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 Abstract 

Deactivation of blood monocytes during sepsis is associated with increased mortality 

and susceptibility to secondary infections. Septic monocytes may also have 

mitochondrial DNA (mtDNA) depletion and mitochondrial respiratory dysfunction. Two 

principal approaches explored the link between these phenomena in THP-1 cells, a 

human leukaemia cell line resembling monocytes, to test the hypothesis that mtDNA 

depletion is important in the pathophysiology of monocytic cell immune deactivation. 

Firstly, the consequences of immune deactivation for mitochondria was assessed using 

an endotoxin tolerance model in which repeated exposures to lipopolysaccharide (LPS) 

trigger diminishing inflammatory responses. In parallel with the induction of endotoxin 

tolerance, LPS treatment lead to increased mitochondrial respiration due to the 

activation of mitochondrial biogenesis. These results could not be confirmed in healthy 

volunteers following inhalation of LPS as this model failed to induce endotoxin 

tolerance in blood monocytes. 

Secondly, the effects of depleting mtDNA, by treatment with ethidium bromide or 

transfection with short-interfering RNA targeted against mitochondrial transcription 

factor A, on immunity were measured. THP-1 cells with mtDNA depletion displayed the 

key phenotypic feature of deactivated septic monocytes, a decreased LPS-induced 

release of the pro-inflammatory cytokine tumour necrosis factor-α. Furthermore, there 

were significant alterations in the nuclear transcriptome of mtDNA-depleted THP-1 

cells, with a particular inhibition of key innate immune signalling pathways and a 

marked blunting of the transcriptomic response to LPS. 

These investigations confirm that there are complex but vital links between 

mitochondria and innate immunity. Compensatory responses following an 

inflammatory insult include the simultaneous induction of mitochondrial biogenesis 

and shift to an anti-inflammatory phenotype. Moreover, when sepsis disrupts 

mitochondrial homeostasis the negative effects of mtDNA depletion on innate 

immunity may exacerbate monocyte immune deactivation. Further investigations 

should focus on exploring the fundamental processes coupling mitochondria with 

immunity and confirming these findings in blood monocytes during sepsis.
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Chapter 1 Introduction 

1.1 Overview 

This chapter provides a detailed review of the themes explored in this PhD thesis. It 

begins with an overview of sepsis and the evidence for the role of immune 

suppression, in particular deactivation of blood monocytes, in adverse clinical 

outcomes in septic patients. Following this the different aspects of mitochondrial 

dysfunction that are associated with sepsis are detailed, including the evidence for 

these processes occurring in septic monocytes. Next, the potential importance of 

restoring mitochondrial function, through a combination of mitochondrial biogenesis 

and mitophagy, in the recovery from sepsis is explored. Finally the potential links 

between immune suppression, mitochondrial dysfunction and the compensatory 

responses triggered by sepsis are discussed. 

1.2 The clinical problem of sepsis 

While infectious diseases remain a major cause of premature mortality worldwide, 

advances in their prevention and treatment have substantially reduced the burden of 

infection in the developed world (Lozano et al., 2012). However, such improvements 

have not translated into significantly better outcomes when an infection results in 

sepsis. Sepsis occurs when an infection triggers a systemic inflammatory response 

(Levy et al., 2003). It is frequently complicated by organ dysfunction, the presence of 

which indicates severe sepsis. Septic shock is the most serious manifestation of sepsis 

and is characterised by the development of circulatory failure that is unresponsive to 

fluid resuscitation (Annane et al., 2005). 

Large epidemiological studies indicate that sepsis is a common and growing cause of 

critical illness which results in considerable morbidity and mortality (Vincent et al., 

2006; Vincent et al., 2014). It has been reported that sepsis is responsible for 29.5% of 

admissions to critical care units across the world, including 28.7% of admissions in the 

United Kingdom (Harrison et al., 2006; Vincent et al., 2014). In the United States a 

longitudinal analysis indicated that there was an annual increase of 8.7% in the 

incidence of sepsis between 1979 and 2000 (Martin et al., 2003). In 2004 the mortality 

rate for patients with severe sepsis in the United Kingdom was estimated to be 44.7% 
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while the 2014 international study found an in-hospital mortality rate of 35.6% 

(Harrison et al., 2006; Vincent et al., 2014). The modest improvements in sepsis 

outcomes in recent years have been outstripped by the rising incidence so that the 

number of deaths due to sepsis continues to increase (Martin et al., 2003). Moreover, 

survivors often have an incomplete recovery, with the sepsis illness causing long term 

adverse effects on quality of life and life expectancy (Yende and Angus, 2007). 

The current international guidelines for the management of sepsis focus on the two 

interventions which have been proven to improve survival; early resuscitation and the 

timely administration of broad spectrum antibiotics (Rivers et al., 2001; Kumar et al., 

2006; Dellinger et al., 2008; Peake et al., 2014). Despite numerous clinical trials there 

are few other therapies with any proven benefits (Russell, 2006). In addition to the 

stubbornly high mortality rates, the increasing challenge of managing infections due to 

antibiotic resistant micro-organisms, combined with the scarcity of new antibiotics in 

the drug development pipeline, highlight the importance of developing novel 

treatments for sepsis (Davies, 2013). However, it is clear that the development of 

interventions that can effectively improve the prognosis of critically ill septic patients 

requires an improved understanding of the fundamental pathophysiology of sepsis 

(Monneret et al., 2008). 

1.3 Immune dysfunction in sepsis 

Rather than the direct effects of the invading pathogen, the host inflammatory 

response to an infection appears to be the most critical determinant of the clinical 

course of sepsis (Kox et al., 2000). Pattern recognition receptors (PRRs) on the surface 

of innate immune cells recognise conserved pathogen-associated molecular patterns 

(PAMPs) on invading micro-organisms and trigger an immune response (van der Poll 

and Opal, 2008). Recognition of PAMPs activates pro-inflammatory responses aimed at 

attracting and activating other immune cells and controlling the infection. In sepsis this 

initial inflammatory response can become excessive and dysregulated, leading to 

tissue damage, organ dysfunction and circulatory failure (Rittirsch et al., 2008). As a 

result, a number of therapeutic interventions aimed at attenuating inflammatory 

responses in sepsis have been trialled. Nonetheless, these interventions, which often 

involve trying to inhibit the action of specific pro-inflammatory cytokines, have failed 
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to produce any significant impact on patient outcomes (Kox et al., 2000). Despite the 

absence of effective immunomodulatory interventions, improvements in supportive 

care mean that more patients are surviving this early phase of sepsis (Hotchkiss et al., 

2013a). 

In addition to triggering pro-inflammatory responses, recognition of PAMPs by innate 

immune cells simultaneously initiates compensatory anti-inflammatory responses 

aimed at limiting tissue damage (Schefold et al., 2008a). These anti-inflammatory 

responses may also become excessive and lead to a prolonged state of immune 

deactivation in which the host is unable to clear the primary infection and is vulnerable 

to developing secondary hospital-acquired infections (Hotchkiss et al., 2009). The 

majority of deaths in sepsis occur later in the course of the illness and are associated 

with evidence of immune deactivation (Hotchkiss et al., 2013a). 

There is increasing evidence from clinical studies of the importance of immune 

deactivation in sepsis. A post mortem study of 235 patients dying due to post-surgical 

sepsis found an unresolved septic focus, despite appropriate antibiotic therapy, in the 

majority of patients (Torgersen et al., 2009). Other studies have found that a 

significant proportion of previously immune competent critically ill patients will have 

evidence of reactivation of latent viral infections and that this is associated with 

prolonged hospitalisation and increased mortality (Luyt et al., 2007; Limaye et al., 

2008). In addition, in an analysis of 464 consecutive patients presenting with fever the 

presence of an anti-inflammatory cytokine profile on admission was associated with 

increased mortality (Van Dissel et al., 1998). Smaller studies have also indicated that a 

reduced ability to secrete pro-inflammatory cytokines in response to an ex-vivo 

inflammatory stimulus can predict mortality in children and adults with sepsis (Heagy 

et al., 2003; Hall et al., 2013). 

The exact balance between pro- and anti-inflammatory responses in a particular 

individual with sepsis depends on a number of factors, including the time course of the 

infection, pathogen virulence, host genetics and the presence of co-morbid diseases 

(Skrupky et al., 2011). Thus, effective interventions to alter host responses in sepsis 

need to be targeted to the prevailing inflammatory state of the individual (Monneret 

et al., 2008). Given the significant morbidity and mortality related to immune 

deactivation in sepsis, the development of novel immune stimulating interventions 
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have the potential to produce significant improvements in outcomes of patients with 

evidence of immune suppression (Hotchkiss et al., 2013a). 

1.4 Blood monocytes and sepsis 

The precise mechanisms underlying immune deactivation in sepsis are not completely 

understood. There is evidence of generalised deactivation of innate and adaptive 

immunity with increased apoptosis and hypo-responsiveness of lymphocytes, a shift in 

cytokine release towards an anti-inflammatory profile and impairment of monocyte 

function (Hotchkiss and Karl, 2003). In particular, this deactivation of blood monocytes 

appears to play an important role in the aetiology of sepsis-induced immune paralysis. 

1.4.1 Monocyte functions 

Monocytes are bone marrow-derived innate immune cells which represent 5-10% of 

circulating leukocytes and persist in the peripheral blood for several days (Gordon and 

Taylor, 2005). While monocytes ultimately differentiate to supply tissues with 

macrophages and dendritic cells, during an infection they perform a number of 

additional important effector functions (Serbina et al., 2008). Monocytes limit an 

infection by acting as phagocytic cells to ingest pathogens and scavenge toxins (Hume, 

2006). Furthermore, through the release of cytokines and the presentation of antigens, 

monocytes play a key role in the co-ordination of innate immunity and the stimulation 

of lymphocytes to trigger adaptive immune responses targeted at the specific invading 

pathogen (Geissmann et al., 2008; Auffray et al., 2009). 

There are three main subtypes of monocytes based on the surface expression of 

cluster of differentiation-14 (CD14, a component of the lipopolysaccharide (LPS) 

receptor complex) and CD16 (the FcγRIII immunoglobulin receptor); classical 

(CD14++CD16-), intermediate (CD14++CD16+) and non-classical (CD14+CD16++) 

monocytes (Ziegler-Heitbrock et al., 2010). In blood the majority are classical 

monocytes which have a predominantly phagocytic phenotype (Serbina et al., 2008). 

Non-classical monocytes have an increased ability to produce pro-inflammatory 

cytokines and present antigens, while intermediate monocytes form a small proportion 

of blood monocytes and have a transitional phenotype (Mukherjee et al., 2015). 

Several small observational studies have indicated that there is a significant expansion 

of pro-inflammatory non-classical monocytes in patients with severe sepsis (Fingerle et 
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al., 1993; Schinkel et al., 1998; Schinkel et al., 1999; Mukherjee et al., 2015). However, 

the exact proportion and phenotype of monocyte subsets in sepsis appears to vary 

depending on the nature of the infection and the underlying conditions within the 

tissues (Strauss-Ayali et al., 2007; Colo Brunialti et al., 2012). 

1.4.2 THP-1 cells as model of blood monocytes 

Rather than primary blood monocytes, THP-1 cells are used in the majority of the 

investigations presented in this thesis. The THP-1 cell line was isolated and cultured 

from the blood of a male infant with acute monocytic leukaemia over 30 years ago 

(Tsuchiya et al., 1980). These cells have similar morphology, surface antigens and 

secretory products to blood monocytes and display more mature monocyte markers 

than other similar cell lines (Altieri and Edgington, 1988; Auwerx, 1991). Due to their 

stability and homogeneity and the difficulty of isolating blood monocytes in large 

numbers, THP-1 cells are frequently used to investigate monocyte functions in disease 

models (Qin et al., 2014). In particular, THP-1 cells are useful in the study of 

inflammatory conditions as they have similar gene expression and cytokine release 

profiles to monocytes following stimulation with PRR ligands, including LPS from the 

outer membrane of Gram negative bacteria (Perez-Perez et al., 1995; Sharif et al., 

2007). 

1.4.3 Monocyte deactivation in sepsis 

A large number of observational clinical studies have found an association between 

evidence of monocyte deactivation and the risk of adverse outcomes in patients with 

sepsis. In general, deactivated monocytes are identified by the detection of either 

functional or phenotypic biomarkers of immune suppression. The two most commonly 

identified features of dysfunctional monocytes in sepsis are discussed below. 

1. Reduced ex-vivo release of tumour necrosis factor-α (TNFα) by septic monocytes. 

TNFα, a pro-inflammatory cytokine produced by monocytes and macrophages, acts as 

a central regulator of the inflammatory response to an infection through nuclear 

factor-κB (NF-κB)-mediated activation of inflammatory gene expression (Aggarwal et 

al., 2012). Tnfa-/- knockout mice have an increased susceptibility to bacterial infection 

and clinical trials of TNFα inhibition in patients with sepsis have failed to show 

significant benefits (Fisher Jr et al., 1996; Pasparakis et al., 1996; Reinhart and Karzai, 
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2001). It has been consistently shown that the release of TNFα in response to an ex 

vivo stimulation with LPS is significantly impaired in monocytes isolated from patients 

with sepsis (Sfeir et al., 2001; Cavaillon and Adib-Conquy, 2007; Monneret et al., 2008). 

Furthermore, small observational studies have indicated that there is both a greater 

reduction in LPS-induced TNFα release and a failure to increase TNFα production over 

the course of the illness in non-surviving sepsis patients compared to survivors (Munoz 

et al., 1991; Ploder et al., 2006). In a study of 70 septic children, a decrease in TNFα 

release in response to LPS by monocytes was strongly associated with the risk of 

persistent nosocomial infection and death (Hall et al., 2011). These researchers also 

carried out an innovative pilot study in which 7 children had restoration of ex vivo LPS-

induced TNFα release and suffered no episodes of nosocomial infection after 

treatment with granulocyte-macrophage colony stimulating factor (GM-CSF), a 

cytokine that enhances many monocyte functions. 

2. Decreased surface expression of human leukocyte antigen-DR (HLA-DR). 

A reduction in the expression of HLA-DR, a class II major histocompatibility complex 

(MHC) protein involved in antigen presentation to lymphocytes, has also been 

identified as a biomarker of monocyte deactivation (Monneret et al., 2008). In 153 

patients with septic shock decreased monocyte HLA-DR expression was found to be 

strongly correlated with an increased risk of developing nosocomial infections 

(Landelle et al., 2010). Longitudinal studies have shown that mortality is increased in 

septic patients with low monocyte HLA-DR and that a failure to recover HLA-DR 

expression during the sepsis illness is also associated with non-survival (Monneret et 

al., 2006; Wu et al., 2011). In a pilot intervention study 9 septic patients with low 

monocyte HLA-DR were treated with the potent monocyte activator interferon-γ (IFNγ) 

and had stabilisation in their clinical condition in association with recovery of both 

monocyte HLA-DR expression and LPS-induced TNFα release (Döcke et al., 1997). 

Similarly, a randomised, placebo-controlled trial of 38 patients with low monocyte 

HLA-DR and severe sepsis found that treatment with GM-CSF resulted in normalisation 

of HLA-DR expression and pro-inflammatory cytokine production by monocytes and 

resulted in shorter length of mechanical ventilation and hospitalisation (Meisel et al., 

2009). 
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Thus, there is considerable evidence that patients with sepsis-induced monocyte 

immune deactivation are more likely to have adverse clinical outcomes. However, 

these observational clinical studies do not assess the underlying mechanisms behind 

monocyte deactivation in sepsis. There have been suggestions that effects of anti-

inflammatory cytokines, an impairment of chemotaxis or an unresponsiveness to co-

stimulation by helper T-lymphocytes may be implicated (Sfeir et al., 2001; Pachot et 

al., 2008; Sinistro et al., 2008; Xu et al., 2012). Alternatively, an emerging possibility is 

that monocyte deactivation may be caused by sepsis-induced depletion and 

dysfunction of their mitochondria. 

1.5 Mitochondrial biology 

Mitochondria are double-membrane organelles that carry out several critical cellular 

functions. They are involved in calcium homeostasis, cell signalling pathways, 

apoptosis regulation and the biosynthesis of a number of essential compounds (West 

et al., 2011b; Greaves et al., 2012). However, the primary role of mitochondria is in the 

generation of cellular energy in the form of adenosine triphosphate (ATP), a process 

which occurs at five enzyme complexes on the inner mitochondrial membrane 

(DiMauro and Schon, 2003) (Figure 1.1). Through the oxidation of electron carriers 

these complexes generate an electrochemical gradient across the inner mitochondrial 

membrane which drives the synthesis of ATP. This process is termed oxidative 

phosphorylation (OXPHOS) and utilises over 90% of cellular oxygen (Qian and Van 

Houten, 2010). 
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Figure 1.1 Schematic diagram of the mitochondrial oxidative phosphorylation 
system. At five enzyme complexes on the inner mitochondrial membrane the 
oxidation of the electron donors nicotinamide adenine dinucleotide (NADH) and 
succinate, which are formed in the breakdown of glucose, fats and amino acids, 
is coupled to the phosphorylation of adenine diphosphate (ADP) to produce 
energy in the form of ATP. Step-wise redox reactions lead to the transfer of 
electrons to complex IV which reduces molecular oxygen to water. During this 
process complexes I, III and IV actively pump protons from the mitochondrial 
matrix into the inter-membrane space. The resultant proton gradient across the 
inner mitochondrial membrane drives the generation of ATP by ATP synthase 
(complex V). The diagram includes; I – NADH dehydrogenase, II – succinate 
dehydrogenase, III – cytochrome bc1 complex, IV – cytochrome c oxidase, Q – 
ubiquinone, CytC – cytochrome C, navy arrows – electron transfer, red arrows – 
proton transfer. This figure is adapted from (Brealey and Singer, 2003). 

Uniquely among animal cell organelles, each mitochondrion contains multiple copies 

of its own genome in the form of circular mitochondrial DNA (mtDNA) (Chandel and 

Schumacker, 1999). The vast majority of mitochondrial proteins are encoded by 

nuclear genes but mtDNA encodes 13 essential subunits of the OXPHOS complexes in 

addition to the RNA required for the translation of these genes within the 

mitochondrion (Chinnery and Hudson, 2013). Deletions and mutations in mtDNA cause 

a variety of human diseases that preferentially affect tissues with high metabolic 

requirements, such as neurones and skeletal muscle (DiMauro and Schon, 2003). The 

accumulation of mtDNA defects over time is also thought to contribute to the ageing 

process and be involved in the pathogenesis of neurodegenerative diseases (Greaves 

et al., 2012). Experimental decreases in mtDNA copy number compromise 

mitochondrial respiration leading to a dependence on anaerobic metabolism and 
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ultimately to impaired cellular functions (Chandel and Schumacker, 1999; Jeng et al., 

2008). 

1.6 Mitochondrial dysfunction in sepsis 

In clinical studies and animal models assessing sepsis and critical illness there is 

extensive evidence of mitochondrial dysfunction in a wide range of tissues and cell 

types, including monocytes. The adverse effects of sepsis on mitochondria are 

manifested in a number of ways. 

1.6.1 Mitochondrial respiratory dysfunction in sepsis 

The findings from a range of clinical studies and animal sepsis models suggest that 

mitochondrial respiration may be compromised during severe sepsis. It has been 

shown that septic tissues have reduced oxygen consumption and ATP generation 

despite the presence of an adequate oxygen supply, a condition termed cellular 

dysoxia (Levy and Deutschman, 2007; Singer, 2007). The mechanisms underlying this 

loss of respiratory activity are not fully understood, although inhibition of OXPHOS 

complexes by reactive oxygen and nitrogen species and alterations in the availability of 

respiratory substrates have been implicated (Jeger et al., 2013; Saeed and Singer, 

2013). 

In a novel experimental medicine study the expression of genes involved in ATP 

generation during mitochondrial OXPHOS was found to be down-regulated when the 

transcriptome of 8 healthy volunteers was analysed at serial time points following the 

administration of intravenous LPS (Calvano et al., 2005). These findings are consistent 

with an earlier clinical study which found that muscle biopsies from septic patients had 

significantly reduced mitochondrial respiratory activity, as evidenced by decreased ATP 

levels and OXPHOS complex I activity, with a particularly severe impairment measured 

in those who were ultimately non-survivors (Brealey et al., 2002). Similarly, 

mitochondrial mass, complex I activity and ATP levels were all significantly lower in 

muscle biopsies from 10 patients with sepsis and multi-organ failure compared to 10 

matched controls (Fredriksson et al., 2006). In addition, a larger study revealed that 

198 severe sepsis patients had significantly reduced platelet OXPHOS complex IV 

activity throughout the first week of illness compared to 96 age-matched controls 

(Lorente et al., 2015). The same authors had also previously shown that patients 
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surviving severe sepsis had higher platelet complex IV activity which increased over the 

course of the illness when compared to non-survivors (Lorente et al., 2014). 

In several small observational clinical studies mitochondrial respiration has also been 

shown to be compromised in monocytes from septic patients. A study of 19 patients 

with sepsis found that peripheral blood mononuclear cells (PBMCs, predominantly 

monocytes and lymphocytes) had a significant impairment of oxygen consumption and 

mitochondrial OXPHOS complex I, II and IV activity, effects that were reproduced by 

exposing healthy PBMCs to serum from the sepsis patients (Garrabou et al., 2012). 

Elsewhere, PBMCs isolated from 20 patients with septic shock had decreased 

mitochondrial respiration due to impaired complex V activity and this dysfunction was 

associated with an increased risk of organ failure and death (Japiassú et al., 2011). 

Similarly, a further study found that monocytes from 18 patients with severe sepsis 

had both impaired mitochondrial respiration and decreased HLA-DR expression 

(Belikova et al., 2007). 

1.6.2 Mitochondria and oxidative stress in sepsis 

Sepsis-induced OXPHOS dysfunction is also associated with excessive mitochondrial 

reactive oxygen species (ROS) production (Galley, 2011). Mitochondria are the major 

source of cellular ROS production due to reactions between molecular oxygen and 

electrons leaking from OXPHOS complexes I, II and III (West et al., 2011b). 

Mitochondrial ROS are required for a number of cell signalling processes and for 

bacterial killing by phagocytes, but excessive production can overwhelm antioxidant 

defences and lead to oxidative stress (Galley, 2011; West et al., 2011a; West et al., 

2011b). There is considerable evidence that generalised oxidative stress is present in 

patients with sepsis, with both animal and cell culture sepsis models confirming that 

this is linked to the induction of mitochondrial respiratory dysfunction (Crimi et al., 

2006; Andrades et al., 2011; Drabarek et al., 2012; Cherry et al., 2014). Furthermore, 

ROS-mediated oxidative damage to OXPHOS complexes and mtDNA may then 

exacerbate mitochondrial dysfunction, leading to further oxidative stress and, 

ultimately, to the induction of cell death by apoptosis (Brealey and Singer, 2003; Lee et 

al., 2012). 
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1.6.3 Depletion of mtDNA in sepsis 

As well as causing impairment of mitochondrial respiratory function and excessive 

mitochondrial ROS production, sepsis may also lead to damage and depletion of 

mtDNA. As mtDNA lacks protective histones, has limited capacity for repair and is 

directly exposed to mitochondrial ROS generated by dysfunctional OXPHOS complexes, 

it is particularly vulnerable to oxidative damage (Lee and Wei, 2005). A mouse model 

of sepsis involving intra-peritoneal administration of LPS found that the resultant 

oxidative damage to mtDNA in hepatocytes lead to specific mtDNA deletions and a 

reduction in mtDNA copy number (Suliman et al., 2003a). In 28 critically ill patients a 

clinical longitudinal study found that whole blood mtDNA copy number was 

significantly reduced compared to controls and that persistent mtDNA depletions were 

strongly associated with increased mortality (Côté et al., 2007). A subgroup analysis in 

a larger observational study of 147 patients with sepsis identified a more specific 

significant decrease in mtDNA copy number in monocytes and lymphocytes, the 

degree of which correlated with the severity of the sepsis illness (Pyle et al., 2010). 

1.6.4 Mitochondria and inflammasome formation 

While sepsis may lead to impairment of mitochondrial functions and mtDNA depletion, 

it has become apparent that the persistent presence of damaged and dysfunctional 

mitochondria can, in turn, act as a potent stimulus for on-going inflammation. 

Dysfunctional mitochondria may become more permeable and release their contents 

into the cytosol (Kepp et al., 2011). Mitochondria contain two bacterial molecular 

signatures that act as damage-associated molecular patterns (DAMPs); hypo-

methylated cytosine-phosphate-guanine repeats in mtDNA and the formylated N-

terminals of mitochondrial proteins (Manfredi and Rovere-Querini, 2010). In the 

cytosol these mitochondrial DAMPs bind to intracellular PRRs to promote the 

formation of the nucleotide-binding oligomerisation domain-like receptor, pyrin 

domain containing-3 (NLRP3) inflammasome, a protein scaffold that facilitates the 

release of the pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18 (Escames et 

al., 2012). 

Furthermore, mitochondrial DAMPs may be released from damaged cells, for example 

during trauma or chronic inflammation, and activate innate immune cells to trigger 
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brisk inflammatory responses (Cossarizza et al., 2011; Zhao et al., 2014). Observational 

studies in patients with sepsis and critical illness have found elevated levels of 

mitochondrial DAMPs in plasma, the magnitude of which is associated with the 

presence of multi-organ dysfunction and a higher risk of mortality (Kung et al., 2012; 

Simmons et al., 2013) The pro-inflammatory effect of extracellular mitochondrial 

DAMPs has been highlighted in animal models in which their systemic administration 

leads to the activation and degranulation of neutrophils and induction of a systemic 

inflammatory response that results in cardiovascular collapse (Zhang et al., 2010; 

Wenceslau et al., 2015). In addition, incubation of primary human monocytes with a 

combination of mitochondrial peptides also leads to immune activation and stimulates 

the release of pro-inflammatory cytokines (Crouser et al., 2009). Conversely, other 

studies have indicated that longer exposures to mitochondrial DAMPs may actually 

suppress innate immune responses to subsequent inflammatory stimuli, including LPS-

induced TNFα release by human monocytes (Fernández-Ruiz et al., 2014; Zhao et al., 

2014). These findings suggests that the release of mitochondrial DAMPs during sepsis 

may both exacerbate initial exuberant inflammatory responses and also, if sustained, 

contribute to immune deactivation later in the course of the illness. 

1.7 The role of mitochondria in the recovery from sepsis 

During sepsis there is evidence of mitochondrial OXPHOS dysfunction, excessive 

mitochondrial ROS production and mtDNA depletion, while the presence of 

dysfunctional mitochondria can modulate inflammatory responses. In order to 

compensate for these adverse effects cells must be able to selectively remove 

dysfunctional organelles and generate new mitochondria to replace them. This 

compensatory response occurs by the coordinated induction of mitophagy and 

mitochondrial biogenesis (López-Armada et al., 2013). 

1.7.1 Mitochondrial biogenesis 

Mitochondrial biogenesis is a highly dynamic process during which pre-existing 

mitochondria grow and divide. It requires the coordinated expression and interaction 

of a number of mitochondrial genes encoded by both nuclear DNA and mtDNA (Lee 

and Wei, 2005). Alterations in physiological conditions or cellular energy requirements 

trigger a complex network of hormones and signalling pathways that lead to the 
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expression of a number of mitochondrial transcription factors (Weitzel and Alexander 

Iwen, 2011). Peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α) 

acts as a master regulator of mitochondrial biogenesis through the induction of 

nuclear transcription factors such as nuclear respiratory factors 1 and 2 (NRF-1 and -2) 

(Lee and Wei, 2005; Crouser, 2010). These transcription factors promote the 

expression of nuclear genes the products of which form essential mitochondrial 

constituents or act to influence important mitochondrial functions. In turn, the 

replication of mtDNA is controlled by mitochondrially-targeted proteins encoded on 

the nuclear genome, including polymerase-γ (POLG), the DNA polymerase responsible 

for mtDNA replication, and mitochondrial transcription factor A (TFAM), which directly 

interacts with mtDNA to promote replication and the transcription of mtDNA-encoded 

genes (Kang et al., 2007). 

There are an increasing number of diverse studies in animal models which indicate 

that expanding the mitochondrial population is an important process in promoting 

survival and recovery from sepsis. In one highly innovative study the intra-tracheal 

instillation of bone marrow derived stromal cells increased alveolar ATP generation 

and protected against LPS-induced acute lung injury through the direct transfer of 

mitochondria to alveolar epithelial cells (Islam et al., 2012). Elsewhere, the recovery of 

metabolic function and mtDNA copy number in hepatocytes was found to be 

dependent on the sustained expression of the activators of mitochondrial biogenesis in 

a murine model of bacterial peritonitis (Haden et al., 2007). In addition, up-regulation 

of PGC-1α expression has been shown to promote recovery from LPS-induced acute 

kidney injury in mice and the restoration of mitochondrial and cellular function 

following oxidant injury in rabbit renal proximal tubular cells (Rasbach and 

Schnellmann, 2007; Tran et al., 2011).  

In animal sepsis models the induction of mitochondrial biogenesis appears to be 

directly triggered by the binding of ligands to PRRs and the resultant activation of 

inflammatory signalling pathways (Drabarek et al., 2012). Mice treated with a sub-

lethal dose of heat-killed Escherichia coli were found to have an initial loss of mtDNA 

and mitochondrial proteins, which was rapidly reversed following the activation of 

mitochondrial biogenesis in a process dependent on the stimulation of toll-like 

receptor-4 (TLR-4, the PRR for LPS) (Reynolds et al., 2009). Similarly, after exposure to 
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Staphylococcus aureus Tlr-2-/- and Tlr-4-/- knock-out mice had increased mortality in 

association with a diminished induction of PGC-1α expression and persistent mtDNA 

depletion (Sweeney et al., 2010). In another study pharmacological inhibition of the 

inflammatory transcription factor NF-κB significantly delayed the increases in NRF-1, 

TFAM and mtDNA copy number that occurred in response to LPS-induced 

inflammation in mice and also in human cell lines (Suliman et al., 2010). 

In contrast to these animal studies, the evidence for mitochondrial biogenesis 

induction in human patients with sepsis is less well established. A study of 16 muscle 

biopsies from patients with sepsis-induced multi-organ failure showed that the 

survivors had early increases in expression of PGC-1α and mitochondrial antioxidants 

(Carré et al., 2010). However, a similar investigation looking at muscle cell 

transcriptome revealed that incomplete and uncoordinated expression of 

mitochondrial transcription factors and genes during critical illness may lead to a 

failure to maintain adequate mitochondrial function (Fredriksson et al., 2008). 

Additional longitudinal studies will, therefore, be important to clarify the precise role 

of mitochondrial biogenesis, particularly in human monocytes, during the recovery of 

critically ill patients following an inflammatory insult. 

1.7.2 Mitophagy 

Through encapsulation in an autophagosome and subsequent lysosomal degradation, 

damaged and dysfunctional cellular contents are catabolised during autophagy (Lee et 

al., 2012). Mitophagy is a specialised form of autophagy which involves the removal of 

mitochondria from a cell in response to developmental demands or in order to 

maintain quality control (Youle and Narendra, 2011). Dysfunctional mitochondria, 

particularly those generating excessive ROS or with depolarisation of the mitochondrial 

membrane potential (Δψm, generated by the transport of protons across the inner 

mitochondrial membrane during OXPHOS), are selectively targeted for mitophagy by 

the accumulation of phosphatase and tensin homologue-induced putative kinase-1 

(PINK1) which leads to the recruitment of the mitophagy activator Parkin (Narendra et 

al., 2008; Frank et al., 2012; Gilkerson et al., 2012; Hill et al., 2012). 

There is emerging evidence that mitophagy is a critical compensatory response in 

sepsis. In general there is a lack of clinical data from human patients with sepsis; 
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although one study found that PINK1 levels were higher (suggesting increased 

mitophagy) in PBMCs from 8 septic patients compared to 14 critically ill controls 

(Mannam et al., 2014). This is consistent with murine models in which a septic insult 

has been found to lead to the induction of mitophagy in association with the recovery 

of mitochondrial function (Carchman et al., 2013; Chang et al., 2015). Conversely, in a 

rabbit model of critical illness non-survivors had evidence of inadequate autophagy 

alongside increased organ damage and a greater impairment of mitochondrial 

respiration (Gunst et al., 2013). Other studies have indicated that inhibiting autophagy 

leads to the accumulation of damaged mitochondria and the persistence of oxidative 

stress following an inflammatory stimulus (Nakahira et al., 2011; Zhou et al., 2011; 

Motori et al., 2013). Furthermore, defective or inhibited mitophagy may also result in a 

failure to clear the mitochondrial DAMPs arising from dysfunctional mitochondria, 

which can exacerbate inflammation due to an increase in NLRP3 inflammasome 

formation (Nakahira et al., 2011; van der Burgh et al., 2014). 

Murine sepsis models also suggest that the induction of mitophagy is closely 

integrated with the activation of mitochondrial biogenesis following an inflammatory 

insult. After an intra-abdominal Staphylococcus aureus infection there was concurrent 

up-regulation of mitophagy and the transcription of the key biogenesis regulators Pgc-

1α and Tfam in the pulmonary tissue of mice (Chang et al., 2015). Elsewhere, after 

both caecal ligation and puncture (CLP) and LPS exposure, mice in which the resultant 

contemporaneous induction of mitophagy and mitochondrial biogenesis was blunted 

had a higher mortality (Mannam et al., 2014). Separately, the simultaneous activation 

of mitophagy and mitochondrial biogenesis occurring after either CLP or treatment 

with LPS has been shown to be abolished by inhibiting TLR-4 signalling (Carchman et 

al., 2013). Intriguingly, this study also suggests that the presentation of mtDNA to the 

intracellular PRR TLR-9 during mitochondrial degradation may activate mitochondrial 

biogenesis, as inhibiting either mitophagy or TLR-9 signalling prevented the LPS-

induced up-regulation of PGC-1α, NRF-1 and TFAM. 

Thus, there is growing evidence from animal models to suggest that mitophagy is an 

essential part of the adaptive response to sepsis which is closely integrated with 

mitochondrial biogenesis. However, there is a clear need for clinical studies in order to 

confirm the relevance of these findings to human sepsis. 
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1.8 Integration of compensatory responses and inflammation in sepsis 

The recovery from sepsis and restoration of cellular functions requires the coordinated 

activation of a number of compensatory responses. These include the induction of 

anti-inflammatory cytokine production to promote tissue repair, antioxidant defences 

to protect against oxidative stress, and recovery of mitochondrial function through 

mitophagy and mitochondrial biogenesis. While the regulation of these responses is 

not completely understood, there is emerging evidence that they may share 

fundamental common processes. In the following sections, two potential mechanisms 

that may link these compensatory responses during sepsis are reviewed in more detail. 

