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ABSTRACT 

In the hot arid contexts, the impact of urban climate is often associated with 

negative effects on outdoor thermal comfort and an increase in the urban heat island 

(UHI) effect.  

The primary aim of this research is to investigate the outdoor thermal 

performance of traditional commercial urban streets located in the hot arid context of 

Cairo in Egypt. A number of methods were used including field measurements and 

social surveys. Consequently, urban air flows, temperature and daylight simulations to 

assess existing and possible improvement scenarios to extend pedestrian thermal and 

visual comfort were tested. The field measurements were conducted in order to first 

assess the UHI intensity in the urban street, and to investigate the effectiveness of the 

traditional design solutions in ensuring comfortable outdoor conditions based on human-

biometeorological assessment methods. Validation of results was carried out by 

comparing measured and simulated results of thermal conditions in the commercial spine 

ENVI-met is a three dimensional microclimatic model based on computational 

fluid dynamics (CFD) models and is designed to simulate surface-air interactions in 

urban environments. It was used to calculate the mean radiant temperature and obtaining 

the microclimatic maps with problematic areas concerning the pedestrian's thermal 

comfort for the existing urban configurations.  

Outdoor thermal comfort was assessed based on a thermal sensation survey and 

the physiological equivalent temperature (PET), with a comfort range of (24
o
C - 32

o
C).  

To improve outdoor thermal conditions at pedestrian level seven different 

shading scenarios addressing the form and the opening of shading devices were 

simulated using CFD Fluent, based on two dependant variables including air temperature 

distribution and wind velocity. The daylight analysis software (DIVA) was used to 

evaluate the solar access for the tested cases. The findings show that typology and the 

opening locations are one of the paramount factors in providing a temperature reduction 

in the urban scale. As the air temperature was reduced by (2.3
o
C) for the best case 

compared to the base leading to a lower PET for the best case recording 32.9
o
C against 

35
o
C for the base case. 
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 “Climatic determinism has been widely accepted in 

architecture as well as in cultural geography, although 

in the latter in has recently found rather less favour. One 

need not deny the importance of climate to question its 

determining role in the creation of built from… In 

architecture the climatic determinist view, still rather 

commonly held, states that primitive man is concerned 

primarily with shelter, and consequently the imperatives 

of climate determine form” (Rapoport,1969, p. 18) 
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1.1 Introduction 

The thesis aims to investigate the outdoor thermal performance of traditional 

commercial urban streets in the hot arid context of Cairo in Egypt, to find ways of 

extending the thermal comfort of pedestrians. This enables spending more time outdoors, 

with potential health improvements, less dependency on energy consumption indoors, 

and positive economic contributions to the local economy (Oke, 1988; Gehl and 

Gemozoe, 2001; Johansson, 2006b; Marques de Almeida, 2006; Pearlmutter et al., 2011; 

Makaremi et al., 2012). The strategic importance of the street as a case study is 

attributable to its function where the street network of an urban entity has, from a design 

point of view, a structural role and accounts for the main support for mobility, urban 

activity, and social life. It even reflects cultural specificities, particularly in traditional 

commercial streets (Moughtin, 2003) which have always played a central role in the 

social lifeof cities. They have always served three vital functions since they act as 

meeting places, market places, and spaces for connection (Gehl and Gemozoe, 2001).  

This chapter is divided into five core sections, starting with the conceptual 

framework by discussing the rationale behind the argument, and the research aim, 

hypotheses, objectives, questions, limitations, propositions and significance of the study. 

Accordingly, section 1.7 outlines the research methodology, followed by the research 

context overview, such as the geographical and climatic characteristics, in addition to the 

historical background of the case study in sections 1.8 and 1.9, and thenthe research 

structure is outlined and the thesis overview are summarized in section 1.10. 

1.2 The conceptual framework 

1.2.1 Problem statement 

According to Intergovernmental Panel on Climate Change (IPCC, 2007), global 

air temperatures are expected to rise by 0.2°C per decade over the next century. 

Furthermore, there will be an increased risk of more intense, more frequent and longer 

lasting heat waves. The European heat wave of 2003 is an example of the type of 

extreme heat event lasting from several days to over a week that is likely to become 

more common in a warmer future climate. For regions with hot or arid climates, the 
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scenario will be worse as the consequences include increased occurrence of heat stress 

and other heat-related diseases. Moreover, human performance of both mental and 

physical tasks diminishes at uncomfortably high temperatures, while deaths and illness 

caused by air pollution tend to increase during extremely warm weather (Harlan et al., 

2006). In addition to global warming, cities are particularly in danger since it is often 

warmer than in surrounding rural areas during hot fine weather, especially at night. This 

phenomenon is referred to as the ‗Urban Heat Island‘ (UHI) (Landsberg, 1981; Oke, 

1973, 1978, 1988, 1999; Santamouris et al., 2001; Streutker, 2003; Tran, 2006; Gartland, 

2008), which is caused as a result of accelerated urbanization and rapid changes to the 

outdoor environment in different ways (Roth, 2002). For example, this includes the 

fraction of urban land covered by buildings, distances between buildings, and the 

average height of buildings (Givoni, 1998). These parameters affect the urban 

microclimate in terms of solar radiation and reflection, wind speed and direction, and 

any inappropriate combination of these parameters which can contribute to the harshness 

of the environment (Shishegar, 2013), such as building a large portion of landscape 

consisting of rough building blocks and impervious pavements combined with a lack of 

green and blue areas. Therefore, the urban planning regulations, which include the 

instructions that lead the city development in terms of building constructions, urban 

forms, urban spaces, parks, street, etc., have a great impact on the microclimate in urban 

areas (Johansson and Yehia, 2010). In order to reduce negative climatic impacts in cities, 

those involved in urban development, planning, and design must begin to incorporate 

climate knowledge into planning strategies and create links between microclimate, 

thermal comfort, design, and urban planning regulations. However, the integration of the 

climate dimension in the design process is still missing as a result of poor 

interdisciplinary work (Oke, 2006; Yow 2007; Fahmy and Sharples 2008b), or as 

Eliasson (2000) earlier identified, this is the ‗translation-gap‘ as designers and 

climatologists do not ‗speak the same language‘. Moreover, most studies have been 

conducted in the temperate regions of developed countries; most of the studies 

conducted in tropical areas have dealt with the urban rural difference known as the urban 

heat island (UHI), and fewer have been done on microclimate variations within cities 

(Johansson, 2006). Accordingly, regulations determining the urban design in arid regions 



 

 Chapter One: Introduction 

 

 4 

are often inspired by planning ideals from temperate climates and consequently are 

poorly suited to its local conditions, leading to uncomfortable outdoor environments for 

the planned settlements (Al-Hemaidi, 2001; Baker et al., 2002; Johansson, 2006). 

In the hot dry city of Fez in Morocco, Johansson (2006b) reported that the 

current regulations‘ main objective is to provide daylight for buildings. This may be 

acceptable during the winter period when solar elevations are low and passive heating of 

buildings is desired. However, during the long, warm summer, when there is a need for 

solar protection, this results in a very poor microclimate at street level. In Saudi Arabia, 

it was found that the current urban design regulations encouraging dispersed urban 

design planning led to an unfavourable microclimate around buildings, as the provision 

of shade is totally lacking (Al-Hemaidi, 2001; Eben Saleh, 2001). Furthermore, Yehia 

(2012) reported the shortcomings of the current planning regulations regarding the 

outdoor thermal comfort at street level in the hot dry summers of Damascus city in 

Syria. The existing planning regulations similar to Saudi Arabia encouraged a dispersed 

urban form leaving large surface areas of the buildings and streets exposed to solar 

radiation without any requirements for shading for pedestrians, such as shading devices, 

arcades and projecting upper floors or shading trees. 

In terms of socio-economic consequences, the microclimate conditions 

remarkably influence people‘s outdoor behaviour and usage of public spaces (Zacharias, 

2001; Thorsson et al., 2004a; Knez and Thorsson, 2008). The number and intensity of 

such activities may be affected by the level of the discomfort experienced by pedestrians 

when they are directly exposed to the climatic conditions (Thorsson, 2007), whether they 

are explicitly aware of it or not. For instance, on a typical summer day in an arid city, the 

thermal conditions may be unpleasant so people tend to spend time outdoors only when 

necessary; that is, in performing essential tasks such as travelling to work or shopping. 

Meanwhile, optional activities and social activities, such as strolling, meeting people in 

public open spaces, children‘s play and so forth will diminish (Gehl 2001), bringing 

about a negative effect on outdoor commercial activities, such as café and restaurants, 

open-air markets, cultural events. 



 

 Chapter One: Introduction 

 

 5 

As a result of this connection between physical conditions and human behaviour, 

a poor urban climate may also increase people‘s isolation, and reduce quality of life by 

reliance on air-conditioned buildings and vehicles, resulting in higher energy 

consumption and less vivid cities (Gehl and Gemozoe, 2001; Johansson, 2006b; 

Marques de Almeida, 2006; Aljawabra and Nikolopoulou, 2010; Pearlmutter et al., 

2011; Makaremi et al., 2012). However, there is a significant  lack of information on 

thermal comfort conditions in outdoor spaces, which in effect will assist the design and 

planning of such spaces (Nikolopoulou and Lykoudis, 2006; Panagopoulos, 2008;Fahmy 

and Sharples 2008b). 

Thermal comfort as a term has been defined in numerous ways. Fanger‘s (1970) 

definition links thermal comfort and the rate of energy gains and losses by the human 

body, describing the state of comfort when all heat flows to and from the body in 

equilibrium. In this definition, Fanger‘s (1970) studies were mainly based on the rational 

model, which accounts for environmental conditions and physiological regulation of 

body temperature within a limited range. According to British standard BS EN ISO 7730 

(2013) and ASHRAE (2009), thermal comfort is defined as ―the state of mind that 

expresses satisfaction with the surrounding environment.‖ This means that comfort is not 

a state condition, but rather a state of mind, which in turn highlights the social and 

psychological dimensions. Recent studies have shown that thermal sensations are 

different among people within the same site due to the combination of large number of 

factors, including mood, culture, and social factors, which affect the perception of 

human beings. Although this description suggests psychological influences, thermal 

comfort was approached from a purely physical perspective for a long time. 

Accordingly, the first attempts made to assess thermal perception and grade thermal 

stress consisted of the simply measurable physical variables like air (dry-bulb) 

temperature (Parsons 2003, p. 197). Later, thermal indices included wet-bulb 

temperature and air velocity, like the indices based on ‗Effective Temperature‘ (Parsons 

2003, pp. 198-199; Gagge et al., 1986). In 1926, Macpherson defined the following six 

factors affecting thermal sensation: air temperature, air speed, humidity, mean radiant 

temperature, metabolic rate, and clothing levels (Goldman, 1999; Berglund, 1978). Since 
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then, a range of other indices for thermal comfort, which included more personal 

parameters like clothing degree and metabolic rate, were later developed with the 

‗Predicted Mean Vote‘ (PMV) by Fanger (1970, pp. 19-43), ‗Physiological Equivalent 

Temperature‘ (PET) (Höppe and Mayer, 1987; Mayer, 1993; Matzarakis et al., 1999; 

Höppe, 2002) and the COMFA index (Brown and Gillespie, 1995). All these indices 

reasonably produce near accurate predictions of occupant thermal sensation; however, 

their sole focus on the physiological and physical dimensions was increasingly 

criticized, as the climatic chamber method used to underpin these indices failed to 

include many subjective, social and cultural real world situations (Han, 2007). 

Moreover, these indices are almost exclusively designed on theoretical analyses of 

human exchange in mid-latitude climatic in North America and Europe, such as 

ASHRAE standards and the ISO (Han, 2007). Other studies in different climatic regions 

have refuted this hypothesis and indicated a wider range of adaptation and tolerance to 

local conditions. Lin (2009), for example, studied outdoor thermal perception and 

adaption in a hot and humid subtropical climate of Taiwan, and reported that the thermal 

acceptance range for the entire year was 21.3-28.5
o
C PET, significantly higher than the 

European scale of 18-23
o
C PET (Lin, 2009). Another study in the Mediterranean climate 

of Tel Aviv found the PET values were higher by 3
o
C PET than the European scale and 

lower by 5
o
C PET than the lower boundary of Taiwan (Cohen et al., 2013). These results 

revealed that a purely physiological approach is inadequate to characterize thermal 

comfort conditions outdoors, and thermal adaptation, which involves behaviour 

adjustment (personal, environmental, technological or cultural), physiological factors 

(genetic adaptation or acclimatization), and psychological factors (habituation or 

expectation) as playing an important role in the assessment of thermal environments 

(Brager and de Dear 1998; Nikolopoulou et al., 2001; Nikolopoulou and Steemers, 2003; 

Thorsson et al., 2004; Knez et al., 2009; Lin, 2009; Yang et al., 2013). Thus, different 

scholars such as Nikolopoulou and Lykoudis (2006), Lin and Matzarakis (2008), Kántor 

et al. (2012) and Cohen et al. (2013) suggest that calibration should be carried out using 

local subjective comfort data conducted from field surveys to provide a broader 

perspective to assess thermal comfort in urban spaces. 
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In comparison with extensively investigated thermal comfort in indoor 

environments, outdoor thermal comfort and its determinants are less understood by 

researchers and practitioners alike. Hence, four main knowledge gaps have been 

identified as follows: 

1. The integration of the climate dimension in the design process is missing as a result 

of poor interdisciplinary work. Studies have shown that integrating knowledge of 

the climate in urban planning among planners and urban designers is often missing 

(Fahmy and Sharples 2008b) particularly inareas of the Middle East (Abdulrahman 

and Sharples 2014). Added to this, there is a lack of suitable design assessment tools 

(Eliasson, 2000, Givoni et al., 2003; Oke, 2006). A tool that can provide both 

quantitative and qualitative understanding of the relationships between the 

microclimatic environment, subjective thermal assessment, and social behaviour 

(Givoni et al., 2003; Chen and Ng, 2012) 

2. Many investigations of outdoor thermal comfort extend indoor comfort methods to 

the outdoors by adopting thermal indices, which rely on a steady-state energy 

balance model and combine physical factors into a single metric to assess 

comprehensive thermal comfort or thermal stress (Gagge, 1981; Givoni, 1963; 

Hoppe, 1999). Since these indices were originally developed for enclosed indoor 

spaces, their validity under outdoor conditions has been increasingly questioned, as 

evidence is accumulating that human thermal sensation, in fact, differs from those 

predicted by the indices and that the parameters of an indoor setting may not be 

transferable to an outdoor environment (Hoppe, 2002; Nikolopoulou et al., 2001; 

Spagnolo, 2003; Thorsson et al., 2004b; Cohen et al., 2013) 

3. A few studies have been conducted recently in hot dry climates, but only a limited 

number of investigations have been done in the Middle East that focus on urban 

design from a microclimatic perspective (Yehia, 2012). In addition to, little 

discussion aboutthe integration of modern technological solutions andtraditional 

architectural approaches (Abdulrahman and Sharples 2014). However, the situation 

has begun shifting with population growth and accelerating urbanization. Hence, 

sustaining an acceptable quality of life for this growing population is essential for 
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hot arid settlements, and is largely dependent on our understanding of climate-

sensitive urban design 

4. There is a need for a valid assessment framework which should work on at least four 

levels (physical, physiological, psychological, and social/behavioural), as the 

majority of the available studies deal with the microclimate separate between the 

qualitative and the quantitative approaches. Numerous researchers within the field 

have recently identified the psychological factors of comfort experience to be of 

equal importance to the technically measurable comfort indices (Auliciems, 1981; 

Gehl, 1987; Katzschner et al., 2002; Givoni et al., 2003; Thorsson et al., 2004; 

Katzschner, 2006; Nikolopoulou and Lykoudis, 2006; Walton et al., 2007; Eliasson 

et al., 2007).  

Based on the above, the study analyzes and climatically examines the urban 

design on street-level thermal comfort by triangulating urban microclimatic 

measurements and structured interviews and urban simulations using principles of urban 

physics. The study highlights the importance of microclimate and thermal comfort in the 

planning and design processes and it provides useful insights that can mitigate the 

negative aspects of urban design on microclimate and thermal comfort in the hot arid 

climate of Cairo, Egypt. 

Accordingly, Al-Muizz Street, which is one of the oldest streets in medieval 

Cairo (Figure 1.1), was chosen as the main case study for numerous reasons including its 

essential street pattern, which has been preserved and reflects a climate conscious design 

developed over centuries of building experience; its convoluted street system and 

compact urban structure limit the possibility of adopting modern large-scale 

developments. In addition, the area had the largest concentration of the medieval 

architectural treasure in the Islamic world for a period of 1,200 years (Antoniou et al., 

1985), and this has helped to preserve the place to some extent from modern 

development. Secondly, Al-Muizz Street piloted the first large-scale pedestrianisation 

scheme in 2010 inEgypt. It is relevant to this thesis that pedestrianized areas encourage 

longer durations of use, and this therefore allows for the examination of pedestrian 

thermal comfort in urban streets. On top, Al-Muizz Street and its 
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surroundingswereexposed to an extensive restoration project, to be transformed into an 

open-air museum, by the Egyptian government. The first half of the 1.6km (1 mile) long 

street was fully restored and pedestrianized in early 2010. The second half of the street is 

about 0.6km (0.4 mile) and has yet to undergo restoration that allows for a comparative 

case study between the two distinctive contexts, and their impact on use and thermal 

comfort in the varying urban environments. 

This research argues that the restoration project has led to urban modifications 

and had an impact on the microclimate, which, in turn, has had an impact on the thermal 

comfort of the inhabitants and users of the area. This can be noticed in the changing 

behaviour and ways of adaptation to the microclimate of the inhabitants of both sides 

(the renovated and non-renovated), where the property owners of the old part still regard 

the pavement area as a legitimate extension to their shops and deliberately appropriate 

the street setting for selling and living (Rizk, 2011). Different methods of shading to 

avoid the intense solar radiation in hot summer time are seen in the non-renovated 

stretch (Figure 1.2), while in the renovated parts, the new regulation prohibited 

spontaneous urban shading. Therefore, life moves back into the houses, leading to a less 

vivid atmosphere in the renovated part (Rizk, 2011), and these changes are likely to 

deepen the social exclusion and contribute to the increased use of air conditioning, 

resulting in higher energy consumption. Subsequently, more intensive energy use 

through the consumption of fossil fuels brings increased pressure on the conventional 

energy supply and directly increases greenhouse gas emissions. In cities located in warm 

regions, a vicious circle arises: air conditioning units cool the interior of buildings but 

emit sensible and latent heat to the exterior, further worsening outdoor conditions (de 

Schiller and Evans 1998; Baker et al. 2002). 
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Figure 1-1 Al-Muizz Street runs from north to south across the middle of what scholars refer to as 

Islamic, Fatimid or Medieval Cairo 
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‎1-2 The different local interventions for shadings in the non-renovated part on the right compared to the 

renovated one on the left. 
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1.3 Research aim and objectives 

This study aims to develop a better understanding of the relationship between 

outdoor thermal comfort, urban design and microclimate in order to improve the 

pedestrians‘ thermal perception within the hot arid context of Cairo. To achieve this aim, 

the following objectives were derived:  

1. To explore the link between urbanization and the urban heat island effect 

phenomenon, especially in the hot arid regions and how it can be mitigated 

(discussed in Chapter 2). 

2. To understand the effect of the urban canyon microclimate and the main surface 

energy balance, and how urban canyon thermal characteristics relate to thermal 

comfort indices (discussed in Chapter 3). 

3. To triangulate measured data from various sources, findings from the literature 

relating to thermal comfort and the use of simulation tools to predict the 

performance of various shading scenarios on thermal comfort outdoors need to 

be linked (discussed in Chapters5 and 6). 

4. To evaluate the cooling effect of different shading patterns provided by various 

shading systems' designs, and to predict the optimum cooling potential by 

comparing Al-Muizz‘s current conditions and different proposed modification 

scenarios using the computational fluid dynamics (CFD) code Fluent 13.0. 

(discussed in Chapter 7). 

5. To propose guidelines for improving the microclimate and outdoor thermal 

comfort based on a case study of Al-Muizz street in Cairo. 

1.4 Hypothesis and Research questions 

In accordance with the background to this study, the following hypotheses were 

investigated: 

1. The first action to be taken to mitigate hot conditions outdoors in summer is to 

intercept direct solar radiation –the most important source of heat gain –by 

providing shade to both surfaces and people; this in turn will influence human 

outdoor thermal comfort (This hypothesis tested in chapters 5, 6 and 7) 
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2. The microclimatic characteristics for the outdoor urban spaces influence people‘s 

behaviour and usage of outdoor spaces. The initial results of the previous 

literature review demonstrates that a purely physiological approach is inadequate 

in characterising comfort conditions outdoors, and an understanding of the 

dynamic human parameter is necessary in designing spaces for public use (This 

hypothesis tested in chapter 6) 

3. The comfort zone is different from one location to another. If the measured 

comfort index based on the energy balance approach is calibrated with actual or 

subjective thermal sensation vote, there would be a difference in the thermal 

acceptance ranges and the comfort zones within the hot arid region itself (This 

hypothesis tested in chapters5 and 6) 

4. The shading systems' can create a cooling effect and can be modified to promote 

wind flow in the urban canyon similar to that observed in the surrounding 

environment (This hypothesis tested in chapter 7). 

In order to better understand the hypotheses, the study aslo generated the following 

questions to be answered: 

1. Which are the main design parameters influencing the urban microclimate and 

outdoor thermal comfort in the hot arid climate? 

2. What are the thermal comfort perception and preferenceof people in outdoor 

urban spaces? What are the impacts of thermal adaptation on human thermal 

sensation in outdoor spaces? 

3. How can shading designs be modified to promote a significant optimum cooling 

effect? 

4. How can an urban street bounded by the existing urban boundaries be designed to 

improve the microclimate and thermal comfort at street level? 

1.5 Scope and limitations 

The research presented in this study concentrates on how urban design affects the 

microclimate and outdoor thermal comfort. The research focused on the effect of 

different shading systems' designs at street level on improving the outdoor thermal 
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comfort air temperature and mean radiant temperature (MRT) reduction in Al-Muizz 

Street, located in the old city of Cairo, Egypt. To complete the climate efficiency of the 

shading patterns, the impact of shading devices on daylight quality is presented in the 

study to assure the visual comfort underneath. Furthermore, Bodart and De Herde (2002) 

estimated the implementation of appropriate daylight access can reduce artificial lighting 

power costs from 50-80%, which in turn helps in reducing energy bills.  

The study is limited to the microclimate at street level, i.e. the urban canopy 

layer, which is roughly the space between the ground and the rooftops. This allows for 

better understanding of the horizontal impact and the behaviour of cooling from different 

shading designs on the surrounding outdoor environment and people. Therefore, the 

investigations incorporated the influence of cooling impact on people‘s thermal 

perception.  

This work is concerned with alleviating heat stress during the extended summer 

period in the hot arid region. Thermal cold stress occurs rarely in this region. Predictions 

from climate change scenarios in this climatic region also indicate a continuous rise in 

temperature reducing the importance of studies related to thermal cold stress (Jendritzky 

and Tinz 2009). 

The study is limited to the hot arid climate of Cairo. Although some of the 

findings may be generalized, the conclusions of the study are not necessarily valid 

throughout the hot arid climate groups, since there are climatic and considerable 

variations between different cities in terms of size, planning principles, proximity to the 

sea, and topography, etc. 

Air pollution and pollutant dispersion are affected by urban geometry. However, 

air pollution and its consequences on health are not treated here.  

1.6 Significance of the study 

Most of the available literature on outdoor thermal comfort is carried out in 

temperate climates (Lenzholzer, 2010). The international comfort standards such as 

ASHRAE standards and the International Standard Organization (ISO) are almost 
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exclusively based on theoretical analyses of human heat exchange performed in mid-

latitude climatic regions in North America and North Europe (Ogbonna and Harris, 

2008; Djongyang et al., 2010). Only a few previous studies were found to study the 

outdoor thermal comfort in hot humid climates, and even fewer were found for hot arid 

climates (Johansson, 2007, Pearlmutter et al., 2007; Marques de Almeida, 2008; Lin et 

al., 2010; Cohen et al., 2013). 

This study departs from previous attempts to examine outdoor thermal comfort in 

a hot arid street way. 

Previous studies investigated the thermal performance of shading on the urban 

microclimate (Nakamura and Oke, 1988; Lin et al., 2010). The shading has proved to be 

effective in providing a better microclimate during the daytime; however, it can 

contribute to human discomfort during the nighttime due to the time delay in releasing 

long wave radiation. However, these studies ignored the effect of the different designs of 

these shading devices in accelerating the heat release. This research looks at changing 

the shading systems' with different opening locations to improve the pedestrians‘ thermal 

comfort during the nighttime. Thus, a comparative assessment is undertaken to study the 

effect of different shading systems‘ and different opening locations in the cooling effect 

underneath. 

Previous studies have reported the unavailability of the international thermal 

comfort index, which can be used under different climatic zones due to the combination 

of a large number of factors that affect the perception of human beings. This study, 

therefore, diagnoses the subjects of the study through calibration between the field 

measurements and the field survey to define the comfort zones and acceptability limits 

for PET comfort index in hot arid climate of Cairo. This is very important information 

for urban designers aiming at a climate-conscious urban design.  

This study seeks to provide a better understanding of the relationship between 

thermal sensation, urban open spaces and microclimate design in the hot arid climate of 

Cairo by linking the theoretical knowledge of urban microclimate and thermal comfort 

with the practical design process, which in turn provides the designers and decision 
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makers with a comprehensive framework for use in evaluating or predicting the effect of 

different designs in modifying the outdoor microclimate. 

1.7 Research Methodology 

This study is multidisciplinary in character, as it incorporates phenomena as 

diverse as meteorology, urban design, urban climatology and environmental psychology. 

In order to capture the aim, a set of different qualitative and quantitative methodological 

tools were employed in three parts as follows (Figure 1.3): 

A. Urban heat island (UHI) and microclimate investigation 

Meteorological field measurements including air temperature, wind speed, solar 

radiation, humidity and globe temperature within the two different parts of Al-Muizz 

Street were taken covering a one week pattern in summer to assess the UHI intensity 

in the urban street, by comparing the observed values with the readings obtained by 

the Cairo Airport WMO Station no.623660. Accordingly, another in-situ field 

measurement for nine different locations along Al-Muizz Streetwere observed and 

measured to represent the environment and map the microclimate variations within 

the street. 

In order to cover a wide range of the urban design, an ENVI-met simulation model 

was used to describe the spatial pattern of mean radiant temperature along the whole 

street, highlighting some problematic areas concerning the UHI and the pedestrian‘s 

thermal comfort, even the comparison between restoration urban interventions and 

local shading interventions facilitated an interesting platform of exploration.  

B. Human outdoor thermal comfort  

A questionnaire survey was performed simultaneous to the field measurements being 

taken to ascertain an immediate respondent‘s impression of the surrounding thermal 

comfort conditions, and accordingly to calibrate the boundaries of the human thermal 

sensation scale in the hot arid climate in comparison to other climatic zones. 

C. Parametric analyses using numerical simulation 
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In order to evaluate the effect of the different shading systems' design scenarios on 

the absolute reduction of the air temperature, and improvement to the outdoor thermal 

comfort, the computational fluid dynamic (CFD) Fluent code 13.0 was chosen to 

further examine the thermal comfort underneath the seven different scenarios, in 

addition to the existing case study for the purpose of validation. Each test scenario 

consisted of one specific geometrical change in the roof shape and opening locations. 

Later on, Diva for Rhino software was selected in order to investigate the daylight 

and solar access underneath these different shading scenarios.  
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Figure ‎1-3 The overall methodology scheme investigating the outdoor thermal comfort 
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1.8 Research context 

1.8.1 The geographical setting of the research 

The Arab Republic of Egypt is situated approximately between longitude 25
o
 and 35

o
 E 

and latitude 22
o
 N and 31.5

o
 N. It occupies the north eastern corner of Africa and has 

the continent‘s only land border with Asia. Egypt‘s coastline has the Mediterranean 

Sea to the north, and its eastern coastline extends along the Red Sea. It is borderedby 

Libya to the west, the Gaza Strip to the east, and Sudan to the south.  

Egypt covers an area of approximately 1,001,450km
2
, but the inhabited and cultivated 

area is less than 40,000 km
2
, which is about 5% of Egypt‘s total area. The population 

density in the inhabited areas is about 1,800 capita/km
2
. Most of these cultivated 

settlements are grouped along the Nile (Figure 1.4) including the capital known as 

Cairo. Cairo is located on latitude 26
○
 50ꞌꞌ N to 30

○
 45ꞌꞌ N. Itis situated on the Nile 

at a point where the flat flood plain, constricted by desert hills to both the west and the 

east, begins to opens out into the Nile Delta. 

 

‎1-4 Map of Egypt and its geographic location 
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1.8.2 Climate characteristic 

According to Koppen and Trewartha‘s system of classification, Egypt lies entirely in 

the sub group BWh, also known as arid climate (Peel et al., 2007). The (B) symbol 

denotes a constantly hot, dry, subtropical desert climate, in which potential evaporation 

exceeds precipitation; the (W) symbol indicates that precipitation <1/2 water 

consumption, and (h) for the annual average temperature is greater that 18
o
C 

(Henderson and Robinson 1986). However, in 2006, the Housing and Building 

Research Centre (HBRC) in Egypt classified the country into eight different climatic 

zones within the arid climate previous classification, based on operative temperature, 

humidity, rainfall, wind speed, altitude, and solar radiation, as well as the physical 

topography of the country (Hassaan, 2011). According to the figure 1.6, the country 

have been classified into Northern Coast zone, Delta and Cairo zone, Northern Upper 

Egypt zone, Southern Upper Egypt zone, East Coast zone, Highlands zone, Desert 

zone, and Southern Egypt zone, and described in more detail in Table 1.1.  

 

‎1-5 Classification of climatic zones in Egypt according to HBRC (2006) 
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As per the Housing and Building Research Centre classification (HBRC, 2006), Cairo 

lies entirely under the Delta and Cairo zone where the air temperature varies from 34-

35
o
C maximum and 22-24

o
C minimum during the summer months, while in winter the 

maximum air temperature varies from 18-21
o
C, and the minimum temperature varies 

from 9-12
o
C. The altitude ranges from 15-110 m above mean sea level, while the 

humidity level is between 32-84%. Summer time global radiation ranges from 940 to 

1,050W/m
2
, and from 550 to 750W/m

2 
in winter. 
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Table ‎1-1 Main climatic characteristics for the climatic zones in Egypt according to HBRC (2006) (T air: 

Air Temperature (
o
C) T op: Operative Temperature (

o
C)) 

climatic zones altitude Summer Temp. Winter Temp. RH global radiation 

Northern 

Coast 
0-100m 

Tair 
Max.28-31 

o
C 

Min.20-24 
o
C 

Tair 
Max. 17-21

o
C 

Min. 10-11
o
C 

55-90% 
Summer 890-880W/m2 

Winter 500-750 W/m2 
Top 

Max.33-37 
o
C 

Min.18-23 
o
C 

Top 
Max.25-26 

o
C 

Min.7-9 
o
C 

Delta and 

Cairo 
15-110m 

Tair 
Max.34-35 

o
C 

Min.22-24 
o
C 

Tair 
Max. 18-21

o
C 

Min. 9-12
o
C 

32-84% 
Summer 940-1050W/m2 

Winter 550-750 W/m2 
Top 

Max.37-46 
o
C 

Min.13-21 
o
C 

Top 
Max.25-28 

o
C 

Min.6-9 
o
C 

Northern 

Upper  

130-

280m 

Tair 
Max.36-37 

o
C 

Min.20-23 
o
C 

Tair 
Max. 20-22

o
C 

Min. 6-8
o
C 

28-83% 
Summer 950-1160W/m2 

Winter 610-960 W/m2 
Top 

Max.40-47 
o
C 

Min.10-22 
o
C 

Top 
Max.27-31 

o
C 

Min.2-6 
o
C 

Southern 

Upper 

200-

300m 

Tair 
Max.40-41 

o
C 

Min.24-26 
o
C 

Tair 
Max. 23-24

o
C 

Min. 12-14
o
C 

20-63% 
Summer 950-1160W/m2 

Winter 660-960 W/m2 
Top 

Max.41-46 
o
C 

Min.16-21 
o
C 

Top 
Max.30-36 

o
C 

Min.3-9 
o
C 

East Coast 0-500m 

Tair 
Max.36-37 

o
C 

Min.27-28 
o
C 

Tair 
Max. 22-24

o
C 

Min. 12-14
o
C 

22-60% 
Summer 950-1000W/m2 

Winter 670-880 W/m2 
Top 

Max.39-42 
o
C 

Min.19-22 
o
C 

Top 
Max.28-31 

o
C 

Min.8-11 
o
C 

Highlands’s 
400-

2000m 

Tair 
Max.31-32 

o
C 

Min.16-20 
o
C 

Tair 
Max. 15-18

o
C 

Min. 2- 4
o
C 

22-58% 
Summer 840-930W/m2 

Winter 500-800 W/m2 
Top 

Max.37-39 
o
C 

Min.12-16 
o
C 

Top 
Max.22-29 

o
C 

Min.0-5 
o
C 

Desert zone 
100-500 

m 

Tair 
Max.38-41 

o
C 

Min.2-27 
o
C 

Tair 
Max. 22-24

o
C 

Min. 7-  
o
C 

20-60% 

Summer 1030-1200 

W/m2 

Winter 730-1030 W/m2. Top 
Max.42-48 

o
C 

Min.19-22 
o
C 

Top 
Max.28-31 

o
C 

Min.3-10 
o
C 

Southern 

Egypt 

180-350 

m 

Tair 
Max.40-43 

o
C 

Min.26-28 
o
C 

Tair 
Max. 22-24

o
C 

Min. 12-13
o
C 

20-60% 

Summer 1100-

1210W/m2 

Winter 770-1050 W/m2 Top 
Max.43-48 oC 

Min.18-23 oC 
Top 

Max.29-34 oC 

Min.5-10 oC 
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1.8.3 Cairo and Al-Muizz urban development
1
 

Al-Qahira (the conquerer or the victorious), a name which passed into English as Cairo, 

was founded in AD969 on land adjacent to Fustat, another Islamic city established at the 

dawn of Islam in AD641. These cities were themselves preceded by Roman and 

Pharaonic settlements (Babylon and Memphis) in the same approximate location at the 

strategic southern apex of the Nile Delta (UN-Habitat, 2003). The city‘s urban design 

started by building the first mosque in Africa at the city centre to act as a focal point to 

unite the inhabitants of Egypt‘s new capital in prayers. Separate living quarters were 

assigned for the various clans in the army, and each quarter was divided from the next by 

a vast expanse of land to prevent internal tribal war (Rezk, 2011). This method of urban 

planning allowed the city of Fustat to grow rapidly, becoming an important urban centre 

in Egypt and later in the Islamic Empire (Antoniou, 2009). The birth of Fustat marked 

the beginning of Egypt‘s transformation, and a new Islamic society was formed that 

would change the country‘s architecture, laws and beliefs (Rezk, 2011). Al-Fustat 

remained relatively small for the first 100 years of its existence; this was primarily due 

to the fact that the Islamic empire was ruled by the Umayyad dynasty from Damascus, 

while Al-Fustat was too far and too small to attract attention. This situation changed with 

the rule of the Abbasid dynasty in 749AD and the removal of the seat of the Caliphate 

from Syria to Iraq (Antoniou, 2009). In Egypt, this meant the displacement of the 

governmental functions of the region to a newly built suburb just north of Fustat, named 

Al-Askar, to serve as a new urban centre (Ashmawy, 2004). Al-Askar expanded but 

failed to attract enough residents to compete with Fustat due to its costly real estate and 

limited access (Antoniou, 2009; Rezk, 2011). However, during the century or more that 

followed, the two communities merged so that the combined settlements of Al-Fustat 

and Al-Askar stretched along the axis of the Nile (Figure 1.6). 

The growing decadence of the Abbasids in the late ninth century led to the increasing 

independence of parts of the Abbasid Empire, and Ahmed Ibn Tulun quickly seized the 

opportunity and proclaimed himself as the independent ruler of Egypt, founding a new 

                                                 

1
 A comprehensive review of Al-Muizz urban development in included in appendix ‗A‘ 
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dynasty called the Tulunid dynasty (Parker et al., 2008). In 870AD, Ibn Tutun started a 

new town, north west of Al-Askar, called Al-Qatai, which was modelled after Samarra 

in Iraq. It had magnificent open spaces built for sport and tournaments, and large 

mosques were constructed amongst them, such as the famous Ibn Tulun mosque, which 

still stands (Haag, 2006). Al-Qatai had attractive markets for luxury consumer goods, 

and the bulk of economic activity remained in Al-Fustat. However, in 905AD, the 

Abbasid troops succeeded in regaining the country for the empire and destroyed most of 

the monuments, which had been constructed within the city of Al-Qatai, leaving Al-

Fustat once again the premier city in Egypt (Antoniou, 2009; Rezk, 2011). The Abbasid 

rule of Egypt would not last, however, and in 969AD General Gawhar Al-Siqilli 

conquered Egypt for the Fatimid Caliphate, and thereby established their imperial city, 

Al-Qahira or Cairo (Rezk, 2011). At the time of the Fatimid invasion, the inhabited areas 

of the populous cities of Al-Fustat, Al-Askar, and Al-Qataie were joined together into a 

triple city called collectively ‗Misr.‘ Its length, according to Maqaddassi (AD985), was 

about three kilometres. The site chosen for Al-Qahira or Cairo lay immediately to the 

north of Al-Fustat, as shown in Figure 1.6. The city is rectangular in shape, half a square 

mile and surrounded with fortified walls in all four directions (Figure 1.6). The main 

streetis named after the Caliphate, Al-Muizz Street, which is probably the oldest and 

most stable street of Fatimid Cairo (Al-Sayyad, 1981; Rezk, 2011), and ran from north to 

south, connecting the gate of Bab Al-Futuh with the gate of Bab Zuwaila. These main 

gates were built to guard the entrance of the city, as it was built in the first place to be 

the residence of the Caliph and his court, his slaves and officials, and his troops; 

common people were not allowed in Cairo without a special permit issued by the royal 

house. As time went on, the population of the triple city, ‗Misr‘ had grown and gradually 

moved to the immediate vicinity of the imperial stronghold. By the extinction of the 

Fatimid dynasty, the population overflowed into the enclosure of Cairo, causing all the 

cities to merge into one big city within an area no larger than 5km
2
, known today as 

Islamic Cairo (Rezk, 2011). Al-Muizz Street is still the predominant route for 

pedestrians, dividing the Islamic quarter into two parts. Al-Muizz is bounded in the east 

by Salah Salim Road and by Port Said Road in the west. The northern boundaries of 
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Islamic Cairo start with the 11
th

 Century walls of Badr Al-Jamali and the southern part 

ends with Saliba Road (Figure 1.7).  

  

Figure ‎1-6 Cairo development, starting from Al-Fustat to the north of the Roman fort Babylon in 641AD 

These Islamic cities were themselves preceded by Roman and Pharaonic settlements (Babylon and 

Memphis) in the same approximate location (UN-Habitat, 2003). On the right side, the city rectangular 

shape with Al-Muizz as the main street ran from north to south, connecting the gate of Bab Al-Futuh with 

the gate of Bab Zuwaila.(source: http://www.studio-basel.com/publications/books/nile-valley.html). 

 

 

 

http://www.studio-basel.com/publications/books/nile-valley.html
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Figure ‎1-7 The Al-Muizz street and Gate Al-Futuh in the north, and Zuweila in the south (Mortada, 2003) 
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1.9 The physical pattern development of Al-Muizz 

  

Figure ‎1-8 Al-Muizz Street in 1908 (on the left) and 2012 (on the right) (source: bildindex.de) 

1.9.1 The first Muslim settlements 

The area was a site for a several cities started by ancient Egyptians and Romans. 

The city of Fustatwas built close to the remains of the Babylonian fortress as the first 

Muslim settlement in Africa, followed by Al-Askar or Abbasids, and later Al-Qata‘i of 

Ibn-Tulun, further north. Until 969, when Egypt was conquered by the Fatimid and the 

first plan for their city was developed, it was a rectangular grid with Al-Muizz as the 

main street for the city (Figure 1.9). 

1.9.2 Fatimids (969 – 1171AD) 

In its early years, Fatimid Cairo was built to serve the royal family and its 

military troops, while Al-Fustat remained as a commercial city. In 1087, Fatimid Cairo 

expanded outside the old wall by building new walls, and the main street (Al-Muizz) 

was extended from the gate of Bab-Al-Futuh in the north to the gate of Bab Zuwaila in 

south. The structure within the walls was almost a rectangular grid, with wide streets 

(Figure 1.9). 

1.9.3 Ayubbids (1171 – 1252AD) 

As the Ayyubids came to power, a gigantic wall was built encircling Al-Fustat 

and Fatimid Cairo, and the city was opened for public use in terms of spaces and 
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gardens, which changed the old function and structure. The pattern developed was very 

dense and full of houses and new streets (Figure 1.9). 

1.9.4 Mamluks (1252 – 1517AD) 

During the first period of the Mamluks, which historians refer to as Bahri 

Mamluks, Cairo experienced great growth with new areas outside the walled city being 

developed. However, Al-Muizz continued in the same pattern and was developed by 

the Ayubbids who added three new schools and the famous Qalawun hospital. Under 

the ruler of the Burji Mamluks, Cairo began a remarkable recovery after the plague of 

the Black Death
2
 and famine

3
. They added some of Cairo‘s greatest architectural 

monuments, such as Al-Ghuri complex, which was the reason to start shifting the 

existing visual climax of the street from the area between two palaces (Figure 1.9). 

1.9.5 Ottomans (1517 – 1805AD, including the French expedition in 1798AD) 

During the Ottoman period, Cairo was reduced for the first time as it became a 

provincial capital. The walled city experienced its greatest decline during the three 

centuries of Turkish rule as the centre moved westward to Azbakiya. During the rule of 

Mohamed Ali‘s family, building regulations were reviewed and a re-planning of the 

city‘s streets started; new zoning was put in place, such as in Al-Muski Street, which 

cut through the walled city (Figure 1.9). 

1.9.6 The Present 

Due to the exponential expansion of Cairo, in the last few years many districts have 

been developed and are still growing exponentially (Figure 1.9). Because of this 

modernization, the urban fabric of the old city could not cope, and thus it experienced 

further neglect and isolation. Later, it suffered from a gradual decay for a number of 

reasons, among which are increased pollution, sewage problems and high population 

                                                 

2 The Black Death first arrivedinEgypt in 1347, and from 1347 to 1349, it wiped out onethird of the 

Egyptian population (Article: Mamluk, pp. 750-751 Encyclopaedia Britannica, 15th ed., Vol. 7). 

3
Cairo was affected by ten major famines during Mamluk rule, in 1264, 1295-96, 1336, 1373-75, 1394 96, 

1402-04, 1415-16, 1449-52, 1469-70, and 1486-87 (Sabra, 2000). 
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density. In the late 1990s, UNESCO recognized that Al-Muizz and its surroundings 

held great historical and cultural value, accordingly, in 2000, the Egyptian government 

proposed the huge Historic Cairo Rehabilitation Project (HCRP), aiming to protect and 

conserve historic Cairo with a view to developing extensive areas into an open-air 

museum, with the main priority given to Al-Muizz Street. In 2009, the government and 

UNESCO began a national campaign for the maintenance and restoration of Al-Muizz 

Street to regain its beauty after the completion of the development of the infrastructure 

facilities. The restoration started from Al Fotouh gate up to the intersection of Al-

Azhar Street, at a total value of 23 million EGP. The houses and overlooking shop 

facades were totally renovated on both sides of the street, while buildings higher than 

the level of the monuments were brought down to size and painted an appropriate 

colour. Road surfaces were treated and fitted with benches and low-profile pavements 

in the spirit of the original thoroughfare, 11 new sets of electronic bollards were built 

around the main entrances of the street to ensure pedestrianizion (Figure 1.10), and a 

new sewage system and piping network were built to prevent water leakage along the 

street. As an integral part of this project, the illuminations of this monumental area had 

the purpose of skillfully enhancing, through expert use of colour and light, the beauty 

of these architectural masterpieces.  

Unfortunately, as a result of the political unrest in Egypt after the 2011 revolution, the 

other part of the street starting from Zuwaila Gate up to the intersection of Al-Azhar 

Street, has been delayed and the project duration expanded to 42 months without a 

fixed date. This has left behind two distinctive urban forms within the same street. 

Figures1.1 and 1.2 clearly reveals the contrasts of the ambient conditions for each part 

of the same street, with its own urban distinctive features, regulation, materials, 

shadings, vegetation, and surfaces.  
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Figure ‎1-9 The historical development of Fatimid Cairo and its impact on the urban form (source: ETH 

Studio Basel) 
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Figure ‎1-10 Electronic bollards control the traffic at the entrance to Al-Muizz 

1.9.7 Open/Built Structure 

During the Fatimid and Ayyubid rules, major spaces and buildings were usually 

located in the middle segment named as the area between the two palaces; it was also 

the widest segment along Al-Muizz Street. Then, other spaces were extended during 

the Bahri Mamaluk dynasty through the addition of new elements around them. The 

Burji Mamluks added some minor buildings and small spaces along the path at 

transition points. The street pattern remained with very minor changes during the 

Ottoman dynasty, with the exception of the decrease in the size of spaces, and later on 

the construction of Al-Azhar Street, which divided Al-Muizz Street into two parts. The 

general spaces of Al-Muizz street appears as a number of scattered spaces with an 

apparent hierarchy along the path and with the major space in the middle, with the key 

buildings nearby (Al-Sayyed, 1981) (Figure 1.11). 

1.9.8 The exterior shaping for the elements among Al-Muizz Street 

The most prominent building arrangements were the religious buildings, which 

must follow the Qibla direction for the prayers. All of the Fatimid mosques except Al-

Aqmar had regular exterior facades perpendicular to the Qibla direction; this was a 

normal result as all the mosques were built inside the walled city before the street 

pattern was fully developed, and accordingly there was no restriction on their form. 

The facades of religious structures from the Ayyubid period followed the street centre 

line, as the streets were much developed during their dynasty. The Bahri Mamluk built 

14 major schools where 12 of them had staggered and irregular facades; their 



 

 Chapter One: Introduction 

 

 32 

orientation was determined by both the street centre line and the Qibla direction and the 

irregularities in their exterior facades were skilfully adjusted to the street. Burji 

Mamluk exterior facades were neither parallel to the street centre line, nor 

perpendicular to the Qibla direction. The exterior facades were smaller due to the lack 

of space availability where the urban surrounding implied different amounts of 

inclination in each exterior facade. Most of the Turkish mosques had no regular 

pattern. The exterior shaping was a result of different factors such as the element 

location, their positioning and their size. It was how this variety of exterior architecture 

fitted into its urban surroundings that created the characteristic style of Islamic Cairene 

streets (Figure 1.12). 

1.9.9 Space development 

The exterior shaping of Fatimid elements had a major impact on determining the 

spaces along Al-Muizz Street. These spaces were usually wide triangular spaces with 

their sides directed toward Mecca and the street alignment. Due to the rapid 

development during the Ayyubid period, as the city was opened to the public, the 

spaces became much smaller in size as buildings were constructed everywhere. The 

exterior parts of the new constructed spaces were usually imposed by the street 

alignment and the Minarets were usually located in the middle of the spaces. Bahri 

Mamluk spaces tended to take a monumental scale with irregular shapes of variable 

dimension and narrow entrances. The minarets were usually located at the intersection 

of two sides. Burji Mamluk spaces followed an irregular pattern as well. The minarets 

were located carefully with respect to the surrounding buildings and the spaces and 

although the scale of most Burji Mamluk elements was monumental, the overall 

proportions of their spaces tended to be human. The spaces developed by the Ottomans 

were of different sizes based on their locations. For instance, buildings constructed 

outside the walled city had a large space in front of them, but the elements built inside 

were smaller due to the lack of vacant space and thus the variety of shapes followed a 

somewhat consistent pattern, depending on the surroundingelements (Al-Sayyed, 1981) 

(Figure 1.12) 
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Figure ‎1-11 The historical development of the spaces along Al-Muizz Street (modified from Al-Sayyed, 1981) 

 

Figure ‎1-12 The exterior shaping for the elements among Al-Muizz Street (Al-Sayyed, 1981) 
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1.10 Research design 

Polit et al. (2001, p. 167) define a research design as ―the researcher‘s overall 

strategy for answering the research question or testing the research hypothesis‖. This 

research is a case study combining both qualitative and quantitative approaches, 

including a field experiment, a survey research design, and an experimental design. The 

thesis research design, therefore, involves three main areas, namely the conceptual, 

theoretical and operational framework. The conceptual framework is covered in this 

chapter; the theoretical framework representing the literature review is covered in 

chapters two and three. The operational framework reports the field measurements, the 

survey, the simulation validation, and the numerical simulation of the investigated case 

study are covered in chaptersfour to seven. Chapter eight presents the conclusion and 

recommendations for future studies (Figure 1.13). 

1.11 Research Structure 

Chapter one: Introduction 

This chapter includes the conceptual framework, which focuses on the research 

design, methodology, and structure and concludes with the thesis overview, as outlined 

in Figure (1.13). It also includes an overview of the research contextgeography and 

climatesub-classification, before it examines the historical development and the main 

urban planning transition periods‘ impact on the local scale of Al-Muizz Street as a case 

study based on its physical and historic characteristics. 

Chapter Two: Review of urbanization, climate change and thermal comfort  

The chapter clarifies the influence of urbanization combined with 

industrialization as a main reason for causing the unfavorable urban climate and urban 

heat islands, and how this affects the energy consumption, air quality and greenhouse 

gases, human health and comfort and water quality. The chapter then reviews the effect 

of the UHI within the Cairo context. The chapter also illustrates a number of climatic 

responsive strategies, which have been developed within the traditional and 

contemporary architecture for the Cairo climatic zone. 
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Chapter Three: Microclimate and outdoor thermal comfort 

The chapter presents an overview on the available knowledge and the state-of-

the-art regarding two concepts, which are the centre of the study; the first section 

considers the urban canyon microclimate including the climatic scale, the main surface 

energy balance and urban canyon thermal characteristics. The second section deals with 

outdoor thermal comfort, such as human energy balance, the variables affecting people‘s 

thermal sensation, comfort indices and mean radiant temperature.It concludes with the 

methodological shortage in outdoor thermal comfort assessment.   

Chapter Four: The Research methodology 

This chapter describes the main research methods used in order to achieve the 

objective of the research.The methodology framework was divided into four phases 

including; the preliminary studies (phase one) discusses the primary way for gathering 

data such as the satellite images, climate files and building reports. Second, the field 

measurement (phase two) presents the in-situ measurements, the measurements dates, 

the instruments used and the procedures. Third, the outdoor thermal comfort survey 

(phase three) includes the questionnaire structure, sample, timing and procedures. In 

addition, soforth, the Micro-urban performance simulation including the validation and 

the parametric analysis. 

Chapter Five: The Field Measurements (Physical Approach) 

The chapter examines the effects of urban morphology and design on thermal 

comfort from a physical approach based on two types of field measurements. The first 

type is a one-week in-situ measurement for the main parameters as stated by ASHRAE 

(2009) in two different locations within Al-Muizz Street, compared against the readings 

obtained by the Cairo Airport WMO Station no.623660, which reveals the existence of 

the UHI within the case study. The second type is a comprehensive meteorological 

measurements carried out at nine different points along the street on two days (30
th

 June 

and 1
st
 July 2012), to investigate the street canyon geometry‘s parameters (height-to-

width ratio (H/W)), the street orientation, and surface materials. 

Chapter Six: Outdoor Subjective Thermal Comfort 

The chapter investigates users‘ thermal perceptions using a subjective 

questionnaire through applying the seven-point ASHRAE 55 thermal sensation votes 
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(TSV). The survey was complimented by one week of field measurements in summer 

and winter to examine the main climatic parameters affecting thermal comfort. 

Monitored data were used as data input into the RayMan model to calculate the 

Physiologically Equivalent Temperature (PET) as a comfort index. The relations 

between the calculated PET values for the investigated sites and the Thermal Sensation 

Vote (TSV) were correlated.  

Chapter Seven: Micro-urban performance simulation 

The chapter focuses on evaluating the airflow rate and the heat transfer patterns 

during the nighttime underneath the existing tensile structure using a comparative 

numerical assessment. The first part is the validation study for the existing case, the 

second is the parametric analysis between four alternative configurations with specific 

changes in the roof shape and opening locations, and the third part is the daylight study 

for the best case and base case. 

Chapter Eight: Conclusion and recommendations 
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2 
 “The climatic conditions in a man-made urban 

environment may differ appreciably from those in the 

surrounding natural or rural environs...each urban man-

made element: buildings, roads, parking area, factories, 

etc. create around and above it a modified climate with 

which it interacts” (Givoni, 1989, pp1-2). 
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2.1 Introduction 

This chapter exploresthe influence of urbanization combined with 

industrialization as a main reason for causing an unfavourable urban climate and urban 

heat islands (UHI) (Oke, 1995; Kuttler, 1998; Montavez et al., 2000; Tereshchenko and 

Filonov, 2001). The UHI is linked to changes in energy consumption in the built 

environment, air quality, greenhouse gases, human health and comfort, and water 

quality, with an emphasis on the case study city (Cairo, Egypt) in a hot arid climate. The 

chapter is divided into three main sections: 

 The first section covers how urbanization and climate change lead to the 

phenomenon of UHI 

 The second section reviews the effect of the UHI and climate change on Cairo as the 

case study area, including its impact on climate change, energy consumption and 

thermal comfort 

 The third section deals with a number of climatic responsive strategies which have 

been developed within the traditional and contemporary architecture for Cairo‘s 

climatic zone. 

2.2 Urbanization and climate 

According to the Dictionary of Landscape Architecture and Construction 

(Christensen, 2005), urbanization may be defined as, ―the process of covering a 

significant portion of a land area with buildings or impervious pavements‖. Based on the 

same dictionary, urban climate may be defined as, ―the climate in and near urban areas. 

It is often warmer, more or less humid, shadier, and has more reflected light than the 

climate of the surrounding land areas‖. Again, the same source defines the urban canyon 

as, a ―City Street lined with buildings‖ and ―Urban physical features that have aneffect 

on airflow, sunlight, humidity, water percolation, heating, cooling of air, soils, etc.‖ 

(Christensen, 2005). From these definitions, it is obvious that urbanization can influence 

climate change within most built up areas (Nakamura and Oke 1988; Yoshida et al., 

1990, 1991; Arnfield and Mills, 1994; Asimakopoulos et al., 2001; Hawkes and Foster 

2002). 

Urbanization growth initiates one of the most dramatic human-induced changes 

to natural ecosystems through the creation of a largely impervious landscape consisting 

of stiff and sharp edged rough building blocks (Roth, 2002). These changes, combined 
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with industrialization, have led to urban heat islands (UHI), creating unfavourable micro 

urban climates. UHIs occur when the urban areas warm up more quickly and cool down 

more slowly than their rural surroundings due to their sealed surfaces. This problem will 

become increasingly heightened in future climate change scenarios and projections of 

urbanization (Oke, 1995; Kuttler, 1998; Montavez et al., 2000; Tereshchenko and 

Filonov, 2001; Smith and Levermore, 2008;).Successful adaptation to minimize the 

occurrence of heat stress is, however, dependent upon a detailed understanding of the 

processes that lead to elevated urban temperatures within the city context (Landsberg 

1981; Oke 1991, Roth 2002; Elsayed 2012). 

2.2.1 Nature of the urban atmosphere 

Urban areas have distinctive topography and biophysical properties, which can 

differentiate their energy receipts and losses from those of rural areas (Smith and 

Levermore, 2008). The introduction of new surface materials (concrete, asphalt, tiles, 

etc.), coupled with the construction of buildings, and the emission of heat, moisture and 

pollutants which considerably alter the surface and surrounding atmosphere, influences 

radiation, thermal retention, moisture, roughness and emissions (Oke 1991; Roth 2002), 

as follows: 

 Radiative changes: These happen when new surface materials are introduced 

which havea larger range of albedo and emissivity values than vegetation, and there is a 

lack of a shading element in urban areas which may lead to the radiative changes 

becoming higher and uncontrollable.The coupling between buildings and canyon 

arrangements leads to more complex radiation exchanges than a flat surface. In turn, all 

these may cause higher ground surface and wall temperatures, which then affect the 

surrounding microclimate. 

The surface albedo is defined as the total reflectance of the surface integrated 

over all angles of the upward hemisphere (Figure 2.1). It is the ratio of the reflected part 

of the incoming radiation on a medium of finite thickness to the total incoming radiation 

(Alexandri, 2005). 

Albedo (α) = 
                                    

                        
(Eq. 2.1) 

The albedo value is calculated based on several factors such as the incoming 

radiation wavelength, the sun elevation and the surface characteristics. Surfaces with 

higher albedo values have lower energy absorbance. Therefore, in urban areas surface 
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materials such as asphalt for roads and concrete for the walls have lower albedo values, 

so the surface temperature becomes higher, which increases the air temperature of the 

surrounding environment. 

Although Albedo is the main determinant of a material‘s surface temperature, 

thermal emittance, or emissivity, also plays a role. Emissivity (ɛ ) is defined as the 

surface ability to lose heat or emit radiation (Figure 2.1). It is calculated as the ratio of 

the energy emitted by the surface to energy emitted by the black body of an element. A 

black body has an (ɛ ) equal to 1, while any real object would have (ɛ ) ˂  1. 

Emissivity (ɛ ) = 
                             

                                                         
(Eq. 2.2) 

The range of urban materials may have high (e.g. red brick 0.9, concrete 0.71-

0.94 and asphalt 0.95) or low emissivity (bright-galvanized iron 0.13 and bright 

aluminium foil 0.04). The choice of these materials during the design and construction 

phases can reduce the overall urban emissivity, which tends to increase net radiation 

levels in urban areas. However, the role of emissivity in influencing the urban 

environment temperature is affected by the urban geometry and sky view factors. Oke et 

al. (1991) state that in the case of very tight canyons, the emissivity role is minor for 

higher view factors, which represents a very small difference in urban air temperature. 

However, combining the albedo with higher emissivity for the materials will allow for 

greater changes in the air temperature of urban areas. 

 

Figure ‎2-1 the emissivity of a material determines how much absorbed solar energy is released or 

retained. 

 

 



Chapter Two: Review of Urbanization, Climate Change and Thermal Comfort 

 

 42 

Shading is another crucial factor affecting the radiative exchange process of 

ground and wall surfaces. Providing shelter from direct solar gain may cause a reduction 

in the urban surface temperature, and thus the total radiation absorbed at a site can be 

manipulated through shading or changing the solar reflectivity of the object (albedo). 

This will in turn decrease the intercepted solar radiation, and yet will increase the 

incoming long-wave radiation trapped under trees and shading systems (since trees and 

other shading object are better emitters than the sky) (Lin et al., 2010; Shahidan, 2011). 

However, the net result is still a decrease in total radiant energy input (Brown and 

Gillespie, 1995), and any lack of shading components will lead to a rise in the surface 

and air temperature values within the urban areas (Fahmy, 2010; Shahidan, 2011). 

 Thermal mass: Inbuilt up areas, surfaces and structures are often at least 

partially obstructed by objects, such as neighbouring buildings, and they become large 

thermal masses that provide a reservoir of heat storage in the daytime which is released 

at night time.  

The high thermal capacity of buildings for heat storage tends to delay the heat transfer to 

the interior of the building by soaking up excessive heat for several hours. As a result, 

cities are typically more effective at storing the sun‘s energy as heat within their 

infrastructure. Metropolitan areas can absorb and store twice the amount of heat 

compared to their rural surroundings during the daytime (Christen, and Vogt, 

2004).Afterwards, at night the stored heat is slowly released back into the environment 

due to the difference in the air temperature between the day and night, causing an 

increase in the night time temperature due to this heat transfer process (Shahidan, 2011).  

 Moisture reduction: Evapotranspiration is the combination of evaporation and 

transpiration from soil.Vegetation systems are another moderator and can contribute 

significantly to reducing urban temperature (Santamouris, 2001).The process describes 

the transfer of latent heat, what people feel as humidity, from the Earth‘s surface to the 

air via evaporating water. Urban areas tend to have less evapotranspiration relative to 

natural landscapes because cities retain little moisture. This reduced moisture in built up 

areas leads to dry, impervious urban infrastructure reaching very high surface 

temperatures, which contribute to higher air temperatures in temperate climates. In arid 

regions, as the surroundings are usually deserts with a low level of humidity, these 

causes an increase in the humidity level within the built up areas, combined with a 

negative impact on the heat stress intensity and duration (Ben Shalom, 2009). 
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 Roughness: There has been a rapid development of obstacles such as buildings 

and bridges that act as bluff bodies due to their permeability, inflexibility and sharp 

edges. They create windward positive pressure and leeward negative pressure over their 

surfaces, leading to flow separation and vortex shedding when exposed to the airflow. In 

this context, the transport of energy, mass and momentum to and away from the city 

surface are affected and the turbulences within the built up areas isgreater than the 

homogenous atmosphere over rural areas (Roth, 2002).  

Put simply, urban surface roughness reduces sensible heat loss due to the obstruction of 

airflow by buildings and other large structures (Walsh et al., 2011). 

 

 Emissions: Emissions from aerosols, and greenhouse gases from rapid 

industrialization, affect radiative transfer and act as condensation nuclei; waste heat and 

water vapour from combustion is added to the urban atmosphere. Furthermore, the 

anthropogenic heat released through cooling and heating buildings, manufacturing, 

transportation, and lighting, in addition to human and animal metabolisms are also 

considered sources of artificial heat that contribute to the warming of the urban 

atmosphere and increased air temperature (Roth, 2002). Table 2.1 summarizes all the 

possible urban factors and their effect on the urban environment. 

These changes are reflected in an altered energy balance which is a basic and powerful 

framework used in the analysis of climate processes; this is further explained in Chapter 

Three. Accordingly, it is not surprising that, as urbanization continues, the associated 

weather and climate are often modified substantially and a new set of environmental 

conditionsis created, leading to a higher air temperature in densely built up urban areas 

than the temperatures of the surrounding rural country. This causes what is known as an 

urban heat island (UHI) phenomenon (Oke, 1978; Landsberg, 1981; Santamouris, 2001; 

Emmanuel, 2005; Tran et al., 2006; Yu and Wong, 2006; Sailor and Dietch, 2007). The 

UHI effect can be observed in every town and city and is considered the most obvious 

climatic indicator of urbanization (Landsberg, 1981; Wong et al., 2007). 
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Table ‎2-1 Possible urban factors and effects on the urban environment (Oke, 1991; Shahidan, 2011) 

 FACTORS EFFECTS 

1 

Canyon radiative 

geometry (urban 

geometry and radiation) 

 Contributes to the decrease in long-wave radiation loss from within the 

street canyon due to the complex exchange between buildings and the 

screening of the skyline 

 Infrared radiation is emitted from various buildings and street surfaces 

within the canyon 

 Buildings replace a fraction of the cold sky hemisphere with much 

warmer surfaces, which receive a high portion of the infrared radiation 

emitted from the ground and radiate back an even greater amount 

2 
Thermal properties 

(albedo) of material 

 Increased storage of sensible heat in the fabric of the city during the 

daytime and release of the stored heat into the urban atmosphere after 

sunset 

 Replacement of natural soil or vegetation by materials, such as concrete 

and asphalt used in cities, reduces the potential to decrease ambient 

temperature through evaporation and plant transpiration 

3 Anthropogenic heat  Released by the combustion of fuels from either mobile or stationary 

sources, as well as from animal metabolism 

4 
The urban greenhouse 

effect 

 Increases in the incoming long-wave radiation from the polluted urban 

atmosphere. This extra radiative input to the city reduces the radiative 

drain 

5 
Canyon surfaces and 

radiation 
 Decrease in the effective albedo of the system because of the multiple 

reflection of short-wave radiation by canyon surfaces 

6 
The reduction of 

evaporating surfaces 
 The city puts more energy into sensible heat and less into latent heat 

7 
Reduction in turbulent 

transfer 
 Reduced transfer of heat form with streets 

2.3 Urban Heat Island (UHI) 

The UHI was first documented in 1833 by Luke Howard in the UK (Jones and 

Lister, 2009). Howard compared the temperature records of London‘s weather station 

with the rural stations. He stated that the cities appeared to be warmer than the 

surrounding rural areas (Mills, 2003). In 1958, Gordon Manely used the term UHI for 

the first time to explain this phenomenon. The term ‗heat island‘ is used because warmer 

city air lies in a ‗sea‘ of cooler rural air and it is caused as a result of the solar energy 

storage in the urban fabric during the day and its release during the night time back to 

the atmosphere. The process of urbanisation and development alters the balance between 

the energy from the sun used for raising the air temperature (heating process) and that 

used for evaporation (cooling process), because the cooling effect of vegetated surfaces 

is replaced by impervious surfaces that absorb a high percentage of solar radiation 
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(Rosenzweig et al., 2006). This effect of the UHI is the most obvious climatic indicator 

of urbanization (Wong et al., 2007) on increasing air temperature, and has now been 

well documentedby numerous studies (Oke, 1995; Kuttler, 1998; Montavez et al., 2000; 

Tereshchenko and Filonov, 2001). For instance, in the United Kingdom, the 

Meteorological Office‘s Hadley Centre has recorded that the last ten years have been the 

warmest since the 1880s, and there is an expectation of increase in the temperature by 

0.1-0.5
o
C per decade across the UK and Europe during the21

st
century (Hulme etal., 

2002; IPCC, 2007a). However, Africa has the worst prospects according to the 4th IPCC 

Assessment Report, which showed evidence that Africa is warming faster than the 

global average, and this is likely to continue. This warming is greatest over the interior 

of the semi-arid margins of the Sahara and central southern Africa (IPCC, 2007).  

