
The Exploitation of Provenance and Versioning in

the Reproduction of e-Experiments

Thesis by

Dayang Hanani Abang Ibrahim

A thesis submitted for the degree of

Doctor of Philosophy

Newcastle University

Newcastle Upon Tyne, UK

April 2016

Dedication:

Specially dedicated to My husband; Zamsury, My children; Ameera Nailya,

Adlyna Nailya, Muhammad Arief Naufal and Ayeesha Nailya, My parents

and in laws; Abang Ibrahim and Khadijah, Kushaili and Normah. Thank

you for all your patience, continuous support and encouragement

throughout the years. Thank you very much!

Acknowledgements

In the name of Allah, the Most Gracious and the Most Merciful. First

and foremost, Alhamdulillah, all praises to Allah for the strengths and His

blessing in completing this thesis.

This thesis would not have been possible without the help and guidance of

several individuals who in one way or another contributed in the preparation

and completion of this study.

My gratitude goes to my supervisor Professor Paul Watson for his con-

stant support, valuable guidance, insights and encouragement throughout

the course of research and writing of this thesis. His sincerity, patience and

understanding on numerous occasions when I needed to hurdle all the ob-

stacles in the completion this research work. �Nearly there�, a phrase that I

will never forget, such motivating words to keep me going.

I would like to thank Professor Michael Harrison for his valuable suggestions

and insights, his willingness to share thoughts which were helpful during my

years in Newcastle upon Tyne.

I would like to thank my employer, the Universiti Malaysia Sarawak (UNI-

MAS) and the Ministry of Higher Education Malaysia for being my sponsor

and supporter throughout my PhD study.

I cannot forget the amount of support I received from my family during this

entire journey. My husband, Zamsury Kushaili and my four children Ameera

Nailya Zamsury, Adlyna Nailya Zamsury, Muhammad Arief Naufal Zamsury

and Ayeesha Nailya Zamsury who continuously support me in every step in

my life. You have all been my source of joy.

I can never express enough gratitude for the support I received from my

parents, Abang Ibrahim Abang Junaidi and Khadijah Ibrahim, who have

constantly encouraged me, at times pushed me - when I used to get frus-

trated. Thanks also to my parents in law, Kushaili Su'ut and Normah Kadir,

my siblings and all family members for their encouragement and support.

I am indebted to my close friends, Dyg Mariana, Dr. Johari, Dr. Rouaa

Yassin, Dr. Chiew Kang Leng, Dr. Nadianatra, Dr. Halikul and all my

dearest friends for their valuable assistance in the completion of this study.

Thank you for being supportive and caring friends.

I owe my gratitude to the Management of the Faculty of Computer Science

and Information Technology for their continuous support and encourage-

ment.

Last but not least, thanks to all individuals who have directly and indirectly

given me the possibility to complete the thesis.

Abstract

Reproducibility has long been a cornerstone of science, and is now becoming a key

research area for e-Science. This is because it provides a way to validate, and build on,

previous results. Underpinning reproducibility in e-Science is provenance, which has the

potential to provide scientists with a complete understanding of data generated in e-

experiments, including the services that produced and consumed it. This thesis explores

the issues in exploiting provenance for reproducibility. Based on this, a reproducibility

framework is designed and implemented to allow past experiments to be reproduced.

Seven aspects of reproducibility are considered: 1) experiments, 2) reproducibility, 3)

provenance, 4) provenance models, 5) provenance and versioning, 6) automatic trans-

formation of provenance to support reproduction, and 7) a reproducibility taxonomy.

A key to reproducibility is the provenance model: a data model that structures infor-

mation about an e-experiment. A review of existing provenance systems shows that the

problem caused by services being updated has been neglected. This can have a severe

impact on the ability to reproduce experiments and it is therefore argued that the issue

of service versioning must be addressed. Even after information on the provenance of

an execution, and versioning of services, is captured there is the need for a method to

transform this knowledge into a form that allows past experiments to be reproduced:

that is another output of this thesis. The thesis focuses on the use of work�ow as a

means to represent the composition, and to execute experiments. This work explores

how work�ows can be automatically generated to re-execute past experiments. In or-

der to do this, a transformation algorithm is described that maps a past experiment's

execution log data into a work�ow format that can be read and processed by the work-

�ow system. The thesis also introduces a Reproducibility Taxonomy that captures and

structures the information required for reproducibility in the presence of versions and

provenance.

iv

Contents

List of Figures viii

List of Tables xi

1 Introduction 1

1.1 Motivation . 4

1.2 Contribution . 8

1.3 Structure of the Thesis . 9

2 Background and Related Work 10

2.1 Reproducibility . 10

2.2 Provenance Enabled Reproducibility . 15

2.2.1 Provenance . 15

2.2.2 Documentation for Provenance 17

2.2.3 Provenance Modelling . 18

2.2.4 Provenance Support in Work�ow Systems 28

2.3 Service Versioning . 30

2.3.1 Adopting a Service-Oriented Architecture (SOA) 31

2.3.2 Service Versioning Approaches 33

2.3.3 Work�ow-Based Systems . 34

2.4 Reproducibility Taxonomy . 36

2.5 Discussion . 37

3 Achieving Reproducibility by Incorporating Service Versioning into

Provenance 39

3.1 Capturing Experiments Using the Open Provenance Model (OPM) . . . 40

v

CONTENTS

3.1.1 An Exercise Advisor Example . 41

3.2 Capturing the Provenance Trace . 43

3.2.1 A Gap in the Provenance Trace 48

3.3 Incorporating Service Versioning into a Web Service Architecture 49

3.3.1 tModel Versioning Model . 54

3.3.2 Capturing Versioning in OPM . 58

3.4 Discussion . 65

4 Transforming OPM to SCUFL 66

4.1 Generating SCUFL from OPM . 67

4.2 Comparing SCUFL to the Open Provenance Model (OPM) 68

4.3 Rules for mapping from OPM to SCUFL 71

4.3.1 Entity Rules OPM to SCUFL . 71

4.3.2 Relation Rules OPM to SCUFL 74

4.4 Generation of OPM to Taverna Work�ow 79

4.5 The ReProduX Extraction and Transformation Algorithm 80

4.5.1 The Transformation and Execution 83

4.6 Discussion . 86

5 Evaluation of the Reproducibility Framework 87

5.1 Implementation of Reproducibility Framework 89

5.1.1 Versioned Service Deployment, Publication and Consumption in

a Web Service Architecture . 89

5.1.2 Versioning Support in OPM Generation and OPM2Taverna Gen-

erator in ReProduX . 95

5.1.3 ReProduX Service Selection . 97

5.1.4 Reproduce in Taverna Work�ow Management System 100

5.2 Evaluation . 101

5.2.1 Verbatim Reproducibility . 102

5.2.2 Non-Verbatim Reproducibility . 109

5.2.3 Comparative Analysis . 114

5.3 Limitations and Constraints . 115

5.4 Reproducibility Taxonomy . 117

5.5 Discussion of Results . 118

vi

CONTENTS

6 Conclusion and Future Work 120

6.1 Research Summary and Contributions 120

6.2 Contributions . 121

6.3 Future Works . 122

Bibliography 124

vii

List of Figures

1.1 The components addressed in this thesis 2

1.2 Experiment elements . 4

1.3 The ideal cycle of reproducibility . 6

2.1 The analogy to genealogy . 16

2.2 Provenance Lifecycle [1] . 18

2.3 The classes and relationships in the Provenir ontology [2] 21

2.4 PROV Data Model [3] . 23

2.5 Nodes and edges in OPM speci�cation [4] 25

2.6 The Atlas X Graphic OPM Graph . 26

2.7 Service-oriented architecture basics . 33

2.8 An example of a simple work�ow that retrieves a weather forecast for the

speci�ed city [5] . 35

2.9 Provenance Taxonomy by Simmhans et al. [6] 37

3.1 The components of an experiment . 40

3.2 OPM representing the experiment to compute Exercise Advisor 43

3.3 Service 3 (S3) evolves from version 1 till version 3 44

3.4 Concept map describing provenance trace 45

3.5 The dependency of provenance for reproducibility 49

3.6 Service versioning convention scheme . 51

3.7 Compatible and Incompatible changes in service update 51

3.8 The Web Service Architecture extended with Service Update 54

3.9 Two versions of S2; S2v1 and S2v2 . 55

3.10 UDDI data types. 56

viii

LIST OF FIGURES

3.11 Relationship between WSDL and UDDI [7]. 58

3.12 The model wasVersionOf edge . 60

3.13 OPM Generator . 61

3.14 OPM description . 62

4.1 From OPM source document to SCUFL target document. 68

4.2 ReProduX Tool . 81

4.3 XML Splitters in SCUFL. 82

4.4 ReProdux algorithm to check service availability. 83

4.5 Graphical representation of the OPM and SCUFL in Taverna 84

4.6 The re-execution in Taverna based on SCUFL �le generated from OPM2Taverna. 85

5.1 Reproducibility Framework . 88

5.2 Web Service Architecture . 90

5.3 Web Services Project in NetBeans . 91

5.4 jUDDI tModel editor on service information 92

5.5 jUDDI tModel wsdl information . 92

5.6 jUDDI Tables in MySQL . 93

5.7 jUDDI Registry Browser displaying available services from Registry . . . 93

5.8 Client Application Interface . 94

5.9 Input and Output Data Parameters of Exercise Advisor Execution . . . 94

5.10 OPM Trace Tables in OPM Trace Repository 95

5.11 ReProduX Tool . 96

5.12 OPM Trace Generator . 99

5.13 OPM Trace that utilise the service . 100

5.14 Reproduce in Taverna Work�ow Environment 101

5.15 The experiment loaded into Taverna Work�ow System 102

5.16 The re-execution of HFMD experiment in Taverna Work�ow System. . . 107

5.17 Example of Taverna error message from Entrez Gene to KEGG Pathway 108

5.18 jUDDI Service Repository that depicts both eactivity10 and eactivity11

services are available. The "deleted"� column with value 0 = service is

available, value 1= service is unavailable 110

5.19 jUDDI Service Repository that depicts eactivity10 service is unavailable,

with "deleted"� column value = 1 . 111

ix

LIST OF FIGURES

5.20 jUDDI Service Repository that depicts the service creation date 111

5.21 OPM trace browser that depicts eactivity10 service is not available . . . 112

5.22 Reproducibility Taxonomy . 117

x

List of Tables

2.1 Features of existing work�ow systems with provenance support 28

3.1 The artifacts, service and dependencies involved in the Exercise Advisor

experiment. 42

4.1 The comparison between OPM and SCUFL entities 69

4.2 A comparison between SCUFL data links and OPM causal dependencies. 70

4.3 Generating SCUFL entities based on Rule ER1 72

4.4 Generating SCUFL entity values (ER2) 73

4.5 Generate Data Links in SCUFL from the Causal Dependency used in OPM 75

4.6 Generate Data Links in SCUFL from Causal Dependency wasGenerat-

edBy in OPM . 76

4.7 Generate Data Links in SCUFL from Causal Dependency wasTriggeredBy

in OPM . 77

5.1 ReProduX approaches . 98

5.2 Comparison between Trident and ReProduX in handling versioning in

reproducibility - Part 1 of 2 . 115

5.3 Comparison between Trident and ReProduX in handling versioning in

reproducibility - Part 2 of 2 . 116

xi

List of Listings

2.1 OPM XML describing the nodes . 26

2.2 OPM XML describing the edges . 26

3.1 The content and structure of the OPM XML for an Exercise Advisor . . 44

3.2 A WSDL interface description snippet 52

3.3 A snippet of the WSDL describing a service 52

3.4 The tModel representing the Calculate BMI Web Service 57

3.5 wasVersionOf in OPM trace . 64

4.1 Process in OPM is replaced by . 73

4.2 Processor in SCUFL . 74

4.3 Relation Rule 1 (RR1) that generates data links in SCUFL from causal

dependency used in OPM . 74

4.4 Relation Rule 2 (RR2) that generates data links in SCUFL from causal

dependency wasGeneratedBy in OPM 75

4.5 Relation Rule 3 (RR3) that generates data links in SCUFL from causal

dependency used in OPM . 76

4.6 Causal Dependency used in OPM . 78

4.7 Data source and data sink in SCUFL . 79

4.8 Generation of generic Taverna work�ow from OPM 79

4.9 OPM2Taverna Algorithm . 81

5.1 wasVersionOf causal dependencies . 97

5.2 HFMD Generated OPM Provenance Trace 103

5.3 HFMD Taverna work�ow �le . 105

5.4 Original OPM trace showing eactivity10 process was used in the experi-

ment execution . 113

xii

LIST OF LISTINGS

5.5 Generated SCUFL work�ow that shows the service has been replaced to

eaactivity11 . 113

xiii

Chapter 1

Introduction

e-Science is a term that describes scientists working collaboratively, often in large

distributed project teams, to solve scienti�c problems using computers. Throughout

their work, they are typically dealing with large datasets, accessing scienti�c literature,

analysing and reanalysing their �ndings and discussing the results within the group.

According to the European Bio-Informatics Institute (EBI),

"e-Science is about exploiting digital technology to support all aspects of sci-

enti�c activity by the development of a communication and computational

infrastructure to underpin the work of scientists."[8]

In an e-Science environment, scientists such as bio-informaticians, chemists and

physicians are working with open and large-scale distributed systems, thus they need

to access various databases and use computational methods to interact with their own

and others' programs. As an example, one of the �rst UK e-Science pilot projects,

myGrid [9], and its successor projects, delivered a collaborative environment that makes

information and tools available to scientists.

The myGrid project provides middleware to help the scientists to develop, manage

and share their research artifacts among di�erent institutions and communities. The

project has developed Taverna, a work�ow system that provides scientists with a way

to create, generate, manage and share their experiments. This practice can improve the

processes involved in conducting experiments, and therefore help in solving scienti�c

problems.

This thesis focuses on the reproducibility of e-Science experiments, which requires

us to consider the seven aspects shown in Figure 1.1: 1) experiments, 2) reproducibility,

1

3) provenance, 4) provenance models, 5) provenance and versioning, 6) automatic trans-

formation and reproduction, and 7) a taxonomy of reproducibility. If reproducibility is

to be achieved then these aspects need to be considered as a uni�ed way. To achieve

this, this thesis considers them in the order shown in Figure 1.1. A brief overview of

the reasons for including each aspect is now given.

Figure 1.1: The components addressed in this thesis

In e-Science, experiments are conducted to test a hypothesis. For scientists, the

results of experiments are their primary interest. This raises two key questions: How

to interpret experimental results and how to reproduce experiments in order to explore

existing and new concepts from past experiments. Experimental reproducibility is con-

cerned with being able to re-execute past experiments in a di�erent work�ow environ-

ment and to see if a prior result can be con�rmed. This is because it is not guaranteed

that past experiments can be re-executed successfully if the experiments were created

in a di�erent work�ow environment. This maybe due to a di�erent work�ow structural

di�erences and missing data, services or processes. To reproduce experiments, the orig-

inal experimental entities must be accessible. To achieve this, reproducibility requires

2

provenance information that captures all the important entities in an experiment. For

this to be successful, the entities must be described by a provenance model. A major

issue is that the experimental entities may be changed from time to time: for example

new versions of services used in an experiment may be deployed. Therefore, in this

thesis we argue that versioning is an essential mechanism needed to support experimen-

tal reproducibility. Even once execution provenance and entity versioning have been

addressed, another key component is a technique to actually transform this information

in a way that allows the reproduction of past experiments. Work�ow is widely used

in e-Science as a means to represent the composition of experiments, and as a way to

execute them. This work focuses on e-experiments based on work�ows and considers

how to automatically generate work�ows using provenance and versioning information

in order to re-execute past experiments. In order to achieve this, a transformation al-

gorithm is needed to map the past experiment's execution log into a work�ow format,

taking into account versioning information.

As these aspects are described in more detail throughout the thesis, it will become

clear that each has speci�c linkages to other aspects. However, in order to achieve the

reproducibility of e-experiments, three key fundamental concepts emerge and are used

throughout this thesis:

• Experiments

• Reproducibility

• Provenance

In Figure 1.1, these three concepts are separated by dashed lines from the rest of

the components which are the main focus of the thesis. Overall, the key results from

the thesis are:

• Conceptualisation of an experiment using provenance data model descriptions that

are able to completely describe an experiment and so support reproducibility.

• Incorporation of service versioning into provenance. Mechanisms to support ser-

vice versioning have been neglected in previous work. Therefore, the thesis will

explore how service versioning can be introduced into provenance in order to be

able to reproduce experiments involving services that may be updated over time.

3

1.1 Motivation

• Design of a technique to allow the reproduction of past experiments.

• Creation of a reproducibility taxonomy that identi�es the requirements for facili-

tating the reproduction of experiments.

1.1 Motivation

e-Science experiments deal with computations over data, therefore in reproducing ex-

periments, it is the computations, and not just the data that are important. The three

elements identi�ed to represent an experiment: components, procedures and versions

are shown in Figure 1.2. The components of an e-Science experiment deal with data

and services. Data can be sets of independent and dependent variables. Independent

variables are input datasets, and parameters to the experiment. These can be retrieved

from database records, spreadsheets or as direct inputs. Dependent variables are the

data products (outputs) and the intermediate results. A service is the actions or com-

putations performed on the data so that they are transformed and produced a result.

Therefore a service is a task or a process that take inputs and produces outputs. An

output from a service can be an input for another service (for example in a work�ow).

However, data and services need to be accompanied by procedures which detail the steps

and actions taken towards assigning values to the dependent variables. There are several

ways people can describe experiments, for example using scripts, or work�ow systems.

However work�ow systems have the advantage of providing a visualisation computa-

tional process of the experiment. This will be described further in the literature review

where work�ow systems are described.

Figure 1.2: Experiment elements

4

1.1 Motivation

Another important mechanism is versioning, as data and services can change after

an experiment had been executed. Thus, versioning is a key focus of this thesis, with

respect to the recording and retrieval of data and services in experiments.

Reproducibility is a cornerstone of science and is becoming a key research area in

e-Science. This is because it provides ways for continuous improvement by supporting

knowledge transfer through the re-use of an existing body of knowledge and methods.

For example, a scientist (Scientist A) carries out an experiment on sequence data from

microbial proteins and publishes his work. Five years later, Scientist B reads the paper

which explains the theory, experimental implementation and results. Scientist B is very

interested in the data and would like to exactly reproduce the experiment. If Scientist B

is able to do so, he can learn from the knowledge generated by the past experiment. He

can then observe and re�ect on this experience, and may recognise problems or discover

new opportunities to build on the work. This scenario enables Scientist B and other

research communities to continue to learn from past experience. According to one of the

most widely studied and cited learning process models, the Kolb experiential learning

theory, experience from the past can be taken as the source of learning for the future

[10].

However, how can Scientist B reproduce the experiment? Is there a database where

he can download all the required microbial protein sequence data? Bowker [11] points

out that in the standard scienti�c model, �one collects data, publishes a paper or papers

then gradually loses the original dataset�. In addition to Bowker's concern, not only

do datasets need to be preserved if experiments are reproducible, but also the compu-

tations that generated them. e-Science experiments deal with computations, therefore

reproducing experiments involving computations is what is important.

Today, if a scientist wants to build on another's previous work, it is often a painful

process involving a tremendous amount of reimplementation. The scientist has to write

his own scripts and code in order to process the data, if the data is available. The

scientist also needs to verify and test whether the reimplementation produces the same

results as the previous one. Only then can the scientist proceed with building on the

results of this earlier experiment.

Therefore, reproducibility creates opportunities for scientists to share, analyse and

explore new problems and re�ne the past experiments. The ideal �virtuous cycle� of

5

1.1 Motivation

reproducibility aimed to be realised through this work is presented in Figure 1.3. How-

ever, achieving this is not straightforward, and is therefore the key focus of the work

described in this thesis. The key question is how to reproduce experiments that involve

computations and data? This requires a way to preserve computations, data and meth-

ods so that reproduction is achievable. This leads to the reason why provenance has

become another key research area.

Figure 1.3: The ideal cycle of reproducibility

Provenance enables reproducibility. According to the Merriam-Webster Online Dic-

tionary [12], provenance is de�ned as i) the origin, source and ii) the history of ownership

of a valued object or work of art or literature. There are many papers that give de�ni-

tions that are similar to this [13, 14, 15]. They all regard provenance as the derivation

from a particular source (e.g. origin) to the speci�c state of an item. Scientists are

interested in provenance because it allows them to view the steps involved in collecting

and processing data. Provenance allows scientists to verify how results were achieved.

Storing and preserving data alone does not provide su�cient information to allow ex-

periments to be reproduced. Preserving services that represent the computations is

also important in order to keep track of services that have been invoked. Exposing the

relationships between data and services for an experimental run can be achieved using

a provenance trace [6]. The need to have a provenance trace of the experiment (execu-

tion) that documents data and services explicitly is a precondition for reproducibility.

This trace will give the scientist who is interested in the experiment a complete under-

standing of the experiment data, including the services that have been consumed and

produced the data. However, as we will see, a typical provenance trace does not contain

all the information needed to ensure that it is possible to reproduce the experiment.

6

1.1 Motivation

There are number of models that describe provenance such as Provenir [2] and the

Open Provenance Model (OPM) [4]. These two provenance models are discussed in

Chapter 2. This work shows how OPM can be used to represent an experiment. The

question �Is OPM expressive enough to describe the provenance of data and services

used in the experiment so that it can be reproduced?� is explored and answered in this

thesis.

The work shows that versioning is particularly important because data and services

may be modi�ed as time goes by. For example, services can up upgraded to improve

functionality or �x bugs. Thus, it is argued that the versioning of data and services is

needed to prevent overwrites and deletions from preventing reproducibility. However,

while the current provenance literature does address data versioning, it is lacking in

addressing service versioning. There are problems if the external services are removed by

the service provider or owner that makes the services no longer available or inaccessible.

There is no mechanism to record the version number of external services into provenance.

The common practice of researchers dealing with non-versioned services is that when

a service is upgraded, the earlier version is overwritten. Therefore, the old versions

of services are not available after new versions of a service are deployed. If service

version is not applied, it is di�cult for the user to know whether the service in the

past provenance trace is the same as the latest service available. There are existing

best practices that support service versioning for Web Services, such as using XML

namespaces [16] and adding a version number to the existing tModels in the UDDI

registry [17]. These practices will be discussed further in Chapter 3. In this work,

the SOAP WSDL-speci�ed web services are used, not covering RESTful web services.

Therefore a speci�c programming or scripts is out of the scope of this work. User can

use the available web services through work�ow execution environments. Today, service

versioning is not directly supported in OPM or other provenance models. Therefore,

in this work, these best practices are explored, their relationship to reproducibility

examined, and the results incorporated into a provenance model.

As discussed earlier, OPM provides a way to capture provenance information from

an e-experiment. It does not directly provide a way to reproduce the past experiment

in a work�ow environment if it is di�erent from the work�ow environment when the

experiment was created and run. Therefore, this work designs and describes a method to

transform OPM to create a work�ow that can be executed to reproduce an e-experiment.

7

1.2 Contribution

In this work, the Taverna Work�ow System is used as the vehicle to re-execute past

experiments.

With such reproducibility needs and provenance in mind, another concern to address

is the reproducibility taxonomy. This taxonomy identi�es the reproducibility require-

ments for facilitating the reproduction of experimental results, such as the descriptive

provenance trace, organised collection of information, accessible repository and reg-

istry, and implementable reproducible technique. These requirements are discussed at

Chapters 3, 4 and 5.

1.2 Contribution

This thesis investigates the conceptual and architectural aspects of provenance and

reproducibility, with particular reference to service versioning. Its overall contribution

can be summarised as:

Provenance has the potential to provide scientists with a complete

understanding of data, including the services that produced and

consumed it. Exploiting provenance, a reproducibility framework

is designed to allow past experiments to be reproduced. A review

of existing provenance systems shows that the issues of service

versioning have been neglected, preventing reproduction from be-

ing achieved. This thesis describes these issues, and proposes,

implements and evaluates a solution.

The speci�c contributions of this thesis are:

• Contribution 1: It shows how the Open Provenance Model (OPM) can be used

to describe a class of experiments, so forming the basis for reproducibility.

• Contribution 2: It shows how OPM is then extended to incorporate service

versioning in provenance.

• Contribution 3: It describes the design, implementation and evaluation of a

reproducibility system - ReProduX - that transforms the provenance of past ex-

periments to allow experiments to be reproduced.

