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Abstract 

Type 2 diabetes is the fastest growing health threat to the UK, with 

prevalence rising 60% over the past decade. Those with Type 2 diabetes 

carry twice the risk of developing cardiovascular disease, a condition which 

claims the lives of the majority of adults in the UK. A significant proportion of 

cardio-metabolic disease could be prevented through improvements in 

lifestyle. Technological advancements, motorised transport and an increase 

in desk based work, have paved the way for physical inactivity to be norm in 

modern society. Clinical and government strategies to target unhealthy 

lifestyles are currently lacking.  

The aim of this thesis was to explore lifestyle related behaviours in cardio-

metabolic disease, with a view to improving clinical care. A UK population 

based study (n=502,664) demonstrates that those with cardio-metabolic 

disease are characterised by low physical activity, sedentary behaviour and 

poor sleep. Combining all three behaviours exposes individuals to greater 

cardio-metabolic risk. A cross-sectional study (n=57) indicates that there are 

significant cardiac abnormalities in those with metabolic disease in the 

absence of overt heart disease. Finally, a randomised controlled trial (n=28) 

provides evidence that exercise can be used as a therapeutic strategy to 

improve cardiac structure and function in adults with Type 2 diabetes, and 

thereby moderate cardiac risk in this patient group.  

This thesis delivers two clear messages; 1) lifestyle behaviours remain 

significant unaddressed risk factors and 2) physical activity and exercise 

strategies should be used as therapies to reduce risk and improve cardio-

metabolic health. Looking ahead, the results from the this study highlight the 

need for lifestyle behaviours to be part of the prevention and management 

strategies for cardio-metabolic health, and support the NHS’s 5 year plan to 

encourage healthier lifestyles as a priority. 
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1.2 General introduction 

Diabetes is currently the fastest growing health threat to the UK, with >700 

people being diagnosed every day in England (90% of diabetes cases are 

Type 2 diabetes) (Diabetes UK 2015). The economic impacts of this are 

substantive; current costs are £23.7 billion (10% of NHS costs) which is 

predicted to rise to 17% by 2035 (Hex et al. 2012). Global patterns show a 

similar trend, and predictions suggest that in two decades time prevalence 

will have risen by more than 75% (IDF 2013). Type 2 diabetes is clearly one 

of the biggest personal, economic and social challenges facing the 21st 

century and major action needs to be taken in the prevention, management 

and treatment of this chronic condition. 

The majority of those with Type 2 diabetes die with heart disease (IDF 

2013).The strong links between heart disease and Type 2 diabetes is often 

termed ‘cardio-metabolic disease’, and although their relationship is not fully 

understood, they share common environmental and genetic antecedents. 

Despite the large prevalence of cardiac dysfunction in Type 2 diabetes, 

treatment strategies are lacking. 

Treatment and management strategies for cardio-metabolic disease support 

lifestyle changes before any pharmacological treatment (Inzucchi et al. 2012). 

Evidence shows that around 90% of Type 2 diabetes cases could be 

prevented through changes in lifestyle (Hu et al. 2001). Physical inactivity is 

the 4th leading cause of disease worldwide (Kohl et al. 2012) and 

technological advancements of modern society have paved the way for 

sedentary lifestyles to become the norm (Figure 1). If current trends continue 

we will be 35% less active by 2030 than in 1961 (Ng & Popkin 2012) which 

will have huge health consequences. 

This literature review will describe normal metabolic control, lifestyle 

behaviours which influence metabolism, and cardiac structure and function, 

before moving onto to focus on these three areas in relation to Type 2 

diabetes. 
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Figure 1  UK adults physical activity levels . Measured 1961-2005, forecast 2006-2030   (Ng & Popkin 2012). Measured using national surveys with MET 
intensities applied to activities within different domains. 
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1.3 Metabolism 

1.3.1 Overview 

Metabolism can be defined as the life-sustaining chemical processes that 

occur in cells and organisms. A cardinal metabolic process is the conversion 

of chemical energy (in the form of food) into other forms of energy which can 

be used for all types of work from cellular to physical work. Metabolic control 

refers to the tight regulation of the body to store and release energy to 

maintain homeostasis despite the fluctuations in energy intake and output 

during the day (Frayn 2013) (Figure 2).This regulation enables us to lead 

normal lives in the face of a changing environment.  

Figure 2  Fluctuations in energy intake and output for a person during a typical day (Frayn 
2013) 

 

Such is the importance of metabolic control that even minor deviations can 

lead to metabolic diseases which impact upon health and wellbeing. The 

main energy sources in the body are derived from the macronutrients lipid, 
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carbohydrate (CHO) and protein but for the purpose of this review, only fat 

and carbohydrate will be considered. 

1.3.2 Carbohydrate metabolism 

Monosaccharides are basic CHO units and are classified according to the 

number of carbon atoms they hold. Common monosaccharides are hexoses 

(6-carbon atoms), fructose, galactose and glucose which is the most 

abundant monosaccharide in our diet and bodies and is the fuel which is 

used to supply energy for living organisms (Figure 3). 

Figure 3  The structure of glucose in its ring α and β form (Frayn 2013). 

 

Glucose is soluble and circulates freely in blood but requires specific carrier 

proteins for entry into cells (Frayn 2013). Multiple glucose units are stored in 

cells as polysaccharide chains known as glycogen. Due to its water soluble 

nature, storage of glycogen is heavy as it carries around three times its own 

weight of water (Frayn 2013). Glucose can enter the bloodstream in 3 

different ways; absorption from the small intestine, glycogenolysis and 

gluconeogenesis in the liver.  

Energy is released from glucose via non-oxidative and oxidative pathways. 

Glycolysis (non-oxidative pathway) occurs in the cytoplasm and involves the 

partial oxidation of glucose to pyruvate (or lactate in the absence of oxygen) 

(Dashty 2013) (Figure 4). Within the complete degradation of one glucose 

molecule, glycolysis produces only around 5% of total adenosine 

triphosphate (ATP) however rapid reactions within this pathway make it 

crucial for bouts of maximal activity lasting up to 90 seconds. The first step in 
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glycolysis involves the phosphorylation of glucose to glucose 6-phosphate 

(G6P) by hexokinases which "traps" glucose within the cell (Figure 4). 

Subsequently, either glycogen synthase will act upon the molecule for 

glycogen storage or glucose breakdown will pursue; the fate of which is 

dependent upon the presence of hormonal regulators (Dashty 2013). 

Figure 4  Schematic of glycolysis. Image taken from pg 579 (Ronquist et al. 2013). 

 

The citric acid cycle and the electron transport chain (oxidative pathway) 

occur in the mitochondria in the presence of oxygen (Dashty 2013) (Figure 5). 

Pyruvate dehydrogenase converts pyruvate into acetyl-coA which enters the 

Krebs Cycle to release energy in the form of guanosine triphosphate and 

reduced forms of NADH and FADH2. NADH is shuttled to the Electron 

Transport Chain; its hydrogen is released and as the electrons are 

transferred through a series of enzymes (complex I-V), energy is released 

(Figure 5). This energy from substrate level phosphorylation is used to create 

a proton gradient across the mitochondrial membrane, the reverse movement 

http://en.wikipedia.org/wiki/Guanosine_triphosphate
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of protons over the membrane releases energy and generates ATP (Dashty 

2013) (Figure 5). Theoretically, oxidation of one glucose molecule produces 

36 ATP molecules which is equivalent to 288 kcal however 56% of this 

energy is wasted as heat due to leaky mitochondrial membranes (Dashty 

2013). 

1.3.3 Lipid metabolism 

Multiple groups of lipid are present but triacylglycerols are the most prevalent 

and consist of three individual fatty acids linked to a molecule of glycerol 

(Frayn 2013). Due to their hydrophobic nature they are carried in a 

lipoprotein throughout the bloodstream. Individual fatty acids are the building 

blocks of lipids and have a hydrophobic tail along with a polar carboxylic acid 

group and are carried in plasma bound to the protein albumin. Depending on 

the presence of double bonds in their carbon tail, they can be classed 

differently but in the context of metabolism they are referred to as ‘non-

esterified fatty acids’ (NEFA). NEFA’s are immediate carriers of lipid energy 

from storage depots to sites of oxidation and are supplied in two ways; 1) 

NEFA bound to albumin or 2) NEFA liberated from triacylglycerols (carried in 

lipoprotein particles) as the movement of triacylglycerols across endothelial 

cells that line the capillaries, exposes them to lipoprotein lipase. Their 

inability to condense easily means triacylglycerols are preferred for lipid 

storage; they completely exclude water and are therefore more efficient than 

not only NEFA but also glycogen at storing fuel (Frayn 2013).  

The catabolism of triacylglycerols releases energy, as glycerol is converted 

into 3-phosphoglyceraldehyde (a component of the glycolytic pathway) and 

fatty acid molecules are transformed to acetyl-CoA which can then enter the 

citric acid cycle. This process is called β-oxidation which occurs in the 

mitochondria (Frayn 2013). 460 molecules of ATP are produced during 

catabolism of one triacylglycerol which is substantially more than the 36 

during carbohydrate metabolism. Similar to glucose oxidation much of this 

energy is lost as heat.  
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Figure 5  Bioenergetics of the Krebs Cycle and Electron Transport Chain which occur 
within mitochondria.  Pyruvate is converted into high energy molecules via 
Krebs cycle enzymes. NADH is shuttled to complex 1 and converted to NAD+ 
which drives oxidative phosphorylation. The resulting energy is used to create 
a proton gradient across the membrane and in the final step this energy 
phosphorylates ADP into ATP via complex V. Image taken from pg 713 
(Osellame et al. 2012).  

 

 

1.3.4 Fasted vs. postprandial metabolism 

Although the body switches between fasted and postprandial states, with the 

current western diet a large proportion of the day is spent in the postprandial 

state. Figure 6 shows a typical Western diet in which moderate sized meals 

at breakfast and lunch are followed by a large meal for dinner. If this evening 

meal is around 50% of the total daily calorie intake it takes around 5 hours to 
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return to pre-meal glucose levels showing a considerable amount of time 

spent in the postprandial state. 

Figure 6  Much of the day is spent in the postprandial state  (Blonde et al. 2001) 

 

1.3.5 Hormonal regulators 

Glucose in the blood remains relatively constant despite these changing 

states due to the action of key regulating hormones insulin and glucagon. A 

small group of cells known as the Islets of Langerhans make up around 1-2% 

of the pancreas mass and are responsible for the release of these hormones. 

There are 3 types of cell in the islets, with the α-cells responsible for 

glucagon secretion and β-cells which secrete insulin and make up around 

60% of the total islet volume (Frayn 2013).  

The expression of the glucose transporter 2 (GLUT 2) on the β-cell 

membrane enables it to act as a glucose sensor and so insulin predominantly 

responds to plasma glucose levels (Frayn 2013). There is a sigmoid dose-

response curve for the relationship between insulin secretion and glucose 

concentration with a steep increase in insulin when plasma glucose rises 

above 5mmol/L (Harrison et al. 1985). As glucose enters the β-cell and 

undergoes glycolysis, the production of ATP triggers a number of events 

which lead to exocytosis of insulin granules at the cell membrane. It’s 



10 
 

important to note that insulin also responds to most amino acids and 

although an increase in fatty acids increases the insulin response, sustained 

increase in fatty acids can impair insulin secretion through accumulation of 

triacylglycerol within the β-cell (Dubois et al. 2004). Insulin travels freely in 

the bloodstream and binds to specific insulin receptors which are proteins 

consisting of two α- and two β-chains embedded in cell membranes. Once 

insulin binds to its receptor, tyrosine kinase activity phosphorylates β 

subunits causing interaction with other proteins and the beginning of a signal 

transduction cascade (Frayn 2013). 

In contrast to insulin, glucagon’s function is to increase blood glucose and it 

exerts it’s important metabolic effects on the liver alone (Frayn 2013). A rise 

in plasma glucose suppresses glucagon release although a rise in amino 

acids has the opposite effect (Frayn 2013). These pancreatic hormones are 

discharged into the hepatic portal vein so the liver is exposed to much higher 

levels of insulin and glucagon compared to other organs and it’s been 

demonstrated that of the insulin reaching the liver, around 70% is removed 

(Frayn 2013).  

The major organs which have a role in maintaining homeostasis during the 

fasting and post prandial state will be described below.  

1.3.6 Metabolic tissue: Liver 

The role of the liver in postprandial metabolism 

The liver has a major role in energy storage in the postprandial state as it's 

the first organ to be exposed to nutrients entering the body from the intestine 

after a meal. The portal vein supplies blood to the liver which has passed 

through the intestinal tract. 

During a postprandial state, glucose is absorbed from the intestine into the 

portal vein, exposing the hepatocytes to large concentrations. GLUT 2 is the 

glucose transporter within liver cells and because there is a high proportion of 

GLUT 2 and they have a high Km (and so operate well below saturation), 

movement across the membrane is determined by the concentration of 

glucose in and outside the cell, making the liver act as a buffer (Frayn 2013).  
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Hexokinases which phosphorylate glucose into G6P in the liver are different 

from hexokinases in other tissues as they also have a high Km for glucose 

and aren't inhibited by its product. Once glucose has been phosphorylated to 

form G6P, insulin activates the enzyme glycogen synthase and inhibits 

glycogen phosphorylase which results in glycogen synthesis. Storage of 

glucose in the liver as glycogen, enables the liver to stabilise future blood 

sugar so that other tissues have sufficient energy supply (mainly the brain 

which consumes 75% of blood glucose) (Dashty 2013). G6P can also be 

oxidised via glycolysis for immediate energy supply to the liver.  

The liver can take up NEFA for either oxidation or storage. In the 

postprandial state when insulin levels are raised, storage and synthesis of 

hepatic lipid dominate. 'De novo lipogenesis' (DNL) which refers to the 

synthesis of triacylglycerol from non-lipid precursors leads to high levels of 

malonyl-CoA which inhibits fatty acid entry into the mitochondria for oxidation. 

Fatty acids are therefore diverted towards esterification with glycerol 3-

phosphate to form triacylglycerol which are stored in hepatocytes (Frayn 

2013). Liver triacylglycerol therefore mainly arises from esterification of fatty 

acids (Perry et al. 2014). 

DNL is in effect a pathway for disposing excess carbohydrate and is 

stimulated during high CHO availability and hyperinsulinemia. Insulin 

resistance which underlies many metabolic disorders raises plasma insulin 

levels therefore promotion of hepatic triacylglycerol storage pursues (Taylor 

2012a). 

The role of the liver in the fasted state 

Rising levels of glucagon and catecholamines activate glycogen 

phosphorylase and inhibit glycogen synthase liberating glucose from stored 

glycogen in the liver (glycogenolysis). In addition to this, glucagon also 

stimulates gluconeogenesis which describes the synthesis of glucose from 

other precursors (Frayn 2013). Gluconeogenesis is stimulated by substrate 

supply so during exercise when lactate is high and during starvation when 

glycerol is elevated, there is an increase in gluconeogenesis. However there 

is a glucose paradox whereby after a meal hormones suppress 
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gluconeogenesis while substrate supply increases it. In the fasted state 

glucose enters the blood from the liver, half from gluconeogenesis and the 

other half from glycogenolysis (Frayn 2013).  

The liver can oxidise fatty acids via the β-oxidation pathway within 

mitochondria which releases energy for immediate use by hepatocytes. The 

fasted state favours oxidation over esterification by the low insulin/glucagon 

ratio. Roughly 18% of each hepatocyte is made up of mitochondria (Nassir & 

Ibdah 2014), a vital organelle for liver metabolism being the primary site of β-

oxidation and oxidative phosphorylation.  

1.3.7 Metabolic tissue: Adipose  

There are two types of adipose tissue; brown and white. Brown tissue is 

present in infants and varies across adults (Cypess et al. 2009). It has a 

unique metabolic feature in that it can 'uncouple' the generation of ATP from 

the oxidised substrates to release heat (Frayn 2013). This makes it important 

for energy expenditure in the form of thermogenesis and may protect against 

obesity although functional studies in humans are needed (Cypess et al. 

2009). White tissue on the other hand is abundant in humans and controls 

the storage and release of fat and is therefore essential  for normal health 

and everyday life (Frayn 2013). White adipose tissue contains multiple cell 

types however the focus of this review will be on adipocytes which store fat.  

The role of the adipose tissue in postprandial metabolism (fat storage) 

There are two sources of fat which produce the triacylglycerol droplet within 

adipocytes, firstly from triacylglycerols in plasma and secondly from DNL. As 

described earlier, triacylglycerol is transported within lipoprotein particles; 

these are too large to cross capillary membranes so lipoprotein lipase (an 

enzyme activated in the postprandial phase which hydrolyses triacylglycerol 

to release fatty acids) is present within the endothelial lining of the capillaries 

and acts upon passing lipoprotein particles (Frayn 2013). Physical activity, 

glucose and insulin all up-regulate lipoprotein lipase in adipose tissue so its 

activity increases in the postprandial state (Kiens et al. 1989), however in 

skeletal muscle it remains stable throughout the day. The beneficial role of 

adipose tissue is therefore evident after a meal as it protects other organs 
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from excess fat accumulation (Ruge et al. 2013). Fatty acids cross the 

interstitial space and are esterified upon entering the tissue as they are linked 

with glycerol-3-phosphate. Insulin stimulates both the uptake and storage of 

triacylglycerol as it activates lipoprotein lipase and promotes the production 

of glycerol-3-phosphate through glycolysis (Figure 7). DNL in adipose tissue 

is the same as that in the liver, stimulated by insulin to promote fat storage 

(Frayn 2013). 

Figure 7  Adipose tissue metabolism pg 131 (Frayn 2013) 

 

The role of the adipose tissue in the fasted state (fat mobilisation) 

Lipases within adipose tissue liberate fatty acids from triacylglycerol, 

releasing them as NEFA bound to albumin and glycerol is also released into 

the plasma. This process is known as lipolysis and is catalysed by adipose 

triglyceride lipase and hormone-sensitive lipase. These lipases are regulated 

closely and inactivated rapidly in response to insulin. Insulin therefore 

restrains fat mobilisation as well as promoting storage (Frayn 2013). The 

balance between fat storage and mobilisation results in relatively stable fat 

stores unless long term positive energy balance pursues. In this instance, the 

PPARϒ and SREBP-1c systems upregulate enzymes involved in fat storage 

resulting in adipose hypertrophy and stimulate differentiation of pre-

adipocytes into new adipocytes (hyperplasia) (Frayn 2013). 
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Adipose tissue also has important endocrine functions which regulate energy 

balance. Leptin, a protein which signals through hypothalamus receptors to 

restrict energy intake, is released from adipose tissue. The larger the adipose, 

the more leptin is produced.  

1.3.8 Metabolic tissue: Skeletal muscle 

Skeletal muscle requires energy for contraction, albeit in different ways. 

Oxidative muscle fibres (Type I) possess a high density of mitochondria and 

capillaries. The large supply of substrates in the blood enable these fibres to 

sustain muscle contraction over a long period, however diffusion of 

substrates into the cell requires time, resulting in relatively slow contraction. 

Glycolytic fibres (Type II) on the other hand have fewer mitochondria and rely 

on anaerobic glycolysis using G6P produced from stored glycogen within the 

cell. Contraction is quick but limited amount of substrates mean these fibres 

are important for contraction over short periods (Frayn 2013). The metabolic 

pathways of Type I fibres will be described below.  

The role of the muscle in postprandial metabolism 

Insulin stimulates glucose transporter 4 (GLUT 4) (the main glucose 

transporter) into action at muscle cell membranes, establishing a pathway for 

glucose to enter skeletal muscle. Storage of glucose pursues in the 

postprandial state as insulin stimulates glycogen synthase. 2/3 of the total 

body glycogen is stored within muscle cells as the total mass of muscle is 

large, despite there being higher levels of glycogen per unit mass of the liver 

(Dashty 2013). Unlike the liver, glucose cannot be released from muscle cells 

therefore stored glycogen is used for local sources of energy only (Dashty 

2013). During muscular contraction, the breakdown of ATP stimulates 

glycogen breakdown; this ensures fuel is supplied to the working muscle 

when the energy status is low (Frayn 2013). Insulin suppresses fat 

mobilisation from adipose tissue resulting in low plasma NEFA concentration 

which causes the muscle to use glucose for fuel rather than fat (Frayn 2013). 

The role of the muscle in the fasted state 

The fasted state results in fat mobilisation from adipose tissue promoting the 

use of fatty acids as fuel for skeletal muscle. Fatty acids are taken up from 
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either plasma NEFA or triacylglycerol in lipoprotein particles due to the 

presence of lipoprotein lipase in capillaries surrounding muscle. The rate of 

fatty acid uptake depends on plasma concentration and once fatty acids are 

within muscle cells they can be oxidised for energy or re-esterified for 

triacylglycerol storage (Frayn 2013). The seamless coordination between 

CHO and lipid metabolism is most obvious in skeletal muscle; known as the 

'glucose-fatty acid cycle' (Figure 8). 

Most endogenous lipid is stored in subcutaneous and visceral adipose tissue, 

but a small proportion is stored within skeletal muscle- known as 

intramuscular lipid. Intramuscular lipid is not stored for the rest of the body, 

rather it’s used as a readily available substrate for aerobic ATP synthesis 

within skeletal muscle (Frayn 2013). Intramuscular lipid can be located in 

either the intra or extramyocellular domains (Van Loon & Goodpaster 2006). 

Sedentary, obese and or Type 2 diabetes individuals have elevated 

intramyocellular fat, which has been linked to insulin resistance (Jacob et al. 

1999). In contrast endurance trained athletes also have substantially 

enlarged intramyocellular fat stores but remain highly insulin sensitive. This is 

likely due to an adaptive response to endurance training which enables 

athletes to use more fat as fuel during exercise (Van Loon & Goodpaster 

2006). Elevated intramyocellular fat in sedentary, obese and Type 2 diabetes 

patients is likely to be secondary to an imbalance between FFA availability, 

storage and oxidation (Van Loon & Goodpaster 2006).   

1.3.9 Metabolic interactions between glucose and fatty acids 

In 1963 Randle proposed 'the glucose- fatty acid cycle' (Figure 8) which 

identifies the interactions between glucose and fatty acids in muscle and 

adipose tissue (Randle et al. 1963). Fatty acid oxidation leads to acetyl-CoA 

formation which generates a high rate of citrate (via the citric acid cycle). 

Citrate has been proposed to inhibit phosphofructokinase which is a key 

enzyme in glycolysis but also the generation of NADH and ATP from the citric 

acid cycle inhibits pyruvate dehydrogenase. The resulting effect is a 

reduction in glucose metabolism. The cycle may explain why several 

abnormalities of carbohydrate metabolism such as diabetes and obesity are 

associated with high levels of fat. When NEFA is elevated, operation of the 
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glucose-fatty acid cycle leads to impairment of glucose metabolism. Glucose 

membrane transport and phosphorylation of glucose is slowed which means 

insulin does not exert its usual effects -known as insulin resistance (Frayn 

2013; Randle et al. 1963). 

The competition between glucose and fatty acids has been shown to 

negatively influence each other's metabolism after a meal. A high fat meal 

the evening before an oral glucose tolerance test (OGTT-ingestion of 75g of 

glucose) leads to higher plasma glucose levels and similarly plasma 

triacylglycerols are higher during an oral fat tolerance test when preceded by 

a high carbohydrate evening meal (Robertson et al. 2002). This is known as 

the "second meal effect" and indicates that the fuel from the evening meal 

impairs metabolism of the alternate fuel source. 
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Figure 8  The glucose-fatty acid cycle , p.202 (Frayn 2013) 

 

1.3.10 Altered metabolism-Insulin resistance 

What is it? 

Slight changes in the tightly controlled metabolic system can lead to 

significant clinical changes. Resistance to insulin-stimulated glucose uptake, 

known as insulin resistance (IR) is widespread and underlies many Western 

chronic diseases (Reaven 1988). The San Antonio Heart Study which 

assessed features of the metabolic syndrome in 2930 individuals found a 

very high degree of overlap among the six conditions linked to the metabolic 

syndrome (Type 2 Diabetes, hypertension, obesity, impaired glucose 

tolerance, hypercholesterolaemia and hypertriglyceridaemia) but the 

prevalence rates of these diseases in their isolated form was significantly 

lower (Ferrannini et al. 1991). The high degree of inter-relatedness suggests 

an underlying physiological network of connections. Hyperinsulinemia (raised 

plasma insulin which implies the presence of IR), was present in all six 

conditions and suggests that IR in the common denominator in which 
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different features (e.g. hypertension or hypertriglyceridaemia) dominate in 

different people (Ferrannini et al. 1991).  

Pathogenesis 

Ectopic accumulation of intracellular lipid in muscle and liver leads to IR, 

even in the absence of visceral and peripheral adiposity. The mechanism by 

which fat accumulates continues to be debated, but some known contributors 

are listed below: 

1) Positive Calorie balance: The commonest cause of ectopic fat is the 

spill-over of energy storage from adipose tissue (Shulman 2014). High 

fat feeding (59% fat, 20% carb) lead to significant IR after just 3 weeks 

in rats (Kraegen et al. 1991) and a possible explanation is that ‘full’ 

adipocytes were unable to buffer excess fatty acids leading to storage 

in liver and muscle cells.  

2) Mitochondrial dysfunction:  When the rates of fatty acid uptake 

exceed mitochondrial fat oxidation (due to reduced mitochondrial 

oxidative and phosphorylation activity), there is a build-up of 

intramyocellular fat. This mitochondrial dysfunction is thought to be a 

cause of IR in the elderly (Petersen et al. 2003) and those with Type 2 

diabetic parents (Petersen et al. 2004). 

3) Dysregulated adipose: The development of IR in only some obese 

individuals has supported the idea that there is an inherent component 

involved. The Dallas heart study (Neeland et al. 2012) followed 732 

obese individuals for 7 years to identify characteristics in those who 

develop Type 2 diabetes. The 84 individuals who developed Type 2 

diabetes displayed no differences in total body fat but significantly 

higher levels of visceral fat mass. It is becoming increasingly clear that 

obesity is not homogenous and when fat cells become ‘full’ they can 

either enter a state of hypertrophy or hyperplasia. Animal and cross 

sectional studies indicate that those who have a genetic predisposition 

to Type 2 diabetes have ‘dysregulated’ adipose whereby there is an 

inability to recruit new fat cells leading to adipose hypertrophy which is 

associated with inflammation (Arner et al. 2011). Problems with BMP4 
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and PPAR-y signalling have been identified in the inability to recruit 

new fat cells (Hammarstedt et al. 2013), A consequence of 

dysregulated adipose is a shift of storage from subcutaneous to 

ectopic sites.  

4) Genetic: Genetic causes have been identified including 

polymorphisms in the gene encoding apolipoprotein C3 which can 

predispose individuals to insulin resistance (Petersen et al. 2010) and 

missense mutations (I148 M in PNPLA3) which are associated with 

Non Alcoholic Fatty Liver Disease (NAFLD) in Hispanics (Romeo et al. 

2008) 

The release of diacylglycerol (DAG) from ectopic lipid is thought to be 

responsible for IR through activation of the theta isoform of protein kinase C 

(PKCθ) in muscle and the epsilon isoform of protein kinase C (PKCε) in liver 

(Shulman 2014). Muscle tissue has two compartments of triacylglycerol, 1) 

Lipids as droplets in cytoplasm of muscle cells in contact with mitochondria 

(intramyocellular), and 2) lipids within fat cells. The increase in DAG content 

from intramyocellular lipid leads to increased PKCθ and phosphorylation of 

IRS-1. This in turn leads to decreased insulin stimulated glucose transport 

activity in muscle. A similar pathway occurs within the liver but increased 

DAG activates PKCε which in turn decreases both insulin stimulated 

glycogen synthesis and suppression of hepatic gluconeogenesis. 
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Clinical presentations: Type 2 diabetes, IGT, IFG, NAFLD 

IR underlies various metabolic diseases, the most common being Type 2 

diabetes. There are however two conditions which precede Type 2 diabetes, 

known as impaired glucose tolerance (IGT) and Impaired fasting glycaemia 

(IFG)-both often called ‘pre-diabetes’. IGT represents a stage in disordered 

CHO metabolism with a fasting plasma glucose <7.0mmol/l and an oral 

OGTT 2-hour value of ≥7.8-≤11.0 and IFG classifies a fasting plasma 

glucose value of ≥6.1-<7.0mmol/l (Alberti & Zimmet 1998). Data from the 

health survey for England revealed the prevalence rate of pre-diabetes 

(based on glycated haemoglobin (HbA1c) of 5.7-6.4%) rose from 11.6% in 

2003 to 35.3% in 2011 with those who were overweight and >40years old 

having the highest prevalence rate (Figure 9) (Mainous et al. 2014). 

Figure 9  Percentage of adults with pre diabetes in England by year, pg4 (Mainous et al. 
2014). Vertical axis represents percentage of adult population with prediabetes, 
horizontal axis represents year of survey. 

 

NAFLD 

NAFLD is the commonest liver condition worldwide and is characterised 

by >5% intrahepatic lipid (Szczepaniak et al. 2005). Energy excess, 

peripheral IR and other metabolic abnormalities result in excess substrate 

supply to the liver, upregulation of DNL and therefore fat storage. Around 

70% of patients with Type 2 diabetes have NAFLD (Targher et al. 2007), and 

as will be described in section 1.6.2, NAFLD plays a significant role in Type 2 

diabetes aetiology.  



21 
 

1.4 Lifestyle behaviours and metabolism 

Lifestyle behaviors that influence metabolism can be broadly categorised into 

sleep, movement or nutrition. Within this section we will focus on non-diet 

lifestyle behaviours including sleep and three distinct movement behaviours 

(defined below): 

1) Sedentary behaviour: is defined as “any waking behaviour 

characterized by an energy expenditure  < 1.5 MET while in a sitting 

or reclining posture” (Sedentary Behaviour Research Network 2012). 

It’s not just a lack of physical activity, but a distinct behavioral entity in 

itself. It increases cardio-metabolic risk in addition to those associated 

with a lack of physical activity. 

2) Physical activity: is defined as “any bodily movement produced by 

skeletal muscles which results in energy expenditure” (Caspersen & 

Christenson 1985) . This incorporates habitual activities such as 

housework, gardening and walking. 

3) Exercise: Exercise is a subcategory of physical activity which is 

repetitive, structured, planned and has a focus of improving physical 

fitness. 

1.4.1 Sleep 

Sleep is a primitive behavior, shared by all humans on a daily basis. Unlike 

other mammals, human sleep is generally consolidated into a single 7-9 hour 

period, which means an extended fasting period must be maintained. Clear 

physiological responses occur during sleep, including an increase in leptin 

levels (Simon et al. 1998), which increase satiety (Schwartz et al. 2000) and 

therefore reduce the drive to eat. 

Sleep is a tight modulator of metabolic regulation. During sleep, when food 

supply is absent, the body responds by inducing a degree of peripheral 

insulin resistance whereby there is a marked increase in plasma glucose (20-

30%) and insulin (20-30%) (Scheen et al. 1996) (Figure 10). This is important 

because the brain requires a continued supply of glucose despite this 

‘fasting’ state. A number of factors have been attributed to this ‘insulin 

resistant’ state; including reduced muscle tone, low glucose requirement and 
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growth hormone release during slow-wave sleep (Sassin et al. 1969; Trenell 

et al. 2007; Boyle et al. 1994). Growth hormone is a hormone which 

increases blood glucose by reducing muscle uptake (Møller et al. 1991). The 

increase in plasma insulin during sleep is a reflection of reduced peripheral 

uptake.  

