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Abstract

Tackling urbanisation and climate change requires more sustainable and resilient cities, which
in turn will require planners to develop a portfolio of measures to manage climate risks such as
flooding, meet energy and greenhouse gas reduction targets, and prioritise development on
brownfield sites to preserve greenspace. However, the policies, strategies and measures put in
place to meet such objectives can frequently conflict with each other or deliver unintended
consequences, hampering long-term sustainability. For example, the densification of cities in
order to reduce transport energy use can increase urban heat island effects and surface water
flooding from extreme rainfall events. In order to make coherent decisions in the presence of
such complex multi-dimensional spatial conflicts, urban planners require sophisticated
planning tools to identify and manage potential trade-offs between the spatial strategies

necessary to deliver sustainability.

To achieve this aim, this research has developed a multi-objective spatial optimisation
framework for the spatial planning of new residential development within cities. The
implemented framework develops spatial strategies of required new residential development
that minimize conflicts between multiple sustainability objectives as a result of planning policy
and climate change related hazards. Five key sustainability objectives have been investigated,
namely; (i) minimizing risk from heat waves, (ii) minimizing the risk from flood events, (iii)
minimizing travel costs in order to reduce transport emissions, (iv) minimizing urban sprawl

and (v) preventing development on existing greenspace.

A review identified two optimisation algorithms as suitable for this task. Simulated Annealing
(SA) is a traditional optimisation algorithm that uses a probabilistic approach to seek out a
global optima by iteratively assessing a wide range of spatial configurations against the
objectives under consideration. Gradual ‘cooling’, or reducing the probability of jumping to a
different region of the objective space, helps the SA to converge on globally optimal spatial
patterns. Genetic Algorithms (GA) evolve successive generations of solutions, by both
recombining attributes and randomly mutating previous generations of solutions, to search for
and converge towards superior spatial strategies. The framework works towards, and outputs,
a series of Pareto-optimal spatial plans that outperform all other plans in at least one objective.
This approach allows for a range of best trade-off plans for planners to choose from.



Both SA and GA were evaluated for an initial case study in Middlesbrough, in the North East
of England, and were able to identify strategies which significantly improve upon the local
authority’s development plan. For example, the GA approach is able to identify a spatial
strategy that reduces the travel to work distance between new development and the central
business district by 77.5% whilst nullifying the flood risk to the new development. A
comparison of the two optimisation approaches for the Middlesbrough case study revealed that
the GA is the more effective approach. The GA is more able to escape local optima and on
average outperforms the SA by 56% in in the Pareto fronts discovered whilst discovering double

the number of multi-objective Pareto-optimal spatial plans.

On the basis of the initial Middlesbrough case study the GA approach was applied to the
significantly larger, and more computationally complex, problem of optimising spatial
development plans for London in the UK — a total area of 1,572km?. The framework identified
optimal strategies in less than 400 generations. The analysis showed, for example, strategies
that provide the lowest heat risk (compared to the feasible spatial plans found) can be achieved
whilst also using 85% brownfield land to locate new development. The framework was further
extended to investigate the impact of different development and density regulations. This
enabled the identification of optimised strategies, albeit at lower building density, that
completely prevent any increase in urban sprawl whilst also improving the heat risk objective
by 60% against a business as usual development strategy. Conversely by restricting
development to brownfield the ability of the spatial plan to optimise future heat risk is reduced

by 55.6% against the business as usual development strategy.

The results of both case studies demonstrate the potential of spatial optimisation to provide
planners with optimal spatial plans in the presence of conflicting sustainability objectives. The
resulting diagnostic information provides an analytical appreciation of the sensitivity between
conflicts and therefore the overall robustness of a plan to uncertainty. With the inclusion of
further objectives, and qualitative information unsuitable for this type of analysis, spatial
optimization can constitute a powerful decision support tool to help planners to identify spatial
development strategies that satisfy multiple sustainability objectives and provide an evidence
base for better decision making.
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Description
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X = (x11x2 ,X'm)

FX) = (), f(X) ... fn(X))

L,Jj

Variable set consisting of m variables.
Obijective function set consisting of n objective functions to optimise.
A feasible solution found by the optimisation application.

Location on grid.

Pareto-optimisation
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N

f

F

N, s,

Non-dominated solution within the non-dominated list.
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Set of objective functions.

Non-dominated/ Pareto-optimal list between the objectives f; and f,.

Urban Planning Problem

d

D

dens

dw

de
Dwpax

Dwp

Proposed development site.
A collection of development sites where d € D.

Collection of possible development densities.

Number of dwellings assigned to a development site based on proposed density and
area of cell.
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Chapter 1 Introduction

1.1 Urbanism and Climate Risks

‘Urbanisation is one of the most powerful and visible anthropogenic forces on Earth,” (Dawson

2007). Currently 50% of the world’s population reside in cities with this set to rise to 60% by
2030 equating to around 5 billion people (United Nations Population Fund 2011). As cities take
up a maximum of 3% of the Earth’s land surface area (Balk et al. 2005) and are frequently
associated with naturally high risk locations (Mitchell 1999) this process is spatially
concentrating exposure to natural hazards and aggregating disaster potential (Carter 2011). For
example 64% of the world’s urban population currently reside in coastal zones (Balk et al.
2005), whilst 13% reside in coastal lowlands at risk from flooding (McGranahan et al. 2007).
These are subject to further exposure as the historical development of urban areas has led to a
spatial form which is poorly adapted to hazards with the paving of roads increasing surface run
off contributing to flooding (Nirupama & Simonovic 2007) and the proximity of buildings
exacerbating the urban heat island effect (Hunt & Watkiss 2011). Moreover the increasing
urban population tends to consist of most vulnerable in society with the least resources and,
therefore, have limited adaptive capability (e.g. aging populations are particularly vulnerable
to heat stroke during heat waves (Porfiriev 2014; Krebs et al. 2010)).

As urbanisation is leading to higher exposure and vulnerability to natural disasters this is
compounded by climate change induced temperature, precipitation and wind changes, leading
to more frequent and severe extreme natural hazard events (IPCC 2007b). The predicted
severity of these events are dependent on the emission scenarios employed. However the key
expected impacts of climate change on cities include but are not limited to:
1. Sea level rise increasing the risk of storm surges on coastal cities.
2. More frequent intense precipitation events leading to higher risk of flooding.
3. Extreme weather events damaging built infrastructure (e.g. from wind and flooding
events).
4. Health effects arising from higher average temperatures and/or extreme events
(including heat and cold related mortality and morbidity). (Hunt & Watkiss 2011)

Additionally urbanism and climate change is putting pressure on vital resources, such as water
and energy. The International Panel on Climate Change (IPCC) (2014) projects higher

incidences of droughts due to climatic change as water stored in glaciers and snow decline,
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reducing the availability of water to settlements reliant on melt water. The effect will be
especially felt in developing countries when there is already a lack of available water resources
for newly urbanised areas (Janakarajan et al. 2006; Jiang 2009). Whilst higher magnitude
weather events such as cold snaps and heat waves can put pressure on energy capacity due to
demand from air conditioning and central heat potentially leading to blackouts (Hunt & Watkiss
2011). As the consequences of climate change loom large it is ironic that cities are the major
contributors to climate change drivers producing 71% of energy-related CO2 emissions

according to some sources (International Energy Agency 2008).

These factors combined are making cities a foci for risk prevention measures, energy reduction
and resource efficiency necessitating a move towards more resilient and sustainable cities
(Reckien et al. 2014). Cities must become more resilient to higher magnitude and frequency
climate induced hazards through risk adaptation measures whilst continuing to contribute to
international efforts to avert further climate change by reducing emissions (Rosenzweig et al.
2010). Moreover there is a need for better management of scarce resources in cities through
waste reduction and improved efficiency. With continued rapid population growth expected in
the first half of the 21 century and hence continued urban growth, the need for sustainable

urban development is increasingly becoming recognised (Harriet Bulkeley & Betsill 2005).

The spatial layouts of cities are crucial to meeting these pressures. It is estimated that up to 70%
of consumed energy is dependent on land use arrangements (Barton 1990) and the continued
extension of the urban area (sprawl) can lead to higher emissions from increased travel distances
and congestion (Burge et al. 2013). Moreover the layout of the urban form is crucial to not only
prevent the exacerbation of climate change, with dense development increasing the urban heat
island effect and concreting exacerbating the risk of pluvial (rain-fall) flooding (Stone 2005;
Nirupama & Simonovic 2007), but also careful consideration must be made to the location of
the residing population within urban areas so as to not expose them to these risks (Depietri et
al. 2013; Porfiriev 2014). Therefore the increased risks associated with climate change needs
to be accounted for within the planned development of cities to alleviate the potential effects of

extreme events on their populations and infrastructure (Carter 2011).

This is becoming all the more urgent with the impending internationally agreed aim of limiting
climate change to a 2°C increase in global temperatures to prevent devastating future climate

change (IPCC 2013; Committee on Climate Change 2015). Meanwhile climate change has



failed to be averted in the short term (IPCC 2007a) and the IPCC’s warning of the effects of
climate change will be felt shortly (IPCC 2014).

1.2 Conflicting Sustainability Initiatives

These pressures are necessitating a transition towards cities which are more robust to potential
natural (and other) hazards while at the same time mitigate energy use, reducing the effect of
further climatic change. Unfortunately the simultaneous pursuit of these desirable aims has the
potential for pitfalls between the sustainability policies and strategies necessary to facilitate this
move, as well intended interventions in one sector can interact and have undesirable impacts
on other sectors (Mcevoy et al. 2006; Barnett & O’Neill 2010; Dawson 2011). Indeed IPCC
identifies that the pursuit of preventing and adapting to climate change will have negative

impacts on other elements of sustainability (IPCC 2007b).

For example in the previous decade European governments have focused almost exclusively on
mitigation of GHG emissions through urban intensification (Biesbroek et al. 2010) to reduce
private car emissions through better accessibility and public transport provision. However with
impending climate change it’s becoming increasingly clear that this high density development
exacerbates natural hazard events such as flooding and urban heat islands due to increased
surface run-off and the proximity of buildings (Melia et al. 2011) whilst leading to numerous
negative consequences such as poor air quality and increased crime (Newton et al. 1997,
Elizabeth Burton 2000). This is reciprocated with numerous adaptation responses negatively
affecting mitigation attempts (Barnett & O’Neill 2010). Dispersed development to alleviate
heat and flood risk can lead to higher transport emissions from increased travel distances whilst
the use of air conditioning to alleviate heat stress leadings to higher energy use. Moreover
economic, social factors and governance policies have been found to disrupt adaptation efforts
(Jones & Clark 2014).

As a consequence urban planners are presented with a multi-objective spatial optimisation
problem to balance these sustainability pressures and require robust spatial planning decision
tools to analytically assess the conflicts and best trade-offs between objectives to make coherent
planning decisions. Spatial planners need to avoid making assumptions about the relative merits
of sustainability interventions and instead make evidence based decisions which consider the
performance of short term adaptation objectives and longer term mitigation objectives. Indeed
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traditionally spatial planning decisions have been taken on the basis of ‘satisficing” (Simon,

1996) i.e. selecting plans which exceed an acceptability threshold for planning objectives.

However in response there is growing body of work that has demonstrated that analytical
methods, including optimization techniques, can be successfully employed in the decision
making tools providing optimal infrastructure plans in the presence of multiple objectives
(Kapelan et al. 2005a). These include the preparation of flood responses (Woodward et al. 2013,;
Sayers et al. 2014), the planning of water distribution networks (Vamvakeridou-Lyroudia et al.
2005; Prasad et al. 2004; Kapelan et al. 2005) and bus transport networks (Delmelle et al. 2012;
Shimamoto et al. 2010; Yu et al. 2005; Bielli et al. 2002). Optimisation has been applied to
several land use applications (Cromley & Hanink 1999; Aerts et al. 2005; Stewart & Janssen
2014; Liu et al. 2015).

The potential of optimisation to act as a decision support tool for sustainable development is
acknowledged in the literature (Kapelan et al. 2005a). However where these have concerned
cities they focus on maximising land use compatibility (Cao et al. 2011; Masoomi et al. 2012;
Khalili-Damghani et al. 2014) whilst studies concerning sustainable development focus on
compact cities and omit consideration of climate risk management (Ligmann-Zielinska et al.
2005; Ligmann-zielinska et al. 2006; Cao et al. 2012).

1.3 Aims, Objectives and Thesis Outline

The aim of this research is to generate an optimisation based methodology for decision support
to assist urban planners enable the transition of cities to be more climatically sensitive and
sustainable by accounting for a range of different, and often competing, policy objectives. In
order to meet this aim the Thesis has 5 distinct objectives addressed in the following 7 chapters.

Table 1.1 outlines these objectives and the chapter in which they are addressed.

Table 1.1 Thesis objectives and outline.

Obijective Chapter

1.  Review the field of sustainable urban planning in | Addressed in Chapter 2 through a study of sustainability
order to recognise the conflicts and barriers that can | literature and spatial planning documents (such as
occur during the transition to more sustainable cities | sustainability appraisals) allowing for an appreciation of the

and the best methods to overcome these; major sustainability challenges faced by urban planners.




Objective

Chapter

2.

Recognise the major spatial planning objectives and
aims of sustainable urban planning to be addressed

by this work;

Review the field of algorithmic optimisation, in
particular their application to urban spatial planning
and infrastructure assessment, to identify a series of
suitable optimisation approaches for addressing the
sustainable spatial planning of cities;

Develop a spatial optimisation framework,
consisting of the approaches identified by objective
3, to enable and act as a decision support tool for
planners to meet the objectives identified in

objective 2;

Apply the optimisation suite developed to several
real sustainable urban planning problems to
demonstrate the utility of the spatial optimisation

approach developed.

Addressed partly by Chapter 2 but also a review of

sustainability appraisals in Section 4.2.3.

Chapter 3 provides a theoretical background into optimisation
algorithms including the different approaches available and a
critical analysis of previous applications. This is then used to
identify a number of best practices and approaches from which

to constitute a decision support methodology.

Chapter 4 outlines the methodology and software to develop a
spatial optimisation framework which optimises urban
residential development against key sustainability objectives.

Chapters 5 and 6 outline case studies of the application of the
developed framework for Middlesbrough and London,
medium and large urban areas respectivey. Chapter 7 discusses
the major findings of the applications to Middlesbrough and

London and critically assesses the developed framework.







Chapter 2 Sustainable Cities and Development

2.1 Introduction

As introduced in Section 1.1 there is a need to move towards cities which are sustainable, not
only in the short-term to preserve infrastructure (Biesbroek et al. 2010), but also in the long-
term to mitigate against and adapt to greenhouse gas emissions that may lead to more frequent
climate change induced hazards (IPCC 2007a; Rosenzweig et al. 2010; IPCC 2014). This move
towards sustainable cities is also being driven by the realisation that there is a need to more
effectively manage scarce resources (e.g. water (Taikan & Kanae 2006; House of Commons
Environmental Audit Committee 2015) and combustibles (Krebs et al. 2010; Newman et al.
2009), whilst also continuing to provide a good quality of life for a growing urban population
(Meara et al. 1999; Gordon 2008; Chourabi et al. 2011). This chapter analyses the issues
surrounding this move towards sustainable cities and urban form. Current thinking on the best
methods and practices to facilitate a move towards sustainable cities and urban devilment are
reviewed, whilst the potential barriers are also considered, in order that the analytical
developments presented in this thesis are sensitive to and take into account the broader

sustainable cities agenda.

Sustainable development is synonymous with the move to urban sustainability (Lele 1991;
Beatley & Manning 1997; Gasparatos et al. 2008) representing the method by which to deliver
sustainable urban form (Banister et al. 1997). Sustainable development has been an significant
concept since the publication of the 1987 report by United Nation's World Commission on
Environment and Development (Brundtland 1987) (often referred to as the Brundtland Report)
which set out the considerable challenges urban areas faced in the future. Since then, numerous
governments and non-governmental institutions and bodies have been created which are
dedicated to the concept. Table 2.1 details a timeline of the concept entering into legislation
and the creation of associated bodies. For example, the UN Commission on Sustainable
Development was created explicitly to promote and monitor sustainable development (United
Nations 1992a), whilst the 1997 Treaty of Amsterdam (European Communities 1997) explicitly
commits the European Union (EU) to promoting sustainable development. Despite this, the
means by which the sustainable development cause has been progressed has been questioned
(Lele 1991; Stirling 1999; Berke & Conroy 2000; Redclift 2005). For example, Dernbach (2002)
argues that despite the United States government setting up the President’s Council on

Sustainable Development in 1993, very few of its recommendations have been implemented.
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This is a common criticism of many governmental bodies associated with sustainable
development with critics accused their creation is merely to pay lip service to the concept (Lele
1991; Redclift 2005).

Table 2.1 Timeline of significant uptake of sustainable development as a concept by international and national governments,

as well as international organisations in legislation and/ or the setting up of public bodies.

Organisation Date of Establishment/ Body or Publication
Publication

United Nation's World 1987 Brundtland Report (Brundtland 1987)

Commission

United Nations 1992 Agenda 21 (Voluntary commitment to National Sustainable
Development Strategies) (United Nations 1992b)

United Nations 1992 Commission on Sustainable Development (United Nations
1992a)

Australia 1992 National Strategy for Ecologically Sustainable Development

United States Government 1993 President’s Council on Sustainable Development

European Union 1997 Treaty of Amsterdam (European Communities 1997)

China 1997 The People's Republic of China National Report on
Sustainable Development

United Kingdom 2000 Sustainable Development Commission

Government

African Union 2001 New Africa Initiative

European Union 2001 EU Sustainable Development Strategy

New Zealand 2003 Sustainable Development Programme of Action

One of the reasons for this failure to implement sustainable development is the lack of
consensus on its specific aims (Connelly 2007), with few clear definitions of many key concepts
such as social justice (Redclift 2005) and environmentalism (O’Riordan 1999a). Section 2.2 in
this chapter critically examines the different definitions and thinking of sustainable
development in order to come to provide a definition and agreed set of objectives that underpin
the approaches developed in this thesis. In the pursuit of sustainable development, several
idealised conceptual models of what a sustainable urban form constitutes have been put forward
along with specific policies to achieve this (Haughton 1997). Section 2.3 critically assess these
models, such as the compact city (Dantzig & Saaty 1973), dispersed city (Buxton 2000) and
transport-oriented development (Belzer & Autler 2002), to assess what contributions they can
make individually and also collectively towards achieving sustainable development (Williams
et al. 2000). There are a number of barriers to sustainable development, ranging from
conflicting sustainability objectives (Mcevoy et al. 2006; Barnett & O’Neill 2010; Dawson
2011) through to uncertainty (Willows & Connell 2003; Ben-Haim 2012). Section 2.4 identifies
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theses and critically analyses the literature to discern methods by which these difficulties can
be at best avoided or at worse mitigated.

Spatial planning is the favoured method by which governments control and manipulate urban
form to reach agreed concepts of sustainability. Section 2.5 reviews how spatial planning has
been used to facilitate the move to sustainable urban forms by ensuring new development meets
sustainability commitments, setting criterion in the form of Environmental Impact Assessments
(Gasparatos et al. 2008), undertaking Strategic Environmental Assessments (Tetlow & Hanusch
2012) and Sustainability Appraisals (Singh et al. 2012). These methods are critically examined
to identify potential weaknesses and therefore areas for improvement before the utility of

decision support to aid this process is explored.

2.2 Definition of Sustainable Development

In order to achieve sustainable development it is essential to define what it constitutes. Despite
numerous attempts by intergovernmental bodies to define sustainable development several
sources have lamented the vagueness and ambiguity over what the term actually refers to
(Hopwood et al. 2005; Connelly 2007). One of the earliest and most widely quoted definition
(Eppel 1999; Quaddus & Siddique 2001; Woodward 2004; Redclift 2005; Gibson 2006; Jepson
et al. 2014) comes from the Brundtland Report, which defines sustainable development as:

“...meeting the needs of the present without compromising the ability of future

generations to meet their own needs.” (UN, 1987)

Hopwood et al. (2005) point out that the vagueness of the term potentially allows politicians
and leaders to justify policies of extremes such a ‘communal agrarian utopianism’ through to
‘extreme market systems’. Policy makers can justify any policy, no matter how regressive, on
the basis that it meets this loose definition. For this reason Richardson (1997) describes how
the term was originally viewed by some as a “rhetorical cloak” for undesirable policies, while
the term sustainable development was latched on to by social equity campaigners and the
environmentalist movement to advance their own ideas. Because of this, several governments
deliberately avoided using the term. For example, New Zealand’s original attempt at legislating
sustainable development purposefully excluded the term in its Resource and Management Act
to avoid conflict (Ericksen et al. 2004).



However, it has been argued that governmental definitions were purposefully ill defined so as
to not to alienate potential allies and to allow for a ‘broad church’ approach in the early stages
of pushing for sustainable development (e.g. such as in the environmentalist and social justice
movements) (Wackernagel & Rees 1996; O’Riordan 1999a). Moreover, the earliest definitions
came at a time when there was a lack of proven routes to towards sustainable development and
as such a loose definition allows for a wider exploration of different methods in order to deliver
sustainability (Redclift 2005). Thus, to some extent, its greatest weakness is also its greatest

strength, as the ambiguity allows for more encompassing view of sustainability.

Connelly (2007) is highly critical of the early ambiguous definitions, suggesting they hamper
sustainable development by focusing on rhetoric and principles, and ignore any complexity

from which best practice can be discerned.

“As long as sustainable development is viewed as ‘everything and nothing’
it is weakened as a policy goal, and those wishing to promote environmental
sustainability and social justice are hampered if they attempt to do so without
a clear understanding of the tensions and potential conflicts between these
desirable goals.” (Connelly, 2007)

The work of Pearce et al. (1989) was one of the first to frame sustainable development in terms
of a combination of economic growth, social justice and environmental protection. Often
referred to as the ‘three pillars of sustainability’ (Pope et al. 2004; Gibson 2006; Mahida 2011),
Haughton & Counsell (2003) argues that this definition was instrumental to the acceptance of
sustainable development as a concept, as it allowed the debate around sustainable development
to move away from pure environmentalism or social justice to also include economic
considerations. This broad concept defines sustainability as having:

i.  An economic role — building a sustainable economy through ensuring sufficient land
and office space to keep up with demand whilst providing the necessary infrastructure
to enable economic growth;

ii.  Asocial role — meeting people’s needs for housing in a high quality environment whilst
providing the relevant local services and amenities to support health, social and cultural
wellbeing; and,

iii.  An environmental role — protecting and enhancing the environment and biodiversity

whilst prudently managing natural resources.
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Indeed the simplicity in reconciling the complexities of sustainable development into 3
objectives allowed initial research and moves towards sustainable development to avoid being
dogged down into the technicalities of further definitions (Connelly 2007; Giddings et al. 2002).
The definition has been widely interpreted by many non-governmental organisations and
governments as a Venn diagram consisting of a series of rings representing social justice,
economic development and environmental protection where the intersection denotes
sustainable development (Figure 2.1) (State of New Jersey Planning and Sustainable
Communities 1996; ICLEI (International Council for Local Environmental Initiatives) 1996).
This method found popularity with many governments as it conveys sustainable development
as a ‘win-win’ situation (Myerson & Rydin 1996), where the different elements of sustainability
are reconcilable whilst ignoring any potential downsides to groups of society.

Sustainable
Development

Figure 2.1 Sustainable Development mapped as interlinking rings (adapted from ICLEI, 1996).

Alternatively, Campbell (1996) interpreted this definition as a triangle specifically to convey
contradictions that could occur from the pursuit of sustainable development. As Figure 2.2
demonstrates, each point of the triangle prioritises environmental protection, economic growth
or social justice at the expense of the other two. The centre represents pure sustainable
development, which while desirable is ultimately impossible to realise (Jones 2014). This
method of mapping the concept conveys that as policies lean towards a certain philosophy,
other constituents of sustainability are lost, such as in the case of eco-socialism which focuses
towards environmental protection and social justice, but at the expense of economic growth.

Connelly (2007) goes further with this definition using the triangle to map out the sustainability
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of approaches proposed by different stakeholders. This allows for an easy visualisation of the

priorities of the stakeholders and conveying priorities to certain elements.

Environmental Protection

Pure
Sustainable
Development

Economic Growth Social Justice

Figure 2.2 Sustainable development as a combination of economic growth, environmental protection and social justice
(reproduced from Connelly 2007).

The three pronged definition of sustainable development has been widely employed (Berke &
Godschalk 2006), with its principles being adapted by the 2000 United Nations Millennium
Declaration (United Nations General Assesmbly 2000). Indeed, the UK governments 2005
‘Sustainable Development Strategy’ (Defra 2005) framed their definition along these ‘3 pillars’
and the UK’s most recent National Planning Policy Framework (NPFF) continues to categorises
sustainable planning in terms of these elements (Department for Communities and Local
Government (DCLG) 2011a). Despite this definition of sustainable development as a
combination of environment, social justice and economic growth being a popular and often
used definition, the concept has gradually grown to encompass further (and well defined)
elements such as such as good governance (Williams 2004; Kenworthy 2006; Kourtit et al.
2014), quality of life (Swanson et al. 2004; London Sustainable Development Comission 2005;
Mahida 2011) (which is a more objective measure than social justice) and the elimination of
poverty (Quaddus & Siddique 2001; United Nations Population Fund 2011).

Sustainability efforts are centred on urban areas as they contain high density populations which

as Chapter 1 detailed, is further increasing with urbanism. With regards to urban sustainability,

this has in recent times been increasingly viewed through the prism of climate change (Adger

et al. 2005; H Bulkeley & Betsill 2005; Carter 2011). This has coincided with major

publications Dby the International Panel on Climate Change (IPCC) (an scientific
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intergovernmental body set up by the UN) outlining the threat and scale of climate change
(IPCC 2007a; IPCC 2013; IPCC 2014) following from initial international efforts to avoid
significant climatic change such as the signing of the Kyoto agreement which established a
requirement of at least a 5% cut in emissions from a 1990 baseline by 2012 (UNFCCC 1998).
Responses to climate change in cities mainly relate to two concepts, mitigation and adaptation.
Mitigation is defined by the IPCC as:

“An anthropogenic intervention to reduce the anthropogenic forcing of the climate
system; it includes strategies to reduce greenhouse gas sources and emissions and

enhancing greenhouse gas sinks.” (IPCC 2007a)

Whilst adaptation is defined as:

“Adjustments in natural or human systems in response to actual or expected
climatic stimuli or their effects, which moderate harm or exploit beneficial
opportunities”. (IPCC 2012)

In terms of urban development, adaptation is viewed as how well urban areas adapted to the
effects of climate change (Carter 2011) such as higher incidence heat waves, floods, as well as
droughts and cold snaps (Hajat et al. 2014; Staden 2014). Whilst mitigation is thought of how
well urban areas can curb their energy use and reduce emissions of greenhouses gases from
transport and domestic use. Significant efforts at climate change mitigation for urban areas have
been made since the signing of the Kyoto agreement, with for example the EU agreeing to on
average 8% decrease in emissions by 2012. However, adaption was not adopted as early as
mitigation with policies in relation to modifying cities to account for climate change occurring
much later (Biesbroek et al. 2010; Carter 2011; Berrang-ford et al. 2014; Reckien et al. 2014).
Indeed the emphasis on adaptation began with the growing evidence that even with substantial
reductions in GHG emissions, climate change was inevitable (IPCC 2007d). Thus it became
clear that organisations needed to prepare suitable responses to climate change impacts. Krebs
et al. (2010) considers that these adaptation and mitigation efforts will compliment other
elements of sustainability, and are in fact central to ensuring environmental (through more
efficient resource use), societal and economically (protecting population and businesses from
the effects of climate change) sustainable cities.
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This wider concept of sustainability has weakened the definition of sustainability around the
three pillars and practitioners have commented that the three pillars concept is hard to follow
in practice as a lot of the elements of sustainability now considered don’t fit neatly into this
definition (Gibson 2006; Bond et al. 2012). However, the wide use and the easy dissemination
of sustainability around the ‘three pillars’ ensures that it will continue to be incorporated into
definitions (Connelly 2007). Based on this, the research presented in this thesis acknowledges
and employs a broad definition to sustainable development. The traditional definitions
revolving around the economy, environmental and societal sustainability are included along
with factors such as adaptation and mitigation. By considering such concepts to be part of
sustainable development (of cities) the work developed agrees with the principles now widely
held views of what constitutes sustainable urban development (Adger et al. 2005; IPCC 2007c;
Carter 2011; Hunt et al. 2013): namely:

1. A small ecological footprint, where resources are efficiently used and emissions are

minimised,

2. Environmentally friendly where the current biodiversity and ecology is protected and
enhanced;
Sustainable economic activity is met but not at the expense of the environment;
Policies where the health and quality of life of the cities occupants are promoted:

Inclusive governance where inhabitants have a stake in decision making; and

o o~ w

Resilient with sufficient capacity to cope with future climatic events such as heat waves

and flooding.

2.3 Models of Sustainable Urban Spatial Form

2.3.1 Introduction

Urban areas are the highest emitters of greenhouse gases and consumers of resources whilst
containing the largest concentration of humans, and therefore have the most to lose from climate
change (Hunt & Watkiss 2011). Due to this, they are at the forefront of ensuring sustainable
development and are seen as the centre of sustainability efforts (Rosenzweig et al. 2010).
Despite some initial scepticism at the ability of cities to meet these pressures (UN-Habitat 2004;
Redclift 2005), a number of sources are optimistic that urbanisation provides an opportunity to
spear-head sustainable development (Robinson 2004; Nijkamp & Kourtit 2012), as urban areas
are ideally suited to deliver sustainable solutions through their ability innovate, modify their

form and provide effective governance structures (Burgess & Jenks 2000).
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There are currently a number of city level climate change and sustainability cooperative
initiatives including the C40 Large Cities Leadership Group (Roméan 2010), the Rockefeller
100 resilient cities challenge (Rodin 2014), the ICLEI-Local Governments for Sustainability’s
Cities for Climate Protection Programme, the Mexico City Pact and Europe’s Covenant of
Mayors, the Asian Cities Climate Change Response Network (ACCCRN) and the Durban
Adaptation Charter (Walsh et al. 2013). However, cities are extremely complex and the search
for sustainable solutions is intimidating (Jenks, M., Burton, E. & Williams 1996). Therefore
several ideas of what constitutes sustainable urban form have been proposed to meet the agreed

principles of sustainable development outlined in the previous section.

The question of sustainable urban form is hugely contested (Breheny 1996; Newton et al. 1997;
Banister et al. 1997; Guy & Marvin 2000; Chen et al. 2008), with some proponents arguing that
cities must be at an appropriate scale to allow for walking, cycling and efficient public transport
(McLaren et al. 1991), whereas others have argued that dispersed urban development best meets
environmental pressures and quality of life considerations (Buxton 2000). More recent
proposed sustainable urban forms include concepts such as Transit/ Transport Oriented
Development (Belzer & Autler 2002), Garden Cities (Garden Cities and Suburbs Expert Group
2012) and Resilient Cities (Newman et al. 2009). All of these ultimately aim to provide a
sustainable urban form but are based on different ideas of what constitutes sustainable urban
form. However, each of these models attempts to address one or all the elements of
sustainability (resource efficiency, perceived quality of life etc.) and propose patterns of
development and policies to reconcile their ideals. These concepts are important to consider in
order to determine the best practices for planners to meet their sustainability goals and are

reviewed in detail in this section.

2.3.2 Urban Intensification: The Compact City model

Originally envisaged by Dantzig and Saaty (1973) as a means of protecting surrounding
countryside from urban sprawl, and heavily advocated by a group known as New Urbanists
(Leccese & McCormick 2000), the Compact City model came to prominence as a sustainable
urban form with Newman & Kenworthy (1989) which found that dense (compact) cities led to
much lower automobile reliance. This is demonstrated in Figure 2.3, where European cities

with higher population densities are found to have lower gasoline expenditure per-capita than
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less dense Australian and American cities. Moreover, Asian cities with the highest population
densities have the lowest emissions. The role of urban form can be appreciated by comparing
Atlanta and Barcelona (Figure 2.4) which have approximately the same population. However,
Atlanta covers an area 12 times larger than Barcelona leading to 6 times the amount of

emissions primarily as result of transport.

The Compact City model has been proposed primarily as a means to reduce carbon emissions
and prevent urban sprawl through urban densification (European Commission 1997). In
particular the model advocates high density housing in order to facilitate better public transport
provision (Kenworthy 2006), and emphasises diverse/heterogeneous land use patterns in order
to reduce the need for travel by private cars to services, employment and facilities, as they are
located closer to residential areas (Leccese & McCormick 2000). Despite the emphasis on
reductions in transport emissions, proponents also describe how the model addresses other
elements of sustainability through environmental protection and social justice (E Burton 2000).
To ensure compactness the model constrains development within the current urban extent
protecting surrounding countryside and green belt land. In Europe this is achieved by policies
relating to development on previously used land (brownfield) to protect urban greenspace
(Williams 2004).

Improved resource usage and building energy efficiency is facilitated by high density
development to allow for district heating and combined heat and power systems (CHP). The
later uses the heat by-product from electricity production from local power stations to heat
buildings and is becoming increasingly effective and, as a result, prevalent worldwide (Wu &
Wang 2006). Indeed Rode et al. (2014) found higher density residential areas to be the most
energy efficient with as low as quarter the energy expenditure compared to lower densities.
Furthermore, social justice is addressed via better access to facilities and reduced social
segregation (van Kempen 1994) by mixing different socio-economic classes in a small spatial
extent. Amenities located within the locale, such as shops and hospitals, and the increase in
walkability advantages those with the least resources, whilst shorter distances to employment
potentially improve work prospects for the low skilled (Castells & Hall 1994).

However the claim of Compact City proponents that higher population density leads to lower
automobile use is coming under consistent criticism in the literature. Critics have contested that

the relationship presented in Newman and Kenworthy (1989)’s study as casual and proposed
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lower automobile usage is more related to income (Gordon 2008). However, Newman (2014)
refutes this for developed countries, which is contrary to the findings of Melia et al. (2011)
whose study that found that although densification was likely to reduce car use, the reductions
were insignificant and conclusion supported by Echenique et al. (2012) who modelled several
future development scenarios and found that urban intensification had little effect on vehicle
metres travelled. Notably they found that compaction resulted in higher congestion potentially
negating any reductions in GHGs emissions. Kim & Brownstone, (2010) found that although
residential density had a modest influence on household travel behaviour the biggest

relationship with household annual mileage was rural/urban locations.

A further negative of the Compact City cited by Newton (1997) is that current and future
inhabitants are subjected to poorer air quality than edge and corridor cities. Burton (2000) in
his study on ‘the Potential of the Compact City for Promoting Social Equity’ also found
unintended consequences of higher death rates from respiratory disease and increases in crime
due to the compact city form. In policy terms, compact cities are hard to deliver as they invoke
negative perceptions by residents over issues such as the feeling of overcrowding and loss of
urban quality (Jenks et al., 1996). However, Newman as an original advocate of the compact
city model responds to these criticisms in Newman (2014) by arguing that income is more an
indicator of poor health (Marmot & Wilkinson 2006) and crime rates (Kelly 2000) rather than

the urban form.

Perhaps most worryingly are the negative impacts the compact urban form has on adaptation
(Mcevoy et al. 2006). The compact cities design exacerbates risk to heat islands due to the close
proximity of buildings and restrictions on air flow (Graves & Phililipson 2000; Hunt & Watkiss
2011). In addition the compact development increases vulnerability to climate hazards as multi-
storey residential buildings (crucial to reach sufficiently high density development) leads to
higher mortality rates during heat waves (Semenza et al. 1996; Naughton et al. 2002), decreased
permeability of developed areas increases the likelihood of flooding (Sanders & Phillipson
2003; Nirupama & Simonovic 2007) whilst the close proximity of capital increases potential
damage during flooding (Hunt & Watkiss 2011).

Despite these wide criticisms, the Compact City has had a profound impact on urban planning
at the national scale in several countries including the UK (Williams 2004), Germany (Wentz
2000) and the US (American Planning Association 2000). In addition, international institutions

such as the Organisation of Economic Cooperation and Development (OECD) recommend
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aspects of the model to governments (Matsumoto 2012) while growing countries such as China
see the compact city model as an answer to their rapid urbanisation (Burgess & Jenks 2000;
Chen et al. 2008). Indeed one of the biggest advocates has been the European Community
whose green paper on the Urban Environment (Commission of the European Communities
1990) explicitly advocated high density development and urban containment. In cities
worldwide there have been efforts to contain the extent of the urban area. Strategically northern
European cities of the UK, France, Germany and Belgium have realised this through targeting
and promoting brownfield development (Syms et al. 2003). For example, the UK government
has set targets of 60% of all new development to be located on re-used (brownfield) land in
urban areas (DETR, 1998). Meanwhile local governments in the US have used development
impact fees to discourage urban fringe development (Burge et al. 2013). However in light of
these there is increasing scepticism of the pursuit of compact city principles by planners

(Neuman 2005) which is necessary if some of the negative consequences are to be alleviated.

2.3.3 Dispersed Cities

The antitheses of the compact city concept is the dispersed cities structure typical in Australia
and the US (Kenworthy et al. 1999; Buxton 2000), and increasingly in southern European cities
(Salvati et al. 2013). This is predominantly a product of urban sprawl which describes the low
density development taking place on the outskirts of a city (Johnson 2001). Although the
literature tends to treat dispersed cities as an alternative model of sustainable development
(Neuman 2005; Hirt 2007; Mitchell et al. 2011; Echenique et al. 2012) there are very few details
of any organisation, institutions or authors which advocate them as a sustainable urban form.
Instead, it is used as a comparative worst case scenario alternative urban form by proponents of
compact city principles. However it is worth reviewing as it has its own (to a large extent

historically unintended) contributions to sustainability.

Rather than the intended policy of governments, dispersed cities are more a result of market
forces such as consumer preference for detached housing in the suburbs, lower house prices
away from the centre of cities and increased preference for automobiles over public transport
(Buxton 2000). The result of these pressures are scattered development patterns with no poly
centric pattern. Significantly dispersed cities are regarded as more liveable (Neuman 2005),
especially compared to higher density urban areas, as demonstrated by people preference to live

in low density sub-urban development. This urban form is better adapted to environmental
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issues, for example the increased space between developments relieves heat stress and the

spread of capital reduces the potential cost of flooding (Buxton 2000).

Despite this, sources have been extremely critical of dispersed urban areas with the majority of
relevant literature viewing it negatively. Most of this criticism is aimed at urban sprawl which
is the main cause of dispersed development. As development extends out from the centre there
IS an inevitable separation of land uses that increases resulting in increased travel distances
between housing, employment and services increase (Ewing 1997; Burchell et al. 1998) which
is almost predominantly undertaken by private car increasing emissions substantially (Banister
& Banister 1995). As a result, countries with more dispersed urban areas have much higher per-
capita energy consumption and high levels of road use (Newman & Kenworthy 1999). For
example the US and Australia have over 3 and 2.2 times higher transport related CO2 emissions
of transport per capita respectively, with 5.2 and 3.8 tCO2/cap (tonnes of CO2 per capita),
compared to the EU average of 1.7 tCO2/cap (World Energy Council, 2013).

As such, this urban form is extremely contentious in an era when there is a global movement to
limit GHG emissions (IPCC 2007a). Indeed sustainable interventions such as increasing public
transport provision are hampered as the scattered pattern of housing prevents effective
utilisation. Furthermore, sprawl causes infrastructure and public service costs to rise, as there
is more need for roads and services to facilitate a wider area (Speir & Stephenson 2002;
Haughton & Hunter 2003). Despite the perceived environmental advantages the often cited
work of Johnson (2001) identifies a number of negative environmental impacts of sprawling
development such as loss of environmentally fragile land and farmland and ecosystem

fragmentation.

The dispersed city model provide an (extreme) comparison to the compact city model. Table
2.2 adapted from Neuman (2005) highlights the main differences between these two urban
models. In particular it demonstrates how dispersed cities have formed around to the use of
automobiles with wide spread of commercial activities (only made viable by people driving)
and the availability of car parking and roads within the cities. Meanwhile the centralised and
effective governance of compact cities has resisted this through initiatives such as

pedestrianisation and legal limits urban expansion.
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Table 2.2 Characteristics of Compact and Dispersed Cities (ada

pted from Neuman 2005)

Compact City Characteristics

Dispersed City Characteristics

1. High residential and employment densities
2 High rise flats and apartments

3 Multimodal transportation

4 Mixture of land uses

5  Pedestrianisation and use of bicycle lanes

6 Centralised commercial activities

7  Contained urban development, demarcated by legible
limits

8  Low open-space ratio

9  Urban infrastructure; especially sewerage and water
mains

10 Good governance with strong planning regulation
11 Unitary Control of planning

12 Nucleated development pattern out from the centre of
the urban area

13 High degree of impervious land use

14 Older cities (formed before the invention of
automobiles)

15 Increased social and economic interaction

16 No gardens

Low residential densities
Detached and semi-detached housing

Transportation dominated by privately owned
automobiles

Spatial segregation of different types of land uses
through zoning

Car parking

Widespread commercial development along roads as
well as out of town shopping malls

Unlimited outward extension and leap frogging of new
development

High open-space ratio

Decentralised infrastructure, for example sceptic tanks

Poor governance, development is market led
Fragmented control

Linear settlement alongside transport routes.

High degree of pervious land use

Newer Cities (developed in conjunction with rising use
of automobiles)

Socio economic groups isolated by house prices

High proportion of housing with gardens.

2.3.4 Decentralised Centralisation: Transit Orientated Development

The concept of Transit Orientated Development

all urban areas were suitable for urban densification and a realisation of how people want to
live and commute. This can be seen in Melia et al. (2011) review of urban intensification
policies where compact city principles applied to Portland resulted in higher congestion and
worse local pollution as residents continued to commute by cars. Thus, reflecting the fact that

the success of the compact city depends on cultu

(TOD) came about by the acceptance that not

re change for example, inhabitants moving to

walking and public transport use over private vehicle usage.
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TOD model of sustainable development advocates decentralised urban neighbourhoods on the
outskirts of urban areas which have self-sufficient services and amenities and surrounding
transit stations with good links to the centre of cities (Cervero et al. 2002). This type of
development around transport nodes can be visualised of as a series of polycentric development
centres as in Figure 2.5 and can be thought of as a compromise between the ‘extreme’
centralisation of the compact city model and the ‘extreme’ decentralisation of dispersed cities
(Breheny 1996). The model intends to address sustainability by combining ideas around
compaction locally to reduce travel costs to services and amenities, lower density (compared to
compact city) and suburban living to appeal to market forces (Neuman 2005). Good quality
transport to the centre of the city utilising public transport makes transport efficient and
sustainable. For these reasons it is often referred to as smart growth in the literature (Heid 2004).
One of the ways governments have attempted to impellent this approach is by introducing

policies that relax development densities around transit stations (Cervero et al. 2002).

Proponents of TOD model take their motivation from the argument that lower emissions in
compact cities are not a result of high density residential development (as new urbanists insist),
but rather the result of sustainable transport (Renne 2009). This is supported in studies such as
Echenique et al. (2012), which found accessibility was more related to reductions to vehicle
miles travelled than the level of compaction. TOD principles are most commonly employed in
the US and Australia’s, where cities are dispersed and automobile dependency is high (Ratner
& Goetz 2013). However, TOD as a sustainable urban form is criticised for not sufficiently
reducing automobile dependence to meet mitigation targets, especially compared to compact
cities (Newman et al. 2009), and areas where it has been implemented, such as Denver, US, still
have high automobile dependency (Ratner & Goetz 2013). As Belzer & Autler (2002)
acknowledges TOD doesn’t necessarily constitute the most sustainable urban form however as
it is impossible to completely redesign cities to become compact it is intended to improve upon
the current situation and meet a compromise for the travelling culture of residents within those

cities.
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2.3.5 Garden Cities

Recently an historic urban spatial form known as Garden Cities has been receiving attention
with respect to its sustainability credentials. It was first conceived by Ebenezer Howard
(Howard 1902) as part of his ‘Garden City movement’ and proposed for environmental
purposes so urban populations were closer to nature. The concept entails self-contained urban
development surrounded by greenbelts. Indeed, to some extent, the TOD concept appears to
take inspiration for polycentrism from Howard’s idea (as seen by the similarity between Figure
2.5and 2.6). Howard himself developed two Garden Cities in the UK - Letchworth and Welwyn.
The green cities concept was ultimately marginalised by the emphasis on Compact Cities with
bodies such as the European Commission coming out heavily against peripheral development
(Commission of the European Communities 1990). However they are currently becoming an

increasingly prominent urban form in the lexicon of sustainable development (Randolph 2013).

Several sources have identified Garden Cities as a way to ease development pressures which
are a direct result of the Compact City model (e.g., the restriction of greenbelt development and
preventing the extension of urban development), by allowing peripheral development. Likewise
with TOD, modern concepts of the Garden City propose to mitigate the potential increase in
automobile usage by developing along established transport corridors which either provide
good public transport or along highways so travel distance is reduced. An example of this is the
planned Garden City of Ebbsfleet which is to be built on the periphery of London alongside
sufficient transport routes to allow access to the centre of London (Mann 2008). However, there
is in this case, and more generally, significant resistance to the development in green belt that
is required by this model (Heid 2004; Rudlin & Falk 2014; Blundell 2014). As with TOD the
resulting extension in distance between the urban centre needs to be carefully considered to

ensure it doesn’t result in higher emissions (Garden Cities and Suburbs Expert Group 2012).

Figure 2.6 Garden Cities as polycentric centres on transport nodes connected to the main urban area (Howard 1902).
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2.3.6 Smart and Resilient Cities

Although not exclusively linked to sustainable development goals, Smart Cities are often put
forward as a method of applying technologically driven approaches to urban areas to reduce
energy consumption and to better manage resources. Smart City concepts include the use of
smart grids which adapt the energy supply delivery system based on actual demand, an
approach gaining prominence as an planning paradigm, especially in Europe (Caragliu et al.
2011). However, it has been argued that technology is only a partial solution to urban
sustainability (Bedsworth & Hanak 2010). For example, in the case of flood risk a smart city
approach to adaptation would provide better warning systems. However, hard/soft flood
defence infrastructure would also still be required (Dawson 2007). In case of transport more
responsive ‘intelligent’ transport might reduce emissions, however, up to 70% of emissions are
related to the spatial pattern of land uses which requires spatial planning intervention (Barton
1990).

Another recent urban sustainability paradigm is that of Resilient Cities which are characterised
by a number of hard and soft infrastructure adaptions to urban areas in preparation for expected
more frequent and higher magnitude climate change induced hazards (Hunt & Watkiss 2011).
The increased focused on the resilience of cities is a response to the failure to avert short term
climate change (IPCC 2013) and reaction to a number of recent climate disasters including
hurricane Katrina (Krebs et al. 2010) with attentions focused on to how to best manage expected
climate change (Rodin 2014). However a number of adaptive responses implemented to
increase the resilience of cities have been found to negatively affect mitigation efforts as they
are energy intensive processes which increase emissions (Barnett & O’Neill 2010); highlighting
that care must be taken to ensure adaptive responses compliment other sustainability efforts
(Dawson 2011).