• Contribution 4: It describes a reproducibility taxonomy which describes the

requirements for a reproducibility system.

8

1.3 Structure of the Thesis

1.3 Structure of the Thesis

In Chapter 2, a review and discussion of existing work on aspects related to the thesis

is presented. The review takes into account the reproducibility and provenance con-

cepts in general, and critically analyses existing work on how provenance can support

reproducibility. There are discussions about the requirements a reproducibility system

should have. A reproducibility taxonomy is proposed.

Chapter 3 describes in greater detail the conceptualisation of an experiment using

the OPM, and motivates the need to incorporate service versioning in provenance via

OPM Generator which is a contribution of this thesis. Though this thesis uses existing

web service versioning best practices, applying the practices to the work to accommodate

the needs of versioning in provenance is a contribution of this thesis.

Chapter 4 introduces a technique (ReProduX) to transform the OPM to Simple

Conceptual Uni�ed Flow Language (SCUFL) (used in TavernaWork�ow System), which

forms another contribution of this thesis.

Chapter 5 presents an evaluation of a design and implementation of this approach.

The chapter discusses the implementation and the experimental setup, the tests, and

the di�culties and limitations in achieving reproducibility. In this chapter, the proposed

reproducibility taxonomy outlined in Chapter 2 is tested.

Chapter 6 concludes this thesis, draws conclusions, and proposes some areas which

can be explored further in future research.

9

Chapter 2

Background and Related Work

This chapter describes the background behind the thesis, focusing on the work relevant

to the concept of a reproducibility framework. Firstly, the chapter reviews previous work

on existing reproducibility systems and current approaches to facilitate reproducibil-

ity, followed by provenance systems. The review includes provenance trace, provenance

models, the capabilities and limitations of provenance systems, and current e�orts where

provenance is a critical enabler to achieve reproducibility, which then leads to a discus-

sion of issues and gaps in current practice such as service versioning. Secondly, this

chapter reviews the technologies used to implement service versioning. The review

includes Service-Oriented Architectures (SOA) and scienti�c work�ow-based systems.

After this review, a taxonomy that describes the requirements needed to facilitate the

reproduction of experiments is presented. Then the overall discussion of existing work

is summarised at the end of this chapter.

2.1 Reproducibility

Reproducibility requires the author of any publication, such as the description of an

experiment, to document the creation of the experimental results from the inputs and

processes so that others can reproduce the results.

As researchers have realised that reproducibility can promote sharing, and give

other advantages to the scienti�c community, there has been a growth in work on

reproducibility [18, 19, 20, 21]. These works discuss the motivation for reproducibility,

as well as describing infrastructure to support it.

10

2.1 Reproducibility

Reproducibility research was pioneered by Claerbout [22] and his research groups at

the Stanford Exploration Projects in the geophysics domain [23]. Vegue [24] reproduced

experiments using a scripting language, Python in the Clawpack package. Buckheit and

Donoho [25] used Matlab-based tools in creating and executing the experiments. Peng

and Eckel [26] used the cacher package in the R language. These are reproducibility

systems that mostly use programming/ scripting methods to reproduce the experiment

without the use of provenance. For example, Buckheit and Donoho develop WaveLab to

reproduce the computations that underly the �gures and tables in the Wavelet articles

published by the Wavelet community group. When creating the �gures in the article,

all the data and code will be a subdirectory of WaveLab containing scripts used to

generate the �gures. When the readers of the articles are interested to know how the

�gures and tables are generated, using Matlab, they can see what algorithms were used

and parameters were set in producing the �gures.

Reviewing previous reproducibility e�orts has shown that all materials needed for

experiments are recorded and documented and collected in a package to distribute to

other interested researchers. Each work on their own internal environment such as UNIX

and Matlab. Likewise, Matlab's ability to re-run scripts is bene�cial if the research

is entirely contained within Matlab, as scripts can be re-run in any computational

environment that supports Matlab.

Such programming or scripting systems do not provide a visual model to illustrate

the experiments graphically to make them more understandable to other researchers

who may be interested in re-using them. The visual model has several advantages

over programming or scripting systems where several of activities can be designed and

connected the outputs and inputs of one another. Therefore, for users who are not

programming savvy, a visual model is preferred. Many have argued that reproducibility

is more likely to occur in cases where users can visualise as a graph the data and services

of an experiment, along with their connections. There are many works on visualising

computations, mostly using work�ow systems [27].

There are several existing works on reproducibility in science, such as Trident Scien-

ti�c Work�ow System [18] [28], Research Objects [29] [30], Vistrails [31] and e-Science

Central [21] [32]. Trident Scienti�c Work�ow System is a commercial work�ow man-

agement system that provides users to compose a work�ow of an experiment, visualise,

execute and manage the execution of experiment. In order to capture the information

11

2.1 Reproducibility

about the execution, Trident has its own provenance model to automatically collect,

store, query and view provenance of a work�ow in a work�ow and provenance schema.

By having the provenance mechanism, Trident is giving better understanding to other

researcher to understand and be able to reproduce the experiment result. The Trident

provenance model is also compatible to the OPM speci�cation. In research, the experi-

ment that was carried out may change and get updated from time to time. This means

that the work�ow will evolve as new versions of experiments has changed, that leads to

versioning issues. In supporting reproducibility Trident has incorporates Trident EVF,

a Work�ow Evolution Framework that has a versioning strategy to handle the issues of

managing work�ow evolution. In EVF, the versioning is handled using direct evolution

and contributions. When a researcher needs to edit the work�ow, the direct evolution

will take place to record the changes, thus the version of the work�ow evolves. The con-

tributions feature will enable the tracking of versioned work�ows and correlates them

with the work�ow results. Therefore, Trident EVF preserves all artifacts that relate

to the execution of experiments in Trident Registry. In Trident versioning data model,

Trident EVF also provides ability to work with other versioning system by providing

an extension points to add new versioning system. This is believed may be extended to

also incorporate web service versioning from third-party services.

Research Objects (RO) supports reproducibility by providing a container to keep

the collection of all resources that associate with a particular research or an experiment

so that the resources can be sharable within community or in public. RO provides rich

annotation to keep details of all its resources such as authors, versions and citations to

support preservation and sharing. Research Objects use the Object Exchange and Reuse

(ORE) model to represent aggregation of web resources includes work�ows, datasets and

document. RO has its life cycle that starts with Empty Life RO where RO can be �lled

by work�ows and datasets, then followed by Live RO that represents work in progress,

and after it has passed the state where it can be preserved, Live RO will be kept into

Snapshot RO where the record of past activity is kept. The �nal stage is Archived

RO where at this stage RO is stable and appropriate for long term preservation. For

new discovery, the existing Archived RO can be reproduced as a starting point to new

research and it will initiate the �rst cycle again.

Vistrails has an advantage of visualisation where it shows the versions of work�ows

into one canvas, uniquely support for data analysis and visualisation. This is bene�-

12

2.1 Reproducibility

cial where we can see straightaway the di�erences to compare the results side by side,

whereas in many other work�ows each of work�ow version needs to be called and run

one by one. Vistrails can reproduce and validate computational experiments directly

from the publications. The VisTrails system provides researchers with the ability to

capture and explore the data involved in the researchers' work. An interesting feature

of this work is where data, computations and results of the experiments are associated

with embedded links. These links allow readers to access the results in the paper and

explore them with new inputs or original parameters to produce variations of the re-

sults. Vistrails has an automatic work�ow upgrade mechanism to support the work�ow

evolution and displays all of the work�ow versions in a version tree. The comprehensive

provenance support in Vistrails maintains detailed history information including the

versions of a work�ow.

e-Science Central is a work�ow based programming environment that aim to achieve

reproducibility of past experiments by verifying the original experiments results. When-

ever there is a change in the experiments' components such as data changes, service

updates and work�ow evolves, e-Science Central provides a framework to support re-

producibility in computation experiments. Woodman et. al (2011) have described how

e-Science Central overcomes the issues of handling the service and work�ow versioning

in achieving reproducibility by automatically stores and retains all the versions, stores

a full provenance trace for all executions and automatically transform a provenance

trace into a work�ow. Missier et.al (2014), have introduced provenance trace diver-

gence detection in e-Science Central to compare the two execution traces to determine

whether the reproducibility is achieved. However their focus is not on handling external

dependencies (ED) such as third-party services that not within the control of e-Science

Central.

Comparing to the above reproducibility systems, this thesis makes two arguments

that �rstly, the service versioning support is also needed in the design and execution, and

the versioning support should be considered at the early stage of service development.

At this stage, the service provider or service owner should be allowed to provide multiple

versions of services, and can be placed and registered by service registry, in dedicated

directories. The works in Trident EVF and Vistrails do not discuss the service versioning

issues of the computations (services) at the service creation. Secondly, this thesis looks

at the issues of handling external dependencies such as third-party web services that is

13

2.1 Reproducibility

not within the control of the work�ow environment. The other reproducibility works

including e-Science Central mentioned in this thesis are on the other hand, where they

are the owners of the data, services and work�ow, therefore they are in control to do

all the amendments and updates of the services. Normally, they are able to get access

to their own local data, services and work�ow.

The past experiments results need to be accompanied by the necessary data and code

needed to reproduce them. In this work the code is encapsulated in the services. The

interested users may have di�culties reproducing the experiments when the services

may be missing or not available at all time. This may be due to new version of a

service has been created and updated, and the old version is no longer used. Is there a

mechanism to handle this? The available access on versions of services can guarantee

that the past experiment can be re-executed. However, it is not guaranteed to produce

exact results due to service update has overwrites the previous version of the service.

In this case, the service version identi�ed in the past experiment trace is di�erent from

the one is currently available.

Reproducible Research (RR) [20, 33] gives guidelines on the requirements for mak-

ing research reproducible. These include the proper submission of research papers,

data, experiments, the results of the experiment, and auxiliary materials. RR creates

a reproducible research repository and links to �ve working examples of reproducible

research publications, speci�cally in image and signal processing. The links provide the

full paper, archived data and code to reproduce all images and tables from the paper.

However, there the guidelines are lacking as the issue of service versioning is not been

discussed.

Peng [34] has described the barriers existing in reproducible research such as making

the data and code available. People, in the main, do not support reproducibility because

there is too much e�ort needed in preparing experiments to support reproducibility later.

Exploiting reproducibility requires the sharing of resources and tools across disciplines

and between a set of individuals and/or institutions. Groth [35] relates this to multi-

institutional scienti�c systems which he de�nes as, �Systems that require sharing and

coordination of resources across multiple institutions for a particular scienti�c domain

or question�. He has identi�ed three key properties: the sharing of resources to carry

out tasks, support for heterogeneous resources, and dynamicity in participation amongst

users of the system. Groth et al. [36] have shown that the readiness of reproducibility

14

2.2 Provenance Enabled Reproducibility

is in place where the provenance architecture of capturing, recording and sharing the

resources have been implemented in the community. However they do not discuss the

issues of versioning of services in the identi�ed properties, and this is what di�erentiates

this work.

2.2 Provenance Enabled Reproducibility

In this thesis, provenance is shown to be an essential element in reproducibility. However

how exactly can provenance enable reproducibility? To answer this question, this section

reviews the meaning of provenance and existing provenance models and systems.

2.2.1 Provenance

Provenance can be de�ned as the act of tracking the origin, source or history of an

object [37]. In a computation, the object can be drawn from the inputs, the processes,

or the �nal output (the experimental result). Therefore, the provenance of experiment

results is concerned with the tracking of how results were derived, what data sets are

used by processes or services that make up the whole experiment.

Scientists are often interested in provenance because it provides them with a more

complete understanding of the data they can access, and also the process of conduct-

ing an experiment. Zhao et al. [13] describes three purposes of provenance from the

viewpoint of the scientist:

1. Debugging: The scientist can view a log of events, recording what services were

accessed and with which data, in order to detect bugs that cause undesirable

results.

2. Validity Checking: Validation ensures results from the experiments are of good

quality and meaningful. A framework for validating work�ow executions enables

scientists to verify the correctness of their own experiments or review the correct-

ness of their peers' work.

3. Updating: The scientist needs to know any changes that a�ect the previous

results. Therefore, any updates on the datasets and services should be visible.

Another purpose of provenance, which is the focus of this thesis, is

15

2.2 Provenance Enabled Reproducibility

4. Reproducing computations: Reproducing archived e-experiment results can

involve reproducing computations using provenance to provide all the necessary

information. A scientist can also re-run the experiment with a di�erent algorithm

and parameters, examine each result, and then compare them to see the di�erence.

These issues are covered by Freire et al. [38] and involve capturing, storing, and

querying computational tasks.

Provenance involves capturing the relationships between the inputs, processes and

outputs. Taking an analogy of researching the genealogy of a family, we often hear

about lost or hard to �nd connections in families. This problem is due to a lack of

information and linkage between families. The origin of Person C can be found by

looking at the processes and other objects involved, as illustrated in Figure 2.1. For this

case, the ancestry relationship involves the process M (produce), that involves Person

A and Person B. The process M produces a product, Person C. The relationships that

may be involved are Person A �is spouse to� Person B, if they are married. Person C

�is generated by� Process M, �produce�. Having these connections recorded helps to

discover the family tree, and reunites families.

Figure 2.1: The analogy to genealogy

When C later on meets another person, say D and they may produce E and F. If

one day F needs to know who his ancestors are, this path on the family tree can assist

in tracing their history. Not only the path, but the information of the genealogical

16

2.2 Provenance Enabled Reproducibility

information such as their family names, dates of birth and name of places are also

bene�cial. There can be many reasons and motivations behind having this family tree,

one of the greatest reasons is �...to preserve the past for future generations� [39]. This

family tree helps to identify the origin of a family.

The concept of provenance is analogous to the above. In the context of a scienti�c

experiment; the provenance of a data product is the process that led to that product.

The provenance records the data sets, parameters and computational processes that

were involved in deriving the data product. A review of how provenance is documented

and is modelled follows.

2.2.2 Documentation for Provenance

e-Science experiments are composed of experimental components that are data and

services. This work refers to a service as a component that takes data inputs and

produces data outputs. When an experiment is conducted, the execution process must

be captured, not only capturing the experimental components, but also the interactions

that take place and how those interactions are related. Relating back to the de�nition of

a provenance, Moreau [1] summarizes provenance as �The provenance of a piece of data

is the process that lead to that piece of data�. This means there exists documentation

that describes the process, taking into account the experimental components and the

interaction between them.

To address the needs of the above scenario, PASOA [40] has developed an architec-

ture for determining the provenance of data. The architecture proposes three phases in

a provenance life cycle; 1) create a description of the execution; 2) record the descrip-

tion into a provenance store; and 3) query the execution result in order to obtain the

provenance record. Creating a description of execution that shows the detail of every

interaction between data and services will produce documentation. This documenta-

tion is called an execution log [41], process documentation [42] or provenance trace

[21, 43]. This work uses provenance trace as a term for the recording of an execution.

The provenance trace may also need to be managed and maintained in the provenance

store.

17

2.2 Provenance Enabled Reproducibility

Figure 2.2: Provenance Lifecycle [1]

Realising the phases in the provenance architecture, it is important to ensure that

the provenance trace is properly structured. In [44] it is claimed that experimental

documentation should be structured in a way that can help to construct a record of

how execution takes place. By having a good experimental structure is also helpful at

the query stage. To ensure this is achieved, a provenance data model is needed.

2.2.3 Provenance Modelling

If a provenance trace records the execution that shows the derivation of how experi-

mental results were obtained, then there must be a model that represents all entities

involved in all computational paths. The data model is a representation of the data,

and the computations involved in consuming and producing that data. Therefore the

provenance model is a model of the documentation for the provenance trace. In this

work the following four provenance models are now described in more detail: Prove-

nance Authoring and Versioning Ontology (PAV) [45], Provenir Ontology (PO) [2] ,

Provenance (PROV data model) [3] and Open Provenance Model (OPM) [4].

Provenance Authoring and Versioning Ontology (PAV) [45] is an ontology to present

the general needs of description for tracking provenance, authoring and versioning. PAV

distinguishes one digital resources to another, by its properties such as pav:createdBy,

pav:version and pav:retrievedFrom. Therefore, each digital resource will be unique.

18

2.2 Provenance Enabled Reproducibility

Though PAV describes versioning, its ontology does not cover the provenance process

where value �ows from one process to another in the execution, which is needed for

reproducibility.

Provenir Ontology (PO) is an ontology to represent provenance metadata and is

de�ned by OWL-DL. Provenir is taken from a French word meaning "to come from",

and describes the history of an entity. Provenir's main components are the three classes:

• Data: Entities that are mutable, which are still undergoing changes or immutable,

that is permanent. For example, the temperature value that is measured in a bath

such as 50◦C.

• Process: Actions that may result in the creation of new entities (data). For

example, the measuring process that produces the temperature value as output.

• Agent: Agent causally controls the process. For example, a temperature sensor

is an agent that controls the temperature measuring process.

In addition to the three classes above, the data class is expanded into two sub-

classes. It has sub-classes of data collection class that represents datasets used and

modi�ed during the execution, and parameter class that represents parameters that in-

�uence the execution; both classes are generated from the execution of experiments as

shown in Figure 2.3. The parameter class has three sub-classes namely spatial param-

eter that captures spatial metadata such as the graphical location, domain parameter

that captures domain speci�c parameter such as tolerable level and the temporal pa-

rameter which is to capture temporal details such as timestamp and duration associated

with data, agent and process. In showing dependencies between these classes, eleven

properties are adapted from the Relation Ontology (RO) that are:

• part_of represents the inclusion relation between entities.

• contained_in represents the containment relation between entities.

• adjacent_to represents the association with the agent that may have an e�ect on

data values.

• transformation_of represents the two entities that undergo the transformation

stages.

19

2.2 Provenance Enabled Reproducibility

• derives_from describes the derivation history of data entities.

• preceded_by decribes the ordering between processes.

• has_participant links data to process where the instance of data class participates

in a process.

• has_agent links agent to process where agent a�ects the change in state of the

process.

• has_parameter links the instance parameter class to instance of data collection,

agent and process classes.

• has_temporal_value represents the time and duration of the data collection, pro-

cess and agent.

• located_in represents one instance of data or agent associated with one location.

20

2.2 Provenance Enabled Reproducibility

These dependencies are shown as edges in Figure 2.3 [2].

Figure 2.3: The classes and relationships in the Provenir ontology [2]

Provenir has been used to describe applications in the proteomics domain, which has

led to the creation of ProPreo ontology [46]. In addition to Proteomics, Sahoo et al. [47]

have demonstrated the ability of Provenir to model provenance metadata in parasite

research and oceanography. In parasite research, the Provenir ontology's classes and

relationship are extended and integrated with other existing ontologies in the domain,

for example Parasite Experiment (PE) ontology to describe the parasite applications.

In oceanography research, Provenir is also integrated with the Trident ontology as the

research uses the Trident scienti�c work�ow system. In these case studies, Sahoo [2]

claims that one single provenance ontology may not be able to capture the provenance

details from all di�erent domains. This is because one provenance ontology is speci�c to

a particular domain. The paper therefore proposes the need to integrate the Provenir

21

2.2 Provenance Enabled Reproducibility

ontology with multiple ontologies to support interoperability and model provenance

metadata speci�c to a particular domain. In carrying out this approach, Provenir has

shown the extensibility of its provenance model by integrating its base model with other

ontologies.

PROV data model is a general provenance model to describe provenance records

that include three components that are entity, activity and agent, as depicted in Figure

2.4 below. PROV supports interoperability on the Web. PROV captures the provenance

and traces the evolution of research object by describing its components with relations

as follows:

• used: An activity used an entity to perform the activity.

• wasGeneratedBy: An entity was generated by an activity, therefore the entity

becomes available or exist after the generation.

• wasDerivedFrom: An entity was derived from another entity, based on activity

that caused the derivation.

• derives_from describes the derivation history of data entities.

• wasAttributedTo: An entity is assigned to an agent who is responsible to the

entity existence.

• wasAssociatedWith: An activity is related to an agent where the agent has the

role in the activity.

PROV expresses the description of research objects in the past, therefore also han-

dling versioning using derivation subtypes wasRevisionOf. In PROV, new version relates

to new entity. This di�ers to this work on expressing service versioning, where version

can also relates to new activity version that is discussed in the next Chapter 3.

The Open Provenance Model (OPM) is a data model driven by community e�orts

towards provenance standardisation. OPM was originally created by Moreau et al. [4]

in 2007 after the realisation of the importance of provenance in wide sections of the

scienti�c community. This mainly came from the active participation of the provenance

community in the Provenance Challenges [48]. In the third Provenance Challenge, all

15 provenance teams successfully mapped their models to OPM. Although each team

had its own provenance model for capturing provenance information, the teams were

22

2.2 Provenance Enabled Reproducibility

Figure 2.4: PROV Data Model [3]

able to map their provenance data model format to the OPM format. By doing so, they

were able to share provenance information across di�erent provenance models, through

the use of OPM. Over time, the data model has been enhanced by including features

from other existing provenance systems.

OPM has three main nodes and �ve edges. The three types of nodes, as depicted in

Figure 2.5(a) are:

• Artifact (visually represented by ellipses): Entity that is used or generated by

processes, and is an immutable piece of state. For example, the city code.

• Process (represented by rectangles): Activity or action that is performed using

or producing artifacts; hence each process must have at least one artifact. For

example, calculate the weather forecast for a particular city.

• Agent (represented by octagons): People, organisations or systems that perform

and control activities or actions. This entity acts as a catalyst for a process.

Weather sensors can be an example of an agent.

OPM has �ve types of edges, as shown in Figure 2.5(b), each edge represents the causal

dependencies as following:

• used describes the relationship from a process to an artifact.

23

2.2 Provenance Enabled Reproducibility

• wasGeneratedBy describes the relationship from an artifact to a process.

• wasTriggeredBy expresses the relationship From a process to another process.

• wasDerivedBy expresses the relationship from an artifact to another artifact.

• wasControlledBy expresses the relationship from a process to an agent.

The three nodes and �ve di�erent dependencies are all shown in Figure 2.5(c).

24

2.2 Provenance Enabled Reproducibility

(a) Three types of nodes

(b) Five types of edges

(c) The nodes and edges (causal dependencies)

Figure 2.5: Nodes and edges in OPM speci�cation [4]

25

2.2 Provenance Enabled Reproducibility

An OPM example -�Atlas X Graphic� - taken from the First Provenance Challenge

Work�ow [49, 50] describes a scenario in which John Doe, as an agent, is executing the

PC1 Work�ow process to produce the artifact output, Atlas X Graphic. In order to do

this, John uses four artifacts that are Anatomy Image1, Anatomy Header1, Reference

Image and Reference Header. This example is illustrated using the OPM graph in

Figure 2.6.

Figure 2.6: The Atlas X Graphic OPM Graph

Figure 2.6 shows the OPM graph generated from the example, while Listing 2.1

and Listing 2.2 shows a representation, in XML, produced from the OPM graph. The

representation is a document that describes the OPM graph in Figure 2.6.

Listing 2.1: OPM XML describing the nodes

1 <pro c e s s e s>

2 <proce s s id="p1">

3 <account r e f="account1 "/>

4 <l a b e l va lue="PC1 Workflow"/>

5 </ proce s s>

6 </ pro c e s s e s>

7 <a r t i f a c t s>

8 <a r t i f a c t id="a1">

9 <account r e f="account1 "/>

10 <l a b e l va lue="Anatomy Image1"/>

11 </ a r t i f a c t>

Listing 2.2: OPM XML describing the edges

1 <wasGeneratedBy id="g_9">

2 <e f f e c t r e f="a5"/>

3 <r o l e id="r_8" value="x"/>

4 <cause r e f="p1"/>

5 <account r e f="account1 "/>

6 <time exact lyAt="2010−10−18T22:02:34 .883+01 :00 "/>

26

2.2 Provenance Enabled Reproducibility

7 </wasGeneratedBy>

Listing 2.1 and Listing 2.2 shows a representation, in XML, produced from the OPM

graph. The representation is a document that describes the OPM graph in Figure 2.6.

Listing 2.1 shows examples of two nodes that are processes and artifacts (Lines 1 to

11) while Listing 2.2 shows the edgeof wasGeneratedBy (Lines 1 to 7) in OPM model.

However OPM does not express versioning of the evolution of its processes. Therefore

this work has introduces a new edge that is needed to express service versioning. This

is explained in Chapter 3.