Figure 10  Response of glucose, insulin (insulin secretion rate) and growth hormone (GH) 
with sleep (left panel) and sleep restriction (right panel) during constant 
glucose infusion.  Sleep periods are shown in dark grey and sleep restriction 
(where sleep should be) is indicated in light grey. Image from (Trenell et al. 
2007) . 
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The influence of sleep on metabolic regulation is highlighted in Figure 10. 

During sleep restriction (right panel), plasma glucose, insulin and growth 

hormone do not rise. Persistence of the waking condition, increases brain 

glucose utilisation, and growth hormone is not released, which therefore 

prevents the rise in plasma glucose and insulin (Van Cauter et al. 1997). 

Travel across time zones, sleep restriction and shift work are all features of 

modern society, and changes to sleep patterns have clear influences on 

metabolism.  

1.4.2 Sedentary behaviour 

A seminal study in the 1950s reported that bus drivers who sat throughout 

their 5.5 hour shift had double the incidence of cardiovascular disease 

compared to bus conductors who were constantly performing ambulatory 

activities (Paffenbarger et al. 2001). This first highlighted the importance of 

sedentary behaviour in cardio-metabolic health. 

Figure 11  Components of total energy expenditure and the energy expended from 
exercise in addition to non-exercise activity thermogenesis (NEAT), thermic 
effect of feeding (TEF) and basal metabolic rate (BMR)  (Hamilton et al. 2007). 
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Figure 11 shows total daily energy expenditure. A currently held belief is that 

if a person exercises, they are considered sufficiently active. The contribution 

of energy expended from exercise however is very small as shown in Figure 

11 and most calories are expended from Non-Exercise Activity 

Thermogenesis (NEAT) which includes standing and non-exercise 

ambulatory movements (Hamilton et al. 2007). This means that exercise, 

which is of shorter duration, cannot substitute for large periods of sitting 

time/low NEAT. Sitting for long periods reduces the number of muscular 

contractions, which has various physiological effects. Skeletal muscle is the 

largest insulin sensitive organ in the body and in responsible for 80% of 

insulin-stimulated glucose disposal. Immobility quickly leads to peripheral 

insulin resistance (Wilmot et al. 2012).In addition, lipoprotein lipase regulation 

is linked to local contractile activity and the decreased activity seen during 

sedentary behaviour leads to increased plasma triacylglycerol and reduced 

high density lipoprotein levels (Bey & Hamilton 2003). The differences 

between exercise and inactivity physiology are highlighted when measuring 

lipoprotein lipase, as the magnitude of lipoprotein lipase suppression after 

sitting is greater than the increase in lipoprotein lipase activity observed 

during exercise (Hamilton et al. 2007).  

Increasing NEAT also has a big influence on body fat. When individuals were 

overfed 1000kcal/day for 2 months, those who stayed seated gained fat 

whereas those who increased their NEAT were able to burn off the extra 

calories (Levine et al. 2008).  

Public Health England report that more than 40% of men and 35% of women 

spend > 6 hours per day sitting still (Public Health England 2014a), a 

worrying trend which decreases the daily work performed by large skeletal 

muscles in the back, legs and trunk. It’s likely that sedentary behaviour will 

increase, with continued advancements in information technology and 

automated devices.  

1.4.3 Physical activity 

One of the main benefits of physical activity is that it increases NEAT. Figure 

12 displays the powerful influence of increasing NEAT on calorie expenditure. 
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The three pie-charts represent 3 individuals with the same desk job, but who 

differ in the amount of physical activity they perform daily. 

Figure 12 Workplace energy expenditure for a) chair-locked worker, b) NEATthusiast 
who spends half of meetings walking, stroll at lunch and takes active 10min 
breaks, c) NEATthlete who has all walking meetings, standing desk and cycles 
to work (Levine 2015). 

 

As physical activity increases energy expenditure, it reduces the risk of body 

fat accumulation. Evidence shows that physical activity is inversely 

associated with liver fat (Perseghin et al. 2007) and activity improves whole 

body lipid oxidation (Trenell et al. 2008). In addition, muscular contraction 

stimulates GLUT 4 translocation to the muscle cell membrane, thereby 

increasing non-insulin dependent glucose uptake. (Hayashi et al. 1997) and 

improving metabolic control.  

Studies have demonstrated the strong link between physical activity and 

metabolic control. The NAVIGATOR TRIAL, a 6 year follow up study in 9306 

adults with impaired glucose tolerance, found a 2000 daily increase in step 

count was associated with a 0.29 reduction in metabolic syndrome risk score 

and a 10% lower risk of cardiovascular events (Huffman et al. 2014).  

The direct cost of physical inactivity in the UK is £900 million (Scarborough et 

al. 2011) and the health benefits of physical activity are well documented. In 

response, the UK government recommend adults to perform at least 150mins 



26 
 

of moderate or 75mins of vigorous activity over a week in bouts of >10mins 

(Department of health 2011a).  

1.4.4 Exercise 

The use of exercise in the treatment and prevention of cardio-metabolic 

disease did not start gaining interest until the 20th century (Moore 2004). 

There is now widespread evidence for the benefits of exercise, so much so, 

that the Centres for Disease Control and Prevention and the American 

College of Sports Medicine (CDC/ ACSM) suggest two default options for 

exercise programming. 1) Increase the patients current activity by even just a 

small amount, 2) Participate in large muscle group activities for 30-40mins 

on >4 days per week (Pate et al. 1995). A review of drug and exercise 

randomised trial evidence suggests that exercise is as, if not more, effective 

than drug interventions in the treatment and prevention of chronic diseases 

(Naci & Ioannidis 2013). 

On a physiological level, adaptions occur during/after one exercise session 

(acute) or after a training programme (chronic). 

Acute 

During exercise there are different metabolic responses, depending on the 

intensity of activity, illustrated in Figure 13. Moderate exercise maintains 

euglycemic homeostasis (Figure 13A) as glucose uptake matches glucose 

production. Sympathetic stimulation of islets and an increase in 

catecholamines (Figure 13C+D) leads to a reduction in insulin during 

exercise (Figure 13B) which increases hepatic glucose production through 

sensitisation to glucagon (Marliss & Vranic 2002). Glucose production during 

moderate exercise is therefore determined largely by the ratio of glucagon to 

insulin. Glucose uptake increases in muscle despite a decrease in insulin, 

due to exercise initiated GLUT 4 translocation and increased peripheral blood 

flow (Marliss & Vranic 2002). 
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Figure 13  Metabolic responses during 40mins moderate exercise (50%VO2peak-open squares) and 15min intense exercise (87% VO2peak-closed circles) in 
young males (Marliss & Vranic 2002). A) Plasma glucose response, B) Plasma Insulin response, C) Plasma norepinephrine response, D) Plasma 
epinephrine response.  
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In comparison, intense exercise leads to a marked increase in plasma 

glucose (Figure 13A) as a result of rapid hepatic glycogenolysis. The large 

catecholamine response (Figure 13C+D) is the prime regulator of this. 

Despite a large increase in plasma glucose during intense exercise, insulin 

does not change (Figure 13B) because catecholamines prevent glucose 

stimulation of insulin secretion and disposal. Peripheral glucose uptake does 

increase but less than the increase in glucose production. Adrenergic 

stimulation of contracting muscle stimulates muscle glycogenolysis which 

therefore restrains muscle uptake of plasma glucose (Marliss & Vranic 2002). 

Notable changes are observed during recovery, immediate reduction in 

catecholamines (Figure 13C+D) leads to a rapid increase in insulin and 

subsequent rapid replenishment of muscle glycogen (Marliss & Vranic 2002). 

Following both intensities of exercise, the main response is a short term 

glucose lowering effect (around 20hrs) due to the activation of skeletal 

muscle glucose transport (Henriksen 2002). During or immediately after 

exercise, plasma triacylglycerol levels rise due to increased lipolysis or 

remain unchanged. When a meal is given ̴12 after exercise, postprandial 

lipaemia is reduced and the main reason attributed to this is increased 

lipoprotein lipase activity which peaks 4-18hours post exercise (Malkova et al. 

1999). Studies looking at postprandial lipaemia after long term exercise 

training found no effects on plasma triacylglycerol when measured >60hours 

after final exercise session (Herd et al. 2000), implicating transient effects of 

exercise and the need to do regular activity to control plasma triacylglycerol 

levels.  

Chronic 

Numerous adaptations occur after exercise training. One known benefit is the 

increased capacity of the heart to deliver blood and therefore oxygen to 

working muscles, these central adaptions are one of the reasons for 

improved endurance capacity after exercise training (Holloszy & Coyle 1984). 

Peripheral adaptations such as an increased capillary density and 

mitochondrial content also contribute to the improved endurance capacity 

(Holloszy & Coyle 1984). Exercise training leads to improved skeletal muscle 
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insulin sensitivity and glucose transport and this has been attributed to faster 

glycogen synthesis, up-regulation of GLUT 4 protein expression (Hughes et 

al. 1993) and other proteins involved in the insulin signalling cascade 

(Houmard et al. 1999).  

Other adaptions to exercise training include; increased capacity for fat 

oxidation (Holloszy & Coyle 1984) improvements in blood pressure and 

reductions in whole body fat mass (Després et al. 1991).  

There are many types of exercise training but one that has gained much 

attention recently is high intensity intermittent training (HIIT). 

1.4.5 High intensity intermittent training  

HIIT refers to brief intervals of vigorous activity interspersed with periods of 

low activity or rest (Gibala et al. 2012) and addresses one of the commonest 

barriers to exercise participation- lack of time (Trost et al. 2002). Low volume 

and high intensity requires a substantially lower time commitment but 

demonstrates comparable (if not better) physiological outcomes to moderate 

intensity continuous training (Gibala et al. 2012). One of the first recorded 

studies in HIIT was undertaken in 1972 when cardiac rehabilitation patients 

underwent interval training, which included 60 seconds at a high work load 

interspersed with 30 second rest periods. Compared to continuous cycling, 

patients were able to cycle twice as long after interval cycling training 

(Smodlaka 1972). HIIT must not be confused with ‘sprint interval training’, 

which involves ‘supramaximal / all out efforts’. HIIT on the other hand 

includes intense activity which is submaximal (around 80-100% of maximal 

heart rate (Weston et al. 2013). It has recently been shown that HIIT is more 

enjoyable than continuous training, in inactive individuals, and promotes self-

efficacy (Bartlett et al. 2011) 

Acute 

During HIIT there is a significant increase in catecholamines, growth 

hormones, blood glucose, blood lactate and initially a depletion in PCr and 

ATP stores, followed by a decrease in glycogen stores (Boutcher 2011). 

Energy expenditure and the respiratory exchange ratio (RER) increase, 
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reflecting a greater reliance on CHO as fuel. This is succeeded by a dramatic 

drop in RER after exercise (Kelly et al. 2013), potentially reflecting an 

elevated catecholamine response to HIIT which stimulates lipolysis and fat 

oxidation (Mulla et al. 2000). Oxygen uptake is elevated following HIIT, 

known as ‘exercise post-oxygen consumption’ (EPOC), to help restore 

metabolic process to baseline (Larsen et al. 2013). This is important because 

EPOC leads to increased energy expenditure and increased lipid oxidation, 

appetite suppression and a large hormonal response in which 

catecholamine’s drive lipolysis, leading to abdominal and whole body fat loss 

(Gillen et al. 2013). 

Chronic 

HIIT training improves insulin sensitivity. In sedentary young males, 6 

sessions of HIIT significantly reduced glucose area-under-the-curve (AUC), 

insulin AUC in response to an OGTT and improved insulin sensitivity (Babraj 

et al. 2009). After just 1 week of HIIT, there was a 20% increase in skeletal 

muscle GLUT 4 levels which is an important regulator of insulin sensitivity 

(Burgomaster et al. 2007). The increase in GLUT 4 protein alone cannot 

explain all of the increase in insulin sensitivity after a HIIT programme. 

Compared to moderate intensity exercise, HIIT requires activation of a large 

muscle mass and high glycogen-breakdown turnover which alters the 

architecture of the glycogen pool and likely affects insulin sensitivity (Calder 

1991). Another benefit of HIIT is the reduction in plasma NEFA concentration 

(Babraj et al. 2009), and it’s been shown during an OGTT that lowering of 

NEFA positively regulates insulin sensitivity (Santomauro et al. 1999). 

There are many other peripheral adaptations including an increase in 

peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1alpha 

(PGC1-α) (Little et al. 2011a), a key regulator of mitochondrial biogenesis in 

muscle (Wu et al. 1999). This increase in mitochondrial capacity proposes 

widespread health benefits of HIIT as PGC1-α increases oxidative capacity, 

glucose uptake, anti-oxidant defence and anti-inflammatory pathways. In 

addition, just 2 weeks of HIIT enhances maximal activity of enzymes involved 
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in the β oxidation pathway such as CoA dehydrogenase (32%) and citrate 

synthase (20%) (Talanian et al. 2007) which increases fat oxidation.  

1.4.6 Measuring movement behaviours 

For assessment of habitual levels and evaluation of interventions, 

researchers need to be able to measure movement behaviours. There are 

multiple methods with different pros and cons. 

Indirect calorimetry 

Gas exchange is considered to be the gold standard for the estimation of 

energy expenditure. This technique measures oxygen consumption and 

carbon dioxide production and using various equations can predict energy 

expenditure during that period of assessment (Simonson & DeFronzo 1990). 

The weir equation is a commonly used equation: VO2(3.941)+ VCO2(1.11) x 

1.44 (Weir 1948). Energy substrates produce different amounts of energy 

(kcal) and the Weir equation relies on the notion that oxidation of different 

energy substrates is associated with a specific oxygen consumption and 

carbon dioxide production. The amount of oxygen and carbon dioxide during 

breathing therefore reflects the energy source being used and consequently 

energy expenditure. The mouthpiece often causes hyperventilation which 

overestimates values and the mask is not appropriate to wear for long 

periods of time (Simonson & DeFronzo 1990). In addition, direct and indirect 

calorimetry measurement is not practical for everyday living, unlike heart rate, 

questionnaires, pedometers and accelerometers which can be used for 

habitual living.  

Direct calorimetry 

The oxidation of fuel releases heat, and this heat generated by the body is 

measured within an insulated environment during direct calorimetry 

(Simonson & DeFronzo 1990). This technique has disadvantages in that it 

requires individuals to remain within a confined environment for long periods, 

requires expensive equipment, and it cannot measure evaporative heat loss 

(Simonson & DeFronzo 1990). 
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Doubly labelled water 

This is an isotopic dilution method. When a human is given a loading dose of 

isotopes 2H (deuterium) and 18O, 18O is eliminated as carbon dioxide and 

water, while deuterium is eliminated from the body only as water. The 

difference between the two elimination rates gives carbon dioxide production 

and therefore energy expenditure (Butler et al. 2004). Despite the high cost, 

need for expertise, and invasive nature, this method allows accurate 

measurement over 14 days has been validated against gas exchange 

(Schoeller & Webb 1984).  

Heart rate monitors 

These are widely used to measure physical activity and exercise, using the 

concept that an increase in heart rate reflects an increase in energy 

expenditure. Heart rate monitors are frequently used in exercise interventions 

however they are not solely responsive to an increase in work rate but rather 

stress, gender, the environment and hydration levels can effect readings 

(Crouter et al. 2004) . This compromises their accuracy in predicting energy 

expenditure. 

Questionnaires 

Self-report physical activity questionnaires have been widely used over the 

past 40 years. They are useful in measuring population-wide activity and the 

international physical activity questionnaire (IPAQ), has been shown to 

collect reliable and valid physical activity data in many countries (Craig et al. 

2003). Despite this, there are often low correlations between scores from 

different questionnaires as well as objective measures such as 

accelerometers. The reasons for this vary, but socio-economic status, over 

reporting and type of activity influence the outcome (Sabia et al. 2014). 

Despite their limited reliability and validity compared to laboratory measures, 

questionnaires serve a useful purpose when measuring activity on a large 

scale.  
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Pedometers 

Pedometers are a very useful, cheap tool for measuring step count and 

physical activity guidelines have utilised these devices to recommend an 

achievable target of 10,000 daily steps for health (Tudor-Locke & Bassett 

2004). They measure steps by 3 methods which are; a spring-suspended 

horizontal lever arm, a horizontal beam and piezoelectric crystal, and a glass-

enclosed magnetic reed proximity switch (Crouter et al. 2003). Pedometers 

also predict energy expenditure but their validity is low because they cannot 

detect arm activity, walking uphill, stair climbing, cycling or pushing/carrying 

objects (Crouter et al. 2003). They are also attenuated by tilt or impact and 

only count movement past a certain threshold (Bouten et al. 1997).  

Accelerometers 

Accelerometers measure acceleration forces and convert these into 

movement counts providing information on the intensity and frequency of 

movement. Their growing use is based on the strong relationship between 

energy expenditure and accelerometer output (Bouten et al. 1997). 

Accelerometers can measure movement in a single axis (uniaxial) or multiple 

axis’ (triaxial, bidirectional), with multiaxis devices have slightly higher validity 

scores (Trost et al. 2005). The low association between questionnaires and 

objective measures, along with the growing affordability of accelerometer 

devices make them more attractive for movement measurement (Sabia et al. 

2014). Despite this, their validity does depend on the type of activity being 

performed as they cannot detect load carriage, changes in surface or terrain 

or upper body movement (Hendelman et al. 2000) and they are subject to 

motion artefacts.  

1.4.7 Measuring body composition 

Lifestyle behaviours can influence metabolic control through changes in body 

composition. It is therefore important to measure body composition, of which 

there are multiple techniques, none of which are perfect and all are subject to 

various constraints.  
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Anthropometry 

Anthropometric measurements are simple, safe and cost effective surrogates 

for assessing obesity and body fat distribution. BMI is a simple index of 

weight-for-height, recommended by the World Health Organisation to classify 

overweight and obesity. BMI provides a useful population-level measure but 

it does not correspond to the same degree of fatness in different individuals, 

(WHO 2015b). BMI could be viewed as a measure of nutritional status, not 

body composition. Waist circumference and waist:hip ratio have been found 

to correlate strongly with BMI, and also to predict health risks (Lean et al. 

1995). Waist circumference reflects the proportion of body fat located 

centrally, and may be more predictive of adverse outcomes than total fat, in 

addition to being simple to use (Wells & Fewtrell 2006). Despite their relative 

ease of use, BMI, waist:hip ratio and waist circumference cannot distinguish 

between fat and lean mass. 

Skin fold thickness 

Skin fold thickness gives an estimate of subcutaneous fat, and is used to 

predict total body fat. As the percentage of subcutaneous tissue to total fat 

varies across different regions, this needs to be accounted for using 

equations. Although this technique is relatively simple and cheap, its 

accuracy in individuals is poor, and it has a low inter-rater reliability and 

should be performed by trained staff (Ayvaz 2011). Prediction equations are 

often only valid in populations from which they were derived and so for 

indices of regional fatness across populations, it is better to leave skinfolds in 

raw form rather than applying predictive equations for total body fat. (Wells & 

Fewtrell 2006). 

Bioelectric impedance  

This technique measures the impedance to a small electric current as it 

passes through the body, and using predictive equations it calculates total 

body water, fat free mass and fat mass. This technique is non-invasive, quick 

and cheap compared to other measures of fat free mass, it is therefore often 

used as an epidemiological technique. However, equations are population 
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specific and should not be used across different groups (Dehghan & 

Merchant 2008). 

 Duel energy x-ray absorptiometry  

This technique is primarily used to measure bone mineral density by 

measuring the absorption of 2 x-ray beams, after subtracting soft tissue 

absorption. As overlying soft tissue is quantified, values of fat and fat free 

mass are calculated using specific algorithms. DEXA is quick and provides 

useful information on limb lean mass (Wells & Fewtrell 2006). That being said, 

substantial prediction is involved for trunk measurements, bias has been 

noted across age, fatness and disease states (Williams et al. 2006) and this 

technique exposes individuals to small amounts of radiation. 

Densitometry 

This approach requires measurement of total body density and can measure 

fat mass and fat free mass by assuming specific densities of these two 

tissues. Total body volume is measured to allow calculation of total body 

density based on archimedes principle. Hydrodensitometry is considered the 

“gold standard” (Ayvaz 2011) in body composition analysis but due to it’s 

cumbersome nature, air displacement plethysmography is more commonly 

used (see section 3.5 for further details on this technique). Densitometry is 

less accurate when the composition of lean mass may be abnormal (Wells & 

Fewtrell 2006) but it has been shown to be reliable (Noreen & Lemon 2006).  

Magnetic resonance imaging (MRI) 

MRI estimates the volume rather than mass of adipose tissue (for a more 

detailed description of how this technique works, refer to section 1.5.3). It is 

very good at estimating regional body composition including subcutaneous, 

intra-abdominal, visceral and intramuscular adipose tissue, and there is no x-

ray exposure (Wells & Fewtrell 2006). That being said, it is expensive 

meaning it has limited availability in the research setting. Magnetic resonance 

spectroscopy (MRS) is another MRI technique which can measure liver, 

cardiac and skeletal muscle fat through analysing the chemical composition 

of these tissues.   
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1.5 Cardiac structure function and metabolism 

In simple terms, the heart is a muscular pump with two main functions; 1) 

Collect blood from the lungs and pump it to the body and 2) Collect blood 

from the body and pump it to the lungs. 

1.5.1 Cardiac structure 

The heart has 4 chambers; 2 atria which collect blood and 2 stronger 

ventricles which pump blood around the body. Valves between the chambers 

ensure one way of blood through the organ. 

The left ventricle receives blood from the left atrium and pumps it to all the 

tissues of the body whereas the right ventricle receives blood from the right 

atrium and pumps it to the pulmonary circulation. The left ventricle has larger 

muscular walls in comparison to the right ventricle as it needs to generate 

enough pressure to overcome resistance from the systemic circulation which 

is around 4 times greater than that of the pulmonary circulation (Iaizzo 

2009a).  

There are multiple layers to the left ventricular wall; 1) The endocardium is 

the internal lining which consists of endothelium tissue that rests upon elastic 

and collagen fibres of connective tissue, 2) The myocardium is the tissue 

which contracts and consists of multiple muscle cells and 3) the epicardium 

covers the superficial surface of the myocardium (Iaizzo 2009b). The 

myocardium requires a constant supply of carbon substrates and oxygen for 

energy during ventricular contraction. These substrates are supplied by 

coronary arteries, which penetrate the epicardium and supply blood to the 

myocardium (Figure 14). 
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Figure 14  Blood supply to layers of the left ventricular wall, p.300 (Iaizzo 2009b). 

 

Various structural parameters are obtained from cardiac MRI. These include; 

Left ventricular wall mass (g), wall thickness at diastole and systole (mm), 

eccentricity ratio (g/ml), and end-diastolic/systolic blood volume (ml). ‘End-

diastolic volume’ is the volume of blood in a ventricle at the end of its filling 

phase, typically 150ml in a supine healthy man. ‘End-systolic volume’ is the 

volume of blood in the ventricle at the end of contraction, around 50ml in a 

healthy man.(Levick 2010). The eccentricity ratio is the ratio between left 

ventricular mass to the end-diastolic blood volume and is a measure of 

concentric remodelling (Figure 15). Concentric remodelling is a pathological 

response to stress signals and describes the build up of collagen and 

increase in wall thickness which compromises end diastolic blood volume 

(Frey et al. 2004). This is not the case with eccentric hypertrophy, a 

physiological response to growth signals seen after exercise (Frey et al. 

2004). 
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Figure 15  Pathological (concentric hypertrophy) and physiological (eccentric) heart 
remodelling, p.130 (Mihl et al. 2008) 

 

1.5.2 Cardiac function 

There are two main phases during cardiac contraction, systole and diastole. 

Systole represents the phase where blood is ejected from the ventricles, and 

diastole represents filling of the ventricles which lasts for around two thirds of 

the cardiac cycle (Levick 2010).To measure these phases using MRI, left 

ventricular volume is acquired for multiple phases during the cardiac cycle. 

Volume is calculated by multiplying the section thickness by the area of the 

left ventricle. This is plotted against time to produce the standard curve 

output (Figure 16). End-systole is defined as the lowest volume and end-

diastole as the greatest volume (Kudelka et al. 1997). 

Systole 

The main measure of systolic function is ‘cardiac output’ which represents 

the volume of blood ejected by the ventricles in one minute. In a resting 

healthy man, cardiac output is around 5 L/min so that around two-thirds of 

the end-diastolic blood is ejected. This ejected volume is called ‘stroke 

volume’, around 70-80ml, and the proportion ejected, known as the ‘ejection 

fraction’, is the stroke volume divided by the end diastolic volume and 

averages 0.67 at rest. (Levick 2010). 
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Blood pressure is the force applied on arterial walls during the cardiac cycle. 

‘Systolic blood pressure’ is the highest pressure in the arteries during systole 

and ‘diastolic blood pressure’ is the lowest pressure during diastole. 

Diastole 

Diastole has two phases, the early and late filling phase. Figure 16B below 

demonstrates this with two blood volume peaks after end-systole. The first 

peak represents early filling as the ventricles relax and recoil elastically from 

the deformed end-systolic shape, therefore sucking blood into the chamber. 

The second smaller peak represents late filling as the atrial muscle contract 

to push the remaining blood into the left ventricle. The midpoint between 

these two phases is called ‘diastasis’ which represents the period in which 

ventricular filling slows down and further filling is driven by venous pressure. 

(Levick 2010) 

We can derive 5 parameters of diastolic function from cine MRI measurement.  

1) Early filling percentage: The volume increase from end-systole to 

midpoint divided by stoke volume x100 

2) Peak early filling rate: maximum value of the first derivative between 

end-systole and the diastolic midpoint. 

3) Peak late filling rate: maximum value of the first derivative between 

the diastolic midpoint and end-diastole 

4) Time to peak early filling: time interval between end-systole and 

peak early filling 

5) Early-to-late diastolic filling ratio (E/A): peak early rate divided by 

the peak late rate E/A is the first generation test for diastolic 

performance. If the ratio is >1 then diastolic function is considered 

‘normal’ but any results <1 represents diastolic dysfunction (Kudelka 

et al. 1997). 
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Figure 16  Left ventricular volume during a cardiac cycle from MRI in a healthy volunteer. 
A)-spline fitted curve (Time is expressed as a fraction of the RR interval).B) 
First derivative of the curve shown in A. ES=End systole, MP=diastolic 
midpoint, ED=end-diastole, MR-AFR= peak late filling rate, MR-EFR= peak early 
filling rate, MR-TEF= Time to peak early filling (Kudelka et al. 1997). 

 

Torsion and strain 

Torsion is a normal feature of cardiac contraction and describes the relative 

rotation of the apex with respect to the base in a counter-clockwise direction 

(Buchalter et al. 1990). This twisting motion occurs as epicardial fibres are 

further than endocardial fibres from the centre of the left ventricle and 

therefore have a mechanical advantage. The endocardial fibres therefore 

partly counteract torsional motion induced by the epicardium (Lumens et al. 

2006) and so damage to endocardial fibres seen in ageing and various 
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diseases, causes net torsion to increase (Hollingsworth et al. 2012; Fonseca 

et al. 2004). During contraction, the myocardium displays two modes of 

action: shortening (ejection) and torsion (Figure 17). The ratio between these 

two is called the torsion to shortening ratio (TSR) and is seen to increase in 

normal ageing due to endocardial fibre damage (Lumens et al. 2006). During 

early diastole, torsion is rapidly released and this is reported as the torsion 

recoil rate which is normalised for peak torsion (%/ms) (Hollingsworth et al. 

2012). 

Regional torsion angle (ΔѲ) is the angle between a superior (basal) tag point 

at end-systole and the corresponding tag point on an inferior slice, expressed 

as an angle of rotation (Buchalter et al. 1990) (Figure 18).Cardiac Torsion is 

the circumferential longitudinal shear angle (ɣ) which refers to the difference 

between a tag point on a basal and inferior slice at end systole (Figure 18) 

expressed as an angle of which the corner is the tag point on the basal slice 

(Buchalter et al. 1990). The ‘Circumferential longitudinal shear’ (ɣ) is 

calculated using the regional torsion angle and the radius of the myocardial 

border (r). There is regional variation in torsion, in that torsion increases 

towards the base of the heart (Buchalter et al. 1990). 
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Figure 17  Modes of action during left ventricular contraction, from a segment of the 
myocardium. Top right shows torsion in the absence of ejection, bottom left 
shows ejection in the absence of torsion. Bottom right shows a normal 
physiological state, p.1574 (Lumens et al. 2006) 

 

In addition to torsion, strain is also a feature of myocardial segment 

deformation, which refers to stretching or compression in 3 directions (Figure 

19). These measures are affected by wall thickness and have been shown to 

correlate strongly to ejection fraction (Bogaert et al. 2001). Left ventricular 

longitudinal shortening, a parameter which is calculated from MRI, is a 

measure of the percentage change in length of the left ventricle in a 

longitudinal direction (Petersen et al. 2011a). 
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Figure 18  The torsion angle (ΔѲ) and circumferential longitudinal shear (ɣ) for one tag 
point, p.1239 (Buchalter et al. 1990). 

 

Figure 19  Three types of myocardial strain, p.674 (Petersen et al. 2011b) 
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1.5.3 Cardiac Magnetic Resonance Imaging 

Measures of left ventricular structure and function have high clinical and 

diagnostic value and are commonly used in risk assessment and therapeutic 

decisions (Haider et al. 1998). Echocardiography is widely used to measure 

the left ventricle but this technique relies on geometric assumptions 

(Missouris et al. 1996). MRI is superior in that it provides a spatially defined 

3-dimentional dataset so no geometric assumptions are made and is 

therefore regarded as the gold standard for left ventricular, mass, volume and 

some functional measurements (Plein et al. 2001; Iaizzo 2009b). 

How it works 

The body’s natural magnetic properties are used in MRI to produce images. 

Hydrogen atoms, used because of their abundance in water and fat, behave 

like a small bar magnet as they spin with their axes randomly aligned. A 3.0 

Tesla scanner provides a strong magnetic field causing alignment of the 

proton axes and creation of a magnetic vector orientated along the scanner 

axis (Figure 20) (Berger 2002). 

Figure 20  Magnetic field causing the proton axes to line up, p.35 (Berger 2002) 

 

Radio-waves are then applied which deflects the magnetic vector, then 

switching off of the radiowave causes the vector to return to its resting state, 

emitting a signal. This signal is used to create MRI images. Different tissues 

can be detected because they relax at various rates. Relaxation is measured 

in two ways; 1) T1- time taken for the magnetic vector to return to its resting 

state, 2) T2-Time taken for the axial spin to return to resting. Receiver coils 

act as aerials to improve detection of signals (Berger 2002). To reduce 



45 
 

movement artefact, acquisitions are synced with heart rate thereby 

minimising cardiac motion and breath holds are required to remove 

respiratory movement (Fuster et al. 2001).  

To measure cardiac structure a ‘spin echo’ sequence is used which creates 

‘black-blood’ images due to the signal void created by flowing blood (Figure 

21A), enabling good contrast between the blood and myocardium (Iaizzo 

2009b).These images allow the calculation of structural and functional 

parameters obtained by tracing around the endocardial and epicardial 

borders of multiple short axis slice images of the left ventricle (Figure 21B). 

