the result 

achieved improves with increasing the maximum iteration number, as demonstrated by the 

average values and the standard deviations. Also, when the maximum iteration number is 

large enough, 100 in this case, the same result is achieved for all 100 runs. It should be noted 

that for the maximum iteration number of 100, the total number of fitness function evaluation, 

which is 25×100×2=5000, is still much smaller than the number of all the potential 

combinations of the control variables in this case, which is: 9×8×8×8×8×8 = 294912. 

Table 12 Test results of the SOCS based voltage control algorithm for different maximum iteration 

number 

Maximum 

Iteration Number 

Network Loss achieved over 100 runs (MW) 

Max Min Average Standard Deviation 

(10e-3) 

10 0.122149 0.117931 0.119111 0.772281 

20 0.11994 0.117931 0.118427 0.378255 

30 0.118636 0.117931 0.118078 0.135906 

40 0.118185 0.117931 0.117986 0.057032 

50 0.118101 0.117931 0.11796 0.036550 

60 0.118033 0.117931 0.117944 0.022524 

70 0.117998 0.117931 0.117934 0.012395 

80 0.117989 0.117931 0.117932 0.007608 

90 0.117967 0.117931 0.117931 0.005039 

100 0.117931 0.117931 0.117931 0.000000 

 

Fig. 51 shows the convergence curve for a sampled run of the CS based algorithm with the 

maximum iteration number as 100. The fitness function is reduced to the global optimum 

after around 60 iterations. It can also be seen that sometimes the fitness function cannot be 

improved in some iterations. Therefore, the stop criterion cannot be simply defined as when 

the fitness function cannot be further improved. 
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Fig. 51 Convergence curve of CS based Voltage Control Algorithm 

To further demonstrate the stochastic nature of metaheuristic algorithm, the convergence 

curves of CS for three different runs are shown in Fig. 52. 

 

Fig. 52 Convergence Curves for Different Runs 

It can be seen from Fig. 52 that for different runs, the convergence curves are not exactly the 

same. Although the optimisation progress is different for each run, the optimal result achieved 

after 100 iterations is the same for all three runs. 

5.4.2 Implementation of GA and PSO based voltage control algorithms 

Two popular metaheuristic algorithms, GA and PSO, are also applied here for voltage control, 

to facilitate the comparison between CS and other metaheuristic algorithms. Many variants 

have been developed for GA and PSO before. Here the GA from [137] and the PSO from 

[117] are utilized. 
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Generally metaheuristic algorithms treat the optimisation problem as a black box, which 

allows them to be applied with a similar approach. The GA from [137] is integer based. The 

same equations from (47) and (48) can be applied directly to convert the integer variables into 

discrete control variables. Since the basic PSO from [117] is originally developed based on 

continuous variables, the discrete control variables are considered as continuous variables first 

and the continuous values achieved are then rounded to the closest feasible discrete values 

after the optimisation process. 

5.4.3 Comparing the voltage control algorithms based on CS, GA and PSO 

These two algorithms, based on GA and PSO, are tested with the same test case from section 

5.4.1. As discussed in 5.2.2, the same amount of fitness function evaluations are applied in the 

tests for all these three algorithms, in order to carry out a fair comparison. For CS, the number 

of fitness function evaluations, NCS, is calculated by (51). 

   2  1CS nest number maximum iteration numberN      (51) 

The numbers of fitness function evaluations for GA (NGA) and PSO (NPSO), are calculated by 

(52) and (53). 

  GA sizeN pop geulatio nern ation    (52) 

    PSO particle number maximum iterationN number    (53) 

Metaheuristic algorithms have several parameters, which could affect their performance. 

Different metaheuristic algorithms normally have different types of parameters, which need to 

be determined. Here, the parameters in these three algorithms are specified in the following: 

- CS: nest number = 25, maximum iteration number = 100, pa = 0.25; 

- GA: population size = 50, generation = 101, step = 1, mutation probability = 0.2, elite 

rate = 0.2; 

- PSO: particle number = 25, maximum iteration number = 202, cognitive factor 

following personal best = 1.8, social factor following global best = 1.8, inertia weight 

= 0.6. 

For CS, the same parameters from the study in section 5.4.1 are used. The generation number 

for GA and the maximum iteration number for PSO are determined, in order to ensure the 

similar amount of fitness function evaluations are applied in all these three algorithms. It 

should be noted that CS utilizes 25 less fitness function evaluations than GA and PSO, due to 
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the different structures of these algorithms. The rest parameters for GA and PSO, have been 

determined as recommended by previous studies. For GA, the rest parameters have been 

recommended by [137]. For PSO, the rest parameters have been recommended by [117]. 

Potentially, for all these three algorithms, their parameters could be tuned regarding this 

specific voltage optimisation problem. However, to prove the robustness of the algorithms, 

the parameters recommended by the references are used. Also, here the tests are for the 

illustrative purposes only. 

The test case from 5.4.1 is solved 100 times by each of these three algorithms. The test results 

extracted from these 100 runs are summarized in Table 13. 

Table 13 Results achieved with the algorithms based on CS, GA and PSO 

 Network Loss achieved over 100 runs (MW) 

Algorithm Maximum Minimum Average Standard Deviation 

CS 0.117931 0.117931 0.117931 0.000000 

GA 0.119563 0.117931 0.118182 0. 000257 

PSO 0.118553 0.117931 0.118018 0.000202 

 

As shown in Table 13, all these three algorithms are able to achieve the global optimum at 

least once from the 100 runs. However, compared to GA and PSO, CS is able to achieve a 

more stable result, which can be seen from the averages and standard deviations for the results 

achieved by these algorithms.  

5.5 Initial evaluation of multi-objective cuckoo search based voltage control algorithm 

The MOCS based voltage control algorithm is also evaluated with the same test network from 

section 4.4.1. Besides network losses, voltage deviations are also to be minimised. Voltage 

deviation minimisation is another widely used optimisation objective for distribution network 

voltage control, in consideration of achieving better power quality [95, 127]. Voltage 

deviation is a measure of the differences between the magnitudes of the actual and reference 

values of busbar voltages. The reference voltage values could be the nominal voltage, a mean 

value of the operating voltage, or the declared supply voltage. The nominal voltage is used 

here as the reference value, without loss of generality. Different definitions have been 

proposed to represent the voltage deviation. Here a widely used definition, represented by 

(54), is adopted in this study. It is defined as the sum of the absolute values of the differences 

between the busbar voltages and their reference values for all network busbars. 
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busbarN

reference

VoltageDeviation i i

i

f V V    (54) 

where, 

𝑉𝑖
𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

  Reference voltage for busbar i 

Initial evaluation results from MOCS are presented here. Moreover, MOCS is compared with 

NSGA-II, which is one widely used multi-objective metaheuristic algorithm. The open source 

python algorithm of real-coded NSGA-II from [138] is applied for multi-objective voltage 

control. In this real-coded NSGA-II python algorithm, the control variables are required to be 

the values within the range of [0, 1]. Therefore, the tap position of OLTC and the stage 

position of MSC are represented by the control variables of this NSGA-II python algorithm 

using (55) and (56). 

  Round ( 1) , 0,1min OLTC

OLTC TapTapPosition Tap i N Stepsize i          (55) 

    Round[ 1 ] , 0,1MSC

MSC StageStagePosition i N Stepsize i       (56) 

5.5.1 Initial evaluation of MOCS based voltage control algorithm 

For multi-objective optimisation algorithms, the result evaluation is substantially more 

complex than that for single-objective optimisation. This is because the result normally 

includes a set of solutions, which normally need to be measured by some performance metrics, 

before the result can be evaluated. Many performance metrics have been developed before, to 

evaluate the results achieved by multi-objective optimisation algorithms. Here, the Ratio of 

the Reference Point Found (RRPF) is used to evaluate the results in this initial evaluation. 

RRPF, as its name suggests, is the ratio of found solutions against the ideal or reference 

Pareto set. It is seen as the most natural quality measure if a reference set composed of all the 

efficient solutions is known in previous researches. The ratio of the reference point found can 

be defined by (57). 

  R

A R
C A

R


   (57) 

where A is the solution set, while R is the reference set. The voltage optimisation problem in 

this test case is a combinatorial problem. The Pareto set can be achieved by exhaustive search 

and used as the reference set R. 
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As shown in section 5.2, MOCS has several parameters, which could affect the performance 

of MOCS. Potentially, these parameters could be tuned for each individual multi-objective 

optimisation problem and parameter tuning can be seen as an optimisation problem itself. 

However, the parameter tuning for multi-objective metaheuristic algorithms, such as MOCS, 

is very difficult and time consuming. It is not practical to tune all the parameters for each 

individual problem. Here, the parameters are determined as per the literature and with some 

experiments. 

As per [121], the ranges of the parameters in MOCS are suggested as: nest number = 25 to 50, 

pa = 0.25 to 0.5 and β =1 or 1.5. In addition, α0 is recommended to be 0.1, as suggested by 

[121]. pa and β are determined experimentally. MOCS was tested with β = 1, 1.5 and pa = 0.25, 

0.3,…, 0.5. For each set of parameters, 20 runs were carried out for MOCS, with the nest 

number set as 50 and the maximum iteration number set as 200. The results are evaluated with 

the ratio of the reference point found. The results are shown in Table 14. 

Table 14 Ratios of the Reference Point found with different β and pa 

pa 
Average RRPF over 20 runs 

β=1 β=1.5 

0.25 6.02% 6.63% 

0.3 6.33% 5.96% 

0.35 5.78% 5.84% 

0.4 4.88% 5.24% 

0.45 5.60% 5.24% 

0.5 4.16% 4.28% 

 

Based on the results shown in Table 14, the following parameters are selected for MOCS in 

this study: pa = 0.25 and β = 1.5. With this set of values for pa and β, the largest average RRPF 

of the results over 20 runs were achieved. 

Besides the parameters discussed above, the nest and maximum iteration numbers also need 

to be decided. More solutions can be achieved with larger nest and maximum iteration 

numbers, or by multiple runs. To show the impacts of the nest and maximum iteration 

numbers, MOCS was tested with different nest and maximum iteration numbers. Specifically, 

both the nest and the maximum iteration numbers are varied from 25 to 200, with the step size 
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as 25. For each combination of the number and maximum iteration numbers, MOCS was run 

20 times. The results were evaluated with RRPF. The average RRPF and the average 

computation time are shown in Fig. 53 and Fig. 54. It can be seen from Fig. 53 and Fig. 54 

that generally better results can be achieved with the larger nest and maximum iteration 

numbers. However, the computation time is also expected to be longer, if larger nest number 

and maximum iteration number are used. 

 

Fig. 53 RRPF for the tests with different nest and maximum iteration numbers 

 

Fig. 54 Computation times of the tests with different nest and maximum iteration numbers 
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Theoretically, an optimal set of nest and maximum iteration numbers could be found for each 

optimisation problem. However, tuning the population size (nest number for MOCS) and 

maximum iteration number for multi-objective metaheuristic algorithms is a difficult task and 

there is no specific rule for guiding the selection of these numbers. In many previous studies, 

the population size and maximum iteration number were just given by the authors without 

specifying how these values were decided. In this study, the nest number is increased with the 

number of objectives and control variables. The maximum iteration number is determined 

experimentally. Specifically, the maximum iteration number is being increased, until the 

result cannot be further improved, as shown in Fig. 55. 

 

Fig. 55 MOCS maximum iteration number determination 

It is not always straightforward to judge if the result is further improved or not for multi-

objective optimisation problems. As discussed at the beginning of this section, normally the 

results for multi-objective voltage optimisation need to be measured by certain performance 

metrics, such as RRPF, before they can be compared. However, RRPF requires the 

information of Pareto front, which is normally unknown in practice. Another performance 

metric, coverage metric, is introduced here, to facilitate the comparison between two different 

sets of results. The coverage metric C(A, B) is defined as the ratio of the number of points in 

the solution set B dominated by the points from the solution set A, over the total number of 

points in the solution set B [139]. If all the points in B are dominated by the points in A, C(A, 

B) equals 1, while if none of the points in solution set B are dominated by the points in A, C(A, 

B) equals zero. Here, it is seen that the result can be further improved as long as the condition 

represented by (58) can be met. 

    , ,before after after beforeC SolutionSet SolutionSet C SolutionSet SolutionSet   (58) 
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where SolutionSet
before

 is the solution set achieved before increasing the maximum iteration 

number, while SolutionSet
after

 is the solution set achieved after increasing the maximum 

iteration number. To mitigate the influence of the stochastic nature of metaheuristic 

algorithms, a large step size can be used to increase of the maximum iteration number. For 

this test case, the nest was set as 50 and the iteration number was determined as 300. 

5.5.2 Comparison the voltage control algorithms based on MOCS and NSGA-II 

The parameters for MOCS are shown in the section. The parameters of NSGA-II are set as 

recommended in [138]: population size = 100, generation = 301, crossover distribution = 20, 

mutation distribution = 20, crossover probability = 0.9, mutation probability = 0.1. Both 

algorithms are tested with 20 runs and the results are evaluated with RRPF, which are 

summarized in Table 15. 

Table 15 Ratios of the reference point found of the results achieved with the multi-objective voltage 

optimisation algorithms based on MOCS and NSGA-II 

 RRPF over 20 runs 

Max Min Average 

MOCS 10.24% 4.82% 6.75% 

NSGA-II 3.98% 2.41% 3.45% 

 

It can be seen from Table 15 that better results can be achieved with MOCS in terms of the 

performance metric, ratio of reference point found. Also, visual presentations of the results 

are also used to evaluate and compare the results achieved by MOCS and NSGA-II. The 

Pareto front found by exhaustive search and the best results achieved by MOCS and NSGA-II 

over 20 runs are shown in Fig. 56. 
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Fig. 56 Pareto front and test results for the initial multi-objective test case (a) Pareto front found by 

exhaustive search, (b) Results achieved by ODCDM and MOCS 

As demonstrated by the results in Fig. 56, it can also be found that MOCS can reach to the 

space where NSGA-II cannot reach. It should be noted that potentially, better results could be 

achieved by NSGA-II, by tuning its parameters. However, instead of comparing MOCS and 

NSGA-II, here the purpose is just to illustrate the performance of MOCS.  

Due to the stochastic nature of MOCS, the results achieved by different runs may not be the 

same, as shown by Fig. 57. However, it can be seen from Fig. 57 that the results achieved in 

both runs can reflect the Pareto front shown in Fig. 56–(a). 

 

Fig. 57 Results for different runs of MOCS (a) Test 1 (b) Test 2 

5.6 Conclusions 

In this chapter, the CS based voltage control algorithms were introduced. CS, as a novel 

metaheuristic algorithm, has been extended to solve mixed integer and multi-objective 

optimisation problems and implemented here. These developed CS algorithms are then 

applied for distribution network voltage control. Initial test is conducted to illustrate the basic 

mechanism of the CS based voltage control algorithm. The developed CS algorithm is also 

compared with two popular algorithms, GA and PSO. Test results demonstrated that the CS 
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based voltage control algorithm is able to achieve a more stable result for the given test case, 

compared to the algorithms based on GA and PSO. And the MOCS based voltage control 

algorithm is compared with the NSGA-II based voltage control algorithm. The comparison 

results also demonstrate that MOCS achieved a more comprehensive set of Pareto-optimal 

solutions in comparison with NSGA-II.  

As summarized in the last two chapters, deterministic algorithms and heuristic algorithms 

have their own characteristics. Although the theoretical differences between these two types 

of algorithms were discussed in previous studies, these two types of algorithms haven’t been 

compared regarding the voltage control problems in future smart distribution networks before. 

In the following chapter, a methodology is proposed to compare these two algorithms and 

these two algorithms are evaluated and contrasted with different test cases.  
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Chapter 6 Evaluation of Single-objective Voltage Optimisation Algorithms 

6.1 Introduction 

In Chapter 4 and Chapter 5, the development and initial evaluation of two single-objective 

voltage optimisation algorithms, based on ODCDM and SOCS, were described. This chapter 

describes the further evaluation and comparison of these two algorithms, regarding various 

voltage control problems in conventional and future distribution networks. Specifically, a 

number of test cases have been generated, based on different test networks, optimisation 

objectives and load and generation conditions. The voltage optimisation algorithms were 

applied to solve the test cases, and their performance was evaluated and compared to 

predetermined performance metrics. For the remainder of this chapter, the ODCDM based 

voltage optimisation algorithm will be referred to as ODCDM, while the SOCS based voltage 

optimisation algorithm will be referred to as SOCS. 

In the rest of this chapter, the evaluation method is introduced. The voltage optimisation 

problem formulated for conventional distribution networks is analysed. Test cases are then 

generated based on the analysis of the problem formulation, followed by the test results 

achieved by ODCDM and SOCS. The changes in the voltage optimisation problem for future 

distribution networks are then discussed, followed by the generation of test cases and the 

corresponding test results. Finally, conclusions are drawn. 

6.2 Voltage optimisation algorithm evaluation method 

As shown in Chapter 4 and Chapter 5, voltage control problems can be formulated as 

optimisation problems, which consist of optimisation objective(s), equality and inequality 

constraints. These components are determined according to the specific issues related to the 

voltage control problems, such as the network under control and control preferences. Various 

test cases are generated based on the potential variations of the components of the voltage 

optimisation problem. Voltage optimisation algorithms are then applied to solve these test 

cases and their performance is evaluated. 

As discussed in Chapter 4, voltage optimisation algorithms are required to find a feasible 

solution, with which network voltages can be maintained with their statutory limits. Also, 

voltage optimisation algorithms are expected to minimise the optimisation objective functions, 

which are defined to represent secondary control objectives. In this chapter, single-objective 

voltage optimisation is considered, which means voltage optimisation algorithms can be 

assessed and compared, regarding the values they achieved for the optimisation objective 
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function. In addition, voltage optimisation algorithms must meet the computation time 

requirement for real time control, which is related to different issues in practice, such as the 

computation power of the controller and the computational burden of the algorithm itself. 

Here the algorithms are evaluated and compared regarding the computation time they required 

for each test case. Therefore, the following performance metrics are used to evaluate the 

performance of single-objective voltage optimisation algorithms: 

- The ability to find a feasible solution; 

- The value achieved for the optimisation objective function; 

- The computation time. 

6.3 Problem formulation and analysis for conventional distribution networks 

The following assumptions were made regarding the voltage control problems in conventional 

distribution networks, as per the discussion in Chapter 2: 

- Only load is connected to distribution networks; 

- Conventional voltage control techniques are used for voltage control. Here, OLTC and 

MSC are considered as voltage control techniques in conventional distribution 

networks. 

Regarding these two assumptions, the specific problem formulation for voltage control in 

conventional distribution networks is introduced, with regards to the optimisation objective 

functions, equality constraints and inequality constraints. 

6.3.1 Optimisation objective functions 

Network loss minimisation and voltage deviation minimisation, as defined in Chapter 4 and 

Chapter 5, are used to create test cases. In addition, minimising the numbers of OLTC and 

MSC switching operations is also considered as an optimisation objective. By reducing the 

numbers of switching operations of the OLTCs and MSCs, the lifetime of these voltage 

control devices can be extended. Also, this can reduce the likelihood of affecting the 

operation of other network components and customers [140]. The switching operations could 

also be formulated as a set of constraints [76, 78, 141], which are normally adopted in the 

control scheduling problems. This PhD thesis concentrates on real time control, for which the 

number of switching operations is normally considered as one optimisation objective, as 

represented by (59). In the rest of this chapter, this optimisation objective is simply referred to 

as switching operation minimisation. 
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OLTC MSCN N

Total OLTC MSC

Switching i i

i i

N SwitchingNumber SwitchingNumber     (59) 

where Total

SwitchingN is the total number of switching operations for all OLTCs and MSCs. 

SwitchingNumberi
OLTC

 and SwitchingNumberi
MSC

 are the numbers of the switching operations 

for OLTC i and MSC i. For an OLTC, the number of switching operation can be calculated by 

(60). 

 

0Position Position
SwitchingNumber

StepSize


   (60) 

where, 

Position Position of the voltage control device after control 

Position
0
 Position of the voltage control device before control 

StepSize Step size of the voltage control device 

As shown by (60), the switching operation is affected by the positions of the voltage control 

devices before a control action is applied. 

The number of switching operations for a MSC can also be calculated by (60), if the MSC 

only has one stage (one capacitor bank), or the MSC has multiple stages and the capacitor 

banks of this multi-stage MSC have the same size. However, if the capacitor banks in a multi-

stage MSC have different sizes, the number of switching operations for this multi-stage MSC 

may not be simply calculated by (60). Instead, more complicated relationships between the 

number of switching operation and the MSC stage positions need to be considered. This is 

illustrated with the MSCs in the case study network used for the initial algorithm evaluation 

in Chapter 4. The relationship between the MSC stage positions and the CB status can be 

defined by a look up table as shown in Table 16. In this case, the number of switching 

operation of CBs needs to be calculated regarding the CB status changes, when the MSC is 

switched between different stage positions. 
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Table 16 Relationship between MSC stage position and CB status 

MSC Stage 

Position 

Total 

MVAr 

Capacitor Bank Switch 

0.1MVAr 0.2MVAr 0.4MVAr 

1 0 Off Off Off 

2 0.1 On Off Off 

3 0.2 Off On Off 

4 0.3 On On Off 

5 0.4 Off Off On 

6 0.5 On Off On 

7 0.6 Off On On 

8 0.7 On On On 

 

The optimisation objective function can also be formulated as a combination of more than one 

of the control objectives described above. However, in this chapter, these objectives are 

evaluated individually, to investigate the relationships between the optimisation objectives 

and the algorithms’ performance. 

6.3.2 Equality constraints 

As discussed in Chapter 4, the equality constraints for voltage optimisation are the power 

flow equations of the network under control. Node power equations are normally used, as 

represented by (30). The power flow equations model the relationship between the network 

voltages and the net injected real and reactive powers at different busbars. The admittance 

matrix is determined by the network topology, as well as the OLTC tap positions and the 

shunt connected components, such as capacitor banks [107]. In simple terms, power flow 

calculations are considered as the problem of solving the node voltage magnitude and phasor 

of each busbar when the injected complex power is specified [107, 142]. As assumed at the 

beginning of section 6.3, only load is connected in conventional distribution networks. 

Therefore, the net injected complex powers are solely determined by the variations of load. 

6.3.3 Inequality constraints 

Maintaining network voltages within their statutory limits, is defined as a set of inequality 

voltage constraints, as represented by (32). As the fundamental control objective, this set of 

inequality voltage constraints is always considered. 
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As shown in Chapter 4, inequality constraints also include the operation ranges of the control 

variables. Based on the assumptions given at the beginning of section 6.3, the control 

variables include the tap positions of OLTCs and stage positions of MSCs for conventional 

distribution networks. The inequality constraints for the control variables of OLTCs and 

MSCs, are represented by (61) and (62). 

 min max , 1,...,i i i OLTCTap Tap Tap i N     (61) 

 min max , 1,...,i i i MSCCap Cap Cap i N     (62) 

where, 

Tapi  tap position of OLTC i 

Tapi
min

  lowest tap position of OLTC i 

Tapi
max

  highest tap position of OLTC i 

NOLTC  number of OLTCs 

Capi  stage position of MSC i 

Capi
min

  lowest stage position of MSC i 

Capi
max

  highest stage position of MSC i 

NMSC  number of MSCs 

6.4 Test case development and algorithm implementation for conventional distribution 

networks 

Based on the discussion in section 6.3, it can be seen that the problem formulation is 

determined based on various factors, as summarized in Fig. 58. Different test cases, regarding 

the variation of these factors, are developed to systematically evaluate voltage optimisation 

algorithms. 
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Fig. 58 Voltage optimisation problem determination for conventional distribution networks 

6.4.1 Case study networks 

Three case study networks are used for the single-objective voltage optimisation evaluation. 

Two of them are based on the IEEE 33 busbar network [143], while the other one is based on 

the IEEE 69 busbar network [144]. The network data for these networks is given in Appendix 

A-2. There are no voltage control devices in the original networks. In previous studies, 

different voltage control devices were connected to create case study networks [51, 76, 145-

148]. In this work, one case study network was developed by defining voltage control 

techniques, while the other two case study networks were developed based on previous 

studies [51, 76]. 

The case study network, which was used for initial study in Chapter 4 and Chapter 5, is used 

here and designated as Network A. The details of Network A can be found in section 4.5.1. 

The second case study network, designated as Network B, is also based on the IEEE 33 

busbar network. The OLTC and MSCs placement from [51] is used. Specifically, one OLTC 

at the primary substation and four MSCS are connected into the network [51]. The details of 

these voltage control devices are summarized in Table 17. 

  

( , )min f x u

1

, 1,...,
busbarN

i ij j i i busbar

j

V Y V P jQ i N


  

min max , 1,...,i i i busbarV V V i N  

s.t.

Optimisation objective function

Network topology
OLTCs
MSCs

Network load conditions

OLTCs
MSCs

min max , 1,...,i i i OLTCTap Tap Tap i N  

min max , 1,...,i i i MSCCap Cap Cap i N  
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Table 17 Voltage Control Devices in the Case Study Network B 

Control 

Device 

Location Step size Range Total step 

number 

OLTC From busbar 1 to busbar 2 1.25% -5% - +5% 9 

MSC1 Busbar 8 0.05MVAr 0-0.3MVAr 7 

MSC2 Busbar 12 0.05MVAr 0-0.3MVAr 7 

MSC3 Busbar 15 0.05MVAr 0-0.3MVAr 7 

MSC4 Busbar 29 0.05MVAr 0-0.3MVAr 7 

 

The single line diagram of Network B is shown in Fig. 59. 

