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Abstract 

Given the increased hazards faced by transport corridors such as climate induced extreme 

weather, it is essential that local spatial hot-spots of potential landslide susceptibility can be 

recognised. Traditionally, geotechnical survey and monitoring approaches have been used to 

recognise spatially landslide susceptibility zones. The increased availability of affordable 

very high resolution remotely-sensed datasets, such as airborne laser scanning (ALS) and 

multispectral aerial imagery, along with improved geospatial digital map data-sets, 

potentially allows the automated recognition of vulnerable earthwork slopes. However, the 

challenge remains to develop the analytical framework that allows such data to be integrated 

in an objective manner to recognise slopes potentially susceptible to failure.  

In this research, an evidential reasoning multi-source geospatial integration approach for the 

broad-scale recognition and prediction of landslide susceptibility in transport corridors has 

been developed. Airborne laser scanning and Ordnance Survey DTM data is used to derive 

slope stability parameters (slope gradient, aspect, terrain wetness index (TWI), stream power 

index (SPI) and curvature), while Compact Airborne Spectrographic Imager (CASI) 

imagery, and existing national scale digital map data-sets are used to characterise the spatial 

variability of land cover, land use and soil type. A novel approach to characterisation of soil 

moisture distribution within transport corridors is developed that incorporates the effects of 

the catchment contribution to local zones of moisture concentration in earthworks. In this 

approach, the land cover and soil type of the wider catchment are used to estimate the spatial 

contribution of precipitation contributing to surface runoff, which in turn is used to 

parameterise a weighted terrain accumulation flow model. The derived topographic and land 

use properties of the transport corridor are integrated within the evidential reasoning 

approach to characterise numeric measures of belief, disbelief and uncertainty regarding 

slope instability spatially within the transport corridor. Evidential reasoning was employed 

as it offers the ability to derive an objective weighting of the relative importance of each 

derived property to the final estimation of landslide susceptibility, whilst allowing the 

uncertainty of the properties to be taken into account.  

The developed framework was applied to railway transport earthworks located near 

Haltwhistle in northern England, UK. This section of the Carlisle-Newcastle rail line has a 
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history of instability with the occurrence of numerous minor landslides in recent years. 

Results on spatial distribution of soil moisture indicate considerable contribution of the 

surrounding wider catchment topography to the localised zones of moisture accumulation. 

The degrees of belief and disbelief indicated the importance of slope with gradients between 

250 to 350 and concave curvature. Permeable soils with variable intercalations accounted for 

over 80% of slope instability with 5.1% of the earthwork cuttings identified as relatively 

unstable in contrast to 47.5% for the earthwork embankment. The developed approach was 

found to have a goodness of fit of 88.5% with respect to the failed slopes used to 

parametrise the evidential reasoning model and an overall predictive capability of 77.75% 

based on independent validation dataset. 
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1 Introduction 

1.1  Landslide incidence 

Landslides occurrence is a natural phenomenon that gives rise to a wide variety of ground 

movement with gravity serving as its primary driving force (Lee and Jones, 2004). Slopes 

are considered stable when the shear resistance (forces available to resist movement) is 

greater than the normal stress (forces driving movement). Subsequently, landslide 

occurrences are restricted to areas where the natural equilibrium of existing slopes had 

experienced a change in their stability status from stable to unstable conditions (Baum et al., 

2005; Nichol et al., 2006). Landslides or slope failures are usually a culminated effect of 

pre-conditioning factors that are either natural, such as groundwater variation, erosional 

activities, pore-water saturation (resulting from snowmelt and heavy rainfall), tremors from 

earthquakes and volcanic eruptions or as a result of human activities like deforestation, 

mining, traffic vibrations and earthworks, on existing slopes. These pre-conditioning factors 

build-up specific sub-surface conditions that make existing slopes prone to failure, with 

resulting landslide or failure occurrences often requiring a trigger before actual landslide 

incidence (Baum et al., 2005; Lee and Pradhan, 2006).  

Shallow landslides occur where the failure planes occur typically at a depth from a few 

centimeters to several meters within overlying weathered bedrock. This form of slope failure 

is often associated with slopes made up of materials of high permeability with intercalations 

of impervious finer materials at variable depths of the soil profile (Baum et al., 2005; 

Bovolo and Bathurst, 2012). These intercalations allow for buildup of pore water pressures 

sufficient to reduce effective normal stress to a critical level and ultimately with the aid of a 

trigger induce failure along sliding surfaces, commonly witnessed as block glides, debris 

slides, debris flow or failures of road cut-slopes (Baum et al., 2005). Deep seated landslides 

in contrast, are large slope failures associated with translational, rotational, or complex 

movement (Van Den Eeckhaut et al., 2005). The deep seated variety typically move slowly 

(only several meters per year) and form along a plane of weakness such as a fault or bedding 

plane (Crozier et al., 1995). A number of landslides may be spontaneous, fast paced and 

highly destructive in nature (Chen et al., 2006), but the vast majority (e.g. landslide 

occurrences with transport corridor environment) are made up of much smaller masses, 
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slower displacement and considerably lower impact (Hungr et al., 1999; Perry et al., 2003a; 

Manning et al., 2008; Miller et al., 2012). Regardless, hazard and risk assessment of 

landslides has become a leading research area and subject of discussion amongst 

researchers, policy makers and administrators (Yesilnacar and Süzen, 2006).  

1.2 Slope instability in transport corridors 

Transport networks such as roads and railways are generally built along linear tracts of land 

commonly referred to as transport corridors (Priemus and Zonneveld, 2003). These corridors 

are of enormous economic importance and facilitate the movement of personnel, goods and 

services across regions. As such, the safety and reliability of existing transport networks are 

considered critically important (Perry et al., 2003b; Priemus and Zonneveld, 2003). 

Transport corridors are by nature characterised at various sections along the network route 

by the existence of earthworks such as man-made soil embankment and cuttings along 

natural slopes. These earthworks are essential components of most rail and road networks, as 

the effective operation of both networks relies on the stability of the earthworks on which 

they are founded. Hence, slope stability and prolonged existence of earthworks are 

important considerations in constructing and maintaining an effective transport 

infrastructure (Ridley et al., 2004). The presence of subsidence, flows, spreads and slides 

along slope margins are not uncommon along transport corridor routes (Perry et al., 2003a; 

Jaiswal et al., 2010a). Factors responsible for slope and earthwork instability, most of which 

are related to morphometry, geology, soil type, hydrology, geomorphology and land use 

(Van Westen et al., 2008; Jaiswal and van Westen, 2013) are numerous and vary spatially. 

Moisture accumulation as result of excessive precipitation is thought to be the most frequent 

cause of landslide occurrences across the world (Jaiswal and van Westen, 2009).  

Typically, slope instability is a common problem associated with regions known to 

experience seasonal heavy or prolonged rainfall such as the sub-tropics (Jaiswal et al., 

2010b). However recent global changes in climatic conditions, characterised by extreme 

weather such as high rainfall events (Ekström et al., 2005) and longer winter months (Briggs 

et al., 2013) are expected to impact negatively on the performance of existing slopes and 

embankments along most transport corridors (Ridley et al., 2004; Briggs et al., 2013). 

Regions where slopes were thought to be relatively stable have in recent times, as a result of 

increase in moisture content, been characterised by periodic occurrence of slope instability 
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(Clarke and Smethurst, 2010; Miller et al., 2012). Relatively stable slopes in response to 

factors like gradual build-up of pore pressure (Smethurst et al., 2006), increased 

permeability due to root activities (Greenwood et al., 2004) and external loading are known 

to gradually transform into a marginally stable state (Greenwood et al., 2004; Glendinning et 

al., 2009). At this point the existence of any dynamic triggering factor exceeding certain 

thresholds is known to produce continuous or intermittent movements in slopes (Terlien, 

1998; Berardi et al., 2005). This effect is particularly pronounced in corridors with aging 

infrastructure sometimes characterised by obsolete engineering designs and loss of 

performance in existing structural supports within cuttings and on embankment (Perry et al., 

2003a; Perry et al., 2003b). Rainfall duration and intensity are particularly important 

contributing factors to slope failure irrespective of climate regimes and soil types (Anderson 

and Kneale, 1980; Borga et al., 2002; Manning et al., 2008; Clarke and Smethurst, 2010).  

Increased moisture concentration along sections of a transport corridor results in a gradual 

build-up of pore water saturation, reduction in inter-granular friction and ultimately leads to 

slope instability. Moisture accumulation is believed to be directly or indirectly responsible 

for most slope failure recorded within the transport corridor environments (Jaiswal and van 

Westen, 2009; Jaiswal and van Westen, 2012). Ekström et al. (2005) suggest an increase in 

the rainfall intensities as a result of climate change is expected to increase moisture content 

in aging transport corridors earthworks which in turn may result in a reduction in the 

strength of the slope materials and increased incidence of slope instability.   

Equally important to slope stability is the underlying geology and the existence and extent of 

structural discontinuities;- faults and joints (Ayalew and Yamagishi, 2005). Soil properties 

such as particle size, classification and index limits, density, permeability and shear strength 

are known to exert great influence on slope stability. Failures are mostly localised to slopes 

made up of loosely cemented permeable materials with intercalations of fine grained layers, 

with the accompanying failure planes for most of these slides commonly situated along 

impervious layers that serve as temporary barriers to percolating moisture resulting in an 

increase in localised pore pressure (Baum et al., 2005). Vegetation cover has been used to 

reinforce slopes (Greenwood et al., 2004), with planting of trees along slope cuttings for 

reinforcement being a common occurrence along transport corridors (Glendinning et al., 

2009). Trees and shrubs are known help reduce soil moisture content through transpiration, 
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provide a measure of soil cohesion as a result of mechanical reinforcement by their roots and 

reduce the impact of interception and overland flow during rain storms (Smethurst et al., 

2006). Species mix, spacing of trees, age and health of vegetation have been reported as 

influential to the slope hydrological conductions, soil formation and cohesion due to root 

anchoring (Yesilnacar and Süzen, 2006; Miller, 2011).  

However, a complex relationship exists between soil properties, soil horizon development, 

soil compaction and vegetation cover (Thompson et al., 2010). Changes in land cover and 

land use activities along transport corridors are sometimes known to adversely impact on 

stability of surrounding slopes (Mattia et al., 2005; Smethurst et al., 2012). For example, 

Perry et al. (2003b) and Glendinning et al. (2009) suggest that root activities of trees and 

frost action may be responsible for increased permeability recorded in some cuttings and 

embankments. 

1.3 Slope instability in the UK transport corridors 

Embankments and cuttings are integral parts of transport infrastructure within the United 

Kingdom (Lloyd et al., 2001). Many UK cuttings and embankments especially along the rail 

network were constructed in the mid-19th century on poorly consolidated materials, prior to 

the introduction of modern engineering practices (Perry et al., 2003a), resulting in frequent 

failure due to pre-existing shear planes or groundwater movement and associated erosional 

processes (Perry et al., 2003a; Perry et al., 2003b). Subsequent remediation work often left 

residual rupture surfaces (Perry et al., 2003b; Ridley et al., 2004) leading to present day 

movements requiring maintenance (Perry et al., 2003a).  

Shallow rotational or translational slope failures have been reported by Lloyd et al. (2001) 

and Perry et al. (2003a) as the most common slope instability process encountered along UK 

transport corridors. Most of these shallow slope failures (landslides) are usually triggered by 

a buildup of pore water pressure as a result of elevated soil moisture content (Collins and 

Znidarcic, 2004; Ridley et al., 2004). Other important considerations responsible for shallow 

slope failures along slope cuttings and embankments may include burrowing animals, 

embankment age, construction type, change in earth work materials, vandalism, culvert 

deterioration, slope geometry, slope angle and height, moisture and vegetation shrink-swell 

cycles (Perry et al., 2003b). Failures tend to be shallow seated especially where there are no 

changes in the external loading conditions. According to Perry et al. (2003b) these failures 
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often occur as a series of slips along particular lengths of cuttings or embankments, in 

addition to other surface and near surface movements generated by erosion (by reason of 

surface runoff), weathering (as a result of frost) and creep (in granular or residual soils).  

Evaluation of records on slope stability assessment carried out on slope cuttings and 

embankments along transport corridors in the UK have shown that the probability of the 

occurrence of shallow failures on embankments are usually three times more likely in 

comparison with cuttings (Perry et al., 2003b). As a result of the consequences associated 

with slope instability (landslide occurrences) there is a growing awareness for the 

requirement to develop proactive measures with respect to mapping zones of slope 

instability and the development of decision support systems that would assist in the 

delineation of potential hazard zones and timely follow up maintenance protocols (Sassa, 

2014). Lloyd et al. (2001) and Perry et al. (2003b) are both in agreement that the cost of 

unplanned reactive repairs far outweighs the cost of proactive and continuous maintenance.  

1.4 Slope stability assessment in the UK transport corridor 

Currently, slope stability risk assessment involves a programme of regular on-site inspection 

(Perry et al., 2003b). The routine appraisal of earthwork involves a field survey where an 

experienced assessor is expected to daily cover 5 km of rail track assessing the stability of 

earthworks. This is aimed at detecting symptoms of slope instability and prioritizing of 

individual earthworks with respect to the risk they possess to the operational efficiency of 

the entire transport network. (Miller et al., 2012). Information recorded includes water 

ingress, noting vegetation cover types or changes in vegetation, describing drainage types 

and conditions and identifying areas of potential future instability (Perry et al., 2003b). 

Earthworks are assigned a slope hazard value using a semi-quantitative approach where 

multiple parameters, including material composition, drainage conditions, indicators of mass 

movement, and presence of burrowing activity are scored by the site engineers. Based on 

this, earthworks are categorised as poor, marginal and serviceable (Manley and Harding, 

2003; Crapper et al., 2015). Poor earthworks are re-assessed at least every 2 years, marginal 

earthworks every 5 years and serviceable earthworks every 10 years (Manley and Harding, 

2003).  

These comprehensive risk assessments of potential landslide hazard are on completion 

meant to provide ample information on the probability and/or consequences of landslide 



6 
 

occurrence (Reid and Clark, 2000). This conventional approach though effective, is 

expensive and time consuming. Perry et al. (2003a) and Perry et al. (2003b) proposed a 

systematic application of a structured approach to risk analysis for all transport corridor 

cuttings and embankments to produce a risk profile (risk register). The assessment procedure 

was proposed as part of a continuous cycle of inspection, assessment and improvement. The 

assessment procedure is made up of strategic and tactical levels of risk assessments. The 

strategic level identifies the cutting and embankment performance requirements and 

potential hazards (risk objective). In addition, it prioritizes individual earthworks or sections 

of the transport corridor for further in-depth studies with respect to risk to operational 

efficiency of the entire corridor (Perry et al., 2003a). The tactical stage of the assessment 

prioritizes individual earthworks and sections recognised at the strategic level of assessment 

where detailed assessments with respect to specific risks and mitigation measures are 

undertaken.  

Where instability is detected, geotechnical investigation is performed to obtain information 

on the surface and subsurface conditions responsible for the distress to earthworks noted 

during field survey. Geotechnical surveys involve (1) surface exploration which may include 

geological and geophysical mapping, photogrammetry and the installation of displacement 

monitoring equipment on earthwork surfaces (Crapper et al., 2015) and (2) some measure of 

subsurface investigation to determine the physical properties and composition of the 

underlying soils, strength characteristics of the soils, evidences of subsurface displacement 

and local hydrology, through strategic placement of instrumented boreholes (Briggs et al., 

2013) and/or geotechnical site investigation (Network Rail, 2005) leading to eventual 

remediation of the slope. In addition deterministic models have been used to evaluate the 

susceptibility to landslide and slope instability across sections of transport corridors (Clarke 

and Smethurst, 2010; Miller et al., 2012; Briggs et al., 2013). These process driven models 

are generally considered suitable for detailed scale modelling of landslide susceptibility 

assessment (Van Westen et al., 2008). However, their high data demand may pose enormous 

cost on data acquisition when considered for implementation across the entire transport 

corridor (Miller et al., 2012). These models require highly accurate physical and 

hydrological properties of soil, which are known to spatially vary significantly even within 

very short distances (Van Westen et al., 2008).   
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1.5 Geomatic analysis in slope stability assessment 

The risk based approach to prioritisation of earthworks remediation currently employed in 

the UK transport corridors involves an onsite assessment of potential sources of slope 

instability and the allocation of a “propensity to failure” score to earthworks based on field 

observations (Manley and Harding, 2003). As many as 30 separate parameters covering 

slope materials, drainage and vegetation conditions as well as indicators of potential failures, 

are taken into consideration in the derivation of the Soil Slope Hazard Index (SSHI); 

providing a measure of the propensity of failure associated with individual earthworks 

(Manley and Harding, 2003; Crapper et al., 2015). However, important considerations such 

as the contributions of the broader adjoining catchment are not taken into account as 

computation of the SSHI values is essentially based on assessment of the individual slopes. 

Potentially geomatic approaches to data capture, analyses and modelling allows a greater 

spatial coverage of transport corridors to be investigated and the broader upland areas, 

which are believed to have a considerable contribution to zones of localised saturation 

within transport corridors  (Miller et al., 2012), to be considered.  

The application of Geomatics in slope stability assessment of transport corridors in the UK 

has been primarily for routine appraisal using aerial photographs (Perry et al., 2003b). 

However, recent advancement in remote sensing techniques and the availability of high 

spatial resolution digital data is gradually changing its use as a secondary source of 

information to use for the full characterisation of slope stability (Dai et al., 2002); ranging 

from susceptibility zonation to post crisis management (Lloyd et al., 2001; Van Westen et 

al., 2008; Razak et al., 2011; Guzzetti et al., 2012). Geomatics allows for the incorporation 

of multi- scale, multi- temporal datasets considered as influential to incidence of slope 

instability and required in recognition of vulnerable earthwork slopes. The scalability and 

potential coverage of a wider spatial expanse of input thematic data allows for the 

incorporation of the broader catchment contributions and the use of a series of subset areas 

of the transport corridor in understanding the complex mechanisms at work in the study 

area. However, the challenge remains to develop the analytical framework that allows for 

the integration of multi scale, multi temporal datasets in an objective manner to recognise 

slopes potentially susceptible to failure within the transport corridor environment. 
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1.6 Aim and objectives 

The aim of this study is to develop a geospatial model for the integration of multi-scale, 

multi- source Geomatic data for the broad-scale recognition and prediction of the spatial 

pattern of landslide susceptibility in transport corridors. To achieve this aim the following 

research objectives are addressed: 

1. Based on a critical review on the use of Geomatics in analysis and modelling of 

slope hazards, develop a conceptual framework for the integration of multi-scale 

multi-source geospatial data for the current and future evaluation of landslide 

susceptibility zonation and hazard assessment within transport corridor 

environments. 

2. To develop a terrain-based flow model that addresses the effects of catchment-scale 

contributions, such as run-off, on the moisture concentration of engineered slopes 

within transport corridor environments. 

3. To develop a multi-source, multi-scale approach that is based on evidential reasoning 

that incorporates the catchment contributions to a linear stretch of transport corridor 

earthworks and spatially quantify slope stability within transport corridor 

environments. In addition, the developed model performance is evaluated for a 

substantive section of a transport corridor.    

 

1.7 Thesis structure 

The aim and objectives of the research stated in Section 1.6 are addressed over the next six 

chapters. A literature critique of techniques commonly employed in landslide susceptibility 

zonation with a view to identifying techniques suitable for application in the transport 

corridor environment is presented in Chapter 2. Chapter 3 provides a detailed description of 

the study site, the various data sets used in the construction of hydrological and landslide 

susceptibility models and describes the data pre-processing carried out. Chapter 4 presents 

the methods employed in the geodatabase development, evaluation of the catchment 

contribution to zones of soil moisture accumulation within the transport corridor and the 

development of the final integrated landslide susceptibility model. Chapter 5 presents the 

modelling results for the various stages of the research. The modelling results are analysed 

and discussed in Chapter 6 with particular emphasis on how they fit into the existing body of 
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knowledge and their contributions to the research field. Chapter 7 summarises the key 

findings in the research and also suggest directions for further studies in the future. 

1.8 Summary 

Moisture accumulation as a result of excessive precipitation is attributed to be the most 

frequent cause of landslide occurrences. In the UK, the trigger for most of the shallow 

landslides occurrence along transport corridor slopes is mostly weather related and confined 

to periods of wet weather particularly during the leaf-off wet winter months when the rate of 

transpiration is at its minimum and the effect of pore water pressure is at its peak. Across the 

UK, increase in the rainfall intensities as a result of climate change is expected. The 

increased moisture content experienced by aging earthworks across transport corridors may 

result in reduction in the strength of the slope make up materials, poor embankment and 

cutting performance and increased incidence of slope instability. Conditional appraisal of 

transport corridor earthworks is currently limited to (1) a programme of regular on-site 

inspection that considers multiple parameters including, material composition, drainage 

conditions, indicators of mass movement, and presence of burrowing activity through which 

earthworks are assigned a slope hazard value using a semi-quantitative approach. (2) 

Geotechnical investigation in locations where instability is detected. Both techniques are 

effective but expensive and laborious. The results are site specific and are not easily 

interpolated to adjoining locations. However, the application of Geomatics to susceptibility 

assessment allows for the incorporation of multi scale multi temporal dataset in diagnosis of 

vulnerable earthwork slopes and the incorporation of the broader catchment contributions.  
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2  Literature review 

2.1 Introduction 

This chapter presents a review of the key concepts of landslide susceptibility assessment and 

landslide susceptibility modelling with particular reference to their applicability within 

transport corridors. A review of landslide failure mechanisms is presented in Section 2.2. 

The concepts of landslide analysis and susceptibility zonation are discussed in Section 2.3. 

Section 2.4 highlights the spatial data requirements for landslide susceptibility assessment 

and methods of acquisition. Finally, Section 2.5 provides a critique of landslide modelling 

approaches and the considerations that govern the selection of an appropriate modelling 

approach. 

2.2 Landslide processes         

Landslides are geomorphological processes that are invariably linked to the terrain, soil 

characteristics, geological structures, hydrological, climatic and vegetation conditions 

inherent to the localities where they occur (Glade and Crozier, 2006). Landslide incidence as 

a physical system develops through several stages in time (Leroueil et al., 2012) with its 

occurrences comprised of a history of pre-failure deformations, the actual failure itself and 

post-failure displacements (Lee and Jones, 2004). As a system, landslides exhibit a number 

of movement episodes separated by variable periods of inactivity (Lee and Jones, 2004) and 

the term failure is used to describe the development of a rupture surface (Leroueil et al., 

2012; Hungr et al., 2014).  

2.2.1 Concepts of slope stability   

The principles of soil mechanics (Barnes, 2010), rock mechanics (Jaeger et al., 2009) and 

grain flow mechanics (Takahashi, 2007) provide a framework for understanding the 

processes at work leading to landslide incidence in hillslopes. Slope stability is a function of 

the stresses acting on the slope materials and their internal strength (Iverson, 2005). A 

margin of stability is established as long as the internal strength of the slope material are 

greater than the external stresses acting on the slope (Lee and Jones, 2004). Introduction of 

additional external stress diminishes the existing slope equilibrium and at failure, the 

magnitude of shear stress (driving force) acting on the slope surpasses the total shear 

strength (resisting force) of the slope material (Iverson, 2000).  
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The assessment of shear parameters and stress-strain behaviour of geological materials are 

mostly derived from analysis of acquired field samples and modelling results are largely 

experimental, owing the technical difficulties associated with studying the process in nature 

(Iverson, 2005; Zhao and Zhang, 2014; Zhou et al., 2014). Iverson and Reid (1992) 

demonstrated that increase in pore water pressure can affect shear stresses as well as normal 

stresses. Implemented in a two dimensional steady state poro-elastic model, the groundwater 

flow and effective stress fields were computed for a homogeneous hillslope. Results from 

the study show that saturation as a result of infiltration and groundwater flow significantly 

increases the Coulomb failure potential (factor of safety) in most parts of the hillslope with 

the locus of greatest failure potential toward the slope toe (Iverson and Reid, 1992).  

However, natural hillslopes are rarely homogeneous, as some geological or pedological 

stratification is present in either or both the soil and underlying bedrock. Increased moisture 

content affects the mechanical behaviour of different soils differently (Savage and Baum, 

2005). Using a layered system, Moore and Iverson (2002) demonstrated that the hydraulic 

properties of soil exert a greater influence on the distribution of the failure potential and the 

rate at which failure proceeds. The authors showed that failure in densely compacted soils 

tend to proceed incrementally with expansion of pore spaces accompanied by reduction in 

pore pressure, while loosely compacted soils were characterised by a reduction in pore 

spaces leading to an immediate increase in pore pressure value and eventual loss in soil 

strength. Follow up studies by Iverson (2005) and Cho (2014) revealed that these 

characteristic responses influence the spatial distribution of pore pressure on a prospective 

slip surface.  

The presence of structural discontinuities in the form of bedding planes, schistosity, 

foliation, joints, cleavage, fracture, fissure, crack or fault plane can significantly influence 

the behaviour of slopes especially in rocky terrains (Fischer et al., 2010). The  orientation, 

roughness, persistence and nature of infilling materials can alter the strength characteristic of 

the soil or rock mass (Fischer et al., 2010). The presence of vegetation cover on slopes may 

induce apparent cohesion due to the strength of interpenetrating roots of plants, inhibiting 

the soils natural propensity to fail or flow. The influence of vegetation cover on slope 

hydrology and stability is a complex interaction that is not linear in nature (Abramson, 

2002).  Phillips (2003) identified geomorphological processes like landslide as nonlinear in 
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nature, with responses to external stresses on a hillslope not proportional across the entire 

slope face as a result of variation in thresholds due to mineralogy and mechanical properties 

of soil types and storage effects such as antecedent moisture conditions. Other sources of 

non-linearity include multiple modes of adjustment to changes in boundary conditions as a 

result of multiple variables responsible for the maintenance of slope stability equilibrium 

and self-organisation which refers to the tendency of formation of failure patterns linked to 

the internal dynamics at work in the hillslope (Phillips, 2003). Nonetheless, despite the 

complexity associated with landslide incidence, the vast majority of the factors responsible 

for slope instability are identifiable and the overall system is predictable (Huang et al., 

2009).    

Landslides are therefore as a result of complex interactions between conditioning factors 

responsible for progressive transformation of the slope from stable to unstable conditions 

and a triggering factor that initiates the development of a rupture surface, as well as 

associated non-linear system responses (Crozier and Glade, 2005). 

2.3 Landslide investigation 

Landslide analysis enables clear identification of the underlying factors responsible for the 

incidence of instability in slopes, including an estimation of the relative contribution of these 

factors to the overall process (Baum et al., 2005; Lee and Pradhan, 2006). There are three 

main aspects to landslide assessment, namely, susceptibility, hazard, and risk (Einstein, 

1988; Lee and Pradhan, 2006). Here, a brief mention is given on hazard and risk assessment 

components of landslide analysis as the review is essentially on landslide susceptibility 

assessment.  

Landslide susceptibility assessment constitutes the initial stage of landslide analysis which 

often but not always extends into hazard assessment and risk evaluation (Aleotti and 

Chowdhury, 1999; Yoshimatsu and Abe, 2006; Van Westen et al., 2008; Kanungo et al., 

2009). Landslide susceptibility zonation is employed in the prediction of spatial distribution 

of future landslide locations (Cascini, 2008) and depends on the identification of local 

conditions responsible for landslide occurrence and an inventory of past landslide locations 

(Aleotti and Chowdhury, 1999).  



13 
 

Hazard and risk assessments are challenging due many associated complexities. For 

example, hazard assessment deals with the probability that a landslide of a given magnitude 

will occur in a given time period at a particular location (Guzzetti et al., 2005). The capacity 

to predict temporal frequency of occurrence and magnitudes of landslide differentiates 

landslide hazard assessment from landslide susceptibility which is simply the spatial 

component of hazard assessment (Guzzetti et al., 2005). The probabilistic component of 

hazard assessment requires understanding and assessment of many uncertainties, such as the 

determination of the probability of failure per unit time and the quantification of expected 

behaviour of the failure in terms of its impact and characteristics (Aleotti and Chowdhury, 

1999; Lee and Jones, 2004). These components are to a certain degree difficult to assess 

especially for first-time failures and in areas such as the transport corridor environment 

where indicators to the onset of failure are preferably mapped in contrast to actual failures 

(Aleotti and Chowdhury, 1999; Perry et al., 2003a).  

Risk assessment incorporates landslide hazard and vulnerability to estimate the levels of risk 

and to work out appropriate control measures to reduce risk when the level becomes 

unacceptable (Lee and Jones, 2004). It is a multi-stage process that essentially combines 

scientific investigation, expert judgment and human values (Lee and Jones, 2004). Risk is 

dynamic in nature and as such requires periodic updates in order to account for changes such 

as changes in land use policy and identification of new zones of instability (Lee and Jones, 

2004; Fell et al., 2008). Extensive reviews on landslide hazard and risk assessment have 

been produced by Dai et al. (2002) and Pantelidis (2011).  

2.4 Landslide susceptibility assessment 

Landslide occurrence is seldom without prior notice, often eventual failures are as a result of 

inadequate appraisal of indicators that precedes these occurrences.  The acquisition of 

landslide information extends from an initial field survey of the conditional appraisal of 

landforms (Manley and Harding, 2003) to measurement of surface and subsurface 

displacement using field based techniques (Yin et al., 2010) or from remotely sensed data 

(Jones, 2006; Tapete et al., 2012; Drakatos et al., 2013), recordings of weather related 

triggering factors (Caine, 1980; Crosta, 1998) and landslide susceptibility modelling (Van 

Westen et al., 2008; Jaboyedoff et al., 2012). Numerous techniques have been developed by 

various authors for the mapping, monitoring and modelling of landslide activities. Field 
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surveys enable the detection of evidence of ground movement such presence of tension 

cracks, leaning of trees on slope with base of each tree bowing outward in the downslope 

direction, offset of fence lines, slopes characterised by hummocky toe (bulging ground) and 

exposure of earthwork foundation resulting from soil movement (Perry et al., 2003a; Perry 

et al., 2003b). Ground movements in some cases are subtle, but can be mapped by 

experienced site engineers (Crapper et al., 2015). The presence of indicators of potential 

ground movement necessitates the implementation of landslide monitoring system for 

periodic or continuous surface or subsurface measurement. With confirmation of slope 

instability, geotechnical investigation and modelling are generally employed to facilitate 

detailed scale assessment of slope behaviour (Miller et al., 2012).  

2.4.1 Field survey  

Field surveys are notable sources of field data utilised in landslide susceptibility assessment. 

During routine mapping campaigns an assessment of the susceptibility of landforms in the 

study area is obtained through measurements and visual assessments aimed at identifying 

the presence of slope instability indicators. The nature, type and size of required data to be 

acquired during the repeated field campaigns are dependent on the expertise of the 

investigator and the field condition being investigated (Gustavsson et al., 2006). The surveys 

help identify potential sources of failure such as zones of surface flow convergence and 

changes in runoff pattern due to anthropogenic modification in land use and land cover. It 

also help prioritise locations in need of more detailed assessments and in developing 

benchmarks against which conditional appraisal of landforms can be monitored (Perry et al., 

2003b).   

Typically acquired landslide information includes inventory of failed sites, geological, 

hydrological, vegetation cover, geomorphological, burrowing animal activities and drainage 

properties. In the transport corridor environments, additional information on history of past 

interventions in an area is important (Perry et al., 2003b). In the UK, slope hazard scores for 

considered slope instability causal factors are mapped against each slope using a Trimble 

hand held computer with inbuilt camera (Crapper et al., 2015). This mode of data 

acquisition is highly utilised in transport corridor environments where conditional appraisal 

of individual earthwork is an important consideration to the overall performance integrity 
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and safety of the transport network. The acquired data is site specific and data size poses a 

challenge to data storage over time.   

2.4.2 Landslide monitoring 

Following the initial field survey, evidence of slope instability is usually followed up by 

some form of surface and subsurface monitoring. Instrumentation installed in boreholes or 

attached to slope surface are commonly employed to check for stability or determine the rate 

of ground movement along suspected or actual slip surfaces in vulnerable slopes (Perry et 

al., 2003a).  Extensometers and crack gages or telltales are used in monitoring surface 

displacement on earthwork cuttings (Crapper et al., 2015). The instruments estimate 

movement normal to the slope face by measuring the separation between two stakes driven 

on either side of tension cracks. More sophisticated electrical models provide continuous 

monitoring of surface displacements. Accuracy achieved with extensometers depend on the 

dimensions of the crack been measured which typically is within the sub-cm range 

(Abramson, 2002). The approach is simple, easy to monitor and provides information on the 

magnitude and direction of ground movement but require protection from adverse weather 

conditions and burrowing animals (Crapper et al., 2015). A notable setback with the use of 

extensometers is that as displacement progresses additional cracks potentially weaken the 

surrounding areas (Abramson, 2002). The driven stakes become slack introducing some 

measure of error into the displacement measurements.  

Measurements obtained using precise surveying techniques like standard theodolite geodetic 

measurement (Conte and Coffman, 2013) and Global Positioning System (Mills et al., 2005; 

Zhang et al., 2008) for fixed monitoring points on slope surface are less perturbed by the 

ground movement. The use of total station theodolites for monitoring surface displacement 

requires pre-determined ground control points and repeated measurements provide a means 

of evaluation of the absolute movement of these points over time (Abramson, 2002). The 

use of theodolites in evaluating possible ground movement is both costly and tedious. Mills 

et al. (2005) showed that Global Positioning System present precision accuracy in the range 

of millimetres to centimetres. However, successful implementation of this technique is 

dependent on satellite visibility which is greatly compromised in forested areas, and narrow 

valleys.   



16 
 

Subsurface monitoring can be achieved through pitting, trenching and instrumentation 

installed into boreholes. Pits and trenches allow for the acquisition of undisturbed samples 

for geotechnical laboratory analysis and better visual assessment of the shear surfaces. Pits 

and trenches are usually restricted to shallow landslides (Chaplow, 1983). The use of 

strategically placed instrumented boreholes is preferred over pits and trenches in transport 

corridors owing to its lesser impact on surrounding areas and ability to probe deeper depths 

(Perry et al., 2003a). Inclinometers installed in boreholes are used to monitor and measure 

subsurface movement. High precision probes provide subsurface displacement readings at 

regular distance down the hole (Abramson, 2002). Repeated measurements provide 

information on inclination changes that may have occurred, enabling the monitoring of very 

slow displacement movement due to slope instability (Borgatti et al., 2006). Installed 

inclinometer tubes are fragile and prone to breakages with significant ground movement 

(Perry et al., 2003a), making them ideal indicators for shearing processes in rapid paced 

landslides.  

Information on subsurface hydrological conditions of the slope is usually obtained in the 

field with the aid of hydrological sensors installed in boreholes (Ridley et al., 2004) of 

which piezometers are probably the most commonly used. Piezometers measure fluid 

pressure in saturated soils and in addition, information on the water table elevation within 

the soil. Seasonal groundwater fluctuation can be monitored from piezometer readings. 

Analysis of data obtained from strategically positioned piezometers allows for a 

comprehensive understanding of the overall pattern of groundwater movement (Wu et al., 

2008a). Data on groundwater conditions obtained from piezometers are important inputs in 

most process based modelling of slope instability assessments (Ridley et al., 2004; 

Smethurst et al., 2006; Briggs et al., 2013).  

In situ testing within boreholes allows for down-hole and across-hole geophysical surveys 

that provide information on internal soil structure, soil composition and conductivity (De 

Vita et al., 2006; Carpentier et al., 2012). Pressuremeter tests help determine in situ 

deformability characteristics of jointed rock mass (Tiwari and Rao, 2006; Sari, 2009) and 

permeability test (Lacerda, 2004).  
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2.4.3 Landslide susceptibility modelling 

Landslide models are essentially simplified generalizations and approximations of naturally 

occurring mass movement processes (Favis-Morlock and De Boer, 2003). Landslide models 

provide a means for analyzing processes responsible for slope stability and the prediction of 

slope behaviour under certain climatic conditions or scenarios of environmental change. 

These models can be used for the back-analyses of previously failed slopes, in an evaluation 

of the effectiveness of geotechnical stabilization measures employed (Barla et al., 2004) and 

in decision support for land use planning (Leventhal and Kotze, 2008). The choice of the 

most appropriate modelling approach is often governed by a number of considerations: 

availability of data, quality and accuracy of data, scale of zoning and required outcomes 

(Cascini, 2008). Landslide susceptibility zoning is either on a regional (small and medium), 

local (large) and site-specific (detailed scale) planning basis with outputs usually in the form 

of landslide susceptibility maps (Table 2.1).  

Several published techniques have been proposed for evaluating landslide susceptibility 

(Hungr et al., 2001; Van Westen et al., 2008). These techniques essentially rank slope 

instability factors and assign different susceptibility levels (Fell et al., 2008). Landslide 

susceptibility models are either quantitative and  qualitative in nature (Cascini, 2008).  

Qualitative models are subjective, determine susceptibility heuristically and represent 

susceptibility levels using descriptive terms (Guzzetti et al., 2005), while quantitative 

models are data driven and produce numeric estimates based on probabilities of landslide 

occurrence in a susceptibility zone (Fell et al., 2008). On the basis of scale of study 

susceptibility models can either be regional or local (Crozier and Glade, 2005) and based on 

the nature of information used in landslide susceptibility assessment, models can be grouped 

as direct or indirect approaches (Van Westen et al., 2003). Comprehensive reviews on the 

various methods of landslide susceptibility assessment can be found in Soeters and Van 

Westen (1996), Carrara et al. (1999), Guzzetti et al. (1999), Aleotti and Chowdhury (1999), 

Dai et al. (2002), Wang et al. (2005), Fell et al. (2008), Van Westen et al. (2008),  and 

Cascini (2008).  

Van Westen et al. (2008) categorized the various landslide susceptibility modelling 

approaches into four groups, namely heuristic, statistical, deterministic and probabilistic, 

based on the nature of their analytical framework. The classification of susceptibility 
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methods by various authors is to an extent fuzzy in nature. For example, Aleotti and 

Chowdhury (1999) and Neaupane and Piantanakulchai (2006) considered Artificial 

Intelligence and Expert systems as an entirely separate susceptibility modelling approach. 

Pradhan et al. (2010) emphasized soft computing techniques such as neural network analysis 

or fuzzy logic as modelling techniques usually subsumed into any of the four broad 

categories susceptibility modelling approaches as highlighted in Van Westen et al. (2008). 

Van Westen et al. (2008) categorized the various landslide susceptibility modelling 

approaches into four groups namely heuristic, statistical, deterministic and probabilistic, 

based on the nature of their analytical framework. Van Westen et al. (2008) classification of 

landslide susceptibility modeling approaches is widely referenced and is adopted for this 

review (Figure 2.2). The various methods are discussed in greater details in sections 2.4.4 

and 2.4.5.   
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Table 2.1: Landslide susceptibility zoning showing the various mapping scales and their 

applications (Fell et al 2008) 

Scale 

description 

Indicative 

range of 

scales 

Examples of zoning application Typical area of 

zoning 

Small < 1:100,000 (i) Landslide inventory and 

susceptibility to inform policy 

makers and general public 

>10,000 km2 

square kilometres 

Medium 1:100,000 

to 1:25,000 

(ii) Landslide inventory and 

susceptibility zoning for 

regional development: or very 

large scale engineering 

projects. 

1000-10,000 km2 

square kilometres 

  (iii) Preliminary level hazard 

mapping for local areas   

 

Large 1:25,000 to 

1:5000 

(i) Landslide inventory, 

susceptibility, hazard zoning  

for local areas 

10-1000 km2 

square kilometres 

  (ii) Intermediate to advanced level 

hazard zoning for regional 

development 

 

  (iii) Preliminary to intermediate 

level risk zoning for local 

areas and the advanced stages 

of planning for large 

engineering structures, roads 

and railways 

 

Detailed >1:5000 (i) Intermediate and advanced 

level hazard and risk zoning 

for local and site specific areas 

and for the design phase of 

large engineering structures, 

roads and railways 

Several hectares to 

tens of square 

kilometres 
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Figure 2.1: Flow chart highlighting the various landslide susceptibility assessment 

approaches (After van Westen et. al. 2008 and Kanungo et. al. 2009). 

 

2.4.4 Qualitative approaches 

Qualitative approaches are based on expert evaluation where field acquired evidence (input 

data), sometimes supported by remotely sensed (aerial photo or satellite) imagery 

interpretation are used in carrying out a susceptibility or hazard assessment of an area (Wati 

et al., 2010). The assessment is based solely on the judgment of the investigator (Kanungo et 

al., 2009). Analysis of landslide inventory, direct geomorphological mapping and heuristic 

or index based methods make up the qualitative methods (Kanungo et al., 2009).  

 Analysis of landslide inventory 

Landslide incidence leaves discernable features that can be classified and mapped in the 

field or using remote sensing techniques (Jaboyedoff et al., 2012) such as hummocky terrain 

surfaces and disruption in land cover pattern (Guzzetti et al., 2012). The determination of 

the frequency of landslide in an area and the analysis of landslide distribution can provide 

realistic estimates of landslide probability for a region that has experienced considerable 
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landslide occurrences (Moreiras, 2004; Chauhan et al., 2010). Information on the state of 

activity, certainty of identification, dominant type of slope movement, estimated thickness 

of material involved and date(s) of known landslide activity, have been used to identify the 

landslide triggers and develop frequency-magnitude relationships (Dai and Lee, 2002; 

Guzzetti et al., 2005; Jaiswal et al., 2010a). Landslide density maps illustrating the number 

of landslide events over a region provide reasonable estimates of frequency of failure 

suitable for landslide susceptibility and hazard mapping (Van Den Eeckhaut et al., 2009).  

Cardinali et al. (2002) employed multi-temporal landslide map to portray the distribution of 

existing and past landslides and observed the evolution of new failure sites over a period of 

about 60 years in Umbria region, Central Italy. Analysing landslide density maps alongside 

the remedial procedures employed to mitigate local instability problems, the authors were 

able to infer the possible evolution of slopes, the most probable type of failures, and their 

expected frequency of occurrence and intensity (Cardinali et al., 2002).  

Galli et al. (2008) compared landslide inventory maps prepared for different parts of Italy. 

The study compiled a landslide distribution inventory, geomorphological landslide maps and 

multi-temporal landslide inventories for the different areas and compared their predictive 

capabilities. The results of the study revealed that comprehensive landslide inventory map 

performed better with an overall predictive accuracy of 85.8% as against 73.1% for the 

geomorphological landslide inventory maps and 72.8% for the reconnaissance landslide 

inventory map (Galli et al., 2008).  

However, there are grave suppositions on the use of inventory analysis solely to investigate 

the distribution, types and patterns of landslide in relation to morphological and geological 

characteristics have been raised by a number of authors. These authors considered the 

approach to be questionable or misleading due to a number of reasons: (1) that landslides are 

complex phenomena and the dynamics of equilibrium at a site is slightly modified with 

every landslide occurrence (Guzzetti et al., 1996); (2) The uncertainties and errors with 

associated landslide inventory and estimates of the probability of spatial occurrence of slope 

instability based on landslide density do not adequately represent the causal factors 

responsible for slope instability (Galli et al., 2008); (3) Most importantly, landslide 

inventory analysis lacks the predictive capability to identify landslide prone areas in 

locations where landslide is yet to occur (Dai et al., 2002). However, despite these 
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limitations, the inventory based method is often incorporated into other methods as an 

important form of input data and are employed in the validation of final susceptibility map 

(Guzzetti et al., 2012).  

 

 Direct geomorphological mapping 

Geomorphological mapping is a direct qualitative assessment that relies on expert judgment 

drawn from field experiences and knowledge of similar studies. The approach relies on the 

assessor’s ability to recognize and map actual or potential instability (Aleotti and 

Chowdhury, 1999; Cascini, 2008; Van Westen et al., 2008). Its subjective nature 

notwithstanding, the approach has been shown to produce very reliable results when 

conducted by experienced investigators (Dai et al., 2002).  

Geomorphological mapping involves detailed identification of geomorphological features 

commonly responsible for slope instability where perceived significance is scored or 

weights are assigned (Crapper et al., 2015). The sum of all assigned weights is used to rank 

susceptibility (Manley and Harding, 2003). The subjective nature of this approach renders it 

quite difficult to formalize, as the evaluation of contribution of causal factors on a given 

location varies with experts (Cardinali et al., 2002). However, the weights assigning process 

to causal factors can be made less implicit when discussed among experts.  For example, a 

consortium of experts formulated a soil slope hazard index (SSHI) algorithm which is 

currently used for on-site evaluation of slopes and embankments in the UK (Perry et al., 

2003a; Miller et al., 2012). The SSHI algorithm allows for the evaluation of common slope 

stability parameters alongside factors such as burrowing by rodents which would be difficult 

to assess using remote sensing techniques (Miller et al., 2009). Geomorphological mapping 

can be successfully applied to susceptibility assessment and zonation studies of any scale, or 

adapted to specific local requirements (Aleotti and Chowdhury (1999). The approach is very 

rigorous, time consuming and tedious in nature. On-site assessment of slope cuttings and 

embankments is often difficult to implement in steep hilly and heavily vegetated terrains 

which typify most rural sections of transport corridor routes (Perry et al., 2003a; Perry et al., 

2003b).    
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 Heuristic zoning 

The heuristic zoning approach integrates a priori knowledge, local geomorphological and 

geotechnical expertise for susceptibility assessment (Wati et al., 2010). The indirect to semi-

direct heuristic approach employs spatial information such as digital terrain model (Ruff and 

Czurda, 2008), land cover maps (Castellanos Abella and Van Westen, 2008)in explaining 

landslide occurrence (Ives and Messerli, 1981; Rupke et al., 1988; Van Westen et al., 2000; 

Wati et al., 2010). The heuristic approach is based on the assumption that the relationship 

between the landslide susceptibility and conditioning variables are known and specified in 

the models (Dai et al., 2002). Conditioning factors such as topography, hydrology, geology, 

geotechnical conditions and vegetation cover, as well as land use are determined either by 

field campaign or remote sensing. The index or parameter maps obtained are classified, 

ranked and weighted according to their assumed relative influence on slope failure  (Glade 

and Crozier, 2006).  