1.8.1 Redox-sensitive pathways and compensatory responses during sepsis 

In mouse models the induction of both mitochondrial biogenesis and mitophagy 

appear to be intrinsically linked to the activation of other fundamental homeostatic 

pro-survival responses, including anti-inflammatory cytokine release, through redox-

sensitive pathways (Piantadosi and Suliman, 2012). Haem-oxygenase-1 (HO-1) is an 

inducible antioxidant enzyme which, through the production of carbon monoxide (CO) 

during haem detoxification, can stimulate the expression of the transcription factor 

nuclear factor (erythroid-derived-2)-like-2 (Nrf2) (Alam and Cook, 2003). Nrf2 has the 

ability to bind to anti-oxidant response elements on gene promoters for transcription 

factors regulating both mitochondrial biogenesis and anti-inflammatory cytokine 

production (Piantadosi et al., 2008). 

The induction of HO-1 in mouse hepatocytes and macrophages following treatment 

with LPS has been found to result in the activation of mitochondrial biogenesis, by 

PGC-1α and NRF-1, and a simultaneous shift to an anti-inflammatory phenotype that is 

characterised by increased Il-10 and decreased Tnfa expression (Piantadosi et al., 

2011). In a murine peritonitis model of sepsis inhaled CO was found to significantly 

increase survival through the up-regulation of HO-1 and Nrf2, which resulted in a 

higher mtDNA copy number and increased IL-10 release (MacGarvey et al., 2012). In 

another study, the induction of mitochondrial biogenesis following pneumonia was 

inhibited in Nrf2-/- knockout mice, resulting in increased pro-inflammatory cytokine 

release and more severe acute lung injury (Athale et al., 2012). In addition to activating 

mitochondrial biogenesis, Nrf2 may also be important in the regulation of mitophagy 
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during sepsis, with Nrf2-/- mice having a significantly impaired ability to up-regulate 

mitophagy after Staphylococcus aureus infection compared to wild-type mice (Chang 

et al., 2015). 

While the above studies suggest that HO-1/Nrf2 signalling may link mitochondrial 

biogenesis, mitophagy and anti-inflammatory cytokine production with the induction 

of antioxidant defences, it should be noted that these investigations have all been 

carried out by a single research group. The findings, therefore, require verification by 

independent investigators and subsequent validation in studies on human cells and 

patients with sepsis. 

1.8.2 Sirtuins and the link between metabolism and immunity 

Mitochondrial function and turnover may also be integrated with immunity through 

the action of a group of deacetylases termed silent information regulators (sirtuins) 

(Preyat and Leo, 2013). Through the modulation of gene expression and protein 

activity, sirtuins are involved in the regulation of multiple fundamental biological 

processes. As their deacetylase activity is dependent on the presence of the oxidised 

form of the respiratory chain co-enzyme nicotinamide adenine dinucleotide (NAD+), 

sirtuins can act as sensors of cellular energy status and link metabolism with other 

cellular processes (Parihar et al., 2015). There are seven mammalian sirtuins each of 

which have distinct principal sub-cellular locations, with nuclear SIRT1 and 

mitochondrial SIRT3 appearing to be particularly important in regulating the responses 

to an inflammatory stimulus (Liu et al., 2012b). 

Within the nucleus SIRT1 acts as a key activator of both mitochondrial biogenesis, by 

increasing the activity of PGC-1α, and autophagy in response to cellular stressors, 

including inflammation (Takeda-Watanabe et al., 2012; Brenmoehl and Hoeflich, 

2013). Furthermore, there is increasing evidence that SIRT1 also has an important role 

in the resolution of inflammation through the negative regulation of pro-inflammatory 

responses. This effect may be due to the direct inhibition of inflammatory signalling 

pathways or specific effects of SIRT1 on the transcription of pro-inflammatory genes 

(Capiralla et al., 2012; Preyat and Leo, 2013). For example, it has been shown in THP-1 

cells that TLR-4 signalling leads to a rapid accumulation of SIRT1 at the promoters of 

the genes that encode the pro-inflammatory cytokines TNFα and IL-1β, with the 
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resultant epigenetic changes leading to the inhibition of NF-κB-dependent 

transcription of these genes and reduced cytokine production (Liu et al., 2011). In a 

separate study this SIRT-1-mediated impairment of pro-inflammatory responses was 

found to occur in tandem with the induction of mitochondrial biogenesis after 

treatment of THP-1 cells with LPS, with SIRT1 inhibition leading to LPS-induced 

mitochondrial depletion and impaired cellular respiration (Liu et al., 2015). 

In addition to these effects on immunity and mitochondria, the activation of SIRT1 also 

leads to the up-regulation of SIRT3, which is the major deacetylase that is active within 

mitochondria (Liu et al., 2015). SIRT3 is required for effective mitochondrial biogenesis 

and SIRT3-mediated deacetylation reactions also enhance the function of OXPHOS 

proteins, leading to increased mitochondrial oxygen consumption (Brenmoehl and 

Hoeflich, 2013). This is illustrated by the finding that Sirt3-/- mice have an impaired 

ability to generate ATP in a variety of tissues in association with hyperacetylation of 

mitochondrial proteins, including those forming OXPHOS complex I (Ahn et al., 2008). 

SIRT3 is also critical for the compensatory responses to oxidative stress within the 

mitochondria. In HEK293 cells increased ROS levels have been shown to lead to the 

activation of the mitochondrial antioxidant SOD2 through deacetylation reactions 

catalysed by SIRT3 (Chen et al., 2011). In another study the induction of oxidative 

stress in human umbilical vein endothelial cells was found to result in the SIRT3-

mediated up-regulation of genes involved in mitochondrial biogenesis and mitophagy, 

with inhibition of SIRT3 leading to impaired mitochondrial respiration (Tseng et al., 

2013). 

Thus, the sequential activation of SIRT1 and SIRT3 following an inflammatory stimulus 

may link several compensatory responses, including mitochondrial biogenesis, 

autophagy, antioxidant defences and the down-regulation of pro-inflammatory 

cytokine production (Liu et al., 2015). At this point, the importance of sirtuins during 

sepsis has been investigated in animal models but there is very limited data on their 

role in human sepsis. Studies in animal sepsis models have indicated that activation of 

SIRT1 may limit the negative effects of inflammation. In mice the effects of ischaemic-

reperfusion injury were found to be abrogated by treatment with the SIRT1 activator 

SRT1770 due to the simultaneous induction of mitochondrial biogenesis and inhibition 

of pro-inflammatory signalling and TNFα release (Khader et al., 2014). Similarly, 
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following intraperitoneal injection with LPS, mice treated with the sirtuin activator 

resveratrol were protected against acute lung injury and produced lower levels of pro-

inflammatory cytokines, effects that were reversed by inhibiting SIRT1 (Li et al., 2013). 

Conversely, while SIRT1 activation may limit the negative effects of excessive 

inflammation, in specific situations the inhibition of SIRT1 may also be beneficial 

during sepsis. For example, treatment of mice with the SIRT1 inhibitor EX527 has been 

shown to lead to the reversal of sepsis-induced immune suppression and result in 

increased survival after CLP (Vachharajani et al., 2014). 

1.9 Sepsis, mitochondria and immunity 

The interactions between inflammation, mitochondrial dysfunction and the biogenesis 

and autophagy of mitochondria appear to be highly complex and variable (Figure 1.2). 

On the one hand, inflammatory responses can impair mitochondrial function by a 

number of mechanisms. These dysfunctional mitochondria may, in turn, be important 

in both sustaining excessive inflammatory responses and in the inhibition of cellular 

functions. On the other hand, signalling pathways activated following an inflammatory 

stimulus also appear to simultaneously initiate a range of compensatory mechanisms 

aimed at maintaining cell viability during stress conditions. In addition to the induction 

of anti-inflammatory responses and antioxidant defences, there is a coordinated up-

regulation of mitophagy and mitochondrial biogenesis which leads to the selective 

removal and replacement of dysfunctional mitochondria. While these processes are 

associated with the recovery from an inflammatory insult, the sustained stimulation of 

mitochondrial biogenesis during conditions of on-going mitochondrial damage such as 

sepsis could also contribute to immune suppression through the concomitant 

promotion of excessive anti-inflammatory cytokine release or the prolonged inhibition 

of pro-inflammatory cytokine production (Piantadosi and Suliman, 2012). 

Investigations which explore the links between the effects of both inflammatory and 

compensatory responses on mitochondria and immunity in human monocytes will 

provide valuable insights into the importance of changes to the function and turnover 

of mitochondria in sepsis-induced monocyte deactivation. 
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Figure 1.2 A summary of the potential interactions between inflammation, 
mitochondria and compensatory responses in monocytes during sepsis. 
Recognition of PAMPs by PRRs simultaneously triggers both inflammatory and 
compensatory pro-survival responses. Inflammation can produce negative 
effects in mitochondria including impairment of respiration, excessive ROS 
production and depletion of mtDNA, which can result in cellular dysfunction. In 
addition the release of mitochondrial DAMPs can trigger further inflammation. 
Compensatory responses involve the co-ordinated stimulation of anti-oxidant 
and anti-inflammatory responses along with the selective removal and 
replacement of dysfunctional mitochondria through mitophagy and 
mitochondrial biogenesis. These responses are aimed at mitigating the effects of 
excessive inflammation and mitochondrial dysfunction in order to allow recovery 
of cell functions and survival. Monocyte immune deactivation in sepsis may 
result from the effects of mitochondrial damage and respiratory impairment 
which lead to cellular dysfunction. However, excessive compensatory anti-
inflammatory responses triggered, in association with mitochondrial biogenesis, 
by on-going PRR stimulation and mitochondrial damage may also exacerbate the 
impairment of monocyte immune responses.
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1.10 Conclusion 

Sepsis is an increasing problem in which much of the morbidity and mortality occurs in 

patients with evidence of immune suppression. In particular, immune deactivation in 

blood monocytes appears to be critical and is consistently associated with inferior 

clinical outcomes in septic patients. There is widespread evidence of mitochondrial 

dysfunction and depletion of mtDNA in sepsis, including in monocytes. In addition, it is 

increasingly apparent that the coordinated stimulation of mitochondrial biogenesis 

and mitophagy is important in the recovery from sepsis. These processes appear to be 

initiated by inflammatory signalling and may also be integrated with the activation of 

both antioxidant defences and the anti-inflammatory responses that can exacerbate 

immune suppression. An improved understanding of the relationship between 

inflammatory responses and mitochondrial function and turnover in monocytes may 

provide important insights into the mechanisms leading to immune deactivation in 

monocytes. Ultimately, this has the potential to identify novel therapies that can 

stimulate the innate immune system and improve clinical outcomes in septic patients 

with deactivated monocytes.
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Chapter 2 Aims and Objectives 

2.1 Overview 

This chapter begins with a statement of the fundamental research hypotheses before 

listing the principal aims and objectives that are addressed in the remaining chapters 

of this thesis. 

2.2 Hypothesis 

After separate findings of impaired immune responses and reduced mtDNA copy 

number in blood monocytes during sepsis, this thesis aims to address the overarching 

hypothesis that mtDNA depletion is an important process in the pathophysiology 

underlying immune deactivation in human monocytic cells. More specifically, the 

following four hypotheses will be tested; 

1. THP-1 cells with immune deactivation will also have evidence of mtDNA 

depletion and mitochondrial respiratory dysfunction. 

2. Following an inflammatory insult there will be a regulated induction of 

compensatory responses, which include mitochondrial biogenesis and 

mitophagy, in THP-1 cells. 

3. Depleting mtDNA will lead to an impaired ability of THP-1 cells to produce 

immune responses, in a similar manner to the immune deactivation seen in 

septic monocytes. 

4. There will be significant alterations in the expression of nuclear genes, 

particularly those involved in inflammatory and immune signalling pathways, in 

THP-1 cells following mtDNA depletion. 

2.3 Aims and Objectives 

Two main approaches will be used to explore the relationship between mitochondria 

and immunity in THP-1 cells and blood monocytes. Firstly, in Chapter 4 and Chapter 5 

the effect of inducing a state of immune deactivation on the mitochondrial functions 

of monocytic cells will be assessed. These experiments will have the following principal 

aims and objectives; 
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1. To produce a model of monocytic cell immune deactivation by pre-incubating 

THP-1 cells with LPS to render them endotoxin tolerant. 

2. To explore the time-course and dynamics of changes in immunity and 

mitochondria in THP-1 cells following exposure to lipopolysaccharide (LPS). 

3. To assess the effects of exposure of THP-1 cells to LPS on compensatory pro-

survival responses, including mitochondrial biogenesis and mitophagy. 

4. To determine the effects of inhaling LPS on immunity and mtDNA copy number 

in the blood monocytes of healthy volunteers. 

Subsequently, in Chapter 6, Chapter 7 and Chapter 8 the consequences of depleting 

mtDNA on the immune functions of THP-1 cells will be determined. The major aims 

and objectives of these investigations will be; 

1. To deplete mtDNA from THP-1 cells using treatment with ethidium bromide 

and transfection with short-interfering RNA targeted against key genes involved 

in mtDNA replication. 

2. To assess mitochondrial and immune functions in THP-1 cells after depletion of 

their mtDNA. 

3. To determine whether restoration of mtDNA copy number leads to a recovery 

of cellular respiration and immunity in THP-1 cells. 

4. To measure the effects of mtDNA depletion on the expression of nuclear genes 

by THP-1 cells. 

5. To identify any differences in the transcriptomic response of THP-1 cells to LPS 

caused by mtDNA depletion.
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Chapter 3 Methods 

3.1 Overview 

This chapter describes the principles and protocols of the methods used to generate 

the data presented in the subsequent chapters of this thesis. In addition, details of the 

suppliers of the reagents, consumables and equipment used in the experiments are 

provided. The chapter finishes with an overview of the statistical tests used to analyse 

the data generated using these methods. 

3.2 Materials and Equipment 

3.2.1 Materials and Reagents 

The THP-1 human monocytic cell line was kindly donated by Dr John Taylor’s 

laboratory in the Institute of Cellular Medicine, Newcastle University. 

The following reagents were obtained from Life Technologies (Paisley, UK); 4’6’-

diamidino-2-phenylindole (DAPI), 2’7’-dichlorfluorescein diacetate (DCF-DA), DNA-free 

DNase Treatment Kit, Dulbecco’s Modified Eagle’s Medium (DMEM), Escherichia coli 

(K-12 strain) fluorescein conjugate, foetal calf serum (FCS), iBlot2® Transfer Stacks, 

High Capacity complementary DNA (cDNA) Reverse Transcription Kit, Iscove’s Modified 

Dulbecco’s Medium (IMDM), Lipofectamine RNAiMAX, Minimal Essential Medium 

(MEM), Negative Control siRNA number 1, nonyl-acridine orange (NAO), Novex® 

enzyme-linked immunosorbent assay (ELISA) antibody pair kits (details in Table 3.3), 

Novex® 4-20% Tris-Glycine pre-cast protein gels, Novex® Native PAGE™ 3-12% Bis-Tris 

gel, Novex® Native PAGE™ 4x sample buffer, Novex® Native PAGE™ 5% G-250 sample 

additive, Novex® Native PAGE™ 20x running buffer, Novex® Native PAGE™ 20x cathode 

buffer additive, nuclease-free water, Opti-MEM reduced serum medium, penicillin and 

streptomycin, propidium iodide, Roswell Park Memorial Institute (RPMI) 1640 

medium, SeeBlue Plus2 pre-stained protein ladder, Staphylococcus aureus (Wood 

Strain without protein A) fluorescein conjugate, Silencer® Select siRNA (details in Table 

3.1), Taqman® Gene Expression Assay (details in Table 3.8), Taqman® Gene Expression 

master mix and tetraethlybenzimidazololylcarbocyanine iodide (JC-1). 
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The following reagents were purchased from Sigma-Aldrich, St Louis, MO, USA; Acetyl 

co-enzyme-A (ACoA), agarose, antimycin A, bafilomycin A1 from Streptomyces griseus, 

bovine serum albumin (BSA), bromophenol blue, cytochrome C, D-glucose, N-dodecyl-

β-D-maltoside (DDM), 5,5-dithiobis-2-nitrobenzoic acid (DTNB), ethidium bromide, 

ethylene glycol tetraacetic acid (EGTA), carbonyl cyanide p-

trifluoromethoxyphenylhydrazone (fCCP), galactose, Giemsa, glycerol, 4-(2-

hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES),hydrogen peroxide, L-

glutamine, lipopolysaccharide (LPS) from Escherichia coli 026:B6, magnesium chloride, 

milk powder, β-nicotinamide adenine dinucleotide (NADH), nitrotetrazolium blue 

chloride (NTB), oligomycin, phenylmethanesulfonyl fluoride (PMSF), phosphate-

buffered saline (PBS), phorbol 12-myristate 13-acetate (PMA),potassium phosphate, 

rotenone, sodium borohydrate, sodium chloride, sodium citrate, sodium dodecyl 

sulphate, sodium pyruvate, sucrose, sulphuric acid, Triton X, trizma base, trizma-

hydrochloride, trypan blue, tween, uridine, valinomycin and zymosan particles from 

Saccharomyces cerevisiae. 

6, 24 and 96 well plates and 25cm3 and 75cm3 tissue culture flasks were obtained from 

Greiner Bio-One (Stonehouse, UK). 

The following reagents were acquired from Thermo-Fisher Scientific (Rockford, IL, 

USA); enhanced chemiluminescent (ECL) substrate, 16% formaldehyde solution 

(methanol-free), NUNC MaxiSorp 96 well microplates and tetramethylbenzidine 

substrate. 

The DNeasy Blood and Tissue Kit, QiA Quick Gel Extraction Kit and RNeasy mini kit 

were all purchased from Qiagen (Valencia, CA, USA). 

Coomassie Brilliant Blue reagent, iQ™SYBR® Green supermix , microseal B plate sealers 

and 96 well PCR plate were obtained from BioRad (Hercules, CA, USA). 

Seahorse Biosciences (Chicopee, MA, USA) provided the XF Assay Cartridges, XF 

Calibrant Solution and XF Cell Culture 96 well microplates.  

CD14 MicroBeads, MACS® MS columns and the Mini-MACS Separator were purchased 

from Miltenyi Biotec (Auburn, CA, USA). 
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Dextran was obtained from Pharmacosmos (Holbaek, Denmark) and Percoll was from 

GE Healthcare Biosciences (Little Charlfort, UK). 

The biotinylated protein ladder was from Cell Signalling Technology (Beverly, MA, 

USA), the Complex IV human specific activity microplate assay kit was purchased from 

Abcam (Cambridge, UK), Vectashield Hard Set Mounting Medium was acquired from 

Vector laboratories (Peterborough, UK) and the Agilent 6000 RNA Pico Kit was from 

Agilent Technologies (Santa Clara, CA, USA). 

The tables provide details of the antibodies used in flow cytometry (Table 3.2), 

Western blotting (Table 3.6) and confocal microscopy (Table 3.9), along with the 

primers used in quantitative polymerase chain reactions (Table 3.4) and the Taqman® 

gene expression probes (Table 3.8) used in reverse transcription quantitative 

polymerase chain reactions. 

3.2.2 Equipment 

The Shandon Cytospin 3, NanoDrop 2000 spectrophotometer and MultiSkan Ascent 

plate reader were all from Thermo-Fisher Scientific while the FACSCanto II and 

LSRFortessa X20 flow cytometers and BD Lyse-Wash machine were from Beckton 

Dickinson (BD) Biosciences (Franklin Lakes, NJ, USA). Leica Microsystems (Heidelburg, 

Germany) provided the Leica SB2 UV confocal microscope and the 3000 B inversion 

microscope while the iBlot2 ® Gel Transfer Device and 7500 Fast Real Time PCR System 

were from Life Technologies (Paisley, UK). The automatic inhalation-synchronised 

dosimeter nebuliser for the LPS inhalation study was provided by Spira (Hameenlinna, 

Finland). The other equipment included; the Agilent 2100 Bioanalyser (Agilent 

Technologies. Santa Clara, CA, USA), FLUOStar Omega Plate Reader (BMG Labtech, 

Ortenberg, Germany), HiSeq 2500 (Illumina, San Diego, CA, USA), MultiSpectral 

Imaging System (UVP, Upland, CA, USA), the MyiQ™ PCR machine (BioRad, Hercules, 

CA, USA), the Sanyo MCO-19AIC CO2 incubator (Sanyo Electric Biomedical, Osaka, 

Japan) and the XF96e extracellular flux analyser (Seahorse Biosciences, Chicopee, MA, 

USA). 

3.2.3 Software 

Data were collected and analysed using the following software; Microsoft Office Excel 

2013 (Microsoft, Redmond, WA, USA), BD FACSDiva for flow cytometry data, BioRad 
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iQ5™ optical software v2.0 for quantitative polymerase chain reaction date, Image J 

software (National Institute of Health, Bethesda, MD, USA) for quantification of 

Western Blot bands and Volocity (PerkinElmer, Waltham, MA, USA) for analysis of 

confocal microscopy images. Details of the software used to analyse the 

transcriptomics data are included in section 3.12.2. GraphPad Prism 6 (GraphPad, La 

Jolla, CA, USA) and Statistical Package for the Social Sciences (SPSS) for Windows 19 

(IBM, New York, USA) were used for statistical analysis. 

3.3 Cell culture and monocyte isolation 

3.3.1 THP-1 cell culture 

THP-1 cells were cultured in RPMI 1640 medium supplemented with 10% heat-

inactivated FCS, 2mmol/l L-glutamine, 11.11mM D-glucose, 100U/ml penicillin and 

100µg/ml streptomycin (termed growth medium). THP-1 cell culture was carried out in 

a humidified incubator at 37ᴼC with 5% carbon dioxide (CO2) and maintained at a 

concentration of less than 1x106cells/ml. 

3.3.2 Human monocyte isolation and culture 

Human PBMCs were isolated from citrated whole blood by dextran sedimentation 

followed by Percoll density-gradient centrifugation (Haslett et al., 1985). Cytospin 

slides stained with Giemsa were reviewed to ensure that the purity of the isolated 

PBMCs was greater than 95% prior to further processing.  

Positive selection was then used to isolate monocytes from the PBMC layer, as this 

method has been shown to be most effective at increasing the purity of the selected 

cells without significantly altering gene expression (Lyons et al., 2007). Monocytes 

were labelled with CD14-MicroBeads and then retained in a MACS® MS column in the 

magnetic field from the Mini-MACS® Separator (Figure 3.1). The purity of the isolated 

monocytes was assessed on Giemsa-stained cytospin slides and only samples with 

greater than 90% monocytes were used in further experiments. The isolated human 

monocytes were cultured in IMDM containing 10% autologous serum in a humidified 

incubator at 37ᴼC with 5% CO2. 
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Figure 3.1 Schematic diagram representing monocyte isolation from the 
peripheral blood mononuclear cell fraction by positive selection using CD14-
MicroBeads. Monocytes expressing CD14 are coated in microbeads and retained 
in a MACS® MS column within the magnetic field from the miniMACS® separator, 
while the other unlabelled cells pass through the column and are discarded. The 
MACS® MS column is then removed from the magnet and the monocytes flushed 
out using a plunger. Images show Giemsa stained cytospin slides at x40 
magnification before and after positive selection of monocytes. 

3.3.3 Assessment of cell viability 

Cell concentration and viability were determined by an assessment of 0.4% trypan blue 

exclusion using a haemocytometer. The viability of THP-1 cells was further tested using 

flow cytometry (Figure 3.2) to measure the proportion of cells taking up propidium 

iodide, a dye that is excluded by viable cells with intact cell membranes. 5x105 THP-1 

cells were suspended in 500µl PBS and incubated with 0.5µg/ml propidium iodide for 1 

minute at room temperature before assessing fluorescence using the FACSCanto II 

flow cytometer (Figure 3.3 A).
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Figure 3.2 Schematic diagram indicating the principles of flow cytometry. Flow 
cytometry is a technique in which a hydrodynamically-focussed stream of single 
cells passes through a laser of a particular wavelength. The degree to which the 
laser beam is scattered by each cell in a forward and side direction is measured 
by different detectors. Cellular characteristics can be distinguished using these 
data for forward scatter, which indicates size, and side scatter, which represents 
complexity (Brown and Wittwer, 2000). Fluorochromes, which may be 
conjugated to antibodies, are used to provide a fluorescent label to specific 
cellular constituents. The laser excites any fluorochromes retained within or 
bound to the surface of the cell to a higher energy level. The light that is 
subsequently emitted when the fluorochrome returns to its ground state is 
measured by a detector (Maecker et al., 2004). A bandpass emission filter is used 
to prevent light outside the emission spectrum of the particular fluorochrome 
from reaching the detector.
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Figure 3.3 Scatter plots and histograms indicating the measurement of THP-1 
cell viability, phagocytosis, mitochondrial mass, mitochondrial membrane 
potential and reactive oxygen species production by flow cytometry. (A) Cell 
viability was determined by the proportion of THP-1 cells excluding propidium 
iodide. (B) The phagocytic ability of THP-1 cells was assessed by measuring the 
proportion of cells internalising fluorescein-conjugated bacteria. (C) 
Mitochondrial mass was determined by the fluorescence due to uptake of NAO 
into THP-1 cell mitochondria. (D) THP-1 cells with a depolarised mitochondrial 
membrane potential had a shift from red to green JC-1 fluorescence as 
highlighted by treatment with valinomycin. (E) Production of reactive oxygen 
species by THP-1 cells was measured by the fluorescence produced by the 
oxidation of DCF-DA. When assessing relative fluorescence of positive 
populations the data were normalised for the background fluorescence by 
calculating the signal intensity (= [mean(positive) – mean(background)] / [2 x 
standard deviation(background)]) (Maecker et al., 2004)
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3.4 Experimental models of inflammation 

3.4.1 Endotoxin tolerance in THP-1 cells 

Repeated stimulation of monocytes with LPS generates diminishing inflammatory 

responses, a phenomenon termed endotoxin tolerance (Cavaillon and Adib-Conquy, 

2006). Endotoxin tolerance can be reliably induced by pre-incubating monocytic cells 

with LPS at doses above 10ng/ml and has been extensively used as a model of 

monocyte deactivation (Randow et al., 1995; Li et al., 2004). In endotoxin tolerance 

experiments 1x106 THP-1 cells were incubated in 25cm3 tissue flasks containing 5mls 

growth medium to which 100ng/ml LPS from Escherichia coli O26/B6 was added either 

72 (t=0 hours), 48 (t=24 hours), 24 (t=48 hours), 6 (t=66 hours) or 2 (t=70 hours) hours 

prior to the end of a 72 hour pre-incubation period. After this pre-incubation the THP-1 

cells were then pelleted, washed with PBS and re-suspended in fresh medium before 

comparing immune and mitochondrial functions to those in control cells pre-incubated 

for the previous 72 hours in growth medium without LPS. 

3.4.2 LPS Inhalation in healthy human volunteers 

The inhalation of LPS is an established in vivo model that reliably induces safe, self-

limiting acute pulmonary and systemic inflammation in healthy volunteers (Janssen et 

al., 2013). Twelve volunteers aged between 18 and 40 years were randomly allocated 

to inhalation of 60µg LPS or a placebo of endotoxin-free 0.9% saline, which was 

delivered over 5 inhalations using an automatic inhalation-synchronised dosimeter 

nebuliser. Symptoms, clinical observations and spirometry were monitored and blood 

samples were taken at 0 hours (pre-inhalation) and at 6 and 24 hours post-inhalation. 

At each of these time points monocytes were isolated from the peripheral blood and 

immune functions and mtDNA copy number measured. 

The LPS inhalation study design and approvals were carried out by Dr Sarah Wiscombe 

(Clinical Research Fellow, Institute of Cellular Medicine, Newcastle University). Dr 

Wiscombe was also responsible for the recruitment of volunteers, administration of 

nebulised LPS/saline and initial processing of blood samples to isolate PBMCs. The LPS 

inhalation study was approved by the local research ethics committee and the 

Newcastle-upon-Tyne Hospitals NHS Foundation Trust. 
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3.5 Depletion of mtDNA in THP-1 cells 

3.5.1 Treatment with ethidium bromide 

Ethidium bromide is an intercalating agent that is commonly used for the detection of 

DNA. Chronic exposure of cells to low concentrations of ethidium bromide leads to the 

selective inhibition of mtDNA replication and the generation of cell lines that lack 

mtDNA (termed ρ0 cells) (Chandel and Schumacker, 1999). THP-1 cells lacking mtDNA 

were generated by incubation in RPMI 1640 medium containing 50ng/ml ethidium 

bromide for 8 weeks (Hashiguchi and Zhang-Akiyama, 2009). To maintain cell viability 

the medium was supplemented with 2mM L-glutamine, 110µg/ml sodium pyruvate, 

50µg/ml uridine and 10% FCS. After the 8 week exposure ethidium bromide was 

removed from the growth medium 48 hours prior to any subsequent analysis 

(Marchetti et al., 1996). The characteristics of ethidium bromide-treated THP-1 cells 

were compared to control cells that were incubated in the same growth medium 

lacking ethidium bromide for 8 weeks. 

3.5.2 Transfection with short-interfering RNA (siRNA) against POLG and TFAM 

RNA interference is a process in which short double-stranded RNA fragments induce 

the specific destruction of messenger RNA (mRNA) containing a complementary 

nucleotide sequence (see Figure 3.4) (Carthew and Sontheimer, 2009). The 

transfection of cells with synthetic short-interfering RNA (siRNA) is a well-established 

method to produce post-transcriptional silencing of specific genes (Whitehead et al., 

2009). 
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Figure 3.4 The principal of RNA interference by siRNA. RNA interference is a 
form of post-transcriptional gene silencing in which a short segment of RNA 
induces destruction of mRNA containing a complementary sequence of 
nucleotides. Within cells, siRNA is formed by the cleavage of double-stranded 
RNA (dsRNA) into 19-23 nucleotide long fragments by the Dicer enzyme. 
Alternatively, synthetic siRNA can be introduced into the cell using various 
transfection techniques. This siRNA is incorporated into the RNA-induced 
silencing complex (RISC) and unwound by the Argonaute 2 protein. The 
passenger (sense) siRNA strand is then discarded, leading to the formation of a 
functional, activated RISC. Finally, the guide (antisense) siRNA strand within the 
RISC selectively binds to messenger RNA (mRNA) with the complementary 
nucleotide sequence and this mRNA is cleaved and degraded, leading to silencing 
of a particular gene in a sequence-specific manner (Carthew and Sontheimer, 
2009). This figure is adapted from (Whitehead et al., 2009).
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In order to inhibit mitochondrial biogenesis THP-1 cells were transfected with Silencer® 

Select siRNA targeted against the POLG and TFAM genes (detailed in Table 3.1). The 

siRNA was delivered to the cells using the Lipofectamine RNAiMAX liposomal reagent 

as this has been shown to produce effective transfection in THP-1 cells without 

significant effects on cell viability (Gantier et al., 2008). Silencer® Select Negative 

Control siRNA number 1, a 21-mer double-stranded RNA with a sequence designed to 

have minimal effects on the human transcriptome, was used in order to control for the 

effects of transfection. 

Reverse transfection of siRNA into THP-1 cells was carried out. Liposome-siRNA 

complexes were first formed by mixing 30nM siRNA, 10µl Lipofectamine RNAiMAX and 

990µl Opti-MEM medium in a 25cm3 tissue culture flask and incubating at room 

temperature for 20 minutes. 5x105 THP-1 cells were then suspended in 4mls RPMI 

medium supplemented with 10% FCS, 50µg/ml uridine and 110µg/ml sodium pyruvate. 

This cell suspension was slowly added to the liposome-siRNA complex solution and the 

resultant mixture incubated at 37ᴼC with 5% CO2.  The transfection was repeated every 

48 hours for 8 days before comparing mitochondrial and immune functions to controls 

transfected with a 30nM Silencer® Select Negative Control siRNA number 1 or 

incubated with Lipofectamine RNAiMAX or growth medium alone. 

 Strand Sequence (5’→3’) Length 
(mer) 

Molecular 
Weight 
(g/mol) 

Manufacturer 

Catalogue 
No. 

TFAM Sense GAAGAGAUAAGCAGAUUUAtt 21 6800 Life-
Technologies 

s14001 
Antisense UAAAUCUGCUUAUCUCUUCtt 21 6500 

POLG Sense GUUGACUACUUACACCUCAtt 21 6600 Life-
Technologies 

s10787 
Antisense UGAGGUGUAAGUAGUCAACag 21 6800 

Table 3.1 Details of Silencer® Select siRNA used in THP-1 cell transfection. 
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3.6 Assessment of differentiation of THP-1 cells to macrophage-like cells 

THP-1 cells can be induced to differentiate into macrophage-like cells that resemble 

primary human macrophages using various chemical stimuli (Schwende et al., 1996; 

Daigneault et al., 2010). In order to determine whether THP-1 cells had differentiated 

into macrophage-like cells during the endotoxin tolerance model, the findings from a 

range of assessments were compared to a positive control of THP-1 cells stimulated to 

differentiate by a 72 hour incubation in growth medium supplemented with 10nM 

PMA (Park et al., 2007). The following cell characteristics were analysed; 

1. A qualitative assessment of THP-1 cell morphology was carried out by imaging a 

minimum of 100 cells in three separate wells on a 6 well plate using a DMI3000 

B inversion microscope. 