The maximum difference in temperature between the urban and rural areas is 

referred to as UHI intensity (∆Tu-r) (Oke, 1978; Santamouris, 2001; Roth, 2002; 

Velazquez-Lozada et al., 2006), which may occur during the day or night, and yet is 

most pronounced at night time under clear skies and light winds (Santamouris, 2001; 

Emmanuel, 2005). The UHI is diminished as the wind speeds increase over urban areas, 

as more thermal energy is transformed by the wind (Alexander and Mills, 2014). Over 

large metropolitan areas, there may be several plateaus, characterized by weak gradient 

of increasing temperature, and valleys and peaks based on the type of land use inside the 

city (Figure 2.2). Generally speaking, the intensity of the UHI effect increases as the size 

of a city increases, due to the larger size of the built area (Rinner and Hussain, 2011). 

 

Figure ‎2-2 Generalized cross section of a typical urban heat island (Roth, 2001) 
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There are two common types of UHI, classified by Oke (1995) and simplified by 

Roth (2002), based on their location and height within the urban atmosphere. These two 

common types are the air temperature UHI and the surface temperature UHI (Table 2.2). 

The two types of UHI can be distinguished based on the methods of temperature 

measurement: (1) the canopy layer heat island and (2) the boundary layer heat island 

(Oke, 1979). The former consists of air between the roughness elements, e.g., buildings 

and tree canopies, with an upper boundary just below roof level. The latter is situated 

above the former, with a lower boundary subject to the influence of the urban surface 

temperature. According to Emmanuel (2005), most of the climatic effects are 

predominantly felt in the Urban Canopy Layer (UCL).Therefore; most of the studies 

seeking to understand air temperature within the UHI phenomenon were conducted at 

the UCL level (Figure 2.3). 

Table ‎2-2 Simple classification scheme of UHI types (after Oke, 1995 and Roth, 2002) (Shahidan, 2011) 

UHI type Location 

1. Air Temperature UHI  

- Urban canopy layer heat island Found in the air layer beneath rooflevel 

- Urban boundary layer 
Found in the air layer above rooflevel; can 

be affected downwind with the urban 

plume 

2. Surface temperature UHI 

Found at the urban horizontal surfaces; 

such as ground surface, rooftops, 

vegetation and bare ground. Normally, 

this depends on the definition of a surface 

[bird’seye view=2D vs. true 3D surface vs. 

ground=road) 
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Figure ‎2-3 Schematic of climatic scales and vertical layers found in urban areas. PBL planetary boundary 

layer, UBL – urban boundary layer, UCL – urban canopy layer. Modified from Oke (1997) 

2.3.1 Air Temperature UHI 

The UHI has a warmer air temperature than surrounding rural areas. The air 

temperature intensity varies throughout the day and night, where the smallest difference 

usually occurs in the morning and the difference grows during the day due to the heating 

up of the surface area, which consequently warms the air (Wong and Yu, 2005). The 

UHI intensity usually reachs its peak at night when the urban surfaces continue to 

release heat after sunset and slow the rate of night time cooling (Gratland, 2008) (Figure 

2.4). 

2.3.2 Surface Temperature UHI 

Unlike the air temperature UHI, the surface temperature UHI usually reaches its 

highest value during the daytime, and this is likely to occur in areas filled with a large 

building mass or paved areas, and minimum value at night (Roth, 2002). Many urban 

surfaces (e.g. roofs, parking and pavements) may reach a temperature ranging between 

27-50
o
C higher than the air during the daytime as a result of being heated by the sun 

(Gartland, 2008). The main parameters that may control the level of surface temperature 

are surface albedo, moisture content, land use, and land cover (Xian, 2007), in addition 
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to shading devices and vegetation (Fahmy and Sharples 2010; Kato et al., 2010; 

Reardon, 2013). (Figure 2.4) 

 

Figure ‎2-4 Surface and atmospheric temperatures vary over different land use areas. Surface temperatures 

vary more than air temperatures during the day, but they are both fairly similar at night. The dip and spike 

in surface temperatures over the pond show how water maintains a fairly constant temperature day and 

night, due to its high heat capacity. Source: EPA United States Environmental Protection Agency (2008) 

2.4 Urbanization and global warming 

While some heat island impacts seem positive, such as lengthening the plant-

growing season, most impacts are negative particularly for hot climate cities, as they can 

affect a community‘s environment and quality of life, as seen in Table 2.3 (Oke, 1997b).  
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Table ‎2-3 Impacts of urban heat islands, and/or a warmer base climate, on temperature-sensitive aspects 

of cities in cold and hot climate regions after Roth, 2002 (from Oke, 1997b). + - beneficial; - - undesirable 

(‗losers‘); (W) – winter; (S) – summer 

 Climate impact 

 Cold Hot 

Biological activity (plant growth, disease) + Not known yet 

Human bio climate (comfort, wind-chill, heat 

stress) 
+ (W) / - (S) - 

Energy use (space heating, air conditioning) + (W) / - (S) - 

Water use (garden irrigation – pos. correlation 

with T) 
- - 

Ice and snow (transport disruption) + N/A 

Air pollution chemistry (weathering photochemistry) - - 

2.4.1 Energy Consumption 

If the global climate becomes warmer, cities in cold climates can expect to save 

fuel for space heating. Cities in hot climates, however, will most likely face an increase 

in energy demand for cooling and add pressure to the electricity grid during peak periods 

of demand (e.g. Santamouris, 2007; Ihara et al., 2008; Ewing and Rong, 2008). This 

demand is further increased by the construction of urban environments with high albedo 

surfaces that increase the absorption of solar radiation by buildings (Forkes, 2010). As a 

result, two crucial effects are shown up and these are explained as follows: 

1. Cooling the interiors of buildings results in the release of hot air which contributes to an 

extra heat load outdoors, which may lead to an additional demand for air conditioning. It 

has been estimated that 5-10% of community electricity demand results from the need to 

compensate for the Urban Heat Island effect (Akbari, 2005, Environmental Protection 

Agency, 2008) (Figure 2.5) 

2. The urban heat island effect may be amplified due to a greater cooling demand through 

the subsequent increase in the release of anthropogenic heat (Shimoda, 2003). Due to the 

potential to increase peak energy demand as well as greenhouse gas (GHG) emissions, 

the World Health Organization (WHO) has identified the use of airconditioning as an 

unsustainable adaptation strategy for extreme heat (World Health Organization, 2004; 

Health Canada, 2008; De Carolis, 2012). 
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Figure ‎2-5 Increasing Power Loads with Temperature Increases (source: Sailor, 2002). As shown in this 

example from New Orleans, electrical load can increase steadily once temperatures begin to exceed about 

68- 77°F (20-25°C), energy consumption falls as the dailytemperature rises (less heating), reaching a 

minimum of approximately 21°C, and then rises steeply 

2.4.2 Air Quality and Greenhouse Gases 

The impact of the UHI on air quality rises with increased temperatures. 

Temperatures are correlated with the elevated production of ground level ozone (O3), 

also referred to as photochemical smog, which is the main source for some pollutant 

compounds such as NO2 and volatile organic compounds (VOCs) that react in the 

presence of sunlight, causing an increase in the rate of ozone layer formation as the NO2 

separates and combines with the O2 in the air to produce O3 (Figure 2.6). Under normal 

conditions, the reaction would reverse; however, the presence of VOCs blocks the 

dissociation of O3 (Bernstein and Whitman, 2005). All these changes can lead to 

complex air quality problems such as acid rain, and harm human health. Some studies 

have linked ozone to impaired lung function and the development of children (Chan et 

al., 2007).  
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Figure ‎2-6 Relation between daily maximum air temperature and daily maximum ozone concentration in 

Connecticut (Oke, 1997b) on the left, and the chemical reaction that produces ozone on the right (Source: 

Roth, 2002) 

2.4.3 Human Health and Comfort 

During extreme weather events such as heat waves, the urban heat island has the 

potential to prevent the city from cooling down, maintaining nighttime temperatures at a 

level that affects human health and comfort. The mean core temperature for the human 

body to function well is 37
o
C. Above this temperature, there is a risk of heat related 

illnesses that may lead to mortality (De Carolis, 2012). This relation is well presented in 

Kalkstein and Smoyer (1993), who provide mortality statistics, which show dramatic 

increases of heat-related deaths for many cities (Figure 2.7). Similarly, during the 2003 

heat wave in Europe there were approximately 35,000 heat-related fatalities, over 2,000 

of which were in the UK (Larsen, 2003). In Tokyo, the number of victims of heat stroke 

has almost tripled since1985, correlating with an increase in air temperature and the 

number of ―tropical‖ nights (The Japan Times, 2001). Moreover, in the United States 

excessive heat exposure contributed to more than 8,000 premature deaths between 1979 

and 1999, which exceeds all other natural disasters such as hurricanes, lightning, 

tornadoes, floods, and earthquakes combined (Center for Disease Control, 2004). The 

risk of experiencing these health outcomes is greatest when high temperature occurs in 

companion with high humidity, minimal cloud cover, and low winds (De Carolis, 2012). 
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Figure ‎2-7 Relation between maximum air temperature and mortality in Shanghai from 1980 to 

1989.(Oke, 1997b, adapted from Kalkstein and Smoyer, 1993). 

2.4.4 Water Thermal Quality 

Surface urban heat islands degrade water quality, mainly by thermal pollution. 

Dark coloured pavements and roof surfaces absorb the sun‘s energy, reaching surface 

temperatures of about 27-50°C higher than air temperatures which transfer this excess 

heat to storm water. A field measurement study reported that urban area runoff was 

about 11-17°C hotter than a nearby rural area on a typical summer midday with 

pavement surface temperature11-19°C higher than air temperature (Roa-Espinosa et al., 

2003). This higher temperature storm water drains into storm sewers and raises water 

temperatures as it is released into streams, rivers, ponds, and lakes. A study in Arlington, 

Virginia, recorded temperature increases in surface waters as high as 8ºF (4°C) just 40 

minutes after heavy summer rains (EPA, 2003), which causes thermal shock to aquatic 

organisms as a result of the increase of water temperatures above normal conditions 

(EPA, 2008). This thermal shock can lead to many negative effects such as a decline in 

fish egg production, decreased reproductive rates, altered metabolic rates, impaired 

juvenile fish development, and fish lethality due to anoxia (Rossi and Hari, 2007). As a 

result, water bodies that are subjected to thermal shock may experience a decline in 

species abundance and biodiversity. The precise effects that runoff will have on an 

aquatic ecosystem depends on the time of exposure, the critical maximum and minimum 

temperatures specific species can survive within, andthe developmental stage of the 

species, as well as the magnitude of temperature change (Rossi and Hari, 2007). 
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2.5 UHI and climate change in Cairo, Egypt 

The IPCC fourth assessment report (IPCC, 2007a) on regional climate 

projections predicts that warming throughout the African continent and in all seasonsis 

very likely to be larger than global annual warming. The drier subtropical countries such 

as Egypt are warming more than the moister tropics due to decreased annual rainfall 

along the Mediterranean Africa and the northern Sahara. According to an earlier version 

of the same source, the IPCC third assessment report (IPCC, 2001), surface warming in 

the African continent was reportedat approximately 0.7
o
C during the 20th century. 

Observation records showed that this warming occurred at the rate of 0.05
o
C per decade 

with slightly larger warming in the June-November seasons than in December-May 

(Hulme et al., 2001). The IPCC fourth assessment report (IPCC, 2007a) predicts the 

regional climate for North Africa including Egypt in 2080 to 2099 based on climate 

change results of 1980 to 1999 for an AIB emission scenario
4
, where the projection 

shows a rise in mean temperature of 2.8
o
C, a decrease of precipitation by 6%, and the 

likelihood of fewer wet seasons and more dry seasons (Table 2.4). The results were in 

agreement with a previous study forthe Organization for Economic Co-operation and 

Development (OECD) (2004) which reported a change in average area temperature and 

precipitation over Egypt, based upon a dozen recent GCMs (General Circulation 

Models) using a new version of MAGICC/SCENGEN.
5
 The results are shown in Table 

2.5. All the climate models estimated a steady increase in temperatures for Egypt, with 

little intermodal variance. The models estimated more warming for summer than winter. 

                                                 

4 Scenario AIB hypothesizes that economic and demographic trends will continue along current lines, and 

that energy consumption will remain balanced among multiple sources, rather than shifting decisively 

away from fossil fuels. 

 
5
This analysis uses a combination of the 8 best SCENGEN models (CSI2TR96, CSM_TR98, ECH3TR95, 

ECH4TR98, GISSTR95, HAD2TR95, HAD3TR00, PCM_TR00) based on their predictive error for 

annual precipitation levels. Errors were calculated for each model, and for an average of the 17 models. 

Each model was ranked by its error score, which was computed using the formula 100*[(MODEL-MEAN 

BASELINE/OBSERVED) - 1.0]. Error scores closest to zero are optimal. The first eight models had 

significantly lower error scores than the remaining nine. Therefore, the latter were dropped from the 

analysis. The error score for an average of the 17 models was 26.7%, the error score for an average of the 

8 models was 22%. 
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Although all the climate models reviewed above predict a steady increase in temperature 

all over Egypt, the availability of similar studies targeting the city of Cairo was very 

limited. Ghoneim (2009) conducted satellite remote sensing data studies on the surface 

temperature characteristics of Cairourban areas, using the thermal infrared band from 

Landsat Enhanced Thematic Mapper Plus (ETM+) data. The result revealed a significant 

rise in surface temperature of Cairo betweeb 1980 and 2002 with a general trend of 

warmer urban areas versus cooler surrounding cultivated land (Figure 2.8) (Ghoneim, 

AFED 2009). 

Table ‎2-4 Climatic projection in North Africa in 2080 to 2099 (source IPCC, 2007a) 

Region Season 

Temperature response 

(
o
C) 

precipitation response 

(%) 
Extreme Season (%) 

Min avg Max Min avg Max Warm Wet Dry 

18N, 20E 

to 

30N, 65E 

DJF 2.4 3.2 5 -47 -18 31 97 - 12 

MAM 2.3 3.6 5.2 -42 -18 13 100 2 21 

JJA 2.6 4.1 5.8 -53 -4 74 100 - - 

SOA 2.8 3.7 5.4 -52 6 64 100 - - 

Annual 2.8 3.6 5.4 -44 -6 57 100 - - 

DJF= December, January, February; MAM= March, April, May; JJA= June, July, August; SOA= 

September, October, November 

 

Table ‎2-5 GCM estimates of temperature and precipitation change for Egypt. Source OECD (2004) 

 Temperature change (
o
C) Precipitionchane (%) 

 Mean (Standard deviation) Mean (Standard deviation) 

Year Annual 

December/ 

January/ 

February 

June/ July/ 

August 
Annual 

December/ 

January/ 

February 

June/ July/ 

August 

2030 1.0 (0.15) 0.8(0.21) 1.1(0.18) -5.2 -8.9 10.7(26.35) 

2050 1.4(0.22) 1.2(0.30) 1.7(0.26) -7.6 -12.8 15.49(38.07) 

2100 2.4(0.38) 2.1(0.52) 2.1(0.52) -13.2 -22.3 26.9(66.28) 
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Figure ‎2-8 Rapid urban growth in Cairo between 1984-2002 caused a significant rise in surface 

temperature (shown in red), referred to as an urban heat island (UHI) effect. Source: CRS-BU, 

GHONEIM, AFED (2009) report) 

2.5.1 Climate change and energy consumption in Egypt 

Urban heat island has a close relation with the energy consumption in cities 

particularly the ones with hot arid climate (Chang, 2000; Roth, 2002; Voogt, 2002; 

Baker et al., 2002; Mills, 2006; Harlan et al., 2006; Rhadi and Sharples, 2013). The 

more rise of urban temperature will lead to an increase in the use of air conditioning. It 

follows that there will be a further increase in city temperatures from the dumping of 

heat from buildings heating ventilation and air conditioning (HVAC) systems and so 

more air cooling will be required (Takakura, Kitade et al. 2000). This forms a vicious 

circle or negative reinforcing loop (Uchiyama, 2011). There will also be an impact from 

increased emissions from cooling if this cooling is provided by fossil fuel based 

electricity. This will lead to an increased rate of global warming (Happold, 2014). 

Therefore, the extreme sensitivity of Egypt as a hot city to changes in temperature 

(Gleick, 1991) added more cooling load on the electricity consumption. This was shown 

in the Ministryof Electricity and Energy (MEE, 2010) fact sheet, where the number of 

air conditioners used in Egypt has quadrupled in four years (700,000 in 2006 to 3 

million in 2010). Figure 2.9 shows sales of air conditioning (AC) units in Egypt 

exceeded 54,000 units per year between 1996-2009 (Attia et al., 2012). Air conditioners 

consume around 12% of the maximum productive capacity of power stations and their 

total consumption is estimated to be 22% of the overall energy production in the 

Egyptian building sector. If the current consumption trend expands further, which is 

expected (Georgy and Soliman, 2008), building electricity consumption and peak loads 

will continue to increase rapidly. As a reaction to this trend, and in order to 

http://www.designingbuildings.co.uk/wiki/Air_conditioning
http://www.designingbuildings.co.uk/wiki/Temperature
http://www.designingbuildings.co.uk/wiki/Heating_Ventilation_and_Air_Conditioning
http://www.designingbuildings.co.uk/wiki/HVAC
http://www.designingbuildings.co.uk/wiki/Cooling
http://www.designingbuildings.co.uk/wiki/Cooling
http://www.designingbuildings.co.uk/wiki/Cooling
http://www.designingbuildings.co.uk/wiki/User:Buro_Happold
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accommodate the prognosis for accelerating population growth and rising energy prices, 

the Egyptian government declared the commencement of its programme for nuclear 

power plants for electricity production in 2007 (Georgy and Soliman, 2008; Attia, 

2012). Driven by the desire to provide cheap electricity to its population, the 

government considered nuclear energy as the easiest central solution to concentrate its 

effort to solve the energy problem centrally (UNHDR, 2010). This was done without 

any thought for reforming the building energy sector or improving the energy 

conservation policy and environmental protection, in order to avoid falling in the vicious 

cycle explained earlier in this section between the artificial exhausted heat and the urban 

heat island, resulting from adding more power plants to serve the increasing load of air 

conditioning demand which will lead to higher air temperature and urban heat island. 

Figure ‎2-9 Increasing AC and fan sales in Egypt between 1996 and 2009 (CAPMAS, 2008; INCOM, 

2008; Abdelhafiz, 2004) 

2.5.2 Urbanization process and thermal comfort 

Thermally comfortable outdoor environments have a positive influence on the 

indoor climate, leading to lower energy use for space conditioning (Johansson and 

Emmanuel, 2006). In Bangladesh, Ahmed (2003) reported lifestyle changes among 

medium and high-income urban dwellers as a direct cause of outdoor discomfort, as 

these dwellers nowadays tend to spend more time indoors. These changes are likely to 

contribute to increased use of air conditioning and thus higher energy use, and it may 
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further increase outdoor temperatures, as the excess heat is emitted to the urban air (de 

Schillier and Evans, 1998; Baker et al., 2002). 

With reference to Cairo, Robaa (2011) researched the effect of urbanization and 

industrialization processes on outdoor thermal human comfort in Egypt, including 

central Cairo as a case study. The study revealed that urbanization and industrialization 

processes have resulted in the modification of the local city climate of Cairo. This 

modification involves the alteration of the local air temperature, humidity and wind 

speed, which in turn cause human climate change and increase serious discomfort for 

humans due to heat. This in turn hinders urban human activities compared to rural 

conditions. Accordingly, the two hot months of June and July transformed from hot 

months for all people in central Cairo during the old non-urbanized period, to 

uncomfortably hot months during the recent urbanized period (Robaa 2011). This 

hasbeen mainly attributed to two major reasons:  

 The distinct increase of air temperature and decrease of both wind speed and relative 

humidity induced by the urbanization process, which recently occurred in and around 

the urban area of central Cairo (Robaa, 1999, 2003) 

 Passive design strategies, such as shading, orientation, thermal mass, natural lighting 

and ventilation, are no longer used. According to Attia (2012), traditional techniques and 

knowledge of appropriate environmental design learned by trial and error over time have 

been neglected during the last 60 years. 

These factors have accelerated the urgent need to improve the current situation and calls 

for the creation of improved urban climate conditions within on-going urbanization 

activities. 

2.6 Traditional and contemporary climate responsive strategies 

According to Ibn-Khaldun,
6
 one of the primary tasks of architecture is to create 

favourable microclimates where humans can live and work (Rotledge and Kegan Paul, 

1987). Successive processes of trial and error over long periods of time have given 

satisfactory answers of architecture concepts and techniques concerning human comfort  

                                                 

6
Abu Zayd ‗Abd al-Rahman ibn Muhammad ibn Khaldun al-Hadhrami, 14th-century Arab historiographer 

and historian, was a brilliant scholar and thinker now viewed as a founder of modern historiography, 

sociology and economics (Stone, 2006). 
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and the surrounding environment. In Islamic Cairo, a number of strategies attributed to 

the Arab vernacular architecture and urban design were developed over a long period of 

time, such as fabric compactness, the high inertia of the construction, shading, night 

ventilation and evaporative cooling.This can be seen through two main consecutive 

design scales: (1) the streets‘ orientation, and (2) the urban fabric.  

2.6.1 Street Orientation 

The objective in a hot, dry climate is to maximise shading for pedestrians and 

minimise the solar exposure of building facades along streets whilst maintaining 

optimum urban and building ventilation. This is demonstrated by the street design for 

Fatimid city in Cairo, which follows a grid in its plan, with its main streets oriented 

north/south, such as Al-Muizz and Al-Gamalia as the main streets, while the secondary 

streets are oriented east/west. Most streets are narrow with deep canyons that promote 

greater shading, thus reducing radiant heat gains on ground surfaces and building 

facades (Givoni, 1992) (Figure2.10). This urban design came forth as a good response to 

the living conditions of both the natural and the social environment, based on age-old 

regional experience using local building materials and appropriate techniques of climate 

control (Bianca, 2000). The street canyon geometry‘s parameters (height-to-width ratio 

(H/W)) and the street orientation are the most relevant urban parameters responsible for 

the microclimatic changes in a street canyon (Arnfield and Mills, 1994). These 

parameters directly affect the potential of airflow at street level, solar access, and 

therefore urban microclimate (Oke and Nakamura, 1998). 

 
 

Figure ‎2-10 Narrow, deep streets reduce radiant heat gains (Adapted from Givoni, 1998) 

2.6.2 The Urban Fabric 

The early concept of compactness can be attributed to the vernacular urban architecture 

with its famous elements of narrow streets and courtyards, which reveal the distinctive 
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influence of climatic conditions that are just as important as the cultural dimension. The 

medium height houses are inward-facing buildings allowing for the compactness of the 

urban fabric. Only the rooftops and a few facades are exposed to the intense solar 

radiation. The streets are very narrow and shaded by the neighbouring walls, as shown in 

Figure 2.11. In some places, these are also covered or further protected from the sun 

with a trellis, cloth or awning (Figure 2.12). The thermal inertia of the whole system is 

high, as a consequence of a minimal envelope to volume ratio, also known as 

surface/volume ratio, where a compact building gains less heat during the daytime and 

loses less heat at night (Stasinopoulos, 2011). This effect is also owing to the use of 

heavy materials, mainly stone, which has a high thermal capacity. In addition, using 

light painted colours in the houses‘ external facades helps increase the urban reflectance 

as it might reach twice as much in modern cities (Taha, 1997). However, in the hot arid 

climate of the desert regions and due to the lack of vegetation with the light colour of the 

terrain, the problem of glare increases. To reduce the solar radiation and glare, building 

projections with a selective choice of colours and additional landscape vegetation is 

employed. The projection elements could be overhangs, wall extensions, and open 

balconies. These are usually of darker colours than the building surface behind to reduce 

the glare, as they are the most exposed elements. 

  

Figure ‎2-11 Urban compactness and narrow streets shaded by neighbouring walls 
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Figure ‎2-12 Shading techniques across the street 

2.7 Conclusion 

The process of urbanization alters the natural surface and atmospheric conditions 

so as to create generally warmer temperatures (Landsberg, 1981, Wong & Jusuf, 2008). 

Oke (1997) suggested that urban atmospheres provide the strongest evidence for the 

potential of human activities to change climate. In the 20th century, rapid urbanization 

occurred worldwide, and today the majority of the world‘s population lives in cities. 

Increased temperature in cities, termed the UHI effect, is present all around the world 

and contributes to global climate change and, in turn, is exacerbated by global climate 

change (Mills, 2007; Sanchez- Rodriguez et al., 2005). With its increasing effect on 

human health (Harlan et al., 2006), air quality (Cardelino and Ghameides, 1990; Stone, 

2004), and energy shortage(Rosenfeld et al., 1998; Grutzen, 2004; Golden et al., 2006; 

Rhadi and Sharples 2013), the importance ofurban temperatures will increase, especially 

in warm climate cities. Here,it can seriously affect the overall energy consumption of the 

urban area (Rhadi and Sharples 2013), as well as the comfort and health of its 

inhabitants (Moonen et al., 2012). Thus, the current priority has been on the less 

developed regions, mostly located in the subtropics (Roth 2007), as by 2030 Asia and 

Africa are expected to have more urban dwellers than any other major area (UN, 2006). 

In terms of the case study, Africa has been proven to be warming up at a faster 

rate than the global average, with a steady increase for the air temperature in Egypt 

(IPCC, 2007), along with an estimated UHI intensity of 4
o
C in Cairo (Santamouris, 

2001). Accordingly, June and July were transformed from comfortable months for all 

people during the old non-urbanized period to uncomfortable heat months during the 
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recent urbanized period (Robaa, 2011). Consequently, the city‘s inhabitants face 

difficulty finding respite from high summer temperatures, and this threat to human 

comfort and well-being adds more load to the energy use within the city, which poses a 

significant challenge for urban planners and designers (Smith and Levermore, 2008). 

The demand started for tools to adapt the negative effects of air pollution and UHIs 

(Kratzer, 1956; Geiger, 1965; Landsberg, 1981; Schmalz, 1984; Santamouris, 2001; 

Grimmond and Oke, 2002) and moved progressively to micro-scales as the urban 

geometry was found to be decisive in the UHI (e.g. Barry and Chorley, 1978; 

Landsberg, 1981; Oke, 1987; Escourrou, 1991; Oke et al., 1991; Kuttler, 2004), this 

could be performed by reducing of daytime radiation load through triggering changes in 

surface temperature and heat storage in addition to changing street orientation and aspect 

ratio (Ketterer and Matzarakis, 2014). 

Thus, the next chapter discusses the current literature and evidence for the effects of the 

surface air energy and mass exchanges between the urban canopy and the overlaying 

boundary layer on the urban microclimate, by highlighting the impact of street design on 

air temperature, airflow and solar access in an urban canyon. Studies conducted on this 

term have proved that a street‘s design is a key factor in mitigating the UHI effect and 

providing a pleasant microclimate at pedestrian level in an urban canyon (Oke, 1988; 

Shashua-Bara and Hoffman, 2003; Bourbia and Boucheriba, 2010; Shishegar, 2013; 

Ketterer and Matzarakis, 2014). 
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3 
 “The knowledge we have acquired about urban climates 

should not remain an academic exercise on an 

interesting aspect of the atmospheric boundary layer. It 

should be applied to the design of new towns or the 

reconstruction of old ones. The purpose is, of course, to 

mitigate or eliminate the undesirable climatic 

modifications brought about by urbanization” 

(Landsberg, 1981). 
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3.1 Introduction 

As seen in the previous chapter, the UHI problem contributes not only to higher 

temperatures, but also problems of energy use, air quality, human health, and quality of 

life. Successful adaptation to minimise the occurrence of UHI is, however, dependent 

upon a detailed understanding of the processes that lead to elevated urban temperatures 

(Arnfield, 1990; Oke et al., 1991; Swaid, 1993; Souch and Grimmond, 2006). 

Fortunately, there is a wealth of literature concerned with urban climatology across a 

range of spatial and temporal scales, which is extensively reviewed in this chapter.  

The chapter is, thus, divided into two main sections. The first section considers 

the urban canyon microclimate including the climatic scale, the main surface energy 

balance, and urban canyon thermal characteristics. The second section deals with 

outdoor thermal comfort, such as human energy balance, variables affecting people‘s 

thermal sensation, comfort indices, and mean radiant temperature; it concludes with the 

methodological shortage in outdoor thermal comfort assessment. 

3.2 Scales of urban climate 

The very existence of a city has a significant modification effect on the local 

climate both within the built up area and in the atmosphere above and beyond its 

boundaries. The nature of these modifications depends on a wide range of physical 

variables, which can be observed and evaluated at distinctly different spatial scales 

(Erell et al., 2011). According to Oke (2006), the spatial dimension of an urban site, 

regardless of its scale, extends horizontally and vertically. In the vertical direction, the 

atmosphere can be divided into four distinct layers of different thickness, usually 

associated with a specific vertical temperature distribution (Jacobson, 1999) in to the 

troposphere, the stratosphere, the mesosphere and the thermosphere. The troposphere 

represents the lowest portion of the Earth‘s atmosphere and contains almost 80% of the 

atmosphere mass and almost all the water vapour. Within this troposphere layer is 

located the boundary layer climate, based on Oke‘s (1987, 2006) extensive studies on 

different urban climate scales. As seen in Figure 4.1, climate can be divided horizontally 

as follows:  

1. The micro-scale includes buildings, streets, squares, gardens, trees, etc. where every 

surface and object has its own microclimate in its immediate vicinity. Surface and air 

temperatures may vary by several degrees in very short distances, and air flow can 
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be greatly perturbed by even small objects (Oke, 2006). Typical scales of urban 

microclimates relate to the dimensions of individual buildings, trees, roads, streets, 

courtyards, gardens, etc. Typical scales extend from less than one metre to hundreds 

of metres 

2. The local-scale represents urban neighbourhoods, and this is the scale that standard 

climate stations are designed to monitor. It includes landscape features such as 

topography but excludes micro-scale effects. In urban areas, this translates to mean 

the climate of neighbourhoods with similar types of urban development (surface 

cover, size and spacing of buildings, activity). Typical scales are one to several 

kilometres 

3. The meso-scale means an entire city. A city influences weather and climate at the 

scale of the whole city, typically tens of kilometres in extent. A single station is not 

able to represent this scale 

4. The macro-scale is appropriate for describing air masses and pressure systems 

related to weather (phenomena which are viewed on a scale of hundreds of 

kilometre, and so is not shown in Figure 3.1). While large urban areas may influence 

such weather patterns, this level of scale does not resolve the detailed features of 

cities. 

In the urbanized areas, the lowest part of the atmosphere known as the urban 

boundary layer (UBL) and located within the meso-scale is decisively affected by the 

nature of the built up areas (Erell et al., 2011), generally considered to be approximately 

at roof level (Oke, 1976). The UBL can be divided into a number of vertical layers that 

hold climate interaction as follows (Figure 4.1): 

A. The mixing layer, the flow and potential temperature are rapidly mixed resulting 

in horizontally homogeneous, vertically uniform profiles. By night, this sub-layer 

may be further partitioned into a residual of the previous day‘s mixed layer 

overlying a surface inversion layer which has been cooled from below. The 

mixed layer may also be capped by an inversion layer at the top of the boundary 

layer. Little is known about any differences between urban and rural mixed 

layers (Roth, 2000) 

B. Inertial sub-layer (ISL), the flow and potential temperature are horizontally 

homogeneous but can vary in the vertical. The vertical fluxes of momentum, heat 

and moisture are horizontally homogeneous and uniform in the vertical and are 



Chapter Three: Review of Microclimate and Outdoor thermal comfort 

 

 65 

taken to be equal to the spatially averaged surface value. The lowest atmospheric 

level of numerical weather prediction models is usually assumed to lie within this 

layer 

C. The roughness of the sub-layer (RSL) extends from the surface up to a height at 

which the influence of individual roughness elements on the flow is ‗mixed up‘ 

by turbulence (Raupach et al., 1991). The flow is horizontally heterogeneous, 

determined by local length scales such as the height of the roughness elements 

(buildings), their breadth or separation (e.g. Oke, 1988; Roth, 2000), and 

building shape (Rafailidis, 1997). The depth of RSL is estimated to be 1.8-5 

building heights and it has been shown to depend on the stability, separation of 

the buildings and building shape (Raupach et al., 1980; Oke, 1987; Rafailidis, 

1997; Roth, 1999, 2000; Cheng and Castro, 2002) 

D. The lowest part of the urban atmosphere is the urban canopy layer (UCL), which 

extends from ground level to the height of buildings, trees and other objects. The 

UCL is characterized by a high level of heterogeneity, since conditions vary 

widely from one point to another within the canopy volume between buildings 

(extends from 0-H). Within this layer, the microclimate is site specific and varies 

greatly within short distances (Arnfield, 2003; Oke, 2004). 

 

Figure ‎3-1 Schematic of climatic scales and vertical layers found in urban areas. PBL (planetary 

boundary) layer, UBL (urban boundary layer), UCL (urban canopy layer) (Based on Oke, 1997). 
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Due to the inherent heterogeneity of the UCL, a unique microclimate is 

established within any given urban space, with air temperature, wind flow, radiation 

balance and other climate indicators being determined by the physical nature of the 

immediate surroundings as well as by the urban and regional environment. Therefore, 

the attention of urban meteorology has moved progressively to micro-scales as the urban 

geometry and urban form were found to be decisive in the UHI (Oke, 1991). In this 

respect, the street design is, hence, a key issue in a global approach for an environmental 

urban design (Oke, 1988; Ali-Toudert and Bensalem, 2001), and any improvement to 

urban geometry at street level would reduce the urban heat island in summer and retain 

the heat during winter (Arnfield and Mills, 1994; Oke, 1998). The proportions of the 

space, the thermal and optical qualities of the used materials, and the use of landscape 

vegetation are all design factors that modify climate at the scale of the UCL. this is why 

urban space microclimate is considered to be an architectural issue as it may have 

localized impacts such as those on outdoor thermal comfort and building energy load 

(Erell et al., 2011). 

3.3 Street canyon design and urban microclimate 

A street canyon refers to a linear space, which is formed by two typically parallel 

rows of buildings or walls separated by a street, and it creates the basic unit of modern 

cities (Syrios and Hunt, 2008). The geometry of a street canyon is usually expressed by 

three principle descriptors in terms of quantifiable measures that express its density or 

other physical properties that may influence the micro-scale climate (Erell et al., 2011): 

 The aspect ratio, also known as height to width (H/W) ratio, which describes the 

sectional proportions of the urban canyon by defining the ratio of the height of the 

building (H) to the width of the street (W) (Figure 3.2). If the canyon has an aspect 

ratio of around equal to one with no major openings on the walls it is called a uniform 

street canyon. A canyon with an aspect ratio below 0.5 is a shallow street canyon, and 

if there is an aspect ratio of two, this represents a deep street canyon (Shishegar, 

2013). 

 The canyon axis orientation (θ) represents the direction of the elongated space. Often 

the canyon axis orientation is described based on the closest cardinal direction such 

as north to south (N-S), east to west (E-W) or diagonal north west to south east (NW-

SE) and north east to south west (NE-SW) (Figure 4.2). 
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 The sky view factor (SVF) is closely related to its aspect (H/R) ratio (Figure 3.2), 

which represents the fraction of visible sky on a hemisphere which lies centrally over 

the analyzed location (the quantity of visible sky at a certain location) (Oke, 1981). It 

is a dimensionless measure between zero and one, representing totally obstructed and 

free spaces, respectively (Oke, 1988). The higher the aspect ratio, the lower the SVF. 

 
 

Figure ‎3-2 Schematic view of a symmetrical urban canyon and its geometric descriptors (on the left hand 

side) Sky view factor (SVF) as a function of canyon aspect ratio (H/W) (on the right hand side) (Source: 

Erell, et al., 2011) 

3.4 The surface energy balance (SEB) of an urban canyon 

Urban canyons contain buildings and environments with distinctive topography 

and biophysical properties. This means that their energy receipts and losses are different 

from those of rural areas (Smith and Levermore, 2008). Therefore, any attempt to 

understand the microclimatic behaviour of the urban canyon must start with an analysis 

of differences in their surface energy balance (SEB). 

The concept of an energy balance is derived from the first law of 

thermodynamics, which states that energy cannot be created nor destroyed, only 

converted from one form to another. When applied to a simple system, this means that 

energy input to it must equal the sum of energy output from it, and the difference in 

energy stored within it (eq. 3.1). However, the energy input and output are most likely to 

be unequal at any given instant, and they need not be equal at all times; furthermore, the 

input and output of energy from a system do not necessarily occur in the same form, 

where typically several modes of energy transfer take places simultaneously. In urban 

climatology, these temperature differences are attributed to urban geometry (the size, 

shape, and orientation of buildings and streets) and to the nature of urban surfaces (the 
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albedo, heat capacity, thermal conductivity, and wetness) (Oke, 1998 and Gordon, 

2008). These characteristics alter the radiation balance at the surface, the storage of heat 

in the urban fabric, and the partitioning of energy into latent and sensible heat 

(Landsberg, 1981; Oke, 1982, 1987, 1988a, 1995; Toudert and Mayer, 2006) (Figure 

3.3). A fuller explanation of this concept is given by Oke (1988) and Arnfield (2003) 

(Eq. 3.2): 

Energy input = energy output + change in stored energy               (Eq.3.1) 

Q* +QF = QH+QE + ∆QS+∆QA  (Wm
-2

) (Eq.3.2) 

Where all terms are flux densities; (Q*) is the net all-wave radiation; (QF) the 

anthropogenic heat; (QH) the sensible heat; (QE) the latent heat; (∆Qs) the net heat 

storage; and (∆QA) the net horizontal heat advection (see Figure 4.3).  

Anthropogenic heat (QF) is often omitted from the measured urban energy balance, both 

because of its small magnitude in residential settings, and because it is assumed to be 

embedded in other fluxes (Oke and Cleugh, 1987; Grimmond and Oke, 2002). The latent 

heat flux (QE) may be substantial in vegetated areas, but for those dominated by ―dry‖ 

surfaces, this component can be marginalized as well (Arnfield and Grimmond, 1998; 

Masson et al., 2002; Oke et al., 1999), especially under arid conditions. Assume that QF, 

QE, and ∆QA are negligible or embedded in the sensible heat (QH) and the net storage 

heat flux (∆QS) (Pearlmutter and Berliner, 2005; Masson et al., 2002; Masson, 2006). 

Then, the urban energy balance can often be simplified to: 

Q*= QH + ∆QS                              (W m
-2

) (Eq. 3.3) 

To understand what makes urban microclimate different, each component within 

equation (3.3) must be considered in detail in terms of those aspects that are affected by 

the presence of nearby buildings. 

(Q*) is the net all-wave radiation, defined as the net effect of shortwave solar (K) and 

long wave thermal (L) incoming (↓) and outgoing (↑) radiation, described based on the 

following balance equation: 

+ L↓ - L↑ (Eq. 3.4) 
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Where (Q*) represents the net radiative balance, (Kdir) is the direct short-wave 

radiation (incident solar rays coming directly from sunlight), (Kdif) is the diffuse short-

wave radiation (solar radiation reflected from clouds or aerosols in the atmosphere, and 

which makes the entire sky dome appear bright even if the sun itself is hidden), (α) is the 

surface of material albedo, and (L↓ - L↑) represents the long-wave radiation emitted by 

the surface and received by the surface from the sky, respectively. 

The sensible heat (QH) is released (or absorbed) depending on the turbulence of the 

atmosphere and the temperature gradient between the surface and the air. The 

(QH)released from a surface can be calculated as (Arnfield and Grimmond 1998): 

QH = h(Ts – Ta)  (Eq. 3.5) 

Where (h) is the overall heat transfer coefficient from radiation and convection, 

(Ts)is the surface temperature and (Ta)is the air temperature. From equation (3.5), it can 

be seen that (QH) increases with increased convection and increased air surface 

temperature difference. Consequently, (QH)is high during the day when both surface 

temperature and natural convection are high, particularly on sunny days. 

The net storage heat flux (∆QS) is of particular relevance to the urban 

environment, because it has been shown to account for over half of the daytime net 

radiation at highly urbanized sites (Ching, 1985; Oke et al., 1999). (ΔQS) depends on the 

materials and structure of the urban surface both in facades and in the ground down to 

the depth at which each surface is active and its nocturnal release is regarded as a major 

contributor to the urban heat island (Grimmond and Oke, 1999b). 

 

Figure ‎3-3 Schematic section showing urban surface energy balance (SEB) components. (Source: Erell et 

al., 2011) Arrows pointing inward to the dashed line box represent positive fluxes value (energy gain to 

the system) while positive values for arrows pointing outward represent energy losses from the system. 
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Despite the practical difficulties in observing and interpreting the energy balance 

of an urban area, there are a large number of observational campaigns which studied the 

major characteristics of urban microclimate, including energy budget, air and surface 

temperature, air flow, solar access and vegetation (e.g. Nunez and Oke, 1977; Cleugh 

and Oke, 1986; Grimmond, 1992; Grimmond and Oke, 1995, 1999b, Harman, 2003). 

3.4.1 Energy budget applications for an urban canyon 

The basic knowledge behind the energy balance or budget of an urban canyon 

was investigated by Nunez and Oke (1977). The findings were then confirmed with 

further studies (e.g. Arnfield, 1982; Mills, 1993; Sakakibara, 1996; Arnfield and 

Grimmond, 1998; Masson, 2000; Kusaka et al., 2001; Toudert, 2005; Mazloomi, 

Hassan, Bagherpour and Ismail, 2010). Nunez and Oke (1977) examined a north-south 

(N-S) urban canyon located in Vancouver, with an aspect ratio of (H1/W=0.86 and 

H2/W=1.15). The walls were white painted and made of concrete. The energy balance of 

all wave radiations of both walls and floor were explained by Toudert (2005) as: 

Q*wall= QH+ ΔQS (Eq.3.6) 

and 

Q*floor= QH+QE+ ΔQS (Eq.3.7) 

Q* net all-wave radiation 

QH sensible heat flux 

QE latent heat flux 

ΔQS energy stored in the walls 

The main findings were that the urban geometry and the canyon orientation both 

influence the radiation exchanges, affecting the timing and magnitude of the energy 

mechanism of the canyon and its energy balance. Figure 3.4 shows the diurnal regime of 

all fluxes for N-S street orientation, which is similar to the case study of Al-Muizz 

Streetwith axis oriented 15 degree north-south. It can be seen that the east facing wall is 

first to be irradiated in the morning, with a second peak in the afternoon as a result of the 

reflected diffuse radiation from the west facing wall, which delivers a maximum 

irradiation in the afternoon. Due to the N-S orientation, the floor is exposed at midday, 

and the west and east walls about 1.5 hours before and after solar noon. About 60% of 

the radiant energy surplus was dissipated as a sensible heat flux, 25-30% stored in the 

materials and 10% transferred to air as latent heat. At night, the net radiant deficit is 

offset by the release of the energy stored within canyon materials and turbulent 
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exchange, which is minor. Nunez and Oke (1977) suggested that directing air flow at an 

angle in relation to the canyon axis may be important to the design pattern. 

 

Figure ‎3-4 Daily energy balance of the urban facets of an urban canyon oriented N-S with H/W≈1 for a 

sunny summer day in Vancouver, 49°N (Nunez and Oke, 1977) 

Another numerical model was performed to compare an E-W urban canyon 

against a parking lot (Sakakibara, 1996), and the results confirmed that urban areas 

usually absorb more heat during the day time and release more heat during the night 

time than rural areas or horizontal planes. This was almost the same result as reported by 

Mills and Arnfield (1993), stating that as the aspect ratio of a street decreases the street 

becomes more isolated in terms of heat exchange from the overlaying atmosphere. 

It is worth mentioning a comprehensive experiment, which studied the E-W and N-S 

street orientations for all latitudes and seasons with different aspect ratios ranging from 

0.25 to 4. Arnfield et al. (1990) investigated the amount of solar access in different 

urban canyons through numerical modelling. The findings revealed the following: 

 The orientation of the street greatly affects the amount of solar energy obtained by 

walls 

 The aspect ratio (H/W) influences the availability of solar energy on the ground 

 The impact of orientation is more significant in summer than in winter 

 There is an easier seasonal solar control for the buildings walls oriented N-S (i.e. E-

W streets) as the walls are protected in the summer and exposed in winter. 

Another experiment conducted in the hot, arid region of Ghardaia, Algeria (Ali-

Toudert and Mayer, 2004) stated that for arid regions it is quite difficult to keep an E-W 

oriented street canyon in the shade. In E-W orientation, the walls provide very limited 
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shading, even for very deep street canyons (H/W≥2). In contrast, N-S oriented street 

canyons create a more pleasant microclimate as they provide enough shadow and solar 

energy in summer and winter, respectively. Therefore, the orientation of the street 

canyon should be chosen based on the area‘s latitude, as in different latitudes, a different 

orientation is appropriate. They also investigated the impact of street orientation on solar 

access and found that the availability of solar energy on the street‘s facades reduces 

rapidly with the increase of the aspect ratio of the canyon. These studies indicate that 

deep and narrow urban canyons (H/W≥0.5) are more appropriate for hot regions as they 

generally reduce solar access. Although, Al-Muizz street is consisting from various 

aspect ratios starting from a very narrow aspect ratio 4.2 to very few wide ones of 0.4, 

this still might explain the reason that all the main streets within Islamic cities such as 

Fatimid Cairo, including Al-Muizz Street (figure 3.5), are relatively wide and follow a 

grid plan with a N-S axis, compared to the secondary streets which are very narrow with 

an E-W axis, which only keep shadow for a short time. Additionally, most parts within 

Al-Muizz street including the commercial and some residential sections are having an 

equal or almost similar heights (H) on both sides as shown in figure 3.6 (Al-Muizz street 

urban features including aspect ratios are illustrated later in section 5.4) 

 

 

Figure ‎3-5 Route with the different aspect ratio (H/W) along Al-Muizz Street 
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Figure ‎3-6 Different photos among different sections within Al-Muizz street showing the similar 

heights of both sides of the street in several parts 
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3.4.2 Air and surface temperature 

Oke (1977) defines a basic urban canyon as being comprised of three main 

components including the floor, the walls and the air mass in between the walls. In 1988, 

Oke and Nakamura conducted the first study for the spatial distribution of the air 

temperature within an urban canyon by fixing a grid network of 63 sensors across a 

vertical cross section for an E-W urban canyon with an aspect ratio (H/W) of nearly one, 

during a clear summer day, as a trial to draw a thermal map for the canyon (Figure 3.7). 

The study outcomes showed a well-mixed turbulent air within and above the canyon, 

with small differences in the air temperature (Ta) of about 0.5-1
o
C between roof and 

canyon, and the roof air temperature was cooler during the day and warmer at night. The 

adjacent air temperature of the irradiated urban facet was slightly higher (2-3K) than the 

mean value measured at the centre of the canyon. 

 

Figure ‎3-7 Isotherm distribution across an E-W canyon at selected daytime hours (wind speed, wind 

direction and stability conditions at 1m height) (Nakamura and Oke, 1988). 

Nakamura and Oke (1988) reported a large difference between the surface 

temperature (Ts) and the adjacent air temperature (Ta) for the direct irradiated urban 

facet, where the differences exceeded 10
o
C, while on the shaded part which only 



Chapter Three: Review of Microclimate and Outdoor thermal comfort 

 

 76 

received diffused radiation, these differences were much smaller. Air temperature (Ta) 

was also sometimes found to be higher than surface temperature (Ts) in the shade, likely 

due to the warming of the whole air volume by turbulent sensible heat flux transfer from 

sunlit surfaces and its mixing through vortex air circulation. Yoshida et al. (1990/91) 

reported similar results as Nakamura and Oke (1988) for a generally similar E-W 

canyon of aspect ratio (0.96) under sunny, summer conditions in Kyoto, Japan (Figure 

3.8). 

Santamouris et al. (1999) confirmed the previous results with a field study for a NNW-

SSE street with aspect ratio (H/W) =2.47 under hot weather conditions in Athens, 

Greece. The vertical (Ts) and (Ta) distribution was highlighted in deep profiles. Surface 

temperature (∆Ts) differences between the various levels of the opposite surfaces were 

high (14-19
o
C). By day, the simultaneous difference in (Ts) was lower at ground level 

and increased with height within the canyon. This difference became insignificant in the 

night-time (<2
o
C). Furthermore, (Ts) stratification was found to be larger for the SW 

façade (0-10
o
C) than for NE façade (0-3

o
C) due to the different daily solar exposure.  

 

Figure ‎3-8 Surface and air temperatures of urban canyon facets, for an E-W street of an aspect ratio H/W 

= 0.96 under sunny, summer conditions for Kyoto, Japan, 35°N (Yoshida et al., 1990/91) 

Nazarian et al. (2014) numerically investigated the thermal effects of urban 

geometry, the surface radiative properties, and the wind direction, to examine surface 

and canopy air temperature and heat fluxes for a clear, summer day in southern 

California. Ground surface material (albedo) was found to have the most influence on 

urban facade temperature and energy balance. Replacing asphalt with concrete as ground 
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material increased the surface temperature up to 4.5K. For large canyon aspect ratios 

(H/W) =3/2, peak wall temperature decreased by 4K while ground temperatures 

increased up to 4K larger at night compared to aspect ratio (H/W) =2/3. Rotating the 

wind direction to be 45° off canyon axis altered wall and roof temperature up to 4K and 

2.5K, respectively, while ground temperature was not influenced due to the high density 

of the studied case. 

Applying these strategies to Al-Muizz Street,it can be noticed that the ancient 

town planners seemed to be fully aware of these approaches and the local climate by 

trying to provide different types of shading patterns as to fully utilize between the 

different air and surface temperature between the shaded and exposed areas. This was 

done either by the different urban design forms or shading devices with various 

openings, to control indirect sunlight into the urban street, while during the night time, 

these openings should helps hot air to be released ofin order to provide comfortable 

climate within the urban canopy layer, as there was almost 14
o
C difference of Tmrt 

between the shaded and non shaded areas as measured in chpater five. 

3.4.3 Urban canyon air flow 

Urban air flow patterns are determined by the interaction between approaching 

winds with the built environment. The formation of air flow within a street canyon is 

essential for pedestrian comfort as well as for building ventilation, air quality and energy 

use (Memon and Leung, 2010; Yang and Li, 2011). However, the irregularity of the 

built up urban areas makes the air flow pattern notoriously complex (Erell et al., 2011; 

Al-Sallal and Al-Rais, 2012). Such as the compact urban configuration of Al-Muizz, by 

means of its narrow and irregular street network with small spaces in between, with 

average aspect ratio varying between 0.5-1. Some studies, however, have indicated that 

the air flow cooling effect could mitigate the UHI effect, and the street canyon is 

considered to be a key factor in the formation of these urban air flow patterns 

(Shishegar, 2013). Therefore, the effect of street canyon designs on improving the air 

flow need to be examined despite of its complexity. 

According to Thomas and Fordham (2003), the air over urban areas could be 

divided into two main layers; the first layer, which is the interested for this research, is 

the urban canopy layer which is located blow the roof tops and between the buildings. 

The air in this layer is mainly influenced by solar energy falling on building facades and 
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ground. The other layer is the urban boundary layer, located above the average height of 

the buildings. The air flow was found to be slower within the urban canopy layer 

compared to the surrounding rural areas due to the barriers such as buildings and trees 

located within the urban canopy layer (Okeil, 2010). 

The wind flow within an urban canyon is a secondary circulation feature driven 

by the above-roof dominant flow (Nakamura and Oke, 1988, Santamouris et al., 1999), 

which is strongly affected by the street orientation and geometry (H: height, L: length, 

W: width) (Toudert, 2005). In Morocco, Johansson (2005) compared the air flow 

circulation between deep and shallow street canyons with an aspect ratio of 9.7 and 0.6, 

respectively, based on 18 months of continuous field measurements. The results 

confirmed a clear relationship between the urban geometry and microclimate within the 

street as the wind speeds became slower and more stable in the deep canyon (0.4m/s) in 

both winter and summer. Another study in Dubai, conducted by Al-Sallal and Al-Rais 

(2012), stated that narrow street canyons (4m and less) could increase wind speed 

leading to a better passive cooling performance, and yet create eddies at bending angles. 

It also recommended that for air flow to reach a deep access inside the narrow streets of 

the traditional city, the wind speed should not be less than 5m/s so it can have better 

potential for thermal comfort. Although, Al-Muizz street width is varies along the street 

with the majority of 4m and less, the average air velocity recorded at the pedestrian level 

(1.4 m) was 0.9 m/s, also the air velocity used to increase when the street become 

shallow reaching 1.6 m/s and decrease when it become narrow recording zero speed, 

validating the relationship between the urban geometry and microclimate (as measured 

in chapter five). According to Kofoed and Gaardsted (2004), wind flow pattern within 

the pedestrian level (1.5m above the ground level) in urban areas is still very complex, 

and can be affected by very little alteration in urban arrangements. Santamouris et al. 

(2001) investigated ten deep canyons and stated that it is very difficult to get natural 

ventilation in urban canyons as wind velocity hardily exceeds 1m/s. 

In addition to street geometry and orientation, the effect of solar heating on 

individual surfaces may create substantial thermal flows which affect the air flow 

patterns (Erell, 2011).  If the downwind wall is exposed to direct solar radiation and is 

substantially warmer than other canyon surfaces, an upwards thermal flow may form 

near the wall surface. This flow tends to counteract the downwards advective flow, and 

may lead to the creation of two counter-rotating vortices normally associated with 



Chapter Three: Review of Microclimate and Outdoor thermal comfort 

 

 79 

deeper canyons. The formation of a multi-vortex pattern reduces vertical exchanges, 

primarily of pollutants but also of heat. 

According to Xie et al. (2005), if the wind speed is weak and the radiant loads are 

strong, buoyancy effects are strong and disrupt the symmetrical lee vortex. This 

disruption is based upon the location of the heated surface to the approaching wind 

(Figure 3.9): 

a. Heating of the lee wall: the lee vortex remains symmetrical but is reinforced in 

magnitude. More ejection of canyon air occurs as a result of buoyant flow near the 

lee wall 

b. Heating of the wind-facing wall: buoyancy divides the lee vortex into two counter-

rotating cells. The advection cell is typically larger than the thermal one, but the 

relative magnitude of the two depends upon the intensity of the heating upon the 

velocity of the above-roof flow. Air flows upwards and may be ejected near both 

canyon walls 

c. Heating of the ground surface: buoyancy divides the lee vortex into two counter-

rotating cells, in a pattern that is similar to the one created by the heating of the 

wind-facing wall. The advection cell may become compressed near the top of the 

canyon, as buoyancy prevents it from extending down to the canyon floor. Upwind 

flow may be observed near both canyon walls. 

When winds are stronger, advection dominates even in the presence of strong 

radiant loads, and the overall structure of the canyon flow is affected by thermal 

buoyancy only to a minor extent.  

Additionally, lack of vegetation and appropriate covers in straight streets causes 

either severe heat (hot, dry climate) or cold (cold, dry climate) wind to blow into the 

streets due to straight air movement (Santamouris et al., 1999). Narrow and winding 

streets reduce cold or hot winds and decrease the influence of stormy winds. This pattern 

is proper for stressful climates (hot-dry and cold-dry) (Santamouris et al., 1999) (Figure 

3.10). In the case of very dense urban settlements such as Al-Muizz Street, the wind 

flow can be hampered, resulting in reduced ventilation cooling, but also preventing the 

area from the sandstorm such as Al khamasin sandstorm. However, the air circulation 

can still be improved through wind channelling in shaded narrow streets using the 
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variations in the aspect ratios along the street. In addition, the solar heating on particular 

surfaces might cause thermal flow leading to better air flow. 

   

a. Leeward heating b. Windward heating c. Floor heating 

Figure ‎3-9 The effect of solar heating on individual surfaces may create substantial thermal flows 

affecting the air flow patterns (Erell, 2011). 

 

 

 

Figure ‎3-10 Straight and parallel streets improve air flow into and within a city (on the left hand side) 

while the narrow and winding streets make air flow slow (Santamouris et al., 1999) 

3.4.4 Solar access 

The impact of the sun on the climate is prominent. From the urban street canyon 

point of view, the amount of solar radiation could directly influence the solar access and, 

hence, thermal comfort at pedestrian level. Therefore, the degree of exposure to solar 

radiation is one of the main controls on microclimatic conditions, which should be 

considered in the design of an urban street especially in the hot arid climate such as 

Cairo (Sheta and Sharples 2010). 

Arnfield (1990a) conducted a numerical study in order to examine the street‘s 

aspect ratio (H/W) and orientation on the amount of solar access for all latitudes and 

seasons. The study examined various canyons with E-W and N-S orientation and aspect 

ratio varying from 0.25 to 4. The monthly average irradiation records showed that the 

aspect ratio (H/W) is considered to be the first determinant influencing the amount of 

solar energy received by the urban canyon, the amount of solar radiation received by the 



Chapter Three: Review of Microclimate and Outdoor thermal comfort 

 

 81 

street surfaces increases as the H/W value becomes wide. On the other hand, the street 

orientation is more effective in controlling the solar amount gained by the walls; as a 

result, the solar amount received by the different urban surfaces is not distributed 

equally, as the ground surfaces are more irradiated than the vertical surfaces or the walls 

and the H/W appears to have more influence on the streets than the walls. 

Table 3.1 indicates the impact of increasing the street width on the total radiation 

received by the street in the Netherlands (52
o
 06 N and 5

o
 11 E) (Van Esch et al., 1995). 

For all the studied canyons, increasing street width from 15m to 20m increases the 

radiation yield by 17-20%. In different seasons, the relative increase in radiation yield is 

more or less equal – about 19% per 5m increase in street width. However, the absolute 

increase differs quite strongly, as the radiation yield is rather low in winter; an extra 

19% means only a few kWh/m, while in summer it is an extra 20-25kWh/m (Robins and 

Macdonald, 1999). This also shows that in higher latitudes the aspect ratio (H/W) and 

orientation are of great importance for controlling the receiving solar energy, yet the 

prime importance is for urban geometry over the orientation in controlling the solar 

access for the subtropics. 

Although the N-S orientation still receives some solar radiation on the shortest 

day of the year (21st December), even when the street is narrow, it provides thermal 

comfort in winter, spring and autumn; it can be unpleasant in summer, as there is no 

shade on the streets during the hottest day of the year. In comparison with N-S oriented 

streets, streets with E-W orientation provide some shade during the hottest hours of the 

day. However, E-W oriented streets receive a high percentage of direct solar radiation in 

the morning and afternoon in summer compared to N-S oriented streets (Robins and 

Macdonald, 1999). 

Table ‎3-1 Total radiation yield of the canyon in (kwh/m) for different street directions, typical dates and 

street widths with flat roofs (Robins and Macdonald, 1999) 

Street width (m) December 21st March 21
st
 June 21st 

E-W street orientation 

10 13.6 57.8 124 

15 16 68 146 

20 18.5 78.6 169 

25 21 89.2 193 

N-S street orientation 

10 13.8 56.6 124 

15 16.1 66.8 147 
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20 18.5 77.2 170 

25 20.9 87.6 193 

In a similar climatic zone to the case study, in the hot, arid region of Ghardaia in 

Algeria, the findings pointed out the difficulty of keeping an E-W oriented street in the 

shade as the walls provide very limited shading even for deep canyons with aspect ratio 

(H/W) ≥2. However, the streets with N-S orientation provide enough shadow in summer 

and solar energy in winter, leading to more pleasant microclimate (Toudert, 2005). 

Therefore, one recommendation worth mentioning is that the orientation of the street 

canyon should be chosen based on the area‘s latitude, as in different latitudes, different 

orientations are appropriate; also, by rotating the streets to a NE-SW or NW-SE 

orientation, comfortable conditions can be created as in summer it will provide better 

shading areas compared to the E-W oriented street, while in winter more solar access 

will be available compared to a N-S orientation (Toudert and Mayer, 2004). The study 

also concluded that deep and narrow urban canyons (H/W ≥0.5) are more appropriate for 

hot regions as they generally reduce solar access. In contrast, uniform, shallow and 

generally wide street canyons (H/W ≤0.5) are appropriate for cold areas which require 

more solar access throughout the whole year. 

3.4.5 Vegetation 

Vegetation is a modifying factor of the local climate. The use of greenery as a 

strategy to mitigate the UHI and improve the microclimate has been widely emphasized 

(e.g. Escourrou 1991; McPherson et al., 1994a; Akbari et al., 1995; Avissar, 1996; Taha 

et al., 1997).  

The effects of vegetation on the energy balance are compounded as the radiative, 

sensible and latent heat fluxes are spatially variable within the vegetative canopy. In 

tropical climates, the energy balance and cooling energy requirements may be altered by 

vegetation planted around buildings, avoiding the strong solar radiation and reflected 

radiation from the surroundings (Robinette, 1968; Brown and Gillespie, 1995; Akbari, 

2002; u and wong, 2006; Wong et al., 2007). According to McPherson et al. (1994a), the 

effect of vegetation on climate can mainly be summarized into shading, 

evapotranspiration and wind break, in addition to acting as an indirect agent to trap 

water inside the soil. Thus, any decision to use the vegetation to improve the 
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microclimate must take into consideration these effects and their impact on the site 

should be studied well (Moffat and Schiler, 1981).  

A comparison experiment conducted in subtropical location showed that some 

tree-aligned streets and boulevards had 1-2.5°C lower air temperatures than non-

vegetated streets during the hottest part of the day (15:00h) (Shashua-Bar and Hoffman, 

2004). Using ENVI-met (Bruse, 2006) modelling in Thessaloniki, Greece, 

Chatzidimitriou et al. (2005) reported a small temperature decrease for tree-aligned 

streets (less than 1°C), but up to 20°C lower surface temperatures and more than 40°C 

lower mean radiant temperatures. In Rio de Janeiro, Brazil, Spangenberg (2004) found 

that an increased amount of urban greenery (tree cover of 30% of the ground and 100% 

green roofs) could nearly re-create the comfortable conditions of a natural forest. Fahmy 

et al. (2010) assessed the vegetation impact in the arid climate of Cairo, Egypt. The 

findings were a 5-15
o
C reduction in main radiant temperature, and a 1-3

o
C reduction in 

air temperature.  

It is important to point out that the type and effect of vegetation differs from one 

climate to another. For hot climates, the best use of the vegetation should benefit from 

reducing solar radiation and lower air temperature due to shading and 

evapotranspiration. A sparser vegetation well mixed within the urban structure to 

produce as much shadow as possible has to be preferred in hot and dry climates 

(McPherson et al., 1994b). For cold climates, using the vegetation as a screen against 

high winds is more appropriate, and dense vegetation located at the urban edges is 

advisable. However, in urban streets, vegetation should be selected carefully to avoid 

certain common problems. For instance, the trees are often employed as shading devices 

which provide shade in summer and sunlight in winter, yet this idealized behaviour is 

not always observed in practice for several reasons (Shashua et al., 2010). Trees, for 

example, do not always provide shade precisely where desired, the period in which 

many trees lose their foliage may not coincide with the hot season in a given location, 

and trees cannot be manipulated to provide shading or be removed in response to 

changing weather conditions, especially in the transition seasons. Additionally, trees are 

costly to maintain, and their canopies often interfere with overhead telephone and 

electric lines. Regarding Al-Muizz‘s urban configuration, trees cannot be manipulated to 

provide shading, as the sub-surface water table across Islamic Cairo, including Al-Muizz 

Street, has risen to catastrophic levels due to the increased disposal of waste water in the 
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aquifer layers, sometimes as close as 1.5m from the surface (Williams, 2001). This 

closeness of the water levels to the monuments puts precious building foundations in 

jeopardy (Figure 3.11).in addition to some other side effects which occur as a result of 

having greenery in the heritage site, for instance the roots of the vegetation may destroy 

pavements and underground sewers and harm the foundations of old building in some 

sites.  