OPM has been used in many applications such as to represent the World Wide

Web and distributed systems. Freitas et al. [51] have found that OPM can be used as

a foundation for the creation of the World Wide Web. The paper describes the Web

provenance model which is built based on the identi�ed provenance requirements for the

Web, which is based on the OPM concepts. In addition to the Web, Groth and Moreau

[52] use OPM to track provenance within distributed systems. A set of distributed

systems' patterns for locality, failures and attribution are able to be addressed by the

OPM model. By having the distributed systems described by OPM, provenance from

di�erent systems can be integrated cohesively, thus achieving interoperability.

A mapping between PAV, PO, PROV data model and OPM was created by the

W3C Provenance Incubator Group to study the similarities and di�erences between

the two models, and also other provenance models [53]. Both models aim to create a

model for the representation of provenance. In this thesis, OPM is the data model used

to describe a class of experiment. OPM was chosen as a data model for representing

provenance in this work for the following reasons:

• Simplicity: Readable and easily understandable OPM notation

• Structural validity: Consistency with the way a data model de�nes and organ-

ises information

• Interoperability: The Third Provenance Challenge workshop has demonstrated

that all �fteen provenance teams successfully mapped their models to OPM. This

represents the provenance community's e�ort towards the realisation of OPM.

27

2.2 Provenance Enabled Reproducibility

e-Science experiments were executed in di�erent environments, therefore using a

standard provenance data model would be an advantage, allowing experiments to gen-

erate the data and services and other provenance metadata although the environments

are di�erent. Chapter 3 will show that the OPM data model is su�cient to represent

the experimental information, and OPM can be extended to support versioning. How-

ever, neither the provenance modelling directly addresses service versioning that enables

the reproduction of an experiment. Therefore allowing OPM to support versioning is a

contribution of this thesis.

2.2.4 Provenance Support in Work�ow Systems

In recent years, provenance has become increasingly important in scienti�c applications.

Systems have become more automated, capturing information about when, where, why

and how experiments are carried out and by whom. Recording and using provenance

information has become possible more easily. There are various provenance systems in

many �elds such as physics, bioinformatics, engineering and geographical sciences.

In scienti�c work�ow system, the execution of computational processes captures data

sets and services and the causal dependencies, supported by provenance is described in

Taverna [5] Vistrails [31], Trident EVF [28] [18] and e-Science Central [21] [32]. Table

?? compares these work�ow systems in terms of provenance features that are important

to the work of this thesis. These features include: type of provenance information (data

and services); work�ow versioning and service versioning. Each of these features is now

considered in turn, discussing in more detail how the four major provenance systems

match up to them.

Table 2.1: Features of existing work�ow systems with provenance support

28

2.2 Provenance Enabled Reproducibility

• Type of Provenance Information (Data Sets and Services)

In Taverna [37] each experimental run is considered as a work�ow. Semantic Web

technologies are used to record four levels of provenance: process, data, organization and

knowledge. Process provenance records each service invocation, the inputs and outputs

with time-stamps while data provenance records the data derivation paths which have

generated the �nal data products. As for the organization provenance level, this records

information on the experiment such as the creator of the data and service. Knowledge

level links to the other three provenance levels, and records more implicit information

such as from users' interpretation and understanding regarding the experiment run.

Vistrails [31] provenance management component captures input and output datasets,

parameter settings, library versions, work�ow structures and also code (services). Tri-

dent EVF [18] Work�ow workbench captures datasets, services and work�ow activities.

During a work�ow run, e-Science Central [21] records input dataset and computational

tasks that can be through third-party services. The artifacts (datasets), computational

tasks (services) or actors are recorded in a provenance trace based on the OPM.

• Work�ow Versioning

Vistrails, Trident and e-Science Central support work�ow versioning by tracking the

versioning of work�ow design and execution information over time. Therefore users can

track the changes of the work�ows and refer to a speci�c version of a work�ow that

has been run in the past. They may also run di�erent versions of the same work�ow

and try using the same dataset to see if it makes a di�erence. The versioning informa-

tion in these systems is collected at the development time. Vistrails has an automatic

work�ow upgrade mechanism to support the work�ow versioning. The comprehensive

provenance support in Vistrails maintains detailed history information including the

versions of a work�ow. Trident uses direct evolution and contributions to keep work-

�ow versions, as described earlier in this chapter. e-Science Central records versioning

via its integral storage feature that handles versioning. On the other hand, Taverna

has no work�ow versioning feature supported during development time. However, Tav-

erna is using myExperiment to keep track of the work�ow version. In contrast to the

other three systems, Taverna is using myExperiment that keeps work�ow versions at

the user's publishing time.

29

2.3 Service Versioning

• Service Versioning

As well as work�ow versioning, if reproducibility is to be achieved, it is important

to be able track service versioning. Users should be able to examine the di�erences that

occur if di�erent versions of a service are used in a work�ow. Taverna, Vistrails and

Trident EVF do not fully address the needs for service provenance. This may be due to

any service changed from the past execution is considered under work�ow versioning.

However, there is no description that captures information on the version of the service

invoked. The service functionality may have changed after the provenance was captured,

and if version changes are not captured and managed, an attempt at reproduction may

not be successful.

e-Science Central has an integral storage that supports versioning of data, service

and work�ow through a virtual �le store driver. When there is any change in previous

service, a new one is automatically created. The user can choose any service and any

version of a service prior to running a work�ow. However, e-Science Central only handles

services within the control of itself, therefore does not handle external services that are

not in their control. If the external services has no supporting mechanism to making

sure they are accessible, there is no guarantee that the past provenance trace can be

reproducible.

The concept of service versioning on third-party web services than is not within the

control of work�ow executions has therefore been lacking in the provenance literature,

and in the design of existing systems. This includes the standard mechanism to record

service versioning, how to �nd the correct version of a service when it is called during

reproduction, nor how to keep old versions of services available. The aim of this thesis

is to address this shortcoming.

2.3 Service Versioning

Provenance is particularly important when an e-experiment is to be reproduced and re-

run. Provenance provides the ability to reproduce all the steps leading to a scienti�c e-

experimental result. This means provenance can describe how the result was generated,

thus illustrating how the experiment was carried out. Provenance enables the recording

of the data and services, including the data parameters used, and also timestamps of

service invocations. If we are to look inside each of these services, there are also service

30

2.3 Service Versioning

metadata that may be signi�cant and need to be recorded in provenance; for example

when a particular service was created and which version it is. It is often the case that a

service will be changed after its initial deployment to �x bugs, improve the algorithm,

or meet new requirements. This evolution of a service is likely to result in di�erent

versions being used in di�erent work�ow executions made at di�erent times. Therefore

service versioning should be supported by a reproducibility infrastructure to ensure

that: a) even after new versions of a service are deployed, the old version still remains

available and b) that the exact version is recorded in the provenance trace. Therefore,

it is possible to know if the currently available version is the same that identi�ed in the

provenance trace. In this thesis the focus is on services using Web Services technology.

Before considering versioning in more detail, Web Services architecture is discussed.

2.3.1 Adopting a Service-Oriented Architecture (SOA)

Taking past experiments and making them reproducible needs a way to connect the

components. Service-oriented architectures provide a way to achieve this. Before we go

further, we need to understand what a service is, and how services can be connected to

build applications.

�A service is a function that is well-de�ned, self-contained, and does not depend on

the context or state of other services" [54]. A service takes input and produces output

by executing tasks. The analogy of a service exists in the real world. Almost every

interaction in daily life may be treated as the execution of a service, such as paying a

bill through online banking, and sending messages through mobile phones. These tasks

are provided by services that process input to generate output. However, the concept

of a service is still evolving in the world of information technology.

A service-oriented architecture is designed to support the implementation of a col-

lection of services. These services can work together in applications, if there is a means

of connecting them together. Web Services provide technologies that allow this.

Web Services use standard technologies for communication including eXtended Markup

Language (XML) [55], Uniform Resource Locators (URLs)[56], the Web Services Def-

inition Language (WSDL) [57], the Simple Object Access protocol (SOAP) [58], and

Universal Description Discovery and Integration (UDDI) [59]. These are important for

this thesis, and so are now discussed in more detail.

31

2.3 Service Versioning

XML is a W3C (World Wide Web Consortium) speci�cation that de�nes the struc-

ture of documents for describing data. XML syntax consists of text-based mark-up

that is machine (and human) readable. For this reason, XML is accepted widely as the

standard format for data interchanged between systems. WSDL, SOAP and UDDI all

use XML.

In the context of Web Services, a service's interface can be expressed in WSDL,

which includes information on the location of the service, its available operations, and

the communication protocols. A WSDL �le is an XML document with six main elements

to describe a Web Service; 1) port type that describes the operations input and output

performed by the service, 2) port de�nes the individual endpoint with a single address for

a binding, 3) message describes the inputs and outputs between web service providers

and consumers, 4) types de�nes all data types used by the web service, 5) binding

describes how to interact with the service and 6) service which speci�es the address

(URL) that is the location of the service.

Communication with services uses the common transport protocol SOAP. This is

a protocol for exchanging data over HTTP, or other lower-level protocols. It provides

a standard way for sending XML messages between applications, for example from

clients to services. SOAP messages are also an XML document containing some or all

of the following elements; 1) envelope indicates the start and the end of the message

2) header (optional) contains information relevant to the message and where additional

new features and functionality can be added, 3) body contains the data being exchanged

in the SOAP message and 4) fault (optional) that carries error messages within a SOAP

message.

UDDI is de�ned by the Organisation for the Advancement of Structured Information

Standards (OASIS). It is an XML-based registry which publishes information on avail-

able Web Services. UDDI allows organisations to publish their services, and provides

information to help other organisations discover which services are available. UDDI

describes services using WSDL. The information on services can include versioning in-

formation, which is important to this thesis, and so is discussed further in the next

chapter.

Figure 2.7 illustrates a basic service-oriented architecture that shows how Web Ser-

vices relate to SOA.

32

2.3 Service Versioning

Figure 2.7: Service-oriented architecture basics

Figure 2.7 shows the interactions between the Web Service Provider, Web Service

Registry and Web Service Consumer. Firstly Web Services are written by developers,

who provide WSDL that describes the location of the service and the operations that

the service provides. Next, the service is published by the Web Service Provider to a

UDDI registry. Then, Web Service consumers can search the registry to discover the

services that a client needs via application such as UDDI browser. Thirdly, the binding

process takes place, based on information in the registry, clients use the services' WSDL

to construct SOAP request messages for exchanging data with the service, usually via

HTTP.

Groth [35] has described the use of the SOA in building the multi-institutional

systems application. A variety of domains have adopted SOA including bioinformatics,

physics and astronomy. In this work, SOA is adopted to facilitate the creation of a

reproducibility framework.

2.3.2 Service Versioning Approaches

Although there is no standard mechanism for this at the present time, there are best

practices which can o�er some suggestions with regard to incorporating Web Service

versioning in provenance. There are several approaches available [17] [16], however two

web service versioning approaches are now considered that are using XML Namespaces

and using tModels in the UDDI registry.

The �rst approach is using XML Namespaces. This approach creates an entirely

new Web Service with a new WSDL �le and namespace for each version. This means

supporting the versioning of WSDL documents. Di�erent namespaces (each showing

33

2.3 Service Versioning

di�erent versions) are used to achieve this. The drawbacks of this approach are that

it requires, after each service update, changing all client applications so that they now

call the new service, and the collection of services may become unmanageable as new

versions are created, as it is not possible to categorise services into collections.

The second approach uses UDDI's tModel structure, speci�cally tModel instanceDe-

tails which carries information about a service, such as the URL of the related WSDL

document. A service version element can be added to the tModel. The version element

is added in the keyedReference under the categoryBag in the tModel structure. By

adding this, the version information will be available along with other existing service

description in the UDDI registry. When calling a service, a client can use the UDDI

APIs (for example using UDDIBrowser) to discover the service's access point and which

versions are available. More details of this approach will be described in Chapter 3.

Both service versioning approaches take WSDL documents as important documents

in managing versions of multiple services. Fang et al. [60, 61] extended WSDL and

UDDI to manage version information. They designed a proxy to dynamically update a

client application if a new version of the same service is created. Frank et al. [62] use a

service interface proxy as a router to provide a service selection whenever a new version

is available. However, this work will not make any extension to WSDL and UDDI.

Instead, it uses the tModel service versioning approach where one tModel corresponds

to one WSDL.

2.3.3 Work�ow-Based Systems

Work�ow-based systems are used to choreograph the execution of an experiment from

data and services. The enactment of a work�ow can be used to invoke computational

services. Some work�ow systems provide a graphical user interface for building work-

�ows [5, 63, 64]. An example of a weather forecast using the Taverna work�ow system

is shown in Figure 2.8. Taverna has been used to orchestrate communication between

web services into a work�ow and to be able to support how services interact within

the work�ow. Figure 2.8 shows there are two inputs CountryName and CityName that

are required to execute the process of GetWeather. The output of this work�ow is the

WeatherInfo. The other boxes of CountryAndCity and GetWeatherResult are the input

and output XML splitter required by Taverna for each service. The Taverna splitter

34

2.3 Service Versioning

services are for separating elements out or combining together elements in the XML

document, which will be described in Chapter 4.

Figure 2.8: An example of a simple work�ow that retrieves a weather forecast for the

speci�ed city [5]

In myGrid [65], researchers can create work�ows directly using the Taverna work-

bench. This provides ways to capture the parameter settings, inputs and any relevant

information.

This thesis adopts the Taverna Work�ow System as the tool for a reproducibility

solution as it is widely used and has community support for sharing through myExperi-

ment.org. Work�ow systems are also considered to be more user friendly for developers

who do not have to worry about the technology being used to enact the work�ow nor to

call the services: they can instead focus on expressing graphically, in a high-level way,

the solutions to problems in their domains.

Despite the advantages of work�ow systems, existing work�ow systems fall short in

providing the basis for reproducibility. For reproducibility, it is not su�cient to only

store the artifacts (input) values, the �nal result and service name or endpoint. It is also

necessary to store information on the version of any services executed in a work�ow.

This is largely due to the problem of service versioning. Overcoming this problem is

the focus for this thesis, and will be discussed in more detail in Chapter 3.

35

2.4 Reproducibility Taxonomy

OPM should be able to identify and record the version of the services. However,

an external service versioning mechanism is required to allow those services to be used.

The service versioning design must be able to support two things:

• Preserving old versions of services

• Being able to call old versions of services

2.4 Reproducibility Taxonomy

It is not immediately obvious that we can achieve reproducibility unless we have a

clear de�nition of what reproducibility is, and be able to organise and manage the

information needed to achieve it. Lambe [66] has an interesting description of what

taxonomy is, in the context of knowledge management. He de�nes three key attributes

of an e�ective taxonomy: a classi�cation scheme, a semantic map and a knowledge

map. A taxonomy classi�es related terms together so that it is easy to �nd the related

terms in the category. A taxonomy also describes the relationships between terms

in the taxonomy. For example, in the taxonomy of a computer system, Computer:

Keyboard would imply the relationship �is a part of" between Keyboard and Computer.

A good taxonomy is a type of knowledge map with regard to a particular knowledge

domain. For example, in the provenance community, there is a Provenance Taxonomy

introduced by Simmhans et al. [6] as shown in Figure 2.9. This paper provides a

comprehensive description on provenance in terms of usage, subject, representation,

storage and dissemination. These descriptions present, at a conceptual level, what a

provenance system is; why a provenance system is needed in e-Science; and what is

described as provenance and how that provenance is captured, represented and stored.

The survey can be used as a starting point to understand existing provenance system

designs. However, as will be seen, some service related provenance issues covered in this

paper are missing from the taxonomy.

The purpose of contributing a reproducibility taxonomy in this work is to help read-

ers to understand the things we need to be able to do if we are to achieve reproducibility.

The taxonomy does not only classify, describe and map the knowledge domain, but a

reproducibility taxonomy is made up of the things we must do to achieve that outcome:

36

2.5 Discussion

Figure 2.9: Provenance Taxonomy by Simmhans et al. [6]

preparing a collection (aggregation) that addresses service versioning, creating docu-

mentation (representing the data, services and dependencies), and using a work�ow

system. This taxonomy is based on the knowledge and �ndings derived from the work

leading to this thesis work, and is therefore described in Chapter 5.

2.5 Discussion

This chapter has described a number of systems for representing and generating prove-

nance. Many e-science systems are based on work�ows, in which communication be-

tween services is choreographed in order to produce a result. It has shown that while

there is a wide variety of previous work in the areas of work�ows and provenance, there

is a major gap in being able to handle service versioning. This is key to reproducing

e-experiments that involve services that may be updated over time, for example to �x

bugs or improve e�ciency. In web services technologies, ways have been proposed for

handling service versioning, but in itself this does not resolve the problem, as there has

been no integration with provenance systems.

As described in this chapter, with the ability to interoperate with other provenance

models, OPM was chosen as a data model for representing provenance in this work.

Therefore, Chapter 3 will further review the entities in OPM and describe how it can

be the basis for capturing the provenance trace of the execution of an experiment in the

presence of services that may be updated over time.

This chapter has also investigated reproducibility taxonomies. These are important

for describing and relating the information needed to achieve reproducibility. Existing

37

2.5 Discussion

taxonomies do not handle versioning, and so the work to achieve this is described in

Chapter 5.

38

Chapter 3

Achieving Reproducibility by

Incorporating Service Versioning

into Provenance

Over the years, the research community has realised that a major problem in sharing

its research experiments with others, is the inability to reproduce past experiments.

This problem is caused by 1) insu�cient information describing the experiment and 2)

research (experimental) artifacts and processes (services) that are not available.

This reproducibility process therefore needs provenance information to describe the

execution of the experiment in a way that can allow reproduction. In addition, the ex-

perimental artifacts and services should be made accessible for later use. Therefore, the

essential concepts underlying the reproducibility of experimental results are capturing

the computation, along with the data on which it operates. In service-based e-science,

the fundamentals of a computation are processes that take inputs and transform them

into outputs. Therefore, the processes and all the datasets that are involved must be

captured in order to allow reproduction.

As Open Provenance Model (OPM) is an emerging standard, this work explores

whether the OPM is able to describe an experiment su�ciently precisely so as to support

reproducibility. The work also addresses the issue of how to ensure that the versions of

services involved in the experiment can remain available, as service versioning is part

of essential requirements in reproducibility.

39

3.1 Capturing Experiments Using the Open Provenance Model (OPM)

The contributions of this chapter are therefore:

• To describe how the Open Provenance Model (OPM) can describe a class of

experiments, so forming the basis for reproducibility.

• To introduce service versioning into provenance.

3.1 Capturing Experiments Using the Open Provenance

Model (OPM)

Capturing experiments involves recording information on experimental components,

procedures and versions. Referring to the experimental elements introduced in Figure

1.1, this section focuses on the Components - Data and Services - as highlighted in 3.1.

Figure 3.1: The components of an experiment

As described in Chapter 2, OPM is a way to describe digital experiments [4]. It

has been used in many application domains (e.g. Provenance Challenge [48]) and can

describe the components of an experiment. There are two main aspects of OPM: con-

tent and structure. Content refers to the components embedded in the data model,

while structure re�ects the organisation of the components in the model. The con-

tent of the OPM model captures the meaning of speci�c entities in the data model. It

contains nodes encompassing artifacts (data inputs and outputs of �xed value), pro-

cesses (services) and agents (a catalyst or controller of a service), that re�ect an ex-

periment's execution. Along with these entities are the edges, also known as causal

40

3.1 Capturing Experiments Using the Open Provenance Model (OPM)

dependencies that make the connections between the entities. There are �ve types of

causal dependencies in OPM; opm:used, opm:wasGeneratedBy, opm:wasTriggeredBy,

opm:wasDerivedBy and opm:wasControlledBy. Causal dependencies are essential in re-

producibility, which requires identifying the cause and e�ect in the experiment (X was

caused by Y) and the linkage between them. For example, this OPM model structure

allows an OPM model to describe how an output was derived from an input.

To illustrate the use and limitations of OPM for capturing e-experiments, the next

section introduces what will be a running example and the OPM graph it generates.

3.1.1 An Exercise Advisor Example

To illustrate the use of OPM, an example of consuming multiple services was created.

This uses an experiment to recommend exercise activities based on a person's body

mass index. There are three services (processes) involved in this application, namely

Calculate BMI to calculate a person's Body Mass Index (BMI) based on their height

and weight, Check BMI Category to categorise a person body classi�cation, and Rec-

ommend Exercise Activity to advise the appropriate exercise activities. Examining the

description of an Exercise Advisor yields a list of the execution activities in the experi-

ment:

1. The value of Height andWeight are �lled in at the input interface by users (Input1

and Input2).

2. A process that takes both Height and Weight produces an output, a BMI Score.

A service called Calculate BMI is used to compute this.

3. The value of BMI Score is taken as an input for Check BMI Category service. The

output of this process is the BMI Category.

4. The value of BMI Category is taken as an input for Recommend Exercise Activity

service. The output of this process is the Exercise Activity.

5. The sequence of tasks in this application: Firstly, Height and Weight are used for

the service Calculate BMI and a BMI Score is generated by this service. Secondly,

the BMI Score is used for the service Check BMI Category and a BMI Category

value is generated. Thirdly, the BMI Category is used for the service Recommend

41

3.1 Capturing Experiments Using the Open Provenance Model (OPM)

Exercise Activity and generates the recommended Exercise Activity which is the

�nal result of the computation.

A systematic analysis of the list of execution activities above suggests the following

list of possible artifacts, services (processes) and dependencies, as shown in Table 3.1:

Table 3.1: The artifacts, service and dependencies involved in the Exercise Advisor ex-

periment.

Artifacts Processes(Services) Dependencies

Height

Service 1 (S1) Calculate BMI
Used

Weight

BMI Score wasGeneratedBy

BMI Score
Service 2 (S2) Check BMI Category

Used

BMI Category wasGeneratedBy

BMI Category
Service 3 (S3) Recommend Exercise Activity

Used

Exercise Activity wasGeneratedBy

There are �ve artifacts, three services and two types of dependencies involved in the

experiment. The activities 1-5 are illustrated in the OPM diagram as in Figure 3.2.

Figure 3.2 illustrates the OPM graph of the Exercise Advisor example which de-

picts the inputs, services and outputs. The round shapes are the artifacts, the square

shapes are the services (processes), while types of edges are used and wasGeneratedBy.

This graph will generate a document which is called a provenance trace. This will be

described in Section 3.2.

After the Exercise Advisor is used by the public, consider a scenario where the

users have noticed that the recommended Exercise Activity is not providing a suitable

activity. Some users su�er knee pain, and some users are su�ering from asthma after

following the recommended exercises. This leads to an improvement to the current Rec-

ommend Exercise Activity service to include new parameter of Body Condition before

recommending an activity. This service update is due to some activities are not suit-

able if a person is su�ering from some complications such as asthma, knee pain, heart

problems, pregnant and many more. Therefore Body Condition will take into account

these complications prior to recommend a suitable exercise activity.

42

3.2 Capturing the Provenance Trace

Figure 3.2: OPM representing the experiment to compute Exercise Advisor

An additional scenario is to include a person's daily free time as requested by the

users due to their daily tight schedule that prevent them from doing the recommended

activities. Therefore, by adding another new input parameter Daily Free Time to the

existing service forces the service to have another service update.

From the above scenarios, the Recommend Exercise Activity has changed from initial

version, to a second version and third version of service update as shown in Figure 3.3.

Service 3 (S3) evolves from version 1 till version 3: S3v1 -> S3v2 -> S3v3 and the

last is the latest version of the service.

3.2 Capturing the Provenance Trace

When all the entities in the experiment have been identi�ed, they must be captured

and recorded as a provenance trace. The provenance trace gives information about the

43

3.2 Capturing the Provenance Trace

Figure 3.3: Service 3 (S3) evolves from version 1 till version 3

actual execution of an experiment. Therefore, in running an experiment, the creation of

the �nal results that are derived from the input data are documented in a provenance

trace. A provenance trace captures execution activities. Taking an idea from [67],

Figure 3.4 presents a concept map of a provenance trace based on the work of this

thesis.

This thesis uses OPM to represent the components in the experiment. The OPM

provenance content and structure is therefore now described. In the document, OPM is

represented as an XML document conforming to an OPM schema. The document shows

how input data (artifacts) are transformed into output results (an artifact) through a

sequence of services (processes), with causal dependencies that clearly show the causes

and e�ects to the outputs. The OPM XML provenance trace for the Exercise Advisor

from Figure 3.2, in Section 3.1.1 is shown in Listing 3.1.

