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Abstract

The UK government aims to reduce the UK’s carbon emission by at least 80% by 2050. To
achieve this ambitious target, large quantities of renewable energy generation are being
connected to UK power networks. Moreover, with the trend towards electrification of heat
and transport, electric vehicles and heat pumps are expected to proliferate in future networks.
These low carbon technologies (LCTs) are being connected to distribution networks, which

results in voltage issues that cannot be catered for with the existing infrastructure.

Smart grid technologies provide a flexible, economic solution to facilitate the integration of
LCTs. Advanced voltage control algorithms are required to fully utilize future smart
distribution networks’ capability to mitigate voltage problems and to enhance the network
performance. In this PhD study, three different voltage control algorithms have been
developed, evaluated and contrasted. A cost effective rule-based based voltage control
algorithm is initially proposed to mitigate the voltage problems due to LCT integration. This
algorithm is evaluated with simulation and power hardware-in-the-loop emulation. An
algorithm from a state-of-the-art distribution management system (DMS) is accurately
modelled and extended to solve more complicated voltage control problems. This algorithm is
validated against the field trial results in the real distribution networks, in which the DMS is
deployed. Finally, an algorithm based on a novel metaheuristic algorithm, Cuckoo Search via
Lévy Flights, is developed. The last two algorithms are evaluated and compared with various
test cases, which represent different, challenging network scenarios and control preferences

for current and future distribution networks.

Evaluation results demonstrate that these algorithms can be utilized for voltage control in
future smart distribution networks. Furthermore, these algorithms are compared and the
salient characteristics of these developed algorithms are summarized. The findings from this
research provide useful information when deploying advanced voltage control algorithms for

future smart distribution networks.
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Chapter 1 Introduction
1.1 Background

To protect the environment and to achieve a sustainable economy, many countries have set
demanding carbon reduction targets. The United Kingdom (UK) government aims to reduce
the UK’s carbon emission by at least 80%, with respect to the baseline from 1990, by 2050
[1]. To achieve this ambitious target, large quantities of renewable energy generation are
being connected to UK power systems. Meanwhile, with the trend towards electrification of
heat and transport, electric vehicles (EVs) and heat pumps are also expected to proliferate in
future power systems [2].

Generally power systems can be divided into three different areas: power generation, power
transmission and power distribution. Conventionally, electrical power is generated from large
scale power plants, and transmitted to customer areas by interconnected transmission
networks. Supplied by transmission networks, distribution networks deliver electricity to the
domestic and commercial customers. In the UK, distribution networks are operated and
maintained by fourteen licensed distribution network operators (DNOs) [3]. Each of these
DNOs covers a separate geographical region of Great Britain. These DNOs need to ensure the
electricity delivery meets the requirements of the Office of Gas and Electricity Markets
(Ofgem), which is an independent national regulatory authority of the UK government. One
of the essential tasks for DNOs is to maintain network voltages within their statutory limits.
Any voltage violating the limits, especially the upper limits, can pose a hazard to apparatus in
the network, and could damage the customer’s equipment [4]. In the UK, the steady-state
voltage should be maintained within £6% of the nominal voltage in systems between 1kV and
132kV, and within between +10% and -6% for 400V low-voltage (LV) networks [5].

Distribution networks are conventionally planned and operated by DNOs to cope with voltage
problems under varying load conditions, using the assumption that power flow is
unidirectional. Renewable energy resources are commonly connected to distribution networks,
in the form of distributed generation (DG) [6, 7]. Large penetrations of DGs can cause reverse
power flow and voltage problems, which are seen as one of the key challenges for DG
connection, especially for rural distribution networks [4, 7, 8]. The significant new demand
from electric vehicles and heat pumps, also connected to distribution networks, could also
result in voltage problems [2, 9-11]. The connection of single-phase DGs may also cause

voltage unbalance problems, especially in LV networks [12]. Conventional voltage control



schemes may not be able to cost-effectively solve these voltage problems, which could then
restrict the connection of low carbon technologies (LCTs) [6, 7], and therefore hinder
progress towards decarbonisation.

In the rest of this chapter, the fundamental theories of steady-state voltage problems and
voltage unbalance problems are introduced. Conventional voltage control techniques and
schemes are described. The impacts of smart grid approaches to voltage control are
introduced. The research objectives are proposed, followed by the contributions to knowledge.
Finally, the thesis outlines are introduced.

1.2 Theoretical analysis of voltage changes and voltage unbalance in distribution
networks

1.2.1 Steady-state voltage changes in distribution networks

The principle of steady-state voltage changes in conventional distribution networks can be
explained with the diagram shown in Fig. 1, which represents the equivalent circuit of
electricity delivery from the sending end to the load end. Here the sending end represents the

upstream network.

Fig. 1 Equivalent circuit for voltage change analysis for conventional distribution networks

The relationship between the voltage at the sending end, Vi, and the voltage at the load, Vo,

can be represented by (1).
Vi-V,=IX(R+)X) (1)

where | is the current flowing from the sending end to the load. R and X are the resistance and

reactance of the branch between the sending end and the load.

The current 1 can be represented by (2) with the load power and voltage.

)

where,



S complex conjugate of the apparent power of the load
v, complex conjugate of the load voltage

PL real power of the load

QL reactive power of the load

If the load voltage is taken as the reference voltage, V.= V0. The voltage change between

the sending end and load can be represented by (3).

AV =V, -V, =I(R+X)= (RPL+XQL)J:J(XPL -RQ.) _ RP.+XQ. i XP.—RQ. 3)
V, V, vV,

The phasor diagram representing the relationship between V; and V, is shown in Fig. 2. It
should be noted that this diagram is purely qualitative, since in real networks the large voltage

change depicted in this diagram would not be acceptable [6].

Vi
| XP.—RQ.
)8 LV
- — — — — — —»
Vo RP.+XQ.

Fig. 2 Phasor diagram of sending-end voltage and load voltage for conventional distribution networks

In practice, the voltage angle & between V3 and V, is actually small, and the voltage change

can be approximated by (4).

_RPHXQ.
VZ

AV 4)
In distribution networks, the X/R ratio of the branch is small. In other words, X and R are
usually of similar magnitude. Therefore neither RP_ nor XQ_ are negligible. The voltage at
the load end depends on the network resistance and reactance, the real and reactive powers of
the load, and the voltage at the sending end [13]. If the load is too heavy, the voltage change
could be too large and the voltage at the load end could be lower than its statutory lower limit,

leading to an undervoltage problem.

The connection of DG will also affect the power flow and the voltage change, as explained in

the following. In this example, DG is connected in parallel with the load, as shown in Fig. 3.

3



Pg is the real power injected by the DG, and Qg is the reactive power injected or absorbed by
the DG.

R+jX

gy I
Ml‘ l 1‘

Load Distributed Generation
. av)
e @ oy Qs

Fig. 3 Equivalent circuit for voltage change analysis for distribution networks with DG connection

In this case, the voltage change between the sending end and the load, which was represented

by (4) for conventional distribution networks, can now be represented by (5).

R(PL'PG )+X(QLiQG) + J X(PL'PG) - R(QLiQG) (5)

AV=
- V. V.

If the real power injected by the DG is larger than the load, and |Pg-P.| is significantly larger
than | Q +Qg/, the phasor diagrams of the voltages V; and V, can be represented by Fig. 4.

A/
J 5 " X(P.—P) —R(Q. £Q)
Ve 4 v,
R(PL — PG) + X(QL + QG)
V2

Fig. 4 Phasor diagram of sending end voltage and load voltage for the distribution networks with DG
connection

As before, in practice, the voltage angle & between Vi and V, is small and thus the voltage

change can be approximated by (6).

-~ R(PL 'PG )+X(Q|_ iQG)
) V.

AV (6)
It can be seen therefore that if DG real power export is large enough may result in voltages

that rise above the statutory upper limit.

It should be noted that in real distribution networks the voltage problems are more
complicated, especially when DGs are connected, as the network topologies are far more
complex than the two-node systems shown earlier [4, 8, 14]. Moreover, the load’s real and

reactive powers, and the DG real power output, are not constant but are continuously varying.



1.2.2 Voltage unbalance in distribution networks

Voltage unbalance is a condition in which the three-phase voltages differ in amplitude or are
displaced from their normal 120° phase relationship or both [15]. In the UK and Europe, the
percentage voltage unbalance factor, %VUF, is used to represent the level of voltage
unbalance in a system [16, 17]. It is defined as the ratio (in percent) between the root mean
square (RMS) values of the negative sequence component V. and the positive sequence

component of the voltage V., as shown by (7).

YOVUE = = x100% 7)
Vv

+

V- and V+ can be calculated from three phase voltages by (8).

A 1 1 vV,
Vo|=3|1 14200 12-120° Y, (8)
Y 1 1,-120° 1.120° ||V

- c

where V,, Vy, and V. are the three-phase voltages. The %VUF can also be approximated by (9)
(for values of voltage unbalance of a few percent), as the maximum deviation from the

average of the three-phase voltages, divided by the average of the three-phase voltages.

”Vb _Vavg ”Vc _Vavg

V

avg

oavr = M e Voo

} x100% (9)

where Vaq IS the average value of the three-phase voltages.

Unbalanced voltages can have adverse effects on the power system and on equipment.
Voltage unbalance may cause unbalance in the phase currents, leading to increased network
losses and heating effects [18]. Also, voltage unbalance can reduce the efficiencies and
decrease lifespans of induction machines, and power electronic converters and drives [18].
Therefore, voltage unbalance needs to be maintained below defined limit. The %VUF has a
regulatory limit of 1.3% in the UK, although short-term deviations (less than one minute) may
be allowed up to 2%, which is the standard limit used for the maximum steady-state %VUF

allowed in European networks [16, 17].

Conventionally, the uneven distribution of single-phase loads and asymmetrical impedances
of the network are the major cause of voltage unbalance. When single-phase generations are

connected to distribution networks, they may also result in unbalanced voltages [12, 19, 20].
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It is worth noting that in LV networks, voltage rise has been determined as the first technical
constraint to be encountered as penetrations of generation increase [20]. However, it is
anticipated that voltage unbalance may also become a constraint as overvoltage problems
could be mitigated by three-phase balanced voltage control techniques such as the secondary
on load tap changer (OLTC) [21]. However these approaches are unable to reduce voltage

unbalance on these networks.
1.3 Conventional distribution network voltage control

To maintain network voltages within their statutory limits, various voltage control techniques
have been developed and applied in distribution networks. In this work, the term “control
technique” is used to describe different types of voltage control equipment, and ‘“‘control
device” is used to describe individual control equipment of infrastructure. Conventionally,
OLTC transformers, in-line voltage regulators and mechanically switched capacitor banks
(MSCs) are used in distribution networks for voltage control.

1.3.1 On load tap changer

OLTC is a classic voltage control technique used in distribution networks. The secondary side
voltage of the transformer can be adjusted by changing the OLTC tap ratio when the

transformer is energized. The simplified structure of an OLTC transformer is shown in Fig. 5.

Primary Side Secondary Side

Fig. 5 Simplified structure of a transformer with OLTC

The basic principle of OLTC is explained in the following. For a transformer, the voltage at
the primary side and the secondary side follows the following relationship represented by (10),

if the voltage drop across the transformer is neglected.
6



Pri (10)

Sec Sec

where Vpri, Vsec are the voltages at the primary and secondary side, and Npyi and Nse are the

transformer winding numbers at the primary and secondary side.

The secondary side voltage Vsec can be seen as a function of primary side voltage Ve, and the
winding numbers Npri and Nse.. Normally, the winding number at the high voltage side of the
transformer is adjustable. This is because the current on the primary side is normally smaller
than the current on the secondary side, thereforea more cost-effective design is to change the
tap position on the high voltage side. If the winding number change for Np is defined as k
(%), the relationship can be represented by (11).

o - N (1+K)
V, N

Sec

(11)
Sec

Therefore, the secondary voltage can be increased or decreased by varying the tap ratio of
OLTC. In conventional distribution network design, a transformer with OLTC is only used at
primary substations. At secondary substations, off load tap changers are used. However,
OLTCs are beginning to be used at secondary substations, to facilitate the integration of

renewable energy generation [21].
1.3.2 Mechanically switched capacitor bank

MSCs are also used in distribution networks, to correct power factors, to support network
voltages, and to reduce network losses. MSC can be located at primary substations for power
factor correction, and can also be located along long feeders to support voltages. Here the
MSCs, which are located along feeders and used for voltage control, are studied. A simplified
MSC, including a capacitor bank and a circuit breaker (CB), is shown in Fig. 6. The reactive

power injected by the capacitor bank can be controlled by switching the CB on/off.

Circuit Breaker

Capacitor
Bank

Fig. 6 Simple structure of mechanically switched capacitor bank
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The amount of reactive power injected by the MSC depends on the capacitance of the
capacitor bank, the network frequency and the voltage of the busbar, to which the MSC is
connected, as represented by (12).

Qusc = 27 fCpyeeV,2ec (12)
where:
Qwmisc reactive power injected by the MSC
f network frequency
Cwmsc capacitance of the MSC capacitor
Vmsc voltage at the MSC

As indicated in section 1.2.1, the reactive power affects the voltage magnitude in distribution
networks. The MSC is able to affect the reactive power flow in distribution networks, which
in turn affects the network voltages. In practice, a MSC could include multiple capacitor
banks and CBs, and the reactive power injected by this MSC has multiple stages. An
illustration of a simple multi-stage MSC is shown in Fig. 7.

CB1 CB2 CB3

Stage Stage Stage
Capacitorl — T 17—  Capacitor2— 71—  Capacitor3— 17—

Fig. 7 Structure of a simple multi-stage MSC

This multi-stage MSC shown in Fig. 7 has three CBs and three capacitors. Using the CBs
different combinations can be connected to distribution networks resulting in different
amounts of reactive power injection. These three capacitor banks can have the same or
different sizes. Normally, the size of the capacitor bank is defined as the reactive power
provided by the capacitor bank at its rated voltage and at the normal network frequency. It
should be noted that these reactive power values are only used to represent the stages of the
MSC. The reactive power injected by the MSC is also affected by the MSC voltage and the
network frequency, as indicated by (12). These three capacitor banks could also have different
sizes. For example, the sizes could be IMVAr, 2MVAr and 4MVAr. In this case, the MSC
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could provide eight different stages of reactive power, as shown in Table 1. The relationships
shown in Table 1 are from a real set of MSC from Northern Powergrid, which has been
trialled in the CLNR project.

Table 1 The relationships between MSC stage positions and circuit breaker status

MSC Stage Total CB Status
Position MVAr IMVAr | 2MVAr | AMVAr
1 OMVAr off off off
2 1IMVAr on off off
3 2MVAr off on off
4 3MVAr on on off
5 AMVAr off off on
6 SMVAr on off on
7 6MVAr off on on
8 TMVAr on on on

1.3.3 In-line voltage regulator

In-line voltage regulators, also known as step voltage regulators, are sometimes used in rural
networks to help support network voltages for load customers towards the end of a long
feeder. A typical configuration of the in-line voltage regulator application is illustrated in Fig.

8. The in-line voltage regulator affects the voltages of the downstream network section.

In-Line Voltage
Regulator

} g

Load Load Load Load Load

Fig. 8 Configuration of in-line voltage regulator

Voltage regulators are normally autotransformers with an adjustable transformer ratio. They
share the same principle as OLTC transformers in terms of voltage control, but only affect

voltages on a single feeder.

1.3.4 Conventional distribution network voltage control architecture
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Voltage control devices, such as OLTC and MSCs, are typically controlled by local
controllers, which operate on the basis of local measurement only. The configuration of the
conventional voltage control architecture is illustrated in Fig. 9. As shown in Fig. 9, there is
no communication infrastructure between these controllers. These voltage control devices
could be coordinated by setting the target voltages and time delays of their controllers. For
conventional distribution networks, this local control architecture often provides an acceptable
solution, if the local controllers are configured appropriately [22]. However, it has been
shown previously that this conventional voltage control architecture can have limitations

when large penetrations of DGs are connected [8, 13, 23].

Feeder 1
Grid
OLTC T
Feeder 2 MSC  CT
Tap VT | % ....... |
Setting Stage L VT

Local Controller

Feeder n cT

Stage 1
Posmo

LocaI Controller

Fig. 9 Configuration of conventional voltage control architecture
1.4 Smart grid

Smart grid technologies have the potential to provide a flexible, economic solution to
facilitate the integration of LCTs [10, 24, 25]. For example, novel control techniques, such as
DG with real and reactive power controllability and electrical energy storage (EES), could be
introduced to mitigate the problems caused by the connection of LCTs [26-29]. Information
and communication technologies (ICTs) enable the application of advanced voltage control
architectures and algorithms, with which the voltage problems could be mitigated by
operating voltage control devices cooperatively [30, 31]. Voltage control is expected to
deliver a broad range of benefits to power systems [24, 27, 31-34]. For example, the smart

grid devices, such as controllable DG and EES, should be accommodated in voltage control
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effectively [27]. Also, besides maintaining network voltages within their limits, it is expected
to achieve various additional objectives with voltage control, which are related to energy
efficiency improvement, and operational cost reduction [31]. For example, in two recent smart
grid projects, customer-led network revolution (CLNR) and customer load active system
services (CLASS), advanced voltage control algorithms are applied and trialled to facilitate
the connection of LCTs and to manage electricity demand without any discernible impacts on
customers [35, 36].

Therefore, voltage control problems are expected to be more complicated in future smart
distribution networks, because of the more complex flow of energy across the distribution
network caused by LCTs, new voltage control devices and various secondary control
objectives. Advanced voltage control architectures and algorithms are required to solve the
future voltage control problems, to which conventional voltage control architectures and
algorithms struggle to provide adequate solutions [27]. Various advanced architectures and
algorithms have been proposed for voltage control previously [30]. Generally, these
architectures can be categorized as centralized and distributed control architectures, both of
which could potentially provide solutions for future voltage control problems [30]. This PhD
study concentrates on centralized voltage control architecture, with which secondary control
objectives could be easily considered at the system level, and potentially optimal solutions
could be achieved with respect to the secondary control objectives. Numerous algorithms
have been proposed in previous studies based on the centralized voltage control architecture.