Ventricular volumes are then calculated using ‘Simpons rule’ (approximates 

area under the curve). 

Figure 21  Cine MRI  A)Spin echo imaging showing the black cavities of the left and right 
ventricle and the surrounding myocardium. p.345(Iaizzo 2009b). B) Manual 
tracing of epicardial and endocardial borders. 

 

Tagging is used to measure myocardial strain and torsion. A series of pulses 

null the longitudinal magnetisation along thin strips, which appear as tags. 

These are applied in two directions to form a grid pattern. These tags imbed 

in the tissue and distort during myocardial motion. This can be used to trace 

motion of the myocardial wall, as tags within the ventricular blood disappear 

quickly due to the motion of blood (Iaizzo 2009b) (Figure 22). 

A B 
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Figure 22  Left ventricular tags at end systole (left) and end diastole (right). 

 

1.5.4 Cardiac metabolism  

The heart is metabolically active, using around 6kg of ATP each day to 

enable roughly 100,000 heart beats daily (Bizino et al. 2014). Both diastole 

and systole require energy and to fuel this requirement, the heart converts 

free fatty acids and glucose into chemical energy in a ratio of 3:1 respectively 

(Bizino et al. 2014). Fatty acids are derived from either plasma NEFA or 

triacylglycerol as the heart expresses high levels of lipoprotein lipase (Frayn 

2013). Fatty acid uptake by sarcolemmal fatty acid transport proteins 

consumes energy and enters the mitochondrion where β-oxidation takes 

place. Glucose uptake by GLUT 4 is insulin dependent and is converted into 

pyruvate before entering the Krebs cycle in the mitochondrion (Bizino et al. 

2014). The glucose-fatty acid cycle operates in the myocardium so that under 

fed conditions when insulin is high, glucose is utilised over fat (Frayn 2013). 

The heart can also metabolise pyruvate, lactate and ketone bodies but their 

low blood concentrations means this is rare. When all the blood 

concentrations of substrates are equal, the heart favours fatty acid, pyruvate 

and lactate metabolites (Iaizzo 2009b).  

1.5.5 Cardiac Phosphorus Magnetic Resonance Spectroscopy (P-MRS) 

Radiofrequency pulses used during MRI, can be used for MRS. The signal 

however is not used to create images, but rather used to measure the 

content of MR-visible nuclei including Hydrogen (1H), Carbon (13C), and 

phosphorus (31P). P-MRS is used to estimate the bioenergetics state of the 

cardiac tissue by measuring the phosphocreatine/ATP ratio (PCr/ATP). MRS 
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can also be used to measure intrahepatic and intramuscular liver lipid using 

H-MRS (Befroy & Shulman 2011).Figure 23 shows an example cardiac 

spectra, there are multiple peaks because they need slightly different 

magnetic fields to bring them to resonance at a particular radiowave. The 

ratio of the areas under the peaks represent the number of atoms in each 

environment (rather than the height). 

Figure 23  Sample cardiac phosphorus spectra from (a) a young subject (with PCr/ATP = 
1.95) and (b) an older subject (with PCr/ATP = 1.55). 
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1.6 Type 2 diabetes  

1.6.1 Definition and diagnosis 

Type 2 diabetes is a metabolic disorder characterised by hyperglycaemia due 

to disorders of insulin secretion and insulin action or both (Alberti & Zimmet 

1998). Despite having these hallmark insulin disorders, Type 2 diabetes is 

polygenic and heterogenic in nature (McGarry 2002). 

Diagnosis of this chronic disease is built upon a biochemical threshold which 

has changed over the years. In 2011, the WHO confirmed an HbA1c value 

of >48mmol/mol (6.5%) as the primary diagnostic criteria for Type 2 diabetes 

but emphasised a value <48mmol/mol doesn’t exclude diagnosis using other 

glucose tests. The progression of normoglycemia (fasting venous plasma 

glucose of <6.1mmol/l) to Type 2 diabetes occurs over time with IGT and IFG 

frequently preceding Type 2 diabetes. For example the Baltimore longitudinal 

study of aging which examined Caucasian 21-96 year olds over a long period, 

found that compared to those with normal glucose levers at baseline, those 

who had IFG or IGT experienced higher progression rates to Type 2 diabetes 

5 years on (Meigs et al. 2003). Although this suggests a slow transition in 

glucose control-more recent data suggests 18 months prior to Type 2 

diabetes diagnosis, there is an abrupt rise in fasting glucose (Sattar et al. 

2007a). This is likely to reflect an underlying metabolic change during the 

pathogenesis of Type 2 diabetes and emphasises the need for 6/12monthly 

checks in people who have IGT/IFG. 

1.6.2 Pathogenesis: Twin cycle hypothesis 

In the past, Type 2 diabetes was thought to be a chronic, progressive 

condition however reversal of Type 2 diabetes after gastric surgery (Dixon et 

al. 2008) and dietary intervention (Lim et al. 2011) has challenged this belief 

and provided insight into the pathogenesis of the disease. The normalisation 

of blood glucose and liver fat after these led to the ‘twin cycle hypotheses’ 

and belief that Type 2 diabetes is a disease of chronic excess fat.  
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Liver fat 

What-Reversal of Type 2 diabetes during a very low calorie diet and gastric 

surgery is characterised by a rapid decrease in liver fat. After only 7 days of a 

600-kcal/day diet, liver fat fell by 30% along with a reduction in fasting 

plasma glucose from 9.2mmol/L to 5.9mmol/L (Lim et al. 2011). More 

evidence to suggest that liver fat is central in the pathogenesis of Type 2 

diabetes can be found with the rise in alanine aminotransferase (ALT) prior to 

Type 2 diabetes diagnosis (Sattar et al. 2007b) which indicates metabolic 

stress in hepatocytes.  

Why-Chronic positive energy balance results in conversion of CHO into fat 

via DNL. Once glycogen depots are full, excess CHO can only be converted 

into triacylglycerol within the hepatocytes, and this in situ conversion is 

favourably stored rather than transported to adipose tissue (Taylor 2012b). 3 

weeks of carbohydrate overfeeding in the form of sweets, 300ml of pepsi and 

30ml fruit juice, led to a 30% increase in liver fat (Sevastianova et al. 2012). 

Along with energy excess, hyperinsulinemia also leads to intra-hepatic 

triacylglycerol deposition. Those who have peripheral IR as a result of 

lifestyle or familial traits, have raised plasma insulin levels, and fat 

accumulation in the liver pursues because insulin stimulates DNL (Taylor 

2012b). One study showed that 70% of people with Type 2 diabetes have a 

fatty liver (Targher et al. 2007) 

Consequences-Liver fat is responsible for causing hepatic IR and 

consequently the inability of hepatocytes to respond to insulin leads to 

continued endogenous glucose production (Seppala-Lindroos 2002). Liver fat 

is linked to hepatic IR as the accumulation of DAG (a product of DNL) leads 

to activation of protein kinase-Ce (PKCe) which inhibits the insulin signalling 

pathway (Figure 24) (Perry et al. 2014; Samuel et al. 2010). The fall in liver 

fat during surgery or a very low calorie diet occurs alongside a fall in plasma 

glucose because of normalisation of hepatic insulin sensitivity (Ravikumar et 

al. 2008).  
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Figure 24  Molecular pathway in which DAG leads to hepatic IR and hyperglycemia (Perry 
et al. 2014) 

 

Although metabolically one of the fates of newly synthesised triacylglycerol is 

oxidation in mitochondria for energy production, a by-product of DNL called 

malonyl-CoA inhibits fatty acid transport into the mitochondria (Taylor 2013). 

This results in hepatic triacylglycerol being directed to exportation as very-

low-density-lipoprotein (VLDL) levels or storage in hepatocytes. 

Β-cell dysfunction 

What-A main characteristic of Type 2 diabetes is insulin deficiency due to β-

cell dysfunction. Being the organ which regulates insulin production, changes 

in the pancreas are seen during Type 2 diabetes and we now know that β-

cell number is around 40% less at the time of Type 2 diabetes diagnosis with 
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a continued linear deterioration thereafter (Rahier et al. 2008; Butler et al. 

2003) 

Why-Normally, an increase in blood glucose stimulates β-cell insulin release 

due to ATP generation by glucose oxidation. However in Type 2 diabetes 

increased NEFA, according to the Randle cycle (Randle 1998), leads to a 

decrease in glucose metabolism, or in other words β-cells become less 

responsive to glucose. In addition, the long term exposure of β-cells to 

hyperglycaemia is partly responsible for the decline in β-cell function as it 

causes the β-cells to become unresponsive, even in non-diabetic individuals 

(Ferner et al. 1986). When human islets are exposed to high levels of 

glucose and NEFA over 48hours, there is a decrease in insulin content and a 

loss of glucose stimulated insulin secretion, mimicking the physiological β-

cell changes that occur in vitro (Dubois et al. 2004). This suggests that a high 

level of glucose isn’t a prerequisite for β-cell changes with elevated NEFA but 

it is interesting to note that when both conditions are present, their additive 

effects worsen β-cell deterioration. These metabolic factors account for the 

acute decrease in insulin secretion seen in Type 2 diabetes. 

The loss of total β-cell mass observed in Type 2 diabetes has been attributed 

to chronic exposure to fatty acids and deposition of VLDL leading to 

apoptosis (Shimabukuro et al. 1998). When human islets are exposed for 48 

hours to a fatty concentration of that which mimics a Type 2 diabetic patient, 

there is a significant increase in triacylglycerol accumulation and β-cell 

apoptosis (Dubois et al. 2004).  

Consequences-As already stated; the main consequence is a decrease in 

insulin secretion and β-cell apoptosis. However it’s becoming clearer that 

there isn’t a universal fat threshold which determines β-cell dysfunction but 

rather individuals have different degrees of liposusceptibility (Tushuizen et al. 

2007; Taylor 2013) 

The COUNTERPOINT study (Lim et al. 2011) illustrated that first phase 

insulin response was absent in Type 2 diabetes patients (diagnosis <4yrs) 

but after 8 weeks of a very low calorie diet (VLCD) this returned to normal 

and the insulin secretion rate was no different to non-diabetic individuals. 
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This suggests that β-cells dysfunction is not permanent and should be 

viewed as ‘metabolic inhibition’ rather than complete β-cell destruction 

(Taylor 2013). Whether this applies to individuals with a longer Type 2 

diabetes diagnosis is still to be determined.  

Twin cycle 

The twin cycle hypothesis suggests these steps operate as a ‘twin cycle’ 

rather than a linear sequence (Figure 25) (Taylor 2012b).  

‘Liver fat cycle’ refers to the raised liver fat which increases hepatic IR and 

therefore fails to inhibit endogenous glucose production. This continued 

production stimulates insulin release which further drives DNL, increasing 

hepatic triacylglycerol content. 

‘Pancreas Cycle’ points to the increased fat and glucose production which 

cause β-cell dysfunction leading to reduced insulin secretion and therefore 

further elevations in plasma glucose. 

1.6.3 Altered metabolism  

During normal metabolic regulation the body acts to ‘buffer’ the entry of 

substrates into the circulation; plasma glucose remains relatively constant at 

around 5 mmol/L and can rise to around 8 mmol/L but any further rise is 

prevented via an increased clearance mainly into skeletal muscle and 

suppression of endogenous glucose production. Similarly lipid levels are 

controlled after a meal with increased triacylglycerol clearance mainly into 

adipose tissue and suppression of endogenous triacylglycerol into the 

circulation (Frayn 2013). This metabolic regulation is orchestrated by insulin, 

which has specific effects on different tissues. Disruption of this finely 

coordinated system can be attributed largely to IR which is the earliest 

detectable defect in Type 2 diabetes (Petersen et al. 2012) and its affects are 

illustrated in Table 1. 

Insulin stimulated glucose uptake is reduced to the same extent in patients 

with IGT, IFG and Type 2 diabetes therefore IR by itself cannot account for 

the differences in glucose tolerance deterioration between pre-diabetes and 

diabetes (G M Reaven 1988). The ability of β-cells to compensate for the 
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defect in insulin action determines glucose tolerance (G M Reaven 1988). In 

response to IR, insulin secretion is elevated which can be sustained in obese 

individuals who never progress to Type 2 diabetes (Frayn 2013). 

Figure 25  The twin cycle hypothesis of Type 2 diabetes (Taylor 2013) 
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Table 1  The impact of insulin and insulin resistance on major organs 

Organ/Tissue Insulin (working normally) Insulin Resistance 

Liver Inhibits gluconeogenesis 

Inhibits glycogenolysis 

Stores glucose 

Inhibits the release of VLDL 

Continued release of glucose into 

blood 

High levels of plasma insulin 

stimulate DNL 

White adipose 

tissue 

Inhibits lipolysis 

Take glucose out of the blood and 

store it as fat 

Keep releasing fat into the blood 

Inhibits the tissue from taking 

glucose out of the blood 

Muscle Take glucose out of the blood and 

stores it as glycogen 

Stimulates glycolysis/glucose 

oxidation for energy 

Stop using fat for energy 

Inhibits the tissue from taking 

glucose from the blood 

Store fat 

Brain Stop eating Eat (or keep eating) 

 

Glucose metabolism  

Type 2 diabetes is characterised by raised plasma glucose throughout the 

day with exaggerated responses to meals. Challenging homeostatic 

mechanisms with 75g of glucose (OGTT) is an effective way of illustrating 

altered glucose metabolism with Type 2 diabetes. This is characterised by 

higher fasting glucose levels, peak glucose levels and 2-hour glucose levels 

after ingestion of 75g of glucose. The combination of IR and decreased β-cell 

insulin secretion causes reduced glucose uptake and continued production of 

endogenous glucose. 219 men with either normal glucose tolerance, IGT and 

Type 2 diabetes were challenged with 75g of glucose, and peak insulin 

secretion occurred at 60 mins in normal glucose tolerance, 90 mins in IGT 

and 120 mins in Type 2 diabetes. This delay in peak insulin secretion 
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manifests itself as elevated plasma glucose throughout an OGTT (Bergstrom 

et al. 1990). 

Fat metabolism  

Small differences in plasma insulin concentration profoundly influence 

plasma NEFA concentration (Gerald M Reaven 1988) and it’s well 

established that fasting and postprandial plasma NEFA levels are elevated in 

Type 2 diabetes irrespective of whether individuals are obese or not (Fraze et 

al. 1985). 

Figure 26  Fasting and postprandial plasma glucose, insulin and FFA concentration in 15 
normal and 15 Type 2 diabetes divided into mild (FPG <140mg/dl), moderate 
(FPG 140-250 mg/dl) and severe (FPG >250mg/dl)(Fraze et al. 1985). 

 

Figure 26 demonstrates that in individuals who could maintain 

hyperinsulinemia (classified as having mild Type 2 diabetes) maintained near 

normal levels of glucose and NEFA whereas those with IR who secreted 

insulin levels equivalent to ‘normal’ individuals (classified as having severe 

Type 2 diabetes) had a significant increase in plasma glucose and NEFA 

(Fraze et al. 1985). 

Elevated NEFA in Type 2 diabetes is attributed to adipose tissue IR, which 

decreases esterification of fatty acids and increases lipolysis within adipose 

tissue (Fraze et al. 1985). A viscous cycle is in operation with high NEFA 
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concentrations because the increased flux of substrates promotes hepatic 

gluconeogenesis (Gerald M Reaven 1988) and according the Randle theory 

higher supply of NEFA to muscle prevents glucose uptake, both of which 

increase plasma glucose (Frayn 2013). Elevated NEFA and VLDL which are 

characteristic of a typical diabetic phenotype are not only a consequence of 

Type 2 diabetes but are also involved in the pathogenesis of this metabolic 

disorder (Taylor 2012b). 

1.6.4 Altered lifestyle behaviours 

A large observational study in females demonstrated 90% of Type 2 diabetes 

cases were associated with unhealthy lifestyle behaviours which include; 

poor diet, smoking, alcohol consumption and physical inactivity (Hu et al. 

2001). The next section will review the evidence that altered non-diet lifestyle 

behaviours are associated with Type 2 diabetes.  

Sleep and Type 2 diabetes 

No study better demonstrates the modulating role of sleep in metabolic 

regulation than Spiegel et al. (Spiegel et al. 1999). Less than 1 week of sleep 

debt (4hr per night) in young healthy men led to pre-diabetes. In fact, studies 

consistently show a U shaped relationship between sleep duration and Type 

2 diabetes risk (Shan et al. 2015). 7-8 hours sleep is associated with the 

lowest risk, and a significant increase in risk is observed with shorter or 

longer sleep. The first study to look at incident diabetes and change in sleep 

duration found that a 2 hour increase in sleep duration over 5 years led to 

increased risk of Type 2 diabetes (Ferrie et al. 2015). Although an obvious 

consequence of prolonged sleep is reduced time for physical activity in 

waking hours, it is likely that there are physiological mechanisms which 

underpin the relationship between long sleep and Type 2 diabetes risk, but 

these have yet to be elucidated.  

The physiological mechanisms linking short sleep and Type 2 diabetes are 

more widely studied. After sleep restriction, glucose tolerance reduces by 

around 40% (Spiegel et al. 2004) with an increase in hepatic glucose 

production and decrease in peripheral glucose disposal. A number of 

reasons have been attributed to this, including; 1) an increase in sympathetic 
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tone (which decreases β-cell responsiveness and leads to inadequate 

pancreatic insulin secretion), 2) reduced AKT phosphorylation, 3) 

inflammation and 4) decreased melatonin secretion (melatonin associated 

with Type 2 diabetes risk) (see (Ferrie et al. 2015) for review). In addition, 

short sleep leads to a >70% increased ghrelin-to-leptin ratio, increasing the 

desire for calorie-dense foods, weight gain and resulting metabolic 

abnormalities (Spiegel et al. 2004).  

Despite the clear link between sleep shortening/lengthening, government 

policies do not mention sleep as an important behavior to target in the 

prevention, management and treatment of Type 2 diabetes. 

Sedentary behaviour and Type 2 diabetes 

Sedentary behaviour is positively associated with Type 2 diabetes risk 

(Wilmot et al. 2012) in a dose dependant manner. (Grontved & Hu 2011). A 3 

year follow-up of the US diabetes prevention programme demonstrated 

reduced Type 2 diabetes incidence with the lowest sedentary time (Rockette-

Wagner et al. 2015). These observations are all independent of body mass 

index (BMI), which suggests that the impact of sitting extends beyond the 

effect on body composition. Despite these results, much of the evidence 

arises from self-report measures, focusing on television sitting time. Indeed a 

recent study which used daily sedentary time with accelerometers 

demonstrated significant associations with metabolic parameters cross-

sectionally, but sedentary time did not predict 5 year diabetes incidence 

(Barone Gibbs et al. 2015). This highlights the need for objective measures 

and longer term follow to better define the relationship between diabetes and 

sedentary time. 

In those with Type 2 diabetes, higher sedentary time is associated with larger 

waist circumference, homeostasis model assessment (HOMA)-IR, insulin and 

lower high density lipoprotein (HDL) cholesterol (Cooper et al. 2012) and 

intervention studies have shown that frequently breaking up sedentary time 

reduces postprandial  glucose and insulin response (Dunstan et al. 2012). 

Despite this evidence, individuals with Type 2 diabetes continue to be more 

sedentary than their healthy counterparts (Hamer et al. 2013). Health 
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guidelines for Type 2 diabetes do not prioritise sitting time as a modifiable 

risk factor to target. Due to the barriers of performing physical activity, 

increasing NEAT and reducing sedentary behaviour seems a practical 

solution in those with Type 2 diabetes and more work needs to be done into 

translating this evidence into clinical practice. 

Physical activity and Type 2 diabetes 

A systematic review looking at moderate physical activity levels (defined as 

3-6 metabolic equivalents (METS)) and Type 2 diabetes risk concluded that 

those who regularly engaged in moderate physical activity had a 30% lower 

risk of Type 2 diabetes compared to sedentary individuals (Jeon et al. 2007). 

This was also the case when specifically walking was examined. It is 

important to note that these associations remained significant when 

controlling for BMI (Jeon et al. 2007). In a worldwide analysis of physical 

inactivity and disease outcomes, it was estimated that inactivity was 

associated with a Type 2 diabetes risk ratio of 1.20 (Lee et al. 2012). 

Compared to all the chronic diseases they studied, the highest prevalence of 

physical inactivity occurred in those who went onto develop Type 2 diabetes.  

Evidence that physical activity lowers Type 2 diabetes risk also comes from 

interventional studies. Two seminal studies, the Finnish (Tuomilehto et al. 

2001) and US Diabetes Prevention Programmes (Knowler et al. 2002), have 

shown that large scale lifestyle interventions are as, if not more, effective 

than pharmacological interventions. The interventions encouraged individuals 

to reduce their body weight by >5% and increase physical activity to 150 

mins per week (measured by self-report). The Finnish study which recruited 

522 individuals with IGT found that the relative risk reduction in progression 

to Type 2 diabetes reached 43%, 7 years on (Lindström et al. 2006). A 10-

year follow up of the US diabetes programme demonstrated a 34% reduction 

in diabetes incidence, higher than the 18% reduction with metformin (Knowler 

et al. 2009). A recent systematic review found that in those who are at 

increased risk for Type 2 diabetes, physical activity and diet interventions 

significantly reduce diabetes incidence and improve cardio-metabolic risk 

factors, compared with usual care (Balk et al. 2015). Benefits of physical 
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activity interventions extend to substantial financial savings, with prescription 

costs reduced by $259 in one study (Di Loreto et al. 2005).  

Despite all the evidence, individuals with Type 2 diabetes still do not 

participate in adequate levels of physical activity (Nwasuruba et al. 2007).and 

more work needs to be done to improve this lifestyle behaviour in cardio-

metabolic disease.  

Exercise and Type 2 diabetes 

Along with diet and medication, exercise has been a cornerstone in the 

management of Type 2 diabetes for decades and its low cost and non-

pharmacological nature make it an attractive therapy. The latest exercise 

recommendations in Type 2 diabetes are derived from the American College 

of Sports medicine (ACSM) and the American Diabetes Association (ADA) 

joint position statement in 2010 (Colberg et al. 2010).  

Using the frequency, intensity, time, type (FITT) principles they recommend 

aerobic activity to be: 

F performed at least 3 days/week and due to the transient nature 

of exercise effects on exercise, there should be no more than 2 

consecutive days between bouts. 

I Exercise should be at least moderate (40-60% peak oxygen 

consumption (VO2peak)) but additional benefits are seen for 

exercise >60%. Intensity may be more important than volume. 

T Minimum of 150 mins/week. Bouts of activity should be at least 

10 mins long spread throughout the week 

T Large muscle groups which increase heart rate. 

FITT principles for resistance exercise: 

F At least twice weekly on non-consecutive days along with 

aerobic exercise 

I Moderate (50% of 1 repetition maximum (RM)) to vigorous (75-

80% 1RM) 
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T Minimal of 5-10 exercises targeting major muscle groups and 

each set should include 10-15 reps progressing to heavier 

weights with 8-10 reps. 3-4 sets per exercise is recommended. 

T Resistance machines and free weights are both recommended. 

Below I will present evidence from systematic reviews and meta-analysis 

regarding exercise in Type 2 diabetes.  

Thomas et al.(Thomas et al. 2006) conducted a systematic review of all 

literature in Type 2 diabetes and exercise to explore the independent effects 

of different types of exercise upon this chronic condition. Only 14 randomised 

controlled trails (RCTs) comparing purely exercise and non-exercise with a 

total number of 377 participants were used, as many other trials combined 

exercise with weight loss. There was a significant 0.6% reduction in HbA1c 

with the exercise intervention, which varied from 8 weeks to 12 months in 

duration and combined aerobic and resistance exercise. A 1% increase in 

HbA1c is associated with a 21% increase in disease related death, 21% 

increase in disease end point, and a 37% increase in microvascular 

complications (Thomas et al. 2006) suggesting this 0.6% decrease is 

clinically significant. Despite significant improvements in insulin sensitivity, 

exercise had no effect of fasting plasma glucose or AUC for glucose, and 

there was no change in blood pressure or blood cholesterol after exercise. 

Subcutaneous and visceral fat significantly decreased with body weight 

remaining stable.  

Similar findings were reported from a meta-analysis which included 27 

exercise studies over 4 weeks to 2 year duration and included 1002 Type 2 

diabetes individuals. The average reduction in HbA1c was 0.8% for longer 

term studies, described by the authors as ‘small to moderate benefits on 

glucose control’ which were similar to other dietary, drug and insulin 

treatments (Snowling & Hopkins 2006). 

Volume + intensity: The benefits of providing structured exercise 

interventions was highlighted in a meta-analysis of 47 RCTs (Umpierre et al. 

2011) which showed greater improvements in glucose control compared to 
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just providing physical activity advice and it was also evident that the volume 

of exercise is important with >150 mins/week reducing HbA1c by 0.89% and 

<150mins/week reducing HbA1c by 0.36%. Another more recent systematic 

review and meta-analysis of supervised exercise confirmed the importance of 

exercise volume (Umpierre et al. 2013) and the importance of exercise 

intensity has also been highlighted (Boulé et al. 2003). 

Type: The ACSM and ADA (Colberg et al. 2010) recommend that a 

combination of resistance and aerobic exercise is better than focusing on one 

training modality (evidence category B) in Type 2 diabetes. A meta-analysis 

which analysed aerobic, resistance and combined training, found combined 

was most effective for blood glucose, lipids and blood pressure 

(Schwingshackl et al. 2014). Aerobic training was superior when compared to 

resistance training for glycaemic control. The external validity of these 

findings may be questioned, as only supervised interventions were included 

in the analysis. 

HIIT and Type 2 diabetes 

Previous to 2011, no studies had looked at HIIT in Type 2 diabetes. Little et 

al. (Little et al. 2011a) were the first group to examine the benefits of HIIT in 

this metabolic condition but due to the extremely demanding Wingate-based 

HIIT program, they developed a more practical HIIT model which included 10 

x 60s sprint intervals eliciting 90% maximal heart rate. Eight participants with 

Type 2 diabetes performed 6 sessions of this HIIT model and using 

continuous glucose monitoring they found average 24 hour blood glucose 

was significantly reduced 48-72 hours after the last training bout, as well as 3 

hour post-prandial AUC glucose curve for breakfast, lunch and dinner. Biopsy 

samples from the vastus lateralis displayed an increase in mitochondrial 

capacity with raised electron transport chain proteins, raised citrate synthase 

activity (20%) and a large increase in GLUT 4 content (369%). These positive 

changes were observed despite a 50% lower time commitment compared to 

current exercise recommendations.  

The acute effects of a single HIIT session (10 x 60second sprints) was 

compared to a control day in 7 individuals with Type 2 diabetes (Gillen et al. 
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2012). Postprandial glucose concentration significantly decreased after HIIT 

and time spent in hyperglycaemia in the 24 hour period after HIIT was 

reduced by 65%. Postprandial hyperglycaemia is a major contributor to Type 

2 diabetes related complications and reducing post meal glucose excursions 

is a priority for Type 2 diabetes management (Ceriello et al. 2004). 

The only longer term HIIT intervention (12 weeks) in Type 2 diabetes was 

undertaken in 45 Southeast Asian adults (Mitranun et al. 2014). Fasting 

glucose decreased from 7.7 to 6.6 mmol/L and HbA1C from 60 to 54 

mmol/mol. The modest improvements in glycaemic control are likely to reflect 

increased peripheral insulin sensitivity due to muscular adaptions highlighted 

by Little’s group (Little et al. 2011b). South Asian populations are more 

susceptible to insulin resistance and Type 2 diabetes therefore the 

applicability of these findings to Caucasians is questioned.  

In summary, the HIIT trials in Type 2 diabetes show acute improvements in 

glycaemic control and peripheral insulin sensitivity however the need for 

longer term studies using HIIT in Type 2 diabetes is warranted before HIIT 

can be considered an established therapy in Type 2 diabetes management. 

1.6.5 Altered cardiac health 

The term ‘cardio-metabolic disease’ has arisen from the increased risk of 

cardiac complications in metabolic disease, and also from the fact that they 

seem to share common environmental and genetic antecedents. 

The Framington heart study (Kannel & McGee 1979) was one of the first to 

identify an increase in cardiovascular disease (CVD) in men and women with 

Type 2 diabetes and identify CVD as the leading cause of mortality in Type 2 

diabetes (Garcia et al. 1974). The effect of hyperglycaemia and other risk 

factors contributing to atherosclerotic vascular disease have been 

established (Miki et al. 2013). In contrast, ‘diabetic cardiomyopathy’ which 

can be defined as the dysfunction of cardiac tissue in the absence of 

coronary heart disease, (Larsen & Aasum 2008) has received less attention. 

Despite Type 2 diabetes posing at least a 2-3 fold increased risk of heart 

failure (Kannel et al. 1974), heart failure has been described as the 'frequent, 

forgotten and often fatal complication of diabetes'. (Bell 2003). A recent 6 
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year longitudinal study found that compared to healthy controls, prediabetes 

and diabetes patients had significant subclinical myocardial damage, even 

after adjustment for CVD risk factors. Furthermore, these people were at 

higher risk of heart failure and mortality (Selvin et al. 2014).  

It is consistently reported that one of the earliest preclinical manifestations of 

cardiomyopathy is left ventricular diastolic dysfunction, which may progress 

to systolic dysfunction and resulting heart failure. Abnormal cardiac geometry 

(remodelling) has also been reported but evidence is less robust. Alterations 

in cardiac metabolism were thought to underlie these changes (Diamant et al. 

2003), however more recent evidence suggest they are independent of each 

other (Rijzewijk et al. 2009). These changes are described in more detail 

below. 

Altered cardiac structure 

Cardiac MRI in middle aged to elderly men and women demonstrated a 

significant association between increases in the eccentricity ratio with 

hyperglycaemia and IR (Velagaleti et al. 2010). This finding however is not 

consistent; with some MRI studies reporting no difference in left ventricular 

wall mass between Type 2 diabetes patients and controls (Diamant et al. 

2003; Rijzewijk et al. 2009). 

Altered cardiac function 

A common finding in asymptomatic individuals with Type 2 diabetes is left 

ventricular diastolic dysfunction with normal left ventricular ejection fraction. 

There is a high prevalence of diastolic dysfunction in asymptomatic, 

normotensive patients with Type 2 diabetes  (Diamant et al., 2003), with one 

study reporting diastolic dysfunction in 43 out of 57 (75%) individuals (Boyer 

et al. 2004). Myocardial relaxation is an essential cardiac function. When 

there is a need for increased diastolic relaxation such as during exercise, 

healthy individuals can increase the rate of myocardial relaxation which 

allows for an increase in left ventricular filling, despite shortened diastolic 

filling time (Oh et al. 2011). A less compliant heart means relaxation (E) is 

reduced and atrial systole (A) contributes a greater proportion of diastolic 

filling (Oh et al. 2011).  
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Altered cardiac strain and torsion 

Fonseca et al (Fonseca et al. 2004) measured strain and torsion in control 

and Type 2 diabetes patients. Individuals with Type 2 diabetes demonstrated 

significantly lower peak systolic circumferential and longitudinal strain and 

significantly higher peak left ventricular torsion during systole. Diastolic 

relaxation rates of longitudinal and circumferential strains were also lower in 

Type 2 diabetes individuals, which would be expected when considering the 

association between diastolic dysfunction and Type 2 diabetes. Despite 

individuals in Fonseca’s study having normal ejection fraction, systolic 

dysfunction was manifest with a decrease in left ventricular longitudinal 

shortening. It seems likely that the raised torsion in Type 2 diabetes 

compensates for the reduced longitudinal shortening, to maintain ejection 

fraction (Fonseca et al. 2004). TSR is increased in Type 2 diabetes and 

normal ageing as subendocardial contractile function is impaired which 

results in less effective counteraction of the twisting motion by 

subendocardial myofibers, resulting in an increase in torsion (Lumens et al. 