 

Fig. 59 Case study Network B 

The third case study network, designated as Network C, is based on the IEEE 69 busbar 

network. The capacitor bank placement from [76] is used here. Ten capacitor banks are 

connected to this network. In addition, one OLTC is connected to create a more realistic case 

study network. The details of the control actions are listed in Table 18. 
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Table 18 Voltage Control Devices in the Case Study Network C 

Control 

Device 

Location Step size Range Total step 

number 

OLTC From busbar 1 to busbar 2 1.25% -5% - +5% 9 

MSC1 Busbar 9 0.3MVAr 0-0.6MVAr 3 

MSC2 Busbar 19 0.3MVAr 0-0.6MVAr 3 

MSC3 Busbar 31 0.3MVAr 0-0.6MVAr 3 

MSC4 Busbar 48 0.3MVAr 0-0.9MVAr 4 

MSC5 Busbar 51 0.3MVAr 0-0.6MVAr 3 

MSC6 Busbar 58 0.3MVAr 0-0.6MVAr 3 

MSC7 Busbar 63 0.3MVAr 0-1.2MVAr 5 

MSC8 Busbar 66 0.3MVAr 0-0.6MVAr 3 

MSC9 Busbar 68 0.3MVAr 0-0.6MVAr 3 

MSC10 Busbar 42 0.3MVAr 0-0.6MVAr 3 

 

The single line diagram of Network C is shown in Fig. 60. 

 

Fig. 60 Case study Network C 

The original load is used as the maximum load condition, while the minimum load condition 

is defined to be 25% of the original load condition. 

6.4.2 Test cases for conventional distribution networks 

Once the network topology and the details of the voltage control devices are defined, the 

optimisation problem mainly changes with the optimisation objectives, and network load 

conditions. Here, the following three optimisation objectives, as discussed in section 6.3.1, are 

used:  
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1. Network loss minimisation; 

2. Voltage deviation minimisation; 

3. Switching operation minimisation.  

Different load conditions are used to develop the test cases for each of these optimisation 

objectives. These load conditions are selected with two different approaches: 

- Snapshot: The network load conditions are generated by scaling all the loads in the 

network with a load scale index, which is varied from 25% to 100% with a step size of 

5% (16 load conditions). 

- Profile: The network load conditions are generated by scaling all the loads based on a 

load profile. Here, a generic 24-hour load profile, as shown in Fig. 61, is used to 

develop the profile test cases. This profile is from the CLNR project, with the step size 

equal to one hour [101]. 

 

Fig. 61  Generic load profile from the CLNR project 

For the first two optimisation objectives, the test case can be determined when the network 

and the load condition are decided. For the switching operation minimisation, the positions of 

the OLTCs and MSCs before control are also required, to develop the test cases. As shown by 

(60), the switching operation calculation depends on the positions of the OLTCs and MSCs 

before optimisation. Here, the nominal position (0%) is used for the OLTC tap positions 

before optimisation, and 0MVAr is used for the MSCs stage positions before optimisation, 

which means no reactive power is injected into the network. 

In total, 360 test cases have been generated, by combining different test networks, 

optimisation objectives and load conditions, as summarized in Table 19. 
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Table 19 Summary of test cases for conventional distribution networks 

 Variants 

Network 3 

Optimisation objective 3 

Load condition 40 (16 snapshot + 24 profile) 

Total test case number 360 (3×3×40=360) 

 

It is assumed that the capacitor banks in MSCs have the same sizes in the test cases shown in 

Table 19, which means the number of switching operation of MSCs can be calculated by (60). 

Ten additional snapshot test cases have been developed for switching operation minimisation, 

with the assumption that the capacitor banks in MSCs have different sizes, as shown in Table 

16. The details of these ten test cases will be shown with the test results in section 6.5.3. 

6.4.3 Algorithm application 

The optimisation problems in the test cases developed for conventional distribution networks 

are combinatorial problems, since only discrete control variables, the tap positions of OLTCs 

and the stage positions of MSCs, are considered. ODCDM, as a combinatorial algorithm, can 

be applied directly to solve the optimisation problems in these test cases. As shown in Chapter 

4, a SP, consisting of the initial values of all the control variables, is required by ODCDM and 

the result achieved by ODCDM may be affected by the SP. Nominal values of the control 

variables are normally used to test deterministic optimisation algorithms [85, 108] and are 

also used here for ODCDM.  

As shown in Chapter 5, there are some parameters in SOCS, which could be tuned, such as 

the nest number and the maximum iteration number. Potentially, these parameters could be 

tuned to improve the performance of SOCS regarding each individual problem. However, 

parameter tuning is time consuming and it is not practical to tune all the parameters for each 

individual problem. Here, the majority of the parameters are fixed as per previous studies 

[130, 135], in order to demonstrate that the algorithm can be applied without large efforts in 

parameter tuning. Specifically, the nest number is selected as 25, the step size scale factor and 

nest abandon probability pa are selected as 0.01 and 0.25. For a given network, the maximum 

iteration number required for the test cases with each optimisation objective function is 

determined as per the procedure described in section 5.4.1. The maximum iteration number 

for SOCS is determined under maximum load condition, which is seen as the worst case 

scenario [8]. The maximum iteration numbers of SOCS for the conventional test cases are 
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summarized in Appendix B-1. SOCS will stop once the maximum iteration number is reached, 

or the expected value of the optimisation objective function is found. 

In Chapter 4 and Chapter 5, it was demonstrated that the penalty function is used within both 

SOCS and ODCDM, to deal with violation of voltage constraints. A large penalty factor (10
6
) 

is adopted here for both algorithms, to avoid any voltage violations. 

6.5 Case study results – test cases for conventional distribution networks 

In this study, PYPOWER is used as the platform for load flow analysis. PYPOWER is the 

Python version of MATPOWER [149]. A constant power load model is used to model the 

loads in the case study networks. Both algorithms, SOCS and ODCDM, are implemented in 

Python and can be used with different PYPOWER network models. The tests are run on an 

Intel i5, 3.20GHz computer (8GB) in the Spyder (Scientific PYthon Development 

EnviRonment) [150]. 

For all the test cases for conventional distribution networks, both ODCDM and CS always 

found a feasible solution, which means there was no voltage violation observed during these 

tests. The other two performance metrics are presented in the following.  

6.5.1 Network loss minimisation 

Snapshot Analysis 

For each case study network, both ODCDM and SOCS are evaluated with 16 snapshot test 

cases, which are created with different load conditions. The test results for illustrative sample 

test cases, in which load scale is set as 1, are shown in Table 20. The full test results are 

detailed in Appendix B-2. 
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Table 20 Snapshot test results comparison – Network loss minimisation 

Case study 

network 

Network loss (MW) Computation time (s) 

ODCDM SOCS Reduction ODCDM SOCS 

A 0.1179 0.1179 0.0% 4.01 48.77 

B 0.1343 0.1343 0.0% 3.28 22.75 

C 0.1309 0.1306 0.2% 3.63 86.12 

 

It can be seen that there are no significant differences between the results achieved by both 

algorithms, in terms of network loss minimisation. However, the computation time required 

for ODCDM is much shorter than that required for SOCS. 

Profile Analysis 

The results for the profile test analysis are shown in Fig. 62. 

 

Fig. 62 Profile test results - Network loss minimisation (a) Network A (b) Network B (c) Network C 

The computation times for profile test cases are summarized in Appendix B-2. Again, it can 

be seen that there are no significant differences between the results achieved by both 

algorithms, in terms of network loss minimisation, and the computation time of ODCDM is 

much shorter than that of SOCS. 
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6.5.2 Voltage deviation minimisation 

Snapshot Analysis 

For each case study network, both ODCDM and SOCS are evaluated with 16 snapshot test 

cases, which are created with different load conditions. The test results for illustrative sample 

test cases, in which load scale is set as 1, are shown in Table 21. The full test results are listed 

in Appendix B-3. 

Table 21 Snapshot test results – Voltage deviation minimisation 

Case 

study 

network 

Voltage deviation (pu) Computation time (s) 

ODCDM SOCS Reduction ODCDM SOCS 

A 0.35 0.24 29.9% 4.22 42.08 

B 0.57 0.53 7.6% 2.52 47.39 

C 0.76 0.76 0.0% 5.36 65.48 

 

As shown by the test results in Table 21 and Appendix B-3, for some of the test cases, SOCS 

could achieve a significantly better result in terms of the value achieved for voltage deviation 

in comparison with ODCDM. However, the computation times required by ODCDM are still 

much shorter than that required by SOCS. 

Profile Analysis 

The algorithms are also tested with the load profile shown in Fig. 61, for voltage deviation 

minimisation. The results are shown in Fig. 63. 
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Fig. 63 Profile test results – Voltage deviation minimisation (a) Network A (b) Network B (c) 

Network C 

The computation times for profile test cases are summarized in Appendix B-3. The results 

from the profile analysis are consistent with the snapshot analysis and indicate that SOCS 

could reduce the voltage deviation observed compared to ODCDM for some test cases. Also, 

the computation times required for ODCDM are much shorter than that required for SOCS. 

6.5.3 Switching operation minimisation 

Snapshot Analysis 

For each case study network, both ODCDM and SOCS are evaluated with 16 snapshot test 

cases, which are created with different load conditions. The test results for four illustrative 

sample test cases, in which load scale is set as 1, are shown in Table 22. The full test results 

are listed in Appendix B-4. 
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Table 22 Snapshot test results – Switching operation minimisation 

Case study 

network 

Switching operation Computation time (s) 

ODCDM SOCS Reduction ODCDM SOCS 

A 2 2 0.0% 0.55 31.87 

B 2 2 0.0% 0.32 31.70 

C 3 3 0.0% 1.09 63.90 

 

From the results shown in Table 22 and Appendix B-4, it can be seen that both ODCDM and 

SOCS can achieve the same switching operation. Again, SOCS needs a much longer 

computation time than ODCDM.  

Profile Analysis 

The profile test results for switching operation minimisation are shown in Fig. 64. 

 

Fig. 64 Profile test results – Switching number minimisation (a) Network A (b) Network B (c) 

Network C 

The computation times for profile test cases are summarized in Appendix B-4. The results 

from the profile analysis are consistent with the snapshot analysis and indicate that same 
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results are achieved by both algorithms. Also, the computation times required for ODCDM 

are much shorter than that required for SOCS. 

The mechanism of ODCDM allows it to achieve a feasible solution with the minimum 

switching operation, if it is assumed that the movement of each control variable will lead to 

one switching operation with equivalent value [61]. 

Snapshot Analysis - MSCs with different capacitor bank sizes 

MSCs have capacitor banks of different sizes in Network A, making the decisions on which 

capacitor bank to switch in/out more complex. To emphasize the effect of MSCs on switching 

operation, the OLTC is locked. Ten test cases are developed with random values used as the 

MSC positions before optimisation. The network load scale is set as 1 in these test cases. The 

test results are shown in Table 23. 

Table 23 Test results – Switching operation minimisation (MSCs with different capacitor bank sizes) 

Test case 

index 

Switching operation Computation time (s) 

ODCDM SOCS Reduction ODCDM SOCS 

RandomSP1 4 2 50.0% 2.34 31.94 

RandomSP2 4 2 50.0% 2.82 31.87 

RandomSP3 3 3 0.0% 1.73 32.13 

RandomSP4 2 2 0.0% 1.57 31.26 

RandomSP5 3 3 0.0% 1.91 31.41 

RandomSP6 2 2 0.0% 1.65 31.25 

RandomSP7 3 3 0.0% 1.96 31.52 

RandomSP8 4 2 50.0% 2.61 31.79 

RandomSP9 5 2 60.0% 2.38 31.47 

RandomSP10 1 1 0.0% 0.57 31.82 

 

From the results in Table 23, it can be seen that when the relationship specified in Table 16 is 

used, SOCS is able to achieve a better result than ODCDM. This is because the relationship 

between the number of switching operation and the capacitor bank stage position is non-

convex. Similar results could be expected when the switching actions of different control 

variables are not equivalent to each other. For example, there may be some preference to 

avoid switching specified control devices, which are nearing end of life or end of maintenance 

cycles [27]. 



  

117 
 

6.6 Problem formulation and analysis for future distribution networks 

In future distribution networks, the following assumptions are made: 

- Besides load, DGs are connected to distribution networks; 

- Maximum load is increased due to the connection of load LCTs; 

- Besides conventional voltage control techniques (OLTC, etc.), DG real and reactive 

powers are used for voltage control, as novel voltage control techniques. 

Controlling DG real and reactive powers directly is used here to represent the novel voltage 

control techniques in future distribution networks, since many novel voltage control 

techniques, such as EES and D-STATCOM, also control the real and reactive power 

import/export of the connected busbars [68]. The controllable DG real and reactive powers 

introduce additional control variables for the voltage control problems. Since the DG real and 

reactive powers are continuous control variables, the problems formulated for the voltage 

control problems become a MINLP problem. In addition, the other components of the 

formulated optimisation problem are also affected by the DG connection, as specified in the 

following. 

6.6.1 Optimisation objective functions 

Besides the optimisation objectives considered for conventional distribution networks, 

additional optimisation objectives may also need to be considered in future. DG real power 

curtailment has also been previously demonstrated to enable voltage support [42, 151]. Where 

DG real power curtailment is integrated into a voltage control algorithm, DG curtailment 

minimisation is usually considered as an optimisation objective [100, 151-153]. Total DG real 

power curtailment is calculated as the sum of the differences between available outputs and 

the real outputs of all DGs with real power control, as represented by (63). 

 ( )

PControl
DGN

available output

DGCurtailment DGi DGi

i

f P P    (63) 

where, 

𝑁𝐷𝐺
𝑃𝐶𝑜𝑛𝑡𝑟𝑜𝑙 total number of DGs with real power control 

𝑃𝐷𝐺𝑖
𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 available real power output of DG i 

𝑃𝐷𝐺𝑖
𝑜𝑢𝑡𝑝𝑢𝑡

 real power output of DG i 
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DG reactive power control has been previously demonstrated to enable voltage support 

regarding the conventional optimisation objectives [51, 151, 154]. There are occasions when 

DG reactive power usage minimisation, as represented by (64), is also considered as an 

optimisation objective [151, 152, 154, 155]. 

 

QControl
DGN

reference output

DGQUsage i i

i

f Q Q    (64) 

where, 

𝑁𝐷𝐺
𝑄𝐶𝑜𝑛𝑡𝑟𝑜𝑙

 total number of DGs with reactive power control 

𝑄𝐷𝐺𝑖
𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

 reference value for the reactive power from DG i 

𝑄𝐷𝐺𝑖
𝑜𝑢𝑡𝑝𝑢𝑡

 reactive power output of DG i 

The reference value for the reactive power from DG can be determined by the DG owners and 

the distribution network operators [156]. Here, the reference value is selected to be zero, as 

per previous studies [51, 151, 154]. 

6.6.2 Equality constraints 

In this study, it is assumed that DGs and load LCTs are connected to the existing busbars 

directly. The real and reactive powers of DGs and load LCTs could affect the net 

import/export of real and reactive powers from the busbars where the DGs and load LCTs are 

connected, and then affect the power flow equations, represented by (30). 

6.6.3 Inequality constraints 

In this study, the DG real power and reactive powers are controlled directly. The box 

constraints, which are commonly used in previous studies [151, 157], can be represented 

by(65) and (66). 

 min max , 1,...,output PControl

DGi DGi DGi DGP P P i N     (65) 

 min max , 1,...,output QControl

DGi DGi DGi DGQ Q Q i N     (66) 

where, 

𝑃𝐷𝐺𝑖
𝑚𝑖𝑛 lower limit of the real power output of DG i; 

𝑃𝐷𝐺𝑖
𝑚𝑎𝑥 upper limit of the real power output of DG i; 
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𝑄𝐷𝐺𝑖
𝑚𝑖𝑛 lower limit of the reactive power output of DG i; 

𝑄𝐷𝐺𝑖
𝑚𝑎𝑥 upper limit of the reactive power output of DG i; 

Normally, the lower limit of the DG real power export is zero, while the upper limit of the DG 

real power is the available DG real power output. The limits of the DG reactive power are 

defined by (67) and (68). 

 min tan(arccos( ))Capaci

DGi DGi

tyQ P      (67) 

 max tan(arccos( ))Capaci

DGi D

t

G

y

iQ P     (68) 

where 𝑃𝐷𝐺𝑖
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

 is the installed capacity of DG i, and φ is the power factor limit of DG output, 

when DG real power is at its installed capacity. φ is selected as 0.95 in this study based on 

previous studies [8, 53]. The maximum reactive power import/export that can be controlled is 

equal to the reactive power import/export at rated real power at a power factor of 0.95. 

6.7 Test case development and algorithm implementation for future distribution 

networks 

As shown in section 6.6, it can be seen that the problem formulation is determined based on 

various factors, as summarized in Fig. 65. New optimisation objectives may need to be 

considered in future distribution networks. The connection of DGs affects the power flow 

equations and additional inequality constraints need to be considered. As previously a set of 

test cases for systematic evaluation of the performance of the ODCDM and SOCS algorithms 

are developed. 
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Fig. 65  Voltage optimisation problem determination for future distribution networks 

6.7.1 Case study networks for algorithm evaluation 

Two future case study networks are utilized here. These case study networks are developed by 

connecting DG(s) to conventional case study networks introduced in section 6.4.1. A negative 

load is used here to model DG. A single-DG case study network, designated as Network D, is 

created based on Network B. As shown in Fig. 66, one DG is connected to busbar 18 in 

Network B. The installed capacity of this DG is assumed to be 4MW. 

 

Fig. 66 Single-DG case study network – Network D 

A multi-DG case study network, designated as Network E, is created by connecting three DGs 

to Network C, as shown in Fig. 67. The installed capacities of these three DGs are assumed to 

be 2.5MW. 

min max , 1,...,output PControl

DGi DGi DGi DGP P P i N  

min max , 1,...,output QControl

DGi DGi DGi DGQ Q Q i N  

( , )min f x u

1
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busbarN
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j
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Fig. 67 Multi-DG case study network – Network E 

It is assumed that the maximum network load is increased from the original value by a factor 

of 1.1, to represent the effect of the connection of load LCTs. For both case study networks, 

DG real and reactive powers are controlled with the existing OLTC and the MSCS in the 

networks. 

6.7.2 Test cases for future distribution networks 

The optimisation objectives from section 6.3.1 and two optimisation objectives defined in 

section 6.6.1 are considered for future distribution networks, as shown below: 

1. Network loss minimisation; 

2. Voltage deviation minimisation; 

3. Switching operation minimisation; 

4. DG real power curtailment minimisation; 

5. DG reactive power usage minimisation. 

These objectives are used individually to generate different test cases. For each optimisation 

objective, different load and generation conditions are used to develop the test cases for future 

distribution networks. Similar to the test case development for conventional distribution 

networks, snapshot and profile test cases are developed based on the case study networks 

from section 6.7.1. 

- Snapshot: Load is varied from 25% to 110% with the step size of 5% (18 load 

conditions). Also, the generation is varied from 0.25MW to the maximum generation 

with the step size as 0.25MW. 

- Profile: As in the case of the conventional network case, a generic 24-hour load 

profile, shown in Fig. 61, is used to develop the profile test cases. A constant value is 

used to represent the available DG real power export. 
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For the test cases with switching operation minimisation as the optimisation objective, the 

nominal position (0%) is used for the OLTC tap positions before optimisation, and 0MVAr is 

used for the MSC stage positions before optimisation, which means no reactive power is 

injected into the network. 

In total, test cases have been generated, by combining optimisation objectives and load 

conditions, as summarized in Table 24 and Table 25. 

Table 24 Summary of test cases for Network D 

 Variants 

Optimisation objective 5 

Load condition 312 (288 snapshot + 24 profile) 

Total test case number 1560 (5×312=1560) 

 

Table 25 Summary of test cases for Network E 

 Variants 

Optimisation objective 5 

Load condition 204 (180 snapshot + 24 profile) 

Total test case number 1020 (5×204=1020) 

 

6.7.3 Algorithm application 

The involvement of continuous control variables changes the optimisation problem from a 

combinatorial problem to a MINLP problem. For ODCDM, continuous control variables in 

the MINLP problems need to be discretised, as discussed in Chapter 4. Different step sizes, 

which are used to discretize continuous control variables, could create different optimisation 

problems. The performance of ODCDM is affected by the step size used, as illustrated by an 

example shown in Appendix B-5. Generally speaking, a better result could be achieved by 

using smaller step sizes, but a longer computation time is required when small step size is 

used. Here, 0.01MW/MVAr is used as the step size to discretize DG real and reactive powers 

for ODCDM. Starting points still affect the results achieved by ODCDM. The DG real power 

is set to the available DG real power output, and the DG reactive power is set to zero in the 

SPs. According to the discussion in section 6.4.3, nominal values of the control variables for 

OLTCs and MSCs are used in the SPs. 
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SOCS can be applied directly to solve the MINLP problems. Similar to the SOCS application 

for the test cases in conventional distribution networks, only the maximum iteration number is 

determined based on the ‘worst case scenarios’. Here, the worst case scenarios are defined as 

the following, as per previous research [8]: 

- Maximum load and no generation; 

- Maximum load and maximum generation; 

- Minimum load and maximum generation. 

These network load and generation conditions are used to determine the maximum iteration 

number for SOCS. The largest value for the maximum iteration number determined is used, as 

summarized in Appendix B-6.  

6.8 Case study results – test cases for future distribution networks 

6.8.1 Test results for Network D 

Snapshot Analysis 

For each optimisation objective, both ODCDM and SOCS are evaluated with 288 snapshot 

test cases, which are based on different load and generation conditions. More test results are 

shown in Appendix B-7. Here, the results for the test cases with the minimum load and 

maximum generation are summarized in Table 26, while the results for the test cases with the 

maximum load and maximum generation are summarized in Table 27. 

Table 26 Snapshot test results of Network D – minimum load and maximum generation 

Network loss minimisation 

Network loss (MW) Number of voltage 

violation busbars 

Computation time (s) 

ODCDM SOCS Reduction ODCDM SOCS ODCDM SOCS 

0.0045 0.0044 1.0% 0 0 188.44 76.45 

Voltage deviation minimisation 

Voltage deviation (pu) Number of voltage 

violation busbars 

Computation time (s) 

ODCDM SOCS Reduction ODCDM SOCS ODCDM SOCS 

0.08 0.07 10.4% 0 0 70.93 86.36 

Switching number minimisation 

Switching operation Number of voltage 

violation busbars 

Computation time (s) 
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ODCDM SOCS Reduction ODCDM SOCS ODCDM SOCS 

4 0 100.0% 0 0 27.53 20.60 

DG real power curtailment minimisation 

DG P Curtailment (MW) Number of voltage 

violation busbars 

Computation time (s) 

ODCDM SOCS Reduction ODCDM SOCS ODCDM SOCS 

0.32 0.31 3.3% 0 0 36.67 403.60 

DG reactive power usage minimisation 

DG Q usage (MVAr) Number of voltage 

violation busbars 

Computation time (s) 

ODCDM SOCS Reduction ODCDM SOCS ODCDM SOCS 

1.31 0.00 100.0% 0 0 27.65 31.27 

 

Table 27 Snapshot test results of Network D – maximum load and maximum generation 

Network Loss minimisation 

Network Loss (MW) Number of voltage 

violation busbars 

Computation time (s) 

ODCDM SOCS Reduction ODCDM SOCS ODCDM SOCS 

0.87 0.10 88.0% 3 0 48.15 88.11 

Voltage deviation minimisation 

Voltage Deviation (pu) Number of voltage 

violation busbars 

Computation time (s) 

ODCDM SOCS Reduction ODCDM SOCS ODCDM SOCS 

0.99 0.41 58.9% 3 0 30.44 92.38 

Switching number minimisation 

Switching Number Number of voltage 

violation busbars 

Computation time (s) 

ODCDM SOCS Reduction ODCDM SOCS ODCDM SOCS 

19 1 94.7% 3 0 28.81 58.53 

DG real power curtailment minimisation 

DG P Curtailment (MW) Number of voltage 

violation busbars 

Computation time (s) 

ODCDM SOCS Reduction ODCDM SOCS ODCDM SOCS 
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0.12 0.06 46.4% 3 0 43.99 390.97 

DG reactive power usage minimisation 

DG Q usage (MVAr) Number of voltage 

violation busbars 

Computation time (s) 

ODCDM SOCS Reduction ODCDM SOCS ODCDM SOCS 

1.31 0.00 100.0% 3 0 30.21 32.92 

 

As shown in Table 26 and Table 27, for most of the test cases, SOCS achieved a smaller value, 

regarding the optimisation objective, in comparison with ODCDM. The computation times 

required by ODCDM are still shorter than that required by SOCS for most of the test cases. 

However, there are a few test cases, such as the network loss minimisation test case shown in 

Table 26, where the computation time of ODCDM is longer than that of SOCS. This is 

because DG real and reactive powers, with a step size of 0.01MW/MVAr, introduce control 

variables with a large number of step sizes to the problem. ODCDM may need a large number 

of iterations to achieve the final result, depending on the starting point. The computation time 

of ODCDM could be reduced if large step sizes are used to discretize the continuous DG real 

and reactive powers. However, the results achieved with large step sizes may not be as good 

as that achieved with small step sizes, as shown by the example in Appendix B-5. 