These algorithms have been categorized into three different groups in this PhD study:

- Rule-based control algorithm;
- Deterministic optimisation algorithm;

- Metaheuristic optimisation algorithm;

For each group, numerous algorithms have been developed and successfully applied for
distribution network voltage control. However, many of these algorithms were developed and
evaluated only for conventional distribution networks. The algorithms from these three groups
have not been evaluated comparatively in terms of voltage control in distribution networks
before. It is important to develop and evaluate these algorithms regarding the voltage control
problems in the context of future smart distribution networks. In this thesis, advanced
algorithms from each algorithm group have been developed, evaluated and compared, to
develop guidelines when deploying advanced voltage control algorithms for future smart

distribution networks.
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1.5 Research objectives

The primary aim of the research presented in this thesis is to develop and evaluate advanced

voltage control algorithms for future smart distribution networks. The main research

objectives are:

To investigate the voltage control problems in future smart distribution networks;

To develop and evaluate advanced voltage control algorithms from each algorithm
group regarding voltage control problems in future smart distribution networks;

To summarize the salient characteristics of these algorithms by comparing the voltage
control algorithms from different groups in terms of solving potential voltage control
problems in future smart distribution networks;

To provide guidance to distribution network management product manufactures and
DNOs, for voltage control algorithm design by understanding the links between

algorithms and voltage control problems.

1.6 Contributions to knowledge

This thesis presents the following contributions to knowledge:

A novel rule-based voltage control algorithm has been proposed to solve voltage
problems and voltage unbalanced problems in future distribution networks. Voltage
cost sensitivity factor has been defined to represent the cost-effectiveness of network
interventions in terms of voltage control. Feeder voltage divergence factor has been
introduced as a network voltage metric for networks with large, clustered distributions
of LCTs;

Representing two different types of optimisation algorithms, ODCDM and CS
algorithms have been extended and applied to solve mixed integer and multi-objective
voltage optimisation problems in future smart distribution networks. A novel test
methodology has been proposed to test, evaluate and compare two different types of
voltage optimisation algorithms, regarding voltage control problems in conventional
and future smart distribution networks;

The rule-based voltage control algorithm and the two different voltage optimisation
algorithms have been comparatively evaluated, regarding various aspects of potential
voltage control problems in future smart distribution networks. The salient
characteristics of these three algorithms have been summarized and guidelines have
been proposed to distribution network management product manufactures and DNOs,

regarding voltage control algorithm selection for future smart distribution networks.
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The algorithms and findings from this study could provide useful information for practical
distribution network voltage control algorithm design, and the theoretical studies of voltage

optimisation.
1.7 Thesis outline

The remainder of this thesis is structured as follows: Chapter 2 reviews advanced voltage
control techniques, architectures and algorithms for distribution networks. Novel voltage
control techniques, such as EES, are introduced. The voltage control problems for
conventional and future distribution networks are discussed. Different voltage control
architectures are reviewed. Typical algorithms based on the centralized voltage control

architecture are reviewed.

Chapter 3 proposes a rule-based voltage control algorithm, which could be used to mitigate
the voltage problems and voltage unbalance problems, caused by the clustered distributions of
LCTs in terms of both feeder and phase location. Feeder voltage divergence factor and
percentage voltage unbalance factor are utilized as network voltage metrics for networks with
large, clustered distributions of LCTs. Voltage cost sensitivity factor is defined to represent
how cost effective each network intervention is, in terms of voltage control. Voltage
sensitivity factor is used to determine the required response from each network intervention.
These metrics and factors are then used in the proposed control algorithm to provide a cost
effective solution to mitigate voltage problems and voltage unbalance problems. The
algorithm is evaluated with steady-state simulation and in a laboratory using real time power

hardware in the loop (PHIL) emulation.

Chapter 4 introduces a deterministic voltage optimisation algorithm, based on oriented
discrete coordinate descent method (ODCDM). The implementation of the original ODCDM
based voltage control algorithm is introduced, and the extensions of this algorithm to solve
mixed integer nonlinear programming (MINLP) problems and multi-objective problems are
discussed. A case study is presented to demonstrate the basic mechanism of the developed
algorithm. The algorithm is then further validated with field trial results from the Customer-
led Network Revolution project, in which the ODCDM based control algorithm is

implemented in real distribution networks in north east England.

Chapter 5 proposes novel voltage optimisation algorithms, based on a metaheuristic algorithm,
Cuckoo Search via Lévy Flights, which is normally referred to as Cuckoo Search (CS). The

principle of CS is introduced. Single-objective cuckoo search algorithm (SOCS) and multi-
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objective cuckoo search algorithm (MOCS) are developed and applied for voltage
optimisation. The voltage optimisation algorithm, based on SOCS, is evaluated and compared
with genetic algorithm (GA) and particle swarm optimisation algorithm (PSO), regarding the
single-objective test case from Chapter 4. The MOCS based voltage optimisation algorithm is
also evaluated and compared with non-dominated sorting genetic algorithm ii (NSGA-II),

regarding a multi-objective test case.

In Chapter 6 and Chapter 7, the voltage optimisation algorithms are evaluated with respect to
single-objective and multi-objective voltage optimisation. Evaluation methods are proposed
based on the analysis of the problem formulation for voltage optimisation, and the voltage
control problems in conventional and future distribution networks. Test results demonstrating

this evaluation method are also presented.

In Chapter 8, these three types of voltage control algorithms are compared based on the
literature reviewed and the algorithm evaluation results. Based on this evaluation, guidelines
are proposed to distribution network management product manufactures and DNOs regarding
voltage control algorithm selection for future distribution networks. Finally, Chapter 9
summarises the key findings with respect to the research objectives set out in Chapter 1.

Future work is also proposed.
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Chapter 2 Advanced Distribution Network Voltage Control

2.1 Introduction

As discussed in Chapter 1, the conventional voltage control techniques and architectures may
not be sufficient to solve these voltage problems and voltage unbalance problems in future
distribution networks. Novel voltage control techniques, such as EES and DG, have been
introduced to support voltage control. Advanced voltage control architectures and algorithms
have been proposed to maintain the distribution network voltages with the application of ICTs.
In this study, the control architecture is generally seen as the infrastructure of the control
system (hardware), whereas the control algorithm is seen as the specific method adopted
within the control architecture (software). Secondary control objectives, such as network loss
reduction, could also be achieved by these architectures and algorithms.

In the rest of this chapter, novel voltage control techniques are introduced, followed by the
introduction of voltage unbalance control techniques. The voltage control problems for
conventional distribution networks and future distribution networks are discussed. Different
advanced voltage control architectures and algorithms are reviewed. Conclusions are drawn

on the basis of this review.

2.2 Advanced voltage control techniques
2.2.1 Electrical energy storage

EES has been introduced to distribution networks for voltage control [23, 37-40]. In [23, 37],
it has been applied to solve the overvoltage problems caused by PV generation. In [38], a
distribution network voltage support operation strategy for EES has been proposed, so that the
real and reactive powers of the EES are operated with reactive power priority. EES is also
used to solve the undervoltage problems with demand side response in [10]. EES is able to
inject/absorb both real and reactive power. In other words, it can be operated in all four

quadrants.

Besides voltage control, EES has been applied for many other purposes. A comprehensive
review of the possible benefits of EES has been presented previously [29]. As indicated by
[29], EES can be used to support a heavily loaded feeder, provide power factor correction,
reduce the need to constrain DG, minimise OLTC operations and mitigate flicker, sags and

swells.
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2.2.2 Distributed generation control

DG connection could cause voltage problems in distribution networks, which is one of the
main issues restricting allowable DG penetration, especially in rural distribution networks [7,
8, 41-43]. This is because the rural distribution networks have long feeders, with high
impedance, which could lead to large voltage deviation. It is possible to mitigate the voltage
problems without introducing the DG control. For example, in [44], an advanced voltage
controller is introduced to control the OLTC at the primary substation and to keep the
network busbar voltages within their statutory limits. Additional voltage control equipment
could be installed to mitigate the voltage problems caused by DG connection, such as in-line
voltage regulators [45] and electrical energy storage [46]. Also, line re-conductoring or
building a dedicated line is a potential way to facilitate DG integration, although the cost
could be high [47]. However, the existing voltage control techniques may not be sufficient
when the DG penetration is significant. Controlling DG can further increase the allowable DG
penetration without introducing additional voltage control equipment or carrying out network
reinforcement. Many previous research and projects demonstrate the methods and benefits of
utilizing DG for voltage control [6, 13, 48]. Different DG control techniques have been
proposed before, including DG real power control, DG reactive power control, DG power

factor control and DG busbar voltage control.

As shown in section 1.2.1, the real power injected by DG is the reason for overvoltage
problems. Reducing the DG real power, normally named as DG curtailment, could mitigate
the overvoltage problems. As shown in [49], it is often beneficial to accommodate a larger
DG capacity and curtail it during extreme situations (such as the coincidence of minimum
load with maximum generation), the probability of which is generally low. DG curtailment
can also be used to support distribution network voltage control, when other voltage control

devices are not available [42].

DG reactive power injection can also be used for voltage control. As shown by (5), the
reactive power from DG can affect the voltage change, and the effectiveness of DG reactive
power is strongly related to the line reactance X. In [50], the reactive power from DG was
controlled to mitigate the voltage problems caused by DG connection. DG reactive power can
be used to control the voltages across the network, and to improve the network control
performance. For example, the switching operation numbers of OLTC and MSC can be
reduced by introducing DG reactive power control [51]. In some studies, both the DG real

power and reactive powers are controlled. The real power reduction is not beneficial for the
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DG owner, so reactive power is preferable in some studies [52, 53]. In these studies, normally
the reactive power is controlled first and the real power is controlled when the reactive power

control is not available.

Instead of controlling their real and reactive powers directly, we can also control DGs by
controlling their power factors and terminal voltages. In [54], the DG power factor is
controlled, while in [55, 56], the DG terminal voltage is controlled. Basically, the DG power
factor control and DG bus voltage control are also realized by controlling the DG’s real and
reactive powers. It should also be noted that the control capabilities of DGs depend on the DG
technology [13, 47, 57]. For example, for synchronous generator-based DGs, real power
control is achieved by controlling the prime mover of the synchronous generator and reactive
power control is achieved by controlling the excitation system. For power electronic
converter-based DGs, the real and reactive powers can be controlled by controlling the

switching angles of the power electronic converters [6].
2.3 Voltage unbalance control techniques

Voltage unbalance problems can be solved with different techniques. Distribution networks
can be balanced by changing the network configuration through feeder switching operations

to transfer loads among circuits [18].

Some power electronic devices, such as the static synchronous compensator (STATCOM),
can be used to compensate for voltage unbalance. For example, as shown in [58], voltage
unbalance can be almost fully compensated by the STATCOM, with two novel control
strategies: voltage-controlled current source strategy and modified voltage-controlled voltage

source strategy.

The power electronic device of EES can be controlled to mitigate voltage unbalance like
STATCOM. Three-phase EES is applied to mitigate voltage unbalance with an improved
fuzzy controller in [59]. Furthermore, EES can be placed at the phase where the generation
and load are connected, to reduce the voltage unbalance by absorbing the generation or

compensating the load, as shown in [60].

Coordinated control of generation and controllable load could also be used for voltage
unbalance control in LV networks [12]. However, this method may not be suitable for
medium voltage (MV) networks, as the vast majority of generation load and generation
connected to MV networks is three-phase.
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2.4 Voltage control problems in future smart distribution networks

Normally, multiple devices, using the same or different voltage control techniques, are
connected to distribution networks for voltage control. The voltage control devices are
operated to maintain the network voltages within their statutory limits under all network load

and generation conditions [27].

In conventional distribution networks, different network conditions are mainly driven by the
load variation. Classic distribution network voltage control techniques, including OLTC,
MSCs and in-line voltage regulators, are used. In future distribution networks, more
significant load variation is expected, because of the additional load from the electrification of
transport and heat. More importantly, the DG generation variation will also lead to different
network conditions. Besides classic voltage control techniques, novel voltage control
techniques are also expected to be applied, such as DG and EES. Some of these novel voltage
control techniques could be multifunctional. For example, EES can be applied to mitigate
both the voltage problem and the voltage unbalance problem. One key requirement for
voltage control in future smart distribution networks is to accommodate these novel
techniques effectively [27, 32, 34].

Besides maintaining the networks within the limits, voltage control could achieve secondary
control objectives. In the smart grid era, it is becoming more and more essential to pursue
various objectives, which are related to different aspects, such as energy efficiency
improvement, operation cost reduction and so on [27, 31, 33]. For conventional distribution
networks, some control objectives have been proposed, such as network loss reduction [61].
For future distribution networks, new control objectives, such as maximizing the DG real

power output, could also be considered.

Therefore, in future distribution networks, voltage control problems are expected to be more
challenging, with more network load and generation conditions, more voltage control devices

and more control objectives.
2.5 Voltage control architectures and algorithms

To solve the distribution network voltage control problems, different voltage control
architectures and algorithms have been proposed. Conventional voltage control architecture
has been introduced in Chapter 1. Based on the conventional control architecture, advanced
control algorithms can be implemented in the local controllers to mitigate the voltage
problems caused by the DG connection. For example, a control method, which is
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implemented in the SuperTAPP n+ relay [62], has been introduced to control the OLTC to
facilitate the DG connection [63]. This cost-effective method could solve the voltage
problems caused by DG integration, with local measurements only. However, this method
only focuses on controlling the OLTC. Generally, it is difficult to achieve secondary control

objectives with the conventional voltage control architecture [27].

Advanced voltage control architectures and algorithms have been proposed with the
application of ICTs [32, 64, 65]. These advanced architectures and algorithms could provide
many benefits which the conventional voltage control architecture cannot provide. For
example, they are able to mitigate voltage problems which cannot be mitigated by the
conventional voltage control architecture. The distribution network’s hosting capacity for DG
can also be increased significantly, with these advanced control architectures and algorithms
[13, 66]. Also, secondary control objectives can easily be achieved and could even be
optimised. In the following, advanced voltage control architectures and algorithms are

reviewed.
2.5.1 Advanced voltage control architectures

New voltage control architectures are enabled by the application of ICTs. In the new control
architectures, the controller can receive the measurements across the network, and if there is
more than one controller, data can be exchanged between the different controllers. The control
architectures can be generally divided into distributed control architecture and centralized
control architecture [67, 68]. The configurations of these two control architectures can be
found in Fig. 10 and Fig. 11. One of the key differences between the distributed control
architecture and the centralized control architecture is how the control decisions are made for
all the voltage control devices. For the distributed control architecture shown in Fig. 10, the
voltage control devices are controlled by their own distributed controllers. These distributed
controllers make their own control decisions not only with the local measurement, but also
with the information from the other distributed controllers. For centralized control
architecture shown in Fig. 11, the control decisions for all the voltage control devices are
made by a centralized controller. The central controller dispatches the control decisions to the
remote terminal units (RTUs), and the RTUs operate the voltage control devices depending on
the received control decisions. Normally, the central controller collects the measurements

from the network.
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Fig. 11 Configuration of centralized voltage control architecture

Both of these architectures have their own advantages and disadvantages, which have been
investigated in previous studies [12, 67]. Generally speaking, the communication
infrastructure requirement for the distributed control architecture is not as high as that for the
centralized control architecture. If the communication infrastructure fails, the distributed
controllers in the distributed control architecture could still operate with local information,
whereas the centralized controller may fail completely. Also, greater flexibility could be
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gained by integrating more control devices, without changing the existing distributed
controllers. The centralized controller needs to be updated if new control devices are
integrated. On the other hand, the centralized control architecture could easily achieve
secondary control objectives at the system level, not just at the local level [61]. Potentially,
the centralized control architecture could provide full network transparency, and optimal
control solutions, which could not be achieved by the distributed control architecture [67].
Local controllers can always be added within the centralized control architecture, as the
backup solution when the communication infrastructure fails [69, 70]. In addition, as shown
by recent smart grid projects, DNOs prefer centralized control to distributed control [35, 36].

In this study, centralized control architecture is investigated.

Numerous algorithms have been proposed for the centralized voltage control architecture, and
they can be classified in different ways. In this PhD study, these algorithms are categorized
into three different groups: rule-based control algorithms, deterministic optimisation

algorithms and metaheuristic optimisation algorithms, as shown in Fig. 12.
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Fig. 12 Categorization of voltage control algorithms for centralized control architecture

Optimisation-based voltage control algorithms are also referred to as voltage optimisation
algorithms or Volt/VAR optimisation algorithms [61]. In this study, the term voltage
optimisation algorithm is used. In the following, some typical algorithms from these three

algorithm groups are reviewed.
2.5.2 Rule-based voltage control algorithms

In this study, algorithms which are not based on optimisation but on control rules are

generally seen as rule-based algorithms [68].

In [14], an algorithm is proposed to control the OLTC at the primary substation. The

algorithm compares the maximum and minimum voltages within the network with the
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network upper and lower voltage limits respectively. The maximum and minimum voltages in
the network are determined by a network state estimator, which estimates the network
voltages supplied by the primary substation, using real-time measurement, network data and
load data. If any voltage violation is found, the algorithm will decide a new target voltage
value, and send this value to the automatic voltage control (AVC) relay of the OLTC. The
AVC relay can be seen as the RTU in this case. This algorithm was designed for a single
OLTC device only, and could not be used to control multiple devices cooperatively. In [71],
the DG reactive power is also controlled with the OLTC and more sophisticated rules are
implemented. However, the algorithm is still based on specific combinations of voltage

control devices.

In [72], a sensitivity factor-based voltage control algorithm is introduced for voltage profile
improvement by controlling OLTCs, shunt elements and generator voltages. The control
devices are ranked with regard to their efficiency, which is measured according to the voltage
sensitivities, current voltage profile and reserve margin of control variables. The most
efficient control devices are selected to correct the voltage violations. This algorithm is
flexible in terms of integrating different voltage control devices. However, it only considers
the efficiency of the voltage control devices from the technical point of view, which may not

provide the most cost-efficient solutions in practice.