2.3.7 Multiple Pathways

Whilst these idealised sustainable urban forms provide pathways and policies which contribute

to addressing a number of urban form sustainability issues, they ultimately fail to achieve

sustainable cities (Williams et al. 2000). This has led to practitioners to argue that such one-

size fits all models of urban development, especially the compact city model, have in fact

hindered urban sustainability as no single model adequately addresses all critical components

of sustainability (Haughton 1997; Williams et al. 2000; Guy & Marvin 2000; Finco & Nijkamp
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2001). Thus, to develop a sustainable city which addresses a wide range of sustainability
concepts, , one must draw from the diverse models discussed (Breheny 1996; O’Riordan 1999b;
Finco & Nijkamp 2001); as Williams et al. (2000) summarise:

‘Instead of prescribing one ‘end product’ in terms of urban form (such as urban
intensification), move towards formulating decision making process to ensure the

right solution in any given location®.

Thus, while elements of the compact city model will likely contribute to a sustainable city, in
particular policies to constraining urban sprawl (Matsumoto 2012), elements of the TOD and
Green Cities models may allow spatially localised planning to occur that will make cities more
sustainable with respect to hazards such as flooding and heat waves. Technology and Smart
City concepts will help provide greater resilience and longer term sustainability in relation to
resource usage, but this also needs to be coupled with concepts from Resilient Cities where
again infrastructure investment can help make cities more sustainable with respect to future
climate change. As such, all the models review have useful contributions and concepts to
developing sustainable cities; the challenge is to select spatial development strategies on the
basis of contextualised evidence which demonstrates that the policies selected will increase
sustainability of the city as a whole (Barnett & O’Neill 2010; Dawson 2011).

2.4 Barriers to Sustainable Urban Form

Despite an increased appreciation of the best pathways to meet sustainable urban form, there
remain significant barriers to meeting sustainable urban development (Dawson 2011). It is not
simply enough to define the aims of sustainable development but there must also be a
consideration of the conflicts that obstruct their adaptation. The critique of urban models of
sustainable development in Section 2.3 reveals a number of barriers, the scale and importance
of which warrants a significant investigation themselves. Early literature such as Campbell
(1996) recognised a number of conflicts which could occur between the pursuit of economic
growth, environmental and social sustainability goals during the planning of sustainable cities.
These are shown in Figure 2.8 and classically revolve around:
1. Resource conflicts: Ensuring there are sufficient land and resources to facilitate economic
development while avoiding conflicts with the environmental need to protect biodiversity

and effectively manage resources.
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2. Property conflicts: Providing adequate residential for the population conflicting with the
need for employment to facilitate economic activity.
3. Development conflicts: Ensuring environmental protection and efficient resource use

whilst allowing populations to increase their quality of life. (Campbell 1996)

Environmental Protection

Resource Development

Conflict Pure Conflict
Sustainable
Development
.  Property _ . .
Economic Growth —> Contlict ¢ Social Justice

Figure 2.8 Traditional conflicts arising from sustainable development (adapted from Campbell (1996)).

However, as the concept of sustainability becomes more complex, so the challenges of
reconciling these conflicts becomes increasingly difficult (Mcevoy et al. 2006; Dawson 2011).
Table 2.4 outlines a series of augmented potential conflicts between sustainable interventions
adapted from Dawson (2011). Critically, a number of these conflicts occur between adaptation
and mitigation responses (Klein et al. 2005) which is important as both of these areas is
receiving significant effort currently (IPCC 2007d). The most common conflict identified are
contradictions resulting from compact city development. As Section 2.3 outlines, urban
intensification is often put forward as a policy to reduce emissions (Williams 2004). However
as outlined in Section 2.3.2 the form of development has a direct effect of the ability of cities
to adapt to climate induced hazards (Hunt & Watkiss 2011). Highly concentrated development
in cities intensifies urban islands (Holderness 2012a) and restricting development within the
current urban extent concentrates population within this urban heat island (Kazmierczak 2012).
Meanwhile increasingly urbanisation leads to larger areas of impermeable surfaces and
therefore higher risks of flooding (Sanders & Phillipson 2003). For example, Nirupama and
Simonovic (2007) observed for a case study of London, Ontario, Canada, a 120.95% increase

in urbanised land that led to a quadrupling of observed peak flow during flood events.
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On the other hand there are a number of instances of adaptation responses have been found, and
indeed the IPCC (IPCC 2007a) acknowledges, to affect the achievement of other elements of
sustainability. An example of this Hamin & Gurran (2009) identifies a particular problem in
Bryon Shire in New South Wales, Australia where strict development restrictions to avoiding
climate risks (in this case flooding) has severely restricted the ability to plan development in
close proximity to the city centre in order to facilitate walkability and better cycling
infrastructure. Barnett & O’Neill (2010) define a series of unintended negative consequences
for mitigation efforts that can be caused by other well-intended adaptation interventions which
he refers to as Maladaptation:

1. An increase in emissions of GHGs from energy intensive sustainability interventions:
For example the use of desalinisation plants and air conditioning;

2. A disproportionate burden on the most vulnerable: For example interventions which
increase costs on people unprogressively (i.e. not based on your ability to pay) such as
higher water bills resulting from the use of desalination plants and higher electrical costs
from environmental taxes on electricity production;

3. Reduced incentives to adapt: For example development in floodplains as a result of hard
flood defences and the use of desalination plants disincentives efficient use of water;

4. Limiting alternate choices available to future generations: Large infrastructure
developments commit a lot of capital and institutional lock-in. (Barnett & O’Neill 2010)

This is compounded as planners are being tasked with developing policies that mitigate GHGs
emissions, such as the 2003 Energy White Paper (Defra, 2003), which sets a 60% emissions
reduction target in the UK for 2050. At the same time cities are required to become more
resilient to climate induced hazards (Adaptation Sub-Committee, 2010). As such, it is crucial

that these efforts are achieved simultaneously and in a mutually supportive manner (IPCC 2012).

A significant cause of conflicts in sustainable cities policy can be directly attributed to a lack
of communication between sectors (Lindley et al. 2006; Barnett & O’Neill 2010; Dawson 2011).
Often sustainability initiatives are unique to a particular sector and as such both negative and
positive effects on other sectors are overlooked (Russel & Jordan 2009; Walsh et al. 2011).
Therefore, an integrated approach is required with more inclusive modelling over different
sectors to assess the impacts of initiatives across social, economic and environmental domains.
This must be complimented with the ability to understand the trade-offs and interactions

between sustainability efforts in order to balance them (Lindley et al. 2006; Dawson 2011).
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Table 2.3 Potential conflicts of sustainability issues (adapted and expanded from Dawson, 2011)

Sustainable Intervention

Intended positive effects

Potential Negative Impacts

Reference

Air Conditioning

Reduce heat stress

Increases energy usage and subsequent emissions

Exacerbate heat island effect from heat produced

(Shimoda 2003)

Biofuels for transport and energy

Reduces overall GHG emissions

Encourages deforestation and replaces agriculture

(Cassman 2007)

Desalination

Secure water supply

Increased emissions, costs and reduced incentive to adapt

(Barnett & O’Neill 2010)

Densification of cities

Reduce automobile dependence
Increased public transport use
Encourage walking

Exacerbation of urban heat islands and risk of flooding
Exposure to emissions and greater noise pollution
Less housing choice

(Burton 2000; Sanders & Phillipson 2003;
Hunt & Watkiss 2011; Echenique et al.
2012; Holderness 2012a)

Dispersed Development

Reduced flood risk
Better quality of life

Increased automobile dependence
Higher infrastructure costs

(Buxton 2000; Speir & Stephenson 2002)

Carbon Regulations on industry

Decrease national emissions

Offsets industries emissions to other countries

Discourages economic activity

(Bohm & Dabhi 2008)

Brownfield Development (Previously
developed land)

Protects greenspace
Prevents the  development of

previously undeveloped sites

Concentrates development within urban heat islands
and in de-industrialised areas with little employment
Often requires decontamination

Insufficient land for development

(Heid 2004; Baing 2010; Kazmierczak
2012)

Traffic bypasses or radial routes

Displace noise and air pollution from

traffic out of cities

Lead to longer travel times and consequently more emissions

(Wood et al. 2007)

Catalytic Converters for automobiles

Improve Air Quality

Environmental damage from large scale mining

(Amatayakul & Ramna 2001)

Cavity Wall Insulation

Reduce energy need in housing

Increase potential damage from flood events

(CIRIA 2003)

Insurance and disaster relief scheme

Spread risk from high-impact events

Discourages adaptation

(Fankhauser et al. 1999)

Preventing greenfield development

Protect environment

Helps alleviate heat stress

Hampers efforts to provide sufficient and cheap housing

(Heid 2004)

Vehicle User charging (i.e. congestion
charge)

Discourage automobile use in cities

Greater social inequality

(Gusdorf & Hallegatte 2007; GLA et al.
2011)
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A significant hurdle to avoiding conflicts, and to the move towards sustainability as a whole, is
dealing with uncertainty (IPCC 2012). One instance of this is climate change uncertainty which
will directly influence adaptation options. Modelled scenarios are usually conditional on some
sort of trajectory (Dawson, 2007) such as emission projections (Jones et al. 2009). However,
there is some contention on whether these climate models underestimate the extent and
magnitude of climate change (Guemas et al. 2013). Attempts to address this include the use of
probabilistic approaches (such as the UKCPQ9 climate projections (Jones et al. 2009)) in order
to quantify the uncertainties in climate projections (Kilsby et al. 2007; Jenkins et al. 2014).

Using such information, adaptation measures can be prepared for the most probable scenarios.

Another response to dealing with this type of uncertainty is ensuring proposed adaptation
measures perform well across a number of different scenarios (Ben-Haim 2012; Woodward et
al. 2013). Kabat et al. (2005) provide examples of how long term adaptive planning can take
into account possible scenarios of climate change, which they refer to as ‘climate proofing’. In
relation to this approach, it has been argued that it is better for adaptation plans to perform
acceptability over a large number of scenarios rather than be optimally for a single specific

instance of future climate change induced impact (Dawson 2007).

2.5 Spatial Planning to Achieve Sustainable Cities

2.5.1 Introduction

A major method by which governments attempt to deliver sustainable urban development goals
is through manipulating urban form via spatial planning (Jackson 2006; Alshuwaikhat 2006;
Gasparatos et al. 2008). The spatial form of a city is integral to its ability to manage resources
and react to climate change (Alberti et al. 2008; Marique & Reiter 2014). Whilst it is accepted
that wide scale reconfiguration of cities is improbable, sustainability can be achieved by
ensuring that planned new development is sensitive to key sustainability-objectives (Lele 1991;
Beatley & Manning 1997; Gasparatos et al. 2008). One of the earliest definitions of spatial
planning comes from European Regional/Spatial Planning Charter adopted in 1983 by the
European Conference of Ministers responsible for Regional Planning;

“Regional/spatial planning gives geographical expression to the
economic, social, cultural and ecological policies of society. It is at the
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same time a scientific discipline, an administrative technique and a
policy developed as an interdisciplinary and comprehensive approach
directed towards a balanced regional development and the physical
organisation of space according to an overall strategy.” (Council of
Europe 1983)

Traditionally sustainable spatial planning concerned resolving competing land uses. However
in the last decade planning has been specifically tasked to address sustainability issues such as
combating climate change (Alshuwaikhat 2006; Jackson 2006). For example in the UK the
‘Sustainability Appraisal of Regional Spatial Strategies and Local Development Frameworks
Consultation Paper’ (ODPM (Office of the Deputy Prime Minister) 2004) extended the spatial
planning remit as the main driver for sustainable urban development. This has been continued
by the 2012 UK National Planning Policy Framework (NPPF), which states from the outset
sustainable development as principle the aim of the planning system (DCLG 2011a).

As a consequence of neoliberalism, Jackson (2006) redefines spatial planning as a “facilitator
that manages development” carried out by the private sector. Therefore, Governments
implement their sustainability aims through the setting of regulatory frameworks and
requirements which the private sector must meet (ODPM (Office of the Deputy Prime Minister)
2004; Jones 2014). There are a number of ways governments can express their sustainability
aims in the spatial planning process, for example through identifying of zones for specific land
use activity (Jepson et al. 2014), restricting of development on greenfield sites to protect
biodiversity (DCLG 2011a) and setting specific objectives to be met by any new development,
such as of 60% of development on brownfield sites (Baing 2010) and new housing being zero
carbon (Turner et al. 2008).

Despite sustainability being a widely used concept, there remains a lack of agreement on how
best to ensure sustainable development within the spatial planning process (Quaddus &
Siddique 2001; Connelly 2007). Along with the broader sustainability agenda, sustainable
spatial planning was initially hampered by a lack of clear definitions and goals (Beatley &
Manning 1997). Therefore, the first attempts at ensure sustainability in the spatial planning
system focused on environmental sustainability (Smith & Sheate 2001; Lenzen et al. 2003;
Pope et al. 2004). These include methods such Environmental Impact Assessments and

Strategic Environmental Assessment and have culminated and contributed to the most recent
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form, Sustainability Assessments and Sustainability Appraisals which assess the sustainability
of new development across a larger range of sustainability objectives (Thérivel & Minas 2002;
Haughton & Counsell 2004; Gibson 2006).

2.5.2 Environmental Sustainability Assessments

One of the first and most widely used methods encapsulating environmentally sustainable
development in the spatial planning process is the application of Environmental Impact
Assessments (EIA) (Glasson et al. 2005). The environmental consequences of proposed
development is assessed using detailed environmental studies to prepare an environmental
impact statement (Sadler 1999). This is then used to ensure plans meet a minimum standard of
environmental protection and evaluate modifications to mitigate these impacts (Lenzen et al.
2003). EIAs were originally introduced in the U.S. by the National Environment Policy Act
(NEPA) in 1969 as a result of increased interest in environmentalism and has subsequently been
adopted in over 100 countries worldwide (Wood 2003) including; EU countries (European
Council 1997), Hong Kong (Hong Kong Government 1997), Australia (Australian Government
1999), New Zealand (Ministry for the Environment 1991) and China (National People’s
Congress 2003). Crucially EIAs are applied after the proposal stage, and thus their ability to
influence plans towards maximisation of environmental considerations, and other objectives is
limited (Steinemann 2001; Lenzen et al. 2003).

Whilst effective at delivering environmental benefits (Holder & McGillivray 2007), the ability
of EIA to asses sustainability as a whole for development is restricted due to its focus on the
environmental impact of development (Pope et al. 2004). However, it has been argued that
environmental sustainability is integral to sustainable development (Sadler 1999) and EIA in
particular provides a sound basis for a more complete sustainability assessment (Sheate et al.
2001). Therefore EIA is often incorporated in the planning system of countries alongside other

sustainable development measures (Mahida 2011).

Alternatively, Strategic Environmental Assessments (SEA) are applied at the beginning of the

planning process (Tetlow & Hanusch 2012), ensuring they have more a proactive influence on

ensuring sustainability considerations in the early planning stages (Wood & Djeddour 1992;

Sadler & Verheem 1996). As such, SEA have a greater potential for supporting the decision

making process than EIA. Whilst they have also been adopted internationally, they aren’t as
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widely used as EIAs with approximately of 60 countries worldwide employing them (Sadler
2011).

There is some debate on how well SEA promotes sustainability as a whole (Thissen 2001;
White & Noble 2013), and as with EIA it is restricted in scope to environmental issues
(Partidario 1996). Despite this Caratti et al. (2004) argue that it has been integral to developing
a more proactive process of sustainable solutions as an integral part of strategic planning
activities. More recently SEA has been developed to incorporate multiple elements of
sustainability, usually alongside the 3 pillars of sustainability (White & Noble 2013). However,
the utility of the SEA approach to multiple sustainability objectives has been criticised for
lacking ambition as it focuses on ‘satisficing’ decisions (a term coined by Simon (1956) to
represent decisions made on the basis of meeting a criteria), rather than attempting to optimise
the sustainability objectives under consideration (Pope et al. 2004). While non-environmental
sustainability objectives can be considered within SEA, Verheem & Dusik (2011) found that
the majority of SEA pursued internationally were still limited in scope to environmental issues.

2.5.3 Integrated Sustainability Assessments

A more promising approach to ensuring and assessing the sustainability of new development
during spatial planning are sustainability assessments (Pope et al. 2004; Haughton & Counsell
2004; Institute of Environmental Management and Assessment (IEMA) 2006; Gibson 2006;
Ness et al. 2007). As with SEA, sustainability assessments are applied at the early stages of
spatial planning decisions with the intention of aiding and directing decision makers to more
sustainable plans (Land Use Consultants & Royal Institute Town Planning 2008; Bond,
Morrison-Saunders & Howitt 2012). Because of this sustainability assessments are commonly
considered a decision making tool and their aid to improve strategic decision making is well
documented as well as being recognised as an important tool to aid the shift toward
sustainability (Land Use Consultants & Royal Institute Town Planning 2008). Crucially
sustainability assessments allow for the assessment of urban development against a wide range
of sustainability factors (Smith & Sheate 2001) which mirrors the move to integrated
interpretations of sustainability, leading to more ‘win-win’ situations as sustainability

objectives are considered simultaneously (Gibson 2001).
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Where sustainability assessments has a significant strength over SEA and EIA, is that it is an
objective-driven approach whereby the decision maker attempts to design plans to meet
aspirational objectives as well as to meet specific targets and baselines. Whilst not as commonly
utilised as SEA, sustainability assessments are becoming increasingly popular (Mahida 2011;
Ness et al. 2007). The earliest forms of sustainability assessments were driven from SEA and
EIA approaches (Pope et al. 2004; Gibson 2001) and typically involved assessing development
against the three pillar definition. Especially with EIA methods, this was easily facilitated by
using experts to assess each of the elements. However the assessment of individual components
of sustainability fails to integrate sustainability aims and instead the task of reconciling them is
done at the end of the process; potentially missing the opportunity to maximise performance.
Integration of sustainability objectives within SEA as per the sustainability assessments
approach has been used by a number of countries such as Czech Republic, Denmark,
Netherlands, New Zealand, Portugal and South Africa (Chaker et al. 2005). However crucially
SEA is seen as a baseline/threshold approach, whereby they attempt to meet sustainability
targets (Pope et al. 2004) and as such may fail to deliver optimal plans. Another strength of
sustainability appraisal is that its application is at a local scale which along with its objective-
oriented approach allows for assessments to be designed to incorporate localised objectives
(Bond et al. 2012). This means the sustainability assessment process is dependent on a robust
evidence base which is becoming even more attractive with more sophisticated sustainability
indicators (Singh et al. 2012).

A number of sources have expressed concern at environmental objectives being considered
alongside social and economic issues as they believe it will lead to them being prioritised over
environmental protection (Pope et al. 2004; Morrison-Saunders & Therivel 2006; Bond,
Morrison-Saunders & Pope 2012). Kumi et al. (2013)’s review of sustainable development
collaborates this with evidence of economic development being pursued to the detriment of the
environment and argues that environmental protection should be considered much more highly
than the other two elements. Meanwhile others have argued for the continued use of EIA and
SEA alongside sustainability assessments for added protection and prioritised environmental
protection (Morrison-Saunders & Therivel 2006). Overall sustainability assessments represent
an integrated approach, which aim to support the decision-making process with respect to all
aspects of sustainability.
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2.5.4 UK Sustainability Appraisals

Sustainability appraisals are a type of sustainability assessment which is unique to the UK
(DCLG 2011a) and which has been lauded as a sustainability assessment (Bond et al. 2012).
They were established as a planning tool in the UK before SEAs were made legally binding by
the EU (European Council 2001). In particular, the UK’s National Planning Policy Framework
states that sustainability appraisal process “should seek opportunities to achieve each of the
economic, social and environmental dimensions of sustainable development, and net gains
across all three” (DCLG 2011a). To achieve this the sustainability appraisal is employed during
the preparation of a local plan of development (ODPM 2004). As a number of options are
identified for proposed development they are assessed against a number of environmental,
economic and social objectives. These are then used to compare a range of alternatives with the
intention to divert the planning process to the most sustainable options. This is enforced through
granting or refusing planning permission to developers based on how well the development
meets these objectives, ensuring local authorities can wield a huge influence on how

development changes and grows.

An example of an sustainability appraisal to the planning of a large urban area is shown in
Figures 2.9 from the sustainability appraisal of a Development Plan for Birmingham (AMEC
Environment & Infrastructure 2014); the second largest city in the UK. A number of potential
spatial areas have been identified for residential and economic development and an allocation
of dwellings or economic land outlined (see Table 2.4). In accordance with the National
Planning Policy Framework (DCLG 2011a), local plans set their own specific sustainability
criteria on the basis of local requirements; these in turn form the sustainability objectives used
by the subsequent sustainability appraisal to assess a proposed development. This approach
meets the requirement for contextualised sustainability (see Section 2.3.7) by allowing local
authorities to set out their own localised sustainability objectives for development to be assessed

against.

Figure 2.10 demonstrates how a number of the potential development schemes outlined in
Figure 2.9 and Table 2.4 are assessed against the particular objectives under consideration along
with an assessment of how well addresses them. Whilst a wide range of sustainability issues
are addressed, they’re handled in a highly subjective manner, with a basic scale of impact

(positive, negative or neutral impact). Figure 2.11 demonstrates an improved assessment of the
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sustainability appraisal of a potential development site in Manchester; the UK’s sixth largest
city. The assessment evaluates how well the proposed site caters for the needs of residents (e.qg.,
within 30 minutes of a local supermarket). However there is no quantitative assessment of for
example accessibility times. Mitigation of emissions for Birmingham’s sustainability appraisal
is handled via objectives for sustainable transport and reducing the need for travel. While for
Manchester’s sustainability appraisal proxies for walking and cycling and renewable energy are
employed. Meanwhile both of the sustainability appraisals reviewed have little consideration

of climate change impacts and are limited to flood risk.

Even when conflicts are identified their exploration is often limited. This is demonstrated in
Figure 2.12 where the conflicts associated with the proposed development at Peddimore are
considered. The sustainability appraisal finds that it is likely that the development will increase
the need to travel as it extends out from the current urban extent. However, again there is no
quantitative measure of this. The development is justified on the basis of it providing
employment opportunities but there’s no appreciation of cost-benefit from the likely resulting
increase in vehicle metres travelled. The highly subjective and qualitative nature of the
assessments has been a consistent criticism of sustainability appraisals within the planning
process, along with the limited analytical consideration of evidence, trade-offs and potential

synergies between objectives (Gibson, 2006).

Table 2.4 Development allocations for sites outlined in Figure 2.9 (AMEC Environment & Infrastructure 2014).

Development Area Housing Office space | Retail space | Employment space
(dwellings) (m?) (m?) (ha)

City Centre 13,740 749,800 254,500 3
Greater Icknield 2,890 0 2,500 0
Aston, Newtown & Lozaells 1,520 10,000 25,000 26
Sutton Coldfield 310 20,000 37,500 0
Sustainable Urban Extension 5,750 0 0 0
Peddimore 0 0 0 80
Bordesley Park 640 0 0 30
Cole Valley Triangle 1,170 thc the 12
Selly Oak and South Edgbaston 930 tbe the 5
Longbridge AAP 2,020 10,000 13.500 225
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Figure 2.9 Sites identified in Birmingham to be considered for future development (AMEC Environment & Infrastructure
2014).
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Figure 2.10 Assessment of Birmingham’s Development Plan Policies against the Sustainability Objectives.

39



Economic Development -
B E | & 88 i E <% ¥ |3 E| & g '
SA Objective Indicator % § E‘ g % ;.;g g § % é gg % E % é g E g g % gﬂ% § E é E % % g’ gg g E E
i I I e Q: = I I i Sl =0 R I = @ na | = Zlal 2
Gla| |8 |87 i 7|2 |8 |%=|= |8 |& | % |&8|g |~ 15" 2| g

Is it within 30 mins of a GP, densist and hospital

. by public transport?
3 mprove health of the population and reduce oy 4 Sirect loss of public open space ¢
health inequalities
lopen access land?

(Wil the site contribute to noise pollution?

I it within 30 min of the Manchester city Centre
8 Ensure people's needs for goods, services and [0f Local Ceatres by public transport?

amenities are met I it within walkable cycable distances (300m
and 2-5km) to key services?
(Good ibility to local facilities
10 Fx the use of sustainable £ In close proxzmity to a public transport route or
modes and reduce motorised traffic .
e a walkeable/ cyelable distance?
11 Improve Air Quality Within an Air Quality Area ]
I the site proposed on greenfield land?
i G T HEEENEEEEEEE.
13 Ensure efficient use of land agricultural land (Grade 1. 2 and 3a)
'Will 1t lead to the remediation of contaminated
land?
I the site in priximity (2km) to stuatory
biodiversity site (33515 etc)
14 Maintain and enhance biodiversity, including [Is the site in proximity (300m) to a site of
habitats and species |Biological Interest or Local Nature Reserve.
\Are Biodiversity Action Plan Habitats known to
be on the site?
15 Maintain and enhance the quality of s the site in or adjacent (40m) to a Green
landscap pe and built envi Corridor
18 Reduce contribution to climate change 'Will it increase the proportion of energy needs
lbeing met by ble sources?
19 Reduce impact of climate change Within Envi tal Agency Floodzone 2, 3a o
3b or is within 9m of a river?

Figure 2.11 Assessment of Manchester Planning Policies against sustainability objectives (sample adapted from Atkins 2009).
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Figure 2.12 Handling of the conflicts arising from a particular development scheme for Birmingham’s development plan (reproduced from AMEC Environment & Infrastructure (2014)).
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2.5.5 Consideration of Conflicts between Sustainability Objectives

As Sections 2.3 and 2.4 have shown there are a multitude of instances where sustainability
objectives may conflict during the pursuit of sustainable development, with a significant
number related to the spatial layout of cities. ODPM (2004b) provides guidance to assess
potential conflicts between sustainability objectives outlined in their Local Development
Framework to identify potential conflicts which could occur. A number of SAs address this
guidance using a compatibility matrix between their sustainability objectives. Figure 2.13
demonstrates compatibility matrices for the SA of the Greater London Spatial Strategy (Figure
2.13a) (Mouchel 2010), and Basildon Councils Local Development Framework (Figure 2.13b)
(Basildon Council 2011).

1 Reduce poverty and promote social inclusion 1
2 2
3 Improve the education and skiils of the population

4 Tackle anti-social behaviour 4

5 Increase opportunities for rewarding empoyment 5
6

17

8

3 SA Objectives are Compatible
SA Objectives Conflict with each other

No Clear Link between SA Objectives

Ensure that the City is safe and pleasant place to live and work
Improve accessibility for all

Reduce the negative effect of transport on the environment

SA Objectives

13 [Sustamable design and construction methids
14 Reduce activities that axacerbate climate change
15 tticipate, preper for and adapt to impacts of climate change

16 | Adopt waste heirarchy in all activities
17 |[Encourage growth in the City's fininacial and business services

(18 Maintain and encourage growth in nin-financial economic sectors
[19 |[Encourage use and provision of efficient transport

Enhance the attractiveness of the City as a business location
Improve the social & environmental performance of the econom

21
10 [ 11 | 12 | 13 | 14 | 15 | 16 | 17 [ 18 | 19 | 20 | 21
SA Objectives ‘

b) Conserve Natural Landscape Objective Compatibility Key
Conserve Biodiversity

Sustainable Prosperity and Economic Growth

Town Centre Mixed Land Uses

Improve Education and Social Inclusion

Ensure Decent and Affordable Housing

Improve Health and Well Being

Create and Sustain Safe and Vibrant Communities
Regenerate Deprived areas

Ensure Development in Sustainable and Suitable Areas
11 | Improve Accessibility to Local Services

12 | Improve Efficiency of Land Use

13 | Minimise Risk of Flooding

14 | Reduce Emissions of Greenhouse Gases

15 | Reduce Air, Land, Water and Noise Pollution

16 | Improve Water Efficiency

17 | Improve Energy Efficient of Buildings

Reduce Waster Generation and Increase Recycling
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Figure 2.13 Compatibility matrix from the sustainability appraisal for a) London (Mouchel 2010) and b) Basildon Council
(Basildon Council 2011).

42



Basildon Council’s (Figure 2.13b) matrix identifies a number of conflicts between the pursuit
of economic and social objectives with regards to environmental protection, mirroring the
classical planning resource and development conflicts described in Section 2.4. Meanwhile
conflicts in London’s compatibility matrix centre on new economic activity increasing
emissions. Acknowledging these potential conflicts the plans go on to consider strategies to
mitigates them However these are handled in an overly qualitative way with no quantitative
appreciation of the best trade-offs that can be made in each of the sustainability aims.

2.6 Decision Support

Despite the potential of SA to contribute towards sustainable development there are a number
of weakness that could be improved by the use of decision support approaches in the planning
process. Decision support tools (DST) are increasingly being used to help spatial planning
decision making (Linkov et al. 2006; Komendantova et al. 2014), as they offer a particular
advantage in their ability to manage and analyse larger quantities of data and understand the
complex interactions between planning objectives (Uran & Janssen 2003). The planning
pressures outlined in this chapter come at a time of increasing decentralization of planning
decisions, with planners responsible for joining up strategies to manage the plethora of
sustainability aims (Allmendinger & Haughton 2009). Spatial DSTs that incorporate advanced
modelling techniques into the spatial planning process can potentially provide a vital aid in this
process (Geertman & Stillwell 2009).

In particular, there are an increasing number of risk assessment tools which asses the probable
impact of climate change induced hazards on urban areas, reporting the cost of events to aid the
adaption and the decision making process (Komendantova et al. 2014; Harrison et al. 2015;
Jenkins et al. 2014). Equally, Gil & Duarte (2013) identify a range of analytical tools for
assessing the sustainability of new development and measuring their sustainability, while
Ibrahim et al. (2012) identify a number of tools for calculating expected emissions that may
arise from implementing particular spatial development plans. Furthermore, over the past 40-
years a multitude of models have been developed to simulate the spatial evolution of land use
and transport planning, models which are being increasingly used to design policy with respect
to limiting emissions (Waddell 2011b; Kim & Batty 2011).
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Such approaches are useful to demonstrate the impacts of the different decisions. However,
they are limited in scope to a single element of sustainability (i.e. climate risk, emissions,
employment) (Gasparatos et al. 2008), and as a result lack information on how best to maximise
the desirable outcomes of these. This is compounded by the inability of many DSTSs to rank a
number alternatives to aid decision makers choices (Kapelan et al. 2005a). Moreover many
DSTs are hampered as they fail to resemble how decisions are taken and are too abstract from

the decision making process (Uran & Janssen 2003).

It must also be acknowledged that there are limits to how much models can contribute to spatial
planning process. Tinbergen (1956) identifies two aspects analytical and political. A multitude
of work has considered political responses to sustainable urban development (Richardson 1997,
Boland 2014). However there is significant scope for analytical tools to influence planning
decisions and point decision makers towards the best decisions (Gasparatos et al. 2008;
Geertman & Stillwell 2009; Jordan et al. 2011; Singh et al. 2012).

2.7 Conclusion

This chapter reviewed the sustainability issues facing urban areas and their move towards more
sustainable cities. It is now commonly accepted that there are 3 pillars of sustainability;
economic, societal and environmental sustainability, but that these can be extended to include
aims such as being resource efficient and limiting the impact of climate change. A number of
models of sustainable urban form intended to achieve sustainability are reviewed and it is found
that each in their pure form have limitations. As such the text recognises the requirement to
move away from conceptual ideals of what constitutes a sustainable city to developing
sustainable urban development on the basis of localised evidence. A number of barriers to
sustainable development in Section 2.4 are identified. Owing to the complexity and many
interacting processes within cities, the transition to sustainable urban form is fraught with
potential pitfalls. In particular the review identifies specific problems of conflicting
sustainability efforts and dealing with uncertainty. Therefore any move to long term sustainable
cities needs to consider the relationships between objectives whilst remaining flexible enough

to deal with uncertainty.

Multiple sources point towards the potential and opportunity of tackling sustainability issues
through sustainable urban planning. Traditional and common EIAs and SEAs are found to fail
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to address a broad spectrum of sustainability issues and lack the framework to maximise the
sustainability of new development. However, sustainability assessments, and sustainability
appraisals in particular, provide the most opportunistic method to ensure optimal sustainable
situations are obtained. However they still often fail to address the wide range of sustainability

objectives found by the review in Section 2.2 and also are shallow in their application.

However, with increasing decentralisation of planning decisions there is an opportunity for the

incorporation of modelling to better help support the planning process. In this regard decision

support tools have the potential to significantly improve the move to more sustainable urban

forms. As such, and based on the observations made in this chapter, it is proposed that a spatial

multi-objective spatial planning optimisation framework is required that ultimately can provide

a decision support tool for planning sustainable cities. Such a tool would comprise of the

following key characteristics:

1. Consider multiple and a wide range of real world sustainability objectives in line with the
definition of sustainability taken by this work;

2. Take an integrated approach by considering sustainability aims simultaneously;

3. Provide a metric of sustainability which is based on localised evidence and not on
conceptual ideas of what constitutes sustainable development;

4. Assess a wide range of alternatives to ensure the best solutions are chosen; and

5. Provide flexibility to meet a range of stakeholder needs.

45



46



Chapter 3 Multi-objective Spatial Optimisation for Urban Planning

3.1 Introduction

Chapter 2 identified a need for decision support tools to aid the spatial planning process deliver
more sustainable urban development. From a review, the current methodology of sustainability
appraisals of future development was found to have a number of weaknesses which could
potentially be improved through computational methods such as optimisation. These included
a lack of considerations of multiple sustainability objectives simultaneously and acquiring an
understanding of the trade-offs and cost benefits between not just alternative spatial plans but
between the sought after sustainability aims themselves. Whilst a number of support tools
currently exist, they are often limited to impact assessment and lack the ability to guide decision
makers towards optimal setups of infrastructure in the presence of these objectives. Crucially
any potential decision support tool needs to effectively assess a wide range of possible spatial
development sites whilst simultaneously considering a range of sustainability objectives in

order to ensure all elements of sustainability are being address efficiently.

With this in mind, analytical optimisation has been routinely used to establish an optimum
configurations of infrastructure in the presence of multiple, often conflicting, objectives.
Examples include the design of sewers networks (Liang et al. 2004; Berardi et al. 2009), the
design of water distribution networks (Prasad et al. 2004; Kapelan et al. 2005b; Vamvakeridou-
Lyroudia et al. 2005; Bieupoude et al. 2012), land use allocation (Aerts et al. 2005; Ligmann-
Zielinska et al. 2008; Qian et al. 2010; Cao et al. 2011) and transit networks (Kepaptsoglou &
Karlaftis 2009; Shimamoto et al. 2010). Computer modelling methods such as optimisation can
assist in the planning of urban infrastructure by more effectively handling complex problems
and analysing a wider number of alternatives than a human would be able (Matthews et al.
1999). In particular sources have stated there is greater scope for further inclusion of
optimisation algorithms for decision support of urban planning (Kapelan et al. 2005a; Keirstead
& Shah 2013) as it provides a powerful platform by which complex multi-objective problems

can be solved and a number of alternatives assessed (Savic 2002; Jiang-Ping & Qun 2009).

This chapter critically reviews the use of optimisation approaches to provide optimal trade-off
solutions within the analytical study of sustainable cities. In particular the review explores
spatial optimisation algorithms as a method to assist spatial planners develop spatial

development plans which are more sustainable for the local conditions. Generic considerations
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involved in optimisation are introduced while methods at reconciling multiple-objectives are
compared. A review is taken of potential spatial optimisation approaches and their utilisation
in the spatial planning of infrastructure within urban systems planning is investigated. The
review is then used to identify a number of recommendations for an optimisation based

sustainable planning decision support tool.

3.2 Definition of an Optimisation Problem

Optimisation is a branch of applied mathematics concerned with searching and comparing
feasible solutions to a problem until an optimal solution is found (Papadimitriou & Steiglitz
1998). Problems handled by optimisation can range from finding optimal production schedules
for industries (Xie 2011) to finding the optimal setup of land uses and transport links (Feng &
Lin 1999). The design of an optimisation problem consists of three elements; a set of objective

functions to optimise, a set of decision variables to be explored and the constraints on the search.

3.2.1 Decision Variables

A complete set of variables for a optimisation problem, X, consists of m variables:
X = (Xl,xz ,Xm) (31)

The envelope created when exploring the possible variables is called a variable space whilst the
number of variables to be assessed relates to the dimension of the variable space. VVariables may
consist of, or a mixture of, binary, integer and discrete values. Problems where the variables set
consist entirely of integer or binary values are defined as an integer programme (Aerts et al.,
2002) and in a number of spatial allocation problems these have been used to represent a
decision for discrete land parcels (Keirstead & Shah 2013). For example Khalili-Damghani et

al. (2014) structures their land use problem by utilising binary decision variables x;;; which

determines if cell i, j is allocated the land use, k:

Xijk = 0,1 foralli,j, k (3.2)
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Alternatively discrete variables are commonly used to identify decisions or design
characteristics in optimisation problems. For example Walters et al. (1999) uses a number of
number of discrete variables to represent the design of their distribution network such as the
diameter of pipes and the location of tanks. Meanwhile Woodward et al. (2013) encodes a
number of decisions relating to flood management as discrete variables, such as raising the
heights of flood defences. Problems which consist of both discrete and continuous variables
can be described as mixed integer problems (Loonen et al. 2007). For example Prasad et al.
(2004) formulated their water distribution network design problem to consist of investigating
discrete pipe diameters as well as continuous pipe lengths. and can potentially cause problems
for the method of exploration (Papadimitriou & Steiglitz 1998). Lastly problems which contain
a large range of either discrete variables and or the use of both discrete and integer variables
can be described as combinatorial and require advanced methods to solve due to their

complexity (Reeves 1993).

3.2.2 Objective Functions

The aim of an optimisation application is to explore and configure these variables, integer,
discrete or otherwise, to optimise a desirable resultant objective(s). This typically consists of
finding either the minimum (i.e. minimisation) or maximum (i.e. maximisation) of a possible
performance for a system. An optimisation problem can consist of a number of objectives to be
optimised referred to as objective functions, f. A set of these to optimise, F(X) can consist of

n objective functions such that:

FX) = (00, (X)) ... f(X)) (3.3)

The exploration of performances for f € F form an objective space, i.e. the performances in
the objective functions which can be achieved. Therefore the aim of the optimisation is to
identify a configuration of X which returns F in the best regions of this objective space. Figure
3.1 demonstrates how the performance of f € F are dependent on the variables selected, where
in this instance the values selected for x = {xy, x,, x3) lead to the subsequent values for the
objective functions of F(x) = {fi, f2}-
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Figure 3.1 How the selection of variable set, X, in the variable space (left) leads to the performance of F(x) in the
objective space (right) (adapted from Deb, 2001).

Optimisation literature covers a plethora of objective functions to be optimised ranging from
the design of aeroplane wings (Obayashi et al. 1997) to designing flood risk management plans
(Woodward et al. 2013). For the land use allocation problem in Qian et al. (2010) the economic

performance of land use set ups defined by:

maximise

9
7= 4P, (3.4
k

where P defines the income associated with the land use k whilst A defines the area of the land
use. This is set up a linear programme as the variables k and A are continuous and the
relationship between them is linear. Alternatively Aerts and Heuvelink (2002) uses a more

complex formulation to compute a compaction objective to maximise:

maximise

K 1
Z Z Z —bjjixijk (3.5)

where b, is a measure of the surrounding i, j locations which are allocated the same k. As the

performance of the objective is dependent on other variables (whether the local cells are

assigned a specific land use) the relationship is non-linear.
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3.2.3 Constraints

The final component of an optimisation problem are the constraints on the search. These can be
applied directly to x € X thereby limiting the variable space, and are known as direct
constraints (Deb 2001). For example Prasad et al. (2004) distribution network problem a

discrete variable for the diameter of a pipe D is constrained to a set of realistic diameters:
Subject to D;efA} i=1.2,..,np (3.6)

where i represents a pipe in the network of which there are np, whilst A defines a set of
commercially available pipe diameters. In addition constraints can be made on the entire
variable set, X with for example a number of land use allocation problems present constraints
on the number of different land uses assigned to within X. The land use allocation problem in

Qian et al (2010) constrains the number of cells allocated to specific land uses:

Subject to rJ
LBy < szuk <UBy k=1,...K (3.7)
:1 =1

where LB, and UB), and lower and upper bounds on the number of cell variables, x, assigned
to a landuse k. Alternatively they can be applied indirectly by restrict the possible outcomes of
the set of variables. Ye et al. (2005) constraints on the lengths of transit routes L resulting from

a variable set relating to the origin of a route, o, and the destination d:

Subject to
] Lmln S Lod S Lmax (3'8)

These three elements combine to define the structure of the optimisation problem. Solutions
found by the search which comply with the constraints can be defined as s whilst the set of
solutions found can be defined as S such that s € S. The optimal solution to meet the objective
functions, F , min(F) (if considering a minimisation) or max(F) (if considering a
maximisation) is the solution which is found to be s,,;, = sV S ESOr Sy < SV s €S for
the respective minimisation or maximisation. The optimisation of a single objective, F = (f;)
is relatively simple as a single s can be found which is min(f;) or max(f;). However
optimisation problems rarely consist of a single objective in a vacuum (Savic 2002) and there
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are normally a number of objectives to be considered simultaneously. Particularly in real world
applications, these objectives very rarely coincide meaning there is no solution which is min()
or max() Vf € F (Deb 2001). Therefore in order to facilitate the optimisation of multiple
objective functions there needs to be a number of considerations which are discussed in the

following section.

3.3 Multi-objective Optimisation

Methods to handle multi-objective optimisation (MOQ) are required in the majority of spatial
optimisation applications (and optimisation applications in general) as they regularly involve
competing and conflicting objectives (Jiang-Ping & Qun 2009; Mosadeghi et al. 2015) meaning
there is no solution which is min(F), therefore requiring a trade-off solution (Berardi et al.
2009). To do this there are two main approaches; weighted sum (scalarisation) and Pareto-
optimisation (Zitzler & Thiele 1998).

Classically weighted sum (WS) was the predominant approach to MOO (Jones et al. 2002). WS
essentially entails converting the MOO problem to a SOO problem to be solved through
assigning weights (preference vectors) to each objective function in order to create a composite

function, FV:

Minimize FY = (Wify + wafot...Wpfy) 3.9)

A single optimal solution is then returned as the optimum which is min(F"). It is common for
the weights to add up to 1 (Maliszewski et al. 2012) and as each objective is likely to have
different orders of magnitude, it is often necessary to normalise the objective functions
(Eastman et al. 1995). The normalisation equation below is used to produces a f,;*°"™ value

between 0 and 1:

WO = (fo = /B = ) (3.10)

where £ and £™%* represent the minimum and maximum possible values of f,. One
downside of this is that these values are often hard to traduce in the absence of known range of
values for f,, (Deb 2001). Efforts to bridge this exist, for example in Liu et al. (2015) a
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maximum possible value for the compactness measure was unknown so instead the work

utilised a proxy normalisation:

nom = fmin/fn (3.11)

Alternatively Pareto-optimisation (PO) identifies a number of Pareto-optimal solutions to a
problem based on the concept of domination (Goldberg 1989). In the case of a minimisation a
solution s is identified as being non-dominated by a solution s if no worse than s@in all

objectives:

(fu(sOY < f,(sPYVn=12,..,M (3.12)

and is strictly better than in at least one objective

fu(sMW) < £,,(s@)for at least one n € {1,2, ..., M} (3.13)

A Non-Dominated Sorting Algorithm (such as those proposed by Du et al. (2007) and Mishra
& Harit (2010)) are applied to the results of search, S, and use the definition above to extract a
set of s which is non-dominated by all s € S, N. Solutions found to be non-dominated by all
other solutions are returned, p € N which are all considered to be equally optimal and Pareto-
optimal as no other feasible solution s € S provides an improvement in an objective without a
degradation of another objective. This can be seen in the example in Figure 3.2 of an
optimisation of F = (f;, f,) where no Pareto-optimal solution on the Pareto front (shown in
red) can improve upon the performance of f; or f, without a detrimental affect on the other. In
addition Figure 3.2 demonstrates how the solutions on the Pareto front out perform all s € S in

at least one of either f; or f,.

An advantage of PO over WS is that it avoids the need to select weights for each of the objective
functions W = {wy, w,, ... }. Both Aerts et al. (2002) and (2003) used a WS method to reconcile
objectives for optimising compactness and development costs during land-use allocation.
However they had to elicit weights from a decision maker and apply several iterations in order
to derive an appropriate weighting system. Meanwhile Liu et al. (2015) accept that the
weighting system used in their study was subjective due to no prior knowledge. This is a
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common criticism of WS and sources have pointed out that the derivation of a preference vector
is made even harder in the absence of knowledge of the how the objective function relate and
by how much they conflict (Deb 2001) whilst the final solutions are highly dependent on the
initial weighting system (Prasad et al. 2004)

Alternatively the results of PO are independent of any prior subjective preferences and provide
a mathematical justification of the optimality of a set solutions over the remaining solutions
(Jiang-Ping & Qun 2009). Although decision makers are still required to select their final
solution, WS requires higher-level information from the beginning, whereas with PO the
higher-level information is needed at the end to select the preferred solution in the presence of
a wide range of alternatives. Indeed there are a number of methods of identify promising
solutions from the Pareto-set including k-clustering, where clusters of solutions which perform
particularly well in a set of objectives are identified (Aguirre & Taboada 2011), and non-
uniform weighting, where non-numerical preferences are used to shrink the Pareto-set (Carrillo
& Taboada 2012).

WS method are preferable in applications which require faster productions of optimal solutions.
PO is unsuitable for quick applications as the consideration of a wide range of alternatives leads
to large computational expense (Sayers et al. 2014). For this reason, in their land use allocation
study Stewart and Janssen (2014) utilised WS to produce baseline performances for their
objective criteria in order to feed a larger scale model. In addition Cao et al. (2012) utilised WS
as the diversity of solutions found by PO leaders to poorer convergence. Moreover despite the
wide use of Pareto-optimisation several optimisation studies (Cao et al. 2012; Stewart &
Janssen 2014) have developed a refined WS methodology known as Goal Programing which
dynamically changes the weights during the application (Romero et al. 1999). The problem of
selecting appropriate weighting system can be offset by setting reference points for the
objectives to achieve. Aerts et al. (2005) uses this to dynamically modify the weighting whilst
the algorithm is running to emphasise less well achieved objectives, determined by a goal or
‘reference point’ which assesses how well the objectives have been achieved (Aerts et al. 2005;
Cao et al. 2012; Cao & Ye 2013). As all the solutions found by WS are in fact Pareto-optimal,
a number of applications use it estimate to estimate the Pareto front by running the algorithm
with several weighting systems. However this is computationally inefficient as it requires
several WS runs (Kapelan et al. 2005b).
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The most significant advantage of PO is the identification of a Pareto front and the information
it provides decision makers in terms of the trade-offs between objectives (Kapelan et al. 2005b).
Whilst solutions found by WS should lie on the Pareto front it provides only a single instance
of the possible trade-offs. Alternatively as can be seen in Figure 3.2, PO provides information
of the trade-off between f; and f, and what values can be achieved and at what cost and benefits
to a number of alternatives. Lastly it allows for the discovery of intermediary solutions between

optimally meeting specific objectives which best balance a number of objectives (Deb 1999).

Overall the PO method is best suited for the planning problem being investigated here. It is the
predominate method to MOO in the literature and has been found suitable for a number of
spatial optimisation application (Khalili-Damghani et al. 2014; Masoomi et al. 2012; Jiang-
Ping & Qun 2009). In particular the trade-offs, which PO can provide, best meets the needs
identified in Chapter 2 for an appreciation and exploration of the conflicts and synergies
between sustainability objectives during the planning process (Gibson 2006). And in the lack

of expert knowledge it is ideal to apply a mathematical identification of optimal solutions.

f2

p

Pareto-optimal
Solutions

Ye

1

Figure 3.2 The Pareto-optimal solution set (red curve) from the found solutions, s € S, in the variable space (blue)

assuming minimisation of f; and f,.
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3.4 Spatial Optimisation Approaches

3.4.1 Introduction

The application of optimisation to spatial problems can present a complex and non-linear
problem due to the range of spatial properties which can be investigated (Loonen et al. 2007)
for their incorporation of multiple objectives into spatial optimisation problems provides for
very high dimensional problems (Malczewski 1999). Therefore there needs to be careful
consideration of the optimisation approaches used. This section describes and discusses the
major spatial optimisation techniques. Their application to spatial (and in particular urban)
optimisation is critiqued in order to identify the most promising optimisation approaches which

could be used to handle the problem set out in Chapter 2.