Also, as shown in Table 27 and Appendix B-7, ODCDM failed to find a feasible solution in 

some of the test cases, but SOCS could always find a feasible solution. For example, when 

DG curtailment minimisation was used as the optimisation objective, SOCS found a feasible 

solution for all the 288 test cases, but ODCDM failed to find a feasible solution for 56 out of 

288 test cases. One of the 56 test cases is used here to demonstrate the failure of ODCDM. In 

this test case, load scaling factor is set as 0.7 and DG real power output is set as 4MW. In Fig. 

68, the highest and lowest voltages observed by the algorithm during each iteration of the 

algorithm are presented. 
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Fig. 68 Voltage change during the optimisation progress of ODCDM – Sampled ODCDM failure test 

case (a) highest and lowest voltages (b) highest voltage only (c) lowest voltage only 

As shown in Fig. 68, the highest voltage was found at busbar 18, where DG is connected, and 

the lowest voltage was found at busbar 33, which is another feeder end. It can be seen that the 

total voltage violation was decreased gradually by ODCDM. However, ODCDM was trapped 

at a point, in which ODCDM cannot further reduce the voltage violation. The infeasible 

solution could be avoided by choosing a different SP. For example, the DG real power could 

be set as zero in the SP. ODCDM was able to find a feasible solution with this SP. However, 

the result achieved regarding the optimisation objective, DG curtailment minimisation, was 

2.24MW, while the result achieved by SOCS was 0MW. The results are summarized in Table 

28. 

Table 28 Sampled test case for ODCDM SP study 

 DG Curtailment 

(MW) 

Number of voltage violation 

busbars 

CS 0 0 

ODCDM – Test1 0.61 5 

ODCDM – Test2 2.24 0 
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The improvements achieved by SOCS are due to the following reasons. The connection of 

DG could create a network condition, in which there are both over voltage and undervoltage 

problems in the network. ODCDM may be trapped at a point because of the existence of both 

over and under voltages. Sometimes, ODCDM may fail to find a feasible solution. In addition, 

the values achieved by ODCDM, regarding the optimisation objective functions, may be 

restricted by the step size used to discretize continuous control variables.  

Profile Analysis 

In the profile analysis, ODCDM failed to find a feasible solution in some test cases, which 

SOCS could always find a feasible solution. The numbers of voltage violation busbars in the 

results achieved by ODCDM for network loss minimisation profile analysis are shown in 

Table 29. The numbers of voltage violation busbars for the rest profile test cases are shown in 

Appendix B-7. 

Table 29 Number of voltage violation busbars in profile test cases for ODCDM 

Time 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 

Number of 

voltage violation 

busbars 

0 0 0 0 0 0 0 0 

Time 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 

Number of 

voltage violation 

busbars 

0 0 3 2 3 4 3 2 

Time 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 

Number of 

voltage violation 

busbars 

0 2 0 1 0 4 0 3 

 

The values achieved by both ODCDM and SOCS, regarding the optimisation objective 

functions are shown in Fig. 69. 
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Fig. 69 Profile test results – Network D (a) Network loss minimisation (b) Voltage deviation 

minimisation (c) Switching operation minimisation (d) DG real power curtailment minimisation (e) 

DG reactive power usage minimisation 

The computation times for profile test cases are summarized in Appendix B-7. The results 

from the profile analysis are consistent with the snapshot analysis and it can be seen that the 

values achieved by SOCS regarding the optimisation objective functions are smaller than that 

achieved by ODCDM for many test cases. For example, regarding DG curtailment, in total, 

3.14MWh DG curtailment is required when ODCDM is used, while 2.18MWh DG 

curtailment is required when SOCS is used. 0.96MWh more DG generation is allowed. 

6.8.2 Test results for Network E 
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Snapshot Analysis 

In total, 180 snapshot test cases are generated for each optimisation objective. For all the test 

cases, both ODCDM and SOCS could always find a feasible solution, since the network load 

and generation are more even distributed in this test case. More test results are shown in 

Appendix B-8. Here, the results for the test cases with the minimum load and maximum 

generation are summarized in Table 30, while the results for the test cases with the maximum 

load and maximum generation are summarized in Table 31. 

Table 30 Snapshot test results of Network E – minimum load and maximum generation 

Network Loss minimisation 

Network Loss (MW) Number of voltage 

violation busbars 

Computation time (s) 

ODCDM SOCS Reduction ODCDM SOCS ODCDM SOCS 

0.0021 0.0017 16.3% 0 0 656.15 344.93 

Voltage deviation minimisation 

Voltage Deviation (pu) Number of voltage 

violation busbars 

Computation time (s) 

ODCDM SOCS Reduction ODCDM SOCS ODCDM SOCS 

0.33 0.02 94.4% 0 0 229.13 245.40 

Switching number minimisation 

Switching Number Number of voltage 

violation busbars 

Computation time (s) 

ODCDM SOCS Reduction ODCDM SOCS ODCDM SOCS 

4 0 100.0% 0 0 38.34 33.77 

DG real power curtailment minimisation 

DG P Curtailment (MW) Number of voltage 

violation busbars 

Computation time (s) 

ODCDM SOCS Reduction ODCDM SOCS ODCDM SOCS 

0.86 0.31 63.7% 0 0 36.64 267.47 

DG reactive power utilization minimisation 

DG Q Utilization (MVAr) Number of voltage 

violation busbars 

Computation time (s) 

ODCDM SOCS Reduction ODCDM SOCS ODCDM SOCS 

0.00 0.00 0.00 0 0 38.58 121.25 
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Table 31 Snapshot test results of Network E – maximum load and maximum generation 

Network Loss minimisation 

Network Loss (MW) Number of voltage 

violation busbars 

Computation time (s) 

ODCDM SOCS Reduction ODCDM SOCS ODCDM SOCS 

0.03 0.03 0.8% 0 0 342.23 239.57 

Voltage deviation minimisation 

Voltage Deviation (pu) Number of voltage 

violation busbars 

Computation time (s) 

ODCDM SOCS Reduction ODCDM SOCS ODCDM SOCS 

0.41 0.07 83.1% 0 0 143.91 235.28 

Switching number minimisation 

Switching Number Number of voltage 

violation busbars 

Computation time (s) 

ODCDM SOCS Reduction ODCDM SOCS ODCDM SOCS 

0 0 0.0% 0 0 7.10 37.62 

DG reactive power utilization minimisation 

DG P Curtailment (MW) Number of voltage 

violation busbars 

Computation time (s) 

ODCDM SOCS Reduction ODCDM SOCS ODCDM SOCS 

0.13 0.00 100.0% 0 0 7.18 25.12 

DG reactive power utilization minimisation 

DG Q Utilization (MVAr) Number of voltage 

violation busbars 

Computation time (s) 

ODCDM SOCS Reduction ODCDM SOCS ODCDM SOCS 

0.00 0.00 0.0% 0 0 7.11 117.23 

 

As shown by the test results, SOCS could achieve a smaller value, regarding the optimisation 

objective, in comparison with ODCDM for most of the test cases. The computation times 

required by ODCDM are still shorter than that required by SOCS for most of the test cases. 

However, there are a few test cases, such as the network loss minimisation test case shown in 

Table 30, the computation time of ODCDM is significantly longer than that of SOCS. 
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Profile Analysis 

For all the profile test cases, both ODCDM and CS always found a feasible solution, which 

means there was no voltage violation observed during these tests. The profile test cases results 

for DG curtailment minimisation is shown in Fig. 70. The computation times for profile test 

cases are shown in Appendix B-8. 

The results from the profile analysis are consistent with the snapshot analysis and it can be 

seen from Fig. 70 that the values achieved by SOCS regarding the optimisation objective 

functions are smaller than that achieved by ODCDM for many test cases. For example, DG 

curtailment was reduced when using SOCS in comparison with ODCDM. In total, 12.52MWh 

DG curtailment is required when ODCDM is used, while 2.56MWh DG curtailment is 

required when SOCS is used. 9.96MWh more DG generation is allowed. 
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Fig. 70 Profile test results – Network E (a) Network loss minimisation (b) Voltage deviation 

minimisation (c) Switching operation minimisation (d) DG real power curtailment minimisation (e) 

DG reactive power usage minimisation 

6.9 Discussions 

As shown by the test results in this chapter, the differences between the results achieved by 

ODCDM and SOCS varied from case to case. The voltage optimisation problem is nonlinear 

and nonconvex [74, 75], which theoretically has many local optimal solutions. ODCDM may 

only be able to find a local optimal solution, depending on the starting point. As per previous 

literature and the test results in this chapter, it can be seen that SOCS could achieve the global 

optimal solution when the allowed number of iteration is large enough. It is assumed that 

SOCS always achieved global optimal solutions, then these differences generally depend on 

the voltage optimisation problem itself and the results achieved by ODCDM. 
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The optimisation objective is one important aspect for voltage optimisation. For the 

conventional test cases generated in this study, the differences between the results achieved 

by ODCDM and SOCS, regarding the objective, network loss minimisation, are not 

significant. ODCDM could provide a sufficient solution for these test cases. However, 

regarding the objective, voltage deviation minimisation, significant differences between the 

results achieved by ODCDM and SOCS were observed. For switching operation minimisation, 

the differences depend on how the switching operation is counted, as specified in section 6.5.3. 

For future distribution networks, more significant improvement can be achieved by SOCS, in 

terms of the optimisation objective. SOCS could easily escape from infeasible local optimal 

solutions, while ODCDM may be trapped at an infeasible local optimal solution, when the 

network busbar voltages are close to both the upper and lower voltage limits. The values 

achieved by SOCS regarding the optimisation objective functions, could be significantly less 

than that achieved by ODCDM. This can be explained with the recent non-convexity studies 

regarding the general OPF problems [74, 158-160]: 

- Nonlinear load flow equations represented by (30) [74, 158]; 

- Mixed integer problem [159]; 

- The non-convexity of the feasible voltage region [160]. 

The nonlinearity of the load flow equations is due to the nonlinear relationship between the 

voltages and the powers injected at different busbars [161]. The integration of DG and 

additional LCT loads could make the load flow equations more nonlinear [161]. The MINLP 

problem needs to be changed to a combinatorial problem, which can then be solved by 

ODCDM. The nonconvex feasible region of voltage magnitudes is also a reason of the OPF 

non-convexity [160]. As shown in Fig. 71, the feasible region of voltage is like a donut, which 

is nonconvex. When the load and generation are not evenly distributed, it is possible that there 

are voltages being close to both limits and the impact of this nonconvex feasible region may 

be more significant. It should be noted that the actual differences between the results achieved 

by the algorithms for specific test cases, also depend on the results achieved by ODCDM, 

which are affected by some other issues, such as the SP of ODCDM. 
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Fig. 71  Feasible region of voltage magnitudes 

6.10 Conclusions 

In this chapter, ODCDM and SOCS have been comparatively evaluated regarding single-

objective voltage optimisation for conventional and future distribution networks. A method 

has been proposed for systematically evaluating the performance of single objective 

optimisation algorithms. In this method various test cases are developed based on the analysis 

of the formulated voltage optimisation problem. Voltage optimisation algorithms, which are 

applied to solve the test cases, are evaluated regarding their abilities to find a feasible solution, 

the values achieved for the objective functions and the computation times. 

Using this method, both ODCDM and SOCS have been evaluated for single-objective voltage 

optimisation in conventional distribution networks. A number of test cases were developed 

using three different case study networks, three different optimisation objectives and various 

network load conditions. The performance of ODCDM and SOCS were compared regarding 

these test cases. Generally, for the test cases created for conventional distribution networks, 

ODCDM and SOCS were always able to find a feasible solution. The algorithms were also 

compared regarding the values achieved for the optimisation objective functions. When 

network loss minimisation was used as the optimisation objective, there was no significant 

difference between the results achieved by both algorithms. When voltage deviation 

minimisation was used as the optimisation objective, SOCS was able to reduce voltage 

deviation in comparison with ODCDM for some test cases. When switching operation 

minimisation was adopted as the optimisation objective, it was found that the structure of 

MSCs had large impact on the performance of the algorithms. Similar performance was 

observed using ODCDM and SOCS, if the capacitor banks of the MSCS have the same size. 

However it was shown that SOCS was able to reduce switching operations for some test cases, 

if the capacitor banks of the MSCs have different sizes and the MSC stage positions are 
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achieved with the different combinations of these capacitor banks. For all these test cases, 

SOCS requires a much longer computation time than ODCDM. 

ODCDM and SOCS were then evaluated for the single-objective voltage optimisation in 

future distribution networks. Additional control variables and objectives are expected for 

voltage optimisation. The connections of DGs and load LCTs could create additional network 

load and generation conditions. A single-DG case study network and one multiple-DG case 

study network were developed from the conventional case study networks. Test cases have 

been developed based on these two future test networks. For some test cases, ODCDM failed 

to find a feasible solution. In addition, as shown by the test results, the differences between 

the values achieved by ODCDM and SOCS regarding the optimisation objective functions 

could be significant. Although for most of the test cases, the computation times of ODCDM 

were still shorter than that of SOCS, there are a few test cases, SOCS required shorter 

computation time in comparison with ODCDM. 

As shown in this chapter, both ODCDM and SOCS are able to find optimal solutions when 

different optimisation objectives are used. Theoretically, ODCDM is only able to provide a 

local optimal solution, while SOCS is able to provide a global optimal solution if a large 

enough iteration number is allowed. As shown in this chapter, the actual difference between 

the optimal solutions found by ODCDM and SOCS depend on the specific test case and some 

other issues, such as the starting point used by ODCDM. Generally speaking, ODCDM could 

provide a sufficient solution for conventional distribution networks, and the computation time 

of ODCDM is much shorter than that of SOCS. For future distribution networks, SOCS could 

be more preferable in comparison with ODCDM. SOCS could easily escape from infeasible 

local optimal solutions, while ODCDM may be trapped at an infeasible local optimal solution, 

when the network busbar voltages are close to both the upper and lower voltage limits. The 

values achieved by SOCS regarding the optimisation objective functions, could be 

significantly less than that achieved by ODCDM. In addition, the computation time of SOCS 

could be shorter than ODCDM sometimes.  
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Chapter 7 Evaluation of Multi-objective Voltage Optimisation Algorithms 

7.1 Introduction 

In Chapter 6, different voltage optimisation objectives have been studied separately for 

distribution networks. Frequently, more than one optimisation objective, which are often non-

commensurable, needs to be considered simultaneously. As shown in Chapter 4, for multi-

objective optimisation problems, the concept of Pareto optimality has to be introduced. A 

solution is said to be a Pareto-optimal solution for a multi-objective optimisation problem, if 

and only if it is not dominated by any other solutions of this multi-objective optimisation 

problem. The image of all the Pareto-optimal solutions is called Pareto front. The multi-

objective voltage optimisation algorithms are expected to find a set of solutions, the image of 

which is as close as possible to the Pareto front [162]. 

Two different approaches have been adopted by multi-objective optimisation algorithms. The 

first approach uses single-objective optimisation algorithms, by reformulating the problem to 

address multi-objectives with the consideration of the preferences between different 

objectives. This approach is simple and widely used. However, this approach requires 

multiple runs to find a set of solutions, and normally it is sensitive to the shape of the Pareto 

front [134]. The second approach integrates the concept of Pareto optimality into the 

population-based metaheuristic algorithms. A set of non-dominated solutions can be found in 

a single run. This first approach can be used by both deterministic and metaheuristic 

optimisation algorithms, while the second approach can only be used by metaheuristic 

algorithms. 

Two multi-objective voltage optimisation algorithms have been proposed in Chapter 4 and 

Chapter 5. In Chapter 4, the oriented discrete coordinate descent method was extended with 

the weighted sum method, while in Chapter 5, multi-objective cuckoo search algorithm was 

developed. In this chapter, these two multi-objective voltage optimisation algorithms are 

evaluated and compared, for conventional and future distribution networks.  

In the rest of this chapter, the evaluation method is introduced. Conventional distribution 

network test cases are generated, followed by the test case results. The test cases and 

corresponding results for future distribution networks are then presented. At the end, the 

conclusion is drawn. For the remainder of this chapter, the ODCDM with the weighted sum 

method will be referred to as ODCDM, while the MOCS bases voltage optimisation algorithm 

will be referred to as MOCS. 
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7.2 Evaluation method of multi-objective voltage optimisation algorithms 

The method used for multi-objective voltage optimisation algorithm evaluation includes the 

following three steps: 

- Generating the test cases; 

- Solving the optimisation problems from the generated test cases; 

- Evaluating the results regarding the performance metrics. 

The problem formulation defined in Chapter 6, can also be used for multi-objective voltage 

optimisation, except that the single optimisation objective function is replaced with a set of 

optimisation functions, represented by (69). 

  1 2min , ,..., nf f f f   (69) 

As specified in Chapter 6, the formulated optimisation problem is not fixed, but varies with 

the changes of the components in the problem formulation, such as the definition of the 

optimisation objective function, and the network load and generation conditions. The test 

cases are generated to reflect the problem variation. This chapter focused on the problem 

variation caused by the different combinations of various optimisation objective functions. 

Similar to single-objective voltage optimisation algorithms, multi-objective voltage 

optimisation algorithms should always find at least one feasible solution in a reasonable 

computation time. Therefore, the following two performance criteria adopted for single-

objective voltage optimisation algorithm evaluation are also used here: 

- The number of voltage violation busbars, which is desired to be zero; 

- The computation time to find the result. 

As discussed in Chapter 5, for multi-objective voltage optimisation, the result evaluation is 

substantially more complex than that for single-objective optimisation [163]. This is because 

the result normally includes a set of solutions, which need to be measured by some 

performance metrics, before they can be evaluated and compared. Many performance metrics 

have been developed before to evaluate the results achieved by multi-objective optimisation 

algorithms [86, 139, 162, 164]. Here, the ratio of the reference point found, which has been 

introduced in Chapter 5, is used to evaluate and compare the results achieved for conventional 

distribution networks, while the coverage metric is used to compare the results achieved for 

future distribution networks. 
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The voltage optimisation problem in conventional distribution networks is a combinatorial 

problem, based on the assumptions made in Chapter 6. The Pareto front can be achieved by 

exhaustive search and used as the reference set for the performance metric, ratio of the 

reference point found. The voltage optimisation problem becomes a mixed integer nonlinear 

programming problem in future distribution networks, because of the integration of 

continuous control variables. It is very difficult to determine the Pareto front and thus the 

reference set R. Therefore the ratio of the reference point found could not be used. Instead, the 

results achieved by MOCS and ODCDM are compared with the coverage metric, as explained 

in Chapter 5 [139, 162, 164]. 

Beside these two performance metrics, visual presentations of the results are also used to 

evaluate and compare the results for 2-objective and 3-objective test cases. 

7.3 Test case design and algorithm application for conventional distribution networks 

7.3.1 Test case design 

To generate the test cases for conventional distribution networks, the Case Study Network B 

from Chapter 6 with its original load is used, as well as the following three optimisation 

objectives: 

- Network loss minimisation 

- Voltage deviation minimisation 

- OLTC and MSC switching operation minimisation 

Four test cases, as shown in Table 32, are generated by combining these three optimisation 

objectives in different ways. As shown in Table 32, three 2-objective test cases and one 3-

objective test case are generated. ‘Yes’ indicates the objective is considered in the test case, 

while ‘No’ indicates not. The indexes, CTC1-4 (CTC, conventional test case), are assigned to 

each test case. 
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Table 32 Multi-objective voltage optimisation test cases - conventional distribution networks 

Test case 

Index 

Number of 

Objectives 

Optimisation objective 

Network loss 

minimisation 

Voltage 

Deviation 

minimisation 

Switching 

operation 

minimisation 

CTC1 2 Yes Yes No 

CTC2 2 Yes No Yes 

CTC3 2 No Yes Yes 

CTC4 3 Yes Yes Yes 

 

As shown in Chapter 6, the positions of OLTCs and MSCs before optimisation, affect the 

optimisation function for switching number minimisation. In addition, the structure of MSC 

also affects the switching number calculation. Here, for the test cases including switching 

number minimisation, the nominal position (0%) is used for the OLTC tap positions, and 

0MVAr is used for the MSCs stage positions before optimisation. Also, it is assumed that for 

all the MSCs, the simple structure is used, which means all the capacitors in the MSC have 

the same size. 

7.3.2 Algorithm application 

For the test cases with two optimisation objectives, the optimisation objective for ODCDM 

should be formulated as (70). 

 1 1 2 2f w f w f    (70) 

Where w1 and w2 are the weighting coefficients adopted for the two optimisation objectives. 

Potentially, by varying the weighting coefficients, different solutions could be achieved. 

Normally, the weighting coefficients are being varied linearly, to find the solutions for the 

multi-objective optimisation problems [88, 165]. Here, w1 is being varied in the range [0, 1] 

with a given step size, as shown in [165]. Then w2 is calculated by (71). 

 2 11w w    (71) 

If a smaller step size is used to vary w1, potentially more solutions could be generated, but 

more runs of ODCDM are also required. For example, if 0.01 is used as the step size for the 

weighting coefficient variation, ODCDM needs to be run 101 times. The impact of the step 

size used for weighting coefficient variation is studied in section 7.4.1. The weighting 
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coefficients can be varied with different strategies. For example, in [88], a 2-objective 

optimisation problem was solved with weighted sum method. One weighting coefficient was 

kept constant, while the other one was varied from 0 to 2000 in steps of 100. The basic ideas 

of these two approaches are the same, which is assigning various priorities to the optimisation 

objectives. Also, the range of w1 could be adjusted based on the result achieved. However, 

this should be carried out based on the analysis of the specific optimisation problem. 

Therefore, it is not used in this study. 

Similarly, for the test cases with three optimisation objectives, the optimisation objective is 

represented by (72). 

 1 1 2 2 3 3f w f w f w f     (72) 

Where w1, w2 and w3 are the weighting coefficients adopted for the three optimisation 

objectives. Different solutions can be found with various combinations of w1, w2, and w3, and 

the relationship of these weighting coefficients should follow that defined by (73). 

 1 2 3 1w w w     (73) 

It should be noted that there will be more combinations for three weighting coefficients, if the 

same step size is used. For example, if the step size is 0.01, then there are 5151 combinations 

in total. 

ODCDM also requires a starting point and the SP may affect the result achieved by ODCDM. 

The impact of the SP is also shown with a simple example in section 7.4.1. 

As shown in Chapter 5, MOCS has several parameters, which could affect the performance of 

MOCS. Theoretically, these parameters could be tuned for each individual multi-objective 

optimisation problem. However, the parameter tuning for multi-objective metaheuristic 

algorithms, such as MOCS, is very difficult and time consuming. It is not practical to tune all 

the parameters for each individual problem. Here, the parameters are determined as per the 

literature and experimentally, as the approach adopted in many previous studies [163, 166, 

167]. As shown in [163], several parameters were fixed for all the test problems as per the 

literature, and the remaining parameters were chosen regarding each test problem. The 

algorithm was run five times, each time using a different parameter. The parameter value 

which achieved the best results for the measure was chosen. The nest number and maximum 

iteration number are determined as per the procedures specified in Chapter 5. 
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In this chapter, the following parameters are set for MOCS as per the literature and the initial 

studies in Chapter 5: discovery probability pa= 0.25, Lévy exponent β = 1.5 and step size scale 

factor α0 as 0.1. The nest number and the maximum iteration number are determined with the 

method introduced in Chapter 5. For CTC1-3, the nest number is set as 50 while the 

maximum iteration number is determined as 100. For CTC4, the nest number is increased to 

100, since the more solutions are expected in the Pareto front. The maximum iteration number 

is determined as 150. Theoretically, an optimal set of nest number and maximum iteration 

number could be found for each optimisation problem. However, this is not within the scope 

of this PhD study.  

As informed by previous research, such as [139, 167], and the initial test results in Chapter 5, 

normally the exact same result cannot be achieved by MOCS, because of its stochastic nature. 

Therefore, for each test case, MOCS is run 20 times, and the result, which has the closest 

performance metric to the average value for these 20 runs, is used in the comparative study. 

7.4 Results of conventional distribution network test cases 

For all conventional distribution network test cases, the solutions achieved by both algorithms 

are always feasible. 

7.4.1 Impact of the step size used for the weighting coefficient variation and the starting 

point for ODCDM 

The Pareto front of CTC1, found by exhaustive search, is shown in Fig. 72.  

 

Fig. 72 Pareto front for CTC1 achieved by exhaustive search 

As discussed in section 7.3.2, the step size used for the weighting coefficient variation may 

affect the result achieved and the number of runs required for ODCDM. Here, ODCDM is 
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tested with three different step sizes, which are 0.1, 0.01 and 0.001. In addition, the impact 

from the SP is also studied, with the two SPs shown in Table 9. 

Table 33 Starting Points used by ODCDM for CTC1 

Starting 

Point 

Index 

Starting Point 

OLTC MSC1 MSC2 MSC3 MSC4 

Unit: % Unit: MVAr 

SP1 100 0 0 0 0 

SP2 100 0.2 0.05 0.15 0.1 

 

With these three different step sizes and SPs, four different ODCDM test were carried out. 

The settings for these four ODCDM tests are listed in Table 34 and the results for these four 

tests are shown in Fig. 73. 

Table 34 Settings for ODCDM Tests – CTC1 

ODCDM Test SP Step size for w1 

ODCDM Test 1 SP1 0.1 

ODCDM Test 2 SP1 0.01 

ODCDM Test 3 SP1 0.001 

ODCDM Test 4 SP2 0.01 

 

The test results of ODCDM with different settings are shown in Fig. 73. 
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Fig. 73 ODCDM test results for CTC1 (a) Test1, (b) Test2, (c) Test3, (d) Test4. 