2006). This suggests there may be some pathological change causing loss of 

subendocardial contractile function relative to subepicardial function (Lumens 

et al. 2006). This impairment may be attributed to a subendocarial perfusion 

deficit, fibrosis or infarction (Lumens et al. 2006).  

Pathogenesis  

Advanced glycation end-products-Due to the involvement of many factors, 

the pathogenesis of diabetic cardiomyopathy has yet to be fully elucidated 

but one hypothesis which is becoming widespread is the impact of protein 

glycation on myocardial tissue. The combination of protein with glucose-

derived carbonyls produces advanced glycation end products (AGE) which 

are increased in Type 2 diabetes (Bodiga et al. 2013). The sarcoplasmic 

reticulum which is the site of calcium (Ca2+) release for myocardial 

contraction has a loss of function in Type 2 diabetes, leading to a decreased 

state of relaxation (Bouchard & Bose 1991). Mounting evidence is indicating 

a role of non-enzymatic glycation in altering proteins (namely SERCA) 

involved in Ca2+  cycling within the sarcoplasmic reticulum (Bodiga et al. 

2013). In addition to this, AGE’s have been found to increase cross linking of 
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proteins such as collagen, making them rigid and thereby reducing cardiac 

contractility (Bodiga et al. 2013). 

Inflammation: A pro-inflammatory state exists in Type 2 diabetes. Cardiac 

function was strongly associated with inflammatory markers when assessed 

using MRI techniques and although the small sample size (N=13) was small 

and the cross sectional nature means causality cannot be inferred, it’s likely 

that inflammation directly impacts the heart (Diamant et al. 2005). Reduction 

in cardiac inflammation in rodent models has led to beneficial effects (Bugger 

& Abel 2014). 

Mitochondrial dysfunction and oxidative stress: Altered permeability of 

mitochondria, impaired mitochondrial respiratory capacity and increased 

oxidative stress have been observed in human diabetic hearts (Dhalla et al. 

2014). Oxidative stress and the production of reactive oxygen species (ROS) 

damages proteins and phospholipids. Many studies have demonstrated 

increases in these damaging molecules, in both human and rodent hearts 

(Anderson et al. 2009; Boudina et al. 2007).  

IR: Although insulin stimulates normal cardiac growth, IR leading to 

hyperinsulinemia has been linked to pathological hypertrophy, although this 

is not concrete. In mice it was shown that high levels on insulin led to chronic 

pressure overload in cardiac tissue due to mechanical stretch-induced 

activation of insulin pathways. This chronic pressure overload altered the 

ratio between cardiomyocyte size and vascularity, leading to hypoxia and cell 

death (Shimizu et al. 2010). This supports evidence that the use of insulin 

therapy to improve glycaemic control can increase risk of cardiovascular 

events (Gerstein et al. 2008). 

Epigenetics: Type 2 diabetes is associated with changes in global gene 

expression and so there is a plausible link between altered myocardial micro-

RNA content and changes in cardiac function. Dysregulation of micro-

ribonucleic acid in mice was associated with diabetic cardiomyopathy (Feng 

et al. 2010). 
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Lipotoxicity: Under healthy phenotypes, most triacylglycerol is stored within 

adipocytes but accumulation in myocardial tissue is observed in Type 2 

diabetes (Zhou et al. 2000). In the Zucker diabetic fatty rat, a 2-fold increase 

in myocardial triacylglycerol content accompanied changes in cardiac 

structure and function (Zhou et al. 2000). Ceramide which is a mediator of 

apoptosis, was 2-3 times higher than the control group (Zhou et al. 2000). It 

is clear that excessive deposits of lipids activate adverse signalling cascades, 

which can result in cell death, otherwise known as lipotoxicity, thereby 

affecting cardiac structure and function (McGavock 2006; Bugger & Abel 

2014).  

Despite many possible contributors leading to heart failure in Type 2 diabetes, 

there has been limited advance in detailing its time course and 

pathophysiology. Many of the theories above, have been nurtured through 

use of the Zucker diabetic rat which does not account for differences in the 

time course and remodelling processes between rodents and humans as well 

as the relative contribution of ischemia, autonomic neuropathy and 

hypertension in humans (Diamant 2012). Therefore the ability to generalise 

results to human cardiac tissue is limited.  

Altered Cardiac metabolism 

A feature of the diabetic heart is ‘metabolic inflexibility’ whereby an increase 

in NEFA uptake and decrease in glucose oxidation is demonstrated (Miki et 

al. 2013). Efficiency of ATP synthesis is reduced when NEFA is the dominant 

fuel as 23 oxygen (O2) are required to oxidise palmitate whereas only 6 O2 

are required to oxidise one molecule of glucose. This metabolic inefficiency 

can be identified using the PCr/ATP ratio which has been shown to decrease 

by as much as 35% in Type 2 diabetes individuals displaying normal cardiac 

morphology (Scheuermann-Freestone et al. 2003). PCr/ATP measured non-

invasively by P-MRS, is negatively correlated with plasma NEFA 

concentration (Scheuermann-Freestone et al. 2003) and is a strong predictor 

of total mortality, superior to ejection fraction (Neubauer et al. 1997).  

It has been proposed that reduced glucose metabolism results from impaired 

glucose transport into myocardial cells. While it’s true that hyperlipidaemia 
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and hyperglycaemia attenuate insulin stimulated glucose transport (Isfort et 

al. 2013), elevations in glucose flux enhance the mass action effect of 

glucose uptake and so it seems that problems in glucose metabolism occur 

downstream of the glucose transporters (Isfort et al. 2013). Various receptor 

signalling pathways have been identified as the cause of metabolic 

inflexibility in Type 2 diabetes and it’s clear that the Randle cycle is manifest 

within cardiac tissue with high concentrations of NEFA inhibiting glucose 

oxidation (Randle et al. 1963). One example of this is the up regulation of 

Peroxisome proliferator-activated receptor α (PPARα) seen in Type 2 

diabetes (Finck et al. 2002). PPARα is activated by intracellular NEFA which 

leads to stimulation of enzymes involved in lipid metabolism (Hafstad et al. 

2009) and up regulation of pyruvate dehydrogenase lipoamide kinase 

isozyme 4, which suppresses glucose oxidation (Buchanan et al. 2005). 

Alterations in the activity of key enzymes have also been identified, such as 

phosphofructokinase and pyruvate dehydrogenase complex (Isfort et al. 

2013). Mitochondrial dysfunction has also been linked to reduced metabolic 

efficiency. Increased activity of uncoupling proteins and increased O2 cost 

due to NEFA oxidation, elevates mitochondrial ROS production in Type 2 

diabetes (Boudina et al. 2007). This not only causes local damage but can 

lead to an increase in cytosolic ROS which has been linked to altered Ca2+ 

movement and ATP generation (Isfort et al. 2013). 

A cause and effect relationship has yet to be established but alterations in 

cardiac metabolism frequently precede the development of ventricular 

dysfunction (Buchanan et al. 2005) which suggest that metabolic inflexibility 

contributes to cardiac dysfunction (Larsen & Aasum 2008). Another indicator 

that cardiac inflexibility and ventricular dysfunction are linked comes from 

pharmacological interventions whereby cardiac metabolism is normalised 

and cardiac function is improved (Aasum et al. 2008). That being said, 

Rijzewijk et al. (Rijzewijk et al. 2009) found no change in cardiac metabolism 

in Type 2 diabetes. The exact role cardiac energetics play in Type 2 diabetes 

heart disease is therefore still to be established. 
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Prevention and treatment 

Little is known about appropriate prevention and treatment strategies to 

manage heart disease in Type 2 diabetes. Improved glucose control is 

beneficial for cardiovascular events yet not much is known about the effect 

on diabetic cardiomyopathy (Miki et al. 2013). Diastolic resting velocity (a 

measure of diastolic function) improved in Type 2 diabetes individuals 

controlling their blood glucose with insulin during a 3 week intervention so 

that changes in diastolic myocardial velocity at rest correlated with changes 

in fasting blood glucose (von Bibra et al. 2004). It is well documented that the 

use of metformin is beneficial for diabetic cardiomyopathy, with a lower 

incidence of mortality and heart failure in those taking the medication (Aguilar 

et al. 2011; Andersson et al. 2010). Whether the effects are due to a 

reduction in hyperglycaemia alone or other mechanisms, has yet to be 

established. 

There have been limited studies looking at the effects of exercise on diabetic 

cardiomyopathy although the ones undertaken have illustrated favourable 

outcomes. Type 2 diabetes patients absent of cardiovascular disease 

underwent a 12 month exercise intervention which consisted of 150 mins of 

moderate exercise combining aerobic and resistance activity (Hordern et al. 

2009). Post-hoc analysis revealed those who performed more vigorous 

activity significantly improved diastolic function and displayed an increase in 

myocardial strain rate (systolic deformation). 12 weeks of soccer training in 

Type 2 diabetic men, increased left ventricular end-diastolic diameter, two-

dimensional strain and E/A ratio (Schmidt et al. 2013). Only one group has 

measured the impact of HIIT; 12 weeks led to increases improvements in 

diastolic and systolic function. All of these aforementioned studies used 

echocardiography which is less accurate than MRI (Grothues et al. 2002). 

The rest of the evidence comes from rodent models.  

The above studies indicate exercise as a potential therapy but limited 

research in humans leaves a gap in knowledge of the most appropriate ways 

to effectively manage the burden of diabetic cardiomyopathy. 
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1.7 Summary of literature review 

Section 1.3 introduced metabolic regulation as a finely tuned system in which 

major metabolic organs including the liver, muscles and adipose respond to 

hormones and environmental stimuli so fluctuations in energy balance 

throughout the day are met with appropriate action. Any disturbance can lead 

to metabolic disease such as NAFLD and Type 2 diabetes, which pose 

significant UK health burdens. Section 1.4 described the influence of lifestyle 

behaviours including sleep, physical activity, sedentary behaviour and 

exercise on metabolism. Section 1.5 provided an overview of normal cardiac 

structure, function and metabolism and how MRI can be used to measure 

these parameters. Finally, section 1.6 describes how those with Type 2 

diabetes (a prominent metabolic disease) have altered metabolism, lifestyle 

behaviours and cardiac health. The term ‘cardio-metabolic disease’ arises 

from the fact that those with metabolic disease have an increased risk of 

cardiac complications. Lifestyle behaviours including sleep, physical activity, 

sedentary behaviour and exercise all influence cardio-metabolic health, yet 

physical inactivity and unhealthy lifestyles are characteristic of modern 

society. Therapies and strategies are urgently required to address the 

increase in unhealthy lifestyles and the rise in cardio-metabolic disease.  

1.8 Aims of thesis 

In light of this information, this thesis aims to answer the following questions: 

1) Using a representative UK sample, can we better define the ‘unhealthy 

behavioural phenotype’ of those with cardio-metabolic disease, and 

therefore highlight which lifestyle behaviours remain significant 

unaddressed risk factors? (Chapter 2) 

2) In those with metabolic disease but no overt cardiovascular disease, 

what (if any) are the pre-clinical cardiac changes observed, using 

sensitive MRI? (Chapter 4) 

3) Can exercise be used as a therapy to improve cardiac health in those 

with metabolic disease? (Chapter 5) 
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Chapter 2 A cross sectional study of diet, physical activity, 

sedentary behaviour and sleep in 233,110 adults from the 

UK Biobank; the behavioural phenotype of Cardiovascular 

disease and Type 2 diabetes. 
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2.1 Introduction 

CVD and Type 2 diabetes represent significant personal, economic and 

societal burdens. CVD accounts for a quarter of all UK deaths (British Heart 

Foundation 2015) and people with Type 2 diabetes carry twice the risk of 

developing CVD (Sarwar et al. 2010).  With over 700 new cases of diabetes 

diagnosed daily (Diabetes UK 2015), total health care expenditure on 

diabetes is forecast to rise from 10% to 17% by 2035 (Hex et al. 2012). The 

inter-relationship between cardiovascular and metabolic disease is termed 

cardio-metabolic health, and reflects their common environmental and 

genetic antecedents. Those with both CVD and Type 2 diabetes have a 

particularly poor prognosis and require aggressive risk factor intervention 

(Association 1999). 

Behavioural factors, spanning diet, physical activity, sedentary behaviour and 

sleep are major risk factors for the development of cardio-metabolic disease. 

The reduction in energy expenditure through 1) lack of physical activity and 2) 

increase in sedentary behaviours are risk factors for cardio-metabolic 

disease (Grontved & Hu 2011; Bell et al. 2014). Indeed, technological 

advancements of the 21st century have paved the way for sedentary 

behaviours such as watching television, driving and sitting at a computer 

becoming the ‘norm’ in modern society, so that physical inactivity is now the 

4th leading cause of disease and disability in the UK (Murray et al. 2013). 

Both physical activity and television (TV) sitting are associated with cardio-

metabolic health when viewed separately (Laaksonen et al. 2002; Grontved 

& Hu 2011) or together (Chu & Moy 2013; Petersen et al. 2014). It is 

becoming increasingly common to combine these movement behaviours, and 

results indicate stronger associations with metabolic health when viewed 

together (Bell et al. 2014). 

An important lifestyle behaviour, but often forgotten, is sleep and this is 

strongly linked to cardio-metabolic disease (Liu et al. 2013; Shan et al. 2015). 

Sleep is vital for resetting homeostasis and regulating metabolism, yet 

changes in working patterns and increased demands on time means sleep 

debt is a growing issue.  
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Since the World Health Organisations global strategy on diet, physical activity 

and health (WHO 2004) there have been calls for countries to develop 

national policy approaches to these lifestyle behaviours (Bull et al. 2014). 

Indeed, in 2011 the UK government published physical activity 

recommendations (Department of health 2011b) and Eat Well was produced 

as a policy tool that defines government recommendations on healthy diets 

(Public Health England 2014b). Specific National Institute for Health and 

Care Excellence (NICE) recommendations for CVD and Type 2 diabetes 

recognise the importance of improving physical activity and diet, but 

guidance on sitting time or sleep behaviours has not been addressed (NICE 

2012; NICE 2014). Nonetheless, knowledge of baseline behaviours in the 

population is lacking.  

The UK Biobank is a large, population-based cohort study examining the 

interrelationships between environment, lifestyle and genes with the aim of 

improving prevention, diagnosis and treatment of a wide range of serious and 

life threatening diseases (UK Biobank 2007). Extensive baseline measures 

were taken in >500 000 UK adults and over the next few decades will allow 

us to better understand why some people develop particular diseases and 

others do not. 

2.2 Study aims 

1)  to observe the differences in lifestyle behaviours simultaneously 

across cardio-metabolic disease 

2) to explore clustering of unhealthy non-diet behaviours across disease 

groups 
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2.3 Methods 

2.3.1 Population and Study Design 

Around 9.2 million invitations were mailed to recruit 502,664 adults (response 

rate 5.5%) aged between 37-73 years. They aimed for this age group 

because they are the group who are at risk of developing a number of 

chronic diseases over the next few decades. Recruitment occurred between 

2007-10, via 22 assessment centres located across the UK. The UK Biobank 

study was approved by the North West Multi-centre Research Ethics 

Committee, the England and Wales Patient Information Advisory Group, and 

the Scottish Community Health Index Advisory Group. Participant written 

informed consent was obtained prior to data collection. All data extracted by 

users was de-identified for analysis.  

2.3.2 Assessment centre visit 

During an assessment centre visit there were 5 stations; consent, 

touchscreen questionnaire, verbal interview, physical measures and 

blood/urine sample collections (Figure 27).  

1) Participants were guided through the consent procedure online, with a 

member of staff present to answer any questions and verify consent before 

moving onto the next station.  

2) The touchscreen questionnaire station lasted around 40 mins and covered 

questions on socio-demographics, occupation, lifestyle, early life exposures, 

cognitive function, family history of illness, and medical history.  

3) A 5 minute interview was conducted in which disease diagnosis was 

entered and verified by a UK Biobank nurse, followed by 2 blood pressure 

measurements (one minute apart) using Omron 705 IT monitor connected 

directly to the computer. 

4) A number of physical measures were taken, including weight using the 

Tanita BC-418MA body composition analyser and height using a Seca 202 

height measure, performed by trained staff. Participants were required to 
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remove shoes and heavy outer clothing and BMI was calculated from: 

weight(kg)/height(m)2.  

5) The final stage involved a blood collection from the anticubital fossa 

followed by a urine sample provided by the participant. 

Figure 27  Stages of assessment centre and estimated time 

 

2.3.3 Diet, sitting, physical activity and sleep: measurement and data 

processing 

Diet 

Diet intake was reported using the Food Frequency Questionnaire (Bain et al. 

1985) in which a number of questions were used based around commonly 

eaten food groups (Table 3 + Appendix A). Information on fresh/dried fruit, 

salad and cooked/raw vegetables were used to control for diet in logistic 

regression (see statistical analysis below). A binary variable was created 

which  identified individuals who did and did not meet the UK’s current 

guidelines on fruit and vegetable consumption (5 portions per day) (Public 

Health England 2014c). 4 questions on fruit and vegetable consumption were 

asked: 
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-“On average how many heaped tablespoons of COOKED vegetables 

would you eat per DAY? (Do not include potatoes; put '0' if you do not 

eat any)" 

-"On average how many heaped tablespoons of SALAD or RAW 

vegetables would you eat per DAY? (Include lettuce, tomato in 

sandwiches; put '0' if you do not eat any)" 

-"About how many pieces of FRESH fruit would you eat per DAY? 

(Count one apple, one banana, 10 grapes etc as one piece; put '0' if 

you do not eat any)" 

-"About how many pieces of DRIED fruit would you eat per DAY? 

(Count one prune, one dried apricot, 10 raisins as one piece; put '0' if 

you do not eat any)" 

Cooked vegetables, salad/raw vegetables and dried fruit were all divided by 3, 

so that portion sizes were aligned to current recommendations. For example, 

the NHS portion sizes for cooked vegetable is around 3 heaped tablespoons, 

therefore the inputted value was divided by 3 to count as 1 portion.  

Physical activity 

Physical activity was assessed using 6 items in the validated Short 

International Physical Activity Questionnaire (IPAQ) (Craig et al. 2003) which 

covers the intensity and duration of walking, moderate and vigorous activity 

in the past 7 days (see Appendix A for example questionnaire). Data 

processing rules published by IPAQ were followed (IPAQ 2005) which 

included: 

-Only values of 10+ mins were included, responses of less than 10 

mins (and their associated days) were re-coded to zero. 

-All walking, moderate and vigorous time exceeding 180 mins were 

truncated to 180 mins. 

-All cases in which the sum of all walking, moderate and vigorous time 

was >960 mins were excluded from analysis. 
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-Those who reported >7 days for either walking, moderate, vigorous 

were excluded from analysis. 

-For each category (walking, moderate, vigorous), if one of days or 

mins was zero and the other was missing, recode the missing value to 

zero. 

-If both mins and days were missing for one category, but all other 4 

questions covering the 2 other categories were complete, recode the 

missing values to zero, 

-Finally, only individuals who had values for all 6 questions were 

included in analysis. 

Time spent in vigorous, moderate, and walking activity was weighted by the 

energy expended for these categories of activity, to produce METs.min/week 

of each category. ‘Total physical activity’ was the sum of walking, moderate 

and vigorous METs.min/week (see equations below). 

Walking METs.min/week = 3.3 * walking minutes * walking days 

Moderate METs.min/week = 4.0 * moderate-intensity activity minutes 

* moderate days 

Vigorous METs.min/week = 8.0 * vigorous-intensity activity minutes * 

vigorous-intensity days 

Total physical activity METs.min/week = sum of Walking + 

Moderate + Vigorous METs.min/week 

Sitting 

TV time related sitting referred to as ‘sitting time’ (Wilmot et al. 2012)  was 

used as a marker of sedentary behaviour. Participants were asked; “In a 

typical day, how many hours do you spend watching television?” based on 

previous literature (Hu et al. 2003). This was asked twice to those who 

responded >8 hours, therefore high values were deemed robust but 

truncated at 17 hours, to allow for 7 hours sleep (average sleep duration 

across groups) 
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Sleep 

To measure sleep duration, participants were asked “About how many hours 

sleep do you get in every 24 hours? (please include naps)".  This was asked 

twice to those who responded >12 hours, therefore high values deemed 

robust but truncated at 14 hours. 

2.3.4 Disease Categories 

Health status was entered and verified by a UK Biobank nurse, during the 

verbal interview. Four disease groups were identified spanning cardio-

metabolic health. 1) Healthy reference group: Participants with no disease 

listed were classified as the ‘no disease’ group. 2) Cardiovascular Disease: 

Based on the International Classification of Diseases-10 (WHO 2015a) and a 

clinician opinion, diseases to include in the ‘CVD’ group were selected and 

any patients with Type 2 diabetes were excluded from this group (a list of 

diseases included in the CVD group can be found in Appendix A). 3 and 4) 

Type 2 diabetes: participants who were entered as having ‘diabetes’ or ‘type 

2 diabetes’ were selected. Those taking insulin within their first year and <35 

years old were excluded to reduce the likelihood of Type 1 and monogenic 

forms of diabetes. Those without and with CVD were separated into ‘Type 2 

diabetes without CVD’ and ‘Type 2 diabetes + CVD’, respectively (Figure 28). 

2.3.5 Statistical analysis 

All Data analyses were performed using SPSS, version 21.0 (IBM, Armonk, 

NY, USA). Individuals with missing data on total physical activity, sitting time 

or sleep were excluded (Figure 28+ Appendix A) shows the socio-

demographics of missing cases which were similar to the main cohort but 

had a lower % of males across all groups. Townsend deprivation Index was 

used as a measure of socio-economic status, by combining census data and 

post-codes of participants. The index combines information on housing, 

employment, car availability and social class, with higher values indicating 

greater deprivation. Townsend deprivation index was categorized into five 

groups based on the quintile demarcators for the ‘no disease’ group. 

Total physical activity, vigorous, moderate and walking minutes alongside 

sitting time were categorised into 4 groups based on the quartile demarcators 
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for the ‘no disease’ group. Total physical activity groups were labelled as ‘low 

physical activity’ (lowest quartile: ≤918 METs.min/wk) and ‘high physical 

activity’ (highest quartile: >3706-19,278 METs.min/wk) and sitting time was 

labelled as ‘low sitting time’ (lowest quartile: ≤1 hour/day) and ‘high sitting 

time’ (highest quartile: >3 hour/day). As sleep duration shows a ‘U’ shaped 

relationship with diabetes risk (rather than a linear relationship like physical 

activity and sitting) the data was split using pre-defined thresholds from the 

literature. <7hr, 7-8hr, >8hr cut points were used based on a recent meta-

analysis (Shan et al. 2015).  

Figure 28  Flow chart demonstrating how disease groups were defined.  Final 4 disease 
groups shown in red 
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Sleep duration was labelled as ‘poor sleep’ (<7 or >8 hours/night) and ‘good 

sleep’ (7-8 hours/night). Due to the large sample size, pearsons chi squared 

deemed any small difference in group proportions as significant, therefore 

these results are not reported. 

Non-diet lifestyle behaviours (including physical activity, sitting time and 

sleep duration) were further analysed across cardio-metabolic disease 

groups. Binary logistic regression was used to determine the odds of 

reporting low physical activity, high sitting time, and poor sleep separately, 

according to disease group. We also looked at the clustering of these 

behaviours. Participants were categorised as having an ‘unhealthy 

phenotype’ if they were categorised in all of the following groups; low total 

physical activity, high sitting time and poor sleep. Adjusted odds ratios, with 

95% confidence intervals were reported. All logistic regression models were 

adjusted for: age (reference=”40-49”); gender (reference=”Female”); BMI 

(reference=”<18.5-24.9”); Townsend Deprivation Index (reference=”least 

deprived”); Ethnicity (reference=”White/British”); Alcohol (reference=”never”); 

Smoking (reference=”Never”); Meets fruit/veg guidelines (reference=”YES”). 

Of the 233,110 cohort, data was missing for; BMI (0.006%), Townsend 

Deprivation Index (0.002%), Ethnicity (0.003%), smoking status (0.003%), 

alcohol status (0.001%), and fruit and vegetable guidelines (0.015%) 

therefore these cases were excluded from the logistic regression models. All 

statistical tests were two-sided and significance was set at p<0.05.  

2.4 Results 

Of the 502,664 UK Biobank participants, after excluding those with missing 

data or who were likely to have Type 1 diabetes, there were 103,993 (21%) 

with ‘no disease’, 113,469 (23%) with ‘CVD’, 4074 (1%) with ‘Type 2 diabetes 

without CVD’, and 11,574 (2%) with ‘Type 2 diabetes + CVD’ (Figure 28. As 

expected with cardio-metabolic disease progression, the proportion of males 

and those aged >60 years old increased, as did those classified as obese 

(Table 2). There was a marked increase in obesity, with numbers almost 

quadrupling in the ‘Type 2 diabetes + CVD’ group, compared to disease free 

individuals (60.0% vs. 15.0%). The ‘No disease’ group had a higher 
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proportion of White/British and least deprived individuals compared to cardio-

metabolic diseases. According to the Townsend deprivation index, socio-

economic status decreased across cardio-metabolic disease groups (Table 

2). 

Compared to the ‘No disease’ group, the ‘Type 2 diabetes + CVD’ group 

reported higher levels of previous smoking (n=5571 (48.3%) vs. n=30,960 

(29.8%)) and alcohol (n= 853 (7.4%) vs. n= 2020 (1.9%)), but lower current 

alcohol consumption (n= 9891 (85.5%) vs. n= 98,354 (94.6%)). Dietary data 

indicate that three quarters of those with Type 2 diabetes have altered their 

diet within the past 5 years (‘Type 2 diabetes without CVD’: 75.5% and ‘Type 

2 diabetes + CVD’: 75.3%) and also half never eat sugar (‘Type 2 diabetes 

without CVD’: 49.8% and ‘Type 2 diabetes + CVD’: 51.2%), which is 

proportionally more than the ‘CVD’ and ‘No disease’ groups. Around a third of 

the ‘No disease’ group met the UK’s fruit and vegetable guidelines (29.8%) 

with an increasing trend across cardio-metabolic disease (Table 3). All other 

dietary behaviours are reported in Appendix A. 
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Table 2  Socio-demographics of disease groups (n=233,110) 

 % within each disease group  

 No Disease 

(n=103,993) 

CVD 

(n=113,469) 

Type 2 

diabetes 

without 

CVD 

(n=4074) 

Type 2 

diabetes + 

CVD 

(n=11,574) 

SOCIO-DEMOGRAPHICS 

% Male 47.0 53.3 63.6 68.0 

Age (n) 103,993 113,469 4074 11,574 

37-49 35.6 12.5 13.5 6.0 

50-59 35.9 30.2 32.6 27.6 

60-73 28.6 57.4 53.9 66.4 

BMI (n) 103,443 112,852 4048 11,478 

<18.5-24.9  
(under and 
acceptable weight) 

42.9 22.0 14.9 7.2 

25-29.9 
(overweight) 

42.1 44.4 40.5 32.8 

≥30 (obese) 15.0 33.6 44.6 60.0 

Townsend 
deprivation 
quintile (%) 

103,861 113,323 4070 11,557 

1 (least deprived) 21.9 19.7 17.7 14.7 

2 20.8 19.9 17.3 17.4 

3 20.7 19.9 18.9 18.5 

4 19.6 20.0 20.8 21.0 

5 (most deprived) 17.1 20.5 25.1 28.5 

Ethnicity (n) 103,687 113,130 4060 11,528 

White/British 94.6 95.0 85.6 89.9 

Mixed 0.6 0.5 0.6 0.6 

Asian 1.8 1.7 8.1 5.1 

Black African 1.5 1.8 3.3 2.9 

Chinese 0.5 0.2 0.5 0.2 

Other 0.9 0.7 2.0 1.3 
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Table 3  Lifestyle characteristics of disease groups (n=233,110) 

 % within each disease group  

 No 

Disease 

(n=103,9

93) 

CVD 

(n=113,46

9) 

Type 2 

diabetes 

without 

CVD 

(n=4074) 

Type 2 

diabetes 

+ CVD 

(n=11,57

4) 

DIET 

Dietary change in past 5 
yrs 

103,902 113,300 4070 11,555 

YES 28.9 45.9 75.5 75.3 

Meets fruit/veg guidelines 102,798 111,554 3995 11,347 

YES 29.8 32 35.7 36.6 

“Never eat” 103,848 113,190 4039 11,527 

Never eat sugar or 
foods/drinks containing 
sugar 

14.8 21.0 49.8 51.2 

PHYSICAL ACTIVITY 

Total Physical activity a 
(METs.mins/wk) 

103,993 113,469 4074 11,574 

≤918 (Low physical activity) 25.0 30.5 35.4 40.1 

>918-1902  25.0 24.2 22.5 22.2 

>1902-3706  25.0 22.2 20.7 19.7 

>3706-19278 (High 
physical activity) 

25.0 23.2 21.3 18.0 

Walking a (mins/day) 103,993 113,469 4074 11,574 

0-20 31.5 33.9 36.6 40.4 

21-30 20.8 20.4 21.0 19.6 

31-60 26.7 25.8 23.0 23.6 

61-180 21.1 19.9 19.4 16.3 

Moderate activity a 
(mins/day) 

103,993 113,469 4074 11,574 

0-15 27.8 31.4 36.1 39.6 

16-30 28.0 24.7 25.3 23.2 

31-60 25.2 23.2 19.9 20.1 

61-180 19.0 20.6 18.7 17.1 

Vigorous activity a 
(mins/day) 

103,993 113,469 4074 11,574 

0 34.2 46.1 49.7 56.5 

1-20 20.3 19.6 19.7 18.0 

21-45 21.7 16.7 14.5 13.1 

46-180 23.7 17.6 16.1 12.3 
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Meets UK government 
physical activity 
guidelines b 

103,993 113,469 4074 11,574 

NO 42.6 47.8 52.2 56.1 

SITTING 

Sitting time [TV]a 

(hours/day) 

103,993 113,469 4074 11,574 

≤1 (Low sitting time) 26.6 16.2 15.4 10.5 

>1-2 30.5 24.5 22.3 19.3 

>2-3 22.6 24.5 24.1 22.8 

>3 (High sitting time) 20.3 34.8 38.1 47.3 

SLEEP 

Sleep duration c 
(hours/night) 

103,993 113,469 4074 11,574 

<7 (Poor sleep) 21.3 26.4 27.0 27.5 

7-8 (Good sleep) 73.4 64.6 62.1 58.6 

>8 (Poor sleep) 5.3 9.1 10.8 13.9 

a For total physical activity and sitting categories, quartiles were calculated from the ‘No 

Disease’ group so that their demarcators could be applied to disease group. 

b UK Government recommendations of 150mins of moderate or 75mins of vigorous activity 

per week  

c Physiological thresholds used rather than quartiles because the shape of the risk 

relationship is a U shape (not linear like Physical activity and TV sitting) 
 

Total physical activity levels declined across cardio-metabolic disease groups 

(Table 3) + (Figure 29). Vigorous activity was the main contributor to the 

reduction in total physical activity levels, with a strikingly smaller proportion of 

adults in the ‘Type 2 diabetes + CVD’ group reaching the upper quartile of 

vigorous activity compared to the ‘No disease’ group (12.3% vs. 23.7%) 

(Table 3). The proportion of adults who reported high sitting time more than 

doubled in the ‘Type 2 diabetes + CVD’ group compared to the ‘No disease’ 

group (47.3% vs. 20.3%) (Table 3).+ (Figure 29). These results indicate that 

almost half of adults diagnosed with ‘Type 2 diabetes + CVD’ sit for >3 hours 

per day watching television. Almost three-quarters of the ‘No Disease’ group 

report optimal sleep but this proportion declined across cardio-metabolic 

disease. The proportion of poor sleepers (<7hrs and >8hrs) was higher in 

cardio-metabolic disease groups compared to the ‘No Disease’ group (Table 

3) + (Figure 29). 
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Figure 29  Distribution of dietary change, physical activity, sitting time and sleep duration 
in people with No disease, CVD, Type 2 diabetes without CVD, or Type 2 
diabetes + CVD. Red indicates unhealthy and green indicates healthy lifestyle 

behaviours. Non-diet lifestyle behaviours are separated from diet as they 
demonstrate worsening of behaviours with cardio-metabolic disease, which is 
absent with diet 

 

Those with the most serious cardio-metabolic disease profile (Type 2 

diabetes + CVD) were 70% (Odds [95% CI]: 1.71 [1.64 to 1.78]), 90% (1.92 

[1.85 to 1.99]), and 50% (OR 1.52, 95%CI 1.46 to 1.58) more likely to report 

low physical activity, high sitting time and poor sleep respectively, compared 

to the ‘No Disease’ group (Table 4). The Odds of reporting all three unhealthy 

behaviours together was higher than reporting one of these lifestyle 

behaviours individually. Indeed, those in the ‘Type 2 diabetes + CVD’ group 

were three times more likely to report an ‘unhealthy phenotype’, (i.e. low 

physical activity, high sitting time and poor sleep) (3.29 [3.02 to 3.58]) even 

when controlling for age, gender, BMI, Townsend Deprivation Index, Ethnicity, 
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Alcohol, Smoking, and meeting fruit/veg guidelines (Table 4). BMI and 

cardio-metabolic disease are strongly linked, yet the odds of being obese in 

the ‘Type 2 diabetes + CVD’ group were less (2.77 [2.60 to 2.96]) than the 

odds of reporting an ‘unhealthy phenotype’. The shift in unhealthy behaviours 

is visualised in Figure 30 which shows the movement from healthy 

behaviours (green / right) to unhealthy behaviours (red / left). 
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Table 4  Odds (95% CI) of reporting low physical activity, high sitting time, poor sleep and all behaviours combined across cardio-metabolic disease. All 
models adjusted for age, gender, BMI, socio-demographic (Townsend deprivation and ethnicity), smoking, alcohol and diet.  