3.4.2 Linear Programming

Linear programming (LP) is the simplest form of mathematical optimisation and involves
formulating a given problem in a linear fashion with continuous variables and constraints
(Chuvieco 1993; Arthur & Nalle 1997; Orsi et al. 2011). Usually this involves arranging the
variables as a set of integers or binary and constraints on the range of these variables
(Luenberger & Ye 2008). A very simple LP approach to land use allocation could be formulated

as:

Maximise F = (0.3R? + 1.6E) (3.14)

Subject to R+E <50 (3.15)

where R and E are continuous variables for the number of residential and economic land uses
allocated respectively and F represents a economic benefit dependant on the land uses. All
possible values for R and E are then tested and as the linear problem is convex a solution is
returned which is the globally optimum. Schlager (1956) was the first application of LP to land
use planning applications and since then it has been used in a multitude of urban land use spatial
optimisation applications (Chuvieco 1993; Arthur & Nalle 1997; Cromley & Hanink 1999;
Aerts et al. 2003).
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LP is often incorporated to the spatial allocation of land uses by representing each land parcel
as a variable whilst assigned land uses are represented by integer values, so for L landuses | =
1, ... L (Aerts et al. 2003). This method is known as Linear Integer Programming (LIP). LP is
exclusively able to handle SOO however a number of applications have incorporated further
objectives by reducing them to simple spatial constraints on the search (Baskent & Keles 2005).
For example Qian et al. (2010) in their land use allocation application utilising LIP, incorporates
economic objectives as the main objective to optimise whilst ecological and societal goals are
handled by 13 constraints in total. These include a societal objective achieved by maintaining
a number of agricultural land in proportion to residential land use and an ecological objective
is achieved through a constraint on sum of soil quantity is restraint to the current land quantity.
Alternatively objectives can be combined as a WS such as Aerts et al. (2003)’s application

where a compactness and development cost objectives were formulated into a single objective.

Despite being limited to SOO and the limitations on continuous variables and constraints
Keirstead and Shah (2013) found that LP was used in 24% of the urban planning optimisation
studies they reviewed. Indeed where the problem is appropriate to be characterised as a linear
problems the LP is ideal as it enables the discovery of a single optimal solution (Jones et al.
2002). Ligmann-zielinska et al. (2005) used LIP in their study of sustainable urban land use
allocation by combining a number of objectives for a theoretical 20 x 20 cell grid whilst Maoh
& Kanaroglou (2009) used LP to optimize the location of land use in relation to transport routes
to identify baseline indicators. Indeed Loonen et al. (2007)’s study found that for a spatial
allocation problem, at coarse scale a LP algorithm achieved results similar to a more complex
Genetic Algorithm (see Section 3.5.5) for a small linear problem considering 235 cells whilst
avoiding the need for complex constraints which the Genetic Algorithm required. However the
same study found that once complexity was added to the problem LP became unsuitable.
Crucially Aerts et al. (2003) found LIP unsuitable for an application for a grid of 50 x 50 cells
which other approaches were able to achieve. Despite creative methods of incorporating several
objectives, the majority of real world optimisation problems are in fact non-linear because of
the variables considered during spatial planning (Loonen et al. 2007). Whilst a number of
approaches have been developed to enhance LP in order to handle non-linear optimisation
problems through non-linear programming (Fiorucci et al. 2003) and mixed integer
programming (Schouwenaars et al. 2001) the increasing complexity negates the original
advantage of LP approach. Moreover where the complexity of the problem means that all
possible alternatives cannot be compared, these problems are best solved by non-exhaustive

search methods such as heuristics (Reeves 1993).
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3.4.3 Meta-Heuristics

Heuristic approaches emerged because of a need to find optimal solutions to complex problems
in an realistic time frame (Reeves 1995). Where the range of variables is so complex that
exhaustive search mechanisms (such as LP) are not feasible they provide an effective
mechanism to narrow the search. In addition they improve upon LP as they can handle a wider
formulation of variables and relationships (Loonen et al. 2007) and by allowing flexibility in
constraints, the problem definition can more closely match the real world situation
(Papadimitriou & Steiglitz 1998). This is crucial to facilitate the use of these tools in decision
support systems (Murray & Church 1996). Meanwhile in large applications where the globally
optimum solution is often too computationally extensive to find they are able to find near
optimal solutions much quicker through search mechanisms based on a set of rules (Rothlauf
2011). Traditional heuristics are problem dependant and modify the search to take advantage
of the specificities of the problem. Meta-heuristics on the other hand incorporate ideas from
other disciplines to develop robust method for a number of potential applications (Jones et al.
2002). These have received the most interest in the literature and are proven to handle high

dimensionality and a number of these are assessed below.

3.4.4 Simulated Annealing

Simulated Annealing (SA) is one the most predominant of these meta-heuristics approaches
(Jones et al. 2002). First proposed by Kirtpatrick et al. (1983), SA is a method of finding the
global minimum of a cost function whilst avoiding local minima by imitating the process of
metal cooling (annealing) (Dowsland 1993; Luke 2009). From an initial solution, the algorithm
samples the variable space by sequentially applying small random changes (as per a stochastic
approach) to the x € X. If these changes result in superior performances they are accepted and
the search continues from this new position. However, SA is characterised by its acceptance of

an inferior solution according to the probability given by:

e 8F/T > R(0,1) (3.16)

where AF is the change in the objective functions F that will occur as a result of accepting the

new solution, T is a synthetic temperature, and R is a random number in the interval 0—1
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(Dowsland 1993). This acceptance of inferior solutions allows for a wider search of the variable
space and prevents the search algorithm becoming stuck in local optimum (Murray & Church
1995). This is a vital strength over techniques such as hill climbing (Weise 2009) which don’t
allow for the performance of the solution to be reduced in order to continue searching different
parts of the variable space (Luke 2009). This acceptance is controlled by the synthetic
“temperature”, T, which is initially set high to allow a high probability of acceptance. During
the search this gradually restricts the acceptance probability. This aids convergence on the
global optimum solutions and is an improvement over computationally intensive efforts which

consider all variables (Dowsland 1993).

Whilst this method allows for wide search of the variable space the method of sequentially
exploring the search space can often lead to long running times (Dowsland 1996; Weise 2009).
The time of operation of the SA can be controlled by changing the initial temperature and/or
the amount it reduces at each iteration (cooling factor). However the effectiveness of the SA is
very sensitive to these parameters as premature convergence will prevent the convergence on
globally optimal solution (i.e. leading to only a local optima) therefore care must be taken in
their selection (Dowsland 1993). Throughout the search a best found solution is preserved to
return as the optimal solution found throughout the search. Unlike LP approaches there is no
guarantee that this is the optimal solution however it often provides a good solution in a more
realistic time frame (Rothlauf 2011).

Because of its capability to handle complex non-linear problems and incorporate spatial
constraints on the search effective SA has been used within number of spatial optimisation
applications including resource and land use allocation (Aerts & Heuvelink 2002; Aerts et al.
2005; J. Duh & Brown 2005; Santé-Riveira et al. 2008), location modelling problems (Murray
& Church 1996), transit planning (Delmelle et al. 2012) and water distribution networks (Cunha
& Sousa 2001). Delmelle et al. (2012) uses SA to handle a non-linear spatial interaction
problem of maximising the interaction between the demand nodes and facilities in a transit
network a problem computationally intractable without an efficient search algorithm. Whilst
Sabatini et al. (2007)’s investigation into land use zoning used SA to allow for the

implementation of complex spatial constraints.

There are a number of variations on how the search is carried out with differing methods of
changing x € X whilst continuing to utilise the generic SA algorithm to monitor the search,

thereby allowing flexibility to the application. Murray & Church (1996) used SA to investigate
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location planning of facilities in relation to demand by iteratively changing their locations over
a grid and accepting new layouts on the basis of the acceptance criteria. Aerts & Heuvelink
(2002) facilitated the ‘change’ step of the algorithm by exchanging the land uses of two
randomly selected cells across the study area at each iteration of the SA. Alternatively
Sidiropoulos & Fotakis (2009) instead of exchanging these locations over the study area for it
resource allocation problem instead moves a proportion of groundwater wells being allocated
within their neighbourhood at each iteration of the SA.

SA has been found to be computationally efficient when dealing with high dimension problems
with Aerts & Heuvelink (2002) successfully applying to solve a land use allocation for an area
of 300 x 300 cells which a subsequent LIP was found be unable to handle (Aerts et al. 2003).
Additionally Santé-Riveira et al. (2008) successfully employed SA for a land use allocation
problem consisting of 182,168 cells but found the optimality of the conditions were dependent
on a good initialisation of land use. Despite this Aerts et al. (2005) found a SA approach
required three times the time needed by a Genetic Algorithm for their land use allocation

problem.

Regarding MOO, SA has predominantly been used to solve WS problems (Aerts & Heuvelink
2002; Santé-Riveira et al. 2008) and is not particularly well suited for Pareto-optimisation as
it only uses one search i.e. one solution is investigated during the search. A number of studies
have attempted to redress this through incorporating the search for several solutions
simultaneously (Duh & Brown 2007) and goal programming to approximate the Pareto front
(Czyzzak & Jaszkiewicz 1998). The former approach seems promising however the storage of
multiple solutions will increase the computational time further of an already long running
operation. Alternatively Nam & Park (2000) describe a method for incorporating the non-
dominated sort into the acceptance criteria in Equation 3.16, whereby non-dominated solutions
are accepted. The work finds that, for small problems, the Pareto front found is close to that
produced by the GA whilst still allowing for the simple SA implementation. Altogether the
biggest advantage of SA is its simplicity to implement (Delmelle et al. 2012) and its ability to
be geared towards a number of applications whilst maintaining its core algorithm presents a

significant advantage (Zhang et al. 2011).

3.4.5 Tabu Search
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Another commonly used meta-heuristic is Tabu Search (TS) which was first proposed by
Glover and McMillan (1986) as an addition to local search methods for optimisation. As with
SA, TS sequentially assesses the solution space. The basic structure of a TS employs a memory
structure called a Tabu list which dynamically records the last solutions searched (Jones et al.
2002). This is then used to prevent the same solutions being assessed again thereby reducing
the number of computations. For this reason Murray & Church (1995), found TS to perform
better than SA for a series of forestry spatial planning problems. Moreover, the storage of
previously investigated solutions helps avoid the search becoming caught in local optima as the

search will escape the local optimum once all the neighbouring solutions have been assessed.

Whilst this is effective in discrete search areas, for complex problems with continuous variables
this leads to computationally extensive searches limiting application of TS. For example, Jones
et al. (2002)’s study found that TS were the predominant search mechanism in just 6% of MOO
applications it reviewed. Despite this sources identify that they are particularly appropriate for
network optimisation (Reeves 1995) as it’s mechanism to move to neighbouring variables is
suitable for handling discrete-variables in the design of networks (such as pipe diameters) (Sung
et al. 2007). Meanwhile there is extensive research into incorporating different search
procedures alongside the Tabu list procedure. Liang et al. (2004) presents a TS method which
incorporates a dynamic search mechanism approach to optimise the design of sewer networks,
finding the approach finds lower cost designs than a Genetic Algorithm. Additionally
Costamagna et al. (1998) finds that it can return least cost plans of communication networks as
effectively as SA and Genetic Algorithms whilst avoiding having to identify the complicated
search parameters necessary for SA and Genetic Algorithms. Jaeggi et al. (2008) argues that
they are an underutilised approach and outlines a number of modifications to the Tabu search
methodology to improve its application to problems using continuous variables. However its
use is limited in the literature to applications of discrete variables such as the water network
and or being coupled with other optimisation approaches to improve their local search (Zhang
& Wu 2011; Khalili-Damghani et al. 2014).

3.4.6 Population Based Searches

Both SA and TS are described as trajectory searches as they incrementally alter a single solution
(Khalili-Damghani et al. 2014). Alternatively with the increasing use of PO, there has recently
been more interest in population based optimisation algorithms which can consider a number

of solutions simultaneously, allowing for a more representative Pareto front (Deb 1999; Zitzler
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& Thiele 1998; Zitzler et al. 2001). Examples of population approaches include Genetic
Algorithms and Particle Swarm optimisation.

3.4.7 Genetic Algorithms

Genetic Algorithms (GA) have become one of the most prominent population based
optimisation and are based on the work of Goldberg (1989) with a multitude of versions of the
original algorithm having since been developed. They are a member of the Evolutionary
Algorithms (EA) which includes Evolutionary Strategies (proposed by Rechenberg (1973)) and
Evolutionary Programming (proposed by Fogel et al. (1966)) which utilise mechanisms based
on natural evolution to evolve a set of solutions to their most optimal states. In particular, GAs

use evolutionary operators of selection, mutation and crossover.

Figure 3.3 outlines a typical GA framework. A random initial population of solutions is
generated and evaluated to determine for their fitness for the performance function F. From
these the “fittest’ are selected to be ‘evolved’. For a basic GA this is facilitated by a Tournament
Selection whereby each solution is compared within the population and those found to be
superior are carried on (Goldberg & Deb 1991). These are then used to ‘breed’ with one another
by swapping their attributes in X to produce superior offspring. Figure 3.4 demonstrates for a
binary list representation the application of typical two point crossover. For the two solutions
selected for the crossover, A and B, two random points along the length of their list are selected
at random, cx; and cx,. Subsequently their attributes between the two crossover points are
exchanged to form two new solutions A" and B’. This is repeated for the selected solutions until
a new population is formed with the expectation that the new population will contain some
more optimal solutions Once this new population is formed a random mutation is applied. This
is shown in Figure 3.5 where two variables within the solution A" have been mutated. In
particular for the binary encoded list used a flipbit mutation operator switches attributes from 0
to 1 and vice versa. This final population that is generated is fed back to the start of the
algorithm to repeat the process. This is repeated for a number of ‘generations’ until a stopping
criteria is met, usually a number of iterations. By repeatedly combining the attributes of
solutions found to be superior the GA intends to converge on a solution composed on the
optimal set of x € X (Goldberg 1989). Meanwhile the application of the mutation operator
intends to stop the solutions converging too early on a set of variables by diversifying them and

also on the off chance the change of variable leads to a more superior fitness.
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Figure 3.5 Mutation operator on a binary list representation.

SA and Tabu Searches are commonly referred to as local search methods as they sequentially
explore the variable space. In contrast the GA more dynamically searches the variable space
with its crossover procedure. As such it has been found to outperform these other approaches
in discovering the global optimum solutions to combinational problem (Reeves 1995) with
consistently shorter run times (Melanie 1996). Like SA and TS, GA can handle a number of
discrete, integer and binary variables. However the dynamic nature of the search leads to a
number of issues. Whereas the search is more controlled in both SA and TS a number of studies
have reported the difficulty of handling constraints within a GA as there is little control on the
outputs of the evolutionary operators (Coello 1999; Deb 2000; Prasad et al. 2004; Konak et al.
2006). Konak et al. (2006) identifies four methods to handle constraints in GA, namely;
discarding solutions which break the constraints; applying a penalty function; constructing the
problem so only feasible solutions are found; and, repairing solutions during the search. Loonen
et al. (2007) describes the handling of constraints as a particular problem in its land use
allocation problem using a GA and argues that designing the problem so constraints cannot be
broken would be the best method. This is the approach taken by Cao et al. (2012) in their land
use allocation where a number of areas which were reserved for greenspace were excluded from
the search space. However this isn’t always possible for constraints such as ensuring a minimum
number of a specific land use type. Coello (1999) provides a review of the use of constraints
for EAs and found that penalty functions were the most often used. Despite being an easy
method to implement on the fitness of a solution, the selection and magnitude of penalty
functions is often hard to define (Deb 2000). The penalty functions chosen have a significant
impact on the ability of the GA to converge on optimal solutions; a too large a penalty prevents
that area of the variable space being assessed; too small a penalty allows too many unfeasible
solutions to be generated, reducing computational efficiency (Michalewicz 1992; Yeniay 2005).
Special dispensation must be considered when applying GA to a 2D grid encoding of the
variable set, X, which are most commonly used for land use allocation problems. Simply

randomly swapping the attributes as per the example shown in Figure 3.4 leads to highly
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fragmented land uses (Stewart et al. 2004; Aerts et al. 2005). Indeed there is a multitude of
research into the most effective methods of applying GA crossover to 2D representation (Cao
et al. 2012; Stewart & Janssen 2014). Likewise a number of mutation operators have been
developed to handle different encoding of the solutions (Sidiropoulos & Tolikas 2008). As well
as the ‘flipbit’ mutation operator shown in Figure 3.5, boundary mutators can replace the

attribute with an integer or float value from a lower and upper bound.

Despite these weaknesses the flexibility of the GA algorithm to handle different problems has
led to it being extensively and widely used in contemporary literature (Feng & Lin 1999;
Keedwell & Khu 2005; Sidiropoulos & Fotakis 2009; Comber et al. 2008; Stewart et al. 2004;
Aerts et al. 2005). Jones et al. (2002) found that of the studies reviewed GAs were used by 70%.
With regards to spatial optimisation Loonen et al. (2007) especially praises GA for its efficiency
in discover optimal land use configurations for large areas as its dynamic search is particularly
suitable. Where GA is most strong is its applicability to MOO through Pareto-optimisation. By
considering a number of populations it is ideally placed to explore the Pareto front

comprehensively. These opportunities are briefly discussed.

As aresult of its efficiency there has been a considerable research into the use of GA for Pareto-
optimisation. Specifically a number of evolutionary approaches have been developed of which
the predominant consist of Non-Dominated Sorting Algorithm-11 (Deb 2000), Strength Pareto
Evolutionary Algorithm 2 (SPEA2) (Zitzler et al. 2001) and the Pareto Archive Evolutionary
Strategy (PAES) (Knowles & Corne 2000). The PAES algorithm assesses the fitness of new
solutions found by comparing them to an archived list of previously found non-dominated
solutions. But crucially it is not a population based method so its utility with GA is limited.

Instead the SPEA2 and NSGA-I11 are the most commonly used for GA approaches.

The NSGA-II algorithm achieves PO through incorporating non-dominated sorting into the
GA’s selection operator. The previous and the newly developed population are compared
simultaneously to ensure the best solutions from both generations are selected, known as elitism
(Deb 2001), preventing the Pareto front regressing during the operation. From the two
combined populations the next population is selected on the basis of their Pareto-rank and
crowding distance operator which are demonstrated in Figure 3.6. The population is ranked into
non-dominated sets shown in Figure 3.6a using Equations 3.12 and 3.13. Next to ensure diverse
set of solutions in the objective space a crowding distance, v, is calculated based on the average

distance to the nearest solution in the objective space as shown in Figure 3.6b. These two
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metrics are then used to determine a solutions fitness in the selection. Alternatively the SPEA2
algorithm identifies the fitness of solutions based on their level of dominance (Zitzler et al.
2001) and a measure of their density in the Pareto front. For the minimisation of the two
objective functions, f; and f,, in Figure 3.7 the solutions which are non-dominated are given
the ranking of 0. Thereafter the two solutions which are dominated by two of the non-dominated
solutions are given the ranking of 2. This continues until all the solutions are given a ranking.
Whilst a number of studies find the two approaches are good and bad for different applications
(Konak et al. 2006), sources report SPEA2 has longer running times due to its determination of

density and dominance ranking (Luke 2009).
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Figure 3.6 NSGA-II selection procedure consisting off a) Pareto ranking and b) Crowding distance.
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Figure 3.7 SPEAZ2 selection procedure of dominance ranking.

Since their inception a number of extensions to their basic algorithms have been developed to
handle particular problems. For example Deb et al. (2003) developed the e-NSGA-II to find
well spread Pareto fronts which has been found particularly applicable in high dimensionality

water resource applications (Kollat & Reed 2006). Meanwhile the time taken to assess each
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solution for their non-dominance is considerable, therefore Zhang & Fujimura (2010)
developed an Improved Vector Evaluated Genetic Algorithm which simplifies the
determination of the fitness in order to converge faster, but with a resulting loss in performance

and potentially not finding the true Pareto front.

Despite this SPEA2 and NSGA-II remain widely used to enable Pareto-optimisation as they
provide a robust framework which can be adapted if needed. Indeed SPEA2 was incorporated
into Khalili-Damghani et al. (2014) land use allocation problem. However of the two NSGA-1I
has had the most influence on spatial optimisation as it can be directly incorporated into the GA
selection procedure. Shimamoto et al. (2010) utilises the NSGA-I1 procedure to handle the PO
of passenger cost and operational cost simultaneous during investigating a bus transit network
meanwhile Cao et al. (2011) integrated the NSGA-II to handle the PO of accessibilities,

conversion costs and land use incompatibilities during their land use allocation optimisation.

3.4.8 Particle Swarm

Lastly consideration is given to another population based method. Like the GA approach
Particle Swarm (PS) considers a population of solutions simultaneously. Originally conceived
by Kennedy and Eberhart (1995) the search intends to mimic the social behaviour of birds
flocking or fish schooling (Poli et al. 2007). Solutions are described as particles and during the
application, particles exchange information on their location in the variable space, denoted by
their variable vector X, and their fitness. Then at each iteration particles use this information to
move towards the more optimal locations. A variable, gBest, stores the best position of the
particle (i.e. the solution’s X) at each iteration whilst Pbest records the best solutions at all
iterations. For the m dimensions of variables in the search these are used to influence the
direction of the rest of the particles by generating a new velocity, v;°". This can be defined as:

prew =y, pold

+ c;1(pBest — x,) + ¢y (gBest — x;,) (3.17)

where v2'¢ is the previous velocity, r; and r, are random numbers used to ensure a sense of
randomness in the search (Coello et al. 2004), c; and c, are user defined weights to influence
the effect of pBest and gBest on the search. This is then used to move the location of the

particle:
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xew = xgld 4 prew (3.18)

where x[°" denotes the new location of the particle (Masoomi et al. 2012). As PS uses a
population of particles to investigate the search space it is appropriate for PO (Reddy & Kumar
2007) however techniques to implement PO aren’t as well developed as for GAs . Despite this
PS also has a number of advantages over GA as the iterative search technique improves on the
local search for solutions (which is often found disadvantaged by the dynamic nature of
evolutionary search) and doesn’t require the complicated evolutionary operators of GA

allowing for much easier to implementation (Bai 2010).

A major weakness of the approach is that the variables themselves are used to direct the search,
which requires the variables to be continuous. To handle this Masoomi et al., (2012) encoded
land uses as continuous integer values. The method has been incorporated into a humber of
MOO land use allocations applications (Liu et al. 2012) but Ma et al. (2011) concede that there
are issues associated with considering discrete spatial locations in the continuous search space
necessary for the PS algorithm. Whilst a promising approach early in its development, there

isn’t enough evidence of its flexibility to a wide range of applications.

3.5 Evaluation Simulation Tools

3.5.1 Introduction

The utility of optimisation as a decision support tool for urban spatial problems is widely
recognised (Loonen et al. 2007; Keirstead & Shah 2013). The previous section touched upon a
number of optimisation approaches with a discussion of their relative merits. In this section a
detailed assessment links the optimisation functions outlined in the previous section with their
application on the planning of urban infrastructure and to urban spatial optimisation. In
particular, spatial optimisation techniques have been applied to land use allocation (Ligmann-
Zielinska et al. 2008; Santé-Riveira et al. 2008; Liu et al. 2012; Cao & Ye 2013), resource
allocations (Sidiropoulos & Fotakis 2009; Sidiropoulos & Fotakis 2011), sewer and water
distribution networks (Liang et al. 2004; Zarghami et al. 2008; Bieupoude et al. 2012), transport

modelling (Delmelle et al. 2012; Shimamoto et al. 2010) which are discussed below.
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3.5.2 Water Distribution Networks

A number of optimisation applications have been applied to the design of urban water
distribution networks as it provides an effective way to manage the complex multi-objective
problems that their design entails (Walters et al. 1999). The most common application is to
minimise the cost of the system (Liang et al. 2004) however there is a move to optimising their
design for a range of performance indicators (Fu et al. 2013). Sung et al. (2007) utilises both a
Tabu Search investigate a set of discrete diameter of pipe of an existing network to minimise
costs whilst Walters et al. (1999) outlines a GA to optimise the costs and benefits (represented
by a storage capacity difference) of a network through encoding a number of decision variables.
This is extended by (Fu et al. 2013) to consider six objectives which increase upon the
consideration of the cost of the system to analyse the performance of the network, including
objectives related to leakage and the age of water within the system. Due to water resource
applications being typically high complexity problems they regularly utilise the Epsilon-
Dominance Non-Dominated Sorting (e-NSGA-II), an addition to the original NSGA-II
algorithm which limits the complexity of the Pareto front (Kollat & Reed 2006).

Where these water distribution networks provide interesting insight is in their treatment of
uncertainty. Distribution systems are subject to a number of uncertainties such as the water
demand and population growth which are vital to their successful running (Vamvakeridou-
Lyroudia et al. 2005). Kapelan et al. (2005) details a sampling-based approach to test how
developed networks perform under uncertainty by systematically inputting randomly uncertain
variables and assessing its performance. Alternatively Giustolisi & Mastrorilli (2005) tests the
derived solutions over a portfolio of possible input parameters. Applications to water
distribution systems also reveals interesting ways of handling discrete values which related to
decision variables. For example Walters et al. (1999) encodes a number of decision variables

related to tank locations, depths of reservoirs etc.
Whilst water distribution systems are a common optimisation application, their application to

sustainable urban development is limited to ensure a sustainable and resilient water distribution

networks, which itself is becoming an increasing problem (Rosenzweig et al. 2010).
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3.5.3 Transit/ Transport Networks

The design of sustainable transport networks requires good public transport coverage and
efficient delivery of passengers (Mitchell et al. 2011). As a result there has been a number of
applications of optimisation to investigate the efficient planning of transport networks
(Kepaptsoglou & Karlaftis 2009). Applications have mainly focussed on the system cost and
welfare objectives for passengers such as minimising journey costs (travel and waiting times
for example) as well as coverage of service (Kepaptsoglou & Karlaftis 2009). Typically transit
networks are represented as graph models with nodes representing passenger stops and arcs
representing the transit lines. Shimamoto et al. (2010) is typical of these applications, with their
optimisation of Hiroshima’s bus network representing the problem as a series of decision
variables relating to the routing of the network and utilises the NSGA-II algorithm (see Section
3.4.6 for details) to investigate different routing options by changing the alignment of nodes
representing bus stops within the vector set, X. To parameterise the objectives travel time costs
are estimated from previous studies and the resulting network configurations found by the
NSGA-II algorithm are subject to demand parameters to evaluate them. In this instance the
work identifies a Pareto front trade-off between the operational ‘cost’ to the service provider

and the ‘cost’ to the passenger.

With regards to the decision support tool being investigated this type of application would be
useful in the planning of transit networks to reduce emissions. However its scope is restricted
as it’s not suited to assess the wide range of sustainability objectives found in Section 2.2, for
example climate risks to future populations, therefore failing to address the range of challenges
necessary to ensure sustainable areas. Despite this, there is the possibility it could be coupled
with other such applications to provide an important contribution to planning efficient public

transport to compliment sustainable urban development.

3.5.4 Resource and Land Use Allocation

The most widely used application of spatial optimisation for urban areas is resource allocation
problems which are concerned with the distribution of a discrete number of activities or
resources over a spatial extent (Aerts & Heuvelink 2002). The resources under consideration
for urban areas are predominantly the allocation of a finite number of land uses (Ligmann-

Zielinska et al. 2005; Qian et al. 2010) whilst several applications also deal with the allocation
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of ground water wells (Sidiropoulos & Fotakis 2009; Sidiropoulos & Fotakis 2011). These have
traditionally been done for economic reasons (i.e. the most economically productive land use
setups) but with the need for sustainability, the efficiency of land uses allocations is becoming

increasing prevalent in the research.

A land use allocation problem can be defined as an investigation into the location of a set of
land uses subject to limited to a number/ total area of the possible land uses. Within these
applications the land uses investigated can range from simple classifications of from economic,
residential and industrial land uses (Ligmann-Zielinska et al. 2005) to work such as Masoomi
et al. (2012) which utilises a total of 34 different land uses including low density residential and
convenience retail. The former allows for a more complex consideration of the compatibility of
neighbouring land uses, such as the distance of high density residential areas to convenience
retail areas. Optimisation is applied to this problem through search for optimum set-ups of land
uses by exchanging and assigning land uses within the problem area. For example Aerts &
Heuvelink (2002) uses a SA to systematically swap the land uses within their investigation
areas whilst Stewart et al. (2004) uses a GA to dynamically exchange land uses for their
investigation. As this field of application is most linked to work of the thesis a thorough review

is taken.

3.5.5 Urban Simulation

Urban areas are traditionally simulated spatially by either grid or vector representations,
examples of which are shown in Figure 3.8. With regards to a grid representation the study area
is divided into equally sized homogenous cells organised into rows and columns i, j. The size
of the cell then determines the spatial resolution and detail to be assessed. In this form each cell
is assigned an attribute, for example an allocated land use. Problems with this representation
include it being a coarse representation of the urban system, unable to reflect the spatial
variability of real urban areas (Stevens et al. 2007)

Alternatively vector representation consists of a discrete number of irregular land parcels and
can be arranged as a list L of [ land parcels. Representing the urban form as such is more
intuitive because geographic units are often irregular (Crooks 2010) and has the advantage of
more closely resembling the spatial extent. However this method of simulation this is dependent

on the solution being conveniently separated into known parcels and districts (Cao et al. 2011).
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A number of these instances within spatial optimisation such as Stewart & Janssen (2014) have
identified agricultural fields parcels whilst Balling et al. (1999) used very high spatial resolution
general land use areas. Interestingly, for their study, Masoomi et al. (2012) identified areas of

specific land uses in a district of Tehran, Iran to represent a land parcel (shown in Figure 3.8b).
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Figure 3.8 Urban lanscape representations for land use allocation applications consisting of a) grids of cells (Cao et al. 2011)

and b) vector parcels (Masoomi et al. 2012).

Complications in the use of vector representations arise as these polygons vary in sizes the
calculation of total land uses the area of the polygons needs to be taken into account (Stewart
& Janssen 2014). Moreover, the majority of spatial optimisation applications involve some
measurement of proximity to the land uses of other parcels. The rigidity of grid representation
allows for a comprehensive assessment of the neighbourhood of each cell, however this isn’t

as clear with irregular vector representations. For example the centroids of large land parcels
may be far removed from the parcels edges, whilst for narrow parcels the distance to other land
uses might be small. As well as the advantage of clearly defined neighbourhoods, a strength of
the grid representation is that it is neatly compatible with related spatial criteria such as the cost
of developing land, slope of land etc. Figure 3.9 shows a number of different types of input
spatial datasets from the literature which are represented as grids in their analysis. Whilst for

the vector datasets the spatial properties are aggregated over the parcel area (Feng & Lin 1999).
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Figure 3.9 Input raster data sets from a) Cao et al 2012, b) Ligmann-Zielinska & Jankowski (2010), Ligmann-zielinska et
al. (2005), and d) Aerts & Heuvelink (2002).

A widely used simulation for urban systems is Cellular Automata (CA) which are consistently
used for modelling the dynamics within urban areas (Crooks 2010). Considerable early research
was undertaken by White and Engelen (1993, 1994) into using CA to model urban land use
patterns whilst more recently a number of more advanced CA applications have been developed
(Batty et al. 1999; Torrens 2000; Kim & Batty 2011). Whilst CA represent the urban landscape
as 2-dimensional grids they expand upon the grid structure by considering each cells
neighbourhoods and by defining transition rules to model the spatial interaction between cells
within a neighbourhood. Figure 3.10 demonstrates these neighbourhoods with Figure 3.10a
demonstrating a basic Moore Neighbourhood whilst Figure 3.10b shows an extension to
incorporate a wider neighbourhood. Studies have demonstrated how neighbours can be multi-
scaled to model spatial reactions at different spatial scales of a city (Ward et al. 2003).
Information is then passed between neighbourhoods enabling the state of cell to be affected by

surrounding exogenous factors.
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These transitional rules are central to the CA model and are applied at each step. For urban
modelling the utility of this means that CA are able to better capture the interactions between
different land uses over time. White & Engelen (1994) present a basic application where there
are three rules for the modelling the growth of residential, commercial and industrial land uses:

1. Commerce is attracted to adjacent commercial and residential development but repelled

by distant commerce;
2. Industry is attracted to industry whilst repelled by residential development; and
3. Residential is attracted by other residential, attracted to commerce but not adjacent to

commerce and repelled by industry.

These rules are weighted, and at each iteration these transition rules are used to identify where
new development is placed. This can be seen in Figure 3.11 where new land uses are assigned
at each iteration based on these criteria leading to a particular type of land use pattern. The use
of localised transition rules and a bottom-up approach is a much more realistic representation
of how land use develops, with large scale structure evolving from local scale decision making
processes, (Benenson & Torrens 2004; Liu et al. 2008).

Figure 3.10 Moore a) 3x3 and b) 5x5 neighbourhood predominantly used in Cellular Automata modelling.

B Commere
B Industry
1 Housing

Figure 3.11 Evolution of land-use from initial state (top left) over: 10 (a), 20 (b), 30 (c) and 40 (d) iterations (White &
Engelen, 1994).

74



Meanwhile Ward el al., (2003) additionally notes that the pattern of the urban form won’t be
entirely due to local decisions, and allows regional rules must be set to address this (Martin &
Wu 1999). For this reason Ward et al. (2003) set a number of land use zones as per urban
planning (Rossi-Hansberg 2004). Often these constraints are enforced through the transition
rules to form a constrained CA (Li & Yeh 2000). However this dependence on the transition
rules is a major limitation of CA as they can never be 100% accurate with regards to real world
urban processes and remain a research challenge. (Straatman et al. 2004). To improve their
accuracy transition rules are often calibrated using historical trends (Stanilov & Batty 2011).
For example the Clarke et al. (1997) urbanisation modelling of the San Francisco bay area was

calibrated using urban distribution trends ranging back to 1900.

The predominant use of CA for urban systems is to model land use growth. As such their
primary potential contributor to sustainable urban development is through identifying the
optimal outlays of land uses and testing different policies. Batty et al. (1999) uses a constrained
CA to model urban dynamics based on dispersed or concentrated growth by constraining the
speed at which development occurs. However others such as Ligmann-zielinska et al. (2005)
are critical of these approaches as they have only been applied to theoretical models. Batty et
al. (1999) acknowledges this and reasons that this is because the application to real cities
requires such large models that traditional platforms are unable to handle it. However a number
of applications have been coupled with a geographic information system (GIS) to handle the
big spatial datasets required to provide real world simulation and have since then been applied
to real world areas. Kim & Batty (2011) used a combined CA and GIS to simulate the future
growth of the Seoul Metropolitan Urban Area in South Korea. Meanwhile (Yin et al. 2008)
used CA within GIS to simulate urban growth for Changsha City in China.

A strength of using CA is that there are a number of existing CA models readily available. The
SLEUTH model (an anagram of its inputs; Slope, Land use, Exclusion, Urban, Transportation
and Hill Shade) originally developed by Clarke et al. (1997) has been used widely to simulate
future urbanisation by modelling with the transition of undeveloped areas to developed areas
(Yin et al. 2008; Al-shalabi et al. 2013). Another bespoke and widely used model, the

Metronamica model (available at http://www.metronamica.nl/) expands upon this by

incorporating up to 26 different land uses and has been widely used in a number of applications
(Lahti 2008; Lauf et al. 2012; Aljoufie et al. 2013). However both these require historical trends
and complex procedures to calibrate the model (Kim & Batty 2011).
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Alternatively works by Benenson has developed Agent Based Models (ABM) to simulate urban
dynamics (Benenson 1998; Benenson & Torrens 2004; Benenson 2004) and although they
aren’t as widely used as CA their use is increasing (Batty 2007). As with CA, ABM utilises a
number of transition rules at each time step to represent relationships between agents to form
bottom up model patterns as they emerge from local behaviour models. However where ABM
differs is that these ‘agents’ (automata) aren’t constrained to the single land unit or the grid
conformity inherent in CA, allowing them to be mobile and move within the model space.
Relations between neighbourhoods are also less stringent so connections can be more flexibly
positioned. This makes ABM particularly suitable for modelling pedestrian flows (Schelhorn
et al. 1999; Kerridge et al. 2001) and vehicles/ transport over transport networks (Rahal et al.
2010; Aschwanden et al. 2012) within cities. Within these applications each agent represents
vehicles, passengers and/ or pedestrians and their motions within the system are directed by
rules to react to their surroundings and other criteria (Aschwanden et al. 2012). This has been
used to test the most efficient set ups of transit as well as testing the effects of impacts on
transport networks (Rahal et al. 2010).

However a number of studies have extended their use to modelling residential and other land
uses. Where these applications are unique are that the transition rules are based on human
residential and economic preferences (Matthews et al. 2007). Any example of this would be
rules which mimic the residential agents making choices for moving their residence based on
criteria such as closeness to work, costs of moving etc. This is quite an innovative method of
modelling behaviours and form the methodology used for UrbanSIM’s urban simulation
system to make economic decisions within the urban system (Waddell 2000). Despite the utility
of this approach, CA remains the predominant simulation for to model urban land use growth
whilst the majority of ABM applications remain concerned with processes within cities such as
transport (Batty 2009). In addition the literature on ABM has been extensively applied for
theoretical cities (Matthews et al. 2007) and their application to real urban areas is limited.

There are a number of optimisation applications which are utilised in-conjunction with CA.
Ward et al. (2003) provide a good example of how an optimisation application can handle the
allocation of land use at a regional scale, whilst a CA model organises the urban growth at a
lower spatial scale within these regions. Meanwhile both Sidiropoulos & Fotakis (2009) and
(2011) utilise CA to model reactions between groundwater pumps and land use at a local scale
whilst an optimisation function is used to derive land use patterns. Keirstead & Shah (2013)

provides an in-depth assessment of the use of spatial optimisation for urban areas. The work
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concludes that rather than optimisation merely playing a part in CA systems it should instead
be used to provide outlines of potential sustainable development. Keirstead & Shah (2013)
reasons that with the use of more complex modelling techniques and consequential increase in
the parameterisation of the models, it limits the ability of optimisation to derive optimal
solutions. Instead of focusing on refining the relationships between land uses, their review
suggests optimization should be used early in the planning process to identify generalised

optimal planning trends.

3.5.6 Sustainable Spatial Optimisation

A number of spatial optimisation applications aim for sustainable spatial setups of development,
therefore it worthwhile assessing their applications. From a review, the majority of applications
intent on sustainable urban development concentrate their aims on Compact City principles (as
outlined in Section 2.3.2) concerned, for example, with the efficiency of different land uses by
identifying land use compatibility criteria (Ligmann-Zielinska et al. 2005; Cao et al. 2011,
Masoomi et al. 2012; Khalili-Damghani et al. 2014; Chen et al. 2015). The sustainability
hypothesis behind these studies is that efficient use of land is a proxy for mitigation of emissions
by reducing the need to travel (Neuman 2005). To derive compatibility values, a number of
applications have used Analytical Hierarchy Process (AHP) (Masoomi et al. 2012). Saaty (2008)
provides a detailed explanation of their derivation but essentially an expert is employed to
calculate a pairwise comparison matrix between each of the land uses based on a scale (most
applications use a 1/9 — 9 scale (Eastman 1999)). This is then used to generate a series of
suitability values which are calculated for the entire land use allocation to suffice an objective

function.

In accordance with Compact City principles, encouraging compact development is a widely
incorporated aim for sustainable spatial optimisation applications (Aerts et al. 2005; Santé-
Riveiraet al. 2008). Cao & Huang (2010) outline a number of methodologies for evaluating the
compactness of development such as measuring the area of similar land uses in the
neighbourhood of each cell; calculating the perimeter of continuous land uses; and assessing
the spatial autocorrelation of the plan using the Moran’s I method (Moran 1950). This varies
from being an objective to be worked towards (Khalili-Damghani et al. 2014; Liu et al. 2015)
to being an essential component of any spatial development plan (Aerts & Heuvelink 2002;
Aerts et al. 2005; Ligmann-Zielinska et al. 2008). With regards to the latter, a number of
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applications define a minimum number of neighbouring cells each designated land use must
neighbour which is enforced through a constraint. Likewise accessibility is an often included
objective into sustainable spatial optimisation application to further measure the efficiency of
the land use set up (Ligmann-Zielinska et al. 2005; Cao et al. 2012). However, the calculation
of these are often restricted to basic Euclidian distances, for example Batty et al. (1999) notes
that modelling transport routes within grid based applications is often difficult as the transit
network is often at a much finer spatial resolution than land parcels.. Ligmann-zielinska et al.
(2005) uses a basic accessibility measure of the distance of newly assigned land uses to
currently developed cells whilst Cao et al. (2012) provides a more realistic measure of
accessibility taken by an appreciation of a locations proximity to the road network (see Figure
3.12). Although it has been argued that compactness provides a reasonable proxy for
accessibility and therefore travel emissions, Ewing & Cervero (2010) finds that networked
accessibility measures more closely resemble resulting emissions over measures of
compactions (which these essentially are). Therefore there is significant scope to improve upon
the calculation of accessibility in spatial optimisation problems.

Legend
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Figure 3.12 Accessibility based on proximity to the road network (from Cao et al. (2012).

A number of sustainable spatial optimisation applications increase their scope from efficient
land uses to revolve around the ‘three pillars’ of sustainable development (defined in in Section
2.2). For example Qian et al. (2010) formulates their land use problem to optimise an economic
objective alongside constraining the problem to meet social and ecological sustainability.
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However these are often concern sustainability on a regional scale (Chen et al. 2015) rather
than specifically urban areas. For this reason economic objectives are calculated by the instance
of profitable land uses such as farmland, commercial and industrial rather than any high level
description of the economic activity. Although a number of climate risk related applications of
optimisation exist, they’re not typically spatially dependent, for example work by Woodward
et al. (2013) considers flood risk, however it is defined in relation to decision variables for flood
defences in set locations.

3.5.7 Evolutionary Urban Planning

Analysis of the literature suggests that any spatial optimisation technique used for urban
development problems would need to be evolutionary i.e. through incremental changes to the
urban environment as opposed to revolutionary where there is a major change in the current
configuration, as it is would be unrealistic to expect major reshuffling of the built environment
(Batty et al. 1999; Church 2005). Indeed Ligmann-zielinska et al. (2005) criticises original
applications of sustainable spatial optimisation to real urban areas as they fail to exclusively
consider new development. Despite this, there remains insufficient consideration of this in a
number of recent applications. Instead the retention of existing land use/ development is
indirectly ensured through the imposition of costs to redevelop land areas. Often this is included
as an objective to optimise alongside other objectives such as (Ligmann-Zielinska et al. 2005;
Liu et al. 2012). Essentially these applications consider how to improve and reorganise the
current land-use arrangement which in most cases would be an unrealistic consideration. A
compromise between allowing complete changes to current land uses is provided by Ligmann-
zielinska et al. (2005) and (2006) who use a ‘resistance to change’ spatial variable to make it
more likely that brownfield areas are redeveloped. Alternatively Liu et al. (2015) applies a
penalty function to spatial development strategies which reallocate development on ecological
area, thereby deterring these being selected by the GA to carry over into the next offspring set
but fails to completely prevent redeveloped areas appearing in the resulting spatial plans. This
isn’t limited to grid based applications as Masoomi et al. (2012)’s land use allocation allows
for land uses in land parcels to change whilst the result suggests the change of land use for a
number of them. Ward et al. (2003) suggests identifying available areas for development to

explore the assignment of new land uses however this hasn’t been heeded by many applications.
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3.6 Discussion

This section brings together the main discussion points from this chapter and Chapter 2 to
outline a number of recommendations for the work carried out in the rest of the thesis. The
review of urban sustainability in Section 2.2 identified that the consensus on urban
sustainability centres not only on what sources identify as ‘the three pillars’ of social, economic
and ecological sustainability but, with the increasing consequences of climate change, also must
be incorporate mitigation and risk adaptation. As a result any decision support tool must
incorporate multiple objectives. Section 3.3 reviews the methods of solving multi-objective
using (i) weighted sum methods, which incorporate a number of objectives into a single
objective based on preferences (weighting) to optimise, and (ii) Pareto-optimisation (PO),

which identifies a multitude of mathematically determined Pareto-optimal solutions.

A potential alternative approach to Multi-objective Optimisation (MOQ) is the use of Multi-
criteria Decision Analysis (MCDA). There are a plethora of approaches to MCDA (Guitouni &
Martel 1998) including Simple Additive Weighting (Chou et al. 2008), the Analytical Hierarchy
Process (Eastman 1999) and Outranking methods (Aouam et al. 2003). Indeed so prevalent is
its use in decision making that the Department for Communities and Local Government has
produced guidance on their use (DCLG 2009). The strengths of taking a MCDA approach are
that it provides an effective and quick method of identifying optimal solutions to multi-criteria
problems. However MCDA shares many of the weakness of the weighted sum methods
described in Section 3.3 including the necessity of stating preferences prior to the analysis and

the identification of a limited number of optimal solutions.

The review of potential conflicts between sustainability efforts in Section 2.4 outlined a
multitude of conflicts arising from the pursuit of sustainability initiatives. Whilst Section 2.4
and the review of sustainable spatial planning practice in Section 2.5 it is clear that in order to
address these conflicts planners require an appreciation of how these conflicts interact in order
identify the most appropriate balance. Based on these considerations Pareto-optimisation is
clearly the most suitable approach to reconcile the multiple objectives which sustainable urban
spatial planning entails. The trade-off information provided by the application of this approach
is crucial for understanding the interactions between the objectives under consideration. In the
absence of detailed priorities for planners in urban areas, identifying solutions based on their
dominance as per Equations 3.12 and 3.13 is ideal for planning applications (Balling et al. 1999).

These advantages outweigh the problem of long run times. Moreover Kapelan et al. (2005a)
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identified a lack of PO being applied in sustainability optimisation presenting a research gap to

be addressed. Despite this, MCDA could be applied after PO to aid digestion of the results.

With this is mind, Section 3.4 reviews the major optimisation approaches and identifies a
number of potential approaches which have been successfully been applied to spatial
optimisation applications. LP is a powerful method which has been applied to a number of
applications however it has the distinct disadvantage that the variables, objective functions and
constraints in a linear fashion which are too far removed from the reality in spatial applications.
In addition Particle Swarm appears to be a promising approach due to its speed and simplicity
as well as its ability to Pareto optimisation. However as the variable list is directly utilised to
guide the search (see Equation 3.17 and 3.18) it restricts analysis to continuous variables.

Instead the literature points towards the use of GA for a number of urban spatial optimisation
applications due to its powerful search mechanism and effectiveness in identifying globally
optimal solutions. The approach is widely used and its strengths also include it’s flexibility as
the algorithm isn’t dependent on the encoding of the problem and the dynamic nature of the
search allows for the discovery of globally optimum solutions. Moreover its suitability for
Pareto-optimisation makes it a very appealing for this application. For these reasons GA was
chosen to be implemented by the framework.