As shown in Fig. 73, the results achieved with ODCDM are affected by the step size selection 

for the weighting coefficient variation and the SP used by ODCDM. As shown by Fig. 73-(a) 

and Fig. 73-(b), better results can be achieved if a smaller step size is used for the weighting 

coefficients variation. However, as indicated by Fig. 73-(b), a better result may not 

necessarily be obtained if the step size is further reduced. Also, the result achieved also 

depends on the SP adopted by ODCDM. As shown by Fig. 73-(b) and Fig. 73-(d), different 

results are achieved for SP1 and SP2. The performance metrics and the computation times for 

these tests are summarized in Table 35. The total computation times for Test 2 and Test 4 are 

different, since the computation time of ODCDM is affected by the starting point used in 

these two tests. 

Table 35 Ratio of the reference point founds and computation times of ODCDM tests for CTC1 

 Test1 Test2 Test3 Test4 

Ratio of the reference 

point found 

40% 60% 60% 40% 

Computation time (s) 33.12 313.54 3022.43 214.12 
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In the following test, SP1 is used as the starting point, in which the OLTC tap position is set 

as 0%, while the stage positions of MSCs are set as zero. 0.01 is used as the step size for the 

weighting coefficient variation. 

7.4.2 Test results of 2-objective voltage optimisation test cases 

The results achieved by ODCDM and MOCS for CTC1-3, are shown in Fig. 74, against the 

Pareto fronts found via exhaustive search. 

 

Fig. 74 Pareto front and test results for the conventional distribution network test cases with 2 

optimisation objectives. (a) Pareto front for CTC1, (b) Results achieved by ODCDM and MOCS for 

CTC1, (c) Pareto front for CTC2, (d) Results achieved by ODCDM and MOCS for CTC2, (e) Pareto 

front for CTC3, (f) Results achieved by ODCDM and MOCS for CTC3. 
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As shown in Fig. 74, MOCS could achieve a better result than ODCDM for CTC1. The 

Pareto front, show in Fig. 74 – (a), is nonconvex, which may cause problems to the weighted 

sum method [168]. For CTC2, more solutions are achieved by MOCS. For CTC3, ODCDM 

could achieve a better result, although it cannot reach the upper section of the Pareto front. 

This is because ODCDM can only find the local optimal with the SP1. 

The ratios of the reference point found and computation times of both algorithms for CTC1 – 

CTC3 are shown in Table 36. 

Table 36 Ratio of the reference point found and computation time for CTC1 – CTC3 

Test 

Case 

Ratio of the reference point found Computation time (s) 

ODCDM MOCS 

(average value 

over 20 runs) 

ODCDM MOCS 

(average value 

over 20 runs) 

CTC1 60% 96% 313.54 100.18 

CTC2 23% 23% 342.22 103.05 

CTC3 42% 19% 390.63 102.85 

 

For CTC2 and CTC3, MOCS did not achieve a better result than ODCDM, in terms of RRPF. 

This is because of the mechanism of ODCDM, as introduced in Chapter 4. It can be seen from 

Table 36 that multiple runs of ODCDM may require a longer computation time than MOCS, 

if a small step size is used as the step size for the weighting coefficient variation. 

7.4.3 Test results of 3-objective voltage optimisation test cases 

The Pareto front and the results achieved by ODCDM and MOCS for CTC4 are shown in Fig. 

75. It can be seen from Fig. 75–(a) that the Pareto front in this test case has a larger number of 

solutions, compared to the Pareto fronts for the test cases with two optimisation objectives. 

This is because all the Pareto-optimal solutions from the three 2-objective test cases are still 

the Pareto-optimal solutions in this test case, and new Pareto-optimal solutions may also be 

introduced when three optimisation objectives are considered at the same time. As shown in 

Fig. 75–(b), more solutions are achieved by MOCS. 
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Fig. 75 Pareto front and test results for CTC4. (a) Pareto front for CTC4, (b) Results achieved by 

ODCDM and MOCS for CTC4. 

The ratios of the reference point found and the computation times for CTC4 are shown in 

Table 37. 

Table 37 Ratio of the reference point found and computation time for CTC4 

Ratio of the reference point found Computation time (s) 

ODCDM MOCS 

(average value 

over 20 runs) 

ODCDM MOCS 

7% 9% 2532.46 307.20 

 

For CTC4, the result achieved by MOCS is better than that achieved by ODCDM, according 

to the ratio of the reference point founds. Also, the computation time of MOCS is much 

shorter than that of ODCDM. For ODCDM, the required number of runs increases 

significantly with the increase of the optimisation objective, if the same step size is used for 

the weighting coefficient variation. 

7.5 Test case design and algorithm application for future smart distribution networks 

For all future distribution network test cases, the solutions achieved by both algorithms are 

always feasible. 

7.5.1 Test case design  

A future case study network is created, by connecting two 3MW DGs to Case Study Network 

B. As shown in Fig. 76, the DGs are connected to the feeder ends. DG real and reactive power 

controls are integrated, with the control ranges specified in Chapter 6. 

(a) (b)

Pareto front – CTC4 ODCDM MOCS
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Fig. 76 Case study network for future distribution network test case generation 

The following four optimisation objectives are considered for voltage optimisation in future 

distribution networks: 

- Voltage deviation minimisation 

- DG real power curtailment minimisation 

- DG reactive power usage minimisation 

- OLTC and MSC switching operation minimisation 

With these four optimisation objectives, ten test cases are created, as summarized in Table 38. 

The test case indexes (FTC, future test case) are also assigned to the test cases, as shown in 

Table 38. It should be noted that the number of optimisation objectives is limited to three in 

this study. This is because if there are more than three objectives to be optimised 

simultaneously, the problem could be too complicated and it will be difficult to evaluate the 

results achieved, since the results cannot be visualized. 
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Table 38 Multi-objective test cases – Future distribution network 

Test case 

Index 

Number of 

Objectives 

Voltage 

Deviation 

DG real 

power 

curtailment 

DG reactive 

power usage 

Switching 

operation 

FTC1 2 Yes Yes No No 

FTC2 2 No Yes Yes No 

FTC3 2 No Yes No Yes 

FTC4 2 Yes No Yes No 

FTC5 2 Yes No No Yes 

FTC6 2 No No Yes Yes 

FTC7 3 Yes Yes Yes No 

FTC8 3 No Yes Yes Yes 

FTC9 3 Yes Yes No Yes 

FTC10 3 Yes No Yes Yes 

 

The minimum load and maximum generation is adopted to generate the test cases. 

7.5.2 Algorithm application 

For future distribution networks, continuous control variables will be integrated into voltage 

optimisation. The continuous control variables need to be discretized before ODCDM can be 

applied. As shown in Chapter 6, the step size used for continuous control variable 

discretization affects the result achieved by ODCDM and the computation time. The impact 

of the step size for multi-objective voltage optimisation will be shown in section 7.6.1. For 2-

objective test cases, 0.01 is used for both the weighting coefficient variation and the 

continuous control variable discretisation. 

For 3-objective test cases, as informed by initial test, the total computation time may exceed 

48 hours if 0.01 is used for both the weighting coefficient variation and the continuous control 

variable discretisation. Therefore, the step size for continuous control variable discretisation is 

kept as 0.01 to obtain an accurate result, while 0.1 is used for weighting coefficient variation. 

For all the test cases, the DG rated powers are used for DG real power outputs, and zero is 

used for the DG reactive power outputs in the SP for ODCDM. 

As shown in Chapter 6, cuckoo search based algorithm requires more iterations to achieve a 

stable result, when continuous control variables are integrated. Also, the Pareto front could 
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include infinite solutions, when continuous control variables are integrated. Therefore, both 

the nest number and the maximum iteration number are expected to be increased. As per the 

method introduced in section 5.5.1, the nest number is set as 100 and the maximum iteration 

number is determined as 400 for FCT1-6. The nest number is increased to 150 for FCT7-10. 

The maximum iteration number is determined as 500. Potentially, optimal values for the nest 

number and maximum iteration number should exist regarding each individual test case. 

However, so far there is no standard procedure to find these optimal values. 

7.6 Results of conventional distribution network test cases  

7.6.1 Impact of continuous control variables on ODCDM 

The impact of continuous control variable on ODCDM regarding multi-objective optimisation 

is shown here. Two different step sizes are used to discretize the DG real and reactive powers, 

which are 0.01MW/MVAr and 0.05MW/MVAr. ODCDM is tested with these two step sizes, 

and the results shown in Fig. 77. 

 

Fig. 77 ODCDM test results for FTC1. (a) Test 1 - step size as 0.01MW/MVAr (b) Test 2 - step size as 

0.05MW/MVAr 

As shown in Fig. 77, it can be seen that the results achieved by ODCDM are affected by the 

step size used for continuous variable discretization. The coverage relationships of the two 

sets of results are shown in Table 39. It can be seen that a better result is achieved when a 

smaller step size is used for continuous variable discretization. However, a longer 

computation time is also required for the smaller step size. For this test case, ODCDM 

requires around 5847 seconds if 0.01 is used, while it requires around 1218 seconds if 0.05 is 

used.  
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Table 39 Coverage metric C of the results achieved by ODCDM with different step size adopted for 

continuous variable discretisation 

Result set A Result set B Coverage metric (A, B) 

ODCDM Test 1 ODCDM Test 2 0.15 

ODCDM Test 2 ODCDM Test 1 0.01 

 

7.6.2 Test results of 2-objective voltage optimisation test cases 

The results achieved by ODCDM and MOCS for the six 2-objective test cases, FTC 1-6, are 

shown in Fig. 78. For FTC1 and FTC2, as shown by Fig. 78 – (a) and Fig. 78 – (b), more 

solutions are achieved by MOCS and the solutions are better distributed. For FTC3 and FTC4, 

as shown by Fig. 78 – (c) and Fig. 78 – (d), the results achieved by ODCDM, are all 

dominated by one or some of the results achieved by MOCS. For FTC5, as shown by Fig. 78 

– (e), ODCDM found a solution which was also found by MOCS. However, the rest of the 

solutions achieved by ODCDM are dominated by one or some of the solutions achieved by 

MOCS. For FTC6, as shown by Fig. 78 – (f), the Pareto front of the optimisation problem is a 

single point, and both ODCDM and MOCS could achieve this solution. 
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Fig. 78 Results achieved for future distribution network 2-objective voltage optimisation test cases. (a) 

FTC1, (b) FTC2, (c) FTC3, (d) FTC4, (e)FTC5, (d) FTC6. 

The coverage metrics and computation time of the results achieved for FTC1-6 are shown in 

Table 40. It can be seen that for FTC1 and FTC5, although some of the solutions achieved by 

MOCS are dominated by that achieved by ODCDM, more solutions achieved by ODCDM are 

dominated by that achieved by MOCS. For FTC2, none of the results achieved by ODCDM is 

dominated by that achieved by MOCS, and vice versa. However, as shown in Fig. 78, the 

results achieved by MOCS covered a larger range than that achieved by ODCDM. For FTC3 

and FTC4, the results achieved by ODCDM are all dominated by that achieved by MOCS. 

For FTC6, same result is achieved by both algorithms. 
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Table 40 Coverage metrics of test results and computation for Future Test Case 1-6 

Test 

Case 

Number 

Average value over 20 runs 
Computation time (s) 

Coverage metric 

(ODCDM, MOCS) 

Coverage metric 

(MOCS, ODCDM) ODCDM 
MOCS 

(average) 

FTC1 0.01 0.3 5911.35 825.12 

FTC2 0 0 3314.09 823.26 

FTC3 0 1 3152.58 827.11 

FTC4 0 1 14533.75 821.74 

FTC5 0 0.68 12520.82 819.33 

FTC6 0 0 0.18 808.08 

 

7.6.3 Test results of 3-objective voltage optimisation test cases 

The results achieved for the 3-objective voltage optimisation test cases, FTC7-10, are shown 

in Fig. 79. It can be seen that, much more solutions are achieved by MOCS for all these four 

test cases. The coverage metrics and the computation time for Future Test Case 7-10 are 

shown in Table 41. 

Table 41 Coverage metrics of test results and computation for Future Test Case 7-10 

Test 

Case 

Number 

Average value over 20 runs Computation time (s) 

Coverage metric 

(ODCDM, MOCS) 

Coverage metric 

(MOCS, ODCDM) 

ODCDM 

MOCS 

(average) 

FTC7 0 0 4060.91 1553.66 

FTC8 0 0 2340.71 1560.11 

FTC9 0.02 0.1 4669.22 1586.11 

FTC10 0.03 0.6 8816.15 1470.23 

 

In Table 41, it can be seen that for FTC7, none of the solutions achieved by ODCDM is 

dominated by the solutions achieved by MOCS, and vice versa. For FTC8 and FTC9, 

ODCDM achieved the solutions which dominate some of the solutions achieved by MOCS. 

However, in FTC9, coverage metric of MOCS over ODCDM is larger. For FTC10, nearly 
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half of the solutions achieved by ODCDM are dominated by at least one of the solutions 

achieved by MOCS.  

 

Fig. 79 Pareto front achieved for 3-objective voltage optimisation for future distribution network test 

cases. (a) FTC7, (b) FTC8, (c) FTC9, (d) FTC10. 

7.7 Conclusions 

In this chapter, ODCDM with the weighted sum method and MOCS, are evaluated and 

compared, regarding multi-objective voltage optimisation for conventional and future 

distribution networks. A method is proposed to evaluate the multi-objective voltage 

optimisation algorithms. Test cases are generated regarding different combinations of various 

optimisation objective functions. Two performance metrics, ratio of the reference point found 

and coverage metric, have been adopted to evaluate the results. 

For conventional distribution networks, the performance of ODCDM is affected by the 

starting point and the step size selected for the weighting coefficient variation. As per the 

results of conventional distribution network test cases, MOCS could achieve a better result 

compared to ODCDM, when the Pareto front of the multi-objective voltage optimisation is 

nonconvex. For future distribution networks, more control variables and optimisation 

objectives are expected. The performance of ODCDM is also affected by the step size used 

(a)

Pareto front - ODCDM Pareto front - MOCS

(b)

Pareto front - ODCDM Pareto front - MOCS

(c)

Pareto front - ODCDM Pareto front - MOCS

(d)

Pareto front - ODCDM Pareto front - MOCS
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for the continuous control variable discretization. Generally speaking, better results could be 

achieved by MOCS, in terms of the number of non-dominated solutions achieved and the 

coverage metric. For example, the coverage metrics (MOCS, ODCDM) are significantly 

larger than the coverage metrics (ODCDM, MOCS), as shown in section 7.6.2, which means 

many solutions from the results found by ODCDM are dominated by the solutions found by 

MOCS. 

For multi-objective voltage optimisation, the computation of ODCDM is generally longer 

than MOCS, since ODCDM requires multiple runs to find a set of solutions. 
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Chapter 8 Discussion 

8.1 Introduction 

In this work, three different types of centralized voltage control algorithms have been 

developed and evaluated for future smart distribution networks. Specifically, a rule-based 

voltage control algorithm has been proposed and evaluated in Chapter 3. In Chapter 4 and 

Chapter 5, the development and initial evaluation of voltage optimisation algorithms, based 

on ODCDM and CS, were described. These voltage optimisation algorithms have been further 

evaluated in Chapter 6 and Chapter 7, with respect to single-objective and multi-objective 

voltage optimisation in conventional and future distribution networks. In this chapter, these 

three types of voltage control algorithms are comparatively evaluated. Guidelines are 

provided for voltage control algorithm selection for future smart distribution networks. 

8.2 Comparative algorithm evaluation 

The algorithms are evaluated under the following criteria: 

- Algorithm development, application and implementation 

- Ability to maintain network voltages within their statutory limits 

- Integration of novel voltage control techniques 

- Secondary control objectives 

- Solution optimality 

- Computation time 

8.2.1 Algorithm development, application and implementation 

The VCSF based algorithm is developed based on the potential scenarios of voltage control 

problems. Rules are defined to represent the relationships between the voltage problems and 

the control devices under these scenarios. The operational costs and the voltage change 

capabilities of different voltage control devices are related via the voltage cost sensitivity 

factor. The algorithm development is relatively easy, when there are only a few potential 

voltage control scenarios. However, the number of scenarios could increase dramatically with 

the number of control devices. 

The VCSF based algorithm requires offline load flow analysis, to determine potential voltage 

problems and possible control solutions. The parameters in the VCSF based algorithm, such 

as voltage sensitivity factor, need to be calculated for each individual network and may need 

to be recalculated, if the network topology is reconfigured. State estimators and online load 

flow are not required for the application of the VCSF based algorithm. However, state 
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estimators and online load flow could potentially be used to update the voltage sensitivity 

factors or/and to verify the control solution. 

For both ODCDM and CS, the voltage control problem is formulated and solved as an 

optimisation problem. ODCDM follows a deterministic optimisation path, based on the 

classic optimisation theory. Like all the other metaheuristic algorithms, CS uses a 

combination of local search and global search, and the optimisation path is non-deterministic. 

ODCDM and CS both require state estimators and online load flow, which bring the full 

visibility of the entire network under control. Both ODCDM and CS can be easily applied to 

different networks and adapted to network topology change by changing the network models. 

However, changing and validating the network models used by state estimators and online 

load flow engines is non-trivial. This is necessary after any network topology change. 

Potentially, the application of ODCDM and CS may lead to higher requirement regarding 

network measurement, in comparison with the application of VCSF. This is because only the 

voltages of critical busbars need to be monitored for VCSF, while for ODCDM and CS, much 

more busbars may need to be monitored to achieve an accurate state estimation. 

VCSF and ODCDM based algorithms give deterministic and repeatable results. In contrast, 

CS, as a stochastic algorithm, may not do this. SOCS has been shown to be able to provide a 

stable result if a large maximum iteration number is allowed, as shown in Chapter 5 and 

Chapter 6. Here a stable result means that the difference between the results achieved by 

SOCS over different runs is negligible. It should be noted that even though a stable result can 

be achieved by SOCS, the optimisation path for each run may be different, as shown in 

Chapter 5. For MOCS, it is more difficult to achieve repeatable results, especially when the 

number of Pareto-optimal solutions is large or infinite. Although the results achieved by 

MOCS over different runs may not be exactly the same, these results are all acceptable, as 

shown in Chapter 5. This stochastic nature of CS makes it difficult to trace and analyse the 

optimisation path. 

Parameter tuning is seen as one of the key issues in the application of metaheuristic 

algorithms. It is possible to spend many effects to tune the parameters for each individual 

problem. But the results suggested that acceptable performance can be achieved even without 

too much effect on parameter tuning. The test results in Chapter 6 indicate that SOCS could 

achieve acceptable results when the majority of the parameters are fixed, and only the 

maximum iteration number is determined regarding specific test network and optimisation 

objective. For MOCS, it is more difficult to tune the parameters, due to the difficulty of 
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evaluating the results for multi-objective optimisation problems. Also, both the nest number 

and the maximum iteration number may need to be tuned, as shown in Chapter 5. Again, the 

test results in Chapter 7 indicate that MOCS could achieve acceptable results when the 

parameters are determined as per the literature and with simple experiments. 

Distribution system can be divided into electrically subnetworks and the voltage control is 

applied to a subnetwork. The number of control variables in the subnetwork is normally less 

than transmission networks. It can be seen that both ODCDM and SOCS could deal with the 

test cases with various numbers of control variables. It should be noted that the complexity of 

the voltage optimisation problems is not only decided by the number of control variables, but 

also decided by many other issues, such as the type of control variables and the network load 

and generation conditions. 

The VCSF based algorithm does not have any convergence problem, while for optimisation 

algorithms, there is a risk that no solution will be found if the algorithm does not converge to 

a feasible solution. 

8.2.2 Ability to maintain network voltages within their statutory limits 

Based on the evaluation results from Chapter 3, Chapter 6 and Chapter 7, it can be seen that 

these algorithms are capable of maintaining network voltages within their statutory limits. 

For VCSF, the critical busbars, at which the voltage problems are more likely to occur, are 

found by offline analysis. These critical busbars require monitoring in order to detect voltage 

issues within the network. A limitation of this approach is that some voltage problems, caused 

by unexpected network conditions, may not be found by at the offline analysis stage. In this 

case, VCSF based algorithm may not be able to detect and solve these problems. 

Voltage optimisation based algorithms such ODCDM and CS require state estimators and 

therefore are not as susceptible to this. However, as the algorithms use model data from the 

state estimator and online load flow, it is possible that errors from state estimation and online 

load flow could reduce this capability. Therefore, having a well maintained state estimator 

network model and adequate network measurement is essential to ensuring that voltages are 

maintained within limits. 

As shown in Chapter 6, the result achieved by ODCDM is affected by the SP. Moreover, it is 

possible that ODCDM could be trapped at an infeasible solution from which further 

mitigation of voltage violations would not be possible. This may happen when there is a large 
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divergence between the network voltages. This could be avoided by choosing the SP with 

certain predefined rules. An example of this would be to set the DG real power output to zero 

where ODCDM could then always find a feasible solution. However, a larger DG curtailment 

may be required, as shown in section 6.8.1. 

For CS, the voltage problems can always be mitigated if CS can be run with a large enough 

number of iterations. Due to its stochastic nature, CS could escape from the infeasible local 

optima easily. 

8.2.3 Integration of novel voltage control techniques 

Novel voltage control techniques could be integrated into all of these three algorithms. 

Specifically, electrical energy storage was shown to be integrated in the VCSF based 

algorithm, with both the real and reactive power from EES controlled. Although only OLTCs 

and EESs are considered by the VCSF based algorithm in Chapter 3, other voltage control 

techniques can also be integrated into this proposed voltage control algorithm, such as 

Flexible AC transmission system (FACTS) devices. EES can be considered to be a FACTS 

device with a large real power storage capability. Therefore, it can be seen that the integration 

of other FACTS devices, such as D-STATCOM, into VCSF, is straightforward by treating 

them as an EES without a real power import/export capability. In both ODCDM and CS, DG 

control is integrated, by controlling the DG real and reactive powers directly. Other novel 

voltage control techniques, such as EES and controllable load, can also be integrated in the 

same way. DG real and reactive power control can also be considered within a VCSF based 

algorithm. 

It should be noted that the classic voltage control techniques in distribution networks are 

normally discrete control variables, while many novel voltage control techniques are 

continuous control variables. For VCSF, the discrete nature of the classic voltage control 

techniques is not explicitly considered. Potentially, this could lead to solutions where the cost 

is unnecessarily high.  

For ODCDM and CS, the integration of continuous control variables changes the voltage 

optimisation problem from a combinatorial problem to a MINLP problem. ODCDM does not 

deal with MINLP problems directly and instead continuous control variables are discretized. 

In Chapter 6 it was shown that the performance of ODCDM is affected by the step size used 

for continuous control variable discretization. If the step size is too large, the capability of the 

continuous control variables may not be fully used. If the step size is too small, the 
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computation time of ODCDM can increase dramatically, especially when the number of 

continuous control variables is large. In contrast, CS based algorithms can solve MINLP 

problems directly. However, this work shows that CS generally requires more iterations and 

therefore longer computation time, to solve MINLP problems. 

In this PhD study, box real/reactive power constraints are adopted for EES and DG. In 

practice however, sometimes more sophisticated constraints may need to be considered. For 

example, the apparent power limit of EES may need to be considered, as represented by (74):  

 2 2

EES EES

Max

EESP Q S    (74) 

where 𝑆𝐸𝐸𝑆
𝑀𝑎𝑥 is the limit of the EES apparent power, while PEES and QEES are the EES real and 

reactive power outputs.
 

This relationship between EES real and reactive powers cannot be easily addressed by the 

VCSF based algorithm but it can be easily considered by the optimisation algorithms. 

The relationship between the DG real and reactive powers can be more complicated than the 

box constraints adopted in this study. These more complex relationships can be adopted by 

both ODCDM and CS. However, in this case the voltage optimisation problem may become 

more nonconvex. This could result in ODCDM getting trapped at a local optimal point rather 

than a global optimal point more easily. 

Some of the novel voltage control techniques that are expected to be used in future smart 

distribution networks could be used to provide multiple network services, besides voltage 

control. For example, EES has been shown to be able to mitigate overvoltage problems and 

voltage unbalance problems. Therefore, the application of EES for multiple network services 

should be considered. The VCSF based algorithm considers voltage unbalance control and 

voltage control as they can be controlled simultaneously. For voltage optimisation algorithms, 

unbalance can also be considered by using three-phase load flow equations in the problem 

formulation. Also, power flow management could be easily considered by voltage 

optimisation algorithms, by including a set of inequality constraints, which represent the 

thermal limits of network components, into the problem formulation. For example, the 

thermal limit of the branch between busbar i and j can be considered by (75). 

 
max

ij ijI I   (75) 
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where Iij is the current flow for the branch between busbar i and busbar j, and 𝐼𝑖𝑗
max is the 

capacity of this branch. 

8.2.4 Secondary control objectives 

Besides maintaining network voltages within their statutory limits, secondary control 

objectives have been considered by these voltage control algorithms. For the VCSF based 

algorithm, control cost reduction is also considered along with maintaining voltages within 

statutory limits. However, it is difficult to consider complicated control objectives. For 

example, the network loss minimisation cannot be easily considered with a VCSF based 

algorithm. Moreover, the objectives cannot be easily changed, and it is difficult to consider 

multiple secondary control objectives. 

For voltage optimisation algorithms, it is far easier to integrate and change secondary control 

objectives. As shown in Chapter 6, different control objectives can be formulated as 

optimisation objective functions and be optimised by both ODCDM and SOCS. SOCS was 

shown to be more flexible in terms of the form of the optimisation objective function. 