Listing 3.1: The content and structure of the OPM XML for an Exercise Advisor

1 <opm:opmGraph xmlns=" ht tp : // openprovenance . org /model/opmx#"

xmlns :x s i=" ht tp : //www.w3 . org /2001/XMLSchema−i n s t ance " xmlns:xsd=

" ht tp : //www.w3 . org /2001/XMLSchema" xmlns:ns4=" ht tp : // example . com

/" id="gr_16">

2 <opm:accounts>

44

3.2 Capturing the Provenance Trace

Figure 3.4: Concept map describing provenance trace

3 <opm:account id="account1 "/>

4 </opm:accounts>

5 <opm:processes>

6 <opm:process id="myBmi">

7 <opm:value x s i : t y p e=" x s d : s t r i n g ">" ht tp : // l o c a l h o s t : 8 0 8 0 /eabmi10

/eabmi10?wsdl "</opm:value>

8 <opm:time exact lyAt="2014−10−06T04−46−27.447Z"/>
9 </opm:process>

10 <opm:process id="myCategory">

11 <opm:value x s i : t y p e=" x s d : s t r i n g ">" ht tp : // l o c a l h o s t : 8 0 8 0 /

eacategory10 / eacategory10 ?wsdl "</opm:value>

12 <opm:time exact lyAt="2014−10−06T04−46−28.068Z"/>
13 </opm:process>

14 <opm:process id="myActivity1">

15 <opm:value x s i : t y p e=" x s d : s t r i n g ">" ht tp : // l o c a l h o s t : 8 0 8 0 /

e a a c t i v i t y 1 0 / e aa c t i v i t y 1 0 ?wsdl "</opm:value>

16 <opm:time exact lyAt="2014−10−06T04−46−29.922Z"/>
17 </opm:process>

18 </ opm:processes>

19 <opm:a r t i f a c t s>

20 <opm:a r t i f a c t id="weight ">

21 <opm:value x s i : t y p e=" xsd :doub le ">" 44 .0 "</opm:value>

22 </ opm:a r t i f a c t>

23 <opm:a r t i f a c t id=" he ight ">

24 <opm:value x s i : t y p e=" xsd :doub le ">" 1 .58 "</opm:value>

45

3.2 Capturing the Provenance Trace

25 </ opm:a r t i f a c t>

26 <opm:a r t i f a c t id="bmiscore ">

27 <opm:value x s i : t y p e=" xsd :doub le ">" 17 .63 "</opm:value>

28 </ opm:a r t i f a c t>

29 <opm:a r t i f a c t id=" category ">

30 <opm:value x s i : t y p e=" x s d : s t r i n g ">"UNDERWEIGHT"</opm:value>

31 </ opm:a r t i f a c t>

32 <opm:a r t i f a c t id=" a c t i v i t y 1 ">

33 <opm:value x s i : t y p e=" x s d : s t r i n g ">"Proper d i e t i n g and Walking"</

opm:value>

34 </ opm:a r t i f a c t>

35 </ opm :a r t i f a c t s>

36 <opm:causa ldependenc ies>

37 <opm:used id="u_1">

38 <opm:e f f e c t id="myBmi"/>

39 <opm:ro le id="r_1" value="1"/>

40 <opm:cause id=" he ight "/>

41 <opm:account id="account1 "/>

42 <opm:time exact lyAt="2014−10−06 12 :46:30:PM"/>

43 </opm:used>

44 <opm:used id="u_2">

45 <opm:e f f e c t id="myBmi"/>

46 <opm:ro le id="r_2" value="2"/>

47 <opm:cause id="weight "/>

48 <opm:account id="account1 "/>

49 <opm:time exact lyAt="2014−10−06 12 :46:30:PM"/>

50 </opm:used>

51 <opm:used id="u_3">

52 <opm:e f f e c t id="myCategory"/>

53 <opm:ro le id="r_3" value="3"/>

54 <opm:cause id="bmiscore "/>

55 <opm:account id="account1 "/>

56 <opm:time exact lyAt="2014−10−06 12 :46:30:PM"/>

57 </opm:used>

58 <opm:used id="u_4">

59 <opm:e f f e c t id="myActivity1 "/>

60 <opm:ro le id="r_4" value="4"/>

61 <opm:cause id=" category "/>

62 <opm:account id="account1 "/>

63 <opm:time exact lyAt="2014−10−06 12 :46:30:PM"/>

64 </opm:used>

65 <opm:wasGeneratedBy id="g_1">

66 <opm:e f f e c t id="bmiscore "/>

67 <opm:ro le id="r_1" value=""/>

68 <opm:cause id="myBmi"/>

46

3.2 Capturing the Provenance Trace

69 <opm:account id="account1 "/>

70 <opm:time exact lyAt="2014−10−06 12 :46:30:PM"/>

71 </opm:wasGeneratedBy>

72 <opm:wasGeneratedBy id="g_2">

73 <opm:e f f e c t id=" category "/>

74 <opm:ro le id="r_2" value=""/>

75 <opm:cause id="myCategory"/>

76 <opm:account id="account1 "/>

77 <opm:time exact lyAt="2014−10−06 12 :46:30:PM"/>

78 </opm:wasGeneratedBy>

79 <opm:wasGeneratedBy id="g_3">

80 <opm:e f f e c t id=" a c t i v i t y 1 "/>

81 <opm:ro le id="r_3" value=""/>

82 <opm:cause id="myActivity1"/>

83 <opm:account id="account1 "/>

84 <opm:time exact lyAt="2014−10−06 12 :46:30:PM"/>

85 </opm:wasGeneratedBy>

86 </ opm:causa ldependenc ies>

87 </opm:opmGraph>

Listing 3.1 describes the OPM representation in XML. In this OPM trace, myBmi

process is equivalent to Calculate BMI process, myCategory is equivalent to Check BMI

Category and myActivity1 is equivalent to Recommend Exercise Activity. Processes

and artifacts are identi�ed by unique identi�ers (lines 6, 10, 14, 20, 23, 26, 29 and

32). Dependencies are identi�ed by the cause (source), e�ect (target) and role, as

shown in Line 36 to Line 86. For instance, in Line 37 to Line 43, the used dependency

depicts that process myBmi has used artifact Height. Likewise, process myBmi has

also used artifact Weight (Line 47). The used causal dependency expresses that the

process myBmi can complete only because the two artifacts, Height and Weight are

available. The wasGeneratedBy dependency expresses that artifact bmiscore (Line 66)

can only exist if the process myBmi (Line 68) has taken place. In Listing 3.1, the two

types of causal dependencies used and wasGeneratedBy imply that the artifact bmiscore

which is the output generated is caused by the process myBmi, while the process itself

is caused by the two artifacts it used, which are Height and Weight. The cause and

e�ect explicitly describe the �ow of data and processes.

In OPM, the data values of the artifacts that are used (line 40 and Line 47) or

generated (Line 66) by a process, and also an agent (not included in this example)

that controlled a process, are associated with a role. Roles are required in edges used,

47

3.2 Capturing the Provenance Trace

wasGeneratedBy and wasControlledBy. Role captures additional information about the

dependencies to di�erentiate between several di�erent use and generation relations. For

example, Line 39 and Line 46 show that one role (Line 39) is for taking height as input,

and the other role (Line 46) is for taking weight as another input. The artifact can

also be used by more than one service, for other reasons. If this situation occurs, more

than one account is needed. Each account can derive one path, for example to calculate

a BMI index. If the artifact is used for another purpose such as to convert the unit

of Height and Weight, this will require a di�erent account in OPM. In this work, the

structure is account-less so the artifacts do not belong to any Account speci�cation

(Account (Line 2 to Line 4) shown in the Listing 3.1 is only there as an example). In

OPM, edges can be annotated by time information, however in this thesis, time is not

discussed because time is not required to describe the ordering of the data and process

precedence in this work, as it is already covered by the causal dependencies. However,

time is proposed to be recorded in the versioning section, which will be described later

in Section 3.3.2.

In summary, this experiment shows that OPM represents artifacts that send and

receive data, processes (services) that change that data, and relationships between ar-

tifacts and processes.

3.2.1 A Gap in the Provenance Trace

OPM is su�cient to describe the components of experiments and also the execution or-

ders of experiments. The previous sections show that achieving reproducibility requires

a provenance trace which is described based on the provenance model, as illustrated in

Figure 3.5.

However, service versioning information is needed. It is added here through OPM

annotations and OPM causal dependencies, based on the rules speci�ed in the OPM

Annotation Framework as presented in Moreau et.al [4]. Annotations in OPM can be

held independently as an annotation entity, or can be added to other OPM nodes and

artifacts.

Even if information about versioning is available, this is not su�cient for repro-

ducibility, as there is no automatic mechanism in provenance to ensure that all the

48

3.3 Incorporating Service Versioning into a Web Service Architecture

Figure 3.5: The dependency of provenance for reproducibility

multiple versions of the same service remain available.

Further, if multiple versions of services are preserved, the annotation information

must link to the appropriate version so that it can be used in re-execution.

Therefore, the design of a system to allow the re-execution of experiments that

include services that may have been updated must be able to support:

• Preserving old versions of services.

• Being able to call old versions of services.

3.3 Incorporating Service Versioning into a Web Service

Architecture

Service versioning is essential in reproducibility. It also has other bene�ts. For example,

in a research community, it is an advantage to be able to access multiple versions of the

same service so that researchers can compare one version to another, and understand

their e�ects on processing data.

Another reason to access multiple versions of the same service is so that any amend-

ments and enhancements to an existing service do not a�ect the existing consumers of

the previous version of the service, who may choose not to move to the new service (for

example to keep consistency with previous results). In the future, we might imagine

subscription services to inform the consumer that a new service version is available.

49

3.3 Incorporating Service Versioning into a Web Service Architecture

This will allow the consumer to choose whether to remain with the existing service or

to upgrade to a new one.

Why web services are important in this work? Rather than adopting a speci�c

programming, publishing algorithms as web services is an option for user. User can use

the available web services through execution environments. The execution environments

such as Taverna, provides user to take the web services and connect the services into

work�ows and execute them. Chapter 2 has described web services and its standard.

WSDL is part of the standard and is well documented. WSDL provides a formalised

and detailed input and output and this make it possible for user to use the web services

in the work�ow system. However, the web services need to be made available to public.

The WSDL can be registered by the service provider (owner) to service registry to

publish the location of available services. However, what happen if the services have

been removed by their owners? The service may become inaccessible. Therefore, if

service version is recorded, other alternative of same services can be recommended.

This is described further in following sub-sections.

Web service exists from service provider or service owner. Therefore, it is recom-

mended that service versioning is handled at the early stage of service creation by service

provider or service owner. That means providing web services via di�erent ports. There-

fore, in order to incorporate service versioning, a service versioning convention scheme

needs to be followed. In this work, the following service versioning convention is used:

Figure 3.6 describes the service convention that takes into account major and minor

releases. If a service needs to add new service parameters, therefore major release is

applied. If only minor code amendment such as �xing bugs, changes in algorithm may

only apply minor release, and is backward compatible. Backward compatible means

the new version is compatible with current version. Existing clients can use the new

version. Also in this work, all service clients have the same compatibility contract:

WSDL and XML Schema. Figure 3.7 illustrates the minor and major service releases.

Refer to example S3v2, in which the service version is a minor release from S3v1, and

is also backward compatible. Client 1 application still can use the new service version.

However for another service update S3v3, the service version update is considered as a

major release. This is an incompatible change due to changes in ports to provide new

parameters, with new additional new label, as illustrated in Figure 3.7.

50

3.3 Incorporating Service Versioning into a Web Service Architecture

Figure 3.6: Service versioning convention scheme

Figure 3.7: Compatible and Incompatible changes in service update

Consider a scenario in which a service is created and published to a server. A WSDL

�le is created and is used to describe a web service. In order to ensure there is su�cient

51

3.3 Incorporating Service Versioning into a Web Service Architecture

information to invoke the service, the WSDL information must provide the following:

service description; service abstract interfaces and service concrete implementation [68].

The Service Abstract Interface description describes the interface layout, for example

the abstract data type de�nition (Line 1 to Line 5) and operation parameters with input

and output message (Line 13 to Line 16) as shown in Listing 3.2 for a BMI calculating

Web Service.

Listing 3.2: A WSDL interface description snippet

1 <types>

2 <xsd:schema>

3 <xsd: import namespace=" ht tp : // ea/" schemaLocation=" ht tp : //

l o c a l h o s t : 8 0 8 0 /eabmi10/eabmi10?xsd=1"/>

4 </xsd:schema>

5 </ types>

6 <message name="myBmi">

7 <part name="parameters " element="tns:myBmi"/>

8 </message>

9 <message name="myBmiResponse">

10 <part name="parameters " element="tns:myBmiResponse"/>

11 </message>

12 <portType name="eabmi10">

13 <operat i on name="myBmi">

14 <input wsam:Action=" ht tp : // ea/eabmi10/myBmiRequest" message="

tns:myBmi"/>

15 <output wsam:Action=" ht tp : // ea/eabmi10/myBmiResponse" message="

tns:myBmiResponse"/>

16 </ opera t i on>

17 </portType>

The Service Concrete Implementation description binds the interface description to

a network addresses and protocol, as shown in Listing 3.3.

Listing 3.3: A snippet of the WSDL describing a service

18

19 <binding name="eabmi10PortBinding" type=" tns :eabmi10 ">

20 <soap :b ind ing t ranspor t=" ht tp : // schemas . xmlsoap . org / soap/http " s t y l e=

"document"/>

21 <operat i on name="myBmi">

22 <soap : ope ra t i on soapAction=""/>

23 <input>

24 <soap:body use=" l i t e r a l "/>

25 </ input>

52

3.3 Incorporating Service Versioning into a Web Service Architecture

26 <output>

27 <soap:body use=" l i t e r a l "/>

28 </output>

29 </ operat i on>

30 </binding>

31 <s e r v i c e name="eabmi10">

32 <port name="eabmi10Port" binding=" tns :eabmi10PortBinding ">

33 <soap :addre s s l o c a t i o n=" ht tp : // l o c a l h o s t : 8 0 8 0 /eabmi10/eabmi10"/>

34 </port>

35 </ s e r v i c e>

By having the service interface and implementation (Listings 3.2 and 3.3), a con-

sumer can have a clear understanding about a service's interface and also the network

access point to which messages can be sent in order to invoke a service. The full details

of the WSDL descriptions are not covered in this work, but can be found in [68] [57].

Once the WSDL has been created, the next step is to publish it to a UDDI service

registry. The service registry is key to this reproducibility work. In the work of this the-

sis, the jUDDI registry is used and described, as this structure supports the provision of

information on service versioning. jUDDI stands Java implementation of the Universal

Description, Discovery, and Integration speci�cation for Web Services [59]. It provides

a Web Services directory platform. Through it, consumers may �nd information about

businesses and organisations o�ering web services, descriptions of those web services,

technical information that exposes location and access information, and also the web

service interface information.

Consider a scenario in which a service is consumed by a client. After the service is

initially deployed, it may be changed to meet new requirements, to improve its algo-

rithm, or simply to �x bugs. Later, a consumer wishes to reproduce an experiment that

used the service. The jUDDI service registry can be used to ensure that the correct

version is utilised.

The approach taken here to service versioning takes advantage of the loosely coupled

architecture provided by web services technologies. Service versioning is the approach

that should be taken by the Service developer, which is the Web Service Provider in

Figure 3.8. As highlighted by the red circle dashed line, the Provider who is in control of

creating and updating the service should keep the versions of updated service available

for consumption using the service versioning approach, which is discussed in the next

section. Therefore, whenever a consumer sends a request for a particular version of a

53

3.3 Incorporating Service Versioning into a Web Service Architecture

service, the Provider will always be able to invoke the service. Figure 3.9 illustrates

the concept of how multiple versions may exist (in this case ten years since the service

is �rst deployed), and the diagram shows that two versions of the same service S2 are

available, that are S2v1 and S2v2. In order to have these versions available for the

consumer, this section will discuss how the web services architecture component, in

particular UDDI Web Service Registry, is used, as highlighted by the blue circle dashed

line. The multiple documents represent the multiple versions of the same service.

Figure 3.8: The Web Service Architecture extended with Service Update

The common practice is that only one version of a service is kept, and therefore all

consumers only refer to the one and only version of the service. If there are new changes,

the developers normally overwrite the earlier version. This gives a great advantage to

consumers as only one �xed endpoint URL is maintained, thus, maintenance is greatly

simpli�ed. However, this is not a good practise as it makes the previous service versions

become unavailable. The important issues are how to make versions of the same services

available and how to call the appropriate endpoint URL based on the version number.

3.3.1 tModel Versioning Model

In order for experiments to be reproducible, a versioning model needs to consider how

versions of services can remain available. Chapter 2 reviewed web service versioning ap-

proaches based on existing best practices. This section introduces the tModel concept

54

3.3 Incorporating Service Versioning into a Web Service Architecture

Figure 3.9: Two versions of S2; S2v1 and S2v2

and proposes how it can be used to create a service versioning model (and implementa-

tion) that describes how service versioning is kept in the jUDDI and how the multiple

versions can be discovered and called. Recall the jUDDI concept described in Chapter

2. The idea of jUDDI is more or less similar to the concept of the common yellow

pages where we can �nd information such as the telephone number and address of the

service we want. In fact, jUDDI itself is known as an online yellow pages that is used by

both service providers and service consumers. Therefore this section explains how the

structure of tModel represents the interface of the Web Service. This will also include

categorization information. The end of this section will discuss the advantages and

disadvantages of using this tModel approach.

tModel is just like the XML namespace concept; each service interface in XML

namespace is assigned to a unique name, whereas in tModel, each service interface is

assigned to a unique tModel key [69]. XML namespaces were not used as they would

create an entirely new Web Service with a new WSDL �le and namespace for each

version. This makes it hard to maintain a collection of versions of the same service.

Chapter 2 reviewed the relationship between jUDDI and WSDL, where WSDL is

used to describe a web service and jUDDI is used to discover such web services. This

55

3.3 Incorporating Service Versioning into a Web Service Architecture

section draws attention to the jUDDI data types structure which service providers

can register, and consumers can use to search for web services. There are four main

data types in a jUDDI registry; businessEntity, businessService, bindingTemplate and

tModel. Figure 3.10 shows the four jUDDI data types. jUDDI allows the publisher of a

web service to register a businessEntity, which contains information on businessService,

bindingTemplate and tModel.

Figure 3.10: UDDI data types.

The �rst step when publishing to jUDDI is to create a single business description

that can be linked to any number of service descriptions: this is called a business entity.

This business entity relates to all services that are published under one speci�c business

and organisation. In this example, it represents BMI. Having published a business

entity for BMI, a unique key is generated for the business entity, together with a range

of information including names, descriptions and discovery URL(s).

A businessEntity may contain zero or more businessServices that represent a speci�c

service provided by the businessEntity. In each businessService instance, there are

zero or more bindingTemplate data types that provide technical descriptions of the

underlying service described. Each bindingTemplate must contain an accessPoint. The

accessPoint in a bindingTemplate must specify the actual network address where the

service can be accessed. The last data type in the jUDDI data structure is tModel. Each

56

3.3 Incorporating Service Versioning into a Web Service Architecture

tModel is uniquely referenced by a tModelKey, generated jUUID (Universal Unique

Identi�er) string. This key generation is automatically assigned by the jUDDI registry.

To understand exactly how the four data types are used to publish a service into

jUDDI, recall the Exercise Advisor service presented in Section 3.1.1. It takes strings

representing Height and Weight as inputs and returns a BMI Score. In order for the

consumer to discover and use this service, the service must be published in the jUDDI

�rst. To do this, the businessEntity, businessService and businessTemplate and tModel

are created. In fact, when a service is published in the registry, a tModel is created to

represent it. Listing 3.4 shows the tModel for the Calculate BMI Web Service.

Listing 3.4: The tModel representing the Calculate BMI Web Service

1 <tModel tModelKey="uddi:www . myeabmi10 . com:keygenerator " de l e t ed=" f a l s e "

xmlns="urn:uddi−org:api_v3 " xmlns:ns2=" ht tp : //www.w3 . org /2000/09/

xmldsig#">

2 <name xml:lang="en">Calcu la te BMI</name>

3 <de s c r i p t i o n>This s e r v i c e i s used to c a l c u l a t e Body Mass Index value .<

/ d e s c r i p t i o n>

4 <overviewDoc>

5 <overviewURL useType=" text ">ht tp : // l o c a l h o s t : 8 0 8 0 /eabmi10/eabmi10?

WSDL</overviewURL>

6 </overviewDoc>

7 <categoryBag>

8 <keyedReference tModelKey=" uddi :udd i . o r g : c a t e g o r i z a t i o n : t y p e s " keyName

="uddi−org :keyGenerator " keyValue="keyGenerator "/>

9 </categoryBag>

10 </tModel>

The tModel in jUDDI provides a reference to the corresponding WSDL document

as illustrated in Figure 3.11 below. The �gure shows the interface WSDL to interface

tModel that means one WSDL corresponds to one tModel, unique to a particular ver-

sion. WSDL is the description of a web service interface. A WSDL service portType

and each operation within the WSDL service are captured using tModels in jUDDI.

Once all this information has been added to the registry, the web service is ready to be

discovered and can be consumed by web service consumers.

Let us imagine that years later, the same Exercise Advisor is updated from version

1 to version 2. Therefore, a new bindingTemplate should be created that contains a

57

3.3 Incorporating Service Versioning into a Web Service Architecture

Figure 3.11: Relationship between WSDL and UDDI [7].

di�erent tModel instance but still links with the same businessService. This feature

is important as it allows multiple versions of a service to be grouped together under

one businessService. The advantage is that otherwise consumers would not have any

information on whether a service has several versions and which one to choose. There-

fore searching for a speci�c version can be di�cult. However, adding categorization

information into the tModel can greatly improve the search functionality in UDDI.

A tModel categoryBag is like a bag that holds together all the interface tModel of

the same businessService. Therefore when a service is updated and saved as a di�erent

version, all the existing versions can now be preserved and organised under the tModel.

Therefore, the procedure for publishing and discovering versions of services is the same

as described above.

How a service is published and discovered in jUDDI has been described here; another

question arises over where to record such version information in OPM and how OPM

can be referenced to jUDDI and WSDL.

3.3.2 Capturing Versioning in OPM

In this section, the focus is extending the current OPM to support versioning of web

services. According to Vinoski [70], versioning is important because web services evolve

over time due to many reasons. The reasons of evolvement are as mentioned in Section

2.2.1 (e.g. debugging, validity checking, updating).

58

3.3 Incorporating Service Versioning into a Web Service Architecture

In Section 2.2.3, an OPM model has been described as a model consisting of three

main nodes and �ve types of edges representing the causal dependencies. The nodes

as illustrated in Figure 2.5 denote the occurrences; artifact, process and agent. The

edges are used to describe the causal relationship between the occurrences, for example

how X is caused by Y. In this thesis, the focus is on web services, thus an extension

of edges to incorporate the services versioning issues is proposed to be included in an

OPM model. To recall, the OPM process node can also represent a service. Process and

service have the same meaning, where both take input (artifact) and produce output

(artifact). This extension is expressed by the attribution service metadata, for example

when a particular service is created, what the version is and how the multiple versions

of the same service are linked together as one collection.

In order to extend the current OPM edges is by taking the similar concept of an

opm:wasDerivedBy edge that expresses the relationship from an artifact to another

artifact. It describes an update of an artifact resulting to a new artifact. The derivation

between the artifacts exists after performing or going through a process. This work is

dealing with the derivation of services, an update of one service resulting to a new

service.

Another edge type in OPM that involves process is opm:wasTriggeredBy edge that

expresses the relationship between processes (services), where Service 1 is required to

have started and completed in order to start Service 2. This condition di�ers from

versioning, as the two di�erent services may not hav been related to each other and

may not have been referred to the same original service. Therefore, opm:wasTriggeredBy

edge is not applicable for the case of versioning.

In web services, the services can develop from one service to another service. The

two services refer to two di�erent services which distinguished from each other but came

from the original same service. Unfortunately, the representation of how the service was

changed from one service version to the other version of service is not available. No

current relation in OPM is de�ned to link the service versions, thus an extension of the

edges type in OPM is required. This work introduces an extension of the edges type in

causal dependencies with opm:wasVersionOf. It is believed that if there is a relationship

that shows the dependency of the versions of a service, this will allow for future tracing.