In [73], a case based reasoning (CBR) technique is used to mitigate the voltage problems in
the distribution networks with DG connections by controlling OLTC and the DG’s real and
reactive powers. The CBR determines the control decisions by comparing the network voltage
problems with the cases in its case base library. The case base library is populated by
simulation and can be updated according to the feedback from implementation. Potentially,
this CBR based algorithm has the chance to provide an optimal or a near-optimal solution
without running online optimisation calculation. However, building a sufficient case base

library could be time consuming.

In [23], an algorithm is proposed to control EESs and OLTCs and mitigate the voltage
problems caused by PV generation. The following rules are defined within this algorithm.
During off-peak load time, the OLTC will respond to the voltage rise first and the EES will
charge to lessen the OLTC operation stress. During peak load time, the EES will discharge to
shave the peak load. It is shown in [23] that the voltage problems can be mitigated and the
number of the OLTC tap operations can be expected to be reduced. However, in this paper,

only the EES real power capability has been utilized.
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The rule-based voltage control algorithms are normally simple, fast and without any non-
convergence problems. Normally, it is easy to understand the operational principles behind
these algorithms. However, most of these algorithms are designed for networks with only a
few control variables. When the number of control variables increases, the determination of
control rules can become a complex task [13]. If multiple control objectives are considered,
the rules could also become too complex in practical applications. In addition, when optimal
solutions are required, rule-based algorithms are not suitable, since they could only guarantee

feasible solutions. In these cases, voltage optimisation algorithms could be used.
2.5.3 Voltage optimisation algorithms — problem formulation

The basic idea of voltage algorithms is to formulate and solve voltage control problems as an
optimisation problem, which is a subgroup of Optimal Power Flow (OPF) problems [74, 75].
As shown in Fig. 13, a voltage optimisation algorithm includes two essential parts: a problem

formulation and an optimisation algorithm.

Problem formulation

Voltage optimization
algorithm

Optimization algorithm

Fig. 13 Structure of voltage optimisation algorithm

Different problem formulations have been proposed for voltage optimisation. These problem
formulations can be categorized into the formulations for snapshot control and control
scheduling, according to the timescale of the voltage control. For snapshot control, the
problem is formulated from a snapshot of the network load and generation condition. As a
sub-problem of the optimal power flow problem [74, 75], the problem formulation can be
represented by (13) - (15):

min  (x, u) (13)
subject to

g(x,u)=0 (14)

h(x,u) <0 (15)
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where X is the vector of state variables (e.g. the magnitude of busbar voltages), whereas u is
the vector of control variables (e.g. OLTC tap ratios); f(e) is the optimisation objective
function(s), g(e) and h(e) are vectors of functions which represent equality and inequality

constraints.

The fundamental control objective, maintaining the network voltages within their limits, is
always considered as a set of inequality constraints. The other control objectives can be
considered as an optimisation objective function, or as a constraint. For example, the control

objective, reducing the network losses, is normally formulated as the objective function.

For control scheduling, the problem formulation is based on the forecast load and generation
profile for a certain period of time T. The problem formulation of control scheduling can be
represented by (16) - (18).

.
min >’ f (x,u,t) (16)
Ut
subject to
g(x,u,t) =0, vt a7
h(x,u,t) <0, Vvt (18)

where t is the time point within T; to is the starting time point of T. This control period T
(normally, T=24hour) is divided into a set of time points, with a fixed time interval (normally

one hour) [76] or using analysis of the forecast load profile [77].

With control scheduling formulation, the time-related control objectives and constraints can
be considered. For example, the maximum allowable daily switching operation numbers of
the OLTC and MSCs are considered in [76-78]. However, the computation burden of the
control scheduling formulation is much heavier than that for the snapshot formulation,
although longer computation time can be allowed for control scheduling. The strategy used in
[77], which determines the time point by decomposing a daily load forecast into several
sequential load levels, could potentially reduce the computation burden. However, when DGs
are connected, it may be difficult to determine the time point with this strategy, since various
generation levels of DGs may also need to be considered. Also, the voltage control devices

can only be operated at the pre-determined time points, and the capability of the voltage
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control devices may not be fully used. Moreover, it could be a demanding task to obtain

accurate load and generation forecasts [13].

This thesis concentrates on voltage control algorithms that operate in real time and for which
the snapshot control formulation is normally adopted.

2.5.4 Deterministic optimisation-based voltage control algorithms

Since the reduced gradient method was proposed in 1968 [79], a number of different
deterministic optimisation algorithms have been applied to solve the OPF problems. These
algorithms, with different characteristics, have been designed for different OPF applications
[74, 80, 81]. Distribution network voltage optimisation has its own characteristics, which need
to be considered for the optimisation algorithm selection. As summarized in [61], distribution
system voltage control is different from transmission system control regarding the following
two aspects. The problem size, in terms of both the network size and the number of control
variables, is relatively small. This is because distribution system is divided into electrically
subnetworks and the voltage control optimisation is applied to a subnetwork. Also, the
number of control variables in the subnetwork is normally less than transmission networks.
Most controls in distribution systems are discrete controls and the step sizes of these discrete
controls are relatively large, which indicates the necessity of treating the control variables in

distribution systems explicitly as discrete variables.

In [82], the voltage control problem is formulated as a linear optimisation problem, which is
then solved with a dual linear programming technique. The network loss is minimised, and
the network voltages are held within the statutory limits. Linearized sensitivity relationships
are employed to model the power flow for distribution networks. The original nonlinear
voltage control problem is simplified as a linear problem, which can then be solved with well-
developed linear optimisation algorithms, such as the simplex method. These linear
algorithms normally have many advantages, such as short computation speed, high reliability
and excellent convergence properties [74]. In addition, a global optimal solution can be found
for the simplified linear problem. However, this global optimal solution is not guaranteed to
be the global optimum of the original nonlinear voltage control problem. In some cases, it
may not even be a feasible solution for the original voltage control problem.

In [61], the voltage control problem is formulated as a combinatorial problem, which only
includes discrete control variables. This is based on the fact that most of the voltage control

variables in conventional distribution networks are discrete. Network loss minimisation is
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defined as the optimisation objective. Oriented discrete coordinate descent method is applied
to solve this combinatorial problem. The centralized control system, in which the ODCDM is
used, has been applied in real distribution networks [83, 84]. ODCDM is efficient in terms of
solving combinatorial problems. However, in future distribution networks, not only discrete

control variables, but also continuous control variables need to be considered.

In [75], the problem is formulated as a MINLP problem, in which both discrete and
continuous control variables are included. Network loss minimisation is defined as the
optimisation objective. A primal-dual interior point algorithm (PDIP) is used to solve the
optimisation problem. Discrete control variables are treated as continuous variables in the
optimisation, and a penalty function is applied to force the discrete control variables to
converge at their feasible points. However, the optimisation may get trapped in a local
optimum because of the penalty function [85].

Deterministic optimisation algorithms have been successfully applied in voltage control.
Additional control objectives can be easily addressed and optimal solutions can be guaranteed.
However, these deterministic optimisation algorithms have some common drawbacks, as
summarized in previous studies [61, 74, 80, 81, 86-88].

- Deterministic algorithms can only guarantee a local optimal solution, when they are
applied to solve non-convex voltage optimisation problems.

- Deterministic algorithms usually treat control variables as either continuous or discrete
variables. They cannot be used to solve MINLP problems directly. Certain methods
are required to facilitate the application of deterministic algorithms to MINLP
problems, such as those in [75].

- Deterministic algorithms can only consider one optimisation objective. If they are
used to solve multi-objective optimisation algorithms, these optimisation objectives
need to be combined into a single objective function [87], or to be converted to a
single objective function and some additional constraints [88]. Multiple runs are
required to find results for multi-objective optimisation problems, which is normally
time-consuming.

2.5.5 Metaheuristic algorithm-based voltage control algorithm

To address the issues of deterministic algorithms, non-deterministic optimisation algorithms,

which are normally referred to as metaheuristic algorithms, have been developed and applied

in voltage control. Metaheuristic algorithms can be seen as an iterative process which looks

for the optimal solution by intelligently exploring and exploiting the search space [89].
26



Exploring the search space means the progress to search in a local solution region to find a
current good solution in this region. Exploiting the search space means to generate diverse
solutions to explore the search space globally. Theoretically, metaheuristic algorithms could
find global optimal solutions. At least, they have the chance to escape from local optimal
solutions, because of their stochastic nature. Many metaheuristic algorithms can solve MINLP
optimisation problems directly. As population-based algorithms, metaheuristic algorithms
could solve multi-objective optimisation problems in a single run [86, 90]. It is worth noting
here that metaheuristic algorithms are also called as heuristic algorithms in some previous
studies. However, the idea that metaheuristic algorithms are developed from heuristic
algorithms is becoming more and more popular. The differences between heuristic algorithms
and metaheuristic algorithms are discussed in previous studies [91, 92]. A heuristic algorithm
is seen as a technique (consisting of a rule or a set of rules), which seeks (and hopefully finds)
good solutions at a reasonable computational cost [92]. Heuristic algorithms could provide a
good solution but it does not guarantee optimality [92]. Metaheuristic is seen as a top-level
strategy that guides an underlying heuristic to looks for optimal solutions [92]. Therefore,

metaheuristic is used in this study.

In [70], a genetic algorithm is applied to control the OLTC, step voltage regulator and
different shunt components, and to minimise the network losses and the voltage deviation.
Imitating the evolution of organisms, a GA employs different operators, such as crossover and
mutation, to improve the solution as per the calculated fitness function value. Test results
demonstrate that the network voltages can be kept within their limits with the proposed
algorithm, and the network loss and voltage deviation can be minimised. In this paper, all the
control variables were considered as discrete variables by GA. However, for some shunt
components studied in this paper, such as SVC, the control variables are actually continuous.

In [93], the voltage control problem for the distribution networks with DG and microgrids is
formulated as a MINLP problem. An evolutionary particle swarm optimisation (EPSO)
algorithm is applied to solve this problem. EPSO is a combination of particle swarm
optimisation algorithm and evolutionary algorithm. The reactive power from DG, active
power and reactive power from microgrids, and the OLTC tap positions are controlled, to
minimise the network loss and microgeneration shedding. In this paper, the total real power
generation of microgrids have been considered. However, the total real power generation of
microgrids was simply added with the network active power losses to create the optimisation

objective function.

27



In [94], the voltage control problem is formulated as a multi-objective optimisation problem,
with two objectives, network loss minimisation and voltage deviation minimisation. The
OLTCs are adopted as the control variables. Multi-objective metaheuristic algorithms based
on the Pareto archived evolution strategy are applied to solve this multi-objective optimisation
problem directly. In [95], a three-objective optimisation problem is formulated for voltage
control. Network loss minimisation, voltage deviation minimisation and voltage stability
index minimisation are considered simultaneously. The generator active power and reactive
powers, the stage positions of the compensator capacitors, and the tap ratios of the OLTCs are
considered as the control variables. This problem is solved with the opposition-based self-

adaptive modified gravitational search algorithm.

The metaheuristic algorithms are normally computationally intensive [90]. Their stochastic
nature makes them less predictable, compared with deterministic algorithms. In addition,
normally metaheuristic algorithms contain parameters which may need to be adjusted for

different problems.

It should be noted that a few hybrid voltage optimisation algorithms have been proposed
before [90] and [96], which are combinations of deterministic and metaheuristic optimisation
algorithms. These hybrid algorithms have the advantages of both deterministic and
metaheuristic optimisation algorithms. Here these hybrid algorithms are not studied separately,
because once the stochastic nature from the metaheuristic algorithm is included in the hybrid

algorithm, it can also be seen as a metaheuristic algorithm.
2.5.6 Algorithm comparison

As shown in section 2.5.2, 2.5.4 and 2.5.5, the algorithms from these three algorithm groups
have their own advantages and disadvantages. Although numerous algorithms have been
proposed, these algorithms are normally compared with those from the same group. Only a
few studies compare algorithms from different groups [13, 68, 97].

In [97], two deterministic optimisation algorithms are compared with two metaheuristic
algorithms regarding general optimal power flow (OPF) problems. Total generation cost
minimisation is used as the optimisation objective. It was found that deterministic
optimisation algorithms are robust and reliable for medium-size systems (up to 708 buses),
even for MINLP problems, offering a theoretical advantage over metaheuristics. Test results
in [97] suggested that, metaheuristics have shown satisfactory behaviour in small scale

systems, but failed to provide robust solutions in medium-size systems.
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In [13, 68], one rule-based algorithm from [71] and one optimisation algorithm from
MATLAB Optimisation Toolbox are proposed for voltage control and compared. These two
algorithms are evaluated with time domain simulation and long-term evaluation using a
distribution network planning procedure. Test results suggest that generally both algorithms
can be used for distribution networks with several distributed energy resources, and the most
suitable voltage control strategy can be selected by means of statistical distribution network
planning. A general deterministic optimisation algorithm is used in [13, 68], but is only able
to deal with continuous control variables. However, in distribution networks, many of the
control variables are discrete. Although a simple procedure is proposed in [13, 68] to consider
the tap ratio of the OLTC at the primary substation, this optimisation algorithm is not suitable
for voltage optimisation problems including multiple discrete control variables. In addition, in
[13, 68] the optimisation objective is simply defined as the sum of the costs related to network
losses and DG curtailment. However, there are more optimisation objectives which should be
considered for distribution network voltage control. Sometimes, more than one objective
needs to be optimised and these objectives cannot be simply summed together.

In this PhD, the algorithms are categorized into three different groups, and they are evaluated

and compared in terms of the voltage control problems discussed in section 2.4.
2.6 Conclusions

In this chapter, novel voltage control techniques, such as EES, are introduced, followed by the
discussion of voltage control problems in conventional and future smart distribution networks.
Generally, voltage control problems are expected to be more challenging in future distribution
networks, with more network load and generation conditions, and more control objectives.
More voltage control techniques could introduce more control combinations, from which

optimised control solutions could be achieved.

The conventional voltage control architecture, in which only the local measurement is used,
may not be sufficient to solve the voltage control problems in future distribution networks.
Advanced control architectures and algorithms, enabled by ICTs, have been proposed. In this
study, centralized control architecture is investigated. The algorithms proposed can be
categorized into three different groups: rule-based algorithms, deterministic voltage
optimisation algorithms and metaheuristic voltage optimisation algorithms. These three
algorithms have their own advantages and disadvantages, but potentially they could all be

used to solve the voltage control problems in future distribution networks.
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In this PhD study, the algorithms from these three groups are developed, evaluated and
compared in relation to the voltage control problems in future distribution networks. A

contribution to knowledge on the design of centralized voltage control algorithms for future

smart distribution networks is made.
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Chapter 3 Development and Evaluation of Voltage Cost Sensitivity Factor

based Voltage Control Algorithm

3.1 Introduction

As shown in Chapter 2, different rule based voltage control algorithms have been developed
before [14, 23, 72, 73]. In this chapter, a novel rule based algorithm is proposed, which
integrates the control of the primary and secondary transformer OLTCs and EES units located
at different voltage levels. This algorithm provides a cost-optimised voltage control solution
for the distribution networks with both generation LCTs and load LCTs. In addition, the
algorithm provides a holistic solution not only to voltage problems on medium-voltage (MV)

and low-voltage networks[98, 99], but also to voltage unbalance problems in LV networks.

Voltage cost sensitivity factor (VCSF) is defined for this algorithm to represent how cost
effective each network intervention is, in terms of voltage control. Feeder voltage divergence
factor (FVDF) is defined and used, together with percentage voltage unbalance factor
(%VUF), as network voltage metrics for networks with large, clustered distributions of LCTSs.
Voltage sensitivity factors (VSFs) are used to determine the required response from each
network intervention. These metrics and factors are then used in the proposed control
algorithm to fully realize the capabilities of EES in the system. In the rest of this thesis, this

algorithm will be referred to as the VCSF based voltage control algorithm.

This VCSF based voltage control algorithm is evaluated with a real, smart grid enabled case
study network. Multiple LCT clusters are connected to both the 20kV MV feeders and the
0.4kV LV feeders of the case study network, to create a case study. Simulation and Power
hardware in the loop emulation are utilized to test the operation of the proposed control

algorithm.

In the rest of this chapter, the essential definitions used in the VCSF based voltage control
algorithm are introduced. The flow chart of this algorithm is presented, followed by the
introduction of a case study network and the implementation of the proposed control
algorithm in the case study network. The simulation and evaluation results from the
application of the control algorithm in the case study are presented. Finally, conclusions are

drawn.

3.2 Essential definitions in the VCSF based algorithm
3.2.1 Voltage sensitivity factor

31



VSF describes the sensitivity of network voltage to the real power P or reactive power Q
injection at a certain network busbar, which can be analysed through the use of the Jacobian
Matrix [100], as shown by (19).

(00, 06, 06, 06, o0 o8, ]
oP, 0P, oP, 0Q, dQ, 0Q,
0, o, o, o, 4, 00,
[ A0, | AP, | | 6P, ©OP, oP, 0Q, Q, aQ, | [ AP, |
AD, AP, : : : : : : : : AP,
: : 0, o, o, o6, o6, &N, :
A0, 7 AP, op, 0P, oP. 0Q, 0Q, 0Q, AP, (19)
= = X
AV, AQ, | |8V, v,  av, v, v, V| |AQ
AV, AQ, oP, 0P, oP, 0Q, 0Q, oQ, AQ,
: : o, oV, oV, oV, oV, IV, :
AV, | |AQ, | oP, 0P, oP, 0Q, dQ, oQ,, |AQ, |
o, o, oV, 9oV, 9oV, 9V,
| OP, 0P, oP,  0Q, dQ, aQ, |
where,
AB; change of voltage phase angle of busbar i
AV change of voltage magnitude of busbar i
J? inverse of Jacobian matrix
AP; change of real power injection of busbar i
AQ; change of reactive power injection of busbar i

As shown by (19), voltage sensitivity factors relate the change in voltage at a network node
due to a change in real or reactive power at the same node, or a particular load or generation
node elsewhere in the network. A large voltage sensitivity factor indicates that a variation in

nodal real or reactive power leads to a large change in voltage at a specified network location.

The network voltage changes arising from single tap operation of a tapchanger are defined as
voltage sensitivity factors of the tapchanger. The voltage sensitivity factor of a single tap
operation depends on multiple parameters, such as the voltage at the primary side, load
condition, and the tapchanger position before the tap operation. It has been demonstrated by

simulation that the tapchanger position before the tap operation has a much larger effect on
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the voltage sensitivity factors of a tapchanger than the other parameters. Thus, a lookup table
of voltage sensitivity factors based on the tapchanger tap position is used in this voltage
control algorithm.