 Low physical 
activity 

High sitting time 
[TV viewing] 

Poor sleep Low Physical 
Activity +  

High Sitting + Poor 
Sleep 

No Disease 1.00 1.00 1.00 1.00 

CVD 1.23 [1.20 to 1.25] 1.42 [1.39 to1.45] 1.37 [1.34 to1.39] 2.15 [2.03 to 2.28] 

Type 2 diabetes 
without CVD 

1.43 [1.34 to 1.53] 1.59 [1.49 to1.69] 1.38 [1.30 to1.47] 2.14 [1.85 to 2.48] 

Type 2 diabetes + 
CVD 

1.71 [1.64 to 1.78] 1.92 [1.85 to 1.99] 1.52 [1.46 to1.58] 3.29 [3.02 to 3.58] 
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Figure 30  Radar chart showing the proportion of adults in each group who were categorized as either 'high' or 'low' for total physical activity or sitting time, 
or 'good' or 'poor' for sleep duration. Green side indicates healthy non-diet lifestyle behaviours whereas red side indicates unhealthy non-diet 
behaviours. There is a shift towards unhealthy behaviours with cardio-metabolic disease.  
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2.5 Discussion 

This is the largest cohort study to simultaneously assess diet, physical 

activity, sedentary behaviour and sleep across cardio-metabolic disease 

groups and non-disease group. The results indicate that compared to 

disease free individuals; 1) those with cardio-metabolic disease report less 

physical activity, higher sitting and poorer sleep patterns, 2) non-diet 

unhealthy lifestyle behaviours were clustered in people with ‘Type 2 diabetes 

+ CVD’; they were three times more likely to report low physical activity, high 

sitting and poor sleep at the same time, and 3) people with cardio-metabolic 

disease had changed their diet and were less likely to consume sugary foods. 

These results suggest that recommendations to change diet are reaching 

those with cardio-metabolic disease; yet, low physical activity, high sitting 

and poor sleep are significant unaddressed cardio-metabolic risk factors. 

2.5.1 Diet  

People with Type 2 diabetes reported an increased likelihood to have 

changed their diet in the past 5 years and less likely to eat sugary foods 

compared to people with CVD or disease free individuals. Dietary change is 

aligned to the current treatment advice for people with Type 2 diabetes 

(NICE 2015) and suggests that patients are acting upon, or at least aware of, 

dietary advice. The food frequency questionnaire did not allow us to measure 

energy intake; therefore, it is possible that, although participants had 

changed their diet, they ate more. To address excess calorie intake we have 

controlled for BMI as a means to manage excess calorie intake. In contrast to 

those with Type 2 diabetes, people with CVD consume more sugary foods 

than people with diabetes and are less likely to have changed their diet, as 

advised by current advice (NICE 2014). Cardio-protective diets are promoted 

to reduce cholesterol and blood pressure in CVD (Kris-Etherton 2002; de 

Lorgeril et al. 1999). Dietary advice remains the pillar of national guidelines 

for the management of Type 2 diabetes, with evidence reporting that dietary 

changes can significantly improve glycaemic control (Brand-Miller et al. 2006) 

and even reverse Type 2 diabetes (Lim et al. 2011; Andrews et al. 2011). 

Analysis of the self-report diet behaviour from the UK Biobank cohort 
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suggests that national dietary messaging is reaching those with Type 2 

diabetes, but not those with CVD.   

2.5.2 Physical activity 

Those with cardio-metabolic disease report less physical activity than healthy 

counterparts, with vigorous activity being the largest contributor to this 

difference. A recent prospective meta-analysis confirmed a dose-response 

relationship between physical activity and Type 2 diabetes, with the strongest 

associations seen with vigorous activity (Aune et al. 2015). Physiologically 

there are a number of cardio-metabolic benefits with activity, including; 

improvements in lipid oxidation (Trenell et al. 2008), reductions in adiposity 

(Mozaffarian et al. 2011), and improved peripheral glucose uptake (Hayashi 

et al. 1997). Acute vigorous activity stimulates greater peripheral adaptions 

compared to non-vigorous activity (Mayer-Davis 1998), which may explain 

the stronger association with vigorous activity and cardio-metabolic disease. 

The government produced physical activity guidelines which encourage 

individuals to perform at least 150 mins of moderate activity or 75 mins of 

vigorous activity weekly (Department of health 2011b). Based on these 

recommendations, 43% of the ‘no disease’ group do not perform adequate 

physical activity levels and the percentage rises with cardio-metabolic 

disease. 

2.5.3 Sitting 

Sedentary behaviour was higher in those with cardio-metabolic disease 

compared to healthy adults. The first longitudinal study to look at sitting and 

cardio-metabolic risk found that change in sitting duration over 5 years was 

associated with waist circumference and clustered cardio-metabolic risk 

score, independent of physical activity (Wijndaele et al. 2010). Subsequent 

meta-analyses have revealed a dose response relationship between sitting 

and Type 2 diabetes or CVD, the highest levels of sitting leads to the highest 

risk of disease (Grontved & Hu 2011). More than 3 hours of daily sitting was 

strongly linked to all-cause mortality, (RR [95% CI] 1.30 [1.06-1.56]) 

(Grontved & Hu 2011) suggesting that those in the highest quartile of sitting 

in the UK Biobank cohort are exposing themselves to detrimental health 

consequences. Sedentary behaviour is characterised by low muscle activity, 
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which has a direct physiological health impact. Skeletal muscle is the largest 

insulin sensitive organ in the body, accounting for 80% of insulin stimulated 

glucose disposal, and reduced muscular contraction with high sitting time 

leads to insulin resistance and hyperglycaemia (Hamburg et al. 2007). 

Sedentary behaviour also leads to reduced lipoprotein lipase activity which is 

linked to lower plasma HDL cholesterol and raised triacylglycerol content 

(Hamilton et al. 2007) raising cardio-metabolic risk. Results from the UK 

Biobank may reflect reverse causality whereby individuals with cardio-

metabolic disease are sick and therefore more likely to have high sitting 

times. That being said, the aforementioned research has identified negative 

health outcomes associated with too much sitting. NICE guidelines for Type 

2 diabetes briefly mention that sitting time should be reduced, but no specific 

guidelines are made (NICE 2012). 

2.5.4 Sleep 

These data reveal that as cardio-metabolic disease worsens, the proportion 

of individuals reporting short or long sleep increases. We have defined 

optimal sleep as 7-8 hours based on a recent review (Shan et al. 2015) and 

our findings support previous observational studies which show a ‘U shaped’ 

relationship between sleep duration and cardio-metabolic disease. 

Physiological studies show sleep plays an integral role in metabolic 

regulation (Trenell et al. 2007) with sleep restriction inducing insulin 

resistance and loss of circadian hormone changes. Indeed, the acute effects 

of sleep shortening are powerful. Sleep restricting healthy young men from 8 

hours/night to only 4 hours/night for one week, induces insulin resistance to a 

similar extent to people with Type 2 diabetes (Spiegel et al. 1999). Sleep 

shortening also effects hormones that control appetite (Taheri et al. 2004), 

elevating ghrelin and reducing leptin, which could explain the strong link 

between sleep deprivation, raised energy intake and weight gain (Taheri et al. 

2004). Impaired sleep and cardiovascular disease are similarly associated, 

(Liu et al. 2013) mediated through weight gain and inflammation (Miller & 

Cappuccio 2007). Persistent long sleep and increases in sleep duration over 

a 5 year period have been linked to higher Type 2 diabetes incidence (Ferrie 

et al. 2015) however, the physiological impact of long sleep is yet to be fully 
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understood. Although there will be an impact of long sleep on the opportunity 

to be physically active during wakefulness, more work is needed to explore 

the impact of normalising sleep in people who have long sleep. The results 

from this study are observational and cannot infer causality, however, 

previous studies have demonstrated the potent effects of sleep on 

physiological function, highlighting poor sleep as a potential therapeutic 

target in people with CVD and/or Type 2 diabetes.  

2.5.5 Clustered Lifestyle Behaviours 

The results from this large population based study, also indicate an inverse 

relationship between an ‘unhealthy behavioural phenotype’ encompassing 

low physical activity, high sitting time and poor sleep, with cardio-metabolic 

disease. The ‘Type 2 diabetes + CVD’ group, who have a particularly poor 

prognosis, were more likely to report low physical activity, high sitting time 

and poor sleep compared to all other groups. In the context of cardio-

metabolic disease and obesity, it is becoming increasingly common to 

combine physical activity and sitting as a joint association (Chu & Moy 2013; 

Petersen et al. 2014). We have added sleep into our analysis as we propose 

all three behaviours are interdependent in their influence upon metabolic 

control. Indeed, the clustering of these behaviours produces higher odds with 

cardio-metabolic disease compared to individual behaviours. All three 

behaviours influence metabolic control. During sleep, there is a reduction in 

glucose utilisation, with an overall rise in plasma glucose (Van Cauter et al. 

1997). In contrast, throughout waking hours, physical activity stimulates 

peripheral glucose uptake (Hayashi et al. 1997) and is important for 

maintenance of euglyceamia. Physical activity may be viewed as an activator 

of metabolism whereas sleep is vital for restoring and re-setting homeostasis, 

largely through energy regulation and repair.  

The concomitant nature of all 3 behaviours means the imbalance between 

sitting, physical activity and sleep has potentially large cardio-metabolic 

consequences. Sleep restriction reduces β-cell insulin release (Spiegel et al. 

1999), alongside impairing phosphorylation of AKT, a crucial step in the 

insulin signalling cascade, which reduces insulin sensitivity (Broussard et al. 

2015). These factors, alongside the reduction in peripheral glucose uptake 
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with high sitting and low physical activity, creates an insulin resistant state, 

the prominent feature underlying cardio-metabolic disease (Ferrannini et al. 

1991). There is also evidence that sleep directly influences physical activity, 

with short term sleep deprivation significantly reducing habitual physical 

activity as well as shifting the intensity towards lower levels (Schmid et al. 

2009). The present data suggest that people with CVD and / or Type 2 

diabetes are more likely to be exposed to a potent negative ‘behavioural 

phenotype’ consisting of low physical activity, high sedentary behaviour and 

poor sleep simultaneously, but whether this is a cause or consequence of 

cardio-metabolic disease cannot be elucidated from this study.  

2.5.6 Implications for care teams, policy makers and people with 

cardio-metabolic disease 

Data from the UK Biobank suggest that poor non-diet lifestyle behaviours are 

prominent behaviours in cardio-metabolic disease. Our findings should not 

be taken to understate the importance of diet in cardio-metabolic health. A 

balanced diet and weight management are critical and efforts should 

continue to support people accordingly. However, the government recently 

described physical activity as a ‘key health priority in it’s own right’ 

(Department of Health 2015) highlighting the importance of strategic planning 

with various sectors spanning transport, infrastructure and training of health 

care professionals. In 2014, Public Health England produced a framework to 

embed physical activity into the fabric of daily life (Public Health England 

2014a) and the first national NHS prevention programme designed to prevent 

Type 2 diabetes through diet and physical activity interventions (Public 

Health England 2015). The present data reinforces the need for evidence 

based and effective programmes for physical activity for people with CVD 

and Type 2 diabetes.  

Awareness of the importance of sedentary behaviours in chronic disease 

lags physical activity, but is growing rapidly. In 2010, the department of 

health and the sedentary behaviour and expert working group recommended 

that more emphasis needed to be placed on minimising time spent sedentary 

(Biddle et al. 2010). Indeed, NICE guidelines for Type 2 diabetes prevention 

note the importance of reducing sitting time (NICE 2012), yet guidelines and 
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techniques for implementation are lacking. In contrast to physical activity and 

sitting, NICE guidelines for CVD and Type 2 diabetes do not comment on 

sleep, despite the present data revealing that one in three of people with 

CVD and nearly half of people with Type 2 diabetes sleep either too much or 

too little.  

A major finding from the present data was the clustering of physical activity, 

sitting and sleep behaviour. This is important as, to date, intervention studies 

have focused on changing a single lifestyle behaviour, with very few targeting 

multiple lifestyle behaviours (King et al. 2015). Given the clustering of these 

non-diet lifestyle behaviours, exploration of interventions incorporating 

physical activity, sitting and sleep together may add value and should be the 

focus of future policies and programmes.  

2.5.7 Strengths and limitations 

This data holds strength in the large sample size and detailed measurements. 

The population-based design allows simultaneous presentation of behaviours 

in people with different stages of cardio-metabolic disease, controlling for key 

factors including age, sex, socioeconomic status and BMI. However, the 

study is not without limitation. The response rate was only 5.5% which 

means the data is unlikely to be a true representative sample of the UK. The 

cross sectional nature means we cannot infer whether these unhealthy 

lifestyle behaviours precede or were preceded by cardio-metabolic disease. 

Over time, as the UK Biobank cohort progresses, it is hoped that 

observations about causality will be added. Lifestyle behaviours were self 

reported and not objectively measured. However, all questionnaires are 

validated and self-report allows these measures to be applied to large 

numbers of people. As such, the approach provides a powerful macro view of 

behaviours. Using TV viewing time is a narrow measure of sedentary 

behaviour and does not take into account breaks in sedentary time, which 

are important in metabolic control (Healy et al. 2008). Nonetheless, TV-

viewing time is the most commonly used measure of sedentary behaviour in 

epidemiological studies and has good test-retest reliability (Clark et al. 2009). 

Calculation of total daily sitting time, which is a more complete measure, was 

not possible from the UK Biobank questionnaire used. With these limitations 
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noted, the strengths of the present data mean that it has both scientific and 

practical implications. 

2.6 Conclusions 

In summary, the present data demonstrates that those with more advanced 

cardio-metabolic disease undertake too little physical activity, sit too much 

and have poor sleep yet report important positive dietary changes within the 

past 5 years. These non-diet lifestyle behaviours are clustered, and indeed 

those with the worst cardio-metabolic disease are three times more likely to 

display an ‘unhealthy behavioural phenotype’ compared to disease free 

individuals, independent of age, gender, BMI and socioeconomic status. 

These novel data highlight that there is a specific behavioural phenotype of 

cardiovascular disease and Type 2 diabetes that may place these people at 

excess risk of worsening cardio-metabolic health. Strategies are required to 

address physical activity, sedentary behaviour and sleep to assist patients, 

care teams and policy makers in making effective decisions for the 

management and prevention of cardiovascular disease and Type 2 diabetes.  

The next chapter will describe the methods used for the cardio-metabolic 

patient studies that were undertaken and form the remainder of this thesis. 
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3.1 Recruitment strategy  

Patients with Type 2 diabetes were recruited from advertisements in local 

newspapers, council newsletter, hospital notice boards, and community 

support groups. The inclusion criteria were as follows: 

- Diagnosed with Type 2 diabetes and controlled by diet and/or 

metformin only. 

- Not taking part in regular exercise (≥60 mins moderate-vigorous 

activity per week) 

- Not undergoing dietary or medication change 

- Not taking insulin/Sulfonylurea/ Thiazolidinediones/Beta-blockers 

- Aged 30-70 

- No contraindications to exercise testing according to the American 

college of sports medicine (ACSM et al. 2010). 

- Can give informed consent 

- No contraindications for MRI scanning (e.g. pacemaker, aneurysm clip, 

complete MRI checklist) 

- No heart or kidney disease 

3.2 Informed consent process 

Patients received a study information sheet to read at least 24 hours before 

written informed consent was obtained. On the day of consent, individuals 

attended the clinical research facility without being fasted to maximise 

alertness. The study aims, procedures and time commitments were 

emphasised before patients were given space to ask any questions 

regarding the study. If patients were happy to proceed, a consent form was 

signed and dated (Appendix B) by both the patient and research investigator 

in accordance with local ethics guidelines. It was stressed that patients were 

free to withdraw at any point during the study and that GP’s would be made 

aware of their participation. All studies were approved by the Newcastle and 

North Tyneside Research Ethics Committee. 
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3.3 Screening visit 

Prior to any experimental procedures, patients attended a screening visit to 

assess their health status and check they met the study inclusion criteria. 

The visit included a physical examination and cardiopulmonary exercise test. 

3.3.1 Physical examination 

The Physical Activity Readiness Questionnaire (PARQ) was completed and a 

full medical history (Appendix C) was conducted prior to the physical 

examination which included auscultation of heart and lungs, lower extremity 

examination for oedema, inspection of the skin (specifically lower extremity in 

diabetes due to peripheral neuropathy), reflex function, and abdomen 

evaluation (Appendix C). 

Weight and height were determined using an electronic scale and 

stadiometer (SECA , Birmingham, UK), respectively, with patients shoeless 

but wearing clothes. Waist circumference was measured as a horizontal 

measure taken at the narrowest part of the torso and hip circumference was 

measured at the maximal circumference of buttocks, in accordance with the 

American College of Sports Medicine guidelines (ACSM et al. 2010). BMI 

was calculated as body weight(kg)/height2(m). 

After 5 minutes of rest, patients received a 12 lead electrocardiogram (ECG) 

(Mac 500, Germany) in a supine position followed by a blood pressure 

measurement (Welch Allyn Adult 11) in a seated position  

Patients with any contraindications to exercise testing (Trenell 2009) were 

excluded from the study and unable to proceed with the exercise test. The 

documents in Appendix C were used to determine if patients had any 

contraindications for exercise testing  

3.3.2 Cardiopulmonary exercise test  

A progressive exercise test was performed using an electronically braked 

semi-recumbent cycle ergometer (Corival Lode BV, Groningen, The 

Netherlands) to determine VO2peak and safety of exercise. After a 5 min warm 

up at 25W, resistance was increased by 1W every 6 seconds until 

participants reached volitional exhaustion, could no longer maintain 60 
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revolutions per minute (RPM), or could not continue due to contraindications 

(Appendix B) (Trenell 2009) .  

Expired gases were collected using a Hans Rudolf breathing mask and 

analysed online for ventilation, oxygen consumption (VO2) and carbon 

dioxide elimination (VCO2) (Cortex metalyser 3B, Leipzig, Germany).A test-

retest correlation demonstrated very good reliability for VO2 (0.969),VCO2 

(0.953), and Ventilation (0.953) using the MetaLyzer 3B (Meyer et al. 2001). 

The calorimeter gas analysers were calibrated before every measurement for 

gas, volume, and ambient air pressure. Lactate threshold, RER, VO2peak and 

maximum workload (W) could be obtained from expired gases. Blood 

pressure was measured every 3 mins (Suntech Tango+, Suntech Medical Ltd, 

Oxford, UK) and continuous heart rhythm via a 12-lead ECG (Custo med 

GmbH, Otto- brunn, Germany).  

Participants were required to abstain from eating for a minimum of 2 hours 

prior to the commencement of each test, and from vigorous exercise 24 

hours prior to the test. Participants were also instructed to not consume 

alcohol and caffeine containing foods and beverages on test days.  

3.4 Magnetic Resonance imaging 

A 3.0 Tesla Philips Intera Achieva scanner (Best, NL) was used for all MRI 

examinations. Prior to any examination, a questionnaire was completed by 

patients twice to check they were eligible for MRI scans (Appendix D). 

3.4.1 Cardiac cine imaging 

A dedicated six-channel cardiac coil (Philips) was used with the participants 

in a supine position and ECG gating. Short-axis balanced steady-state free 

precession images were acquired covering the left ventricle (FOV = 350 mm, 

TR/TE = 3.7/1.9 ms, acceleration factor 17, flip angle 40o, slice thickness 8 

mm, 0mm gap, 14 slices, 25 phases, resolution 1.37 mm).  

Cine magnetic resonance imaging analysis was performed using a 

Viewforum workstation (Philips, NL). The short axis slices at end-diastole and 

end-systole were used to manually trace endocardial and epicardial borders 



99 
 

with papillary muscles excluded from volume calculations but included in 

calculations of left ventricular mass (Figure 31).  

Figure 31  Short axis slice of the left ventricle at (left) end-diastole and (right) end-systole. 
Green trace shows the endocardial border, yellow trace the epicardial border 
and blue trace the papillary muscles. 

 

 

The apical slice was defined as the last slice showing inter cavity blood pools 

and the basal slice where at least 50% of the blood volume was surrounded 

by myocardium (Hudsmith et al. 2005). The inter-ventricular septum was 

included as part of the left ventricle. Left ventricular mass, ejection fraction, 

end-systolic and end-diastolic volumes were calculated. Myocardial mass 

was determined by multiplying the tissue volume by 1.05 g/cm3, the specific 

density of myocardium. The body surface area was estimated from the 

subjects’ weight and height according to the formula of Dubois and Dubois 

(Du Bois & Du Bois 1989) and this was used to standardise the 

measurements for subject size (denoted by the suffix “index”).  

To examine possible diastolic dysfunction, blood pool volumes were 

calculated across all phases to look for the characteristic two phase 

expansion of the blood pool. The left ventricular volume measurements (25 

per cardiac cycle) were plotted against time. The data were then smoothed 

using a piecewise cubic spline algorithm and oversampled into 256 data 

points to create a volume-versus-time-curve. The rate of change of blood 

pool volume was determined by taking the first derivative of this curve over 

the entire cardiac cycle. End-systole and end-diastole were defined as the 



100 
 

times of lowest and greatest volumes, respectively. The time point halfway 

between end-systole and end-diastole was defined as the diastolic midpoint. 

Four indexes of left ventricular diastolic function were determined from the 

cine MRI data in each subject; (Kudelka et al. 1997): (i) early diastolic 

filling rate (defined as the maximum value of the first derivative between 

end-systole and the diastolic midpoint), (ii) late diastolic filling rate (the 

maximum value of the first derivative between the midpoint and end-

diastole), (iii) E/A ratio (the peak early rate divided by the peak late rate),and 

(iv) early filling percentage (the volume increase from end-systole to the 

midpoint divided by the stroke volume x 100).  

Longitudinal shortening was determined from cine MRI in the 4-chamber 

view by determining the perpendicular distance from the plane of the mitral 

valve to the apex in systole and diastole. The eccentricity ratio was 

calculated as the left ventricular mass divided by the end- diastolic volume, 

as a measure of concentric remodelling (Cheng et al. 2009). 

3.4.2 Cardiac tagging 

Cardiac tagging works by applying radiofrequency pulses to cancel magnetic 

resonance signal from the myocardium, which appear as tags. The 

deformation of these tags can be tracked throughout the cardiac cycle. A 

turbo field echo sequence with acceleration factor 9 was used to collect short 

axis slices (TR/TE/FA/NEX =4.9/3.1/100/1, SENSE factor 2, FOV 

350x350mm, voxel size 1.37mm, tag spacing 7mm). Short-axis slices of 

10mm thickness were prescribed on the 2 and 4 chamber views as per 

(Lumens et al. 2006) (Figure 32) avoiding the base and apex due to through-

plane motion during the cardiac cycle. 

The Cardiac Image Modelling package (University of Auckland) was used to 

analyse the tagging data by aligning a mesh on the tags between the endo- 

and epicardial contours (Figure 33).Circumferential strain was calculated 

throughout the cardiac cycle and is quoted for both the whole myocardial wall 

and the endocardial third of the wall thickness at mid-ventricle. Cardiac 

torsion between the two planes (taken as the circumferential-longitudinal 
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shear angle defined on the epicardial surface), was calculated. Details of 

how this is calculated is described in section 1.5.2.  

Figure 32  Tagging two parallel short axis sections   10mm apart (either side of the mid-
ventricle (dotted line)  

 

Figure 33  Mesh placed on the magnetic tags at (left) end-diastole and (right) end-systole 

 

Torsion is a marker of dominance of the epicardial fibres over endocardial 

fibres. TSR quantifies this, and is a ratio of the shear angle between two 

planes on the epicardial surface (Lumens et al. 2006) and the peak 

circumferential strain in the endocardial third of the myocardium (Lumens et 

al. 2006; Van Der Toorn et al. 2002). The recoil of torsion in diastole occurs 

rapidly in early diastole and has been shown to correlate closely with the time 

constant of isovolumic relaxation derived from the left ventricular pressure 
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waveform (Dong et al. 2001). This was expressed as the torsion recoil rate 

(which is normalised for peak torsion, %/ms). 

3.4.3 Cardiac spectroscopy 

Cardiac high-energy phosphate metabolism was assessed using 31P-MRS. 

With participants lying in a prone position with their heart at magnet isocentre, 

data was collected using a 10cm diameter 31P surface coil (Pulseteq, UK) for 

transmission/reception of signal. A slice selective, cardiac-gated cardiac 

gated 1-dimensional chemical shift imaging (1D-CSI) sequence was used to 

eliminate contamination from the liver, with spatial pre-saturation of lateral 

skeletal muscle to avoid spectral contamination. Sixteen coronal phase-

encoding steps were used, yielding spectra from 10-mm slices (TR = heart 

rate, 192 average, approx. 20-min acquisition time). Spectral locations were 

overlaid onto an anatomical image and the first spectrum arising entirely 

beyond the chest wall was selected. Details of our processing and correction 

of the spectra for blood contamination, saturation, excitation flip angle and 

analysis are below. 

Negligible liver contamination was assured by 1-D foot-head oriented CSI 

experiments in phantoms, which showed that using the same coil and power 

settings, less than 1% of the total phosphorus signal originated from outside 

the prescribed area. The resonance and rf pulse frequencies were centred 

half-way between the two principal peaks of interest, PCr and -ATP. The 

excitation flip angle was set such that the excitation achieved at 65mm from 

the coil would be approximately 50 degrees, since the Ernest angle for 

maximum SNR for TR=1s (heart rate of 60bpm) would be 40o for PCr and 

49o for -ATP based on their reported T1 relaxation times at 3.0T (Tyler et al. 

2008). The actual flip angle obtained at the depth of the region of interest 

was determined using a gadolinium-doped 20mM phenyl phosphonic acid 

phantom at the centre of the coil. Acquisition of five phantom spectra at 5o-

45o nominal flip angle (TR=4s,NSA=4) allow the flip angle at the centre of the 

coil to be calculated and a B1 model based on (Haase et al. 1984), 

previously validated phantom experiments, is used to work out the flip angle 



103 
 

at the depth of interest. This can then be used to provide correction for T1 

saturation effects. 

Spatial pre-saturation of lateral skeletal muscle using a 25mm thick slab was 

used. Sixteen coronal phase-encoding steps yielded spectra from 10mm 

slices (TR=heart rate, 192 averages, acquisition time approximately 20 

minutes), using a trigger delay of 400ms. A cosine apodization filter was 

applied. The first spectrum containing signal beyond the chest wall with 

signal solely from cardiac tissue was selected. The spectrum was analysed 

using an AMARES time domain fit in jMRUI (Vanhamme et al. 1999) to 

quantify PCr, the  resonance of ATP and 2,3-diphosphoglycerate (DPG). 

ATP peak area was corrected for blood contamination by 1/6th combined 2,3-

DPG peak (Figure 34) (Conway et al. 1998; Bottomley 2007). It is important 

to note that cardiac energetics were taken from the anterior cardiac wall 

whereas structural and functional cardiac measures (described above) took 

into account the entire left ventricle. 
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Figure 34  Phosphorus spectroscopy from a control subject (PCr/ATP=1.95). Spectrum 
presented before correction for saturation dhue to blood content, flip angle at 
the cardiac tissue and heart 
rate

 

3.4.4 Cardiac MRI reliability  

For some of the key cardiac MRI measures, intra-observer and inter-

observer reliability were calculated. Intra-observer limits of agreement were 

0.08 ± 0.16 for E/A ratio, 0.68 ± 2.84% for early filling percentage and 0.06 ± 

0.51⁰ for torsion. Inter-observer reliability limits of agreement were 0.06 ± 

0.11 for E/A ratio, 0.4 ± 1.58% for early filling percentage, 14.84 ± 10.30ml 

for end-diastolic volume and 5.44 ± 6.08% for ejection fraction.  

These reliability measures are within respectable ranges, however the larger 

limits of agreement for inter-observer systolic and structural parameter 

reliability, means that where possible one observer will carry out all cardiac 

analysis. 