Multiple secondary objectives can be considered by voltage optimisation algorithms in two 

different ways. The first one would be to reformulate all the objectives as one single objective 

function. However, the objectives may not always be comparable. The other way is to find a 

set of non-dominated solutions, which are expected to be as close as possible to the Pareto 

front of the multi-objective voltage optimisation problem. Then a solution can be selected 

with the information of these solutions. Two different approaches can be applied to find a set 

of solutions. The first approach uses single-objective optimisation algorithms, by 

reformulating the problem to address multi-objectives with the consideration of the 

preferences between different objectives. This approach is simple and widely used. However, 

this approach requires multiple run to find a set of solutions, and normally it is sensitive to the 

shape of the Pareto front. The second approach integrates the concept of Pareto optimality 

into the population-based metaheuristic algorithms. A set of non-dominated solutions can be 

found in a single run. This first approach can be used by both deterministic and metaheuristic 

algorithms, such as ODCDM and SOCS, while the second approach can only be used by 

metaheuristic algorithms, such as MOCS. As per the results shown in Chapter 7, the result 

achieved by ODCDM with the weighted sum method is affected by the step size used for 

weighting coefficient variation, and the starting point. ODCDM with the weighted sum 

method may have the difficulties if the Pareto front is nonconvex. Additionally, with the 

number of optimisation objectives increasing, it becomes more and more impractical to solve 
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the multi-objective voltage optimisation problems with ODCDM. The result achieved by 

MOCS may be different for each run, due to the stochastic nature of MOCS. 

8.2.5 Solution optimality 

The solution optimality is normally considered with regard to secondary control objectives. 

The VCSF based algorithm is able to provide a solution, which could reduce the control cost, 

by selecting the most cost effective voltage control devices. However, the solution achieved 

may not be an optimal solution. Even if the solution is an optimal solution by coincidence, the 

VCSF based algorithm is not aware of that. 

ODCDM is able to find an optimal solution. However, it cannot be guaranteed that this 

optimal solution is a global optimal solution. As shown in Chapter 4 and Chapter 6, SP affects 

the solution achieved by ODCDM. Distribution network voltage optimisation problems are 

typically nonlinear and nonconvex, and theoretically the voltage optimisation problems could 

have many local optima. Also, when ODCDM is applied to solve a MINLP problem, the 

continuous control variables in the problem need to be discretized. The MINLP problem is 

then converted to a combinatorial problem, which could be solved by ODCDM. The solution 

achieved by ODCDM for the converted combinatorial problem, may not be the optimal 

solution for the original MINLP problem. 

SOCS can theoretically achieve a global optimal, if a long computation time is allowed. It 

was shown in Chapter 6 that SOCS was at least able to find the same results as ODCDM. For 

many test cases, SOCS was able to find a better solution than ODCDM, regarding the 

optimisation objective function. It is difficult to estimate the difference between the results 

achieved by ODCDM and SOCS, which is affected by different factors, for example, the 

voltage optimisation problem itself and the starting point used by ODCDM. As shown in 

Chapter 6, for most of the conventional distribution network test cases, generally there is no 

significant difference between the results achieved by both ODCDM and SOCS. This is not 

the case when the capacitor bank sizes are not the same in a MSC where the differences 

between the results found by ODCDM and SOCS could be significant. This is because the 

objective function itself is nonconvex in this case. In future distribution networks, the 

differences between the results achieved by both ODCDM and SOCS could be more 

significant. The solutions achieved by ODCDM are affected by the step size used for 

continuous control variable discretization. More importantly, the integration of DG can create 
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network conditions, in which ODCDM may be trapped at an infeasible solution, if the SP is 

not appropriately selected. The reasons were discussed in Chapter 6. 

8.2.6 Computation time 

The VCSF based algorithm requires simple calculations and is therefore not particularly 

computationally intensive. The VCSF based algorithm is verified by the real-time PHIL 

emulation platform, and the results demonstrated that this algorithm could be used for real 

time control. Voltage optimisation algorithms are slower than VCSF, since large numbers of 

load flow calculations are typically required. Moreover, additional time is required for the 

state estimation calculation. In the CLNR project, it is found that for the largest case study 

network, in which there are around 2,000 busbars, it took approximately 10 minutes to 

complete the state estimation computation. 

ODCDM is generally much faster than CS, especially for the test cases in existing distribution 

networks. Like all the metaheuristic algorithms, CS typically requires a longer computation 

time than deterministic algorithms. However, ODCDM can also require a long computation 

time to solve the MINLP problems, if the number of continuous control variables is large and 

the step size used for continuous control variable discretization is small. It should be noted 

that some other deterministic optimisation algorithms, could be faster than ODCDM, in terms 

of solving MINLP problems, such as the primal-dual interior point algorithm. However, these 

algorithms have some other practical limitations in comparison with ODCDM. For example, 

discrete variables are modelled as continuous variables in PDIP, and this approach may not be 

valid when the step sizes of the discrete control variables in distribution networks are 

relatively large. Also, convergence problem needs to be considered for PDIP. 

If the expected value of optimal result is known, SOCS could be stopped once this expected 

value is found, before the maximum iteration number is reached. In this case, the computation 

time of SOCS could be shortened. For example, when DG curtailment minimisation is used as 

the optimisation objective, the DG curtailment value is expected to be zero. SOCS could stop 

once the DG curtailment is reduced to zero. 

The results in Chapter 7 demonstrated that, for multi-objective voltage optimisation, typically 

MOCS requires less computation time, compared to ODCDM with weighted sum method, to 

find a set of non-dominated solutions. This is because MOCS, as a population based 

algorithm, is able to find a set of non-dominated solutions in a single run, while ODCDM 

with weighted sum method needs multiple runs. 
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Although the computation time is an important assessment criterion, it may become less of 

critical factor in algorithm selection with the advancement in computing capability both 

locally and within the cloud. 

8.3 Algorithm selection suggestions 

The centralised voltage control algorithms evaluated in the previous section have been shown 

to have capabilities for voltage control in future distribution networks. However, it has been 

shown that the adoption of a single algorithm for all scenarios is not likely to be the best 

approach. In summary the following recommendations could be made for the algorithm 

selection in the context of future distribution network voltage control. 

The VCSF based algorithm should be used, when: 

- There are only several voltage control variables; 

- The number of potential voltage control problem scenarios is small; 

- The functions of state estimation and online load flow are not available; 

- A deterministic result is required; 

- The relationship between the secondary voltage control objective and the control 

variables is simple, and it is not required to consider multiple secondary control 

objectives; 

- Optimal solutions are not required; 

- The algorithm should not be computationally intensive. 

Voltage optimisation algorithms should be used, when: 

- It is difficult to determine all the potential voltage control problem scenarios by offline 

analysis, or the scenario number is large; 

- A state estimator and online load flow are available; 

- The relationship between the secondary voltage control objective and the control 

variables is complicated; 

- Multiple secondary control objectives need to be considered;  

- Optimal solutions are required; 

- There are not many constraints on computing power. 

Within voltage optimisation algorithms, ODCDM should be used, when: 

- The control variables are mainly discrete variables; 

- The load and generation are evenly distributed across the network; 
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- The function formulated for the secondary control objective is convex; 

- The multiple secondary control objectives are comparable. 

Within voltage optimisation algorithms, CS could be used, when: 

- The objective function is non-convex; 

- The control variables are mixed with discrete control variables and continuous control 

variables; 

- The load and distributed generation are unevenly distributed in the network; 

- The multiple objectives are not easily comparable. 

It should be noted that this work focused on the characteristics of the algorithms themselves. 

If these algorithms are deployed and implemented in real distribution networks, the cost and 

benefits of the control algorithms need to be assessed with the long-term evaluation, regarding 

the specific network load and generation conditions. 
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Chapter 9 Conclusions and Future Work 

9.1 Introduction 

The research presented in this thesis investigated the capabilities of advanced voltage control 

algorithms for future smart distribution networks using a combination of simulation, field trial 

results, laboratory demonstrations and literature. In the following sections, conclusions have 

been drawn as a result of this research and future work is proposed. 

9.2 Conclusions 

It was shown previously that the control of voltages in distribution networks will become 

more challenging in the future. The anticipated widespread, customer driven, adoption of 

LCTs, such as wind and PV generation, EVs and heat pumps, is likely to cause complex 

voltage problems. These complex voltage problems may require novel control techniques, 

such as DG and EES, to be controlled cooperatively with centralized voltage control 

techniques, to mitigate voltage problems and also achieve secondary control objectives. 

Centralized control techniques were categorized into three different groups: rule-based control 

algorithms, deterministic optimisation algorithms and metaheuristic optimisation algorithms. 

To enable evaluation of the most appropriate voltage control solutions for future distribution 

networks, three centralized voltage control algorithms from each category have been 

developed and evaluated in this work. 

A rule-based voltage control algorithm has been developed, which could be used to mitigate 

the voltage problems and voltage unbalance problems, caused by the clustered distributions of 

LCTs in terms of both feeder and phase location. With this algorithm, EES is integrated into 

voltage control and the control cost is reduced by introducing the concept of voltage cost 

sensitivity factor. This algorithm was evaluated using a combination of steady-state 

simulation and PHIL emulation.  

A deterministic voltage optimisation algorithm, based on ODCDM, has been developed. This 

algorithm was compared with and validated using the field trial results from the CLNR 

project, where a sophisticated centralised voltage control system using the same algorithm 

was deployed on distribution networks in the north east of England. This ODCDM based 

algorithm has been proposed previously [1]. In this study, it has been extended to solve 

MINLP problems and multi-objective problems.  

A metaheuristic algorithm, cuckoo search via Lévy flight, has been extended to solve single-

objective and multi-objective MINLP problems. Single-objective cuckoo search algorithm 
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was compared with a genetic algorithm and a particle swarm optimisation algorithm. Multi-

objective cuckoo search algorithm was compared with a non-dominated sorting genetic 

algorithm-II. It has been found that SOCS and MOCS outperform these three widely used 

metaheuristic algorithms regarding the voltage optimisation test cases in this study. The 

voltage optimisation algorithms, based on ODCDM and CSs have been further evaluated and 

compared, with respect to single-objective and multi-objective voltage optimisation in 

conventional and future distribution networks. 

These three types of centralized voltage control algorithms are comparatively evaluated, 

regarding various criteria. In Chapter 8, all these three types of voltage control algorithms 

have been shown to have capabilities for voltage control in future distribution networks. 

However, it has been shown that the adoption of a single type of algorithm for all scenarios is 

not likely to be the best approach. In summary the following recommendations could be made 

for the algorithm selection in the context of future smart distribution network voltage control. 

The VCSF based algorithm should be used, when: 

- There are only several voltage control variables; 

- The number of potential voltage control problem scenarios is small; 

- The functions of state estimation and online load flow are not available; 

- A deterministic result is required; 

- The relationship between the secondary voltage control objective and the control 

variables is simple, and it is not required to consider multiple secondary control 

objectives; 

- Optimal solutions are not required; 

- The algorithm should not be computationally intensive. 

Voltage optimisation algorithms should be used, when: 

- It is difficult to determine all the potential voltage control problem scenarios by offline 

analysis, or the scenario number is large; 

- A state estimator and online load flow are available; 

- The relationship between the secondary voltage control objective and the control 

variables is complicated; 

- Multiple secondary control objectives need to be considered;  

- Optimal solutions are required; 

- There are not many constraints on computing power. 
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Within voltage optimisation algorithms, ODCDM should be used, when: 

- The control variables are mainly discrete variables; 

- The load and generation are evenly distributed across the network; 

- The function formulated for the secondary control objective is convex; 

- The multiple secondary control objectives are comparable. 

Within voltage optimisation algorithms, CS could be used, when: 

- The objective function is non-convex; 

- The control variables are mixed with discrete control variables and continuous control 

variables; 

- The load and distributed generation are unevenly distributed in the network; 

- The multiple objectives are not easily comparable. 

In future distribution networks, it is expected that novel voltage control techniques will be 

integrated and large quantities of unplanned, clustered LCT may be connected. Potentially, 

more control objectives, which may not be comparable to each other, need to be considered 

for voltage control. Therefore, metaheuristic algorithms could become more preferable in 

future distribution networks. 

The following contributions to knowledge have been made in this thesis: 

- A novel rule-based voltage control algorithm has been proposed to solve voltage 

problems and voltage unbalanced problems in future distribution networks. Voltage 

cost sensitivity factor has been defined to represent the cost-effectiveness of network 

interventions in terms of voltage control. Feeder voltage divergence factor has been 

introduced as a network voltage metric for networks with large, clustered distributions 

of LCTs; 

- Representing two different types of optimisation algorithms, ODCDM and CS 

algorithms have been extended and applied to solve mixed integer and multi-objective 

voltage optimisation problems in future smart distribution networks. A novel test 

methodology has been proposed to test, evaluate and compare two different types of 

voltage optimisation algorithms, regarding voltage control problems in conventional 

and future smart distribution networks; 

- The rule-based voltage control algorithm and the two different voltage optimisation 

algorithms have been comparatively evaluated, regarding various aspects of potential 

voltage control problems in future smart distribution networks. The salient 
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characteristics of these three algorithms have been summarized and guidelines have 

been proposed to distribution network management product manufactures and DNOs, 

regarding voltage control algorithm selection for future smart distribution networks. 

The algorithms and findings from this study could provide useful information for practical 

distribution network voltage control algorithm design, and the voltage optimisation theoretical 

studies. This study has some limitations. Although the algorithms can be used to represent 

three different types of algorithms, there are many other algorithms, which may have different 

characteristics of the developed algorithms in this study. For example, ODCDM is based on 

discrete control variables, while some other deterministic optimisation algorithms are based 

on continuous control variables. This study concentrates on the snapshot study. However, 

control scheduling could provide some additional benefits in some conditions, for example, 

when EES is considered. It should be also noted that although the characteristics of the 

algorithms have been studied, the cost and benefits of the control algorithms should be 

assessed with a longer term evaluation, using appropriate network load and generation data to 

make a comprehensive assessment. 

9.3 Future work 

In this study, three different types of advanced voltage control algorithms have been evaluated 

and compared. Useful conclusions have been drawn and could be used for voltage control 

algorithm design in future distribution networks. The following work could be carried out in 

future to augment the research presented in this thesis. 

These algorithms have their own advantages and disadvantages. Potentially, a hybrid 

approach could be developed, by combing the advantages of different algorithms. One simple 

way is to implement two algorithms, and use the most suitable one based on the current 

network conditions using simple rules. Another approach would be to combine multiple 

algorithms. For example, ODCDM could be used for local search while CS could be used for 

a global search of the solution space.  

In this study, real-time control is studied. With the integration of energy storage, and the 

conventional consideration of the switching number daily limit, the control scheduling could 

provide additional benefits, compared to real-time control. However, the computation burden 

is much heavier than real-time control and the uncertainty of forecasting may also need to be 

considered. It is valuable to compare the benefits from control scheduling, and moreover, to 

integrate real-time control and control scheduling. 
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This study focuses on the algorithm evaluation from the algorithm development aspect. Long-

term evaluation could be conducted, to select the most appropriate approach. Annual load and 

generation data should be considered in the long-term evaluation in the context of multiple 

control objectives. 
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Appendix A Case Study Network Data 

Appendix A-1 Network Data of IEEE 33 busbar network 

The diagram of IEEE 33 busbar network is shown in Fig. A - 1. 

 

Fig. A - 1 Diagram of IEEE 33 Busbar Network 

The network load and branch impedance data are listed in Table A - 1 and Table A - 2. 

Table A - 1 Network Load Data of IEEE 33 Busbar Network 

Busbar P, MW Q, 

MVAr 

Busbar P, MW Q, MVAr 

1 0.000 0.000 18 0.090 0.040 

2 0.100 0.060 19 0.090 0.040 

3 0.090 0.040 20 0.090 0.040 

4 0.120 0.080 21 0.090 0.040 

5 0.060 0.030 22 0.090 0.040 

6 0.060 0.020 23 0.090 0.050 

7 0.200 0.100 24 0.420 0.200 

8 0.200 0.100 25 0.420 0.200 

9 0.060 0.020 26 0.060 0.025 

10 0.060 0.020 27 0.060 0.025 

11 0.045 0.030 28 0.060 0.020 

12 0.060 0.035 29 0.120 0.070 

13 0.060 0.035 30 0.200 0.600 

14 0.120 0.080 31 0.150 0.070 

15 0.060 0.010 32 0.210 0.100 

16 0.060 0.020 33 0.060 0.040 

17 0.060 0.020    
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Table A - 2 Branch data of IEEE 33 Busbar Network 

Branch No. Starting busbar Ending busbar R(Ω) X(Ω) R(pu) X(pu) 

1 1 2 0.0922 0.047 0.0575 0.0293 

2 2 3 0.493 0.2511 0.3076 0.1567 

3 3 4 0.366 0.1864 0.2284 0.1163 

4 4 5 0.3811 0.1941 0.2378 0.1211 

5 5 6 0.819 0.707 0.5110 0.4411 

6 6 7 0.1872 0.6188 0.1168 0.3861 

7 7 8 0.7114 0.2351 0.4439 0.1467 

8 8 9 1.03 0.74 0.6426 0.4617 

9 9 10 1.044 0.74 0.6514 0.4617 

10 10 11 0.1966 0.065 0.1227 0.0406 

11 11 12 0.3744 0.1238 0.2336 0.0772 

12 12 13 1.468 1.155 0.9159 0.7206 

13 13 14 0.5416 0.7129 0.3379 0.4448 

14 14 15 0.591 0.526 0.3687 0.3282 

15 15 16 0.7463 0.545 0.4656 0.3400 

16 16 17 1.289 1.721 0.8042 1.0738 

17 17 18 0.732 0.574 0.4567 0.3581 

18 2 19 0.164 0.1565 0.1023 0.0976 

19 19 20 1.5042 1.3554 0.9385 0.8457 

20 20 21 0.4095 0.4784 0.2555 0.2985 

21 21 22 0.7089 0.9373 0.4423 0.5848 

22 3 23 0.4512 0.3083 0.2815 0.1924 

23 23 24 0.898 0.7091 0.5603 0.4424 

24 24 25 0.896 0.7011 0.5590 0.4374 

25 6 26 0.203 0.1034 0.1267 0.0645 

26 26 27 0.2842 0.1447 0.1773 0.0903 

27 27 28 1.059 0.9337 0.6607 0.5826 

28 28 29 0.8042 0.7006 0.5018 0.4371 

29 29 30 0.5075 0.2585 0.3166 0.1613 

30 30 31 0.9744 0.963 0.6080 0.6008 

31 31 32 0.3105 0.3619 0.1937 0.2258 

32 32 33 0.341 0.5302 0.2128 0.3308 
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The load flow results, including the busbar voltages and the power flow are shown in Table A 

- 3 and Table A - 4. 

Table A - 3 IEEE 33 Busbar Network load flow results - voltage magnitudes 

Busbar |V|, pu Busbar |V|, pu Busbar |V|, pu 

1 1.000 12 0.927 23 0.979 

2 0.997 13 0.921 24 0.973 

3 0.983 14 0.919 25 0.969 

4 0.975 15 0.917 26 0.948 

5 0.968 16 0.916 27 0.945 

6 0.950 17 0.914 28 0.934 

7 0.946 18 0.913 29 0.926 

8 0.941 19 0.997 30 0.922 

9 0.935 20 0.993 31 0.918 

10 0.929 21 0.992 32 0.917 

11 0.928 22 0.992 33 0.917 

 

Table A - 4 IEEE 33 Busbar Network load flow results – real and reactive power flows 

Branch No. Starting busbar Ending busbar P, MW Q, MVAr 

1 1 2 3.9178 2.4351 

2 2 3 3.4444 2.2078 

3 3 4 2.3630 1.6842 

4 4 5 2.2231 1.5941 

5 5 6 2.1061 1.5215 

6 6 7 1.0953 0.5279 

7 7 8 0.8934 0.4216 

8 8 9 0.6885 0.3200 

9 9 10 0.6243 0.2970 

10 10 11 0.5608 0.2744 

11 11 12 0.5144 0.2440 

12 12 13 0.4543 0.2090 

13 13 14 0.3917 0.1719 

14 14 15 0.2709 0.0909 

15 15 16 0.2106 0.0806 

16 16 17 0.1503 0.0604 

17 17 18 0.0901 0.0400 

18 2 19 0.3611 0.1611 

19 19 20 0.2701 0.1202 

20 20 21 0.1801 0.0802 

21 21 22 0.0900 0.0401 

22 3 23 0.9396 0.4572 

23 23 24 0.8464 0.4051 

24 24 25 0.4213 0.2010 

25 6 26 0.9509 0.9736 
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26 26 27 0.8849 0.9456 

27 27 28 0.8249 0.9206 

28 28 29 0.7536 0.8906 

29 29 30 0.6258 0.8138 

30 30 31 0.4202 0.2103 

31 31 32 0.2700 0.1400 

32 32 33 0.0600 0.0400 
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Appendix A-2 Network Data of IEEE 69 busbar network 

The diagram of IEEE 69 busbar network is shown in Fig. A - 2. 

 

Fig. A - 2 Diagram of IEEE 69 Busbar Network 

The network load and branch impedance data are listed in Table A - 5 and Table A - 6. 

Table A - 5 Network Load Data of IEEE 69 Busbar Network 

Busbar P, MW Q, 

MVAr 

Busbar P, MW Q, MVAr 

1 0 0 36 0.026 0.01855 

2 0 0 37 0.026 0.01855 

3 0 0 38 0 0 

4 0 0 39 0.024 0.017 

5 0 0 40 0.024 0.017 

6 0.0026 0.0022 41 0.0012 0.001 

7 0.0404 0.03 42 0 0 

8 0.075 0.054 43 0.006 0.0043 

9 0.03 0.022 44 0 0 

10 0.028 0.019 45 0.03922 0.0263 

11 0.145 0.104 46 0.03922 0.0263 

12 0.145 0.104 47 0 0 

13 0.008 0.0055 48 0.079 0.0564 

14 0.008 0.0055 49 0.3847 0.2745 

15 0 0 50 0.384 0.2745 

16 0.0455 0.03 51 0.0405 0.0283 

17 0.06 0.035 52 0.0036 0.0027 

18 0.06 0.035 53 0.00435 0.0035 

19 0 0 54 0.0264 0.019 

20 0.001 0.0006 55 0.024 0.0172 

21 0.114 0.081 56 0 0 

22 0.0053 0.0035 57 0 0 

23 0 0 58 0 0 

24 0.028 0.02 59 0.1 0.072 

25 0 0 60 0 0 

26 0.014 0.01 61 1.244 0.888 

27 0.014 0.01 62 0.032 0.023 

1 2 3 4 5 6 7 8 9 10 11
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67
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12
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28 0.026 0.0186 63 0 0 

29 0.026 0.0186 64 0.227 0.162 

30 0 0 65 0.059 0.042 

31 0 0 66 0.018 0.013 

32 0 0 67 0.018 0.013 

33 0.014 0.01 68 0.028 0.02 

34 0.0195 0.014 69 0.028 0.02 

35 0.006 0.004 36 0.026 0.01855 

 

Table A - 6 Branch data of IEEE 69 Busbar Network 

Branch No. Starting busbar Ending busbar R(Ω) X(Ω) R(pu) X(pu) 

1 1 2 0.0005 0.0012 0.0003 0.0007 

2 2 3 0.0005 0.0012 0.0003 0.0007 

3 3 4 0.0015 0.0036 0.0009 0.0022 

4 4 5 0.0251 0.0294 0.0157 0.0183 

5 5 6 0.366 0.1864 0.2284 0.1163 

6 6 7 0.3811 0.1941 0.2378 0.1211 

7 7 8 0.0922 0.047 0.0575 0.0293 

8 8 9 0.0493 0.0251 0.0308 0.0157 

9 9 10 0.819 0.2707 0.5110 0.1689 

10 10 11 0.1872 0.0691 0.1168 0.0431 

11 11 12 0.7114 0.2351 0.4439 0.1467 

12 12 13 1.03 0.34 0.6426 0.2121 

13 13 14 1.044 0.345 0.6514 0.2153 

14 14 15 1.058 0.3496 0.6601 0.2181 

15 15 16 0.1966 0.065 0.1227 0.0406 

16 16 17 0.3744 0.1238 0.2336 0.0772 

17 17 18 0.0047 0.0016 0.0029 0.0010 

18 18 19 0.3276 0.1083 0.2044 0.0676 

19 19 20 0.2106 0.069 0.1314 0.0431 

20 20 21 0.3416 0.1129 0.2131 0.0704 

21 21 22 0.014 0.0046 0.0087 0.0029 

22 22 23 0.1591 0.0526 0.0993 0.0328 

23 23 24 0.3463 0.1145 0.2161 0.0714 

24 24 25 0.7488 0.2745 0.4672 0.1713 

25 25 26 0.3089 0.1021 0.1927 0.0637 

26 26 27 0.1732 0.0572 0.1081 0.0357 

27 3 28 0.0044 0.0108 0.0027 0.0067 

28 28 29 0.064 0.1565 0.0399 0.0976 

29 29 30 0.3978 0.1315 0.2482 0.0820 

30 30 31 0.0702 0.0232 0.0438 0.0145 

31 31 32 0.351 0.116 0.2190 0.0724 

32 32 33 0.839 0.2816 0.5235 0.1757 

33 33 34 1.708 0.5646 1.0657 0.3523 

34 34 35 1.474 0.4673 0.9197 0.2916 
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35 3 36 0.0044 0.0108 0.0027 0.0067 

36 36 37 0.064 0.1565 0.0399 0.0976 

37 37 38 0.1053 0.123 0.0657 0.0767 

38 38 39 0.0304 0.0355 0.0190 0.0221 

39 39 40 0.0018 0.0021 0.0011 0.0013 

40 40 41 0.7283 0.8509 0.4544 0.5309 

41 41 42 0.31 0.3623 0.1934 0.2260 

42 42 43 0.041 0.0478 0.0256 0.0298 

43 43 44 0.0092 0.0116 0.0057 0.0072 

44 44 45 0.1089 0.1373 0.0679 0.0857 

45 45 46 0.0009 0.0012 0.0006 0.0007 

46 4 47 0.0034 0.0084 0.0021 0.0052 

47 47 48 0.0851 0.2083 0.0531 0.1300 

48 48 49 0.2898 0.7091 0.1808 0.4424 

49 49 50 0.0822 0.2011 0.0513 0.1255 

50 8 51 0.0928 0.0473 0.0579 0.0295 

51 51 52 0.3319 0.1114 0.2071 0.0695 

52 9 53 0.174 0.0886 0.1086 0.0553 

53 53 54 0.203 0.1034 0.1267 0.0645 

54 54 55 0.2842 0.1447 0.1773 0.0903 

55 55 56 0.2813 0.1433 0.1755 0.0894 

56 56 57 1.59 0.5337 0.9920 0.3330 

57 57 58 0.7837 0.263 0.4890 0.1641 

58 58 59 0.3042 0.1006 0.1898 0.0628 

59 59 60 0.3861 0.1172 0.2409 0.0731 

60 60 61 0.5075 0.2585 0.3166 0.1613 

61 61 62 0.0974 0.0496 0.0608 0.0309 

62 62 63 0.145 0.0738 0.0905 0.0460 

63 63 64 0.7105 0.3619 0.4433 0.2258 

64 64 65 1.041 0.5302 0.6495 0.3308 

65 11 66 0.2012 0.0611 0.1255 0.0381 

66 66 67 0.0047 0.0014 0.0029 0.0009 

67 12 68 0.7394 0.2444 0.4613 0.1525 

68 68 69 0.0047 0.0016 0.0029 0.0010 

The load flow results, including the busbar voltages and the power flow are shown in Table A 

- 7 and Table A - 8. 