However, the review identifies a number of weaknesses which would need to be addressed for
the successful application to the urban spatial optimisation problem here. A number of studies
note that the dynamic search makes the handling of constraints difficult whilst the algorithm is
quite complex. Alternatively SA provides a robust methodology which is easily applied to a
number of problems. Indeed SA has a number of advantages over GA in that the change
mechanism at each iteration can be more closely controlled and allow for more effective
constraint handling (Duh & Brown 2005) which may prove crucial in ensuring assigning of
development to areas available for development (as per the requirement found in Section 3.5.7).
SA has been proven to be effective for large scale urban land use allocation applications (Aerts
& Heuvelink 2002; Duh & Brown 2007; Santé-Riveira et al. 2008) and whilst not typically
associated with PO, Nam & Park (2000) outlines a number of modifications which incorporate
non-dominated sorting into the algorithm. Therefore SA was also chosen to be incorporated
within the framework. Crucially both approaches both have searches that are independent of

the encoding of the variables.
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More recent approaches to MOPO have been developed, for example; e-NSGA-II (Kollat &
Reed 2005) which utilises e-dominance alongside the NSGA-I1 algorithm, the epsiv-dominance
Multi-Objective Evolutionary Algorithm (MOEA) (Liu et al. 2007) and the Borg MOEA
algorithm (Hadka & Reed 2013) which adaptively selects from a range of search operators.
Whilst these show promise over current approaches (Adekanmbi et al. 2014), they haven’t been
as extensively used for spatial optimisation applications and there is less evidence of their
successfully implementation in the field.

With regards to the decision support to sustainable urban spatial planning, Section 2.5 identified
sustainability appraisals as a promising method to ensure the configuration of sustainable new
development. As such, if the developed decision support tool is to contribute to more effective
sustainability appraisals, it is necessary that they facilitate the location solely of new
development. Previous applications fail this requirement as they allow for the changing use of
currently developed areas, although some attempt to dis-incentivise this (see Section 3.5.7).
Therefore in order to reconcile itself with the sustainability appraisal of future development,
the work carried out in this thesis must focus on new development. This could be handled by
identifying areas available for development (as per the recommendation by Ward et al. 2003)

and considering them as discrete locations.

The review of sustainability applications of optimisation in Section 3.5.6 identified a research
gap with the majority of applications limiting themselves to themes around Compact City
principles, considering objectives such as compactness and mixed land uses. The review of
sustainable urban form in Section 2.3 recognised that conceptual models such as the Compact
City can negatively affect sustainable development as they fail to address a range of
sustainability issues. Whilst the authors are right that these are recognised sustainable
interventions, the review in Section 2.3 and 2.4 found that they should instead be applied based
on evidence for the localised context and with consideration to their impact in other elements
of sustainability. This is crucial as Section 2.4 identified a multitude of instances of mitigation
based initiatives, such as urban intensification, leading to negative outcomes in other elements
of sustainability. The literature of spatial optimisation of risk adaptation are sparse and these
once again fail to take any appreciation of their effects on mitigation based objectives which
are important. Moreover these applications fail to consider sustainability issues faced by a
particular urban area, Therefore there is scope for a sustainable spatial optimisation application
to urban areas which considers a number of real world sustainability objectives simultaneously

and incorporating risk based objectives alongside traditional mitigation based objectives. This
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would enable assessment of future development against a number of sustainability objectives

simultaneously, in line with the sustainability appraisal approach taken in UK spatial planning.

With regards to the method of urban simulation over which the spatial optimisation decision
support tool would operate, the review in Section 3.5.5 identifies CA as a particularly suitable
environment to simulate the interactions between land uses. However the configuration of CA
requires considerable calibration based on historic trends and the determination of complex
relationships between urban systems. Indeed the use of optimisation within CA is often limited
to driving the choices made in the transitions at each iteration which doesn’t provide the benefit
of the identification of lots of alternatives which a purely optimisation approach would deliver.
Moreover optimisation should instead provide robust insights into the implications of general
trends of development, rather than complicate itself with determining complex and uncertain
relationships in cities which stifles their effectiveness. Therefore CA is considered too abstract
to be considered within a planning support tool for sustainability assessment. Instead the work
in this thesis will contemplate static representations of the urban systems which more closely
aligns itself with the sustainability appraisal approach set out in Section 2.5.4. Whilst vectors
provide an intuitive method of representing the urban landscape, in the absence of discrete
parcels, grid representations appear a suitable representation to demonstrate generalised trends
of future development (Loonen et al. 2007). There are a number of advantages to this including
the ease of relating this to the urban spatial properties and the majority of research into urban
systems relies on this representation. Indeed analysis has recognised that vector representations

aren’t necessarily superior.

3.7 Conclusions

The previous chapter identified that in order to meet urban sustainability, the spatial planning
of cities must be carried out in such a way to meet localised sustainability objectives and to
base planning decision on contextualised evidence which considers a number of sustainability
criteria. As such the assessment of a number of sustainability objectives during the spatial
planning of future development provides planners with a multi-objective spatial problem. This
chapter identifies a number of optimisation approaches methodologies which are potentially
useful for identifying future sustainable development trends. Meanwhile the review of previous
applications finds a research gap for the application of spatial optimisation to consider
traditional planning objectives such as efficient land uses alongside risk based objectives.
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Having now defined the concepts behind urban sustainability issues, and analysed suitable
optimisation approaches, to meet the aims and objectives stated in Section 1.3 the rest of this
thesis intends to develop a suite of optimisation functions to investigate and direct future
sustainable development based on the recommendations on this chapter and the Chapter 2
literature review. The developed methodology is detailed in Chapter 4, whilst the remaining
chapters describe the testing of the method to real world urban spatial planning applications.
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Chapter 4 Methodological Framework

4.1 Introduction

Based on the knowledge gained in the previous two chapters this chapter presents the
methodology of a Multi-Objective Spatial Optimisation Framework (MOSPOF or ‘the
framework’ for short) for sustainable spatial planning of new residential development in cities.
Section 4.2 addresses the methodology used for MOSPOF, including how it differs from
previous applications. Thereafter, the sustainable spatial planning objectives employed are
presented along with their parameterisation. Section 4.3 presents the software framework
employed to develop the implemented MOSPOF. Section 4.4 and 4.5 describe in detail the two
optimisation algorithms employed in this work; namely Simulated Annealing and Genetic

Algorithms, the implementation of which are described in these sections.

4.2 Problem Formulation

4.2.1 Design Considerations

The MOSPOF approach developed in this work needs to be able to spatially optimise the
location of new residential development through a resource allocation approach which concerns
optimising the allocation of limited resources among competing activities (Luss 1992). Many
previous studies that have focused on the simulating future development have employed grid-
based land use modelling, where the primary focus is on the spatial transitions that can occur at
discrete locations in terms of land use (Ligmann-zielinska et al. 2006; Qian et al. 2010; Cao et
al. 2012). While powerful approaches for land use modelling, such approaches are poorly
adapted with respect to accounting for wider spatial planning issues such as sustainable
planning concepts and reducing the potential risks faced by new development. Thus, while
many previous applications almost entirely focus on the assignment of land use they are only
able to consider sustainable planning concepts based on compact city principles, such as
compact development (compact land uses) and land use compatibility (e.g. proximity of
residential land use to employment land uses) (Ligmann-Zielinska et al. 2005; Cao et al. 2011).
However as Section 2.2 discusses, sustainable urban development shouldn’t be restricted to

these ideas and should encompass a wider set of aims.
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To address this limitation and to more closely resemble current planning practice in the UK
(and several other countries), the developed framework must be able to optimise the location
of new development with regards to real world sustainability objectives relating to sustainable
cities. To achieve this the implemented MOSPOF must be able to model and represent spatially
sustainable plans directly by using contextualised evidence (i.e. evidenced based on the spatial
properties of the local area under investigation). This ability to employ contextualised evidence
must be achievable for multiple spatial planning objectives drawn from multiple domains such
as climate change risks, environmental considerations, as well as, economic and quality of life

considerations.

As the implemented system must be able to address multiple-objectives, analytical optimisation
approaches for resource allocation that are multi-objective and which can be adapted to work
with spatial data must be employed. To this end, two potential optimisation approaches for
resource allocation are investigated. Simulated Annealing (SA) is a traditional optimisation
approach which has been successfully implemented and recommended for resource allocation
applications previously (Aerts & Heuvelink 2002; Aerts et al. 2005; Santé-Riveira et al. 2008;
Sidiropoulos & Fotakis 2009). The algorithm is easy to implement (see Section 3.5.4) and is
able to escape local minima and find globally optimal solutions in a computationally efficient
manner (Sabatini et al. 2007; Duh & Brown 2007). Whilst not widely used for Pareto-
optimisation Nam & Park (2000) sets out a humber of additions which allowed it to nearly
compete with other Pareto-optimisation approaches. Genetic Algorithms (GA) are a dynamic
search procedure based on survival of the fittest concepts (Dowsland 1996). Previously, GAs
have been used in land use allocation optimisation applications (Cao et al. 2012) and have been
reported as computationally efficient approaches in a number of applications (e.g., ground water

allocation (Sidiropoulos and Fotakis 2009)).

The optimisation algorithms above are coupled with a Pareto-optimisation approach in order to
solve the multi-objective spatial planning problems addressed. Pareto-optimisation was used
over other methods, such as weighted sum and goal programming, as the resulting optimal
spatial plans are independent of initial preferences and provide a wide range of choices to
planners (Jiang-Ping & Qun 2009). A further advantage of Pareto-optimisation is that solutions
can be posteriorly sorted to find plans which best represent the priorities of decision makers
(Deb 2001).

86



The method chosen to represent the spatial domain under consideration (e.g., a city) and the
scale of this will influence the ability of the optimisation framework developed to robustly
allocate new residential development. Raster (gridded) datasets have bene frequently used in
previous urban spatial optimisation applications (Cromley & Hanink 1999; Cao et al. 2012).
While vector (parcel-based) spatial models have bene employed in spatial optimisation its
application is confined to ‘niche’ applications where the spatial domain has been tessellated
previously into a set of pre-defined land parcels (for example agricultural fields (Stewart &
Janssen, 2014)). As the spatial domains of the cities investigated in their work do not have pre-
defined vector parcel representation in terms of the sites for allocation and to ensure the generic
applicability of the method developed this study employs a raster grid data-model to represent
the spatial domains under consideration.

4.2.2 Planning Problem Representation

To facilitate the resource allocation approach solutions explored by the MOSPOF are
represented as a fixed length list. A proposed development plan, D, is made up of a set number
of proposed development sites d each with an i, j location in the study area. Depending on the

application, D requires Q number of d such that D = [d},j, dfj,...,dfj]. Each proposed

development d has an associated number of assigned residential dwellings, dw;fj, and

population, v;" 7» where + conveys its added to the current situation, are converted to a density
based on the spatial resolution of the cell. The framework focuses on residential development
rather than economic development as it more appropriate to consider in the context of the
sustainability challenges identified in Chapter 2; providing housing for an increasing population,
reducing the risk to urban populations to climate risks and ensuring populations are located in
accessible areas. These are used for the calculation of the risk based objectives and for

simplicity these remain a consistent value throughout d.

In order to ensure development plans are feasible a number of constraints exist. Proposed
development sites must be within the study area on a location available for development and
development cannot be duplicated on a site (i.e., it can only be allocated once). Therefore the

search for development sites is subject to:

Subject to dij'if dij 0 a;jAdy; #dj; €D (4.1)
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where a;; denotes a cell available for development.

4.2.3 Selection of Objectives

To derive a set of sustainability objectives to consider for the urban planning decision support

tool an extensive review was undertaken of available spatial plans, sustainability appraisals and

related planning documents for large metropolitan areas such as London (Greater London

Authority (2011) and DCLG (2008)), Birmingham (AMEC Environment & Infrastructure 2014)
and Manchester (Atkins 2009), as well as planning authorities containing smaller urban

conurbations (e.g. Essex County Council (2010). In addition international spatial planning and

sustainability practices were also reviewed, including Cockburn (2006) and American Planning

Association (2000).

The results of this review are presented in Appendix A where Table A presents a comprehensive
list of real world sustainability objectives. These were categorised into 6 intuitive sub-groups;
Environmental, Transport, Land Use and Planning, Community and Health, Economic and
Resource Use. With regards to environmental objectives, improving air quality and adapting to
and mitigating against climate change were the most prominent objectives (70% of appraisals),
whilst reducing flood risk/preventing development in flood plains also featured predominantly
in appraisals (60%); reflecting the move towards greater consideration of climate change in the
sustainable spatial planning. The protection of biodiversity also featured in 50% of those
assessed; lower than expected and probably a consequence of preventions on greenbelt

development being enforced at a higher national governance level.

The majority (90%) of the sustainability appraisals had improving health as one of their
sustainability objectives. However, consideration of this objective with regards to spatial
planning was felt to beyond the scope of the work of this thesis. Likewise 60% of appraisals
included objectives concerned with reducing or alleviating the fear of crime. Despite studies
which link spatial layout to crime (Wekerle & Whitzman 1995) it was decided the objective
isn’t most suitably addressed through the spatial layout of development and was therefore not
included in the framework. Transport related objectives concerned the provision of sustainable

transport (50%), reducing automobile use (40%) and reducing emissions from transport (40%).
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Lastly of the appraisals reviewed 40% regarded development on previously developed land as

desirable.

Cost minimisation is a commonly associated objective in optimisation applications. However
for the applications described in this thesis it was found to be infeasible to sufficiently
parameterise a cost associated with differing development strategies due to a lack of data. The
implications of this on the analysis are described in detail in Section 7.2.3. Instead the work

focuses exclusively on sustainability objectives.

The key criterion when selecting the objectives to be included within the framework was that
they had to be relevant and hence considered as important in a large proportion of the reports
and literature reviewed. They also had to be considered as being feasibility parameterised and
evaluated in a spatially explicit manner. For this reason objectives relating to health, education
and crime, whilst commonly referred to, were excluded. Instead it was chosen that objectives
focusing on the major sustainability challenges, climate risks and mitigation, would be the focus
of the study. Moreover, the inclusion of too many objectives would slow and reduce the
effectiveness of the optimisation. Following recommendations to employ a minimal set of
planning objectives by Land Use Consultants & Royal Institute Town Planning (2008) the final
set of objectives consisted of the following 5 objectives:

i.  Minimizing Risk from Future Heat Waves:
Adapting to future climate change appeared as an objective in 70% of the appraisals whilst
reducing population risk to future heat waves is prioritised by several national governments,
including the UK (Defra 2012). Without significant redress this is estimated to result in a 257%
increase in heat-related mortality in the UK by 2050 (Hajat et al. 2014).

ii.  Minimizing the Risk of Future Flood Events:
Reducing flood risk and preventing development in flood plains appeared in 50% of the
appraisals and is a priority policy for the UK government (Defra 2010). More recently flooding
was described as the biggest adaptation challenge facing the UK by the House of Commons
Environmental Audit Committee (2015). A combined property value of £200 billion and 4
million residents are currently at risk and without major interventions £20 billion of damages
is estimated annually by 2080 (Office of Science and Technology 2010).
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iii.  Minimizing Travel to reduce Transport Emissions:
The reduction of commuting acts as a proxy for reducing transport GHG emissions (an objective
which appeared in 50% of appraisals) and covers the objective of improving accessibility to
services (appearing in 40% of appraisals). Reducing emissions which contribute to climate
change is heavily prioritised globally, whilst the UK has stringent legislation to reduce their
contribution of GHG emissions (UK Parliament 2008). The number of vehicle miles travelled
in Great Britain has reduced 2.4% since its peak in 2007 (Department for Transport 2014).
However, further efforts are needed to overcome pressures from increased economic activity

and population growth to meet the UK’s emissions reductions target.

iv.  Minimizing the expansion of Urban Sprawl:
Urban sprawl (extension of city limits) is widely associated with higher commuting times, poor
public transport provision (Burge et al. 2013) and inefficient land use (Speir & Stephenson
2002). Its prevention is a widely agreed sustainability principle (Johnson 2001) and a common
national priority in the UK (DCLG 2011a) as well as internationally (Echenique et al. 2012)
through policies encouraging development within existing urban areas (Baing 2010). This
objective acts as a proxy for several sustainability objectives identified, including sustainable
transport provision (as public transport is only viable in compact environments) which was
prioritised by 50% of the appraisals reviewed as well as objectives for reducing GHG emissions
and accessibility. Dense urban development has been found to improve building energy
efficiency (Rode et al. 2014) whilst containment of urban sprawl can act as a proxy for
sustainable transport as it has been found to reduce the use of private cars (Melia et al. 2011)

and allow for better public transport provision (Kenworthy 2006).

v.  Preventing Green-space Development:
The protection of biodiversity and improving green infrastructure was prioritised by 70% of the
appraisals reviewed, whilst the UK has a national policy of protecting local green space and
greenbelt by applying disincentives for loss of greenspace and restricting development on green
belt (DCLG, 2011a). There is increasing pressure in cities to develop greenfield sites (Heid
2004) however urban greenspace is crucial to mitigate urban heat islands (Mcevoy et al. 2006)
and provides countless health benefits for urban populations such as improved mental health
and more active lifestyles (Maas et al. 2008). Greenspace development is to be restricted, rather

than optimised based on the recommendations in the literature review that environmental
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protection should be prioritised and not considered equally with other sustainability objectives
(Morrison-Saunders & Therivel 2006).

4.2.4 Data Characterisation of Objectives

The input data of the MOSPOF consist of a series of raster datasets representing the spatial
attributes required to represent and parametrise the sustainability objectives selected. In this
study heat risk was represented in terms of the Crichtons (1999)’s “Risk Triangle” approach, a
methodology which has been widely applied in the literature (Schneiderbauer & Ehrilch 2004)
including in the calculation of heat risk (Tomlinson et al. 2011; Morabito et al. 2015). This
involves characterising the spatial distribution and magnitude of heat risk as a product of heat

hazard and population vulnerability. To achieve this, a heat hazard grid, h; ;, representing the

g
number of heatwave events per-annum was derived from future projections, while a
vulnerability grid, v; ;, comprising of the current population density per-hectare was also

derived.

Although a similar risk analysis frameworks for heat risk have previously been employed for
flood risk (Fedeski & Gwilliam 2007; Kazmierczak & Cavan 2011), this study employs the
UK’s Environmental Agency flood zone areas (DCLG, 2009) for simplicity. In particular, the
medium (between a 1 in 100 and 1 in 1,000 annual probability) and high risk (1 in 100 and
above annual probability) flood zones were employed. There were used as they are the standard
flood risk assessment used during UK planning (see UK Government policy statement on

assessing the flood risk (Department for Communities and Local Government 2009)).

In order to evaluate the travel related objectives, a measurement of accessibility was employed
as it measures have been found to be strongly related to vehicle miles travelled (Ewing &
Cervero 2010) and has been used in many previous sustainable urban optimisation applications
(Cao & Huang 2010). In order to calculate accessibility this work employs a full road network
model (series of polylines) which were associated (joined) to CDB centroids (points). Lastly a
gridded representation, generated at the same spatial resolution of the objective grids, was
generated of the urban extent of the cities investigated in order to constrain spatially the location

of proposed new development. Greenspace was also represented in a similar gridded manner.
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4.2.5 Objective Formulation

I Minimizing Risk from Future Heat Waves

The calculation of heat risk has a number of assumptions. Firstly the vulnerability element is
based on 2011 census population so does not take into account future projected increases in
population density and/or changes in the demographic profile (i.e., > proportion of >75) etc. In
addition the calculation does not include any expression of exposure (e.g., no expression of
building stock) due to a lack of available data. With these in mind minimising heat risk is
achieved by avoiding allocating high population densities to areas expected to have high
incidences of heat waves in the future and which already have a high population vulnerability.
During the operation the optimisation framework attempts to minimize the objective function

freatr Characterised by the increase in heat risk in the future:

Minimize Froar = 2 [ Future (4,2)
ea ij

where Hfj”t“re are defined as being the cross product of the probability of a heat hazard event
(h;,j) occurring at a particular location (i, j) and its corresponding population vulnerability,v; ;,
expressed in terms of population density (people per-hectare) and is calculated by multiplying
the grids described in Section 4.2.4. As d;; are being assigned spatially, the calculation of

Hfj”ture is updated at each iteration of the optimisation to account for the new vulnerability that

results from the increased population density of the cells d;; € D:

future

— +
ij = vi,j + vi,j (43)

future x h

I (4.4)

Future _
H;j i,j

Overall the computation assumes that the risk is proportional to the population which interacts
with the heat hazard
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ii. Minimizing Risk from Future Flood Events

The optimization of flood risk attempts to minimize the objective function ff;,,4 0N the basis
of reducing the number of proposed dwellings which fall within 1 in 100 and 1 in 1000 year
flood zones. In the context of the UK those two zones are meaningful for planning purposes,
but provide less accurate assessment of flood risk as there is a massive interpolation between
just two points. The use of probability outlines such that you do not have any knowledge of the
interval variability on flood depth and hence the ability of undertake a finer-scale inter-zonal
flood damage calculation. The calculation assumes that the risk is proportional to the number

of dwellings within each zone and is represented as:

where dw{; is the number of dwellings associated the assignment of d;; whilst Z and z are

spatial grids representing 1 in 100 and 1 in 1000 flood zone extents respectively.
iii. Minimizing the Distance of Development to the Central Business District (CBD)

This objective is achieved by optimising an accessibility measure to areas of employment and
services, namely the distance of new development to the current CBD. The calculation assumes
that these CBDs will remain consistent in the future. The calculation is based on the distance
along the road network, which likewise is assumed to be consistent in the future, however no
credence is given to travel times/ costs along these routes. The optimization attempts to
minimize the objective function f;s; which is expressed by the shortest path, P (), between the

centroid of proposed development sites, d;;, and points designated as a CBD centroid, c;;, over

ijo
the road network, R.

Minimize fdist = Mln(P(dU, Cij,R) VCU‘ A dl] € D) (46)
iv. Minimizing the expansion of Urban Sprawl

This sustainability objective is optimized on the basis of the objective function f,,qu: -

Originally this was calculated based on the non-linear neighbourhood method described by Cao
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& Huang (2010) whereby the neighbourhood cells of each proposed development sites are
assessed to see if they’re within the urban extent but this was found to significantly increase the

computation time. Instead fs,-qu; IS calculated as the number of proposed d;; which fall

outside the current urban extent. This assumes that the urban extent as defined by the data

source most accurate represents the real world situation and will remain constant.
Minimi
inimize Foorawt = Z(dij # ;) Vdy €D 4.7

where u;; represents cells designated currently as urban. The objective is returned as a

percentage.
For presentational purposes, the final objective performances of spatial strategies are

normalised between 0 and 1 to provide an unbiased perspective. Once the analysis was run,

normalised objective values were calculated for each solution, s, using following equation:

fsnorm — (fs _ fsmin)/(f:gmax _ f:gmin) (48)

where ™™ and £,m%* represent the maximum and minimum found performances for each

objective function, f.
v, Preventing green-space development

The objective is achieved through imposition of a spatial constraint on the selection of solutions

in the form of:

SUbjeCt to dl] * gUV dl] eD (49)

where g;; are the spatial locations (cells) of green space.

4.2.6 Pareto-optimality

Pareto optimisation is employed to solve the multi-objective optimisation of the objectives

outlined in Section 4.2.5. As Chapter 3 outlines it’s an approach which has been extensively
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used in engineering and infrastructure optimization, including water distribution systems
(Vamvakeridou-Lyroudia et al. 2005; Fu et al. 2013) and urban land use allocation ( Jiang-Ping
& Qun 2009; Cao et al. 2011). Its popularity rests with its ability to identify optimal solutions
independently of preferences, instead allowing planners to choose their preferred solutions from

a wide range of best known trade-offs reflecting multiple priorities (Jiang-Ping & Qun 2009).

With respect to the objectives under consideration, F = {fycat, ffi00as faists fsprawt}, Multi-
Obijective Pareto-optimal (MOPQ) development plans are determined by the formula set out in
Equations 3.12 and 3.13. For planning application a development plan, D™, is said to be
Pareto-optimal if it is no worse than all other development plans for f € F and strictly better in
at least one f € F. To discern solutions defined as MOPO this work uses a non-dominated
sorting algorithm based on the algorithm outlined by Mishra & Harit (2010). A set of derived
development plans, D, are assembled in a list, S, and are sorted by the first f; € F, in this case
freat- The D at the top is then moved into the non-dominated set, N. Thereafter each solution
D € S is compared to solutions within the non-dominated set, p € N for dominance with
regards to the objectives F = {fyisk, friooar fsprawt faise}- 1f s is found to be dominated by p €
N across all F it is disregarded. However if any s remains non-dominated by p € N it is added
to N and if s dominates p € N p is removed. By beginning with the best performing solution
for f, the approach ensures dominated solutions are realised quicker. Once all s € S are
considered the final N set contains the Pareto-optimal spatial configurations where no other

spatial configurations perform better with regards to the combination of fr.isx, ffiooa: fspraw:

and fdist-

In order to evaluate and demonstrate trade-offs between each combination of pairs of objectives
further sets of Pareto-optimal spatial configurations were extracted for different subsets of the
sustainability objectives. Essentially, the algorithm is repeated with different combinations of
F e.9., {fheats ffio0a} € F, {fneat: faist} € F to produce Pareto-optimal sets e.g., N¢,  r Flood!
Ne, oo faise €1C- Appendix C presents the Python code developed for the non-dominated sorting
based on Mishra & Harit (2010).The resulting Pareto-optimal sets for all objectives or
combinations of these can be plotted against the objective functions to display a best trade-off

curve.
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4.3 Spatial Optimisation Software

4.3.1 Choice of Development Environment

There are several computing platforms that could be employed to develop the MOSPOF
approach to sustainable residential development allocation. MATLAB is a powerful
mathematical processing environment which has been used to develop a number of optimisation
applications (Sigmund 2001; Lofberg 2004). It has the required mathematical programming
capabilities and is highly suitable for handling the optimisation functions within the MOSPOF
methodology, with modules such as the global optimization toolbox which contains both a
genetic algorithm and simulated annealing (Mathworks 2015; Zhao et al. 2015). It has been
widely praised for its applicability for computationally intensive optimisation approaches such
as Particle Swarm (described in Section 3.4.8) (Venkataraman, 2009), as well as the ability to
develop bespoke optimisation toolboxes (Brown and Hutauruk, 2007). However the software
has been criticised for not being user friendly (Siauw & Bayen 2014) and is considered an
inflexible language (Broker et al. 2005) as well as being commercial software. Crucially, the
platform does not facilitate easily the integration of spatial data and its GIS functionality is
limited (Zhao et al. 2015). AMPL (an acronym for ‘A Mathematical Programming Language”)
is another powerful mathematical software which is geared towards optimization applications
(Fourer et al. 1993). It has a strong presence in the optimisation of structural components (Su
& Judd 2012). However its application to spatial optimisation in the literature is limited; indeed
in the standard reference book for AMPL not a single spatial optimisation is described (Fourer

et al. 2003). Again, it is also a commercial software package.

Alternatively RStudio is an open source statistical programming language which has a large
number of users and is extensively used by programmers. The platform carries a number of
readymade optimisation toolboxes such as the ‘R Optimization Infrastructure’ (containing
modules for simulated annealing (Roi et al. 2015)) and ‘GA’ which allows the use of genetic
algorithms (Srucca 2014). Furthermore, the platform has the ability to handle spatial data with
an adaptation of GDAL (rgdal), a widely used Geospatial Data translator library (Roger et al.
2015). However it’s not extensively used in the optimisation literature and has more
prominently been used for visualisation of optimisation results (Sahnoun et al. 2012; RStudio
2013), and in support of a number of data analysis applications (Maindonald & Braun 2010;
Gerrard & Johnson 2015).
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Python is another open source programming language that offers a number of powerful
mathematical and scientific modules (e.g. Numpy (Oliphant 2006) and SciPy (SciPy
Developers 2015)), with a rich range of optimisation modules (including modules to handle
genetic algorithms (Fortin et al. 2012) and simulated annealing (Perry 2015)). Although both
Rstudio and Python both offer a flexible language, the Python programming platform is aligned
with newest GIS (the new ArcGIS 10 platform operates on python) and has the ability to utilise
GDAL’s spatial library (GDAL 2012). In addition, Python has been used in a number of
optimisation applications in the literature (Broker et al. 2005; Matott et al. 2011; Hebrard et al.
2010; Beham et al. 2014), including land use allocation spatial optimisation applications
(Ligmann-Zielinska et al. 2005; Ligmann-zielinska et al. 2006; Ligmann-Zielinska &
Jankowski 2007; Ligmann-Zielinska et al. 2008). Python is consistently commended on its ease
of use over other languages (Broker et al. 2005; Waddell 2011a), with numerous online tutorials
and help boards (Python Software Foundation 2015). Moreover extensions such as Matplotlib
provide advanced plotting and visualisation through Python GUI. Therefore the Python
platform was chosen to develop the framework.

4.3.2 Overall Spatial Optimisation Framework Design

Figure 4.1 shows the overall design of the Multi-objective Spatial Optimisation Framework
(MOSPOF) developed. The software was designed as a modular set of routines/tools to allow
for the incorporation of further elements into the optimisation framework and the robust testing
of the optimisation approaches utilised. The containers indicate directories, rectangles denote
Python modules which carry out specific processes, whilst rhombuses denote input/output
datasets. The Optimisation Algorithm module drives and handles the optimisation with respect
to altering spatial development plans and controlling the number of iterations. Development
plans are efficiently stored as Python arrays and a number of python functions exist to modify

and assess arrays.

During the search the Evaluate module receives spatial plans derived by the optimisation search
and calculates their fitness using Equations 4.2-4.7 based on its spatial configuration in relation
to the spatial datasets outlined in Section 4.2.4. Appendix B presents the source code for the
Evaluate module. The spatial datasets used to calculate the objectives are handled in the Data
module by the the PyRaster module ‘RasterlO’ (Holderness 2012b). In the Evaluate module

network analysis is undertaken using NetworkX (Hagberg et al. 2013); a powerful network
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analysis python module which has been used for several network analysis applications (e.g.,
Barr et al. 2013). NetworkX is used to calculate shortest path distances along a road network to
a CBD points from the centroid of development sites (d;; € D). To reduce run time the
calculation of the shortest path for all a; ; is carried out by a pre-processing module and stored

as a lookup table for reference during the optimisation stage (see B3 in Appendix B).

The Constraint Handling module pulls a green space, boundary and an ‘available for
development’ raster from the Data directory to ensure that any D meets the constraints of the
problem (see Equation 4.1). Once Optimisation Algorithm terminates, resulting development
plans, S, are handed to the Output module. This module handles several processes including
calling the Non Dom Sort module which carries out the non-dominated sorting outlined in
Section 4.2.6. The Plot module plots the Pareto-optimal sets against their respective objectives
to demonstrate the trade-off curves using matplotlib®. Resulting Pareto-optimal sets, N, sets are

converted to gridded spatial plans again using PyRaster in the Write Spatial Plan module.
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Raster Datasets /
i £/ Dataset
Heat hazard, urban ;o s . /
extent elc RN(L‘II?F; tr‘)‘ U,ﬂ;_"” d / NonDom_Sort
/o it Y. — Extract MOPO Set N
! 1 and A:r!h('u.!:ﬁ,’uw# elc
Evaluate Plot
return F= {fheat, fflood, fiist, r—— Optimisation . .
;S;L:.r'ml’!,’ }l:lgorithm W Nneanrooa €1 against
: > heat filood
» Both GA and SA Jheatffloo
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Figure 4.1 Developed Spatial Optimisation Framework.
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4.4 Simulated Annealing Approach

This section sets out the methodology for the Simulated Annealing (SA) approach employed.
As discussed in Chapter 3, SA is a heuristic optimisation algorithm which allows for the
acceptance of inferior solutions, escaping local optima in order to hopefully discovery global
optimum solutions to problems (Dowsland 1993). SA employs a probability approach that
iteratively searches for optimal solutions for a particular acceptance criteria (Kirkpatrick et al.
1983) and has been used for a number of optimisation applications (Czyzzak & Jaszkiewicz
1998; Zhang et al. 2011; Jones et al. 2002), including several spatial optimization problems
such as land use/ resource allocation (Aerts & Heuvelink 2002; Duh & Brown 2007; Aerts et
al. 2005), forest planning (Murray & Church 1995), ground water allocation (Sidiropoulos &
Fotakis 2009) and allocation of bus stops along a network (Delmelle et al. 2012).

Simulated Annealing is employed as it’s a widely used and a simple to implement algorithm
(Zhang et al. 2011). Several sources have commended its utility for resource allocation (Aerts
& Heuvelink 2002), whilst it has been proven to be computationally efficient for high

dimensional spatial allocation problems (Aerts & Heuvelink 2002; J. Duh & Brown 2005).

4.4.1 Simulated Annealing Operators

Figure 4.2 presents the structural components of the SA algorithm used in this study to generate
a set of development plans, S, from which to determine a MOPO set, N. Spatial plans are
represented as a fixed length list of proposed development plans as outlined in Section 4.2.2.

The SA algorithm comprises of several distinct stages, namely;

(1) Initialisation

A random spatial plan is generated which at this stage constitutes the best found spatial plan,
Dy, and its fitness, F;,. A number of random d; ; are used to form D, satisfying the required
number of development plans, Q,. This random configuration is used to seed the current spatial
configuration, D,,, and its associated fitness, F,, where n denotes the current iteration of the

algorithm.

(2) Evaluation
Each spatial configuration investigated, D,,, is converted into a spatial plan by mapping it

spatially over the study area and is used to calculate the performance in the objective functions
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outlined in Section 4.2.5 in order to derive the associated performance scores, F, (which

comprises fheat: ffloodv fdisti f:s‘prawl)-
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Figure 4.2 Flow diagram of the Simulated Annealing approach to spatial optimization.
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(3) Iterations

In this work, the SA algorithm is applied for a user defined number of iterations, m. At the start
of each iteration D,, = D, and F, = F, to aid convergence to a global optimum spatial
configuration by ensuring the algorithm is always iterating with respect the previously derived
best performing spatial plan. Within each iteration the SA algorithm is carried out which
consists of a while loop where at each pass through the loop a temperature variable, T, is

decreased by a cooling factor C:
Ti+1 - Ti X C (410)

where 0 < € < 1. (in many simulated annealing applications C is set between 0.8 and 0.98
(Aerts & Heuvelink 2002)). As T gradually decreases it restricts the acceptance of new spatial
plans which ensure the algorithm convergence on a global optimal spatial plan (see step 6
below). The SA loop continues until T < T,,4, Where T, is a user defined threshold, ending

the iteration.

(4) Random Change to Spatial configuration
At each stage in the SA algorithm a random change is applied to the spatial configuration. At

each step n an existing development site d; ; € D,, is moved randomly within an 8-cell Moore

neighbourhood as shown in Figure 4.3a. The resulting spatial plan is stored as a new
development plan D, ;. As Figure 4.3b demonstrates, when adjacent cells are unavailable due
to being currently developed, the Moore neighbourhood is extended to find the next available

al-,j.

(5) Constraint Handling
During stage 4, the constraint handling module enforces the constraints of the search. New d;

are compared against the greenspace dataset, g; ; and available land dataset, a; ; to ensure it’s
a feasible development site. Moreover the new site is checked against the current allocated d; ;
to make sure no duplicated development occurs. This evaluation loops until a feasible new d; ;

is found.
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(6) Acceptance of solutions

Newly configured spatial plans, D, , are compared to D,,. As per the modifications set out by
Nam & Park (2000) if D,, ., is found to be non-dominated by D,, (see Equations 3.13 and 3.14)
it replaces it; D, = D,,,, and F, = F,,;. However inferior/ dominated solutions can be

accepted on the basis of the Thermopolis Equation:

e 8T > R(0,1) (4.11)

where A is the difference between F, and F,,,;, while R represents a real number between 0
and 1. A is calculated by normalizing all the elements f,, then calculating the difference between
these normalized objective functions. The allowance of inferior solutions prevents the
algorithm converging on local optima by encouraging the evaluation of a wide range of spatial
development. This can be seen in Figure 4.4 where during iterations F, takes on inferior
performances in F whilst towards the end of iterations E, begins to converge on a more optimal
performance in F as Equation 4.11 restricts acceptance D,,,, to those which are superior. This
allows for allows for the exploration of a number of spatial configurations of D,, which
ultimately leads to the discovery of better F;,. This can be seen in Figure 4.4 where F,, and F),
converge at the end of the iteration. Accepted development plans D,, are added to the set of
development plans, S, from which to extract MOPO solutions at the end of the operation as per

the approach set out in 4.2.6.

(7) Maintenance of f),
The best performing spatial plan, D, is maintained. D,,,, accepted by Equation 4.11 are then

compared to D, and if found to be superior D, = D,,,; and F,, = F,,, ;.

(8) Output
The SA algorithm is repeated for the set number of iterations m. Once this is completed the SA

is terminated. At this point S is returned and provided to the Output module

(9) Output
The set S is then used as the set from which to derive the MOPO and Pareto-optimal sets as

described out in Section 4.2.6.
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Figure 4.4 Current fitness and best fitness scores throughout the SA algorithm.

4.4.2 Simulated Annealing Implementation

Several Python modules exist for simulated annealing including SciPy optimize.anneal

(http://docs.scipy.ora/doc/scipy-0.14.0/reference/generated/scipy.optimize.anneal.html) a

SciPy module and the simanneal package (https://github.com/perrygeo/simanneal). However,
it was decided to develop in-house the SA routine so that it could be tailored to the specific
requirements of this study. In particular this allowed for incorporation of the domination criteria

in the acceptance procedure and the change to the spatial configuration procedure shown in
Figure 4.3
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4.5 Genetic Algorithm Approach

Genetic Algorithms attempt during the search procedure to converge on superior solutions to
an optimisation problem by emulating the evolutionary operators of selection, crossover and
mutation to identify promising solutions and recombine their attributes (Fonseca & Fleming
1993) (also see Section 3.3.6). Genetic algorithms (GA) were originally envisioned by
Goldberg (1989) and have been subject to numerous versions and extensions of the original
algorithm including the Non-dominated Sorting Genetic Algorithm 2 (NSGA-II) (Deb et al.
2002), the Strength Pareto Evolutionary Algorithm 2 (SPEA-II) (Zitzler et al. 2001) and more
recent versions including the Improved Vector Evaluated Genetic Algorithm with Archive
(IVEGA-A) (Zhang & Fujimura 2010).

GAs have recently gained prominence over traditional optimisation approaches, such as
simulated annealing (Loonen et al. 2007), and have recent applications in land use planning
(Stewart & Janssen 2014; Cao et al. 2011), ground water allocation (Sidiropoulos & Fotakis
2009) and risk management (Woodward et al. 2013). Indeed Xiao, Bennett, & Armstrong
(2007)’s review of multi-objective spatial decision making concludes that evolutionary
algorithms, of which genetics algorithms are one, are particularly appropriate for multi-
objective decision making. Notably sources have noted the quicker search times and improved
convergence associated with genetic algorithms. Indeed Sidiropoulos & Fotakis (2009)

suggested that GA produced optimal solutions with less computations.

4.5.1 Genetic Algorithm Operators

Figure 4.5 presents the structural components of the GA algorithm used in this study. By
investigating differing set ups of D, represented as a fixed length array, the GA generates a

MOPO set (N). The GA algorithm is comprised of several components outlined in Figure 4.5;

(1) Initialisation
A number of initial spatial plans are needed to seed the GA from which more optimal set-ups

of d € D are derived. A series of initial development plans D, equal to number Noy,qyents, are

generated and stored as an initial parent set, parents, so that D € parents,.
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(2) Iteration

The instances of D in parents, are then subject to the GA evolutionary operators for a defined
number of generations (iterations) G. During each generation the parents, denotes the set of
parent D for the g generation, of fspring, denotes a new set of D found by the evolutionary
operators applied to parentsg,, and parents,, denotes the set of D selected to continue being
used for the search . At the start of each new generation parents, = parents,.,, so the search
begins using the best set of D found during the previous g. Once g = G the operation

terminates.

(3) Evolutionary Operators

At each g a series of evolutionary operators are applied to D € parents,, to produce a new set
of D to form the set of fspring,. In particular we use the Mu-plus-Lamda evolutionary
strategy for the operators where solutions are subject to either a crossover operation, on a
probability p.,ossover, OF @ mutation operator, on a probability p,,utation (Melanie 1996) as this

is considered an effective strategy for escaping local optima (Rothlauf 2011).

After testing it was decided to use a two point crossover as shown in Figure 4.6. Two D €
parentsg, €.9., D, and D, have the crossover operator pe,,ssover applied to generate two new
plans D, and D;, using crossover points cx; and cx, selected randomly along the lists of D,
and D,, such that 0 < cx; < cx, < Q, where Q is the length of D, and D,. Their attributes are
exchanged between the two crossover points to form D, and Dj, such that Dg[cx;: cx,]| =
Dy [cxy: cx,] and Dy [cx;: cx,] = Dglcxq: cx,]. Through this the GA aims to combine superior

d; ; to develop optimal configurations of D € parents,.

Thereafter, sites d; ; witihn D € parents, that were not selected by the pcyossover Probability
have a mutation operator applied mutated on a small probability p,,. As variables within D are
discrete i, j locations of d this is achieved using a uniform integer mutation which randomly
changes the i, j location of d within a fixed range of possible i, j. This is shown in Figure 4.7
where the mutation is applied to D.. The d;; € D selected for mutation has its i, j location
changed from 3,13 to 9,33 to form a new D; D;.. The mutation operator has two functions.
Firstly it stops the d; ; € D € parents, converging on a small subset of d; ; by introducing

random d; ; and secondly the introduction of new d; ; might improve the performance of D
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against the all or a number of objectives f € F. Spatial plans resulting from the operators D’

are stored in a new set of fspring,.

Next a selection operator selects spatial plans that are optimal which are used to produce
offspring for the next generation. This work utilises the Non-dominated Sorting Genetic
Algorithm Il selection procedure proposed by Deb et al. (2002) as traditional selection methods
such as tournament and roulette selection are unsuitable for multi-objective optimisation.
NGSA-I11 is a reliable and widely used algorithm which is straightforward to implement having
been shown to perform well over a range of optimisation applications (Jaeggi et al. 2008; Zhang
& Fujimura 2010; Cao et al. 2011). Moreover it has been found to better estimate the Pareto
front with reduced computations compared to other popular MOO GA algorithms such as the
Strength Pareto Evolutionary Algorithm (SPEA) (Zhang & Fujimura 2010).

After of fspring, is subject to the constraint handling module (see (4) below) and is evaluated
for their F. Crucially the selection procedure is elitist as parents, is considered alongside
of fspring,. Thus, the resulting set, parents,., will consist of the best D across both sets and
ensures that parents,,, is superior to parents,. Figure 4.8 outlines how NSGA-II reduces
the combined sets of fspring, and parents, of length 2 X 10, 4renes, 10 the set parents,, 4
of length nopgrents - The combined sets of D € of fspring, and D € parents, are non-
dominated sorted to produce a series non-dominated sets of N. Firstly, the non-dominated set
of the combined sets is determined, N;. These are removed from the combined of fspring,
and parents, and the remaining combined solutions are then re-sorted to determine the next
non-dominated set, N,. This continues until all D within of fspring, and are assigned to a
Pareto set, Ny, N,, N3 .... (see Figure 3.6a for a visualisation of this). Next parents,,, is made
up of these non-dominated sets in ascending order until there isn’t enough space for the entire
set of D € N. So for the example in Figure 4.8 parents,,, inherits the D within Ny and N,
but can’t hold the entire set N3 and N, is discarded. To determine which D € N; will be used
to fill the remaining space in parents,., a crowding distance, 1, is calculated for D € N5 to
distinguish which are in the least represented areas of the Pareto front. This is calculated based
on the average distances to the nearest solution in the objective space (see Figure 3.6b for a
visualisation). The D € N5 are sorted by this crowding distance, ¥, and those with the best
performance are used to fill the remaining space in parents .. This is intended to ensure a

wider a representative of Pareto front is preserved in parentsg, ;.
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(4) Constraints and Evaluate

Before the D in of fspring, are evaluated against the objective functions, a constraint
handling module ensures that they are feasible spatial plans. Constraint handling in GA
algorithms requires careful consideration due to the use of crossover and mutation operators
(Konak et al. 2006; Coello 1999). Konak et al. (2006) identifies several methods by which to
enforce constraints on a GA procedure:

1. Discarding infeasible solutions from the population;

2. Applying proportionally a penalty function to solutions which break constraint;

3. Designing the genetic algorithm problem so only feasible solutions are produced; and

4

Repairing in-feasible solutions during the algorithm.

Penalty functions are the most prominent method employed in many GA applications (Coello
1999). However they have been criticised as the determination of the penalty parameters is
often complex. Liu et al. (2015) utilised a penalty function in their study to prevent the
development of natural areas and acknowledged that it didn’t prevent infeasible solutions being
represented in the search. Loonen et al. (2007) states it should only be employed as a last resort
and considers that ideally the representation should be formulated so only feasible solutions are
found. Therefore the representation for the GA was formulated so proposed d were allocated
spatially on the basis of a lookup value, . Therefore D =[d,;, d;...d;], where each [
corresponds to an i,;j location through a lookup table as shown in Figure 4.9. Figure 4.9
demonstrates how this this allows for the exclusion of i, j locations which correspond to cells
designated as greenspace, currently developed land, water and cells outside the boundary. As
the GA investigates the spatial allocation of d it is limited to [ locations and is restricted to
assigning development to cells available for development, thereby partially fulfilling Equation
4.1 (sites must be within the study area and on cells available for development) and fulfilling
Equation 4.9 (not on greenspace). This mirrors the approach taken by Cao et al. (2011) where
canals and greenspace in the study area where excluded from the variable space. This also has
the consequence of reducing the number of variables in the search, and therefore the complexity.
With respect to the example in Figure 4.9, we reduce the search from 49 combinations of i, j to
25 values for . Unfortunately the representation couldn’t be formulated to prevent duplicated

d € D. Instead D € of fspring which were found to have duplicated d, in D were discarded.

The remaining D € of fspring, were then evaluated against the objectives fheat, friooa, faist
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and fspraw: as per the the definitions in Section 4.2.5 using the scripts listed in Appendix C to

determine their respective F.

Lookup
R
1 2.7
2 3.7
3 4.7
4 1.6

Study Area Boundary l:' Currently developed

Available for development Greenspace

Figure 4.9 Demonstration of generating a lookup table converting cells from ij locations to a [ value to excluded

infeasible development sites.

(5) Update non-dominated list

During the application the GA maintains the MOPO set, N for F=
{fneats frio0a faist fsprawt}, Dased on all the D found during the search. At each g the set of
superior spatial plans D € parents,,, are compared to N and those found to be non-

dominated are added whilst any p € N found to be dominated is ejected.

(6) Outputs
Once g = G the GA terminates and returns N. This is then used to determine Pareto-optimal

sets between pairs of objectives i.e. Ny, . - based on the formula outlined in Section 4.2.6
toform N¢, . ¢ . ...etc. Inaddition D € N,Ng, . .. ... are plotted as spatial plans on raster

datasets based on the spatial allocation d; ; € D.

4.5.2 Software Implementation

Several Python modules exist which can handle evolutionary operators. Pyevolve? is a well-
documented python module with multiple scripts for mutation®) and crossover* operators.

Moreover it is able to handle 1D (lists) and 2D (grid) representations. However, it doesn’t have

2 http://pyevolve.sourceforge.net/
3 http://pyevolve.sourceforge.net/module mutators.html
4 http://pyevolve.sourceforge.net/module crossovers.html
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the necessary selection operators for MOO Pareto-optimisation so is limited to single objective
optimisation or weighted sum applications. Alternatively, Pygene® is a promising approach with
the necessary operators to allow for multi-objective optimisation. However there is very little

associated documentation for this package and limited examples of its use.