3.2.2 Cost functions

The cost functions are defined to represent the cost of operating the voltage control devices.
Here, the cost function of the EES is defined by the capital investment and the cost related to
the state of charge (SOC). EES has a time limit if the real power is used for voltage control,
due to the finite energy capacity of the energy storage. A target SOC is defined for future
application and other functions. Therefore, the cost of the real power for the EES can be
calculated by (20).

Co ees = Compuces | Kees % (SOC; —SOC) (20)
N % PRatmgyEES
where,
Cp, eEs cost of operating EES real power (E/kW)
Ccapital, EES capital cost of EES (£)
Nees total charge and discharge cycles of EES
PRrating, EES real power rating of EES(kW)
SOCt target state-of-charge (SOC) of battery (%)
SOC state-of-charge (SOC) of battery (%)

And Kkees is a factor relating the deviation of SOC from the target SOC to the cost of
charging/discharging the EES. The cost becomes larger when the SOC approaches 100%
during charging of the EES and also when the SOC approaches 0% during discharging.

Thus, the cost function for real power in an EES is a combination of capital investment and an
offset to account for a changing SOC. It is assumed that the net power consumption of the
EES is zero and that the cost of exporting and importing are equal. An approximate cost
function for the cost of using the reactive power capability of the EES is defined by (21).

v TControI cycle (21)

Lifespan QRaIing \EES

CCapitall , Converter

C =
Q,EES T
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where,
Co, ees cost of operating the EES reactive power (£/KVAr)

Ccapital, converter ~ Capital cost of converter system of the EES (£)

Qrating, EES reactive power rating of EES(KVATr)
T Lifespan expected lifespan of converter (min)
Tcontrol cycle control cycle (min)

In (20) and (21), it is assumed that the EES is operated in full power for both real and reactive
power operation cost calculation. It should be noted that the EES is a multifunction network
intervention, which means it may be used to provide services in addition to voltage control.
Therefore, other control functions, such as power flow management, could also be considered
when evaluating the capability of EES to contribute to the network operation in distribution

network control systems.

The cost of tapchanger operation is calculated based on the total and remaining lifespan of the
tapchanger equipped transformer, the estimated lifetime number of operations and the total
cost of replacing the OLTC transformer. The remaining number of tapchanger operations is
defined to be a function of the remaining and total lifespan of the transformer and the

estimated total number of tapchanger operations, as indicated by (22).

LS o
N OLTC, Remaining x NOLTC' Tl (22)

OLTC, Remaining = LS
OLTC, Total

where,

NoLtc, remaining ~ e€Maining operation times of the tapchanger
NoLtc, Total estimated total operation times of the tapchanger
LSoLtc, rRemaining  Femaining lifespan of the tapchanger (min)
LSoLTc, Total total lifespan of the tapchanger (min)

The cost of each OLTC tap operation can be represented by (23).

C
Coire = NOLTLF"“EM 23

OLTC, Remaining
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where,

CoLtc cost of OLTC tap operation (£)
CoLtc replacement  COSt Of replacing the tapchanger (£)

Different cost functions can be utilized to represent the costs of operating EES and OLTC,
based on the control preference of distribution network operators. In addition, the cost
functions of other voltage control techniques can be defined and this VCSF based algorithm

can be extended by including these voltage control techniques.

3.2.3 Voltage-cost sensitivity factor
VCSF is used to account for the cost associated with the utilization or deployment of a
network solution within the proposed control algorithm. The VCSF is derived as a function of
the voltage sensitivities and network intervention operating costs. For example, the VCSF of
device j to node i, VCSFj; is defined by (24).
AV
VCSF.. =—2% (24)
J C.
]
where VCSF;; quantifies the voltage change AVj; at node i with a cost of C; to operate device j

to achieve the voltage change av, at node i.

3.2.4 Feeder voltage divergence factor

In distribution networks, the loads are normally not evenly distributed, and the voltage change
varies with the electrical distance. This may create a network voltage condition, in which
there are large voltage divergences between the busbars from different feeders, which are
downstream of a common mode controlled busbar. The connection of DGs may make the load
distribution more uneven. This is explained with an example network shown in Fig. 14. Two
MYV feeders, Feederl and Feeder2, are connected to the same busbar, the voltage of which
could be controlled by the primary OLTC transformer. One DG is connected to Feederl. It is
assumed that Feederl is lightly loaded and the DG injects a large amount of power into the

network, while Feeder?2 is heavily loaded.
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Fig. 14 An example network with uneven distribution of load and generation

Based on the assumptions made for this example network, the voltage profiles of these two

feeders are shown in Fig. 15.
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Fig. 15 Voltage profiles of Feederl and Feeder?2 in the example network

As shown in Fig. 15, there is a large divergence between the busbar voltages at the ends of
Feederl and Feeder2. Potentially, the voltage at the end of Feeder2 may be reduced below the
lower statutory limit, if the primary OLTC transformer tries to mitigate the overvoltage

problem at the end of Feederl by reducing the voltage at the primary substation.

FVDF is defined by (25), as the maximum feeder voltage divergence among the voltages (pu

value) of different feeders, which are downstream of a common mode controlled busbar.

FVDF =V, et —Vioest (25)
where,
Vhighest Highest feeder voltage (pu)
VL owest Lowest feeder voltage (pu)
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As illustrated in Fig. 16, the threshold of FVDF is determined with the statutory voltage limits,
the maximum voltage variation at the remote ends of the feeders following the upstream
tapchanger tap operation and the maximum voltage change at the remote ends of the feeders
in a control cycle due to load or generation change. Here it is assumed that both the highest
and lowest feeder voltages are found at the remote ends of the feeders. In practice, offline
load flow analysis should be utilized to find the locations where the highest and lowest

voltages exist, and to derive the maximum voltage changes at these locations.

7 LV Voltage upper limit

7 7 i MV Voltage upper limit

FVDF Threshold if the
| ‘ voltage at the LV
- FVDF Threshold if the ! voltage level is used as
. voltage at the MV the highest voltage
i voltage level is used !
i as the highest voltage i

N2

7N

| Maximum Voltage Variation due to the

vi Upstream OLTC operation
Maximum voltage variation in a control cycle

MV and LV Voltage lower limit

Fig. 16 FVDF threshold determination

3.2.5 Voltage unbalance factor
As introduced in Chapter 1, %V UF is used to represent the unbalance conditions in networks.

Here, it is approximated by (9), and also used as a metric in the VCSF based algorithm.

3.3 Development of voltage cost sensitivity factor based voltage control algorithm
Based on the concepts discussed in section 3.2, the control algorithm is now proposed. The
control methods for EES and OLTC are then introduced.

3.3.1 Control flow chart

This algorithm monitors and mitigates voltage problems and voltage unbalance problems of
the key locations or ‘critical nodes’ of the network. The critical nodes are identified in
advance using offline load flow analysis, which utilizes the network model and data. The flow

chart of the proposed control algorithm is illustrated in Fig. 17.

37



A: Check steady-state voltages and %VUFs of all critical
nodes; return the set of N node(s) where sustained
voltage problem(s) occur

\ 4
B: Classify the voltage problem(s) at each of the N
node(s) with respect to steady-state voltage, %VUF and
FVDF

\ 4
C: Select the cost-optimized network intervention(s) for
each node I, where i e{lL N}, by utilizing VCSF(s)

vesk, = 2%
Cl
Max : je{l-M}
s, -4
Ci

Where M is the number of available network
interventions for node | ;

Use voltage sensitivity factor(s) to determine the
required response from voltage control intervention(s)
for all of the N nodes

\ 4
D: Deploy control solution(s) for
the set of N node(s)

Fig. 17 Flow chart of the VCSF based voltage control algorithm

The following sections describe in further detail the operation of each of the phases in the

VCSF based voltage control algorithm.

Phase A: The critical voltage nodes of the network are monitored. A set of N critical nodes,

where sustained voltage problems occur, are identified in this phase.

Phase B: The voltage problems at each of the N nodes identified in the previous phase are

classified as per Table 2.
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Table 2 Voltage Problem Classification

Node i, iEN

Steady-state voltage excursion | None/Overvoltage/Undervoltage
FVDF > Threshold Yes/No
%VUF > Regulatory Limit Yes/No

Phase C: The cost-optimised voltage control solutions for voltage problems at each node are
identified in this phase. The solutions available to solve each of these problems are
determined using the classifications defined in Phase B. The required response from the

network solution is determined using voltage sensitivity factors.

For example, if a sustained overvoltage has been detected at node i and the FVDF is above the
threshold, the set of network solutions available are defined to be those that are located on the
feeders with the highest and lowest voltages fed from the common mode controlled busbar.
The solution with the largest VCSF in this set will be selected to decrease the FVDF within
the threshold. Voltage sensitivity factors will be used to compute the required response from

the networks solution to reduce the FVDF.

The change in the voltage AVisn, due to the deployment of the FVDF solution is computed,
using voltage sensitivity factors, and is added arithmetically to the voltage excursion AV; to
give AV;’. The network solution with the largest VCSF is selected to mitigate the overvoltage.
Voltage sensitivity factor is again used to calculate the required response from the second
network solution deployed which would reduce AV;" to zero. If more than one solution is
required then the solution available with the next highest VCSF is also selected and the

required response calculated using voltage sensitivity factors.
Phase D: Deploy voltage control solutions for the set of N nodes.

This voltage control algorithm has been designed to be particularly appropriate for networks
with large, clustered distributions of LCTs, in terms of feeder and phase location. Moreover, it
is likely that these clusters become more prevalent, especially in liberalized, unbundled
electricity markets, due to the consumer-driven and non-centrally planned connection of
LCTs.

3.3.2 EESand OLTC control
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Both real power and reactive power of EES can be controlled. Here the real power and
reactive power are selected as per the VCSFs, which are based on charging/discharging
command, the SOC and the predefined target SOC. The import/export power change of the
EES required is determined with the VSF by using (26) and (27).

APecs = (AV, requirea) I VSF,_p e (26)
AQces = (AV required) VSF, g e (27)
where,
APggs required real power change from EES (kW)
AQEks required reactive power change from EES (kKVAr)
AV required required voltage change at node i (pu)
VSFi pees voltage sensitivity factor of node i for the real power of EES
(pu/kW)
VSFi o.ees voltage sensitivity factor of node i for the reactive power of
EES (pu/kVAr)

The required tap position change of OLTC is also determined based on the magnitude of
voltage excursion and the VSFs of the OLTC, as represented by (28).

ATaP = (AV, requirea) / VSF o11c (28)
where,
ATap required tap position change
VSFioLtc voltage sensitivity factor of node i for OLTC tap position

change

It should be noted that the calculated value for tap position change should be rounded up to

the nearest multiple of OLTC step size, since the OLTC tap position is not continuous.

3.4 Case study

3.4.1 Case study network

A rural network, which is located in the northeast of England, and owned by Northern

Powergrid, is adopted as the case study network to evaluate the VCSF based algorithm. A
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single line diagram of this case study network is illustrated in Fig. 18. A central control

infrastructure has been installed on this network.
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Fig. 18 Case study network and coordinated voltage control algorithm

In order to create a future network test case, a 5SMW windfarm has been connected to MV
Feeder 1, while a 10% domestic penetration rate of EVs and air source heat pumps (ASHPS)
has been evenly distributed along MV Feeder 2. Furthermore, it has been assumed that a PV
cluster has been developed on LV Feeder 1, which is one of the LV network feeders
connected to MV Feeder 3. The distribution of PV generations across this cluster is uneven
across the phases of the feeder. Specifically, PV penetration rates of 38%, 77% and 33% are
used for phase A, B and C respectively. The details of the LCT penetrations, which are used
to create future network test case, can be found in Table 3.

Table 3 Details of the LCT Penetrations in the Future Network Test Case

Low Carbon Location Penetration level Number of
Technologies LCT
customers
EV MV Feeder 2 10% 212
ASHP MV Feeder 2 10% 212
LV Feeder 1 Phase A 38% 9
PV LV Feeder 1 Phase B 7% 17
LV Feeder 1 Phase C 33% 8
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Furthermore, demand profiles of each MV feeder, windfarm generation data, profiles of

domestic load and multiple domestic LCTs are used to create the future network test case.

3.4.2 Windfarm generation profile and demand profile
Wind data from 30 windfarms connected to the Northern Powergrid distribution network have

been analysed to generate a set of windfarm daily profiles for this work. A typical daily

generation profile for the windfarm connected to MV Feeder 1 is derived from this data, as

illustrated in Fig. 19.
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Fig. 19 Daily generation profile of a SMW windfarm

Typical winter weekday daily demand profiles, from supervisory control and data acquisition

(SCADA) data on the case study network, of the MV feeders are illustrated in Fig. 20.
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Fig. 20. Demand profiles of MV feeders
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It can be seen from Fig. 20 that there are already significant differences between the demands
of the three MV feeders, especially between the demand of MV Feeder 1 and that of MV
Feeder 2. This is due to the distribution of customers supplied by each feeder. The customer
details of each MV feeder are shown in Table 4. It can be seen that 90% of the customers on
MYV Feeder 1 are domestic customers, and 47% of these domestic customers are Super Tariff
Customers. Super Tariff, which gives cheap-rate electricity for 5-6 hours overnight and 2
hours at lunchtime, is popular with customers in the case study area due to the prevalence of

electric storage heating.

Table 4 Customer Details of the Case Study Network

MV Feeder | Domestic Customer (%) | Super Tariff Domestic Customer (%o)
Feeder 1 90.00% 46.86%
Feeder 2 76.24% 24.68%
Feeder 3 84.59% 26.38%

3.4.3 Smart meter surveys and profile development

Historical data from over 5000 domestic customers, covering the period May 2011 to May
2012 was used to derive typical domestic profiles in the CLNR project. A typical domestic
demand profile is used here, as shown in Fig. 21 [101].

The PV generation profile, load profiles of electrical vehicles and heat pumps are also shown
in Fig. 21. The PV generation profile is derived from disaggregated enhanced metering data
available from CLNR project. The electrical profiles of ASHPs in detached and semi-
detached houses are generated based on the thermal profiles, which are derived and
aggregated in previous work [102]. A coefficient of performance (COP) value of 2.5 has been
assumed. This value has been selected to be in the middle of the range of COP values, which
are from 2 to 3, as per previous work [11, 103, 104]. The EV consumer model used in this

work was based on profiles developed and reported previously [105].
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Fig. 21 Profiles of domestic demand, EV, ASHP and PV

It should be noted that the profiles illustrated in Fig. 21 are for individual customers. These
profiles are utilized together with the customer numbers from Table 3 and the current demand
profiles from Fig. 20 to create the total demand profiles for the case study network shown in
Fig. 18.

3.4.4  Control algorithm implementation

As shown in Fig. 18, the central controller, in which this VCSF based algorithm is
implemented, monitors the voltages at the ends of MV feeders and critical LV feeders, and
sends control commands to network interventions. In this case study, the network solutions
include the tapchangers located at the primary substation and the secondary substation to
which the PV cluster is connected, as well as the EES units located at the end of MV Feeder 1
and at the end of LV Feeder 1, MV EES and LV EES respectively. The rated power and
capacity are 2.5MW and 5MWh for MV EES, and 0.05MW and 0.1MWh for LV EES. It
should be noted here that the maximum reactive power of each EES is 0.8 times of the rated
power, as per the EES units, which have been installed for the CLNR project.

The VSFs of the EESs and tapchangers were calculated by running an offline load flow
analysis with IPSA on a validated network model. The VSFs for critical nodes due to the
operation of multiple network interventions are expressed in Table 5. The VSFs of EES are
expressed in 1x10°pu/50kVA. The VSFs of tapchangers are expressed in 1x10°pu/tap step

and are calculated by increasing one tap step from the middle tap position.
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Table 5 Voltage sensitivity factors of EES and tapchanger

MV Feeder 1 End | MV Feeder 2 End | LV Feeder 1 End
MV EES (1x10- 1.092 0.110 0.115
3pu/50kVA)
LV EES (1x10- 0.106 0.106 36.577
3pu/50kVA)
Primary tapchanger 15.000 15.700 16.900
(1x10-3 pu/tap step)
Secondary tapchanger N/A N/A 21.300
(1x10-3 pu/tap step)

The cost of different network interventions are calculated based on the real information from
the case study network in the CLNR project [35], with the approach specified in previous
sections. In this case study network, the transformers at the primary substation have been in
service for 46 years since their installation in 1966. Therefore, the estimated remaining
number of tap change operations is substantially less than that of the new on load tapchanger
transformer, which has been recently installed at the secondary substation. In this work, it is
assumed that the lifespan and the total estimated number of tap change operations of each
transformer are 50 years and 80,000 operations, respectively. Furthermore, the indicative cost
of replacing the current primary on load tapchanger equipped transformer is composed of the
capital costs of two transformers and all other enabling works, including the costs of civil,
installation, commission and protection. The cost of replacing the secondary transformer
tapchanger is assumed to be its capital investment. The capital investments and total charge
discharge cycles for the storage systems are also from the CLNR project. Therefore, the cost
of operating EES and using the tapchanger are detailed in Table 6. The cost of EES real
power is based on 50kW and when SOC is at target SOC.

It can be seen from Table 6 that the cost per kW of the MV EES is much smaller than that of
the LV EES. That is because the cost per kW of the EES is decreasing with the increasing size.
It can also be found that the cost per operation of the primary tapchanger is much greater than
that of the secondary tapchanger. This is due to the primary tapchanger being in service for 46
years, while the secondary tapchanger has been recently installed. Therefore the secondary

tapchanger has larger numbers of tap change operations remaining than the primary
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tapchanger. Additionally, the capital cost of the primary transformer tapchanger is much

greater than that of the secondary tapchanger.

Table 6 Cost of EES and tapchanger

Network intervention Cost

MV EES (£/50kW) 18.31

LV EES (£/50kW) 102.90

Primary tapchanger (£/tap step operation) 218.75
Secondary tapchanger (£/tap step operation) 0.33

The VCSFs in this case study were calculated using (24) and the values in Table 5 and Table
6. The resultant VCSFs are detailed in Table 7.