Qualitative weighting under the heuristic approach is highly dependent on the experience of 

the individual or group of experts responsible for the analysis (Wati et al., 2010). The 

subjective nature of the approach renders it difficult to reproduce landslide susceptibility 

maps for the same location by different experts (Soeters and Van Westen, 1996). The 

approach often requires extensive and lengthy field surveys and employs implicit rather than 

explicit rules (Aleotti and Chowdhury, 1999; Glade and Crozier, 2006). The subjective 

nature of the approach adds to the uncertainty of the model (Barredo et al., 2000). However 

the use of GIS can produce effective combine maps using field survey and remotely sensed 

data, reducing the level of subjectivity (Ruff and Czurda, 2008). Ruff and Czurda (2008) 

using index overlay or map combination approach developed a landslide susceptibility map 

for study area in the Northern Calcareous Alps in Vorarlberg, Austria. Information on 

geological and geotechnical properties of the study area were obtained from field survey, 

then digitised in a GIS and developed into data layers. Data layers on geotechnical class, 

bedding conditions, tectonic layouts, slope angles, slope orientations, vegetation and erosion 

were converted into grids and spatially analysed alongside a Digital Elevation Model. 

Bivariate statistics was initially used to establish the relative contributions (rating) of the 

considered factors to slope instability in the study area. Assignment of weights to causal 

factors and their categories (e.g. slope classes) were achieved using expert opinion. The 

weighted thematic (data) layers were integrated in a GIS to generate a landslide 
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susceptibility map of the study area that descriptively delineation zones of instability. The 

index overlay approach is simple and highly adaptable as additional data layers can easily be 

indexed and included in the method. Which is a clear advantage over earlier discussed 

qualitative methods, nonetheless, the weight assignment process still remains highly 

subjective.   

In general, the simple heuristic approach is considered useful for producing qualitative 

landslide susceptibility maps for regional scale assessment (Castellanos Abella and Van 

Westen, 2008).  Decision-support tools such as analytical hierarchy process (AHP) 

(Mezughi et al., 2012) and weighted linear combination (Akgun et al., 2008) models, have 

been recently integrated into GIS-based heuristic approaches (Castellanos Abella and Van 

Westen, 2008). This new drive aimed at improving the heuristic framework, had led to (i) 

the incorporation of quantitative techniques like fuzzy set theory (Gorsevski et al., 2005) 

and bivariate statistics (Ruff and Czurda, 2008) to standardise landslide predictor variables, 

(ii) the pairwise comparison techniques (e.g. the analytic hierarchy process-AHP (Mezughi 

et al., 2012; Kayastha et al., 2013)) and neural networks (Pradhan and Lee, 2010) to produce 

weights more objectively in relation to the relative importance of the variables and (iii) the 

use of  the weighted linear combination-WLC (Ayalew et al., 2004) and ordered weighted 

average-OWA (Feizizadeh and Blaschke, 2013) aggregation methods to compute and map 

landslide susceptibility. Although these methods are considered to be semi-quantitative 

(Ayalew and Yamagishi, 2005), they have been shown to be effective in medium-scale 

assessments of landslide susceptibility (Yoshimatsu and Abe, 2006). The augmented 

heuristic approach is however still limited by the subjective nature of the weighting of the 

various factors. Ruff and Czurda (2008) identified that the relative importance of factors are 

often very site specific, and vary with underlying geology, lithology and topography. 

Therefore, a degree of iterative weight adjustment is often required to describe all of the 

different environments. However, the most significant limitation is the inability of index 

overlay to incorporate the complex interactions between the multiple factors that control 

slope instability into the susceptibility assessment framework (Castellanos Abella and Van 

Westen, 2008). The heuristic approach is therefore more suitable for regional susceptibility 

studies, as its subjective nature limits its applicability to detailed scale slope stability 

assessment.   
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2.4.5 Quantitative approaches 

The quantitative methods (statistical, deterministic and probabilistic) were developed to 

address the subjective nature of the attribute weighted values normally assigned to the 

various factors that are assumed to influence slope stability in heuristic studies (Aleotti and 

Chowdhury, 1999). The quantitative techniques can be considered as more objective due to 

their data-dependent character. However, the success of these techniques is often affected by 

the number, quality and reliability of data (Aleotti and Chowdhury, 1999; Van Westen et al., 

2008) 

 Statistical approaches 

Statistical techniques for modeling landslide susceptibility zonation have been successfully 

applied at various scales, where conditions responsible for past slope failure are considered 

as landslide incidence thresholds representing local terrain conditions necessary for 

landslide occurrences (Santacana et al., 2003; Nandi and Shakoor, 2010; Van Den Eeckhaut 

et al., 2012). Landslide inventories of past landslides, topographic information and thematic 

maps on local factors responsible for slope instability are the essential components 

necessary to statistically model landslide probability in space and time (Vorpahl et al., 

2012). The statistical approach compares the spatial distribution of landslides with the 

various causal factors that are considered influential to slope stability (Nandi and Shakoor, 

2010). The approach allows for the validation of the importance of each of the causal factors 

considered and often employs the use of GIS. As a result of the flexibility of the statistical 

approach, there are several scientific publications on studies that have successfully explored 

the combination of fuzzy membership in GIS based landslide hazard mapping (Binaghi et 

al., 1998; Lee et al., 2002; Van Westen et al., 2003), logistic regression (Dai and Lee, 2003; 

Santacana et al., 2003) and artificial neural network (ANN) classification (Lee et al., 2003; 

Pradhan and Lee, 2010). The statistical approach can be broadly divided into bivariate 

statistical analysis, multivariate methods, and advance machine learning techniques (Van 

Westen et al., 2008).   

In a bivariate statistical analysis, thematic maps for each of the considered landslide causal 

factor (terrain factors, land cover/land use, soil types/depth, rainfall etc.) is combined with 

the landslide inventory map, and weight values (based on landslide densities) are calculated 

for each factor class ( e.g. slope class 10o-20o) (Nandi and Shakoor, 2010; Yalcin et al., 
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2011). Using normalised values (landslide density per factor class in relation to the landslide 

density over the whole area), a landslide susceptibility map is created by summation of the 

derived weights for the considered individual parameters (Yalcin, 2008). Several weight 

computing techniques such as the information value method (Shahabi et al., 2013), weights 

of evidence (Lee and Choi, 2004), likelihood ratio (Akgun et al., 2008), and Bayesian 

statistics (Lee et al., 2002) have been implemented in bivariate landslide susceptibility 

mapping. Bivariate models are convenient for quantifying the contribution of variables 

(Kanungo et al., 2009), they also serve as good learning tools for deciphering which factors 

or combination of factors plays a role in the initiation of landslides (Akgun et al., 2008; 

Yalcin, 2008). Bivariate models are semi-quantitative in nature, as some measure of 

subjectivity is associated with assigned weights to factor maps (Aleotti and Chowdhury, 

1999). Commonly employed bivariate models include statistical index method (Yalcin, 

2008), weighting factor method (Çevik and Topal, 2003) and frequency ratio (Yilmaz, 

2009).  

Multivariate statistical models evaluate the relationship between a dependent variable 

(landslide occurrence) and a series of independent variables (landslide controlling factors). 

Multivariate statistics are used to model and quantify the relationship between landslide 

susceptibility and causal factors (Dai et al., 2002). Considered factors are sampled and the 

presence or absence of landslides is determined for each of the sampling units and the result 

analysed using multivariate statistics (Dai and Lee, 2003). Multivariate statistical models are 

perhaps the most commonly featured in literature. These include: linear regression analysis 

(Carrara et al., 1991), multiple regression analysis (Carrara, 1983), logistic regression 

analysis (Ayalew and Yamagishi, 2005) and discriminant analysis (Van Den Eeckhaut et al., 

2009). However, logistic regression and discriminant analysis are the two most featured 

multivariate statistical methods in landslide susceptibility assessment.   

Logistic regression (a generalized linear model) establishes relationship between casual 

factors (terrain factors, land cover/land use, soil types/depth, rainfall etc.) with the stability 

or susceptibility of an area to landslide activities (Dai and Lee, 2003). Logistic regression 

analysis involves the fitting of a regression equation to data and then expressing the 

probability of the presence/absence of landslides in each grid cell. The relative contribution 

of grid cell to the logistic function can be obtained by looking at the significance of each 
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regression parameter (Ayalew and Yamagishi, 2005). Logistic regression is one of the most 

frequently used multivariate modeling techniques in landslide susceptibility studies (Lee, 

2005; Felicísimo et al., 2012). In landslide susceptibility assessment, the dependent variable 

is binary (representing presence or absence of a landslide) in nature. The added logistic link 

function to the usual linear regression model enables binary dependent variables to be 

modelled as continuous variables. Thus, explanatory variables may be either continuous or 

discrete, or a combination of both, and do not necessarily require the explanatory variables 

to be normally distribution (Lee, 2005). The logistic regression model is given by: 

 
𝑝 =

exp⁡(𝑌)

(1 + exp(𝑌))
⁡⁡0 ≤ 𝑌 ≤ 1 Equation 2.4 

Where p is the probability of an event (landslide) occurrence, Y is a linear logistic model: 

 𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3+. . . +𝛽𝑛𝑋𝑛 + 𝜀 Equation 2.5 

Where 𝛽0 represents the intercept on the model, 𝛽1, 𝛽2 … 𝛽𝑛, are the partial regression 

coefficients estimated from training data using the maximum likelihood method (Lee, 2005) 

and 𝑋1, 𝑋2, …𝑋𝑛 represents the independent variables (Lee, 2005; Guzzetti et al., 2006).  

The logistic regression model was employed for the assessment of landslides initiating from 

cut slopes along transportation corridors (Ayalew and Yamagishi, 2005). Using an inventory 

map of 87 landslides locations as dependent variable and lithology, bed rock-slope 

relationship, lineaments, slope gradient, aspect, elevation and road network as independent 

variables, Ayalew and Yamagishi (2005) developed a landslide susceptibility map of a 

section of transport corridor in map in the Kakuda-Yahiko Mountains of Central Japan using 

logistic regression. The approach proved useful in predicting actual and potential failure 

locations. The model identified aspect and slope gradient as having more significant 

contribution to in stability than elevation, although field observations support the contrary. 

The developed susceptibility map had an overall accuracy of 84%, classifying 8.87% of the 

total study area as medium to high susceptibility zones.  The study was able to demonstrate 

the ability of logistic regression as an effective means of mapping instability in the transport 

corridor, however some derived coefficients were found to be misleading. This was 

attributed to the curvilinear property of the model and mountainous terrain. Jaiswal et al. 
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(2010b) also reported that, most of the landslides were found to be shallow translational 

debris slides and debris flow-slides on natural and engineered slopes triggered by rainfall. 

Many of which occurred as first-time failures. The results of both studies showed that 

logistic regression provides reasonable assessment for landslide susceptibility of transport 

corridor slopes. The choice of model in Jaiswal et al. (2010b) was informed by the nature of 

failure observed (shallow translational debris slides in a largely homogenous overburden) 

during the assessment stage.     

Perry et al. (2003a) have reported the existence of non-linear slow rotational slide in some 

sections of the UK transport corridor for which linear regression models are unsuitable. Das 

et al. (2011) emphasised the need for a sufficiently robust data driven susceptibility model 

that can accommodate the complexities often associated with landslide incidence when 

modelling susceptibility along transport corridor slopes so as to better represent complex 

terrain conditions. The findings of the study show that landslides within the transport 

corridor environment are highly discrete events and the landslide controlling factors are not 

entirely independent. Logistic models are characterised by high predictive capabilities, but 

these models may not be the most appropriate for detailed scale assessment of slope 

instability. 

Discriminant analysis and the logistic regression approaches are two of the most popular 

multivariate landslide susceptibility modelling techniques (Ayalew and Yamagishi, 2005). 

Discriminant analysis models classify cases into one of several mutually exclusive groups 

based on their values for a set of predictor variables. For landslide susceptibility assessment, 

two groups are typically established: pixel identifying areas free of landslides incidence (S0, 

stable slopes), and pixels of areas with landslide (S1, unstable slopes). The discriminant 

function analysis is based on the assumption that the two groups (S0 and S1) are mutually 

exclusive and slope instability (t) is restricted only to one of the groups (i.e. t (0, 1)).  

The goal of DA is to determine the group membership of each pixel by definition of a linear 

relationship between the landslide causal factors considered, which effectively segregates 

between the populations of stable and unstable slopes (Guzzetti et al., 2005), thus, enabling 

the mapping of individual pixels into their appropriate groups with minimal error. 

Discriminant analysis models are linear in nature (Guzzetti et al., 2006) and assume the 

form: 
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 𝐿 = 𝛽0 + 𝛽1𝑋1(𝑡) + 𝛽2𝑋2(𝑡) + 𝛽3𝑋3(𝑡) + ⋯+ 𝛽𝑛𝑋𝑛(𝑡)⁡ Equation 2.3 

Where L is the index or a point on the equation line differentiating stable from unstable 

locations; 𝑋𝑖(𝑖 = 1,2,3, … . , 𝑛) are the input causal factors; 𝛽𝑖(𝑖 = 1,2,3,… , 𝑛) are 

coefficients estimated from the training data through discriminant analysis.  

Both logistic regression and discriminant analysis establish linear or log-linear relationships 

between landslide susceptibility and causal factors. While the relationship between 

landslides and causal factors can be extremely complex and inherently highly nonlinear. As 

such, the linear and generalized linear models commonly fail to reflect the nonlinear nature 

inherent in landslides (Zhou et al., 2002; Zhu et al., 2014). Furthermore, these models are 

known to poorly handle multi-scale data, as all causal factors are combined with little 

considerations to the difference in scale at which the thematic data were acquired (Dai et al., 

2002). Generally, bivariate and multivariate approaches are characterized by a tendency to 

over simplify the factors that condition landslides (Carrara, 1983; Carrara et al., 1991). 

Thus, both approaches are commonly considered best for regional or large scale studies 

where the effects of local variation terrain properties are minimal (Dai et al., 2002; Fell et 

al., 2008). 

  Machine learning approaches 

There are also nonlinear regression models and machine learning techniques that address 

modelling nonlinearity in landslides (Goetz et al., 2011). Advances in machine learning 

have provided new techniques such as classification tree analysis, generalized additive 

models, boosted regression tree analysis and maximum entropy (Wan et al., 2010; Goetz et 

al., 2011; Felicísimo et al., 2012; Vorpahl et al., 2012). The application of modelling 

techniques such as classification tree analysis, boosted regression tree analysis and 

maximum entropy to landslide assessment has only been recently reported (Felicísimo et al., 

2012; Vorpahl et al., 2012) and are yet to be fully explored with regards to their suitability 

in landslide susceptibility modelling. (Vorpahl et al., 2012). Developments in statistical 

software (SPSS and MATLAB) and computer programming languages like R, Python and 

MATLAB have facilitated the applicability of these machine learning techniques. 
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The generalized additive model (GAMS) is a semi-parametric extension of the logistic and 

linear regression models that combines linear and nonlinear relationships between predictor 

and response variables (Brenning, 2008; Goetz et al., 2011). The nonlinear term of the 

model employs smoothing functions for the nonlinear transformation of predictor variables, 

hence its ability to effectively model complex geomorphological distributions (Goetz et al., 

2015). The linear term which employs the logistic additive model for binary 

(presence/absence) response variables typically employed in landslide assessment, 

discriminates between mapping units (stable and unstable slopes) using the logit of the 

occurrence probability (Petschko et al., 2014). GAMS has only recently been introduced 

into landslide susceptibility (Brenning, 2008; Petschko et al., 2014; Goetz et al., 2015). The 

model handles large datasets poorly (Goetz et al., 2011), as smaller models were identified 

to be associated with lesser errors (Petschko et al., 2014). This was attributed to the smaller 

sample size which prevented model overfitting (Petschko et al., 2014). Overfitting refers to 

a model’s tendency to produce excellent predictions for training data employed in the 

model’s parameterisation, but perform poorly when new test data not considered during 

model training are introduced. This is a major setback with use of GAMS in landslide 

susceptibility assessment as data size is typically large and model predictions maybe 

unreliable. Goetz et al. (2011) and Petschko et al. (2014) suggested the division of the entire 

study area into smaller lithological domains that can be modelled separately and the final 

susceptibility map of the study area derived by merging the individual susceptibility maps of 

the domains. Goetz et al. (2011) reported an overall performance accuracy of 83.4% for 

GAMS in the study area. The result suggests that GAMS can be considered for detailed 

scale susceptibility analysis, however, investigators should be mindful of the model’s 

tendency of overfitting.  

Classification tree analysis possesses the capacity to capture existing non-linearity and 

interactions that may exist within a complex landslide system by evaluating parameter 

interfaces and producing step-like response functions between the considered variables and 

the model outcome (Vorpahl et al., 2012). The approach uses recursive partitioning of 

multidimensional space of a single variable based on sets of simple rules generated at each 

step to minimize variability within each resulting subset and maximize class purity (Elith et 

al., 2008; Felicísimo et al., 2012; Vorpahl et al., 2012). A pruning procedure is usually 

required at the end of the recursive partitioning process through internal cross-validation to 
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reduce the existence of data deviance at the terminal nodes (Felicísimo et al., 2012). Under 

this approach, the predictor variables can be numeric, binary or categorical in nature and the 

model outcomes are usually unaffected by the monotonous transformations and differences 

in scale of measurement amongst predictor variables (Elith et al., 2008). The classification 

tree models are insensitive to outliers and possess the ability to accommodate missing data 

within the predictor variables by the use of surrogates (Breiman et al., 1984; Elith et al., 

2008).  Comparative studies show that classification tree models are usually not as accurate 

as other regression models like generalized additive models (Elith et al., 2008; Felicísimo et 

al., 2012; Vorpahl et al., 2012). Model sensitivity is another limiting factor. Vorpahl et al., 

(2012) noted that the resultant tree structure is heavily dependent on the data samples, where 

small adjustments in the training data commonly result in very different series of splits. This 

lack in robustness introduces uncertainty into the model interpretation and predictive 

performance of the approach (Elith et al., 2008). 

Fuzzy logic has been applied in landslide susceptibility assessment (Ercanoglu and 

Gokceoglu, 2004; Gorsevski et al., 2005; Marjanović and Caha, 2011). This approach stems 

from the fact that the threshold for landslide incidence is naturally not discrete but exists 

within a range(Gorsevski et al., 2005). The fuzzy set theory allows a varying degree of 

membership for elements in relation to a set in the range 0 - 1 (Gorsevski et al., 2005; 

Muthu et al., 2008). When applied to landslide susceptibility, a membership degree is 

established between the presence/absence of landslides and the parameter class (e.g., the 

presence of landslides in the 0 - 22.5 aspect category) for each class of an environmental 

variable (e.g., for each aspect category) (Gorsevski et al., 2005; Marjanović and Caha, 

2011).  

Membership values are computed using either frequency ratio (which is the ratio of 

landslide cells in an attribute class to the total landslide cells in the area) or cosine amplitude 

computed as the ratio of the number of landslide cells in an attribute class to the square root 

of its product of the total number of cells in an attribute class and the total number of 

landslide cells (Marjanović and Caha, 2011). A fuzzy set is constructed for each 

environmental variable (Muthu et al., 2008). Fuzzy sets for different environmental factors 

are then combined using rules commonly referred to as fuzzy operators to estimate of 

landslide susceptibility (Ercanoglu and Gokceoglu, 2002). Several fuzzy operators exist for 
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combining membership functions with the AND and OR operators being the most popular 

(Gorsevski et al., 2003). Fuzzy logic has been employed in landslide susceptibility 

assessment on regional scale by many authors (Ercanoglu and Gokceoglu, 2002; Gorsevski 

et al., 2003; Muthu et al., 2008; Kanungo et al., 2011; Pradhan, 2011). The fuzzy set theory 

enables the quantitative processing of multiple datasets and allocates objective weights  

(Ercanoglu and Gokceoglu, 2004). The fuzzy logic approach is flexible and effectively 

models complex geomorphological processes (Pradhan et al., 2010), and copes well with a 

non-parametric dataset (Kanungo et al., 2006). 

Expert opinion is important in weight determination under the fuzzy logic approach (Zhu et 

al., 2014), as models developed by experts with detailed knowledge of landslide 

characteristics and of their relation with the landslide conditioning factors have been shown 

to perform better (Pradhan, 2011; Zhu et al., 2014). Pradhan (2011) showed that landslide 

susceptibility maps developed using different fuzzy algebraic functions resulted in different 

prediction accuracies. Validation results show an overall accuracy of 94.73% for gamma 

operator, 84.76% for the fuzzy algebraic “Or” operator and 84.82% for the fuzzy “And” 

operator. Most importantly, the results show that that the data driven fuzzy logic model 

performed only marginally better in comparison with the logistic regression model (Pradhan, 

2011).  

Another approach based on machine learning is the artificial neural networks (ANN). ANN 

is a computational framework modelled after the human behaviour and is capable of 

resolving complex problems (Lee et al., 2003; Pradhan and Lee, 2010). Made up of highly 

interconnected neural, ANNs possess the ability to respond to external inputs and learn 

structures and patterns of the new environment. Hence model calibration is required to 

define the functionality of the network (Pradhan and Lee, 2010). In addition, neural 

networks require less data for training than other statistical methods as a result of the 

network’s iterative learning process (Lee et al., 2004). ANNs are good at establishing rules 

between input and output but the rationale behind why they work in a particular manner for 

any given calibration set is almost impossible to explain. The back propagation learning 

algorithm is most commonly adopted in ANN simulation for landslide susceptibility (Lee et 

al., 2003).  
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ANN consist of multiple layers of individual processing nodes (commonly referred to as 

neurons), comprising an input and an output layer and one or more hidden layers. A neural 

network takes the input information and learns how to predict the output by establishing and 

adjusting weights between neurons on the same or on different layers, in response to errors 

between predicted and known output values. At each processing node, adjustments are made 

through weighting summations and nonlinear functions. On conclusion of the training phase, 

the ANN is able to predict the output values (e.g., landslide susceptibility) given a set of 

inputs (e.g., the environmental factors). The difficulty associated with understanding how 

the decisions were reached restrains the possibility of using findings obtained with a neural 

network prepared for an area in a neighbouring area. Also, the role, functionality and 

significance of the weights and of the nonlinear calibration functions are difficult to 

interpret. Artificial neural networks have been successfully applied to regional scale 

landslide susceptibility mapping (Lee et al., 2003; Pradhan and Lee, 2010 and Wang et al. 

2005). 

 Deterministic (process based) approaches 

Deterministic approaches are generally regarded as best suited for analysis of site specific 

engineering slope studies (Miller et al., 2012).  and the quantitative information derived 

from these models on landslide analysis can be used directly in the design of engineering 

works (Perry et al., 2003a) or in the quantification of risk (Van Westen et al., 2006). 

Susceptibility assessment is determined using slope stability models and factor of safety 

computation(Lu and Godt, 2008). This approach requires a huge quantity of detailed input 

data, usually derived from laboratory tests and detailed field measurements (Van Asch et al., 

2007). An index expressing the ratio between the local stabilizing and driving forces (factor 

of safety) is computed using parameters such as the geotechnical properties of soil, 

meteorological data, external stresses and seismic acceleration (Harp et al., 2009). In theory, 

values of the index greater than 1.0 indicate stability of the slope, while values less than 1.0 

flag off unstable conditions (Harp et al., 2009; Miller et al., 2012). A marginally stable slope 

is achieved at a safety factor of exactly 1.0 indicative of a threshold condition produced by 

equivalence of the stabilizing and driving forces (Glade and Crozier, 2006). An overview of 

deterministic models and their application for landslide susceptibility assessment is given in 

Casadei et al. (2003), Van Asch et al. (2007) and Simoni et al. (2008). 
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Deterministic models are developed based on an understanding of the physical laws 

regulating to slope stability and attempt to extend spatially the simplified stability models 

commonly utilised in geotechnical engineering studies (Van Asch et al., 2007). Most of the 

deterministic models employed in susceptibility assessment make use of a 1- dimensional or 

2-dimensional model describing slope stability of slopes with an infinitively large failure 

plane, commonly referred to as an infinite slope model and are therefore only applicable to 

modelling shallow translational landslides (Savage et al., 2004; Harp et al., 2009). Infinite-

slope stability models are a first-order approximation that provide close representation of 

surface and near surface terrain processes, as such can be used in a grid-based GIS 

framework to assess the spatial distribution of relative landslide susceptibility (Haneberg, 

2004). The 1-D infinite slope models are typically comprised of a coupled hydrological 

model (for soil moisture and pore water pressure under different simplification and 

assumption) and a slope stability model. In some cases an impact model, such as basin 

sediment yield can also be coupled (Bathurst et al., 2006; Bovolo and Bathurst, 2012). 

These incorporate the effects of groundwater response to rainfall on slopes for modelling 

shallow translational landslides. The incorporated hydrology component assumes a slope 

parallel flow either as a steady state function of slope and drainage area (steady-state 

models)(Montgomery and Dietrich, 1994) or by dynamically evaluating the entire process 

from rainfall to the transient response of the groundwater (dynamic models). For simplicity, 

the slip surface is assumed to be planar, at a fixed depth, and most commonly parallel to the 

topographic surface (Godt et al., 2008). Additional assumptions are made with regards 

selection of values for pore fluid pressure (Lu and Godt, 2008). Harp et al. (2009) asserted 

that steady state models are easier to administer over large areas, as the estimation of the 

distribution of groundwater at that scale is subject to large uncertainties. However, for large 

scale studies, results from steady state model were a bit conservative in comparison to those 

obtained from dynamic models.  

Dynamic 1-D infinite slope model are capable of simulating temporal changes in the 

landscape. The models are able to addresses the spatial and temporal variation of landslide 

occurrence. Dynamic models compute values of factor of safety for each grid for a given 

scenario and by grouping pixels with the same low Factor of Safety into potential landslide 

polygons, the possible landslide size is determined (Van Asch et al., 2007). A number of 

deterministic models are dynamic in nature with capacity for futuristic instability predictions 
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and use for back analysis (Harp et al., 2009). When implemented in a GIS, the models are 

able to calculate the changes in the values with time per grid cell (Harp et al., 2009).  

Notable examples of physically based models are TRIGRS (Transient Rainfall Infiltration 

and Grid-based Regional Slope-stability analysis) (Baum et al., 2005), SINMAP (Stability 

Index Mapping) (Pack et al., 1999), SHALSTAB (Shallow Landsliding Stability model) 

(Rosso et al., 2006), SHETRAN (Shallow Landslide and Sediment yield model) (Bovolo 

and Bathurst, 2012), LISA (Level 1 stability analysis) (Formetta et al., 2014), SMOPH 

(Slope morphology) and dSLAM/IDSSM (Distributed shallow landslide model/integrated 

dynamic slope stability shallow landslide model). A few selected models that have 

frequently featured in scientific literatures on deterministic modeling of landslide 

susceptibility zonation are briefly discussed. 

 TRIGRS is a simple GIS based deterministic slope stability model that runs on FORTRAN 

and is designed to model the potential occurrence of shallow landslides by incorporating the 

transient pressure response to rainfall and infiltration (Baum et al., 2005). This model 

combines an infinite slope stability calculation with an analytic one-dimension solution for 

pore-pressure transmission in a soil layer of finite depth in response to time varying rainfall 

and could be superimposed on any steady-state groundwater flow field that is consistent 

with the model assumptions (Baum et al., 2005). The TRIGRS model uses a coupled infinite 

slope models to compute the factor of safety for each grid cell. The model accounts for slope 

heterogeneity, tolerates flexible variation in input values of material properties and other 

parameters like rainfall intensity and duration from cell to cell (Godt et al., 2008). The slope 

cells within the model are considered as units with constant thickness. The susceptibility to 

slide for each saturated slope cell is generally computed based on the slope cell inclination 

and the computed shear strength for each cell and stored as factor of safety (Figure 2.3). 

This modelling approach has been utilized in a number of studies (Baum et al., 2005; Godt 

et al., 2008). However, a number of studies have reported inconsistencies in the model 

predictions stating that these predictions sometimes delineate larger areas of failure  than 

actually exist (Chang and Kim, 2004; Safaei et al., 2011). Uncertainty in soil thickness, local 

variation in soil properties and DEM errors are some of the reasons provided as being the 

main causes of this problem  (Baum et al., 2005).   
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Figure 2.3 The TRIGR model showing unit cell coupled infinite slope model for computing 

factor of safety for each grid cell. Key:⁡𝑑𝑤, depth to water table, dfp, depth to sliding plane, 

du, depth to capillary fringe. (After, Raia et al 2014) 

SHALSTAB is an infinite slope stability model coupled with a hydrologic model (Rosso et 

al., 2006). The model incorporates the influence of rainfall on slope stability assessment. 

Thus model predictions are based on the minimum amount of steady state rainfall required 

to trigger a landslide occurrence (Rosso et al., 2006). Like the TRIGRS model, the required 

morphometric input data are usually DEM derived, in addition to other geotechnical 

parameters such as bulk density, angle of internal friction and depth to water table. The 

SHALSTAB model assumes the local surface topography as a dominant control of landslide 

occurrence and estimates pore-pressure for steady state saturated water flow parallel to slope 

plane (Montgomery and Dietrich, 1994; Rosso et al., 2006). The critical relative wetness 

(the ratio of steady state rainfall and soil transmissivity) is based on steady state saturated 

water flow parallel to slope plane that potentially triggers slope failure (Figure 2.4a). The 
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ratio relationship between the steady state rainfall and soil transmissivity defines the 

susceptibility of a location to landslide (with lower critical relative wetness translating to 

higher susceptible to failure occurrence for a given location) (Montgomery and Dietrich, 

1994; Goetz et al., 2011). The SHALSTAB model categorizes slope stability into any one of 

three classes, namely unconditionally stable, conditionally stable and unconditionally 

unstable (Figure 2.4b&c). 

 

Figure 2.4: The conceptual components of the SHALSTAB model (after Montgomery and 

Dietrich, 1994). Key: a) infinite-slope conceptual scheme; b) hydrological model (p, 

precipitation; e, evapotranspiration; r, deep drainage; a, drainage area; h, the height of the 

water table; z, soil thickness; u, mean subsurface flow velocity; h, water level of surface 

flow; T, transmissivity; θ, slope angle; M, sinθ ; b, contour length);  and c) definition of 

stability fields. 

SHALSTAB assumes zero soil cohesion to compensate for spatial and temporal 

heterogeneity of soil cohesion and as a result is thought to produce the most conservative 

slope stability estimates (Dietrich et al., 2001). Goetz et al. (2011) demostrated that this can 

be overcome by model optimization performed by increasing the frictional angle 

appropriately. However, this does not fully capture the effects of cohesion, but does 

compensate for cohesion in the friction angle, hence allowing for the application of 

SHALSTAB in area where cohesion is an important consideration (Rosso et al., 2006). 

SHETRAN is a physically based distributed model (PBDM) that is written in FORTRAN 

and runs on Microsoft windows. This model was developed for water flow, sediment and 

solute transport in river catchment (Figure 2.5). The model can be integrated into slope 



38 
 

stability studies as it includes a hydrological component for simulating: rainfall, evapo-

transpiration, overland flow (run-offs) and channel flows and variably surface flow 

(Birkinshaw et al., 2010). The model essentially requires information on the spatial 

distribution of vegetation cover, soil, topography, geotechnical properties and time-series 

data for precipitation and evaporation (Birkinshaw et al., 2010; Bovolo and Bathurst, 2012). 

The precipitation and evaporation data are simulated to provide information on the temporal 

variation in soil moisture content (pore-water pressure) for each grid cell. The resulting 

pore-water pressures are then fed into a coupled slope stability model to derive the factor of 

safety for each cell is computed (Miller et al., 2012). 

 

Figure 2.5: Schematic illustration showing Conceptual structure (stream links and columns) 

in the SHETRAN model. Each column comprises many finite-difference cells, stacked one 

above the other with lateral transport between cells in neighbouring columns (After Ewen et 

al 2000).  

Slope susceptibility to failure within the slope stability model is determined as a function of 

the spatial and temporal variation of soil saturation conditions, derived from simulations 

using the hydrological model and the standard geotechnical infinite slope factor of safety 

analysis (Bovolo and Bathurst, 2012). Miller et al. (2012) employed the SHETRAN model 

in a hazard assessment study of engineered slopes along a transport corridor. The 
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hydrological component of the model was used to simulate, from rainfall data, the pore-

water pressure for all the grid cells. These were subsequently input into a finite difference 

model FLAC from which the geotechnical aspects were modeled. A factor of safety for each 

grid cell was computed and used to model the susceptibility to failure for the engineered 

slopes under investigation (Miller et al., 2012). SHETRAN has been shown to be an 

important hydrological modeling tool for detailed scale slope stability assessment within 

transport corridor environment (Miller et al., 2012). However, like other infinite slope 

deterministic modelling approaches, its large data requirement limits its applicability over 

extensive transport corridor cuttings and embankments. 

In addition to the GIS-based models for slope stability assessment, there is also a range of 

detailed 2-D and 3-D numerical models normally employed in cross sectional or single slope 

analysis (e.g. Slope/W, SLIDE, CLARA etc.) (Krahn, 2004). Numerical models can be 

grouped as continuum based (e.g. finite element, finite difference, with software such as 

FLAC3D, PLAXIS, and VISAGE) or discontinuum based (e.g. distinct element, discrete 

element, with software such as UDEC) models (Eberhardt, 2003).  

In continuum modelling, the entire slope mass is divided into finite number of elements and 

represented as a mesh (Krahn, 2004). The Finite-difference methods provide numerical 

approximations based on differential equations of equilibrium, strain displacement relations 

or the stress-strain equation (Eberhardt, 2003). While the finite element technique explores 

solutions based on numerical approximations of the connectivity of elements, continuity of 

displacement and stresses between elements (Eberhardt, 2003).  Both methods are capable 

of modelling material heterogeneity, non-linearity and boundary conditions, but incapable of 

simulating infinitely large domains due to their internal discretization (Dai and Lee, 2003; 

Van Asch et al., 2007). Boundary Element Methods require discretization at the boundaries 

of the solution domains only, which simplifies the input requirements, but becomes 

impractical when more than one material must be taken into account. It is the most efficient 

technique for fracture propagation analysis (Eberhardt, 2003).  

In discontinuum modelling, slopes are represented as discontinuous medium or as 

assemblages of blocks formed by connected fractures in the problem domain (Van Asch et 

al., 2007). The distinct element method is an example of discontinuum modelling(Van Asch 

et al., 2007). The underlying concept behind discontinuum modelling is the repeated 
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computation of limit equilibrium (the ratio of shear strength to shear stress) for each block. 

Thus, modelling large displacements including fracture opening and complete detachments 

is straightforward using the distinct element method (Krahn, 2004), but less suitable when 

modelling plastic deformation (He et al., 2014). The distinct element method is mostly 

applied to rock slope where the prevalence of joints and fractures are widespread.  

In general, the deterministic models cover attempts to describe the underlying physical 

processes leading to slope failure. As such, the results obtained are often considered to be a 

closer representation of reality than the heuristic and statistical models. When properly 

calibrated with an accurate landslide inventory deterministic slope stability assessments are 

generally assume to have a distinct advantage over the heuristic and statistical models which 

exhibit greater tendency towards epistemic and aleatory uncertainties (Carrara et al., 1999; 

Brenning, 2005; Petschko et al., 2014). However, their large data requirement and 

parameterization challenges have limited their use for detailed scale assessment of slope 

over large areas. In addition, the conventional factor of safety computed for individual slope 

and used in the development of the hazard map of the study area does not reflect the spatial 

and temporal variability of pore water pressures, angle of internal friction, cohesion and 

undrained shear strength. The models are also not suitable in predicting the development of 

complex landslides within complex hydrological systems, as in more complex models the 

factor of safety becomes a random variable (Van Asch et al., 1999). However the greatest 

limitation is the models inability to effectively handle uncertainty and parameter variability 

(Van Asch et al., 2007), which is common place with transport corridor environment , where 

land cover type and geotechnical properties of slopes in cuttings can vary drastically over 

short distances (Miller et al., 2012).   

 Probabilistic modelling.  

Probabilistic landslide susceptibility modelling uses presumed probability distributions of 

input variables to calculate probability distribution for stable and unstable locations (Lee and 

Pradhan, 2006). Probabilistic models estimate on the basis of past historical data (“a priori”) 

the probability of the reoccurrence of an event. Unlike the deterministic approach, which 

establishes invariant or spatially explicit parameter values and lack an element of 

uncertainty , the probabilistic approaches allow for uncertainty by assigning probability 

distributions to model parameters (Aleotti and Chowdhury, 1999). Given the uncertainty 
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associated with landslide phenomena and their relationships with the landscape, the 

approach has been widely employed in landslide susceptibility assessment (Chung and 

Fabbri, 1999; Park, 2011). Generally, within the probabilistic framework, the collected data 

layers are represented by conditional probabilities or likelihood ratio functions. Then the 

individual variable probabilities are combined using combination rules such as Bayesian 

combination rule (Lee et al., 2002) and fuzzy membership functions (Zhu et al., 2014) 

according to the theoretical backgrounds adopted. 

The probabilistic framework recognizes key issues usually generalised in deterministic 

modelling (Aleotti and Chowdhury, 1999), such as important considerations like parameter 

variability and uncertainties associated with the mechanism of failure, occurrence of failure 

and its impact on the surrounding environment which are seen to exhibit complex 

relationships (Van Westen et al., 2008). The earliest applications of the probabilistic 

approach in slope stability assessments were essentially within the context of traditional soil 

mechanics and geotechnical slope evaluation (Chowdhury and Zhang, 1993; Chowdhury 

and Xu, 1995). The incorporation of GIS into the probabilistic framework had enhanced 

better visualization and the ability to compare spatial distribution of landslides with respect 

to the various conditioning and triggering factors (Aleotti and Chowdhury, 1999). The 

robustness and versatility of the probabilistic framework allows for the integration of 

innovative approaches for simulation of failure progression using process based techniques 

(Raia et al., 2014), as well as the development of decision support systems that are not only 

based on performance indicators but also on consequence of failure (Aleotti and 

Chowdhury, 1999). Probabilistic models are known to potentially handle better the process 

of combining different data layers of information required in slope stability assessment 

which are usually multi-scale and multi-source in nature (Chung and Fabbri, 1993; Binaghi 

et al., 1998; Park, 2011). 

In a probabilistic assessment of landslide susceptibility by Binaghi et al. (1998) , a Certainty 

factor approach was used as Favourability Functions (FF) to handle the problem of 

combining heterogeneous data. A Certainty factor is somewhat similar to a conditional 

probability but rather presenting the degree of probability of an outcome, a Certainty factor 

represents a measure of belief in an outcome (Roventa and Spircu, 2009). The variations in 

the measures of belief are assessed in relation to the probability of occurrence of an event 
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under certain conditions with respect to the overall prevalence of the event (i.e. favourbility 

function) (Acevedo and Real, 2012). In the study by Binaghi et al. (1998), multi source data 

(discrete and continuous data) were initially transformed, normalised and then afterwards 

combined in a pairwise manner to enable the assessment of the contributions of individual 

causal factors to slope instability zonation. The application of the probabilistic approach to 

landslide hazard zonation is always performed under the assumption that landslide 

susceptibility can be determined by the statistical relationships between historic landslide 

locations and the identified causal factors represented as thematic spatial datasets (Binaghi 

et al., 1998). In Binaghi et al. (1998), the Certainty factor at each grid cell was defined by 

the conditional probability of landslide occurrence based on an evidential threshold defined 

by the spatial interactions between various thematic datasets. The range of variation of the 

Certainty factor is [-1, 1], making it easier to understand the effect of each category of a 

thematic layer on landslides (Chung and Fabbri, 1993). Positive numbers are indicative of an 

increase in certainty after the threshold evidence is observed, while negative numbers 

correspond to decrease in certainty; a zero value usually indicates that the prior probability 

is very similar to the conditional one (Roventa and Spircu, 2009). A Certainty factor is 

calculated for each layer and the layers combined using a pairwise combination rule 

(Heckerman, 1986). Susceptibility to failure can easily be inferred from the degrees of belief 

generated, as the intervals remain consistent on application to other areas (Binaghi et al., 

1998; Sujatha et al., 2012). Binaghi et al. (1998) revealed that the level of confidence in the 

use of Certainty factor in hazard zonation and assessment using data driven techniques was 

higher in comparison with zonation assessments derived from expert weightings. In addition 

the appropriate selection and classification of thematic layers were identified as key 

considerations when employing the use of this method. The primary advantage of this 

method lies in the expression of degrees of belief, but does not reflect the associated 

uncertainty (Sujatha et al., 2012).  

A number of authors (Lee et al., 2002; Van Westen et al., 2003) have utilized the weight of 

evidence approach in landslide susceptibility modelling. Weight of evidence is a quantitative 

data driven approach used in the determination of weight of causal factors (evidences) and 

in the combination of generated weights (Lee and Choi, 2004). The approach utilises the 

log-linear form of Bayesian probability in estimating the relative importance of the 

evidences (Van Westen et al., 2003). An overlay of the various thematic maps on the 
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landslide inventory of study area allows for the computation of weights. Weights are 

estimated according to the landslide density for each class of the evidence layer. Derived 

weights can be positive or negative. Positive contrasts are indicative of higher influences of 

the causal factor for on landslide occurrence and vice versa(Lee and Choi, 2004). The 

weights are in turn used as rating for each of the category of causal factors (usually 

represented as thematic layers) (Van Westen et al., 2003). A landslide susceptibility index 

usually used in categorizing the area into the different susceptibility zones is computed from 

the summation of the ratings of the various thematic data layers (Lee et al., 2002; Van 

Westen et al., 2003; Lee and Choi, 2004). A number of studies have reported the use of 

weight of evidence approach as an effective means of weight generation and combination 

for the development of landslide susceptibility maps (Lee et al., 2002; Van Westen et al., 

2003). Regmi et al. (2010) evaluated seventeen causal factors considered as influential to 

landslide incidence in the study area. Weight maps of the seventeen measured causal factors 

covering topography, hydrology, geology, land cover, and human influences were generated 

using weight of evidence. A susceptibility map of the study area was derived from the 

summation of weighted factors summed on a pixel-by pixel basis and had a prediction 

accuracy of 78% on validation. The study identified that the application of the weight of 

evidence approach is most suitable for locations with compressive landslide inventory as it 

played a significant role in the accuracy of the final map developed. The methodology 

provides an ample means of selecting the most appropriate causal factor to be consider for a 

susceptibility assessment based on weights generated (Van Westen et al., 2003; Regmi et 

al., 2010). However, the approach does not reflect the uncertainty associated with the 

predicted spatial zones of instability (Regmi et al., 2010). 

Probabilistic framework in contrast to the other quantitative methods are more objective by 

the reason of its data dependent character (Aleotti and Chowdhury, 1999; Ercanoglu and 

Gokceoglu, 2004) and unlike deterministic models, the probabilistic methods required less 

quantity of data, though their predictive accuracy is invariably dependent on the number, 

quality and reliability of the data. The integration of soft-computing techniques such as 

fuzzy logic, neural networks and generic algorithms with machine learning capability 

reduces the data quantity dependency for assessment and enables the capacity to process 

both parametric and non-linearity (Binaghi et al., 1998; Tangestani, 2009). These techniques 
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are usually free of any distribution assumptions or bias of data and their weights are 

objectively computed (Ercanoglu and Gokceoglu, 2004).   

Another approach that has been recently applied (Tangestani, 2009) to landslide 

susceptibility prediction is evidential reasoning. The technique is based on Dempster-Shafer 

theory of evidence, a general framework for modelling probability with the assignment of 

uncertainty (Yager et al., 1994). The Dempster-Shafer theory of evidence was first proposed 

by Dempster (1968) and was formalised by Shafer (1976). The Dempster-Shafer theory of 

evidence (evidential reasoning) estimates probabilities based on how close the evidence 

proves the truth of the hypothesis been considered, thus providing a mathematical 

framework for the estimation of uncertainties (Pearl, 1990). The strength of the Dempster-

Shafer theory of evidence approach is in its ability to utilise multi-source, multi-scale data 

and relative flexibility to deal with varying degrees of uncertainty (Carranza et al., 2009; 

Park, 2011). The approach represents the partial information provided by various 

independent sources as numeric measures and combines these measures using a combination 

rule to produce an overall assessment of the total evidence in support of the existence or 

absence of a phenomenon, which in this case is slope instability. The ability to assign 

uncertainty to probability distribution is the main distinction between traditional Bayesian 

probability and the Dempster –Shafer theory of evidence (Gorsevski et al., 2005). In 

Bayesian probability two probability states exist (i.e. positive and negative) (Gorsevski et 

al., 2005). These two states are assumed to be mutually exclusive (existence of one is not 

influence or caused by the other) and collectively exhaustive (constitute the entire range of 

possible outcome) (Yager et al., 1994). In the Dempster –Shafer theory of evidence, 

uncertainties are not just assigned to each state of nature, but also exists as a subset 

(Gorsevski et al., 2005). Thus allowing associated uncertainty to be modelled alongside 

probability predictions.  

The Evidential reasoning approach also allows for the definition of a frame of discernment 

(Park, 2011), which is a set of causal propositions (factors or evidences) assessed as 

influential to the occurrence of terrain instability and a target proposition (e.g. landslide 

occurrences) in the study (Park, 2011; Tien Bui et al., 2012). The frame of discernment 

permits a collection of proposition from various sources and type (multi source), different 

time (multi temporal) and not necessarily of the same scale (multi scale) (Althuwaynee et 
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al., 2012; Lee et al., 2013). This enables the assessment of the impact and influence of a 

variety of factors on what is a complex system. The propositions are mutually exclusive and 

collectively exhaustive (Park, 2011). Basic probability assignments (weights) are developed 

for each proposition. The basic probability assignment or mass function assigns a belief 

function to each proposition. The belief function is the measure of the total amount of belief 

committed (a number from 0 -1) to every attribute in a proposition with relations to the 

presence or absence of a target proposition and plausibility function (a measure of ignorance 

or uncertainty) (Park, 2011; Tien Bui et al., 2012). Belief intervals, alongside mass functions 

are used for information representation (evidential layers) and unlike in the traditional 

probability theory, the interval between belief and plausibility gives an indication on the 

uncertainty associated with a target proposition (Figure 2.6).  