2. The adherence of THP-1 cells to a 6 well plate after a 72 hour incubation was 

assessed by serial cell counts using a haemocytometer. Cell counts were taken 

after an initial aspiration of the supernatant in each well (count A) and then 

after detaching any adherent cells using a cell scraper and washing with an 

equal volume of PBS (count B). The counts were used to calculate the 

percentage of non-adherent cells present; 

% non-adherent cells = [Count A / (Count A + Count B)] x 100 

3. The expression of macrophage differentiation markers on the surface of THP-1 

cells was measured using the BD FACSCanto-II flow cytometer. For each of the 

differentiation markers a minimum of 10,000 events were recorded and each 

condition was assessed in triplicate. Details of the markers that were measured 

are given in Table 3.2.  
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Marker Function, 

Change during 
macrophage 

differentiation 

Fluorochrome Clone Host 
species, 
isotype 

Manufacturer 
catalogue 
number 

Excitation 
wavelength 
-Bandpass 
filter (nm) 

CD14 LPS recognition 
and binding 

Down-regulated 

PE-Cy7 M5E2 Mouse, 
IgG2a 

BD Biosciences, 
561385 

488-780/60 

CD36 Scavenger 
receptor 

Up-regulated 

PE 5-271 Mouse, 
IgG2a 

BioLegend, 
336206 

488-585/42 

CD206 Mannose 
receptor 

Up-regulated 

PE 15-2 Mouse, 
IgG1 

BioLegend, 
321106 

488-585/42 

Table 3.2 Fluorochrome-conjugated antibodies used to assess cell surface 
expression of macrophage differentiation markers by flow cytometry.  During 
monocyte-macrophage differentiation there is evidence that the cell surface 
expression of CD14 is down-regulated (Kruger et al., 1996; Spano et al., 2013), 
while the expression of CD36 (Huh et al., 1996; Schuierer et al., 2006) and CD206 
(Porcheray et al., 2005; Daigneault et al., 2010) are up-regulated. The 
fluorochrome-conjugated antibodies were provided by BD Biosciences and 
BioLegend (San Diego, CA, USA). 

3.7 Immune functions of THP-1 cells and monocytes 

3.7.1 Cytokine release assay 

THP-1 cells (2.5x105 THP-1 cells/well) or human monocytes (1x105cells/well) were re-

suspended in growth medium containing 10% FCS and seeded onto a 24 well plate. 

Half of the wells were then treated with LPS, at a concentration of 100ng/ml for THP-1 

cells and 10ng/ml for monocytes. Following incubation at 37ᴼC for 4 hours (pro-

inflammatory cytokines) or 16 hours (anti-inflammatory cytokines) the supernatants 

from each well were collected and stored at -80ᴼC. 

Cytokine concentrations in these supernatants were subsequently determined using 

Novex® ELISA antibody pair kits (Table 3.3). After coating NUNC MaxiSorp® 96 well 

microplates with the detection anti-cytokine antibody overnight, non-specific binding 

was blocked by incubation with assay buffer containing 0.5% BSA for 1 hour. The 

sample supernatants (triplicates), along with standards of known concentration and 

blank wells containing assay buffer (both duplicates), were then incubated with the 

detection biotin-conjugated anti-cytokine antibody for 2 hours at room temperature. 

After washing, a streptavidin-horseradish peroxidase solution was added for 30 
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minutes, before a final wash and the addition of the tetramethylbenzidine substrate. 

The subsequent colorimetric reaction was stopped after 30 minutes by the addition of 

2N sulphuric acid.  

A FLUOStar Omega Plate Reader was used to measure the absorbance of each well at 

450nm. A standard curve was generated by plotting a 4-parameter curve fit of the 

cytokine concentrations in the standards against their measured blank-corrected 

optical density. Cytokine concentrations in the unknown samples were calculated by 

plotting their mean blank-corrected optical densities onto the linear region of the 

standard curve The LPS-induced cytokine release for each condition was then 

determined using the equation; 

LPS-induced cytokine release = Cytokine release with LPS – Cytokine release with medium 

Cytokine Range of detectable concentrations (pg/ml) Catalogue number 

IL-1β 31.25-1000 CHC1213 

IL-1RA 31.25-1000 CHC1183 

IL-6 15.6-1000 CHC1263 

IL-8 12.5-800 CHC1303 

IL-10 31.25-1000 CHC1323 

TNFα 15.6-1000 CHC1753 

Table 3.3 Summary of range of detectable concentrations for the Novex® ELISA 
antibody pair kits used to detect cytokines released by THP-1 cells and 
monocytes. 

3.7.2 Phagocytosis of zymosan particles by human monocytes 

Monocytes were adhered to a 96 well plate during a 30 minute pre-incubation of 5x104 

cells per well in 50µl IMDM containing 10% autologous serum at 37°C. 1µg of zymosan 

particles from Saccharomyces cerevisiae, opsonised by pre-incubation in 50% 

autologous serum for 30 minutes, was then added and a further 1 hour incubation at 

37°C carried out (Wolf et al., 1988). Excess zymosan was washed off and the 

monocytes were air-dried, fixed with methanol and stained with Giemsa. The 

proportion of monocytes that had internalised two or more zymosan particles was 

determined using the Leica 3000 B inversion microscope (Figure 3.5). A minimum of 

100 monocytes were counted in three separate wells for each experimental condition. 
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Figure 3.5 Representative image of phagocytosis of zymsosan particles by 
monocytes. The proportion of monocytes that have internalised two or more 
zymosan particles (black circle) was determined using the Leica 3000 B inversion 
light microscope. Image taken at 40x magnification. 

3.7.3 Phagocytosis of fluorescent killed bacteria by THP-1 cells 

The ability of a suspension of THP-1 cells to internalise fluorescein-labelled killed 

bacteria (Escherichia coli (K-12 strain) or Staphylococcus aureus (Wood Strain without 

protein A)) was determined by flow cytometry (Figure 3.2). The fluorescein-labelled 

bacteria were opsonised by pre-incubation with 10% human serum for 30 minutes and 

1x107 bacteria were then added to a suspension of 1x106 THP-1 cells in 500µl growth 

medium. Following incubation in a tube rotator at 37ᴼC for 1 hour non-internalised 

bacteria were removed by washing with PBS. The THP-1 cells were then re-suspended 

in 500µl PBS to which 500µl 0.1% trypan blue was added in order to quench any 

remaining extracellular fluorescence.  

The proportion of THP-1 cells phagocytosing bacteria was determined by measuring 

the fluorescence (excitation wavelength 488nm, band pass filter 530/30nm) using a 

FACSCanto II Flow Cytometer. A minimum of 10,000 events was recorded and each 

condition was assessed in triplicate. A negative control of THP-1 cells without bacteria 

was used to determine the baseline cellular fluorescence and define the negative 

population. The THP-1 cells that had internalised bacteria formed a separate 
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population that stained positive for fluorescein and the proportion of THP-1 cells in 

this population was measured (Figure 3.3 B). 

3.8 Mitochondrial assessments 

3.8.1 Mitochondrial DNA copy number by quantitative polymerase chain reaction (qPCR) 

DNA was extracted from pellets of 1x106 THP-1 cells or monocytes using the DNeasy 

Blood and Tissue Kit. The NanoDrop 2000 spectrophotometer was used to determine 

the concentration (by ultraviolet absorbance at 260nm) and purity (by the ratio of 

absorbance at 260nm and 280nm) of the extracted DNA. Prior to analysis the DNA 

solutions were diluted with nuclease-free water to produce a starting DNA 

concentration of 10ng/µl. 

The relative mtDNA copy number was determined using real-time qPCR. The reaction 

compared the level of the mtDNA gene nicotinamide adenine dinucleotide 

dehydrogenase subunit 1 (MT-ND1) to that of the nuclear reference gene β2-

microglobulin (B2M) (Payne et al., 2011). The B2M and MT-ND1 primers are listed in 

Table 3.4. 

 Gene Forward (5’3’) Reverse (5’3’) Anneal 
Temp 
(ᴼC) 

Size 
(bp) 

Template B2M CGCAATCTCCAGTGACAGA
A 

GCAGAATAGGCTGCTGTTC
C 

60 1092 

MT-ND1 CAGCCGCTATTAAAGGTTC
G 

AGAGTGCGTCATATGTTGT
TC 

60 1040 

qPCR B2M CACTGAAAAAGATGAGTAT
GCC 

AACATTCCCTGACAATCCC 62.5 231 

MT-ND1 ACGCCATAAAACTCTTCACC
AAAG 

GGGTTCATAGTAGAAGAGC
GATGG 

62.5 111 

Table 3.4 B2M and MT-ND1 primer sequences for template generation and 
mtDNA copy number measurement by quantitative PCR. 

Templates covering the MT-ND1 and B2M target sequences were first amplified by 

standard PCR and separated using agarose gel electrophoresis. The QiA Quick Gel 

Extraction Kit was used to extract DNA from the gel and the DNA concentration 

quantified using the NanoDrop 2000 spectrophotometer. This DNA concentration was 

then used to calculate the DNA copy number of the template using the equation; 



40 
 

Copy number = [DNA concentration (g/l) ÷ (Amplicon length (bp) x 2 x 330)] x Avogadro’s 

number 

Serial dilutions of the template DNA enabled the generation of standard curves for the 

qPCR reaction covering copy numbers in the range 108-103copies/µl. These standard 

curves were used to ensure that each reaction achieved a linear curve (r2>0.98) with 

an amplification efficiency within the optimal range (90-110%) (Figure 3.6 A). Template 

negative controls and melting curve analysis of the amplified DNA product were used 

to confirm the absence of DNA contamination (Figure 3.6 B). 

The real-time qPCR was carried out using a BioRad MyiQ™ PCR machine. A final 25µl 

reaction volume was produced containing 300nM of the target forward and reverse 

primers, iQ™SYBR® Green supermix and 10ng of DNA. The template standards and 

negative controls were assessed in duplicate while the unknown samples were 

analysed in triplicate. The reaction was carried out in 96 well PCR plates sealed with 

microseal B plate sealers. The SYBR 62.5 protocol was used and the fluorescence 

generated by the binding of iQ™SYBR® Green to amplified double-stranded DNA was 

measured during each of the 40 cycles (Figure 3.6 C). The cycle at which this 

fluorescence exceeded a threshold of 250 relative fluorescent units (RFU) while in the 

exponential phase of the amplification curve was used to define the threshold cycle 

(Ct). All data were analysed using the BioRad iQ5™ optical software v2.0 and the 

relative mtDNA copy number per cell calculated using the ΔCt data; 

ΔCt = Ct MT-ND1 – Ct B2M 

Relative mtDNA copy number per cell = 2(2-ΔCt)
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Figure 3.6 Standard curve, melting curve and protocol for quantitative 
polymerase chain reaction to measure mtDNA copy number. (A) Representative 
scatter plot indicating parallel standard curves for serial dilutions of MT-ND1 and 
B2M. (B) Representative melting curve analysis line graph showing a pure DNA 
amplification product (single peak) after quantitative polymerase chain reaction 
(qPCR) with primers for a sequence on the MT-ND1 gene. (C) SYBR 62.5 protocol 
for determining mtDNA copy number by qPCR using the DNA-binding dye 
iQ™SYBR® Green.
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3.8.2 Mitochondrial mass by uptake of nonyl-acridine orange 

Mitochondrial mass was determined by measuring the uptake of NAO, a dye that 

localises to mitochondria regardless of the mitochondrial membrane potential (Cottet-

Rousselle et al., 2011). 5x105 THP-1 cells were incubated with 2.5µM NAO at 37°C for 

30 minutes before removing excess dye by washing twice using the BD Lyse-Wash 

machine and measuring the fluorescence (excitation wavelength 488nm, bandpass 

filter 530/30nm) using the BD FACSCanto-II flow cytometer (Figure 3.3 C). A minimum 

of 10,000 events was recorded and each condition was assessed in triplicate. As a 

positive control mitochondrial mass was increased in THP-1 cells by pre-incubation for 

72 hours in DMEM supplemented with 5mM galactose and lacking glucose (Morán et 

al., 2010). 

3.8.3 Measurement of mitochondrial membrane potential depolarisation using JC-1 

The serial reduction of electrons and transport of protons across the inner 

mitochondrial membrane by the OXPHOS complexes generates the mitochondrial 

membrane potential (Δψm) (Brealey and Singer, 2003). Dysfunction of the OXPHOS 

complexes leads to depolarisation of the Δψm (Green et al., 2011). JC-1 is a cationic 

dye which accumulates in mitochondria in a Δψm-dependent manner resulting in the 

formation of J-aggregates and a shift from green to red fluorescence. As a result the 

ratio of red: green JC1 fluorescence provides a useful measure of Δψm which can be 

used to assess the presence of dysfunctional mitochondria (Salvioli et al., 1997). 

THP-1 cells were suspended at 1x106 cells/ml in PBS and incubated with 5µM JC-1 for 

30 minutes. As a positive control for Δψm depolarisation, cells were pre-treated for 10 

minutes with 100nM valinomycin, a potassium-selective ionophore which dissipates 

the Δψm (Salvioli et al., 1997). Following incubation with JC-1 the red (excitation 

wavelength 561nm, bandpass filter 186/15nm) and green (488nm, 530/30nm) 

fluorescence of THP-1 cells was measured using the LSRFortessa X20 flow cytometer. A 

minimum of 10,000 events was recorded and each condition was assessed in triplicate. 

The proportion of cells displaying green fluorescence was measured in order to 

identify cells with Δψm depolarisation (Figure 3.3 D). 
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3.8.4 Reactive oxygen species (ROS) production 

The production of ROS by THP-1 cells was determined using DCF-DA. Following entry 

into cells DCF-DA is deacetylated by esterases to form 2’7’ dichlorfluorescein, which 

becomes highly fluorescent after oxidation by hydrogen peroxide (Winterbourn, 2013). 

THP-1 cells were suspended at 1x106 cells/ml in 1ml PBS and incubated at 37°C with 

1µM DCF-DA for 30 minutes. As a positive control cells were then treated with 100µM 

hydrogen peroxide for 60 minutes. At the end of this incubation the fluorescence 

(absorption wavelength 488nm, band pass filter 530/30 nm) of the THP-1 cells was 

measured on the BD FACSCanto-II flow cytometer (Figure 3.3 E). A minimum of 10,000 

events were recorded and each condition was assessed in triplicate. 

3.9 Protein expression by sodium dodecyl sulphate polyacrylamide gel electrophoresis 

(SDS-PAGE) Western blot 

Protein was extracted from pellets of 3x106 THP-1 cells using a lysis buffer (formulation 

in Table 3.5). The protein concentration in the resultant lysate was determined using a 

Bradford Assay in which protein binding to an acidic solution of Coomassie Brilliant 

Blue reagent produces a change in absorbance at 595nm that can be compared to a 

standard curve of known concentrations of BSA (Figure 3.7) (Noble and Bailey, 2009). 

 

Figure 3.7 Example of Bradford assay standard curve showing linear regression 
of protein concentration against absorbance at 595nm
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The expression of mitochondrial proteins was then determined by Western blotting, a 

technique in which proteins are separated on the basis of size and then detected using 

specific antibodies (Mahmood and Yang, 2012). Firstly, 20µg of protein was added to 

an equal volume of loading dye containing SDS, an anionic detergent which unfolds the 

proteins and confers a negative charge (formulation in Table 3.5). The proteins in each 

lysate sample were then separated by SDS-PAGE using Novex® 4-20% Tris-Glycine pre-

cast protein gels. A SeeBlue Plus2 pre-stained protein ladder and a biotinylated protein 

ladder were added in order to allow estimation of the molecular weight of the 

resultant protein bands. Following SDS-PAGE the separated proteins were transferred 

onto a PVDF membrane using iBlot2® Transfer Stacks and the iBlot2 ® Gel Transfer 

Device. 

The PVDF membrane was incubated with a blocking buffer (formulation in Table 3.5) 

for 1 hour at room temperature to prevent any non-specific antibody binding and the 

primary antibody was then added. Following incubation with the primary antibody 

(either for 1 hour at room temperature or overnight at 4°C) the membrane was 

washed and the secondary horseradish peroxidase-conjugated antibody then added. 

After a final 1 hour incubation at room temperature and a further wash the presence 

of bound secondary antibody was determined by adding an ECL substrate and 

detecting the resultant signal using the MultiSpectral Imaging System. In order to 

detect other proteins the ECL substrate was then washed off and a different primary 

antibody added. Tris-buffered saline with 0.1% tween was used for all washes 

(formulation in Table 3.5). The details of the primary and secondary antibodies used in 

the detection of proteins during Western blotting are listed in Table 3.6. 

Image J software was used to analyse the relative densities of different protein bands. 

The relative expression of protein in each sample was then compared to that of β-

actin, a ubiquitously expressed protein used as a loading control.
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Buffer Formulation 

Lysis Buffer 50mM trizma hydrochloride pH 7.5, 130mM sodium chloride, 2mM 
magnesium chloride, 1mM PMSF, 1% triton X 

Loading Dye (2x) 250mM trizma hydrochloride pH 6.8, 20% Glycerol, 4% sodium 
dodecyl sulphate, 0.1% bromophenol blue 

Running Buffer 25mM trizma base, 200mM glycine, 0.1% sodium dodecyl sulphate 

Tris-buffered saline – 0.1% 
tween (TBS-T) 

20mM trizma hydrochloride pH 7.0, 0.5mM sodium chloride, 0.1% 
tween 

Blocking Buffer TBS-T, 5% milk powder 

Table 3.5 Formulations of Western blot buffers  

Antibody Host 
species, 
isotype 

Manufacturer, 
Catalogue Number 

Final concentration Band 
molecular 

weight (kDa) 

Primary antibody 

β-actin Mouse, IgG2 Abcam, ab8226 0.5µg/ml 42 

LC3-I/II Rabbit, 
polyclonal 

Cell Signalling, 
CS54995 

1µg/ml 14/16 

MTCO1 Mouse, 
IgG2a 

Abcam, ab14705 1µg/ml 40 

Mitoprofile® 
total OXPHOS 
antibody 
cocktail 

Mouse MitoSciences, MS604 6µg/ml Complex I – 20, 
Complex II – 30 
Complex III – 47 
Complex IV – 39 
Complex V - 53 

POLG Rabbit, 
polyclonal 

Sigma-Aldrich, 
SAB2700005 

1µg/ml 150 

SDHA Mouse, IgG1 Abcam, ab14715 0.2µg/ml 70 

SOD2 Rabbit, 
polyclonal 

Abcam, ab13533 0.2µg/ml 25 

TFAM Mouse, 
IgG2b 

Novus Biological, 
NBP1-71648 

1µg/ml 25 

Secondary antibody 

Anti-mouse Ig-
HRP 

Rabbit Dako, 0260 1:5000 dilution N/A 

Anti-rabbit Ig-
HRP 

Goat Dako, 0448 1:2000 dilution N/A 

Table 3.6 Primary and secondary antibodies used in Western blotting. 
Antibodies were provided by Abcam, Cell Signalling (Danvers, MA, USA), Dako 
(Cambridge, UK), MitoSciences (Eugene, OR, USA), Novus Biologicals (Cambridge, 
UK) and Sigma-Aldrich (St Louis, MO, USA).
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3.10 Assessments of the oxidative phosphorylation (OXPHOS) system 

3.10.1 Spectrophotometric assessment of isolated OXPHOS complex IV and citrate 

synthase activity 

Cellular homogenates containing mitochondrial respiratory chain enzymes were 

produced from a suspension of 6x106 THP-1 cells in 120µl 20mM potassium phosphate 

buffer by four rapid freeze-thaw cycles using liquid nitrogen. Spectrophotometric 

measurements of the activity of citrate synthase and OXPHOS complex IV within the 

homogenates were taken using the MultiSkan Ascent plate reader. All reactions were 

carried out in triplicate and the results were normalised to the protein content of the 

homogenate (determined using the Bradford assay).  

Citrate synthase is a nuclear DNA-encoded enzyme that catalyses the initial reaction in 

the citric acid cycle in the mitochondrial matrix and provides a quantitative marker of 

cellular mitochondrial content (Rodenburg et al., 2012). The following reaction is 

catalysed by citrate synthase; 

Oxaloacetate + Acetyl co-enzyme-A (ACoA) → Citrate + CoA-SH 

Citrate synthase activity was determined by measuring the subsequent reaction 

between CoA-SH and DTNB, which generates 5-thio-2-nitrobenzoate to produce a 

change in absorbance at 412nm. 2.5µl of cellular homogenate was suspended in 

197.5µl of a 0.1mM Tris-hydrochloride buffer containing 0.1mM DTNB, 0.1mM ACoA 

and 0.1% Triton X. The reaction was initiated by mixing this solution with 0.25mM 

oxaloacetate and the rate of change of absorbance at 412nm measured before 

calculating the citrate synthase activity using the equation; 

Citrate Synthase activity (IU/l) = [(rate of change in absorbance per min/13.6) x (Total 

volume/Homogenate volume)] x 1000 

(Where 13.6/cm/mM = Extinction co-efficient (ε) for DTNB at 412nm) 

In a similar manner, OXPHOS complex IV activity was determined by measuring the 

rate of oxidation of cytochrome C (Kirby et al., 2007). A 1% solution of cytochrome C in 

10mM potassium phosphate was first reduced by incubation on ice with sodium 

borohydrate for 30 minutes. 20µl of the cellular homogenate was then suspended in 

160µl of 10mM potassium phosphate. After the addition of 20µl of reduced 
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cytochrome C and an incubation at 38°C for 2 minutes the rate of decrease in 

absorbance at 550nm (due to cytochrome C oxidation) was measured and the 

following equation used to calculate the complex IV activity; 

Complex IV activity = [(rate of change in absorbance per min)/18.7) x (Total 

volume/Homogenate volume)] x 1000 

(Where 18.7 = ε for Cytochrome C at 550nm) 

In addition, the activity of OXPHOS complex IV was also measured in THP-1 cell lysates 

using the Complex IV Human Specific Activity Microplate Assay Kit. Each experimental 

condition was assessed in triplicate by analysing 200µg of protein per well on a 96 well 

plate using the protocol specified by the manufacturer. Again, complex IV activity was 

determined by assessing the rate of oxidation of reduced cytochrome C, as reflected 

by the maximal rate of decline in the absorbance at 550nm. 

3.10.2 In-gel activity of OXPHOS complex I 

Blue-native PAGE was used to separate the OXPHOS complexes from mitochondrial 

lysates on the basis of their size and in-gel complex I activity was then assessed using a 

histochemical measurement of the oxidation of reduced NADH (Nijtmans et al., 2002). 

Firstly, mitochondria were extracted from pellets of 24x106 THP-1 cells (Rodenburg et 

al., 2012). The pellets were suspended in 1ml of Medium B (250mM sucrose, 2mM 

HEPES, 0.1mM EGTA, pH7.4) in a glass pestle and homogenised by 20 strokes of a 

homogeniser. After centrifugation at 1200G for 10minutes at 4°C the supernatant was 

set aside and the pellet re-suspended in 0.8mls of Medium B before repeating the 

homogenisation. The resulting solution was again centrifuged at 1200G for 10 minutes 

at 4°C before combining the supernatants from the two homogenisations and 

centrifuging this solution at 11,000G for 10 minutes at 4°C. After re-suspending the 

resulting mitochondrial pellet in 100µl Medium B, the mitochondria were lysed by an 

incubation on ice with 1.5% DDM for 15minutes followed by a 20 minute 20,000G 

centrifugation at 4°C. The protein concentration of the lysate was then determined 

using the Bradford assay. 

A solution of 40µg of this mitochondrial protein lysate in Novex® Native PAGE™ 4x 

sample buffer and 5% G-250 sample additive was added to wells on a Novex® Native 

PAGE™ 3-12% Bis-Tris gel and blue-native PAGE was carried out. In order to measure 
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OXPHOS complex I activity the gel containing the separated OXPHOS complexes was 

subsequently incubated for 1 hour at 37°C in a solution of 45µM reduced NADH and 

200µM NTB in 5mM Tris hydrochloride at pH7.2. Finally, the relative activity of 

complex I was determined by quantifying the density of staining of the gel caused by 

the oxidation of NADH by complex I using Image J. 

3.10.3 Oxygen consumption by the Seahorse XF96e Extracellular Flux analyser 

The cellular respiration of THP-1 cells was assessed using the Seahorse XF96e 

extracellular flux analyser which allows real-time measurements of oxygen 

consumption rate (OCR) by live cells (Hill et al., 2012). A solid-state sensor probe is 

used to measure the rate of change in dissolved oxygen concentration within a 

transient micro chamber that is created above a monolayer of cells at serial time 

points. Different metabolic inhibitors are sequentially injected into the chambers in 

order to assess different aspects of respiration (Table 3.7). 

Metabolic inhibitor Dose Mechanism of Action Measurements 

Oligomycin 1µM Blocks proton channel of OXPHOS 
complex V to inhibit ATP synthesis 

Proportion of OCR devoted 
to ATP synthesis 

Proton leak through inner 
mitochondrial membrane 

Carbonyl cyanide 4-
(trifluoromethoxy) 
phenylhydrazone 
(fCCP)  

0.5µM 
then 
1µM 

Uncoupling agent which allows 
protons to leak across the inner 
mitochondrial membrane 

Maximal oxygen 
consumption 

Spare respiratory capacity 

Rotenone and 
Antimycin A 

1µM Inhibit OXPHOS complex I and III 
to abolish mitochondrial 
respiration 

Non-mitochondrial 
respiration 

Table 3.7 Metabolic inhibitors used to assess different aspects of cellular 
respiration with the Seahorse XF96e extracellular flux analyser. 
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A sensor cartridge was pre-incubated with a calibration plate containing 200µl per well 

of XF Calibrant Solution at 37°C without CO2 for at least 12 hours prior to starting the 

assay. Later, THP-1 cells were re-suspended in assay medium, consisting of MEM 

supplemented with 11.1mM D-Glucose and 2mM L-Glutamine and adjusted to pH 7.0, 

and seeded onto a 96 well plate at 80,000 cells in 175µl assay medium per well. 

Following incubation at 37°C in a humidified incubator without CO2 for 45 minutes, this 

plate was centrifuged at 2000G for 15 minutes in order to produce a monolayer of cells 

on the base of the wells. Meanwhile, solutions of the metabolic inhibitors were 

prepared in assay medium and loaded into 4 injection ports in the sensor cartridge, 

which was then calibrated within the XF96e analyser. Following this the calibration 

plate was replaced with the 96 well microplate containing the THP-1 cell monolayer 

and the assay was commenced. After measurement of basal respiration, the metabolic 

inhibitors were added sequentially to the wells in order to assess different aspects of 

respiration (Figure 3.8). During each of the four stages of the assessment the OCR was 

measured in 16 wells per condition at 3 different time points. All OCR data was 

normalised to the total protein per well which was determined using the Bradford 

assay.
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Figure 3.8 Respiratory profile from the Seahorse XF96e extracellular flux 
analyser. Serial measurements of OCR are taken from a transient micro chamber 
over a monolayer of cells following the sequential addition of different metabolic 
inhibitors. After assessing basal respiration (I), oligomycin is added to inhibit ATP 
synthesis (II). The addition of the uncoupling agent fCCP then induces maximal 
mitochondrial respiration (III) before mitochondrial respiration is abolished by 
rotenone and antimycin A (IV). The OCR due to the following aspects of cellular 
respiration can then be determined; Non-mitochondrial respiration = non-
mitochondrial OCR (IV), Basal mitochondrial respiration = basal OCR (I) – non-
mitochondrial OCR (IV), ATP production = basal OCR (I) – post-oligomycin OCR 
(II), Proton Leak = post oligomycin OCR (II) – non-mitochondrial OCR (IV) and 
Maximal Mitochondrial Respiration = maximal OCR (III) – non-mitochondrial OCR 
(IV). Figure is adapted from (Seahorse Biosciences). 

3.11 Assessment of messenger RNA (mRNA) transcription by reverse transcription qPCR 

RNA was extracted from pellets of 4x106 THP-1 cells using the RNeasy mini kit. The 

NanoDrop 2000 spectrophotometer was used to determine the concentration and 

purity of the extracted RNA. 

Single-stranded complementary DNA (cDNA) was synthesised from this RNA using the 

High Capacity cDNA Reverse Transcription Kit. The reaction used random hexamer 

primers to non-specifically initiate cDNA synthesis from all RNA transcripts and was 

catalysed by MultiScribe® reverse transcriptase. The manufacturer’s protocol was 

followed and 5µg of RNA was added per reaction. The primers were annealed to the 
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RNA at 25ᴼC for 10 minutes and cDNA was synthesised during an incubation at 37ᴼC 

for 120 minutes before the reaction was terminated by 5 minutes incubation at 85ᴼC. 

Following this the relative transcription of specific genes was determined by reverse 

transcription-qPCR (RTqPCR) using the Taqman® Gene Expression Assay. This 

technique uses a Taqman® probe, containing a FAM™ fluorescent probe at the 5’ end 

and a non-fluorescent quencher at the 3’ end, which specifically anneals to the target 

cDNA sequence. Amplification by Taq polymerase is initiated by the binding of 

unlabelled forward and reverse primers to the target sequence and this leads to the 

cleavage of the annealed Taqman® probe. The resultant release of FAM™ from the 

quencher produces a fluorescence that is proportional to the amount of target cDNA 

sequence present (Medhurst et al., 2000). 

The RTqPCR was carried out on the 7500 Fast Real Time PCR System using a final 20µl 

reaction volume containing 10µl 2x Taqman® Gene Expression Master Mix, 1µl 20x 

Taqman® Gene Expression Assay, 7µl RNase free water and 2µl cDNA. The details of 

the Taqman® Gene Expression Assays that were used are listed in Table 3.8.The 

protocol involved an initial 2 minute incubation at 50°C followed by 20 seconds at 95°C 

and 40 cycles of 30 seconds at 60°C and 3 seconds at 95°C during which the 

fluorescence was measured. The cycle at which the fluorescence generated by 

cleavage of FAM™ from the Taqman® probe exceeded 0.25 RFU was used to define the 

threshold cycle (Ct). Each sample was assessed in triplicate and the reaction efficiency 

confirmed using a standard curve of cDNA serially diluted by a factor of 1:10 with 

RNase-free water from a starting amount of 2µl. The contamination of reagents was 

excluded through the use of cDNA negative controls. The relative amount of cDNA for 

each specific target was determined by comparison with a control housekeeping gene 

to generate ΔCt data; 

ΔCt = Ct target gene – Ct housekeeping gene 

Relative RNA transcription = 2(2-ΔCt)
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Gene 
Symbol 

Gene product Assay ID Amplicon 
length (bp) 

ACTB Actin, beta Hs01060665_g1 63 

GAPDH Glyceraldehyde-3-phosphate 
dehydrogenase 

Hs02758991_g1 63 

HMOX1 Haem-oxygenase-1 Hs01110250_m1 82 

IFIT1 Interferon-induced protein with 
tetratricopeptide repeats-1 

Hs03027069_s1 134 

IFITM1 Interferon-induced transmembrane 
protein-1 

Hs00705137_s1 93 

IL1B Interleukin-1 beta Hs01555410_m1 91 

MTCO1 Mitochondrially-encoded cytochrome 
C oxidase 1 

Hs02596864_g1 94 

MYD88 Myeloid differentiation primary 
response-88 

Hs01573837_g1 94 

SDHA Succinate dehydrogenase complex, 
subunit A, flavoprotein 

Hs00417200_m1 124 

STAT1 Signal transducer and activator of 
transcription-1 

Hs01013996_m1 66 

TLR4 Toll-like receptor-4 Hs00152939_m1 89 

TNF Tumour necrosis factor Hs01113624_g1 143 

TREM1 Triggering receptor expressed on 
myeloid cells-1 

Hs00218624_m1 80 

Table 3.8 Details of Taqman® Gene Expression Assays used in reverse 
transcription quantitative polymerase chain reactions 

3.12 Analysis of the transcriptome by RNA sequencing (RNA-Seq) 

3.12.1 RNA preparation and sequencing 

RNA was extracted from pellets of 4x106 THP-1 cells using the RNeasy mini kit and any 

residual DNA was then removed using the DNA-free DNase treatment kit. The 

concentration and quality of the RNA was determined by micro-capillary 

electrophoresis using the Agilent 6000 RNA Pico Kit and the Agilent 2100 Bioanalyser. 

All RNA samples were analysed in duplicate and only those with a RNA Integrity 

Number greater than 7 were used for RNA-Seq. 

The RNA samples were sent to AROS Applied Biotechnology A/S (Aarhus, Denmark) 

where the RNA-Seq was carried out. Firstly, the total RNA was converted into a library 

of template cDNA suitable for sequencing using the Illumina TruSeq Stranded Total 

RNA Sample Prep kit. During the initial step in this process mRNA was enriched by 
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removing ribosomal RNA (rRNA) from the total RNA samples using RiboZero rRNA 

removal beads. Next, the remaining mRNA was broken up into small fragments by 

heating with divalent cations. These RNA fragments were then converted to cDNA, 

with first strand synthesis by reverse transcriptase using random primers and second 

strand synthesis by DNA polymerase I. Following this, specific adapters were attached 

to each end of the cDNA fragments in order to facilitate sequencing. The resultant 

products were then amplified by PCR to create a final cDNA library and the Illumina 

HiSeq 2500 machine was used to sequence this cDNA library (Liu et al., 2012a). 

3.12.2 Data processing and analysis 

The RNA-Seq experiments produced data in the form of 100bp long paired-end 

(sequenced in both directions) reads, with a minimum of 60 million of these reads per 

sample. These data were analysed with the assistance of Jannetta Steyn from the 

Newcastle University Bioinformatics Support Unit. The data were first processed to 

remove any regions from the reads containing sequences from the adapters that were 

attached to each cDNA fragment using autoadapt software (Martin, 2011). After 

carrying out a quality control assessment with FastQC software, TopHat2 was then 

used to align the reads against the hg19 (human genome version 19, Genome 

Reference Consortium GRCh37.p13) reference genome (Kim et al., 2013; Andrews, 

2015). Next, HTSeq was used to annotate the aligned reads, in order to identify 

transcription units corresponding to particular genes, and produce counts of the 

number of reads for each gene (Anders et al., 2015). The read count per gene was then 

normalised as reads per kilobase per million mapped reads (RPKM) and differential 

gene expression between samples and conditions determined using DESeq2 software 

(Mortazavi et al., 2008; Soneson and Delorenzi, 2013; Love et al., 2014). The 

relationships between the transcriptome in different samples and conditions were 

explored by generating hierarchical clustering dendrograms, principal components 

analysis (PCA) plots, heat maps of relative gene expression and Venn diagrams 

indicating the overlap in gene expression. 

Finally, the biological significance of the changes in gene expression on cellular 

processes and signalling pathways was investigated using Ingenuity® Pathway Analysis 

(IPA®) (Krämer et al., 2014). In IPA® the differential expression data were analysed in 

the context of the Ingenuity® Knowledge Base, a large curated database of published 
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observations on mammalian biology, in order to identify the likely up-stream causes 

and down-stream effects of any changes in gene expression (Calvano et al., 2005).Prior 

to the pathway analysis the normalised RPKM data was filtered to include only genes 

that had a greater than 0.5 log-fold change between conditions and were significantly 

differentially expressed, as defined by a p-value adjusted for multiple comparisons 

using the Benjamini and Hochberg method of less than 0.05 (Benjamini and Hochberg, 

1995). The assessment of the effect of the changes in gene expression on canonical 

signalling pathways was also filtered to only include significantly altered pathways 

(adjusted p-value less than 0.05) that differed from the mean in the control sample by 

greater than two standard deviations (z-score greater than ±2).  