Table 7 Voltage-cost sensitivity factor

MV Feeder 1 End | MV Feeder 2 End | LV Feeder 1 End
(1x10°® pu/f)
MV EES 59.62 5.98 6.29
LV EES 1.03 1.03 355.47
Primary tapchanger 68.79 71.68 77.18
Secondary tapchanger 0.36 0.72 64,212.00

All loads in the case study area are assumed to be constant power loads. Changes in load have
been found to have minimal effect on voltage sensitivities [106]. Therefore, the use of offline

analysis for calculation of the VCSFs was thought to be valid.

3.5 Algorithm evaluation results

3.5.1 Voltage control algorithm evaluation approaches

In order to evaluate this voltage control algorithm comprehensively, two approaches, IPSA2
simulation and network in the loop emulation, have been adopted.

A detailed model of the case study MV network has been developed in IPSA2 and validated
against the field trial results from the CLNR project. Annual load flow, which can be
performed by scripting in Python, provides the flexibility of long term evaluation. The long

term benefits of the EES and this proposed control algorithm can be evaluated by running
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annual load flow, using the annual SCADA load data and windfarm generation data from

Northern Powergrid.

This voltage control algorithm is also verified and evaluated with the PHIL emulation
platform at a smart grid laboratory. With its features of real-time simulation and real LV
network, this evaluation approach is able to address many practical issues of the control
algorithm, such as tolerance of communication delay or loss. Additionally, the three-phase
four wire network representation of the PHIL system can provide a more realistic
representation of LV networks than the three-phase representation in IPSAZ2.

3.5.2 Baseline of future network test case

The simulation results shown in Fig. 22 and the laboratory emulation results in Fig. 23 and
Fig. 24, represent the baseline of the future network test case. In this baseline study, two
sustained voltage problems and a voltage unbalance problem can be observed to occur
concurrently on the network. As shown in Fig. 22, an overvoltage problem, caused by the
wind farm, is found on MV Feederl. This overvoltage problem cannot be solved by the
primary transformer tapchanger, without causing undervoltage problem on MV Feeder2. An
overvoltage problem and a voltage unbalance problem are found on LV Feederl, as shown in
Fig. 23. The overvoltage and voltage unbalance problems are caused by the high
concentrations of unevenly distributed PV generation.

It can be seen from Fig. 22 that during the period where the voltage at the end of MV Feeder 1
is exceeding the upper voltage limit because of the windfarm generation, the voltage at the
end of MV Feeder 2 is also close to the lower limit due to the heavy load on this feeder. If a
conventional tapchanger based control algorithm with remote end measurements is applied,
the primary substation tapchanger will be actuated to mitigate the overvoltage at the end of

MYV Feeder 1, resulting in voltage violation of the lower limit at the end of MV Feeder 2.
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Concurrently, in the laboratory, voltage rise and voltage unbalance problems are occurring at
the end of LV Feeder 1, where the unbalanced PV cluster is connected, as illustrated in Fig.
23 and Fig. 24. The tapchanger could be operated to mitigate the overvoltage problem at the

end of LV Feederl, but it could not mitigate the voltage unbalance problems.
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3.5.3 Desktop implementation and evaluation of the control algorithm

The proposed control algorithm was realized in Python script in conjunction with the
validated network model of the case study network in IPSA2. It should be noted here that in
IPSA2, the simulation is three-phase balanced, which means the %VUF is not considered in
the simulation approach. The simulation results of the proposed control algorithm are shown
in Fig. 25, Fig. 26 and Fig. 27. The MV feeder end voltages are illustrated in Fig. 25. The tap
position of the primary transformer tapchanger and the power import/export of the MV EES

are shown in Fig. 26 and Fig. 27 respectively.
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Fig. 25 Voltage profiles at the remote end of MV feeders

It can be seen from Fig. 25 that at 08:00, the voltage at the end of MV Feeder 1 reaches the
MV upper statutory voltage limit. This voltage problem is classified, and all the voltage

control solutions are available since the FVDF is less than the threshold. Then the voltage
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control solution with the largest VCSF is selected, which is the primary tapchanger in this

case. The tap position of the primary tapchanger against time is shown in Fig. 26.

At 09:00, the voltage at the end of MV Feeder 1 rises above the MV upper statutory voltage
limit. This voltage problem is classified by FVDF being greater than the threshold. As per the
control algorithm flowchart in Fig. 17, the MV EES is operated to decrease the FVDF. The

overvoltage problem is mitigated at the same time when reducing the FVDF.

At 09:10, the voltage at the end of MV Feeder 2 falls below the MV lower statutory voltage
limit. This voltage problem is classified by the FVDF being greater than the threshold. As per
the control algorithm flowchart in Fig. 17 the MV EES is operated to decrease the FVDF. The
primary transformer tapchanger is used to increase the voltage at the end of MV Feeder 2 as it
has the largest VCSF. It should be noted here that this undervoltage at the end of MV Feeder
2 does not happen in the baseline, due to the windfarm generation. If the windfarm generation
reduces or is compensated by the EES, an undervoltage is likely to occur.

At 17:10, a similar undervoltage issue is solved. However, between 17:10 and 19:00, the real
power is also required as the MV EES is no longer able to reduce FVDF using reactive power
only.
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Fig. 26 Tap position of primary transformer tapchanger
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In this test case, the target SOC and the initial SOC of the MV EES are both set to 50%.
Therefore the VCSF of reactive power is larger than the VCSF of real power in the test case.
As a result, reactive power is selected more frequently than real power, which is illustrated in
Fig. 27. This is because the cost of operating the reactive power will not charge/discharge the

batteries in the EES, which is cheaper than operating the real power.

At 20:30, the FVDF drops below the threshold. The primary tapchanger lowers the voltage
across the feeders, since the primary tapchanger has the largest VCSF at this stage, and thus

MV EES is not required.

At 22:50, the voltage at the end of MV Feeder 1 reaches the limit again. At this time, the
FVDF is smaller than the FVDF threshold and all the voltage control solutions are available.

Then the primary tapchanger is selected to control the voltage.

3.5.4 Laboratory implementation and evaluation of control algorithm

Smart Grid Laboratory Facility

The network diagram of the smart grid laboratory used in this work is shown in Fig. 28. This
laboratory hosts an experimental LV network and a Real Time Digital Simulator (RTDS). The
experimental network includes multiple LCTs and smart grid technologies. Specifically, a PV
generation emulator, a wind generation emulator, an EES unit, a Mitsubishi i-MIEV EV, a
Mitsubishi Ecodan ASHP, and controllable load banks are connected to the four wire three-
phase experimental network. In addition, the RTDS is connected to the experimental network
via a three-phase power amplifier. This arrangement provides the PHIL emulation platform,
which enables the real experimental LV network to interact with the large scale network
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model simulated by RTDS in real-time. Furthermore, the system is fully instrumented with

precise measurement boards, high-speed data communication network, and human-machine

graphical interface.
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Implementation of Power Hardware in the Loop Emulation

The layout of the PHIL emulation platform for this work is shown in Fig. 29. It consists of the

PV emulator, the EES unit, the power amplifier, the LV network, the RTDS and the computer.
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Fig. 29 Layout of PHIL emulation of case study

To realize the interaction between the network model in RTDS and the real LV network, the
RTDS transmits 10V signals, which reflect the instantaneous voltages of the real-time
network model, to the three-phase power amplifier. Then the three-phase power powers up the
experimental LV network. Simultaneously, instantaneous current monitoring signals from the
amplifier are fed back to the RTDS. These current signals are used as inputs of the
controllable current source in the RTDS model, to reflect the power exchange between the
experimental LV network and the network model in RTDS.

To represent the case study network, the simplified MV network are modelled in RSCAD and
validated against the IPSA2 model used in desktop simulation. The majority of the PV cluster
feeder, LV Feeder 1, is also modelled in RSCAD, while the remainder of the PV cluster
feeder is emulated in the experimental LV network. In total there are 122 customers on the PV
cluster feeder. 120 customers are modelled in RSCAD and the two customers at the end of LV
Feeder 1 are emulated by the PV emulator in the experimental LV network. Specifically, the
PV emulator comprises of a 1.7kW programmable DC power source and an SMA Sunny Boy
inverter. The DC power source is interfaced with LabVIEW from National Instruments,
which allows it to model the PV generation profile. The PV generation profile modelled in
LabVIEW is then used to control the DC power source to emulate the output of a PV array

under varying solar irradiance. Here the PV generation profile represents the net PV
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generation of two domestic PV customers at the end of LV Feeder 1, which is derived from
the PV data and domestic demand data shown in Fig. 21. The laboratory EES is used to
emulate the LV EES located at the end of LV Feeder 1. It consists of a 13kWh lead-acid
battery bank and a 5kW SMA Sunny Island single-phase converter. This unit is controllable

in terms of real and reactive power import/export via LabVIEW.

The proposed control algorithm has also been developed in RSCAD in conjunction with
LabVIEW. The developed control algorithm can control the tapchanger in the model
simulated in RTDS directly, and it is also able to control the import/export of real and reactive
power from the laboratory EES with the help of LabVIEW.

Emulation Results

Concurrently with the voltage problems that are observed on the MV network in simulation,
described in the previous section, phase B exceeds the statutory voltage limit in the laboratory
at approximately 09:00 as illustrated in Fig. 23. This is due to an increase in PV generation in
the model and in the laboratory. Three-phase voltages at the end of LV Feeder 1 in the
laboratory are shown in Fig. 30. All the voltage control solutions are identified within the set
of available solutions since the calculated %VUF and FVDF are within the threshold. The
voltage control solution with the largest VCSF, which is the secondary tapchanger in this case,
is selected and deployed. The tap position of the secondary tapchanger, which is realized in
the RTDS network model, with respect to time is illustrated in Fig. 31. It should be noted that
there are mismatches between simulation and emulation, since three-phase balanced network

is modelled in IPSA but four-wire system is adopted in the PHIL emulation.
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Fig. 31 Tap position of secondary tapchanger (RTDS Network Model)

It can be seen from Fig. 24 that %VUF reaches the regulatory limit at approximately 10:00
due to the uneven distribution of PV generation across the phases on the feeder. The
coordinated voltage control algorithm classifies this voltage problem. Phase voltage control
solutions, which enable phase voltage control, are available for deployment since the %VUF
is greater than the threshold. The LV EES is selected and deployed, which has the largest
VCSF among all the phase voltage control solutions. The LV EES in the laboratory begins to
import real power, charging the battery, to reduce the %VUF under the limit, as shown in Fig.
32 and Fig. 33.
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It should be noted here that in the emulation, only real power of the EES is controlled, since
the effect of the reactive power is not significant in the experimental LV network and the
VCSF of reactive power is relatively low for this solution. This is due to the low X/R ratio in
the experimental LV network. Also, 1.2% is adopted as the %VUF limit in the emulation,
instead of 1.3% (the regulatory limit). This is because the EES converter used in the
emulation, the SMA Sunny Island converter, is not designed for real time remote control.
There is a time delay between the EES converter and the computer, in which the control
algorithm is implemented. The time delays can be over 5 minutes. To prevent the %VUF
exceeding the regulatory limit, a safe margin of 0.1% is applied in this case. Of course, this is

not necessary if the time delays can be reduced.
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3.6 Conclusions

A rule based voltage control algorithm is proposed in this chapter for future distribution
networks with large, clustered distributions of LCTs, in terms of both feeder and phase
location. This proposed control algorithm can control OLTCs and EESs to solve the voltage
problems caused by the large, clustered distributions of LCTs. It can determine and deploy
cost optimised solutions for concurrent MV and LV voltage problems, across a range of

classifications, simultaneously.

This algorithm is based on a range of network factors and metrics (VSF, VCSF, FVDF
and %VUF). VCSF is derived from voltage sensitivity factors and cost functions for EES and
OLTC equipped transformers. VCSF is used to select the cost-optimised voltage control
solution, while VSF is utilized to determine the required response of the selected solution.
FVDF is introduced in this work as a metric for the maximum voltage difference between
feeders downstream of a common controlled busbar. FVDF is used in conjunction
with %VUF in the proposed control algorithm to classify the voltage problems and identify

available voltage control solutions.

A case study, in which a credible future network test case is proposed using a validated model
of a real GB smart grid trial distribution network, equipped with multiple EES units, OLTC
equipped transformers under supervisory control, is used to evaluate the algorithm. In this
future network test case, clustered concentrations of load and generation LCTs, in terms of
both feeder and phase location, are deployed on the case study network. Desktop simulation

and laboratory based PHIL emulation are jointly conducted to evaluate the control algorithm.

The analysis and results from complementary simulation and PHIL emulation show that this
VCSF based algorithm can provide cost-optimised voltage control solutions for the
distribution networks with highly clustered distributions of load and generation LCTs. This
control algorithm can solve steady-state voltage excursions and %VUF excursions, which are
occurring concurrently at two MV nodes and a LV node in the case study network. In addition,
as the algorithm is cognizant of the costs associated with deploying each network solution, it
could reduce costs and increase the operating life of equipment. For example, tapchanger
operations are likely to be reduced under this algorithm as the cost functions can reflect the

age of the devices.

This proposed VCSF based algorithm is relatively simple and fast, and it does not have the

problems of non-convergence. However, the VCSF based algorithm also has some drawbacks.

It relies on voltage sensitivity factor, which is not constant but varies with the network
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topology change, and the change of network voltage and load conditions. This could be
solved with the application of VSF lookup tables, which can be developed via offline analysis,

or real time sensitivity calculation.

The VCSF based algorithm cannot guarantee optimal solutions, although it is able to reduce
the control costs. In addition, if multiple control objectives need to be considered, the rules
could become too complex. Voltage optimisation algorithms, which are able to address these

problems, will be discussed from next chapter.
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Chapter 4 Development of Oriented Discrete Coordinate Descent Method

based Voltage Control Algorithm

4.1 Introduction

In this chapter, a deterministic voltage optimisation algorithm, based on oriented discrete
coordinate descent method, is introduced. ODCDM was proposed to control voltage for
conventional distribution networks in [61]. However, only conventional voltage control
techniques and network loss minimisation were considered before. In this PhD study,
ODCDM has been extended to control voltage for future distribution networks. Specifically,
both conventional and novel voltage control techniques have been considered. In addition,

multiple optimisation objectives have been studied. .

In the rest of this chapter, the problem formulation for voltage optimisation is described. The
implementation of the original ODCDM based voltage control algorithm is introduced, and
the extensions of this algorithm to solve MINLP problems and multi-objective problems are
discussed. A simple case study is presented to demonstrate the basic mechanism of the
developed algorithm. The algorithm is then further validated with field trial results from the
Customer-led Network Revolution Project, in which the ODCDM based control algorithm is

applied in real networks. Finally, conclusions are drawn.
4.2 Problem formulation for voltage optimisation algorithms

The general problem formulation for voltage optimisation, which is shown in Chapter 2, can

be specified by (29) - (32), for distribution network voltage optimisation.

min f (x, u) (29)
s.t.
Nbusbar
Vi Z YiVi =R = 1Qui=1 o Ny (30)
L L
u™ <u <u™i=1..,N, (31)
VM SV <V =1 Ny (32)
where

Vi voltage at bus i
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\Y voltage at bus j

Yij element of admittance matrix Y

Pi net injected real power at busbar i

Qi net injected reactive power at busbar i
Ui control variable i

u;m" lowest value of control variable i
T highest value of control variable i
v;min lowest limit of busbar voltage i

ik upper limit of busbar voltage i

The components in this problem formulation are discussed in the following.
4.2.1 Optimisation objective function

The optimisation objective function(s) is represented by (29), formulated to represent
secondary control objective(s). Regarding the number of optimisation objective functions,
voltage optimisation can be classified as single-objective voltage optimisation or multi-
objective voltage optimisation. The optimisation objective function is a scalar function for a
single-objective optimisation problem, while for a multi-objective optimisation problem, the
optimisation objective function is a vector, which includes a set of scalar functions, as shown
by (33).

f =minf,i=1.., N (33)

where fi is the ith objective function and Nop; is the number of optimisation objective

functions.
4.2.2 Equality constraints

The equality constraints for voltage optimisation are the network flow equations, which are
used to model the relationship between the network voltages and the net injected real and
reactive powers at different busbars. Nonlinear node power equations are normally used, as
represented by (30) [107].

4.2.3 Inequality constraints
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The inequality constraints include the limits for control variables and state variables. Control
variables are the variables which can be controlled directly, such as OLTC tap positions. The
operation constraints of the control variables, which depend on specific networks, are
generally represented by (31). Network voltages and their limits, are also formulated as a set
of inequality constraints, as represented by (32), to represent the fundamental control
objective, maintaining network voltages within their statutory limits. It should be noted that
besides network voltages, some other state variables and control objectives could also be
considered as inequality constraints. For example, maintaining the current flowing through
network branches within the thermal limits can also be considered as a set of inequality
constraints. This PhD study concentrates on voltage control, and thus only voltage constraints
represented by (32) are considered.

Voltage optimisation algorithms are desired to find feasible solutions, with that all the
equality and inequality constraints can be met. Also, the solutions are also expected to

minimise the optimisation objective functions.

4.3 ODCDM based voltage control algorithm
4.3.1 Original ODCDM based voltage control algorithm

The original ODCDM based voltage control algorithm is introduced here. The flow chart of
this algorithm is shown in Fig. 34. As per the flow chart in Fig. 34, the key procedures of the
ODCDM based voltage control algorithm are discussed as follows:

- The initial value of the optimisation objective function is computed based on a starting
point (SP). Normally load flow calculation is needed to calculate the state variables,
which are used to formulate the objective function and constraints, such as busbar
voltages. In practice, the starting point is normally the settings of the voltage control
devices before the optimisation;

- An internal iteration loop is performed, to compute the partial derivatives of the
objective function with respect to all n control variables individually and to find the
largest partial derivative. The largest partial derivative then decides how the solution
will be changed;

- Another iteration loop (outer loop) is conducted outside the internal iteration loop, to

keep improving the objective function until the pre-defined stop criteria are met.