Rather using one of the modules above, the Python module Distributed Evolutionary
Algorithms in Python (DEAP) was employed (Fortin et al. 2012). DEAP has excellent online
documentation. The software provides built in functions for the selection, crossover and
mutation operators. In particular, the following modules were used to operate the evolutionary
operators; tools.seINSGA2 provided the necessary modules for the selection operator,
tools.cxTwoPoint for the crossover operator and tools.mutUniformint for the mutation operator.
A further advantage of DEAP is that its creator function helps facilitate the creation of fixed

length representations of D in the application.

4,6 Summary

This chapter has developed a Multi-objective Spatial Optimisation Framework (MOSPOF) to
optimise future spatial plans of development. Specifically the framework optimises a fixed
number of new residential development sites across a study area ensuring they are feasible i.e.
fall in areas available for development. The novelty of the approach is that it attempts to
optimise these plans against a series of real world prioritised sustainability objectives and is
coupled to Pareto-optimisation to provide development plans which form best trade-off the
objectives evaluated. The implementation of the two optimisation approaches employed in the
developed MOSPOF have been described in detail, along with how they have been coupled
with Pareto-optimisation.

5 https://pypi.python.org/pypi/pygene/0.2.1
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Chapter 5 Medium Sized Urban Case Study- Middlesbrough

5.1 Introduction

In this chapter the spatial optimisation framework developed in Chapter 4 is applied to an urban
planning case study to evaluate its utility to assign future residential development plans for a
medium sized urban area which account for multiple sustainability objectives. The case study
is undertaken for a densely urbanised local authority in the North East of the UK; namely
Middlesbrough. Both optimisation approaches within the framework, Simulated Annealing and
Genetic Algorithm, are demonstrated and compared in the case study in order to address in part
the second research question of this thesis; the identification of the most appropriate multi-

objective optimisation approach for the spatial planning of cities.

5.2 Middlesbrough Case Study

To test the utility of the developed framework for the spatial planning of residential
development with regards to multiple sustainability objectives, a case study was undertaken for
Middlesbrough, a local authority in the North East of the UK (Figure 5.1). Middlesbrough was
selected as it is a moderately sized (land area of 54.55 km? and population of 138,400 (ONS,
2012)) highly urbanised (63% of land use) urban area facing multiple pressures from increasing
population, increased incidences of future heat waves as well as at risk of flooding from the
River Tees and its tributaries (Middlesbrough Council 2013c). In addition the availability of
data (including climate projections over the area) and the recent publication of Middlesbrough
Council’s preferred options for development (Middlesbrough Council 2013a) contributed to the
decision to use the local authority. Section 5.2.1 outlines the formulation of the spatial planning
problem addressed by the framework whilst Section 5.2.3 presents the variable space (i.e.
potential locations for new development) in which the optimisation framework can spatially

allocate new residential development.
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Figure 5.1 Case study area of Middlesbrough within the Tees Valley.

5.2.1 Problem Formulation

To formulate the case study several Middlesbrough Council planning documents were analysed
to quantify the parameters of the search. Based on future population projections, Middlesbrough
Council has laid out three planning scenarios for future development, shown in Table 5.1.
Middlesbrough Council (2013a) expressly states that it is the Council’s intention is to aim for
the stable (zero net migration) population scenario (highlighted in the table). Based on this
Middlesbrough Council (2012) projects an increase in population of 4,890 between 2004 and
2021. This comes at a time when there will be an expected decline in the average people per
household from 2.38 in 2004 to 2.17 in 2021. This leads to the amended Core Strategy in the
Local Development Framework (LDF) shown in Table 5.2 which sets out the requirement of
4370 new residential developments between 2012 and 2024 (including a 20% buffer for the
years 2012-2019 reflecting guidance from the National Planning Policy Framework (DCLG
2011a)). Policy CS1 in the LDF Core Strategy also sets out the provision for 85 ha of land for
‘General Employment Land” and 100 ha of land for ‘Regional brownfield mix use land’. The
mixed use site in the south of the study area (Greater Hemlington) is intended as a sustainable

community of a high quality design containing up to 810 dwellings and 50,000 square metres
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of employment. However the methodology is currently insufficient to handle this so it’s

unconsidered for this application.

Middlesbrough Council’s spatial plan was digitised (steps shown in Figure 5.2) from their
interactive LDF (Middlesbrough Council, 2010) to generate the spatial parameters to optimise.
To reconcile this with the representation used by the framework, the resulting vector dataset
was rasterised to a grid of 100 by 100 metre cells, each equalling 10,000 m?/ 1 hectare (ha) in
size, shown in Figure 5.2. The area and number of 1 ha cells taken up by Council proposed
residential sites for the vector and rasterised datasets remains consistent, however a number of
the smaller council proposed sites were lost. This spatial resolution was chosen as through
testing it was found that it provided the best trade-off between the run time and effectiveness

of the algorithm with a realistic spatial representation.

The optimisation aims to assign the required residential land over the time frame 2013 to 2024.
Following the notation of Section 4.2.2 (Problem Representation), the 54 ha of proposed
residential sites within the study area defined as forming a spatial development plan D,
satisfying the series of sustainability objectives outlined in Section 4.2.5. The total number of
residential dwellings to be allocated is 4370 (2013-2024, Table 5.2) and total number of people
to accommodate is 4,890. Making the assumption that these are equally distributed across the
54 hectares of proposed development leads to an average of 81 dwellings per hectare and 90

residents per hectare represented by dwij“j and v;' ; respectively. In this instance Q, the length of

the development plan D, takes the value of 54 as each cell is 1 ha.

Table 5.1 Housing targets based on population scenarios in Middlesbrough’s Local Development Framework
(Middlesbrough Council 2013a)

Population Scenario Number of Dwellings per Annum (net) | Total Dwelling Requirement
Out migration 250-380 4,250-6,460

Stable (zero migration) 410 6,970

In migration 430-570 7,310 — 9,690

Table 5.2 Amendments to policy CS1 on dwelling totals (Middlesbrough Council 2013a).

Phase Number of Dwellings

2012-19 2,320 dwellings (300 dwellings p.a 2012/13 to 2016/17 then 410 dpa 2017/18 to 2018/19)
NPPF buffer (20%)* 465

2019-2024 2050 dwellings (410 p.a)

2024-29 2050 dwellings (410 p.a)

* Note: Requirement of National Planning Policy Framework to include 20% in first five years to ensure choice and
competition for housing in the market

115



a) w b) W C) . N
LRI _ L rL‘ﬂ Y~ oa
’ hatl o) * = ;”‘HI A
- -
s "1“ I - '!I
\ A P N\ - R 1)
/ . B s -~ " T
/ P ’\/ 1 - g
J » & I n,
® \\\ \ = .,
| ® \ ey . i“x_ﬁ
{ )> \ B - <“ 1 ™ 7
4 _ o Lol = e T \’! & L ,g._‘
— e < " i/ e |
W / I R A

/ Kilometars s
- Proposed Employment - Proposed Residential Mixed Use

Figure 5.2 Digitisation of Middlesbrough Council’s spatial plan; a) Interactive Local Development Framework
(Middlesbrough Council 2010), b) digitised proposed residential, employment and mixed use sites and c) rasterised at a 100
metre spatial resolution.

5.3 Middlesbrough Datasets

To facilitate the case study a series of spatial datasets covering the study area were assembled.
Using ArcGIS’s Arc Map 10.1 software these were pre-processed into a set of raster datasets at
100 metre spatial resolution. Appendix D presents a series of toolbox modules which automated

this process.

5.3.1 Available Land for Development

Potential locations for future residential development were identified to represent the variable
space within which the spatial optimisation can search for spatial strategies of new development.
Ordnance Survey (OS) MasterMap data, specifically the Topographic Area layer, was compiled
for the Middlesbrough study area to provide a continuous coverage of the physical coverage of
land described by the MasterMap attributes (fields) of Theme, Make and Descriptive Group.
The OS MasterMap data was used to generate two constraint layers of land that cannot be
developed due to the presence of water, Water_ Constraint, or current development,
Developed_ Constraint, (Figure 5.3). The former was generated by selecting all topographic
areas where the ‘Theme’ attribute was “Water” whilst the Developed_ Constraint was created

from a merger of polygons with the following attributes:

I. Theme = “Land” and Make = “Multiple”
ii. DescriptiveGroup = “Buildings” and Make = “Manmade”

iii. DescriptiveGroup = “Rail” and Make = ‘Manmade’
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iv. DescriptiveGroup = “Roads” and Make = “Manmade”
V. DescriptiveGroup = “Roads” and Make = “Unknown”

vi. DescriptiveGroup = “Roadside” and Make = “Natural”

Both constraint layers were rasterised at a 100 metre spatial resolution as shown in Figure 5.4
which also shows the land available for development i.e. not coinciding with either of the
constraint layers. It is worth noting, that the sites identified for economic and residential
development in Figure 5.3 were also added to areas available for development. This dataset

used in the framework to constrain the locations of d; ; to areas identified as being available for
development through the equation:

Subject to dlzljllf di,j N Qi,j A di,j * d:} eD (51)

where a;; is a cell available for development. Equation 5.1 essentially ensures that proposed

sites are not duplicated on the same location/area of available land.

- Water Constraint
Developed Constraint

Figure 5.3 Currently Water and Developed Constraints shapefiles extracted from OS MasterMap topographic area layer.
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Figure 5.4 Rasterised water and developed constraints at 100 metre spatial resolution.

5.3.2 Data for Objective Formulation

Figure 5.5 sets out the spatial datasets used to quantify the sustainability objectives explored by
the framework. Figure 5.5a presents the spatial representation of the hazard constituent, h,
attained from the medium emissions scenario of the UKCPO9 projections (Jenkins et al. 2009).
The UKCP09 medium emissions climate projection change factors are at a 25km spatial
resolution for 30-year periods. This was used as an input into a spatial weather generator (Jones
et al. 2009). The spatial weather generator disaggregates UKCP09 data to estimates of daily
Tinax(daily maximum) and T,,,;,, (daily minimum temperatures) at a 5km spatial resolution. The
spatial weather generator is a recent extension of the a-spatial weather generator that has been
widely employed in several UK heat and heat wave impact studies ensuring that both
predictions temporally and also spatially for a study area are consistent (correlated) (Jones et al.
2009; Kilsby et al. 2007). From this data the heat wave frequency per annum was extracted
using the heat wave thresholds from the UK Heatwave Action Plan for the North East
(Department of Health (DoH) 2010) for two consecutive days and interceding night;
TS L =281THo  =15/T3*! = 28. Thisannual frequency for the period 2020

was normalised over study area to values between 0 and 1. Whilst this is a short horizon to
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analyse future heat risk, it is in line with the planning process which tends to be restricted to ten

year periods.

Figure 5.5b presents the population vulnerability constituent, v, and is spatially represented by
a population density per hectare figure. The source for the data was Census 2011 (Office of
National Statistics 2012) figures at super lower output area level. Output level is a sub-ward
geography averaging approximately 309 people and designed specifically to contain a similar
population size (although crucially the spatial extent varies) and to be as socially homogenous

as possible (Cockings et al. 2011) and rasterised to a 100m resolution. Figure 4.6¢ presents the

100

1000
i,j j

floodzone areas over the study area, z;;~ and z; ;

, representing 1 in 100 and 1 in 1000

floodzones, sourced from the UK’s Environmental Agency’s (EA) Flood zone 2 and 3 maps.
Figure 5.5d presents the urban extents for the study area, wu; ;. This was sourced from Ordnance

Survey Meridian 2 Developed Land Use Areas (DLUA).
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Figure 5.5 Spatial datasets for the Middlesbrough case study.
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Middlesbrough’s Central Business District (CBD) (c; ;) in the study area was represented by a
centroid calculated from the Council’s definition of Middlesbrough’s town centre (Figure 5.6a)
which was digitised from Middlesbrough’s interactive Local Development Framework (Figure
5.6b and 5.6¢). The road network, R, used in the calculation of f;;s;, was represented as the
major roads in the Ordnance Survey Meridian 2 dataset. For the spatial constraint outlined in
Equation 4.9 (preventing development on greenspace), a greenspace dataset (Figure 5.7a) was
collated from Ordnance Survey MasterMap data. From the Topographic Area layer, all features
with Theme = Natural were extracted before conversion to a raster dataset (Figure 5.7b).

Kilometers Kilometers

+ CBD Centroid E Town Centre Boundary

Road Network

Figure 5.6 a) Middlesbrough’s town centre boundary and CBD centroid (c; ;), road network (R) and b) & c) digitisation

of Middlesbrough town centres boundary from Middlesbrough’s interactive LDF (Middlesbrough Council 2010).

Figure 5.7 Middlesbrough greenspace in a) vector format and b) rasterised at a 100 metre spatial resolution.
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5.4 Optimisation Parameters

5.4.1 Simulated Annealing Parameters

As several sources have noted, the success of a Simulated Annealing algorithm search can be
highly dependent on initialisation parameters of the search (Dowsland 1993; Aerts & Heuvelink
2002; Delmelle et al. 2012). Therefore great care was taken in the selection of the input
parameters in order to assure the best opportunity to discover optimal solutions including the
initial and ending temperatures, T and T,,4. Testing was carried out with random initial
development plans however these performed extremely poorly, with low convergence at each
iteration. Therefore the councils own plan, shown in Figure 5.2 was used as the initial spatial

configuration of new development, D,,.

The cooling parameter, ¢, was set to 0.85 as recommended in the literature (Aerts & Heuvelink
2002) whilst a very small figure, 0.0001, for T,,,4 was utilised to maximise convergence at the
end of each iteration. This means a number of steps are taken at the end of the iteration which
only accepts superior finesses. To determine a suitable initial temperature, T, and number of
iterations, m, a series of possible parameter values were investigated shown in Table 5.3. Figure
5.8 demonstrates the convergence of F (made up of normalised performances for fyeqr, friooa:
faist and foprawi) Tor a series of SA searches under different runtime parameters (search A-C)
outlined in Table 5.3. The figure presents the F,, and, F,, performance at the nth step against
the F value normalised throughout all three searches. Note that F, represents the fitness
accepted by the Thermopolis equation (Equation 4.11) otherwise it represents the fitness value

of the previous spatial configuration (f,, = fr,—1)-

Figure 5.8 shows that by accepting inferior solutions of D,,, (demonstrated by the poor f,
performances in-between iterations (blue line)), it allows the optimal performances of f;, to be
found. Table 5.4 outlines the statistics of the convergence for each of the searches. In all cases,
there is a significant improvement in the first iteration with, for example in search A, a 66.8%
improvement in f;, by the end of the first iteration (m = 1), whilst there is 26% improvement
in f;, between m = 1 and m = 10. Thereafter convergence slows with improvements of 15%
between m = 10 and m = 20 and 2% improvement in f;, between m = 20 and m = 30.
There’s an anomalous higher percentage improvement for f;, between m = 30 and m = 40
(40%) as a result of the randomness of the search however within final 10 iterations the

improvement reduces to 7%.
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In comparison search B, with a lower initial temperature, has a lower initial improvement in f;,
(50% compared to search A’s 67%). However, thereafter the search improves considerably with
improvements of of 41.4%, 45.6% and 38.0%. This results in search B reaching a better
performance in f;, despite 50% less computations. In addition a higher percentage of iterations
resulted in an increase in f}, (76% compared to 64% for search A). This suggests that a smaller
period of accepting of inferior solutions improves the convergence as the spatial plan doesn’t
become too convoluted. For example the average performance for f,, in search A is 0.18
compared to 0.15 search B. To test this search C utilised the same temperature value and
reduced the iterations (m) to 3. Despite carrying out a 3" of the computations as search A, the
best performance in f;, was only marginally higher, 0.16 compared to 0.11. Conversely search
A finds double the number of MOPOs compared to B, suggesting a longer search is need to
present a diverse Pareto front and range of Pareto-optimal spatial configurations. Based on these
findings the final set of initial parameters utilised for the Middlesbrough case study are
presented in the final column of Table 5.3 . A lower initial temperature value was used to ensure
better convergence whilst a increased the number of an iterations was employed to ensure a
sufficient number of MOPOs are found. The results from this search are presented in Section
5.5.

Table 5.3 Parameters for the testing the Simulated Annealing approach.

Parameter Testing Search | Application Search
A (Figure 5.83) B (Figure 5.8b) C (Figure 5.8¢c)
Starting temperature (T) 1000 500 500 500
Iterations (m) 50 50 30 400
End temperature (Tepq) 0.0001 0.0001 0.001 0.001
Cooling Factor (C) 0.85 0.85 0.85 0.85
Steps within an iteration 1474 766 766 766
Total Steps (n) 73,700 38,300 22,979 153,200
Running Time (hr.min) 12.23 6.25 4.13 15.23
MOPOs Found 268 138 80 272

Table 5.4 Performance of the Simulated Annealing search at different stages during testing.

Iteration (% denotes percentage improvement)

m=0 m=1 m=10 m =20 m= 30 m =40 m =50
b b % b % b % b % b % fb %
Search A 098 | 031 679 | 023 256 | 020 150 0.19 22| 012 39.7| 011 6.6

Search B 095 | 048 495 | 028 414 | 015 456| 009 380| 001 881 | 0.00 100.0
Search C 098 | 038 616 | 022 428 | 015 30.7| 0.14 7.2
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5.4.2 Genetic Algorithm Parameters

Table 5.5 outlines the input parameter values for the GA application. Selecting the initial
parameters presented several challenges. Firstly a sufficient population size to represent a wide
range of development sites was required. This is crucial as the GA creates new development
plans from the attributes of previous development plans so if potential development sites aren’t
represented they won’t be investigated (Cao et al. 2011) potentially missing the opportunity to
find the most optimal sites. The mutation operator can potentially redress this as it randomly
brings new development locations into the parents, set however as this is done in a random
manner it can’t be assured to ensure all development sites are assessed. Through testing a figure
of 1500 for no,qrents (NUMber of spatial plans represented in the initial parent set) was found
to sufficiently cover the 1729 possible development sites in the initial parent set. This can be
seen in Figure 5.9 which demonstrate the wide coverage of potential sites in the initial parent
set (5.9a) before it convergences on optimal sites (Figures 5.9b - d).

In order to allow for the sufficient convergence on the best approximate Pareto front a suitable
parameter for the number of generations is necessary. However too many generations will lead
to redundancy, whilst too few restrict the convergence on the approximate Pareto front ignoring
potentially more optimal plans. The Figure of 200 generations was reached after several tests
to ensure optimal convergence. Figure 5.10 demonstrates the convergence of the Pareto front
of newly produced of fspring, during stages of the Genetic Algorithm between f}.q, and
faise (it should be noted that they are taken before the selection operator to solely demonstrate
newly developed solutions). Figure 5.10a demonstrates the significant improvement in the
convergence between the 1% and 50" generation with an average improvement across the Pareto
front of 24.4%. This occurs as the algorithm is able to expunge non-optimal spatial plans and
development sites (d; ;) from the parent set whilst retaining those in optimal locations. This
can be seen in Figure 5.9b where the potential sites present in the parent set reduces from 1729
to 621 between g = 1 and g = 50. Thereafter the convergence is much less significant, with
an 8.4% average improvement in the Pareto front between the 50" and 100" generations, which
becomes more than half again between the 100" and 150" generations (3.1%) and 150%

generation (3.2%).

Figure 5.10b demonstrates marginal improvements in the convergence of the Pareto front of

new offspring in the final 50 generations during the GA application with improvements of 0.7%
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between g=150 and g= 160, 1.1% between g=160 and g= 170, and 0.5% between g=170 and
g=180. The marginal improvements are a result of the algorithm converging on a set of optimal
spatial plans from an already near optimal set, demonstrated in Figure 5.9c and 5.9d where the
development sites represented parent set at g=150 and g =200 is reduced marginally from 115
to 102. Indeed the Pareto front regresses on average 1% between g=180 and g= 190 (which can
be seen in the inset in Figure 10b) as the process of crossover and mutation can lead to inferior
spatial plans in the hope that it leads to optimal solutions in the future. However due to the
elitist nature of the NSGA-II algorithm (see Section 4.5.1 and Figure 4.8) the search in fact
continues from the previous superior positions on the Pareto front. Thereafter, there is a 2%
improvement between the parent set at g = 190 and the final Pareto front which contains the

best set of spatial plans found throughout the application.
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Figure 5.9 Proposed development sites represented in the parent set at stages of the GA operation.
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Table 5.5 Genetic Algorithm Search Parameters for Case Study Application

Parameter Description Value

G Number of generations 200

Nopgrents Number of individuals to select for the next generation 1500
Derossover Probability of applying a crossover to two individuals 0.7
Pmutation Probability of mutating an individual 0.2

DPm Probability of mutating an element within an individual 0.05

Total Run Time 10hr 25m
Number of Computations 251313
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Figure 5.10 Convergence of Pareto front of of fspring, during the Genetic Algorithm search with a) every 50t generation and b) between generations 160-200.
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5.5 Middlesbrough Optimisation Results

5.5.1 Pareto-optimal Fronts between Pairwise Sustainability Objectives

Figures 5.11 and 5.12 present the results of the optimization framework using the SA and GA
approaches. The figures show the normalized performances of Pareto-optimal fronts against the
solutions found by the optimization framework, whilst Tables 5.6 and 5.7 quantify the statistical
properties of each Pareto front. In addition Figure 5.11 displays the sub-set of solutions that are
optimal for multiple sustainability objectives (MOPO) for the SA approach (they are not shown
for the GA results due the quantity (568 MOPOs compared to the SA’s 272) which visually
obfuscates the Pareto front). The performance of the current development plan (Middlesbrough
Council 2010) is highlighted for comparison (yellow triangle) revealing that both approaches
are able to discover development strategies which substantially improve upon the proposed
spatial plan with regards to the objectives under consideration (discussed further in Section
5.5.7). The periodicity apparent in Figures 5.11 and 5.12 a, d and e is as a result of flood risk
being parameterized in three discrete values: 1 in 100 floodplain, 1 in 1000 year floodplain and
areas of no flood risk.

The results of both the SA and GA application demonstrate that there is a clear conflict between
fheat and both f4;cr and fi,-qu Whilst planning new residential development in Middlesbrough.
With regards to the SA approach, the best performance for fy.q:, min(feq:), COMes at a

compromise of a normalized value of 0.63 for f ;s i.e. Min(fieqr) =° faise = 0.63, and
min(fheat) :>fsprawl = 0.49 . Whilst min(fdl'st) = fheat = 0.59 and

min(fspmwl) = freat = 0.5. This degree of conflict is also mirrored in the results of the GA

application (Figure 5.12b and 5.12c) however it is much more pronounced with 210 and 42

spatial plansin N, . - and Nfpeasfsprawt respectively compared to 31 and 10 found by the

SA approach and the conflict appears more linear. With regards to the results of the GA
approach, min(fpeqt) = faise = 1 and min(freqt)= fspraw: = 1 demonstrating that the best
performance in f,.q: 1S found when development is located the furthest possible distance away
from the CBD and with 75% of new development outside of the current urban extent. The
conflict is intuitive as areas close to the CBD and within the current urban extent have higher
population densities, as well as higher than average heat hazard leading to higher heat risk.

Alternatively min(fui5¢)=> frneqar = 0.92 and min(fsprauw1)= frear = 0.65 shows that the

® The symbol = is used to denote the resulting performance of a spatial plan in an objective.
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algorithm is able to strategically locate development close to the CBD and within the urban
extent in lower heat risk areas leading to better trade-off compared to the worse development
plan for fp.qc. Therefore it is easier to optimise both f,.qu; and faise With fy.4, than vice-

versa.

The SA approach is able to reconcile optimising fr;o0q and foprawis 1-6. min(ff1004, fsprawt)
(therefore the Pareto front isn’t visible in Figure 5.11e) as the algorithm strategically locates
development within the urban extent which avoids the floodzone. Meanwhile Figure 5.11a and
e demonstrate the conflicts found between minimising ff;504 and freq: as Well as fy;s.. For
example  min(ff;00a)= frear = 0.26  and  min(freqt)= ffi00a = 046 ,  Whilst
min(fr00q)= faist = 0.57. The GA is a able to reconcile a spatial plan which is optimal for
both fspraw: aNd frooa» MIN(fri00a, fsprawt), hOWever the conflicts found by the GA between
reconciling fr,04 alongside the other objectives are much less pronounced with
min(ff100a)= frear = 0.05, min(frip0a)= faise = 0.15, and min(frear)= fri00a = 0.16.
Both approaches are unable to simultaneously entirely reconcile ff;,04 With other objectives

due to the presence of several flood zones in close proximity to the CBD and the presence of

low population density/ heat hazard areas in the far north and south of the study area.

As the CBD is located within the urban extent it is perhaps surprising that the SA analysis
highlight a conflict between fu;e and foprqwi» With min(fsprquwi)= faise = 0.33 whilst
min(fgise)= fsprawt = 0.42. This is caused by the spatial layout of Middlesbrough, where
there are undeveloped areas west of the CBD which are not within the current urban extent.
Alternatively the GA is able to reconcile the two objectives, i.e. min(fgise, fsprawi) (S€€ Figure
5.12f) by strategically locating development within the urban extent and within close proximity
to the CBD. Based on the convergence (demonstrated by the generated solutions (green
crosses)) the objectives are optimized simultaneously during the GA application.
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Figure 5.12 Pareto-optimal fronts found between sustainability objectives utilising the GA approach.
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Table 5.6 Normalised Pareto front trade-off matrix from SA results (see Figure 5.11).

Best Trade-off in corresponding objective.
fheat fflood fdist f;:prawl

fheat NA 0.46 0.63 0.49
g ¢~ friood 0.26 (10) NA 0.57 0
E — —
= _i% E faist 0.59 (29) 0.42 (10) NA 0.42
O ©

fsprawt 0.5 (10) 0(1) 0.33 (8) NA

(Number of Solutions in Pareto front)

Table 5.7 Normalised Pareto front trade-off matrix from GA results (see Figure 5.12).

Best Trade-off in corresponding objective.
fheat fflood fdist fsprawl

S freat NA 0.16 1 1
o £
8 E friooa 0.05 (5) NA 0.01 0
g o
5 2 faist 0.92 (210) 0.16 (4) NA 0
(@] o

= fsprawt 0.65 (42) 0 (1) 0 (1) NA

o

(Number of Solutions in Pareto front)

5.5.2 Comparison of Pareto front Convergence

Several of conflicts found by both optimization approaches are consistent. However the GA was
able to discover a spatial development strategy which is min(fy;se, fsprawi) In addition to
min(ff004, fsprawt)- Figure 5.13 presents a comparison of the resulting Pareto fronts from both
approaches, normalised throughout all solutions illustrating the much superior convergence of
the GA approach. Table 5.8 quantifies the statistics of each approach’s Pareto fronts in

comparison to all the solutions found by both approaches.

Figure 5.13a demonstrates the GA approaches’ better convergence and its wider spread of
solutions (210 compared to SA’s 23) on the Pareto front N¢, - . In particular the SA
performs very poorly in min(fy,.,:) compared to the GA with a normalized value of 0.75
compared to 0. However, the difference in performance is much less for the SA’s min(fz;s)
0.16 compared to the GA’s 0, indicating the SA algorithm is much better at optimising f;s:
than fieq: - Although the GA result for min(freq:)= faise = 1 compared to the SA’s
min(fheqt)= faise = 0.57 this comes at the expense of a much improved min(fcqt)
performance (0 compared to 0.75). Throughout, the GA’s Pareto front is much better and has

an average 29% improvement in performance.
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Likewise, Figure 5.13b also demonstrates the superior convergence of the GA approach with
an average 22% improvement in the performances in Ny, . .. ¢ .., Although both approaches
are able to fully optimize fo,,.qw;, the SA’s min(foprawi)= frear = 0.86 compares
unfavourably to the GA value of min(fsprquwi)=> fhear = 0.65. This demonstrates that the GA

is better able to simultaneously optimise the two objectives by locating development in lower

risk areas within the urban extent.

This is shown again in Figures 5.13c and d where although both approaches are able to

optimize fr100q4, the GA is able to achieve a much better performances in corresponding
objectives. This is most pronounced in Figure 13c where min(ff;004)= frear = 0.82 for the
SA compared to the GA’s min(f;00q)= frear = 0.05. As a result the GA’s Pareto front is on
average 92% better. Although the SA has a better optimal converge on f;;.:, the GA is able to
convergence on both fy;s; and ff;004 Simultaneously resulting in a 83% average improvement
in Nf 100 faise - Interestingly, in order to fully maximise f;;s; the GA is forced to place
development in the flood zone reducing its performance in fr50q to 0.13 and shows the

proximity of floodzones to the CBD.

Table 5.8 Comparison of Pareto front statistics between the Genetic Algorithm and Simulated Annealing approach.

Pareto front No. of Pairwise Minimum value Maximum value Overall %
(Figure) Pareto-optimal (normalized performance) Improvement
GA SA GA SA GA SA
N, : 1925.7 3586.8 (0.75 3977.20 (0.92 4055.3 (0.95
fheatf dist 210 33 fheat ( ) ( ) ( ) 20%
(5.132) fus 10052  2014.8 (0.16) 7236.1 (1) 4556.6 (0.57)
N, Frear  1925.7 3586.8 (0.75) 3371.0 (0.65)  3832.9 (0.86)
heat)J sprawl 42 10 23%
(5.13b) Frprawt 0 0 759 (1) 37.7
Ny s frear  1925.7 3586.8 (0.75) 2040 (0.05) 3754.9 (0.95)
heat:f flood 5 13 91%
(5.13¢) Friood 0 0 168 (0.13) 688 (0.53)
N . 0 0 168 (0.13 432 (0.33
f floodf dist 4 10 ffltwd ( ) ( ) 83%
(5.13d) Faist 1005.2 2014.8 1051.2 (0.01)  2595.8 (0.26)
fflaod 0 0 0 0 NA
foloodrfsprawl 1 1
fsprawl 0 0 0 0
fuse 10052 2014.8 (0.16) 1005.2 2590 (0.27) NA
Nfa‘ of 1 1 8
st sprawi
fspraw 0 0 0 20.4 (0.27)
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Figure 5.13 Comparison of the Pareto fronts from the GA and SA approaches (normalised through all solutions found).
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5.5.3 Pareto-optimal Spatial Configurations

Figure 5.14 and 5.15 show the spatial development strategy of the best performing
configurations for each individual sustainability objective in the Pareto-optimal set resulting
from the SA and GA runs respectively. In addition Figure 5.16 presents a parallel line plot of
their performances against the objectives assessed. Plotting performances in this way allows for
simultaneous comparison of performances across the spectrum of objectives. Comparison of
the spatial configurations reveals why the performances of the two approaches are so
dramatically different. Figures 5.14a and 5.15a demonstrate the spatial plan for min(fy,eq¢) for
both approaches. The best performance in f;.,: IS achieved at the expense of locating
development outside the urban extent and away from the CBD to take advantage of the lower
incidence of heat hazard and low vulnerability due to sparse populations. As a consequence
their performance in fy;: and foprquy IS Negatively affected as can be seen in Figure 5.16. This
IS quite striking with regards to f;;;; where the performance is 1; the worse possible. Likewise,
by locating development in areas that are far outside the currently defined urban extent the
solution has a normalised performance of 1 in f,,qu, With 76% of proposed development
occurring outside the urban extent. The degree to which development is located away from the
urbanised centre of the study area varies significantly between the SA and GA. Whilst the SA
strategically locates development in low risk areas on the outskirts of the developed area, the
GA develops the south east of the study area. This demonstrates spatially the gulf in
performance and suggests the SA approach is becoming stuck in local optima and unable to
reach the more optimal areas in the far south-east of the study area. The conflicts with f,,,4
occur due to the flood zone coinciding with the low risk areas in the north of the study area (for

the SA’s spatial plan) and south edge of the study area (for the GA’s spatial plan).

Figure 5.14b and 5.15b demonstrate both min(fs;,04) Spatial plans avoid all floodplain
development (i.e. fri00q =0). Both approaches find several MOPO spatial plans which are
min(ff004) (21 by the SA and 11 by the GA) and are able to find plans which are
min(ffio0a fsprawr) (Shown in Figure 5.14b and 5.15b). However Figure 5.16 demonstrates the
plan min(ffio0a, fsprawr) found by the GA outperforms the equivalent plan found by the SA in

the other objectives.

Both min(f;s;) spatial plans concentrate development predominantly in close proximity to the

CBD (Figure 5.14c and 5.15c) resulting in a poor performance in f;,..: (see Figure 5.16).
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However, in comparison the SA’s spatial plan is less compact with development occurring
along transport routes further from the CBD. This results in the worse performance in fy;s;
compared to the GA’s plan and causes a negative effect in fg,,4,,. The spatial allocation of
development questions the ability of the SA to converge all the development sites within

optimal locations. Lastly the poor performance of min(fy;s) in fri00aq fOr the GA application
is due to locating three of the 54 proposed development sites in flood zones (one in Z}?° an

two in Z;?°) to ensure all development is as close as possible to the CBD.

Both approaches identify several spatial plans which are min(fs,,qu:)- Figure 5.14d and 15d

demonstrate the spatial plan min(fsprqui) € Nfpeanfspramt from the SA and GA approaches

respectively. Interestingly in order to reconcile min(fsp,qw:) With fi.4 = 0.63 the spatial plan
in Figure 15d develops the north of the study area which is within the urban extent but also
corresponds with lower heat risk, demonstrating a spatial trade-off location. As a result the
spatial configuration is able to achive a performance in fp,,¢ 0f 0.65. Whilst in Figure 5.14d
the spatial plan min(f;,,qw;) found by the SA achieves f},.,, = 0.82 as it less successfully to
locate development in lower risk areas within the urban extent, in this case the south east of the
study area. Overall the resulting spatial plans offer an interesting perspective on the difference
in performance of the optimisation approaches. Specifically, they show that the SA falls into

local optima and it is poor at converging on spatial plans in optimal areas, especially for f},.4:-

Figure 5.17 presents the ranked Pareto-optimal locations of sites designated by the MOPO
solutions from a) the SA approach and b) the GA approach. This highlights spatial locations in
the study area which are more suitable for development. Areas consistently spatially assigned
by the MOPO solutions include the north and north west of the study area due to the proximity
of the CBD and lower heat risk whilst there are strategic areas away from floodzones. Moreover
there is a consistent assignment of sites in areas of the south east and south central of the study
area which are within the urban extent whilst retaining a lower than average heat risk. The areas
with the highest rank are within the far north of study area as well as central north due to the
strategic areas which balance all of the objectives. Significantly the GA Pareto locations are
more spatially concentrated/clustered in the north of the study area, while the SA Pareto
locations are more spread out suggesting the SA wasn’t as able to converge on optimal areas.
This demonstrates why the GA performs better as development has escaped areas that are local

optimum in the east and north central parts of the study area.
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Figure 5.17 Spatial frequency of site assignment based on the resulting MOPO solution from a) the SA investigation and
b) the GA investigation.

5.5.4 Multi-objective Pareto-optimal Solutions

Figure 5.18 shows a parallel line plot demonstrating the range of Multi-objective Pareto-optimal
(MOPO) solutions resulting from the GA application across the four sustainability objectives
normalised with respect to all the solutions found by both approaches. Altogether the GA
discovers 568 MOPO spatial plans whose performances range from 0 through to close to 1 for
the objectives fhear, faist AN foprawe. The framework is able to ensure MOPO spatial plans
that perform well for f7,,,4 (normalized performance of less than 0.4) as the algorithm was able

to reconcile locations for development outside of floodzone with the other objectives.
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The best un-weighted Pareto-optimal solution (presented in Fig 5.22b) is plotted to provide a
comparison to see how an unbiased Pareto-optimal plan performs. Notably it performs poorly
IN freqe due to it performing well in both f5;s, and fprqwi- Despite being the best unweighted
solution, inspection reveals that it is out performed in at least one objective by all of the other

many objective Pareto-optimal solutions.

Normalised Fitness

fflaud fdist fspruwl
—MOPO Solutions =-Best Unweighted

Figure 5.18 Parallel Line plots of the normalized objective score of the MOPO solutions (F = {fheat, ffi00as faists
fsprawi}) against the best performing un-weighted Pareto-optimal solution.

5.5.5 Findings for Middlesbrough

Having established that the GA provides the best performing optimal spatial configurations the
conflicts found by the application are examined closer. Overall, whilst the Multi-Objective
Spatial Optimisation Framework is able to successfully develop spatial plans which reconcile
the objectives under investigation, significant conflicts exist between fj.,: and both
faist and foprqu. Figure 5.19 presents a series of spatial configurations which lie on the Pareto
front between freqr and faise, N, oo raise- 1N PAticular it presents the spatial plans which are
min(fpeqt), min(fyis:) and the median of the set Ny, . - .. It demonstrates how significantly
different the spatial strategies for min(f},.4:) and min(fy;s.) are with the former predoimnatily
developing the far south east of the study area whilst the latter develops close to the CBD.
However interestingly the median solution develops large amounts of land in the north of the
study area. This corresponds with the spatial pattern identified in the density matrix presented
in Figure 5.17. Figure 5.20 shows how these spatial plans perform across the range of objectives.
The median spatial configuration performs relatively well across the objectives and is able to

improve performance in fy;s; from min(fy.4:) from a normalised performance of 1 to 0.37,
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whilst improve the performance in fi,.4¢ IN min(fy;s:) to 0.45 from 0.96. This demonstrates
that although the planning dispute is severe, the possibility to develop the north of the study
area allows for a reasonable trade-off between the two objectives. Notably all three spatial plans

conflict with f,,,4 due to the presence of flood zones in low heat hazard areas and in proximity

to the CBD however they are all able to reconcile = f;504 < 0.2.

Figure 5.21 presents a density matrix of the spatial configurations within the Pareto front,

N, showing cells that are assigned to 20 or more times demonstrating a series of sites
fheat'fsprawl

which are attributed to consistently by the spatial configurations within Nfearfsprawt - These

are highlighted in red and have a significant presence in the north and far east of the study area.
Interestingly these areas coincide with Pareto-optimal spatial locations (Figure 5.17) due to the
correlation between fg,qw; and fg;.. This demonstrates the best trade-off areas that balance
the need to minimise heat risk whilst not significantly extending the extent of the urban area or
increasing the distance to employment and service areas. Although there are areas developed in
the far south east of the study area, due to their lower flood and heat risk which appear but these

attributed to < 50% of the spatial plans because they perform poorly in fy;s;.
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Figure 5.19 Pareto optimal spatial configurations within Ny, - .
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5.5.6 Comparison to Middleborough’s Current Development Plan

In Figures 5.11 and 5.12 the current development plan performs significantly worse than the
best trade-off curve for both the SA and GA approaches. Figure 5.22 presents a spatial
comparison of the council’s currently planned spatial strategy for residential and economic
development with the best unweighted Pareto-optimal spatial plans found by both approaches.
Table 5.9 quantifies the difference in performance of the current development proposal against
the optimized solutions. It demonstrates that the multi-objective spatial optimization framework

is able to identify spatial strategies that are far superior to the Middleborough plan.

The selected optimized spatial plans outperform the council’s development strategy in all
objectives. For example the best unweighted spatial configurations from both approaches are
able to improve accessibility by 71% and 40% (the GA and SA plans respectively), as
development is located in close proximity to the town center whilst simultaneously eradicating
flood risk. Furthermore, close to 100% of the potential spatial plans found during the GA search
outperform the council’s development plan with regards to minimizing in fy,.4¢. This is due to
the majority of resulting spatial plans avoiding the area to just west of the center of the study
area where the councils proposed development areas coincide with a higher heat hazard value

and higher population vulnerability.

Of all the feasible plans found by the GA, 71.7% and 67.8% outperform the current plan in fy;s:
and fopraw: respectively, as development is more strategically located on transport routes
within the current urban extent. Significantly, the Middlesbrough plan proposes to develop 24
ha of designated greenspace, whilst all the optimised spatial plans could not utilise these spaces

as they formed a spatial constraint layer.
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a) Middlesbrough Council’s own development plan  b) Best unweighted GA Pareto-optimal spatial plan c) Best unweighted SA Pareto-optimal spatial plan
(Middlesbrough Council 2013b)

—

I Proposcd Residential Development (d;j) B P:roposed Employment Development

Figure 5.22 Comparison of a) Middlesbrough’s current spatial plan and Pareto-optimal spatial configurations selected on the basis of equal priorities for b) the GA run and c) the SA run.

Table 5.9 Performance of the best un-weighted Pareto-optimal result (Figure 5.22) against Middlesbrough Council’s development plan.

Middlesbrough Genetic Algorithm Approach Simulated Annealing Approach
Development Plan ( 5.222) (Figure 5.22b) % of found spatial plans (Figure 5.22c) % of found spatial plans
Fitness Fitness % improvement which outperform Fitness % improvement which outperform
freat 3991.8 3445.1 14% 100% 3754.9 6 85
ffio0a 88.0 0 100% 55.3% 0 100% 0
Fuist 4679.3 1899. 7 59.4% 71.7% 26335 44 68
foprawt 29.6 1.9 93.7% 67.8% 7.4 75 88
Green space 24ha 0 (NA) 100% 0 Na 100
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5.5.7 Post Pareto Analysis

A frequent criticism of the Pareto-optimisation approach is that high number of resulting
Pareto-optimal results place a heavy cognitive burden on decision makers (Xiao et al. 2007).
Although the Pareto fronts clearly illustrate the conflicts and associated trade-offs of different
spatial strategies final decisions needs to be taken on the basis of priorities. Deb (2001)
describes the strategy of using Pareto-optimisation to elicit a series of Pareto-optimal solutions
before the final solution is chosen based on higher-level knowledge (ideally influenced by the
results of the Pareto-optimal analysis). To test this a series of weighting systems were derived
and applied to the MOPO set to aid digestion of the results:

1. Risk heavily prioritised: The local authority prioritises reducing the risk of hazard events
to the future population whilst not concentrating on mitigation efforts.

2. Risk marginally prioritised: The two risk objectives are still prioritised but the priority
isn’t as pronounced and more emphasis on mitigation is made.

3. Equal Priorities: To investigate which plan is most optimal in the absence of any
preference.

4. Mitigation marginally prioritised: Due to small likelihood of hazards over the
Middlesbrough area, the local authority decides to concentrate efforts on energy mitigation.

5. Mitigation heavily prioritised: Decision makers decide to heavily emphasise the pursuit

of energy mitigation over the risk based objectives.

These scenarios were used to develop a series of preference vectors outlined in Table 5.10 (each
set of preference vectors sum to 1 following Eastman (1999)). These were applied posteriorly
to the normalised performances of the MOPO solutions using Equation 5.2 to calculate a
composite function, F*, based the normalised objective functions of each solution in the

MOPO set, f™°"™, and the objective functions weight, wy:

FY = (Wheat * fi:le(g;:m) + (Wflood * ffrllgggi) + (Wdist * fdrigzm) + (Wsprawl

norm
sprawl

(5.2)

*

The composite function is calculated for all solutions before the solution which is min(F") is

extracted. Figure 5.23 shows the performance of the derived spatial plans across the range of

sustainability objectives whilst Figure 5.24 demonstrates their spatial configurations. Notably
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Figure 5.23 shows that all of the prioritised Pareto-optimal spatial plans perform very well in
minimising f7,,04 reiterating its correspondence with the other objectives. Moreover spatial
plans for scenario 2 and 3 in Figure 5.24b and c heavily develop the north of the study as it is a
trade-off location (as demonstrated by the density matrix in Figure 5.17). A significant
weakness of this approach is that the weights don’t sufficient reflect the conflicts resulting in
poor performance in fy,.4:; spatial plan which is b) Risk Marginally Prioritised = f;,.,: = 0.4.
This is a result of the conflict with the remaining objectives. Therefore an improved weighting
system requires a more intuitive calculation which takes into account conflicts between
objectives. In further applications a more advanced multi-criteria decision assessment method

should be used.

Table 5.10 Preference vectors for prioritised spatial plans.

Scenarios Preference Vectors
Wheat Wrlood Waist Wsprawl
a) Risk Heavily Prioritised 0.4 0.4 0.1 0.1
b) Risk Marginally Prioritised 0.35 0.35 0.15 0.15
c) Equal Priorities 0.25 0.25 0.25 0.25
d) Mitigation Marginally Prioritised 0.15 0.15 0.35 0.35
e) Mitigation Heavily Prioritised 0.1 0.1 0.4 0.4
1
N
c. a) Climate Risks Highly
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Figure 5.23 Parallel line plot of the prioritised Pareto-optimal spatial configurations.
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Figure 5.24 Prioritised Pareto-optimal spatial configurations.
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5.6 Discussion and Recommendations

In this section we discuss the performance of the MOSPOF methodology, including the
performance of the two optimisation approaches before outlining a series of recommendations

for the framework to handle a more complex and larger spatial planning problem.

5.6.1 Performance of the Optimisation Approaches

The results of the spatial optimisation framework are greatly improved when utilising the GA
approach compared the SA approach. From exploring the results there are several reasons the
approach is superior. A significant difference is the GAs uses of a series of modifiable solutions
which are simultaneously explored allowing for improved pursuit of a range of Pareto-optimal
spatial plans. This can be seen by the 6.4 and 4 times as many Pareto-optimal spatial plans

found for Ny, .. raiee @D Nfy oot fopraw- On the other hand the SA’s singular modifiable spatial

configuration is hampered by the competing objectives and doesn’t allow for investigations of
radically different spatial configurations of development. This can be seen in the spatial
configurations for min(fy,.4:) where development hasn’t reached the most optimal areas for
development in the far south east of the study area because of the need to reconcile a single
spatial configuration against a number of competing objectives simultaneously. Moreover the
results demonstrates that the modifications to SA by Nam & Park (2000) wasn’t sufficient to

facilitate Pareto-optimisation which competes with GA for this planning application.

There are several ways this could be addressed including systematically adjusting the associated
parameters for the calculating the difference between finesses, therefore assigning a proportion
of the processing time to optimising objectives individually. However, by doing this there is
the potential for the MOSPOF to overlook important solutions especially when the Pareto front
is concave and results in a discontinuous Pareto front (Xiao et al. 2007). Other methods include
the approach taken by (Czyzzak & Jaszkiewicz 1998) who’s study coupled Simulated
Annealing with the use of a set of interchangeable solutions. These sets of solutions would
occupy the current solution variable in the approach used in this chapter. However this would

require a significant redevelopment of the MOSPOF.
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One of the few strengths of the SA approach over the GA is the more straight forward
application of the optimization algorithm. Whilst the SA was developed fully in-house while
the GA uses third-party modules to handle its operators. Due to this and the simpler SA
algorithm, the search is more easily controlled particularly with respect to ensuring any spatial
constraints are accounted for such as currently developed areas. Alternatively the GA approach
required more technical modules and innovation to handle the constraints on the search is more
dynamic. However this is negated by the difficulties in selecting the search parameters for the
SA as can be seen in Section 5.4.1. Both optimisation approaches suffer from uncertainty over
in the selection of parameters for the search. However the GA was much less sensitive to these
and was able to determine optimal spatial configurations from random initial spatial plans,
whilst the SA required a reliable initial spatial configuration. The GA’s evolutionary operators
move towards optimal spatial configurations in a more intuitive way by recombining/ splicing
spatial plans which are found to be superior resulting in a much faster convergence than the SA
approach. Meanwhile the SA makes small minor changes which are at first completely random.
As the Pareto-optimal spatial plans demonstrate, it is clear that the SA is failing to find globally
optimum spatial locations and is instead becoming stuck in local optima. This is compounded
as the allowance of moving through inferior solutions needs to be carefully controlled so it’s
not too extensive (as found in Figure 5.8a) whilst allowing for a wide enough search. This was
demonstrated in Section 5.4.1 were increases to the initial temperature variable results in poorer

convergence. The sensitivity of the input parameters is a major weakness of this approach.