 

 

Figure ‎3-11 The damage caused to monuments and the street by the release of sub-surface water and 

sewage water in some areas of Al-Muizz 

3.4.6 Shading consideration in the hot, arid climate 

The shade is the dominant factor driving the heat balance equation in the hot, arid 

regions, as stated by Pearlmutter et al. (2007), who examined heat stress over a summer 

daily cycle for several aspect ratios and orientations of different urban canyons in the 

hot, arid climate of south Israel. The main findings were that thermal stress was 

progressively reduced as the aspect ratio (H/W) increased in the north-south oriented 

canyon. This effect was less pronounced as the canyon rotated until it disappeared in the 

east-west orientation. However, during the nighttime the effect of the large aspect ratio 

(H/W) was largely reversed, which impeded the long wave radiant heat loss to the sky 

due to the constricted sky view factor (SVF). Such compactness creates a cooler street 
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environment during the daytime and a warmer one at night. Due to the dense 

infrastructure in some developed areas that have low SVFs, urban areas cannot easily 

release long-wave radiation to the cooler, open sky during the nighttimeand this trapped 

heat contributes to the urban heat island (Nakamura and Oke,1988). A similar study for 

Lin et al. (2010) based on ten years of meteorological data analysis indicated that a high 

SVF (barely shaded) causes discomfort in summer and a low SVF (highly shaded) 

causes discomfort in winter; both conditions reduce the duration of the annual thermal 

comfort period. The study also revealed that the high shading levels increasethermal 

comfort during the day in summer, but they can still decrease long-wave radiation loss 

on the surface, contributing to high temperatures at night. This phenomenon was similar 

to that which was reported in Chapter Five, where the street locations with low SVF, 

being covered by shading devices, took a longer time to cool down during the night time 

compared to other unobstructed locations. However, the results showed the importance 

of shading for the improvement of day-time comfort.Consequently, it can be concluded 

that suitable shading is very positive during the summer daytime and well documented, 

while an investigation is still required for night time comfort. This solution is not an 

innovative one and has been traditionally used in Al-Muizz Street for centuries (Figure 

3.12). Nevertheless, the positive climatic effects of several traditional solutions have 

recently been questioned, as their effect might be overestimated since they were 

developed on a qualitative approach of trial and error (Givoni, 199; Toudert, 2005) and 

quantitative information about the best possible street design, based on scientific 

methods, in order to regulate the climate comfort is still required (Santamouris, 2001; 

Hawkes and Foster, 2002; Fahmy and Sharples 2008b; Abdulrahman and Sharples 

2014). 
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Figure ‎3-12 Old photos dated to the end of the 18th century for Al-Muizz Street show how people used 

their own techniques such as the movable tents to avoid direct solar radiation 

3.4.7 Thermal properties of materials 

Further important aspects affecting the microclimate of an urban street are the 

thermal properties of surface materials and nocturnal cooling (Arnfield, 2003). The 

reflectivity, or albedo, of surfaces that determines the amount of absorbed shortwave 

radiation depends mainly on the colour of the surface and varies greatly in urban areas 

(Table 3.2). Aseada et al. (1996) pointed out the importance of the pavement materials 

in the resulting heat fluxes and air-ground interface on summer days, where the asphalt 

pavement was shown to emit an additional 150Wm
-2

 infrared radiation and 200Wm
-2

 

sensible transport, compared to a bare soil surface. Also, certain configurations of 

buildings can lead to an increased probability of multiple reflections and absorptions in 

the canopy layer, resulting in a low urban albedo. 

Changes in air temperature near the surface are driven mainly by energy 

exchange between the surface materials and the surrounding ambient air. This, in turn, is 

affected by the thermal conductivity and heat capacity of the material. A parameter that 

combines these properties is the ‗thermal admittance‘, which according to Oke (1987) is 

considered to be the key parameter in determining how much radiation absorbed at the 

surface will be stored in the sub-surface; the higher the thermal admittance, the more 

heat is stored in the material, while less energy will be released as sensible heat. At 

night, the release of energy stored in the canyon materials and the role of the floor and 
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the façades as a source of sensible heat for the canyon continues at night, causing what 

is known as nocturnal cooling (e.g. Nunez and Oke, 1977; Nakamura and Oke, 1988; 

Arnfield and Mills, 1994). The surface temperature of the street remains at 0.5-1 °C 

lower than the façade temperatures by night, due to a larger sky view of the horizontal 

surface (Santamouris et al., 1999). During night time, the vertical stratification of the air 

temperature is low, i.e. less than 0.5 °C for each level, with higher air temperatures 

measured at the ground level, which decrease with height. At night the simultaneous 

differences in the surface temperatures are insignificant, with a maximum of 2K 

(Santamouris et al., 1999). Accordingly, the ancient designers of Middle Eastern cities, 

including Al-Muizz, have often been credited with a superior understanding of the 

surrounding environment (Rahamimoff and Bornstein, 1981; Potchter, 1990, 1991; Erell 

et al., 2011), suggesting that the external colours of Middle Eastern cities were required 

as a combination of high reflectivity of solar radiation and high emissivity of infrared 

radiation to the cool sky at night. Light colours and non-shiny surfaces are preferred, and 

all dark coloured surfaces are avoided. Bright colour contrasts should be in agreement 

with the general character of the region as shown in Figure 3.13. 

Table ‎3-2 The albedo and thermal emissivity of typical natural and man-made material Sources: Oke 

(1987); Garratt (1992) 

Surface  Albedo (α) Emissivity (ɛ ) 

Man-made   

Asphalt 0.05-0.20 0.95 

Concrete 0.10-0.35 0.71-0.90 

Brick 0.20-0.40 0.90-0.92 

Corrugated iron 0.10-0.16 0.13-0.28 

Fresh white paint 0.70-0.90 0.85-0.95 

Clear glass (normal incidence) 0.08 0.87-0.94 

Natural   

Forest 0.07-0.20 0.98 

Grass 0.15-0.30 0.96 

Soil Wet 0.10-0.25 0.98 

 Dry 0.2-0.4 0.9-0.95 

Notes: 

1. The albedo of tropical rainforests lies in the lower part of this range, while that of coniferous or 

deciduous forests is in the upper part. 

2. The albedo of soils depends, in addition to moisture content, on colour: it shows a high 

correlation with Munsell colour value (Post et al., 2000). 

 



Chapter Three: Review of Microclimate and Outdoor thermal comfort 

 

 88 

  

Figure ‎3-13 The use of heavy materials, mainly stone, which has a high thermal capacity. In addition, 

using light painted colours in the buildings‘ external facades helps increase the urban reflectance 

Based on the above, the physical features of the street canyon proved to have an 

influence on both the outdoor and indoor environments. The relative absorption and 

reflection of radiation affect the potential for the solar heating of the space outside as well as 

inside the buildings. Moreover, the accessibility to wind flow affects not only internal 

building ventilation but also external ventilation and the capability for urban cooling. 

Subsequently, the street form affects the thermal sensation of people outdoors as well as 

occupant comfort and energy consumption within buildings. 

3.5 Outdoor thermal comfort 

Thermal comfort as a term has been defined in numerous ways based on how it 

has been examined. For instance, Fanger‘s (1970) definition relates thermal comfort to 

the rate of energy gains and losses by the human body, describing the state of comfort as 

being when all heat flowing to and from the body are in equilibrium. In his definition, 

Fanger (1970) mainly used the rational model, which accounts for environmental 

conditions and physiological regulation of body temperature within a limited range. On 

the other hand, both the British Standard BS EN ISO 7730 (2013) and ASHRAE (2009) 

define thermal comfort as ―the state of mind that expresses satisfaction with the 

surrounding environment.‖ This means that comfort is not a state condition, but rather a 

state of mind, which in turn highlights the social and psychological dimensions. Recent 

studies have shown that thermal sensations are different among people at the same site 

due to the combination of a large number of factors, such as length of exposure, 

social/cultural backgrounds and/ or mood (Fiala et al., 2001; Huizenga et al., 2001; 

Nikolopoulou, 2001; Humphreys and Nicol, 2002; Nicol and Humphreys, 2002; 

Nikolopoulou and Steemers, 2003; Emmanuel, 2005a; Humphreys et al., 2007; Lin and 
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Matzarakis, 2008; Nikolopoulou and Lykoudis, 2009; Lin, 2009; Cohen et al., 2013). 

Although microclimatic parameters strongly influence thermal sensation, they only 

accounted for around 50% of the variation between objective and subjective comfort 

evaluation. The rest could not be measured by physical parameters, whereas 

psychological adaptation seems to have become increasingly important (Nikolopoulou 

and Steemers, 2003; Nikolopoulou and Lykoudis, 2009).  

3.5.1 The heat balance (physiological approach) 

Human physiology includes mechanisms for maintaining thermal equilibrium 

through energy exchanges between the body and its surroundings. The human body 

continuously produces heat by its metabolic processes, and this heat must be dissipated 

to the environment in order to maintain a constant internal body temperature (Figure 

3.14). From the energy exchange perspective, the state of thermal comfort is reached 

when metabolic heat production and heat dissipation from the body to the environment 

are balanced, and when skin temperature and sweat rate are consequently within a 

defined comfort range (Fanger, 1972). The energy balance equation can be expressed as 

follows (Hoppe, 1999): 

M + W + R + C + ED+ ERe+ ESw+ S = 0 (Eq. 3.8) 
 

where (M) is the metabolic heat generated by the human body, (W) is the physical work 

output, (R) and (C) represent the net radiation and convection heat losses from the body 

respectively, (ED) is latent heat loss by evaporation of moisture diffused through the skin 

(imperceptible perspiration), (ERe) is the sum of heat flows for heating and humidifying 

the inspired air, (ESw) is the heat loss due to the evaporation of sweat, and (S) is the 

storage heat for heating and cooling the body mass. The individual terms in this equation 

have positive signs if they result in an energy gain for the body and negative signs in the 

case of an energy loss (M is always positive; W, ED and ESw are always negative). All the 

heat flows are calculated in watts (W). Many of the most common thermal indices for 

indoor comfort are based on this heat balance (McIntyre, 1980) as described later in 

section (3.6). The detailed mathematical statements for each of these terms have been 

thoroughly documented (e.g. Fanger, 1970; Gagge et al., 1971; Gagge et al., 1986; 

Höppe, 1984; VDI, 1998; ASHRAE, 2001a). 
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Figure ‎3-14 The components of the human heat balance (Houghton, 1985) 

3.5.1.1 Human urban heat exchange 

Here, it is important to remember that the outdoor urban setting is different to the 

indoor as it provides less shelter from sun and wind. There are two important 

mechanisms related to the outdoor setting, through which the body exchanges energy 

with the surroundings and achieves thermal comfort (Pearlmutter et al., 1999; 

Pearlmutter and Shaviv, 2005; Pearlmutter et al., 2007): 

a. The absorption and emission of energy in the form of radiation 

Pedestrians experience wide fluctuations in thermal stimuli due to radiation in 

two forms: (i) the short wave radiation emitted from the extremely hot surface and 

mostly referred to as sunlight (ii) long wave radiation which is emitted by the 

atmosphere and by lower temperature terrestrial surfaces that surround the pedestrians in 

the built environment. Both forms are combined as a total net exchange of radiation Rn 

between the body and the urban environment (Pearlmutter et al., 2006). (Figure 3.15) 

Rn= (Kdir + Kdif+ Kh + Kv)(1 – αs) + Ld +Lh + Lv - Ls (Eq. 4.9) 
 

Rn The net radiation of all wave lengths (W/m
-2

)  

Kdir Direct short wave radiation incident on the body 
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Kdif Diffuse short wave radiation incident on the body 

Kh Indirect short wave radiation incident on the body reflected from horizontal surfaces 

Kv Indirect short wave radiation incident on the body reflected from vertical surfaces 

αs The albedo of the skin and/or clothing, such that (1 – αs) is the proportion of all 

incident short wave radiation that is absorbed by the body 

Ld Long wave radiation incident on the body, emitted downwards by the sky 

Lh Long wave radiation incident on the body, emitted by horizontal surfaces 

Lv Long wave radiation incident on the body, emitted by vertical surfaces 

Ls Long wave radiation emitted by the body to the environment 

In mid latitude countries like Egypt, pedestrians are likely to suffer most severely 

from thermal stress due to overheating during the midday hours of the summer season 

when the short wave radiation is most intense. Therefore, unshaded pedestrians are 

exposed to direct solar rays (direct radiation) coming directly from the sun and indirect 

solar radiation known as diffused radiation, which is either scattered by the atmosphere 

and thus arrives from the entire vault of the sky or from the reflected solar radiation 

from adjacent buildings and ground surfaces (reflected radiation). In addition to short 

wave radiation, pedestrians are also exposed to long wave radiation emitted from 

adjacent buildings and surfaces, as well as from the ground and the sky. The extent of 

the exposure to these emissions is dependent upon the temperature and emissivity of the 

respective part of the surrounding environment, and upon its corresponding factor. 

Moreover, short wave radiation can increase the emission of long wave radiation 

through increasing the temperature of the adjacent surfaces (Erell et al., 2011). 

b. The absorption (most commonly, dissipation) of heat by convection 

A body exchanges heat with the surrounding air through thermal convection due to local 

air temperature difference and through forced convection due to wind. Mitchell (1974) 

calculated the rate of convective heat transfer (C) per unit area of the body and measured 

in W/m
-2 

C = hc ∆T (Eq. 3.10) 
 

C The convective heat transfer on the sensible flux (W.m
-2

) 

hc The transfer coefficient in W/m2 
o
C, which is dependent on the number of people in 

a group, affects forced convection and air speed (W.m
-2

.C
-1

) 

∆T Difference between body temperature and the surrounding air temperature (
o
C) 
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Figure ‎3-15 Schematic depictions of radiation exchanges between a pedestrian and the surrounding urban 

environment. Net all-wave radiation (Rn) at the surface of the vertical cylinder is based on an expression 

originally given by Monteith and Unsworth (1990) for an open ground plane, which was adapted by 

Pearlmutter et al. (1999) to account for the additional effects of vertical canyon facets 

3.5.2 Variables influencing thermal comfort 

There are four basic environmental parameters affecting overall thermal comfort: air 

temperature, radiation, air humidity and wind velocity. Additionally, two personal variables 

also influence thermal comfort: clothing insulation and the level of activity as metabolic rate 

(ASHREA, 2009). These factors may be independent of each other, but together they 

contribute to a body‘s thermal comfort. 

3.5.2.1 Environmental parameters 

 Air Temperature: defined as the dry-bulb temperature in the shade, it is perhaps 

the most important for thermal comfort, where it affects the rate of convective and 

evaporative body heat loss. If the air temperature exceeds the surface temperature of the 

clothed body, or of the exposed skin, there will be convective heat gain and vice versa. 

There is actually a fairly wide range of temperatures that can provide comfort when 

combined with the proper combination of relative humidity, mean radiant temperature 

(MRT), and air flow. As any one of these conditions varies, the dry-bulb temperature 

must be adjusted in order to maintain comfort conditions. 

 Radiation: the absorption of solar radiation and the exchange of long-wave 

radiation strongly affect the state of thermal comfort of the human body. The concept of 
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MRT was originally developed for the indoor environment and defined as ―the uniform 

temperature of an imaginary enclosure in which radiant heat transfer from the human 

body equals the radiant heat transfer in the actual non-uniform enclosure‖ (ASHRAE, 

2009). However, for the outdoor it is much more complicated because of the extensive 

variation in radiation from different sources. The human body may receive solar 

radiation as direct and diffuse, as well as reflected radiation from building façades and 

the ground. Moreover, the body exchanges long-wave radiation with the sky, with urban 

surfaces and with objects such as trees. The magnitude of the radiation from the 

different sources varies greatly in space and time.  

In warm climates, radiation can make people feel hot and uncomfortable. In contrast, 

radiation in cold climates can moderate the discomfort caused by low temperature. 

Radiant temperature has a greater influence than air temperature on losing or gaining 

heat to the environment. The skin absorbs almost as much radiant energy as a matt black 

object, although this may be reduced by wearing reflective clothing (HSE, 2013).  

 Humidity: defined as the amount of water vapour in a given space. An increase 

in the air‘s moisture content, or humidity, can affect the evaporation rate: high humidity 

restricts the dissipation of heat through sweat evaporation from the skin and respiration, 

while very low humidity leads to drying out of the mucous membranes as well as the 

skin, thus causing discomfort. A change in the humidity of the atmosphere affects 

thermal sensation in that a person feels warmer, sweatier and less comfortable 

(McIntyre, 1980). Especially under warm conditions, when both convective (C) and 

radiative (R) heat losses are small, sweat evaporation (Esw) is an important mechanism in 

maintaining comfort. When the liquid sweat on the skin surface evaporates, latent heat is 

extracted from the body and a cooling effect is produced. However, Givoni (1998) stated 

that humidity does not influence thermal sensation below a critical level, and he defined 

this limit to 80% relative humidity for temperatures up to 25°C. This is because, 

although the evaporative capacity of the air diminishes with increasing humidity, the 

body compensates for this by spreading the sweat over a larger area of skin, thus 

maintaining the required evaporation rate. 

 Wind velocity: This describes the speed of air moving across the body and may 

help cool the body if it is cooler than the environment. Air velocity is an important 

factor in thermal comfort as it significantly affects body heat transfer by convection (C) 

and evaporation (ESw). It accelerates convection and increases evaporation of sweat from 
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the skin, thus producing a physiological cooling effect. The higher the wind speed, the 

greater the rate of heat flow by both convection and evaporation. 

3.5.2.2 Personal parameters 

 Metabolic rate: The metabolic rate is related to the level of physical activity; at 

higher rates a cooler environment will be preferred to facilitate heat dissipation.  

 Clothing insulation: Thermal comfort is very much dependent on the insulating 

effect of clothing on the wearer. Increased clothing insulation leads to a lower 

temperature difference between the outer surface of the clothed body and the ambient air 

temperature. Accordingly, the convective C and radiative (R) heat losses decrease with 

increasing clothing insulation, and it is considered an important adjustment mechanism 

if the clothes can be freely chosen. 

According to Nikolopoulou and Steemers (2003), people adapt physically to an 

environment by a combination of both strategies of clothing insulation and metabolic 

rate through adjusting how they dress and move, e.g. slow walking in hot climates, and 

by avoiding exposure to extreme climate situations. 

3.5.3 Psychological approach 

In urban spaces, people not only seem to accept more extreme thermal stimuli 

than they do indoors, but studies also indicate that individuals residing in hot and humid 

regions have better tolerance for high temperatures than those residing in temperate 

regions (Karyono, 2000; Feriadi and Wong, 2004; Lin and Matzarakis, 2008). These 

give evidence to the fact that people adapt to the surrounding thermal environment 

(Barger and de Dear, 1998; Emmanuel, 2005a). The existence of adaptation reflects a 

―give and take‖ relationship between the environment and the user, who is no longer a 

passive recipient for the given thermal environment but rather an active agent interacting 

with and adjusting to the person-environment system via multiple feedback loops 

(Brager, 1998). There are three main ways to give such opportunities of human adaption 

to comfort including behaviour adaptation, physiological acclimatization, and 

psychological adaption (Brager and Dear, 1998; de Dear and Brager, 1998; Givoni, 

1998; Fiala et al., 2001; Huizenga et al., 2001; Nikolopoulou, 2001; Humphreys and 

Nicol, 2002; Nicol and Humphreys, 2002; Nikolopoulou and Steemers, 2003; 

Humphreys et al., 2007; Lin, 2009). 
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3.5.3.1 Behaviour adaptation and adjustment 

Physical adaptation involves all the physical changes people make to either 

adjust to the environment, or amend the environment to their needs. Nikolopoulou 

(1999) identified two different types of physical adaptation: reactive and interactive. In 

reactive adaptation, the only changes occurring are personal, such as altering one‘s 

clothing levels, posture and position, or even metabolic heat with the consumption of hot 

or cool drinks. In interactive adaptation, people make changes to the environment in 

order to improve their comfort conditions, such as opening a window, turning a 

thermostat, opening blinds or using fans. However, it is usually unrealistic to apply the 

interactive adaptation in the public outdoor space to achieve thermal comfort, since the 

pedestrian has little capacity to modify the environment. In this context, people‘s 

responses to outdoor microclimates may be passive in comparison with indoor climates, 

but they often result in a different use of open space (Eliasson et al., 2007; Thorsson et 

al., 2004a, 2004b). 

3.5.3.2 Physiological acclimatization 

Physiological adaptation implies changes in the physiological responses resulting 

from repeated exposure to a stimulus, leading to a gradual decreased strain from such 

exposure (Nikolopoulou and Steemers, 2003). Sachdeva et al. (1995) conducted research 

on 64 males from a hot, tropical region who were asked to stay for eight weeks in 

Antarctica. All the subjects worked outdoors for 6-8 hours travelling on foot or on snow 

vehicles, sleeping in unheated huts (temperature 3-4°C higher than ambient 

temperature). The results were that when they exposed to severe cold stress, they 

succeeded in acclimatizing to the climate and prevented cold injuries by increasing 

finger blood flow and maintaining the temperature of their extremities. In contrast, in hot, 

arid climate zones, the primary physiological response to heat stress is an increased sweating 

capacity for a given heat load. 

3.5.3.3 Psychological adaption 

Different people perceive the environment in a different way, and the human 

response to a physical stimulus depends on the information that people have for a 

particular situation. Therefore, the thermal perception of a space is influenced by 

psychological factors that may influence the perception (Nikolopoulou and Steemers, 

2003). 
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 Naturalness was described by Griffiths et al. (1987) as an environment free 

from artificiality; outdoor environments typically have a wide variation in climatic 

conditions relative to stable indoor conditions, where people can tolerate climate 

regarding the transience and mobility of the outdoor conditions, and metabolism and 

clothing have a significant effect (Fahmy et al., 2010). 

 Expectations reflect what the environment should be like, rather than what it 

actually is, where people can predict climate conditions and take necessary precautions. 

For instance, if thermal conditions are in a different pattern to what people have been 

experiencing over the previous days, this may cause differences in people‘s sensation 

votes or even lead to complaints, as the conditions do not meet their recently-formed 

expectations (Nikolopoulou and Steemers, 2003). This may explain the variation of 

expectations between seasons, which in many studies in different climates the minimum 

comfort temperatures vary between seasons (Liz, 2009; Mahmoud, 2011; Cohen et al., 

2013). 

 Experience: it is important to differentiate between two types of experience. The 

short term one relates to the memory and seems to be responsible for the changes in 

people‘s expectations from one day to the next. The long term experience refers to the 

schemata people have constructed in their minds. People living in different 

geographical/climatic zones may have different attitudes towards the sun and staying in 

outdoor spaces (Knez and Thorsson, 2008), and differences in cultural attributes may be 

related to geographical/climatic zones to a certain extent. In this context, culture may be 

defined as ―the system of information that codes the manner in which people in an 

organized group, society or nation interact with their social and physical environment‖ 

(Reber, 1985). In the same context, many other researchers have already shown that 

avoidance or acceptance behaviour is influenced by momentary thermal comfort 

impressions (Whyte, 1980; Gehl, 1987; Givoni et al., 2003; Eliasson et al., 2007; 

Katzschner et al., 2002, Thorsson et al., 2004; Walton et al., 2007). 

 Time of exposure bears little relation to discomfort if the stressful condition is 

for a very short time, such as getting out of a warm car to enter a building in winter. 

However, this is considered to be a very crucial factor for outdoor spaces which people 

mainly use for recreational and optional activities, and therefore they are exposed to 

potentially stressful conditions for long periods (Nikolopoulou and Steemers, 2003). 
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The time people spent in the different sites varies enormously, but the thermal 

perception of the environment was an important parameter influencing people‘s 

decisions on how long to spend in the area depending on their perception of the 

surroundings. The perceived stressfulness of the outdoor environment may influence their 

willingness to travel by foot, for instance, rather than by air-conditioned vehicle. Generally, 

unless exposure to discomfort is threatening for the living organism, people‘s tolerance 

of the thermal environment is great (Nikolopoulou and Steemers, 2003). 

 Perceived control is widely acknowledged to influence thermal sensation. The 

higher the degree of control over discomfort that an individual has, the wider the 

variations are in the thermal environment that he/she can tolerate, and the lower the 

degree of negative emotional responses. People who have the free will to choose their 

sitting positions outdoors so that the choice is open to them further reinforces this point. 

It is not important whether they actually moved position eventually; the critical issue is 

that the choice was available (Nikolopoulou and Steemers, 2003). 

Furthermore, the reason that an individual is present in a certain place can also affect 

thermal sensation. For instance, people become more tolerant when they expose 

themselves to the conditions willingly, as in the case of playing outdoors, because they 

are exercising control and exploiting available choices. In contrast, if he/she feels the 

need to be in a place so he or she is not exercising control, such as travelling to a 

workplace, this will lead to less tolerance towards their environment due to the absence 

of personal will against the external factors. 

 Environmental stimulation is embodied in a wide range of outdoor thermal 

conditions. Comfortable conditions have been regarded as those where occupants feel 

neither warm nor cold, where ambient conditions are ‗neutral‘ (McIntyre, 1980). The 

comfort zone is often expressed as a temperature range around the neutral temperature. 

However, it is increasingly believed that a variable, rather than fixed, environment is 

preferred. It is the effect of aesthetic environment values and personal perception that 

can be improved by solar shelters, orientation or urban trees (Fahmy et al., 2010). A 

study by Nikolopoulou and Steemers (2003) reported that the majority of the 

interviewees voted for +1 (warm) not zero for neutrality, as their actual thermal 

sensation vote, suggesting that people enjoy feeling warm. The most plausible 

justification seems to be that they see the external environment with the fresh air, the sun 
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and the wind as invigorating stimulation for the senses, and wish to spend some time 

there. 

3.6 Indices for assessing heat stress 

A comfort index is a single value that integrates the effects of the basic 

parameters in any human thermal environment such that its value will vary with the 

thermal strain experienced by the individual (Parsons, 2003; Epstein and Moran, 2006). 

Since the development of the wet-bulb temperature as the first index or single value to 

measure the heat stress in 1905 by Haldane, a large number of different indices have 

been created and are in use throughout the world. Table 3.3 lists the most important 

indices (Epstein and Moran, 2006); however, there are still more than 100 thermal 

comfort indices (Blazejczyk et al., 2012). 

At the beginning, the index estimation was based on the environmental variables 

combination effects. Later, the effect of metabolic rate and clothing were also taken into 

account. However, the most significant progress was made only during the last 30 years 

for developing universal indices which are capable for evaluating both cold and hot 

conditions (Cohen et al., 2013). Nowadays, thermal comfort indices can be categorized 

into rational and empirical indices (McIntyre, 1980; Johansson, 2014); the rational 

indices are based on heat balance equation for its calculations, while the empirical 

indices account for the objective and subjective strains. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter Three: Review of Microclimate and Outdoor thermal comfort 

 

 99 

Table ‎3-3 Proposed systems for rating heat stress and strain (heat stress indices). Source: Epstein and 

Moran (2006) 

Year Index Authors(s) 

1905 Wet-bulb temperature (Tw) Haldane 

1916 Katathermometer Hill et al. 

1923 Effective temperature (ET) Houghton &Yaglou 

1929 Equivalent temperature (Teq) Dufton 

1932 Corrected effective temperature (CET) Vernon & Warner 

1937 Operative temperature (OpT) Winslow et al. 

1945 Thermal acceptance ratio (TAR) Ionides et al. 

1945 Index of physiological effect (Ep) Robinson et al. 

1946 Corrected effective temperature (CET) Bedford 

1947 Predicted 4-h sweat rate (P4SR) McArdel et al. 

1948 Resultant temperature (RT) Missenard et al. 

1950 Craig index (I) Craig 

1955 Heat stress index (HIS) Belding & Hatch 

1957 Wet-bulg globe temperature (WBGT) Yaglou & Minard 

1957 Oxford index (WD) Lind & Hellon 

1957 Discomfort index (DI) Thom 

1958 Thermal strain index (TSI) Lee & Henschel 

1959 Discomfort index (DI) Tennenbaum et al. 

1960 Cumulative discomfort index (CumDI) Tennenbaum et al. 

1960 Index of physiological strain (Is) Hall & Polte 

1962 Index of thermal stress (ITS) Givoni 

1966 Heat strain index (corrected) (HSI) McKarns & Brief 

1966 Prediction of heart rate (HR) Fuller & Brouha 

1967 Effective radiant field (ERF) Gagge et al. 

1970 Predicted mean vote (PMV) 

Threshold limit value (TLV) 

Fanger 

1970 Prescriptive zone Lind 

1971 New effective temperature (ET*) Gagge et al. 

1971 Wet globe temperature (WGT) Botsford 

1971 Humid operative temperature Nishi & Gagge 

1972 Predicted body core temperature Givoni & Goldman 

1972 Skin wettedness Kerslake 

1973 Standard effective temperature (SET) Gagge et al. 

1973 Predicted heart rate Givoni & Goldman 

1978 Skin wettedness Gonzales et al. 

1979 Fighter index of thermal stress (FITS) Nunneley & Stribley 

1981 Effective heat strain index (EHSI) Kamon & Ryan 

1982 Predicted sweat loss (msw) Shapiro et al. 

1985 Required sweating (SWreq) ISO 7933 

1986 Predicted mean vote (modified) (PMV*) Gagge et al. 

1987 Physiological Equivalent Temperature (PET) Mayer & Höppe 

1996 Cumulative heat strain index (CHSI) Frank et al. 

1998 Physiological strain index (PSI) Moran et al. 

1999 Modified discomfort index (MDI) Moran et al. 

2001 Environmental stress index (ESI) Moran et al. 

2005 Wet-bulb dry temperature (WBDT) Wallace et al. 

2005 Relative humidity dry temperature (RHDT) Wallace et al. 
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3.6.1 Rational indices (steady state assessment) 

Rational indices are based on an analysis of the physics of heat transfer by 

conducting assumptions that people‘s exposure to an ambient climatic environment has, 

over time, enabled them to reach thermal equilibrium, based on the heat balance 

equation of the human body. Table 3.4 shows details of some of the commonly used 

indices. The Predicted Mean Vote (PMV) is one of the most widely used indices and 

was developed by Fanger (1970). It predicts the mean thermal response of a large 

population of people and consists of a seven point scale ranging from hot (+3) to cold (-

3). In practice, PMV is also commonly interpreted by the Predicted Percentage 

Dissatisfied Index (PPD), which is defined as the quantitative prediction of the 

percentage of thermally dissatisfied people at each PMV value. It is important to note 

that PMV was originally developed for indoors, but since it has been widely adopted in 

outdoor thermal comfort studies in which large groups of people are being surveyed 

(Nikolopoulou et al., 2001; Thorsson et al., 2004; Cheng et al., 2010). 

Another rational index is the Physiological Equivalent Temperature (PET) 

(Mayer and Höppe, 1987), which is defined as the air temperature at which, in a typical 

indoor setting, the human energy budget is maintained by the skin temperature, core 

temperature, and sweat rate equal to those under the conditions to be assessed (Höppe, 

1999). PET is a temperature dimension index measured in degrees Celsius (
o
C), making 

its interpretation comprehensible to people without a great deal of knowledge about 

meteorology. PET is particularly suitable for outdoor thermal comfort analysis in that it 

translates the evaluation of a complex outdoor climatic environment to a simple indoor 

scenario on a physiologically equivalent basis that can be easily understood and 

interpreted. PET has been widely applied in areas with various climatic conditions 

(Matzarakis et al., 1999; Toudert and Mayer, 2006; Thorsson et al., 2007; Lin, 2009; 

Cheng et al., 2010). 

Both ISO 7730 (2005) and ASHRAE 55 (2010), which were designed for indoor 

environments, suggest the use of the Predicted Mean Vote (PMV), whereas the German 

engineering guidelines VDI 3787 (2008), which were developed for use in outdoor 

environments, suggest the use of PMV and PET. However, existing standards and 

guidelines have no recommendations on how to calculate the neutral and preferred index 

temperatures (Johansson et al., 2014). 
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Table ‎3-4 Selected thermal comfort indices (Fanger, 1970; Givoni, 1963; Givoni, 1976; Hoppe, 1999 and 

Cohen et al., 2013) 

Index Definition 

ET* (
o
C)  

New Effective Temp. 

The temperature of a standard environment (TMRT = Ta; RH = 50%; WS < 0.15 

ms-1) in which a subject would experience the same skin wittedness and mean 

skin temperature as in the actual environment. Limited to low activity and light 

clothing  

SET*(oC) 

Stand. Effective Temp. 

Similar to ET* but with clothing variable. Extends to include a range of 

activities and clothing levels  

OUT_SET* (
o
C) 

Out. Stand. Eff. Temp  

Similar to SET* but adapted to outdoors by taking into account the solar 

radiation fluxes. Reference indoor conditions are: MRT = Ta; RH = 50% ; WS = 

0.15 ms-1  

PMV  

Predicted Mean Vote  
Based on the human heat balance, expresses thermal comfort on a scale from -3 

to +3. Clothing and activity are variables  

ITS (W)  

Index of Thermal 

Stress  

Expresses the rate of heat loss (or gain) required for the body to maintain 

thermal equilibrium under the given environmental and physiological 

conditions. Under warm conditions, it is calculated as the required rate of sweat 

secretion, in terms of equivalent latent heat, that is required to provide sufficient 

evaporative cooling for maintaining such thermal equilibrium  

PET (
o
C) 

Physiol. Equiv. Temp.  

Temperature at which in a typical indoor setting: MRT = Ta; VP = 12h Pa; WS = 

0.15 ms-1, the heat balance of the human body (light activity, 0.9clo) is 

maintained with core and skin temperature equal to those under actual 

conditions  

(UTCI) 

Universal thermal 

climate index  

Intended for outdoors; No information on the clothing insulation level of the 

surveyed population is required. Reference condition for activity: metabolic rate 

of 135 W/m2 and a walking speed of 1.1 m/s (Cohen et al., 2013) 

3.6.2 Empirical indices (non-steady state assessment) 

The problem with steady-state methods is that they cannot effectively account 

for the dynamic aspects of the course of human thermal adaptation. According to Hoppe 

(2002), there are no internationally accepted non-steady-state indices for the solution of 

this problem and the picture remains unchanged today (Chen and Ng, 2012). In general, 

people seem to accept more extreme thermal stimuli outdoors than they do indoors, due 

to markedly different expectations, as mentioned under the psychological adaptation 

section earlier in this chapter. Therefore, the necessity for observed data from field 

surveys regarding the perception of the subjective human thermal sensation in the 

outdoor environments has been recognized, so as to provide a broader perspective to 

assess thermal comfort in urban spaces (Nikolopoulou and Lykoudis, 2006; Lin, 2009; 

Kántor and Égerházi, 2012; Kántor, and Unger, 2012; Cohen et al., 2013). These are 

what is known as empirical thermal indices, which are derived from multivariable 

regression models, calculating thermal sensation based on measurements of air 

temperature, solar radiation, humidity and wind speed (Givoni et al., 2003; 

Nikolopoulou and Steemers, 2003) with the regression coefficients derived from 

subjective comfort votes given by respondents. These models have been shown to 
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accurately predict thermal comfort in a given setting, but they are restricted to the type 

of environment and climate in which the study took place (Johansson, 2006b).  

This understanding has enlarged research on this topic in the last decade. Table 3.5 

summarizes previous studies that assessed thermal sensation with different thermal 

indices. Some of the examinations were tested in empirical studies, while others were 

simulated experiments or involved questionnaire-based field studies. Although the 

Universal thermal climate index (UTCI) has recently become very common, the most 

commonly applied index is the PET, which has been tested in field studies in different 

climate zones (Gulyas et al., 2006; Johansson and Emmanuel, 2006; Matzarakis et al., 

2007; Thorsson et al., 2007). Thus, the physiological equivalent temperature index 

(PET) (Höppe, 1993, 1999) was chosen for the current research, as it shows some 

benefits for the outdoor environment over other indices. First, PET was developed by 

considering the effects of short-wave and long-wave radiation fluxes in outdoor 

environments on the human energy balance, so it is appropriate for outdoor thermal 

comfort assessment. Second, PET is already included in German VDI 3787 for a human 

bio-meteorological evaluation of climate in urban and regional planning. Its validity has 

been proven in hot/ arid and hot/ humid climates (Spagnolo and De Dear, 2003; Ali-

Toudert, 2005; Lin, 2009; Yang et al., 2013). Third, PET can be estimated using 

software packages such as RayMan, which calculates the PET based on air temperature, 

air humidity, wind speed, mean radiant temperature, human clothing and activity, in 

addition to the cloud cover, time of year and surrounding obstacles by calculating the 

sky view factor. Furthermore, parameters such as albedo, the Bowen ratio of the ground 

surface and the Linke turbidity of air can also be adjusted using RayMan (Matzarakis et 

al., 2007; Lin et al, 2010). Fourth, PET has been used in urban built-up areas with 

complex shading patterns and has generated accurate predictions of thermal 

environments (Matazarakis et al., 1999, 2007; Gulyas et al., 2006; Lin et al., 2006).  
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Table ‎3-5 Summary of studies that assessed thermal sensation with different thermal indices. Modified 

from Cohen et al. (2013) 

Authors Location season Thermal indices 
Use of 

questionnaires (N) 

Matzarakis & Mayer, 

1996 
Freiburg, Germany Summer PET  

Nikolopoulou et al., 

2001 
Cambridge, UK 

Spring, Summer & 

Winter 
PMV 1432 

Becker et al., 2003 Yotvata, Israel Summer PMV 30 

Spagnolo & de Dear, 

2003 
Sydney, Australia Summer & Winter 

TOP, ET*, PET 
OUT_SET*, PT, 

1018 

Gomez, Gil, & 

Jabaloyes, 2004 
Valencia, Spain All year 

ID, PE, VINJE, 

WBGT 
1500 

Gulyas et al., 2006 Hungary Summer PET No 

Johansson & 

Emmanuel, 2006 
Colombo, Sri Lanka 

Hot & humid 
(tropical) 

PET No 

Knez & Thorsson, 

2006 

Göteborg, Sweden, 

Matsudo, Japan 
March & April PET 106 

Nikolopoulou & 

Lykoudis, 2006 

Thessaloniki, 

Athens, Milan, 

Freiburg, 

Kassel, Sheffield, 

Cambridge 

All year PET, THI, K 9189 

Thorsson et al., 2007 Matsudo, Japan Winter & Spring PET 1142 

Lin & Matzarakis, 

2008 

Sun Moon Valley, 
Taiwan 

All year PET 1644 

Hussein & Rahaman, 

2009 
Malaysia January PMV, To 375 

Lin, 2009 
Taichung City, 
Taiwan 

Summer & Winter PET 505 

Shashua-Bar, 

Pearlmutter, 

& Erell, 2010 

SedeBoker, Israel Summer ITS No 

Tseliou et al., 2010 

Athens, 

Thessaloniki, Milan, 
Fribourg, 

Cambridge, 
Sheffield, Kassel 

All year PET, THI, K 9189 

Hwang et al., 2011 Taiwan, Huwei All year PET 1644 

Johansson & Yahia, 

2011 
Ecuador, Guayaquil Dry & wet season PET 537 

Novák, 2011  July 

UTCI, NET, 

Humidex, 

PT(CHMI), HI 

Laboratory 

comparison 

Yang, Lau, & Qian, 

2011 
Shanghai, China Summer PET no 

Mahmoud, 2011 Cairo, Egypt June & December PET 300 

Kántor, Égerházi, et 

al., 2012 

Kántor, Unger, et al., 

2012 

Szeged, Hungary Autumn & Spring PET 967 

Schreier et al., 2012 

Kiruna, Sweeden, 

Hamburg, 

Germany, Messina, 
Italy 

Several years data UTCI  

Weihs et al., 2012 Germany Summer & Winter UTCI Model work 
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3.7 The mean radiant temperature 

The most critical issue in calculating any of the explained outdoor thermal indices is 

the need for the mean radiant temperature (TMRT), which is defined by ASHRAE (2009) as 

the uniform temperature of an imaginary black enclosure in which an occupant would 

exchange the same amount of radiant heat as in the actual non-uniform enclosure. In other 

words, the TMRT summarizes the effects of all radiant heat fluxes reaching the body. This 

is why many researchers consider the TMRT as the key variable in evaluating thermal 

sensation outdoors, especially during warm and sunny weather conditions regardless of the 

comfort index used (e.g. Mayer and Höppe, 1987; Jendritzky et al., 1990; Mayer, 1993; 

Spagnolo and De Dear, 2003; Thorsson et al., 2007). However, the calculation of TMRT 

varies considerably in open spaces compared to indoor situations, and in sunny conditions 

TMRT can be more than 30oC higher than air temperature as it is subjected to considerable 

complexities and uncertainties, while in a confined setting of an enclosed room they are 

approximately equal (Fehrenbach et al., 2001; Thorsson et al., 2007). According to Fanger 

(1970), the TMRT outdoors can be calculated based on the following equation: 

 

(Eq. 3.11) 

The equation assumes that the entire surroundings of the human body are divided into 

isothermal surfaces, which have the following properties: 

• Ei(Wm-2) is the long-wave radiation component (Ei = σBεi Ti4) 

• Di (Wm-2) is the diffuse and diffusely reflected short-wave radiation component 

• Fi is the angle weighting factor 

• I (Wm-2) is the direct solar radiation impinging normal to the surface 

• fpis the surface projection factor which is a function of the sun height and the body posture, αk is 

the absorption coefficient of the irradiated body surface for short-wave radiation (≈ 0.7), εpis the 

emissivity of the human body (≈ 0.97), and σBis the Stefan-Boltzmann constant (σB = 5.67 . 10 –

8 Wm-2K-4). 

Although the procedure for calculating the angle factor (Fi) for simple shapes is 

given by Fanger (1970), it is still one of the major problems to be calculated if it is 

divided into several surfaces. For some special cases when the human body is situated 

on a large flat surface without any horizon obstruction, then the human surrounding will 

be divided into two spheres, where the ground is the lower one and the sky the upper 

sphere. The angle factor is set to 0.5 for both spheres (e.g. Jendritzky et al., 1990; Pickup 

and de Dear, 1999). However, in the case of more complex surface morphology 

(especially in urban environments), the determination of all relevant radiation fluxes and 

the individual angle factors are extremely difficult, costly and time consuming.  
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To overcome all these difficulties, two approaches have been suggested. For urban 

planners and designers interested in estimating the thermal comfort conditions in 

different urban spaces, according to ASHRAE (2009), the integral radiation instruments 

such as the globe thermometer can be used in the case of an existing urban form 

(Vernon, 1932; Kuehn et al., 1970; de Dear, 1987; Nikolopoulou et al., 1999; Kantor 

and Under, 2011). The second method, in case of different design scenarios or 

proposals, is the simulation-based approach using PC software such as RayMan, ENVI-

met and SOLWEIG (Bruse, 1999; Toudert, 2005; Thorsson et al., 2007). 

The theory of the globe thermometer has been thoroughly explained by Kuehn et al. 

(1970). Basically, the TMRT is assumed by the globe thermometer to be at equilibrium 

between the radiation balance and convective heat exchange of the globe (ASHRAE, 

2001). It was originally developed for indoor application and was then extended to 

include outdoor settings (Nikolopoulou et al., 2001). Simply, if the globe temperature, 

air temperature and air velocity are known, then the TMRT can be calculated according 

to equation (3.12) given by ASHRAE (2009) with the empirical coefficient as recently 

refined by Thorsson et al. (2007): 

 

(Eq. 3.12) 

 

Where ( ) is the globe temperature (
o
C), ) is air velocity (ms

-1
),  is the air temperature (

o
C), D 

[mm] is the globe ball diameter, and  is the emissivity of the sphere (=0.95 for a black globe). The 

empirical derived parameter  and the wind exponent ( ) together represent the globe‘s mean 

convection coefficient ( ). 

The second approach of calculating the TMRT by modelling has been recently 

developed with the aim of simulating the radiation field in outdoor urban context. For 

instance, the Rayman software (Matzarakis et al., 2000) which models the TMRT, as 

well as different thermal indices in the urban structure, has shown good results of 

correlation between the measured and simulated TMRT in certain urban environments 

(Matzarakis et al., 2000). RayMan divides the 3-dimensional environment into an upper 

and lower hemisphere with a parting plane between them at 1.1m above the ground, at 

the height of the weighting centre of a standing human body. By using the software, 

radiation and thermal comfort conditions can be analysed for complex urban structures 

and other type of landscapes (Matzarakis et al., 2010). However, the simulations refer 
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only to one point of the investigated area and do not provide a continuous surface of the 

obtained values, because it would considerably increase the running time. Such is the 

case with the 3-dimensional, grid-based ENVI-met model which, on the other hand, 

models the microclimate including the wind flow, turbulence, temperature, humidity, as 

well as the TMRT in urban structures, with high spatial (0.5-10m horizontally) and 

temporal (up to 10s) resolution (Kántor and Under, 2011; Huttner, 2012). The software 

is based on a three dimensional computational fluid dynamic model and an energy 

balance model to simulate the surface-plant-air interactions in urban settings for 

purposes of urban climatology, architecture, urban design and planning (Bruse, 1999, 

2006). Both models calculate TMRT at street level (RayMan calculates to one point and 

ENVI-met to a surface). This is based on Fanger‘s (1972) concept of dividing the 

surroundings into many sections (free atmosphere, several building surfaces and the 

ground surface), for which the direct, diffuse and diffusely reflected short wave and the 

emitted long wave radiation components are taken into account. 

Thorsson et al. (2007) reported a relatively small difference in accuracy between 

the globe thermometer method and the RayMan simulated TMRT, compared to the more 

complicated method based on integral radiation measurements and angular factor in 

estimating outdoor TMRT. However, Katzschner and Thorsson (2009) reported a 1
o
C 

difference between the TMRT simulated using the ENVI-met software and the TMRT 

observed from vertical and horizontal measurements and 3
o
C difference with the globe 

thermometer. 

The main advantage of such models is the possibility of testing the micro-

bioclimatic effects of different planning scenarios by modifying the dimensions, 

arrangements, and the radiant properties of the buildings and the vegetation in the model 

environment (Matzarakis et al., 2007). The TMRT can be easily obtained through the 

modelling of the available input meteorological parameters, such as air temperature, air 

humidity, degree of cloud cover, and air clarity (atmospheric turbidity) (Matzarakis et 

al., 2010). In addition to the atmospheric variables, temporal parameters (day of the year 

and time of the day) as well as the geographical location must be specified. 
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3.8 Outdoor thermal comfort applications 

In order to assess outdoor thermal comfort, there are a number of methodological 

problems that need to be addressed first, including the following: 

 The complicated method of calculating the TMRT based on the integral radiation 

measurements and angular factors while there is still a lack of validation for other 

methods, including the globe thermometer and simulation tools for examining 

different proposal for outdoor spaces 

 The lack of validation for available indices to be used outdoors, and the difficult 

interpretation in respect of people‘s actual sensations, as some studies have revealed 

that people living in different geographical or climatic zones may have different 

attitudes towards the sun and staying outdoor (Thorsson et al., 2007) 

 The missing link to urban geometry effects which are important in relation to design. 

These issues are discussed briefly in the following paragraphs. 

Thermal indices applied indoors were extended to outdoors with the assumption that 

the theory of comfort is also valid outdoors (Spagnolo and de Dear, 2003). However, 

during the last few years the validity of these outdoor thermal indices has been 

questioned for two main reasons. The first problem was that the human thermal 

assessment differs from those predicted and that the indoor setting parameters may not 

be directly transferable to the outdoor environment (Kenz and Thorsson, 2008); the 

second problem was related to the interpretation of an comfort index value in a given 

scale (e.g. a PMV value of + 3 or a PET value of 48°C can at most be interpreted as heat 

stress, but nothing about the actual degree of discomfort can be drawn with confidence). 

This difference is mainly related to the distinction between the indoor and the outdoor 

spaces where the TMRT is almost equal to Ta, the air movement is weak and the activity 

mostly sedentary, under indoor conditions, while outdoor the conditions are different 

due to the large differences in TMRT in space and time, different wind speed, 

circulations and wide variation in activities. In order to bridge this overlap between 

outdoor indices and actual thermal sensation, some researchers have focused on 

redefining the boundaries of the scales of the various indices. These adjustments require 

calibration that should be carried out using local subjective comfort data (Spagnolo and 

de Dear, 2003). Different studies (Nikolopoulou and Lykoudis, 2006; Lin and 

Matzarakis, 2008; Kántor et al., 2012; Cohen et al., 2013) have suggested that 
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calibration should be carried out using local subjective comfort data conducted from 

field surveys to provide a broader perspective to assess thermal comfort in urban spaces. 

Although the general conditions and methods used vary greatly, making any comparison 

difficult, some common findings still can be drawn. 

Spagnolo and de Dear (2003) discussed whether the standards applied indoors are 

also reliable outdoors, with the main aim of determining the range of a neutral comfort 

zone outdoors. All relevant meteorological data for comfort were recorded and 

compared to 1,018 subjective votes of people. The main finding was that the thermal 

neutrality for outdoor thermal comfort was significantly higher than for indoors 

(OUT_SET* equals 26.2°C versus indoor SET 24°C). This agrees with other studies (de 

Freitas, 1985; Potter and de Dear, 1999), which have argued that people would prefer 

slightly warmer conditions, corresponding to a positive value on the ASHRAE seven-

point scale, rather than theoretical neutrality. According to Spagnolo and de Dear 

(2003), people‘s expectations outdoors are much more variable over space and time 

since they perceive their lack of control. This suggests a significant widening of the 

comfort zone for outdoors, and consequently less discomfort than usually interpreted. 

This lead Spagnolo and de Dear (2003) to indicate that indoor standard comfort limits 

are not directly transferable to the outdoor environment, as the OUT_SET* ranging 

between 23-28°C was found to correspond to the zone of comfort for Sydney, and this is 

far above the standards adopted indoors. Recently, the lack of control has also been cited 

to explain the larger tolerance of people in naturally ventilated versus air-conditioned 

buildings (Brager and de Dear, 1998; Fanger, 2004) and seems to corroborate for 

outdoors this thesis of increased tolerance in the case of evident lack of control. 

The study also conducted a very interesting experiment through calibrating between 

the most used comfort indices (PMV, PET, OUT_SET*, PT, OP, ET*) and local 

subjective comfort data. The comparison showed substantial discrepancies between the 

different indices in the assessment of comfort. PET and OUT_SET* seem to provide the 

closest results (e.g. temperature of neutrality of 24.1°C for OUT_SET* vs. 23.4°C with 

PET), whereas larger differences are found for PT or PMV. However, these results 

depended on the climate type: the climate of Sydney shows small amplitudes and 

moderate air temperatures. This does not necessarily reveal how these indices would 

vary if used for other climate conditions. For instance, a calculation of PET and 

OUT_SET* with the same inputs for extreme hot dry conditions showed that 
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OUT_SET* provides lower values (by 27% less) because of different humidity 

assumptions (Toudert, 2005). 

RUROS project (Rediscovering the Urban Realm and Open Spaces) conducted in a 

number of European countries agrees with the same results mentioned above 

(Nikolopoulou and Lykoudis, 2006). The results given on a seven-point scale revealed 

that thermal sensitivity of the subjects was affected by the adaptation, which usually 

takes place in different forms such as physical and psychological. Physically, the results 

proved that there are changes in the clothing insulation and metabolic rate related with 

the seasonal variation with a tendency for a low metabolic rate activity correlated with 

the higher air temperature. Psychologically, it was proved that thermal sensation in 

autumn and spring follows the behaviour of the proceeding season, which is the 

responsibility of the short-term experience. After the summer, a warmer temperature 

was desired in autumn, while in spring a cooler temperature was preferred, after the cold 

winter. Additionally, the same studies revealed that the perceived choice or control had a 

very high weight in psychological adaptation for avoiding discomfort as the choice of 

the sitting place and position or being in the area by one‘s own choice rather than 

because of compulsory presence. Thus, the physical parameters alone for the 

microclimate cannot explain the variation between the objective and subjective comfort 

evaluation as it accounts for only 50%, while the psychological adaptation accounts for 

the rest (Nikolopoulou and Steemers, 2003).  

The third methodological shortage is related to the missing link to urban geometry 

effects, which are important in relation to design. According to Toudert (2005), studies 

directly focusing on the consequences of urban design strategies for comfort are severely 

lacking and the few conducted studies based on the human bio-meteorological 

approaches within urban structures have highlighted the major dependences of 

individual factors (air temperature (Ta), vapour pressure (VP), wind velocity (v), 

TMRT) on thermal sensation outdoors (e.g. Mayer and Höppe, 1987; Jendritzky and 

Sievers, 1989; Mayer, 1993, 1998). The studies reported a positive relationship between 

the comfort indices including PMV and PET and the TMRT and Ta. The TMRT showed 

a linear relationship with strong correlation (R
2
>0.93) with either PET or PMV. In 

addition, the interdependence of TMRT and the global irradiation G was as important 

(R
2
>0.92), with a clear distinction between irradiated and shaded areas being observed. 

This highlighted the importance of shading in maintaining thermal comfort outdoors, as 
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the dominant impact of TMRT reduces as a result of decreasing the radiant heat flux 

because of the shading. This is why TMRT is considered to be of prime importance in 

typical hot and sunny summer conditions regardless of the comfort index used (e.g. Mayer 

and Höppe, 1987; Jendritzky et al., 1990; Mayer, 1993; Spagnolo and De Dear, 2003; 

Thorsson et al., 2007). Furthermore, a statistical regression between Ta and PET 

revealed an exponential relationship, albeit with less positive correlation than that 

observed for TMRT, certainly because PET experiences contrasting values between 

exposed and shaded locations. Vapour pressure VP fluctuations were found to have an 

insignificant impact on PET. Increasing the wind speed leads to a decrease of PET, and 

yet no strong relationship could be found. 

3.9 Recent research of outdoor thermal comfort 

However, there is no international standard, which covers outdoor thermal 

comfort studies (Johansson et al., 2014). In the last decade, and due to the advances in 

techniques in the fields of urban climatology and biometeorology, detailed studies of 

microclimatic and thermal comfort have been conducted for various outdoor spaces in 

different climate regions (Chen and Ng, 2012). Some of these studies have focused on 

modelling and assessment methods from a thermo physiological perspective (e.g. 

Hoppe, 2002; Gulyas et al., 2006), whereas others have conducted detailed 

investigations of the climatic parameters that determined the thermal comfort level of 

humans (e.g. Spagnolo and De Dear, 2003; Nikolopoulou and Steemers, 2003; Cheng 

and Ng, 2006). This section provides a comprehensive review of the studies conducted 

during the last decade in regions with hot, arid climates. 

Bourbia and Awbi (2004a and 2004b) investigated a group of buildings and 

shading in an urban street in the hot, arid climate of the city El-Oued in Algeria. The 

study conducted a field measurement of air and surface temperature, in addition to a 

shading simulation model. The authors examined the influence of the street‘s physical 

attributes, including aspect ratio (H/W) and sky view factor (SVF), on urban 

microclimate with particular emphasis on the air and surface temperature. The findings 

highlighted that the examined parameters (aspect ratio and sky view factor) caused a 

higher variation on surface temperature compared to air temperature. Accordingly, the 

authors concluded from the simulation results a number of positive relationships 

between the urban geometry and the microclimate. These started to be very promising in 
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developing urban design guidelines for the street dimensions and orientation. 

Nevertheless, the study only examined the air and surface temperature, excluding all 

other parameters, and these proved to be of great importance for thermal comfort such as 

solar radiation, wind velocity and humidity. Additionally, the psychological dimension 

was ignored in the study, as there was no social survey to assess pedestrians‘ thermal 

perception. 

Another study was conducted by Ali-Toudert and Mayer (2006). The aim of the 

experiment was to study the effect of urban geometry, including various street aspect 

ratio ranging from 0.5 to 4 as well as E-W and N-S orientations, on the outdoor thermal 

comfort in the hot arid climate of Ghardaia in Algeria. The study was based on field 

measurement and simulation using the ENVI-met software. The outcomes showed 

distinctive levels of thermal comfort between the streets of different aspect ratios and 

between different orientations studied. The air temperature was moderately decreased 

with the higher aspect ratio (H/W) recording a peak difference of 3 K between the 

canyons with H/W = 4 and 0.5 around 15:00 LST. It also stated that outdoor thermal 

comfort is very hard to achieve passively in such hot and dry climate, and yet an 

improvement is still possible. However, the radiation fluxes expressed by the mean 

radiant temperature are far more decisive. Therefore, the study concluded that the 

thermal comfort can be improved through successful shading designs as the key strategy 

for promoting thermal comfort in hot and dry climate. However, the simulations and 

field measurements analysis were mainly based on the physical approach, including the 

human balance model, which failed to include many subjective, social and cultural real 

world situations (Han, 2007). 

Johansson (2006a) studied the influence of urban geometry on outdoor thermal 

comfort in the hot, dry of climate of Fez, Morocco. The study performed field 

measurements followed by simulations in summer and winter. The author concluded 

that, during the summer, a deep canyon with a high aspect ratio was fairly comfortable, 

while a low aspect ratio canyon was extremely uncomfortable, where day-time air 

temperature was found to peak for H/W ratios of about 1 while a sharp decrease in air 

temperature was found for H/W ratios of ≥2 in summer and for H/W ratios of ≥1 in 

winter. The study stated that compact cities with deep canyons are better for hot, arid 

climates, but in winter, the designers should provide some spaces for solar access. 

However, the study‘s results were only based on field measurements and simulations 
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without including any questionnaire surveys in order to refine the boundaries of the 

calculated Physiological Equivalent Temperature index (PET). 

Pearlmutter et al. (2007) examined heat stress over a summer daily cycle for 

several aspect ratios of 0.33, 0.66, 1.0 and 2.0 and orientations of different urban 

canyons in the hot, dry Negev Highlands, south of Israel. The main findings were that 

thermal stress was progressively reduced as the aspect ratio (H/W) increased in the 

North-South oriented canyon. This effect was less pronounced as the canyon rotated, 

until it disappeared in the East-West orientation. However, during the night-time the 

effect of the large aspect ratio (H/W) was largely reversed, which impeded the long 

wave radiant heat loss to sky due to the constricted SVF. Compactness thus creates a 

cooler street environment during the daytime and is warmer at night. The results led the 

authors to conclude that shade is the dominant factor driving the heat balance equation. 

Still,the study does not represent the real urban situation since it was conducted in an 

open air model, while a real urban canyon is more complex and includes irregular 

building heights, different roof shapes and different surfaces material. Also, the thermal 

comfort index used names as Index of Thermal Stress (ITS) (Givoni, 1976) was 

developed under laboratory conditions, which does not represent the real responses of 

pedestrians outdoors. 

Djenane et al. (2008) conducted a study regarding the urban morphology impact 

on microclimate in the hot, dry area of M‘zabValley in Algeria. The study targeted a 

solution adapted in terms of occupation modes of the ground and urban morphology in 

the streets as a direct response to the microclimatic constraints. The experiment 

compared four locations during the summer time, and each location had different street 

geometry with aspect ratios varying between 1.6 and 9.7, and plot coverage between 

10% and 87%. As in all previous studies, the aspect ratio of the street proved to be of 

high importance for arid regions, where high H/W ratios (until 9.7) adopted in the desert 

cities allow a good solar protection of the streets during the day; yet they increase its 

heating during the night.Moreover, the authors demonstrated that the thermal behaviour 

for adaptation is related to both the solar exposure and the wind speed with the street 

level.  However, the study was solely based on air temperature and wind speed, which 

cannot be representative for thermal comfort without examining the solar radiation and 

mean radiant temperature. 
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Al Jawabra and Nikolopoulou (2009) studied the complex relationship between 

the microclimate and human behaviour in open public spaces in hot, arid climates. In 

order to represent a variety of users in a similar climatic context, two cities in two 

different locations were selected: Marrakech in North Africa, and Phoenix in North 

America. Field surveys involved structured interviews and human activities 

observations, along with microclimatic field measurements in two sites in Marrakech 

and three in Phoenix. These were carried out during the summers and winters of 2008 

and 2009. The findings revealed that the number of people and activities outdoors are 

influenced by the solar radiation especially in summer. Also, people from different 

social backgrounds located in the same climate have different approaches to using 

outdoor spaces, which highlights the importance of conducting a social survey to 

account for the 50% variance between objective and subjective comfort evaluation. 

However, the study only examined the psychological part of thermal comfort without 

analysing the urban form impact on microclimate.  

Bourbia and Boucheriba (2010) examined the urban morphology impact on 

microclimate in the hot, arid climate of Constantine, Algeria, in summer. A number of 

field measurements, including air and surface temperatures, were performed at seven 

sites with aspect ratios between 1 and 4.8 and a sky view factor between 0.076 and 0.58. 

The study reported a difference of about 3-6°C in air temperature between the urban and 

its surrounding rural environment. The authors argued that the larger the sky view 

factor, the higher the air temperatures reported. On the other hand, the higher the H/W 

ratio, the lower the air and surface temperatures recorded. Nevertheless, the study did 

not calculate the mean radiant temperatures or use any thermal index to assess the 

outdoor thermal environment. 

Mahmoud (2011) investigated people‘s thermal comfort in an urban park in the 

hot, arid climate of Cairo, Egypt. The study was carried out during the summer and 

winter seasons using field measurements and questionnaires in nine different zones of 

the urban park. The Physiological Equivalent Temperature (PET) index was calculated 

at each location. Results demonstrated differences in the PET index among these zones 

due to different sky view factors (SVF) and wind speed. It also revealed an alteration in 

human comfort sensation between different landscape zones. The author argued that the 

comfort range of PET for the urban parks in Cairo is 22-30°C in summer and 21-29°C in 

winter. However, the study was only conducted in an urban park, so it is still not 
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representative for other types of urban spaces in Cairo. Therefore, the thermal comfort 

range which was found in the study may only be valid for urban parks and it is difficult 

to generalize the results for other types of urban spaces in Cairo. 

Middel et al. (2014) investigated the impact of urban form and landscaping type 

on the microclimate of hot, arid Phoenix in North America. The study‘s aim was to find 

an effective urban form and design strategies to improve temperatures during the 

summer months. They used the three-dimensional microclimate model ENVI-met after 

validation with the conducted field measurement. Then, ENVI-met modelling used to 

simulate five different urban forms that represent a realistic cross-section of typical 

residential neighbourhoods in Phoenix combined with three landscape designs. The air 

temperature distribution and variation, ventilation, surface temperatures, and shading 

were the main parameters analyzed in the study. Findings showed that advection is 

important for the distribution of temperatures within design and that spatial differences 

in cooling are strongly related to solar radiation and local shading patterns. In mid-

afternoon, dense urban forms can create local cool islands. However, the study was 

purely following the physical approach of mitigating UHI intensity without counting for 

other aspects such as thermal comfort. 

From the studies discussed above, it can be concluded that microclimate has a 

significant impact on people‘s outdoor space usage. Temperature and sunlight are shown 

to be the most significant factors for achieving thermal comfort in hot, arid climates. 

However, all these studies have used different ways and methods in studying 

microclimate and thermal comfort. Some studies used only field measurements without 

social surveys, while others used a thermal comfort index which was developed based 

on laboratory conditions and therefore does not represent the complex situation of an 

urban street. A few studied microclimate and thermal comfort in urban parks only, and 

recently others used pure simulation analysis. Therefore, this review shows that there is 

no accepted or general framework in the field of microclimate and thermal comfort in 

hot, dry regions among scholars. However, Chin and Ng (2012) suggested an interesting 

assessment framework that should work on at least four levels: physical, physiological, 

psychological, and social/behavioural (Fig. 3.16). This framework should allow the local 

microclimatic condition to be linked with human sensations as well as with the use of 

space in both spatial and temporal terms. In other words, static and objective aspects 

(i.e. physical and physiological characteristics) should be measured and modelled 
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effectively to provide ‗climatic knowledge,‘ and dynamic and subjective aspects (i.e. 

psychological and social/behavioural characteristics) require comprehensive field 

interviews and observations to provide ‗human knowledge‘ (Chen and Ng, 2012). 

 

 

 

 



 

Chapter Three: Review of Microclimate and Outdoor thermal comfort 

 

 116 

 

Figure ‎3-16 Outdoor thermal comfort assessment framework (modified from Chen and Ng, 2012) 
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3.10 Conclusion 

Based on Chapter Two, it is clear that cities are warmer than rural areas, 

especially during night-time, because of the phenomenon known as the UHI effect (Oke, 

1987; Voogt, 2004; Velazquez-Lozada et al., 2006, Wong & Jusuf, 2008), which affects 

human comfort and energy use in buildings (Santamouris, 2007; Ihara et al., 2008; 

Ewing and Rong, 2008, Radhi et al.,2013). However, the microclimate may vary 

considerably as a function of the urban design within the urban canopy layer (Givoni 

1998; Toudert et al., 2005; Johansson, 2006a; Shishegar, 2013). According to this 

chapter, the following are concluded: 

 Urban microclimate depends both on the type of city in terms of size, geographical 

location, population size and density, and land use as well as street design features 

such as height of buildings, street widths and orientation, and subdivision of the 

building lots. Therefore, the urban design of each neighbourhood in a city creates 

its own particular local climate (Givoni, 1998; Grimmond et al., 2010; Srivanit and 

Kazunori, 2011).  