The evidential layers (thematic maps of propositions with assigned belief values) are then 

aggregated using the Dempster’s rule of combination. The combination rule results in a final 

belief function based on conjunctive pooled evidence, where the influences of all the 

evidences represented (Yager et al., 1994). The Dempster-Shafer evidential belief model 

possesses the capacity to capture existing non-linearity and interactions that may exist 

within a complex landslide system. Its capacity for aggregation of evidence provided by 

incongruent sources (Lee et al., 2013) strengthens its appropriateness for the transport 

corridor environment where important datasets required for slope stability assessment are 

often from diverse sources and at different scales. 
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Figure 2.6 Schematic representation of the basic probability assignment functions of the 

Dempster-Shafer theory of evidence approach. (After Carranza et al 2005 and Althuwaynee 

et al 2012) 

   

One of the earliest  attempts at integration of a data driven Dempster-Shafer theory of 

evidence approach to landslide studies was by Tangestani (2009). The study compared the 

Dempster-Shafer evidential belief model and fuzzy logic models for landslide modelling in 

the Zagros Mountains in Iran. The results of the study suggested better predictive 

performance for the fuzzy model. The results show that the fuzzy logic map had a 

classification of 94%, while the evidential belief function model had a classification 

accuracy of 73%. The study attributed the difference in classification accuracy to the degree 

of conflict between considered factors in the evident belief function model as a result of the 

combination rule employed. However the methodology adopted for comparison of the 

performance of the fuzzy logic and evidential belief models was flawed in that the fuzzy 

membership was determined based on expert opinion while the evidential belief function 

model was essentially data driven. Based on the reported results the evidential belief model 

identified concern with the choice of causal factors used in the study as report in the almost 

uniform uncertainty values (0.2 -0.3) for 99.7% of the study area (Tangestani, 2009). This 
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concerns may have been rightly adjusted in the fuzzy model through expert opinion (Porwal 

et al., 2003). Tien Bui et al. (2012) in a later comparative study also compared the predictive 

performance between the evidential belief and three other fuzzy models (fuzzy SUM, fuzzy 

PRODUCT and fuzzy GAMMA). In the study, the models were essentially data driven. The 

study identified the evidential belief model as exhibiting the highest prediction capabilities 

amongst all considered models.  

Park (2011) applied evidential belief model for landslide susceptibility mapping in 

Jangheung in Korea and compared the performance of the model with Logistic Regression. 

The study reported better predictive capability for the evidential belief model, as the 

approach is not restricted to establishing correlation based only on log-linear relations 

between variables. The Evidential reasoning approach quantitatively models parameter 

uncertainties, exhibit robustness and scale well to large data sets (Park, 2011; Althuwaynee 

et al., 2012; Lee et al., 2013). Various studies (Park, 2011; Althuwaynee et al., 2012; Tien 

Bui et al., 2012; Lee et al., 2013) have demonstrated the potential of the data driven 

Dempster-Shafer theory of evidence approach to adequately represent quantitative 

relationship between landslide occurrences using multi-source, multi scaled spatial data 

layers in addition to modelling the degree of uncertainty. These elements are important in 

the consideration of model selection for detailed scale susceptibility zonation of slopes over 

extensive linear expanse as is the case with the transport corridor environment. There is no 

record on the application of the evidential reasoning approach to detailed scale slope 

stability assessment, reasons may be the demand for very high resolution dataset required to 

ensure minimal degree of uncertainty necessary for detailed scale slope stability assessment 

(Brenning, 2005; Althuwaynee et al., 2012; Miller et al., 2012).   

2.5 DEM generation 

The use of digital representations of the topographic surface in landslides analysis is 

common practise (Jaboyedoff et al., 2012). DEMs in addition to providing a continuous 

elevation value over a topographic surface also enable the easy extraction of terrain 

attributes like slope gradient, slope aspect, altitude, internal relief, slope curvature and 

roughness that serve as important input data in landslide analysis (Jaboyedoff et al., 2012). 

DEMs also provide a means for effective visualization and semi-automatic classification of 

landslide domains during inventory mapping (Guzzetti et al., 2012). Surface topography 
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also influences flow sources, flow direction and zones of moisture accumulation, all of 

which are easily derived from DEM (Sørensen and Seibert, 2007). These terrain derivatives 

are important hydrological components of quantitative landslide analysis (Montgomery and 

Dietrich, 1994; Goetz et al., 2011), that help simplify complex surface and subsurface 

processes and providing indirect means of evaluating these processes for a given location 

(Goetz et al., 2011).  

DEM generation can be accomplished from a variety of sources, which include, digitizing 

contours from existing contour maps, differential Global Navigation Satellite Systems 

(GNSS) measurements, Light Detection and Ranging (LiDAR), digital photogrammetry, 

interferometric synthetic aperture radar (InSAR) and high resolution satellite images (Hsing-

Chung et al., 2004; Jaboyedoff et al., 2012). The classic field survey for spot height 

measurement using portable RTK (Real Time Kinetic) GPS is conceivable only for small 

areas (Schmidt and Persson, 2003), the procedure is labour intensive over large areas. Spot 

elevation values can be derived over wide areas from aerial photography and 

photogrammetric techniques (Schmidt and Persson, 2003). Aerial photographs provide fairly 

high resolution DEMs for landslide inventory mapping (Guzzetti et al., 2012) but are 

considered not adequate to represent hydrological features, particularly in complex urban 

environments, or where dense vegetation is prevalent (Haugerud and Harding, 2001; 

Tenenbaum et al., 2006). This calls to question its application in a transport corridor 

environment. Spot height values derived from SAR sensors can also be used in generating 

high resolution DEMs using SAR interferometry (also known as InSAR) where the 

difference in the signal from two separate SAR antennae are used to construct a map of 

surface elevation (Rosen et al., 2000; Mather and Koch, 2011a). However, InSAR signals 

can be perturbed by different land covers, particularly vegetation (Rosen et al., 2000) and as 

a result is not as accurate as airborne laser scanning (ALS) systems for generating DEM 

(Hsing-Chung et al., 2004). The ALS technique (also referred to as LiDAR) enables the 

acquisition of high-resolution elevation point clouds of the topography from which accurate 

and precise high resolution digital representations of the topographic surface can be obtained 

for areas (Shan and Toth, 2008). Terrain data derived from ALS has been shown to be useful 

for depicting fine scale features such as roads and culverts (Hollaus et al., 2005), which are 

known to influence the accuracy of terrain derived indices such as the terrain wetness index 

(Tenenbaum et al., 2006).   
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The ALS system is an active measurement technique that transmits discrete pulses towards 

the earth while flying specific survey routes (Petrie and Toth, 2008). Aircraft or helicopter 

mounted ALS systems allow for timely acquisition of high density elevation data over large 

areas, with its relative cost effectiveness in terms of the quality and quantity of data 

generated making it a popular source of elevation data for high resolution terrain mapping 

(Jaboyedoff et al., 2012). The ALS system is an active measurement technique that 

transmits discrete pulses towards the earth while flying specific survey routes (Petrie and 

Toth, 2008). Under favourable weather conditions, very high resolution DEMs of less than 1 

m, with errors better than 25 cm can be derived from the ALS point cloud (Hollaus et al., 

2005). In forested areas, the ALS’s capability of canopy penetration as a result of actual 

ground hits by some of the emitted discrete pulses enables quantitative descriptions of the 

topographic surface in these areas (Maune, 2008). To ensure maximum capture of returns 

representing actual ground hits, automatic and semi-automatic procedures using filtering 

algorithms are employed to eliminate the topographic return from the returns due to 

vegetation canopy and other surface obstructions (Haugerud and Harding, 2001). ALS 

DEMs have been reported as providing suitable representation of topography for detailed 

scale slope stability assessments (Baum et al., 2005; Schulz, 2007; Hardy et al., 2012).  

2.6 Soil moisture characterisation using terrain analysis 

Shallow translational failures along slope faces are often associated with short and intense 

rain storms (Jaiswal et al., 2010b). These storms build up antecedent soil moisture largely 

related to soil’s physical properties and generate surface runoff that flow to zones of 

moisture accumulation mostly controlled by topography (Jaiswal et al., 2010a). Antecedent 

soil (Tarboton et al., 2009) moisture and flow accumulation are two important factors that 

greatly influence instability in natural slopes (Fourie, 1996) and their importance become 

more pronounced in detailed scale analysis (Van Westen et al., 2008). Difficult terrain and 

the labour intensive nature of mapping soil moisture using traditional techniques tend to 

limit the spatial coverage of available soil moisture data (Hardy et al., 2012). Remote 

sensing techniques employing both passive and active microwave systems have been 

developed and applied to characterise soil moisture in different environment (Lobell and 

Asner, 2002; Baghdadi et al., 2005; Zheng et al., 2005; Pierdicca et al., 2010). However, 

these techniques are constrained by poor spatial resolution and the presence of dense 

vegetation (Schmugge et al., 2002; Hardy et al., 2012). 
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Topography is known to exert significant influence on local and regional hydrology, as such 

DEMs are widely used to derive information for modelling of hydrological processes 

(Tarboton et al., 2009). Terrain-based flow models are built on a basic underlying 

assumption that surface and near surface water essentially move downslope draining steeper 

terrain and converging in plains (Sørensen et al., 2006). The development of a digital flow 

field and computation of upland contributing area draining through each grid cell within the 

flow field provides the basis for the computation of a range of flow related indices (Tarboton 

et al., 2009). Topography wetness index (TWI) is perhaps the most popular DEM derived 

index used to describe the spatial pattern of soil moisture (Sørensen et al., 2006). The TWI 

takes into account the local slope geometry and local upslope contributing area in 

quantifying the topographic control on hydrological processes. The concept of TWI was first 

presented by Beven and Kirkby (1979) within the runoff model TOPMODEL. Traditional 

TWI which hereafter will be referred to as classic TWI can be expressed by:  

 𝑇𝑊𝐼 = ln (
𝑎

tan𝛽
) Equation 2.6 

Where 𝑎 is the local upslope area draining through a specific pixel per unit contour length 

and β is the local slope (Sørensen et al., 2006). The tangent curvature of the slope provides a 

measure of flow convergence or divergence, while the upslope area is indicative of the 

potential area contributing to flow draining through a unit contour length (Western et al., 

1999). Intrinsically, as the upslope area increases and slope steepness decreases, classic TWI 

and soil moisture content increase (Sørensen et al., 2006). The application of classic TWI in 

slope stability studies stems from this unique relationship, as high soil moisture content is 

often confined to areas of topographic convergence which in turn are associated with higher 

occurrence of slope failure (Sørensen et al., 2006; Sørensen and Seibert, 2007). As a result, 

classic TWI has been used to model spatial scale effects on hydrological processes (Wood et 

al., 1988; Penna et al., 2009), analysing soil moisture pattern in forested areas (Tenenbaum 

et al., 2006), characterisation of soil moisture in transport corridor environment (Hardy et 

al., 2012) as well as in evaluating moisture contribution to slope stability assessment (Borga 

et al., 2002; Baum et al., 2005; Miller et al., 2012). Tenenbaum et al. (2006) explained that 

the classic TWI values are expressions of subsurface flows and propensity to wetness and as 

such, not to be considered as direct prediction of soil moisture content. 
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Classic TWI computations are normally derived from gridded elevation data and the best 

results have been obtained over undulating terrains (Schmidt and Persson, 2003). Schmidt 

and Persson (2003) reported good correlation between measured surface moisture and 

generated classic TWI values obtained from a 3 m DEM. The study sites located in Central 

Sweden and North East Germany revealed best results over undulating terrain where the 

effects of topography on overland flow is more evident, while low relief areas typically 

characterized by flow convergence performed rather poorly (Tenenbaum et al., 2006). 

Barling et al. (1994) in an earlier study had established that topography plays no significant 

contribution to soil moisture distribution in areas characterized by an overall shallow slope 

angle of six degrees or less. Studies by Tenenbaum et al. (2006) showed that in addition to 

undulating terrain, higher correlation between measured soil moisture and DEM derived 

classic TWI values are attained under wetter conditions. The study compared soil moisture 

measurements to classic TWI calculations derived from DEMs with spatial resolutions 

ranging from 0.5 m to 30 m, over a forested area with undulating terrain, and a relatively 

low relief suburban area in Baltimore, USA.` 

 A number of other studies have established classic TWI as a useful predictor for the spatial 

distribution of surface moisture (Western et al., 1999; Sørensen et al., 2006). Classic TWI is 

mainly used to characterize long-term terrain moisture status in relation to landscape 

processes (Hardy et al., 2012). Several studies have focused on improving classic TWI to 

simulate soil moisture more accurately (Sørensen et al., 2006; Ma et al., 2010). The various 

approaches have essentially entailed (1) integration of other topographic parameters such as 

curvature, aspect, potential solar radiation and relative terrain position to improve the 

index’s prediction capability (Western et al., 1999; Tenenbaum et al., 2006; Ma et al., 2010; 

Hardy et al., 2012), (2) the measure of local terrain slope to be used in the estimation of 

local hydrological gradient (Sørensen et al., 2006) and more importantly (3) the 

improvement of flow direction algorithms (O'Callaghan and Mark, 1984; Quinn et al., 1995; 

Tarboton, 1997).  

Traditionally, individual upstream cell contributions are transferred along steepest 

downslope direction to one or more of the eight neighbouring cells. The most common 

procedure for routing flow over a terrain surface represented by a grid DEM is the eight-

directional method commonly referred to as the deterministic eight-node (D8) algorithm 
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(O'Callaghan and Mark, 1984). The single flow direction method (D8) works well in valleys 

but is known to introduce grid bias, produces parallel flow lines and is problematic near 

catchment boundaries (Tarboton, 1997). In cases where the steepest descent cannot be 

established, a broader search radius or random selection from among grid tiles is used. The 

D8 approach is limited because it can assign flow to only one of eight possible directions; 

each separated by 45o in a square grid. In addition the D8 handles poorly flow routing in 

relatively flat terrain. The method developed by Garbrecht and Martz (1997) presented a 

means for routing flow across plains. The approach improves on the D8 by routing flow 

both away from higher terrain and towards lower terrain thus overcoming the limitations 

associated with routing flow across plains (Costa-Cabral and Burges, 1994). 

Multiple flow direction methods have also been proposed by various authors (Freeman, 

1991; Quinn et al., 1991; Tarboton, 1997; Seibert and McGlynn, 2007). These approaches 

proportion the outflow from each element between one or more downslope elements, 

introducing dispersion (spreading out) of the flow with the goal to represent downslope flow 

in an average sense (Figure 2.6). Wolock and McCabe (1995) showed that smoother classic 

TWI patterns  and higher classic TWI values are generated using multiple flow direction 

(MFD) algorithms in contrast to single flow routing (SFD) algorithms which are more 

sensitive to small errors in elevation. In addition, MFD algorithms produce more realistic 

representations of contributing areas in upslope area calculation and are able to resolve the 

problem of flow dispersion overestimation (parallel unrealistic flow paths) (Quinn et al., 

1991; Gallant and Wilson, 1996).  

The D-infinity (D∞) multiple flow direction model (Tarboton, 1997) represents flow 

direction as a vector along the direction of steepest downward slope on eight triangular 

facets centred at each grid cell. Flow from a grid cell is shared between the two downslope 

grid cells closest to the vector flow angle based on angle proportioning (Tarboton, 1997). 

Siebert and McGlynn (2007) introduced MD∞ (an extension to D∞) that combines ideas 

from Tarboton (1997) with Quinn et al. (1991). The MD∞ approach calculates slopes on 

triangular facets, but then proportions the flow between multiple downslope directions on 

triangular facets, thereby accounting for divergent situations where flow between more than 

two downslope grid cells is likely. 
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Figure 2.6: Effects of different flow algorithms on downslope routing of flow from three 

cells (A,B and C) on a 20m DEM for an area in Central Sweden using: (a) single flow 

routing D8 (O'Callaghan and Mark 1984), (b) Multiple flow direction MD8 (Quinn et al 

1991), (c) D∞ (Tarboton 1999) (d) MD∞ (Siebert and McGlynn 2007). From Siebert and 

McGlynn (2007) 

A major criticism on the use of classic TWI is that the TWI computation is deemed to 

oversimplify overland flow as it assumes homogeneity for soil types, no vegetation cover 

and that the entire upslope contributing area flow accumulation is relatively unaffected by 

processes of infiltration and evapotranspiration (Barling et al., 1994). This limitation in 

classic TWI computation has led to the development of quasi and fully dynamic wetness 

indices that better reflected the contributions of the spatial variability in soil types and the 

incorporation of temporal dimensions, taking into account hydraulic functions such as 

saturated hydraulic conductivity (Cho and Lee, 2001), subsurface flow (Reid and Iverson, 

1992), discharge rates and drainage porosity (Iverson, 2000) to calculate the effective 

upslope contributing areas per unit width of contour (Barling et al., 1994; Borga et al., 2002) 

The approach of Barling et al. (1994) and Borga et al. (2002) does not differ greatly from 

the physical based models in Section 2.4.5.3, in terms of the significant amount of input data 

required, hence detracting from the original advantage of the use of classic TWI as a 
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surrogate measure for characterising soil moisture distribution with less reliance on field 

measured data (Sørensen and Seibert, 2007; Hardy et al., 2012). More recently, Tarboton et 

al. (2009) proposed a weighted flow grid approach (incorporated into a terrain based flow 

data model) that extends the influence of integration of multiple data through flow 

accumulation propagation. This enables the inclusions of soil and vegetation information 

into the calculations of flow related quantities. The approach allows for the definition of 

flow algebraic functions that enable the evaluation of the contributions of the individual 

input data (vegetation and soil) in extending the concepts (flow accumulation) captured by 

recursive calculations of a weighted contributing area. For example, runoff from upstream 

grid cells can be computed taking into consideration the opportunity for infiltration 

downslope, as runoff is generated only when the downslope infiltration capacity has been 

exceeded. However, such an approach requires knowledge of the hydraulic properties of the 

soils in the study area (Tarboton et al., 2009). 

2.7 Issues of DEM resolution and grid sizes 

The scale of study, the characteristic area and terrain element to be extracted are often the 

most important considerations in the choice of DEM resolution (Wu et al., 2008b). An 

appropriate DEM resolution is one that sufficiently represents the interested features within 

the area of interest (Gritzner et al., 2001). High resolution topographic information has been 

shown to better represent topographic influences on surface flow routing and susceptibility 

of a slope to landsliding (Dai and Lee, 2002; Ma et al., 2010). Important thresholds 

illustrating slope gradients and morphology that have the most influence on the occurrence 

of landslide within a study area are easily identifiable at finer grid resolution. However, this 

information becomes blurred with reduction in grid resolution (Van Westen et al., 2008). 

The selection of the optimal spatial resolution is central to all environmental related analysis 

involving the use of digital elevation data (Aryal and Bates, 2008). For example detailed 

studies generally require higher spatial resolution data for more detailed information, as 

terrain elements in lower resolutions are comparatively more generalised and derived terrain 

indices less meaningful (Gritzner et al., 2001; Wu et al., 2008b; Li et al., 2011).  

The use of high resolution data in hydrological modelling in addition to being often 

computationally intensive can also result in the introduction of unwanted perturbations to 

flow direction and slope angles (Sørensen and Seibert, 2007; Chen and Li, 2012). Thus the 
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selection of an appropriate grid resolution for hydrological modelling is often a trade-off 

between minimised computational requirement and retention of realistic model performance 

(Gritzner et al., 2001; Tenenbaum et al., 2006). Lower resolution DEM generally exhibit 

smoother terrains and shorter flow paths (Zhang and Montgomery, 1994), with maximum 

and mean slope values significantly decreasing with decrease in DEM resolution (Vaze and 

Teng, 2007). As such terrain derived hydrological indices are often less perturbed due to 

relatively reduction in the presence of micro-topography with reduction in DEM resolution. 

Endreny and Wood (2003) showed that there is considerable spatial variability in generated 

runoff flow path with varying spatial resolution.  

2.8 Conclusion 

This chapter has provided a critique of the various qualitative and quantitative techniques for 

modelling landslide susceptibility. The strength and weakness of the various techniques 

were enumerated with a view to ascertaining their suitability for landslide susceptibility in a 

transport corridor environment. The qualitative methods have been shown to produce highly 

accurate results when executed by experienced experts (Van Westen et al., 2008). The field 

based approaches allow for susceptibility assessment of every locality separately without the 

need to incorporate a simplification of causal relationships typically required for most of the 

other methods. Assignment of weights and ratings to factors and their categories 

respectively is usually at the discretion of the investigator (Ruff and Czurda, 2008). This 

subjective nature is considered as a major setback and limits its application in engineering 

scale studies as a result of its associated level of uncertainties (Kanungo et al., 2009).  

Quantitative methods (statistical, deterministic and probabilistic) are more objective due to 

their data-dependent character and the fact that the analysis is less reliant on expert 

judgement. The deterministic approach has a strong theoretic base and uses physical laws to 

clearly describe the underlying processes responsible for instability (Harp et al., 2009). The 

results obtained are considered to be a closer representation of reality and more consistent in 

comparison with those of the heuristic and statistical models (Van Westen et al., 2008). 

When properly calibrated, deterministic slope stability assessments are generally assumed to 

have distinct advantages over the heuristic and statistical models which are more prone to 

epistemic and aleatory uncertainties. However, concerns of its high data demand, challenges 

with parameterization of heterogeneous variables and extrapolation of results render the 
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technique prohibitive when considered for detailed scale assessment of slope over 

considerable expanse as is the case with transport corridors (Aleotti and Chowdhury, 1999; 

Cascini, 2008). 

The statistical approach compares spatial distribution of landslides with the various causal 

factors that are considered influential to slope stability. Quantitative or semi-quantitative 

estimates are then made for areas currently free of landslides, but where similar conditions 

exist. Statistical approaches are based on the observed relationships between each factor and 

distribution of landslides. The approach is robust and versatile as evident by the vast number 

techniques proposed within the statistical framework. Regression models are effective in 

establishing linear and log-linear relationships between the causal factors but perform poorly 

in areas characterized by complex landslides. The use of models employing advanced 

statistical and machine learning techniques have been shown to sufficiently capture non-

linear relationships between causal factors. Generally, being essentially data-driven, 

statistical models are not readily extrapolated to the neighbouring areas and are encumbered 

by issues of over-simplification. As such, statistical methods are considered best suited for 

regional to large area studies (Carrara et al., 1991). 

The use of probabilistic models in slope stability assessment is frequently encountered in 

literature and has been successfully applied to detailed and regional scale studies. These 

models effectively handle the natural variability of geotechnical parameters and the 

uncertainties associated with boundary conditions. The probabilistic method is flexible, 

robust and permits the integration of soft computing techniques like fuzzy logic, neural 

networks and evidential reasoning. Fuzzy logic and evidential belief function approaches 

have the capability of dealing with data incompleteness (ignorance) and vagueness 

(fuzziness) which are among the most common uncertainties associated with landslide 

modelling. The evidential belief function approach exhibits higher predictive capability in 

comparison with the fuzzy logic approach (Tien Bui et al., 2012).    
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3    Study Area and Datasets 

3.1 Study area  

The study area comprised an eight kilometre stretch of road and rail network within the 

Newcastle-Carlisle transport corridor located around Haltwhistle in the North East of 

England. The section consists of the A69 trunk road, the Haltwhistle by-pass, a number of 

highway embankments, an extensive stretch of railway embankments and cuttings. The 

railway section comprised a double track rail line which is associated with a history of 

persistent instability in recent years and has been the focus of a number of studies (Hardy et 

al., 2012; Miller et al., 2012). Occurrences of numerous minor landslides after episodes of 

prolonged rainfall are common within the aging railway infrastructure constructed over a 

century ago (Perry et al., 2003a).  

 

Figure 3.1: Location of Carisle-Newcastle transport corridor around Haltwhistle, illustrating 

proximity to the South Tyne River. © Crown copyright 2014. An Ordnance Survey EDINA 

supplied service. 

3.2 Land use and vegetation 

The transport corridor lies within a glacial trough valley floor characterised by the relatively 

flat floodplains of the South Tyne River, with sections of the railway embankments situated 
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in close proximity to the river (approximately 15 m). The surrounding landscape supports 

considerable nucleated settlements that have expanded up the valley sides. The valley floor 

is generally open ranged grassland with tree cover concentrated along tributary routes. The 

land use of the surrounding agricultural areas is mainly pasture with well-defined field 

boundaries made up of a mixture of hawthorn hedges with hedgerow trees and stone walls. 

The agricultural fields within the valley floor support a mixture of arable and dairy farming. 

Some portions of these pasture lands are poorly drained and as such, characterised by high 

antecedent moisture content which often results in the periodic waterlogging of such areas 

(see Figure 3.2). The adjoining upland agricultural areas that form the broader catchment are 

situated on the valley sides of the glacial trough (the Tyne gap) between the North Pennies 

and the Northumberland Uplands. Comprising mainly pasture land used for sheep and dairy 

farming, the valley sides are characterised by mixed scale field pattern defined by hedges, 

wire fencing and, at some locations, stone walls (see Figure 3.3).  

Typical vegetation conditions within the study area are representative of those found across 

Northern England (Lim et al., 2007; Miller et al., 2009). The study area is predominantly 

made up of a mixture of grasses, agricultural weeds, shrubs and semi-matured trees and bare 

earth slopes interspaced by stretches of dense deciduous woodlands. The woodlands exist as 

semi-natural and mixed conifer plantations confined to tributary valleys or within semi-

natural woodland estates.  Improved pasture lands are more prevalent to the west of the 

valley sides typically characterised by steeper slopes with increasing arable component in 

the east where shallower slopes dominate. The hill slopes are reasonably wooded with small 

to medium sized broadleaf and coniferous woods providing a network of tree cover (see 

Figure 3.4). The northern slopes have in places, semi-natural woodland, areas of coniferous 

plantation situated within large estates and shelterbelts extending into surrounding farmland. 

At higher elevations, notably towards the north, rough grazing and moorland dominate, 

while the southern slopes are characterised by large coniferous forests south of the River 

Tyne. 
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Figure 3.2: Seasonally water logged fields situated on the valley floor, with considerable 

upland contribution from adjoining agricultural fields. 

 

Figure 3.3: South facing earthwork cutting at Whitchester, showing the general undulating 

terrain. Adjoining fields are used for pasture farming. 
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Figure 3.4: A cutting earthwork approximately 2.6 km east of Haltwhistle. The adjoining 

fields indicate the heterogeneous nature of the vegetation cover in the study area. 

3.3 Geology   

The Tyne gap is underlain by Carboniferous rocks (345 to 280-million-years-old) which 

dominate the bedrock geology of northern England  (Bott, 1987). The Yoledale group is the 

dominant lithological unit in the southern Northumberland trough where the study area is 

situated. The Yoredale group (Lower and Middle Coal Measures) consists of a cyclic 

succession of  bioclastic limestones, sandstones, mudstones, siltstones and coals (Johnson et 

al., 1995). The coal measures represent the fossilised remains of swamp vegetation which 

grew as luxuriant forests on the deltas, while the mudstones were deposited under shallow 

marine conditions (Johnson et al., 1995). The Yoredale group is interpreted as being the 

result of alternating periods of relatively slow and rapid subsidence of the area, a reflection 

of a complex marine and non-marine deltaic conditions that existed during the deposition of 

the Group (Johnson et al., 1995; Waters and Davis, 2006; Waters et al., 2007). The Group 

outcrops as the Tyne Limestone Formation, the Alston Formation and the Stainmore 
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Formation at different locations of the study area. (Waters et al., 2007). The underlying 

bedrock geology significantly influences the physical and hydrological properties of the 

soils across the study area (Mackney et al., 1983). At the end of the Carboniferous period, 

volcanic activity resulted in the emplacement of wide spread igneous intrusions in a number 

of locations across Northumberland basin; an example of which is the Great Whin Sill, a 

doleritic outcrop that runs as a narrow, rolling east-west ridge north of the Tyne valley and is 

well exposed near Haltwhistle (Johnson et al., 1995). The bedrock geology of the study area 

and adjoining catchment is presented in Figure 3.5. 
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Figure 3.5: Bedrock geology of the study area and adjoining catchment, highlighting the 

area covered by the Airborne Laser Scanning dataset. © Crown copyright 2014. An 

Ordnance Survey EDINA supplied service. 

 

On top of the Bedrock Geology lies a Quaternary drift geology resulting from temperate 

climate periods interrupted by repeated advances and retreats of glaciers and ice sheets. The 

resulting drift geology is a basin covered by a thick layer of sediments deposited during the 

last main glacial period of the Ice years. The drift geology is essentially made up unsorted 

glacial tills (boulder clay), peat, with small areas of glacio-fluvial sands and gravels lining 
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the wider floodplains of the South Tyne River and tributaries, with alluvial silts along the 

river courses (Johnson et al., 1995).  

3.4 Previous studies 

The study area is characterised by incessant failures and had been the focus of many studies.  

Numerous detailed geotechnical investigations have been carried out on failed slopes in the 

transport corridor (Network Rail, 2005). These investigations provided information on the 

physical and geotechnical properties of the earthwork cuttings and the underlying soil 

formations. Results from instrumented boreholes revealed the geotechnical properties of 

subsurface soils and the hydrological conditions around the earthworks. A series of studies 

on the application of remotely sensed data for the characterisation of soil moisture and 

prediction of zones of instability along this section of transport corridor commenced with the 

acquisition of the airborne laser scanning (ALS) dataset in October 2006, July 2007 and 

April 2008 and the compact airborne spectrographic imaging (CASI) imagery in September 

2007. Lim et al. (2007) assessed the positional accuracy of the acquired ALS dataset using 

check point analysis and found its positional accuracy to be within 10 cm in both plan and 

elevation. Hardy et al. (2012) used terrain analysis calculations and Ellenberg values 

computed for the different vegetation cover to mapped soil moisture on the transport 

corridor earthwork embankments. The study developed a reliable and inexpensive means of 

characterising soil moisture in transport corridor earthworks.  

Miller et al. (2012) developed a deterministic model for the prediction of zones of instability 

in the transport corridor. The study utilised the enormous geotechnical data generated during 

the detailed scale geotechnical assessment of failed earthworks to parameterise the process 

based model. All of these studies were however limited to the transport corridor with little 

consideration given to catchment contributions. 

3.5 Datasets 

A significant component of performing a landslide zonation regardless of the approach 

adopted for the landslide analysis, involves collection and management of study area data on 

past landslides, environmental conditions, triggering factors and the potential risk at 

occurrence. The choice of datasets for this study was guided by a comprehensive 

reconnaissance survey, numerous field visits, discussions with engineers at Network Rail, 

the company responsible for earthwork condition appraisals, and previous studies on the 
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study area. The datasets used in this study are primarily a collection of spatial data layers 

representing factors considered relevant for landslide susceptibility assessment across the 

transport corridor. These datasets can be broadly grouped into two types. (1) high spatial 

resolution datasets limited to the transport corridor, and (2) datasets of coarser spatial 

resolution covering the adjoining catchment area. The need to incorporate the contributions 

of the broader catchment within the slope stability assessment stems from the fact that the 

influence of the broader scale topography (adjoining upland terrain which rises to the north 

and south of the corridor) is expected to significantly contribute to zones of localised 

saturation within the transport corridor slope and embankments. This section details the 

various datasets employed in the study and the nature of data pre-processing employed. A 

compilation of all the datasets, their characteristics and sources is presented in Table 3.1. 

3.5.1 Topography 

   Lidar data acquisition and pre-processing 

Airborne laser scanning (ALS) data were acquired over 8 km stretch of road and rail 

network between Newcastle and Carlisle in July 2007 from a helicopter mounted Optech 

ALTM discrete return sensor. The sensor with a pulse frequency of 50 kHz produced high 

spatial resolution coverage with a nominal point spacing of 20 points/m2 . Small format 

colour and near infra-red digital aerial imagery at a resolution of 5 cm was also acquired 

contemporaneously alongside the ALS data for the purpose of providing supplementary 

information during the interpretation of the ALS data. The position, orientation and timing 

information for captured images were recorded with a separate IMU. These information in 

addition to the camera calibration files were used to generate orthorectified images of the 

transport corridor. The ALS data extends for 100m on both sides of the A69 trunk road and 

rail route.
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Table 3.1: Overview of dataset used in the study 

 Data type Information  Format Dataset Resolution Source 

1 Topography     

 Digital terrain 

model 

A. Airborne laser scanning data acquired 

in July 2007 

ESRI grid 20 points/m2 Geomatics Group UK 

  B. Land-Form PROFILE 10m DTM 

acquired from MasterMap dataset 

ESRI grid 1:10,000 Ordnance Survey  

 Map data C. Vector mapping data ESRI Shape file (polylines and 

polygons) 

 1:2,500 Ordnance Survey  

2 Land cover     

 Multispectral 

imagery 

A. Compact Airborne Spectrographic 

imagery acquired in September 2007 

ERDAS Imagine Grid  1:600 Geomatics Group UK 

 Vector B. Land cover map (LCM 2007)  ESRI Shape file (polygons) 1:25,000 Centre for Ecology and Hydrology 

UK 

3 Geology     

 Vector Geological map ESRI Shape file (polygons) 1:50,000 British Geological Survey UK 

4 Soil     

 Vector A. National Soil map NATMAP  ESRI Shape file (polygon) 1:250,000 National Soil Resources Institute 

(NSRI) Cranfield University UK 

  B. Hydrology Of Soil Types (HOST) 

data 

ESRI Shape file (polygon) 1:100,000 National Soil Resources Institute 

(NSRI) Cranfield University UK 

5 Precipitation     

 MIDAS dataset Mean daily rainfall values from 2000 - 

2010 (Haltwhistle weather station) 

Excel tables  British Atmospheric Data centre UK 

6 Landslide Inventory    

 Merlin dataset Frequently maintained cutting and 

embankment locations 

ESRI Shape file  Network Rail UK 
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During the ALS data acquisition, some specially built checkpoint targets were purposefully 

distributed on either side of the transport corridor and throughout the areas to be covered by 

the ALS (Lim et al., 2007; Miller et al., 2009). Conventional photogrammetric targets were 

also evenly distributed across the ALS surveyed area. This was done to further increase 

redundancy and obtain representative coverage of locations against which the positional 

accuracy of the acquired ALS data could be assessed. All checkpoints were surveyed using 

rapid-static GPS prior to the survey flights. A detailed overview of the checkpoint analysis 

and error assessment procedures is presented in Lim et al. (2007).  The ALS data were 

processed in TerraScan software, with nonground points classified and removed following 

the procedures presented in Soininen (2014). The ALS point cloud was imported into 

TerraScan and filtered for noise, pits and birds by screening for absolute elevation limits, 

isolated points and height above ground (Brovelli and Lucca, 2012; Soininen, 2014). 

Terrascan employs the Axelsson's algorithm (Soininen, 2014) that derives a TIN network 

from neighbouring minima as a first approximation of the bare ground and then utilises a 

cost function based on the second derivatives of elevation difference to classify vegetation 

cover and buildings (Brovelli and Lucca, 2012). The classification procedure allows user 

defined parameters such as the maximum building size (edge length of the largest building), 

the iteration angle (maximum angle between points), the terrain angle (steepest terrain slope) 

and the iteration distance (maximum distance from a point to a triangle plane during 

iteration). The routine builds an initial model from selected low points, and then models 

upwards by iteratively adding a new point to the classified ground hits. The predefined 

iteration parameters determine how close a point must be to a triangular plane to be accepted 

by the model. A maximum building size of 30m was used to ensure that the filtering routine 

selects local low points that are confident ground hits around a 30 by 30 m area (Brovelli 

and Lucca, 2012; Soininen, 2014). An iteration angle of 6o was selected as a compromise 

between higher values (typically used for hilly terrain) that permit considerable spacing 

between points thus reducing the addition of unnecessary point density and the low values 

that allow for higher point density to better represent topography variation in flat areas 

(Soininen, 2014). A terrain angle of 60o and iteration distance of 1.40 m ensured the 

avoidance of unnecessary point density being added to the ground model. The resulting 

digital terrain model (DTM) was then imported to ArcGIS and resampled to a regular 0.5 m 

grid.
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Artificial pools resulting from false digital dams due to the DTM’s inability to recognise 

the presence of culverts, storm sewer, flood control structures and other draining structures 

along flow routes intersected by roads and bridges are common defects when computing 

flow accumulation from high resolution DTMs. A measure of DTM correction was carried 

out on the resultant ALS DTM to ensure that overland flow is in no way inhibited due to 

the presence of digital dams. Conventional breaching techniques can artificially lower the 

DTM along the alignment of the subsurface drainage structure to allow flow accumulation 

through the digital dam during terrain processing (Hutchinson, 2013). One particular 

implementation of this is the drainage enforcement option in the topo-to-raster tool in 

ArcGIS which recalculates elevation data at digital dam locations identified by dam breaks. 

The dam breaks are digitised sections of the drainage network that intercept the digital 

dams. The drainage sections (short breach arcs) are normally digitised in the downstream 

direction as specified by the topo-to-raster tool in ArcGIS. This approach was however 

considered inadequate for bridge sections that span considerable distances. Consequently, a 

semi-automatic procedure in TerraScan was utilised to recognise ground points 

representing sections of bridge structures responsible for digital dam formation. The spot 

heights at these locations were further refined to reflect the surrounding ground terrain by 

manually editing. The reconditioned DTM is presented in Figure 3.6. 
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Figure 3.6: Results of removal of digital dams from the ALS digital terrain model of 

transport corridor. (A) DTM with digital dam, (B) Corrected DTM 

  

 Land-Form PROFILE 10m DTM 

A total catchment area of 72 km2 was employed for the evaluation of catchment 

contribution to moisture accumulation in the transport corridor. The area covers a little 

more than the entire stretch of the section of the Newcastle – Carlisle transport corridor 

investigated and 4 km on either side (north and south) of the transport corridor (see Figure 

3.7). Hence, additional elevation information on the broader catchment adjoining the 

transport corridor was derived from the Ordnance Survey (OS) Land-Form PROFILE 10m 

DTM. The Land-Form PROFILE 10m DTM is a terrain height dataset with the highest 

resolution available nationwide, providing height data at a scale of 1:10,000 for the entire 

United Kingdom. The Land-Form PROFILE 10m DTM data was derived from the Land-

Form PROFILE contour lines product and supplied in 5km by 5km tiles, with a grid size of 

10m. The Land-Form PROFILE contour data from which height information utilised for 

the DTM generation was derived were produced from aerial photography and ground 

surveyed methods for densely forested areas or locations not clearly visible on the 

photography (Ordnance Survey, 2012). The vertical accuracy of the DTMs varies with 

location, as it is dependent on the density of the height data contained in the contour file. 

Flat areas with relatively few contour lines (widely spaced) are characterised by minor 
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irregularities often evident as slight terracing of the terrain, in contrast to hillier areas with 

more contours and more accurate DTM. The Land-Form PROFILE DTM product has a 

vertical accuracy of 0.3 m (Ordnance Survey, 2012). Height data of the adjoining 

catchment area around the transport corridor was downloaded from EDINA Digimap site at 

the University of Edinburgh.  

 

Figure 3.7: The catchment area with the east-west trending floodplain of the South Tyne 

River surrounded by upland terrains rising to the north and south. 

3.5.2 Vector mapping data 

The 1:2500 Ordnance Survey vector mapping data with an absolute positional accuracy of 

2.4m was also utilised in the study. The dataset extensively covers a range of both man-

made and natural features in the UK. Hence, this dataset affords detailed representation of a 

range of topographic features such as steep slopes, rail lines and associated earthwork 

landforms, providing a means of confining analysis to the earthwork landforms. The dataset 
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for the study area was downloaded from the OS-MasterMap hosted on the EDINA Digimap 

site at the University of Edinburgh.  

3.5.3 Land cover  

 Airborne spectrographic imagery and processing 

Information on the spatial distribution of vegetation within the transport corridor was 

obtained from very high spatial resolution multispectral aerial imagery captured using a 

Compact Airborne Spectrographic Imaging (CASI) sensor. The CASI dataset was acquired 

over a slightly larger spatial extent of the transport corridor than the ALS data. A 32-band 

multispectral pushbroom sensor mounted on a fixed wing aircraft recorded data in 32 bands 

over the visible and near-infrared regions of the electromagnetic spectrum (397-988 nm). 

The CASI sensor is adjustable thus enabling bands to be centred over different 

wavelengths. The CASI image employed in the study was acquired by the Geomatics 

Group and default bandsets as defined by the Geomatics Group for vegetation analysis was 

used in this study. The CASI data were acquired in September 2007 from a flying height of 

1100m with a resultant imagery of 60 cm pixel resolution.  

Radiometric calibration of the imagery was performed using field spectroscopy 

measurement taken over three 6 x 6 tarpaulin targets acquired contemporaneously with the 

CASI data. The reflectance spectra of each of the calibration targets were measured on the 

ground using a field spectrometer and the reflectances in the wavebands used by the sensor 

were derived. The recorded radiances of the calibration targets were extracted from the 

CASI image. Using the empirical line method following the procedure outlined in Smith 

and Milton (1999), the recorded radiance and reflectances for the three tarpaulin targets 

were compared and a linear regression equation that predicts reflectance from radiance 

calculated. An example of the radiometric calibration for band 1 using the empirical line 

method is presented in Figure 3.8. A separate linear regression equation was developed for 

each of the 32 wavebands (see Appendix 2). These equations attempt to remove both 

illumination and atmospheric effects (Smith and Milton, 1999). Prior to the CASI data 

acquisition, the calibration target locations were sufficiently spaced at least twelve metres 

apart, so as to eliminate signal interference from neighbouring targets (Smith and Milton, 

1999).  
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Figure 3.8: Radiometric calibration of CASI band 1 with regression equation and 

correlation coefficient. 

Geometric calibration was carried out by Geomatics Group the dataset supplier, in line with 

procedures outlined in Brown et al. (2003). The CASI imagery is synchronised with the 

onboard navigation system and geocorrected using navigation data by means of bespoke 

software from Itres (www.itres.com). The software allows for geocorrection using a fixed 

elevation surface. Positional data from the navigation system is post-processed using 

ground GPS data referenced to the Ordnance Survey passive and active networks in the 

UK. The positional accuracy of the CASI imagery was often rudimentarily assessed during 

the data acquisition campaign by comparing the imagery to map overlays from Ordnance 

Survey data control points. The system was calibrated each time the instrument was 

replaced and as a precautional measure, periodic test flights were flown to ascertain the 

validity of the calibration. The CASI imagery acquired over the transport corridor was 

delivered in two strips. Geometric validation of the CASI imagery against independent 

ground control points obtained in the using RTK GPS was carried out on the imagery on 

delivery. The checkpoint analysis for the two CASI strips revealed maximum RMSE of 1.1 

and 0.98 pixels respectively. A detailed account of the checkpoint analysis and error 

assessment procedures is presented in Hardy et al. (2012). 

http://www.itres.com/
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The two strips covering the transport corridor and adjoining fields were merged using the 

ERDAS IMAGINE software. The CASI image is a collection of image data in 32 narrow 

adjacent spectral bands. As a result of its densely sampled spectral signature of land cover, 

the CASI image provides apt discrimination for intra and inter-class heterogeneity within 

the transport corridor and is easily adaptable to specific applications. However, its use in 

spectral analysis is known to be encumbered by the high dimensionality nature of the data. 

To prepare the imagery for subsequent analysis, a degree of pre-processing was carried out 

to reduce the amount of noise within the data and the data dimensionality. Attempts to 

analyse vegetation using multispectral imagery has largely been by means of developed 

indices that employ spectral information from the red and infra region of the 

electromagnetic spectrum which have particularly defined response to plant leaves (Bannari 

et al., 1995). Most traditional approaches to multispectral data analysis were developed for 

relatively few broad wavelength bands and as such are not as effective with image data of 

high dimensionality (Mather and Koch, 2011b). 

Earlier studies on the transport corridor using the CASI imagery (Hardy et al., 2012; Miller 

et al., 2012) had employed the minimum noise fraction transformation (MNF) technique as 

means of reducing noise and data dimensionality. The MNF transforms the original image 

into a cascaded principal components of varying quality but with the same dimensions (Van 

der Meer et al., 2006). However, studies by Tsai and Philpot (2002) and Cen et al. (2013)   

have shown that there is high likelihood of losing important low variance, largely 

uncorrelated data often classified as random noise in techniques that employ spectral data 

transformation.  

In this study, data dimensionality reduction was achieved by using simple band selection. 

The approach uses selected band of the original image and allows for the retention of the 

important low variance, largely uncorrelated data often lost in techniques employing image 

transformation (Tsai and Philpot, 2002). The main critique of this technique is the 

possibility of leaving out subtle but useful information in the original data during band 

selection (Tsai and Philpot, 2002; Cen et al 2013). Therefore, careful considerations of the 

material properties being investigated are essential during the band selection process. The 

band selection process in this study was guided by findings from studies by Bajwa et al. 
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(2004) and Perry and Roberts (2008) that evaluated the use of reflectance measurement at 

key wavelengths in the characterisation of biomass, leaf area, stress and species type. 

The first stage of the processing aimed to reduce the amount of noise within the data, 

involved the exclusion of wavelengths representing data covering the blue region (397-

500nm) of the spectrum characterised a low signal-to-noise ratio (Grogan and Fensholt, 

2013). Surface reflectance values within this region are often significantly affected by the 

presence of atmospheric aerosols and water vapour during data acquisition (Grogan and 

Fensholt, 2013). The process of exclusion of the wavelengths in the blue band from spectral 

information used for land cover characterisation has been reported by various authors (Tsai 

and Philpot, 2002; Pu et al., 2008). A subset image from the primary study image (32-band 

CASI) was created in Erdas Imagine with the exclusion of wavelengths covering 397-

500nm representing the blue region of the electromagnetic spectrum. The resulting 19-band 

image then served as the initial Base image for subsequent reduction in data dimensionality. 