To improve this the SA search could be streamlined by incorporating a Tabu search approach
to prevent the reassessment of recently assessed spatial configurations (Glover & McMillan
1986). Although this exhaustive search might be satisfactory over a small-to-medium spatial
scale such as Middlesbrough, more complex objectives (multiple integer values for example)
or larger spatial extents will increase computational intensity exponentially (Xiao et al. 2007).
This also questions whether such a sequential exploration of the search space is efficient for
larger applications. Sources who have utilised SA have concede that faster search algorithms
will return optimal solutions in a much faster time (Delmelle et al. 2012). However several have
commented on its applicability to carry out localised searches in conjunction with other
approaches such as GAs (Sidiropoulos & Fotakis 2011). Some of the problems encountered
might not be encountered in the literature as a number of applications utilise synthetic grids
where the solutions are relatively linear whilst the complexities of real world problems might

make it too unsuitable. Indeed Aerts & Heuvelink (2002) found that when they increased the
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size of the grid it vastly increased the processing time. This mirrors experience in this work
when moving from smaller synthetic datasets to real data applications such as the

Middleborough case study.

5.6.2 Effectiveness of the Pareto Optimisation Approach

The extraction of Pareto-optimal sets of solutions demonstrates the best-trade-offs achievable
between sustainability objectives. By visualising these Pareto fronts it provides a valuable
demonstration of the inherent conflicts between achieving sustainability objectives whilst the
quantitative summation of the Pareto sets provides useful knowledge of the conflicts.

A major strength of this is that it provide planners with wide variety of alternative spatial plans
to choose from with knowledge of the trade-offs necessary to reach certain performances.
However with regards to utilisation of the framework to aid the spatial planning decisions, as
section 5.5.7 discusses the large number of Pareto-optimal configurations found suggest it
would place a substantial cognitive burden on decision makers. This is true with the application
covered in this chapter with the GA approach identifying 568 MOPO spatial plans for a
relatively small urban extent. Section 5.5.8 tests the simple application of preference vectors to
elicit prioritised spatial plans but it falls foul of the conflicts between f}.,: and the rest of the
objectives due to their conflict. This proves the utility of the PO approach as using a weighted
sum approach in the absence of knowledge of the conflicts would produce solutions which fail
to reflect the priorities of the decision maker. For the utility of eliciting final solutions from the
MOPO set a more intuitive method is needed which utilises the diagnostic information of the
conflicts and better interprets planner’s preferences. Potential applications include the use of
fuzzy reasoning (Vamvakeridou-Lyroudia et al. 2005) or analytical hierarchy process (Saaty

2008) to generate more intuitive preference vectors

5.6.3 Spatial Planning Problem Representation

In terms of the definition of the spatial planning problem presented the application is restricted
by only considering a set number of homogenous residential developments. When in reality
development often differs in density depending on its location (higher density closer to transport
links, lower density in the suburbs).Therefore to better represent the spatial planning problem
it would be valuable to test the inclusion of different densities of development. This also lets us

assess the amount of land needed to meet certain objectives and further examine the effects
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development densities have on the ability to achieve objectives. This would further enhance the
uniqueness of the approach as no previous applications of optimisation in the literature
distinguishes between different densities of residential development. This isn’t possible under
the current methodology of a fixed list representation of development sites, as variable densities
would require fluctuating number of development sites to fulfil a target number of dwellings.
Options include variable length representations or a partial move back to grid based

representations.

5.7 Summary

This chapter demonstrates the utility of a Multi-Objective Spatial Optimisation Framework for
a real world planning problem of preparing spatial plans of residential development for a local
authority. The framework was successfully able to recognize potential development patterns
that are potentially more sustainable than those planned whilst the diagnostic information
contained within the results provides an evidence basis to assist planners and decision makers
to better meet sustainability objectives and achieve broader sustainable patterns of development.
Overall the results demonstrate the possibilities of spatial optimisation to contribute to

sustainable spatial planning.

Two optimisation approaches are assessed for their suitability for inclusion in the spatial
optimisation framework. Crucially, both are able to improve upon the currently planned
situation however the GA approach is found to be superior with better convergence on the
Pareto front (demonstrated by its ability to reconciled f;s; and fsprqwe) and results in a wider
spread of spatial plans across the front. SA is rejected as the main methodology for further
optimisation framework as the case study identified several weakness such as it being
computationally exhaustive and it being highly dependent on the initial parameters.
Significantly the chapter sets out a series of recommendations based on the results of the case
study for an improved spatial optimisation framework including increased complexity, with

further variables related to development density for example, and further objectives to optimise.
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Chapter 6 Large Urban Case Study- London

6.1 Introduction

This chapter describes an improved Multi-Objective Spatial Optimisation Framework
(MOSPOF), based on the recommendations of the previous chapter (Chapter 5), and its
application to a more complex and larger spatial planning problem than the case study presented
in Chapter 5. In particular, this chapter modifies the GA approach presented in Chapter 4 and
employed in Chapter 5 such that it can handle the more complex optimisation of land
development under spatially variable development densities, a greater number of objectives and
a greater number of spatial planning constraints. To test the utility of this improved framework
Section 6.3 onwards presentss a detailed case study of assigning optimised land development

for Greater London.

6.2 Modifications to the Multi-Objective Spatial Optimisation Framework

On the basis of the results of Chapter 5 several significant improvements to the initial multi-
objective spatial optimisation approach developed were recommended. On the basis of these
recommendations, the following changes are implemented for the analysis undertaken in this
chapter:
i. Changes to the spatial plan representation to incorporate further complexity (Section
6.2.1);
ii. Updating the constraint handling to deal with increased complexity (Section 6.2.2);

iii. Changes to the objective functions employed (Section 6.2.3)

6.2.1 Planning Problem

The methodology was investigated to accommodate different densities of residential dwellings
within development plans to bring the planning problem more in-line with the planning system
(see plans such as Greater London Authority (2011e)). This is facilitated by assigning proposed
development sites a housing density. Other studies have investigated low, moderate and high
residential density land uses (Ligmann-zielinska et al. 2006; Masoomi et al. 2012) but haven’t
quantified the number of dwellings for the purposes of calculating risk etc. Instead this work

defines a finite set of discrete density values dens = {1,2, ...} which equate to a number of
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dwellings assigned, dw based on the area of a cell; dw = area X dens. In this way every
proposed development site has a proposed number of dwellings, dwhere [ continues to refer

to an i, j location via the use of a lookup table (see Section 4.5.1 (4) and Figure 4.9).

The current representation of a development plan with proposed locations of development is
dependent on a set number of sites to allocate and for the purposes of parameterisation assumes
a consistent number of dwellings at each site. The move to incorporate different densities of
residential dwellings within the representation would necessitate a shift from optimising the
spatial allocation of a fixed number development sites to optimising the spatial allocation of a
set number of dwellings. The fixed length arrays which represented development plans for the
Middlesbrough case study are insufficiently flexible to accommodate the variable number of
dwellings that may be associated with different development densities assigned to development
sites. Consider the two development plans shown below, D; and D,;

D, = [df®,di*®, ]

D, = [d{*°, d}, di*°]

The first development plan, D,, consists of higher densities of development than D, and as both
development plans have the same number of development sites, D, has a much higher number
of total dwellings: D& = 600 compared to D" = 300. Therefore to ensure sufficient number
of dwellings are reached, development plans consisting of low density development will require
more proposed development sites compared to a development plan consisting of high density
development

A potential solution is the use of a variable length list representation (Brie & Morignot 2005)
whose length varies to accommodate a sufficient number of dwellings. To ensure the number
of dwellings in each development plan are consistent, D% = 600 for example, the two

development plans, D; and D,, could be derived using varying length representations:

Dy = [df®,df®°,di*°] : D = 600
D2 — [dlwo, d[lOO’ d1100’ d[lOO’ dIIOO' d[lOO]: Déiw = 600

To accommaodate a higher dwelling density, D,, has double the number of development sites as

D,, which has half the average dwellings assigned to each development site. This method of

variable list has been used previously, for example (Walters et al. 1999) use it in their study to
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handle a number of decisions related to a water supply network. However they and other studies
(Brie & Morignot 2005; Wagner & Neumann 2012) point out that the application of the GA
crossover operator is complicated when dealing with different length lists as the resulting
of fspring are often infeasible. So for the example of D; and D, shown above a crossover
product of the two development plans could potentially lead to plans D, and D, which contain
too few or too many dwellings. This would require complex procedures to increase or reduce
the number of development sites in generated development plans leading to further

computations.

Alternatively the inclusion of different development densities could be facilitated by a move
back to the grid representation utilised by several other urban planning optimisation
applications (e.g., Cao et al., 2011; Ligmann-Zielinska, Church, & Jankowski, 2008) (also see
Section 3.5.5). Although previous applications haven’t considered different development
densities, discrete variable density values could replace the discrete land use variables usually

utilised. This would generate a representation such as:

D,=1[ [0, aw, dw, ... 0, 0],
[0, aw, 0, .. dw 0],
[d?v, 0, d®, .. 0, a®],
[0, aww, 4w, .. awv, dw] ]

Where each element of the grid relates to a i, j location within the study area, noting that cells
can remain undeveloped as per-previous applications (this is represented by a ‘0’). The
advantage of this approach is that there are enough potential development site locations to meet
the dwelling targets therefore avoiding the need to vary the lengths of the lists. Moreover a
number of studies have developed GA crossover operators specifically to handle grid

representations (Cao et al. 2012; Stewart & Janssen 2014).

However this representation is still subject to a number of the weakness identified in Section
3.5.5. This approach would lead to the incorporation of currently developed areas into the
representation. In the Middlesbrough case study this would have increased the size of the
representation of D from 54 to 5465 variables to cover the number of i, locations within the
study area substantially increasing the run time computational intensity. Moreover it would

require the use of penalty functions to disincentivise development plans which alter current
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development being searched and run contrary to the evolutionary approach of only considering
the placement of new development which Section 3.5.7 found to be necessary.

Instead, the inclusion of different development densities into the representation of a single
development plan D is handled via the use of a sparse matrix indexed via the use of a lookup
table. In this method D has length equal to the number of cells available for development. Each
element of D then relates to a coordinate i, j within the study area via the use of a lookup table.
This is shown in Figure 6.1 where each element of the D corresponds to a cell identified as
being available for development a; ;. As development sites, d, are allocated within D, their
corresponding number of dwellings, dw is allocated to the i, location the element of D is
linked to. Meanwhile elements with no development sites retain a 0 value. In the example given,
dw totals of 50, 100 and 200 are assigned to the development plan meeting the target of 600.
This method it improves on the grid based representation as it dis-considers cells currently
developed, which also reduces the computational complexity (56 total variables to 11 for the
example in Figure 6.1).

|
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0 50 Available area, a;;, & | 4,

proposed dwellings

Figure 6.1 Mapping how development sites within a development plan, D relate to cells designated as available
throughout the study area.

6.2.2 Modifications to Constraint Handling

Modifications in the constraint handling were necessitated by the new representation above, i.e.
optimising the spatial allocation by number of dwellings rather than sites. A constraint was

needed to ensure development plans have a sufficient number of dwellings. In the previous
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methodology a target number of development sites was controlled. However as the new
methodology allows for a varying number of development sites and densities, it was found that
a single dwelling target would mean a high number of found development plans would slightly
fail to meet it. Instead the constraint utilises a lower and higher dwelling target, ensuring spatial

plans contain enough dwellings in between these two figures:
Subject to Dwyy < D™ < Dwyyax (6.1)

where Dw,,;y and Dw,, 45 represent minimum and maximum possible number of dwellings in
a development plan and D% represents the total number of dwellings associated with a
particular development plan. This allows for the exploration of d within D as significant
changes in spatial plans can occur, possibly increasing the number of dwellings, without the
development plan being discarded. Once again the constraint handling method whereby spatial
plans which don’t meet the constraints are discarded from the search is used, for this instance

those which don’t meet the required number of dwellings.

6.2.3 Changes in Objective Function Parameterisation

Due to significant changes in the representation of the spatial planning problem the calculation
of the sustainability objectives were adapted. This made a number of changes from the
evaluations presented in Equations 4.2-4.9 in Chapter 4. Previously these were defined on the
basis of a set number of d; ; € D and a consistent number of dwellings, dw{;. As the changes
mean the total number of dwellings in a development plan, D", can vary and the objective

functions (Equations 6.2-6.6) were all formulated to be proportional to the value of D%,

The new calculation of the objective function f;,.,; is defined as total product of the number of

dwellings at a location d*" and the corresponding heat hazard h;:

Minimize
z fheat: Z hldfiw X de (62)

As with Equation 4.2, the calculation of heat risk has a number of assumptions. The calculation

does not take into account future projected increases in population density and/or changes in
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the demographic profile (i.e., > proportion of >75) etc. In addition the calculation does not
include any expression of exposure (e.g., no expression of building stock) due to a lack of
available data. Overall the computation assumes that the risk is proportional to the population
which interacts with the heat hazard. This is a change from using a vulnerability constituency
as per Equation 4.3 and 4.4 and was done to reduce the computational complexity. Also as the
spatial resolution was increased, population density was found not to be as representative.

The objective function f,,q remains characterized by a proportional risk assessment of
development within 1 in 100 and 1 in 1000 year flood zones (the former is penalized by an
order of magnitude reflecting the lower likelihood of a flood). Once again the use of probability
outlines such that you do not have any knowledge of the interval variability on flood depth and
hence the ability of undertake a finer-scale inter-zonal flood damage calculation. The
calculation assumes that the risk is proportional to the number of dwellings within each zone

and is represented as:

Minimize
friooa = (100 Z z0%d™ + 1071 z Z}OOOd{iW) o« DIW (6.3)

where z1%0 and z1°9° are spatial grids representing the 1 in 100 and 1 in 1000 flood zone
extents respectively at the locations identified by [. The objective f;;s; remains characterized
by an accessibility measure, however a number of town centers replace the defined CBD in the
parameterization to represent the many potential centres for services, amenities and
employment within a larger urban environment. The calculation assumes that the location of
these CBDs remain consistent in the future. The optimization of the objective function f;,; is

expressed as:
Minimize faise = P(d;,c,R) Ve, A d; €D x paw (6.4)

where P (), is the shortest path between a d; and it’s closest point designated as a town centre
centroid, ¢;, over a road network, R. The objective function f;,,.,,,; continues to be calculated

on the number of development sites which fall outside the defined urban extent:

Minimize
fsprawt = z d#wVd €Dox D™ (6.5)
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The availability of the London Brownfield Sites Database presented the opportunity to
incorporate an objective to optimise brownfield field development. The utilisation of
brownfield land (often referred to as previously developed land) for development is a often
cited policy goal internationally (Baing 2010) and also within the UK (DCLG, 2011a). The
calculation of this objective function does not include any consideration of the costs of
developing on brownfield (i.e. for remediation). This is optimised on the basis of the objective

function fp,rownriela Which attempts to minimize the number of proposed development sites

which do not fall on cells designated as brownfield sites, b;:

Minimize
Zdl?‘:bIleEDOCDdW (66)

Appendix B2 sets out the modified Evaluate module to handle these new calculations. Once
again a spatial constraint which prevents the appropriation of development to cells designated

as greenspace, g, is employed:

Subject to
/ d #gVd, €D (6.7)

A final constraint ensures development is only possible on cells that have available space for

development:
Subject to d=1ifd n q (6.8)

where a, represents cells designated as being available for development. The existing and new
constraints were enforced in the same manner as in Chapter 5, by excluding greenspace cells
and cells not designated as available for development from the lookup and hence ensuring that

they could not be assigned development within a spatial plan.
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6.3 London Case Study Configuration

6.3.1 The Greater London Authority

To demonstrate the utility of the modified Multi-Objective Spatial Optimisation Framework it
was applied to generating spatial development plan of residential development for Greater
London. Figure 6.2 demonstrates the spatial extent of the Greater London Authority (GLA),
which has a land area 29 times that of Middleborough. London was selected due to its
prominence as focal point for sustainable development in the UK and Europe (Walsh et al.
2013). The city is experiencing increasing urbanization with a projected population increase of
a million from 2011 to 2031 (GLA, 2011a) and is projected to experience significant climate
change induced impacts into the future (Greater London Authority 2007). The GLA Climate
Change Action Plan (2007) sets out projections resulting from climate change, including:
1. Annual heat wave events by 2050 (defined as two day time temperatures exceeding 32 °C
with intervening night exceeding 18 °C);
2. Increase in mean summer temp of 2.7°C;
15% increase in mean winter rainfall; and,

4. 18% decrease in mean summer rainfall.
This coincides with ambitious energy mitigation targets of a 60% reduction from 1990 levels

by 2025 (Greater London Authority 2011b) due to London accounting for 8.4% of total UK
GHG emissions (GLA et al. 2011).
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Figure 6.2 Case study area of Greater London.
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Table 6.1 taken from the Greater London Authority (2011c) details the sustainability objectives
utilized during the London Plans Integrated Impact Assessment (11A). Objectives and indicators
highlighted identify those which are addressed in the application either directly as an objective
to optimise, i.e. objective 1 to maximise brownfield development, or through constraints, e.g.
objective 3 restricting development on greenspace and objectives 2 and 4, or indirectly assessed,
proxies of accessibility and sprawl for objectives 13 and 14. Notably responses to climate

change are not considered and instead considered separately.

6.3.2 Problem Formulation

The case study develops spatial plans for the time period 2011-2021 in line with the time period
considered by ‘The London Plan: Spatial Development Strategy for Greater London’ (2011).
The method of determining a development plan using the methodology outlined in Section 6.2.1
requires an upper and lower limit for the number of dwellings in a development plan. The lower
limit is represented by the 32,210 minimum annual net additional homes per year (322,100 over
10 years) outlined by Key Performance Indicator 4 of the Greater London Authority (2011c)
(see No. 4 in Table 6.1), whilst the upper limit is represented by the total estimated number of
dwellings required to accommodate all future predicted population growth, 340,000 which was
taken from Greater London Authority (2011a). These figures are used to represent Dw,,;yand
Dwy,4x respectively in Equation 6.1. To constrain the variable range a set range of development
densities were adapted reflecting the extremes and intermediate values of the residential
dwelling density units per hectare in table 3A.2 of GLA (2011b):

den = {35,60,100,150,250,400} (6.9)

After experimentation it was found that a spatial resolution of 200m (4 hectares) was the finest
that could be employed for London. Lower resolutions (i.e. 100m) led to long and inefficient
searches whilst higher resolutions (i.e. 500m) were found to be too removed from real world
planning. Therefore, the number of dwellings that could be assigned to each cell on the basis of

the GLA density values corresponded to:

dw = {140,240,400,600,1000,1600} (6.10)
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Table 6.1 Indicators for monitoring the sustainability effects of the London Plan (table 1 (Greater London Authority

2011d). Objectives address directly and indirectly by the framework are highlighted.

No.  Key Performance Indicator Target
1 Maximise the proportion of Maintain at least 96% of new residential development to be on
development taking place on previously  previously developed land
developed land
2 Optimise the density of residential 95% of development comply with housing density location and the
development density matrix (see Table 6.2)
3 Minimise Loss of Greenspace No net loss of open space designated for protection
4 Increase supply of new homes Average completion of minimum 32,210 net additional homes per
year
5 Increase in supply of affordable house Completion of 13,2000 net additional affordable homes per year
6 Reducing Health inequalities Reduction | the difference in life expectancy between those living
the most and least deprived areas of London
7 Sustaining economic activity Increase prop of working age in employment 2011-31
8 Ensure sufficient development capacity Planning permission to be 3 times as high
in office market
9 Ensure there is sufficient employment Release of industrial land (B2/B8 use over 1,000 sqm) to be in line
land available with benchmarks in the Industrial Capacity SPG
10 Employment in Outer London Growth in total employment in Outer London
11 Increased employment opportunities for
those at a disadvantage
12 Improving the provision of social Reduce average class size
infrastructure and related services
13 Reduced reliance on private cars Increase per head public transport usage
14 Reduced reliance on private cars Zero car traffic growth
15 Reduced reliance on private cars Increase share of bicycle from 2% to 5% by 2026
16 Reduced reliance on private cars 50% increase in Blue ribbon network use
17 Increase in number of jobs created in  50% of B1 development in PTAL zones 5-6
areas with high public transport
accessibility
18 Protection of biodiversity habitat No net loss of Sites INC
19 More recycling 45% recycled by 2015, 0% in landfill by 2031
20 Reduce Co2 Zero carbon in residential development by 2016, and in all
development by 2019
21 Increase in renewable energies Just in line with Regional Renewable Energy Assessment 2010
22 Increase Urban Greening Increase total area of green roofs
23 Improve Blue Ribbon Network Restore 15km of rivers and streams
24 Protecting London’s heritage Reduce proportion of designated heritage assets at risk as % for

total number
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6.3.3 Input Datasets

Figure 6.3 presents the input spatial datasets for the case study. Figure 6.3a presents the spatial
representation of heat hazard, h;; represented at 1 kilometre spatial resolution by the UrbClim
model (De Ridder et al. 2012). The model disaggregates an ensemble of IPCC climate change
models then spatially models the effect of the urban heat island on the basis of surface land
cover characteristics. In this particular case, the number of days heat wave events were
experienced annually was employed; for London this is defined as two day time temperatures
exceeding 32 °C with intervening night exceeding 18 °C (DoH 2010). This particular approach
has been utilised for the development of future heat for a number of urban, areas including
Tilburg in the Netherlands (Maiheu & Hittekaart voor Tilburg 2011), Antwerp and New York
(Lauwaet et al. 2015) as well as London and Bilbao (De Ridder et al. 2014) and is being utilised
by the EU RAMSES (Reconciling Adaptation, Mitigation and Sustainable Development for
Cities) project (Hooyberghs et al. 2015).

Floodzones in Figure 6.3b were represented by the Environment Agency (EA) flood zones 2
and 3 as was the case in Chapter 5. London’s town centre network (c;;) (Figure 6.3c) was
represented by OS Mastermap Strategi Settlement Seeds, whilst the road network, R, was
extracted from the OS Meridian 2 roads datasets. The urban extent, u;;, in Figure 6.3d was
extracted and rasterized from OS Meridian 2 Developed Land Use Areas (DLUA). Locations
of brownfield sites were provided by the London Development Agency’s (LDA) London
Brownfield Sites Database, and was rasterised to a 200 metre spatial resolution. Lastly a
greenspace dataset, g;;, (Figure 6.3f) was extracted from OS MasterMap topographic data
corresponding to features where the Theme was ‘Natural’. In addition UK designated sites;
Special Sites of Scientific Interest (SSSI), Ancient Woodland, National and Local Nature
Reserves, Special Protection Areas and Special Areas of Conservation, were added to this
dataset. These were pre-processed using the ArcGIS package utilising the tools shown in

Appendix D.
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Figure 6.3 Input spatial datasets for London case study.

6.3.4 Identifying Developable Areas

To identify potential areas for future residential development, MasterMap topographic data was
utilised. In order to mask out areas that were not suitable for development, a dataset of
Current_Water was again generated by selecting all topographic areas where the ‘Theme’
attribute was “Water”. Equally, to mask out currently developed land all features with one of

the following MasterMap characteristics were extracted:
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Theme = 'Land' AND Make = 'Multiple'

Descriptiv = 'Building' AND Make = 'Manmade'
Descriptiv = 'Rail' AND Make = 'Manmade'
Descriptiv = 'Road Or Track' AND Make = 'Manmade'
Descriptiv = 'Road Or Track' AND Make = 'Unknown’
Descriptive = 'Roadside’ AND Make = 'Natural’

2 o

The resulting mask vector datasets are shown in Figure 6.4. These were then used to identify
areas available for development by subtracting them from the entire space available. Areas
designated for brownfield development were added to the land available for development.
Figure 6.5 shows the final 3307 cells (13,228 hectares) identified as being available for

development, with brownfield sites distinguished.
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Figure 6.4 Planning constraints for London case study.
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Figure 6.5 Available areas for development at a 200m spatial resolution including designated brownfield sites.

6.3.5 Planning Constraints

To more closely mimic the real world spatial planning process, London’s current planning
restrictions on density of housing units per hectare (u/ha) based on accessibility were
incorporated into the optimisation framework. Table 6.2 outlines the restrictions on maximum
dwelling density based on the accessibility of development adapted from table 3.2 in of the
Greater London Authority (2011d). The current accessibility is shown in Figure 6.6a which
shows the Transport for London Public Transport Accessibility Layer (PTAL). PTAL
classifications are calculated on the basis of accessibility measures to public transport nodes for
buses, rail, underground and DLR stations combined with average waiting times’. Figure 6.6b
simplifies this for the accessibility standards outlined in Tale 6.2. Objective 2 in Table 6.1 sets
a target of 95% of new development meeting the PTAL density requirements. To facilitate this
a constraint was added to the London application which only considers development sites in a

development plan, D, which meet this value.

7 https://files.datapress.com/london/dataset/public-transport-accessibility-levels/PTAL-methodology.pdf
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Table 6.2 PTAL accessibility standard for new development in London (adapted from Table 3A.2 in London’s Spatial
Strategy (Greater London Authority 2011e)

PTAL Classification (see Fig. 2f) la 1b 2 3 4+

Maximum dw (uha) 60 60 100 100 N/A

Density Regulation Areas Lt
PTAL Classification/ Density Limil
N 1a-10/ 60 uha
B 2-3/ 100 uha

I 4-6b / 400 uha

Figure 6.6 a) PTAL Classifications (sourced from the London Datastore®) and b) simplified PTAL for planning
constraints in Table 6.2.

8 http://data.london.gov.uk/dataset/public-transport-accessibility-levels
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6.4 Further Analysis

6.4.1 Scaled Pairwise Preference Vectors

Sources have suggested the sheer number of Multi-objective Pareto-optimal (MOPQO) spatial
plans can be overwhelming for planners (Xiao et al. 2007). Although the generation of a Pareto-
optimal set greatly aids the understanding of the spatial planning problem the decision-maker
still has to choose a single solution from this set. The previous application found over 568
MOPO solutions and it is likely that more complex spatial planning application, such as the
London case study of this chapter, with a larger number of variables, will result in larger Pareto-
optimal sets being generated. Therefore to address this issue and aid interpretation of the results
approaches that helped refine and identify ‘promising’ Pareto-optimal solutions were
investigated.

The K-means clustering algorithm is a commonly used method to reduce the size of the MOPO
set to a user defined K number of clusters (Taboada & Coit 2005; Jimenez 2007). This is done
by randomly locating K centroids in the objective space. At each iteration solutions in the
MOPO set are assigned to the closest centroid based on their objective functions. A mean is
then taken of all the solutions in each cluster and this becomes the new centroid. The algorithm
continues by minimising the squared distances of solutions in each cluster. Once the algorithm
terminates the closest solution to each centroid is returned as a local optima for that cluster. The
main advantage of the method is that it doesn’t require any subjective judgement on the
preferences of the objectives and the set is reduced to a required size, K, defined by the user, to
choose from. For this reason K-means methods are the most widely applied non-hierarchical
clustering technique (Luke 2009). However its utility as part of an urban planning decision
support tool is limited as the nature of the application requires the ability to apply societal and

planning preferences.
Alternatively Carrillo & Taboada (2012) describes the use of a non-uniform weight generator
to reduce the size of the Pareto set. In this approach objectives are ranked non-numerically

based on their importance to the decision-maker. For a set of objective functions, f:

Maximise fi>fh>f; (6.11)
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is used to determine a relative weighting system:

Maximise wi > w, > ws (6.12)

Numerous randomly selected weight-sets are generated which fit with these preferences and
are applied to the MOPO set as per the weighted sum method (defined in Section 3.3). This is
repeated for a pre-selected number of iterations to extract optimal solutions to form a smaller
practical set of promising solutions which fit with the preferences. The advantage of this
approach is that it can reflect planner’s priorities without specifying a specific weighting
scheme. However, there is still a significant number of solutions for the decision maker to
choose from. Baheranwala (2005)’s study found that the method was able to reduce the MOPO
set by 90%. Based on the MOPO set from the previous application of Chapter 5 this would still

leave a 50 solutions to consider.

The Analytical Hierarchical Process (AHP) using pairwise comparison matrixes is an
established Multiple-criteria decision analysis method and has been utilised in developing
weighting systems for multi-criteria applications (Eastman 1999; Yahaya et al. 2010; Musungu
et al. 2012). Significantly the approach has been commended for its ability to more accurately
quantify priorities within numerical weighting schemes (Rao et al. 1991). The developed
weighting systems are often applied using some form of weighted summation to deliver a single
optimal spatial plan. For example Deng (1999) employed the approach to produce weights for
its weighted sum optimisation approach. A number of applications have used AHP to derive
weightings between different land uses for compatibility objectives in their land use allocation
applications (Masoomi et al. 2012). However, like with other weighting methods it has the
limitation that is takes no appreciation of the trade-offs in the objectives (Eastman 1999).
Therefore the work intends to use the knowledge of the relationships between objectives found
by the Pareto-optimisation, as suggested by Deb (2001), to ensure the weighting system

discovers plans which are more representative of the preferences of planners

In order to undertake the post-optimisation filtering of the result-sets four planning scenarios
were identified that would capture the key tensions between different planning scenarios from
the literature outlined in Table 6.3. Table 6.4 outlines the determination of unscaled pairwise
matrix weighting based on these planning scenarios. In the absence of expert knowledge it was

assumed that prioritized objectives were ‘extremely more important’ than other objectives in
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order to deliberately exaggerate particular choices. These weightings aren’t final and once the
application is carried out they are scaled by the trade-offs found between objectives to ensure
they consider these relationships and derive a more representative set of weights. The approach
consists of several steps. First each objective is rated in terms of its relative importance
compared to the other objectives on a 9 point reciprocal scale as per Figure 6.7 where 9 indicates
‘extremely more important’, 1/9 indicates ‘extremely less important ‘and 1 denotes no

preference between the objectives.

1/9 1/7 1/5 1/3 1 3 5 7 9
Extremely Very Strongly Moderately Equally Moderately Strongly Very Extremely
Less important > More important

Figure 6.7 Pairwise comparison matrix nine point rating scale

These are then used to formulate a pairwise comparison matrix (Table 6.4a), and Eigenvector
analysis used to calculate a corresponding set of weights (Table 6.4c) that sum to 1 as per

weighted summation method (Eastman 1999).

Table 6.3 Outline of differing planning priorities

Priority Justification

1. Low Carbon City The UK’s Climate Change Act (House of Commons, 2008) legally binds the UK government
to reduce the UK’s greenhouse gas emissions by 80 per cent by 2050. As one of the biggest
drivers of emissions, London has targets for a 60 percent reduction in carbon dioxide emissions
(below 1990 levels) by 2025 (Greater London Authority 2007). In this context the

decarbonisation objectives of f4;5: and fsprqu are prioritised.

2. Low Risk City London has a unique threat from extreme heat compared to other UK cities due to its southern
latitude and considerable heat island whilst the UK’s House of Commons Environmental Audit
Committee (2015) reports that flooding is the biggest adaptation challenge facing the UK. In
this context this scenario prevention of exposure to climate change induced hazards is

prioritized, namely fyeqr and friooqa-

3. Green and Spacious | Land conservation through development on previously developed land is a popular policy to
City prevent the need to develop on greenfield sites (Baing 2010). Therefore this scenario prioritizes

the objective firownfieta-

4. Balanced City To act as a control and comparison a spatial plan will be derived on the basis of equal priorities

for all the objectives.
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Table 6.4. Pairwise comparison matrix for the differing planning priorities. Note these are unscaled values and are modified before the weights are applied.

1. Low Carbon City

a) fheat friooa faist fsprawt forownfiela b) fheat ffi00a faist  fsprawt  forownfield C) Weightings
Freat 1 1 1/9 1/9 1 Frcat 005 005 005 005 0.05 Froat 0.05
Friood 1 1 1/9 1/9 1 friood 005 005 005 005 0.05 friooa 0.05
Faise 9 9 1 1 9 Faist 043 043 043 043 0.43 Faist 0.43
fopraw 9 9 1 1 9 fsprawt 043 043 043 043 0.43 fsprawt 043
fbrownfield 1 1 1/9 1/9 1 fbrownfield 0.05 0.05 0.05 0.05 0.05 fbrownfield 0.05
Sum 21 21 2.33 2.33 21 Sum 1
2. Low Risk City
fheat fflood fdist fsprawl fbrownfield fheat fflood fdist fsprawl fbrownfield Weightings
Freat 1 1 9 9 9 Freat 043 043 043 043 0.43 Freat 0.43
friooa 1 1 9 9 9 friood 043 043 043 043 0.43 friooa 0.43
Faist 1/9 1/9 1 1 1 Fuist 005 005 005 005 0.05 Fuist 0.05
fsprawt 1/9 1/9 1 1 1 fsprawt 0.05 0.05 0.05 0.05 0.05 fspraw 0.05
forownfiela 1/9 1/9 1 1 1 forownfietd 0.05 0.05 0.05 0.05 0.05 forownfiela 0.05
Sum 2.33 2.33 21 21 21 1
3. Green and Spacious City
fneat friooa faist fsprawt forownfield fheat [ffi00a faise  fsprawt  forownfiela Weightings
Froat 1 1 1 1 1/9 Froat 008 008 008 008 0.08 Froat 0.08
Frivod 1 1 1 1 1/9 Friood 008 008 008  0.08 0.08 Friood 0.08
Faist 1 1 1 1 1/9 Fuist 008 008 008 008 0.08 Fuist 0.08
Foprawt 1 1 1 1 1/9 Foprawt 008 008 008  0.08 0.08 foprawt 0.08
fbrownfield 9 9 9 9 1 fbrownfield 0.69 0.69 0.69 0.69 0.69 fbrownfield 0.69
Sum 13 13 13 1.44 13 Sum 1
4. Balanced City
fheat fflood fdist fsprawl fbrownfield fheat fflood fdist fsprawl fbrownfield Weightings
Freat 1 1 1 1 1 Freat 0.2 0.2 0.2 0.2 0.2 Froat 02
friooa 1 1 1 1 1 friooa 0.2 0.2 0.2 0.2 0.2 friooa 0.2
Faist 1 1 1 1 1 Faist 0.2 0.2 0.2 0.2 0.2 Faise 0.2
fsprawt 1 1 1 1 1 fsprawt 0.2 0.2 0.2 0.2 0.2 fsprawt 0.2
fbrownfield 1 1 1 1 1 fbrownfield 0.2 0.2 0.2 0.2 0.2 fbrownfield 0.2
Sum 5 5 5 5 5 Sum 1
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6.4.2 Regulatory Scenarios

Keirstead's & Shah's (2013) review of the contribution of spatial optimisation to urban planning
identifies it’s potential to elicit baseline/benchmark performances for objectives. This coincides
with the debate surrounding the effects of regulation on the ability of urban planners to meet
sustainability pressures (Echenique et al. 2012). To this end the analysis was carried out under
several different regulatory frameworks to gauge their impact on to meet the sustainability

objectives considered. These consisted of:

i. Business as Usual (BAU)

Continuation of current regulatory framework which includes restrictions to ensure high density
development within high accessibility areas (see Section 6.3.5). The framework is carried out
as per set out in Section 6.3.

ii. Density Deregulation
The restrictions on high density development in low accessibility areas outlined in Section 6.3.5
are relaxed to investigate the impact on meeting the risk prevention objectives.

iii. Exclusively Brownfield
Areas available for development in the case study are restricted to brownfield sites (Figure 6.3¢e)
reflecting its prioritization including UK governments aspiration of 60% brownfield
development (DCLG, 2011b) and the Greater London Authorities aim of 98% of brownfield
development (GLA, 2011b).

The application of the MOSPOF to the case study was run under these different regulatory

frameworks and the results of which are presented in Section 6.6.6.

6.5 Application Parameters

Table 6.5 outlines the run-time parameters for the London case study. The framework was run
several times in order to determine the search parameters which allowed for the best search and
produced the most optimal results. Due to the size of the problem to solve of the newly defined

spatial planning problem, initialisation was even more crucial to the performance of the GA
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algorithm. To sufficiently represent the 3,307 cells designated as being available for
development a figure of 2,500 initial spatial plans in the parent set was utilised (see Figure 6.8)
as testing found it sufficiently represented the spectrum of possible development sites. Ideally
each site would be represented with each particular development density so that all possible
combinations are represented however it was limited by the computational efficiency and

increasing the size of initial set significantly increased the running time.

The NSGA-II algorithm was utilised due to its successful application for the Middlesbrough
case study in Chapter 5 and it’s wide use in the previous urban planning applications (Cao et
al. 2011). The representation as a fixed length list allows for the retention of using the two point
crossover operator (described in Section 4.5). Alternative crossover operations were tested but
were found to offer little benefit whilst increasing the runtime. The mutation operator utilised
was a shuffle-index mutation, where elements selected for mutation are swapped within D.
Crucially this retains the original D#e%s (total number of dwellings) whilst spatially varying
the spatial location, [, of d. The mutation probability, p,utation Was purposefully set to a
higher value than for the case study of Middlesbrough due the requirement of the GA algorithm
to have to work harder to maintain a diverse set for a more complex problem and with the time

restrictions on the run.

The use of random initial plans caused poor convergence as the plans were so diffuse. A number
of sources have recognised the advantage of seeding GAs with good initial solutions (Harik &
Goldberg 2000; Keedwell & Khu 2005) Therefore in order to improve the initial representation
of spatial plans the initialisation was modified so that a small percentage of initial spatial plans
were biased towards particular parameters ensuring the search begins from an already optimal
development plans. For example spatial plans were developed consisting entirely of a single
development density to ensure that this eventuality was covered in the initial parent set. Spatial
plans were created which also constrained development to brownfield sites and outside of
floodzones. This preferential initialisation helps accelerate the convergence of spatial plans
towards being optimal across all the sustainability objectives as they start from a superior

configuration.
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Table 6.5 Run Parameters for case study application of the Spatial Optimization Framework

Parameter Description Value
G Number of generations 400
Noparents Number of parent D selected for each generation (pop size) 2500
Derossover Probability of applying a crossover to two D 0.7
Pmutation Probability of mutating a D 0.2
Pm Probability of mutating an element (d;) within D. 0.05
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Figure 6.8 Development sites represented in the initial (g = 0) parents set.

6.6 Results

Table 6.6 outlines the run statistics of the application to the London case study. One concern of
the way the algorithm was formulated above was that it may lead to a high number of solutions
being unfeasible as when the GA combined spatial plans many of these may exceed or fall
under the minimum and maximum number of dwellings permitted. During the application the
average retention rate after the dwelling total constraint is 88.5% meaning that the difference

between D,,;,, and D,,,, Was sufficient to not exclude too many solutions from the search.
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Table 6.6 Run statistics

Total Run Time 5d 1hr 14mn
Total Spatial Configurations Assessed 890, 232
Average retention rate after Dwelling Total Restraint 88.5%
Average retention rate after PTAL Restraint is 99.23%
Total MOPO Solutions found 31,716

Moreover the average retention rate after PTAL constraint was 98.2% as the initial development

plans met the density constraints.

Despite the use of biasing in the initialisation for the objective fu,ownfieia, Figure 6.9
demonstrates that for the spatial plan which is min(fbmwnﬂeld), the algorithm is able to
improve the performance of the plan in correspondence with other objectives, in this case fyeq¢-
Table 6.7 quantifies the statistics of the Pareto front throughout the application. The

performance of the entire Pareto set, improves consistently throughout the

theutrfbrawnfield !
application with a 73% improvement in the average of the solutions demonstrating that this
initialisation improves convergence overall. However at two stages there’s a significant

deterioration in min(freat) = forownfiea in Order to allow for the most optimal spatial plan

for min(freqt)-

Table 6.8 and documents the convergence in the Pareto front for N, . .. shown in Figure
6.10. Despite both objectives not being subject to biasing in the initialisation, the framework is
able to elicit significant improvements in the Pareto front throughout the application. Although
the improvement is proportionally smaller between the 200" and final generation there seems
to be the potential for further convergence. However we were limited by the amount of time it

took.

Table 6.7 Convergence statistics for Nfyearforownficd during the case study application.

Normalised Performance at Generation and Percentage Improvement
1st 50th % 100th % 200th % Final %
Average Ni....fyrowngiea | 0.63 0.27 58.06 | 0.23 12.00 |o0.21 9.63 0.17 18.25
min(fieqr) 0.60 0.35 40.83 | 0.23 36.07 | 0.11 49.15 | 0.00 100.00
min(frear) = forownfieta | 0.94 0.13 86.16 | 0.20 -51.92 | 0.18 9.20 0.20 -12.37
min(forownsiea) = frear | 079 | 061 2329 | 061  -078 |058 492 | 054  7.84
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Table 6.8 Convergence statistics for Ny, - . during the case study application.

Normalised Performance at Generation and Percentage Improvement

1st 50th % 100th % 200th % Final %
Average N;,__ - | 059 | 036 3959 | 03L 1305 | 026 1649 | 019  26.18
min(fheqt) 0.60 0.35 40.81 0.23 35.86 0.13 43.48 0.00 100.00
min(froae) = faer | 081 | 033 5900 | 024 2845 | 026  -745 | 039  -52.76
min(fg;se) 0.27 0.14 46.04 0.08 41.25 0.05 42.13 0.00 100.00
A ® min(fheat)
A min(fbrownfield)
=
£
%Un
3
=l
2
;c—;s
:
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Normalised f},,,,
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Figure 6.9 Convergence of the Pareto front Ny, .. r, ... «..,, Uring the GA application.
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Figure 6.10 Convergence of the Pareto front Ny, - during the GA application.
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6.6.1 Resulting Pareto Fronts

Figure 6.11 presents the normalised Pareto fronts for London between pairs of sustainability
objectives resulting from the application of the modified Multi-Objective Spatial Optimisation
Framework, while Table 6.9 quantifies the best trade-offs between the objectives, and also

states the number of solutions which lie on each Pareto front.

The results highlight clear conflicts between optimising fj.4: Simultaneously with the other
objectives (Figures 6.11a-d) during the development of spatial plans for London. This is
especially true of frp0q as the solution min(fheqe) = friooa = 0.16  Whilst,
min(}}lood):fheat > 0.65 as the floodzones correspond to areas of low heat hazard next to
the river. Indeed 113 solutions lie on the Pareto front N¢, - flood reflecting the magnitude of
the conflict as development moves towards and away from floodzones. The spatial plans for
min(fzis:)= frear = 0.65 and min(fspmwl): frear = 0.72 reflect the fact that compact

development close to existing urban centres ultimately correlates spatially with areas of high

heat hazard primarily due to land use patterns. Meanwhile restricting development to
brownfield gives min(fbmwnﬁeld): frear = 0.54 indicating insufficient brownfield sites in

low heat hazard. It is worth noting, however, that the best f,,.,: performance can be achieved

with 85% of development being allocated to brownfield sites (normalised performance of 0.2).

As in the case of Middlesbrough, conflicts between f5;,,4 and the other objectives are much
less pronounced with min(ffip0a)= faise = 0.08 and min(fsprawi)= ffi00a = 0.12. The
Pareto front between frio0q aNd fhrownriera 1S NOt shown as the framework is able to optimise
both simultaneously, i.e. min(ffiooa, forownfieta) - HOWEVEr, fuise and fyrownfieia have a
noticeable conflict with min(f4i56)= fprownfieta = 0.18 and min(fprownfieta)= faist = 0.3,
suggesting a lack of brownfield sites in very close proximity to town centres. A less intuitive
result of the analysis is the conflict between fuc and foprque (Figure 6.11i) with
min(fyise)= fsprawt = 0.29 and min(fsprawi)= faise = 0.11 due to the proximity of some of
London’s town centres to the edge of the urban extent of the GLA. Likewise, in the case of
forownfieta ANA foprawi (Figure 6.11j) to fully maximise one individual objective requires a

significant trade-off with the other.
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Figure 6.11 Pareto fronts between sustainability objectives for the London case study.

Table 6.9 Pareto front trade-off matrix.

Optimised
objective:

fheat

fflood

faist
fsprawl

min( ).

fbrownfield

Best Trade-off in corresponding objective.

fheat f}lood
NA 0.16 (113)
0.65 NA
0.65 0.08
0.72 0.12
0.54 0
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fdist
0.39 (64)

0.09 (20)
NA
0.29
0.18

fsprawl fbrownfield
0.64 (55) 0.2 (115)
0.03 (11) 0(1)
0.11 (27) 0.3 (44)
NA 0.1(21)
0.18 NA

(Number of Solutions in Pareto front)



6.6.2 Pareto-optimal Spatial Configurations

Figures 6.12 — 15 present a series of best spatial plans to meet the sustainability objectives
outlined in this case study whilst their objective performances normalised throughout the
MOPO solutions is mapped in Figure 6.16. Note the densities of development are ignored for
visualisation. Figure 6.12 presents the best spatial development strategies min(fj.4.) and a
comparison with the best spatial development strategy for min(fﬂood) to demonstrate the
cause for the significant conflict demonstrated in Figure 6.11a. In order to achieve the best
performance in f,.q. developmentis strategically located in lower heat hazard areas in the south,
south east, north and north east of London. The spatial plan performs relatively well at
optimizing fhrownfieta With @ normalized performance of 0.4 compared to a range of Pareto-
optimal spatial plans (see Figure 6.16). This can be seen in Figure 6.12b as development is
located in brownfield sites which correspond with lower heat hazard. However these commonly
lie within close proximity of the river, and therefore within flood zones causing the poor
performance in  ff;,04 (NOrmalized performance of 0.58 compared to the range of Pareto-
optimal spatial plans). This is especially true of the areas on the neighbouring the Thames in
the east of the study area and in the north next to the rivers tributaries (windows ii and iii in
Figure 6-12b).

Likewise the spatial plan for min(fﬂood) utilizes the abundance of brownfield sites on the
banks of the river Thames (Figure 6.12c) and is able to keep all development on brownfield
sites whilst completely avoiding floodzone, min(ffio0a, forownfieta)- This is significant as it
demonstrates the ability to couple risk reduction with the desirable brownfield development
planning policy. However, to avoid developing within the floodzone the spatial plan is forced
to develop in higher heat hazard areas as can be seen in Figure 6.12b(i). The reduced emphasis
on avoiding high heat hazard areas allows development to be more spatially focused on

brownfield sites in the west of the study area away from central and eastern floodzones.