 In this respect, the urban street is the element of analysis. Streets are the basic 

structuring element in the creation of a physical fabric as itappears as the 

substantial interface between urban and architectural scales. The physical features 

of the street canyon can climatically affect both outdoor and indoor 

environmentsin terms of solar gain in summer and winter, building surfaces‘ 

absorption and reflection of solar radiation, wind speed and direction, and their 

implications for building passive cooling systems and urban ventilation (Toudert, 

2005).  

 Consequently, the street structure affects the thermal sensation of people as well as 

the global energy consumption of urban buildings. Therefore, integrating the street 

design with the climatic consideration is, hence, considered a key issue in a global 

approach to an environmental urban design (e.g. Oke, 1988; Toudert and 

Bensalem, 2001; Toudert, 2005; Hathway and Sharples 2012; Shishegar, 2013), 

especially in the era of climate change.  

 Previous studies (section 3.9) stating that, shading is the key strategy for 

promoting thermal comfort in hot and dry climate particularly in summer(e.g. Ali-

Toudert and Mayer, 2006; Pearlmutter et al., 2007; Djenane et al., 2008; Al 

http://www.sciencedirect.com/science/article/pii/S0360132312001722
http://www.sciencedirect.com/science/article/pii/S0360132312001722
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Jawabra and Nikolopoulou, 2009; Middel et al., 2014), accordingly this can be 

reached by (1) a judicious choice of aspect ratios and orientation in case of 

building up a new districts and (2) arranging complementary solutions, e.g. 

galleries, planting trees, or shading devices on the facades in case of existing areas 

development such as Al-Muizz street. 

 For this reason, any proposed improvement for an urban development has to be 

investigated referring to, first, its urban background including street features such 

as urban morphology, orientation, aspect ratio, and sky view factor, as main 

aspects affecting outdoor and indoor environments and whether it is climate based 

or not(examined in chapter 5). Second, the environmental stimulus responsible for 

shaping people‘s thermal perception and comfort assessment must also be 

considered, as studies indicate that people living in hot regions have better 

tolerance for high temperatures compared to those in temperate regions (Karyono, 

2000; Feriadi and Wong, 2004; Lin and Matzarakis, 2008). Therefore, thermal 

comfort scales developed in the temperate regions are not applicable for the case 

study, and subsequently this opens the door for using local subjective comfort data 

conducted from field surveys to provide a broader perspective to assess thermal 

comfort in urban spaces (assessed in chapter 6) (Nikolopoulou and Lykoudis, 

2006; Lin and Matzarakis, 2008; Kántor et al., 2012; Cohen et al., 2013).  
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4 
 “Although the relationship between a city form and its 

climate has been intuitively understood, intuition cannot 

predict how specific future buildings will affect climate 

conditions (Bosselmann, 1998, p.140). While there is still 

no single comprehensive model that can predict 

pedestrian comfort in public open spaces, recent advances 

in urban microclimatology that combine experimental and 

computational techniques make evaluation of this aspect 

of a person interaction with the environment more 

accessible and realistic” (Erell et al., 2011, p.2). 
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4.1 Introduction 

The thesis's aim is to investigate the outdoor thermal performance of traditional 

commercial urban streets, with a special emphasis on summer conditions in a hot arid 

climate, in order to extend pedestrians‘ outdoor thermal comfort and use of outdoor 

spaces. 

4.2 Research Methodology Framework 

The study of outdoor thermal comfort is interdisciplinary, as it incorporates phenomena 

as diverse as meteorology, urban design, and psychology; however, current 

investigations lack a general framework for assessment (refer to section 3.9.). Therefore, 

the research methodology was based on generating a comprehensive framework 

including the four levels known as physical, physiological, psychological, and 

social/behavioral, using various research strategies compiled in one full research 

framework, which summarizes the overall processes and procedures employed to 

achieve the research objectives and goals of the study (Figure 4.1), including the 

following phases:  

 Primary data collection (phase one) 

 Field measurements (phase two) 

 Questionnaires survey (phase three) 

 Micro-urban performance simulation (phase four)  

Each of these phases is achieving one or two of the study objectives. However, all these 

four phases were compiled together systematically to achieve the overall objective 

number five,as stated in section 1.3, through proposing the guidelines for improving the 

microclimate and outdoor thermal comfort based on the case study of Al-Muizz street in 

Cairo.The processes and procedures of each phase and the objective it is going to 

achieve are explained in details in the following section. 
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Figure ‎4-1 Research Methodology Framework 
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4.3 Primary data collection (Phase One) 

In phase one, the primary data collection was conducted in order to gather information 

about the case study, including satellite images, observations, meteorological reports 

including the weather data, building and electronic documents. Based on this 

information, a general idea of the current site conditions were generated and Al-Muizz 

Street was categorized into two major parts, named as renovated and non-renovated 

(Figure 4.2), the two parts are distinctive in their planning, green and hard surface 

distribution, and building and urban planning regulations, the characteristics of the two 

sites are described in Table 4.1. The gathered information was subsequently used in 

defining the locations and the timing of the study for the following phases through 

examining the meteorological data and EnergyPlus weather files analyzed by Ecotect 

analysis 2011.
7
 

Based on this phase, summer was chosen as the primary season for the study as it is 

classified according to the Egyptian energy code as the season when energy 

consumption peaks in the building sector. Figure 4.3 shows the annual operation profile 

of electric fans and air conditioners in relation to thermal comfort range in Cairo, which 

states the high-energy consumption and the long duration of the summer compared to 

the winter, as the climate is characterized by a hot summer season compared to 

moderate winter with very little rainfall (Al-Ajmi and Hanby, 2008). Accordingly, the 

field measurements and the parametric analysis are limited over a week between 26
th

 of 

June and 2
nd

 of July, which according to EnergyPlus weather files analysis isthe hottest 

week with the longest daylight duration among the season of 2012. However, only 

during the questionnaire, the survey was extended to cover extra week in the winter, 

between 19
th

 and 25
th

 of December as the shortest daylight duration within the season of 

                                                 

7
Autodesk® Ecotect® Analysis sustainable design software is a comprehensive concept-to-detail 

sustainable building design tool. Ecotect Analysis offers a wide range of simulation and building energy 

analysis functionality that can improve the performance of existing buildings and new building designs. 

Online energy, water, and carbon-emission analysis capabilities integrate with tools that enable you to 

visualize and simulate a building‘s performance within the context of its environment. 

(http://usa.autodesk.com/ecotect-analysis/) 

 

http://www.autodesk.com/sustainabledesign
http://usa.autodesk.com/ecotect-analysis/
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2012, in order to over grab the psychological aspect including peoples‘ experience and 

expectations and to monitor the deviation of their perceptions‘ between the two seasons. 

 

Figure ‎4-2 The two modelling domains and the two measurement points 

Table ‎4-1 The characteristics of Al-Muizz urban canyon studied and their immediate surroundings 

Site General description Land use Building 
Shaded 

area 

Ground 

cover 

(%) 

Green 

(%) 

Renovated 

part 

Compact 

neighbourhood, very 

close to the old 

commercial quarter 

(Khan El-Khalili) 

Commercial/ 

residential 

Low to 5 

floor and 

over 

<5% 
Basalt 

100% 
4.3% 

Non-

renovated 

part 

Very compact 

neighbourhood in the 

heart of the old city. 

Deep canyon, devoid 

of vegetation 

Commercial 

with few 

residential 

areas 

Low to 

medium 

rise (2-3 

storeys) 

55% 

Basalt 

30% and 

Road 

bare 

ground 

1.1% 

 

 

Figure ‎4-3 Annual fan and air conditioning operation profile in Cairo (Attia et al., 2012) with the PET 

comfort range. 
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4.4 Field measurements (Phase Two) 

In phase two, the main aim was to first explore the link between urbanization and the 

urban heat island effect phenomenon, second to understand the effect of the urban 

canyon microclimate and the main surface energy balance (objectives number one and 

two refer to section 1.3 research aims and objectives). Thus, two field measurement 

campaigns were carried out in order to map the variations in the microclimate and the 

outdoor thermal comfort within the street. The first field measurement campaign was 

undertaken in the two different locations of the street including the renovated and non-

renovated part at the same time. The measurements were taken for one week during the 

summer time with the main aim being to assess the urban heat island (UHI) intensity. 

Using the meteorological data gathered from the field measurements, a numerical 

simulation using the ENVI-met 3.1 software was developed. The base model domain 

was created using the satellite maps, building information, vegetation and ground cover 

surfaces provided in phase one, while the basic meteorological simulation file was 

mainly based on the meteorological report from the field measurement. The aim of the 

numerical simulations was to cover a wider range of urban design, to give the 

possibility of evaluating the current microclimate situation including the problematic 

areas. Accordingly, the second field measurements campaign was conducted in the 

problematic areas including nine different locations along the street for two 

representative days for a typical hot summer in Cairo; the main aim was to quantify the 

effect of urban features including aspect ratio, sky view factors and shadings on thermal 

comfort. 

4.4.1 First field measurements 

According to the ASHRAE Handbook of Fundamentals (2004, 2009), the four main 

physical parameters affecting thermal comfortare air temperature (Ta), solar radiation 

(W/m²), relative humidity (RH), and air velocity (va),in addition to globe temperature 

(Tg) were measured. However, the first field measurements were only performed for the 

air temperature within Al-Muizz street in the two different locations named previously 

as the renovated and non-renovated parts over a week in the summer season (figure 

4.2), between 26
th

 June and 2
nd

 July 2012. The outputs were then compared with theair 

temperature obtained from theWMO station No. 623660 located at Cairo International 

Airport, about 15km North-East of Cairo city centre, at latitude: 30.08, longitude: 
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31.28and altitude: 36, to assess the UHI condition in Al-Muizz Street. The other 

meteorological variables were used as an input to develop a micro-urban performance 

simulation using the ENVI-met 3.1 software that generated micro-climatic maps for 

both parts of the street highlighting the problematic locations within the street, which 

need further analysis for the second field measurements. 

4.4.2 Second field measurements 

The second field measurements were restricted to only two days 29
th

 June and 1
st
 July, 

2012, which represent the hottest days in the whole week. The field measurements were 

performed in nine different locations along the street, as shown in figure 4.4, covering 

thesame meteorological parametersmeasured in the previous field measurements 

(ASHRAE 2004, 2009). The main output was first to calculate the mean radiant 

temperature, second to estimate the steady state PET comfort index, third to use the 

measured values as an input for the simulation programs, and to validate the simulations 

outputs through comparing with the measured values. 

 

Figure ‎4-4 Route with the different measuring points at Al-Muizz Street 

4.4.3 The portable weather station adjustments 

In order to achieve the field measurement objectives by assessing the main weather 

parameters at each location point, the Vantage Vue 6250 weather station with a solar 

radiation sensor, in addition to a Kestrel 4400 heat stress tracker,were used within the 

spine to collect measurements of the outdoor atmospheric environment.  

The sensors are positioned 1.1m above ground level, which corresponds to the average 

height of the centre of gravity for adults (Mayer and Hoppe, 1987) and at least 1m from 

the nearest façade, as the temperature and humidity variations within urban canyons 

have proven to be small except near urban surfaces (Oke, 2004). Figure 4.5 shows the 

instrument setup for measuring the four basic environmental parameters known to 
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influence thermal comfort, namely, air temperature, wind speed, humidity and solar 

radiation. According to the data sheet, presented in table 4.2, the temperatrure accuracy 

sensors is (±0.5°C), the wind speed accuracy is (1 m/s), the solar radiation range 

between 0 to 1800 W/m2 with 5% accuracny of full scale and the humidity accuracy is 

±3% (0 to 90% RH), ±4% (90 to 100% RH). In addition, globe temperature was 

calculated using a 25mm black globe thermometer, copper, externally mounted, and 

calibrated to achieve the same measurements as a standard 150mm globe.  

 

 

 

Figure ‎4-5 The mobile weather station setup (On the left hand side is the Vantage Vue 6250, while on the 

right is the Kestrel 4400 heat stress tracker). 
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Table 4-2 Davis Vantage Vue 6250 weather station data sheet 

Temperature 

Inside Temperature (sensor located in console) 

Resolution and Units Current Data: 0.1°F or 1°F or 0.1°C or 1°C (user-selectable) 

Range +32° to +140°F (0° to +60°C) 
Sensor Accuracy ±1°F (±0.5°C) 
Update Interval 1 minute 

Outside Temperature (sensor located in ISS) 

Resolution and Units Current Data: 0.1°F or 1°F or 0.1°C or 1°C (user- selectable) 

nominal 
Range -40° to +150°F (-40° to +65°C) 

Sensor Accuracy ±1°F (±0.5°C) above +20°F (-7°C); ±2°F (±1°C) under +20°F (-

7°C) 

Radiation Induced Error (Passive 

Shield) 

+4°F (2°C) at solar noon (insolation = 1040 W/m2, avg. wind 

speed  ≤ 2 mph (1 m/s)) (reference: RM Young Model 43408 Fan 

Aspirated  Radiation Shield) 
Update Interval 10 to 12 seconds 
Wind Speed 

Resolution and Units 1 mph, 1 km/h, 0.5 m/s, or 1 knot (user-selectable) 
Range 2 to 180 mph, 2 to 156 knots, 1 to 80 m/s, 3 to 290 km/h 

Update Interval Instant Reading: 2.5 to 3 seconds, 10-minute Average: 1 minute 

Accuracy ±2 mph (2 kts, 3 km/h, 1 m/s) or ±5%, whichever is greater 
Solar Radiation 

Resolution and Units 1 W/m2 

Range 0 to 1800 W/m2 

Accuracy 
±5% of full scale (Reference: Eppley PSP at 1000 W/m2) 

 

Drift up to ±2% per year 
Cosine Response ±3% for angle of incidence from 0° to 75° 

Temperature Coefficient -0.067% per °F (-0.12% per °C); reference temperature = 77°F 

(25°C) 

Update Interval 50 seconds to 1 minute (5 minutes when dark) 
Humidity 

Inside Relative Humidity (sensor located in console) 

Resolution and Units 1% 
Range 1 to 100% RH 
Accuracy ±3% (0 to 90% RH), ±4% (90 to 100% RH) 
Update Interval 1 minute 

Outside Relative Humidity (sensor located in ISS) 

Resolution and Units 1% 

Range 1 to 100% RH 

Accuracy ±3% (0 to 90% RH), ±4% (90 to 100% RH) 

Temperature Coefficient 0.03% per °F (0.05% per °C), reference 68°F (20°C) 

Drift 
±0.5% per year 

 

Update Interval 50 seconds to 1 minute 
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4.5 Questionnaire Surveys (Phase Three) 

In phase three, the main aim was to cover the second part of objective number two, 

which is exploring the effect of urban canyon microclimate on thermal comfort index, 

through the correlating between the objective PET and the subjective ones so the actual 

comfort range for the case study is estimated. Then, to fulfil objective number three, the 

actual comfort range is used to assess between the different proposed modification 

scenarios generated by the computational fluid dynamics (CFD). 

Therefore, and since the actual thermal sensationrelies heavily on individual 

characteristics (Nikolopoulou and Steemers, 2003), anoutdoor thermal comfort survey 

was performed simultaneously while recording the physical measurements and 

meteorological data in each location. The field surveys were conducted within the two 

different parts of the street, to evaluate the local people‘s perception of thermal comfort 

conditions in the two distinctive outdoor spaces of Al-Muizz. Then, a summary of the 

users‘ comfort level perception in the street were analyzed based on the results from the 

overall field surveys. This helped in calculating the mean radiant temperature and PET 

as comfort index through the calibrating between the calculated comfort index based on 

measurements of air temperature, mean radiant temperature, humidity and air velocity 

with the thermal sensation vote derived from subjective comfort votes given by 

respondents through using the regression model included in the SPSS software package 

version 12.0. (For more details, refer to chapter 6). 

PET was calculated directly using RayMan software, based on the inputs obtained from 

the field measurements including air temperature (Ta), relative humidity (RH), wind 

speed (v), mean radiant temperature (TMRT), in addition to the subject‘s clothing value 

(clo) and metabolic rate acquired from field survey (Matzarakis et al., 2007, 2010). The 

RayMan model, developed according to Guideline 3787 of the German Engineering 

Society (VDI, 1998), calculates the radiation flux in simple and complex environments 

on the basis of various parameters, such as air temperature, humidity, wind velocity, 

degree of cloud cover, time of day and year, and the albedo of the surrounding surfaces‘ 

elevation and location (Cohenet al., 2007). (For more details, refer to section 3.6.2 and 

3.7). 
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4.5.1 Field survey timing and structure 

According to ASHRAE (1992), the acceptable temperature range of comfort might be to 

some extent higher in summer (23-26
o
C) thanin winter (20-23

o
C). However, studies in 

different climatic regions have refuted this hypothesis and indicated a wider range of 

adaptation and tolerance to local conditions where the comfort range may vary from one 

geographic location to another (Lin and Matzarakis, 2008). Due to this variation 

between summer and winter, the survey was conducted to cover one week in both 

seasons as mentioned earlier in phase one. The summer period was the same as the field 

measurement between 26
th

 June and 2
nd

 July 2012, while in winter this was between 

19
th

 and 25
th

 December as the shortest daylight period in winter
8
. Then again, in order to 

cover the climatic variation within the day the survey was conducted three times a day 

including the morning (8-10), the afternoon (13-15), and the evening at (18-19). 

The structured interviews were conducted with respondents who were well acquainted 

with the area of study; thus, the represented sample was comprised predominantly of 

local people living or working in the area. In total, 320 structured interviews were 

conducted (160 in summer and the same in winter, split equally between renovated and 

non-renovated). The respondents were chosen randomly; both sexes and all age groups 

were equally represented. Each interview took about 3-5 minutes, and the interviewer 

recorded the time of the beginning of the interview. Subjects were informed by the 

author that this survey was voluntary and they had the freedom to accept or reject the 

survey and that all the data taken for the survey were fully confidential. Subjects were 

also informed that during the session they were being observed regarding their personal 

characteristics such as age, clothing and activity. At the beginning of the interview the 

subject‘s activity (reclining, sitting, standing, walking), and his/her clothes were 

recorded and converted into the clo-unit (Spagnolo and de Dear, 2003). The metabolic 

rate and clothing insulation had to be estimated based on ASHRAE handbook 

fundamentals (ASHRAE, 2009) (Tables 4.2 and 4.3). 

Terminologies used in the questionnaire were translated into Arabic (Appendix C) 

based on a focus group of four native Arabic speakers researchers in the school of 

                                                 

8
U.S. Department of Energy, 2012 

http://apps1.eere.energy.gov/buildings/energyplus/cfm/weather_data3.cfm/region=1_africa_wmo_region_

1/country=EGY/cname=Egypt 

http://apps1.eere.energy.gov/buildings/energyplus/cfm/weather_data3.cfm/region=1_africa_wmo_region_1/country=EGY/cname=Egypt
http://apps1.eere.energy.gov/buildings/energyplus/cfm/weather_data3.cfm/region=1_africa_wmo_region_1/country=EGY/cname=Egypt
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Architecture, Landscape and Planning at Newcastle University. The first part of the 

questionnaire collected demographic information (e.g. age and sex) and data for 

activitylevel, clothing worn and accessories, in addition to the beverage consumption (if 

the subject was drinking either a hot or soft drink, it was recorded). The second section 

was concerned with the short-term thermal history,including previous location 

(indoors/outdoors, sun/shade) prior to arriving at the experimental location, length of 

time spent outdoors, and then the frequency of presence at the location and reason for 

being present in order to examine the familiarity with place. The third section asked 

subjects to rate their current thermal perception and preference. Thermal comfort was 

rated on the ASHRAE seven point thermal sensation vote (TSV) scale (i.e. -3, cold; -2, 

cool; -1, slightly cool; 0, neutral; 1, slightly warm; 2, warm; and 3, hot). The McIntyre 

preference scales (Right now I want to be ‗cooler‘, ‗no change‘ or ‗warmer‘), directly 

assessed thermal acceptability (acceptable or unacceptable), and overall thermal comfort 

(uncomfortable or comfortable). Furthermore, subjects were asked to indicate their level 

of sensation of and preference for wind and sun on a three point scale with ‗I want 

wind/sun to be weaker‘, ‗no change‘ and ‗I want wind/sun to be stronger‘. At the end, 

the subjects were asked if they had any suggestions or comments, regarding their 

thermal comfort and microclimate in outdoor spaces. 

After the collection of the questionnaires, the investigated thermal sensations according 

to the ASHRAE seven point scale were respectively compared with calculated PET 

values from the simultaneous climatic observations as detailed before. Beyond physical 

conditions, other human factors influencing thermal sensation were examined through 

responses to the rest of the questions. A multi-variable analysis incorporating these 

responses, the basic thermal sensation parameter, and the physical metric of PET was 

then conducted using the SPSS statistical software. 

By combining the physical indices based on microclimatic observations and the 

questionnaire survey, the study examined how the conventional energy balance models 

can reflect people‘s thermal sensation in outdoor environments both qualitatively and 

quantitatively. It is proposed that this methodology and the findings it yields could be 

helpful to urban planners in developing bioclimatic guidelines for use during the design 

process. 
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4.5.2 Metabolic rate (met) and clothing level (clo) 

The subject metabolic rate assessment, in addition to the subjects‘ activity levels, was 

based on ASHRAE (2009) assumptions (Tables 4.3 and 4.4); however, the subject‘s 

metabolic rate was also influenced by food, drink and smoking, and according to 

Nikolpoulou et al. (2001) the rate changes as follows: 

 Cold drink and food –decreased by 10% 

 Hot food and drink/ smoking –increased by 5% 

Hence, the actual subject‘s metabolic rate was re-evaluated by the author before further 

analysis according to their activities and beverage consumption. The clothing level was 

reviewed by the author according to ASHRAE handbook fundamentals (ASHRAE, 

2009). 

Table ‎4-2 Typical Insulation and Permeation Efficiency Values for Clothing Ensembles (ASHRAE, 

2009) 
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Table ‎4-3 Typical Metabolic Heat Generation for various activities. Source: ASHRAE (2009) 

No. Activity Met 

1 Sleeping 0.7 

2 Reclining 0.8 

3 Seated quiet 1.0 

4 Standing 1.2 

5 Walking 2.0 

4.6 Micro-urban performance simulations (Phase Four) 

In phase four, the main aim was to fulfill objective number four, which is evaluating the 

cooling effect of different shading patterns provided by various shading designs, and to 

predict the optimum cooling potential by comparing Al-Muizz‘s current conditions and 

different proposed modification scenarios (refer to section 1.3 research aims and 

objectives). According to figure 4.6, the main model domain was first simulated using 

ENVI-met 3.1, in order to generate microclimatic maps for the current situation by 

highlighting the areas with comfort problems; to analyze the urban morphology impact 

on microclimate, and to estimate the mean radiant temperature (MRT). Although the 

results have been validated with the field measurements, it still has some limitations 

including the underestimation of the long wave radiation by night and the negative 

consideration for the material heat storage, as explained later in details. Therefore, the 

computational fluid dynamics (CFD), Fluent code 13.0, was used as it can calculate the 

heat transfer, air temperature distribution and wind flow simulation through outdoor 

environment. However, this method is computationally very expensive and almost 

impossible to perform for a long-period energy simulation, even with the high speed of 

nowadays supercomputers (Zhang et al., 2013). Therefore, an alternative approach was 

to couple the CFD program with the building energy simulation (BES). The 

DesignBuilder
9
 software,which is an interface for the whole building energy simulation 

program named as EnergyPlus,that is capable in calculating solar gains on surfaces, 

surface temperatures and radiant exchanges (http://www.designbuilder.co.uk),was 

chosen as BES handles the external surface temperature for the main building 

surrounding the street, while Fluent as CFD simulates the street airflow and air 

temperature. Such coupling method, which transfers enclosure surface temperatures 

                                                 

9
 DesignBuilder is being explained in details in section 7.4.1 
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from BES to CFD, is more reliable and efficient than other coupling methods (Zhai and 

Chen 2003, 2005). The comparative analysis was then performed for the base case in 

addition to six other different scenarios with different shading patterns. The regular 

validation was applied through comparing the CFD output with the field measurement 

values. In confirming the benefit from these modifications, the meteorological outputs 

from each simulation were used to analyze the impact on the local people‘s outdoor 

thermal comfort through the calculation of the mean radiant temperature and the PET 

comfort index. One of the passive shading systems shortcomings is the reduction of the 

daylight received underneath, so solar access analysis was performed in order to assure 

visual comfort and have a complete evaluation for the efficiency of the shading patterns 

not only thermally but visually as well. Diva for Rhino10 was used to perform a 

detailed day lighting analysis for each case of the seven scenarios using Radiance/ 

DAYSIM with thermal load simulations and EnergyPlus within. According to Jakubiec 

and Reinhart (2011), Diva is a powerful tool that can be used on an urban or building 

scale. 

The details regarding the model‘s relevance to the study, the model general structure, 

the programme validation and limitation are explained in the following section. 

                                                 

10
Diva for Rhino is a sustainable analysis plugin for the Rhinoceros 3D Nurbs modelling program. 
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Figure ‎4-6 The relation between the different softwares and their outputs 

4.6.1 Numerical Models predicting urban microclimate 

According to Table (4.5), ENVI-met has the advantage in calculating the mean radiant 

temperature (TMRT), which, in section 3.7, is considered as a main parameter in 

assessing people‘s thermal sensation outdoors under sunny and warm conditions (e.g. 

Mayer and Höppe, 1987; Jendritzky et al., 1990; Mayer, 1993; Spagnolo and De Dear, 

2003; Thorsson et al., 2007). However, the CFD code Fluent 13.0 is better in calculating 

the heat transfer and wind flow through outdoor environment and both programs are 

validated in the area of concern whether it is TMRT for ENVI-met or heat transfer and 

wind flow in the Fluent 13.0. ENVI-met is open access software which is free to 

download, and can be used on a personal computer or a laptop. On the other hand, an 

educational version of Fluent Code 13.0 was already provided by the School of 

Architecture, Planning and Landscape at Newcastle University on a highly configured 

computer. 
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Table ‎4-4 Comparison between CFD codes that can serve the research scope and the strongly desired features 

FEATURES 
FLOW 3D 

(VERSION 3.2) 

FLUENT 

(VERSION 13) 

PHOENICS 

(VERSION 1.6 AND 

‗FLAIR‘) 

ENVI-MET 3.1 

Solution 

technique 

FVM1, co-located 

grid 

FVM1, co-located 

grid, muli-grid 
FVM1, staggered 

3D Finite Difference 

(Incompressible flow) 

Dimension 2D, 3D 2D, 3D 2D, 3D 

2D graphical user interface, for 

fabric, vegetation, location and 

solar path 

Coordinate 

systems 

Cartesian, 

cylindrical polars, 

BFC 

Cartesian, 

cylindrical polars, 

BFC 

Cartesian, cylindrical 

polars, BFC 
Cartesian coordinates 

Mesh type 
Structured, multi-

block 
structured structured Structured 

geometry and 

mesh 

generation 

GUI, command 

language 

Menu driven 

(keyboard) 

GUI, PHOENICS 

input language 
Menu driven and input language 

Flexibility and 

boundary 

condition 

Very (command 

interface or fortan 

user routines) 

Very (command 

interface or fortan 

user routines) 

Very (command 

language or fortan 

user routines) 

Very(Open, forced/closed, or  cy

clic LBC) 

transient/ 

steady 
Both Both Both Both 

Turbulence 

model  

k – ε, low Re. no. k 

– ε, ASM2, RSM2, 

DSM4, Reynolds 

flux model 

k – ε, RSM2, RNG2 

k – ε, k –l, constant 

eddy viscosity RSM2 

(not available with 

BFCs) 

k – ε model 

1.5 order closure, RSM2, flux 

balance model 

Natural 

ventilation 
Good Good Good Good 

Monitoring and 

solution 

(residuals and 

absolute values) 

Yes (graphical 

using and user-

defined monitoring 

point) 

Yes (graphical and 

numerical) 

Yes (graphical using 

and user-defined 

monitoring point) 

Yes (graphical and numerical) 

Computational 

resources 

Only highly 

configured PC for 

large models 

simulations 

Super computer for 

large models 

simulation 

Super computer for 

large models 

simulation 

Only highly configured PC for 

large models simulations 

Core 

calculation 

model 

Doesnot include 

soil, or plant models 

Heat transfer and 

wind flow 

simulation through 

outdoor 

environment. Plants 

can be coded but 

without its complete 

thermal effect 

All type of radiant 

interaction except 

surface temperature, 

wind flow and plants 

but without complete 

thermal effects, also it 

doesnot include a soil 

model 

All types of radiant interaction, 

wind flow, plants, soils and 

pm10 and gaseous emissions but 

without considering their 

thermal effect 

Input data 

Input formulae and 

graphical user 

interface 

Input formulae and 

graphical user 

interface 

Input formulae and 

graphical user 

interface 

Databases and graphical user 

interface 

output 

All meteorological, 

but not vegetation, 

soil or TMRT 

All meteorological, 

but not vegetation, 

soil or TMRT 

All meteorological, 

but not vegetation, 

soil or TMRT 

All meteorological, vegetation 

and soil parameters and TMRT 

validation Yes Yes Yes 

Only for radiation, TMRT, RH 

whereas the package has been 

used my many research studies 

Comfort index NO NO NO PMV index 

Availability  

Should be 

boughthttp://www.e

asysimulation.com/

web/html/sales_en.h

tm 

Through the 

university 

Should be 

boughthttp://www.cha

m.co.uk/default.php 

Freeware: www.ENVImet.com 

(1) FVM = Finite Volume Method (2) ASM – algebraic stress model, RSM – Reynolds stress model, DSM – differential 

stress model, RNG – renormalisation Group Theory k – ε  Model (3) k – ε – two equation model of Launder and Spalding 

(1974) 
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4.6.2 The numerical model ENVI-met 3.1
11

 

Environmental Meteorologyor ENVI-met is a computer program that predicts the 

microclimate in urban areas (Bruse, 2006). According to the developer team, it is 

defined as ―a three dimensional microclimate model designed to simulate the surface-

plant-air interactions in urban environment with a typical resolution of 0.5 to 10m in 

space and 10sec in time. ENVI-met is a prognostic model based on the fundamental 

laws of fluid dynamics and thermo-dynamics. The model includes the simulation of 

flow around and between buildings, exchanges processes of heat and vapours at the 

ground surface and at walls, turbulence, exchange at vegetation and vegetation 

parameters, bioclimatology, particle dispersion.‖ (ENVI-met website: www.envi-

met.com).  

ENVI-met has almost all the algorithms of a CFD package such as the model Navier 

Stokes equation for wind flow, K – ε atmospheric flow turbulence equations, energy and 

momentum equation and boundary condition parameters (Bruse, 2004; Huttner, 2012). 

However, as mentioned in the table, it is more developed than a specialist CFD package 

as it simulates the soil/ plant/ surface/ air relation by applying a numerical model for 

each (Toudert and Mayer, 2006). It almost has the ability to simulate built environments 

from the microclimate to local climate scale at any location (Spangenberg, 2008). 

ENVI-met‘s combination of bio-meteorological output provides an in-depth 

understanding of climate urban canopy layer (Fahmy and Sharples, 2010) and better 

assessment for the outdoor comfort levels based on human biometeorology (Fahmy, 

2010). It is one of the very rare software programs where all the factors influencing 

thermal comfort like wind speed and direction, TMRT, and air temperature are 

simulated integrally to derive thermal comfort indices, in the case of PMV (Lenzhölzer, 

2010). ENVI-met has been frequently used in the literature and has been validated for 

assessing the built environment (Wong et al, 2007; Ali Toudert and Mayer, 2007a, 

2007b; Bourbia and Mansouri, 2008; Fahmy and Sharples, 2009). A comprehensive 

summary of the model is provided by Ali-Toudert (2005). 

                                                 

11
A comprehensive discussion of ENVI-met 3.1 General structure is available at appendix 'B2' 
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4.6.2.1 Relevance of ENVI-met to the present study 

According to the scope and objectives of the present work, ENVI-metdistinguishes 

itself from other CFD-models through several advantages: 

1. it is one of the first models to seek to reproduce the major processes in the 

atmosphere that affect microclimate on a well-founded physical basis (i.e. the 

fundamental laws of fluid dynamics and thermodynamics) (Bruse, 1999, 2004) 

2. ENVI-met simulates the microclimatic dynamics within a daily cycle. The 

model is non-stationary and non-hydrostatic and prognoses all exchange 

processes includingwind flow, turbulence, radiation fluxes, temperature and 

humidity 

3. The software is adequately capable for assessing pedestrian thermal comfort, 

where the key variable for outdoor comfort, i.e. PMV index and mean radiant 

temperature TMRT, are calculated (Fahmy, 2010) 

4. The high spatial resolution (up to 0.5m horizontally) and the high temporal 

resolution (up to 10s) allow a fine reading of the microclimatic changes, 

especially sensible to urban geometry and pertinent for comfort issues (Ali 

Toudert, 2005, 2007) 

5. The model requires a limited number of inputs and provides a large number of 

outputs including calculation and output of mean radiant temperature (Tmert), as 

key variable in outdoor thermal comfort (Ali Toudert and Mayer, 2006) 

6. The ENVI-met has a strong advantage over other CFD models through 

implementing a detailed and sophisticated vegetation model which describes the 

interaction of local vegetation, not only on the wind field, but also on the 

thermodynamic processes This makes the model particularly suitable for a 

recent research programme initiated by the Air Quality Innovation Project (IPL), 

founded by the Dutch Ministry for Transport, Public Works and Water 

Management (Rijkswaterstaat) and the Ministry of Housing, Spatial Planning 

and the Environment (Ministry of VROM).  

4.6.2.2 ENVI-met limitation and validation 

The model has a well-founded physical basis and offers many advantages in comparison 

to many other available urban microclimate models (Toudert, 2005). However, ENVI-

met still has a few short comings. One of the limitations is that the input parameters for 
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the initial conditions, which are given at 2,500m height and using a 1D model to create 

the surrounding environment, are kept constant at 2,500m during the simulation 

(potential temperature, air humidity, and wind speed). This makes it difficult for some 

locations where the wind is strongly influenced by the local climate to be simulated. 

The soil input parameters such as temperature and humidity are kept constant at 1.75m 

depth. Another limitation is the fact that the indoor temperature of buildings has to be 

constant during the simulation period. Furthermore, the material heat storage is not 

taken into account, as the heat stored in the building and transferred through walls and 

roof is calculated by conducting U-values, while in real cases, each material has its own 

thermal properties expressed by thermal admittance µ= (KC)
 0.5 

where (K) represents the 

thermal conductivity and (C) represents the heat capacity. Therefore, the lack of heat 

storage in the ENVI-met leads to the overestimation of the long wave radiation emitted 

by walls in the daytime, and underestimation by night where no heat can be released 

after sunset. Based on these limitations, ENVI-met does not perform well in analyzing 

design interventions, including different surface materials particularly after sunset 

where the radiated long wave is under estimated. Therefore, the necessity for other 

software to cover this gap must include CFD or wind tunnel experiments.  

4.6.3 The numerical model CFD code Fluent 13.0 

Although the wind tunnel can perform the research contribution well through 

conducting different design interventions. CFD (computational fluid dynamics) has 

some important advantages compared to wind tunnel testing. Wind tunnel 

measurements are generally only performed at a few selected points in the urban model, 

and do not provide a whole image of the flow field. CFD on the other hand provides 

whole-flow field data, i.e. data on the relevant parameters in all points of the 

computational domain. Unlike wind tunnel testing using scaled models, CFD does not 

suffer from potentially incompatible similarity requirements because simulations can be 

conducted at full scale. This is particularly important for extensive urban areas such as 

the case study. CFD simulations easily allow parametric studies to evaluate alternative 

design configurations, especially when the different configurations are all a priori 

embedded within the same computational domain and grid (see e.g. van Hooff and 

Blocken, 2010a). When it comes to ENVI-met 3.1., the CFD code Fluent 13.0 has the 

advantage in calculating the heat transfer, air temperature distribution under shades and 
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wind flow within themicro urban environment. Because of these advantages, CFD is 

increasingly used to study a wide range of wind environmental problems in urban areas, 

such as natural ventilation of buildings (e.g. Jiang and Chen, 2002; Evola and Popov, 

2006; Chen, 2009; van Hooff and Blocken, 2010a, 2010b; Norton et al., 2010; van 

Hooff et al., 2011a), convective heat transfer (e.g. Blocken et al., 2009; Defraeye et al., 

2010, 2011a, 2011b; Defraeye and Carmeliet, 2010; Karava et al., 2011; Saneinejad et 

al., 2011), wind energy (e.g. Milashuk and Crane, 2011), and other applications (e.g. 

Neofytou et al., 2006; Wakes et al., 2010). Thus, the CFD code Fluent 13.0 was chosen 

in this study due to the variety of the core calculation model compared to other well 

known codes reviewed in Table 4.4, as it serves the research scope and desired 

featureswell. 

4.6.3.1 CFD requirements 

CFD requires a large number of decisions to be made by the user, and some of these 

variables are the approximate equations describing the flow (steady RANS, unsteady 

RANS (URANS), LES or hybrid URANS/LES), the level of detail in the geometrical 

representation of the buildings, the size of the computational domain, the type and 

resolution of the computational grid, the boundary conditions, the discretisation 

schemes, the initialisation data, and the iterative convergence criteria. Care is required 

in specifying these variables because the output might completely change if the 

specified variables are wrongly specified (Sørensen and Nielsen, 2003; Blocken et al., 

2010). This reinforces the importance of the best practice guideline (BPG) (Blocken et 

al., 2012) and their integration in the CFD studies. The establishment of these 

guidelines has been an important step towards more accurate and reliable CFD 

simulations. According to numerous publications (Casey and Wintergerste, 2000; 

Menter et al., 2002;Sørensen and Nielsen, 2003; Chen and Zhai, 2004; Franke et al., 

2004, 2007, 2011; Wit, 2004; Franke et al., 2007; Blocken et al.,2012), these guidelines 

address the five main categories, including: defining the physical model, the geometry 

of the studied problem, the computational domain dimensions, the computational 

domain boundary conditions, and the computational mesh. These are explained in Table 

4.6, which will be explicitly included in the framework presented by Blocken et al., 

(2012), as shown in Figure 4.7, with the sub-chart in Figure 4.8.  
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According to the best practice guideline (BPG) flowchart Figure 4.7, there are three 

different cases where CFD studies are required: 

 Case 1: new developments within an existing urban configuration, for which on-

site measurements are available or will be conducted 

 Case 2: new developments within an existing urban configuration, for which no 

on-site measurements are available or will be conducted 

 Case 3: development of a new urban configuration, for which – evidently – no 

on-site measurements are available during the design stage. 

Due to the availability of on-site measurements, as Al-Muizz street is considered a new 

development within an existing urban configuration (case one), it is therefore 

recommended for a regular validation using on-site measurement to take place, as 

indicated by step C in the flowchart, which is further outlined in Figure 4.8. According 

to Blocken et al., (2012), the on-site measurement validation represents the complex 

reality without simplifications and is therefore the true validation data for numerical 

models. During the simulations, one should differentiate between the computational 

variables and setting that are well described by the BPG and others which are not well 

defined due to their inherent complexity, as stated in C3 and C4 respectively (Figure 

4.8). The domain size, computational grid, boundary conditions, discretisation schemes, 

algorithms for pressure interpolation and pressure-velocity coupling are all well 

prescribed by BPG. The extent to which the geometry is reproduced in the model, the 

choice of the turbulence model and of the type of wall functions are less well 

prescribed, because it is more difficult to provide general guidelines about these 

parameters. However, the available best practice guideline‘s (BPG) information and 

experience with previous simulations can guide their selection. Based on these variables 

the first simulation is conducted for the existing urban form for the sake of the 

validation label (C) in the flowchart (Figure 4.7 and 4.8). This is followed by the grid 

sensitivity analysis (C4), where simulation on different grids which are coarsened and 

refined are performed and compared till sufficient grid independence has been 

established based on the most economical grid. The results on this grid are compared 

with the on-site measurements (C5). In case inadequate results are obtained, based to 

some extent on the judgment and expectations of the modeler, increasing the level of 

geometrical detail of the model and/or selection of another turbulence model and/or 
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other wall functions is necessary (C7). On the other hand, if the results are considered to 

be accurate enough (C6), then the simulations can move to the second level by applying 

it to the different scenarios (step D in Figure 4.7) and subsequently combined with the 

statistical meteorological data, the terrain-related transformation model, and the comfort 

and safety criteria (E). This provides the level of wind comfort and safety for the 

existing urban configuration. When the new developments in this existing urban 

configuration do not incur major changes, (the term ―major‖ in the urban and building 

aerodynamics refers to a major changes in the flow field such as the occurrence of a 

new or additional flow feature that requires additionalvalidation efforts) the same 

computational parameters and settings can be used for the CFD simulations of this new 

urban configuration (G-H).  

Table ‎4-5 Requirements for a consistent CFD simulation (AboHela et al., 2012). 

Solution method  
Second order schemes or above should be used for solving the 

algebraic equations  

Residuals  in the range of 10-4 to 10-6 

Mesh 

Multi-block structured mesh  

Carrying out sensitivity analysis with three levels of refinements 

where the ratio of cells for two consecutive grids should be at 

least 3.4  

Mesh cells to be equidistant while refining the mesh in areas of 

complex flow phenomena 

If cells are stretched, a ratio not exceeding 1.3 between two 

consecutive cells should be maintained  

Turbulence model  Realizable k-ɛ  turbulence model  

Accuracy of studied buildings  Details of dimension equal to or more than 1m to be included  

Domain dimensions  

If H is the building height; lateral dimension = 2H+building width 

Flow direction dimension = 20H+building dimension in flow 

direction  

Vertical direction = 6H  

While maintaining a blockage ratio below 3%  

Boundary conditions  

Inflow: Horizontally homogenous log law ABL velocity profile  

Bottom: No-slip wall with standard wall functions 

Top and side: symmetry  

Outflow: pressure outlet  
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Figure ‎4-7 Flowchart illustrating the framework for the assessment of pedestrian wind comfort and safety 

with CFD. Part C is further outlined in Figure 4.8 (after Blocken et al., 2012) 
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Figure ‎4-8 Flowchart outlining part C of the large flowchart in Figure 4-7 (Blocken et al., 2012) 

4.6.3.2 CFD simulation: Mathematical Model, Geometry and Solution Domain 

and Boundary Condition 

The mathematical model adjustments 

The turbulent wind flow and temperature distribution around and inside the proposed 

structures are solved with the 3D steady Reynolds-averaged Navier-Stokes (RANS) 

equations and the realizable k-ɛ  turbulence model as it is a well acknowledged model 

for wind flow around buildings (Franke et al., 2004; Janssen et al., 2013). The model 

was developed based on modifying the dissipation rate (ε) equation to satisfy certain 

mathematical constraints on the normal stresses consistent with the physics of turbulent 

flows, which is not satisfied by either the standard or the RNG k-εmodels, makes the 

realizable model more precise than both models at predicting flows such as separated 

flows and flows with complex secondary flow features. (Cable 2009; Mollinedo et al., 

2013). Blocken et al. (2011) investigated the application of different turbulence models 
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within the CFD in building performance simulation for the outdoor environment and 

concluded that the Realizable k-ε is the optimum model in terms of yielding consistent 

results with relatively required low computational power.The model is supplemented 

with the Boussinesq model for thermal effects. Special attention is given to CFD 

solution verification by grid-sensitivity analysis and to CFD validation with in-situ 

measurements. The coupled CFD modelling approach is used to analyze the ventilation 

rates for the different alternative configurations, which allows the proper calculation of 

air flow in the proximity of and through the ventilation openings between the outdoor 

environment and an enclosed or semi-enclosed indoor environment and/or local density 

differences (buoyancy) (van Hooff and Blocken, 2010). Although the radiation 

parameter is one of the major factors to be considered in the hot arid region, yet 

according to van Hooff and Blocken (2010) it does not need to be taken into account if 

all surface temperatures are imposed inside the model.(Refer to appendix B3, for the 

detailed mathematical models equations) 

Computational domain dimension 

The computational domain should be large enough to avoid artificial acceleration of the 

flow. According to Franke et al. (2007) and Tominaga et al. (2008), the minimum 

distance from the building to the side, to the inlet and to the top of the domain should be 

at least five times (5H) the tallest building (H), and the distance from the building to the 

outlet should be fifteen times the height (H) (figure 4.9).The maximum blockage ratio is 

equal to3%, (Franke et al., 2007; Tominaga et al., 2008b), where the blockage is defined 

as the ratio of the projected area of the building in flow direction to the free cross 

section of the computational domain. 
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Figure ‎4-9 Computational domain dimensions for a flow around the model of height H. 

Computational domain boundary condition 

The boundary conditions‘ main function is to simulate the physical quantities in the real 

flow problem. It consists of five boundaries that need to be assigned to external flow 

problem as follows: 

 The inflow boundary condition: The atmospheric boundary layer (ABL) inflow at the 

inlet of the domain consists of the profiles of mean wind speed, turbulent kinetic 

energy and turbulence dissipation rate. According to Blocken et al. (2012), the mean 

wind speed profile is prescribed by the logarithmic law corresponding to the upwind 

terrain through the roughness length (z0). According to Jha (2010), the velocity 

profile can be computed using the logarithmic function described as following: 

    

     
  

   
 

  
 

    
  

  
 
 (Eq. 4.1) 

Where V(z) is the wind speed at operating height z (m/sec), z0 is the roughness 

length, and V(10) is the wind speed (m/sec) at a reference height 10m from the 

ground.  

Another important characteristic about the inlet velocity profile is the horizontal 

homogeneity, which means that the flow variables should not change until the built 

area is reached (Blocken et al., 2007b; Hargreaves and Wright, 2007). Fulfilling this 

requirement is explained in the next section. 
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 At the outflow boundary, the boundary behind the studied area serves as an outlet for 

all of the fluid to leave the domain, and zero static pressure is specified at the outlet 

 At the sides and the top of the domain, symmetry boundary conditions are imposed 

(i.e. zero normal velocity and gradients),and according to Franke et al. (2007) 

symmetry boundary conditions enforce a parallel flow at the top and the sides of the 

domain.This means that the velocity component normal to the boundary, as well as 

other flow variables, will vanish,and may be different from the inflow boundary 

profile; thus, the best results can be obtained 

 The ground boundary condition of the domain: the standard wall functions by 

Launder and Spalding (1974) with the sand grain roughness modification by Cebeci 

and Bradshaw (1977) are used. In order to have an accurate description of the flow 

near the ground surface, Franke et al. (2007) emphasized that the equivalent sand-

grain roughness height kS (m) and the roughness constant CS need to be in 

accordance with the aerodynamic roughness length z0 (m). According to Blocken et 

al. (2007), for ANSYS Fluent software, this condition is: 

   
        

  

 
(Eq. 4.2) 

The roughness length differs according to the nature of the terrain. The case study of 

Al-Muizz is considered as roughness length (Z0) of equal 2.0 which is described 

according to Davenport et al. (2000) for rough country as City centres with mixture 

of low-rise and high-rise buildings, or large forests of irregular height with many 

cleanings (Table 4.7). 

Horizontal homogeneity of the atmospheric boundary layer (ABL) profile through 

the computational domain 

Atmospheric Boundary Layer (ABL), also known as Planetary Boundary Layer (PBL), 

is the lower part of the Earth‘s atmosphere and its behaviour is directly influenced by 

the contact with the Earth‘s surface. One of the main parameters affecting the reliability 

of the CFD simulation results is the horizontal homogeneity of the ABL profile, which 

means the absence of streamwise gradients in the vertical profiles of the mean wind 

speed and turbulence quantities. This flow type occurs when the vertical mean wind 

speed and turbulence profiles are in equilibrium with the roughness characteristics of 

the ground surface. 
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 Fulfilling this requirement, the following wind profile of horizontal velocity(u), 

turbulent kinetic energy (k)and dissipation rate ()for atmospheric boundary layer flows 

are widely adopted (Richards, 1989; Harris and Deaves, 1981): 

U =
  

 
ln  

    

  
  (Eq. 4.3) 

K =
   

√  
 (Eq. 4.4) 


   

       
 (Eq. 4.5) 

Where (   is the friction velocity(m/s), (  ) is the von Kármán constant (= 0.40 or 

0.42), (    is the turbulence model constant, (z) is the height (m) and (   is the 

aerodynamic roughness length (m), which is 0.5m or 1.0m depending on the wind 

direction. It is determined based on the updated Davenport roughness classification 

(Wieringa, 1992) (Table 4.7). 
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Table ‎4-6 Davenport‘s classification of effective terrain roughness (Davenport, 2001) 

Class Roughness 

length:Z0 m 

Landscape features 
no. name 

1 sea 0.0002 

Open sea or lake (irrespective of wave size), tidal flat, snow 

covered flat plain, featureless desert, tarmac and concrete, with 

a free fetch of several kilometres 

2 smooth 0.005 

featureless land surface without any noticeable obstacles and 

with negligible vegetation e.g. beaches, pack ice without large 

ridges, marsh and snow-covered or fallow open country 

3 open 0.03 

Level country with low vegetation (e.g. grass) and isolated 

obstacles with separations of at least 50 obstacle heights e.g. 

grazing land without windbreaks, heather, moor and tundra, 

runway area of airport. Ice with ridges across-wind 

4 roughly open 0.10 

Cultivated or natural area with low crops or plant covers, or 

moderately opens country with occasional obstacles (e.g. low 

hedges, isolated low buildings or trees) at relative horizontal 

distance of at least 20 obstacles heights 

5 rough 0.25 

Cultivated or natural area with high crops or crops of varying 

height, and scattered obstacles at relative distances of 12 to 15 

obstacles heights for porous objects (e.g. Shelterbelts) or 8 to 

12 obstacles heights for low solid objects (e.g. buildings) 

6 very rough 0.5 

Intensive cultivated landscape with many rather large obstacles 

groups (large farms, clumps for forest) separated by open 

spaces of about 8 obstacles heights. Low densely-planted major 

vegetation like bush land, orchards, young forest. Also, area 

moderately covered by low buildings with interspaces of 3 to 7 

building heights and no high trees 

7 closed 1.0 

Landscape regularly covered with similar-size large obstacles, 

with open spaces of the same order magnitude as obstacle 

heights e.g. mature regular forests, densely built up area without 

much building height variation 

8 chaotic ≥ 2.0 
City centres with mixture of low-rise and high-rise buildings, or 

large forests of irregular height with many cleanings 
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4.6.3.3 Mesh independence test 

One of the main factors affecting the quality of a CFD simulation is mesh creation, 

which is according to Asfour and Gadi (2007) one of the most critical variables to 

consider for a successful CFD simulation. Therefore, BPG and Blocken (2012) have 

agreed the importance of carrying out test runs on different mesh sizes and 

configurations until the solution does not change significantly with the change in mesh 

sizes and configurations in what is called a mesh independence test (Liaw, 2005; Ariff 

et al., 2009a; Salim and Cheah, 2009). However, Franke et al. (2007) limited this test to 

three systematically refined/coarsened meshes. The ratio of cells for two consecutive 

grids should be at least 3.4, and when this is not applicable due to computational 

limitations, it is advised to locally refine the mesh in the area of interest or areas where 

important physical phenomena are likely to occur (Abohela, 2012). Therefore, three 

meshes with different resolution were used, the first mesh had a resolution of 0.48m 

around the street model and throughout the rest of the computational domain. The 

second mesh had a resolution of 0.24m around the street model and 0.48m throughout 

the rest of the computational domain and the third had had a resolution of 0.12m around 

the street model and 0.48m throughout the rest of the computational domain. (Refer to 

section 7.3.1) 

4.6.3.4 CFD limitation 

One of the factors affecting the choice of the CFD technique is the available 

computational power. According to the available computational power, one of the 

Reynolds Average Navier Stokes models (RANS), namely the Realizable k-ε turbulence 

model, has been used to yield reliable results with relatively low computational 

requirements. However, it should be acknowledged that other techniques such as using 

Direct Numerical Simulations (DNS), Large Eddy Simulation (LES), Detached Eddy 

Simulation (DES) or Unsteady RANS, which are known for yielding more consistent 

results, could have been used if more computational power was available (Abohela, 

2012).  

Another limitation is the inability of the CFD in the assessment of thermal comfort by 

developing a comfort index which appropriately reflects the comfort sensation of a 

person in a given situation (Moonen et al., 2012). However, the physical parameters of 

the urban microclimate on which the comfort indices are based can be obtained from 
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measurements (Mayer et al., 2008; Katzscher and Thorsson, 2009), or by means of 

calculation models based on the simulation outputs (Moonen et al., 2012).  

4.6.4 Solar access analysis 

In order to have a full evaluation for any street design solution to assure thermal 

comfort, the design has to assure visual comfort as well. Therefore, DIVA-for-Rhino 

was used to perform a detailed day lighting analysis for the proposed scenarios.DIVA, 

which stands for Design Iterate Validate Adapt, is an environmental analysis plugin for 

the Rhinoceros 3D Nurbs modelling program (McNeal, 2010). DIVA performs a 

daylight analysis on an existing architectural model via integration with Radiance and 

DAYSIM (Reinhart et al., 2011). Users of the plug-in can then construct a simple 

perimeter one-zone volume for energy analysis based on the existing detailed 

architectural geometry. Schedules generated by the day-lighting analysis are then 

automatically shared with the energy simulation. This method allows the rapid 

visualization of daylight and energy consequences from an architectural design model, 

where users can easily test multiple design variants for daylight and energy performance 

without manually exporting to multiple soft-wares. 

The analyses were based on calculating the amount of incident solar radiation received 

on the three different surfaces underneath the shading devices including the east 

andwest walls, and the ground surface(energy per area (W/m2)) annually and during the 

summer and winter. The output for each scenario was evaluated using the 

ANSI/ASHRAE/IESNA Standard 90.1-2007
12

 for lighting, which states that the lighting 

power densities for the outdoor sales for open areas including vehicle sales lots should 

not be less than 5.4 W/m
2
.  

4.6.5 Pre-simulation procedures 

 Overview and understanding of climatic processes of different scales, the 

subtropical particularities, the natural parameters (such as topography, 

vegetation etc.) and the urban (man-made) parameters (building density, soil 

sealing etc.) of the case study areas and their surroundings 

                                                 

12
 IESNA is the Illuminating Engineering Society of North America 

  ANSI is the approved American National Standard 
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 Detailed investigation and survey of the case study areas (the simulation models) 

in particular concerning the soils, detailed information about surface sealing, 

their materials and albedos, the geometry of the buildings and vegetation. 

Collection and definition of the environment-referred parameters essential for 

the ENVI-met input database 

 Using the field monitoring (Section 4.4) in order to estimate the reliability of the 

results and validate the simulations output of the microclimate 

 Collection and interpretation of available local climatic data from local 

meteorological stations, hour-by-hour weather data, which should have been 

collected during longer periods of time 

 Use the climatic data input, based on 30 years of WMO station no. 623660 

recorded at Cairo international airport close to the case study mentioned under 

monitoring dates (Section 4.4) 

 Meteonorm 7.0, which is a comprehensive meteorological reference thatgives 

the access to a catalogue of meteorological data for solar applications and 

system design at any desired location in the world (www.meteonorm.com), and 

Ecotect analysis 2011 were used to calculate the representative dates for field 

measurement as well as for simulation process out of the weather files gained 

before in order to generate a typical summer week and a representative winter 

week day for hot arid regions because thermal cold stress never occurs 

 Simulations (go-through) of various ―if-what‖ scenarios, which allow a large 

number of variations and combinations. 

4.6.6 Reliability of data 

To test the reliability of the simulation tools and the assumed variables, triangulation of 

simulation results with the measured values generated from the field measurements 

(Phase two) were carried out as the empirical validation of the simulation results. Each 

urban climate conditions is simulated to have meteorological plots at the same certain 

points of the site measurements. Then, average outdoor meteorology for each case were 

observed and compared with the modelling output. Subsequently, the results were 

matched to previous research results using the same software and field measurement 

techniques presented on research of outdoor thermal comfort. The next chapter on field 

measurement illustrates and discusses the validity framework of the thesis in detail. 

http://meteonorm.com/
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4.7 Conclusion 

In this chapter, the research methodologies employed have been discussed. 

Measurement procedures and instrumentation used in field measurement were explained 

and the monitored dates were justified. Outdoor thermal comfort survey were designed 

according to the ASHRAE fundamental handbook (2009) in order to correlate the actual 

human thermal sensation vote gathered through the field survey with the obtained 

comfort index from the field measurement. In the main modelling process, the general 

structure of ENVI-met 3.1 and CFD code Fluent 13.0 have been explained in order to 

define the capability of, and simulation procedures for, the models. As ENVI-met 3.1 

was limited in highlighting the areas with discomfort issues and calculating the mean 

radiant temperature (TMRT) for the current conditions. While, the CFD code Fluent 

13.0 is responsible for estimating the heat transfer and wind flow through outdoor 

environment. Moreover, DIVA-for-Rhino was reviewed in order to examine a full day 

lighting analysis for the proposed different shading scenarios as stated by 

ANSI/ASHRAE/IESNA Standard 90.1-2007.  

The results of each phase and type of assessment are explained in three subsequent 

chapters. These chapters are, Chapter Five: The field measurements: Findings and 

Discussion; Chapter Six: Outdoor Subjective Thermal Comfort: The Questionnaire 

Survey Findings and Discussion; and Chapter Seven: The numerical assessment: 

Findings and Discussion. 
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 “Most (if not all) literature on climate and built 

environment design assumes climate to be central or even 

starting point for urban design Olgyay and Olgyay (1963, 

p.11). 
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5.1 Introduction 

This research interest focuses on the micro-scale climate modifications that take place 

within the urban canopy layer (UCL), which extends up to the average building height. 

The microclimate is site specific and varies greatly within short distances (Arnfield, 

2003; Oke 2004). This makes the data provided by the standard climate stations (WMO) 

alone insufficient for examining the street microclimate, as they were designed to 

monitor the climate within the local scale excluding the micro-scale effect (Erell et al., 

2011). Thus, meteorological field measurements were conducted within the UCL of the 

two parts of Al-Muizz Street, representing the two distinctive urban forms of the 

renovated and non-renovated parts during the summer period.  

This chapter focuses on investigating the effects of urban morphology and design on 

thermal comfort from a physical approach. Thus, the chapter is divided into three main 

sections: the first section examines the current condition of air temperature in the street 

compared to the WMO observed values (micro-scale against local scale) in order to 

assess the UHI intensity. The second section investigates the microclimate along the 

street, and the investigation was carried out with a comprehensive field measurement on 

nine different spots along the path, each with different physical features, and the 

comfort index (PET) for each location was calculated in order to be correlated with the 

subjective votes conducted from the survey in the following chapter in order to estimate 

the actual PET. The third section discusses the computer simulation results, including 

the microclimatic maps and the validation of ENVI-met model. 

5.2 Cairo climate analysis 

Based on 30 years of data from the WMO Station no.623660 (Latitude: 30.13, 

Longitude: 31.4 and Altitude: 64) records at Cairo international airport (U.S. 

Department of Energy, 2012) were analysed by Meteonorm 7 and Ecotect analysis 

software (Figure 5.1). The extreme hot week period in 2012 was expected to lie 

between 26
th

 June and 2
nd

 July. The maximum average air temperature (Ta) was 44.0
o
C, 

and the maximum average summer relative humidity (RH) was 42% and 49% at midday 

in June and July, respectively. The maximum average wind speed was 3.5m/s in June 

and July and the maximum average monthly global radiation was 7385, 73196, 6893 

Wh/m
2
 for May, June and July, respectively. The maximum daily direct solar radiation 
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was 773 Wh/m
2
 on 14th June, and 26th June was the longest diurnal time,at 14 hours 

and 4 minutes (Figure 5.2).  

 

 

Figure ‎5-1 Cairo monthly average meteorology based on 30 years records of WMO station no. 623660 

calculated by Ecotect weather tool. The monthly diurnal average is on the top and shows the four main 

parameters of air temperature, relative humidity, wind speed and solar radiation. The same parameter for 

1
st
 July is analysed as well as the climate summary for the whole year on the bottom left side. 
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Figure ‎5-2 The sunshine duration analysis conducted by Meteonorm 7 

5.3 Current conditions of air temperature in Al-Muizz Street 

The first field measurements were conducted in two different locations within Al-Muizz 

street, covering the renovated and the non-renovated part as shown in Figure 5.3. The 

data were acquired at 60 minute intervals over a period of one week during the summer 

between 26
th

 June to 1
st
 July 2012 (refer to section 4.4.1). The main aim was, first, to 

assess the urban rural air temperature difference (UHI intensity) and, second, to use 

these as reference points for simulation analysis and validation. 

 

Figure ‎5-3 The two locations of the portable weather stations within Al Muizz street, Cairo, Egypt 

As shown in Figure 5.4, the air temperature observed by the mini weather stations at 

1.1m above the ground level were plotted against the reading obtained by the Cairo 

Airport WMO Station no.623660. The graph reveals a consistent pattern of higher urban 

temperatures within the urban street compared to the WMO station, as the mean daily 

temperature for the renovated part of the street has the highest value compared to other 

readings, as it recorded 30.7
o
C for the average air temperature compared to 29.6

o
C for 

the non-renovated and 29.1
o
C for the WMO, which is mostly at the bottom of the graph. 

This indicates the presence of an urban heat island (UHI) in the two parts of the street 

during the measurement period. Basically, air temperature (Ta) within the canyon varies 

between 23.2
o
C and 38

o
C, which is a much wider range in comparison to the average 
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monthly value for Cairo (22.8
o
C to 35.5

o
C) recorded by the WMO at the airport. This 

may be attributed to the dissimilarity of environmental conditions in both sites. The 

WMO location is almost outside the city core where the area within 40 km of the station 

is covered by croplands (55%), grasslands (25%), built-up areas (9%), forests (8%), and 

lakes and rivers (2%) (Figure 5.5). Al-Muizz‘s street pattern represents the highest 

number of hard surface materials, such as buildings and pavements, where the heat 

release from these surfaces reaches their maximum during the peak hours of daytime. 

With less vegetation, the sensible heat from hard surface materials which are exposed to 

the air works to increase the air temperature. Also, the different urban climate scale for 

both weather stations may also influence the results, as the WMO was designed to 

monitor at the local city scale (typical scales are one to several kilometres) while the 

field measurements were conducted within the UCL (typical scales extend from less 

than one metre to hundreds of metres). 

 

Figure ‎5-4 Average air temperature of the two mini weather stations within the UCL and the airport 

weather station during the week of field measurements 
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Figure ‎5-5 The WMO station location to the case study (the area within 40km of this station is covered 

by croplands (55%), grasslands (25%), built-up areas (9%), forests (8%), and lakes and rivers (2%)) 

5.3.1 The microclimate in the canyon 

The data collected from the WMO Station no.623660 records at Cairo international 

airport for the last 30 years highlighted the homogeneity of the climatic conditions in 

the Cairo summer, as shown in Figure 5.6, i.e. hot, sunny and cloudless. Therefore, 

comprehensive meteorological measurements were carried out on two days (30
th

 June 

and 1
st
 July 2012). Although the period of data collection was short, the prevailing 

conditions on these two days where considered representative of a typical hot summer 

in Cairo. The physical parameters of air temperature (Ta), relative humidity (RH), and 

air velocity (va), in addition to globe temperature (Tg), was measured using the Kestrel 

4400 heat stress tracker at height of 1.1m above the ground, corresponding to the 

average height of the centre of gravity for adults (Mayer and Hoppe, 1987). 
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Figure ‎5-6 The homogeneity of the climatic conditions in Cairo over a long term period (1980-2012) 

including the mean values of air temperature (Ta), relative humidity (RH), and wind speed (va) in June at 

Cairo WMO Station no.623660 at Cairo International Airport 

5.4 Measuring Sites 

Consistent with the objectives of this study, measuring points were selected in nine 

different locations along the path (four points located in the non-renovated part and the 

other five located at the renovated one), as shown in Figure 5.7, with various 

orientations and aspect ratios along the Al-Muizz spine, Cairo, Egypt (Table 5.1).The 

street is approximately one mile long and follows a grid in its plan with axis oriented 15 

degree north-south. The street is flanked by different buildings average heights ranging 

from five to two storeys. Most parts of the street are narrow, with presence of a number 

of deep gaps or canyon intersections on both sides. The street surface is made of a mix 

of basalt and bare ground. More details about the selected measuring sites and its 

properties are illustrated in Figure 5.8 and Table 5.1.  