Table A - 7 IEEE 69 Busbar Network load flow results - voltage magnitudes 

Busbar |V|, pu Busbar |V|, pu Busbar |V|, pu 

1 1.000 24 0.957 47 1.000 

2 1.000 25 0.956 48 0.999 

3 1.000 26 0.956 49 0.995 

4 1.000 27 0.956 50 0.994 

5 0.999 28 1.000 51 0.979 

6 0.990 29 1.000 52 0.979 
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7 0.981 30 1.000 53 0.975 

8 0.979 31 1.000 54 0.971 

9 0.977 32 1.000 55 0.967 

10 0.972 33 0.999 56 0.963 

11 0.971 34 0.999 57 0.940 

12 0.968 35 0.999 58 0.929 

13 0.965 36 1.000 59 0.925 

14 0.962 37 1.000 60 0.920 

15 0.959 38 1.000 61 0.912 

16 0.959 39 1.000 62 0.912 

17 0.958 40 1.000 63 0.912 

18 0.958 41 0.999 64 0.910 

19 0.958 42 0.999 65 0.909 

20 0.957 43 0.999 66 0.971 

21 0.957 44 0.999 67 0.971 

22 0.957 45 0.998 68 0.968 

23 0.957 46 0.998 69 0.968 

 

Table A - 8 IEEE 69 Busbar Network load flow results – real and reactive power flows 

Branch No. Starting busbar Ending busbar P, MW Q, MVAr 

1 1 2 4.0266 2.7968 

2 2 3 4.0265 2.7966 

3 3 4 3.7493 2.6021 

4 4 5 2.8988 1.9904 

5 5 6 2.8970 1.9882 

6 6 7 2.8661 1.9716 

7 7 8 2.7964 1.9266 

8 8 9 2.6705 1.8381 

9 9 10 0.7804 0.5333 

10 10 11 0.7476 0.5127 

11 11 12 0.5656 0.3824 

12 12 13 0.3624 0.2376 

13 13 14 0.3531 0.2317 

14 14 15 0.3439 0.2258 

15 15 16 0.3427 0.2254 

16 16 17 0.2969 0.1953 

17 17 18 0.2375 0.1602 

18 18 19 0.1766 0.1252 

19 19 20 0.1765 0.1252 

20 20 21 0.1754 0.1245 

21 21 22 0.0612 0.0435 

22 22 23 0.0561 0.0400 

23 23 24 0.0560 0.0400 

24 24 25 0.0280 0.0200 

25 25 26 0.0280 0.0200 



  

191 
 

26 26 27 0.0140 0.0100 

27 3 28 0.0915 0.0652 

28 28 29 0.0655 0.0466 

29 29 30 0.0395 0.0280 

30 30 31 0.0395 0.0280 

31 31 32 0.0396 0.0280 

32 32 33 0.0395 0.0280 

33 33 34 0.0255 0.0180 

34 34 35 0.0060 0.0040 

35 3 36 0.1856 0.1292 

36 36 37 0.1598 0.1106 

37 37 38 0.1337 0.0920 

38 38 39 0.1338 0.0920 

39 39 40 0.1101 0.0750 

40 40 41 0.0857 0.0580 

41 41 42 0.0845 0.0569 

42 42 43 0.0845 0.0569 

43 43 44 0.0787 0.0526 

44 44 45 0.0784 0.0526 

45 45 46 0.0393 0.0263 

46 4 47 0.8501 0.6112 

47 47 48 0.8500 0.6111 

48 48 49 0.7704 0.5533 

49 49 50 0.3841 0.2748 

50 8 51 0.0442 0.0310 

51 51 52 0.0036 0.0027 

52 9 53 1.8566 1.2811 

53 53 54 1.8465 1.2747 

54 54 55 1.8134 1.2522 

55 55 56 1.7802 1.2304 

56 56 57 1.7716 1.2259 

57 57 58 1.7219 1.2092 

58 58 59 1.6975 1.2010 

59 59 60 1.5880 1.1259 

60 60 61 1.5772 1.1226 

61 61 62 0.3189 0.2275 

62 62 63 0.2869 0.2044 

63 63 64 0.2867 0.2044 

64 64 65 0.0590 0.0420 

65 11 66 0.0360 0.0260 

66 66 67 0.0182 0.0130 

67 12 68 0.0560 0.0400 

68 68 69 0.0275 0.0200 
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Appendix B Test Results for Single-objective Voltage Optimisation 

Appendix B-1: Maximum iteration number of SOCS – Conventional Test Cases 

The maximum iteration number determined for SOCS, regarding different case study 

networks and optimisation objectives are shown in Table B - 1. 

Table B - 1 Maximum iteration number determined for SOCS 

Optimisation Objective Case study network Maximum iteration number 

determined for SOCS 

Network loss minimisation Network A 100 

Network B 40 

Network C 151 

Voltage deviation minimisation Network A 85 

Network B 87 

Network C 108 

Switching number minimisation Network A 62 

Network B 53 

Network C 109 
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Appendix B-2: Test results for network loss minimisation – Conventional Test Cases 

Test results for network loss minimisation are shown in Table B - 2, Table B - 3 and Table B - 

4. 

Table B - 2 Network loss minimisation – Conventional test cases for Network A 

Load 

scale 

index 

Network loss (MW) Computation time (s) 

ODCDM SOCS difference ODCDM SOCS 

0.25 0.0071 0.0071 0.0% 1.59 47.72 

0.3 0.0101 0.0101 0.0% 1.65 47.09 

0.35 0.0137 0.0137 0.0% 1.99 47.10 

0.4 0.0180 0.0180 0.0% 2.16 47.07 

0.45 0.0228 0.0228 0.0% 2.14 47.17 

0.5 0.0284 0.0283 0.0% 2.19 47.36 

0.55 0.0344 0.0344 0.0% 2.36 47.59 

0.6 0.0411 0.0411 0.0% 2.69 47.82 

0.65 0.0485 0.0485 0.0% 2.85 48.13 

0.7 0.0564 0.0564 0.0% 2.84 48.33 

0.75 0.0650 0.0650 0.1% 3.03 48.19 

0.8 0.0742 0.0742 0.0% 3.34 48.23 

0.85 0.0841 0.0841 0.0% 3.50 48.36 

0.9 0.0947 0.0947 0.0% 3.67 48.34 

0.95 0.1059 0.1059 0.0% 3.85 48.60 

1 0.1179 0.1179 0.0% 4.01 48.77 

 

Table B - 3 Network loss minimisation – Conventional test cases for Network B 

Load 

scale 

index 

Network loss (MW) Computation time (s) 

ODCDM SOCS difference ODCDM SOCS 

0.25 0.0072 0.0072 0.0% 1.27 20.16 

0.3 0.0103 0.0103 0.0% 1.47 20.03 

0.35 0.0141 0.0141 0.0% 1.56 19.98 

0.4 0.0186 0.0186 0.0% 1.78 20.12 

0.45 0.0238 0.0238 0.0% 1.90 20.26 

0.5 0.0297 0.0297 0.0% 1.99 20.39 

0.55 0.0364 0.0364 0.0% 2.12 20.43 

0.6 0.0438 0.0438 0.0% 2.24 20.77 

0.65 0.0521 0.0521 0.0% 2.38 21.11 

0.7 0.0612 0.0612 0.0% 2.55 21.34 

0.75 0.0712 0.0712 0.0% 2.60 21.60 

0.8 0.0820 0.0820 0.0% 2.75 21.20 

0.85 0.0937 0.0937 0.0% 2.94 22.48 

0.9 0.1063 0.1063 0.0% 3.12 22.42 

0.95 0.1198 0.1198 0.0% 3.12 22.68 

1 0.1343 0.1343 0.0% 3.28 22.75 
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Table B - 4 Network loss minimisation – Conventional test cases for Network C 

Load 

scale 

index 

Network loss (MW) Computation time (s) 

ODCDM SOCS difference ODCDM SOCS 

0.25 0.0079 0.0079 0.0% 1.47 81.65 

0.3 0.0112 0.0112 0.0% 1.97 81.89 

0.35 0.0155 0.0154 0.3% 1.95 82.23 

0.4 0.0206 0.0206 0.0% 2.03 82.47 

0.45 0.0258 0.0256 0.7% 2.24 82.61 

0.5 0.0315 0.0315 0.0% 2.25 82.85 

0.55 0.0382 0.0382 0.0% 2.27 83.67 

0.6 0.0459 0.0458 0.4% 2.51 84.31 

0.65 0.0540 0.0540 0.0% 2.54 84.56 

0.7 0.0629 0.0625 0.7% 2.53 83.88 

0.75 0.0720 0.0719 0.2% 2.81 84.20 

0.8 0.0821 0.0821 0.0% 2.80 84.80 

0.85 0.0934 0.0934 0.0% 3.05 84.87 

0.9 0.1048 0.1048 0.0% 3.34 85.57 

0.95 0.1172 0.1172 0.0% 3.36 85.86 

1 0.1309 0.1306 0.2% 3.63 86.12 

 

The computation time for network loss minimisation profile studies are shown in Table B - 5. 

Table B - 5 Computation time – Network loss minimisation profile study  

 Computation time (s) 

Time Network A Network B Network C 

ODCDM SOCS ODCDM SOCS ODCDM SOCS 

00:00 2.25 51.18 1.76 51.18 2.33 84.63 

01:00 1.76 51.77 1.48 51.77 2.13 83.25 

02:00 1.53 52.12 1.38 52.12 1.51 82.24 

03:00 1.54 52.15 1.22 52.15 1.48 82.35 

04:00 1.55 51.93 1.24 51.93 1.50 82.18 

05:00 1.54 52.12 1.23 52.12 1.49 82.31 

06:00 1.69 52.28 1.34 52.28 1.75 82.32 

07:00 2.42 52.37 1.70 52.37 2.01 84.84 

08:00 2.59 51.76 2.13 51.76 2.29 84.62 

09:00 2.93 51.43 2.41 51.43 2.57 85.43 

10:00 2.96 51.59 2.38 51.59 2.57 85.50 

11:00 2.93 52.04 2.25 52.04 2.58 87.03 

12:00 2.94 51.70 2.35 51.70 2.56 85.41 

13:00 2.93 51.79 2.35 51.79 2.58 85.92 

14:00 2.94 51.64 2.25 51.64 2.56 85.41 

15:00 2.93 51.56 2.25 51.56 2.58 85.35 

16:00 3.13 51.83 2.48 51.83 2.60 85.83 

17:00 4.01 52.26 2.93 52.26 3.42 87.89 
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18:00 4.38 52.48 3.04 52.48 3.64 89.97 

19:00 4.20 52.27 2.95 52.27 3.39 90.24 

20:00 3.81 51.94 2.81 51.94 3.37 87.22 

21:00 3.63 51.75 2.70 51.75 3.10 86.60 

22:00 3.30 51.68 2.46 51.68 2.83 85.54 

23:00 2.75 51.39 2.24 51.39 2.51 84.56 
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Appendix B-3: Test results for voltage deviation minimisation – Conventional Test 

Cases 

Test results for voltage deviation minimisation are shown in Table B - 6, Table B - 7 and 

Table B - 8. 

Table B - 6 Voltage deviation minimisation – Conventional test cases for Network A 

Load 

scale 

index 

Voltage deviation (pu) Computation time (s) 

ODCDM SOCS Difference ODCDM SOCS 

0.25 0.13 0.02 84.8% 0.96 41.84 

0.3 0.12 0.02 80.7% 1.56 41.38 

0.35 0.11 0.03 74.8% 1.83 42.28 

0.4 0.28 0.04 86.4% 0.85 41.55 

0.45 0.27 0.05 81.4% 1.18 41.51 

0.5 0.26 0.06 78.5% 1.53 41.50 

0.55 0.25 0.07 70.9% 1.67 41.64 

0.6 0.24 0.09 64.9% 2.23 41.96 

0.65 0.22 0.08 62.4% 3.02 41.99 

0.7 0.42 0.08 79.7% 1.45 42.11 

0.75 0.41 0.08 79.3% 1.75 42.21 

0.8 0.38 0.11 72.3% 2.56 42.10 

0.85 0.37 0.17 52.8% 3.27 42.01 

0.9 0.36 0.20 43.6% 3.23 42.10 

0.95 0.35 0.20 41.6% 3.74 42.15 

1 0.35 0.24 29.9% 4.22 42.08 
 

Table B - 7 Voltage deviation minimisation – Conventional test cases for Network B 

Load 

scale 

index 

Voltage deviation (pu) Computation time (s) 

ODCDM SOCS Difference ODCDM SOCS 

0.25 0.13 0.08 40.4% 0.76 45.68 

0.3 0.13 0.11 16.3% 1.01 45.81 

0.35 0.14 0.12 13.6% 1.34 46.02 

0.4 0.28 0.13 55.0% 0.66 45.54 

0.45 0.27 0.13 50.8% 1.08 46.18 

0.5 0.27 0.15 43.8% 1.61 44.43 

0.55 0.26 0.22 17.6% 2.31 44.04 

0.6 0.27 0.27 0.0% 2.62 44.38 

0.65 0.42 0.27 34.6% 1.29 44.98 

0.7 0.41 0.29 30.1% 1.75 45.20 

0.75 0.41 0.34 18.4% 2.35 45.88 

0.8 0.42 0.40 3.1% 2.49 47.43 

0.85 0.42 0.42 0.0% 3.29 47.17 

0.9 0.44 0.44 0.0% 3.29 48.24 

0.95 0.48 0.48 0.0% 3.29 47.63 

1 0.57 0.53 7.6% 2.52 47.39 
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Table B - 8 Voltage deviation minimisation – Conventional test cases for Network C 

Load 

scale 

index 

Voltage deviation (pu) Computation time (s) 

ODCDM SOCS Difference ODCDM SOCS 

0.25 0.05 0.03 46.1% 2.53 61.45 

0.3 0.04 0.03 23.5% 3.67 64.39 

0.35 0.05 0.04 20.9% 3.45 62.34 

0.4 0.08 0.06 22.1% 4.35 64.76 

0.45 0.10 0.09 8.4% 4.68 66.88 

0.5 0.13 0.12 10.4% 4.90 65.62 

0.55 0.49 0.15 69.7% 3.03 65.97 

0.6 0.54 0.18 66.0% 2.45 66.27 

0.65 0.53 0.25 53.5% 2.73 65.67 

0.7 0.55 0.34 39.3% 3.04 65.97 

0.75 0.58 0.43 26.2% 3.34 66.10 

0.8 0.61 0.52 14.7% 3.90 65.90 

0.85 0.64 0.64 0.3% 4.19 66.70 

0.9 0.67 0.67 0.0% 5.43 67.20 

0.95 0.71 0.71 0.0% 5.65 66.66 

1 0.76 0.76 0.0% 5.36 65.48 
 

The computation time for network loss minimisation profile studies are shown in Table B - 9. 

Table B - 9 Computation time – Voltage deviation minimisation profile study  

 Computation time (s) 

Time Network A Network B Network C 

ODCDM SOCS ODCDM SOCS ODCDM SOCS 

00:00 1.06 44.46 0.87 34.39 4.32 67.24 
01:00 1.24 44.66 1.10 34.21 3.25 66.83 
02:00 0.70 44.61 0.86 34.35 2.67 65.94 
03:00 0.72 44.96 0.63 34.31 2.39 65.88 
04:00 0.71 44.61 0.62 34.37 2.94 66.43 
05:00 0.69 44.63 0.74 34.36 2.37 66.16 
06:00 1.07 44.61 0.93 34.35 2.93 67.04 
07:00 0.69 44.85 0.52 34.19 4.25 68.07 
08:00 1.78 45.07 2.02 34.53 5.32 67.69 
09:00 1.06 45.10 0.86 34.55 2.39 67.84 
10:00 3.03 44.26 2.48 34.63 2.35 67.49 
11:00 2.64 44.43 0.88 34.52 2.29 67.70 
12:00 3.03 44.21 2.61 34.64 2.30 67.72 
13:00 2.69 44.42 0.99 34.74 2.57 67.43 
14:00 3.03 44.17 2.50 34.68 2.29 67.47 
15:00 2.67 44.33 0.86 34.60 2.29 67.65 
16:00 1.61 44.71 1.75 34.94 2.82 67.41 
17:00 3.79 44.53 3.33 35.48 5.25 68.79 
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18:00 4.63 44.60 2.54 35.54 5.30 70.02 
19:00 4.26 44.72 3.35 35.47 5.30 69.60 
20:00 3.38 44.70 3.34 35.37 4.98 69.50 
21:00 2.32 44.63 2.64 35.00 3.62 67.84 
22:00 1.94 44.60 1.99 34.89 3.11 67.67 
23:00 1.93 44.27 2.84 34.58 2.04 67.87 
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Appendix B-4 Test results for switching operation minimisation – Conventional Test 

Cases 

Test results for switching operation minimisation are shown in Table B - 10, Table B - 11 and 

Table B - 12. 

Table B - 10 Switching operation minimisation – Conventional test cases for Network A 

Load 

scale 

index 

Switching number Computation time (s) 

ODCDM SOCS Difference ODCDM SOCS 

0.25 0 0 0.0% 0.19 16.52 

0.3 0 0 0.0% 0.22 13.51 

0.35 0 0 0.0% 0.17 15.06 

0.4 0 0 0.0% 0.18 17.64 

0.45 0 0 0.0% 0.17 30.71 

0.5 0 0 0.0% 0.20 22.82 

0.55 0 0 0.0% 0.18 14.81 

0.6 0 0 0.0% 0.17 16.92 

0.65 0 0 0.0% 0.20 15.45 

0.7 0 0 0.0% 0.18 17.54 

0.75 1 1 0.0% 0.35 31.79 

0.8 1 1 0.0% 0.35 31.86 

0.85 1 1 0.0% 0.36 31.74 

0.9 2 2 0.0% 0.56 31.64 

0.95 2 2 0.0% 0.53 31.82 

1 2 2 0.0% 0.55 31.87 

 

Table B - 11 Switching operation minimisation – Conventional test cases for Network B 

Load 

scale 

index 

Switching number Computation time (s) 

ODCDM SOCS Difference ODCDM SOCS 

0.25 0 0 0.0% 0.10 5.03 

0.3 0 0 0.0% 0.10 7.46 

0.35 0 0 0.0% 0.10 20.92 

0.4 0 0 0.0% 0.10 10.40 

0.45 0 0 0.0% 0.11 9.03 

0.5 0 0 0.0% 0.10 9.03 

0.55 0 0 0.0% 0.11 6.13 

0.6 0 0 0.0% 0.10 12.06 

0.65 0 0 0.0% 0.10 7.66 

0.7 0 0 0.0% 0.11 9.71 

0.75 1 1 0.0% 0.21 26.68 

0.8 1 1 0.0% 0.21 26.94 

0.85 1 1 0.0% 0.21 27.15 

0.9 2 2 0.0% 0.31 27.14 

0.95 2 2 0.0% 0.32 29.57 

1 2 2 0.0% 0.32 31.70 
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Table B - 12 Switching operation minimisation – Conventional test cases for Network C 

Load 

scale 

index 

Switching number Computation time (s) 

ODCDM SOCS Difference ODCDM SOCS 

0.25 0 0 0.0% 0.26 35.61 

0.3 0 0 0.0% 0.25 39.45 

0.35 0 0 0.0% 0.27 32.73 

0.4 0 0 0.0% 0.26 26.93 

0.45 0 0 0.0% 0.26 30.11 

0.5 0 0 0.0% 0.27 18.45 

0.55 0 0 0.0% 0.26 50.09 

0.6 0 0 0.0% 0.25 29.04 

0.65 0 0 0.0% 0.26 32.08 

0.7 1 1 0.0% 0.51 62.35 

0.75 1 1 0.0% 0.52 62.63 

0.8 1 1 0.0% 0.52 62.74 

0.85 2 2 0.0% 0.77 62.86 

0.9 2 2 0.0% 0.79 63.34 

0.95 2 2 0.0% 0.80 63.61 

1 3 3 0.0% 1.09 63.90 

 

The computation time for network loss minimisation profile studies are shown in Table B - 13. 

Table B - 13 Computation time – Switching operation minimisation profile study  

 Computation time (s) 

Time Network A Network B Network C 

ODCDM SOCS ODCDM SOCS ODCDM SOCS 

00:00 0.11 16.52 0.10 9.44 0.25 33.12 
01:00 0.11 13.51 0.10 2.17 0.25 43.78 
02:00 0.11 15.06 0.10 6.01 0.27 23.72 
03:00 0.11 17.64 0.10 13.19 0.25 25.37 
04:00 0.12 30.71 0.10 13.28 0.25 30.10 
05:00 0.11 22.82 0.10 9.96 0.25 40.06 
06:00 0.11 14.81 0.10 13.41 0.25 28.57 
07:00 0.13 16.92 0.12 14.46 0.25 39.16 
08:00 0.12 15.45 0.10 8.70 0.25 34.45 
09:00 0.11 17.54 0.10 13.72 0.25 41.96 
10:00 0.11 31.79 0.10 18.84 0.25 30.61 
11:00 0.11 31.86 0.11 19.42 0.25 43.07 
12:00 0.11 31.74 0.10 6.82 0.27 34.62 
13:00 0.11 31.64 0.10 9.87 0.25 46.59 
14:00 0.12 31.82 0.10 7.83 0.27 38.00 
15:00 0.11 31.87 0.10 14.39 0.25 35.69 
16:00 0.11 16.52 0.11 11.43 0.53 62.90 
17:00 0.37 31.96 0.34 27.35 0.79 64.06 
18:00 0.11 31.70 0.11 14.76 0.26 64.41 
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19:00 0.11 31.52 0.11 17.25 0.26 35.70 
20:00 0.11 22.75 0.13 12.06 0.26 35.38 
21:00 0.12 16.33 0.10 9.47 0.25 40.46 
22:00 0.11 16.46 0.10 14.02 0.25 12.45 
23:00 0.11 17.53 0.10 12.11 0.27 22.69 
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Appendix B-5: Impact of step size used for continuous variable discretization – Future 

Test Cases 

 

The impact of the step size selection on the performance of ODCDM is illustrated with an 

initial test case. Network D, with the maximum generation and minimum load condition, is 

used in this test case. DG curtailment minimisation is used as the optimisation objective. Real 

and reactive powers of the DG are discretised with different step sizes. The test results are 

shown in Table B - 14. 

Table B - 14 Impact of step size used for continuous variable discretization for ODCDM 

Step size used for continuous control 

variable discretization (MW/MVAr) 

0.001 0.01 0.02 0.03 0.04 0.05 

DG curtailment (MW) 0.311 0.32 0.34 0.36 0.4 0.35 

Computation time (s) 338.77 34.88 18.03 12.44 9.72 7.85 

 

It can be seen from Table B - 14. that smaller step sizes result in greater computation time and 

generally reduced the DG curtailment. Sometimes ODCDM does not achieve a better result 

when a smaller step size is selected. For example, the result achieved when the step size is 

selected as 0.05 MW/MVAr is better than that achieved when the step size is selected as 0.04 

MW/MVAr. The minimum step size evaluated in this study is 0.01 MW/MVAr which results 

in a computation time that is still much shorter than that required for SOCS. 
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Appendix B-6 Maximum iteration number of SOCS – Future Test Cases 

The maximum iteration number determined for SOCS, regarding different case study 

networks and optimisation objectives are shown in Table B - 15 and Table B - 16. 