It should be noted that for ODCDM, the SP only includes control variables. This is contrast to

some other algorithms, for which the SP could also include the initial values of the state
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variables in the power flow equations [108]. For ODCDM, these values are not required
because the load flow equations are solved with a given set of control variables, and the initial
values for the state variables do not affect the optimisation progress.

It should also be noted that the partial derivative used here is different from that from calculus,
which is used for continuous variables. Here the partial derivatives are calculated directly by
changing the control variable by one step size and calculating the difference between the

objective functions. The calculation procedure can be represented by (34):

axik - X|k+1 _ Xik

k k+1 k
OF  Fl_F (34)

where

S S objective function values before and after the control variable
change;

Xi", Xik” control variable value before and after the control variable

change, normally the difference between X* and X"

Xi.

is the step size of the control variable
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Fig. 34 Flow Chart of GUS Control

as demonstrated by (35):
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As specified in section 4.2.3, different inequality constraints need to be considered for the
network safe operation, such as the statutory voltage limits. For ODCDM, the constraints are
integrated into the objective function as a penalty function. Therefore, the objective function F

is actually the sum of the optimisation objective function fop; and the penalty function fyenary,



F=fo+f (35)

penalty

Different penalty functions can be adopted to represent the penalty caused due to the violation
of the inequality constraints. The basic idea, as shown by Fig. 35, is to add a large penalty
value to the objective function if the constraint of variable x is violated, while add zero

penalty if the constraint is not violated.

Penalty

| Feasible|
| region |

xMIN xMAX

Fig. 35 Penalty Function

Here, a sum of quadratic function based step functions are used to represent the penalty, as
shown by (36).

min 2 min
n s (% -x") % <x
_ min max
fpenalty - Z 0’ Xi < Xi < Xi (36)
i=1

2
S (4™ =% ) x> X
Where x; is a variable which needs to be kept within certain limits, /™ and x;™" are the upper
and lower limits for x;, and s; is the penalty coefficient, which reflects the importance of the
constraint related to x;. For example, x; can be the voltage magnitude of one busbar, while

xi"> and x;™" can be the statutory voltage limits for this busbar. The constraint can also be a

function of x;. The same idea shown by (36) and Fig. 35 can still be used.
4.3.2 Application of ODCDM to MINLP problems

As discussed before, the optimisation problem formulated for distribution network voltage
control could be a MINLP problem, in which both discrete control variables and continuous

control variables are involved. Normally, mathematical optimisation algorithms are designed
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for problems with only continuous control variables or with only discrete control variables,

and cannot be used to solve MINLP problems directly.

To apply ODCDM to MINLP problems, one possible approach is to discretize the continuous
variables with certain step size, which is adopted in the CLNR project [109]. The selection of
the step size may affect the partial derivative defined in (34), and in turn affect the
performance of the ODCDM algorithm. This will be demonstrated and further discussed with

the test results in Chapter 6.
4.3.3 Application of ODCDM to Multi-objective optimisation problems

Sometimes, multiple objectives need to be optimised simultaneously in distribution network
voltage control. The optimisation objective functions are represented by (33). For a multi-
objective optimisation problem, any two solutions x; and X, can have one of the following
two possible relationships: one solution dominates the other solution or none solution
dominates the other solution. Solution x; is said to dominate another solution x, if the

conditions defined by (36) are satisfied, which are:

- At least one objective for x; is better than that for X,

- For all objectives, x; is as good as X».
Vie[LNg, |, fi(x) < f,(x,)anddj, f;(x) < f;(x,) (36)

The solutions, which are not dominated by any other solution in the entire solution space, are
Pareto optimal solutions and constitute the Pareto set. The image of the Pareto set, i.e., the

image of all the Pareto optimal solutions, is called Pareto front.

Deterministic algorithms, such as ODCDM, are single objective optimisation algorithm, and
they can only find a solution in a single run. As summarized in [110], different methods have
been developed to facilitate deterministic algorithms to solve the multi-objective optimisation
problems. One popular method, the weighted sum method, is introduced in the following. The
basic idea of the weighted sum method is to convert the multiple objectives from (33) into a

single objective with a linear function, as specified by (37).

Nop;

f=>wf (37)
i=1
where w; is the weighting coefficient, representing the priority of the objective function f;.
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The weighted sum method has been adopted in many previous voltage control studies. For
example, the objectives, network loss minimisation and voltage deviation minimisation, are
summed together in [70], with the weighting coefficients decided by trial and error. In [111],
three non-negative weighting coefficients are selected to combine three different optimisation
objectives into a single objective function. In this PhD study, weighted sum method is also
applied with ODCDM to solve multi-objective optimisation problems. Of course, there are
some other methods, which can also be used with ODCDM to solve the multi-objective
optimisation problems efficiently. For example, it is possible to minimise one of the
objectives from f, and leave the rest of objectives as constraints. This approach has been
applied to minimise the network loss and generator reactive power utilization for transmission
network reactive power management [88]. Although some of them may be more efficient than
weighted sum method in some applications, these methods are not studied here. This is
because weighted sum method is the most widely used method for voltage control. Moreover,
weighted sum method is able to represent the basic principle behind these methods, which is
to convert the multi-objective optimisation problems into a single-objective optimisation

problem [86]. This means to find the Pareto front, multiple runs are required.

Another issue that should be noted here is that if switching number minimisation is
considered as one optimisation objective, sometimes ODCDM may be able to consider it as a
constraint instead of one objective naturally. This is because for ODCDM, only one switching
operation is carried out in each iteration. This will be further explained in the case study

chapter.

4.4 Initial evaluation of the ODCDM based voltage control algorithm
4.4.1 Case study network

A case study network is adopted here to demonstrate the principle of the ODCDM algorithm,
based on the IEEE 33 bubsar network from [112]. The network data can be found in
Appendix A-1. In this case study network, one OLTC transformer and five MSCs are applied
to the original network. The details of these voltage control devices are shown in Table 8.
Here a standard network is used due to the following reasons. Standard networks are normally
used for voltage optimisation studies, since it is easy for other researchers to duplicate the test
cases and then evaluate and compare different algorithms with same test cases. Also, standard
networks have multiple voltage control devices, which make it more necessary and potentially

more beneficial to apply voltage optimisation algorithms.
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Table 8 Voltage Control Devices in the Case Study Network

Control Location Step size Range Total step
Device number
OLTC From busbar 1 to busbar 2 1.25% -5% - +5% 9
MSC1 Busbar 8 0.1IMVAr | 0-0.7MVAr 8
MSC2 Busbar 15 0.IMVAr | 0-0.7MVAr 8
MSC3 Busbar 24 0.IMVAr | 0-0.7MVAr 8
MSC4 Busbar 29 0.1IMVAr | 0-0.7MVAr 8
MSC5 Busbar 33 0.1IMVAr | 0-0.7MVAr 8

The network diagram is shown in Fig. 36.

Fig. 36 Case Study Network

The case study network is modelled in IPSA2. The ODCDM algorithm is developed with

Python and the load flow engine in IPSA2, based on the flow chart shown in Fig. 34.

442

The original load of the case study network is used. In the initial study, network loss
minimisation is selected as the optimisation objective and voltage limits, 0.94pu and 1.06pu,
are adopted. Network loss minimisation is one widely used optimisation objective for voltage

optimisation in conventional distribution networks [52, 56, 61, 113]. The network loss is the

Initial case study result

sum of the real power losses on all the network branches, as represented by(38).

Nbranch
fLoss = Z 9ij (\/i2 +Vj2 _Z‘/iVj C055ij)
n=1
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where,
Nbranch
gij
Vi
Vi

5”

Number of network branches

Conductance of the branch between busbar i and j
Voltage magnitude of busbar i

Voltage magnitude of busbar j

The phase angle between the voltages of busbar i and busbar j

As mentioned previously, a SP is needed for the ODCDM based control algorithm and

different SP may lead to a different final result. Two starting points, shown in Table 9, are

used to demonstrate how SP affects the algorithm performance. In practice, the SP is selected

as the current positions of the voltage control devices, such as the tap position of the OLTC

transformer and the stage position of the MSC.

Table 9 Starting Points used for ODCDM initial evaluation

Starting Starting Point
Point
OLTC MSC1 MSC2 MSC3 MSC4 MSC5
Index
Unit: % Unit: MVVAr
SP1 0 0 0 0 0 0
SP2 -2.5 0 0.4 0.5 0.3 0.3

For the SP1, the convergence curve of the objective function is shown in Fig. 37. As shown in

Fig. 37, the sum of the objective function and penalty is decreased significantly at the first

two iterations. This is because in the first two iterations, there are voltage constraints

violations in the network, which add a large penalty number to the objective function.

68




Objective Function + Penalty
=] = o =] o =] o
N w = w ()] ~ co

o
=

o

10

15

Number of Iterations

Objective Function + Penalty

Fig. 37 Convergence curve of ODCDM - test with SP1

Table 10 Result Achieved with Two Different Starting Points

20

25

Starting Final Solution Network
Point OLTC MSC1 MSC2 MSC3 MSC4 MSC5 Loss
Index Unit: % Unit: MVAr MW
SP1 -5 0.4 0.2 0.5 0.6 0.3 0.11793
SP2 -5 0.3 0.3 0.5 0.6 0.3 0.11803

The largest partial derivative, which stands for the largest objective improvement, is shown in

Fig. 38, and the corresponding control variable change during the optimisation process is

shown in Fig. 39.
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Fig. 39 Voltage control device position in the optimisation procedure — test with SP1

As shown in Fig. 39, the OLTC tap position is moved in the first two iterations. Then MSC5
is moved in the following three iterations. After 24 iterations, the optimal solution is achieved

and the objective function cannot be further improved, as shown in Fig. 37.

SP2, which is generated randomly, is also used for test. For the SP2, the convergence curve is
shown in Fig. 40. The largest partial derivative is shown in Fig. 41. The control variable

change during the optimisation process is shown in Fig. 42.

The final results achieved with the ODCDM based algorithm are different for SP1 and SP2.
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4.5 ODCDM validation against field trials

As a robust and efficient algorithm, ODCDM has been adopted by commercial distribution
management systems and applied in real distribution networks [83, 84]. In the CLNR project,
ODCDM has also been applied in a distribution network control system, named as Grand
Unified Scheme (GUS) [69, 109]. This GUS system has been applied and trialled in different
distribution networks owned by Northern Powergrid. Some of the field trials have been used
to further validate the ODCDM based algorithm developed in this PhD thesis. Here, the
ODCDM based algorithm developed in this PhD thesis is named as ODCDM algorithm, while
the ODCDM based algorithm implemented in the field trial is named as GUS algorithm. The
validation is carried out by applying the ODCDM algorithm in the same way as the way the
GUS algorithm applied in field trials, and comparing the simulation results against the
measured field trial results. In the following, the method and results for a sampled validation

study are presented.
45.1 Sampled field trial

A field trial of controlling secondary OLTC with the GUS algorithm is adopted here to
demonstrate the validation process. This field trial was carried out on a low voltage network,
the IPSA2 model of which is shown in Fig. 43. Here a UK network from the CLNR project,
to which the GUS control system has been applied, is used for validation [69].

STANDFORD CLOSE

battery connection

EES3

MD_MR_SS

O—

MORTIMER ROAD 5/5 HV INFEED EAVC21

)%( e.’ Way 1 BusharE1

MORTIMER ROAD 45548 11KV BAR

——
RestWayload

MORTIMER ROAD 433V BAR

Fig. 43 Case study network model for sampled field trial
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During the field trial, one electrical energy storage system, denoted by EES3 in the CLNR
project, injected real power into the network, causing voltage problems in the network. The
OLTC transformer at the secondary substation was controlled by the GUS algorithm to
control the voltages within this LV network. The flowchart of this control system is illustrated
in Fig. 44 and will be explained in section 4.5.2. The details of the field trial network and the
field trial procedure can be found in [69].

4.5.2 Algorithm validation method

The application of the developed algorithm in simulation follows the flow chart of GUS
system. In the CLNR project, the GUS algorithm is applied based on the requirements from
NPG for different trials. Fig. 44 illustrates the flow chart of the GUS system. As per the flow

chart shown in Fig. 44, the control system in GUS includes the following steps:

1) Distribution system state estimator (DSSE) takes measurement across the network,
and estimates the network load condition based on the measurement and the network
model within the control system. During the field trial, the state estimator is executed
periodically every 5 minutes. The state estimator passes the estimated network load
and generation condition, to Voltage Var Control (VVC);

2) Voltage VAr Control includes two parts. The first part is the ODCDM based voltage
control algorithm, while the second part is a method adopted in the customer-led
network revolution project to convert the optimal control solution to target voltage for
the automatic voltage control (AVC) relay. In this field trial, no optimisation objective
is defined, and the optimisation algorithm only solves voltage constraints violation;

3) The automatic voltage control relay operates the tapchanger in response to the
calculated target voltage. A standard AVC algorithm is implemented here and is
modelled as detailed previously, which means tap operation will be executed if the

transformer secondary voltage is out of the new voltage range for over 2 minutes.
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Fig. 44 Flow chart of the GUS control system in the sampled trial

-

It should be noted that here the network model developed in IPSA2 is used to represent both
the real network and the network model in the control system for simulation. The trial results
from the CLNR project demonstrated that the network model and the estimation result from
DSSE are accurate enough. Therefore, the state estimator of the GUS control system is not

modelled in simulation.

Then, the algorithm validation is carried out by applying the developed algorithm to the
validated network model shown in Fig. 43. The load and EES3 real power injection from the
field trial are used in the simulation, to create the same field trial network conditions. The
details of the validation procedure can be found in [69].
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4.5.3 Sampled validation results

The field trial results are shown in Fig. 45, including the voltage profiles at the secondary
substation and at the EES3 connection busbar, EES3 real power output, and OLTC target
voltage and tap position. It can also be seen that in this field trial, 1.04pu and 1pu are used as

the upper and lower limits for network voltages.

The simulation results for the same variables are shown in Fig. 46. It can be seen that the
simulation results are consistent with the trial results shown in Fig. 45. As shown in both the
trial results and the simulation results, the control algorithm changes the target voltage for
OLTC, responding to voltage constraints violation across the network. The EES3 connection
point is the node where the lowest/highest voltages are most likely to be found due to its
location deep within the LV network. This node can be seen as the remote end node for this
analysis. The AVC relay changes the tap position in response to the new target voltage and
the voltage measurement at the transformer secondary side. It should be noted that there is a
target voltage change after 16:45, which does not lead to tap operation. This is due to a short

duration voltage limits violation, which happens at other busbars.
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Fig. 45 Voltage profiles and tap position of Mortimer Road on 17 Sep 2014 from field trial results
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Fig. 46 Simulation results for field trial at Mortimer Road on 17" Sep 2014

It should be noted that the field trial results have a different data resolution than the
simulation results. In the field trial results, different variables have different data resolution
values and these values are changing from time to time, responding to the data variation. The
data resolution can be less than 1 minute. For the simulation results, the data resolution is

constant as 1 minute for all the variables.

The validation results shown in Fig. 45 and Fig. 46 demonstrate that the ODCDM algorithm
developed in this PhD thesis is able to represent the ODCDM algorithm implemented in the
GUS system, which is a state-of-the-art distribution network management system used in real

distribution networks.
4.6 Conclusions

In this chapter, a voltage control algorithm based on ODCDM s introduced. The problem
formulation for voltage optimisation is specified at the beginning. Then the development of an
ODCDM based voltage control algorithm, as per previous study [61], is presented. The
ODCDM based voltage control algorithm is extended in this PhD study to solve MINLP
problems and multi-objective voltage control problems. The mechanism of the original
ODCDM algorithm is demonstrated by the test results from a simple case study network.
Sampled field trial results, from the CLNR project, are used to further validate the original
ODCDM algorithm. 1t is proved with the validation results that the ODCDM algorithm
developed in this PhD study is able to represent the voltage control algorithm used in a state-

of-the-art distribution network management system used in real distribution networks.
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Deterministic algorithms, such as ODCDM, which has been proven to be fast and effective in
real distribution networks, share several common drawbacks. Specifically, they are all local
solvers, and have the difficulties to deal with MINLP problems and multi-objective problems.
In next chapter, metaheuristic algorithms, with the theoretical advantages in these aspects,

will be applied for voltage control.
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Chapter 5 Development of Cuckoo Search based Voltage Control

Algorithms

5.1 Introduction

In Chapter 4, oriented discrete coordinate descent method was applied to solve the
optimisation problem, which is formulated for distribution network voltage control. Initial
simulation results demonstrated that this algorithm was able to minimise network losses and
maintain network voltages within the limits. However, as a deterministic optimisation
algorithm, ODCDM is only able to guarantee a local optimum when the optimisation problem
Is nonconvex. Also, it cannot be used to solve MINLP problems and multi-objective problems

directly.

This chapter introduces two voltage control algorithms, based on Cuckoo Search via Lévy
Flights, normally referred to as Cuckoo Search. CS was firstly proposed in 2009, inspired by
the breading behaviour such as brood parasitism of certain species of cuckoos [114]. As a
novel metaheuristic algorithm, CS attracts a lot of attention and has been successfully applied
to solve different optimisation problems in many areas [115, 116]. Previous research
demonstrated that CS outperforms many other popular meta-heuristic algorithms, such as
genetic algorithm and particle swarm optimisation algorithm [116-118]. Also, CS is proved to
be less sensitive to parameter tuning to some extent [114], while parameter tuning is normally
seen as one of the main drawbacks of many metaheuristic algorithms. In addition, it has been
proved that CS satisfies the requirements for global convergence with the development and
analysis of the Markov chain model for CS in [119]. CS has also been extended to solve
multi-objective optimisation problems in different areas [120-125]. In [121], a multi-objective
cuckoo search algorithm was proposed and tested against a set of well-chosen test functions,
as well as the design problems in structural engineering. Test results demonstrated that CS
can be extended to be an efficient multi-objective optimiser. Additionally, the proposed
algorithm was in comparison with other established multi-objective metaheuristic algorithms
and the results showed that the proposed algorithm performed well for almost all the selected
test problems [121].

CS has been applied to solve the optimisation problems from power system. For instance, CS
is adopted to solve capacitor placement problem in [126] and DG allocation problem in [127].
CS is applied to solve economic dispatch problems in [128, 129], and multi-objective unit
commitment problem in [120]. In this PhD study, CS has been extended to solve MINLP and
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Multi-objective optimisation problems, and applied to solve voltage optimisation problems in

conventional and future distribution networks.