The meteorological measurements were performed consecutively starting at Point 1 

from 6:00 to 24:00 LST (local standard time) and lasting 15minutes on average at each 

point. The measurements were recorded every three hours for each location. 
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Figure ‎5-7 Route with the measuring points at different street geometries and at Al-Muizz Street 

 

Table ‎5-1 Canyon properties at all measuring points in Fatimid Cairo, Egypt 

 
Points Street width (m) Aspect ratio H/W SVF* 

Ground 

albedo 
Ground cover 

u
n

-r
e
n

o
v

a
te

d
 

1 5.00 H/W= 1.8; covered 0.05 0.17 bare ground 

2 unobstructed H1/W=0.6; H2/W=0.5 0.69 0.17 bare ground 

3 4.80 
H/W=1.5;semi 

covered 
0.19 0.17 bare ground 

4 12 H/W=1.5; covered 0.29 0.15 
Mix basalt/bare 

ground 

re
n

o
v

a
te

d
 

5 6 
H1/W= 

0.75;H2/W=1.1 
0.54 0.11 basalt 

6 unobstructed H1/W= 2 ;H2/W=2.4 0.81 0.11 basalt 

7 3 
H/W=1.3; vault 

covered 
0 0.11 basalt 

8 2.4 
H1/W= 3.8 

;H2/W=4.2 
0.24 0.11 basalt 

9 unobstructed H/W=0.2 0.90 0.11 basalt 

*Sky-view factor (SVF) calculated by RayMan (Matzarakis et al., 2000) at the centre of the street 
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Figure ‎5-8 Photographs of the nine selected measuring sites 

5.5 Result Analysis 

According to the meteorological data, the two measurement dates of 29
th

 June and 1
st
 

July, 2012 were clear, hot and calm summer days, with a daily mean air temperature of 

28.3°C and 29.7°C respectively (maximum 36.6°C and 36.8°C) and a mean wind speed 



Chapter Five: The Field Measurements 

 

162 

 

of 4.47m/s and 5.91m/s. The sun rose at 4:57a.m. and set at 7:00p.m. The solar 

elevation reached its maximum of 83.1
o
 at 1:00p.m.  

5.5.1 Air Temperature 

Figure 5.9 shows the air temperature (Ta) for all the measuring sites which were 

obtained on 29
th

 June and 1
st
 July 2012. The highest value of Ta was recorded around 

15:00 LST (local standard time) at the sunlit Point 9, which has the lowest aspect ratio 

(H/W=0.2), reaching 37.7
o
C in the first day and 38.4

o
C in the second day. According to 

Emmanuel (2007), as the height to width ratio increases, the maximum daily 

temperature within the urban canyon decreases. Ta showed a small difference between 

the various urban streets in the morning until 9:00 LST. After 10 LST,the disparity in 

Ta became larger between the different locations due to the change of the sun path and 

its elevation angle on the street, which caused an increase in the turbulent transfer of 

heat induced by the irradiated surfaces (Nakamura and Oke, 1998);accordingly, the 

difference in Ta became larger between non-shaded and shaded areas. A peak difference 

ΔTa = 3
o
C was reached between 15:00 and 18:00 LST on both days of measurement. 

Measuring Points 1, 7 and 8 showed a tendency to be slightly cooler during the day than 

the others and this can mostly be attributed to their lower exposure to direct solar 

irradiation (Makaremi et al., 2012). As illustrated in Figures 5.7 and 5.8 and Table 5.1, 

point 1 is a tent market that is covered by a wooden canopy with some holes in the 

centreto allow sunlight.Point 7 is a vaulted covered pathway and point 8 is an extremely 

deep canyon oriented close to E-W with an aspect ratio (H1/W= 3.8;H2/W=4.2), which 

allows a longer time of protection from direct solar radiation (Toudert and Mayer, 

2005). After 21:00 LST and before reaching 24:00 LST, when Ta averages 31.2°C for 

the measurement days, almost no difference (ΔTa) was found (≤1
o
C) between all 

investigated urban locations. Although the unobstructed points 2, 6 and 9 recorded the 

highest Ta through the day, they cooled faster, as they lost more than 9.5
o
Cat midnight 

in comparison to the other enclosed measuring points. This may be assigned to the high 

sky view factor (SVF) of these three points which allows a rapid dissipation of heat. 

According to Oke (1981) and Barring et al. (1985), the low sky view factor delays the 

cooling surface during clear calm nights. The urban streets have low SVF values and 

therefore the heat released from the canyon materials is trapped in the canyon air 

volume (Svensson, 2004). In Japan, Kakon and Nobuo (2009)reported that increasing 
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SVF by 10% would decrease UHI by 0.3% at night time, and this may explain why 

points such as 1, 8 and 3 with low SVF were warmer by 1
o
C and 2

o
C than point 9 after 

21 LST till 3 LST for both days of measurement (Toudert and Mayer, 2005). 
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Figure ‎5-9 The in-situ air temperature (Ta) measured during the two summer days measurements
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5.5.2 Wind speed        

Although the two-day measurement campaign included the wind velocity to be used in 

calculating the mean radiant temperature (TMRT) and PET comfort index, it was not 

enough to give a comprehensiveassessment of the wind flow pattern within the 

street.However, some observations are worth mentioning.  

Table 5.2 lists the wind speed recorded. The wind flow within the urban canopy is 

negatively affected by a higher aspect ratio (H/W) (Emmanuel, 2007). Therefore, the 

points with low aspect ratios and unobstructed locations recorded higher values than the 

ones with high aspect ratios. The unobstructed measuring point 6 recorded the highest 

air speed average of 1.2m/s, with maximum air speed records of 1.9m/s at 15:00 LST. 

This may be attributed to its location, which is an intersection point between Al-Muizz 

Street (north-south) and Beet Al-Qadi Street (east-west) giving it the privilege of the 

different orientation. This is followed by point 4 and 5, which recorded the average of 

1.1m/s due to its proximity to Al-Azhar Street (32m width) where the street width and 

the vehicle movements may influence the results. Moreover, it is worth mentioning 

point 9, which is an unobstructed area recording an average air speed of 0.9m/s. Point 8, 

even though it is an extremely deep canyon with the highest aspect ratio, it recorded a 

high wind speed compared to other urban canyons as it reached 1.5m/s at 15:00 LST 

and an average of 0.9m/s. This may be attributed to the design of the street, with a wide 

opening toward the wind direction coming from Al-Muizz that acts as a wind catcher 

(Figure 5.11). However, point 7 has the same orientation as point 8, and yet it is covered 

and enclosed (Figures 5.7 and 5.8) and this prevents it from having the same 

performance as it was the only location which recorded zero m/s wind speed at 6 and 9 

LST. This agrees with the point mentioned in the literature review (section 3.4.3), as a 

very dense urban settlement can hamper the wind flow, resulting in reduced ventilation 

cooling (Sharmin et al., 2012).  
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Table ‎5-2 Average wind velocity (m/s) measured on 29
th

 June and 1
st
 July 2012 

 
29 June 12 1 July 12 

 6 9 12 15 18 21 24 3 6 9 12 15 18 21 24 

1 0.6 0.3 0.6 1 0.6 0.3 0.2 0.9 0.7 0.4 0.7 0.9 0.5 0.2 0.4 

2 0.9 0.7 0.8 1.2 0.9 0.6 0.5 1 0.8 0.6 0.9 1.1 0.8 0.4 0.5 

3 1 0.5 0.9 1.3 1 0.7 0.6 1.1 1 0.5 0.8 1.3 1.1 0.6 0.7 

4 0.9 1 1.1 1.6 1.3 1 0.9 1.4 0.8 0.9 1 1.5 1.3 1 0.9 

5 0.7 1.5 1.2 1.6 1.2 0.9 0.8 1.2 0.6 1.4 1.3 1.4 1.3 1 0.9 

6 0.9 0.7 1.4 1.8 1.5 1.2 1.1 1.2 0.9 0.8 1.3 1.9 1.4 1.1 1.2 

7 0 0 1.1 1.4 0.8 0.5 0.4 0.6 0.5 0 1 1.5 0.9 0.6 0.4 

8 0.6 0.4 1.1 1.5 1.3 0.9 0.8 0.7 0.6 0.5 1 1.6 1.2 0.9 0.7 

9 0.5 0.5 1 1.4 1.1 0.8 0.7 1 0.5 0.6 1.3 1.6 1.2 1 0.9 
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Figure ‎5-10 The in-situ wind speed (va) (m/s) measured on 29th June and 1st July 2012 
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Figure ‎5-11 The deep canyon for location 8 and how it was designed to become narrower 

5.5.3 Relative Humidity 

According to Akinnubi  et al. (2007), the solar radiation absorbed by the atmosphere 

and the heat emitted by the earth increase the air temperature and as the air temperature 

increases after sunrise, the relative humidity decreases, reaching its lowest point when 

the maximum temperature is realized. This was exactly the case for the measured 

relative humidity which showed a negative relationship with the air temperature (Figure 

5.12). As can be seen in Figure 5.13, at 6:00 LST when the air temperature of all 

locations recorded values close  to below 28
o
C (Figure 5.9), all the measured points of 

relative humidity reached almostequal values in the morning between 46% and 50%. At 

9:00 LST when the air temperature started to vary between the different locations, the 

relative humidity in the different locations started to follow the same path by registering 

wider records of between 40% to 55% on day one and 45% to 54% on day two. At 

15:00 LST, as the air temperature of the observed values reached its maximum, the 

relative humidity values hit troughs of between 33% and 38%, until midnight when they 

reached their maximum values (67% and 72%) when there is no solar radiation and the 

air temperature are very low. Thus, locations with a higher air temperature such as point 

9, which recorded the highest air temperature, also recorded one of the lowest values of 

relative humidity. However, locations with a lower air temperature, such as the shaded 

point 1, recorded a higher relative humidity as the shading canopy may block the humid 

air from escaping easily (Sharmin, 2012).  

http://scialert.net/asci/author.php?author=R.T.%20Akinnubi&last=
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It should be mentioned that there is a great deal of output from air conditioning units 

located on the street side of location no 5, and thus local sources of heat and humidity 

might have influenced these results (Figure 5.16). 

 

Figure ‎5-12 As the temperature changes during the day, the relative humidity also changes substantially. 

Source: Richard et al. (1998) 
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Figure ‎5-13 Relative Humidity (RH%) at 1.2 m a.g.l. during the two summer days‘ measurements
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5.5.4 Mean Radiant Temperature 

The mean radiant temperature (TMRT),which is a function of absorbed short-wave and 

long-wave fluxes, was calculated through the globe thermometer, as shown in Table 5.3 

(Nikolopoulou et al. 2001); this is in accordance with equation (5.1) given by ASHRAE 

(2009), with the empirical coefficient recently refined by Thorsson et al. (2007) as: 

 

TMRT = [(Tg+273)
4
 + 

1.1× 10
8
Va

0.6
 

x (Tg−Ta)]
1/4

 - 273 (Eq. 5.1) 
ɛ g D

0.4
 

 

Where (  ) is the globe temperature (
o
C),    ) is air velocity (m/s),      is the air temperature (

o
C), D is 

the globe diameter (mm) (= 25mm in this study), and  ɛ   is the globe emissivity (= 0.95 for black-colour 

globe). The empirically derived parameter         and the wind exponent (  
   ) together represent the 

globe‘s mean convection coefficient (         
   ).  

Table ‎5-3 Measured globe temperature (
o
C) on 29

th
 June and 1

st
 July 2012 

 29 June 2012 1 July 2012 

 Time in hours Time in hours 

 
6 9 12 15 18 21 24 3 6 9 12 15 18 21 24 

1 24.9 36.2 39.4 44.9 38.8 29.7 26.1 25.5 25.4 37.1 39.9 45.2 39.1 30.1 26.9 

2 25.4 38.1 42.6 49 39 29.4 27.2 26.1 26.5 38.6 43.1 49.4 39.7 29.5 27.1 

3 25.1 35.8 40.1 47.1 38.9 30.7 27.1 26.2 25.9 36 40.5 46.9 39.3 31.1 27 

4 25.4 36.1 45.1 49.3 38 31.7 28.1 25.9 26.1 37.1 45.3 50 39.1 31.9 28.7 

5 27 37.2 47.6 49.8 40 32.2 28.9 27 27.1 37.6 48.2 51.1 41.5 33.1 29.7 

6 26.4 40 47.9 50.9 39.3 32.7 27.8 26.6 26.8 41.2 48.6 52.2 41.1 34.2 27.5 

7 26.1 31 37.4 39.9 34.2 29.8 25.9 25.6 26.1 32.1 38.5 41.1 34.9 29.9 26 

8 23.9 35.5 40.8 45.4 36.2 30.4 27.1 25.6 25.3 36.3 41.2 45 36.3 30.6 27.3 

9 26.6 39.3 45.3 56.7 38.7 32 26 26 27.2 40.2 45 57.1 39.5 32.6 26.2 

As shown in Figure 5.14, the mean radiant temperature (TMRT) was noticeably lower 

within the sheltered urban streets than in the unobstructed locations with low aspect 

ratios (e.g. point 9 vs. points 8 and 7). The difference between sheltered and exposed 

measuring points reached about 26
o
C at the hottest time of the day (e.g. between points 

7 and 9 around 15:00 LST). The difference between air temperature and the TMRT was 

more than 30
o
C in some cases, while in the sheltered locations such as point no 7, the 

maximum air temperature on 29th July was 39.6
o
C and at the same time the TMRT was 

39.8
o
C. The same findings have been reported in several studies, for instance Kántor 

and Unger(2011)found that in sunny conditions TMRT can be more than 30
o
C higher 
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than air temperature in exposed locations and even up to 5
o
C in shaded parts due to the 

diffuse and reflect solar radiation components (Toudert and Mayer, 2005). Another 

study conducted by Toudert (2005) in the hot dry climate of Beni-Isguen in Algeria 

reported a difference of 36
o
C between sheltered and exposed locations at the hottest 

time of the day. 

The exposed locations, represented by points 6 and 9, experienced the highest TMRT 

values at 15:00 LST recording 62.6
o
C and 70

o
C respectively on 29

th
 June and 65.1

o
C 

and 71.2
o
C on 1

st
 July. Similar TMRT values were reported by Shahidan (2011) in 

Malaysia during the summer season reaching 76
o
C, while Toudert (2005) in Freiburg in 

Germany reported 66
o
C as a maximum TMRT registered.Beni-Isguen in Algeria 

reported values ranging between 60-75°C as the highest TMRTexperienced. 

TMRT differences between the different urban streets are clearly higher than (Ta) 

(Nakamura and Oke, 1988). The lowest TMRT values were calculated for points 1 and 

7, as they are covered paths and not directly affected by solar radiation.Point 1 showed 

values varying between 22.9-51.1
o
C while point 7‘s values were the lowest (SVF = 0) 

between 24.1-45.7
o
C. Point 8 is a protected location, except at midday when the sun is 

at its highest position; at that time, the TMRT reached 53.3
o
C due to its E-W 

orientation, which is quite difficult to keep in shade at noon time despite its high aspect 

ratio. However, being a very deep twisted canyon with aspect ratio (H1/W= 3.8; 

H2/W=4.2) and SVF of 2.4 can also prevent the access of solar radiation for a long time 

during the day. Point 3 reached its highest value between 12:00 and 15:00 LST as 

43.2
o
C and 54.9

o
C, and this may be attributed to local interventions as the street is semi-

covered by tents in some places. This also prevents direct solar radiation from being 

focused on one place for long hours (Figure 5.15). After 19:00 LST, and because of less 

solar radiation and a lower sun position, there was a negligible difference (≤ 4
o
C) 

registered between all urban streets and TMRT averaged 31.5°C. Despite the day time 

when the TMRT was for the most part higher than Ta, at night time the TMRT was 

approximately equal to Ta and was even less than Ta between 21:00 LST till 24:00 

LST. Furthermore, point 5 recorded one of the highest TMRTs during the day and the 

highest TMRT after sunset at 18:00 LST. Despite its North-South orientation and the 

aspect ratio of H1/W= 0.75;H2/W=1.1, it should be mentioned that this area is mainly 

for jewellery traders and most of them use mechanical cooling which may, in fact, 
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further increase outdoor temperatures, as the excess heat is emitted to the urban air and 

more cooling will be needed as a result of the vicious circle created in this situation 

(Figure 6.16) (de Schillier and Evans, 1998; Baker et al., 2002). 

After sunset at 18:00 LST, TMRT decreases drastically because the short-wave 

irradiation becomes negligible and hence results in a reduction of the surface 

temperatures. As a consequence, less heat is radiated. Therefore, the unobstructed areas 

which recorded the highest TMRT at midday had a higher cooling rate than other 

locations at night time. Point 9 lost almost 46
o
C in TMRT between 15:00 till 24:00 

LST, and location 6 was almost 35
o
Ccooler TMRT at 24:00 LST than what it recorded 

at 15:00 LST. By contrast, the protected locations such as 1, 3 and 8 recorded 25.5 
o
C, 

26.5 
o
C and 25.7 

o
C respectively higher than the unobstructed point 9, which recorded 

24.6
o
C at 24:00 LST on 29

th
 June and 24

o
C on 1

st
 July compared to the protected points 

mentioned before which recorded 26.4
o
C, 26.3

o
C and 25.7

o
C, respectively. This may be 

attributed to the greenhouse type effect, as the tents or the canopies may trap or reduce 

the absorbed heat.The high shading levels can decrease long-wave radiation loss on the 

surface, contributing to high temperatures at night (Lin et al. 2010). At night, TMRT 

values remained between 25°C and 34°C, which is attributable to the surplus heat 

released by the surfaces. 
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Figure ‎5-14 Mean radiant temperature (TMRT) at 1.1 m a.g.l. during the two summer days of measurement 
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Figure ‎5-15 A local intervention, as the street is semi-covered by tents in some places which prevent 

direct solar radiation from focusing in one place for too long 

 

 

Figure ‎5-16 The excess heat is emitted from the mechanical ventilation to the urban air, which may 

increase the air temperature in the street 
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5.6 Thermal comfort analysis (PET) 

Once Ta, va, RH and TMRT are known, a thermal index, as a single value that 

integrates the effects of the basic parameters in a human thermal environment, can be 

calculated. Several thermal indices developed for outdoor settings can be used, e.g. the 

physiologically equivalent temperature, PET (Höppe, 1993, 1999), the standard 

equivalent temperature adapted for outdoors, OUT-SET* (Pickup and de Dear, 1999) or 

the predicted mean vote also adjusted for outdoors PMV* (Jendritzky et al., 1990). 

Although all of these indices are based on the same physical basis of Fagner‘s comfort 

equation (Fagner, 1970) and incorporate the additional solar and terrestrial radiation 

fluxes, they still have some differences (for more details refer to Sections 3.6). In this 

study, PET, based on the human energy balance model MEMI (Munich Energy Model 

for Individuals), was used. PET is defined as the physiological equivalent temperature 

at any given place (outdoors or indoors). It is equivalent to the air temperature at which, 

in a typical indoor setting, the heat balance of the human body (work metabolism 80W 

of light activity, added to basic metabolism; heat resistance of clothing 0.9 clo) is 

maintained with core and skin temperatures equal to those under the conditions being 

assessed (Esmaili et al.,‎2011). Itis a function of the air temperature, air humidity, wind 

speed and mean radiant temperature. PET has been widely applied in areas with various 

climatic conditions (Toudert and Mayer, 2006; Cheng et al., 2010; Lin, 2009; 

Matzarakis at al.1999; Thorsson et al. 2007). 

The PET was calculated using the RayMan model (Matzarakis et al., 2007, 2010). The 

RayMan model was developedin the Meteorological Institute (University of Freiburg, 

Germany), according to Guideline 3787 of the German Engineering Society (VDI, 

1998). This model computes the radiation flux inside urban structures based on 

meteorological parameters including time of day and year, air temperature, air humidity, 

degree of cloud cover, and the albedo of the adjacent surfaces as shown in Figure 5.17 

(Gulyas et al., 2006). To calculate the thermal sensation, the following requirements 

were adjusted as constants: body surface area has been standardized to 1.9m
2
, which 

represents a humanwith a height of 1.75m and a bodyweight of 75kg (Mayer and 

Höppe, 1984,1987; Becker, 2000 and Potchter et al., 2006);  the rate of metabolic 

energy transformation (work metabolism) based on 80W for a standing person and the 

insulation factor of clothing (Iclo) has been standardized to 0.9 for an indoor business 
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suit (Figure 5.17) (Jendritzky et al., 1990; VDI, 1998). Lin and Matzarakis (2010) 

reported that RayMan model was more successful in simulating nature-like rather than 

urban settings. Previous studies of hot and humid regions reported the validity of the 

RayMan model (Lin et al. 2010). Therefore, this study argues that the model can be 

applied to hot and arid regions.  

 

Figure ‎5-17The RayMan 1.2 interface showing the input parameters for calculating the PET 

The thermal comfort index (PET) was calculated for each location and plotted on Figure 

5.18, which shows the similarity between the PET and TMRT patterns, where the 

regressions analyses between PET and TMRT lead to coefficients of determination of 

R
2
 = 0.972 for a linear relationship (Figure 5.19 and 5.20), which confirms the strong 

influence of the mean radiant temperature on evaluating thermal sensation outdoors 

under summer sunny conditions regardless of the comfort index used (Mayer and 

Höppe, 1987;Mayer, 1993; Gomez et al., 2001). The most uncomfortable locations are 

those exposed to the direct sun rays. PET peak values occurred at 15:00 LST and ranged 

from 52.8
o
C for point 9 and 47.7

o
C for point 6 on 29

th
 June and 53.7

o
C for point 9 and 

49.4 for point 6 on 1
st
 July. By contrast, the lowest PET value for the same time was 

determined for location 7, which recorded 38.9
o
C on the first day and 40.1

o
C on the 

second day (SVF=0). In the early morning and late afternoon, PET did not reveal clear 

differences between the sites within street canyons, i.e. PET≈30°C before 9:00 LST 
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and≈34°C after 21:00 LST. PET differences between the various streets were 

pronounced at 12 LST at points 5, 6 and 9, indicating a higher level of heat stress 

reaching 44.5
o
C, 45.1

o
C and 43.1

o
C on the first day and 45.1

o
C, 49.1

o
C and 42.6

o
C on 

day two, respectively. Points 1 and 3 showed a slightly lower level of heat stress 

recording 38.8
o
C, 39.6

o
C on day one and 39.3

o
C, 40.1

o
C on day two, respectively, as 

they are semi-shaded from the direct solar radiation. PET values decreased very slowly 

at night and roughly equalled the air temperature at midnight. 
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Figure ‎5-18 Physiologically equivalent temperature (PET) at 1.2 m a.g.l. during the two measurement days 
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Figure ‎5-19 The average patterns of the TMRT and PET for the two measurement days 

 

Figure ‎5-20 Correlation between PET and thermal sensation in summer 2012 

5.7 Validation of ENVI-met model: computed and measurement 

comparison 

The air temperature and TMRT become the main concern in the overall condition when 

it comes to thermal comfort in the hot, arid climate (Nikolopoulou, 1998; Shahidan, 

2011). It was very important to simulate the existing situation for both parameters of air 

temperature and TMRT in order to cover wider areas along the path as a double check 

to validate the results concluded from the field measurements campaign. Therefore, 

simulations were carried out for the two parts of Al-Muizz Street under the same 

boundary conditions that occurred during the monitoring period, and then the simulation 
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results were compared against the measured data in order to increase the confidence in 

the ENVI-met as a tool. 

The model simulation was performed on 1
st
 July 2012 as the hottest day on the 

measurements period. The area around Al-Muizz Street has been transformed into two 

model grids, where the area of interest must be reduced to fit the available ENVI-met 

grid cells (180 x 180 x 30 and 100 x 100 x 30 grid cells) as a compromise has to be 

found between the accuracy and resolution of the model and the number of treatable 

grid cells. Therefore, based on the different parts dimensions the street was divided into 

renovated part with the dimension 40 x 160 x 30 with a resolution of 2m x 2m x 3m for 

the renovated part and the dimension 20 x 80 x 30 grids with a resolution of 2m x 2m x 

3m for the non-renovated one. Note that the model area is rotated 15° out of grid north. 

Table 5.4 shows the simulation input data for 1
st
 July 2012 which is an extreme summer 

day for Cairo. Two snapshot receptors were located at the same spots of the 

measurement campaign to record Ta, RH, V, solar radiation and globe temperature at 

1.2m above ground level (Figure 5.21). Outputs were then compared with the local 

climate scale averaged records for the same parameters observed from the site 

measurement. 

Table ‎5-4 Main input data used for ENVI-met 

PARAMETER VALUE 
Ta, air dry bulb 

temperature 
34.85

o
C 

RH, relative humidity 59% 
Va, wind speed 3.5m/s at 10m height 

soil temperature 
302 at (0-0.5m) and 

299 at (0,5-2m) 
U value walls 1.7 
U value roofs 2.2 
Albedo walls 0.4 
Albedo roofs 0.15 

 

 

Figure ‎5-21 The two modelling domains and the two measurement points which are the same receptors in 

ENVI-met 
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5.7.1 Results analysis 

According to the in-situ measurements, 1
st
 July 2012 was a clear, hot and steady 

summer day, with a daily mean air temperature of 31°C (maximum 38.4°C) and a mean 

wind speed of 0.56m/s. The sun rose at 4:56 a.m. and set at 7:00 p.m. The solar 

elevation reached its maximum of 83.28 degrees at 1:00. 

5.7.1.1 Simulated and Measurement Air Temperature (Ta) 

Figure 5.22 shows a comparison between the measured air temperature at the two 

measurement points in 1.1 m a.g.l and the corresponding model results at 1.2 m a.g.l 

(due to the vertical model resolution). Two model simulation outputs are plotted against 

the data observed for the two parts of Al Muizz Street. ENVI-met estimation for the dry 

air temperature (Ta) was in a good approximation with the monitored temperatures in 

both parts. The regressions analyses between the measured and computed air 

temperature were calculated with correlation coefficients R
2
=0.942 for the renovated 

area and R
2
= 0.970 for the non-renovated for a linear relationship. Thus, the measured 

and computed ENVI-met for air temperature is well correlated and considered reliable 

in presenting the current air temperature condition of Al-Muizz Street. 

 

 

 

 

 

 

 

 



Chapter Five: The Field Measurements 

 

183 

 

 

 

Figure ‎5-22 Comparison between the air temperature measured and the ENVI-met output (the renovated 

above and the non-renovated below). 

5.7.1.2 Computed and Measured mean radiant temperature (TMRT) 

Figure 5.23illustrates the measured TMRT using the 25mm black globe thermometer 

compared to the TMRT estimated by ENVI-met. The globe temperature measured by 

the black globe sensor had to be recalculated using the observed in-situ values, as 

shown in Table 5.5,using equation (5.1) explained in Section 5.5.4. 

Despite the complexity of the three dimensional environment, ENVI-met is found to 

represent well the trends of the TMRT with a calculated correlation coefficient (R
2
) 

during the daytime between the measured and computed equal to 0.916 for unshaded 

area and equal to 0.850 for the shaded part. However, simulated values of TMRT were 

under-estimated for both parts after sunset in comparison to the field data. This may be 

attributed to the decrease in short wave radiation after sunset, as it can decrease by 20
o
C 

10

15

20

25

30

35

40

0
6

:0
0

0
7

:0
0

0
8

:0
0

0
9

:0
0

1
0

:0
0

1
1

:0
0

1
2

:0
0

1
3

:0
0

1
4

:0
0

1
5

:0
0

1
6

:0
0

1
7

:0
0

1
8

:0
0

1
9

:0
0

2
0

:0
0

2
1

:0
0

2
2

:0
0

2
3

:0
0

A
ir

 T
e

m
p

e
ra

tu
re

 (
o
C

) 

renovated Ta measured renovated Ta simulated

10

15

20

25

30

35

40

0
6

:0
0

0
7

:0
0

0
8

:0
0

0
9

:0
0

1
0

:0
0

1
1

:0
0

1
2

:0
0

1
3

:0
0

1
4

:0
0

1
5

:0
0

1
6

:0
0

1
7

:0
0

1
8

:0
0

1
9

:0
0

2
0

:0
0

2
1

:0
0

2
2

:0
0

2
3

:0
0

A
ir

 T
e

m
p

e
ra

tu
re

 (
o
C

) 

non-renovated Ta measured non-renovated Ta simulated



Chapter Five: The Field Measurements 

 

184 

 

of the main radiant temperature (Katzschner and Thorsson, 2009). Additionally, the 

material heat storage is not taken into account during the simulation, where the heat 

stored in the building and transferred through walls and roof is calculated by conducting 

U-values. In real cases, however, each material has its own thermal properties expressed 

by thermal admittance, i.e. lack of nocturnal heat release process as no heat stored in the 

building fabrics (Toudert, 2005; Fahmy et al., 2010). 

 

 

Figure ‎5-23 TMRT simulated by ENVI-met plotted against measured TMRT (the above graph for the 

unshaded TMRT and below the shaded TMRT) 
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Table ‎5-5 The observed in-situ values used in equation (5.1) for calculating the 

TMRT estimated from the globe temperature (Tg), air temperature (Ta) and air 

velocity (Va). 

Renovated Part (Exposed)  Non-Renovated (Shaded) 

Tg Ta Va TMRT Time Tg Ta Va TMRT 

27.2 28.7 0.5 25.4 06:00 26.6 27.2 1 26.8 

40.2 34.2 0.6 43.3 09:00 36 32.5 0.5 37.7 

45 36 1.3 50.8 12:00 40.5 36.6 0.8 43.2 

57.1 38.4 1.6 71.2 15:00 46.9 36.8 1.3 54.6 

39.5 34.3 1.2 43.6 18:00 39.3 36 1.1 41.7 

31.6 31.2 1 31.6 21:00 32.1 31.5 0.6 32.9 

26.2 27.9 0.9 24.8 00:00 27 28.1 0.7 26.3 

5.8 ENVI-met microclimatic map 

According to the field measurement findings, the peak temperature time in Al-Muizz 

Street was at 15:00 LST. In regions with a hot, arid climate, the maximum temperature 

is important; it determines the UHI intensity of the urban area and it influences people‘s 

thermal comfort and determines the loading of the air conditioning systems (Wong et al, 

2007; Wong and Yu, 2009). Therefore, a comparison was conducted between the 

different conditions of the renovated and non-renovated parts of the street during this 

hour at 1.2m height, in order to understand the impact of different urban modifications 

between the two parts towards the TMRT, as shown in Figures 5.24 and 5.25, which in 

turn affects the pedestrians‘ thermal comfort and the use of the outdoor spaces. 

The image shows the gradient colour marked from a blue to magenta colour, 

representing the lowest to highest TMRT. Based on the renovated part current condition 

profiles (Figure 5.24), during the daytime the spot of magenta colour is focused at the 

centre of the street and clearly represents the highest TMRT with yellow spots close to 

the west buildings which is attributed to the buildings shadings effect on decreasing the 

short wave radiation (Katzschner and Thorsson, 2009). The most affected areas are 

located in the centre of the street which has a high sky view factor (SVF). Also, it is 
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believed that the highest TMRT may be the result of a lack of vegetation, high building 

density within the area and the severe lack of shading, particularly at the centre of the 

street where most activities are occur during the daytime. This is in contrast to the non-

renovated part current conditions (Figure 5.25) where the magenta spots become very 

few and replaced by the mix of red and yellow. This indicates that TMRT is lower 

compared to the renovated part as more shaded areas are found in the non-renovated 

part. These shading adjustments show an improvement in TMRT reduction (Figure 

5.26). The same results were reported in the field measurement results where the non-

shaded locations showed a high thermal discomfort with high values of TMRT. This 

verifies the hypothesis that the urban TMRT conditions may be enhanced if the shading 

pattern improved. Accordingly, this affects the outdoor thermal comfort and extending 

the continuity of the acceptable thermal conditions during the day, as the average 

patterns of the TMRT and PET proved to be very strongly correlated, as illustrated in 

Figure 5.19 and 5.20. 
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Figure ‎5-24 The renovated part spatial pattern of the Mean Radiant Temperature (TMRT) for 1st July 2012 by ENVI-met. The highest mean radiant temperature was 

located in the centre of the street, particularly in the areas with high sky view factors (SVF) while in the areas close to the west buildings the TMRT became lower due 

to its shading effects 
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Figure ‎5-25 The non-renovated part spatial pattern of the Mean Radiant Temperature (TMRT) for 1st of July 2012 by ENVI-met. The non-renovated part shows a 

lower mean radiant temperature compared to the renovated one in figure (6.24) due to the smaller sky view factor resulting from the different shading adjustments 
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Figure ‎5-26 The difference mean radiant temperature (TMRT) between the shaded and non-shaded for 

1st July 2012 by ENVI-met 

5.9 Conclusions 

Two in-situ meteorological measurements were carried out in Al Muizz Street,located 

in the historical quarter of Cairo,of the air temperature for one week during the summer 

in order to investigate the urban rural air temperature variance (UHI intensity) and to 

use this as a reference point for simulation analysis and validation. The other in-situ 

meteorological measurements, including the four main meteorological parameters 

according to ASHRAE (2009), in addition to TMRT during an extreme hot summer 

covering two days, were taken to examine the effectiveness of the climatic responsive 

methodology that was found in the vernacular urban areas of Al-Muizz Street. The 

experimental results were quantitatively analysed and provided the following 

information: 

 By comparing the one week field measurement with the data obtained from the 

WMO station, the existence of an urban heat island within the urban street of Al-

Muizz was pointed out. The average daily air temperature (Ta) within the canyon 

varies between 23.2
o
C and 38

o
C, which is a much wider range in comparison to the 

average value for the same period (22.8
o
C to 35.5

o
C) recorded by the WMO at the 

airport 

 In the non-shaded location, there was high thermal discomfort as the TMRT and PET 

recorded very high values of 71.2
o
C and 53.7

o
C, respectively compared to the PET 
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comfort values range between (23
o
C and 32

o
C). The results showed the importance 

of shading for the improvement of day time comfort. For instance, the TMRT 

dropped by almost 14
o
C between the unobstructed location 9 and the shaded location 

7 at 15:00 LST. A similar difference in TMRT between solar exposure and shade 

was found by Ali-Toudert et al. (2005) in a city in southern Algeria, and by 

Johansson (2006) in the hot, humid city of Colombo, Sri Lanka. These indicate the 

importance of how compact urban form (high aspect ratios (H/W)) can provide more 

comfort than dispersed urban form 

 The sheltered streets had the lowest PET values as these design elements reduce the 

amount of direct sun during the daytime, thus improving thermal comfort and 

reducing sun exposure, which can improve the ambient air temperature by up to 15% 

based on a study conducted by Arizona State University in Phoenix, which is 

classified as a hot, arid climate (Love, 2009). This in turn opens the door for the good 

design of shadings as an efficient solution for pedestrian pathways in hot arid regions  

 Streets with a low sky view factor and high thermal capacity showed a time delay in 

heat releasing during the night time compared to the unobstructed location. 

According to Lin et al. (2010), the low sky view factor can decrease long-wave 

radiation loss on the surface, contributing to high temperatures at night 

 According to the field study, points 7 (fully covered) and 8 (high aspect ratio varies 

between 3.8 and 4.2) performed the best during the day time and this was mainly 

assigned to their urban design form. However, when comparing between the 

renovated and non-renovated part, the points located in the non-renovated area 

performed better than the ones in the renovated part as they recorded lower TMRT 

and PET.This may be owing to the changing behaviour and ways of adaptation to the 

microclimate between the inhabitants of both sides, where the property owners on the 

old part regard the pavement area as a legitimate extension to their facades and feel 

free to create an appropriate setting for selling and living, while in the renovated part 

the new regulations prevent the local people from acting according to their 

microclimate needs. Therefore, the life moves back into the houses, and these 

changes are likely to contribute to the increased use of air conditioning and thus 

higher energy use with further increases in outdoor temperatures, as the excess heat 
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is emitted to the urban air.This happened with point 5 located in the jewellery 

segment within the renovated part 

 ENVI-met proved to be a reliable tool to generate microclimatic maps and simulate 

the different urban scenarios to some extent,based on the program limitations 

mentioned under Section 4.6.2.2. ENVI-met has been validated through comparing 

outputs of different parameters results to receptors output. The average outdoor 

meteorology for each case was observed and compared with the modelling output. 

ENVI-met reproduces the observed data with a sufficient accuracy. 

Based on the above findings, the TMRTproves to havethe major effect on thermal 

perception during the hot season where the solar radiation and the level of shading at 

various locations play more important roles than air temperature and wind speed when 

calculating thermal indices. As stated by numerous researchers, (such as Ali-Toudert 

and Mayer, 2006; Pearlmutter et al., 2007; Djenane et al., 2008; Al Jawabra and 

Nikolopoulou, 2009; Middel et al., 2014), the shading is the dominant factor driving the 

heat balance equation in the hot, arid regions. However, during the night time the effect 

of the high shading patterns was largely reversed, which impeded the long wave radiant 

heat loss to sky due to the constricted SVF. The compactness creates a cooler street 

environment during the daytime and warmer at night (Nakamura and Oke,1988; Lin et 

al. 2010). Hence, as a strategy to improve the local microclimate, high shading level is 

required in outdoor environments to increase thermal comfort and extend the continuity 

of the acceptable thermal conditions during the day (Ali-Toudert and Mayer, 2006; 

Makaremi et al., 2012; Middel et al., 2014). However, the environmental behaviour of 

these shading patterns needs to be investigated during the night-time to encourage 

ventilation and run off of the heat release which is stored in the thermal mass during the 

day to the night sky. One of the issues of shading strategies is the shortage in daylight 

availability (Tzempelikos and Athienitis, 2007), and therefore a daylight analysis is also 

needed in order to have a full evaluation for the shading strategies presented. 

The present experiment is based on an energy-model approach, which assesses comfort 

by means of comfort indices. Although these assessment methods can serve well as 

analytical tools to assess human thermal comfort, they failed to include many 

subjective, social and cultural real world situations (Han, 2007).Such work is 

particularly lacking in such severe climates, where people‘s subjective perception of the 
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climate may play an important role in their sensation of comfort (Ali-Toudert, 2005). 

Therefore, in Chapter Six an intensive social survey based on the psychological 

approach was conducted to develop more knowledge of the reliability of these indices 

and refine their scaling.  
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6 

 “Discussion of and research into human thermal comfort 

has a long history. The results are illuminating but far 

from unambiguous. In all cases, at least of the more 

thorough work, the authors have had to limit and qualify 

their conclusions. Sometimes they hold only for a limited 

range of environments, or a special group of people, and 

usually they involve acceptance of a theoretical standpoint 

with regard to the definition, and hence the measurement 

or even the measurability of 'comfort' itself (Markus and 

Morris, 1980). 
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 6. Outdoor Thermal Comfort Analysis 

The Subjective Approach 
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6.1 Introduction 

Although the PET and TMRT assessment methods, examined in the previous chapter, 

can serve well as analytical tools to assess human thermal responses to the local thermal 

environment, the international comfort standard such as ASHRAE standards and the 

ISO are almost exclusively based on theoretical analyses of human exchange in mid-

latitude climates in North America and Europe (Han, 2007). Additionally, according to 

the same author, the climatic chamber method used to underpin these indices failed to 

include many subjective, social and cultural real world situations. Numerous studies 

conducted in different climatic regions indicated a wider range of adaptation and 

tolerance to local conditions, such as the study by Cohen et al. (2013) on outdoor 

thermal perceptions in the Mediterranean climate of Tel Aviv, where it was reported 

that the thermal acceptance range for the PET value was higher by 3
o
C PET than the 

European scale and lower by 5
o
C PET than the lower boundary of the subtropical 

climate in Taiwan (Cohen at al., 2013). Therefore, in order to obtain better agreement 

between indices and actual thermal sensation, different scholars (e.g. Nikolopoulou and 

Lykoudis, 2006;Lin and Matzarakis, 2008; Kántor, Égerházi, and Unger, 2012; Cohen 

et al., 2013) have suggested the necessity for observed data from field surveys regarding 

the perception of the subjective human thermal sensation in the outdoor environments, 

to maximize the correlation between the indices and the actual recorded votes. This 

chapter provides empirical data from field survey coupled with in-situ measurements 

conducted in the previous chapter, with the main objectives to be covered including the 

followings: 

1. Evaluating the pedestrians‘ thermal comfort perception and preference in 

outdoor urban spaces of Cairo 

2. Calibrating the boundaries of the human thermal sensation scale under the hot, 

arid climate in comparison to other climatic zones 

3. Investigating the impact of thermal adaptation and behaviours on human thermal 

sensation in outdoor spaces. 

6.2 Anthropometric profile of subjects and observations 

A total sample size of 320 subjects (68.4% males and 31.6% females) split equally 

between the renovated and non-renovated parts of Al-Muizz Street was undertaken 
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twice, 160 during the hottest week of the summer between 26
th

 June and 2
nd

 July 2012, 

and the same between 19
th

 and 25
th

 December 2012. This represents winter conditions 

with the shortest diurnal time, undertaken three times a day between 8-10 in the 

morning, 13-15 in the afternoon and 18-19 in the evening. In each part of the street, the 

surveyor installed the equipment for measuring outdoor climatic parameters in 

proximity to the subjects. To ensure stable outdoor climatic conditions were achieved 

and recorded, each session continued for approximately ten minutes. As the 

measurement of the physical environment proceeded, the voluntary subject was 

interviewed by the surveyor and a questionnaire completed (for more details see Section 

4.5). 

 

Figure ‎6-1 Al-Muizz Street: renovated and non-renovated parts where the questionnaire was carried out 
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Table 6.1 shows the gender and the age distribution. Most of the sample was comprised 

of people who had direct and regular contact with Al-Muizz Street,consisting of39.1% 

working in the area, 23.4% meeting people, 24.1% living in the street, and 13.4% other 

activities such as shopping (Figure 6.2a). 96.3% visited the place on a regular basis 

varying between few times a day (31.9%), a few times a week (45.6%), a few times a 

month (18.8%) and a few times a year (3.8%), with an outdoor staying time of more 

than 20 minutes (Figure 6.2b). During the survey, the observations were made and 

seven clothing units (Clo) in addition to four metabolic rates were estimated in 

accordance with ASHRAE standards 55-2009 (2009) (explained under Section 4.5.2) to 

be used as inputs in RayMan to calculate each subject‘s Physiological Equivalent 

Temperature (PET) (Matzarakis et al., 2010). 

Table ‎6-1 The gender and age distribution for the 320 questionnaires 

Gender * age group cross-tabulation 

  

Age group 

Total 

Gender 15-24 25-34 35-44 45-54 55-64 +65 

MALE 

Count 83 34 50 30 18 2 217 

% within 

gender 
38.2% 15.7% 23.0% 13.8% 8.3% 0.9% 100.0% 

% within 

age group 
62.9% 61.8% 78.1% 69.8% 81.8% 50.0% 67.8% 

% of Total 25.9% 10.6% 15.6% 9.4% 5.6% 0.6% 67.8% 

FEMALE 

Count 49 21 14 13 4 2 103 

% within 

gender 
47.6% 20.4% 13.6% 12.6% 3.9% 1.9% 100.0% 

% within 

age group 
37.1% 38.2% 21.9% 30.2% 18.2% 50.0% 32.2% 

% of Total 15.3% 6.6% 4.4% 4.1% 1.3% 0.6% 32.2% 

%Total Count 41.3% 17.2% 20.0% 13.4% 6.9% 1.3% 100.0% 
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Figure ‎6-2 Distribution percentage of people purpose of visiting (on the left handside) and distribution 

percentage of how often they visit the area of study (on the right handside) 

6.3 Thermal Sensation 

The 7-point scale is used traditionally as a thermal sensation scale (Nicol, 2008), and is 

proposed by ISO 10551.According to Miller (1956), it is likely to be the ideal number 

of discrete categories to describe sensation. The common in use 7-point scales are the 

ASHRAE and Bedford scales. The scale of ASHRAE is a measure of the cold and heat 

and contains the concept of thermal sensation while the scale of Bedford embodies the 

concept of comfort (Pantavouet al., 2013). As a result, the questionnaire utilized in this 

study to recognize the thermal requirements of the outdoor users for Al-Muizz Street 

was designed from the seven point thermal sensation vote (TSV) scale originated by the 

ASHRAE (i.e. -3, cold; -2, cool; -1, slightly cool; 0, neutral; 1, slightly warm; 2, warm; 

and 3, hot). In the questionnaire, the thermal sensation vote (TSV) was determined by 

asking: 

How do you feel right now in this spot? Please choose a grade from the following 

thermal sensation scale that best reflects your current sensation 

 

 

Figure 6.3, illustrates the percentage distribution on number of thermal sensation votes 

(TSV's) of all subjects in both summer and winter. In the summer, the percentage of 

people who felt warm (TSV= 2) was the highest with value of (30%), whereas the 

percentage of those who were slightly cool (TSV= -1) was the highest with value 

(37.5%) in the winter. In the summer, (53.8%) of TSVs were within the three central 
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categories (‗‗slightly cool‘‘, ‗‗neutral‘‘, ‗‗slightly warm‘‘, TSV= -1, 0, 1), and as many 

as 43.1% reported that they felt warm or hot (TSV = 2, 3). In winter, 53.8% of TSV's 

were within the three central categories; while 26.9% voted for cool and 19.4% for cold. 

 

Figure ‎6-3 Percentage distributions of thermal sensation votes (TSVs) in cool and hot seasons 

6.3.1 Thermal acceptable range 

The ASHRAE Standard 55(2009) specifies that, satisfactory thermal conditions should 

be tolerated by a minimum 90% of occupants in a space when a high standard is 

applied; i.e., ≤10% of occupants feel unacceptable‖, while de Dear and Fountain (1994) 

defined it as the votes outside the three central categories of the TSV scale are 

―unacceptable‖ (i.e. -1, 0, +1). Therefore, the relationship between the subjective 

thermal responses such as acceptable, un-acceptable, and commonly accepted measure 

of thermal sensation can be obtained. Applying the de Dear and Brager (1998),  method, 

the percentage of unacceptability in each 1
o
C PET interval group was calculated in 

order to estimate the PET range based on votes as shown in figure 6.4. The second-

degree polynomial fitted curves were then applied over the plot, where its intersection 

with the unacceptability line are the 90% acceptability limits, which is 23 - 32.5
o
C PET. 

If compared with the thermal acceptable range of different climatic zones such as 

Western/middle European scale which is according to Matzarakis and Mayer (1996) 

is18 - 23
o
C PET, and hot humid climate of Taiwan which is much higher with 21.3- 

28.5
o
C  (Lin, 2009). This indicates that people in different regions have different 

thermal perceptions (Kenz and Thorsson, 2008). Although the R2 value (65.7) is in-
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definitive, a similar range of 21-30
o
C was reported by Mahmoud (2011) who 

investigated an urban park close to the case study. 

 

Figure ‎6-4Thermal acceptable range for respondents in the street 

6.4 Thermal adaptation mechanism 

From the adaptive principle point of view, if a change occurs to produce discomfort, 

people react in ways, which tend to restore their comfort (Nicol and Humphreys, 2002). 

Therefore, self-regulatory actions will take place. There are three main means of 

adaptive mechanisms: physiological, psychological, and behavioural adaptions, 

respectively (de Dear and Brager, 1998). However, there is general agreement that 

physiological acclimatization does not play a role in adaptive procedures (Fanger and 

Toftum, 2002) as such a mechanism becomes crucial in extreme environments, as the 

physiological responses start changing from repeated exposure to a stimulus, leading to 

a gradual decreased strain from such exposure (Nikolopoulou and Steemers, 2003) 

which is not the case in the current research. Thus, this study focuses on the 

psychological adaptation, and includesexperience, expectations and perceived control 

as the most influential factors (Lin, 2009), and behavioural adjustment,which is also 

animportant factor.  
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6.4.1 Psychological adaptation experience factor 

The long term experience refers to the schemata people have constructed in their minds, 

where the level of adaptation to particular environmental dimensions, established as a 

function of past exposure, and act as strong determiners of the individual's evaluation of 

the surrounding environment (Wohlwill, 1974). 

In order to verify this hypothesis, it was important to calculate the temperature at which 

the people feel comfortable in both seasons. The most common method used to model 

the relationship of thermal sensation and various factors is multiple regressions. The 

study conducted an analytical examination of thermal sensitivity applying the ―One 

Way ANOVA‖ test, using TURKEY‘S-B (equal variance assume) test, comparing 

values of subjective Thermal Sensation Votes (TSV) to objective PET values. This 

enabled examination of the homogenous groups of votes in order to grade the PET scale 

for the case study climate of Cairo. 

The mean thermal sensation votes (MTSVs) were estimated as function of the PET 

consistent with weather collected data of both seasonsas shown in the figures 6.5 and 

6.6, where the correlation between the (MTSVs) and PETare described as follows: 

 

In summer MTSV = 0.0998 (PET) - 2.947  

                                         (R² = 0.83) 

(Eq. 6.1.) 

In winter MTSV = 0.0881 (PET) - 2.1411 

                                         (R² = 0.81) 

(Eq. 6.2.) 

In the summer, the slope (0.099) of the fitted regression line indicates the thermal 

sensitivity of respondents to PET variations, which can be interpreted as each sensation 

level corresponding to 10
o
C of PET. About 83.47% of the variance in subjective 

thermal sensations can be explained by PET with the linear regression line. In the 

winter, the R
2
 value indicated that 81% of the variance in subjective thermal sensation is 

accounted for by the variation in PET with slope value equal (0.088) corresponding to 

11.5
o
C PET per sensation unit. Comparative results indicate that respondents‘ thermal 

sensation in summer is more sensitive than in winter.In order to verify the effects of 

experience on respondents‘ thermal perception in Al-Muizz Street, neutral temperatures 

were considered. The neutral temperature is the temperature at which people feel 

thermally neutral (neither cool norwarm), and can be assessed using fitted equations 
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number 6.1 and 6.2with MTSV= 0.The neutral temperatures for the summer and winter 

seasons were found to be 29.5
o
C and 24.3

o
C PET, respectively. This appears to suggest 

that people accept a higher temperature in summer more readily than they do in winter 

as shown in Table 6.2.  

 

Figure ‎6-5Correlation between PET and thermal sensation in summer 2012 

 

Figure ‎6-6Correlation between PET and thermal sensation in winter 2012 

Accordingly, these results indicate that people adjust their thermal perception 

during these two seasons according to the schemata they have constructed in their 

mindsrefers to as experience factor which reminds people that air temperature in the 

summer of Cairo is higher than those in the winter, therefore, their tolerance for high 

temperatures in hot season is  better, and their neutral temperature is higherthan that in 

the cool season (Nikolopoulou and Steemers, 2003). Conversely, since the summer 

season in Cairo is almost three times longer than the winter season, peopleare typically 

adapted to the hot conditions. 
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Table ‎6-2 Physiology equivalent temperature (PET) at different levels of thermal 

sensation 

MTSV Thermal sensation PET 

Summer (
o
C) Winter (

o
C) 

-1 Slightly cool 19 12.9 

0 Neutral 29 24 

1 Slightly warm 39 35 

2 Warm 49 > 35 

3 Hot > 49 - 

6.4.2 Psychological adaptation and the expectation factor 

In order to verify the expectation impact on thermal perception, the study examined the 

relationship between people's expectations and the thermal environmental variables 

including, air temperature, wind speed and solar radiation in the questionnaires. Then, a 

qualitative analysis based on preferred temperatures was performed. 

6.4.2.1 Expectations for thermal environmental factors 

The respondents who felt comfortable with thermal environmental factors were selected 

in order to assess their preferences toward air temperature, wind speed and solar 

exposure. For instance, the subjects who voted for the three central categories on the 

TSV scale acounted for 177 subjects of the total sample (55.3%) as shown in table 6.3. 

Then the percentages of these subjects who want cooler, warmer, or unchanged air 

temperature were calculated for both seasons. The same method were applied in 

computing the percentages of the respondents who prefer stronger or weaker (sun and 

wind) for both seasons (Fig. 6.7). 

Nikolopoulou and Steemers (2003) pointed towards deviations in expectations as a 

result of what people previously used to experience, which may cause a difference in 

people‘s sensation vote, as their expectations had changed. In winter, 77.9% of people 

felt that the thermal conditions were ‗just right‘ while in summer 32.5% voted for no 

change and the rest (68.5%) mostly voted for a cooler temperature (Figure 6.7a). 

Similarly, most respondents prefer higher wind velocities in the summer 95.1% and 

lower wind velocities in the winter 72.2% (Figure 6.7b). For sunshine (Figure 6.7c), 

97.8% preferred lower levels of direct solar radiation in the summer, while 88.3% 
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preferred higher solar radiation in the winter. Accordingly, this may explain the 

variation of expectations between seasons as individuals have different expectations or 

preferences for the examined thermal environmental factors and these expectations 

affect the respondents‘ thermal perception (Nikolopoulou and Steemers, 2003; Lin 

2009). These findings are consistent with findings from other large scale studies such as 

the one performed by Nikolopoulou and Lykoudis (2006), in three different countries in 

Europe, Italy, Greece and Switzerland, highlighted that in Italy and Greece people have 

learned to cope with the expected hot summers, while in Switzerland, where the 

summers are cooler, a higher percentage of thermal discomfort from the heat was 

reported even though microclimate conditions were more favorable than in Italy and 

Greece for the same season.  
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Table ‎6-3 Thermal sensation vote * summer_winter Crosstabulation 

 summer winter Total 
T

h
e

rm
a

l 
S

e
n

s
a

ti
o

n
 V

o
te

 

-3_cold 

Count 0 31 31 

% within thermal sensation 
vote 

0.0% 100.0% 100.0% 

% within summer_winter 0.0% 19.4% 9.7% 

% of Total 0.0% 9.7% 9.7% 

-2_cool 

Count 0 43 43 

% within thermal sensation 
vote 

0.0% 100.0% 100.0% 

% within summer_winter 0.0% 26.9% 13.4% 

% of Total 0.0% 13.4% 13.4% 

-1_slightly_cool 

Count 7 60 67 

% within thermal sensation 
vote 

10.4% 89.6% 100.0% 

% within summer_winter 4.4% 37.5% 20.9% 

% of Total 2.2% 18.8% 20.9% 

0_neutral 

Count 46 16 62 

% within thermal sensation 
vote 

74.2% 25.8% 100.0% 

% within summer_winter 28.8% 10.0% 19.4% 

% of Total 14.4% 5.0% 19.4% 

+1_slightly-warm 

Count 38 10 48 

% within thermal sensation 
vote 

79.2% 20.8% 100.0% 

% within summer_winter 23.8% 6.3% 15.0% 

% of Total 11.9% 3.1% 15.0% 

+2_warm 

Count 48 0 48 

% within thermal sensation 
vote 

100.0% 0.0% 100.0% 

% within summer_winter 30.0% 0.0% 15.0% 

% of Total 15.0% 0.0% 15.0% 

+3_hot 

Count 21 0 21 

% within thermal sensation 
vote 

100.0% 0.0% 100.0% 

% within summer_winter 13.1% 0.0% 6.6% 

% of Total 6.6% 0.0% 6.6% 

total 

Count 160 160 320 

% within thermal sensation 
vote 

50.0% 50.0% 100.0% 
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A. Percentage of preference vote for air temperature 

 
B. Percentage of preference vote for wind 

 
C. Percentage of preference vote for sun 

Figure ‎6-7 Percentage of preferences votes including air temperature, wind speed and sun exposes 
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6.4.2.2 Preferred temperature 

The neutral temperature is defined as the temperature at which people feel comfortable. 

However, the preferred temperature is the condition in which individuals prefer neither 

warmer nor cooler temperatures (Fanger 1973), in other words is the temperature, which 

people want. Probit analysis is useful for determining thermal neutralities, that is, 

temperatures most frequently coinciding with "neutral" thermal sensations (Ballantyne 

et al., 1977), using the preference votes in questionnaires, accordingly the impact of 

expectations on thermal comfort is verified. 

Figure (6.8) depicts results of the probit analysis from logistic regression examining the 

preferred temperature base on the questionnaires‘ preference votes of ―prefer cooler‖ 

and ―prefer warmer‖ against each 1
o
C PET intervals. The preference percentage of each 

group is calculated and fitted separately within the probit model. The intersection of the 

two fitted probit lines was the preferred temperatureat which individuals did not prefer 

either a cooler or a warmer temperature (de Dear and Fountain, 1994). The preferred 

temperature in the cold and hot seasons was 24
o
C PET, which is lower than the neutral 

temperature in summer by 5
o
Cand 0.5

o
C in winter yet the preferred temperature still 

falls within the thermal acceptance range (23
o
C - 32

o
C). It is also interesting to mention 

that the values are very similar to what reported by ASHRAE (1992) as stated in table 

6.4, although it is for the indoor environment. 

In summer, the survey indicated neutral temperatures of 29
o
C under section (6.4.1.) yet 

the probit analysis indicates much lower preferred PET decreasing to 24
o
C .This 

comparative result demonstrates the impact of expectations on respondents‘ thermal 

comfort, indicating that there is a wider temperaturepreference gap between the 

maximum tolerated temperatures and those preferred in summer than there is in winter. 

The finding also proves that people are looking after cool conditions in a hot climate, 

the results were found consistent with the assumption by McIntyre (Steemers, 2003) and 

Lin (2009) studies. 
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Figure ‎6-8 Preferred temperature by Probit model 

Table ‎6-4 Thermal Comfort Conditions –ASHRAE Standard 55 (1992) Source: Charles (2003) 

 

6.4.3 Perceived control factors for psychological adaptation 

It is now widely acknowledged that people, who have a high degree of control over 

their environment and a source of discomfort, tolerate wide variations, and the negative 

emotional responses are greatly reduced (Nikolopoulou and Steemers, 2003). For 

instance people who have control over the windows and the fans in a naturally 

ventilated indoor space adjust their neutral temperatures to the thermal condition they 

experience (Barger et al., 2004), indicating an acceptance of adaptive behavioural 

measures leading to a tolerance of a wider range of thermal comfort temperatures than 
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those occupying completely sealed and mechanically ventilated buildings. The same 

approach applied in outdoor environment such as the choice availability for sitting in 

the sun or shade (Nikolopoulou and Lykoudis, 2006; Nikolopoulou and Steemers, 

2003). Thus, in this section, the thermal perceptions of four groups visiting the street for 

different reasons are compared and the effects of perceived control on thermal comfort 

are discussed. 

The subjects were asked about the main purpose for passing by or visiting the street to 

investigate whether respondents chose to come to the square autonomously; four 

answers were provided for this question. The first answer is working in the area, so 

there is no much choice to leave or stay. The second option is to meet people and relax 

for social activities participate in social or cultural activities, indicating that people 

simply want to relax. The third option is living on the street; where in this case they 

have the option to stay indoors if they feel thermally uncomfortable. The final category 

was passer-by‘s for a shortcut to another destination. The respondents were then divided 

based on these four options and the percentage of respondents who felt comfortable in a 

‗‗comfortable condition‘‘ and in an ‗‗uncomfortable condition‘‘ were calculated on the 

bar chart of figure 6.9.  

The ‗‗comfortable condition‘‘ was defined according to the thermal comfort range of 

23
o
C – 32

o
C PET, based on the earlier analysis of thermal acceptable range (figure 6.4). 

The ‗‗uncomfortable condition‘‘ was defined as the thermal condition outside this 

range, i.e., PET<23
o
C or PET>32

o
C. ‗‗Feeling comfortable‘‘ is defined as when 

respondents chose ‗‗yes‘‘ in response to the question of‗‗do you perceive the overall 

thermal environment as comfortable or not?‘‘. Figure 6.9, highlights the impact of ‗the 

ability to control one‘s environment on thermal perception. The largest percentage who 

felt comfortable was people who were visiting the street to socialise and relax (70.6%). 

This was followed by people who lived in the area (54%), while people who worked on 

the street reported the lowest percentage of satisfaction with the thermal conditions. 

According to Nikolopoulou and Steemers (2003), the reason that an individual is 

present in a certain place can also affect thermal sensation. For instance, people 

indicated more tolerance when they exposed themselves to the conditions willingly, as 

in the case of playing outdoors, because they are exercising control and exploiting 

available choices. In contrast, the perception of being obliged to be in a place for work 
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led to decreasing the perception of exercising control leading to less tolerance of the 

thermal conditions. These comparative results highlighted the importance role of the 

Perceived control and the ability to control the length of exposure to the perceived 

uncomfortable conditionson influencing the thermal sensation. 

 

Figure ‎6-9 Percentage of users visiting the street for different reasons who felt overall thermally 

comfortable and uncomfortable under comfortable conditions PET>23
o
C or PET<32

o
C 

6.4.4 Behavioural adaptation 

Human adaptation and the sensation of the thermal environment is the comprehensive 

effect of the three behaviour adjustments (Yao et al., 2009). If the person is dissatisfied 

with the uncomfortable condition, they undertake some behavioural adjustments, which 

can be classified into personal, environmental and cultural adjustments (de Dear and 

Brager, 1998). 

During the survey, the respondents were asked to rank in order what action or 

behaviour, from five given behaviour adjustments, they would prefer to take if they felt 

it was too hot in the outdoor spaces. Figure 6.10 shows the cross-tabulation analysis of 

the survey and respondents‘ gender. The analytical results reveal that moving to shade 

appears to be the preferred behaviour where almost half of the sample (48%) voted for 

it. However, only 8% of the females chose to do the same, which may be explained by 

the conservative culture of separation between men and women in this old district. Men 

usually occupy the street‘s shaded areas to engage in commercial activities, while the 

females have to walk in the unshaded centre of the street to avoid physical proximity to 

men.  
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Secondly, almost 15% of males chose to reduce clothing layers against a very low 

percentage of females (<2.0%). For females, although reducing clothing layers is a 

thermally adaptive and autonomous behaviour, the percentage of respondents utilizing 

this alternative was low due to the cultural constraints in the area, where it is still 

unacceptable for females to remove the veil or wear light revealing clothes even for the 

necessity of adapting to thermal conditions.  

Thirdly, for people living and working in the area almost the same percentage of (12%) 

females and males opted for going indoors as a mechanism to manage their thermal 

environment, referring to as the perceived control mechanism where the respondents 

have a high degree of control over a source of discomfort.  

 

Figure ‎6-10 Percentage of males and females who adopted adaptive behaviours 

Figure 6.11 examines the clothes worn by male in correlation with PET, represented as 

(clo.) mean value, in compliance with ASHRAE standards 55-2009 (2009), the results 

reveals a direct relation between the PET and the amount of clothes worn by the 

respondents as these amount increases gradually when PET increases, the clothes worn 

by respondents, remain at approximately 0.6 (clo.). Thus, the amount clothing which 

can be reduced is limited, whereas other actions are required to adapt to high 

temperatures. While for females the level of clothing to be adaptable is limited due to 

the tradition and culture constrains where most the women have to cover their arms and 

hair.  
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Figure ‎6-11 Clothes worn by males under different PET segments 

6.5 The thermal sensation votes (TSV) difference within Al-Muizz’s 

two locations 

Al-Muizz Street includes a diversity of zones, as each part of the street, the renovated 

and non-renovated, has its own urban distinctive features and different levels of 

adaptation regarding local people settings for comfort. In order to investigate the 

difference in the occupants‘ thermal perception, the subjective votes about the thermal 

environment for each part of the street werecompared and presented (Figure 6.12). Only 

the votes of -1, 0, and +1 describe satisfactory thermal environments, following 

Fanger‘s theory (Fanger, 1972). 
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Figure ‎6-12 The subjective thermal sensation votes (TSV) in the two different parts of Al-Muizz 

In summer, it can be noticed that a higher percentage of people within the non-

renovated part (61.3%) accepted the thermal environment, compared with (52.6%) in 

the renovated side. During the winter, the difference in percentage of satisfied people 

between both parts was less than the summer, where people‘s acceptance of the thermal 

environment in the renovated part was higher, recording 56.5% against 51.5% for the 

non-renovated. This may be attributed to the difference between the direct solar 

radiations received on both parts, where there is almost a complete absence of the direct 

solar radiation in the non-renovated part, which is the most severe climatic element 

throughout the daytime in summer for pedestrians in hot, arid cities. This affects the 

mean radiant temperature unlike the wind speed and relative humidity, where changes 
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have less effect on the thermal sensation votes. This correlates with the Nikolopoulou‘s 

(1998) study, stating that the mean radiant temperature and air temperature proved to 

have a higher impact on the outdoor thermal comfort level. Thus, the study selected the 

respondents who voted for the three central categories on the TSV scale, and then 

calculated the percentage of these respondents who prefer more shade or more sun 

(Figure 6.13). The results illustrated that in summer the respondents who voted for no 

change was 61.2% in the non-renovated part, against 31% in the renovated one, while 

almost 70% asked for more shade in the renovated part compared to 36.7% in the non-

renovated one who asked for the same option. 