Table B - 15 Maximum iteration number determined for SOCS - Network D 

Optimisation Objective Maximum iteration 

number 

DG real power curtailment minimisation 741 

DG reactive power utilization minimisation 60 

Network Loss minimisation 95 

Voltage deviation minimisation 162 

Switching operation minimisation 110 

 

Table B - 16 Maximum iteration number determined for SOCS - Network E 

Optimisation Objective Maximum iteration 

number 

DG real power curtailment minimisation 425 

DG reactive power utilization minimisation 138 

Network Loss minimisation 262 

Voltage deviation minimisation 290 

Switching operation minimisation 145 
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Appendix B-7 Test results for Network D - Future Test Cases  

 

Since the number of test cases is too large, sampled snapshot test results are shown here. Test 

results of these sampled test cases for different optimisation objectives are shown in Table B - 

17, Table B - 18, Table B - 19, Table B - 20 and Table B - 21. For all the test cases, SOCS was 

able to find a feasible solution and the voltage violation number is always zero. 

Table B - 17 Sampled test cases for network loss minimisation – snapshot test cases for Network D 

Load  
scale  
factor DG (MW) 

Network loss (MW) Voltage 
violation 

Computation 
time (s) 

ODCDM SOCS Reduction ODCDM ODCDM SOCS 

0.25 0.25 0.0044 0.0044 0.0% 0 5.08 73.70 

0.25 2 0.0044 0.0044 0.0% 0 52.91 74.21 

0.25 4 0.0045 0.0044 1.0% 0 188.44 76.45 

0.3 0.25 0.0064 0.0064 0.1% 0 4.87 77.35 

0.3 2 0.0064 0.0064 0.1% 0 48.77 63.89 

0.3 4 0.0065 0.0064 1.9% 0 171.05 64.77 

0.35 0.25 0.0087 0.0087 0.0% 0 3.61 63.63 

0.35 2 0.0087 0.0087 0.3% 0 47.93 63.94 

0.35 4 0.0088 0.0087 1.0% 0 171.42 65.59 

0.4 0.25 0.0116 0.0116 0.0% 0 3.88 65.77 

0.4 2 0.0114 0.0114 0.0% 0 49.03 66.65 

0.4 4 0.0116 0.0115 0.9% 0 176.32 67.27 

0.45 0.25 0.0151 0.0151 0.0% 0 4.60 66.14 

0.45 2 0.0147 0.0146 0.1% 0 46.33 64.53 

0.45 4 0.0148 0.0146 0.9% 0 177.93 65.44 

0.5 0.25 0.0193 0.0193 0.0% 0 5.08 67.20 

0.5 2 0.0183 0.0183 0.1% 0 48.29 67.29 

0.5 4 0.0184 0.0183 0.6% 0 174.15 67.18 

0.55 0.25 0.0242 0.0242 0.0% 0 5.13 67.71 

0.55 2 0.0225 0.0224 0.0% 0 47.00 68.54 

0.55 4 0.9692 0.0226 97.7% 2 36.69 67.80 

0.6 0.25 0.0297 0.0297 0.0% 0 5.71 66.63 

0.6 2 0.0271 0.0271 0.1% 0 45.98 66.67 

0.6 4 0.9167 0.0271 97.0% 2 41.59 67.46 

0.65 0.25 0.0360 0.0360 0.0% 0 5.61 66.84 

0.65 2 0.0324 0.0323 0.2% 0 42.79 64.68 

0.65 4 0.8987 0.0324 96.4% 4 40.05 65.17 

0.7 0.25 0.0431 0.0431 0.0% 0 5.58 64.62 

0.7 2 0.0381 0.0380 0.1% 0 45.88 77.02 

0.7 4 0.5925 0.0381 93.6% 5 53.55 76.59 

0.75 0.25 0.0509 0.0509 0.0% 0 6.11 77.31 

0.75 2 0.0444 0.0443 0.1% 0 42.71 78.13 

0.75 4 0.9120 0.0444 95.1% 3 45.31 77.07 

0.8 0.25 0.0595 0.0595 0.0% 0 6.39 76.57 
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0.8 2 0.0512 0.0511 0.0% 0 42.77 76.66 

0.8 4 0.8852 0.0512 94.2% 4 46.54 76.73 

0.85 0.25 0.0689 0.0689 0.0% 0 7.01 76.55 

0.85 2 0.0586 0.0585 0.1% 0 41.72 76.50 

0.85 4 0.9677 0.0586 93.9% 2 38.53 77.74 

0.9 0.25 0.0790 0.0790 0.0% 0 7.01 76.56 

0.9 2 0.0665 0.0665 0.0% 0 40.24 75.84 

0.9 4 0.8806 0.0665 92.5% 2 45.23 77.78 

0.95 0.25 0.0900 0.0900 0.0% 0 6.98 77.06 

0.95 2 0.0750 0.0750 0.0% 0 39.20 76.26 

0.95 4 0.8758 0.0750 91.4% 4 49.08 83.00 

1 0.25 0.1019 0.1019 0.0% 0 7.20 76.52 

1 2 0.0842 0.0842 0.0% 0 38.33 76.64 

1 4 0.0843 0.0842 0.0% 0 160.91 77.12 

1.05 0.25 0.1146 0.1146 0.0% 0 14.23 85.84 

1.05 2 0.0939 0.0940 0.0% 0 66.70 97.81 

1.05 4 0.9183 0.0940 89.8% 2 42.65 68.74 

1.1 0.25 0.1283 0.1283 0.0% 0 7.19 66.46 

1.1 2 0.1043 0.1044 0.0% 0 67.92 102.08 

1.1 4 0.8706 0.1044 88.0% 3 48.15 88.11 

 

Table B - 18 Sampled test cases for voltage deviation minimisation – snapshot test cases for Network 

D 

Load  
scale  
factor DG (MW) 

Voltage deviation (pu) Voltage 
violation 

Computation 
time (s) 

ODCDM SOCS Reduction ODCDM ODCDM SOCS 

0.25 0.25 0.08 0.07 12.0% 0 4.16 83.60 

0.25 2 0.07 0.07 7.0% 0 37.23 84.12 

0.25 4 0.08 0.07 10.4% 0 70.93 86.36 

0.3 0.25 0.12 0.11 15.1% 0 3.11 82.46 

0.3 2 0.10 0.09 6.6% 0 35.92 81.99 

0.3 4 0.10 0.10 5.8% 0 68.59 83.11 

0.35 0.25 0.13 0.12 4.5% 0 2.19 80.46 

0.35 2 0.13 0.12 2.6% 0 36.88 83.42 

0.35 4 0.13 0.12 3.4% 0 71.31 85.52 

0.4 0.25 0.13 0.12 6.2% 0 2.71 82.28 

0.4 2 0.16 0.12 22.2% 0 35.28 83.49 

0.4 4 0.16 0.13 19.9% 0 71.95 86.80 

0.45 0.25 0.14 0.13 4.2% 0 4.21 82.62 

0.45 2 0.20 0.13 33.3% 0 33.94 83.96 

0.45 4 0.19 0.13 32.3% 0 70.96 85.99 

0.5 0.25 0.15 0.14 5.9% 0 4.22 84.78 

0.5 2 0.23 0.14 40.2% 0 30.44 83.00 

0.5 4 0.23 0.14 39.5% 0 67.98 84.83 

0.55 0.25 0.26 0.16 40.0% 0 2.40 82.84 
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0.55 2 0.27 0.15 42.8% 0 28.20 84.19 

0.55 4 1.39 0.16 88.6% 2 22.26 85.17 

0.6 0.25 0.26 0.18 30.7% 0 2.40 82.48 

0.6 2 0.18 0.17 3.9% 0 33.93 83.98 

0.6 4 1.37 0.17 87.3% 2 25.31 84.26 

0.65 0.25 0.27 0.21 21.7% 0 2.69 82.99 

0.65 2 0.20 0.20 3.1% 0 34.23 84.64 

0.65 4 1.39 0.20 85.8% 4 25.79 85.24 

0.7 0.25 0.27 0.24 10.3% 0 4.36 83.14 

0.7 2 0.23 0.22 3.1% 0 32.46 83.68 

0.7 4 1.40 0.22 84.2% 5 32.82 86.05 

0.75 0.25 0.40 0.27 33.1% 0 2.41 83.85 

0.75 2 0.26 0.25 2.2% 0 29.54 84.40 

0.75 4 1.24 0.25 79.8% 3 27.66 86.21 

0.8 0.25 0.40 0.28 30.7% 0 2.72 84.03 

0.8 2 0.29 0.28 4.4% 0 28.43 84.14 

0.8 4 1.26 0.28 78.0% 4 28.39 86.47 

0.85 0.25 0.40 0.29 26.8% 0 3.20 89.06 

0.85 2 0.32 0.29 10.3% 0 27.26 83.92 

0.85 4 1.12 0.29 74.1% 2 23.60 85.54 

0.9 0.25 0.41 0.32 21.2% 0 3.41 84.70 

0.9 2 0.35 0.31 13.0% 0 22.64 84.75 

0.9 4 1.10 0.31 72.3% 2 27.21 83.93 

0.95 0.25 0.41 0.35 14.1% 0 3.92 83.04 

0.95 2 0.38 0.33 13.9% 0 22.08 82.94 

0.95 4 1.13 0.33 70.9% 4 27.99 83.42 

1 0.25 0.55 0.41 25.4% 0 2.10 82.77 

1 2 0.42 0.35 15.5% 0 20.37 83.02 

1 4 0.41 0.35 13.3% 0 64.33 83.52 

1.05 0.25 0.55 0.42 23.9% 0 3.21 91.65 

1.05 2 0.45 0.38 15.9% 0 21.98 89.82 

1.05 4 0.97 0.38 61.1% 2 25.70 85.76 

1.1 0.25 0.55 0.43 21.7% 0 3.42 84.91 

1.1 2 0.41 0.41 2.1% 0 25.44 89.20 

1.1 4 0.99 0.41 58.9% 3 30.44 92.38 
 

Table B - 19 Sampled test cases for switching operation minimisation – snapshot test cases for 

Network D 

Load  
Scale 

 factor DG (MW) 

Switching operation Voltage 
violation 

Computation 
time (s) 

ODCDM SOCS Reduction ODCDM ODCDM SOCS 

0.25 0.25 0 0 0.0% 0 0.15 4.37 

0.25 2 4 0 100.0% 0 0.81 13.86 

0.25 4 4 0 100.0% 0 27.53 20.60 

0.3 0.25 0 0 0.0% 0 0.15 9.40 
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0.3 2 4 0 100.0% 0 0.76 8.51 

0.3 4 4 0 100.0% 0 26.24 7.32 

0.35 0.25 0 0 0.0% 0 0.16 10.37 

0.35 2 4 0 100.0% 0 0.76 8.03 

0.35 4 4 0 100.0% 0 24.88 13.68 

0.4 0.25 0 0 0.0% 0 0.17 15.90 

0.4 2 3 0 100.0% 0 0.63 15.82 

0.4 4 4 0 100.0% 0 23.63 24.60 

0.45 0.25 0 0 0.0% 0 0.15 6.35 

0.45 2 3 0 100.0% 0 0.61 15.24 

0.45 4 4 0 100.0% 0 22.31 24.28 

0.5 0.25 0 0 0.0% 0 0.15 20.05 

0.5 2 3 0 100.0% 0 0.62 12.67 

0.5 4 7 0 100.0% 0 22.36 11.05 

0.55 0.25 0 0 0.0% 0 0.15 6.39 

0.55 2 2 0 100.0% 0 0.63 10.65 

0.55 4 10 0 100.0% 2 22.58 18.37 

0.6 0.25 0 0 0.0% 0 0.15 8.12 

0.6 2 2 0 100.0% 0 0.46 18.98 

0.6 4 19 0 100.0% 2 25.31 13.66 

0.65 0.25 0 0 0.0% 0 0.15 11.50 

0.65 2 2 0 100.0% 0 0.46 14.43 

0.65 4 22 0 100.0% 4 26.59 15.35 

0.7 0.25 0 0 0.0% 0 0.17 13.69 

0.7 2 2 0 100.0% 0 0.46 9.58 

0.7 4 28 0 100.0% 5 32.94 15.97 

0.75 0.25 0 0 0.0% 0 0.15 20.14 

0.75 2 1 0 100.0% 0 0.31 11.23 

0.75 4 18 0 100.0% 3 28.39 11.87 

0.8 0.25 1 0 100.0% 0 0.32 9.10 

0.8 2 1 0 100.0% 0 0.37 14.80 

0.8 4 21 0 100.0% 4 28.39 18.11 

0.85 0.25 1 1 0.0% 0 0.30 56.84 

0.85 2 1 0 100.0% 0 0.33 10.12 

0.85 4 9 0 100.0% 2 23.38 4.14 

0.9 0.25 1 1 0.0% 0 0.31 57.06 

0.9 2 0 0 0.0% 0 0.15 12.29 

0.9 4 17 0 100.0% 2 26.78 32.02 

0.95 0.25 1 1 0.0% 0 0.30 57.31 

0.95 2 0 0 0.0% 0 0.15 23.30 

0.95 4 20 0 100.0% 4 28.63 23.52 

1 0.25 2 2 0.0% 0 0.46 57.25 

1 2 0 0 0.0% 0 0.17 34.92 

1 4 9 0 100.0% 0 27.76 41.62 

1.05 0.25 2 2 0.0% 0 0.46 60.62 

1.05 2 0 0 0.0% 0 0.16 50.24 
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1.05 4 15 1 93.3% 2 27.10 62.53 

1.1 0.25 2 2 0.0% 0 0.47 60.84 

1.1 2 1 1 0.0% 0 0.30 58.27 

1.1 4 19 1 94.7% 3 28.81 58.53 

 

Table B - 20 Sampled test cases for DG curtailment minimisation – snapshot test cases for Network D 

Load  
scale  
factor DG (MW) 

DG P Curtailment (MW) Voltage 
violation 

Computation 
time (s) 

ODCDM SOCS Reduction ODCDM ODCDM SOCS 

0.25 0.25 0.00 0.00 0.0% 0 0.20 0.73 

0.25 2 0.00 0.00 0.0% 0 1.03 2.29 

0.25 4 0.32 0.31 3.3% 0 36.67 403.60 

0.3 0.25 0.00 0.00 0.0% 0 0.19 0.73 

0.3 2 0.00 0.00 0.0% 0 1.04 3.26 

0.3 4 0.24 0.23 3.7% 0 35.21 404.88 

0.35 0.25 0.00 0.00 0.0% 0 0.20 3.45 

0.35 2 0.00 0.00 0.0% 0 1.04 2.31 

0.35 4 0.16 0.15 5.2% 0 31.91 397.08 

0.4 0.25 0.00 0.00 0.0% 0 0.19 0.70 

0.4 2 0.00 0.00 0.0% 0 0.78 2.64 

0.4 4 0.08 0.07 10.7% 0 30.20 391.60 

0.45 0.25 0.00 0.00 0.0% 0 0.19 0.72 

0.45 2 0.00 0.00 0.0% 0 0.80 1.19 

0.45 4 0.00 0.00 0.0% 0 28.58 72.59 

0.5 0.25 0.00 0.00 0.0% 0 0.19 1.17 

0.5 2 0.00 0.00 0.0% 0 0.81 0.72 

0.5 4 0.00 0.00 0.0% 0 28.66 52.33 

0.55 0.25 0.00 0.00 0.0% 0 0.20 0.73 

0.55 2 0.00 0.00 0.0% 0 0.79 3.15 

0.55 4 0.01 0.00 100.0% 2 28.58 108.79 

0.6 0.25 0.00 0.00 0.0% 0 0.19 0.71 

0.6 2 0.00 0.00 0.0% 0 0.61 6.03 

0.6 4 0.04 0.01 75.1% 2 32.46 390.80 

0.65 0.25 0.00 0.00 0.0% 0 0.19 0.71 

0.65 2 0.00 0.00 0.0% 0 0.61 1.20 

0.65 4 0.03 0.00 100.0% 4 33.09 65.42 

0.7 0.25 0.00 0.00 0.0% 0 0.19 0.71 

0.7 2 0.00 0.00 0.0% 0 0.59 0.72 

0.7 4 0.61 0.00 100.0% 5 41.67 80.09 

0.75 0.25 0.00 0.00 0.0% 0 0.19 0.71 

0.75 2 0.00 0.00 0.0% 0 0.39 0.72 

0.75 4 0.04 0.04 7.5% 3 35.45 390.67 

0.8 0.25 0.00 0.00 0.0% 0 0.39 1.21 

0.8 2 0.00 0.00 0.0% 0 0.41 1.71 

0.8 4 0.05 0.00 100.0% 4 36.34 102.30 



  

210 
 

0.85 0.25 0.00 0.00 0.0% 0 0.39 1.22 

0.85 2 0.00 0.00 0.0% 0 0.39 2.18 

0.85 4 0.01 0.00 100.0% 2 30.14 87.45 

0.9 0.25 0.00 0.00 0.0% 0 0.39 1.21 

0.9 2 0.00 0.00 0.0% 0 0.20 1.71 

0.9 4 0.10 0.07 28.5% 2 35.52 390.32 

0.95 0.25 0.00 0.00 0.0% 0 0.39 1.20 

0.95 2 0.00 0.00 0.0% 0 0.20 1.20 

0.95 4 0.08 0.03 59.4% 4 36.69 389.81 

1 0.25 0.00 0.00 0.0% 0 0.59 0.72 

1 2 0.00 0.00 0.0% 0 0.22 2.22 

1 4 0.24 0.01 97.4% 0 37.75 389.80 

1.05 0.25 0.00 0.00 0.0% 0 0.84 1.31 

1.05 2 0.00 0.00 0.0% 0 0.25 6.34 

1.05 4 0.07 0.11 -62.3% 2 39.11 393.41 

1.1 0.25 0.00 0.00 0.0% 0 0.71 1.72 

1.1 2 0.00 0.00 0.0% 0 0.48 1.27 

1.1 4 0.12 0.06 46.4% 3 43.99 390.97 
 

Table B - 21 Sampled test cases for DG reactive power usage minimisation – snapshot test cases for 

Network D 

Load  
scale  
factor DG (MW) 

DG Q usage (MVAr) Voltage 
violation 

Computation 
time (s) 

ODCDM SOCS Reduction ODCDM ODCDM SOCS 

0.25 0.25 0.00 0.00 0.0% 0 0.14 30.87 

0.25 2 0.00 0.00 0.0% 0 0.78 31.04 

0.25 4 1.31 0.00 100.0% 0 27.65 31.27 

0.3 0.25 0.00 0.00 0.0% 0 0.14 30.30 

0.3 2 0.00 0.00 0.0% 0 0.77 30.52 

0.3 4 1.31 0.00 100.0% 0 26.75 31.79 

0.35 0.25 0.00 0.00 0.0% 0 0.14 30.21 

0.35 2 0.00 0.00 0.0% 0 0.75 30.44 

0.35 4 1.31 0.00 100.0% 0 24.88 31.44 

0.4 0.25 0.00 0.00 0.0% 0 0.14 30.58 

0.4 2 0.00 0.00 0.0% 0 0.62 30.90 

0.4 4 1.31 0.00 100.0% 0 23.41 31.21 

0.45 0.25 0.00 0.00 0.0% 0 0.14 30.30 

0.45 2 0.00 0.00 0.0% 0 0.61 30.58 

0.45 4 1.31 0.00 100.0% 0 21.56 30.70 

0.5 0.25 0.00 0.00 0.0% 0 0.14 29.55 

0.5 2 0.00 0.00 0.0% 0 0.59 30.42 

0.5 4 1.28 0.00 100.0% 0 21.75 30.40 

0.55 0.25 0.00 0.00 0.0% 0 0.14 29.83 

0.55 2 0.00 0.00 0.0% 0 0.59 29.90 

0.55 4 1.24 0.00 100.0% 2 21.81 30.49 
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0.6 0.25 0.00 0.00 0.0% 0 0.15 29.92 

0.6 2 0.00 0.00 0.0% 0 0.44 30.13 

0.6 4 1.30 0.00 100.0% 2 24.58 30.27 

0.65 0.25 0.00 0.00 0.0% 0 0.14 29.87 

0.65 2 0.00 0.00 0.0% 0 0.45 29.99 

0.65 4 1.31 0.00 100.0% 4 25.05 30.55 

0.7 0.25 0.00 0.00 0.0% 0 0.15 29.76 

0.7 2 0.00 0.00 0.0% 0 0.47 29.88 

0.7 4 1.08 0.00 100.0% 5 31.77 30.98 

0.75 0.25 0.00 0.00 0.0% 0 0.15 30.08 

0.75 2 0.00 0.00 0.0% 0 0.30 30.34 

0.75 4 1.31 0.00 100.0% 3 27.01 30.54 

0.8 0.25 0.00 0.00 0.0% 0 0.29 30.18 

0.8 2 0.00 0.00 0.0% 0 0.30 30.23 

0.8 4 1.31 0.00 100.0% 4 28.27 31.66 

0.85 0.25 0.00 0.00 0.0% 0 0.30 30.84 

0.85 2 0.00 0.00 0.0% 0 0.31 31.52 

0.85 4 1.28 0.00 100.0% 2 23.47 31.57 

0.9 0.25 0.00 0.00 0.0% 0 0.31 31.04 

0.9 2 0.00 0.00 0.0% 0 0.15 30.97 

0.9 4 1.31 0.00 100.0% 2 27.72 31.46 

0.95 0.25 0.00 0.00 0.0% 0 0.30 31.19 

0.95 2 0.00 0.00 0.0% 0 0.15 31.30 

0.95 4 1.31 0.00 99.9% 4 28.32 31.76 

1 0.25 0.00 0.00 0.0% 0 0.45 31.02 

1 2 0.00 0.00 0.0% 0 0.15 31.18 

1 4 1.17 0.00 100.0% 0 29.20 31.65 

1.05 0.25 0.00 0.00 0.0% 0 0.46 30.95 

1.05 2 0.00 0.00 0.0% 0 0.15 32.93 

1.05 4 1.31 0.00 100.0% 2 26.34 32.85 

1.1 0.25 0.00 0.00 0.0% 0 0.48 35.14 

1.1 2 0.00 0.00 0.0% 0 0.31 32.16 

1.1 4 1.31 0.00 100.0% 3 30.21 32.92 
 

The number of voltage violation busbar are shown in Table B - 22. 

Table B - 22 Number of voltage violation busbars in profile test cases for ODCDM 

Time Network loss 
minimisation 

Voltage 
deviation 

minimisation 

Switching 
operation 

minimisation 

DG real power 
curtailment 

minimisation 

DG reactive 
power usage 
minimisation 

00:00 0 0 0 0 0 

01:00 0 0 0 0 0 

02:00 0 0 0 0 0 

03:00 0 0 0 0 0 

04:00 0 0 0 0 0 

05:00 0 0 0 0 0 
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06:00 0 0 0 0 0 

07:00 0 0 0 0 0 

08:00 0 0 0 0 0 

09:00 0 2 0 0 0 

10:00 3 3 0 0 0 

11:00 2 2 0 0 0 

12:00 3 3 1 1 1 

13:00 4 4 1 2 0 

14:00 3 3 0 3 0 

15:00 2 2 0 2 0 

16:00 0 0 0 0 0 

17:00 2 2 0 0 0 

18:00 0 0 0 0 0 

19:00 1 1 1 1 1 

20:00 0 0 0 0 0 

21:00 4 4 0 0 0 

22:00 0 0 0 0 0 

23:00 3 1 0 0 0 

 

The computation time for profile studies are shown in Table B - 23 and Table B - 24. 

Table B - 23 Computation time –profile study for Network D part 1  

 Computation time (s) 

Time Network loss 
minimisation 

Voltage deviation 
minimisation 

Switching operation 
minimisation 

ODCDM SOCS ODCDM SOCS ODCDM SOCS 

00:00 144.16 67.70 95.50 85.82 31.21 29.78 
01:00 148.68 67.28 67.00 86.75 4.91 12.82 
02:00 148.60 67.04 67.32 85.81 6.81 7.27 
03:00 146.27 65.07 67.13 86.51 7.30 9.77 
04:00 149.87 67.43 67.34 86.20 7.39 18.15 
05:00 149.74 68.14 66.01 85.73 7.19 23.18 
06:00 148.61 68.10 65.70 85.89 6.02 13.32 
07:00 146.71 69.53 68.06 84.89 2.40 9.84 
08:00 29.61 68.92 56.03 85.19 2.59 14.49 
09:00 113.66 69.50 3.16 85.54 0.79 10.77 
10:00 35.80 68.51 1.49 85.22 0.40 12.42 
11:00 1.78 67.73 1.71 84.71 0.62 14.37 
12:00 2.45 67.87 2.35 85.07 0.20 18.91 
13:00 1.55 67.43 1.50 85.64 0.59 13.93 
14:00 1.79 67.08 1.70 84.84 0.79 19.36 
15:00 1.78 67.22 1.72 84.94 0.60 13.92 
16:00 107.78 67.27 59.06 85.36 3.38 15.41 
17:00 38.44 67.41 4.26 85.71 2.00 4.27 
18:00 3.11 67.65 3.02 85.22 4.98 21.62 
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19:00 1.57 67.61 1.48 85.49 1.19 23.99 
20:00 106.14 68.00 49.35 86.31 3.38 17.93 
21:00 36.88 67.05 2.15 85.13 0.40 10.92 
22:00 108.12 67.17 55.46 82.07 2.79 16.40 
23:00 33.23 66.99 2.22 81.46 2.20 9.82 

 

Table B - 24 Computation time –profile study for Network D part 2 

 Computation time (s) 

Time DG real power 
curtailment 

minimisation 

DG reactive power 
usage minimisation 

ODCDM SOCS ODCDM SOCS 

00:00 39.61 409.91 22.17 31.06 

01:00 6.29 400.86 3.88 30.55 

02:00 8.61 395.56 5.32 30.74 

03:00 9.40 396.51 5.88 30.64 

04:00 9.66 396.09 5.98 30.31 

05:00 9.21 393.39 5.96 31.47 

06:00 7.67 392.34 4.98 31.50 

07:00 3.06 394.40 2.00 31.28 

08:00 3.30 23.63 2.22 31.51 

09:00 1.01 394.03 0.67 31.54 

10:00 0.53 89.72 0.33 31.78 

11:00 0.75 393.33 0.52 31.33 

12:00 0.25 393.99 0.16 31.50 

13:00 0.76 39.85 0.50 31.42 

14:00 1.03 394.54 0.66 31.28 

15:00 0.50 394.67 0.33 31.30 

16:00 4.07 18.16 2.66 31.22 

17:00 2.55 393.78 1.66 31.59 

18:00 6.10 391.59 3.95 31.20 

19:00 2.04 392.91 1.32 31.45 

20:00 4.36 392.91 2.81 31.26 

21:00 6.08 42.40 3.97 31.14 

22:00 2.92 393.96 1.83 31.59 

23:00 1.50 394.33 1.02 31.24 
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Appendix B-8 Test results for Network E - Future Test Cases  

 

Since the number of test cases is too large, sampled snapshot test results are shown here. Test 

results of these sampled test cases for different optimisation objectives are shown in Table B - 

25, Table B - 26, Table B - 27, Table B - 28 and Table B - 29. For all the test cases, SOCS was 

able to find a feasible solution and the voltage violation number is always zero. 