3.13 Autophagy and mitophagy 

During autophagy the cytosolic form of microtubule-associated protein 1A/1B light 

chain 3 (LC3-I) is conjugated to phosphatidylethanolamine to form LC3-II (Tanida et al., 

2008). LC3-II is recruited to the autophagosome membrane and organelles and 

proteins targeted for degradation are then engulfed (Lee et al., 2012). Inhibitors of 

late-stage autophagy, such as chloroquine and bafilomycin A1, prevent the subsequent 

fusion of autophagosomes with lysosomes, leading to a failure to degrade the 

autophagosome contents, including LC3-II. The resultant accumulation of LC3-II can 

then be measured in order to assess the autophagic flux (Klionsky et al., 2012). 

Autophagy of particular organelles can also be determined by measuring the co-

localisation of LC3-II on the autophagosome membrane with a marker specific to that 

organelle (Zinchuk et al., 2007). In this way mitophagy, the autophagy of mitochondria, 

can be measured by assessing the co-localisation of LC3-II and a mitochondrial 

structure, such as OXPHOS complex II (Frank et al., 2012). 

3.13.1 Detection of LC3-II by Western Blot 

Following a 2 hour incubation in the presence or absence of 10µM chloroquine, 

protein was extracted from THP-1 cells and the amount of LC3-II relative to the 

housekeeping protein β-actin was determined by Western blot (see section 3.9). As a 

positive control autophagy was induced by serum starvation, which involved 

incubating THP-1 cells in RPMI 1640 medium without FCS for 24 hours prior to 

treatment with chloroquine. 
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3.13.2 Confocal microscopy to measure mitophagy by the co-localisation of LC3-II and 

OXPHOS complex II 

In order to assess mitophagy THP-1 cells were incubated in the presence or absence of 

5nM bafilomycin A1 for 2 hours. Serum-starved THP-1 cells incubated in RPMI 1640 

medium without FCS for 2 hours were used as a positive control for the induction of 

mitophagy. 

After washing, the THP-1 cells were re-suspended in PBS at 2.5x105 cells/ml and a 

cytospin was carried out at 800rpm for 3 minutes. The cells were then fixed to the 

slides by incubation for 40 minutes at room temperature in a solution of 4% 

paraformaldehyde in PBS. Following this the cells were permeabilised by a 20 minute 

incubation at 4°C in PBS containing 0.1% Triton X and 0.1% citrate. After blocking non-

specific antibody binding using a solution of 2% BSA in PBS, the slides were then 

incubated with the primary antibodies for LC3-II and mitochondrial complex II for 16 

hours at 4°C. Following this overnight incubation, the slides were washed and 

incubated with fluorochrome-conjugated secondary antibodies and the nuclear dye 

DAPI for a further 2 hours at room temperature. Unbound secondary antibody was 

removed by washing and a cover slip applied using Vectashield Hard Set Mounting 

Medium. The details of the primary and secondary antibodies used in these 

experiments are listed in Table 3.9.
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Antibody Host species, 
isotype 

Manufacturer, 
Catalogue Number 

Final concentration 

Primary antibodies 

Complex II Mouse, IgG1 Invitrogen, 459200 1µg/ml 

LC3-II Rabbit, 
polyclonal 

Cell Signalling, CS-54995 4µg/ml 

Secondary antibodies and fluorochromes 

DAPI - Life Technologies, 
D3571 

5µg/ml 

Anti-mouse IgG Oregon 
Green® 

Goat Life Technologies, 
O6380 

8µg/ml 

Anti-rabbit IgG Alexa Fluor® 
568 

Goat Life Technologies, 
A11011 

8µg/ml 

Table 3.9 Primary and secondary antibodies and fluorochromes used in 
confocal microscopy experiments. 

Co-localisation of LC3-II and mitochondrial complex II was determined using the Leica 

SB2 UV confocal microscope and the 63x magnification X63 HCX PL APO lens. After 

setting up negative (unstained) and positive (stained for DAPI, LC3-II and complex II) 

control slides the microscope parameters were kept the same throughout the image 

collection. The pre-set lasers and filters were used to assess the fluorescence in the 

ultraviolet (for DAPI nuclear staining), fluorescein isothiocyanate (for complex II 

staining) and trimethylrhodamine (for LC3-II staining) channels. 

Each experimental condition was assessed in triplicate with images taken for a 

minimum of 100 cells over 3 separate fields of view for each slide. The images were 

analysed using Volocity software and correction for background fluorescence was 

carried out on all images. The staining for the complex II and LC3-II was quantified by 

determining the volume of pixels staining for each target per 100 cells. The co-

localisation of complex II and LC3-II was assessed by calculating the Mander’s M1 and 

M2 co-localisation co-efficient (Table 3.10) (Zinchuk et al., 2007).
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 Measurement Interpretation 

Mander’s M1 co-localisation co-
efficient 

Proportion of pixels with 
complex II staining that also 
stain for LC3-II 

Mitophagy – proportion of 
mitochondria co-localised with 
the autophagosomes 

Mander’s M2 co-localisation co-
efficient 

Proportion of pixels with LC3-II 
staining that also stain for 
complex II 

Contribution of mitophagy to 
total autophagy -proportion of 
autophagosomes co-localised 
with mitochondria 

Table 3.10 Mander’s M1 and M2 co-localisation co-efficient for the assessment 
of mitophagy in confocal microscopy images 

3.14 Statistical analysis 

All data were collated using Microsoft Office Excel 2013 and GraphPad Prism 6 was 

used to generate figures. Statistical analyses were carried out using GraphPad Prism 6 

and SPSS for Windows 19. 

All experiments were carried out on a minimum of 3 biological replicates; the number 

of replicates used to generate the data for a specific experiment is detailed in the 

legend of each figure. Where stated data are normalised relative to the mean in the 

control sample in order to facilitate representation on graphs. In these cases the 

statistical analysis was carried out on the original data and not the normalised values. 

Similarly when different parameters are displayed on the same graph the statistical 

significance of alterations in the original data for each individual parameter was 

analysed separately. 

The Shapiro-Wilk test was used to determine the normality of the data. Normally-

distributed data are presented as mean and 95% confidence interval in text or mean ± 

standard deviation in figures, and were analysed using an independent t-test, one-way 

analysis of variance (ANOVA) with Dunnett’s post-hoc analysis or two-way ANOVA with 

Tukey’s post hoc analysis, depending on the data set. Non-normal data are presented 

as median and interquartile range in both text and figures, and were analysed using 

the non-parametric Mann-Whitney U test or Kruskal-Wallis analysis of variance with 

Dunn’s post-hoc analysis, depending on the data set. Categorical data were analysed 

using Fisher’s exact test and the relationship between variables was assessed by linear 

regression and Pearson’s correlation co-efficient. A p-value of less than 0.05 was 

defined as the threshold for statistical significance.
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Chapter 4 A time course experiment investigating the relationship between 

compensatory responses activated by treatment of THP-1 cells with 

lipopolysaccharide 

4.1 Overview 

The precise mechanisms behind monocyte deactivation in human sepsis are not fully 

understood but there is increasing evidence of mitochondrial dysfunction and 

depletion of mtDNA in septic monocytes (Pyle et al., 2010; Japiassú et al., 2011; 

Garrabou et al., 2012). In clinical studies and animal models survival and recovery of 

cellular functions in sepsis appears to be dependent on the induction of compensatory 

responses, including the restoration of mitochondrial function through the activation 

of mitochondrial biogenesis, mitophagy and antioxidant defences (Carré et al., 2010; 

Piantadosi and Suliman, 2012; Carchman et al., 2013). 

Monocytic cells exposed to LPS display endotoxin tolerance, whereby subsequent 

stimulation with LPS triggers diminishing pro-inflammatory responses (Biswas and 

Lopez-Collazo, 2009). As endotoxin tolerant monocytes have a similar phenotype to 

that of deactivated monocytes in sepsis, this model was used to explore the changes in 

the function and turnover of mitochondria that occur in association with the inhibition 

of pro-inflammatory responses following an immune stimulus (Cavaillon and Adib-

Conquy, 2006). 

4.1.1 Hypothesis 

THP-1 cells exposed to LPS will display evidence of immune suppression, in the form of 

endotoxin tolerance, along with mitochondrial dysfunction and mtDNA depletion. The 

recovery of immune and mitochondrial functions will occur in association with the 

activation of compensatory responses, including mitochondrial biogenesis and 

mitophagy.
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4.1.2 Aims and Objectives 

1. To produce a model of monocytic cell immune deactivation by incubating THP-

1 cells with LPS to render them endotoxin tolerant. 

2. To explore the time-course and dynamics of changes in immunity and 

mitochondria in THP-1 cells following exposure to LPS. 

3. To assess the effects of treatment with LPS on compensatory responses 

including mitochondrial biogenesis and mitophagy in THP-1 cells. 

4.2 Results 

4.2.1 Exposure to LPS does not alter THP-1 cell viability 

THP-1 cells were incubated with 100ng/ml LPS for 0, 2, 6, 24, 48 and 72 hours and cell 

viability was then assessed by using flow cytometry to measure the ability of cells to 

exclude propidium iodide. LPS treatment did not have any significant cytotoxic effect, 

with greater than 95% of cells remaining viable at all time points (Figure 4.1). 

 

Figure 4.1 Exposure to LPS does not affect THP-1 cell viability.  Cell viability was 
determined by measuring the proportion of cells excluding propidium iodide 
following incubation with 100ng/ml LPS for 0-72 hours (n=4). Data are presented 
as mean ± standard deviation and analysed using one-way ANOVA (p=0.665). All 
differences from the medium control are non-significant with Dunnett’s multiple 
comparison test.
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4.2.2 Pre-incubation with LPS leads to a change in THP-1 cell immune phenotype 

consistent with endotoxin tolerance 

In order to confirm that THP-1 cells were successfully rendered endotoxin tolerant, the 

initial investigations assessed the consequences of a prior exposure to 100ng/ml LPS 

for 0-72 hours on the immune responses to a second inflammatory stimulus. It was 

found that the release of the pro-inflammatory cytokines TNFα and IL-8 triggered by a 

second 4 hour exposure to 100ng/ml LPS was significantly reduced in THP-1 cells pre-

incubated with LPS for the previous 2-48 hours (Figure 4.2 A). Conversely, THP-1 cells 

pre-incubated with LPS for 24 hours displayed an increased ability to release the anti-

inflammatory cytokine interleukin-1 receptor antagonist (IL-1RA) in response to a 

second LPS stimulus (Figure 4.2 B). There was also a significantly enhanced capacity to 

phagocytose Escherichia coli in THP-1 cells pre-incubated with LPS for the previous 2-

72 hours (Figure 4.2 C). At all time points there was no detectable LPS-induced release 

of the pro-inflammatory cytokines IL-6 and IL-1β or the anti-inflammatory cytokine IL-

10. 

Thus, pre-incubation of THP-1 cells with LPS resulted in an altered immune response to 

a subsequent stimulus that was characterised by a change to an anti-inflammatory 

cytokine release profile and an increased phagocytic capacity. Having confirmed that 

pre-incubation with LPS altered the immune phenotype of THP-1 cells, the remainder 

of the assessments were carried out on THP-1 cells after a single exposure to 100ng/ml 

LPS for 0-72 hours. No second inflammatory stimulus was applied in these 

experiments.
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Figure 4.2 Pre-incubation of THP-1 cells with LPS results in a change in immune 
phenotype consistent with endotoxin tolerance. THP-1 cells were pre-incubated 
with 100ng/ml LPS for 0-72 hours and the ability to respond to a second 
inflammatory stimulus was then determined. (A) The release of the pro-
inflammatory cytokines TNFα and IL-8 in response to a second 4 hour exposure 
to 100ng/ml LPS was measured by ELISA (n=6). (B) The release of the anti-
inflammatory cytokine IL-1RA in response to a second 16 hour exposure to 
100ng/ml LPS was determined by ELISA (n=5). (C) Phagocytosis of fluorescein-
labelled Escherichia coli (E.coli) in 1 hour was determined by flow cytometry 
(n=4). All data are presented as mean ± standard deviation with the values in 
panels A and B expressed as relative cytokine release compared to the mean in 
the medium control. Non-normal data were analysed by Kruskal Wallis test (A – 
TNFα p=0.002, IL-8 p<0.001). Normal data were analysed by one-way ANOVA (B - 
p<0.001, C - p<0.001). Differences from the medium control are non-significant 
with post-hoc analysis testing except; *p<0.05, **p<0.01, ***p<0.001.
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4.2.3 Exposure to LPS does not induce macrophage differentiation in THP-1 cells 

A number of studies have indicated that THP-1 cells can be differentiated into 

macrophage-like cells by culturing them with specific chemicals and cytokines 

(Schwende et al., 1996; Daigneault et al., 2010). As a result, an investigation was 

carried out to determine whether the change in the immune functions of THP-1 cells 

after exposure to LPS could be explained by macrophage differentiation, rather than 

the induction of endotoxin tolerance. At all time points following LPS treatment cell 

morphology, adherence and the expression of the differentiation markers CD14, CD36 

and CD206 were all significantly different from the findings in a positive control of THP-

1 cells incubated with 10nM PMA, a potent stimulus for in vitro macrophage 

differentiation (Park et al., 2007) (Figure 4.3). The alteration of the immune phenotype 

of THP-1 cells occurring following an initial incubation with LPS, therefore, appears not 

to be due to differentiation into macrophage-like cells.
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Figure 4.3 There is no evidence of macrophage differentiation in THP-1 cells 
exposed to LPS.  THP-1 cells were incubated with 100ng/ml LPS for 0-72 hours 
before measuring macrophage differentiation in comparison to a positive control 
of cells treated with 10nM PMA for 72 hours. (A) Representative images of THP-1 
cell morphology on inversion light microscope at 40x magnification showing 
irregular, clumped amoeboid cells after treatment with PMA. (B) THP-1 cell 
adherence to a 6 well plate was determined by cell counts before and after 
removal of adherent cells using a cell scraper. (n=3) (C) Flow cytometry was used 
to determine the relative signal intensity for the expression of the markers of 
macrophage differentiation CD14, CD36 and CD206 (n=3). Data are presented as 
mean ± standard deviation (relative to the mean of medium control in panel C) 
and analysed using one-way ANOVA (p<0.001 for adherence and expression of 
CD14, CD36 and CD206) with Dunnett’s multiple comparison test. ***p<0.001 – 
PMA treated cells are significantly different from all other conditions.
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4.2.4 Induction of mitochondrial biogenesis in THP-1 cells following exposure to LPS 

After finding that the model successfully rendered THP-1 cells endotoxin tolerant, the 

effect of exposure to 100ng/ml LPS for 0-72 hours on mtDNA copy number was 

determined. In contrast to the findings in monocytes from patients with severe sepsis, 

THP-1 cells with evidence of immune deactivation after treatment with LPS did not 

have any depletion of mtDNA. Instead, mtDNA copy number was actually significantly 

increased after exposure to LPS for 2-48 hours, suggesting an early and sustained 

induction of mitochondrial biogenesis (Figure 4.4). 

Within mitochondria mtDNA is coated by proteins to form nucleoids (Kukat et al., 

2011). As TFAM is the major protein constituent of these mitochondrial nucleoids and 

a key regulator of both mtDNA replication and mitochondrial biogenesis, the 

alterations in mtDNA copy number were verified by assessing TFAM protein expression 

(Kang et al., 2007; Campbell et al., 2012). In agreement with the changes in mtDNA 

copy number there was a significant increase in the level of TFAM protein after 

incubation of THP-1 cells with 100ng/ml LPS for 2-48 hours (Figure 4.5 A and B). As 

expected, there was also a significant positive correlation between mtDNA copy 

number and TFAM protein expression (Figure 4.5 C). Therefore, in this model, it 

appears that the down-regulation of pro-inflammatory cytokine release by THP-1 cells 

following exposure to LPS occurs in association with the activation of mitochondrial 

biogenesis and in the absence of any evidence of mtDNA depletion.
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Figure 4.4 Increased mtDNA copy number following exposure of THP-1 cells to 
LPS. THP-1 cells were incubated with 100ng/ml LPS for 0-72 hours and mtDNA 
copy number was determined by measuring levels of MT-ND1 relative to B2M 
using qPCR (n=5). Normal data are represented as the mean (line) with individual 
measurements and analysed using one-way ANOVA (p=0.004). Differences from 
the medium control are non-significant with Dunnett’s multiple comparison test 
except; *p<0.05, ***p<0.001.
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Figure 4.5 Exposure of THP-1 cells to LPS leads to increased TFAM expression. 
THP-1 cells were incubated with 100ng/ml LPS for 0-72 hours and the level of 
TFAM protein then measured. (A) Representative images of protein bands for 
TFAM and β-actin on a PVDF membrane following Western blot. (B) The level of 
TFAM protein expression relative to β-actin was assessed by Western Blot (n=4). 
The data are presented as mean ± standard deviation relative to the mean in the 
medium control and analysed using one-way ANOVA (p<0.001). Differences from 
the medium control are non-significant with Dunnett’s multiple comparison test 
except; **p<0.01, ***p<0.001. (C) Scatter plot, linear regression and Pearson’s 
correlation of the relationship between mtDNA copy number and TFAM protein 
levels.
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4.2.5 No change in mitochondrial mass following exposure to LPS 

The effect of this induction of mitochondrial biogenesis was first investigated by 

assessing overall mitochondrial mass in THP-1 cells after treatment with LPS. Two 

different techniques were used; measurement of the uptake of the mitochondrial dye 

NAO by flow cytometry and a colorimetric assessment of the activity of citrate 

synthase, a constitutively expressed mitochondrial matrix enzyme (Kirby et al., 2007; 

Cottet-Rousselle et al., 2011). In contrast to the effects on mtDNA copy number, there 

was no detectable increase in the mitochondrial mass of THP-1 cells treated with 

100ng/ml LPS for 2-72 hours (Figure 4.6). 

 

Figure 4.6 Unchanged mitochondrial mass following exposure of THP-1 cells to 
LPS. THP-1 cells were incubated with 100ng/ml LPS for 0-72 hours before 
measuring mitochondrial mass. (A) Mitochondrial mass was assessed by 
measuring the uptake of NAO using flow cytometry, with THP-1 cells incubated in 
glucose-free medium supplemented with 5mM galactose for 72 hours as a 
positive control (n=4). (B) A colorimetric assay was used to assess the activity of 
the mitochondrial matrix enzyme citrate synthase (n=3). Normal data are 
presented as mean ± standard deviation and analysed using one-way ANOVA (A 
– p<0.001, B – p=0.896). Differences from the medium control are non-significant 
with Dunnett’s multiple comparison test except; ***p<0.001.
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4.2.6 Increased expression of mitochondrial OXPHOS complexes I and IV after exposure of 

THP-1 cells to LPS 

As mtDNA contains 13 genes that encode vital subunits of OXPHOS complexes I, III, IV 

and V on the inner mitochondrial membrane, the consequences of the increase in 

mtDNA copy number after LPS treatment were further assessed by measuring the 

expression of protein subunits of each OXPHOS complex (Greaves et al., 2012). It is 

shown in Figure 4.7 that the expression of OXPHOS complexes I and IV, the two 

complexes with the greatest number of mtDNA-encoded constituents, was significantly 

increased in THP-1 cells after exposure to LPS, while there were no significant changes 

in the levels of complexes II, III and V (Schon et al., 2012). Thus, in parallel with the 

increase in mtDNA copy number, and despite the unchanged overall mitochondrial 

mass, treatment of THP-1 cells with LPS lead to an increase in the level of OXPHOS 

complexes I and IV.
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Figure 4.7 The expression of protein subunits of mitochondrial OXPHOS 
complexes I and IV is increased in THP-1 cells following exposure to LPS. THP-1 
cells were incubated with 100ng/ml LPS for 0-72 hours and the level of protein 
subunits of the five mitochondrial OXPHOS complexes was then determined by 
Western blot. (A) Representative images of protein bands on PVDF membrane 
following Western blot. (B) The protein expression (relative to β-actin) of the 
mitochondrial OXPHOS complexes (n=4). The data are represented as mean ± 
standard deviation relative to the mean in the medium control and analysed 
using one-way ANOVA (complex I - p=0.020, complex II - p=0.126, complex III - 
p=0.308, complex IV - p<0.001, complex V - p=0.986). The differences from the 
medium control are not significant with Dunnett’s multiple comparison test 
except; *p<0.05, **p<0.01, ***p<0.001.



70 
 

4.2.7 Increased mitochondrial respiration following treatment of THP-1 cells with LPS 

Next, the effects of exposure to LPS on mitochondrial respiration in THP-1 cells were 

determined. Firstly, the activity of isolated mitochondrial OXPHOS complexes I and IV 

were measured (Nijtmans et al., 2002; Rodenburg et al., 2012). While, in keeping with 

the up-regulation of protein expression, there was a significant increase in the 

enzymatic activity of complex IV, the activity of complex I did not significantly change 

at any of the time points following treatment with LPS (Figure 4.8). 

Subsequently, different aspects of mitochondrial respiration were assessed in more 

detail by determining the effects of LPS treatment on oxygen consumption by THP-1 

cells using the Seahorse XF96e extracellular flux analyser (Hill et al., 2012). Exposure of 

THP-1 cells to 100ng/ml LPS for 6-48 hours resulted in increased mitochondrial oxygen 

consumption, particularly for basal mitochondrial respiration and mitochondrial ATP 

production (Figure 4.9). There were no significant LPS-induced alterations in oxygen 

consumption due to non-mitochondrial respiration or the leakage of protons across 

the inner mitochondrial membrane. 

These results show that treatment of THP-1 cells with LPS leads to an increase in 

mitochondrial respiration that occurs in association with the activation of 

mitochondrial biogenesis and increased OXPHOS protein expression, but despite 

unchanged overall mitochondrial mass.
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Figure 4.8 Increased mitochondrial OXPHOS complex IV activity after treatment 
with LPS. THP-1 cells were incubated with 100ng/ml LPS for 0-72 hours before 
assessing the activity of OXPHOS complexes I and IV. (A) Representative image of 
a 3-12% Bis-Tris gel stained for complex I activity after blue native-PAGE. (B) In-
gel complex I activity relative to the mean in the medium control (n=3). (C) 
Complex IV activity as determined by the rate of reduction of cytochrome C 
(n=3). Normal data are presented as mean ± standard deviation and analysed 
using one-way ANOVA (B – p=0.069, C - p<0.001). Differences from the medium 
control are non-significant with Dunnett’s multiple comparison test except; 
**p<0.01, ***p<0.001.
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Figure 4.9 Exposure of THP-1 cells to LPS leads to increased oxygen 
consumption due to mitochondrial respiration. THP-1 cells were incubated with 
100ng/ml LPS for 0-72 hours and different aspects of respiration were then 
determined by measuring the OCR after the sequential addition of metabolic 
inhibitors using the Seahorse XF96e extracellular flux analyser. (A) An example of 
the respiratory profile of THP-1 cells following exposure to LPS for 0-72 hours. (B) 
The OCR was determined for the following aspects of cellular respiration; Basal 
mitochondrial respiration = basal OCR (I) – non-mitochondrial OCR (IV); ATP 
production = basal OCR (I) – post-oligomycin OCR (II); Proton leak = post-
oligomycin OCR (II) – non-mitochondrial respiration (IV); Maximal mitochondrial 
respiration = maximal OCR (III) – non-mitochondrial OCR (IV). Data are presented 
as mean (± standard deviation) relative OCR compared to the mean basal 
mitochondrial respiration in the medium control (n=5 for all experiments). The 
data for each aspect of mitochondrial respiration was analysed separately using 
one-way ANOVA (Maximal respiration – p=0.192) or Kruskal Wallis test (Basal 
respiration – p=0.006, ATP production – p=0.007, Proton leak – p=0.312). 
Differences from medium control are non-significant with post-hoc testing 
except; *p<0.05, **p<0.01
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4.2.8 Early induction of autophagy and mitophagy in THP-1 cells exposed to LPS 

As previous studies have indicated that the removal of dysfunctional mitochondria 

may be up-regulated during inflammation, an assessment of the effects of treatment 

with LPS on both autophagy and mitophagy in THP-1 cells was carried out (Carchman 

et al., 2013; Chang et al., 2015). There was an early LPS-induced activation of 

autophagy, as indicated by a significantly increased accumulation of the 

autophagosome protein LC3-II in THP-1 cells exposed to 100ng/ml LPS for 2-6 hours 

(Tanida et al., 2008) (Figure 4.10). Using confocal microscopy to measure the co-

localisation of mitochondria to autophagosomes it was then confirmed that this 

induction of autophagy in THP-1 cells after treatment with LPS for 6 hours was 

accompanied by a significant increase in mitophagy (Figure 4.11 and Figure 4.12) 

(Zinchuk et al., 2007). These results indicate that mitophagy is up-regulated in parallel 

with the activation of mitochondrial biogenesis in THP-1 cells after treatment with LPS.
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Figure 4.10 Induction of autophagy in THP-1 cells exposed to LPS.  THP-1 cells 
were incubated with 100ng/ml LPS for 0-72 hours and autophagic flux was 
assessed by measuring the accumulation of LC3-II occurring during the final 2 
hours after treatment with 10µM chloroquine (CQ). As a positive control for 
autophagy THP-1 cells were incubated in RPMI 1640 medium without FCS (serum 
starvation) for 24 hours. (A) Representative image of LC3-II and β-actin protein 
bands on a PVDF membrane following Western blot. (B) The expression of LC3-II 
relative to β-actin after treatment with CQ was determined by Western blot 
(n=5). Data are presented as mean ± standard deviation relative to the mean in 
the medium control and analysed using one-way ANOVA (p<0.001). Differences 
from the medium control (white bar) are non-significant with Dunnett’s multiple 
comparison test except; *p<0.05, **p<0.01, ***p<0.001.
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Figure 4.11 Confocal microscopy images indicating co-localisation of 
mitochondrial OXPHOS complex II and the autophagosome marker LC3-II.  THP-
1 cells were incubated with 100ng/ml LPS for 0-6 hours and treated with 5nM 
bafilomycin A1 for the final 2 hours to allow accumulation of LC3-II (in all 
conditions except the 1st row, labelled medium). As a positive control for 
autophagy THP-1 cells were incubated in RPMI 1640 medium without FCS (5th 
row, labelled serum starvation) for 2 hours. Representative confocal microscopy 
images are displayed indicating staining of cytospin slides for the nucleus (1st 
column, blue), mitochondrial complex II (2nd column, green) and the 
autophagosomal marker LC3-II (3rd column, red). The final column indicates a 
composite image produced by overlaying the nuclear, mitochondrial and 
autophagosome staining.
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Figure 4.12 Induction of mitophagy following exposure of THP-1 cells to LPS for 
6 hours.  Quantification of the confocal microscopy imaging was carried out 
following the assessment of mitochondrial complex II and autophagosome LC3-II 
staining in THP-1 cells. (A) Quantification of the volume of pixels staining for 
complex II and LC3-II per 100 THP-1 cells relative to the mean in the untreated 
control (1st bars) (n=3). (B, C) Co-localisation of complex II and LC3-II staining 
using Mander’s M1 (the proportion of complex II positive pixels also staining for 
LC3-II, indicating mitophagy) and M2 (proportion of LC3-II positive pixels also 
staining for complex II, indicating the contribution of mitophagy to total 
autophagy) co-localisation co-efficient (n=4). Data are presented as mean ± 
standard deviation and analysed using one-way ANOVA (A - complex II p=0.504, 
LC3-II p<0.001, B – p=0.001, C – p=0.022). Differences from bafilomycin A1-
treated control (2nd bar) are non-significant with Dunnett’s multiple comparison 
test except; *p<0.05, **p<0.01, ***p<0.001.
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4.2.9 Early oxidative stress and induction of antioxidant defences but no mitochondrial 

membrane potential depolarisation following treatment of THP-1 cells with LPS 

Finally, the effect of treatment with LPS on two markers of mitochondrial dysfunction, 

mitochondrial membrane potential (Δψm) depolarisation and oxidative stress, was 

determined. 

Depolarisation of Δψm, which is generated by the transport of electrons across the 

inner mitochondrial membrane by OXPHOS complexes I, III and IV, is associated with a 

loss of mitochondrial integrity and has been found to occur after exposure to LPS in 

cell culture and animal models (Narendra et al., 2008; Bauerfeld et al., 2012; Carchman 

et al., 2013). However, in keeping with the findings of unchanged oxygen consumption 

for proton leak across the inner mitochondrial membrane (Figure 4.9), there was no 

evidence of Δψm depolarisation in THP-1 cells after treatment with LPS (Figure 4.13). 

Excessive mitochondrial ROS production, due to increased leakage of electrons from 

the OXPHOS system, is another feature of mitochondrial dysfunction that has been 

associated with inflammation, including exposure to LPS (Suliman et al., 2003b; Galley, 

2011). THP-1 cell ROS production was increased in the initial period after treatment 

with 100ng/ml LPS and this was followed by increased transcription of mRNA from the 

HMOX1 gene which encodes HO-1, an enzyme that is induced by oxidative stress (Alam 

and Cook, 2003) (Figure 4.14 A and B). Measurements of the expression of the SOD2 

gene, which encodes the mitochondrial antioxidant superoxide dismutase-2 (SOD2), 

show that the resolution of this LPS-induced oxidative stress occurred in association 

with the activation of antioxidant defences. After exposure of THP-1 cells to LPS there 

was a rapid increase in the transcription of SOD2 mRNA which mirrored the increase in 

ROS production and was followed by significantly increased SOD2 protein levels at 24 

and 48 hours (Figure 4.14 C and D).
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Figure 4.13 Exposure to LPS does not significantly alter the mitochondrial 
membrane potential in THP-1 cells.  After incubation with 100ng/ml LPS for 0-72 
hours the proportion of THP-1 cells with a depolarised mitochondrial membrane 
potential (Δψm) was determined by measuring the green (depolarised Δψm) and 
red (maintained Δψm) fluorescence from the JC1 dye by flow cytometry. As a 
positive control for Δψm depolarisation THP-1 cells were incubated with 100nM 
valinomycin. The data are presented as mean ± standard deviation and analysed 
using one-way ANOVA (p<0.001). All differences from the medium control are 
non-significant with Dunnett’s multiple comparison test except; ***p<0.001.



79 
 

 

Figure 4.14 Resolution of early oxidative stress in association with the 
induction of antioxidant defences in THP-1 cells exposed to LPS. THP-1 cells 
were incubated with 100ng/ml LPS for 0-72 hours and markers of oxidative stress 
and antioxidant responses measured. (A) ROS production was measured by 
oxidation of DCF-DA using flow cytometry. THP-1 cells incubated with 100µM 
hydrogen peroxide (H2O2) for 1 hour provided a positive control (n=3). (B) The 
mRNA transcription of HMOX1 relative to GAPDH was determined by RTqPCR 
(n=3). (C) Representative image of protein bands on a PVDF membrane following 
Western blot (D) The mRNA transcription (relative to GAPDH) and protein 
expression (relative to β-actin) of the mitochondrial antioxidant gene SOD2 was 
measured (n=3). Data presented as mean ± standard deviation (mRNA and 
protein data are relative to the mean of the medium control) and analysed using 
one way ANOVA (A – p<0.001, B – p=0.002, D – mRNA p<0.001, protein p=0.030). 
Differences from the medium control are non-significant with Dunnett’s multiple 
comparison test except; *p<0.05, **p<0.01, ***p<0.001.
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4.3 Discussion 

4.3.1 Incubation of THP-1 cells with LPS leads to the induction of endotoxin tolerance 

Endotoxin tolerance, in which a prior exposure to LPS from Gram negative bacteria 

results in diminishing pro-inflammatory responses to subsequent inflammatory stimuli, 

appears to be an adaptive response aimed at limiting the harmful effects of excessive 

inflammation (Biswas and Lopez-Collazo, 2009). Features of endotoxin tolerance have 

been identified in blood monocytes from patients with a variety of acute and chronic 

inflammatory conditions (del Campo et al., 2011; Lopez-Collazo and del Fresno, 2013). 

Deactivated monocytes isolated from critically ill patients with sepsis share a similar 

phenotype with endotoxin tolerant monocytes produced by in vitro or in vivo exposure 

to LPS (Escoll et al., 2003; Draisma et al., 2009). The archetypal feature of endotoxin 

tolerance is a marked reduction in the release of the pro-inflammatory cytokine TNFα 

by monocytes in response to subsequent exposures to LPS, a finding that is associated 

with adverse outcomes when detected in septic monocytes (Biswas and Lopez-Collazo, 

2009; Hall et al., 2011). Similarly, there is evidence of impaired antigen presentation by 

both endotoxin tolerant and septic monocytes, as reflected by a reduction in the 

expression of HLA-DR on their surface (Wolk et al., 2000; Landelle et al., 2010). In 

contrast, anti-inflammatory responses, particularly LPS-induced IL-10 and IL-1RA 

release, and phagocytic capacity have been found to be up-regulated in endotoxin 

tolerant monocytes and in those isolated from patients with sepsis (Sfeir et al., 2001; 

Escoll et al., 2003; del Fresno et al., 2009; Doring et al., 2014). 

In this chapter it is shown that incubation of THP-1 cells with 100ng/ml LPS produces 

many of the features of both endotoxin tolerant and septic monocytes. In particular 

the exposure of THP-1 cells to LPS leads to a reduced ability to produce pro-

inflammatory cytokines, including TNFα, but enhanced anti-inflammatory responses 

and improved phagocytosis. This suggests that LPS-treated THP-1 cells provide a good 

model for assessing the relationship between the induction of an immune deactivation 

that is similar to that seen in severe sepsis and the changes in monocytic cell 

mitochondria that occur following an inflammatory insult. 
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4.3.2 Endotoxin tolerant THP-1 cells do not have evidence of mtDNA depletion or 

mitochondrial respiratory dysfunction 

In a few small observational studies septic monocytes have been found to have 

evidence of mtDNA depletion and decreased mitochondrial respiratory activity (Pyle et 

al., 2010; Japiassú et al., 2011; Garrabou et al., 2012). Animal models have also 

indicated that a septic insult can lead to oxidative damage to mtDNA, mtDNA depletion 

and a reduction in OXPHOS activity in a variety of tissues (Suliman et al., 2003a; Haden 

et al., 2007; Carchman et al., 2013). In order to try to clarify the relationship between 

these findings the effects of inducing a state of immune deactivation on the 

mitochondrial functions of THP-1 cells was explored. Treatment with LPS, despite 

altering the immune phenotype of THP-1 cells by producing endotoxin tolerance, did 

not lead to any evidence of mtDNA depletion or mitochondrial respiratory impairment. 