A considerable level of redundancy exists within the CASI data set as a result of the high 

correlation between certain bands (Tsai and Philpot, 2002). The reduction in data 

dimensions by band selection was investigated. The choice of bands was predicated on the 

fact that the image is to be used for the classification and assessment of the contribution of 

land cover classes to overland water flow and slope stability assessment across the study 

area. As such, bandwidths representing regions of the electromagnetic spectrum that are 

extremely sensitive to vegetation and known to reveal subtle vegetation characteristics such 

biomass, leaf area, stress and species types were of particular interest and thus selected 

alongside other bandwidths. The subset tool in ERDAS IMAGINE software was employed 

for the extraction of selected of bands. A total of 8 bands were selected. Two bands were 

selected from the green (530nm, 575nm), three bands from the red edge region of the 

reflectance spectrum (675nm, 728nm, 758nm) and the last three bands from the near infra-

red region (824nm, 864nm, 988nm). However, the green and red bands cover the visible 

range of the spectrum and these bandwidths are known to be commonly high correlated 

(Mather and Koch, 2011a). The processed image is presented in Figure 3.9.  
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Figure 3.9: CASI imageries of the transport corridor showing the imagery derived from 

simple band selection technique. 

 Land cover maps (LCM 2007) 

Additional land cover information on the adjoining catchment area was acquired from the 

Land use land cover map (LCM 2007) from the Centre for Ecology and Hydrology UK. 

The LCM 2007 map of adjoining catchment around the transport corridor test site has a 

spatial coverage of 100 km2 and is presented in Figure 3.10. The vector based LCM 2007 is 

a parcel based classification of UK land cover. Each parcel is represented as a polygon with 

a rich set of metadata attached. The LCM2007 data of the UK is derived from a supervised 

maximum likelihood thematic classification of spectral data derived from multi-temporal 

summer-winter composite images captured by satellite sensors with a spatial resolution of 

20-30m. The LCM2007 data set was produced using the object based image analysis 

(OBIA) technique which considers land surface as a collection of discrete irregular objects 

and partitions an image into objects (lakes, forest, urban areas, fields, etc.) based on the 

conceptual relationship that may exist between the various objects. This technique is 

acknowledged to produce more accurate thematic land cover maps in contrast with 

traditional pixel based image analysis (Gao and Mas, 2008).  

Land cover objects for the LCM2007 were derived from generalised digital cartography 

obtained from the Ordnance Survey MasterMap(OSMM)  topographic layer. Parcel 

boundaries were further refined by image segmentation, contextual and ancillary 

information from independent ground reference data to derive land cover objects which 
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accurately delineated cartographic boundaries (Morton et al., 2011). This ensured that the 

parcel based classification constructed from generalised OSMM polygons clearly represent 

real-world objects, such as fields and clusters of woodland and further enhances its 

compatibility with other available GIS datasets for the UK. The LCM2007 classifies the 

land cover in the UK into 23 sub-classes and represents the highest thematic resolution 

available with suitable coverage in the UK (Morton et al., 2011). The LCM 2007 has its 

minimum mappable area set at greater than 0.5 hectares; as such parcels less than 0.5 

hectares and linear features less than 20m in width are generally dissolved into the 

surrounding landscape during the production process. Parcels are classified based on the 

dominant land cover in accordance with the Broad Habitat land cover categorisation 

(Jackson, 2000; Morton et al., 2011). 

 

Figure 3.10: Land cover map of adjoining upland agricultural area. 

The LCM 2007 data of the broader catchment comprised 21 classes.Table 3.2. These sub-

classes were further refined for the purpose of this research by the merging of sub-classes 

with similar hydrological responses together in ARCGIS to give the five predominant 
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classes namely bare ground, grassland, manmade, water bodies and woodland within the 

broader catchment as indicated in Table 3.3.  

Table 3.2: The relation between the aggregated land cover classes employed in the study 

for the land cover categorisation of the adjoining broader catchment areas and broad habitat 

classification and the LCM2007 classes. 

Broad Habitat class (Jackson 

2000) 

LCM 2007 class (Morton et al 

2011) 

Aggregated Land-

cover Class 

Freshwater River Water 

Lake Water 

Bog Bog, grass dominated Water 

Bog, heather dominated Water 

Improved grassland Improved Grassland 

Dwarf shrub heath Heather grass Grassland 

Acid grassland Acid grassland Grassland 

Improved grassland Hay Grassland 

Dwarf shrub heath Heather and dwarf shrub Grassland 

Rough low-productivity 

grassland 

Rough low-productivity grassland Grassland 

Arable and horticulture Arable unknown Grassland 

Built up areas and gardens Suburban Manmade 

Urban Manmade 

Urban industrial Manmade 

Broad leaved, mixed and yew 

woodland 

Mixed Woodland 

Deciduous Woodland 

Scrub Woodland 

Coniferous woodland Conifer Woodland 

Recent (<10 years) Woodland 

Felled Woodland 

Inland rock Inland rock Bare ground 

 

Grassland makes up the predominant land cover, covering 87.9% of the total area.  

This class is the amalgamation of the various grassland types and horticultural lands and 

dwarf shrub heath. The broader catchment is typically well vegetated with the bare ground 

accounting for only 0.2% of the total area. The grass and heather dominated bog vegetation 

are located in the uplands of the North Pennines south of the study area and are often 

waterlogged.  
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Table 3.3: Parcel and Land use distribution within the study area 

ID Name Area 

(km2) 

 

Total 

area 

(%) 

Total number 

of parcels 

Largest 

parcel 

area (km2) 

Mean parcel 

area 

(km2) 

1 Bare ground 0.15 0.2 9 0.0270 0.017 

2 Manmade 2.14 2 3033 0.0800 0.012 

3 Grassland 90.89 87.9 177 0.6180 0.030 

4 Water body 2.29 2.2 56 0.2970 0.041 

5 Woodland 7.93 7.7 514 0.1734 0.015 

 

3.5.4 Soils 

The soil map comprised the transport corridor and the adjoining catchment (100 km2) was 

obtained from the National Soil Map Resource Institute (NSRI) at Cranfield University, 

UK and NATMAP vector data set (Avery, 1980). The NATMAP vector dataset is the most 

detailed of four version of the National Soil Map and includes information on 300 mapped 

soil associations at a scale of 1:250,000. Within each map unit (soil association) multiple 

soil series are represented as a hierarchical structure which enables easy integration with 

other soil data (Mackney et al., 1983).  The description of the dominant soils and their 

distribution is presented in Table 3.4.  

The NATMAP vector data for the study area reveals a general distribution of soils that is 

patchy in nature and that a vast majority of upland agricultural terrains adjoining the 

transport corridor are essentially underlain by slowly permeable soils made up of fine loamy 

soils overlying clays and are seasonally waterlogged. These soils that make up about 96% of the 

area and are characterised by high surface runoff during storms and lateral flow at shallow 

depths. The slowly permeable subsurface horizons results in prolonged moisture retention 

and seasonal waterlogging (National Soil Resources Institute, 2008). Well drained soils are 

typically localised along drainage course of the South Tyne River and only constitute 

1.04% of the catchment area. The river terrace soils that line the drainage courses are 

essentially made up of sands and gravelly soils are well drained and only constitute 1.04% 

of the area of the adjoining catchment. 
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Table 3.4: Description and distribution of Soil Map Units in the study area 

Map unit name Simple description Dominant soils % 

Area 

BANGOR shallow peat over 

hard rock 

Very shallow very acid peaty-topped upland 

soils. Often on steep slopes. 

0.08 

ELLERBECK stony loam over 

gravel 

Very stony well drained loamy soils locally on 

hummocky ground. 

1.04 

NERCWYS deep loam Deep fine loamy soils with slowly permeable 

sub-soils and slight seasonal waterlogging. 

0.26 

WHARFE deep loam Deep stone-less permeable fine loamy soils. 0.40 

ALUN deep loam Deep stone-less permeable coarse loamy soils. 0.32 

ANGLEZARKE loam over sandstone Well drained very acid coarse loamy soils over 

sandstone with a bleached subsurface horizon. 

0.07 

SALOP seasonally wet deep 

red loam to clay 

Slowly permeable seasonally waterlogged 

reddish fine loamy over clayey, fine loamy and 

clayey soils 

0.23 

CLIFTON seasonally wet deep 

red loam 

Slowly permeable seasonally waterlogged 

reddish fine and coarse loamy soils and similar 

soils with slight seasonal waterlogging. 

0.13 

DUNKESWICK seasonally wet deep 

loam to clay 

Slowly permeable seasonally waterlogged fine 

loamy and fine loamy over clayey soils 

0.35 

BRICKFIELD 3 seasonally wet deep 

loam 

Slowly permeable seasonally waterlogged fine 

loamy fine loamy over clayey and clayey soils. 

60.40 

WILCOCKS 1 seasonally wet deep 

peat to loam 

Slowly permeable seasonally waterlogged fine 

loamy and fine loamy over clayey upland soils 

with a peaty surface horizon. 

35.59 

ENBORNE seasonally wet deep 

loam 

Deep stone-less fine loamy and clayey soils 

variably affected by groundwater. 

0.07 

LONGMOSS peat Thick very acid peat soils. Largely un-drained 

and perennially wet. 

0.76 

WINTER HILL blanket peat Thick very acid raw peat soils. Perennially wet. 0.19 

 

 

Also acquired alongside NATMAP vector dataset, was the Hydrology of Soil Types 

(HOST) dataset. The HOST dataset is a hydrologically based classification of UK soils 

(Boorman et al., 1995). The classification is based on the physical properties and the effects 

on storage and transmission of water as exhibited by each soil series in the 1:250,000 

England and Wales soil map and corresponding NATMAP data.  The HOST classification 

recognises the influence of different soil types on the hydrological responses at both local 

and regional levels. The HOST classification is largely independent of scale and was 
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derived by assessing the hydrological difference between soil classes using regression 

analysis against long-term flow data in 800 catchments in the UK (Boorman et al., 1995). 

Following this, conceptual models of the process that occur in the soil and where 

appropriate, the substrate, were developed. The resulting scheme has 29 classes based on 11 

response models that describe the dominant pathways of water movement through the soil 

and substrate (Hess et al., 2010). The HOST classification permits direct computation of 

the important hydrological indices like the Standard Percentage Runoff (SPR). The SPR 

provides an indication of the propensity of soils to generate overland flow to nearby 

streams in a catchment. SPR is based on the examination of the response of streams to 

rainfall events occurring in the catchment (Boorman et al., 1995). The HOST map of the 

study area is presented in Figure 3.11  

 

Figure 3.11: HOST map showing the spatial distribution of the various HOST classes in the 

study area. Description of various HOST class is given in Table 3.5. 
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Table 3.5: Characteristics of HOST classes and percentage areas in the study location 

Map unit name Host 

class 

Description % 

Area 

SPR 

value 

(%) 

ANGLEZARKE 4 Free draining permeable soils on hard 

but fissured rocks with high 

permeability but low to moderate 

storage capacity. 

0.94 2.0 

ELLERBECK 5 Free draining permeable soils in 

unconsolidated sands or gravels with 

relatively high permeability and high 

storage capacity. 

4.16 14.5 

WHARFE 8 Free draining permeable soils in 

unconsolidated loams or clays with 

groundwater at less than 2m from the 

surface. 

6.70 44.3 

ALUN 

ENBORNE 10 Soils seasonally waterlogged by 

fluctuating groundwater and with 

relatively rapid lateral saturated 

conductivity. 

1.05 25.3 

LONGMOSS 12 Un-drained lowland peaty soils 

waterlogged by groundwater. 

0.09 60.0 

NERCWYS 21 Slowly permeable soils with slight 

seasonal waterlogging and low 

storage capacity over slowly 

permeable substrates with negligible 

storage capacity. 

3.84 47.2 

SALOP 24 Slowly permeable seasonally 

waterlogged soils over slowly 

permeable substrates with negligible 

storage capacity. 

68.02 39.7 

CLIFTON 

DUNKESWICK 

BRICKFIELD 3 

WILCOCKS 1 26 Permanently wet peaty topped upland 

soils over slowly permeable 

substrates with negligible storage 

capacity. 

11.67 58.7 

BANGOR 27 Permanently wet peaty topped upland 

soils over hard impermeable rocks 

with no storage capacity. 

1.15 60 

WINTER HILL 29 Permanently wet upland blanket peat. 2.39 60 
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3.5.5 Landslide inventory 

Inventory acquisition by means of classic landslide mapping from remotely sensed data has 

limited applicability in transport corridor environments as landslide locations are often 

cleared and remedied soon after landslide occurrences (Miller et al., 2012). The remedial 

activities often obscure evidence of landslide occurrence revealed in the morphology, 

vegetation and/or drainage conditions of the slope. Consequently, maintenance records and 

geotechnical reports on slope instability investigation are often the most reputable sources 

of information on location, magnitude and frequency of slope instability along the transport 

corridor (Jaiswal et al., 2011). In the UK, there are guidelines in place that stringently 

enforce conditional appraisal of the earthworks within transport corridors (Perry et al., 

2003a). The landslide inventory used in the susceptibility assessment was obtained from the 

MERLIN database compiled by Network Rail, the owners and operators of rail 

infrastructure in the UK (Perry et al., 2003a). The inventory highlights locations along the 

transport corridor that have been identified during statutory routine inspection of slope 

cuttings and embankments and assessed as being prone to loss of performance as a result of 

minor landslide events. The Network Rail inspection data divides the transport corridor into 

110- yard linear sections and based on a semi-quantitative slope stability assessment 

scheme, assigns slope hazard values by scoring keys parameters responsible for slope 

stability. These parameters include material composition, animal burrowing activities, 

drainage conditions, indicators of landslide initiation and earthwork height. Based on the 

total hazard value assigned, the evaluated soil embankments, soil cuttings and natural soil 

slopes conditions are classified into serviceable, marginal or poor. Locations within the 

110-yard linear sections classified as poor represent sections with least slope stability. 

These locations are typically characterised by incessant failures during heavy rainstorms 

and are known to require some level of periodic maintenance. Majority of the Network Rail 

inspection data were acquired in 2008 and have been periodically updated over the years. 

Eight inventory locations with varying spatial areal coverage ranging from 337.5m2 to 

1769m2 were identified by Network Rail along the 8 km stretch of Newcastle-Carlisle 

transport corridor route considered in this study. These locations were digitised and stored 

as a feature class in the project geodatabase.  
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Figure 3.12: Locations of failed earthwork cutting and embankment derived from the Melin 

dataset compiled by Network Rail 

3.5.6 Precipitation 

Precipitation that has occurred prior to a storm event can have a significant impact on the 

subsequent runoff response during rainfall event and partly accounts for the non-linearity in 

runoff response to similar storm rainfalls under different antecedent soil moisture 

conditions (Hughes, 1998). Permeable saturated soils generate runoff quite readily due to 

reduced infiltration rates. Same soil under drier conditions is characterised by infiltration 

and low infiltration excess runoffs. This is particularly true in sub-catchments where soil 

moisture plays an important role in the generation of runoff. Daily rainfall data from 2000 

to 2010 recorded at the Haltwhistle weather station was acquired from the Met Office 

Integrated Data Archive System (MIDAS) database hosted by the Centre for Environmental 

Data Archival of the Natural Environmental Research Council (NERC), UK. Daily rainfall 

values from the Haltwhistle weather station were assumed to be equivalent and applicable 

to the entire study area. This approach is consistent with other studies where precipitation 

data over a small catchment has been used (Mishra and Singh, 2003).  The daily records 

were averaged and plotted on a line chart on monthly basis. Days with significant rainfall 

depth noted and storms were identified. Equally important were precipitation values for the 

pre-storm days, five and seven pre-storm rainfall data were computed for each storm. The 

depth of precipitation prior to the actual storm is responsible for the build-up of antecedent 

moisture in the soils which is an important consideration in runoff generation (Hess et al., 

2010).  

3.6 Summary 

This chapter presented a description of the transport corridor and the adjoining agricultural 

fields. The chapter also outlined the various datasets employed in the study covering 
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topography, land cover land use, soil and geology, precipitation and landslide inventory. A 

summary of data type, extent and source is provided in Table 3.1. Two broad groups of 

datasets were identified; the high spatial resolution data limited to the transport corridor and 

coarser dataset on the adjoining catchment. The incorporation of both data is expected to 

provide the contribution of the broader catchment on the slope stability assessment of 

earthwork slopes in the transport corridor. 

In addition, the nature of pre-processing carried out on each of the datasets was discussed. 

This included the removal of noise data that would have otherwise introduced errors into 

the assessment (classification of the ALS point cloud), feature selection to further reduce 

data redundancy (simple band selection in CASI data) and categorisation of the various 

data to common indices for ease of data integration. The pre-processed data developed in 

this chapter were integrated into the developed methodology discussed in Chapter Four.  
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4 Methodology 

4.1 Introduction 

Chapter 2 showed that landslide occurrence is seldom simple in nature even in engineered 

slopes such as transport corridors (Lee and Jones, 2004). The processes responsible for 

instability in slopes are invariably linked to the terrain, soil characteristics, geological 

structures, hydrological, climatic and vegetation conditions inherent to the localities where 

they occur (Glade and Crozier, 2006). Failures are generally products of existing slope 

instability and a careful evaluation of the interrelationships between the various intricate 

factors that potentially influence landslide occurrences usually reveal patterns and 

thresholds which can be used to perform landslide susceptibility zonation (Van Westen et 

al., 2008; Jaiswal and van Westen, 2013). The overarching aim of this research work is the 

development of a geospatial Data driven approach for the broad-scale recognition and 

prediction of the spatial landslide susceptibility within transport corridors, to enable timely 

and robust prioritization of further detailed levels of risk evaluation.  

4.2 Methodological framework 

The stability of a slope depends on the relationship between the external stresses acting on 

the slope and the internal strength characteristic of the materials that make up the slope 

(Iverson, 2005). Rainfall-induced failures in engineered and natural slopes are typically 

initiated by a reduction of confining stress as a result of a build-up of pore water pressure 

during or following periods of intense rainfall (Iverson, 2000). At relatively fine spatial 

scales, surface and near surface processes such as infiltration, evapotranspiration and flow 

accumulation are vital to slope stability (Reid, 1997) and the influence of local topography, 

underlying soil properties, land cover type on these surface processes is often significant.  

Numerous parameters that explain the influence of these surface and near surface processes 

on slope instability have been identified and the relative importance of these parameters is 

known to vary with location and the scale of study (Fell et al., 2008). Among the most 

widely applied parameters for detailed scale assessment of slope stability are those that 

relate to slope (gradient, shape and direction), soil properties, soil moisture/rainfall and land 

cover type (Harp et al., 2009; Miller et al., 2012). Landslides are the results of complex 

interactions between surface and near surface processes which need to be conceptually 

understood. In this regard, a conceptual framework was developed pulling together the 
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various processes and parameters identified from literature and during field visits. A 

flowchart of the methodological framework developed for this study is presented in Figure 

4.1. The flow chart highlights the stages of integration of multi-scale geospatial data and 

landslide susceptibility assessment for fine scale natural slope application. The methods can 

be broadly divided into three parts.  

The first part addresses the development of an integrated and scalable spatial geodatabase 

for the incorporation of information on the condition and triggering factors responsible for 

landslide incidence on slope cuttings and embankments along transport corridors; 

developed review of the scientific literature (chapter 2), Network Rail reports and 

numerous field visits. The field visits involved inspection of the earthworks for assessment 

of the various slope instability processes, collection of training and validation data 

employed in a supervised classification and development of a land cover map of the study 

area. Pre-processed geological, topographical, land use, land cover and meteorological 

datasets constitute the primary data layers incorporated into the spatial geodatabase 

developed in ArcGIS.  

Secondary datasets of derived slope stability parameters such as slope gradient, aspect 

curvature, land-cover, soil type, precipitation and drainage were extracted from the primary 

datasets. Two categories of terrain and land cover data were acquired; very high resolution 

datasets spatially limited to the transport corridor from which slope stability parameters 

were extracted and a coarser resolution data covering the adjoining catchment area 

employed in the evaluation of catchment contribution. A landslide inventory of recorded 

slope failures along the transport corridor and maintained areas due to subsidence was 

obtained from the routine maintenance register hosted by Network Rail.  

The second part of the methodology relates to objective 3: the development of a surface 

runoff model that evaluates the upslope contribution of the adjoining broader catchment to 

zones of moisture accumulation along slope cuttings and embankments within the corridor. 

The location of the transport corridor within the South Tyne River floodplain, bounded to 

the north and south by valley walls of the Tyne Gap, suggests that overland flow from 

adjoining land may occur. The depth and velocity of surface runoff generated in temperate 

areas is a function of local terrain, underlying soil properties and vegetation cover type 

(Archer et al., 2013). Thus, at this stage, a new method was developed to enable the 
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transfer of the contribution of surrounding upland areas of the larger catchment to the 

spatial distribution of soil moisture within the transport corridor itself. A novel approach 

was developed that incorporates the influence of infiltration, interception and modulation of 

overland flow due to the presence of land cover types in the computation of soil moisture 

accumulation. Using this, modified terrain wetness index was derived. 

The preceding two methodological stages provide data for the third part of the methodology 

and objective 4, which is the development of a multi-source multi-scale slope stability 

within transport corridor environments accounting for data uncertainty and vagueness. This 

was achieved by employing an evidential reasoning framework based around 

Dempster/Shafter theory (Dempster, 1967); the first known application of this approach to 

such a fine scale engineered earthworks environment for landslide susceptibility analysis.  

In addition to Figure 4.1, Appendix 1 presents a series of separate flow charts for each 

major stage of the methods which are presented in greater detail in the following sections.  
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Figure 4.1: Flow diagram summarising the methods described in this chapter. A more 

comprehensive sets of flow diagrams detailing the methods is presented in Appendix 1. 

 

4.3 Data preparation 

Chapter 3 specifies the spatial data layers representing factors considered relevant for 

landslide susceptibility assessment across transport corridors. The previous chapter also 

presents the rationale for their selection and the data pre-processing carried out. This 

section presents the data processing carried out for the extraction of relevant slope stability 

parameters from these datasets for the construction of a geospatial database. 

4.3.1 DTM generation 

Two sets of elevation data were employed in the DTM generation. These include the high 

resolution ALS data of the transport corridor and the coarser OS Land-Form PROFILE 10 

m DTM.  
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The ALS classified ground points was exported into ESRI ArcGIS. Two separate DTMs 

(regular 0.5 m grid) were generated from the ALS classified ground points. The first served 

as a standard interpolation technique for ample representation of the topographic 

complexity of the transport corridor while the second DTM was used for hydrological 

modelling of flow within the study area. The inverse distance weighting (IDW) technique 

was used to the represent a standard interpolation technique. The IDW routine interpolates 

between points to generate a raster surface. IDW is a deterministic approach that assumes 

for each input point a local influence (which diminishes with increasing distance) on the 

point being estimated. The IDW interpolation estimates grid elevation for an un-sampled 

location by averaging the measured values around the prediction location and assigning a 

weighting factor that diminishes as a function of distance from each input point within a 

search neighbourhood and the estimated location (Anderson et al., 2005). The assigned 

weighted average takes into consideration only the influence of proximity over spatial 

correlation. The IDW interpolation can be mathematically represented as: 

 

Ζ̃(𝑠0) =∑𝜆𝑖Ζ(𝑠𝑖)

𝑁

𝑖=1

 Equation 4.1 

 

Where: Ζ̃(𝑠0) is the estimated value at the un-sampled location⁡𝑠0, 𝑁 is the number of 

measured sample points surrounding the predicted location that was used for the prediction. 

𝜆𝑖 are the weights assigned to each measured point used in the estimation which decreases 

with distance. Ζ(𝑠𝑖) is the observed value at location 𝑠𝑖.  

The formula for determining the weights (𝜆𝑖) is as follows: 

 

𝜆𝑖 =
𝑑𝑖0
−𝑝

∑ 𝑑𝑖0
−𝑝𝑁

𝑖=1

⁡ , ∑𝜆𝑖

𝑁

𝑖=1

= 1 Equation 4.2 

 

Where 𝑑𝑖0 is the distance between the prediction location (⁡𝑠0), and each of the measured 

locations (𝑠𝑖). As the distance becomes larger the weight is reduced by a factor of⁡𝑝. The 

weights are proportional to the inverse distance raised to the power⁡𝑝. The weighting values 

range from 0 to 1 and can be altered by varying the type of search and the number of input 

points within search neighbourhood or by changing p. A defined search neighbourhood 
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determines the number of input sample points (N) to be included in the inverse distance 

weighting interpolation of each location.  

The IDW routine was applied with the ArcGIS default power of 2 using a variable radius 

distance set to take an average 20 points. Various studies (Yue et al., 2007; Bater and 

Coops, 2009) have shown this value to be an acceptable compromise between the higher 

power values that generally assign greater influences to points closer to interpreted 

location, typically resulting in an increase in topographic detail and the lower power values 

that result in smoother interpreted surfaces and a loss of high frequency variability due to 

the allocation of higher weights to points further from the interpolated locations. A variable 

search radius was used in calculating the values of the interpolated cells as the density of 

ALS data was not evenly distributed across the scene. An average of the nearest 20 points 

was specified to match the minimum density of the ALS data and to ensure that there were 

at least 20 points per grid square to interpolate from.  

The IDW routine is relatively quick and simple to compute for dense sample points such as 

the ALS data of the transport corridor (ERSRI, 2010). Potential alternatives such as kriging 

suffer from significant computational overheads such as calculating the exponential semi-

variogram that often result in them being inappropriate for large volume spatially dense 

data such as ALS data (Rees, 2000). The kriging technique is based on the assumption that 

the distance or direction between sample points reflects a regionalised spatial correlation 

that can be used to explain variation in the surface. Weights in the kriging approach take 

into account both distance and degree of variation between sampled points. (Childs, 2004). 

Kriging tends to produce better terrain representation with sparse and uneven distributed 

sample points (Rees, 2000),  with kriging  having minimal benefit over IDW when applied 

to spatially dense data (Lloyd and Atkinson, 2002).  

In addition to the IDW interpolation technique, thin plate spline interpolation is often 

employed and for the creation of hydrologically correct digital elevation models was also 

employed. The thin plate spline interpolation technique is based on the ANUDEM program 

developed by Hutchinson (1989). The method is iterative, employing a finite difference 

interpolation algorithm that maintains a realistic drainage network using a small number of 

well-chosen elevation and stream line data sets (Kienzle, 2004; Hutchinson, 2008). The 

ANUDEM algorithm constructs relatively smooth surfaces from irregularly spaced 
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elevation data by the application of a spatially variable smoothing function, which is 

dependent on a measure of roughness (roughness penalty) exhibited by the input elevation 

values. The routine has the option for the enforcement of drainage constrains which attempt 

to remove all sink, or depression, in the output DTM. The use of ANUDEM for DTM 

modelling in hydrology is well documented (Bater and Coops, 2009; Chen et al., 2012). 

During interpolation constraints such as connectivity of drainage structure and accurate 

representation of ridges and streams from input elevation data are usually imposed by 

default, (ERSRI, 2010), as was the case for the generation of a 0.5m DTM from the ALS 

data. The relatively smooth surfaces produced by the ANUDEM interpolation technique, 

enhanced the computation of continuous flow across the transport corridor terrain devoid of 

spurious pits (Bater and Coops, 2009; Hutchinson, 2013). However, the main concern with 

this method as is the case with all other spline techniques is that it provides unrealistically 

smooth view of reality such that the estimation of attribute values from first (slope and 

aspect) and second order derivatives (curvature) for terrain related modelling may be 

misleading (Chen et al., 2012).  

 DTM accuracy assessment and sensitivity 

Normally DTM accuracy would be evaluated using an independent sample of 

measurements surveyed in the field. However in the case of this study, such contemporary 

field data did not exist. To overcome this, the ALS ground return points were randomly 

subsetted into training and validation datasets consisting of 1,564,411 (97%) and 48383 

(3%) points respectively. This proportion of training to test data afforded the assessment of 

error associated with the height predictions of the interpolation techniques at locations 

lacking measured points in the dataset without compromising the integrity of the ALS data. 

This approach is consistent with similar studies such as (Bater and Coops, 2009). To ensure 

adequate representations of existing topographic variation in the study area in the validation 

dataset, the study area was classified to reflect the three dominant terrains (described in 

section 3.2) using independent elevation data (OS Land-Form PROFILE 10m DTM); 

namely the plains, gentle valley slopes and the upland areas. 3% of the total ALS point data 

in each of the stratified bin were randomly partitioned to generate the validation dataset.  

Sensitivity testing was carried out to evaluate the impact changes in input DTM spatial 

resolution has on terrain analysis calculations with a view to selecting an optimum grid 
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resolution that would provide an adequate representation of the earthwork topography and 

minimise the inclusion of micro-topographic effects during hydrological modelling (Miller 

et al., 2012). In total, 10 DTMs were produced using the IDW and ANUDEM interpolation 

techniques using ArcGIS. For each interpolator, DTMs were generated with spatial 

resolutions of 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5 and 5 m. Simple visual interpretation was 

used to assess visible changes such as the introduction of artefacts as a result of changes in 

DTM resolution. The effects of resolution on surface roughness was assessed by comparing 

elevation values derived from transects across the earthwork. The quality of the resulting 

DTM was assessed using the validation data to compare the biases and accuracies of the 

surfaces. For each DTM, vertical errors were calculated for every point in the validation 

data as the differential between the predicted value of the DTM and measured value from 

the ALS data at the same location. Global statistics was calculated to assess the overall 

performance of the interpolation routines. The mean error provided a measure of bias, with 

positive values indicating the interpolation algorithm as over estimating the actual data 

values (Bater and Coops, 2009). The Root Mean Square error (RMSE) and mean absolute 

error provide measures of the global accuracies of the interpolated surfaces (Bater and 

Coops, 2009). In addition slope and aspect grids were also generated using the slope and 

aspect tools in ArcGIS and assessed by comparing the generate slope and aspect values of 

higher resolutions against the 0.5 m DTM set as a benchmark. 

4.3.2 Land cover map classification   

The CASI imagery was used to derive the land cover classification used to assess 

vegetation influence on instability in the transport corridor. Careful consideration was given 

to the choice of the possible number of land cover classes, sample size, location and field 

collection of training data and the collection of validation data to be used for accuracy 

assessment Reconnaissance field visits and review of literature on past land cover studies of 

the study area and environs provided insights into the possible number of land cover classes 

that existed within the transport corridor. Nine main land cover types were identified during 

the reconnaissance field visit; pasture, managed pasture, shrubs, deciduous woodland, river, 

bare earth and man-made structures (roads, rail and buildings). An unsupervised 

classification of the CASI image of the transport corridor was performed in Erdars Imagine 

using the ISODATA classifier into 50 spectral classes. A large number of clusters was 

chosen to ensure adequate separation of the various land cover classes. The spectral classes 
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were matched with land cover information from a 5cm aerial photograph acquired 

contemporaneously with the data of the transport corridor. The spectral classes representing 

a particular land cover type were merged to arrive at the earlier identified nine main land 

cover classes. The unsupervised classification of the transport corridor derived from the 8 

band CASI image, alongside the 5cm aerial photograph provided a basis for the positioning 

of stratified random sampling points for the collection of training data used in the 

supervised classification of a land cover map of the study area. The stratified random 

sampling technique was adopted to ensure adequate sampling of the various land cover 

classes (Congalton, 1991). A total of 438 validation points and 200 training points were 

randomly located throughout the study area. The training and validation sets for each of the 

classes were established using a field mapping exercise and from the 5cm aerial photograph 

of the transport corridor. 

Supervised classification was carried out on the processed 8-band CASI image using the 

maximum likelihood classifier routine in Erdas Imagine software. The field work 

established nine main land cover classes for the transport corridor, this includes pasture, 

managed pasture, shrubs, deciduous woodland, water, bare earth and man-made structures 

like roads, rail and buildings. Training sets were digitized using visual interpretation of the 

image in different band combinations alongside in-situ land cover information acquired 

during the field survey. Visual interpretation of sets of image characteristics such as shape, 

size, structure, texture, tone and pattern of objects was also employed in the identification 

of digitized boundaries for each of the training sets for the various land cover classes. The 

spectral signature for the various land cover classes were derived from the training sets and 

evaluated to assess their degree of separability using the transformed divergence algorithm 

in Erdas Imagine (Jensen, 2004). Using maximum likelihood supervised classification 

based on a total of 200 randomly distributed training sites, the various land cover within the 

transport corridor were classified into one of the nine categories. A fuzzy convolution filter 

was applied to the resulting classification to optimise the classification results (ERDAS, 

2008). The fuzzy convolution filter creates a single classification band by removing 

isolated pixels and smoothening boundaries between classes (Jensen, 2004). This context-

based classification reduces the speckle effect and improves overall interpretation (Jensen, 

2004).  The classification accuracy was then assessed at 438 validation points randomly 

located throughout the study area. An overall classification accuracy of 80.37%. % with a 
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kappa statistic of 0.85 was obtained for the simple band selection CASI image. While the 

classification result may suggest a high overall accuracy, closer inspection revealed the 

existence of misclassified pixels between land cover classes that lack significant spectral 

distance between the mean vectors and covariance of class signatures, hence these classes 

were subsequently merged into a single class. For example, there was significant overlap of 

the ballast-lain rail bed, roads and building land cover classes. Consequently these classes 

were merged to form the manmade land cover class. The pasture, managed pasture and 

shrub land cover classes were also combined into a single land cover class (pasture) as a 

result of their similar hydrological characteristics and the misclassified pixels that existed 

between these classes. A final land cover classification that identified (1) mixture of pasture 

grassland, agricultural weeds, wild flowers and shrubs (2) bare earth, (3) woodland 

comprised of a mixture of coniferous and deciduous woodland majorly aligning flow routes 

of tributaries or situated within woodland estates (4) water and (5) manmade with an 

overall accuracy of 90.15% with a kappa statistics of 0.85 (Table 4.1) was obtained for the 

simple band selection CASI image of the transport corridor. The contingency matrices and 

separability table tables are presented and discussed in detail in chapter five.   

For a comparative assessment, the minimum noise fraction transformation technique was 

also applied to the primary image (19 band CASI image) which was introduced in section 

3.4.2.1. The Minimum Noise Fraction (MNF) transform algorithm employs two 

consecutive data reduction operations (Green et al., 1988; Van der Meer et al., 2006). The 

first is based on an estimation of noise in the data as represented by a correlation matrix. 

This transformation decorrelates and rescales the noise in the data by variance to improve 

the overall signal from vegetation (Green et al., 1988). The second operation creates a 

cascade of principal components that contain weighted information about the variance 

across all bands in the raw dataset. (Van der Meer et al., 2006). The dominant components 

were selected and used in an inverse MNF transform to convert the data back to its original 

spectral space, resulting in the same number of transformed channels as the original image 

(19 CASI bands). The spectral subset chosen for the transport corridor data were bands one 

to eight, which were determined to contain over 99% of the total variance in the data. The 

MNF transform is usually better than the Principal Components (PC) transform at 

compressing and ordering multispectral and hyperspectral images in terms of image quality 

(Berman et al., 2012). The MNF transform is also invariant to invertible (i.e. non-singular) 
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linear transformations of multispectral or hyperspectral data, a property not shared by the 

PC transform (Berman et al., 2012).  

A maximum likelihood supervised classification was also implemented on the spectral 

transformed (MNF) CASI), using the same training areas that were employed for the simple 

band selection approach. A classification accuracy of 74.43 % and with a kappa statistics of 

0.68 was obtained for the MNF transform CASI image of nine land cover classes. The 

overall classification accuracy was improved by merging land cover classes with 

overlapping spectral signatures. Consequently the rail, road and building classes were 

combined to achieve the manmade class. A merged land cover class (pasture) made up 

pasture, managed pasture and shrub land cover classes was also derived. A final land cover 

classification that identified pasture, bare earth, woodland, water and manmade with an 

overall accuracy of 83.59 % with a kappa statistics of 0.76 (Table 4.2) was obtained for the 

MNF transform CASI image of the transport corridor. 

The supervised classification map obtained from simple band selection was used as the 

land-cover map for the transport corridor as it provided a higher overall accuracy.  

Table 4.1 Contingency matrix showing the classification accuracy of the maximum 

classification routine carried out on the CASI imagery derived from simple band selection. 

 Woodland Pasture 
Bare 

earth 
Manmade Total 

Producer’s 

accuracy 

(%) 

User’s 

accuracy 

(%) 

Woodland 41 20 0 2 64 100.0 65.08 

Pasture 0 181 8 3 189 87.86 94.27 

Bare earth 0 6 17 0 25 68.0 73.91 

Manmade 0 0 0 118 118 95.93 100.0 

Total 41 207 25 123    

Overall accuracy = 90.15% Overall Kappa statistics = 0.85 
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Table 4.2: Contingency matrix showing the classification accuracy of the maximum 

classification routine carried out on the MNF transform CASI image. 

 Woodland Pasture 
Bare 

earth 
Manmade Total 

Producer’s 

accuracy 

(%) 

User’s 

accuracy 

(%) 

Woodland 39 13 0 3 55 95.12 70.91 

Pasture 2 152 4 0 158 73.43 96.20 

Bare earth 0 42 21 1 64 84.0 32.81 

Manmade 0 0 0 119 119 96.75 100.0 

Total 41 207 25 123    

 

Overall accuracy = 83.59% 

 

 

Overall Kappa statistics = 0.76 

 

 

4.4 Characterisation of hydrological spatial variability  

Flow accumulation and soil moisture distribution were important considerations in the 

assessment of slope instability in the transport corridor. Moisture accumulation has been 

identified as the main trigger of failure in UK slopes (Perry et al., 2003a; Ridley et al., 

2004). Terrain-based flow models are particularly useful in the delineation of zones of 

saturation. These models are built on a basic underlying assumption that water and its 

constituents essentially move downhill draining steeper terrains and concentrating in areas 

of topographic convergence. Terrain based flow models provide the basis for the derivation 

of many hydrological parameters used in hydrological terrain analysis (Tarboton et al., 

2009). The classic TWI is perhaps the most popular terrain-based flow model derived 

indices used to describe the spatial pattern of soil moisture (Sørensen et al., 2006). The 

classic TWI takes into account the local slope geometry and local upslope contributing area 

in quantifying topographic control on hydrological processes (Sørensen et al., 2006; Ma et 

al., 2010). However, the classic TWI has a number of limitations (Wilson and Gallant, 

2000) such as an absence of land-cover information and the assumption of uniform soil 

properties (Borga et al., 2002).  

In order to address these deficiencies, this study developed a novel approach to TWI 

computation that integrates the contribution of land cover and soil properties to surface 

runoff characterisation. The developed approach incorporates two key components; (i) the 
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development of a weight grid that quantifies the contribution of the soil-land cover 

interface to surface runoff generation, and (ii) the propagation of soil–land-cover 

interactions to downslope flow accumulation.  

 Theoretical framework  

There are a number of models that provide a means of evaluating the interaction between 

land cover and soil based on empirical relationships with respect to runoff generation. 

These models use approaches ranging from fully empirical lumped models (Beven and 

Kirkby, 1979) to spatially distributed mechanistic approaches (Beven, 2000; Bovolo and 

Bathurst, 2012), each with its limitations and advantages (O'Connell et al., 2007). The Soil 

Conservation Service-curve number (SCS-CN) model is an event model to predict direct 

runoff volumes for individual storm events. The approach utilises a quantified conceptual 

framework linking soils, land cover, land management and weather to runoff generation 

(Hess et al 2012), and can be applied to rural and urban areas without the need for 

calibration. The method was developed from many years of storm flow records in 

catchments in the USA and is applicable to small catchments. This approach unlike the 

classic TWI, incorporates the influence of land cover and underlying soil contribution to the 

computation of generated overland flow (Soulis and Valiantzas, 2012). 

With the aid of a set of empirical equations that relate direct runoff volume to the rainfall 

amount catchment characteristics and antecedent wetness (USDA, 2004), the Soil 

Conservation Service (SCS-CN) curve number method models the interaction between land 

cover and soil type based on a single storm event and computes runoff depth (Mishra and 

Singh, 2003). The SCS curve number method accounts for the contributions of important 

catchment characteristics such as land cover, soil hydrological group and soil hydrological 

condition in the computation of direct runoff as a consequence of rain storms (Hess et al., 

2010; Soulis and Valiantzas, 2012). The advantage of the SCS curve number method is its 

relatively simple data requirements and ability to compute runoff depth for each location 

thus providing a measure of runoff modulation from infiltration, interception and relative 

flow velocity on the basis of soil type and land cover.  

The SCS curve number method is based on the water balance equation and two 

fundamental assumptions (Mishra and Singh, 2003; Soulis and Valiantzas, 2012). The 

water balance equation states that 
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 𝑃 = 𝐼𝑎 + 𝐹 + 𝑄 Equation 4.3 

 

Based on the water balance equation, it is theorised that the actual amount of direct runoff 

to potential runoff (effective rainfall) is the same as the ratio of actual infiltration to the 

potential maximum retention: 

 
𝑄

𝑃 − 𝐼𝑎
=
𝐹

𝑆
    Equation 4.4 

Where Q is the amount of runoff generated, P is the total rainfall in millimetres, 𝐼𝑎 is the 

initial abstraction (mm) which represents all the losses due prior to runoff generation, 

which include water retained in surface depressions, interception by vegetation, infiltration 

and evaporation. 𝑆 is the potential maximum water retention by soil and vegetation (mm) 

after the commencement of runoff and 𝐹 is the actual retention or cumulative infiltration 

less the initial abstraction (mm). 

The combination of equations 4.3 and 4.4 forms the basis for the SCS curve number 

method 

 𝑄 =
(𝑃 − 𝐼𝑎)

2

(𝑃 − 𝐼𝑎 + 𝑆)
   Equation 4.5 

 

This equation is valid for P ≥𝐼𝑎 ; otherwise Q = 0. 

The second assumption is based on the idea that the amount of initial abstraction is a 

fraction of the potential maximum retention (Soulis and Valiantzas, 2012). 

 𝐼𝑎 = 𝜆𝑆 Equation 4.6 

Where 𝜆 is the ratio of initial abstraction to the potential maximum water retention by soil 

and vegetation, developed from an empirical relationship between 𝐼𝑎 and 𝑆 based on long 

term observation of small watersheds (Mishra and Singh, 2003). 

The SCS curve number method as presented in the National Engineering Handbook - 

NEH4 by the USDA Soil Conservation Service (SCS) considers λ to be equal to 0.2 for 
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normal practical applications (Mishra and Singh, 2003). Incorporating equation 4.6 with 𝜆 

set to 0.2 into equation 4.5, an equation with only two parameters is obtained. 

 𝑄 =
(𝑃 − 0.2 ∙ 𝑆)2

(𝑃 + 0.8 ∙ 𝑆)
 Equation 4.7 

 

The potential maximum retention, S, is expressed in in terms of the dimensionless curve 

number through the relationship: 

 𝑆 =
25400

𝐶𝑁
− 254 Equation 4.8 

 

The SCS curve number method enables the computation of the runoff volume for each grid 

cell, based on the weighted relationship between soil types, antecedent moisture and land 

cover combinations. However, these values are independent of contribution from upslope 

adjacent grids. The calculation of runoff depth in mm (Q) for the study area requires 

information on the various land cover, hydrological soil groups DEM and 5-day antecedent 

rainfall as input data. A runoff coefficient grid is computed for each grid cell using the 

following equation; 

 α =
𝑄

𝑃
 Equation 4.9 

Where α is runoff coefficient and is the proportion of rainfall that actually results in 

overland flow during an event. This coefficient takes into account initial losses (water 

stored in depressions), the continuous losses (infiltration) and the hydrodynamic effects 

encountered while surface water flows overland (Butler, 2011). Thus, the value represents 

the lumped effect of a number of catchment processes (Viglione et al., 2009). The runoff 

coefficient value for a location typically varies with time during storms with lower 

coefficient values at the start of rainfall and higher after soil saturation. However for this 

study only the overall runoff coefficient for the entire rainfall duration is computed. The 

runoff coefficient grid serves as a weighted grid to incorporate the lumped catchment 

characteristics into the calculation of flow accumulation and modified TWI.  In SCS CN 
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method, runoff depth is computed for each grid cell irrespective of the upstream 

contributing area draining into the cell (Mishra and Singh, 2003).  

The flow accumulation operation enables the integration of upslope contribution to be 

modelled downstream. The runoff depth at a particular cells of interest is the runoff depth 

computed for that cell and the sum of the all the upstream cells draining through the cell of 

interest. Hence an additional weight grid such as the runoff coefficient generated using the 

SCS CN approach can be introduced into the flow accumulation calculation to reflect the 

local influence of rainfall, amount water loss to interception vegetation, evapotranspiration 

and infiltration. However the calculation of the upslope contributing area is dependent on 

the manner at which the accumulated area of upstream cells is routed downstream 

(Sørensen et al., 2006). The D∞ flow distribution algorithm by Tarboton (1997) was 

employed for the downstream routing of flow. 

DTM derived flow fields define surface connectivity between any two points on the terrain. 

In a flow field, the general accumulation function can be defined as an integral of a weight - 

w(x), over a contributing area (CA). 

 𝐴(x) ⁡= ⁡ ∫𝑤(𝑥)

𝐶𝐴

⁡𝑑𝑥 Equation 4.10 

Where x represents the location of an arbitrary point in the flow field domain, A(x) is the 

accumulation function evaluated at the arbitrary point x. w(x) is the weighting field at point 

x.  Typically, the weighting field is set at 1. A weighting value of 1 assumes no loss in 

volume of input flow as a result of hydrological processes such as evaporation or 

infiltration (Figure 4.2). However, the weighting field can be modified to reflect 

hydrodynamic processes such as infiltration, and, overland flow arising from excessive 

rainfall can be modelled with the weighting field set to be equal to rainfall intensity minus 

infiltration (Figure 4.3). 
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Figure 4.2: Typical flow accumulation grid with weight field set at 1 to reflect runoff depth 

without loss to evaporation and infiltration 

 

Figure 4.3: Flow accumulation calculation incorporating the influence of the weighted grid 
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Following Tarboton (1997), numeric flow accumulation using the D∞ algorithm can be 

evaluated recursively for each element as: 

 
𝐴⁡ = 𝐴(𝑥𝑖) = 𝑤(𝑥𝑖)∆ + ∑ 𝑃𝑘𝑖𝐴(𝑥𝑘)

{𝑘:𝑃𝑘𝑖>0}

 
Equation 4.11 

Where xi is a location in the field represented numerically by a model element such as a 

grid cell in a DEM, A (xi) represents the upslope accumulation at that particular grid. The 

grid cell area is represented by ∆, 𝑃𝑘𝑖 is the proportion of flow from neighbour k grid cells 

contributing to the grid cell i and the notation (k:Pki>0) denotes  a summation over the set 

of k values such that Pki > 0. 