Table B - 25 Sampled test cases for network loss minimisation – snapshot test cases for Network E 

Load  
scale  
factor DG (MW) 

Network loss (MW) Computation 
time (s) 

ODCDM SOCS Reduction ODCDM SOCS 

0.25 0.25 0.0018 0.0018 0.0% 40.07 234.59 

0.25 1.25 0.0017 0.0018 0.0% 318.41 235.51 

0.25 2.5 0.0021 0.0017 16.3% 656.15 235.24 

0.3 0.25 0.0029 0.0029 0.8% 33.86 234.32 

0.3 1.25 0.0024 0.0025 0.0% 311.71 233.39 

0.3 2.5 0.0024 0.0025 0.0% 453.22 238.01 

0.35 0.25 0.0047 0.0045 5.3% 19.55 233.52 

0.35 1.25 0.0035 0.0033 6.9% 199.81 239.64 

0.35 2.5 0.0033 0.0033 0.0% 434.19 233.75 

0.4 0.25 0.0069 0.0066 5.5% 22.04 232.60 

0.4 1.25 0.0045 0.0043 3.3% 188.77 233.29 

0.4 2.5 0.0043 0.0043 0.0% 428.81 234.09 

0.45 0.25 0.0096 0.0094 1.8% 18.99 232.71 

0.45 1.25 0.0059 0.0055 6.7% 186.64 233.14 

0.45 2.5 0.0057 0.0057 0.0% 426.79 235.24 

0.5 0.25 0.0124 0.0124 0.5% 15.93 234.32 

0.5 1.25 0.0068 0.0069 0.0% 176.03 234.17 

0.5 2.5 0.0068 0.0068 0.9% 412.15 234.68 

0.55 0.25 0.0159 0.0159 0.0% 11.81 235.20 

0.55 1.25 0.0081 0.0081 0.0% 174.54 246.29 

0.55 2.5 0.0081 0.0082 0.0% 423.90 248.22 

0.6 0.25 0.0200 0.0200 0.0% 15.04 246.87 

0.6 1.25 0.0098 0.0095 2.8% 167.35 247.18 

0.6 2.5 0.0098 0.0097 1.3% 419.04 248.48 

0.65 0.25 0.0250 0.0248 0.5% 20.24 247.74 

0.65 1.25 0.0115 0.0113 1.6% 171.31 248.50 

0.65 2.5 0.0112 0.0113 0.0% 421.26 248.34 

0.7 0.25 0.0305 0.0304 0.4% 19.86 250.17 

0.7 1.25 0.0132 0.0131 1.0% 165.02 248.51 

0.7 2.5 0.0131 0.0132 0.0% 412.58 250.87 

0.75 0.25 0.0366 0.0363 0.7% 19.05 250.41 

0.75 1.25 0.0150 0.0151 0.0% 154.01 251.89 

0.75 2.5 0.0151 0.0150 0.2% 400.83 242.53 

0.8 0.25 0.0432 0.0430 0.4% 13.52 243.95 
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0.8 1.25 0.0170 0.0168 1.4% 140.37 243.30 

0.8 2.5 0.0169 0.0169 0.5% 405.60 250.73 

0.85 0.25 0.0505 0.0503 0.3% 15.41 251.97 

0.85 1.25 0.0190 0.0188 1.1% 131.67 260.13 

0.85 2.5 0.0190 0.0189 0.5% 385.51 252.35 

0.9 0.25 0.0586 0.0584 0.3% 19.39 252.41 

0.9 1.25 0.0212 0.0211 0.6% 127.80 250.99 

0.9 2.5 0.0212 0.0213 0.0% 381.11 252.43 

0.95 0.25 0.0671 0.0670 0.2% 13.30 252.47 

0.95 1.25 0.0239 0.0235 1.7% 125.70 252.12 

0.95 2.5 0.0236 0.0236 0.0% 368.91 245.10 

1 0.25 0.0762 0.0762 0.0% 16.86 246.39 

1 1.25 0.0260 0.0262 0.0% 111.65 246.17 

1 2.5 0.0271 0.0263 2.9% 359.55 247.82 

1.05 0.25 0.0867 0.0861 0.7% 31.11 248.07 

1.05 1.25 0.0287 0.0288 0.0% 95.92 247.84 

1.05 2.5 0.0290 0.0286 1.3% 350.93 239.38 

1.1 0.25 0.0973 0.0969 0.5% 15.27 241.67 

1.1 1.25 0.0320 0.0315 1.3% 99.02 241.03 

1.1 2.5 0.0317 0.0314 0.8% 342.23 239.57 
 

Table B - 26 Sampled test cases for voltage deviation minimisation – snapshot test cases for Network 

E 

Load  
scale  
factor DG (MW) 

Voltage deviation (pu) Computation 
time (s) 

ODCDM SOCS Reduction ODCDM SOCS 

0.25 0.25 0.02 0.01 40.3% 11.16 239.81 

0.25 1.25 0.34 0.02 95.5% 96.23 240.34 

0.25 2.5 0.33 0.02 94.4% 229.13 245.40 

0.3 0.25 0.03 0.02 42.9% 9.39 240.89 

0.3 1.25 0.33 0.01 95.8% 93.30 239.95 

0.3 2.5 0.33 0.02 94.8% 238.06 243.71 

0.35 0.25 0.03 0.02 37.4% 7.04 242.22 

0.35 1.25 0.34 0.02 94.2% 87.06 242.11 

0.35 2.5 0.34 0.02 92.9% 215.35 244.59 

0.4 0.25 0.04 0.02 44.9% 6.74 243.44 

0.4 1.25 0.35 0.02 93.9% 82.17 241.44 

0.4 2.5 0.34 0.02 94.0% 224.67 248.33 

0.45 0.25 0.04 0.02 45.4% 8.07 245.99 

0.45 1.25 0.36 0.03 91.9% 75.91 242.48 

0.45 2.5 0.35 0.03 91.8% 215.18 247.75 

0.5 0.25 0.05 0.03 34.8% 13.64 247.76 

0.5 1.25 0.37 0.03 92.3% 69.83 241.69 

0.5 2.5 0.35 0.03 90.8% 199.27 240.81 

0.55 0.25 0.07 0.06 15.4% 17.50 240.71 
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0.55 1.25 0.36 0.03 92.2% 65.90 235.89 

0.55 2.5 0.35 0.04 89.7% 201.05 241.04 

0.6 0.25 0.09 0.08 12.3% 18.34 242.03 

0.6 1.25 0.36 0.03 91.1% 66.74 242.88 

0.6 2.5 0.36 0.04 87.9% 170.31 247.61 

0.65 0.25 0.11 0.11 -0.2% 22.43 245.50 

0.65 1.25 0.07 0.04 47.6% 43.82 244.74 

0.65 2.5 0.36 0.04 88.7% 172.58 246.82 

0.7 0.25 0.47 0.14 71.3% 27.97 245.41 

0.7 1.25 0.08 0.04 47.5% 42.00 245.38 

0.7 2.5 0.36 0.04 87.7% 168.05 245.26 

0.75 0.25 0.49 0.16 66.5% 24.96 244.70 

0.75 1.25 0.08 0.04 52.0% 50.09 245.29 

0.75 2.5 0.37 0.05 86.7% 161.30 240.13 

0.8 0.25 0.51 0.19 61.7% 25.28 238.54 

0.8 1.25 0.09 0.05 44.1% 46.83 239.06 

0.8 2.5 0.38 0.05 87.8% 166.67 241.78 

0.85 0.25 0.52 0.23 57.1% 17.78 238.15 

0.85 1.25 0.09 0.05 49.2% 43.99 240.36 

0.85 2.5 0.38 0.06 85.5% 155.99 233.32 

0.9 0.25 0.55 0.27 51.2% 8.86 231.46 

0.9 1.25 0.10 0.05 42.6% 41.39 233.07 

0.9 2.5 0.39 0.06 83.8% 160.50 235.46 

0.95 0.25 0.57 0.32 44.4% 8.91 233.79 

0.95 1.25 0.10 0.06 43.0% 42.56 231.93 

0.95 2.5 0.39 0.06 84.5% 152.62 247.20 

1 0.25 0.60 0.37 38.0% 9.79 246.82 

1 1.25 0.10 0.06 37.3% 42.38 244.56 

1 2.5 0.40 0.07 83.4% 160.72 249.23 

1.05 0.25 0.63 0.45 28.1% 11.13 246.91 

1.05 1.25 0.11 0.07 36.4% 49.44 234.22 

1.05 2.5 0.40 0.08 80.5% 146.74 235.20 

1.1 0.25 0.65 0.54 17.3% 13.55 237.05 

1.1 1.25 0.11 0.08 28.1% 58.81 232.82 

1.1 2.5 0.41 0.07 83.1% 143.91 235.28 

 

Table B - 27 Sampled test cases for switching operation minimisation – snapshot test cases for 

Network E 

Load  
Scale 

 factor DG (MW) 

Switching operation Computation 
time (s) 

ODCDM SOCS Reduction ODCDM SOCS 

0.25 0.25 0 0 0.0% 0.39 40.70 

0.25 1.25 1 0 100.0% 0.81 29.78 

0.25 2.5 4 0 100.0% 38.34 33.77 

0.3 0.25 0 0 0.0% 0.39 35.38 
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0.3 1.25 1 0 100.0% 0.83 37.29 

0.3 2.5 4 0 100.0% 32.74 55.29 

0.35 0.25 0 0 0.0% 0.39 38.60 

0.35 1.25 1 0 100.0% 0.80 32.84 

0.35 2.5 4 0 100.0% 32.39 39.47 

0.4 0.25 0 0 0.0% 0.40 47.28 

0.4 1.25 1 0 100.0% 0.80 43.32 

0.4 2.5 4 0 100.0% 29.38 41.62 

0.45 0.25 0 0 0.0% 0.41 26.54 

0.45 1.25 1 0 100.0% 0.81 21.50 

0.45 2.5 4 0 100.0% 28.18 36.14 

0.5 0.25 0 0 0.0% 0.40 29.12 

0.5 1.25 0 0 0.0% 0.40 43.99 

0.5 2.5 4 0 100.0% 27.00 46.40 

0.55 0.25 0 0 0.0% 0.40 55.94 

0.55 1.25 0 0 0.0% 0.40 41.47 

0.55 2.5 4 0 100.0% 24.83 31.44 

0.6 0.25 0 0 0.0% 0.42 45.72 

0.6 1.25 0 0 0.0% 0.40 15.71 

0.6 2.5 4 0 100.0% 23.21 38.83 

0.65 0.25 0 0 0.0% 0.40 26.81 

0.65 1.25 0 0 0.0% 0.40 37.56 

0.65 2.5 4 0 100.0% 21.99 41.78 

0.7 0.25 0 0 0.0% 0.40 19.28 

0.7 1.25 0 0 0.0% 0.41 45.30 

0.7 2.5 4 0 100.0% 20.26 48.76 

0.75 0.25 0 0 0.0% 0.40 36.57 

0.75 1.25 0 0 0.0% 0.42 24.04 

0.75 2.5 4 0 100.0% 18.67 53.12 

0.8 0.25 0 0 0.0% 0.42 59.46 

0.8 1.25 0 0 0.0% 0.40 43.99 

0.8 2.5 4 0 100.0% 16.97 29.34 

0.85 0.25 0 0 0.0% 0.43 65.96 

0.85 1.25 0 0 0.0% 0.40 31.59 

0.85 2.5 4 0 100.0% 15.34 42.79 

0.9 0.25 1 1 0.0% 0.82 86.73 

0.9 1.25 0 0 0.0% 0.40 21.16 

0.9 2.5 4 0 100.0% 14.12 30.97 

0.95 0.25 1 1 0.0% 0.82 87.55 

0.95 1.25 0 0 0.0% 0.42 20.77 

0.95 2.5 4 0 100.0% 12.50 9.85 

1 0.25 1 1 0.0% 0.86 88.05 

1 1.25 0 0 0.0% 0.43 23.64 

1 2.5 4 0 100.0% 11.11 39.72 

1.05 0.25 2 2 0.0% 1.23 92.70 

1.05 1.25 0 0 0.0% 0.40 43.80 
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1.05 2.5 4 0 100.0% 8.71 41.27 

1.1 0.25 2 2 0.0% 1.22 92.75 

1.1 1.25 0 0 0.0% 0.41 35.27 

1.1 2.5 4 0 100.0% 7.10 37.62 
 

Table B - 28 Sampled test cases for DG curtailment minimisation – snapshot test cases for Network E 

Load 
scale 
factor DG (MW) 

DG P Curtailment (MW) Computation 
time (s) 

ODCDM SOCS Reduction ODCDM SOCS 

0.25 0.25 0.00 0.00 0.0% 0.39 9.18 

0.25 1.25 0.00 0.00 0.0% 0.79 6.80 

0.25 2.5 0.86 0.31 63.7% 36.64 267.47 

0.3 0.25 0.00 0.00 0.0% 0.41 9.73 

0.3 1.25 0.00 0.00 0.0% 0.77 9.10 

0.3 2.5 0.73 0.27 62.6% 32.09 262.86 

0.35 0.25 0.00 0.00 0.0% 0.39 5.06 

0.35 1.25 0.00 0.00 0.0% 0.80 5.00 

0.35 2.5 0.70 0.23 66.5% 30.25 265.27 

0.4 0.25 0.00 0.00 0.0% 0.38 4.91 

0.4 1.25 0.00 0.00 0.0% 0.80 5.58 

0.4 2.5 0.66 0.20 70.4% 28.90 267.68 

0.45 0.25 0.00 0.00 0.0% 0.41 6.76 

0.45 1.25 0.00 0.00 0.0% 0.78 2.69 

0.45 2.5 0.62 0.16 74.7% 27.53 267.28 

0.5 0.25 0.00 0.00 0.0% 0.42 10.78 

0.5 1.25 0.00 0.00 0.0% 0.42 1.45 

0.5 2.5 0.59 0.12 80.1% 27.87 271.18 

0.55 0.25 0.00 0.00 0.0% 0.44 8.00 

0.55 1.25 0.00 0.00 0.0% 0.40 8.74 

0.55 2.5 0.55 0.08 85.9% 24.17 267.60 

0.6 0.25 0.00 0.00 0.0% 0.41 15.60 

0.6 1.25 0.00 0.00 0.0% 0.41 5.56 

0.6 2.5 0.51 0.04 92.3% 22.58 264.75 

0.65 0.25 0.00 0.00 0.0% 0.39 9.69 

0.65 1.25 0.00 0.00 0.0% 0.42 6.17 

0.65 2.5 0.47 0.00 100.0% 21.38 170.31 

0.7 0.25 0.00 0.00 0.0% 0.39 4.39 

0.7 1.25 0.00 0.00 0.0% 0.39 3.26 

0.7 2.5 0.43 0.00 100.0% 19.89 69.51 

0.75 0.25 0.00 0.00 0.0% 0.40 9.77 

0.75 1.25 0.00 0.00 0.0% 0.40 12.41 

0.75 2.5 0.40 0.00 100.0% 18.27 84.46 

0.8 0.25 0.00 0.00 0.0% 0.40 5.70 

0.8 1.25 0.00 0.00 0.0% 0.42 6.24 

0.8 2.5 0.36 0.00 100.0% 16.62 70.54 
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0.85 0.25 0.00 0.00 0.0% 0.41 2.70 

0.85 1.25 0.00 0.00 0.0% 0.42 15.84 

0.85 2.5 0.32 0.00 100.0% 15.31 49.33 

0.9 0.25 0.00 0.00 0.0% 0.84 4.67 

0.9 1.25 0.00 0.00 0.0% 0.41 12.50 

0.9 2.5 0.28 0.00 100.0% 13.94 17.14 

0.95 0.25 0.00 0.00 0.0% 0.81 11.74 

0.95 1.25 0.00 0.00 0.0% 0.41 7.64 

0.95 2.5 0.24 0.00 100.0% 12.56 58.90 

1 0.25 0.00 0.00 0.0% 0.83 5.83 

1 1.25 0.00 0.00 0.0% 0.41 4.01 

1 2.5 0.20 0.00 100.0% 10.85 25.84 

1.05 0.25 0.00 0.00 0.0% 1.22 7.41 

1.05 1.25 0.00 0.00 0.0% 0.39 9.21 

1.05 2.5 0.16 0.00 100.0% 8.75 16.51 

1.1 0.25 0.00 0.00 0.0% 1.21 8.68 

1.1 1.25 0.00 0.00 0.0% 0.42 13.38 

1.1 2.5 0.13 0.00 100.0% 7.18 25.12 
 

Table B - 29 Sampled test cases for DG reactive power usage minimisation – snapshot test cases for 

Network E 

Load  
scale  
factor DG (MW) 

DG Q usage (MVAr) Computation 
time (s) 

ODCDM SOCS Reduction ODCDM SOCS 

0.25 0.25 0 0 0.0% 0.39 61.10 

0.25 1.25 0 0 0.0% 0.82 77.88 

0.25 2.5 0 0 0.0% 38.58 106.80 

0.3 0.25 0 0 0.0% 0.40 47.63 

0.3 1.25 0 0 0.0% 0.82 93.97 

0.3 2.5 0 0 0.0% 33.11 118.91 

0.35 0.25 0 0 0.0% 0.41 58.79 

0.35 1.25 0 0 0.0% 0.82 98.01 

0.35 2.5 0 0 0.0% 31.31 84.65 

0.4 0.25 0 0 0.0% 0.40 63.73 

0.4 1.25 0 0 0.0% 0.80 89.60 

0.4 2.5 0 0 0.0% 29.43 95.65 

0.45 0.25 0 0 0.0% 0.39 53.41 

0.45 1.25 0 0 0.0% 0.82 53.71 

0.45 2.5 0 0 0.0% 28.11 115.08 

0.5 0.25 0 0 0.0% 0.40 64.79 

0.5 1.25 0 0 0.0% 0.41 81.92 

0.5 2.5 0 0 0.0% 26.45 105.40 

0.55 0.25 0 0 0.0% 0.40 53.88 

0.55 1.25 0 0 0.0% 0.40 90.73 

0.55 2.5 0 0 0.0% 24.79 105.09 
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0.6 0.25 0 0 0.0% 0.40 60.91 

0.6 1.25 0 0 0.0% 0.40 85.42 

0.6 2.5 0 0 0.0% 23.18 113.94 

0.65 0.25 0 0 0.0% 0.40 54.12 

0.65 1.25 0 0 0.0% 0.40 79.09 

0.65 2.5 0 0 0.0% 23.40 102.75 

0.7 0.25 0 0 0.0% 0.40 60.88 

0.7 1.25 0 0 0.0% 0.42 105.08 

0.7 2.5 0 0 0.0% 20.27 119.02 

0.75 0.25 0 0 0.0% 0.41 61.52 

0.75 1.25 0 0 0.0% 0.40 86.82 

0.75 2.5 0 0 0.0% 18.61 119.08 

0.8 0.25 0 0 0.0% 0.40 61.30 

0.8 1.25 0 0 0.0% 0.40 80.41 

0.8 2.5 0 0 0.0% 17.09 119.21 

0.85 0.25 0 0 0.0% 0.41 76.97 

0.85 1.25 0 0 0.0% 0.40 76.90 

0.85 2.5 0 0 0.0% 15.26 116.44 

0.9 0.25 0 0 0.0% 0.82 81.71 

0.9 1.25 0 0 0.0% 0.40 83.00 

0.9 2.5 0 0 0.0% 14.50 110.41 

0.95 0.25 0 0 0.0% 0.85 60.57 

0.95 1.25 0 0 0.0% 0.42 100.29 

0.95 2.5 0 0 0.0% 12.63 108.27 

1 0.25 0 0 0.0% 0.83 61.79 

1 1.25 0 0 0.0% 0.40 97.34 

1 2.5 0 0 0.0% 10.87 117.16 

1.05 0.25 0 0 0.0% 1.22 69.42 

1.05 1.25 0 0 0.0% 0.41 93.06 

1.05 2.5 0 0 0.0% 8.70 122.12 

1.1 0.25 0 0 0.0% 1.20 82.37 

1.1 1.25 0 0 0.0% 0.41 108.67 

1.1 2.5 0 0 0.0% 7.11 117.23 
 

No voltage violation was seen in the profile studies for both ODCDM and SOCS. The 

computation time for profile studies are shown in Table B - 30 and Table B - 31. 

Table B - 30 Computation time – Switching operation minimisation profile study  

 Computation time (s) 

Time Network loss 
minimisation 

Voltage deviation  
minimisation 

Switching operation 
minimisation 

ODCDM SOCS ODCDM SOCS ODCDM SOCS 

00:00 84.17 245.01 28.78 176.82 0.41 41.89 
01:00 60.66 253.66 10.49 175.24 0.39 57.12 
02:00 50.57 244.78 14.07 174.67 0.40 43.79 
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03:00 46.93 242.89 7.43 173.66 0.39 25.68 
04:00 46.11 238.55 5.44 175.03 0.40 56.57 
05:00 46.21 236.44 6.62 175.27 0.41 39.59 
06:00 54.30 230.53 11.66 175.45 0.39 17.16 
07:00 73.22 242.16 17.69 178.55 0.40 54.88 
08:00 91.18 239.72 62.06 179.95 0.42 55.65 
09:00 107.67 240.72 70.98 178.03 0.43 44.34 
10:00 107.48 240.54 71.25 180.50 0.43 43.95 
11:00 108.69 247.41 69.44 179.45 0.40 61.12 
12:00 110.84 246.17 69.22 175.29 0.40 27.77 
13:00 113.75 250.20 74.47 175.90 0.40 39.54 
14:00 107.13 239.95 69.51 174.73 0.40 34.19 
15:00 106.43 240.52 68.69 174.95 0.40 38.84 
16:00 122.55 240.56 67.18 174.11 0.40 56.42 
17:00 161.10 241.89 98.86 177.12 1.25 56.09 
18:00 165.03 243.39 111.18 176.24 1.28 45.52 
19:00 161.71 242.45 129.10 176.19 1.26 32.80 
20:00 142.29 242.39 124.27 175.49 1.24 28.66 
21:00 135.36 240.79 89.30 175.24 0.99 39.89 
22:00 122.22 239.14 70.74 174.68 0.81 56.13 
23:00 93.07 232.80 62.96 175.07 0.40 21.38 

 

Table B - 31 Computation time – Switching operation minimisation profile study  

 Computation time (s) 

Time DG real power 
curtailment 

minimisation 

DG reactive power 
usage minimisation 

ODCDM SOCS ODCDM SOCS 

00:00 29.03 269.20 29.43 83.32 
01:00 30.61 265.26 31.02 83.68 
02:00 35.73 265.54 36.09 85.22 
03:00 37.62 267.71 36.53 81.85 
04:00 38.06 299.32 37.73 80.48 
05:00 36.91 283.39 36.15 80.33 
06:00 32.75 267.18 32.60 80.66 
07:00 28.23 266.82 27.03 80.38 
08:00 23.34 267.32 22.60 79.66 
09:00 20.69 269.92 20.61 80.06 
10:00 20.72 268.48 20.42 79.84 
11:00 20.65 268.34 20.96 79.55 
12:00 20.32 269.27 21.09 83.50 
13:00 19.56 269.98 20.76 84.16 
14:00 20.32 278.31 21.25 83.95 
15:00 19.92 288.11 21.53 83.46 
16:00 17.48 104.76 18.62 83.78 
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17:00 10.40 53.28 11.69 84.74 
18:00 7.47 33.38 9.24 84.81 
19:00 8.31 20.01 10.66 84.78 
20:00 11.23 51.26 12.89 84.53 
21:00 13.28 75.92 15.30 84.10 
22:00 15.84 66.06 17.83 83.97 
23:00 20.01 281.87 22.00 83.77 

 

 