 

3.4.5 Liver spectroscopy 

Intrahepatic lipid was measured by localized T2-corrected 1H-MRS at 

multiple echo times using the point-resolved spectroscopy (PRESS 

sequence: TR/TEs = 3000ms/36,50,75,100,125,150ms, voxel size 3x3x3cm) 
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placed in the posterior right lobe to avoid major vessels. One “large” voxel 

(compared to biopsy) was used which is better than using 2 or 3 smaller 

ones, as it improves the signal to noise ratio and minimizes patient time in 

the magnet (Szczepaniak et al. 2005). The water and fat resonances were 

analysed using jMRUI version 3.0. (Naressi et al. 2001). Following manual 

phase correction, spectra were analysed using a non-linear least squares 

algorithm (AMARES) (Vanhamme et al. 1999). Liver fat was corrected for 

proton density of water and lipid (Longo et al. 1995) using the following 

equation: 

Vf = Vw (Dw/Df) [FTSA / (Nv – FTSA)] 

where Vf and Vw are the volumes of the fat and water phases, respectively, 

and Df and Dw are the proton-density values of the fat and water phases, 

respectively. A Dw value of 111mol/L and Df value of 110mol/L was used. 

FTSA is the ratio of the detectable fat signal peak area to the total signal 

peak area and Nv is the ratio between the signal integrals in the two spectral 

regions containing lipids (Longo et al. 1995). 

3.4.6 Visceral and Abdominal fat 

Subcutaneous and visceral fat content was acquired using images at the 

L4/L5 junction with a three-point Dixon sequence (Figure 35a) 

(TR/TE/number of averages/flip angle 50 ms/ 3.45, 4.60, 5.75 ms/1/308, 

matrix 1603109, median field of view (FOV) 440 mm, range 400e480mm to 

suit subject size with 70% phase FOV). Slices were 10mm thick and acquired 

during a breath-hold (Donnelly et al. 2003). Image J was used for analysis 

(Abramoff et al. 2004). Fat and water were separated, and binary gating 

applied, to produce a map of structures containing more than 50% fat 

(subcutaneous and visceral fat) from those with less. The binary image was 

divided into distinct areas using a watershed algorithm (Figure 35b). This 

allowed easy separation of the subcutaneous and visceral fat around the 

boundary of the chest wall. Selection of subcutaneous fat and any external 

signals allows measurement of this area, and subtraction from the total to 

yield visceral fat area (Figure 35c). 
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Figure 35  Quantifying visceral fat (a) L4/L5 image, (b) binary thresholding, (c) separation 
of visceral from subcutaneous fat 

 

3.5 Body composition 

Body composition was measured using air displacement plethysmography 

(Figure 36) (BodPod, Life Measurement Inc., CA, USA). Patients were asked 

to refrain from exercising, eating and drinking 2 hours prior to assessment 

and asked to wear tight fitting underwear or lycra along with a swimming cap 

to minimise air trapping. Patients were required to sit still and breathe 

normally for two 30 second bouts.  

Body volume was measured indirectly by determining the change in pressure 

caused by the volume of air displaced by the subject sitting inside the 

chamber. The BODPOD is divided into two chambers; a test chamber for the 
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subject and a reference chamber which have volumes of 450 and 300L 

respectively (Figure 36). A diaphragm oscillates between the 2 chambers, 

and when the volume is increased in one chamber, it decreases by the same 

amount in the other chamber. The resulting change in pressure is measured 

by transducers. Body volume is calculated because ‘Boyles law’ states that 

volume and pressure are inversely related. Body density is then calculated 

(Density=Mass/Volume), and subsequently, because the density of fat and 

fat free mass are known, the relative proportions of fat and lean mass can be 

calculated. This technique has been validated against the gold standard 

technique, hydrodensitometry  (Fields et al. 2000) and in 980 healthy men 

and women, the BODPOD demonstrated good test-retest reliability (Noreen 

& Lemon 2006).Same day test-retest reliability (coefficients of variation; 1.7% 

± 1.1%) was not different to hydrodensitometry test-retest reliability (2.3 ± 

1.9%) (McCrory et al. 1995). 
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Figure 36  How the BodPod machine works 

 

3.6 Glucose control 

Patients underwent an OGTT after a minimum 8 hours overnight fast. Upon 

arrival, a 22 gauge cannula was inserted into the cubital fossa and a fasting 

blood sample collected. A timer was initiated upon ingestion of 75g of 

glucose (equivalent to 394ml of Lucozade original 73kcal bottle) and 10ml 

blood samples were collected every 15 mins thereafter for 90 mins, after 

which a final blood sample was collected at 120mins. Samples were 

analysed immediately for whole blood glucose using the glucose oxidase 

method (YSI 2300 Stat Plus-D, Yellow Springs Instruments, Yellow Springs, 

OH). Glucose oxidase is an enzyme which reacts with glucose to produce 
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gluconic acid and hydrogen peroxide. Hydrogen peroxide passes through 

cellulose acetate to a platinum electrode where it is oxidized. The resultant 

current is proportional to the amount of glucose. 

Blood samples for insulin were spun in a centrifuge (Harrier 18/80R; MSE Ltd, 

London, UK) at 3000rpm, 4°C for 10mins. Plasma was pipetted off each 

sample and stored at -40°C (Sanyo Biomedical freezer; Loughborough, UK). 

Insulin was batch-analysed (to increase intra-rater reliability and decrease 

inter-rater variability), using the Mercodia Iso-Insulin ELISA (cat no 10-1128-

01, Mercodia, Sweden) in a clinical pathology accredited laboratory. Insulin 

sensitivity and β-cell function were estimated using the HOMA2 calculator 

(University of Oxford, 2013) (Levy et al. 1998). The HOMA2 equation uses 

measures of fasting glucose and insulin and simulates the physiological 

processes that influence these measures to predict β-cell function and insulin 

sensitivity. Glucose AUC was calculated using the trapezoidal rule (Floch et 

al. 1990). 

3.7 Blood analysis 

Fasting blood was collected in Gold and Lavender top BD vacutainer tubes 

for serum and whole blood haematology determinations, respectively, and 

sent down to a clinical pathology accredited laboratory (Newcastle Upon 

Tyne Hospital NHS Foundation Trust, Department of Clinical Biochemistry) 

for analysis. HbA1c was analysed using HPLC on a TOSOH G8 (Minato, 

Tokyo, Japan) and all other biochemistry assays were analysed using a 

Roche Modular P800 (Basel, Switzerland); the methodologies are as follows- 

ALP   Enzymatic Colourimetric 

ALT   Enzymatic UV 

Cholesterol  Enzymatic 

GTT   Enzymatic 

HDL   Enzymatic 

Triglycerides  Enzymatic Colourimetric 
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Chapter 4 Cardiac structure and function are altered in Type 

2 diabetes and non-alcoholic fatty liver disease and 

associate with glycaemic control 
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4.1 Introduction 

Type 2 diabetes effects ~5% of Western populations, with prevalence rates 

significantly higher in East and South Asian communities (IDF 2013). NAFLD 

is reported to effect between 20 and 30% of Western populations (Browning 

et al. 2004), can be as high as 60% in urban East and South Asian groups 

(Williams et al. 2011), and is closely related to the development of Type 2 

diabetes (Sattar et al. 2007). Indeed, in excess of 90% of obese people with 

Type 2 diabetes have NAFLD (Tolman et al. 2007). The strong relationship 

between NAFLD and Type 2 diabetes lies in the central role of liver lipids in 

glucose homeostasis (Perry et al. 2014).  

Heart disease is the leading cause of morbidity and mortality in both Type 2 

diabetes and NAFLD (Garcia et al. 1974; Rafiq et al. 2009). Individuals with 

diabetes demonstrate a 74% greater risk of hospitalisation due to heart 

failure (Health and Social Care Information Centre 2013). NAFLD, 

characterized by elevated serum γ-glutamyltransferase (GGT), is 

independently associated with heart failure (Wang et al. 2013). The 

increased incidence of cardiovascular morbidity and mortality associated with 

Type 2 diabetes and NAFLD, has been linked to preclinical changes in 

cardiac structure, function and metabolism. 

The most commonly reported change in asymptomatic individuals with Type 

2 diabetes is diastolic dysfunction (Rijzewijk et al. 2009; Diamant et al. 2003; 

Venskutonyte et al. 2014; Graça et al. 2014), alongside decreased end-

diastolic blood volume (Rijzewijk et al. 2009), and changes in cardiac strain 

patterns (Fonseca et al. 2004). These cardiac changes have been 

associated with myocardial steatosis (Korosoglou et al. 2012), mitochondrial 

dysfunction (Marciniak et al. 2014), changes in calcium regulation, and 

myocardial fibrosis (Lamberts et al. 2014). NAFLD is also characterized by a 

similar pattern of diastolic dysfunction (Goland et al. 2006; Pacifico et al. 

2014), altered left ventricular geometry (Goland et al. 2006) , reduced 

myocardial perfusion reserve (Nakamori et al. 2012), and changes in cardiac 

strain (Hallsworth et al. 2012). Although a growing body of epidemiological 

and clinical evidence links the disease processes of Type 2 diabetes and 
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NAFLD, little is known about how these conditions may differentially affect 

the heart.  

4.1.1 Study aims 

1) To compare the impact of Type 2 diabetes and NAFLD upon cardiac 

structure, function and metabolism. 

2) To identify potential metabolic mediator of cardiac function.  
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4.2 Methods 

4.2.1 Participants 

In a case control study, 19 non-diabetic participants with NAFLD, 19 

participants with Type 2 diabetes and 19 healthy controls, were compared for 

cardiac structure and function using MRI. This was an extension of a 

previous study (Hallsworth et al. 2012) in which NAFLD patients and healthy 

controls had already been recruited.  

NAFLD patients were recruited into the study through Newcastle upon Tyne 

Hospitals NHS Foundation Trust. NAFLD was defined as >5% intrahepatic 

lipid on 1H-MRS of the liver (section 3.4.5) with no evidence of advanced 

fibrosis (mean alanine aminotransferase / aspartate aminotransferase 

(ALT/AST) 0.82 ± 0.08). Patients with >5% intrahepatic lipid were excluded 

from the NAFLD group if they had a previous diagnosis of Type 2 diabetes, 

were on any glucose lowering medication, had an HbA1c ≥48mmol/mol or 

had any secondary causes of hepatic steatosis as listed in (Chalasani et al. 

2012). 19 controls, matched for gender, were recruited from advertisements 

in local newspapers and were without hypertension, metabolic, liver or 

cardiac disease. 

Nineteen Type 2 diabetes participants were recruited into the study (see 

section 3.1 for recruitment strategy and inclusion criteria). Written informed 

consent was obtained from each participant. The study protocol was 

approved by Newcastle and North Tyneside 1 Research Ethics Committee. 

4.2.2 Screening visit 

All participants underwent a medical history and full physical examination, 

and NAFLD and Type 2 diabetes patients underwent a cardiopulmonary 

exercise test to screen for any undiagnosed cardiac disease (see section 3.3 

for details). 

4.2.3 Fasting blood measures 

Fasting blood samples were analyzed for whole blood glucose (YSI 2300 

Stat Plus-D, Yellow Springs Instruments, Yellow Springs, OH). ALT, total 

cholesterol, triacylglycerols and HbA1c were analysed in a clinical pathology 
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accredited laboratory (Newcastle Upon Tyne Hospital NHS Foundation Trust, 

Department of Clinical Biochemistry) (see sections 3.7 for blood analysis 

details). 

4.2.4 Cardiac MRI 

All participants underwent MRI measures in a 3.0 T Philips Intera Achieva 

scanner (Best, NL). Cardiac structure, function and energetics were 

measured by cine MRI, 2 dimensional tagging and 31P-MRS respectively 

(see section for 3.4 details). 

Preload, afterload, contractility, and ventricular-arterial coupling were 

calculated from this data, in combination with blood pressure measurements. 

Preload was determined by the end-diastolic volume, afterload by arterial 

elastance [(Ea) = end-systolic pressure (systolic blood pressure x 0.9)/stroke 

volume (normalized to body surface area)], contractility by end-systolic 

elastance [(Ees) = end-systolic pressure/end-systolic volume (normalized to 

body surface area)], and ventricular-arterial coupling by the ratio of Ees/Ea. 

4.2.5 Liver and visceral MRI 

Liver fat was assessed by 1H-MRS and visceral fat was estimated at the 

L4/L5 junction using a three point Dixon sequence (see section 3.4 for 

details). All cardiac, liver and visceral MRI analysis was performed by Sophie 

Cassidy who was blinded to group allocation. 

4.2.6 Statistical analysis 

Data are presented as means ± SD unless otherwise stated. All statistical 

tests were two-sided and performed using SPSS version 19 (IBM, NY, US). 

Continuous data were tested for normality using the Sharipo-Wilk test. 

Between group differences were evaluated using a one-way ANOVA with 

Bonferroni correction methods for multiple comparisons and a non-

parametric alternative (Kruskal Wallis) for non-normally distributed data. 

Spearmans rank correlation was used to observe any relationship between 

metabolic parameters and cardiac parameters. Any significant relationships 

were then entered into a multiple linear regression model, adjusting for age, 

systolic blood pressure and anthropometry (BMI, body surface area, weight, 

systolic blood pressure). The goal of these analyses was to determine which 
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factors were responsible for the differences in cardiac structure and function 

between groups. P values <0.05 were considered statistically significant. 
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4.3 Results 

Table 5 summarises the demographic data of the three groups. Body weight, 

BMI and systolic blood pressure were significantly higher in Type 2 diabetes 

and NAFLD compared with controls (p<0.05). Both NAFLD and Type 2 

diabetes demonstrated increased liver fat (9.4 ± 4.3 vs. 7.9 ± 6.7 vs. 2.5 ± 

0.9 %; p<0.05) while fasting glucose was higher in Type 2 diabetes only (7.2 

± 1.4 mmol/L; p<0.05).  

Table 5  Demographic and metabolic characteristics of study population by group  

Variable Controls 

(n=19) 

 

NAFLD 

(n=19) 

 

Type 2 

diabetes 

(n=19) 

 

P 

value  

Age (yearr) 56 ± 14 54 ± 15 62 ± 8 0.127 

Gender (men:women)   11:8 11:8 11:8 - 

Height (cm) 169 ± 11 169 ± 9 168 ± 9 0.877 

Weight (kg)  78 ± 11 83 ± 14 91 ± 14* 0.013 

BMI (kg/m2) 28 ± 4 29 ± 3* 33 ± 5* 0.012 

Body surface area (m2) 1.9 ± 0.2 1.9 ± 0.2 2.0 ± 0.2* 0.018 

Visceral adipose tissue (cm
2
) - 154 ± 47 191 ± 75 0.120 

Systolic blood pressure 

(mmHg) 

131 ± 11 146 ± 16* 145 ± 17* 0.003 

Diastolic blood pressure 

(mmHg) 

82 ± 8 90 ± 12 89 ± 12 0.096 

VO2peak (ml min-1 kg-1) - 24 ± 6 19 ± 5† 0.007 

Fasting Glucose (mmol/L) 5.2 ± 0.5 5.0 ± 0.6 7.2 ± 1.4*† 0.000 

HbA1c (mmol/mol)  

(%) 

-  38 ± 5 

(5.6 ± 0.4) 

58 ± 10† 

(7.4 ± 0.9) 

0.000 

Intrahepatic lipid (%) 2.5 ± 0.9 9.4 ± 4.3* 7.9 ± 6.7* 0.000 

ALT (U.L) 23 ± 12 51 ± 39* 30 ± 11 0.013 

Total Cholesterol (mmol/L) 5.3 ± 0.7 5.1 ± 1.2 4.7 ± 1.4 0.342 

Triglycerides (mmol/L) 1.7 ± 0.9 1.5 ± 0.8 1.3 ± 1.1 0.328 

Medications    - 



117 
 

          Statins  

          Blood pressure  

          Metformin 

0 

0 

0 

4 

1 

0 

10 

8 

12 

Data are means ± SD. 

*Significant difference disease vs. control (p<0.05).  

† Significant difference Type 2 diabetes vs. NAFLD (p<0.05). 

 

VO2peak was significantly lower in the Type 2 diabetes group compared to 

NAFLD (p<0.01). There was no significant difference in visceral adipose 

tissue (p=0.120), blood cholesterol (p=0.342) or triglycerides between 

patients and controls (p=0.328,Table 5), however it should be noted that both 

Type 2 diabetes and NAFLD patients were taking lipid-lowering medication. 

4.3.1 Cardiac structure and systolic function 

Left ventricular mass was similar in all groups (p=0.581). The NAFLD group 

demonstrated thicker walls at end-systole and end-diastole (p<0.05). Cardiac 

structural concentric remodelling was observed in both NAFLD and Type 2 

diabetes, as shown with an increased eccentricity ratio (1.12 ± 0.2 vs. 1.05 ± 

0.3 vs. 0.89 ± 0.2 g/ml; p<0.05) and reduced end-diastolic volume indexed 

when compared with healthy controls (p<0.05) (Table 6, Figure 37a). An 

increased eccentricity ratio was associated with diastolic dysfunction in 

NAFLD (E/A: r=-0.4, p=0.05) and Type 2 diabetes (E/A: r=-0.56, p=0.012; 

Early filling rate: r=-0.59, p=0.009; Early filling %; r=-0.64, p=0.01) but not in 

the control group. 

Systolic function was impaired in the Type 2 diabetes group, evidenced by a 

lower stroke index (31 ± 7 vs. 38 ± 10 ml/m2; p<0.05) and reduced 

longitudinal shortening (13.7 ± 4 vs. 16.6 ± 2.8 %; p<0.05) when compared to 

controls (Figure 37b). There were no differences in heart rate, stroke volume, 

cardiac output and ejection fraction between groups and no significant 

correlations between measures of structural parameters and systolic function 

with fasting glucose or HbA1c. Arterial elastance (afterload) and ventricular 

elastance (ventricular stiffness) were both increased in NAFLD and Type 2 

diabetes compared to controls (p<0.05) but the ratio between the two 

(ventricular-arterial coupling) was not different between groups (Table 6) 

.
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Table 6  Magnetic resonance imaging measurements of cardiac structure, function and 
metabolism 

 Controls 

(n=19) 

NAFLD 

(n=19) 

Type 2 

diabetes 

(n=19) 

P 

value 

Cardiac structure     

Left ventricular mass (g) 102 ± 26 114 ± 31 108 ± 28 0.581 

Left ventricular mass  

indexed (g/m2) 

55 ± 12 59 ± 11 53 ± 12 0.273 

Wall thickness diastole 

(mm) 

7 ± 1 8 ± 1* 6 ± 2*† 0.000 

Wall thickness systole 

(mm) 

12 ± 2 14 ± 3* 12 ± 3 0.016 

Eccentricity ratio (g/ml) 0.89 ± 0.2 1.12 ± 0.2* 1.05 ± 0.3* 0.004 

End-diastolic volume 

indexed (ml/m2) 

64 ± 18 54 ± 14 52 ± 14 0.039 

End-systolic volume 

indexed (ml/m2) 

27 ± 9 21 ± 9 21 ± 10 0.63 

Systolic function     

Heart rate (bpm) 59 ± 9 61 ± 9 65 ± 9 0.178 

Stroke volume (ml) 70 ± 19 64 ± 12 64 ± 17 0.437 

Stroke index (ml/m2) 38 ± 10 33 ± 5 31 ± 7* 0.034 

Cardiac output (L/min) 4.0 ± 0.8 3.8 ± 0.6 4.0 ± 0.9 0.754 

Ejection fraction (%) 59 ± 5 63 ± 8 61 ± 10 0.332 

Longitudinal shortening 

(%) 

16.6 ± 2.8 14.2 ± 2.7 13.7 ± 4* 0.017 

Arterial elastance 3.32 ± 0.85 4.07 ± 0.78* 4.38 ± 1.05* 0.004 

Ventricular elastance 5.04 ± 2.05 7.62 ± 3.22* 7.72 ± 4.08* 0.011 

Ventricular-arterial 

coupling 

1.50 ± 0.35 1.82 ± 0.60 1.75 ± 0.72 0.263 

Diastolic function     

Early filling percentage 

(%) 

69 ± 11 65 ± 11 57 ± 9* 0.003 

E/A  1.9 ± 1.4 1.6 ± 1.3 0.9 ± 0.4* 0.015 

Early diastolic filling rate 

(ml/s) 

312 ± 121 265 ± 95 244 ± 76 0.105 

Late diastolic filling rate 

(ml/s) 

203 ± 73 212 ± 70* 288 ± 99* 0.009 

Strain and torsion     

Peak endocardial 

circumferential strain 

(%) 

22 ± 5 28 ± 4* 24 ± 5† 0.001 
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Peak whole wall 

circumferential strain 

(%)  

17 ± 3 19 ± 2 16 ± 4† 0.012 

Peak torsion (°) 6.6 ± 1.8 6.9 ± 2.2 8.0 ± 2.5 0.127 

Torsion recoil rate 

(%/ms) 

0.25 ± 0.12 0.17 ± 0.12 0.27 ± 0.1† 0.017 

Torsion to shortening 

ratio 

0.51 ± 0.15 0.44 ± 0.13 0.58 ± 

0.16† 

0.019 

Metabolism      

PCr/ATP ratio 1.9 ± 0.3 1.8 ± 0.3 1.8 ± 0.3 0.543 
Data are means ± SD. 

*Significant difference disease vs. control (p<0.05).  

† Significant difference Type 2 diabetes vs. NAFLD (p<0.05). 
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4.3.2 Diastolic function 

E/A was significantly lower in Type 2 diabetes compared to controls (0.9 ± 

0.4 vs 1.9 ± 1.4; p<0.05) (Figure 37c) along with a decrease in early filling 

percentage (p<0.05). The NAFLD group showed no significant change in 

these parameters compared to controls. Both the NAFLD and Type 2 

diabetes groups displayed significant increases in late diastolic filling rate 

compared to controls (212 ± 70 vs. 288 ± 99 vs. 203 ± 73 ml/s; p<0.05). 

Across the three groups, there was a moderate negative correlation between 

fasting glucose and early filling percentage (r=-0.32, p=0.021) (Figure 38a). 

In addition, increased HbA1c was associated with impaired E/A (r=-0.52, 

p=0.003) and reduced early filling rate (r=-.48, p=0.006) (Figure 38c+d). 

When controlling for the baseline differences in age, systolic blood pressure 

and anthropometry across groups; glucose (β=-0.26, p<0.05) remained a 

significant predictor of early filling percentage. Age was a significant predictor 

of early filling percentage (β=-0.5, p<0.01), E/A (β=-0.66, p<0.01) and early 

filling rate (β=-0.48, p<0.01). 

4.3.3 Cardiac torsion and strain 

Cardiac torsion and strain differed across groups, with higher endocardial 

circumferential strain in the NAFLD group and elevated torsion in the Type 2 

diabetes group, as shown by the significantly higher TSR in Type 2 diabetes 

compared to NAFLD (0.58 ± 0.16 vs. 0.44 ± 0.13, p<0.05, Figure 37d). Peak 

torsion was 24% greater in the Type 2 diabetes group compared to controls. 

Fasting glucose was moderately correlated with TSR (r=.42, p=0.003) 

(Figure 38b). When controlling for baseline differences in age, systolic blood 

pressure and anthropometry; the association between fasting glucose and 

TSR was approaching significance (β=0.25, p=0.072). Similarly, age was 

approaching significance in predicting the torsion to shortening ratio (β=0.29, 

p=0.057). 
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Figure 37  Measures of cardiac structure and function, namely,(a) eccentricity ratio, (b) 
longitudinal shortening (c) E/A and (d) torsion to shortening ratio, in control, 
NAFLD and Type 2 diabetes adults.  

 

Data are means ± SE. 

*Significant difference disease vs. control (p<0.05).  

† Significant difference Type 2 diabetes vs. NAFLD (p<0.05) 

 

4.3.4 Cardiac metabolism 

There was no difference in PCr/ATP amongst NAFLD and Type 2 diabetes 

adults compared to controls (1.8 ± 0.3 vs. 1.8 ± 0.3 vs. 1.9 ± 0.3; p=0.543) 

and PCr/ATP correlated with no measures of cardiac structure or function.  
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Figure 38  Associations between glycemic control and measures of cardiac function. Triangle= Control, Square= NAFLD, Circle=Type 2 diabetes. 
Relationships between (a) fasting glucose and early filling percentage, (b) fasting glucose and torsion to shortening ratio, (c) HbA1c and E/A and (d) 
HbA1c and early filling rate, are presented in the figure  
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4.4 Discussion 

This is the first study to compare the effect of Type 2 diabetes and NAFLD on 

cardiac structure, function and metabolism using the most sensitive cardiac 

MRI techniques. The major findings suggest that despite similar levels of 

concentric remodelling, individuals with Type 2 diabetes demonstrate 

significantly greater diastolic and subendocardial dysfunction in comparison 

with NAFLD and healthy adults. There were significant relationships between 

glycaemic control and measures of cardiac function, suggesting that 

hyperglycaemia itself is an important factor contributing to these sub-clinical 

cardiac changes. 

The results indicate concentric remodelling in both NAFLD and Type 2 

diabetes independent of changes in left ventricular wall mass. Using similar 

magnetic resonance techniques, Diamant et al. (Diamant et al. 2003) also 

failed to demonstrate an increase in left ventricular wall mass in adults with 

Type 2 diabetes which is in contrast to studies using echocardiography 

(Vanninen et al. 1992). Echocardiography has however been found to 

overestimate cardiac size (Missouris et al. 1996). In both NAFLD and Type 2 

diabetes, a raised eccentricity ratio was associated with diastolic dysfunction. 

We speculate that the reduced left ventricular cavity may impair diastolic 

filling. The NAFLD group display more prominent structural changes than the 

Type 2 diabetes group, with thicker walls at diastole and systole. This 

enables the left ventricle to generate increased force and pressure thereby 

preserving systolic function (Adeghate & Singh 2014).  

The data show left ventricular diastolic and systolic dysfunction in Type 2 

diabetes but not NAFLD, despite equivalent degrees of blood pressure and 

concentric remodelling. Early diastolic filling due to ventricular relaxation 

accounts for roughly 80% of ventricular end-diastolic volume in a young 

healthy heart and declines with age (Hollingsworth et al. 2012). Impaired 

early filling observed in the present study indicates greater myocardial 

stiffness. Diastolic dysfunction is an independent predictor of mortality 

(Halley et al. 2011) which warrants the need for therapies to target these 
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preclinical cardiac changes. A recent longitudinal study demonstrated no 

decline in diastolic dysfunction after 6 years of follow up in adults with Type 2 

diabetes, when cardiovascular risk factors (such as blood pressure, BMI and 

blood glucose) were managed (Venskutonyte et al. 2014). Interventions 

targeting these risk factors therefore need to be a priority in the treatment of 

diastolic dysfunction. The present study uses MRI in contrast to the 

aforementioned study and many other reports in the literature. MRI provides 

a robust non-invasive assessment of cardiac function and is considered the 

gold standard for measures of cardiac structure, enabling the measurement 

of cardiac changes in a unique non-invasive way. 

Analysis of cardiac deformation by 3D magnetic resonance tagging 

demonstrated a raised TSR in Type 2 diabetes with peak torsion 24% greater 

in this group. A decrease in circumferential and longitudinal strain 

accompanied with a rise in torsion has been previously reported in Type 2 

diabetes (Fonseca et al. 2004). TSR is a marker of the dominance of 

subepicardial fibres exerting their effects over the subendocardium (Lumens 

et al. 2006). Torsion is a normal feature of cardiac contraction and results in 

a counter clockwise twisting motion when viewed from the apex to base. 

Subepicardial fibres act over a larger radius, therefore, during contraction 

they are dominant over subendocardial fibres which partially counteract this 

twisting motion (Lumens et al. 2006). The relative dysfunction of the 

subendocardium in Type 2 diabetes, manifested as an increase in torsion, 

could be attributed to subendocardial fibrosis (Lumens et al. 2006). 

Subendocardial dysfunction reduces longitudinal shortening as demonstrated 

in this study. In contrast to Type 2 diabetes, NAFLD participants demonstrate 

increased strain and maintained torsion when compared to controls. The 

large difference in radii between epicardial and endocardial fibres (due to 

both increased wall thickness and reduced end-diastolic blood volume 

indexed) in NAFLD, means endocardial strain has to increase for torsion to 

be maintained. 

Across the three groups, age and fasting blood glucose were predictors of 

the changes in cardiac function. It has been previously demonstrated that 

age is associated with diastolic dysfunction and an increase in TSR (Lumens 
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et al. 2006; Hollingsworth et al. 2012; Ichikawa et al. 2013), and our results 

confirm these findings. Despite this, fasting blood glucose independent of 

age, influenced cardiac function, suggesting that metabolic disease 

exaggerates the ageing phenotype. The relative contribution of liver fat and 

other metabolic parameters (BMI, systolic blood pressure, total cholesterol, 

triacylglyceride) with cardiac complications is an important question. In the 

linear regression model, there were no consistent predictors of cardiac 

dysfunction other than blood glucose. However, to fully explore this question 

larger studies are required. The relationship with blood glucose is of interest. 

We speculate that NAFLD participants who have high liver fat with stable 

blood glucose demonstrate higher endocardial strain and structural 

compensation to maintain cardiac function. The progression to Type 2 

diabetes, which is characterised by high blood glucose, may lead to 

endocardial damage, resulting in impaired function. This is reflected in the 

significant relationship between blood glucose and measures of cardiac 

function across the three groups. Preventing a rise in blood glucose should 

therefore be a priority in the clinical management of NAFLD. The postulated 

interactions between cardiac parameters in NAFLD and Type 2 diabetes are 

summarised in Figure 39. 

It has been previously demonstrated that poor glycaemic control is 

associated with an increased risk of heart failure in adults with Type 2 

diabetes (Iribarren et al. 2001). The present study builds on this by 

demonstrating an association between glycaemic control and changes in 

myocardial function. The relationship between cardiac torsion and glycaemic 

control has not been previously shown and only a few studies have 

demonstrated a relationship between glucose control and diastolic function 

(Korosoglou et al. 2012; Rijzewijk et al. 2009). Direct primary effects on the 

myocardium or secondary effects on peripheral resistance (afterload) are two 

pathways in which blood glucose could interfere with diastolic function. This 

is because diastolic distensibility (raised diastolic pressure at any level of 

diastolic volume) can arise from altered myocardial elastic properties (fibrosis) 

or prolongation of ventricular relaxation (Bonow & Udelson 1992). Raised 

afterload slows ventricular relaxation which can alter the pressure gradient 
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required during early diastolic filling and elevations in afterload have been 

shown to induce left ventricular diastolic dysfunction (Leite-Moreira et al. 

1999). In this study, arterial elastance (afterload) was increased in Type 2 

diabetes and NAFLD, but was not associated with glucose control. This is 

suggestive of a direct impact of glucose on the myocardium rather than 

peripheral resistance. It has been recently shown that subclinical myocardial 

damage occurs in those with pre-diabetes too, those with myocardial 

damage were at highest risk of mortality and cardiovascular events, 

particularly heart failure (Selvin et al. 2014). Despite clear associations, a 

causal relationship between blood glucose and cardiac complications cannot 

be inferred from this study, and more work is needed to identify the direct 

impact of hyperglycaemia on the heart. 