The extension structure that incorporates versioning has three characteristics that

describe the derivation for multiple versions of services of the original service. The

59

3.3 Incorporating Service Versioning into a Web Service Architecture

characteristics are described as follows:

• Each version is an enhancement that requires changes to a previous version of the

same service.

• The next version of service is di�erent from the previous service version, the

expanding to the original service. This leads to the chain of services: Sv1 -> Sv2

-> Sv3 -> Sv4, the last is the latest version of the service as shown in Figure 3.12

below.

• A set of services, thus a collection. Extension of attribution of a causal rela-

tionship to provide further information on how one occurrence relate to previous

occurrence.

Figure 3.12: The model wasVersionOf edge

Each service can changed from time to time, thus we present it as di�erent versions

of that particular service. In this work, an OPM generator integrates with Service repos-

itory and Experiment repository as shown in Figure 3.13. Service repository contains

information on wsdl and tModel that include service version information. The service

version information includes date of service creation and service versioning naming that

supports minor and major releases as described in Figure 3.6. Upon an execution run

in a SOA system, the input and output data parameters are stored in Experiment

repository.

By using the data from these two repositories, OPM Generator generates an OPM

provenance trace. To generate wasVersionOf causal dependency in OPM trace, OPM

Generator takes the service versioning naming and service creation date information

from service repository to recommend the appropriate version of a service to be used.

60

3.3 Incorporating Service Versioning into a Web Service Architecture

Figure 3.13: OPM Generator

OPM Generator will take alternate service that created prior to the services used during

the execution run. If the service used is the �rst version, thus no prior version, therefore

OPM Generator will take a service with the date of service creation greater than the

service is used. The example of the OPM extension opm:wasVersionOf is described in

the Figure 3.14(a).

In Figure 3.14 (b) is where wasVersionOf is shown, using the Exercise Advisor from

in Figure 3.2, Section 3.1.1 as a running example. The example consists of using three

services to calculate a person's Body Mass Index (BMI)(S1), check the category (S2)

and recommend exercise activity (S3). The existing service, S3 is updated to a new

version with added parameters. The S3 now has an updated version of S3v2. The OPM

trace to illustrate the model of wasVersionOf for the S3 version 1 and the new S3 version

2 is presented in Listing 3.5. The wasVersionOf edge describes the derivation of two

versions of the same service, namely myActivity1a is a newer version of myActivity1.

The cause and e�ect explicitly describe the link between the two services based on the

date of service creation. This information is essential to provide alternative service

61

3.3 Incorporating Service Versioning into a Web Service Architecture

(a) The need for wasVersionOf edge

(b) A description of an execution run that shows the versioning relationship from

one service S3v1 to another service S3v2

Figure 3.14: OPM description

62

3.3 Incorporating Service Versioning into a Web Service Architecture

which is the nearest version in case the current service is not available or missing.

Thus, myActivity1a is an alternate service with the date of service creation greater

than myActivity1. The details on how wasVersionOf is generated and how alternative

service is selected are described in Chapter 4.

63

3.3 Incorporating Service Versioning into a Web Service Architecture

Listing 3.5: wasVersionOf in OPM trace

1 <opm:wasVersionedOf>

2 <opm:e f f e c t id="myActivity1a" />

3 <opm:ro le va lue=" s e r v i c eVe r s i on />

4 <opm:cause id="myActivity1 " />

5 <opm:account id="account1 " />

6 </opm:wasVersionOf>

However, the OPM extension of wasVersionOf approach is not yet supported in

a work�ow. However the mechanism for parallel experiment execution can be imple-

mented in a work�ow to allow user to compare the experiment results side by side, that

will be explored further in future work.

Similarly, PROV model has also addressed a revision of an entity which the later

entity is a revised version of an original entity. However, a revision attribute in PROV

(wasRevisionOf) must be expressed as a subtype under Derivation, wasDerivedFrom

relation. In other words, a revision is a kind of Derivation. In addition, the description

of Derivation is only applies to entity, not the activity in PROV.

The provenance trace must describe the version of the service used in the execution.

Using the tModel approach described in previous Section 3.3.1, one WSDL corresponds

to one tModel. This means that the WSDL location in OPM trace uniquely indicates

the speci�c version of the service used in the execution. A unique WSDL location

is recorded that indicates a particular version of a service. Additionally, execution

information providing a timestamp of each call to a service is recorded in OPM trace.

As in jUDDI Registry, the timestamp of each service created is recorded. These time

properties are essential as additional information to work out which version of the service

was in used at the time of the service execution.

The features of the tModel have not previously been fully exploited in supporting

provenance. Therefore, it is recommended that to achieve reproducibility, the service

developer should register every new web service interface with jUDDI using the service

versioning convention. By using tModel, the developer can now preserve the multiple

versions of the same service. In addition to this work, there are other works that propose

extensions on both WSDL and UDDI for version support in web services [60] Fang2007b

Frank2008 Juric2009. In their works, they introduced an extension to WSDL structure

to hold version information.

64

3.4 Discussion

The main bene�ts of the tModel approach to supporting service versioning are:

• The tModel approach exploits the existing jUDDI registry standards and imple-

mentations.

• The tModel and its categorization feature facilitates the discovery of versions of

a service.

3.4 Discussion

This chapter discussed how the Open Provenance Model is able to describe experiments.

It has described the provenance content and structure of OPM using a provenance trace.

This provenance trace is able to explain and reason about an experiment. Each exper-

imental result has a provenance trace showing how the results were derived. A gap

was noted in existing provenance systems in addressing the issue of service versioning.

Additional information on versioning is needed to be recorded in OPM that is "wasVer-

sionOf" for a comprehensive description of which version of services that the experiment

used.

The tModel approach is described in detail to facilitate service publishing and dis-

covery. Including the categorization information in tModel helps to preserve all versions

of the same service and making it easier to discover and call the version of services ac-

cordingly. However, that is only possible if we are in control of creating and updating

the services. For somebody on the consumer side, this is not possible. Therefore tModel

name and time properties are introduced in OPM trace to make comparison of time at

execution with time service created, can facilitate a service version discovery.

The following chapter describes the transformation from OPM model to a SCUFL

model so that experiments can be reproduced.

65

Chapter 4

Transforming OPM to SCUFL

This chapter discusses the design of a framework to support the reproduction of experi-

ments. During an execution of an experiment, a provenance trace records the processes

that take place involving data and services. Chapter 3 has shown how a provenance

trace is generated. In this chapter, the provenance trace is used to generate a work�ow

description that can reproduce a past experiment. This is to overcome the problem

mentioned in Chapter 2 where the past experiment from the original experiment execu-

tion was executed in a di�erent work�ow environment from the one where provenance

trace was reproduced. Provenance is captured in OPM and transformed into a work-

�ow trace. The Taverna Simple Conceptual Uni�ed Flow Language (SCUFL) model is

chosen to be the target of the transformation. To achieve this, all information that is

required for the execution of the experiment must be kept available, including datasets

and versions of services. Chapter 3 described OPM, and it was shown that OPM can

be used to capture the required provenance, so forming the basis for reproducibility.

In making the provenance trace executable, the reproducibility process includes

taking a past experimental result captured in OPM, converting the OPM trace into the

work�ow format, in this case SCUFL, and then being able to re-execute the transformed

�le in Taverna. In this way, a past execution can be reproduced. The aims of this chapter

are therefore to:

• Describe the mapping between the OPM (source) and SCUFL (target) models

that allows reproducibility.

• Discuss how an algorithm to perform this mapping was designed and implemented.

66

4.1 Generating SCUFL from OPM

It is noted that though Taverna is moving to t2�ow schema, which is the updated

version of SCUFL, the work in this thesis is still using the earlier version of SCUFL

as this was current when the work began that is SCUFL or XSCUFL format in XML.

SCUFL is used as the work�ow structure is readable and understandable compared to

t2�ow. In t2�ow, more complex information is covered. For the case of describing the

concept in the work of this thesis, SCUFL schema is su�cient to be used as Taverna

work�ow schema for this work. The work on mapping SCUFL to OPM has been done

during the Provenance Challenge workshop [48]. Missier and Goble [71] have successfully

presented the two ways mapping from an execution of a Taverna work�ow to OPM

graph, W2G, and the generation of a Taverna work�ow from OPM graph, G2W. In

the paper, the authors provide the algorithm as mentioned above and highlight the two

types of annotations in round-trip translation to prevent loses of information in the

execution trace. Their works are in line to address the Third Provenance Challenge

[48] which is to generate a Taverna work�ow from an OPM graph. The work of this

thesis share similar concept with [71] on provenance to work�ow, however this thesis

uses non-work�ow experiment that developed in SOA system. On the contrary, this

work focuses on the service versioning aspect of Web Services and uses OPM trace

to capture the experiment run, handles service versioning and re-execute in Taverna

Work�ow Systems.

4.1 Generating SCUFL from OPM

Achieving reproducibility through the framework requires a transformation process from

an OPM source document that undergo a mapping using rules that create the extrac-

tion and transformation algorithm that generates the SCUFL target document. The

following sections of this chapter discuss techniques to enable the reproduction of an ex-

periment captured in OPM format, which will be re-executed in the Taverna Work�ow

System as shown in Figure 4.1.

The four processes will be discussed in turn in the following sections. Before an OPM

source document can be transformed to a SCUFL document for the Taverna Work�ow

System, it is essential to understand the SCUFL format for Taverna work�ows. To do

this, a comparison between entities in both target and source documents is drawn in

the next section.

67

4.2 Comparing SCUFL to the Open Provenance Model (OPM)

Figure 4.1: From OPM source document to SCUFL target document.

4.2 Comparing SCUFL to the Open Provenance Model

(OPM)

In general, an experiment consists of data and service components, particularly input,

process and output. Therefore both SCUFL and OPM models need to represent in-

put(s), process(s) and output(s) in their data models. As described in Chapter 3, OPM

is capable of representing an experimental run, modelling how input data is transformed

to output results and recording the services that cause this to happen. As has been

described, OPM does this by capturing the artifacts, processes, agents, and causal de-

pendencies. In SCUFL, there are data sources, data sinks, processors, and data links.

Table 4.1 shows the components that can describe an experiment, and their represen-

tation in the two models.

In OPM, artifacts ful�l the same purpose as data sources and data sinks in Taverna.

The main distinction between SCUFL and OPM is in the way they each de�ne rela-

tionships. In SCUFL, the relationship is de�ned by data links that have the following

characteristics:

68

4.2 Comparing SCUFL to the Open Provenance Model (OPM)

Table 4.1: The comparison between OPM and SCUFL entities

Component SCUFL Entity OPM Entity

Input Data Sources Cause: Artifacts, Processes, Agents

Process Processes Processes

Output Data Sinks E�ect: Artifacts, Processes, Agents

Relationship Data Links Causal Dependencies

• A data source can be a work�ow input or processor output port. For example,

Height and Weight are work�ow inputs.

• A data sink can be a work�ow output or processor input port (which may be used

by other processes). For example, BMI Score is a process output, and also used

as input by another process Check Category.

• For each data link in SCUFL, data source(s) to data sink(s) are used to indicate

the edge and links. However there is no causality relation in SCUFL that indicates

the relations between data, or process to another process.

An example is given of how both SCUFL and OPM are used in the BMI Calculation

example of Figure 3.2 in Section 3.1.1. Based on the comparison of both models, it is

clear that the relationships representing data links in SCUFL convey the same meaning

as causal dependencies in OPM, as depicted in Table 4.2. However SCUFL does not

provide the causality relation that could give the meanings of the links for a better

understanding when compared to OPM.

69

4.2 Comparing SCUFL to the Open Provenance Model (OPM)

Table 4.2: A comparison between SCUFL data links and OPM causal dependencies.

SCUFL Data

Links

OPM Causal

Dependencies Equivalent

Example Usage from the Exercise

Advisor example

Data source can be

a work�ow input

Type 1: used

A process used an artifact

SCUFL:

<s:link source="Height"

sink="CalculateBMI" />

OPM:

CalculateBMI used Height

Data sink can be a

processor input

port

Type 1:used

A process used an artifact

SCUFL:

<s:link source="BMI Score"

sink="CheckCategory" />

OPM:

CheckCategory used BMI Score

Data source can be

a processor output

port

Type 2: wasGeneratedBy

An artifact was generated by

a process

SCUFL:

<s:link source= "CalculateBMI"

sink="BMI Score" />

OPM:

BMI Score was generated by

CalculateBMI

Data sink can be a

work�ow output

Type 2: wasGeneratedBy

An artifact was generated by

a process

SCUFL:

<s:link source= "CheckCategory"

sink="Category"/>

OPM:

Category was generated by

CheckCategory

Link from a

process to another

process

Type 3: wasTriggeredBy

A process was triggered by

another process.

SCUFL:

<s:link source= "CalculateBMI"

sink=" CheckCategory"/>

OPM:

CheckCategory process was triggered

by CalculateBMI process.

70

4.3 Rules for mapping from OPM to SCUFL

4.3 Rules for mapping from OPM to SCUFL

When transforming from OPM to SCUFL, the same concepts are modelled in di�erent

ways. Understanding the two data models, as described in the Section 4.2, enables

conversion of the execution description captured in the OPM format to generate a

work�ow description in the SCUFL format.

A set of mapping rules that maps the OPM description into SCUFL was designed

based on entity mapping. The mapping uses semantic interpretation to bind the entities

to a similar concept that has the same meaning. Semantics is the interpretation of an

object according to a human understanding of the real world [72]. For example, �client�

from a source schema is equivalent to �customer� from a target schema. Therefore

instances of �client� in the source can be reused as instances for �customer� in the

target. Therefore a mapping is required to perform such matching. This is used to

achieve the extraction and transformation of information related to data and services:

input, process, outputs and relationships.

In order to transform an OPM schema intoa Taverna Work�ow schema, the following

rules are used. There are two types of rules:

• Entity Rules: are rules based on the semantic interpretation, focusing on the

meaning of entities in OPM XML schema and SCUFL XML schema. Therefore,

the mapping is compatible if each entity from OPM carries the same meaning as

the entity in SCUFL to which it is transformed

• Relation Rules: are rules based on relationships between the entities.

These rules are described in the following sections.

4.3.1 Entity Rules OPM to SCUFL

In entity rules, there are two things to highlight; each entity involved in the OPM, and

the value of the entity.

The Entity Rules (ER) are de�ned as following:

ER1: For each entity in OPM, create an instance of a class representing the entity of

the corresponding entity in SCUFL.

71

4.3 Rules for mapping from OPM to SCUFL

ER2: The value in an OPM entity is mapped to the value of an assigned entity in

SCUFL.

Based on Entity Rules, the replacements of the entities in the transformation from

OPM to SCUFL are based on semantic interpretation. The following tables, Tables 4.3

and 4.4 describe the production of SCUFL from entities and values.

Table 4.3: Generating SCUFL entities based on Rule ER1

Entities from

source schema

(OPM XML)

Entities to target

schema (SCUFL

XML)

Example

Artifactid SourceName,SinkName OPM:

<opm:artifact id="Height">,

<opm:artifact id="BMI

Score">

SCUFL:

<s:source name="Height">,

<s:sink name="BMI Score">

Processid ProcessorName OPM:

<opm:process

id="CalculateBMI">

SCUFL:

<s:processor

name="CalculateBMI">

72

4.3 Rules for mapping from OPM to SCUFL

Table 4.4: Generating SCUFL entity values (ER2)

Values in

entities from

source schema

(OPM XML)

Values in

entities to target

schema (SCUFL

XML)

Example

Processvalue ProcessorValue OPM:

<opm:value

xsi:type="xsd:string">"http://localhost:8080

/eabmi10/eabmi10?wsdl"</opm:value>

SCUFL:

<s:wsdl>http://localhost:8080/eabmi10

/eabmi10?wsdl</s:wsdl>

Related to the above Tables 4.3 and 4.4 , the example of the generated SCUFL �le

is shown in Listing 4.1 and 4.2. In this OPM trace, myBmi process is equivalent to Cal-

culate BMI process, myCategory is equivalent to Check BMI Category and myActivity1

is equivalent to Recommend Exercise Activity.

Listing 4.1: Process in OPM is replaced by

1 <opm:processes>

2 <opm:process id="myBmi">

3 <opm:value x s i : t y p e=" x s d : s t r i n g ">" ht tp : // l o c a l h o s t : 8 0 8 0 /eabmi10/eabmi10

?wsdl "</opm:value>

4 <opm:time exact lyAt="2014−10−06T04−46−27.447Z"/>
5 </opm:process>

6 <opm:process id="myCategory">

7 <opm:value x s i : t y p e=" x s d : s t r i n g ">" ht tp : // l o c a l h o s t : 8 0 8 0 / eacategory10 /

eacategory10 ?wsdl "</opm:value>

8 <opm:time exact lyAt="2014−10−06T04−46−28.068Z"/>
9 </opm:process>

10 <opm:process id="myActivity1">

11 <opm:value x s i : t y p e=" x s d : s t r i n g ">" ht tp : // l o c a l h o s t : 8 0 8 0 / e aa c t i v i t y 1 0 /

e a a c t i v i t y 1 0 ?wsdl "</opm:value>

12 <opm:time exact lyAt="2014−10−06T04−46−29.922Z"/>
13 </opm:process>

14 </ opm:processes>

73

4.3 Rules for mapping from OPM to SCUFL

Listing 4.2: Processor in SCUFL

1 <s : p r o c e s s o r name="myBmi">

2 <s : a r b i t r a r yw sd l>

3 <s :wsd l>

4 ht tp : // l o c a l h o s t : 8 0 8 0 /eabmi10/eabmi10?wsdl

5 </ s :wsd l>

6 <s : o p e r a t i o n>myBmi</ s : o p e r a t i o n>

7 </ s : a r b i t r a r yw sd l>

8 </ s : p r o c e s s o r>

9 <s : p r o c e s s o r name="myCategory">

10 <s : a r b i t r a r yw sd l>

11 <s :wsd l>

12 h t tp : // l o c a l h o s t : 8 0 8 0 / eacategory10 / eacategory10 ?wsdl

13 </ s :wsd l>

14 <s : o p e r a t i o n>myCategory</ s : o p e r a t i o n>

15 </ s : a r b i t r a r yw sd l>

16 </ s : p r o c e s s o r>

17 <s : p r o c e s s o r name="myActivity1 ">

18 <s : a r b i t r a r yw sd l>

19 <s :wsd l>

20 h t tp : // l o c a l h o s t : 8 0 8 0 / e a a c t i v i t y 1 0 / e a a c t i v i t y 1 0 ?wsdl

21 </ s :wsd l>

22 <s : o p e r a t i o n>myActivity1</ s : o p e r a t i o n>

23 </ s : a r b i t r a r yw sd l>

24 </ s : p r o c e s s o r>

In Listing 4.1, the Process in OPM (Line 1 to Line 5) is transformed to Processor

in SCUFL (Line 1 to Line 8) in Listing 4.2. This transformation is based on the Entity

Rules, ER1 and ER2 described earlier.

4.3.2 Relation Rules OPM to SCUFL

After entity rules are processed, relation rules translate the relationships from OPM

to SCUFL. Relationships are represented di�erently in both schemas. OPM relations

are given the name causal dependencies, whereas in SCUFL they are data links. The

Relation Rules process involves identifying the cause and e�ect relation in OPM and

the linkage between them. Hence, the SCUFL XML needs to be analysed to identify all

causal dependency relationships from the OPM �le. To translate the cause and e�ect

relations appropriately, the rules are described in Listings 4.3 to 4.5.

74

4.3 Rules for mapping from OPM to SCUFL

Listing 4.3: Relation Rule 1 (RR1) that generates data links in SCUFL from causal dependency

used in OPM

RR1:

for a l l used <P1 , a1> do

Check Causal Dependency

I f e f f e c t in OPM i s Proce s s id then

Proce s s id becomes data s ink in SCUFL

I f cause in OPM i s A r t i f a c t i d then

Ar t i f a c t i d becomes data source in SCUFL

end i f

endfor

Based on the rules in Listing 4.3, OPM can be translated into SCUFL. Table 4.5

describes the production of SCUFL from the causal dependency used in OPM.

Table 4.5: Generate Data Links in SCUFL from the Causal Dependency used in OPM

Data links target schema(SCUFL)Causal Dependencies

source schema (OPM) Data source

(SCUFL)

Data sink

(SCUFL)

Example

1) used

Cause: Artifactid

E�ect: Processid

Artifactid Processid OPM:

<opm:e�ect

id="CalculateBMI"/>

<opm:cause

id="Height"/>

SCUFL:

<s:link source="Height"

sink="CalculateBMI" />

In a used relation, a process used an artifact to perform a computation. This means

the artifact(s) are required for the process to complete. In SCUFL data links, there is

the data source and data sink. A used relation will take an element artifactid (cause)

from OPM which becomes a data source in a SCUFL data link, while the element

processid (e�ect) in OPM becomes a data sink in a SCUFL data link. This is based on

the �rst Relation Rule (RR1).

The second Relation Rule is as depicted in Listing 4.4.

75

4.3 Rules for mapping from OPM to SCUFL

Listing 4.4: Relation Rule 2 (RR2) that generates data links in SCUFL from causal dependency

wasGeneratedBy in OPM

RR2:

for a l l wasGeneratedBy <a1 , P1> do

Check Causal Dependency

I f e f f e c t in OPM i s A r t i f a c t i d then

Ar t i f a c t i d becomes data s ink in SCUFL

I f cause in OPM i s Proce s s id then

Proce s s id becomes data source in SCUFL

end i f

endfor

Based on the RR2 in Listing 4.4, Table 4.6 describes the production of data links in

SCUFL from causal dependency wasGeneratedBy in OPM.

Table 4.6: Generate Data Links in SCUFL from Causal Dependency wasGeneratedBy in

OPM

Data links target schema(SCUFL)Causal Dependencies

source schema (OPM) Data source

(SCUFL)

Data sink

(SCUFL)

Example

2) wasGenerated By

Cause: Processid

E�ect: ArtifactId

Processed Artifactid OPM:

<opm:e�ect id="BMI"/>

<opm:cause

id="CalculateBMI"/>

SCUFL:

<s:link

source="CalculateBMI"

sink="BMI Score" />

In a wasGeneratedBy relation, an artifact wasGeneratedBy a process. The artifact

can be understood as the data output of the process. In SCUFL data links, this relation

will take an element processid (cause) from OPM : it becomes a data source for a

SCUFL data link, while an element artifactid (e�ect) from OPM becomes a data sink

in a SCUFL data link. The second Relation Rule (RR2) is applied here.

The third Relation Rule focuses on wasTriggeredBy as shown in Listing 4.5.

76

4.3 Rules for mapping from OPM to SCUFL

Listing 4.5: Relation Rule 3 (RR3) that generates data links in SCUFL from causal dependency

used in OPM

RR3:

for a l l wasTriggeredBy <P1 ,P2> do

Check Causal Dependency

I f e f f e c t in OPM i s Proce s s id then

Proce s s id becomes data s ink in SCUFL

I f cause in OPM i s Proce s s id then

Proce s s id becomes data source in SCUFL

end i f

endfor

Referring to Listing 4.5, Table 4.7 describes the production of data links in SCUFL

from causal dependency wasTriggeredBy in OPM.

Table 4.7: Generate Data Links in SCUFL from Causal Dependency wasTriggeredBy in

OPM

Data links target schema(SCUFL)Causal Dependencies

source schema (OPM) Data source

(SCUFL)

Data sink

(SCUFL)

Example

3) wasTriggeredBy

Cause: Processid

E�ect: Processid

Processed Processed OPM:

<opm:e�ect

id="CheckCategory"/>

<opm:cause

id="CalculateBMI"/>

SCUFL:

<s:link

source="CalculateBMI"

sink=" CheckCategory "

/>

In a wasTriggeredBy relation, a process wasTriggeredBy another process. The rela-

tionship shows that one process (P1) can activate another process (P2). P1 needs to

start in order for P2 to start or to be completed. In a SCUFL data link, this relation

will take an element processid (cause) from OPM, it becomes a data source in a SCUFL

data link, while an element proccessid (e�ect) in OPM becomes a data sink in a SCUFL

data link.