On the contrary, there was an early and sustained increase in both mtDNA copy 

number and mitochondrial respiration in endotoxin tolerant THP-1 cells. This suggests 

that mtDNA depletion is not an essential pre-requisite for the induction of immune 

dysfunction in monocytic cells, and that this process may occur despite adequate 

mitochondrial respiration. 

The differences between the findings from this model and those from clinical and 

animal sepsis studies, in particular the lack of mtDNA depletion and OXPHOS 

dysfunction, may reflect the limitations of using a single, sterile stimulus to model the 

overwhelming, multiple and persistent inflammatory triggers that are present during 

sepsis. The relatively mild nature of treatment with 100ng/ml LPS is highlighted by the 

absence of any measurable effect on THP-1 cell viability or Δψm depolarisation, 

findings that contrast with those from septic monocytes (Adrie et al., 2001). The 

consequences of treating THP-1 cells with 100ng/ml LPS may, therefore, be more 

reflective of the processes that are activated when a less severe infection is 

successfully cleared, rather than those occurring in the more unusual circumstances in 

which an infection leads to excessive systemic inflammation and sepsis. However, the 

evidence of increased mitochondrial ROS production and oxidative stress in this model 

of endotoxin tolerance does indicate that the effects of LPS on THP-1 cell mitochondria 

are not entirely benign. Furthermore, the rapid resolution of these effects also 
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suggests that there is an induction of very efficient compensatory responses that 

maintain mitochondrial function in THP-1 cells following exposure to LPS. 

4.3.3 Mitochondrial biogenesis is triggered by exposure to LPS 

Rather than producing mtDNA depletion, treatment of THP-1 cells with LPS resulted in 

an early and sustained increase in mtDNA copy number due to the activation of 

mitochondrial biogenesis. Mitochondrial biogenesis appears to be an essential 

response that is required to compensate for the adverse effects of inflammation on 

the structure and function of mitochondria (Kozlov et al., 2011). Animal models 

suggest that mitochondrial biogenesis is directly triggered by inflammatory signalling 

and is associated with a more rapid recovery of cellular respiration and improved 

survival during sepsis (Suliman et al., 2003b; Sweeney et al., 2010). Similarly, in 

critically ill patients survivors have been found to have an early up-regulation of the 

key mitochondrial biogenesis regulator PGC-1α, along with evidence of a reduction in 

mitochondrial damage (Carré et al., 2010). 

The beneficial effects of stimulating mitochondrial biogenesis in response to an 

inflammatory insult may also extend beyond improving the capability of the cell to 

replace damaged and dysfunctional mitochondria. The results in this chapter indicate 

that the activation of mitochondrial biogenesis occurring in THP-1 cells following 

treatment with LPS was associated with a significant increase in mitochondrial 

respiratory activity. This finding is consistent with previous observations that 

treatment with LPS stimulates mitochondrial oxygen consumption by THP-1 cells and 

leads to enhanced ATP production by murine macrophages (Bauerfeld et al., 2012; Liu 

et al., 2015). In addition to allowing the cell to cope with the increased metabolic 

demands during an infection, there is evidence that this up-regulation of mitochondrial 

respiration can also lead to an increased resistance to the negative effects of excessive 

inflammation (Islam et al., 2012; Stetler et al., 2012). 

While these findings suggest that the activation of mitochondrial biogenesis in THP-1 

cells after exposure to LPS is likely to be broadly beneficial, this process may also 

potentially exacerbate endotoxin tolerance-related immune deactivation. The time-

course experiments in this chapter show that there is a temporal association between 

the activation of mitochondrial biogenesis and the shift towards an anti-inflammatory 
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phenotype. Furthermore, at 72 hours after treatment with LPS the recovery of THP-1 

cell immune functions occurs at a point when mtDNA copy number and TFAM levels 

have also returned to baseline. This association is consistent with findings from murine 

sepsis models in which there appears to be a co-regulation of mitochondrial biogenesis 

and anti-inflammatory cytokine production through the activation of redox-sensitive 

pathways following exposure to an inflammatory stimulus (Piantadosi et al., 2011; 

MacGarvey et al., 2012). It is, therefore, possible that mitochondria are linked with 

immune deactivation in monocytes through the excessive co-stimulation of 

mitochondrial biogenesis and anti-inflammatory pathways during sepsis, rather than, 

or perhaps in addition to, any adverse effects of mtDNA depletion (Piantadosi and 

Suliman, 2012). 

4.3.4 Mitochondrial quality control through the co-induction of mitochondrial biogenesis 

and mitophagy 

Mitophagy was also found to be significantly up-regulated following treatment of THP-

1 cells with LPS. Previous studies have indicated that the removal of defective 

mitochondria through mitophagy is essential in order to maintain a healthy 

mitochondrial population during inflammation (Kim et al., 2007). In animal models of 

inflammation inhibiting mitophagy allows damaged mitochondria to accumulate, with 

consequential adverse effects on cellular function and viability (Nakahira et al., 2011; 

Motori et al., 2013). Although data from human studies is limited, it appears that 

mitophagy may be insufficient during severe sepsis, resulting in the persistence of 

dysfunctional mitochondria that can drive oxidative stress, lead to deficient respiration 

and cause cell death through the induction of apoptosis (Carré et al., 2010; Kozlov et 

al., 2011; Gunst et al., 2013). 

The up-regulation of mitophagy in THP-1 cells exposed to LPS occurs in parallel with 

the stimulation of mitochondrial biogenesis. A co-ordinated activation of these two 

processes allows for the selective replacement of dysfunctional mitochondria, which 

can enable overall mitochondrial quality to be maintained in the face of significant 

inflammation (Hill et al., 2012; Carchman et al., 2013). Indeed, in THP-1 cells these 

processes may be particularly efficient as the results in this chapter show that 

mitochondrial OXPHOS activity is actually increased after treatment with LPS, despite 

unchanged mitochondrial mass. 
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The regulation of mitophagy appears to be very sensitive to alterations in 

mitochondrial function, with features of mitochondrial damage such as Δψm 

depolarisation and increased ROS production acting as potent mitophagy activators 

(Youle and Narendra, 2011). Despite findings that Δψm depolarisation occurs in animal 

sepsis models and monocytes from sepsis patients, exposure to LPS did not lead to 

significant alterations in the Δψm of THP-1 cells (Adrie et al., 2001; Carchman et al., 

2013). On the other hand, there was evidence of significant oxidative stress occurring 

at the same time as the activation of mitophagy in LPS-treated THP-1 cells. As previous 

studies have found that mitochondria producing excessive ROS are specifically 

targeted for clearance by mitophagy during inflammation, it is possible that this early 

oxidative stress is a major trigger for the LPS-induced up-regulation of mitophagy that 

is seen in THP-1 cells (Nakahira et al., 2011; Chang et al., 2015). Following the 

activation of mitophagy ROS production by THP-1 cells returns to baseline levels, 

suggesting that the removal of dysfunctional mitochondria may be important, along 

with the activation of antioxidant defences, in the resolution of LPS-induced oxidative 

stress. 

4.3.5 Conclusion 

The treatment of THP-1 cells with 100ng/ml LPS for 0-72 hours provides a useful model 

for assessing the changes occurring in parallel with the induction of endotoxin 

tolerance, a process with important similarities to the immune deactivation of 

monocytes during sepsis. In contrast to sepsis, rather than respiratory impairment and 

mtDNA depletion, these endotoxin tolerant THP-1 cells had increased OXPHOS activity 

and an induction of mitochondrial biogenesis. Furthermore, after treatment with LPS 

there was an up-regulation of mitophagy which may, alongside the increase in 

mitochondrial biogenesis, lead to the resolution of oxidative stress and an 

improvement in overall mitochondrial respiratory efficiency, through the selective 

removal of dysfunctional mitochondria. 

These observations provide important insights into the interactions between 

mitochondria and the innate immune response, as well as the co-ordination of 

compensatory responses that are required to maintain cell viability and function 

following an inflammatory insult. However, the underlying cellular mechanisms 

controlling these responses have not been explored and the precise nature of the 
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causality and relationships between the changes that have been observed remain 

unclear. In addition to confirming the findings in primary blood monocytes and 

patients with sepsis, further work is required to clarify the fundamental processes 

controlling the co-regulation of mitochondrial homeostasis and immune responses 

during inflammatory conditions.
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Chapter 5 The effect of LPS inhalation on blood monocyte immune functions 

and mitochondrial DNA copy number 

5.1 Overview 

LPS is a key constituent of the outer membrane of Gram negative bacteria which 

provokes a brisk inflammatory response when bound by TLR-4 on the surface of innate 

immune cells, including monocytes (Raetz and Whitfield, 2002). The inhalation of LPS 

by healthy volunteers produces self-limiting alveolar and systemic inflammation 

(Thorn, 2001). The technique, while widely used to provide an in vivo model of acute 

neutrophilic lung inflammation, also produces a transient systemic inflammatory 

response that is characterised by elevations in pro-inflammatory cytokines, acute 

phase proteins and leucocyte count in the peripheral blood (Kitz et al., 2008; Fouassier 

et al., 2009; Korsgren et al., 2012). In view of these systemic effects, LPS inhalation was 

chosen as an acceptable experimental model in which to attempt to transiently induce 

mild features of endotoxin tolerance in peripheral blood monocytes and confirm the 

findings from THP-1 cells treated with LPS that are detailed in Chapter 4. A dose of 

60µg of LPS was selected for inhalation by the volunteers as this has been previously 

shown to reliably induce an inflammatory response in a safe and well-tolerated 

manner (Barr et al., 2013). 

5.1.1 Hypothesis 

Following inhalation of LPS peripheral blood monocytes will display evidence of 

endotoxin tolerance, as indicated by impaired immune responses to ex vivo 

inflammatory stimuli, along with an associated induction of mitochondrial biogenesis. 

5.1.2 Aims and Objectives 

1. To safely administer inhaled LPS or saline placebo to randomly allocated, well-

matched groups of healthy volunteers. 

2. To confirm the induction of systemic inflammation following inhalation of LPS 

by measuring changes in clinical observations and leucocyte counts. 

3. To isolate monocytes from peripheral blood samples and assess the effects of 

LPS inhalation on immune functions and mtDNA copy number. 
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5.2 Results 

5.2.1 Increased peripheral blood neutrophil count following inhalation of LPS 

Twelve healthy volunteers were randomly allocated to inhalation of either 60µg LPS or 

a saline placebo (n=6 in each group). There were no significant differences in baseline 

demographic and clinical parameters between the two study groups (Table 5.1). At 6 

and 24 hours post inhalation there was a significant increase in peripheral blood 

neutrophil count in the LPS group but not the saline group (Figure 5.1 A). However, 

peripheral blood monocyte count and changes in body temperature, heart rate and 

systolic blood pressure were not significantly altered by inhalation of either saline or 

LPS (Figure 5.1 B, Table 5.2). No serious adverse events were reported following 

inhalation in either group. 

 LPS Group Saline Group p-value 

Age (years) 23.5 (20.5-26.5) 20.5 (19-22) 0.12 

Gender 3 Female, 3 Male 5 Female, 1 Male 0.221 

Height (m) 1.75 (1.67-1.83) 1.73 (1.60-1.86) 0.78 

Weight (kg) 74.8 (62-87.7) 65 (51.4-78.6) 0.206 

Temperature (°C) 36.5 (36.1-36.9) 36.3 (35.6-36.9) 0.428 

Heart rate (bpm) 72.7 (62.3-85.1) 76.5 (64.7-88.3) 0.544 

Systolic blood pressure (mmHg) 115 (102-128) 111 (101-120) 0.485 

Forced Expiratory Volume 1 second (l) 4.01 (3.34-4.67) 4.00 (2.86-5.14) 0.992 

White cell count (109cells/l) 5.23 (4.47-6.01) 5.48 (4.39-6.57) 0.641 

Neutrophil count (109cells/l) 2.77 (2.03-3.51) 2.85 (2.31-3.39) 0.838 

Monocyte count (109cells/l) 0.50 (0.37-0.61) 0.41 (0.34-0.61) 0.188 

Table 5.1 Summary of baseline demographics and clinical parameters in the LPS 
inhalation study. All normally distributed numerical data are presented as mean 
(95% confidence interval) and the differences between the groups analysed using 
independent t-tests. Age is not normally distributed and is presented as median 
(range) and the differences between the groups analysed using the Mann 
Whitney U test. The distribution of categorical data was assessed using Fisher’s 
Exact Test.
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Figure 5.1 Significantly increased peripheral blood neutrophil count following 
inhalation of LPS. Peripheral blood neutrophil and monocyte counts were 
carried out at 0 (pre-inhalation), 6 and 24 hours following inhalation of LPS and 
saline. Data are represented by box plots indicating 25th quartile, median and 
75th quartile and whiskers indicating the range and analysed by two-way ANOVA 
with Tukey’s post hoc analysis. All differences are non-significant except; 
**p<0.01 and ***p<0.001 for the differences in neutrophil count from the 0 hour 
sample in the LPS group. 

 LPS Group Saline Group p-value 

Temperature (ᴼC) 0.43 (0.12-0.74) 0.71 (0.04-1.39) 0.35 

Heart rate (bpm) 6.7 (0.7-12.7) 7.7 (3.9-11.5) 0.725 

Systolic blood pressure (mmHg) -6.7 (-0.1- -13) -3.7 (-0.2- -7.5) 0.589 

White cell count (109cells/l) 5.53 (2.56-8.5) 0.46 (-0.18-1.10) 0.002 

Neutrophil count (109cells/l) 4.32 (2.25-6.38) 0.04 (-0.33-0.47) 0.002 

Monocyte count (109cells/l) 0.19 (0.03-0.34) 0.06 (-0.02-0.13) 0.077 

Table 5.2 Changes in clinical and peripheral blood leucocyte parameters 
following inhalation of LPS or saline.  Data indicate the maximum change from 
the baseline (t=0) measurement for all parameters. All normally distributed data 
are presented as mean (95% confidence interval) and the differences between 
the groups analysed using independent t-tests. The change in neutrophil count is 
not normally distributed and is presented as median (range) and the differences 
between the groups analysed using the Mann Whitney U test.
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5.2.2 No significant effect of LPS inhalation on monocyte cytokine release 

At each time point the ability of monocytes isolated from peripheral blood samples to 

produce an immune response to a second inflammatory stimulus was determined. 

Firstly the production of pro-inflammatory cytokines in response to a four hour 

incubation with 10ng/ml LPS was measured. The LPS-induced release of TNFα and IL-6 

was not significantly different at either 6 or 24 hours after inhalation of LPS, indicating 

that this model failed to produce evidence of endotoxin tolerance in the peripheral 

blood monocytes of the healthy volunteers (Figure 5.2). 

 

Figure 5.2 Cytokine release by monocytes is not significantly altered by LPS 
inhalation  Monocytes were isolated from peripheral blood samples at 0 (pre-
inhalation), 6 and 24 hours following inhalation of saline or LPS. The release of 
the pro-inflammatory cytokines TNFα (A) and IL-6 (B) in response to a 4 hour 
incubation with 10ng/ml LPS was determined by ELISA. Data are represented as 
box plots of the 25th quartile, median and 75th quartile with whiskers indicating 
the range and analysed by two-way ANOVA with Tukey’s post hoc analysis. All 
differences are non-significant.
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5.2.3 Diurnal variation in monocyte phagocytosis 

In addition to measuring cytokine release in response to LPS, the ability of blood 

monocytes to phagocytose serum-opsonised zymosan particles was determined at 

baseline and 6 and 24 hours post inhalation. There was no significant difference in the 

proportion of monocytes internalising zymosan between the groups randomised to 

inhalation of LPS or saline at each time point (Figure 5.3). However, in both groups 

phagocytosis was significantly greater in the 6 hour sample (taken at approximately 

3pm) than in the 0 and 24 hours samples (taken at approximately 9am), suggesting a 

diurnal variation in the phagocytic ability of blood monocytes. 

 

Figure 5.3 Monocyte phagocytosis exhibits diurnal variation but is not 
significantly affected by LPS inhalation. Monocytes were isolated from 
peripheral blood samples at 0 (pre-inhalation), 6 and 24 hours following 
inhalation of saline or LPS. The proportion of monocytes able to phagocytose 
serum opsonised zymosan in 1 hour was then determined. Data are represented 
as box plots of the 25th quartile, median and 75th quartile with whiskers 
indicating the range, and analysed using two-way ANOVA with Tukey’s post hoc 
analysis. All differences are non-significant except; ***p<0.001 for phagocytosis 
in both the saline and LPS inhalation groups at 6 hours compared to 0 and 24 
hours.



91 
 

5.2.4 Monocyte mtDNA copy number is not significantly altered by inhalation of LPS 

In view of the findings that sepsis has adverse effects on mitochondrial functions and 

that mitochondrial biogenesis is activated during the resolution of inflammation, 

mtDNA copy was also measured in monocytes isolated from peripheral blood samples 

at each time point. In keeping with the lack of effect on immune functions, there was 

no significant difference in monocyte mtDNA copy number over time or between the 

groups randomised to LPS or saline inhalation (Figure 5.4). This finding indicates that 

there is no evidence of the induction of mitochondrial biogenesis in blood monocytes 

following inhalation of 60µg LPS and that monocyte mtDNA copy number does not 

appear to exhibit diurnal variation. 

 

Figure 5.4 No significant difference in monocyte mtDNA copy number after 
inhalation of LPS. Monocytes were isolated from peripheral blood samples at 0 
(pre-inhalation), 6 and 24 hours following inhalation of saline or LPS and mtDNA 
copy number determined by measuring levels of MT-ND1 relative to B2M using 
qPCR. Data are represented as individual points with lines indicating the mean 
mtDNA copy number. All differences are non-significant by two-way ANOVA with 
Tukey’s post hoc analysis.



92 
 

5.3 Discussion 

5.3.1 LPS inhalation as a model of systemic inflammation 

In agreement with previous findings, the inhalation of 60µg LPS by healthy participants 

was found to provide a well-tolerated model of acute inflammation in this randomly 

allocated, placebo-controlled study (Shyamsundar et al., 2009; Barr et al., 2013). There 

were no serious adverse events and no significant perturbation of clinical parameters 

was seen following inhalation of either saline or LPS. In addition there was a reliable 

induction of a degree of systemic inflammation, as indicated by peripheral blood 

leucocytosis and neutrophilia at 6 and 24 hours after inhalation of LPS. These results 

are consistent with other reports which have indicated that leucocyte counts, acute 

phase proteins and pro-inflammatory cytokines, are all significantly raised in peripheral 

blood samples after LPS inhalation (Fouassier et al., 2009; Korsgren et al., 2012; 

Janssen et al., 2013). 

It appears, however, that a milder degree of systemic inflammation may have been 

produced than that in certain previous LPS inhalation studies that used similar doses of 

LPS (Kitz et al., 2008; Fouassier et al., 2009). In contrast to these studies, there was a 

failure to produce any consistent changes in symptoms or clinical observations such as 

body temperature or heart rate following inhalation of LPS. This mild systemic effect 

may partly explain why LPS inhalation failed to achieve the primary objective of 

inducing endotoxin tolerance in peripheral blood monocytes. Endotoxin tolerance is 

classically defined as an attenuation in the release of TNFα in response to a second LPS 

stimulus, but the ex vivo LPS-induced release of both TNFα and IL-6 was not 

significantly altered in monocytes isolated from individuals after inhalation of LPS 

(Lopez-Collazo and del Fresno, 2013). In addition, there was no significant difference in 

peripheral blood monocyte count or monocyte phagocytosis between the groups 

inhaling LPS or saline at any time point. There was also no evidence of the induction of 

mitochondrial biogenesis in monocytes following LPS inhalation, but it is difficult to 

draw any firm conclusions from this finding given the lack of effects on monocyte 

immune parameters. It should be noted that the small numbers of volunteers included 

in the study and the limited time points analysed may mean that subtle differences in 
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immune responses or mtDNA copy number caused by LPS inhalation were not 

detected. 

Given that LPS inhalation is primarily designed as a model of acute pulmonary 

inflammation, it is perhaps understandable that it did not induce endotoxin tolerance 

in blood monocytes (Michel et al., 1997). Inhalation of LPS has been previously found 

to lead to the accumulation of monocyte-like cells within the lungs, and also to 

produce a significant up-regulation in the expression of a broad range of inflammatory 

genes in alveolar macrophages (Brittan et al., 2012; Reynier et al., 2012). In contrast to 

these findings in pulmonary monocytic cells, there are, to my knowledge, no published 

reports of LPS inhalation producing significant effects on the function of blood 

monocytes. It is likely that the dose of LPS that circulating monocytes are exposed to 

following LPS inhalation is insufficient to produce the profound changes in their 

phenotype that are seen in endotoxin tolerance (Cavaillon and Adib-Conquy, 2006).  

Future studies may consider using an alternative translational research model that 

involves the intravenous administration of low-dose LPS to healthy volunteers. There 

are numerous publications reporting that the use of intravenous LPS is a safe 

technique which produces a significantly greater magnitude of systemic inflammation, 

characterised by a brisk febrile response and transient influenza-like symptoms, than 

LPS inhalation (Calvano et al., 2005; Talwar et al., 2006). In addition, it has been 

consistently shown that blood monocytes from healthy volunteers display the classical 

features of endotoxin tolerance following intravenous LPS administration, including a 

reduced ability to release TNFα in response to a second LPS exposure (van 't Veer et 

al., 2007; Draisma et al., 2009; Kox et al., 2011). Measuring the effects of intravenous 

LPS on mitochondrial respiration and biogenesis may, therefore, provide important 

insights into the links between immunity and mitochondria in endotoxin tolerant 

primary human monocytes. 

5.3.2 Diurnal variation in monocyte phagocytosis 

In the groups inhaling both saline and LPS the ability of blood monocytes to 

phagocytose serum-opsonised zymosan particles was significantly higher in the sample 

taken in the afternoon (6 hour sample) compared to those taken at 9am (0 and 24 

hours samples). Previous studies have also shown that there are significant variations 
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in monocytes over the course of a day with changes in parameters including the 

absolute monocyte count in peripheral blood, the relative proportions of monocytes 

subsets and monocyte immune functions all being identified (Sennels et al., 2011; 

Shantsila et al., 2012). In particular, the phagocytic ability of monocytes and 

macrophages has been shown to be significantly altered depending on the time of day, 

with peak phagocytosis seen in the afternoon, or during the light period in animal 

models (Hayashi et al., 2007; Shantsila et al., 2012). More broadly, there is 

considerable evidence that many cellular and bodily functions including immunity vary 

throughout the diurnal cycle under the control of both central and cell-specific 

mammalian circadian clocks (Keller et al., 2009; Scheiermann et al., 2013). Therefore, it 

is clearly vital that the potential effects of the circadian rhythm and diurnal variation 

are considered and controlled for in investigations involving serial blood sampling at 

different times of the day, particularly when monocytes are being studied. 

5.3.3 Conclusion 

In this small randomly allocated, placebo-controlled study the inhalation of LPS by 

healthy volunteers was well-tolerated and produced a mild systemic inflammatory 

response. However, there was no evidence of the induction of either endotoxin 

tolerance or mitochondrial biogenesis in blood monocytes after inhalation of LPS. 

Further investigations could consider using intravenous LPS as a more reliable method 

of producing endotoxin tolerant monocytes, but must take into account the potential 

for diurnal variation in monocyte characteristics.
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Chapter 6 Immune functions of ρ0 THP-1 cells generated by treatment with 

ethidium bromide 

6.1 Overview 

Mutations, deletions and depletions of mtDNA lead to defects in the assembly of 

OXPHOS subunits and impaired mitochondrial respiration (DiMauro and Schon, 2003). 

The resultant failure to meet cellular energy requirements causes clinical disease, 

particularly in cells with high energy requirements (Greaves et al., 2012). In addition, 

evidence of mtDNA depletion and mitochondrial respiratory dysfunction in blood 

monocytes is associated with adverse clinical outcomes in sepsis (Pyle et al., 2010; 

Japiassú et al., 2011). However, the effects of these changes on monocyte cellular 

functions, particularly the ability to produce an immune response to an inflammatory 

stimulus, are not established (Levy and Deutschman, 2007). 

In order to assess the effects of mtDNA depletion on immune functions, THP-1 cells 

were treated with ethidium bromide, a DNA intercalating agent which selectively 

inhibits mtDNA replication by POLG without significantly affecting the nuclear genome 

(Chandel and Schumacker, 1999). Long term treatment with low dose ethidium 

bromide is an established method of producing cells lacking mtDNA, termed ρ0 cells, in 

a variety of cell types including THP-1 cells (King and Attardi, 1989; Zuckerbraun et al., 

2007; Hashiguchi and Zhang-Akiyama, 2009). The depletion of mtDNA causes 

morphological and functional changes in mitochondria, including a loss of 

mitochondrial respiration and a compensatory increase in glycolytic metabolism 

(Holmuhamedov et al., 2003). The ρ0 cells provide a valuable model in which to 

understand mitochondrial functions and the role of mitochondria and mtDNA-encoded 

genes in cellular processes and diseases (Chandel and Schumacker, 1999).  

6.1.1 Hypothesis 

Treatment of THP-1 cells with ethidium bromide will produce ρ0 cells lacking mtDNA. 

These ρ0 THP-1 cells will have a reduced ability to produce an immune response to an 

inflammatory stimulus. 
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6.1.2 Aims and Objectives 

1. To generate ρ0 THP-1 cells by incubation with low dose ethidium bromide. 

2. To determine the effects of mtDNA depletion on mitochondrial respiratory 

functions. 

3. To assess the immune functions of ρ0 THP-1 cells. 

6.2 Results 

6.2.1 Generation of ρ0 THP-1 cells by incubation with ethidium bromide 

In order to completely deplete mtDNA, THP-1 cells were incubated with 50ng/ml 

ethidium bromide in growth medium supplemented with 50µg/ml uridine and 

110µg/ml pyruvate for 8 weeks. This treatment with ethidium bromide did not 

produce any adverse effects on THP-1 cell viability but was successful in generating ρ0 

THP-1 cells with almost complete depletion of relative mtDNA copy number (2.1 copies 

(95% CI 1.8-2.4) vs. 367.8 copies (95% CI 26-710), p=0.01) (Figure 6.1).

 

Figure 6.1 Treatment with ethidium bromide for 8 weeks produces ρ0 THP-1 
cells without altering cell viability. THP- 1 cells were incubated for 8 weeks in 
medium containing 50ng/ml ethidium bromide and compared to control cells 
incubated in untreated medium. (A) Cell viability was determined by the 
counting the proportion of THP-1 cells excluding 0.4% trypan blue (n=4). (B) 
mtDNA copy number was determined by measuring levels of MT-ND1 relative to 
B2M using quantitative polymerase chain reaction (n=3). All data are presented 
as mean ± standard deviation (n=3). The significance of the differences between 
the groups was analysed using independent t-tests; (A) p=0.705, (B) p=0.010. The 
differences are non-significant except; *p<0.05.
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6.2.2 A selective and functional loss of mtDNA in ρ0 THP-1 cells 

The effects of this mtDNA depletion on THP-1 cell mitochondria were subsequently 

confirmed by assessing mitochondrial gene expression and respiratory chain enzyme 

activity. The ρ0 THP-1 cells had almost complete loss of mRNA transcription and 

protein expression from the mtDNA-encoded MT-CO1 gene but no significant 

alterations in mRNA or protein levels from the nuclear DNA-encoded mitochondrial 

SDHA gene (Figure 6.2). As expected, the activity of OXPHOS complex IV, which 

contains vital components that are encoded by mtDNA, was also completely lost in ρ0 

THP-1 cells (Figure 6.3). However, the activity of citrate synthase, a nuclear DNA 

encoded mitochondrial matrix enzyme that is constitutively expressed and provides a 

quantitative marker of mitochondrial mass, was unchanged in ρ0 THP-1 cells (Kirby et 

al., 2007). These results indicate that treatment with ethidium bromide preferentially 

affects mtDNA, with no significant changes seen in the expression of mitochondrial 

proteins encoded by nuclear genes, leaving ρ0 THP-1 cells with mitochondrial scaffolds 

that lack the mtDNA-encoded components (Holmuhamedov et al., 2003).
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Figure 6.2 Selective depletion of mtDNA-encoded mRNA and protein in ρ0 THP-
1 cells. THP- 1 cells were incubated for 8 weeks with 50ng/ml ethidium bromide 
(EtBr) and compared to control cells incubated in medium. (A, C) Representative 
images of protein bands on a PVDF membrane following Western blot. (B) 
Relative mRNA transcription (compared to GAPDH) and protein expression 
(compared to β-actin) from the mtDNA-encoded MT-CO1 gene (n=3). (C) Relative 
mRNA transcription (compared to GAPDH) and protein expression (compared to 
β-actin) from the nuclear DNA-encoded mitochondrial gene SDHA (n=3). All data 
are presented as mean ± standard deviation relative gene expression compared 
to the mean in the control (medium) condition. The significance of the 
differences between the groups was analysed using independent t-tests (B - MT-
CO1 mRNA p=0.012, protein p=0.008; D - SDHA mRNA p=0.823, protein p= 
0.630). Significant differences are displayed as;*p<0.05, **p<0.01.
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Figure 6.3 Loss of OXPHOS complex IV activity in ρ0 THP-1 cells. THP- 1 cells 
were incubated for 8 weeks with 50ng/ml ethidium bromide and compared to 
control cells incubated in medium. The activity of (A) citrate synthase and (B) 
OXPHOS complex IV was determined by spectrophotometric measurements of 
isolated enzyme activity in cellular homogenates. All experiments were carried 
out in 3 independent replicates and are presented as mean ± standard deviation. 
The significance of the differences between the groups was analysed using 
independent t-tests (A - p=0.171, B - p=0.045). All differences are not significant 
except; *p<0.05. 

6.2.3 Alterations in immune function in ρ0 THP-1 cells 

Having found that incubation with 50ng/ml ethidium bromide for 8 weeks produces ρ0 

THP-1 cells with a specific loss of mtDNA-encoded mitochondrial gene expression and 

OXPHOS complex activity, the ability of these cells to produce an immune response 

was then assessed. The mean release of the pro-inflammatory cytokine TNFα in 

response to a 4 hour incubation with 100ng/ml LPS was significantly reduced in ρ0 

THP-1 cells compared to controls (147.9pg/ml (95% CI 128-168) vs. 419.2pg/ml (95% CI 

297-541), p<0.001) (Figure 6.4 A). However, mtDNA depletion did not lead to a 

generalised impairment in immune function as mean LPS-induced IL-8 release was not 

significantly different in ρ0 cells compared to those incubated in medium (113.9pg/ml 

(95% CI 47-181) vs. 98.6pg/ml (95% CI 31-166), p=0.688). Furthermore, the median 

proportion of ρ0 THP-1 cells phagocytosing fluorescent Staphylococcus aureus in 1 

hour was actually significantly higher than in control cells (23.7% (IQR 21.5-25.3) vs. 

14.7% (IQR 14-15), p=0.03) (Figure 6.4 B).
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Figure 6.4 Significantly reduced LPS-induced TNFα but increased phagocytosis 
of Staphylococcus aureus by ρ0 THP-1 cells. THP- 1 cells were incubated for 8 
weeks with 50ng/ml ethidium bromide and compared to control cells incubated 
in medium. (A) The LPS-induced release of TNFα and IL-8 following 4 hour 
incubation with 100ng/ml LPS was determined by ELISA (n=3). (B) The 
phagocytosis of serum-opsonised fluorescein-labelled Staphylococcus aureus in 1 
hour was determined by flow cytometry (n=3). The cytokine release data (A) are 
presented as mean ± standard deviation relative to the mean in the medium 
control while the phagocytosis data (B) are presented as median ± interquartile 
range. The significance of the differences between the groups was analysed 
using independent t-tests (A - TNFα p<0.001, IL-8 p=0.688) or the Mann Whitney 
test (B - p=0.029). Significant differences are displayed as; *p<0.05, ***p<0.001.
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6.3 Discussion 

Evidence of monocyte immune deactivation has been consistently associated with 

adverse outcomes in patients with sepsis (Monneret et al., 2006; Landelle et al., 2010). 

Separately, it has been found that septic monocytes also have mitochondrial 

respiratory impairment and depletion of mtDNA (Pyle et al., 2010; Garrabou et al., 

2012). However, a causal link between these findings has not been established and it 

has been unclear whether immune deactivation and mitochondrial impairment in 

septic monocytes are rather epiphenomena that reflect a general cellular dysfunction 

in the face of severe and sustained inflammatory stimuli (Levy and Deutschman, 2007). 

To my knowledge this investigation represents the first attempt to investigate the 

potential effects of mtDNA depletion on immune functions in a human monocytic cell 

culture model. ρ0 THP-1 cells with a loss of functional mitochondrial respiration were 

successfully generated by treatment with 50ng/ml ethidium bromide for 8 weeks. 

These ρ0 cells displayed evidence of immune deactivation with a significantly reduced 

ability to release TNFα in response to LPS, a key functional defect that has been 

associated with adverse clinical outcomes when detected in deactivated septic 

monocytes (Ploder et al., 2006; Hall et al., 2011). 

While these results provide some initial insights into the interplay between immunity 

and mitochondria, a causal relationship between mtDNA depletion and alterations in 

the immune phenotype of THP-1 cells is not established. Given the growing 

appreciation of the importance of mitochondria in the regulation of cell signalling 

pathways and effector innate immune responses, any negative effects of mtDNA 

depletion on these processes could directly lead to a reduced ability of THP-1 cells to 

produce inflammatory responses (West et al., 2011b; Tait and Green, 2012; Weinberg 

et al., 2015), However, there are a number of other competing potential conclusions 

that can be drawn from these preliminary investigations. 

Firstly, although ethidium bromide has been shown to produce a selective depletion of 

mtDNA, it is clear that this treatment is not completely targeted to the mitochondria. 

Ethidium bromide is a cytotoxic DNA intercalating agent which has a preferential effect 

on the rapidly replicating mtDNA (King and Attardi, 1989). However, ρ0 cells generated 

by treatment with ethidium bromide may also have significant alterations in nuclear 
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gene transcription, including in key inflammatory signalling pathways (Magda et al., 

2008). Such effects appear to be variable depending on the cell type and culture 

conditions and it is as yet unclear whether they are caused by ethidium bromide or 

occur as a consequence of the loss of functional mitochondria (Miceli and Jazwinski, 

2005). Thus, it is possible that the impaired ability of ρ0 cells to produce TNFα may 

occur due to ‘off-target’ effects of ethidium bromide treatment on pathways involved 

in LPS-induced inflammatory signalling, rather than due to the consequences of 

mtDNA depletion. 