 Flow accumulation at any particular grid cell is the sum of flow arising from that grid cell 

and the flow resulting from all other upslope topologically contributing cells, with grid cell 

weighted according to the proportion of flow it contributes. The flow accumulation 

calculation (Equation 4.11), allows for the incorporation of additional weights into the flow 

accumulation routine. Thus, other important parameters that affect runoff generation such 

as the spatial variation in infiltration rates or moisture retention capacity (soil properties) 

and the influence of vegetation cover on runoff volume and velocity can be incorporated. 

Runoff generation from upstream grid cells will naturally flow downslope as long as the 

infiltration capacity is exceeded along its flow route. The runoff generation for each grid 

cell can be represented as: 

 𝑞𝑖 = 𝑚𝑎𝑥(𝑞𝑖𝑛 + 𝑟𝑖 − 𝑐𝑖 , 0) Equation 4.12 

Where 𝑞𝑖𝑛 is the summed upslope runoff inflow, 𝑟𝑖 is the input precipitation at grid cell i, 𝑞𝑖 

is the scalar at each grid cell i, and 𝑐𝑖 is the infiltration capacity and the effect of 

evapotranspiration due to vegetation at grid cell i. 

The recursive functionality in equation 4.11 enables local evaluation of flow quantities 

which are difficult to define using global weights, as these flow quantities are dependent on 

both recursive variables emanating from the flow field as well as simple local input variable 

values at the grid cell location.  
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⁡𝐴𝑖= 𝑚𝑎𝑥( ∑ 𝑃𝑘𝑖𝑞𝑘 + 𝑟𝑖 − 𝑐𝑖 , 0)

{𝑘:𝑃𝑘𝑖>0}

 
Equation  4.13 

The lumped effects of infiltration, antecedent evaporation and storage capacity can be 

represented by runoff coefficient (Viglione et al., 2009). As such equation 4.13 can be 

rewritten as:   

 ⁡𝐴𝑖= 𝑚𝑎𝑥( ∑ 𝑃𝑘𝑖𝑞𝑘 + 𝛼, 0)

{𝑘:𝑃𝑘𝑖>0}

 
 

Equation 4.14 

 

The runoff coefficient for each grid can be represented a weighted grid in the flow 

accumulation routine to derive the contribution to flow for each cell. The modified TWI 

computation can be expressed as: 

 

 

𝑇𝑊𝐼 = ln(
(∑ 𝑃𝑘𝑖𝑞𝑘 + 𝛼, 0)

{𝑘:𝑃𝑘𝑖>0}

tan 𝛽
) 

 

Equation 4.15 

 

 SCS-CN method 

The SCS-CN method was used to estimate the relative change in runoff depth due to 

change in soil condition and vegetation cover. The method was implemented using the 

HEC-GeoHMS extension in ArcGIS 10.1. The HEC-GeoHMS extension provides a set of 

tools required for geospatial hydrological modelling. The SCS-CN approach requires 

information on land cover, soil type and a DTM. As reported in section 4.3.2, the land 

cover map of the transport corridor reflects the predominant land cover types within the 

transport corridor categorised in line with Soil Conservation Service Curve Number (SCS-

CN) recommended categories to reflect potential evapotranspiration contributions based on 

vegetation growth cycle, rooting depth and crop coefficients (Holman et al., 2004; USDA, 

2004). Additional land use land cover information on the adjoining broader catchment was 

obtained from the land cover map (LCM 2007) for the UK. The LCM 2007 land cover 
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classification was aggregated into the 5 main land cover classes of the transport corridor 

and was rasterised. A merged land cover map of the transport corridor and adjoining fields 

was produced using the map algebra tool in ArcGIS. Additionally due to the limited 

coverage of the ALS data, a merged 2.5 m DTM was produced from the ALS and OS 

Landform elevation data in ArcGIS to enable the evaluation of the contribution of the wider 

catchment topography to the spatial distribution of surface runoff depth within the transport 

corridor.  

Following Hess et al. (2010) and in line with the Hydrology of Soil Types (HOST) classes, 

the various soil types in the study area were classified into one of the four hydrological soil 

groups (A,B, C, D) as described in the SCS-CN method, with A and D representing the 

highest and lowest infiltration rate respectively (USDA, 2004). Group A soils are 

characterised by low runoff potential and high infiltration rates even when thoroughly 

wetted. They consist chiefly of deep, well drained sand or gravel and have a high rate of 

water transmission (greater than 7.6 mm/h). Group B soils have moderate infiltration rates 

when thoroughly wetted and consist chiefly of moderately deep, and moderately-to-well-

drained soils with fine-to-moderately coarse textures. These soils (silt loam or loam) have a 

moderate rate of water transmission (3.8–7.6 mm/h). Group C soils have low infiltration 

rates when thoroughly wetted and consist chiefly of soils with a layer that impedes 

downward movement of water and soils with moderate to fine texture. These soils (sandy 

clay loam) have a low rate of water transmission (1.3–3.8 mm/h). Group D soils have high 

runoff potential with very low infiltration rates when thoroughly wetted. They consist 

chiefly of clay soils with a high swelling potential, soils with a permanent high water table, 

soils with a claypan or clay layer at or near the surface, and shallow soils over nearly 

impervious material. These soils have a very low rate of water transmission (0 - 1.3 mm/h). 

To create the CN map, the hydrological soil group and land cover maps were uploaded to 

the ArcGIS 10.1 platform. The HEC-GeoHMS extension of ArcGIS 10.1 was used to 

generate the CN grid map. Prior to generating the CN grid map, the merged land cover map 

was converted into vector data to enable a union operation with the soil map merging both 

maps. The merged soil-land map included attributes from both layers of the merged dataset. 

A lookup table containing the land cover and soil type and curve numbers representing 

average conditions for the soil-land cover combination was also generated. The CN values 
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for different land cover and hydrological soil groups were adopted from a CN index table 

adapted to the UK soil conditions and weather (Hess et al., 2010) was used in this study 

(Table 4.3) Hess et al. (2010) used five classes (Excellent’ to ‘Very Poor) unlike the 

conventional four employed in NRCS (1986) to describe soil-field conditions. These 

classes represent both the condition of the soil (as it affects runoff generation) and the 

presence of land management practices which increase or decrease the risk of runoff from 

the field. The representative soils were grouped according to soil hydrological group and 

allocated a CN for each soil–field condition and land cover (Table 4.4). The CN for Very 

Poor condition represents a soil whose hydrological response has been altered either as a 

result of trampling from grazing or heavy machinery to such an extent that it behaves as 

though it belongs to a soil hydrological group of higher runoff potential. However, for soil 

in hydrological group D characterised as Very Poor condition, the CN is not increased 

beyond the highest value given in NRCS (2002). 

The CN grid was generated using HEC-GeoHMS with a 2.5m resolution hydrologically 

correct merged DTM of the study area, a lookup table and merged soil-land map as input 

data. The programme generates a raster CN grid and automatically adds a new CN field to 

the land cover/soil type attribute table and populates it with the computed curve number. 

The computed CN value for each pixel is for average conditions (i.e. antecedent moisture 

condition class II). The CN values for AMC II can be converted into CN values for AMC I 

(dry soils) and AMC III (saturated soils) by using the SCS (Soil Conservation Service) 

Standard Tables (USDA 2004) or computed using the following equations; 

 
𝐶𝑁𝐼 =

(−75 ∙ 𝐶𝑁𝐼𝐼)

(−175 + 𝐶𝑁𝐼𝐼)
⁡ , 𝐴𝑀𝐶⁡𝐼(𝑑𝑟𝑦⁡𝑠𝑜𝑖𝑙) Equation 4.16 

 

 
𝐶𝑁𝐼𝐼𝐼 =

(175 ∙ 𝐶𝑁𝐼𝐼)

(75 + 𝐶𝑁𝐼𝐼)
⁡ , 𝐴𝑀𝐶⁡𝐼𝐼𝐼(𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑⁡𝑠𝑜𝑖𝑙) Equation 4.17 
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Table 4.3: CN values used for runoff estimation in the study area. CN = 0 (maximum water 

storage in soil), CN = 100 (minimum water storage in soil). Adapted from Hess et al (2011) 

and USDA (2010) 

Soils  

 

Condition  Manmade 

surfaces (65% 

Impervious 

area) 

Impervious 

area-dirt (Bare 

ground) 

Grassland Woodland 

A Very poor 

Poor 

Fair 

Good 

Excellent 

 

 

77 

 

 

72 

78 

68 

58 

49 

39 

45 

40 

35 

30 

B 

 

Alum, 

Angelzarke, 

Ellerbeck, 

Very poor 

Poor 

Fair 

Good 

Excellent 

 

 

85 

 

 

82 

86 

79 

66 

52 

39 

66 

54 

42 

30 

C 

 

Brickfields 3, 

Dunkeswick, 

Enborne, 

Nercwys, 

Salop, Wharfe 

Very poor 

Poor 

Fair 

Good 

Excellent 

 

 

90 

 

 

87 

89 

86 

82 

78 

74 

77 

75 

72 

70 

D 

 

Longmoss, 

Wilcocks 1, 

Winter Hill 

Very poor 

Poor 

Fair 

Good 

Excellent 

 

 

92 

 

 

89 

89 

89 

86 

83 

80 

83 

81 

79 

77 

 

To determine which AMC Class is most appropriate in relation to the study area, the use of 

rainfall data is necessary. Daily precipitation data spanning a decade (2000-2010) as 

recorded at the weather station in Haltwhistle, UK, was used to identify storm events and in 

the computation of the required 5-day antecedent rainfall values (Antecedent Moisture 

Condition- AMC) based on three antecedent runoff conditions (see Table 4.4). After 

generating the CN map, the maximum potential retention (S) value which indicates the 

initial abstraction of rainfall by soil and vegetation were computed for each pixel using 
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Equation 4.8. Six storm events with varying precipitation intensity and AMC classes were 

evaluated. The runoff depth in mm was determined for each rainfall event by using 

Equation 4.7, and a runoff coefficient for each grid cell was computed using Equation 4.9. 

The runoff coefficient map was then used as a weight grid for down-the-slope propagation 

of the lumped effect of catchment properties (land cover and soil) into the calculation of 

flow accumulation and the modified TWI. 

Table 4.4: Quantitative definition of antecedent runoff conditions (USDA 2010) 

Antecedent 

runoff conditions 

5-day antecedent rainfall values (mm) 

Period without vegetation growth Period with vegetation growth 

Dry Less than 12.7 Less than 35.6 

Average 12.7 – 27.9 35.6 – 53.3 

Wet More than 27.9 More than 53.3 

 

 Terrain wetness index 

The classic TWI was calculated as the natural logarithm of the ratio of the local upslope 

contributing area draining through a specific point and the local slope. The slope and 

upslope contributing area grids were generated from the merged 2.5 m grid DTM using the 

TauDEM ArcGIS plug-in (Tarboton, 2010). The TauDEM software accommodates the D 

∞ procedure for representing flow direction and upslope contributing area (Tarboton, 1997; 

Hardy et al., 2012). The D ∞ is a multiple flow direction algorithm that allows continuous 

flow angles and flow portioning between one or two neighbouring cells thereby minimizing 

the effect of over dispersion (Tarboton, 1997). In addition, D ∞ procedure can effective 

manage flow over relatively flat areas by a rule that forces flow in the direction of the 

nearest downslope cell (Wilson et al., 2007). The first step in hydrological analysis is the 

removal pits. The presence of one or more grid cells surrounded completely by other cells 

of higher elevation usually results in artefacts that tend to interrupt the flow throughout the 

scene if unremoved.  TauDEM uses a fill process to do this, raising the elevation of pits 

until they drain out (Tarboton, 2010). Flow direction and contributing area for each grid 

cell are then calculated from the DEM with filled pits using the D∞ procedure.  
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During flow direction computation, the D∞ algorithm assigns a single flow direction to 

each cell, which is represented as a continuous value between 0 and 2 π. This direction is 

defined as the steepest downward slope over eight triangular facets on a 3 x 3 pixel window 

centred on the cell of interest (Tarboton, 1997). Eight triangular facets are formed between 

the pixel and its eight neighbours. A downslope vector is calculated for each triangular 

facet which can lie within or outside a 45° angle range of the centre point of the facet. The 

flow direction for the central pixel is taken as the direction of the steepest downslope vector 

from all eight facets. This is advantageous as it avoids the approximation involved in 

locally fitting a plane and the counterintuitive influence of higher neighbours on downslope 

flow as is the case with the digital elevation model networks (DEMON) algorithm. Where 

it becomes impossible to allocate flow to one of the cardinal or diagonal directions a 

proportion of the flow is then assigned according to how close the flow direction angle is to 

the direct angle of the neighbouring cells (Figure 4.2).  

 

 

Figure 4.4: Diagram showing how flow direction is defined between two downslope grids 

based on proximity to the angle of steepest downslope on a triangular facet (After Tarboton 

1997). 

 

The routine has the option for inclusion of a weighting field grid. When the optional weight 

grid is used, the result is reported directly as a summation of weights, without any scaling 
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(Tarboton, 1997). The runoff coefficient grid was used as a weighting field incorporating 

the lumped effects of the spatial variability in soil and vegetation in the computation of 

flow accumulation. A modified TWI was computed and sensitivity testing was carried out 

to evaluate the robustness of the developed weighted grid and terrain flow model.  

In addition to the modified TWI computation, the stream power index (SPI) which 

measures the erosive power of overland water flow was also computed. The SPI is based on 

the assumption that discharge is proportional to the specific catchment area. The SPI 

generally predicts the net erosion in areas with fairly steep slopes commonly associated 

with flow acceleration and convergence and net deposition in areas of reduced flow 

velocity as a result of flatten terrain or profile concavity. The erosive power of overland 

flow is often an important consideration in slope stability assessment where upland flow 

ingress slopes creating surface cuts or deposition of fines on slope drains along flow paths 

(Perry et al 2003). The SPI was calculated based on the formula developed by Moore et al. 

(1991)  

 𝑆𝑃𝐼 = 𝐴𝑆 ∗ tan𝛽 Equation 4.19 

 

Where 𝐴𝑆 is the specific catchment area (the upslope area per unit width of contour (m2/m)) 

and 𝛽 is the local slope gradient (in degrees). 

4.5 Geodatabase construction 

The extracted slope stability variables of slope gradient, aspect, modified terrain wetness 

index (TWI), stream power index (SPI) and profile curvature derived from the ALS and 

Ordnance Survey DTM data (Sections 4.3.1.1 and 4.4.1.3) and land cover land use 

information of the transport corridor from the Compact Airborne Spectrographic Imager 

(CASI) imagery (Section 4.3.2) were compiled in a geodatabase in ArcGIS. Ten categories 

of slope gradients (5o – 50o) were identified from the ALS DTM to capture the upper and 

lower extremes of slope as well as the more typical cases found within the transport 

corridor. The Curvature grid is conventionally used to describe the physical characteristics 

of the slope face with respect to erosion and runoff processes. Various curvature 

components can be computed as the second derivative of the surface topography. In this 

study, profile curvature was employed as it provides an indication of curvature parallel to 
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the direction of the maximum slope. A negative value indicates that the surface is upwardly 

convex at that cell, while a positive profile indicates that the surface is upwardly concave at 

that cell, and a value of zero indicates a linear surface. Profile curvature influences the 

acceleration or deceleration of flow across the surface (Catani et al., 2013). The profile 

curvature grid was reclassified into three classes; concave, flat, convex. The aspect grid 

represents the orientation of the gradient of each cell was also calculated. Aspects play a 

key role in landslide susceptibility as it may influence the exposure of the terrain to 

different amounts of rainfall and solar radiation, thus conditioning the terrain humidity and 

the vegetation growth (Dai and Lee, 2002; Catani et al., 2013). The angular values of the 

aspect grid employed were typically reclassified on the basis of the facing direction with 

respect to the eight main cardinal directions (Burrough and McDonnell, 1998). The 

modified TWI and SPI grids were reclassified into ten classes using equal intervals.  

Information on the underlying soils was extracted from the NATMAP vector data described 

in Section 3.4.3. Additional information on the distance to drainages was considered due to 

proximity to the South Tyne River of sections of the transport corridor. A shapefile of 

existing streams was extracted from the 1:2500 Ordnance Survey master map data and 

Euclidean raster of distance surface was created (ten buffer categories at 10m intervals) 

using the buffer tool in ArcGIS. 

4.6 Evidential reasoning model 

Evidential reasoning approach was employed to derive a spatial estimation of landslide 

susceptibility for the transport corridor. The approach requires the definition of basic 

probability assignment functions for the various landslide conditioning factors considered 

in the landslide susceptibility analysis. Following Carranza et al. (2005) a data driven 

approach was adopted for the estimation of evidential belief functions (EBFs) in this study. 

The data driven approach requires the transformation of thematic layers into evidential data 

layers based on the quantitative relationships between known past landslide occurrences 

and multiple landslide conditioning factors. This process entails an initial generation of 

evidential weights (basic probability assignment functions) for the various class attributes 

contained in the thematic layer. The evidential layers developed are then combined to 

generate the belief, disbelief and plausibility maps of the transport corridor.  
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To derive objective weights of the relative importance for each of the prepositions 

considered, techniques such as likelihood ratio function (Tien Bui et al., 2012) and weight 

of evidence (Bonham-Carter, 1994; Lee et al., 2013) are commonly employed in the 

derivation of basic probability assignment functions for landslide susceptibility assessment. 

Both techniques seek to highlight the contrast that may exist when two frequency 

distribution functions are compared, as is the case with landslide affected areas typically 

comprised of landslide prone and stable locations. The likelihood ratio technique was 

however chosen for this study owing to its relative simplicity to implement and is more 

frequently featured in literature as the means for evidential belief function derivation 

(Carranza et al., 2005; Tien Bui et al., 2012). The likelihood ratio is the ratio of occurrence 

probability to the non-occurrence probability for specific attributes (Park, 2011) and a brief 

overview of the procedure employed in this study is given below.   

Eight causal factors (slope gradient, aspects, land-cover, zone of moisture accumulation 

(modified TWI), soil, SPI, distance from drainage channel and curvature) earlier identified 

from the field work and previous studies were considered in the landslide susceptibility 

assessment. Each of the eight thematic layers [𝐴𝑖⁡(𝑖 = 1,2, . . . , 𝑛)] provided information on 

a cell by cell basis of the presence of landslide occurrence (𝑇𝑝). 70% of the total landslide 

inventory was used as the training set for the determination of the relative contribution of 

each of the casual factors influencing slope instability in the study area. The frequency 

distribution functions showing the presence or absence of landslide cells for every class 

attribute in each of the evidences (factors influencing slope instability) was determined by 

overlaying the landslide inventory map on each of the eight maps of landslide conditioning 

factors. For example, given  𝐴𝑖𝑗 which is the 𝑗𝑡ℎ class attribute (100-150 bin) of the 

evidence 𝐴𝑖 (slope map), the likelihood ratio 𝜆(𝑇𝑝)𝐴𝑖𝑗 indicating the degree of support for 

the occurrence of landslide is computed as defined by Equation 4.19: 

 

⁡𝜆(𝑇𝑝)𝐴𝑖𝑗 =

𝑁(𝐿 ∩ 𝐴𝑖𝑗)

𝑁(𝐿)

⁡
𝑁(𝐴𝑖𝑗) − 𝑁(𝐿 ∩ 𝐴𝑖𝑗)

𝑁(𝐹) − 𝑁(𝐿)

 

Equation 4.19 
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Where 𝑁(𝐿 ∩ 𝐴𝑖𝑗) is the number of landslide cells in class⁡𝐴𝑖𝑗, 𝑁(𝐿) is the total number of 

landslide cell in the study area, 𝑁(𝐴𝑖𝑗) is the total number of pixels in class 𝐴𝑖𝑗,  and 𝑁(𝐹) 

is the total number of cells in the study area.  The numerator is the proportion of landslides 

that intersect cells with an attribute value for a particular evidence⁡𝐴𝑖𝑗. The denominator is 

the proportion of non-landslide cells in the given attribute class for a particular 

evidence⁡𝐴𝑖𝑗.  

The likelihood ratio of a non-landslide occurrence in a given attribute class for a particular 

evidence 𝐴𝑖𝑗 is defined by Equation 4.20: 

 

𝜆(𝑇̅𝑝)𝐴𝑖𝑗 =

𝑁(𝐿) − 𝑁(𝐿 ∩ 𝐴𝑖𝑗)

𝑁(𝐿)

⁡
𝑁(𝐹) − 𝑁(𝐿) − 𝑁(𝐴𝑖𝑗) − 𝑁(𝐿 ∩ 𝐴𝑖𝑗)

𝑁(𝐹) − 𝑁(𝐿)

 

Equation 4.20 

 

Where the numerator is the proportion of the landslides that did not occur in a given 

attribute class for a particular evidence⁡𝐴𝑖𝑗. The denominator is the proportion of non-

landslide areas in other attributes classes for the same evidence 𝐴𝑖𝑗 . 

The likelihood ratio was computed for all the evidence layers. Likelihood ratio values can 

range from zero to infinity and as such, a standardization step is often required when 

deriving basic probability assignment functions from two likelihood ratios (Carranza et al., 

2005; Park, 2011). The standardisation procedure serves a dual purpose, firstly it allocates 

the weights of relative importance within class attribute values and secondly confines the 

mapping of the class attributes to the interval 0-1 (Park, 2011). Standardisation was 

achieved by dividing the individual class likelihood ratios by the sum of likelihood ratio 

values for all class attributes in a given thematic layer (See Equations 4.21, 4.22 and 4.23).   

 
𝐵𝑒𝑙(𝐴𝑖𝑗) =

𝜆(𝑇𝑝)𝐴𝑖𝑗
∑ 𝜆(𝑇𝑝)𝐴𝑖𝑗
𝑛
𝑗=1

 Equation 4.21 

     



112 
 

 
𝐷𝑖𝑠(𝐴𝑖𝑗) =

𝜆(𝑇̅𝑝)𝐴𝑖𝑗
∑ 𝜆(𝑇̅𝑝)𝐴𝑖𝑗
𝑛
𝑗=1

 
Equation 4.22 

   

 𝑈𝑛𝑐(𝐴𝑖𝑗) = 1 − 𝜆(𝑇𝑝)𝐴𝑖𝑗 − ⁡𝜆(𝑇̅𝑝)𝐴𝑖𝑗 Equation 4.23 

 

Though the approach is essentially data driven, some level of constraints becomes 

necessary when computing evidential belief functions (EBFs) from likelihood ratio 

(Carranza et al., 2005; Park, 2011). Two key constraints as relating to landslide occurrences 

were observed independently during the computation of the evidential belief 

functions⁡𝐵𝑒𝑙(𝐴𝑖𝑗). Firstly, the absence of landslide incidence within a given class attribute 

of a particular evidence 𝐴𝑖𝑗 ⁡is indicative of the absence of belief (𝐵𝑒𝑙(𝐴𝑖𝑗)) but does not 

necessarily commit the belief function to disbelief (𝐷𝑖𝑠(𝐴𝑖𝑗)). In agreement with earlier 

studies (Carrranza et al 2005; Park 2011), these cases were regarded as one with only 

uncertainty and as such, 𝐷𝑖𝑠(𝐴𝑖𝑗) is 0 and 𝑈𝑛𝑐 is set to 1. The second constraint had to do 

with locations that are naturally are not prone to landslide occurrences. Flat areas with zero 

slope values and water bodies are common examples. These areas were treated as areas of 

disbelief with 𝐵𝑒𝑙(𝐴𝑖𝑗) and 𝑈𝑛𝑐(𝐴𝑖𝑗) set to 0 for flat areas and water body, while 𝐷𝑖𝑠(𝐴𝑖𝑗) 

was set to 1. 

4.6.1 Evidence aggregation 

The Dempster’s rule of combination was used in the aggregation of the EBFs derived for 

the eight landslide conditioning factors (Dempster, 1967).  In accordance with the 

Dempster’s rule of orthogonal sum of basic probability assignments, the EBF’s were 

combined two at a time until all were aggregated. The formulae for the aggregation of 

evidential maps for two conditioning factors 𝐴1 and 𝐴2 was (Carranza et al 2005; Bui et al 

2012): 

 
𝐵𝑒𝑙⁡𝐴1𝐴2 =

𝐵𝑒𝑙⁡𝐴1𝐵𝑒𝑙⁡𝐴2 + 𝐵𝑒𝑙⁡𝐴1𝑈𝑛𝑐⁡𝐴2 + 𝐵𝑒𝑙⁡𝐴2𝑈𝑛𝑐⁡𝐴1
1 − 𝐵𝑒𝑙⁡𝐴1𝐷𝑖𝑠⁡𝐴2 − 𝐷𝑖𝑠⁡𝐴1𝐵𝑒𝑙⁡𝐴2

 
Equation 4.24 
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𝐷𝑖𝑠⁡𝐴1𝐴2 =

𝐷𝑖𝑠⁡𝐴1𝐴2 + 𝐷𝑖𝑠⁡𝐴1𝑈𝑛𝑐⁡𝐴2 + 𝐷𝑖𝑠⁡𝐴2𝑈𝑛𝑐⁡𝐴1
1 − 𝐵𝑒𝑙⁡𝐴1𝐷𝑖𝑠⁡𝐴2 − 𝐷𝑖𝑠⁡𝐴1𝐵𝑒𝑙⁡𝐴2

 
Equation 4.25 

 

 
𝑈𝑛𝑐⁡𝐴2𝐴2 =

𝑈𝑛𝑐⁡𝐴2𝑈𝑛𝑐⁡𝐴2
1 − 𝐵𝑒𝑙⁡𝐴1𝐷𝑖𝑠⁡𝐴2 − 𝐷𝑖𝑠⁡𝐴1𝐵𝑒𝑙⁡𝐴2

 
Equation 4.26 

 

Final combination maps of EBFs resulted in the integrated 𝐵𝑒𝑙, 𝐷𝑖𝑠, 𝑈𝑛𝑐 and 𝑃𝑙𝑠 maps for 

landslide occurrence based on given spatial evidences from the conditioning factors. The 

belief map is considered representative of the correlation between landslide location and 

each conditioning factor; as such the integrated belief map was used for deriving the 

landslide susceptibility index (LSI).  In order to evaluate the contribution of the developed 

modified TWI computation to landslide susceptibility within the transport corridor slopes, 

two evidential belief models were developed. The two models were developed using the 

eight selected landslide conditioning factors with the essential difference being the use of 

the modified TWI in one and the classic TWI computation in the other. 

4.6.2 Model validation 

The landslide susceptibility maps were evaluated to access how well the model performed 

in classifying the landslide prone locations along transport corridor slope cuttings and 

embankments. Validation was achieved by comparing the developed landslide 

susceptibility maps with the existing landslide locations. The landslide inventory was first 

randomly partitioned into two mutually exclusive groups. The first group made up of 70% 

of the total landslide inventory was used as the training set employed in the construction of 

the landslide susceptibility map based on evidential belief function. The second group 

(remaining 30%) was used as a validation set to evaluate the predictive capability of the 

developed landslide susceptibility model based on the training dataset.  

The success rate for the validation was determined by comparing the susceptibility map 

with the 30% validation set not considered during the susceptibility modelling. The success 

rate curve varies the decision threshold and plots the respective sensitivity against the total 

proportion of the study area in ranked susceptibility index (Brenning, 2005). Sensitivity is 

simply the proportion of known landslide cells correctly classified as susceptible (true 
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positive) and specificity is the proportion of catchment cells free of landslides that are 

correctly classified as stable (true negative). The relative ranks for each of the landslide 

susceptibility classes were obtained by sorting the calculated index values of all the cells in 

the study area in descending order and divided into 100 classes at 1% intervals. The area 

under the curve (AUC) is the average sensitivity of the classifier over the range of 1-

specificity. The AUC provides a quantitative measure of the ability of the susceptibility 

model to fit known distribution of shallow landslides in the study area (Park, 2011; Lee et 

al., 2013). The index ranges from 0.5 for models with no predictive capability, to 1 for 

models with perfect predictive power. For comparison purposes, the same validation 

procedure was applied on both EBF models (modified and classic TWI) in order to evaluate 

the predictive capability introduced into the EBF model with the inclusion of the lumped 

effects of land cover and soil into the characterisation of zones of moisture accumulation. 

4.7 Summary 

This Chapter details the methods employed in the development of a multi sourced multi 

scale geospatial model for recognition and prediction of slope instability in the transport 

corridor. The methodology includes the development of a scalable spatial geodatabase of 

factors responsible for slope instability in the transport corridor, the development of a 

surafce runoff model that incorporates the influence of underlying soils and vegetation 

cover to surface runoff generation as well as the broader catchment contributions to 

localised zones of moisture concentration within the transport corridor.  The developed 

analytical framework efficiently integrates the various geospatial data and accounts for the 

ucertainties associated with the datasets and the landslide predictions. The integration of the 

SCS-CN method into the classic TWI computation enabled the incoporation of the 

influence of underlying soils and vegetation cover to surface runoff generation without the 

huge data requirements associated with earlier approaches (Quasi-TWI approach) 

developed to address the lack of integration of soil and vegetation cover in simulating 

spatial distibution of soil moisture and overland flow.  

Eight landslide conditioning factors were identified as influential to landslide suceptibility 

in the transport corridor. Thematic maps of the various factor were transformed into 

evidential data layers based on the quantitative relationships between the inventory of past 

landslide and the various landslide conditioning factors. Evidential weights of the relative 

importance for each of the factors were generated and integrated using the evidential 
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reasoning approach. The results of the methodological procedures are presented in Chapter 

5.  
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5 Results 

5.1 Introduction 

This chapter presents the results of the landslide susceptibility model for transport corridor 

environments. Section 5.2 covers techniques employed in the DTM generation and 

accuracy assessments. Section 5.3 details the processes and results associated with the 

development of the land cover map for the study area. Section 5.4 covers analysis aimed at 

integrating catchment contributions into the characterisation of zones of moisture 

accumulation within the transport corridor environment. Results obtained from the 

integration of multi-source and multiscale geospatial data approach for recognition and 

prediction of landslide susceptibility in transport corridors using evidential reasoning 

approach is reported in Section 5.5.   

5.2 DTM interpolation 

The global statistics for the DTM validation are presented in Table 5.1. Both interpolation 

techniques produced DTMs with mean errors in centimetre to sub-centimetre range. The 

results show very similar magnitude of mean error values for all IDW DTMs (1 mm). 

However, the size of the mean variance is shown to increase as the DTM grid sizes become 

larger. The mean absolute error values for the IDW DTMs indicate a slightly higher 

interpolation bias of a centimetre or less with each successive reduction in resolution. The 

root mean square error values indicate a general loss in DTM quality with reduction in 

spatial resolution. The RMSE increases from 2.3 to 3.5 for IDW DTM and 3.0 to 4.5 for 

ANUDEM DTMs as the cell size increases from 0.5 to 5 m. The 0.5m DTMs for both 

interpolation techniques provide more accurate representation of the of the transport 

corridor terrain as revealed in their lower average residues and RMSE values (1 mm for 

IDW and 4.6 cm for ANUDEM). Comparatively, the average residual and RMSE values 

show the IDW DTMs provide a better terrain representation for all ten grid resolutions 

assessed. Both interpolation techniques produced DTMs with very similar mean absolute 

error values, however, the error range (mean absolute error) in the ANUDEM DTM which 

increased from 16 to 24m as against 15 to 21m for the IDW DTMs. The slightly higher 

interpolation bias associated with the ANUDEM DTM is attributed to the drainage 

enforced algorithm employed. The drainage enforcement algorithm modifies the DEM by 
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the removal of spurious sinks and construction of relatively smooth surfaces (Hutchinson, 

2008). 

 

Table 5.1: Global statistics summarising errors for the IDW and ANUDEM interpolated 

DTMs compared against validation subset obtained from the original point cloud prior to 

DTM generation. 

Interpolation 

method 

Resolution 

(m) 

Mean Error 

(m) 

Min Error 

(m) 

Max Error 

(m) 

RMSE 

(m) 

Mean 

Absolute 

Error (m) 

Standard 

Deviation 

(m) 

IDW 0.5 0.001416 -1.93 1.98 0.23 0.15 0.17 

 1 0.001456 -2.85 6.83 0.24 0.15 0.18 

 1.5 0.001116 -2.94 3.16 0.24 0.16 0.19 

 2 0.002059 -3.22 7.37 0.26 0.16 0.21 

 2.5 0.001133 -3.49 8.25 0.27 0.17 0.22 

 3 0.001456 -3.80 7.92 0.29 0.18 0.23 

 3.5 0.000991 -3.50 8.39 0.30 0.18 0.24 

 4 0.000288 -4.41 7.00 0.32 0.19 0.25 

 4.5 0.001098 -4.81 7.20 0.33 0.20 0.27 

 5 0.001877 -4.94 7.35 0.35 0.21 0.28 

        

ANUDEM 0.5 0.046156 -8.56 12.04 0.30 0.16 0.26 

 1 0.046892 -8.35 10.96 0.31 0.16 0.26 

 1.5 0.044477 -8.56 13.58 0.32 0.17 0.27 

 2 0.044133 -7.17 8.81 0.32 0.18 0.29 

 2.5 0.049933 -8.88 9.90 0.35 0.19 0.29 

 3 0.043577 -10.16 10.96 0.37 0.20 0.31 

 3.5 0.044921 -7.78 13.58 0.40 0.22 0.33 

 4 0.045256 -4.59 6.14 0.40 0.23 0.33 

 4.5 0.041857 -7.73 13.58 0.45 0.24 0.37 

 5 0.041043 -9.87 13.83 0.45 0.24 0.37 

   

Visual assessment of hillshade maps derived from IDW and ANUDEM interpolated DTMs 

of the ALS data of the transport corridor reveal a general trend of loss of topographic detail 

as the spatial resolution is reduced. The IDW DTMs seem to retain more fine-scale 

topographic details in contrast to the ANUDEM DTMs, where the smoothing effect of the 

drainage enforced ANUDEM interpolation is apparent (Figures 5.1 and 5.2). This is 

illustrated in transects taken across earthwork cutting and embankments within the 

transport corridor. An example is presented in Figure 5.3, which shows a maximum 

difference of 55 cm coinciding with the presence of a topographic depression on the south 

facing slope approximately 17 m from the point A. This topographic feature while 
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recognisable on the ANUDEM DTM transect is smoothened compare to the IDW. Both 

approaches work well in areas of relatively little topographic variation, for example, 

earthwork embankments largely covered by ballast that exhibit relatively uniform relief 

(Figures 5.4, 5.5 and 5.6). Overall, the IDW DTMs retain more information in situation 

where there is high frequency fine scale topographic variation in the earthwork 

infrastructure.   
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Figure 5.1: Hillshade of IDW interpolated DTM of earthwork cutting at Whitchester, 

showing location for transect plot in figure 5. 

 

Figure 5.2: Hillshade of the ANUDEM interpolated DTM for earthwork cutting at 

Whitchester. 
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Figure 5.3: Elevation values along transect taken across an earthwork cutting in 

Whitchester. Transect location is as indicated in figure 5.2 

 

Figure 5.4: Hillshade of IDW interpolated DTM of earthwork embankment showing 

locations for transect plots in Figures 5.4 and 5.5 
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Figure 5.5: Elevation values along transect taken across an earthwork embankment at 

Melkridge for the IDW and ANUDEM interpolated DTMs. 

 

 

Figure 5.6: Transect of elevation values across a gently sloped terrain at Melkridge for the 

IDW and ANUDEM interpolated DTMs 
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5.2.1 Impact of interpolation technique and DTM resolution on terrain derivatives 

In comparison with the elevation data, terrain derivatives provided better indications of 

statistically significant differences existing between the grid sizes and interpolation 

techniques.  Analysis of first order derivatives (slope and aspect), second order derivative 

(curvature) and TWI, a compound derivative that combines local slope with upstream 

contributing area derived from interpolated IDW and ANUDEM DTMs are presented.  

Typical slope gradients associated with earthwork cutting and embankments within the 

transport corridor ranges from 10o and 49o, although, near vertical gradients associated with 

retaining walls and rock gibbons are also present. Visually, in the IDW derived slope grids, 

the outline of the slope toe and crest are clearly discernible in the finer grid resolutions (0.5 

and 1m) but become gradually blurred in coarser grid sizes. At 4.5 and 5 m resolutions, the 

overall shape of the earthwork boundaries with surrounding catchment slope becomes 

slightly fuzzy. The ANUDEM slope grids were visually smoother with the outlines of the 

embankment less distinct when compared at the same resolution as the IDW grids. Both 

interpolation techniques (IDW and ANUDEM) provided similar overall slope pattern for 

the 0.5 m DTMs (Figure 5.7). The plot of the IDW DTM generated slope values against the 

ANUDEM DTM slope values demonstrates a strong agreement (R2 value of 0.8) in the 

general overall pattern of slope distribution (Figure 5.8). At the same resolutions, transects 

show the inclusion of more fine-scale topography in the IDW DTM than in the ANUDEM 

DTM. An example is presented in Figure 5.9, showing slope values for a transect across the 

Whitchester cutting. The gradient values for the topographic feature in the south facing 

slope of the Whitchester cutting 17 m from point A (presented earlier in Section 5.2) is 63o 

for the IDW DTM but only 39o for the ANUDEM DTM. The extreme gradient peaks are 

associated with variations in microtopography which are more prominently captured in the 

IDW DTM. In the ANUDEM algorithm the drainage enforcement algorithm imposes a 

global drainage condition that smoothens the general topographic trend in an attempt to 

maintain consistency with natural slopes resulting in the underestimation of the slope 

gradients (Hutchinson, 2008).   
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Figure 5.7: Cumulative frequency distributions for 0.5m IDW and ANUDEM DTM for the 

transport corridor slopes. 

 

Figure 5.8: Correlation between IDW and ANUDEM DTM derived slope values for 

transport corridor slopes 
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Figure 5.9: Slope values for IDW and ANUDEM DTMs along transect taken across an 

earthwork cutting in Whitchester. Transect location is as indicated in figure 5.1 

 

A  T-test of the sample means using the first to hundredth percentile values of the slope 

grids showed no significant difference (p > 0.05) in the means for slope grids derived from 

the IDW interpolated DTM. The obtained P-values for the ten DTMs per interpolation 

technique are presented in Table 5.2. However the plot of key percentile slope values 

against the grid resolutions for the IDW DTMs reveals the sensitivity of the distribution of 

slope values across the various grid sizes (Figure 5.10). The plot identifies the lower slope 

values as the least affected by increasing grid sizes. The 5th percentile of gradients found in 

the transport corridor (corresponds to the 0 to 4o slope class) is essentially unaltered as a 

result of reduced grid resolutions. Also, the median slope values for all resolutions are 

generally quite similar, though a slight underestimation of the median slope value in coarser 

grid resolutions. However, the 90th and 99th percentiles exhibit a discernible decrease in 

slope values with reduced grid resolution. A difference of 8o and 9o is recorded for the 90th 

and 99th percentile as DTM grid resolution reduced from 0.5 to 5 m.   

Slope maps derived from the ANUDEM interpolated DTM exhibit the same general trend 

of decrease in slope variability with reduced DTM grid resolutions as observed for the IDW 

DTMs. However the smoothing effects of the ANUDEM algorithm is portrayed in the more 

pronounced drop in the maximum slope values with increasing grid cell sizes (Figure 5.11). 
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for the ten grid resolutions derived from the ANUDEM interpolated DTM. The p values 

obtained for the various ANUDEM slope grids is presented in Table 5.3. The results of the 

T-test and visual assessments suggest that the dominant slope gradients could be effectively 

characterised using any of the investigated grid resolutions of the IDW DTMs. 

 

Figure 5.10: Figure 5.12: Key distribution values for transport corridor slopes derived from 

ten IDW DTMs resolutions. 
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Figure 5.11: Variation in maximum and mean slope gradients for IDW and ANUDEM 

DTMs 

 

Table 5.2: Summary statistics of T-test for IDW slope grids 

 T-test for Equality of Means 

t Degree 

of 

freedom 

P value  

Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

IDW1 0.18 197.96 0.86 0.63 3.56 -6.38 7.64 

IDW1.5 0.23 197.93 0.82 0.83 3.55 -6.17 7.82 

IDW 2 0.31 197.88 0.76 1.09 3.54 -5.88 8.07 

IDW 2.5 0.52 197.64 0.60 1.84 3.51 -5.09 8.75 

IDW 3 0.68 197.41 0.50 2.35 3.49 -4.52 9.23 

IDW 3.5 0.77 197.23 0.44 2.68 3.47 -4.18 9.52 

IDW 4 1.28 195.90 0.20 4.36 3.41 -2.37 11.08 

IDW 4.5 1.17 196.23 0.24 4.01 3.42 -2.74 10.75 

IDW 5 1.36 195.62 0.18 4.62 3.40 -2.08 11.32 
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Table 5.3: Summary statistics of T-test for ANUDEM DTMs 

 T-test for Equality of Means 

t Degree 

of 

freedom 

P value  

Sig. (2-tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

ANUDEM1 
2.73 

 

188.80 0.01 

 

7.24 

 

2.65 

 

2.02 12.46 

ANUDEM1.5 
3.53 

 

183.25 0.00 

 

9.12 

 

2.58 

 

4.02 14.21 

ANUDEM 2 
3.91 

 

180.28 0.00 

 

9.98 

 

2.55 

 

4.95 15.02 

ANUDEM 2.5 
3.97 

 

179.79 0.00 

 

10.13 

 

2.55 

 

5.10 15.16 

ANUDEM 3 
3.94 

 

180.0 0.00 

 

10.06 

 

2.55 

 

5.03 15.09 

ANUDEM 3.5 
3.94 

 

180.0 0.00 

 

10.06 

 

2.55 

 

5.03 15.09 

ANUDEM 4 
4.22 

 

177.75 0.00 

 

10.67 

 

2.53 

 

5.68 15.66 

ANUDEM 45 
4.28 

 

177.22 0.00 

 

10.81 

 

2.53 

 

5.83 15.79 

ANUDEM 5 
4.29 

 

177.12 0.00 

 

10.84 

 

2.53 

 

5.86 15.82 

  

 

 

The CFDs computed for the aspect maps derived from all the IDW DTMs is presented in 

Figure 5.12. Very little variation exists between the different resolutions of the DTM grids. 

However, the better representation of the fine-scale topographic detail in the IDW DTMs 

translates into better representation of aspect. For example, Figure 5.13 shows the 

Whitchester cutting highlighting that the ANUDEM algorithm modifies the aspect of the 

slope in line with the dominant slope trend to ensue continuous flow.   

The presence of fine scale topographic features is important to localised saturation, as 

variation in fine scale topography can result in differential soil moisture content or 
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prolonged wetting of a section the slope face. The limited ability of the ANUDEM to 

portray fine scale topography suggests the use of IDW DTM as better suited for the 

calculation of aspect over the transport corridor slopes. There was no significant impact in 

the representation of aspect due to resolution reduction for the IDW interpolation DTM at 

5m. At a 1.5m resolution, the smoothing effect of the ANUDEM algorithm is seen to have 

readjusted aspect values at the base of the slope (approximately 20m from point A) in line 

with the predominant natural topography (Figure 5.14). 

  

 

Figure 5.12: Cumulative frequency distribution curves of slope aspects for IDW DTMs  
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Figure 5.13: Variation in aspect values for transect taken across the south facing slope of 

the Whitchester embankment cutting. Location of transect is shown in Figure 5.4. 

 

Figure 5.14: Figure 5.14: Plot of aspect values for transect across Whitchester cutting 

(south facing slope), showing loss of fine scale topography with resolution reduction from 

0.5 to 1.5m. Location of transect is shown in Figure 5.4. 
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The curvature grids for all DTM resolutions was normalised to display curvature values 

within the range of -1 to 1 to allow for ease of comparison. The mean and standard 

deviation of the difference maps obtained by the subtraction of the 0.5 m DTM profile 

curvature values from the various grid resolutions indicated that no significant change 

occurred (Table 5.4). Transect across the Whitchester cutting show that concave profile 

curvature known to influence local accumulation of runoff on slope faces are better 

recognised by the IDW interpolated curvature grid (Figure 5.15).  The curvature values 

from transect for the ANUDEM essentially plots in the negative domain of the overall 

curvature value range. This suggests a suppression of theses topographic features in the 

ANUDEM DTM. 

Table 5.4: Summary statistics of difference maps obtained for profile curvature grids 

derived from IDW DTMs 

Grid resolution Mean Standard Deviation 

IDW 1 -0.05 0.008 

IDW 1.5 -0.06 0.015 

IDW 2 -0.08 0.012 

IDW 2.5 -0.20 0.012 

IDW 3 -0.17 0.014 

IDW 3.5 -0.16 0.012 

IDW 4 -0.15 0.018 

IDW 4.5 -0.15 0.014 

IDW 5 -0.28 0.016 
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Figure 5.15: Variation in the representation of profile curvature for embankment cutting in 

Whitchester. 

 

5.2.2 Impact of interpolation technique and DTM resolution on the calculation of the 

classic TWI  

The classic TWI values for the transport corridor slopes were derived for the IDW and 

ANUDEM DTMS. The cumulative frequency distributions of the classic TWI values for 

the IDW and ANUDEM DTMs is presented in Figure 5.16. Higher classic TWI values 

translate into wetter soils and these values are generally seen to increase downslope 

culminating at the base of the slope. The marked increase in classic TWI values represented 

by seemingly random peaks in the IDW grids are in response to variation in slope values as 

theses point midway down the embankment cutting. For example on the north facing slope 

of the embankment cutting, the ANUDEM grid presents a near uniform downslope gradient 

of 30o to 34o ensuring continuous flow. This is reflected in the gradual downslope increase 

in the values of specific catchment area (Figure 5.17). The effect of microtopography is 

most pronounced in the IDW DTM as depicted in the number of upstream cells draining 

downslope. There appears to be a reset in the calculation of specific catchment area where 

the effects of microtopography is pronounced, resulting in an erratic increase and decrease 

in the number of cells draining downslope (Figure 5.18). The erratic nature of the spikes in 

the classic TWI value due to the presence of microtopography presents a challenge to the 

meaningful interpretation of the flow pattern. The sporadic increase and decrease in 
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computed specific catchment area values are responsible for the erratic nature of the IDW 

TWI results at finer resolutions. Generally, the classic TWI values increase at lower 

resolutions for both interpolated DTMs; thus, the effect of microtopography diminishes 

with increasing DTM grid size and the ANUDEM DTM seemingly providing a better 

representation of flow. 