Both spatial plans share strategic development trends in outer London indicating that these areas
are spatially optimal for a number of the objectives outlined, but both are still is forced to locate
some development in central locations (Figure 6.12b and c) to fulfil the required quota of
dwellings (Equation 6.1), as the density regulations prevent high-density development in outer
London (refer to Figure 6.6). Both spatial plans develop alongside the river in the east of the

study area (Figure 6.12b (iii) and 6.12c (iii)). However min(f,.,.) develops south of the river
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whilst min(fflood) develops the north. Development in this area contributes to the poor
performances in fs,rquwi and fy;s: OF both spatial plans as it is an undeveloped area outside the
urban extent with insufficient infrastructure. Indeed due to the scale of the conflict the

framework finds 113 solutions for Ny, . .. #11004-

Figures 6.13 and 6.14 demonstrate the best spatial plans for optimizing accessibility, min(f;;s:),
with respect to brownfield development and heat hazard respectively. Figure 6.13 demonstrates
how the spatial plan strategically develops brownfield areas close to town centres to achieve a

trade-off with fy,ownricia. FOr example, the large brownfield site in Newham, central London,

is heavily developed due to its proximity to the town centres of Stratford, Bow and Leyton.
Meanwhile, Figure 6.14 conveys how development can be located in areas with good
accessibility to employment and services as well as corresponding low heat risk; in particular
around the town centres of Greenhill and Ealing in east London and Wood Green and
Tottenham in north London. Figure 6.15 demonstrates the spatial plan for min(fyrown ieia) for
the Pareto-set Np, . », fielq S there are several spatial plans which are min(fbmwnﬁeld).
The figure shows how the spatial plan attempts to reconcile the optimal plan for brownfield
against f,.q: by locating on brownfield sites in low risk areas such as the brownfield sites north
of the river in the east of the study area. However this negatively effects f;;5 and foprqw: @S

these areas are located towards the edge or outside the current urban extent (see Figure 6.3d)

Figure 6.16 provides a visual overview of the best spatial strategies relative to their performance
across the all of objectives. As stated, the spatial configurations min(f}.4.) and min(fﬂood)
perform poorly in terms of minimising fs,,qu: as they develop brownfield sites outside the

currently developed areas along the east of the river. This leads to 16 % and 17% of proposed
development occurring outside of the current developed extent. The spatial configuration for

min(fpeq:) Performs poorly in fr,04 and fprownrieia @ low heat hazard areas correspond with
floodzones. This is reciprocated as the solution min(fprownfieta) € Nfyourforown Field? achieves
a normalised performance of 0.54 in f,.4., Whilst achieving a good performance in ff;504
(0.09). Lastly, min(fyrownfsieia) Performs paticulary poorly in f4;s. suggesting there is a lack

of ideally situated brownfield sites in close proximity town centres.
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Figure 6.13 The spatial plan for min(f;s;) shown against brownfield sites.
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Figure 6.16 Parallel line plot showing the performance of the best Pareto-optimal spatial plans across the range of objectives.

6.6.3 Comparison with London’s Current Development Plan

Figure 6.17 presents a borough (local authority) level comparison of Pareto-optimal spatial
strategies compared to the Greater London Authority’s (GLA) spatial development plan. Of the
33 boroughs investigated 50% have more development assigned in the Pareto-optimal spatial
plans compared to the current development plan; showing that the current development plan is
underutilising suitable locations at least with regards to the objectives investigated in this work.
Equally, the comparison identifies boroughs which the current London development plan has
earmarked for high development but which the analysis finds unsuitable with regards to the risk
and sustainability objectives. For example the GLA assigns 11,600 dwellings to borough of
Hackney (central London), while Pareto-optimal spatial strategies assigns at most 1,600
dwellings. This is consistent across all spatial plans due to the spatial correspondence of high

heat hazard, flood risk and poor transport accessibility to town centres in the borough.

Interestingly, around 25% of boroughs have broadly similar numbers of assigned dwellings
(within +/- 15%) in the London plan and the Pareto-optimal spatial plans indicating that the
current plan in these areas would be able to meet the risk and sustainability objectives
investigated in this study. Depending on the objective being prioritised a number of London’s
boroughs are identified as being particular suitable to be developed. For example a number of
boroughs in the West of the study are are highly developed by the spatial plan for min(f ;).
Meanwhile the spatial plan for min(f,.,:) assigns nearly 6 times the number of dwellings
proposed by the GLA to the borough of Bexley in the east of the study area, south of the river,
due to the corresponding low heat hazard values along the river. Conversely a number of
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boroughs in close proximity to the river are developed less by the spatial plan min(f;504)

compared to the GLA plan.

Figure 6.18 presents a sub-borough comparison over the borough of Newham between the
council’s spatial plan and the Pareto-optimal spatial plans as the total number of dwellings
assigned are consistent (see Figure 6.17). However due to Newham’s spatial properties
(numerous brownfield sites, low heat hazard areas and the occurrence of floodzones (Figure
6.18a)) this varies spatially within the borough. Figure 6.18b demonstrates the noticeable
differences in the spatial allocation of development at the level of community forums. While
min(ffio0a, forownsiera) @nd min(fy;s) concentrate development in the north west of Newham,
min(fpeq¢) iNStead develops the east and south east. Due to the presence of a floodzone and
unsuitability of brownfield sites both min(ffio0a, forownfieta) @nd min(fprownrieia) avoid the
sub-borough zone of Royal Docks and while Newham Council plan development in Canning
Town & Custom House, the Pareto-optimal spatial plan avoids these areas due to the presence
of a floodzone and high heat hazard. The plan min(f;,,4) discourages development in Royal
Docks as it is predominantly floodzone, whilst the plan min(f,.4:) assigns more dwellings than
Newham council’s plan to this area. Due to the proximity to of a town centre in Stratford and
West Ham the plan min(fy;s;) encourages development at these locations, although the heat
hazard is relatively high in this community forum area, which in the plan min(fyeqt)

discourages development and instead allocates development to East Ham and Beckton.

It should be noted that different costs of development aren’t considered in this analysis (e.g. the
cost of developing in outer London v central London). If cost was considered it may affect the
results and partially explain the discrepancies with the currently planned situation. Further
discussion on this can be found in Section 7.2.3.
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6.6.4 Multi-Objective Pareto-Optimal Development Sites

Overall 31,716 MOPO spatial plans were found for London by the modified MOSPOF (i.e.
within N for F = {fisk, frio0a fsprawts faise})- Figure 6.19 presents a density matrix of the
Pareto-optimal spatial development sites. Of the 3307 cells identified as being available for
development, 831 (<25%) are developed by at least of one the 31,716 MOPO spatial plans
while 207 and 104 are assigned to by more than 50% and 75% of the Pareto-optimal spatial
plans respectively. Interestingly 27 of the development sites are assigned in all of the Pareto-
optimal spatial plans generated; cells that all correspond to available brownfield land. The
figure shows that there is a tendency for spatial clusters of sites to develop with regards to their

magnitude of assignment across the entire set of MOPO spatial plans.

Figure 6.20 presents a parallel line plot of MOPO solutions found by the framework (a
representative sample of 250 is demonstrated due to high numbers) as well as a representation
of the average. These remain normalised throughout all the solutions found and demonstrates
how well the MOPOs perform compared to all the possible spatial plans found. It also highlights
the wide range of best trade-off spatial plans that were generated. All the MOPO spatial plans
found keep ff1004 below a normalized performance of 0.27 compared to all the spatial plans.
This demonstrates that this objective is easy to reconcile with the other objectives. Indeed 420
MOPO spatial plans found which completely avoid any floodplain development. Likewise all
the MOPO spatial plans keep brownfield development to below a normalized performance of
0.5 which corresponds with 38% brownfield development. With regards to the GLA’s target of
96% brownfield development, the framework is able to elicit 9,691 MOPO spatial plans which
meet the target whilst also being found to be best trade-offs across the other objectives. On the
other hand MOPO solutions range up to 0.98 normalized value for f,.,; in order to facilitate

good performances for the other objectives (for example = fiownficiar friooa = 0.05 and
= faists [fsprawt = 0.3). The average of the MOPO solutions performs most poorly for

=fhear = 0.46 Whilst the next poorest performance is fsprqw; = 0.32.
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Figure 6.19 Ranked Pareto-optimal Development sites
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Figure 6.20 Parallel line plot of sample of MOPO solutions.

6.6.5 Prioritised Spatial Plans

Table 6.10 outlines the final derived preference vectors for the different prioritised plans
outlined in Section 6.4.1 with the pre-scaled value in brackets (see Table 6.4 for their
calculation). Notably the scaling causes the values for wy,,; to increase reflecting its conflict
with the other objectives. This is most pronounced for the equal priorities and hazard risk
mitigation plans Whilst wy,.oynrieiq iS scaled down to accommodate an increase in wyeq,. These
were then used to extract spatial strategies which are min(F") € N based on the weighting

system:

F¥ = Wheatfreat + Wriooaffiooa + Waist faist + (6.13)

Wsprawlfsprawl + Wbrownfieldfbrownfield

Figure 6.21 plots the resulting spatial plans performances, demonstrating how the process
identifies spatial plans which are far more representative of the priorities (in comparison to
Figure 5.23). These are normalised and shown against the spatial plans which are min() for
individual objectives for comparison. The process elicits a low risk city spatial plan which
reconciles both fy,eqe and f7004 to performances below 0.26; this compares to min(fpeqt) =
ffio0a = 0.6 and min(ff;p04) = fhear = 0.75 showing a significant reconciliation which
might not otherwise have been found. Moreover the scaled weightings are able to find a
balanced city plan is found which keeps the performance in all the objectives under 0.52.
Although the green and spacious spatial plan isn’t as optimal in fro0q @Nd fyrownfieia @S

min(ffi00a, forownsieta) this does achieve a better trade-off in the remaining three objectives.
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Overall these plans provide much better balances than plans which are optimal in specific
objectives and reveal that good trade-offs can be found to meet a set of priorities.

Figure 6.22 demonstrates the spatial configurations of the prioritised spatial plans while Figure
6.23 presents a borough comparison between the prioritised spatial plans and the GLAs plan.
Several of the spatial plans share development strategies in the north and south of London due
to the all-round optimality of such sites. Both the Low Carbon City and Green and Spacious
spatial plans develop the large brownfield in the centre of London, while the Balanced City
utilises spatial development strategies from all the other spatial plans, with development in the
central brownfield site (although to a lesser degree) and the west of the study area from the Low
Carbon and Green and Spacious plans and development on the north of the river in the east of
the study area from the Low Risk city spatial plan. The comparison with the GLA plan (Figure
6.23) reiterates the unsuitability of boroughs currently allocated a high amount development
which is important as it demonstrates these are not just sub-optimal for specific objectives but

also in terms of prioritised combinations of them.

Table 6.10 Derived preference vectors for prioritized spatial plans.

Preference Vectors (pre-scaled)
Planning Prioritizes
Wheat Wrlood Waist Wsprawl Whrownfield
Low Carbon City 0.11 (0.05) | 0.08 (0.36) 0.05 (0.05) 0.05 (0.05) 0.36 (0.43)
Low Risk City 0.68 (0.43) | 0.18 (0.43) 0.05 (0.05) 0.04 (0.05) 0.05 (0.05)
Green and Spacious City 0.21 (0.08) | 0.13 (0.15) 0.45 (0.45) 0.45 (0.69) | 0.15 (0.08)
Balanced City 0.34 (0.2) 0.14 (0.18) 0.16 (0.16) 0.16 (0.2) 0.18 (0.2)

Balanced City
Low Carbon City
S 04

Normalised Fitness
8
«"j
/4

Low Risk City

°
[

. " Green and Spacious City
fheat fflood fdr’st fspmwl fbrown[ield

Figure 6.21 Parallel line plot of the prioritized Pareto-optimal spatial plans.
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Figure 6.22 Prioritized Pareto-optimal spatial plans.
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6.6.6 Regulatory Scenarios

Figures 6.24 and 6.25 outline the key ramifications of the regulatory frameworks on the results
of the analysis. Figure 6.24 demonstrates the convergence of fy.q: against fu;s and foprqw:
under the differing regulatory scenarios revealing that the relaxation of density regulation
allows for significantly better convergence in f.q:. The spatial plan min(f.,.) found during
the ‘Business as Usual’ run achieved a normalized performance of 0.22 compared to the
corresponding spatial plan for the density deregulation scenario (freq: = 0). Moreover the
performance in f.q. for the plan min(fspmwl) is improved by 42% (Figure 6.24b). Despite
these improvements the regulatory scenario is unable to improve the performance in of f;,, for
min(fzs¢) Or improve min(fyis:) = frear SUggesting that density deregulation has little
potential to improve overall accessibility, although the Pareto front N¢, . - . has an average
improvement of 20%. Conversely Figure 6.24a also demonstrates that restricting development
to brownfield sites has an adverse effect on reducing future heat risk with a 140% worse
performance in fp.q: for the spatial plan min(fy.,:) compared to the BAU scenario.
Meanwhile exclusively developing brownfield sites prevents the optimisation of ;4. as the
previous results show they can’t be simultaneously reconciled. In addition under this regulatory
framework the number of MOPO solutions was reduced to 8513 due to the restriction in the

search area and one less objective to consider.

Business as
usual Business
0.8 0.8
as usual

Exclusively
Brownfield

R \\ Density Exclusively

h;c \ Deregulation Brownfield Density

0.4 | Deregulation

0 0.2 04

.4 04 0.6
ﬁreat f heat

Figure 6.24 Convergence of the Pareto fronts a) N¢, . .. and b) Nfpearfsprawt under differing regulatory frameworks.

0.6 038 1 0 02

Figure 6.25 demonstrates the regulatory effect on the distribution of proposed development
densities, in this instance for the spatial plan which is optimal for minimizing f;,.4: . Whilst the
majority of proposed developed is at 400 u/ha to take advantage of optimal locations, the

relaxation of density restrictions has a noticeable effect of lowering development density, with
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the re-emergence of 35 u/ha densities in order to dissipate the exposure to the heat hazard. This
can be seen in Figure 6.26 where the majority of boroughs see a reduction in the average density

for the spatial plan min(fy,eq. ) for the density deregulation run compared to business as usual.

200 , )
m Density Deregulation
150 Business as Usual
& mExclusively Brownfield
=
2 100
o
L
| =
[,
) I
400 230 150 100 60 35

Development density (units per hectare)
Figure 6.25 The effect on development densities of the spatial plan min(fy,.q.) under differing regulatory frameworks.
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Figure 6.26 Borough development densities of the spatial plan min(f,.4:) under density deregulation compared to
business as usual.
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6.7 Summary

This chapter has presented a modified Multi-Objective Spatial Optimisation Framework based
on the findings and recommendations of the application to Middlesbrough presented in the
previous chapter. A new and unique method for representing spatial plans during the search is
outlined which allows for increased complexity whilst maintaining the advantages of retaining
a fixed length list representation. The new framework is demonstrated for a case study in
London (UK), a larger urban area covering an area of 1,572km?, developing optimal future
residential development plans against six risk and sustainability objectives whilst also adhering

to planning policies and land use constraints.

The results found conflicts between minimising heat risk and the other objectives. Whilst spatial
plans are found which optimally meet the objectives the different spatial structure of the flood
and heat hazards limits the potential to optimality meet these future hazards. In addition less
pronounced conflicts are found which are specific to London, such as an absence of sufficient
brownfield sites in close proximity to existing town centres to reduce increased commuting that
will occur from increasing the number of dwellings. Significantly spatial development
strategies are found which simultaneously avoid developing flood zones and keep all
development within brownfield sites. However, the location of brownfield sites makes it

impossible to exclusively develop these whilst optimising exposure to heat hazard.

A comparison of the spatial distribution of development with the optimised spatial plans reveals
that the currently planned situation is failing to realise the potential to meet the sustainability
pressures investigated with its spatial plan. In addition, the framework is used to compare
performances against different regulation scenarios which show that improvements can be
made in minimising heat risk through the relaxation of density regulations. Despite an
overwhelming number of MOPO spatial plans being discovered, the chapter presents an
innovative method of combining a well-known MCE approach with the diagnostic information
from the Pareto-optimisation to elicit specific spatial plans which best meet a series of potential
development scenarios. The success of this is demonstrated in the eliciting of a low risk spatial
plan which maintains the normalised performances of minimising heat risk and flood risk to
under 0.26, whilst a balanced spatial plan is found which restricts normalised performances

across the objectives to under 0.5.
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Chapter 7 Discussion

7.1 Introduction

Increasing urbanisation, climate change and resource scarcity are necessitate a move towards
more sustainable urban forms. The review of literature in Chapter 2 identified the challenges
planners face if they are to achieve urban forms which balance a number of sustainability
objectives such as resource efficiency and adaptation to climate change impact. In particular,
planners must ensure the transition to sustainable urban form via development which best meets
local priorities for risk management and sustainability objectives which may potentially conflict
with each other (Williams et al. 2000; Mcevoy et al. 2006; Barnett & O’Neill 2010; Dawson
2011); for example, concentrating development within brownfield sites whilst minimising heat
risk (Kazmierczak 2012). Unfortunately current planning practices fail to sufficiently
appreciate these conflicts, thereby failing to ensure planning decisions are made which lead to
win-win situations and maximise the sustainability of new development (Gibson 2006). Chapter
3 identifies the utility of spatial optimisation as a possible means by which multiple objectives
may be considered as part of the urban planning process. However, as Section 3.5.6 oultines,
previous optimisation applications to urban planning have been limited to exercises in land use
allocation with little or no explicit treatment of real world sustainability aims, especially those

concerned with climate related risks.

In response, Chapter 4 details the development of a Multi-Objective Spatial Optimisation
Framework for planning future urban development with respect to a series of real world and
highly prioritised sustainability objectives. Specifically, the framework optimises the location
of a discrete number of future residential development sites that meet future demand whist
minimising the risk faced from natural hazards and also satisfy planning constraints. The
framework is demonstrated for two real world urban case studies in Chapters 5 and 6. This
chapter presents a discussion of the findings of the work, in the context of the aims and
objectives set out in Chapter 1. Section 7.2 discusses and draws out the main findings of the
application of the framework to the case studies presented and also highlights the implications
of these findings. Thereafter, Section 7.3 evaluates the overall success of the developed
framework in meeting the challenges identified in the literature critique in Chapter 2 and how
the uniqueness of the approach improves upon the weaknesses of the previous applications
identified in Chapter 3.
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7.2 Case Studies Findings

The results of the application of the developed framework to Middlesbrough and London are
presented in Chapters 5 and 6 respectively. The urban areas were chosen specifically to
demonstrate and test the ability of the framework to handle both a medium and large urban

spatial planning problem. This section discusses the main findings of these case studies.
7.2.1 Sustainable Planning Conflicts

As found in the review of the literature (see Section 2.3) the results of the case studies identify
and corroborate a number of instances of conflicting sustainability objectives during the spatial
planning process (Hamin & Gurran 2009), as well as identifying a number of additional
conflicts which have not been reported to date in the literature.

The applications to both Middlesbrough and London identified significant conflicts between
minimising heat risk, fy.q:,» Whilst simultaneously optimising other planning objectives. For the
smaller case study of Middlesbrough the derived spatial plans which maximise accessibility,
min(fy;s:), and prevent urban sprawl, min(fspmwl), focus development in the centre of the
study area in close proximity to the CBD. However, in order to optimally minimise heat risk,
min(freqt), development is predominantly located in the south east of Middlesbrough leading
to worse performances in min(freqr) = faise =1 and = foprqur = 1. This reiterates the
literatutes that the greatest heat risk is to be found in the centre of cities (Graves & Phililipson
2000; Wong et al. 2011; Hunt & Watkiss 2011). Therefore if planners wish to optimise
accessibility and sprawl a higher heat risk has to be accepted. Otherwise, if future heat risk is
the main concern planners need to implement development plans with lower accessibility and

on the urban eprophery leading to urban sprawl.

This trend is continued in the case study for London. However the relationship isn’t as clearly
defined due to the presence of multiple centres of employment and services (represented by
town centres). As a result min(fyeq:) = faise = 0.39 meaning that whilst a conflict exists,
there is the allowance for more of a trade-off with lower heat risk whilst having suitable access
to employment areas. Specifically, London has a number of smaller satellite centres of
employment and services in addition to the large employment centre of the City of London. As
such, spatial development plans that mitigate to some degree heat risk whist still maintaining a
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high spatial accessibility and low urban sprawl can be achieved by strategically targeting
specific town centres; e.g. Bow, Stratford, Greenhill, Wood Green (see Figure 6.14 for more
examples). As these centres of services and employment vary in their capacity and importance,
an interesting inquiry would be whether if this was taken into account it would affect the results.
However, in order to fully minimise heat risk development has to take place outside the urban
centres of London along the river Thames in the East of London leading to undesirable levels

of sprawl (min(fyeqt) = fspraw: = 0.64)Whilst to ensure all development takes place within

the urban extent it increases exposure to heat risk; min(fspmwl) = frear = 0.72.

A key finding of the case studies are the conflicts between adapting to flood risk and heat hazard.
In the case of Middlesbrough this conflict is relatively small with the development strategy for
min(fy.q¢) Only placing two development sites in flood zones in the far south and north of the
study area. However, for London this conflict is much more significant with the best spatial
strategy min(fﬂood) = fheat = 0.65. This is reciprocated to some degree with the spatial
development strategy min(fheqr) = fri00a = 0.16, equating to 19% of dwellings being placed
within flood zone areas to ensure the best minimised heat risk. In London the conflict is a result
of low heat risk areas corresponding to flood zone areas on the side of the Thames (see Figure
6.12), which are likely a result of the cooling effect of the ‘blue infrastructure’ (Voskamp &
Van de Ven 2015). Acknowledgement of such a conflict has not been widely recognised in the
literature. However, a significant number of the world’s largest urban conurbations have
developed around major rivers (Huq et al. 2007). As such, this finding if replicated in other
such cities casts doubt on the ability to fully combat and address heat and flood risk adaptation

simultaneously for future urban development.

As identified in Section 6.6.1 an unintuitive result of the application to London is the conflict
between minimising sprawl and maximising accessibility. The prevalence of a number of town
centres in London means that the most accessible employment and service areas aren’t
necessarily within the currently built up area. This can be seen in the trends for the development
strategy min(f;5¢) in Figure 6.17, with development focused towards boroughs in the extreme
west of London. It also suggests that there is a lack of available development areas within the
existing urban fabric of London that have high accessibility. The consequence of this is that
limiting urban sprawl isn’t synonymous with maximising accessibility, and therefore transport

emissions, as has been asserted in the literature (Bertaud & Richardson 2004; Newman 2014).
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Development plans for both case studies are found which reconcile limiting urban sprawl with
adapting to flood risk; a relationship that has rarely been found in other studies (Sanders &
Phillipson 2003). However, in both case studies there are conflicts with the simultaneous pursuit
of flood risk adaptation and accessibility, a feature that has been found in other studies such as
Hamin & Gurran (2009). This conflict is, however, relatively small for London and
Middlesbrough (min(fgist) = fri0oa = 0.08 and = 0.16 respectively) Thus, it suggest that in
the case of flood risk, which has been recognised as one of the biggest adaption challenges for
the future (House of Commons Environmental Audit Committee 2015), that development can
be designed alongside other sustainability objectives; certainly more so that avoiding exposure
to heat risk which was found to be harder to implement simultaneously with the other objectives.
However, whilst the risk from fluvial (river) flooding is addressed in this study, potential
increased risk associated with pluvial (surface water) flooding and flood from sewers still needs

to be investigated.

The inclusion of maximising brownfield development (represented by fprownrieia) for the
London case study provided a number of interesting outcomes regarding the ability to
implement a widely perceived efficient land use planning policy (Baing 2010). The framework
was able to derive development plans that developed all available brownfield sites whilst
avoiding flood risk; a positive finding given the significant concern in London regarding future
flood risk (Greater London Authority 2011c). Unlike flood risk, maximising brownfield
development was found to conflict with adapting to heat risk due to brownfield sites being
concentrated in urban centres that are the foci of heat (Kazmierczak 2012). Interestingly the

development strategy min(fprownfieta) € Nfpearforownsicra ALEMPLS 1O mitigate this by

developing brownfield sites in close proximity to blue infrastructure such as the main rivers.
However, not only does this lead to increased flood risk (f;00q¢ = 0.10 (see Figure 6.16)) but
it still results in a poorly adapted plan for heat risk (freq: = 0.65). The utility of brownfield
development is dependent on the spatial location of brownfield sites. However the analysis

finds that for London there is sufficient capacity of brownfield outside of flood risk zones.

Maximising brownfield development was found to conflict with the objective of accessibility

to employment (min(fprownfieta) = faise = 0.18). This implies, as has been reported in the

literature, that many brownfield sites on old disused industrial areas, are often significant

distances from current employment hubs (Syms et al. 2003; Kazmierczak 2012); suggesting

that if developed major investment may be needed to provide suitable transport infrastructure
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for access to employment. The importance of where brownfield sites are located with regards
to the spatial form of a city is also highlighted by the finding that brownfield development
conflicted with preventing urban sprawl (fsp,qw: = 0.18). This is surprising as a number of
sources identify brownfield development as a method to limit expansion and external growth
of cities (American Planning Association 2000), so much so that brownfield development is a
mainstream policy for many cities in a number of countries as a means of limiting sprawl (Baing
2010). Indeed, the Greater London Authority (GLA) spatial strategy (GLA 2011) sets a target
of 96% brownfield development for London, while the UK government has reiterated its
importance more broadly with regards to planning development within UK urban areas
(Department for Communities and Local Government 2011a). However, the findings for
London cast doubt as to whether meeting such targets will result in less urban sprawl and a
retention of compact urban form while the population of urban conurbations grow into the

future.

Section 6.4.6 analysed the implications of different regulatory frameworks for development. As
noted in Section 2.3 regulation of development can play a crucial role in ensuring sustainable
development. A number of sources advocate that high density development is necessary to
ensuring high accessibility in urban areas (Newman 2014). However the results of the case
study demonstrate that relaxing density constraints in London, whilst leading to lower average
development density (Figure 6.25 and 6.26), have little impact on accessibility (see Figure
6.24a). These findings add to a growing body of work which show that high density
development doesn’t necessarily increase accessibility and reduce travel distances (Melia et al.

2011; Echenique et al. 2012).

The analysis also demonstrate reductions to heat risk that can be made by reducing development
density; an average 30% improvement in fp., for the spatial plans in N¢, - . This also
supports the finding that high density development increases population heat exposure
(Tomlinson et al. 2011), as well as lower development densities can reduce exposure to heat
risk (Buxton, 2000). Most significantly the results demonstrate that the improvements in
managing heat risk can be achieved simultaneously with achieving a high level of accessibility;
with the Pareto front Nf, ... having an average improvement of 20% in the density
deregulation scenario compared to the business as usual scenario (Figure 6.24a). In the London
case study this is facilitated by strategically locating development in areas further from the heat

island which were previously protected from development. This presents a potential solution
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for planners to better alleviate heat risk which the analysis found to be hard to reconcile with
the other objectives.

Overall the magnitude of these conflicts justifies the effort invested in the application of such a
framework to Middlesbrough and London and highlights the need to consider objectives
simultaneously in an analytical framework during the spatial planning process. This is
especially true of heat risk which Section 2.5.5 and 4.2.3 found to be under-considered in
sustainability appraisals despite the analysis finding it to be heavily conflicted with the other
objectives. Overall the evidence of how these conflicts interact spatially provides useful
information to planners and aid them prepate spatial plans with them in mind.

7.2.2 Optimal Spatial Development Strategies for Sustainable Development

The application of the framework to the Middlesbrough case study identified 568 Multi-
objective Pareto-optimal (MOPO) solutions, defined as outperforming all other found solutions
in at least one of the objectives considered, whilst 31,716 MOPO solutions were found for the
London case study. Planners can choose these plans in the knowledge that there are no other
plans that perform better across the range of sustainability objectives. These MOPO solutions
(shown in Figures 5.18 and 6.20) provide planners with a variety of possible development
solutions which best meet their priorities, including those found on the Pareto fronts between
sustainability objectives. For example when considering heat risk and accessibility, the Pareto

set Ny, ....raise TOr LONdon identifies 65 different plans to best balance their achievement; plans

which maximise either are found alongside plans which balance the two to fj,.q: and fyis: <
0.14.

During the application for London 18,500 spatial plans were found which entirely avoid flood
zones, 420 of which were also best trade-off development plans in the other objectives. In the
case of Middlesbrough 115 development plans, from a total of 570, were found that avoided
any development in a flood risk zone and which were also best trade-offs for the remaining
objectives. The fact that such numbers of MOPO plans could be generated that avoided entirely
any flood risk is a significant finding as it indicates that it is potentially possible to completely
eliminate the risk of flooding which is considered the biggest challenge climate adaption

challenge to the UK (House of Commons Environmental Audit Committee 2015).
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However the main strength of the discovery of these Pareto-optimal plans are the development
strategies and trends which are identified to alleviate a number of planning conflicts. The
plotting of these MOPO spatial plans as density matrixes (see Figure 5.17 and Figure 6.19)
highlights a number of areas which are optimal development locations to meet a number of
objectives. For Middlesbrough the north of the study area is identified as an optimal location
for development which performs well for all four of the objectives considered (Figure 5.17)
providing planners with the ability to balance of minimising heat risk whilst not extending the
urban sprawl or distances to centres of local services and employment. In particular the MOPO
density matrix resulting from the GA run finds twenty one potential development sites which
are developed by > 75% of the MOPO spatial plans.

The trend for optimal development areas is less clearly defined in London. Instead the density
matrix (see Figure 6.19) identifies a number of spatially variable optimal development clusters.
For example, a number of clusters are found within the large brownfield area in the centre of
London (see Figure 6.3 to identify the brownfield site) which balances low heat and flood risk
which is close to a town centre. There are also a number of optimal development areas in the
outer boroughs of London, such as in North Hammersmith and Fulham. In total 104 cells (408
hectares) of available land for development are assigned to by 75% of the MOPO spatial plans
(see Figure 6.20). For both Middlesbrough and London, these Pareto-optimal sites consist of a

third of the average total development area requirement for a development plan.

Overall, despite the existence of conflicts between the climate related and sustainability
objectives evaluated, the framework is able to identify a number of plausible spatial
development plans when considering them simultaneously. Specifically the framework is able
identify a number Pareto-optimal spatial development clusters within each study area from
which planners can construct spatial planning plans which are optimal against multiple criteria
and objectives. The spatial strategies found to balance these varied between the two case studies
assessed reiterating the need found in Section 2.3 for contextualised strategies rather than one
size fits all models of sustainable development. Moreover the assessment of development
against a number of sustainability concepts (the objectives used cover half the aims identified

in Section 2.2) ensures a more inclusive aim of sustainability is pursued.
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7.2.3 Comparison to Current Development Strategies

In both case studies the ‘best’ optimised spatial development plans were considerably different
from those proposed by the planning authorities of Middlesbrough and London. For
Middlesbrough 100% of the optimal spatial configurations found by the Genetic Algorithm
approach outperformed the current spatial development strategy with repsect f}.q:, While the
optimal un-weighted Pareto-optimal spatial plan found by the framework lead to a 59%

improvement in f;;s; and 100% in fqo04-

In London there is a noteworthy difference in the spatial allocation of residential development
between the ‘best’ Pareto-optimal spatial plans and the GLA’s plan (Section 6.6.3). Whilst the
performance of the GLA’s plan wasn’t quantifiable (as the spatial disaggregation of GLA
development plan was not available) the higher development in central London boroughs, such
as Tower Hamlets, Southwark and Greenwich (see Figure 6.17), indicates it insufficiently
maximizes the ability to meet the sustainable objectives investigated. Instead the Pareto-optimal
spatial plans indicate that a general trend away from centrally focused development to
development in the outer boroughs of London is needed to meet these sustainability pressures.

Both of these case studies indicate that planning in these two urban areas is failing to maximise
the sustainability of their plans. This maybe be a result of, and collaborates, the problems
associated with current practice in the sustainability appraisal process identified in Section 2.5.5,
such as failing to sufficiently identify the conflicts which exist between the objectives and
failing to consider a range of different planning options to ensure the best solutions are chosen.
Alternatively the difference in performance may be as a result of ‘satisficing’ whereby planners
select plans on the basis of meeting a baseline criteria rather than looking to optimize their
performance (Simon 1996) (see Section 2.5.2). An example of this can be seen in Section 2.5.4
where development in Manchester was assessed by a criteria of being within 30 minutes of

local services rather than looking to maximise accessibility.

7.2.4 Limitations of the Case Studies

The results of the case studies identify a plethora of knowledge about conflicts in sustainable
spatial planning and best methods to placate them. However, there a number of limitations with

regards to their contribution to the spatial planning field. Whilst the Pareto-optimal spatial plans
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found are more sustainable (with regards to the sustainability objectives assessed) than the
current spatial planning strategies, it should be noted that planning decisions are not taken solely
on the basis of sustainability. In particular, a number of other considerations need to be taken
into account which the framework at present doesn’t address including the cost of development,
the cost of new infrastructure to facilitate new development and, particularly in the case of
London, the cost of remediation of contaminated land needed for brownfield development
(Lange & McNeil 2004). Therefore, if the framework was to simultaneously consider cost as
an objective alongside the sustainability objectives it may identify significant conflicts, with
financially cost effective strategies performing more poorly for the other sustainability
objectives investigated. Indeed, its acknowledged that ensuring sustainability will require
significant investment (Conroy & Berke 2004) and therefore this factor is likely to be a major

factor is choosing where to develop.

Furthermore, qualitative factors often also have a major role to play on deciding the spatial
location of development (Gobster & Ryan 2011). The work fails to consider half the
sustainability aims found in Section 2.2 to define sustainability, including the consideration the
health and quality of life of the cities occupants. Indeed a number of these were identified in
the review of sustainability appraisals (discussed in Section 4.2.3 and summarised in Table A
in Appendix A) but rejected as being inappropriate to be considered spatially and analytically
by the framework developed in this research. These include particular objectives related to the
impact of development on crime, the health and wellbeing of residents and education of
residents. These factors combined might go some way to explain why the plans as proposed by
the local authorities differ significantly from the Pareto-optimal spatial plans. Thus, while the
results of the framework provide a multitude of benefits to sustainable urban planning, the
optimal spatial strategies identifed require further quantitative and qualitative assessment
before they are totally relevant to the spatial planning process.

Currently the results of the framework are limited in scope to the appreciation of residential
land use. Interestingly, the analysis of Middlesbrough found optimal development sites
corresponding with those designated for economic development by the council (Figure 5.22).
This raises the question of whether if these economic and residential development were
considered simultaneously would these areas be found to be more suitable for either. This is
potentially significant as the review of literature identified the placement of residential and

economic development constitutes a significant development conflict (see Figure 2.8).
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Moreover Section 2.2 identifies economic sustainability as a key constituent of urban

sustainability.

Despite the utility of the results of the spatial optimization framework, it should be noted that
humans are not rational actors. It has long been recognized (e.g., Tinbergen, 1956) that there
are both political and analytical aspects to decision making. The political aspect of planning
and sustainable development has been widely discussed in the literature (Richardson 1997;
Stirling 1999; Harriet Bulkeley & Betsill 2005; Sager 2011). This work intends to contribute to
the analytical aspect and whilst useful cannot be considered in isolation. Rather the outputs
from the application should act as an evidence base upon which further qualitative and
quantitative analysis can be applied to develop a final development plan. Indeed a number of
sources have indicated positive reactions from planners to the use of such modelling tools (Xiao
et al. 2007; Keirstead & Shah 2013). Therefore the methods developed in this work but should
be integrated within the wider planning decision making process.

7.3 Discussion of the Multi-objective Spatial Optimisation Framework

From a review of the literature in Chapter 2 a number of considerations for effective sustainable
spatial development were identified that could be addressed by an improved decision support
methodology that had the ability to simultaneously consider a number of sustainability
objectives. Based on this, Chapter 3 identified a number of spatial optimisation approaches
which could be potentially employed to satisfy this including the use of Pareto-optimisation. It
also identified a number of weaknesses of previous optimisation applications such as the failure

to consider risk alongside other sustainability objectives.

In response Chapter 4 presented the development of a Multi-Objective Spatial Optimisation
Framework which consider evolutionary planning of future residential development.
Specifically the Chapter outlines a methodology around using Pareto-optimisation and both
Genetic Algorithm and Simulated Annealing approaches. In addition Section 6.2 outlines a
series of modifications made to the framework to consider and adapt it to the more complex
London application, including investigating variable housing densities during the spatial
allocation of residential development. In this section the strengths and weakness of the
developed approach are considered. In particular the utility to the spatial planning process and

the performance of the optimisation approaches adopted are considered.
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7.3.1 Utility of the Approach

Chapters 5 and 6 demonstrate the ability of the framework to handle both a medium sized
planning problem for Middlesbrough (covering 55 km?) and a larger more spatially complex
planning problem for London (1,572km?). This is a significant improvement over a number of
previous urban applications which were restricted to smaller and/ or synthetic areas; Ligmann-
Zielinska et al. (2005) uses a 20x20 synthetic grid, Masoomi et al., (2012) studied a district in
region 7 of Tehran, Iran, with an area less than 15.4 km? whilst Cao et al (2011), (2012) and
Cao & Ye (2013) cosndier Tongzhou New Town, China, with an area of 906 km? at lower
spatial resolution (400m). In addition a major strength of the approach developed in this work
is the coupling with the sustainability appraisal process. By incorporating real world
sustainability objectives as objective functions to assess during the planning of future
residential development the framework more closely how sustainability is ensured by the
planning process. Indeed the use of widely used and prioritised urban sustainability objectives
(identified from a review of planning literature (see Section 4.2.3)) correspond with a number
of the sustainability objectives currently considered by both Middlesbrough Council and the
GLA during the preparation of their own spatial development plans (with explicit heat risk

objectives being the exception).

This is in contrast with previous applications which focus on a more abstract ideas of
sustainability (see Section 3.5.6) and define sustainability objectives exclusively around
compact city principles through assessing the contiguity of development and compatibility of
land uses to act as an accessibility measure. The former objective is further discredited,
alongside a number of compact city principles, as the results of this work found that optimising
urban sprawl (compaction) and accessibility (characterised as distance to employment and
services) are not necessarily compatible (see discussion of conflict in Section 7.2.1). Indeed the
calculation of shortest path distances over existing road networks from new development to
centres of employment and services using network analysis allows for a more realistic
assessment of accessibility compared to proximity and basic Euclidean distances previously
utilised as a proxy (Ligmann-Zielinska et al. 2005; Cao et al. 2012). Moreover the unique
approach to simultaneously consider a number of sustainability objectives, including risk based
objectives not considered in previous applications, is justified by the significant conflicts

identified between them. As previous applications fail to consider risks in their assessment of
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sustainability they exclude a major urban sustainability consideration in relation to climate

change.

The ability to directly compare and evaluate the results in relation to current spatial
development is a further major advantage of the approach developed in this research. Such
comparison has allowed the work presented here to show that current development plans are
sub-optimal from a multi-objective sustainability perspective. In this regard, the evolutionary
approach adopted to planning in this research meets the requirements of a successful planning
decision support tool as identified in Section 3.5.7 and is in-line with the sustainability appraisal
method demonstrated in Section 2.5.4.

The use of raster grids to simulate the urban landscape successfully allows for the assessment
of derived development plans against spatial properties such as flood zones and greenspaces
across the study area. Whilst representing urban parcels as homogenous cells loses some urban
detail, the spatial resolutions employed (1 ha spatial resolution for Middlesbrough and 4 ha for
London) allows for a balance between realistically representing urban form will providing a
computationally tractable spatial representation from which the optimisation can identify
optimal development patterns. Indeed as Section 7.2.4 discusses, the general spatial pattern of
the Pareto-optimal development locations is arguably the most valuable output of the

framework as opposed to specific development plans.

7.3.2 Appropriateness of the Optimisation Approach

Chapter 4 outlines the methodology for both a Simulated Annealing (SA) and Genetic
Algorithmic (GA) approach to the spatial optimisation application. Both approaches were
chosen as the review of their applications found that they had both been successfully employed
to large urban areas and, as the variables aren’t directly used in the search mechanism, could be
flexibly employed to a number of applications. A SA approach centred on the Thermopolis
equation (Equation 3.16) was developed and complimented by the recommendations of Nam
& Park (2000) to allow for Pareto-optimisation. Meanwhile a GA approach was adapted from
the Non-dominated Sorting Genetic Algorithm Il (NSGA-I1) developed by Deb et al. (2002)
which facilities Pareto-optimisation into the selection procedure.
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Because of the simplicity of the SA approach, and despite the existence of a number of existing
packages, this was developed in-house and tailored around the requirements of the framework.
The ability to control how the location of new development is systematically changed at each
iteration proved a great advantage as it ensured it was placed within discrete areas available
for development. Alternatively the GA approach utilised a bespoke Python module to handle
the evolutionary operators of crossover, mutation and selection. A major weakness of the GA
was problems related to handling the constraints, which collaborates the experience in the
literature (Coello 1999; Deb 2000; Prasad et al. 2004; Konak et al. 2006). This was solved by
redesigning the problem so that constraint violations didn’t occur and ejecting a small number
of solutions from the population. This is fortunate as the use of penalty functions, which most
GA applications have to use (Deb 2000), would have been problematic. As discussed in Section
3.4.7 serious consideration needs to be paid to any penalty function approach with too large a
penalty preventing that area of the variable space being assessed; too small a penalty allows too
many unfeasible solutions to be generated, reducing computational efficiency (Michalewicz
1992; Yeniay 2005).

Crucially both the SA and GA (after a redesign of the problem to handle constraints) offered
the flexibility to handle discrete variables which were necessary to ensure the application was
evolutionary (i.e. limited development to areas not currently developed). The case study in
Chapter 5 found that both approaches were capable of identifying a number of spatial plans
which greatly improved upon the current development plans (see Section 5.5.6). However,
despite the difficulties of adapting the problem to be handled by the GA the comparison of the
results of the framework demonstrated the GA as being superior for this application (see Section
5.5). The GA has a much quicker run time than the SA (collaborating previous work
(Sidiropoulos & Fotakis 2009)) as a result of its dynamic search compared to the systematic
local search method of the SA (10 hours compared to 15 hours respectively), making the latter
unsuitable for larger applications, whilst outperforming it in identifying best development plans
to optimise heat risk and accessibility. In addition, whilst Nam & Park (2000) modifications to
the SA approach allowed for the convergence to and discovery of a number Pareto fronts (see
Figure 5.11), it is significantly outperformed by the Pareto fronts of the GA (see Figure 5.13)
with, for example, an average 29% improvement in performance for Ny, . . . Whilst Nam

& Park (2000) found that its Pareto-optimisation approach for SA performed nearly as well
compared as a GA, the considerable conflict between f,.,: and fs; in this application likely

prevented the full examination and convergence of the Pareto front.
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The use of a Genetic Algorithm (GA) optimisation (using the NSGA-II methodology (Deb et
al. 2002)) for the more complex London case study enabled the derivation of a wide range of
potential development plans to be assessed (890,233 in total), and allowed the discovery of a
number of spatial plans which were optimal throughout the five objectives being considered
(31,716 MOPO solutions, representing 3.5% of the total solutions analysed). The effectiveness
of the evolutionary operators, crossover, mutation and selection allowed for the dynamic search
of development plans leading to convergence on the sustainability objectives considered. For
example, the framework achieved a 73% improvement on average in the Pareto front of
Ni, oo faise dESPIte the inherent conflict and increase of the number of solutions in Ng, . <.
from 10 at initialisation to 115 in the final set. However this was facilitated by the use of biasing
in the initial parameterising where a number of initial development plans were provided
alongside random initial plans to improve the initialisation and speed up the convergence. This
was necessary as during testing the use of completely random solutions was found to have very
poor convergence. Whilst good initial solutions are often cited as a pre-requisite for successful
optimisation application (Cao et al. 2011) it potentially presents a limitation on the utility of the
approach as effort must be taken to inform the initialisation. Despite this, the NSGA-II
algorithm used improved the performance of spatial plan min(f,,ownfieia) (Which was initially
biased to brownfield land) in f..: by 32% during the application demonstrating its
effectiveness. Whilst this was used for flood zone, sprawl and brownfield, the framework was

still able to significantly improve the convergence of N, . - . two objectives unaffected by

the biasing, with an average 68% improvement throughout the application.

The initial parameters, determined by testing, and the mutation operator prevented the
optimisation approach prematurely converging and improvements in the Pareto front continued
up until the final generations. Indeed, a weakness was that the approach terminated after a pre-
determined number of iterations (due to time limitations). Table 6.7 demonstrates that in the
final 50 generations there is still a significant improvement in the Pareto front vy, 7,. ... ... (18 %
on average) suggesting that if the application had been allowed to continue further convergence
may have taken place. With the limitations on time removed, the termination of the application
would ideally be decided by lack of improvement in the Pareto front for several consecutive
iterations. It is accepted that complex problems like this there are a huge number of potential

solutions and in fact heuristics are premised on the basis that it is inefficient to examine every
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possibility (Rothlauf 2011). With this in mind the approach presented here presents a good
estimation of the Pareto front.

A major weakness of the developed framework was the speed of the application. This limits its
potential to provide swift results based on differing inputs. Whilst the GA is demonstrably
quicker than the SA, the run time of over 5 days for the London application is significant. Other
reasons for this are discussed in later sections. However, the construction of the GA approach
is one likely source of the long run time. Section 6.2.1 presents modifications to the GA to
incorporate the investigation of different development densities within the development plan,
but as a result the size of the development plan under consideration increases from a required
number of development sites (a list of 54 discrete locations for the Middlesbrough case study)
to considering the entire area available for development (an array of 3307 elements each related
to a discrete location for the London case study). This likely contributed to a degree of
redundancy as an average of 270 development sites were required to be considered to fulfil the
required number of dwellings. However as a method by which to incorporate differing
development densities the approach is superior to variable length representations requiring

considerable constraint handling and has less redundancy than a grid based representation.

7.3.3 Assessment of the Pareto-Optimisation Approach

Section 3.3 reviewed methods of handling multi-objective optimisation problems and found
Pareto-optimisation (PO) to be the most suitable approach over methods which combine a
number of objectives into a single objective to optimise (weighted sum (WS)). Figures 5.11,
5.12 and 6.11 demonstrate the spatial Pareto-optimal development solutions found for the
combination of the objectives under consideration, while Figures 5.18 and 6.19 demonstrate the
performance of the solutions which are Pareto-optimal throughout the objectives considered
(i.e. Multi-objective Pareto-optimal (MOPO).

In many ways the use of a non-dominated sorting procedure to generate the optimal
development plans provides an unbiased appreciation of the objectives as no initial preferences
are necessary. Thus, in the context of developing a set of tools to aid decision support within
multi-objective spatial optimisation this approach has the advantage that it does not need prior
expert consultation to generate feasible development plans. Instead the approach developed in

this research allows for the determination of a wide range of mathematically determined optimal
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plans in the absence of expert knowledge, from which the derivation and visualisation of the
Pareto-optimal fronts provides a refined sub-set of spatial development plans for decision

makers to investigate further in terms of their relative trade-offs.

The ability to recognise intermediary best trade-off solutions whilst not restricting itself to a
single final solution at each iteration means that the approach in this work is more likely to
converge on robust Pareto front. This is best illustrated in Figure 5.19 where for Middlesbrough

a development plan D € Nf, - . is found which =fp.q; = 0.43 and =fr4;5 = 0.41

despite significant conflict between the two objectives, while for London a D € Nf gise fspramt

is found which =f4;c = 0.03 and = fiprqwi = 0.01 despite the conflict between the
minimisation of both objectives. In such circumstances, it is unlikely that a weighted sum
approach to approximate the Pareto front (described in Section 3.3) would find these, as it is

highly dependent on the initial weighting scheme..

The most significant advantage of using PO for this application is the knowledge it provides of
the interactions between objectives. This was crucial in not only identifying and collaborating
the known conflicts between urban sprawl and heat risk but also the discovery of conflicts
between adaptation to heat and flood risk, as well as between maximising accessibility
simultaneously with brownfield development (Section 7.2.1). The ability of PO to identify these
conflicts meets the requirement set in Section 2.3 to consider potential conflicts between
sustainability efforts whilst the best trade-off information can help ensure decisions are taken
which are win-win in the sense that they maximise the possible performance of chosen plans in
the objectives considered. Moreover the vast quantity of diagnostic information can contribute
to the evidence base on which to make these decisions, aiding the requirement of sustainable
development decisions to be based on localised evidence (see Section 2.3).