A further possible explanation for the alterations in immune function in ρ0 THP-1 cells 

is that they do not relate directly to changes in mtDNA copy number but may rather 

occur due to the functional consequences of this depletion. Cells depleted of mtDNA 

lack a functional OXPHOS system and are dependent on glycolytic metabolism for ATP 

production (Qian and Van Houten, 2010). The metabolic changes within the cell 

resulting from the switch to glycolysis appear to have complex effects on the ability of 

the cell to mount an effective immune response. For example, cells that are dependent 

on glycolysis produce large amounts of lactic acid during pyruvate metabolism (Garcia-

Alvarez et al., 2014). Lactic acid has been shown to inhibit LPS-induced TNFα release by 

human monocytes, an effect that can be reversed by inhibiting lactic acid production, 

and patients with severe sepsis frequently have evidence of a systemic lactic acidosis 

that predicts severity and outcome (Dellinger et al., 2008; Dietl et al., 2010). On the 

other hand, studies indicate that macrophages up-regulate glycolysis in association 

with pro-inflammatory responses and that metabolites produced in glycolytic 

respiration, such as succinate, may also augment pro-inflammatory cytokine 

production (O'Neill and Grahame Hardie, 2013; Tannahill et al., 2013). 

Finally, the altered immune responses of ρ0 THP-1 cells may occur due to 

differentiation of the cells during the treatment with ethidium bromide. The findings of 

reduced inflammatory cytokine production but enhanced phagocytosis in ρ0 THP-1 

cells are similar to the change in immune phenotype seen during differentiation to 

alternatively-activated macrophages, cells with an anti-inflammatory phenotype and 

important roles in tissue repair and the resolution of inflammation (Murray and Wynn, 

2011; Sica and Mantovani, 2012). While macrophage differentiation in ρ0 THP-1 cells 

was not assessed in this chapter, it has been shown that THP-1 cells can be induced to 
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undergo alternative macrophage differentiation in vitro through the addition of 

specific drugs and cytokines (Schwende et al., 1996; Gordon and Martinez, 2010). 

However, although alterations in metabolism do occur during macrophage 

differentiation, in contrast to the loss of mitochondrial respiration in ρ0 cells, the anti-

inflammatory properties of alternatively activated macrophages have been previously 

found to be linked with an up-regulation of OXPHOS respiration (Rodríguez-Prados et 

al., 2010).  

In summary, it appears that mtDNA depletion induced by treatment with ethidium 

bromide may be associated with an alteration in the immune phenotype of THP-1 cells. 

However, this needs to be confirmed in further investigations that use a more targeted 

and specific method of depleting mtDNA and focus on identifying the potential 

mechanisms linking mtDNA depletion with monocytic cell immune dysfunction.
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Chapter 7 The effects of transfection with siRNA targeted against POLG and 

TFAM on mitochondria and immunity in THP-1 cells 

7.1 Overview 

The link between the separate findings of immune deactivation and mitochondrial 

depletion in septic monocytes has not been well understood. The results in Chapter 6 

suggest that depleting mtDNA from THP-1 cells, by incubation with ethidium bromide 

to generate ρ0 cells, results in an impaired ability to release TNFα in response to LPS. 

However, ethidium bromide, which acts as a non-specific DNA intercalating agent, is a 

cytotoxic compound that may alter nuclear gene expression (Miceli and Jazwinski, 

2005; Magda et al., 2008; Hashiguchi and Zhang-Akiyama, 2009). In addition, the 

mtDNA depletion produced in ρ0 cells is significantly more profound than that seen in 

sepsis or in patients with mtDNA depletion disorders, making extrapolations to human 

diseases more difficult (Cohen, 2013). 

In view of these limitations, a more specific approach aimed at producing a partial 

depletion of mtDNA was used to validate the findings from ρ0 THP-1 cells. This method 

involved using siRNA to selectively silence the transcription of two nuclear genes 

encoding key proteins that are essential for the maintenance and replication of mtDNA 

within the mitochondria (Carthew and Sontheimer, 2009). Firstly, siRNA was targeted 

against POLG, which encodes the catalytic subunit of polymerase-γ (POLG), the only 

DNA polymerase that is known replicate mtDNA (Hudson and Chinnery, 2006). In 

addition, THP-1 cells were also transfected with siRNA directed against TFAM, which 

encodes mitochondrial transcription factor A (TFAM), a protein that directly interacts 

with mtDNA to facilitate replication and gene transcription (Kang et al., 2007). 

7.1.1 Hypothesis 

The transfection of THP-1 cells with siRNA targeted against POLG and TFAM will lead to 

mtDNA depletion, mitochondrial respiratory dysfunction and impaired immune 

functions. Following removal of the siRNA there will be recovery of all of these 

parameters in association with the restoration of POLG and TFAM expression. 
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7.1.2 Aims and Objectives 

1. To inhibit the expression of proteins essential for mtDNA replication by 

transfecting THP-1 cells with siRNA targeted against POLG and TFAM. 

2. To confirm whether silencing of POLG and TFAM leads to mtDNA depletion in 

THP-1 cells. 

3. To assess the effects of transfection with TFAM and POLG siRNA on THP-1 cell 

respiratory and immune functions. 

4. To determine the ability of changes in mtDNA copy number, cellular respiration 

and immunity to recover after removal of the siRNA. 

7.2 Results of the mtDNA depletion experiments 

7.2.1 Abolition of POLG and TFAM expression without significant effects on cell viability or 

proliferation following siRNA transfection 

The results of preliminary dose-finding experiments indicated that repeated 

transfection with 30nM of siRNA targeted against POLG and TFAM every 48 hours for 8 

days produced an optimal knock-down in the levels of the target proteins and all 

subsequent experiments were carried out using these conditions (Figure 7.1). In each 

case the effects of this transfection were assessed by comparing these cells with THP-1 

cells incubated in either medium alone, treated with the transfection reagent 

Lipofectamine RNAiMAX or transfected with 30nM Silencer® Select Negative Control 

siRNA number 1 every 48 hours for 8 days. The expression of both POLG and TFAM 

proteins was almost completely abolished after 8 days transfection with 30nM of 

siRNA, with no effects on protein expression seen in the control conditions (Figure 7.2). 

This transfection with 30nM POLG and TFAM siRNA did not have any significant 

cytotoxic effects, with a mean of greater than 95% of THP-1 cells remaining viable in all 

conditions (Figure 7.3 A). In addition the ability of THP-1 cells to proliferate was not 

significantly altered over the course of the transfection period or between conditions 

(Figure 7.3 B).
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Figure 7.1 Transfection with 30nM POLG and TFAM siRNA produces optimal 
silencing of target protein expression. THP-1 cells were transfected with 10nM, 
20nM or 30nM POLG siRNA and 15nM or 30nM TFAM siRNA every 48 hours for 8 
days. As controls THP-1 cells were incubated with 30nM of negative control 
siRNA or medium alone. (A, B) Representative images of protein bands on a PVDF 
membrane following Western blot (C) The expression of POLG and TFAM 
proteins relative to β-actin was determined by Western blot (n=3). Normal data 
are represented as mean ± standard deviation relative to the mean in the 
medium control. The data were analysed using one-way ANOVA (POLG – 
p<0.001, TFAM – p<0.001). Differences from the medium control are non-
significant with Dunnett’s multiple comparison test except; ***p<0.001. 

 

Figure 7.2 Transfection with 30nM POLG and TFAM siRNA for 8 days leads to 
loss of target protein expression. For 8 days THP-1 cells were incubated with the 
30nM TFAM or POLG siRNA and compared to controls incubated with medium or 
the transfection reagent Lipofectamine RNAiMAX (LF) or transfected with 30nM 
of negative control siRNA. (A) Representative images of protein bands on a PVDF 
membrane following Western blot. (B) The expression of POLG and TFAM 
proteins relative to β-actin was determined by Western blot (n=3). Normal data 
are represented as mean ± standard deviation relative to the mean in the 
medium control. The data were analysed using one-way ANOVA (POLG – 
p=0.106, TFAM – p=0.031). Differences from the medium control are non-
significant with Dunnett’s multiple comparison test except; *p<0.05.
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Figure 7.3 Transfection with 30nM POLG and TFAM siRNA does not have 
adverse effects on THP-1 cell viability and proliferation. For 8 days THP-1 cells 
were incubated with the 30nM TFAM or POLG siRNA and compared to controls 
THP-1 cells incubated with medium alone or the transfection reagent 
Lipofectamine RNAiMAX or transfected with 30nM of negative control siRNA. (A) 
Cell viability was determined by measuring the proportion of THP-1 cells 
excluding propidium iodide using flow cytometry (n=3) (B) Serial cell counts were 
used to determine the relative change in THP-1 cell concentration every 48 hours 
prior to each transfection (n=4). Normal data are represented as mean ± 
standard deviation. The data were analysed using one-way ANOVA (p=0.678) 
with Dunnett’s multiple comparison test (A) or two-way ANOVA with Tukey’s 
multiple comparison test (B). Differences from the medium control are non-
significant. 

7.2.2 Depletion of mtDNA in THP-1 cells transfected with TFAM siRNA 

Having established that siRNA transfection effectively silenced the target genes, the 

effect of abolishing POLG and TFAM protein expression on mtDNA copy number was 

determined. There was a significant depletion of relative mtDNA copy number in THP-1 

cells after inhibition of TFAM expression (61 copies (95% CI 5-111) vs 247 copies (95% 

CI 117-328) in medium control cells, p=0.002) (Figure 7.4). This mtDNA depletion was 

associated with a selective loss of expression of the mtDNA-encoded protein MT-CO1, 

without any significant effect on the nuclear DNA-encoded mitochondrial protein 

SDHA (Figure 7.5). However, despite abolishing POLG expression, there was no 

significant change in either mean relative mtDNA copy number (275 copies (95% CI 

212-338) vs 247 copies (95% CI 111-383) in medium control cells, p=0.875) or the 

expression of mitochondrial proteins in THP-1 cells transfected with POLG siRNA for 8 

days (Figure 7.4 and Figure 7.5). 
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Figure 7.4 Depletion of mtDNA after transfection with TFAM but not POLG 
siRNA. For 8 days THP-1 cells were incubated with 30nM TFAM or POLG siRNA, 
or with the transfection reagent Lipofectamine RNAiMAX, 30nM of negative 
control siRNA or medium alone. mtDNA copy number was determined by 
measuring the level of MT-ND1 relative to B2M using qPCR. Normal data are 
represented as mean with individual measurements (n=3). The data were 
analysed using one-way ANOVA (p<0.001). Differences from the medium control 
are non-significant with Dunnett’s multiple comparison test except; **p<0.01. 

 

Figure 7.5 Depletion of mtDNA-encoded proteins after transfection with TFAM 
but not POLG siRNA. For 8 days THP-1 cells were incubated with 30nM TFAM or 
POLG siRNA, or with the transfection reagent Lipofectamine RNAiMAX (LF), 
30nM of negative control siRNA or medium alone. (A) Representative images of 
protein bands on a PVDF membrane following Western blot. (B) The relative 
expression of the mitochondrial proteins MT-CO1 (encoded by mtDNA) and 
SDHA (encoded by nuclear DNA) relative to β-actin was measured by Western 
blot (n=3). Normal data are represented as mean ± standard deviation relative to 
the mean of the medium control. The data were analysed using one-way ANOVA 
(MT-CO1 – p=0.031, SDHA – p=0.278). Differences from the medium control are 
non-significant with Dunnett’s multiple comparison test except; *p<0.05.
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7.2.3 Loss of mitochondrial oxygen consumption in THP-1 cells transfected with TFAM 

siRNA 

The depletion of mtDNA in THP-1 cells that was caused by transfection with TFAM 

siRNA produced a functional inhibition of mitochondrial respiration, as indicated by 

significantly reduced oxygen consumption by these cells (Figure 7.6). In particular, 

oxygen consumption for basal mitochondrial respiration (1663 pMole/min/mg protein 

(95% CI 706-2620) vs 4780 pMole/min/mg protein (95% CI 2794-5767) in the medium 

control, p=0.009), mitochondrial ATP production (1291 pMole/min/mg protein (95% CI 

410-2172) vs. 4060 pMole/min/mg protein (95% CI 3697-4423, p=0.003) and maximal 

uncoupled mitochondrial respiration (2915 pMole/min/mg protein (95% CI 525-5304) 

vs. 8789 pMole/min/mg protein (95% CI 6100-11477), p<0.001) was significantly lower 

in THP-1 cells after transfection with TFAM siRNA. In contrast, mitochondrial oxygen 

consumption was not significantly altered in THP-1 cells transfected with POLG siRNA, 

a finding that is consistent with the lack of effect of decreasing POLG protein 

expression on mtDNA copy number or mtDNA-encoded protein expression (Figure 

7.6). 
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Figure 7.6 Reduced oxygen consumption by THP-1 cells transfected with TFAM 
but not POLG siRNA. THP-1 cells were incubated with 30nM TFAM or POLG 
siRNA and with the transfection reagent Lipofectamine RNAiMAX, 30nM of 
negative control siRNA and medium alone as controls. After 8 days different 
aspects of respiration were then determined by measuring OCR following the 
sequential addition of metabolic inhibitors using the Seahorse XF96e extracellular 
flux analyser. (A) An example of the respiratory profile of THP-1 cells following 
transfection with siRNA for 8 days. (B) The OCR for the following aspects of 
cellular respiration was determined; Basal mitochondrial respiration = basal OCR 
(I) – non-mitochondrial OCR (IV); Adenosine triphosphate (ATP) production = 
basal OCR (I) – post-oligomycin OCR (II); Proton leak = post-oligomycin OCR (II) – 
non-mitochondrial respiration (IV); Maximal mitochondrial respiration = maximal 
OCR (III) – non-mitochondrial OCR (IV). Data are presented as mean ± standard 
deviation relative to the mean basal mitochondrial respiration in the medium 
control (n=4 for all experiments). The data for each aspect of mitochondrial 
respiration were analysed separately using one-way ANOVA (Basal respiration – 
p=0.005, ATP production – p=0.001, Proton leak – p=0.320, Maximal respiration 
– p<0.001). Differences from medium control are non-significant with Dunnett’s 
multiple comparison test except; **p<0.01, ***p<0.001
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7.2.4 Impaired LPS-induced TNFα release and phagocytosis in THP-1 cells transfected with 

TFAM siRNA 

After establishing the effects of transfection with 30nM POLG and TFAM siRNA on 

mitochondria, the ability of these THP-1 cells to produce an immune response to an 

inflammatory stimulus was assessed. THP-1 cells transfected with siRNA targeted 

against TFAM, but not POLG, for the previous 8 days had a significantly reduced ability 

to release the pro-inflammatory cytokine TNFα in response to a 4 hour treatment with 

100ng/ml LPS (mean 23.5pg/ml (95% CI 20-27) vs 76.5pg/ml (95% CI 57-96) in the 

medium control, p=0.015) (Figure 7.7 A). In contrast, the LPS-induced release of IL-8, 

another pro-inflammatory cytokine, was significantly higher in THP-1 cells transfected 

with POLG siRNA (median 211pg/ml (IQR 210-244) vs. 97.2pg/ml (IQR 97.1-114.3) in 

the medium control, p=0.025), but unchanged in those transfected with TFAM siRNA 

(Figure 7.7 A). In addition, there were no significant changes in the release of the anti-

inflammatory cytokine IL-1RA in response to a 16 hour incubation with 100ng/ml LPS 

in any of the experimental conditions (Figure 7.7 B). Finally, a significantly lower 

proportion of cells transfected with either POLG or TFAM siRNA were able to 

phagocytose Escherichia coli particles over the course of 1 hour (mean 15.7% (95% CI 

10.9-20.6, p=0.011) with POLG siRNA and 15.1% (95% CI 12.5-17.6, p<0.001) with 

TFAM siRNA vs 25.4% (95% CI 22-28.6) in the medium control) (Figure 7.7 C).
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Figure 7.7 The effect of transfection with POLG and TFAM siRNA on THP-1 cell 
immune functions. The ability of THP-1 cells to produce an immune response 
was measured after incubation with 30nM TFAM or POLG siRNA, or with the 
transfection reagent Lipofectamine RNAiMAX, 30nM of negative control siRNA or 
medium alone, for 8 days (A) The release of the pro-inflammatory cytokines 
TNFα and IL-8 in response to a 4 hour incubation with 100ng/ml LPS was 
measured by ELISA (n=4). (B) The release of the anti-inflammatory cytokine IL-
1RA in response to a 16 hour incubation with 100ng/ml LPS was measured by 
ELISA (n=4). (C) The proportion of cells phagocytosing fluorescein-labelled 
Escherichia coli in 1 hour was determined by flow cytometry (n=3). The cytokine 
release data (A, B) are relative to the mean of the medium control. Normal data 
are represented as mean ± standard deviation and analysed using one way 
ANOVA with Dunnett’s multiple comparison test (TNFα – p=0.002, IL-8 – 
p=0.013, Phagocytosis p<0.001). Non-normal data are presented as median ± 
interquartile range and analysed using the Kruskal-Wallis test with Dunn’s 
multiple comparison test (IL-1RA – p=0.289). Differences from the medium 
control are non-significant except;*p<0.05, **p<0.01, ***p<0.001.
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7.3 Results of the mtDNA recovery experiments 

In order to determine the reversibility of the effects of silencing the target protein 

expression, the siRNA was removed following the initial 8 day transfection and the 

THP-1 cells were then incubated in growth medium for a further 8 days. After this 

recovery period the ability of THP-1 cells to restore their mtDNA copy number, cellular 

oxygen consumption and immune functions was measured. Given the lack of effect of 

POLG siRNA on the mitochondrial assessments, the mtDNA recovery experiments were 

only carried out on cells initially transfected with 30nM TFAM siRNA. The control for 

these experiments involved THP-1 cells incubated in growth medium for 16 days, as 

the mtDNA depletion experiments confirmed that Lipofectamine RNAiMAX and 

transfection with Silencer® Select Negative Control siRNA number 1 did not have any 

detectable effect on the readouts from the assays for THP-1 cell mitochondrial and 

immune functions used in these experiments. 

7.3.1 Increased TFAM levels following removal of TFAM siRNA 

Transfection with TFAM siRNA produces only transient gene silencing as, 8 days after 

removal of TFAM siRNA, there was a recovery of TFAM protein expression to levels 

significantly higher than those in the control conditions (Figure 7.8). 

 

Figure 7.8 Increased TFAM protein levels following removal of TFAM siRNA. 
THP-1 cells were incubated with 30nM TFAM siRNA and after 8 days the TFAM 
siRNA was removed and the cells incubated in growth medium for a further 8 
days. (A) Representative images of TFAM and β-actin protein bands on a PVDF 
membrane following Western blot. (B) The expression of TFAM relative to β-
actin was determined by Western blot (n=3). Normal data are represented as 
mean ± standard deviation relative to the mean in the medium control and 
analysed using one-way ANOVA (p<0.001). Differences from the medium control 
are non-significant with Dunnett’s multiple comparison test except; *p<0.05, 
***p<0.001.
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7.3.2 Functional recovery of mtDNA following removal of TFAM siRNA 

The increased levels of the TFAM protein in THP-1 cells after the removal of TFAM 

siRNA are suggestive of the induction of a homeostatic response that aims to correct 

the effects of the period during which the TFAM gene was silenced. In keeping with 

this apparent compensatory response, there was a recovery of both relative mtDNA 

copy number (Figure 7.9) and the expression of the mtDNA-encoded MT-CO1 protein 

back to baseline levels 8 days after removal of TFAM siRNA (Figure 7.10). In addition, 

this recovery of mtDNA levels lead to a functional improvement in THP-1 cell 

bioenergetics, with oxygen consumption for all aspects of mitochondrial respiration 

restored back to the levels measured in the control conditions (Figure 7.11). 

 

Figure 7.9 Recovery of mtDNA copy number following removal of TFAM siRNA. 
THP-1 cells were incubated with 30nM TFAM siRNA and after 8 days the TFAM 
siRNA was removed and the cells incubated in growth medium for a further 8 
days. mtDNA copy number was determined by measuring the level of MT-ND1 
relative to B2M using qPCR. Normal data are represented as mean with 
individual measurements (n=3). Analysis of the data was carried out using one-
way ANOVA (p=0.001). Differences from the medium control are non-significant 
with Dunnett’s multiple comparison test except; **p<0.01.
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Figure 7.10 Recovery of mtDNA-encoded protein expression following removal 
of TFAM siRNA. THP-1 cells were incubated with 30nM TFAM siRNA and after 8 
days the TFAM siRNA was removed and the cells incubated in growth medium 
for a further 8 days. (A) Representative images of protein bands on a PVDF 
membrane following Western blot. (B) The relative expression of the 
mitochondrial proteins MT-CO1 (encoded by mtDNA) and SDHA (encoded by 
nuclear DNA) compared to β-actin was measured by Western blot (n=3).Normal 
data are represented as mean ± standard deviation compared to the mean of the 
medium control. Analysis of the data was carried out using one-way ANOVA (MT-
CO1 – p<0.001, SDHA – p=0.432). Differences from the medium control are non-
significant with Dunnett’s multiple comparison test except; ***p<0.001.
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Figure 7.11 Recovery of oxygen consumption by THP-1 cells following removal 
of TFAM siRNA. THP-1 cells were incubated with 30nM TFAM siRNA and after 8 
days the TFAM siRNA was removed and the cells incubated in growth medium 
for a further 8 days. Different aspects of respiration were then determined by 
measuring the OCR after the sequential addition of metabolic inhibitors using the 
Seahorse XF96e extracellular flux analyser. (A) An example of the respiratory 
profile of THP-1 cells in the recovery experiments. (B) The OCR for the following 
aspects of cellular respiration was determined; Basal mitochondrial respiration = 
basal OCR (I) – non-mitochondrial OCR (IV); Adenosine triphosphate (ATP) 
production = basal OCR (I) – post-oligomycin OCR (II); Proton leak = post-
oligomycin OCR (II) – non-mitochondrial respiration (IV); Maximal mitochondrial 
respiration = maximal OCR (III) – non-mitochondrial OCR (IV). Data are presented 
as mean ± standard deviation relative to the mean basal mitochondrial 
respiration in the medium control (n=3 for all experiments). The data for each 
aspect of mitochondrial respiration were analysed separately using one-way 
ANOVA (Basal respiration – p<0.001, ATP production – p<0.001, Proton leak – 
p=0.523, Maximal respiration – p<0.001). Differences from medium control are 
non-significant with Dunnett’s multiple comparison test except; **p<0.01, 
***p<0.001.
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7.3.3 Restoration of LPS-induced TNFα release following removal of TFAM siRNA 

Having established that both mtDNA levels and mitochondrial oxygen consumption 

could recover in association with an increase in TFAM protein expression following 

removal of TFAM siRNA, the restoration of THP-1 cell immune functions was then 

assessed. 8 days after the transfection with TFAM siRNA was discontinued the 

production of TNFα in response to a 4 hour treatment with 100ng/ml LPS returned to 

the levels of the control samples (Figure 7.12 A). In keeping with this finding, there is a 

significant positive correlation (R2=0.72, p=0.004) between relative mtDNA copy 

number and LPS-induced TNFα release by THP-1 cells (Figure 7.12 B). In contrast to this 

recovery of TNFα release, there was only a partial improvement in the ability of THP-1 

cells to phagocytose fluorescent Escherichia coli with the proportion of cells 

internalising bacteria remaining significantly below the levels in the control conditions 

(16.4% (95% CI 11.7-21.1) in TFAM recovery samples vs. 24.4% (95% 22.4-26.3) in the 

medium control, p=0.007) (Figure 7.13). 

 

Figure 7.12 Recovery of LPS-induced TNFα release following removal of TFAM 
siRNA. THP-1 cells were incubated with 30nM TFAM siRNA and after 8 days the 
TFAM siRNA was removed and the cells incubated in growth medium for a 
further 8 days. (A) The LPS-induced release of TNFα over 4 hours was measured 
by ELISA (n=3). The data are represented as mean ± standard deviation and 
analysed using one-way ANOVA (p=0.002). Differences from the medium control 
with Dunnett’s multiple comparison test are non-significant except; **p<0.01. 
(B) Scatter plot, linear regression and Pearson’s correlation of the relationship 
between TNFα release and relative mtDNA copy number in THP-1 cells.
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Figure 7.13 Phagocytosis does not recover 8 days after removal of TFAM siRNA. 
THP-1 cells were incubated with 30nM TFAM siRNA and after 8 days the TFAM 
siRNA was removed and the cells incubated in growth medium for a further 8 
days. The phagocytosis of fluorescein-labelled Escherichia coli in 1 hour was 
determined by flow cytometry (n=3).The data are represented as mean ± 
standard deviation and analysed using one-way ANOVA (p<0.001). Differences 
from the medium control with Dunnett’s multiple comparison test are 
represented as; **p<0.01, ***p<0.001. 

7.4 Discussion 

7.4.1 Depletion of mtDNA in THP-1 cells after transfection with siRNA targeted against 

TFAM 

TFAM is a highly-conserved protein containing two DNA-binding high mobility group 

box domains, which is encoded by nuclear DNA before localising to mitochondria due 

to the presence of a mitochondrial-targeting sequence (Campbell et al., 2012). Within 

mitochondria TFAM binds non-specifically to the entire mitochondrial genome to form 

a major constituent of mtDNA-protein structures termed nucleoids (Garrido et al., 

2003; Kukat et al., 2011). It is thought that TFAM bound in this manner has an 

important role in maintaining mtDNA stability (Kanki et al., 2004). In addition, TFAM 

binds with high affinity to specific sequences overlying promoter regions to facilitate 

the initiation of RNA transcription from mtDNA, including the transcription of the RNA 

primers that promote mtDNA replication (Campbell et al., 2012). Thus, TFAM appears 

to have a fundamental role in both mtDNA maintenance and replication, a conclusion 

supported by the consistent and strong correlation between TFAM levels and mtDNA 
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copy number that has been previously reported and now confirmed in this chapter 

(Kang et al., 2007). 

Studies in knockout mice suggest that defects in TFAM have serious consequences. 

Homozygous Tfam-/- mice lack any mtDNA and die during embryogenesis while Tfam+/- 

heterozygotes have a significant reduction in mtDNA copy number and RNA 

transcription from mtDNA-encoded genes across a range of tissues (Larsson et al., 

1998). In addition, although TFAM mutations have yet to be described as a cause of 

mitochondrial disease or mtDNA defects in humans, polymorphisms in the TFAM gene 

have been associated with an increased risk of neurodegenerative diseases (Belin et 

al., 2007; Gaweda-Walerych et al., 2010). 

The results presented in this chapter indicate that transfection with siRNA targeted 

against TFAM is a specific, non-cytotoxic method of depleting mtDNA from THP-1 cells 

that leads to an impairment of mitochondrial respiration. This is in agreement with 

other studies that have found that transfection with TFAM siRNA using various 

techniques can reduce mtDNA copy number in a number of cell types (Kanki et al., 

2004; Pohjoismäki et al., 2006; Kasashima et al., 2011). Furthermore, the results from 

the recovery experiments show that this process is rapidly reversible with a recovery in 

mtDNA copy number and mitochondrial respiration occurring 8 days after removal of 

TFAM siRNA in association with the presence of increased levels of TFAM protein. 

Again, these findings are consistent with previous reports indicating that the recovery 

of mtDNA copy number is closely correlated with a restoration of TFAM expression and 

that an over-expression of TFAM may be beneficial in certain cell culture disease 

models (Jeng et al., 2008; Thomas et al., 2011). 

7.4.2 Transfection with POLG siRNA does not affect THP-1 cell mtDNA copy number 

POLG consists of two subunits produced by the expression of nuclear genes, a catalytic 

subunit encoded by POLG and an accessory subunit encoded by POLG2. It is part of the 

mtDNA replication complex that associates with nucleoids during mitochondrial 

biogenesis (Hudson and Chinnery, 2006). POLG is understood to be the only DNA 

polymerase that is active within human mitochondria and, as such, appears to be 

crucial for both replication and repair of mtDNA (Chan and Copeland, 2009). As with 

TFAM, knockout mice studies indicate that POLG is essential for mammalian life as 
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homozygous Polg-/- mice have almost no mtDNA and die during embryogenesis (Hance 

et al., 2005). 

In view of this, it is perhaps surprising that transfection with POLG siRNA, despite 

almost completely abolishing POLG protein expression, had no effect on mtDNA copy 

number, mtDNA encoded protein expression or mitochondrial oxygen consumption in 

THP-1 cells. However, there are no consistent reports of the use of POLG siRNA as a 

reliable method of depleting mtDNA. In contrast to TFAM, POLG appears to be 

constitutively expressed across a range of tissues irrespective of their mtDNA copy 

number or the level of mitochondrial biogenesis (Schultz et al., 1998). In addition, 

heterozygous Polg+/- mice have normal mtDNA copy numbers and no clinical 

phenotype despite a 50% reduction in Polg mRNA levels (Hance et al., 2005). 

Furthermore, these Polg+/- mice are able to increase mtDNA levels in response to an 

over-expression of TFAM in the same manner as wild-type mice. Thus, it appears that 

both the enzymatic activity of POLG and cellular mtDNA copy number are not 

dependent on the level of POLG expression and that there is significant spare capacity 

in this system. As a result, it is possible that transfection with 30nM POLG siRNA for 8 

days failed to deplete mtDNA in THP-1 cells because there was sufficient enzymatic 

activity in the residual POLG (<5% of expression in control samples) to maintain mtDNA 

replication. It may, therefore, be necessary to completely abolish all POLG expression 

within a cell, using longer transfections or higher siRNA concentrations, in order to 

definitively exclude POLG siRNA as a viable technique of depleting mtDNA. 

However, given the consistent lack of correlation between the amount of POLG and 

mtDNA copy number, a potentially more productive alternative method could instead 

focus on the effects of inducing POLG dysfunction. Such an approach is suggested by 

the fact that mutations in POLG result in mtDNA instability and lead to a number of 

clinically important human mtDNA depletion and deletion syndromes (Chan and 

Copeland, 2009). In keeping with this, a previous study has shown that transfecting 

human HEK293 cells with a mutated, non-functional form of POLG leads to rapid, 

reversible mtDNA depletion with functional consequences for the mitochondria 

(Jazayeri et al., 2003). Furthermore, studies indicate that Polg mutator mice, which 

express a proof-reading deficient variant of Polg, have significantly reduced mtDNA 

copy number and mitochondrial OXPHOS activity in association with evidence of 
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increased oxidative damage to mitochondrial constituents and a shift to glycolytic 

respiration (Dai et al., 2013; Kolesar et al., 2014; Saleem et al., 2015). 

7.4.3 Immune dysfunction in THP-1 cells with mtDNA depletion 

The depletion of mtDNA copy number induced by transfection with TFAM siRNA every 

48 hours for 8 days resulted in a significant impairment of both mitochondrial oxygen 

consumption and immune functions in THP-1 cells. These results confirm the findings 

from Chapter 6 in which ρ0 THP-1 cells, lacking mtDNA due to treatment with ethidium 

bromide, also had a significantly impaired ability to release TNFα in response to LPS 

and a complete loss of mtDNA-dependent OXPHOS complex activity. A concern with 

the interpretation of the results from ρ0 cells is that ethidium bromide is a non-specific 

DNA intercalating agent that has been shown to significantly alter nuclear gene 

expression in addition to depleting mtDNA (Magda et al., 2008). However, given the 

consistency of the findings between different techniques and the more targeted action 

of TFAM siRNA, the reduced LPS-induced TNFα release by THP-1 cells lacking mtDNA 

does not appear to occur as a result of ‘off target’ effects of the method of mtDNA 

depletion. 

In Chapter 6 it was also noted that the ρ0 THP-1 cells generated by incubation with 

ethidium bromide had an immune phenotype consistent with differentiation into 

alternatively-activated macrophage-like cells, with reduced pro-inflammatory cytokine 

release but increased phagocytosis of Staphylococcus aureus (Tiemessen et al., 2007; 

Murray and Wynn, 2011). However, unlike alternatively-activated macrophages, THP-1 

cells with TFAM siRNA-induced mtDNA depletion did not release more anti-

inflammatory cytokines and actually had an inhibition of Escherichia coli phagocytosis. 

The differences in the phagocytic ability of ρ0 THP-1 cells and those depleted of 

mtDNA after transfection with TFAM siRNA may reflect effects of the different 

methods of depleting mtDNA. Alternatively, it is possible that there are specific 

differences in the ability of the THP-1 cells to phagocytose Gram positive and Gram 

negative bacteria (Skovbjerg et al., 2010). This theory is supported by the significantly 

lower median proportion of control THP-1 cells internalising bacteria when exposed to 

Staphyloccocus aureus compared to Escherichia coli (14.7% (IQR 14-15) vs 24.8% (IQR 

23.8-27.5), p=0.03). It may, therefore, be valuable to measure the effects of mtDNA 

depletion on the ability of THP-1 cells to phagocytose a variety of bacterial species. 
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In addition to these key differences in immunological phenotype, the alterations in 

THP-1 cell metabolism in response to changes in mtDNA levels also refute the theory 

that differentiation into macrophage-like cells is occurring. Firstly, after transfection 

with TFAM siRNA THP-1 cells had a significant impairment of mitochondrial respiration, 

which contrasts with the up-regulation of OXPHOS activity seen in alternatively-

activated macrophages (Rodríguez-Prados et al., 2010). Furthermore, after removal of 

TFAM siRNA a recovery in the ability of THP-1 cells to release TNFα occurred in parallel 

with the restoration of mtDNA copy number and mitochondrial oxygen consumption. 

Although there is a degree of plasticity in macrophage differentiation, an increase in 

the ability to release pro-inflammatory cytokines happens during the shift towards a 

classically-activated macrophage phenotype, a process that involves a switch to 

glycolytic respiration rather than the recovery of OXPHOS activity that is seen in THP-1 

cells after removal of TFAM siRNA (Murray and Wynn, 2011; O'Neill and Grahame 

Hardie, 2013). 