 

 

Figure 5.16: Cumulative frequency distribution of classic TWI values generated for all the 

evaluated ANUDEM DTM grid resolutions. 
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Figure 5.17: Plots of classic TWI values for 0.5 m IDW and ANUDEM DTMs across the 

Whitchester cutting 

 

Figure 5.18: Plots of specific catchment area for ANUDEM and IDW DTMS for a north 

facing earthwork cutting at Whitchester. 
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Results of the Mann Whitney U statistics for the classic TWI grids at the various 

resolutions show no significant difference between the distributions of classic TWI values 

for all the grid resolutions Table 5.4. The Mann Whitney U test is a non-parametric test that 

allows for the comparison of two sets of independent data without the assumption of 

normal distribution. However, difference maps obtained by the subtraction of the 0.5 m 

DTM TWI values from the various grid resolutions indicated slight decrease in the mean 

values at the 2m resolution grid and thereafter the minimum and maximum classic TWI 

values between grids plateaued at 17 TWI units. This suggests a significant reduction in the 

contribution of the fine scale topographic features in the calculation of specific catchment 

area at 2m resolution. The summary statistics of the difference map obtained for the various 

grid resolutions are presented in Table 5.5. The 2.5m grid was used as the optimum grid 

size due to lengthy processing time required with the use of the 2m grid resolution.  

 

Table 5.5 Summary statistics for the Mann Whitney U test for ANUDEM TWI grids 

 TWI_1 TWI_15 TWI_2 TWI_25 TWI_3 TWI_35 TWI_4 TWI_45 TWI_5 

Mann-

Whitney 

U 

4884.500 4826.500 4806.000 4925.000 4797.000 4883.000 4900.000 4824.000 4685.000 

   Z 
-0.282 -0.424 -0.474 -0.183 -0.496 -0.286 -0.244 -0.430 -0.770 

Asymp. 

Sig. (2-

tailed) 

0.778 0.672 0.635 0.855 0.620 0.775 0.807 0.667 0.441 
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Table 5.6: Summary statistics of difference maps obtained for the various ANUDDEM grid 

resolutions 

Grid resolution Mean Standard 

deviation 

Minimum Maximum 

ANUDEM 1 0.81 2.58 -20.24 18.56 

ANUDEM 1.5 1.14 2.70 -19.02 19.99 

ANUDEM 2 1.09 2.21 -18.06 16.97 

ANUDEM 2.5 1.24 2.31 -17.23 17.71 

ANUDEM 3 1.36 2.40 -17.57 17.96 

ANUDEM 3.5 1.49 2.43 -17.03 17.82 

ANUDEM 4 1.59 2.71 -17.81 17.82 

ANUDEM 4.5 1.68 2.52 -17.56 17.57 

ANUDEM 5 1.76 2.57 -17.30 17.51 

 

5.3 Development of land cover map 

The land cover map of the study area was generated from the CASI imagery in order to 

represent the influence of vegetation on the hydrological response of the land parcels in the 

subsequent modelling of overland flow of the broader catchment.  The methods employed 

in the classification process are detailed in Section 4.3.2. In summary, supervised 

classification using the maximum likelihood classifier was carried out on the processed 

CASI image. 

5.3.1 Simple band selection  

For the nine land cover classes considered in the analysis, Table 5.6 lists the transformed 

separability values between the land cover classes recognised to be present in the study 

area. The lowest transformed divergence value of 1905 was observed for road-to-rail, road-

to-building and shrubs-to-bare earth. Generally, the transformed divergence values for the 

classes show evidence of good separability (Table 5.7). The high separability between most 

of the land cover classes (see Table 5.7) is an indication of the ability of simple band 

selection approach to retain low variance information necessary for the characterisation of 

the various land cover types. 
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Table 5.8 shows the contingency matrix of the resulting classification. The highest numbers 

of misclassified pixels occurred between the road and rail classes with 19 pixels of the rail 

land cover class been wrongly classified as road. This was not surprising as low class 

separability has been reported to exist between roads, roof materials and bare soils due to 

their spectral similarity (Herold and Roberts, 2010). There are also indications of the 

existence of considerable overlap in the spectral signatures of several other land cover 

classes as indicated by the presence misclassified pixels. For example, the rail track-beds 

are essentially covered with ballast and as such exhibit a degree of spectral similarity with 

the road class (Table 5.7, transformed divergence of 1905). This is responsible for the high 

rate of misclassified pixels existing between the road and rail classes (Table 5.8). An error 

assessment based on 438 randomly located validation points of verified ground truth 

produced an overall accuracy of 80.59% with a kappa statistics of 0.75. 

Table 5.7: Separability table for nine land cover classes in the study area 

 River Woodland Rail Pasture Managed 

pasture 

Bare 

earth 

Shrubs Road 

 

Buildings 

River 0 2000 2000 2000 2000 2000 2000 2000 2000 

Woodland - 0 2000 1916 2000 2000 1997 2000 2000 

Rail - - 0 2000 2000 2000 2000 1905 1999 

Pasture - - - 0 2000 2000 2000 2000 2000 

Managed 

pasture 

- - - - 0 2000 2000 1993 2000 

Bare 

earth 

- - - - - 0 1905 2000 2000 

Shrubs - - - - - - 0 2000 2000 

Road - - - - - - - 0 1905 

Buildings - - - - - - - - 0 
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Table 5.8: Contingency matrix for nine land cover classes in the study area 

 River Woodland Rail Pasture 
Managed 

pasture 

Bare 

earth 
shrubs Road Building Total 

Producer’s 

accuracy 

(%) 

User’s 

accuracy 

(%) 

River 25 0 0 0 0 0 0 0 0 24 57.14 100.0 

Woodland 1 39 0 6 0 0 8 2 0 56 90.70 69.64 

Rail 0 0 21 0 0 0 0 2 0 23 52.50 91.30 

Pasture 0 2 0 169 0 1 0 2 0 174 95.48 97.13 

Managed 

pasture 
0 0 0 1 7 2 0 0 0 10 100.0 70.0 

Bare earth 0 0 0 0 0 21 0 0 0 21 84.0 100.0 

Shrubs 0 1 0 1 0 1 13 0 0 16 61.90 81.25 

Road 9 1 19 0 0 0 0 33 17 80 80.49 41.25 

Buildings 7 0 0 0 0 0 0 2 25 34 59.52 73.53 

Total 42 43 40 177 7 25 21 41 42    

Overall accuracy= 80.37 

 

Overall Kappa statistics = 0.75 
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Figure 5.19: Land cover map of the transport corridor with nine land cover classes derived 

from the simple band selection image. 

Land cover classes with considerable overlap in spectral space and of similar hydrological 

response to precipitation and surface runoff were merged to improve the overall 

classification accuracy. Table 5.9 presents the results of the transformed divergence 

analysis for eight land cover classes after the road and rail classes were merged. The 

divergence values reveal a good separability between the various land covers, with an 

average separability value of 1989. However, low separability values occur between 

shrubs-bare earth and building-manmade classes. A level of spectral overlap between the 

deciduous woodland, pasture and shrub classes is also shown to be present, as indicated by 

the overlap of those classes (Table 5.9). The deciduous land cover class is comprised of a 

mixture of deciduous woodland interspersed with coniferous trees. The mean reflectance 

values for coniferous and deciduous spectra are quite similar to each other and to typical 

green vegetation spectra like pasture and leafy green shrubs (Cipar et al., 2004). Though, 

the deciduous and coniferous trees are easily distinguishable from one another by the 

higher near infra-red reflectance that characterises the deciduous trees, a decision was taken 

to group both tree species into a single land cover class on the basis of their closely related 

hydrological response to soil moisture and slope stability (Greenwood et al., 2004; 

Glendinning et al., 2009).  As manmade and building land cover classes are essentially 

hydrological impervious surfaces they were also merged into a single class.  
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Table 5.9: Separability table for eight land cover classes in the study area 

 River Woodland Pasture Managed 

pasture 

Bare 

earth 

Shrubs Manmade 

 

Buildings 

River 0 2000 2000 2000 2000 2000 2000 2000 

Woodland - 0 1916 2000 2000 1997 2000 2000 

Pasture - - 0 2000 2000 2000 2000 2000 

Managed 

pasture 

- - - 0 2000 2000 1996 2000 

Bare earth - - - - 0 1905 2000 2000 

Shrubs - - - - - 0 2000 2000 

Manmade - - - - - - 0 1905 

Buildings - - - - - - - 0 

 

In addition to the spectral similarity between the manmade and building land cover classes, 

the confusion matrix (Table 5.10) also shows significant number of misclassified pixels 

between manmade, building and the river classes resulting in low producer accuracy for the 

river class. Large boulders placed along the Tyne River bank for the purpose river bank 

erosion control were misclassified as building and manmade classes. The characteristic low 

level of the Tyne River at the time of the year the CASI image was acquired also exposed 

boulders on the river bed resulting in parts of the river being classified as building and 

manmade classes. This is responsible for the low producers accuracy recorded for the river 

class. There was also evidence that the CASI image was acquired during or immediately 

after some light showers as the road surface showed evidence of wetness as isolated specks 

of the river class on the pavement surfaces (Appendix 3). These isolated river pixels were 

later filtered out as no river class exists in areas where they were depicted. Overall, a higher 

classification accuracy of 83.79% with a kappa statistics of 0.75 was obtained for the eight 

class land cover classification. The land cover classification map is presented in Figure 5.20 
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Table 5.10: Contingency matrix for eight land cover classes in the study area 

 River Woodland Pasture 
Managed 

pasture 

Bare 

earth 
shrubs Manmade Building Total 

Producers 

accuracy 

(%) 

Users 

accuracy 

(%) 

River 24 0 0 0 0 0 0 0 24 57.14 100.0 

Woodland 1 39 6 0 0 9 2 0 57 95.12 68.42 

Pasture 0 1 170 0 1 0 2 0 174 95.51 97.70 

Managed 

pasture 
0 0 1 7 2 0 3 0 13 100.0 53.85 

Bare earth 0 0 0 0 21 0 0 0 21 84.0 100.0 

Shrubs 0 1 1 0 1 13 0 0 16 59.09 81.25 

Manmade 7 0 0 0 0 0 64 14 85 79.01 75.29 

Buildings 10 0 0 0 0 0 10 28 48 66.67 58.33 

Total 42 41 178 7 25 22 81 42    

Overall accuracy= 83.56 
Overall Kappa statistics = 0.79 
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Figure 5.20: Land cover map of the transport corridor with eight land cover classes derived 

from the simple band selection image. 

 

A relatively good separability (with average transformed separability value of 1990) exists 

between the seven land cover classes as shown in the transformed divergence values (see 

Table 5.11). The manmade and building classes were merged to reduce the error introduced 

by the spectral similarities between both land cover classes. An improved overall 

classification accuracy of 90.18% with a kappa statistics of 0.87 was also achieved, indicating 

a better classification map in comparison to the earlier land cover classification maps (Table 

5.10). The merging of the rail, road and building classes to create an impervious class had 

improved the classification accuracy from an initial 80.37% with nine land cover classes to 

90.18% with seven classes (Table 5.12). There is also considerable reduction of noise in the 

various land cover classes as shown by the decline in the number of misclassified pixels 

between classes (see Figure 5.21).  
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Figure 5.21: Land cover map of the transport corridor with seven land cover classes derived 

from the simple band selection image. 

 

Table 5.11: Separability table for seven land cover classes in the study area 

 

 

River Woodland Pasture Managed 

pasture 

Bare earth Shrubs Manmade 

 

River 0 2000 2000 2000 2000 2000 2000 

Woodland - 0 1916 2000 2000 1997 2000 

Pasture - - 0 2000 2000 2000 2000 

Managed 

pasture 

- - - 0 2000 2000 1998 

Bare earth - - - - 0 1905 2000 

Shrubs - - - - - 0 2000 

Manmade - - - - - - 0 
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Table 5.12: Contingency matrix for seven land cover classes in the study area 

 River 
Woodlan

d 
Pasture 

Managed 

pasture 

Bare 

earth 
shrubs Manmade Total 

Producers 

accuracy 

(%) 

Users 

accuracy 

(%) 

Kappa 

River 26 0 0 0 0 0 0 26 61.90 100.0 1 

Woodland 1 39 6 0 0 9 2 57 95.12 68.42 0.65 

Pasture 0 1 170 0 1 0 1 173 95.51 98.27 0.97 
Managed 

pasture 
0 0 1 7 2 0 1 11 100.0 63.64 0.63 

Bare earth 0 0 0 0 21 0 0 21 84.0 100.0 1 

Shrubs 0 1 1 0 1 13 0 16 59.07 81.25 0.80 

Manmade 15 0 0 0 0 0 119 134 96.75 88.81 0.84 

Total 42 41 178 7 25 22 123     

Overall accuracy= 90.18 

 
Overall Kappa statistics = 0.87 

 

 

The pasture and shrubs classes were merged into a single class to account for error introduced 

by shrubs being misclassified as pasture. The resulting 5-class classification (Figure 5.22) had 

an overall accuracy of 87.21% with a Kappa statistic of 0.81 (Tables 5.13). The overall 

accuracy for the five land cover classification is slightly lower than the accuracy reported for 

the previous seven land cover classes map from which it was derived. The variation in the 

spectral characteristics among shrub species represented within the study area is thought to be 

the primary reason for the decline in the overall accuracy of the newly merged five land cover 

class map. The northern boundaries of the study area is characterised by heaths - low growing 

woody vegetation commonly associated with low quality acidic soils, which was generally 

brownish in colour at the time of validation sampling. The shrubs located around the flood 

plains of the Tyne River are within pasturelands and are essentially taller and leafy green in 

colour. This spectral variation within the shrub class is believed to be responsible for the 

spectral similarities revealed to exist between the shrub-bare earth class and between the 

shrub-pasture-woodland land cover classes. The merging of the pasture, managed pasture and 

shrub classes created a new composite class (pasture) characterised by large internal 

variability resulting in increased number of misclassified pixels between the pasture and 

woodland classes, which lead to a slight reduction in overall classification accuracy (Tables 

5.12 and 5.13).  
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Figure 5.22: Land cover map of the transport corridor with five land cover classes derived 

from the simple band selection image. 

 

The Tyne River was masked out using the Tyne river shapefile of the study area obtained 

from Ordnance Survey MasterMap data. This ensured a high degree of accuracy in the 

representation of the river class (Figure 5.23). The implementation of the mask also reduced 

the level of noise, with the elimination of all misclassified pixels occurring within the river 

class. The mask improved the overall classification accuracy of the 5 land cover class 

classification from 87.21% to 90.87% with a kappa of 0.87 (Table 5.14). The overall 

accuracy of the masked land cover map was further re-evaluated with the exclusion of the 

river class in the overall accuracy assessment. This was done to assess the overall map 

accuracy devoid of any improvement resulting from the introduced mask. An overall 

accuracy of 89.90% with a kappa statistics of 0.84 was recorded for the land cover 

classification map without the river class (Table 5.15). A fuzzy convolution filter was applied 

to the final masked land cover (five classes) map to reduce the speckled effect, which 

improved the overall classification accuracy of the 5-class masked land cover map to an 

overall accuracy of 91.10% and kappa statistics of 0.87 (Table 5.16) and an overall 

classification accuracy of 90.15% with kappa statistic of 0.85 for the masked land cover map 

without the river class (Table 5.17). The final land cover classification map derived from 

selected bands of the CASI imagery of the transport corridor is presented in Figure 5.24. 
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Table 5.13: Contingency matrix for the five land cover classification 

 River Woodland Pasture 
Bare 

earth 
Manmade Total 

Producers’ 

accuracy 

(%) 

Users’ 

accuracy 

(%) 

Class 

kappa 

River 26 0 0 0 0 26 61.90 100.0 1.00 

Woodland 1 41 21 0 2 65 100.0 63.08 
0.59 

Pasture 0 0 179 7 3 189 86.47 94.71 0.90 

Bare 

earth 
0 0 7 18 0 25 72.0 72.0 0.70 

Manmade 15 0 0 0 118 133 95.97 89.47 
0.84 

Total 42 41 207 25 123    
 

Overall accuracy= 87.21 Overall Kappa statistics = 0.81 

 

Table 5.14: Contingency matrix of the five land-cover classes with the river class masked. 

 River Woodland Pasture 
Bare 

earth 
Manmade Total 

Producers 

accuracy 

(%) 

Users 

accuracy 

(%) 

Class 

kappa 

River 42 0 0 0 0 42 100.0 100.0 1.00 

Woodland 0 41 21 0 2 64 100.0 64.06 
0.60 

Pasture 0 1 179 7 3 189 86.89 94.71 0.90 

Bare 

earth 
0 0 7 18 0 25 72.0 72.0 0.70 

Manmade 0 0 0 0 118 118 95.97 100.0 1.00 

Total 42 42 207 25 123    
 

Overall accuracy = 90.87 

 
Overall Kappa statistics = 0.87 

 

 

Table 5.15: Contingency matrix of the land-cover classes without the river class. 

 Woodland Pasture Bare earth Manmade Total 

Producers 

accuracy 

(%) 

Users 

accuracy 

(%) 

Class 

kappa 

Woodland 41 21 0 2 64 100.0 65.06 
0.60 

Pasture 0 179 7 3 189 86.47 94.71 0.89 

Bare earth 0 7 18 0 25 72.0 72.0 0.70 

Manmade 0 0 0 118 118 95.93 100.0 1.00 

Total 41 207 25 123    
 

Overall accuracy = 89.90 

 

Overall Kappa statistics = 0.84  



146 
 

Table 5.16: Contingency matrix of fuzzy convolution filter land cover classification map for 

five land cover classes 

 River Woodland Pasture Bare earth Manmade Total 

Producers 

accuracy 

(%) 

Users 

accuracy 

(%) 

Class 

kappa 

River 42 0 0 0 0 42 100 100 1.00 

Woodland 0 41 20 0 2 64 100.0 65.08 
0.62 

Pasture 0 0 181 7 3 189 86.47 94.71 0.89 

Bare earth 0 0 6 18 0 25 68.0 73.91 0.72 

Manmade 0 0 0 0 118 118 95.93 100.0 1.00 

Total 
42 

41 207 25 123    
 

 Overall accuracy = 91.10% 

 

Overall Kappa statistics = 0.87  

 

Table 5.17: Contingency matrix of the final five land-cover classes, with application of fuzzy 

convolution filter and the exclusion of the river class 

 Woodland Pasture Bare earth Manmade Total 

Producers 

accuracy 

(%) 

Users 

accuracy 

(%) 

Class 

kappa 

Woodland 41 20 0 2 64 100.0 65.08 
0.61 

Pasture 0 181 8 3 189 87.86 94.27 0.88 

Bare earth 0 6 17 0 25 68.0 73.91 0.72 

Manmade 0 0 0 118 118 95.93 100.0 1.00 

Total 41 207 25 123    
 

Overall accuracy = 90.15% 

 

Overall Kappa statistics = 0.85  
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Figure 5.23: Land cover map of the transport corridor with five land cover classes with 

masked river class. 

 

 

Figure 5.24: Final land cover classification map derived from selected bands of the CASI 

imagery of the transport corridor, with the application of fuzzy convolution to reduce the 

speckled effect and improve overall classification.  

 

5.3.2 Spectral transformed (MNF) CASI image 

The MNF image transformed divergence indicates a good separability between classes with 

the exception of the rail and road class (Table 5.18). The resulting contingency matrix of the 

classification also reveals a lower level of misclassification between some land cover classes 

and overestimation in others (see Tables 5.8, 5.19 and Figure 5.25) For example the 

transformed divergence value for the road and rail class in simple band selection image 

classification is 1905 while the separability value for the same classes in the transformed 
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image is 1768. This is expected as the MNF spectral transformation results in the distribution 

function of the different classes becoming more distinct due to the removal of random noise 

and low variance features (Bater and Coops, 2009). The resulting 9-class classification of the 

MNF image with an average transformed divergence value of 1938 as against 1989 for the 

simple band selection approach has an overall accuracy of 74.43% and a kappa statistic of 

0.68 (Table 5.19).  Similar results were obtained for the eight class land cover classification 

with good separability (Table 5.20), with an average transformed divergence value of 1998 

but with poorer classification performance. The eight class land cover classification had an 

overall accuracy of 77.85% and a kappa statistics of 0.72 (Table 5.21) in comparison with the 

simple band section approach image with an overall accuracy of 83.56% and a kappa 

statistics of 0.79 (Table 5.10). The land cover classification map for eight land cover classes 

is presented in Figure 5.26. 

 

Table 5.18: Separability table for nine land cover classes derived from the MNF transformed 

CASI image of the study area 

 Woodland Rail Road Managed 

pasture 

Buildings Pasture River Bare earth 

 

Shrubs 

Woodland 0 2000 2000 2000 2000 1996 2000 2000 2000 

Rail - 0 1768 2000 1998 2000 2000 2000 2000 

Road - - 0 2000 1994 2000 2000 2000 2000 

Managed 

pasture 

- - - 0 2000 2000 2000 2000 2000 

Buildings - - - - 0 2000 2000 2000 2000 

Pasture - - - - - 0 2000 2000 2000 

River - - - - - - 0 2000 2000 

Bare earth - - - - - - - 0 1993 

Shrubs - - - - - - - - 0 



149 
 

 

Table 5.19: Contingency matrix for nine land cover classes derived from the MNF transformed CASI image of the study area. 

 River Woodland Rail Pasture 
Managed 

pasture 

Bare 

earth 
shrubs Road Building Total 

Producers 

accuracy 

(%) 

Users 

accuracy 

(%) 

Class 

Kappa 

River 23 0 0 0 0 0 0 0 0 23 56.10 100.0 1.0 

Woodland 1 39 0 5 0 0 5 2 0 52 90.70 75.0 0.72 

Rail 0 0 24 0 0 0 0 0 0 24 60.0 100.0 1.0 

Pasture 0 3 0 140 0 1 4 0 0 148 79.10 94.59 0.92 

Managed 

pasture 
0 0 0 0 7 0 0 1 0 8 100.0 87.50 0.5 

Bare 

earth 
0 0 0 30 0 23 4 1 0 58 92.0 39.66 0.36 

Shrubs 0 1 0 1 0 0 8 0 0 10 38.10 80.0 0.90 

Road 7 0 11 0 0 0 0 27 7 52 64.29 51.92 0.45 

Buildings 9 0 5 1 0 1 0 11 35 63 83.33 55.56 0.51 

Total 41 43 40 177 7 25 21 42 42    
 

Overall accuracy = 74.43 

 

Overall Kappa statistics = 0.68 
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Figure 5.25: Land cover map of the transport corridor with nine land cover classes derived 

from the MNF transformed CASI image. 

 

Table 5.20: Separability table for eight land cover classes derived from the MNF 

transformed CASI image of the study area 

 Woodland Managed 

pasture 

Buildings Pasture River Bare 

earth 

 

Shrubs Manmade 

Woodland 0 2000 2000 1996 2000 2000 2000 2000 

Managed 

pasture 

- 0 2000 2000 2000 2000 2000 2000 

Buildings - - 0 2000 2000 2000 2000 1967 

Pasture - - - 0 2000 2000 2000 2000 

River - - - - 0 2000 2000 2000 

Bare earth - - - - - 0 1993 2000 

Shrubs - - - - - - 0 2000 

Manmade - - - - - - - 0 
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Table 5.21: Contingency matrix for eight land cover classes derived from the MNF transformed CASI image of the study area. 

 River Woodland Pasture 
Managed 

pasture 

Bare 

earth 
shrubs Manmade Building Total 

Producers’ 

accuracy 

(%) 

Users’ 

accuracy 

(%) 

Class 

Kappa 

River 23 0 0 0 0 0 0 0 23 54.76 100.0 1.0 

Woodland 1 39 5 0 0 5 2 0 52 90.70 75.0 0.72 

Pasture 0 2 141 0 1 4 0 0 148 79.21 95.27 0.92 

Managed 

pasture 
0 0 0 7 0 0 1 0 8 100.0 87.50 0.87 

Bare 

earth 
0 0 30 0 23 4 1 0 58 92.0 39.66 0.36 

Shrubs 0 0 1 0 0 9 0 0 10 40.91 90.0 0.90 

Manmade 8 0 0 0 0 0 66 9 83 81.48 79.52 0.75 

Buildings 10 0 1 0 1 0 11 33 56 78.57 58.93 0.56 

Total 42 41 178 7 25 22 81 42    

 

 

Overall accuracy = 77.85% 
 

Overall Kappa statistics = 0.72 
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Figure 5.26: Land cover map of the transport corridor with eight land cover classes derived 

from the MNF transformed CASI image. 

 

The poorer performance of the MNF images in terms of classification was also observed for 

the 5-class classification, with the application of the river mask and the subsequent fuzzy 

convolution filter. The final land cover map derived from the MNF transformed CASI 

image had an overall classification accuracy of 83.59% and kappa statistic of 0.76 (Table 

5.22). The final land cover classification map derived from MNF transformation of the 

CASI imagery of the transport corridor is presented in Figure 5. 27.  

Table 5.22: Contingency matrix for five land cover classes derived from the MNF 

transformed CASI image of the study area. 

 River Woodland Pasture Bare earth Manmade Total 

Producers’ 

accuracy 

(%) 

Users’ 

accuracy 

(%) 

Class 

Kappa 

River 26 0 0 0 0 26 61.90 100.0 1.0 

Woodland 1 39 12 0 2 54 95.12 72.22 
0.70 

Pasture 0 2 150 4 2 158 72.46 94.94 0.89 

Bare earth 0 0 45 21 1 67 84.0 31.34 0.27 

Manmade 15 0 0 0 118 133 95.93 88.72 0.84 

Total 42 41 207 25 123    
 

 

Overall accuracy = 80.82 

 

Overall Kappa statistics = 0.73 
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Figure 5.27: Land cover classification map derived from MNF transformed CASI image of 

the transport corridor, with the application of fuzzy convolution to reduce the speckled 

effect and improve overall classification 

 

5.3.3 Comparison of the simple band selection and MNF transformed land cover 

maps 

The accuracy assessments of the supervised maximum likelihood classification derived for 

the selected raw CASI bands and the MNF analysis images indicate higher classification 

accuracies for classification maps derived from the ‘raw’ selected band images (Table 

5.23). Five broad land cover classes were recognised, these classes were categorised in line 

with anticipated hydrological response to overland flow and contributions to slope stability. 

An overall classification accuracy of 91.10% with a kappa statistics of 0.87 was recorded 

for the five-class land cover classification derived from the ‘raw’ selected band image, 

while an overall accuracy of  85.15% with kappa statistics of 0.80 was returned for the five 

class land cover classification from the MNF image . The producer and user accuracy 

obtained for the various land cover classes derived from the ‘raw’ selected band image 

suggests a high level of classification accuracy. Although the classified land cover maps 

derived from the MNF transformed image were characterised for some classes by fewer 

misclassified pixels, the maps show visible evidence of overestimation of the bare earth 

class and the under estimation of the shrub class.  The overestimation of the bare earth class 

is reflected in the low user accuracy reported for the bare earth class in all of the MNF 

derived land cover classification contingency matrices. Adequate representation of the 
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various vegetation and non-vegetal cover types found within the transport corridor is 

critically important as differences in spatial coverage and hydrological properties will 

impact overland flow, moisture accumulation and slope stability. Essentially, vegetation 

exerts primary control on slope stability, with root systems contributing shear strength to 

slopes through root reinforcement. Also, vegetal processes like evapotranspiration can 

considerably modify soil water regime, reduce pore pressure and invariably enhance the 

stability of slopes. Based on better class coherency and higher overall classification 

accuracy, the five class land cover classification map acquired from the ‘raw’ selected band 

image was used as the input data for land cover related information in the modelling of 

slope stability within the transport corridor.           

Table 5.23: Summary of the overall accuracy and kappa statistics obtained for the land 

cover classification 

Land cover classes 

Selected band image PCA image 

Overall 

accuracy (%) 

Overall kappa 

statistics 

Overall 

accuracy (%) 

Overall kappa 

statistics 

Nine 80.37 0.73 74.43 0.68 

Eight 83.56 0.79 77.85 0.72 

seven 90.18 0.87 83.11 0.78 

Five 87.21 0.81 80.82 0.73 

Five masked 90.87 0.87 84.47 0.79 

Five masked 

(without river class) 
89.90 0.84 82.83 0.75 

Five masked (fuzzy 

convolution) 
91.10 0.87 85.16 0.80 

Five masked (fuzzy 

convolution without 

river class) 

90.15 0.85 83.59 0.76 

 

5.4 Integration of Catchment scale contributions 

High infiltration is expected in permeable soils, with considerable runoff associated with 

less permeable soil types.   The soil map shows that about 90 % of the agricultural field 

adjoining the transport corridor are underlain by slowly permeable seasonally waterlogged 

soils. Hence considerable amount of runoff generation are expected from the adjoining 

catchment areas. Runoff generation is a function of the underlying soil type and vegetation 

cover.  High infiltration is expected in permeable soils, with considerable runoff associated 
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with less permeable soil types. A weighted grid was developed to incorporate the influence 

of soil and vegetation into the characterisation of soil moisture distribution in the study 

area.  

5.4.1 Development of a weighted grid 

Six storm events with varying precipitation intensity and AMC classes were evaluated. 

Storm intensity was defined based on the quantitative definition of antecedent runoff 

conditions as provided by USDA 2010 (discussed in detail in section 4.3.2.2). The rainfall 

data presented in Figure 5.28 corresponds to a storm in 26.10.2005 with depth of 22.8mm 

and a 5 day antecedent rainfall of 70.7 mm which corresponds to AMC 2. The runoff depth 

calculated for this storm is shown in Table 5.25 and varies 0.04 and 34.70.  

Table 5.24: Storm categorisation showing precipitation intensity and antecedent moisture 

conditions prior the storm events. 

Storms 
Antecedent moisture condition 

(mm) 

Precipitation intensity 

(mm) 

2005-10-26 High (70.7) Low (22.8) 

2005-10-13 Low (2.55) High (49.3) 

2005-01-08 Medium (42.35) High (70.5) 

2007-06-17 High (74.7) Medium (42.06) 

2007-12-29 Medium (14.05) Medium (34.7) 

2008-09-06 Medium (12.7) Low (10.95) 

2010-10-23 Medium (40.73) Medium (39.5) 
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Figure 5.28: Storm event of 26-10-2005 with antecedent moisture condition of the study 

area. 

 

Table 5.25 The generated runoff depth increases with increased antecedent moisture 

content and precipitation intensity.  In compliance with equation 4.5, no runoff was 

generated when precipitation is lower than initial abstraction. Antecedent moisture 

condition is seen to exert more influence on runoff generation than rainfall intensity as 

evident in the storm events of 17.06.2007 and 09.06.2008. Lower runoff values are 

associated with permeable soil classes (Class A and B), while class D soils rich in clay 

fractions exhibited higher depths of surface runoff (Table 5.26).  The woodlands exhibited 

lowest runoff values in comparison with other land cover classes. The weight grid 

engenders a more realistic spatial distribution of soil moisture that takes into cognisance the 

infiltration and evapotranspiration.   
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Table 5.25: Computed runoff depth for storm events and associated runoff coefficient 

values. 

Storms 
Runoff depth 

(mm) 

Runoff 

coefficient 

Mean (Runoff 

coefficient) 

Standard deviation 

(runoff 

coefficient) 

2005-10-

26 
0.04 – 34.74 0.01 -0.32 0.04 0.15 

2005-10-

13  
0.02 – 49.3 0.03 – 0.44 0.09 0.15 

2005-01-

08  
1.23 – 39.5 0.03 – 0.63 0.24 0.15 

2007-06-

17 
0 – 70.5 0 – 0.77 0.42 0.14 

2007-12-

29 
0.41 – 22.8 0.02 – 0.70 0.33 0.14 

2008-09-

06 
0.8 – 42.06 0.11 – 0.82 0.52 0.13 

 

Table 5.26: Runoff depths of some soil classes of the study area with varying rainfall 

intensity 

Soil name Soil class Runoff depth(mm) 

for Storm 2008-09-

06  

Runoff 

depth(mm) for 

Storm 2007-12-

29 

Land cover 

Ellerbeck B 10.74 1.91 Grassland 

Alun B 10.74 1.91 Grassland 

Nercwys C 14.66 3.53 Grassland 

Wharfe D 22.53 7.64 Grassland 

Brickfield 3 D 22.53 7.64 Grassland 

Wilcock 1 D 22.53 7.64 Grassland 
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5.4.2  Sensitivity analysis of weight grid  

The runoff coefficient map was generated from the estimated quantity of runoff depth and 

divided by the total rainfall. The precipitation value of the storm that occurred on 

17.06.2007 was used for all other subsequent modelling. The land cover classes such as the 

woodland and the grasslands are products of aggregated of classes with similar 

hydrological responses. The sensitivity assessment was carried out on the developed weight 

grid with a view to evaluating the robustness of the grid to slight variations in data input. 

The runoff coefficient values for the various soil types and land cover combinations 

provided a range for the weights representing grasslands and woodlands. Sections of the 

weight grid representing grasslands were first clipped out and the highest and lowest 

grassland weights identified. A random raster was created with weights within the upper 

and lower limits randomly allocate within three standard deviations using normal 

distribution. The highest grassland weight was 0.62 representing grasslands overlying high 

runoff potential soils with low infiltration rates (Class D). The lowest grassland weight was 

0.25 representing well to excessively drained sand or gravel and have a high rate of water 

transmission (greater than 7.6 mm/h). Three standard deviations was deemed appropriate as 

it represents 99.72 % possible variations that may exist within the weight range for 

grassland. The grassland was merged back with the original weight grid, such that only the 

weights of the grassland were adjusted. Five random normally distributed weight grids 

were computed for both grass and woodlands following the same procedure. The developed 

randomly distributed weights were used to compute the modified TWI maps of the 

transport corridor areas. The modified TWI values derived using random normally 

distributed weight for grassland is presented in Table 5.27.  A Mann-Whitney U statistics 

test showed no significant difference between the medians of the modified TWI 

distributions generated with randomly distributed weight values for grassland. The adjusted 

weight values for woodlands did not result in any global alteration in the distribution 

pattern of generated surface runoff (Table 5.28). However, it is noteworthy that there were 

noticeable changes in flow pattern as indicated by difference in the values of specific 

catchment area computation at zones of flow convergence in the individual grids.     
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Table 5.27: Summary statistics of the modified TWI maps of the transport corridor and 

adjoining agricultural areas using randomly distributed weights for grasslands. 

Grassland adjusted Min Max Mean  standard deviation 

TWI 1   0 21.93 5.17 1.95 

TWI 2 0 21.93 5.17 1.95 

TWI 3 0 21.93 5.17 1.95 

TWI 4 0 21.93 5.17 1.95 

TWI 5 0 21.93 5.17 1.95 

 

Table 5.28: Summary statistics of the modified TWI maps of study area with randomly 

adjusted weights for woodlands 

Woodland adjusted Min Max Mean  standard deviation 

TWI 1   0 20.07 5.32 1.96 

TWI 2 0 20.07 5.32 1.96 

TWI 3 0 20.07 5.32 1.96 

TWI 4 0 20.07 5.32 1.96 

TWI 5 0 20.07 5.32 1.96 

 

5.4.3 Modified Terrain wetness index model  

The modified TWI map predicts a general trend of increasing moisture with decreasing 

elevation with the south facing slopes exhibiting relatively wetter conditions in comparison 

with the north facing slopes (Figures 5.29 and 5. 30).  
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Figure 5.29: Scatter plot showing the relationship between elevation and terrain wetness 

index. The general trend in moisture content was obtained by fitting a linear regression 

trend line. 

 

 

Figure 5.30: Scatter plot showing relationship between elevation and terrain wetness index 

for north facing slopes with a linear regression line depicting the general trend in predicted 

moisture content with increase in elevation. 

 

The modified TWI map reveals considerable contribution from the surrounding broader 

catchment topography (Figure 5.31) to the localisation of zones of moisture accumulation 

along the transport corridor earthworks. This is clearly depicted by predicted ingress of 
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flow from the surrounding upland agricultural fields into the earthwork infrastructure of the 

transport corridor, with sections of the earthwork embankment serving as a barricade to 

upland overland flows.  Figure 5.32 reveals points of predicted overland flow ingress into 

an earthwork cutting while Figure 5.33 illustrates the convergence of flow from 

surrounding upslope areas with the earthwork embankment acting as barriers to runoff 

draining towards the River South Tyne south of the corridor. 

 

Figure 5.31: Modified terrain wetness index map of broader catchment area 

 

The modified TWI map reveals high moisture concentrations towards the top and toe of the 

earthwork slopes, with lower soil moisture values half way down the slope. This is the 

general trend across the various earthwork cutting; however, there appears to be increased 

mid-slope concentration along sections of the slope face that coincides with areas of high 

concave curvature values. Increases in curvature in either direction can be significant 

influence the overall stability of a hillslope. Curvature affects the downslope movement of 

water in two notable ways (Ohlmacher, 2007). The existence of concave curvature 

increases the convergence of water flow into hollows thereby resulting in increased localise 
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saturation of those sections of the earthwork slope. Thus, while the rainfall amount and 

duration are equal, the fully saturated volume and average saturation of the earthwork slope 

is significantly different. In addition, these areas serve as miniature reservoirs retaining 

down-the-slope flow for longer durations.  As a result these sections of the slope are 

typically characterised by higher pore-water pressure and experience higher shear stresses 

as a result of increased moisture content. 

This phenomenon is clearly illustrated by a section taken across the Whitchester cutting 

earthwork of the corridor, where the presence of curvature is seen to coincide with 

increased wetness index values half way down the slope (see Figure 5.34). In Figure 5.34, 

the modified TWI values is seen to increase in response to the presence of 

microtopography.  This trend is consistent across the various cutting earthworks within the 

transport corridor regardless of the soil type that constitutes the slope made-up material and 

height of the slope. 
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Figure 5.32: Modified TWI map of a section of the transport corridor revealing 

characteristic high moisture concentrations towards the top and toe of the earthwork slopes. 

Two points of predicted overland flow ingress into the cutting earthwork are clearly visible 

on the south facing slope. 
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Figure 5.33: Modified TWI map revealing sections of earthwork embankment characterised 

by moisture accumulation as a result of flow convergence from surrounding upland 

topography. 

 

 

Figure 5.34: A transect of the modified TWI values across a slope cutting revealing zones 

high moisture concentration (towards the top and toe of the earthwork slopes) as surface 

runoff flows down the earthwork slope. Location of transect A is shown in figure 5.32. 
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5.5 Evidential reasoning model 

The results of the transformation of the various thematic layers into evidential data layers 

are presented in tables 5.29 and 5.30. The tables show the derived weights and estimated 

Evidential Belief Functions (EBF) for the eight landslide conditioning factors. The 

magnitudes of positive weights show the relative importance of each variable class as a 

predictor of slope instability. The negative weights suggest relative stability within variable 

class range, high positive weights typically translate into higher belief functions signifying 

high susceptibility to slope instability.  

The evidential belief layer for land cover shows landslide occurrence in all three 

predominant (grasses and shrubs, trees and man-made) land cover classes. The man-made 

land-cover class which is comprised essentially of ballast-lain earthwork embankments is 

seen to be associated with highest probability of landslide occurrences with a belief value 

of 0.5, followed by woodlands and then grassland. Half of the total number of landslide 

occurrence (50%) is believed to be associated with the man-made land cover class. 
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Table 5.29: Basic probability functions for slope, aspect, curvature and distance to drainage 

Factor Class 

No. of 

pixels 

in 

domain 

Landslide 

occurrence 
W+ W- Bel Dis Unc 

Slope 5 188 4 0.331 1.011 0.044 0.101 0.855 

 10 395 19 0.769 1.008 0.102 0.101 0.797 

 15 845 41 0.777 1.017 0.102 0.102 0.796 

 20 1421 78 0.884 1.015 0.117 0.102 0.782 

 25 2052 137 1.089 0.982 0.144 0.098 0.758 

 30 3128 235 1.237 0.922 0.163 0.092 0.744 

 35 2731 184 1.100 0.972 0.145 0.097 0.757 

 40 1204 56 0.743 1.028 0.098 0.103 0.799 

 45 295 8 0.424 1.015 0.056 0.102 0.842 

 >50 139 2 0.222 1.009 0.029 0.101 0.870 

         

Aspect Flat area 0 0 0 0 0 0 1 

 N 3984 258 1.054 0.974 0.211 0.122 0.667 

 NE 203 2 0.152 1.015 0.030 0.127 0.842 

 E 41 2 0.781 1.001 0.156 0.126 0.718 

 SE 332 20 0.976 1.001 0.195 0.126 0.679 

 S 7105 455 1.042 0.944 0.208 0.119 0.673 

 SW 518 24 0.740 1.012 0.148 0.127 0.725 

 W 33 0 0 0 0 0 1 

 NW 182 3 0.255 1.012 0.051 0.127 0.822 

         

Curvature concave(-) 5319 401 1.242 0.823 0.486 0.271 0.243 

 Flat 265 8 0.474 1.012 0.186 0.333 0.481 

 convex(+) 6814 355 0.837 1.204 0.328 0.396 0.276 

         

Drainage 10 333 0 0 1.029 0 0 1 

 20 604 13 0.335 1.036 0.012 0.092 0.896 

 30 433 24 0.894 1.004 0.032 0.089 0.879 

 40 627 67 1.822 0.958 0.064 0.085 0.851 

 50 572 164 6.121 0.814 0.217 0.072 0.711 

 60 540 166 6.759 0.809 0.239 0.072 0.689 

 70 524 112 4.140 0.885 0.146 0.078 0.775 

 80 418 101 4.852 0.892 0.172 0.079 0.749 

 90 326 57 3.227 0.947 0.114 0.084 0.802 

 100 8022 60 0.115 2.919 0.004 0.258 0.737 
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Table 5.30: Basic probability functions for soil, land cover, SPI and modified TWI 

Factor Class 

No. of 

pixels in 

domain 

Landslide 

occurrences 
W+ W- Bel Dis Unc 

Soil 
Brickfield 

3 
2645 0 0 1.294 0 0 1 

 Ellerbeck 5624 490 1.453 0.642 0.316 0.109 0.575 

 Wharfe 1692 257 2.726 0.757 0.593 0.128 0.279 

 Nercwys 633 17 0.420 1.032 0.091 0.175 0.734 

 Enborne 659 0 0 1.060 0 0 1 

 Alun 1142 0 0 1.109 0 0 1 

         

Landcover Manmade 1756 171 1.642 0.899 0.507 0.180 0.313 

 Grassland 2507 91 0.573 1.112 0.177 0.223 0.600 

 
Bare 

ground 
183 0 0 1.016 0 0 1 

 
Water 

body 
1 0 0 1.000 0 1 0 

 Woodland 7948 502 1.026 0.953 0.317 0.191 0.492 

         

SPI 1 3178 271 1.420 0.860 0.521 0.087 0.392 

 2 6396 486 1.252 0.740 0.459 0.075 0.466 

 3 1971 7 0.054 1.192 0.020 0.121 0.859 

 4 500 0 0 1.045 0 0 1 

 5 220 0 0 1.019 0 0 1 

 6 91 0 0 1.008 0 0 1 

 7 16 0 0 1.001 0 0 1 

 8 9 0 0 1.001 0 0 1 

 9 11 0 0 1.001 0 0 1 

 >10 7 0 0 1.001 0 0 1 

         

TWI 

modified 
1 4893 368 1.239 0.848 0.067 0.085 0.848 

 2 4579 215 0.750 1.150 0.041 0.115 0.844 

 3 1525 68 0.711 1.041 0.038 0.104 0.857 

 4 532 19 0.564 1.020 0.030 0.102 0.868 

 5 230 6 0.408 1.012 0.022 0.101 0.877 

 6 127 36 6.025 0.960 0.326 0.096 0.578 

 7 164 19 1.996 0.987 0.108 0.099 0.793 

 8 213 20 1.578 0.990 0.085 0.099 0.816 

 9 39 9 4.569 0.991 0.247 0.099 0.654 

 >10 97 4 0.655 1.003 0.035 0.100 0.864 

 

These earthwork embankments are generally steep sloped (see Figure 5.5), sparsely 

vegetated and the presence of large amount of ballast permits high surface water 
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percolation. Rail ballast usually contains uniformly graded material with sufficiently large 

pore structure to facilitate rapid drainage. This attribute is in effect important in sustaining 

good track performance. However, in aging network infrastructure (like the one under 

investigation) and degraded ballast, the resistance to attrition and weathering is often lower 

than usual. This results in disintegration of some individual grains into finer particles and 

accumulates within the voids impeding drainage. This becomes particularly important when 

the track bed is underlain by slowly permeable to impermeable subgrade. Track stability is 

known be adversely affected by increase in the degree of saturation. Increased moisture 

influences track settlement, particle breakage and traffic ability problems arising from 

uneven track bed (Buddhima et al., 2011). The belief function for the woodlands suggests 

that this land cover type is responsible for about 32% of the total landslide occurrences 

within transport corridor. The earthwork embankment and cuttings covered by grasses is 

seen to only explain 18% of the total landslide occurrence. 