During the winter, the results revealed that almost 50% of the renovated parts agreed 

with no change compared to 36.6% in the non-renovated, with 56.1% reported for more 

sun against 33.3% for the renovatedsegment. According to these analytical results, the 

non-renovated section seemed to have better thermal comfort conditions than the 

renovated one during the summer time. However, the renovated part acts a little bit 

better in the winter season by allowing more sun to reach the occupants. 
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Figure ‎6-13 The percentage of preference votes for more shade, no-change, or more sun in the two parts 

of Al-Muizz 

6.6 Correlation between predicted thermal comfort and subjective 

thermal sensation 

The calculated PET based on microclimatic measurements (from the previous chapter) 

was correlated with perceived thermal sensation (on a 7-point scale), and the slope of 

the resulting linear regression (Figures 6.5 and 6.6, solid line) indicates that pedestrians 

tended to highly tolerate the varying thermal conditions in the outdoor environment as 

the thresholds for ‗warm‘ and ‗hot‘ conditions occurred at successive increments of 

about 10
o
C against 11.5

o
C in winter. At the same time, compared to the PET indoor 

from previous studies, the regression line has a shallower slope corresponding to a 

higher increment value, which suggests that pedestrians had a larger tolerance to 

outdoor conditions than indoor (Nikolopoulou et al., 2001; Thorsson et al., 2004b). 

About 83.4% of the variability in subjective thermal sensations can be explained by the 
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PET regression line in the hot seasons, while it was 81% for the cool seasons. This 

discrepancy between predicted thermal comfort and perceived thermal sensation is 

expected to reflect other non-environmental factors which might influence a subject‘s 

thermal feeling. In the following section, a series of detailed statistical analyses in 

relation to thermal sensation are explained. 

6.7 Non-environmental variables 

In addition to the question of thermal sensationand thermal adaptation, the questionnaire 

also covers other non-environmental variables such as personal thermal sensitivity and 

preference, short-term thermal history, and frequency of and reason for presence in the 

place. The general results from these questions are reported here.  

The question ―How long have you been outdoors?‖ provided pedestrians with three 

options (less than 2 minutes, between 2 and 10 minutes and more than 10 minutes), and 

was accompanied by the question ―Just before you arrived at this location, were you 

indoors(conditioned or not) or outdoors (in sun or shade)?‖ These two questions aimed 

to investigate towhat extent the short-term thermal history of interviewees would 

influence their expressions of thermal sensation (Spagnolo andde Dear, 2003; 

Nikolopoulou and Steemers, 2003) (for more details, see Section 3.5.3.3). 

As shown in Table 6.5, in summer close to half the number of interviewees (46.9%) had 

been outdoors for 2-10 minutes prior to arriving at the experimental locations. The 

majority of pedestrians (85%) who had been exposed to the outdoor conditions for this 

period of time or longer were sheltered from direct solar radiation by staying in the 

shade (70.6% indoor, 14.4% outdoor shade). In winter, it was different as the majority 

of pedestrians (61.9%) who had been exposed to the outdoor conditions for the same 

period of time or longer were spending their time outdoorswith 35% staying under 

direct sun and 26.9% in shade, with60%of the interviewees being outdoors for more 

than ten minutesbefore the interview. Neither the location of prior activity (indoors with 

conditioned or not, or outdoors with shaded or not), nor the time spent outdoors, were 

found to be statistically significant. There seems to be no sign of short-term 

acclimatization to a particular location. 

http://scholar.google.co.uk/citations?user=n1ojhpwAAAAJ&hl=en&oi=sra
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Table ‎6-5 Contingency table of short-term thermal history 

summer_winter 

before arriving at this place 

Total 

  

indoor_conditi

oned 

indoor_ventilat

ed 
outdoor_sun outdoor_shade % 

s
u

m
m

e
r 

 

 2-10min 22 31 12 10 75 46.9 

+10min 20 40 12 13 85 53.1 

Total 42 71 24 23 160 

 %  26.3 44.4 15.0 14.4 

 

100 

w
in

te
r 

 

 2-10min 6 17 20 21 64 40 

+10min 6 32 36 22 96 60 

Total 12 49 56 43 160 

  % 7.5 30.6 35.0 26.9 

 

100 

An additional question regarding previous physical activity just prior to the interview 

based on the interviewer‘s observations revealed that among the visiting pedestrians, the 

majority of interviewees in summer had either been sitting (40%) or walking (39%), 

while in winter walking was the predominant activity (45.6%) followed by sitting 

(28.8%), as shown in Figure 6.14. 

 

Figure ‎6-14 Percentage distributions of the respondents‘ activities 

The analysis showed that physical activity led to a significantly warmer thermal 

sensation under the same PET. The analysis of Variance (One-Way ANOVA) was 

applied, and the overall correlation between the thermal sensation votes and the 

metabolic rate as shown in Figure 6.15 was (R
2
 = 0.84). This indicated that 84% of the 
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variance in subjective thermal sensation was accounted for by variation in physical 

activity. 

 

Figure ‎6-15 Adjusted correlation between TVS and physical activities under outdoor conditions 

6.7.1 Frequency of visitation 

The statistical analysis indicated that the frequency at which respondents were present 

in the location played a less significant role in the respondents‘ thermal sensation. This 

in fact was not a surprising result, since most of the interviewees were residents or 

people who had regular contact with the street and would be expected to pass by this 

location often and to be uniformly familiar with the space and the local microclimate.  

6.7.2 Personal variables 

Neither gender nor clothing made a significant contribution to explaining variations in 

thermal sensation by PET. Observations show that almost all the pedestrians in the 

summer survey were wearing summer clothes with low thermal resistance, except for 

the majority of the females whose clothing habits were influenced by the culture rather 

than the surrounding climate.Any differences in clothing which may have been present 

did not have a noticeable influence on subjective thermal sensation. The situation in 

winter might be quite different, as both genders seemed to wear clothes corresponding 

with the climate with high thermal resistance, which greatly restricts heat loss from the 
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body and can allow pedestrians to feel relatively warm under considerably cold 

conditions.  

6.8 Conclusion 

The study presents the methodology and the findings of an outdoor comfort survey in 

Cairo in an attempt to enrich the knowledge of the relationship between subjective 

thermal sensation and outdoor thermal environment, also to figure out the acceptable 

comfort index range which can fit into the study context in order to be used as the 

baseline in assessing the different scenarios proposed in chapter seven. However, since 

thermal comfort ranges vary in different climates, the outcomes of this study could be 

considered indicative of expectations in a hot, arid climate of a conservative cultural 

nature.The main findings of the chapter were as follows: 

 People were asked to indicate their thermal sensation while objective and subjective 

measurements were taking place. The calculated PET based on microclimatic 

measurements (for one week in both summer and winter, 2012) was correlated with 

perceived thermal sensation (on a 7-point scale). The thermal comfort range was 22-

32
o
C PET, which is 1-2

o
C higher than previous studies conducted in Cairo urban 

Green Park where the range was 21-30
o
C. The thermal comfort analysis for the 

psychological and behavioural factors shows some evidence for the willingness to 

undertake adaptive behaviours.  

 The length of exposure and the ability to exercise control affected the perceptions 

of the thermal environment where the summer neutral temperature (29.5
o
C PET) 

was 5
o
C PET higher than in winter (24.5

o
C PET). This suggests that people accept 

a higher temperature in summer than in winter as a result of their experience, which 

reminds them that the temperature in summer is higher than winter so their 

tolerance for a higher temperature is enhanced. The same conclusion was reported 

in several studies, for instance a study in the UK indicated that the difference in 

summer (28
o
C) and winter (8

o
C) for neutral temperatures is approximately 20

o
C 

and in the hot, humid climate of Taiwan the difference between summer (25.6
o
C 

PET) and winter (23.7
o
C PET) is 1.9

o
C PET (Lin, 2009). Further research in the 

Mediterranean climate of Tel-Aviv (Cohen et al., 2013) reported that the difference 
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between the neutral temperature during the cold season (22.7
o
C PET) and the 

neutral temperature in the hot season (23.9
o
C PET) is 1.2

o
C.  

 The expectation mechanism was also examined, indicating that the respondents‘ 

preferences for a low air temperature and lower levels of exposure to direct solar 

radiation in the hot summer season are stronger than that in the winter season (Lin, 

2009). This assumption was reported by McIntyre (Steemers, 2000).  

 The preferred temperature was 24
o
C PET for both seasons, which is lower than the 

neutral temperature in summer by 5
o
C and 0.5

o
C in winter.  

 Additionally, the Perceived control analysis showed that people who can exercise 

control and take advantage of available choices are more tolerant toward the 

surrounding thermal environment, such as in the case of socializing. People with a 

low level of autonomy such as people going to work have lower tolerances than 

people who are willingly exposed to the conditions.  

 From the behavioural adjustment analysis, seeking shade was the predominant 

adaptive behaviour. However, culture appears to influence the respondents‘ 

choices, particularly the females, as the amount of clothing worn by the females 

differs than males.  

Finally, in relation to the first and second research hypothesesmentioned in Chapter One 

regardingthe extent to which subjective human parameters affect people‘s assessment of 

the outdoor environment, the analysis suggested that all the examined meteorological, 

psychological and behaviouralvariables were significantly correlated with the thermal 

sensation vote. Accordingly, Nikolopoulou and Steemers (2003) demonstrated through 

regression analyses that only approximately 50% of the variance between objective and 

subjective comfort evaluations could be explained by physical and physiological 

conditions. They speculated that the difference was attributable to psychological factors 

such as naturalness, past experience, perceived control, time of exposure, environmental 

stimulation, and expectations. In terms of implications for planning, the physical 

environment, psychological adaptation and a deep understanding of the cultural context 

is argued to be complementary rather than contradictory, andconsideration of this 

duality could increase the use of the city‘s open spaces.  
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7 

 “Where science is a collected body of theoretical 

knowledge based upon observation, measurement, 

hypothesis and test…design is the collected body of 

practical knowledge based upon sensibility, invention, 

validation and implementation” (Archer, 1979, p. 18). 
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7.1 Introduction 

It was concluded in the previous chapters that in the hot arid climate more than 70% of 

the solar radiation reaches the Earth‘s surface, while this proportion reaches only about 

half in Central Europe. Also, it was seen that the mean radiant temperature (Tmrt) has a 

major effect on thermal perception during the hot season,where the intensity of solar 

radiation and the clarity of the sky are the main reasons for the extreme levels of heat 

encountered in Cairo (Sheta and Sharples 2010). In Chapter Five, the non-shaded 

locationscontribute to a high thermal discomfort sensation with a difference in Tmrt 

equal to 14
o
C between the shaded and non-shaded areas which is a very important 

indicator to be considered in achieving better outdoor thermal environment . In Chapter 

Six, the respondents‘ thermal sensation was more sensitive to the summer than winter 

climatic variations,and the correlation with the high air temperature and Tmrtwere found 

to be more significant, and seeking shade was the predominant adaptive behaviour with 

thermal comfort range between 22 - 32
o
C. Human thermal comfort in the outdoor 

spaces of the hot, arid region may depend as much on the radiant load to which a 

pedestrian is exposed than the temperature of the air. While the designers‘ ability to 

control air temperature in outdoor spaces is very limited, it is fairly simple to control 

exposure to the direct solar radiation. Additionally, shade is still the main variable to be 

taken into consideration when aiming for the rehabilitation of traditional retail streets, 

and its implementation in locations characterized by outdoor hot discomfort conditions 

for pedestrians (Marques de Almeida, 2006) (figure 7.1). However, in order to specify 

the optimum shading design and typology, an investigation of the environmental 

behaviouris required, particularly after sunset as it was reported in chapter three 

(literature review) and five (field measurements) that the street locations with low SVF, 

being covered by shading devices, took a longer time to cool down during the night 

time compared to other unobstructed locations. The assessment including the wind flow, 

the air temperature distribution and solar access underneath the different shading 

patterns. Thus, this chapter focuses on investigating the effect of different shading 

configurations, particularly to enhance occupants‘ comfort level underneath, using a 

computational fluid dynamics (CFD) simulation,  

The chapter is divided into two main sections; the first section reports the choice of the 

CFD and the validation results based on field measurement comparison; and the 
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secondsection reports the investigated variables for the different case studies and is 

further divided into three subsections. The first subsection reports the results of different 

wind flow for all the investigated cases; the second subsection reports the results of 

different air temperature distribution patterns underneath each case, and the last 

subsection reports the results of the solar access analyses for the best and base cases. 

  

Calle Marqués de Larios, Málaga (Spain) Calle Sierpes, Seville (Spain) 

  

The hot streets of Agueda (Portugal) San Antonio, Texas 

Figure ‎7-1 Shading canopies across the full width of pedestrian streets in different hot countries 

7.2 Shading performance and CFD 

The topology and form of the tensile structure can be used to alter the quantity and 

direction of solar radiation entering the enclosure. These can also be used to modify the 

airflow underneath the structure and in its vicinity. Fabric membranes can only be used 

to create an intermediate climate or meso-climate that acts as a buffer between the 

external climate and the environmentally semi-enclosed spaces to moderate and regulate 

them. 
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The membrane form and orientation and the associated thermal mass (walls, floors, 

patios, etc.) can be designed to suit different seasons and climates. For example, in 

summer, the fabric structure should be shaped and oriented to provide shade by 

screening solar radiation and the fabric material chosen should be such that it absorbs 

and transmits a minimum amount of solar heat into the space, and work in conjunction 

with thermal mass distributed within the enclosure to stabilise temperatures. It should be 

designed with a number of different openings so that the internal heat finds a place to 

escape at night through the openings, or it could also be folded at night, so as to 

encourage ventilation and escape of the heat through radiation that is stored in the 

thermal mass during the day to the night sky. In winter, the opposite should occur, as 

the structure should be designed to maximise the absorption of daytime solar energy 

through solar absorption by thermal mass (such as buildings, terraces, paving, patios, 

walls) and reradiate it into the enclosure and at the same time screen the chill wind. 

Accordingly, as mentioned in Section 4.6.3, it was decided to obtain these design 

contributions using the numerical model CFD code Fluent 13.0, following the best 

practice guidelines (BPG) (Blocken, 2012). This enables a large number of choices to 

be made by the user and ensures the reliability of the results and their validity (Franke et 

al., 2004, 2007, 2011; Wit, 2004; Franke et al., 2007; Blocken et al.,2012) (for more 

detail, refer to Section 4.6.3.1). 

7.3 CFD simulation settings 

All the following simulations were all adjusted according to the best practice guidelines 

(BPG) scenario for developing existing urban configurations, as illustrated in Figure 7.2 

and explained in Section 4.6.3.1, and the CFD requirements in Section 4.6.3.2. The 

adjustments concerned the essential configurations and requirements for the 

mathematical model, the geometry and solution domains, and the boundary conditions 

as stated in table 7.1. 
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Table ‎7-1 Requirements for a consistent CFD simulation (AboHela et al., 2012). 

Solution method  
Second order schemes or above should be used for solving the 

algebraic equations  

Residuals  in the range of 10-4 to 10-6 

Mesh 

Multi-block structured mesh  

Carrying out sensitivity analysis with three levels of refinements 

where the ratio of cells for two consecutive grids should be at least 

3.4  

Mesh cells to be equidistant while refining the mesh in areas of 

complex flow phenomena 

If cells are stretched, a ratio not exceeding 1.3 between two 

consecutive cells should be maintained  

Turbulence model  Realizable k-ɛ  turbulence model  

Accuracy of studied buildings  Details of dimension equal to or more than 1m to be included  

Domain dimensions  

If H is the building height; lateral dimension = 2H+building width 

Flow direction dimension = 20H+building dimension in flow 

direction  

Vertical direction = 6H  

While maintaining a blockage ratio below 3%  

Boundary conditions  

Inflow: Horizontally homogenous log law ABL velocity profile 

_velocity inlet 

Bottom: No-slip wall with standard wall functions 

Top and side: symmetry  

Outflow: pressure outlet  

7.3.1 Computational domain dimension 

The model was placed in a computational domain with dimensions 147m x 85m x 45m 

as X, Y and Z (length, width and height), respectively. In order to avoid the artificial 

acceleration of the flow, the minimum distance from the building to the side, to the inlet 

and to the top of the domain were adjusted to be at least five times (5H) the tallest 

building (H) and the distance from the building to the outlet was adjusted to fifteen 

times the height (H) (Franke et al., 2007; Tominaga et al., 2008). The maximum 

blockage ratio is 1.5%, which is below the recommended maximum of 3% (Franke et 

al., 2007; Tominaga et al., 2008b). 
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Figure ‎7-2 Flowchart illustrating the scenario framework for the assessment of pedestrian comfort using 

CFD for the case study (the milestone questions which lead to this scenario are given in ellipses). Part C 

is further outlined in Figure 4.8 (after Blocken, 2012, refer to Figure 4.7). 

(A) Developing in 
existing urban 

configuration? YES 

(B) On-site 
measurement 
available? YES 

(C) CFD of existing situation 
with field measurment 

validation 
 (refer to Figure 5.11) 

(D) CFD simulations for 
existing design 

(E) Combination of CFD 
results with statistical 
meteorological data 

(F) Does new design 
involve major design 

changes? (NO) 

(G) CFD simulations for new 
design with similar settings as 

previous simulations 

(H) Combination of CFD 
results with statistical 
meteorological data  

(I) Design is 
comfortable and 

safe? (YES) 

(K) APPROVAL FOR DESIGN 
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7.3.2 Horizontal homogeneity of the atmospheric boundary layer (ABL) 

profile through the computational domain 

The simulation was first carried out in a 3D empty computational domain with the same 

dimensions mentioned above (X x Y x Z = 147m x 85m x 45m). The reason for using 

an empty domain is that the horizontal homogeneity of the ABL profileis dependent on 

the roughness of the bottom wall boundary and on the boundary condition at the top 

boundary of the computational domain. The user defined function (UDF) was used to 

specify the inlet boundary conditions satisfying equations (4.5), (4.4) and (4.5) for the 

velocity (u), turbulent kinetic energy ( ) and turbulent dissipation rate () respectively 

as mentioned by Richards and Hoxey (1993). The bottom boundary condition was 

assigned as a rough wall and standard wall functions were used; the roughness height 

(ks) and roughness constant (Cs) were determined according to the relationship between 

ks, Cs as derived by Blocken et al.(2007b) satisfying equation (4.2). All the sides and 

top boundary conditions were assigned as symmetry conditions, while the pressure 

outlet was imposed for the outlet boundary. The CFD simulations werethen performed 

using the commercial CFD code Fluent 13.0 and the 3D steady RANS equations. 

Closure is provided by the realizable k-ɛ  turbulence model (Shih et al., 1995). The 

choice for this turbulence model is based on the recommendations by Franke et al. 

(2004) and on earlier successful validation studies for pedestrian-level wind conditions 

(Blocken et al., 2004, 2007a, 2008b; Blocken and Carmeliet, 2008; Blocken and 

Persoon, 2009). Pressure velocity-coupling is taken care of by the SIMPLE algorithm.
13

 

Pressure interpolation is second-order, andsecond-order discretisation schemes were 

used for both the convection terms and viscous terms of the governing equations 

(Blocken et al., 2012). The iterations were terminated when the scaled residuals (Fluent 

Inc., 2006) did not show any further reduction with an increasing number of iterations, 

and the chosen convergence criterion was specified so that the residuals decrease to 10
-6

 

for all the equations (Figure7.3). The velocity, turbulent dissipation rate (TDR) and 

                                                 

13
The SIMPLE algorithm was developed by Prof. Brian Spalding and his student Suhas 

Patankar at Imperial College, London in the early 1970s. Since then it has been extensively used to solve 

Navier-Stokes equations for different kinds of fluid flow and heat transfer problems. SIMPLE is an 

acronym for Semi-Implicit Method for Pressure Linked Equations (for more detail, please refer to 

Patankar, 1980; Versteeg and Malalasekera 1995). 

http://en.wikipedia.org/wiki/Brian_Spalding
http://en.wikipedia.org/wiki/Suhas_Patankar
http://en.wikipedia.org/wiki/Suhas_Patankar
http://en.wikipedia.org/wiki/Imperial_College_London
http://en.wikipedia.org/wiki/Navier-Stokes_equation
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turbulent kinetic energy (TKE) were plotted along three equidistant vertical lines in the 

stream wise direction of the domain (X= 0, 65, and 145m) (Figure 7.4). 

Horizontal homogeneity of the ABL means that the plots of velocity, turbulent 

dissipation rate (TDR) and turbulent kinetic energy (TKE) should coincide along the 

three lines (Figure 7.4). Horizontal homogeneity for velocity (Figure 7.5) and TDR 

(Figure 7.6) and TKEprofiles (Figure 7.7) profiles were achieved throughout the 

computational domain. The profile was written from the outlet to be used as the inlet 

profile for all the simulations in the research. 

 

Figure ‎7-3 The iterations were terminated when the scaled residuals (Fluent Inc. 2006) did not show any 

further reduction with an increasing number of iterations, and the chosen convergence criterion was 

specified so that the residuals decrease to 10
-6

(Liaw, 2005 and  AboHela et al., 2012) 
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Figure ‎7-4 Computational domain dimensions and positions of the lines 

 

Figure ‎7-5 Velocity magnitude graph showing the horizontal homogeneity of the velocity profile 
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Figure ‎7-6 TDR graph showing the horizontal homogeneity of the TDR profile 

 

Figure ‎7-7 TKE graph showing the horizontal homogeneity of the TKE profile 
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7.3.3 Computational mesh 

The same simulation settings used for achieving a horizontally homogeneous ABL 

profile (explained in Sections 4.6.3.1 and 4.6.3.2) in addition to table (7.1)were used for 

the following simulations. Due to the availability of the on-site measurements, the 

existing case scenario as illustrated in the flowchart (Figure 7.2) was selected for the 

validation and the mesh independence test.Firstly, a representative street segment with 

dimension 20m x 12m x 7m was created for the simulations, as shown in Figure 7.8. 

Secondly, the area around the street model where the important physical phenomena are 

likely to occur was refined, the structured mesh was chosen as it is more suitable for 

simple shapes such as square or rectangular sections (AboHela 2012), The mesh 

resolution was gradually refined until a constant solution is achieved (Franke et al. 2007), 

and the compromise between the accuracy and resolution of the model and the number 

of treatable grid cells is found, therefore, the mesh was coarsened in areas away from 

the street modelwith 0.48 m as a spacing mesh which was the minimum spacing to 

achive the recommended skewness below 0.98 (ANSYS FLUENT tutorial 2006) 

and refined in areas close to the street model reaching 0.24 m for the mesh spacing (as 

explained in the following section). Therefore, a new multi-block mesh was constructed 

where the area around the street model extending 22m in the leeward direction and 10m 

in the windward direction, sides and above the cube were assigned a resolution of 

0.24m in the X, Y and Z directions. As for the rest of the computational domain, the 

mesh resolution was set to 0.48m in the X, Y and Z directions (Figure 7.9). 
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Figure ‎7-8 The simulated street segment dimensions in CFD 
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Figure ‎7-9 Mesh refinement area around the model and extended to 10m height above the model 

7.3.4 Mesh independence test 

A mesh independence study was carried out to determine the dependence of the flow 

field on the refinement of the mesh, as stated in the BPG presented as step C4 in Figure 

4.8. According to several authors (Liaw, 2005; Ariff et al., 2009a; Salim and Cheah, 

2009), it is essential to run a test on different mesh sizes and configurations until there is 

no significant change in the output solutions with the change in mesh configurations and 

size.Franke et al.(2007) limited this test to three systematically refined/coarsened 

meshes. Therefore, two other meshes were used; the first mesh had a resolution of 

0.48m around the street model and throughout the rest of the computational domain. 

The second mesh had a resolution of 0.12m around the street model and 0.48m 

throughout the rest of the computational domain. These mesh sizes were based on the 

balance between the three main variables responsible for the effectiveness of a mesh 

type including orthogonal quality, aspect ratio and skewness
14

 (Franke et al. 2004 and 

de Oliveira et al. 2013). 

                                                 

14
Orthogonal quality of a cell is the minimum value that results from calculating the normalized dot 

product of the area vector of a face and a vector from the centroid of the cell to the centroid of that face 

and the normalized dot product of the area vector of a face and a vector from the centroid of the cell to the 
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Figure 7.10 shows a comparison between the mean wind velocity vertical profiles 

captured at the centre line of the model for the three meshes; the mean wind velocity 

path lines plots for the 0.48m mesh are the same as in the 0.24m and the 0.12m mesh. 

All three meshes were able to capture similar wind velocity for the same point located 

on the centre line of the model across the prevailing wind direction. Thus, to decrease 

computational demand and time, it can be concluded that the 0.24m mesh is sufficient 

for running a mesh independent simulation. 

 

Figure ‎7-10 wind velocity profile captured at the centre line of the model for the three meshes 

7.4 CFD simulation validation 

7.4.1 CFD simulation: model validation 

According to the best practice guideline (BPG), as illustrated in Figure 7.2, the study 

was developed in an existing urban configuration with the availability of on-site field 

measurement.Therefore, the validation was based upon regular validation through 

comparing the CFD output with the field measurement values reported in Chapter 

                                                                                                                                               

centroid of the adjacent cell that shares that face.  Therefore, the worst cells will have an orthogonal 

quality closer to 0 and the best cells will have an orthogonal quality closer to 1.  Aspect ratio is a measure 

of the stretching of the cell.  Skewness is defined as the difference between the shape of the cell and the 

shape of an equilateral cell of equivalent volume.  Highly skewed cells can decrease accuracy and 

destabilize the solution (Fluent toturial release 13.0) 
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Fivefor the existing case (Figure 7.11). The measurement point was located in the 

middle of the tent market (for more information, please refer to location one, Section 

5.4, Figures 5.7 and 5.8).  

  

 

Figure ‎7-11The existing case study the CFD model and meshing domain 

According to Zhang et al. (2013), theoretically, CFD programs that accurately describe 

the heat transfer in solid materials and calculate the air velocity and temperature 

distribution can predict the energy demand if all of the heat factors are set as dynamic 

boundary conditions and heat generators. However, this method is computationally very 

expensive and almost impossible to perform for a long-period energy simulation (i.e. a 

season or a year), even though the calculation speed of supercomputers has increased 

greatly over the years (Zhang et al., 2013). Therefore, an alternative approach was to 

couple the CFD program with the building energy simulation (BES). The idea of 

coupling BES and CFD was first developed by Negrão (1995), who focused on the 

necessity for the two models to exchange appropriate boundary conditions. Indeed, CFD 

requires a surface temperature to accurately describe the flow condition (Barbason and 

Reiter, 2014). Therefore, Designbuilder as BES handles the external surface 
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temperature for the main building surrounding the street or the semi- enclosed areas, 

while Fluent as CFD simulates the street air flow and air temperature. Such a coupling 

procedure largely reduces computing time because it does not solve the flow field 

during the transition from one time step to another (Zhai et al., 2002; Zhai and Chen, 

2003; 2006; Zhang et al., 2013). As concluded by Zhai and Chen (2003, 2005), the 

coupling method which transfers enclosure surface temperatures from BES to CFD is 

more reliable and efficient than other coupling methods. The method can 

unconditionally satisfy the convergence condition. Moreover, if all surfaces 

temperatures are presumed inside the model then the radiation model can be neglected 

(van Hooff and Blocken, 2010), which will also save more time and load on the 

computational power.  

7.4.1.1 The DesignBuildersimulation 

The DesignBuilder is an interface for the EnergyPlus simulation engine. EnergyPlus is a 

‗Qualified Computer Software‘ for calculating energy savings for purposes of the 

energy-efficient commercial building in the USA (Pedersen, 2007) and it has a proven 

track record from previous research studies of Middle East housing (Abdulrahman and 

Sharples 2014). Expert users can get access to the source code allowing for third-party 

validation, which adds to the software‘s credibility and long-term reliability. 

EnergyPlus has been validated under the comparative Standard Method of Test for the 

Evaluation of Building Energy Analysis Computer Programs BESTEST/ASHRAE STD 

140.EnergyPlus requires climatic data to run valid simulations based on a given 

location. The climatic data or the weather file used in thesimulation has been extracted 

from the EnergyPlus website for the WMO Station no.623660 records at Cairo 

International Airportin hourly timesteps over a period of ten years.
15

 These climatic data 

are added as a separate weather file before running the simulations, as shown in Figure 

7.12.  

 

 

                                                 

15
http://apps1.eere.energy.gov/buildings/energyplus/cfm/weather_data3.cfm/region=1_africa_wmo_regio

n_1/country=EGY/cname=Egypt 

http://apps1.eere.energy.gov/buildings/energyplus/cfm/weather_data3.cfm/region=1_africa_wmo_region_1/country=EGY/cname=Egypt
http://apps1.eere.energy.gov/buildings/energyplus/cfm/weather_data3.cfm/region=1_africa_wmo_region_1/country=EGY/cname=Egypt
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Figure ‎7-12 The weather profile preliminary data from the WMO Station no.623660 records at Cairo 

International Airport 

7.4.1.2 The DesignBuilder Results 

Table 7.2 shows the complete data set simulated by DesignBuilder for the surface 

temperature of all walls and roofs, which were used later as an input for the CFD 

simulations. As shown in Figure 7.14, the given surface temperature started at 1:00am, 

and the wall values were almost similar until sunrise between 5:00 and 6:00am, when 

these values started to vary, as the solar position changed. The distribution of shadow 

inside the semi-enclosed space varies accordinglyand, so, according to Figure 7.13, the 

surface temperature of walls (2) and (4) started to increase each with different values 

according to the degree of exposure to the sun and the gallery design, which keep wall 

(2) always partly shaded. On the other side, walls (1) and (3) remained on trend as they 

were still in shade until noon-time, when all the values were close again. Then the sun 

started to move to the other side facing walls (1) and (3) so their surface temperature 

started to increase (each with a different value based on the different degree of exposure 

and the self-shaded wall (1), while walls (2) and (4) started to cool down in the shade. 

This occurred until sunset, between 18:00 and 19:00, when all the walls started to cool 

down again and reached close values.  
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Figure ‎7-13 The model as drawn in DesignBuilder with the name of the four simulated walls as W1, W2, 

W3 and W4 

Table ‎7-2 Output data simulated by DesignBuilder 

 Wall 1 Wall 2 Wall 3 Wall 4 Roof 
hour Surface temperature (oC) 
01:00 27.54 28.20 28.27 27.78 32.18 
02:00 27.17 27.85 27.81 27.37 31.62 
03:00 26.85 27.55 27.42 27.01 31.14 
04:00 26.54 27.26 27.04 26.67 30.70 

05:00 26.27 27.01 26.72 26.37 30.32 
06:00 26.32 27.63 26.80 27.77 30.19 
07:00 26.57 27.61 27.08 30.66 30.43 

08:00 27.20 28.80 27.75 34.38 32.20 
09:00 27.99 30.27 28.60 35.98 33.21 
10:00 28.80 31.05 29.36 34.03 34.66 
11:00 29.76 31.19 30.12 34.85 36.45 
12:00 30.59 31.69 31.57 32.89 37.70 
13:00 31.15 32.21 34.27 33.22 38.56 
14:00 32.50 32.55 35.71 33.65 38.99 
15:00 32.95 32.62 39.03 33.92 39.23 
16:00 32.77 32.48 39.81 34.20 39.29 
17:00 32.99 32.22 38.25 33.70 39.07 

18:00 32.87 31.80 35.68 32.43 36.68 
19:00 30.82 31.07 32.66 31.24 35.86 
20:00 30.13 30.53 31.63 30.54 34.93 
21:00 29.55 30.04 30.80 29.92 34.08 
22:00 28.98 29.53 30.05 29.31 33.27 
23:00 28.48 29.08 29.41 28.78 32.53 
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Figure ‎7-14 Surface temperature for all walls mentioned in Figure 8.16 

Table 7.3 and Figure 7.15 display the summer time design air temperature assumed by 

the DesignBuilder from the weather files for the study site, compared to the air 

temperature reported from the field measurement in Chapter Five for the same period 

for 1
st
 July 2012. The data used by DesignBuilder show a good agreement with the 

observed ones and that the temperature average differences was2.1°C,with both lines 

sharing the same trend over the day (Figure 7.15), which might give a confident result 

when using the surface temperature generated from DesignBuilder into the CFD 

simulations.
16

 

 

 

 

 

                                                 

16
For more information about EnergyPlus validation: 

http://simulationresearch.lbl.gov/dirpubs/valid_ep.html; 

http://apps1.eere.energy.gov/buildings/energyplus/energyplus_testing.cfm) 
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Table ‎7-3 The air temperature assumed by DesignBuilder for 

the site compared to the field measurement 

Hour Ta measured Ta assumed  

06:00 25.8 28.1 

07:00 26.8 29.4 

08:00 27.4 30.7 

09:00 28.7 32.3 

10:00 30.9 33.8 

11:00 32.5 35.2 

12:00 34.3 36.4 

13:00 35.6 37.3 

14:00 35.9 37.9 

15:00 36.4 38.1 

16:00 35.9 37.9 

17:00 35.2 37.3 

18:00 34.4 36.4 

19:00 33.3 35.2 

20:00 32.2 33.8 

21:00 30.7 32.3 

22:00 29.4 30.7 

23:00 28.3 29.4 

 

 

Figure ‎7-15 DesignBuilder assumed air temperature for the study location and the field measurements 

7.4.2 The CFD model validation 

In Table 7.4, the complete data set including the measured and simulated air 

temperatures and the DesignBuilder imported surface temperature used as an input in 
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the CFD simulation are provided. The simulated CFD output was validated against the 

experimental measurement for the existing case. According to step E in the BPG 

flowchart (Figure 7.2),the results of the validationare presented within the graph as 

shown in Figure 7.16, and the simulated air temperature is compared with the in-situ air 

temperature measurements taken at three-hour intervals starting from 3:00 until 24:00 

on 1
st
 July 2012. It can be observed that the simulation results show a consistent trend 

with the observed ones and that the temperature differences are within 0.8°C to 1.2°C. It 

could be concluded that the designed model is capable of estimating the air temperature 

patterns for the existing case under steady state conditions which add more confidence 

in testing iterations for the suggested shading configurations. 

Table ‎7-4 Data table for the validation air temperature and the input surface temperature data 

Hours Measured Simulated Wall-1 Wall-2 Wall-3 Wall-4 Roof 

 Air temperature (
o
C) Surface temperature (

o
C) 

3.00 28.0 27.1 26.8 27.5 27.4 27.0 31.1 

6.00 27.8 27.0 26.3 27.6 26.8 27.7 30.2 

9.00 35.1 33.8 28.0 30.3 28.6 35.9 33.2 

12.00 36.0 35.1 30.6 31.7 31.6 32.9 37.7 

15.00 36.0 35.0 33.0 32.6 39.0 33.9 39.2 

18.00 35.0 34.2 32.8 31.8 35.7 32.4 36.7 

21.00 31.0 29.9 29.5 30.0 30.8 29.9 34.1 

24.00 28.0 26.8 28.5 29.1 29.4 28.8 32.5 

 

 

Figure ‎7-16 Comparison between the air temperature measured and the CFD output for the existing case 

on 1st July at pedestrian hight of 1.4m 
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7.5 Comparative study 

The current research used the parametric approach to obtain the air temperature 

distribution and natural ventilation performance underneathseven shading structure 

configurations. In the parametric study, cross-comparing the effects of different design 

issues is easier by observing changes in the heat flow rate and the natural ventilation 

performance in different testing scenarios, and then relating this to predicted thermal 

conditions outdoors. The comparative analysis is labelled under letter (G) in the BPG 

(Figure 7.2), after the validation step, where the CFD simulations should be conducted 

for the new design different scenarios with the same settings as previous simulations 

used for validation. Accordingly, seven different scenarios were set up in the same 

prevailing wind direction with the same CFD code Fluent 13.0 settings to further 

evaluate the air flow rate and the air temperature distribution patterns beneath. 

Each tested scenario consists of one specific geometrical change in the roof structure 

shapes and opening locations, as shown in Figure 7.17. The appropriate boundary 

conditions were set according to the same date used in the validation on 1
st
 July 2012 as 

a representative for an extreme hot day. However, the choice of day is not critical as the 

results are not specifically related to real conditions. All results were recorded at 1.4m 

above the ground level representing the thermally affected height by the pedestrians 

(Ali-Toudert and Mayer, 2007a, 2007b; Fahmy et al., 2010). The exact choice of the 

night time for the simulation was based on the reported findings (Nakamura and 

Oke,1988; Pearlmutter et al., 2007; Lin et al., 2010) that the high shading levels 

increasethermal comfort during the day in summer, yet at night they can decrease long-

wave radiation loss on the surface, contributing to high temperatures; this was also 

concluded from the field measurement in Chapter Five.  

As shown in Figure 7.17, the aspect ratio (H/W) was the same for all the cases in being 

equal to 1.5, while the roof structure varied between the different cases. For instance, 

there was no roof for case number one, while case number two was fully covered, case 

number three was fully covered with one opening in the middle, and case number four 

had a roof 1m higher than the previous cases, with one opening on both sides. In case 

number five, the side openings were the same as case four but with one metre shifted 

locations on each side, and case six was the same as case five, but with an extra opening 
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in the middle. Case number seven had the same number and locations of opening as 

case six but in a vaulted shape. 

  

Case no. 1 Case no. 2 

  

Case no. 3 (Base Case) Case no. 4 

  

Case no. 5 Case no. 6 

 

 

Case no. 7  

Figure ‎7-17 The alternative configurations for each case study with specific changes in 

the roof shape and opening locations 
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7.5.1 CFD simulations: comparative results 

7.5.1.1 Comparison of the vertical profiles of the mean wind velocity  

For the performance-based analysis of the simulation results, a wind speed classification 

based on outdoor thermal comfort is derived (Murakami and Deguchi, 1981; Cheng and 

Ng, 2006), the current study classification is based on the outdoor thermal comfort in 

relation to the wind force on pedestrians or buildings. Ng et al. (2008) conducted a 

study to obtain the pedestrianlevel wind speed threshold values, in order to achieve 

outdoor thermal comfort for the subtropical climate, using physiological equivalent 

temperature (PET). On a typical summer day when air temperature is 27.9
o
C and 

relative humidity is about 80%, a wind speed of 0.6-1.3m/s is required to achieve 

neutral thermal sensation (neutral PET: 28.1
o
C). In another study for outdoor thermal 

comfort for the subtropical climate, the researchers reported that, in summer, a decrease 

in wind speed from 1.0m/s to 0.3m/s was equal to a 1.9
o
C temperature increase, and for 

outdoor thermal comfort under typical summer conditions 1.6m/s wind speed was 

required(Cheng et al., 2011).  

Accordingly, the classification of the pedestrian-level wind speed (u) is assigned as 

shown in Table 7.5, including five different classes named as ―stagnant,‖ ―poor,‖ ―low,‖ 

―satisfactory,‖ and ―good‖ pedestrian-level natural ventilations in street canyons (Yuan 

and Ng, 2012). 

Table ‎7-5 The classification of the pedestrian-level natural ventilations in street canyons (Yuan and Ng, 

2012) 

Class 1 u <0.3 m/s stagnant 

Class 2 0.6 m/s >u ≥ 0.3 m/s poor 

Class 3 1.0 m/s >u ≥ 0.6 m/s low 

Class 4 1.3 m/s >u ≥ 1.0 m/s satisfactory 

Class 5: U ≥ 1.3 m/s good 

In order toexamine the effect of wind speed at the pedestrian level, the vertical profiles 

of the mean wind velocity were measured at a point on the centre line of the street 

across the prevailing wind direction with a reference wind speed equal to 3m/s at U10 

(at10m height) (Figure 7.18). Figure 7.19 showsthe vertical profiles of all the cases 

from 0m at the ground level to 7m at the roof level. As can be seen, all cases may have 
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had a similar profile until they started getting closer to the roof and the openings when 

the vertical profiles started to vary. This is except for case number one, which was 

without a roof so its vertical profile kept on its increasing trend. In cases 2 and 3, they 

had almost the same velocity vertical profile with very close values until they reach the 

top roof level (+6 m above the ground level) when case 2 saw a decrease in wind 

velocity from 1.9m/s to 1.1m/sec as the roof tent was fully closed. In case 3, the centre 

roof opening assisted the wind to rise smoothly without much slowing down of its speed 

(almost 0.05m/sec velocity reduction). On contrary to case 4, where there was no 

opening in the roof centre, the wind velocity had to slow down and was released 

through the two side openings instead. Cases 4 and 5 shared the same two side openings 

but with different positions on the roof, and had almost the same vertical profiles up to 

the top of building at 6m above the ground level, when the wind velocity reached its 

maximum for both cases, at 2.1m/sec,before it declined by reaching roof level and had 

almost equal values between (0.70m/secand 0.75m/sec). However, cases 6 and 7, which 

shared the same three openings (one on each side and one on the roof), had the same 

vertical profile of the mean wind velocity and there was no sudden decrease in the wind 

velocity under the roof, as with cases 4 and 5. This was because the roof opening helped 

the air to rise while keeping its speed. This indicates that roof structure and different 

openings significantly affectthe wind profiles beneath. The result is consistent with a 

previous study by Ng et al.(2011), which stated that the wind environment at the 

pedestrian level is not affected by building height but is significantly influenced by 

urban geometry in the pedestrian level. Also, it is important to mention that all the cases 

fall within class number five (wind speed ≥1.3m/s). As seen in Table 7.5, they all 

achieved the comfort zone for the pedestrian classification for natural ventilation 

mentioned, except case 1, which recorded 1.3m/s and is thus classified as class four. 

Although some cases recorded very similar values, case number 7 had the exact value 

for the optimum condition mentioned by Cheng et al. (2011) of 1.6m/sec under typical 

summer time conditions, while all other shading scenarios led to lowering the wind 

velocity to a less satisfactory level according to a study by Cheng et al. (2011). 
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Figure ‎7-18 The vertical profiles of the mean wind velocity were measured at a point on the centre line of 

the street across the prevailing wind direction 
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Figure ‎7-19 The vertical profiles of the mean wind velocities from the CFD simulation located at the 

centre line of the street (from 0m on the ground level to 7m on the roof level) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5

H
e

ig
h

t 
(m

) 

Wind velocity (m/s) 

case 1

case2

case3

case4

case5

case6

case7
pedestrian level 



Chapter Seven: The Comparative Numerical Assessment 

 

247 

 

Table ‎7-6 The vertical profiles of the mean wind velocities from the CFD simulation located 

at the centre line of the street 

Height Case 1 Case2 Case3 Case4 Case5 Case6 Case7 

Metres Velocity (m/sec
-1

) 

0 0 0 0 0 0 0 0 

0.5 0.65 0.7 0.65 0.68 1 0.78 0.68 

1 1.1 1.23 1.2 1.19 1.41 1.43 1.2 

1.5 1.3 1.38 1.4 1.4 1.44 1.49 1.54 

2 1.41 1.45 1.48 1.47 1.52 1.53 1.6 

2.5 1.48 1.5 1.55 1.55 1.58 1.56 1.65 

3 1.525 1.58 1.6 1.6 1.65 1.625 1.74 

3.5 1.6 1.65 1.65 1.68 1.7 1.68 1.8 

4 1.63 1.7 1.7 1.725 1.78 1.75 1.85 

4.5 1.7 1.78 1.73 1.8 1.83 1.82 1.92 

5 1.8 1.82 1.78 1.88 1.95 1.9 1.98 

5.5 1.88 1.9 1.825 1.95 2.02 1.98 2.05 

6 2 1.3 1.8 2.1 2.1 2.08 2.1 

6.5 2.12 1.1 1.86 1.7 1.2 2.12 2.1 

7 2.25 2.05 1.975 0.7 0.75 2.15 2.04 

7.5.1.2 Comparison of ventilation flow rate and air exchange rate 

The mean flows and air exchange rate are significant factors for UCL ventilation (Hang 

et al., 2009) and pollutant removal (Hang et al., 2012) within the urban canopy layer 

(UCL) ventilation, which has been known as one of the possible mitigations to improve 

urban air environments (Oke, 1988; Bady, 2008; Deng, 2012; Hu and Yoshie, 2013 and 

Hang et al., 2013). To describe the air flow in street canyons further, both ventilation 

flow rate and air change rate per hour (ACH) have been examined (Kim, 2010; Hang 

and YG, 2010; ZW and YG, 2011; Graça et al., 2012) to quantify and assess the 

effectiveness of different ventilation configuration across the different cases.  

7.5.1.2.1 The ventilation flow rate  

According to Hang et al. (2013), different semi-open street roofs may produce various 

flow patterns and ventilation capacities,and to quantify this effect Table 7.7shows 

thenormalized flow rates (Q*) in the seven test cases. Positive values denote air entering 

UCLs and negative ones represent air-leaving UCLs. Case 7 represented the highest 

flow rate (Q*) compared to other cases. The following points are worthy of attention:  
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When comparing the first three cases, as they share the same volume (464m
3
), it was 

found that case number 1 recorded the highest volume flow rate which was expected 

due to the full open roof; however, case number 1 should be excluded from the analyses 

as it is not a semi-open street roof, as stated by Hang et al. (2013). By comparing case 

number 2 (fully covered) with case number 3 (roof opening), it was found that the 

volume flow rate increased by more than 10% in case number 3 due to the roof opening, 

compared to the lack of openings in case number 2; the roof opening was responsible 

for 23.5% of the total volume flow rate for case number 3. 

Second, although case number 5 had a larger volume space (584m
3
) compared to case 

number 4 (544m
3
), both having the same number and size of openings. It was noted that 

case number 5 had a higher volume flow rate than case number 4 due to the difference 

in the volume size, for both cases the two top side openings were responsible for almost 

the equal value of 30% of the total volume flow rate. 

Third, by comparing the two cases number 5 and 6 which had the same volume size of 

584m
3
 with an extra opening in the mid roof for case number 6, the analysis revealed 

that case 6 had a higher volume flow rate of 2% compared to case 5, and the three 

openings of case 6 were responsible for 27% of the total volume flow rate against 30% 

for the two openings in case 5. 

Fourth, cases 6 and 7 shared the same number, size and location of openings with the 

only difference being the shape of the roof, as case 6 was a flat roof while 7 was 

vaulted; case 7 recorded a 2.8% improvement in the volume flow rate than case 6. 

Furthermore, the total openings shared the same percentage of almost 27% of the total 

volume rate within both cases; however, the roof opening in case 7 recorded almost 

10% for the total volume flow rate against 7.4% for the roof opening in case 6, which 

might be attributed to the vault shape of the roof as it may facilitate the air movement 

underneath. Based on these analyses, and as stated in Figure 7.20, it can be concluded 

that case 7 had the best performance compared to all othercases. 
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Table ‎7-7 The (Q) or the Volumetric Flow Rate (m3/s) through the street opening or street roof note that 

positive values of (Q) denote air entering (inlet) and negative values represent air leaving (outlet) 
 

C
a
se

 1
 

 

C
a
se

 2
 

 
 Front opening+34.346294 

Back opening-19.985943 

Roof opening -14.360367 

 Front opening+26.778683 

Back opening -26.778683 

C
a
se

 3
 

 

C
a
se

 4
 

 
 

Front opening+29.482895 

Back opening  -22.538654 

Roof opening  -6.9445729 

 Front opening+41.991043 

Back opening-29.845551 

Upper left opening -6.0431418 

Lower right opening -6.102366 

C
a
se

 5
 

 

C
a
se

 6
 

 
 

Front opening+47.880123 

Back opening-36.509018 

Upper left opening-5.6316333 

Upper right opening-5.7394876 

 Front opening+48.663147 

Back opening-35.384422 

Upper right opening -4.8697925 

Upper left opening     -4.7942924 

Roof opening        -3.6146126 

C
a
se

 7
 

 

 

 

 Front opening+49.999229 

Back opening-36.696915 

Upper left opening       -4.280737 

Upper right opening    -4.0979248 

Roof opening-4.9237744 
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Figure ‎7-20 The total volume flow rate (m3/s) for each case 
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Case 7 

 

 

Figure ‎7-21 The vertical wind speed contours at the centre line of the model on the left hand side and the 

horizontal wind speed contours at 1.4m above the ground level on the right hand side. Note that positive 

values of Volumetric Flow Rate (Q) denote air entering and negative values represent air leaving 

7.5.1.2.2 The air exchange rate per hour 

One of the essential aspects of air exchange rate is to examine the different shading 

configurations‘ effect on the ventilation and the air exchange rate within the urban 

street, and to reduce any negative effect it might cause. The effectiveness of the 

different ventilation configurations is assessed using the air exchange rate,(Kim, 2010; 

Hang and YG, 2010; ZW and YG, 2011; Graça et al., 2012) which is the number of 

times each hour that the semi- enclosed total volume of air is exchanged with fresh air, 

as defined by ASHRAE (2005): 

     
        

 
 (Eq. 7.1) 

Where Q is the volumetric air flow rate into the enclosure (m
3
/s), V the volume of the 

enclosure (m3) and 3,600 the conversion per hour (60 minutes multiplied by 60 

seconds). For each ventilation configuration, the simulated volume flow rates through 

each opening are used to determine the ACH using equation (7.1). The results of the 

total calculated ACH are shown in Figure 7.22 and the flow rates percentage across the 

roof and side openings are thenpresented in Figure 7.23. Based on these figures, the 

following can be pointed out; 
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Case 1 recorded a higher air exchange rate of 28.3% than case 2 and 16.5% than case 3, 

which was expected due to the high sky view factor for case 1 (without a roof). 

However, when compared to the other cases, case 1 recorded the lowest air exchange 

ratio, and yet this is not a representative for better performance of the other cases 

compared to case 1 because according to equation (7.1) it is being calculated based on 

the volumetric air flow rate into the enclosure (m3/s) and, as stated, the other cases had 

a larger volume. This explains how the opening performance contributes to better ACH, 

as in Figure 7.22. Case 1‘s roof opening recorded the highest in ACH (41.8%) followed 

by the opening of case 4 (28.9%), and then cases 6 and 7, and then 5. 

It also can be concluded that although cases 6 and 7 had the highest ACH, the number 

of openings was not the only reason as it may be attributed to the volume size which 

encourages more air circulation. This was confirmed through calculating the openings 

flow rate percentage of the total flow rate (Figure 7.23) as the results showed that not 

having a roof in case 1 caused more than 42% of the total air change rate in the canyon. 

Also, the roof openings in case 4, which had less volume than the following cases and 

only two sided openings, achieved 29% of the total air change rate against 27% and 

26.4% for the three openings in cases 6 and 7, respectively. 
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Figure ‎7-22 Calculated air change rate per hour (ACH) for the different ventilation configurations for 

reference wind speed U10 = 5m/s 

 

 

Figure ‎7-23 Flow rate percentages across the roof and side openings (case no. 2 is excluded due to its 

fully covered roof without any openings to be estimated) 

0

50

100

150

200

250

300

350

case1 case2 case3 case4 case5 case6 case7

(m
3

/h
) 

ACH (m3/h) 

ACH (m3/h)

0

5

10

15

20

25

30

35

40

45

case1 case2 case3 case4 case5 case6 case7

p
e

rc
e

n
ta

ge
 (

%
) 

the percentage air exhange rate across the openings 

The total roof opening percentage in ACH



Chapter Seven: The Comparative Numerical Assessment 

 

256 

 

7.5.1.3 Comparison of air temperature distribution 

The vertical profiles of the mean air temperaturewere measured at a point on the centre 

line of the street across the prevailing wind direction with a reference air temperatureat 

the inlet equal to 35
o
C, as conducted from the field measurement. As illustrated in 

Figure 7.24, the air temperature vertical profiles were plotted for all the cases from 0m 

to 7m above the ground level. 

 

 

Figure ‎7-24 The simulated vertical profiles of the air temperature located at the centre line of the street 

(from 0m on the ground level to 7m on the top roof level) 

All cases started between 32.4
o
C to 33.4

o
C at level zero as the surface temperature, 

which is lower than the inlet temperature due to the shading effect. Once the vertical 

profiles reached the pedestrian level (1.4m) above the ground level, case 1 recorded the 

highest air temperature followed by cases 2, 3 and 4, all with minimal difference less 

than (0.2
o
C). The same four cases had the same trend of the vertical profile till reaching 

the roof level when case 2 faced a slight increase in air temperature directly under the 

roof while 4 had the same increase of air temperature at the building roof before 

decreasing again at the side opening level. Cases 5, 6 and 7 had different vertical trends. 
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Although case 6 had one more opening in the roof compared to case 5, which had only 

two side openings above the top buildings, they both had the same trend and recorded 

almost the same air temperature, which was lower than the previous cases. Therefore, it 

seems the extra opening or the location of the opening in the middle had less effect on 

air temperature than on the air velocity, as mentioned in the previous section. Even 

though case 7 had the same location and number of openings as case 6, it recorded the 

lowest air temperature through all 7m of vertical line except when it reached the side 

openings, when it suddenly increased by 1.5
o
C to reach the same temperature as the 

outlet (35
o
C), due to natural heat transfer from the undershade and the outside air 

temperature (Al-Kayiem et al. 2010). Then, once it passed the side opening, it declined 

again and lost the 1.5
o
C, again recording 33.5

o
C under the roof. This difference between 

cases 7 and 6 may be attributed to the vaulted shape of the roof in the former, as the mid 

opening had no effect on air temperature when cases 5 and 6 are compared. Therefore, it 

can be concluded that case 7 represented the best performance for having the lowest air 

temperature at the pedestrian levels between (1m to 2m above the ground level), as it 

kept 1
o
C difference with cases 6 and 5, and 1.63

o
C difference with the base case 3. For 

all cases, the highest air temperature stratified at the top (Al-Kayiem et al. 2010). The 

air temperature distribution was directly proportional to level height: the higher the 

level, the higher the air temperature till the vertical profile meets the side openings 

when the air temperature suddenly increased due to the direct contact with the external 

air temperature at 35
o
C. This migration of warm air to the top of the enclosure offers 

potentially more comfortable conditions resulting from cooler air collecting at ground 

level in the inhabited zone. Further, the high level hot air reservoir could have been 

discharged through upper level vents and thus generated a cooling airflow in the 

inhabited zone driven by the stack effect. Moreover, the results indicated a negative 

correlation between the air temperature distribution underneath the different roof shapes 

and the ambient wind speed, as the wind speed increased about 1.4m and there was a 

rapid drop in temperature, as shown in Figure 7.25. This effect of wind velocity has 

been reported by numerous studies (Ng et al., 2008; Yuan and Ng, 2012), including 

Cheng et al. (2011), who reported that a 1.0m/s to 0.3m/s decrease in the wind speed is 

equal to a 1.9
o
C temperature increase, and Memon et al. (2010), who stated that air 

temperatures rose as high as 1.3K when ambient wind speed decreased from 4 m/s to 

0.5 m/s. 
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Figure ‎7-25 The inverse correlation between the air temperature distribution underneath the different roof 

shapes and the ambient wind speed at the pedestrian level 

 

Table ‎7-8 The vertical profiles of the air temperature conducted from the CFD simulation 

located at the centre line of the street 

Height Case 1 Case2 Case3 Case4 Case5 Case6 Case7 

Metre Air temperature (
o
C) 

0 32.5 32.5 33.4 33.3 32.5 32.8 32.4 

0.5 33.7 33.6 33.7 33.5 33.5 33.4 32.7 

1 34.7 34.5 34.7 34.5 33.9 33.9 32.9 

1.5 34.8 34.6 34.8 34.6 34.1 34.0 33.1 

2 34.9 34.7 34.8 34.7 34.1 34.1 33.1 

2.5 34.9 34.7 34.8 34.7 34.2 34.2 33.1 

3 34.9 34.7 34.8 34.7 34.2 34.2 33.2 

3.5 34.9 34.8 34.9 34.8 34.3 34.3 33.2 

4 34.9 34.8 34.9 34.8 34.3 34.3 33.3 

4.5 34.9 34.8 34.9 34.8 34.4 34.4 33.3 

5 34.9 34.8 34.9 34.8 34.5 34.5 33.3 

5.5 34.9 34.9 34.9 34.9 34.5 34.5 33.4 

6 34.9 34.9 34.9 34.9 34.7 34.7 34.4 

6.2 35.0 34.9 34.9 34.9 34.8 34.8 34.9 

6.5 35.0 34.9 34.9 34.9 34.6 34.5 34.2 

7 35.0 35.0 35.0 34.8 34.0 34.0 33.5 
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7.5.1.4 The mean radiant temperature and PET 

Although the ambient air temperature and air velocity were analysed, the assessment of 

air temperature or air velocity was insufficient to evaluate the overall thermal comfort in 

semi-outdoor and outdoor spaces (Danial et al., 2013). Thus, the PET were calculated 

using a proprietary application, Rayman (Matzarakis et al., 2007), based on the 

dominant microclimatic parameters including air temperature (Ta), relative humidity 

(RH), wind velocity (v) and mean radiant temperature (Tmrt) of the surroundings. Except 

for Tmrt, these parameters were given either by the CFD simulation output including air 

temperature and wind velocity or from the field measurements, such as the relative 

humidity as a constant value. 

The Tmrtwas calculated for each case based on equation (5.1) given by ASHRAE 

(2009), as follows (for more details, refer to Sections 3.7 and 5.5.4): 

     [(         )
 
 

         
   

      
        ]

 

         (Eq. 5.1) 

Where (  ) is the globe temperature (
o
C),   ) is air velocity (m/s),      is the air 

temperature (
o
C), D [mm] is the globe diameter (=25 mm), and  ɛ   is the emissivity of 

the sphere (=0.95 for a black globe). The empirically derived parameter         and 

the wind exponent (  
   ) together represent the globe‘s mean convection coefficient 

(         
   ). However, the globe temperature (Tg) has to be calculated first based 

on each scenario air temperature and air velocity using the following equation (Dimiceli 

et al., 2011, 2013): 

   
             

        
 (Eq. 7.2) 

Where (Ta) is air temperature while B and C are defined as follow 

B = S(
   

         
 (

   

 
)     )        

  (Eq. 7.3) 

   
      

              
 (Eq. 7.4) 

Where (Ta) is the air temperature (
o
C), (σ) Stephan-Boltzman constant = 5.67 x 10

-8
, (S) 

is solar irradiance, (     is the direct beam radiation from the sun, (      is the diffuse 

radiation from the sun, (z) is the solar angle to zenith, (s) is the solar irradiance (W/m
2
), 

(h) is the convective heat transfer coefficient, (v) the wind velocity (mph) and (    is the 
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thermal emissivity and according to Hunter and Minyard (1999) it can be calculated 

using the following: 

           
 

 
 
 (Eq. 7.5) 

 Where (ea) is the atmospheric vapour pressure. 

The equation was proved by Dimiceli et al. (2011, 2013) to estimate the globe 

temperature very accurately, as the experiments showed that the estimations were 

within about 0.27
o
C. All input variables are readily available in Table 7.9 and some of 

these variables are constant among all the cases as they shared the same location and 

conditions such as the atmospheric vapour pressure, solar angle to zenith, and solar 

irradiance, while the air temperature and wind speed was different in each case. Once 

the globe temperature (Tg) was calculated, and then air temperature (Ta), air velocity(va), 

relative humidity (RH) and mean radiant temperature (Tmrt) are known, the 

physiologically equivalent temperature, PET (Höppe, 1993, 1999), as a thermal index is 

ready to be calculated using the RayMan model (Matzarakis et al., 2007, 2010). 

Table ‎7-9 Calculated globe temperature, mean radiant temperature and PET for the different case studies in 

addition to the inputs used in the equations( (     is the direct beam radiation from the sun,ility (z) is the solar 

angle to zenith, (s) is the solar irradiance (W/m
2
) were calculated based on solar radiation calculator attached in 

appendix E) 

 

 Case 1 Case2 Case3 Case4 Case5 Case6 Case7 

v (m/h) 4680 4968 5040 5040 5220 5364 5544 

v 

(m/sec) 
1.3 1.38 1.4 1.4 1.45 1.49 1.54 

Ta 34.8 34.67 34.78 34.68 34.05 34.04 33.05 

B 2708960.49 2668708.03 2702738.3 2671788.3 2482871 2479955.6 2203796.82 

C 756743640 783414319 789979636 789979636 806222801 819048598 834879223 

Tg 34.80 34.67 34.78 34.68 34.05 34.04 33.05 

Tmrt 34.92 34.75 34.84 34.79 34.16 34.15 33.06 

PET 35.3 35.2 35.2 35.1 34.2 34.2 32.9 

The constant values used in equations (7.2), (7.3), (7.4) and (7.5) 

z 90.22  s 0 (at the night time)     0 
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ea 22.48619  h 0.127660528       100 

The thermal comfort index (PET) was calculated for each case and plotted in addition to 

the Tmrt on Figure 7.26. As can be noticed from the graph, the similarity between the 

PET and Tmrt patterns (Chapter Five reported that the regressions analyses between PET 

and Tmrt of R2 = 0.972 for a linear relationship) again confirms the strong influence of 

the mean radiant temperature on evaluating thermal sensation outdoors under summer 

sunny conditions (Mayer and Höppe, 1987;Mayer, 1993; Gomez, Tamarit, and 

Jabaloyes, 2001). The thermal acceptable range was estimated in Chapter Seven 

between 24
o
C to 32

o
C PET. Although none of the seven cases successfully achieved the 

acceptable range, they were still located within the slightly warm category. Also, it is 

very important to mention that the study was conducted on the hottest day of the year, 

which means that some cases can still achieve the thermal acceptable range during 

typical summer days, such as case 7, which positively achieved a 2.3
o
C reduction, 

compared to the base case 3, followed by cases 5 and 6 with a 1
o
C difference than the 

base case. 

 

Figure ‎7-26 The estimated PET and Tmrt for the seven cases 

7.5.1.5 Overall results 

As the main concern of the study was to evaluate the optimum cooling effect made by 

different typologies of roofs as shading structures for urban streets during the night 

time, a summary of the results is presented in Table 7.10, showing the different 
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modification results for air temperature, air velocity and PET. This conditions leads to 

an improvement of the cooling effect at the street level. It is evident from the findings 

that the modification was due to the change in the shape and opening location within the 

covering structures. 

The findings show that the structures‘ typology and the opening locations are one of the 

paramount factors in providing a temperature reduction on the urban scale. This 

modification in these properties leads to a large reduction of air temperature with 2.3
o
C 

for the best case compared to the base case. The reduction in air temperature was due to 

the vaulted shape of the tent with three openings as it causes a higher air velocity and 

higher air exchange rate underneath, which has a positive effect in decreasing the air 

temperature. Also, the vault shaped roof had a curved surface area and was considerably 

larger than the base, and so receives less solar heat per unit area, thus lowering surface 

temperatures and facilitating re-radiation after sunset(SKAT, 1988). Continuously, this 

process improved the thermal comfort of the area, as the PET for the best case 7 was 

about 32.9
o
C against 35

o
C for the base case, which was only 0.9

o
C, close to the thermal 

acceptable range on the hottest day of the year. 
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Table ‎7-10 Comparison between the different cases including the base case 3 and best case 7 

  Volume 

flow rate 

Air 

velocity 

Air 

exchange 

rate 

% ACH 

through 

the 

openings 

Air 

temperat

ure 

PET 

 Cases (m3/s) m/sec m3/h % (
o
C) (

o
C) 

C
a

se
 1

 

 

34.34 1.3 266.43 41.81 34.8 35.3 

C
a

se
 2

 

 

26.77 1.38 207.7 

n/a 

no roof 

openings 

34.67 35.2 

C
a

se
 3

 

 

29.48 1.4 228.7 23.55 34.78 35.2 

C
a

se
 4

 

 

41.99 1.4 277.8 28.93 34.68 35.1 

C
a

se
 5

 

 

47.88 1.45 295 23.72 34.05 34.2 

C
a

se
 6

 

 

48.66 1.49 299 27.29 34.04 34.2 

C
a

se
 7

 

 

49.99 1.54 300 26.4 33.05 32.9 
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7.5.2 Solar access simulation 

Shading systems leads to a reduction of the heat gain at pedestrian level, which may 

lead to cooling systems not being operated frequently. Nonetheless, they have the 

drawback of reducing daylight availability (Tzempelikos and Athienitis, 2007). 

According to the Illuminating Engineering Society of North America (IESNA, 2000), it 

is essential that daylight effects be considered in any space where daylight is admitted, 

even if it is not exploited as a light source, in order to reduce the need for artificial 

lighting. Therefore, an analysis of solar access and shading is necessary for a complete 

evaluation of the climate efficiency of any street design solution to assure thermal and 

visual comfort underneath the shading tents. 

Simulation Setup 

DIVA, which stands for Design Iterate Validate Adapt, is an environmental analysis 

plugin for the Rhinoceros 3D Nurbs modelling program (McNeal, 2010) and is used to 

examine the impact of each of the seven scenarios on solar access underneath. DIVA 

performs daylight analysis on an existing architectural model via integration with 

Radiance and DAYSIM with thermal load simulation using EnergyPlus within, which is 

a powerful tool that can be used on an urban or building scale (Reinhart et al., 2011). 