77

4.3 Rules for mapping from OPM to SCUFL

For the above mentioned Relation Rule, one example of how a SCUFL �le is gener-

ated based on the causal dependency in OPM is shown in Listing 4.6.

Listing 4.6: Causal Dependency used in OPM

1 <opm:causa ldependenc ies>

2 <opm:used id="u_1">

3 <opm:e f f e c t id="CalculateBmi"/>

4 <opm:ro le id="r_1" value="1"/>

5 <opm:cause id=" he ight "/>

6 <opm:account id="account1 "/>

7 <opm:time exact lyAt="2014−10−06 12 :46:30:PM"/>

8 </opm:used>

9 <opm:used id="u_2">

10 <opm:e f f e c t id="CalculateBmi"/>

11 <opm:ro le id="r_2" value="2"/>

12 <opm:cause id="weight "/>

13 <opm:account id="account1 "/>

14 <opm:time exact lyAt="2014−10−06 12 :46:30:PM"/>

15 </opm:used>

16 </ opm:causa ldependenc ies>

78

4.4 Generation of OPM to Taverna Work�ow

Listing 4.7: Data source and data sink in SCUFL

1 <s : l i n k source=" he ight " s ink="parametersXML1:height" />

2 <s : l i n k source="weight " s ink="parametersXML1:weight" />

3 <s : l i n k source="parametersXML1:output" s ink="CalculateBmi:parameters " /

>

Listing 4.6 and 4.7 show how cause and e�ect under used causal dependency are

represented by data source and data sink in SCUFL. This is generated based on the

�rst Relation Rule, RR1 as mentioned earlier.

4.4 Generation of OPM to Taverna Work�ow

Work�ow language schema is updated from time to time to cater for new work�ow

requirements. For example, Taverna Work�ow has initially used SCUFL and moved to

t2�ow. Therefore, this section addressed a generic Taverna work�ow schema and the

algorithm that can be used to drive the generation of Taverna work�ow from OPM that

does not involved SCUFL, as described in previous section. A generic Taverna Work�ow

contains processors, each having input and output ports, and datalinks to connect from

a port of processor to another port. This work shares similar concept with [71] on

generation of provenance to work�ow. The causal dependencies from OPM can be used

to generate Taverna Work�ow. Listing 4.8 shows the pseudo-code for generation of

Taverna work�ows from OPM.

Listing 4.8: Generation of generic Taverna work�ow from OPM

1 f o r a l l used <P1 , a1> do

2 P1 i s added to the s e t o f Proces sor and t h e i r input por t s

3 Check Causal Dependency −> fo r i d e n t i f y i n g DataLink (inputPort ,

outputPort)

4 I f e f f e c t in OPM i s Proce s s id then

5 Proce s s id becomes outputPort

6 I f cause in OPM i s A r t i f a c t i d then

7 A r t i f a c t i d becomes inputPort

8 end i f

9 endfor

10 f o r a l l wasGeneratedBy <a2 , P1> do

11 P1 i s added to the s e t o f Proces sor and t h e i r output por t s

12 Check Causal Dependency −> fo r i d e n t i f y i n g DataLink (inputPort ,

outputPort)

79

4.5 The ReProduX Extraction and Transformation Algorithm

13 I f e f f e c t in OPM i s A r t i f a c t i d then

14 A r t i f a c t i d becomes outputPort

15 I f cause in OPM i s Proce s s id then

16 Proce s s id becomes inputPort

17 end i f

18 endfor

In Listing 4.8 Line 2 and 11, an instance of P1 in a set of Processor will not be

duplicated.

4.5 The ReProduX Extraction and Transformation Algo-

rithm

ReProduX consists of OPM Generator, OPM2Taverna Generator and OPM Trace

Browser as illustrated in Figure 4.2. OPM Generator as described in Section 3.3.2, con-

nected to two repositories namely Service repository and Experiment repository. The

service repository is used to store all versions of services, and the Experiment repository

is used to store all the information that should be captured as part of an opm prove-

nance trace. OPM Generator will access these two repositories and generate an OPM

provenance trace. Then, the OPM2Taverna Generator that contains an algorithm will

extract entities from OPM and transforms them to Taverna Work�ow. From this point,

OPM2Taverna Generator also represents any Taverna Work�ow schema including the

initial Taverna schema that is SCUFL. Thus, this generator is written based on SCUFL

Entity Rules and Relation Rules described in Section 4.3 and Section 4.4.

ReProduX has three approaches to handle service versioning as follows:

• Approach 1: Reproduce exactly using the same version of service(s) as documented

in past OPM provenance trace, which is the original experiment execution trace.

• Approach 2: For the inaccessible services due to service update and missing,

ReProduX will recommend the nearest service available to enable reproducibility.

• Approach 3: ReProduX allows user to choose a selection of services of their choice.

The user can select any version of that service before generating a new OPM trace

that can be used to reproduce exactly as per Approach 1.

The OPM2Taverna pseudo-code is depicted as in Listing 4.9:

80

4.5 The ReProduX Extraction and Transformation Algorithm

Figure 4.2: ReProduX Tool

Listing 4.9: OPM2Taverna Algorithm

1 Load OPM f i l e

2 Parse the content o f OPM f i l e us ing DocumentBuilder

3 Store the parsed content to Document ob j e c t

4 Extract OPM proce s s parameters from Document ob j e c t

5 Extract OPM used parameters from Document ob j e c t

6 Extract OPM wasGeneratedBy parameters from Document ob j e c t

7 Check OPM wasVersionOf parameters from Document ob j e c t

8 Create SCUFL format and wr i t e in the parameters

9 I f OPM pro c e s s e s are not a v a i l a b l e in Se rv i c e Reg i s t ry then

10 Find and Write in the proce s s

11 end i f

12 Write l i n k source ans s ink in to SCUFL

In Line 4, 5 and 6, the rule in ER and RR are followed. In Listing 4.9 at Line 8, the

SCUFL format is created. In this conversion work, Taverna requires XMLInputSplitter

and XMLOutputSplitter in order for it to be able to process the input and provide

output value. Therefore, a conversion of OPM trace into SCUFL work�ow is to include

these splitters as depicted in Figure 4.3.

81

4.5 The ReProduX Extraction and Transformation Algorithm

Figure 4.3: XML Splitters in SCUFL.

The splitters are added as processor whenever ReProduX encounters input, processes

and output. The OPM trace is then used as an input of ReProduX which converts it

into a SCUFL work�ow containing the required information about the past experiment.

If there is wasVersionOf in the OPM trace, ReProduX algorithm will check whether

the services are available in the Service repository. By default ReProduX will take the

current service if it is available in the wasVersionOf dependency, for instance opm:e�ect

id="myActivity1a". Otherwise ReProduX will use the alternate service version as

shown in opm:case id="myActivity1" in Listing 3.5 in Chapter 3.

If both the services are not available or missing, then OPM2Taverna will recommend

the alternative service by checking the Service repository as shown in Figure 4.4. In List-

ing 4.9 at Line 8-9, this is where the ReProduX Approach 2 is applied. OPM2Taverna

will search for alternate service that created prior to the service used in the trace. How-

ever, if the service in the trace is the �rst version, therefore OPM2Taverna will select

an alternate service with the date of service creation greater than the service in used.

That is why service time creation is important in this algorithm.

OPM2Taverna will not recommend for the latest version, as this work believes the

nearest version is the best candidate of service that is similar to the missing service. The

latest service may di�er a lot compared to the nearest service. Nevertheless, ReProduX

also provides Approach 3, the ability to select speci�c service version of choice using a

browser. In addition, user can also view the service browser if the user is interested to

get the latest service and substitute the service with the current one.

In Listing 4.9 at Line 11, SCUFL �le is successfully generated and can proceed to

re-execution as described in next sub-section 4.5.1.

82

4.5 The ReProduX Extraction and Transformation Algorithm

Figure 4.4: ReProdux algorithm to check service availability.

4.5.1 The Transformation and Execution

In ReProduX transformation, a set of OPM properties undergo a sequence of transfor-

mations through the OPM2Taverna mapping to produce a Taverna �le. The generated

SCUFL or Taverna �le can then be loaded into the Taverna Work�ow System and the

past experiment successfully re-executed. Figure 4.5 (a) and (b) shows the graphical

representation of the OPM and SCUFL in Taverna. In Taverna, the diagram shows the

boxes that represent the components of SCUFL: Inputs, Outputs and Processes. The

linkages are represented as lines with arrowheads.

Figure 4.6 shows how ReProduX that is built in this work will parse the source

document OPM) and extract their content as well as their structure and then transform

the source document into a target document (SCUFL). Then the SCUFL �le is used to

re-execute the work�ow of past experiment using the Taverna Work�ow System.

83

4.5 The ReProduX Extraction and Transformation Algorithm

(a) Provenance for Exercise Advisor example

in OPM

(b) SCUFL generated by ReProduX, visu-

alised in the Taverna Workbench

Figure 4.5: Graphical representation of the OPM and SCUFL in Taverna

84

4
.5
T
h
e
R
e
P
ro
d
u
X
E
x
tra

c
tio

n
a
n
d
T
ra
n
sfo

rm
a
tio

n
A
lg
o
rith

m

Figure 4.6: The re-execution in Taverna based on SCUFL �le generated from OPM2Taverna.

85

4.6 Discussion

4.6 Discussion

This chapter has investigated the transformation from OPM to SCUFL and OPM to

Taverna Work�ow (does not involve SCUFL) in order to support the reproduction

of a previous experimental result. The contribution of this chapter is the rules for

mapping OPM to SCUFL. This transformation can be applied to OPM XML documents

and takes into account service versioning information captured in a previous work�ow

execution.

The transformation included both Entity Rules and Relation Rules with recommen-

dation of services are keys for capturing experiments. The next chapter evaluates the

success of the approach to re-execute past experiments by running a series of examples

through the transformation algorithm.

86

Chapter 5

Evaluation of the Reproducibility

Framework

This chapter evaluates the contributions introduced in Chapters 3 and 4. The goal of this

research has been to design a reproducibility framework that is capable of reproducing

e-experiments, in particular by being able to record the speci�c versions of services used

in the experiments, and then call the correct version during reproduction. Chapter 2

showed that consideration of service versioning is missing from current studies.

To evaluate the ideas presented earlier, it was necessary to design and implement

a system that can reproduce e-experiments. This chapter describes the design, imple-

mentation and the subsequent evaluation.

For this implementation, services are created in NetBeans , published in a jUDDI

registry [73], and consumed by a Web Service Consumer in NetBeans. In this work,

OPM Generator is created to generate a provenance of the execution (provenance trace)

in OPM based format, transformed using ReProduX (an OPM to SCUFL Converter)

into SCUFL format and loaded into the Taverna Work�ow System to be reproduced.

Figure 5.1 below illustrates the Reproducibility Framework evaluated in this work.

87

Figure 5.1: Reproducibility Framework

88

5.1 Implementation of Reproducibility Framework

In order to demonstrate the proposed approach, two types of application are used.

The �rst is the Exercise Advisor application with data and services built speci�cally to

explore the reproducibility system. The second uses publically available web services

from myExperiment repository, and so explores how the system works when the services

are not in the control of the user attempting to run and reproduce the experiments.

5.1 Implementation of Reproducibility Framework

In this section, the implementation of the Reproducibility Framework concept that con-

sists of three components; the web service architecture to compose, register and consume

services, ReProduX tool to call the correct version of a service during reproduction and

also to convert OPM to SCUFL, and Taverna Work�ow Environment to re-execute the

past experiment, is explained. The following sub-sections, will in turn describe the

implementation steps that is depicted in the Figure 5.1, as follows:

Service Architecture

• Create new service version using service versioning convention

• Publish and share service into jUDDI registry

• Consume a new service version

ReProduX tool

• Generate OPM trace

• Convert OPM trace to SCUFL using ReProduX

Taverna Work�ow Environment

• Reproduce in Taverna

5.1.1 Versioned Service Deployment, Publication and Consumption

in a Web Service Architecture

The application scenario below describes the interactions between the Web Service

Provider, Web Service Registry and Web Service Consumer as illustrated in the red

dashed line in Figure 5.2.

89

5.1 Implementation of Reproducibility Framework

Figure 5.2: Web Service Architecture

The NetBeans IDE is used by Web Service Provider to create, edit, and deploy the

Exercise Advisor web service to a GlassFish application server. GlassFish server is used

to manage and expose web services over HTTP. It handles requests and responses to

those services packaged in SOAP messages. As discussed in service versioning concept in

Chapter 3, the provider will use the service versioning convention scheme when creating

new version of the same service, taking into account minor and major release of a

service, as shown in Figure 5.3. When the web services have been deployed, the WSDL

description of the web services is generated.

Once the services have been deployed, the web service provider will then register the

services into the jUDDI, a web service registry with a unique tModel, where each service

interface is assigned to a unique tModel key. In jUDDI, there is no direct support of

storing multiple versions of same service. Therefore, the service versioning convention is

used and the version description of a service is stored as in Figure 5.4 and 5.5. Therefore,

90

5.1 Implementation of Reproducibility Framework

Figure 5.3: Web Services Project in NetBeans

in order to overcome the external services may become inaccessible, therefore in this

work, all versions of services are automatically retained in a jUDDI service repository.

In regards to the service versioning information, there are four tables used to capture

version information. The required tables are depicted in Figure 5.5.

Versions of services in this database can be viewed from the following jUDDI Registry

Browser in Figure 5.6. This browser is speci�cally created for this implementation work

to enable the consumer to view the available services along with service information

including service name, service description, service version, service wsdl path and when

the service was created or last modi�ed.

The consumer searches the jUDDI registry browser to discover the available web

91

5.1 Implementation of Reproducibility Framework

Figure 5.4: jUDDI tModel editor on service information

Figure 5.5: jUDDI tModel wsdl information

services of his or her choice. In this work, the speci�cally created Exercise Advisor web

service will be consumed by a Web Service Consumer in order to generate the required

result. As discussed in Section 5.1 Implementation, the created Exercise Advisor web

services is published into the jUDDI repository and a GlassFish Web Server hosted the

web service by listening to HTTP tra�c [69].

In order to consume the web service, NetBeans is used to create a Web Service

Consumer application, as shown in Figure 5.8.The WSDL document is then accessed

92

5.1 Implementation of Reproducibility Framework

Figure 5.6: jUDDI Tables in MySQL

Figure 5.7: jUDDI Registry Browser displaying available services from Registry

93

5.1 Implementation of Reproducibility Framework

by the Web Service Consumer and a SOAP request message is generated. The SOAP

request is then received by the web service and a SOAP response is created and sent to

the GlassFish Web Server. The Web Service result is then returned to the web service

consumer via a HTTP response that includes the SOAP response.

Figure 5.8: Client Application Interface

Figure 5.9: Input and Output Data Parameters of Exercise Advisor Execution

Upon the successful execution of the client application interface, the input and

output data parameters are stored in the Experiment repository as shown in Figure

94

5.1 Implementation of Reproducibility Framework

Figure 5.10: OPM Trace Tables in OPM Trace Repository

5.9 whereas Figure 5.10 shows the OPM trace tables in OPM Trace repository. This

database is to be accessed by ReProduX tool that will be discussed in the next section,

Section 5.1.2.

5.1.2 Versioning Support in OPMGeneration and OPM2Taverna Gen-

erator in ReProduX

This section describes how the OPM generator creates an OPM provenance trace based

on the data parameters stored in the mySQL Experiment repository. Once the prove-

nance trace is generated, it is then transformed into an executable SCUFL work�ow

format by OPM2Taverna generator which has been discussed in Chapter 4. The square

red dashed line in Figure 5.11 shows the components in ReProduX that are OPM Gen-

erator, OPM2Taverna Generator and OPM Trace Browser.

95

5.1 Implementation of Reproducibility Framework

Figure 5.11: ReProduX Tool

The OPM provenance trace is generated from the OPM generator after the execution

of one instance of a non-work�ow system. From the webservice (Netbeans) client, all

the information that should be captured as part of an OPM provenance trace during

the execution run, is stored in the mySQL Experiment repository. In this work, real

experiment input and output data parameters from Hand, Foot and Mouth Disease

(HFMD) are used. OPM Generator is also integrated with a Service repository that

contains the information of web service wsdl and versioning information. Then, the

OPM generator will access both OPM Experiment repository and Service repository

and generate an OPM provenance trace.

The OPM provenance trace includes wasVersionOf that is a versioning information

to show the link between one service version to another service version. This versioning

information is essential to provide alternative service which is the nearest versions in

case the current service is not available or missing. OPM Generator will need to access

the Service repository that contains versioning information and compare the relevant

96

5.1 Implementation of Reproducibility Framework

service version naming convention and the date of service creation. Based on that,

the OPM Generator will write the current service and the nearest version of the same

service as shown in Listing 5.1.

Listing 5.1 shows the wasVersionOf in the OPM provenance trace in which myAc-

tivity has two service versions (myActivity1a wasVersionOf myActivity1).

Listing 5.1: wasVersionOf causal dependencies

1 <opm:wasVersionedOf>

2 <opm:e f f e c t id="myActivity1a" />

3 <opm:ro le va lue=" s e r v i c eVe r s i on />

4 <opm:cause id="myActivity1" />

5 <opm:account id="account1 " />

6 </opm:wasVersionOf>

When the OPM trace has been generated, the user then can go directly to the

OPM2Taverna Generator browser in ReProduX.

5.1.3 ReProduX Service Selection

The ReProduX uses three approaches to convert OPM �le to SCUFL �le considering

the service version major or minor release wherever applicable, as shown in Table 5.1.

For Approach 1, newer version of service for both major and minor will not overwrite

or replace the previous version. Therefore, ReProduX will take the exact service location

recorded in the original provenance trace be able to reproduce exactly as the previous

experiment execution. However, in some practices, if new version occurs, the service

provider normally replaced the previous version. In this work, no versions of services

are deleted or replaced.

For Approach 2, if the version of the service as in the OPM trace is not available or

missing, the ReProduX by default will access from the Service repository and recom-

mend the nearest available compatible service. ReProduX will substitute the missing

version of a service to the recommended service version as described in Chapter 4. Re-

ProduX will not recommend incompatible service as the content in the OPM trace is

di�erent, therefore direct service version substitution cannot be done.

For Approach 3, user can substitute the services in the OPM trace according to

their preferences by choosing any versions of service that is under minor release that is

97

5.1 Implementation of Reproducibility Framework

Table 5.1: ReProduX approaches

compatible with the OPM trace, and re-generate a new OPM trace. If other versions of

the same service are major release, the versions will not be displayed in the list as the

service is incompatible to the current OPM trace. User can do the service selection in

the OPM Trace Generator as shown in Figure 5.12.

98

5
.1
Im

p
le
m
e
n
ta
tio

n
o
f
R
e
p
ro
d
u
c
ib
ility

F
ra
m
e
w
o
rk

Figure 5.12: OPM Trace Generator

99

5.1 Implementation of Reproducibility Framework

Figure 5.13: OPM Trace that utilise the service

Apart from the list of services in the OPM trace as shown in in Figure 5.12, there

is also a section for the user to view other opm trace(s) that utilise the services in the

OPM trace, as shown in Figure 5.13, as above. The Figure 5.13 shows that service

version eabmi10 is utilised in trace1 and trace 3, whereas service version eaactivity11

only been used in the current trace with no other traces has been utilising it.

When the user has made the selection and re-generate the new OPM trace using

the OPM generator, then the user can use the OPM2Taverna Generator in ReProduX.

5.1.4 Reproduce in Taverna Work�ow Management System

This section describes how the SCUFL �le that was generated by the ReProduX, is then

loaded into the Taverna Work�ow Management System to reproduce the experiment as

shown in the red dashed square box in Figure 5.14.

By successfully enacting the SCUFL �le work�ow in the Taverna Work�ow System,

the implementation has succesfully shown as in Figure 5.15 that it is possible to re-

execute an execution of a non-work�ow into a work�ow environment. This also shows

that the OPM2Taverna mapping algorithm has transformed the past OPM original

trace into a correct Taverna work�ow.

100

5.2 Evaluation

Figure 5.14: Reproduce in Taverna Work�ow Environment

5.2 Evaluation

After being able to re-execute past experiments in the Taverna Work�ow System, eval-

uations were made whether the past experiment is able to be reproduced correctly or

not. There are three variations of test cases conducted in this work, as listed as follows:

• Verbatim Reproducibility: Be able to reproduce exactly, by calling the same ser-

vice mentioned in past OPM trace.

• Non-verbatim Reproducibility: Be able to reproduce though one or more services

mentioned in the OPM trace are no longer available, by calling other services that

are compatible to the previous version of service.

• Comparative Analysis: Comparing ReProduX with Trident

The above test cases are in turn described in the following sub-sections.

101

5.2 Evaluation

Figure 5.15: The experiment loaded into Taverna Work�ow System

5.2.1 Verbatim Reproducibility

Two test cases are used to evaluate ReProduX, namely the Deterministic Model for the

spread of Hand, Foot and Mouth Disease (HFMD) test case and test cases from myEx-

periment. The HFMD experiment is taken from a research cluster group in University

Malaysia Sarawak. Currently, the HFMD experiment is conducted in silo and there is

not platform to share the experiment. Therefore, it is not easily accessible unless the

original owner of the experiment is willing to share the experiment. Another challenge

in using the HFMD test case is to be able to create a link to call the Matlab's func-

tion. For this evaluation, the aim is to demonstrate that the OPM2Taverna mapping

implemented in ReProduX generates correct and executable Taverna work�ow. The

expectation outcome from this evaluation is that the generated Taverna work�ow will

produce the same results as the original one.

• Deterministic Model for the spread of Hand, Foot and Mouth Disease in Sarawak

Test Case

This mathematical HFMD model is to predict the spread of HFMD in Sarawak

in terms of the number of infected persons. The HFMD model uses three parame-

102

5.2 Evaluation

ters namely susceptible, infected and recovered in which the original experiment was

executed in a Matlab environment.

In this verbatim reproducibility the HFMD experiment has been chosen to demon-

strate the ability of ReProduX to reproduce exactly as the original experiment's result.

For this work, a web service is speci�cally created in SOA system that allows the service

to call the Matlab's function to execute the HFMD experiment.

After the execution, the experiment's data is stored inside the mySQL Experiment

repository. Then, the OPM Generator is used to generate an OPM provenance trace

for the HFMD's experiment as shown in Listing 5.2 below. ReProdux then transforms

the OPM into a Taverna work�ow. The Taverna work�ow �le is successfully executed

in Taverna 2.3 Work�ow System. It is found that the ReProduX is able to reproduce

exactly as the original HFMD experiment.

Listing 5.2 shows the generated OPM provenance trace.