The computed belief functions for the various underlying soils in the transport corridor are 

presented in Table 5.30. The influence of underlying soils to landslide location reveals high 

values of belief for the relatively more permeable soils (Ellerbeck and Wharfe soil classes) 

in contrast to the loamy clayey seasonally waterlogged slowly permeable soils of the Alun, 

Nercwys and Brickfield series. This is not at all surprising as seasonally waterlogged clayey 

layered soils are often well compacted  (National Soil Resources Institute, 2008), meaning 

most of the external surface moisture from precipitation ends up as runoff. Earthwork 

cuttings in these soils are stable with provision of sufficient drains. Baum et al. (2005) 

explains that percolating water is more impactful on slope instability as built up pore 

pressure known to reduce the stability of slopes when it accumulates above a less 

permeable intercalation. The Wharfe soil class which is essentially river alluvium made up 

of deep stone-less permeable fine loamy soils, variably affected by groundwater (Avery, 

1980), is characterised by high occurrences of landslide and invariably assigned a higher 

belief function value. Though permeable and largely well drained, the presence of clay 

enrichment in the non-calcareous loamy or clayey alluvium (more than 30 cm thick) 

Wharfe soil class is known to sometimes result in winter flooding (Cranfield University, 

2014). The relatively better drained Ellerbeck series is dominantly free draining loamy-

gravely soils developed on very stony glaciofluvial or river terrace drift (Cranfield 

University, 2014), appears to be relatively more stable than the Wharfe soil class but less 
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stable in comparison to the loamy clayey seasonally waterlogged slowly permeable soils of 

the Alun, Nercwys and Brickfield series. 

The proximity to river channel is known to adversely affect slope stability by eroding the 

slope or by base saturation that may result in elevated levels of the groundwater table 

(Pradhan et al., 2010). The proximity of some sections the earthwork infrastructure of the 

transport corridor to the South Tyne River appears not to have noticeable effects on the 

location of slope instability. This may be as a result of strict guidelines enforcing sufficient 

provision of surface and slope drainage facilities to aid the reduction of groundwater levels 

within the earthwork cuttings and the collection of surface runoff at top of cuttings (Perry et 

al., 2003b). With some stretches of the embankment earthworks located in close proximity 

of the river (approximately 15 meters), the belief values for proximity to drainage in Table 

5.29 show that the degree of support for instability due to proximity to river for earthworks 

within 40m of the River Tyne is less than 7%.    

The stream power index evidence layer exhibits an indirect relationship with landslide 

occurrence, with the belief values decreasing with increasing SPI values. The aspect map 

reveals predominantly north- and south-facing slope aspects due to the east-west orientation 

of the transport corridor. A belief value of 0.2 and disbelief value of 0.1 for north-facing 

and south facing slope aspect indicates the positive spatial association of these categories 

with landslide susceptibility (Table 5.29). The degree of belief for profile curvature 

indicates direct relationship with landslide occurrence.  In the curvature map, concave 

surfaces which are generally associated with localised convergence of flow and at 

favourable slope gradients may develop shear surfaces, are characterised by relatively 

higher belief values of 0.5. Convex surfaces on the other hand are usually more exposed to 

the weather elements resulting in continuous expansion and contraction, which ultimately 

loosening up the soil. The convex surfaces explain about 33% of landslide occurrences.  

The slope map reveals a curvilinear relationship with landslide susceptibility. Landslide 

frequency is seen to increases with slope gradient to a threshold above which the landslide 

density decreases. This is also reflected in a gradual rise in belief function with increasing 

slope gradient. Typical slope gradient values across the earthwork slope and embankment 

range from 110 to 490, with the steeper end of the interval generally associated with the 

earthwork embankments. The revealed threshold falls within an interval of slope angles 
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ranging from 250 to 350. This slope range is also seen to exhibit the lowest disbelief values 

of 0.09. 

The result of the integrated maps of the various conditioning factors is presented in Figure 

5.35, 5.36 and 5.37. Three maps representing the degree of belief, disbelief and uncertainty 

were derived. The belief function map reflects the distribution of slope instability across the 

transport corridor. The earthwork cuttings were identified as comparatively less susceptible 

to slope instability in contrast with the earthwork embankments, with the higher magnitude 

of earthwork embankment instability in the east end of the transport corridor. 5.1% of the 

earthwork cuttings were identified as relatively unstable in contrast to 47.5% for the 

earthwork embankment. Segments of the earthwork infrastructure built on the relatively 

more permeable soils of the Wharfe and Ellerbeck soil classes exhibited high belief values 

of 0.6 and 0.3 respectively accounts for over 80% of slope instability in the transport 

corridor (Table 5. 30). This indicates that infiltration processes may play a considerable 

role in the slope stability status within the transport corridor. Equally highlighted were 

sections of the embankment that served as barriers to converging upland flow from 

surrounding agricultural fields (see Figure 5.32).   

The model identified as areas of low belief, areas where the classes provide weak support 

for landslide susceptibility such as in relatively flat transitional areas between earthwork 

cuttings and embankments. Low disbelief values also coincided with locations where there 

is strong support for instability. The uncertainty map identified locations along the transport 

corridor where the EBF model evaluated existing evidence as insufficient to conclusively 

map zones of slope instability. The uncertainty values were generally low across the 

corridor (0 to 0.2) with a mean uncertainty value of 0.04. The generally low uncertainty 

values indicates the appropriateness of datasets employed in modelling landslide 

susceptibility in the transport corridor and also low associated errors with regards to the 

prediction of locations with instability. However, the uncertainty map identified the well 

vegetated earthwork cuttings situated on the slowly permeable fine silty and clayey soils of 

the Brickfield 3 soil class west of the corridor as a location that might require additional 

information to ascertain its relative degree of stability. 
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Figure 5.35:  Integrated evidential belief map of the transport corridor earthworks 
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Figure 5.36: Integrated evidential disbelief map of the transport corridor earthworks 
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Figure 5.37: Integrated evidential uncertainty map of the transport corridor earthworks 

 

5.5.1 Validation and model comparison  

The classification results were first validated to evaluate how well the evidential belief 

function (EBF) models performed in rightly classifying the landslide locations with 

reference to available inventory records obtained from Network Rail. The success rate 

method provided an ample means of measuring the goodness of fit of the EBF landslide 

model to the training data. In addition to the provision of an overall model fit estimate for 

the models, the success rate technique also provides a detailed description of the model 

performance with respect to the susceptibility classes. The degree of model fit for the 



174 
 

modified TWI and the classic TWI evidential belief function (EBF) models is presented in 

Figure 5.38. The validation result shows a relatively equal goodness of fit for both EBF 

models with the area under the curve (AUC) value for the EBF model constructed using 

classic TWI computation (AUC= 89%) being slightly higher by less than 1% . Both models 

yielded high overall quantitative index of accuracy as indicated by the AUC values 

affirming the models high discriminative power in separating high instability susceptible 

areas from the relatively stable areas.  

 

Figure 5.38: Analysis of model performance (goodness of fit) for the modified TWI and 

classic TWI EBF models, based on the comparison between the susceptibility map and 

landslide inventory used in the modelling (training set). 

 

The success rate curve was also used to compare various cut-off combinations on the 

goodness of fit. Seven arbitrarily chosen ranks of landslide susceptibility index to be used 

as cut-off points (30%, 40%, 50%, 60%, 70%, 80% and 90%) were selected to further 

assess the reliability of model performance with respect to the susceptibility classes. Tables 

5.31 and 5.32 show the percentage of correctly and incorrectly classified landslide pixels of 

the landslide inventory, as well as for the non-landslide areas at designated cut off points 

for the modified TWI and classic TWI EBF landslide susceptibility models. Both tables 

reveal an indirect relationship between sensitivity and specificity for both landslide and 
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non-landslide areas. With susceptibility threshold set at 70%, a total of 96.73% of the 

landslide inventory were correctly categorised while only 44.55% of the non-landslide were 

correctly identified.  At the same threshold value of 70% the classic TWI EBF model is 

seen to be slightly more efficient (by a percent) in correctly classifying slopes that have 

landslides but less efficient in classifying stable slopes.  This is particularly important as the 

magnitude of false negatives (mapping units free of landslides as unstable) classification by 

models reduces the reliability of results. The overestimation by the classic TWI model can 

be attributed to the higher TWI values and the broad generalisation associated with TWI 

computation as a result of the assumptions on which the calculation is based.  Figures 5.39 

and 5.40 suggest an optimum cut-off value of 80% for the classification of stable and 

unstable terrain within the transport corridor slope. The determination of optimum cut-off 

value is unique to the purpose of the susceptibility application. The selection is often tied to 

a target population been investigated, which in this case happens to be high risk landslide 

prone sites within the transport corridor. Sites identified by site inspectors of Network Rail 

as high risk landslide prone areas assisted in the decision for the choice of the optimum cut-

off value.  Figure 5.41 shows the variability in sensitivity and specificity with increase in 

cut-off value.  The results show that at higher specificity the most susceptible sections of 

the earthworks are clearly highlighted. At a cut-off value of 80% most of the false positive 

cells present in the lower cut-off values were seen to have been classified into the stable 

terrain class and clearly identifying unstable regions on an earthwork cutting (see figure 

5.41). 



176 
 

Table 5.31: Percentage of correctly and incorrectly classified landslides and non-landslide 

pixels based of seven arbitrarily selected cut-off values (thresholds at which assessment 

were carried out) from the success rate curve for the modified TWI EBF model.  

Cut-off  
Landslide Non landslide 

Present Absent Present Absent 

30 100 0 0.04 99.96 

40 100 0 2.31 97.69 

50 99.74 0.26 10.36 89.67 

60 98.82 1.18 23.36 76.64 

70 96.73 3.27 44.55 55.46 

80 86.26 13.74 71.67 28.33 

90 43.72 56.28 92.98 7.02 

 

 

Figure 5.39: Cumulative frequency functions of sensitivity and specificity values for the 

TWI EBF model. 
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Table 5.32: Percentage of correctly and incorrectly classified landslides and non-landslide 

pixels based of seven arbitrarily selected cut-off values (thresholds at which assessment 

were carried out) from the success rate curve for ordinary TWI EBF model. 

cut-off 

Landslide Non-landslide 

Present Absent Present Absent 

30 100 0 0 100 

40 100 0 0.02 99.98 

50 99.83 0.17 9.03 90.97 

60 99.67 0.34 22.06 77.94 

70 97.85 2.15 42.77 57.23 

80 91.92 8.08 69.29 30.71 

90 65.09 34.91 92.01 7.99 
 

 

Figure 5.40: Cumulative frequency functions of sensitivity and specificity plotted against 

estimated probability (belief function). 
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90% cut-off point (classification accuracy of 42.72%) the model was able to effectively 

classify a considerable amount of the high risk areas on the embankment earthworks.  

Since the success rate approach evaluates model performance based the training data 

employed during model construction, the approach is considered inadequate for measuring 

the predictive capability of the developed landslide susceptibility model. The prediction 

rate method provides validation for landslide predictions as predictions are based on the 

comparison between the susceptibility modelling results and independent (spatial, temporal 

or random) landslide dataset not employed during the stage of model construction (Chung 

and Fabbri 2003; Tien et al 2012; Park 2011). The predictive capability of the EBF models 

was assessed by comparing the landslide validation set (401 landslide grid cells) with the 

landslide susceptibility map. Figure 5.42 shows the predictive rate curves for the modified 

TWI and classic TWI EBF landslide susceptibility models. The results show both models to 

have reasonably good prediction capabilities. The models exhibited almost equal prediction 

proficiencies as reflected in the AUC values of 77.8% for the modified TWI and 77.5% for 

the classic TWI EBF model.  Tables 5.33 and 5.34 demonstrate that the modified TWI 

model performed marginally better in the prediction of stable terrains. This is not at all 

surprising as the effects of vegetation cover, soil type and evapotranspiration were 

incorporated during model development. Adequate model prediction of stable slope will 

have considerable implication on the cost and overall planning process of the obligatory 

regular appraisal of earthwork stability as required by law in the UK. 

A paired two sample t-test was carried out to verify the existence of statistically significant 

differences between the two EBF predictive models. The paired two sample t-test was 

performed on the number of correctly predicted landslide and non-landslide cells associated 

with selected cut-off values (95, 90, 85, 80, 75, 70, 65, 60, 55, 50, 45, 40, 35, 30, 25, 20, 

15, and 10) derived from both predictions. The result of the t-test for the model predictions 

on correctly predicted landslide locations showed no significant difference between the two 

sample means (p value > 0.05). However a significant difference was observed between the 

sample means for the prediction of stable terrains. The t-test returned a p value of 0.008 at 

95% confidence interval. 
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Figure 5.41: Landslide susceptibility maps of the Whitchester cutting at different cut-off 

values. 

 

The landslide susceptibility map represents the spatial distribution of the degree of support 

to the presence or absence of slope instability based on available evidences. The relative 

susceptibility levels over the study area were visualised by means of five susceptibility 
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levels (very high, high, moderate, low and very low). An initial rank order transformation 

was applied to the integrated belief function map. The equal area classification method was 

used to classify susceptibility index values into 100 classes based on percentage area. The 

susceptibility class ranges were determined using results obtained from cut-off analysis and 

the susceptibility class breaks based on percentage of area as proposed by Pradhan and Lee 

(2010). The landslide susceptibility categorisation is presented in Figure 5.43 and final 

landslide susceptibility map is presented in Figure 5.44. 

 

Figure 5.42: Prediction rate curves for the modified TWI and TWI EBF landslide 

susceptibility models. 
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Table 5.33: Percentage of correctly and incorrectly classified landslides and non-landslide 

pixels based of seven arbitrarily selected cut-off values from the predictive rate curve for 

the modified TWI EBF model. 

Cut-off 

Landslide Non-landslide 

Present Absent Present Absent 

30 100 0 0.05 99.94 

40 100 0 2.39 97.61 

50 95.76 4.24 9.90 90.10 

60 87.03 12.97 22.29 77.71 

70 72.57 27.43 42.49 57.51 

80 46.88 53.12 68.60 31.40 

90 15.21 84.79 90.91 9.09 
 

 

Table 5.34: Percentage of correctly and incorrectly classified landslides and non-landslide 

pixels based of seven arbitrarily selected cut-off values from the predictive rate curve for 

TWI EBF model. 

Cut-off 

Land cover Non landslide 

Present Absent Present Absent 

30 100 0 0.04 99.96 

40 100 0 2.39 97.61 

50 96.76 3.24 8.66 91.34 

60 87.53 12.47 21.01 78.99 

70 70.57 29.43 40.70 59.30 

80 48.13 51.87 66.24 33.76 

90 15.71 84.29 89.79 10.21 
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Figure 5.43 Cumulative frequency functions of landslide occurrences in the rank landslide 

susceptibility index values. 
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Figure 5.44: Landslide susceptibility zonation map of the transport corridor. 

 

5.5.2 Model sensitivity 

The sensitivity of the susceptibility model to variation in the proportion of training data was 

assessed. The training dataset was randomly subset into 30%, 40%, 50%, 60% and 80%. 

The various proportions were employed in the training of the evidential belief model and 

the final susceptibility maps were assessed. The frequency distribution of the resulting 

susceptibility models reveal that an increase in the number of training data results in a 

decrease of the median (50th percentile) and increase in variability (10th to 90th percentile 

range). The frequency distribution of map generated from 30% and 40% training data are 

characterised by outliers. (See Figure 5.45). 
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Figure 5.45: Box plot showing the effect of the amount of training data on the robustness of 

the EBF model. 

 

This suggests that reduced number of training data affects the model’s prediction and 

robustness as some of the landslide locations were considered outliers by the model 

parameterised with fewer proportions of training data.  With increase in the proportion of 

training data the model variability is improved and consequently its goodness of fit to the 

training dataset. At 60% training data the median value is seen to have stabilised, thus 

implying that further increase in training data does not significantly improve the prediction 

capability of the model.  

The uncertainty values associated with the produced susceptibility maps were characterised 

by a common trend of decreasing uncertainty with increase in goodness of fit (Figure 5.36). 

With regards the model’s ability to correctly classify landslide prone areas with increasing 

training data, uncertainty associated with model predictions is seen to increase. The results 

also suggest that increase in the error associated with the percentage of rightly classified in 

the susceptibility prediction becomes marginal for percentages of training data exceeding 

60%.  
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Figure 5.46: The relationship between uncertainty and improvement in the model's 

goodness of fit. 

 

This finding underscores the proficiency of evidentially reasoning technique as an effective 

means of discriminating between stable and unstable slopes at an engineering scale slope 

assessment study.  

5.6 Summary 

Both interpolation techniques (IDW and ANUDEM) produced DTMs with similar margins 

of interpolation errors. The accuracy assessment of the various DTM resolutions assessed 

show apt representation of the overall landforms in the transport corridor. However, the 

IDW DTM is seen to retain more information on fine scale topography and less impacted 

by change in resolution, hence providing better representation of terrain derivative such as 

slope, aspect and curvature. The slightly higher interpolation bias associated the ANUDEM 

DTM is attributed to drainage enforced algorithm employed which modifies the DTM by 

constructing relatively smooth surfaces. Slope maps derived from both interpolation 

techniques exhibited the same general trend of decrease in the range of slope variability 

with increasing DTM grid size. The difference maps (IDW) reveal areas of the transport 

corridor characterised by lower slope gradients (0-4o) as essentially unaltered with 

increasing DTM grid sizes, but a slight underestimation of higher slope values in coarser 
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grid resolution. This same pattern was observed in the aspect and curvature grids. The 

smoothing effect of the ANUDEM algorithm is portrayed in the more pronounced drop in 

the maximum values for slope, aspect and curvature, with increasing grid sizes. However, 

the ANUDEM interpolation technique reflects better gradual downslope increase in values 

of specific catchment area (flow) and smoothens out the effect of the presence of micro-

topography commonly associated with the IDW DTM at similar resolutions. Hence, the 

ANUDEM interpolation routine enables better representation of flow and describes 

reasonably moisture distribution pattern in the transport corridor scale. 

Land cover classification from a multispectral imagery show that better result were 

obtained from the simple band selection approach where retained low variance features of 

the original image is seen to enhanced the performance of image classifiers in the overall 

characterisation of land cover classes. The merged high resolution land cover map of the 

transport corridor and the relative coarser LCM 2007 of the broader catchment provided 

ample representation of the various land cover types and a means for the evaluation of their 

contributions on surface runoff generation from the broader catchment into the transport 

corridor. The integration of information on soil and land cover is seen to present more 

realistic spatial distribution soil moisture, with antecedent moisture shown to exert more 

influence on runoff generation than rainfall intensity. Lower runoff values were seen to be 

commonly associated with more permeable soil classes and woodlands. The weight grid for 

generated runoff depths developed from the runoff coefficient map of the transport corridor 

and adjoining catchment area for the various soil-land cover combinations, revealed higher 

weights for grasslands on impermeable soils in contrast to those on more permeable soils. 

The woodlands were generally characterised by low weights and the weights are lower 

when underlain by permeable soils.      

The computed modified TWI grid indicates a general trend of increasing moisture with 

decreasing elevation and relatively wetter conditions for areas with considerable large 

upslope contributing area. Considerable catchment contributions to zones of moisture 

accumulation within the transport corridor from adjoining upland agricultural area were 

clearly visible. These are illustrated by points of ingress of flow into earthwork cuttings 

from the surrounding catchment and as zones of moisture accumulation along earthwork 

embankments.  
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The evidential reasoning approach enabled the integration of multiple spatial data for broad 

scale recognition of landslide prone earthworks. The degree of belief indicated the 

importance of slope with gradients between 25o and 35o and concave curvature. Permeable 

soils with intercalations accounted for over 80% of the existing slope instability, with 

proximity to river channel portrayed as not significantly contributing to the localisation of 

slope instability within the transport corridor. The ballast lain earthwork embankments 

were characterised by higher rates of instability with 47.5% of the embankments identified 

as relatively unstable in contrast to 5.1% of earthwork cuttings. The belief function for the 

woodlands suggests that this land cover type is responsible for about 32% of the total 

landslide occurrences within transport corridor. The earthwork embankment and cuttings 

covered by grasses accounted for only explain 18% of the total landslide occurrence.  

The modified TWI model achieved reasonable characterisation of stable and unstable 

slopes with AUC value of 77.5. Comparatively the classic TWI EBF model is slightly more 

efficient at delineation of zones of slope instability but less efficient at rightly classifying 

stable slopes, casting doubts on the reliability of the model predictions. The overestimation 

by the classic TWI model can be attributed to the broad generalisation on which the classic 

TWI computation is based. The modified TWI model sensitivity test suggests that limited 

number of training data for model parameterisation can adversely affect the model 

prediction and robustness.  However, at 60% training data, the prediction capability of the 

model is seen to have stabilised with further increase in the number of training data 

employed for model parameterisation having no significant improvement on the model 

predictions.  

The implications of the results as it relates to the broader science and its contributions to 

susceptibility assessment of transport corridor slopes are discussed in detail in chapter 6.    
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6  Discussion  

The analysis of the results presented in Chapter 5 is discussed in this chapter. The chapter is 

divided into five sections. Section 6.1 discusses the process of DTM creation and the 

impact of the interpolation techniques on the developed DTM and their derivatives. Section 

6.2 outlines the important findings associated with the production of the land cover map of 

the transport corridor. In Section 6.3 the results of analyses integrating catchment 

contributions into the characterisation of zones of moisture accumulation within the 

transport corridor environment are discussed. Discussions on results obtained from the 

integration of multi-source and multiscale geospatial data approach for recognition and 

prediction of landslide susceptibility in transport corridors using evidential reasoning 

approach is reported in Section 6.4. A summary of the implications of the results obtained 

in this study is discussed in Section 6.5. 

Slope instability within the transport corridor environment is largely associated with zones 

of flow accumulation and high soil moisture content. These hydrological processes are 

directly linked to terrain, land cover and underlying soil properties. High resolution datasets 

make available important terrain attributes such as slope and aspects which modulate solar 

insolation, evaporation and surface and sub-surface flow rates (Pack et al., 1999; Fu and 

Rich, 2003; Ma et al., 2010), curvature and specific catchment area that describe the 

accumulation of surface water (Sørensen et al., 2006; Tarboton, 2010) necessary for 

hydrological terrain analysis and source of important input in slope stability assessment. 

The DTM provides the basis for the derivation of many these parameters. The accuracy 

assessment of the DTM (Bater and Coops, 2009), an optimum resolution for adequate 

representation of earthwork topography (Tenenbaum et al., 2006; Miller et al., 2012) and 

the non-inclusion of the microtopographic effects in relation to terrain wetness index 

(Miller et al., 2012) are important considerations in the development of an efficient 

network-scale approach for remote assessment of hazards in the transport corridor 

environment. Other considerations include the capacity to sufficiently capture at fine scale, 

surface elements such as land cover and soil type known to significantly impact on slope 

stability. Unlike the land cover class that is seen to vary significantly over short distances in 

the transport corridor (Hardy et al., 2012; Miller et al., 2012), the underlying soil properties 
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have been shown to be relatively consistent over similar distances throughout the test 

corridor (Network Rail, 2005; Miller et al., 2012).     

6.1 The impact of interpolation technique on DTM generation 

The results of errors associated with the accuracy of interpolated heights for the IDW and 

ANUDEM interpolated DTMs show that both interpolation technique produced DTMs with 

similar magnitude of mean error values with the IDW interpolated DTMs exhibiting 

slightly better error margins with coarsening grid resolution (see Chapter 5 and Table 5.1). 

There is a gradual loss in DTM quality with reduction in spatial resolution of DTM as 

indicated by the increasing RMSE. However, the rate of DTM deterioration with reduction 

in spatial resolution is more pronounced in ANUDEM DTMs. This is consistent with 

finding from similar studies (Aguilar et al., 2005; Vaze and Teng, 2007; Bater and Coops, 

2009). The slightly more conservative nature of the IDW DTMs means that greater detail of 

fine scale earthwork topography is retained at lower resolutions. This is particularly 

important in relation to the selection of an optimum DTM resolution, as TWI is better 

represented in coarser resolution so as to avoid the inclusion of the effects of 

microtopography (Sørensen et al., 2006; Sørensen and Seibert, 2007). 

The 0.5m DTMs for both interpolation techniques were found to provide the most accurate 

representation of the of the transport corridor terrain of all the DTM resolutions assessed as 

revealed in their lower average residues and RMSE values. Comparatively, the average 

residual and RMSE values show the IDW DTMs as providing better terrain representation 

for all ten grid resolutions assessed. Both interpolation techniques produced DTMs with 

very similar mean absolute error values. But the error range (mean absolute error) with 

increase in grid cell size is higher in the ANUDEM DTM. The mean absolute error 

increases from 16 to 24cm for the ANUDEM DTMs as against 15 to 21cm for the IDW 

DTMs. This marginally higher interpolation bias associated with the ANUDEM DTM is 

attributed to the drainage enforced algorithm employed (Hutchinson, 2013). Some authors 

have reported achieving DTMs of higher accuracy with other interpolation techniques such 

as kriging (Rees, 2000), and natural neighbour (Bater and Coops, 2009). Lloyd and 

Atkinson (2002) demonstrated that the derived benefit from using geostatistical approach 

over IDW is lost when densely populated data is available. The natural neighbour routine 

requires an initial creation of a TIN from source data for the identification of adjacent 
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points and Vornoi polygons used in the weighting of each point during the interpolation 

exercise (Bater and Coops, 2009) and as a result the interpolation technique handles poorly 

large datasets (Bobach et al., 2009).  

The IDW technique has been described as highly influenced by the user selected 

parameters by Bater and Coops (2009). It is sensitive to clustering and like all exert 

technique handles poorly summits not located on sample points. It also has a tendency of 

point isolation resulting in what is termed the “bulls eye”. The IDW routine has however 

been shown to perform optimally (terrain representation) when the exponent of distance 

that controls the significance of surrounding points on the interpolated value is allocated a 

value of two (Yue et al., 2007). The ANUDEM interpolation routine is characterised by a 

more homogenous behaviour even when point density is sparsely distributed or reduced as 

opposed to the IDW technique (Hutchinson, 2008).  

Both interpolation routines are computationally efficient enabling the interpolation of over 

a million points within reasonable computational time and as such are well fitted for 

handling massive data commonly associated with the ALS dataset. This property is 

particularly important to the transport corridor project, where slope stability assessment 

requires high resolution terrain data covering linear tract that may extend for several 

kilometres. Both interpolation techniques delivered apt representation of the general 

landforms with the highest bias in elevation values found around landforms with steep 

gradients.  

6.1.1 Impact of Interpolation on terrain derivatives 

The shape and characteristics of fine-scale topographic features play an important role in 

the determining local patterns in aspects and potential incidence of solar radiation (Hardy et 

al., 2012). These terrain features can influence local soil moisture and vegetation patterns 

(Moeslund et al., 2013; Maynard and Johnson, 2014). The general pattern observed from 

the computed CFDs and extracted key percentile values of derived terrain attributes with 

change in grid resolution show that for the slope grids, a reduction in derived slope values 

with increasing grid cell size. The difference in estimated slope values with coarsening 

DTM resolutions is minimal in plains and landforms with relatively uniform relief and most 

pronounced in terrains with steep and highly undulating relief such as the earthwork 

cuttings (Figure 5.10). As earlier mentioned in Section 5.2.2, typical slope gradients 
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associated with earthwork cutting and embankments within the transport corridor range 

from 10o and 49o. This range of slope values is not significantly altered with change in grid 

resolution in the IDW DTMs with a maximum difference of 5o existing between the 0.5 and 

5 m DTMs across the 10o and 50o slope range. However, a significantly higher maximum 

difference of 16o was recorded for the ANUDEM DTMs at the corresponding resolutions 

and slope range. The profile curvature is slightly underestimated with increasing grid cell 

sizes in the IDW DTMs (see Table 5.4). The profile curvature values obtained from 

ANUDEM DTM were largely underestimated with increasing grid cell sizes. The 

underestimation of profile curvature may adversely impact on the characterisation of 

concave and convex curvature information of fine scale features responsible for local 

dispersion and convergence zones on earthwork embankments and cuttings. 

The erratic nature that characterises the calculated modified TWI values for the IDW 

interpolated DTM are essentially the responses to fine scale topographic features contained 

in the DTM. The erratic nature of these responses is seen to obscure the overall downslope 

flow trend. The general trend of surface flow pattern is, however, better captured in the 

ANUDEM interpolated DTMs that construct relatively smooth surfaces ensuring the 

calculation of continuous flow as revealed in the gradual downslope increase in specific 

catchment area values (see Figure 5.18). Moreover, steep slopes (greater than 50o) are seen 

to be poorly represented in the ANUDEM interpolation routine (see Figure 5.11). This is 

because to ensure a smooth continuous surface alongside continuous first-derivative 

surfaces like slope gradient and direction, the ANUDEM routine computes minimum 

curvature for each grid cell which can significantly alter the values of first derivative 

occurring within the vicinity of the data points (Hutchinson, 2013). The consequence of the 

computed minimum curvature for each grid cell, is the significant averaging of values at 

these locations. As a result, a second derivative like curvature is grossly underestimated by 

the ANUDEM routine (ERSRI, 2010). In contrast, first and second derivative surfaces 

derived from the IDW interpolated DTMs present a consistent behaviour for values 

calculated for the various grid resolutions investigated.  

The results also show that the attenuation of relief and systematic reduction in values of 

calculated terrain derivatives with increasing grid cell size from 0.5 to 5 m do not 

significantly alter the IDW DTM characteristics as portrayed by the lack of significant 
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difference between sample means (p values greater than 0.05 at 95% confidence level) 

obtained for the different resolutions of the IDW DTMs (see Table 5.2). This suggests that 

this range of DTM resolutions (0.5 – 5m) can provide a reliable basis for the extraction of 

slope stability terrain parameters. This fact is crucial to the development of an operational 

methodology. Though better terrain representation is generally achieved with higher 

resolution, issues of processing time and data storage capacity often associated with 

massive dataset usually necessitate an optimum resolution that provides adequate 

representation of the earthwork topography alongside reasonable processing cost. 

Sensitivity testing (discussed in section 5.2.5) indicated an optimum grid resolution of 2.5 

m. This grid resolution ensured data processing at reasonable processing cost and provided 

adequate representation of first and second order terrain derivatives such as slope, aspect 

and curvature. Moreover, minimal inclusion of the effects of microtopography on the 

computation of TWI values was observed at this grid resolution (Table 5.6). Schmidt and 

Persson (2003) reported an optimum resolution of 2 m for a kriging interpolated DTM 

employed in the computation of TWI values. However Schmidt and Persson (2003) 

indicated the use of a filter with a radius of three cells which most likely aided in 

supressing small scale variation.   

At detailed scale slope assessment, adequate representation of important terrain attributes 

known to exert considerable influence on soil moisture distribution and slope stability are 

better with specific interpolation techniques. The use of multiple interpolation routines in 

slope stability assessment is not common practice possibly due to the introduction of 

uncertainties as a result of interpolation bias, processing and data storage cost. However, 

meaningful consideration on the advantages and disadvantages of the various interpolation 

routines is required as the use of two interpolation techniques may be necessary for ample 

characterisation of the influences of various terrain attributes at engineering scale landslide 

susceptibility assessment.     

6.2 Land cover map development 

A cardinal aim of the development of a land cover map for the study area was for the 

categorisation of the various land cover types as represented in the CASI imagery in line 

with their hydrological responses and its subsequent integration into the modelling of 

overland flow from adjoining upland agricultural areas from the broader catchment. Land 
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cover type within the transport corridor is seen to vary quite considerably over relatively 

short distances (Miller et al., 2012). The capacity to sufficiently capture at fine scale, 

surface elements that significantly impact on slope stability was the key motivation behind 

choice of dataset and classification approach. The multispectral aerial (CASI) imagery 

provided an ample source of information on vegetation cover with spectral signatures of 

individual plant species as well as more complex mixed pixel communities better 

differentiated by reason of its high spectral resolution. The selection of an optimal subset of 

bands tailored towards vegetation analysis proved an effective means of reducing data 

dimensionality (a pre-processing step to land cover classification) and produced land cover 

maps (Figure 5.19 and 5.20) with better classification accuracy as evident in the higher 

producer and user accuracies of the individual classes during the analysis in contrast to 

maps produced using spectral transformation MNF technique (Table 5.23).  

Two trends common to both classification maps are the low producer and user’s accuracies 

associated with land covers with significant spectral overlap and improvement in 

progression of class and overall accuracies with merging of classes with considerable 

spectral overlap. The preservation of all the low variance information from the original 

image in the simple band selection image ensures that discerning information on vegetation 

types as a result of variation in height of the reflectance curve are made available for the 

land cover classification routine (Van der Meer and de Jong, 2001). The presence of the 

low variance information generally had two implications on the overall classification. On 

one hand, it optimised the proficiency of the maximum likelihood classifier by making 

available subtle low variance information that effectively discriminate between land cover 

types with close proximity in their mean vector and covariance values (Tsai and Philpot, 

2002). This is evident in the better class separation achieved for the pasture, woodlands and 

shrubs land-cover classes. On the other, the presence of correlated low variance information 

results in the widening of the class distribution and increases the level of overlap between 

classes. The confusion matrices obtained for land cover classification maps derived from 

the simple selected band approach reveal considerably higher rates of misclassified pixels 

for land cover classes with considerable spectral overlap, as revealed in low producers’ 

accuracies for classes. (Tsai and Philpot, 2002).  
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Unlike the simple band selection approach, the MNF spectral transformation technique 

renders relationships between different groups of pixels representing the different land 

cover classes more distinctively by the removal of random noise or correlated lower 

variance features (Mather and Koch, 2011b). This effect is clearly evident in the lower 

number of misclassified pixels within the pasture land cover class in the contingency matrix 

of principal component image. However, the removal of random noise or correlated lower 

variance features was found to be counterintuitive with highly heterogeneous land cover 

classes (shrub) that display significant signature overlap in spectral space with other land 

cover classes. As a result, the considerable reduction in the number of misclassified pixels 

between classes in the classification maps as ensured in the principal component image, 

does not necessarily translate into higher overall classification accuracies as expected. But 

resulted in the over-estimation of the bare earth class and the underestimation of the shrub 

land cover class as shown by the low producers’ accuracy recorded for these classes. 

Consequently, the reliability of modelling results obtained for both classes derived from 

MNF spectral transformation image may be inexact. This finding is consistent with similar 

studies (Tsai and Philpot, 2002) that show that image segmentation using principal 

component analysis often introduces the possibility of an over estimation due the absence 

of important low variance information that would have otherwise served as useful 

indicators in spectral segregation. It is however noteworthy that the bare earth land cover 

class is also one of the categories with relatively few available training pixels in a largely 

well vegetated transport corridor. As such, the overestimation may be a function of using 

training data that inadequately described the high-dimensional distribution of the land cover 

class. The overestimation of the bare earth class has important implications on the overall 

mapping of soil moisture in the transport corridor. As bare earth locations are generally 

characterised by high overland flow due to the absence of vegetation cover, thus its 

overestimation may largely undermine weights derived for locations during the modelling 

of catchment contribution to overland flow in the transport corridor. A number of advanced 

spectral processing techniques such as derivative analysis (Tsai and Philpot 2002) and 

continuum removal analysis (Mutanga et al., 2005) that enables the capturing of low 

variance features and efficient discrimination between land cover classes are available. 

With derivative analysis, specific derivatives of spectral that characterise the desired 

information are identified and by adding these derivatives as features, the land cover 
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classification results are optimised (Tsai and Philpot, 2002). The continuum removal 

analysis involves isolating spectral features of interest, typical the red edge in vegetation 

analysis. A line of continuum which is defined as a hull over an absorption feature is 

removed by dividing the reflectance value at each wavelength along the line by the 

reflectance value of absorption feature (Mutanga et al., 2005). These techniques were 

however not explored as the primary main of the use of the multispectral CASI imagery 

was simply for the development of a land cover map for the transport corridor.        

6.3 Catchment contribution 

Located entirely within the floodplains of the South Tyne River and bounded to the north 

and south by valley walls of the Tyne Gap, considerable amount of the overland flow 

responsible for localised saturation that characterise areas of topographic convergence 

within the transport corridor are believed to be generated from the surrounding upland 

agricultural areas of the adjoining broader catchment. A more holistic approach to the 

assessment of the spatial variability of hydrological influences on slope stability within the 

transport corridor required the inclusion of the contributions of the broader catchment. 

Unlike the oversimplification of overland flow in the classic TWI approach that assumes 

the entire upslope contribution in flow accumulation is relatively unaffected by processes of 

infiltration and evapotranspiration. A novel approach for the characterisation of soil 

moisture ensured that the influence of variability in soil hydrologic properties and 

vegetation cover are incorporated in providing a relative measure of terrain saturation 

across the transport corridor. With rainfall as the main trigger of slope instability in the UK 

and runoff generation as consequences of infiltration and saturation excesses, the SCS 

curve number method accounts for the contributions of infiltration and saturation in the 

computation of direct runoff as consequence of rain storms. The technique was originally 

advanced for use in the USA and is yet to be fully calibrated to reflect prevailing weather 

and soil conditions in the UK (Hess et al 2010). However the SCS CN approach is robust 

across a large range of climatic conditions, land cover land use and soil types and currently 

forms an essential part of the Catchment Flood Management Plan (CFMP) tool developed 

by the Environment Agency. The CFMP tool is used to evaluate the changes that may arise 

as a result of modifications in rural land management and land use activities and 

consequent impact on flood generation (Environment Agency 2009). The SCS CN model is 

an event model for prediction of direct runoff depths for individual storm events. 
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Evaluation of six separate storm events with varying precipitation intensity and antecedent 

moisture condition showed that the antecedent moisture condition plays a more significant 

role in the magnitude of runoff generated than rainfall intensity (Table 5.25). Lower runoff 

depths were associated with more permeable soil classes (Class B and C), while class D 

soils rich in clay fractions exhibited higher depths of surface runoff (Table 5.26).  

With regards to the land cover types, the woodlands exhibited lowest runoff values in 

comparison with other land cover classes. The weight grid produced a more realistic spatial 

distribution of soil moisture that takes into cognisance the effects of infiltration and 

evapotranspiration. The uncertainty introduced into the computation of TWI by the 

introduction of the developed weight grid was found to be insignificant. The results of the 

sensitivity analysis from the evaluation of the robustness of the developed weights showed 

that the adjusted weight values for the grasslands and woodlands (discussed in Section 

5.4.2) did not result in any global alteration in the distribution pattern of generated surface 

runoff (Table 5.27). However, the results suggest that the changes in the woodland 

distribution (TWI mean 5.32) will have more considerable effects on the soil moisture 

content in the test site than variation in grassland management (TWI mean 5.18).     

The integration of the SCS curve number procedure into the traditional computation of 

TWI for estimation of direct runoff generation provided a more realistic representation of 

soil moisture estimation. The modified TWI technique utilised a weighted flow 

accumulation grid that incorporated the contributions of vegetation cover and soil type into 

the computation of the upslope contributing area, therefore enabling the local evaluation of 

the contributions emanating from the wider catchment flow field and the local input 

variables at each grid cell location.  Topography wields primary control over the 

distribution of soil moisture in the study area. However, the weighted flow accumulation 

grid also outlines the influence of land cover and underlying soil type on computed TWI 

values. The modified TWI grid indicated that the highest runoff rates are associated with 

locations devoid of vegetation cover, while the woodlands are characterised by the least 

generated runoff depths. Overland flow is largely reduced in woodland as a result of 

inception, high infiltration rates and also near surface, field saturated hydraulic 

conductivities (Archer et al., 2013). Thompson et al. (2010) showed that the internal 

drainability of soils (saturated hydraulic conductivity) are considerably improved by the 
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presence of high root densities and root diameters. Root activities enhance soil 

macroporosity and structure resulting in larger soil pore networks and increased soil 

permeability. Intrinsically, the permeability in woodlands is usually higher than that for 

same soil supporting other types of vegetation cover. In addition, the presence of trees on 

earthwork cutting and embankments have been shown to slightly improves the stability 

status of the infrastructure as these sections are relatively drier possibly due to increased 

evapotranspiration activities at depth (Miller et al., 2012).  

Generated runoff depths for the different soil types in the study area showed generally low 

values for (1) the well-drained stony loam over gravel of the Ellerbeck association, (2) the 

Alun and Wharfe series, comprised of deep well drained dominantly fine to coarse loamy 

typical brown alluvial soils extensively associated with river flood plains and (3) the deep 

stone less permeable loam of the Brickfield 3 group. While higher runoff generation were 

seen to have characterised the shallow peat on acidic igneous rocks of the Bangor group, 

the slowly permeable seasonally wet deep loam to clay, loam over sand, peat to loam, loam, 

bog peat and blanket peat of the Dunkeswick, Anglezarke, Wilcocks 1, Enborne, Longmoss 

and Winterhill groups respectively.   

Predicted soil moisture patterns as depicted by the developed terrain based flow (modified 

TWI) model for the transport corridor are consistent with the general patterns reported in 

various studies (Tenenbaum et al., 2006; Sørensen and Seibert, 2007; Hardy et al., 2012), 

with moisture accumulation confined to zones of flow convergence (in concave and low 

gradient area) and increased propensity for runoff generation in steep convex terrains. The 

modelling results show evidences of points of ingress of flow of runoff from surrounding 

broader catchment topography into the transport corridor earthworks. The modified TWI 

model identified the predicted points of ingresses as zones of localised moisture 

accumulation. There are also evidences suggesting considerable flow incursion in sections 

of earthwork embankments from surrounding upland agricultural fields resulting in 

increased moisture accumulation along northern margins of embankment earthworks east of 

the corridor. These points of ingresses (described in Section 5.4.2) are characterised by 

relatively higher concentration of soil moisture as indicated in associated high TWI values.  

In addition, the south facing earthwork slopes exhibit relatively higher soil moisture content 

owing to the relatively larger adjoining upland contributing area (Figure 5.22). Increased 
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pore water pressure, as a result of moisture accumulation at these zones of flow 

convergence, is expected to reduce effective stress of the slope make up material and 

increases the slope’s susceptibility to instability (Iverson, 2005). Typically, around 

earthwork cuttings, high concentration of soil moisture was recorded for the top and toe of 

the earthwork with comparatively lower soil moisture values half way down the slope, as 

opposed to the gradual increasing downslope flow pattern described by Tenenbaum et al. 

(2006) for geomorphological slopes. A likely explanation for this may be the planar nature 

of the earthwork cutting that ensures increased downward flow of generated surface runoff. 

Furthermore, the earthwork cuttings also exhibit increased mid-slope concentration of soil 

moisture along sections of the slope face. The profile curvature grid shows that the points 

of increased soil moisture content coincided with areas of significant concave curvature 

values, an indication that the microtopography may influence considerably soil moisture 

distribution at this scale of modelling. The presence of curvature can provide local 

accentuation to pore water pressure which may adversely affect slope stability especially in 

well drained soils with intercalations where the occurrences of perched water tables are not 

uncommon (Baum et al., 2005).  

The earthwork embankments in the test corridor are large covered by ballast and in some 

sections sparsely vegetated but extensively bounded by a linear strip of a mixture of 

matured low and high water demand trees. The wetness index values obtained for the 

earthwork embankments are generally low describing drier conditions (Hardy et al., 2012). 

Hence, mapping of soil moisture without due consideration to upland contributions can be 

misleading, as sections of the embankments east of the corridor may be considerably 

damper than indicated by TWI values owing to infiltrating water from adjoining zones of 

moisture accumulation (Figure. 5.25). Studies on slope stability assessment conducted on 

embankments and cuttings across the UK, have shown that infiltrating overland flow from 

areas bounding earthwork infrastructure can result in the cess-heaving process (Perry et al., 

2003b; Ridley et al., 2004; Smethurst et al., 2012), a process that significantly alters the 

strength characterisation of underlying clay foundations and eventually weaken the 

overlying soils (Briggs et al., 2013). Though these studies reported findings for 

embankments founded on the plastic over-consolidated London clay deposit, similar 

conditions exist within the test corridor. As 27% of the earthwork infrastructure in the study 

area is underlain by slowly permeable seasonally waterlogged fine loamy fine loamy over 
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clay and clayey soils. A geotechnical survey report on a section of the transport corridor 

also revealed the presence of a clay layer incorporated at the toe of the earthwork 

embankments (Network Rail, 2005). Infiltrating water can increase existing pore water 

pressure distribution and therefore the effective stress of soil and invariably the slope 

stability (Smethurst et al., 2012).              

6.4 Evidential reasoning model 

Evidential reasoning provides an efficient approach for the integration of multi-sourced, 

multi scale evidences (dataset) used in generating degrees of support required for the 

delineation of zones of instability. Cuttings and embankments are essential components of 

the transport corridor commonly spanning several kilometres. These infrastructures are 

usually under strict statutory safety obligations. The use of instrumentation for the 

diagnosing the propensity for instability in slopes and embankments has been very effective 

in providing better understanding on slope behaviour and evaluation of remedial techniques 

(Ridley et al., 2004; Briggs et al., 2013). Much of which involves monitoring and analysis 

of geotechnical properties of slopes make up materials, with measurements carried out over 

a number of years to capture temporal changes in the behaviour of the earthworks (Briggs 

et al., 2013). However, the approach is expensive as such restricting its application to 

spatially limited high priority locations. Process based models are generally employed to 

facilitate instability assessment at engineering scale. Process based models can provide a 

clearer understanding of the physical processes and behaviour mechanisms at work within 

earthworks and how these infrastructures are influenced by extreme climate and vegetation 

(Clarke and Smethurst, 2010; Miller et al., 2012; Smethurst et al., 2012). These models are 

however specific to local meteorological, vegetation, hydrological, lithological and geo-

mechanical conditions of individual slopes. Hence the extrapolation of results beyond the 

domain of acquisition is often challenging (Miller et al., 2012). The high input data demand 

and parameter calibration are important concerns when considering a network scale 

application. Implementing numeric modelling on a network scale may require an extensive 

catalogue of site investigations providing details of geotechnical properties on a localised 

basis across the UK.  

The developed methodology provided a probabilistic data driven approach for assessing 

slope failure hazard in the transport corridor environment. The probabilistic model 
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incorporated as input data key factors noted during detailed field work and duly 

investigated landslide triggering and conditioning factors reported for the UK transport 

corridor slopes (Perry et al., 2003b; Ridley et al., 2004; Hardy et al., 2012; Miller et al., 

2012). Eight landslide conditioning factors namely slope gradient, aspect, profile curvature, 

distance to drainage, land-cover, TWI, SPI, soil and a triggering factor (precipitation) were 

utilised in the study. Underlying geology was not considered as the study site was 

essentially underlain by the same bedrock geology. The high spatial resolution of the input 

geospatial dataset ensured faithful representation of terrain features and the capturing of 

land cover variability which within the transport corridor varies quite substantially over 

short distances. The ALS data provided a reliable basis for extraction of terrain derivatives, 

while the multispectral aerial imagery enabled realistic mapping of vegetation cover 

variability at fine spatial scales.  