In the rest of this chapter, the principle of CS is reviewed, followed by the development of
single-objective cuckoo search algorithm (SOCS) and multi-objective cuckoo search
algorithm (MOCS). Voltage optimisation algorithms, based on SOCS and MOCS, are
presented. A simple test case is used to demonstrate the mechanism of the SOCS based
voltage control algorithm. Two popular metaheuristic algorithms, GA and PSO, have been
applied for voltage control and tested with the same test case. The results achieved by SOCS,
GA and PSO are compared. Similarly, the MOCS based voltage control algorithm is tested
with a simple multi-objective test case. One widely-used multi-objective metaheuristic
algorithm, non-dominated sorting genetic algorithm Il (NSGA-II), is applied for multi-
objective voltage optimisation, and tested with the same multi-objective test case. The results

achieved by MOCS and NSGA-II are compared. Finally, conclusions are drawn.

5.2 Development of Cuckoo Search algorithms
5.2.1 The principle of Cuckoo Search

CS is inspired by the obligate brood parasitism of some cuckoo species, such as the Ani and
Guira Cuckoos [114]. These cuckoo species lay their eggs in the nests of the host birds from
other species. Some host birds are able to discover the eggs from the intruding cuckoos with a
certain possibility. Once a host bird discovers the eggs are not its own eggs, they will either
throw these alien eggs away or simply abandon its nest and build a new nest elsewhere [130].
The above characteristics of the breeding process of these cuckoos and the conflict between
cuckoos and host birds are adopted as the fundamental idea for CS. Three idealized rules are
defined in the original CS algorithm [114]:

- Each cuckoo lays one egg at a time, and dumps this egg in a randomly chosen nest;

- Only the best nests with high quality of cuckoo eggs will carry over to the next
generations;

- The number of available host nests is fixed. The egg laid by a cuckoo may be
discovered by the host bird with a probability p, € [0, 1]. If the egg is discovered, this

nest will be replaced with a new nest.

It should be noted that the first assumption will be changed for multi-objective cuckoo search

algorithms. Multiple eggs will be laid. This will be further discussed in section 5.2.3.
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The application of Lévy Flights is another important reason for the good performance of CS.
A Lévy Flight is a random walk in which the step-lengths have a probability distribution that
is heavy-tailed [114]. Lévy Flights have been widely observed in nature, for example, the
foraging behaviour of bacteria and higher animals relies on the advantages of Lévy distributed
excursion lengths [131]. Lévy Flight has been successfully applied to optimal search and the

results show its promising capability [131, 132].

The Pseudo code of CS, proposed in [114], is shown in Fig. 47. The principle of CS is
explained as per this pseudo code. A group of solutions (nests) are generated initially, and
evaluated as per the objective function (egg). The following procedure is then repeated until
the maximum generation (iteration) is reached or the predefined stop criterion is met: new
solution is generated by Lévy Flights and compared with a randomly selected solution. If this
new solution is better, it will replace the randomly selected one. Then a portion of worst
solutions are abandoned and new solutions are generated based on the current best solution.
Once maximum iteration is reached or the stop criterion is met, the iteration will stop and the
best result will be returned. Different stop criterion can be defined. For example, it can be
defined as when the objective cannot be further improved over a certain number of iterations,

or the improved objective value is smaller than a threshold.

Cuckoo Search via Lévy Flights

begin
Objective function f(x), x = (z1,...,xd
Generate initial population of
n host nests x; (i =1,2,...,n)
while (t <MaxGeneration) or (stop criterion)
Get a cuckoo randomly by Lévy flights
evaluate its quality/fitness F;
Choose a nest among n (say, j) randomly
if (Fi > F;),
replace § by the new solution;
end
A fraction (pa) of worse nests
are abandoned and new ones are bualt;
Keep the best solutions
(or nests with quality solutions);
Rank the solutions and find the current best
end while
Postprocess results and visualization
end

)T

Fig. 47 Pseudo code of the Cuckoo Search[114]

As indicated in the Pseudo code, Lévy Flights play an important role in new solution

generation. The specific solution generation procedure is shown by (39).

X=X+, ® Lévy(4) (39)
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Where x"* is the new solution generated, while x; is current solution. And a>0 is the step
size scale factor which should be related to the scales of the specific problems. The product ®
represents entrywise multiplications. Lévy (1) stands for the step size, which is drawn from a
Lévy Flights distribution. The Lévy distribution, which has an infinite variance with an

infinite mean, can be represented by (40).
Léwy ~u=t"1<1<3 (40)

Compared to normal distribution, Lévy distribution is able to generate a very large step size
with a certain possibility, which allows a large space search area [131]. As indicated by (39),
new solution is generated with the step size generated from Lévy Flights and the previous
solutions. Some of the new solutions are generated based on the current best solution, in order
to speed up the local search. Also, some new solutions should be generated, which are far
enough from the current best solution. This will ensure the algorithm could escape from a

local optimum.
5.2.2 Development of single-objective Cuckoo Search algorithm

The SOCS algorithm was developed in Python according to the principle stated in last section.
CS is originally proposed to solve continuous-variable-only problems. Here, the developed
algorithm is extended to solve mixed integer problems, by introducing discrete control
variables into the algorithm. Specifically, the solution in the developed SOCS algorithm is
divided into a discrete variable section and a continuous variable section, as shown by Fig. 48.
Initial solution is created as a combination of discrete variable section and the continuous
variable section, which are generated separately. When new solution is generated with Lévy
flights, the continuous variable section of the new solution is still generated by (40). And for
discrete variable section of the new solution, the step size is rounded to an integer. The
discrete variables are modelled as integers for the sake of generality, and the discrete variables
from the specific problems can be represented by integers. The details are shown in section
5.3.1. Combinatorial problems can also be solved with this developed algorithm, by defining

the number of continuous variable as zero.
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Fig. 48 Solution Structure for MINLP SOCS algorithm

The flow chart of the developed SOCS algorithm is shown in Fig. 49.

(s )
v

Generate initial population of n host nests (solutions): X

v

Evaluate these nests (solutions) regarding the fitness function (egg) and
find the best nest (solution) xb

y

—> Generate new nests (solutions) by Lévy flights

v

Evaluate the new nests (solutions), replace the current solutions if the
new generated solutions are better. Update the best nest (solution) xb

v

Abandon a fraction (pa) of nests (solutions) and generate the same
number of new nests (solutions)

v

Evaluate these nests (solutions) and update the best nest (solution) xb

Stop criterion ?

No

Return the best solution

v
D

Fig. 49 Flow Chart of Single-Objective Cuckoo Search

As per the flow chart, the procedure of the developed algorithm is explained as follows:
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1) Initially, a set of solutions, nominated as X, are generated randomly. X is a nxm
dimension vector. The value n is the nest number, representing the number of
solutions, while m is the number of variables in each solution;

2) These solutions are evaluated regarding the fitness function, and the current best
solution X, is found. The fitness function is normally formulated as a combination of
the optimisation objective function and the penalty function defined for constraint
violation;

3) New solutions are generated with Lévy flights, based on current solutions;

4) New generated solutions are evaluated and compared with current solutions. Current
solutions will be replaced with new generated solutions if the new generated solutions
are better. Update the current best solution Xxp;

5) A fraction of solutions, with the probability of p,, are abandoned and the same number
of new solutions are generated;

6) Evaluate the new generated solutions and update the current best solution Xp;

7) If the stop criterion is met, return the current best solution x,. Otherwise go back to
step 3). Here the algorithm will stop once the predefined maximum iteration number is

reached or the optimal result, if known, is found.

The method of generating new solutions wth Lévy flights in step 3) is specified in the

following. New solutions are generated based on current solutions by (41).
X"t =x;' + stepsize, - randn() (41)

Where x;"*! is the new solution generated for the ith solution in (t+1)th generation (t+1), while
xi' is solution in generation t. randn() is a function which generates a random scalar drawn
from the standard normal distribution. stepsize; is the step size generated by Lévy flights in

the ith solution, which can be calculated by (42).

1
7
stepsize, = a, (ﬁ—'J (=%, (42)

Where xp' is the best solution found so far. ao is the scale factor applied to avoid the Lévy
flight becoming too aggressive and makes new solutions jump out side of the design domain.
S is an index used in Lévy distribution. u; and v; are values drawn from normal distributions,
as shown by (43) and (44).

U, = ¢- randn() (43)
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v, =randn() (44)

¢ is used to scale the value generated with randn(), and it is calculated by (45).

I(1+4)- sm(z’Bj ’

()]

I" represents gamma function and f is the scale factor indicated before.

For discrete variables in the solution, (41) is revised to make sure the new solution is feasible.
t+1 t H
X =X +roundoff (stepsize, - randn()) (46)

It should be noted that for CS the solutions are evaluated twice in one iteration, while for
many other metaheuristic algorithms, the solutions are normally evaluated once in one
iteration. Therefore, when CS is compared with other metaheuristic algorithms, the same
fitness function evaluation number should be used instead of same iteration number. This is

further discussed in section 5.4.2, when CS is compared with GA and PSO.
5.2.3 Development of multi-objective Cuckoo Search algorithm

When deterministic algorithms are applied to solve the multi-objective optimisation problems,
multiple objectives need to be converted into a single-objective with certain methods. The
same approach can also be adopted by metaheuristic algorithms. There are some drawbacks of
this approach: it is sensitive to the shape of the Pareto front, and multiple runs are required to
find the Pareto front. In addition, when deterministic algorithm is applied, the solutions in the
achieved result may be a local optimum.

With the ability to find multiple Pareto-optimal solutions in a single run, various multi-
objective metaheuristic algorithms have been developed in the last two decades [133, 134].
The following text proposes a multi-objective cuckoo search algorithm. As mentioned before,
it is assumed that each nest (solution) hosts one egg (objective) in SOCS. For MOCS, each
nest contains k eggs, representing k different objectives to be optimised. The solutions, which
are not dominated by any other solutions, are stored and updated during the optimisation. The
flow chart of MOCS is shown in Fig. 50. The procedures of MOCS are similar to that of

SOCS, which are specified in section 5.2.2. For MOCS, a set of non-dominated solutions,
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instead of a single best solution in SOCS, are found and used for new solution generation. As
shown in section 5.2.2, a current best solution is needed for new solution generation. Here,

one solution is selected randomly from the current set of non-dominated solutions every time

when the current best solution is needed.

< Start )
v

Generate initial population of n host nests (solutions): X

v

Evaluate these nests (solutions) regarding the fitness functions (eggs), find and
save the non-dominated solutions

\ 4

Is there any non-dominated solution?

No

Generate a new population of solutions by Levy flights

v

Evaluate these nests (solutions) regarding the fitness functions (eggs), Find and
store the non-dominated solutions

v

Abandon a fraction (pa) of nests (solutions) and generate the same number of
new nests (solutions)

v

Evaluate these nests (solutions) regarding the fitness functions (eggs), find and
store the non-dominated solutions

v

Update the non-dominated solutions

\ 4

Stop criterion ?

No

Return the non-dominated solution set

v
( )

Fig. 50 Flow Chart of Multi-Objective Cuckoo Search

5.3 Development of Cuckoo Search based voltage control algorithm
5.3.1 Single-objective Cuckoo Search based voltage control algorithm
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The basic idea of the CS based voltage control algorithms is to apply SOCS and MOCS to
solve the optimisation problem, which is formulated for distribution network voltage control.
The control variables, which are continuous values and integers, can be considered directly in
the developed algorithms. However, if the control variables are non-integer discrete values,
they need to be converted into integers first. For example, the tap position of on load tap
changer is normally represented as a percentage value, which is normally not integer. In order
to be considered in the CS based algorithms, the OLTC tap position is formulated as a

function of an integer i, whose range is between 0 and Nrap-1, as shown by (47).
TapPosition, ;. =Tap™ +ix Stepsize®™,i=0,1,2,..., N;,, -1 (47)

where,

TapPositionotc The tap position of the OLTC transformer

Tap™ The minimum tap position of the OLTC transformer
Stepsize®-™® The step size of the OLTC transformer
Nrtap The total number of the tap positions

Similarly, the stage position of the mechanically switched capacitor bank (MSC) can also be

represented with an integer i by (48).
StagePosition, ;. =ix Stepsize™™,i=0,1,2,..., Ny, —1 (48)

where,
StagePositionysc The stage position of MSC
Stepsize™*© The step size of the MSC
Nstage The total number of the MSC stage positions

The fitness function is formulated as a sum of the objective function and the penalty function.
The objective function can be network loss minimisation or any other optimisation objective.
The same penalty function from the ODCDM based voltage control algorithm is adopted here
and added to the objective function. Load flow calculation is normally required to calculate
the fitness function. In this study, load flow calculation is carried out with the load flow
engine from IPSA2 and PyPower, while the rest of the algorithm is implemented in Python.
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5.3.2 Multi-objective Cuckoo Search based voltage control algorithm

The same approach from last section is adopted to deal with the control variables in the
MOCS based voltage control algorithm. Assuming there are Noy; optimisation objectives, then
Nob; fitness functions should be formulated. These fitness functions are calculated with the
corresponding objective functions and the penalty function defined for constraint violation, as

represented by (49).

fl + fpenalty

F= : (49)

Nob; + fpenalty

The result achieved by MOCS is normally a set of non-dominated solutions. In practice only
one solution can be applied for voltage control. Therefore, a solution needs to be selected
from the result achieved by MOCS manually or automatically with a decision making method.
In this PhD, the ability of Pareto front search is investigated, and the solution selection

therefore is not studied.
5.4 Initial evaluation of single-objective cuckoo search based voltage control algorithm

The SOCS based voltage control algorithm is evaluated with the case study network
introduced in section 4.4.1. Initial evaluation results are presented in this section to
demonstrate the performance of the developed SOCS based voltage control algorithm.
Additionally, two popular metaheuristic algorithms, GA and PSO, are implemented for
voltage control, and compared with the SOCS based voltage control algorithm.

5.4.1 Initial evaluation of SOCS based voltage control algorithm

Similarly to the initial evaluation of the ODCDM based voltage control algorithm, network
loss minimisation is adopted as the optimisation objective here to evaluate the performance of
the SOCS based voltage control algorithm. The fitness function is a combination of network
loss and the penalty from voltage constraints violation. For this test case, the global optimum,

which is founds via exhaustive search, is shown in Table 11.
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Table 11 Global Optimal for This Test Case

OLTC MSC1 MSC2 MSC3 MSC4 MSC5 | Network
Loss
Unit: % Unit: MVAr MW
Global -5 0.4 0.2 0.5 0.6 0.3 0.1179
Optimal

As shown in section 5.2.2, in SOCS there are several parameters, which could be tuned
regarding each individual optimisation problem. As suggested by [135], it is sufficient to
choose a number from 15 to 25 as the nest number, and p, can be selected as 0.25. p, is the
possibility with which the nest (solution) will be abandoned. In addition, ag is recommended
to be 0.01 in [136]. Here the nest number is selected as 25. The maximum iteration number
can be determined by increasing the maximum iteration number gradually until a stable result
can always be achieved. For this test case, the required maximum iteration number is found as

100, with the procedure specified in the following.

The SOCS based voltage control algorithm is tested with different maximum iteration
numbers, increasing from 10 to 100, with the interval as 10. 100 runs are carried out for each
maximum iteration number for the same test case. Due to the stochastic nature of SOCS,
different results may be achieved every time the algorithm is run. Table 12 summarizes the
final results for the tests with varying maximum iteration number, including the maximum,
minimum, average and the standard deviation. The maximum value represents the worst result
achieved with a maximum iteration number over 100 runs, while the minimum value
represents the best result achieved correspondingly. The average represents the average result

achieved over the 100 runs, and the standard deviation is calculated using (50).

N
o= \/% Z (reSUIti - reSUItaverage)2 (50)
i=1

In (50), N standards for the number of runs conducted for each maximum iteration number,
and it is found that N=100 is sufficient in this case. result; standards for the ith result achieved

and resultaverage Standards for the average value of the results from the N runs.

It can be seen from Table 12 that sometimes, the result achieved with a small maximum

iteration number may be better than that achieved with a large maximum iteration number.

For example, the best result achieved with the maximum iteration number as 20 is better than
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the worst result achieved with the maximum iteration number as 50. But generally the result
achieved improves with increasing the maximum iteration number, as demonstrated by the
average values and the standard deviations. Also, when the maximum iteration number is
large enough, 100 in this case, the same result is achieved for all 100 runs. It should be noted
that for the maximum iteration number of 100, the total number of fitness function evaluation,
which is 25x100x2=5000, is still much smaller than the number of all the potential
combinations of the control variables in this case, which is: 9x8x8x8x8x8 = 294912.

Table 12 Test results of the SOCS based voltage control algorithm for different maximum iteration

number
Maximum Network Loss achieved over 100 runs (MW)
Iteration Number Max Min Average | Standard Deviation
(10e-3)
10 0.122149 | 0.117931 | 0.119111 0.772281
20 0.11994 | 0.117931 | 0.118427 0.378255
30 0.118636 | 0.117931 | 0.118078 0.135906
40 0.118185 | 0.117931 | 0.117986 0.057032
50 0.118101 | 0.117931 | 0.11796 0.036550
60 0.118033 | 0.117931 | 0.117944 0.022524
70 0.117998 | 0.117931 | 0.117934 0.012395
80 0.117989 | 0.117931 | 0.117932 0.007608
90 0.117967 | 0.117931 | 0.117931 0.005039
100 0.117931 | 0.117931 | 0.117931 0.000000

Fig. 51 shows the convergence curve for a sampled run of the CS based algorithm with the
maximum iteration number as 100. The fitness function is reduced to the global optimum
after around 60 iterations. It can also be seen that sometimes the fitness function cannot be
improved in some iterations. Therefore, the stop criterion cannot be simply defined as when

the fitness function cannot be further improved.
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Fig. 51 Convergence curve of CS based Voltage Control Algorithm

To further demonstrate the stochastic nature of metaheuristic algorithm, the convergence

curves of CS for three different runs are shown in Fig. 52.
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Fig. 52 Convergence Curves for Different Runs

It can be seen from Fig. 52 that for different runs, the convergence curves are not exactly the
same. Although the optimisation progress is different for each run, the optimal result achieved
after 100 iterations is the same for all three runs.