Figure 39 Postulated interactions between cardiac parameters across controls, NAFLD 
and Type 2 diabetes  (EDVi, end-diastolic volume indexed) 

 

Despite changes in structure and function, cardiac high energy phosphate 

metabolism was similar between the three groups. A PCr/ATP ratio reduction 
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of 35% has previously been demonstrated in participants with Type 2 

diabetes (Scheuermann-Freestone et al. 2003) and a 13% reduction in 

NAFLD, compared to healthy controls (Perseghin et al. 2008). The reduction 

in PCr/ATP ratio has also been correlated with diastolic dysfunction in people 

with Type 2 diabetes leading the authors to postulate increased 

concentration of NEFA in metabolic disease causes a switch from glucose to 

lipid cardiac metabolism, reducing efficiency of ATP production and causing 

cardiac functional changes (Diamant et al. 2003). However, the 

characteristics of the Type 2 diabetes participants in the aforementioned 

study were different from those in the present study. Specifically, they were 

not taking lipid-lowering medication and therefore had higher levels of 

triacylglyceride and total cholesterol values. Indeed, when participants were 

following current NICE guidelines (NICE 2014) and using lipid-lowering 

medications, the PCr/ATP ratio between Type 2 diabetes and controls were 

comparable (Rijzewijk et al. 2009). In the present study, triglyceride and 

cholesterol levels were similar in Type 2 diabetes, NAFLD and controls which 

could explain the lack of secondary difference in cardiac metabolism. These 

data also suggest that changes in high energy phosphate metabolism may 

reflect differences in substrate oxidation / supply rather than an underlying 

metabolic defect in the myocardium. 

Limitations of the study should be considered. The cross sectional nature 

does not allow insight into causality of the abnormalities identified. 

Hypertension is a common comorbidity in metabolic disease which 

complicates the distinction of the separate impact of glucose control and high 

blood pressure on cardiac function. However, blood glucose had a significant 

relationship with measures of cardiac function independent of blood pressure. 

We did not measure perfusion or steatosis, two mediators of metabolism and 

function, due to the duration of MRI scans and tolerability by patients. 

Myocardial triacylglyceride accumulation is an early sign of heart disease in 

Type 2 diabetes and is associated with changes in cardiac function, in 

particular diastolic dysfunction (Rijzewijk et al. 2008; Ng et al. 2010; 

Korosoglou et al. 2012). The present data reinforces the need for further 

exploration of the interrelationship between, glycaemic control, cardiac 
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function, metabolism, perfusion, and steatosis. In addition, we were unable to 

assess stress MRI meaning cardiac abnormalities have only been identified 

at rest.  

4.5 Conclusions 

In summary, changes in cardiac structure are evident in adults with Type 2 

diabetes and NAFLD without overt cardiac disease and without changes in 

cardiac energy metabolism. The growing prevalence of metabolic disorders 

puts large numbers at risk of these underlying cardiac changes. Only the 

Type 2 diabetes group display diastolic and subendocardial dysfunction and 

glycaemic control may be a key mediator of these cardiac changes. 

Managing blood glucose should therefore be a priority for clinical care teams 

to prevent cardiac complications in adults with Type 2 diabetes and NAFLD. 

The next section of the thesis will discuss the impact of a novel exercise 

intervention, designed to target these preclinical cardiac changes in adults 

with Type 2 diabetes.  
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Chapter 5 High intensity intermittent exercise improves 

cardiac structure and function and reduces liver fat in 

patients with Type 2 diabetes; a randomised controlled trial. 
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5.1 Introduction 

Heart disease is the leading cause of morbidity and mortality in Type 2 

diabetes (IDF 2013) and more than a quarter of all hospital admissions for 

heart failure in the West involve a patient with diabetes (Reis et al. 1997; 

Health and Social Care Information Centre 2013). Early changes in left 

ventricular structure and function have been identified in adults with Type 2 

diabetes prior to any overt cardiac disease. These include; pathological 

hypertrophy (Dawson et al. 2005), reduced end-diastolic blood volume 

(Rijzewijk et al. 2009), diastolic and systolic dysfunction (Rijzewijk et al. 2009; 

Cassidy et al. 2015; Diamant et al. 2003) and alterations in strain patterns 

(Fonseca et al. 2004; Cassidy et al. 2015), identified using sensitive 

magnetic resonance techniques. A number of factors have been attributed to 

these changes including, protein glycation (Bodiga et al. 2013), myocardial 

steatosis (Korosoglou et al. 2012), myocardial fibrosis (van Heerebeek et al. 

2008) and subendocardial perfusion deficits (Fischer et al. 1979; Lumens et 

al. 2006). MRI measurement has been shown to have greater reproducibility 

than 2 dimensional echocardiography in healthy and failing hearts, while 

avoiding the ionising radiation exposure of computerized tomography 

methods, which permits ethical longitudinal studies (Grothues et al. 2002). 

Despite clear cardiac dysfunction in Type 2 diabetes, therapies to target 

these preclinical cardiac changes are sparse.  

Treatment algorithms for Type 2 diabetes support a physically active lifestyle 

at every stage of treatment (Inzucchi et al. 2012), indeed aerobic and 

resistance exercise have known benefits to cardiovascular function (Chudyk 

& Petrella 2011), yet little is known about the impacts upon cardiac structure 

and function. More recently, attention has been given to the intensity of 

exercise, with HIIT fast becoming a popular alternative to continuous 

moderate training (Gibala et al. 2012). HIIT refers to brief intervals of 

vigorous activity interspersed with periods of low activity or rest (Gibala et al. 

2012) and not only reduces time commitment but is perceived to be more 

enjoyable than moderate continuous exercise (Bartlett et al. 2011). HIIT is 

known to elicit a strong cardiac response (Wisløff et al. 2007) but its potential 
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to improve cardiac structure and function in Type 2 diabetes is yet to be 

defined. 

While the cardiac benefits of HIIT are still to be determined, the metabolic 

effects in Type 2 diabetes remain unclear also. Studies have demonstrated 

acute reductions in postprandial glycaemia after 1 (Gillen et al. 2012), or 6 

sessions of HIIT (Little et al. 2011). Two 12 week HIIT studies have shown 

improvements in HbA1c, one demonstrating a 0.4% reduction (Hollekim-

Strand et al. 2014) and the other included southeast Asian patients (Mitranun 

et al. 2014), a group which have a genetic predisposition towards Type 2 

diabetes (Hu 2011), and therefore cannot be generalised to Caucasian 

populations. Ectopic fat plays an important role in glucose homeostasis 

(Björntorp 1991; Taylor 2013), yet the impact of HIIT on regional fat 

deposition has not been investigated. Although HIIT is suggested to cause 

similar, if not superior physiological benefits compared to continuous 

exercise training (Hollekim-Strand et al. 2014), the cardiac and metabolic 

impact of HIIT are yet to be determined before it can be recommended for 

use by people with Type 2 diabetes.  

5.2 Study aims 

1) The primary aim of this study was to investigate HIIT as a potential 

therapy to improve cardiac structure and function in Type 2 diabetes.  

2) The secondary aims of the study were to explore the impact of HIIT on 

glycaemic control and regional fat deposition.  

We hypothesised that HIIT would improve cardiac structure and function, 

alongside improving glycaemic control and reducing ectopic fat in adults with 

Type 2 diabetes. 
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5.3 Methods 

5.3.1 Participants 

Twenty-eight adults with Type 2 diabetes were recruited into the study (see 

section 3.1 for recruitment strategy and inclusion criteria). Written informed 

consent was obtained from each participant. The study protocol was 

approved by Newcastle and North Tyneside 1 Research Ethics Committee. 

5.3.2 Experimental protocol + randomisation 

Following an initial screening visit; cardiac structure and function, liver and 

visceral fat, body composition, glycaemic control, resting and exercise 

metabolism, cardiac function during exercise and blood parameters were 

measured at baseline and after 12 weeks of HIIT or continued standard care. 

Patients were randomised into groups using a simple random allocation 

sequence (www.randomization.com). Concealed envelopes with subsequent 

numbers were locked in a drawer and withdrawn consecutively by Sophie 

Cassidy. All study procedures are described below, followed by a description 

of the intervention. 

5.3.3 Screening visit  

This visit only took place at baseline (not after the intervention). A medical 

history, physical examination and cardiopulmonary exercise test were used 

to screen for any underlying cardiac disease or contraindications to taking 

part in the intervention (see section 3.3 for details).  

5.3.4 Magnetic resonance imaging 

A 3.0 Tesla Philips Intera Achieva scanner (Best, NL) was used for all MRI 

examinations. Cardiac structure, function and energetics were measured by 

cine magnetic resonance imaging, cardiac tagging and 31P-Magnetic 

resonance spectroscopy respectively (see section 3.4 for details).  

Liver fat was assessed by 1H-MRS and Visceral fat was estimated at the 

L4/L5 junction using a three point Dixon sequence (see section 3.4.6 for 

details). All MRI analysis was performed by Sophie Cassidy who was blinded 

to group allocation. 

http://www.randomization.com/
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5.3.5 Body composition 

Body composition was measured using air displacement plethysmography to 

see the change in body fat after the intervention (see section 3.5 for details). 

5.3.6 Glycemic control and blood analysis 

An OGTT was performed after an 8 hour minimum fast (see section 3.6 for 

details). From this test, fasting glucose, 2 hour glucose, glucose AUC were 

measured, alongside IR and β-cell function from HOMA 2. The post 

intervention OGTT was performed within 48-72 hours of the final exercise 

session to control for the acute effect of exercise on glucose uptake.  

Fasting bloods were also sent to a clinical pathology laboratory for 

measurement of ALT, AST, alkaline phosphatase (ALP), total cholesterol and 

triacylglycerol (see section 3.7 for details). 

5.3.7 Resting blood pressure  

During a 20 min resting period while patients lay supine in a quiet room 

without speaking or sleeping, beat-to-beat blood pressure was measured by 

the vascular unloading technique (Fortin et al. 1998) corrected automatically 

to the oscillometric blood pressure measured on the contralateral arm. Data 

from the first 10 mins and last 5 mins were excluded from analysis.  

The vascular unloading technique uses a plethysmographic device which 

operates on the finger due to ease of application. These devices in 

themselves can only measure blood volume changes (not pressure) through 

the absorption of infrared light. Using the vascular unloading technique, 

these signals can be transformed into continuous blood pressure. During 

blood volume changes, an outside counter pressure is continuously exerted 

to maintain arterial blood volume. These external pressure changes directly 

correspond to arterial pressure.  

5.3.8 Resting and exercise substrate utilisation 

During this same resting period, expired gases were measured for 20 mins 

using a Hans Rudolf breathing mask and analysed online for VO2, VCO2 and 

ventilation (Cortex metalyser 3B, Leipzig, Germany). Data from the first 10 

mins and last 5 mins were excluded from analysis. This enabled us to predict 



134 
 

resting metabolic rate using the Weir equation (Weir 1948) and resting 

substrate utilisation using RER (RER= VCO2/VO2). 

5.3.9 Intervention 

The HIIT group performed 36 cycle ergometry sessions over 12 weeks (3 

sessions per week on non-consecutive days) at a local gym. Patients were 

required to perform at least 32 sessions (89%) for inclusion in analysis. 

Intensity was based on the 6-20 point Borg RPE scale (Borg 1982) (see 

Appendix E for Borg scale). The session protocol is outlined in Figure 40. 

Each session included a 5 min warm up in which participants would progress 

from RPE 9-13 (“very light to “somewhat hard”) followed by 5 intervals, each 

with a pedal cadence of >80 RPM reaching RPE 16-17 (“very hard”). The 

final interval was then followed by a 3 min recovery cycle. HIIT is well 

documented to be highly effective at improving cardiorespiratory fitness so 

we had to account for progression throughout the programme. Intervals 

lasted 2 mins in week 1 and progressed by 10 seconds each week so that 

week 12 consisted of 3 min 50 second intervals. Three min recovery periods 

interspersed each interval which consisted of; 90 seconds passive recovery, 

60 seconds of band resisted upper body exercise and 30 seconds to prepare 

for the subsequent interval. The arm resistance bands (Bodymax fitness, 

Clydebank, UK) were used as a light recovery and involved one exercise per 

recovery period in the following order: face-pull, horizontal push, horizontal 

pull, and 30° push (See Appendix E for arm exercises). The initial session 

was supervised and thereafter participants were guided through each 

session by voice recorded instructions using an iPod shuffle (Apple Inc. CA, 

USA). An exercise diary was completed to monitor exercise adherence (See 

Appendix E for exercise diary). Patients were given an instruction sheet 

which summarised the intervention instructions (see appendix E). 

Apart from HIIT sessions, all study participants were instructed to continue 

their normal routine and care for 12 weeks and not to change medication, 

habitual physical activity, diet or body weight. Weekly phone calls were made 

to assess adherence and habitual physical activity was assessed over 7 days 

pre and post intervention using a validated multisensory armband (St-onge et 

al. 2007) (Sensewear; Bodymedia, Pittsburgh, PA).
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Figure 40  HIIT protocol 
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Physical Activity 

Patients wore a SenseWear (Bodymedia Inc, Pennsylvania, USA) armband 

on the upper right arm (at the mid-humerus point on the triceps) for seven 

days (Figure 41). Removal of armband was necessary only for 

bathing/showering purposes. 

The SenseWear armband uses a biaxial accelerometer, heat flux sensor, a 

galvanic skin response sensor, and a near-body ambient temperature sensor 

to capture data. Patients age, height, weight, sex, smoking status and hand 

dominance are inputted so that total energy expenditure can be calculated. 

Other data is produced as units per day; active energy expenditure, average 

METs; sedentary time (≤ 2.9 METs); duration of physical activity (> 3.0 

METs); duration of moderate physical activity (3.0-5.9 METs); duration of 

vigorous activity (6.0- 9.0 METs); duration of very vigorous activity (≥ 9.0 

METs); number of steps; sleep duration; and duration armband worn.  

Figure 41  Habitual physical activity was measured objectively using a validated 
multisensory armband 

 

5.3.10 Statistics 

As this was the first study to examine the impact of HIIT on cardiac structure 

and function, we could not base our power calculation on our primary 

outcome. Power was therefore based upon change in HbA1c. We selected a 

sample size of 12 to provide a statistical power of 80% to detect a difference 

of 0.6% in HbA1c (Thomas et al. 2006). A sample size 14 was used to allow 

for 2 dropouts per group. A per-protocol analysis was adopted, as the 

intention of this study was to assess efficacy and mechanisms of change, not 

effectiveness. All analyses were performed using SPSS version 19 (IBM, NY, 

US) and data are presented as means ± SD, unless otherwise stated.  
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Continuous data were tested for normality using the Shapiro-Wilk test. 

Comparisons of key baseline variables were made using independent 

sample t-tests. Between-group comparisons were made using ANCOVA with 

the baseline value as the covariate. Within group changes were assessed by 

paired-sample t-test or the non-parametric alternative (Wilcoxon signed rank 

test) for non-normally distributed data. Adjustment for multiple comparisons 

was not made due to co-linearity between variables, hypothesis driven 

comparisons and the increased risk of Type II error following adjustment 

(Rothman 1990). Pearsons correlation or the non-parametric alternative 

(Spearman’s rank) was used to calculate correlation coefficients between 

body composition, metabolic and cardiac parameters. P values <0.05 were 

considered statistically significant. 
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5.4 Results 

5.4.1 Participants 

256 individuals were screened for participation in this study. 201 did not meet 

the inclusion criteria, 16 declined to participate and 11 were lost during re-

contact. The resulting 28 adults with Type 2 diabetes (19 of which included in 

previous chapter) were then randomised into a HIIT (n=14) or control (n=14) 

group. During the study, two participants left for non-related medical reasons, 

1 participant could not commit time and two failed to comply with MRI 

procedures leaving 12 in the HIIT and 11 in the control group (see Consort 

diagram Figure 42). 

Figure 42  Consort participant flow diagram 

 

Both groups were matched well for all baseline characteristics Table 7. 

Glycaemic control was similar between groups and liver fat was above the 

clinically defined threshold for non-alcoholic fatty liver disease (>5% of 
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hepatocytes are steatotic (Dyson et al. 2014)) in both groups. Adherence to 

intervention was good, with HIIT patients completing an average of 36 ± 0.9 

sessions and Sensewear armband activity revealed no within group change 

in habitual physical activity (Daily Energy Expenditure:HIIT-2701 ± 299 to 

2537 ± 386, p=0.129 vs. Control-2548 ± 366 to 2455 ± 166, p=0.459 

(calories)). 

Table 7  Participant characteristics 

Parameter Control HIIT p value 

Number (males/females) 8/3 10/2  

Age (years) 59 ± 9 61 ± 9 0.70 

Time since diagnosis (years) 4 ± 2 5 ± 3  

BMI (kg/m
2
) 32 ± 6 31 ± 5 0.71 

Height (cm) 169 ± 9 171 ± 8 0.71 

Weight (kg) 90 ± 9 90 ± 15 0.95 

HbA1c (%)/ 

(mmol/mol) 

 7 ± 0.5    

 (55 ± 6) 

 7± 1     

 (54 ±11) 

0.87      

 (0.88) 

Fasting glucose (mmol/l) 7.0 ± 1.0 6.8 ± 1.6 0.693 

2-h glucose (mmol/l) 11.7 ± 3.1 12.5 ± 3.1 0.57 

Liver fat (%) 7.1 ± 6.8 6.9 ± 6.9 0.94 

VO2peak (ml/kg/min) 20.3 ± 6.1 21.8 ± 5.4 0.54 

Medications 

Metformin 

Statins 

Blood pressure  

 

7 

6 

5 

 

7 

7 

3 

 

5.4.2 Cardiac structure, function and energetics 

HIIT induced structural changes, with a 12% relative increase in left 

ventricular wall mass (p<0.05) and increase in end-diastolic blood volume 

(p<0.01) (Figure 43a). The exercise group also demonstrated improvements 

in systolic function indicated by raised stroke volume (p<0.01) and left 

ventricular ejection fraction (p<0.05). Early diastolic filling rate increased by 

24% (Figure 43b) and within group comparison revealed a significant 
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increase in early filing percentage after HIIT (57 ± 9 to 60 ± 9%, p<0.05;Table 

8). There was a 15% relative decrease in peak torsion after exercise (8.1 ± 

1.8 to 6.9 ± 1.6 vs. 7.1 ± 2.2 to 7.6 ± 1.9º; p<0.05;Figure 43c) and myocardial 

strain remained constant. The PCr/ATP ratio did not change following HIIT 

(p=0.115, Table 8). 
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Table 8  The effect of HIIT on cardiac structure, function and metabolism 

 Control HIIT Adjusted 

between 

group  p 

valueb 

 Pre Post Within 

group 

p valuea 

Pre Post Within 

group  

p valuea 

Cardiac structure        

Left ventricular wall mass (g)  107 ± 25  105 ± 25  0.54  104 ± 17  116 ± 20  0.02*  0.03† 

Wall thickness systole (mm) 5.5 ± 1.1 6.2 ± 1.0 0.01** 6.2 ± 1.5 6.8 ± 1.1 0.07 0.54 

Wall thickness diastole (mm) 9.1 ± 2.5 10.1 ± 2.5 0.02* 10.7 ± 3.1 11.5 ± 1.8 0.32  0.43 

Eccentricity ratio (g/ml) 0.85 ± 0.24 0.87 ± 0.18 0.66 0.94 ± 0.28 0.96 ± 0.24 0.70 0.66 

End diastolic volume  (ml)  129 ± 28  122 ±28  0.08  118 ± 30  126 ± 30  0.01**  0.00†† 

End systolic volume (ml)  50 ± 22  47 ± 22  0.33  42 ± 17  39 ± 13  0.25  0.76 

Systolic function        

Systolic blood pressure (mmHg) 126 ± 3 124 ± 5 0.62 123 ± 4 122 ± 4 0.66 0.99 

Diastolic blood pressure (mmHg) 84 ± 2 80 ± 2 0.07 81 ± 2 80 ± 2 0.81 0.41 

Heart rate (bpm) 63 ± 7 69 ± 13 0.21 67 ± 12 66 ± 16 0.69 0.27 

Stroke volume (ml) 79 ± 14 75 ± 15 0.16 76 ± 16 87 ± 19 0.00** 0.00†† 

Cardiac output (l /min) 5.0 ± 1.0 5.2 ± 1.0 0.54 5.0 ± 1.00 5.5 ± 1.0 0.07 0.31 
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Ejection fraction (%) 64 ± 11 63 ± 10 0.62 65 ± 8 70 ± 6 0.02* 0.03† 

Longitudinal shortening (%) 13.1 ± 2.2 12.7 ± 2.6 0.62 12.2 ± 3.0 13.4 ± 1.8 0.28 0.39 

Diastolic function a         

Early filling percentage (%) 58 ± 11 59 ± 8 0.88 57 ± 9 60 ± 9 0.04* 0.45 

Early diastolic filling rate (ml/s) 250 ± 44 251 ± 47 0.68 241 ± 84 299 ± 89 0.01** 0.02† 

Late diastolic filling rate (ml/s) 310 ± 143 285 ± 60 0.68 278 ± 67 289 ± 64 0.53 0.56 

Strain and torsion b        

Peak endocardial circumferential 

strain (%) 

23.1 ± 4.1  23.4 ± 4.3 0.82 25.2 ± 4.6 24.5 ± 5.1 0.61 0.82 

Peak whole wall circumferential 

strain (%)  

16.5 ± 3.1 16.0 ± 3.3 0.46 16.5 ± 3.1 16.4 ± 4.0 0.94 0.73 

Peak torsion (°) 7.1 ± 2.2 7.6 ± 1.9 0.19 8.1 ± 1.8 6.9 ± 1.6 0.04* 0.04† 

Metabolism c        

PCr/ATP ratio 1.76 ± 0.51 1.72 ± 0.36  0.80 1.74 ± 0.39 2.00 ± 0.36 0.19 0.12 

Values are mean ± SD. a Paired t-test. b Adjusted for baseline value for ANCOVA.  

*Significant difference baseline vs. post treatment (p<0.05) 

**Significant difference baseline vs. post treatment (p<0.01) 

†Significant difference between group interaction (p<0.05) 

††Significant difference between group interaction (p<0.01) 

bpm, beats per minute; PCr/ATP, phosphocreatine/adenosine triphosphate. 
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a n=19. 4 patients not analysed due to abnormal diastolic patterns with no clear diastase (poor images). 

b n=19. 4 patients not analysed due to artefact. 

C n=18. 5 patients not analysed as large amount of fatty tissue meant the cardiac coil was too far away from chest wall for transmission of signal. 
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Figure 43  Effect of HIIT vs. control on (a) left ventricular mass, (b) diastolic filling rate 
and (c) peak torsion.  White bars=control, Black bars=HIIT. 

 

Values are means ± SE.  

*Significant difference baseline vs. post treatment (p<0.05) 

†Significant difference between group interaction (p<0.05). 

5.4.3 Glycaemic control 

HIIT had no impact on fasting glucose (6.8 ± 1.6 to 6.8 ± 1.6mmol/l, p=0.866) 

or fasting insulin (65.5 ± 39.5 to 65.5±32.8pmol/l, p=0.875), however, 

between group comparisons revealed improvements in HbA1c, 2 hour 
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glucose and glucose AUC (p<0.05;Table 9). There was no improvement in 

insulin sensitivity (HOMA2-IR and HOMA2-S) or β-cell function (HOMA2-β). 

5.4.4 Body composition 

Within group comparisons revealed no change in body weight after exercise 

however the 1% increase and decrease in control and HIIT respectively, was 

a significant between group interaction (p<0.05;Table 9). There was no effect 

of HIIT on whole body fat mass but within group comparison revealed a 

reduction in visceral adipose tissue (201±80 to 181±72cm2, p<0.05;Table 9). 

Change in whole body fat mass (kg) was associated with 2-h glucose change 

(r=0.46, p=0.027) and HbA1c change (r=0.60, p=0.003). 

5.4.5 Liver fat and enzymes 

HIIT elicited a 39% relative reduction in liver fat (6.9±6.5 to 4.2±3.6%, p<0.05) 

so that 4 patients in the exercise group moved from having clinically 

significant liver fat to within ‘normal’ limits (<5%,Table 9). There was a 

significant between group interaction for HIIT and liver fat (P<0.05;Table 9), 

accompanied by within group changes in ALT and AST (p<0.5;Table 9), 

markers of liver damage. There was large individual variation in liver fat 

change following HIIT (Figure 44). Change in liver fat across both groups 

correlated with change in fasting glucose (r=0.45, p=0.030), 2-h glucose 

(r=0.57, p=0.004) and HbA1c (r=0.70, p=0.000). 
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Figure 44  Individual liver fat change  after 12 weeks of HIIT (red) or control (blue) 
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Table 9  The effect of HIIT on body composition, blood parameters and metabolic control 

 Control HIIT Adjusted 

between 

group p 

valueb 

 Pre Post Within 

group 

p valuea 

Pre Post Within 

group 

p valuea 

Body composition        

Weight (kg) 90 ± 9 91 ± 10  0.06 90 ± 15 89 ± 15 0.09 0.02† 

Fat mass (kg) 35.6 ± 10.9 36.0 ± 11.3 0.36 31.9 ± 9.3 30.8 ± 10.2 0.09 0.08 

Fat free mass (kg) 54.3 ± 5.9 54.7 ± 5.7 0.28 57.7 ± 9.0 58.2 ± 8.9 0.34 0.72 

Visceral adipose tissue (cm
2
) 159 ± 58 156 ± 49 0.21 201 ± 80 181 ± 72  0.04* 0.08 

Liver fat (%) 7.1 ± 6.8 7.7 ± 6.9 0.12 6.9 ± 6.9 4.2 ± 3.6 0.06 0.01†† 

Blood parameters        

ALT (U/ l) 34 ± 16 33 ± 14 0.82 36 ± 11 30 ± 10 0.02* 0.14 

AST (U/ l) 27.6 ± 10.4 26.5 ± 8.8 0.63 27 ± 7 24 ± 6 0.02* 0.25 

ALP (U/ l) 59.2 ± 16.8 61.2 ± 17.5 0.09 66 ± 17 63 ± 16 0.10 0.03† 

Total cholesterol (mmol/ l) 4.5 ± 0.9 4.6 ± 0.9 0.62 4.0 ± 1.0 4.5 ± 1.1 0.15 0.77 

Triacylglycerol  (mmol/ l) 1.1 ± 0.4 1.2 ± 0.4 0.12 1.1 ± 0.3  1.2 ± 0.4 0.28 0.87 

Metabolic control        
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HbA1c  (%) 

(mmol/mol)  

7.2 ± 0.5  

(54.9 ± 5.9)  

7.4 ± 0.7 

(57.0 ± 7.5) 

0.07 

(0.06)  

7.1 ± 1.0 

(54.5 ±  

10.6)  

6.8 ± 0.9 

(51.3 ±  

10.2) 

0.10 

(0.09)  

0.02† 

Fasting glucose (mmol/l) 7.0 ± 1.0 7.6 ± 1.4 0.03* 6.8 ± 1.6 6.8 ± 1.6 0.87 0.15 

Fasting insulin (pmol/l) 81.5 ± 46.4 88 ± 39.5 0.42 65.5 ± 39.5 65.5 ± 32.8 0.88 0.22 

2-hour glucose (mmol/l) 11.7 ± 3.1 12.9 ± 2.7 0.01** 12.5 ± 3.1 11.7 ± 3.1 0.22 0.02† 

2-hour AUGC 1366 ± 66 1544 ± 86 0.01** 1395 ± 81 1399 ± 87 0.94 0.02† 

HOMA-IR 1.6 ± 0.9 1.8 ± 0.8 0.40 1.3  ± 0.8 1.4 ± 0.6 0.94 0.19 

HOMA2-β 67.8 ± 31.4 67.0 ± 37.3 0.79 68.9 ± 48.6 70.9 ± 49.0 1.00 0.76 

HOMA2-S 76.1 ± 33.0 67.3 ± 29.5 0.25 101.7 ± 48.1 98.2 ± 53.8  0.88 0.39 

Values are mean ± SD. a Paired t-test. b Adjusted for baseline value for ANCOVA. 

*Significant difference baseline vs. post treatment (p<0.05) 

**Significant difference baseline vs. post treatment (p<0.01) 

†Significant difference between group interaction (p<0.05) 

††Significant difference between group interaction (p<0.01) 
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5.5 Discussion 

This is the first study to examine the effects of HIIT on cardiac structure and 

function, regional fat deposition and glycaemic control in people with Type 2 

diabetes. The main findings were that a 12 week HIIT programme; 1) 

increased left ventricular wall mass and end-diastolic blood volume, 2) 

improved systolic and diastolic function, 3) reduced peak torsion and 4) 

decreased liver fat. HIIT is an effective strategy to reverse cardiac 

dysfunction and reduce liver fat in this patient group and was accompanied 

by modest improvements in glycaemic control.  

5.5.1 Cardiac changes 

Left ventricular wall mass and end-diastolic blood volume increased after 12 

weeks of HIIT. This ‘physiological hypertrophy’ is a known effect of exercise 

but should not be confused with ‘pathological hypertrophy’, seen in those 

with Type 2 diabetes (Frey et al. 2004; Dawson et al. 2005). An increase in 

cardiomyocyte size and protein synthesis is observed during physiological 

and pathological hypertrophy, in response to either growth or stress signals 

respectively (Frey et al. 2004). They differ in that only pathological 

hypertrophy is characterised by collagen accumulation and increased wall 

thickness which compromises end-diastolic blood volume and is an 

independent predictor of cardiovascular death (Liao et al. 1995). 

Physiological hypertrophy with a concomitant increase in end diastolic blood 

volume following exercise in Type 2 diabetes has been observed previously 

(Schmidt et al. 2013). However, the present study is the first to show that 

HIIT can stimulate positive cardiac remodelling. It has been previously 

demonstrated that the magnitude of cardiomyocyte hypertrophy depends on 

exercise intensity, with higher intensity exercise initiating a larger 

hypertrophic response (Kemi et al. 2005). These structural adaptions, led to 

improvements in cardiac systolic function.  

The increase in stroke volume and ejection fraction is important because 

those with Type 2 diabetes have reduced cardiac contractile capabilities 

(Dawson et al. 2005). Cardiomyocyte responses to high intensity exercise 

training in animal models have demonstrated improvements in the maximal 
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extent of shortening as well as contraction and relaxation rates, with twice 

the improvement seen after training at 85-90% compared to training at 65-

70% VO2peak (Kemi et al. 2005). The increased myofilament sensitivity to 

calcium and the faster rise and diastolic decay of the calcium transient 

underpins the aforementioned changes (Kemi et al. 2005).  

Early filling rate increased by 24% suggesting the myocardium is more 

compliant and quicker to relax following HIIT. Considering diastolic 

dysfunction is the most widely reported malfunction of the diabetic heart and 

an independent predictor of mortality (Rijzewijk et al. 2009; Halley et al. 2011; 

Diamant et al. 2003), the clinical relevance of these findings are emphasised. 

One study using echocardiography demonstrated diastolic improvements 

following 12 weeks of HIIT (Hollekim-Strand et al. 2014), but a longer term 

intervention using moderate intensity exercise demonstrated no 

improvements (Hordern et al. 2009). That being said, subgroup analysis 

revealed improvements when exercise was performed in the vigorous zone 

(Hordern et al. 2009), highlighting the importance of exercise intensity. 

The decrease in torsion after HIIT, is for the first time, evidence that exercise 

can be used to reverse the raised cardiac torsion observed in Type 2 

diabetes (Fonseca et al. 2004) Cardiac torsion is a normal feature of 

contraction in a healthy heart and reflects the dominance of epicardial fibres 

over endocardial fibres (Lumens et al. 2006). Raised torsion in Type 2 

diabetes is a consequence of impaired contraction of endocardial fibres 

which are less able to counteract this twisting motion (Lumens et al. 2006). 