Radiance and DAYSIM employ a reverse ray tracing algorithm based on the physical 

behaviour of light in a volumetric, three-dimensional model which should most 

accurately represent reality (Ward, 1994). Radiance, on the other hand, utilizes the split 

flux method based upon a representation of complex geometries as planes when 

predicting interior daylight levels (US Department of Energy, 2010). 

According to IESNA, daylight availability represents the annual amount of daylight 

coming from the sun and the sky at a specific location, time, date and sky condition. 

Based on the study objective for radiation maps, a grid based simulation was chosen 

which generates climate-specific annual surface irradiation images and calculates 

annual irradiation at node locations. This tool is powerful and was mainly developed to 

be used on an urban scale to identify locations in need of shading due to excessive solar 

exposure or areas with solar energy conversion potential. 



Chapter Seven: The Comparative Numerical Assessment 

 

265 

 

The DIVA for Rhino simulation tool was used to model the case studies based on the 

grid based radiation map approach for three different timings: annual calculations, and 

both summer and winter seasons, which could help in optimizing the shading devices to 

minimize the summer exposure while maximizing the winter gain. 

Data of direct and diffuse solar radiation are included in the weather file titled as ―Cairo 

Intl Airport 623660 (ETMY)‖ which was uploaded within the software extracted from 

the EnergyPlus weather file data. The grids of sensor nodes were adjusted on the ground 

surface and the two walls with spacing every 0.5m in both directions (X) and (Y), as 

seen in Figure 7.27.  

 

Figure ‎7-27 The grid sensor nodes scattered within the model 

Metric 

As seen in Figure 7.28, the cumulative sky method was selected which according to 

Robinson and Stone (2004) is described as harnessing a Radiance module called 

GenCumulativeSky to create a continuous cumulative sky radiance distribution. This 

cumulative sky is then used in a Radiance backwards ray-trace simulation. Compared to 

other approaches which use hourly calculations, this approach is significantly faster 

with a minimal sacrifice in accuracy. Simulation radiance parameters are presented in 

http://www.solemma.net/references/PLEA2004_RobinsonAndStone.pdf
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Table 7.11 and explained in Box 7.1, as illustrated in the DAYSIM tutorial (Reinhart, 

2006); they should thus yield reliable results. 

 

Figure ‎7-28 The grid sensor nodes scattered within the model 

 

Table ‎7-11 The grid sensor nodes scattered within the model 

Ambient 

bounces 

Ambient 

divisions  

Ambient 

super-

samples 

Ambient 

resolution 

Ambient 

accuracy  

Direct 

threshold 

Direct 

sampling 

ab ad as ar aa   

7 1500 20 300 0.1 0 0 

 

 

http://www.designbuilder.co.uk/helpv3/Content/Daylighting%20Calculation%20Options.htm#Ambient
http://www.designbuilder.co.uk/helpv3/Content/Daylighting%20Calculation%20Options.htm#Ambient
http://www.designbuilder.co.uk/helpv3/Content/Daylighting%20Calculation%20Options.htm#Ambient2
http://www.designbuilder.co.uk/helpv3/Content/Daylighting%20Calculation%20Options.htm#Ambient2
http://www.designbuilder.co.uk/helpv3/Content/Daylighting%20Calculation%20Options.htm#Ambient5
http://www.designbuilder.co.uk/helpv3/Content/Daylighting%20Calculation%20Options.htm#Ambient5
http://www.designbuilder.co.uk/helpv3/Content/Daylighting%20Calculation%20Options.htm#Ambient5
http://www.designbuilder.co.uk/helpv3/Content/Daylighting%20Calculation%20Options.htm#Ambient3
http://www.designbuilder.co.uk/helpv3/Content/Daylighting%20Calculation%20Options.htm#Ambient3
http://www.designbuilder.co.uk/helpv3/Content/Daylighting%20Calculation%20Options.htm#Ambient4
http://www.designbuilder.co.uk/helpv3/Content/Daylighting%20Calculation%20Options.htm#Ambient4
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Box 8.1. The simulation parameters as explained in the ―tutorial on the Use of Daysim/Radiance 

Simulations for Building Design – version: Aug-06‖ (Reinhart, 2006) 

7.5.2.1 Daylight simulation results 

The analyses were based on calculating the incident solar radiation on the three different 

surfaces underneath the shading devices including the east andwest walls, and the 
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ground surface. The incident solar radiationis the amount of solar radiation energy 

received on a given surface during a given time (energy per area (W/m2)). All seven 

cases were examined seasonally and annually and the overall results are illustrated in 

Table 7.12 and analysed in Figure 7.29 and 7.30, as compared to 

ANSI/ASHRAE/IESNA Standard 90.1-2007
17

 for lighting.  

Accordingto ANSI/ASHRAE/IESNA Standard 90.1-2007, the lighting power densities 

for the outdoor sales for open areas including vehicle sales lots should not be less than 

5.4 W/m
2
. Case 1 was excluded from the comparative analysis as it is a fully exposed 

street without any shading device adjustments; this explains the highest radiation values 

recorded compared to other scenarios, as shown in Figures 7.29 and 7.30.  

Case 2 recorded the lowest values of solar radiation received among the three surfaces, 

including the walls and the ground in both seasons. This is mainly attributed to its fully 

covered tent system with no openings for sunlight to pass through (Figures 7.29 

and7.30), as the west wall and the ground could not achieve the minimum lighting 

power densities requirement during the winter time, as stated by 

ANSI/ASHRAE/IESNA Standard 90.1-2007. 

Although case 3 only had one opening in the middle of the roof and it can be considered 

as the base case used by the ancient town planners in Al-Muizz Street to provide 

shading without preventing the daylight from entering the place (Figure 7.30 and 7.31). 

The case recorded very close values compared to the best cases of 6 and 7, and it 

performed better than cases 4 and 5, which had two side openings without any openings 

in their roof. It can be concluded that the roof opening acted better than the side opening 

in providing sunlight underneath, particularly in the summer time when the sun altitude 

is higher than in winter. This also explains the close values between cases 3 and 4 in 

winter when the sun altitude is very low; then, the side opening in case 4 performed 

well based on the sun angle, which can reach up to 36.4 degrees compared to 83.2 

degrees in summer (Figures 7.29 and7.30). 

Cases 4 and 5 both shared similar side openings; however, the only difference was in 

case 4, in which the openings were in alignment with the west and east walls 

                                                 

17
 IESNA is the Illuminating Engineering Society of North America 

  ANSI is the approved American National Standard 
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underneath, while in case 5 the openings were 1m shifted beyond the walls, as seen in 

Figure 7.29 and 7.30. Based on this modification, case 4 recorded higher values than 

case 5, which could not achieve half the minimum ANSI/ASHRAE/IESNA Standard 

90.1-2007 for the west wall and barely passed the required lighting power densities for 

the ground during the winter time, as the sun rays in some angles may hit the inside roof 

without reaching the walls or the ground. In case 4, the passing rays from both windows 

most probably reached either the ground or one of the walls. 

Case 6 in general is considered to be the best case in daylighting and solar radiation 

analysis. However, due to the vaulted shape in case 7, this caused both east and west 

walls to receive more solar incidence in summer, while due to the same vaulted shape, 

the roof was half a metre higher than the flat roof in case 6, and as a result the ground in 

case 6 received more solar incidence than the ground surface in case 7, due to the high 

sun altitude during the summer. As illustrated in Table 7.12 and Figures 7.29 and7.30, 

although case 6 recorded the best results in providing daylighting underneath, the values 

were very close to case 7; such a minimal difference does not give much advantage for 

case 6, as both cases had already achieved the lighting power density requirements, 

except for the west wall during the winter time as cases 6 and 7 recorded 4.58 and 4.35 

W/m
2
 respectively. These were below but very close to the minimum requirement (5.4 

W/m
2
) which means that both cases may use an artificial light to achieve these 

differences. Therefore, both cases may be considered similar in terms of daylight 

performance.  
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Table ‎7-12 solar raidation and incident analysis between the different cases 

 Cases Time 
East 

(W/m2) 

West 

(W/m2) 

Ground 

(W/m2) 

C
as

e 
1

 

 

Summer 61.93 33.31 104.95 

Winter 30.80 9.75 12.40 

Yearly 92.35 42.89 116.61 

C
as

e 
2

 

 

Summer 9.70 7.41 26.23 

Winter 5.70 2.12 5.10 

Yearly 15.36 9.51 31.29 

C
as

e 
3

 

 

Summer 21.26 13.42 46.51 

Winter 11.85 4.03 6.87 

Yearly 32.83 17.38 53.37 

C
as

e 
4

 

 

Summer 16.26 11.87 31.93 

Winter 11.71 4.01 6.36 

Yearly 27.92 15.82 38.19 

C
as

e 
5

 

 

Summer 13.37 10.08 30.01 

Winter 7.935 2.99 5.63 

Yearly 21.27 13.04 35.56 

C
as

e 
6

 

 

Summer 25.17 15.54 47.08 

Winter 13.55 4.58 7.04 

Yearly 38.48 20.17 54.42 

C
as

e 
7

 

 

Summer 25.30 15.69 46.48 

Winter 11.61 4.35 6.89 

Yearly 36.69 20.02 53.57 
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Figure ‎7-29 The solar incident analysis for all cases for the summer and winter, and annually, excluding 

0

10

20

30

40

50

case1 case2 case3 case4 case5 case6 case7SU
M

M
ER

 S
o

la
r 

in
ci

d
e

n
t 

 (
w

/m
2

 ) 

East wall West wall ground

0

5

10

15

20

case1 case2 case3 case4 case5 case6 case7W
IN

TE
R

 S
o

la
r 

in
ci

d
e

n
t 

 (
w

/m
2 )

 

East wall West wall ground

0
5

10
15
20
25
30
35
40
45
50
55

case1 case2 case3 case4 case5 case6 case7A
N

N
U

A
LL

Y
  S

o
la

r 
in

ci
d

e
n

t 
 (

w
/m

2
) 

East wall West wall ground



Chapter Seven: The Comparative Numerical Assessment 

 

272 

 

case 1 as it is a fully exposed without any shading roofs 
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C
as
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1

 

  

C
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C
as

e 
7

 

  

Figure ‎7-30 DIVA Radiation Map –annual grid based simulation output for the seven case studies 

 

  

Figure ‎7-31 The base case, as used by ancient town planners in Al-Muizz Street to provide both shading and daylight 
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7.6 Conclusion 

The solar radiation and the level of shading were proved to be the dominant components 

driving the heat balance equation for the hot, arid climate (Pearlmutter et al., 2007), 

where the Tmrt was found to have a stronger effect on pedestrian thermal perception than 

the air temperature under hot, sunny conditions (Spagnolo and de Dear, 2003; Toudert 

et al., 2005; Johansson, 2006). Although shading is not a new solution as it had been 

used historically under different climate conditions, its positive climatic effects as a 

traditional solution have recentlybeen questioned, as they might have been 

overestimated (Givoni, 1997; Toudert, 2005). The high shading levels may increase 

thermal comfort during the day in summer, and contribute to high temperatures at night 

as they decrease the long wave radiation loss on surfaces (Lin et al., 2010). In order to 

regulate climate comfort, a quantitative based study was still required for different 

shading patterns. Because vegetation as a shading device is not applicable for Al-Muizz 

Street as the sub-surface water has risen to catastrophic levels, the appropriate solution 

was the use of shading devices such as tents and canopies. 

The chapter was divided into two parts. In the first part of the chapter, the choice of the 

computational fluid dynamics (CFD) Fluent code 13.0 as a tool in order to explore the 

environmental behaviour of these shading structures was discussed, in addition to the 

appropriate settings based on the literature review and best practice guide lines (BPG) 

(Blocken, 2012) for the CFD simulation.This included the mathematical model, 

geometry and solution domains, and the boundary condition. The CFD results was 

validated based on the in site measurement comparison with the existing case 

modelling. In the second part, the possible use of the different shading designs including 

topologies and opening locations, particularly to enhance occupants comfort level 

within the semi-enclosed spaces, was the main discussion using the comparative 

analysis reported by the CFD for seven different cases based on three main 

environmental aspects, including the air velocity, air temperature distribution and solar 

access. 

First, the air velocity was examined in terms of the wind velocity vertical profile so as 

to examine the effect at the pedestrian level, and then the volume flow rate and air 

exchange rate were examined to quantify the mechanisms of air exchange and the 

effectiveness of the design (Hang et al., 2013). The results indicated that all of the 
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examined wind vertical profiles followed almost the same pattern, with the highest 

velocity recorded for the pedestrian level being 1.55 (m/sec) for case 7, until they all 

reached the building top near the roof, when the velocity profiles started to vary 

according to the different roof shapes and opening locations. This meant that the roof 

typology and opening significantly affected the wind profiles beneath. All of the seven 

cases fell within the comfort range of wind velocity (U ≥ 1.3 m/s) except case 1, and yet 

case 7 was the closest to the optimum wind speed of 1.6m/sec under typical summer 

time conditions, according to a study by Cheng et al. (2011). Then, the ventilation 

capacity and volume flow pattern was examined as it may vary due to the different 

semi-open street roofs (Hang et al., 2013). It was concluded that in all cases the side and 

roof openings performed about 23%-30% better with an increase in the volume flow 

rate underneath the shading roofs. In addition, the influence of the roof shape as the 

vaulted roof recorded 10% for the total volume flow rate against 7.4% for the flat roof. 

The effectiveness of the different ventilation configurations was assessed using the air 

exchange rate(Kim, 2010; Hang and YG, 2010; ZW and YG, 2011; Graça et al., 2012). 

Although cases 6 and 7 recorded the best ACH, the number of openings was not the 

only reason as the volume sizes played a role in encouraging more air to pass through. 

Therefore, by estimating the openings percentage in contributing for the total flow rate 

it was found that two openings in cases 4 had a higher performance for ACH rate than 

the three openings in cases 6 and 7. However, case 7 followed by case 6 recorded the 

highest values for the total ventilation flow rate and ACH. 

Secondly, the air temperature distribution was investigated underneath the different roof 

configurations using the vertical line air temperature measurements located at the centre 

of the street with a reference air temperatureat the inlet equal to 35
o
C as conducted from 

the field measurements. The air temperature distribution was positively correlated with 

the level height, and the higher the level was, the higher the air temperature till the 

vertical line reached the side opening when the air temperature suddenly increased 

because of the suction effect between the indoor air temperature and the outdoor ones. 

This migration of warm air to the top of the semi-enclosure offers potentially more 

comfortable conditions resulting from cooler air collecting at ground level in the 

inhabited zone. On the other side, there was a negative correlation between the air 

temperature distribution and the wind velocity underneath, as the wind increased the air 

temperature but used to decrease and this has been reported through different studies 
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(Ng et al., 2008; Memon et al., 2010; Cheng et al., 2011; Yuan and Ng, 2012). Even 

though the air temperature and air velocity were analysed, they are still not enough 

indicators for outdoor thermal comfort, and thus the mean radiant temperature and the 

comfort index PET were calculated for each case. Again, case 7 represented the best 

performance for having the lowest Tmrt and PET at the pedestrian levels with a 1
o
C 

difference with cases 6 and 5, and a 2.3
o
C difference with the base case 2. 

Although the shading provided a favourable reduction of the heat gained by the 

pedestrians and the buildings underneath (up to 14
o
C as reported in chapter 5),one of its 

drawbacks isstill the reduction in daylight availability underneath (Tzempelikos and 

Athienitis, 2007). Therefore, in the third subsection of part three, the solar access and 

lighting analyses were conducted in order to complete the evaluation of the street design 

solution. Radiation maps were generated using DIVA for Rhino for all the seven cases 

in summer, winter and annually, and the three surfaces of the two walls and ground 

were analysed based on the amount of solar incident received on their surfaces. All 

cases performed well according to the ANSI/ASHRAE/IESNA Standard 90.1-2007, 

except in winter where the west wall for all cases did not achieve the minimum 

requirements (excluding the without roof case 1). Cases 6 and 7 proved to be the best 

cases with very minimal differences between both cases values, and also the base case 3 

came third in allowing daylight to penetrate underneath, which gives the privilege for 

the roof centre openings among the side openings for better daylighting. 
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 “We often think of people living their life inside buildings 

and we may not see that in fact for one reason or another 

we spend much of our time outside” (Gehl, 1986). 
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8.1 Introduction 

This chapter discusses the results of the previous chapters and their implications for 

climate-conscious urban design in hot, arid climates, illustrated by Al-Muizz Street in 

the Islamic quarter of Cairo. It includes the following sections. The first section is an 

overview of the thesis aims and objectives. In the second section, guidelines are 

discussed for improving outdoor thermal comfort strategies for hot, arid climates. The 

third section contains an outline for possible future research and the contributions of the 

study. 

8.2 The theoritcal part based on the research aims and objectives 

The assessment of outdoor thermal performance in the urban streets of the selected hot, 

arid context was the main driver of this research. Accordingly, the urban development 

of the street had to be investigated first in Chapter One, and Al-Muizz Street hadto be 

analysed in terms of size, geographical location, and land use, as well as street design 

features such as the height of buildings, street widths and orientation, and subdivision of 

the building lots (appendix A). The main findings were that the spatial geometry of the 

traditional urban fabric of Al-Muizz Street seems to have developed from a lack of 

planning. The principle of privacy might have contributed to the development of the 

narrow and winding streets apart from the climatic adaptation by ‗shading‘. Other urban 

strategies look like they were developed mainly as a result of the harsh desert climate 

such as the street orientation and the street aspect ratio, which are the two most relevant 

urban parameters responsible for the microclimatic changes in a street canyon 

(Todhunter, 1990; Bianca, 2000; Erell et al. 2011; Shishegar 2013). This is well 

expressed by the street design for the Fatimid city in Cairo, which follows a grid in its 

plan, with Al-Muizz as the main street oriented N-S. This creates a more pleasant 

microclimate, as the N-S orientation provides enough shadow and solar energy in both 

summer and winter (Toudert and Mayer, 2005). In contrast, E-W oriented streets are 

quite difficult to keep in shade (Pearlmutter et al. 2007), and therefore theywere always 

narrower and higher in aspect ratio than the N-S streets. Furthermore, the high thermal 

inertia for the whole system as a result of a minimal envelope to volume ratio makes the 

compact buildings gain less heat during the daytime and lose less heat at night. The use 

of heavy stones with a big cut creates a high thermal capacity, and using light colours 

on external facades helps to reduce the urban reflectance of the whole 
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site.Consequently, the effect of urbanization and industrialization on modifying the 

local city climate through elevating the air temperature (Oke, 1995; Kuttler, 1998; 

Montavez et al., 2000;Tereshchenko and Filonov, 2001) was discussed in Chapter Two. 

It was noted that poor design planning and an unbalanced urban energy process as a 

direct effect of urbanization can lead to an uncomfortable rise in urban temperature in 

hot and cold regions, which is known as the urban heat island effect (UHI). By 

analysing the UHI mechanism, it was found that strategies for mitigating the UHI need 

to be based on specific climatic parameters and the location of the city. Based on this 

literature, it was found that during the hot season, UHI intensity can reach 8.0
o
C. This 

condition can become more extreme, especially in hot, arid climates or the tropical 

climate, due to high exposure to solar radiation. This was shown in the 4
th

 IPCC 

Assessment Report, which stated that Africa is warming faster than the global average 

and this warming is greatest over the interior of semi-arid margins of the Sahara and 

central southern Africa (IPCC, 2007). In the hot, arid regions, air temperature, surface 

temperature, relative humidity and the radiation regime are the variables most affected 

regarding changing the entire microclimate in an urban area. The changes in an urban 

hot arid climate can directly impact on bioclimatic influences that are more focused on 

human thermal comfort and building energy performance for cooling (Emmanuel, 

2005). This is important when considered in the context of the MOEE (2010) fact sheet 

where the number of air conditioners used in Egypt has quadrupled in four years 

(700,000 in 2006 to 3 million in 2010). In the context of Cairo, as described in Section 

2.5, the few available examples of works providing evidence of UHI occurrence 

concluded a steady increase in temperatures for Egypt, with more warming estimated 

for summer than for winter (ACED, 2004). Cairo showed a significant rise in surface 

temperature with a general trend of warmer urban areas versus cooler surrounding 

cultivated land (Ghoneim, AFED, 2009), with heat intensity close to 4K occurring 

during the night and early morning in the summer period over the city of Cairo (Fouli, 

1994). In 2011, another study stated that the two hot months of June and July 

transformed from comfortable months for all people in central Cairo during the old non-

urbanized period to uncomfortable heat months during the recent urbanized period 

(Robaa, 2011). The urban temperature threatens to continue increasing, and based on 

future scenarios there will be a rise of mean temperature by 2.8
o
C (ACED, 2004). It has 

been considered necessary in this study to assess the UHI intensity for old city centre of 
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Cairo,represented by Al-Muizz Street based on a comparison between the in site field 

measurements and the data obtained from the WMO located at Cairo international 

airport. According to the literature review, most studies have suggested that one of the 

major strategies for mitigating the UHI is through increasing the amount of shade, so 

the urban temperature would decrease (Sections 2.5 and 2.6). However, this study has 

taken a further step towards improving these strategies by providing theoretical 

evidence and assessing the potential of modifying the physical properties of shading 

devices to give the optimum cooling effect at street level. 

This UHI phenomenon is conducted at the Urban Canopy Layer (UCL) (Oke, 1994; 

Roth, 2004) as well as most of the climatic effects that humans feel (Emmanuel, 2005). 

Therefore, in Chapter Three, the climate scale, including the UCL, and the surface-air 

energy exchanges and mass exchanges between the urban canopy and the overlaying 

boundary layer (Mills, 1997) were explained. It was concluded that urban climate is 

influenced by several factors such as urban morphology and density, the properties of 

urban surfaces and vegetation cover. The appropriate use of these factors such as 

improvements to urban geometry at street levelcould reduce the UHI in summer and 

retain the heat during winter (Oke, 1998). In the second part of the chapter, outdoor 

thermal comfort was reviewed, including the physical and social approaches. A number 

of drawbacks were revealed: first, although the crucial role of the mean radiant 

temperature in analysing the UHI and outdoor thermal comfort was noted, there is still 

no easy and reliable method of estimation despite its importance for hot, arid regions. 

Second, international comfort standards such as ASHRAE standards and the ISO are 

almost exclusively based on theoretical analyses of human exchange in mid-latitude 

climatic in North America and Europe (Han, 2007). Moreover, the climatic chamber 

method used to underpin these indices failed to include many subjective, social and 

cultural real world situations (Han, 2007). In addition to the lack of validation for the 

available comfort indices, the reliance on the energy balance of the human body still 

faces the issue of a lack of interpretation. For instance, there is a lack of clarity about 

the meaning of a PMV value of -2 or +2, or a PET value of 34
o
C, in terms of heat stress, 

and the actual degree of comfort or discomfort cannot be drawn with confidence in the 

given scale, unless a comparison with social surveys is established (Touder, 2005; 

Cohen et al., 2013). Third, the physical microclimatic parameters only account for 50% 

of the variation between the objective and subjective comfort evaluation. The rest 
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cannot only be measured by the energy balance,as the psychological adaptation seems 

to be increasingly important (Nikolopoulou and Steemers 2003). There is a deep need to 

understand the psychological adaptation and the cultural context as it is argued to be 

complementary rather than contradictory, and consideration of this duality could 

increase the use of the city‘s open spaces. Therefore, the study suggests that all these 

drawbacks need to be inserted in a reliable and comprehensive framework, including 

UCL field measurements for the main climatic parameters, not only relying on the city‘s 

metrological data, but also examining the predominant climatic factors, and studying 

their effects on the pedestrian level from both the physical and the socialdimensions. 

Then, there is the need to develop the actual thermal sensation vote for the case study 

through examining the relationship between the subjective thermal sensation and the 

outdoor thermal environment.  

8.3 The operational framework based on the research questions 

Based on the theoretical background of the thesis, there were four main knowledge gaps 

which needed to be identified, as follows: 

 Although about one third of the Earth‘s land is covered by desert, arid regions 

have not often been the focus of urban climate research (Pearlmutter et al., 2007; 

Aljawabra and Nikolopoulou, 2010) and the existing ones are mainly based 

either on the pure heat balance approach without any contribution for the social 

dimension and vice versa 

 Although traditional and contemporary architects have attempted to design 

urban streets according to climate, quantitative information about the best 

possible street designto regulate climate comfort, based on scientific methods, is 

yet required (Hawkes and Foster, 2002; Thomas, 2003; Toudert, 2005) as there 

is still a lack of climate knowledge regarding the optimum design (Oke, 2006) 

 The influence of thermal comfort on outdoor activities is a complex issue 

comprising both climatic and behavioural aspects; however, current 

investigations lack a general framework for assessment, as most of the research 

has been focused on physical issues explained by the energy balance of the 

human body, ignoring the significant effect of the psychological and behavioural 

factors, which is also known as thermal adaptation (Brager and de Dear, 1998; 
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Nikolopoulou et al., 2001; Nikolopoulou and Steemers, 2003; Spagnolo and de 

Dear, 2003; Hwang and Lin, 2007;Chen and Ng, 2012) 

 Although people‘s subjective perceptions and responses to the urban 

environment are various and not yet well understood, simulation and scenario-

testing tools are always of particular importance in an assessment framework 

because they provide a platform for the integration of knowledge from various 

perspectives and comparisons of various design scenarios (Givoni et al., 2003; 

Chen and Ng, 2012). 

Thus, an interrelated methodological framework in compliance with the research 

questions (section 1.2) was designed in order to cover these gaps of knowledge, as 

follows:  

Q1. Which are the main design parameters influencing the urban microclimate 

and outdoor thermal comfort in the hot arid climate? 

 The case study selection 

 Physical measurements to quantify the urban form impact on microclimate and 

thermal comfort by calculating the mean radiant temperature and PET comfort 

index based on the heat balance approach 

Q2. What are the thermal comfort perception and preference of people in outdoor 

urban spaces? What are the impacts of thermal adaptation on human thermal 

sensation in outdoor spaces? 

 A field survey which contributes to the understanding of the relationships 

between microclimate and human behaviour in open public spaces in a hot, arid 

climate and to refine the comfort zone for the study context based on the actual 

thermal perception 

Q3. How can shading designs be modified to promote a significant optimum 

cooling effect? 

 Numerical modelling as a predicating tool allows various design alternatives to 

be compared and tested in terms of attractiveness and effectiveness. 

Q4. How can an urban street bounded by the existing urban boundaries be 

designed to improve the microclimate and thermal comfort at street level? 

 Based on the interrelated relation between the given findings and conclusion of 

the above questions (section 8.4). 
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influencing the urban microclimate and 

outdoor thermal comfort in the hot arid 

climate? 
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adaptation on human thermal sensation in 

outdoor spaces? 

7 
 Numerical 

modelling  

 

Q3. How can shading designs be modified to 

promote a significant optimum cooling effect? 

 

 

 

 

8 

Q4. How can an urban street bounded by the existing urban boundaries be 

designed to improve the microclimate and thermal comfort at street 

level? 

8.3.1 The case study 

More than a quarter of the urban areas are usually covered by streets, and designing 

streets is a key issue in a global approach for an environmental urban design. Therefore, 

in order to provide a pleasant microclimate in urban areas, designing urban streets in a 

way which brings about appropriate airflow and utilizes solar access is essential. This 

could affect global climate and energy consumption of buildings. In this respect, Al-

Muizz Li Din Allah Street, located in the hot arid climate of the Islamic quarter of Cairo 

as a basic element of an urban structure, was chosen as the case study in order to serve 

question number one and overgab the lack of microclimate sudies in hot arid regions in 
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addition to other many reasons, as mentioned in Chapter One: first, the essential street 

pattern of Al-Muizz Street has been preserved and reflects a climatic-conscious design 

developed over centuries of building experience.Its convoluted street system and 

compact urban structure limits the possibility of adopting modern large scale 

developments.Thus, a quantitative examination for the traditional and contemporary 

architecture solution based on scientific methods, in order to regulate the climate 

comfort, can be achieved. Second, the street piloted the first large-scale 

pedestrianisation scheme in 2010 in Egypt. This is relevant in supporting one of the 

thesis objectives that pedestrianized areas encourage longer durations of use and 

therefore allows for the examination of pedestrian thermal comfort in urban streets. 

Finally, Al-Muizz Street and its surroundings were exposed to an extensive restoration 

project by the Egyptian government, which transformed the street into an open-air 

museum. The first part of the street was fully restored and opened to the public in early 

2010. The second part of the street has yet to undergo restoration, leaving behind two 

different urban structures located in the same street. This allows for a comparative case 

study between the two contexts and their impact on use and thermal comfort in the 

varying urban environments. 

8.3.2 Field measurement 

Two in-situ meteorological measurements were carried out in Al Muizz Street. The first 

was hourly field measurement for one week in two different locations during the 

summer (26 June - 2 July 12), with the aim of assessing the UHI intensity in the urban 

street by comparing the two observed values with the one conducted from the readings 

obtained by the Cairo Airport WMO Station no.623660. The second in-situ 

measurement was every three hours carried out for two days in summer covering nine 

different locations along Al-Muizz Street. This was performed first to provide answers 

for question number 1 by exploring the main design parameters influencing the urban 

microclimate and outdoor thermal comfort in the hot arid climate, second to explore the 

link between urbanization and the urban heat island effect as one of the research 

objectives. The experimental results were quantitatively analysed to provide the 

following information. 

The presence of an UHI in these two urban locations during the period of measurement 

was noted, as the urban canopy layer recorded higher urban temperature compared with 
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the WMO station. However, the renovated part of Al-Muizz had the highest UHI 

intensity when compared with the non-renovated, with an average of 1.5
o
C. 

There was high thermal discomfort at the non-shaded locations, where the Tmrt and PET 

recorded very high values of 71.2
o
C and 53.7

o
C, respectively. On the other hand the 

sheltered streets had the lowest PET values as these design elements reduced the 

amount of direct sun during the daytime, thus improving thermal comfort and reducing 

sun exposure. However, during the night time due to very low SVF, this might lead to a 

decrease in long-wave radiation loss, as radiation may be trapped in the canyon air 

volume, causing a high level of discomfort. Increasing SVF by 10% would decrease 

UHI by 0.3% at night time (Kakon and Nobuo, 2009); this may explain why some 

locations such as 1, 8 and 3 with low SVF were warmer by 1
o
C and 2

o
C than point 9 

after 21 LST until 3 LST for both days of measurement. Thermal comfort is very 

difficult to reach passively in hot, arid climates at either tropical or subtropical latitude 

and summer conditions (Toudert, 2005) (e.g. in Cairo: Ta Max.34-35
o
C, RH = 32-84%). 

In effect, Arnfield (1990a) and Bourbia and Awbi (2004) suggested the substantial 

irradiation of the street surface for the subtropics (20°N to 40°N), even for deep 

geometries.PET maxima reached 53.7°C and PET minima during the day were in all 

cases a few degrees higher than air temperature. Nevertheless, an improvement is 

possible by means of appropriate design since both solar orientation and shading were 

found to affect strongly the outdoor thermal comfort at street level. 

Wide streets, e.g. H/W ≤ 0.5, are highly uncomfortable during the largest part of 

daytime. They are largely irradiated and have high air temperatures (almost equal to that 

above an unobstructed surface). However, N-S streets have a small advantage over E-W 

streets as the thermal conditions at their edges along the walls are less stressful. Hence, 

for shallow canyons, implementing shading strategies at street level (galleries, trees, 

etc.) is the only way to improve the comfort situationsubstantially (Toudert, 2005). 

8.3.2.1 The ENVI-met spatial microclimatic map and validation 

The ENVI-met simulation model has been used to describe the spatial pattern of mean 

radiant temperature. In view of global climate change and the mitigation of the urban 

heat island, the obtained microclimatic map provided some problematic areas (UHI) 

concerning pedestrian thermal comfort, even after the restoration project, and these need 

to be studied and avoided in the future. However, the non-renovated part of the alley 
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revealed reductions in the whole neighbourhood pedestrian comfort records. This was 

due to several reasons, as the higher aspect ratio (H/W) and different shading system 

caused less direct solar radiation to enter the alley and generally led to lower Tmrt values 

throughout the most of the day. In addition,it increases the albedo of the ground surface 

within the non-renovated part, as it is a mix of basalt road and bare ground, against the 

basalt and granite of the renovated one with a lower albedo value. This leads to strong 

solar irradiation in the renovated part compared to the non-renovated,which strongly 

influenced the Tmrt. ENVI-met estimation of the Tmrt and air temperature was a good 

approximation with the observed ones from the field measurements (Toudert and 

Mayer, 2006). However, the incapability of ENVI-met in modelling the Tmrt under 

shading conditions and its lack of heat storage should be taken into account. 

8.3.3 Field survey 

In order to serve the research second question including, the thermal comfort perception 

and preference of people in outdoor urban spaces and the impact of thermal adaptation 

on human thermal sensation in outdoor spaces. A field survey included structured 

interviews with a standard questionnaire and observations of the human activities, along 

with the previous microclimatic monitoring, carried out during winter and summer 

2012. The survey assessed the microclimate of the outdoor urban environment and 

investigated the relationship between different thermal comfort indices and people‘s 

actual thermal sensation for Al-Muizz Street. Thermal conditions of different outdoor 

environments vary considerably, mainly as a function of solar access. In summer, it was 

noticed that the non-renovated part performed better than the renovated, while in winter 

this was vice versa. It was concluded that the urban design in Cairo needs to include 

well shaded spaces for pedestrians to protect pedestrians in summer as well as open 

spaces to provide solar access in winter. Furthermore, this study found that the summer 

and winter comfort zones and acceptability limits for PETwere 23-32
o
C for the hot, arid 

climate of Cairo, while the preferred temperatures were 29
o
C PET in summer and 

24.5
o
C PET in winter. This is important information for urban designers aiming for a 

climate conscious urban design, as people in hot arid region could be more tolerant with 

the heat stress than people in temperate of hot humid climate. The study also shows the 

influence of culture and traditions on clothing. While most people choose the clothing 

according to the climate, some people in Al-Muizz are influenced by their cultural 
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traditions when they choose how to dress. Finally, the analysis suggested although 

microclimatic parameters strongly influence thermal sensation, they cannot fully 

account for the wide variation between objective and subjective comfort evaluation, 

whereas, psychological adaptation andbehavioural variables seem to becoming 

increasingly important. Accordingly, in terms of implications for planning, the physical 

environment, psychological adaptation and a deep understanding of the cultural context, 

the study suggests that, similar studies should be conducted in other climatic zones in 

order to enlarge the spectrum of knowledge and understanding of human thermal 

perception, as it is argued to be complementary rather than contradictory, and 

consideration of this duality could increase the use of the city‘s open spaces. 

8.3.4 Numerical modelling 

 Based on the field measurements and the survey analysis, thermal conditions of 

different outdoor environments vary considerably, mainly as a function of solar 

access.From a climatic point of view, shading is the key strategy for promoting comfort 

in the hot, arid climate because it leads to: 

 A reduction of the direct solar radiation absorbed by a standing person 

 A reduction of the heat released by the surroundings, in particular the ground 

 A decrease of the air temperature as a secondary effect. 

Many design possibilities are, hence, possible for controlling the microclimate. 

However, the main problem for shading devices such as tents or canopies mainly 

occurred during the night-time as they usually act as obstacles at this time as the heat 

release can be trapped underneath, contributing to the UHI (Nakamura and Oke, 1988). 

This is because they decrease the long-wave radiation loss on the surface, thus 

contributing to high temperatures at night (Lin et al. 2010).Nevertheless, if the 

topology, form and opening of the roof structure are well considered and examined in 

the design, the internal heat can find a place to escape at night through the openings, as 

ventilation and escape of heat through radiation that is stored in the thermal mass during 

the day to the night sky will improve.  

Therefore, in order to fullfill question number three as how shading designs can be 

modified to promote a significant optimum cooling effect, in addition to the third and 

fourth objectives stated in section (1.1), the computational fluid dynamic (CFD) Fluent 

code 13.0 was chosen to further evaluate the air flow rate and the heat transfer patterns 
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underneath seven different scenarios in addition to the existing case study for purpose of 

validation. Each testing scenario consists of one specific geometrical change in the roof 

shape and opening locations.  

8.3.4.1 Validation study 

The extracted best practice guidelines for CFD simulations, which Chapter Seven 

concluded with, were used as the start point for the validation study. This study 

investigated the air temperature underneath the existing case study and compared the 

obtained CFD results with in-situ measurements. It can be argued that the obtained CFD 

simulation results in this work compared favourably with the reviewed results. The 

obtained results contributed to the examination of the main hypothesis for the seven 

different cases. Thus, CFD simulation was considered a reliable assessment tool for 

yielding consistent results. In addition, the simulation variables used can be relied on for 

investigating the effect of the different shading designs including the shapes and 

opening locationsin providing a better microclimate at the pedestrian level. 

8.3.4.2 Comparative study 

Chapter Seven addressed the answers for the third question of the study where the form 

and opening of the roof structure as shading devices are the main factors affecting their 

performance. It was concluded that in order to assess the effect of roof shape, and 

opening design configurations on pedestrian thermal comfort within the street level, 

three dependant variables should be investigated.These were the air temperature 

distribution, wind velocity, and solar access, as these were the main variables affecting 

the performance of the shading roofs. In order to examine the first two variables, the air 

temperature distribution patterns and the wind flow displays underneath the investigated 

cases were plotted and the recorded wind velocities and air temperatures were compared 

against each other at the same location under the same conditions. It can be concluded 

that: 

 The shading roof typology and the opening locations were one of the paramount 

factors in providing a temperature reduction in urban scale. This modification in 

the shading roof properties led to a large reduction of air temperature with 

(2.3
o
C) for the best case compared to the base case 
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 The PET as a thermal comfort index was also reduced for the best case, which 

was 7,at about 32.9
o
C against 35

o
C for the base case, which is only 0.9

o
C away 

from the thermally acceptable range on the hottest day of the year 

 The shading roofs typology and opening significantly affectedthe wind profiles 

beneath as the results showed that all wind vertical profiles were followedalmost 

the same pattern until they reached the building top near the roof, when the 

velocity profiles started to vary based on the shading roofs shape and opening 

locations 

 There was a negative correlation between the air temperature distribution 

underneath and the ambient wind speed, since as wind velocity increased, the air 

temperature decreased for the same point on the vertical line. This effect of wind 

velocity has been reported by numerous studies (Ng et al., 2008; Memon et al., 

2010; Cheng et al., 2011; Yuan and Ng, 2012) 

 The air temperature distribution was positively correlated with the heightlevel; 

the higher the level was, the higher the air temperature. This migration of warm 

air to the top of the semi-enclosure offered potentially more comfortable 

conditions resulting from cooler air collecting at ground level in the inhabited 

zone 

 It terms of ventilation flow rate, the cases which were accompanied by side and 

roof openings performed better by about a 23%-30% increase in the volume 

flow rate underneath the shading roofs, compared to cases with either side or 

roof opening. In addition, the influence of the roof shape as a vaulted roof 

recorded 10% for the total volume flow rate against 7.4% for the flat roof 

 Over all, case 7 showed the best performance compared to all other cases (Table 

8.1), as the curved surface area of the vaulted roof in case 7, whichwas 

considerably larger than the base, received less solar heat per unit area, thus 

lowering surface temperatures and facilitating re-radiation after sunset 

(SKAT, 1988). 

In order to ensure the solar radiation levelsunderneath the shading roofs, the solar 

access as a third variable needed to be examined. DIVA for Rhino, daylight analysis 

software, was used with the seven cases and a grid based radiation map was produced 

for each case for annual, summer and winter solar access conditions for the three 
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surfaces (the two walls and the ground). The results were than evaluated against 

ANSI/ASHRAE/IESNA Standard 90.1-2007 for lighting and the following was 

concluded: 

 All cases performed well during the summer time; however, during the winter, 

the cases failed to achieve the minimumthe lighting power densities for the 

outdoor sales for open areas which should not be less than 5.4 W/m
2 

(ANSI/ASHRAE/IESNA Standard 90.1-2007) for the west wall, and for the 

ground surface for case 2, excluding case 1, which was without a roof 

 Case 6 had the best performance in term of daylight analysis. However, the 

values were very close to case 7. Both cases achieved the lighting power density 

requirements, aside from the west wall during the winter time, where both cases 

recorded very close values, at 4.58 and 4.35W/m
2
, respectively. According to 

these results, both cases can be  dealt with as similar in terms of daylight 

performance 

 The middle roof opening proved to be much better in terms of visual comfort, 

while the side openings proved to have the upper hand for thermal comfort. 
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Table ‎8-1 Comparison between the different cases including the base case 3 and best case 7 

  Volume 

flow rate 

Air 

velocity 

Air 

exchange 

rate 

% ACH 

through 

the 

openings 

Air 

temperat

ure 

PET 

 Cases (m3/s) m/sec m3/h % (
o
C) (

o
C) 

C
a

se
 1

 

 

34.34 1.3 266.43 41.81 34.8 35.3 

C
a

se
 2

 

 

26.77 1.38 207.7 

n/a 

no roof 

openings 

34.67 35.2 

C
a

se
 3

 

 

29.48 1.4 228.7 23.55 34.78 35.2 

C
a

se
 4

 

 

41.99 1.4 277.8 28.93 34.68 35.1 

C
a

se
 5

 

 

47.88 1.45 295 23.72 34.05 34.2 

C
a

se
 6

 

 

48.66 1.49 299 27.29 34.04 34.2 

C
a

se
 7

 

 

49.99 1.54 300 26.4 33.05 32.9 
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8.4 Guidelines for improving the microclimate within the UCL in the 

hot, arid climate 

Based on the research findings and conclusion in accordance with study question 

number four ''How can an urban street bounded by the existing urban boundaries be 

designed to improve the microclimate and thermal comfort at street level?'', the 

potential guidelines for improving the outdoor thermal comfort and microclaimte 

strategies are as follows: 

1. Overall, the results of the series of simulations emphasize the importance of 

shading in the hot, arid context in lowering PET. The investigations carried out 

demonstrate that the acceleration of shading urban areas brings thermal benefits to 

the urban climate in hot arid cities. These can even reverse (or at least moderate) 

the negative climatic effects affiliated to urbanism. Besides thermal comforts, 

shade provides a large number of social and human benefits, and is moreover 

sustainable.  

2. The choice of the right shading device should ideally be based on its physical 

characteristics such as the topology, the geometry and the openings. Making the 

right choice of type of tent or canopy would result in more effective and better 

radiation interception and lower urban temperature. The vaulted or doomed roof is 

usually recommended for the hot, arid region as its shape offers better quality of 

shade and cooling (Gadi, 2000). 

3. The study defines the summer and winter comfort zones and acceptability limits 

for PET in the hot, arid climate of Cairo. This is important information for urban 

designers aiming for a climate-conscious urban design. The study also shows the 

influence of culture and traditions on clothing. While most people choose the 

clothing according to the climate, some people in Cairo are influenced by their 

cultural traditions when they choose how to dress. 

4. An establishment for the practitional and educational background of the 

importance of numerical simulations to the field of urban planning is needed due 

to the complexity and the wide range of research fields and urban environment 

elements involved at local climate scale. This is in order to relate passive design 

and climate knowledge to real practice and improve its sustainability. 
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5. The design of outdoor public spaces without specific awareness of the 

microclimate is usually caused by insufficient knowledge about microclimate 

processes in many landscape architects and urban designers (Eliasson, 2000; 

Katzchner, 2006). In order to overcome this problem, more effort still has to be 

made. Easily applicable design guidelines should be generated in order to 

encourage a better inclusion of microclimate issues in urban space design. 

6. The research recommends using simulation tools such as ENVI-met as a 

preliminary tool for examining any large scale development in its early stages. 

Even though it still faces some shortages, ENVI-met has proven to be a reliable 

tool to simulate different urban scenarios, and thus it is advisable for use in any 

planning process, or architectural intervention spatial distribution maps for the 

microclimate conditions, similar to the one presented in the thesis. 

7. The study highlighted the importance of a climate-conscious urban design and 

design flexibility. It is important to consider microclimate and thermal comfort in 

the urban design process and requirements, for a climate conscious urban design 

should preferably be included in the planning regulations for cities such as Cairo. 

In addition, existing urban environments in Cairo could be modified in order to 

provide a better outdoor thermal environment. Such studies could enhance the 

thermal comfort and suggest improvements to the existing urban planning 

regulations. 

Although the study was mostly completed for a hot arid location with a hot, arid climate 

for summer conditions, it is believed that the design recommendations discussed here 

can be more efficient for transitional seasons and also applicable to more extreme 

climates with typical hot summers such as Gulf countries in the Middle East. The 

Mediterranean basin, for instance, experiences to a large extent similar irradiation 

potentials in the hot season (see Arnfield, 1990a). Obviously, some adjustments related 

to sun course geometry (zenith and azimuth angles) accounting for latitude differences 

have to be considered (Arnfield, 1990a; Mills, 1997). 

8.5 Outline for possible future research 

The findings and recommendations stated are limited to the scope of this study. Many 

related issues and detailed findings need further investigation, in order to improve on 
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outdoor thermal comfort and to minimize the UHI effect. Several suggestions for future 

research are recommended to refine the detailed procedures carried out for this thesis: 

1. As this study has provided substantial possibilities based on the weaknesses and 

strengths of CFD, DesignBuilder and ENVI-met modelling of Cairo‘s urban 

climate perspectives, the author suggests further research may apply these models 

in the design and assessment of outdoor public spaces within the old and new 

parts of the city of Cairo, and then through all of Egypt. This tool will be further 

upgraded from time to time as new assessments will be obtained from the 

advanced versions of these models 

2. Future comparisons of different urban parts within the same cities should be 

explored. This will allow more understanding of the actual ability for the various 

types of shade in providing cooling effects. It will include further research on 

tents‘ physical aspects such as the materials, height and form of the tents. Also, 

different locations, wind directions, and solar zenith angles for the different types 

of tents should be examined 

3. The study has exposed the actual outdoor thermal comfort conditions in the old 

city of Cairo by identifying comfort zones that are suitable for local users in this 

city area. However, due to the time and instrumentation limitations of fieldwork, 

the site measurement for outdoor thermal comfort was carried out with limited 

instrumentation, time and numbers of environmental locations. This opens up new 

research possibilities to conduct further research on site assessment using better 

instruments and focusing on a larger area throughout the whole city of Cairo in 

order to develop the comfort zone and acceptability limits for each climatic zone 

within the whole country. Such limits are essential in the development of urban 

spaces in the city in harmony with the microclimate. Additionally, it is important 

to develop urban planning regulations in every city according to the climatic 

requirements. Thus, further studies to analyse the existing regulations from a 

climatic point of view are needed 

4. In this study, CFD Fluent code 13.0 and DesignBuilder were linked via the 

feeding outputs of one program to the other. It is recommended that this process is 

automated via a suitable software approach. Alternatively, an integrated 



Chapter Eight: Conclusions and Recommendations 

 

298 

 

simulation tool could be developed, capable of considering the continuous 

interaction of indoor and outdoor environments through walls and windows 

5. Gaps in research also exist concerning the assessment of the effect of outdoor 

shading roof designs in improving thermal comfort indoors. To extend the thesis 

case study, further studies are required on in-situ measurements as well as a 

comparative analysis of the mean radiant temperature and the air flow within the 

different shops underneath 

6. This study showed the importance of overhead shading in warm climates. Future 

studies should include both the effects of shading and vegetation together to 

develop more detailed knowledge on the field of improving the microclimate and 

outdoor thermal comfort 

7. The evaluation of the economical impact of the improvement of outdoor thermal 

comfort remains a highly interesting aspect. This is a very specific task, which 

demands profound knowledge of the consumption and efficiency of the cooling 

devices, the energy market, and costs in Egypt 

8. Finally, this thesis was aimed at providing help and guidance to those involved in 

the process of decision-making at the earliest stages of the design procedure. This 

in itself could be made into a tool that enables its users to proceed faster in those 

early stages of the design instead of manually going through all the stages given in 

this thesis. Such a tool will be improved even further if the proposed 

improvements to an outdoor thermal index and a reliable integrated simulation 

tool have been delivered. The development of such a comprehensive tool will be 

of great benefit to all stakeholders in the design process of a building or an urban 

development and in the long term will be beneficial to the users and occupiers of 

the buildings by offering more flexibility for them in using both indoor and 

outdoor spaces, and also in reducing their dependence on fossil fuels for the 

heating and cooling of their homes. The work presented in this thesis provides the 

basis for such future developments. 
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8.6 Limitations of the study 

It is important for the study to highlight the limitations of the study for further research 

suggestions and to ensure validation in future work. There are some issues and 

approaches in this study that need to be highlighted and improved for further study: 

1. The instruments used in measuring the globe temperature need to be reconsidered, 

as the use of a black globe thermometer needs to be replaced with a grey globe 

thermometer which is more suitable for outdoor thermal comfort studies. The use 

ofa black globe thermometer without the correction of people‘s solar thermal 

reflectivity assumes that all in the sun are wearing black clothing, thus 

overestimating Tmrt in these conditions (Nikolopoulou and Lykoudis 2006). 

Importantly, the study suggested that further research needs to consider a grey 

globe thermometer that can evaluate globe temperature with consideration for 

people‘s solar thermal reflectivity 

2. Methodologically, ENVI-met 3.1 was revealed to be a good tool for the prognosis 

of microclimatic modifications due to urban environments and for assessing the 

thermal comfort of pedestrians. Indeed, the model has a well-founded physical 

basis and offers many advantages in comparison to many other available urban 

microclimate models. However, the incapability of ENVI-met in modelling the 

Tmrt under shaded conditions and its lack of heat storage and thermal mass of the 

buildings should be taken into account in further studies. This information helps 

the understanding of the limits of the present investigation, and gives an overview 

ofthe eventual refinements of the model 

3. The findings of this study are for the conditions of an average wind speed from 

one direction and one solar zenith angle. Wind direction variations and different 

solar zenith angles could thus have an effect on the results of this study. Local 

patterns of seasonal winds and solar angles have always been an important factor 

in determining the final design of an urban area. 

8.7 Contribution of the study 

The outcome of this study not only offers a solution to some issues and problems 

concerning pedestrians or local people who are using the public open spaces, but at the 

same time enriches the knowledge in this field. The study has identified efforts in 
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improving the outdoor thermal comfort strategies in hot, arid climates by assessing the 

potential optimum cooling effect of different shading designs. The proposed guidelines 

would be useful in improving the development of the streets: 

1. The study provided a new insight into the perception of Cairo urban designers, 

especially architects, planners, landscape architects and the government, regarding 

the importance of shade and its physical properties when designing urban area. 

This knowledge is important for opening up a new perspective and capabilities 

regarding the technical aspectsof providing a better climate effect underneath. By 

knowing the facts and figures, the designer can better allocate effort in designing 

urban space to maximize the cooling potential from shade  

2. The study has provided a basic database on the level of outdoor thermal comfort 

for Cairo users during peak hours, which can be used as a reference for Cairo, in 

order to evaluate the impact of outdoor space design throughout the city area 

3. Finally, the combined method framework in this study, starting with field 

measurements and the ENVI-met prognosis model, has enhanced the current 

microclimate assessment at the street level.It then used the field survey to 

correlate between the measured index and actual thermal sensation or perception 

for the local people before examining different scenarios using the CFD for the 

optimum solution for the case study. To the author‘s knowledge, this is the first 

time such a process and research framework have been combined for both 

physical and social dimensions to offer a better understanding and advanced 

solutions for enhancing the outdoor spaces thermal comfort quality in Cairo. 

As a final point, the author strongly believes that the work carried out in this study has 

contributed to improving the quality of urban life in present and future developments. It 

is hoped that these contributions will broaden the scope of researchers in both the 

current and related fields. 
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Appendix 'A' 

Al-Muizz Street Urban Development 

 
“He who has not seen (Islamic) Cairo does not know the 

grandeur of Islam… the thronging place of nations and 

the anthill of the human race” written by Ibn Khaldun, 

famous Arab scholar at the end of the thirteen century 

(Ibn Khaldun, 1951 :256-7). 
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 Cairo urban development 

Al-Qahira (the conquerer or the victorious), a name which passed into English as 

Cairo, was founded in AD969 on land adjacent to Fustat, another Islamic city 

established at the dawn of Islam in AD641. These cities were themselves preceded by 

Roman and Pharaonic settlements (Babylon and Memphis) in the same approximate 

location at the strategic southern apex of the Nile Delta (UN-Habitat, 2003). Islamic 

rule continued in the country for more than nine centuries till the French invasion in 

1879. During this period, a climate conscious design was developed in order to deal 

with the extreme hot desert climate of Cairo. Different passive techniques were 

established such as the streets and buildings orientations, (near to the orientation of 

north to south), the courtyard concepts, and a compact urban structure. After the mid-

18th century, it became common practice to superimpose western town planning 

principles on the city‘s local conditions, with the introduction of new technologies 

where the narrow and irregular street systems in the old city could not be maintained. 

This includes the modern urban expansion under Ismail Pasha and his successors, and 

was concentrated to the west of the historical city up to the Nile, north to Abbassia, 

Shubra, and Heliopolis, and south to Maadi and Helwan. Only in the post-war period 

did Cairo‘s expansion extend across the Nile into Giza and north into Shubra el 

Kheima Governorate (Figure 0.1A). 

Cairo‘s expansion has predominantly been on rich agricultural land. Only the eastern 

districts, most notably NasrCity, Nozha (and earlier Abassia and Heliopolis), have 

been created on what was desert land. This led the built environment to witness many 

changes that affect local climate. In fact, all Cairo‘s development trends were mainly 

motivated by political and economic shifts. This was demonstrated based on field 

surveys and GIS technical work for different maps of Cairo (Stewart, 1999; Stewart et 

al., 2004; Yin et al., 2005), which divided Cairo into four time periods of urban 

planning development, including the following: 

1. Islamic (Settling; 969AD to the French occupation; 1798AD), urban key 

features are Al-Fustat, The Fatimid Cairo, the citadel 

2. Imperialist (French occupation; 1798AD to the July revolution; 1952AD), 

urban key features are the Central Cairo, Al-Zamalek, and Garden City 
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3. Arabic socialist (July Revolution; 1952AD –Transitory; 1987AD), urban 

key feature is NasrCity 

4. Capitalism (Transitory; 1987AD to now); urban key features are the 

satellite developments of the new town rings. 

Al-Muizz Street belongs to the Islamic urban planning period dated back to 969AD. 

However, it has been affected by all the subsequent urban development periods where 

the historic Islamic quarters were affected by a consequent rise in population and a 

higher demand for services. For instance, the water supply design in the historic 

quarters is insufficient for such an increase in demand. Additionally, the informal 

electricity ‗hook-up‘ raised by the informal settlers causes significant electricity 

supply problems (Yousry et al., 1997). Thus, it was essential to study the impact of 

each transitional period on the urban pattern of Al-Muizz.  

 

Figure ‎0-1AThe expansion of the main built up areas of greater Cairo according to three 

periods, pre-1860, 1860-1950, and 1950 to the present (source: www.ucl.ac.uk/dpu-

projects/Global Report/home.htm) 
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 The development of Al-Muizz Street 

The Islamic settlement in the area of Cairo dates back to 641AD and the foundation of 

Al-Fustat, which became Egypt‘s first capital under Islamic rule (Richard, 2006). The 

city‘s urban design started by building the first mosque in Africa at the city centre to 

act as a focal point to unite the inhabitants of Egypt‘s new capital in prayers. Separate 

living quarters were assigned for the various clans in the army, and each quarter was 

divided from the next by a vast expanse of land to prevent internal tribal war (Rezk, 

2011). This method of urban planning allowed the city of Fustat to grow rapidly, 

becoming an important urban centre in Egypt and later in the Islamic Empire 

(Antoniou, 2009). The birth of Fustat marked the beginning of Egypt‘s transformation, 

and a new Islamic society was formed that would change the country‘s architecture, 

laws and beliefs (Rezk, 2011). Al-Fustat remained relatively small for the first 100 

years of its existence; this was primarily due to the fact that the Islamic empire was 

ruled by the Umayyad dynasty from Damascus, while Al-Fustat was too far and too 

small to attract attention. This situation changed with the rule of the Abbasid dynasty 

in 749AD and the removal of the seat of the Caliphate from Syria to Iraq (Antoniou, 

2009). In Egypt, this meant the displacement of the governmental functions of the 

region to a newly built suburb just north of Fustat, named Al-Askar, to serve as a new 

urban centre (Ashmawy, 2004). Al-Askar expanded but failed to attract enough 

residents to compete with Fustat due to its costly real estate and limited access 

(Antoniou, 2009; Rezk, 2011). However, during the century or more that followed, the 

two communities merged so that the combined settlements of Al-Fustat and Al-Askar 

stretched along the axis of the Nile (Figure 0.2A). 

The growing decadence of the Abbasids in the late ninth century led to the increasing 

independence of parts of the Abbasid Empire, and Ahmed Ibn Tulun quickly seized 

the opportunity and proclaimed himself as the independent ruler of Egypt, founding a 

new dynasty called the Tulunid dynasty (Parker et al., 2008). In 870AD, Ibn Tutun 

started a new town, north west of Al-Askar, called Al-Qatai, which was modelled after 

Samarra in Iraq. It had magnificent open spaces built for sport and tournaments, and 

large mosques were constructed amongst them, such as the famous Ibn Tulun mosque, 

which still stands (Haag, 2006). Al-Qatai had attractive markets for luxury consumer 

goods, and the bulk of economic activity remained in Al-Fustat. However, in 905AD, 

the Abbasid troops succeeded in regaining the country for the empire and destroyed 
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most of the monuments, which had been constructed within the city of Al-Qatai, 

leaving Al-Fustat once again the premier city in Egypt (Antoniou, 2009; Rezk, 2011). 

The Abbasid rule of Egypt would not last, however, and in 969AD General Gawhar 

Al-Siqilli conquered Egypt for the Fatimid Caliphate, and thereby established their 

imperial city, Al-Qahira or Cairo (Rezk, 2011). At the time of the Fatimid invasion, 

the inhabited areas of the populous cities of Al-Fustat, Al-Askar, and Al-Qataie were 

joined together into a triple city called collectively ‗Misr.‘ Its length, according to 

Maqaddassi (AD985), was about three kilometres. The site chosen for Al-Qahira or 

Cairo lay immediately to the north of Al-Fustat, as shown in Figure 0.2A. The city is 

rectangular in shape, half a square mile and surrounded with fortified walls in all four 

directions (Figure 0.3A.). The main spine is named after the Caliphate, Al-Muizz 

Street, which is probably the oldest and most stable street of Fatimid Cairo (Al-

Sayyad, 1981; Rezk, 2011), and ran from north to south, connecting the gate of Bab 

Al-Futuh with the gate of Bab Zuwaila. These main gates were built to guard the 

entrance of the city, as it was built in the first place to be the residence of the Caliph 

and his court, his slaves and officials, and his troops; common people were not 

allowed in Cairo without a special permit issued by the royal house. As time went on, 

the population of the triple city ‗Misr‘ had grown and gradually moved to the 

immediate vicinity of the imperial stronghold. By the extinction of the Fatimid 

dynasty, the population overflowed into the enclosure of Cairo, causing all the cities to 

merge into one big city within an area no larger than 5km
2
, known today as Islamic 

Cairo (Rezk, 2011). Al-Muizz Street is still the predominant route for pedestrians, 

dividing the Islamic quarter into two parts. Al-Muizz is bounded in the east by Salah 

Salim Road and by Port Said Road in the west. The northern boundaries of Islamic 

Cairo start with the 11
th

 Century walls of Badr Al-Jamali and the southern part ends 

with Saliba Road (Figure 0.4A).  
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Figure ‎0-2A Cairo development, starting from Al-Fustat to the north of the Roman fort 

Babylon in 641AD (on the right) (source: http://www.studiobasel.com/publications/books/nile-

valley.html) 

 

 

 

Figure ‎0-3A The plan of Fatimid Cairo and its location to previous settlements (source: 

http://www.studio-basel.com/publications/books/nile-valley.html) 
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Figure ‎0-4A The Al-Muizz spine and Gate Al-Futuh in the north, and Zuweila in the south (Mortada, 

2003) 

Al-Muizz Street urban pattern type 

As stated by Vorgelegt and Jaber (2013), it has been acknowledged that the most 

complex and far-reaching changes in urban design between the Greek and Roman 

periods and the emerging Muslim cities in late antiquity and the early Islamic period 

were the altered street layout, as shown in Figure 0.5A. This change was from large 

central avenues that crossed at right angles in Hellenistic times in cities of Syria, to an 
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irregular, narrow, winding pattern, such as that seen in Al-Muizz Street in Cairo. The 

understanding of different pattern effects is essential, especially since the beneficial 

climatic effects of numerous traditional solutions have been questioned. These 

solutions may reflect culture specifications rather than climatic Daptation (Giovani, 

1997). To comply with the study objective, Al-Muizz Street‘s urban pattern formation 

and its physical development requires analysis. 

 

Figure ‎0-5A The transformation of a colonnaded street in the early Islamic era, as merchants started 

erecting their booths along the main pedestrian flows, first as temporary, then as permanent structures 

(source: Bianca 2000, p.127, original drawing by Sauvaget) 

Al-Muizz urban pattern under the Fatimids  (969-1171AD) 

Al-Muizz Street was founded in 969AD by the Fatimids. At that time, it is possible to 

assume that Al-Muizz Street was at its widest, at approximately 18-23m, and was 

served by secondary streets approximately 7-9m wide (Al-Tabari, 1963; Al-Sayyad, 

1991).The street tended to be broad to fulfil public functions, and recent 

archaeological evidence suggests that even the narrow streets of Fustat were widened 

by the Fatimids (Scanlon, 1981). In his book The Streets of Islamic Cairo, Al-Sayyad 

(1981) examined the development of Al-Muizz Street. The street was composed of 

three segments by that time, with a major segment in the middle, as a royal space, 

between the two palaces; its main function was for ceremonies and public occasions. 

The other two segments acted as an introduction to the major ceremonial route in the 

core. All three segments were composed of palaces, mosques and shops and performed 

different functions ranging from residential to commercial. According to Al-Maqrizi, 

the size of the area between two palaces was such that ten thousand troops, both 

cavalry and soldiers, could be marshalled on it (Lane-Poole, 1902). Despite the space 

between the two palaces, there were no major nodes for urban activities along the 
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street except those near the gates. The space in front of Bab Zuwayla has been 

reported to be a node of commercial activity, while the space inside Bab Al-Futuh was 

used as a meeting place (Figure 0.6A). 

In earlier Muslim settlements such as Al-Fustat and Al-Qata‘i, they started with a 

mosque in the centre, around which the city then started to grow (Amr Ibn El ass 

Mosque and Ibn Tulun Mosque). However, this was not the case in Fatimid Cairo, 

where the palaces were designed to occupy the core, while the main mosque Al-Azhar 

was in a peripheral location. This in turn affected the internal city structure and, 

accordingly, Al-Muizz Street acted as a network to connect the palaces with the city 

gates and the main mosques. 

Building density was low in those quarters for the administrators, and a great deal of 

land within the ownership plots was allocated to private stables and orchards. There is 

no adequate archaeological evidence to determine the percentage of built up land to 

open space or how the residential buildings were arranged. Both residential and 

secular buildings were arranged perpendicular to the street pattern. However, the most 

prominent building arrangement was the religious buildings, as the main influencer for 

the orientation of these buildings is the Qibla direction, as shown on Figure 0.6A. 

Also, it should be noted that these structures were built before the street pattern had 

been fully planned, so there were no restrictions on their form, and as a result the 

abundance of space in and outside the Fatimid city enclosure did not interfere with the 

awkward angles of these structures. The only mosque that did not follow this rule was 

the mosque of Al-Aqmar, which is considered by some scholars to be an important 

development in Islamic urban architecture in Cairo, as it is the earliest building whose 

facade was adjusted to the line of the street (Al-Sayyed, 1981). None of these mosques 

appear to have influenced neighbouring plots and buildings during this time. 

There was a variety of urban proportions within Fatimid Cairo; the mosques walls 

were not too high and did not have what is called monumental dimensions. The 

dimensions of the walls indicate a tendency towards a human scale, yet the overall 

scale judgement is hard to achieve due to the lack of information about the spaces in 

front of them. 