Results of the basic probability assignment functions (evidential belief layer) computed for 

the various landslide conditioning factors considered in the study identified the ballast-lain 

earthwork embankments as highly susceptible to slope instability. The man-made land 

cover class that essentially covers the ballast-lain earthworks explains 50% of the total 

landslide occurrences in the transport corridor. The earthwork embankments are generally 

steep sloped, heavily to sparsely vegetated in places and the presence of large amount of 

ballast permits high surface water percolation. The earthwork embankments in Hardy et al. 

(2012) were portrayed as relatively drier by reason of the predicted low soil moisture 

content inferred from the TWI values obtained for these locations. The classic TWI 

approach that assumes zero infiltration was utilised in the study. The inferred moisture 

content can only hold for the modern well compacted highway embankments constructed to 

prevailing high industry specifications with provisions of adequate internal drains. But 

same cannot be said for the Victorian embankments test corridor constructed from poorly 

compacted soils and rock fragments (Network Rail, 2005) with predicted ingress of surface 

flow from surrounding zones of flow accumulation (Figure 5.25). Greenwood et al. (2004) 

noted the use of shrubs and trees in providing potential reinforcement to marginally stable 

embankments and cuttings within the transport infrastructure in the UK. This may explain 

the stretch of mature to semi matured trees at locations identified as zones of flow 

convergence in the modified TWI map. Studies have also shown that the pattern and extent 

of seasonal soil moisture content in embankments can be substantially influenced by the 
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tree species and root depth (Greenwood et al., 2004; Briggs et al., 2013). High water 

demand trees are often able to reduce excess soil moisture and sustaining the generated 

moisture deficits through the wet UK winter months (O'Brien, 2007). Thus, the belief 

function shows that woodlands are associated with about 32% of the total landslide 

occurrences within transport corridor, while embankment and cuttings covered by grasses is 

seen to only account for 18% of the total landslide occurrence. 

The belief functions for the underlying soils in the transport corridor reveal high propensity 

for slope instability in the relatively more permeable soils (Alun, Ellerbeck and Wharfe soil 

classes) in contrast to the loamy clayey seasonally waterlogged slowly permeable soils of 

the Nercwys and Brickfield series. This is not at all surprising as seasonally waterlogged 

clayey layered soils are often consolidated (National Soil Resources Institute, 2008), 

occasioning most of the storm water from precipitation culminate in surface runoff. 

Earthwork cuttings in these soils are relatively stable with provision of sufficient drains. 

Baum et al. (2005) explains that percolating water is more impactful on slope instability as 

built up pore pressure known to reduce the stability of slopes when it accumulates above a 

less permeable intercalation. The Wharfe soil class which is essentially river alluvium made 

up of deep stone-less permeable fine loamy soils, variably affected by groundwater (Avery, 

1980), is associated with high occurrences of landslide and invariably assigned a higher 

belief function value by the model. Though permeable and largely well drained, the 

presence of clay enrichment in the non-calcareous loamy or clayey alluvium (more than 30 

cm thick) Wharfe soil class is known to sometimes result in winter flooding (National Soil 

Resources Institute, 2008). The relatively better drained Ellerbeck series is dominantly free 

draining loamy-gravely soils developed on very stony glaciofluvial or river terrace drift  

(National Soil Resources Institute, 2008), appears to be relatively more stable than the 

Wharfe soil class but less stable in comparison to the loamy clayey seasonally waterlogged 

slowly permeable soils of the Nercwys and Brickfield series.  

6.4.1 Evidence integration 

Unlike other spatial data integration models that produce a single landslide susceptibility 

map, the evidential belief model supports a series of basic probability assignment functions 

including belief, disbelief and uncertainty. This usually results in the production of three 

maps providing quantitative description of the relationships that exist between landslide 



202 
 

occurrences and the input multiple spatial layers. In this study, three basic probability 

assignment functions maps were produced. The belief map is considered representative of 

the correlation between landslide location and each conditioning factor; as such the 

integrated belief map served as the landslide susceptibility map used in deriving the 

landslide susceptibility index (LSI) of the study area. The disbelief map highlights locations 

where available evidences are not in support of the existence of instability. The uncertainty 

map indicates locations characterised by lack of information or where available evidences 

are insufficient to categorise as stable or unstable. A fourth map representing plausibility is 

sometimes produced by authors. The map presents the summed up degrees of belief and 

uncertainty on the existence of slope instability for each pixel location in the study area. 

The belief, disbelief and uncertainty function maps were produced for this study. 

The integrated belief map showed the earthwork cuttings as relatively more stable with 

only 5.1% of the earthwork cuttings identified as unstable as against 47.5% for the 

earthwork embankments. The EBF model infers the presence of infiltrating surface 

moisture and fine scale microtopography as two important components seen to influence 

the localisation of sections of earthworks prone to failure. This is revealed in the high 

susceptibility to landslide occurrences associated with (1) earthwork cuttings on permeable 

and largely well drained soil formations with intercalations of clay materials, (2) presence 

of fine scale concave curvature responsible for localised soil moisture concentration mid-

slope on earthwork cuttings and (3) ingresses of surface moisture into earthwork cuttings 

and embankments. The influence of underlying soil types to landslide location is 

underscored by the model’s allocation of high values of belief to the relatively more 

permeable soils with variable intercalations of the Ellerbeck and Wharfe associations in 

contrast to the loamy clayey seasonally waterlogged slowly permeable soils of the Alun, 

Nercwys and Brickfield series (see Table 5.30). The well drained and permeable soils of 

Ellerbeck and Wharfe accounted for over 80% of slope instability in the earthwork 

infrastructure. Slope behaviour as it pertains to infiltrating rainwater is largely influenced 

by the hydraulic properties of the soils such as hydraulic conductivity and soil moisture 

characteristics (Reid, 1997). Variation in hydraulic properties of the soil can modify the 

distribution of pore water pressure and invariably the soil’s effective stress field during 

rainwater infiltration (Reid, 1997; Cho and Lee, 2001).  
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Another variable that was identified by the EBF model as influential to the localisation of 

zones of slope instability is the presence of curvature. Concave features can serve as 

miniature reservoirs increasing local infiltration rates, retaining soil moisture for relatively 

longer periods and at favourable slope gradients may develop shear surfaces (Ohlmacher, 

2007). The concave surfaces accounted for 49% of the total landslide while convex 

curvature accounted for 33% of the total landslide occurrences. The degrees of belief 

indicated the importance of slope with gradients between 250 and 350 as most influential to 

the incidence of slope instability in the transport corridor. Miller et al. (2012) reported a 

linear relationship between the increasing slope gradient and slope instability. However the 

EBF model reveals a curvilinear relationship with landslide frequency increasing with slope 

gradient to a threshold of 35o above which landslide density decreases. Reasons for 

curvilinear behaviour are found in the relationship that exist between slope instability and 

competent geological formations (rocks and consolidated clays) in terrains where the 

steeper margins of the range of existing slope are represented by competent lithology 

(Iwahashi et al., 2003; Ayalew et al., 2004). The earthworks in the test site have a slope 

range of between 11 and 49 with mean slope gradient of 26o. Slope gradients greater than 

49o are associated with retaining walls, rock gibbons and abutments which by nature are 

relatively stable. Thus at steeper gradients a reduction in landslide density is expected. 

Relatively flat transitional areas between earthwork embankments and cuttings where the 

various evidences provide weak support to the incidence of slope instability were identified 

as areas of high degree of unbelief by the EBF model. Locations along the transport 

corridor where the EBF model evaluated existing evidence as insufficient to conclusively 

map zones of slope instability were characterised by high uncertainty values. The 

uncertainty map provides a measure of error (uncertainty) associated with the probability 

estimate per pixel in the landslide susceptibility map. The uncertainty values obtained were 

generally low across the corridor (Range = 0 – 0.2; mean = 0.04), a reflection of the degree 

of appropriateness of the selected landslide susceptibility conditioning factors (Figure 

5.27). However the EBF model identified the well vegetated earthwork cuttings situated on 

the slowly permeable fine silty and clayey soils of the Brickfield 3 soil class west of the 

corridor as a location that requires additional information to ascertain its relative degree of 

stability. Generally the uncertainty values obtained for the earthwork infrastructure are 

higher for earthwork cuttings. This may be due to the nature of the landslide inventory data 
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used in training the EBF model. The inventory data is comprised of locations of failed 

slope and extent of work required. The spatial extent recorded for each location was not just 

the delineated extent of failure but extents recommended for remedial work which 

generally intrudes slightly into unaffected sections of the slope. The exert failure 

boundaries at the identified failed slope locations could not be verified during field work as 

remedial works had already been carried out by the Network Rail. The spatial heterogeneity 

in terms of land cover and soil type may also have contributed to the relatively higher 

uncertainty values cuttings in the western end of the corridor. The influence of fine scale 

microtopography in the localisation of zone of soil moisture accumulation on these cuttings 

is relatively concealed under a canopy of mature and semi mature trees on the cuttings.     

6.4.2 Model validation and comparison 

Model validation is an integral part of landslide susceptibility assessment and often carried 

out to analyse the degree of agreement between the results derived from modelling and the 

observed data. Landslide susceptibility maps are essentially comprised of information on 

the presence and absence of landslides within an area of interest. As such, accuracy can be 

easily assessed by comparison of inventory data with the susceptibility modelling outcome 

(Chung and Fabbri, 2003). Model predictions is generally tested against: (1) information 

used to parametrise the EBF model (goodness of fit) and (2) against an independent 

validation dataset. Model validation against an independent dataset provides insight on the 

predictive capability of the model. Generally a higher level of model fit is obtained in 

comparison to its predictive capability. Nonetheless, of the two model properties, the 

predictive capability is of primary concern, since goodness of fit only explains how well the 

model fits known landslide distribution used in its parametrisation.  

 Degree of model fitting 

The success rate method provided a measure for the goodness of fit of the EBF model 

prediction to the training data, in addition to detailed description of the model performance 

with respect to the susceptibility classes. The modified and classic TWI EBF models results 

were validated against the test data used in parameterising both models (see Section 4.4.2 

and 5.5.1). The success rate curve for the modified TWI EBF model (Figure 5.28) indicated 

that the most susceptible 10% class contains 44% of the landslide area, the most susceptible 

20% class contains 86% of the total mapped landslides and the most 30% contains 97% of 
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the total mapped landslides. Both models suggest that a decision threshold set at 70% (the 

most susceptible 30%) will explain 97% of the total landslides in the study area. The 

modified TWI EBF model has an overall goodness of fit of 88.5 %, while the classic TWI 

EBF model exhibits a slightly better overall goodness of fit of 89%.  

A contingency table of the models’ misclassification rates showed the classic TWI EBF 

model as slightly more efficient (by a percent) in correctly classifying slopes that have 

landslides but less efficient in classifying stable slopes. For example, the classic TWI EBF 

model at a decision threshold of 70% of ranked landslide susceptibility, correctly classified 

97% of landslide pixels (true positives) but could only identify 45% of pixels free of 

landside incidence (true negative). In contrast, the modified TWI EBF model was shown to 

have correctly classified 98% of landslide pixels and 43% of stable pixels (Table 5.31 and 

5.32). The slight underestimation of the pixels free of landslide incidence by the classic 

TWI EBF model is attributed to the oversimplification of overland flow associated with the 

classic TWI computation. Both models exhibit high variability in sensitivity and specificity 

with increase in cut-off value. At higher specificity most of the earthworks are highlighted 

as highly susceptible to landslide and as sensitivity is increased a greater proportion of the 

earthwork is rightly classified. At a cut-off value of 80% most of the false positive cells 

present in the lower cut-off values were seen to have been classified into the stable terrain 

class while identifying the most susceptible 20% class which explains 86% of the total 

mapped landslides on the earthwork infrastructure (Figure 5.29). 

This is particularly important as the magnitude of false negatives (earthworks free of 

landslides mapped as unstable) classification by models reduces the reliability of results. 

Figures 5.29 and 5.30 suggest an optimum cut-off value of 80% for the classification of 

stable and unstable terrain within the transport corridor slope. The determination of 

optimum cut-off value is unique to the purpose of the susceptibility application. The 

selection in this case was tied to high risk landslide prone sites within the transport 

corridor. Sites identified as high risk landslide prone areas by site inspectors of Network 

Rail were highlighted in the Merlin landslide inventory. The susceptibility maps show that 

at higher specificity the most susceptible sections of the earthworks are clearly highlighted. 

At a cut-off value of 80% most of the false positive cells present in the lower cut-off values 
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were seen to have been classified into the stable terrain class and clearly identifying 

unstable regions on the earthwork cutting (see Figure 5.29).  

 Comparison of model prediction 

Testing for model prediction has been a controversial subject amongst researchers as to 

how best a model’s predictive power can be assessed. It’s generally agreed that landslide 

data employed for validation should be either temporal or spatially different from the 

training set. Some studies have employed the use of areas contiguous to the location where 

the training data were acquired (Zizioli et al., 2013). The limitation to this approach is that 

landslides are inherently linked to local factors that can vary even with contiguous 

locations. Ideally a temporally different validation set presents the most logical approach, 

however, issues of storm intensity and duration usually for shallow landslides are normally 

not the same with each storm. Chung and Fabbri (2003) reinforced the use of the temporal 

validating set for assessing model prediction stating that landslide occurrences are more of 

exceeding an intricate threshold than of events of exert magnitude. However the use of 

spatially separate validation set model prediction assessment is the most reported model 

prediction validation approach in literature (Brenning, 2005; No-Wook, 2010; Tien Bui et 

al., 2012).  

Interpretation of model prediction for detailed scale assessment of landslide susceptibility 

can be tricky; hence performance indices such as predictive power, efficiency and 

reliability are usually employed to provide better understanding of the overall model 

performance (Beguería, 2006; Zizioli et al., 2013). The predictive power of the model is 

given as a global accuracy generally represented by the AUC value, while model efficiency 

is taken as the proportion of correctly classified observations (Carrara et al., 2008). Model 

reliability is the description of errors associated with model predictions. Reliability should 

reflect all sources uncertainty in relation to inventory compilation and thematic maps on 

conditioning factors considered in the study (Carrara et al., 2008). The prediction rate curve 

was used to validate landslide predictions based on the comparison between the 

susceptibility modelling results and independent (spatial, temporal or random) landslide 

dataset not employed during the stage of model construction (Chung and Fabbri, 2003; 

Brenning, 2005).  
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The predictive capability of the EBF models was assessed against an independent 

validation set (401 landslide grid cells). The predictive rate curves for the modified TWI 

and classic TWI EBF landslide susceptibility models showed both models to possess 

reasonably good prediction capabilities (Figure 5.32). The AUC values of 77.8% for the 

classic TWI and 77.5% for the modified TWI EBF model suggest almost equal prediction 

proficiencies for both models. Analysis of the prediction results revealed the modified TWI 

mode as the slightly more conservative of both models. The prediction rate curve for the 

modified TWI EBF model (Figure 5.32) indicated that the model could predict 17% of 

unknown landslide at the most susceptible 10% class of the landslide area. In contrast, the 

classic EBF model predicted a slightly higher 18% of the most susceptible 10% landslide 

class. However, an evaluation of the percentage of correctly and incorrectly classified 

landslides and non-landslide pixels based on varying the decision thresholds indicated a 

higher percentage of misclassified stable slopes for the classic TWI EBF model. TWI EBF 

model is seen to be slightly more efficient in correctly classifying unstable slopes that but 

less efficient in classifying stable slopes (Table 5.33 and 5.34). The result of the t-test for 

the model predictions on correctly predicted landslide locations showed no significant 

difference between the two sample means (p value > 0.05). However a significant 

difference was observed between the sample means for the prediction of stable terrains, as 

the t-test returned a p value of 0.008 at 95% confidence interval. This implies that the 

modified TWI EBF model provides a better representation of stable slope locations within 

the transport corridor at the same landslide susceptibility prediction accuracy as the classic 

TWI EBF model. Adequate delineation of stable slope will have huge implication on the 

cost and overall planning process of the obligatory regular appraisal of earthwork stability 

as required by law in the UK.  

The models exhibited equal levels of reliability as shown in the low uncertainty values 

associated with the model prediction (mean value of 0.04). Both models identified the 

heavily vegetated earthwork cutting in Haltwhstle (classic TWI = 0.19 and modified TWI = 

0.2) as requiring additional information. This section of the corridor actually traverses part 

of the built area in Haltwhistle and is situated on the slowly permeable fine silty and clayey 

soils of the Brickfield 3 soil class. Clearly land cover and soil type has a major impact on 

the stability of earthwork cutting in transport corridor. The well vegetated earthwork 
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cutting remains relatively stable despite favourable slope gradient and the presence of 

varying degrees of curvature.   

The classification requires a threshold or cut-off value that optimally discriminates between 

stable locations characterised by susceptibility values lower the cut-off and unstable 

locations with susceptibility values higher than the cut-off (Brenning, 2005). The optimum 

threshold value represents a point on the sensitivity and specificity graph that maximises 

the overall percentage of cases rightly classified. An evaluation of the percentage of 

correctly and incorrectly classified landslides and non-landslide pixels based on results 

obtained for the various decision thresholds suggest an optimum threshold value of 80% for 

the classification of stable and unstable terrain within the transport corridor slope.   

However, the choice of an appropriate modelling cut-off value for the effective 

classification of stable from unstable slopes was govern by one of the objective of the 

study. The developed methodology is aimed at providing a means for identifying and 

prioritizing high risk sites for detailed engineering assessment. The results reveal need for a 

selection of high cut-off value (which in this study was set at 90%) to ensure the effective 

delineation of landslide locations limiting selection to most susceptible 10% class. These 

high risk sites are often characterised by low probability of occurrence but with highly 

impactful consequences and require the most urgent attention. Generally, there is always a 

competition for funding of maintenance project within the infrastructural network.  

Maintenance managers are required to prioritise funding of cutting renewal and 

maintenance programmes. The identification of these high risk sites will assist in ensuring 

that resource management is directed to key areas where the prospect of slope instability 

that may result in consequential disruption of traffic or even route closure is more eminent.  

6.4.3 Model sensitivity 

Having ascertained the capability of the evidential belief model to effectively discriminate 

between stable and unstable slopes of the earthworks in the transport corridor, the 

robustness and reliability of the developed models was assessed. The sensitivity of the 

susceptibility model to variation in the proportion of the training data was assessed. The 

training dataset was randomly subset into 30%, 40%, 50%, 60%, 80%, 90%. The frequency 

distribution of the resulting susceptibility models reveal that an increase in the number of 

training data results in a decrease of the median (50th percentile) and in variability (10th to 
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90th percentile range). The susceptibility maps exhibited better goodness of fit with less 

number of training data (mean = 0.83 at 30%) at the expense of model versatility as shown 

by the presence of outliers (Figure 5.35). The reduction in the model’s goodness of fit as a 

result of increasing number of training data becomes negligible for percentages exceeding 

60% of the training data. This suggests that the susceptibility model produced using 60% of 

the training data does not significantly defer from those produced using higher percentages 

of training data in terms of the model’s goodness of fit. In addition, the above finding 

indicates the capability of the evidential reasoning model to cope with significant (up to 

40%) random variation in the input data (Guzzetti et al., 2006).  

The uncertainty values associated with the produced susceptibility maps were characterised 

by a common trend of decreasing uncertainty with increase in goodness of fit (Figure 5.36). 

With regards the model’s ability to correctly classify landslide prone areas with increasing 

training data, uncertainty associated with model predictions is seen to increase. The results 

also suggest that increase in the error associated with the percentage of rightly classified in 

the susceptibility prediction becomes marginal for percentages of training data exceeding 

60%. This finding underscores the proficiency of the evidential reasoning technique as an 

effective means of discriminating between stable and unstable slopes at an engineering 

scale slope assessment study. A survey of literature reviews on allocation of 70% of 

landslide inventory data to susceptibility assessment for most statistical and probabilistic 

approaches (Ayalew and Yamagishi, 2005; Althuwaynee et al., 2012; Tien Bui et al., 2012; 

Lee et al., 2013). This finding shows that the evidential reasoning model requires less 

training sites to achieve results commensurate to statistical models. The need to further 

investigate this finding using the extensive landslide inventory data is imperative, as the 

inventory data size used in this study is relatively small to conclude on the finding.    

6.5 Summary  

The discussions in earlier parts of this chapter covered the results obtained at various stages 

of the development of the evidential reasoning model for landslide susceptibility 

assessment of transport corridor slopes. In this section the implication of some of the 

findings to slope stability analysis in UK transport corridors and contributions to broader 

susceptibility assessment of transport corridor slopes is discussed. 
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The use of remotely sensed data in delivery and evaluation of terrain derivatives and land-

cover information to slope stability assessment have been largely exploited for regional and 

catchment scale studies (Fell et al., 2008). The use of remotely sensed geospatial data to 

detailed scale slope assessment has for some time been limited by resolution (Miller, 2011). 

To date, landslide susceptibility zonation within the transport corridor has been largely 

undertaken using geotechnical survey and monitoring approaches. However, increased 

availability of affordable very high resolution remotely sensed data set along with improved 

geospatial digital map data-sets, potentially allows the determination of key slope stability 

variables that are required to recognise vulnerable earthwork slopes (Miller, 2011; Hardy et 

al., 2012).  

In this study, a methodology for an analytical framework that allows for the integration of 

high resolution geospatial data in an objective manner to recognise slopes potentially 

susceptible to failure was developed.  The methodology provided an effective means of 

appraising unstable and potentially unstable earthwork locations in transport corridor 

environments using an evidential reasoning multi-source geospatial integration approach. 

Evidential reasoning delivers a formal framework for weight allocation and spatial data 

integration of high resolution datasets normally required for detailed scale landslide 

susceptibility assessment. Alongside data representation and integration, evidential 

reasoning represents the degree of uncertainty associated with input geospatial data and 

developed susceptibility maps. The probabilistic approach is essentially data driven but 

with flexibility to reflect expert knowledge during the assignment of mass functions to 

reflect geomorphological realities like non-existence of landslides in flat plains and in areas 

of complex underlying geology (Park, 2011).  

The potential of the evidential reasoning approach to transport corridor applications has 

been assessed in this study with modelling results illustrating the approach as copiously 

representing quantitative relationships, landslide occurrences and multiple geospatial data 

layers. Unlike other spatial data integration models, the evidential belief function model 

provides a series of mass functions including belief, disbelief, uncertainty and plausibility 

that allows for a more meaningful interpretation of landslide susceptibility and delineation 

of zones varying degree of susceptibility. The uncertainty map identifies locations in need 

of follow up studies and also helps in planning the nature of information required for the 
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assessment. This is particularly important in the transport corridor environment where 

actual failure is commonly preceded by signs that are picked up by site engineers during 

routine site investigation. Recent application of this technique to landslide susceptibility to 

small and catchment scale study has been reported (Park, 2011; Althuwaynee et al., 2012; 

Lee et al., 2013). However a survey of literature reveals no mention of the application of 

the technique at detailed scale as is the case with this study. This study has shown that the 

approach models parameter uncertainties, exhibits robustness and scales well to large data 

sets.         

The application of ALS data for landslide susceptibility facilitated the creation of high 

resolution DTM which provides a 2.5D representation of the topography of the transport 

corridor (Jaboyedoff et al., 2012). Given the densely vegetated nature of U.K. corridors, the 

ability of ALS to at least partially penetrate the vegetation canopy is crucial (Miller et al., 

2012). Equally important is the rapid development in the ALS technology has rendered 

high resolution point cloud acquisition relatively more affordable, ensuring that data 

acquisition over sizable spatial extent of transport corridor and adjoining terrain can be 

periodically captured. In the event of insufficient coverage of the adjoining broader 

catchment by ALS data, this study showed that the OS Landform DTM provides reasonable 

resolution for evaluation of catchment contribution to overland flow into the transport 

corridor. The real challenge with ALS is the cost of data processing and how to store the 

huge amount of data would be periodically collected, as computers will need to be more 

powerful to deal with the increasing data acquisition. Furthermore, ongoing development in 

mobile Lidar systems and its high data acquisition capacity (200 kHz) and holds promise 

for transport corridor application (Jaboyedoff et al., 2012).   

The TWI is frequently used to simulate soil moisture conditions in slope stability 

assessment. The index only explains the physical significance of terrain on runoff 

generation based on gravity. The modified TWI model developed in this study is unique in 

two ways, its takes the strength of both runoff estimation techniques and compensates for 

their weakness. For example, the modified TWI approach ensures the inclusion of the 

influence of catchment features, amount of rainfall and the antecedent moisture content of 

the soil in the estimation of direct runoff generation (a major criticism on the use of 

traditional TWI) and the downstream propagation of the contribution of the various soil-
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land cover combinations to the estimation of runoff generation (a major limitation with the 

SCS curve number procedure). The modified TWI approach is simple and designed for 

single storm events. As such the propensity for saturation of transport corridor slopes with 

varying rainfall intensities can be assessed. The modified TWI grid provided a more 

realistic spatial distribution of soil moisture and showed that alongside topography the 

influence of near surface processes such infiltration and evapotranspiration explain the 

moisture distribution patterns of the transport corridor. Issues concerning the sensitivity of 

the method to Curve Number (CN) values originally developed the USA and the 

nonexistence of studies that have extensively reviewed calibration of CNs for UK 

conditions raises uncertainty with regards its use (O'Connell et al., 2007). A measure of 

support for the use of the CN approach in the UK, particularly when relative change in 

runoff values is the main consideration have been provided by Holman et al. (2003). The 

study compared runoff estimates derived using the UK’s Flood Estimation Handbook 

(FEH) methodology which accounted for climate, HOST class and weather with that of the 

uncalibrated CN method for four catchments that experienced flooding in 2000/2001. The 

results show similarities in runoff estimates increased rainfall amounts which are of 

particular interest in slope stability assessment. However, there are other issues that bother 

on the general CN technique such as fixing the initial abstraction ratio and lack of clear 

guidance on how to vary Antecedent Moisture Conditions (AMC) which are subjects many 

current ongoing researches and these areas remain a potential for future studies.  

Numeric models are founded on a strong theoretic base and clearly describe the underlying 

physical processes leading to the instability being modelled when properly calibrated with 

an accurate landslide inventory. These models are employed for detailed scale slope 

stability assessment as results obtained are considered a closer representation of reality and 

more consistent in comparison with those of the heuristic and statistical models. However, 

concerns of high data demand, challenges with parameterization of heterogeneous variables 

and extrapolation of results confines these technique to spatially limited high priority sites 

and are very expensive when considered for detailed scale slope assessment over 

considerable expanse. The approach develop in this study employs a probabilistic approach 

to slope stability assessment. The probabilistic framework is simple, flexible and allows for 

integration of multiple data layers as such it can be extended and applied across broader 

spatial extent. The methodology provides a means of identifying and prioritising high risk 
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sites especially for earthwork structures difficult to access as is the case with rural railway 

networks where difficult terrain makes on site assessments strenuous and in some cases 

impossible. (Perry et al., 2003b).    
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7 Conclusions 

7.1 Success of research aim and objectives 

The aim of the research reported in this thesis was to develop a geospatial model integrating 

multi-scale multi-temporal data for the broad-scale recognition and prediction of the spatial 

landslide susceptibility faced by transport corridors. To achieve this aim the following 

research objectives were addressed: 

1. Based on a critical review on the use of Geomatics in analysis and modelling of 

slope hazards, develop a conceptual framework for the integration of multi-scale 

multi-source geospatial data for the current and future evaluation of landslide 

susceptibility zonation and hazard assessment within transport corridor 

environments. 

2. To develop a terrain-based flow model that addresses the effects of catchment-scale 

contributions, such as run-off, on the moisture concentration of engineered slopes 

within transport corridor environments. 

3. To develop a multi-source, multi-scale approach that is based on evidential 

reasoning that incorporates the catchment contributions to a linear stretch of 

transport corridor earthworks and spatially quantify slope stability within transport 

corridor environments. In addition, the developed model performance is evaluated 

for a substantive section of a transport corridor. 

7.1.1 Objective One 

The first research objective was addressed by the review of literature in Chapter 2 and the 

development of a conceptual framework for the integration of multi-scale multi-temporal 

geospatial data in Chapter 4. The literature review identified increased moisture content 

resulting from excessive precipitation as being directly or indirectly responsible for most of 

the shallow landslides occurrence along transport corridor slopes (Jaiswal and van Westen, 

2009; Jaiswal and van Westen, 2012). In the UK, these weather related slope instability 

occurrences are confined to periods of wet weather, particularly when the rate of transpiration 

is at its minimum and the effect of pore water pressure is at its peak. At relatively fine spatial 

scale, surface and near surface processes such as runoff generation, flow accumulation, 
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infiltration and evapotranspiration are vital to slope stability and are linked to terrain, soil 

characteristics, geology, hydrology and vegetation.  

A conceptual framework pulling together the various processes and parameters identified 

from literature and during field visits was developed. The framework addressed three key 

areas: (1) the development of an integrated and scalable spatial geodatabase (addressed in 

Chapter four) that incorporates information on catchment contributions and the various 

precondition factors and triggers responsible for landslide incidence on earthwork cuttings 

and embankments in the study area. A raster-based geospatial database of identified slope 

stability parameters was constructed in ArcGIS 10.2. Importantly, a merged DTM developed 

from the high resolution ALS data of the transport corridor and relatively coarser Ordnance 

Survey Landform DTM data of the broader catchment facilitated the incorporation of 

catchment contribution to surface and near surface processes such as runoff generation and 

flow accumulation into the transport corridor earthwork, while retaining the high resolution 

spatial integrity of earthworks in the transport corridor. Slope stability variables namely slope 

gradient, aspect, terrain wetness index (TWI), stream power index (SPI) and profile curvature 

were derived from the merged DTM data (Sections 4.3.1 and 4.3.3).  

A merged Land cover/land use map of the study area derived from land cover information 

on the transport corridor obtained from the Compact Airborne Spectrographic Imager (CASI) 

imagery (Section 4.3.2) and LCM 2007 dataset of the broader catchment provided the basis 

for the evaluation of the contribution of land cover to runoff generation, flow accumulation 

and evapotranspiration. Information on the underlying soils was extracted from the 

NATMAP vector data (Section 3.4.3). Additional information on distance to drainage was 

considered due to proximity to the South Tyne River of sections of the transport corridor. A 

shapefile of existing streams was extracted from the 1:2500 Ordnance Survey vector mapping 

dataset and a raster of distances from the drainage network was created. Landslide inventory 

prepared by Network Rail presented locations of recorded slope failures along the transport 

corridor and frequently maintained subsidence related areas along the rail route. These 

locations were acquired from Network Rail routine maintenance reports and Merlin dataset. 

The Merlin dataset identified eight locations on earthwork embankment and cuttings on the 

8 kilometre-long test site at Haltwhistle where the research was implemented. (2) The 

development of a runoff model that integrates the upslope contribution of the adjoining 
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broader catchment to zones of moisture accumulation around earthwork cuttings and 

embankment within the corridor. The model incorporates the influence of infiltration, 

interception and modulation of overland flow due to variation in land cover type in the 

prediction of the spatial variability of soil moisture accumulation. This enables a more 

realistic prediction of the spatial variability of soil moisture accumulation reflecting 

contributions from adjoining catchment on a linear feature (earthwork embankment and 

cutting). (3) The development of a methodology for assessing the impact and influence of 

identified precondition factors and triggers in (1) on what is a complex system (landslide 

susceptibility). A formal framework for representing the contributions of the preceding two 

stages to landslide incidence and efficient integration of multi-source, multi scale geospatial 

data sets in mapping slope instability within transport corridor environment was achieved 

using the evidential reasoning approach.  

7.1.2 Objective two 

Objective two was addressed in Chapter 4 with the development of a novel approach for the 

characterisation of soil moisture distribution for the transport corridor which incorporates the 

effects of multi-scale catchment contribution to local zones of moisture concentration in 

earthworks. Unlike the classic TWI , the developed technique does not assume homogeneity 

of soil types and lack of vegetation cover (Barling et al., 1994). Using the The SCS curve 

number procedure, the land cover information obtained from a merged land cover map of the 

transport corridor and adjoining fields and soil map of the wider catchment, an estimate of 

the spatial contribution of precipitation contributing to surface runoff was obtained.  The 

developed weight grid was used to parameterise a weighted terrain accumulation flow model. 

The modified TWI technique, thus, enables the local evaluation of the contributions 

emanating from the wider catchment flow field and the local input variables at each grid cell 

location (Section 4.4.1.3). The predicted soil moisture pattern was consistent with the general 

patterns reported in various studies (Tenenbaum et al., 2006; Sørensen and Seibert, 2007; 

Hardy et al., 2012), with moisture accumulation confined to zones of flow convergence (in 

concave and low gradient areas) and an increased propensity for runoff generation in steep 

convex terrains. However, results of generated runoff estimations were seen to provide a 

more realistic representation of soil moisture estimation (Section 5.4), as lower soil moisture 

content were recorded for woodlands in contrast with other land cover types (Greenwood et 

al., 2004). Permeable well drained soils were relatively drier and associated with lower 
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degrees of surface runoff as a result of infiltration (Bothma et al., 2012). The modified TWI 

grid also identified zones of considerable ingress of flow into transport corridor earthworks 

from adjoining upland agricultural areas (Section 5.4.2). The developed modified TWI 

approach provides a surrogate means for soil moisture characterisation through remotely 

sensed data that takes into consideration the lumped effects of surface and near surface 

processes such as flow accumulation, infiltration and evapotranspiration. 

7.1.3 Objective three 

Deterministic models are generally considered as best suited for analysis of site specific slope 

studies with the quantitative information derived from these models directly applicable in the 

design of engineering works or in the quantification of risk (Van Westen et al., 2006). 

Established on a strong theoretic base these models clearly describe the underlying physical 

processes leading to the slope instability with results obtained considered as a close 

representation of reality. However, concerns of high data demand, challenges with 

parameterization of heterogeneous variables and extrapolation of results render the technique 

very expensive when considered for studies that require detailed scale assessment of slope 

stability over considerable spatial expanse. 

In this study, a probabilistic framework that considered parameter variability and the 

associated uncertainties (Van Westen et al., 2008) in what is a complex system (landslides) 

was utilised. An evidential reasoning approach was employed in the multi-source geospatial 

data integration and quantitative evaluation of slope instability. The technique derived 

objective weights of the relative importance of each derived property to the final estimation 

of landslide susceptibility (Section 5.5), while providing a measure of the uncertainty of the 

properties to be taken into account (Carranza and Hale, 2003). In chapter 4, the evidential 

reasoning approach was shown to provide an efficient framework for the integration of multi-

source multi-scale geospatial data. Eight slope stability variables extracted from topographic, 

soil and land use properties of the transport corridor were integrated within the evidential 

reasoning framework to characterise numeric measures of the belief, disbelief and 

uncertainty as to the existence of slope instability spatially within the transport corridor. The 

measure of computed belief based on the integration of the available evidence was in turn 

used for the broad-scale recognition and prediction of the spatial landslide susceptibility on 

earthworks of the Haltwhistle section of the Carlisle–Newcastle transport corridor.  
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The modified TWI evidential belief function model was implemented on an eight kilometre 

stretch of transport corridor slope at Haltwhistle, UK. The developed model had a goodness 

of fit of 88.5% with respect to the failed slopes used to parameterise the evidential reasoning 

model and an overall predictive capability of 77.75% based on independent validation 

dataset.  

In summary, all the objectives of the research were successfully achieved. The result is a 

methodology that provides an efficient multi-source multi-scale approach to the 

quantitative evaluation of slope instability within transport corridor environments. 

Limitations remain with respect to the nature and size of the landslide inventory used and 

need for extensive calibration of CNs to better reflect UK conditions. 

7.2 Research outcome  

This research has successfully demonstrated the use of an evidential reasoning approach for 

the detailed assessment of slope stability in transport corridor environments. Using multi-

source multi-scale geospatial data combined with a novel approach to the characterisation of 

soil moisture distribution, this work presents the first application of evidential reasoning to 

the detailed scale recognition of vulnerable earthwork slopes in transport corridor 

environments. High resolution ALS and CASI data were shown to provide adequate 

resolution for transport corridor slope stability analysis. DTM resolutions of between 0.5 to 

5 m can provide suitable representations of transport corridor landforms with the choice of 

optimum resolution being a trade-off between adequate representations of transport corridor 

landform, drainage features and processing time. The developed methodology can be applied 

across broader spatial extents and in other transport corridors across the UK. The scalability 

of the model allows for periodic updates of temporal topographic, vegetation and landslide 

inventory data of the transport corridor, with the potential to improve the overall predictive 

performance of the model (Van Westen et al., 2008).  The developed methodology is 

particularly important as it allows for the estimation of slope instability predictions under 

extreme rainfall conditions. As increased duration and intensity of rainfall are expected under 

future climatic conditions in response to global climatic change (Ekström et al., 2005) and 

prolong rainfall has been identified as the main trigger of many recent failures occurring 

across UK earthwork infrastructure (Ridley et al., 2004; Miller et al., 2012). 
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The model identifies surface processes (infiltration and surface runoff), topographic 

(gradient, soil properties and curvature) and land use properties (vegetation cover type) as 

having of a considerable influence on the vulnerability of earthworks to failure. This is 

revealed by high belief values associated with (1) earthwork cuttings on permeable and 

largely well drained soil formations with intercalations of clay materials, (2) presence of fine 

scale concave curvature responsible for localised soil moisture concentration mid-slope on 

earthwork cuttings and (3) points ingresses of surface moisture into earthwork cuttings and 

embankments. The influence of land cover type on slope behaviour was also captured, as 

heavily vegetated permeable earthwork cuttings west of the corridor were identified as 

relatively stable though with a corresponding high uncertainty (0.2), in contrast with the 

permeable relatively unstable sparsely vegetated earthwork cuttings east of the corridor. 

Permeable soils with variable intercalations accounted for over 80% of slope instability, with 

5.1% of the earthwork cuttings identified as relatively unstable in contrast to 47.5% for the 

earthwork embankment. The modified TWI evidential belief function model is robust and 

provides a practical means for diagnosing slope instability and prioritising routine field 

inspection of vulnerable earthworks in transport corridor environments. 

7.3 Beneficiaries and future work 

The infrastructure management bodies of transport corridors will find the developed model 

insightful with respect to routine conditional appraisal of earthworks and long term strategic 

planning of earthwork sustainability. The developed methodology would assist in 

recognising and ranking spatially distributed high risk landslide prone sites within transport 

corridors. This in turn would potentially result in a cost effective allocation of scare 

resources, a reduction in the temporal frequency of routine site inspection and an increase in 

overall efficiency and manpower saving. The approach is simple, scalable and can be 

periodically updated to include new failure locations and additional causal factors not 

considered in earlier assessments. 

The novel modified TWI approach to the characterisation of runoff generation and soil 

moisture distribution could potentially be applied in improving runoff estimation for 

Catchment Flood Management Plans (CFMPs) (Environment Agency, 2009). The UK’s 

Flood Estimation Handbook (FEH) methodology (Reed, 1999; Hess et al., 2010) currently 

employs the SCS CN method for runoff estimation. Runoff estimation derived using SCS 



220 
 

CN approach fails to incorporate in the contributions of broader catchment (Soulis and 

Valiantzas, 2012), but stimulates runoff generation based on interactions between land cover, 

soil-field conditions, weather and land management practice (Hess et al., 2010). The 

modified TWI approach provides a potentially better runoff estimation.  

7.4 Future research 

The results in this study have indicated a number of directions for future research. A summary 

of these key areas are presented below. 

 Given the limitations associated with the SCS CN approach, the need to investigate a 

means of calibrating the CNs values to reflect UK conditions is an important area of 

concern. Alternative approaches based on the modification of two indications of 

catchment hydrological response have been proposed by Packman et al. (2004). The use 

of base flow index and standard percentage runoff linked to the HOST classes holds great 

promise, but requires knowledge on the spatial influence of land cover (Hess et al., 2010).  

 The modified TWI evidential belief function model was characterised by a high rate of 

false positives as a result of the nature of landslide inventory employed in 

parameterization of the model. The inclusion of the substantial stable regions within the 

delineated failure boundaries was responsible for this occurrence. The need to develop a 

new system for mapping and recording the spatial boundaries of failure extent in the field 

prior to the remedial works is therefore imperative as the current Merlin database is 

deemed inadequate. Future work in partnership with Network Rail will consider 

improving the reliability of generated landslide inventory.   

 Results of a preliminary assessment of the predictive capability of the developed 

methodology on adjoining highway cuttings and embankments have demonstrated a high 

proficiency in identifying landslide locations not included in the model parameterization. 

Future study will investigate the accuracy of predicted slope instability on the adjoining 

highway cutting and embankments in order to assess the broader applicability of the 

methods employed and developed in this research.  

 Future studies will investigate ways on how the model could be extended in areas such 

as the inclusion of more qualitative information and considerations on obtaining better 

sets of weights for the evidential reasoning model through the incorporation of artificial 

intelligence such as generic algorithm and artificial neural networks. 
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 The results from this study show the developed model as an efficient means of 

recognizing and predicting slope instability in transport corridors. The approach is simple 

and a decision support tool can be developed by coding the entire process in python. With 

rainfall amount as the only input data required, the support tool would automatically 

identify high priority landslide risk sites, providing the needed information required for 

planning of routine site investigation and prioritizing of earthwork failure hazards 

7.5 Conclusion 

Detailed scale landslide susceptibility assessment had been largely restricted to process based 

models with high data demand and findings largely site specific, thus, imposing limitation 

on the validity of interpolating results over wider extents. In this study, a probabilistic data 

driven approach was developed using evidential reasoning as an efficient analytical 

framework for integrating multi source, multi scale geospatial data for the recognition of 

slopes potentially susceptible to failure. The novelty here is that evidential reasoning 

approach has not been reported applied at this scale of slope stability assessment. In addition, 

a novel approach to characterisation of soil moisture distribution was also developed. Land 

cover and soil type of the wider catchment were used to estimate the spatial contribution of 

precipitation to surface runoff, which in turn is used to parameterise a weighted terrain 

accumulation flow model. The technique developed essentially used geospatial information 

on soil and land cover unlike the earlier quasi and full dynamic wetness indices techniques 

that require information on physical geotechnical properties of soils, thus retracting from the 

original advantage of soil moisture characterisation by remotely sensed data through the use 

of surrogates. 

The evidential reasoning approach to localisation of zones of slope instability can be easily 

developed into a decision support tool for automated recognition of recognise vulnerable 

earthwork slopes and applied over broader spatial extents. 
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Appendix 1: Flow diagrams of methods 

This appendix provides the reader a more detailed coverage of the various components of 

the developed methodology. This include; Stage1- Processing of ALS data, DTM 

generation and extraction of slope stability parameters and the development of the land 

cover map of the transport corridor. Stage 2- The development of a weighted grid and stage 

3 landslide susceptibility assessment using evidential reasoning. 

Stage 1. 
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Appendix 2: The regression equations generated for each of the 32 bands with relative 

R2 correlation coefficient derived using the empirical line method after Smith and 

Milton (1999)  

The empirical line method after Smith and Milton (1999) was employed in the radiometric 

calibration of CASI imagery by Hardy 2010. 

CASI Band Central 

wavelength (nm) 

Regression equation R2 correlation 

coefficient 

1 398 y = 0.0072x - 5.7759 1 

2 405 y = 0.0075x - 2.7677 0.9994 

3 413 y = 0.0094x - 4.0857 0.9993 

4 420 y = 0.0109x - 6.2091 0.9999 

5 428 y = 0.0126x - 5.5489 0.9993 

6 435 y = 0.0124x - 5.0131 1 

7 444 y = 0.0113x - 4.6365 0.9994 

8 452 y = 0.01x - 3.0913 0.9999 

9 462 y = 0.0103x - 3.8989 0.9999 

10 471 y = 0.0105x - 3.0749 1 

11 482 y = 0.0105x - 3.0558 0.9998 

12 493 y = 0.0108x - 3.128 0.9999 

13 504 y = 0.011x - 2.7955 0.9997 

14 517 y = 0.0112x - 2.4983 0.9997 

15 530 y = 0.0109x - 2.4335 0.9996 

16 544 y = 0.011x - 2.6015 0.9997 

17 559 y = 0.0112x - 2.326 0.9999 

18 575 y = 0.0118x - 2.2385 0.9998 

19 592 y = 0.0122x - 2.1158 0.9999 

20 610 y = 0.0122x - 2.0664 0.9998 

21 630 y = 0.0126x - 1.6787 0.9999 

22 652 y = 0.0132x - 1.6441 0.9996 

23 675 y = 0.0131x - 1.4088 0.9997 

24 700 y = 0.0149x - 1.6909 0.9998 

25 728 y = 0.0163x - 2.7653 0.9997 

26 758 y = 0.0157x - 3.6425 0.9998 

27 790 y = 0.0143x - 3.7689 0.9997 

28 824 y = 0.018x - 4.1063 0.9997 

29 862 y = 0.0164x - 4.0208 0.9998 

30 901 y = 0.0224x - 3.9166 0.9997 

31 943 y = 0.051x - 4.7153 0.9996 

32 988 y = 0.0254x - 4.5207 0.9997 
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Appendix 3: Supervised classification of CASI imagery  

The CASI image was characterised by closely related land cover types with significant 

spectral overlap which made the land cover classification both challenging and interesting. 

For example, large boulders placed along the Tyne River bank for the purpose of river bank 

erosion control had similar spectral characteristics as building and manmade classes. The 

characteristic low tide of the Tyne River at the period of acquisition of the CASI image 

resulted in the exposure of boulders on the river beds. These were largely responsible for 

the low producers accuracy recorded for the river class. There were also evidences that the 

CASI image was acquired during or immediately after some light showers, as the road 

surfaces show evidence of wetness depicted as isolated specks of the river class on 

pavement surfaces. These isolated river class pixels were later filtered out as no river class 

existed as depicted in these areas. There were also significant numbers of misclassified 

pixels between the man-made and building land cover classes around built up areas and 

bridges in the land cover classification map. 

 

 

 

 

 