These results indicate that endocardial damage and potential perfusion 

deficits at the endocardium can be improved with HIIT. Exercise is known to 

raise cardiac perfusion (Tomanek 1994) but further work is needed to identity 

the mechanisms which underpin these adaptations. No change was 

observed in peak endocardial and peak whole wall circumferential strain as 

the relative contribution of fibres across the myocardial wall remained 

constant, reflected by the maintained eccentricity ratio. 

HIIT stimulated improvements in cardiac structure and function independent 

of changes in cardiac metabolism. It has been previously suggested that 



 

151 
 

defects in cardiac metabolism underlie cardiac abnormalities seen in Type 2 

diabetes (Diamant et al. 2003) however the decrease in PCr/ATP ratio in 

Type 2 diabetes most likely reflects changes in substrate supply to the heart 

rather than an underlying metabolic defect in the myocardium (Cassidy et al. 

2015). 

5.5.2 Metabolic changes 

For the first time, these data reveal that HIIT can reduce liver and visceral fat 

in Type 2 diabetes which is clinically important because both fat depots play 

a key pathogenic role in this chronic disease (Björntorp 1991; Taylor 2013). 

To our knowledge, this is the greatest reduction in liver fat to be reported 

following exercise in Type 2 diabetes.  

Despite this, fasting blood glucose did not change, and in line with healthy 

adults (Babraj et al. 2009), and obese women (Gillen et al. 2013), the results 

demonstrate no impact of HIIT on central insulin sensitivity in adults with 

Type 2 diabetes. These results differ from the very low calorie diet (600 kcal) 

which led to a 30% relative reduction in liver fat, and normalisation of fasting 

blood glucose after just 7 days (Lim et al. 2011). In the present study 

however there was large individual variation in liver fat changes after HIIT, 

which may explain the absence of change in fasting blood glucose within this 

small sample. Indeed, those who lost the greatest liver fat had the largest 

reductions in fasting glucose, reflected in the significant correlation.  

It has been reported that HIIT acutely improves peripheral insulin sensitivity 

when measured within 72 hours of the last exercise bout, attributable to rapid 

glycogen breakdown and subsequent re-synthesis (Babraj et al. 2009). The 

two studies which have measured postprandial response to HIIT in Type 2 

diabetes, used continuous blood glucose measurements under standard 

dietary conditions (Little et al. 2011; Gillen et al. 2012). Dietary intake was 

not standardised in the present study which may explain the lack of within 

group improvement in 2-hour glucose or HOMA-IR, despite measurements 

taking place within 48-72 hours of the final exercise session. 

Within group analysis also revealed no significant impact of HIIT on HbA1c. 

The significant between group interactions most likely reflect a worsening of 
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glycaemic control in the control group. HbA1c reduced by around 0.3% 

following HIIT, which is less than the reported mean effect (0.6% reduction) 

of exercise interventions (Thomas et al. 2006). That being said, the greatest 

improvements in 2-hour glucose and HbA1c occurred in those who lost the 

largest amount of whole body fat mass and liver fat. Like fasting blood 

glucose, we speculate that 2-hour and HbA1c group changes failed to reach 

significance because of the variation in liver fat reductions following HIIT. 

This study questions the impact of HIIT on glycaemic control in adults with 

Type 2 diabetes but also corroborates the importance of ectopic fat in the 

etiological process of Type 2 diabetes. Patients were required to maintain 

their weight during the HIIT programme, as we wanted to investigate the 

effects of exercise without weight loss. Weight loss in Type 2 diabetes has a 

range of benefits from glucose control to prognosis (Lean et al. 1990), and 

asking patients to maintain their weight which may have compromised any 

improvements in glucose control. Interventions to target weight loss and 

ectopic fat, may be most beneficial for glycaemic improvements. Despite this, 

these data highlight the positive impact of exercise upon cardiac health, 

which may be expended further when accompanied by weight loss. 

This study is not without limitation. The physiological mechanisms underlying 

the cardiac adaptations could not be elucidated with the MRI techniques 

adopted. Myocardial steatosis and perfusion would have provided further 

insight but due to the duration of MRI scans and tolerability by patients, these 

techniques could not be used in the present study. Some patients were 

taking metformin and evidence suggests that metformin may attenuate the 

effects of exercise through reduced activation of the AMP-activated protein 

kinase (Sharoff et al. 2010). Using RPE as a guide for exercise intensity 

rather than an objective measure like heart rate may have limited the 

accuracy of the training intensity. However, unlike continuous exercise, acute 

physiological responses to HIIT intervals are not predictable and a steady 

state is not achieved (Tschakert et al. 2015). We have found that HR rises 

incrementally with interval progression e.g. most of our patients did not 

achieve 90% maximum heart rate until the third interval, but then came close 

to 100% maximum heart rate at the later end of the third and fourth intervals. 
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In lights of this, using heart rate as a guide would not have been accurate. 

RPE has been found to be an accurate predictor of exercise intensity in 

diabetes (Colberg et al. 2003) and older adults (Shigematsu et al. 2004) and 

as the exercise programme was designed to be translational, we believed 

RPE to be more applicable as it could be used by patients to gauge their 

activities following the study. Finally, dietary monitoring was not adopted 

throughout the intervention. Self-report food intake is inaccurate in obese 

individuals (Macdiarmid & Blundell 1998) and there are no food logs 

validated to provide sensitivity to change over a short 12 week period.  

5.6 Conclusions 

In summary, this study demonstrates, for the first time, improvement in 

cardiac structure and function in patients with Type 2 diabetes following a 

HIIT programme. These changes were accompanied by modest 

improvements in glycaemic control. HIIT elicited the greatest reduction in 

liver fat to be recorded following an exercise intervention in Type 2 diabetes 

and shows that this type of exercise is effective at targeting fat depots which 

play a role in the aetiology of this chronic condition. The direct benefits of 

HIIT to glycaemic control remain uncertain, however, HIIT holds potential as 

a therapy to moderate cardiac risk and reduce liver fat in Type 2 diabetes 

and should be considered for clinical care alongside other regimens to 

improve glycemic control.  
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6.1 Key findings 

The aim of this thesis was to explore lifestyle related behaviours in cardio-

metabolic disease, with a view to improving clinical care. In chapter 2 we 

demonstrated that those with cardio-metabolic disease display a cluster of 

unhealthy lifestyle behaviours. Chapter 4 highlighted the significant cardiac 

burden in those with metabolic disease who display no overt cardiac disease. 

Finally, chapter 5 provided novel evidence that targeting one of these lifestyle 

behaviours (exercise) is an effective strategy to moderate cardiac risk in 

those with metabolic disease. How these findings may impact clinical care 

will be discussed. 

6.2 Implications for clinical care 

Data from chapter 2 indicates that people with cardio-metabolic disease, as a 

whole, behave differently compared to people without disease. They perform 

less physical activity, have higher sedentary behaviour and worse sleep 

patterns. Interestingly, data from the UK Biobank demonstrates a clustering 

of these lifestyle behaviours, which highlights the need for us to rethink how 

we approach these behaviours in clinical care. Historically, interventions 

have focussed on one behaviour, whether physical activity or diet but we 

have shown people who have low levels of physical activity, are also more 

likely to have poor sleep and high levels of sitting. NICE guidelines for cardio-

metabolic disease, which inform clinical practice, only briefly mention that 

sitting time should be reduced, but no specific guidelines are made. Sleep is 

not mentioned at all.  

Diet and physical activity are the cornerstones of lifestyle advice for those 

with cardio-metabolic disease, indeed the first ever national diabetes 

prevention programme which will target poor diet and physical inactivity, will 

begin in 2016 (NHS England 2015). Data from chapter 2 indicate that adults 

with Type 2 diabetes seem to be changing their diet and suggests that 

patients are acting upon, or at least aware of, dietary advice. Three in four 

Type 2 diabetic adults had changed their diet in the last 5 years, compared to 

only one in four in those without disease. Additionally, half report never to eat 
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sugar which was significantly more than those with CVD and disease free 

individuals. In contrast, the proportion of adults reaching the national physical 

activity recommendations was reduced in Type 2 diabetes. Only one in four 

of the high diabetes risk group (CVD) had changed their diet and also had 

low physical activity levels. These data reinforce the need for national 

programmes to encourage healthy lifestyles, targeting diet and physical 

activity. 

The Health Survey for England (Health and Social Care Information Centre 

2014) demonstrated that a high percentage of UK adults could recall the UK 

fruit and vegetable guidelines (women: 78%, men: 62%), which was 

proportionally higher than those who could recall the UK physical activity 

guidelines (women: 29%, men: 27%). In 2011, the UK government published 

physical activity guidelines which advise all individuals to perform at least 

150 mins of moderate activity or 75 mins of vigorous activity per week 

(Department of health 2011a). A study of representative clinician practices 

found that exercise and physical activity were only mentioned to 1/6 patients 

with cardio-metabolic disease and although this was collected from the US, it 

suggests that physical activity advice is not being adopted in routine clinical 

practice (Kraschnewski et al. 2013). One strategy which may help is better 

education of health care professionals. Indeed, General Practitioners, who in 

the UK have initial contact with the majority of chronic disease patients, 

reported that they lack education in non-pharmaceutical methods and are 

uncertain about using lifestyle advice as a treatment (Persson et al. 2013). 

There have also been calls for a change in message (Sparling et al. 2015), 

the 150 min target may be too large for many individuals and may shift 

emphasis away from the importance of a ‘whole day’ approach whereby 

sedentary behaviour is reduced. We know that health benefits are incurred 

with any increase above the very lowest level of activity and so any 

improvement needs to encouraged (Powell et al. 2011). Our data show that 

almost half of those with the worst cardio-metabolic disease sit for >3 hours 

each day watching television and advice for reducing sedentary time should 

be part of lifestyle advice. Reducing sedentary behaviour can be achieved 

with simple actions such as moving during commercial television breaks, 
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getting off public transport early and pacing while on the phone. Although the 

data from chapter 2 was cross sectional, and therefore cannot confirm that 

these unhealthy lifestyle behaviours lead to cardio-metabolic disease, they 

indicate a specific behavioural phenotype in those with Type 2 diabetes and 

CVD. 

Data from chapter 5 provides evidence that improving lifestyle by adopting a 

simple exercise routine, has significant cardio-metabolic benefits. Chapter 4 

presents a strong case that patients with metabolic disease who present with 

no overt cardiac disease, actually have significant preclinical changes in 

cardiac structure and function. Not only does this data highlight the 

importance of targeting the often described ‘forgotten and fatal complication 

of diabetes’ (Bell 2003), but it also shows the complex interactions between 

metabolic organs which do not operate in isolation. Early treatments are 

therefore needed in these patients but a dearth of evidence exists as to 

effective strategies to reduce cardiac risk.  

We have shown improvements in cardiac structure and function after a HIIT 

intervention in adults with Type 2 diabetes (chapter 5) and this novel 

evidence indicates a potential treatment strategy to reduce cardio-metabolic 

risk. One of the most commonly cited barriers to physical activity and 

exercise is ‘lack of time’ (Trost et al. 2002), another reason why the 150 min 

target may not be clinically useful. We are unable to recommend HIIT as a 

robust strategy for all metabolic patients, as this was an efficacy trial showing 

mechanisms of change. A larger scale population study would need to be 

undertaken before this type of exercise could be adopted in routine clinical 

care. HIIT also raises safety concerns due to its high cardiac demand, 

however large studies in heart failure patients have proved that there is no 

additional risk compared to moderate exercise (Rognmo et al. 2012). A ‘one 

size fits all’ should not be adopted with exercise prescription, and individuals 

respond differently, however HIIT may provide another alternative. 

Improvements in glucose control after HIIT, like other exercise interventions, 

were modest, and suggest that using exercise as a therapy primarily to target 

glycaemic control, may not be the most effective strategy. The greatest 
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improvements in glucose control occurred in those who lost the greatest 

amount of liver and body fat, and interventions to target weight and fat loss 

may be the most effective strategy for glycaemic improvements. The results 

also support the hypothesis that liver fat is central to metabolic disturbances 

(Taylor 2013). That being said, a clear message from this study can be taken; 

that exercise has significant cardiac benefits and should be promoted in 

those with metabolic disease. A large proportion of the NHS budget is spent 

on diabetes complications and we have shown that by adopting a relatively 

simple exercise regime, we can target one of the largest economic burdens 

associated with Type 2 diabetes.  

Currently, the main pathway to improve physical activity and sedentary 

behaviour is through ‘exercise referral schemes’ whereby primary care 

professional refer patients to third party service providers. However, a recent 

meta-analysis demonstrated significant uncertainty regarding their 

effectiveness to increase physical activity and any health related outcomes 

(Pavey et al. 2011). Change is therefore required. That being said, the 

responsibility cannot fall solely on healthcare professionals within the clinical 

setting, rather the government has a large role to play. Data suggests that 

brief clinical interventions to improve lifestyle behaviours do work in the short 

term but not in the long term (Campbell et al. 2012). There is a growing belief 

that we need to move away from a purely behavioural science approach 

which focuses on individuals, towards a systems approach focusing on 

populations and complex interactions among physical inactivity correlates 

(Kohl et al. 2012).  

Physical activity and lifestyle needs to become a ‘cross-sectoral’ priority 

(MacAuley et al. 2015). Improving lifestyle behaviours will mainly entail 

changes to public transport, urban infrastructure that creates walk-able 

spaces, and policies which promote active workplaces and schools. A 

change in mind-set and cultural shift needs to occur and the government 

have a large role to play in this.  
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Figure 45  The social model of health (Dahlgren & Whitehead 1991) 

 

The social model of health by Dahlgren and Whitehead (Dahlgren & 

Whitehead 1991) (Figure 45), describes the layers of influence on health. 

There is clearly collective and individual responsibilities for health in which 

individuals, clinicians and governments all have a role to play. At the centre 

of the model is an individual with a fixed set of genes who make individual 

lifestyle choices. The next layer is social and community networks, and the 

third includes structural factors like working conditions, housing and transport. 

An individual’s health is therefore influenced by a wide range of determinants 

and if we are going to change the tide, clinical and government strategies 

need to make sure that all of these determinants enable the ‘healthy option to 

be the easy option’. The world health organisation have recommended 

multilevel community wide interventions and environments which facilitate 

healthy lifestyles, rather than just focusing on individualised policy (World 

Health Organisation 2014). 

6.3 Future directions 

Although data within this thesis highlight the importance of lifestyle for cardio-

metabolic health, a number of questions remain unanswered and provide a 

platform for future work.  

Lifestyle behaviour strategies need improving for those with cardio-metabolic 

disease. How best a healthy lifestyle can be encouraged and adopted within 

our society is a pressing question. Technological developments will continue 
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and using these as a positive re-enforcer of healthy behaviours is likely to be 

powerful. Current pathways to improve physical activity and lifestyle in 

clinical care are not effective, therefore designing and developing new 

pathways for those with cardio-metabolic disease are needed. 

Individual responses to physical activity/exercise interventions varies, indeed 

after the 12 weeks HIIT programme, liver fat changes were between +3% 

and -10%. Individualised, tailored lifestyle advice may therefore be warranted. 

Advances in epigenetics, genomics, metabolomics and proteomics in the 

next 50 years (Booth & Hawley 2015) will allow interdisciplinary research to 

identify unique predictors of individual susceptibility to metabolic disease and 

factors which dictate an individual’s responses to lifestyle interventions. 

Before HIIT could be considered as a routine therapy in clinical care, larger 

scale effectiveness studies with intention to treat analysis are needed, which 

also address safety concerns of this type of exercise. We have shown that 

exercise alone has significant cardiac benefits but weight/fat loss are needed 

for improvements to glycaemic control. Effective interventions combining diet 

and exercise which promote weight loss and maintain weight loss over a long 

period are therefore warranted. 

Finally, the exact pathophysiological mechanisms by which metabolic 

disease leads to cardiac dysfunction and conversely how exercise improves 

cardiac structure and function are yet to be elucidated. More knowledge in 

this area will aid a greater depth of understanding of the interacting pathways 

between the heart and other metabolic organs. 
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6.4 Conclusions 

Over the past decade there has been a dramatic rise in Type 2 diabetes, 

which is currently the fastest growing disease in the UK and is associated 

with elevated cardiac risk, hence the term cardio-metabolic disease. Data 

from this thesis has identified pre-clinical changes to cardiac structure and 

function in those with Type 2 diabetes, and the need for early interventions. 

From a large UK population cohort, we have demonstrated that those with 

cardio-metabolic disease report low levels of physical activity, high sedentary 

behaviour and poor sleep, and these unhealthy lifestyle behaviours seem to 

be clustered. Finally, we have demonstrated that improving lifestyle by 

adopting a relatively simple exercise routine, patients with Type 2 diabetes 

can reduce cardiac complications. Lifestyle interventions therefore have the 

potential to significantly reduce co-morbidities associated with cardio-

metabolic disease. Despite this, current strategies are lacking and cross 

sectoral strategies are needed before healthy lifestyles become the norm in 

modern society.  
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Appendix A -UK Biobank (chapter 2 documents) 

Food Frequency Questionnaire data 

 % within each disease group  

 No Disease 

(n=103,993) 

CVD 

 

(n=113,469) 

Type 2 

diabetes 

without CVD 

(n=4074) 

Type 2 

diabetes + 

CVD 

(n=11,574) 

Oily fish  103,648 113,059 4,057 11,530 

Never 10.6 9.8 12.7 11.1 

Less than once a week 35.3 30.2 31.9 30.6 

Once a week 38.1 38.8 35.3 37.1 

2-4 times a week 15.3 20.1 18.3 20.0 

5-6 times a week 0.7 0.8 1.2 0.9 

Once of more daily 0.2 0.3 0.6 0.4 

Processed meat  103,891 113,330 4,061 11,554 

Never 10.2 7.9 8.6 6.4 

Less than once a week 30.9 29.6 27.2 25.0 

Once a week 29.0 29.7 28.1 29.6 

2-4 times a week 26.2 28.7 30.4 33.9 

5-6 times a week 3.0 3.3 4.3 4.1 

Once of more daily 0.7 0.9 1.4 1.1 

Poultry intake 103,916 113,349 4,069 11,551 

Never 5.8 4.0 5.1 3.7 

Less than once a week 10.4 10.5 10.7 11.2 

Once a week 36.0 36.3 34.2 35.3 

2-4 times a week 45.6 46.9 46.8 47.1 

5-6 times a week 1.9 2.1 2.7 2.3 

Once of more daily 0.3 0.3 0.5 0.4 

Cheese intake 102,188 110,315 3,900 11,141 

Never 2.1 3.1 3.7 4.1 

Less than once a week 14.9 18.5 23.2 21.2 

Once a week 20.4 22.4 23.1 24.7 

2-4 times a week 47.3 44.3 39.8 40.9 

5-6 times a week 11.2 8.5 7.6 6.3 

Once of more daily 4.0 3.1 2.6 2.8 

Salt intake 103,979 113,457 4,073 11,573 

Never/Rarely 56.5 58.4 54.3 55.5 

Sometimes 28.0 26.3 28.7 28.0 
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Usually 11.3 10.8 12.0 11.9 

Always 4.2 4.5 5.1 4.6 

Non-oily fish intake 103,705 113,135 4,055 11,516 

Never 4.7 4.0 5.7 4.8 

Less than once a week 29.9 27.3 28.9 26.9 

Once a week 49.8 51.1 47.9 49.9 

2-4 times a week 15.0 16.8 16.4 17.6 

5-6 times a week 0.5 0.5 0.8 0.5 

Once of more daily 0.1 0.2 0.2 0.3 

Beef intake 103,790 113,154 4,057 11,534 

Never 11.6 9.3 12.1 9.3 

Less than once a week 46.0 45.4 42.7 41.6 

Once a week 31.8 33.0 32.6 34.9 

2-4 times a week 10.5 12.0 12.2 13.7 

5-6 times a week 0.2 0.2 0.4 0.3 

Once of more daily 0.1 0.1 0.1 0.1 

Lamb/mutton intake 103,671 112,946 4,053 11,514 

Never 18.1 16.1 15.5 14.9 

Less than once a week 58.1 56.2 52.8 51.8 

Once a week 21.1 24.4 26.2 28.4 

2-4 times a week 2.6 3.1 5.3 4.7 

5-6 times a week 0.1 0.1 0.1 0.1 

Once of more daily 0.0 0.0 0.0 0.1 

Pork intake 103,671 112,999 4,057 11,516 

Never 17.7 15.5 18.4 15.5 

Less than once a week 58.4 56.7 51.9 51.8 

Once a week 20.8 24.0 24.6 27.5 

2-4 times a week 3.0 3.7 4.9 5.0 

5-6 times a week 0.1 0.1 0.1 0.2 

Once of more daily 0.0 0.0 0.1 0.1 

Milk type used 103,940 113,415 4,070 11,571 

Full cream 7.9 5.9 5.6 4.9 

Semi-skimmed 66.3 64.0 65.6 66.2 

Skimmed 18.1 21.9 21.4 22.2 

Soya 3.7 3.5 3.5 2.5 

Other type of milk 1.0 1.2 0.8 1.1 

Never/rarely have milk 3.1 3.5 3.2 3.1 

Spread type 103,846 113,315 4,059 11,550 

Never/rarely use  11.3 10.7 10.4 8.4 
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Butter/spreadable 39.5 33.0 28.3 29.9 

Flora pro active/benecol 0.4 0.6 0.6 0.7 

Other type spread/marg 48.8 55.7 60.7 61.1 

Bread type 100,505 109,974 3,973 11,352 

White 24.2 27.9 23.8 29.7 

Brown 12.6 12.9 14.0 13.0 

Wholemeal/wholegrain 59.7 55.3 58.1 53.7 

Other 3.5 3.9 4.2 3.6 

Cereal type 85,959 92,847 3,479 9,744 

Bran  17.1 16.7 16.1 16.9 

Biscuit (e.g. Weetabix) 16.8 18.3 23.9 24.6 

Oat (porridge) 23.9 26.8 29.2 29.0 

Muesli 23.7 18.4 14.7 12.5 

other 18.4 19.8 16.2 17.0 

Never eat 103,848 113,190 4,039 11,527 

Eggs or foods 

containing eggs 

2.1 3.3 4.4 4.6 

Dairy products 1.6 2.6 4.1 3.5 

Wheat products 1.6 2.9 3.2 3.0 

Does your diet vary 

from week to week? 

103,701 113,167 4,052 11,534 

Never/rarely 38.0 32.3 29.8 27.6 

Sometimes 55.1 58.8 59.9 61.8 

Often 6.9 8.9 10.3 10.6 

Bread intake (slices of 

bread each week) 

mean (SD) 

12.1 (8.5) 12.7 (8.7) 14.4 (9.8) 14.6 (9.3) 

Cereal intake (bowls 

of cereal per week) 

mean (SD) 

4.5 (2.8) 4.4 (2.8) 4.8 (2.8) 4.5 (2.8) 
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IPAQ 

INTERNATIONAL PHYSICAL ACTIVITY QUESTIONNAIRE 

 
We are interested in finding out about the kinds of physical activities that 
people do as part of their everyday lives.  The questions will ask you about 
the time you spent being physically active in the last 7 days.  Please answer 
each question even if you do not consider yourself to be an active person.  
Please think about the activities you do at work, as part of your house and 
yard work, to get from place to place, and in your spare time for recreation, 
exercise or sport. 
 
Think about all the vigorous activities that you did in the last 7 days.  
Vigorous physical activities refer to activities that take hard physical effort 
and make you breathe much harder than normal.  Think only about those 
physical activities that you did for at least 10 minutes at a time. 
 
1. During the last 7 days, on how many days did you do vigorous 

physical activities like heavy lifting, digging, aerobics, or fast bicycling?  
 

_____ days per week  
 

   No vigorous physical activities  Skip to question 3 
 

 
2. How much time did you usually spend doing vigorous physical 

activities on one of those days? 
 

_____ hours per day  

_____ minutes per day  

 
  Don’t know/Not sure  

 

 
Think about all the moderate activities that you did in the last 7 days.  
Moderate activities refer to activities that take moderate physical effort and 
make you breathe somewhat harder than normal.  Think only about those 
physical activities that you did for at least 10 minutes at a time. 
 
 
3. During the last 7 days, on how many days did you do moderate 

physical activities like carrying light loads, bicycling at a regular pace, 
or doubles tennis?  Do not include walking. 

 
_____ days per week 
 

   No moderate physical activities  Skip to question 5 
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4. How much time did you usually spend doing moderate physical 
activities on one of those days? 

 
_____ hours per day 

_____ minutes per day 

 
  Don’t know/Not sure  

 
 

Think about the time you spent walking in the last 7 days.  This includes at 
work and at home, walking to travel from place to place, and any other 
walking that you have done solely for recreation, sport, exercise, or leisure. 
 
5. During the last 7 days, on how many days did you walk for at least 10 

minutes at a time?   
 

_____ days per week 
  

   No walking     Skip to question 7 
 
 
6. How much time did you usually spend walking on one of those days? 
 

_____ hours per day 

_____ minutes per day  

 
  Don’t know/Not sure  
 

 
The last question is about the time you spent sitting on weekdays during the 
last 7 days.  Include time spent at work, at home, while doing course work 
and during leisure time.  This may include time spent sitting at a desk, visiting 
friends, reading, or sitting or lying down to watch television. 
 

7. During the last 7 days, how much time did you spend sitting on a 
week day? 

 
_____ hours per day  

_____ minutes per day  

 
  Don’t know/Not sure  
 
 

This is the end of the questionnaire, thank you for 
participating. 
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List of diseases included in the CVD group 

hypertension 
heart/cardiac problem 
peripheral vascular disease 
venous thromboembolic disease 
essential hypertension 
gestational hypertension/pre-eclampsia 
angina 
heart attack/myocardial infarction 
heart failure/pulmonary odema 
heart arrhythmia 
heart valve problem/heart murmur 
cardiomyopathy 
pericardial problem 
stroke 
transient ischaemic attack (tia) 
subdural haemorrhage/haematoma 
subarachnoid haemorrhage 
leg claudication/ intermittent claudication 
arterial embolism 
pulmonary embolism +/- dvt 
deep venous thrombosis (dvt) 
peripheral neuropathy 
ischaemic stroke 
mitral valve disease 
mitral regurgitation / incompetence 
aortic valve disease 
aortic regurgitation / incompetence 
hypertrophic cardiomyopathy (hcm / hocm) 
pericarditis 
pericardial effusion 
aortic aneurysm rupture 
aortic dissection 
aortic stenosis 
brain haemorrhage 
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Socio-demographics of those who have missing data on physical 

activity, sitting or sleep and therefore excluded from analysis 

(n=60,938). 

 % within each disease group  

 No 

Disease 

(n=23,515) 

20.7% 

missing 

CVD 

(n=32,928) 

18.4%  

missing 

Type 2 

diabetes 

without CVD 

(n=1104) 

22.5% missing 

 

Type 2 

diabetes 

with CVD 

(n=3391) 

21.3% 

missing 

SOCIO-DEMOGRAPHICS 

% Male 39.2 40.6 53.8 53.0 

Age (n) 23,515 32,928 1104 3391 

37-49 31.1 10.4 13.1 5.5 

50-59 36.5 28.9 29.5 26.9 

60-73 32.4 60.7 57.3 67.6 

BMI (n) 22,903 32,651 1090 3356 

<18.5-24.9  
(under and acceptable 
weight) 

40.5 20.4 12.6 6.9 

25-29.9 (overweight) 42.1 40.7 37.2 29.8 

≥30 (obese) 17.4 39.0 50.3 63.4 

Townsend deprivation 
quintile (n) 

23,494 32,892 1099 3387 

1 (least deprived) 19.4 16.6 15.7 12.1 

2 18.9 18.0 15.2 14.1 

3 20.0 19.0 18.4 17.6 

4 19.9 19.8 18.7 22.0 

5 (most deprived) 21.8 26.7 32.0 34.3 

Ethnicity (n) 22,828 32,574 1092 3365 

White/British 92.5 93.8 83.2 86.9 

Mixed 0.7 0.5 0.5 0.7 

Asian 2.5 2.0 9.8 6.5 

Black African 2.2 2.4 3.8 3.8 

Chinese 0.6 0.2 0.3 0.2 

Other 1.4 1.0 2.4 1.8 
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Appendix B -Consent form  
       

Institute of Cellular Medicine 
      William Leech Building 

Newcastle University 
Framlington Place 

      Newcastle upon Tyne 
      NE2 4HH 

T: +44 (0)191 222 5851 

 
 
Patient Identification number for this trial:  

CONSENT FORM 

Title of Project: Exercise and non-alcoholic fatty liver disease 

TYPE 2 DIABETES PATIENTS  

Name of researchers: Dr M Trenell, Dr K Hollingsworth, Professor R Taylor, Professor C Day. 

Please initial box 

1. I confirm that I have read and understand the information sheet 

dated ……………….. (version………) for the above study and have had 

the opportunity to ask questions.  

2. I understand that my participant is voluntary and that I am free to withdraw 

at any time, without giving any reason, without my medical care or legal 

rights being affected.  

3. I agree to my GP being informed of my participation in the study 

4. I agree to take part in the above study.  

5.    I understand that relevant sections of my medical notes and data collected 

       during the study may be looked at by individuals from the NHS Trust, whereit 

       is relevant to my taking part in this research. I give permission for these  

       individuals to have access to my records. 
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Name of patient    Date  Signature 

 

Name of person taking consent  Date  Signature 

(if different from researcher) 

Researcher    Date  Signature 

 

1 for patient; 1 for researcher; 1 to be kept with hospital notes 
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Appendix C -Screening documents (PARQ, medical history and 
physical examination to determine any contraindications for exercise 
testing) 
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174 
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Appendix D -MRI screening questionnaire 
 
Volunteer’s name:      Date of birth  ___ /  _ _ / ____  
                                
Weight:                           Height:       
 

Please check the following carefully.   

Have you had any surgery: 
 
Have you had any operations/procedures involving your head, 
chest or heart?    

Yes No 

 
Do you have any of the following?  
 

  

Cardiac pacemaker, aneurysm clip, stent, heart valve 
replacement, cochlear implant, programmable shunt, 
spinal stimulation wires, or any other implants. 

Yes No 

   

Is there any possibility that you could have metal fragments in 
your eye? 

Yes No 

Do you have any metal fragments anywhere in your body? Yes No 

   

Are you wearing?   

Dentures with metal  Yes No 

A hearing aid Yes No 

Body piercing/jewellery/hair grips Yes No 

Slow-release drug patches on your skin Yes No 

   

Do you have any tattoos? Yes No 

Have you ever had a fit or blackout?  Yes No 

Do you have epilepsy or diabetes? Yes No 

   

FOR WOMEN OF CHILDBEARING AGE:  Could you be 
pregnant? 

Yes No 

Some items can interfere with MR examinations, and may also be hazardous to 

your safety 

ALL metal worn or carried on your person must be removed 
 

 
I understand the procedure of a MRI examination. I also understand the above questions. 
 
 
Volunteer’s Signature: ___________________________________ Date: ____________ 
 
 
Staff Signature: _______________________________________Date: ____________ 
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Appendix E -HIIT intervention documents (chapter 5) 

Borg scale 
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Arm resistance band exercises 

 



 

179 
 

Exercise diary 
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HIIT instruction sheet 
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