The impairment of TNFα production by THP-1 cells after transfection with TFAM siRNA 

or treatment with ethidium bromide, therefore, appears to be due to the 

consequences of mtDNA depletion. A reduction in TNFα release in response to an ex 

vivo treatment with LPS is a key phenotypic feature of deactivated septic monocytes 

that is linked to an increase risk of developing secondary infections and dying 

(Cavaillon and Adib-Conquy, 2007; Hall et al., 2011). Small pilot studies have suggested 

that immunotherapies that restore LPS-induced TNFα release by septic monocytes may 

improve clinical outcomes (Döcke et al., 1997; Meisel et al., 2009). In this context the 

recovery of TNFα release in association with restoration of mtDNA copy number in 

THP-1 cells following removal of TFAM siRNA is potentially interesting. If this finding is 

confirmed in primary human monocytes, it is possible that critically ill patients with 

evidence of monocyte deactivation and mtDNA depletion could benefit from 

interventions to stimulate mitochondrial biogenesis. Such an approach would provide 

a novel, biomarker-targeted therapy aimed at stimulating a specific aspect of the 

innate immune response that is dysfunctional in sepsis (Dare et al., 2009; Hotchkiss et 

al., 2013b). However, stimulating mitochondrial biogenesis may not provide a panacea 

for sepsis-induced monocyte dysfunction, as phagocytosis did not fully recover after 

removal of TFAM siRNA, despite restoration of mtDNA copy number. 
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7.4.4 Conclusion 

Inhibiting POLG expression by transfection of THP-1 cells with 30nM POLG siRNA for 8 

days did not result in significant changes in mtDNA copy number or mitochondrial 

respiration. In contrast, transfection with siRNA targeted against TFAM produced a 

decrease in mtDNA copy number that occurred in parallel with an impairment of THP-1 

cell immune functions, including a reduced ability to release TNFα in response to LPS, a 

key phenotypic feature of deactivated septic monocytes. Furthermore, the restoration 

of THP-1 cell mtDNA copy number after removal of TFAM siRNA was associated with 

the recovery of LPS-induced TNFα release. These results support the suggestion in 

Chapter 6 that immune dysfunction in THP-1 cells may be caused by depletion of 

mtDNA, a finding of potential importance to understanding sepsis-induced monocyte 

deactivation. 

The underlying mechanisms behind the association between impaired immunity and 

mtDNA depletion will be explored in more detail in Chapter 8 . It remains possible that 

the effects on the ability of THP-1 cells to release TNFα are due to the metabolic 

consequences of the loss of mitochondrial respiration or that they occur due to a 

direct impact of the loss of mtDNA on immune and inflammatory signalling pathways 

(Dietl et al., 2010; West et al., 2011b).  
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Chapter 8 The effect of transfection of THP-1 cells with TFAM siRNA on 

nuclear gene expression and the transcriptomic response to LPS 

8.1 Overview 

TFAM is a key regulator of mtDNA replication and gene transcription and also a major 

component of the mitochondrial nucleoid (Campbell et al., 2012). In Chapter 7 it was 

shown that down-regulation of TFAM expression by transfection with siRNA leads to 

mtDNA depletion, mitochondrial respiratory dysfunction and impaired immune 

responses in THP-1 cells. In order to assess these mechanisms linking mtDNA depletion 

to immune dysfunction, RNA sequencing (RNA-Seq) was used to determine the effects 

of mtDNA depletion by transfection with TFAM siRNA on THP-1 cell gene expression, 

both at baseline and following exposure to an inflammatory stimulus in the form of 

LPS. RNA-Seq uses high-throughput next generation sequencing in order to provide an 

assessment of the cellular transcriptome, the complete set of RNA transcribed from 

functional genes during particular conditions (Wang et al., 2009). During RNA-Seq RNA 

is converted to a library of cDNA fragments that is then sequenced to produce millions 

of short read sequences (Wolf, 2013). These reads are then aligned to the appropriate 

reference genome and analysed qualitatively, to identify and describe the properties 

of the transcripts, and quantitatively, to assess differential gene expression between 

conditions (Ozsolak and Milos, 2011). 

8.1.1 Hypothesis 

Transfection with TFAM siRNA will produce significant changes in THP-1 cell nuclear 

gene expression and alter the transcriptomic response to treatment with LPS. In 

particular, there will be negative effects on the expression of genes involved in 

inflammatory signalling pathways and effector immune responses. 

8.1.2 Aims and Objectives 

1. To determine whether transfection with Silencer® Select Negative Control 

siRNA number 1 using Lipofectamine RNAiMAX results in any significant change 

to the THP-1 cell transcriptome. 

2. To measure the effects of mtDNA depletion following transfection with TFAM 

siRNA on the expression of nuclear genes by THP-1 cells 
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3. To identify any changes in the transcriptomic response to LPS in THP-1 cells 

after transfection with TFAM siRNA. 

8.2 Results 

8.2.1 The process of siRNA transfection significantly alters the THP-1 cell transcriptome 

In Chapter 7 it was found that transfection with Silencer® Select Negative Control 

siRNA number 1 did not have any significant effect on THP-1 cell viability, proliferation 

and mitochondrial or immune functions. However, the transcriptomic analysis reveals 

that transfection of THP-1 cells with 30nM of this negative siRNA for 8 days does have 

a widespread effect on their gene expression. A hierarchical clustering dendrogram 

and PCA plot indicate that, while there is good agreement between the three biological 

replicates for each condition, there are considerable differences in the transcriptome 

of THP-1 cells after transfection with the negative siRNA compared to those cultured in 

growth medium (Figure 8.1). In total 1115 genes displayed significant differential 

expression after transfection with the negative siRNA, 749 were up-regulated and 366 

down-regulated. These differentially expressed genes were predominantly involved in 

immune signalling pathways, with most of these pathways being up-regulated in the 

negative siRNA transfected cells (Figure 8.2). 

Following these findings in subsequent analyses the transcriptome of TFAM siRNA-

treated THP-1 cells was directly compared to that of cells transfected with the negative 

siRNA in order to correct for the effects of siRNA transfection. 
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Figure 8.1 The transcriptome of THP-1 cells is altered by transfection with 
negative siRNA and TFAM siRNA.  For 8 days THP-1 cells were incubated in 
growth medium or transfected with 30nM of negative or TFAM siRNA. After a 
final 4 hour incubation with or without 100ng/ml LPS gene expression was 
assessed by RNA-Seq. (A) A hierarchical clustering dendrogram in which the most 
similar samples are sequentially paired with the height of the link indicating the 
dissimilarity between the samples. (B) PCA plot in which the samples are plotted 
against two composite principle components that describe their variation.
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Figure 8.2 Transfection with negative siRNA alters immune pathways in THP-1 
cells.  IPA® software was used to carry out a gene ontology analysis of the 
canonical signalling pathways significantly affected by genes differentially 
expressed in THP-1 cells transfected with 30nM negative siRNA compared to 
those incubated in medium for 8 days. (A) Bar chart of the number of up-
regulated (red) and down-regulated (green) genes in the top ten canonical 
signalling pathways most significantly altered by transfection with negative 
siRNA. (B) Pie chart indicating the signalling pathway categories of the top ten 
canonical pathways most significantly altered by transfection with negative 
siRNA. (Abbreviations: IRF – interferon regulatory factors, PRR – pattern 
recognition receptor).
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8.2.2 Transfection with TFAM siRNA produces significant changes to the THP-1 cell 

transcriptome 

A comparison between the transcriptome of THP-1 cells transfected with TFAM siRNA 

and those transfected with the negative siRNA revealed that 1166 genes were 

significantly differentially expressed. Of these genes 499 had increased expression and 

667 had decreased expression in TFAM siRNA transfected cells. Further analysis 

confirmed that the mtDNA depletion in THP-1 cells transfected with TFAM siRNA 

caused a decrease in the expression of those genes encoded by mtDNA (Figure 8.3). 

Transfection with TFAM siRNA was also found to lead to a significant inhibition of a 

number of canonical signalling pathways, particularly those involved in the immune 

response and, to a lesser degree, apoptosis (Figure 8.4). The particular down-

regulation of signalling pathways involved in the recognition of pathogens and the 

initiation of pro-inflammatory responses is consistent with the impaired immune 

responses generated by THP-1 cells following transfection with TFAM siRNA that was 

observed in Chapter 7 (Table 8.1). Furthermore, an analysis of the likely effect of these 

changes in gene expression on the ability of the cells to respond to upstream 

regulators also strongly predicts that mtDNA depletion due to treatment with TFAM 

siRNA will result in a diminished ability of THP-1 cells to react to LPS, pro-inflammatory 

cytokines and important transcriptional regulators of the inflammatory response 

(Table 8.2).
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Figure 8.3 Heat map indicating decreased relative expression of mtDNA-
encoded genes and TFAM in THP-1 cells transfected with TFAM siRNA. RNA-Seq 
was used to assess gene expression in THP-1 cells following transfection with 
30nM of TFAM or negative siRNA or incubation in growth medium for 8 days. 
The heat map represents the normalised reads per kilobase per million mapped 
reads (RPKM) for the expression of each gene, with red indicating a higher read 
count and green a lower read count.
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Figure 8.4 Transfection with TFAM siRNA alters immune pathways in THP-1 
cells.  IPA® software was used to carry out a gene ontology analysis of the 
pathways significantly affected by genes differentially expressed in THP-1 cells 
transfected with TFAM siRNA compared to those transfected with negative 
siRNA. (A) Bar chart of significantly up-regulated (red) and down-regulated (blue) 
canonical signalling pathways, filtered for adjusted p-value <0.05 and z-score 
>±2. (B) Pie chart indicating the signalling pathway categories of the significantly 
altered canonical pathways after transfection with TFAM siRNA. (Abbreviations: 
IL-6 – interleukin-6; PPAR – peroxisome proliferator activated receptors; PRR – 
pattern recognition receptor; TREM1 – triggering receptor expressed on myeloid 
cells-1)
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 Function z-
score 

p-value Genes with altered expression 

Proportion 
of genes in 
pathway 

Up-
regulated 

Down-  
regulated 

Interferon signalling 

Cellular immune response 

Cytokine signalling 

-3.16 4.9x10-7 11/34 - IFI35, IFNB1, IFIT1, 
IFITM1, IFITM2, 
IFITM3, IFIT3, IRF9, 
OAS1, STAT2, 
STAT1, 

Triggering receptor expressed on myeloid cells-1 signalling 

Cellular immune response 

Cytokine signalling 

-3.50 7.9x10-7 16/75 MPO CCL3, CD83, CIITA, 
IL1B, ITGAX, 
MYD88, NLRC4, 
NLRP12, TLR1, 
TLR3, TLR6, TLR7, 
TNF, TREM1, 
TYROBP 

Role of pattern recognition receptors in recognition of bacteria and viruses 

Cellular immune response 

Pathogen-influenced 
signalling 

-3.74 5.5x10-6 20/127 IL12A C3AR1, C5AR1, 
DDX58, EIF2AK2, 
IFIH1, IFNB1, IL1B, 
IRF7, MYD88, 
NLRC4, OAS1, 
OAS2, OAS3, PTX3, 
TLR1, TLR3, TLR6, 
TLR7, TNF 

Toll-like receptor signalling 

Apoptosis 

Cellular immune response 

Humoral immune response 

Pathogen-influenced 
signalling 

-2.33 1.7x10-5 14/74 IL12A, 
PPARA 

EIF2AK2, FOS, IL1B, 
IL1RN, MYD88, 
NFKBIA, TLR1, 
TLR3, TLR6 

TLR7, TNF, 
TNFAIP3 

Acute phase response 

Cytokine signalling -2.67 5.2x10-3 17/169 FTL, 
HMOX1, 
ORM1, 
ORM2, 
SOCS2 

A2M, AGT, CEBPB, 
FOS, IKBKE, IL1B, 
IL1RN, MYD88, 
NFKBIA, SERPINE1, 
SOCS3, TNF 

Table 8.1 The five pathways most significantly affected by transfection with 
TFAM siRNA The details of the top five canonical pathways identified by IPA® to 
be most significantly down-regulated in THP-1 cells transfected with TFAM siRNA 
compared to those transfected with negative siRNA.
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Upstream 
regulator 

Function Predicted 
effect 

Activation 
z-score 

Overlap 
p-value 

Relevant genes  

Activated Inhibited 

Top 5 regulators 

LPS Pathogen associated 
molecular pattern 

Inhibited -7.06 7.7x10-68 64 164 

IFN-γ Cytokine Inhibited -7.83 3.4x10-52 12 41 

TNF Cytokine Inhibited -6.53 4.9x10-52 57 144 

IFNA2 Cytokine Inhibited -7.22 3.1x10-50 5 65 

IFNL1 Cytokine Inhibited -6.44 1.2x10-39 0 42 

Top 5 transcriptional regulators 

STAT3 Response to cytokines 
and growth factors 

Inhibited -2.85 8.3x10-38 19 38 

STAT1 Response to 
interferon 

Inhibited -5.98 4.5x10-32 5 50 

IRF7 Interferon-mediated 
immune response 

Inhibited -6.67 1.5x10-28 1 49 

TP53 Tumour suppressor 
gene 

Inhibited -2.30 4.2x10-24 53 73 

IRF3 Interferon-mediated 
immune response 

Inhibited -4.97 1.7x10-23 5 37 

Table 8.2 The predicted effect of transfection with TFAM siRNA on the 
response of THP-1 cells to upstream regulators. The effects of the genes 
differentially expressed between THP-1 cells transfected with TFAM siRNA and 
negative siRNA on the predicted response to upstream regulators was assessed 
using IPA®. (Abbreviations: IFNA2 - interferon-α2; IFN-γ - interferon-γ, IFNL1 - 
interferon-Λ1, IRF3/7 - interferon regulatory factor-3/7, LPS – lipopolysaccharide, 
STAT1/3 - signal transducer and activation of transcription-1/3, TNF - tumour 
necrosis factor, TP53 - tumour protein p53)
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8.2.3 Transfection with TFAM siRNA significantly alters the transcriptomic response of 

THP-1 cells to LPS 

Next, the effect of exposure to 100ng/ml LPS for 4 hours on the THP-1 cell 

transcriptome was assessed. Firstly, a comparison of the genes that exhibited 

differential expression after LPS treatment in each condition was carried out. While, as 

expected, LPS was found to produce profound effects on the THP-1 cell transcriptome, 

there were considerably fewer genes with altered expression in the cells transfected 

with TFAM siRNA compared to those incubated in growth medium or transfected with 

the negative siRNA for the previous 8 days (Figure 8.5 A). Despite clear differences in 

the particular genes that were differentially expressed, similar canonical signalling 

pathways were activated by LPS treatment in all conditions, with the variation mainly 

apparent in the degree to which specific pathways were activated (Figure 8.5 B and C). 

Subsequently, a direct comparison between the transcriptome of LPS-treated THP-1 

cells that were transfected with either TFAM siRNA or the negative siRNA for the 

previous 8 days revealed that 1528 genes were significantly differentially expressed. Of 

these genes 692 had increased expression and a further 836 genes were down-

regulated in TFAM siRNA treated cells. In a similar manner to the changes seen before 

LPS treatment, these alterations in gene expression in TFAM siRNA transfected THP-1 

cells resulted in a significant inhibition of a number of canonical signalling pathways, 

especially those involved in pathogen recognition and the generation of innate 

immune and inflammatory responses (Figure 8.6 and Table 8.3).
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Figure 8.5 The transcriptomic response of THP-1 cells to LPS. The effect of 
treatment with 100ng/ml LPS for 4 hours was assessed in THP-1 cells incubated 
in medium or transfected with 30nM negative or TFAM siRNA for the previous 8 
days. (A) Bar chart of the number of genes either up- or down-regulated 
following treatment with LPS. (B) Venn diagram of the overlap of differentially 
expressed genes after LPS treatment in each of the three conditions. (C) Heat 
map of the effect of the differentially expressed genes on the ten most altered 
canonical pathways on a scale where red squares indicate the most activated 
pathways, yellow squares indicate unaffected pathways and green squares 
indicate the most inhibited pathways (Abbreviations: HMGB1 – high mobility 
group box-1, IL-6/8 – interleukin-6/8; PI3K – phosphoinositide-3 kinase, PKCΘ –
protein kinase C-Θ, PPAR – peroxisome proliferator activated receptors; TREM1 – 
triggering receptor expressed on myeloid cells-1).
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Figure 8.6 Down-regulation of LPS-induced immune signalling pathways in THP-
1 cells after transfection with TFAM siRNA.  IPA® software was used to carry out 
a gene ontology analysis of the canonical signalling pathways significantly 
affected by the differential expression of genes in THP-1 cells transfected with 
TFAM siRNA compared to those transfected with negative siRNA after treatment 
with 100ng/ml LPS for 4 hours. (A) Bar chart of significantly up-regulated (red) 
and down-regulated (blue) canonical signalling pathways, filtered for adjusted p-
value <0.05 and z-score >±2. (B) Pie chart indicating the signalling pathway 
categories of the significantly altered LPS-induced canonical pathways after 
transfection with TFAM siRNA. (Abbreviations: IL-6 – interleukin-6; iNOS – 
inducible nitric oxide synthase, IRF – interferon regulatory factor, PI3K – 
phoshoinositide-3-kinase, PPAR – peroxisome proliferator activated receptors; 
PRR – pattern recognition receptor; RIG1 – retinoic acid-inducible gene-1, TREM1 
– triggering receptor expressed on myeloid cells-1; TSP-1 – thrombospondin-1).
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 Function z-
score 

p-value Genes with altered expression 

Proportion  Up-
regulated 

Down-  
regulated 

Triggering receptor expressed on myeloid cells-1 (TREM1) signalling 

Cellular immune response 

Cytokine signalling 

-4.15 6.3x10-9 21/75 MPO CCL2, CCL3, CD40, 
CD83, CIITA, 
ICAM1, IL1B, 
ITGAX, MYD88, 
NLRC4, NLRP12, 
NOD2, TLR1, TLR3, 
TLR4, TLR6, TLR7, 
TNF, TREM1, 
TYROBP 

Toll-like receptor signalling 

Apoptosis 

Cellular immune response 

Humoral immune response 

Pathogen-influenced 
signalling 

-2.13 2.8x10-8 20/74 ELK1, 
IL12A, 
MAP3K14, 
PPARA, 
TRAF4 

EIF2AK2, FOS, IL1B, 
IL1RN, IRAK2, JUN, 
MYD88, NFKBIA, 
TLR1, TLR3, TLR4, 
TLR6, TLR7, TNF, 
TNFAIP3 

Interferon signalling 

Cellular immune response 

Cytokine signalling 

-3.32 7.2x10-7 12/34 - IFI35, IFIT1, IFIT3, 
IFITM1, IFITM3, 
IFNB1, IRF9, MX1, 
OAS1, STAT2, 
STAT1, TAP1 

Activation of interferon regulatory factors by cytosolic pattern recognition receptors 

Cellular immune response -2.00 2.1x10-6 12/34 - ADAR, CD40, 
DDX58, DHX58, 
IFIH1, IFIT2, IFNB1, 
IKBKE, IRF7, IRF9, 
ISG15, JUN, 
NFKBIA, STAT1, 
STAT2, TNF 

Role of pattern recognition receptors in recognition of bacteria and viruses 

Cellular immune response 

Pathogen-influenced 
signalling 

-3.74 5.5x10-6 20/127 IL12A C3, C3AR1, C5AR1, 
DDX58, EIF2AK2, 
IFIH1, IFNB1, IL1B, 
IRF7, MYD88, 
NLRC4, NOD2, 
OAS1, OAS2, OAS3, 
PTX3, TLR1, TLR3, 
TLR4, TLR6, TLR7, 
TNF 

Table 8.3 The five pathways most significantly affected by the altered 
transcriptomic response to LPS following transfection with TFAM siRNA The 
details of the top five canonical pathways identified by IPA® to be most 
significantly down-regulated as a result of the altered transcriptomic response to 
a LPS of THP-1 cells transfected with TFAM siRNA compared to those transfected 
with negative siRNA.
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8.2.4 Confirmation of the down-regulation of gene expression in TFAM siRNA transfected 

THP-1 cells 

Following the analysis of the RNA-Seq data the levels of mRNA transcription of specific 

genes identified to be significantly differentially expressed between the different 

conditions was confirmed using RTqPCR. The expression of these genes was compared 

between THP-1 cells transfected with the negative siRNA and TFAM siRNA both before 

and after exposure to 100ng/ml LPS for 4 hours. The mRNA levels were normalised to 

those of the housekeeping gene ACTB, as this was found to be stably expressed 

between conditions in the RNA-Seq data (Figure 8.7). For immunologically relevant 

genes encoding cell membrane receptors (TLR4, TREM1), pro-inflammatory cytokines 

(IL1B, TNF), inflammatory signalling molecules (MYD88, STAT1) and interferon 

signalling molecules (IFIT1, IFITM1) the RTqPCR data followed the trends seen in the 

RNA-Seq analysis. In general THP-1 cells with mtDNA depletion due to transfection 

with TFAM siRNA had reduced expression of these genes and an impaired ability to up-

regulate this gene expression in response to treatment with LPS (Figure 8.8). 

 

Figure 8.7 Stable expression of ACTB between conditions in RNA-Seq data.  
THP-1 cells were transfected with 30nM negative or TFAM siRNA for 8 days and 
the gene expression assessed by RNA-Seq following a final 4 hour treatment with 
100ng/ml LPS or medium. The mean normalised read count for the number of 
transcripts from the ACTB housekeeping gene is displayed. The significance of 
the differences between conditions was assessed by one-way ANOVA (p=0.924).
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Figure 8.8 The effect of transfection with TFAM siRNA on inflammatory gene 
transcription. THP-1 cells were transfected with 30nM of negative siRNA or 
TFAM siRNA for 8 days and then treated with 100ng/ml LPS or medium for a 
further 4 hours. The level of inflammatory gene mRNA transcription relative to 
the housekeeping gene ACTB was determined by RTqPCR (n=3). The data is 
displayed as mean gene expression normalised to the mean in the medium-
treated negative siRNA condition (1st bars). The statistical significance of the 
differences in gene expression between THP-1 cells transfected with negative 
siRNA and those transfected with TFAM siRNA was determined separately for 
medium and LPS-treated cells by an independent t-test for normal data and a 
Mann Whitney U test for non-normal data. (A) Cell membrane receptor genes: 
TLR4 - pre-LPS p=0.002, post-LPS p=0.100; TREM1 – pre-LPS p=0.007, post-LPS 
p=0.100. (B) Cytokine genes: IL1B - pre-LPS p=0.055, post-LPS p=0.011; TNF – 
pre-LPS p=0.038, post-LPS p=0.018. (C) Inflammatory signalling genes: MYD88 – 
pre-LPS p=0.100, post-LPS p=0.008; STAT1 – pre-LPS p=0.026, post-LPS p=0.133. 
(D) Interferon signalling genes: IFIT1: pre-LPS p=0.006, post-LPS p=0.017; IFITM1 
– pre-LPS p=0.043, post-LPS p=0.039. All differences are non-significant except; 
*p<0.05, **p<0.01.
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8.3 Discussion 

8.3.1 Transfection with siRNA alters the THP-1 cell transcriptome 

Despite the lack of effect on the mitochondrial and immune function assays in Chapter 

7, transfection with 30nM Silencer® Select Negative Control siRNA number 1 resulted 

in significant alterations to the THP-1 cell transcriptome. In particular the process of 

transfection appeared to activate canonical signalling pathways involved in pathogen 

recognition and cellular immunity. The commercial negative control siRNA used in 

these experiments has been designed to minimise any interaction with the nucleotide 

sequences on mRNA transcribed from the human genome. Nonetheless, studies have 

indicated that siRNA can have numerous ‘off-target’ effects on gene expression as well 

as potentially acting as a stimulus for antiviral immune responses (Jackson et al., 2003; 

Jacobsen et al., 2009). Furthermore, a delivery system is required to facilitate the 

uptake of siRNA into cells and studies have also suggested that these systems can have 

cytotoxic effects (Gilmore et al., 2006; Akhtar and Benter, 2007). In particular cationic 

lipid delivery methods, including the Lipofectamine® system used in these 

experiments, have been found to produce significant effects on the transcriptome, 

including alterations in signalling pathways involved in the cellular stress response, 

immunity, inflammation and autophagy (Jacobsen et al., 2009; Fiszer-Kierzkowska et 

al., 2011; Mo et al., 2012). These findings highlight the limitations of using siRNA 

transfection techniques, particularly when assessing cellular immune functions, and 

the vital importance of controlling for the effects of siRNA transfection during the 

experimental design. 

8.3.2 Down-regulation of inflammatory signalling pathways in TFAM siRNA transfected 

THP-1 cells 

Elsewhere in this thesis, the depletion of mtDNA, through treatment with ethidium 

bromide or transfection with siRNA targeted against TFAM, has been found to reduce 

the ability of THP-1 cells to generate an immune response to an inflammatory 

stimulus. In agreement with these findings in this chapter it is shown that, in parallel 

with the depletion of mtDNA, transfection with TFAM siRNA produces striking effects 

on the THP-1 cell transcriptome. In particular, there is a significant down-regulation of 

key immune signalling pathways which summatively predict the reduced response to 



140 
 

LPS that is seen in the cytokine release experiments in Chapter 7. Furthermore, there 

are significant quantitative, but not qualitative, differences in the transcriptomic 

response of TFAM siRNA-transfected THP-1 cells to treatment with LPS. In these cells 

considerably fewer genes display altered expression after exposure to LPS and similar 

canonical signalling pathways are activated but to a lesser degree than is seen in the 

control conditions. 

8.3.3 Linking mtDNA depletion with down-regulation of immune signalling pathways 

The profound changes in the THP-1 cell nuclear transcriptome that are seen following 

mtDNA depletion suggest that the disruption of communication between the 

mitochondrial and nuclear genomes may be lead to significant effects on nuclear gene 

expression. Cross-talk between the genomes is already known to be a pre-requisite for 

effective mitochondrial biogenesis and respiration, as this process ensures that the 

expression of mitochondrial genes on nuclear DNA and mtDNA is closely coordinated 

(Lee and Wei, 2005). Nuclear genes encode vital proteins that govern many 

mitochondrial functions, for example the antioxidants that control mitochondrial ROS 

levels and the transcription factors that regulate the replication and transcription of 

mtDNA (Kotiadis et al., 2014). Conversely, signals generated by mitochondria can also 

alter nuclear gene expression (Liu and Butow, 2006). This process is termed retrograde 

signalling and is particularly important for the generation of homeostatic responses 

during conditions causing mitochondrial stress and dysfunction (Jazwinski, 2013). 

While the precise pathways involved in this mitochondria-to-nucleus communication 

are not established, the changes in the nuclear transcriptome that occur in TFAM 

siRNA transfected THP-1 cells suggest that retrograde signalling may influence cellular 

processes that are not directly involved in mitochondrial homeostasis (Kotiadis et al., 

2014). In particular the mtDNA depletion-mediated alterations in retrograde signals 

appear to lead to a striking down-regulation in the expression of genes involved in 

canonical pathways that are involved in immune and inflammatory responses. 

This inhibition of immune signalling pathways in THP-1 cells following mtDNA 

depletion is consistent with the emerging understanding that mitochondria are able to 

exert important influences on the innate immune response in a number of different 

ways (Weinberg et al., 2015). The outer mitochondrial membrane provides a vital 

platform for inflammatory signalling interactions, including the transduction of 
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antiviral responses via the mitochondrial antiviral signalling (MAVS) protein (Sun et al., 

2006; Tait and Green, 2012). The release of cytokines is modified by alterations in the 

levels of respiratory chain metabolites and ROS generated by mitochondria (West et 

al., 2011b; Tannahill et al., 2013). Moreover, during conditions of cellular stress the 

release of mitochondrial contents, including mtDNA, into the cytosol acts as a potent 

stimulus for both pro-inflammatory cytokine production, through NLRP3 

inflammasome formation, and the induction of antiviral responses (Zhou et al., 2011; 

West et al., 2015). In addition to altered retrograde signalling, it is possible that the 

loss or disruption of these mitochondrially-driven processes may contribute to the 

impaired immune signalling that is found in THP-1 cells depleted of mtDNA following 

transfection with TFAM siRNA. 

In the following sections the specific immune pathways that are particularly affected 

by mtDNA depletion are analysed. 

8.3.4 Pattern recognition receptor (PRR) signalling 

During an infection the recognition of the presence of an invading pathogen is 

fundamental to the induction of an immune response. In monocytes pathogen 

recognition occurs due to the binding of PAMPs or DAMPs to cell surface or cytosolic 

PRRs (Czerkies and Kwiatkowska, 2014). Therefore, the reduced expression of genes 

encoding PRRs and their associated signalling pathways in TFAM siRNA transfected 

cells has the potential to profoundly inhibit the THP-1 cell immune response. 

In particular, the inhibition of signalling via TLR-4, the PRR for LPS, could explain the 

blunted response to treatment with LPS that is seen in these cells. During the induction 

of endotoxin tolerance a transient fall in the cell surface expression of TLR-4 by 

monocytes has been reported (Moreno et al., 2004; Sun et al., 2014). However, this 

finding is inconsistent and there are a number of studies which indicate that monocyte 

TLR-4 expression is actually up-regulated during sepsis, an observation that does not 

appear to vary with either the duration or severity of the sepsis injury (Brandl et al., 

2005; Brunialti et al., 2006; Schaaf et al., 2009). This suggests that the functional 

significance of the potential down-regulation of TLR-4 signalling in TFAM siRNA 

transfected THP-1 cells is uncertain and requires further investigation. 
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In addition to the changes in TLR-4 expression, TFAM siRNA transfected THP-1 cells 

also had a down-regulation of intracellular PRR signalling pathways. There has been 

considerable interest in the ability of mitochondrial proteins and mtDNA released from 

damaged mitochondria to act as DAMPs and induce inflammation through binding to 

intracellular PRRs (Galluzzi et al., 2012). In particular, mtDNA has been found to trigger 

TLR-9 signalling pathways during the initiation of NLRP3 inflammasome formation 

(Zhang et al., 2010). While altered TLR-9 signalling in mtDNA depleted THP-1 cells 

would, therefore, be of potential relevance to the mechanism underlying the impaired 

immune responses of these cells, the TLR-9 gene is known to be expressed at a low 

level in monocytes and the transcription of mRNA from this gene was not significantly 

altered by transfection with TFAM siRNA (Hornung et al., 2002). In addition, when 

assessing the significance of the changes in signalling via other cytosolic PRRs there is a 

concern that the introduction of foreign RNA into the cell during siRNA transfection 

may be an important confounding factor, particularly when assessing PRRs that detect 

cytosolic RNA such as TLR-3 and TLR-7 (Jacobsen et al., 2009). 

8.3.5 Interferon signalling and monocyte immunity 

Two major interferon signalling pathways are significantly down-regulated in THP-1 

cells transfected with TFAM siRNA. Interferons are important cytokines that modulate 

the immune response during an infection (Schroder et al., 2004). The production of 

type I interferons by infected cells stimulates key antiviral defences in surrounding 

cells and activates the adaptive immune system (Ivashkiv and Donlin, 2014). On the 

other hand, interferon-γ (IFNγ), the only type II interferon, is released by natural killer 

cells and T-lymphocytes and has a crucial role in the activation of monocytes and 

macrophages (Schroder et al., 2004). The priming of human monocytes and THP-1 cells 

by in vitro treatment with IFN-γ has been found to enhance pro-inflammatory 

responses, including LPS-induced TNFα release, and prevent the induction of 

endotoxin tolerance (Adib-Conquy and Cavaillon, 2002; Kurihara and Furue, 2013). In 

ex vivo studies treatment with IFN-γ has also been shown to restore the ability of 

PBMCs and monocytes isolated from patients with severe sepsis to produce TNFα in 

response to LPS (Turrel-Davin et al., 2011; Allantaz-Frager et al., 2013). Furthermore, 

two small clinical trials have suggested that IFN-γ treatment may both restore 

monocyte immune functions, including LPS-induced TNFα release, and potentially lead 
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to improved clinical outcomes in septic patients with evidence of monocyte 

deactivation (Döcke et al., 1997; Nakos et al., 2002). These findings suggest that the 

specific down-regulation of interferon signalling pathways seen in THP-1 cells with 

mtDNA depletion may contribute to their impaired ability to respond to inflammatory 

stimuli. Consequently, the stimulation of these interferon signalling pathways by 

treatment with IFNγ has the potential to improve the ability of mtDNA-depleted cells 

to generate an adequate immune response. 

8.3.6 Triggering receptor expressed on myeloid cells-1 (TREM1) signalling and monocyte 

deactivation 

TREM1 is an activating receptor that is found on the cell surface of monocytes and 

neutrophils (Arts et al., 2013). During an infection the stimulation of TREM1 on 

monocytes activates signalling pathways that result in the induction of phagocytosis 

and the release of pro-inflammatory cytokines and chemokines (Tessarz and 

Cerwenka, 2008). TREM1 activity is down-regulated by matrix metalloproteases which 

cleave it from the cell membrane to produce soluble TREM1, a molecule with anti-

inflammatory effects (Gomez-Pina et al., 2012). 

The importance of TREM1 in the immune response has been highlighted by a murine 

pneumonia sepsis model in which the activation of TREM1 was associated with an 

enhanced inflammatory response, earlier bacterial clearance and improved survival 

(Lagler et al., 2009). On the other hand, the down-regulation of TREM1 expression on 

the surface of monocytes has been implicated in the induction of endotoxin tolerance 

both in in vitro studies and in patients with cystic fibrosis (del Fresno et al., 2008; 

Gomez-Pina et al., 2012). This is consistent with findings from studies on patients with 

sepsis which indicate that an early decrease in TREM1 expression on the surface of 

monocytes and neutrophils is associated with adverse outcomes, including increased 

mortality (Oku et al., 2013; Marioli et al., 2014). Thus, the down-regulation of TREM1 

signalling pathways could contribute to the impairment of THP-1 cell immune 

responses that occurs in parallel with mtDNA depletion after transfection with TFAM 

siRNA. 
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8.4 Conclusion 

This analysis of the THP-1 cell transcriptome provides novel and powerful insights into 

the effects of siRNA transfection and mtDNA depletion on nuclear gene expression. 

After allowing for the ‘off-target’ effects of siRNA transfection there are significant 

alterations in the transcriptome of THP-1 cells with TFAM siRNA-induced mtDNA 

depletion. These changes lead to a marked down-regulation of immune canonical 

signalling pathways and a blunted activation of these pathways after treatment with 

LPS, findings that are consistent with the impaired immune phenotype of these cells. 