Listing 5.2: HFMD Generated OPM Provenance Trace

1 <opm:accounts>

2 <opm:account id="account1 "/>

3 </opm:accounts>

4 <opm:processes>

5 <opm:process id="hfmd">

6 <opm:value x s i : t y p e=" x s d : s t r i n g ">" ht tp : // l o c a l h o s t : 8 0 8 0 /Eas1Matlab/

Eas1Matlab?wsdl "</opm:value>

7 <opm:time exact lyAt="2016−01−01T03−02−28.618Z"/>
8 </opm:process>

9 </ opm:processes>

10 <opm:a r t i f a c t s>

11 <opm:a r t i f a c t id="x1">

12 <opm:value x s i : t y p e=" xsd :doub le ">"550700"</opm:value>

13 </ opm:a r t i f a c t>

14 <opm:a r t i f a c t id="x2">

15 <opm:value x s i : t y p e=" xsd :doub le ">"4"</opm:value>

16 </ opm:a r t i f a c t>

17 <opm:a r t i f a c t id="x3">

18 <opm:value x s i : t y p e=" xsd :doub le ">"0"</opm:value>

19 </ opm:a r t i f a c t>

20 <opm:a r t i f a c t id=" tS ta r t ">

21 <opm:value x s i : t y p e=" x sd : i n t ">"0"</opm:value>

22 </ opm:a r t i f a c t>

23 <opm:a r t i f a c t id="tEnd">

24 <opm:value x s i : t y p e=" x sd : i n t ">"60"</opm:value>

103

5.2 Evaluation

25 </ opm:a r t i f a c t>

26 <opm:a r t i f a c t id=" t I n t e r e s t ">

27 <opm:value x s i : t y p e=" x sd : i n t ">"10"</opm:value>

28 </ opm:a r t i f a c t>

29 <opm:a r t i f a c t id="tOutput">

30 <opm:value x s i : t y p e=" xsd :doub le ">"10"</opm:value>

31 </ opm:a r t i f a c t>

32 <opm:a r t i f a c t id="xOuptut">

33 <opm:value x s i : t y p e=" x s d : s t r i n g ">"

550707.342545949 ,4 .2520525128916 ,0 .00253834135001543 "</opm:value>

34 </ opm:a r t i f a c t>

35 </ opm :a r t i f a c t s>

36 <opm:causa ldependenc ies>

37 <opm:used id="u_1">

38 <opm:e f f e c t id="hfmd"/>

39 <opm:ro le id="r_1" value="1"/>

40 <opm:cause id="x1"/>

41 <opm:account id="account1 "/>

42 <opm:time exact lyAt="2016−01−01 11 :02:50:AM"/>

43 </opm:used>

44 <opm:used id="u_2">

45 <opm:e f f e c t id="hfmd"/>

46 <opm:ro le id="r_2" value="2"/>

47 <opm:cause id="x2"/>

48 <opm:account id="account1 "/>

49 <opm:time exact lyAt="2016−01−01 11 :02:50:AM"/>

50 </opm:used>

51 <opm:used id="u_3">

52 <opm:e f f e c t id="hfmd"/>

53 <opm:ro le id="r_3" value="3"/>

54 <opm:cause id="x3"/>

55 <opm:account id="account1 "/>

56 <opm:time exact lyAt="2016−01−01 11 :02:50:AM"/>

57 </opm:used>

58 <opm:used id="u_4">

59 <opm:e f f e c t id="hfmd"/>

60 <opm:ro le id="r_4" value="4"/>

61 <opm:cause id=" tS ta r t "/>

62 <opm:account id="account1 "/>

63 <opm:time exact lyAt="2016−01−01 11 :02:50:AM"/>

64 </opm:used>

65 <opm:used id="u_5">

66 <opm:e f f e c t id="hfmd"/>

67 <opm:ro le id="r_5" value="5"/>

68 <opm:cause id="tEnd"/>

104

5.2 Evaluation

69 <opm:account id="account1 "/>

70 <opm:time exact lyAt="2016−01−01 11 :02:50:AM"/>

71 </opm:used>

72 <opm:wasGeneratedBy id="g_1">

73 <opm:e f f e c t id="hfmdReadings"/>

74 <opm:ro le id="r_1" value=""/>

75 <opm:cause id="hfmd"/>

76 <opm:account id="account1 "/>

77 <opm:time exact lyAt="2016−01−01 11 :02:50:AM"/>

78 </opm:wasGeneratedBy>

79 </ opm:causa ldependenc ies>

80 </opm:opmGraph>

In the listing above, wasVersionOf causal dependency is not generated in the OPM

provenance trace because the service has only one version to call function in Matlab.

Listing 5.3 shows the transformed SCUFL work�ow �le.

Listing 5.3: HFMD Taverna work�ow �le

1 <s : p r o c e s s o r name="parametersXML1">

2 <s : l o c a l>

3 org . embl . eb i . e s c i e n c e . s cu f lwo rk e r s . java . XMLInputSplitter

4 <s : e x t e n s i o n s>

5 <s:complextype op t i ona l=" f a l s e " unbounded=" f a l s e " typename="hfmd

" name="parameters " qname="{ ht tp : // x2eav1 /}hfmd">

6 <s : e l emen t s>

7 <s :ba s e type op t i ona l=" f a l s e " unbounded=" f a l s e " typename="

double " name="x1" qname="hfmd:x1"

8 <s :ba s e type op t i ona l=" f a l s e " unbounded=" f a l s e " typename="

double " name="x2" qname="hfmd:x2"

9 <s :ba s e type op t i ona l=" f a l s e " unbounded=" f a l s e " typename="

double " name="x3" qname="hfmd:x3"

10 <s :ba s e type op t i ona l=" f a l s e " unbounded=" f a l s e " typename="

double " name=" tS ta r t " qname="hfmdtStart "

11 <s :ba s e type op t i ona l=" f a l s e " unbounded=" f a l s e " typename="

double " name="tEnd" qname="hfmdtEnd"

12 </s : e l emen t s>

13 </ s :complextype>

14 </ s : e x t e n s i o n s>

15 </ s : l o c a l>

16 </ s : p r o c e s s o r>

17 <s : p r o c e s s o r name="parametersXML2">

18 <s : l o c a l>

19 org . embl . eb i . e s c i e n c e . s cu f lwo rk e r s . java . XMLOutputSplitter

20 <s : e x t e n s i o n s>

105

5.2 Evaluation

21 <s:complextype op t i ona l=" f a l s e " unbounded=" f a l s e " typename="

hfmdResponse" name="parameters " qname="{ ht tp : // x2eav1 /}

hfmdResponse">

22 <s : e l emen t s>

23 <s :ba s e type op t i ona l=" true " unbounded=" f a l s e " typename="

double " name=" return " qname="hfmdResponse:return "

24 </s : e l emen t s>

25 </ s :complextype>

26 </ s : e x t e n s i o n s>

27 </ s : l o c a l>

28 </ s : p r o c e s s o r>

29 <s : p r o c e s s o r name="hfmd">

30 <s : a r b i t r a r yw sd l>

31 <s :wsd l>

32 h t tp : // l o c a l h o s t : 8 0 8 0 /Eas1Matlab/Eas1Matlab?wsdl

33 </ s :wsd l>

34 <s : o p e r a t i o n>hfmd</ s : o p e r a t i o n>

35 </ s : a r b i t r a r yw sd l>

36 </ s : p r o c e s s o r>

37 <s : l i n k source="x1" s ink="parametersXML1:x1" />

38 <s : l i n k source="x2" s ink="parametersXML1:x2" />

39 <s : l i n k source="x3" s ink="parametersXML1:x3" />

40 <s : l i n k source=" tS ta r t " s ink="parametersXML1:tStart " />

41 <s : l i n k source="tEnd" s ink="parametersXML1:tEnd" />

42 <s : l i n k source="hfmd:parameters " s ink="parametersXML2:input" />

43 <s : l i n k source="parametersXML2:return" s ink="hfmdReadings" />

44 <s : l i n k source="parametersXML1:output" s ink="hfmd:parameters " />

45 <s : s o u r c e name="x1" />

46 <s : s o u r c e name="x2" />

47 <s : s o u r c e name="x3" />

48 <s : s o u r c e name=" tS ta r t " />

49 <s : s o u r c e name="tEnd" />

50 <s : s i n k name="hfmdReadings" />

51 </ s : s c u f l>

Figure 5.16 shows the re-execution of HFMD experiment in Taverna Work�ow Sys-

tem.

106

5
.2
E
v
a
lu
a
tio

n

Figure 5.16: The re-execution of HFMD experiment in Taverna Work�ow System.

107

5.2 Evaluation

Even though the HFMD experiment is successfully reproduced, the ReProduX has

no control on versioning of services from the original experiment owner. For example,

when the HFMD algorithm has been changed to a new version, ReProduX will not be

able to access the other available version of the same services unless the experiment

owner inform and update on the availability of the new version. This is why in this

work, it is proposed for service owners to follow a versioning standard to allow sharing

purposes.

• Work�ows from myExperiment Test Case

Twenty experiments that utilise wsdl web services from myExperiment repository

have been evaluated and it has been found that about eighty percent of the experiments

work�ows cannot be re-executed in Taverna Work�ow Systems due to inability to access

the external web services. Upon opening the work�ows, Taverna returns error message

such as depicted in Figure 5.17 as below.

Figure 5.17: Example of Taverna error message from Entrez Gene to KEGG Pathway

This is one of the problems that ReProduX aims to overcome where external web

services becomes inaccessible. Despite the initial challenges of �nding experiments work-

�ows to be re-executed, the remaining twenty percent can be re-executed. In this eval-

uation, one example is demonstrated to show the ReProduX ability to reproduce via

the Taverna round trip where the OPM trace of the experiment is generated by the

execution of the Taverna work�ow and goes into ReProduX to be converted back to

SCUFL and re-executed in Taverna.

108

5.2 Evaluation

5.2.2 Non-Verbatim Reproducibility

Non-Verbatim reproducibility evaluation is to test the ReProdux algorithm that was

discussed in Chapter 4 when one or more of the services mentioned in the OPM trace are

no longer available. Previously, when this scenario happened, the experiments cannot

be re-executed and will hinder reproducibility. In this case, ReProduX is designed

to automatically deal with this scenario where ReProduX will recommend the nearest

services according to the service creation or its last modi�ed date.

In contrast to the Verbatim Reproducibility, the evaluation for the work�ows from

myExperiment or other real life existing experiments cannot be implemented for the

Non-Verbatim Reproducibility evaluation due to the fact that the external web services

are not within the control of the user and there are no available versioning of web

services as speci�ed in the Chapter 4. For this case, this work proposes that web

services providers or owners to provide multiple versions of the same web services at the

early stage of service creation. Service provider plays a vital role to manage versioning

of web services.

Thus for this test case, a user needs to be the service owner in order to have a

control over the creation of services that incorporates versioning information into the

development. Hence, BMI test case is used as a proof of concept in order to implement

the Reproducibility Framework. The BMI test case is used to show that service selection

is possible for instance if multiple versions of the same service are available. For this

evaluation, the aim is to �nd out the e�ect on the reproduced experiment results if

di�erent versions of one or more of the services in the trace are used.

• Exercise Advisor Test Case

For this evaluation, the following scenario is chosen to demonstrate the ReProduX

capability. Consider that an OPM trace was originally generated using the following

services namely:

• http://localhost:8080/eabmi10/eabmi10?WSDL

• http://localhost:8080/eacategory10/eacategory10?WSDL

• http://localhost:8080/eaactivity10/eaactivity10?WSDL

109

5.2 Evaluation

A user wishes to reproduce past experiment by using the ReProduX. At that partic-

ular time, the third service eaactivity10 became inaccessible due to accidental removal

by the service owner. The owner has updated the service to improve its functionality

algorithm (minor release). The new service version is as follow:

• http://localhost:8080/eaactivity11/eaactivity11?WSDL

In this case, OPM2Taverna will check for the availability of services contained within

the original OPM trace. If ReProduX found that any service is missing, it will recom-

mend and replace the missing service with the nearest service available as discussed in

Chapter 4.

Figures 5.18 to 5.20 are provided to demonstrate this evaluation.

Figure 5.18: jUDDI Service Repository that depicts both eactivity10 and eactivity11

services are available. The "deleted"� column with value 0 = service is available, value 1=

service is unavailable

110

5.2 Evaluation

Figure 5.19: jUDDI Service Repository that depicts eactivity10 service is unavailable,

with "deleted"� column value = 1

Figure 5.20: jUDDI Service Repository that depicts the service creation date

111

5
.2
E
v
a
lu
a
tio

n

Figure 5.21: OPM trace browser that depicts eactivity10 service is not available

112

5.2 Evaluation

Listing 5.4: Original OPM trace showing eactivity10 process was used in the experiment exe-

cution

1 <opm:accounts>

2 <opm:account id="account1 "/>

3 </opm:accounts>

4 <opm:processes>

5 <opm:process id="myBmi">

6 <opm:value x s i : t y p e=" x s d : s t r i n g ">" ht tp : // l o c a l h o s t : 8 0 8 0 /eabmi10/eabmi10

?wsdl "</opm:value>

7 <opm:time exact lyAt="2014−09−24T02−18−35.737Z"/>
8 </opm:process>

9 <opm:process id="myCategory">

10 <opm:value x s i : t y p e=" x s d : s t r i n g ">" ht tp : // l o c a l h o s t : 8 0 8 0 / eacategory10 /

eacategory10 ?wsdl "</opm:value>

11 <opm:time exact lyAt="2014−09−24T02−18−37.967Z"/>
12 </opm:process>

13 <opm:process id="myActivity1">

14 <opm:value x s i : t y p e=" x s d : s t r i n g ">" ht tp : // l o c a l h o s t : 8 0 8 0 / e aa c t i v i t y 1 0 /

e a a c t i v i t y 1 0 ?wsdl "</opm:value>

15 <opm:time exact lyAt="2014−09−24T02−18−41.213Z"/>
16 </opm:process>

17 </ opm:processes>

Listing 5.5: Generated SCUFL work�ow that shows the service has been replaced to eaactivity11

1 <s : p r o c e s s o r name="myBmi">

2 <s : a r b i t r a r yw sd l>

3 <s :wsd l>

4 ht tp : // l o c a l h o s t : 8 0 8 0 /eabmi10/eabmi10?wsdl

5 </ s :wsd l>

6 <s : op e r a t i o n>myBmi</ s : o p e r a t i o n>

7 </ s : a r b i t r a r yw sd l>

8 </ s : p r o c e s s o r>

9 <s : p r o c e s s o r name="myCategory">

10 <s : a r b i t r a r yw sd l>

11 <s :wsd l>

12 h t tp : // l o c a l h o s t : 8 0 8 0 / eacategory10 / eacategory10 ?wsdl

13 </ s :wsd l>

14 <s : o p e r a t i o n>myCategory</ s : o p e r a t i o n>

15 </ s : a r b i t r a r yw sd l>

16 </ s : p r o c e s s o r>

17 <s : p r o c e s s o r name="myActivity1">

113

5.2 Evaluation

18 <s : a r b i t r a r yw sd l>

19 <s :wsd l>

20 h t tp : // l o c a l h o s t : 8 0 8 0 / e a a c t i v i t y 1 1 / e aa c t i v i t y 1 1 ?wsdl

21 </ s :wsd l>

22 <s : o p e r a t i o n>myActivity1</ s : o p e r a t i o n>

23 </ s : a r b i t r a r yw sd l>

24 </ s : p r o c e s s o r>

Listing 5.4 and Listing 5.5 above demonstrated that the OPM2Taverna recom-

mended the nearest service eaactivity11 to replace the missing service eaactivity10.

Both services are similar, with onnly di�erences in their algorithms. Previously, both

are available to be used, however the service owner has accidentally removed the earlier

version, and became unavailable.

From the above evaluation, some services failed due to the unavailability of services.

If the version of the service at that point of time is not available or missing, thus the

work�ow is incomplete. This is where ReProduX be able to recommend another version

of the same service which is avaialable by accessing the Service repository. ReProduX

proposed a selection of services to be used and this is possible if service versioning

standard is incorporated at the earlier phase of service creation. Thus, this can assist

users to still be able to reproduce even though existing service is not longer available.

5.2.3 Comparative Analysis

This evaluation compares ReProduX to Trident EVF on experiment reproducibility.

This comparison is made based on requirements to support the creation of reproducible

experiments on the basis described in reproducibility framework. This evaluation is

based on the concepts of both tools as there is a constraint on accessing Trident evolution

framework. It is found that there are di�erences between Trident EVF and ReProduX.

This is summarised in Table 5.4 below.

Overall, Trident EVF work is more comprehensive than this work. Trident EVF

is focuses on work�ow evolution framework with data intensive experiments. On the

other hand, ReProduX is dealing with external web service evolution services that are

not under a work�ow environment control. However Trident EVF does not address

the issue with inaccessible external web services that are not in their control whereas

ReProduX is providing accessibility in recommending alternate version of external web

services if the original web services become inaccessible. ReProduX also provides the

114

5.3 Limitations and Constraints

Table 5.2: Comparison between Trident and ReProduX in handling versioning in repro-

ducibility - Part 1 of 2

ability to select speci�c version of service that enable user to reproduce and promote

new discoveries in analysing di�erent service version.

5.3 Limitations and Constraints

Limitations of the ReProduX are described as follows:

• The ReProduX only deals with WSDL-speci�ed web services. This work does not

cover other type of web services that is RESTful web services and scripts that are

beyond the scope of this work.

• The experiments chosen in evaluation are to provide the proof of concept of Re-

ProduX. However, in future, the experiment can be made as complex as needed

115

5.3 Limitations and Constraints

Table 5.3: Comparison between Trident and ReProduX in handling versioning in repro-

ducibility - Part 2 of 2

for speci�c tasks and integration requirements.

• This work is utilising Taverna 1 SCUFL format. It is recognised Taverna has

t2�ow and SCUFL2 schema. The ReProduX in future can be improved to handle

SCUFL2 schema in order to take advantage of the Taverna Workbench 3.

• In dealing with OPM traces, the ReProduX at this stage only takes the latest

OPM trace, no versioning on traces yet been applied. The focus is on the service

versioning.

• In this work, the service provider must follow the service versioning convention to

save and retain multiple versions of services.

Apart from the above limitations, there is a constraint to access to Trident EVF.

The Trident has been archived and Trident EVF is not available to download. There-

116

5.4 Reproducibility Taxonomy

fore the comparative analysis between Trident EVF and ReProduX is based on the

understanding of the concept.

5.4 Reproducibility Taxonomy

The reproducibility taxonomy describes the requirements for facilitating the reproduc-

tion of experiment. As shown in Figure 5.18, it consists of three requirements for

reproducible experiments: (a) collection of multiple versions of services (b) documenta-

tion of provenance traces and (c) reproduction into work�ow systems. In this section,

each requirement is described in turn.

Figure 5.22: Reproducibility Taxonomy

Collection of multiple versions of services: Preparing a collection or aggrega-

tion of multiple versions of services is essential in this work in order to ensure service

availability and accessibility. When a scientist is interested to re-execute past exper-

iment, he must refer to the same versions of the services that were originally used.

Therefore, an appropriate service versioning approach is needed to be able to preserve

old versions of services and call old versions of services. In this work, service versioning

convention scheme should be followed by the service provider or owner at the early

stage of service creation. Additional relation or causal dependency regarding service

versioning needs to be asserted in the provenance trace to describe the relation from

one version of a service to another version of a service. In this work, wasVersionOf

relation is introduced and the service creation time information. The annotation on

timing information of service creation can be used in re-execution of the experiment.

117

5.5 Discussion of Results

With the availability of multiple versions of the same service, the scientist can explore

with di�erent variations to see the di�erence from existing work.

Documentation of provenance traces: Creating documentation of an experi-

ment execution is a key of reproducibility as it contains all the details about the artifacts,

versions of services and causal dependencies that is used to re-execute past experiment.

Causal dependencies are essential in reproducibility, which requires identifying the cause

and e�ect in the experiment (X was caused by Y) and the linkage between them. When

all of the entities in the experiment have been identi�ed, they must be captured and

recorded as a provenance trace. The provenance trace is structured in a way to con-

struct a record of how execution takes place. In order to ensure the collection of content

is completely recorded, a provenance data model is needed.

Reproduction into work�ow systems: It may not be possible to directly use

an original provenance trace that is generated from an environment that is di�erent

from the re-execution work�ow environment. In this work, ReProduX has the ability

to reproduce past experiment on a di�erent environment, thus providing experiment

portability.

Work�ow systems are used to choreograph the execution of an experiment from data

and services. The enactment of a work�ow can be used to invoke computational services.

Work�ow systems provide a graphical user interface for building work�ows. Another

feature that a work�ow system can provide is visualisation that allow representation

of execution in a work�ow graph [5]. In addition, exploratory visualisation can be

incorporated allowing di�erent versions of services to be viewed and compared side by

side to see the di�erences [74, 75].

5.5 Discussion of Results

In this chapter, a discussion of the implementation is provided, followed by an ex-

planation of the reproducibility framework used for the evaluation. This chapter also

presented that the evaluation of the concepts proposed is able to reproduce experi-

ments, even when new versions of services had become available. It also showed that

this provenance trace generated under one environment (work�ow environment or de-

velopment environment that producing a provenance trace) could be transformed using

118

5.5 Discussion of Results

ReProduX, an OPM to SCUFL converter to allow reproduction in a di�erent work�ow

environment (Taverna).

Based on the evaluation and �ndings derived from this work, the ReProduX is able

to demonstrate that the OPM-SCUFL(Taverna) mapping generates correct Taverna

work�ows. By using the work�ows from myExperiment repository, ReProduX is also

be able to generate OPM trace from the original execution of a Taverna work�ow and

re-generate the SCUFL, the new Taverna work�ow and produce the same results as

the original experiment, using the exact web services. This is possible because the

external web services from the original SCUFL (Taverna) are available and accessible.

However, there is also a case where this is not possible to re-execute when the external

web services are missing or inaccessible. In this case, this work proposes a solution that

service versioning design should be tackled at early stage during service creation by the

service provider or service owner.

In addition, no versions are deleted or overwriten in this work, therefore the multiple

versions of services can be retrieved by ReProduX at any time. If there is a case where

one or more of the services that appeared in the original OPM trace are missing or

no longer available, ReProduX is able to recommend and replace the missing services

with other compatible services which are the nearest services according to their service

creation date.

A Reproducibility Taxonomy is also presented in this evaluation chapter. In the tax-

onomy, three elements are identi�ed as requirements for reproducible elements that are

preparing a collection (aggregation) to support multiple versions of services; generating

provenance trace documentation that represents the data, services and dependencies;

and transform a provenance trace into a work�ow system (with visualisation).

In the �nal chapter, the thesis will discuss the overall �ndings of the research and

possible future work.

119

Chapter 6

Conclusion and Future Work

In this concluding chapter of the thesis a summary of the research and its contributions

are presented. There is then a discussion of the opportunities for further work, and

possible extensions in the area of reproducibility.

6.1 Research Summary and Contributions

In this thesis, the lifecycle for the reproducibility of experiments is discussed from the

stage when the experiment is created and captured to the stage when the execution

is reproduced. The �rst stage is mainly focussed on provenance infrastructure and

processes. A comparison between existing provenance models was made to show how

they capture information on data and services used in an experiment. However, this

highlighted the de�ciencies in terms of what is required to reproduce an experiment.

In Chapter 3, the OPM model is adopted as a provenance model to represent the

experimental execution, encompassing data and services. A contribution was made to

show how service versioning could be incorporated into provenance to address de�cien-

cies in the existing schemes. Furthermore, a new method was shown in which versioning

of web services, to support experimental reproduction, could be introduced through the

tModel mechanism of jUDDI. An OPM Trace Generator is also implemented in this

work to incorporate the service versioning information.

Chapter 4 introduced ReProduX, an approach to allow the provenance trace to be

used as the basis for reproducing an experiment at a later time. This included mapping

rules that transform entities and relations from the OPM source to target �les in SCUFL

120

6.2 Contributions

in order to allow reproduction in the Taverna workbench. The ability to recommend an

alternate service version if the original service is unavailable and select speci�c version

of service allow user to reproduce and promote new discoveries in analysing di�erent

service version.

In Chapter 5, the implementation and evaluation of the reproducibility framework

is described and analysed. A reproducibility taxonomy is proposed to describe the

categories that is essential to consider to reproduce experiments.

6.2 Contributions

The following list summarises the contribution towards knowledge made by this thesis:

• In Chapter 3, a service versioning approach is introduced to provide an alternative

service in case the current service is not available or missing. To achieve this, a

service with versioning information needs to be registered in Service Registry.

This includes the service versioning naming convention and the date and time of

service creation. Having all this information, OPM Generator be able to generate

an additional wasVersionOf causal dependency in OPM trace. However, in order

to achieve this, service versioning need to be in place at initial stage of service

creation. Therefore, only the service owner has a control over the services.

• In Chapter 4, a ReProduX tool technique is developed to allow the reproduction

of past experiments. ReProduX tool consists of three components. Firstly, OPM

Generator that generates OPM provenance trace from an execution run and in-

clude wasVersionOf dependency in the trace. Secondly, OPM2Taverna Generator

that extracts information from OPM trace to Taverna trace. OPM2Taverna has

additional functions where it can check whether the services are available to be

executed, and recommends the alternative service if the service is not available

or missing. This is to ensure that the correct version of a service is called during

reproduction. Thirdly, OPM Trace Browser that provides user to select speci�c

service version of choice. ReProduX has three approaches in dealing with service

versioning as described in Chapter 4.

• In Chapter 5, a Reproducibility Framework is implemented and evaluated. The

three ReProduX approaches are tested using sample of experiments. It is found

121

6.3 Future Works

that ReProduX tool is possible to assist in reproducing past experiments if only

services are available and accessible. From the �ndings, reproducibility taxonomy

is derived to identify the requirements for facilitating the reproduction of exper-

iment. The reproducibility taxonomy is made up of three categories: collection

(aggregation) to support multiple versions of services; documentation of prove-

nance trace that represents the data, services and dependencies involved; and

reproduction that transforms a provenance trace into a work�ow system (with

visualisation). The taxonomy is hoped to give an overview of things that we need

to be able to do if we are to achieve reproducibility.