As identified in the literature (Sayers et al. 2014) this level of information comes at a large
computational price. The need to assess such a wide variety of development plans to identify a
good distribution of solutions on the Pareto front and within the MOPO set make it necessary
to assess a very wide range of potential intermediary solutions. Indeed for London it was
necessary to assess a total of 890,233 potential development plans in order to ascertain 31,716
MOPO solutions, whilst for Middlesbrough 251,232 potential developments plans were
required to determine 568 MOPO solutions. For this work, the value of the information

identified by this approach far outweighs the problems associated with the long running time.
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A often citied criticism of PO which was identified in the literature review in Section 3.3 and
discussed in Section 6.4.1 is the volume of MOPO solutions found provides a burden on
decision makers to identify final solutions. With the number of MOPO identified this is true of
the both the Middlesbrough and London applications. To address this issue, this work has
employed the analytical hierarchical process (Saaty 2008) to derive a set of weights for
hypothetical planning decisions which are scaled by the trade-offs found by the Pareto-
optimisation, a method suggested in the literature (Deb 2001). These weights are then used to
filter the MOPO sets to determine a single solution for each hypothetical planning decision.

Using this approach, the ‘Low Risk City’ development plan which managed to achieve ff;404
and freqr Values of 0.23 and 0.25 respectively. In the case of the ‘Balanced City’ development

plan all the objectives were < 0.52.

These results are is in contrast to an example in Section in 5.5.7 where the assigning a set of
preference vectors (weights) (Table 5.11) in the absence of considering the conflicts between
objectives leads to highly unrepresentative resulting plans. Because of the conflict with heat
risk in Middlesbrough unscaled weighting of the Pareto-optimal solutions produces plans which
fail to balance their performance in fi,.q¢, i.€. equal priorities = fi,.q.: = 0.76 (see Figure 5.24).
This supports the literature that the effective choice of weighting is hampered by a lack of
knowledge of how objectives interact (Deb 2001; Prasad et al. 2004). Indeed, it is unlikely
without prior knowledge of the conflicts that a weighted sum approach would have been able

to find the spatial plans extracted in Section 6.6.5.

7.3.4 Choice of Software Platform

The use of the Python programming language allows for a powerful and flexible platform for
the framework outlined in Figure 4.1 with the development of a number modules to handle
specific tasks. In particular modules were developed to evaluate the development plans
investigated and to ensure constraints on the search. Meanwhile the interoperability of the
Geospatial Data Abstraction Library (GDAL) with Python makes the platform highly suitable
for handling spatial problems compared to other platforms such as Matlab (Venkataraman
2009), which limit the potential input formats and have limited operability. In particular the
ability to handle and import spatial data allowed development plans to be compared to spatial
fields such as the heat and flood hazards.
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The flexibility of the python language allowed the development of a number of bespoke
functions for the SA approach, whilst the availability of the existing module Distributed
Evolutionary Algorithms for Python (DEAP) (Fortin et al. 2012) provided a number of key
evolutionary operators for the Genetic Algorithm optimisation. The presence of this and several
other bespoke optimisation modules makes Python particularly suitable for optimisation
applications. The interoperability with the Matplotlib module was essential in visualising the
outputs of the framework. Although a user interface wasn’t developed in the course of the work
of this thesis, the PyQt module offers significant potential to develop a bespoke graphical user
interface within python (Harwani 2013). Finally, while python is often reported to have better
run times than other interpreted languages (Matott et al. 2011), the issue of computational
efficiency may be addressed by developing the complex numerical functions (e.g., the non-
dominated sorting) within an language such as C++ and then developing a wrapper for this
within Python in order to speed up execution times (Josuttis 2012).

7.4 Conclusion

In conclusion, the results of the case studies collaborates a number of the sustainability conflicts
which exist in the literature. In addition the results of this research identify a number of conflicts
which planners should consider, including increased flood risk from using blue infrastructure
to alleviate heat stress and the potential of brownfield development to actually increase urban
sprawl. With this in mind, the spatial optimisation approach developed in this work can derive
spatial development patterns which best meet and dissipate conflicts across a range of
objectives whilst identifying plans which best meet specific priorities. Indeed the work finds
that a number of sustainability objectives can be optimally met simultaneously and there exists

a number of development trends which are universally optimal across the objectives.

The utility of the framework to the issue of sustainable urban spatial planning is enabled by the
novel approach of assessing climate related risk objectives alongside planning objectives
providing crucial information in how they relate spatially. Moreover the methodology mimics
that of the sustainability appraisals, allowing for a more realistic interpretation of results in
relation to the process of sustainable urban planning.
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Lastly, with regards to the methodology, the work finds that genetic algorithms are well suited
to handle the large multi-objective problem that sustainable spatial planning presents. Moreover
the use Pareto-optimisation to identify a number of Pareto-optimal solutions provides a
multitude of benefits including, but not limited to, an un-biased range optimal potential
development plans from which planners can select, including a number of best trade-off spatial

plans, as well as a plethora of diagnostic information on planning conflicts.
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Chapter 8 Summary, Conclusions and Future Work Recommendations

8.1 Introduction

The aim of this research is to generate an optimisation based methodology for decision support
to assist urban planners enable the transition of cities to be more climatically sensitive and
sustainable by accounting for a range of different, and often competing, policy objectives. To
achieve these the following objectives were to be addressed:

1. Review the field of sustainable urban planning in order to recognise the conflicts and
barriers that can occur during the transition to more sustainable cities and the best
methods to overcome these;

2. Recognise the major spatial planning objectives and aims of sustainable urban planning
to be addressed by this work;

3. Review the field of algorithmic optimisation, in particular their application to urban
spatial planning and infrastructure assessment, to identify a series of suitable
optimisation approaches for addressing the sustainable spatial planning of cities;

4. Develop a spatial optimisation framework, consisting of the approaches identified by
objective 3, to enable and act as a decision support tool for planners to meet the
objectives identified in objective 2;

5. Apply the optimisation suite developed to several real sustainable urban planning

problems to demonstrate the utility of the spatial optimisation approach developed.

The following section describes how these objectives have been met whilst Section 8.3 outlines
the implications and main finding resulting from the thesis. Lastly Section 8.4 chapter outlines

a number of key future research themes associated with the work.

8.2 Summary

The first objective was achieved by performing an extensive review of literature concerning
urban sustainability. The review found that whilst urban sustainability is typically characterised
around economic, societal and environmental sustainability the increasing likelihood of climate
change, and their impact on urban areas, is necessitating a wider definition which also considers
climate change adaptation and mitigation. In addition the review of sustainable urban forms it
was found that models of fail to address sustainability as a whole as sustainability initiatives
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often conflict and negatively affect one another. Instead cities should instead incorporate a wide
range of effective development strategies to address their specific sustainability concerns which
should be determined on the basis of localised evidence. This was found to be best achieved
through the methodology of sustainability appraisals whereby a number of sustainable options
for urban areas are investigated. However, the review identified a number of issues with the
current methodology such as lack of joint assessment of the relationship between objectives. In
conclusion the review found planners require sophisticated decision support tools which
support complex multi-objective decision making in terms of assessing a wide range of

alternatives to ensure the best solutions are found to maximise future sustainability.

To meet objective 2 an extensive review was performed of sustainability appraisals in relation
to the spatial planning of urban areas. Section 4.2.3 summarises this review with the full review
presented in Table A in Appendix A. Special care was taken to; (i) recognise the key urban
sustainability objectives considered during sustainable urban planning, (ii) recognising in this
list those that are important within a spatial planning context, (iii) recognising in this set the
subset that can be addressed within a spatial optimisation framework. The final set consisted of:
(1) minimizing risk from future heat waves; (ii) minimizing risks from future flood events; (iii)
minimizing travel to reduce transport emissions; (iv) minimizing urban sprawl; and, (v)
preventing the development of greenspace. By considering both traditional sustainable planning
objectives (iv and v) alongside with those related to risk (i and ii) and emission mitigation (iii)
the sustainability objectives investigated met the broader definition of sustainability identified
in objective 1. The objectives are formally defined by Equations 4.2-9.

Chapter 3 presents a review of the field of algorithm optimisation with particular emphasis on
their contributions to spatial and urban planning applications. The review found that the
optimisation of multiple objectives is best supported by Pareto-optimisation where a wide range
of best trade-off solutions are returned without the need to pre-determine a set of preferences.
A review of spatial optimisation search mechanisms identified two promising optimisation
approaches. Simulated Annealing iteratively assesses a wide range of solutions with a search
mechanism which mimics the cooling of a metal to decrease the probability of accepting inferior
solutions and converge on optimal solutions. Genetic Algorithms evolve a number of solutions
by combining the attributes of those find most optimal to produce a new set of solutions with
the intention of deriving optimal solutions. These were chosen as potential approaches as

they’ve been proven to be efficient for large urban applications and are suitable for Pareto-
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optimisation. The review concluded that there is a research gap for the use of spatial
optimisation to address multiple real world sustainability objectives (particularly climate risk
adaptation) for sustainable development of urban areas that resembles the planning decisions

faced in the future.

To meet objective 4, Chapter 4 presents the methodology for a Multi-Objective Spatial
Optimisation Framework. The framework was developed using the Python programming
platform and consisted of a number of modules (outlined in Figure 4.1). These included a
Spatial Optimisation module to drive the search for optimal spatial set ups of future residential
development using both a Genetic Algorithm and Simulated Annealing (identified by objective
3) approaches. An Evaluation module was developed which assess the performance of derived
development plans against the real world sustainability objectives (i-iv). The Python extension
PyRaster in conjunction with the Geospatial Data Abstraction Library enabled the handling of
spatial data to calculate the performance of future development plans against the chosen
sustainability objectives from objective 2 with respect to their local spatial properties. Lastly an
Output module is developed to handle the Pareto-optimisation through a non-dominated sorting

algorithm and the identification of Pareto fronts between the objectives considered.

Lastly to meet objective 5, Chapters 5 and 6 present applications of the framework to preparing
future spatial plans for Middlesbrough and London respectively, representing medium and large
sized urban areas (54.55 km?and 1,572 km? respectively). Current planning documents were
examined to formulate the planning problem to be incorporated into the framework to optimise.
Spatial datasets were collated for both urban areas, including the identification of areas

available for development and grids to represent climate risks.

The framework was applied to the planning problem for Middlesbrough using the two
optimisation approaches developed in Chapter 4. Development strategies were found which
optimally address a number of sustainability pressures such as flood risk and preventing urban
sprawl. However, major conflicts were found for heat risk adaptation against other objectives
and preventing urban sprawl and maximising accessibility. Despite this the analysis found that
development strategies focused in the North of the study area are able to balance these and
provide best trade-offs. Both optimisation approaches were able to identify Pareto fronts
between the sustainability objectives being considered and develop a number of these best

trade-off plans. Although Simulated Annealing was found to applicable to the spatial planning
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problem its long run time rules out its use for larger applications. However, the Genetic
Algorithm was found to have a much better search performance and was used for the London

application.

The common planning goal of developing brownfield sites was included into the analysis due
to the availability of a dataset for London. During the analysis, conflicts between adapting to
heat risk and preventing urban sprawl were found. However, the presence of multiple town
centres within London’s urban extent allows for strategic placement of development to limit its
conflict with accessibility. The presence of the River Thames provides a conflict between
developing in low heat areas on its banks and avoiding flood zone development. However a
best strategy to adapt to heat risk is found by the framework with 81% of development outside
of flood zone areas. Lastly the analysis is unable to reconcile this planning goal with preventing
urban sprawl or maximising accessibility and the analysis found that brownfield development
exposes residents to the urban heat island effects. Recognising these conflicts the framework
presents best strategies to mitigate their impact based on the preferences of the planner. The
analysis identifies a number of optimal development areas which are optimal throughout the
objectives. Unfortunately these are not sufficient to fully meet housing requirements, therefore

planners must make a decision with respect to preferences.

8.3 Implications and Key Findings

In the transition to sustainable urban areas it is crucial to simultaneously aim for and consider
a broad spectrum of sustainability. However the complexity and high dimensionality of such a
requirement necessitates the use of support tools for urban planners whilst the ability to handle
large datasets and computing power provide huge potential for improving the decision making
process. Overall the results presented in Chapters 5 and 6 and discussed in Chapter 7 have
demonstrated the utility of spatial optimisation to the field of sustainable urban spatial planning.
The discovery of a number of planning conflicts justifies the need for such a decision support
tool, whilst the ability of the developed framework to prepare optimal development strategies
in the presence of conflicting sustainability objectives justifies the approaches employed. The
work is novel in that it assess development against a number of real world objectives and
focuses on areas available for development, mirroring the sustainability appraisal process to
support the spatial planning process. This allows for the derivation of future development plans

which are climatically sensitive as well and sustainable in terms of efficient land use and travel.
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The research presented in this thesis contributes a number important findings for urban planners
and other stakeholders. Firstly it corroborates a number of sustainability conflicts that are
identified in the literature, for example limiting urban sprawl and maximising accessibility
while adapting to heat risk. In addition the research identifies less acknowledged conflicts

between ‘blue infrastructure’ to combat heat risk and minimising exposure to flooding.

Whilst the tradeoffs and impacts vary according to city, the optimisation framework is shown
to be transferable and scalable. Data permitting it could be applied to a range of city types,
regions and perhaps even national scales. Moreover optimal spatial plans are mathematically
determined, providing an unbiased assessment for stakeholders to fully consider a range of
alternatives. Lastly the resulting diagnostic information provides a significant evidence base so
planners can make their decisions in full knowledge of the tensions between objectives and best

trade-offs.

The results of the application to London questions the ability to pursue efficient land use
through brownfield development whilst effectively meeting other planning objectives such as
accessibility and adapting to heat risk. The results also contribute to the body of evidence which
casts doubt on the ability of compact city principles to constitute a sustainable city. The analysis
finds that containing urban sprawl isn’t synonymous with maximising urban sprawl for London
with several centres of services and employment whilst analysis under differing regulations
found high residential density wasn’t necessary to maximise accessibility. Instead, the results
found that strategic extensions of the urban extent can increase accessibility whilst the
relaxation of density restrictions allows for better heat risk adaption alongside equal levels of

accessibility.

The discovery of these findings are a direct result of the novelty of the approach to consider a
number of objectives from a spectrum of sustainability challenges. From the author’s
knowledge no previous research has sought to optimise traditional planning objectives with
risk-based objectives. The analysis also highlights the importance of considering the spatial
structure for modulating risk and sustainability objectives during the planning of future
development. The mimicking of the spatial planning process allows for direct comparisons with
current development strategies and finds that existing plans for Middlesbrough and London fail

to meet a number of sustainability pressures.
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Overall, the thesis provides a number of key contributions to the field of sustainable urban
spatial planning. Specifically it provides; the development of a spatial optimisation decision
support methodology which considers a range of real world sustainability objectives;
applications of the methodology to two real world urban areas, including London an epicentre
of sustainability concerns; analysis from the application collaborates a number of sustainability
conflicts as well as identifying a number not currently identified; and, the basis for a

optimisation based decision support tool to aid the spatial planning process.

8.4 Further Research

Despite the utility of the Multi-Objective Spatial Optimisation Framework developed in this
research, the work could be improved and extended in a number of ways, both in terms of the
methodological approach employed and in terms of the applications it can address. In particular
there are a number of limitations identified in Section 7.2.4 and 7.3.5. In this section a number

of research directions are discussed and evaluated.

8.4.1 Inclusion of Further Infrastructure

An intuitive next step in the work would be the inclusion of spatial allocation of economic
development into the framework. The reason for this would acknowledged the conflict between
of economic and residential development (as set out in the planner’s conflict (see Figure 2.8)).
Furthermore as Section 2.2 sets out sustainable economic activity is a critical element of overall
sustainability. The framework is currently designed in such a way that this can be facilitated by

incorporating a designated economic allocation, e, within D:

Dn= [ ddens e 0 ddens . e 0 ddens ddens ]

d = Residential development e = Economic development

Constraints would need to be defined for e € D based on maximum and minimum required
amounts of economic development land. The designation of economic development within the
development plan can then be assessed against a number of economic sustainability objectives.
For example, the Greater London Authority (2011) sets out objectives to ensure the location of

economic activity is in highly accessible areas and sets a target of 50% of economic sites within
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outer London to ensure it is more closely located to residential areas. Crucially by this
simultaneous consideration both residential and employment development the framework can

more effectively reduce travel times by locating them in proximity to one another.

Furthermore to enhance the planning of transport infrastructure alongside new residential
development, decisions on transport planning (i.e. bus routes, planned roads and light rail
stations) could be simultaneously incorporated by the framework. This could potentially take
the form of two simultaneous optimisation applications, where residential and economic
development is allocated whilst transport decisions are optimised at each iteration to meet these
new spatial requirements. Section 3.5.3 outlines a number of optimisation applications to urban
transit/ transport networks (Kepaptsoglou & Karlaftis (2009) provides an extensive overview)
which could be incorporated into the framework with the nodes within the network storing the
attributes of the land parcel/cell it spatially correlates with (to identify increased passengers
from proposed development). This would allow for the simultaneous assessment of
development plans alongside transport planning, ensuring it is located where most needed,
leading to further joined up development strategies which Section 2.4 found to be crucial to

ensure the transition to sustainable cities.

8.4.2 Further Qualitative and Quantitative Assessment

Although the objectives used in this research represent a broad range of risk, mitigation and
current planning objectives, in practice the sustainability credentials of future development are
assessed against up to 15 objectives (Atkins 2009; Essex County Council 2010; Middlesbrough
Council 2013b). The review of planning sustainability appraisals described in Section 4.2.3
found a significant number of these are qualitative (see Appendix A), including quality of life
indicators and objectives to improve health. Whilst Section 4.2.3 disregarded their use for the
scope of this work, it is worth considering a proxy for these such as a generalised quality of life
objective based on distance to amenities such as greenspace and education, while the highly
prioritised health based sustainability objectives could be represented by an accessibility

measure to existing general practitioners and hospitals.

As Section 7.2.3 discusses, there are considerable variations between the two local authority’s

current plans investigated and the Pareto-optimal spatial plans found by the framework which

may be as result of other considerations outside of those investigated, such as the cost of land.
221



As a reflection that decisions aren’t solely made on the basis of sustainability it would be
worthwhile incorporating a number of further objectives outside the realm of sustainability into
such an optimisation framework, including the effect on the landscape as well as health and
education outcomes. Indeed a number of previous optimisation applications consider cost as
one of their objectives (Woodward et al. 2013; Sidiropoulos & Fotakis 2011). However, it is
worth considering that the inclusion of further objectives to evaluate development plans will

lead to further computational intensity so these should be as simple as possible.

A number of improvements could also be made with regards to the parametrisation and
implementation of several of the sustainability objectives employed in this research.
Accessibility measures could be improved through the use of a Generalised costs to represent
more realistic travel times (which incorporates the cost of public transport) (Ford et al. 2015).
In addition the framework could utilise more advanced assessment of climate risks of proposed
development. For example Willems et al. (2012) identifies a number of advanced methods for
assessing the impact of extreme rainfall events which could be used to plug the gap, identified
in section 7.2.1, in the frameworks risk assessment methodology to incoprate an assessment of
the impact of proposed development on pluvial (surface water) flooding. Moreover Weitzman
(2009) describes a series of methods to intelligently gauge the economic impact of climate
change events which could be used for the assessment of economic development within the
framework. However there needs to be trade-off between with the complexity of sustainability
evalutaiton to ensure the application can be carried out in a realistic time framework and that
optimisation can search through a wide enough alternative to be effective and return globally

optimal solutions.

Although a number of sustainability considerations can be considered through the spatial
distribution of development a several interventions aren’t exlusively spatial, for example the
use of retro-fitting to make buildings more energy efficient (Kazmierczak 2012) and the raising
of flood defences to reduce flood risk (Woodward et al. 2013). These considerations could be
incorporated into the framework as decision variables to provide a more holistic choice of
sustainability interventions alongside the spatial layout of the urban area. For example this
could test the dissipating of heat risk from urban densification by coupling it with dwelling
retro-fitting (Krebs et al. 2010; Carter et al. 2014) or utilise development sites close to blue
infrastructure to alleviate heat risk and then use flood defences to minimise the subsequent flood

risk. As the framework can currently handle discrete variables encoded decision variables can
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be facilitated into the variable set. For the two sustainable interventions given, decision
variables could relate to specific heights of defences for discrete potential locations and

investment levels for retro-fitting for wards.

8.4.3 Temporal Optimisation and Handling Uncertainty

A worthwhile addition to the research would be the inclusion of a temporal aspect to the
optimisation as a reflection that a number of sustainability interventions are time dependant, i.e.
may negatively affect sustainability in the short term but allow for positives in the long term
(Keirstead & Shah 2013). For example a traffic bypass which increases emissions initially but
allows for lower overall emissions over time by reducing congestion (Wood et al. 2007).
Proposed development plans could be assessed over a period of time with the optimisation
function redeveloping plans based on the performance throughout the time frame. This mirrors
the approach taken by Woodward et al. (2013) which tests a portfolio of decisions over time.
The impact of development on accessibility and car emissions over time could be handled by
Agent Based Modelling (see Section 3.5.5) to model how the movement of pedestrians and
auto-mobile traffic react based on the location of development and increased population.

With the incorporation of a temporal aspect to the optimisation, it provides an opportunity to
handle uncertainty which is a major issue for decision support tools associated with
sustainability (Dorini et al. 2011). There is a significant degree of uncertainty with regards to
any future climate projections (Jones et al. 2009) including those used to represent climate
hazard data for the evaluation of both heat and flood risk. Whilst the hazards investigated are
spatially consistent (see Jenkins et al. (2014) for heat hazard data for Middlesbrough and
Lauwaet et al. (2015) for London), the magnitude of the event can vary significantly influencing
how planners prioritise these the objectives. Therefore it would be worthwhile testing the
adaptation of the derived development plans for their impact over a range of magnitudes to test
its performance for a number of potential future climate change induced events. This would
provide information on whether the proposed adaptation methods perform well across a number
of potential scenarios. In addition there is uncertainty in the modelling of accessibility and
transport related emissions which could be handled by testing a number of future population

and traffic projections.

It should be noted that this would greatly increase the computational requirements. A possible

solution would be the use of parallel computing which involves breaking down large problems
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into multiple problems which are processed simultaneously and has been used extensively to
handle highly complex computational problems (Navarroa et al. 2014). The approach outlined
in this work lends itself well to this with solutions sets tested under a set of future projections

0N separate processors.

8.4.4 Further Decision Support

Suitable visualisation to aid the interpretation of results is a critical part of a decision support
tool (Kapelan et al. 2005a), and are particularly important in high dimensionality Multi-
objective Pareto-optimal applications where understanding results present a significant
challenge (Xiao et al. 2007). Although Chapters 5 and 6 utilise a number of methods to visualise
the results of framework, including the plotting of Pareto fronts and parallel line plots, the
incorporation of further objectives would likely compound efforts to compare and contrast the
performance of spatial plans across all of the objectives. A number of further visualisation tools
exist in the literature which could aid interpretation. Figure 8.2 demonstrate a selection of
visualisation tools to convey the results of higher dimensionality problems. Figure 8.2a shows
the use of radar graphs by Kumar et al. (2013) to convey the performance of different
development strategies over a wide number (15) of sustainability objectives. Meanwhile Figure
8.2b demonstrates a intuitive method used by Fu et al. (2013) using colour scales, graduated
symbols and orientation to increase the dimensionality of 3D Pareto front plots to represent 6
objective dimensions. As discussed in Section 7.3.4 the Python platform provides a number of
visualisation packages and a user interface could be easily developed in conjunction with the

framework which incorporated and extended the visualisation methods considered above.

As already mentioned, the utility of the framework to planners would be greatly improved by
the development of a user interface allowing for better exploration of plans. Xiao et al. (2007)
details a suitable blueprint for a generalised user interface for spatial optimisation applications
as shown in Figure 8.3. They idealise that planners can pick specific plans based on their
performance on a range of Pareto fronts then compare their performance across a range
objectives with other selected plans using a parallel line plot. In particular Xiao et al. (2007)
identifies the ability to identify spatial plans which display close performances but vary
substantially as an informative comparison tool (Bennett et al. 2004). This provides an effect

platform to compare and contrast the results of the framework. Ideally in a more formal
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planning support tool it would incorporate the full set of data necessary to develop spatial plans
geared towards helping the decision maker make the best decision.
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Appendix A Review of Sustainability Appraisals

Table A 1 List of sustainability objectives outlined from a review of spatial planning documents.

Field
Environmental

Transport

Land wuse and
Planning
Community and
Health

| Sustainability

Minimise the loss of open space, increase urban greening and improve
green infrastructure

Mitigate environmental costs of new development through sustainable
development materials

Increase energy generated from renewable sources

Protection of biodiversity habitat

Improve blue network

Improve/ ensure good air quality

Protect and enhance geodiversity and biodiversity of soil.

Reduce flood risk/ prevent development in flood plains

Adapting to and mitigating against climate change

Living within environmental limits

Avoid new development in those areas likely to be vulnerable to the
impacts of climate change

Increased resilience of infrastructure (transport, water, drainage)
Maximising opportunities from positive impacts of climate change in the
Region.

Promote passive solar use and energy

Conservation management of bush land

Wildlife corridor enhancement

Reduce and manage contaminated sites

Protection of coastal & marine systems

Combat cause of Climate change/ decrease GHG emissions

Protect water quality

Minimise noise pollution levels

Achieve a reduced reliance on the private car and a more sustainable model
split for journeys

Improve accessibility to jobs, facilities, goods and services

Sustainable transport provision

Minimise emissions from transport

Affordable transport provision

Encourage cycling and walking potentially by designing streets to deter
cars

Reduce traffic

Reduce the need for people to travel

Efficient use of land through development taking place on previously
developed land (brownfield)

Compact and high density development

Make more productive use of land

Increased provision of sustainable transport modes

Decentralised energy supply systems

Land uses which help capture carbon

An increased supply of housing including affordable homes
Improve health and reduce health inequalities

Reduce economic exclusion

Improve provision of social infrastructure and related services
Protect and enhance heritage, historic environment and landscape.
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Sources (see below)
1,2

w w

o o1 o1 Ol

5
4-79
4,6-9
6,10

1,359

3,10
2,4,6,7,10
2,8,10

2

2,5

3,7
9

1,6,7,9

1-3
2,3
3,7

1,3,6,7,9
1,3-9

1,7

1
1,3,4,6-10




Improve the quality of housing 3,8
Reduce crime and the fear of crime 3-8
Increased public involvement in decision making and civic activity 2,35
Sustainable communities 4
Minimise social exclusion/ poverty and increase social cohesive | 2,5-8
communities
Provide equal and adequate education opportunities and access to services | 2,6-8
Enhance a sense of community ownership/ involvement 5-7,9
Promote area as a fun place to live 5
Community access to information and responsibility on sustainability | 5,6
issues
Development of triple bottom line accountability 5
Sense of place and satisfaction 6
Promote healthy and active lifestyles 6,8
I

Economic Strengthening and sustaining economic activity 1,4,7-10
Ensure that there is sufficient development capacity in the stock market 1
Increase in the number of jobs located in high accessibility areas 1
Developing a more sustainable employment market 4
Sustainable economy 6,8-10
Promote investment in skills and learning 6
Rewarding and satisfy employment 8
Efficient patters of economic growth 8

-

Resources Increase in waste recycled or composted and 1-3,5,7
Elimination of waste to landfill 1
Reduce amount of waste produced 2,3,5-8
Better use of resources 3,7
Increase household recycling 1

Improve educational achievement and the skills/ qualifications of the | 3,4,7,8
population/ workforce

Minimise demand for water consumption through efficiency and | 1,6,8
conservation methods
Energy efficiency of new developments through planning and design; 3,6
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Appendix B Evaluation Modules

B.1 Middlesbrough Framework Evaluation Module

The evaluation module receives spatial plans of development and determines the performance
against a series of objectives. Before calling the module, development plans, D, in the form
[(G, ), ), @, j)...] are spatial located onto a gridded spatial plan
[[0,0,0...],[0,1,0..],[0,1,1..]] to be directly assessed against the inputted spatial grids for

floodzone etc.

# -*- coding: utf-8 -*-
Evaluate 25/05/15
Author: Daniel Caparros-Midwood

This module forms the evaluation portion of the spatial optimisation framework
for the Middlesbrough Cases Study. It takes development plans plotted against the
stuy area and returns their performance in the following objectives:

9. 1. fheat

fflood

fdist

fsprawl

fgreenspace

oONOOUVThA WNER

=
N
v h wN

15, e

17. import numpy as np # Module to handle mathematical calculations
18. import rasterIO # Module to handle spatial datasets

19.

20.

21. def Calc_fheat(Spatial_Plan, PopDens, Data_Folder):

22. """ Calulcates a heat risk value for the spatial plan. The vulnerability raster

23. is updated with the increased population resulting from the proposed spatial

24, plans. A comparison is then taken between the original and future heat risk

25. by multiplying heat hazard by the current and updated vulnerability dataset.

26. R

27

28. Heat_Hazard = rasterIO.readrasterband(rasterIO.opengdalraster(Data_Folder+'H
eat_Hazard_1e0m.tif') ,1)

29. Vulnerability = rasterIO.readrasterband(rasterIO.opengdalraster(Data_Folder+'vVul
nerability_1eem.tif') ,1)

30.

31. # Combining the increase in population spatially to current population

32. Spatial_Plan_Pop = np.multiply(Spatial_Plan,PopDens)

33. Future_Vulnerability = np.add(Spatial_Plan_Pop, Vulnerability)

34.

35. # Calculate the current heat risk to calculate the increase associated

36. # with this spatial plan

37. Current_Risk = np.multiply(Heat_Hazard, Vulnerability)

38. Current_Risk_Sum = np.sum(Current_Risk)

39. # Calculate future heat risk based on the spatial appropiation of increased

40. # population

41. Future_Risk = np.multiply(Heat_Hazard, Future_Vulnerability)

42. Future_Risk_Sum = np.sum(Future_Risk)

43, # Objective function is the difference between the risks

44, fheat = Future_Risk_Sum - Current_Risk_Sum

45.
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46.
47.
48.
49.
50.
51.
52.

53.
54.

55.
56.
57.
58.
59.
60.
61.

62.

63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.

88.
89.
90.
91.
92.

93.

94.

95.
96.
97.
98.
99.
100.

return fheat

def Calc_fflood(Spatial_Plan, Dwellings, Data_Folder):
""" Calculates the aggregate flood risk to dwellings

Flood_Hazard = rasterIO.readrasterband(rasterIO.opengdalraster(Data_Folder+'Fl
oodzone_l100m.tif') ,1)

Vulnerability = np.multiply(Spatial_Plan, Dwellings) # Assing the number of dwe
1lings to each cell
fflood = float(np.sum(np.multiply(Vulnerability, Flood_Hazard)))

return fflood

def Calc_fdist(Dev_Plan, Data_Folder):
""" Calculates the average distance of proposed development to a CBD.
A pre-
processing module calculates the shortest path distance from all possible
development sites which is stored as a fdist lookup. Based on a proposed develop
ment
the function lookups the shortests paths for proposed development sites
and returns an average

import fdist_lookup
fdist_values = fdist_lookup.fdist_lookup

# Creating an aggregate of the shortest paths
agg _dist=0
for dev_site in Dev_Plan:
# Find its corresponding feature in the fdist lookup list
for site in fdist_values:
if dev_site==site[0]:
# Add the shortest path to this site to an aggregate variable
agg dist+= site[1]
fdist = agg dist/len(Dev_Plan)
return fdist

def Calc_fsprawl(Spatial_Plan, Data_Folder):
""" Calculates the numbers of proposed developed sites which fall within
the defined urban extent. This is compared to the total number to calculate
a percentage outside the urban extent

Urban_Extent = rasterIO.readrasterband(rasterIO.opengdalraster(Data_Fold
er+'Urban_Extent_100m.tif') ,1)

# Calculates total numberof development sites
No_Sites = float(np.sum(Spatial_Plan))

# Calculate the number of sites which remain once its multiplied by the urban ex
tent measure

# Urban areas are 1 and others are © so dev sites outside it are lost in the cal
culation

No_Sites_WithinUrban = float(np.sum(np.multiply(Spatial_Plan, Urban_Extent))/10
o)

# We then use the difference between the number of development sites and
# those which correspond with the urban extent to calculate a %
fsprawl = (1 - (No_Sites_WithinUrban/No_Sites))*100

return fsprawl
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B.2 London Framework Evaluation Module

The evaluation module to evaluate the performance of spatial plans developed by the
optimisation framework for London is shown below. There are a number of changes from the
original evaluation module. The calculation of the objective f,,ownfiera IS NOW coded

# -*- coding: utf-8 -*-

Evaluate - 25/05/15
Author: Daniel Caparros-Midwood

AUV h wWNBR

Evaluate module for use with the Spatial Optimisation Framework. Used for the London

7. Case study. Takes a development plan outputted by the Optimisation module and
8. assesses them against the series of objectives:

9. 1. fheat

10. 2. fflood

11. 3. fdist

12. 4. fsprawl

13. 5. fbrownfield

14, mn

15.

16. import numpy as np

17.

18.

19. def Calc_fheat(London_Dwell Plan, Data_Folder):

20. """ Calculates the average exposure each dwelling is subject to. This is done
21. by multiplying the heat hazard array and dwell plan to calculate the aggregate
22. heat hazard exposure.

23, win

24,

25. Heat = (np.loadtxt(Data_Folder+"Heat_Hazard.txt",delimiter=",")).tolist()
26. Heat = [float(i) for i in Heat]

27.

28. #Calculate the total heat hazard experience by the total dwellings

29. HeatRisk = np.multiply(London_Dwell Plan, Heat)

30.

31. # Then divide this by the total number of dwellings in the spatial plan

32. HeatRisk_per_Capita = np.sum(HeatRisk)/np.sum(London_Dwell Plan)

33.

34. # Returns the per dwelling heat hazard exposure

35. return HeatRisk_per_Capita

36.

37. def Calc_fflood(London_Dwell Plan, Data_Folder):

38. """ Calculates the average flood risk experienced per dwelling. Multiplies
39. the dwell plan by the floodzone array to determine aggregate flood risk then
40. divide it by the number of dwellings to

41.

42. NOTE: Floodzone 1 in 100 and 1 in 1000 represented by 1 and 0.1 respectively
43. win

44,

45, Floodzone = (np.loadtxt(Data_Folder+"Floodzone.txt",delimiter=",")).tolist()
46. Floodzone = [float(i) for i in Floodzone]

47.

48. # Values are 10 and 1 in raster so reducing them

49. Floodzone = np.multiply(Floodzone,0.1)

50.

51. FloodRisk = np.multiply(London_Dwell Plan, Floodzone)

52.

53. # Calculating a per capita metric as per heat in order to

54. FloodRisk_per_Capita = np.sum(FloodRisk)/np.sum(London_Dwell Plan)

55.

56. return FloodRisk_per_Capita
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57.
58. def Calc_fbrownfield(London_DwellPlan, Data_Folder):

59. """ Calculate the number of proposed development sites which don't fall on

60. brownfield sites

61. Target in London Plan is 96%, not enforcing this, will just use it as a

62. comparison.

63. e

64.

65. Brownfield = (np.loadtxt(Data_Folder+"Brownfield.txt",delimiter=",")).tolist()

66. Brownfield = [float(i) for i in Brownfield]

67.

68. # Calculate the number of proposed sites

69. Total _Dev_Sites = np.count_nonzero(London_DwellPlan)

70.

71. # Calculate the number of sites which occur on brownfield

72. Brownfield_Sites = np.count_nonzero(np.multiply(Brownfield, London_DwellPlan))

73.

74. # Calculating this perentage based on the number of dwellings

75. Per_Not_Brownfield = (1-
(float(Brownfield _Sites)/float(Total_Dev_Sites)))* 100

76.

77.

78.

79. return Per_Not_Brownfield

80.

81. def Calc_fsprawl(London_Dwell_Plan, Data_Folder):

82. """ Calculates the number of development sites which fall within the current

83. urban area. The number of proposed development sites is calculated by counting

84. number of elements in the dwell plan which aren't zeros. We then

85. multiply the two arrays. Development corresponding with falling within urban

86. areas are retain in urban sites whilst those outside are lost. In this example

87. we go from two proposed development sites in Dwell Plan to 1 in Urban Sites

88. giving us a fsprawl value of 50%.

89.

90. Urban  Dwell Plann Ubran Sites

91. [o, [60, [0,

92. 1, x 0, = 0

93. 1, 100, 100,

94. 0] 0] 0]

95.

96. e

97.

98. Urban_Extent = (np.loadtxt(Data_Folder+"Urban.txt",delimiter=",")).tolist()

99. Urban_Extent = [float(i) for i in Urban_Extent]

100.

101. Total_Dev_Sites = np.count_nonzero(London_Dwell Plan)

102. # Calculate the number of sites within the urban extent

103. Urban_Sites = np.count_nonzero(np.multiply(Urban_Extent, London_Dwell
_Plan))

104.

105. Per_Not_Urban = (1-
(float(Urban_Sites)/float(Total_Dev_Sites)))*100

106.

107. return Per_Not_Urban

108.

109. def Calc_fdist(Proposed_Sites, Greenspace_Development):

110. """ Function to calculate the average distance between proposed developme
nt

111. sites. Import a site lookup based on whether greenspace development is

112. allowed and lookup their shortest path distance to their closest CBD.

113. This value is added to a aggregate score and divided by the number of sit
es

114. Requires the 'Proposed Sites to be in ij format."""

115.

116. import Dist_Lookup as Dist_Lookup

117.

118. #fdist values =np.loadtxt('Dist_Lookup.txt', delimiter = ',")
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119.

120. fdist_values = Dist_Lookup.fdist_lookup

121.

122. # Creating an aggregate of the shortest paths

123. agg _dist=0

124. for dev_site in Proposed_Sites:

125.

126. for site in fdist_values:

127. if dev_site==site[0]:

128. # Add the shortest path to this site to an aggregate variable
129. # Dividing by 1000 to convert to kilometres
130. agg _dist+= site[1]/1000

131. fdist = agg_dist/len(Proposed_Sites)

132.

133. return fdist

B.3 Calculate Accessibility Module

To calculate the performance of a spatial plan for f,;; the Calculate Accessibility module
shown below is run prior to the operation to calculate the shortest path distance between the
defined CBD/ town centre and the possible development sites. The shortest path from each
possible development site is then recorded to be referenced by the Evaluate module.

# -*- coding: utf-8 -*-

Calculate_Accessibility 25/05/15
Author: Daniel Caparros-Midwood

Intended for incorporation with the Spatial Optimisation Framework

coNOUVT A WNER

Module calculates shortest path distance of a road network from cells

9. available for development to identified CBDs Module is preprocessed to produce
10. a lookup table to calculate fdist

11, e

13. import networkx as nx # Network Analysis module to calculate shortest path
14. import rasterIO # To handles spatial data
15. import numpy as np # Mathematical processing

16.

17. def Generate_Development_Sites(Available Sites, X,Y):

18. """ Extract the available sites from which to calculate an accessibility measure
19. win

20. Available DevSites = []

21.

22. for x in range(90,X):

23. for y in range(0,Y):

24. site_yx = (y,x)

25. if Available_Sites[site_yx] == 1:

26. Available_DevSites.append(site_yx)

27

28. return Available DevSites

29.

30. def Conv_2_Coords(list_of_sites, geo_t_params):

31. """ Using the GDAL library to calculate the centroid of a coordinate
37, win

33. site_nodes = []
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34.
35.
36.
37.

38.
39.
40.
41.
42.
43.
44,
45.
46.
a47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.

93.
94.
95.
96.
97.
98.

def

def

def

def

for site in list_of_sites:
y = site[0]
x = site[1]
# coord = coord of raster corner + (cell coord * cell _size) + (cell_size/2)

x_coord = geo_t_params[@] + (x*geo_t_params[1]) + (geo_t_params[1]/2)
y_coord = geo_t_params[3] - (y*geo_t_params[1]) + (geo_t_params[5]/2)

node_coord=(x_coord, y_coord)
site_nodes.append(node_coord)
return site_nodes

calc_closest(new_node, node_list):
""" Identify closest road node to connext to network

# Set initial distance to infinity
best_gdist = float("inf")
closest_node=[0,0]

for comp_node in node_list.nodes():

gdist = (abs(comp_node[@]-new_node[0])+abs(comp_node[1]-new_node[1]))
if abs(gdist) <best_gdist:

best_gdist = gdist

# replaces the previus closest node

closest_node = comp_node

return closest_node

Add_Edges(g, node, closest_node):
""" Add node to the network then add an edge to connect it up to
it's closest node
g.add_node(node)
g.add_edge(node, closest_node)
return g
Add_Nodes_To_Network(node_list,network):
""" Handles incorpating new nodes to the network
Adds an edge between the node and the node calculated to be closest
for node in node_list:
# Calculate the closest road node
closest_node= calc_closest(node, network)
network.add_node(node) #adds node to network
network.add_edge(node, closest_node) #adds edge between nodes

Calculate_Fitness(Development_Sites, CBD_Nodes, Road_Network, geo_t_params):
""" Calcuates the shortest path for each available cell. The network is pre
processed with the available dev sites converted to XY and added to the road
network. The road network needs to be undirected.

# Convert sites to geographic centroid

Dev_Nodes = Conv_2_Coords(Development_Sites, geo_t_params)

Road_Network=Road_Network.to undirected() #remove direction restrictions
#Add CBD and development sites to the road network
Add_Nodes_To_Network(CBD_Nodes, Road_Network)
Add_Nodes_To_Network(Dev_Nodes, Road_Network)

# Calcuate the shortest distance from each site to a CBD then return average

fdist_list = []
for Dev_Site in Dev_Nodes:
# Initial shortest difference to infinity
shrtst_dist=float("inf")
for CBD in CBD_Nodes:
# Calculate the shortest path to each CBD
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dist = nx.shortest_path_length(Road_Network,Dev_Site,CBD, weight='Dist')

if dist<shrtst_dist:
shrtst_dist=dist

fdist_list.append( shrtst_dist)
return fdist_list
Calc_fdist(Data_Folder):
""" Function sets in motion the calculating of a series of shortest path
from the centroids of the available sites (in this case Available.tif) to

closest town centre. We upload the town centres and Road Network before
extract the available development sites from which to calculate an access

measure. Returns a list of smallest paths. Then the calc_fdist can collec
the smallest paths for their proposed development sites.

# Road network which forms the path

Road_Network = nx.read_shp(Data_Folder+'Road_Network.shp')

# The CBD point file which we are calculating the shortest path distance
CBD_Nodes = nx.read_shp(Data_Folder+'Town_Centres.shp')

# Extracting the dataset for potential sites to calculate fdist from each

file_pointer = rasterIO.opengdalraster(Data_Folder+'Available.tif")

Available = rasterlIO.readrasterband(file_pointer,1)
# Extracting the geotrans which is necessary for caluclating the centroid

# of potential development sites
d,X,Y,p,geotrans= rasterIO.readrastermeta(file_pointer)

# Extract the cells which are available for development
Sites_to_Calculate = Generate_Development_Sites(Available,X,Y)

# geotrans used to calculate their XY value

fdist_values = Calculate_Fitness(Sites_to_Calculate, CBD_Nodes, Ro
geotrans)

np.savetxt(Data_Folder+'fdist_lookup.txt', fdist_values, delimiter = ',°',
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Appendix C Non-dominated Sorting Module

The non-dominated sorting module shown below takes the solutions found by the optimisation
module and determines those which are non-dominated. The algorithm is based on Mishra &
Harit's (2010) algorithm. Moreover the module can determine non-dominated sets between

specified objectives using the ‘ObjFun' variable.

1. # -*- coding: utf-8 -*-

L

3. NonDom_Sort Module 26/05/15

4. Author: Daniel Caparros-Midoowd

5.

6. Non dominated sorting algorithm to extract Pareto-optimal solutions.

7. The algorithm is based on Mishra & Harit's (2010) algorithm, first sort the solution
s

8. by the first objective before iteratively comparing thier performances. By sorting t
hem

9. we put solutions which are most likely to dominate at the start leading to less comp
utations.

10. Throughout a non-dominated list of solutions is maintained and returned.

11.

12. Requirements:

13. + Objecives,f, requiring maximisation need to be multiplied by -1 prior
14. + Solutions need to be in form [Solution number, Spatial Plan, Fitnesses]
15. + Fitnesses need to be in the form [f1,f2,f3...]

16. + Obj_Func need to be a list of fitness indexes

17, nwnw
18. SolNo, D, Obj_Col = 0,1,2 #specifies that obj funcs are stored in 3rd column
19.
20. from copy import copy
21.
22.
23. def Sort(Solutions, ObjFunc):
24, # ObjFunc is the set of objectives from which to conduct the non-dominated
25. # sorting, for example ObjFunc = [f1,f3] or ObjFunc = [f2,f3]
26.
27. NonDom_list = [] # list of non-dominated solutions
28. Solution_list = copy(Solutions)
29.
30. # Sort the solution list by the first objective considered
31. Solution_list.sort(key=lambda x: x[Obj_Col][ObjFunc[@]], reverse = False)
32.
33. # Pop the first ranked solution for that objective into the non dom list
34. NonDom_list.append(Solution_list[@]) #
35. Solution_list.pop(0)
36.
37. # Iteratively investigate solutions in the solution 1list against the non dom lis
t
38. for Sol in Solution_list: #Check each solution in the solution list
39.
40. row_count = -
1 #keep a track of which row of the non_dom_list incase it needs to be popped
41.
42. # Iteratively compare the solution to solutions in the non dom list
43, for NonDom_Sol in NonDom_list:
44. row_count += 1
45,
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46. # Assess the fitness of the

47. Dominated, Dominates= Domination_Check(Sol[Obj_Col],NonDom_Sol[Obj_Col],
ObjFunc)

48.

49. if Dominated == True:

50. # If solution is found to be dominated we stop considering to save

51. # computational time

52 break

53. elif Dominates == True:

54. # if the solution in the nondom list is found to be dominated we pop

it"

55. NonDom_list.pop(row_count)

56. break

57.

58. if Dominated == False:

59. # If the solution is found to be undominated by all the solution in non
dom list

60. # it is added to it

61. NonDom_list.append(Sol)

62.

63. # return the list of non dominated solutions

64. return NonDom_list

65.

66. def Domination_Check(Solution, NonDom_Solution,ObjFunc):

67. # Assume both solutions are dominated untils there one instance where they outpe
rform the other solution.

68. Dominates = True # Stores if the solution dominates any solutions in the non dom

list

69. Dominated = True # Stores if the solution is dominated by a solution in the non
dom list

70.

71. for Objective in (ObjFunc):

72. # For each objective function under consideration

73. if Solution[Objective] < NonDom_Solution[Objective]:

74. # if the solution is found to outpeform (be less than) in any of the obj
ectives

75. # it is non dominated

76. Dominated = False

77. elif Solution[Objective] > NonDom_Solution[Objective]:

78. # if the non dom solution is found to outpeform (be less than) in any

79. # of the objectives it remains in the non-dom list

80. Dominates = False

81.

82. # returns whether sol or nondom_sol is dominated

83. return Dominated, Dominates
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Appendix D Pre-processing Models

To reconcile a number of spatial datasets to inputted raster grids for the framework a number
of pre-processing models were created using ModelBuilder in ArcGIS 10.1. During
development it was realised that it was essential the coordinates of the input raster datasets
conformed. Figures D1-3 demonstrate models to achieve this. Based on a user selected cell size,
the models use a ‘boundary’ file of the study area to a generate template raster grid then sample
the input datasets to this template. Moreover Figure D2 demonstrates how 1 in 100 and 1 in

1000 floodzone datasets are combined to form a single flood risk assessment raster.

Figure D.3 Pre-processing urban extent input raster
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