Further investigations are required to clarify the precise mechanisms by which mtDNA 

depletion alters nuclear gene expression and determine the particular immune 

pathways that are most important in the aetiology of immune deactivation in THP-1 

cells with mtDNA depletion.
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Chapter 9 Discussion 

9.1 Overview 

This chapter begins with a review of the context and implications of the principal 

findings presented in this thesis, which complements the detailed discussions that 

have been included in each of the results chapters. The main strengths and limitations 

of the research are then detailed before considering the most relevant further 

investigations that will be required to confirm and explore the novel findings that have 

been discussed. 

9.2 The relationship between mitochondria and immunity in human monocytic cells 

Many of the adverse clinical outcomes in sepsis appear to occur as a consequence of 

an aberrant host immune response rather the than direct effects of the invading 

pathogen (Kox et al., 2000). The present paucity of therapies that effectively modulate 

this immune response reflects the incomplete understanding of the underlying 

pathophysiology that is present when an infection causes sepsis (Angus, 2011). Many 

patients with sepsis have evidence of immune suppression and it appears that 

deactivation of blood monocytes is particularly important in this process (Schefold et 

al., 2008b; Hotchkiss et al., 2013a). While septic patients with monocyte deactivation 

are more likely to suffer nosocomial infections and die, the mechanisms by which 

monocyte immunity is impaired are currently poorly understood (Monneret et al., 

2006; Hall et al., 2011). Small observational studies have suggested that septic 

monocytes may have mtDNA depletion and impaired mitochondrial respiration but the 

association between these findings and immune deactivation has been unclear (Pyle et 

al., 2010; Japiassú et al., 2011). 

In this thesis the hypothesis that monocyte deactivation may be caused by 

mitochondrial dysfunction and mtDNA depletion has been examined. Two separate 

approaches, predominantly using in vitro models in THP-1 cells, were used to test this 

hypothesis. In Chapter 4 and Chapter 5 the effect of inducing immune deactivation on 

mitochondrial functions was explored, before carrying out an assessment of the 

consequences of mtDNA depletion for immunity in Chapter 6, Chapter 7 and Chapter 
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8. The two approaches produced contrasting results that highlight the complexities of 

the relationships between mitochondria and innate immunity during sepsis. 

In Chapter 4 the endotoxin tolerance model was successfully used to induce a 

temporary state of immune deactivation in THP-1 cells resembling that seen in septic 

monocytes. However, there was no evidence of mtDNA depletion in the endotoxin 

tolerant THP-1 cells. Instead, a sustained induction of mitochondrial biogenesis was 

observed after treatment with LPS, which occurred in parallel with an activation of 

mitophagy and a shift to an anti-inflammatory immune phenotype. The resultant 

selective replacement of dysfunctional mitochondria may have contributed to the 

resolution of LPS-induced oxidative stress and the apparent improvement in 

mitochondrial efficiency, as evidenced by an increase in mitochondrial oxygen 

consumption despite an unchanged mitochondrial mass, which occurred during the 

time course experiment. These results could not be confirmed in human monocytes 

from healthy volunteers during the LPS inhalation study detailed in Chapter 5, as this 

technique failed to produce any significant change in the phenotype of blood 

monocytes. 

Thus, exposure of THP-1 cells to an inflammatory stimulus was found to trigger the 

simultaneous induction of a number of compensatory pro-survival responses, including 

those aimed at limiting inflammation and those involved in maintaining mitochondrial 

homeostasis. These results support the observation that survivors from sepsis have 

evidence of an early induction of mitochondrial biogenesis in muscle biopsy samples 

(Carré et al., 2010). Moreover, they suggest that the findings from animal models, 

which indicate that the induction of mitochondrial biogenesis and mitophagy is an 

essential component of the recovery from an inflammatory insult that is linked with 

the activation of anti-inflammatory gene transcription, are relevant for human immune 

cells (Piantadosi et al., 2011; MacGarvey et al., 2012; Carchman et al., 2013). 

While mitochondrial biogenesis was activated during endotoxin tolerance, in Chapter 6 

and Chapter 7 THP-1 cells with mtDNA depletion and impaired OXPHOS activity, 

induced by both treatment with ethidium bromide and transfection with TFAM siRNA, 

were found to have impaired immune responses. In particular, mtDNA depletion was 

associated with a reduction in the LPS-induced release of the pro-inflammatory 

cytokine TNFα, the key phenotypic biomarker of monocyte deactivation that is 
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associated with adverse outcomes in sepsis. Furthermore, the restoration of mtDNA 

copy number following removal of TFAM siRNA occurred in parallel with the recovery 

of the ability of the THP-1 cells to release TNFα. This link between mtDNA depletion 

and impaired immunity was supported by the analysis of gene expression data in 

Chapter 8, which indicated that transfection with TFAM siRNA had a significant 

inhibitory effect on key innate immune signalling pathways and lead to an attenuated 

transcriptomic response to LPS. 

These investigations show for the first time that mtDNA depletion can directly impair 

the ability of human monocytic cells to produce an immune response and specifically 

inhibit the transcription of nuclear genes involved in innate immune signalling. This 

immune deactivation in mtDNA depleted THP-1 cells is consistent with the evidence 

that mitochondria have an important role in the propagation of inflammatory signals, 

the induction of anti-viral responses and the generation of effector innate immune 

responses (Sun et al., 2006; West et al., 2011b; Tait and Green, 2012; West et al., 

2015). The profound effect of mtDNA depletion on nuclear gene transcription also 

highlights the importance of cross-talk between the nuclear and mitochondrial 

genomes in the integration of metabolism with cellular processes, including 

inflammation and immunity (Kotiadis et al., 2014). 

In overall terms, the results presented in this thesis indicate that there are likely to be 

complex and variable interactions between mitochondria and the innate immune 

response during sepsis. Alterations in mitochondrial homeostasis have been found to 

produce significant effects on the immune functions of THP-1 cells. Both the activation 

of mitochondrial biogenesis, with a resultant increase in mtDNA copy number and 

mitochondrial respiration, and depletion of mtDNA, leading to impaired OXPHOS 

activity, have been found to be associated with evidence of immune deactivation. It 

may be the case that both of these processes are relevant in the mechanisms 

underlying sepsis-induced monocyte deactivation, with the exact contribution of each 

depending a number of factors, including the severity and duration of the sepsis illness 

(Figure 9.1). Further investigations that build on the key findings in this thesis have the 

potential to advance the understanding of the pathophysiology of sepsis-induced 

monocyte deactivation and the precise roles that mitochondria play in this process.
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Figure 9.1 Summary of the proposed consequences of the compensatory 
responses to an infection in monocytes. During an infection the binding of 
PAMPs to PRRs leads to the recognition of the presence of an invading pathogen. 
Within monocytes this produces a simultaneous activation of both pro-
inflammatory responses, which are aimed at eliminating the pathogen but also 
cause mitochondrial dysfunction and oxidative stress, and compensatory 
responses, which are aimed at maintaining homeostasis and include anti-
inflammatory responses, antioxidant defences, mitochondrial biogenesis and 
mitophagy. The outcome depends on the severity of the infection and the 
effectiveness of these compensatory responses. In a milder infection with 
adequate compensation dysfunctional mitochondria are degraded and replaced, 
mitochondrial respiration and mtDNA integrity are maintained and the monocyte 
remains functional. However, in a severe infection the compensatory responses 
may be excessive, leading to a shift to an anti-inflammatory phenotype, or 
inadequate. With inadequate compensation dysfunctional mitochondria are not 
replaced, mitochondrial respiration is impaired, mtDNA becomes depleted and 
oxidative stress persists. In this situation, mtDNA depletion results in the 
inhibition of innate immune signalling which exacerbates the pre-existing down-
regulation of pro-inflammatory responses, leading to monocyte deactivation and 
adverse clinical outcomes.
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9.3 Strengths of research 

The investigations described in this thesis provide important and novel insights into 

the potential interactions between monocyte immunity and mitochondria during 

inflammation and sepsis. Sepsis is an important clinical problem with persistently poor 

outcomes and a lack of effective treatments and these investigations have the 

potential to improve the understanding of the causes and consequences of sepsis-

induced monocyte deactivation and mitochondrial dysfunction. A thorough 

assessment of THP-1 cell immune and mitochondrial functions has been carried out 

using a range of well-validated techniques and a variety of experimental models. 

Investigating these processes in human cells also makes the findings potentially more 

relevant for patients with sepsis than those from animal sepsis models, which have 

been found to translate poorly to human disease (Seok et al., 2013). 

The endotoxin tolerance model effectively produced a transient state of immune 

deactivation in THP-1 cells that closely resembles the phenotype of septic monocytes 

and consequently was able to provide insights into the role of mitochondria in this 

process (Cavaillon and Adib-Conquy, 2006; Hall et al., 2013). The time course design of 

this experiment facilitated a detailed observation of the evolution of, and interactions 

between, various cellular reactions to an inflammatory stimulus, with a particular focus 

on a broad range of mitochondrial responses. Many of the effects of LPS on 

mitochondria that were measured support the observations from animal sepsis 

models, but critically do this in immunologically-relevant human cells. 

The investigations into the effects of mtDNA depletion on THP-1 cell immunity provide 

original advances in the understanding of the associations between mitochondrial 

homeostasis and the immune response. In Chapter 6 and Chapter 7 mtDNA was 

effectively depleted from THP-1 cells using two very different techniques that 

produced generally consistent results. In addition to confirming the effects of mtDNA 

depletion on mitochondrial genetics and respiration, the immune function of THP-1 

cells was assessed on both a functional and transcriptomic level. The use of RNA-Seq 

produced a holistic assessment of the effects of mtDNA depletion on the entire THP-1 

cell transcriptome that avoided the bias of restricting the analysis to pre-selected 

genes of interest (Wang et al., 2009). The observations that mtDNA depletion can 
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directly impair innate immunity and down-regulate immune signalling pathways offer 

important new insights into the consequences of sepsis-induced mitochondrial 

dysfunction for blood monocytes. 

9.4 Limitations of research 

THP-1 cells provide a convenient, homogenous in vitro monocyte model that shares 

many phenotypic features with primary human monocytes (Altieri and Edgington, 

1988). However, there are significant limitations that weaken the application of 

findings from THP-1 cells to human disease. THP-1 cells are an immortalised human 

pro-monocytic leukaemia cell line that were first isolated from man over 30 years ago 

(Tsuchiya et al., 1980). In addition to the original oncogenic mutations the cells are 

likely to have undergone a substantial phenotypic and genetic drift as they have 

adapted to growth in vitro (Burdall et al., 2003). As a result, there are potentially broad 

differences between a cell line, such as THP-1 cells, and the equivalent primary cells. 

For example, a study has shown that there were significant alterations in over half of 

the proteome, including proteins involved in metabolism and mitochondrial function, 

when mouse hepatocytes were compared to a murine hepatoma cell line (Pan et al., 

2009). More specifically for THP-1 cells, important differences in their immunological 

capabilities compared to primary monocytes have been described recently 

(Schildberger et al., 2013). In particular it has been shown that, although the TNFα 

response is relatively preserved, THP-1 cells produce significantly less IL-8 and no IL-6 

or IL-10 in response to LPS, findings that are consistent with the cytokine release 

experiments detailed in this thesis. It is clear, therefore, that all observations in THP-1 

cells must be confirmed in primary human monocytes before any firm conclusions 

regarding their relevance to human disease can be made. 

In addition to using THP-1 cells, the majority of the investigations in this thesis are also 

limited by their in vitro design. In general cell culture is carried out at low density using 

enriched medium in order to facilitate rapid cell division, conditions that are not 

usually present in vivo (Geraghty et al., 2014). Furthermore, the lack of both tissue 

architecture and other cell types during each experiment mean that the conditions fail 

to model those occurring in a complex, multicellular organism (Hartung and Daston, 
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2009). These limitations can be addressed by translating the results from in vitro 

experiments into in vivo models or clinical samples from patients with sepsis. 

There are also important problems with using the model of endotoxin tolerant THP-1 

cells to investigate the changes occurring during the deactivation of septic monocytes. 

Although the immune phenotype of these cells does approximate that of septic 

monocytes, it is clear that this model does not adequately reflect the complex 

processes occurring during human sepsis (Lopez-Collazo and del Fresno, 2013). In 

particular, a single treatment with a sterile stimulus in the form of LPS does not 

resemble the sustained exposure to a myriad of potent inflammatory stimuli that 

occurs during sepsis (Kox et al., 2000). Furthermore, the investigations into 

mitochondrial functions and turnover that were carried out on endotoxin tolerant THP-

1 cells were mostly observational and did not assess the causation or mechanisms 

behind the changes that were seen. Finally, an attempt was made to confirm the 

results from the endotoxin tolerant THP-1 cells using the in vivo LPS inhalation model 

on healthy volunteers, but this proved to be unhelpful as it failed to produce any 

significant effects on blood monocytes. 

In patients with sepsis a depletion of monocyte mtDNA copy number to around 75% of 

the level in healthy controls has been measured (Pyle et al., 2010). However, the 

mtDNA depletion experiments presented in this thesis produced a significantly greater 

fall in THP-1 cell mtDNA copy number, with a complete loss of mtDNA after treatment 

with ethidium bromide and a reduction to around 25% of control samples after 

transfection with TFAM siRNA. This may mean that the effects on mitochondrial and 

immune functions seen in these cells is not reflective of those occurring in septic 

monocytes. Moreover, while the RNA-Seq data confirms that mtDNA depletion inhibits 

immune signalling pathways and blunts the transcriptomic response to LPS, these 

observations do not establish the precise mechanisms by which mtDNA depletion 

effects nuclear gene transcription and THP-1 cell immune responses. 
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9.5 Future work 

9.5.1 The link between immunity, mitochondrial biogenesis and mitophagy in THP-1 cells 

after LPS treatment 

Further investigations are required in order to identify the key mechanisms behind the 

activation of mitochondrial biogenesis and mitophagy, which occurred concurrently 

with a shift towards an anti-inflammatory, endotoxin tolerant immune phenotype, 

following exposure of THP-1 cells to LPS in Chapter 4. To this end, exploration of a 

number of promising areas could improve the understanding of the fundamental 

processes governing mitochondrial homeostasis and immunity during inflammation. 

These areas include; 

1. TLR-4 signalling: Animal sepsis models suggest that the induction of both 

mitochondrial biogenesis and mitophagy is dependent on signalling via PRRs, which 

also appears to simultaneously activate both inflammatory and compensatory 

responses (Sweeney et al., 2010; Bauerfeld et al., 2012). In order to confirm these 

findings the effects of siRNA-mediated knock-down of TLR-4 expression or chemical 

inhibition of the intracellular domain of TLR-4 on the response of THP-1 cells to LPS 

could be investigated (Zhou et al., 2012; Oda et al., 2014). 

2. Redox-sensitive signalling: There is a body of evidence which suggests that the 

induction of mitochondrial biogenesis and mitophagy in murine sepsis models is 

linked to the up-regulation of anti-inflammatory cytokines through the activation 

of the redox-sensitive HO-1/Nrf2 pathway (Piantadosi et al., 2011; Chang et al., 

2015). If it is confirmed that the HO-1 and Nrf2 proteins are up-regulated in THP-1 

cells after LPS exposure, chemical inhibitors, such as zinc protoporphyrin IX for HO-

1 and brusatol for Nrf2, or siRNA targeted against the HMOX1 and NFE2L2 genes 

could then be used to determine the effects of inhibiting this pathway on the LPS-

induced responses of THP-1 cells (Rushworth and MacEwan, 2008; Ren et al., 2011; 

Abdalla et al., 2015). 

3. Sirtuins: Nuclear SIRT1 and mitochondrial SIRT3 have been found to be sequentially 

activated after exposure to LPS, leading to the concomitant inhibition of 

inflammatory signalling and activation of mitochondrial biogenesis (Liu et al., 

2015). Providing that SIRT1 and SIRT3 up-regulation is confirmed, the potential for 
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these NAD+-dependent deacetylases to link immunity and metabolism could be 

assessed by observing the effects of the SIRT1 inhibitor EX527 on the responses of 

LPS-treated THP-1 cells (Vachharajani et al., 2014). 

4. Mitophagy: The activation of mitophagy, leading to the removal of dysfunctional 

mitochondria, has been found to be vital for both the recovery from the adverse 

effects of inflammation and the induction of mitochondrial biogenesis (Lee et al., 

2012; Carchman et al., 2013). As an initial exploration of the importance of 

mitophagy, THP-1 cells could be transfected with siRNA targeted against the key 

autophagy regulator autophagy-related protein-7 (Atg7) before determining the 

effects of transiently inhibiting autophagy on THP-1 cell viability, immunity, 

mitochondrial biogenesis and respiration after treatment with LPS (Pattison et al., 

2011). 

9.5.2 Translating the findings from endotoxin tolerant THP-1 cells into human monocytes 

It will be essential to confirm that the LPS-induced changes in immunity, mitochondrial 

biogenesis and mitophagy seen in THP-1 cells are also found in human blood 

monocytes. Firstly, in vitro experiments could be carried out to assess the effects of 

LPS on immune and mitochondrial functions in primary blood monocytes isolated from 

healthy volunteers. However, as the duration of these experiments is likely to be 

limited by the propensity for monocytes to differentiate into macrophages and 

dendritic cells during cell culture, the isolation of blood monocytes during an in vivo 

model of systemic inflammation may provide a more useful assessment (Sánchez-

Torres et al., 2001; Eligini et al., 2013). In Chapter 5 it was shown that the inhalation of 

60µg LPS inhalation did not produce any significant effects on blood monocytes. An 

alternative strategy could involve the intravenous administration of LPS to healthy 

volunteers, as this has been found to reliably produce a brisk systemic inflammatory 

response along with significant effects on the phenotype of blood monocytes, 

including the induction of endotoxin tolerance (de Vos et al., 2009; Draisma et al., 

2009). An experimental study could be carried out in which healthy volunteers are 

given intravenous LPS and immune functions, cellular respiration and mitochondrial 

turnover are measured in blood monocytes isolated at serial time points. RNA-Seq 

could also be used to investigate the mechanistic links between these processes by a 
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serial analysis of the transcriptomic changes occurring in monocytes following LPS 

exposure (Wang et al., 2009; Fairfax et al., 2014). 

9.5.3 Investigating impaired immune signalling in THP-1 cells with mtDNA depletion 

In order to establish the mechanisms by which mtDNA depletion causes immune 

deactivation the significance of the down-regulation of key immune signalling 

pathways in mtDNA-depleted THP-1 cells needs to be explored in more detail. 

Investigating the effects of interventions to reverse these changes could also identify 

treatments with the potential to improve immune functions in patients with sepsis-

induced monocyte deactivation and mtDNA depletion 

The significant inhibition of the TREM1 signalling pathway that was seen in TFAM 

siRNA transfected THP-1 cells should be firstly correlated with TREM1 protein and cell 

surface expression in these cells. TREM1 is a cell surface receptor that enhances TLR-

mediated innate immune responses and decreased TREM1 levels have been detected 

in endotoxin tolerant and septic monocytes (del Fresno et al., 2008; Marioli et al., 

2014). Treatment with 1, 25 dihydroxyvitamin D3 or the metalloprotease inhibitor 

GM6001 has been shown to increase TREM1 mRNA and cell surface expression in 

human monocytic cells (Gomez-Pina et al., 2012; Lee et al., 2015). Therefore, if TREM1 

down-regulation is confirmed, the effect of treatment with these compounds on THP-1 

cell immunity could then be examined in order to determine whether the impairment 

of TREM1 signalling is vital for mtDNA depletion-mediated immune dysfunction. 

Two major interferon signalling pathways and signalling via PRRs, including TLRs, are 

also among the principal canonical pathways that are down-regulated in THP-1 cells 

with mtDNA depletion following TFAM siRNA transfection. If these alterations are 

confirmed at a protein level by Western blot, an investigation into the potential for 

treatment with IFN-γ, a major activating cytokine for monocytes and macrophages, to 

reverse these effects would be valuable (Schroder et al., 2004). An in vitro exposure of 

human monocytes to IFN-γ has been found to result in increased cell surface 

expression of TLR-4, enhanced LPS-induced pro-inflammatory cytokine release and a 

resistance to the induction of endotoxin tolerance (Adib-Conquy and Cavaillon, 2002; 

Bosisio et al., 2002; Southworth et al., 2012). Furthermore, in septic patients with 

monocyte deactivation ex vivo and in vivo treatment with IFN- γ can restore LPS 
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induced TNF-α release (Döcke et al., 1997; Nakos et al., 2002; Allantaz-Frager et al., 

2013). 

9.5.4 Assessing the effect of mtDNA depletion on immunity in human monocytes and in 

vivo models 

In addition to establishing the mechanisms linking mtDNA levels and immunity, the 

negative effects of mtDNA depletion on THP-1 cell immunity need to be reproduced in 

blood monocytes and confirmed in vivo. The propensity of blood monocytes to rapidly 

differentiate when cultured in vitro would present considerable challenges for 

experiments that attempt to replicate the techniques used to deplete mtDNA in THP-1 

cells in this thesis. In view of these difficulties, an assessment of immune functions in 

blood monocytes isolated from patients known to have mtDNA depletion may be a 

preferable approach to validating the findings from THP-1 cells. For example, the 

immune functions of monocytes isolated from patients with diseases caused by 

mutations, deletions or depletion of mtDNA could be assessed (Greaves et al., 2012). 

Due to the relative rarity and variable, but often severe clinical phenotype of mtDNA 

diseases in humans, it may be most appropriate to attempt to confirm the effects of 

mtDNA depletion on the in vivo immune response using an animal sepsis model 

(DiMauro and Schon, 2003). Homozygous Tfam-/- mice die during the embryonic stage, 

while targeted Tfam knockout leads to tissue-specific mtDNA depletion and severe 

OXPHOS impairment (Larsson et al., 1998; Wang et al., 1999). On the other hand, 

Tfam+/- mice have a reduction in mtDNA copy number by 34-50% and more modest 

mitochondrial respiratory dysfunction (Larsson et al., 1998). These Tfam+/- mice have 

been used to demonstrate the importance of mtDNA stability for the antiviral innate 

immune response (West et al., 2015). A murine model of sepsis, such as caecal ligation 

and puncture, could be used to compare the responses of Tfam+/- mice to those of 

wild-type mice, in order to establish whether mtDNA depletion due to Tfam deficiency 

can cause impaired innate immune signalling and monocyte deactivation in vivo 

(Warren, 2009). 

9.5.5 Confirmation of findings in human sepsis 

Ultimately, it will be vital to confirm the findings from cell culture and experimental 

medicine models in human patients with sepsis. To date, most of the clinical literature 
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describing the function and turnover of mitochondria in sepsis consists of observations 

from small cross-sectional studies in which a restricted number of measurements are 

assessed (Jeger et al., 2013). There are also very limited clinical data available on the 

concurrent assessment of mitochondria and immunity in blood monocytes during 

human sepsis (Belikova et al., 2007). As a result, a well-designed longitudinal study in 

which serial measurements of monocyte immune and mitochondrial parameters are 

taken would be very valuable in understanding the dynamics and relationships of the 

changes occurring during human sepsis. In such a study the findings could be 

compared between groups with different illness severity and in survivors versus non-

survivors, in order to identify those responses that are deficient or excessive in 

patients with adverse outcomes. Moreover, the immune and transcriptomic responses 

of monocytes from the subgroup of patients with sepsis-induced mtDNA depletion 

could be compared to those with maintained mtDNA copy number. 

9.6 Concluding remarks 

In this thesis an assessment of the role of mitochondrial dysfunction and mtDNA 

depletion in monocyte immune deactivation has been presented. Using in vitro models 

in THP-1 cells it has been shown that there is a complicated relationship between 

mitochondria and monocytic cell immunity. On the one hand, the novel discovery that 

mtDNA depletion produces a profound inhibition of innate signalling pathways that 

results in a blunted transcriptomic and functional immune response has been detailed. 

However, it has also been shown that the down-regulation of pro-inflammatory 

immune responses may be closely integrated with the activation of mitochondrial 

biogenesis during the compensatory responses to an inflammatory insult. Future 

research should focus on exploring the fundamental mechanisms by which 

mitochondria influence the immune response and on confirming the findings from 

THP-1 cells in human monocytes and patients with sepsis. Ultimately, an improved 

understanding of the interactions between mitochondria and immunity may suggest 

novel therapies to improve the currently poor outcomes of patients with sepsis-

induced monocyte deactivation.
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Introduction 

In sepsis monocyte immune deactivation is associated with increased mortality and 

susceptibility to secondary infections. There is increasing evidence of depletion of 

mitochondrial DNA (mtDNA) and impaired mitochondrial respiration in monocytes 

from septic patients.  This study aimed to assess the links between mtDNA depletion 

and immunity in human monocytic THP-1 cells. 

Method 

To selectively deplete their mtDNA THP-1 cells were incubated with 50ng/ml ethidium 

bromide (EtBr) for 8 weeks. After confirming the effects of EtBr on mitochondria, 

immune responses were assessed by measuring lipopolysaccharide (LPS)-induced 

cytokine release and phagocytosis of fluorescent Staphylococcus aureus (SA).  

Results 

Incubation with EtBr successfully generated THP-1 cells lacking mtDNA (termed ρ0 

cells). There was a selective depletion of mtDNA-encoded RNA transcription and 

protein expression in these cells. In addition ρ0 THP-1 cells had complete loss of 
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activity in mitochondrial respiratory chain complex IV, which contains key mtDNA-

encoded subunits. LPS-induced release of the pro-inflammatory cytokine tumour 

necrosis factor-α (TNFα) was significantly reduced but phagocytosis of SA was 

increased in ρ0 cells.  

Discussion 

THP-1 cells depleted of mtDNA by treatment with EtBr produce significantly less TNF-α 

in response to LPS, a typical feature of deactivated monocytes in sepsis. However, 

mitochondrial depletion did not produce a global down-regulation of immune 

responses and phagocytosis was actually enhanced in ρ0 THP-1 cells. Further 

investigation into the complex effects of mitochondrial depletion on immunity may 

provide important insights into immune suppression in sepsis. 
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Background 

In sepsis monocyte immune deactivation is associated with increased mortality and 

susceptibility to secondary infections. There is increasing evidence of mitochondrial 

depletion and dysfunction, including impaired respiration and oxidative stress, in 

monocytes in sepsis. Survival and recovery of cellular function following sepsis has 

been associated with the induction of mitochondrial biogenesis. Using endotoxin 

tolerance (ET), whereby repeated exposure to lipopolysaccharide (LPS) produces 

diminishing inflammatory responses, as a model of monocyte deactivation we 

investigated the link between immunity, respiration and mitochondrial biogenesis. 

Methods 

THP-1 cells, a human monocytic cell line, were pre-incubated with 100ng/ml LPS from 

Escherichia coli 026:B6 for 0, 2, 6, 24, 48 and 72 hours. The ability of THP-1 cells to 

respond to a second inflammatory stimulus was then assessed in addition to 

measurements of oxygen consumption, oxidative stress and mitochondrial biogenesis.   
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Results 

Pre-incubation with LPS produced a change in THP-1 cell immune phenotype 

consistent with ET. In response to a second inflammatory stimulus there was reduced 

release of pro-inflammatory cytokines but increased anti-inflammatory cytokine 

release and phagocytosis. LPS exposure also resulted in evidence of early oxidative 

stress with recovery associated with the activation of antioxidant defences. Significant 

increases in mitochondrial DNA copy number and expression of mitochondrial 

transcription factor A following exposure to LPS suggest that mitochondrial biogenesis 

is induced during ET. In addition, after LPS exposure there was an increase in THP-1 cell 

oxygen consumption due to mitochondrial adenosine triphosphate generation.  

Conclusions 

In association with a shift towards an anti-inflammatory phenotype there is evidence 

of the induction of mitochondrial biogenesis and anti-oxidant defences in ET THP-1 

cells. Further investigation into the potential co-regulation of these pro-survival 

responses may provide important insights into the mechanisms of immune 

deactivation and cellular recovery in human monocytic cells following inflammatory 

insults in diverse conditions including sepsis.  



204 
 

 

Poster for ID Week 2014 Conference



205 
 

Abstract for oral presentation at 25th European Conference of Clinical Microbiology and 

Infectious Diseases (Copenhagen, Denmark; April 2015) 

Title 
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Objectives 

This study aimed to assess the hypothesis that depletion of mitochondrial DNA 

(mtDNA) would lead to inhibition of THP-1 cell immune responses and had the 

following objectives;  

1. To deplete mtDNA copy number in THP-1 cells by transfection with small-

interfering RNA (siRNA) targeted against mitochondrial transcription factor A (TFAM). 

2. To determine the effects of mtDNA depletion on THP-1 cell respiration and 

immune function. 

3. To assess the ability of mtDNA copy number, cellular respiration and immune 

functions to recover following removal of TFAM siRNA. 

Methods 

THP-1 cells, a human monocytic leukaemia cell line, were transfected with 30nM TFAM 

siRNA. Control experiments included THP-1 cells transfected with a negative sequence 

siRNA and incubated with the transfection reagent Lipofectamine RNAiMAX. After 8 

days mtDNA depletion was confirmed and the functional consequences of this 
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depletion were assessed by measuring mitochondrial protein expression and cellular 

oxygen consumption. THP-1 cell immunity was determined by quantifying 

lipopolysaccharide (LPS)-induced cytokine release and phagocytosis of fluorescent 

Escherichia coli (E.coli). The recovery of THP-1 cell functions was then assessed after a 

further 8 day incubation in the absence of TFAM siRNA. 

Results 

Transfection with TFAM siRNA successfully depleted mtDNA from THP-1 cells. This was 

associated with a selective loss of mtDNA-encoded protein expression and a significant 

reduction in cellular oxygen consumption, particularly for mitochondrial respiration. 

Depletion of mtDNA was associated with a significantly reduced ability of THP-1 cells to 

both phagocytose E.coli and release the pro-inflammatory cytokine tumour necrosis 

factor-α (TNFα) in response to LPS. Removal of TFAM siRNA led to a compensatory 

increase in TFAM expression which resulted in recovery of mtDNA copy number, 

mtDNA-encoded protein expression and cellular oxygen consumption. LPS-induced 

TNFα release was restored in these cells but there was only a partial recovery in their 

phagocytic ability. 

Conclusion 

Adverse outcomes in sepsis are associated with evidence of monocyte immune 

deactivation, including a reduced ability to release TNFα in response to LPS. However, 

the underlying mechanism behind this immune deactivation is not fully understood. 

Recent studies have indicated that septic monocytes have evidence of mtDNA 

depletion and mitochondrial respiratory dysfunction. Our results indicate that, in THP-

1 cells, depletion of mtDNA and the resultant impaired mitochondrial respiration are 

associated with immune dysfunction. Furthermore, recovery of THP-1 cell mtDNA copy 

number and cellular respiration is associated with a restoration of LPS-induced TNFα 

release. Further research is required to determine the mechanisms linking mtDNA 

depletion to immune deactivation in monocytes. Ultimately therapeutic interventions 

to stimulate mitochondrial biogenesis may have the potential to provide novel 

interventions to restore immune function in septic monocytes.
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 Appendix B: Lipopolysaccharide dose finding experiments 

Overview 

In this appendix additional dose-finding experiments that were not included in the 

results section of Chapter 4 are detailed in order to display the data that informed the 

experimental design for the endotoxin tolerance time course experiments. 

Results 

Optimal dose of LPS to induce endotoxin tolerance in THP-1 cells 

The dose of LPS that is required to produce endotoxin tolerance was optimised by pre-

incubating THP-1 cells with 1, 10 and 100ng/ml for 24 hours and then measuring TNFα 

release in response to a second stimulus of 10 or 100ng/ml LPS for a further 4 hours. 

Pre-incubation with 100ng/ml produced the most significant decrease in TNFα 

secretion in response to a second exposure to 100ng/ml LPS (Supplementary Figure 1). 

These conditions were used in subsequent endotoxin tolerance experiments, with 

THP-1 cells being pre-incubated with 100ng/ml LPS for 2, 6, 24, 48 and 72 hours prior 

to measuring immune and mitochondrial functions. 

The effect of LPS on mtDNA copy number 

In contrast to findings in clinical and animal sepsis studies, in Chapter 4 exposure to 

100ng/ml LPS did not result in any depletion of mtDNA, with mtDNA copy number 

instead increasing at 2-48 hours following treatment with LPS. To determine whether 

this effect was due to an inadequate dose of LPS, THP-1 cells were treated with 0.1 

(100ng/ml), 1 and 10µg/ml LPS for 2, 6 and 24 hours. Although the LPS-induced 

increase in mtDNA copy number was delayed beyond 2 hours following exposure to 

LPS at concentrations above 100ng/ml there was no significant depletion of mtDNA 

copy number in any of the conditions (Supplementary Figure 2). The possibility that 

the initial 2 hour measurement time point missed an earlier depletion of mtDNA was 

also excluded as THP-1 cells treated with 100ng/ml LPS for 20, 40 and 60 minutes did 

not have any significant reduction in mtDNA copy number (Supplementary Figure 3).
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Supplementary Figure 1 Pre-incubation with 100ng/ml LPS produces optimal 
down-regulation of TNFα release in response to a subsequent LPS exposure. 
THP-1 cells were incubated with medium or 1, 10 or 100ng/ml LPS for 24 hours 
before assessing TNFα release in response to a second stimulation with 10 or 
100ng/ml LPS for a further 4 hours (24-28 hours) (n=6). The data are represented 
as mean ± standard deviation TNFα release per 500,000 THP-1 cells and analysed 
by one-way ANOVA (p<0.001). All differences are non-significant with Tukey’s 
multiple comparison test except; *p<0.05, ***p<0.001.
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Supplementary Figure 2 Delayed increase in mtDNA copy number when THP-1 
cells are exposed to LPS at concentrations greater than 100ng/ml. THP-1 cells 
were incubated with LPS at a concentration of 0 (Medium), 0.1 (100ng/ml), 1 and 
10µg/ml for 2, 6 and 24 hours and mtDNA copy number measured by 
quantitative PCR (n=4). Data are represented by box plots indicating 25th 
quartile, median and 75th quartile and whiskers indicating the range and 
analysed by two-way ANOVA (p<0.001). All differences are non significant with 
Tukey’s multiple comparison test except;* p<0.05. 

  

Supplementary Figure 3 THP-1 cell mtDNA copy number is not significantly 
altered by exposure to 100ng/ml LPS for less than 120 minutes.  THP-1 cells 
were incubated with 100ng/ml LPS for 0, 20, 20, 60 and 120 minutes and mtDNA 
copy number was then determined by quantitative PCR (n=4). The data are 
represented as individual measurements with the lines indicating mean relative 
mtDNA copy number and analysed by one-way ANOVA (p=0.001). All differences 
are non-significant using Dunnett’s multiple comparison test except; **p<0.01. 