5.4.2 Implementation of GA and PSO based voltage control algorithms

Two popular metaheuristic algorithms, GA and PSO, are also applied here for voltage control,
to facilitate the comparison between CS and other metaheuristic algorithms. Many variants
have been developed for GA and PSO before. Here the GA from [137] and the PSO from

[117] are utilized.
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Generally metaheuristic algorithms treat the optimisation problem as a black box, which
allows them to be applied with a similar approach. The GA from [137] is integer based. The
same equations from (47) and (48) can be applied directly to convert the integer variables into
discrete control variables. Since the basic PSO from [117] is originally developed based on
continuous variables, the discrete control variables are considered as continuous variables first
and the continuous values achieved are then rounded to the closest feasible discrete values
after the optimisation process.

5.4.3 Comparing the voltage control algorithms based on CS, GA and PSO

These two algorithms, based on GA and PSO, are tested with the same test case from section
5.4.1. As discussed in 5.2.2, the same amount of fitness function evaluations are applied in the
tests for all these three algorithms, in order to carry out a fair comparison. For CS, the number

of fitness function evaluations, Ncs, is calculated by (51).
N =1+ 2x nest number x maximum iteration number (51)

The numbers of fitness function evaluations for GA (Nga) and PSO (Npso), are calculated by
(52) and (53).

N, = population size x generation (52)
N,s, = particle number x maximum iteration number (53)

Metaheuristic algorithms have several parameters, which could affect their performance.
Different metaheuristic algorithms normally have different types of parameters, which need to

be determined. Here, the parameters in these three algorithms are specified in the following:

- CS: nest number = 25, maximum iteration number = 100, p, = 0.25;

- GA: population size = 50, generation = 101, step = 1, mutation probability = 0.2, elite
rate = 0.2;

- PSO: particle number = 25, maximum iteration number = 202, cognitive factor
following personal best = 1.8, social factor following global best = 1.8, inertia weight
=0.6.

For CS, the same parameters from the study in section 5.4.1 are used. The generation number

for GA and the maximum iteration number for PSO are determined, in order to ensure the

similar amount of fitness function evaluations are applied in all these three algorithms. It

should be noted that CS utilizes 25 less fitness function evaluations than GA and PSO, due to
92



the different structures of these algorithms. The rest parameters for GA and PSO, have been
determined as recommended by previous studies. For GA, the rest parameters have been
recommended by [137]. For PSO, the rest parameters have been recommended by [117].
Potentially, for all these three algorithms, their parameters could be tuned regarding this
specific voltage optimisation problem. However, to prove the robustness of the algorithms,
the parameters recommended by the references are used. Also, here the tests are for the
illustrative purposes only.

The test case from 5.4.1 is solved 100 times by each of these three algorithms. The test results

extracted from these 100 runs are summarized in Table 13.

Table 13 Results achieved with the algorithms based on CS, GA and PSO

Network Loss achieved over 100 runs (MW)
Algorithm | Maximum | Minimum | Average Standard Deviation
CS 0.117931 | 0.117931 | 0.117931 0.000000
GA 0.119563 | 0.117931 | 0.118182 0. 000257
PSO 0.118553 | 0.117931 | 0.118018 0.000202

As shown in Table 13, all these three algorithms are able to achieve the global optimum at
least once from the 100 runs. However, compared to GA and PSO, CS is able to achieve a
more stable result, which can be seen from the averages and standard deviations for the results

achieved by these algorithms.
5.5 Initial evaluation of multi-objective cuckoo search based voltage control algorithm

The MOCS based voltage control algorithm is also evaluated with the same test network from
section 4.4.1. Besides network losses, voltage deviations are also to be minimised. Voltage
deviation minimisation is another widely used optimisation objective for distribution network
voltage control, in consideration of achieving better power quality [95, 127]. Voltage
deviation is a measure of the differences between the magnitudes of the actual and reference
values of busbar voltages. The reference voltage values could be the nominal voltage, a mean
value of the operating voltage, or the declared supply voltage. The nominal voltage is used
here as the reference value, without loss of generality. Different definitions have been
proposed to represent the voltage deviation. Here a widely used definition, represented by
(54), is adopted in this study. It is defined as the sum of the absolute values of the differences
between the busbar voltages and their reference values for all network busbars.
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Nbusbar
. reference 4
fVoItageDeviation - Z |\/i _Vi (5 )
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where,

reference
4 f

Reference voltage for busbar i

Initial evaluation results from MOCS are presented here. Moreover, MOCS is compared with
NSGA-II, which is one widely used multi-objective metaheuristic algorithm. The open source
python algorithm of real-coded NSGA-II from [138] is applied for multi-objective voltage
control. In this real-coded NSGA-II python algorithm, the control variables are required to be
the values within the range of [0, 1]. Therefore, the tap position of OLTC and the stage
position of MSC are represented by the control variables of this NSGA-II python algorithm
using (55) and (56).

TapPosition,, ;. = Tap™ + Round [i x (Nr,p —1)] x Stepsize® ™, i €[0,1] (55)
StagePosition, . = Round[ix ( Nyage —1)]>< Stepsize™™“,i[0,1] (56)

5.5.1 Initial evaluation of MOCS based voltage control algorithm

For multi-objective optimisation algorithms, the result evaluation is substantially more
complex than that for single-objective optimisation. This is because the result normally
includes a set of solutions, which normally need to be measured by some performance metrics,
before the result can be evaluated. Many performance metrics have been developed before, to
evaluate the results achieved by multi-objective optimisation algorithms. Here, the Ratio of
the Reference Point Found (RRPF) is used to evaluate the results in this initial evaluation.
RRPF, as its name suggests, is the ratio of found solutions against the ideal or reference
Pareto set. It is seen as the most natural quality measure if a reference set composed of all the
efficient solutions is known in previous researches. The ratio of the reference point found can
be defined by (57).

_|AnR

(57)
R

Ce(A)

where A is the solution set, while R is the reference set. The voltage optimisation problem in
this test case is a combinatorial problem. The Pareto set can be achieved by exhaustive search

and used as the reference set R.
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As shown in section 5.2, MOCS has several parameters, which could affect the performance
of MOCS. Potentially, these parameters could be tuned for each individual multi-objective
optimisation problem and parameter tuning can be seen as an optimisation problem itself.
However, the parameter tuning for multi-objective metaheuristic algorithms, such as MOCS,
is very difficult and time consuming. It is not practical to tune all the parameters for each
individual problem. Here, the parameters are determined as per the literature and with some

experiments.

As per [121], the ranges of the parameters in MOCS are suggested as: nest number = 25 to 50,
pa= 0.25to 0.5 and 8 =1 or 1.5. In addition, ap is recommended to be 0.1, as suggested by
[121]. pa and g are determined experimentally. MOCS was tested with g =1, 1.5 and p, = 0.25,
0.3,..., 0.5. For each set of parameters, 20 runs were carried out for MOCS, with the nest
number set as 50 and the maximum iteration number set as 200. The results are evaluated with

the ratio of the reference point found. The results are shown in Table 14.

Table 14 Ratios of the Reference Point found with different g and p,

Average RRPF over 20 runs
Pa

B=1 =15
0.25 6.02% 6.63%
0.3 6.33% 5.96%
0.35 5.78% 5.84%
0.4 4.88% 5.24%
0.45 5.60% 5.24%
0.5 4.16% 4.28%

Based on the results shown in Table 14, the following parameters are selected for MOCS in
this study: p, = 0.25 and g = 1.5. With this set of values for p, and f, the largest average RRPF

of the results over 20 runs were achieved.

Besides the parameters discussed above, the nest and maximum iteration numbers also need
to be decided. More solutions can be achieved with larger nest and maximum iteration
numbers, or by multiple runs. To show the impacts of the nest and maximum iteration
numbers, MOCS was tested with different nest and maximum iteration numbers. Specifically,

both the nest and the maximum iteration numbers are varied from 25 to 200, with the step size
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as 25. For each combination of the number and maximum iteration numbers, MOCS was run
20 times. The results were evaluated with RRPF. The average RRPF and the average
computation time are shown in Fig. 53 and Fig. 54. It can be seen from Fig. 53 and Fig. 54
that generally better results can be achieved with the larger nest and maximum iteration

numbers. However, the computation time is also expected to be longer, if larger nest number
and maximum iteration number are used.
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Theoretically, an optimal set of nest and maximum iteration numbers could be found for each
optimisation problem. However, tuning the population size (nest number for MOCS) and
maximum iteration number for multi-objective metaheuristic algorithms is a difficult task and
there is no specific rule for guiding the selection of these numbers. In many previous studies,
the population size and maximum iteration number were just given by the authors without
specifying how these values were decided. In this study, the nest number is increased with the
number of objectives and control variables. The maximum iteration number is determined
experimentally. Specifically, the maximum iteration number is being increased, until the

result cannot be further improved, as shown in Fig. 55.

Start with an initial maximum
iteration number

|

Run MOCS

!

Increase the maximum iteration
number and run MOCS

Result further
improved?
No

Return the maximum iteration
number

Fig. 55 MOCS maximum iteration number determination

It is not always straightforward to judge if the result is further improved or not for multi-
objective optimisation problems. As discussed at the beginning of this section, normally the
results for multi-objective voltage optimisation need to be measured by certain performance
metrics, such as RRPF, before they can be compared. However, RRPF requires the
information of Pareto front, which is normally unknown in practice. Another performance
metric, coverage metric, is introduced here, to facilitate the comparison between two different
sets of results. The coverage metric C(A, B) is defined as the ratio of the number of points in
the solution set B dominated by the points from the solution set A, over the total number of
points in the solution set B [139]. If all the points in B are dominated by the points in A, C(A,
B) equals 1, while if none of the points in solution set B are dominated by the points in A, C(A,
B) equals zero. Here, it is seen that the result can be further improved as long as the condition

represented by (58) can be met.

C (SolutionSet**", SolutionSet™*" ) > C ( SolutionSet™"", SolutionSet™*) (58)
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before

where SolutionSet is the solution set achieved before increasing the maximum iteration

A js the solution set achieved after increasing the maximum

number, while SolutionSet
iteration number. To mitigate the influence of the stochastic nature of metaheuristic
algorithms, a large step size can be used to increase of the maximum iteration number. For

this test case, the nest was set as 50 and the iteration number was determined as 300.
5.5.2 Comparison the voltage control algorithms based on MOCS and NSGA-II

The parameters for MOCS are shown in the section. The parameters of NSGA-II are set as
recommended in [138]: population size = 100, generation = 301, crossover distribution = 20,
mutation distribution = 20, crossover probability = 0.9, mutation probability = 0.1. Both
algorithms are tested with 20 runs and the results are evaluated with RRPF, which are
summarized in Table 15.

Table 15 Ratios of the reference point found of the results achieved with the multi-objective voltage
optimisation algorithms based on MOCS and NSGA-11

RRPF over 20 runs

Max Min Average
MOCS 10.24% 4.82% 6.75%
NSGA-II 3.98% 2.41% 3.45%

It can be seen from Table 15 that better results can be achieved with MOCS in terms of the
performance metric, ratio of reference point found. Also, visual presentations of the results
are also used to evaluate and compare the results achieved by MOCS and NSGA-II. The
Pareto front found by exhaustive search and the best results achieved by MOCS and NSGA-II

over 20 runs are shown in Fig. 56.
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Fig. 56 Pareto front and test results for the initial multi-objective test case (a) Pareto front found by
exhaustive search, (b) Results achieved by ODCDM and MOCS

As demonstrated by the results in Fig. 56, it can also be found that MOCS can reach to the
space where NSGA-II cannot reach. It should be noted that potentially, better results could be
achieved by NSGA-II, by tuning its parameters. However, instead of comparing MOCS and
NSGA-II, here the purpose is just to illustrate the performance of MOCS.

Due to the stochastic nature of MOCS, the results achieved by different runs may not be the
same, as shown by Fig. 57. However, it can be seen from Fig. 57 that the results achieved in

both runs can reflect the Pareto front shown in Fig. 56—(a).
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Fig. 57 Results for different runs of MOCS (a) Test 1 (b) Test 2

5.6 Conclusions

In this chapter, the CS based voltage control algorithms were introduced. CS, as a novel
metaheuristic algorithm, has been extended to solve mixed integer and multi-objective
optimisation problems and implemented here. These developed CS algorithms are then
applied for distribution network voltage control. Initial test is conducted to illustrate the basic
mechanism of the CS based voltage control algorithm. The developed CS algorithm is also

compared with two popular algorithms, GA and PSO. Test results demonstrated that the CS
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based voltage control algorithm is able to achieve a more stable result for the given test case,
compared to the algorithms based on GA and PSO. And the MOCS based voltage control
algorithm is compared with the NSGA-II based voltage control algorithm. The comparison
results also demonstrate that MOCS achieved a more comprehensive set of Pareto-optimal

solutions in comparison with NSGA-I1.

As summarized in the last two chapters, deterministic algorithms and heuristic algorithms
have their own characteristics. Although the theoretical differences between these two types
of algorithms were discussed in previous studies, these two types of algorithms haven’t been
compared regarding the voltage control problems in future smart distribution networks before.
In the following chapter, a methodology is proposed to compare these two algorithms and

these two algorithms are evaluated and contrasted with different test cases.
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Chapter 6 Evaluation of Single-objective Voltage Optimisation Algorithms

6.1 Introduction

In Chapter 4 and Chapter 5, the development and initial evaluation of two single-objective
voltage optimisation algorithms, based on ODCDM and SOCS, were described. This chapter
describes the further evaluation and comparison of these two algorithms, regarding various
voltage control problems in conventional and future distribution networks. Specifically, a
number of test cases have been generated, based on different test networks, optimisation
objectives and load and generation conditions. The voltage optimisation algorithms were
applied to solve the test cases, and their performance was evaluated and compared to
predetermined performance metrics. For the remainder of this chapter, the ODCDM based
voltage optimisation algorithm will be referred to as ODCDM, while the SOCS based voltage

optimisation algorithm will be referred to as SOCS.

In the rest of this chapter, the evaluation method is introduced. The voltage optimisation
problem formulated for conventional distribution networks is analysed. Test cases are then
generated based on the analysis of the problem formulation, followed by the test results
achieved by ODCDM and SOCS. The changes in the voltage optimisation problem for future
distribution networks are then discussed, followed by the generation of test cases and the

corresponding test results. Finally, conclusions are drawn.
6.2 Voltage optimisation algorithm evaluation method

As shown in Chapter 4 and Chapter 5, voltage control problems can be formulated as
optimisation problems, which consist of optimisation objective(s), equality and inequality
constraints. These components are determined according to the specific issues related to the
voltage control problems, such as the network under control and control preferences. Various
test cases are generated based on the potential variations of the components of the voltage
optimisation problem. Voltage optimisation algorithms are then applied to solve these test

cases and their performance is evaluated.

As discussed in Chapter 4, voltage optimisation algorithms are required to find a feasible
solution, with which network voltages can be maintained with their statutory limits. Also,
voltage optimisation algorithms are expected to minimise the optimisation objective functions,
which are defined to represent secondary control objectives. In this chapter, single-objective
voltage optimisation is considered, which means voltage optimisation algorithms can be

assessed and compared, regarding the values they achieved for the optimisation objective
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function. In addition, voltage optimisation algorithms must meet the computation time
requirement for real time control, which is related to different issues in practice, such as the
computation power of the controller and the computational burden of the algorithm itself.
Here the algorithms are evaluated and compared regarding the computation time they required
for each test case. Therefore, the following performance metrics are used to evaluate the

performance of single-objective voltage optimisation algorithms:

- The ability to find a feasible solution;
- The value achieved for the optimisation objective function;
- The computation time.

6.3 Problem formulation and analysis for conventional distribution networks

The following assumptions were made regarding the voltage control problems in conventional

distribution networks, as per the discussion in Chapter 2:

- Only load is connected to distribution networks;
- Conventional voltage control techniques are used for voltage control. Here, OLTC and
MSC are considered as voltage control techniques in conventional distribution

networks.

Regarding these two assumptions, the specific problem formulation for voltage control in
conventional distribution networks is introduced, with regards to the optimisation objective

functions, equality constraints and inequality constraints.
6.3.1 Optimisation objective functions

Network loss minimisation and voltage deviation minimisation, as defined in Chapter 4 and
Chapter 5, are used to create test cases. In addition, minimising the numbers of OLTC and
MSC switching operations is also considered as an optimisation objective. By reducing the
numbers of switching operations of the OLTCs and MSCs, the lifetime of these voltage
control devices can be extended. Also, this can reduce the likelihood of affecting the
operation of other network components and customers [140]. The switching operations could
also be formulated as a set of constraints [76, 78, 141], which are normally adopted in the
control scheduling problems. This PhD thesis concentrates on real time control, for which the
number of switching operations is normally considered as one optimisation objective, as
represented by (59). In the rest of this chapter, this optimisation objective is simply referred to

as switching operation minimisation.
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NOLTC

Nusc
Neviing = 2 SwitchingNumber,®™ + " SwitchingNumber,"* (59)

Switching
where nzzet is the total number of switching operations for all OLTCs and MSCs.

OLTC MSC

SwitchingNumber; and SwitchingNumber;™>~ are the numbers of the switching operations
for OLTC i and MSC i. For an OLTC, the number of switching operation can be calculated by

(60).

Position — Position®

SwitchingNumber = Stepsize (60)
where,
Position Position of the voltage control device after control
Position’ Position of the voltage control device before control
StepSize Step size of the voltage control device

As shown by (60), the switching operation is affected by the positions of the voltage control

devices before a control action is applied.

The number of switching operations for a MSC can also be calculated by (60), if the MSC
only has one stage (one capacitor bank), or the MSC has multiple stages and the capacitor
banks of this multi-stage MSC have the same size. However, if the capacitor banks in a multi-
stage MSC have different sizes, the number of switching operations for this multi-stage MSC
may not be simply calculated by (60). Instead, more complicated relationships between the
number of switching operation and the MSC stage positions need to be considered. This is
illustrated with the MSCs in the case study network