. 
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Figure ‎0-6A The Al-Muizz spine and the area between the western and eastern palaces (on the left). The 

Qibla direction was a main influencer for the street orientation (on the right) (source: http://www.studio-

basel.com/publications/books/nile-valley.html) 

Al-Muizz urban pattern under the Ayyubids (1171-1252AD) 

Under the Ayyubids, the walls enclosing Cairo proper were once again 

extended. The extensions were limited to the eastern and western walls, in which six 

new gates were constructed. The Al-Qantara Gate was extended, along with Al-Sa‘ada 

Gate, and a new gate, Al-Khokha, was constructed. Al-Muizz Street lay between the 

two walls and became known by its literal translation of Bein Al-Surein (between the 

two walls) (Figure 0.7A). On the eastern wall, a new gate called Al-Mahruq Gate was 

added, and Al-Barqiya Gate was extended, with the wall then stretching northwards; a 

new gate was believed to have been constructed called Al-Gedid Gate, but this 

remains a tentative point. 
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Figure ‎0-7A The expansion of Cairo‘s town plan under the Ayyubids (source: HCSP technical report) 

Al-Muizz Street underwent its most severe change during the time of the 

Ayyubids due to the arrival of a large number of residents. This urgent need to provide 

shelters meant that buildings were constructed without sufficient regulation by the 

state. As a result, the street pattern changed dramatically from the original wide streets 

of the Fatimid city, as shown in Figure 0.3A, into a very dense urban pattern, as shown 

in Figure 0.8A. It is easy to expect that because Al-Muizz Street was one of the widest 

streets during the Fatimid‘s era, it had its share of that development. People started to 

build in the spaces between the former detached palaces and their gardens. Most of the 
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villas were converted into commercial structures. Some parts of the Fatimid Palaces 

have been used as hospitals, while the spaces between them were occupied with some 

schools. The three Fatimid segments were retained but with different mixed functions 

(commercial, educational and cultural), while the continuity of the street from 

Zuwayla Gate to Al-Futuh Gate was achieved. A number of major nodes for urban 

activities such as market places and meeting places along Al-Muizz started to appear, 

and yet the area between the two palaces is still the main node in Cairo. Al-Muizz 

remained the major thoroughfare in the city attracting all the major markets (Figure 

0.9A). 

Unlike in the Fatimid era, the religious structures built by the Ayyubids had their 

exterior facades parallel to the centre line of the street, even though the interior was 

bent to orient the prayer hall towards the Qibla. They were recessed to create spaces in 

front of them, signifying an important structure whilst also shaping the streetscape 

(Al-Sayyad, 1981). The exterior walls were usually short and of human proportion 

(Figure 0.9A). On the other hand, commercial and residential buildings lay 

perpendicular to the main streets concentrated along the thoroughfares, between the 

public buildings. Public and commercial buildings tended to occupy the entire plot of 

land with shops aligning the street frontage and the inner courtyard. Residential 

buildings up to five and six storeys were very common, creating a feeling of 

narrowness along the street to increase their inward looking nature onto a main 

courtyard for ventilation and light. 
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Figure ‎0-8A The narrow street pattern under the Ayyubid dynasty (source: http://www.studio-

basel.com/publications/books/nile-valley.html) 

 

 

Figure ‎0-9A Mixed land use pattern of Al-Muizz spine under the Ayyubids (on the left), and the schools 

and religious buildings had exterior walls parallel to the street centre line (on the right) (source: 

http://www.studio-basel.com/publications/books/nile-valley.html) 

http://www.studio-basel.com/publications/books/nile-valley.html
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Al-Muizz urban pattern under the Mamluk (1252-1517AD) 

The Mamluk generals, who were originally slaves serving as soldiers in the 

Ayyubid army, used their power to establish a dynasty that ruled Egypt and Syria from 

1250 to 1517AD. Historians have traditionally broken the era of Mamluk rule into two 

parts, starting with the Bahri period covering 1252-1382AD, and then the Burji from 

1382-1517AD; this calls attention to the change in the ethnic origin of the majority of 

Mamluks. 

Al-Muizz urban pattern during the Bahri Mamluk 

The Mamluk period saw a continuation of the original plot pattern during the 

Ayyubids by constructing a new building in the area between two palaces, which was 

repeated during the time of the Bahri Mamluk. Three schools were constructed 

between the earlier Ayyubid ones in addition to the famous Qalawun complex, which 

was built by the Bahri Mamluk. The sequential structure of the spine was almost 

maintained except for new functions, which were added to the node between the two 

palaces, creating a separate internal district with a number of new landmarks. The 

Bahri Mamluks thus created the character that Al-Muizz Street was to maintain for the 

following centuries (Al-Sayyed, 1981). The street was irregular, 6-7m wide, and 

seemed to have three major spaces, one in the middle segment and one at each end. 

Major buildings were located in the middle segment and surrounded these major 

spaces (Figure 0.10A). 

The way the Bahri Mamluk dealt with the shaping and treatment of the exterior 

elements had a great impact on the evolution of irregular spaces of different widths 

along the street. Twelve out of 14 major schools and mosques built at that time had 

staggered exterior facades with at least one side parallel to the street centre line 

(Figure 0.10A). These facades had coloured brick courses and large openings, and a 

few steps were used for the first time in front of the mosque entrances, which were 

mostly either recessed or lined up with the facades. 

Al-Muizz urban pattern during the Burji Mamluk 

By the time of the Burji Mamluk, Al-Muizz Street as a main spine of the city 

was already filled with numerous buildings from the Fatimid, Ayyubid and Bahri 

Mamluk eras. Therefore, the Burji Mamluk had to find another way to build around 

http://www.britannica.com/EBchecked/topic/180586/history-of-Egypt
http://www.britannica.com/EBchecked/topic/578913/history-of-Syria
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these plentiful monuments, which had a major influence on Al-Muizz Street‘s pattern. 

The Burji Mamluks attempted to shift the current major node of the street from the 

area between two palaces, by their construction of the Al-Ghuri complex. Their 

addition of other monuments along the path has enriched its structure. Most of the 

spaces created along the path were either in front of Burji Mamluk structures or in 

front of older structures renewed by the Mamluks. It is therefore suggested that the 

hierarchy of spaces along the street was probably generated during the rule of the Burji 

Mamluks. They conducted a policy of decentralization in which buildings were 

constructed in huge complexes in well-chosen vacant spaces along Al-Muizz in an 

attempt to change the existing physical node of the area between the two palaces 

(Figure 0.11A). The same design of spaces created by the Bahri Mamluk continued 

during the Burji yet it was smaller in size and embraced by buildings. The narrow 

streets were sectioned off with gates for privacy and security against strangers and 

thieves (Wiet, 1964). 

The lack of available space meant that religious and school buildings had to be 

smaller than the earlier ones, the central open courtyard was eliminated (Wiet, 1964), 

and the exterior facades were neither parallel to the street centre line nor perpendicular 

to the Qibla direction, as shown on the right hand side of Figure 0.11A. Commercial 

buildings such as khans
18

and wikalas
19

were arranged perpendicular to the street, 

around a central courtyard, and occupying the entire plot. The common appearance of 

the rab’
20

in the Mamluk period was used as a revenue generating building, occupied 

by shops on the ground floor, with two to three bedroom apartments on the top 

storeys. 

                                                 

18
Hostel/ commercial buildings with special places assigned for the main groups of craftsmen or traders. 

19 A building specialised in storage of local and international commodities, accommodating itinerant 

traders in the upper storeys. 

20 A common building type in the middle ages with the upper storeys consisting of permanent lodgings 

and a separate entrance and little courts, while the ground floor was let out as shops. 
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Figure ‎0-10A Mixed land use pattern of Al-Muizz spine under the Bahri Mamaluk (on the left), and the 

exterior walls treatment to the street centre line (on the right) (source: http://www.studio-

basel.com/publications/books/nile-valley.html) 
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Figure ‎0-11A Mixed land use pattern of Al-Muizz spine under the Burji Mamaluk (on the left), and the 

exterior walls treatment to the street centre line (on the right) (source: http://www.studio-

basel.com/publications/books/nile-valley.html) 

In conclusion, Cairo had become a ‗prototypical‘ Islamic city as shown in Figure 

0.12A, with an established market network, an irregular street pattern, and a citadel. 

Raymond (1993) attests to the size of Cairo‘s markets during the Mamluks, as he 

maintains that between the northern gate of Bab al-Futuh and the southern gate of Bab 

al-Zuweila was a surface area of 38 hectares within which was a total of 48 markets 

and 44 commercial houses. The streetscape was characterised by small shops that 

constituted the markets. Wiet (1964: 71) describes the shops in the northern part of Al-

Muizz Street. Here, it is lined by mysterious portals, there by shops, some of which are 

of such tiny dimensions that they look like large cases with one side removed so as to 

expose the interior. In front of the shop is a stone bench or little platform as long as the 

shop entrance and wide enough for a man to sit on.  

 

Figure ‎0-12A Transformation of Fatimid Cairo under the Mamluk dynasty (source: http://www.studio-

basel.com/publications/books/nile-valley.html) 

http://www.studio-basel.com/publications/books/nile-valley.html
http://www.studio-basel.com/publications/books/nile-valley.html
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Al-Muizz urban pattern under the Ottoman Cairo (1517-1805), including 

the French expedition (1798AD) 

By the time of the French Expedition in 1798 AD, Cairo consisted of three 

separate but functionally related communities: the walled city with its extensions 

(where Al-Muizz Street is located), plus the two port suburbs of Bulaq and Misr Al-

Qadima (the name given to the former Fustat, as shown in Figure 0.12A). During the 

Ottoman period between 1517 and 1805, the city had expanded extensively, with the 

development of two new neighbourhoods along the western border of the walled city, 

known as Al-Azbakiya and Birkat Al-Fil, as shown in Figure 0.13A. With these new 

developments came the movement of the elite class out of Al-Muizz and the walled 

city leaving a social vacuum, as described by Raymond (1993), who stated that 

between 1496-1517 only 15% of the elite residences were left in central Cairo. The 

older aristocratic zone within the walled city left mansions vacant and buildings 

quickly deteriorated to be replaced with commercial houses and the residence of the 

new bourgeoisie of powerful merchants. 
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Figure ‎0-13A Under the Ottomans, Cairo became a provincial capital. The old part of the city 

became less important as the centre moved toward Azbakiya and Birkat Al-Fil (source: 

http://www.studio-basel.com/publications/books/nile-valley.html) 

By the end of the Ottoman period, the Al-Muizz street pattern appears to have 

stabilised with minor buildings being added to, either along the empty segments of the 

path or in areas of previous buildings (Al-Sayyad, 1981). In addition, there was the 

creation of a new internal district located between Al-Silehdar Mosque and Al-Aqmar 

Mosque named Al-Nahassein in Al-Muizz which specialized in the production of 

metal crafts, especially copper. Concerning the space structure along Al-Muizz 

according to the first reliable map generated by the French (Figure 0.14A), it can be 

noticed that, firstly, the number of public spaces increased but were smaller in size as 

a result of the informal construction which took place inside these spaces. Secondly, 

the system of streets was regular, open in the centre, more tortuous, and often closed in 

residential regions (Nasser, 2000). Thirdly, ‗atfa‘
21

 or a blind alley became much more 

common in Al-Muizz street due to security issues. In general, the Al-Muizz Street 

                                                 

21
A passage that formed part of a circulation unit that provided access to a group of dwellings. 

http://www.studio-basel.com/publications/books/nile-valley.html
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pattern can still reveal its Fatimid origins spatially as part of the organisation of the 

city. However, streets were much narrower and many streets were shorter, with a 

greater number of streets being sealed off by encroaching buildings.  

Most of the large spaces created in the preceding dynasties have either disappeared or 

been replaced by informal structures; as a result, it was impossible to find any vacant 

land within the walled city, so it was normal for Ottomans to rebuild over the ruined 

monuments. This may explain why most of the Turkish mosques built inside the 

walled city had very small spaces in front of them, with seven out of ten having 

exterior facades that had no relation to the centre line of the street or to the direction of 

Qibla; however, the facades were very elegant and with large openings (Al-Sayyed, 

1981), as shown in Figure 0.15A. This illustrates the relation between the mosque‘s 

main exterior wall and the centre line of Al-Muizz Street. 

Residential buildings became much smaller due to the high value of land and the 

displacement of residential functions by commercial ones. The high density of the 

smaller residences meant that there was no garden or stable, but instead a large central 

courtyard. Houses occupied the entire plot, and were built wall to wall, facing inwards 

for privacy, with the need for open space being fulfilled by the central courtyard. On 

the other hand, commercial buildings, public paths, shop compounds, and apartment 

blocks remained in the same form, with new shop compounds (wikala) constructed 

aligning the major streets, and traditional designs of central courtyards. 
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Figure ‎0-14 The Fatimid Cairo urban fabric in 1800 (based on the Description de‘l Egypte map, 1980) 

 

 

Figure ‎0-15A Mixed land use pattern of the Al-Muizz spine under the Ottomans (on the left), and the 

relation between the religious building exterior walls to the street centre line (on the right) (source: 

http://www.studio-basel.com/publications/books/nile-valley.html) 

http://www.studio-basel.com/publications/books/nile-valley.html
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The Effects of Modernisation on the Historic City of Cairo 

The modern era is identified by Mohammed Ali‘s rise to power in 1805, with a 

vision to modernise Egypt and create modern institutions parallel to the traditional ones. 

The walled city, with its convoluted street system, could not possibly support the needs 

of such large scale developments (Nasser, 2000). This led to a gradual shift from the 

walled city into Bulaq as a new residential area to the north and discontinuity between 

Cairo‘s past and future architectural value (Abu Lughod, 1971). Once again, the old city 

with its irregular roads and poor infrastructure could not fulfil Khedive Ismail‘s (1863-

1879) dream, and his era is described by historians as the first modernisation attempt 

since Mohammed Ali. Therefore, the old city experienced further neglect and isolation. 

By that time, Egypt‘s population was experiencing its first increasein the modern era 

after centuries of decline. Therefore, new residential districts were constructed; 

Ismailiya and Azbakiya in the west were developed; Garden City was developed along 

the Nile; Heliopolis to the east; Ma‘adi to the south, and the Nile river island of Gezira 

was also developed. European-style villas were the dominant residential style, reflecting 

the shift to European values. Cairo became divided into two realms depicted as 

east/west or traditional/modern, each defined in stark contrast to the other (Stewart, 

1999). In late 1870s, and due to the construction of new residential districts to face the 

first rapid population growth, there was a pressing traffic problem which was solved by 

extending Al-Muski Street. It was first named Al-Sikka Al-Gadida and was started by 

Mohammed Ali. He split Al-Muizz Street and the walled city into two parts, so that it 

became the first modern street in the walled city (Figure 0.16A).  
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Figure ‎0-16A The city developments added by Ismail (1870) 

British Occupation (1882-1956) 

Under British rule (1882-1956), Greater Cairo expanded along the lines laid 

down by Ismail. 

The social and functional division of the city became more severe between the 

old and new parts (Stewart 1999). The explosion of vehicular traffic in the 1930s and 

1940s encouraged the widening and cutting of new streets to ease circulation in the city 

(Nasser, 2000). Among these was Al-Azhar Street; it constructed in the late 1920s and 

was at first built at the expense of and for the use of the Tramway Company. Nowadays, 

it is one of the most congested streets and moves traffic from the central Cairobusiness 

district to Heliopolis (a northern suburb of Cairo). Passing through the old city, it has 

divided it into the north section that consists of Khan al-Khalili and Al-Foutoh Gate, 
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and the southern section from Al-Azhar Mosque to Zuweila Gate, which is part of the 

Darb Al-Ahmar district (Figure 0.17A). Almost entirely disconnected, each district has 

become self-contained with limited movement between. However, the old city remained 

neglected with a fixed area and ruined infrastructure. Nevertheless, the good part of 

being isolated or neglected was that the historic city was almost preserved intact, with 

the exception of the two main roads, Al-Sikka Al-Gadida and Al-Azhar, which cut 

through the dense urban fabric. Not just physical preservation, but social and economic 

preservation existed until very recently (Nasser, 2000) (Figure 0.13A).  

 

Figure ‎0-17A Al-Sikka Al-Gadida (1) and Al-Azhar (2) streets cut across the dense urban fabric Al-

Azhar, dividing Khan Al-Khalili and Al-Foutoh Gate to the north, and the southern section from Al-

Azhar Mosque to the Zuweila Gate in the south 

The Free Soldiers Revolution 1952 – until being officially listed as a world 

heritage site 

After the 1952 revolution and during the Nasser Era, the district continued its 

deterioration as a result of policies that forced land reforms and intensive and 

unsympathetic construction. Historic buildings were subjected to rent freezes, leaving 

little capital for maintenance and repair. This led to the rapid deterioration of several 
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buildings (Amedi et al., 2009) until 1974, when Al-Sadat came to power as Egypt‘s 

second president. The government implemented what was known as an ‗open-door‘ 

policy in which foreigners were once again permitted to visit Egypt, since the doors 

were closed in the Socialist revolution of 1952. Therefore, the country faced a 

dramatic rise in tourists who were fascinated by visiting historic Cairo; this new policy 

awakened interest in the conservation of the heritage sites from an economic point of 

view. These changes have had an impact on the economic and social structure of the 

old city, particularly in commercial enterprises such as Khan Al-Khalili market within 

Al-Muizz Street and on small-scale manufacturing in the peripheral parts of the old 

city (Meyer, 1990). By the end of President Sadat‘s era, UNESCO recognised the 

advantage of tourism within the Egyptian context. In 1979, UNESCO declared Old 

Cairo a world heritage site and produced a generic development plan for the whole 

area. The medieval economic function changed from transit trade to the tourism 

industry, leading to the challenge of improving the built environment of the Islamic 

city once again by safeguarding its historical and cultural qualities as assets and 

sources of income. 

Figure 0.18A shows a comparison between the most recent maps of Cairo (CAPMAS, 

2006) and the map of the French Expedition (Cairo in 1807). This reveals that the pre-

modern fabric kept its main attributes (focal points, street patterns, built-up areas and 

voids) throughout the development in the 19th century.  
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Figure ‎0-18A Urban fabric modification between 1807-1888, 1888-1948 and 1948-2006 (Source: URHC 

and UNESCO) 
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 Al-Muizz as a World Heritage Site (WHS) 

Historic Cairo was inscribed on the World Heritage List in 1979 under the title of 

―Islamic Cairo,‖ recognizing its absolutely unquestionable historical, archaeological and 

urban importance. On the recommendation of the International Council for Monuments 

and Sites (ICOMOS), its inscription was based on criteria I, V and VI of the World 

Heritage Operational Guidelines, including the following justifications: 

(I) Several of the great monuments of Cairo are incontestable masterpieces 

(V) The centre of Cairo groups numerous streets and old dwellings, and thus maintains, 

in the heart of the traditional urban fabric, forms of human settlement which go 

back to the Middle Ages 

(VI) The historic centre of Cairo constitutes an impressive material witness to the 

international importance, on the political, strategic, intellectual and commercial 

levels of the city during the medieval period. 

The site was described as an historic fabric covering an area of around 32 square 

kilometres on the eastern bank of the River Nile and surrounded by the modern 

quarters of Greater Cairo, where vast areas are still intact and many focal points have 

emerged, starting with Al-Fustat in the south. These also include the mosque of Amr 

Ibn Al-As (founded in 641), Babylon, with its Coptic churches, the mosque of Ahmad 

Ibn Tulun (founded in 876), the Citadel area, the mosque of Sultan Hasan (1356-

1359), and Darb al-Ahmar with Mamluk and Ottoman monuments. There is also the 

Fatimid nucleus of Cairo from Bab Zuwaila to the North Wall with the city gates of 

Bab Al-Futuh and Bab an-Nasr.  

The Islamic quarter heritage conservation overview 

The extent of heritage preservation in Egypt is usually related to the ruling 

system. The first preservation effort took place during the period of French 

colonialism by Napoleon in 1798, and the production of the well-known book 

‗Description de l‘Egypte‘ in 1809, which included the first reliable map of the urban 

fabric of Fatimid Cairo. By 1881, Khedive Tawfiq established the 

Comité de Conservation des Monuments de l‘Art Arabe, as the first attempt to identify 

buildings of historical and architectural significance in historic Cairo (Lamie, 2005; 

Aslan 2007). The main task was to survey and record the valuable architectural 

buildings and, in addition, conduct a physical investigation to demonstrate the 
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architectural value with full, as-built drawings. However, the greater part of indexing 

was under the initiative of King Fouad in 1930; hundreds of architectural structures 

and remnants were indexed based upon the intrinsic criteria of architectural beauty or 

age. The Comite‘s approach was in accordance with the SPAB manifesto (the Society 

for the Protection of Ancient Buildings). Founded in 1877, listed buildings were to be 

restored to the authentic style of their historic period with their authentic materials 

preserved in situ. The major achievement of the Comite was to restore the building 

elements (columns, windows, doors, and pillars). Their efforts focused on rich historic 

complexes such as the Qalawun complex in Al Muizz Street. In addition, the Comite 

had a different vision for the ruined monuments by cutting them down to be presented 

as valued pieces in the Museum of Islamic and Coptic art (Stewart, 2003). 

Since the revolution in 1952, the process of selecting buildings has transferred 

from the Comite to the establishment of the Egyptian Antiquities Organisation. 

However, the last of the monuments was undertaken in 1951 due to the political and 

military challenges the nation was facing in the region (Aslan, 2007). Thus, in 1997 

and after the historic core of Cairo was listed as a WHS in 1979, the Technical Co-

operation Office (TCO) administrated another survey where they found that since the 

last index in 1951, 65% of the buildings on the index had been destroyed or were 

seriously deteriorated, while others still needed to be added to the list. According to 

the TCO report, there were some 1,200 historic buildings in Cairo and by 1951, the list 

had been reduced to 622. Today, there are a total of 527 monuments (including 100 

‗new‘ listings added since 1951). This remarkable changed occurred during the 

President Sadat era, when the open door policy was adapted and foreign missions were 

encouraged to interfere in the conservation process with the issuing of Decree 2828. 

This stated that the Supreme Council of Antiquities was responsible for working with 

foreign organizations under the supervision of the Ministry of Culture. As a result, a 

number of foreign missions and other organisations have been associated with the 

restoration of various monuments. However, these missions are reluctant to become 

involved in extensive restoration programmes and subsequently attention tends to 

focus on small projects related to buildings with architectural and/or aesthetic 

significance, and occasionally political significance, such as the Al-Hakim Mosque 

that has historically been associated with the Ismaili Shi‘ite sect. However, according 

to the Community Design Collaborative (CDC) (1997), the general quality of the 
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urban fabric, comprised of significant groups of facades, streetscape elements, open 

spaces and green areas, is without recognition. This is because there are numerous 

buildings which still enhance the historic area as a whole even though they do not 

possess exceptional architectural features; they are thus unprotected from demolition 

and uncontrolled transformation. Moreover, not all the indexed monuments benefit 

equally from restoration efforts; these are focused only on those monuments which are 

the most popular with tourists and which are located in easily accessible sites, or are 

religious buildings which have never been in danger of demolition as they still have a 

daily function in the life of an orthodox Islamic society (Nasser, 2000). All these 

reasons gave Al-Muizz Street the priority to be labelled as the ‗Heritage Corridor‘ in 

proposals by both UNESCO (1980) and the Technical Cooperation Office (1997), as it 

contains the greatest concentration of medieval architectural treasure in the Islamic 

world (UNESCO Technical Report, 1985). Since then, generic development plans for 

the whole area have been produced. 

UNESCO Study, 1980: “The Conservation of the Old City of Cairo” 

According to the final report undertaken by the Urban Regeneration of Historic 

Cairo (URHC) project in 2012, an early study of Islamic Cairo was carried out by 

UNESCO consultants between February and August 1980. The plan generally focused 

on producing conservation recommendations for the whole urban setting, including 

traffic management, the main urban spines‘ traffic load, infrastructure upgrading, local 

awareness development, and the definition of five minor zones to produce 

interventions. Clearly, this was the first time a local or international body had 

proposed such development on an urban scale, rather than for individual historic 

buildings. The report indicated that each zone had to deal with its own monuments, 

initiate architecture design frameworks for new buildings, and introduce new uses for 

the old buildings and housing programmes (UNESCO, 1980). In 1983, the essential 

Decree No. 17 was announced for the safeguarding of the historic buildings. The 

policy focused on protection from deterioration and theft, in addition to setting out 

some criteria and regulations for dealing with foreign development organizations. 

Basically, the issued policies initially targeted built heritage protection without any 

proper urban planning development by working on singular buildings rather than the 

whole or even part of the historic quarter. Ghaleb and Abdallah (2003) noted that 
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Egyptian legislation never grasped the meaning of the historic quarter‘s preservation, 

according to policy four in 1912, until Decree No. 117 was enacted in 1983. Thus, 

polices were not enough to interpret UNESCO‘s recommendations after the 

declaration of Historic Cairo as a WHS. In 1992, Cairo experienced a major 

earthquake in which the structural integrity of many buildings within the Historic 

Cairo sustained major damage. As a result, national and international organizations 

turned their attention to the conservation issues of Egypt‘s built environment with 

reinvigorated interest. Among a conspicuous list of interventions and studies, the 

following should be taken into account due to their importance and impact on Al-

Muizz Street. 

Al-Darb Al-Asfar Alley Rehabilitation Project, 1994-2001 

Al-Darb Al-Asfar is an alley in the district of Gamaliya located off Al-Muizz 

Street, near Bab Al Futuh Gate (Figure 0.19A). In 1994, the Ministry of Culture and 

Supreme Culture Antiquities funded by the Kuwait-based Arab Fund for Social and 

Economic Development (AFSED) began the documentation and establishment of a 

conservation strategy for the area, which had become a neglected backwater of 

decaying buildings and services. The project carried out the restoration of three 

medieval houses in the alley, which were rehabilitated and restored and these were Al 

Suhaymi House (1648), Mostafa Gaafar House (1713), and Al Khorazati house, a 

living example of residential architecture of the 19th century. As restoration proceeded 

in the three houses, the surroundings were also improved. Electricity, water, and 

sewage systems were renovated. The alley was made a pedestrian only zone and paved 

with limestone. Facades of other building were painted, doors renovated, and lighting 

posts replaced, as seen in Figure 0.19A. They were then all allocated adaptive 

functions to fit within the wider development of the area (Bianca and Siravo, 2005). 

The project of Al-Darb Al-Asfar exemplifies a real experiment for limited 

restoration, but wider conservation (Shehayeb and Abdel-Hafiz, 2006). Therefore, this 

phase of restoration was extended and introduced as the first rehabilitation project in 

historic Cairo, exceeding the single restoration of monuments by applying a 

renovation strategy of the landmark‘s background (Ministry of Culture Press, 2002). 
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Figure ‎0-19A Al-Darb Al-Asfar Alley after restoration 

UNDP Report, 1997: “Rehabilitation of Historic Cairo” 

The 1997 UNDP plan, which has yet to be comprehensively put into action, 

covered an area of about four square kilometres in Historic Cairo from Al-Futuh 

located in Al-Muizz in the north to Ibn Tulun mosque in the south (TCO, 1997). The 

UNDP, Technical Co-operation Office (TCO) framework plan was based on a 

rehabilitation strategy articulated in five urban areas: the heritage corridor (Al-Muizz 

Street), the institutional corridor, the 19th century corridor, the transformation zone, 

and the community zone (Figure 0.20A). Urban policies would guarantee a feasible 

implementation of rehabilitation strategies, while community participation was 

identified as another tool for protecting Historic Cairo‘s outstanding value. The report 

provided an important reference for large-scale urban rehabilitation actions in Cairo, 

such as the pedestrianization of the central spine along Al-Muizz Street, labelled the 

Heritage Corridor (UNDP 1980), and some other streets, between 9.00am and 9.00pm, 

with one-way streets being suggested to ease traffic congestion. A key contribution 

would be ‗adaptive reuse‘ of restored buildings, suggesting that a significant sabil-

kuttub (former fountains and Quranic schools combined) be used as a tourist 

information centre. The plan aimed to revive the old ‗al-fina‘ (outside courtyard) 

concept, whereby shops and workshops can extend their activities out on to the street 

in front of their premises. Therefore, streets in Historic Cairo would again consist of 



Appendix 'A': Al-Muizz Street Urban Development 
 

351 

 

central public space for pedestrians and traffic and semi-private space for use by local 

residents for trading and other uses. However, due to the lack of official action, 

Historic Cairo‘s safeguarding efforts remained limited to the piecemeal restoration of 

a limited number of monuments and a few demonstration projects (Sutton and Fahmi, 

2002). 

 

Figure ‎0-20A UNDP rehabilitation plan, 1997 (source: UNDP Technical Co-operation Office: Cairo, 

Egypt, 1997) 

Historic Cairo, Al-Azhar Tunnel Project, 2001 

Despite the availability of the UNDP 1997 Rehabilitation Plan, in 2001 the Egyptian 

government pursued its own conservation policies by giving priority to Al-Azhar 

Square. This started two years devoted to restoration projects for the Al-Azhar and Al-

Hussein mosques, to avoid Al-Azhar Bridge‘s heavy traffic and its serious 

environmental consequences for the safety of historic monuments within Al-Muizz 

Street‘s main spine and the Khan Al-Khalili bazaar area (Figure 0.21A). The Al-Azahr 
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underground tunnel was constructed under Al-Azhar Street in late 2001. As a result, 

the area between the two mosques was planned to be pedestrianized and transformed 

into a new plaza which would have direct access to the central spine of Al- Muizz 

Street and the Khan Al-Khalili bazaar area. 

 

Figure ‎0-21A. Al-Azhar axis – main streets, buildings and localities (source: Fahmi, and Sutton, 2003) 

The Revival of Al-Muizz, 2009 

In recent decades, the idea of area conservation instead of the restoration of single 

monuments has been established. In 2000, the Egyptian government proposed the 

huge Historic Cairo Rehabilitation Project (HCRP), aiming to protect and conserve 

historic Cairo with a view to developing extensive areas into an open-air museum, 

with the main priority given to Al-Muizz Street. In 2009, the government and 

UNESCO began a national campaign for the maintenance and restoration of Al-Muizz 

Street to regain its beauty after the completion of the development of the infrastructure 

facilities. The restoration started from Al Fotouh gate up to the intersection of Al-

Azhar Street, at a total value of 23 million EGP. The houses and overlooking shop 

facades were totally renovated on both sides of the street, while buildings higher than 

the level of the monuments were brought down to size and painted an appropriate 

colour. Road surfaces were treated and fitted with benches and low-profile pavements 

in the spirit of the original thoroughfare (Table 0-A), 11 new sets of electronic bollards 

were built around the main entrances of the street to ensure pedestrianizion (Figure 

0.22A), and a new sewage system and piping network were built to prevent water 

leakage along the street. As an integral part of this project, the illuminations of this 
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monumental area had the purpose of skilfully enhancing, through expert use of colour 

and light, the beauty of these architectural masterpieces.  

Unfortunately, as a result of the political unrest in Egypt after the 2011 revolution, the 

other part of the street starting from Zuwaila Gate up to the intersection of Al-Azhar 

Street, has been delayed and the project duration expanded to 42 months without a 

fixed date. This has left behind two distinctive urban forms within the same alley. 

Figure 0.23A clearly reveals the contrasts of the ambient conditions for each part of 

the same alley, with its own urban distinctive features, regulation, materials, shadings, 

vegetation, and surfaces.  

Table ‎0-A The street new material installed (source: Arab 

contractors) 

Item Material restored Quantity 

Street Black Aswan granite 7500m² 

Pavement Gondola granite slabs 4900m² 

Pavement blocks Gondola granite 2900ml 

 

 
 

Figure ‎0-22A. Electronic bollards  control the traffic at the entrance to Al-Muizz 
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Figure ‎0-23A. The difference between the two parts of Al-Muizz: the renovated on the left and 

the non-renovated on the right 
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 Conclusion 

Religious, environmental, socio-economic and cultural factors have been cited 

as having influences on the elements of the traditional urban fabric. However, the 

environmental and climatic conditions have a major impact on the formation of many 

cities in North Africa. This was expressed by Hakim (1986), whose studies are based 

on the Qur‘an and Sunna
22

 with the support of two Arabic manuscripts on the subject 

of building solutions. Both manuscripts are based upon the interpretation of building 

solutions as seen through the Maliki
23

 School of Islamic Law based in Andalucia 

(Muslim Spain), and Tunisia. Hakim (1986:23) stated that both manuscripts illuminate 

three things: the remarkable similarity of ‗solutions‘that are 350 years apart, the 

dependency on similar references within the Maliki School of Islamic law, and the 

similarity of solutions across the vast geographic area of North Africa and Al-Andalus, 

resulting in a consistent urban design approach modified by variations in response to 

local setting, climate variation, and the availability of building materials. 

In this chapter, there has been an attempt to analyse Al-Muizz Street‘s built 

environment and the factors that shaped its urban form, according to different maps at 

the end of each ruling dynasty. These are clarified as follows: 

 In the first instance, the origin of the city could have been based on 

environmental, socio-economic or religious considerations. The availability of 

water or good agricultural land may have served as a considerable environmental 

factor for locating traditional cities (as all the cities were built beside the 

                                                 

22
Sunnaor Sunnah –this is an established custom or conduct and a cumulative tradition, typically based on 

Muhammad. For example, the actions and sayings of Muhammad are believed to complement the 

divinely revealed messageof the Qur‘an. J.P. Esposito, The Oxford Dictionary of Islam, 2003 

 
23

Islamic Jurisprudence comprises of the laws that govern a Muslim‘s daily life. The Prophet Muħammad 

explained and practically demonstrated these laws. The jurists studied the Qur‘ān and the Prophet‘s life 

and they adopted a refined methodology which they used to extract legal rulings and verdicts. This 

methodology is known as the Principles of Jurisprudence. Eventually, the Muslim world was left with 

four schools of jurisprudence that are present to this day. There are differences between these schools on 

some issues but these differences never caused conflict. These schools, referred to respectively as the 

Hanbali, Hanafi, Maliki, and Shafei, are followed by different Muslim states either entirely or in part.  
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NileRiver). After this, the city was developed in an incremental manner without 

a ‗formalized‘ plan, but with a general concept of harmony, coherence and 

liveability  

 The spatial geometry of the traditional urban fabric seems to have developed 

from a lack of planning. Aside from that, the structures are planned but the 

planning principles are flexible enough to allow for acceptable diversity; the 

principles were applied by the individuals in the society as there was limited 

civic planning. The main sources of these principles could have been religious 

tenets derived from the Islamic law (Qur‘an and Sunna), yet this needs more 

investigation which is outside the scope of this study 

 The principle of privacy might have contributed to the development of the 

narrow and winding streets, apart from the climatic adaptation by ‗shading‘. 

However, other urban strategies appear to have been developed mainly as a 

result of the harsh desert climate without any link to Islamic law, such as the 

street orientation, which represents, with the street aspect ratio,the most relevant 

urban parameters responsible for the microclimatic changes in a street canyon 

(Todhunter, 1990; Bianca 2000). This is well expressed by the street designs for 

the Fatimid city in Cairo, which follows a grid in its plan, with Al-Muizz as the 

main street oriented north/south(N-S), creating more pleasant microclimate as 

the N-S orientation provides enough shadow and solar energy in summer and 

winter, respectively (Toudert and Mayer 2005).In contrast, East-West (E-W) 

oriented streets are quite difficult to keep in shade, as the walls provide very 

limited shading, even for very deep street canyons (H/W ≥ 2), and this may 

explain why the secondary streets of the Fatimid city are always narrower and 

higher in aspect ratio than the N-S streets. Furthermore, the whole system has 

high thermal inertia as a result of the minimal envelope to volume ratio, which 

makes the compact buildings gain less heat during the daytime and lose less heat 

at night. It also used heavy stones with a big cut to make use of their high 

thermal capacity, and light colours were used for the external facades to help to 

reduce the urban reflectance of the whole sites.  

Finally, all these successive techniques developed over a long period of time 

have given satisfactory answers of architecture concepts and techniques concerning 
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human comfort and the surrounding environment. As mentioned in the introduction of 

this chapter, for any proposed development for an urban area, it is crucial for the urban 

area background, including land use, master plane and urban form, to be investigated, 

whether it is climate based or not. However, some scholars have recently raised 

concerns about these techniques, by questioningwhether they have been over 

estimated (Givoni, 1997; Meier et al., 2004). Moreover, when the Fatimid city was 

first established, it was meant to be a royal city with a low density of buildings and a 

great deal of land and wide streets, but over time it was transformed into a very highly 

urbanized area with a high population density and irregular narrow streets 

(Figure0.27). Therefore, in the literature review of Chapter three, the effect of 

urbanization and climate change with reference to Cairo is presented, while the urban 

form impact on microclimate and thermal comfort is reviewed in Chapter four. 
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Appendix 'B1' 

General structure of ENVI-met 3.1 

By understanding the basic knowledge of the model, it is important to describe the 

general structure of ENVI-met in order to obtain an overview of how the model works. 

The main model is designed in 3D core model and 1D border model with two horizontal 

dimensions (x and y) and one vertical dimension (z) (Figure 1.1B). Inside this main 

model, the typical elements that represent the area of interest are placed: buildings, 

vegetation, and different types of surfaces, where the main function of the 3D model is 

to simulate all processes inside the actual model area. The upper horizontal boundary 

and the vertical windward boundary act as the interface of the 1D border model and the 

3D core model. To allow an accurate simulation of the boundary layer,the 1D model 

extends the simulated area to the height H = 2500m (i.e. an average depth of a boundary 

layer) and transfers all start values to the upper limits of the 3D volume needed for the 

actual simulation,as it is not possible (and not necessary either) to extend the complete 

3D model up to this height.  

The core area to be simulated is a volume of the dimensions (x, y, z) plotted into the 

grid modules. Selecting the correct size of the model domain is a central aspect in 

successful numerical modelling. The horizontal dimension is more or less given by the 

dimension of the subject of interest. Therefore,(z) is determined by the maximum height 

Hmax of the urban elements within the model (z ≥ 2Hmax), which means the total height 

of the model will be twice or more the tallest object in the simulation area (especially if 

it is a building) and at least 30m in total (Bruse, 2004; Todert 2005; Malekzadeh 2009). 

Envi-met allows two different types of vertical grids according to the type and the 

objective of the study, for instance, at street level, the first grid is vertically subdivided 

into five equal parts in order to record thoroughly the microclimate near the surface. 

This is called the equidistant grid (A), and is a telescoping grid (B1, B2 and C) where 

the grid size expands with the height (Figure 1.2B).  

 Another concept of covering more horizontal space without too much refining of the 

grid cells is the usage of the Nesting Area, which is a band of grid cells surrounding the 

core of the 3D model.This acts as a buffer zone in order to avoid numerical disturbance. 

The nesting grids also ensure a representative 3D profile of the wind at the windward 
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boundary by adjusting the initial 1D wind profile. These grids get progressively larger 

as their distance from the core model increases,and this allows the movement of the 

model‘s borders away from the core without wasting too many calculation cells, and yet 

it is still possible to assign two different soil profiles to the nesting area. The nesting 

area is at least double the size of the highest obstacle in the model area (2Hmax) beyond 

the actual modelled area. 

Finally, a soil model is needed to calculate the heat transfer from the surfaces into the 

ground and vice versa. The model takes into account the hydrological and thermo-

dynamical processes and consists of ten nodes in a vertical profile with a depth of -

1.75m where the temperature and the humidity settings are divided into three layers (0-

20cm, 20-45cm, and 45-175cm) and each layer corresponds to a soil type. The deep soil 

temperature (-2.00m) is kept constant during simulation. 

 

Figure 1-1B General EVI-met model‘s structure including the boundaries. Source: Bruse (2009) and Ali 

Toudert (2005) 
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Figure 1-2B Different types of vertical grids in ENVI-met. Source: www.envimet.com 

The ENVI-met are ruled by too many equations to be presented thoroughly here and the 

model is well documented and regularly updated (Bruse and Fleer, 1998; Bruse, 1999, 

2004, 2008). Only the mean radiant temperature (Tmrt) determination is reported below, 

which is considered one of the most important meteorological parameters influencing 

the outdoor thermal comfort and sensation under sunny conditions (Mayer and Hoppe, 

1987; Mayer, 1993; Spagnolo and de Dear, 2003). However, a comprehensive summary 

of the model is provided by Ali-Toudert (2005) and is available in the Appendix. 

Determination of Tmrt by ENVI-met modelling 

The ENVI-met software models the microclimate, including the mean radiant 

temperature (Tmrt) in urban structures, and is based on a three dimensional 

computational fluid dynamic model and an energy balance model (Bruse, 1999, 2012). 

According to Huttner (2012), the mean radiant temperature (Tmrt) is calculated for a 

cylindrical shaped body as in equation (1.1B) (Huttner, 2012): 

    =(
1

σ
(Q

lw,in
 
ak

ε
 (Q

sw-diff,in
 Q

sw-dir,in
))

0.25

(Equation 1.1B) 

Where the emission coefficient of the human body (ε) is set to 0.97 and  ak), the 

absorption coefficient of the human body for short wave radiation, is set to 0.7.(σ) is the 

Stefan Boltzmann constant, Q
sw-diff,in

 and Q
sw-dir,in

 is the diffuse and direct incoming 

short wave radiation respectively. As the influence of the radiation of the ground 

decreases with increasing height; ENVI-met assumes that the incoming long wave 
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radiation Q
lw,in

 originates as 50% from the upper hemisphere (sky, buildings, and 

vegetation) and 50% from the ground, based on equation (1.2B): 

           (     ε   ̅̅ ̅̅ ̅σ    
     ̅̅ ̅̅ ̅        ε    ̅̅ ̅̅ ̅̅ σ     

       ̅̅ ̅̅ ̅̅                      (  

σ    ̅̅ ̅̅ ̅̅ )       )       σε             
    (Equation 1.2B) 

The view factors      give the percentage of vegetation/ buildings/ sky that can be seen 

from the specific grid point. The physically correct approach would be to calculate the 

long wave radiation fluxes based on the average emissivity (ε̅  and temperature    ̅̅ ̅̅   of 

all plants/ building surfaces within view (Huttner, 2012). The incoming long wave 

radiation from the sky (Qlw,sky) is calculated based on the air temperature, air humidity 

and some empirical parameters (Oke, 1978). For long wave radiations coming from the 

ground, only the emissivity and surface temperature of the grid‘s corresponding grid 

cell are taken into account. 

The diffuse incoming short wave radiation            ) is derived from equation (1.3B) 

accordingly: 

            

    (            ̅̅ ̅̅ ̅̅ ̅                              )    

(                  )(Equation 1.3B) 

 (rf) is the reflectivity and              is the overall shortwave radiation at the ground 

surface of the corresponding grid cell. The incoming direct short wave radiation 

 Q
sw-dir,in

  is calculated as the direct short wave radiation within the grid cell 

multiplying with an projection factor pf equation (1.4B): 

Q
sw-dir,in

 = pf x Q
sw-dir

.                              (Equation 1.4B) 

This projection factor depends on the azimuth angle of the sun
24

(Φ) equation (1.5B): 

           Φ     Φ(Equation 1.5B) 

                                                 

24
The solar azimuth angle is the azimuth angle of the sun. It defines in which direction the sun is, whereas 

the solar zenith angle or its complementary angle solar elevationdefines how high the sun is (Sukhatme, 

2008; Seinfeld and Spyros, 2006; Duffie and Beckman, 2013). 

 

http://en.wikipedia.org/wiki/Azimuth
http://en.wikipedia.org/wiki/Sun
http://en.wikipedia.org/wiki/Solar_zenith_angle
http://en.wikipedia.org/wiki/Complementary_angles
http://en.wikipedia.org/wiki/Solar_elevation


Appendix 'B1' 

 

363 

 

―In spite of the different methods used for calculating Tmrt, ENVI-met simulated results 

provided a satisfactory agreement with measured data given the complexity of the urban 

environment when the projection factor (pf) is appropriately set‖ (Toudert, 2005).  

Simulation course and boundary condition 

In the simulation process, the set up description and boundary conditions are very 

critical, and thus it is highly advisable to understand the process behind it. According to 

Figure 1.3B, which illustrates the ENVI-met work flow, it can be divided into two main 

simulation procedures, namely, setting up the model and running the model. In setting 

up the model phase, it consists of four sub-models, where all input information 

regarding the area definition (basic meteorology, building properties, soil properties, 

land properties and biometeorology) was collated and loaded within the input database 

named as the configuration file. Then, the area input file is mainly related to the position 

and height of buildings, the position of plants, the distribution of surface materials and 

soil types, and the position of sources, the position of receptors, the database links and 

the geographic position of the location on earth (Bruse, 2009). All inputs were required 

for simulating the complete model. After the first step was completed, the next step 

regarding the running model was implemented. 

The boundary condition must be carefully understood to compare the results of a 

numerical simulation with measured data or to simulate a specific meteorological 

development. The equations used in the boundary model are a 1D simplified form of 

those used in the 3D model with some parameterisations when necessary. 

Firstly, the vertical inflow boundary up to 2500m was calculated with the 1D model by 

applying a logarithmic law, based on the input values of the horizontal wind (u, v) at 

10m height and on the roughness length z0. Then, the potential temperature (θstart) was 

given as an input parameter at a height of 70m, set to the whole vertical profile 

assuming start conditions of neutrality. A vertical gradient forms if the initial surface 

temperature differs from the initial air temperature.The surfacetemperature is thengiven 

to the 1D model by the soil sub-model, and is calculatedon the basis of three input 

values of soil temperatures and soil humidity included in the soil properties setting. The 

surface temperature is then calculated on the basis of three input values of soil 

temperatures and soil humidity in the soil sub-model and provided to the 1D model. The 

linear air humidity profile was calculated by means of input values at 2,500m i.e. q2500m 
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and functioned as local friction velocity u*. Subsequently, the surface temperature and 

humidityare provided by the 3D model as mean values of the nesting area related 

values. The initialization of the 1D model is run during a period of eight hours with a 

time step of Δt=1s until the interactions between all start values reach a stationary state 

(Bruce, 2009). Then, the atmospheric equations were solved by integration of the 

variables based on the following sequence: u , v ,θ , q ,local turbulence (E) and its 

dissipation rate (ε)and the exchange coefficients of mean air flow (Km) and diffusion 

coefficients of heat(Kh) and vapour (Kq). 

In the 3D Model, the start values at the inflow boundary are provided by the 1D 

boundarymodel calculation results as a vertical profile. However, this transition from 

1D to 3D schemes needs an adjustmentin a non-homogenous boundary urban 

environment. Therefore, the 3D nesting area is used to solve it. In contrast, on the 

horizontal boundary, homogeneity is assumed. Wall and roof temperatures are 

calculated at all physical boundaries in the model area. Then, the wind speed 

components atbuilding grids are set following a no-slip condition where u=v=w=0. The 

wind field isadjusted gradually during the initializing phase (diastrophicphase) 

according to the existence of the obstacles. 

On the other hand, at the ground surface (z=0) and on the walls, E and ε are calculated 

asa function of u* from the flow components tangential to the surface the model 

assuming that no gradient exists between the two last grids close to the outflow border 

(Toudert, 2005). According to these processes, the actual 3D simulation was comprised 

based on the following order: the calculations of soil parameters(T,η), surface quantities 

(T0, q0, as), radiation update, the update of wind components(u, v, w), pressure 

perturbation p´, turbulence quantities E, ε, Km , Kh , Kq , andair temperature and 

humidity θ, q. The cycle of the process is repeated once the 1D model is updatedagain. 

In relation to the numerical aspects, all differential equations are approximated using the 

finite differencemethod and solved forward-in-time (Bruse, 2009). Thus, there is a 

variation of time steps adopted based on the quantityto be calculated. The wind flow 

calculation requiresten minutes as a main time step, whereas smaller time steps are used 

for E-ε system to obtain a numerically stable solution (3 minutes). However, 30 seconds 

time steps are used for surface temperature and humidity (Bruse, 1999).As for solar 

radiation, this is usually updated in larger time-steps and can be set by the user. In 
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micro-scale simulations, obstacles creating steep pressure gradients require very small 

time steps to solve the set of wind field equations. Therefore, although in ENVI-met the 

wind field is not treated as a ‗normal‘ prognostic variable, it is updated in accordance 

with the interval time. A larger simulation time is required if the wind field is treated as 

a normal variable. As a result, the simulation needs a quick and implicit solution to 

solve the advection-diffusion equation, and this is why the dynamic pressure is removed 

from the equations of motion (equations 3.1 to 3.3 Appendix) and auxiliary flow 

components are calculated. These are then corrected by incorporating the dynamic 

pressure which has been separately defined by means of the Poisson equation (Bruse, 

2004). 

 

Figure 1-3B Flow diagram of ENVI-met (Bruse, 2008) 
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Appendix 'B2' 

CFD model equations 

Transport equations 

The present flow and transport phenomena for air flow and the heat transfer are 

described by the Navier-Stokes equations. The time-averaged Navier-Stokes equations 

for the momentum, mass and energy transport are given as follows: 

Continuity equation 
   

   
   (eq. 1.6B) 

 

Momentum 

conservation 
   

   

   
  

  

   
 

 

   
[      

   

   
]     (eq. 1.7B) 

Where,     is the time average i-direction velocity,     the density, (P) the pressure,    

the viscosity,      the turbulent viscosity and (    the buoyancy force. 

Boussinesq approximation 

The density variation is calculated according to the Boussinesq model in order to take 

into account the natural convection effects. The use of the Boussinesq model offers 

faster convergence than considering the density variable in all equations. In this model, 

the density is a constant value in all solved equations except from the buoyancy term 

calculation in the momentum equation: 

        g             g (Eq. 1.8B) 

This way the (ρ) is eliminated from the buoyancy term using the Boussinesq 

approximation: 

            (Eq. 1.9B) 

(   the thermal expansion coefficient, (T) the temperature, (   and (   the 

corresponding reference values for density and temperature and (g)the gravity 

acceleration. 
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Energy Treatment 

Energy 

Conservation: 

 

   
(        )

 
 

   
[    

  

   
           ]     

(Eq.1.10B) 

Where (ɛ ) is specific energy (per unit mass), (     the effective conductivity, 

        the effective stress tensor and (    the source therm, which adds the radiation 

contribution to the energy conservation equation. Auxiliary relationships for the 

calculations of quantities appearing in the energy equation are presented here. 

Specifically, relationships are given for the calculation of effective and turbulent 

conductivity as well as for the energy and enthalpy. 

Effective 

Conductivity: 
                     (Eq. 1.11B) 

Where, (   theporosity, when     there is only fluid, (       the fluid effective 

conductivity and    the solid conductivity. The fluid effective thermal is given as 

follows: 

ThermalConductivity:            (Eq. 1.12B) 

 

Where (   is the fluid conductivity and (   is the turbulent conductivity given by 

turbulent conductivity as: 

Turbulent Conductivity:    
    

   
 (Eq. 1.13B) 

Where, (    is the specific heat capacity and (    the turbulent Prandtl number while 

the enthalpy (h) is given by the following equation as: 

Enthalpy   ∫  

 

  

   (Eq. 1.14B) 

Realizable k-ε turbulence model 

According to the Fluent help files (2006), this model was developed based on 

modifying the dissipation rate (ε) equation to satisfy certain mathematical constraints on 

the normal stresses consistent with the physics of turbulent flows.This is not satisfied by 

either the standard or the RNG k-εmodels, which makes the realizable model more 
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precise than both models at predicting flows such as separated flows and flows with 

complex secondary flow features. In terms of the improved changes by Shih (1995), the 

transport equations for (k) and (ɛ ) become: 

 

  
(    

 

   
 (       
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(Eq. 

1.15B) 
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(Eq. 

1.16B) 

where (Gk) represents the generation of turbulent kinetic energy that arises due to mean 

velocity gradients, (Gb) is the generation of turbulent kinetic energy arising from 

buoyancy, and (YM)represents the fluctuating dilation in compressible turbulence that 

contributes to the overall dissipation rate. (Sɛ )and (Sk) are source terms defined by the 

user. (αk)and (αɛ ) are the turbulent Prandtl numbers for the turbulent kinetic energy and 

its dissipation. 
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Questinnaire Survey 

PART 1 (to filled by the researcher) 

Date: 

Time: 

Location: 

Temp: 

Humidity: 

Wind Speed: 

Shade: 

Occupants Clothing  

Pants or skirt: 

 

 

 

long Medium Short 

Light  Medium Heavy 

Skirt or Coat:  

 
 Long-

Sleeved 

Medium- 

Sleeved 

Short- 

Sleeved 

Light Medium Heavy 

Surveyor’s Use 

Only 
Clothing Insulation Summary:Total Ici = _______________clo 

Accessories: Sunglasses,  Cap/Hate, Umbrella, others 

Food/ Drink Consumption: cold drink, hot drink, cold food, warm food 

Occupant Activity Level Metabolic Rates (met) 

1. □ Reclining 

2. □ Seating 

3. □ Standing  

4. □ walking 

1. 0.8 met 

2. 1.0 met 

3. 1.2 met 

4. 2.0 met 

PART 2 (to be filled by the interviewee) 

Occupant Name: 

Gender:      o  Male                          o Female 

Age Group:  o 20-29 

o 30-39 

o 40-49 

o 50-59 

o 60-69 

o >70 

What is your purpose of visiting Al Muizz spine? 

 

How often do you visit Al Muizz spine? 

o Few times a day.  

o Few times a week. 

o Few times a month. 

o Few times a year. 

What is the general time you carry out activities in the Plaza? 

o Early morning (before 8 am).  

o Morning (8 am - 11 am).  

o Lunch period (11 am -2 pm).  

o Afternoon (2 pm - 5 pm). 

o Evening (5 pm - 7 pm). 

o Night (7 pm). 

Usually, for how long do you stay in the Plaza? 
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o <10 minutes.  

o 10-20 minutes.  

o 20-30 minutes. 

o 30 minutes to 1 hour. 

o > 1 hour. 

How long have you been 

outdoor 
˂  2 minutes 

2-10 

minutes 
>10 minutes 

Just before you arrived at this place, were you: 

o Indoor: □Conditioned  □ventilated 
o outdoor : □Sun   
□Shade 

How do you feel right now in this spot? 
 

-4 -3 -2 -1 0 1 2 3 4 

Very 

cold 
Cold Cool 

Slightly 

cool 
Neutral 

Slightly 

warm 
Warm Hot 

Very 

hot 

Do you prefer warmer/ cooler? 
 

 -3 -2 -1 0 1 2 3  

 
Much 

cooler 
Cooler 

Slightly 

cooler 

I am 

fine 

Slightly 

warm 
Warmer 

Much 

warmer 
 

Do you prefer more/ less wind speed? 
 

 -3 -2 -1 0 1 2 3  

 
Much 

less 
Less 

Slightly 

less 

I am 

fine 

Slightly 

more 
More 

Much 

more 
 

Do you prefer more/ less sun? 
 

 -3 -2 -1 0 1 2 3  

 
Much 

less 
Less 

Slightly 

less 

I am 

fine 

Slightly 

more 
More 

Much 

more 
 

Do you prefer more/ less shade? 
 

 -3 -2 -1 0 1 2 3  

 
Much 

less 
Less 

Slightly 

less 

I am 

fine 

Slightly 

more 
More 

Much 

more 
 

Are you feeling comfortable? o  YES                          o NO 

Can you mark zones of thermal comfort and discomfort in the square or on the 

map that you experience over longer time 
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Can you explain why you find it comfortable or not in these zones, in terms of sun, 

wind, shade, rain protection, etc? 
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Appendix'D' 

Basic ENVI-met 3.1 configuration file (Renovated part) 

% ---- Basic Configuration File for ENVI-met  Version 3 --------------- 

% ---- MAIN-DATA Block ------------------------------------------------- 

Name for Simulation (Text):                  =26-8-14 

Input file Model Area                        =C:\envi-met\envimet31\26-8-14a\26-8b.in 

Filebase name for Output (Text):             =26-8-14 

Output Directory:                            =C:\envi-met\envimet31\26-8-14a\output 

Start Simulation at Day (DD.MM.YYYY):        =01.07.2012 

Start Simulation at Time (HH:MM:SS):         =04:00:00 

Total Simulation Time in Hours:              =20.00 

Save Model State each ? min                  =60 

Wind Speed in 10 m ab. Ground [m/s]          =3.5 

Wind Direction (0:N..90:E..180:S..270:W..)   =315 

Roughness Length z0 at Reference Point       =0.15 

Initial Temperature Atmosphere [K]           =302 

Specific Humidity in 2500 m [g Water/kg air] =7 

Relative Humidity in 2m [%]                  =47 

Database Plants                              =[input]\Plants.dat 

 

         ( -- End of Basic Data --) 

         ( -- Following: Optional data. The order of sections is free. --) 

         ( -- Missing Sections will keep default data. --) 

         ( Use "Add Section" in ConfigEditor to add more sections ) 

         ( Only use "=" in front of the final value, not in the description) 

         ( This file is created for ENVI-met V3.0 or better ) 

 

[BUILDING]__________________________________Building properties 

Inside Temperature [K]                       = 297.15 

Heat Transmission Walls [W/m²K]              =0.35 

Heat Transmission Roofs [W/m²K]              =0.41 

Albedo Walls                                 =0.4 
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Albedo Roofs                                 =0.35 

[SOURCES] _______________________________________Type of emitted 

gas/particle 

Name of component                             =PM10 

Type of component                             =PM 

Particle Diameter in [µm] (0 for gas)         =10 

Particle Density [g/cm³]                      =1 

Update interval for emission rate [s]         =600 

[SOILDATA] ______________________________________Settings for Soil 

Initial Temperature Upper Layer (0-20 cm)   [K]=302 

Initial Temperature Middle Layer (20-50 cm) [K]=302 

Initial Temperature Deep Layer (below 50 cm)[K]=302 

Relative Humidity Upper Layer (0-20 cm)        =50 

Relative Humidity Middle Layer (20-50 cm)      =60 

Relative Humidity Deep Layer (below 50 cm)     =60 

[SOLARADJUST] _____________________________________ 

Factor of shortwave adjustment (0.5 to 1.5) =1.0 

[TIMING]_____________________________________Update & Save Intervalls 

Update Surface Data each  ? sec              =30.0 

Update Wind field each ? sec                 =900 

Update Radiation and Shadows each ? sec      =600 

Update Plant Data each ? sec                 =600 

[TIMESTEPS] ____________________________________Dynamical Timesteps 

Sun height for switching dt(0) -> dt(1)       =40 

Sun height for switching dt(1) -> dt(2)       =50 

Time step (s) for interval 1 dt(0)            =5.0 

Time step (s) for interval 2 dt(1)            =2.0 

Time step (s) for interval 3 dt(2)            =1.0 

[TURBULENCE]_________________________________Options Turbulence Model 

Turbulence Closure ABL (0:diagn.,1:prognos.) =1 

Turbulence Closure 3D Modell (0:diag.,1:prog)=2 

Upper Boundary for e-epsilon (0:clsd.,1:op.) =0 
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[LBC-TYPES] _______________________________________Types of lateral 

boundary conditions 

LBC for T and q (1:open, 2:forced, 3:cyclic)  =1 

LBC for TKE (1:open, 2:forced, 3:cyclic)      =2 

[NESTINGAREA]______________________________Settings for nesting 

Use aver. solar input in nesting area (0:n,1:y) =1 

Include Nesting Grids in Output (0:n,1:y)       =0 

[PMV] _______________________________________Settings for PMV-Calculation 

Walking Speed (m/s)                          =0.3 

Energy-Exchange (Col. 2 M/A)                 =116 

Mech. Factor                                 =0.0 

Heattransfer resistance cloths               =0.5 

[PLANTMODEL] _______________________________________Settings for plant 

model 

Stomata res. approach (1=Deardorff, 2=A-gs)  =2 

Background CO2 concentration [ppm]           =350 

[RECEPTORS] ______________________________________ 

RECEPTOR 1 Co-ordinate                        =13,90 

RECEPTOR 2 Co-ordinate                        =18,126 

RECEPTOR 3 Co-ordinate                        =15,82 

% --remove line above if your receptors are in the area input file-- 

Save Receptors each ? min                     =01.0 
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Basic ENVI-met 3.1 configuration file (Non-Renovated part) 

% ---- Basic Configuration File for ENVI-met  Version 3 --------------- 

% ---- MAIN-DATA Block ------------------------------------------------- 

Name for Simulation (Text):                  =26-8-14 

Input file Model Area                        =C:\envi-met\envimet31\26-8-14a\26-8b.in 

Filebase name for Output (Text):             =26-8-14 

Output Directory:                            =C:\envi-met\envimet31\26-8-14a\output 

Start Simulation at Day (DD.MM.YYYY):        =01.07.2012 

Start Simulation at Time (HH:MM:SS):         =04:00:00 

Total Simulation Time in Hours:              =20.00 

Save Model State each ? min                  =60 

Wind Speed in 10 m ab. Ground [m/s]          =3.5 

Wind Direction (0:N..90:E..180:S..270:W..)   =315 

Roughness Length z0 at Reference Point       =0.15 

Initial Temperature Atmosphere [K]           =302 

Specific Humidity in 2500 m [g Water/kg air] =7 

Relative Humidity in 2m [%]                  =47 

Database Plants                              =[input]\Plants.dat 

 

         ( -- End of Basic Data --) 

         ( -- Following: Optional data. The order of sections is free. --) 

         ( -- Missing Sections will keep default data. --) 

         ( Use "Add Section" in ConfigEditor to add more sections ) 

         ( Only use "=" in front of the final value, not in the description) 

         ( This file is created for ENVI-met V3.0 or better ) 

 

[BUILDING]__________________________________Building properties 

Inside Temperature [K]                       = 297.15 

Heat Transmission Walls [W/m²K]              =0.35 

Heat Transmission Roofs [W/m²K]              =0.41 

Albedo Walls                                 =0.4 

Albedo Roofs                                 =0.35 
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[SOURCES] _______________________________________Type of emitted 

gas/particle 

Name of component                             =PM10 

Type of component                             =PM 

Particle Diameter in [µm] (0 for gas)         =10 

Particle Density [g/cm³]                      =1 

Update interval for emission rate [s]         =600 

[SOILDATA] ______________________________________Settings for Soil 

Initial Temperature Upper Layer (0-20 cm)   [K]=302 

Initial Temperature Middle Layer (20-50 cm) [K]=302 

Initial Temperature Deep Layer (below 50 cm)[K]=302 

Relative Humidity Upper Layer (0-20 cm)        =50 

Relative Humidity Middle Layer (20-50 cm)      =60 

Relative Humidity Deep Layer (below 50 cm)     =60 

[SOLARADJUST] _____________________________________ 

Factor of shortwave adjustment (0.5 to 1.5) =1.0 

[TIMING]_____________________________________Update & Save Intervalls 

Update Surface Data each  ? sec              =30.0 

Update Wind field each ? sec                 =900 

Update Radiation and Shadows each ? sec      =600 

Update Plant Data each ? sec                 =600 

[TIMESTEPS] ____________________________________Dynamical Timesteps 

Sun height for switching dt(0) -> dt(1)       =40 

Sun height for switching dt(1) -> dt(2)       =50 

Time step (s) for interval 1 dt(0)            =5.0 

Time step (s) for interval 2 dt(1)            =2.0 

Time step (s) for interval 3 dt(2)            =1.0 

[TURBULENCE]_________________________________Options Turbulence Model 

Turbulence Closure ABL (0:diagn.,1:prognos.) =1 

Turbulence Closure 3D Modell (0:diag.,1:prog)=2 

Upper Boundary for e-epsilon (0:clsd.,1:op.) =0 

[LBC-TYPES] _______________________________________Types of lateral 

boundary conditions 
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LBC for T and q (1:open, 2:forced, 3:cyclic)  =1 

LBC for TKE (1:open, 2:forced, 3:cyclic)      =2 

[NESTINGAREA]______________________________Settings for nesting 

Use aver. solar input in nesting area (0:n,1:y) =1 

Include Nesting Grids in Output (0:n,1:y)       =0 

[PMV] _______________________________________Settings for PMV-Calculation 

Walking Speed (m/s)                          =0.3 

Energy-Exchange (Col. 2 M/A)                 =116 

Mech. Factor                                 =0.0 

Heattransfer resistance cloths               =0.5 

[PLANTMODEL] _______________________________________Settings for plant 

model 

Stomata res. approach (1=Deardorff, 2=A-gs)  =2 

Background CO2 concentration [ppm]           =350 

[RECEPTORS] ______________________________________ 

RECEPTOR 1 Co-ordinate                        =13,90 

RECEPTOR 2 Co-ordinate                        =18,126 

RECEPTOR 3 Co-ordinate                        =15,82 

% --remove line above if your receptors are in the area input file-- 

Save Receptors each ? min                     =01.0 
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Appendix 'E' 

Solar radiation calculator 

 

The Data regarding the solar raidtion such as the Solar Zenith angle, Extraterrestrial global horizontal 

solar irradiance and Extraterrestrial direct normal solar irradiance used in the simulations and the 

equations 7.2, 7.3, 7.4 and 7.5 were extracted from Solar radiation calculator based upon Unversity of 

Oregon (Solar Radiation Monitoring Laboratory)  

http://solardat.uoregon.edu/cgi-bin/SolarPositionCalculator.cgi 

 