6.3 Future Works

This work has focussed on reproducibility, in particular on service versioning. The

following list potential research that can be conducted as an extension of works from

this research.

• Since this research realised that service versioning needs to be initiated at the �rst

stage of service creation by service provider or service owner, therefore a further

work on creating a standard mechanism or template to record service versioning

is an advantage. In this template, service owner must store the service versioning

throughout the development. Thus, this will keep old versions of services available.

This template will also incorporate subscription services to inform consumer that

a new service is available.

• In this work, ReProduX tool is evaluated through the Reproducibility Framework.

A mechanism to compare the two provenance traces; original trace and reproduced

trace is essential to validate reproducibility. Therefore, an extension to study on

the di�erences between two executions through the traces would be an advantage,

but focusing on ReProduX environment.

• ReProduX currently deals with service minor release that supports backward com-

patibility to call alternate service version. This work can be extended to also

include major release in the future.

122

6.3 Future Works

Realising the work to incorporate service versioning in reproducing past e-experiment

requires further work to reassure the reproducibility lifecycle is achieved and making

reproducibility result more reliable and accurate, thus not losing any vital information.

123

Bibliography

[1] Luc Moreau, Paul Groth, Simon Miles, Javier Vázquez-salceda, John Ibbot-

son, Sheng Jiang, Steve Munroe, Omer Rana, Andreas Schreiber, Victor

Tan, and Laszlo Varga. The Provenance of Electronic Data. Communications of

the ACM, 2007, 2007. viii, 17, 18

[2] Satya S. Sahoo and Amit Sheth. Provenir ontology: Towards a Framework for

eScience Provenance Management. Microsoft eScience Workshop, 2009. viii, 7, 18,

21

[3] Paolo Missier, Khalid Belhajjame, and James Cheney. The W3C PROV Fam-

ily of Speci�cations for Modelling Provenance Metadata. In Proceedings of the 16th

International Conference on Extending Database Technology, EDBT '13, pages 773�776,

New York, NY, USA, 2013. ACM. viii, 18, 23

[4] Luc Moreau, Ben Clifford, Juliana Freire, Joe Futrelle, Yolanda Gil,

Paul T. Groth, Natalia Kwasnikowska, Simon Miles, Paolo Missier, Jim My-

ers, Beth Plale, Yogesh Simmhan, Eric G. Stephan, and Jan Van den Bussche.

The Open Provenance Model core speci�cation (v1.1). Future Generation Com-

puter Systems, In Press:743�756, 2010. viii, 7, 18, 22, 25, 40, 48

[5] Taverna Work�ow Management System Website. Available online at http://www.

taverna.org.uk/. viii, 28, 34, 35, 118

[6] Yogesh Simmhan, Beth Plale, and Dennis Gannon. A Survey of Data Prove-

nance in e-Science. Sigmod Record, 34:31�36, 2005. viii, 6, 36, 37

[7] Dave Ehnebuske Peter Brittenham, Francisco Cubera and Steve Graham.

Understanding WSDL in a UDDI registry, Part 1, Sep 2001. Available online at

http://www.ibm.com/developerworks/webservices/library/ws-wsdl/. ix, 58

[8] European Bio-Informatics Institute (EBI), 2013. Available online at http://www.

ebi.ac.uk/escience/. 1

[9] myGrid Homepage, 2013. Available online at http://www.mygrid.org.uk. 1

124

http://doi.acm.org/10.1145/2452376.2452478
http://doi.acm.org/10.1145/2452376.2452478
http://www.taverna.org.uk/
http://www.taverna.org.uk/
http://www.taverna.org.uk/
http://www.ibm.com/developerworks/webservices/library/ws-wsdl/
http://www.ibm.com/developerworks/webservices/library/ws-wsdl/
http://www.ebi.ac.uk/escience/
http://www.ebi.ac.uk/escience/
http://www.ebi.ac.uk/escience/
http://www.mygrid.org.uk
http://www.mygrid.org.uk

BIBLIOGRAPHY

[10] D. Kolb. Experiential Learning: experience as the source of learning and development.

Prentis-Hall, New Jersey, 1984. 5

[11] Geoffrey Bowker. THE NEW KNOWLEDGE ECONOMY AND SCIENCE

AND TECHNOLOGY POLICY. 3rd Annual MIT/UCI Knowledge and Organizations

Conference, CA, 2004. 5

[12] Merriam-Webster Online Dictionary, Jan 2013. Available online at http://www.

merriam-webster.com/dictionary/provenance. 6

[13] Jun Zhao, Chris Wroe, Carole Goble, Robert Stevens, Dennis Quan, and

Mark Greenwood. Using Semantic Web Technologies for Representing E-

science Provenance. In SheilaA. McIlraith, Dimitris Plexousakis, and Frank

Harmelen, editors, The Semantic Web � ISWC 2004, 3298 of Lecture Notes in Com-

puter Science, pages 92�106. Springer Berlin Heidelberg, 2004. 6, 15

[14] Wang chiew Tan. Research problems in data provenance. IEEE Data Engineering

Bulletin, 27:45�52, 2004. 6

[15] Peter Buneman, Sanjeev Khanna, and Wang chiew Tan. Why and Where: A

Characterization of Data Provenance. In In ICDT, pages 316�330. Springer, 2001. 6

[16] John Evdemon. Principles of Service Design: Service Versioning, 2005. Available

online at http://msdn.microsoft.com/en-us/library/ms954726.aspx. 7, 33

[17] Kyle Brown and Michael Ellis. Best practices for Web services versioning, Jan

2004. Available online at http://www.ibm.com/developerworks/webservices/library/

ws-version/. 7, 33

[18] Roger S. Barga, Yogesh Simmhan, Eran Chinthaka Withana, SatyaSahoo,

Jared Jackson, and Nelson Araujo. Provenance for Scienti�c Work�ows: To-

wards Reproducible Research. 33:50�59, 2010. 10, 11, 28, 29

[19] S. Fomel and G. Hennenfent. Reproducible Computational Experiments using

Scons. In International Conference on Acoustics, Speech, and Signal Processing, 4, 2007.

10

[20] J. P. Mesirov. Accessible Reproducible Research. Science, 327:415�416, 2010. 10,

14

[21] Simon Woodman, Hugo Hiden, Paul Watson, and Paolo Missier. Achieving

reproducibility by combining provenance with service and work�ow versioning.

In Proceedings of the 6th workshop on Work�ows in support of large-scale science, WORKS

'11, pages 127�136, New York, NY, USA, 2011. ACM. 10, 11, 17, 28, 29

125

http://www.merriam-webster.com/dictionary/provenance
http://www.merriam-webster.com/dictionary/provenance
http://www.merriam-webster.com/dictionary/provenance
http://dx.doi.org/10.1007/978-3-540-30475-3_8
http://dx.doi.org/10.1007/978-3-540-30475-3_8
http://msdn.microsoft.com/en-us/library/ms954726.aspx
http://msdn.microsoft.com/en-us/library/ms954726.aspx
http://www.ibm.com/developerworks/webservices/library/ws-version/
http://www.ibm.com/developerworks/webservices/library/ws-version/
http://www.ibm.com/developerworks/webservices/library/ws-version/
http://doi.acm.org/10.1145/2110497.2110512
http://doi.acm.org/10.1145/2110497.2110512

BIBLIOGRAPHY

[22] Jon Claerbout and Martin Karrenbach. Electronic documents give repro-

ducible research a new meaning. In Proc. 62nd Ann. Int. Meeting of the Soc. of

Exploration Geophysics, pages 601�604, 1992. 11

[23] Stanford Exploration Project Website. Available online http://sepwww.stanford.

edu/doku.php. 11

[24] R. J. LeVeque. Python Tools for Reproducible Research on Hyperbolic Prob-

lems. Computing in Science and Engineering, 11:19�27, 2009. 11

[25] Jonathan B. Buckheit, Jonathan B. Buckheit, David L. Donoho, and David L.

Donoho. WaveLab and Reproducible Research, 1995. 11

[26] R.D. Peng and S.P. Eckel. Distributed Reproducible Research Using Cached

Computations. Computing in Science Engineering, 11(1):28 �34, jan.-feb. 2009. 11

[27] Louis Bavoil, Steven P. Callahan, Carlos Eduardo Scheidegger, Huy T. Vo,

Patricia Crossno, Cláudio T. Silva, and Juliana Freire. VisTrails: Enabling

Interactive Multiple-View Visualizations. In Visualisation, VIS, 2008 International

Conference, 2005. 11

[28] Eran Chinthaka Withana, Beth Plale, Roger Barga, and Nelson Araujo.

Versioning for Work�ow Evolution. In Proceedings of The Third International Work-

shop on Data Intensive Distributed Computing. Association for Computing Machinery,

Inc., June 2010. 11, 28

[29] Sean Bechhofer, David De Roure, Matthew Gamble, Carole Goble, and Iain

Buchan. Research objects: Towards exchange and reuse of digital knowledge.

The Future of the Web for Collaborative Science, 2010. 11

[30] Khalid Belhajjame, Oscar Corcho, Daniel Garijo, Jun Zhao, Paolo Missier,

David Newman, Raul Palma, Sean Bechhofer, Esteban García-Cuesta, and

et al. Work�ow-Centric Research Objects: First Class Citizens in Scholarly

Discourse. 11

[31] Juliana Freire and Claudio T. Silva. Making Computations and Publications

Reproducible with VisTrails. Computing in Science Engineering, 14(4):18�25, July

2012. 11, 28, 29

[32] Paolo Missier, Simon Woodman, Hugo Hiden, and Paul Watson. Prove-

nance and data di�erencing for work�ow reproducibility analysis. CoRR,

abs/1406.0905, 2014. 11, 28

[33] Reproducible Research Website, 2013. Available online at http://

reproducibleresearch.net/index.php/Main_Page. 14

126

http://sepwww.stanford.edu/doku.php
http://sepwww.stanford.edu/doku.php
http://sepwww.stanford.edu/doku.php
http://research.microsoft.com/apps/pubs/default.aspx?id=122757
http://arxiv.org/abs/1406.0905
http://arxiv.org/abs/1406.0905
http://reproducibleresearch.net/index.php/Main_Page
http://reproducibleresearch.net/index.php/Main_Page
http://reproducibleresearch.net/index.php/Main_Page

BIBLIOGRAPHY

[34] Roger D. Peng. Reproducible Research in Computational Science. Science,

334(6060):1226�1227, 2011. 14

[35] Paul Groth. The Origin of Data: Enabling the Determination of Provenance in Multi-

institutional Scienti�c Systems through the Documentation of Processes. PhD thesis, Uni-

versity of Southampton, October 2007. 14, 33

[36] Paul Groth, Michael Luck, and Luc Moreau. A Protocol for Recording Prove-

nance in Service-Oriented Grids. In Teruo Higashino, editor, Principles of Dis-

tributed Systems, 3544 of Lecture Notes in Computer Science, pages 124�139. Springer

Berlin Heidelberg, 2005. 14

[37] Robert Stevens, Jun Zhao, and Carole A. Goble. Using provenance to manage

knowledge of In Silico experiments. Brie�ngs in Bioinformatics, 8:183�194, 2007. 15,

29

[38] Juliana Freire, David Koop, Emanuele Santos, and Cláudio T. Silva. Prove-

nance for Computational Tasks: A Survey. Computing in Science and Engineering,

10:11�21, 2008. 16

[39] Genealogy - Wikipedia. Available online http://en.wikipedia.org/wiki/Genealogy.

17

[40] Simon Miles, Ewa Deelman, Paul Groth, Karan Vahi, Gaurang Mehta, and

Luc Moreau. Connecting Scienti�c Data to Scienti�c Experiments with Prove-

nance. 17

[41] Ilkay Altintas, Oscar Barney, and Efrat Jaeger-frank. Provenance Collec-

tion Support in the Kepler Scienti�c Work�ow System. pages 118�132, 2006.

17

[42] Paul T. Groth and Luc Moreau. Recording Process Documentation for Prove-

nance. IEEE Transactions on Parallel and Distributed Systems, 20:1246�1259, 2009. 17

[43] James Cheney, Umut A. Acar, and Amal Ahmed. Provenance Traces. CoRR,

abs/0812.0564, 2008. 17

[44] Simon Miles, Paul T. Groth, Steve Munroe, Sheng Jiang, Thibaut Assandri,

and Luc Moreau. Extracting causal graphs from an open provenance data

model. Concurrency and Computation: Practice and Experience, 20:577�586, 2008. 18

[45] Paolo Ciccarese, Stian Soiland-Reyes, Khalid Belhajjame, Alasdair J. G.

Gray, Carole A. Goble, and Tim Clark. PAV ontology: Provenance, Author-

ing and Versioning. CoRR, abs/1304.7224, 2013. 18

127

http://www.sciencemag.org/content/334/6060/1226.abstract
http://eprints.soton.ac.uk/264649/
http://eprints.soton.ac.uk/264649/
http://dx.doi.org/10.1007/11516798_9
http://dx.doi.org/10.1007/11516798_9
http://en.wikipedia.org/wiki/Genealogy
http://en.wikipedia.org/wiki/Genealogy
http://arxiv.org/abs/1304.7224
http://arxiv.org/abs/1304.7224

BIBLIOGRAPHY

[46] Satya S. Sahoo, Christopher Thomas, and Amit Sheth. Knowledge modeling

and its application in life sciences: A tale of two ontologies. In In Proceedings of

WWW, 2006. 21

[47] Satya S. Sahoo, D. Brent Weatherly, Raghava Mutharaju, Pramod Anan-

tharam, Amit Sheth, and Rick L. Tarleton. Ontology-Driven Provenance

Management in eScience: An Application in Parasite Research. In Proceedings

of the Confederated International Conferences, CoopIS, DOA, IS, and ODBASE 2009 on

On the Move to Meaningful Internet Systems: Part II, OTM '09, pages 992�1009, Berlin,

Heidelberg, 2009. Springer-Verlag. 21

[48] OPM Provenance Challenge. Available online at http://twiki.ipaw.info/bin/

view/Challenge/OPM. 22, 40, 67

[49] Luc Moreau, Bertram Ludäscher, Ilkay Altintas, Roger S. Barga, Shawn

Bowers, Steven Callahan, Carole Goble, Jennifer Golbeck, Paul Groth,

A. Holl, Sheng Jiang, Jihie Kim, David Koop, Ales Krenek, Timothy

Mcphillips, Gaurang Mehta, Simon Miles, Dominic Metzger, Steve Munroe,

Beth Plale, Norbert Podhorszki, Emanuele Santos, Carlos Scheidegger,

Karen Schuchardt, Margo Seltzer, Yogesh L, Claudio Silva, Peter Slaugh-

ter, Robert Stevens, Daniele Turi, Huy Vo, Mike Wilde, Jun Zhao, Yong

Zhao, and et al. The First Provenance Challenge, 2000. 26

[50] The OPM Provenance Model (OPM) - Open Provenance Model Website. Avail-

able online at http://openprovenance.org/. 26

[51] André Freitas, Tomas Knap, Seán O'Riain, and Edward Curry.W3P: Building

an OPM based provenance model for the Web. Future Generation Comp. Syst.,

27(6):766�774, 2011. 27

[52] Paul Groth and Luc Moreau. Representing distributed systems using the

Open Provenance Model. Future Gener. Comput. Syst., 27(6):757�765, June 2011. 27

[53] Provenance Vocabulary Mappings - W3C. Available online at http://www.w3.org/

2005/Incubator/prov/wiki/Provenance_Vocabulary_Mappings. 27

[54] Douglas K. Barry and Patrick J. Gannon. Web Services and Service-Oriented Ar-

chitecture: The Savvy Manager's Guide. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 2003. 31

[55] Extensible Markup Language (XML) 1.0 (Fifth Edition) - W3C Website. Avail-

able online at http://www.w3.org/TR/REC-xml/. 31

[56] Uniform Resource Locators (URL) Speci�cation. Available online at http://www.

w3.org/Addressing/URL/url-spec.txt. 31

128

http://dx.doi.org/10.1007/978-3-642-05151-7_18
http://dx.doi.org/10.1007/978-3-642-05151-7_18
http://twiki.ipaw.info/bin/view/Challenge/OPM
http://twiki.ipaw.info/bin/view/Challenge/OPM
http://twiki.ipaw.info/bin/view/Challenge/OPM
http://openprovenance.org/
http://openprovenance.org/
http://dx.doi.org/10.1016/j.future.2010.10.001
http://dx.doi.org/10.1016/j.future.2010.10.001
http://www.w3.org/2005/Incubator/prov/wiki/Provenance_Vocabulary_Mappings
http://www.w3.org/2005/Incubator/prov/wiki/Provenance_Vocabulary_Mappings
http://www.w3.org/2005/Incubator/prov/wiki/Provenance_Vocabulary_Mappings
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/Addressing/URL/url-spec.txt
http://www.w3.org/Addressing/URL/url-spec.txt

BIBLIOGRAPHY

[57] Web Services Description Language (WSDL) 1.1. Available online at http://www.

w3.org/TR/wsdl. 31, 53

[58] SOAP Version 1.2 Part 1: Messaging Framework (Second Edition). Available

online at http://www.w3.org/TR/soap12-part1/. 31

[59] UDDI Version 3.0.2 - OASIS Website. Available online at http://uddi.org/pubs/

uddi_v3.htm. 31, 53

[60] Ru Fang, Linh Lam, Liana Fong, D. Frank, C. Vignola, Ying Chen, and Nan

Du. A Version-aware Approach for Web Service Directory. InWeb Services, 2007.

ICWS 2007. IEEE International Conference on, pages 406 �413, july 2007. 34, 64

[61] Ru Fang, Ying Chen, Liana Fong, L. Lam, D. Frank, C. Vignola, and Nan Du.

A Version-aware Approach for Web Service Client Application. In Integrated

Network Management, 2007. IM '07. 10th IFIP/IEEE International Symposium on, pages

401 �409, 21 2007-yearly 25 2007. 34

[62] D. Frank, Linh Lam, Liana Fong, Ru Fang, and M. Khangaonkar. Using an

Interface Proxy to Host Versioned Web Services. In Services Computing, 2008.

SCC '08. IEEE International Conference on, 2, pages 325 �332, july 2008. 34

[63] VisTrails Website. Available online at http://www.vistrails.org/index.php/Main_

Page. 34

[64] The Kepler Project Website. https://kepler-project.org/. 34

[65] Tom Oinn, Mark Greenwood, Matthew Addis, M. Nedim Alpdemir, Justin

Ferris, Kevin Glover, Carole Goble, Antoon Goderis, Duncan Hull, Darren

Marvin, Peter Li, Phillip Lord, Matthew R. Pocock, Martin Senger, Robert

Stevens, Anil Wipat, and Chris Wroe. Taverna: lessons in creating a work�ow

environment for the life sciences: Research Articles. Concurr. Comput. : Pract.

Exper., 18(10):1067�1100, August 2006. 35

[66] P. Lambe. Organizing Knowledge: Taxonomies, Knowledge and Organization E�ective-

ness. Chandos Knowledge Management Series. Chandos, 2007. 36

[67] Paul Groth, Steve Munroe, Simon Miles, and Luc Moreau. Applying the

Provenance Data Model to a Bioinformatics Case. 44

[68] O. Zimmermann, M. Tomlinson, and S. Peuser. Perspectives on Web Services: Ap-

plying SOAP, WSDL and UDDI to Real-World Projects. Springer Professional Computing

Series. Springer, 2003. 52, 53

[69] L. Yu. Introduction to the Semantic Web and Semantic Web Services. Taylor & Francis,

2007. 55, 92

129

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part1/
http://uddi.org/pubs/uddi_v3.htm
http://uddi.org/pubs/uddi_v3.htm
http://uddi.org/pubs/uddi_v3.htm
http://www.vistrails.org/index.php/Main_Page
http://www.vistrails.org/index.php/Main_Page
http://www.vistrails.org/index.php/Main_Page
https://kepler-project.org/
https://kepler-project.org/
http://dx.doi.org/10.1002/cpe.v18:10
http://dx.doi.org/10.1002/cpe.v18:10
http://books.google.com.my/books?id=3ZVlQgAACAAJ
http://books.google.com.my/books?id=3ZVlQgAACAAJ
http://books.google.com.my/books?id=bki0f2Cc4jsC
http://books.google.com.my/books?id=bki0f2Cc4jsC
http://books.google.com.my/books?id=-CcmoI2b2Z8C

BIBLIOGRAPHY

[70] S Vinoski. The more things changed. Internet Computing, 8(1):87�89, 2004. 58

[71] Paolo Missier and Carole Goble. Work�ows to open provenance graphs,

round-trip. Future Gener. Comput. Syst., 27(6):812�819, June 2011. 67, 79

[72] A. Boukottaya, C. Vanoirbeek, F. Paganelli, and O. Abou Khaled. Automat-

ing XML documents transformations: a conceptual modelling based approach.

In Proceedings of the �rst Asian-Paci�c conference on Conceptual modelling - Volume 31,

APCCM '04, pages 81�90, Darlinghurst, Australia, Australia, 2004. Australian Computer

Society, Inc. 71

[73] Apache jUDDI Project Website. Available online at http://juddi.apache.org/. 87

[74] Bill Howe, Peter Lawson, Renee Bellinger, Erik Anderson, Emanuele San-

tos, Juliana Freire, Carlos Scheidegger, António Baptista, and Cláudio

Silva. End-to-End eScience: Integrating Work�ow, Query, Visualization, and

Provenance at an Ocean Observatory. 118

[75] C.T. Silva, J. Freire, and S.P. Callahan. Provenance for Visualizations: Re-

producibility and Beyond. Computing in Science Engineering, 9(5):82 �89, sept.-oct.

2007. 118

130

http://dx.doi.org/10.1016/j.future.2010.10.012
http://dx.doi.org/10.1016/j.future.2010.10.012
http://dl.acm.org/citation.cfm?id=976297.976307
http://dl.acm.org/citation.cfm?id=976297.976307
http://juddi.apache.org/
http://juddi.apache.org/

	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Structure of the Thesis

	2 Background and Related Work
	2.1 Reproducibility
	2.2 Provenance Enabled Reproducibility
	2.2.1 Provenance
	2.2.2 Documentation for Provenance
	2.2.3 Provenance Modelling
	2.2.4 Provenance Support in Workflow Systems

	2.3 Service Versioning
	2.3.1 Adopting a Service-Oriented Architecture (SOA)
	2.3.2 Service Versioning Approaches
	2.3.3 Workflow-Based Systems

	2.4 Reproducibility Taxonomy
	2.5 Discussion

	3 Achieving Reproducibility by Incorporating Service Versioning into Provenance
	3.1 Capturing Experiments Using the Open Provenance Model (OPM)
	3.1.1 An Exercise Advisor Example

	3.2 Capturing the Provenance Trace
	3.2.1 A Gap in the Provenance Trace

	3.3 Incorporating Service Versioning into a Web Service Architecture
	3.3.1 tModel Versioning Model
	3.3.2 Capturing Versioning in OPM

	3.4 Discussion

	4 Transforming OPM to SCUFL
	4.1 Generating SCUFL from OPM
	4.2 Comparing SCUFL to the Open Provenance Model (OPM)
	4.3 Rules for mapping from OPM to SCUFL
	4.3.1 Entity Rules OPM to SCUFL
	4.3.2 Relation Rules OPM to SCUFL

	4.4 Generation of OPM to Taverna Workflow
	4.5 The ReProduX Extraction and Transformation Algorithm
	4.5.1 The Transformation and Execution

	4.6 Discussion

	5 Evaluation of the Reproducibility Framework
	5.1 Implementation of Reproducibility Framework
	5.1.1 Versioned Service Deployment, Publication and Consumption in a Web Service Architecture
	5.1.2 Versioning Support in OPM Generation and OPM2Taverna Generator in ReProduX
	5.1.3 ReProduX Service Selection
	5.1.4 Reproduce in Taverna Workflow Management System

	5.2 Evaluation
	5.2.1 Verbatim Reproducibility
	5.2.2 Non-Verbatim Reproducibility
	5.2.3 Comparative Analysis

	5.3 Limitations and Constraints
	5.4 Reproducibility Taxonomy
	5.5 Discussion of Results

	6 Conclusion and Future Work
	6.1 Research Summary and Contributions
	6.2 Contributions
	6.3 Future Works

	Bibliography

